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Abstract

Wave propagation phenomena play a fundamental role in current technologies, indus-
trial application and scientific research. It can be found in acoustics, electromagnetism,
seismology and other fields. The underlying mathematical models are typically more
involved to solve than for stationary problems like diffusion and linear elasticity due to
the oscillatory behavior of the solutions. This thesis explores different numerical meth-
ods in order to enhance the accuracy of solutions for acoustic wave propagation.

The main focus of the first part of this work is the estimation of sound pressure trans-
fer to the eardrum. The transfer is highly influenced by the shape of the ear canal and
its acoustic properties, such as the acoustic impedance at the eardrum. Invasive proce-
dures to measure the sound pressure at the eardrum are usually elaborate or costly. We
propose a numerical method to estimate the transfer impedance of the ear canal given
only input impedance measurements at the ear canal entrance, by using one-dimensional
first-order finite elements and Nelder-Mead optimization algorithm. Estimations on the
area function of the ear canal and the acoustic impedance at the eardrum are obtained.
Results are validated through numerical simulations on ten different ear canal geometries
and three different acoustic impedances at the eardrum, using synthetically generated
data from three-dimensional finite element simulations.

Further, we consider the problem of identifying the acoustic impedance of a wall sur-
face from noisy pressure measurements in a closed room using a Bayesian approach.
The room acoustics are modeled by the interior Helmholtz equation with impedance
boundary conditions. The aim is to compute moments of the acoustic impedance to es-
timate a suitable density function of the impedance coefficient. For the computation of
moments we use ratio estimators and Monte Carlo sampling. We consider two different
experimental scenarios. In the first scenario, the noisy measurements correspond to a
wall modeled by impedance boundary conditions. In this case, the Bayesian algorithm
uses a model that is (up to the noise) consistent with the measurements and our algo-
rithm is able to identify acoustic impedance with high accuracy. In the second scenario,
the noisy measurements come from a coupled acoustic-structural problem, modeling a
wall made of glass, whereas the Bayesian algorithm still uses a model with impedance
boundary conditions. In this case, the parameter identification model is inconsistent
with the measurements and therefore is not capable to represent them well. Nonethe-
less, for particular frequency bands the Bayesian algorithm identifies estimates with high
likelihood. Outside these frequency bands the algorithm fails. We discuss the results
of both examples and possible reasons for the failure of the latter case for particular
frequency values. We also compare the approach of using ratio estimators for computing

iv



moments with a Markov-Chain Monte Carlo method.

The thesis also addresses stochastic partial differential equation constrained shape op-
timization. The constraint is represented by a time-harmonic wave problem having a
source term with an uncertain location. A typical goal functional represents the mis-
fit between the computed solution and a prescribed function within the computational
domain. The aim is to determine the optimal shape of the domain boundary minimiz-
ing the goal functional. We investigate theoretically and numerically convergence of
gradient-based optimization algorithms and for time-harmonic acoustic problems.

Finally, we examine numerical methods for solving exterior acoustic problems using
the finite element method. In such cases, the radiation condition is approximated by
truncating the domain with an artificial absorbing boundary. Popular choices include
absorbing boundary conditions (ABC) or absorbing layers, where the implementation
of the latter is usually more involved. This thesis proposes an alternative method:
Since reflection error is typically small for waves with normal (0 degrees) incidence, we
propose positioning the artificial boundary such that the incident angles become small.
We consider several two-dimensional problems and study our approach numerically using
different ABCs.
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Zusammenfassung

Wellenausbreitungsphänomene spielen eine fundamentale Rolle in modernen Techno-
logien, industriellen Anwendungen und der wissenschaftlichen Forschung. Sie treten
in der Akustik, dem Elektromagnetismus, der Seismologie und anderen Gebieten auf.
Aufgrund des oszillierenden Verhaltens der Lösung ist der Aufwand zur Lösung der
zugrunde liegenden Modelle im Allgemeinen größer als beispielsweise bei stationären
Problemen der Diffusion oder linearen Elastizität. Diese Dissertation untersucht
verschiedene numerische Methoden um, die Genauigkeit von Lösungen für akustische
Wellenausbreitung zu verbessern.

Der wesentliche Inhalt des ersten Teils dieser Arbeit ist die Schätzung des Schalldruck-
transfers am Trommelfell. Der Transfer hängt stark von der Form des Gehörgangs und
akustischen Eigenschaften wie der akustischen Impedanz am Trommelfell ab. Invasive
Methoden, um den Schalldruck am Trommelfell zu messen, sind üblicherweise aufwendig
oder teuer. Wir schlagen eine numerische Methode zur Schätzung der Transferimpedanz
des Gehörgangs vor, wobei nur Eingangsimpedanzmessungen am Gehörgangseingang
gegeben sind. Dies bewerkstelligen wir mit eindimensionalen finiten Elementen und
dem Nelder-Mead-Optimierungsalgorithmus. Zusätzlich erhalten wir Schätzungen der
Flächenfunktion des Gehörgangs und der akustischen Impedanz des Trommelfells. Die
Ergebnisse werden mit synthetisch generierten Daten aus dreidimensionalen Finite-
Elemente-Simulationen für zehn verschiedene Gehörgangsformen und drei verschiedene
akustische Impedanzen validiert.

Ferner wird das Problem der Identifikation der akustischen Impedanz an einer
Wandoberfläche anhand von verrauschten Messdaten in einem geschlossenen Raum
mit Hilfe eines Bayes’schen Ansatzes behandelt. Die Raumakustik wird durch die
innere Helmholtzgleichung mit Impedanzrandbedingungen modelliert. Das Ziel ist die
Schätzung statistischer Momente der akustischen Impedanz und die Schätzung einer
nützlichen Dichtefunktion des Impedanzkoeffizienten. Für die Berechnung der Momente
verwenden wir Quotientenschätzer und Monte-Carlo-Stichproben. Wir betrachten zwei
unterschiedliche Szenarien. Im ersten Szenario entsprechen die verrauschten Messungen
denen einer durch Impedanzrandbedingungen modellierten Wand. In diesem Fall nutzt
der Bayes’sche Algorithmus ein Modell, das (bis auf das Rauschen) konsistent mit
den Messungen ist. In diesem Fall ist unser Algorithmus in der Lage die akustische
Impedanz mit hoher Genauigkeit zu identifizieren. Im zweiten Szenario stammen die
verrauschten Messdaten von einem gekoppelten Akustik-Struktur-Problem, bei dem eine
Wand aus Glas modelliert wird. Der Bayes’sche Algorithmus verwendet weiterhin die
Impedanzrandbedingungen. In diesem Fall ist die Parameteridentifikation inkonsistent
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mit den Messungen und daher nicht fähig diese darzustellen. Dennoch identifiziert der
Bayes’sche Algorithmus für bestimmte Frequenzbänder Schätzungen mit hoher Plausi-
bilität. Außerhalb dieser Frequenzbänder versagt der Algorithmus. Wir diskutieren die
Ergebnisse für beide Beispiele und mögliche Gründe für das Versagen im letzten Fall für
spezielle Frequenzbänder. Wir vergleichen ferner den Ansatz mit Quotientenschätzern
zur Berechnung statistischer Momente mit einem Markov Chain Monte Carlo Verfahren.

Diese Arbeit befasst sich außerdem mit Formoptimierung mit stochastischen
partiellen Differentialgleichungen als Nebenbedingung. Die Nebenbedingung ist ein
zeitharmonisches Wellenproblem mit einer Quelle, deren Position unsicher ist. Ein
typisches Zielfunktional repräsentiert die Diskrepanz zwischen der berechneten und
einer vorgegeben Funktion innerhalb des Rechengebiets. Das Ziel ist die Bestimmung
der optimalen Form der Berandung des Gebietes, die das Zielfunktional minimiert. Wir
untersuchen theoretisch, und die Konvergenz numerisch, gradientenbasierte Optimie-
rungsalgorithmen für zeitharmonische akustische Probleme.

Schließlich untersuchen wir numerische Methoden für akustische Außenraumprobleme
mittels der finiten Elemente Methode. In diesem Fall muss die Abstrahlungsbedingung
durch Begrenzung des Gebietes mit einem künstlich absorbierenden Rand geschehen.
Gängige Möglichkeiten der Modellierung sind absorbierende Randbedingungen oder ab-
sorbierende Schichten. Diese Dissertation schlägt eine alternative Methode vor: Da Re-
flektionsfehler für senkrecht eintreffende Wellen typischerweise klein sind, schlagen wir
vor die künstliche Begrenzung des Gebiets so vorzunehmen, dass der Einfallswinkel am
gesamten Rand klein wird. Dazu betrachten wir mehrere zwei-dimensionale Probleme
und untersuchen unseren Ansatz numerisch mit verschiedenen absorbierenden Randbe-
dingungen.
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Chapter 1

Introduction

Acoustic wave propagation can be described via the wave equation

∆xP (x, t) =
1

c2
∂2P (x, t)

∂t2
, (1.1)

where P is the complex-valued time-dependent pressure, c is the speed of sound in the
medium, x is the spatial variable and t is time. Often, wave propagation is studied in
time-harmonic settings. This way, it can the be analyzed for specific frequencies isolated.
For this the ansatz1

P (x, t) = p(x)eiωt

is used, where ω = 2πf is the radian frequency with respect to frequency f . i is the
imaginary unit. Substituting this in the wave equation (1.1) leads to

∆xp(x)e
iωt =

1

c2
(iω)2p(x)eiωt

⇒∆p(x) = − ω2

c2︸︷︷︸
=:k2

p(x)

and thus leading to the Helmholtz equation

−∆p(x)− k2p(x) = 0

with wave number k. In this thesis we study numerical methods for harmonic wave prop-
agation in acoustics. For this we consider the one-dimensional Webster’s horn equation
and the Helmholtz equation in two and three space dimensions. The time-harmonic
version of Webster’s horn equation [109] to model the pressure p in a horn (or ear canal)
is given as the following boundary value problem (BVP)

− ∂

∂x

(
S(x)

∂p

∂x

)
− k2S(x)p(x) = 0, x ∈ (0, L),

S(0)p′(0) = g,

S(L)p′(L) + iαp(L) = 0.

(1.2)

1This convention seems to be prevalent in the applications that we deal with in Chapters 3-5, see e.g.
[70, 81, 108], and is also used in the commercial software COMSOL. There also exists a different
convention with regard to the sign in the exponent that leads to the ansatz P (x, t) = p(x)e−iωt. This
ansatz is dominant in the community with respect to the contents of Chapter 6, which is why we use
a different ansatz in that chapter.
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Chapter 1 Introduction

Here, S denotes the area function (of the horn or ear canal). At x = 0 a source is
assumed (incoming sound at the ear canal entrance) and at x = L some reflecting wall
(reflection and absorption of the ear drum). The coefficient α describes reflectance and
absorption. In the following chapters α will usually have the form α = ωρ

Z where ρ is the
density of the medium (typically air) and Z is the complex-valued surface impedance
consisting of the real part (acoustic resistance) and the imaginary part (acoustic reac-
tance). Note that for Z = ρc the Robin boundary condition becomes (for S ≡ 1)

p′(L) + ikp(L) = 0

which is equivalent to full absorption, i.e., no reflection for a plane wave p, i.e., let
p(x) = e−ikx, then

p′(L) + ikp(L) = −ike−ikL + ike−ikL = 0.

We will now introduce the Helmholtz equation in two and three dimensions. Let
Ω ⊂ Rd, d = 2, 3. The Helmholtz equation is given as

−∆p− k2p = f in Ω

p = pD on ΓD

∂p

∂n
= g on ΓN

∂p

∂n
+ iαp = 0 on ΓR

(1.3)

Here f denotes a source in the domain. Homogeneous Dirichlet and Neumann conditions
model a sound-soft or sound-hard boundary. In these cases either the pressure p or its
normal derivative, i.e., the velocity is zero. In scattering problems with a sound-soft
scatterer we often have pD = −pinc, where pinc describes the pressure of an incoming
wave. That way the total field, i.e., the sum of scattered and incoming wave, has
vanishing pressure at the boundary and thus is modeled as sound-soft. The Robin
boundary condition at ΓR describes a mix of absorption and reflection depending on the
parameter α.

The overall goal of this thesis is to enhance the accuracy of acoustic simulations, see
Figure 1.1 for an overview of the contents of this thesis. This will be done in differ-
ent ways: Identifying parameters of geometry and those used in the partial differential
equations (1.2) and (1.3) and optimizing the shape of the domain to minimize a goal
functional or derive improved discretized models. To tackle these tasks the thesis is
structured as follows: In Chapter 2 we revisit preliminaries of functional analysis and
the theory of partial differential equations as well as their discretization with the finite
element method (FEM). In this chapter the problems (1.2) and (1.3) are stated in weak
formulation and well-posedness, i.e., existence and uniqueness of the solution, is shown
for the infinite- and finite-dimensional, i.e., discretized, case. In Chapter 3 we consider
the problem of estimating the ear canal transfer function. This is a highly important
topic in the hearing aid research. The acoustic wave propagation in ear canals can be
modeled by Webster’s horn equation (1.2). However, since the individual shape of the
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Figure 1.1: Contents of this thesis.

ear canal and exact behavior of the ear drum is unknown without elaborate measure-
ments we need to estimate the parameters used in (1.2), namely the area function S,
ear canal length L and acoustic impedance Z. Given measured data at the ear canal
entrance we develop the framework to find the unknown parameters and estimate the
ear canal transfer impedance.

In reality acoustic measurements, or measurements in general, are polluted by mea-
surement errors. This error can have many sources, like noise or uncertain shapes and
parameters. In Chapter 4 we address the estimation of parameters from acoustic mea-
surements in a different setting. This time we consider a room-acoustics problem where
we aim to find the acoustic impedance of a wall surface. Again, we do this by using
measurements, however here we assume these are perturbed by noise. Hence the de-
terministic approach to estimate the parameter is not suitable. Instead we consider a
Bayesian approach where we also assume the acoustic impedance to be a random variable
and hence can study its statistics based on the random noise in the measurements.

Uncertainty does not only arise in the terms of noisy measurements. It can also come
from the unknown location of a source. This problem is considered in Chapter 5. Here
we assume the location of a sound source to be uncertain. The aim will be to optimize
the shape of the domain in a certain way, such that a goal functional is minimized. Due
to the uncertainty of the source location, we need to integrate the uncertainty in the
optimizing procedure which is why we introduce expectation domains and evaluate these
by comparing them to an initial domain and the truth solution.

The shape of the domain plays a role also in a rather different part of acoustic simula-
tions. In exterior Helmholtz problems we aim to approximate a solution in an unbounded
spatial domain. In this free space setting the acoustic waves decay and fulfill the Som-
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Chapter 1 Introduction

merfeld radiation condition2 ∣∣∣∣∂p∂r + ikp

∣∣∣∣ = o(r−(d−1)/2),

where d is the space dimension. However due to the nature of finite elements we have
to truncate the domain somehow. Usually the domain is just reduced by a simple shape
as artificial truncation boundary like a circle or rectangle in 2D or a sphere or cuboid
in 3D and the boundary is imposed with an absorbing boundary condition, eventually
of higher order, or an additional layer that absorbs the wave artificially is added. In
Chapter 6 we consider a different approach by imposing a low order boundary condition
but in return truncate the domain in a different way to achieve higher accuracy results.
Finally we give conclusions and an outlook in Chapter 7 .

The numerical experiments performed in the Chapters 3-6 were computed either on a
local machine (Intel i7-7700HQ CPU at 2.80GHz, 16GB of RAM) or a high-performance
cluster (until 2023: HPC Cluster CARL3, starting 2023: HPC cluster ROSA4), due
to larger available memory needed for solving the underlying system of equations nu-
merically or the need of parallelization due to large amount of simulations. Since the
computational time was not focused on in this thesis the exact machine is not stated in
each chapter. If not stated differently, the numerical experiments in Chapters 3-6 are
done with an own implementation in MATLAB, including the finite element code. Due
to the indefiniteness of the Helmholtz equation iterative solvers usually perform poorly
[42]. That is why in the numerical experiments we used direct solvers, specifically the
backslash operator of MATLAB. This generally leads to solving the system of equations
with LU-decomposition using the Unsymmetric MultiFrontal PACKage with automatic
reordering (UMFPACK, [34]).

2For the different time convention the sign changes.
3located at the University of Oldenburg (Germany), funded by the DFG under INST 184/157-1 FUGG
4located at the University of Oldenburg (Germany), funded by the DFG under INST 184/225-1 FUGG
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Chapter 2

Preliminaries

2.1 Introduction

Before diving into the applications in later chapters we need to consider some funda-
mentals of functional analysis, such as Sobolev spaces and weak formulations, and the
theory of partial differential equations (PDEs) concerning existence and uniqueness. The
contents of this chapter are mainly based on established references in the field of ellip-
tic PDEs, Finite Element Method and their applications to wave propagation like the
Helmholtz equation [21, 54, 62, 67, 92]. Important definitions and theorems will be
stated in order to explain the existence and uniqueness of the solutions of the considered
PDEs.
In practical applications, PDEs are often posed on complex domains where smooth solu-
tions may not exist. This can be due to non-smooth boundaries of the domain or varying
parameters. Hence, solutions in the classical sense, i.e., that are differentiable, might
not exist. To obtain reasonable results nonetheless usually the notion of weak solutions
is used. These are solutions that are in general not differentiable in the calssical sense,
but differentiable in the weak sense. Many numerical methods for solving PDEs, such
as the Finite Element Method, are also based on the weak formulation. They lead to
approximations of solutions even when classical smoothness is not guaranteed. In the
following, if not further defined, we assume that Ω ⊂ Rd is a bounded Lipschitz domain.

Definition 2.1 (Multi-index, [54, p.34]). α ∈ Nn
0 , n ∈ N, is called mutli-index of length

|α|, where
|α| = α1 + · · ·+ αn.

Dα is the α-fold partial differential operator

Dα =
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

.

As usual for u, v ∈ L2(Ω) we write the scalar product

(u, v)L2(Ω) :=

∫
Ω
uv dx

and hence the norm

∥u∥L2(Ω) :=
√
(u, u)L2(Ω) =

(∫
Ω
|u|2 dx

) 1
2

.
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Chapter 2 Preliminaries

Definition 2.2 (Weak derivative, [54, Definition 6.20]). Let u ∈ L2(Ω). We say, u has
a weak derivative v := Dαu ∈ L2(Ω) if

(w, v)L2(Ω) = (−1)|α|(Dαw, u)L2(Ω) for all w ∈ C∞
0 (Ω),

where
C∞
0 (Ω) := {u ∈ C∞(Ω) : suppu ⊂⊂ Ω}.

The corresponding spaces are the Sobolev spaces.

Definition 2.3 (Sobolev space [54, Chapter 6.2.2]). Let k ∈ N0. Let Hk(Ω) ⊂ L2(Ω) be
the set of all functions having weak derivatives Dαu ∈ L2(Ω) for all |α| ≤ k:

Hk(Ω) =
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) for |α| ≤ k

}
The Sobolev space with functions vanishing on (part of) the boundary is defined as

Hk
Γ(Ω) =

{
u ∈ Hk(Ω) : u

∣∣∣∣
Γ

= 0

}
for Γ ⊂ ∂Ω.

To formulate the problems (1.2) and (1.3) in terms of the weak formulation, i.e., in
Sobolev spaces, we need sesquilinear forms.

Definition 2.4 (Sesquilinear form, antilinear functional, [54]). Let V1 and V2 be normed
linear spaces. b : V1 × V2 → C is called a sesquilinear form if it is linear in the first and
antilinear in the second argument, i.e., for u, u1, u2 ∈ V1, v, v1, v2 ∈ V2 and λ ∈ C

b(λu1 + u2, v) = λb(u1, v) + b(u2, v),

b(u, λv1 + v2) = λb(u, v1) + b(u, v2).

The sesquilinear form b is called continuous (or bounded) if

b(u, v) ≤ Ccont∥u∥V1∥v∥V2 for all u ∈ V1 and v ∈ V2.

A functional ℓ : V1 → C is called antilinear if

ℓ(λv1 + v2) = λℓ(v1) + ℓ(v2).

The antilinear functional ℓ is called continuous (or bounded) if

|ℓ(v)| ≤ Cℓ,cont∥v∥V1 for all v ∈ V1.

In the weak formulation we generally seek functions u ∈ V to solve

b(u, v) = ℓ(v) ∀v ∈ V, (2.1)

where V is H1(Ω) or its subspace, e.g., H1
Γ(Ω).
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2.2 Uniqueness and existence of solutions to elliptic second order BVPs

We derive these in detail for the classical formulations (1.2) and (1.3) in Sections 2.2.1
and 2.2.2, respectively. For example, the special case of (1.3)

−∆p− k2p = f in Ω

∂p

∂n
+ ikp = 0 on ∂Ω

(2.2)

has the weak formulation: Find p ∈ H1(Ω) such that∫
Ω
∇p · ∇q dx− k2

∫
Ω
pq dx+ ik

∫
∂Ω

pq ds =

∫
Ω
fq dx ∀q ∈ H1(Ω). (2.3)

Under certain conditions on the space dimension d and the Sobolev index s the Sobolev
spaces can be embedded in the continuously differentiable functions. Here, s does not
need to be a natural number. For the definition of Sobolev spaces with real-valued index
s we refer to [2, 54].

Theorem 2.5 (Sobolev embedding, [54, Theorem 6.48]). Hs(Rd) ⊂ Ck(Rd) holds for
k ∈ N0, s > k + d

2 and Hs(Rd) ⊂ Ct(Rd) for 0 < t /∈ N, s ≥ t+ d
2 .

To deal with boundary terms we need the trace inequality. Here γ : H1(Ω) → H
1
2 (Γ)

denotes the trace operator from the domain Ω to its boundary Γ. The trace operator γ
is linear and continuous for a Lipschitz domain Ω [54, Theorem 6.58].

Theorem 2.6 (Trace inequality, [22, Theorem 1.6.6]). Suppose that Ω is a Lipschitz
domain. Then there is a constant Cγ > 0 such that

∥γu∥L2(∂Ω) ≤ Cγ∥u∥
1
2

L2(Ω)
∥u∥

1
2

H1(Ω)
.

2.2 Uniqueness and existence of solutions to elliptic second
order BVPs

This section follows the explanations of standard works like [22, 54], and specifically
for indefinite problems through the works of [62, 50, 97], to explain the existence and
uniqueness of the solutions to the problems (1.2) and (1.3).

It will be convenient to introduce the notion of a Gelfand triple.

Definition 2.7 (Gelfand triple, [54, (6.36)]). Let U and V be Hilbert spaces. Then

V ⊂ U ⊂ V ′ (V ⊂ Ucontinuously and densely embedded)

where V ′ := L(V,C) is the dual space to V , is called Gelfand triple.

Remark 2.8. In this thesis usually V = H1(Ω) (or V = H1
Γ(Ω)) and U = L2(Ω). The

dual space to H1(Ω) is H1(Ω)′ ⊂ H−1(Ω) = H1
∂Ω(Ω)

′. For the exact definition and
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meaning of this space see for example [2]. For the well-posedness one often finds, that
the right hand side f needs to be inH1(Ω)′ (orH1

Γ(Ω)
′). In the applications in this thesis,

f is usually in L2(Ω) (admitting a smoother solution) with the exception of Chapter 4,
where f is the Dirac-Delta distribution, which is in general, i.e., for d > 1, not even in
H−1(Ω): The following only ∣∣∣∣ ∫

Ω
δ(x)u(x) dx

∣∣∣∣ = |u(0)| < ∞

holds for continuous u ∈ C0(Ω). However not even all u ∈ H1(Ω) are continuous:
For example u(x) = log(|log∥x∥|) is not continuous but an element of H1(Ω) for Ω =
B0.1(0) ⊂ Rd, d > 1.

The well-posedness of many variational formulations, e.g., diffusion or linear elasticity
problems, is shown by using the V -ellipticity and the famous lemma of Lax-Milgram.

Definition 2.9 (V -ellipticity, [54, Definition 6.96]). A (real valued) bilinear form a is
said to be V -elliptic if it is continuous on V × V and there is a constant CE such that

a(x, x) ≥ CE∥x∥2V ∀x ∈ V with CE > 0.

A complex-valued sesquilinear form b is said to be V -elliptic if it is continuous on V ×V
and there is a constant CE such that

|b(x, x)| ≥ CE∥x∥2V ∀x ∈ V with CE > 0.

Lemma 2.10 (Lax-Milgram, [22, Theorem 2.7.7]). If a is V -elliptic and bounded, then
the corresponding linear operator A is invertible, i.e., for all linear functionals ℓ : V R
there exists a unique solution for the problem

a(u, v) = ℓ(v) ∀v ∈ V.

However, the standard variational formulation for the Helmholtz equation, see e.g.
(2.3) or later (2.13), is not V -elliptic for all wave numbers k, although one can con-
struct V -elliptic formulations [79]. To show the well-posedness (at least for the standard
variational formulation) additional tools are necessary. For these indefinite problems
the G̊arding inequality takes over the role of V -ellipticity. Note that in some works
V -ellipticity is already called V -coercivity. In this thesis coercivity is defined as fulfilling
the G̊arding inequality as in the following definition.

Definition 2.11 (Coercivity/G̊arding inequality, [54, Definition 6.105],[62, (2.4.15)]).
Let V ⊂ U ⊂ V ′ be a Gelfand triple. A sesquilinear form b : V × V → C is called
V -coercive if it is continuous and the following G̊arding inequality holds:

|b(x, x) + CK∥x∥2U | ≥ CE∥x∥2V ∀x ∈ V with CK , CE > 0. (2.4)

Just as the coercivity is a generalization of the ellipticity, the inf-sup condition is the
generalization to the lemma of Lax and Milgram. Here we use a formulation based on
the ones used in [54] and [62] which is based on [12].
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2.2 Uniqueness and existence of solutions to elliptic second order BVPs

Theorem 2.12 (inf-sup condition, [12]). Let V1 and V2 be Hilbert spaces. Assume that
a sesquilinear form b : V1 × V2 → C is continuous. Let further ℓ : V2 → C be a bounded
antilinear functional. Then there exists a unique solution u0 ∈ V1 such that

b(u0, v) = ℓ(v), ∀v ∈ V2,

if and only if the two following conditions hold

(i) inf-sup condition:

∃β > 0 : β ≤ sup
0̸=v∈V2

|b(u, v)|
∥u∥V1∥v∥V2

, ∀0 ̸= u ∈ V1,

(ii) transposed inf-sup condition:

sup
0̸=u∈V1

|b(u, v)| > 0, ∀0 ̸= v ∈ V2.

The solution satisfies

∥u0∥V1 ≤ 1

β
∥ℓ∥V ′

2
.

Theorem 2.13 (Fredholm’s alternative, [62, p. 51]). Let V ⊂ U ⊂ V ′ be a Gelfand
triple with compact embedding V ⊂ U . Let b : V × V → C be a V -coercive sesquilinear
form. Then either

b(u, v) = ℓ(v) ∀v ∈ V

has a unique solution u ∈ V for all antilinear functionals ℓ : V → C or

b(u, v) = 0 ∀v ∈ V

has a non-trivial solution u ∈ V .

Remark 2.14. Fredholm’s alternative essentially states that existence follows from unique-
ness.

As stated above, we are usually interested in V ⊆ H1(Ω) and U = L2(Ω). Hence,
to use Fredholm’s alternative we need a compact embedding H1(Ω) ⊂ L2(Ω). The
embedding theorem by Rellich states the compact embedding in the case of a bounded
Lipschitz domain Ω. The theorem dates back to 1930 in Rellich’s original work [91] or
to Kondrachov in 1945 [68] in a more general context. The statement can be found in a
more modern setting in various textbooks, e.g., [43, 5, 2, 66].

Theorem 2.15 (Compact Sobolev embedding). For a Lipschitz domain Ω the embedding
H1(Ω) ⊂ L2(Ω) is compact.

To make use of Fredholm’s alternative one needs to show the uniqueness of the solution
to conclude the existence. For this one often uses the unique continuation principle
(see [71, Ch. 4.3]): If the solution to the homogeneous problem satisfies homogeneous
Cauchy-data at part of the boundary, it can be extended by zero and one can conclude
that the function itself is zero in the whole domain. For the case of Helmholtz problems
(with variable coefficients, i.e., the Horn equation is also included) this was shown in
[50].

9
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Theorem 2.16 (Unique continuation principle, [50, Theorem 2.1]). Suppose a ∈
L∞(Ω, [amin, amax]) is real-valued with 0 < amin ≤ amax < ∞. Let u ∈ H1(Ω) satisfy the
homogeneous Helmholtz equation∫

Ω
a∇u · ∇v + kuv dx = 0

for all v ∈ H1(Ω). Then: If u vanishes on a ball B of positive radius, with B ⊂ Ω, it
follows that u vanishes identically in Ω.

In the following the two main differential equations in this thesis are considered: The
horn equation, i.e. one-dimensional Helmholtz equation with variable coefficient and
the Helmholtz equation (in two and three dimensions). For each the uniqueness and
existence of the solution is shown using the prior theorems and some more specific tools
and proofs. First the horn equation is considered. Second the two- and three-dimensional
Helmholtz equation, which can be dealt with in a similar fashion.

