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Zusammenfassung
(German)

In der Lebensversicherungsmathematik sind die zukünftigen kumulierten diskontierten
Zahlungen eines Versicherungsvertrages von zentralem Interesse, diese sind jedoch zum
aktuellen Zeitpunkt in der Regel nicht bekannt. Stattdessen werden bedingte Erwartungs-
werte bezüglich der aktuell verfügbaren Informationen betrachtet, welche dem Versicherer
die Berechnung der sogenannten prospektiven Reserve ermöglichen.
In dieser Arbeit wird das gängige Mehrzustandsmodell der Lebensversicherung durch die
Betrachtung von nicht-monotonen und eingeschränkten Informationsstrukturen erweitert.
Gleichzeitig werden Zahlungen erlaubt, die nichtlinear von der prospektiven Reserve ab-
hängen können und dadurch für eine Zirkularität in der Definition der Reserve sorgen. In
der bestehenden Literatur, siehe zum Beispiel Christiansen und Djehiche [CD20], sind ein
filtrierter Wahrscheinlichkeitsraum und die Anwendung der Martingaltheorie von zentraler
Bedeutung um die Existenz und Eindeutigkeit von Lösungen für die entsprechende stochas-
tische Rückwärts- Differentialgleichung (BSDE) der prospektiven Reserve zeigen zu können.
Diese Martingal-Methoden erweisen sich jedoch unter der nicht-monotonen Informationss-
truktur als nicht anwendbar, und stattdessen wird das infinitesimale Martingal-Konzept
verwendet, welches in Christiansen [Chr21b] eingeführt wurde.
In dieser Arbeit zeigen wir die Existenz und Eindeutigkeit für den nicht-adaptierten
Zahlungsprozess. Um dies zu erreichen verwenden wir das Fixpunkttheorem von Banach
und nutzen den Zusammenhang zwischen Zahlungsprozess und der Reserve mit Hilfe der
bedingten Erwartung aus. Diese Dualität ist ein charakteristisches Merkmal des Lebens-
versicherungsmodells und ermöglicht die Anwendung anderer Methoden als der in der
BSDE-Theorie üblichen. Die Ergebnisse werden für zwei Modelle mit einem unterschiedlich
starken Grad der Reserveabhängigkeit spezifiziert. Das erste Theorem kann für relativ
allgemeine Informationsstrukturen verwendet werden, während das zweite Theorem nur
für die in [Chr21b] vorgeschlagene Informationsstruktur gilt, dafür aber eine erweiterte
Reserveabhängigkeit zulässt.
Die Resultate werden dann auf die Existenz und Eindeutigkeit der prospektiven Reserve
ausgedehnt und eine BSDE-Formulierung analog zur Thiele BSDE wird präsentiert. Ein
Theorem über die Berechnung von Nettoäquivalenzprämien als Startwertprobleme schließt
die wichtigsten theoretischen Beiträge dieser Arbeit ab.
Zu den potenziellen Anwendungen der Theorie gehören gesetzliche Einschränkungen,
wie sie im „Recht auf Löschung“ (Recht auf Vergessenwerden) der Allgemeinen Daten-
schutzverordnung 2016/679 festgelegt sind, sowie das Gleichbehandlungsgesetz, welches
zu Unisex-Tarifen führt. Weitere Anwendungen sind Raucher-Tarife, bei denen die Infor-
mation aufgrund der Datenverfügbarkeit eingeschränkt wird, und Modelle, bei denen die
Markov-Annahme zur Modellvereinfachung verwendet wird, auch wenn die verfügbaren
Daten diese Annahme nicht notwendigerweise unterstützen.
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Abstract
(English)

In the field of life insurance mathematics, the discounted cumulative future payments of
an insurance contract are of central interest, yet they are typically unknown at the present
time. Given the available information, conditional expectations are considered instead,
enabling the insurer to calculate the so-called prospective reserve.
This thesis builds upon existing multi-state life insurance models by incorporating non-
monotone and restricted information structures, while simultaneously considering payments
that may depend non-linearly on the prospective reserve, thus creating circularity in the
definition of the reserve. In the existing literature, see for example Christiansen and
Djehiche [CD20], a filtered probability space and the application of martingale theory are
central to showing existence and uniqueness of solutions to the corresponding backward
stochastic differential equation (BSDE) of the prospective reserve. However, these martin-
gale methods are inapplicable in the context of non-monotone information structures, and
to bypass this problem, the infinitesimal martingale concept, as introduced by Christiansen
[Chr21b], is used instead.
In this thesis, we demonstrate the existence and uniqueness of the non-adapted payment
process. To achieve this, we utilise the fixed-point theorem of Banach and exploit the
interconnections between the payment process and reserve through the conditional ex-
pectation. This duality is a distinctive feature of the life insurance model, allowing the
application of different methods than those typically used in BSDE theory. The results
are specified for two main models, differing in their degree of reserve dependency. The
first theorem can be applied for quite general information structures, whereas the second
theorem is limited to the information structure proposed in [Chr21b], but allows for an
extended reserve-dependency of the payments.
The results are extended to encompass the existence and uniqueness of the prospective
reserve, and a BSDE formulation analogous to the Thiele BSDE is presented. An additional
theorem about the calculation of net equivalent premiums as a starting value problem
concludes the major theoretical contributions of this thesis.
Potential applications of the theory include legal restrictions as set out in the ’right to
erasure’ of the General Data Protection Regulation 2016/679, as well as the principle
of equal treatment, resulting in unisex tariffs. Further applications include smoking
tariffs, where information is restricted because of data availability, and models where the
Markov assumption is used for model simplification, although the data might suggest
otherwise.

V



VI



Contents

List of Tables IX

List of Figures XI

1. Introduction 1
1.1. Life insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Motivation and problem formulation . . . . . . . . . . . . . . . . . . . . . 2
1.3. Research status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Theoretical background 9
2.1. The mathematical basics in life insurance . . . . . . . . . . . . . . . . . . 9
2.2. A general model for information dynamics . . . . . . . . . . . . . . . . . . 15
2.3. Marked point processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4. Optional projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5. Infinitesimal theory for marked point processes . . . . . . . . . . . . . . . 31
2.6. Notational remarks for classic insurance contract . . . . . . . . . . . . . . 43
2.7. Solving technique for non-linear BSDEs . . . . . . . . . . . . . . . . . . . 46

3. Life insurance with reserve-dependent payments 49
3.1. The reserve-dependent payment process . . . . . . . . . . . . . . . . . . . 49

3.1.1. Assumptions and technical details of the discounting . . . . . . . . 53
3.1.2. Construction of the payment process . . . . . . . . . . . . . . . . . 55

3.2. Existence and uniqueness results for the payment process . . . . . . . . . 56
3.2.1. Automorphism and recursion . . . . . . . . . . . . . . . . . . . . . 57
3.2.2. Theorem – Existence and uniqueness . . . . . . . . . . . . . . . . . 62

3.3. Extension of the dependency . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.1. Motivation for the extended dependency . . . . . . . . . . . . . . . 76
3.3.2. Modelling of the extended dependency structure . . . . . . . . . . 77
3.3.3. Construction of the payment process . . . . . . . . . . . . . . . . . 79
3.3.4. Theorem – Existence and uniqueness II . . . . . . . . . . . . . . . 82

4. Actuarial calculations in life insurance 97
4.1. The prospective reserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2. Thieles BSDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1. Existence and uniqueness for the prospective reserve . . . . . . . . 108
4.3. Extension to retrospective reserves . . . . . . . . . . . . . . . . . . . . . . 112

4.3.1. Definition of the retrospective reserve . . . . . . . . . . . . . . . . 113
4.3.2. Existence and uniqueness results for the payment process . . . . . 114

VII



4.4. Thieles SDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.5. Calculation of premiums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.5.1. A one-off premium payment at contract start . . . . . . . . . . . . 133
4.5.2. General premium payments . . . . . . . . . . . . . . . . . . . . . . 134
4.5.3. Existence and uniqueness of the premium level . . . . . . . . . . . 135

5. Examples and applications 155
5.1. Life policy with a guaranteed minimum death payment . . . . . . . . . . . 155
5.2. Guaranteed life endowment with a withdrawal option . . . . . . . . . . . . 158
5.3. A unisex tariff in life insurance with lapse . . . . . . . . . . . . . . . . . . 160
5.4. Other examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4.1. German private health insurance . . . . . . . . . . . . . . . . . . . 164
5.4.2. Life insurance with health data . . . . . . . . . . . . . . . . . . . . 166
5.4.3. Life policies with smoking behaviour . . . . . . . . . . . . . . . . . 167
5.4.4. Partial lapse and contract modifications . . . . . . . . . . . . . . . 168

6. Conclusion and further research opportunities 169

Bibliography 173

A. Mathematical tools 179
A.1. Stochastic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.2. Sigma-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.3. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B. Academic education / Affidavit 189

VIII



List of Tables

2.1. Exemplary sequence of a life insurance state – Full information . . . . . . 44
2.2. Exemplary sequence of a life insurance state – Markov information . . . . 45

5.1. Example 5.1.1 – Details on the marked point process . . . . . . . . . . . . 156
5.2. Example 5.1.1 – Overview of the sojourn payments . . . . . . . . . . . . . 156
5.3. Example 5.1.1 – Overview of the transition payments . . . . . . . . . . . . 156
5.4. Example 5.2.1 – Details on the marked point process . . . . . . . . . . . . 158
5.5. Example 5.2.1 – Overview of the sojourn payments . . . . . . . . . . . . . 158
5.6. Example 5.2.1 – Overview of the transition payments . . . . . . . . . . . . 159
5.7. Example 5.3.1 – Representation of the marked point process . . . . . . . . 161
5.8. Example 5.3.1 – Overview of the sojourn payments . . . . . . . . . . . . . 161
5.9. Example 5.3.1 – Overview of the transition payments . . . . . . . . . . . . 162

B.1. Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

IX



X



List of Figures

2.1. An insurance state space with possible transitions . . . . . . . . . . . . . 11
2.2. An exemplary path of the insurance state process . . . . . . . . . . . . . . 43
2.3. Sketch of the main idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1. Sketch of the overtaking condition . . . . . . . . . . . . . . . . . . . . . . 144

The included figures have been generated with the ’tikz’-package in LATEX.

The image rights to the university logo displayed on the title page are held by the Carl
von Ossietzky University Oldenburg.

XI



XII



Chapter 1.

Introduction

Insurance is undoubtedly one of the largest industries in the world when measured in
terms of revenue, and most people will encounter insurance contracts at some point in
their lives. A multitude of professions are involved in the day-to-day operations of an
insurance company, with the objective of establishing a clear and precise environment in
which an insurance contract is viable. This leads us to the following general definition of
an insurance policy:

’An insurance policy is a contract between a policyholder and an insurance
company to exchange a fixed premium payment against uncertain benefit
payments triggered by pre-described, but random events, that adversely affect
the policyholder.’ 1

In this thesis, we are focusing on the mathematical, and especially stochastic, nature of
the benefit payments as part of the insurance contracts and the methods that are used
to examine them. Our main focus will be on multi-state models in life insurance and
the theory of backward stochastic differential equations, applied to challenges related to
reserving for and pricing of contracts in life insurance.

1.1. Life insurance

A life insurance policy is defined as an insurance contract where the underlying risk is
connected to the human life. Life insurance contracts are used for two main reasons:
firstly, to provide protection against the risks of death, illness or disability; and secondly,
to facilitate retirement savings and wealth creation, compare for example Wilson [Wil15].
The following types of contract arise in the context of life insurance and are of interest.
For a comprehensive overview of these contracts, see Olivieri and Pitacco [OP11].
Term life insurance is a contract, whereby a beneficiary will receive payments, upon the
death of the policyholder during the period of the contract. Survival insurance is an
insurance contract that provides a payment if the policyholder reaches a certain age. It
can also be used for investment purposes and retirement savings. An endowment policy
represents some combination of the aforementioned polices.
Insurance for disability, accidents and dread-diseases are contracts, where a monthly

1Own definition based on various legal, accounting and actuarial definitions, see for example [Far90]

1



Chapter 1. Introduction

benefit is paid. Such policies are commonly used for protection against the risk of being
unable to generate income through work. Retirement contracts, which may be combined
with other types of insurance, are utilized for private retirement savings. The policyholder
is entitled to receive monthly benefit payments between the retirement age and the time
of death.
Despite the differences between of the above contracts, they can be embedded in a common
model, which will now be described.

For every contract type, the benefit payments are predetermined and pre-described within
the contract conditions. This ensures that the circumstances under which a payment is
triggered, and the nature of payment itself, are transparent. Subsequently, it is necessary
to calculate the probability of these payments occurring. It is the responsibility of the
insurance company to determine an appropriate premium for the contract and to maintain
prospective reserves to cover the uncertain future expenses. Optimally, the expected value
of premiums and benefits would be equal and the premium payment is said to be a net
premium payment in that case, compare for example Olivieri and Pitacco [OP11]. In
addition, the insurer calculates market prices for the contracts and manages their portfolio
and the associated risks during the contract horizon.
A distinctive feature of life insurance contracts is that the time horizon is typically very
long, and therefore an accurate basis for the pricing of a contract is crucial. For every
contract, there is a maximal time, thereafter no further payments are happening. In most
cases, the necessary reserves can be calculated by a backwards calculation with a final value
of zero. In general, this would be presented as a backward stochastic differential equation,
which also gets referred to as a Thiele BSDE. The Thiele BSDE is specific to the theory
of life insurance and can usually be embedded into more general BSDE theory. Further
details can be found at the beginning of the next chapter and in the research overview later
in this chapter. The tasks of pricing and reserving are part of what we call the actuarial
calculations in life insurance, and will be referenced in subsequent sections of this thesis,
where a comprehensive mathematical introduction will be provided.

1.2. Motivation and problem formulation

Let us now motivate the extensions to the standard multi-state model in life insurance.
The extension will occur in two specific ways in this thesis.

Firstly, we want to allow for general reserve-dependency of payments. In other words,
the value of insurance (in particular, benefit) payments is not necessarily fixed, but may
vary depending on the existing prospective reserve. This is for example needed for lapse
payments, where it is fair, and also required of the insurance company by law, to repay
the existing reserve, in the event of a contract being terminated. An additional possibility
is the incorporation of capital management fees for, or investment returns on, the current
reserve, if a general market model is used.
It is evident that this introduces complications to the reserving and pricing, since the
reserve can now depend circularly on the reserves at a future time point. Allowing

2



1.3. Research status

for non-linearity in the dependency of payments introduces a further level of complex-
ity.

Secondly, it is necessary to allow for a more general and potentially non-monotone
information structure. Typically, the insurance company uses an information structure as
the basis for all calculations, which is monotonously increasing in time. This has practical,
as well as mathematical, reasons and leads to the usage of filtrations.
We now seek to eliminate the requirement for monotone information, and allow for a
more general and potentially non-monotone information structure. There are several
reasons, why this might be desirable. The General Data Protection Regulation of the EU
(2016) [Eur16], Article 17, guarantees the insured a ’right to erasure’, or a right to be
forgotten. This data privacy regulation may challenge the above assumption of monotonic
information structures.
Moreover, there are some anti-discrimination laws that have resulted in the emergence of
unisex contracts, compare [Eur04] and the follow-up [Eur11]. In this case, the information
structure is not non-monotone; however, not all available information can be used for the
pricing of the contract. Furthermore, the unisex tariff may also lead to adverse selection
bias, which must be considered by the insurance company and therefore comparisons with
the model of full information are conducted.

Further reasons are based on the selection of the model. The insurance company has to
decide on a model, which is used as a basis for the calculations. For simplicity of the
numerical calculations, or data availability to generate good statistical estimators, the
decision may be taken to exclude specific data. This approach, however, may result in
model bias and sparseness of the model. In many cases computationally feasible results
are preferred to perfect results. It should be noted that the data availability in a simpler
model is typically superior, which may lead to better estimators, even if the model is
biased.
If both models can be computed with reasonable precision, then the bias can be quantified.
This would for example be the case with certain models, where the Markov assumption is
applied on the probabilities in the multi-state model, but the actual data would suggest a
different underlying model.

The combination of the two extensions results in a situation, where non-monotone infor-
mation structures are used and a non-linear dependency on the reserve is present. It is yet
to be seen how this should be modelled in detail, whether a BSDE formulation for the
prospective reserve can still be achieved, and if existence and uniqueness of the solution
can be shown. The solution would then allow for the calculation of reserves for a new class
of insurance contracts.

1.3. Research status

The objective of this section is to provide an overview on the current state of research in
the multi-state life insurance theory and on the two extensions, that were motivated in
the previous section. Mathematical details will be given in the next chapters, and here we
only provide a general overview of the literature.

3



Chapter 1. Introduction

The Thiele BSDE from the title of this thesis has its historical roots in the Danish actuary
Thorvald N. Thiele, who is said to have been the first to describe (in an unpublished
note) a recursion for calculating life insurance reserves in 1875. This is according to the
timetable given in Milbrodt and Helbig [MH99], where major contributions to life insurance
theory are listed. The theory has evolved since then, and for a proper mathematical
formulation of more advanced recursions and BSDEs, we refer to Markov chain models,
introduced in the paper of Hoem [Hoe69], and generalizations in Norberg [Nor91] and
[Nor92], providing methods for the calculation of state-wise reserves. Møller [Møl93]
then provides a general version of the Thiele BSDE, and Djehiche and Löfdahl [DL16],
as well as Christiansen and Djehiche [CD20], formulate Thiele equations with reserve-
dependency.

Another significant development was the introduction of Cantelli’s theorem in 1914
([Can14]), which has been subsequently generalised and modernised in Milbrodt and
Helbig [MH99] and Christiansen, Denuit, and Dhaene [CDD13].
Cantelli’s theorem provides sufficient conditions for the equality of reserves in different
contracts, based on the Thiele equations. Applications includes models with and without
lapse, where the reserves in both models are equal, if the lapse payment is set equal to
the full reserve immediately before the time of lapse. This allows for the use of a reduced
model, without needing to model reserve-dependency or the lapse behaviour. There are
several reasons why the conditions for equality are not necessarily fulfilled in practice, and
not the full reserve is paid out:
Reducing the lapse payment also reduces the incentive for the policyholder to terminate
the contract. This is important for an insurance company, because it needs to manage its
portfolio and maintain a certain number of contracts so that the application of averaging
effects is still reasonable.
In addition, the insurance company has to consider the administrative costs associated with
the insurance business. Further, the loss of planned interest income on the existing reserve
will be reduced and could force the insurance company to consider short-term investments
instead of more beneficial long-term investments. See, for example, the following report
with notes on the lapse deduction in life insurance by the German Association of Actuaries
in [Deu22b] 2. The reasons they give explain why the reserve would not normally be paid
out in full.
An additional problem is the estimation of lapse rates (or the modelling of lapse be-
haviour), as also personal and (macro)economic factors could play a role in the decision.
The personal factor could involve a shift in guaranteed interest rate relative to what is
available on the market through potentially different investment vehicles. This can lead to
adverse selection in the portfolio, and increased surrender rates, if exercising the option is
perceived as beneficial.
In summary, Cantelli’s theorem needs to hold to be able to ignore lapse and avoid a reserve-
dependent payment. Otherwise, lapse cannot be ignored and the existence and uniqueness
of solutions for a contract with reserve-dependent payments must be investigated from
scratch.

2https://aktuar.de/de/wissen/fachinformationen/detail/stornoabzuege-in-der-lebensversich
erung, (accessed 12.2024)
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1.3. Research status

An extension to reserve-dependent payments is adapted in Christiansen, Denuit, and
Dhaene [CDD13], Djehiche and Löfdahl [DL16] and Christiansen and Djehiche [CD20],
where the latter ones consider actual non-linear reserve-dependency. In the first reference,
the reserve-dependency is mostly linear and embedded in the standard model by rearranging
of summands. Examples are given as linear capital management fees and linear surrender
payments, but the reserve-dependency is solved by using a different technical basis for
the contract. The original interest rate is changed to compensate for the linear reserve-
dependence. An example with non-linearity is only mentioned at the end, and reference is
made to numerical methods.
Other references on reserve-dependence include the book by Asmussen and Steffensen
[AS20] (Chapter VII.2), which also uses a linearisation approach to reserve-dependency
and introduces an artificial interest rate to compensate for capital management fees. In
Steffensen and Møller [SM07], the techniques are more so based on optimisation, but
surrender and free-policy options are also considered.
Examples of reserve-dependent payments can also be found in Norberg [Nor91], where
the retrospective reserve in a widow’s annuity might be repaid if the beneficiary dies
before the policyholder. An extension of the model is formulated, where the administrative
costs depend partly on the reserve. Furthermore, Milbrodt and Helbig [MH99] present a
version of Cantelli’s theorem and therefore consider a reserve-dependent lapse payment as
well.

The contributions by Gatzert and Schmeiser [GS06], and Gatzert [Gat09], take a more
general approach to implicit options in life insurance and provide reasons and examples of
contract design, but do not focus on the mathematical methods. These include situations
where payments are modified after the contract start by the exercise of certain options,
such as the ’paid-up’ (or free policy) option, where the insured stops paying premiums
and the insurance benefits change (decrease) accordingly.
It is also possible to consider contracts in which the payments are linked to investments,
either through direct investment in a financial market (e.g. dividend payments), or through
guaranteed minimum payments, in which the insurance is required to pay for potential
losses. For further examples and the mathematical background of these types of contracts,
see for example Steffensen and Møller [SM07] and Asmussen and Steffensen [AS20].
An alternative approach of reserve-dependency is presented in Gad, Juhl, and Steffensen
[GJS15], where even the behaviour (the lapse/ surrender rate) of the insured is modelled
as dependent on the reserve. Their reasoning is consistent with the behavioural rationale
for lapse presented above. This approach will not be adopted in this thesis, as it creates
dependency at a different part, i.e. in the intensities and not in the payment functions
and would require vastly different techniques.

A relatively recent development is the paper by Christiansen and Djehiche [CD24], which
considers reserve-dependent payments and investigates the existence and uniqueness of as-
if-Markov reserves. This is motivated by the failure of Cantelli’s theorem for as-if-Markov
calculations, which in turn raises questions about the existence and uniqueness of the
as-if-Markov reserves in models with reserve-dependent payments.

The theory of life insurance with non-linear reserve-dependency significantly relies on the
methodologies derived from general BSDE theory. The Thiele equation can be considered

5



Chapter 1. Introduction

a Thiele BSDE in such circumstances and the BSDE is driven by jump processes, namely
the transition counting processes.
Solving techniques for BSDEs based on general martingale theory are presented in a
paper by Pardoux and Peng [PP90], who were the first to work on non-linear BSDEs in
1990. Advances were made by Karoui, Peng, and Quenez [KPQ97], Pham [Pha09], Delong
[Del13] and a series of contributions by Cohen and Elliott, i.e. [CE08], [CE12], as well as
the book [CE15]. In the context of BSDE theory, the existence and uniqueness of solutions
are shown for a scenario where a terminal value and a non-linear dynamic are given. The
solution is always adapted to the underlying filtration, and a predictable process in the
martingale part is used to control the randomness, as demonstrated in Cohen and Elliott
[CE15].
The BSDE theory has been developed to accommodate a variety of dynamics, including
Brownian motion and general martingales, where a lot of foundational martingale theory
is employed. The martingale theory is also significantly influenced by the concepts of a
filtration, the martingale representation theorem, the inequality of Doob for martingales
and the inequality of Burkholder-Davis-Gundy. These tools are applied to show the
existence and uniqueness of solutions; however, they are only available for martingales
and thus will not be used in this thesis.

To avoid further reliance on filtrations, it will first be necessary to establish a model for
the non-monotone theory. In the paper by Christiansen [Chr21b], a general model is
presented, which relies on the infinitesimal understanding of martingale properties. An
explicit theory is subsequently developed for the case of marked point processes, which
bears resemblance to the multi-state jump process modelling typically used in life insurance
theory. Furthermore, Christiansen derives an equivalent of a Thiele equation in this context.
In their paper, Christiansen and Furrer [CF21] extend the general Thiele equation to state-
wise reserves in the context of a Danish life insurance contract, thereby producing results
that are comparable to those of standard life insurance theory.

At this time, the approach presented in Christiansen [Chr21b] is the only viable approach
for modelling of a non-monotone theory. Consequently, the majority of the following
chapter will introduce these concepts before we can consider the application of the model
to life insurance contracts with reserve-dependent payments.
Note, that in the paper by Norberg [Nor99], a more general information setting is discussed,
which does not require the use of a filtration. In one of their examples, calculations are
conducted exclusively with respect to the current state of the insured, and the statewise
surplus is investigated. This is not a non-monotone setting; however, this is arguably one
of the closest to the idea presented in Christiansen [Chr21b].

Other approaches rely on non-monotonicity only at certain time points or enable the
possibility of reverting to classical martingale representations through the imposition of
independence assumptions. For further details, see [TW13] or [PP94]. Take note that
these methods are not viable in our circumstances.
Another related concept is the use of information structures with shrinkage, as seen in
the paper by Andersen and Lollike [AL23]. In their approach, lumping is introduced and
averages with respect to smaller state space are calculated, reducing the computational
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complexity. The reserve is then calculated for the reduced example and the conditional
expectation is used for simplification.

It is evident from the two extensions presented in the preceding section that the classical
theory of life insurance mathematics, and in particular the BSDE theory, cannot be used
directly in this context. The primary concern is the martingale theory and its reliance
on the underlying filtration, where the existing results cannot be translated to the novel
circumstances.
Also recognise that we are solely working with a given first-order basis of the financial
market and the transition rates in the life insurance model, as the research questions revolve
around the pricing and reserving of contracts, with the main focus on the existence and
uniqueness of a solution to the Thiele BSDEs. Consequently, our perspective is situated
before the start of the contract, answering feasibility concerns instead of monitoring and
managing a portfolio of existing contracts.

1.4. Outline of the thesis

Chapter 2 presents the theoretical background for the life insurance theory. Moreover, the
non-monotone theory by [Chr21b] and the introduction of the infinitesimal martingale
theory are discussed in detail. Subsequently, the marked point process construction is
linked to the existing multi-state theory in life insurance and BSDE methodology is
recapped.

Chapter 3 consists of a rigorous mathematical problem formulation, where the reserve-
dependence of insurance payments is introduced and the first two main results about
existence and uniqueness of the insurance payment process are presented. The detailed
proofs of these results are provided. Two levels of reserve-dependency are distinguished,
where the simpler variant works in a general setting, whereas the more complex de-
pendency relies on the marked point process theory in the potentially non-monotone
framework.

Chapter 4 presents further results and extensions to the theory introduced in Chapter
3. The results are extended to the corresponding prospective reserves of the payment
processes and a BSDE formulation of the Thiele equation is presented in our model. Some
existing results are adapted to the case of retrospective reserves.
The final main result is a theorem about the uniqueness of pricing for some of the
insurance contracts from the preceding chapter. The proof uses a generalized Grönwall
inequality.

Chapter 5 presents a number of potential applications and examples, while further re-
search opportunities are discussed in Chapter 6. The last chapter also offers a short
conclusion.

7



8



Chapter 2.

Theoretical background

We start with an introduction to the common multi-state model in life insurance and
martingale theory. After that, we will introduce the infinitesimal martingale theory, that
was developed by Christiansen [Chr21b]. Although the infinitesimal martingale concept
will only be used in the special case of marked point process framework, the underlying
ideas can also be formulated independently of these assumptions.
We finish this chapter with a recap of the standard life insurance theory and how the
concepts connect. This includes the mathematical foundation to continue with the extension
to non-linearity in the next chapter.

2.1. The mathematical basics in life insurance

This section builds on the general introduction to life insurance modelling in the introduc-
tory part and continues with some important definitions and results from the mathematics
of multi-state modelling in life insurance.

Definition 2.1.1. Insurance state process
Let the finite set S be the state space of an insurance contract, where the insured can
potentially be in each state s ∈ S.
Then, let the S-valued càdlàg pure jump process S : [0, ∞) → S be the process, describing
the evolution of an insurance policy, where at each time point a unique state is assigned
to the insured.
For most applications it is assumed, that the insurance contract starts in a deterministic
initial state S0− := S0 = s0 ∈ S. This would usually be the state ’active’.

For the purpose of a more compact natation we also define the space of transitions between
two states.

Definition 2.1.2. Transition space
Let T :=

{︁
(i, j) ∈ S2 ⃓⃓ i ̸= j

}︁
⊂ S2 be the set of all transitions between two (different)

states of the state space S.
This definition does not mean, that a transition is actually possible and has a positive
probability of occurrence. We also include transitions, which are almost surely not
happening (for example a transition from ’dead’ to ’active’).

9



Chapter 2. Theoretical background

Definition 2.1.3. Natural filtration
Let F = (Ft)t≥0 be the natural filtration of the insurance jump process S, i.e.

Ft = σ (Sr, 0 ≤ r ≤ t) .

Then, we can also give a representation of the filtered probability space as(︁
Ω, A, F = (Ft)t≥0, P

)︁
.

In order to properly model payments as part of an insurance contract, we need some
further notation, to reflect when payments occur.

Definition 2.1.4. State indication and transition counting processes
The state indication processes

Iit := 1{St=i} ,

for i ∈ S indicate, whether the insured is in state i at time t ≥ 0. These processes are
used to model sojourn payments, which are payments that happen, while the insured is
remaining in an insurance state.
The transition counting processes

Nij(t) := # {r ∈ (0, t] | Sr− = i, Sr = j} ,

for (i, j) ∈ T indicate the total number of transition i → j from state i to j up to time t.
These processes will be used to model transition payments, which will be triggered, when
N jumps. The process N takes its values in N0 and is monotonously increasing.
Both the state indication process, as well as the transition counting process, inherit the
càdlàg property from the process S.
We generally assume

E [Nij(t)] < ∞ for (i, j) ∈ T , t ≥ 0 ,

to ensure that the state process S has at most finitely many jumps on compacts.

Assertion 2.1.5. Equivalent representations of the current state
The process S of the random pattern of states can be equivalently expressed by the initial
state S0 (or equivalently by (Ii0)i∈S) and the family of processes (Nij)(i,j)∈T , by using that

St =
∑︂
i∈S

i Iit ,

where the counting processes can be updated from the initial value by

Iit = Ii0 +
∑︂

j: j ̸=i

(Nji(t) − Nij(t)) .

Compare to Djehiche and Löfdahl [DL16] for further details.

Let us formulate a small example for illustrating the above concepts.
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2.1. The mathematical basics in life insurance

Example 2.1.6. An exemplary insurance state space
A standard insurance space, that is sufficient to model various life insurance contracts,
would be the space

S = {a, i, l, d} ,

where a abbreviates ’active’, i ’invalid’, l ’lapse’, and d abbreviates ’dead’. There are only
five possible transitions, as can also be seen in the following figure.

a

d

i

l

Figure 2.1.: An insurance state space with possible transitions

The states d and l are called absorbing states, since it is impossible to leave them, once
they are entered. We allow for recovery from the state i to the state a. Only transitions
with a non-zero probability of happening are denoted by an arrow in Figure 2.1.6.

Definition 2.1.7. Contractual payments
An insurance contract consist of several possible payments, where the details are agreed
on in the contract upon signing.
The first category are payments, happening while the insured remains in a state, and are
called sojourn payments, denoted as bi(t) for the payment in state i ∈ S. This type of
payment occurs, if the indication function Iit− = 1, i.e. the insured is in state i right before
time t. At this time, we consider the sojourn payments to be absolute continuous and paid
as a rate, while not allowing for lump sum payments just yet.
The second category are payments associated with transitions between two different states,
and are called transition payments, denoted by Bij(t) for a payment happening upon a
transition i → j for (i, j) ∈ T in t. It is always a lump sum payment, and will be triggered
if Nij(t) − Nij(t−) = 1, i.e. a new transition from i to j is recognized at time t.
We also differentiate between payments to the insurer (premiums) and payments to the
insured (benefits). This will be marked by using a negative sign in the case of premiums,
but all the payments will be grouped in a single summand.

At this point we will not specify any more details on the payment functions, in order to
avoid repetitions later on.
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Chapter 2. Theoretical background

Definition 2.1.8. Accumulated cash flow
The payments from above are merged as part of the accumulated cash flow during the
time interval [0, t], as

A(t) =
∑︂
i∈S

∫︂
[0,t]

Iis− bi(s) ds +
∑︂

(i,j)∈T

∫︂
[0,t]

Bij(s) dNij(s)

in integral form, or equivalently in the differential notation with A(0) = 0 as

dA(t) =
∑︂
i∈S

Iit− bi(t) dt⏞ ⏟⏟ ⏞
sojourn payments

+
∑︂

(i,j)∈T
Bij(t) dNij(t)

⏞ ⏟⏟ ⏞
transition payments

, (2.1.1)

where the additive decomposition in sojourn and transition payments is marked.

This process A specifies the cumulative payments on the interval [0, t]. The insurance
company is more interested in the accumulated future payments on (t, ∞) instead, which
in our case, may be represented as (t, T ], since we assume to always have a maximum
contract time T .

Definition 2.1.9. Cumulative future payments
The cumulative future payments of an insurance contract during the time interval (t, T ]
are given as

Xt :=
∫︂

(t,T ]

dA(s) .

When the representation from formula (2.1.1) is used, they are given as

Xt =
∑︂
i∈S

∫︂
(t,T ]

Iis− bi(s) ds +
∑︂

(i,j)∈T

∫︂
(t,T ]

Bij(s) dNij(s) .

This process contains future payments, where the state of the insurer is usually unknown.
The process X is therefore not adapted to the natural filtration F of the insurance state
process, and the insurer has to use a different approach.

Definition 2.1.10. Prospective reserve
The so called prospective reserve XF is the stochastic process, pointwise defined by

XF
t = E [Xt | Ft]

as the optional projection of X onto F.
This process is by definition adapted to the filtration F and is used by the insurer rather
than the payment process X itself.

The following theorem guarantees properties of the stochastic process of the prospective
reserve, which would otherwise only be a pointwise definition. There are a few possible
preconditions, that guarantee a ’good’ version and let us work with the paths of XF. The
one presented here aligns with the usage in life insurance and is also the version used in
Christiansen [Chr21b].
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Theorem 2.1.11. Existence of optional projection
Let X = (Xt)t≥0 be càdlàg process satisfying

E
[︄

sup
0≤s≤t

|Xs|
]︄

< ∞ ,

for each t ≥ 0.
Further, let F be a filtration fulfilling the usual conditions, compare Definition 2.2.1.
Then there exist the unique and càdlàg optional projection XF of X with respect to F,
such that XF

t = E [Xt | Ft] almost surely for each t ≥ 0.

Proof. See for example Bain and Crisan [BC09].

Let us further assume that the accompanying compensators of the counting processes
(Nij)i ̸=j have Lebesgue densities

(︁
Iit−λij(t)

)︁
(i,j)∈T , which are predictable processes and

fulfil the integrability condition

E

⎡⎢⎣ ∫︂
(0,T ]

∑︂
(i,j)∈T

Iit−λij(t) dt

⎤⎥⎦ < ∞ .

With respect to the filtration F, the compensated counting processes

Mij(t) = Nij(t) −
∫︂

(0,t]

Iis− λij(s) ds

are square-integrable martingales. Compare to the formulation in Christiansen and
Djehiche [CD20] for further details.

We can then rearrange the representation of process A to be

dA(t) =
∑︂
i∈S

Iit− gi(t) dt +
∑︂

(i,j)∈T
Bij(t) dMij(t) ,

where the second group of summands joins all the F-martingales, and where the functions
gi are now given as

gi(t) = bi(t) +
∑︂
j∈S
j ̸=i

Iit− λij(t) .

This formula for gi also enables us to formulate an alternative representation for the
prospective reserve. By application of the conditional expectation with respect to Ft, the
martingale parts vanish and it holds, that

XF
t = E

⎡⎢⎣ ∫︂
(t,T ]

dA(s)

⃓⃓⃓⃓
⃓⃓⃓Ft

⎤⎥⎦ = E

⎡⎢⎣ ∫︂
(t,T ]

∑︂
i∈S

Iis− gi(s) ds

⃓⃓⃓⃓
⃓⃓⃓Ft

⎤⎥⎦ .

The following theorem then holds for the prospective reserve.
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Theorem 2.1.12. Thiele equations
The prospective reserve XF (associated with payment process A) satisfies a Backward
Stochastic Differential Equation (BSDE) of the form{︄

dXF
t = −f(t, XF

t ) dt + Z(t) dM(t)
XF

T = 0
(2.1.2)

for a predictable process Z = (Zij)(i,j)∈T , such that

Ii(t−) Zij(t) = Ii(t−)
(︂
E
[︂
XF

t

⃓⃓⃓
Ft− , St = j

]︂
− E

[︂
XF

t

⃓⃓⃓
Ft− , St = i

]︂)︂
(2.1.3)

almost surely for each t ≥ 0 and i, j ∈ T .

Proof. The theorem follows as a special case of the BSDE in [CD20] or [DL16].
Explicit representations of function f and further details on the martingale representation
theorem are presented in both sources. Moreover, a reformulation of A and the proof to a
more general BSDE of the prospective reserve with discounting and lump sum sojourn
payments can be found in the provided literature.

Comment 2.1.13. On the Markov-assumption
If the Markov-assumption is used as an assumption on the state process S, then the above
BSDE may be simplified and one can derive the representations:

XF
t = E [Xt | St] a.s.

Zij(t) = E
[︂
XF

t

⃓⃓⃓
St = j

]︂
− E

[︂
XF

t

⃓⃓⃓
St = i

]︂
a.s.

If further bi and Bij are deterministic functions, the BSDE will simplify to the case of
Thiele backward equations, that can be solved through backward recursion by starting
with the known final values.

The Markov-assumption is a powerful and standard assumption used for these problems,
especially for the convenience of calculations. If it does not actually hold, than the original
BSDE would be correct to use and a shrinking of information takes place when using the
as-if-Markov reserves, which may result in an error in the calculation of the reserves. See
also Christiansen [Chr21a] for further information.

One of the main reasons that we have developed the BSDE formulation (2.1.2) for
the simple insurance example is, that it is a special case of the following more general
BSDE {︄

dYt = f(t, Yt− , Zt) dt − Zt dMt

YT = ξ
(2.1.4)

where M is an F-martingale, ξ is a final-value condition, and f is a generator function.
The solution (Y, Z) consists of a F-adapted process Y and a family of predictable processes
Z.
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Usually in the theory of BSDE solutions, see for example Pham [Pha09] or Cohen and Elliott
[CE15], standard assumptions like Lipschitz- and integrability-conditions are assumed for
f . As we have already mentioned in the introductory chapter, there are many advances in
the BSDE literature, for example Pardoux and Peng [PP90] or El-Karaoui, Hamadene,
and Matoussi [EHM08], where the BSDEs are considered in more general environments
and the existence and uniqueness of solutions is investigated.
We will come back to this after the introduction of the non-monotone theory, when we are
able to explain why existing methods fail and why a different way must be chosen in this
thesis.

2.2. A general model for information dynamics

Let (Ω, A,P) be a complete probability space, and let

Z = {A ⊆ Ω | ∃B : A ⊆ B with P (B) = 0} ⊂ A

the set of all subsets of P-null sets. Further we consider a filtration F = (Ft)t≥0, fulfilling
the usual conditions, compare the following Definition 2.2.1.

Definition 2.2.1. Filtration
The family F = (Ft)t≥0 of σ-algebras is called a filtration, if it is increasing, i.e. if we have

Fs ⊆ Ft ⊆ A for all 0 ≤ s ≤ t .

(1) Define F+ =
(︁
F+

t

)︁
t≥0 where F+

t :=
⋂︁

t<s
Fs. A filtration is right-continuous, if F = F+.

(2) A filtration is complete, if Z ⊆ Ft for every t ≥ 0.

The filtration is said to be fulfilling the usual conditions, if it is right-continuous and
complete.

We want to refer to Ft as the total observable information on the interval [0, t]. The
concept of a filtration directly corresponds to a monotone perspective, since the relation
Fs ⊆ Ft holds for all s ≤ t.
To model the non-monotone perspective, we assume that a subset of the available in-
formation may expire after a finite time. By subtracting the expired information from
Ft we get the so called admissible information. The admissible information can also be
represented by a family of complete sigma-algebras G = (Gt)t≥0 and for every t ≥ 0 the
condition

Gt ⊆ Ft

holds, but in general we do not have the same monotonicity for G as we have for
F .

Since we have to define the monotone, as well as the non-monotone, perspective,
we will keep up the duality when introducing concepts in the remainder of this sec-
tion.
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Definition 2.2.2. Adapted process
A stochastic process X = (Xt)t≥0 is

(a) adapted to the filtration F, if Xt is Ft-measurable for every t ≥ 0.

(b) adapted to the (possibly non-monotone) family G, if Xt is Gt-measurable for every
t ≥ 0.

The second definition alone is not very useful because of the nature of G, and we will also
need the following concept with an incremental perspective.

Definition 2.2.3. Incremental σ-algebra
For any interval (s, t] ⊂ [0, ∞) (with 0 ≤ s ≤ t < ∞) we define

G(s,t] := σ
(︁
Gu, u ∈ (s, t]

)︁
as the sigma-algebra, that contains all the admissible information on the interval (s, t].

This motivates the new perspective on the concept of adaptivity.

Definition 2.2.4. Incrementally adapted process
A process X is incrementally adapted to G, if the increments Xt −Xs are G(s,t] -measurable
for any interval (s, t] ⊂ [0, ∞).

Comment 2.2.5. Equivalence of the concepts in case of a filtration
Incremental adaptivity and (usual) adaptivity are equivalent, if G is a filtration:
Let G be a filtration. Then for any interval (s, t] ⊂ [0, ∞) it holds that G(s,t] = Gt, since
Gu ⊆ Gt for every u ∈ (s, t].
If X is incrementally adapted to G, then Xt − X0 is Gt-measurable. Further, X0 is always
G0-measurable, therefore X0 is also Gt-measurable. By additivity Xt is Gt-measurable.
If X is adapted to G, then both Xt, as well as Xs are Gt-measurable, and therefore Xt −Xs

is Gt-measurable for any interval (s, t] ⊂ [0, ∞).

We will now introduce the necessary concepts for the development of the infinitesimal
perspective on martingales.

Definition 2.2.6. Martingale
Let X = (Xt)t≥0 be a stochastic process and F a filtration.
X called an F-martingale, if

(1) X is integrable, i.e. E [|Xt|] < ∞ for all t ≥ 0,

(2) X is F-adapted,

(3) E [Xt | Fs] = Xs almost surely for all t ≥ s ≥ 0.

For reference see Protter [Pro05].
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Definition 2.2.7. Sequence of partitions
Let [s, t] ⊆ [0, ∞) be an interval. We define the set of suitable sequences of partitions of
the interval [s, t], denoted T([s, t]), as the set that contains all sequences of the form(︂

τ [s,t]
n

)︂
n∈N

,

fulfilling the following conditions:

(a) For every n ∈ N, τ
[s,t]
n is a partition of the interval [s, t], which means that τ

[s,t]
n =

{t0, t1, t2, . . . , tn} with s = t0 < t1 < t2 < · · · < tn = t.

(b) The partitions are increasing in n ∈ N: τn ⊂ τn+1.

(c) The maximum grid length converges to zero, i.e.⃓⃓⃓
τ [s,t]

n

⃓⃓⃓
:= max

k∈Nn

{tk − tk−1} n→∞−−−→ 0 .

For the special case s = 0 the notation is relaxed to τ t
n := τ

[0,t]
n .

The classical martingale property reads

E [Xt − Xs | Fs] = 0 a.s. for all t ≥ s ≥ 0 (2.2.1)

and can be considered on a partition from Definition 2.2.7, which then is the infinitesimal
equivalent of (2.2.1). We then have

lim
n→∞

∑︂
τ t

n

E
[︁
Xtk+1 − Xtk

⃓⃓
Ftk

]︁
= 0 a.s.

for all t ≥ 0, which holds as every individual summand is already zero.

The idea of Christiansen [Chr21b] is, to use this a similar property as the definition of
infinitesimal martingales:

Definition 2.2.8. IF- and IB-martingales
A process X is called an

(1) infinitesimal forward martingale (IF-martingale) with respect to G, if

(1.1) X is incrementally adapted to G,

(1.2) for (τ t
n)n∈N ∈ T([0, t]) we almost surely have

lim
n→∞

∑︂
τn

E
[︁
Xtk+1 − Xtk

⃓⃓
Gtk

]︁
= 0 .
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(2) infinitesimal backward martingale (IB-martingale) with respect to G, if

(1.1) X is incrementally adapted to G,

(1.2) for (τn)n∈N ∈ T([0, t]) we almost surely have

lim
n→∞

∑︂
τ t

n

E
[︁
Xtk+1 − Xtk

⃓⃓
Gtk+1

]︁
= 0 .

Definition 2.2.9. Compensator
We call the unique process C the compensator of an F-adapted and integrable counting
process X, if

(1) C is F-predictable, i.e. Ct is Ft−-measurable for t ≥ 0,

(2) C is of finite variation,

(3) C0 = 0,

(4) X − C is a martingale with respect to F.

Furthermore, C almost surely fulfils the equation

Ct − C0 = lim
n→∞

∑︂
τ t

n

E
[︁
Xtk+1 − Xtk

⃓⃓
Ftk

]︁
(2.2.2)

for each t ≥ 0.

Assertion 2.2.10.
X − C is an IF-martingale with respect to F.

Proof. The two conditions from Definition 2.2.8 have to be checked.
First, X − C has to be incrementally adapted to F. This is clear, as this is just the normal
adaptivity, since F is a filtration.

The F-predictability of C also implies that for a sequence
(︁
τ

[s,t]
n

)︁
n∈N

lim
n→∞

∑︂
τ t

n

E
[︁
Ctk+1 − Ctk

⃓⃓
Ftk

]︁
= Ct − C0 .

By linearity, and as a combination of the equation (2.2.2) and the above, we have

lim
n→∞

∑︂
τ t

n

E
[︁
Xtk+1 − Ctk+1 − (Xtk

− Ctk
)
⃓⃓
Ftk

]︁
= Ct − C0 − (Ct − C0) = 0 a.s.

for a sequence
(︂
τ

[0,t]
n

)︂
n∈N

for each t ≥ 0.

Once again, the above concepts are now extended to the infinitesimal theory, where some
preliminary definitions are given first.
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Definition 2.2.11. Infinitesimal predictable process
A process X is called

(1) infinitesimally forward predictable (IF-predictable) with respect to G, if for any
(τ t

n)n∈N ∈ T([0, t]), we almost surely have

lim
n→∞

∑︂
τn

E
[︁
Xtk+1 − Xtk

⃓⃓
Gtk

]︁
= Xt − X0

given that expectations and limits exist.

(2) infinitesimally backward predictable (IB-predictable) with respect to G, if for any
(τ t

n)n∈N ∈ T([0, t]), we almost surely have

lim
n→∞

∑︂
τn

E
[︁
Xtk+1 − Xtk

⃓⃓
Gtk+1

]︁
= Xt − X0

given that expectations and limits exist.

Definition 2.2.12. Infinitesimal compensator
A process C is called an

(1) infinitesimal forward compensator of X (IF-compensator) with respect to G, if

(1.1) C is IF-predictable with respect to G

(1.2) X − C is an IF-martingale with respect to G.

(2) infinitesimal backward compensator of X (IB-compensator) with respect to G, if

(2.1) C is IB-predictable with respect to G

(2.2) X − C is an IB-martingale with respect to G.

Similarly to the optional projection with respect to filtration F, we can define the same
for G, even if we do know anything about the existence or properties of this defini-
tion.

Definition 2.2.13. Optional projection
Let the process X be integrable and càdlàg.
If there exists a unique càdlàg process XG, such that

XG
t = E [Xt | Gt]

holds almost surely for every t ≥ 0, then we call XG the optional projection of X with
respect to G.

Definition 2.2.14. Infinitesimal martingale representation for optional projections
A decomposition of the form

XG
t − XG

0 = Ct + MF
t + MB

t

is called an infinitesimal martingale representation if MF is an IF-martingale, MB is an
IB-martingale and C is an IB- or IF-compensator with respect to G.
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Chapter 2. Theoretical background

2.3. Marked point processes

When we introduced the life insurance mathematics in the earlier section of this chapter,
we had already seen the use of jump processes. The continuous process S is a jump process
in the state space S and also every accompanying process, like Iit or Nij has been a jump
process.

Christiansen [Chr21b] uses a marked point process structure, where we will later embed
the life insurance mathematics into.

Definition 2.3.1. Special marked point process
Let (Ω, A,P) be the probability space. Let (E, E) be a measurable mark space, where E
is a Polish space (a separable complete metrizable topological space) and E := B(E) its
Borel sigma algebra.

Then we call (τi, ζi, σi)i∈N on
(︁
Ω, A,P

)︁
a special marked point process, with

(1) τi : (Ω, A) → ([0, ∞], B([0, ∞])) for i ∈ N as random times, indicating events,

(2) ζi : (Ω, A) → (E, E) for i ∈ N as random variables, giving the marks,

(3) σi : (Ω, A) → ([0, ∞], B([0, ∞])) for i ∈ N as another set of random times fulfilling
τi ≤ σi.

We interpret each ζi as information that can be observed on the interval [τi, σi). That
means, information ζi may be deleted after a finite holding time, and the deletion time
is given by σi. The ordering τi ≤ σi is a natural condition, since the deletions can only
happen after the information introduction.

Comment 2.3.2. On the revealing of additional information
This notation does not assume any ordering of the random times. Therefore the number
of events (especially the number of deletions) shall not be extractable in any form, and
this can be realised by a reordering of the random times. Compare the Remark 3.1 in
Christiansen [Chr21b].

We introduce a more pleasant notation, where the triplets are split into doublets, with sub-
sets on the odd and even indices, where the consecutively odd and even number correspond
to the introduction and (possibly) deletion of the same information.

Definition 2.3.3. Doublet representation of the special marked point process
Consider the equivalent sequence I := (Ti, Zi)i∈N, defined by

T2i−1 := τi, T2i := σi,

Z2i−1 := ζi, Z2i := Z2i−1 = ζi,

for every i ∈ N, which is a more convenient way to represent the information structure,
with a different representation for the odd and even indices.

20



2.3. Marked point processes

Assumption 2.3.4. Information availability
Assume, that for all i ∈ N it holds

T2i−1(ω) < T2i(ω) for ω ∈ {T2i < ∞} . (2.3.1)

Formula 2.3.1 guarantees, that information is available for at least a short time, if it is
available at all.

Assumption 2.3.5. Finite jumps on compact intervals
Assume, that

E
[︄ ∞∑︂

i=1
1{Ti≤t}

]︄
< ∞, for t ≥ 0 . (2.3.2)

Formula 2.3.2 guarantees that there are at most finitely many random times on bounded
intervals [0, t]. Especially, the existence of jump clusters is prohibited by this assumption.

In difference to the usual definition of marked point processes (see for example [Jac05]), a
special structure is needed here, to be able to model the introduction and the deletion.
With that in mind, each two consecutive odd and even indices have to be considered as
one, where a slight difference to the marked point processes (MPP), in usual literature
arises.
Based on the sequence I = (Ti, Zi)i∈N we will now generate a class of random counting
measures, but we have to introduce some additional notation first.

Definition 2.3.6. Subsets of information indices
In unity with the information sequence I, let

N :=
{︁
N ⊂ N : |N | < ∞

}︁
be the set of all finite subsets of the natural numbers and let

M :=
{︁
M ⊂ NO : |M | < ∞

}︁
be the set of all finite subsets of the odd natural numbers NO.

The differentiation between odd and even indices lets us address specific information
by M, which will later be used for the information state indication processes, where
we only need to know, if the current time is in between the introduction and deletion
time points, and we can therefore restrict the subset to only the odd natural numbers.
The definition of N is later used for information state transitions and it therefore is not
sufficient to know if the information is available, but we need to know, of it is introduced
or deleted.

For any I ∈ N define the product space EI := E|I| and EI := B(EI) as the Borel sets of
EI . Further, introduce ZI := (Zi)i∈I as a short form notation of the vector of information
in I.
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Chapter 2. Theoretical background

Definition 2.3.7. Counting measures
Let t ≥ 0 and I ∈ N . Define

µI ([0, t] × B) := 1{Ti=Tj≤t, i,j∈I}∩{Ti ̸=Tj , i∈I,j /∈I} 1{ZI∈B} (2.3.3)

for B ∈ EI .

For each I ∈ N , the measures {µI( · )(ω) | ω ∈ Ω}, generated by their values on [0, t] × B,
form a random counting measure on

(︁
[0, ∞) × EI , B([0, ∞) × EI)

)︁
, i.e.

(1) For any fixed A ∈ B
(︁
[0, ∞) × EI

)︁
the mapping

ω ↦−→ µI(A)(ω)

is measurable from (Ω, A) to (N+
0 , B(N+

0 )), where N+
0 = N0 ∪ {∞}.

(2) For almost each ω ∈ Ω the mapping

A ↦−→ µI(A)(ω)

is a locally finite measure on
(︁
[0, ∞) × EI , B([0, ∞) × EI)

)︁
.

Comment 2.3.8. On the distribution of time points Ti

A special case occurs, if the different random times (Ti)i∈N never coincide. Then, we only
need to consider µ{i} for i ∈ N and the index conditions in the definition of µ can be
simplified. Since we always want to be able to allow for mass-deletion, we will not further
focus on the simplified case.

We can now also express the observable and admissible information through the marked
point process I.

Definition 2.3.9. Sigma algebras of observable and admissible information
The observable information at time t ≥ 0 is given by the complete filtration F = (Ft)t≥0,
with

Ft := σ ({T2i−1 ≤ s < T2i} ∩ {Z2i ∈ B} | s ∈ [0, t], B ∈ E , i ∈ N) ∨ Z ,

letting the random times Ti, i ∈ N be stopping times.

