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ABSTRACT 

The human auditory system excels at disentangling complex auditory scenes with 

overlapping audio signals. A prime example are musical mixtures, where various 

instruments and singing voices create a rich acoustic scene. Within these mixtures, 

some sounds are perceived as more prominent, with the singing voice being especially 

salient. Understanding what makes certain sounds attract auditory attention is crucial for 

comprehending the human auditory system in complex scenes. This dissertation 

investigates the origins of salience in musical mixtures from a psychoacoustical 

perspective through four studies comprising ten experiments. 

The first study explores the detection of individual target instruments and vocals in 2-

second multi-track mixtures of popular music. Results reveal that prior information about 

the target sound enhances detection accuracy, especially for bass instruments, which 

are otherwise obscured by other elements in the mixture. In contrast, vocals show no 

effect of prior information and are detected with the highest accuracies, implying a 

unique ‘vocal salience.’ Aligning target instruments with vocals in sound level and 

spectral filtering enhances their overall prominence but does not counteract vocal 

salience.  

The second study continues to analyze the origins of vocal salience using the same 

detection paradigm. The focus is set on investigating the influence of the main melody, 

phonetic cues, and frequency micro-modulations (FMM) in singing voices. Findings 

indicate that having instruments play a song’s main melody enhances their prominence 

in the mixture, but neither main melody nor phonetic cues are sufficient to enable vocal 

salience. However, FMM emerges as a significant factor, correlating with enhanced 

detection and salience of vocals. FMM adds acoustic cues about pitch continuity, 

irregularities, and emotional prosody, facilitating prioritized processing. 

The third study examines the recognition of stationary short vocal and instrumental 

tones presented either in isolation or with a spatially separated piano interferer. Contrary 

to expectations, the results show no general effect of enhanced vocal sound recognition 

and no effect of FMM on recognition. The lack of FMM effect likely stems from the short 

stimuli duration and the use of stationary tones. However, most vocal sounds 

demonstrate robustness to interference, suggesting a degree of intrinsic salience, while 

vowel /u/ sounds lack this robustness. This implies that being a vocal sound or a singing 

voice does not inherently produce salience. An acoustic analysis indicates that multiple 

acoustic features such as spectral similarities interact to enable vocal salience. 

The final study investigates whether the auditory system has a perceptual bias towards 

specific frequency regions that may explain the bass’s lack of attention attraction. Using 

pseudo-randomized pure tone melodies in spectrally separated frequency bands, the 

results reveal enhanced salience for the lowest and highest frequency bands, 

suggesting that the auditory system focuses on the edges of the frequency spectrum 
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within an auditory scene. This implies that the bass's lack of salience results from 

complex spectro-temporal in naturalistic instrument sounds.  

Overall, the studies highlight the significant interplay between bottom-up and top-down 

processes in complex auditory scenes. Prior information helps search rich acoustic 

scenes, emphasizing top-down processing in auditory scene analysis. The ability to hear 

non-cued instruments in musical mixtures implies some degree of holistic perception, 

with information about both local (the focus of attention) and global stream organizations 

(the whole mixture). Findings of salience at spectral edge frequencies suggest that 

inferior detection of bass instruments results from musical structures with distinct lead 

and accompaniment roles, as well as the interplay of spectral patterns produced by 

complex tones. Vocal salience suggests that inherent acoustic properties of the human 

singing voice make it particularly prominent in auditory scenes, with FMM contributing 

significantly to this salience by adding acoustic cues for emotional prosody processing. 

Additionally, the lack of some vocal sounds to generate such salience combined with the 

persistence of vocal salience across various conditions, and the enhancement of 

instrument prominence when vocal attributes are transferred indicate that multiple 

acoustic factors, beyond just being vocal sounds, contribute to enable salience in 

musical scenes.  
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ZUSAMMENFASSUNG 

Das menschliche auditive System zeichnet sich durch die Fähigkeit aus, komplexe 

auditiven Szenen mit überlappenden Audiosignalen zu entschlüsseln und einzelne 

Klänge zu fokussieren. Ein Paradebeispiel dafür sind musikalische Mixturen, in denen 

verschiedene Instrumente und Gesangsstimmen eine reiche Klanglandschaft schaffen. 

Innerhalb dieser Mischungen werden einige Klänge als prominenter wahrgenommen, 

wobei die Gesangsstimme besonders hervorsticht. Zu verstehen, warum bestimmte 

Klänge die auditive Aufmerksamkeit auf sich ziehen, ist entscheidend für das 

Verständnis des menschlichen auditiven Systems in komplexen Szenen. Diese 

Dissertation untersucht die Ursprünge der Salienz in musikalischen Mixturen aus 

psychoakustischer Perspektive durch vier Studien mit insgesamt zehn Experimenten. 

Die erste Studie untersucht die Detektion (Hörbarkeit) einzelner Zielinstrumente und 

Gesangsstimmen in 2-sekündigen Mixturen populärer Musik. Die Ergebnisse zeigen, 

dass vorherige Informationen über das Zielgeräusch die Detektionsgenauigkeit 

verbessern. Dies zeigt sich insbesondere bei Bassinstrumenten, die sonst von anderen 

Elementen der Mixtur überdeckt werden. Im Gegensatz dazu zeigen Gesangsstimmen 

keinen Effekt durch vorherige Informationen und werden mit den höchsten 

Genauigkeiten erkannt, was auf eine einzigartige „vokale Salienz“ hinweist. Das 

Angleichen der Zielinstrumente an die Gesangsstimmen in Bezug auf Schallpegel und 

spektrale Filterung erhöht deren Gesamtprominenz, hebt jedoch die vokale Salienz nicht 

auf. 

Die zweite Studie setzt die Analyse der Ursprünge der vokalen Salienz mit demselben 

Detektionsparadigma fort. Der Fokus liegt auf der Untersuchung des Einflusses der 

Hauptmelodie, phonologischer Attribute und Frequenzmikromodulation (FMM) in 

Gesangsstimmen. Die Ergebnisse zeigen, dass das Übertragen der Hauptmelodie von 

der Gesangsstimme auf Instrumente, die Prominenz der Instrumente in der Mixtur 

erhöht. Weiter zeigen die Ergebnisse, dass weder die Übertragung der Hauptmelodie 

noch phonologische Attribute ausreichen, um vokale Salienz zu ermöglichen. FMM 

hingegen erweist sich als bedeutender Faktor, der mit einer verbesserten Erkennung 

und erhöhter Salienz korreliert. Diese Modulationen fügen akustische Hinweise auf 

Tonkontinuität und emotionale Prosodie hinzu, was eine priorisierte Verarbeitung 

begünstigt. 