2.2.1 Time-harmonic horn equation

The first problem we consider here is Webster’s horn equation in a time-harmonic setting.
For this we first repeat the strong formulation (1.2): Find p ∈ C2([0, L]) such that

− d

dx

(
S(x)

dp

dx
(x)

)
− k2S(x)p(x) = 0 x ∈ (0, L), (2.5)

S(0)p′(0) = g, (2.6)

S(L)p′(L) + iαp(L) = 0, (2.7)

where S ∈ L∞([0, L], [Smin, Smax]), 0 < Smin < Smax < ∞ and α ∈ C. In applications
α will often be of the form α = ωρ

Z where Z is the acoustic surface impedance, see
also Chapter 3. Note, that other boundary conditions, like Dirichlet, are also possible.
Essentially, to guarantee existence and uniqueness for all wave numbers k, we need the
impedance/Robin boundary condition with Re(α) ̸= 0, as we will see in the following.
First we derive the weak formulation to this problem. For this multiply Equation (2.5)
by the complex conjugate of a test function q ∈ H1([0, L]) and integrate by parts:

0 =

∫ L

0

[
− d

dx

(
S(x)p′(x)

)
− k2S(x)p(x)

]
q(x) dx

=

∫ L

0

[
− d

dx

(
S(x)p′(x)

)]
q(x) dx−

∫ L

0
k2S(x)p(x)q(x) dx

=

∫ L

0
S(x)p′(x)q′(x) dx−

[
S(x)p′(x)q(x)

]L
0
−
∫ L

0
k2S(x)p(x)q(x) dx

10
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Inserting the boundary conditions leads to

0 =

∫ L

0
S(x)p′(x)q′(x) dx+ iαp(L)q(L) + gq(0)−

∫ L

0
k2S(x)p(x)q(x) dx

⇔
∫ L

0
S(x)p′(x)q′(x) dx+ iαp(L)q(L)−

∫ L

0
k2S(x)p(x)q(x) dx = −gq(0)

⇔b(p, q) = ℓ(q)

with sesquilinear form

b(p, q) =

∫ L

0
S(x)p′(x)q′(x) dx+ iαp(L)q(L)−

∫ L

0
k2S(x)p(x)q(x) dx

and antilinear form

ℓ(q) = −gq(0).

The problem in weak formulation reads: Find p ∈ H1([0, L]) such that

b(p, q) = ℓ(q) ∀q ∈ H1([0, L]). (2.8)

To show that problem (2.8) is well-defined, we aim to show that the sesquilinear form b
is coercive and show that the solution to the problem is unique. Fredholm’s alternative
than yields the existence. Finally, using the inf-sup theorem we get continuous depen-
dence on the data g.

We start by showing that the G̊arding inequality (2.4) is fulfilled. Let q ∈ H1(Ω),
then

|b(q, q)+CK∥q∥2L2([0,L])|

=

∣∣∣∣ ∫ L

0
S(x)|q′|2 dx+ iα|q(L)|2 − k2

∫ L

0
S(x)|q|2 dx+ CK

∫ L

0
|q|2 dx

∣∣∣∣
≥
∫ L

0
S(x)|q′|2 dx− Im(α)|q(L)|2 + (CK − k2 max

x∈[0,L]
S(x))

∫ L

0
|q|2 dx

≥ min
x∈[0,L]

S(x)

∫ L

0
|q′|2 dx− Im(α)|q(L)|2 + (CK − k2 max

x∈[0,L]
S(x))

∫ L

0
|q|2 dx,

where the first inequality comes from just taking the real part and a large enough
CK which will be specified in the following. If Im(α) ≤ 0 we can simply choose
CK = k2maxx∈[0,L] S(x) + 1 and the G̊arding inequality (2.4) is fulfilled with CE =

min

(
min

x∈[0,L]
S(x), 1

)
. If Im(α) > 0 we need to be more careful. Let j(x) = 2

Lx− 1 and

11
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notice, that

|q(L)|2 ≤ |q(L)|2 + |q(0)|2

=

∫ L

0
(qqj)′ dx =

∫ L

0
|q|2j′(x) dx+

∫ L

0

(
qq′ + q′q

)
j(x) dx

≤
∫ L

0

2

L
|q|2 dx+

∫ L

0
|qq′| dx+

∫ L

0
|q′q| dx

≤ 2

L

(∫ L

0
|q|2 dx

) 1
2
(∫ L

0
|q|2 dx

) 1
2

+ 2

(∫ L

0
|q|2 dx

) 1
2
(∫ L

0
|q′|2 dx

) 1
2

≤ 2

(
1

L
+ 1

)
∥q∥L2([0,L])∥q∥H1([0,L]).

Note that, this corresponds to the one-dimensional trace inequality. This can be further
estimated as

2

(
1

L
+ 1

)
∥q∥L2([0,L])∥q∥H1([0,L]) ≤ 2ε

(
1

L
+ 1

)
∥q∥2L2([0,L]) +

1

2ε

(
1

L
+ 1

)
∥q∥2H1([0,L]),

for some ε > 0. In terms of the G̊arding inequality this leads to

|b(q, q)+CK∥q∥2L2([0,L])|

≥ min
x∈[0,L]

S(x)

∫ L

0
|q′|2 dx− Im(α)|q(L)|2 + (CK − k2 max

x∈[0,L]
S(x))

∫ L

0
|q|2 dx

≥ min
x∈[0,L]

S(x)|q|2H1([0,L]) − 2εIm(α)

(
1

L
+ 1

)
∥q∥2L2([0,L])

− 1

2ε
Im(α)

(
1

L
+ 1

)
∥q∥2H1([0,L]) + (CK − k2 max

x∈[0,L]
S(x))∥q∥2L2([0,L])

=

[
min

x∈[0,L]
S(x)− Im(α)

2ε

(
1

L
+ 1

)]
∥q∥2H1([0,L])

+

[
CK − k2 max

x∈[0,L]
S(x)− min

x∈[0,L]
S(x)− 2εIm(α)

(
1

L
+ 1

)]
∥q∥2L2([0,L]).

The constants ε and CK can be chosen such that the term in front of the H1-norm is
positive and the term in front of the L2-norm vanishes: Choose

ε =
Im(α)

min
x∈[0,L]

S(x)

(
1

L
+ 1

)
and

CK = min
x∈[0,L]

S(x) + k2 max
x∈[0,L]

S(x) + 2
Im(α)2

min
x∈[0,L]

S(x)

(
1

L
+ 1

)2

,

12



2.2 Uniqueness and existence of solutions to elliptic second order BVPs

then we get

min
x∈[0,L]

S(x)− Im(α)

2ε

(
1

L
+ 1

)
=

1

2
min

x∈[0,L]
S(x), and

CK − k2 max
x∈[0,L]

S(x)− min
x∈[0,L]

S(x)− 2εIm(α)

(
1

L
+ 1

)
= 0.

Hence, the G̊arding inequality holds with CE = 1
2 min
x∈[0,L]

S(x). Fredholm’s alternative,

i.e., Theorem 2.13, states that existence of the solution follows from uniqueness. Hence,
the next step in showing the well-posedness of problem (2.8) is to show the uniqueness
of the solution. Assume p1 and p2 both solve (2.8). Let w := p1 − p2. Then

b(w, q) = 0 ∀q ∈ H1([0, L]).

To show uniqueness, we need to prove w = 0. The idea is to use the unique continuation
principle for this matter. Considering only the imaginary part and setting q = w leads
to

0 = Im(b(w,w)) = Re(α)|w(L)|2.

Now, since Re(α) > 0, we must have w(L) = 0 and due to the impedance boundary
condition also w′(L) = 0. We can extend w to the interval [0, L+ δ] by zero, i.e.,

w∗(x) =

{
w(x), ∈ [0, L]

0, x ∈ [L,L+ δ].

Extending S as S∗ such that S∗ ≥ S∗
min > 0 on [0, L+ δ], w∗ is the solution to∫ L+δ

0
S∗(x)w∗′(x)q′(x) dx−

∫ L+δ

0
k2S∗(x)w∗(x)q(x) = 0 ∀q ∈ H1([0, L+ δ]).

Since w∗ = 0 on [L,L + δ], w∗ = 0 on the all [0, L + δ] due to the unique continuation
principle. Hence, p is unique and as a consequence from Fredholm’s alternative also
exists. Theorem 2.12 now concludes that the solution p satisfies

∥p∥H1([0,L]) ≤ c|g|.

Note that here g is a constant. Even if it was a function, the boundary part the function
g lives on is only one single point.

2.2.2 Helmholtz equation in 2D/3D

Showing the well-posedness of the Helmholtz equation in two and three dimensions is
rather similar to the case of the horn equation in one dimension. First revisit the strong

13
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formulation of equation (1.3) from the introduction. Let Ω ⊂ Rd, d = 2, 3, a Lipschitz
domain and ∂Ω = ΓD ∪ ΓN ∪ ΓR. Find p ∈ C2(Ω) such that

−∆p− k2p = f x ∈ Ω (2.9)

p = pD on ΓD (2.10)

∂p

∂n
= g on ΓN (2.11)

∂p

∂n
+ iαp = 0 on ΓR, (2.12)

where α ∈ L∞(ΓR) piecewise constant, Re(α) ̸= 0 and ΓR has positive Lebesgue measure.
For simplicity, we assume that either Im(α) ≤ 0 or Im(α) > 0 on ΓR. This way we do
not need to consider the case of Im(α) switching the sign, which lets us avoid splitting
the boundary part ΓR further in that follows and reduce the discussion to two cases only.
However, this simplification is not needed as can easily be checked. In fact, in Chapter
4 we consider a problem where we have negative Im(α) on one part of the boundary
and positive Im(α) on another part. We assume pD = 0. However, later we show that

we can assume pD ∈ H
1
2 (ΓD) as long as Ω is Lipschitz [54, Ch. 7.3]. To get the weak

formulation we again multiply the equation with the complex conjugate of a test function
q ∈ H1

ΓD
(Ω) := {v ∈ H1(Ω) : v

∣∣
ΓD

= 0} and integrate over the domain:

0 =

∫
Ω

[
−∆p− k2p

]
q − fq dx

=

∫
Ω
∇p · ∇q dx−

∫
ΓN

∂p

∂n
q ds−

∫
ΓR

∂p

∂n
q ds−

∫
Ω
k2pq dx−

∫
Ω
fq dx

=

∫
Ω
∇p · ∇q dx−

∫
ΓN

gq ds+

∫
ΓR

iαpq ds−
∫
Ω
k2pq dx−

∫
Ω
fq dx,

leading to b(p, q) = ℓ(q) with

b(p, q) =

∫
Ω
∇p · ∇q dx+

∫
ΓR

iαpq ds−
∫
Ω
k2pq dx and

ℓ(q) =

∫
Ω
fq dx+

∫
ΓN

gq ds.

The weak formulation reads: Find p ∈ H1
ΓD

(Ω) such that for all q ∈ H1
ΓD

(Ω):

b(p, q) = ℓ(q). (2.13)

The first step to the well-posedness is again to show that b is coercive, i.e., the G̊arding
inequality holds:

|b(q, q) + CK∥q∥L2(Ω)| =
∣∣∣∣ ∫

Ω
|∇q|2 dx+

∫
ΓR

iα|q|2 ds− k2
∫
Ω
|q|2 dx+ CK

∫
Ω
|q|2 dx

∣∣∣∣
≥ |q|2H1(Ω) −

∫
ΓR

Im(α)|q|2 ds+ (CK − k2)∥q∥L2(Ω)

14



2.2 Uniqueness and existence of solutions to elliptic second order BVPs

Now if Im(α) ≤ 0 on ΓR one can simply leave out the term and have coercivity with
CK = k2 + 1. Otherwise we use the trace inequality (Theorem 2.6)∫

ΓR

Im(α)|q|2 ds ≤ sup
x∈ΓR

Im(α(x))∥q∥2L2(ΓR)

≤ sup
x∈ΓR

Im(α(x))∥q∥2L2(∂Ω)

≤ Cγ sup
x∈ΓR

Im(α(x))∥q∥L2(Ω)∥q∥H1(Ω)

Now the product of the norms can be split into two parts for some ε > 0:

sup
x∈ΓR

Im(α(x))∥q∥L2(Ω)∥q∥H1(Ω) ≤ sup
x∈ΓR

Im(α(x))

(
2ε∥q∥2L2(Ω) +

1

2ε
∥q∥2H1(Ω)

)
.

Inserting this above leads to

|q|2H1(Ω) −
∫
ΓR

Im(α)|q|2 ds+ (CK − k2)∥q∥L2(Ω)

≥|q|2H1(Ω) − sup
x∈ΓR

Im(α(x))

(
2ε∥q∥2L2(Ω) +

1

2ε
∥q∥2H1(Ω)

)
+ (CK − k2)∥q∥2L2(Ω)

=

1− sup
x∈ΓR

Im(α(x))

2ε

 ∥q∥2H1(Ω) +

[
CK − k2 − 1− 2ε sup

x∈ΓR

Im(α(x))

]
∥q∥L2(Ω)

≥CE∥q∥2H1(Ω)

for CE = 1
2 , ε = sup

x∈ΓR

Im(α(x)) and CK = k2 + 1 + 2ε sup
x∈ΓR

Im(α(x)). Hence, the

sesquilinear form is coercive. To show well-posedness of problem (2.13) it is now enough
to show uniqueness, since the existence follows from Theorem 2.13. Let p1 and p2 be
solutions of (2.13) and let w = p1 − p2. Then w solves

b(w, q) = 0 ⇔
∫
Ω
∇w · ∇q dx+

∫
ΓR

iαwq ds− k2
∫
Ω
wq dx = 0.

Considering only the imaginary part and v = w gives

Im(b(w,w)) =

∫
ΓR

Re(α)|w|2 ds = 0.

Since Re(α) ̸= 0 on ΓR and also on a subset Γ̃ ⊂ ΓR with positive measure, we have
w = 0 on Γ̃ and due to the Robin boundary condition also ∂w

∂n = 0 on Γ̃. Now let w∗ be

the extension of w on Ω∗ where Ω ⊂ Ω∗ and Γ̃ ⊂ Ω∗, see Figure 2.1, by extending w = 0
on Ω∗\Ω. Then w∗ solves

15
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Γ̃

p̃ = 0

ΓRΩ

ΓN

ΓD

B

Ω∗\Ω

Figure 2.1: Unique continuation principle illustrated for the Helmholtz problem in a two-
dimensional domain, based on figure 1 in [50].

∫
Ω∗

∇w∗ · ∇q dx− k2
∫
Ω∗

w∗q dx = 0

for all q ∈ H1
ΓD

(Ω∗). Since w∗ = 0 on a ball B ⊂ Ω∗, due to the unique continuation
principle, w∗ = 0 in Ω∗ and, hence, w = 0. Thus, p1 = p2. Therefore, the solution to
(2.13) is unique. From Fredholm’s alternative it follows that p also exists. Theorem 2.12
then states the stability with respect to the data, i.e.,

∥p∥H1(Ω) ≤ c
(
∥f∥H−1(Ω) + ∥g∥

H− 1
2 (ΓN )

)
. (2.14)

If 0 ̸= pD ∈ H
1
2 (ΓD), then there exists an extension p̃D ∈ H1(Ω) such that p̃D

∣∣∣∣
ΓD

= pD

[54, Remark 7.20]. Let w ∈ H1
ΓD

be the solution to

b(w, q) = ℓ(q)− b(p̃D, q) ∀q ∈ H1
ΓD

(Ω).

Then p = p̃D + w solves

b(p, q) = ℓ(q) ∀q ∈ H1
ΓD

(Ω)

with p

∣∣∣∣
ΓD

= pD. Thus, the analysis above also applies for the non-homogeneous Dirichlet

conditions. The stability estimate (2.14) becomes (with possibly a different constant c)

∥p∥H1(Ω) ≤ c
(
∥f∥H−1(Ω) + ∥g∥

H− 1
2 (ΓN )

+ ∥pD∥
H

1
2 (ΓD)

)
.

In case of convex Ω or smooth boundary the solution p is in H2(Ω) if f ∈ L2(Ω),
g ∈ H1/2(ΓN ) and pD ∈ H3/2(ΓD), and also a change in boundary condition (from
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Neumann/Robin to Dirichlet) is only happening at a boundary angle smaller or equal
than 90 degrees. In this case the following regularity estimate holds [52, 32, 51]

∥p∥H2(Ω) ≤ Creg

(
∥f∥L2(Ω) + ∥g∥H1/2(ΓN ) + ∥pD∥H3/2(ΓD)

)
. (2.15)

2.3 Discretization using finite elements

In this section we discuss the discretization in terms of finite dimensional spaces and
discuss the associated convergence theory. In the numerical experiments in this thesis
we use linear and quadratic finite elements.

2.3.1 Finite element space

For the one-dimensional case we divide the interval Ω = [a, b] into uniform subintervals
Ti = [xi, xi+1], i = 0, . . . , N − 1, of length h = 1

N . We define the finite element space
Vh ⊂ V as globally continuous on [a, b] and piecewise linear (or quadratic) in each Ti.
The basis consists of piecewise linear (or quadratic) functions with φi(xj) = δij .

In the case of Ω ⊂ Rd, d = 2, 3, we discretize the problem using a quasi-uniform family
of triangulations {Th}h>0 of Ω. Each element T ∈ Th is a triangle or tetrahedron with
diameter hT , and the diameter of the largest ball contained in T is denoted by ρT . The
maximum diameter of all elements in Th is the mesh size, h := maxT∈Th hT . We assume
the triangulations {Th}h>0 to be shape regular, i.e., we assume there exist constants
c1, c2 > 0, such that for all T ∈ Th and for all h > 0

hT
ρT

≤ c1,
h

hT
≤ c2.

We then define the finite element space Vh on the triangulation Th. The functions in
Vh are globally continuous on Ω and piecewise linear (or quadratic) in each T ∈ Th,
such as in the one-dimensional case. The basis of Vh is made of piecewise linear (or
quadratic) functions φi with φi(xj) = δij . For the quadratic elements one typically
defines additional nodes xi in the center of the interval (1D) or the center of the edges of
the triangle (2D) or tetrahedron (3D), see for example [26] for details on the definition
on standard finite elements. The discrete weak formulation of (2.1) is: Find uh ∈ Vh

such that for all vh ∈ Vh

b(uh, vh) = ℓ(vh), (2.16)

where b and ℓ are the same as in the infinite dimensional case.

2.3.2 Approximation in Vh

In the discrete setting for indefinite problem we need to state the inf-sup condition for
the discrete spaces, since in contrast to the lemma of Lax-Milgram, it does not need to
hold for subspaces of V . The subspaces W1 and W2 can be thought of the finite element
spaces defined previously.

17



Chapter 2 Preliminaries

Definition 2.17 (Discrete inf-sup condition, [62]). Let V1 and V2 be Hilbert spaces and
W1 ⊂ V1, W2 ⊂ V2 proper subspaces. Let b : V1 × V2 → C be a continuous sesquilinear
form. If b satisfies

∃βh > 0 : βh ≤ sup
0 ̸=v∈W2

|b(u, v)|
∥u∥∥v∥

, ∀0 ̸= u ∈ W1 (2.17)

and also the transposed condition

sup
0 ̸=u∈W1

|b(u, v)| > 0, ∀0 ̸= v ∈ W2. (2.18)

Then there exists a unique element uh ∈ W1 such that

b(uh, v) = f(v), ∀v ∈ W2.

The Ritz-Galerkin solution of the discrete problem (2.1) is quasi-optimal, i.e., out
of all functions of Vh its error from the continuous solution is the minimum up to a
multiplicative constant. This result dates back to Céa [30] in 1964 for the symmetric
and V -elliptic case, e.g. for the Laplace or linear elasticity problem, the general case
was analyzed first by Birkhoff, Schulz and Varga [18] in 1968.

Theorem 2.18 ([54, Theorem 8.21]). Let Vh ⊂ V be a finite-dimensional subspace of
V . Let b : V ×V → C be a continuous sesquilinear form and suppose the discrete inf-sup
condition (2.17) is fulfilled with βh and also the transposed discrete inf-sup condition
(2.18) holds. Let uh ⊂ Vh be the Ritz-Galerkin solution of (2.16). Then

∥u− uh∥ ≤
(
1 +

Ccont

βh

)
inf

vh∈Vh

∥u− vh∥V .

If b is symmetric and V -elliptic, the estimate can be improved to

∥u− uh∥ ≤

√
Ccont

βh
inf

vh∈Vh

∥u− vh∥V .

A variant of the following theorem can be found in [22], where ℓ(v) = (f, v)L2(Ω).

Theorem 2.19. Let b : H1(Ω) ×H1(Ω) → C be a continuous sesquilinear form. Let b
fulfill the G̊arding inequality (2.4). Assume the problem

b(u, v) = ℓ(v) ∀v ∈ H1
ΓD

(Ω)

and its adjoint

b(v, u) = (u− uh, v) =: ℓadjoint(v) ∀v ∈ H1
ΓD

(Ω),

where uh is defined below, to be H2-regular, i.e., it holds especially (2.15) (or simi-
larly depending on the boundary conditions) with corresponding smoothness on the data.
Assume further that for some Cint > 0

inf
vh∈Vh

∥v − vh∥H1(Ω) ≤ Cinth|v|H2(Ω) for all v ∈ H1
ΓD

(Ω). (2.19)
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Then there exists a unique uh ∈ Vh such that for h > 0 sufficiently small

b(uh, vh) = ℓ(vh) ∀vh ∈ Vh

and

∥u− uh∥H1(Ω) ≤ C inf
vh∈Vh

∥u− vh∥H1(Ω) ≤ CAh|u|H2(Ω).

Proof. Assume that problem (2.1) has a solution uh ∈ Vh. Then for all vh ∈ Vh

b(uh, vh) = b(u, vh) = ℓ(vh)

and hence b(u− uh, vh) = 0 (this property is also called Galerkin orthogonality). Using
G̊arding’s inequality we get

α∥u− uh∥2H1(Ω) ≤ |b(u− uh, u− uh) +K∥u− uh∥2L2(Ω)|.

To bound the L2-norm of the error u − uh one uses a standard duality argument also
known as Nitsche’s trick. Let w ∈ H1(Ω) be the solution to the adjoint problem

b(v, w) = (u− uh, v) = ℓadjoint(v) ∀v ∈ H1
ΓD

(Ω).

Then

∥u− uh∥2L2(Ω) = (u− uh, u− uh)L2(Ω) = ℓadjoint(u− uh) = b(u− uh, w).

Choose wh ∈ Vh such that

∥w − wh∥H1(Ω) ≤ Cinth|w|H2(Ω).

This is possible due to assumption in (2.19). Since b(u− uh, vh) = 0 for all vh ∈ Vh we
have

b(u− uh, w) = b(u− uh, w − wh) ≤ Ccont∥u− uh∥H1(Ω)∥w − wh∥H1(Ω)

≤ CcontCinth∥u− uh∥H1(Ω)|w|H2(Ω)

≤ CcontCintCregh∥u− uh∥H1(Ω)∥u− uh∥L2(Ω).

Hence

∥u− uh∥L2(Ω) ≤ CcontCintCregh∥u− uh∥H1(Ω).

Inserting this in the equation above, and using again Galerkin orthogonality for the first
term, leads to

α∥u− uh∥2H1(Ω) ≤ Ccont∥u− uh∥H1(Ω)∥u− vh∥H1(Ω)

+ h2KC2
contC

2
intC

2
reg∥u− uh∥2H1(Ω)

⇒
(
α− h2KC2

contC
2
intC

2
reg

)
∥u− uh∥H1(Ω) ≤ Ccont∥u− vh∥H1(Ω)
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Chapter 2 Preliminaries

for all vh ∈ Vh. For h < h0 :=
α

1
2

(2K)
1
2CcontCintCreg

this leads to

α∥u− uh∥H1(Ω) ≤ 2Ccont∥u− vh∥H1(Ω) ∀vh ∈ Vh.

Using the assumption in (2.19), this can be further expressed as

α∥u− uh∥H1(Ω) ≤ 2Ccont inf
vh∈Vh

∥u− vh∥H1(Ω) ≤ 2CcontCinth|u|H2(Ω), (2.20)

hence uh converges to u for h > h0. The existence and uniqueness of uh, which is
equivalent in the finite-dimensional space Vh, is seen as follows: If the solution were not
unique, then there would be a nontrivial solution uh ∈ Vh with a(uh, vh) = 0 for all
vh ∈ Vh. However, for the homogeneous problem one has u = 0, due to the stability
estimate (2.14) of the continuous case (and also because we know that for the continuous
case the solution exists and is unique if it fulfills the G̊arding inequality in V ). Hence,
Equation (2.20) becomes

α∥uh∥H1(Ω) ≤ 2Ccont inf
vh∈Vh

∥vh∥H1(Ω) = 0

and therefore also uh = 0.

Remark 2.20. The assumption in (2.19) typically needs an interpolation operator I :
H1

ΓD
(Ω) → Vh. For v ∈ H2(Ω) one can use the Lagrange-Interpolation operator to show

this inequality. However, in the case of v /∈ H2(Ω), v is not necessarily continuous.
Hence, we might not be able to evaluate it in the interpolation points. The interpolation
operator of Scott and Zhang [100] solves this issue as it does not need point evaluations.
With this operator we get

inf
vh∈Vh

∥v − vh∥Hs(Ω) ≤ Cinth
s|v|H1+s(Ω) for all v ∈ Hs

ΓD

for s > 1. Hence we can prove convergence analogously even for u ∈ Hs(Ω), 1 < s < 2,
although the convergence rate suffers.
The proof also shows that for V -elliptic sesquilinear (or bilinear) forms the condition

h < h0 is not needed, since K = 0 in that case. Existence and uniqueness of the discrete
solution in the V -elliptic case follows from the Lax-Milgram Lemma directly anyway,
since it still holds if it was fulfilled for the continuous case. This is in contrast to the
inf-sup condition where the discrete version does not follow directly from the continuous
case. However, the discrete inf-sup condition is fulfilled if the sesquilinear form is also
coercive for sufficiently small h.

In acoustic engineering applications one usually suggests choosing h dependent on the
wave number. Common rules of thumb are ten elements per wavelength in the case
of linear finite elements or six elements per wavelength in the case of quadratic finite
elements. However, works on k-explicit stability estimates and convergence theory have
shown that this does not hold for large k, see for example [74, 11, 57, 25, 76, 50]. In
the numerical experiments in this thesis we usually followed the rule of thumb of ten
elements per wavelength. This seemed to be sufficient in these cases.
In the case of higher regularity of the solution u faster convergence can be achieved

by using higher order polynomials as ansatz functions, see, e.g., [22] for details.
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Chapter 3

Using a one-dimensional finite-element
approximation of Webster’s horn equation
to estimate individual ear canal acoustic
transfer from input impedances

The contents of this chapter have been published in [112]. Mainly minor parts are
changed in this chapter with respect to the publication to give more context to the other
contents of the thesis. The author of this thesis is the first author of this publication
and has made major contributions to the development of the method, the writing and
the numerical experiments (with the exception of the data preparation in Section 3.3).