The admissible information at time t ≥ 0 is given by the family G = (Gt)t≥0 of sub-sigma-
algebras

Gt := σ ({T2i−1 ≤ t < T2i} ∩ {Z2i ∈ B} | B ∈ E , i ∈ N) ∨ Z ,

and the admissible information immediately before time t > 0 is given by the family
G− = (G−

t )t≥0

G−
t := σ ({T2i−1 < t ≤ T2i} ∩ {Z2i ∈ B} | B ∈ E , i ∈ N) ∨ Z ,

where the operator „∨“ denotes the sigma algebra, generated by unions of involved sets,
see also A.2.6.
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2.4. Optional projections

Proposition 2.3.10. Alternative representation of the admissible information
Suppose that 0 /∈ E. By defining the càdlàg process

Γt :=
(︂
Z2i 1{T2i−1≤t<T2i}

)︂
i∈N

the information Gt and G−
t can be alternatively represented as

Gt = σ(Γt) ∨ Z, t ≥ 0
G−

t = σ(Γt−) ∨ Z, t > 0 .

Take note, that the process (Γt)t is infinite-dimensional and the left limit Γt− is defined
component-wise. Note that G−

t usually differs from Gt− as the left side limit of Gt. A
counterexample can be found in Christiansen [Chr21b].

2.4. Optional projections

With the newly introduced information structures, one of the main concerns is the existence
of optional projections, because of the important connection to the prospective reserves,
as we have seen in the introduction.

Theorem 2.4.1. Existence of optional projections
Suppose that X = (Xt)t≥0 is a càdlàg process and uniformly bounded, i.e. it holds

E
[︄

sup
0≤s≤t

|Xs|
]︄

< ∞ , for t ≥ 0 . (2.4.1)

Then the optional projection XG
t exists and we have

XG
t = E [Xt | Gt]

almost surely as well as
XG

t− = E
[︂
Xt−

⃓⃓⃓
G−

t

]︂
almost surely for each t > 0.
If additionally X has integrable variation on compacts, then XG has paths of finite
variation on compacts.

Furthermore, there always exists a unique (here understood as uniqueness up to evanes-
cence) càdlàg process XF, such that

XF
t = E [Xt | Ft]

almost surely holds for each t ≥ 0.

Proof. See Theorem 4.1 of [Chr21b] for the result with respect to G. The second part
(i.e. the case with filtration F) is a repetition of the theorem in the introductory part, see
Theorem 2.1.11.
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Chapter 2. Theoretical background

Let us continue by introducing some further notation.

Definition 2.4.2. Jump times and jump information
For I ∈ N we define the corresponding jump time to a set I ∈ N

QI := sup {t ≥ 0 | µI([0, t] × EI) = 0}

as the first time, where the random times Ti for i ∈ I all coincide and equal QI and no
other random times occur at the exact same moment, i.e. Tj ̸= QI for every j /∈ I. The QI

only depend on the random times (Ti)i∈I , but not on the information (ZI), since ZI ∈ EI

is always fulfilled.

For a more compact notation, we also define

RI := (QI , ZI) =
(︁
QI , (Zi)i∈I

)︁
(2.4.2)

for I ∈ N as the tuple of jump time and the vector of information.

In Christiansen [Chr21b] it is now argued, that all the regular conditional probabilities of
the form

P ( · | ZM )

as well as
P ( · | ZM , RI)

exist on (Ω, A) for each M ∈ M and I ∈ N and that they are simultaneously unique up
to a joint exception null set. We will not get into the details of the existence of the regular
conditional expectations and refer to the literature, for example Klenke [Kle20], where the
existence via stochastic kernels is argued for Polish spaces.

For a more compact notation, the conditional will from now on be written as an index,
i.e.

PM,RI
( · ) := P ( · | ZM , RI)

refers to an arbitrary but fixed regular version of the conditional probability. A similar
construction is used for the conditional expectations, where for any integrable random
variable X the expression

EM,RI
[X] :=

∫︂
X dPM,RI

such that EM,RI
[X] is the specific version of the conditional expectation E [Z | ZM , RI ]

that is obtained by integrating X with respect to the specific regular version that is picked
for P ( · | ZM , RI).

The short forms PM = PM,R∅ and EM = EM,R∅ are used, if I = ∅ since PM,R∅ is a version
of P ( · | ZM ). In addition to that, we need the set of all previous indices for indices in I,
given as I− := {i − 1 | i ∈ I} and define the mappings

PM,RI=r ( · ) := P ( · | ZMI
= z, RI = r)

⃓⃓⃓
z=ZMI
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2.4. Optional projections

with MI := M \ (I ∪ I−), referring to arbitrary but fixed regular versions of the factorized
conditional expectations on the right hand side. The definition guarantees, that no indices
are arising twice in the condition, when M is reduced to MI that everything already
covered by RI is left out in ZM .
For any integrable random variable X we define

EM,RI=r[X] :=
∫︂

X dPM,RI=r .

The mapping PM,RI=r ( · )
⃓⃓
r=RI

then equals PM,RI
( · ).

Definition 2.4.3. Indication process for sets of admissible information
For M ∈ M and t ≥ 0, define Gt-measurable sets

AM
t :=

⋂︂
i∈M

{Ti ≤ t < Ti+1} ∩
⋂︂

i∈M\M

{Ti ≤ t < Ti+1}c

=
⋂︂

i∈M

{Ti ≤ t < Ti+1} ∩
⋂︂

i∈M\M

(Ω \ {Ti ≤ t < Ti+1})

and the stochastic process IM = (IMt )t≥0 by setting

IMt := 1AM
t

, t ≥ 0

for every t ≥ 0 as the indication function for the corresponding set.

The definition of the indicator can be understood as a indication of the information, that
is available, and is therefore somewhat similar to the state indication process, that we
have defined in the standard life insurance model. For every odd natural number, the
condition guarantees, that ZM is the only available information, if the indicator equals one.
Every other piece of information has been already deleted, or has not been introduced
until then.

Remark 2.4.4. Properties of the indication process
The indication process, as defined in Definition 2.4.3, has the following properties:

(1) The process IM is G-adapted, which is directly translated from the Gt-measurability
of the corresponding set AM

t .

(2) The paths of IMt have finitely many jumps on compacts only, which is a direct
consequence of Assumption 2.3.2, and guarantees the existence of left and right limits.
More accurately, the processes can have a most 2 jump, from 0 to 1, once the set M
is the active set, and back to 0, once another random time Ti is happening.

(3) The processes are càdlàg. They already are right-continuous by construction and the
left limits can be represented as IMt− = 1AM

t−
where

AM
t− :=

⋂︂
i∈M

{Ti < t ≤ Ti+1} ∩
⋂︂

i∈M\M

{Ti < t ≤ Ti+1}c
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Chapter 2. Theoretical background

Let us also formulate a result on the interplay between some sets I ∈ N and M ∈
M.

Definition 2.4.5. Previous and subsequent indices
For a set A ⊂ N define A− := {i − 1 | i ∈ A} as the set of previous indices and define
A+ := {i + 1 | i ∈ A} as the set of subsequent indices.

Theorem 2.4.6. Relationships between available information and transition indices
The following two statement are true

(1) Let a set M1 ∈ M be given. Let further a time point s > 0 and a set I ∈ N be given,
such that the following conditions are fulfilled:

(i) The time point s is the corresponding jump time for I, i.e. QI = s.

(ii) The information from set M1 was available pre jump, i.e. IM1
s− = 1.

(iii) Only available information can be deleted, i.e. (IE)− ⊆ M1.

(iv) No information is introduced, if it is already available, i.e. IO ∩ M1 = ∅.

Then we can construct the set M2 ∈ M, that corresponds to the information available
in s, as

M2 =
(︁
M1 \ (IE)−)︁ ∪ IO

and it holds that IM2
s = IM2

QI
= 1.

(2) If M1 ̸= M2 ∈ M are given and there exists an s > 0, such that IM1
s− = 1 and IM2

s = 1,
then the set I ∈ N with QI = s can be constructed as

I =
(︁
M2 \ M1

)︁
∪
(︁
M1 \ M2

)︁+
Proof. The two statements of the theorem are proven one after the other:

(1) Let M1 ∈ M and I ∈ N be given with QI = s and IM1
Q−

I

= 1 according to the
preconditions specified above.

We look at the deletions and introductions of information separately:

If these conditions are fulfilled, we know from the precondition, that Ti = QI for every
i ∈ IE , and Tj < QI ≤ Tj+1 for every j ∈ M1. Therefore, Tj+1 = QI for every index
in both sets. The corresponding information is deleted and remaining are all indices
from M1 \

(︁
IE
)︁−).

For the new introduction we have that every i ∈ IO is an odd index and guarantees,
that Ti = QI . Therefore also Ti ≤ QI < Ti+1 (recall that there are no instant deletions)
and the index i is part of the set M2, where IM2

QI
= 1.

Together, the new set M2 is the union of the indices from these two cases and we get

M2 =
(︁
M1 \

(︁
IE)︁−)︁ ∪ IO .
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(2) Let IM1
s− = 1 and IM2

s = 1 for a s > 0. Then there are three possibilities for an index
j ∈ M1 ∪ M2:

(2.1) j ∈ M1 and j ∈ M2, i.e. Tj < s < Tj+1 by combination of the indicator processes,
i.e the information was available before and is still available. The index j does
not appear in I.

(2.2) j ∈ M1 and j /∈ M2, i.e. Tj < s ≤ Tj+1 and s ≥ Tj+1 by the definition of the
indicator processes.

This means then information Zj is deleted, since by combining the inequalities,
we have Tj+1 = s. The index j + 1 has to be added to the set I.

(2.3) j /∈ M1 and j ∈ M2, i.e. Tj ≤ s < Tj+1 and s ≤ Tj by the definition of the
indicator processes.

This does mean, that information Zj is introduced in time s and the index j
has to be added to the set I.

As a combination of the above cases, we need to construct I as the indices from
M2 \ M1, to consider those that are introduced, but not already there (cases (1) and
(3)) and also the indices (M1 \ M2)+, to consider those that are deleted (case (2)). We
use the subsequent indices for the deletions.

In total we get
I = (M2 \ M1) ∪ (M1 \ M2)+ ,

as stated in the assertion.

Comment 2.4.7. Differences between state-indicators and information-indicators
We are focussing on the information and the jump processes (µI)I do note take into
account what information has been available right before. This is different to the transition
counters (Nij)(i,j)∈T , where the original and the future state are relevant. The above
theorem gives a closer connection to this standard practice, if indicators are considered
together with µI , since the original information is then given and enabling us to calculate
the future information through part (1) of the theorem.

The following proposition provides a decomposition of the abstract conditional expecta-
tions.

Proposition 2.4.8. Reformulation of conditional expectations I
For any integrable random variable ξ and any sets M ∈ M and I ∈ N we almost surely
have

IMt E [ξ | Gt ∨ σ(RI)] = IMt
EM,RI

[︁
IMt ξ

]︁
EM,RI

[︁
IMt
]︁

IMt− E
[︂
ξ
⃓⃓⃓
G−

t ∨ σ(RI)
]︂

= IMt−
EM,RI

[︁
IMt− ξ

]︁
EM,RI

[︁
IMt−
]︁ (2.4.3)
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under the convention that 0
0 := 0. The right hand sides are then indeed well defined, since

whenever the denominator is zero, the numerator is zero as well.
Further, note that σ(RI) equals the trivial sigma-algebra if I = ∅.

Proof. See Proposition 4.2 in [Chr21b].

We also need a slightly different version of this proposition, which does not take into
account the information about a change of the marked point process, but uses, that
no stopping event is happening. We therefore first define the following indicator pro-
cess.

Definition 2.4.9. Stopping event indicator
Define the process J =

(︁
Jt
)︁

t≥0 as the collection of random variables

Jt :=
∑︂
I∈N

µI ({t} × EI) (2.4.4)

for t ≥ 0.
For every t, this is an indication function for any stopping event happening at time t.

Proposition 2.4.10. Reformulation of conditional expectations II
For any integrable random variable ξ and any sets M ∈ M we almost surely have

IMt E [ξ | Gt, Jt = 0] = IMt
EM

[︁
IMt− IMt ξ

]︁
EM

[︁
IMt− IMt

]︁
IMt− E

[︂
ξ
⃓⃓⃓
G−

t , Jt = 0
]︂

= IMt−
EM

[︁
IMt− IMt ξ

]︁
EM

[︁
IMt− IMt

]︁ (2.4.5)

under the convention that 0
0 := 0, which again guarantees for the right hand sides to be

well defined.

Proof. Since this version is not explicitly stated in [Chr21b], we perform the proof, but
only for the first equation and only with the non-completed versions of the sigma-algebras
on the left hand side.

As a first step, note that
IMt− IMt = IMt 1{Jt=0}

since no jump can have happened in t, if the left site equals 1.

Then, start with the right hand site of the equation, that is to show. By application of
(2.4.3) in both nominator and denominator and because of IMt = (IMt )2, we get

IMt
EM

[︂
IMt− IMt ξ

]︂
EM

[︂
IMt− IMt

]︂ = IMt
EM

[︂
IMt 1{Jt=0} ξ

]︂
EM

[︂
IMt 1{Jt=0}

]︂ =
IMt

EM[IMt 1{Jt=0} ξ]
EM[IMt ]

IMt
EM[IMt 1{Jt=0}]

EM[IMt ]
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2.4.8=
IMt E

[︂
1{Jt=0} ξ

⃓⃓⃓
Gt

]︂
IMt E

[︂
1{Jt=0}

⃓⃓⃓
Gt

]︂ = IMt
E
[︂
1{Jt=0} ξ

⃓⃓⃓
Gt

]︂
E
[︂
1{Jt=0}

⃓⃓⃓
Gt

]︂
almost surely. Whenever we have EM [IMt ] = 0, we also have EM [IMt 1{Jt=0}] = 0 and
EM [IMt 1{Jt=0} ξ] = 0, so the expansion of the fraction can be done with the convention
0
0 := 0. Now, we need that

Gt ∩ {Jt = k} =
(︁
Gt ∨ σ(Jt)

)︁
∩ {Jt = k} ⊆

(︁
Gt ∨ σ(Jt)

)︁
for every t ≥ 0 and k ∈ {0, 1}.

This implies, that for any G ∈ Gt we get

E

⎡⎣1G 1{Jt=k}
E
[︂
ξ 1{Jt=0}

⃓⃓⃓
Gt

]︂
E
[︂
1{Jt=k}

⃓⃓⃓
Gt

]︂
⎤⎦ = E

⎡⎣E
⎡⎣1G 1{Jt=k}

E
[︂
ξ 1{Jt=k}

⃓⃓⃓
Gt

]︂
E
[︂
1{Jt=k}

⃓⃓⃓
Gt

]︂
⃓⃓⃓⃓
⃓⃓Gt

⎤⎦⎤⎦
= E

⎡⎣1G

E
[︂
ξ 1{Jt=k}

⃓⃓⃓
Gt

]︂
E
[︂
1{Jt=k}

⃓⃓⃓
Gt

]︂ E [︂1{Jt=k}

⃓⃓⃓
Gt

]︂⎤⎦
= E

[︂
1G E

[︂
ξ 1{Jt=k}

⃓⃓⃓
Gt

]︂]︂
= E

[︂
E
[︂
1G 1{Jt=k} ξ

⃓⃓⃓
Gt

]︂]︂
= E

[︂
1G 1{Jt=k} ξ

]︂
= E

[︂
E
[︂
1G 1{Jt=k} ξ

⃓⃓⃓
Gt ∨ σ(Jt)

]︂]︂
= E

[︂
1G 1{Jt=k} E [ξ | Gt ∨ σ(Jt)]

]︂
almost surely. Because of the theorem of Radon-Nikodym and the definition of the
conditional expectation, we can follow that

1{Jt=k}
E
[︂
ξ 1{Jt=k}

⃓⃓⃓
Gt

]︂
E
[︂
1{Jt=k}

⃓⃓⃓
Gt

]︂ = 1{Jt=k} E [ξ | Gt ∨ σ(Jt)]

almost surely, which means that

E
[︂
ξ 1{Jt=0}

⃓⃓⃓
Gt]
]︂

E
[︂
1{Jt=0}

⃓⃓⃓
Gt

]︂
is a version of

E [ξ | Gt, Jt = 0] .

A combination of both equations gives the assertion, since we then have

IMt
EM

[︂
IMt− IMt ξ

]︂
EM

[︂
IMt− IMt

]︂ = IMt
E
[︂
1{Jt=0} ξ

⃓⃓⃓
Gt

]︂
E
[︂
1{Jt=0}

⃓⃓⃓
Gt

]︂ = IMt E [ξ | Gt, Jt = 0]

almost surely for every M ∈ M and t ≥ 0.
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Lemma 2.4.11. Properties of the conditional expectation
Let M ∈ M, I ∈ N and r ∈ [0, ∞) × EI .
For each càdlàg process X that satisfies condition (2.3.2), the stochastic processes, defined
by

t ↦→ EM,RI

[︂
IMt Xt

]︂
t ↦→ EM,RI=r

[︂
IMt Xt

]︂
have càdlàg paths.
Moreover, their left limits can be obtained by replacing IMt Xt by IMt−Xt− .

Proof. See Lemma 4.3 in [Chr21b]. The proof is not stated explicitly and only the idea is
given.

Proposition 2.4.12. Finite supremum of the standardized indicator
Under the conventions 0

0 := 0 and 1
0 := +∞, for each M ∈ M we almost surely have

sup
t∈[0,∞)

IMt
EM

[︁
IMt
]︁ < ∞ .

Proof. See Proposition 4.4 in [Chr21b].

Theorem 2.4.1, about the existence of the projection with respect to G and its properties,
can now be proven.

Proof. The proof is given in [Chr21b], but since it is constructive, the candidate for the
optional projection is important and repeated here, but we will dispense with the proof.

Define
Yt :=

∑︂
M∈M

IMt
EM

[︁
IMt Xt

]︁
EM

[︁
IMt
]︁ , t ≥ 0

where at most a countable number of conditional expectations are involved, and the
corresponding regular versions are simultaneously unique up to evanescence.

The process XG
t is then indeed almost surely equal to the process Yt. It holds

Yt =
∑︂

M∈M
IMt
EM

[︁
IMt Xt

]︁
EM

[︁
IMt
]︁ =

∑︂
M∈M

IMt E [Xt | Gt] = E [Xt | Gt] (2.4.6)

almost surely, using equation (2.4.3).

For the whole proof, and especially the finite variation on compacts, see the proof of
Theorem 4.1 in [Chr21b].
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Comment 2.4.13. On the decomposition of the optional projection
The fractions

EM

[︁
IMt Xt

]︁
EM

[︁
IMt
]︁

are types of state-wise reserves and have been named non-classic state-wise reserves in the
PhD dissertation [Fur20], where the paper [CF21] is a part of.
They are considered next to classical state-wise reserves and an application in Danish
retirement (with observation of health status upon retirement) is discussed.

2.5. Infinitesimal theory for marked point processes

In this section we recap the results of [Chr21b] about the existence and explicit repre-
sentations of infinitesimal compensators for a large class of incrementally adapted jump
processes, including the counting process of the form

t ↦−→ µI([0, t] × B)

for I ∈ N and B ∈ EI .

Definition 2.5.1. Infinitesimal compensator
Continuing to use the convention 0

0 := 0, define

νI ([0, t] × B) :=
∑︂

M∈M

∫︂
(0,t]×B

IMu−
PM,RI=(u,e)

(︁
AM

u−
)︁

PM

(︁
AM

u−
)︁ PRI

M (d(u, e))

ρI ([0, t] × B) :=
∑︂

M∈M

∫︂
(0,t]×B

IMu
PM,RI=(u,e)

(︁
AM

u

)︁
PM

(︁
AM

u

)︁ PRI
M (d(u, e))

for t ≥ 0, B ∈ EI and I ∈ N .

Proposition 2.5.2. Extension to random measures
For each I ∈ N , the mappings νI and ρI can be uniquely extended to random measures
on ([0, ∞) × EI , B([0, ∞) × EI)).

Proof. See the proof of Proposition 5.1 in [Chr21b].

Definition 2.5.3. Short form notation
Introduce the following short notation

F • µ((0, t] × B) :=
∫︂

(0,t]×B

F (u, e) µ(d(u, e))

for any random measure µ and an integrable random function F .
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Let us now state the main theorem of this section, where the compensators in context of
the special marked point processes are given:

Theorem 2.5.4. IF- and IB-compensator for the special MPPs
For every I ∈ N , let the mapping

(t, e, ω) ↦−→ FI(t, e)(ω)

be jointly measurable and let

E

⎡⎢⎣ ∑︂
I∈N

∫︂
(0,t]×EI

|FI(u, e)| µI(d(u, e))

⎤⎥⎦ < ∞ . (2.5.1)

(1) If FI(t, e) is G−
t -measurable for each (t, e), then for each B ∈ EI the jump process

t ↦−→ FI • µI((0, t] × B)

has the IF-compensator
t ↦−→ FI • νI((0, t] × B) .

(2) If FI(t, e) is Gt-measurable for each (t, e), then for each B ∈ EI the jump process

t ↦−→ FI • µI((0, t] × B)

has the IB-compensator
t ↦−→ FI • ρI((0, t] × B) .

By choosing FI = 1 the above statement yields that in particular νI is the IF-compensator
of µI and that ρI is the IB-compensator of µI .

The proof of this theorem now follows in several steps. We start with an auxiliary lemma,
where the existence of the integrals in the representation of the compensators is guaranteed,
by only focussing on the integrator.

Lemma 2.5.5. Finiteness of the compensator integrals
For every M ∈ M and t ≥ 0 we almost surely have∑︂

I∈N

∫︂
[0,t]×EI

PRI
M (d(u, e)) < ∞ . (2.5.2)

Proof. We have that∑︂
I∈N

∫︂
[0,t]×EI

PRI
M (d(u, e)) =

∑︂
I∈N

∫︂
[0,t]×EI

P ((QI , ZI) ∈ d(u, e) | ZM )

=
∑︂
I∈N

P (QI ∈ [0, t], ZI ∈ EI | ZM )
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2.5. Infinitesimal theory for marked point processes

=
∑︂
I∈N

E
[︂
1{QI∈[0,t]} 1{ZI∈EI}

⃓⃓⃓
ZM

]︂
(i)=
∑︂
I∈N

E [µI([0, t] × EI) | ZM ]

=
∑︂
I∈N

EM [µI([0, t] × EI)]

(ii)= EM

[︄ ∑︂
I∈N

µI([0, t] × EI)
]︄

(iii)
≤ EM

[︄ ∞∑︂
i=1

1{Ti≤t}

]︄
(iv)
< ∞

almost surely holds for each M ∈ M and t ≥ 0.

We are using the definition of RI = (QI , ZI), and rewrite the conditional distribution
according to its definition. In step (i), the definition of QI is used and is lead back to the
counting process µI . In step (ii) the monotone convergence theorem is applied. In step
(iii), it is used that the definition of µI needs (Ti)i∈I to coincide and fulfil Ti ≤ t. The total
number of summands can be increased by not having the restriction about coincidence. In
case of pairwise non-coinciding Ti ≤ t (for i ∈ I) , the number of summands is the same.
The last step (iv) is a direct implication of Assumption 2.3.2.

A few other steps are necessary to finally do the proof to Theorem 2.5.4. We will also
recap the intermediate steps, since they are useful later on.

Proposition 2.5.6. Explicit formulas for IF- and IB-compensators
Let the preconditions on measurability and integrability of Theorem 2.5.4 be true.
Then for each t > 0 and B ∈ EI we almost surely have

lim
n→∞

∑︂
τ t

n

E [FI • µI((tk, tk+1] × B) | Gtk
] = GI • νI

(︁
(0, t] × B

)︁
(2.5.3)

for (τn)n∈N ∈ T([0, t]), with

GI(u, e) :=
∑︂

M∈M
IMu−

EM,RI=(u,e)
[︂
IMu− FI(u, e)

]︂
EM,RI=(u,e)

[︂
IMu−

]︂
and similarly we almost surely have

lim
n→∞

∑︂
τ t

n

E
[︁
FI • µI ((tk, tk+1] × B)

⃓⃓
Gtk+1

]︁
= BI • ρI

(︁
(0, t] × B

)︁
(2.5.4)

for (τn)n∈N ∈ T([0, t]), with

BI(u, e) :=
∑︂

M∈M
IMu
EM,RI=(u,e)

[︂
IMu FI(u, e)

]︂
EM,RI=(u,e)[IMu ] .
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Proof. See Proposition 5.4 in [Chr21b].

Proposition 2.5.7. Infinitesimal predictability of IF- and IB-compensators
Given the preconditions of Theorem 2.5.4, for each t > 0 and B ∈ EI we almost surely
have

lim
n→∞

∑︂
τ t

n

E [GI • νI((tk, tk+1] × B | Gtk
] = GI • νI((0, t] × B) (2.5.5)

as well as

lim
n→∞

∑︂
τ t

n

E
[︁
BI • ρI((tk, tk+1] × B)

⃓⃓
Gtk+1

]︁
= BI • ρI((0, t] × B) (2.5.6)

for any suitable increasing sequence of partitions (τn)n∈N ∈ T([0, T ]).

Proof. See Proposition 5.5 in [Chr21b].

Although the proposition has the purpose to help to show Theorem 2.5.4 and therefore
uses the special structure of the GI , it is not necessary to assume it. The argument is
rather, that the special GI is G− adapted, which could also be a direct precondition. We
will make use of this and formulate an additional corollary.

Corollary 2.5.8. Zero expectation of IF- and IB-martingales
Let the preconditions of Theorem 2.5.4 be fulfilled.

(1) If FI(t, e) is G−
t -measurable for each (t, e), then for each B ∈ EI and each t ≥ 0 we

have
E [FI • µI ((0, t] × B)] = E [FI • νI ((0, t] × B)] .

(2) If FI(t, e) is Gt -measurable for each (t, e), then for each B ∈ EI and for each t ≥ 0 we
have

E [FI • µI ((0, t] × B)] = E [FI • ρI ((0, t] × B)] .

Proof. The proof will only be performed for (1), as the other case is analogous.

Start with the following auxiliary result. By similar arguments, as in the proof of equation
(2.4.3), and by using that FI(t, e) is G−

t -measurable for each (t, e), we get

GI(t, e) =
∑︂

M∈M
IMt−

EM,RI=(t,e)
[︂
IMt− FI(t, e)

]︂
EM,RI=(t,e)

[︂
IMt−

]︂
=

∑︂
M∈M

IMt− FI(t, e)
EM,RI=(t,e)

[︂
IMt−

]︂
EM,RI=(t,e)

[︂
IMt−

]︂
=

∑︂
M∈M

IMt− FI(t, e)
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2.5. Infinitesimal theory for marked point processes

= FI(t, e) a.s. ,

i.e. we have that GI(t, e) = FI(t, e) almost surely.

By application of Proposition 2.5.6, and by directly using the above property, we get that

lim
n→∞

∑︂
τ t

n

E
[︁
FI • µI

(︁
(tk, tk+1] × B

)︁ ⃓⃓
Gtk

]︁
= GI • νI((0, t] × B)

= FI • νI((0, t] × B)
(2.5.7)

almost surely for any
(︁
τ t

n

)︁
n∈N ∈ T([0, t]).

Further, without loss of generality, we suppose that F in a non-negative mapping (which
can always be achieved by considering the decomposition of F in a positive and a negative
part as F = F + − F −).

If we apply the expectation on both sides of (2.5.7), we get:

E [FI • νI((0, t] × B)](2.5.7)= E

⎡⎣ lim
n→∞

∑︂
τ t

n

E [FI • µI((tk, tk+1] × B) | Gtk
]

⎤⎦
(i)= lim

n→∞
E

⎡⎣∑︂
τ t

n

E [FI • µI((tk, tk+1] × B) | Gtk
]

⎤⎦
= lim

n→∞

∑︂
τ t

n

E
[︁
E
[︁
FI • µI

(︁
(tk, tk+1] × B

)︁ ⃓⃓
Gtk

]︁]︁

= lim
n→∞

E

⎡⎣∑︂
τ t

n

FI • µI

(︁
(tk, tk+1] × B

)︁⎤⎦
= lim

n→∞

∑︂
τ t

n

E
[︁
FI • µI

(︁
(tk, tk+1] × B

)︁]︁
(i)= E

⎡⎣ lim
n→∞

∑︂
τ t

n

FI • µI

(︁
(tk, tk+1] × B

)︁⎤⎦
= E

[︁
FI • µI

(︁
(0, t] × B

)︁]︁
,

where we applied the dominated convergence theorem in (i) to be able to exchange the
limit and the expectation.

For each compact interval [0, t] and almost each ω ∈ Ω, we define the set

Mt(ω) :=
{︂

M ∈ M
⃓⃓⃓
IMu (ω) = 1 for at least one u ∈ [0, t]

}︂
(2.5.8)

which is finite because of (2.3.2). For the first application of the dominated convergence
theorem we have to add some details and we therefore use the rewriting

X̃n : =
∑︂
τ t

n

E [FI • µI((tk, tk+1] × B) | Gtk
]
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=
∑︂
τ t

n

∑︂
M∈Mt

IMtk
E [FI • µI((tk, tk+1] × B) | Gtk

]

=
∑︂
τ t

n

∑︂
M∈Mt

IMtk

EM

[︁
IMtk

]︁ EM

[︂
IMtk

FI • µI((tk, tk+1] × B)
]︂

,

where the Proposition 2.4.12 and the almost sure finiteness of Mt, together with

0 ≤
∑︂
τ t

n

EM

[︂
IMtk

FI • µI((tk, tk+1] × B)
]︂

≤ EM [FI • µI((0, t] × B)]

gives us the integrable majorant, as it is the precondition of Theorem 2.5.4 and we can
therefore apply the dominated convergence theorem.

The proof of Theorem 2.5.4 is then essentially a combination of the two previous proposi-
tions.

Proof. See Theorem 5.2 in [Chr21b].

We will still recap some major steps of the proof, but we are restricting the explicit
formulation on the IF-parts of the statements.

The IF-predictability of the compensators follows from the second proposition, since we
almost surely have

lim
n→∞

∑︂
τ t

n

E [GI • νI((0, tk+1] × B) − GI • νI((0, tk] × B) | Gtk
]

= lim
n→∞

∑︂
τ t

n

E [GI • νI((tk, tk+1] × B) | Gtk
]

2.5.7= GI • νI((0, t] × B)
= GI • νI((0, t] × B) − GI • νI((0, 0] × B) .

To show the IF-martingale property, we look at the following differences, given by the
combination of the two propositions (used in the special case of G = F a.s.):

lim
n→∞

∑︂
τ t

n

E [FI • µI((tk, tk+1] × B) − GI • νI((tk, tk+1] × B) | Gtk
]

= lim
n→∞

∑︂
τ t

n

E [FI • µI((tk, tk+1] × B) | Gtk
] − lim

n→∞

∑︂
τ t

n

E [GI • νI((tk, tk+1] × B) | Gtk
]

= GI • νI((0, t] × B) − GI • νI((0, t] × B)
= 0

We will now apply these concepts to random variables and then stochastic processes.
It is our goal to keep a duality between the standard case, where a filtered probability
space is the foundation, and the new non-monotone case. Then, we will be able to
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2.5. Infinitesimal theory for marked point processes

compare the derived representations with each other and use both of them in the insurance
theory.

Let us begin with the standard case and the existence of filtration F:

Definition 2.5.9. Classical compensator with respect to F
For every I ∈ N , let λI be the classical compensator of µI with respect to F (from now on
also called F-compensator).
The compensator of a marked point process with respect to a filtration exists under the
conditions we specified. See for example Jacod [Jac75], Karr [Kar91] or Jacobsen [Jac05]
for general results, and Crépey [Cré13] for a similar construction for a compensator with
density.

As a direct consequence of the martingale representation theorem, we get the following
result:

Theorem 2.5.10. Martingale representation theorem – Version 1
Let ξ be an integrable random variable. The process

XF
t := E [ξ | Ft]

is a martingale with respect to the filtration F and can be represented as

XF
t = XF

0 +
∑︂
I∈N

∫︂
(0,t]×EI

FI(u, e) (µI − λI) (d(u, e)) ,

where the mapping
(u, e, ω) ↦−→ FI(u, e)(ω)

is jointly measurable in (u, e, ω) and the mapping

ω ↦−→ FI(u, e)(ω)

is Fu−-measurable (i.e. predictable) for each (u, e).

Proof. For reference see Karr [Kar91] or Elliott [Ell76].

This result is now extended to the non-monotone case:

Theorem 2.5.11. Infinitesimal martingale representation theorem – Version 1
Let ξ be an integrable random variable. Then, for the process XG

t = E [ξ | Gt], the equation

XG
t = XG

0 +
∑︂
I∈N

∫︂
(0,t]×EI

GI(u−, u, e) (µI − νI)(d(u, e))

+
∑︂
I∈N

∫︂
(0,t]×EI

GI(u , u, e) (ρI − µI)(d(u, e))
(2.5.9)
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almost surely holds for each t ≥ 0 with

GI(s, u, e) :=
∑︂

M∈M
IMs

⎛⎝EM,RI=(u,e)
[︂
IMs ξ

]︂
EM,RI=(u,e)[IMs ] −

EM

[︂
IMu−IMu ξ

]︂
EM

[︂
IMu−IMu

]︂
⎞⎠ . (2.5.10)

For each I ∈ N and e ∈ EI , the process u ↦→ G(u−, u, e) is G−-adapted and the process
u ↦→ G(u, u, e) is G-adapted.

If the mappings FI(u, e) = GI(u−, u, e) and FI(u, e) = GI(u, u, e) satisfy the integrability
condition in Theorem 2.5.4, then the representation (2.5.9) is the sum of IF-martingales
and IB-martingales with respect to G.

Proof. See proof of Theorem 6.1 in Christiansen [Chr21b].

It is now the goal to extend the results from the previous section to optional projections
and we again start with the case of a filtration F.

Theorem 2.5.12. Martingale representation theorem – Version 2
Suppose that X is a càdlàg process that satisfies condition (2.4.1).
Let furthermore Xt − X0 be Ft -measurable for each t ≥ 0. Then the optional projection
of X with respect to F, given as

XF
t = E [Xt | Ft]

can be represented as

dXF
t = dXt +

∑︂
I∈N

∫︂
EI

FI(t, e) (µI − λI)(dt × de)

for random mappings FI(t, e) that are Ft−-measurable processes for each (t, e).

Proof. Since this is a straightforward consequence of the previous Theorem 2.5.10, we give
a sketch of the proof.
Under usage of the Ft-measurability of Xt − X0, we can express

E [X0 | Ft] − E [X0 | F0]
= E [Xt | Ft] − E [X0 | F0] − E [Xt − X0 | Ft]
= E [Xt | Ft] − E [X0 | F0] − (Xt − X0)

⇔ XF
t − XF

0 = (Xt − X0) + E [X0 | Ft] − E [X0 | F0]

and then use the martingale representation Theorem 2.5.10 with random variable ξ = X0.

We arrive at the following equation, where rearranging of the summands yields the desired
representation (here in integral representation):

E [Xt | Ft] − E [X0 | F0] = Xt − X0 +
∑︂
I∈N

∫︂
(0,t]×EI

FI(u, e)
(︁
µI − λI

)︁
(d(u, e))
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We will formulate an extension to the previous result in the non-monotone case, where
two different variants are derivable, depending on the use of a forward- or backward-
compensator:

Theorem 2.5.13. Infinitesimal martingale representation theorem – Version 2
Let X be a càdlàg process that satisfies condition (2.4.1)

(a) If X has an IB-compensator XIB with respect to G, then

XG
t − XG

0 = XIB
t +

∑︂
I∈N

∫︂
(0,t]×EI

GI(u−, u, e)
(︁
µI − νI

)︁
(d(u, e))

+
∑︂
I∈N

∫︂
(0,t]×EI

GI(u , u, e)
(︁
ρI − µI

)︁
(d(u, e))

almost surely holds with

GI(s, u, e) :=
∑︂

M∈M
IMs

⎛⎝EM,RI=(u,e)
[︂
IMs Xu−

]︂
EM,RI=(u,e)[IMs ] −

EM

[︂
IMu−IMu Xu−

]︂
EM

[︂
IMu−IMu

]︂
⎞⎠ . (2.5.11)

(b) If X has an IF-compensator XIF with respect to G, then

XG
t − XG

0 = XIF
t +

∑︂
I∈N

∫︂
(0,t]×EI

GI(u−, u, e)
(︁
µI − νI

)︁
(d(u, e))

+
∑︂
I∈N

∫︂
(0,t]×EI

GI(u , u, e)
(︁
ρI − µI

)︁
(d(u, e))

almost surely holds with

GI(s, u, e) :=
∑︂

M∈M
IMs

⎛⎝EM,RI=(u,e)
[︂
IMs Xu

]︂
EM,RI=(u,e)[IMs ] −

EM

[︂
IMu−IMu Xu

]︂
EM

[︂
IMu−IMu

]︂
⎞⎠ . (2.5.12)

Further, the mappings GI(u−, u, e) are G−
u -measurable and the mappings GI(u , u, e) are

Gu-measurable.

Therefore, both integrals actually describe IF-martingales and IB-martingales with respect
to G, if FI(u, e) = GI(u−, u, e) and FI(u, e) = GI(u, u, e) satisfy the integrability condition
(2.5.1) in Theorem 2.5.4.

Corollary 2.5.14. Simplifications in the case G = F
In case of G = F, we have νI = λI , ρI = µI and X = XIB and the Theorem 2.5.13 can
again be seen as a generalization of Theorem 2.5.12 in the filtration case.

Take note, that even in the case G ⊊ F we may still have that X = XIB or X = XIF. We
will later see this in the context of life-insurance mathematics, where the G−-measurability
of the payments will guarantee this in case of the IF-compensator.
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The situation G = F means, that G is now also the sigma-algebra of full available
information. It can generally be constructed by setting the deletion times to ∞. For a
special construction in the case of a state process from classical life insurance theory, see
Furrer [Fur20] (Section 2.2.2).

Proof. We use the existing results of Proposition 2.5.6 and Proposition 2.5.7. For t ≥ 0,
I ∈ N and B ∈ EI we almost surely have

FI • ρI

(︁
(0, t] × B

)︁(2.5.5)= lim
n→∞

∑︂
τ t

n

E
[︁
FI • ρI ((tk, tk+1] × B)

⃓⃓
Gtk+1

]︁
(2.5.3)= lim

n→∞

∑︂
τ t

n

E
[︁
FI • µI((tk, tk+1] × B)

⃓⃓
Gtk+1

]︁
F=G= lim

n→∞

∑︂
τ t

n

FI • µI((tk, tk+1] × B)

= FI • µI((0, t] × B)

for FI(u, e) = GI(u, u, e)) and (τn)n∈N ∈ T([0, t]).

Further, we almost surely have

FI • νI

(︁
(0, t] × B

)︁(2.5.6)= lim
n→∞

∑︂
τ t

n

E [FI • νI((tk, tk+1] × B) | Gtk
]

(2.5.4)= lim
n→∞

∑︂
τ t

n

E [FI • µI((tk, tk+1] × B) | Gtk
]

F=G= lim
n→∞

∑︂
τ t

n

E [FI • µI((tk, tk+1] × B) | Ftk
]

= FI • λI((0, t] × B)

for FI(u, e) = GI(u−, u, e) and (τn)n∈N ∈ T([0, t]), since the definition of the F-compensator
λI also implies that

λI((0, t] × B) = lim
n→∞

∑︂
τ t

n

E [µI((tk, tk+1] × B) | Ftk
] .

For the IB-compensator, we use the definition and F = G to get

XIB
t = lim

n→∞

∑︂
τ t

n

E
[︁
Xtk+1 − Xtk

⃓⃓
Ftk+1

]︁
= lim

n→∞

∑︂
τ t

n

(︁
Xtk+1 − Xtk

)︁
= Xt − X0 .

The IF- and IB-martingale versions have different representations of (GI)I , and to get the
same simplified formula, a part from the GI has to be added to the IF-compensator, such
that X itself also appears in this representation.

Use the representation of GI , and introduce X−, then ∆X = X −X− arise in an additional
summand. Together with the definition of the IF-compensator we get

lim
n→∞

∑︂
τ t

n

E
[︁
Xtk+1 − Xtk

⃓⃓
Ftk

]︁
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+
∑︂
I∈N

∫︂
(0,t]×EI

∑︂
M∈M

IMu−

⎛⎝EM,RI=(u,e)
[︂
IMu−∆Xu

]︂
EM,RI=(u,e)

[︂
IMu−

]︂ −
EM

[︂
IMu−IMu ∆Xu

]︂
EM

[︂
IMu−IMu

]︂
⎞⎠(µI − λI)(d(u, e))

= lim
n→∞

∑︂
τ t

n

(︄
E
[︁
Xtk+1 − Xtk

⃓⃓
Ftk

]︁

+
∑︂
I∈N

∫︂
(tk,tk+1]×EI

(E [∆Xu | Fu− , RI = (u, e)] − E [∆Xu | Fu− , Jt = 0])(µI −λI)(d(u, e))
)︄

= lim
n→∞

∑︂
τ t

n

(︁
Xtk+1 − Xtk

)︁
= Xt − X0 ,

by using, that the conditional expectations are compensated by exchanging the prediction
with the actual changes, and thus arriving at the actual changes all along. The details are
technical and will not be formulated.

Is can be seen, that we do not actually have XIF = X, what would be equivalent to the
other case. In total, we achieve the same representation in both cases and the theorem is
indeed a generalization of generalization of Theorem 2.5.12.

Note, that assertion follows more directly when using FI(u, e) = 1, and then we have
ρ = µ and ν = λ. The Theorem 2.5.13 can therefore be seen as a more general results
in comparison to Theorem 2.5.12, since we have now seen, how the parts of the formula
simplify.

We will now recap the idea of the proof to the theorem:

Proof. For details, see Theorem 7.1 in [Chr21b].

Use the following additive decomposition

E [Xt | Gt] − E [X0 | G0] = lim
n→∞

∑︂
τ t

n

(︂
E
[︁
Xtk+1

⃓⃓
Gtk+1

]︁
− E [Xtk

| Gtk
]
)︂

= lim
n→∞

∑︂
τ t

n

E
[︁
Xtk+1 − Xtk

⃓⃓
Gtk+1

]︁
+ lim

n→∞

∑︂
τ t

n

(︂
E
[︁
Xtk

⃓⃓
Gtk+1

]︁
− E [Xtk

| Gtk
]
)︂

= XIB
t + lim

n→∞

∑︂
τ t

n

(︂
E
[︁
Xtk

⃓⃓
Gtk+1

]︁
− E [Xtk

| Gtk
]
)︂

.

We can now use the Theorem 2.5.11 of the previous section for each summand of the form

E
[︁
Xtk

⃓⃓
Gtk+1

]︁
− E [Xtk

| Gtk
]

with ξ = Xtk
and on each interval (tk, tk+1].
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Because of the càdlàg property of X, by applying the dominated convergence theorem
path-wise for almost each ω ∈ Ω, we end up with the assertion. To give a little more
details on the piecewise construction, we have

E [Xt | Gt] − E [X0 | G0]

= XIB
t + lim

n→∞

∑︂
τ t

n

⎛⎜⎝∑︂
I∈N

∫︂
(tk,tk+1]×EI

GI(u−, u, e) (µI − νI)(d(u, e))

+
∑︂
I∈N

∫︂
(tk,tk+1]×EI

GI(u, u, e) (ρI − µI)(d(u, e))

⎞⎟⎠
where the GI differ for each summand, but it holds

GI(s, u, e) =
∑︂

M∈M
IMs

⎛⎝EM,RI=(u,e)
[︂
IMs Xtk

]︂
EM,RI=(u,e)[IMs ] −

EM

[︂
IMu−IMu Xtk

]︂
EM

[︂
IMu−IMu

]︂
⎞⎠

for s ∈ (tk, tk+1].
The dominated convergence theorem is then applied, to end up with the desired represen-
tation, with the representation of GI , then with Xs− instead of Xtk

.

For part (b), we can use the following alternative decomposition

E [Xt | Gt] − E [X0 | G0] = lim
n→∞

∑︂
τ t

n

(︂
E
[︁
Xtk+1

⃓⃓
Gtk+1

]︁
− E [Xtk

| Gtk
]
)︂

= lim
n→∞

∑︂
τ t

n

E
[︁
Xtk+1 − Xtk

⃓⃓
Gtk

]︁
+ lim

n→∞

∑︂
τ t

n

(︂
E
[︁
Xtk+1

⃓⃓
Gtk+1

]︁
− E

[︁
Xtk+1

⃓⃓
Gtk

]︁ )︂
= XIF

t + lim
n→∞

∑︂
τ t

n

(︂
E
[︁
Xtk+1

⃓⃓
Gtk+1

]︁
− E

[︁
Xtk+1

⃓⃓
Gtk

]︁ )︂

where we can proceed similarly with ξ = Xtk+1 , and the limit application while using the
dominated convergence theorem results in the difference representation of GI , where Xu−

is replaced by Xu, since now the right end of each interval is used.

The measurability conditions for GI(u−, u, e) and GI(u, u, e) can once again be shown by
using the equation (2.4.3) and will not be repeated again.
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2.6. Notational remarks for classic insurance contract

In the beginning of this chapter, we introduced a standard notation for life insurance
modelling, where the focus lied on insurance states and the transitions between these
states. Now that we have introduced the marked point process theory of Christiansen
[Chr21b], we have learned of a different modelling, with a focus on information states and
information introduction and deletion.
It remains to be seen, how a general contract can be cast in the necessary structure to
fulfil the conditions needed for the marked point process theory, although it is intuitive,
that a time point of changing insurance state also is a piece of information. This is the
main target of this section and will also provide the basics for some of the examples in
a later chapter, where the construction will not be repeated and is assumed to be done
analogously to here. Similar constructions are done in Christiansen and Furrer [CF21],
where the non-monotone theory is applied to an disability example with retirement, and in
Milbrodt and Helbig [MH99] for a general connection between jump processes and marked
point processes with a focus on the underlying mathematical details.

Remember that we are using a state space S and the development of the policy as the
current state of the insured as the process S : [0, ∞) → S from Definition 2.1.1 as a
foundation for the reformulation.
In addition to the general model, we will use the following example with state space S =
{a, i, l, d}, where lapse (l) and death (d) are absorbing states, and recovery/reactivation
from state invalid (i) is possible, compare also Figure 2.1.6.

The following Figure 2.2 provides an exemplary path of the state process for an insured
person.

t
10 20 35

a
i

d

l

0

S

Figure 2.2.: An exemplary path of the insurance state process

The pattern of states in Figure 2.2 is given as a, i, a, d with a total of 3 transitions, a
start in a, and a remaining in the absorbing state d.

We will now set the sequence (Ti, Zi)i∈NO , where the focus is on the subsets of the odd
indices. Set T1 = 0 and use the following recursion for the rest. Let

T2i+1 := inf
{︁
t ∈ (T2i−1, ∞)

⃓⃓
St ̸= ST2i−1

}︁
, for i ∈ N ,
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where we set inf ∅ = ∞, if no further jump happens. The recursion continues with
T2j+1 = ∞ for all j ∈ N≥2i+1 if T2i−1 = ∞ for an i ∈ NO.

The remaining definitions of the marks now depends on what the underlying model is
supposed to be:
In the Markov model, i.e. when S fulfils the Markov property, only the current state is of
importance, and therefore the previous jumps, as well as the times of the jumps, are not
encoded into the marks Z.
In the Semi-Markov model, the current state and the time since the last state change are
of importance. Therefore, the information about previous jumps should be deleted, but
the time of the current jump should be part of the information Z.
In a full information setting everything is getting saved, i.e. we then have Ft = σ(Ss :
s ≤ t).

Depending on three models, the marked point process has a different structure and we
want to investigate this a little further for the example.

In the last model we do not delete information. Therefore, we set T2i = ∞, for i ∈ N. By
joining together the time and the state of each jump, i.e. we will have and Z2i−1 = Z2i =
(T2i−1, ST2i−1) for i ∈ N, it is then also motivated to set E = R≥0 × S to include the above
tuples. The structure of the filtration F corresponds to the natural filtration of the state
process.

For our exemplary sequence, we get:

i Ti Zi Information
1 0 (0, a) a at the beginning in 0
2 ∞ (0, a) no deletion
3 10 (10, i) i entered at time 10
4 ∞ (10, i) no deletion
5 20 (20, a) a entered at time 20
6 ∞ (20, a) no deletion
7 35 (35, d) d entered at time 35
8 ∞ (35, d) no deletion

Table 2.1.: Exemplary sequence of a life insurance state – Full information

In this current setup, the insurance states are not unique, i.e. the re-entering of state
a is allowed. This could be changed, by adding a second component to the setup, that
counts the number of entries in each state. Then, the new state space would actually be
S̃ = S × N. Then, the combination of states would be unique.

By not considering the deletion of information, the indicator processes IMt will only be
able to take value 1, if the set M is extended with each new state entry. In this example,
we would have, that I{1}

t = 1 for t ∈ [0, 10), I{1,3}
t = 1 for t ∈ [10, 20) and so on but the

indicator for just M = {3} is always zero. Therefore, every relevant set M has to have
the form M = NO

≤k for k ∈ NO. Similarly, the set I ∈ N can only have the representation
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I = {l} for l ∈ NO. By Theorem 2.4.6 we have that for M = NO
≤k and I = {k + 2}, the

next set would be given as M̃ = NO
≤k+2.

This also explains, why the re-entering of state a is different, and how the information states
are different from the insurance states. The indicator function also contains the information
about the previous jumps, i.e. the whole history of the process.

In the Markov model, we assume that the process S fulfils the Markov assumption. We
can set T2i = T2i+1, for i ∈ N, as the information about the previous state is deleted, when
a new state is entered. Further we have Z2i−1 = Z2i = ST2i−1 for i ∈ N and we set E = S.
The information structures are then given by Ft = σ(Sr, 0 ≤ r ≤ t) and Gt = σ(St). Note,
that since S actually fulfils the Markov property, the conditional expectations of the future
payments with respect to this σ-algebras are equal.

For our exemplary sequence, we then have:

i Ti Zi Information
1 0 a a at the beginning in 0
2 10 a deletion when entering i

3 10 i i entered at time 10
4 20 i deletion when entering a

5 20 a a entered at time 20
6 35 a deletion when entering d

7 35 d d entered at time 35
8 ∞ d no deletion

Table 2.2.: Exemplary sequence of a life insurance state – Markov information

We refrain from formulating the semi-Markov case as well. The time and state of the
jumps would be included in the marks, and deletions of the previous information have to
take place, which is why the semi-Markov case follows as a combination from the specified
models.

The as-if Markov model, introduced by Christiansen [Chr21a], which calculates reserves
with respect to Markov information, even if the process does not fulfil the Markov
assumption, can not be included in this theory. A consistent definition of the marks is not
possible, as the full information includes both time and state of the insured, compare the
first example, and the Markov information only includes the current state, compare the
second example. This would have to be modelled in a way, where the family of σ-algebras
G does not use the representation in Christiansen [Chr21b].

Further take note, that it is possible to extend the model by adding other types of
information, not originating from the state space. In that case, the definition of the Ti

and Zi would have to be adapted.
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2.7. Solving technique for non-linear BSDEs

In this section, the solving techniques for BSDEs with non-linear structure are reviewed and
the problems in the infinitesimal martingale theory are discussed.

Let us remember the BSDE 2.1.4 from the introduction is given as{︄
dYt = f(t, Yt− , Zt) dt − Zt dMt

YT = ξ

where M is an F-martingale, ξ is a final-value condition, and f is a generator function
and the family Z is predictable.

In the classical BSDE literature it is the target to show existence and uniqueness of a
solution pair (Y, Z) in suitable spaces. It mostly is the approach to understand the BSDE
(or rather the associated integral representation) as a fixed point equation, where a solution
is a fixed point and vice versa. For the fixed point operator Φ, a fixed point would be a
pair

(︁ ∗Y, ∗Z
)︁
, satisfying

(∗Y, ∗Z) = Φ ((∗Y, ∗Z)) .

Major contribution in BSDE theory are for example the following papers by Pardoux
and Peng [PP90], Pham [Pha09], and a series of papers by Cohen and Elliott [CE08],
[CE12]. To summarize the approaches in these literature contributions, the main idea
of the proof is to show the contraction property of the fixed point operator Φ, i.e. there
exists a constant C < 1, such that for n ∈ N0⃦⃦⃦(︂

(n+1)Y, (n+1)Z
)︂

−
(︂

(n)Y, (n)Z
)︂⃦⃦⃦

≤ C ·
⃦⃦⃦(︂

(n)Y, (n)Z
)︂

−
(︂

(n−1)Y, (n−1)Z
)︂⃦⃦⃦

.

Existence and uniqueness of solutions can then be followed by application of the fixed
point theorem of Banach, which also gives the opportunity to iterate the solution, by
application of Φ for n ∈ N0 through(︁ (n+1)Y, (n+1)Z

)︁
= Φ

(︂(︂
(n)Y, (n)Z

)︂)︂
.

Since we want to have a solution pair (Y, Z), it is natural to consider separate norms for
Y and Z. In most cases, the final norm is then a combination of both individual norms,
for which the contraction property is shown and the fixed point theorem is applied to, see
for example Pham [Pha09].
The contraction property is then shown by using a weighted norm, where the weight is
specified in the proof and properties of the combined norm follow from properties of each
individual norm. The weight is normally given as an exponential, therefore never being
zero and not influencing the positive definiteness of the norm. The weighted norm can be
shown to be equivalent to the standard norm.

For general BSDE methods, the adaptivity of the solution Y is a key property and one
works directly with Y . In the proof, it is heavily relied on methods and tools, that are
only available in the presence of classic martingales. These include various properties of
martingales themselves, the martingale representation theorem, Doob’s inequality and the
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Burkholder-Davis-Gundy inequality.
These tools are mostly not available for the infinitesimal martingale theory, which is the
main reason why we cannot rely on existing results and have difficulties adapting existing
proofs to the new situations.