Die dritte Studie untersucht die Erkennung stationärer, kurzer Vokal-, Gesangs- und 

Instrumentaltöne, die entweder isoliert oder mit einem räumlich getrennten Störsignal 

(einem Klavierakkord) präsentiert werden. Entgegen den Erwartungen zeigen die 

Ergebnisse keine allgemein verbesserte Erkennung von Vokalklängen und keinen Effekt 

von FMM. Der fehlende FMM-Effekt kann wahrscheinlich auf die kurze Stimulusdauer 

und die Verwendung stationärer Töne zurückgeführt werden. Die meisten Vokal- und 

Gesangsklänge zeigen jedoch eine Robustheit gegenüber Störungen, was auf ein 

gewisses Maß an intrinsischer Salienz hindeutet. Hierbei stechen /u/ Klängen heraus, 
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welche diese Robustheit nicht aufweisen. Dies impliziert, dass die Eigenschaft eine 

menschliche Gesangstimme zu sein allein keine inhärente Salienz erzeugt. Eine 

akustische Analyse legt nahe, dass mehrere akustische Merkmale wie spektrale 

Ähnlichkeiten zwischen präsentierten Signalen interagieren, um vokalen Salienz zu 

ermöglichen.  

Die letzte Studie untersucht in der Wiederverwendung des Detektionsparadigmas, ob 

das auditive System eine Wahrnehmungspräferenz für bestimmte Frequenzbereiche 

hat, welche die fehlende Aufmerksamkeit für Bassinstrumente erklären könnte. Hierzu 

werden Mixturen aus pseudo-randomisierte Melodien von Reintönen in spektral 

getrennten Frequenzbändern präsentiert. Die Ergebnisse zeigen eine erhöhte Salienz 

für die tiefsten und höchsten Frequenzmelodien, was darauf hindeutet, dass das 

auditive System die Ränder des Frequenzspektrums innerhalb einer auditiven Szene 

fokussiert. Dies impliziert, dass die fehlende Salienz der Bassinstrumente auf komplexe 

spektral-temporale Muster zurückzuführen ist, die durch natürliche Instrumentenklänge 

erzeugt werden. 

Zusammengefasst heben die Studien das bedeutende Zusammenspiel von Bottom-up- 

und Top-down-Prozessen in komplexen auditiven Szenen hervor. Vorinformationen 

helfen, reichhaltige akustische Szenen zu durchsuchen, was die Bedeutung der Top-

down-Verarbeitung in der auditiven Szenenanalyse unterstreicht. Die Fähigkeit, 

Instrumente in musikalischen Mixturen zu hören, ohne dass mit Vorinformationen 

auditive Aufmerksamkeit auf diese gelenkt wurde, impliziert eine gewisse ganzheitliche 

Wahrnehmung mit Informationen über lokale (der Fokus der Aufmerksamkeit) und 

globale Organisationen (die gesamte Mixtur). Die Ergebnisse zur Salienz der spektralen 

Randfrequenzen deuten darauf hin, dass die geringere Erkennung von 

Bassinstrumenten auf das Zusammenspiel von Tonkomplexen und den daraus 

resultierenden spektralen Mustern zurückzuführen ist. Die vokale Salienz zeigt, dass die 

menschliche Gesangsstimme inhärente akustische Eigenschaften besitzen kann, die sie 

in auditiven Szenen besonders hervorhebt. Die FMM im natürlichen Gesang tragen 

erheblich zu dieser Salienz bei, indem sie akustische Hinweise zur Verarbeitung 

emotionaler Prosodie hinzufügen und so deren Trennung in musikalischen Mixturen 

erleichtern. Zudem zeigt die fehlende Salienz bei einigen Vokalklängen, dass eine 

menschliche Vokalisation zu sein nicht ausreicht, um diese Salienz automatisch zu 

erzeugen. Kombiniert mit der gesteigerten Prominenz von Instrumenten bei Übertragung 

von Eigenschaften der Gesangsstimme impliziert dies, dass mehrere akustische 

Faktoren zur vokalen Salienz beitragen.  
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1. INTRODUCTION 

Allow yourself a moment and imagine listening to one of your favorite pieces of music –  

and for the purpose of the mental journey, a piece of popular music with a singing voice. 

Immerse yourself in this musical scene, focusing on your mental representation. You 

may conjure a rich arrangement of several instruments playing together, creating a 

mixture of sounds. Within this mixture it is likely that some sounds appear more 

prominent in the foreground of the musical scene, while others seem to fade into the 

background of this perceptual hierarchy. It is likely that the first sound that comes to your 

mind is the singing voice and its melody, while other instruments play an accompanying 

role. Yet, amidst this musical mixture, have you ever pondered about the acoustic 

underpinnings that shape such hierarchies? This research seeks to explore precisely 

that question. It specifically aims to dissect the role of lead vocals and aims to uncover 

the acoustic foundations that contribute to their ability to attract the listeners attention in 

musical mixtures – a phenomenon labeled in this dissertation as ’vocal salience’. 

1.1 Auditory scene analysis 

To gain a deeper understanding of the auditory mechanisms at play, it is essential to 

examine the intricate interplay of sounds within a given auditory scene. One renowned 

example frequently discussed in the literature is the ‘cocktail party problem’ ( Cherry & 

Taylor, 1954). As the name implies, this scenario illustrates the challenges faced by the 

auditory system when multiple sound sources coexist in an environment where 

numerous individuals are conversing simultaneously, while a listener endeavors to focus 

on a specific speaker. Analogous to the music example in the introduction, the sounds in 

such scenarios, including speech signals and other auditory inputs, often overlap 

spectrally and temporally, resulting in a perplexing mixture of auditory stimuli. 

Despite this complexity, the human auditory system demonstrates remarkable 

proficiency from infancy in disentangling such auditory mixtures into distinct mental 

representations of auditory streams, enabling individuals to selectively attend to specific 

sounds as they unfold simultaneously (Demany, 1982; McAdams & Bertoncini, 1997; 

Winkler et al., 2003). A well-established concept that aims to explain the mechanisms 

enabling such stream formation is auditory scene analysis (ASA; Bregman, 1990).  

Bregman described this concept as follows:  

“Auditory scene analysis (ASA) is the process by which the auditory system 

separates the individual sounds in natural-world situations, in which these sounds 

are usually interleaved and overlapped in time and their components interleaved 

and overlapped in frequency.” (Bregman & McAdams, 1994, p. 2). 
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At its core, ASA operates in accordance with Gestalt psychology principles, whereby 

sensory elements are organized into coherent perceptual units. Applied to ASA, these 

principles entail that the auditory system extracts acoustic characteristics, referred to as 

cues, from the heard audio to form distinct perceptual auditory streams. Temporal and 

spectral acoustical cues are partitioned into subsets that may correspond to different 

sounds sources. Sounds are segregated or integrated based on distinctive or common 

cues. Matching or closely aligned cues are more likely to be integrated together than 

separated into distinct streams.  