3.1 Introduction

Humans have individually shaped ear canals which will individually influence the sound
transfer from the ear canal entrance to the eardrum. In many applications such as hear-
ing aids or insert earphones, one is interested in the sound pressure at the eardrum,
however, it is often not practical to measure it directly. Therefore, it is desirable to
be able to individually predict the eardrum sound pressure from measurements at the
entrance to the ear canal. One possibility is to measure the acoustic impedance, i.e., the
ratio of sound pressure and volume velocity, at the entrance of the ear canal. The goal
is then to estimate the transfer impedance, i.e., the ratio of the eardrum sound pressure
to the volume velocity at the entrance, because one can then use input and transfer
impedances together with a source model to individually predict the eardrum pressure,
see e.g. [19].
A useful one-dimensional equation to study this behavior is Webster’s horn equation
[109], describing the sound pressure in a horn, i.e., a tube with varying diameter. In
order to solve Webster’s equation for the sound pressure at different positions along the
ear canal, an area function which describes the area along the ear canal is needed. If
three-dimensional ear canal geometries are given, a curved center axis and an associated
area function can be computed, using, for instance, the method proposed in [105]. In
most cases, such data is, however, not available. Alternatively, area functions can be
estimated from acoustic impedances or reflectances measured at the entrance of the in-
dividual ear canal.
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Chapter 3 Estimating individual ear canal acoustic transfer

In a number of publications, the phase of the reflectance was used to estimate the transfer
impedance and area function [61, 19, 89, 96, 95, 103]. As an example, in [61] the opti-
mization was done by an electro-acoustic model and a gradient method to approximate
the radius function for a measured (or simulated) input reflectance. Given reference
pressure values at the eardrum, the pressure was transformed back to the entrance for
individual ear canals. A chain matrix, optimized using reflectance data then lead to
accurate results for the radius function and the pressure at the drum for frequencies up
to 16 kHz.
Another approach using a reflectance-based method was considered in [89] where the
aim was to reproduce the ear canal cross-sectional area. Specifically, a time-domain
reflectance was calculated and the inverse solution to the time-domain horn equation
was formulated in terms of forward and backward traveling pressure waves to obtain
the area function by using a finite difference approximation. The solution to the inverse
problem was analyzed for infinite acoustic horns in [90]. In [89] the area function of the
inverse solution was applied to measurements made in an ear simulator. The estimated
ear canal area function was close to the one of the simulator. Furthermore, the authors
estimated the ear canal area function from reflectance measurements on real subjects,
assuming the eardrum to be rigid, although the true ear canal area functions were not
known. The resulting ear canal area functions looked plausible and similar to other
ear canal area functions from the literature. The transfer impedance, however, was not
investigated.
In this chapter, we present a different approach based on data of the input impedance
in the frequency domain. Working in the frequency domain appears to be more conve-
nient with respect to actual measurement data (i.e., acoustic impedances or reflectances)
whose validity will in general be limited to a certain frequency range. Our aim is to es-
timate the transfer impedance of the individual residual ear canal. To this end, we
parameterize the ear canal area function and the acoustic impedance of the eardrum.
We solve the horn equation in the frequency domain with linear finite elements and
optimize the parameters using the Nelder-Mead method [83] with respect to given data
of the input impedance. By doing so, we also obtain estimations of the ear canal area
function and the acoustic impedance at the eardrum.
The general idea of the method is described in Section 3.2. The generation of data as
input and for validation purposes is explained in Section 3.3. In Section 3.4 the proce-
dure from Section 3.2 will be extended by several adjustments to avoid unrealistic results
during the parameter fitting. The final version of our method is validated in Section 3.5
on a variety of ear canal geometries with different eardrum impedance models. Finally,
in Section 3.6 conclusions are given.
A MATLAB implementation of the complete method can be found in the supplementary
material [110].1

1See supplementary material at https://github.com/nickwulbusch/ear-canal-parameter-fitting-1d for
full MATLAB-Code of the final method.
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3.2 Modeling approach and parameter estimation

3.2 Modeling approach and parameter estimation

The main goal of our method is to estimate the transfer impedance Ztr, based on data of
the input impedance Zin,data, for individual ear canals. To do this, we use Webster’s horn
equation, see Section 2.2.1, in the frequency domain as surrogate model of a simplified
representation of the pressure distribution in the ear canal,

d

dx

[
S(x)

d

dx
p(x)

]
+ k2S(x)p(x) = 0 in [0, ℓ], (3.1a)

S(0)
dp

dx
(0) = qiωρ, (3.1b)

S(ℓ)
dp

dx
(ℓ) +

iωρ

Zd
p(ℓ) = 0. (3.1c)

The solution p(x) to this problem denotes the acoustic pressure, S(x) is the area function,
k = 2πf

λ the wave number with frequency f and wavelength λ, q the volume velocity,
ω = 2πf the angular frequency, ρ the density of air inside the ear canal and Zd the
acoustic impedance of the eardrum. In this setting, the aim is to estimate the transfer
impedance Ztr =

p(ℓ)
q from given data of the input impedance Zin,data which in turn is

modeled by Zin = p(0)
q in the one-dimensional surrogate (3.1a)-(3.1c). The area function

S(x) and acoustic impedance Zd at the eardrum are unknown. In the following, these
quantities are parameterized and fitted to the given data of the input impedance. This
is done through PDE-constraint optimization by minimizing the cost function

J0(Zin) =
∑
f∈F

A

(
log10

∣∣∣∣ Zin(f)

Zin,data(f)

∣∣∣∣)2

+B arg

(
Zin(f)

Zin,data(f)

)2

, (3.2)

with weighting parameters A and B. These are chosen as A = 10 and B = 1. The cost
function is thus the weighted sum of the squared differences between model and data of
the logarithmic amplitude and the phase in radians. Zin,data(f) denotes the given data,
i.e., the input impedance from the measurement at the entrance of the ear canal for a
specific frequency f , whereas Zin(f) denotes the input impedance from the solution of
problem (3.1a)-(3.1c) at the entrance. F denotes a set of frequencies. Different choices
of F will be discussed in Section 3.4.3. Unknown parameters are involved in the area
function S(x), the model for the acoustic impedance at the eardrum Zd and the length
of the ear canal ℓ. The area function is modeled as

S(x) := S(x, S0, c, s, ℓ) = S0 +
M∑

m=1

cm cos
(mπx

ℓ

)
+ sm sin

(mπx

ℓ

)
. (3.3)

The acoustic impedance at the eardrum ZED is modeled using a two-resonator model,
similar to the model described in [106],

ZED =

(
1

10L0,1/20 dB(iv1Q1 + 1)
+

1

10L0,2/20 dB(iv2Q2 + 1)

)−1

Pa·s/m3, (3.4)
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Chapter 3 Estimating individual ear canal acoustic transfer

where

vi =
ω

2πf0,i
− 2πf0,i

ω
, i = 1, 2, (3.5)

and the parameters Qi, f0,i and L0,i are the quality factor, the resonance frequency and
the impedance level at resonance (in dB re 1 Pa·s/m3), respectively. This model is a
good compromise between the number of parameters and approximation as compared
to more sophisticated models like the model in [60]. It is notably capable of modeling
the cadaver measurements in[94] with acceptable accuracy.
Following the suggestion in [59], the innermost part of the ear canal is modeled as a
lumped compliance (of a right circular cone of 4mm length and 2.5mm radius) acting
in parallel with the eardrum impedance,

Zd =
ZEDZvol

ZED + Zvol
, (3.6)

where

Zvol =
ρc2

iωV
, (3.7)

ZED corresponds to the acoustic impedance at the eardrum, c is the speed of sound and
V is the volume of the cone. This effectively removes the innermost part from the ear
canal geometry.
The parameters used in the definitions of the area function, i.e., S(x) in (3.3) and
the acoustic impedance of the eardrum Zd in (3.6), were fitted using the Nelder-Mead
constrained optimization procedure [83, 36]. To this end, equations (3.1a)-(3.1c) were
solved numerically by a self-implemented finite-element code in MATLAB using linear basis
functions and the Simpson quadrature rule to compute the integrals. For this, equation
(3.1a) was multiplied by a test function u(x) and integrated over the interval [0, ℓ].
Changing the signs and integrating by parts lead to the so called weak formulation∫ ℓ

0
S(x)p′(x)u′(x) dx+

iωρ

Zd
p(ℓ)u(ℓ)− k2

∫ ℓ

0
S(x)p(x)u(x) dx = −qiωρu(0). (3.8)

As discussed in Chapter 2 this problem admits a unique solution. To discretize this
problem we divided the interval into smaller intervals [xn−1, xn] with xn = nℓ

N , n =
1, . . . , N for some N ∈ N. These subintervals are called elements. Next we considered a
basis {φn}n of continuous and piecewise linear functions, where φn are hat functions on
the corresponding subinterval [xn−1, xn+1] and 0 elsewhere:

φn(x) =


x−xn−1

xn−xn−1
, if x ∈ [xn−1,xn) , n = 1, . . . , N,

xn+1−x
xn+1−xn

, if x ∈ [xn, xn+1], n = 0, . . . , N − 1,

0, else.

(3.9)

The discrete solution pN to (3.8) is written in terms of this basis,

pN (x) =
N∑

n=0

cnφn(x), (3.10)
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Figure 3.1: Level difference and phase difference of Zin = p(0)
q and Zin,ref =

pref(0)
q and

Ztr =
p(L)
q and Ztr,ref =

pref(L)
q . The discrete solution p of (3.8) is computed

with N = 4max
(
1m · ℓ/λ2, 1

)
elements for a typical area function S(x)

and eardrum impedance Zd. The reference solution pref is computed with
Nref = 5000 elements. The error is uniformly bounded within the frequency
range 100Hz to 20 kHz.

where the coefficients cn are computed by solving the system of linear equations

(A−M +R)c = F, (3.11)

where

Aij =

∫ ℓ

0
S(x)φ′

j(x)φ
′
i(x) dx, (3.12a)

Mij = k2
∫ ℓ

0
S(x)φj(x)φi(x) dx, (3.12b)

RNN =
iωρ

Zd
, Rij = 0, for i ̸= N ̸= j, (3.12c)

F1 = −qiωρ, Fi = 0, for i ̸= 0. (3.12d)

In the experiments, the number of elements was chosen frequency-dependent as N =
4max

(
1m · ℓ/λ2, 1

)
, i.e., the discretization is different for each frequency. In this case

the typical ”rule of thumb” of 10 elements per wave length is guaranteed. Additionally
for the case of the horn equation, the discretization error with respect to a the magnitude
and phase seems to be uniformly bounded, see Figure 3.1. The discretization error was
computed with respect to a reference solution with Nref = 5000 elements on a uniform
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Figure 3.2: Solution for the Horn equation with f = 6000Hz with variable area function
and constant area function using linear finite elements (left) and associated
area functions (right).

mesh.
Figure 3.2 illustrates an example solution for the weak formulation (3.8) of the horn

equation (3.1a)-(3.1c) for a frequency of f = 6kHz, Zd = (6.08 + 7.34i) × 107 Pa·s/m3

and an area function chosen as illustrated in Figure 3.2, i.e., a typical area function for
an ear canal. In comparison, the solution to the pure Helmholtz problem, i.e., using a
constant area function, is visualized as well to see the impact of the area function.

3.3 Synthetic and validation data preparation

The synthetically generated input impedance and validation data were created by 3D
finite-element simulations on geometries from the IHA database [93]. For the simula-
tion, the STL geometry was cut at the first bend of the ear canal. The first bend was
determined by computing the center axis of the ear canal using the VMTK toolbox [7].
Then, the coordinates with highest curvature of this center axis in the region of the
first bend, which can be visually estimated, was evaluated using the MATLAB function of
Mjaavatten [78]. The implementation by Claxton [27] was used to shape the entrance
surface with respect to the coordinates of the first bend and the corresponding tangential
vectors. This modified geometry was used in COMSOL [28], where the geometries were
discretized in a tetrahedral mesh with approximately 70,000-100,000 degrees of freedom,
which corresponds to a maximum edge length of 1mm of an element. The meshes at
the eardrum were refined further with maximum edge length of 0.2mm. As example,
the meshed ear canal from Subject 5 is illustrated in Figure 3.3.

The entrance surface was then assumed to vibrate piston-like to provide the excitation
of the residual ear canal. Using this set-up, acoustic input impedances for three different
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3.3 Synthetic and validation data preparation

Figure 3.3: Mesh of the ear canal of Subject 5 cut at the first bend. The ear canal was
rotated such that both the entrance and the eardrum (marked faces) are
visible.

types of impedances at the eardrum were computed at the entrance, by solving the
Helmholtz equation,

∆p3D(x) + k2p3D(x) = 0 in Ω, (3.13a)

∂p3D
∂n

= −vniωρ on Γentrance, (3.13b)

∂p3D
∂n

+
iωρ

Z̃ED|Γdrum|
p3D = 0 on Γdrum, (3.13c)

∂p3D
∂n

= 0 on Γwall, (3.13d)

with Ω being the interior of the geometry, Γentrance ⊂ ∂Ω is the surface at the entrance,
Γdrum ⊂ ∂Ω is the surface that corresponds to the eardrum and Γwall is the wall of the
ear canal. ∂

∂n denotes the outer normal derivative. Note that comparing Equation (3.1b)
and (3.13b) we have different signs, since in (3.1b) the derivative in the one-dimensional
model is directed into the interval. vn is the particle velocity. The input impedance
used as input data during the parameter fitting was averaged over the entrance surface
Γentrance

Zin,data =

1
|Γentrance|

∫
Γentrance

p3D(x)dΓentrance

|Γentrance| vn
.

The considered eardrum impedances Z̃ED are of the following types

(i) impedance model by Hudde and Engel [60],

(ii) a two-resonator model as described in (3.4) with parameters given in Table 3.1,

(iii) (nearly) rigid, i.e., Z̃ED ≈ 8.4× 1022 − 8.8× 1015iPa·s/m3.
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Figure 3.4: Eardrum impedances types (i) and (ii) for Z̃ED that were used to compute
the reference data. Type (iii) is not shown due to the large magnitude that
is constant at approximately 458 dB with zero phase.

They are illustrated in Figure 3.4. For the validation in Section 3.5, the transfer
impedance Ztr,data was computed with respect to the umbo, i.e.,

Ztr,data =
p3D(xumbo)

|Γentrance|vn
.

The entrance impedance Zin,data and transfer impedance Ztr,data were computed for 200
distinct frequencies linearly distributed in the range between 100Hz and 20 kHz. A total
of 30 data sets, ten subjects with three different impedance models each, were available
for testing and validation.

resonator 1 resonator 2

f0 1000Hz 3500Hz
Q 1.1 1.5
L0 153 dB re 1 Pa · s/m3 157 dB re 1 Pa · s/m3

Table 3.1: Parameters used for the generation of data using the two-resonator model.

3.4 Original parameter fitting and refinement of the method

We began with the basic algorithm and M = 4, i.e., four sine and cosine summands in
the definition of the area function S(x) in (3.3). The parameter fitting was done with a
subset of all available frequencies, more specifically with 25 logarithmically distributed
frequencies in the range from 100Hz to 20 kHz. The parameter constraints were set ac-
cording to Table 3.2 to ensure that the area function S(x) does not take excessive values,
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3.4 Original parameter fitting and refinement of the method

S0[m
2] ℓ[m] cm sm

upper bound 2× 10−4 15× 10−3 2−m+2 × 10−5 2−m+2 × 10−5

lower bound 10−5 45× 10−3 −2−m+2 × 10−5 −2−m+2 × 10−5

basic 6× 10−5 30× 10−3 (2× 10−6, 0, . . . , 0) (0, 0, . . . , 0)

L0,1[dB] L0,2[dB] Q1 Q2 f0,1[Hz] f0,2[Hz] V [m3]

upper bound 200 L0,1+40 10 10 2500 6000 5.23× 10−8

lower bound 50 L0,1+0 0.3 0.3 500 2500 1.3× 10−8

basic 161 L0,1+20 1.2 1.2 900 4000 2.62× 10−8

Table 3.2: Basic estimate with lower and upper bounds of the parameters of the ear
canal area function and the two-resonator impedance model used in the one-
dimensional surrogate model. The decibel values for impedance levels L0,1

and L0,2 refers to dB re 1 Pa · s/m3.

the oscillations of the area function are not unreasonably large and the impedance mag-
nitude at the eardrum corresponds approximately to the expectations from commonly
used models (i) and (ii) as in Figure 3.4. To enhance the accuracy, the Nelder-Mead
method was used with three restarts, taking the result of the preceding optimization as
initialization. Since the Nelder-Mead optimization procedure does not guarantee con-
vergence to a global minimum, the parameter fitting procedure was executed several
times with different initial parameters. These were chosen as random perturbation of
up to 25% from the basic set of parameters, also depicted in Table 3.2, i.e., for a given
parameter α with basic value α0,

αinit = α0 (1 + 0.25U(−1, 1)) ,

where U(−1, 1) is the uniform distribution over the interval (−1, 1). In total, twelve
different initial parameter sets were considered. Figure 3.5 shows the results obtained
with all twelve sets of initial parameters, considering data generated from the geometry of
Subject 5 and eardrum impedance model (ii). All twelve initial parameter sets converged
to similar results, thus the lines for each model type are very close to each other. The
area function S(x) has a similar trend in comparison to the area function computed by
the method of [105] which is depicted as data curve in Figure 3.5. The input impedance
is fitted well over the whole frequency range and even for the transfer impedance only
slight differences between data and model can be observed.
However, this original parameter fitting did not lead to comparably good results for

all subjects and all different types of eardrum impedances. To enhance the robustness
of the method, several aspects that lead to problems or unrealistic results for individual
subjects and eardrum impedance models are considered in the following and possible
solution strategies are discussed, implemented and illustrated.
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Figure 3.5: Results for the original parameter fitting method for Subject 5 and
impedance model (ii). Solutions to each of the twelve different initial param-
eter sets are depicted by a black line respectively. Left: Area function. The
rear part represents the cone as part of the impedance model, see discussion
in Section 3.2. Center: Input impedance Zin. Right: Transfer impedance
Ztr.

3.4.1 Avoiding negative areas

For some initial parameter sets, the original parameter fitting procedure returns a pa-
rameter set where the corresponding area function S(x) takes negative values for some
part in the interval [0, ℓ]. Even though the reference data, i.e., the input impedance, was
matched reasonably well, see Figure 3.6, some larger differences can be observed for the
transfer impedance. We also note that the initial parameter set largely influences the
result, thus the method is not very robust with regard to the initialization. Two possible
strategies to prevent negative area function are

(1) further restriction on the parameters S0, cm and sm such that the area function S
will always be positive,

(2) adding a penalty term to the cost function that penalizes negative or small values
of S.

Here the first strategy is not very practical. It leads to strong restrictions on S0 in the
way that the lower bound needs to be relatively large or the restrictions on cm and sm
are such that admissible geometries are quite restricted.
The second strategy still keeps a lot of freedom in the geometry-related parameters and
will be used in the following. The penalty term is chosen as

J1,H(1)(S0, c, s, ℓ) = 104
∥max

(
H(1) − S(x), 0

)
∥∞

H(1)
, (3.14)

where ∥·∥∞ is the discrete supremum norm. This penalty term penalizes the area func-
tion becoming smaller than H(1). We choose H(1) = 10−5m2, which is about one half of
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Figure 3.6: Parameter fitting may lead to negative values of the area function. Results for
Subject 3 and impedance model (i). Solutions to each of the twelve different
initial parameter sets are depicted by a black line respectively. Left: Area
function. The rear part represents the cone as part of the impedance model,
see discussion in Section 3.2. Center: Input impedance Zin. Right: Transfer
impedance Ztr.

the base area of the standard cone with a radius of 2.5mm.
The updated procedure now usually generates functions that are positive on [0, ℓ]. If
the area still becomes negative then the model-data misfit is probably just too large
and a meaningful parameter fitting is not possible with the underlying one-dimensional
surrogate model (3.1a)-(3.1c) or the initial values were chosen poorly.

Occasionally the problem arises that the area function steeply increases after reaching
the minimum. One case for this behavior is illustrated in Figure 3.7 (left). This is
anatomically at least unusual. Therefore, another penalty term is applied that penalizes
solutions in which the end of the ear canal is larger than the overall minimum or close
to that minimum. This additional penalty term is given as

J2,H(2)(S0, c, s, ℓ) = 104

∥∥∥∥∥max

(
S(ℓ)− S(x)−H(2)

|S(x)|
, 0

)∥∥∥∥∥
∞

. (3.15)

The penalty is chosen as H(2) = 0 which enforces the minimum of the area function to
be at the end of the ear canal. The cost function now becomes

J = J0 + J1,H(1) + J2,H(2) . (3.16)

Using the updated cost function J in the parameter fitting leads to more realistic ear
canal area functions, see Figure 3.7 (center).
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Figure 3.7: Left: Results incorporating penalty term J1 for Subject 3 and impedance
model (i) for twelve different initial parameter sets. Parameter fitting may
lead to unrealistic ear canal geometries due to large increases in the area
function near the eardrum. Center: Results incorporating penalty terms J1
and J2 for Subject 3 and impedance model (i) for twelve different initial
parameter sets. Parameter fitting may lead to largely overestimating the
length of the ear canal. Right: Results incorporating penalty terms J1, J2
and prior estimating of the ear canal length ℓ for Subject 3 and impedance
model (i) for twelve different initial parameter sets. Parameter fitting leads
to a realistic area function.

3.4.2 Accommodating long and short ear canals

The length of the ear canal varies for each individual, thus the bounds of ℓ are chosen
as 15mm ≤ ℓ ≤ 45mm to be able to model short and long ear canals. Arbitrary initial
values for ℓ may, however, lead the Nelder-Mead algorithm converge to a local minimum
with an inadequate result for the value of ℓ, as can be seen in Figure 3.7 (center). To
avoid this, we estimate ℓ in a first step by looking at the first maximum of the input
impedance magnitude of the data, see for example Figure 3.6 (center) at around 8 kHz.
Assuming a rigidly terminated cylindrical waveguide, the initial length is estimated as

ℓest =
c

2fmax
, (3.17)

where fmax corresponds to the frequency where the first maximum of the input impedance
magnitude, i.e., the data, is achieved. It turned out that in general the first maximum
frequency gave a better result than the first minimum, which is why the length was
estimated using Equation (3.17). The ear canal is not a rigidly terminated cylindrical
waveguide, but still this is a reasonable first approximation. Using this estimated ℓest as
initial parameter leads to more appropriate results in the numerical simulations. To en-
sure that the overall length does not vary much from this estimated initial length during
the parameter fitting, the bounds for ℓ were redefined to ℓest − 3mm ≤ ℓ ≤ ℓest + 1mm.
The upper bound is stricter since the impedance model already assumes that the ear
canal is longer due to the cone at the end representing the innermost part of the ear
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canal. These bounds lead to reasonable results for most initial values, see Figure 3.7
(right). Further results using the refined method are discussed in the validation in Sec-
tion 3.5.
In the following subsection we further discuss the influence of the chosen frequency set
for the parameter fitting and the influence of the length of the expansion of the area
function.

3.4.3 Influence of the bandwidth and frequency spacing used in the
parameter fitting

While the improvements of the prior subsections lead to better results in the parameter
fitting, in some cases problems arise at very high frequencies, because some features of
the 3D geometry cannot be captured in a one-dimensional model. This means that not
for all ear canal shapes good estimations on the transfer impedance for frequencies up to
20 kHz can be expected. An example is illustrated in Figure 3.8. Here, the minimum of
the magnitude of the input impedance at approximately 17 kHz is much lower than usual.
For this individual, good approximations for high frequencies cannot be achieved using
the horn equation. It might therefore be useful to restrict the frequency range during the
parameter fitting to get better results regarding the lower frequency part. Restricting
the frequency range to frequencies smaller than 10 kHz lead to improvements in the input
impedance Zin and transfer impedance Ztr from the parameter fitting, see Figure 3.9.
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Figure 3.8: Ear canal of Subject 9 and impedance model (i) as example for a case of
high frequency behavior that cannot be reproduced with the one-dimensional
model. The last minimum in the entrance and transfer impedance data gets
very low. Including high frequencies in the parameter fitting very likely
influences precision for lower frequencies.
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Figure 3.9: Ear canal of Subject 9 and impedance model (i) when only using data for
frequencies up to 10 kHz. Improvements in the lower frequency range, espe-
cially up to 8 kHz can be observed in comparison to Figure 3.8.

In the following, different choices for frequency subsets are considered. The consid-
ered frequency sets were either uniformly or logarithmically distributed (rounded up
to the nearest 100Hz). Figure 3.10 illustrates the validation for uniformly distributed
frequencies where the magnitude and phase difference of the transfer impedance was
computed with respect to the reference data. For some frequency sets, finer resolutions
in the low-frequency range (up to 3 kHz) or the higher frequency range (larger than 3
kHz) were used. Different upper limits were also considered, where the frequency sets
were restricted either to frequencies up to 20 kHz or 10 kHz for reasons discussed above.
Additionally, for some frequency sets F , the frequencies that correspond to the maxima
and minima of the input impedance magnitude were included, because these are the
frequencies where usually the largest error with respect to the data is made and these
frequencies are characteristic for the specific ear canal shape. We could observe that the
frequency set using logarithmic distribution while additionally including the frequencies
corresponding to the maxima and minima of the magnitude of the input impedance re-
sults in comparably low function values for the specific frequency range with respect to
the validation function

Jval(Ztr) =
∑

f=100Hz,200Hz,
...,20 kHz

A

∣∣∣∣ log10 ∣∣∣∣ Ztr(f)

Ztr,data(f)

∣∣∣∣∣∣∣∣2 +B arg

(
Ztr(f)

Ztr,data(f)

)2

. (3.18)

Although other configurations lead to comparable validation function values, plotting
the actual difference of the magnitude in dB over the frequency showed that for low
frequencies the versions using uniformly distributed frequencies result in slightly worse
behavior in the low frequency range with magnitude differences of up to 3 dB in the
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Figure 3.10: Validation for the parameter fitting considering differences of the transfer
impedance for frequencies for linearly distributed frequencies up to 20 kHz
considering all data sets. Straight solid line: 5 dB or 45° difference. Straight
dashed line: 3 dB or 22.5° difference. Blue lines: 5 and 95 quantile. Red
line in between: Mean. Dashed gray lines: Frequencies used during the
parameter fitting.

frequency range from 100Hz to 6 kHz, see Figure 3.10 as example, while the logarith-
mically distributed frequencies only lead to magnitude differences of up to 1.5 dB in
this frequency range. This case is discussed and illustrated in the validation in Section
3.5. Consequently, a logarithmic distributed frequency set with maxima and minima
frequencies was the choice for the validation in Section 3.5.

Since usually frequencies smaller than 10 kHz are especially of interest, we restrict
the frequencies to 10 kHz to improve the results in this range, especially if the pressure
distribution in the ear canal exhibits large three-dimensional effects due to the geometry
of the ear canal.

3.4.4 Influence of the number of parameters in the area function expansion

In the parameter fittings in the previous sections, the number of geometrical parameters
ci and si was always chosen as M = 4. In this section, observations on varying number
of parameters M are discussed.
Figure 3.11 illustrates the validation function Jval from (3.18) computed for varying
parameter M . The underlying data for the boxplot are the refined parameter fittings
of all ten subjects and all three different impedance models (i)-(iii). We observe only
small changes for M ≥ 4. Thus, due to increasing computational cost in the following
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experiments M = 4 was chosen as a reasonable compromise between accuracy and
computational cost.
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Figure 3.11: Validation function Jval depending on number of Fourier coefficients in area
function.

3.5 Validation

3.5.1 Transfer impedance

In this section validation results are presented. To this end, ten different ear canals with
three different impedance models at the eardrum were considered as discussed in Section
3.3. In Figure 3.12 the transfer impedance level and phase difference between the data
and the parameter fitting, i.e.,

20 log10

(∣∣∣∣ Ztr

Ztr,data

∣∣∣∣) and arg

(
Ztr

Ztr,data

)
,

are plotted. The blue lines indicate the 5% and 95% quantile over the 30 parameter
fittings based on 30 data sets, i.e., 10 different subjects and three different impedance
models at the eardrum, in total.

The parameter fitting was done for twelve initial parameter sets in all cases. Only
the one with the lowest cost function over all 200 frequencies was kept. The results are
illustrated in Figure 3.12. In this case the results show magnitude differences of less
than 1 dB for all frequencies in the range of up to 7 kHz, and still magnitude differ-
ences smaller than 5 dB for frequencies between 7 kHz and 10 kHz. In most cases the
magnitude difference is even smaller than 3 dB for frequencies up to 10 kHz. For larger
frequencies the differences are very large since only frequencies up to 10 kHz were used
in the parameter fitting. Note however, that for most geometries reasonable results were
also achieved for higher frequencies, see Figure 3.13.

36



3.5 Validation

-20

-10

0

10

20

10
2

10
3

10
4

frequency [Hz]

-

- /2

- /4
- /8

0
/8
/4

/2

Figure 3.12: Validation for the parameter fitting considering differences of the transfer
impedance for frequencies for up to 10 kHz. Straight solid line: 5 dB or 45°
difference. Straight dashed line: 3 dB or 22.5° difference. Blue lines: 5 and
95 quantile. Red line in between: Mean. Dashed gray lines: Frequencies
used during the parameter fitting.
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Figure 3.13: Validation for the parameter fitting considering differences of the transfer
impedance for frequencies for up to 20 kHz excluding Subject 9 that showed
unusual behavior for high frequencies. Straight solid line: 5 dB or 45° dif-
ference. Straight dashed line: 3 dB or 22.5° difference. Blue lines: 5 and 95
quantile. Red line in between: Mean. Dashed gray lines: Frequencies used
during the parameter fitting.
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3.5.2 Ear canal area function

During the parameter fitting, the estimated parameters for the ear canal area function
can be used to construct an area function to get an approximate model of the geometry.
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Figure 3.14: Results for the ear canal area functions for all ten subjects and all three
impedance models 10 kHz.

In Figure 3.14 area functions taken from the parameter fitting (using logarithmically
distributed frequencies up to 10 kHz) are displayed comparing it with the area function
computed from the 3D geometry using the method described in [105]. Main features for
most ear canals could be reproduced reasonably well. Note that the geometry used for
the generation of the data was cut at the first bend of the center axis obtained from using
the VMTK toolbox. This center axis differs from the one proposed in [105]. Especially
the entrance surface will not be perpendicular to the center axis in [105] which explains
the large deviations at the entrance of the area function for some subjects like Subject
3 and Subject 9. Overall, the approximations from the parameter fitting are quite close
to the area function generated with the method from [105]. The area functions are also
largely unaffected by the impedance model used for the data generation.
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3.5.3 Impedance at eardrum
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Figure 3.15: Estimatted impedances at the eardrum for different underlying model data:
(i) Hudde (ii) two-resonator (iii) rigid.

The parameter fitting also lead to an approximation of the impedance at the eardrum.
This is illustrated in Figure 3.15. The data of the two-resonator model (ii) can be
reconstructed well since this is the impedance model we used in the parameter fitting.
The model in [60] is approximated well in the low frequency range. The impedance
condition (iii) could not be approximated well since the bounds on the parameters do not
allow impedances of such high magnitude. However, one can observe that the magnitude
is larger than in the other cases, such that the resulting parameter fitting is closer to
the rigid case. In all cases, the true eardrum impedance had a larger magnitude than
the estimated one at frequencies above 2 kHz.

3.6 Conclusion

In this chapter a method to estimate the transfer impedance from input impedance
is described and validated. Using synthetically generated data the method produces
accurate results, especially in the frequency range of 100Hz to 7 kHz. We can furthermore
estimate the ear canal area function and the eardrum impedance, where for the area
function the main features of the geometry were recognized. The eardrum impedance was
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estimated well in the low frequency range if the underlying impedance model was fitting.
For higher frequencies, however, the eardrum impedance estimation was underestimated
in general.
Future work should involve the validation and enhancement of the method using in vivo
measurements.
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Chapter 4

Bayesian Parameter Identification in
Impedance Boundary Conditions for
Helmholtz Problems

The contents of this chapter have been published in [111]. Some minor adjustments have
been made in this chapter compared to the publication to give more context to the other
contents of the thesis. The author of this thesis is the first author of this publication
and has made major contributions to the development of the method, proofs, the writing
and the numerical experiments (with the exception of the data preparation in Section
4.5.5). The discussion on the Markov Chain Monte Carlo methods in Section 4.6 is new
and was not published before.

4.1 Introduction

The acoustic properties of rooms (e.g. recording studios, lecture or concert halls) criti-
cally depend on the geometry of the room and acoustic properties of the materials the
room boundaries are made of. For example, the size and shape of windows made of glass
significantly impact acoustic properties of the room. In order to facilitate virtual room
design and to ensure reliable simulations the precise identification of parameters, such
as the acoustic impedance of the walls and other constituent materials is crucial. These
characteristics are typically measured using standardized methods, e.g. an impedance
tube [63, 64] or a reverberation chamber [65].

Frequently it is not possible or not practical to examine isolated pieces of the mate-
rial. In such a case, one may attempt to identify material parameters by measurements
taken within the room itself. Moreover, the actual behavior of the material in the room
might be significantly different from measurements done in isolation due to various cou-
pling effects. For these reasons, methods to determine the acoustic impedance from
measurements in the room are attractive.