We are now making use of the following workaround, which is unique for the situa-
tion of the Thiele BSDE in multi-state life insurance theory. We can differentiate
between the prospective reserve XG and the payment process X, and the following
relation

Yt
∧= XG

t = E [Xt | Gt]
is exploited. It is the goal to make use of this ’additional layer’ of the life insurance structure,
and also to use the special additive structure of process X.

Together with our equivalent representation of the sum at risk (Zij)
∧= (GI), we make

use of a workaround, as sketched in the Figure 2.7, where the details of each step are
formulated in the following chapters.

Payment process X

BSDE for X

Solution X

Construct XG, (GI)I

Prospective reserve XG

Thiele BSDE for XG

Solution (XG, (GI)I)

/

Figure 2.3.: Sketch of the main idea – The usual way is visualized in the dotted box,
where the last (crossed out) step does not directly work for the infinitesimal
martingale theory, and the workaround on the right side is used instead.

Comment 2.7.1. On the modelling of dependency
It is a common generalization in the BSDE literature, to directly model the dependency
on Y and Z, even if dependency on Y would be enough for the application. This is
motivated by the fact, that it is simpler to use a joint norm, compare for example to
Djehiche and Löfdahl [DL16]. Leaving out the dependency on Z does not actually simplify
the calculations.
In our case, we will not use a combined norm. The dependency will be extended in two
steps, enabling us to use different methods and focus on the new challenges in each of the
two steps. The dependency on Z (or rather G) will be more complex and require different
tools and more restrict preconditions.
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Chapter 3.

Life insurance with reserve-dependent
payments

Instead of using a general BSDE formulation, we will now focus on the special structure of
payments in life insurance, to be able to use the duality of payment process and reserve, as
well as the given representation for the generator function f , in this context. We start by ex-
panding the insurance model to the necessary structure, where reserve-dependent payments
are possible, and the notation of Christiansen [Chr21b] is used.

3.1. The reserve-dependent payment process

We already introduced the sojourn and transition payments in the introductory part,
but we are now doing it properly. The foundation for the non-linear dependence on the
prospective reserve is set and this section is kept as general as possible, while further
restrictions are introduced on the way.
Remember, that the insurer in general cannot calculate the future payments Xt on interval
(t, ∞) itself, because the occurrence is unknown at time t and works with prospective
reserves (optional projections), given by the conditional expectations

XF
t = E [Xt | Ft] , t ≥ 0

XG
t = E [Xt | Gt] , t ≥ 0

instead.

For simplicity, we now focus on the non-monotone case with information structure G to
keep the notation simple, but the corresponding definitions with respect to F are also
possible.

Definition 3.1.1. Maximum contract time
A time point 0 < T < ∞ is called a possible maximum time of a contract, if the following
condition holds

A(dt) = 0, for t > T

almost surely holds for the contractual cash flow A of an individual insurance contract,
which is yet to be specified.

49



Chapter 3. Life insurance with reserve-dependent payments

We assume without loss of generality, that there always exists a T < ∞ with these
properties. The time T is usually also agreed upon, when signing the contract. Special
cases are retirement plans or insurances upon death, but even then a maximum time can
be found, when the cumulative probability of death is reasonably close to one.

This definition has the advantage, that we only need to consider payments on the compact
time interval [0, T ] instead of an infinite contract horizon.

When the Thiele BSDE was first formulated, we saw that the generator function could
depend on Y − and Z, where the Zij where given as the so called sums at risk, a dif-
ference between the statewise reserves Yj and Yi, and Y − was the left limit of the
reserve.

If a payment is happening in t and it is reserve dependent, then the existing reserve right
before this time point has to be used for this payment. Therefore XG

t− needs to be used for
the reserve-dependency. In some cases, like lapse or death, the reserve in t would already
be zero (since no further payments might be happening) and XG

t could not be sensibly
used for the reserve-dependency.

When decomposing the general prospective reserve in time t− into statewise reserves, we
have

XG
t− = E

[︂
Xt−

⃓⃓⃓
G−

t

]︂
=

∑︂
M∈M

IMt− · E
[︂
Xt−

⃓⃓⃓
G−

t

]︂
=

∑︂
M∈M

IMt− ·
EM

[︁
IMt− Xt−

]︁
EM

[︁
IMt−
]︁ a.s.,

which is a splitting into non-classical statewise reserves with respect to the information
M (as defined in Furrer [Fur20]), but the classical state-wise reserves arising from the
decomposition

XF
t =

∑︂
i∈S
Iit · XF,i

t ,

where XF,i
t := E [Xt | Ft− , S(t) = i] (assuming them to be well-defined), can not be used.

In standard life insurance theory, reserve-dependency on XF,i
t is feasible, since conditioning

on S(t) = i guarantees that the state-wise reserve is not affected by the transition
happening in t. We then do not have to rely on the reserve in t− right before the jump. In
a case, where these state-wise reserve exist and are well-defined, it is also easier to solve a
system of differential equations.

We can now continue to define the reserve-dependent payment functions.

Definition 3.1.2. Sojourn payments
Consider a function of the form

b : M × [0, ∞) × Ω −→ R
(M, t, ω) ↦−→ b

(︁
M, t, XG

t−
)︁
(ω)

as the rate of a sojourn payment, that will be paid at time t, if IMt− = 1 for all M ∈ M
respectively. For simplicity, let us introduce the following notation, that is similar to the
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usual state-wise payment functions, we already know from standard life insurance theory.
For every M ∈ M, let

bM

(︁
t, XG

t−
)︁
(ω) := b

(︁
M, t, XG

t−
)︁
(ω)

be a function from [0, ∞) × Ω → R.

We further need the following assumptions:

(1) The function b(M, t, XG
t−)(ω) : M × [0, ∞) × Ω −→ R is jointly measurable in (M, t, ω).

(2) For every M ∈ M let bM be bounded on every compact time interval, i.e. for t ≥ 0 it
holds ⃓⃓⃓

bM (s, XG
s−)
⃓⃓⃓

≤ JM(s) (3.1.1)

for an integrable majorant JM and all s ∈ [0, t].

(3) The functions bM

(︁
t, XG

t−
)︁

are G−-adapted for every M ∈ M.

In addition to the payment functions themselves, we need the following integrator, to
work in conjunction with them, in able to model both continuous and discrete sojourn
payments.

Definition 3.1.3. Integrator for continuous and discrete sojourn payments
Let γ be the sum of a Lebesgue measure λ and a countable number of Dirac-measures
(δti)i∈N, given as

γ(B) = λ(B) +
∞∑︂

i=1
δti(B) =: λ(B) + δ(B) , B ∈ B([0, ∞))

for deterministic time points 0 < t1 < t2 < · · · , increasing to infinity. Therefore, there are
at most a finite number of discrete payments happening on every compact interval.

It now allows the sojourn payments to include discrete payments at the deterministic
time points. By allowing the function bM to be defined differently to the payment
rate at the set of points {t0, t1, . . . }, this can be modelled, and the additional model
flexibility does not influence the Lebesgue- integrability. Note, that it would be possi-
ble to have discrete payments as a separate summand, but that would complicate the
notation.

The measure γ is monotone when used in the Lebesgue-Stieltjes integration. The Dirac
measures correspond to step functions with a jump of 1 at the time points {t0, t1, . . . }
(also known as Heaviside-functions). We therefore do not have to focus on properties of
the Dirac measures itself, since we can rewrite the integration as a Stieltjes integral with
the corresponding step functions, which are also càdlàg. The measure γ, defined as the
sum, is therefore both right-continuous and monotonously increasing. For details, also see
Klenke [Kle20] (Example 1.58), where a similar cases is considered and the measure is
shown to be a Lebesgue-Stieltjes measure, if the sequence of time points does not have
a limit, which is also the case in our model. An explicit definition of the corresponding
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monotonously increasing and right-continuous (distribution) function F is also given
as

F δ(x) = # {n ∈ N | tn ∈ [0, x]}

for x ≥ 0 such that the condition δ = λF δ is fulfilled for the corresponding Lebesgue-
Stieltjes measure to function F δ.

Comment 3.1.4. On the sojourn payments
The G−-adaptivity for the rates bM is consistent with the dependence on XG

t− and will
guarantee a favourable structure of the IF-compensator later on. Sojourn payments will
be paid with the given rate, if IMt− = 1, i.e. the situation right before the current time
point is decisive for the sojourn payments to be paid.

Furthermore, remember that a deletion is working in the same way like pretending, that
the information never existed in the first place. This results from working with IMs− , where
the cases s ≤ Ti (before introduction) and s > Ti+1 (after deletion) for an index i ∈ NO \M
are not differentiated by the indicator process. This also means, that these cases are the
same and this guarantees, that the deletion effect works like it is supposed to work.

Also note, that even when considering lump sum payments, the functions bM can still
assumed to be continuous almost everywhere, with an exception null set.

Let us continue with the transition payments.

Definition 3.1.5. Transition payments
For every I ∈ N , consider a function of the form

BI : [0, ∞) × EI × Ω −→ R
(t, e, ω) ↦−→ BI

(︁
t, e, XG

t−
)︁
(ω)

as a lump sum payment upon a transition I ∈ N .
We need the following assumptions to hold:

(1) The functions BI(t, e, XG
t−)(ω) : [0, ∞) × EI × Ω −→ R are jointly measurable in

(t, e, ω) for every I ∈ N .

(2) For every I ∈ N the BI are bounded on compact time intervals, i.e. for every t ≥ 0 it
holds ⃓⃓⃓

BI(s, e, XG
s−)
⃓⃓⃓

≤ JN (s) (3.1.2)

for an integrable majorant JN and all s ∈ [0, t].

(3) The functions BI

(︁
t, e, XG

t−
)︁
(ω) are G−-adapted for every I ∈ N and e ∈ EI .

Let us also formulate a technical assumption about the reserve-dependency especially for
time t = 0. We will demand, that the payments in 0 do not depend on the prospective
reserve in 0−, although our general model would allow this. For simplicity, the notation
will be kept the same.
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Assumption 3.1.6. No reserve-dependency for payments at the start of a contract
Let us assume, that the following conditions hold:

(a) bM (0, XG
0−) = bM (0) a.s. for all M ∈ M.

(b) BI(0, e, XG
0−) = BI(0, e) a.s. for all I ∈ N with e ∈ EI .

(c) eM (0, XG
0−) = eM (0) a.s. for all M ∈ M.

Therefore, all payments in 0 do not depend on the reserve XG
0− in 0−.

This is a technical condition, as well as a sensible assumption, since we are usually interested
in construction of insurance contracts, where XG

0− = 0 a.s. anyway. This condition will
later be investigated and we will use the condition XG

0− = 0 a.s. to call it a net equivalent
premium.

Comment 3.1.7. On transition payments
A jump or transition payment is paid out in a case, where the process µI recognizes a
jump. Take note, that in difference to the standard insurance theory, this does not depend
on the current state or current information, but only on the changing information e ∈ EI .
A differentiation could be made as part of the definition of a payment BI , where the family
of indicator processes (IM )M∈M might be used to differentiate certain cases, and also the
information e ∈ EJ in BI matters.

The conditions introduced in definitions 3.1.2 and 3.1.5 are standing assumptions for the
rest of the thesis, if it is not explicitly described to be different.

3.1.1. Assumptions and technical details of the discounting

An important concept for real life applications has not yet been introduced. We now also
want to allow for discounting of the payments. In this section, we focus on the general
idea of deterministic discounting.

Definition 3.1.8. Discounting factor
Consider the deterministic and piecewise continuous function

φ : [0, ∞) → R

as an interest short rate.

Let t ≥ s ≥ 0. The continuous discounting of a payment in the amount of 1 in t, over the
interval [s, t], will then be abbreviated by defining the function

κ(s, t) := exp
(︃

−
∫︂ t

s
φ(u) du

)︃
= e−

∫︁ t

s
φ(u) du .

Let us further introduce the following short notation for the case s = 0 and define

κ(t) := κ(0, t)

for the discounting of payments in t down to time 0.
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The following properties of the discounting function will be helpful in the course of the
thesis and are therefore stated for future referencing.

Assertion 3.1.9. Properties of the discounting
The discounting function κ has the following properties:

(1) It exists an upper bound Dκ, such that for every s, t ∈ [0, T ] with s ≤ t it holds that

κ(s, t) ≤ Dκ , (3.1.3)

i.e. we can always bound the discounting factor by Dκ.

(2) For every t ∈ (0, T ] it holds that

κ(0, t) = κ(0, t−) , (3.1.4)

i.e. the discounting function is left-continuous.

(3) The two parts of Definition 3.1.8 also imply the following representation of the original
discounting for an interval [s, t] as

κ(s, t) = κ(t)
κ(s) . (3.1.5)

Further, the following general multiplication formula

κ(r, t) = κ(r, s) · κ(s, t) (3.1.6)

holds for r ≤ s ≤ t. The assumed order of r, s and t is not be necessary in general.
Also, this generalizes the previous equation (3.1.5).

Proof. Only sketches of the proofs are provided.

(1) If φ is non-negative, then the complete argument of the exponential function is
negative. In the general case, the interest rate is integrable, as the function is piecewise
continuous. Therefore, the integral always exist and is a real number, which also
implies that the complete discounting has to be a real number, for every pair of time
points.

(2) Both the exponential function, as well as the integral are continuous. This especially
implies the continuity of the discounting function.

(3) For the proof of the second formula, power laws for the exponential function and the
additivity of the integral are used. The first equation follows as a special case, by
setting r = 0 and using the short hand notation.
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Comment 3.1.10. Interpretation of the upper bound to the discounting factor
The rational behind the upper bound to the discounting factor needs to be further explained.
In case of a non-negative interest rate, the discount factor would be naturally bounded by
1, as the argument of the exponential function is non-positive.

Even if the interest rate is negative, the upper bound exists. If it would not exist, then
long term pricing could not be done and therefore this is ruled out by the preconditions
on the interest rate.

3.1.2. Construction of the payment process

We can now continue to construct the reserve-dependent payment process with discounting,
by using the contractual payments, the corresponding integrators and the discounting
factor.

Definition 3.1.11. Cumulative cash flow
The cumulative or aggregated cash flow A(t) contains all contractual payments of the
insurance contract on the interval [0, t] and is given as the càdlàg process (At)t≥0 with

A(t) =
∑︂

M∈M

∫︂
[0,t]

IMs− bM (s, XG
s−) γ(ds) +

∑︂
I∈N

∫︂
[0,t]×EI

BI(s, e, XG
s−) µI(d(s, e)) (3.1.7)

or in differential form as

A(dt) =
∑︂

M∈M
IMt− bM

(︁
t, XG

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XG

t−
)︁

µI(dt × de)

with A(0−) = 0 a.s. as a starting value.

Recall the condition A(dt) = 0 for t > T (with T < ∞), which allows us to only consider
the cash flow on [0, T ], rather than [0, ∞). This technical condition has the implication,
that A is a càdlàg process with paths of finite variation on compacts.

The insurer then considers the process X = (Xt)t≥0 of the aggregated discounted future
payments for an insurance contract, given by

Xt :=
∫︂

(t,T ]

e−
∫︁ s

t
φ(u) du A(ds) =

∫︂
(t,T ]

κ(s)
κ(t) A(ds)

=
∑︂

M∈M

∫︂
(t,T ]

κ(s)
κ(t) I

M
s− bM

(︁
s, XG

s−
)︁

γ(ds) +
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s)
κ(t) BI

(︁
s, e, XG

s−
)︁

µI(d(s, e))

where the integrals involved are to be understand as path-wise Lebesgue-Stieltjes integrals,
which here and later on, will always be denoted by writing the integrator as γ(ds) or
A(ds), instead of dγ(s) or dA(s). Take note, that this can be done because the integrator
is right-continuous (even càdlàg) and has paths of finite variation on compacts, which then
allows for the path-wise version of the Lebesgue-Stieltjes integral.
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The process X is potentially non-linearly depending on XG and the additive structure of
the sojourn and jump payments can be used. Further, also X has integrable variation on
compacts, since this directly translates from the property of A.

The variable t now appears in the integration interval, as well as the discounting. We
want to decouple the integrand, i.e. the discounting from t, such that t is only part of the
integration interval, but not of the integrand as well. The multiplicative structure of v
from 3.1.6 may be used for this purpose and we can now also define a second payment
process, where the discounting is done on [0, s] instead of [t, s], decoupling the integrand
from t, by

Yt := κ(t) · Xt =
∫︂

(t,T ]

κ(s) A(ds) (3.1.8)

which in integral representation is given as

Yt =
∑︂

M∈M

∫︂
(t,T ]

κ(s) IMs− bM

(︁
s, XG

s−
)︁

γ(ds) +
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) BI

(︁
s, e, XG

s−
)︁

µI(d(s, e)) .

We have indeed managed to decouple the integrand from the variable t, and by multiplying
(3.1.8) with the deterministic factor κ(t)−1, we can make Xt reappear. The case without
discounting can be restored by setting φ ≡ 0, which leads to the exponential part being 1,
and therefore X = Y .

Given the interchangeability, it is perfectly fine to guarantee the existence of the process
Y rather than X. We will now show the existence and uniqueness of the (discounted to
zero) payment process

(︁
Yt
)︁

t≥0.

Definition 3.1.12. Information structures
Let F = (Ft)t≥0 be the filtration of full information in the marked point process setting,
according to Christiansen [Chr21b].
Let further G = (Gt)t≥0 be the, possibly non-monotone, family of sigma-algebras. In case
of non-monotonicity, the notation would be based on [Chr21b].

Also take note, that independently of the setting, the condition

Gt ⊆ Ft, for all t ≥ 0

always holds.

3.2. Existence and uniqueness results for the payment process

We now want to prove the existence and uniqueness of the payment process, when allowing
for reserve-dependent payments. This will indeed be done in two consecutive steps, where
we first one only allows payments in time t to be dependent on the prospective reserve
XG

t− .
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3.2.1. Automorphism and recursion

Similar to the general BSDE methods, we have to create a fixed point equation together with
an automorphism as a mapping. To do this, we break down the construction of our payment
process into a three step iterative approach. It is important, that the reserve-dependent
modelling of the payments has to be done by using the normal discounted cash-flow, while
for technical reasons, we have to work with the process Y .

Let the iteration index n ∈ N be fixed, and let the process
(︁ (n)Y t

)︁
t≥0 be given as the

current iteration, used as a predecessor for the new reserve. The iterative process consists of
the following steps, that have to be performed in the specified order:

(1) Calculation of
(n)Xt = 1

κ(t) · (n)Y t = exp
(︃∫︂ t

0
φ(r) dr

)︃
· (n)Y t

as the usual version of the payment process by reversing the additional discounting of
all payments on 0 to t.

(2) Application of Theorem 2.4.1, which guarantees the existence of the optional projection
as a càdlàg process (n)XG, with

(n)XG
s = E

[︂
(n)Xs

⃓⃓⃓
Gs

]︂
(n)XG

s− = E
[︂

(n)Xs−

⃓⃓⃓
G−

s

]︂
almost surely, where especially the second representation is needed as part of the
payments.

(3) Construction of (n+1)Y by insertion of the results from (2) into the payments

(n+1)Y t =
∑︂

M∈M

∫︂
(t,T ]

κ(s) IMs− bM

(︁
s, (n)XG

s−
)︁

γ(ds)

+
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) BI

(︁
s, e, (n−1)XG

s−
)︁

µI(d(s, e)) .

(4) Starting over with the newly constructed (n+1)Y , which in total completes the iteration
function Φ as

(n+1)Y = Φ
(︂

(n)Y
)︂

We are now especially interested in expressing the difference of two consecutive iterations
to be able to achieve the necessary contraction. Let (n+1)Y and (n)Y be constructed this
way, then their difference can be expressed as

(n+1)Y t − (n)Y t =
∑︂

M∈M

∫︂
(t,T ]

κ(s) IMs−

(︂
bM (s, (n)XG

s−) − bM (s, (n−1)XG
s−)
)︂

γ(ds)
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+
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s)
(︂
BI(s, e, (n)XG

s−) − BI(s, e, (n−1)XG
s−)
)︂

µI(d(s, e))

and by grouping terms, the overall difference is expressed as a difference of the payment
functions bM and BI , which makes it the natural next step to introduce Lipschitz conditions
for the families (bM )M and (BI)I . BI may also depend on e ∈ EI , but the e ∈ EI is the
same for both functions, as it describes the information.

Comment 3.2.1. On the evaluation of the payment functions
To create the (possibly) non-linear dependency, we might not be able to multiply with the
discounting factor as a scalar outside of the payment, i.e.

bM

(︂
s, XG

s−

)︂
= bM

(︃
s,

1
κ(s)Y G

s−

)︃
̸= 1

κ(s) bM

(︂
s, Y G

s−

)︂
are (in general) not the same. Therefore, prior evaluation of X, i.e. discounting of Y , can
not be disregarded and has to be carefully managed in the proof.

Assumption 3.2.2. Lipschitz conditions
Assume, that there exists a Lipschitz constant LM > 0, independent of M ∈ M, such
that for all XG

s−(ω), X̃
G
s−(ω) we dP× dγ a.e. have⃓⃓⃓

bM (s, XG
s−)(ω) − bM (s, X̃

G
s−)(ω)

⃓⃓⃓
≤ LM ·

⃓⃓⃓
XG

s−(ω) − X̃
G
s−(ω)

⃓⃓⃓
for all M ∈ M. Under usage of the uniqueness of the current information state∑︂

M∈M
IMs− = 1 (3.2.1)

for all s ∈ [0, T ], this directly implies, that dP× dγ a.e. we have∑︂
M∈M

IMs−

⃓⃓⃓
bM

(︁
s, XG

s−
)︁
(ω) − bM

(︁
s, X̃

G
s−
)︁
(ω)
⃓⃓⃓

≤ LM ·
⃓⃓⃓
XG

s−(ω) − X̃
G
s−(ω)

⃓⃓⃓
.

Further assume that there exists a second Lipschitz constant LN , independent of I ∈ N ,
such that for all XG

s−(ω), X̃
G
s−(ω) and all e ∈ EI we dP× lI(s, EI)ds a.e. have⃓⃓⃓

BI(s, e, XG
s−)(ω) − BI(s, e, X̃

G
s−)(ω)

⃓⃓⃓
≤ LN ·

⃓⃓⃓
XG

s−(ω) − X̃
G
s−(ω)

⃓⃓⃓
.

Let us further assume, that for all s ∈ {t0, t1, . . . }, we have the following stronger Lipschitz
condition for the deterministic time points or reserve-dependent singular payments. Assume
there exists a second Lipschitz constant J < 1, independent of I ∈ N and M ∈ M, such
that for all XG

s−(ω), X̃
G
s−(ω) and all e ∈ EI we dP× dλ a.e. have⃓⃓⃓⃓

⃓ ∑︂
M∈M

IMs−(ω)
(︂
bM (s, XG

s−)(ω) − bM (s, X̃
G
s−)(ω)

)︂
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+
∑︂
I∈N

∫︂
EI

(︂
BI(s, e, XG

s−)(ω) − BI(s, e, X̃
G
s−)(ω)

)︂
µI({s} × de)(ω)

⃓⃓⃓⃓
⃓

≤ J ·
⃓⃓⃓
XG

s−(ω) − X̃
G
s−(ω)

⃓⃓⃓
for all time points s ∈ {t0, t1, . . . }.

Assumption 3.2.3. Intensity of the compensator
Suppose that each λI has a non-negative and càdlàg Lebesgue intensity lI of the form

λI ((0, t] × A) =
∫︂

(0,t]

lI(s, A) ds

and further assume that each νI has a non-negative and càdlàg Lebesgue intensity nI of
the form

νI ((0, t] × A) =
∫︂

(0,t]

nI(s, A) ds

for A ∈ EI and each ρI has a non-negative and càdlàg Lebesgue intensity rI of the form

ρI ((0, t] × A) =
∫︂

(0,t]

rI(s, A) ds

for A ∈ EI . All families of function are assumed to be non-negative and càdlàg.

Let us further introduce an joint majorant for the intensities. Let there be a constant
D < ∞, such that ∑︂

I∈N
|lI(t, EI)| ≤ D

almost surely for all t ∈ [0, T ].

It is beneficial to assume this condition only for the intensities lI of the F-compensator λI

and allows us to only focus on the classical F-intensities, enabled by using the following
Theorem about their connection. In the literature, similar results are referenced as the
so called innovation theorem, but its usually only considered in case of two filtrations, or
other specific cases that can not be used here. For reference see also [Aal78] and [Jac05]
(Corollary 4.8.5 together with Proposition 4.8.4). It should be noted, that the density of
ρI does only make sense in the model of Christiansen [Chr21b], when the IB-compensator
is actually needed, as it would be ρI = µI if F = G.

Theorem 3.2.4. Innovation theorem – Connections between F- and G- intensities
Let I ∈ N be fixed. For every A ∈ EI∫︂

(0,t]

nI(s, A) ds =
∫︂

(0,t]

E
[︁
lI(s, A)

⃓⃓
G−

s

]︁
ds

almost surely holds for every t ≥ 0.
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A special application of the result is the following: If the F-intensities are equal to zero,
then we directly know, that the same for the intensities of the IF-compensator has to
hold.

Proof. Using the tower property and the respective properties of the compensators with
respect to F and the IF-compensator with respect to G, for every t ≥ 0 and every A ∈ EI

we point-wise almost surely have∫︂
(0,t]

nI(s, A) ds = νI((0, t] × A)

Prop. 2.5.6= lim
n→∞

∑︂
τ t

n

E [µI ((0, tk+1] × A) − µI ((0, tk] × A) | Gtk
]

= lim
n→∞

∑︂
τ t

n

E [µI ((tk, tk+1] × A) | Gtk
]

(i)= lim
n→∞

∑︂
τ t

n

E [E [µI ((tk, tk+1] × A) | Ftk
] | Gtk

]

F-martingale= lim
n→∞

∑︂
τ t

n

E [E [λI ((tk, tk+1] × A) | Ftk
] | Gtk

]

(i)= lim
n→∞

∑︂
τ t

n

E [λI ((tk, tk+1] × A) | Gtk
]

= lim
n→∞

∑︂
τ t

n

E

⎡⎢⎣ ∫︂
(tk,tk+1]

lI(s, A) ds

⃓⃓⃓⃓
⃓⃓⃓Gtk

⎤⎥⎦
Fubini= lim

n→∞

∑︂
τ t

n

∫︂
(tk,tk+1]

E [lI(s, A) | Gtk
] ds

Form. (2.4.3)= lim
n→∞

∑︂
τ t

n

∫︂
(tk,tk+1]

∑︂
M∈M

IMtk
E [lI(s, A) | Gtk

] ds

(ii)=
∑︂

M∈M
lim

n→∞

∑︂
τ t

n

∫︂
(tk,tk+1]

IMtk

EM

[︂
IMtk

lI(s, A)
]︂

EM

[︂
IMtk

]︂ ds

Lemma 2.4.11=
∑︂

M∈M

∫︂
(0,t]

IMs−

EM

[︂
IMs− lI(s, A)

]︂
EM

[︂
IMs−

]︂ ds

Form. (2.4.3)=
∫︂

(0,t]

∑︂
M∈M

IMs− E
[︁
lI(s, A)

⃓⃓
G−

s

]︁
ds

=
∫︂

(0,t]

E
[︁
lI(s, A)

⃓⃓
G−

s

]︁
ds

for a sequence of partitions (τ t
n)n∈N of the interval [0, t].
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In (i), the tower property was used, since Gtk
⊆ Ftk

for every tk, and in (ii) the dom-
inated convergence theorem was applied. The application of Lemma 2.4.11 yields the
representation of the integral in s−, as the tk from the lower integral bound are part of
the integrated function.

The following proposition states, that it is sufficient to only demand the assumption about
an upper bound to only hold for the intensities of the classical F-compensator, which is bene-
ficial for application and also more in alignment with standard theory.

Proposition 3.2.5. Inheritance of the upper bound for the intensities
If there exists a constant D < ∞, such that∑︂

I∈N
|lI(t, EI)| ≤ D

almost surely for all t ∈ [0, T ], then with the same constant it also holds, that∑︂
I∈N

|nI(t, EI)| ≤ D

almost surely.

Proof. Through an application of the previous Theorem 3.2.4, in the special setting with
A = EI , we arrive at the first equality. An application of the inequality of Jensen A.2.12
and the conditional monotone convergence theorem in (i) then yields, that∑︂

I∈N
|nI(t, EI)| dt =

∑︂
I∈N

|E [lI(t, EI) | Gt− ]| dt

A.2.12
≤

∑︂
I∈N

E [ |lI(t, EI)| | Gt− ] dt

(i)= E
[︄ ∑︂

I∈N
|lI(t, EI)|

⃓⃓⃓⃓
⃓Gt−

]︄
dt

Precond.
≤ E [D | Gt− ] dt = D dt

what was to show. Take note, that the intensities are non-negative, which is why the first
equality holds and the absolute value can be used without changing anything.

Comment 3.2.6. Comparison of the Lipschitz condition to classical BSDE methods
If the Lipschitz condition is assumed for a generator function f , i.e there exists L > 0 such
that for all XG

s−(ω), X̃
G
s−(ω) we dP× dt a.e. we have⃓⃓⃓

f
(︁
ω, t, XG

t−
)︁

− f
(︁
ω, t, X̃

G
t−
)︁⃓⃓⃓

≤ L ·
⃓⃓⃓
XG

t−(ω) − X̃
G
t−(ω)

⃓⃓⃓
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then by using the special representation of f in the insurance example

f
(︂
ω, t, XG

t−

)︂
=

∑︂
M∈M

IMt− bM

(︂
t, XG

t−

)︂
+
∑︂
I∈N

∫︂
EI

BI

(︂
t, e, XG

t−

)︂
lI(t, de)

the condition is similar, but the details are hidden. The conditions in our case are
especially sufficient for the general case, when using the triangle inequality and defining L
via LM, LN and D.

3.2.2. Theorem – Existence and uniqueness

Let us now proceed by deciding on a norm, that allows us to show that⃦⃦⃦
(n+1)Y − (n)Y

⃦⃦⃦
=
⃦⃦⃦
Φ
(︂

(n)Y
)︂

− Φ
(︂

(n−1)Y
)︂⃦⃦⃦

≤ C ·
⃦⃦⃦

(n)Y − (n−1)Y
⃦⃦⃦

,

where C < 1 would be the contraction constant.

In that case, our iteration function Φ would indeed be a contraction mapping and a fixed
point theorem could be applied. Without specifying or checking the preconditions, as a
consequence of the application of the Theorem of Banach A.3.1, a unique fixed point ∗Y
would exist, fulfilling

∗Y t =
∑︂

M∈M

∫︂
(t,T ]

IMs− κ(s) bM

(︃
s,

1
κ(s)

∗Y G
s−

)︃
γ(ds)

+
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) BI

(︃
s, e,

1
κ(s)

∗Y G
s−

)︃
µI(d(s, e))

=: Φ(∗Y )t (3.2.2)

where ∗Y G
t− = E

[︂
∗Y t−

⃓⃓⃓
G−

t

]︂
a.s. as usual.

For an application of the fixed point Theorem of Banach A.3.1, we need to specify a
non-empty complete metric space. Instead of choosing a metric, we specify a norm and
use the induced metric corresponding to the norm.

Since we consider pathwise Lebesgue-Stieltjes integration, where the integrator, as a
non-decreasing and right-continuous (distribution) function G, corresponds to a locally
finite signed measure µG, that is then used to define the integral, compare Kallenberg
[Kal21] for example.

The Banach space will now be set up for càdlàg functions on [0, T ], and we use a norm that
is based on the Hahn-Banach decomposition of a function and is therefore isometrically
isomorphic to the Banach space of signed Borel measures with support in [0, T ]. This
construction is done based on a similar approach for state-wise reserves in Christiansen
[Chr10].
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Definition 3.2.7. Banach space of functions with bounded variation
As a space we want to consider the processes with bounded variation on interval [0, T ].
The function space

BV[0,T ] :=
{︂

f : [0, T ] → R
⃓⃓⃓

f càdlàg, f(T ) = 0, ∥f∥V [0,T ] < ∞
}︂

(3.2.3)

is then actually a Banach space. We now use the correspondence of Jordan-Hahn decom-
position of a function f as f = f+ − f− and define the variation of f as |f | := f+ + f−

and the norm is given as
∥f∥V [0,T ] :=

∫︂
[0,T ]

d |f |t

as the total variation norm.

Comment 3.2.8. On the variation norm
The above definition does only define a norm in the space (3.2.3), since we use f(T ) = 0,
which would otherwise be present as an additional summand. It is fine to leave it out in
our application, since every payment process X fulfils this condition by definition and the
additional summand |f(T )| of the norm would always be zero.
The reason for the additional part is the definiteness of the norm. Every constant function
has a variation of zero, but only the zero function has a norm of zero. This is shown
in detail in [ABD13] (Proposition 1.10), where the absolute value |f(a)| for a as the left
bound of the interval [a, b] is used, instead of the right value. The proof can be adapted
to this case, where a backward perspective on the interval is taken.

We are now going to extend the concepts to stochastic processes, where the variation is
defined as a path-wise property and which align with our situation in the life insurance
theory with path-wise Lebesgue-Stieltjes integrals.

Definition 3.2.9. Finite variation process
Let X be a stochastic process on R≥0. Let τ = {0 = t0, t1, . . . , tk = T} be a partition of
[0, T ] with increasing time points and of index k. Define the total variation of X as

V[0,T ](X·(ω)) := sup
τ

k∑︂
i=1

⃓⃓
Xtk

(ω) − Xtk−1(ω)
⃓⃓

=
∫︂

[0,T ]

|dX·(ω)|s .

A process X is then said to be of finite variation, if almost every path is of finite variation,
i.e. V[0,t](X·(ω)) < ∞ for every t ≥ 0 and almost every ω ∈ Ω. See also Meintrup and
Schäffler [MS05] for a similar construction and Protter [Pro05] for the representation via
the integral.

A slightly different, but equivalent, norm is used for the solution space. A weighting factor
for has to be included, because it is not possible to show the contraction property without
the weight, which, as part of the norm, will be expressed as an exponential. Therefore, no
properties of the norm are compromised and equivalence of the norms, with and without
the weighting factor, can be shown.
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Definition 3.2.10. Solution space
The space of càdlàg stochastic processes X on [0, T ] with final value X(T ) = 0 a.s. and
with integrable variation is given as

BV X
[0,T ] :=

{︂
X =

(︁
Xt
)︁

t∈[0,T ] : Ω × [0, T ] → R
⃓⃓⃓

X càdlàg, XT = 0 a.s., ∥X∥V [0,T ] < ∞
}︂

(3.2.4)
and the equivalent norm is defined as the expectation of the weighted variation norm as

∥X∥V [0,T ] := E
[︂
∥X∥V [0,T ],K,ζ

]︂
= E

⎡⎢⎣ ∫︂
[0,T ]

e−K(ζ(T )−ζ(t)) d |X|t

⎤⎥⎦ (3.2.5)

where K > 0 is a constant, that will be chosen to guarantee the contraction property and
the measure ζ is deterministic and has to be

ζ(dt) = γ(dt) + D dt

for the first theorem.

The definition of the weighting factor is also based on the construction in Christiansen
[Chr10]. Take note, that as a major difference, we include the expectation as an outer
operator, as the path-wise Lebesgue integration is not enough to identify zero as a random
variable, as almost every path has the be zero.

The representation of ζ and K will result from the additive decomposition of the payments
in the sojourn parts, where γ(dt) arises, and the jump part, where the second part arises
as an upper bound of the compensators.

Comment 3.2.11. On the chosen norm
The above defined norm, together with the solution space, may be seen as a natural
choice, since we are in a situation, where the payment process is a finite variation process.
Therefore, the existence and uniqueness of solutions with respect to this Banach space
and norm is not really a restriction, but arises naturally.

Theorem 3.2.12. Existence and uniqueness of the payment process Y
Under the conditions on Y and its parts, namely Assumptions 3.2.2, 3.3.8 and 3.2.3 about
Lipschitz-conditions and the bound for the compensator density, and Definitions 3.1.1,
3.1.2 and 3.1.5 about the payment functions, the payment process Y exists and is unique
up to indistinguishability as the solution of the integral equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yt =
∑︂

M∈M

∫︂
(t,T ]

IMs− bM

(︃
s,

1
κ(s)Y G

s−

)︃
γ(ds)

+
∑︂
I∈N

∫︂
(t,T ]×EI

BI

(︃
s, e,

1
κ(s)Y G

s−

)︃
µI(d(s, e))

YT = 0

(3.2.6)

64



3.2. Existence and uniqueness results for the payment process

in the space of càdlàg processes with finite integrable variation, given in (3.2.4), equipped
with the (equivalent) weighted norm

∥X∥V [0,T ] := E
[︂
∥X∥V [0,T ],K,ζ

]︂
= E

⎡⎢⎣ ∫︂
[0,T ]

e−K(ζ(T )−ζ(t)) d |X|t

⎤⎥⎦
where the constant

K := 2 · L

1 − J

is the weighting factor with L = max{LM, LN }, and ζ is defined via

ζ(dt) := γ(dt) + D dt .

Proof. The proof is performed in three steps.

Automorphism

We begin by showing that the mapping Φ, as specified by (3.2.2) is an automorphism on
the solution space of processes with integrable variation. Therefore, let (n)Y ∈ BV X

[0,T ] be
a process of integrable variation. We have to show that (n+1)Y is a process of integrable
variation as well.

For every 0 ≤ s < t ≤ T and with (τm)m∈N as a sequence of partitions of the interval [s, t]
with {t0 = s, . . . , tm = t} and limm→∞ |τm| = 0, we get∫︂

[s,t]

e−K(ζ(T )−ζ(u)) d
⃓⃓⃓
(n+1)Y

⃓⃓⃓
u

= sup
τm

m∑︂
j=1

e−K(ζ(T )−ζ(tj−1)) ·
⃓⃓⃓
(n+1)Y tj − (n+1)Y tj−1

⃓⃓⃓

≤ sup
τm

m∑︂
j=1

e−K(ζ(T )−ζ(tj−1)) ·

⃓⃓⃓⃓
⃓⃓⃓ ∫︂
(tj−1,tj ]

∑︂
M∈M

IMu− κ(u) bM

(︁
u, (n)XG

u−
)︁
γ(du)

+
∑︂
I∈N

∫︂
(tj−1,tj ]×EI

κ(u)BI

(︁
u, e, (n)XG

u−
)︁

µI(d(u, e))

⃓⃓⃓⃓
⃓⃓⃓

(∗)
≤ sup

τm

m∑︂
j=1

⃓⃓⃓⃓
⃓⃓⃓ ∫︂
(tj−1,tj ]

e−K(ζ(T )−ζ(u)) ∑︂
M∈M

IMu− κ(u) bM

(︁
u, (n)XG

u−
)︁

γ(du)

+
∑︂
I∈N

∫︂
(tj−1,tj ]×EI

e−K(ζ(T )−ζ(u)) κ(u) BI

(︁
u, e, (n)XG

u−
)︁

µI(d(u, e))

⃓⃓⃓⃓
⃓⃓⃓

△−ineq.
≤

∫︂
(s,t]

e−K(ζ(T )−ζ(u)) ∑︂
M∈M

IMu− κ(u)
⃓⃓⃓
bM

(︁
u, (n)XG

u−
)︁⃓⃓⃓

γ(du)
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+
∑︂
I∈N

∫︂
(s,t]×EI

e−K(ζ(T )−ζ(u)) κ(u)
⃓⃓⃓
BI

(︁
u, e, (n)XG

u−
)︁⃓⃓⃓

µI(d(u, e))

where we also used in (∗), that ζ is monotonously increasing, to be able to pull the
exponential part into the integral and the triangle inequality in the last step.

Then, by using the upper bound from above, for the norm it holds that

⃦⃦⃦
Φ
(︂

(n)Y
)︂⃦⃦⃦

V [0,T ]

=
⃦⃦⃦

(n+1)Y
⃦⃦⃦

V [0,T ]
= E

[︃⃦⃦⃦
(n+1)Y

⃦⃦⃦
V [0,T ],K,ζ

]︃

= E

⎡⎢⎣ ∫︂
[0,T ]

e−K(ζ(T )−ζ(s))⏞ ⏟⏟ ⏞
≤1

d
⃓⃓⃓
(n+1)Y

⃓⃓⃓
s

⎤⎥⎦

≤ E

⎡⎢⎢⎢⎣
∫︂

(0,T ]

∑︂
M∈M

IMs− κ(s)
⃓⃓⃓
bM

(︁
s, (n)XG

s−
)︁⃓⃓⃓

⏞ ⏟⏟ ⏞
≤ JM(s)

γ(ds)

⎤⎥⎥⎥⎦

+ E

⎡⎢⎢⎢⎣ ∑︂
I∈N

∫︂
(0,T ]×EI

κ(s)
⃓⃓⃓
BI

(︁
s, e, (n)XG

s−
)︁⃓⃓⃓

⏞ ⏟⏟ ⏞
≤ JN (s)

µI(d(s, e))

⎤⎥⎥⎥⎦

≤ E

⎡⎢⎢⎢⎢⎣
∫︂

(0,T ]

JM(s) · κ(s)⏞⏟⏟⏞
≤Dκ

·
∑︂

M∈M
IMs−⏞ ⏟⏟ ⏞

=1

γ(ds)

⎤⎥⎥⎥⎥⎦

+ E

⎡⎢⎣ ∑︂
I∈N

∫︂
(0,T ]×EI

κ(s)⏞⏟⏟⏞
≤Dκ

·JN (s) µI(d(s, e)

⎤⎥⎦
≤ Dκ · E

⎡⎢⎣ ∫︂
(0,T ]

JM(s) γ(ds)

⎤⎥⎦+ Dκ · E

⎡⎢⎣ ∑︂
I∈N

∫︂
(0,T ]×EI

JN (s) µI(d(s, e))

⎤⎥⎦
< ∞

where both parts are finite, respectively.

The discounting factor can be bounded by Dκ from above, compare (3.1.3), and for the
functions we used the integrable majorant JM and JN that were introduced in Definitions
3.1.2 and 3.1.5 and are independent of the indices M and I. The second summand is finite,
since it is the precondition for Theorem 2.5.4 and needed to guarantee the existence of
that integral. Therefore, in total we have (n+1)Y ∈ BV X

[0,T ].
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Contraction property

With similar arguments as before, we now prepare to look at the difference of two
consecutive iterations. We again start by deriving an upper bound for the norm.

Start by disregarding the outer expectation. For every 0 ≤ s < t ≤ T we get∫︂
[s,t]

e−K(ζ(T )−ζ(u)) d
⃓⃓⃓
(n+1)Y − (n)Y

⃓⃓⃓
u

= sup
τm

m∑︂
j=1

e−K(ζ(T )−ζ(tj−1))
⃓⃓⃓(︂

(n+1)Y tj − (n)Y tj

)︂
−
(︂

(n+1)Y tj−1 − (n)Y tj−1

)︂⃓⃓⃓

≤ sup
τm

m∑︂
j=1

e−K(ζ(T )−ζ(tj−1))·

⃓⃓⃓⃓
⃓⃓⃓− ∫︂

(tj−1,tj ]

∑︂
M∈M

IMu− κ(u)
(︂
bM

(︁
u, (n)XG

u−
)︁

− bM

(︁
u, (n−1)XG

u−
)︁)︂

γ(du)

−
∑︂
I∈N

∫︂
(tj−1,tj ]×EI

κ(u)
(︂
BI

(︁
u, e, (n)XG

u−
)︁

− BI

(︁
u, e, (n−1)XG

u−
)︁)︂

µI(d(u, e))

⃓⃓⃓⃓
⃓⃓⃓

(∗)
≤ sup

τm

m∑︂
j=1⃓⃓⃓⃓

⃓⃓⃓ −
∫︂

(tj−1,tj ]

e−K(ζ(T )−ζ(u)) ∑︂
M∈M

IMu− κ(u)
(︂
bM

(︁
u, (n)XG

u−
)︁

− bM

(︁
u, (n−1)XG

u−
)︁)︂

γ(du)

−
∑︂
I∈N

∫︂
(tj−1,tj ]×EI

e−K(ζ(T )−ζ(u))κ(u)
(︂
BI

(︁
u, e, (n)XG

u−
)︁

− BI

(︁
u, e, (n−1)XG

u−
)︁)︂

µI(d(u, e))

⃓⃓⃓⃓
⃓⃓⃓

△−ineq.
≤

∫︂
(s,t]

e−K(ζ(T )−ζ(u)) ∑︂
M∈M

IMu− κ(u)
⃓⃓⃓
bM

(︁
u, (n)XG

u−
)︁

− bM

(︁
u, (n−1)XG

u−
)︁⃓⃓⃓

γ(du)

+
∑︂
I∈N

∫︂
(s,t]×EI

e−K(ζ(T )−ζ(u)) κ(u)
⃓⃓⃓
BI

(︁
u, e, (n)XG

u−
)︁

− BI

(︁
u, e, (n−1)XG

u−
)︁⃓⃓⃓

µI(d(u, e)),

where (τm)m∈N is again a sequence of partitions of [s, t] with {t0 = s, . . . , tm = t} and
limm→∞ |τm| = 0 and otherwise similar arguments as in the situation above.

Include the outer expectation and as a consequence, for every 0 ≤ s < t ≤ T , or equivalently
for every subinterval (s, t] ⊆ (0, T ], we achieve the upper bound

E

⎡⎢⎣ ∫︂
[s,t]

e−K(ζ(T )−ζ(u)) d
⃓⃓⃓
(n+1)Y − (n)Y

⃓⃓⃓
u

⎤⎥⎦
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≤ E

⎡⎢⎣ ∫︂
(s,t]

e−K(ζ(T )−ζ(u)) κ(u)
∑︂

M∈M
IMu−

⃓⃓⃓
bM

(︁
u, (n)XG

u−
)︁

− bM

(︁
u, (n−1)XG

u−
)︁⃓⃓⃓

γ(du)

⎤⎥⎦
+ E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

e−K(ζ(T )−ζ(u)) κ(u)
⃓⃓⃓
BI

(︁
u, e, (n)XG

u−
)︁
− BI

(︁
u, e, (n−1)XG

u−
)︁⃓⃓⃓

µI(d(u, e))

⎤⎥⎦
=: (I) + (II) ,

yielding an additive structure, where we can investigate both summands separately.

For the first part, we use the Lipschitz condition for bM for every M ∈ M and get the
following upper bound

(I) = E

⎡⎢⎢⎢⎢⎣
∫︂

(s,t]

e−K(ζ(T )−ζ(u)) κ(u)
∑︂

M∈M
IMt−

⃓⃓⃓
bM (u, (n)XG

u−) − bM (u, (n−1)XG
u−)

⃓⃓⃓
⏞ ⏟⏟ ⏞

≤ LM·
⃓⃓
(n)XG

u− −(n−1)XG
u−

⃓⃓ γ(du)

⎤⎥⎥⎥⎥⎦

≤ E

⎡⎢⎢⎢⎢⎣
∫︂

(s,t]

e−K(ζ(T )−ζ(u)) κ(u)
∑︂

M∈M
IMt−⏞ ⏟⏟ ⏞

=1

·LM ·
⃓⃓⃓
(n)XG

u− − (n−1)XG
u−

⃓⃓⃓
γ(du)

⎤⎥⎥⎥⎥⎦

≤ E

⎡⎢⎣ ∫︂
(s,t]

LM · e−K(ζ(T )−ζ(u)) κ(u)
⃓⃓⃓
(n)XG

u− − (n−1)XG
u−

⃓⃓⃓
γ(du)

⎤⎥⎦ ,

where we additionally used formula (3.2.1), for every u ∈ (s, t] ⊆ (0, T ] once there is no
more dependency of function bM on M .

For the second summand, we make use of the classical compensator λ with respect to F
and its density l, to get

(II)

= E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

e−K(ζ(T )−ζ(u))κ(u)
⃓⃓⃓
BI(u, e, (n)XG

u−) − BI(u, e, (n−1)XG
u−)

⃓⃓⃓
µI(d(u, e))

⎤⎥⎦
= E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

κ(u) GI(u, e) µI(d(u, e))

⎤⎥⎦
=
∑︂
I∈N

E

⎡⎢⎣ ∫︂
(s,t]×EI

κ(u) GI(u, e) µI(d(u, e))

⎤⎥⎦
=
∑︂
I∈N

E [(κGI) • µI((s, t] × EI)]
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(i)=
∑︂
I∈N

E [(κGI) • λI((s, t] × EI)]

=
∑︂
I∈N

E

⎡⎢⎣ ∫︂
(s,t]×EI

κ(u) GI(u, e) λI(d(u, e))

⎤⎥⎦
= E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

κ(u) GI(u, e) λI(d(u, e))

⎤⎥⎦
= E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

e−K(ζ(T )−ζ(u))κ(u)
⃓⃓⃓
BI

(︁
u, e, (n)XG

u−
)︁

− BI

(︁
u, e, (n−1)XG

u−
)︁⃓⃓⃓

λI(d(u, e))

⎤⎥⎦

= E

⎡⎢⎢⎢⎢⎣
∫︂

(s,t]

e−K(ζ(T )−ζ(u))κ(u)
∑︂
I∈N

∫︂
EI

⃓⃓⃓
BI

(︁
u, e, (n)XG

u−
)︁

− BI

(︁
u, e, (n−1)XG

u−
)︁⃓⃓⃓

⏞ ⏟⏟ ⏞
≤ LN

⃓⃓
(n)Xu−G−(n−1)XG

u−

⃓⃓ lI(t, de) du

⎤⎥⎥⎥⎥⎦
≤ E

⎡⎢⎣ ∫︂
(s,t]

LN · e−K(ζ(T )−ζ(u)) κ(u)
∑︂
I∈N

∫︂
EI

⃓⃓⃓
(n)XG

u− − (n−1)XG
u−

⃓⃓⃓
lI(u, de) du

⎤⎥⎦
= E

⎡⎢⎣ ∫︂
(s,t]

LN · e−K(ζ(T )−ζ(u)) κ(u)
⃓⃓⃓
(n)XG

u− − (n−1)XG
u−

⃓⃓⃓ ∑︂
I∈N

lI(u, EI) du

⎤⎥⎦
≤ E

⎡⎢⎣ ∫︂
(s,t]

LN · e−K(ζ(T )−ζ(u)) κ(u)
⃓⃓⃓
(n)XG

u− − (n−1)XG
u−

⃓⃓⃓
D du

⎤⎥⎦ .

In (i), we need that for every summand

GI(u, e) = e−K(ζ(T )−ζ(u) κ(u) ·
⃓⃓⃓
BI

(︁
u, e, (n)XG

u−
)︁

− BI

(︁
u, e, (n−1)XG

u−
)︁⃓⃓⃓

is F−
u -measurable for every (u, e). This is guaranteed, since Gu ⊆ Fu and we assumed the

involved properties to be G−
u -measurable when formulating the necessary conditions. This

holds both for the case, where G is a sub-filtration of F, as well as for the case, where G
has the special structure of [Chr21b].
It is beneficial to work with F as the outer structure here, since we do not need that strict
conditions for the application of the classical martingale representation Theorem 2.5.12 in
comparison to the analogue Theorem 2.5.13 in [Chr21b].
We then also used the existence of the density lI for the compensator λI , which results in
a representation as a du-integral. By design, when applying the Lipschitz-condition, the
integrand does not further depend on e, and we can use the same majorant for the density
process of the compensator.

Let us continue by defining L := max{LM, LN } as a joint Lipschitz constant, to further
simplify the notation. In both summands, we arrive at a similar structure and we rejoin
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them to get the upper bound

E

⎡⎢⎣ ∫︂
[s,t]

e−K(ζ(T )−ζ(u)) d
⃓⃓⃓
(n+1)Y − (n)Y

⃓⃓⃓
u

⎤⎥⎦
≤ E

⎡⎢⎣ ∫︂
(s,t]

L e−K(ζ(T )−ζ(u)) κ(u)
⃓⃓⃓
(n)XG

u− − (n−1)XG
u−

⃓⃓⃓
γ(du)

⎤⎥⎦
+ E

⎡⎢⎣ ∫︂
(s,t]

L e−K(ζ(T )−ζ(u)) κ(u)
⃓⃓⃓
(n)XG

u− − (n−1)XG
u−

⃓⃓⃓
D du

⎤⎥⎦

= E

⎡⎢⎢⎢⎣
∫︂

(s,t]

L e−K(ζ(T )−ζ(u))κ(u)
⃓⃓⃓
(n)XG

u− − (n−1)XG
u−

⃓⃓⃓ (︂
γ(du) + D du

)︂
⏞ ⏟⏟ ⏞

=ζ(du)

⎤⎥⎥⎥⎦
=

∫︂
(s,t]

L e−K(ζ(T )−ζ(u)) κ(u)E
[︂⃓⃓⃓

(n)XG
u− − (n−1)XG

u−

⃓⃓⃓]︂
ζ(du)

(ii)
≤

∫︂
(s,t]

L e−K (ζ(T )−ζ(u)) κ(u)E
[︂⃓⃓⃓

(n)Xu− − (n−1)Xu−

⃓⃓⃓]︂
ζ(du) ,

where we used the Theorem of Fubini-Tonelli to exchange the order of integration, which
means that, the expectation can be evaluated first, where only the non-deterministic part
has to be considered. Remember, that the discounting is deterministic.