Such cues include synchrony of onsets and onsets (Bregman & Pinker, 1978), 

fundamental frequency (Bregman et al., 1990), spatial location (Darwin & Hukin, 1999), 

and amplitude modulation (Bregman et al., 1985). Regarding synchrony, the timing of 

onset and offsets of sounds foster an integration into a perceptual stream; for example, 

in a metal band, when two guitarists strike their strings simultaneously in a riff, temporal 

proximity of onsets and offsets influences whether the sounds blend into the perception 

of a single unified sound stream or whether they are perceived as two separated 

streams. The fundamental frequency of a sound contributes to stream formation; in a 

choir, the difference in fundamental frequency between the soprano, alto, tenor, and 

bass voices allows listeners to perceive each vocal range as a separate auditory stream, 

even when they sing simultaneously. Spatial location cues help listeners identify where 

sounds are coming from and group them accordingly; in stereo recordings of pop music, 

panning techniques simulate a spatial arrangement of instruments and voices so that 

they appear to come from various directions, thus facilitating the segregation of auditory 

streams. Amplitude modulation, or changes in loudness over time, can indicate whether 

sounds belong together; in classical music, a crescendo performed by the string section 

can be perceived as a single, evolving auditory stream, distinct from another string 

section, playing a steady unmodulated sustained note.  

Such acoustical cues are both evaluated in simultaneously occurring sounds in different 

spectral locations (Micheyl & Oxenham, 2010), as well as sequentially by change over 

time, allowing listeners to continuously update their perceptual representations of the 

auditory scene as new information becomes available (Moore & Gockel, 2012). 

Sequential processing enables an additional grouping mechanism, i.e. the principle of 

common fate, in which cues that change in a coordinated manner tend to be perceived 

as belonging to the same source; in a stereo recording a sound that gradually moves 

from one side to the other is more likely to be perceived as the same sound source as a 

sound that suddenly shifts sides. Time also plays a decisive role, as continuous 

exposure to a sound increases the potential for stream segregation (Bregman, 1978). 

However, a single sudden change in a sounds acoustic cue can reset this process, as 

the change is interpreted as a new sound (Haywood & Roberts, 2010). 

This grouping of auditory elements directly influences various aspects of perception, 

including the perceived number of sounds that are present, location, loudness, pitch, 

timbre, and their relation to another. Even subtle deviations in these cues can facilitate 

the segregation of sound sources. For instance, in a musical scene where multiple 
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instruments align in onsets and pitch cues with no deviations, distinct instruments can be 

discerned by timbral cues alone despite playing in perfect unison (Cusack & Roberts, 

2000; Kalinli & Narayanan, 2009). However, if all instruments in this example were 

replaced by an orchestration only using multiples of the same instrument, the timbral 

blend would likely lead to an auditory fusion, where a segregation of individual streams 

fail, even though individual instruments contribute to form this fusion (Siedenburg, Saitis, 

& McAdams, 2019, pp. 217-218) 

Naturally, acoustic scenes often comprise a mixture of complex acoustic sources, 

making accurate organization challenging. This can result in the inability to separate 

individual speakers or a single instrument as such. An example that illustrates this 

complexity is a study conducted by Huron (1989) in which participants were asked to 

identify the number of melodies in a polyphonic music mix with up to five melodies 

played simultaneously. The results showed that after three melodies, the error rate 

increased significantly, leading to frequent confusion. With a touch of sarcasm, Huron 

concluded that auditory perception effectively counts “one, two, three, many” (Huron, 

1989, p.19). Additionally, stream formation is not impervious to misinterpretations, 

altering the perceived auditory scene. One such phenomenon is the emergence of 

auditory illusions like implied polyphony, wherein a single instrument is perceived as 

multiple instruments or voices by playing an interleaved melody that abruptly shifts 

between low and high notes (Bregman & Campbell, 1971). This violates the principle of 

common fate as the note distances surpass a pitch threshold for grouping together. This 

phenomenon is evident in the works of composers like Bach, where intricate musical 

compositions evoke the perceptual experience of multiple independent voices despite 

originating from a single instrument (Davis, 2006; for example “Fugue from Violin Sonata 

No. 3 in C Major” or “Courante from Violin Partita No. 1 in B Minor”). 

Auditory stream formation involves interwoven bottom-up and top-down processes in the 

perceptual organization (Bregman, 1990; Ciocca, 2008; Shamma & Micheyl, 2010). 

Bottom-up processes, often referred to as primitive or stimulus-driven processes, entail 

the extraction of sensory information directly from the acoustic input, analyzing the 

physical properties of sound signals to extract features such as pitch, timbre, and spatial 

location. In contrast, top-down processes, also known as knowledge-based processes, 

involve the use of prior knowledge, expectations, and cognitive strategies to guide 

perceptual organization. Operating in a goal-directed manner, these processes utilize 

contextual information and knowledge to interpret and make sense of auditory scenes 

(Snyder et al., 2012). Both bottom-up and top-down processes are not mutually 

exclusive and influence each other.  

1.2 Musical scene analysis 

ASA is widely studied for speech signals and naturalistic speaker scenarios. The 

investigation of musical scenes is more limited and often only utilizes elementary 

auditory tasks (Alain & Bernstein, 2015), whereas more ecological approaches, using 
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realistic musical scenes and audio material, are less common. While both musical and 

speaker scenarios can be used to study ASA, they also present some distinct 

challenges. In the realm of speech, primary challenges lie in the variability of speech 

sounds, influenced by factors such as speaker characteristics, speaking rate, and 

emotional expression. Conversely, music signals encompass a broad range of different 

timbres including the singing voice and simultaneous melodies that may overlap in time 

and can be scattered throughout the entire auditory spectral range. Furthermore, the 

perceptual grouping and segregation of musical sounds are influenced by factors such 

as tonal relationships, rhythmic patterns, and timbral similarities, adding further 

complexity to the analysis process. However, these relationships are also used within 

musical mixtures to help structure the auditory scene, providing acoustic cues and thus 

fostering its transparency (Huron, 2001). Examples include having a global meter that 

synchronizes instruments within the mixture (Keller & Burnham, 2005) and distinct 

timbres (Iverson, 1995) that play notes in separate spectral regions (Jones et al., 1995). 

The structured organization of a musical scene contrasts with a cocktail party scenario 

with multiple speakers, where incoherent and varying speech rates and background 

noises may overlap independently. To reflect the unique challenges faced in the 

perceptual organization of musical scenes, Bregman coined the term "Musical Scene 

Analysis"  (Bregman, 1990).  

1.3 Auditory attention 

As there are limits to how much information we can process at once in an auditory scene 

(Saults & Cowan, 2007; Cowan et al., 2013; Molloy et al., 2015), auditory stream 

formation can be significantly influenced by auditory attention (Elhilali et al., 2009). 

Attention is a multifaceted construct with varying definitions across different fields 

(Hommel et al., 2019). A definition by Huang and Elhilali is used in this dissertation, who 

described the term as follows: 

“Attention is at the center of any study of sensory information processing in the 

brain. It describes mechanisms by which the brain focuses both sensory and 

cognitive resources on important elements in the stimulus. Intuitively, the brain has 

to sort through the flood of sensory information impinging on its senses at every 

instance and put the spotlight on a fraction of this information that is relevant to a 

behavioral goal.” (N. Huang & Elhilali, 2017) 

Following this definition, attention enables individuals to selectively focus on specific 

aspects of the auditory scene while suppressing others. This process involves the 

allocation of cognitive resources to enhance the processing of certain sounds, making 

them more prominent in conscious awareness. Attention is both based on top-down and 

bottom-up processes. Studies investigating ASA under the aspects of auditory attention 

demonstrated that unattended streams can still be tracked in auditory memory, and thus 

that stream segregation unfolds in a pre-attentive process that is governed by ASA 

principles (Sussman, Ritter, & Vaughan, 1999; Alain & Arnott, 2000; Sussman, 2005). 
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As such, distinguishable acoustical cues are needed to successfully form auditory 

streams. When successful, background streams are still monitored, with segregation 

and integration processes acting on unattended sounds as well, even if they are 

irrelevant to the performed task (Sussman & Winkler, 2001). As such, this implies that a 

kind of passive or automatic sound organization plays a role in auditory scene analysis. 