In general, we can classify approaches for parameter identification in inverse problems
into two types: classical deterministic and Bayesian approaches. The classical deter-
ministic optimization-based approach involves utilizing an error function and employing
methods such as least-squares, potentially with regularization, to solve for the parameter
values. The Bayesian approach treats the parameters as random variables and naturally
incorporates errors arising from one or more sources and deals with the corresponding
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uncertainties.
Previous research in the classical context investigated the deterministic problem to

identify the acoustic impedance from measurements in the room. In [87] the authors
solved the deterministic inverse problem with boundary element method and Nelder-
Mead optimization algorithm. This lead to complex values for the acoustic impedance
that best fitted the measured data. In [39] an evolution strategy approach was used for
the optimization of the impedance values and the absorption coefficient. Noise was also
considered and good results were achieved if the Signal-to-Noise ratio (SNR) was large
enough. In [6] the authors considered a related model, where the source of sound is
coming from the vibrations of the structure, thus is included in the boundary condition
instead of modeling it as a sound source in the interior. They use a genetic global
optimization algorithm in combination with Newton’s method, which lead to accurate
estimations of the acoustic impedance. However, they did not consider any noise.
In practice, measurements are typically perturbed by noise. The information about

the noise is naturally built into the Bayesian approach, where the parameters are inter-
preted as random quantities. The goal of the computation is to approximately compute
their statistics. The Bayesian approach [107, 31] has several advantages compared to the
classical approach. Firstly, the prior distribution serves as a form of regularization with
clear interpretation. In contrast, regularization in the deterministic approach often is
somewhat arbitrary [107]. Secondly, the Bayesian inference incorporates inevitable un-
certainties directly and transparently [88]. Furthermore, in the deterministic approach,
the resulting parameter values are presented with respect to a shared residual value. In
contrast, the Bayesian approach yields individual parameter estimates, accompanied by
corresponding uncertainty descriptions for each parameter separately [88].
In this chapter we consider the Bayesian approach to estimate the acoustic impedance

on specific boundary regions in a room. For this, instead of computing a single (complex)
value for the acoustic impedance we interpret the acoustic impedance as a random vari-
able. We compute its statistical moments via ratio estimators and Monte-Carlo sampling
to characterize the impedance. We consider the measurement setup of one sound source
and several microphones at different positions, which represents the typical measurement
procedure. The room acoustic is modeled using the interior Helmholtz equation, i.e., the
time-harmonic wave equation, with impedance boundary conditions that represents lo-
cally reacting wall impedances. To solve the resulting partial differential equation, we
employ the finite element method. We prove well-posedness of our problem and show
convergence of the mean squared error for functionals of the acoustic impedance, which
includes statistical moments of its real and imaginary part, using Monte Carlo sampling
and ratio estimators. In the numerical experiments we consider two different scenar-
ios. In the first scenario we utilize synthetic data generated using the same parametric
model that is used for solving the inverse problem, i.e., impedance boundary conditions
on the specific boundary regions. In this case the data are consistent with the parametric
model and one would expect that the Bayesian algorithm will be able to recover correct
parameter values. For this case we demonstrate convergence of the Bayesian algorithm
numerically. In the second scenario the synthetic data are generated using a coupled
acoustic-structural model where the boundary region is modeled as a glass wall, which
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is not locally reacting. Although in general the locally reacting impedance model does
not describe the physics of the glass wall well, for some frequency intervals the Bayesian
algorithm finds values of acoustic impedance having high likelihood. Outside these fre-
quency ranges, however, the results did not represent the measurement well due to the
model-data misfit. We investigate this somewhat surprising behavior and explain it by
the local structure of the eigenmodes and the distribution of the resonances.

We also point out that the Bayesian parameter identification for acoustic problems
has been also applied in recent works [99, 40]. The short note [99] contains a numerical
study of a two-dimensional acoustic problem with a different type of excitation. In [40]
the authors consider an acoustical problem of source detection. Here, the uncertainty
lies in the source of the Helmholtz equation, i.e., the position, number and amplitude
of the sources. The authors adopt a Bayesian framework, mathematically analyzed the
problem and proved convergence of the sequential Monte Carlo method, a method to
sample directly from the posterior. In our work we are considering the uncertainty in
the boundary condition instead of the source and utilize ratio estimators to compute
moments of the posterior instead of sequential Monte Carlo.

This chapter is structured as follows. In Section 4.2 we discuss the model Helmholtz
equation and review some basic definitions, theorems regarding existence and regularity
of the solution and error estimates. In Section 4.3 we discuss the discretization of the
problem in a finite element setting and collect convergence estimates required in that
follows. In Section 4.4 we introduce the Bayesian setting and analyze the convergence
of the proposed algorithm. Section 4.5 shows the numerical experiments where the
theoretical error bounds are confirmed if the data are consistent with the model. We
also demonstrate the behavior in the case of model-data misfit. In addition to the
journal paper [111] version of this chapter in Section 4.6 we also include a discussion on
Markov-Chain Monte-Carlo and how it compares to the ratio estimators and posterior
estimation studied in [111]. Section 4.7 contains the outlook.

4.2 Preliminaries

We consider an interior Helmholtz problem on a bounded convex polygonal or polyhedral
domain Ω ⊂ Rd, d = 2, 3. The boundary Γ := ∂Ω is decomposed into two disjoint open
sets, ΓN and ΓR, such that Γ = ΓN ∪ ΓR. The complex-valued acoustic pressure is then
modeled as solution of the problem

−∆p− k2p = f in Ω,

∂p

∂n
+

iωρ

Z
p = 0 on ΓR,

∂p

∂n
= 0 on ΓN ,

(4.1)

with angular frequency ω, density ρ, acoustic impedance Z and wave number k = ω
c ,

where c is the speed of sound. Here, we assume that Z is bounded with uniformly
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positive real part and piecewise constant on a fixed partition ∪n
i=1Γ

(i)
R = ΓR, that is

Z ∈ U := {Z ∈ L∞(ΓR) | Z ≡ zi ∈ C on Γ
(i)
R with Re(zi) ≥ C > 0}. (4.2)

Note that Re(Z) ̸= 0 on some portion of the boundary is a sufficient condition for the
well-posedness of (4.1). However, in the practically relevant case of a passive surface
absorbing energy Re(Z) is strictly positive.

4.2.1 Weak formulation

The weak formulation is obtained by multiplying the Equation (4.1) by the complex
conjugate of a test function q ∈ H1(Ω) and integrating over Ω. The weak formulation
reads: Find p ∈ H1(Ω) such that for all q ∈ H1(Ω)∫

Ω
∇p · ∇q dx+

∫
ΓR

iωρ

Z
pq ds− k2

∫
Ω
pq dx =

∫
Ω
fq dx. (4.3)

We define the sesquilinear form b : H1(Ω)×H1(Ω) 7→ C and antilinear form ℓ : H1(Ω) →
C as follows

b(p, q) :=

∫
Ω
∇p · ∇q dx+

∫
ΓR

iωρ

Z
pq ds− k2

∫
Ω
pq dx, (4.4)

ℓ(q) :=

∫
Ω
fq dx. (4.5)

As discussed in Chapter 2 the weak formulation (4.3) is well-posed for f ∈ L2(Ω).
However, in the experiments, a point source is assumed as the sound source. Therefore,
the right-hand side f is modeled as a Dirac delta distribution δs located at a point s in
the interior of Ω. The theory for the weak formulation does not guarantee well-posedness
in this case, hence the so-called “very weak formulation” is used instead. Additionally,
we define source and measurement domain that are distinct from each other, such that
source and microphone positions are not too close to each other or to the boundary.

Definition 4.1 (Source and measurement domain, cf. [40, Definition 2.5]). For κ > 0
the source domain Ωκ ⊂ Ω is a set satisfying dist(Ωκ,Γ) > κ. The measurement domain
is defined as

Mκ := {x ∈ Ω : dist(x,Ωκ) > κ and dist(x,Γ) > κ}.

4.2.2 Very weak formulation for point source excitations

Let s ∈ Ωκ be the location of the point source. The very weak formulation of (4.3) with
Dirac delta right hand side is given by: Find Gs

Z ∈ L2(Ω) such that∫
Ω
Gs

Z(−∆q)dx− k2
∫
Ω
Gs

Zqdx = q(s), (4.6)

for all q ∈ {q ∈ H2(Ω) : ∂q
∂n + iωρ

Z q = 0 on ΓR and ∂q
∂n = 0 on ΓN}. Since the solution

Gs
Z depends on s and Z, we explicitly track this dependency in the notation. The right
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hand side of the equation comes as a result of the defining property of the Dirac delta
distribution, i.e., ∫

Ω
δs(x)q dx = q(s).

The following Proposition is a variation of Proposition 2.8 in [40]. The main difference
is that here, we show Lipschitz continuity of Gs

Z with respect to Z.

Proposition 4.2 (cf. [40, Proposition 2.8]). The very weak formulation (4.6) has a
unique solution Gs

Z ∈ L2(Ω) for any s ∈ Ωκ. Additionally there exists a constant Cκ > 0
depending on Z and κ but not on s such that

∥Gs
Z∥H2(Mκ), ∥G

s
Z∥W 2,∞(Mκ) ≤ Cκ for all s ∈ Ωκ. (4.7)

For Z ∈ U the constant Cκ can be chosen independently of Z. Furthermore, there exists
a constant C̃κ > 0, such that for all z ∈ Mκ it holds that

|Gs
Z(1)(z)−Gs

Z(2)(z)| ≤ C̃κ∥Z(1) − Z(2)∥L∞(ΓR)

for all piecewise constant Z(1), Z(2) with Re(Z(1)),Re(Z(2)) ≥ C > 0.

Proof. Let Φs be the fundamental solution of the Helmholtz operator, that is

Φs(z) :=


2

π
Y0 (k∥s− z∥) , if d = 2,

exp (−k∥s− z∥)
4π∥s− z∥

, if d = 3,

(4.8)

where Y0 is the Bessel function of second kind and zero order, see e.g. [33, 104]. Let psZ
be the unique weak solution of

−∆psZ − k2psZ = 0 in Ω,

∂psZ
∂n

+
iωρ

Z
psZ = − ∂Φs

∂n
− iωρ

Z
Φs on ΓR,

∂psZ
∂n

= − ∂Φs

∂n
on ΓN ,

i.e., psZ ∈ H1(Ω) is the unique solution of∫
Ω
∇psZ · ∇q dx+

∫
ΓR

iωρ

Z
psZqdΓR − k2

∫
Ω
psZq dx

= −
∫
ΓR

[
iωρ

Z
Φs +

∂Φs

∂n

]
qdΓR −

∫
ΓN

∂Φs

∂n
qdΓN

for all q ∈ H1(Ω). Thus, the solution Gs
Z of (4.6) can be written as

Gs
Z = Φs + psZ . (4.9)
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Similarly as discussed in Section 2.2.2, in [15, Lemma 3.1, Theorem 3.3, Chapter 3.2]
the existence and uniqueness of psZ and hence of Gs

Z was proven, by showing that psZ
satisfies G̊arding’s inequality and thus the problem satisfies the Fredholm alternative,
i.e., existence is a consequence of uniqueness which was shown in [15, Lemma 3.1].
Following [15], since Ω is convex, the H2-estimate is given by

∥psZ∥H2(Ω) ≤ C

[∥∥∥∥∂Φs

∂n
+

iωρ

Z
Φs

∥∥∥∥
H

1
2 (ΓR)

+

∥∥∥∥∂Φs

∂n

∥∥∥∥
H

1
2 (ΓN )

]
,

where the fundamental solution Φs and its derivatives are bounded uniformly in x for
∥x − s∥ > κ, see [40, proof of Theorem 2.8]. The W 2,∞-estimate ∥psZ∥W 2,∞(Mκ) < Cκ

was proven in [15, Lemma 3.4]. Tracking the constants in the proof of [15, Lemma 3.4] Cκ

can be chosen independently of Z if 1
Z is bounded, which is the case for Re(Z) ≥ C > 0.

It remains to show the Lipschitz continuity in Z. The Sobolev embedding [2, Theorem
4.12] implies that H2(Mκ) ⊂ C(Mκ) for d = 2, 3. Thus, for z ∈ Mκ

|Gs
Z(1)(z)−Gs

Z(2)(z)| ≤ ∥Gs
Z(1) −Gs

Z(2)∥C(Mκ) ≤ C̃∥Gs
Z(1) −Gs

Z(2)∥H2(Mκ).

Now observe that for Z(1), Z(2) ∈ C with Re(Z(1)),Re(Z(2)) ≥ C > 0 we have

∥Gs
Z(1) −Gs

Z(2)∥H2(Mκ) ≤ ∥ps
Z(1) − ps

Z(2)∥H2(Mκ) ≤ ∥ps
Z(1) − ps

Z(2)∥H2(Ω\Ωκ)

≤ C1

[∥∥∥∥ iωρZ(1)
Φs +

∂Φs

∂n
−
(
iωρ

Z(2)
Φs +

∂Φs

∂n

)∥∥∥∥
H1/2(ΓR)

]

= C1

∥∥∥∥iωρ( 1

Z(1)
− 1

Z(2)

)
Φs

∥∥∥∥
H1/2(ΓR)

,

where the right-hand side admits the following upper bound

C1

∥∥∥∥iωρ( 1

Z(1)
− 1

Z(2)

)
Φs

∥∥∥∥
H1/2(ΓR)

≤ C2|ωρ|∥Φs∥H2(Ω\Ωκ)

∥∥∥∥ 1

Z(1)
− 1

Z(2)

∥∥∥∥
L∞(ΓR)

≤ C3

∥∥∥∥∥Z(2) − Z(1)

Z(1)Z(2)

∥∥∥∥∥
L∞(ΓR)

≤ C̃κ

∥∥∥Z(1) − Z(2)
∥∥∥
L∞(ΓR)

.

4.3 Finite Element Discretization

In our approach, we discretize the problem using a quasi-uniform family of triangulations
{Th}h>0 of Ω. Each element T ∈ Th is a triangle or tetrahedron with diameter hT , and
the diameter of the largest ball contained in T is denoted by ρT . The maximum diameter
of all elements in Th is the mesh size, h := maxT∈Th hT . We assume the triangulations
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{Th}h>0 to be shape regular, i.e., we assume there exist constants c1, c2 > 0, such that
for all T ∈ Th and for all h > 0

hT
ρT

≤ c1,
h

hT
≤ c2.

We then define the finite element space Vh on the triangulation Th. The functions in
Vh are globally continuous on Ω and piecewise linear in each T ∈ Th. The basis of Vh

is made of piecewise linear (or quadratic) functions φi with φi(xj) = δij . The discrete
weak formulation of (2.1) is: Find ph ∈ Vh such that for all qh ∈ Vh

b(ph, qh) = ℓ(qh), (4.10)

where b is given as in (4.4). The antilinear functional

ℓ(qh) = qh(s)

as in the very weak formulation (4.6). Notice that even for the point source excitation f
the weak formulation (4.10) is well posed on Vh, and thus can be used for the numerical
approximation of (4.6). The following theorem states pointwise convergence of these
approximations.

Theorem 4.3 (cf. [40, Theorem 2.14]). Let Z ∈ U . Let Gs
Z,h ∈ Vh be the discrete

solution to (4.10) with ℓ(q) = q(s). Then for any h ∈ (0, h0], z ∈ Mκ and s ∈ Ωκ there
exist h0, Cκ > 0 such that

|Gs
Z(z)−Gs

Z,h(z)| ≤ Cκ|lnh|h2

Proof. See appendix of [40]. The proof requires the bound ∥Gs
Z∥W 2,∞(Mκ) < Cκ inde-

pendently of Z, which has been shown in Proposition 4.2.

Proposition 4.4. There exist h0, Cκ > 0 such that for all z ∈ Mκ and for all h ∈ (0, h0]
the discrete solution mapping Gs

·,h(z) : U → C is Lipschitz continuous in Z, that is

|Gs
Z1,h(z)−Gs

Z2,h(z)| ≤ Cκ∥Z1 − Z2∥L∞(ΓR).

Proof. The proof is similar to the continuous case in Proposition 4.2 by replacing Green’s
function with its discrete version.

4.4 Bayesian framework

Since measurements are typically corrupted by noise, it is reasonable to work with models
that take noise into account. In what follows we interpret the impedance Z as random
variable and estimate its statistical moments using the Bayesian approach and the ratio
estimators. This provides quantitative information on the sensitivity of the parameter
with respect to the data, for example if the variance of Z is large, then multiple values
and/or (large) regions are candidates for the true parameter value. If, however, the
variance is very low, then only a small region in the domain of Z produces accurate
results if the underlying model is a good representation for the data.
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Chapter 4 Bayesian Parameter Identification

4.4.1 Continuous posterior moments

Let F : U → H1(Ω) and O : H1(Ω) → Cm denote the forward map and observation
operator, respectively, where m ∈ N. The composition of both operators, denoted by
G = O ◦ F : U → Cm, is given by

G(Z) =
(
Gs

Z(x1), G
s
Z(x2), . . . , G

s
Z(xm)

)⊤
.

The problem is to determine an unknown element Z ∈ U from noisy observations

y = G(Z) + η, (4.11)

where η is a realization of a multivariate complex normal distributed random variable
CN (0,Γ, C) with a Hermitian and non-negative covariance matrix Γ and symmetric
relation matrix C. The corresponding density of such a random variable is proportional
to

ρη ∝ exp

(
−1

2
∥z∥2Σ

)
, ∀z ∈ Cm,

where Σ ∈ C2m×2m is a positive definite complex matrix given by

Σ =

(
Γ C

C Γ

)
and ∥z∥2Σ :=

(
z⊤, z⊤

)
Σ−1

(
z
z

)
.

We assume Z to be distributed according to a prior measure ν0 on (U,B), where B is the
Borel σ-algebra. Bayes’ Theorem gives the following relation for the Radon-Nikodym
derivative of the posterior measure νy with respect to the prior measure ν0 (see, e.g.,
[107, Theorem 6.31]):

dνy

dν0
(Z) =

θ(Z, y)

Λ(y)
, (4.12)

where

θ(Z, y) = exp(−Ψ(Z, y)), (4.13)

Ψ(Z, y) =
1

2
∥y − G(Z)∥2Σ, (4.14)

Λ(y) = Eν0 [θ(Z, y)]. (4.15)

Here, θ is called the likelihood, Ψ the potential, log θ = −Ψ the log-likelihood and Λ is a
normalization constant. The expectation Eν [ϕ] of a function ϕ : U → R with respect to
a measure ν on (U,B) is defined as

Eν [ϕ] =

∫
U
ϕ(Z)dν(Z). (4.16)

Remark 4.5. Since the potential Ψ(Z, y) is nonnegative, the likelihood θ(Z, y) can only
take values between 0 and 1 and the value 1 is only attained if the measurement data y
exactly match the value G(Z). This is only possible if (i) the parametric model exactly
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4.4 Bayesian framework

match the data y and (ii) the measurements contain no noise. The strength of the noise
and the number of observation points clearly impact what can be treated as “a high
value of the likelihood”. In particular, for the experimental setting of Section 4.5.4 we
will see that log-likelihood values of log θ(Z, y) ∼ −10 (and larger) can be seen as high.

Let ϕ : U → R be a ν0-measurable functional. If the posterior measure νy is well-
defined (see Theorem 4.10 below), then, according to (4.12), the expected value of ϕ(Z)
under the posterior measure can be expressed as

Eνy [ϕ(Z)] =
Q(y)

Λ(y)
, (4.17)

where the normalization constant Λ(y) has been defined in (4.15) and

Q(y) = Eν0 [θ(Z, y)ϕ(Z)]. (4.18)

Notice that the posterior expectation Eνy [ϕ(Z)] is a ratio of two expectations with respect
to the prior measure. A computable version of (4.17), see (4.25) below, is called a ratio
estimator. Later we will chose ϕ(Z) = Re(Z)k or ϕ(Z) = Im(Z)k to compute k-th
moments of the real or imaginary part of Z, respectively. From now on let ν0 be a
measure on (U,B).
The aim of the remainder of this subsection is to show that the posterior measure is

well-defined.

Definition 4.6. Let ν be a measure on (U,B) and k ≥ 1. We say ϕ ∈ Lk
ν(U) if

∥ϕ∥Lk
ν(U) =

{(∫
U |ϕ(Z)|k dν

) 1
k , 1 ≤ k < ∞,

ess supZ∈U |ϕ(Z)|, k = ∞
(4.19)

is finite.

Proposition 4.7. The operator G is ν0-measurable and bounded, i.e.,

∥G(Z)∥Σ ≤ K.

Proof. The measurability and the boundedness follow from the continuity and bound-
edness of Gs

Z(z) in Z for all measurement positions z ∈ Mκ from Proposition 4.2. Note
that K depends on Z or more precisely on 1

Z . But
1
Z is bounded since we assume Z ∈ U ,

hence K can be chosen independently of Z.

The following lemma states some properties of the potential that are needed to show
that the posterior νy is well-defined. The statements are analogous to Lemma 3.6 in
[40], but address the impedance parameter Z which is the focus of our work.

Lemma 4.8. The potential Ψ and the prior measure ν0 satisfy:

(i) There exists a constant K > 0 such that

0 ≤ Ψ(Z, y) ≤ K + ∥y∥2Σ, for all Z ∈ U, y ∈ Cm.
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Chapter 4 Bayesian Parameter Identification

(ii) For every y ∈ Cm the map Ψ(·, y) : U → R is ν0-measurable.

(iii) For every ϱ > 0 there exists a constant Cϱ > 0 such that

|Ψ(Z, y1)−Ψ(Z, y2)| ≤ Cϱ∥y1 − y2∥Σ

for all Z ∈ U and for all y1, y2 ∈ Bϱ(0) := {y ∈ Rm : ∥y∥2 < ϱ}.

Proof. (i) The lower bound follows from the definition of the potential (4.14), whereas
the upper bound is a consequence the triangle inequality and Proposition 4.7 since

Ψ(Z, y) =
1

2
∥y − G(Z)∥2Σ ≤ ∥y∥2Σ + ∥G(Z)∥2Σ ≤ ∥y∥2Σ +K.

(ii) Follows from the measurability of G and the continuity of Ψ(·, y).

(iii) We have

Ψ(Z, y1)−Ψ(Z, y2) =
1

2
∥y1 − G(Z)∥2Σ − 1

2
∥y2 − G(Z)∥2Σ

=
1

2
(y1 − G(Z), y1 − y2)Σ +

1

2
(y1 − y2, y2 − G(Z))Σ

Now, by Cauchy-Schwarz and the triangle inequality we continue as

|Ψ(Z, y1)−Ψ(Z, y2)| ≤
1

2
∥y1 − y2∥Σ (∥y1 − G(Z)∥Σ + ∥y2 − G(Z)∥Σ)

≤ ∥y1 − y2∥Σ
(
∥G(Z)∥Σ +

1

2
∥y1∥Σ +

1

2
∥y2∥Σ

)
≤ Cϱ∥y1 − y2∥Σ,

where the last inequality holds since G(Z) is bounded and y1, y2 ∈ Bϱ(0).

To show the well-posedness of the posterior νy it is essential to show the following
bounds on the normalization constant Λ(y).

Lemma 4.9. For the normalization constant Λ(y) there exists α > 0 such that

α exp
(
−∥y∥2Σ

)
≤ Λ(y) ≤ 1 for all y ∈ Cm.

Proof. The upper bound follows directly from the definition (4.15) of Λ(y)

Λ = Eν0 [θ(Z, y)] =

∫
U

θ(Z, y) dν0(Z) =

∫
U

exp(−Ψ(Z, y)) dν0(Z) ≤ 1,

since ν0 is a probability measure on U and Ψ is nonnegative. For the lower bound we
use property (ii) from Lemma 4.8 to get

Λ =

∫
U

exp(−Ψ(Z, y)) dν0(Z) ≥
∫
U

exp(−(K + ∥y∥2Σ)) dν0(Z) = α exp(−∥y∥2Σ)

with α := exp(−K).
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We can now state the well-posedness of the posterior νy and the existence of moments
in the following theorem. The proof of the following theorem is partially based upon
Theorem 15 in [31], where the authors show that the posterior measure is well-defined
under more general assumptions.

Theorem 4.10. Let y ∈ Cm be a fixed set of measurements. The posterior defined in
(4.12) is well defined. Furthermore, if ϕ ∈ Lp

ν0(U) then ϕ ∈ Lp
νy(U) for all 1 ≤ p ≤ ∞

and a fixed y.

Proof. We show that the Radon-Nikodym derivative (4.12) is bounded for all Z ∈ U .
This follows since θ(Z, y) ≤ 1 and Λ(y) is uniformly positive for Z ∈ U , cf. Lemma 4.9.
To show that ϕ ∈ Lp

ν0(U) implies ϕ ∈ Lp
νy(U) we observe by (4.17) that

∥ϕ∥p
Lp
νy

(U)
= Eνy [|ϕ|p] =

1

Λ(y)
Eν0 [|ϕ|pθ(·, y)] ≤

1

Λ(y)
∥ϕ∥p

Lp
ν0

(U)
< ∞,

since θ(Z, y) ≤ 1 and Λ(y) is uniformly positive for Z ∈ U by Lemma 4.9.

Note that the expected value of ϕ under the posterior measure νy is stable with respect
to the data, i.e.,

∥Eµy1 [ϕ]− Eµy2 [ϕ]∥U ≤ c∥y1 − y2∥Σ.

This can be shown by the means of the Hellinger distance

dHell(µ
1, µ2) :=

∫
U

1

2

((
dµ1

dν

) 1
2

−
(
dµ2

dν

) 1
2

)2

dν

 1
2

(4.20)

using the properties of the potential proven in Lemma 4.8. See [31, Theorem 16] and
[107, Lemma 6.37] for the details.

4.4.2 Computable posterior moments

In practice, the weak formulation is discretized and solved approximately. A discretiza-
tion naturally introduces perturbation of the forward map F : U → V . To extend the
Bayesian framework to this setting, we introduce the discrete forward map Fh : U → Vh,
which now depends on the discretization parameter h. For a Finite Element discretiza-
tion from Section 4.3 h stands for the mesh size. We can then define the discrete version
of the operator G introduced in Section 4.4 as Gh := O ◦ Fh : U → Cm. To adapt the
likelihood, potential, and normalization constant to the discrete setting, we define

θh(Z, y) = exp(−Ψh(Z, y)), Qh(y) = Eν0 [θh(Z, y)ϕ(Z)], (4.21)

Ψh(Z, y) =
1

2
∥y − Gh(Z)∥2Σ, Λh(y) = Eν0 [θh(Z, y)]. (4.22)

Remark 4.11. The discrete potential Ψh satisfies the same properties as Ψ given in
Lemma 4.8 in the continuous case, where the constants and sets are independent of h
[40, Theorem 4.3]. Furthermore, Lemma 4.9 also holds for the discrete normalization
constant Λh.
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If the Finite Element approximation converges, one expects that the size of perturba-
tions G − Gh and Ψ−Ψh become smaller as h → 0. The following two lemmas quantify
this statement in a precise way. Their proofs are analogous to the corresponding results
in [40], but with the focus on the random impedance parameter Z.

Lemma 4.12 (cf. [40, Lemma 4.1]). There exist h0, C > 0 such that for every h ∈ (0, h0]
and every Z ∈ U the discrete observation operator Gh satisfies

∥Gh(Z)∥Σ ≤ C and (4.23)

∥G(Z)− Gh(Z)∥Σ ≤ C|lnh|h2. (4.24)

Furthermore, Gh is ν0-measurable.

Proof. From Theorem 4.3 we have

|Gs
Z(z)−Gs

Z,h(z)| ≤ Cκ|lnh|h2, for all z ∈ Mκ

with Cκ > 0 independent of Z and h. Since G and Gh are just point evaluations of Gs
Z

and Gs
Z,h, (4.24) holds (with a different constant that does not depend on h). Further

we have by the triangle inequality

∥Gh(Z)∥Σ ≤ ∥Gh(Z)− G(Z)∥Σ + ∥G(Z)∥Σ

which proves the boundedness of Gh since ∥G(Z)∥Σ is bounded due to Proposition 4.7.
The ν0-measurability follows from the continuity of Gs

Z,h with respect to Z shown in
Corollary 4.4.

Lemma 4.13 (cf. [40, Lemma 4.2]). There exist C, h0 > 0 such that for every h ∈ (0, h0]
the discrete potential Ψh satisfies for all Z ∈ U , y ∈ Cm

|Ψ(Z, y)−Ψh(Z, y)| ≤ C (1 + ∥y∥Σ) |lnh|h2.

Proof. Acting as in the proof of Lemma 4.8 (iii) we get

Ψ(Z, y)−Ψh(Z, y) =
1

2
∥y − G(Z)∥2Σ − 1

2
∥y − Gh(Z)∥2Σ

=
1

2
(y − G(Z),Gh(Z)− G(Z))Σ +

1

2
(Gh(Z)− G(Z), y − Gh(Z))Σ.

Thus, by the triangle and the Cauchy-Schwarz inequality we get

|Ψ(Z, y)−Ψh(Z, y)| ≤ ∥Gh(Z)− G(Z)∥Σ
(
∥y∥Σ +

1

2
∥G(Z)∥Σ +

1

2
∥Gh(Z)∥Σ

)
≤ C (1 + ∥y∥Σ) |lnh|h2,

where we have used Proposition 4.7 and Lemma 4.12 in the last step.
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Remark 4.14. Lemma 4.12 and Lemma 4.13 imply that (see also [31, Theorem 17] for
a generalization of this): There exists h0 > 0 such that the posterior measure νyh is
well-defined for h ∈ (0, h0]. The posterior measure νyh converges to νy with respect to
the Hellinger distance

dHell(ν
y, νyh) ≤ C|lnh|h2.

This can be shown with the same arguments as in Chapter 4.2 in [31].