In (ii), we applied the inequality of Jensen A.2.12 for conditional expectations to get

E
[︂ ⃓⃓⃓

(n)XG
u− − (n−1)XG

u−

⃓⃓⃓ ]︂
= E

[︂ ⃓⃓⃓
E
[︂

(n)Xu− − (n−1)Xu−

⃓⃓⃓
G−

u

]︂⃓⃓⃓]︂
A.2.12

≤ E
[︂
E
[︂ ⃓⃓ (n)Xu− − (n−1)Xu−

⃓⃓ ⃓⃓⃓
G−

u

]︂]︂
= E

[︂⃓⃓⃓
(n)Xu− − (n−1)Xu−

⃓⃓⃓]︂
,

(3.2.7)

which allows us to get rid of the optional projections. We can see one of the major
advantages here, since we only need a sigma-algebra to perform this step, but the exact
structure of the family G is not used and therefore not necessary to fix. In total, this step
enables us to introduce the needed difference of predecessors for our iteration. We have

E

⎡⎢⎣ ∫︂
[s,t]

e−K(ζ(T )−ζ(u)) d
⃓⃓⃓
(n+1)Y − (n)Y

⃓⃓⃓
u

⎤⎥⎦
≤

∫︂
u∈(s,t]

L e−K(ζ(T )−ζ(u)) κ(u)E
[︂⃓⃓⃓

(n)Xu− − (n−1)Xu−

⃓⃓⃓]︂
ζ(du)
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≤
∫︂

u∈(s,t]

L e−K(ζ(T )−ζ(u)) E
[︂⃓⃓

κ(u−)
⃓⃓ ⃓⃓⃓(n)Xu− − (n−1)Xu−

⃓⃓⃓]︂
ζ(du)

≤
∫︂

u∈(s,t]

L e−K(ζ(T )−ζ(u)) E
[︂⃓⃓⃓

(n)Y u− − (n−1)Y u−

⃓⃓⃓]︂
ζ(du)

(iii)
≤

∫︂
u∈(s,t]

L

1 − J
· e−K(ζ(T )−ζ(u)) E

[︂⃓⃓⃓
(n)Y u − (n−1)Y u

⃓⃓⃓]︂
ζ(du)

= E

⎡⎢⎣ ∫︂
u∈(s,t]

L

1 − J
· e−K(ζ(T )−ζ(u))

⃓⃓⃓
(n)Y u − (n−1)Y u

⃓⃓⃓
ζ(du)

⎤⎥⎦
(iv)
≤ E

⎡⎢⎣ ∫︂
u∈(s,t]

L

1 − J
· e−K(ζ(T )−ζ(u))

⎛⎜⎝ ∫︂
r∈[u,T ]

d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

⎞⎟⎠ ζ(du)

⎤⎥⎦ ,

where we used Formula (3.1.4), i.e. that κ(t−) = κ(t). Further it holds, that κ(t) = |κ(t)|,
because of the non-negativity of the exponential function. Therefore the absolute difference
can be scaled with the factor κ(t), enabling us to change back from X to Y . Afterwards,
the Theorem of Fubini-Tonelli is used in opposite direction to before.

Let us give some additional details about step (iii). Remember our definition of ζ as

ζ(dt) = γ(dt) + D dt

of a Lebesgue-part, multiplied with a constant, and the deterministic jumps, originating
from the definition of γ.

A special consideration has to be given to the deterministic time point t0, t1, . . . , where the
γ-part of ζ might introduce additional reserve-dependent payments. We now give details
to the upper bound, that has been used in step (iii) of the proof. For the deterministic
jump points t ∈ {t0, t1, . . . }, by splitting the possible payments on [t, T ] in time point t
and the interval (t, T ], it holds⃓⃓⃓

(n)Y t− − (n−1)Y t−

⃓⃓⃓
≤
⃓⃓⃓⃓
⃓ (n)Y t − (n−1)Y t

+
∑︂

M∈M
IMt− κ(t)

(︂
bM (t, (n)XG

t−) − bM (t, (n−1)XG
t−)
)︂
1t∈{t0,...,tn}

+
∑︂
I∈N

∫︂
EI

κ(t)
(︂
BI

(︁
t, e, (n)XG

t−
)︁

− BI

(︁
t, e, (n−1)XG

t−
)︁)︂

µI({t} × de)
⃓⃓⃓⃓
⃓

≤
⃓⃓⃓
(n)Y t − (n−1)Y t

⃓⃓⃓
+ κ(t)

⃓⃓⃓⃓
⃓ ∑︂

M∈M
IMt−

(︂
bM (t, (n)XG

t−) − bM (t, (n−1)XG
t−)
)︂
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+
∑︂
I∈N

∫︂
EI

(︂
BI

(︁
t, e, (n)XG

t−
)︁

− BI

(︁
t, e, (n−1)XG

t−
)︁)︂

µI({t} × de)
⃓⃓⃓⃓
⃓

≤
⃓⃓⃓
(n)Y t − (n−1)Y t

⃓⃓⃓
+ J ·

⃓⃓⃓
(n)Y t− − (n−1)Y t−

⃓⃓⃓
by using the special Lipschitz-condition for simultaneous reserve-dependent payments.
Therefore, by applying the expectation, we have

E
[︂⃓⃓⃓

(n)Y t− − (n−1)Y t−

⃓⃓⃓]︂
≤ E

[︂⃓⃓⃓
(n)Y t − (n−1)Y t

⃓⃓⃓]︂
+ J · E

[︂⃓⃓⃓
(n)Y G

t− − (n−1)Y G
t−

⃓⃓⃓]︂
(3.2.7)

≤ E
[︂⃓⃓⃓

(n)Y t − (n−1)Y t

⃓⃓⃓]︂
+ J · E

[︂⃓⃓⃓
(n)Y t− − (n−1)Y t−

⃓⃓⃓]︂
with similar steps as before, when the conditional inequality of Jensen A.2.12 was first
used. By rearranging of terms, while using J < 1, this also implies

E
[︂⃓⃓⃓

(n)Y t− − (n−1)Y t−

⃓⃓⃓]︂
≤ 1

1 − J
· E
[︂⃓⃓⃓

(n)Y t − (n−1)Y t

⃓⃓⃓]︂
,

especially for all time points t ∈ {t0, t1, . . . }, but also for general t, if a deterministic
jump is not even possible.

Further, in step (iv) we used, that the variation on the interval [u, T ] can be used as an
upper bound for the absolute difference of the reserves in time u as⃓⃓⃓

(n)Y u − (n−1)Y u

⃓⃓⃓
≤

∫︂
r∈[u,T ]

d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

(3.2.8)

which is intuitive for the variation, and where equality would be given in a situation, when
a function is monotone. We already discussed this in the preliminary discussion to the
proof and we once again use the difference of the final values in T

(n)Y T − (n−1)Y T = 0

as the additional summand of the variation. This is possible, as the choice is arbitrary and
the value in T is always included in the interval, since the payment process Yu contains
the payments over the interval (u, T ].

This step is only necessary, if the discrete sojourn payments at deterministic time points
are used. Otherwise, the integral would only be a Lebesgue-integral, and the function
could be exchanged without the additional factor, since both integrals would be the same
dt-almost surely. One might use the simplification of J = 0 in this case, simplifying the
Lipschitz constant to just L.

We continue the proof by using the previous inequality for the complete interval (0, T ]
and we arrive at the following upper bound, that now holds for the norm as⃦⃦⃦

(n+1)Y − (n)Y
⃦⃦⃦

V [0,T ]
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≤ E

⎡⎢⎣ ∫︂
t∈(0,T ]

L

1 − J
· e−K(ζ(T )−ζ(t))

⃓⃓⃓
(n)Y t − (n−1)Y t

⃓⃓⃓
ζ(dt)

⎤⎥⎦
(iv)
≤ E

⎡⎢⎣ ∫︂
t∈(0,T ]

L

1 − J
e−K(ζ(T )−ζ(t))

⎛⎜⎝ ∫︂
r∈[t,T ]

d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

⎞⎟⎠ ζ(dt)

⎤⎥⎦
(v)
≤ L

1 − J
· E

⎡⎢⎣ ∫︂
r∈[0,T ]

⎛⎜⎝ ∫︂
t∈(0,r]

e−K(ζ(T )−ζ(t)) ζ(dt)

⎞⎟⎠d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

⎤⎥⎦
≤ L

1 − J
· E

⎡⎢⎣ ∫︂
[0,T ]

⎛⎜⎝ ∫︂
t∈(0,r]

e−K(ζ(T )−ζ(t)) ζ(dt)

⎞⎟⎠ d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

⎤⎥⎦ .

In step (v), the order 0 ≤ t ≤ r ≤ T of the integration area and integration variables can
be understood as a condition for t depending on r (i.e.t ∈ [0, r]) as well as on r depending
on t (r ∈ [t, T ]), which enables us to exchange the order of integration and additionally
makes it possible to include the lower bound r = 0, where the inner integral would be zero
anyway.

We now have to use a general transformation formula to explicitly compute the inner
integral and the details will be explained in detail. The calculations, as already mentioned
when introducing the weighting factor, are inspired by Christiansen [Chr10].

If ζ is increasing, then the following equivalence

t ∈ (0, r] ⇔ ζ(t) ∈
(︁
ζ(0), ζ(r)

]︁
together with the (inverse) quantile function

ζ−1(t) = inf {x ∈ R | ζ(x) ≥ t}

leads to
ζ(r) − ζ(0) = λ

(︁
ζ
(︁
(0, r]

)︁)︁
= λ

(︁
ζ−1 ∈ (0, r]

)︁
= L

(︁
ζ−1 | λ

)︁(︁
(0, r]

)︁
and therefore the integration can be replaced by L (ζ−1 | λ)(dt), i.e. P(A) = λ(ζ(A)).

We rewrite the inner integral in the last line as∫︂
t∈(0,r]

e−K(ζ(T )−ζ(t)) ζ(dt)

=
∫︂
R

1{t∈(0,r]} · e−K (ζ(T )−ζ(t)) L (ζ−1 | λ)(dt)

=
∫︂
R

1{ζ(t)∈(ζ(0),ζ(r)]} e−K (ζ(T )−ζ(t))⏞ ⏟⏟ ⏞
= h(ζ(t))

L (ζ−1 | λ)(dt)⏞ ⏟⏟ ⏞
=Pζ(dt)

=
∫︂
R

1{t∈(ζ(0),ζ(r)]} e−K(ζ(T )−t) Pζ(dt)
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(vi)
≤

∫︂
(ζ(0),ζ(r)]

e−K(ζ(T )−t) λ(dt) =
∫︂

(ζ(0),ζ(r)]

e−K(ζ(T )−t) dt ,

where in (vi) we used, that

Pζ (A) = P
(︂
ζ−1(A)

)︂
= λ

(︂
ζ(ζ−1(A))

)︂
≤ λ(A)

since
ζ(ζ−1(A)) = ζ

(︁
{t ∈ R

⃓⃓
ζ(t) ∈ A}

)︁
⊆ A .

We can now calculate the inner dt-integral and arrive at the following inequality⃦⃦⃦
(n+1)Y − (n)Y

⃦⃦⃦
V [0,T ]

≤ L

1 − J
· E

⎡⎢⎣ ∫︂
[0,T ]

∫︂
(0,r]

e−K(ζ(T )−ζ(t)) ζ(dt) d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

⎤⎥⎦
≤ L

1 − J
· E

⎡⎢⎣ ∫︂
[0,T ]

∫︂
(ζ(0),ζ(r)]

e−K(ζ(T )−t) dt d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

⎤⎥⎦
= L

1 − J
· E

⎡⎢⎣ ∫︂
[0,T ]

1
K

(︂
e−K(ζ(T )−ζ(r)) − e−K(ζ(T )−ζ(0))

)︂
d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

⎤⎥⎦
≤ L

(1 − J) · K
· E

⎡⎢⎣ ∫︂
[0,T ]

e−K(ζ(T )−ζ(r)) d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

⎤⎥⎦
= L

(1 − J) · K
·
⃦⃦⃦

(n)Y − (n−1)Y
⃦⃦⃦

V [0,T ]
.

When choosing K = 2 · L

1 − J
and defining our contraction constant

C := L

(1 − J) · K
= 1

2 < 1

we have indeed managed to show the contraction property with ζ as previously specified.

Application of the fixed point Theorem of Banach

Let us from now on assume, that K = 2·L
1−J . Then we have a contraction and application

of the fixed-point theorem of Banach guarantees existence and uniqueness of a process
Y = (Yt)t≥0 fulfilling

Yt =
∑︂

M∈M

∫︂
(t,T ]

IMs− κ(s) bM

(︁
s, XG

s−
)︁

γ(ds) +
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) BI

(︁
s, e, XG

s−
)︁

µI(d(s, e))
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in the space of càdlàg processes with integrable variation on [0, t], where additionally

XG
s− = 1

κ(s) E
[︁
Ys−

⃓⃓
G−

s

]︁
to express the dependency in the correct way and to emphasize the fact, that this is indeed
a fixed point equation for process Y .

Comment 3.2.13. On the benefits of this approach in comparison to standard techniques
This is a different result than usual, since we have shown the uniqueness and existence of
the accumulated future payments, but not of the prospective reserves with respect to either
F or G. The recalculation of X from Y is simpler and since we assumed the discounting to
be deterministic, this property also works for the optional projection (prospective reserve),
where the expectation is also present. We further do not need to use the integration
by parts formula in combination with the differential. This has usually be done, see for
example [CD20] Proposition 3.5, where a theorem of [CE12] is used.

On the other hand, it remains unclear, what happens with the reserve. We have an
iteration which might be used to calculate the reserve, in addition to the payment process.
The details will be investigated in a later chapter.

The approach would allow us to use more general final values, if the proposed norm is
completed with another summand, and the proof would stay the same, as the difference of
the final values between two iterations would be zero. We will refrain from a formulation, as
it is not needed in the context of life insurance contract, where our current final condition
arises naturally.
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3.3. Extension of the dependency

3.3.1. Motivation for the extended dependency

We have allowed the payments to only depend on the general reserve XG
t− of the insurance

contract, but we have not allowed the dependency on state-wise reserves or sums at risk.
To motivate the next step in the dependency, we remember the BSDE representation of
the reserve with respect to G. Theorem 2.5.13 in [Chr21b], applied to the process X, gives
us ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dXG
t = dXIF

t +
∑︂
I∈N

∫︂
EI

GI(t−, t, e)(µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI(t , t, e)(ρI − µI)(dt × de)

XG
T = 0

which almost surely holds with

GI(t−, t, e) =
∑︂

M∈M
IMt−

⎛⎝EM,RI=(t,e)
[︂
IMt−Xt

]︂
EM,RI=(t,e)

[︂
IMt−

]︂ −
EM

[︂
IMt−IMt Xt

]︂
EM

[︂
IMt−IMt

]︂
⎞⎠ ,

GI(t , t, e) =
∑︂

M∈M
IMt

⎛⎝EM,RI=(t,e)
[︂
IMt Xt

]︂
EM,RI=(t,e)

[︁
IMt
]︁ −

EM

[︂
IMt−IMt Xt

]︂
EM

[︂
IMt−IMt

]︂
⎞⎠

as an representation of the family (GI)I .

We will now also give a more compact notation for the integrands GI , where the formulas
(2.4.3) and (2.4.5) are used to rewrite the summands. Compare Christiansen [Chr21b] for
details.

Assertion 3.3.1. Rewriting of the sums at risk
Without loss of generality suppose, that 0 /∈ E.
For any t > 0 and any integrable random variable ξ we define a short hand notation by
using factorized conditional expectations as

E
[︂
ξ
⃓⃓⃓
Gt , RI = (t, e)

]︂
:= E [ξ | (Γt, RI) = · ] (Γt, (t, e)),

E
[︂
ξ
⃓⃓⃓
G−

t , RI = (t, e)
]︂

:= E [ξ | (Γt− , RI) = · ] (Γt− , (t, e)) , for e ∈ EI ,

E
[︂
ξ
⃓⃓⃓
Gt , Jt = 0

]︂
:= E

[︂
ξ
⃓⃓⃓
(Γt , Jt) = ·

]︂
(Γt, 0),

E
[︂
ξ
⃓⃓⃓
G−

t , Jt = 0
]︂

:= E [ξ | (Γt− , Jt) = · ] (Γt− , 0) .

Then, the integrands have the following alternative representations

GI(t−, t, e) = E
[︂
Xt

⃓⃓⃓
G−

t , RI = (t, e)
]︂

− E
[︂
Xt

⃓⃓⃓
G−

t , Jt = 0
]︂

, (3.3.1)
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GI(t , t, e) = E
[︂
Xt

⃓⃓⃓
Gt , RI = (t, e)

]︂
− E

[︂
Xt

⃓⃓⃓
Gt , Jt = 0

]︂
(3.3.2)

almost surely for any t > 0, I ∈ N and e ∈ EI , and where the random variable

Jt =
∑︂
I∈N

µI({t} × EI)

indicates whether there is any stopping event at time t.

We give intuitive interpretations to these differences:
The first line (3.3.1) describes the difference in expectation between a change scenario an
a remain scenario if we are currently at time t− and are looking forward in time. The
second line describes the difference in expectation between a change scenario and a remain
scenario if we are currently at time t and are looking backwards in time. These differences
are integrated with respect to the compensated forward and backward scenario dynamics
in the BSDE representation. If we interpret the difference in formula (3.3.1), then this is
similar to a general sum at risk, which also contains a remain scenario since the sum at
risk a transition i → j contains the reserve in i with a negative sign.

The equations can also be formally shown, when we use similar arguments like we have
in equations (2.4.3) and (2.4.5). Only the first line is performed and the second is
analogous.

Proof. For any I ∈ N , e ∈ EI and t > 0 we have that

GI(t−, t, e) =
∑︂

M∈M
IMt−

⎛⎝EM,RI=(t,e)
[︂
IMt− Xt

]︂
EM,RI=(t,e)

[︂
IMt−

]︂ −
EM

[︂
IMt− IMt Xt

]︂
EM

[︂
IMt− IMt

]︂
⎞⎠

=
∑︂

M∈M
IMt−

EM,RI=(t,e)
[︂
IMt−Xt

]︂
EM,RI=(t,e)

[︂
IMt−

]︂ −
∑︂

M∈M
IMt−

EM

[︂
IMt− IMt Xt

]︂
EM

[︂
IMt− IMt

]︂
=

∑︂
M∈M

IMt− E
[︂
Xt

⃓⃓⃓
G−

t , RI = (t, e)
]︂

−
∑︂

M∈M
IMt− E

[︂
Xt

⃓⃓⃓
G−

t , Jt = 0
]︂

= E
[︂
Xt

⃓⃓⃓
G−

t , RI = (t, e)
]︂

− E
[︂
Xt

⃓⃓⃓
G−

t , Jt = 0
]︂

holds almost surely, where of course the appropriate factorized conditional expectations
have to be used.

3.3.2. Modelling of the extended dependency structure

The mathematical foundations to additionally allow for dependency on GI have now to be
formulated.

Similar to the standard life insurance theory, where Zij would be used, it is possible to
use the GI for every I ∈ N and e ∈ EI . It is also imminent from the representation of
the GI , that the M ∈ M does actually has an important role as well and we remember
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that a transition in the information interpretation recognized both the M as well as
the I, and non-zero summands would only arise from a viable combination of I, M and
e ∈ EI .

If we now think about the possibilities to allowing a dependence of our payments (bM )M and
(BI)I on a representation of (GI)I as well, then it makes sense to use this representation
GJ(t−, t, e), similar to the fact that we use the general reserve prior to time t (i.e. XG

t−) as
well. The measurability condition of our functions (bM )M and (BI)I is then still fulfilled.
Another advantage is the inclusion of the standard model, if we do not want to consider a
situation with non-monotonicity. Then, the second integral vanishes and only the first
representation is still part of the sum.

Let us introduce the following shorthand notation, to keep the representation of the
payment functions reasonably short.

Definition 3.3.2. Abbreviation for sum at risk dependency
Define the notation

(GJ(t))J :=
(︁
GJ(t−, t, f)f∈EJ

)︁
J∈N

to model the two levels of dependency, where the J ∈ N is chosen in the first step and
then the f ∈ EJ is chosen in a second step.
Also note, that we use J (and f ∈ EJ) at this point, since this notation will be used as
part of the family (bM )M , as well as the family (BI)I and we therefore need to be careful
about the re-usage of indexes to not confuse it with the I from the outer sum.

Let us now revisit the modelling of our contractual payments and extend it to the current
needs of the extended model.

Definition 3.3.3. Dependent sojourn payments
Consider functions of the form

b : M × [0, ∞) × Ω −→ R
(M, t, ω) ↦−→ b

(︁
M, t, XG

t− , (GJ(t))J

)︁
(ω)

as the rate of a sojourn payment, that will be paid at time t, if IMt− = 1, for all M ∈ M
respectively, and let for M ∈ M

bM

(︁
t, XG

t− , (GJ(t))J

)︁
(ω) := b

(︁
M, t, XG

t− , (GJ(t))J

)︁
(ω)

be a function from [0, ∞) × Ω → R.

We further need the following assumptions:

(1) The function b
(︁
M, t, XG

t− , (GJ(t))J

)︁
is jointly measurable in (M, t, ω).

(2) For every M ∈ M let bM be bounded on every compact time interval, i.e. for every
t ≥ 0 we have ⃓⃓⃓

bM

(︁
s, XG

s− , (GI(s))I

)︁⃓⃓⃓
≤ JM(s) (3.3.3)

for an integrable majorant JM and for every s ∈ [0, t].

78



3.3. Extension of the dependency

(3) The functions bM

(︁
t, XG

t− , (GI(t))I

)︁
are G−-adapted for every M ∈ M.

Definition 3.3.4. Dependent transition payments
Consider functions of the form

BI : [0, ∞) × EI × Ω −→ R
(t, e, ω) ↦−→ BI

(︁
t, e, XG

t− , (GJ(t))J

)︁
(ω)

for every I ∈ N as transition payments, happening upon a transition recognized by µI .
We need the following assumptions to hold:

(1) The functions BI

(︁
t, e, XG

t− , (GJ(t))J

)︁
(ω) are jointly measurable in (t, e, ω) for every I.

(2) For each I ∈ N let BI be bounded on every compact time interval, i.e. for every t ≥ 0
we have ⃓⃓⃓

BI

(︁
s, e, XG

s− , (GJ(s))J

)︁⃓⃓⃓
≤ JN (s) (3.3.4)

for an integrable majorant JN and for every s ∈ [0, t].

(3) The functions BI

(︁
t, e, XG

t− , (GJ(t))J

)︁
are G−-adapted for each I ∈ N .

In addition to the functions bM and BI that slightly change, we can now only allow for con-
tinuous reserve-dependent for the sojourn payments and use ds instead of γ(ds). Take note,
that the previous results are still valid and lump sum payments without reserve-dependency
can still be included with the help of an additional summand.

3.3.3. Construction of the payment process

The payment process is now given as

Xt =
∑︂

M∈M

∫︂
(t,T ]

κ(s)
κ(t) I

M
s− bM

(︁
s, XG

s− , (GJ(s))J

)︁
ds

+
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s)
κ(t) BI

(︁
s, e, XG

s− , (GJ(s))J

)︁
µI(d(s, e)) ,

(3.3.5)

but we must work with Yt = κ(t) · Xt instead of Xt again. The iteration is similar to
before, but an additional step is necessary to evaluate the (GJ)J . This works by using the
construction property for the family (GJ)J .

Let the iteration index n ∈ N be fixed and ((n)Y ) be given as the predecessor. Then the
following steps have to be iterated:

(1) Calculation of
(n)Xt = 1

κ(t)
(n)Y t

as the usual payment process by reversing the discounting of all payments to 0 back
to t.

79



Chapter 3. Life insurance with reserve-dependent payments

(2) Apply Theorem 2.4.1, which guarantees the existence of the optional projection (as a
process), and it hold

(n)XG
s = E

[︂
(n−1)Xs

⃓⃓⃓
Gs

]︂
,

(n)XG
s− = E

[︂
(n−1)Xs−

⃓⃓⃓
G−

s

]︂
almost surely, where the second representation is needed in the payments.

(3) Evaluate

(n)
GJ(s−, s, f) =

∑︂
M∈M

IMs−

⎛⎝EM,RJ =(s,f)
[︂
IMs−

(n)Xs

]︂
EM,RJ =(s,f)

[︂
IMs−

]︂ −
EM

[︂
IMs−IMs (n)Xs

]︂
EM

[︂
IMs−IMs

]︂
⎞⎠

for every J ∈ N and f ∈ EJ .

(4) Construct (n+1)Y by inserting the results from (2) and (3) into the payments

(n+1)Y t =
∑︂

M∈M

∫︂
(t,T ]

IMs− κ(s) bM

(︃
s, (n)XG

s− ,
(︂

(n)GJ(s)
)︂

J

)︃
ds

+
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) HI

(︃
s, e, (n)XG

s− ,
(︂

(n)GJ(s)
)︂

J

)︃
µI(d(s, e)) .

(4) Start over with the newly constructed (n+1)Y , which completes or iteration function
Φ as

(n+1)Y = Φ
(︂

(n)Y
)︂

.

Because of the changed payments, the Lipschitz-conditions also need to be adjusted. First,
an appropriate norm has to be chosen for the G = (GJ)J , to be able to state the Lipschitz
conditions. The condition for the intensities of the compensators will be kept as a standing
assumption.

Definition 3.3.5. Semi-norm for the family of processes G
For the family of processes G = (GJ)J∈N in the setting with existing Lebesgue densities
n = (nJ)J∈N for the IF-compensator, define

∥G(s)∥n :=
∑︂

J∈N

∫︂
EJ

⃓⃓
GJ(s−, s, f)

⃓⃓
nJ(s, df) .

Assertion 3.3.6. Semi-norm property
The definition ∥G(s)∥n constructs a semi-norm for the family (GJ(s−, s, f)f∈EJ

)J∈N .
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3.3. Extension of the dependency

Proof. The absolute homogeneity and the sub-additivity, and non-negativity are all direct
consequences from the corresponding properties of the absolute value.

Let GJ(s−, s, f) = 0 for all f ∈ EJ and every J ∈ N . Then every summand is zero and
∥G(s)∥n = 0 as well. From the non-negativity of both the absolute value and the intensity
of the compensator, it follows that ∥G(s)∥n is non-negative.

It only defines a semi-norm, as in such a case the norm would be zero, but it might be
that nJ is zero (when µJ is zero), and G would not necessarily also have to be zero.

We also want to comment on why this choice of a semi-norm is sensible and in alignment
with the standard theory in literature.

Comment 3.3.7. Comparison to usual life insurance theory
Having a semi-norm is sufficient for our case, as we only use it for the Lipschitz condition.
This is similar to the literature, where an analogous construction takes place, see for
example Djehiche and Löfdahl [DL16] (with a slightly different notation)

∥Z(s)∥2
µ :=

∑︂
(i,j)∈T

Z2
ij(s) Ii(s−) λij(s−)

∥G(s)∥n :=
∑︂

J∈N

∫︂
EJ

⃓⃓
GJ(s−, s, f)

⃓⃓
nJ(s, df)

and where the product (Ii λij)(i,j)∈T would be the intensities of the standard F-
compensators of the counting processes (Nij)(i,j)∈T , and we would be using the intensities
of the IF-compensator.

Assumption 3.3.8. Lipschitz conditions
Assume, that there exists a Lipschitz constant LM > 0, independent of M ∈ M, such
that for all XG

s−(ω), X̃
G
s−(ω) and (GJ(s))J(ω), (G̃J(s))J(ω) we dP× ds a.e. have⃓⃓⃓

bM

(︁
s, XG

s− , (GJ(s))J

)︁
(ω) − bM

(︁
s, X̃

G
s− , (G̃J(s))J

)︁
(ω)
⃓⃓⃓

≤ LM
(︂⃓⃓⃓

XG
s−(ω) − X̃

G
s−(ω)

⃓⃓⃓
+
⃦⃦⃦
G(s) − G̃(s)

⃦⃦⃦
n

(ω)
)︂

for all M ∈ M.

Further assume that there exists a second Lipschitz constant LN , independent of I ∈
N , such that for all XG

s−(ω), X̃
G
s−(ω) and (GJ(s))J(ω), (G̃J(s))J(ω) and all e ∈ EI we

dP× nI(s, EI)ds a.e. have⃓⃓⃓
BI

(︁
s, e, XG

s− , (GJ(s))J

)︁
(ω) − BI

(︁
s, e, X̃

G
s− , (G̃J(s))J

)︁
(ω)
⃓⃓⃓

≤ LN
(︂⃓⃓⃓

XG
s−(ω) − X̃

G
s−(ω)

⃓⃓⃓
+
⃦⃦⃦
G(s) − G̃(s)

⃦⃦⃦
n

(ω)
)︂

.

Define L := max {LM, LN } for simplicity.
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3.3.4. Theorem – Existence and uniqueness II

We now proceed with the main theorem of this section.

Theorem 3.3.9. Existence and uniqueness of the payment process Y
Under the conditions on Y (from X in formula 3.3.5) and its parts, namely Assumptions
3.2.2 and 3.2.3 about the Lipschitz conditions and the upper bound for the compensator,
Definitions 3.1.1, 3.3.3 and 3.3.4 of the payments, the existence and uniqueness of the
payment process Y ∈ BV X([0, T ]) is guaranteed in the space of càdlàg processes with
integrable variation from Definition 3.2.4, equipped with the (equivalent) weighted norm

∥X∥V [0,T ] := E
[︂
∥X∥V [0,T ],K,ζ

]︂
= E

⎡⎢⎣ ∫︂
[0,T ]

e−K(ζ(T )−ζ(t)) d |X|t

⎤⎥⎦
where K = 2 L (D + 1) (2D + 1) is the weighting factor and ζ is the identity

ζ(dt) = dt .

Proof. The proof of the theorem is performed in three steps.

As a consequence of the application of the Theorem of Banach A.3.1, we want to show,
that a unique fixed point ∗Y exists, fulfilling

∗Y t =
∑︂

M∈M

∫︂
(t,T ]

IMs− κ(s) bM

(︃
s,

1
κ(s)

∗Y G
s− ,

1
κ(s) (∗GJ(s))J

)︃
γ(ds)

+
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) BI

(︃
s, e,

1
κ(s)

∗Y G
s− ,

1
κ(s) (∗GJ(s))J

)︃
µI(d(s, e))

=: Φ(∗Y )t (3.3.6)

where ∗Y G
t− = E

[︂
∗Y t−

⃓⃓⃓
G−

t

]︂
a.s. as usual and the respective representation holds for the

(∗GJ)J∈N without explicit formulation.

Automorphism

We begin by showing that the mapping Φ is an automorphism on the space of processes
with bounded variation.
Let (n)Y ∈ BV X([0, T ]) be a process of integrable variation and show that (n+1)Y is a
process of integrable variation as well. To ensure better readability, we do not repeat the
parts that are identical for the first theorem.

It holds that⃦⃦⃦
Φ
(︂

(n)Y
)︂⃦⃦⃦

V [0,T ]
=
⃦⃦⃦

(n+1)Y
⃦⃦⃦

V [0,T ]
= E

[︃⃦⃦⃦
(n+1)Y

⃦⃦⃦
V [0,T ],K,ζ

]︃
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= E

⎡⎢⎣ ∫︂
[0,T ]

e−K(ζ(T )−ζ(t))⏞ ⏟⏟ ⏞
≤1

d
⃓⃓⃓
(n)Y

⃓⃓⃓
t

⎤⎥⎦

≤ E

⎡⎢⎢⎢⎣
∫︂

(0,T ]

∑︂
M∈M

IMs− κ(s)
⃓⃓⃓
bM

(︁
t, (n)XG

t− ,
(︂

(n)(GJ(s)
)︂

J

)︁⃓⃓⃓
⏞ ⏟⏟ ⏞

≤ JM(t)

dt

⎤⎥⎥⎥⎦

+ E

⎡⎢⎢⎢⎣ ∑︂
I∈N

∫︂
(0,T ]×EJ

κ(s)
⃓⃓⃓
BI

(︁
t, e, (n)XG

t− ,
(︂

(n)(GJ(s)
)︂

J

)︁⃓⃓⃓
⏞ ⏟⏟ ⏞

≤ JN (t)

µI(d(t, e))

⎤⎥⎥⎥⎦
≤ E

⎡⎢⎣ ∫︂
(0,T ]

Dκ JM(t) dt

⎤⎥⎦+ E

⎡⎢⎣∑︂
I∈N

∫︂
(0,T ]×EI

Dκ JN (t) µI(d (t, e))

⎤⎥⎦
< ∞ ,

where both parts are finite, respectively. In total we have (n+1)Y ∈ BV X([0, T ]).

Contraction property

Note, that we shorten some steps of the proof, if the are essentially the same as in the
previous proof to Theorem 3.2.12.

For every 0 ≤ s < t ≤ T , or equivalently for every interval (s, t] ⊆ (0, T ] we get the
following upward estimation for the variation of the difference of two iterated solutions by

E

⎡⎢⎣ ∫︂
[s,t]

e−K(ζ(T )−ζ(u)) d
⃓⃓⃓
(n+1)Y − (n)Y

⃓⃓⃓
u

⎤⎥⎦
≤ E

⎡⎢⎣ ∫︂
(s,t]

e−K(ζ(T )−ζ(u)) κ(u)
∑︂

M∈M
IMu− ·

⃓⃓⃓
bM

(︂
u, (n)XG

u− ,
(︂

(n)GJ(u)
)︂

J

)︂
− bM

(︂
u, (n−1)XG

u− ,
(︂

(n−1)GJ(u)
)︂

J

)︂⃓⃓⃓
du

⎤⎥⎦
+ E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

e−K(ζ(T )−ζ(u)) κ(u) ·
⃓⃓⃓
BI

(︂
u, e, (n)XG

u− ,
(︂

(n)GJ(u)
)︂

J

)︂

−BI

(︂
u, e, (n−1)XG

u− ,
(︂

(n−1)GJ(u)
)︂

J

)︂⃓⃓⃓
µI(d(u, e))

⎤⎥⎦
=: (I) + (II) ,

yielding an additive structure, where we again look at both summands separately.
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For part (I), we use the Lipschitz condition for bM for every M ∈ M together with formula
(3.2.1) for every u ∈ (s, t] ⊆ (0, T ], once the dependency on M is not explicit any more,
and get the following upper bound

(I) ≤ E

⎡⎢⎣ ∫︂
(s,t]

LM e−K(ζ(T )−ζ(u)) κ(u)
(︂ ⃓⃓⃓

(n)XG
u− −(n−1)XG

u−

⃓⃓⃓
+
⃦⃦⃦

(n)G(u) − (n−1)G(u)
⃦⃦⃦

n

)︂
du

⎤⎥⎦.
We need a few more steps for the second summand (II). For better readability, we introduce
the following auxiliary short hand notation

h̃t := e−K(ζ(T )−ζ(t)) κ(t)

which then allows us to further use the following short form

FI(u, e) := h̃u ·
⃓⃓⃓
BI

(︂
u, e, (n)XG

u− ,
(︂

(n)GJ(u)
)︂

J

)︂
− BI

(︂
u, e, (n−1)XG

u− ,
(︂

(n−1)GJ(u)
)︂

J

)︂⃓⃓⃓
for the function, that is the integrand in the second summand (II).

They are non-negative and G−
u -measurable for every (u, e). This is assumed for BI as a

precondition and the deterministic exponential part and the discounting factor do not
influence this. By application of the monotone convergence theorem, we can exchange the
sum and the integral, which then allows us to exchange the each µI by νI summand-wise.

This is done in equality (i) and in this set-up relies on the special marked point processes
structure of [Chr21b], since we now introduce the IF-compensator in each summand. We
then also use the existence of the density nI for the compensator νI , which does now result
in a representation with a du integral.

(II) = E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

FI(u, e) µI(d(u, e))

⎤⎥⎦
=
∑︂
I∈N

E

⎡⎢⎣ ∫︂
(s,t]×EI

FI(u, e) µI(d(u, e))

⎤⎥⎦
=
∑︂
I∈N

E [FI • µI((s, t] × EI)]

(i)=
∑︂
I∈N

E [FI • νI((s, t] × EI)]

=
∑︂
I∈N

E

⎡⎢⎣ ∫︂
(s,t]×EI

FI(u, e) νI(d(u, e))

⎤⎥⎦
= E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

FI(u, e) νI(d(u, e))

⎤⎥⎦
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= E

⎡⎢⎣ ∫︂
(s,t]

∑︂
I∈N

∫︂
EI

FI(u, e) nI(u, de) du

⎤⎥⎦ .

After exchanging the counting process with the densities of the compensators, we can use
the Lipschitz condition⃓⃓⃓

BI

(︂
u, e, (n)XG

u− ,
(︂

(n)GJ(u)
)︂

J

)︂
(ω) − BI

(︂
u, e, (n−1)XG

u− ,
(︂

(n−1)GJ(u)
)︂

J

)︂
(ω)
⃓⃓⃓

≤ LN ·
(︂ ⃓⃓⃓

(n)XG
u−(ω) − (n)

X̃G
u−(ω)

⃓⃓⃓
+
⃦⃦⃦

(n)G(u) − (n−1)G(u)
⃦⃦⃦

n
(ω)
)︂

and arrive at an upper bound of

(II)

≤ E

⎡⎢⎣ ∫︂
(s,t]

LN e−K(ζ(T )−ζ(u)) κ(u) ·

∑︂
I∈N

∫︂
EI

(︂⃓⃓⃓
(n)XG

u− − (n)
X̃G

u−

⃓⃓⃓
+
⃦⃦⃦

(n)G(u) − (n−1)G(u)
⃦⃦⃦

n

)︂
nI(u, de) du

⎤⎥⎦
= E

⎡⎢⎣ ∫︂
(s,t]

LN e−K(ζ(T )−ζ(u)) κ(u) ·

(︂⃓⃓⃓
(n)XG

u− − (n)
X̃G

u−

⃓⃓⃓
+
⃦⃦⃦

(n)G(u) − (n−1)G(u)
⃦⃦⃦

n

)︂ ∑︂
I∈N

nI(u, EI) du

]︄

≤ E

⎡⎢⎣ ∫︂
(s,t]

LN e−K(ζ(T )−ζ(u)) κ(u)
(︂⃓⃓⃓

(n)XG
u− −(n)

X̃G
u−

⃓⃓⃓
+
⃦⃦⃦

(n)G(u) − (n−1)G(u)
⃦⃦⃦

n

)︂
D du

⎤⎥⎦ .

By design, when applying the Lipschitz-condition, the integrand does not further depend
on e, and we can use the majorant for the density process of the compensator, which
results in a representation with a du integral.

Furthermore, we use L = max{LN , LM} as the previously defined joint Lipschitz constant
to be able to join both parts in the next steps, making use of the similar additive structure
we achieved.

We arrive at the upper bound

E

⎡⎢⎣ ∫︂
[s,t]

e−K(ζ(T )−ζ(u)) d
⃓⃓⃓
(n+1)Y − (n)Y

⃓⃓⃓
u

⎤⎥⎦
≤ E

⎡⎢⎣ ∫︂
(s,t]

LM e−K(ζ(T )−ζ(u)) κ(u)
(︂ ⃓⃓⃓

(n)XG
u− − (n−1)XG

u−

⃓⃓⃓
+
⃦⃦⃦

(n)G(u) − (n−1)G(u)
⃦⃦⃦

n

)︂
du

⎤⎥⎦
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+ E

⎡⎢⎣ ∫︂
(s,t]

LN e−K(ζ(T )−ζ(u)) κ(u)
(︂⃓⃓⃓

(n)XG
u− −(n)

X̃G
u−

⃓⃓⃓
+
⃦⃦⃦

(n)G(u) − (n−1)G(u)
⃦⃦⃦

n

)︂
D du

⎤⎥⎦
≤ E

⎡⎢⎣ ∫︂
(s,t]

L e−K(ζ(T )−ζ(u)) κ(u)
⃓⃓⃓
(n)XG

u− − (n−1)XG
u−

⃓⃓⃓ (︁
du + D du

)︁⎤⎥⎦
+ E

⎡⎢⎣ ∫︂
(s,t]

L e−K(ζ(T )−ζ(u)) κ(u)
⃦⃦⃦

(n)G(u) − (n−1)G(u)
⃦⃦⃦

n

(︁
du + D du

)︁⎤⎥⎦
= E

⎡⎢⎣ ∫︂
(s,t]

hu

⃓⃓⃓
(n)XG

u− − (n−1)XG
u−

⃓⃓⃓
du

⎤⎥⎦
+ E

⎡⎢⎣ ∫︂
(s,t]

hu

⃦⃦⃦
(n)G(u) − (n−1)G(u)

⃦⃦⃦
n

du

⎤⎥⎦
=: (III) + (IV) ,

which is now a resorting of the previous additive composition. For reasons of readability,
we update the short hand notation to

hu := (1 + D) L e−K(ζ(T )−ζ(u)) κ(u) = (1 + D) L · h̃u ,

starting in the last line, for the deterministic and non-negative part of the integral.

Part (III) is known from before and we will not repeat the steps from the first theorem at
this point. Instead, we will focus on the unknown part (IV), where the difference of G is
now present.

Let us start by plugging in the representation of G and regrouping expressions with the
same condition in the expectation to introduce the differences of (n)Xt and (n−1)Xt early
on.
Then, the triangle inequality and the conditional inequality of Jensen A.2.12 are used to
arrive at a preferable representation with two non-negative summands. The monotone
convergence theorem can be used to exchange the sum with the expectation, since we only
have positive integrals (and integrands).

We arrive at

(IV) = E

⎡⎢⎣ ∫︂
(s,t]

hu

⃦⃦⃦
(n)G(u) − (n−1)G(u)

⃦⃦⃦
n

du

⎤⎥⎦
= E

⎡⎢⎣ ∫︂
(s,t]

hu

∑︂
J∈N

∫︂
EJ

⃓⃓⃓
(n)

GJ(u−, u, f) − (n−1)
GJ(u−, u, f)

⃓⃓⃓
nJ(u, df) du

⎤⎥⎦
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≤ E

⎡⎢⎣ ∫︂
(s,t]

hu

∑︂
J∈N

∫︂
EJ

⃓⃓⃓
E
[︂

(n)Xu − (n−1)Xu

⃓⃓⃓
G−

u , RJ = (u, f)
]︂⃓⃓⃓

nJ(u, df) du

⎤⎥⎦
+ E

⎡⎢⎣ ∫︂
(s,t]

hu

∑︂
J∈N

∫︂
EJ

⃓⃓⃓
E
[︂

(n)Xu − (n−1)Xu

⃓⃓⃓
G−

u , Ju = 0
]︂⃓⃓⃓

nJ(u, df) du

⎤⎥⎦
≤
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]×EJ

∑︂
M∈M

IMu−

EM,RJ =(u,f)
[︂
IMu− hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
EM,RJ =(u,f)

[︂
IMu−

]︂ νJ(d(u, f))

⎤⎥⎦
+ E

⎡⎢⎣ ∫︂
(s,t]

∑︂
J∈N

∫︂
EJ

∑︂
M∈M

IMu−

EM

[︂
IMu− IMu hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
EM

[︂
IMu− IMu

]︂ nJ(u, df) du

⎤⎥⎦
=
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]×EJ

∑︂
M∈M

IMu−

EM,RJ

[︂
IMu− hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
EM,RJ

[︂
IMu−

]︂ µJ(d(u, f))

⎤⎥⎦
+
∑︂

J∈N

∑︂
M∈M

E

⎡⎢⎣ ∫︂
(s,t]

∫︂
EJ

IMu−

EM

[︂
IMu− IMu hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
EM

[︂
IMu− IMu

]︂ nJ(u, df) du

⎤⎥⎦
=: (V) + (VI) ,

where we again achieve an additive structure, with new expressions (V) and (VI), that we
now have to further investigate.

Start with the expression (VI), where we first want to exchange the Ju and continue with
the original formulation. We get

(VI) =
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]

∫︂
EJ

∑︂
M∈M

IMu−

EM

[︂
IMu− IMu hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
EM

[︂
IMu− IMu

]︂ nJ(u, df) du

⎤⎥⎦
=
∑︂

J∈N
E

⎡⎢⎣ ∑︂
M∈M

∫︂
(s,t]

IMu−

EM

[︂
IMu− IMu hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
EM

[︂
IMu− IMu

]︂ ∫︂
EJ

nJ(u, df) du

⎤⎥⎦
=
∑︂

J∈N
E

⎡⎢⎣ ∑︂
M∈M

∫︂
(s,t]

IMu−

EM

[︂
IMu− IMu hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
EM

[︂
IMu− IMu

]︂ nJ(u, EJ) du

⎤⎥⎦
(i)=
∑︂

J∈N
E

⎡⎢⎣ ∑︂
M∈M

∫︂
(s,t]

IMu−

EM

[︂
IMu− hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
EM

[︂
IMu−

]︂ nJ(u, EJ) du

⎤⎥⎦ ,

where the rewritten integrand does not depend on the index J . This enables us to do
separate the integration by application of Theorem of Fubini, such that we remain only
with the integration with respect to u.

In this situation, we now have a Lebesgue integral, where additionally the continuous
density of the compensator is present. In the last step (i), we can exchange the integrand
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with a more preferable option, if both functions coincide everywhere with exception of an
null set.

By case comparison, we have for the indication functions, that

IMu−(ω) · IMu (ω) = IMu−(ω) for all ω ∈
{︂
IMu−(ω) = 1 and IMu (ω) = 0

}︂c
.

The indicator processes have at most two jumps, and the only difference in the indicator
functions is given for the jump from 1 back down to 0.

Especially, for a fixed ω ∈ Ω, we have that these processes are equal almost everywhere,
i.e.

IMu−(ω) · IMu (ω) = IMu−(ω) a.e.

which implies, that also the conditional expectation with respect to ZM fulfil

EM

[︂
IMu− IMu

]︂
(ω) = EM

[︂
IMu−

]︂
(ω) a.e.

and the same goes for the numerator. We therefore also have

EM

[︂
IMu− IMu hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
(ω) = EM

[︂
IMu− hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
(ω) a.e. .

We are now able to exchange IMu− by IMu− · IMu everywhere in the integrand. The functions
are equal almost everywhere, which means that for the omega-wise Lebesgue integral, we
can change the integrand, without changing the value of the integral.

Using this, and simplifying, we arrive at the following upper bound

(VI) =
∑︂

J∈N
E

⎡⎢⎣ ∑︂
M∈M

∫︂
(s,t]

IMu−

EM

[︂
IMu− hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
EM

[︂
IMu−

]︂ nJ(u, EJ) du

⎤⎥⎦
=
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]

∑︂
M∈M

IMu− E
[︂

hu ·
⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓ ⃓⃓⃓
G−

u

]︂
nJ(u, EJ) du

⎤⎥⎦
(3.2.1)= E

⎡⎢⎣ ∫︂
(s,t]

hu · E
[︂⃓⃓⃓

(n)Xu − (n−1)Xu

⃓⃓⃓ ⃓⃓⃓
G−

u

]︂ ∑︂
J∈N

nJ(u, EJ) du

⎤⎥⎦

≤ E

⎡⎢⎢⎢⎢⎢⎣
∫︂

(s,t]

hu · E
[︂⃓⃓⃓

(n)Xu − (n−1)Xu

⃓⃓⃓ ⃓⃓⃓
G−

u

]︂ ∑︂
J∈N

|nJ(u, EJ)|⏞ ⏟⏟ ⏞
≤D

du

⎤⎥⎥⎥⎥⎥⎦
≤ D · E

⎡⎢⎣ ∫︂
(s,t]

hu · E
[︂⃓⃓⃓

(n)Xu − (n−1)Xu

⃓⃓⃓ ⃓⃓⃓
G−

u

]︂
du

⎤⎥⎦
= D ·

∫︂
(s,t]

hu E
[︂
E
[︂⃓⃓⃓

(n)Xu − (n−1)Xu

⃓⃓⃓ ⃓⃓⃓
G−

u

]︂]︂
du
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= D ·
∫︂

(s,t]

hu E
[︂⃓⃓⃓

(n)Xu − (n−1)Xu

⃓⃓⃓]︂
du

= D · E

⎡⎢⎣ ∫︂
(s,t]

hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓
du

⎤⎥⎦
where once again the law of total expectation has been applied to get rid of the condition
in the conditional expectation. To be able to use similar arguments as in the first proof, we
need to arrive at a representation where the conditional expectation is taken with respect
to a sigma algebra. Here, we achieve to get G−

u , after reformulation from the condition
Ju = 0.

Let us continue with the summand (V) of the original equation. In this part, we also need
to get rid of the conditional expectation and some additional results have to be formulated
first. To rewrite the integrator, we want to use a formula, that is similar to the formula
2.4.5, but allowing for a jump time as the time point instead. We directly replicate the
proof with similar reasoning, but adapted to the needs of this situation.

The σ-algebra σ
(︁
IM
Q−

J

)︁
has the representation

σ
(︁
IM
Q−

J

)︁
=
{︃

∅, Ω, AM
Q−

J
,
(︂
AM

Q−
J

)︂c}︃
= σ

(︁
AM

Q−
J

)︁
with generator AM

Q−
J

. Let {∅, Ω} be the trivial σ-algebra.

For any H ∈ σ
(︁
IM
Q−

J

)︁
exists a H̃ ∈ {∅, Ω} and for any H̃ ∈ {∅, Ω} exists an H ∈ σ

(︁
IM
Q−

J

)︁
such that

H ∩ AM
Q−

J
= H̃ ∩ AM

Q−
J

.

As a consequence, it follows that for any H ∈
(︁
σ(ZM ) ∨ σ(RJ) ∨ σ

(︁
IM
Q−

J

)︁)︁
there exists a

H̃ ∈
(︁
σ(ZM ) ∨ σ(RJ)

)︁
and for any H̃ ∈

(︁
σ(ZM ) ∨ σ(RJ)

)︁
there exists an H ∈

(︁
σ(ZM ) ∨

σ(RJ) ∨ σ
(︁
IM
Q−

J

)︁)︁
such that

H ∩ AM
Q−

J
= H̃ ∩ AM

Q−
J

or equivalently, in notation of the indicator functions

1H IMQ−
J

= 1H̃ I
M
Q−

J
(3.3.7)

holds respectively. Further, the relation(︁
σ(ZM ) ∨ σ(RJ)

)︁
∩ AM

Q−
J

=
(︁
σ(ZM ) ∨ σ(RJ) ∨ σ

(︁
IM
Q−

J

)︁)︁
∩ AM

Q−
J

(3.3.8)

⊆
(︁
σ(ZM ) ∨ σ(RJ) ∨ σ

(︁
IM
Q−

J

)︁)︁
(3.3.9)

holds, implying that the random variable

IM
Q−

J

EM,RJ

[︃
ξ IM

Q−
J

]︃
EM,RJ

[︃
IM
Q−

J

]︃ (3.3.10)
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is
(︁
σ(ZM ) ∨ σ(RJ) ∨ σ

(︁
IM
Q−

J

)︁)︁
-measurable.

For any H ∈
(︁
σ(ZM ) ∨ σ(RJ) ∨ σ

(︁
IM
Q−

J

)︁)︁
, by the law of total expectation, we achieve

E

⎡⎢⎢⎣1H IMQ−
J

EM,RJ

[︃
ξ IM

Q−
J

]︃
EM,RJ

[︃
IM
Q−

J

]︃
⎤⎥⎥⎦

= E

⎡⎢⎢⎣EM,RJ

⎡⎢⎢⎣1H IMQ−
J

EM,RJ

[︃
ξ IM

Q−
J

]︃
EM,RJ

[︃
IM
Q−

J

]︃
⎤⎥⎥⎦
⎤⎥⎥⎦

(3.3.7)= E

⎡⎢⎢⎣EM,RJ

⎡⎢⎢⎣1H̃ I
M
Q−

J

EM,RJ

[︃
ξ IM

Q−
J

]︃
EM,RJ

[︃
IM
Q−

J

]︃
⎤⎥⎥⎦
⎤⎥⎥⎦

= E

⎡⎢⎢⎣1H̃ EM,RJ

⎡⎢⎢⎣IMQ−
J

EM,RJ

[︃
ξ IM

Q−
J

]︃
EM,RJ

[︃
IM
Q−

J

]︃
⎤⎥⎥⎦
⎤⎥⎥⎦

= E
[︃
1H̃ EM,RJ

[︃
ξ IM

Q−
J

]︃]︃
= E

[︃
1H̃ I

M
Q−

J
ξ

]︃
(3.3.7)= E

[︃
1H IMQ−

J
ξ

]︃
= E

[︃
E
[︃
1H IMQ−

J
ξ

⃓⃓⃓⃓
σ(ZM ) ∨ σ(RI) ∨ σ

(︁
IM
Q−

J

)︁]︃]︃
(3.3.8)= E

[︃
1H IMQ−

J
E
[︃
ξ

⃓⃓⃓⃓
σ(ZM ) ∨ σ(RI) ∨ σ

(︁
IM
Q−

J

)︁]︃]︃
,

where we used both equations (3.3.7) and (3.3.8) to guarantee the needed measurability in
the respective steps of the equation, which enables us to exchange between conditional
expectations with different conditions.

That means, that for any H ∈
(︁
σ(ZM ) ∨ σ(RJ) ∨ σ

(︁
IM
Q−

J

)︁)︁
it holds

E

⎡⎢⎢⎣1H IMQ−
J

EM,RJ

[︃
ξ IM

Q−
J

]︃
EM,RJ

[︃
IM
Q−

J

]︃
⎤⎥⎥⎦ = E

[︃
1H IMQ−

J
E
[︃
ξ

⃓⃓⃓⃓
σ(ZM ) ∨ σ(RI) ∨ σ

(︁
IM
Q−

J

)︁]︃]︃
.

Therefore, the following equation almost surely holds

IM
Q−

J

EM,RJ

[︃
ξ IM

Q−
J

]︃
EM,RJ

[︃
IM
Q−

J

]︃ = IM
Q−

J
E
[︃
ξ

⃓⃓⃓⃓
σ(ZM ) ∨ σ(RI) ∨ σ(IM

Q−
J

)
]︃

a.s. .

Now continue to rewrite the equation (V) and use, that the counting process µJ can at
most have one jump in the interval (0, T ]. Remembering the definition, this jump time
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is given as the random variable QJ , and this enables us to rewrite the integral with the
counting process as a jump with zero or one summands.