Additionally, attention can be directed to highlight and process events within one stream 

(Sussman, Ritter, & Vaughan, 1999; Sussman, 2006; Fritz et al., 2007). For example, 

listeners can selectively attend and focus on a specific instrument within a musical 

scene, allowing them to perceive a more detailed representation of the sound. This 

process of attentive tracking helps listeners parse complex auditory scenes and extract 

meaningful information about individual sound sources. As the scene unfolds over time, 

the tracking demonstrates to become more effective in focusing on a sound. In 

conjunction, the more difficult it is to unravel the scene, the more time it takes (Best et 

al., 2008). Still, tracking appears to be quite robust, even in challenging scenes where 

similar acoustic cues are shared between sounds (Woods & McDermott, 2015). Prior 

knowledge of a specific attribute, such as its intensity, spatial and spectral position, can 

be used to cast a spotlight onto the scene and guide attention in a goal-directed manner 

(Luce & Green, 1978; Mondor & Bregman, 1994; Mondor & Zatorre, 1995; Bey & 

McAdams, 2002). Furthermore, selectively attending to features in an auditory scene 

can foster segregation to such an extent, that streams that are not automatically 

organized into segregated streams become distinguishable, thereby modulating stream 

formation processes (Botte et al., 1997; Eramudugolla et al., 2005; Sussman & 

Steinschneider, 2009). However, as processing resources are limited, selectively guiding 

attention comes at a cost: the resources available for the formation of background 

streams are curtailed (Sussman et al., 2005; Pannese et al., 2015). 

1.4 Auditory salience 

In an auditory scene, certain acoustic features particularly provoke auditory attention, 

standing out amidst the variety of features and becoming a focal point of auditory 

attention. This heightened prominence is commonly referred to as salience. Kothinti and 

Elhilali (2023 ) investigated auditory salience in various audio stimuli ranging from 

environmental to musical scenes, describing it as follows:  

“Auditory salience is a fundamental property of a sound that allows it to grab a 

listener's attention regardless of their attentional state or behavioral goals.” 

(Kothinti & Elhilali, 2023, p. 1).  

This definition highlights two important aspects of salience: firstly, its ability to draw 

attention to a specific scene within a scene, and secondly, its capability to involuntarily 

distract listeners from other sounds towards the salient sound. Taken together, these 

aspects demonstrate that salience plays a crucial role in the perceptual organization and 

shapes the interpretation of complex auditory stimuli. Salience can arise from both 

bottom-up and top-down processes. Bottom-up salience can occur through disturbance 
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of acoustic regularities within an auditory scene, such as a sudden unexpected loud 

siren sound. Conversely, a prime example of top-down salience is the heightened 

salience emerging from hearing one’s own name (Moray, 1959). This phenomenon can 

involuntarily capture a listener’s attention, overriding attentional goals such as 

participating in a conversation, even if the name is mentioned by an uninvolved speaker 

or mistakenly heard. 

Compared to the modality of vision, the understanding of what makes a sound 

particularly salient in a complex acoustical scene is still limited (N. Huang & Elhilali, 

2017) , especially in the context of musical scenes. However, computational models of 

auditory salience that predict neural responses and compare these predictions with brain 

responses have highlighted that the cues contributing to a sound’s salience are 

interconnected, multidimensional, and may change over time as the scene unfolds 

(Kaya & Elhilali, 2014). Key bottom-up candidates identified include cues such as 

intensity, frequency, as well as loudness, pitch, and timbre (Kaya & Elhilali, 2017; Kaya 

et al., 2020). Context also plays an important role in the perception of salience, as the 

acoustic context preceding a sound and predictions of the acoustical scene can alter its 

ability to attract attention. For example, the sudden sound of a cat meowing in a 

scenario where cat sounds are expected, such as while petting a cat, is likely to attract 

less attention than hearing the same sound in a situation where such sounds do not 

occur, e.g. during a conversation (Liang et al., 2022). Additionally, the control of 

attention through focusing on sounds of interest have demonstrated that top-down cues 

increase the contrast between the target sound and background sounds (Alain & 

Woods, 1997; Petkov et al., 2004; Shamma & Fritz, 2014).  

Specific sources of salience have been explored in the compositional structure of 

musical mixtures with multiple melodies playing at the same time, supporting the 

observation that music is often composed in such a way that a separation of sounds was 

facilitated (Huron, 2001). As the musical scene evolves over time, novel melodic lines 

are observed to draw attention, while repeating lines tend to perceptually decrease in 

salience (Taher et al., 2016). Similarly, when multiple rhythmic motifs unfold 

simultaneously, the more irregular rhythms capture listeners’ attention more effectively 

(Jones et al., 1981), especially when attention is directed towards specific motifs 

beforehand (Devergie et al., 2010). The employment of these principles can be found 

across various musical genres. For instance, in progressive house, tracks are often 

structured in a way that starts with a single repetitive melodic line while new melodic 

lines and rhythmic patterns are added progressively over time. This creates novel 

listening experiences and potentially reflects the pleasure derived from parsing new 

elements within musical mixtures. 

The spectral position of melodies also contributes to their salience, affecting pitch and 

rhythm perception in contrasting ways. On the one hand, in polyphonic music, when two 

independent melodies play simultaneously, the melody with the highest pitch trajectory 

is reported to attract more attention than the lower melody – a phenomenon known as 

the high voice superiority effect (Fujioka et al., 2005). This effect is assumed to arise 
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from perceptual suppression of harmonic structures, where harmonic parts of the lower 

melody are suppressed by those of the higher melody (Trainor et al., 2014). Supporting 

this assumption, the effect is known to be present in infants (Marie & Trainor, 2013), 

indicating that the effect is based on fundamental principles of auditory perception rather 

than by learned musical schemata that prioritize higher voices. This is further highlighted 

by the observation that the effect occurs in musicians regardless of the instrument they 

trained on. However, the effect is more pronounced in musicians who play instruments 

in the soprano range compared to those who play in the bass range (Marie et al., 2012). 

On the other hand, the onsets in the lower pitch trajectory provide particularly salient 

cues for beat or rhythmic perception (Hove et al., 2014). Taken together, these two 

effects demonstrate that spectral and temporal perception is shaped by sometimes 

opposing cues. These effects align with the musical principle that the lead melody is 

usually played by higher-pitched instruments, which particularly attract attention towards 

the melody, while the rhythmic foundation is typically played by bass instruments. 