To make the posterior expectation (4.17) fully computable, we replace the prior ex-
pectations by a computable approximation. We use for simplicity the standard Monte
Carlo method, i.e., the empirical mean

EN [X] =
1

N

N∑
i=1

Xi.

for independent and identically distributed samples X1, . . . , XN of X. Possible more so-
phisticated alternatives are, e.g., Quasi Monte Carlo methods [101, 84, 69] and Multilevel
Monte Carlo methods [56, 49, 13]. However, the Multilevel Monte Carlo methods might
have only restricted advantage here, because for Helmholtz problems the discretization
needs to be comparably fine even on the lowest level in comparison to, e.g., the Laplace
equation. The fully computable ratio estimator is now given by

Q̂h,N

Λ̂h,N

:=
EN [Qh]

EN [Λh]
. (4.25)

The following theorem states the convergence of the ratio estimator in the mean-square
sense with respect to the prior measure.

Theorem 4.15. Let ϕ ∈ L2
ν0(U). Then

MSE

(
Q̂h,N

Λ̂h,N

)
:= Eν0

(Q

Λ
−

Q̂h,N

Λ̂h,N

)2
 ≤ C

(
h4|lnh|2 + 1

N

)
.

Proof. For the MSE the following holds

MSE

(
Q̂h,N

Λ̂h,N

)
= Eν0

(Q

Λ
−

Q̂h,N

Λ̂h,N

)2
 = Eν0

(QΛ̂h,N −QΛ +QΛ− Q̂h,NΛ

ΛΛ̂h,N

)2


≤ 2Eν0


Q

(
Λ̂h,N − Λ

)
ΛΛ̂h,N

2
+ 2Eν0



(
Q− Q̂h,N

)
Λ

ΛΛ̂h,N

2


= 2Eν0

( Q

ΛΛ̂h,N

)2 (
Λ̂h,N − Λ

)2+ 2Eν0

[
1

Λ̂2
h,N

(
Q− Q̂h,N

)2]
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Since Q = Eν0 [θ(·, y)ϕ] ≤ Eν0 [|ϕ|], we know that Q is bounded if ϕ ∈ L1
ν0(U). Moreover,

Lemma 4.9 and Lemma 4.11 imply that for a fixed y ∈ Cm Λ and Λ̂h,N are bounded
from below uniformly in Z ∈ U . Thus, the following estimate holds

MSE

(
Q̂h,N

Λ̂h,N

)
≤ C(y, κ)

(
Eν0

[(
Λ̂h,N − Λ

)2]
+ Eν0

[(
Q− Q̂h,N

)2])
.

Here, the last expression is well defined, since ϕ ∈ L2
ν0(U). The following Lemma 4.16

concludes the proof by showing the convergence results for

Eν0

[(
Q− Q̂h,N

)2]
.

The convergence for the other summand, i.e., the MSE of Λ, follows since Λ corresponds
to a special case of Q with ϕ ≡ 1.

The following lemma concludes the proof of Theorem 4.15 by analyzing the MSE for
Q. This is done by splitting the MSE into bias and variance and showing convergence
of these quantities.

Lemma 4.16. For the MSE the following splitting holds

MSE(Q̂h,N ) = Eν0

[
(Q− Q̂h,N )2

]
= Bias(Q̂h,N )2 + Var(Q̂h,N ) (4.26)

where

Bias(Q̂h,N ) = |Q− Eν0 [Q̂h,N ]| ≤ CBh
2|lnh|, (4.27)

Var(Q̂h,N ) = Eν0

[
(Qh −Qh,N )2

]
≤ CV

N
(4.28)

and constants CB and CV independent of h and N .

Proof. Observe that

MSE(Q̂h,N ) = Eν0 [(Q− Q̂h,N )2] = Eν0 [(Q−Qh)
2] + Eν0 [(Qh − Q̂h,N )2]

since Q and Qh are deterministic and therefore

Eν0 [(Q−Qh)(Qh − Q̂h,N )] = (Q−Qh)(Qh − Eν0 [Q̂h,N ]) = 0,

where we used that Q̂h,N is an unbiased estimator of Qh. This implies (4.26) since Q

and Qh = Eν0 [Q̂h,N ] are deterministic. The estimate (4.27) follows from Lemma 4.13
and the Lipschitz continuity of exp(−·) on [0,∞), since

Bias(Q̂h,N ) = |Eν0 [Q−Qh] | ≤ Eν0 [|ϕ(Z)| |θ(Z, y)− θh(Z, y)|]
≤ Eν0 [|ϕ(Z)|] sup

Z∈supp(ν0)
|Ψ(Z, y)−Ψh(Z, y)|

≤ C Eν0 [ϕ(Z)] (1 + ∥y∥Σ) h2|lnh|.
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Figure 4.1: Domain for model problem in 2D. Black dots indicate the grid of possible
microphone positions.

Concerning the variance, we observe

Var(Q̂h,N ) = Eν0

[
(Eν0 [ϕ(Z)θh(Z, y)]− EN [ϕ(Z)θh(Z, y)])

2
]

= Eν0

( 1

N

N∑
i=1

(
ϕ(Zi)θh(Z

i, y)− Eν0

[
ϕ(Zi)θh(Z

i, y)
]))2

 ,

where Zi are independent copies of Z. This implies

Var(Q̂h,N ) =
1

N2
Eν0

[( N∑
i=1

ϕ(Zi)θh(Z
i, y)− Eν0

[
ϕ(Zi)θh(Z

i, y)
])2

]

=
1

N
Eν0

[
(ϕ(Z)θh(Z, y)− Eν0 [ϕ(Z)θh(Z, y)])

2
]
≤ CV

N
.

Since θh(Z) ≤ 1 for all Z ∈ U , the last inequality is satisfied with CV = Eν0 [ϕ(Z)2].
This implies (4.28) and concludes the proof thereby.

4.5 Numerical experiments

In this section, we demonstrate the numerical performance of our approach using various
model problems in two and three space dimensions. In all experiments the aim is to
determine the complex-valued acoustic impedance parameter Z = ZR+ iZI and thereby
fit the impedance boundary condition

∂p

∂n
+

iωρ

Z
p = 0 on ΓR (4.29)

at the part of the boundary ΓR ⊂ ∂Ω. The parameter Z is assumed to be constant (in
Section 4.5.3 piecewise constant) on ΓR.
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4.5.1 The general experimental setup

We consider a convex room Ω ⊂ Rd, which is either a rectangle for d = 2 or a cuboid
for d = 3, with a fixed sound point source at s within the source domain Ωκ ⊂ Ω and m
microphones placed at m different locations x1, . . . , xm within the measurement domain
Mκ ⊂ Ω \ Ωκ. The m measurement positions are randomly chosen in Mκ, based on
a regular grid with L points in the room, see Figure 4.1. We draw m samples from a
discrete uniform distribution with sample space {1, . . . , L}, where the indices of points
that are too close (i.e., the distance between them is smaller than κ) to the source
or boundary ∂Ω are excluded. To ensure consistency across experiments, the sound
source location remains the same for a fixed experimental scenario. The computational
algorithm is outlined as Algorithm 1.

(1) For a given source of acoustic excitation get noisy measurements
y = (y1, . . . , ym), where yj is the point value of the acoustic pressure p(xj) at a
point in the measurement domain xj ∈ Mκ.

(2) Describe the a priori knowledge of the parameter Z by the prior ν0 with density
π0.

(3) Draw N independent samples Z1, . . . , ZN of the parameter Z distributed
according to the prior density π0.

(4) For each sample Zi solve numerically the model problem (4.1) with the local
impedance boundary condition on ΓR. Collect the point values
Gh(Z

i) = (ph(x1), . . . , ph(xm)), where ph is the deterministic numerical solution
of (4.1) for Z = Zi.

(5) Evaluate the likelihood θh(Z
i, y) of the sample Zi according to (4.21), (4.22).

(6) Evaluate the posterior mean and the variance of Z∗ ∈ {ZR, ZI} by the ratio
estimator (4.25), i.e., Λ̂h,N = 1

N

∑N
i=1 θh(Z

i, y) and

M̂1
y[Z∗]h,N =

1

Λ̂h,N

(
1

N

N∑
i=1

Zi
∗θh(Z

i
∗, y)

)
,

M̂2
y[Z∗]h,N =

1

Λ̂h,N

(
1

N

N∑
i=1

(Zi
∗ − M̂1

y[Z∗]h,N )2θh(Z
i, y)

)
.

(4.30)

Algorithm 1: Bayesian parameter identification

Steps (3)–(6) can be realized consecutively or in parallel, depending of the available
computer architecture.

Note that computed posterior moments (4.30) are random variables themselves. In
particular, their values change for different samples Zi of Z. To demonstrate the validity
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4.5 Numerical experiments

of Theorem 4.15 we repeat (3)–(6) multiple times to estimate the mean square error
(MSE); see Section 4.5.3 below. In the other examples we fit a particular probability
density πy to reproduce the posteriori moments (4.30) and discuss the outcomes.

Clearly, the idealized local impedance boundary condition (4.29) does not always
correctly describe the sound radiation and absorption at ΓR. For significant model-data
misfit, one would naturally expect failure of the Bayesian algorithm. In Section 4.5.5 we
demonstrate that the inconsistency of the parametric model is not always detected, i.e.,
for certain frequencies our algorithm finds values of Z having high likelihood, even when
the impedance condition (4.29) does not capture the physics at ΓR. As we will see, the
reasons for this somewhat unexpected behaviour are related to the actual microphone
positions and the distribution of the eigenmodes of the physical model and their local
structure.
It is natural that the demonstration of the effects related to consistency or incon-

sistency of the particular data sets y = (y1, . . . , ym) and the parametric model (4.29)
require full control over the generation and reproducibility of the noisy data y. That is
why synthetic data generated from computer simulations are used in our experiments
and not real measurements. We remark however, that our algorithm is designed to work
with real measurements.

4.5.2 On the selection of the prior and fitted posterior densities

As already mentioned above, the impedance parameter Z = ZR+iZI describes a passive
absorbing surface. Mathematically this means ZR > 0, whereas ZI is constraint-free.
In other words, Z can take values on the right complex half-plane. This justifies the
selection of the lognormal prior density for ZR and the normal prior density for ZI , that
is

logZR ∼ N (µR, γ
2
R) and ZI ∼ N (µI , γ

2
I ) (4.31)

for the means µR, µI and standard deviations γR, γI . Notice that according to (4.31)
the real part ZR is not uniformly positive, as opposed to the requirement ZR ≥ C > 0
imposed in the previous sections by assuming Z ∈ U , defined in (4.2). However, we have
not detected any significant change in the performance of our algorithm related to the
presence of the uniform positivity condition, and therefore work with the model (4.31)
in what follows. The joint probability density function is given by (see [44])

π0(ZR, ZI) =
1

2πγRγI

1

ZR
exp

(
−(logZR − µR)

2

2γ2R
− (ZI − µI)

2

2γ2I

)
.

Without additional knowledge apart from the first two moments nothing can be said
about the shape of the posterior density. The following numerical experiments confirm
this choice in the sense that the expected value and maximum of the estimated density
are close to the reference value. Similarly as π0, the posterior density should be supported
in the right half-plane. In view of these arguments, we approximate the posterior density
πy by

π̂y(ZR, ZI) =
1

2πγ̂Rγ̂I

1

ZR
exp

(
−(logZR − µ̂R)

2

2γ̂2R
− (ZI − µ̂I)

2

2γ̂2I

)
, (4.32)
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where the parameters µ̂R, µ̂I , γ̂R, γ̂I are fitted to reproduce the posterior moments (4.30)
by

µ̂R = log

 M̂1
νy [ZR]

2
h,N√

M̂2
νy [ZR]h,N + M̂1

νy [ZR]2h,N

 , µ̂I = M̂1
νy [ZI ]h,N ,

γ̂R =

√√√√log

(
1 +

M̂2
νy [ZR]h,N

M̂1
νy [ZR]h,N

)
, γ̂I =

√
M̂2

νy [ZI ]h,N .

(4.33)

Note that all quantities with a hat ·̂ depend on the discretization and sampling parame-
ters h and N . For brevity, we will not explicitly track these parameters in the notation.
Although there is no indication that π̂y is close to πy, we will see in Section 4.5.3 that
the maximum of π̂y reproduces the reference value of Z surprisingly well if the data
y = (y1, . . . , ym) are consistent with the impedance model (4.29).

4.5.3 2D model: Discretization and sampling error

To validate the results from the previous sections we consider the model problem in a
two-dimensional room of 3m width and 3.5m length, i.e., Ω := [0, 3]× [0, 3.5] ⊂ R2:

−∆p− k2p = f in Ω,

∂p

∂n
+

iωρ

Z(1)
p = 0 on Γ

(1)
R ,

∂p

∂n
+

iωρ

Z(2)
p = 0 on Γ

(2)
R ,

∂p

∂n
= 0 on ΓN .

(4.34)

Here, the boundary ∂Ω of Ω is split into three disjoint parts Γ
(1)
R = {(x1, x2) ∈ ∂Ω : x1 =

0}, Γ(2)
R = {(x1, x2) ∈ ∂Ω : x2 = 0} and ΓN = ∂Ω\(Γ(1)

R ∪Γ(2)
R ), see Figure 4.1. We assume

that the acoustic impedances Z(1) = Z
(1)
R + iZ

(1)
I and Z(2) = Z

(2)
R + iZ

(2)
I , Z

(ℓ)
R , Z

(ℓ)
I ∈

R for ℓ = 1, 2, are constant on the specific part of the boundary. The point source
f = δs is located at s = (1, 1) ∈ Ωκ. The data are computed by numerically solving

problem (4.34) with reference acoustic impedance values, namely Z
(1)
ref = 400− 700i and

Z
(2)
ref = 500 + 800i, evaluating the solution at m = 4 measurement positions and adding

artificial noise, i.e., y = G(Zref) + η, where η ∼ CN (0,Σ, 0). Σ is a diagonal matrix with
entries σ2

k = σ2
0, k = 1, . . . , 2m, where σ0 = 0.02. This means that the log-likelihood

can be expected to be of the order of −m if the sampling and discretization errors
are neglected, since then Eν0 [log θ] = Eν0 [−1

2∥η∥
2
Σ] = m. The prior distribution was

chosen as described in Section 4.5.2 with logZ
(1)
R ∼ N (µ

(1)
R , γ

(1)2
R ), Z

(1)
I ∼ N (µ

(1)
I , γ

(1)2
I ),

logZ
(2)
R ∼ N (µ

(2)
R , γ

(2)2
R ) and Z

(2)
I ∼ N (µ

(2)
I , γ

(2)2
I ) with E[Z(1)

R ] = 300, E[Z(1)
I ] = −600,

E[Z(2)
R ] = 600, E[Z(2)

I ] = 900 and Var(Z(1)
R ) = Var(Z(1)

I ) = Var(Z(2)
R ) = Var(Z(2)

I ) =
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2002, i.e., µ
(1)
R ≈ 5.52, µ

(1)
I = −600, µ

(2)
R ≈ 6.34, µ

(2)
I = 900, γ

(1)
R ≈ 0.61, γ

(1)
I = 200,

γ
(2)
R ≈ 0.32 and γ

(2)
I = 200.

To confirm the theoretical convergence rates from Theorem 4.15 we compute M̂1
νy [Z

(ℓ)
∗ ]

and M̂2
νy [Z

(ℓ)
∗ ], i.e., we use ϕ(Z

(ℓ)
∗ ) = Z

(ℓ)
∗ or ϕ(Z

(ℓ)
∗ ) = (Z

(ℓ)
∗ − M̂1

νy [Z
(ℓ)
∗ ])2 in Theorem

4.15. These let us compute the estimates for µ̂
(ℓ)
R ,γ̂

(ℓ)
R , µ̂

(ℓ)
I and γ̂

(ℓ)
I with equations (4.33).

First, consider the discretization error, i.e., |µ(ℓ)
∗ − µ̂

(ℓ)
∗ | and |γ(ℓ)∗ − γ̂

(ℓ)
∗ |, ℓ = 1, 2,

where we recall that µ̂
(ℓ)
∗ and γ̂

(ℓ)
∗ depend on the discretization parameters h,N . For

the estimation N = 216 samples are drawn. The exact expected values µ
(ℓ)
∗ and γ

(ℓ)
∗ ,

ℓ = 1, 2, are approximated on a small grid with h = c/f
10·25 ≈ 0.021m for reference. The

error visualized in Figure 4.2 is averaged over 20 runs, i.e., different set of drawn sam-
ples, while the positions of the measurements and the noise (and therefore the data y)
stay fixed for all runs. As seen from Figure 4.2, the convergence behaviour confirms the
theoretically predicted convergence rates in Theorem 4.15.
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Figure 4.2: Discretization error for statistical parameters of Z(1) (left) and Z(2) (right)
for f = 50Hz. Note that the absolute errors are shown. Thus, the error
curves belonging to the parameters of the lognormal distribution are lower.

Next, we address the sampling error. The exact values are approximated with large
sample size of N = 216. The computations for the sampling error were all done on a grid
with mesh size h = c/f

20 ≈ 0.34m and frequency f = 50Hz. In Figure 4.3 the sampling
error is averaged over 20 runs. We observe the convergence rate of 1√

N
as expected from

Theorem 4.15.
Given the estimations on the first and second moments of Z

(ℓ)
R and Z

(ℓ)
I , ℓ = 1, 2, we

can approximate the posterior density πy by π̂y defined in Equation (4.32) as described

in Section 4.5.2. For N = 216 samples and h = c/f
20 we again compute the estimators

given in (4.33). In Figures 4.4 and 4.5 we compare the approximate posterior density π̂y

with the prior density for 50Hz and 100Hz, respectively. We observe that the peak of
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Figure 4.3: Sampling error for statistical parameters of Z(1) (left) and Z(2) (right) for
f = 50Hz. Note that the absolute errors are shown. Thus, the error curves
belonging to the parameters of the lognormal distribution are lower.

Figure 4.4: Prior density and density given by estimated expected value and standard

deviation for f = 50Hz for Z(1) (left) and Z(2) (right).
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4.5 Numerical experiments

the density function π̂y is closer to the true underlying value than the peak of π0, and the
variance reduces. Consequently, we obtain a sharper estimate for the impedance than the
initial prior. Instead of only pointing out the single best value for the impedance fitting
the data, we get a density plot that shows a whole domain of reasonable parameter
combinations under the assumption that certain noise is present. Note that for the

Figure 4.5: Prior density and density given by estimated expected value and standard

deviation for f = 100Hz for Z(1) (left) and Z(2) (right).

real part, the peak of the density is lower than the expected value as it should be for
the lognormal distribution. Thus, the expected value as a single parameter is rather
insufficient to provide the best estimate for the impedance: the expected value and the
standard deviation, or a fitted distribution, as we propose here, result in a more complete
and informative estimate.

Our result can be optionally utilized in several ways to design further simulations (e.g.,
acoustic modeling of another room with a wall made from the same material, or a room
with a set of acoustic obstacles inside it). If the aim is to use a single deterministic value
of the estimated acoustic impedance that best fits the data, one should rather use the
value that maximizes the likelihood. If the focus is in the further probabilistic parameter
modeling (e.g., further Bayesian simulations), the estimated statistical moments and the
fitted distribution can be used instead.

Figure 4.6 shows an example of solution plots with marked source and receiver posi-
tions for f = 50Hz. The solution plot the data was generated from, i.e., the solution to

problem (4.34) using the reference values Z
(1)
ref = 400−700i and Z

(2)
ref = 500+800i in the

left panel, looks very similar to the simulation with the estimated impedance value Ẑ in
the right panel. The latter was chosen as the sample Zi for which the likelihood θh was
largest, i.e.,

Ẑ := argmax
Zi,i=1,...,N

θh(Z
i, y).
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Figure 4.6: Absolute value of the reference solution with Z
(1)
ref = 400− 700i and Z

(2)
ref =

500+800i (left) and the reconstructed solution with the most likely acoustic
impedance value during the sampling process Z(1) ≈ 427− 697i and Z(2) ≈
583 + 860i (right) for f = 50Hz. The source is located at (1, 1). The red
marks are the measurement positions.

4.5.4 3D problem with data from impedance problem

We again consider the model problem (4.34). However this time we consider a room in
three dimensions with width 3m, length 3.5m and height 2.5m, i.e., Ω := [0, 3]×[0, 3.5]×
[0, 2.5] ⊂ R3, Γ

(1)
R = {(x1, x2, x3) ∈ ∂Ω : x1 = 0}, Γ(2)

R = {(x1, x2, x3) ∈ ∂Ω : x2 = 0} and

ΓN = ∂Ω\(Γ(1)
R ∪ Γ

(2)
R ), see Figure 4.7. Here Z(1) = 500− 800i is assumed to be known

and only moments of an unknown Z(2) are computed. The point source f = δs is located
at s = (1, 1, 1) ∈ Ωκ. In the experiments the artificial measurements y are generated by

2.5m

3m3.5m

Γ
(1)
R Γ

(2)
R

ΓN

Figure 4.7: Domain for model problem in 3D.

solving problem (4.34) with Z(2) = Zref = 500+ 800i, evaluating the solution at m = 16
measurement positions and adding noise, i.e., y = G(Zref) + η, where η ∼ CN (0,Σ, 0).
Here Σ is a diagonal matrix with entries σ2

k = σ2
0, k = 1, . . . , 2m. The variance of the
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Figure 4.8: Maximum log-likelihood for the impedance problem. The thin lines corre-
spond to the individual runs.

noise is given by σ0 = 0.02. For each run m measurement positions are randomly placed
in Mκ with κ = 1

2 , i.e., in contrast to the 2D experiments in the previous section, the
receiver positions and noise change from run to run. This allows us to observe behavior
that is not depending on specific measurement positions. The prior distribution is chosen

as described in Section 4.5.2 with logZ
(2)
R ∼ N (4000, 100002) and Z

(2)
I ∼ N (0, 300002).

For frequencies from 20Hz to 120Hz in steps of 0.5Hz we estimate the expected value

20 40 60 80 100 120

frequency [Hz]

0

1000

2000

3000

4000

5000

6000

7000

e
s
t.
 e

x
p
e
c
te

d
 v

a
lu

e
 R

e
(Z

)

20 40 60 80 100 120

frequency [Hz]

-1000

0

1000

2000

3000

4000

5000

6000

7000

e
s
t.
 e

x
p
e
c
te

d
 v

a
lu

e
 I
m

(Z
)

Figure 4.9: Estimated expected value (real part left, imaginary part right) of the
impedance for the impedance problem for all 20 runs. The black dashed
line indicates the reference impedance value. The red line is the mean over
all runs. Thin lines correspond to individual runs.

and variance for the posterior of Z
(2)
R and Z

(2)
I in the same way as outlined above.

Here we take N = 214 samples and choose the mesh width as h = min( c/f20 , 0.5). We
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Figure 4.10: Most likely impedance (real part left, imaginary part right) for the
impedance problem for all 20 runs. The black dashed line indicates the
reference impedance value. The red line is the mean over all runs. Thin
lines correspond to individual runs.

observe that parameters with high likelihoods are detected. In Figure 4.8 we show the
maximum of the log-likelihood achieved from samples during the Monte Carlo sampling,

i.e., max θh(Z
i, y). The estimated expected values, i.e., M̂1

y[Z
(2)
∗ ]h,N , are close to the

true underlying parameter values of Z(2) for most frequencies, see Figure 4.9. In the
lower frequency range of 20Hz to 40Hz we observe rather large fluctuations around the
reference value. In this frequency range the solution of (4.34) seems to be less dependent
on the acoustic impedance Z(2) and hence impedance values Z(2) with large magnitude
still lead to high likelihood values. The samples Zi with largest likelihood, i.e.,

Ẑ := argmax
Zi,i=1,...,N

θh(Z
i, y),

the best fitting parameter-pairs, are visualized in Figure 4.10. For the low frequency
range we observe that for some runs the impedance is estimated badly, however we see
good approximation for most runs. The prior density π0 together with the estimated
posterior density π̂y given by the estimated parameters are visualized for two selected
frequencies in Figure 4.11. The prior density looks flat, since its variance is large. The
estimated posterior, however, has smaller variance and leads to a suitable estimate of
the reference impedance.

4.5.5 3D problem with data from coupled acoustic-structural problem

In this section we again consider the 3D version of the problem (4.34) as before, but
this time the data was generated in COMSOL MULTIPHYSICS by solving a coupled

acoustic-structural problem, where instead of an impedance boundary condition at Γ
(2)
R

a model of a glass wall is considered. In particular, this means that this part of the
boundary is not locally reacting.
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Figure 4.11: Prior density and density given by estimated expected value and standard
deviation for f = 25Hz (left) and f = 95Hz (right).

The model to estimate moments of the posterior distribution remains the pure
impedance problem as before. Hence the model used to approximate the data are
different from the one that is used to generate the data, and thus, leads to a significant
model-data misfit. In this section we investigate how well the data can be estimated by
the locally reacting impedance model (4.29) and whether the inconsistency of the model
and the data can be detected by the simulations. The remaining experimental setup
including the domain, prior, noise, source position and microphone positions are the
same as in Section 4.5.4. In fact, the same samples Zi drawn in the previous subsection
and the corresponding observations Gh(Z

i) can be recycled here again. Only the data
y changes and hence only the likelihood θh has to be evaluated again to compute the
approximate moments in (4.33).

Inspecting the maximum log-likelihood in the frequency range 20-120Hz in Figure
4.13, we observe that for some frequencies its value gets very negative for all samples Zi

in each of the 20 runs. This is the consequence of the model-data misfit. Nevertheless
for some frequency ranges the algorithm detects well fitting impedance values from the
parametric model.

To further study this behavior we compute the eigenfrequencies for the coupled prob-

lem, the glass wall itself and the impedance problem (4.34) (with sound hard Γ
(2)
R , i.e.,

for |Z(2)| → ∞). The eigenfrequencies are shown in Figure 4.12. Notice, that for the
glass wall the eigenfrequencies are real, but for the discretized coupled and impedance
problem the eigenfrequencies are complex-valued with small imaginary part due to the

boundary condition at Γ
(1)
R . Comparing the real part of the eigenfrequencies of the cou-

pled problem with those from the glass wall itself we observe that their locations coincide
quite well with only small shifts, in particular the real parts of eigenfrequencies of the
impedance problem are only slightly smaller than the ones from the coupled problem.
Comparing the eigenfrequencies with small imaginary part, i.e., those close to purely
real frequencies, with the maximum likelihood, see Figure 4.13, we observe the follow-
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Figure 4.12: Eigenfrequencies of coupled problem, pure impedance problem (sound hard

at Γ
(2)
R ) and for the glass wall (window) decoupled from the room acoustics

(boundary conditions were set to be free at the large front and back surfaces
and fixed at the edges of the window).

ing: If the likelihood vanishes there are also eigenfrequencies nearby. If the frequency
is far from any eigenfrequency the coupled problem behaves similar to the impedance
problem. We also notice that for some eigenfrequencies the log-likelihood log θh is still of
a similar magnitude as in the case of Section 4.5.4. In Figures 4.14–4.16 we demonstrate
the pressure (in dB) for different frequencies for the reference solution of the coupled
problem (i.e., the solution from which the artificial data have been generated), and the
solution of (4.34), where the value of the impedance Z(2) is the sample having the high-
est likelihood θh. To illustrate three typical types of behaviour over the frequency range
20–120 Hz we focus on the three representative values f = 51.5Hz, f = 54.5Hz and
f = 69Hz. As seen in Figure 4.13, these frequencies are close to the eigenfrequencies of
the coupled problem. In general, we observe that for some eigenfrequencies the solution
in the interior is much more affected by the behaviour of the glass wall than for others.

For f = 51.5Hz a very low maximum log-likelihood was observed for all runs, see
Figure 4.13. In the left panel of Figure 4.14 we can clearly see the eigenmodes at the
glass wall and that the reference solution in the interior of the domain is affected by its
behaviour. In contrast, the solution plot for the locally reacting impedance boundary
condition for the likelihood maximizer does not show oscillations for this frequency value,
see the right panel of Figure 4.14. Therefore, the simulation is not capable to fit the data
and the model-data misfit can be clearly detected from the low values of the likelihood.

For f = 54.5Hz we again observe the eigenmodes on the glass wall for the reference
solution in the left panel of Figure 4.15. However this time the algorithm is able to
determine impedance parameters that fit the data well and result in high values of the
likelihood. A closer inspection of the reference solution and the likelihood maximizer in
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Figure 4.13: Maximum log-likelihood for the coupled problem with eigenfrequencies (real
part). The thin lines correspond to the individual runs.

the left and right panels of Figure 4.15 show the similar structure in the interior of the
domain, whereas the boundary behaviour is quite different. Here, the glass wall eigen-
mode is quite localized near the boundary, so that the oscillations cannot be detected
by the microphones located in the interior of the domain. In this case, the algorithm
does not detect the model-data misfit.

Figure 4.14: The reference solution that produces artificial measurement data (left) and
the likelihood maximizer computed by the algorithm (right) in dB (re
20µPa) for f = 51.5Hz.

In contrast to the two typical cases discussed above, the frequency f = 69Hz exhibits
an intermediate behaviour, see Figure 4.16. The eigenmode of the glass wall is again quite
localized near the boundary. The algorithm, however, fails to identify the impedance
parameter with the same likelihood as for f = 54.5Hz. In Figure 4.13 we see, however,
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Figure 4.15: The reference solution that produces artificial measurement data (left) and
the likelihood maximizer computed by the algorithm (right) in dB (re
20µPa) for f = 54.5Hz.

Figure 4.16: The reference solution that produces artificial measurement data (left) and
the likelihood maximizer computed by the algorithm (right) in dB (re
20µPa) for f = 69Hz.
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that the likelihood drop is not so dramatic as around f = 51.5Hz. As a consequence,
we can see clear differences in the solution close to Γ(2), but a more similar qualitative
(but not quantitative!) behaviour for parts away from this part of the boundary.