To track if the jump actually happens during (s, t], we use the indication function 1{QJ ∈(s,t]}
for (s, t] ⊆ (0, T ]. We then arrive at

(V)

=
∑︂

J∈N

∑︂
M∈M

E

⎡⎢⎣ ∫︂
(s,t]×EJ

IMu−

EM,RJ

[︂
IMu− hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓]︂
EM,RJ

[︂
IMu−

]︂ µJ(d(u, f))

⎤⎥⎦

=
∑︂

J∈N

∑︂
M∈M

E

⎡⎢⎢⎣ IMQ−
J

EM,RJ

[︃
IM
Q−

J

hQJ

⃓⃓⃓
(n)XQJ

− (n−1)XQJ

⃓⃓⃓]︃
EM,RJ

[︃
IM
Q−

J

]︃ · µJ

(︁
(s, t] × EJ

)︁⎤⎥⎥⎦

=
∑︂

J∈N

∑︂
M∈M

E

⎡⎢⎢⎣1{QJ ∈(s,t]} IMQ−
J

EM,RJ

[︃
IM
Q−

J

hQJ

⃓⃓⃓
(n)XQJ

− (n−1)XQJ

⃓⃓⃓]︃
EM,RJ

[︃
IM
Q−

J

]︃
⎤⎥⎥⎦

=
∑︂

J∈N

∑︂
M∈M

E
[︃
1{QJ ∈(s,t]} IMQ−

J
E
[︃
hQJ

⃓⃓⃓
(n)XQJ

− (n−1)XQJ

⃓⃓⃓ ⃓⃓⃓⃓
σ(ZM ) ∨ σ(RJ) ∨ σ

(︁
IM
Q−

J

)︁]︃]︃
(i)=
∑︂

J∈N

∑︂
M∈M

E
[︃
E
[︃
1{QJ ∈(s,t]} IMQ−

J
hQJ

⃓⃓⃓
(n)XQJ

− (n−1)XQJ

⃓⃓⃓ ⃓⃓⃓⃓
σ(ZM ) ∨ σ(RJ) ∨ σ

(︁
IM
Q−

J

)︁]︃]︃

=
∑︂

J∈N

∑︂
M∈M

E
[︃
1{QJ ∈(s,t]} IMQ−

J
hQJ

⃓⃓⃓
(n)XQJ

− (n−1)XQJ

⃓⃓⃓]︃

=
∑︂

J∈N
E
[︄
1{QJ ∈(s,t]}

∑︂
M∈M

IM
Q−

J
hQJ

⃓⃓⃓
(n)XQJ

− (n−1)XQJ

⃓⃓⃓]︄

=
∑︂

J∈N
E
[︂
1{QJ ∈(s,t]} hQJ

⃓⃓⃓
(n)XQJ

− (n−1)XQJ

⃓⃓⃓]︂
=
∑︂

J∈N
E
[︂

hQJ

⃓⃓⃓
(n)XQJ

− (n−1)XQJ

⃓⃓⃓
· µJ

(︁
(0, T ] × EJ

)︁]︂

=
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]×EJ

ht

⃓⃓⃓
(n)Xt − (n−1)Xt

⃓⃓⃓
µJ(d(t, f))

⎤⎥⎦ ,

where the condition of the conditional expectation enables us to pull both

IM
Q−

J
, as well as 1{QJ ∈(s,t]}

into the expectation in step (i), since both indicators are measurable with respect to the
joint σ-algebra by construction, since especially RJ = (QJ , ZJ) contains QJ .

The integral in the last line can now be written as the limit of the grid-sum and the càdlàg
property of the process Xu (and hu) is used to determine the value of the integrand. This
workaround is used, to not have to work with the stopping time sigma-algebra FQ−

J
.
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Chapter 3. Life insurance with reserve-dependent payments

Rewriting of the integral leads to

(V) =
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]×EJ

hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓
µJ(d(u, f))

⎤⎥⎦
=
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]

hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓
µJ(du, EJ)

⎤⎥⎦
=
∑︂

J∈N
E

⎡⎢⎣ lim
n→∞

∑︂
τ

[s,t]
n

htk+1

⃓⃓⃓
(n)Xtk+1 − (n−1)Xtk+1

⃓⃓⃓
· µJ((tk, tk+1], EJ)

⎤⎥⎦
(i)=
∑︂

J∈N
lim

n→∞

∑︂
τ

[s,t]
n

E
[︂

htk+1

⃓⃓⃓
(n)Xtk+1 − (n−1)Xtk+1

⃓⃓⃓
· µJ((tk, tk+1], EJ)

]︂
(ii)=

∑︂
J∈N

lim
n→∞

∑︂
τ

[s,t]
n

E
[︂
E
[︂

htk+1

⃓⃓⃓
(n)Xtk+1 − (n−1)Xtk+1

⃓⃓⃓
· µJ((tk, tk+1], EJ)

⃓⃓⃓
Ftk+1

]︂]︂
(iii)=

∑︂
J∈N

lim
n→∞

∑︂
τ

[s,t]
n

E
[︂
E
[︂

htk+1

⃓⃓⃓
(n)Xtk+1 − (n−1)Xtk+1

⃓⃓⃓ ⃓⃓⃓
Ftk+1

]︂
· µJ((tk, tk+1], EJ)

]︂

(iv)=
∑︂

J∈N
E

⎡⎢⎣ lim
n→∞

∑︂
τ

[s,t]
n

E
[︂

htk+1

⃓⃓⃓
(n)Xtk+1 − (n−1)Xtk+1

⃓⃓⃓ ⃓⃓⃓
Ftk+1

]︂
µJ((tk, tk+1], EJ)

⎤⎥⎦
=
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]

E
[︂

hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓ ⃓⃓⃓
Fu

]︂
µJ(du, EJ)

⎤⎥⎦
(v)=

∑︂
J∈N

E

⎡⎢⎣ ∫︂
(s,t]

E
[︂

hu

⃓⃓⃓
(n)Xu− − (n−1)Xu−

⃓⃓⃓ ⃓⃓⃓
Fu−

]︂
µJ(du, EJ)

⎤⎥⎦
=
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]×EJ

E
[︂

hu

⃓⃓⃓
(n)Xu− − (n−1)Xu−

⃓⃓⃓ ⃓⃓⃓
Fu−

]︂
µJ(d(u, f))

⎤⎥⎦ ,

for any partition
(︂
τ

[s,t]
n

)︂
n∈N

∈ T([s, t]) and for every subinterval (s, t] ⊆ (0, T ].

Additional reasoning for the marked steps in the last equation is provided now:

(i) We interchange expectation and limit by using the monotone convergence theorem,
which can be applied, since all summand are non-negative and we already know,
that the limit exists. The sum then only consists of one summand at most, and we
therefore also use the additivity of the expectation.

(ii) The total expectation theorem is used once again, but here with full information
sigma-algebra Ftk+1 for each summand individually.

(iii) µJ((tk, tk+1], EJ) is Ftk+1-measurable.
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3.3. Extension of the dependency

(iv) Step (i) in return. We also know, that the limit exists, since we have guaranteed the
existence of the process of the optional projection with respect to F, and we also
took the corresponding version, that is càdlàg.

(v) Theorem III.20 from [Pro05] (Compare A.3.9) is applied, since

E
[︂

hu ·
⃓⃓ (n)Xu − (n−1)Xu

⃓⃓ ⃓⃓⃓
Fu

]︂
is a martingale by construction. It is bounded (all payments are bounded and only
finitely many jumps may happen) and the integrator is of integrable variation, since
it is a jump process with at most one jump.

By similar reasoning as before, we can now proceed by exchanging the process with its F-
compensator, because the F−-adaptivity of the integrand can now be used.

We achieve the upper bound

(V) =
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]×EJ

E
[︂

hu

⃓⃓⃓
(n)Xu− − (n−1)Xu−

⃓⃓⃓ ⃓⃓⃓
Fu−

]︂
µJ(d(u, f))

⎤⎥⎦
=
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]×EJ

E
[︂

hu

⃓⃓⃓
(n)Xu− − (n−1)Xu−

⃓⃓⃓ ⃓⃓⃓
Fu−

]︂
λJ(d(u, f))

⎤⎥⎦
=
∑︂

J∈N
E

⎡⎢⎣ ∫︂
(s,t]

E
[︂

hu

⃓⃓⃓
(n)Xu− − (n−1)Xu−

⃓⃓⃓ ⃓⃓⃓
Fu−

]︂ ∫︂
EJ

lJ(u, df) du

⎤⎥⎦
= E

⎡⎢⎣ ∫︂
(s,t]

E
[︂

hu

⃓⃓⃓
(n)Xu− − (n−1)Xu−

⃓⃓⃓ ⃓⃓⃓
Fu−

]︂ ∑︂
J∈N

lJ(u, EJ) du

⎤⎥⎦
≤ E

⎡⎢⎣ ∫︂
(s,t]

E
[︂

hu

⃓⃓⃓
(n)Xu− − (n−1)Xu−

⃓⃓⃓ ⃓⃓⃓
Fu−

]︂
D du

⎤⎥⎦
= D

∫︂
(s,t]

hu E
[︂
E
[︂⃓⃓⃓

(n)Xu− − (n−1)Xu−

⃓⃓⃓ ⃓⃓⃓
Fu−

]︂]︂
du

= D

∫︂
(s,t]

hu E
[︂⃓⃓⃓

(n)Xu− − (n−1)Xu−

⃓⃓⃓]︂
du

= DE

⎡⎢⎣ ∫︂
(s,t]

hu

⃓⃓⃓
(n)Xu− − (n−1)Xu−

⃓⃓⃓
du

⎤⎥⎦
by using similar steps as in previous proofs.

This time, we applied the expectation to the conditional expectations in both parts but
with different conditions and once again we needed these steps to be able to introduce the
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Chapter 3. Life insurance with reserve-dependent payments

difference in X instead of XG or XF. By that, we have introduced the predecessor of our
iteration in both parts.

As an intermediate step, we have now shown the upper bound for expression (IV) as

E

⎡⎢⎣ ∫︂
(s,t]

hu

⃦⃦⃦
(n)G(u) − (n−1)G(u)

⃦⃦⃦
n

du

⎤⎥⎦
≤ DE

⎡⎢⎣ ∫︂
(s,t]

hu

⃓⃓⃓
(n)Xu − (n−1)Xu

⃓⃓⃓
du

⎤⎥⎦+ DE

⎡⎢⎣ ∫︂
(s,t]

hu

⃓⃓⃓
(n)Xu− − (n−1)Xu−

⃓⃓⃓
du

⎤⎥⎦
for every (s, t] ⊆ (0, T ].

Therefore, by combining the previous results and by doing some regrouping, the complete
upper bound can be given as⃦⃦⃦

(n+1)Y − (n)Y
⃦⃦⃦

V [0,T ]

≤ (1 + D)E

⎡⎢⎣ ∫︂
(0,T ]

ht

⃓⃓⃓
(n)Xt− − (n−1)Xt−

⃓⃓⃓
dt

⎤⎥⎦+ DE

⎡⎢⎣ ∫︂
(0,T ]

ht

⃓⃓⃓
(n)Xt − (n−1)Xt

⃓⃓⃓
dt

⎤⎥⎦
= (1 + 2D)E

⎡⎢⎣ ∫︂
(0,T ]

L (1 + D) e−K(ζ(T )−ζ(t)) κ(t)
⃓⃓⃓
(n)Xt − (n−1)Xt

⃓⃓⃓
dt

⎤⎥⎦
= L (1 + D) (1 + 2D)E

⎡⎢⎣ ∫︂
(0,T ]

e−K(ζ(T )−ζ(t))
⃓⃓⃓
(n)Yt − (n−1)Yt

⃓⃓⃓
dt

⎤⎥⎦
≤ L (1 + D) (1 + 2D)E

⎡⎢⎣ ∫︂
t∈[0,T ]

e−K(ζ(T )−ζ(t))
∫︂

r∈[t,T ]

d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

dt

⎤⎥⎦
= L (1 + D) (1 + 2D) · E

⎡⎢⎣ ∫︂
r∈[0,T ]

∫︂
t∈(0,r]

e−K(ζ(T )−ζ(t)) dt d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

⎤⎥⎦
≤ L (1 + D) (1 + 2D)

K
·
⃦⃦⃦

(n)Y − (n−1)Y
⃦⃦⃦

V [0,T ]

as the steps in the proof hold for every subinterval (s, t] ⊆ (0, T ].

The last step is very similar to the original proof of the first Theorem 3.2.12, but with the
more complex constant

K = 2 L (1 + D) (1 + 2D)

and we have shortened it. Note, that the solving of the inner integral is actually simpler
in this case, since our integrator is given by the identity as ζ(t) = t.
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3.3. Extension of the dependency

Application of the fixed point theorem of Banach

Let us from now on assume, that K = 2 L (1 + D) (1 + 2D). Then we have a contraction
and application of the fixed-point theorem of Banach guarantees existence and uniqueness
of a process Y = (Yt)t≥0 fulfilling

Yt =
∑︂

M∈M

∫︂
(t,T ]

IMs− κ(s) bM

(︁
s, XG

s− , (GJ(s))J

)︁
ds

+
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) BI

(︁
s, e, XG

s− , (GJ(s))J

)︁
µI(d(s, e))

in the space of càdlàg processes with integrable variation on [0, t], where additionally

XG
s− = 1

κ(s) E
[︁
Ys−

⃓⃓
G−

s

]︁
a.s.

and similarly

GJ(s) =
∑︂

M∈M
IMs−

⎛⎝EM,RJ =(s,e)
[︂
IMs−Xs

]︂
EM,RJ =(s,e)

[︂
IMs−

]︂ −
EM

[︂
IMs−IMs Xs

]︂
EM

[︂
IMs−IMs

]︂
⎞⎠ a.s.

for Xs = 1
κ(s) Ys and J ∈ N , which then concludes the proof.

Comment 3.3.10. Combination of the two dependency structures
The dependency structures I and II can be combined to a third and most general case,
by using two separate summands for the sojourn payments, where the preconditions and
reserve-dependency have to be matched to align with the existing situations.

A proof in that situation would mostly be a additive combination of the formulated proofs,
where we already used the linearity of the summands. Summarizing, we would need the
function γ to allow for jumps and would arrive at a more complicated constant K. A
formulation of this case is not done, as it would need a lot of notation and preconditions
with a lot of repetitions, while providing minimal to none new aspects in the formulation
or the proof.
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Chapter 4.

Actuarial calculations in life insurance

The examination of the payment process X instead of the prospective reserve XG is
convenient for our purposes, because it enables us to do the proof of the existence and
uniqueness for the payment process, but it is by no means the preferred option for the
insurance company to consider.

For pricing and reserving, the insurance company has to work with the prospective reserve
instead of the unobservable future payments and is therefore more interested in existence
and uniqueness of the prospective reserve as a process.

4.1. The prospective reserve

We will now first develop a BSDE for the reserve and then adapt the existence and
uniqueness results to the prospective reserve. We have used two different representations
of the payment process, where we have shown existence and uniqueness in both cases.
The main takeaway for this section is, that by using a similar measurability condition,
most parts do not really depend on the exact structure and yield similar results. For
simplicity, we will formulate it once nevertheless, and in the notation of dependency
structure I, where the γ is there and only dependence on the general reserve in t− is
considered.

Before we develop the BSDE, let us now first calculate the corresponding IF-compensator
of the involved cumulative payments.

Definition 4.1.1. Abbreviating notation for payment functions
The càdlàg process bM of the accumulated discounted sojourn payments is given as

bM(t) :=
∑︂

M∈M

∫︂
[0,t]

κ(s) IMs− bM

(︁
s, XG

s−
)︁

γ(ds)

for t ≥ 0 in the notation of Theorem 3.2.12 and is given as

bM(t) :=
∑︂

M∈M

∫︂
[0,t]

κ(s) IMs− bM

(︁
s, XG

s− , (GJ(s))J

)︁
ds

for t ≥ 0 in the notation of the full dependency model in Theorem 3.3.9.
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Further, the càdlàg process BN of the accumulated discounted transition payments is
given as

BN (t) :=
∑︂
I∈N

∫︂
(0,t]×EI

κ(s) BI

(︁
s, e, XG

s−
)︁

µI(d(s, e))

for t ≥ 0 in the notation of Theorem 3.2.12 and is given as

BN (t) :=
∑︂
I∈N

∫︂
(0,t]×EI

κ(s) BI

(︁
s, e, XG

s− , (GJ(s))J

)︁
µI(d(s, e))

for t ≥ 0 in the notation of the full dependency model in Theorem 3.3.9.

Assertion 4.1.2. IF-compensator of the sojourn payments
The process bM (in both representations) is IF-predictable with respect to G, i.e.

bIF
M(t) = bM(t) .

Therefore the IF-compensator of bM is bM itself.

Proof. The proof is performed only in the notation of the first representation of bM,
since the arguments do not depend on the explicit representation, but on the underlying
properties like the assumed measurability condition.

By using some results from the introductory chapter, the dominated convergence theorem
and the finiteness of the set Mt, we get:

bIF
M(t) = lim

n→∞

∑︂
τ t

n

E [bM(tk+1) − bM(tk) | Gtk
]

= lim
n→∞

∑︂
τ t

n

E

⎡⎢⎣ ∑︂
M̃∈M

∫︂
(tk,tk+1]

κ(s) IM̃s− h
(︁
M̃, s, XG

s−
)︁

γ(ds)

⃓⃓⃓⃓
⃓⃓⃓Gtk

⎤⎥⎦
Form.3.2.1= lim

n→∞

∑︂
τ t

n

∑︂
M∈Mt

IMtk
E

⎡⎢⎣ ∫︂
(tk,tk+1]

∑︂
M̃∈M

κ(s) IM̃s− h
(︁
M̃, s, XG

s−
)︁

γ(ds)

⃓⃓⃓⃓
⃓⃓⃓Gtk

⎤⎥⎦
= lim

n→∞

∑︂
τ t

n

∑︂
M∈Mt

∫︂
(tk,tk+1]

IMtk
E

⎡⎣ ∑︂
M̃∈M

κ(s) IM̃s−h(M̃, s, XG
s−)

⃓⃓⃓⃓
⃓⃓Gtk

⎤⎦ γ(ds)

(i)=
∑︂

M∈Mt

lim
n→∞

∑︂
τ t

n

∫︂
(tk,tk+1]

IMtk
E

⎡⎣ ∑︂
M̃∈M

κ(s) IM̃s−h(M̃, s, XG
s−)

⃓⃓⃓⃓
⃓⃓Gtk

⎤⎦ γ(ds)

Form. 2.4.3=
∑︂

M∈Mt

lim
n→∞

∑︂
τ t

n

∫︂
(tk,tk+1]

IMtk

EM

[︄ ∑︁
M̃∈M

IMtk
κ(s) IM̃s−h(M̃, s, XG

s−)
]︄

EM

[︂
IMtk

]︂ γ(ds)
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Lemma 2.4.11=
∑︂

M∈Mt

∫︂
(0,t]

κ(s) IMs−

EM

[︂
IMs− bM (s, XG

s−)
]︂

EM

[︂
IMs−

]︂ γ(ds)

Form. 2.4.3=
∑︂

M∈M

∫︂
(0,t]

κ(s) IMs− E
[︂
bM (s, XG

s−)
⃓⃓⃓
G−

s

]︂
γ(ds)

(ii)=
∑︂

M∈M

∫︂
(0,t]

κ(s) IMs− bM

(︁
s, XG

s−
)︁

γ(ds)

= bM(t) − bM(0)

for a sequence
(︁
τ t

n

)︁
n∈N ∈ T([0, t]).

In (i), the dominated convergence theorem is applied to exchange the sum and the limit.
In step (ii), we used that bM is G−-adapted (which is the case for both representations of
bM ) and always the case for the discounting, leading to the possibility of pulling it out of
the conditional expectation.
Even if the G−-measurability would not have been an assumption, the so-called G−-average

E
[︂
bM (s, XG

s−)
⃓⃓⃓
Gs−

]︂
would be left in the third to last line and similar results could be achieved by continuing
with the G−-averaged payment.

The result of the calculation especially means, that bM is IF-predictable with respect to
G, and that was to show.

Assertion 4.1.3. IF-compensator of the transition payments
The IF-predictor of the process BN (in both representations) with respect to G is given by

BIF
N (t) =

∑︂
I∈N

(κBI) • νI([0, t] × EI) .

Proof. The proof is once again only performed for the first representation of BN (t).

By rewriting V with the help of the abbreviating notation from the previous chapter
(applied to every summand individually), we get

BN (t) =
∑︂
I∈N

(κBI) • µI

(︁
(0, t] × EI

)︁
.

Since we assumed, that BI is bounded and G−-adapted (in both representations), and
the discounting factor does not compromise that, the preconditions in Theorem 2.5.4 are
fulfilled (note, that vBI is the FI in our current application). The theorem states, that for
every I ∈ N

(κBI) • µI((0, t] × EI)

has the IF-compensator
(κBI) • νI((0, t] × EI) .
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The application summand by summand can be performed, because Assumption 2.3.2 still
holds. Therefore, almost surely only finitely many summands have non-zero contributions
and the application summand by summand is possible. In total, we have that

BIF
N (t) =

∑︂
I∈N

(κBI) • νI((0, t] × EI) .

Assertion 4.1.4. IF-compensator – Cumulative payments
The process A of cumulated payments

A(dt) =
∑︂

M∈M
IMt− bM

(︁
t, XG

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

BI

(︁
s, e, XG

t−
)︁

µI(dt × de)

has the IF-compensator

AIF(dt) =
∑︂

M∈M
IMt− bM

(︁
t, XG

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

BI

(︁
s, e, XG

t−
)︁

νI(dt × de) .

Proof. The additive decomposition of A in sojourn and transition summands is used.
Then, the two parts are similar to bM and BN (without discounting), and consequently a
similar structure of the IF-compensator arises. Leaving out the discounting simplifies the
proofs.

4.2. Thieles BSDE

We will begin to state the Thiele BSDE with respect to F for the projection XF
t . This is

done to be able to compare the structure in both cases.
Take note, that the representation of the payment functions is different for dependency
structures I and II (as well as the integrator γ), and we will only formulate the results for
the simpler dependency structure I to avoid repetitions. The results hold for both cases,
as the underlying preconditions are similar.

Theorem 4.2.1. Thiele BSDE with respect to F
The prospective reserve with respect to F fulfils the following backward stochastic differen-
tial equation

dXF
t = φ(t) XF

t− dt − A(dt) −
∑︂
I∈N

∫︂
EI

FI(t, e) (µI − λI)(dt × de) (4.2.1)

with terminal condition XF
T = 0.

The integrand FI(t, e) is also known as the ’sum at risk’ in actuarial practice and may be
expressed as

FI(t, e) = E
[︂
Xt−

⃓⃓⃓
F−

t , RI = (t, e)
]︂

− E
[︂
Xt−

⃓⃓⃓
F−

t , Jt = 0
]︂

.
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Equation (4.2.1), together with final value condition XF
T = 0, then is a BSDE with solution

pair
(︁
XF, (FI)I

)︁
.

Corollary 4.2.2. Reformulation of the Thiele BSDE with respect to F
The above BSDE (4.2.1) may be expressed in the following equivalent form

dXF
t = f

(︁
ω, t, XF

t−
)︁

dt + g
(︁
ω, t, XF

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

ZI(t, e) (µI − λI)(dt × de)

with natural final value condition XF
T = 0, and where the generator functions are given as

f
(︁
ω, t, XF

t−
)︁

= φ(t) XF
t− −

∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XF

t−
)︁

l(t, de) ,

g
(︁
ω, t, XF

t−
)︁

= −
∑︂

M∈M
IMt− bM

(︁
t, XF

t−
)︁

and
ZI(s, e) = FI(s, e) − BI

(︁
s, e, XF

s−
)︁

.

Further reformulation and examples for Markovian models can be found in [DL16] and
examples for non-Markovian models can be found in [CD20]. These cases will not be
pursued in this thesis.

Comment 4.2.3. On the case of a sub-filtration G of F
Until now, we have been focused on the development of BSDEs for the two main situations.
There might also be a situation, where the information not the complete F (information
shrinkage), but still monotone. If we do not assume the model of Christiansen [Chr21b],
but instead use a sub-filtration G of F, then the prospective reserve with respect to G does
still exist and has a version that is càdlàg, as the Theorem can be applied to this situation
as well. Further, we can still apply the classical martingale representation theorem, as
long as our measurability conditions for the payments are formulated with respect to G.

The needed G-compensator can be calculated from the classical F-compensator by using
the innovation theorem (compare for example Theorem 3.4 in [Aal78]) or Proposition 4.8.4
(together with Corollary 4.8.5) in [Jac05], or the comments in Chapter 1) in the classical
situation of two filtrations. The representation of FI(t, e) only holds in this case, as these
rely on the notation of Christiansen [Chr21b], but a general application of the martingale
representation theorem is still possible. In this case, the Thiele BSDE with respect to G
would be similar to the one presented in 4.2.1, with the above mentioned adaptations, and
we will not formulate it in detail, especially since the details can also depend on the actual
representation of G.

Proof. Let us consider the càdlàg process

Yt := κ(t) · Xt =
∫︂

(t,T ]

κ(s) A(ds) (4.2.2)
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where all payments are discounted up to time zero, instead of just up to time t. The
discounting is assumed to be deterministic and therefore the optional projection also fulfils

Y F
t = κ(t) · XF

t a.s.

By using 4.2.2 we can compute the following two differentials for the payment process

dYt = −κ(t) A(dt)

and, by using the product rule, for the prospective reserve

dY F
t = −φ(t) κ(t) XF

t− dt + κ(t) dXF
t .

Then, the difference
Yt − Y0 = −

∫︂
(0,t]

κ(s) A(ds)

is Ft -measurable, which is the precondition of the martingale representation Theorem
2.5.12, and application of the theorem to Y F

t yields

κ(t) dXF
t − φ(t) κ(t) XF

t− dt

= dY F
t

2.5.12= dYt +
∑︂
I∈N

∫︂
EI

F̃ I(t, e)(µI − λI)(dt × de)

= −κ(t) A(dt) +
∑︂
I∈N

∫︂
EI

F̃ I(t, e)(µI − λI)(dt × de) .

By rearranging terms, we get

κ(t) dXF
t = κ(t) ·

⎛⎜⎝−A(dt) + φ(t) XF
t− dt +

∑︂
I∈N

∫︂
EI

FI(t, e) (µI − λI)(dt × de)

⎞⎟⎠
where FI(t, e) = 1

κ(t) F̃ I(t, e). The reformulation to F was necessary, since the F̃ originally
corresponds to Y F

t and the specific structure implies, that the F now actually corresponds
to XF

t , since the deterministic factor can also be pulled into the expectations. Respectively
as we almost surely have

FI(t, e) = E
[︂
Xt−

⃓⃓⃓
F−

t , RI = (t, e)
]︂

− E
[︂
Xt−

⃓⃓⃓
F−

t , Jt = 0
]︂

= 1
κ(t)

(︂
E
[︂
Yt−

⃓⃓⃓
F−

t , RI = (t, e)
]︂

− E
[︂
Yt−

⃓⃓⃓
F−

t , Jt = 0
]︂)︂

= 1
κ(t) F̃ I(t, e) .

An application of the Radon-Nikodym Theorem leads to the assertion.
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Proof. (Of the reformulation in Corollary 4.2.2.)

The representation of A(dt) as

A(dt) =
∑︂

M∈M
IMt− bM

(︁
t, XF

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XF

t−
)︁

µI(dt × de)

is used, which directly defines g, by matching the γ(dt)-parts.

The second summand contains a µI integral and is shifted into the integral part of the
BSDE, and the new ZI(t, e) := FI(t, e) − BI(t, e) is integrated. Since the integration is
with respect to the F-compensated measure µI − λI , the newly arising λI part has to be
compensated as well. Finally, the Lebesgue intensity lI is used, to include this integral in
the dt part of the BSDE, and therefore, as part of the function f .

Similar results can be shown in the case with G.

Theorem 4.2.4. Thiele BSDE with respect to G
The following differential equation holds

dXG
t = −AIF(dt) + φ(t)XG

t− dt +
∑︂
I∈N

∫︂
EI

GI

(︁
t−, t, e

)︁
(µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t , t, e

)︁
(ρI − µI)(dt × de)

(4.2.3)

with terminal condition XG
T = 0 and where the representation of the integrands GI is

given by Theorem 2.5.13, and they can almost surely be written as

GI(t−, t, e) = E
[︂
Xt

⃓⃓⃓
G−

t , RI = (t, e)
]︂

− E
[︂
Xt

⃓⃓⃓
G−

t , Jt = 0
]︂

,

GI(t , t, e) = E
[︂
Xt

⃓⃓⃓
Gt , RI = (t, e)

]︂
− E

[︂
Xt

⃓⃓⃓
Gt , Jt = 0

]︂
using the reformulation in 3.3.1.

This equation, combined with final value condition XG
T = 0, is a BSDE with solution pair

(XG, (GI)I). In difference to the classical Thiele equation, an IF-martingale as well as an
IB-martingale appear.
First, the IF-martingale quantifies the impact of new information on the optional projection
XG. The integrand GI(t−, t, e) corresponds to the ’sum at risk’. Second, the IB-martingale
quantifies the effect of information deletions on XG. As a deletion reduces the individual
risk characteristic, this part may be interpreted as a risk transfer.
The integrability assumption and measurability (with respect to G− and G respectively)
is indeed satisfied for GI(t−, t, e) and GI(t , t, e), and the projection XG is by design a
G-adapted process.
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We also want to derive a similar reformulation to the one in the standard filtration
case. Such a complete reformulation is only achievable, if one is willing to use different
representation of G(t−, t, e) and Gt , t, e), since only the IF-compensator is used as
part of AIF and it would lead to asymmetry (Compare for example Theorem 2.4.3 in
[Fur20]).

Corollary 4.2.5. Reformulation of the Thiele BSDE with respect to G
The above BSDE (4.2.3) may be expressed in the following equivalent form

dXG
t = f

(︁
ω, t, XG

t−
)︁

dt + g
(︁
ω, t, XG

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

GI

(︁
t−, t, e

)︁
(µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t , t, e

)︁
(ρI − µI)(dt × de)

with final value XG
T = 0 and generator functions, defined as

f
(︁
ω, t, XG

t−
)︁

= φ(t)XG
t− −

∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XG

t−
)︁

nI(t, de) ,

g
(︁
ω, t, XG

t−
)︁

= −
∑︂

M∈M
IMt− bM

(︁
t, XG

t−
)︁

and with (GI)I remaining as before.

Proof. Let us again consider the càdlàg process

Yt = κ(t) · Xt =
∫︂

(t,T ]

κ(s) A(ds)

where all payments are discounted up to time zero. This is now not needed to fulfil the
preconditions of the infinitesimal martingale representation theorem, but has to be done,
to be able to compute the IF-compensator and that has also been the reason, why we
precomputed the compensator of bM and BN , with discounting to zero already included.
The discounting is assumed to be deterministic and therefore the optional projection also
almost surely fulfils

Y G
t = κ(t) · XG

t

and we again use the differential

dY G
t = κ(t) dXG

t − φ(t) κ(t) XG
t− dt .

We then apply Theorem 2.5.13 to Y and note that the preconditions are indeed fulfilled,
as we need the càdlàg property of Y and the integrability condition specified in 2.4.1, to
arrive at

dY G
t = dYt

IF +
∑︂
I∈N

∫︂
EI

G̃I(t−, t, e) (µI − νI)(dt × de)
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+
∑︂
I∈N

∫︂
EI

G̃I(t , t, e) (ρI − µI)(dt × de) ,

where (in the reformulated form)

G̃I(t−, t, e) = E
[︂
Yt

⃓⃓⃓
G−

t , RI = (t, e)
]︂

− E
[︂
Yt

⃓⃓⃓
G−

t , Jt = 0
]︂

a.s.,

G̃I(t , t, e) = E
[︂
Yt

⃓⃓⃓
Gt , RI = (t, e)

]︂
− E

[︂
Yt

⃓⃓⃓
Gt , Jt = 0

]︂
a.s..

To be able to work with the equation, we need to calculate the IF-compensator of Y . It
holds, that by swapping in the representation for A(dt), we get from the definition of the
compensator

Y IF
t = lim

n→∞

∑︂
τn

E
[︁
Ytk+1 − Ytk

⃓⃓
Gtk

]︁

= lim
n→∞

∑︂
τn

E

⎡⎢⎣ ∫︂
(tk+1,T ]

κ(s) A(ds) −
∫︂

(tk,T ]

κ(s) A(ds)

⃓⃓⃓⃓
⃓⃓⃓Gtk

⎤⎥⎦
= lim

n→∞

∑︂
τn

E

⎡⎢⎣−
∫︂

(tk,tk+1]

κ(s) A(ds)

⃓⃓⃓⃓
⃓⃓⃓Gtk

⎤⎥⎦
= lim

n→∞

∑︂
τn

E

⎡⎢⎣−
∫︂

(tk,tk+1]

∑︂
M∈M

IMt− κ(s) bM

(︁
s, XG

s−
)︁

γ(ds)

⃓⃓⃓⃓
⃓⃓⃓Gtk

⎤⎥⎦
+ lim

n→∞

∑︂
τn

E

⎡⎢⎣−
∫︂

(tk,tk+1]×EI

∑︂
I∈N

κ(s) BI

(︁
s, e, XG

s−
)︁

µI(d(s, e))

⃓⃓⃓⃓
⃓⃓⃓Gtk

⎤⎥⎦
= −bIF

M(t) − BIF
N (t)

= −bM(t) − BIF
N (t)

and in full form, we have

dY IF
t = −

∑︂
M∈M

κ(t) IMt− bM

(︁
t, XG

t−
)︁

γ(dt) −
∑︂
I∈N

∫︂
EI

κ(t) BI

(︁
t, e, XG

t−
)︁

νI(dt × de) .

All together, when using the formulas for the differential and the compensator, we get

κ(t) dXG
t − φ(t) κ(t) XG

t− dt

= dY G
t

2.5.13= dY IF
t +

∑︂
I∈N

∫︂
EI

G̃I

(︁
t−, t, e

)︁ (︁
µI − νI

)︁
(dt × de)

+
∑︂
I∈N

∫︂
EI

G̃I

(︁
t , t, e

)︁ (︁
ρI − µI

)︁
(dt × de)
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= −
∑︂

M∈M
κ(t) IMt− bM

(︁
t, XG

t−
)︁

γ(dt) −
∑︂
I∈N

∫︂
EI

κ(t) BI

(︁
t, e, XG

t−
)︁

νI(dt × de)

+
∑︂
I∈N

∫︂
EI

G̃I(t−, t, e)
(︁
µI − νI

)︁
(dt × de)

+
∑︂
I∈N

∫︂
EI

G̃I(t , t, e)
(︁
ρI − µI

)︁
(dt × de) ,

which by rearranging reads

κ(t) dXG
t

= κ(t)

⎛⎜⎝φ(t) XG
t−dt −

∑︂
M∈M

IMt− bM

(︁
t, XG

t−
)︁

γ(dt) −
∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XG

t−
)︁

νI(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t−, t, e

)︁ (︁
µI − νI

)︁
(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t , t, e

)︁ (︁
ρI − µI

)︁
(dt × de)

⎞⎟⎠ ,

and where we substituted

GI(t−, t, e) = 1
κ(t) G̃I(t−, t, e)

and similarly for the other representation.

An application of the Radon-Nikodym Theorem leads to

dXG
t = φ(t) XG

t−dt −
∑︂

M∈M
IMt− bM

(︁
t, XG

t−
)︁

γ(dt) −
∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XG

t−
)︁

νI(dt × de)

+
∑︂
I∈N

∫︂
EI

GI(t−, t, e) (µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI(t , t, e) (ρI − µI)(dt × de)

= φ(t) XG
t−dt − AIF(dt) +

∑︂
I∈N

∫︂
EI

GI(t−, t, e) (µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI(t , t, e) (ρI − µI)(dt × de) .

Take note, that the reformulation from G̃ to G is possible since

1
κ(t) G̃I

(︁
t−, t, e

)︁
= E

[︂
Xt

⃓⃓⃓
G−

t , RI = (t, e)
]︂

− E
[︂
Xt

⃓⃓⃓
G−

t , Jt = 0
]︂

= GI(t−, t, e) ,
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1
κ(t) G̃I

(︁
t , t, e

)︁
= E

[︂
Xt

⃓⃓⃓
Gt , RI = (t, e)

]︂
− E

[︂
Xt

⃓⃓⃓
Gt , Jt = 0

]︂
= GI(t , t, e)

almost surely hold, and we therefore arrive at the representation from the assertion.

Let us also formulate the integral representation for both XG and Y G for later use.
Together, with their natural final value condition as XG

T = Y G
T = 0, we have

κ(t) XG
t = Y G

t = Y G
T +

∑︂
M∈M

∫︂
(t,T ]

κ(s) IMs− bM

(︁
s, XG

s−
)︁

γ(ds)

+
∑︂
I∈N

∫︂
(t,T ]

∫︂
EI

κ(s) BI

(︁
s, e, XG

s−
)︁

nI(s, de) ds

−
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) GI(s−, s, e) (µI − νI)(d(s, e))

−
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) GI(s , s, e) (ρI − µI)(d(s, e))

(4.2.4)

for the discounted reserve as well as

XG
t = XG

T +
∫︂

(t,T ]

φ(s) XG
s− ds +

∑︂
M∈M

∫︂
(t,T ]

IMs− bM

(︁
s, XG

s−
)︁

γ(ds)

+
∑︂
I∈N

∫︂
(t,T ]

∫︂
EI

BI

(︁
s, e, XG

s−
)︁

nI(s, de) ds

−
∑︂
I∈N

∫︂
(t,T ]×EI

GI(s−, s, e) (µI − νI)(d(s, e))

−
∑︂
I∈N

∫︂
(t,T ]×EI

GI(s , s, e) (ρI − µI)(d(s, e))

(4.2.5)

for the original prospective reserve.

Proof. (Of the reformulation in Corollary 4.2.5)

We plug in the previously developed representation for AIF(dt) and arrive at

dXG
t = φ(t) XG

t−dt −
∑︂

M∈M
IMt− bM

(︁
t, XG

t−
)︁

γ(dt) −
∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XG

t−
)︁

νI(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t−, t, e

)︁
(µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t , t, e

)︁
(ρI − µI)(dt × de)
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where we additionally insert the intensity of the compensator νI , such that we are able to
introduce the function f for the combined dt -part, and g for the remaining γ(dt)-part, to
get to the representation from the assertion as

dXG
t = f

(︁
ω, t, XG

t−
)︁

dt + g
(︁
ω, t, XG

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

GI

(︁
t−, t, e

)︁
(µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t , t, e

)︁
(ρI − µI)(dt × de).

4.2.1. Existence and uniqueness for the prospective reserve

As the last result of this section, we now want to discuss how solutions to the BSDE of the
payment process and solutions to the BSDE of the prospective reserve are connected. The
following theorem will both be summarizing the latest equations and also giving additional
details on the equivalence.

We will not have an equivalence in the classical sense, i.e. one solution exists exact when
the exists and vice versa, since we have already proven, that the solution to the payment
process always exists, and can be constructed.
Instead, it rather is the question, if existence and uniqueness of the solution to the Thiele
BSDE of the prospective reserve are guaranteed, and if the payment process can be
constructed by using this solution of the Thiele BSDE. Additionally, it also is of interest,
if the solutions can be constructed from each other and how the insurance company could
calculate the reserves.

Theorem 4.2.6. Existence and uniqueness of solution to the Thiele BSDE
Let all assumptions of Theorem 3.2.12 (or respectively Theorem 3.3.9) be fulfilled.

Let X ∈ BV X([0, T ]) be the existing and unique solution to the BSDE of the payment
process, i.e. the corresponding integral equation, or respectively (3.2.6) holds.

Then XG, defined by (2.1.11), together with (GI)I∈N , defined by 2.5.12, fulfil the BSDE
4.2.3 of the prospective reserve and the solution is unique in the following sense:

(1) XG ∈ BV X,G([0, T ]), defined as

BV X,G([0, T ]) :=
{︂

X =
(︁
Xt
)︁

t∈[0,T ] : Ω × [0, T ] → R
⃓⃓⃓

X càdlàg, Xt is Gt-measurable,

Xt− is G−
t -measurable, X(T ) = 0 a.s., ∥X∥V [0,T ] < ∞

}︂
(the subset of BV X([0, T ]) with additional measurability conditions with respect to
the families G and G−), is unique up to indistinguishability.
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(2) The family (GI)I∈N ∈ Hn, defined as

Hn :=
{︄

G = (GJ)J∈N

⃓⃓⃓⃓
GJ : Ω × (0, T ] × EJ → R, GJ(s−, s, e) is G−

s -measurable,

GJ(s, s, e) is Gs-measurable and

E

⎡⎢⎣ ∫︂
(0,T ]

∑︂
J∈N

∫︂
EJ

⃓⃓
GJ(s−, s, e)

⃓⃓
nJ(s, de) +

∫︂
EJ

|GJ(s, s, e)| rJ(s, de) ds

⎤⎥⎦ < ∞
}︄

,

(4.2.6)

is unique up to equality dP× nJ(s, EJ) ds and dP× rJ(s, EJ) ds almost everywhere.
Two processes G = (GJ)J∈N , G̃ = (G̃J)J∈N ∈ Hn are considered equivalent, if

E

⎡⎢⎣ ∫︂
(0,T ]

∑︂
J∈N

∫︂
EJ

⃓⃓⃓
GJ(s−, s, e) − G̃J(s−, s, e)

⃓⃓⃓
nJ(s, de)

+
∫︂

EJ

⃓⃓⃓
GJ(s, s, e) − G̃J(s, s, e)

⃓⃓⃓
rJ(s, de) ds

⎤⎥⎦ = 0 .

Further, the solution X can be reconstructed by using XG (and (GI)I) as part of the
reserve dependent payments as

Xt :=
∑︂

M∈M

∫︂
(t,T ]

κ(s)
κ(t) I

M
s− bM (s, XG

s−) γ(ds) +
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s)
κ(t) BI(s, e, XG

s−) µI(d(s, e))

(4.2.7)
depending on the version of reserve-dependency.

Proof. Let X = (Xt)t≥0 be the existing and unique solution to the BSDE of the payment
process, i.e. formula (3.2.6) holds.

We have to show existence and uniqueness of a solution to the Thiele BSDE of the
prospective reserve.

Existence: By application of Theorem 2.1.11, we know that also the optional projection
XG = (XG

t )t≥0 of X exists and has a unique càdlàg version. It holds, that XG
t =

E [Xt | Gt] a.s for t ≥ 0, and the Theorem 2.1.11 also guarantees the integrable variation.
Further, we know, that the (GI)I∈N can be constructed by using conditional expectations
of X, where the details for the existence can be found in Chapter 2 and especially
Propositions 2.4.8 and 2.4.10. Therefore, the existence is guaranteed, and both XG and
(GI)I∈N fulfil the necessary conditions, as specified in the precondition. It can be seen that
(GI)I∈N ∈ Hn, as this is the existence condition for Theorem 2.5.4, where the measure µI is
changed with the corresponding IF- and IB-compensator intensities under the expectation.

Then the pair
(︁
XG, (GI)I∈N

)︁
, fulfils the Thiele BSDE from Theorem 4.2.4. The existence

of a solution is thereby guaranteed. The details to this have already been shown in the
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preparations leading up to this theorem, where we derived the representation of the Thiele
BSDE and will not be repeated here.

Uniqueness: To show the uniqueness of a solution, we are directly going to focus on the case,
where the (GI)I∈N is constructed from the already existing solution X of the payment
process and therefore is the same for both solution pairs. This is done, because we want
to keep the interpretable structure of (GI)I∈N as the sums at risk, respectively for the
infinitesimal forward and backward view. The uniqueness condition in the precondition of
the theorem is only to exclude cases, where the integrand in the IF- or IB-martingales is
zero, and the choice for GI would be arbitrary.

Let
(︁
Y, (GI)I∈N

)︁
be another solution to the Thiele BSDE from Theorem 4.2.4, such that

Y ̸= XG (4.2.8)

where inequality of the solution is now understood as not unique up to evanescence. Y is
càdlàg, Yt is Gt-measurable and Yt− is G−

t -measurable. We have to show the uniqueness of
the reserve itself.

Both discounted solutions κ(t) · Yt and κ(t) · XG
t fulfil the BSDE 4.2.4 of the prospective

reserve, i.e. we have

κ(t) · XG
t = κ(T ) · XG

T +
∑︂

M∈M

∫︂
(t,T ]

κ(s) IMs− bM

(︁
s, XG

s−
)︁

γ(ds)

+
∑︂
I∈N

∫︂
(t,T ]

∫︂
EI

κ(s) BI

(︁
s, e, XG

s−
)︁

nI(s, de) ds

−
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) GI(s−, s, e) (µI − νI)(d(s, e))

−
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) GI(s , s, e) (ρI − µI)(d(s, e))

almost surely, as well as

κ(t) · Yt = κ(T ) · YT +
∑︂

M∈M

∫︂
(t,T ]

κ(s) IMs− bM

(︁
s, Ys−

)︁
γ(ds)

+
∑︂
I∈N

∫︂
(t,T ]

∫︂
EI

κ(s) BI

(︁
s, e, Ys−

)︁
nI(s, de) ds

−
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) GI(s−, s, e) (µI − νI)(d(s, e))

−
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s) GI(s , s, e) (ρI − µI)(d(s, e))
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almost surely. and both BSDE representation have the same IF- and IB-martingale parts.
Therefore, we can express the difference almost surely as

κ(t) XG
t − κ(t) Yt =

∑︂
M∈M

∫︂
(t,T ]

κ(s) IMs−
(︁
bM

(︁
s, XG

s−
)︁

− bM

(︁
s, Ys−

)︁)︁
γ(ds)

+
∑︂
I∈N

∫︂
(t,T ]

∫︂
EI

κ(s)
(︁
BI

(︁
s, e, XG

s−
)︁

− BI

(︁
s, e, Ys−

)︁)︁
nI(s, de) ds .

With similar tools as in the proof of Theorem 3.2.12 we can then show that⃦⃦⃦
κ XG − κY

⃦⃦⃦
K,ζ

≤ C ·
⃦⃦⃦
κ XG − κY

⃦⃦⃦
K,ζ

for a C < 1 , which guarantees that XG = Y in BV X,G([0, T ]), and therefore uniqueness
up to evanescence.

Construct

X̃t :=
∑︂

M∈M

∫︂
(t,T ]

κ(s)
κ(t) I

M
s− bM (s, Ys−) γ(ds) +

∑︂
I∈N

∫︂
(t,T ]×EI

κ(s)
κ(t) BI(s, e, Ys−) µI(d(s, e)) ,

for t ∈ [0, T ]. Then we have Yt = X̃
G
t = Yt, i.e. the Y can also be constructed from a

payment process, and we directly get X = X̃ as the solution to the payment process BSDE
is unique. This completes the proof, as both solution to the Thiele BSDE are equal up to
indistinguishability and the payment process can be reconstructed from the prospective
reserve.

The proof for the second part of the theorem with payment process X and extended
dependency structure II is very similar. Since we keep the (GI)I the same for both
solutions, the payments also depend on the same (GI)I and the Lipschitz condition for
the payments bM and BI will only have a differences in the reserves, but not in the sums
at risk. The steps of the proof are therefore identical, as additional steps are necessary,
and we refrain from a formulation to avoid repetitions.

Comment 4.2.7. Computation of the reserve via the iteration
Using the connection between the prospective reserve and the payment process, the same
iteration that arose during the proof for the payment process, with the fixed point theorem
of Banach, can also be used to compute iterations of the reserve.

It is a rather theoretical result and does not really work great in practice, as optional
projections are in general not easy to calculate. Nevertheless it could be used as part of a
numerical evaluation, for example in a Monte-Carlo estimation of the reserve. It is not
the case, that a simple backward recursion arises, especially not, since we do not impose
many assumptions on the model.
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4.3. Extension to retrospective reserves

The research has focussed on prospective reserves for now and that was justified by the
obvious applications in life insurance. Because of the symmetry in the definition, we can
extend some results to retrospective reserves.

The general definition of retrospective reserves is quite similar to the one of the prospective
reserves. Instead of calculating the conditional expected value of future payments, the
conditional expected value of past (and present) payments is calculated. The two reserves
have different advantages, and different reasons to consideration them. The retrospective
reserve can for example be used, when the past performance of an individual contract is
evaluated or balancing of the portfolio takes place. In the first case, it might be used for
surplus and loss allocation. Past performance of a portfolio can also lead to management
actions and adaptions to the future insurance business. A perspective like this is especially
important in life insurance theory, because of the long time horizon that contracts tend to
have.

The retrospective reserve is less commonly used in literature, in comparison to the
prospective reserve, and the definition can vary, depending on the source. See for example
the definition by Norberg [Nor91] and by Christiansen, Denuit, and Dhaene [CDD13]
or the overview paper by Olivieri [Oli97] for some different definitions of retrospective
reserves.

If the complete information about the past of an insured person is known, then the
retrospective reserve would just be the actual premiums minus benefits of the contract up
to that time, and we would call this the individual retrospective reserve. In general, it might
be more valuable to calculate the retrospective reserve without individual information, but
as a mean value of a portfolio to assess the past performance. Alternatively, the individual
reserves would be considered with restricted information, for example only about the
current state, but not with the complete history.

The assumptions on the multi-state model matter a lot in the case of retrospective reserves.
For example, the Markov assumption, as an assumption about independency from the past,
does not really align with the backward perspective, especially not, if we want to take an
individual perspective. This has to be taken into account for the definition of state-wise
retrospective reserves, where interpretation of a reserve might not really be possible, and
even the past individual performance of the contract would not be accurately represented.
When we consider information restriction, or non-monotone information structures, then
the retrospective reserve can be of interest, as the past performance of a contract might
be different when information is deleted or restricted and could especially be interesting
for the calculation of lapse or surrender values, as well as an indication for individual past
performance.

The retrospective reserve is now defined in a way, that we maintain symmetry to the
prospective reserve, and can develop similar results. This is a reasonable approach in our
model, as we impose no assumptions on the state process. A similar construction with a
symmetric definition takes place in the paper of Christiansen [Chr21a], where the usage of
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forward- and backward-equations allows for a calculation of retrospective reserves in a
symmetrical way compared to the prospective reserves.

4.3.1. Definition of the retrospective reserve

Let us begin by introducing a proper notation, that guarantees the definition of the
payment process, the prospective, and the retrospective reserve.

The payment processes, now with all discounted future and past payments are now defined
as

X+
t =

∫︂
(t,T ]

κ(s)
κ(t) dA(s) and

X−
t =

∫︂
[0,t]

κ(s)
κ(t) dA(s)

for t ≥ 0 respectively, where the difference is in the integration area, and the prospective
and retrospective reserves with respect to G are the unique càdlàg processes XG,+ and
XG,− with

XG,+
t = E

[︂
X+

t

⃓⃓⃓
Gt

]︂
a.s. and

XG,−
t = E

[︂
X−

t

⃓⃓⃓
Gt

]︂
a.s.

for t ≥ 0 respectively, where the right hand sides are otherwise just pointwise definitions.
In the general setting, without reserve-dependency, we have that

X−
t = X+

0− − X+
t .

These rewritings are not possible any more, once a dependency structure is included
into A. It would also be difficult to allow for reserve-dependency with respect to the
opposing reserve, so the retrospective reserve can only depend on other retrospective
reserves.

Let us come back to our setting and the payment process of the retrospective reserve will
only depend on the retrospective reserves. We have

X−
t =

∑︂
M∈M

∫︂
[0,t]

κ(s)
κ(t) I

M
s− bM (s, XG,−

s− ) γ(ds) +
∑︂
I∈N

∫︂
[0,t]×EI

κ(s)
κ(t) BI(s, e, XG,−

s− ) µI(d(s, e)),

where we have to use the retrospective reserve

XG,−
s− = E

[︂
X−

s−

⃓⃓⃓
G−

s

]︂
a.s. (4.3.1)

as part of the payments.

Special consideration must also be given to the starting value. It has to hold that
X−

0− = 0 a.s., since the integration area is empty, but this is not directly symmetric to
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the final value for the prospective reserve. Here, it does not necessarily have to be the
case, that X−

0 = 0, as potential payments in time point 0 are part of the payment process
X−

0 . For convenience we also define IM0− := IM0 , and take note, that the reserve-dependent
payments in 0 then do not really depend on the reserve.

4.3.2. Existence and uniqueness results for the payment process

A lot of notation has to be repeated, where the changes are sometimes only very minor.
This section is kept as short as possible and for clarifying details consult the original
formulation.

Definition 4.3.1. Sojourn payments
Consider a function of the form

b : M × [0, ∞) × Ω −→ R

(M, t, ω) ↦−→ b
(︁
M, t, XG,−

t−
)︁
(ω)

as the rate of a sojourn payment, that will be paid at time t, if IMt− = 1 for all M ∈ M
respectively. For every M ∈ M, let

bM

(︁
t, XG,−

t

)︁
(ω) := b

(︁
M, t, XG,−

t−
)︁
(ω)

be a function from [0, ∞) × Ω → R.

We further need the following assumptions:

(1) The function b(t, XG,−
t− )(ω) : M × [0, ∞) × Ω −→ R is measurable in (M, t, ω).

(2) For every M ∈ M let bM be bounded on every compact time interval, i.e. for t ≥ 0 it
holds ⃓⃓⃓

bM (s, XG,−
s− )

⃓⃓⃓
≤ JM(s)

for an integrable majorant JM and all s ∈ [0, t].

(3) The functions bM

(︁
t, XG,−

t−
)︁
(ω) are G−-adapted for every M ∈ M.

Let us continue with the transition payments:

Definition 4.3.2. Transition payments
For every I ∈ N , consider a function of the form

BI : [0, ∞) × EI × Ω −→ R

(t, e, ω) ↦−→ BI

(︁
t, e, XG,−

t−
)︁
(ω)

as a lump sum payment upon a transition I ∈ N .
We need the following assumptions to hold:

(1) The functions BI(t, e, XG,−
t− )(ω) : N × [0, ∞) × EI × Ω −→ R are jointly measurable

in (t, e, ω) for every I.
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(2) For every I ∈ N the BI are bounded on compact time intervals, i.e. for every t ≥ 0 it
holds ⃓⃓⃓

BI(s, e, XG,−
s− )

⃓⃓⃓
≤ JN (s)

for an integrable majorant JN and all s ∈ [0, t].