Another cue that contributes to salience in musical scenes is timbre. Timbre is a 

complex auditory cue often described as a multidimensional attribute that enables the 

discrimination of sound sources, even when they match in other perceptual cues such 

as loudness and pitch (Siedenburg & McAdams, 2017a). McAdams referred to timbre as 

a “structuring force” (McAdams, 2019), as timbre contains important spectral and 

temporal cues for stream segregation (Cusack & Roberts, 2000; Kalinli & Narayanan, 

2009). However, studies regarding the salience of timbre are mostly focused on 

environmental sounds (N. Huang & Elhilali, 2017; Kaya et al., 2020). One study that 

stands out with its focus on timbral salience in musical mixture was by Chon & 

McAdams (Chon & McAdams, 2012) in which salience of timbre was investigated under 

the hypothesis that each instrument’s timbre has a unique degree of salience. They 

suggested that this instrument-dependent salience varies with context: for example, the 

salience of a French horn might be less pronounced in a full orchestral setting 

composed of different instrument groups such as brass, strings, percussions and 

woodwinds. In contrast the French horn is significantly more prominent in a smaller 

brass ensemble, where the contrast within the more limited pool of different timbre is 

greater. In their experiment, a salience map was created using 15 orchestral 

instruments. Instruments were clustered based on their ability to attract listeners’ 

attention by tapping to a beat created by the instrument. However, only modest 

correlations were found between salience measures and subjective judgments of the 

instruments' ability to blend with other simultaneously played instruments. Additionally, 

no significant salience effects emerged when timbres were played in a polyphonic 

musical piece composed of two to three simultaneous melodies. They concluded that 

the salience of the highest voice likely overshadowed the timbre effect. Although a 

consistent effect of timbre salience was not found within the study, other auditory 

experiments have demonstrated that a non-instrumental timbre proved to be particularly 

salient among musical signals. This will be addressed in the following chapter. 



 

8 

 

1.5 Vocal salience 

Among the diverse array of timbres, the human voice emerges as a particularly 

prominent candidate for enhanced auditory salience. It has long been assumed that 

vowel sounds are perceived in preference to other sounds even in infancy (Pisoni, 1979; 

Vouloumanos & Werker, 2007; Krentz & Corina, 2008; Gervain & Geffen, 2019). 

Neurophysiological experiments have demonstrated that isolated vocal sounds elicit 

enhanced cortical “voice-specific” responses when presented alongside non-vocal 

environmental sounds (Belin et al., 2000; Belin et al., 2002), and other musical 

instrument sounds (Levy et al., 2001; Gunji et al., 2003). Specific neural populations 

have been identified that respond selectively to music featuring singing voices, but not to 

instrumental music mixtures (S. V. Norman-Haignere et al., 2022). The recognition of 

vocal sounds also showed unique advantages over other musical sounds; isolated vocal 

sounds consistently yield faster reaction times and higher accuracies compared to 

isolated instrumental sounds (Agus et al., 2012). Subsequent experiments have further 

highlighted the recognition advantages of vocal sounds, showing that they are 

identifiable from shorter sound snippets compared to other musical instruments (Suied 

et al., 2014; Isnard et al., 2019). Comparative analyses of vocal and instrumental 

melodies have demonstrated that vocal melodies are more accurately recognized than 

instrumental melodies (Weiss et al., 2012), even when sung without lyrics (Weiss et al., 

2021). 

1.6 Musical sophistication 

The interplay of musical sophistication and associations of how it influences the 

perception of musical scenes and auditory salience deserves to be mentioned. Several 

studies have reported that musical sophistication and training are positively associated 

with enhanced performance in various aspects of scene analysis, such as pitch, rhythm, 

and timbre discrimination (Micheyl et al., 2006; Kannyo & DeLong, 2011; S. M. K. 

Madsen et al., 2017). Additionally, higher levels of musical sophistication are associated 

with better performance in detecting melodies and instruments within mixtures 

(Marozeau et al., 2010; Slater & Marozeau, 2016; Siedenburg et al., 2020; Hake et al., 

2023). Furthermore, studies suggest an association between musical sophistication and 

auditory salience as musicians exhibit enhanced cortical responses when hearing 

isolated sounds produced by their trained instruments (Pantev et al., 2001; Shahin, 

Roberts, & Trainor, 2008; Strait et al., 2012). However, whether these enhanced 

responses translate into heightened salience when those instruments are part of a 

musical mixture remains unclear. Contrary, other studies have found no significant group 

differences between instrumentalists and singers, nor timbre-specific salience (Kannyo 

& DeLong, 2011; Martins et al., 2022) or differences in timbre discrimination between 

musicians and non-musicians (Allen & Oxenham, 2014; Siedenburg & McAdams, 

2017b; Bigoni F. & Dahl S., 2018). 
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It is important to note that the relationship between auditory perception and musical 

sophistication is a topic of ongoing debate with contradictory conclusions. One key 

aspect of this discussion is the nature vs. nurture question. On the one hand, some 

researchers argue that predispositions in the brain determine auditory abilities and the 

extent to which musical training can enhance those abilities (Drayna et al., 2001; Mosing 

et al., 2014; Zuk et al., 2023; Schneider et al., 2023). On the other hand, others argue 

that extensive musical training is the driving factor shaping the brain's plasticity, enabling 

enhanced auditory abilities (Zatorre & McGill, 2005; Bidelman et al., 2011; Herholz & 

Zatorre, 2012; Bayanova et al., 2024). Additionally, the transfer of beneficial effects to 

other auditory domains like speech recognition and even to realms outside of auditory 

perception is highly discussed (for a review, see Benz et al., 2015; Schellenberg & Lima, 

2024). Some studies demonstrate far-transfer effects for speech perception (Dubinsky et 

al., 2019; Puschmann et al., 2019; Zendel et al., 2019) and general cognitive abilities 

(Talamini et al., 2017; Sala & Gobet, 2020; Rodriguez-Gomez & Talero-Gutiérrez, 2022), 

while others show a lack of such effects (Ruggles et al., 2014; S. M. K. Madsen et al., 

2017; S. M. K. Madsen et al., 2019). 

1.7 Aims & relevance of this dissertation 

To better understand which and why sounds stand out in an auditory scene is the 

primary goal of this dissertation. Understanding the acoustic underpinnings that 

contribute to salience within musical scenes is crucial for several reasons beyond the 

realm of musical scene analysis. 

Firstly, dissecting the mechanisms of vocal salience can provide deeper insights into the 

fundamental principles of auditory perception. By examining how the human auditory 

system prioritizes certain sounds over others, we can better understand the cognitive 

and neural processes involved in ASA even outside of musical scenes. This knowledge 

not only enriches the field of psychoacoustics but also enhances our understanding of 

general auditory processing, including how we navigate natural auditory environments. 

Secondly, the study of vocal salience has practical implications for various applied 

domains. In the field of music production and sound engineering, insights into how 

tracks are highlighted can be incorporated into mixing and mastering techniques, 

ultimately improving the listening experience. For instance, understanding the acoustic 

features that enhance vocal prominence can guide sound engineers in emphasizing 

these elements during the production process, ensuring that vocals stand out clearly in a 

mix. 