4.6 On the Markov-Chain Monte Carlo method

In the preceding sections, we sampled from the prior distribution ν0 and computed
the likelihood θ. By multiplying these two, we obtained values of the posterior (up to
a constant). However, direct sampling from the posterior distribution was not possi-
ble. A class of methods, namely the Metropolis-Hastings (MH) Markov-Chain Monte
Carlo (MCMC) methods can overcome this problem and allow direct sampling from the
posterior [77, 55, 38]. For this, a new sample Zp is drawn relative to the last sample
Z(n), where Z(n) is the n-th sample, using a random step. This is done by a proposal
distribution q. It is often chosen as q ∼ N (Z(n), χ2). This is why we choose q such
that Re(Zp) ∼ N (Re(Zp), χ

2) and Im(Zp) ∼ N (Im(Zp), χ
2). The (non-normalized)

posterior of the proposal sample Zp, i.e., π
y(Zp) ∼ θ(Zp, y)π0(Zp), and the last sam-

ple Z(n), i.e., πy(Z(n)) ∼ θ(Z(n), y)π0(Z
(n)), are compared by computing the ratio

r = min
(

πy(Zp)q(Zp|Z(n))

πy(Z(n))q(Z(n)|Zp)
, 1
)
, and the new sample is either accepted or rejected based on

the value of r and a uniformly distributed random variable u ∼ U [0, 1], see also Algorithm
2. Due to the symmetry of the normal distribution we have q(Zp|Z(n)) = q(Z(n)|Zp) [88].

Hence the ratio r reduces to r = min
(

πy(Zp)

πy(Z(n))
, 1
)
.

Result: Samples from the posterior distribution
Input : maximum number of iterations N,

initial sample Z(0) ∈ C,
standard deviation χ of proposal distribution

Output: N samples
1 for n=0:N-1 do

2 Draw sample Zp from the proposal distribution q(Zp|Z(n))

3 compute ratio r = min
(

πy(Zp)q(Zp|Z(n))

πy(Z(n))q(Z(n)|Zp)
, 1
)
;

4 draw u ∈ [0, 1] from uniform distribution
5 if r ≥ u then

6 Z(n+1) = Zp

7 else

8 Z(n+1) = Z(n)

9 end

10 end

Algorithm 2: Metropolis-Hastings algorithm, based on [88].

At the first glance, this method seems to be superior to the ratio estimators discussed
earlier, since we can directly sample from the posterior and hence can also compute its
moments. Thus, we are not in need a low-parametric posterior density estimation as
proposed in the previous sections, but can directly sample from the posterior if needed
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for other problems. However, there are also some drawbacks. First, Metropolis-Hastings
does not allow for parallel sampling, because every sample is dependent on the previous
sample. Second, if we want to compute likelihoods or moments for different number
or location of observations, in the ratio estimator setting we could have just stored
the observation at different locations and compute the likelihood and the moments
afterwards using an arbitrary subset of these observations. In the Metropolis-Hastings
algorithm the positions and number of the observations directly influence the next
sample. Hence for each scenario we would have to redo the entire sampling process.

While these limitations may not be crucial for all applications, we computed
likelihoods for twenty different runs, i.e., different microphone positions and noise
realizations in this chapter. For these runs we only had to solve the three-dimensional
problem once per sample and could reuse it in the other runs. For Metropolis-Hastings
this would not be possible and the sampling process would need to be repeated for each
variation.

We consider four different cases to compare ratio estimators and the Metropolis-
Hastings algorithm for different values of χ and starting samples Z(0) (in the following
Z does correspond to Z(2) in Section 4.5.4, to not be confused with the Metropolis-
Hastings samples):

Case 1: Impedance data with Z = 500+800i, f = 50Hz; this is the same impedance
assumed as in the experiments above.

Case 2: Impedance data with Z = 5000 + 8000i, f = 50Hz; the higher modulus
models a wall that is nearly sound hard.

Case 3: Data from coupled problem, f = 44.5Hz; this corresponds to a case with
rather high likelihood.

Case 4: Data from coupled problem, f = 52.5Hz; this corresponds to a case where
the model-misfit is apparent.

Often the step size is initially chosen as χ = χ0 :=
2.38√
np

if the posterior is depending on

np variables [48]. However, in this application we noticed, that the step size is too small
to really explore the posterior. For all cases we observe the data at M = 16 positions,
assume the standard deviation of the noise to be σ0 = 0.02 and use the same prior as in
Section 4.5.4.

Tables 4.1 and 4.2 show the estimated expectation and variance using ratio esti-

mators, i.e., µ
(RE)
R , µ

(RE)
I , γ

(RE)2
R and γ

(RE)2
I , and Metropolis-Hastings algorithm, i.e.,

µ
(MH)
R , µ

(MH)2
I , γ

(MH)2
R and γ

(MH)2
I , for different χ and starting samples Z(0). The true

moments µ
(post)
R , µ

(post)
I , γ

(post)2
R and γ

(post)2
I are computed by first identifying where the

posterior function is significantly larger than zero and then computing the respective
integral over that area numerically using a deterministic quadrature. When the starting
sample is poorly chosen and χ is small then sometimes the Metropolis-Hastings algo-
rithm has a long burn-in phase. Due to this, in some sampling processes, we changed
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χ case Z(0) µ
(RE)
R µ

(RE)
I µ

(MH)
R µ

(MH)
I µ

(post)
R µ

(post)
I

χ0 × 1000 100+1i 4347.3 1224.0
χ0 × 100 100+1i 689.7 797.8
χ0 × 100 1 500+800i 595.0 778.2 690.7 811.9 547.5 774.1
χ0 × 10 500+800i 550.4 776.5

χ0 500+800i 549.9 780.4

χ0 × 1000 100+1i 5655.7 18195
χ0 × 100 100+1i 4124.3 16116
χ0 × 100 2 5000+8000i 4081.0 16610 3704.2 16543.7 3974.6 16297
χ0 × 10 5000+8000i 5631.7 10961

χ0 5000+8000i 5093.1 8242.9

χ0 × 1000 100+1i 4365 4784.1
χ0 × 100 100+1i 504.2 3274.3
χ0 × 100 3 400+3000i 387.2 3256.5 508.2 3305.4 419.4 3247.1
χ0 × 10 400+3000i 423.3 3262.4

χ0 400+3000i 455.5 3247.5

χ0 × 1000 100+1i 5022.6 -2227.9
χ0 × 100 100+1i 1480.0 -753.2
χ0 × 100 4 1500-600i 1370.1 -750.3 1490.5 -771.8 1430.5 -742.2
χ0 × 10 1500-600i 1429.7 -711.8

χ0 1500-600i 1475.6 -555.9

Table 4.1: Estimated expectation for various the Cases 1-4 for different χ and starting

sample Z(0) (in Pa·s
m3 ).

the initial sample to one that is close to the maximum of the respective posterior. In
case of large χ the estimated expectations are not very accurate. This is due to the fact,
that only few samples will be in the area where the posterior is large. This should, how-
ever, improve with larger sample size. This is a similar behavior as for the Monte Carlo
sampling for the ratio estimators in the case of a prior with large variance. For Case 2
we observe that the result for the expectation is at least at a comparable magnitude as

µ
(post)
R or µ

(post)
I . This is due to the large variance that the posterior in this case has,

see the corresponding picture in Figure 4.17. On the other hand µ
(MH)
I is significantly

underestimated for this case if χ is small. For most configurations, however, the expec-
tations are reliably estimated and comparable with the results from the ratio estimators.
We can conclude that different values of χ are better suited for different cases.
The variance estimation shows more variability. For large χ the variance is generally

overestimated a lot by the Metropolis-Hastings algorithm. However, if χ is too small
than the variance will be underestimated. The results are only comparable to the ones
we get from the ratio estimators if χ is chosen well, which is case-dependent. Finding
an optimal χ is in the need of tuning or adapting χ during the algorithm, see, e.g., [53].
Figure 4.17 illustrates the samples drawn during the Metropolis-Hastings algorithm for
the different configurations with the exception of the optimized starting value Z(0)
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χ case Z(0) γ
(RE)2
R γ

(RE)2
I γ

(MH)2
R γ

(MH)2
I γ

(post)2
R γ

(post)2
I

χ0 × 1000 100+1i 1.01e7 1.13e7
χ0 × 100 100+1i 1.09e5 1.12e5
χ0 × 100 1 500+800i 6.91e2 2.58e3 1.11e5 1.14e5 5.24e2 5.22e2
χ0 × 10 500+800i 1.38e3 1.25e3

χ0 500+800i 3.89e2 3.78e2

χ0 × 1000 100+1i 2.25e7 6.07e7
χ0 × 100 100+1i 7.89e6 1.57e7
χ0 × 100 2 5000+8000i 1.14e7 2.85e7 5.19e6 1.10e7 9.05e6 2.13e7
χ0 × 10 5000+8000i 2.87e5 1.72e6

χ0 5000+8000i 5.53e3 1.37e4

χ0 × 1000 100+1i 2.12e7 1.96e7
χ0 × 100 100+1i 8.17e4 1.64e5
χ0 × 100 3 400+3000i 1.90e4 9.34e3 8.58e4 1.14e5 1.15e4 1.32e4
χ0 × 10 400+3000i 1.43e4 1.17e4

χ0 400+3000i 1.83e3 9.09e3

χ0 × 1000 100+1i 2.03e7 1.70e7
χ0 × 100 100+1i 1.25e5 1.31e5
χ0 × 100 4 1500-600i 1.04e4 1.46e4 1.23e5 1.17e5 1.47e4 2.08e4
χ0 × 10 1500-600i 1.46e4 1.49e4

χ0 1500-600i 6.29e2 1.53e3

Table 4.2: Estimated variance for various the Cases 1-4 for different χ and starting sam-

ple Z(0) (in Pa·s
m3 ).

and χ = χ0 × 100. This configuration essentially results in the same picture as with
Z(0) = 100 + 1i, but without the burn-in phase. We observe that large χ leads to many
samples with very low posterior values, while small χ might (as in Cases 2-4) fail to fully
explore the posterior. Therefore, further sampling would not be representative for the
true posterior (only for very large sample size), since it would be biased to one side of the
peak. Comparison with the true (discrete) posterior, i.e., πy

h(Z) ∼ π0(Z)θh(Z) and the
estimated posterior density π̂y constructed from the ratio estimators, see Figure 4.18,
shows that the estimated posteriors are reasonable approximations of the true posterior
and could be used for further uncertainty quantification.
In conclusion, the (plain) Metropolis-Hastings is a viable alternative to the ratio estima-
tors if χ is chosen well. This, however, requires some expert knowledge or trial phase,
which we also did not assume for the ratio estimators. For example, both methods
would lead to better approximations with less samples for a prior that is more focused
on one particular area. For the purpose of the previous sections, we intentionally chose
a prior with large variance to avoid bias. Further, the computational cost of Metropolis-
Hastings will be significantly larger when computing moments for different positions
and number of measurements as well as for different data and noise realizations. In such
cases, the ratio estimator framework is superior in terms of reusability of samples. The
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largest advantage of the Metropolis-Hastings algorithm lies in the fact that it can ac-
tually sample from the true posterior (if parameters were chosen correctly). Depending
on the actual application the accuracy of the posterior or the computational cost might
be more important or feasible. Therefore the method needs to be chosen based on the
considered application.

Figure 4.17: Samples drawn during the Metropolis-Hastings algorithm for Cases 1-4 with

different starting samples Z(0) and χ. The height of the points coincide with
the computed posterior θ(Z, y)π0(Z). The posterior is scaled such that the
maximum is 1.
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Figure 4.18: True and estimated posterior for the different Cases 1-4, scaled such that
the maximum value is 1.

4.7 Outlook

From this point a lot of other extensions are possible. For once, estimating higher
moments for the posterior density and computing parametric density functions with
those is a way to include properties like skewness in the resulting function.
Another possible extension is to replace the scalar-valued parametric impedance

boundary condition by a more general parametric model, e.g., represented by a
Karhunen–Loéve expansion, or a non-local boundary condition. In this case a lot more
parameters would need to be estimated, depending on the goal.

Another thread is the analysis of further intelligent sampling methods like multilevel
Monte Carlo or Quasi Monte Carlo (as done in [98] for the elliptic problem), advanced
Markov Chain / sequential Monte Carlo method (as done in [40] for uncertainty in the
right hand side of the Helmholtz equation) or even Multilevel Markov Chain Monte
Carlo Algorithms [37, 72].

74



Chapter 5

Shape optimization for low-frequency
time-harmonic problems under uncertain
source location

Shape and topology optimization are fields of classical but also on-going research in
particular for engineering applications. For example, a common objective is to design
structures with certain properties while minimizing material usage. In shape optimiza-
tion the goal is to optimize the geometry of some structure to minimize a potential goal
functional. On top of that topology optimization also allows change in the topology,
such as different numbers of holes. For an overview on current methods and applications
we refer to [4, 10]. In this chapter we restrict the research on shape optimization.
Often in shape optimization problems the problem is related to partial differential

equations (PDEs) and such the shape optimization relies on solving these equations.
In this case shape optimization is used together with a PDE solving method like finite
elements.
Due to the rising interest in uncertainty quantification and also the advancements

in computational technology, that make elaborate computations possible, shape opti-
mization is nowadays often considered including random inputs or constraints, see e.g.,
[3, 29, 46].
In this chapter we consider again an interior time-harmonic wave propagation prob-

lem, in particular we consider shape optimization with a partial differential equation
constraint which is the Helmholtz equation in two dimensions. Let Ω ⊂ R2 be a Lip-
schitz domain with ∂Ω = ΓN ∪ ΓR with |ΓR| ≠ ∅. The aim is to minimize a goal
functional

J(Ω) =

∫
Ω
j(p)dx (5.1)

under the constrained that p solves the following problem:

−∆p− cp = f in Ω

∂p

∂n
= 0 on ΓN

∂p

∂n
+ iαp = 0 on ΓR

(5.2)

For c > 0 this leads to the Helmholtz problem discussed in several chapters before.
For c = 0 this is the inhomogeneous diffusion problem and for c < 0 we arrive at the
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reaction-convection problem. We assume that c ∈ R and α ∈ C with Re(α) ̸= 0 and the
support of f ∈ L2(Ω) lies strictly in Ω.
The following sections are structured as follows: In Section 5.1 we revisit basic concepts

of (deterministic) PDE-constrained shape optimization. In Section 5.2 we compute the
shape gradients related to the problem (5.1). Sections 5.3 and 5.4 deal with concrete
numerical examples. In Section 5.3 we do shape optimization for the deterministic setting
while in Section 5.4 we introduce randomness in the source location and define and study
expectation domains and domain deviation for this problem.

5.1 Basic concepts of PDE-constrained shape optimization

The aim of shape optimization is to transform the domain Ω such that a shape functional
J(Ω, u) is minimized. As transformation we define the map

Tt(V ) : R2 → R2.

We assume that Tt is defined by a small perturbation θ ∈ C0,1(R2,R2), i.e., Lipschitz
continuous, in the sense that it can be written as Tt(x) = x+ tθ(x). To this perturbation
we can associate [35, Ch. 2, Ch. 9] a vector field V ∈ (C0([0, τ ]);C1(R2,R2)), i.e.,

continuous in t and differentiable in space, such that dTt(V )
dt = V (t) ◦ Tt(V ) and

T0(V ) = I. We define perturbations of the domain Ω as Ωt := Tt(V )(Ω).

In optimization we often make use of gradients of the goal functional with respect to
the free parameters. Here, these parameters are associated with the geometry/shape of
the domain and hence we want to use the so-called shape derivatives.

Definition 5.1 (Eulerian derivative, [102, Definition 2.19]). For a vector field V ∈
(C0([0, τ ]);C1(R2,R2)) the Eulerian derivative of J at Ω in the direction of V is defined
as

dJ(Ω;V ) = lim
t→0

J(Ωt)− J(Ω)

t
. (5.3)

Definition 5.2 (Shape differentiability, [102, Definition 2.20]). The functional J(Ω) is
shape differentiable at Ω if

(i) there exists the Eulerian derivative dJ(Ω;V ) for all directions V ,

(ii) the mapping V → dJ(Ω;V ) is linear and continuous from (C0([0, τ ]);C1(R2,R2))
into R.

The following lemma computes the Eulerian derivative for J(Ω) being the integral of
the characteristic function of Ω.

Lemma 5.3. Let

J(Ωt) =

∫
Ωt

dx.

Then

dJ(Ωt) =

∫
Ω
divV (0) dx.
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Proof. Change of variables with x = Tt(x) leads to

J(Ωt) =

∫
Ωt

dx =

∫
Ω
|detDTt(x)| dx =

∫
Ω
detDTt(x) dx,

since detDTt(x) > 0 for small t ≥ 0, because det(DT0(x)) = 1. Using Jacobi’s formula
[73] we can compute the derivative of detDTt(x) in t:

d

dt
detDTt(x)

∣∣∣∣
t=0

= det(DTt(x))tr

(
DTt(x)

−1dDTt(x)

dt

) ∣∣∣∣
t=0

= det(DTt(x))tr
(
DTt(x)

−1DV (t, Tt(x))
) ∣∣∣∣

t=0

= divV (0, x).

Hence

dJ(Ω;V ) = lim
t→0

J(Ωt)− J(Ω)

t

= lim
t→0

1

t

(∫
Ωt

dx−
∫
Ω
dx

)
= lim

t→0

1

t

(∫
Ω
detDTt(x)− 1 dx

)
=

∫
Ω
lim
t→0

detDTt(x)− detDT0(x)

t
dx

=

∫
Ω
divV (0, x) dx.

To deal with the upcoming boundary integrals we need the following lemma dealing
with the integral transformation on the boundary.

Lemma 5.4 ([102, Proposition 2.47, Lemma 2.49]). Let f ∈ L1(Γt) and ωt =
∥det(DTt)DT−⊤

t · n∥2. Then∫
Γt

f(s) ds =

∫
Γ
(f ◦ Tt)(s)ωt(s) ds.

The derivative of ω with respect to t in t = 0 is given by

d

dt
ωt(s)

∣∣∣∣
t=0

= divV (0, s)− (DV (0, s)n) · n.

5.2 Computation of shape gradients

As we will see in Proposition 5.7 we need the derivative of the solution pΩt of problem
(5.2) (on Ωt instead of Ω) with respect to t. This is the notion of the material derivative.
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Definition 5.5 (Material derivative, [102, Definition 2.71]). The material derivative of
p ∈ Hs(Ω) is p̊Ω(V ) ∈ Hs(Ω) defined by

p̊Ω(V ) = lim
t→0

1

t
(pΩt ◦ Tt(V )− pΩ) .

Using the material derivative we can motivate the shape derivative. Consider the
shape functional J(Ω) =

∫
Ω pΩ dx. Then

dJ(Ω;V ) = lim
t→0

J(Ωt)− J(Ω)

t

= lim
t→0

1

t

(∫
Ωt

pΩt dx−
∫
Ω
pΩ dx

)
= lim

t→0

1

t

(∫
Ω
[pΩt ◦ Tt] (x) detDTt(x) dx−

∫
Ω
pΩ detDT0(x) dx

)
=

∫
Ω

d

dt
([pΩt ◦ Tt] (x) detDTt(x))

∣∣∣∣
t=0

dx

=

∫
Ω
p′Ω(x) +∇pΩ(x)

⊤V (0, x)︸ ︷︷ ︸
=p̊Ω(x)

+pΩ(x)divV (0, x) dx,

where in the last step the product and chain rule were used and p′Ω is the shape derivative
defined in the following:

Definition 5.6 (Shape derivative, [102, Definition 2.85]). Let p̊Ω(V ) ∈ Hs(Ω) be the
material derivative to pΩ ∈ Hs(Ω) and ∇pΩ · V (0) ∈ Hs(Ω). Then the shape derivative
of pΩ in the direction V is defined by

p′Ω(V ) := p̊Ω(V )−∇pΩ · V (0).

Taking test and trial functions from H1(Ω) we can formulate the weak formulation of
problem (5.2): Find p ∈ H1(Ω) such that∫

Ω
∇p · ∇q dx− c

∫
Ω
pq dx+ iα

∫
ΓR

pq ds =

∫
Ω
fq dx ∀q ∈ H1(Ω). (5.4)

This problem has a unique solution as discussed in Chapter 2. If c < 0 the problem is
even H1(Ω)-elliptic.

The aim is to optimize the shape such that the goal functional

J(Ω) =

∫
Ω
j(p)dx (5.5)

is minimized under the constraint that problem (5.2), or more precisely (5.4), is fulfilled.
To do this we want to use a gradient descent algorithm. For this we need the derivatives
of the goal functional with respect to the shape parameters t. Hence, the Eulerian
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derivatives of problem (5.1) need to be computed. In Proposition 5.7 and in Proposition
5.8 we further derive the shape derivative in terms of boundary integral expressions only.
The statements of Proposition 5.7 and 5.8 can be found in a similar way in [86], however
the proof given here varies.

Proposition 5.7. Let Ω be Lipschitz. The Eulerian derivative of the shape functional
(5.1) constrained to (5.4) can be written as

dJ(Ω) =

∫
Ω

[
divV (0)−DV (0)⊤ −DV (0)

]
∇pΩ · ∇u dx− c

∫
Ω
pΩudivV (0) dx

+ iα

∫
Γ
pΩu [divV (0)−DV (0)n · n] ds−

∫
Ω
∇f⊤V (0)u dx

−
∫
Ω
fdivV (0)u dx+

∫
Ω
j(pΩ)divV (0) dx,

(5.6)

where u ∈ H1(Ω) is the adjoint solution to pΩ defined through the weak formulation of

−∆u− cu = −j′(pΩ) in Ω,

∂u

∂n
+ iαu = 0 on ΓR,

∂u

∂n
= 0 on ΓN .

Proof. Consider J(Ω) on a parameterized domain Ωt given by

J(Ωt) =

∫
Ωt

j(pΩt) dx =

∫
Ω
j(pΩt ◦ Tt) detDTt dx,

where pΩt is the solution of (5.4) with Ωt instead of Ω, ΓN and ΓR respectively. By the
product rule, the Eulerian derivative is then given by

dJ(Ω) = lim
t→0

J(Ωt)− J(Ω)

t
=

∫
Ω
j′(pΩ)p̊Ω dx+

∫
Ω
j(pΩ)divV (0) dx. (5.7)

To compute the first term we need to be able to compute the material derivative p̊Ω. For
this, consider the weak formulation (5.4), but on the transformed domain Ωt. It reads:
Find pΩt ∈ H1(Ωt) such that∫

Ωt

∇pΩt · ∇q dx− c

∫
Ωt

pΩtq dx+ iα

∫
ΓR,t

pΩtq ds =

∫
Ωt

fq dx

for all q ∈ H1(Ωt). Transforming the integrals to Ω, see Lemma 5.4 for the boundary
integral, leads to∫

Ω
∇ (pΩt ◦ Tt)DT−1

t DT−⊤
t ∇ (q ◦ Tt) detDTt dx

− c

∫
Ω
(pΩt ◦ Tt) (q ◦ Tt) detDTt dx+ iα

∫
ΓR

(pΩt ◦ Tt) (q ◦ Tt)ωt ds

=

∫
Ω
(f ◦ Tt) (q ◦ Tt) detDTt dx.
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Chapter 5 Shape optimization for uncertain source location

Since q is an arbitrary function in H1(Ωt) we can substitute q◦Tt by w ∈ H1(Ω). Taking
the derivative in t = 0 on both sides leads to∫

Ω
∇p̊Ω · ∇w dx−

∫
Ω

[
DV (0)⊤ +DV (0)

]
∇pΩ · ∇w dx+

∫
Ω
∇pΩ · ∇wdivV (0) dx

− c

∫
Ω
p̊Ωw dx− c

∫
Ω
pΩwdivV (0) dx

+ iα

∫
ΓR

p̊Ωw ds+ iα

∫
ΓR

pΩw [divV (0)−DV (0)n · n] ds

=

∫
Ω
∇f⊤V (0)w dx+

∫
Ω
fdivV (0)w dx.

Rewriting this in order to have the sesquilinear form with respect to p̊ on the left hand
side gives ∫

Ω
∇p̊Ω · ∇w dx− c

∫
Ω
p̊Ωw dx+ iα

∫
ΓR

p̊Ωw ds

=

∫
Ω

[
DV (0)⊤ +DV (0)

]
∇pΩ · ∇w dx−

∫
Ω
∇pΩ · ∇wdivV (0) dx

+ c

∫
Ω
pΩwdivV (0) dx− iα

∫
ΓR

pΩw [divV (0)−DV (0)n · n] ds

+

∫
Ω
∇f⊤V (0)w dx+

∫
Ω
fdivV (0)w dx.

(5.8)

Note that this is already a weak formulation to find the material derivative p̊Ω. Next,
we introduce the adjoint problem:

−∆u− cu = −j′(pΩ) in Ω (5.9)

∂u

∂n
+ iαu = 0 on ΓR (5.10)

∂u

∂n
= 0 on ΓN , (5.11)

which has the following weak formulation: Find u ∈ H1(Ω) such that for all v ∈ H1Ω:∫
Ω
∇u · ∇v dx− c

∫
Ω
uv dx+ iα

∫
ΓR

uv ds = −
∫
Ω
j′(pΩ)v dx. (5.12)

Choosing v = p̊Ω in (5.12) and using (5.8) leads to∫
Ω
j′(pΩ)p̊Ω dx = −

∫
Ω
∇u · ∇p̊Ω dx+ c

∫
Ω
up̊Ω dx− iα

∫
ΓR

up̊Ω ds

=

∫
Ω

[
divV (0)−DV (0)⊤ −DV (0)

]
∇pΩ · ∇u dx− c

∫
Ω
pΩudivV (0) dx

+ iα

∫
ΓR

pΩu [divV (0)−DV (0)n · n] ds−
∫
Ω
∇f⊤V (0)u dx−

∫
Ω
fdivV (0)u dx.
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5.2 Computation of shape gradients

Inserting this in (5.7) finally gives the following expression for dJ(Ω):

dJ(Ω) =

∫
Ω

[
divV (0)−DV (0)⊤ −DV (0)

]
∇pΩ · ∇u dx− c

∫
Ω
pΩudivV (0) dx

+ iα

∫
ΓR

pΩu [divV (0)−DV (0)n · n] ds−
∫
Ω
∇f⊤V (0)u dx

−
∫
Ω
fdivV (0)u dx+

∫
Ω
j(p)divV (0) dx.

(5.13)

If the boundary is smooth enough and admits a solution in H2(Ω) one can formulate
the derivative in terms of integrals over the boundary only. This leads to more efficient
computation of the shape derivative dJ(Ω, V ).

Proposition 5.8. If Ω is smooth enough, such that pΩ, u ∈ H2(Ω)1 with N corners
ai, i = 1, . . . , N on ΓR = ∪N

i=1ΓR,i, where ΓR,i itself has no corners for all i and a1 and
aN are the transition points from ΓR to ΓN , we can further express (5.6) as a boundary
form

dJ(Ω) =

∫
∂Ω

(∇pΩ · ∇u) (V (0) · n) ds+ iα

∫
ΓR

(−2iαpΩu+ κpΩu) (V (0) · n) ds

− c

∫
∂Ω

pΩu (V (0) · n) ds−
∫
∂Ω

pΩ (fV (0) · n) ds+
∫
∂Ω

j(pΩ) (V (0) · n) ds

+
N∑
i=1

pΩ(ai+1)u(ai+1)V (0, ai+1) · τ−(ai+1)− pΩ(ai)u(ai+)V (0, ai) · τ+(ai),
(5.14)

Where κ is the mean curvature and

τ−(ai+1) = lim
x→ai+1,x∈Γi

τ(x)

τ+(ai) = lim
x→ai,x∈Γi

τ(x)

and τ is the tangential field.

Proof. In the following the terms in (5.6) are considered separately. Integration by parts

1See the discussion in Chapter 2 when the solution to the Helmholtz problem admits a solution in
H2(Ω).
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Chapter 5 Shape optimization for uncertain source location

on the first term leads to the following calculations.∫
Ω

[
divV (0)−DV (0)⊤ −DV (0)

]
∇pΩ · ∇u dx

=

∫
Ω
divV (0)∇pΩ · ∇u dx−

∫
Ω
DV (0)⊤∇pΩ · ∇u dx−

∫
Ω
DV (0)∇pΩ · ∇u dx

=

∫
∂Ω

(∇pΩ · ∇u) (V (0) · n) ds−
∫
Ω
V (0) · ∇ (∇pΩ · ∇u) dx

−
[∫

∂Ω
(V (0) · ∇pΩ)

∂u

∂n
ds−

∫
Ω
∆u (V (0) · ∇pΩ) dx−

∫
Ω
∇u ·HpV (0) dx

]
−
[∫

∂Ω
(V (0) · ∇u)

∂pΩ
∂n

ds−
∫
Ω
∆p (V (0) · ∇u) dx−

∫
Ω
∇pΩ ·HuV (0) dx

]
=

∫
∂Ω

(∇pΩ · ∇u) (V (0) · n) ds−
∫
∂Ω

(V (0) · ∇pΩ)
∂u

∂n
ds+

∫
Ω
∆u (V (0) · ∇pΩ) dx

−
∫
∂Ω

(V (0) · ∇u)
∂pΩ
∂n

ds+

∫
Ω
∆pΩ (V (0) · ∇u) dx,

(5.15)

where Hp = ∇(∇pΩ)
⊤ and Hu = ∇(∇u)⊤ are the Hessians of pΩ and u, respectively.

Next, we consider the second term in (5.13):∫
Ω
pΩudivV (0) dx =

∫
∂Ω

pΩu (V (0) · n) ds−
∫
Ω
V (0) · ∇ (pΩu) dx

=

∫
∂Ω

pΩu (V (0) · n) ds−
∫
Ω
(V (0) · ∇pΩ)u dx−

∫
Ω
(V (0) · ∇u) pΩ dx.