(3) The functions BI

(︁
t, e, XG,−

t−
)︁
(ω) are G−-adapted for every I ∈ N and e ∈ EI .

Construction of the payment process

We can now continue to construct the retrospective reserve-dependent payment process
with discounting, by using the contractual payments, the corresponding integrators and
the discounting factor.

Definition 4.3.3. Cumulative cash flow
The cumulative or aggregated cash flow A(t) contains all contractual payments of the
insurance contract on the interval [0, t] and is given as the càdlàg process (At)t≥0 with

A(t) =
∑︂

M∈M

∫︂
[0,t]

IMs− bM (s, XG,−
s− ) γ(ds) +

∑︂
I∈N

∫︂
[0,t]×EI

BI(s, e, XG,−
s− ) µI(d(s, e)) (4.3.2)

and A(0−) = 0 a.s. as a starting value. Recall, that also dA(t) = 0 for t > T (with
T < ∞).

The insurer then considers the process X− = (X−
t )t≥0 of the aggregated discounted future

payments for an insurance contract, given by

X−
t :=

∫︂
[0,t]

e−
∫︁ s

t
φ(u) du A(ds) =

∫︂
[0,t]

κ(s)
κ(t) A(ds)

where the integrals involved are to be understand as path-wise Lebesgue-Stieltjes inte-
grals.

This then leads to the following representation of the cash flow as

X−
t =

∑︂
M∈M

∫︂
[0,t]

κ(s)
κ(t) I

M
s− bM

(︁
s, XG,−

s−
)︁

γ(ds) +
∑︂
I∈N

∫︂
[0,t]×EI

κ(s)
κ(t) BI

(︁
s, e, XG,−

s−
)︁

µI(d(s, e)).

We again decouple the decoupling the integrand from t, by

Y −
t := κ(t) · X−

t =
∫︂

[0,t]

κ(s) A(ds) . (4.3.3)

We now want to prove again the existence and uniqueness of the payment process, when
allowing for reserve-dependent payments. This will indeed be done in two consecutive steps,
where we first one only allows payments in time t to be dependent on the retrospective
reserve XG−

t .

115



Chapter 4. Actuarial calculations in life insurance

Automorphism and recursion

Let the iteration index n ∈ N be fixed, and let the process
(︁ (n)

Y −
t
)︁

t≥0 be given as the
current iteration, used as a predecessor for the new reserve. The iterative process consists of
the following steps, that have to be performed in the specified order:

(1) Calculation of
(n)

X−
t = 1

κ(t) · (n)
Y −

t

as the usual payment process by reversing the additional discounting of all payments
on 0 to t.

(2) Application of Theorem 2.4.1, which guarantees the existence of the optional projection
as a càdlàg process (n)XG,−, and it holds

(n)XG,−
s− = E

[︂(n)
X−

s−

⃓⃓⃓
G−

s

]︂
almost surely, and is needed as part of the payments.

(3) Construction of (n+1)
Y − by insertion of the results from (2) into the payments

(n+1)
Y −

t =
∑︂

M∈M

∫︂
[0,t]

κ(s) IMs− bM

(︁
s, (n)XG,−

s−
)︁

γ(ds)

+
∑︂
I∈N

∫︂
[0,t]×EI

κ(s) BI

(︁
s, e, (n−1)XG,−

s−
)︁

µI(d(s, e)) .

(4) Starting over with the newly constructed (n+1)
Y −, which in total completes the

iteration function Φ as
(n+1)

Y − = Φ
(︂(n)

Y −
)︂

.

We now need the following updated Lipschitz-assumptions.

Assumption 4.3.4. Lipschitz conditions
Assume, that there exists a Lipschitz constant LM > 0, independent of M ∈ M, such
that for all XG,−

s− (ω), X̃
G,−
s− (ω) we dP× dγ a.e. have⃓⃓⃓

bM (s, XG,−
s− )(ω) − bM (s, X̃

G,−
s− )(ω)

⃓⃓⃓
≤ LM ·

⃓⃓⃓
XG,−

s− (ω) − X̃
G,−
s− (ω)

⃓⃓⃓
for all M ∈ M.

Further assume that there exists a second Lipschitz constant LN , independent of I ∈ N ,
such that for all XG,−

s− (ω), X̃
G,−
s− (ω) and all e ∈ EI we dP× lI(t, EI)ds a.e. have⃓⃓⃓

BI(s, e, XG,−
s− )(ω) − BI(s, e, X̃

G,−
s− )(ω)

⃓⃓⃓
≤ LN ·

⃓⃓⃓
XG,−

s− (ω) − X̃
G,−
s− (ω)

⃓⃓⃓
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Let us further assume, that for all t ∈ {t0, t1, . . . }, we have the following stronger Lipschitz
condition for the deterministic time points or reserve-dependent singular payments. Assume
there exists a second Lipschitz constant J < 1, independent of I ∈ N and M ∈ M, such
that for all XG,−

s− (ω), X̃
G,−
s− (ω) and e ∈ EI we dP× dλ a.e. have⃓⃓⃓⃓ ∑︂

M∈M
IMs−(ω)

(︂
bM (s, XG,−

s− )(ω) − bM (s, X̃
G,−
s− )(ω)

)︂
+
∑︂
I∈N

∫︂
EI

(︂
BI(s, e, XG,−

s− )(ω) − BI(s, e, X̃
G,−
s− )(ω)

)︂
µI({s} × de)(ω)

⃓⃓⃓⃓

≤ J ·
⃓⃓⃓
XG,−

s− (ω) − X̃
G,−
s− (ω)

⃓⃓⃓
for all time points s ∈ {t0, t1, . . . }.

Theorem – Existence and uniqueness

We need to show ⃦⃦⃦
(n+1)

Y − − (n)
Y −

⃦⃦⃦
=
⃦⃦⃦
Φ
(︂(n)

Y −
)︂

− Φ
(︂(n−1)

Y −
)︂⃦⃦⃦

≤ C ·
⃦⃦⃦

(n)
Y − − (n−1)

Y −
⃦⃦⃦

where C < 1 would be the contraction constant.

In that case, our iteration function Φ would indeed be a contraction mapping and a fixed
point theorem could be applied. Without specifying or checking the preconditions, as a
consequence of the application of the Theorem of Banach A.3.1, a unique fixed point ∗Y
would exist, fulfilling

∗
Y −

t =
∑︂

M∈M

∫︂
[0,t]

IMs− κ(s) bM

(︃
s,

1
κ(s)

∗Y G,−
s−

)︃
γ(ds)

+
∑︂
I∈N

∫︂
[0,t]×EI

κ(s) BI

(︃
s, e,

1
κ(s)

∗Y G,−
s−

)︃
µI(d(s, e))

=: Φ(∗
Y −)t (4.3.4)

where ∗Y G,−
t− = E

[︂∗
Y −

t−

⃓⃓⃓
G−

t

]︂
a.s. as usual.

Definition 4.3.5. Solution space
The space of càdlàg stochastic processes on [0, T ] with integrable variation is given as

BV X
[0,T ] :=

{︂
X =

(︁
Xt
)︁

t∈[0,T ] : Ω × [0, T ] → R
⃓⃓⃓
X càdlàg, X0− = 0 a.s., ∥X∥V [0,T ] < ∞

}︂
(4.3.5)
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and the norm equivalent norm is defined as a weighted expected variation norm as

∥X∥V [0,T ] := E
[︂
∥X∥V [0,T ],K,ζ

]︂
= E

⎡⎢⎣ |X0| +
∫︂

[0,T ]

e−K(ζ(t)−ζ(0)) d |X|t

⎤⎥⎦ (4.3.6)

where K > 0 is a constant, that will be chosen to guarantee the contraction property and
the measure ζ is deterministic and has to be

ζ(dt) = γ(dt) + D dt

and the additional summand in the norm is for the starting value of X0, which might be
different from 0.

Theorem 4.3.6. Existence and uniqueness of the payment process Y
Under the conditions on Y and its parts, namely Assumptions 4.3.4, 3.3.8 and 3.2.3,
Definitions 3.1.1, 4.3.1 and 4.3.2, the payment process Y − exists and is unique as the
solution of the integral equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y −
t =

∑︂
M∈M

∫︂
[0,t]

IMs− bM

(︃
s,

1
κ(s)Y G,−

s−

)︃
γ(ds)

+
∑︂
I∈N

∫︂
[0,t]×EI

BI

(︃
s, e,

1
κ(s)Y G,−

s−

)︃
µI(d(s, e))

Y −
0− = 0

(4.3.7)

in the space of càdlàg processes with finite integrable variation, given in (4.3.5), equipped
with the (equivalent) weighted norm

∥X∥V [0,T ] = E

⎡⎢⎣ |X0| +
∫︂

[0,T ]

e−K(ζ(t)−ζ(0)) d |X|t

⎤⎥⎦ ,

where the constant
K := 2 · L

1 − J

is the weighting factor with L = max{LM, LN }, and ζ is defined via

ζ(dt) := γ(dt) + D dt .

Proof. The proof is again performed in three steps.

Automorphism

We begin by showing that the mapping Φ, as specified by (4.3.4) is an automorphism on
the solution space of processes with bounded variation. Therefore, let (n)

Y − ∈ BV X
[0,T ] be

a process of integrable variation. We have to show that (n+1)
Y − is a process of integrable
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variation as well. The definition of the payment process is different and the proof is not
completely identical to the original proof, which is why the proof is performed again.

For every 0 ≤ s < t ≤ T and with (τm)m∈N as a sequence of partitions of the interval [s, t]
with {t0 = s, . . . , tm = t} and limm→∞ |τm| = 0, we get∫︂

[s,t]

e−K(ζ(u)−ζ(0)) d
⃓⃓⃓
(n+1)

Y −
⃓⃓⃓
u

= sup
τm

m∑︂
j=1

e−K(ζ(tj)−ζ(0)) ·
⃓⃓⃓(n+1)

Y −
tj

− (n+1)
Y −

tj−1

⃓⃓⃓

≤ sup
τm

m∑︂
j=1

e−K(ζ(tj)−ζ(0)) ·

⃓⃓⃓⃓
⃓⃓⃓ ∫︂
(tj−1,tj ]

∑︂
M∈M

IMu− κ(u) bM

(︁
u, (nXG,−

u−
)︁
γ(du)

+
∑︂
I∈N

∫︂
(tj−1,tj ]×EI

κ(u)BI

(︁
u, e, (n)XG,−

u−
)︁

µI(d(u, e))

⃓⃓⃓⃓
⃓⃓⃓

≤
∫︂

(s,t]

e−K(ζ(u)−ζ(0)) ∑︂
M∈M

IMu− κ(u)
⃓⃓⃓
bM

(︁
u, (n)XG,−

u−
)︁⃓⃓⃓

γ(du)

+
∑︂
I∈N

∫︂
(s,t]×EI

e−K(ζ(u)−ζ(0)) κ(u)
⃓⃓⃓
BI

(︁
u, e, (n)XG,−

u−
)︁⃓⃓⃓

µI(d(u, e))

Then, by using the upper bound from above for the norm, the following holds

⃦⃦⃦
Φ
(︂(n)

Y −
)︂⃦⃦⃦

V [0,T ]

=
⃦⃦⃦

(n+1)
Y −

⃦⃦⃦
V [0,T ]

= E
[︃⃦⃦⃦

(n+1)
Y −

⃦⃦⃦
V [0,T ],K,ζ

]︃

= E

⎡⎢⎣ |X0| +
∫︂

[0,T ]

e−K(ζ(s)−ζ(0))⏞ ⏟⏟ ⏞
≤1

d
⃓⃓⃓
(n+1)

Y −
⃓⃓⃓
s

⎤⎥⎦

≤ E [|X0|]⏞ ⏟⏟ ⏞
<∞

+E

⎡⎢⎢⎢⎣
∫︂

(0,T ]

∑︂
M∈M

IMs− κ(s)
⃓⃓⃓
bM

(︁
s, (n)XG,−

s−
)︁⃓⃓⃓

⏞ ⏟⏟ ⏞
≤ JM(s)

γ(ds)

⎤⎥⎥⎥⎦

+ E

⎡⎢⎢⎢⎣ ∑︂
I∈N

∫︂
(0,T ]×EI

κ(s)
⃓⃓⃓
BI

(︁
s, e, (n)XG,−

s−
)︁⃓⃓⃓

⏞ ⏟⏟ ⏞
≤ JN (s)

µI(d(s, e))

⎤⎥⎥⎥⎦

≤ E [|X0|] + E

⎡⎢⎢⎢⎢⎣
∫︂

(0,T ]

JM(s) · κ(s)⏞⏟⏟⏞
≤Dκ

·
∑︂

M∈M
IMs−⏞ ⏟⏟ ⏞

=1

γ(ds)

⎤⎥⎥⎥⎥⎦
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+ E

⎡⎢⎣ ∑︂
I∈N

∫︂
(0,T ]×EI

κ(s)⏞⏟⏟⏞
≤Dκ

·JN (s) µI(d(s, e)

⎤⎥⎦
≤ E [|X0|] + Dκ · E

⎡⎢⎣ ∫︂
(0,T ]

JM(s) γ(ds)

⎤⎥⎦+ Dκ · E

⎡⎢⎣ ∑︂
I∈N

∫︂
(0,T ]×EI

JN (s) µI(d(s, e))

⎤⎥⎦
< ∞ ,

where both parts are finite, respectively. Therefore, in total we have (n+1)
Y − ∈ BV X

[0,T ].

Contraction property

With similar arguments as before, we now prepare to look at the difference of two
consecutive iterations. We again start by deriving an upper bound for the norm.

We start by disregarding the outer expectation. For every 0 ≤ s < t ≤ T we get∫︂
[s,t]

e−K(ζ(u)−ζ(0)) d
⃓⃓⃓
(n+1)

Y − − (n)
Y −

⃓⃓⃓
u

= sup
τm

m∑︂
j=1

e−K(ζ(tj)−ζ(0))
⃓⃓⃓(︂(n+1)

Y −
tj

− (n)
Y −

tj

)︂
−
(︂(n+1)

Y −
tj−1 − (n)

Y −
tj−1

)︂⃓⃓⃓
≤
∫︂

(s,t]

e−K(ζ(u)−ζ(0)) ∑︂
M∈M

IMu− κ(u)
⃓⃓⃓
bM

(︁
u, (n)XG,−

u−
)︁

− bM

(︁
u, (n−1)XG,−

u−
)︁⃓⃓⃓

γ(du)

+
∑︂
I∈N

∫︂
(s,t]×EI

e−K(ζ(u)−ζ(0)) κ(u)
⃓⃓⃓
BI

(︁
u, e, (n)XG,−

u−
)︁

− BI

(︁
u, e, (n−1)XG,−

u−
)︁⃓⃓⃓

µI(d(u, e))

where (τm)m∈N is again a sequence of partitions of [s, t] with {t0 = s, . . . , tm = t} and
limm→∞ |τm| = 0 and otherwise similar arguments as in the situation above.

As a consequence, for every 0 ≤ s < t ≤ T , or equivalently for every subinterval (s, t] ⊆
(0, T ] we achieve the upper bound

E

⎡⎢⎣ ∫︂
[s,t]

e−K(ζ(u)−ζ(0)) d
⃓⃓⃓
(n+1)

Y − − (n)
Y −

⃓⃓⃓
u

⎤⎥⎦
≤ E

⎡⎢⎣ ∫︂
(s,t]

e−K(ζ(u)−ζ(0))κ(u)
∑︂

M∈M
IMu−

⃓⃓⃓
bM

(︁
u, (n)XG,−

u−
)︁

− bM

(︁
u, (n−1)XG,−

u−
)︁⃓⃓⃓

γ(du)

⎤⎥⎦
+ E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

e−K(ζ(u)−ζ(0))κ(u)
⃓⃓⃓
BI

(︁
u, e, (n)XG,−

u−
)︁
− BI

(︁
u, e, (n−1)XG,−

u−
)︁⃓⃓⃓

µI(d(u, e))

⎤⎥⎦
=: (I) + (II) ,

yielding an additive structure, where we look at both summands separately.
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For the first part, we use the Lipschitz condition for bM for every M ∈ M and get the
following upper bound

(I) = E

⎡⎢⎢⎢⎢⎣
∫︂

(s,t]

e−K(ζ(u)−ζ(0)) κ(u)
∑︂

M∈M
IMt−

⃓⃓⃓
bM (u, (n)XG,−

u− ) − bM (u, (n−1)XG,−
u− )

⃓⃓⃓
⏞ ⏟⏟ ⏞

≤ LM·
⃓⃓
(n)XG,−

u− −(n−1)XG,−
u−

⃓⃓ γ(du)

⎤⎥⎥⎥⎥⎦

≤ E

⎡⎢⎢⎢⎢⎣
∫︂

(s,t]

e−K(ζ(u)−ζ(0)) κ(u)
∑︂

M∈M
IMt−⏞ ⏟⏟ ⏞

=1

·LM ·
⃓⃓⃓
(n)XG,−

u− − (n−1)XG,−
u−

⃓⃓⃓
γ(du)

⎤⎥⎥⎥⎥⎦

≤ E

⎡⎢⎣ ∫︂
(s,t]

LM · e−K(ζ(u)−ζ(0)) κ(u)
⃓⃓⃓
(n)XG,−

u − (n−1)XG,−
u

⃓⃓⃓
γ(du)

⎤⎥⎦ ,

where we additionally used formula (3.2.1), for every u ∈ (s, t] ⊆ (0, T ].

For the second summand, we make use of the classical compensator λI with respect to F
and its density lI , to get

(II)

= E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

e−K(ζ(u)−ζ(0))κ(u)
⃓⃓⃓
BI(u, e, (n)XG,−

u− ) − BI(u, e, (n−1)XG,−
u− )

⃓⃓⃓
µI(d(u, e))

⎤⎥⎦
= E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

κ(u) GI(u, e) µI(d(u, e))

⎤⎥⎦
=
∑︂
I∈N

E

⎡⎢⎣ ∫︂
(s,t]×EI

κ(u) GI(u, e) µI(d(u, e))

⎤⎥⎦
=
∑︂
I∈N

E [(κGI) • µI((s, t] × EI)]

(i)=
∑︂
I∈N

E [(κGI) • λI((s, t] × EI)]

=
∑︂
I∈N

E

⎡⎢⎣ ∫︂
(s,t]×EI

κ(u) GI(u, e) λI(d(u, e))

⎤⎥⎦
= E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

κ(u) GI(u, e) λI(d(u, e))

⎤⎥⎦
= E

⎡⎢⎣ ∑︂
I∈N

∫︂
(s,t]×EI

e−K(ζ(u)−ζ(0))κ(u)
⃓⃓⃓
BI

(︁
u, e, (n)XG,−

u−
)︁
− BI

(︁
u, e, (n−1)XG,−

u−
)︁⃓⃓⃓

λI(d(u, e))

⎤⎥⎦
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= E

⎡⎢⎢⎢⎢⎣
∫︂

(s,t]

e−K(ζ(u)−ζ(0))κ(u)
∑︂
I∈N

∫︂
EI

⃓⃓⃓
BI

(︁
u, e, (n)XG,−

u−
)︁
− BI

(︁
u, e, (n−1)XG,−

u−
)︁⃓⃓⃓

⏞ ⏟⏟ ⏞
≤ LN

⃓⃓
(n)XG,−

u− −(n−1)XG,−
u−

⃓⃓ lI(t, de) du

⎤⎥⎥⎥⎥⎦
≤ E

⎡⎢⎣ ∫︂
(s,t]

LN · e−K(ζ(u)−ζ(0)) κ(u)
∑︂
I∈N

∫︂
EI

⃓⃓⃓
(n)XG,−

u− − (n−1)XG,−
u−

⃓⃓⃓
lI(u, de) du

⎤⎥⎦
= E

⎡⎢⎣ ∫︂
(s,t]

LN · e−K(ζ(u)−ζ(0)) κ(u)
⃓⃓⃓
(n)XG,−

u− − (n−1)XG,−
u−

⃓⃓⃓ ∑︂
I∈N

lI(u, EI) du

⎤⎥⎦
≤ E

⎡⎢⎣ ∫︂
(s,t]

LN · e−K(ζ(u)−ζ(0)) κ(u)
⃓⃓⃓
(n)XG,−

u− − (n−1)XG,−
u−

⃓⃓⃓
D du

⎤⎥⎦ .

We again use Assumption 3.2.3 for the compensator λ, and for an application of the
theorem we need, in (i) that for every summand

GI(u, e) = e−K(ζ(u)−ζ(0)) κ(u) ·
⃓⃓⃓
BI

(︁
u, e, (n)XG,−

u−
)︁

− BI

(︁
u, e, (n−1)XG,−

u−
)︁⃓⃓⃓

is G−
u -measurable for every (u, e).

Let us continue by defining L := max{LM, LN } as a joint Lipschitz constant, to further
simplify the notation. In both summands, we arrive at a similar structure and we rejoin
them to get the upper bound

E

⎡⎢⎣ ∫︂
[s,t]

e−K(ζ(u)−ζ(0)) d
⃓⃓⃓
(n+1)

Y − − (n)
Y −

⃓⃓⃓
u

⎤⎥⎦

≤ E

⎡⎢⎣ ∫︂
(s,t]

L e−K(ζ(u)−ζ(0)) κ(u)
⃓⃓⃓
(n)XG,−

u− − (n−1)XG,−
u−

⃓⃓⃓
γ(du)

⎤⎥⎦

+ E

⎡⎢⎣ ∫︂
(s,t]

L e−K(ζ(u)−ζ(0)) κ(u)
⃓⃓⃓
(n)XG,−

u− − (n−1)XG,−
u−

⃓⃓⃓
D du

⎤⎥⎦

= E

⎡⎢⎢⎢⎣
∫︂

(s,t]

L e−K(ζ(u)−ζ(0))κ(u)
⃓⃓⃓
(n)XG,−

u− − (n−1)XG,−
u−

⃓⃓⃓ (︂
γ(du) + D du

)︂
⏞ ⏟⏟ ⏞

=ζ(du)

⎤⎥⎥⎥⎦
=

∫︂
(s,t]

L e−K(ζ(u)−ζ(0)) κ(u)E
[︂⃓⃓⃓

(n)XG,−
u − (n−1)XG,−

u

⃓⃓⃓]︂
ζ(du)

(ii)
≤

∫︂
(s,t]

L e−K(ζ(u)−ζ(0)) κ(u)E
[︂⃓⃓⃓

(n)Xu− − (n−1)Xu−

⃓⃓⃓]︂
ζ(du) ,
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where we used the theorem of Fubini-Tonelli to exchange the order of integration. The
expectation can be evaluated first and only the non-deterministic part has to be considered.

In (ii), we applied the inequality of Jensen A.2.12 for conditional expectations to get

E
[︂ ⃓⃓⃓

(n)XG,−
u− − (n−1)XG,−

u−

⃓⃓⃓ ]︂
= E

[︂ ⃓⃓⃓
E
[︂(n)

X−
u− − (n−1)

X−
u−

⃓⃓⃓
G−

u

]︂⃓⃓⃓]︂
A.2.12

≤ E
[︂
E
[︂ ⃓⃓ (n)

X−
u− − (n−1)

X−
u−

⃓⃓ ⃓⃓⃓
G−

u

]︂]︂
= E

[︂⃓⃓⃓(n)
X−

−u − (n−1)
X−

u−

⃓⃓⃓]︂
,

(4.3.8)

which allows us to get rid of the optional projections. This step enables us to introduce
the needed difference of predecessors for our iteration and we get

E

⎡⎢⎣ ∫︂
[s,t]

e−K(ζ(u)−ζ(0)) d
⃓⃓⃓
(n+1)

Y − − (n)
Y −

⃓⃓⃓
u

⎤⎥⎦
≤

∫︂
u∈(s,t]

L e−K(ζ(u)−ζ(0)) κ(u)E
[︂⃓⃓⃓(n)

X−
u− − (n−1)

X−
u−

⃓⃓⃓]︂
ζ(du)

≤
∫︂

u∈(s,t]

L e−K(ζ(u)−ζ(0)) E
[︂⃓⃓

κ(u−)
⃓⃓ ⃓⃓⃓(n)

X−
u− − (n−1)

X−
u−

⃓⃓⃓]︂
ζ(du)

≤
∫︂

u∈(s,t]

L e−K(ζ(u)−ζ(0)) E
[︂⃓⃓⃓(n)

Y −
u− − (n−1)

Y −
u−

⃓⃓⃓]︂
ζ(du)

(iii)
≤

∫︂
u∈(s,t]

L

1 − J
· e−K(ζ(u)−ζ(0)) E

[︂⃓⃓⃓(n)
Y −

u − (n−1)
Y −

u

⃓⃓⃓]︂
ζ(du)

= E

⎡⎢⎣ ∫︂
u∈(s,t]

L

1 − J
· e−K(ζ(u)−ζ(0))

⃓⃓⃓
(n)

Y −
u − (n−1)

Y −
u

⃓⃓⃓
ζ(du)

⎤⎥⎦
(iv)
≤ E

⎡⎢⎣ ∫︂
u∈(s,t]

L

1 − J
· e−K(ζ(u)−ζ(0))·

⎛⎜⎝⃓⃓⃓(n)
Y −

0 − (n−1)
Y −

0

⃓⃓⃓
+

∫︂
r∈[0,u]

d
⃓⃓⃓
(n)

Y − − (n−1)
Y −

⃓⃓⃓
r

⎞⎟⎠ ζ(du)

⎤⎥⎦ ,

where we used Formula (3.1.4) and further that κ(t) = |κ(t)|, enabling us to change back
from X to Y . Afterwards, the Theorem of Fubini-Tonelli is used in opposite direction to
before.

Let us give some additional details about step (iii). Remember our definition of ζ as

ζ(dt) = γ(dt) + D dt
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of a Lebesgue-part, multiplied with a constant, and the deterministic jumps, originating
from the definition of γ.

A special consideration has to be given to the deterministic time point t0, t1, . . . again,
where the γ-part of ζ might introduce additional reserve-dependent payments. We provide
details to the upper bound in step (iii) of the proof. For the deterministic jump points
t ∈ {t0, t1, . . . }, by splitting the possible payments on [0, t] in time point t and keeping
the interval [0, t), it holds⃓⃓⃓

(n)Y −
t− − (n−1)Y −

t−

⃓⃓⃓
≤
⃓⃓⃓
(n)Y −

t − (n−1)Y −
t

⃓⃓⃓
+ κ(t)

⃓⃓⃓⃓ ∑︂
M∈M

IMt
(︂
bM (t, (n)XG,−

t− ) − bM (t, (n−1)XG,−
t− )

)︂
+
∑︂
I∈N

∫︂
EI

(︂
BI

(︁
t, e, (n)XG,−

t−
)︁

− BI

(︁
t, e, (n−1)XG,−

t−
)︁)︂

µI({t} × de)
⃓⃓⃓⃓

≤
⃓⃓⃓
(n)Y −

t − (n−1)Y −
t

⃓⃓⃓
+ J ·

⃓⃓⃓
(n)Y G,−

t− − (n−1)Y G,−
t−

⃓⃓⃓
by using the special Lipschitz condition and therefore by application of the expectation
also

E
[︂⃓⃓⃓

(n)Y t− − (n−1)Y t−

⃓⃓⃓]︂
≤ E

[︂⃓⃓⃓
(n)Y t − (n−1)Y t

⃓⃓⃓]︂
+ J · E

[︂⃓⃓⃓
(n)Y G,−

t− − (n−1)Y G,−
t−

⃓⃓⃓]︂
(3.2.7)

≤ E
[︂⃓⃓⃓

(n)Y −
t − (n−1)Y −

t

⃓⃓⃓]︂
+ J · E

[︂⃓⃓⃓
(n)Y −

t− − (n−1)Y −
t−

⃓⃓⃓]︂
with similar steps as before. By rearranging, this also implies

E
[︂⃓⃓⃓

(n)Y −
t− − (n−1)Y −

t−

⃓⃓⃓]︂
≤ 1

1 − J
· E
[︂⃓⃓⃓

(n)Y −
t − (n−1)Y −

t

⃓⃓⃓]︂
for all time points t ∈ {t0, t1, . . . }, but also for general t, if a deterministic jump is not
even possible.

Further, in step (iv) we used, that the variation on the interval [0, u] can be used as an
upper bound for the absolute difference of the reserves in time u as⃓⃓⃓

(n)Y −
u − (n−1)Y −

u

⃓⃓⃓
≤
⃓⃓⃓(n)

Y −
0 − (n−1)

Y −
0

⃓⃓⃓
+

∫︂
r∈[0,u]

d
⃓⃓⃓
(n)Y − (n−1)Y

⃓⃓⃓
r

, (4.3.9)

where we use the difference in time 0
(n)

Y −
0 − (n−1)

Y −
0

as the additional summand of the variation, since Y −
u contains all payments over the

interval [0, u]. We are considering the difference between two consecutive iterations, where
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4.3. Extension to retrospective reserves

no reserve-dependency takes place and the additional summand therefore equals zero
almost surely, and will therefore be left out in the expectation from now on.

This step is only necessary, if discrete sojourn payments at deterministic time points are
possible. Otherwise, the integral would be dt-almost surely the same. Use the simplification
J = 0 then, simplifying the Lipschitz constant to L.

We arrive at the following upper bound, that holds for the norm by using the above
inequality for the complete interval (0, T ]⃦⃦⃦

(n+1)
Y − − (n)

Y −
⃦⃦⃦

V [0,T ]

≤ E

⎡⎢⎣⃓⃓⃓(n)
Y −

0 − (n−1)
Y −

0

⃓⃓⃓
+

∫︂
t∈(0,T ]

L

1 − J
· e−K(ζ(t)−ζ(0))

⃓⃓⃓(n)
Y −

t − (n−1)
Y −

t

⃓⃓⃓
ζ(dt)

⎤⎥⎦
(iv)
≤ E

⎡⎢⎣ ∫︂
t∈(0,T ]

L

1 − J
e−K(ζ(t)−ζ(0))

⎛⎜⎝ ∫︂
r∈[0,t]

d
⃓⃓⃓
(n)

Y − − (n−1)
Y −

⃓⃓⃓
r

⎞⎟⎠ ζ(dt)

⎤⎥⎦
(v)
≤ L

1 − J
· E

⎡⎢⎣ ∫︂
r∈[0,T ]

⎛⎜⎝ ∫︂
t∈(r,T ]

e−K(ζ(t)−ζ(0)) ζ(dt)

⎞⎟⎠ d
⃓⃓⃓
(n)

Y − − (n−1)
Y −

⃓⃓⃓
r

⎤⎥⎦
≤ L

1 − J
· E

⎡⎢⎣ ∫︂
[0,T ]

⎛⎜⎝ ∫︂
t∈(r,T ]

e−K(ζ(t)−ζ(0)) ζ(dt)

⎞⎟⎠d
⃓⃓⃓
(n)

Y − − (n−1)
Y −

⃓⃓⃓
r

⎤⎥⎦ .

In step (v), the order 0 ≤ r ≤ t ≤ T of the integration area and integration variables can
be understood as a condition for t depending on r (i.e. t ∈ [r, T ]) as well as on r depending
on t (r ∈ [0, t]), which enables us to exchange the order of integration and additionally
makes it possible to include the lower bound r = 0, where the inner integral would be zero
anyway.

We now have to use a general transformation formula to explicitly compute the inner
integral and the details will be explained in detail.

Since ζ is increasing, the equivalence

t ∈ (r, T ] ⇔ ζ(t) ∈
(︁
ζ(r), ζ(T )

]︁
together with the quantile function leads to

ζ(T ) − ζ(r) = λ
(︂
ζ
(︁
(r, T ]

)︁)︂
= λ

(︂
ζ−1 ∈ (r, T ]

)︂
= L

(︁
ζ−1 | λ

)︁(︁
(r, T ]

)︁
and therefore the integration can be replaced by L (ζ−1 | λ)(dt), i.e. P(A) = λ(ζ(A)).

We rewrite the inner integral in the last line as∫︂
t∈(r,T ]

e−K(ζ(t)−ζ(0)) ζ(dt)

125



Chapter 4. Actuarial calculations in life insurance

=
∫︂
R

1{t∈(r,T ]} · e−K(ζ(t)−ζ(0)) L (ζ−1 | λ)(dt)

=
∫︂
R

1{ζ(t)∈(ζ(r),ζ(T )]} e−K(ζ(t)−ζ(0))⏞ ⏟⏟ ⏞
= h(ζ(t))

L (ζ−1 | λ)(dt)⏞ ⏟⏟ ⏞
=Pζ(dt)

=
∫︂
R

1{t∈(ζ(r),ζ(T )]} e−K(t−ζ(0)) Pζ(dt)

(vi)
≤

∫︂
(ζ(r),ζ(T )]

e−K(t−ζ(0)) λ(dt) =
∫︂

(ζ(0),ζ(r)]

e−K(t−ζ(0)) dt

where in (vi) we used, that

Pζ (A) = P
(︂
ζ−1(A)

)︂
= λ

(︂
ζ(ζ−1(A))

)︂
≤ λ(A) .

We can now calculate the inner dt-integral and arrive at the following inequality:⃦⃦⃦
(n+1)

Y − − (n)
Y −

⃦⃦⃦
V [0,T ]

≤ L

1 − J
· E

⎡⎢⎣ ∫︂
[0,T ]

∫︂
(r,T ]

e−K(ζ(t)−ζ(0)) ζ(dt) d
⃓⃓⃓
(n)

Y − − (n−1)
Y −

⃓⃓⃓
r

⎤⎥⎦
≤ L

1 − J
· E

⎡⎢⎣ ∫︂
[0,T ]

∫︂
(ζ(r),ζ(T )]

e−K(t−ζ(0)) dt d
⃓⃓⃓
(n)

Y − − (n−1)
Y −

⃓⃓⃓
r

⎤⎥⎦
= L

1 − J
· E

⎡⎢⎣ ∫︂
[0,T ]

1
K

(︂
e−K(ζ(r)−ζ(0)) − e−K(ζ(T )−ζ(0))

)︂
d
⃓⃓⃓
(n)

Y − − (n−1)
Y −

⃓⃓⃓
r

⎤⎥⎦
≤ L

(1 − J) K
· E

⎡⎢⎣ ∫︂
[0,T ]

e−K(ζ(r)−ζ(0)) d
⃓⃓⃓
(n)

Y − − (n−1)
Y −

⃓⃓⃓
r

⎤⎥⎦
= L

(1 − J) K
·
⃦⃦⃦

(n)
Y − − (n−1)

Y −
⃦⃦⃦

V [0,T ]
,

where the additional summand of the norm is zero. When choosing K = 2 · L

1 − J
and

defining our contraction constant

C := L

(1 − J) K
= 1

2 < 1

we have indeed managed to show the contraction property with ζ as previously specified.

Application of the fixed point Theorem of Banach

Let us from now on assume, that K = 2·L
1−J . Then we have a contraction and application

of the fixed-point theorem of Banach guarantees existence and uniqueness of a process
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Y − = (Y −
t )t≥0 ∈ BV X([0, T ]) fulfilling

Y −
t =

∑︂
M∈M

∫︂
[0,t]

IMs− κ(s) bM

(︁
s, XG,−

s−
)︁

γ(ds) +
∑︂
I∈N

∫︂
[0,t]×EI

κ(s) BI

(︁
s, e, XG,−

s−
)︁

µI(d(s, e))

in the space of càdlàg processes with integrable variation on [0, T ], where additionally

XG,−
s− = 1

κ(s) E
[︂
Y −

s−

⃓⃓⃓
G−

s

]︂
almost surely to express the dependency in the correct way and to emphasize the fact,
that this is indeed a fixed point equation for process Y −.

4.4. Thieles SDE

Let us now also develop the corresponding Thiele SDE for this case, where we will need the
IF-compensators again. Let still bM and BN be defined as abbreviating notation for the
respective payment functions and for computational details, we refer to the calculations
prior to the Thiele BSDE.

Assertion 4.4.1. IF-compensator – Cumulative payments
The process A of cumulated payments

A(dt) =
∑︂

M∈M
IMt− bM

(︁
t, XG,−

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

BI

(︁
s, e, XG,−

t−
)︁

µI(dt × de)

has the following IB-compensator

AIF(dt) =
∑︂

M∈M
IMt− bM

(︁
t, XG,−

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

BI

(︁
s, e, XG,−

t−
)︁

νI(dt × de) .

Proof. The additive decomposition of A in sojourn and transition summands is used. Then,
the two parts are similar to bM and BN (with a short rate set to 0), and consequently
a similar structure of the IF-compensator arises. By leaving out the discounting, the
argumentation is the same, but even simpler.

The Thiele SDE with respect to F and G are now formulated.

Theorem 4.4.2. Thiele SDE with respect to F
The prospective reserve with respect to F fulfils the following stochastic differential equation

dXF,−
t = φ(t) XF,−

t− dt − A(dt) −
∑︂
I∈N

∫︂
EI

FI(t, e) (µI − λI)(dt × de) (4.4.1)

with initial condition XF,−
0− = 0.
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The integrand FI(t, e) may be expressed as

FI(t, e) = E
[︂
X−

t−

⃓⃓⃓
F−

t , RI = (t, e)
]︂

− E
[︂
X−

t−

⃓⃓⃓
F−

t , Jt = 0
]︂

.

Equation (4.2.1), together with initial value condition XF,−
0− = 0, then is a SDE with

solution pair
(︁
XF, (FI)I

)︁
.

Corollary 4.4.3. Reformulation of the Thiele SDE with respect to F
The above SDE (4.4.1) may be expressed in the following equivalent form

dXF,−
t = f

(︁
ω, t, XF,−

t−
)︁

dt + g
(︁
ω, t, XF,−

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

ZI(t, e) (µI − λI)(dt × de)

with natural initial value condition XF,−
0− = 0, and where the generator functions are given

as

f
(︁
ω, t, XF,−

t−
)︁

= φ(t) XF,−
t− −

∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XF,−

t−
)︁

l(t, de)

g
(︁
ω, t, XF,−

t−
)︁

= −
∑︂

M∈M
IMt− bM

(︁
t, XF,−

t−
)︁

and
ZI(s, e) = FI(s, e) − BI

(︁
s, e, XF,−

s−
)︁

.

Proof. See the proof to the Thiele BSDE with respect to F.

Proof. (Of the reformulation in Corollary 4.4.3.)

The representation of A(dt) as

A(dt) =
∑︂

M∈M
IMt− bM

(︁
t, XF,−

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XF,−

t−
)︁

µI(dt × de)

is used, which defines g by matching the γ(dt)-parts.

The second summand contains a µI integral and is shifted into the integral part of the
SDE, and the new ZI(t, e) := FI(t, e) − BI(t, e) is integrated. Since the integration is
with respect to the F-compensated measure µI − λI , the newly arising λI part has to be
compensated as well. Finally, the Lebesgue intensity lI is used, to include this integral in
the dt part of the BSDE, and therefore, as part of the function f .

A similar result can once again be developed with respect to G.
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Theorem 4.4.4. Thiele SDE with respect to G
The following differential equation holds

dXG,−
t = −AIF(dt) + φ(t)XG,−

t− dt +
∑︂
I∈N

∫︂
EI

GI

(︁
t−, t, e

)︁
(µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t , t, e

)︁
(ρI − µI)(dt × de)

(4.4.2)

with initial condition XG,−
0− = 0 a.s. and where the representation of the integrands GI is

given by Theorem 2.5.13, but they can almost surely also be written as

GI(t−, t, e) = E
[︂
X−

t

⃓⃓⃓
G−

t , RI = (t, e)
]︂

− E
[︂
X−

t

⃓⃓⃓
G−

t , Jt = 0
]︂

,

GI(t , t, e) = E
[︂
X−

t

⃓⃓⃓
Gt , RI = (t, e)

]︂
− E

[︂
X−

t

⃓⃓⃓
Gt , Jt = 0

]︂
with usage of the reformulation in 3.3.1.
Note, that the integrability assumption and measurability (with respect to G− and G
respectively) is indeed satisfied for GI(t−, t, e) and GI(t , t, e), and the projection XG is
by design a G-adapted process.

Corollary 4.4.5. Reformulation of the Thiele Equations with respect to G
The above BSDE (4.2.3) may be expressed in the following equivalent form

dXG,−
t = f

(︁
ω, t, XG,−

t

)︁
dt + g

(︁
ω, t, XG,−

t

)︁
γ(dt) +

∑︂
I∈N

∫︂
EI

GI

(︁
t−, t, e

)︁
(µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t , t, e

)︁
(ρI − µI)(dt × de)

with generator functions, defined as

f
(︁
ω, t, XG,−

t−
)︁

= φ(t)XG,−
t− −

∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XG,−

t−
)︁

nI(t, de)

g
(︁
ω, t, XG,−

t−
)︁

= −
∑︂

M∈M
IMt− bM

(︁
t, XG,−

t−
)︁

and with (GI)I remaining as before.

Proof. Let us again consider the càdlàg process

Y −
t = κ(t) · X−

t =
∫︂

[0,t]

κ(s) A(ds)

where all payments are discounted up to time zero. This is now not needed to fulfil the
preconditions of the infinitesimal martingale representation theorem, but has to be done,
to be able to compute the IB-compensator and that has also been the reason, why we
precomputed the compensator of bM and BN , with discounting to zero already included.
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The discounting is assumed to be deterministic and therefore the optional projection also
almost surely fulfils

Y G,−
t = κ(t) · XG,−

t

and we again use the differential

dY G,−
t = κ(t) dXG,−

t − φ(t) κ(t) XG,−
t− dt .

We then apply Theorem 2.5.13 to Y − and note that the preconditions are indeed fulfilled,
as we need the càdlàg property of Y − and the integrability condition specified in 2.4.1, we
arrive at

dY G,−
t = dY IF,−

t +
∑︂
I∈N

∫︂
EI

G̃I(t−, t, e) (µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

G̃I(t , t, e) (ρI − µI)(dt × de) ,

where (in the reformulated version) we have

G̃I(t−, t, e) = E
[︂
Y −

t

⃓⃓⃓
G−

t , RI = (t, e)
]︂

− E
[︂
Y −

t

⃓⃓⃓
G−

t , Jt = 0
]︂

a.s.,

G̃I(t , t, e) = E
[︂
Y −

t

⃓⃓⃓
Gt , RI = (t, e)

]︂
− E

[︂
Y −

t

⃓⃓⃓
Gt , Jt = 0

]︂
a.s. .

To be able to work with the equation, we need to calculate the IB-compensator of Y −. It
holds, that by swapping in the representation for A(dt), we get from the definition of the
compensator

Y IF,−
t = lim

n→∞

∑︂
τn

E
[︂
Y −

tk+1
− Y −

tk

⃓⃓⃓
Gtk

]︂

= lim
n→∞

∑︂
τn

E

⎡⎢⎣−
∫︂

(tk,tk+1]

κ(s) A(ds)

⃓⃓⃓⃓
⃓⃓⃓Gtk

⎤⎥⎦
= −bIF

M(t) − BIF
N (t)

= −bM(t) − BIF
N (t)

and in full form, we have

dY IF,−
t = −

∑︂
M∈M

κ(t) IMs− bM

(︁
t, XG,−

t−
)︁

γ(dt) −
∑︂
I∈N

∫︂
EI

κ(t) BI

(︁
t, e, XG,−

t−
)︁

νI(dt × de) .

All together, when using the formulas for the differential and the compensator, we get

κ(t) dXG,−
t − φ(t) κ(t) XG,−

t− dt

= dY G,−
t

2.5.13= dY IF,−
t +

∑︂
I∈N

∫︂
EI

G̃I

(︁
t−, t, e

)︁ (︁
µI − νI

)︁
(dt × de)
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+
∑︂
I∈N

∫︂
EI

G̃I

(︁
t , t, e

)︁ (︁
ρI − µI

)︁
(dt × de)

= −
∑︂

M∈M
κ(t) IMt− bM

(︁
t, XG,−

t−
)︁

γ(dt) −
∑︂
I∈N

∫︂
EI

κ(t) BI

(︁
t, e, XG,−

t−
)︁

νI(dt × de)

+
∑︂
I∈N

∫︂
EI

G̃I(t−, t, e)
(︁
µI − νI

)︁
(dt × de)

+
∑︂
I∈N

∫︂
EI

G̃I(t , t, e)
(︁
ρI − µI

)︁
(dt × de) ,

which by rearranging reads

κ(t) dXG,−
t

= κ(t)

⎛⎜⎝φ(t) XG,−
t− dt −

∑︂
M∈M

IMt− bM

(︁
t, XG,−

t−
)︁

γ(dt) −
∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XG,−

t−
)︁

νI(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t−, t, e

)︁ (︁
µI − νI

)︁
(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t , t, e

)︁ (︁
ρI − µI

)︁
(dt × de)

⎞⎟⎠ ,

where we substituted
GI(t−, t, e) = 1

κ(t) G̃I(t−, t, e)

and similarly for the other representation.

An application of the Radon-Nikodym Theorem leads to

dXG,−
t = φ(t) XG,−

t− dt −
∑︂

M∈M
IMt− bM

(︁
t, XG,−

t−
)︁

γ(dt) −
∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XG,−

t−
)︁

νI(dt × de)

+
∑︂
I∈N

∫︂
EI

GI(t−, t, e) (µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI(t , t, e) (ρI − µI)(dt × de)

= φ(t) XG,−
t− dt − AIF(dt) +

∑︂
I∈N

∫︂
EI

GI(t−, t, e) (µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI(t , t, e) (ρI − µI)(dt × de) .

The integral representation for both XG,− and Y G,− together with their natural starting
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value condition as XG,−
0 = Y G,−

0 , are given as

κ(t) XG,−
t = Y G,−

t = Y G,−
0 −

∑︂
M∈M

∫︂
[0,t]

κ(s) IMs− bM

(︁
s, XG,−

s−
)︁

γ(ds)

−
∑︂
I∈N

∫︂
[0,t]×EI

κ(s) BI

(︁
s, e, XG,−

s−
)︁

nI(s, de) ds

+
∑︂
I∈N

∫︂
[0,t]×EI

κ(s) GI(s−, s, e) (µI − νI)(d(s, e))

+
∑︂
I∈N

∫︂
[0,t]×EI

κ(s) GI(s , s, e) (ρI − µI)(d(s, e))

(4.4.3)

for the discounted reserve as well as

XG,−
t = XG,−

0 +
∫︂

[0,t]

φ(s) XG−

s− ds −
∑︂

M∈M

∫︂
[0,t]

IMs− bM

(︁
s, XG,−

s−
)︁

γ(ds)

−
∑︂
I∈N

∫︂
[0,t]×EI

BI

(︁
s, e, XG,−

s−
)︁

nI(s, de) ds

+
∑︂
I∈N

∫︂
[0,t]×EI

GI(s−, s, e) (µI − νI)(d(s, e))

+
∑︂
I∈N

∫︂
[0,t]×EI

GI(s , s, e) (ρI − µI)(d(s, e))

(4.4.4)

for the original prospective reserve.

Proof. (Of the reformulation 4.4.5)
We plug in the previously developed representation for AIF(dt) and arrive at

dXG,−
t = φ(t) XG,−

t− dt −
∑︂

M∈M
IMt− bM

(︁
t, XG,−

t−
)︁

γ(dt) −
∑︂
I∈N

∫︂
EI

BI

(︁
t, e, XG,−

t−
)︁

νI(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t−, t, e

)︁
(µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t , t, e

)︁
(ρI − µI)(dt × de)

where we insert the intensity of the compensator νI , to be able to introduce the function
f for the dt-part, and g for the γ(dt)-part. We arrive at

dXG,−
t = f

(︁
ω, t, XG,−

t−
)︁

dt + g
(︁
ω, t, XG,−

t−
)︁

γ(dt) +
∑︂
I∈N

∫︂
EI

GI

(︁
t−, t, e

)︁
(µI − νI)(dt × de)

+
∑︂
I∈N

∫︂
EI

GI

(︁
t , t, e

)︁
(ρI − µI)(dt × de) .
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4.5. Calculation of premiums

The calculation of prospective reserves has been discussed in the previous section and we are
now continuing with the pricing of contracts. Until now, we assumed that all payments are
given and fulfil some necessary conditions. That does not necessarily take into account the
nature of premiums. Some payments are of course pre-specified, but others, for example net
equivalent premiums are calculated as a result from the remaining benefit payments, and
can not be specified as a deterministic amount from the beginning.

In this section we discuss two ways to price a contract, where the second one allows for a
general premium payment scheme.
In the simple case, a one-off premium is used at the beginning of the contract and no
further premium payments happen until T . This is methodically easier, because we can
view the insurance contract as benefit-only and compensate the necessary prospective
reserve at the beginning of the contract by collecting a one-off premium. After that, we
will allow for a more complicated premium payments scheme.

Let us start by defining what a net equivalent premium is supposed to be in our context,
and for reference on premiums in general, and the following definitions in particular, refer
to Olivieri and Pitacco [OP11].

Definition 4.5.1. Net equivalent premium
A premium of an insurance contract is called a net equivalent premium (also abbreviated
as ’NEP’), if the following condition holds

XG
0− = 0 P− a.s. . (4.5.1)

The main interpretation is, that under usage of a net premium, the contract is actuarially
fairly valued at the beginning of the contract.

4.5.1. A one-off premium payment at contract start

Definition 4.5.2. One-off premium
A premium is called a one-off premium, if it is paid as a lump sum payment at the
beginning of the contract and no further premium payments are happening until the end
of the contract. This type of premium payment is sometimes also called a set-up fee, or
an instatement payment.

The mathematical definition for the one-off premium is given as

π := 1{t=0} · XG
0− P− a.s.

as a premium in the state active and where XG
0− is the reserve, that is calculated for the

contract with benefits only.
This type of pricing is therefore directly related to the calculation of the prospective reserve
and may be done with already existing tools. This is not a reserve-dependent premium
payment, as two different contracts are used respectively. The reserves of the complete
contract and the reserve for the benefit-only contract are generally not the same.

133



Chapter 4. Actuarial calculations in life insurance

Also note, that this premium payment is certain to be paid, since we assume the insured
to start the contract in state active. It is not necessary to verify, that such a premium is
indeed an equivalent net premium, since it is by definition.

4.5.2. General premium payments

The possibilities for premiums payments are now extended to more general premium pay-
ments, where a normed premium payment scheme is set and a premium level π, as a mul-
tiplicative constant for the whole premium scheme, has to be found.

Definition 4.5.3. Premium scheme
Assume that premium payments are only part of the sojourn payments, and are paid
continuously. They can also depend on the prospective reserve (i.e. we have to assume
dependency the structure from the Theorem 3.2.12).

Start by introducing a normed premium payment function for each M ∈ M. Denote this
type of payment by

eM (s, XG
s−) .

The premium payment scheme is then completed by multiplying each eM by a premium
level π ∈ R. We may now write the complete sojourn payments as

b̃M (s, XG
s−) := bM (s, XG

s−) − π · eM (s, XG
s−) (4.5.2)

for each M ∈ M, where the bM (s, XG
s−) contains benefits only and is therefore a slight

change in notation to before.
The nature of the payment is now specified by the sign in front of the payment, therefore
eM and bM for M ∈ M are assumed to be non-negative.

If we are considering a situation where the sojourn payments follow the structure (4.5.2),
then we will introduce the following new notation for the corresponding payment process

Xπ = (Xπ
t )t≥0 (4.5.3)

and the corresponding prospective reserve

XG,π = (XG,π
t )t≥0 (4.5.4)

to emphasize the fact, that both are depending on the premium level π and to be able to
differentiate between reserves, that are corresponding to different premium levels.

Until now we have considered BSDEs for the prospective reserve, where a final value is
given. In addition to these final values, we now also need to restrain the BSDE with a
second condition and make it a stochastic boundary value problem (sometimes abbreviated
as SBVP). Therefore, we have introduced another variable π and we hope to be able
to calculate a unique premium level, that results in an equivalent premium for a given
contract.
If we do not have to work with reserve-dependent payments, then it would be possible to
calculate the value of the benefits and premiums separately, and calculate the factor π as
a quotient of these two properties, refer again to Olivieri and Pitacco [OP11] for some
examples.
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4.5.3. Existence and uniqueness of the premium level

The objective of this subsection is to show existence and uniqueness of a solution, albeit
in a manner that differs from the approach taken previously. In addition to showing the
existence of a unique payment process X we must now solve for a solution pair, consisting
of the Xπ and the premium level π. The premium level itself has to be shown to exist and
be unique.

We start by showing, that for each premium level π ∈ R, the payment process does exist
and is unique. By using the results from the section about the Thiele BSDE, this then
also implies the same for the prospective reserve.

Theorem 4.5.4. Existence and uniqueness of X for a given premium level π
Let the sojourn payments be given as in Definition 4.5.3 and also let the (bM )M fulfil the
necessary conditions of the previous section, i.e. boundedness and Lipschitz-condition with
constant Lb

M. Further, let the (eM )M be bounded and also fulfil the Lipschitz condition
with constant Le

M.

Then for every π ∈ R, there exists a unique payment process Xπ = (Xπ
t )t≥0 ∈ BV X([0, T ])

fulfilling

Xπ
t =

∑︂
M∈M

∫︂
(t,T ]

IMs−

(︂
bM (s, XG,π

s− ) − π eM (s, XG,π
s− )

)︂
ds

+
∑︂
I∈N

∫︂
(t,T ]×EI

BI(s, e, XG,π
s− ) µI(d(s, e)) .