Furthermore, this research has implications for the development of auditory prostheses 

and hearing aids. By identifying the key acoustic features that contribute to vocal 

salience, we can improve the design of these devices to better support users in isolating 

and focusing on speech in noisy environments. This is particularly relevant for 

individuals with hearing impairments, who often struggle to distinguish speech from 

background noise. 
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Lastly, the findings of this study can have broader implications for cognitive science and 

psychology. Understanding how and why certain sounds capture our attention can 

inform theories of attention and perception, shedding light on the interplay between 

sensory input and cognitive processing. 

1.8 Dissertation structure 

The dissertation focuses on exploring salience within musical mixtures, particularly 

emphasizing the role of singing voices. Chapters 2 to 5 present studies conducted by 

the author, each commencing with an introduction and concluding with a synopsis that 

link the studies of this dissertation. 

In Chapter 2, the initial study focuses on the detection of instruments and singing voices 

in musical mixtures extracted from pop music excerpts. Participants are either cued 

towards a to be detected target instrument before listening to a mixture or hear the 

mixture before the target cue. Results reveal a unique vocal salience for singing voices 

that is unmatched by other instruments while at the same time demonstrating an inferior 

detection of bass instruments. Whether these findings emit from differences in spectral 

masking or sound level between the tested sounds is also explored, with both the bass 

inferiority and vocal salience persisting throughout a change in the studied acoustic 

properties. 

Chapter 3 continues the exploration of features that enable vocal salience in a study that  

utilized the same detection paradigm as in Chapter 2. Here the focus is set on the 

effects of musical structure, phonological cues, and frequency micro-modulations (FMM) 

present in singing voices due to the imperfect intonation of human singing. While both 

musical structure and phonological cues failed to reveal effects regarding vocal salience, 

a correlation between the frequency modulation depth and salience effect is revealed. 

Further, it is shown that removing naturally occurring FMM within singing voices 

eliminates vocal salience.  

Building on the effect of FMM, the final study in Chapter 4 presents a study on the 

recognition of short naturalistic instrumental and vocal sounds. Utilized sounds are 

extracted from two different music databases and are presented in isolation or 

accompanied by a piano while the impact of preserving or eliminating the FMM of the 

instrument or vocal sounds is observed. Contrary to expectations, no effect of FMM is 

observed, nor is there evidence of a general superiority in vocal recognition. Instead, 

differences between sung vowels are prominent, with some vowels performing better 

than instrument sounds, while others are outperformed by instrument sounds. Acoustical 

analysis implicates that spectral similarities impact the recognition, underpinning that 

singing voices do not automatically trigger a facilitated recognition, but that the unique 

role of singing voices is the result of multiple contributing factors.  

The study presented in Chapter 5 returns to investigate the perceptual hierarchies 

observed in musical mixtures, particularly the inferior detection of bass instruments 
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observed in Chapter 2 and facilitated salience of high voices (Fujioka et al., 2005; Marie 

et al., 2012; Marie & Trainor, 2013). The study examines whether perceptual biases 

towards distinct frequency regions can explain such salience effects. Stimuli consist of 

multiple randomized pure tone melodies that are presented in spectrally distinct 

frequency bands. Results reveal salience for both the lowest and highest melodies, thus 

a perceptual bias towards the edges of the musical mixture. This suggests that bass 

inferiority is not solely based on biases in the auditory system but rather on the interplay 

of complex sounds in musical scenes.        

Chapter 6 concludes the dissertation by summarizing all studies presented in the 

preceding chapters, contextualizing them, and discussing their findings in relation to 

existing literature. The chapter closes with an outlook on future research.  
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2. LISTENING IN THE MIX: LEAD VOCALS 

ROBUSTLY ATTRACT AUDITORY ATTENTION IN 

POPULAR MUSIC 

 

2.1 Introduction 

To investigate the perceptual organization of musical mixtures and the trajectory of 

attention, we conducted a study incorporating excerpts of pop music. This methodology 

was chosen to provide a more ecologically valid approach, closely mirroring everyday 

listening behavior. The task of the study involved detecting individual instruments and 

vocals in 2-second excerpts of pop music and varying whether information about 

instrument or vocal sound was given before or after the mixture was presented. This 

study set the stage for further exploration of auditory attention and salience in musical 

scenes.    

2.2 Study 1 

This chapter has been published as: Bürgel, M., Picinali, L., & Siedenburg, K. (2021). 

Listening in the Mix: Lead Vocals Robustly Attract Auditory Attention in Popular Music. 

Frontiers in Psychology, 12, 769663. https://doi.org/10.3389/fpsyg.2021.769663. The 

content of this chapter is identical to the manuscript. 

Author Contributions: Michel Bürgel formulated the research question, participated in the 

study design, carried out the experiments, analyzed the data and wrote the final paper. 

Lorenzo Picinali provided the stimuli and revised the manuscript. Kai Siedenburg 

formulated the research question, guided the study design and data analysis, and 

revised the manuscript. 
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2.2.1 Abstract 

Listeners can attend to and track instruments or singing voices in complex musical 

mixtures, even though the acoustical energy of sounds from individual instruments may 

overlap in time and frequency. In popular music, lead vocals are often accompanied by 

sound mixtures from a variety of instruments such as drums, bass, keyboards, and 

guitars. However, little is known about how the perceptual organization of such musical 

scenes is affected by selective attention, and which acoustic features play the most 

important role. To investigate these questions, we explored the role of auditory attention 

in a realistic musical scenario. We conducted three online experiments in which 

participants detected single cued instruments or voices in multi-track musical mixtures. 

Stimuli consisted of two-second multi-track excerpts of popular music. In one condition, 

the target cue preceded the mixture, allowing listeners to selectively attend to the target. 

In another condition, the target was presented after the mixture, requiring a more 

“global” mode of listening. Performance differences between these two conditions were 

interpreted as effects of selective attention. In Experiment 1, results showed that 

detection performance was generally dependent on the target’s instrument category, but 

listeners were more accurate when the target was presented prior to the mixture rather 

than the opposite. Lead vocals appeared to be nearly unaffected by this change in 

presentation order and achieved the highest accuracy compared with the other 

instruments, which suggested a particular salience of vocal signals in musical mixtures. 

In Experiment 2, filtering was used to avoid potential spectral masking of target sounds. 

Although detection accuracy increased for all instruments, a similar pattern of results 

was observed regarding the instrument-specific differences between presentation 

orders. In Experiment 3, adjusting the sound level differences between the targets 

reduced the effect of presentation order, but did not affect the differences between 

instruments. While both acoustic manipulations facilitated the detection of targets, vocal 

signals remained particularly salient, which suggests that the manipulated features did 

not contribute to vocal salience. These findings demonstrate that lead vocals serve as 

robust attractor points of auditory attention regardless of the manipulation of low-level 

acoustical cues. 