(5.16)

For the terms with respect to the right hand side f in (5.6) it holds that∫
Ω
∇f · V (0)u dx+

∫
Ω
fdivV (0)u dx =

∫
Ω
div(fV (0))u dx

=

∫
∂Ω

uf (V (0) · n) ds−
∫
Ω
fV (0) · ∇u dx

(5.17)

Finally, the integral involving j leads to∫
Ω
j(pΩ)divV (0) dx =

∫
∂Ω

j(pΩ) (V (0) · n) ds−
∫
Ω
j′(pΩ) (V (0) · ∇pΩ) dx. (5.18)

Inserting equations (5.15)-(5.18) into (5.13) then leads to

J ′(Ω) =

∫
∂Ω

(∇pΩ · ∇u) (V (0) · n) ds−
∫
∂Ω

(V (0) · ∇pΩ)
∂u

∂n
ds+

∫
Ω
∆u (V (0) · ∇pΩ) dx

−
∫
∂Ω

(V (0) · ∇u)
∂pΩ
∂n

ds+

∫
Ω
∆pΩ (V (0) · ∇u) dx− c

∫
∂Ω

pΩu (V (0) · n) ds

+ c

∫
Ω
(V (0) · ∇pΩ)u dx+ c

∫
Ω
(V (0) · ∇u) pΩ dx

+ iα

∫
ΓR

pΩu [divV (0)−DV (0)n · n] ds−
∫
∂Ω

uf (V (0) · n) ds

+

∫
Ω
fV (0) · ∇u dx+

∫
∂Ω

j(pΩ) (V (0) · n) ds−
∫
Ω
j′(pΩ) (V (0) · ∇pΩ) dx.
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5.2 Computation of shape gradients

Now, since −∆u − cu = −j′(pΩ) and −∆pΩ − cpΩ = f on Ω (in the weak sense) this
becomes

dJ(Ω) =

∫
∂Ω

(∇pΩ · ∇u) (V (0) · n) ds−
∫
∂Ω

(V (0) · ∇pΩ)
∂u

∂n
ds

−
∫
∂Ω

(V (0) · ∇u)
∂pΩ
∂n

ds− c

∫
∂Ω

pΩu (V (0) · n) ds

+ iα

∫
ΓR

pΩu [divV (0)−DV (0)n · n] ds

−
∫
∂Ω

u (fV (0) · n) ds+
∫
∂Ω

j(pΩ)V (0) · nds.

Inserting the boundary conditions for pΩ and u restricts the integral to ΓR if the normal
derivative of pΩ or u is part of the integrand:

dJ(Ω) =

∫
∂Ω

(∇pΩ · ∇u) (V (0) · n) ds+ iα

∫
ΓR

(V (0) · ∇pΩ)u ds

+ iα

∫
ΓR

(V (0) · ∇u) pΩ ds− c

∫
∂Ω

pΩu (V (0) · n) ds

+ iα

∫
ΓR

pΩu [divV (0)−DV (0)n · n] ds

−
∫
∂Ω

u (fV (0) · n) ds+
∫
∂Ω

j(pΩ)V (0) · nds.

The integrals over ΓR can be further simplified making use of the product rule and using
the identity divΓV (0) = divΓVτ (0) + κV (0) · n, cf. [35, Ch. 9, Eq. 5.22].

iα

∫
ΓR

(V (0) · ∇pΩ)u ds+ iα

∫
ΓR

(V (0) · ∇u) pΩ ds+ iα

∫
ΓR

pΩu [divV (0)−DV (0)n · n] ds

= iα

∫
ΓR

V (0) · ∇(pΩu) + pΩudivΓV (0) ds

= iα

∫
ΓR

V (0) ·
(
∂(pΩu)

∂n
n+

∂(pΩu)

∂τ
τ

)
+ pΩu (divΓVτ (0) + κ (V (0) · n)) ds.

Reordering the terms we get

iα

∫
ΓR

(V (0) · n)
(
∂(pΩu)

n
+ κpΩu

)
+ (V (0) · τ) ∂(pΩu)

∂τ
+ pΩudivΓVτ (0) ds

= iα

∫
ΓR

(V (0) · n)
(
∂(pΩu)

n
+ κpΩu

)
+ divΓ(Vτ (0)pΩu) ds

Inserting the Robin boundary condition for pΩ and u again and using Stokes formula
[102, Ch. 3.8] on each piecewise smooth boundary part ΓR,i, if ΓR = ∪N

i=1ΓR,i, on the
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second expression leads to

iα

∫
ΓR

(V (0) · n)
(
∂(pΩu)

n
+ κpΩu

)
+ divΓ(Vτ (0)pΩu)

= iα

∫
ΓR

V (0) · n (−2iαpΩu+ κpΩu) ds

+
N∑
i=1

pΩ(ai+1)u(ai+1)V (0, ai+1) · τ−(ai+1)− pΩ(ai)u(ai)V (0, ai) · τ+(ai).

This finally leads to

dJ(Ω) =

∫
∂Ω

(∇pΩ · ∇u)V (0) · nds+ iα

∫
Γ
(−2iαpΩu+ κpΩu) (V (0) · n) ds

− c

∫
∂Ω

pΩu (V (0) · n) ds−
∫
∂Ω

u (fV (0) · n) ds+
∫
∂Ω

j(pΩ)V (0) · nds

+

N∑
i=1

pΩ(ai+1)u(ai+1)V (0, ai+1) · τ−(ai+1)− pΩ(ai)u(ai)V (0, ai) · τ+(ai)

Note that, if the boundary has no corners the sum over the corner points vanish with
the exception of the points that correspond to the transition from ΓR to ΓN . In the case
of ∂Ω = ΓR all corner expressions vanish for smooth boundary. In the following section
we will see that, for considered problem there, the sum vanishes, since the boundary ΓR

will be chosen smooth and at the transition points the velocity field is 0.

5.3 Shape optimization of rectangular domain to minimize goal
functional in certain subdomain

In this section we want to apply the theory above to a particular shape optimization
problem. For this we define the right hand side f in (5.2) as a source in a small area in
the domain Ω:

f(x) =

{
exp

(
− r2

|∥x−s∥2−r2|

)
∥x− s∥ < r,

0 else,
(5.19)

where s is the center of the source. We assume s and r such that suppf ⊂ Ω̊. The
domain for this model problem is illustrated in Figure 5.1. The problem is: For a given
data pG in G ⊂ Ω, find boundary ΓR s.t. the difference of solution pΩ of (5.4) and pG
in G ⊂ Ω is minimized. We assume that the domain can only be changed at the bottom
boundary. We consider c = k2 > 0, i.e. the Helmholtz equation with wave number k.
Here we can interpret the problem as follows: Imagine the domain Ω is a room, e.g., a
concert hall or theater room. The top part, where the source is located, could be the
stage, while G is the area for the audience. Assuming the performer is mainly at one
position s how does the bottom boundary need to look to achieve a certain experience
for the audience?
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y

x

Ω

ΓR

ΓN
G

Figure 5.1: Domain to problem (5.4). G is the subdomain of Ω in which the solution
pΩ to (5.4) is supposed to minimize the goal functional. The small red circle
illustrates the sound source, i.e., the support of f . The large red circle shows
possible source locations for Section 5.4. The boundary ΓR in red is the part
of the boundary that is transformed during the shape optimization.

5.3.1 Domain transformation and velocity field

We consider the domain Ω in Figure 5.1, in particular Ω = [0, 1]×[0, ymax]. As mentioned
before we assume a source at the top and only change the bottom boundary such that
the goal function is minimized. For this we assume the following parametrization of the
lower boundary ΓR:

γ(t) =
L∑

ℓ=1

tℓ sin(ℓπx). (5.20)

Note that γ(0) = γ(1) = 0. We define the transformation Tt in the following way:

Tt(x, y) =

 x

y +
(
ymax−y
ymax

) L∑
ℓ=1

tℓ sin(πℓx).

 (5.21)

It is visualized in Figure 5.2. Note that here t ∈ RL is a vector. This means that the
transformation Tt is a superposition of L transformations. The inverse of Tt is given as

T−1
t (x̃, ỹ) =


x̃

ỹ−
L∑

ℓ=1

tℓ sin(πℓx̃)

1−

L∑
ℓ=1

tℓ sin(πℓx̃)

ymax

 . (5.22)
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The derivative of Tt by each tj , j = 1, . . . , L, separately is given via

∂T

∂tj
(x, y) =

(
0

sin(πjx)ymax−y
ymax

)
. (5.23)

Thus, Vj , j = 1, . . . , L can be written as

Vj(x, y, t) =
∂T

∂tj
◦ T−1

t (x, y) =


0

sin(πjx)

1−
y−

L∑
ℓ=1

tℓ sin(πℓx)

ymax−
L∑

ℓ=1
tℓ sin(πℓx)


 . (5.24)

y

x

Ω

y

x

ΩtTt(Ω)

ΓR ΓR,t

Figure 5.2: Domain transformation at the bottom boundary of a rectangular domain.

The normal field n at the transformed bottom boundary ΓR,t = Tt(ΓR) is given by

n(x, y) =
1√(

L∑
ℓ=1

tℓℓπ cos(πℓx)

)2

+ 1

 L∑
ℓ=1

tℓℓπ cos(πℓx)

−1

 . (5.25)

The mean curvature κ is then given by (compare [102, Def. 2.52],[102, Eq. 2.143])

κ = divΓn = divn− ((Dn)n, n)R2 ,

which coincides here with the curvature of the graph y =
L∑

ℓ=1

tℓ sin(πℓx) given by

κ =
y′′

(1 + y′2)
3
2

=

−
L∑

ℓ=1

tℓℓ
2π2 sin(πℓx)

(1 + (
L∑

ℓ=1

tℓℓπ cos(πℓx))2)
3
2

.
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5.3.2 Goal functional and problem formulation

The goal is to optimize the boundary ΓR such that the solution p fits pG as good as
possible in G w.r.t. some goal functional. As a goal functional we choose

J(Ω) = J(ΓR) =
1

2

∫
G

(pΩ − pG)
2dx, (5.26)

where pΩ is the solution to (5.4). The optimization problem then reads:

Given data pG find the minimizer ΓR,t of

min
ΓR,t

J(ΓR,t), where pΩt ∈ H1(Ωt) is the solution of∫
Ωt

∇pΩt · ∇q dx− k2
∫
Ωt

pΩtq dx+ iα

∫
ΓR,t

pΩtq ds

=

∫
Ωt

fq dx, for all q ∈ H1(Ωt).

(5.27)

5.3.3 Gradient descent algorithm using Armijo backtracking

In order to find the minimum J = J(ΓR,t) and the corresponding parameters t =
(t1, . . . , tL) of the parametrization of ΓR,t we use a gradient descent algorithm. Let
β0 be the (initial) step size. Given an initial vector t(1), for n = 1, 2, . . . compute

t(n+1) = t(n) − β0dJ(t
(n)), (5.28)

where

dJ(t(n)) =

dJ(Ωt(n) ;V1)
...

dJ(Ωt(n) ;VL)

 . (5.29)
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Result: Find minimizer domain Ωt given by parameter t
Input : maximum number of iterations N,

starting configuration t ∈ RL,
Armijo-parameters: β0, ρ, σ

Output: final configuration t
1 for n=1:N do
2 Computation of primal and dual solution:
3 transform domain: Ω → Ωt;
4 compute pΩt ;
5 compute u;
6 Computation of shape derivative w.r.t. certain velocity fields Vj:
7 for j=1:L do
8 compute dJ j = dJ(Ωt(n) ;Vj);
9 end

10 compute Jn;
11 Armijo backtracking
12 set β = β0;

13 compute p and u with t− β dJ
∥dJ∥ ;

14 compute Jtemp with t− β dJ
∥dJ∥ ;

15 while Jtemp > Jn − σβdJ⊤dJ/∥dJ∥ do
16 β = ρβ;

17 compute pΩt and u with t− β dJ
∥dJ∥ ;

18 compute Jtemp with t− β dJ
∥dJ∥ ;

19 end
20 Update t:

21 t = t− β dJ
∥dJ∥

22 end

Algorithm 3: Deterministic shape optimization algorithm using the Armijo-
rule.
The shape derivatives dJj := dJ(Ωt(n) ;Vj) can be computed using formula (5.14).

Note that at the corners we have Vj(ai) = 0, hence the corner expressions vanish. The
full shape optimization algorithm is given in Algorithm 3. Obvious extensions such as
reusing pΩt from line 17 instead of computing it again in line 4 and stopping criteria
have been implemented. The gradient step is done with the Armijo rule [9], i.e., a line
search method where the step gets smaller if the Armijo condition

J(t(n) + βd(n)) ≤ J(t(n)) + σβdJ(t(n))d(n) (5.30)

is not fulfilled. Here, β > 0 denotes the step size which gets multiplied by the control
parameter ρ ∈ (0, 1) if the condition (5.30) is not fulfilled, i.e., the step size gets smaller.
d(n) denotes the step direction, i.e., d(n) = − dJ

∥dJ∥ . The control parameter σ ∈ (0, 1)
usually is a small number. Since J is bounded from below by 0, the rule is well-defined,
i.e., the line search will stop after a finite number of iterations during the while loop
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Figure 5.3: Discretization error of the goal functional J for different wave numbers k
(left) and the shape derivative dJ for k = 2 (right) with respect to mesh size
h. The reference was computed on a very fine mesh with href ≈ 0.00035.

[85, 47]. For the numerical simulations we chose β0 = 1, ρ = 0.5 and σ = 10−2. We
stop the algorithm if the step size becomes too small, i.e., if β < 10−4 or a maximum
number of iterations N = 500 is reached. To prevent the boundary to transform such
that parts of G lie outside the domain Ωt we also stop the algorithm when the boundary
parameterization γ from Equation (5.20) takes values larger than 0.95.2

First we study numerically the properties of Algorithm 3 in terms of discretization error
of J and dJj . For this we generate data by setting tdata = (0.1, 0, 0, 0, 0), i.e., L = 5,
to construct a reference domain by transforming the domain Ω = [0, 1]× [0, 2] using the
transformation map Ttdata . The coefficient α in (5.4) is set to α = ωρ

Z , with ω = 2πf = kc,
c = 340, ρ = 1.2 and Z = 500 + 800i such that α ≈ (0.229 − 0.367i)k. We compute a
reference solution J on a very fine mesh with href ≈ 0.00035. We compute J and dJj ,
j = 1, . . . , 5 for t = (0, 0, 0, 0, 0) for different mesh widths h. Figure 5.3 illustrates the
resulting discretization error |J − Jh| and |dJj − dJj,h|. We observe convergence rates
of |log h|h2 for J and |log h|h for dJ . The convergence rate for J can be expected and
proven by similar arguments as in Theorem 4.3 in Chapter 4 which is based on [15,
Theorem 4.2]. The convergence rate for dJ was proven in [86].
Next we want to consider the behavior J and the parameters tj , j = 1, . . . , 5 during the
optimization Algorithm 3. Since the data was generated with the same model that we
use in Algorithm 3, i.e., the same source location s, coefficient α and also the domain
can be resolved by the transformation Tt with a specific t = tdata, J would vanish for
t → tdata. Figure 5.4 illustrates the behavior of the parameters tj , j = 1, . . . , 5. We
observe that the parameters are not converging to tdata. This is because the gradient
descent algorithm is not able to find the global, but only a local minimum. However, on
the right hand side of Figure 5.4 we can see that the functional J decreases significantly.

2This only happened regularly for the case k = 1.75 and sometimes for k = 1.5 in Section 5.4 when
different source locations were used.
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Figure 5.4: Convergence of geometry parameters t for tdata = (0.1, 0, 0, 0, 0) (left) and
goal functional J for different tdata (right) with respect to the iteration in
the optimization algorithm for k = 2.

Figure 5.5: Transformation of domains for different numbers of iterations in the optimiza-
tion algorithm for k = 2 and tdata = (0.1, 0, 0, 0, 0). Left: Whole domain.
Right: Zoom-in on transformed boundary.

The different lines indicate different parameter sets tdata used to generate the data. The
blue line corresponds to the case tdata = (0.1, 0, 0, 0, 0). We can observe a decrease of
the functional J from around 10−6 to 10−8 in the first approx. 20 iterations and down
to 10−13 after approx. 200 iterations for the case tdata = (0.1, 0, 0, 0, 0). Afterwards
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5.4 Expectation domains for uncertain source location

the Armijo-step becomes too small and the algorithm stops. We also observe that the
goal functional changes only in tiny steps between the iterations 100 to 200. This leads
to the assumption that J has some kind of valley where the algorithm is only slowly
moving forward.

Figure 5.5 illustrates how the boundary actually changes during the iteration. We ob-
serve after a relatively “wavy” boundary after 20 iterations, that becomes less oscillating
after 70 iterations. The final result is already rather similar to the reference.

5.4 Expectation domains for uncertain source location

In the next step we assume uncertain location of the source in the sense that a source
location in a particular region is expected, but it is not certain. This could be, for
example, uncertain location of a performer or loud speaker in a theater. The aim is to
construct so-called expectation domains, i.e., an average of the optimized domains, using
Algorithm 3 with the goal functional J defined in (5.1), for random source locations s.
For the sampling we use the Monte Carlo method. We consider two different expectation
domains: parametric expectation and Vorob’ev expectation. For the parametric expecta-
tion EP [Ω(s)] we take the expected values for the single parameters tj , j = 1, . . . , 5, in
the boundary transformation. The Vorob’ev domain EV [Ω(s)] will be defined in what
follows. First we need to define the coverage function ζ which is the expectation of the
indicator function.

Definition 5.9 (Coverage function, [80, Chapter 2.2.2]). Let Ω(s) be the optimized
domain for the random source location s. The coverage function ζ is defined as the
average of the indicator function.

E[χΩ(s)(x)] = P{x ∈ Ω(s)} =: ζ(x)

The Vorob’ev expectation is defined in the following way:

Definition 5.10 (Vorob’ev expectation, [80, Definition 2.2.3]). The Vorob’ev expectation
EV [Ω(s)] is defined as the set {ζ ≥ b} for some fixed b ∈ [0, 1] which is determined from
the equation Eµ(Ω(s)) = µ({ζ ≥ b}) if this equation has a solution. Or, in general, from
the condition

µ ({ζ ≥ a}) ≤ Eµ(Ω(s)) ≤ µ ({ζ ≥ b})

for all a > b.
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Chapter 5 Shape optimization for uncertain source location

The following algorithm describes how the expectation domains are computed:

Result: Find parametric and Vorob’ev expectation
Input : maximum number of samples M ,

parameters for Algorithm 3: maximum number of iterations N ,
starting configuration t ∈ K, Armijo-parameters: α, ρ, σ

Output: Parametric and Vorob’ev expectation
1 for m=1:M do
2 draw source position sample s from specified distribution;

3 compute optimal parameters t(m) using Algorithm 3 using specified input
parameters for the drawn sample s;

4 end
5 Parametric domain

6 tparametric =
1
M

M∑
m=1

t(m);

7 Vorob’ev domain

8 compute volume of Ωt(m) for each t(m), m = 1, . . . ,M ;
9 compute coverage function ζ;

10 find Vorob’ev domain according to Definition 5.10;

Algorithm 4: Algorithm to find parametric and Vorob’ev domain.

To measure the difference between two domains we define the domain deviation.

Definition 5.11 (Domain deviation). Let D1, D2 ⊂ R2 be two domains. The domain
deviation between D1 and D2 is defined as

Dev(D1, D2) =

∫
R2

|χD1 − χD2 | dx.

We consider different data that does not match the model defined in the previous section
(i.e., initial domain Ω = [0, 1] × [0, 2] and coefficient α ≈ (0.229 − 0.367i)k in Equation
(5.4)). In particular, for the data generation we consider the solution pdata to problem
(5.4), but in the domain [0, 1]× [−3, 2], i.e. ΓR,data = [0, 1]× {−3}. The source location
is chosen as sdata = [0.75, 1.8]. The coefficient in the Robin boundary condition for
the data is set to αdata = k. As we will discuss in more detail in Chapter 6, this is
an approximation for an absorbing boundary condition, in particular a plane wave in
direction y would be fully absorbed by this, i.e., there is no reflection. Since the domain is
now also larger in y-direction the wave will be close to a plane wave at boundary ΓR,data

and hence this is a reasonable approximation for an unbounded strip domain, i.e., as if
ΓR were not existent. The problem now becomes to transform ΓR such that the solution
to problem (5.4) approximates the solution pdata in this unbounded strip domain in G,
i.e., pG = pdata

∣∣
G
. We consider uncertain source position now. Hence the optimization

Algorithm 4 is used: For each sample we take a random location for the source uniformly
distributed inside the circle B0.1(0.75, 1.8), i.e., s = (r cos(ϕ)+0.75, r sin(ϕ)+1.8) with r2

sampled from U [0, 0.01] and ϕ sampled from U [0, 2π]. We are interested in the sampling
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5.4 Expectation domains for uncertain source location
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Figure 5.6: Domain deviation for Vorob’ev and parametric domain with respect to sam-
ple size for different wave number k.

error for the parametric and Vorob’ev domain. For this we consider

E[Dev (E∗[Ω(s)], E∗,M [Ω(s)])], (5.31)

where ∗ ∈ {P,V}, where the sampling averages EP,M [Ω(s)] and EV,M [Ω(s)] are com-
puted by taking the empirical mean of M samples to compute tparametric (see Algorithm
4) and constructing the corresponding parametric domain or using M samples to
construct the Vorob’ev domain according to Definition 5.10, respectively. The exact
expectations are estimated by larger sample size M = 512. The outer expectation is
again approximated by taking the mean over Mouter = 10 runs, where one run consists
of M samples. Figure 5.6 shows the domain deviation with respect to the number of
samples for different wave numbers k. We observe the typical Monte Carlo convergence
rate of M− 1

2 . We visualize in Figure 5.7 the Vorob’ev and parametric domain the
boundary for different number of samples compared to the reference.
By now we have studied the convergence of Algorithms 3 and 4. In the following we
consider the actual domains and corresponding solutions p on these domains for some
particular wave numbers. In Figures 5.8, 5.11 and 5.14 we visualize the solution of the
optimization problem (5.27) for k = 2, 3.25 and 6.25 for source location s = (0.75, 1.8)
in the initial domain, i.e., t = (0, 0, 0, 0, 0), the parametric domain, the Vorob’ev domain
and the data domain, i.e., [0, 1] × [−3, 2]. In Figures 5.8, 5.9, 5.11, 5.12, 5.14 and 5.15
we show the reference solution values (i.e. the solution to the problem with α = αdata)
restricted to [0, 1]× [−2, 2] (for Figures 5.8 and 5.9) or [0, 1]× [−1, 2] (for Figures 5.11,
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Chapter 5 Shape optimization for uncertain source location

Figure 5.7: Vorob’ev and parametric domain for different number of samples in the op-
timization algorithm for k = 8. Left: Whole domain. Right: Zoom-in on
transformed boundary. The reference solution was computed with high sam-
ple size of M = 512.

5.12, 5.14 and 5.15) instead of the full data domain [0, 1]× [−3, 2] for the sake of better
visual comparison. For k = 2 we can see in Figure 5.8 that the transformation, for both,
the parametric and the Vorob’ev domain, enlarges the initial rectangle significantly.
The solution for these domains is similar to pG in G. This is a significant improvement
compared to the initial domain, where the real part and the absolute value of the
solution differ significantly from pG in G. In Figure 5.9 we changed the source position
to (0.8, 1.85). This does not result in significant change in the solution since the
wavelength for k = 2 is π and therefore relatively large. In general a small change in
the location does not lead to a big difference in the solution in this case. Figure 5.10
shows the goal functional J computed on the initial, parametric, Vorob’ev and data
domain for k = 2 depending on the center of the source. We observe that for the initial
domain, J is nearly constant for all possible source locations. For the parametric and
Vorob’ev domain we see that setting the source location at the extremes of the possible
positions, we get higher values for J , especially in the y-direction. This is similar for
the data domain, although more pronounced, since technically a value of J = 0 should
be reached in the center of the circle. Note also the different color scales with respect to
the initial domain. The goal functional values for the parametric and Vorob’ev domain
became significantly smaller.

94



5.4 Expectation domains for uncertain source location

Figure 5.8: Solution on different domains with source location s = (0.75, 1.8) and k =
2. Top left: Initial domain. Top right: Parametric domain. Bottom left:
Vorob’ev domain. Bottom right: Reference domain (image restricted to the
same size as the other domains).

Figure 5.9: Solution on different domains with source location s = (0.8, 1.85) and k =
2. Top left: Initial domain. Top right: Parametric domain. Bottom left:
Vorob’ev domain. Bottom right: Reference domain (image restricted to the
same size as the other domains).
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Chapter 5 Shape optimization for uncertain source location

Figure 5.10: Goal functional with respect to source location for k = 2. Top left: Initial
domain. Top right: Parametric domain. Bottom left: Vorob’ev domain.
Bottom right: Reference domain.

Figure 5.11 illustrates the results for k = 3.25. Here the domain has changed in a very
different way than in the case of k = 2. There is a significant difference in the solutions
on the initial domain and the Vorob’ev or parametric domain, where the solutions on the
latter two are rather similar. In Figure 5.12 we change the source position again. Here
the solution plot changes more. While the overall structure of the solution is similar,
the maximum magnitudes (i.e., the yellow areas for |p|) are more pronounced. This is
due to the fact that the source is now closer to the corner and reflections enhance the
magnitude of the solution. Note that this is also true for the data domain. Remember
that the goal for all source locations is to approximate the solution on the data domain
with source location s = (0.75, 1.8). Since even for the data domain the solution varies
in G for varying source location, we cannot expect the parametric or Vorob’ev domain
to achieve better results there. In Figure 5.13 we observe that the goal functional J is
small only when the x-position of the source is close to 0.75, i.e., the mean of the source
locations. The reason is probably due to the fact that the wavelength approximately
equals the width of the domain, so there is a strong dependence on the x-position of the
source.

96



5.4 Expectation domains for uncertain source location

Figure 5.11: Solution on different with source location s = (0.75, 1.8) and k = 3.25. Top
left: Initial domain. Top right: Parametric domain. Bottom left: Vorob’ev
domain. Bottom right: Reference domain (image restricted to the same size
as the other domains).

Figure 5.12: Solution on different with source location s = (0.8, 1.85) and k = 3.25. Top
left: Initial domain. Top right: Parametric domain. Bottom left: Vorob’ev
domain. Bottom right: Reference domain (image restricted to the same size
as the other domains).
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Figure 5.13: Goal functional with respect to source location for k = 3.25. Top left:
Initial domain. Top right: Parametric domain. Bottom left: Vorob’ev
domain. Bottom right: Reference domain.

Lastly, we consider the wave number k = 6.25 in Figures 5.14 and 5.15 as representa-
tive of the higher wave numbers. In this case (as with most other higher wave numbers)
we see no improvement compared to the initial domain. In fact, visually it seems even
worse. When the source location is set closer to the corner the magnitude of the solu-
tion increases significantly in all domains. This does not mean that the deterministic
optimization has failed, but rather that the optimal domain is highly source location
dependent, and hence some expectation domains fail to achieve low goal functional val-
ues for varying source locations. In Figure 5.16 we again observe the functional J over
the source position and see that the source position significantly influences J . Note that
we actually use the same color scaling for all domains here. This again illustrates that
for high wave numbers no improvement is achieved. For such high wave numbers we
cannot expect source location independent optimization since for smaller wavelengths
(i.e., higher wave numbers) point values of the solution become increasingly sensitive
with respect to changes of the source location.

98



5.4 Expectation domains for uncertain source location

Figure 5.14: Solution on different with source location s = (0.75, 1.8) and k = 6.25. Top
left: Initial domain. Top right: Parametric domain. Bottom left: Vorob’ev
domain. Bottom right: Reference domain (image restricted to the same size
as the other domains).

Figure 5.15: Solution on different with source location s = (0.8, 1.85) and k = 6.25. Top
left: Initial domain. Top right: Parametric domain. Bottom left: Vorob’ev
domain. Bottom right: Reference domain (image restricted to the same size
as the other domains).
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Chapter 5 Shape optimization for uncertain source location

Figure 5.16: Goal functional with respect to source location for k = 6.25. Top left:
Initial domain. Top right: Parametric domain. Bottom left: Vorob’ev
domain. Bottom right: Reference domain.

By now we have observed whether the goal functional is very sensitive to changes
in source location. In the following we study the sensitivity of the above results with
respect to changes in the wave number. The reference wave number will be denoted as
k, whereas k′ stands for the perturbed value. Figure 5.17 illustrates the average value
Jk,k′ of Jk,k′ over all sound source locations, i.e.,

Jk,k′ =

∫
B0.1(0.75,1.8)

Jk,k′(s) ds,

that is the integral of the plots visualized in Figures 5.10, 5.13 and 5.16 in the case
of k = k′. Here Jk,k′ denotes the goal functional computed for k′ over the domain
corresponding to k (either initial, parametric, Vorob’ev or data domain, where the first
and last are the same for all wave numbers). In the first panel of Figure 5.17 we observe
that the average goal functional for both expectation domains is less than or equal
to the initial domain when computed for the wave number for which the domain is
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computed, i.e., k = k′. The other three panels show the average goal functional Jk,k′

for k = 2, 3.25 and 4.75. We can observe that for k = 2 and k = 4.75 the average
goal functional decreases not only for k′ = k but also for a small neighborhood, e.g., in
the case of k = 2 we observe improvements for k′ ∈ [1, 3] and for k = 4.75 we observe
improvements compared to the initial domain for k′ ∈ [4, 6]. Interestingly we even have
J2,1.75 < J1.75,1.75. This is due to the fact that the optimization procedure had to be
stopped early for k = 1.75 since the bottom boundary got too high and intruded the
subdomain G. For k = 3.25 no improvements in the respective neighborhood are visible.
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Figure 5.17: Average functional Jk,k′ over k
′. Top left: Optimized for each k individually,

i.e., k = k′. Top right: Domain optimized for k = 1.75. Bottom left:
Domain optimized for k = 3.25. Bottom right: Domain optimized for
k = 4.75.