Proof. We verify, that the newly constructed sojourn payments

h̃M (s, XG,π
s− ) ,

now depending on π, fulfil the Lipschitz conditions of our main Theorem. For a fixed π

and XG,π
s− (ω), X̂

G,π
s− (ω) we get by triangle inequality that we dP× ds a.e. have⃓⃓⃓

h̃M (s, XG,π
s− )(ω) − h̃M (s, X̂

G,π
s− )(ω)

⃓⃓⃓
≤
⃓⃓⃓
bM (s, XG,π

s− )(ω) − bM (s, X̂
G,π
s− )(ω)

⃓⃓⃓
+ |π| ·

⃓⃓⃓
eM (s, XG,π

s− )(ω) − eM (s, X̂
G,π
s− )(ω)

⃓⃓⃓
≤ Lh

M

⃓⃓⃓
XG,π

s− (ω) − X̂
G,π
s− (ω)

⃓⃓⃓
+ |π| Le

M

⃓⃓⃓
XG,π

s− (ω) − X̂
G,π
s− (ω)

⃓⃓⃓
≤
(︂
Lh

M + |π| · Le
M

)︂
·
⃓⃓⃓
XG,π

s− (ω) − X̂
G,π
s− (ω)

⃓⃓⃓
,

by using the Lipschitz-properties for both bM and eM respectively and arriving at the new
and combined Lipschitz constant LM := Lh

M + |π| · Le
M. This enables us to embed it into

the theory of the dependency structure of the first type (even without γ) and to apply
Theorem 3.2.12 to this situation, which guarantees the existence and uniqueness of the
payment process or Xπ, with a representation as specified in the assertion.
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The theorem does not guarantee the premium to be a net equivalent premium just yet.
To be able to show, that there is a net equivalent premium level, and that it is unique, we
further need an assumption about the monotonicity of payments.

Assumption 4.5.5. Monotonicity of payments
If for an ω ∈ Ω and a time point t ∈ [0, T ] two reserves XG

t− and X̃
G
t− have the following

order
XG

t−(ω) ≤ X̃
G
t−(ω)

then the corresponding reserve-dependent benefit payments fulfil the relations

bM (t, XG
t−)(ω) ≤ bM (t, X̃

G
t−)(ω)

for all M ∈ M and
BI(t, e, XG

t−)(ω) ≤ BI(t, e, X̃
G
t−)(ω)

for all I ∈ N with e ∈ EI .

Further the reserve-dependent premium payments fulfil the relation

eM (t, XG
t−)(ω) ≥ eM (t, X̃

G
t−)(ω)

for all M ∈ M.

These assumptions are quite natural, and have intuitive interpretations. In the case of a
reserve-dependent lapse or death payment, a higher current reserve should lead to a higher
payout. Vice versa, if the premium payment is reserve-dependent and the prospective
reserve is bigger, then the premium payment should take the opposite relation.
Take note, that by allowing for payments containing a maximum or minimum, we at most
have monotonicity in a non-strict way. We need these conditions, as they will enable us to
use the Lipschitz-properties without the absolute value in certain cases, by using that we
know the order of the payments, if the order of the reserves is known, as we are still using
path-wise Lebesgue-Stieltjes integrals.

We will now formulate a second theorem to guarantee the existence and uniqueness of the net
equivalent premium, in case that these additional assumptions hold.

Theorem 4.5.6. Existence and uniqueness of π as a net equivalent premium
Suppose that the assumptions of the previous theorem are fulfilled and Assumptions 3.1.6
(no reserve-dependency for payment in time 0) and 4.5.5 (monotonicity of payments) hold.
Let also the Lipschitz conditions be given, such that they fulfil LM > 0 and LN ≤ 1.

Further, assume that for every X the following condition

E

⎡⎢⎣ ∫︂
[0,T ]

∑︂
M∈M

IMs− κ(s) eM (s, X) ds

⎤⎥⎦ ≥ c (4.5.5)

holds for a constant c > 0.

Then the proposed SBVP has a solution and both the payments process Xπ ∈ BV X([0, T ]),
as well as the premium level π ∈ R exist, and both are also unique.
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Comment 4.5.7. On the necessity of the precondition (4.5.5)
Precondition (4.5.5) is a sensible assumption and it is essential to guarantee the strict
monotonicity. It is crucial for certain arguments of the proof, as we will later see, but it is
also motivated by the general construction of an insurance contract.
Without this condition, it would be possible to consider a contract, where all benefits
are zero. Then also all premium payments can be set to zero, and this type of contract
would always be equipped with an equivalent premium, naturally. In this case, the choice
of the premium level is arbitrary and uniqueness would not be possible to achieve. This
is constructed and exaggerated, but it gives an intuitive counterexample and therefore
understates the importance of the precondition.

Proof. As an extension to the previous theorem, we have to show the existence and
uniqueness of a premium level π, such that additionally the net equivalent premium
condition XG,π

0− = 0 is fulfilled. This condition can also be rewritten in terms of the
payments process, since G−

0 is the trivial sigma-algebra and the conditional expectation is
indeed just a standard expected value. We then have

XG,π
0− = E

[︂
Xπ

0−

⃓⃓⃓
G−

0

]︂
= E [Xπ

0− ] =: F (π)

which we define as the function F , depending on π ∈ R.

We will now proceed to show that there exists a π ∈ R such that F (π) = 0, and under
further conditions, that the π is also unique. The existence will be shown by using the
intermediate value theorem for F and the uniqueness will be shown by proving strict
monotonicity of F .

We have to show the following three steps:

(1) Mapping F is continuous on R, i.e. for every π̂ ∈ R it holds

∀ε > 0 ∃δ > 0 ∀π ∈ R : |π̂ − π| < δ ⇒ |F (π̂) − F (π)| < ε.

(2) From the perspective of the insurance company, the insurance contract can be both
underpriced and overpriced for different premium levels π, i.e.:

(i) It exists a premium level π1 ∈ R, such that F (π1) < 0.

(ii) It exists a premium level π2 ∈ R, such that F (π2) > 0.

(3) Under the additional preconditions, the mapping F is strictly monotonously decreasing,
i.e. for all π1, π2 ∈ R with π1 < π2, it holds F (π1) > F (π2).

Existence of the premium level

The statements (1) and (2) will guarantee the existence. We start by showing (1).

For two different premium levels π1, π2 ∈ R, we get by application of the previous theorem,
that the payment processes exists for both π1 and π2 and fulfils the respective fixed-point
equation in both cases. Let us again use payment process, that is discounted down to 0,
i.e. we use Yt = κ(t) Xt instead, but keep in mind, that this does not change our condition
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in t = 0, as Y0 = X0 still holds.
The difference between the two discounted payment processes can be represented as

Y π1
t − Y π2

t =
∑︂

M∈M

∫︂
(t,T ]

IMs− κ(s)
(︂
bM (s, XG,π1

s− ) − bM (s, XG,π2
s− )

)︂
ds

−
∑︂

M∈M

∫︂
(t,T ]

IMs− κ(s)
(︂
π1 eM (s, XG,π1

s− ) − π2 eM (s, XG,π2
s− )

)︂
ds

+
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s)
(︂
BI(s, e, XG,π1

s− ) − BI(s, e, XG,π2
s− )

)︂
µI(d(s, e)) .

If we now apply our norm, and use similar arguments as in the proof of Theorem 3.2.12,
combined with the extensions that were used in the section, where the discounting had
been introduced, then we get the following inequality

∥Y π1 − Y π2∥V [0,T ]

= E

⎡⎢⎣ ∫︂
[0,T ]

e−K (ζ(T )−ζ(t)) d |Y π1 − Y π2 |t

⎤⎥⎦
≤ E

⎡⎢⎣ ∫︂
(0,T ]

e−K (ζ(T )−ζ(t)) ∑︂
M∈M

IMs− κ(s)
⃓⃓⃓
bM (s, XG,π1

s− ) − bM (s, XG,π2
s− )

⃓⃓⃓
ds

⎤⎥⎦
+ E

⎡⎢⎣ ∫︂
(0,T ]×EI

e−K (ζ(T )−ζ(t)) ∑︂
I∈N

κ(s)
⃓⃓⃓
BI

(︁
s, e, XG,π1

s−
)︁

− BI

(︁
s, e, XG,π2

s−
)︁⃓⃓⃓

µI(d(s, e))

⎤⎥⎦
+ E

⎡⎢⎣ ∫︂
(0,T ]

e−K (ζ(T )−ζ(t)) ∑︂
M∈M

IMs− κ(s)
⃓⃓⃓
π1 eM (s, XG,π1

s− ) − π2 eM (s, XG,π2
s− )

⃓⃓⃓
ds

⎤⎥⎦ ,

where the first two lines are already known and one can proceed as before, but the new
part has to be handled differently. With the triangle inequality and application of the
Lipschitz condition of (eM )M we get⃓⃓⃓

π1 eM (s, XG,π1
s− ) − π2 eM (s, XG,π2

s− )
⃓⃓⃓

=
⃓⃓⃓
π1 eM (s, XG,π1

s− ) − π2 eM (s, XG,π1
s− ) + π2 eM (s, XG,π1

s− ) − π2 eM (s, XG,π2
s− )

⃓⃓⃓
≤ |π1 − π2| eM (s, XG,π1

s− ) + |π2|
⃓⃓⃓
eM (s, XG,π1

s− ) − eM (s, XG,π2
s− )

⃓⃓⃓
≤ |π1 − π2| eM (s, XG,π1

s− ) + |π2| Le
M

⃓⃓⃓
XG,π1

s− − XG,π2
s−

⃓⃓⃓
.

This enables us to use the first part separately, as only the second part has a representation
similar to the Lipschitz-condition for bM and BI . Note, that the new constant K is now
depending on |π2|. It is however not a problem, since the π2 is arbitrary, but fixed, and
can therefore be seen as constant in this application.
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We then arrive at the following upper bound

∥Y π1 − Y π2∥V [0,T ] ≤ 1
2 ∥Y π1 − Y π2∥V [0,T ]

+ E

⎡⎢⎣ ∫︂
(0,T ]

e−K (ζ(T )−ζ(t)) ∑︂
M∈M

IMs− κ(s) |π1 − π2| eM (s, XG,π
s− ) ds

⎤⎥⎦
≤ 1

2 ∥Y π1 − Y π2∥V [0,T ]

+ |π1 − π2| · E

⎡⎢⎣ ∫︂
(0,T ]

e−K (ζ(T )−ζ(t)) ∑︂
M∈M

κ(s) IMs− eM (s, XG,π1
s− ) ds

⎤⎥⎦
≤ 1

2 ∥Y π1 − Y π2∥V [0,T ] + |π1 − π2| · C

for a constant C ∈ R>0. Both the exponential part and the discounting are bounded by 1,
and the expectation of the premium payment functions (eM )M are bounded.

The same norm is present on both sides and rearranging of the above inequality leads to

∥Y π1 − Y π2∥V [0,T ] ≤ 2 · C · |π1 − π2| . (4.5.6)

Therefore, for every two π1, π2 ∈ R, we get by using the inequality of Jensen in (i) and by
using that the exponential term is deterministic and positive, that

e−K(ζ(T )−ζ(0)) |F (π1) − F (π2)| = e−K(ζ(T )−ζ(0))
⃓⃓⃓
E
[︂
Xπ1

0− − Xπ2
0−

]︂⃓⃓⃓
= e−K(ζ(T )−ζ(0))

⃓⃓⃓
E
[︂
Y π1

0− − Y π2
0−

]︂⃓⃓⃓ (i)
≤ e−K(ζ(T )−ζ(0)) E

[︂⃓⃓⃓
Y π1

0− − Y π2
0−

⃓⃓⃓]︂
= E

[︂
e−K(ζ(T )−ζ(0))

⃓⃓⃓
Y π1

0− − Y π2
0−

⃓⃓⃓]︂ (∗)
≤ E

⎡⎢⎣e−K(ζ(T )−ζ(0))
∫︂

[0,T ]

d |Y π1 − Y π2 |t

⎤⎥⎦
≤ E

⎡⎢⎣ ∫︂
[0,T ]

e−K(ζ(T )−ζ(t)) d |Y π1 − Y π2 |t

⎤⎥⎦ = ∥Y π1 − Y π2∥V [0,T ]

where it has additionally been used, that since ζ(0) ≤ ζ(t) for all t ∈ [0, T ] we also have

e−K(ζ(T )−ζ(0)) ≤ e−K(ζ(T )−ζ(t)) .

Take note, that the upper bound in (∗) only holds by also considering the payments that
happen in 0 (i.e. Y π1

0− −Y π2
0− −Y π1

0 +Y π2
0 ), but the premiums are assumed to be continuous,

and the transition payments are the same, as no reserve-dependency is allowed in 0, so
the difference is zero.

It finally leads to the inequality

|F (π1) − F (π2)| ≤ eK(ζ(T )−ζ(0)) · ∥Y π1 − Y π2∥V [0,T ]
(4.5.6)

≤ eK(ζ(T )−ζ(0)) · 2 · C · |π1 − π2| .
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Now we have all necessary pre-computations to show the continuity of F in π as a classic
application of the ε-δ-definition.
Let there be given a fixed π̂ ∈ R and an ε > 0. Set

δ := ε e−K (ζ(T )−ζ(0))

2 C
> 0 ,

where we have to keep in mind, that the K is be depending on π2, since we are now
wanting to use the pre-computation with π1 = π and π2 = π̂.

Then, for every π ∈ R with |π̂ − π| < δ, we get

|F (π̂) − F (π)| ≤ eK(ζ(T )−ζ(0))
⃦⃦⃦
Y π − Y π̂

⃦⃦⃦
V [0,T ]

≤ eK(ζ(T )−ζ(0)) 2 C |π − π̂|

< eK(ζ(T )−ζ(0)) 2 C δ = ε

which means, that the mapping F is indeed continuous in π and therefore step (1) of the
proof is completed.

We continue with step (2), where the limit behaviour in the argument of F is investigated.
Let π ∈ R be given. We may write (take note, that the second scaling factor is now 0)

F (π) − F (0)

= E
[︂
Xπ

0− − X0
0−

]︂3.1.9= E
[︂
Y π

0− − Y 0
0−

]︂
= E

⎡⎢⎣ ∫︂
[0,T ]

∑︂
M∈M

IMs− κ(s)
(︂
bM (s, XG,π

s− ) − bM (s, XG,0
s− ) − π eM (s, XG,π

s− )
)︂

ds

⎤⎥⎦
+ E

⎡⎢⎣∑︂
I∈N

∫︂
[0,T ]×EI

κ(s)
(︂
BI(s, e, XG,π

s− ) − BI(s, e, XG,0
s− )

)︂
µI(d(s, e))

⎤⎥⎦
= E

⎡⎢⎣ ∫︂
[0,T ]

∑︂
M∈M

IMs− κ(s)
(︂
bM (s, XG,π

s− ) − bM (s, XG,0
s− )

)︂
ds

⎤⎥⎦
+ E

⎡⎢⎣∑︂
I∈N

∫︂
[0,T ]×EI

κ(s)
(︂
BI(s, e, XG,π

s− ) − BI(s, e, XG,0
s− )

)︂
µI(d(s, e))

⎤⎥⎦
− π E

⎡⎢⎣ ∫︂
[0,T ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π
s− ) ds

⎤⎥⎦
which, by defining the remainder as B(π), leads to

F (π) − F (0) = B(π) − π E

⎡⎢⎣ ∫︂
[0,T ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π
s− ) ds

⎤⎥⎦ ,
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where the B is bounded from above and from below, since we assumed the boundedness
for all payment functions, i.e. there exists an C̃ > 0 such that |B(π)| ≤ C̃, as well as the
discounting factor is bounded from above and below.
The second part is bounded away from 0 by precondition (4.5.5) of the theorem and
this will result in an upper or lower bound depending on the sign of π. From the last
representation it can be seen, that function F takes positive and negative values, by
calculating the limits for π → ±∞.

In more detail, we have:

(i) For π → ∞ we get (without loss of generality assume π > 0 for simplicity):

lim
π→∞

F (π)

= F (0) + lim
π→∞

B(π)⏞ ⏟⏟ ⏞
≤ C̃

− lim
π→∞

π · E

⎡⎢⎣ ∫︂
[0,T ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π
s− ) ds

⎤⎥⎦
⏞ ⏟⏟ ⏞

≥ c > 0
= lim

π→∞
−π · c = −∞

Therefore, it exists a π1 ∈ R, such that F (π1) < 0.

(ii) For π → −∞ we get (without loss of generality assume π < 0 for simplicity):

lim
π→−∞

F (π)

= F (0) + lim
π→−∞

B(π)⏞ ⏟⏟ ⏞
≥ −C̃

− lim
π→−∞

π · E

⎡⎢⎣ ∫︂
[0,T ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π
s− ) ds

⎤⎥⎦
⏞ ⏟⏟ ⏞

≥ c > 0
= lim

π→−∞
−π · c = ∞

Therefore, it exists a π2 ∈ R, such that F (π2) > 0.

Since (1) and (2) now hold, the intermediate value Theorem A.3.2 can now be used and it
guarantees, that there also exists a π ∈ R such that F (π) = 0, i.e. F has at least one zero
value since it has values both over and below zero, and by continuity, it also has to take
every value in between.

Uniqueness of the premium level

We continue with step (3) and additionally show uniqueness of the premium level, i.e.
that exactly one π fulfils the equation F (π) = 0. To do that, we prove that F is strictly
monotonously decreasing, which then guarantees, that at most one zero point can exist.

Let π1, π2 ∈ R with π1 < π2 be given. We have to show, that

F (π1) = E
[︂
Xπ1

0−

]︂
> E

[︂
Xπ2

0−

]︂
= F (π2)

holds.

141



Chapter 4. Actuarial calculations in life insurance

By using formula (4.2.4) for the representation of the prospective reserve, and with
Corollary 2.5.8, the following simplified equation for the expectation of the discounted
prospective reserve holds. Take note, that a unique càdlàg version of the reserve exists.
We are splitting the sojourn payments into two parts, as the difference of benefit and
premium payments, and the martingale parts vanish under the expectation.

For every t ∈ [0, T ], we have

E
[︂
κ(t) XG,π

t

]︂
= E

[︂
κ(T ) XG,π

T

]︂
+ E

⎡⎢⎣ ∑︂
M∈M

∫︂
(t,T ]

κ(s) IMs− bM (s, XG,π
s− ) ds

⎤⎥⎦
− E

⎡⎢⎣ ∑︂
M∈M

∫︂
(t,T ]

κ(s) IMs− π eM (s, XG,π
s− ) ds

⎤⎥⎦
+ E

⎡⎢⎣∑︂
I∈N

∫︂
(t,T ]

∫︂
EI

κ(s) BI(s, e, XG,π
s− ) nI(s, de) ds

⎤⎥⎦

, (4.5.7)

which will later also be used as a formula for the differences.

Special considerations will later be placed on the summand that contains the premium
payments. This is the only part, where the multiplication with πi, i = 1, 2 arises, and
we can not use the Lipschitz conditions in the usual way. Therefore, we split it into a
non-positive and a weighted Lipschitz-part as follows

π1 · eM (s, XG,π1
s− ) − π2 · eM (s, XG,π2

s− )

= (π1 − π2) · eM (s, XG,π2
s− ) + π1 ·

(︂
eM (s, XG,π1

s− ) − eM (s, XG,π2
s− )

)︂
which is similar to step (1) of the proof, but without using the absolute value. Instead, we
keep the non-positive part, as π2 > π1, to get a negative upper bound in the later part of
the proof.

The monotonicity condition for the premium payments is of great importance in this case,
as we may have

eM (s, XG,π1
s− ) ≥ eM (s, XG,π2

s− ),

but then not generally

π1 · eM (s, XG,π1
s− ) ≥ π2 · eM (s, XG,π2

s− ),

for π1 < π2. Also, we have to account for the negative sign, which is used for the summand
of the premium payments.

Let us first develop an auxiliary result.
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Theorem 4.5.8. Temporal distribution of premium payments
Let there be an interval [τ, σ] ⊆ [0, T ], such that for every u ∈ [τ, σ] we have

XG,π1
u = XG,π2

u a.s.

i.e. both reserves are actually versions of each other on the interval [τ, σ].

Then, the following condition

E

⎡⎢⎣ ∫︂
(τ,σ]

∑︂
M∈M

IMu− κ(u) eM (u, XG,πi

u− ) du

⎤⎥⎦ = 0

holds for both i = 1 and i = 2.

Proof. From the precondition, we have that

XG,π1
u = XG,π2

u a.s.

which then implies by law of total expectation

E [Xπ1
u ] = E [Xπ2

u ] (i)

for all u ∈ [τ, σ] as well as
XG,π1

u− = XG,π2
u− a.s. (ii)

for all u ∈ (τ, σ] as the left limit.

Let us now use the payment processes Xπ1 and Xπ2 for both premium levels π1 and π2 as
unique solutions to their respective BSDEs. By applying the expectation, we are able to
match the summands with each other and arrive at the following equivalent condition

E

⎡⎢⎣ ∑︂
M∈M

∫︂
(s,σ]

IMu− κ(u) bM (u, XG,π1
u− ) du

⎤⎥⎦− π1 E

⎡⎢⎣ ∑︂
M∈M

∫︂
(s,σ]

IMu− κ(u) eM (u, XG,π1
u− ) du

⎤⎥⎦
+ E

⎡⎢⎣∑︂
I∈N

∫︂
(s,σ]×EI

κ(u) BI(u, e, XG,π1
u− ) µI(d(u, e))

⎤⎥⎦+ E [κ(σ) Xπ1
σ ]

= E [κ(s) Xπ1
s ]

(i)= E [κ(s) Xπ2
s ]

= E

⎡⎢⎣ ∑︂
M∈M

∫︂
(s,σ]

IMu− κ(u) bM (u, XG,π2
u− ) du

⎤⎥⎦− π2 E

⎡⎢⎣ ∑︂
M∈M

∫︂
(s,σ]

IMu− κ(u) eM (u, XG,π2
u− ) du

⎤⎥⎦
+ E

⎡⎢⎣∑︂
I∈N

∫︂
(s,σ]×EI

κ(u) BI(u, e, XG,π2
u− ) µI(d(u, e))

⎤⎥⎦+ E [κ(σ) Xπ2
σ ]
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(ii)⇔ π1 E

⎡⎢⎣ ∑︂
M∈M

∫︂
(s,σ]

IMu−κ(u)eM (u, XG,π1
u− ) du

⎤⎥⎦= π2 E

⎡⎢⎣ ∑︂
M∈M

∫︂
(s,σ]

IMu−κ(u)eM (u, XG,π2
u− ) du

⎤⎥⎦
which holds for every s ∈ [τ, σ].

All summands with reserve-dependent payments have the same expectation, because equal
reserves are plugged in into both summands, and the differences are therefore zero. For
this step, it is essential for the premium level to be pulled outside of the expectation.
The last line can only be true, if both expectations are zero. Since we have π1 < π2, both
sides of the equation only differ by these scaling parameters. Therefore the result implies,
that the precondition of the proof may be slightly changed in certain situations. We do
not have to consider the complete interval [0, T ], but can restrict the condition to the
intervals outside of (τ, σ], if we already know, that the reserves are almost surely equal on
such an interval.

The theorem guarantees, that premium payments can not be paid on the interval (τ, σ],
if the preconditions are fulfilled. The result further implies, that we can not have τ = 0
and σ = T , as this would contradict our precondition of the outer proof, see (4.5.5).
Nevertheless, the case σ = T would be desirable, as it creates the opportunity to focus on
the interval [0, τ ], for potential premium payments to arise and it therefore provides us
with the possibility to use a smaller artificial final value, instead of T .

Non-strict monotonicity

Let us now continue with the main part of the proof. Define the random time

σ := inf
{︂

t ∈ [0, T ]
⃓⃓⃓

XG,π2
s ≤ XG,π1

s for every s ∈ [t, T ]
}︂

as a point, where the two reserves, in a backward view from T , first change their order.

The definition of σ is sketched in the following figure, to provide a visual aid of the situation
and motivate the definition of σ as an overtaking condition in a backward perspective.

t

XG,π2

XG,π1

Tσ

Figure 4.1.: Sketch of the overtaking condition

The definition of σ has the following implications, and the existence of a càdlàg version
for the prospective reserves also allows for an evaluation at random times:
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(I) It always is 0 ≤ σ ≤ T by definition. We do not need to define an exception for σ,
as the condition is at least always fulfilled in the final value T , where even equality
holds as XG,π2

T = XG,π1
T = 0.

(II) We have XG,π2
σ ≤ XG,π1

σ . This means, that the order in the interval [σ, T ] remains
the same until σ. The reserves are right-continuous and the definition of σ allows
for equality, which guarantees that the order is kept until σ.

This property will later enable us to use the reserve in σ as a new final value.

(III) The order of the two reserves in σ− depends on the behaviour of the reserves in σ.
There are two possible scenarios on how the order of the reserves might change:

(1) The order changes continuously. It holds XG,π2
σ− ≥ XG,π1

σ− , and the continuity
implies the left-continuity. Then we have equality of the two reserves both in σ,
as well as in σ−.

(2) The order changes with a jump, because of a transition payment. In this case,
the order has to be reversed and we have XG,π2

σ− > XG,π1
σ− . The difference even

has to be positive, to be in alignment with the definition of the infimum.

Let us continue with a proper investigation in the situation in σ. We are especially
interested in the case (III)(2) and want to develop further insights into the height of the
jump and if this case actually appears with our assumptions.

By evaluation of the difference of the discounted reserves in σ− and σ, we are able to
isolate the summands, that are influenced by a possible jump. All the other parts are
integrals with respect to a continuous integrator, and the difference is zero. The Lipschitz
condition with constant C = LN ≤ 1 is used. Also remember the left-continuity of the
discounting process, i.e. κ(0, σ−) = κ(0, σ).

The cases in property (III) from above can be represented with the help of the following
set

A :=
{︂

XG,π2
σ− > XG,π1

σ−

}︂
and the corresponding indication functions

1A = 1{︂
X

G,π2
σ− >X

G,π1
σ−

}︂
if a jump happens from σ− to σ, and

1Ac = 1{︂
X

G,π2
σ− =X

G,π1
σ−

}︂
in case no jump occurs in σ and where the two cases are covering every possible option,
which means that we may use

1{︂
X

G,π2
σ− =X

G,π1
σ−

}︂ + 1{︂
X

G,π2
σ− >X

G,π1
σ−

}︂ = 1 (4.5.8)
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and we get that⃓⃓⃓
E
[︂

κ(0, σ−) ·
⃓⃓⃓
XG,π2

σ− − XG,π1
σ−

⃓⃓⃓]︂
− E

[︂
κ(0, σ) ·

(︂
XG,π2

σ − XG,π1
σ

)︂]︂⃓⃓⃓
=
⃓⃓⃓
E
[︂
(1A + 1Ac) ·

(︂
κ(0, σ−) ·

⃓⃓⃓
XG,π2

σ− − XG,π1
σ−

⃓⃓⃓
− κ(0, σ) ·

(︂
XG,π2

σ − XG,π1
σ

)︂)︂]︂⃓⃓⃓
=
⃓⃓⃓
E
[︂
1A ·

(︂
κ(0, σ−) ·

(︂
XG,π2

σ− − XG,π1
σ−

)︂
− κ(0, σ) ·

(︂
XG,π2

σ − XG,π1
σ

)︂)︂]︂⃓⃓⃓
= E

⎡⎢⎣ 1A ·
∑︂
I∈N

∫︂
[σ,σ]×EI

κ(s)
(︂
BI

(︁
s, e, XG,π1

s−
)︁

− BI

(︁
s, e, XG,π2

s−
)︁)︂

µI(d(s, e))

⎤⎥⎦

≤ E

⎡⎢⎢⎢⎢⎢⎢⎣ 1A ·
∑︂
I∈N

∫︂
[σ,σ]×EI

κ(s)
⃓⃓⃓
BI

(︁
s, e, XG,π1

s−
)︁

− BI

(︁
s, e, XG,π2

s−
)︁⃓⃓⃓

⏞ ⏟⏟ ⏞
≤ LN ·

⃓⃓⃓
X

G,π1
σ− −X

G,π2
σ−

⃓⃓⃓ µI(d(s, e))

⎤⎥⎥⎥⎥⎥⎥⎦
≤ LN · E

⎡⎢⎣ 1A · κ(0, σ−) ·
⃓⃓⃓
XG,π1

σ− − XG,π2
σ−

⃓⃓⃓
·
∑︂
I∈N

∫︂
EI

µI(σ, de)

⎤⎥⎦
≤ LN · E

[︂
1A · κ(0, σ−) ·

⃓⃓⃓
XG,π1

σ− − XG,π2
σ−

⃓⃓⃓]︂
≤ LN ·

⃓⃓⃓
E
[︂

κ(0, σ−) ·
⃓⃓⃓
XG,π1

σ− − XG,π2
σ−

⃓⃓⃓]︂⃓⃓⃓
where the differences in the reserves are zero for Ac, as discussed earlier.

The absolute value is only introduced for the last step, as it does not make a difference
for an already non-negative number. Take note, that if XG,π2

σ− = XG,π1
σ− , then we also have

XG,π2
σ = XG,π1

σ , since the equal reserves are used for the payment, and no other changes
can occur at time point σ.

We further used the monotonicity property of the expectation, by using that∑︂
I∈N

∫︂
EI

µI(σ, de) ≤ 1 a.s. ,

since at most one jump can happen in σ. We see, that the structure of the arising inequality⃓⃓⃓
E
[︂

κ(0, σ−) ·
⃓⃓⃓
XG,π2

σ− − XG,π1
σ−

⃓⃓⃓]︂
− E

[︂
κ(0, σ) ·

(︂
XG,π2

σ − XG,π1
σ

)︂]︂⃓⃓⃓
≤ LN ·

⃓⃓⃓
E
[︂

κ(0, σ−) ·
⃓⃓⃓
XG,π1

σ− − XG,π2
σ−

⃓⃓⃓]︂⃓⃓⃓
has a resemblance to the following inequality |b − a| ≤ C · |b| with

a = E
[︂

κ(0, σ) ·
(︂
XG,π2

σ − XG,π1
σ

)︂]︂
≤ 0

b = E
[︂

κ(0, σ−) ·
⃓⃓⃓
XG,π2

σ− − XG,π1
σ−

⃓⃓⃓]︂
≥ 0

and C = LN , where conditions for solutions to this equation are as follows. Only in two
cases there is potential for a for solution:
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The first case a = 0 corresponds to the situation of no jump in σ. For C = 1, this gives us
a solution for every b > 0, and if also b = 0, then for every C > 0, it is fulfilled.
The second case needs some additional details. If a < 0, solutions only exist if also b < 0,
or if C > 1. These situation are not arising, since b is constructed with an absolute value
and we further have a restriction for CLN ≤ 1. The reserves therefore can not change
their order in σ through a jump, where the intuitive idea is, that the previous difference
can only be balanced, but a change of the order is not possible by a jump that is a multiple
of the previous difference.

The proof is now continued with a contradiction argument.
Assume, that

P (σ > 0) > 0 (4.5.9)
holds, i.e. there exists a subset N ⊆ Ω with P (N) > 0, such that σ(ω) > 0 for every
ω ∈ N .

Let us now construct a second time τ .
For ω ∈ N we can always find and define a τ , as a time that fulfils 0 ≤ τ(ω) < σ(ω), and
such that for every s ∈ [τ(ω), σ(ω)) we have

XG,π2
s (ω) > XG,π1

s (ω)

as a implication of the right-continuity of the reserves. We are choosing the definition of
τ based on the existence and we are not using an explicit formula (i.e. a supremum or
infimum, compare the definition of σ) for its definition.
For the remaining ω ∈ N c = Ω \ N , we define τ(ω) := σ(ω), to complete the definition of
τ .

As a consequence of the assumption we have P (N) > 0, and therefore by construction of
τ , we also have P (σ > τ) > 0, as

N = {σ > 0} = {σ > τ}

holds. Additionally, the assumption implies, that

P
(︂
XG,π2

τ > XG,π1
τ

)︂
> 0

and XG,π2
τ > XG,π1

τ on N , i.e.

XG,π2
τ (ω) > XG,π1

τ (ω) (4.5.10)

for every ω ∈ N .

The definition of σ and τ has the following implications, in addition to the ones specified
above:

(IV) For every ω ∈ N and for s ∈ [τ(ω), σ(ω)) we have

XG,π2
s (ω) > XG,π1

s (ω)

and equality in time σ(ω). Therefore we also have

XG,π2
s− (ω) > XG,π1

s− (ω)

for every s ∈ (τ(ω), σ(ω)) and ω ∈ N .
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We will now use similar arguments as in step (1) of the proof, with the difference that we
do not have to show the contraction property and we therefore do not use the weighted
norm. Instead, it is the goal to achieve an upper bound via application of the Lemma of
Grönwall.

For ω ∈ N c we have that σ(ω) = 0 (also τ(ω) = 0) and XG,π2
s (ω) ≤ XG,π1

s (ω) for all
s ∈ [0, T ].

Let t ∈ [0, T ] be arbitrary, but fixed. As a combination of the interval, we get

(t, T ] ∩ (τ, σ] = (t ∨ τ, T ∧ σ] .

By additivity of the integral and by using formula (4.5.7) with a new final value in T ∧σ = σ
instead of T , and by including an indication function for N , we can follow that

E
[︂
1N · κ(0, (t ∨ τ) ∧ σ) ·

⃓⃓⃓
XG,π2

(t∨τ)∧σ − XG,π1
(t∨τ)∧σ

⃓⃓⃓]︂
= E

[︂
1N · κ(0, (t ∨ τ) ∧ σ) ·

(︂
XG,π2

(t∨τ)∧σ − XG,π1
(t∨τ)∧σ

)︂]︂
(4.5.7)= E

[︂
1N · κ(0, σ) ·

(︂
XG,π2

σ − XG,π1
σ

)︂]︂
+ E

⎡⎢⎣ 1N ·
∫︂

(t∨τ,T ∧σ]

∑︂
M∈M

IMs− κ(s)
(︂
bM (s, XG,π2

s− ) − bM (s, XG,π1
s− )

)︂
ds

− 1N ·
∫︂

(t∨τ,T ∧σ]

∑︂
M∈M

IMs− κ(s)
(︂
π2 eM (s, XG,π2

s− ) − π1 eM (s, XG,π1
s− )

)︂
ds

+ 1N ·
∑︂
I∈N

∫︂
(t∨τ,T ∧σ]×EI

κ(s)
(︂
BI

(︁
s, e, XG,π2

s−
)︁

− BI

(︁
s, e, XG,π1

s−
)︁)︂

µI(d(s, e))

⎤⎥⎦
= E

[︂
1N · κ(0, σ)

(︂
XG,π2

σ − XG,π1
σ

)︂]︂
E

⎡⎢⎣ 1N ·
∫︂

(t∨τ,T ∧σ]

∑︂
M∈M

IMs− κ(s)
(︂
bM (s, XG,π2

s− ) − bM (s, XG,π1
s− )

)︂
ds

+ 1N ·
∫︂

(t∨τ,T ∧σ]

∑︂
M∈M

IMs− κ(s) π1
(︂
eM (s, XG,π1

s− ) − eM (s, XG,π2
s− )

)︂
ds

+ (π1 − π2) 1N ·
∫︂

(t∨τ,T ∧σ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π2
s− ) γ(ds)

+ 1N ·
∑︂
I∈N

∫︂
(t∨τ,T ∧σ]×EI

κ(s)
(︂
BI

(︁
s, e, XG,π2

s−
)︁

− BI

(︁
s, e, XG,π1

s−
)︁)︂

µI(d(s, e))

⎤⎥⎦
(i)
≤ E

⎡⎢⎣ 1N ·
∫︂

(t∨τ,T ∧σ]

∑︂
M∈M

IMs− κ(s)
⃓⃓⃓
bM (s, XG,π2

s− ) − bM (s, XG,π1
s− )

⃓⃓⃓
ds
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+ 1N ·
∫︂

(t∨τ,T ∧σ]

∑︂
M∈M

IMs− κ(s) π1
⃓⃓⃓
eM (s, XG,π1

s− ) − eM (s, XG,π2
s− )

⃓⃓⃓
ds

+ 1N ·
∑︂
I∈N

∫︂
(t∨τ,T ∧σ]×EI

κ(s)
⃓⃓⃓
BI

(︁
s, e, XG,π2

s−
)︁

− BI

(︁
s, e, XG,π1

s−
)︁⃓⃓⃓

µI(d(s, e))

⎤⎥⎦
+ (π1 − π2) E

⎡⎢⎣ 1N ·
∫︂

(t∨τ,T ∧σ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π2
s− ) ds

⎤⎥⎦
+ E

[︂
1N · κ(0, σ)

(︂
XG,π2

σ − XG,π1
σ

)︂]︂
where in (i) we introduced the absolute value in the first three summands. The difference
under the integrals is positive, but in the premium summand, the multiplication with
(π1 − π2) creates a non-positivity. This is by design, as we intend to keep the summand
without an absolute value and intend to use it as a upper bound in the end.

Let us proceed with similar steps as in previous proofs by using the Lipschitz condition in
every one of the summands 1, 2 and 3 (in the three-lined expected value) for functions
(bM )M , (eM )M and (BI)I respectively, and group these three summands by using a joint
constant K, which will not explicitly be stated, but we keep in mind, that it originates
from 3 summands and will also depend on π1 ∈ R.

In a slight change of notation, we include the constant K, that arises from the Lipschitz-
constants and the upper bound of the compensator, into ζ and use this as the integrator.
Take note, that ζ, defined as ζ(ds) = Kds, is still monotonously increasing and has the
same properties as before, but to be able to use the backward version A.3.8 of the Grönwall
equality, we need a more general formulation of the integrator function.

With a minor reformulation of the integral bound and by using that Xs− = Xs ds a.s.,
which is possible with our current integrator, we arrive at the inequality

E
[︂
1N · κ(0, (t ∨ τ) ∧ σ)

⃓⃓⃓
XG,π2

(t∨τ)∧σ − XG,π1
(t∨τ)∧σ

⃓⃓⃓]︂
≤ E

⎡⎢⎣ 1N ·
∫︂

(t∨τ,σ∧T ]

κ(s)
⃓⃓⃓
XG,π2

s− − XG,π1
s−

⃓⃓⃓
ζ(ds)

⎤⎥⎦
+ (π1 − π2) E

⎡⎢⎣ 1N ·
∫︂

(t∨τ,σ∧T ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π2
s− ) ds

⎤⎥⎦
+ E

[︂
1N · κ(0, σ)

(︂
XG,π2

σ − XG,π1
σ

)︂]︂
= E

⎡⎢⎣ 1N ·
∫︂

(t∨τ,σ∧T ]

κ(s)
⃓⃓⃓
XG,π2

s − XG,π1
s

⃓⃓⃓
ζ(ds)

⎤⎥⎦
+ (π1 − π2) E

⎡⎢⎣ 1N ·
∫︂

(t∨τ,σ∧T ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π2
s− ) ds

⎤⎥⎦
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+ E
[︂
1N · κ(0, σ)

(︂
XG,π2

σ − XG,π1
σ

)︂]︂
(i)
≤ E

⎡⎢⎣ 1N ·
∫︂

(t,T ]

1{τ≤s≤σ} κ(s)
⃓⃓⃓
XG,π2

s − XG,π1
s

⃓⃓⃓
ζ(ds)

⎤⎥⎦
+ (π1 − π2) E

⎡⎢⎣ 1N ·
∫︂

(t∨τ,σ∧T ]

∑︂
M∈M

IMs− κ(0, s) eM (s, XG,π2
s− ) ds

⎤⎥⎦
+ E

[︂
1N · κ(0, σ)

(︂
XG,π2

σ − XG,π1
σ

)︂]︂
(ii)
≤ E

⎡⎢⎣ 1N ·
∫︂

(t,T ]

κ(0, (s ∨ τ) ∧ σ)
⃓⃓⃓
XG,π2

(s∨τ)∧σ − XG,π1
(s∨τ)∨σ

⃓⃓⃓
ζ(ds)

⎤⎥⎦
+ (π1 − π2) E

⎡⎢⎣ 1N ·
∫︂

(t,T ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π2
s− ) ds

⎤⎥⎦
+ E

[︂
1N · κ(0, σ)

(︂
XG,π2

σ − XG,π1
σ

)︂]︂
(iii)=

∫︂
(t,T ]

E
[︂
1N · κ(0, (s ∨ τ) ∧ σ)

⃓⃓⃓
XG,π2

(s∨τ)∧σ − XG,π1
(s∨τ)∧σ

⃓⃓⃓]︂
ζ(ds)

+ (π1 − π2) E

⎡⎢⎣ 1N ·
∫︂

(t∨τ,σ∧T ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π2
s− ) ds

⎤⎥⎦
+ E

[︂
1N · κ(0, σ)

(︂
XG,π2

σ − XG,π1
σ

)︂]︂
which still holds for every t ∈ [0, T ].
In step (i), we first include an indicator function, which maps the same interval as the
integration area. In a second step, the integration area is increased, which is possible with
the non-negative integrator and while making use of s ≤ s ∨ τ and σ ∧ T ≤ T .
In step (ii), further reformulations are taking place. We are using that

1{τ≤s≤σ} κ(s) ·
⃓⃓⃓
XG,π2

s − XG,π1
s

⃓⃓⃓
≤ κ(0, (s ∨ τ) ∧ σ) ·

⃓⃓⃓
XG,π2

(s∨τ)∧σ − XG,π1
(s∨τ)∧σ

⃓⃓⃓
.

In the two cases t ≤ s < τ and σ < s ≤ T , the left hand side is zero and the inequality is
trivially fulfilled, as the right hand side would be non-negative. For τ ≤ s ≤ σ, equality
holds on both sides, as we are simply in the case, where (s ∨ τ) ∧ σ = s. Take note, that
in a stand alone view without the indication function, this would not hold, as we have
κ(t) ≤ κ(r) for t ≥ r as a natural property of the discounting.
The last reformulation in step (iii) is a consequence of the Theorem of Fubini-Tonelli. Once
we have gotten rid of the random integral bounds by working with the indication function,
the order of integration can be exchanged and we arrive at the same representation as on
the left side of the equation.
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The above inequality holds for every t ∈ [0, T ] and in a simplified form then reads

f(t) ≤ α(t) +
∫︂

(t,T ]

f(s) ζ(ds)

with the following functions

f(t) = E
[︂
1N · κ(0, (t ∨ τ) ∧ σ)

⃓⃓⃓
XG,π2

(t∨τ)∧σ − XG,π1
(t∨τ)∧σ

⃓⃓⃓]︂
α(t) = (π1 − π2)⏞ ⏟⏟ ⏞

< 0

·E

⎡⎢⎣ 1N ·
∫︂

(t∨τ,σ∧T ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π2
s− ) ds

⎤⎥⎦
⏞ ⏟⏟ ⏞

≥ 0

+ E
[︂
1N · κ(0, σ)

(︂
XG,π2

σ − XG,π1
σ

)︂]︂
⏞ ⏟⏟ ⏞

≤ 0

where α in total is a non-positive function.
Now, we can apply the backward version of the inequality of Grönwall from Corollary
A.3.8 in a simplified form since our integration is done with respect to ds, as ζ(ds) = K ds.
Then the inequality

f(t) ≤ α(t) + e−Kt
∫︂

(t,T ]

eKs α(s) ζ(ds)

= α(t) + K e−Kt
∫︂

(t,T ]

eKs α(s) ds

≤ 0

holds for every t ∈ [0, T ].
From the definition of f , we conclude that for every t ∈ [0, T ] we have

E
[︂
1N · κ(0, (t ∨ τ) ∧ σ) ·

⃓⃓⃓
XG,π1

(t∨τ)∧σ − XG,π2
(t∨τ)∧σ

⃓⃓⃓]︂
= 0

and therefore, by the non-degeneracy of the expectation, we also have

XG,π1
(t∨τ)∧σ(ω) = XG,π2

(t∨τ)∧σ(ω)

for every t ∈ [0, T ] and ω ∈ N .

By evaluating of the last equation only for ω ∈ N and for t ∈ [τ(ω), σ(ω)], where
(t ∨ τ(ω)) ∧ σ(ω) = t, we get that

XG,π1
t = XG,π2

t

on N . As an implication, we have that especially XG,π2
τ = XG,π2

τ on N , which can only
be case, if N is a null set, as this was a direct consequence of our assumption and the
construction of τ , i.e. formula (4.5.10). A contradiction has been found.
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This now implies P (σ > 0) = 0, as our assumption has to have been false. Therefore we
have σ = 0 a.s. and by definition of σ, we know that it holds

XG,π2
s ≤ XG,π1

s a.s.

for every s ∈ [0, T ]. The (non-strict) monotonicity has now been shown, and completes
the first part of this proof.

Strict monotonicity

Let us now continue to show the strict monotonicity. As a the first result, we have already
shown, that for every s ∈ [0, T ] it holds

XG,π2
s ≤ XG,π1

s a.s.

which is a direct consequence of the definition of σ.
Therefore, we also have

XG,π2
s− ≤ XG,π1

s− a.s.

for every s ∈ (0, T ], which can now be used together with the monotonicity condition of
the payments.

Then, by using a similar structure to before, and by using the Assumption 4.5.5 on the
monotonicity of payments , we get that

E
[︂
XG,π2

0− − XG,π1
0−

]︂
(4.5.7)= E

[︂
XG,π2

T − XG,π1
T

]︂
+ E

⎡⎢⎣ ∫︂
[0,T ]

∑︂
M∈M

IMs− κ(s)
(︂
bM (s, XG,π2

s− ) − bM (s, XG,π1
s− )

)︂
ds

+
∫︂

[0,T ]

∑︂
M∈M

IMs− κ(s)
(︂
π1 eM (s, XG,π1

s− ) − π2 eM (s, XG,π2
s− )

)︂
ds

+
∑︂
I∈N

∫︂
[0,T ]×EI

κ(s)
(︂
BI

(︁
s, e, XG,π2

s−
)︁

− BI

(︁
s, e, XG,π1

s−
)︁)︂

µI(d(s, e))

⎤⎥⎦
(4.5.5)

≤ E

⎡⎢⎣ ∫︂
[0,T ]

∑︂
M∈M

IMs− κ(s) π1
(︂
eM (s, XG,π1

s− ) − eM (s, XG,π2
s− )

)︂
ds

+
∫︂

[0,T ]

∑︂
M∈M

IMs− κ(s) (π1 − π2) eM (s, XG,π2
s− ) ds

⎤⎥⎦
≤ (π1 − π2) E

⎡⎢⎣ ∫︂
[0,T ]

∑︂
M∈M

IMs− κ(s) eM (s, XG,π2
s− ) ds

⎤⎥⎦
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(4.5.5)
≤ (π1 − π2) c

< 0

where the last and second to last step is an application of condition 4.5.5 on the interval
[0, T ], and where we used again, that the reserve-dependency does not happen in 0.

These calculations imply that

E
[︂
XG,π2

0−

]︂
< E

[︂
XG,π1

0−

]︂
and we can now conclude that

F (π2) < F (π1)

which means, that our function F is strictly monotonously decreasing, and we therefore
know that only a unique π ∈ R can fulfil F (π) = 0. This was the last part, that remained
to be shown and now finishes the proof.

This now means, that we do not only have existence and uniqueness of the payment process
and the prospective reserve, but we can only price a contract, with a unique premium
level, that exists as a scaling factor to an existing premium payment scheme.
We have to restrict ourselves to continuous premium payments (and sojourn payments in
general), but this is only because of the reserve-dependency. A one-off premium payment
is still possible, as it also does not depend on the reserve of the full payment process, but
the one with only benefits.

Comment 4.5.9. On the calculation of a premium level given a payment scheme
The existence and uniqueness of the pricing factor π does not directly imply that a
calculation can be done in a simple and inexpensive way.
The methodology of the proof, however, enables us to use numerical methods for the
function F (π), and make use of the already shown monotonicity and the continuity. The
bisection method or Regula-falsi (false position) method can be used in an iteration to
calculate the factor π, by starting with two start values, where F has an opposite sign.
Such values should not be too hard to find and the monotonicity also guarantees linear
convergence to the solution. The numerical details will not be formulated, but remember
that the evaluation of F for a given π in each step of the iteration is not easily done by
itself, since the iteration for the payment process and the reserve has to be used. It is
therefore beneficial if the initial values of π are chosen, such that F (π) is already close to
zero.
Pre-calculation and easier evaluation may be possible, when the reserve-dependency is
rather simple and parts of the payments do not even depend on the reserve at all, but we
are not going to formulate these cases.
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Chapter 5.

Examples and applications

In this chapter, we want to provide some examples, to which the theoretical results in
this thesis can be applied to. For the development of examples, we will reformulate some
of the examples from Djehiche and Löfdahl [DL16] and rewrite them in the notation of
our model. At the end of this chapter, we will provide an overview of other applications,
where we refrain from an explicit mathematical formulation.

The examples will give a little more context to the abstract life insurance structure from be-
fore, since we are now specifying the details of the contracts and define exemplary payments.
We especially want to provide examples, where our main theorems can be applied, to
provide a justification for the existence of our theory, but note that the examples are rather
based on information restriction than non-monotone information.

5.1. Life policy with a guaranteed minimum death payment

Consider a life police, where the payment in case of the death of the policy holder is linked
to the prospective reserve of the contract. A minimal payment is set for the case, that the
existing reserve is lower than this threshold. This creates a simple non-linear dependence
on the existing prospective reserve and we now look at the mathematical details of this
example.

Example 5.1.1. Life policy with guaranteed minimum payment
Consider the finite state space S = {a, d}, where a abbreviates ’active’ and d abbreviates
’dead’. Let S(t) : [0, ∞) → S be the insurance state of an insured person. S(t) is a pure
jump process and we assume it to be right continuous.
The full information setting is given as the natural filtration of S, with sigma-algebras

Ft := σ (S(s), 0 ≤ s ≤ t)

and we do not consider any other information structure is this example, i.e. we set F = G.
Define

η = inf {u ≥ 0 | S(u) = d}

as a stopping time for the event of death (where inf ∅ := ∞). We want to keep as close
as possible to the notation of Christiansen [Chr21b], although we only need F in this
example.
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Use E = [0, ∞) × S as the information space of the marked point process and define
the following times as part of the marked point process

(︁
Ti, Zi

)︁
i∈{0,...,4}. Let T be the

deterministic maximum contract time.

The marked point process is then given by

i Ti Zi Information
1 0 (0, a) start in 0, active
2 ∞ (0, a) no deletion
3 η (η, d) time of transition, dead
4 ∞ (η, d) no deletion

Table 5.1.: Example 5.1.1 – Details on the marked point process

and as contractual payments, we define a continuous premium payment in state ’active’,
which is going to be paid up to time η and death benefit payment for the transition
from ’active’ to ’dead’, if the transition happens prior to the final contract time T . The
death benefit payment will be reserve dependent in a non-linear way. The details are now
specified in the following two tables for the sojourn payment

M ∈ M Information bM

(︁
s, XG

s−
)︁

IMs− = 1 Interpretation

{1} ’active’ −π(s)1{s≤T } 0 < s ≤ η continuous premium

Table 5.2.: Example 5.1.1 – Overview of the sojourn payments

and the benefit payment (with I{1}
η− = 1)

I ∈ N e ∈ EI Information BI

(︁
s, e, XG

s−
)︁

Interpretation

{3} (ηd, d) ’active’ → ’dead’ in η gαf ,αp

(︁
s, XG

s−
)︁

death payment

Table 5.3.: Example 5.1.1 – Overview of the transition payments

where we use the following payment

gαf ,αp(s, x) := max {αf (s), αp(s) x} · 1{s≤T }

in case of death, which is non-linearly reserve-depending on the prospective reserve with
respect to F.
Interpret

αf (s) : [0, ∞) → R>0

as a guaranteed minimum payout and

αp(s) : [0, ∞) → (0, 1)

as a proportional reduction of the paid-out reserve. Assume that αp(s) ∈ (0, 1) for all s,
since we would not pay out more than the reserve, but we do not specify the functions
any further.
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The accumulated future payments are given as the process X =
(︁
Xt
)︁

t≥0, in its integral
representation

Xt =
∑︂

M∈M

∫︂
(t,T ]

κ(s)
κ(t) I

M
s− bM

(︁
s, XG

s−
)︁

γ(ds) +
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s)
κ(t) BI

(︁
s, e, XG

s−
)︁

µI(d(s, e))

= −
∫︂

(t,T ]

κ(s)
κ(t) I{s≤ηd} π(s) ds +

∫︂
(t,T ]

κ(s)
κ(t) gαf (s),αp(s)

(︁
s, XG

s−
)︁

µ{3}(d(s, (η, d))) .

with a final condition XT = 0 a.s., and our Theorem 3.2.12 guarantees the existence of
the payment process in the case of F = G.
We have to verify, that all involved functions (bM )M and (BI)I fulfil the necessary
conditions. Measurability is given by definition. We only have to check the Lipschitz
condition of gαf ,αp(s, x), which can be done by case differentiation.

Comment 5.1.2. On the extension to multiple absorbent states
The model can be considered with multiple absorbent states, for example a dread-disease
insurance contract. In that case, we extend the state space to S = {a, d1, . . . , dm}, but it
is restricted to absorbent states, where the prospective reserve vanishes (apart from state
a).

Comment 5.1.3. On the differences in the formulation to standard life insurance theory
Let us quickly comment on some major differences to the common multi-state life insurance
theory and especially to the examples developed in Djehiche and Löfdahl [DL16], who
define

αij(t) = max
{︂

α0
ij(t), α1

ij(t) (Vj(t) − Vi(t))
}︂

as transition benefits for i ̸= j ∈ S, with state-wise reserves, but without defining S, in
comparison to our model, where the state space S is explicitely defined.