2.2.2 Introduction 

In everyday life, our sense of hearing is exposed to complex acoustical scenes that need 

to be analyzed and interpreted. The ability to segregate an acoustic scene into a mental 

representation of individual streams is known as auditory scene analysis (ASA; Bregman 

& McAdams, 1994). A prime example of this is listening to music with multiple 

instruments playing at once. Human listeners can focus and track a single instrument 

remarkably well, even though the acoustic signal is a potentially ambiguous clutter of 

diverse instrument signals.  

Two interwoven analytical processes are used in ASA: endogenous top-down and 

exogenous bottom-up processes. Endogenous processes are based on cortical 

functions such as expectations, learned patterns and volition. Exogenous processes are 
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driven by pre-attentive processes based on the temporal and spectral properties of a 

sound, from which auditory attributes such as duration, pitch, or timbre are computed, 

and which are pivotal for grouping auditory information into separate sound events. 

Timbre, often simply described as “texture” or “tone color” (Helmholtz, 1885), is a 

multidimensional attribute (Siedenburg & McAdams, 2017a) that enables the 

discrimination of sound sources (e.g., sounds from a keyboard vs. a guitar), even though 

they may match in other acoustic cues such as loudness and pitch. 

A well-established approach to the study of ASA and auditory attention is the use 

elementary auditory tasks, such as the presentation of sequential or simultaneous 

streams of tones (for a review see, Alain & Bernstein, 2015). Bey and McAdams (2002) 

investigated the influence of selective attention in ASA using two-tone sequences, one 

of which was interleaved with distractor tones. The semitone spacing between the 

distractor tones and the target sequence was varied from 0 to 24 semitones, thereby 

varying the strength of exogenous cues that allow for bottom-up stream segregation. 

Participants had to judge whether the sequences were different or identical and had to 

ignore the distractors. To vary the dependency on selective attention, in one condition 

the stream with distractor tones was presented first, followed by the melody without 

distractors; in a second condition selective attention was facilitated by presenting the 

melodies without distractors first, thus providing a pattern that could be compared with 

the following mixture. The results showed that participants achieved higher recognition 

rates when the melodies without distractors were presented first, thus being able to 

selectively attend to the target melody.  

Another more ecological approach uses polyphonic music to study ASA. In polyphonic 

music, multiple relatively independent melodies (also referred to as voices) are played or 

sung simultaneously. Behavioral studies showed that when listening to polyphonic music 

a superior perception of timing and meter is found in the lower voices (Hove et al., 

2014), whereas tonal and melodic perception is facilitated in the highest voice (Crawley 

et al., 2002). Accordingly, the so-called high-voice superiority effect states that the voice 

with the highest pitch trajectory is most salient in polyphonic mixtures (Fujioka et al., 

2005). It has been shown that this effect is present in infants (Marie et al., 2013) and that 

it can be enhanced by musical training (Marie et al., 2012). Using a model of peripheral 

auditory processing, results by Trainor et al. (2014) suggest that the origin of high-voice 

superiority may be based on physiological factors such as cochlear filtering and masking 

patterns.  

Another factor that has been shown to affect musical scene perception and the specific 

trajectory of auditory attention is related to the repetitiveness of musical voices. Taher 

and McAdams (2016) found that when a repetitive and non-repetitive voice are playing 

simultaneously, attention is drawn to the non-repetitive voice. Barrett et al. (2021) 

investigated whether the coherent timings between instruments in a piece of music 

facilitate stream segregation. The authors either slowed down one instrument or 

recomposed an instrumental line so that it no longer matched with the other lines. The 

results suggested that, when instruments are temporally coherent, attention is not 
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directed to a particular instrument, and therefore instruments are integrated into one 

percept. For incoherent musical lines, attention was drawn towards one instrument while 

the other instrument was ignored. A study by Disbergen et al. (2018) focused on the 

effect of timbre dissimilarity for distinguishing between two melodic voices in polyphonic 

music. Although no clear effect for a modification of timbral dissimilarity could be 

observed, the results implied a trend that a reduction of timbral dissimilarity and thus a 

reduction of acoustical cues leads to a deterioration of stream segregation, further 

suggesting that a minimum of exogenous cues is necessary to track and separate single 

streams. In Siedenburg et al. (2020), listeners had to hear out instruments and melodies 

of varying sound level masked by a simultaneously playing instrument. It was found that 

participants were able to exploit dips in the masker signal, allowing them to hear the 

target instrument at lower levels than with a masker that did not contain these dips. 

Several of the aforementioned studies used (simplified or stylized) excerpts of Western 

classical instrumental music. In Western popular music, the lead melody and thus the 

centerpiece of a song is sung by a human voice (lead vocals), which is accompanied by 

a variety of instruments and, at times, background vocals. Recent studies have shown 

that the voice occupies a unique role among other sound sources (e.g., Belin et al., 

2000; Levy, 2001; Agus et al., 2012; Suied et al., 2014; Isnard et al., 2019). In a 

neurophysiological study, Belin et al., (2000) examined the response to speech, vocal 

non-speech sounds and non-vocal environmental sounds. The data implied not only that 

cortical activity to vocal speech and non-speech sounds was higher than to non-vocal 

environmental sounds but also that specific regions in the human cortex responded 

more strongly to vocal sounds, suggesting a specialized processing of speech sounds. 

Levy et al., (2001) measured neurophysiological data from participants in an oddball 

task in which single instruments and singing voice were presented sequentially. A piano 

sound was used as a target, while other sounds were used as distractors. The results 

showed a stronger response to the presentation of the human voice, termed the “voice-

specific response”. The authors hypothesized that this response represented a gating 

mechanism in which the auditory system allocates the input to be processed 

phonologically. In Agus et al. (2012), accuracy and reaction times were investigated in a 

sound classification task. Single notes were played by instruments, sung by voices, or 

played by interpolations between instruments and voices (i.e., chimeras). Accuracy for 

voices was higher and reaction times were faster than for all other target categories, 

indicating an advantage in processing voices. Studies by Suied et al. (2014) and Isnard 

et al. (2019) focused on the recognition of timbre in short glimpses of recorded sounds 

that differed only in timbre. Again, singing voices stood out by achieving recognition 

above chance level with a sound duration of only 4 ms, while all other instrument 

categories required 8 ms durations.  

In the present study, we aim to investigate auditory attention in an instrument and 

singing voice detection task inspired by everyday music listening of popular music. To 

study how the detection of different instruments is modulated by auditory attention, we 

vary the presentation order of mixture and target cue. In one order of presentation, a cue 

from a target vocals or instrument is presented first, followed by the mixture, such that 
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the cue can be used to search the mixture for the target. In the reverse presentation 

order, the mixture is presented first followed by the target cue. Based on experiments 

such as Bey and McAdams (2002), we expect that the order in which a cue is presented 

first facilitates detection of the target. Motivated by the distinct role of singing voices that 

has been reported in the literature, we investigated whether the lead vocals in popular 

music would play a special role in auditory scene analysis and selective listening. Based 

on this assumption, we hypothesize that lead vocals achieve distinctly higher accuracies 

in both presentation orders.  