5.5 Conclusion

In this chapter we considered a PDE-constrained shape optimization problem. We con-
sidered a deterministic setting in which the PDE-constraint was a Helmholtz problem
with fixed source. In this case we observed that a corresponding goal functional could
be minimized using a gradient descent algorithm. For the uncertain setting, the PDE-
constraint was a Helmholtz problem with uncertain source location. Using two different
kind of expectation domains we were able to observe improvements in the goal functional
for individual wave numbers. The improvements became smaller or even vanished for
higher wave number since the wavelength is significantly smaller then. This leads to
high sensitivity with respect to the source location. The improvements for the lower
wave numbers partially transferred to neighboring wave numbers.
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Chapter 6

Optimized truncation of domains for
exterior Helmholtz problems

The accurate modeling of wave propagation in unbounded domains is a central chal-
lenge in various fields, including acoustics, electromagnetic, and seismology. Exterior
Helmholtz problems, which arise frequently in these contexts, require the appropriate
handling of radiation conditions to ensure solutions are physically accurate. In particular
wave propagation in free space is decaying as

p = O(r−
d−1
2 ). (6.1)

The Sommerfeld radiation condition1∣∣∣∣dpdr − ikp

∣∣∣∣ = o(r−
d−1
2 ) (6.2)

is crucial in this respect, as it governs the asymptotic behavior of waves at infinity
[62, 23, 82].
A typical exterior Helmholtz problem is the scattering problem. We consider the

following exterior Dirichlet problem in Rd\Ωsca, d = 2, 3, where Ωsca is a Lipschitz
domain with boundary Γsca, for the upcoming discussion:

−∆p− k2p = 0 in Rd\Ωsca,

p = −pinc on Γsca,∣∣∣∣dpdr − ikp

∣∣∣∣ = o(r−
d−1
2 ), for |r| → ∞.

(6.3)

Assuming the scatterer is a circle with radius a and the incoming wave pinc is a plane
wave coming from direction θinc, see Figure 6.1, given by

pinc = p0e
ika sin(θinc−θ), p0 ∈ C, (6.4)

the analytic solution can be derived explicitly [20], in polar coordinates, as

p(r, θ) = −pinc

∞∑
n=−∞

Jn(ka)

H
(1)
n (ka)

H(1)
n (kr)ein(θinc−θ), (6.5)

1Note that, as discussed in the introduction, the time-convention e−iωt is used in this chapter. This
leads to some changes in the sign, for example for the Robin boundary or Sommerfeld condition and
the plane wave, as well as the fundamental solution.
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6.1 An approach to approximate the Sommerfeld condition by domain truncation

where Jn are the Bessel functions of first kind and order n and H
(1)
n the Hankel-function

of first kind and order n. Note that here, following the conventions in [20], angle θinc
of the plane incident wave is defined as coming from the top for θinc = 0. Hence, an
incoming wave from the right is realized by θinc = 3π

2 . To derive the solution one uses
polar coordinates, separation of variables and results in the context of Bessel functions
[1], see [20] for details.

In general, however, analytical solutions the scattering problems like (6.3) with ar-
bitrary scatterer are not analytically solvable. Hence, numerical methods need to be
applied. To solve the exterior Helmholtz problem in practice different strategies can
be used. The boundary element method is a natural way to deal with the unbounded
domain and is a well-studied method to solve the Helmholtz equation [58, 23, 17, 24].
Another approach is the finite element method (FEM). However, the unbounded nature
of the domain necessitates truncation for numerical computations, raising the question
of how to best approximate these conditions within a finite computational framework.
Traditional strategies for handling truncation include the use of absorbing boundary

conditions (ABCs) [14], Dirichlet-to-Neumann (DtN) mappings [75, 45], and perfectly
matched layers (PMLs) [16]. These techniques, while effective, often involve trade-offs
between computational cost and implementation complexity. This chapter explores an
approach to truncating the computational domain, addressing these challenges from
a different perspective. By adapting the domain’s geometry to the contours of the
solution’s complex argument, the incidence angles of waves on the artificial boundary
are minimized, leading to improved absorption and reduced reflection.
In this chapter we consider a rather simple boundary condition and choose the shape

of the boundary such that good absorption behavior is observed. In the following section
we want to motivate this approach, and in particular shortly revisit established methods
(Sections 6.1.1 and 6.1.2) and introduce the Poynting vector (Section 6.1.4). In Section
6.2 we present results from numerical experiments for different shapes of the scatterer.
In Section 6.3 we give final conclusions and remarks.

6.1 An approach to approximate the Sommerfeld condition by
domain truncation

The simplest idea to approximate the Sommerfeld radiation condition is to just use
the impedance boundary condition with Z = ρc, i.e., setting the left-hand side of the
Sommerfeld condition to zero. Considering a plane wave hitting a wall or boundary
perpendicularly one observes that this condition is exactly the one one needs to fully
absorb the wave:

p = exp(ik(n · x)), ∂p

∂n
= ik exp(ik(n · x))n,

∂p

∂n
− ikp = 0.

(6.6)

If the plane wave hits the boundary in a different angle there is a non-decaying residual,
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possible truncation Γ

Figure 6.1: Domain of the exterior Helmholtz problem with indicated possible trunca-
tion.

since the plane wave itself is not decaying, hence it is not a suitable starting point for
the considerations of exterior wave problems. However, we observed total absorption for
perpendicular incoming waves. To go one step further we now consider the fundamental
solution to the Helmholtz problem in two and three space dimensions, see e.g. [62],

Ψ2D(x) =
i

4
H

(1)
0 (k|x|), Ψ3D(x) =

exp(ik|x|)
4π|x|

, (6.7)

see Figure 6.2 for a visualization of these functions. Inserting these in the left hand side
of the Sommerfeld condition (6.2) will give us insight on the error for a truncated domain,
i.e., imposing the impedance boundary condition for finite r instead of the Sommerfeld
condition for r → ∞. To compute this we need the directional derivatives of Ψ2D and
Ψ3D, respectively. The partial derivative of Ψ2D is given by (see, e.g., [8] for properties
of the Hankel functions)

∂

∂xj
Ψ2D(x) = − i

4
H

(1)
1 (k|x|)kxj

|x|
, j = 1, 2.

Hence the directional derivative in direction n ∈ R2 is

∂

∂n
Ψ2D(x) = − i

4
H

(1)
1 (k|x|)kx · n

|x|
. (6.8)

And for n = x
|x| we get

∂

∂n
Ψ2D(x) = − i

4
kH

(1)
1 (k|x|).

The Sommerfeld condition than leads to

∂Ψ2D

∂n
(x)− ikΨ2D(x) = − ik

4
H

(1)
1 (k|x|) + k

4
H

(1)
0 (k|x|). (6.9)
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Figure 6.2: Fundamental solutions for the Helmholtz equation in two and three spatial
dimensions.

Analogously for the three-dimensional fundamental solution we get

∂

∂xj
Ψ3D(x) =

exp(ik|x|)ik 2xj

2|x|4π|x| − exp(ik|x|)4π 2xj

2|x|

16π2|x|2

=
4πikxj exp(ik|x|)− 4πxj

|x| exp(ik|x|)
16π2|x|2

=
exp(ik|x|)

(
ikxj − xj

|x|

)
4π|x|2

, j = 1, 2, 3.

Which leads to the directional derivative in direction n

∂

∂n
Ψ3D(x) =

exp(ik|x|)
(
ik(x · n)− x·n

|x|

)
4π|x|2

. (6.10)
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Thus, for the radial direction n = x
|x| :

∂

∂n
Ψ3D(x) =

exp(ik|x|) (ik|x| − 1)

4π|x|2

= Ψ3D(x)

(
ik − 1

|x|

)
.

(6.11)

Inserting this into the Sommerfeld condition gives

∂Ψ3D(x)

∂n
− ikΨ3D(x) = − 1

|x|
Ψ3D(x). (6.12)

As the Sommerfeld condition implies and the computations for the fundamental solution
show, the simple impedance boundary condition

∂p

∂n
− ikp = 0

is a reasonable approximation for the Sommerfeld condition on a bounded domain if the
boundary is far away from the source, or, in the two-dimensional case, the wave number
k is large, since the residuals in (6.9) and (6.12) are decaying in x (and k in case of
(6.9)). However, from the three-dimensional case we can already deduce that there are
improved boundary conditions since

∂p

∂n
−
(
ik − 1

|x|

)
p = 0

would reproduce exact absorption if p is the fundamental solution and the normal deriva-
tive is the radial derivative with respect to the source location of p, e.g., if p is a point
source in 0 and the bounded domain is a circle. Indeed, similar boundary conditions
and boundary conditions of higher order have been developed.

6.1.1 Absorbing boundary conditions

In the literature many ways to improve the simple impedance boundary condition as
radiation condition have been considered and derived. For example in [41] they were
derived using the Dirichlet-to-Neumann-operator. The Dirichlet-to-Neumann-operator
itself is non-local. While leading to high accuracy it is costly to compute. Hence, other
approximation techniques are needed. In [14] the authors considered micro-local ap-
proximation, which yielded to superior accuracy in contrast to the impedance boundary
condition. However, for higher order conditions these will get more and more tedious
to implement and are often not available in most common commercial or free software.
In [14] only two-dimensional conditions were derived, however the authors state, that
they see no hindrance for doing similar derivations in three dimensions. In that follows
only the simple impedance boundary condition and the so called curvature absorbing
boundary condition (C-ABC) will be considered. These are given by

∂

∂n
p− ikp = 0 on Γ (6.13)
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6.1 An approach to approximate the Sommerfeld condition by domain truncation

and {
∂
∂np− ikp+ κ

2p = 0 on Γ, d = 2,
∂
∂np− ikp+ κp = 0 on Γ, d = 3.

(6.14)

The latter is still of Robin-type, whereas higher order ABCs involve more complex
expressions like the Laplace-Beltrami-operator and even higher order derivatives. In
the following section an idea to improve the accuracy, using only the simple boundary
conditions, is presented. We observe that the curvature boundary condition (6.14) for
the three-dimensional case is identical with the one in our prior calculations if the domain
is a ball, since its the curvature of a sphere of radius r is given as κ = 1

r . Another way
to deal with the truncation of the domain is the addition of an absorbing layer that
prevents the reflection of the wave at the boundary: Perfectly matched layer.

6.1.2 Perfectly matched layer

In this section an implementation of the PML following the ideas of [16] is shortly
introduced. It will be used in the numerical experiments to compute a reference solution
if no analytic solution is available.

The truncated computational domain is wrapped by a square or rectangular domain
(note that this domain does not need to be rectangular, we chose this here for an easy
overview and implementation), where an absorption layer is introduced. An absorption
function lowers the solution value to zero till the boundary. The idea is that no reflection
can occur in this case. In the example of the scattering problem (6.3) the domain can
be viewed as in Figure 6.3. Here Ω denotes the usual physical domain, whereas ΩPML is
the absorbing layer. The union of both we just call Ω̃ = Ω ∪ΩPML. The problem states
(for convenience of the notation we use (x, y) ∈ R2 here):

1

γx

∂

∂x

(
1

γx

∂p

∂x

)
+

1

γy

∂

∂y

(
1

γy

∂p

∂y

)
+ k2p = 0 in Ω̃,

p = p0 on Γsca,

p = 0 on ΓD.

(6.15)

The functions γx and γy are given by

γx(x) =

{
1, if |x| < a,

1 + i
ωσx (|x|) , if a ≤ |x| < a∗,

γy(y) =

{
1, if |y| < b,

1 + i
ωσy (|y|) , if b ≤ |y| < b∗.

(6.16)

Note that there are no impedance boundary conditions or other absorbing boundary
conditions necessary anymore. The PML layer is the substitute for this. In the interior
of Ω the functions γx and γy are constant to one, hence the first line in equation (6.15)
becomes the usual Helmholtz equation. In [16] several absorbing functions σx and σy and
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xa a∗

y

b

b∗

Γsca

Ω

ΓD

PML layer

Figure 6.3: Domain with additional layer for absorption.

parameters β were considered. For the implementation here the continuous functions
with linear denominator are chosen, i.e.,

σx(x) =
β

a∗ − x
− β

a∗ − a
, σy(y) =

β

b∗ − y
− β

b∗ − b
(6.17)

with β = c, where c = 340 is the speed of sound (in m/s). In practice this method
usually achieves very good results in terms of absorption. However, it increases the com-
putational domain by a layer and how to choose the parameters used in the formulation
is not totally clear and depends on the problem.

6.1.3 Residuals for non-perpendicular incoming waves

We have seen, that for a plane wave the impedance boundary condition is exact for a
plane wave and that for the 3D case the curvature absorbing boundary condition is exact
for the fundamental solution if the wave in both cases hits the boundary perpendicular.
If the direction, however, is not perpendicular to the boundary we get larger reflection,
i.e., the wave is less absorbed. For this we again consider the plane wave first and the
fundamental solutions afterwards. Let θ be the angle between n and m where n is the
outer normal derivative of the boundary. Assume −π

2 < θ < π
2 , since otherwise the wave

does not hit the boundary. m can be written as

m = Rn, where

R =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

p(x) = exp(ik(m · x)), ∂p

∂n
(x) = ikp(x)(m · n),

∂p

∂n
(x)− ikp(x) = (Rn · n− 1)ikp(x).

(6.18)
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6.1 An approach to approximate the Sommerfeld condition by domain truncation

For the plane wave we can directly see that the right-hand side of (6.18) is largest if
Rn is close to being perpendicular to n (in terms of magnitude). This case leads to
the worst model error if the we enforce the impedance boundary condition. We can do
similar calculations for the fundamental solutions in two and three dimensions using
the directional derivatives computed in (6.8) and (6.10). We illustrate the residual
of the impedance boundary condition and the curvature boundary condition for the
fundamental solutions in Figures 6.4 and 6.5, where the domains are a ball in their
respective dimension, i.e., the curvature at the boundary is given by 1

r with a radius
of r = 1. We observe that for angles θ > 0.5, i.e., angles larger than approx. 30°,
both boundary conditions lead to similar errors. For small incident angle the cur-
vature absorbing boundary condition leading to smaller residuals, i.e., better absorption.
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Figure 6.4: Residual at the boundary for the impedance boundary condition and the
C-ABC in 2D and 3D (for one angle) with respect to incidence angle.

Figure 6.5: Residual at the boundary for the impedance boundary condition (left) and
C-ABC (right) in 3D with respect to two incidence angles.
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6.1.4 The Poynting vector for plane waves and the fundamental solution

These findings suggest that one can approximate problem (6.3) quite well if the incident
angle of the wave is close to perpendicular. It is however unclear how exactly this
incident angle is defined for an arbitrary solution to the Helmholtz problem. We are
grateful to Prof. Dr. Andrea Moiola for suggesting that we use the so-called Poynting
vector2:

S(p) := Re

(
1

ik
p∇p

)
.

We can observe that for the plane wave (and the fundamental solution) this coincides
with the wave direction: Let p(x) = exp(ikx · d), then

S(p) = Re

(
1

ik
exp(−ikx · d) exp(ikx · d)ikd

)
= d.

Hence, the Poynting vector is indeed the propagation direction for a plane wave. Next
consider the two-dimensional fundamental solution

S(Ψ2D) = Re

(
1

ik

−i

4
H

(1)
0 (k|x|)−i

4
H

(1)
1 (k|x|) k

|x|
x

)
= Re

(
i

16
H

(1)
0 (k|x|)H(1)

1 (k|x|)
)

x

|x|

= −Im

(
1

16
H

(1)
0 (k|x|)H(1)

1 (k|x|)
)

x

|x|
,

which is proportional to the wave direction x, since H
(1)
0 (k|x|)H(1)

1 (k|x|) has negative

imaginary part. This can be seen by using the definition of Hankel functions H
(1)
n (z) =

Jn(z)+iYn(z), where Jn and Yn are the Bessel functions of first and second kind of order
n, leads to

Im

(
H

(1)
0 (k|x|)H(1)

1 (k|x|)
)

= Im (−Y0(k|x|)J1(k|x|) + J0(k|x|)Y1(k|x|)) = − 2

πx
,

where in the last step we used a Wronskian formula [8, Eq. (14.71)]. And finally the
three-dimensional fundamental solution:

S(Ψ3D) = Re

(
1

ik

exp(−ik|x|)
4π|x|

exp(ik|x|)
4π|x|2

(
ik − 1

|x|

)
x

)
= Re

(
1− 1

ik|x|
1

16π2|x|3
x

)
=

1

16π2|x|3
x,

which is again proportional to the propagation direction x.
We note that the Poynting vector is actually proportional to the gradient of the

complex argument of the sound pressure function p, as a simple computation (we assume

2The Poynting vector often appears in the framework of Maxwell equations [82]. However, it can also
be translated to the time-harmonic acoustic setting, as defined in (6.1.4).
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that p(x, y) is distant from the incontinuity jump from the complex argument function)
shows (assuming Re(p(x, y)) > 0, other cases follow similarly)

∇ arg p(x, y) = ∇atan2(Im(p(x, y)),Re(p(x, y)))

= ∇atan
Im(p(x, y))

Re(p(x, y))

=
1

1 +
(
Im(p(x,y))
Re(p(x,y))

)2 Im(∇p(x, y))Re(p(x, y))− Im(p(x, y))Re(∇p(x, y))

Re(p(x, y))2

=
Im
(
p(x, y)∇p(x, y)

)
|p(x, y)|2

=
Re
(
1
i p(x, y)∇p(x, y)

)
|p(x, y)|2

(6.19)
These connection leads us to propose truncating the domain at a contour line of the
complex argument of the solution p of the exterior Helmholtz problem to achieve a
possibly more accurate solution than for simply truncating with a circular domain.

6.2 Numerical comparison of contour and standard circular
truncation

In this section the proposed method of shaping the domain’s boundary to the contour of
the argument of the solution is demonstrated and evaluated for several model problems.
For this we consider the truncated problem of (6.3):

−∆p− k2p = 0 in Ω,

p = p0 on Γsca,

B(p) = 0, on Γ,

(6.20)

where p0 is some Dirichlet condition like an incoming scattering wave, Γsca is the bound-
ary of the scattering object and B(p) is either the impedance or the curvature boundary
condition. The weak formulation then reads: Find p ∈ H1

Γsca
(Ω) such that∫

Ω
∇p · ∇q dx− k2

∫
Ω
pq dx− ik

∫
Γ
pq ds = 0 ∀q ∈ H1

Γsca
(Ω)

for the impedance boundary condition and∫
Ω
∇p · ∇q dx− k2

∫
Ω
pq dx−

∫
Γ

(
ik − κ

2

)
pq ds = 0 ∀q ∈ H1

Γsca
(Ω)

for the curvature boundary condition.
We consider problem (6.20) for different Γsca, i.e., different scattering objects, and
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Chapter 6 Optimized truncation of domains for exterior Helmholtz problems

different p0. For each of the problems we first construct the contour domain by solving
the problem on a large circular domain, computing the argument of the solution and
choosing a level set of that. This defines the contour truncation. As comparison we
also construct an area-equivalent circular domain with the same area, such that the
computational cost of solving on these domains is comparable due to a similar number
of degrees of freedom.

6.2.1 Scattering problems

We will now consider the problem discussed in the beginning of this chapter: A circular
scatterer with an incoming plane wave. Hence, Γsca is a circle with radius a = 0.5m
and p0 = −pinc defined as in (6.4) with angle θinc = 3

2π, i.e., a wave coming from the
right. We solve problem (6.20), or rather its weak formulation, on a domain with outer
boundary Γ being a circle with radius 2m. The solution for f = 1478Hz is visualized on
the left-hand side in Figure 6.6 for the complex argument and the absolute value. From
the complex argument we construct the contour domain and an area-equivalent circular
domain. These are considered on the right-hand side of the figure. Due to the contour
lines the boundary in the contour plot is much closer to the scatterer at the right side,
while the distance on the left side is rather large. For the area-equivalent domain the
distance to the scatterer is obviously constant for each direction.

Figure 6.6: Circular scatterer: Complex argument (top) and absolute value (bottom)
of the solution p on original domain, contour domain and area-equivalent
domain for f = 1478Hz. The red circle indicates the domain Ωs.

Using quadratic finite elements we solve problem (6.20) on each domain twice: once
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6.2 Numerical comparison of contour and standard circular truncation

with the simple boundary condition and once with the curvature absorbing boundary
condition. We compute the relative L2-errors for each case for different frequencies f . We
can observe significant lower errors for the contour domain for the larger frequency range.
We can also observe that the curvature absorbing boundary condition performs superior
in the low frequency range, while this difference becomes smaller for high frequency. For
the impedance boundary condition in the area-equivalent domain and both boundary
conditions in the contour domain we can observe shrinking error with respect to the
frequency. This is presumably partially because in two dimensions the frequency has
a similar effect as the distance (see the argument of the fundamental solution Ψ2D):

Since decaying waves decay as O(r−
1
2 ), for d = 2, in free space the boundary conditions

imposed here lead to better approximations if the boundary is farther away from the
source, i.e., for the scattering wave, the scatterer. Since for the fundamental solution

Ψ2D = H
(1)
0 (kr), the wave number k is part of the argument in the same way as the

distance r, the fundamental solution also decays in k, hence high frequency has a similar
effect on the approximation at the truncation boundary as if the boundary would be
farther away. This means the reflectance at the boundary is smaller absolutely and thus
better models a fully absorbing boundary.
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Figure 6.7: Relative L2-error
∥p−pref∥L2(Ω)

∥pref∥L2(Ω)
and

∥p−pref∥L2(Ωs)

∥pref∥L2(Ωs)
on the whole domain and a

small circular domain around the circular scatterer, respectively, with respect
to frequency for impedance and C-ABC on the contour and area-equivalent
domains.

Since the contour and area-equivalent domain reflect different parts of the solution
the comparison of the L2-error over the whole domain might not be quite fair. For this
reason we also consider the error just in a small neighborhood Ωs = B0.7(0)\Ωsca of
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Chapter 6 Optimized truncation of domains for exterior Helmholtz problems

the scatterer. The results are shown on the right-hand side of Figure 6.7. Overall we
observe a similar behavior compared to the errors on the whole domain Ω. The error on
the contour domain is in general smaller and the difference between curvature absorbing
boundary condition and impedance boundary conditions vanishes for higher frequency.

Contour domains for different scattering obstacles

In this part problem (6.20) is considered with other obstacles: A rectangular and a kite-
shaped scatterer. The analytic solutions to these problems is not available and a reference
solution is computed using perfectly matched layers. Figures 6.8 and 6.9 consider the
case of a quadratic and a kite shaped scatterer respectively. Note that for the kite-
shaped scatterer we used a larger nominal domain with radius 2.5m, since otherwise we
could not find a continuous contour line inside the domain. Also Ωs = B0.8(0)\Ωsca in
this case, such that the scatterer is actually fully included in the domain. As in the case
with the circular scatterer, the relative L2-error is computed with respect to the whole
domain Ω and also a smaller circular domain Ωs around the scatterer. The results are
illustrated in Figures 6.10 and 6.11. We can observe rather similar results as in the case
of a circular scatterer qualitatively. The contour domain again leads to significant lower
errors.

Figure 6.8: Rectangular scatterer: Complex argument (top) and absolute value (bottom)
of the solution p on original domain, contour domain and area-equivalent
domain for f = 1478Hz. The red circle indicates the domain Ωs.
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6.2 Numerical comparison of contour and standard circular truncation

Figure 6.9: Kite-shaped scatterer: Complex argument (top) and absolute value (bottom)
of the solution p on original domain, contour domain and area-equivalent
domain for f = 1478Hz. The red circle indicates the domain Ωs. Note
that the original domain is chosen larger (r = 2.5m) since otherwise it was
not possible to find a continuous contour line inside the domain. The small
comparison domain Ωs is also slightly larger with radius 0.8m to fully enclose
the scatterer.
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Figure 6.10: Relative L2-error
∥p−pref∥L2(Ω)

∥pref∥L2(Ω)
and

∥p−pref∥L2(Ωs)

∥pref∥L2(Ωs)
on the whole domain and

a small circular domain around the rectangular scatterer with respect to
frequency for impedance and C-ABC on the contour and area-equivalent
domains.
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Figure 6.11: Relative L2-error
∥p−pref∥L2(Ω)

∥pref∥L2(Ω)
and

∥p−pref∥L2(Ωs)

∥pref∥L2(Ωs)
on the whole domain and a

small circular domain around the kite-shaped scatterer, respectively, with
respect to frequency for impedance and C-ABC on the contour and area-
equivalent domains.

6.2.2 Problem with point sources as Dirichlet data

As final experiment again consider an exterior Dirichlet Helmholtz problem. In princi-
ple this is the same as the scattering problem, only the Dirichlet data at the interior
boundary is different. Here it is composed of a sum of point sources in the following
form

p =
50∑
n=1

H
(0)
1

(
k

√
(x− c

(n)
1 )2 + (y − c

(n)
2 )2

)
, (6.21)

where the c(n) are the centers of the point sources distributed by c(n) = (0, 0.4−0.8
49 (n−1)),

n = 1, . . . , 50. The solution to this linear array of sources is plotted in nominal, contour
and area-equivalent domain in Figure 6.12. Comparing the relative L2-error one observes
again, that for the the impedance boundary condition again performs worse than the
absorbing boundary condition. For high frequencies however there is no significant
difference. Here we also observe slightly better results using the nominal domain. This
is presumably because the circular domain has already rather small angle of incidences
over the whole boundary. Hence for low frequencies the contour truncation does not lead
to improved results and might be worse because of the smaller distance to the obstacle
for some parts of the boundary. For high frequencies we can again see that the contour
domain leads to better results for the small ring around the scatterer.
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6.2 Numerical comparison of contour and standard circular truncation

Figure 6.12: Point sources. Complex argument (top) and absolute value (bottom) of
solution on original domain, contour domain and area-equivalent domain
for f = 1478Hz. The red circle indicates the domain Ωs.
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Figure 6.13: Relative L2-error
∥p−pref∥L2(Ω)

∥pref∥L2(Ω)
and

∥p−pref∥L2(Ωs)

∥pref∥L2(Ωs)
on the whole domain and

a small circular domain around the circle that surrounds the point sources,
respectively, with respect to frequency for impedance and C-ABC on the
contour and area-equivalent domains.
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6.3 Conclusions

This chapter, we introduced a domain truncation method for exterior Helmholtz prob-
lems, focusing on optimizing the geometry of the computational boundary. The results
show that contour-based domain shapes significantly improve accuracy when using sim-
ple boundary conditions like the impedance or curvature absorbing boundary conditions.
Numerical experiments confirm that this approach effectively reduces residuals and re-
flections.

While this method has advantages, it also has certain limitations, such as handling
disconnected contour lines or jumps caused by interference. Nevertheless, it provides
a valuable alternative when memory constraints preclude the use of larger domains or
when higher-order boundary conditions are difficult to implement or not available. To
effectively use this method in practice one also needs to compute the truncation domain
without solving the problem on a large domain first. Potentially this could be done
iteratively starting with the nominal domain and shifting the domain slightly in each
iteration to fit the boundary to a contour line of the complex argument of the solution.
For this, shape optimization techniques discussed in Chapter 5 could be used.
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Chapter 7

Conclusions and Outlook

In this thesis we have developed and analyzed several approaches to enhance accuracy
of time-harmonic wave propagation simulations using numerical methods. We focused
on different applications and worked on closing the gap between measurements and
computational models and using these models to improve existing geometries. For this
we used and further developed concepts of finite elements, parameter estimation, shape
optimization and domain truncation.

In particular, we developed a framework for estimating geometric and physical
parameters of the ear canal from input impedances. This enabled us to construct a one-
dimensional surrogate model that is similar in accuracy than a full three-dimensional
finite element model. This surrogate reduces the computational cost without significant
fidelity decrease. It further can be build with only input impedance measurements
whereas the three-dimensional model needs additional scans of the ear canal itself which
in general is more elaborate to get.

Further we demonstrated the ability to estimate surface impedances from noisy
measurement data, provided the underlying physical model was correctly specified. In
cases of model discrepancy, we identified the model misfit. This work also included
rigorous convergence proofs for computing moments using ratio estimators.

Through shape optimization, we improved the performance of systems constrained
by the Helmholtz equation, particularly in scenarios involving uncertain source loca-
tions. These optimizations not only led to localized improvements but also, for the
low-frequency range, exhibited robustness across neighboring wave numbers.

Finally, we proposed a novel domain truncation technique to improve accuracy in ex-
terior wave propagation problems. By optimizing the geometry of the artificial computa-
tional boundary, we successfully minimized reflections, leading to improved accuracy in
finite element simulations. Numerical experiments demonstrated reductions in L2-error
across the entire domain, as well as near scattering objects, showing the effectiveness of
the proposed method in mitigating artificial boundary artifacts.
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Outlook and future directions
While the methods used and developed in this thesis have yielded good results, they also
open further possible research areas for improving the methods. The author of this thesis
is particularly interested in building on the methods in Chapters 3 and 4 in the following:

Improving efficiency by using fast methods
While the methods used in this thesis lead to improvements in their respective areas,
the focus did not lie on fast methods. Specifically room acoustics or exterior problems
will improve in efficiency by using the boundary element method, particularly fast
variations of it.

Coupling of the ear canal with the exterior sound field
In Chapter 3 we developed a framework to estimate a model for the sound propagation
in the ear canal only from input impedances. These are relatively easy to obtain. The
overall head and torso geometry of a human can also be scanned without invasive
methods, see for example IHA database [93]. A coupling of both leads to direct sound
propagation from the exterior field to the ear drum (or vice versa in a reciprocal point
of view). This introduces new difficulties since the relevant geometries have different
scales and hence these aspects need to be carefully considered.

Bayesian parameter estimation using BEM
Building upon the last point, the framework from chapter 4 can be used to estimate the
impedance of skin, hair and clothes of a human, based on (noisy) measurements. This
is particularly interesting in simulating more accurate Head-related transfer functions
(HRTFs) or for more realistic sound propagation in the world of virtual reality.
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[80] I. S. Molčanov. Theory of random sets, volume 87 of Probability theory and stochas-
tic modelling. Springer Nature, London, Second edition, 2017.
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