Every transition payment has the same structure and the differences of the current and
future state-wise prospective reserve are used as part of this payment. This is then
translated into a dependency on the family (Zij)i ̸=j , where Zij(t) = Vj(t) − Vi(t), while we
do not consider state-wise reserves at all and restrict ourselves to payments that happen
in case of a transition a → d.
Also note, that by using the following representation of the general reserve

VS(t)(t) =
∑︂
i∈S
I{S(t)=i}(t) Vi(t)

and by simplifying it with the condition that some reserves may be zero, it holds for
S = {a, d} (with Vd(t) ≡ 0) as

VS(t)(t) = Ia(t) Va(t) = Ia(t) (Va(t) − Vd(t))

which enables us to use the general reserve XG
t− , which is also just the reserve in active for

t ≤ ηd, instead of working with an equivalent of the sums at risk (Zij)i ̸=j .
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5.2. Guaranteed life endowment with a withdrawal option

Consider a slightly more complicated contract next, where the payment in case of death
is still reserve-dependent, with a minimal payout set. We also want to allow for the
insured to lapse the contract (withdraw from the contract) and get paid back the re-
serve.

Example 5.2.1. Guaranteed life endowment with withdrawal option
Consider the finite state spaces S = {a, l, d}, where a abbreviates ’active’, l abbreviates
’lapsed’, and d abbreviates ’dead’.
Let S(t) : [0, ∞) → S be the insurance state of an insured person. S(t) is a pure jump
process and we assume it to be right continuous. The setting of full information is given
by the natural filtration of S, i.e. for t ≥ 0 we define

Ft := σ (S(s), 0 ≤ s ≤ t)

No other information structure is needed, so we set G = F. By defining

ηd = inf {u ≥ 0 | S(u) = d} , ηl = inf {u ≥ 0 | S(u) = l}

we have stopping times for the events of death and lapse (with inf ∅ = ∞) and use
η = min{ηl, ηd}.
Use E = [0, ∞) × S as the information space of the marked point process and define
the following times as part of the marked point process

(︁
Ti, Zi

)︁
i∈{0,...,4}. Again, let the

deterministic time T be the maximum contract time.

The marked point process is then given by

i Ti Zi Information
1 0 (0, a) start in 0, active
2 ∞ (0, a) no deletion
3 η (η, d) or (η, l) time of transition, lapse or dead
4 ∞ (η, d) or (η, l) no deletion

Table 5.4.: Example 5.2.1 – Details on the marked point process

Specify a continuous premium payments in state ’active’, up to η, as a rate π(s). The
details are given in the following table for the sojourn payments

M ∈ M Information bM

(︂
s, XG

s−

)︂
IMs− = 1 Interpretation

{1} ’active’ −π (s) · 1{s≤T } 0 < s ≤ η continuous premium

Table 5.5.: Example 5.2.1 – Overview of the sojourn payments
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I ∈ N e ∈ EI Information BI

(︁
s, e, XG

s−
)︁

Interpretation

{3} (η, d) ’active’ → ’dead’ in ηd αad

(︁
s, XG

s−
)︁

death payment
{3} (η, l) ’active’ → ’lapse’ in ηl αal

(︁
s, XG

s−
)︁

lapse payment

Table 5.6.: Example 5.2.1 – Overview of the transition payments

and as transition payments, we will have reserve-dependent death benefit and lapse
payments, if the respective transition happens prior to T . These payment will be reserve
dependent in a non-linear way and the details are given in the table (for I{1}

η− = 1)
and where we use the death payment

αad(s, x) := max
{︂

α1
ad(s), α2

ad(s) x
}︂
1{s≤T } ,

which is non-linearly depending on the prospective reserve with respect to G. Interpret
α1

ad(s) : [0, ∞) → R>0 as a guaranteed minimum, and α2
ad(s) : [0, ∞) → [0, 1) as a

proportional reduction of the reserve. Further we use

αal(s, x) :=
(︂
α0

al(s) + max
{︂

α1
al(s), α2

al(s) x
}︂)︂

· 1{s≤T }

as the lapse payment, which is also non-linearly depending on the prospective reserve with
respect to G. Interpret α0

al(s) : [0, ∞) → R>0 as a fixed payout and α1
al(s) : [0, ∞) → R>0

together with α2
al(s) : [0, ∞) → [0, 1] as a proportional reduction of the paid-out reserve

with a guaranteed minimum.

The accumulated discounted future payments are given by the process X =
(︁
Xt
)︁

t≥0, in its
integral representation

Xt =
∑︂

M∈M

∫︂
(t,T ]

IMs−
κ(s)
κ(t) bM

(︁
s, XF

s−
)︁

γ(ds) +
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s)
κ(t) BI

(︁
s, e, XF

s−
)︁

µI(d(s, e))

= −
∫︂

(t,T ]

κ(s)
κ(t) I{s≤η} π(s) ds

+
∫︂

(t,T ]

κ(s)
κ(t) αad

(︁
s, XF

s−
)︁

µ{3}(d(s, (η, d))) +
∫︂

(t,T ]

κ(s)
κ(t) αal

(︁
s, XF

s−
)︁

µ{3}(d(s, (η, l))).

with final condition XT = 0 a.s., where Theorem 3.2.12 guarantees the existence and
uniqueness of the reserve-dependent payment process. We have to verify, that all involved
processes (bM )M and (BI)I fulfil the necessary conditions, which can once again be done
by case differentiation.
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5.3. A unisex tariff in life insurance with lapse

We now want to investigate unisex (or gender neutral) tariffs in a life insurance setting.
This is combined with a non-linear dependency of the lapse payment on a prospective
reserve and with a restricted information setting, as information about the gender is not
considered in the calculations of premiums and other payments, since it forbidden by
law.

In many cases, it is still valuable for the insurer to differentiate between male and female
customers. For instance, data availability of morbidity (with significant differences) and
lapsing behaviour (also because of adverse selection problems of non-fairly priced contracts)
is usually differentiated. Despite these incentives to internally differentiate these contracts,
the European Union has passed a law, that does not allow to sell differentiated contracts.
For details on the council directive about ’the equal treatment of men and women in the
access to and supply of goods and services’, see [Eur04]1, which is the original EU ruling
for gender equality in 2004. Additional clarifications about the application to insurance
contracts and the deletion of the exception paragraph can be found in the statement
[Eur11]2, after a ruling of the European court of justice on the application of gender
equality for insurance contracts.

The information about gender of an insured can not be used to calculate premiums or
payments, resulting in the term ’unisex-tariffs’. Internally, the insurer might want to keep
the gender for the calculations, if data is available and significant differences are present.
Otherwise, the insurer would increase its own exposition to risk.

Example 5.3.1. Unisex tariff with lapse
Consider the two-dimensional state process

S(t) = (S1(t), S2(t)) : [0, ∞) → S = {a, l, d} × G ,

that includes the insurance state and the gender of an insured person.
In addition to the classical insurance state spaces {a, l, d} with absorbing state l and d,
we consider the finite gender space G = {m, f}, where m abbreviates male and f female.
A two-dimensional state space is created, where for example the entry (a, m) ∈ S means
that an insured person is both active and male. The gender selection is considered to be
random at the start of the contract.
The process S = (S(t))t≥0 is assumed to be a right-continuous pure jump process, where
the second component stays constant as the gender is considered non-changing. It is
important to note, that jumps may only happen in the first component of the process S.
The full information setting is given by the natural filtration of S, where the sigma-algebras
are defined by

Ft := σ (S(s), s ≤ t) = σ
(︁(︁

S1(s), S2(s)
)︁
, s ≤ t

)︁
= σ

(︁(︁
S1(s), S2(t)

)︁
, s ≤ t

)︁
,

1http://data.europa.eu/eli/dir/2004/113/oj, (accessed 12.2024)
2https://ec.europa.eu/commission/presscorner/detail/en/memo_11_123, (accessed 12.2024)
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5.3. A unisex tariff in life insurance with lapse

and if we do not want to consider the gender for our calculations, we can leave out the
second component and work with the reduced information

Gt := σ (S1(s), s ≤ t) ,

which is still a filtration, i.e. monotonously increasing and the information about the
gender is not deleted.
Although it is still monotone, it clearly contains less information than F = (Ft)t by design
and it definitely holds Gt ⊂ Ft for every t ≥ 0, but note that G does now not correspond
to the definition in Christiansen [Chr21b].

Define
ηl = inf {u ≥ 0 | S1(u) = l} , ηd = inf {u ≥ 0 | S1(u) = d}

as stopping times for the events of death and lapse (with inf ∅ := ∞), which are stopping
times with respect to both sigma-algebras, since only the first component of S is used. For
simplicity, also define η = min{ηd, ηl} and use T as the deterministic maximum contract
time.

It still is the target to keep a structure, such that we can formulate F in the notation of
[Chr21b]. We therefore use E = [0, ∞) × S as the information space of the marked point
process and define the following times as part of the marked point process

(︁
Ti, Zi

)︁
i∈{0,...,4}.

The marked point process can be represented by:

i Ti Zi Information
1 0 (0, a, m/f) start in 0, active, gender
2 ∞ (0, a, m/f) no deletion
3 η (η, d, m/f) or (η, l, m/f) time of transition, lapse or dead, gender
4 ∞ (η, d, m/f) or (η, l, m/f) no deletion

Table 5.7.: Example 5.3.1 – Representation of the marked point process

The payments have to be the same for both genders. This is naturally the case, if the
payment is deterministic, but does not have to be the case for reserve-dependent payments.

A continuous premium payment rate and the deterministic survival benefit are presented
in the following table about the sojourn payments

M ∈ M Information bM

(︁
s, XG

s−
)︁

IMs− = 1 Interpretation
{1} ’active’ −π · 1{s≤T } 0 < s ≤ η continuous premium
{1} ’active’ S · 1{s=T } 0 < s ≤ η survival benefit (in t0 := T )

Table 5.8.: Example 5.3.1 – Overview of the sojourn payments

where we need to set t0 = T as a deterministic time point of the Dirac-measure in the
definition of γ, to allow for the lump sum payments, but no reserve-dependency in this
survival benefit takes place.
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A deterministic death benefit D for the transition from ’active’ to ’dead’ and a reserve-
dependent lapse payments for the transition from ’active’ to ’lapse’ are specified in the
following table of transition payments (for I{1}

η− = 1)

I ∈ N e ∈ EI Information BI

(︁
s, e, XG

s−
)︁

Interpretation
{3} (η, d, m) a → d in η, male D 1{s≤T } death payment
{3} (η, d, f) a → d in η, female D 1{s≤T } death payment

{3} (η, l, m) a → l in η, male fα,β

(︁
s, XG

s−
)︁

lapse payment

{3} (η, l, f) a → l in η, female fα,β

(︁
s, XG

s−
)︁

lapse payment

Table 5.9.: Example 5.3.1 – Overview of the transition payments

where we use the lapse payment

fα,β(s, x) := ((1 − β) · x − α)+
1{s≤T } = max {0, (1 − β) · x − α} 1{s≤T } ,

which is non-linearly depending on the prospective reserve with respect to G. Interpret
α ∈ R≥0 as a general lapse fee, used for the administrative effort, and β ∈ [0, 1) as a
proportional lapse fee, where both fees are constant in time.

The accumulated discounted future payments are given as the process X = (Xt)t≥0 in its
integral representation

Xt =
∑︂

M∈M

∫︂
(t,T ]

IMs−
κ(s)
κ(t) bM (s, XG

s−) γ(ds) +
∑︂
I∈N

∫︂
(t,T ]×EI

κ(s)
κ(t) BI(s, e, XG

s−) µI(d(s, e))

= −
∫︂

(t,T ]

I{s≤η}
κ(s)
κ(t) πds +

∫︂
(t,T ]

I{s≤η}
κ(s)
κ(t) S · 1{s=T }γ(ds)

+
∫︂

(t,T ]

κ(s)
κ(t) D

(︂
µ{3}(d(s, (η, d, m))) + µ{3}(d(s, (η, d, f)))

)︂

+
∫︂

(t,T ]

κ(s)
κ(t) fα,β

(︁
s, XG

s−
)︁ (︂

µ{3}(d(s, (η, l, m))) + µ{3}(d(s, (η, l, f)))
)︂

with final value XT = 0 a.s., and where t0 = T is the only time point for discrete sojourn
payments and therefore a part of γ.

Theorem 3.2.12 can be applied to this situation and it guarantees that the reserve-dependent
payment process exists and is unique. We can verify, that all involved payments fulfil the
necessary conditions. Measurability is given by definition and we only have to check the
Lipschitz condition of fα,β(s, x). The reserve might actually be smaller than α

1−β (then
fα,β = 0). This does have the implication, that the Lipschitz condition has to be checked
for different cases (otherwise L = 1 − β ∈ (0, 1] works, as is is the gradient of the linear
function) and we could just use the upper bound L = 1 as a general Lipschitz constant for
all payments.
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The lapse payment is now the same for a male and a female insured, because it depends
on the prospective reserve without gender information. This is exactly what we wanted
to construct. As it can be seen in the equation for Xt, the possible differences in the
integrators are considered, when the prospective reserve with respect to F is calculated.
Another interesting thing is that lapse payment with the reserve XG usually lies in-between
the correct gender-based reserves and therefore the actual internal reserves are higher and
lower respectively, than the reserve from the surrender payment, which explains why the
insurer wants to keep the full information setting for the internal calculations.

The process Xt is neither adapted to G nor F and we have to use the optional projections
instead. For both filtrations G and F, the optional projections do exist, and the Thiele
BSDE with respect to the standard formulation for filtrations can be formulated. We will
not do this, as the sums at risk can not be represented in the notation of Christiansen
[Chr21b]. Only a formulation of the Thiele BSDE with respect to F could be done, but
we do not do it here, as it provides hardly any benefit compared to the representation of
the payment process itself. As a final condition, to be able to solve the equation for the
prospective reserve numerically, we would have XG

T = 0 = XF
T .

Theorem 4.5.4 can also be applied to guarantee the existence of a unique net equivalent
premium, which we implicitly already used with the given continuous premium π. That a
net equivalent premium exists would otherwise not have been guaranteed, as an application
of Cantelli’s theorem is not possible with the reduced lapse payment and without specifying
the model any further. Note that the Theorem guarantees the existence of a premium level
π as a multiplicative factor for the premium payment scheme, which in this case would
be the constant rate 1s≤T while in state active. Therefore, the precondition in formula
(4.5.5) is fulfilled, if P(η > 0) > 0, which would be the case for a reasonable model.

Comment 5.3.2. Possible embedding into the non-monotone theory
This model does not use the non-monotone information structure and it would be difficult
to formulate an example with a proper notation, that actually utilizes a non-monotone
structure.

Nevertheless, there is a possibility to embed this example into the theory of non-monotone
information, but this approach is unintuitive and will not be continued in this thesis.
To keep the necessary notation in Christiansen [Chr21b], and have both G and F align
with the definition, a different approach has to be followed for the gender information. The
information about the gender could be introduced in T1 = 0 and deleted in T2 = 1, but
the actual contract only takes place on the interval [2, T + 2], and payments are defined
accordingly. Then, the definition of F and G can be aligned with the needed structure, as
Gt for t ≥ 2 would never have the information about the gender.
In such a situation, the Theorem 3.3.9 could also be used, as the possibility for an inclusion
of the sum at risk into the lapse payment would then be possible, instead of using the
general reserve.
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5.4. Other examples

In this section, a few short additional examples are provided. We are only going to specify
the general idea, and argue the potential applications and limitations for the theory in
this thesis, but we are not going to give a full mathematical formulation of the considered
models.

5.4.1. German private health insurance

The private health insurance system in Germany is modelled in a unique way and would usu-
ally not be considered a part of (multi-state) life insurance theory. Nevertheless, the general
life insurance model can also be represented as a multi-state model.

In the standard model, the private health insurance relies on the so called ’Kopfschaden’ per
age, which would be something like an average of yearly health cost per age. This is similar
to a conditional expectation, like we need in our life insurance model.

The private health insurance uses a deterministic forecast for the actual medical expenses for
every year of the contract, and the situation allows for a later adaptations of the premiums,
if the forecast differs in a significant way. It can be considered a model with information
reduction, where the actual true cash flow is stochastic and not observable and the
insurance companies calculate the individual claims based on the industry values, but not
their own company values. These industry values are provided by the KVAV (supervisory
unit for the private health insurance, which provides the regulations), in exchange for
participation of the insurance company in the collection of all data.

The original model is set up in a way, that the only randomness lies in the potential
occurrence of death or lapse, but al the payments are given as deterministic, and we
could use a state space S = {a, l, d}. If we want to model it differently and stochas-
tic, then the following would be a potential application of restricted information struc-
tures.

We can model a two-dimensional right-continuous jump process S = (S1
t , S2

t )t≥0 by
specifying

S =
(︁
S1, S2)︁ : [0, ∞) −→ S = {a, l, d} × K ,

where the first component is specifying the state of an insured person, as a standard state
from S = {a, d, l} (active, dead, lapse), and the second component S2 is a health related
state, where medial costs of Bk are arising.

The filtration of the complete information F =
(︁
Ft
)︁

t≥0 is given by

Ft := σ (Sr, r ≤ t) = σ
(︂(︁

S1
r , S2

r

)︁
, 0 ≤ r ≤ t

)︂
and could be used for the individual performance evaluation of a contract, and the reduced
information G =

(︁
Gt
)︁

t≥0 is given by

Gt := σ
(︂
S1

r , 0 ≤ r ≤ t
)︂
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which is simply a restriction to the first component of S.

Note, that Gt ⊂ Ft holds for every t ≥ 0, i.e. the information structure G has less informa-
tion than F at every time point, but G is nonetheless still a filtration.

The payment process could then be given as

A(dt) = −1{S1(t−)=a} · π(t) dt +
∑︂
k∈K

1{S1(t−)=a} · 1{S2(t−)=k} · Bk dt

+ bal

(︁
t, XG

t−
)︁

dµS1
al (t)

where π would be a general premium payment and the Bk are the health costs for an
actively insured person with health level k ∈ K. The lapse payment would be a reserve-
dependent value with respect to G. This lapse value, or transfer value, is better known as
the ’Übertragswert’ and it is the value, that the insured will receive, when the contract is
terminated. The name is motivated by the fact, that this value is supposed to transfer to
a different insurance company without reduction, which allows for healthy competition
between insurance companies.

The ’Kopfschaden’, or rather the difference of the ’Kopfschaden’ and the premium, from
the classical private health insurance model would then be something similar to a reserve
with respect to G, and where the time-development of XG would include the changing
value for the ’Kopfschaden’. The premium π(t) would be independent of the k ∈ K, and
could be calculated to be constant in time, to meet the net equivalent condition as an
initial value for the reserve with respect to G.

A proper formulation will not be done at this point, and is especially difficult because the
payments in the German health insurance are usually lump sum payments, and the age
for the age-based ’Kopfschaden’ is also difficult to represent.
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5.4.2. Life insurance with health data

In general, life insurance contracts could be used together with health data collection
via wristband devices, where deletions might happen because of data privacy controls or
because the information is considered outdated. This is an application where non-standard
data is used in combination with a common life insurance multi-state model. A brief
introduction to such a model is also given in Christiansen [Chr21b].
In other countries, mostly outside of the European Union, life insurance contracts with
health tracking do already exist. The insurance companies offering these types of contracts,
do not have to work with nearly as strict data protection laws, and the population has a
higher acceptance for these contracts.

Healthy behaviour on the part of the insured could be rewarded, if data suggests, that the
expected health costs are to be lower. This would particularly be true for cardiovascular
disease, where the link to exercise, steps, resting heart rate and other metrics could be
used with wristband devices.

However, we will not further elaborate on this example as it would be difficult to specify
the model without knowing the impact on transition probabilities and health costs. Data
availability (and non-simplicity) will always be one of the main reasons, why certain models
will not go into production. For non-standard ideas, the insurer would have to collect its
own data, so the model can only be developed when many clients are already using it
and are providing the baseline data, to setup a model. Alternatively, without a proper
model in the background, policyholders could receive fixed benefits (a bonus program) for
participating in such a tariff, but a systematic and model-based reduction in premium
would be difficult to implement.

An example of such a contract can be found in the ’Vitality Plus’3 life insurance policy
offered by John Hancock Life Insurance Company for the US American insurance market,
which appears to be the first mention of such a product, but other companies are now
offering similar tariffs. Take note that the mathematical details of this insurance policy are
of course not publicly available, but the collection of health data via wristband devices is
definitely a part of it and the benefits seem to be more like a bonus program than through
an underlying model. Some additional information can also be found in a web article
by the American Hospital Association4, and a 30% reduction in hospitalization costs for
participants in these types of insurance programmes is mentioned.

3Compare https://www.johnhancock.com/life-insurance/vitality-program.html (accessed
12.2024)

4https://www.aha.org/aha-center-health-innovation-market-scan/2018-10-01-now-you-can-s
hare-fitbit-data-save-life (accessed 12.2024)
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5.4.3. Life policies with smoking behaviour

In the German life insurance market, it is quite common to have tariffs, where a differenti-
ation between smoking and non-smoking takes place. The German actuarial association
provides a death table with differentiated risks, and also provides a note on the method-
ology of this data. The death table was introduced in 2008 and details can be found in
[Deu08]5. A verification of the continuous applicability can be found in [Deu22a] 6. Take
note, that application of this specific life table is only intended for insurance upon death,
and where a health check is part of the underwriting process.

The collection of data for the development of life tables with smoking behaviour based
on data from German insurance companies is described as difficult. The DAV research
does not find significant differences between smokers and non-smokers from their local
insurance portfolios. There are a variety of reasons for that. Most of the German database
with a differentiation in smoking behaviour has been developed recently. Further, the
portfolio distribution of smokers and non-smokers, the smoking behaviour (how often), the
actual classification can influence the findings. Especially the definition of non-smoking
usually only takes into account the past 12 or 24 months and therefore does not really
recognize long term effects correctly, while also suffering from the problem, that most of
the data can not be verified. Additionally there might be methodical differences between
companies and the health care system can also influence the realised deaths. Premature
deaths are happening less often, if proper health care is provided.
In comparison to the German data, other countries like the UK, USA and Canada provide
age-related factors for the excess of deaths in smokers. In the end, the German death
table is based on the data from foreign markets, while verifying the applicability through
other parameters of the data. Details can be found in the linked note, but to summarise,
the German insurance market was still not able to generate a death table based on their
own data. For some cases, they also suggest the use of safety margins, and also emphasize
importance of the total percentage of smokers in the total portfolio, which is one of the
main risk factors.

It seems, that the underlying statistical model is inaccurate, especially about the differences
of smoking and non-smoking. If the death table is used despite that, it might introduce some
errors for smokers who stop smoking and are then considered non-smokers. Historically,
former smokers might also be currently part of the death table statistics for non-smokers,
which is part of the problem, why no significant differences are found.
The current model introduces an error, which is generally accepted, as more complex and
better statistical model are not easily found anyway. It might be better to use a model,
where a proper differentiation between former smokers and smokers can take place and this
could be done in our model. The information about the history of a smoker can be deleted,
but the effects would be accounted for through the IF-and IB-martingale dynamics. The
statistical model is not clear in our model either, but the questionable assumptions about
the history of smoking are not needed.

5https://aktuar.de/de/wissen/fachinformationen/detail/herleitung-der-sterbetafel-dav-200
8-t-fuer-lebensversicherungen-mit-todesfallcharakter (accessed 12.2024)

6https://aktuar.de/de/wissen/fachinformationen/detail/raucher-und-nichtrauchersterbetaf
eln-fuer-lebensversicherungen-mit-todesfallcharakter/ (accessed 12.2024)
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5.4.4. Partial lapse and contract modifications

There are insurance contracts, where the conditions of the contract can be changed
through the exercising of options during the contract horizon. These options include
partial lapse, like for example the free policy option, where premium payment cease and
the benefits need to be adjusted to reflect level of premiums paid up to the exercising time
point.

Under certain conditions, such a contract modification can maintain the actuarial equiva-
lence, and the sum at risk for the contract modification would be zero. Then, an application
of Cantelli’s theorem would allow to ignore the option. In such a case, the difference in
reserves between the old and new contract needs to be taken into account and the old
reserve could be considered a single premium for the new contract with reduced benefits.
The true cost of the contract change is then reflected as the difference between the existing
reserve and the future reserve.

If Cantelli’s theorem cannot be applied, which is generally the case for non-Markovian
models or if not the complete reserve is paid out, then the partial lapse can not be
ignored in the model. It could also be problematic for the insurers asset and liability
management and fees could be introduced to respond to the new reserving requirements.
In general, the life insurance cash flow becomes reserve-dependent upon the contract
modification and the dependency would be with respect to the exercising time point.
Note, that there are also some papers that work with scaled payments to accommodate
these contract modifications, see for example Furrer [Fur22] and Christiansen and Furrer
[CF22]. Christiansen and Djehiche [CD20] consider multiple contract modifications, develop
Cantelli’s theorem for non-Markovian models and investigate conditions that maintain
actuarial equivalence.

In general, the needed reserve-dependency for partial lapse is a different kind of dependency
than our model allows for. In our situation, the partial lapse could be modelled by lapsing
the existing and entering a new contract, where the the reduced reserve of the old contract
is used as a lapse-payment and is paid back to the insured. This payment can then be
considered a one-off premium payment for a new contract.
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Conclusion and further research opportunities

In this thesis, the existence and uniqueness of the payment process and the prospective
reserve have been proven for a rather general class of insurance products with reserve-
dependent payments. The main focus has been on the incorporation of restricted and
non-monotone information structures, with the latter being based on the infinitesimal
martingale theory of Christiansen [Chr21b]. The existence and uniqueness of solutions
for these cases was previously unclear, as they could not be included into the existing
theoretical framework. Conversely, the new theorems presented in this thesis still include
existing results, by simplification, as special cases.

In general, the study has led to the emergence of a new type of non-linear BSDE, similar
to the Thiele BSDE. In the proof of existence and uniqueness for the solution, we have
presented a novel way of working with the Thiele BSDE, focusing on the relationship
between the payment process and the prospective reserve. This approach was initially
introduced as a workaround to avoid relying on the properties of martingales, as adapting
similar results turned out to be difficult. Furthermore, we were able to develop conditions
under which the pricing of such an insurance contract is possible and the nature of the proof
also provided us with a pricing method for these contracts. Finally, we considered some
examples to illustrate the potential applications of our theory, but kept the formulation at
a theoretical level.

Further research opportunities are available in the field of multi-state life insurance theory.
This is due to the fact that already existing extensions can be combined in various ways,
leading to new models with a priori unclear properties. This section will present a few
potential extensions starting from the research presented in this thesis.
We only allow for a deterministic discounting rate, which is a part where further stochas-
ticity can be introduced and adaptions to the methodology of the proofs would be required.
Moreover, we have imposed quite restrictive conditions on the payment functions, which
is standard practice in the existing literature on BSDEs, but it may be possible to relax
these conditions. The exercising of options, such as the free-policy options, would also
necessitate the introduction of scaled payments, with the scaling factor depending on the
time point of exercise. This introduces a further dependency into the payments that the
model does currently not allow for.
Furthermore, we impose the additional restriction that the intensities of the counting
processes must be absolutely continuous, contributing to favourable conditions for the
proofs. These are some potential adjustments, where even more general models can be
incorporated in the theory.
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The development of new techniques and models is driven by a number of reasons. These
might be legal and regulatory requirements, as well as advances in statistical and numerical
methods, and the increasing computational power that allows for more complex models
than were previously feasible.

The primary objective of this thesis was to demonstrate the existence and uniqueness of
solutions, which does not necessarily imply a straightforward and desirable possibility to
calculate these solutions. The main theorem in each chapter provides the reader with a
recursion formula derived from the fixed point theorem of Banach or the regula falsi method.
However, the calculations remain challenging. This is in contrast to standard Markov mod-
els, where the solution can be obtained through backward recursion.

Moreover, we always just assume to have a the first order basis for the intensities of the
counting processes without providing any information on the statistical problems that come
with this. The calculation of the IF- and IB-compensators is difficult, since particularly
models of high complexity require a large amount of data in order to ensure the robustness
and correctness of the estimations for the involved intensities. This is especially difficult,
if many different and uncommon information states are to be considered. If correct and
robust calculation would not be possible, it might even be preferable to use a model with
higher model error, but with better estimation properties, especially if in addition to the
increased accuracy, the calculation would also be more feasible.
A trade-off must be made between systematic model risk and unsystematic estimation
risk. In general, estimation risk would be vanishing for large sample sizes; however, if
only a small number of samples is available, the higher model risk may be preferable. It
is also important to recognize that, in at least some examples (see the smoking example
in the previous chapter), the statistical foundations of these models are not sound, or
even knowingly inaccurate, but the simple model is still used for convenience. This
may be attributed to a lack of data availability or to the fact that the optimal model is
unknown.

Note, that new approaches have been developed and they improve the estimation situation.
For example, the as-if-Markov theory presented in [Chr21a] provides the necessary concepts
to do estimation without the need for a parametric model, by relying on methods related to
the landmark Nelson-Aalen estimators and applied to the specific nature of the multi-state
insurance model. It has to be mentioned that the as-if-Markov model can not be included
in the non-monotone framework, as a consistent definition of the information structure is
not possible, but these new approaches are drivers of statistical advancements and can
still be used in the more general case. Further advances have been made by Bladt and
Furrer [BF23], providing statistical analysis for the so-called conditional Aalen-Johansen
estimator. It enables the non-parametric estimation of state occupation probabilities for a
wide range of finite state jump processes and by allowing for the inclusion of covariates,
and especially for continuous conditioning.

In the non-monotone framework, additional fundamental results may be proven and more
complex reserve-dependencies may be realised. The main results presented in Christiansen
[Chr21b] have been proven within the setting of marked point processes, but the concepts
of IF- and IB-martingales are also defined more generally in the introduction of the
aforementioned paper. Consequently, an extension of this theory may be possible and
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could lead to a more general version of the IF- and IB-martingale representation theorems.
Even in the marked point process setting, not all properties are investigated and there are
some reverse relations, that are of interest. The question arises, whether an infinitesimal
martingale representation necessarily implies, that the underlying process is an infinitesimal
martingale. This would be particularly significant in developing an analogous result to
Cantelli’s theorem, whereby multiple models (for example with and without the possibility
of lapsing the contract) are compared and must fulfil the same Thiele BSDE, with the
lapse payment defined as the existing reserve. It is preferable to have Cantelli’s theorem,
because less calculations are involved and the sparsity of statistical data is even more
limited for states like lapse and the problems with reserve-dependency could be avoided
all along.
Summarizing, there are a variety of fundamental results, special properties in life insurance
theory and in the statistical estimation theory, where the investigation is beyond the scope
of this thesis and where further research opportunities arise.
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Appendix A.

Mathematical tools

To increase the readability of this thesis, some definitions, theorems, and other math-
ematical statements are collected in this chapter of the appendix instead of the main
part.

References are provided, and the majority of proofs are not formulated in this the-
sis.

A.1. Stochastic analysis

Definition A.1.1. Stochastic process
Let (Ω, F ,P) be a probability space. A family X = (Xt)t≥0 is called a stochastic process
on R≥0, if every Xt : Ω → R is a random variable, i.e. measurable.

Let X = (Xt)t≥0 be a stochastic process. The mapping

X·(ω) : R≥0 → R, t ↦−→ Xt(ω)

is called a path of X for every ω ∈ Ω.

(a) X is called (right-) continuous, if almost every path is (right-) continuous.

(b) X is called càdlàg, if it almost surely has sample paths that are right-continuous with
existing left limits

Xt− = Xt− := lim
s↗t

Xs = lim
s→t
s < t

Xs

where both notations may be used, if there is no danger of ambiguity.

(c) For a càdlàg process we also define the accompanying process ∆X via ∆Xt := Xt−Xt−.

See Protter [Pro05] or Klenke [Kle20] for comparison.

Definition A.1.2. Indistinguishable (equivalent) processes
Let (Xt)t≥0 and (Yt)t≥0 be two stochastic processes on the same probability space.

We call them indistinguishable, if for almost all ω ∈ Ω it holds Xt(ω) = Yt(ω) for all t ≥ 0,
i.e. almost all paths of X and Y are equal.
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Equivalently, we may write:

P (Xt = Yt for all t ≥ 0) = 1

This concept is sometimes also called equivalence up to evanescence.

See also Meintrup and Schäffler [MS05] for details.

Definition A.1.3. Version (modification) of a process
Let X = (Xt)t≥0 and Y = (Yt)t≥0 be two stochastic processes on the same probability
space.

We call Y a version or modification of X, if

P (Xt = Yt) = 1

for all t ≥ 0.

Theorem A.1.4. Implications for Definitions A.1.3 and A.1.2
If the two stochastic processes X = (Xt)t≥0 and Y = (Yt)t≥0 are indistinguishable, they
are versions of each other.

If additionally X and Y are (right-) continuous and versions of each other, then they are
also indistinguishable.

See also Meintrup and Schäffler [MS05] or Klenke [Kle20] for details.

A.2. Sigma-algebras

Definition A.2.1. Generated σ-algebra
For every E ⊆ P(Ω), there exists a smallest σ-algebra σ(E) with E ⊆ σ(E) and it has the
representation

σ(E) :=
⋂︂

A⊆P(Ω) is σ-Algebra
E⊆A

A .

σ(E) is called the σ-algebra generated by E .

Further, let A be a σ-algebra. If it holds, that A = σ(E) for any E ⊆ P(Ω), then we call E
a generator of A.

See Meintrup and Schäffler [MS05] or Klenke [Kle20] for details.

Definition A.2.2. Trace σ-algebra
Let there be a A ⊆ P(Ω) and a A ∈ P(Ω) \ {∅}. Define

A ∩ A := {A ∩ B | B ∈ A} ⊆ P(A) .

If A is a σ-algebra on Ω, then A∩A is a σ-algebra on A and it is called the trace-σ-algebra.

See also Meintrup and Schäffler [MS05] or Klenke [Kle20] for details.
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Corollary A.2.3. Trace generated σ-algebra
Let E ⊆ P(Ω) and a non-empty A ⊆ Ω be given. Then it holds

σ (E ∩ A) = σ (E) ∩ A .

Especially for A = σ(E), we have

σ (E ∩ A) = σ (E) ∩ A = A ∩ A

which means that E ∩ A is a generator of the trace σ-algebra.

See Klenke [Kle20] for reference.

Definition A.2.4. Mapping-generated σ-algebra
Let (Ω′, A′) be a measurable space and Ω a non-empty space. Let X : Ω → Ω′ be a
mapping. The pre-image

X−1(A′) :=
{︂

X−1(A′)
⃓⃓⃓
A′ ∈ A′

}︂
is the smallest σ-algebra with respect to which X is measurable. We say that σ(X) :=
X−1(A′) is the σ-algebra on Ω that is generated by mapping X.

See Klenke [Kle20] for reference.

Definition A.2.5. Union σ-algebra – Arbitrary mappings
Let Ω be a non-empty set. Let I be an arbitrary index set. For any i ∈ I let (Ωi, Ai) be a
measurable space and let Xi : Ω → Ωi be an arbitrary mapping. Then

σ (Xi, i ∈ I) := σ

(︄⋃︂
i∈I

σ(Xi)
)︄

= σ

(︄⋃︂
i∈I

X−1
i (Ai)

)︄

is called the σ-algebra on Ω that is generated by the family (Xi)i∈I . This is the smallest
σ-algebra with respect to which all Xi are measurable.

See also Klenke [Kle20] for details.

Corollary A.2.6. Union σ-algebra
Let Ω be a non-empty set. Let I be an arbitrary index set. For any i ∈ I let Ai be a
σ-algebra on Ω. Then

⋁︂
i∈I

Ai = σ (Ai, i ∈ I) := σ

(︄⋃︂
i∈I

Ai

)︄

is called the σ-algebra on Ω that is generated by the (Ai)i∈I . If I is finite, we will use the
notation ⋁︂

i∈I

Ai =
n⋁︂

i=1
Ai = A1 ∨ · · · ∨ An .

See Klenke [Kle20]. Use the identity mapping in the previous Definition A.2.5 to see
this. Also note, that the union itself is not generally a σ-algebra, but it an be used as a
generator.
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Definition A.2.7. Conditional expectation
Let X be an integrable random variable on an probability space (Ω, F ,P) and let G be a
σ-algebra.

A random variable Y is called a version of the conditional expectation of X under G, if

(1) Y is G-measurable,

(2) E [1G X] = E [1G Y ] for every G ∈ G. This is also denoted as E [X | G].

The conditional expectation is almost surely unique and different versions may exist. For
a random variable Z we define E [X | Z] = E [X | σ(Z)].

See also Meintrup and Schäffler [MS05] or Klenke [Kle20] for details.

Theorem A.2.8. Semimartingales
An adapted process with càdlàg paths of finite variation on compacts is a semimartingale,
and an adapted process with càdlàg paths of finite variation is a total semimartingale.

See Protter [Pro05] Theorem II.7 for reference.

Theorem A.2.9. Stochastic integral and pathwise Lebesgue-Stieltjes integral
If X is a semimartingale that has paths of finite variation on compacts, then the stochastic
integral H.X is indistinguishable from the Lebesgue-Stieltjes Integral, that is computed
path-by-path or pathwise.

A proof is given in Protter [Pro05] (Theorem II.17). We further glance over the definition
of both semimartingales as well as stochastic integral and refer to the given, or any other,
established source.

Theorem A.2.10. Integration by parts
Let X and Y be two semimartingales. Then XY is also a semimartingale and the following
formula holds:

XY =
∫︂

X− dY +
∫︂

Y− dX + [X, Y ]

where [X, Y ] denotes the bracket process, or the quadratic covariation, of X and Y .

A proof is given in Protter [Pro05].

Theorem A.2.11. Bracket process for a pure jump semimartingale
Let X be a quadratic pure jump semimartingale, i.e. we have

[X, X]t =
∑︂

0≤s≤t

(∆Xs)2

and let Y be any semimartingale. Then we have

[X, Y ]t = X0 Y0 +
∑︂

0≤s≤t

∆Xs ∆Ys .

A proof is given in Protter [Pro05].
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Theorem A.2.12. Conditional inequality of Jensen (Probabilistic setting)
Let ϕ : I → R be a convex function on the interval I and let X : I → R be an integrable
random variable. Further let G be a σ-algebra. If ϕ(X) is an integrable random variable
as well, we have that

ϕ (E [X | G]) ≤ E [ϕ (X) | G]

For reference see or Klenke [Kle20], where a proof is given both for the normal and for the
conditional version, or see Protter [Pro05].

A.3. Analysis

Theorem A.3.1. Fixed point theorem of Banach
Let (X, d) be a non-empty complete metric space with a mapping Φ : X → X. Let Φ be a
strict contraction, i.e. there exists an L < 1, such that for all x, y ∈ X it holds

d (Φ(x), Φ(y)) ≤ L · d (x, y) .

Then Φ has a unique fixed-point x∗ ∈ X and it holds x∗ = Φ (x∗). Further, x∗ can be
obtained by iterated application of Φ via

xn+1 := Φ (xn) , n ≥ 0

for a given starting value x0 and the following error-estimations

d (xn, x∗) ≤ Ln

1 − L
· d (x1, x0) a priori

d (xn+1, x∗) ≤ L

1 − L
· d (xn+1, xn) a posteriori

hold. Note that the order of convergence is 1, i.e. the convergence is given in a linear
manner.

For reference see Werner [Wer18].

Theorem A.3.2. Intermediate value theorem of the real analysis
Let a, b ∈ R with a < b. Further, consider a continuous function f : [a, b] → R. Then for
every s ∈ [f(a), f(b)] (or s ∈ [f(b), f(a)]) there exists an t ∈ [a, b] such that f(t) = s.

Especially if f(a) < 0 < f(b) or f(b) < 0 < f(a), then there exists an t ∈ [a, b] such that
f(t) = 0.

For reference, see Forster [For16] (This particular version is given as a corollary of Theorem
11.1) or Theorem 3.3 in Protter and Morrey [PM91].
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Definition A.3.3. Stieltjes exponential
For any càdlàg function of finite variation f : [0, ∞) → R we define

E (f(t)) := E (f( · ), 0 ≤ s ≤ t)
:= ef(t) ∏︂

0≤s≤t

(1 + ∆f(s)) e−∆f(s) = efc(t) ∏︂
0≤s≤t

(1 + ∆f(s))

as the so-called Stieltjes exponential of f , where f c is the continuous part of f .

Take note, that the definition takes into account the whole path of f from 0 to t, and the
notation abbreviates this.

See Definition 4.1 in Cohen and Elliott [CE12].

Lemma A.3.4. Properties of Stieltjes exponential
In the situation of Definition A.3.3, we have the following properties for all t ≥ 0:

(1) E (f(t)) is a càdlàg function.

(2) E (f(t)) > 0, if ∆f(s) > −1 for every s ∈ [0, t], and the inverse E (f(t))−1 is well-
defined in that case.

(3) It holds, that E (f(t)) = E (f(t−)) (1 + ∆f(t)) and therefore also

∆E (f(t)) = E
(︁
f(t−)

)︁
∆f(t)

and
dE (f(t)) = E

(︁
f(t−)

)︁
df(t) .

(4) If f : [0, ∞] → R is a pure jump function

f(t) =
∑︂

0≤s≤t

∆f(s) (A.1)

with f(0) = 0, then we have

E (f(t)) =
∏︂

0≤s≤t

(1 + ∆f(s))

Proof. Let f : [0, ∞) → R be a càdlàg function of finite variation.

(1) The càdlàg property is directly translated from the càdlàg property of f .

(2) See the proof of Lemma 4.2 in Cohen and Elliott [CE12].

(3) It holds that

E (f(t)) = ef(t) ∏︂
0≤s≤t

(1 + ∆f(s)) e−∆f(s)

= e∆f(t) (1 + ∆f(t)) e−∆f(t) ef(t−) ∏︂
0≤s<t

(1 + ∆f(s)) e−∆f(s)

= (1 + ∆f(t)) E
(︁
f(t−)

)︁
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which directly implies the representation of the jumps as

∆E (f(t)) = E (f(t)) − E
(︁
f(t−)

)︁
= (1 + ∆f(t)) E

(︁
f(t−)

)︁
− E

(︁
f(t−)

)︁
= E

(︁
f(t−)

)︁
∆f(t)

and the differential follows similarly with the help of the first two equations as

dE (f(t)) = E
(︁
f(t−)

)︁
df(t)

which completes the proof.

(4) Clear.

Definition A.3.5. Jump inversions
Let f : [0, ∞) → R be a càdlàg function of finite variation.

(a) If ∆f(s) > −1 for all s, then we define the so called left-jump inversion of f by

f(t) := f(t) −
∑︂

0≤s≤t

(∆f(s))2

1 + ∆f(s) .

(b) If ∆f(s) < 1 for all s, then we define the so called right-jump inversion of f by

f̃(t) := f(t) +
∑︂

0≤s≤t

(∆f(s))2

1 − ∆f(s) .

In the case of a pure jump function f , sing the representation A.1, the left- and right
inversions also simplify to

f(t) = f(t) −
∑︂

0≤s≤t

(∆f(s))2

1 + ∆f(s) =
∑︂

0≤s≤t

(︄
∆f(s) − (∆f(s))2

1 + ∆f(s)

)︄
=

∑︂
0≤s≤t

∆f(s)
1 + ∆f(s)

f̃(t) = f(t) +
∑︂

0≤s≤t

(∆f(s))2

1 − ∆f(s) =
∑︂

0≤s≤t

(︄
∆f(s) + (∆f(s))2

1 − ∆f(s)

)︄
=

∑︂
0≤s≤t

∆f(s)
1 − ∆f(s) .

Compare Definition 4.2 in Cohen and Elliott [CE12].

Lemma A.3.6. Inversions of Stieltjes exponentials
For a function f , that fulfils the necessary conditions from Definition A.3.5, the left and
right jump inversions are finite and satisfy

E(f(t))−1 := E(−f(t))
E(−f(t)) := E(f̃(t))−1

A proof is given in Cohen and Elliott [CE12] (Lemma 4.4).
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Theorem A.3.7. Backward inequality of Grönwall for – Stieltjes version (Cohen, Elliott)
Let u be a process, such that for a non-negative Stieltjes measure f with ∆f(t) < 1, and
α− is an f̃ -integrable process and u− is f -integrable and fulfils

u(t) ≤ α(t) +
∫︂

(t,T ]

u(s−) df(s)

then also
u(t) ≤ α(t) + E(−f(t))

∫︂
(t,T ]

E(f̃(s−)) α(s−) df̃(s) .

In case of a constant function α(t) = α, the above equation simplifies to

u(t) ≤ αE(−f(t))E(−f(T ))−1 .

See Cohen and Elliott [CE12] for a similar formulation of the backward equation.

A proof is performed by Cohen and Elliott for a slightly different version and with some
typographical mistakes, which is why we will give a complete proof for the theorem as
well.

Proof. We have

df̃(t) = df(t) + ∆f(t)
1 − ∆f(t) df(t) = 1

1 − ∆f(t) df(t) =
(︃

1 + ∆f(t)
1 − ∆f(t)

)︃
df(t)

=
(︁
1 + ∆f̃(t)

)︁
df(t) .

(A.2)

Define the auxiliary function

w(t) := E(f̃(t))
∫︂

(t,T ]

u(s−) df(s)

such that the precondition reads

u(t) ≤ α(t) + E(f̃(t))−1 w(t) = α(t) + E(−f(t)) w(t)

and whose differential we calculate by using the product rule for stochastic integrals (as a
consequence of A.2.10 and A.3.4 property (3)), to get

dw(t) = d

⎛⎜⎝E(f̃(t)) ·
∫︂

(t,T ]

u(s−) df(s)

⎞⎟⎠
= E(f̃(t)) d

⎛⎜⎝ ∫︂
(t,T ]

u(s−) df(s)

⎞⎟⎠+

⎛⎜⎝ ∫︂
(t−,T ]

u(s−) df(s)

⎞⎟⎠ dE(f̃(t))

A.3.4= E(f̃(t−))
(︂
1 + ∆f̃(t)

)︂ (︁
−u(t−) df(t)

)︁
+

⎛⎜⎝ ∫︂
[t,T ]

u(s−) df(s)

⎞⎟⎠E(f̃(t−)) df̃(t)
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= −u(t−)E(f̃(t−))
(︂
1 + ∆f̃(t)

)︂
df(t) +

⎛⎜⎝ ∫︂
[t,T ]

u(s−) df(s)

⎞⎟⎠E(f̃(t−)) df̃(t)

A.2=

⎛⎜⎝−u(t−) +
∫︂

[t,T ]

u(s−) df(s)

⎞⎟⎠E(f̃(t−)) df̃(t)

Precond.
≥ −α(t−)E(f̃(t−)) df̃(t) .

As the precondition holds on the whole interval, we can also evaluate the inequality for
the left limit to get

−α(t−) ≤ −u(t−) +
∫︂

[t,T ]

u(s−) df(s)

and which then implies, as E(f̃(t−)) is non-negative, and df̃(t) as well, that by integration
with w(T ) = 0 we have

w(t) ≤
∫︂

(t,T ]

E(f̃(s−)) α(s−) df̃(s) .

By using the connection from u to w, we have

u(t) ≤ α(t) + E(f̃(t)) w(t) ≤ α(t) + E(−f(t))
∫︂

(t,T ]

E(f̃(s−)) α(s−) df̃(s)

yielding the assertion.

Take note, that E(f(t)) is positive, if ∆f(s) > −1 for every s (see also the Lemma A.3.4),
and E(−f(s−)) is always positive, since it holds

∆(−f(s)) > −1 ⇔ ∆f(s) < 1

which means, that the necessary jump condition is always fulfilled, if the precondition of
the theorem is fulfilled.

In case of a constant α(t) = α, we get

u(t) ≤ α

(︄
1 + E(−f(t))

∫︂
(t,T ]

E(f̃(s−)) df(s)
)︄

= α

(︄
1 + E(−f(t))

∫︂
(t,T ]

dE(f̃(s))
)︄

= α
(︂
1 + E(−f(t))

(︂
E(f̃(T )) − E(f̃(t))

)︂)︂
= α

(︂
1 − 1 + E(−f(t))E(f̃(T ))−1

)︂
= αE(−f(t))E(f̃(T )) = α · E(−f(t))E(−f(T ))−1

where we used property (3) of Lemma A.3.4 and E(−f(t)) = E(f̃(t))−1 to rewrite the
integral.
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Corollary A.3.8. Backward inequality of Grönwall – Continuous Version
Let u be a process, such that with f(t) = Kt with K ∈ R>0, and an f̃ -integrable process
α, u is (f -)integrable and fulfils

u(t) ≤ α(t) + K

∫︂
(t,T ]

u(s) ds

then also
u(t) ≤ α(t) + e−Kt K

∫︂
(t,T ]

eKs α(s) ds .

The proof will be formulated, but similar results can be found in the Analysis literature.

Proof. The integrator f , defined as f(t) = Kt, does not have any jumps and therefore
always fulfils the precondition of the previous Theorem A.3.7. We are now going to
give the explicit representations of the involved parts for the special structure of v and
formulate the result thereafter. By using the special structure of f , we directly see, that
the precondition aligns with the structure of Theorem A.3.7, as

u(t) ≤ α(t) +
∫︂

(t,T ]

u(s) df(s) = α(t) + K

∫︂
(t,T ]

u(s) ds

and therefore the assertion of the Theorem also holds.

The integrator f does not have any jumps, and by using Definitions A.3.3 and A.3.5 as
well as Lemma A.3.6, we achieve the following simplifications for the involved expression
as

E(f(t)) = ef(t) · 1 = eKt , E(f(t))−1 = E(−f(t)) = e−Kt

f(t) = f(t) − 0 = f(t) = Kt , f̃(t) = f(t) + 0 = f(t) = Kt .

Therefore, by plugging in these formulas, we arrive at

u(t) ≤ α(t) + E(−f(t))
∫︂

(t,T ]

E(f̃(s−)) α(s) df̃(s) = α(t) + e−Kt
∫︂

(t,T ]

eKs α(s) K ds

what was to show.

Theorem A.3.9. Compensator for the integral of a bounded martingale (Protter)
Let A be an increasing process of integrable variation and let M be a bounded martingale.
Then for Xt and Ct defined as follows

Xt :=
t∫︂

0

Ms dAs

Ct :=
t∫︂

0

Ms− dAs

it holds, that Ct is the compensator of Xt.

For reference see Protter [Pro05], Theorem III.20.

188



Appendix B.

Academic education / Affidavit

Curriculum Vitae
13.10.1997 born in Wilhelmshaven, Germany
07.2006 - 06.2014 High school student

at Europaschule Gymnasium Westerstede
graduated with Abitur (High school diploma)

10.2014 - 11.2017 Undergraduate studies (Bachelor) in mathematics
at Carl von Ossietzky Universität Oldenburg
graduated with B.Sc. Mathematics

10.2016 - 09.2019 Student assistant in teaching
at Carl von Ossietzky Universität Oldenburg
Institute of Mathematics

10.2017 - 10.2019 Graduate studies (Master) in mathematics
at Carl von Ossietzky Universität Oldenburg
graduated with M.Sc. Mathematics

10.2020 - 10.2021 Mentor / Teaching assistant
at the Center für lebenslanges Lernen (C3L),
Carl von Ossietzky Universität Oldenburg

11.2019 - 12.2022 Research and teaching assistant
at Carl von Ossietzky Universität Oldenburg
Institute of Mathematics

11.2019 - 03.2025 Doctoral studies
at Carl von Ossietzky Universität Oldenburg

Table B.1.: Curriculum Vitae

189



Appendix B. Academic education / Affidavit

Eidesstattliche Erklärung

Hiermit versichere ich, Jannes Tjark Rastedt, dass ich die Arbeit mit dem Titel „Solutions
to non-linear Thiele BSDEs in the context of non-monotone information dynamics“ selbst-
ständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe. Außerdem versichere ich, dass ich die allgemeinen Prinzipien wissenschaftlicher
Arbeit und Veröffentlichung, wie sie in den Leitlinien guter wissenschaftlicher Praxis
festgelegt sind, befolgt habe.
Ich versichere weiterhin, dass weder diese Arbeit noch Teile davon an einer anderen
Universität eingereicht wurden.

Westerstede, den 03.03.2025

190


	List of Tables
	List of Figures
	1 Introduction
	1.1 Life insurance
	1.2 Motivation and problem formulation
	1.3 Research status
	1.4 Outline of the thesis

	2 Theoretical background
	2.1 The mathematical basics in life insurance
	2.2 A general model for information dynamics
	2.3 Marked point processes
	2.4 Optional projections
	2.5 Infinitesimal theory for marked point processes
	2.6 Notational remarks for classic insurance contract
	2.7 Solving technique for non-linear BSDEs

	3 Life insurance with reserve-dependent payments
	3.1 The reserve-dependent payment process
	3.1.1 Assumptions and technical details of the discounting
	3.1.2 Construction of the payment process

	3.2 Existence and uniqueness results for the payment process
	3.2.1 Automorphism and recursion
	3.2.2 Theorem – Existence and uniqueness

	3.3 Extension of the dependency
	3.3.1 Motivation for the extended dependency
	3.3.2 Modelling of the extended dependency structure
	3.3.3 Construction of the payment process
	3.3.4 Theorem – Existence and uniqueness II


	4 Actuarial calculations in life insurance
	4.1 The prospective reserve
	4.2 Thieles BSDE
	4.2.1 Existence and uniqueness for the prospective reserve

	4.3 Extension to retrospective reserves
	4.3.1 Definition of the retrospective reserve
	4.3.2 Existence and uniqueness results for the payment process

	4.4 Thieles SDE
	4.5 Calculation of premiums
	4.5.1 A one-off premium payment at contract start
	4.5.2 General premium payments
	4.5.3 Existence and uniqueness of the premium level


	5 Examples and applications
	5.1 Life policy with a guaranteed minimum death payment
	5.2 Guaranteed life endowment with a withdrawal option
	5.3 A unisex tariff in life insurance with lapse
	5.4 Other examples
	5.4.1 German private health insurance
	5.4.2 Life insurance with health data
	5.4.3 Life policies with smoking behaviour
	5.4.4 Partial lapse and contract modifications


	6 Conclusion and further research opportunities
	Bibliography
	A Mathematical tools
	A.1 Stochastic analysis
	A.2 Sigma-algebras
	A.3 Analysis

	B Academic education / Affidavit