2.2.3 General Methods 

For our experiment, we used short excerpts of popular music in which either a cued 

target instrument or target vocal was present or absent in a mixture of multiple 

instruments (see Figure 2.1B). To test the effects of selective auditory attention, we 

interchanged the presentation order of the cue and mixture (Bey and McAdams, 2002). 

This yielded two different listening scenarios: one requiring selective listening, and the 

other requiring a rather global mode of listening. When the target was presented prior to 

the mixture, selective attention could be used to detect the target in the mixture. When 

the target was presented after the mixture, listeners had to be aware of possibly all 

components of the mixture and hence listen more globally to the excerpts. In that case, 

attention could be affected by exogenous factors, for instance the salience of individual 

sounds in the musical scene. We conducted three experiments aimed to study the role 

of attention in the processing of popular music mixtures and whether acoustic 

modifications of the excerpts would manipulate the detection of instruments or vocals. 

For the first experiment, we left the excerpts unmodified and investigated the detection 

accuracy in the complex musical scene and how it was affected by the presentation 

order and different instruments. In the second experiment, we aimed to suppress 

energetic masking of the target by means of bandpass/bandstop-filtering. To control the 

influence of instrument dependent sound levels, we equalized the sound levels ratios 

between the different targets in the third experiment. A schematic overview of the 

experiments is shown in Figure 2.1C. The same general methods were applied in all 

three experiments. Specific modifications of the methods are described in detail in the 

respective experiments (see Sec. 3, 4, 5).  
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(A) Procedure: The experiment started with a headphone screening task, fol-
lowed by a subjective sound level calibration, a training section where partici-
pants were familiarized with the instrument detection task and finally the main 
experimental section. (B) Task: An instrument detection task was used in the 
experiments: Participants either took part in an experiment where the targets 
were preceding the mixtures or where the mixtures were preceding the targets. 
(C) Stimuli modification: In the first experiment, excerpts unmodified from their 
original state were used. In the second experiment, the target instruments were 
filtered in an octave band to create a spectral region in which the target instru-
ment could pass without being spectrally masked. In the third experiment, the 
individual sound level differences between the diverse instruments were ad-
justed to one of three possible level ratios. 

 

Participants  

All participants were students recruited via an online call for participation at the e-

learning platform of the University of Oldenburg. General information about the 

experiment and exclusions criteria were given. The criteria included the use of 

headphones, a stable internet connection and self-reported normal hearing. Participants 

could start the online experiment at any time via a link that was provided in a 

personalized email. Participation was compensated monetarily. We acquired information 

about the participants musical training using five questions: Number of instruments 

played, hours practiced during the period of greatest musical interest, years of lessons in 

Figure 2.1: Schematic overview of the experiments.   
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music theory, years of lessons for an instrument, self-designation (non-musician, 

amateur musician, professional musician).  

Stimuli & Task  

An illustration of the stimuli extraction is shown in Figure 2.2. Stimuli were generated 

using a Matlab script (MathWorks Inc., Natick, MA, USA) that extracted two-second 

excerpts from a multitrack music database. The database was created by Tency Music 

and is used within the Musiclarity web-app (Eastgate et al., 2016). It consists of sound 

alike reproductions of well-known popular music with English lyrics and individual audio 

files for each instrument. The Instruments in the database were coarsely categorized as: 

Backing Vocals, Bass, Drums, Guitars, Lead Vocals, Piano, Percussion, Strings, 

Synthesizer, Winds. For each excerpt, one to-be attended instrument was chosen 

(target). Other instruments in the excerpt that were not from the same category as the 

target served as maskers (mixture). Instruments from the same category that were not 

used as a target were excluded from the mixture. When lead vocals were assigned as 

the target, all backing vocals were also excluded. Songs were drawn pseudo-randomly, 

with the same song chosen as infrequent as possible. To investigate which instruments 

were audible at any given time, the sound level of each instrument was analyzed using a 

500 ms sliding window. In each window, the root-mean-squared (RMS) sound level was 

calculated. Windows were qualified as potential candidates for the excerpt extraction if 

one instrument in the target category and six to nine additional instruments had sound 

levels above -20 dB relative to the instrument’s maximum sound level across the full 

song. A previously unused 2000 ms time slice containing four qualified adjacent 500 ms 

windows was randomly drawn. Three monophonic signals were compiled from each 2-

second excerpts: 1) a signal only containing the target, 2) a signal containing a mixture 

of five to eight instruments from non-target categories plus the target. 3) A signal 

containing a mixture of six to nine instruments without the target. For mixtures, the full 

number of instruments was used, which were also present in the original excerpt of the 

song. A logarithmic fade-in and fade-out with a duration of 200 ms was applied to the 

beginning and end of all extracted signals. For half of the trials, the mixture signals were 

arranged to contain the target signals, and for the other half the mixture did not contain 

the target signal. From these signal combinations, two stimuli with a duration of 4500 ms 

were created using different presentation orders for the target and mixture signal. In the 

“Target-Mixture” condition, the target signal was followed by a 500 ms pause and the 

mixture signal; in the “Mixture-Target” condition, the presentation order was reversed. 

For the use on the online platform, the stimuli were converted from WAV format to MP3 

with a bit rate of 320 kbit/s. Example stimuli are provided on our website: 

https://uol.de/en/musik-wahrnehmung/sound-examples/listening-in-the-mix 
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Short excerpts from a multitrack database containing reproductions of popular 
music were used as stimuli. The schematic shows the workflow of the stimulus 
construction. For details, see the text. 

 

Procedure 

The experiments were approved by the ethics board of the University of Oldenburg and 

carried out online via the web platform www.testable.org. Participants were divided into 

one of two groups. For group one all stimuli had the presentation order “Target-Mixture”, 

whereas for group two the presentation order was reversed (see Figure 2.1B). The same 

excerpts were used for both groups, thus the only differences were in the order of 

presentation. Each experiment was further divided into four consecutive segments (see 

Figure 2.1A). 

At the beginning of the experiment, participants had to fill in a form regarding personal 

data (see 2 A). To get an indication of whether participants were using headphones, a 

headphone screening task was performed at the beginning of the experiments. For 

Experiment 1 headphone screening was based on Woods et al. (2017), employing a 

sequential presentation of three pure tones, where one of the tones was quieter. The 

tones were phase shifted on the left side by 180° degrees and therefore appeared 

attenuated when listening over loudspeakers but not attenuated when headphones were 

worn. Therefore, a matching volume judgment should only be achieved by wearing 

headphones. Listeners had to detect the quiet tone and passed the test if five out of six 

detections were correct. For Experiments 2 and 3, the headphone screening was based 

on Milne et al. (2020), which provides a higher selectivity for headphone users than the 

headphone screening used in Experiment 1. Here, a sequence of three white noise 

signals were presented, where one of the noise signals was phase shifted by 180 

degrees in a narrow frequency band at around 600 Hz on the left headphone channel. 

When headphones were worn, the phase shift was perceived as a narrow tone 

Figure 2.2: Stimuli extraction 
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embedded in the broadband noise. Listeners had to detect the tone and passed the test 

if five out of six detections were correct. Participants who failed the headphone 

screening were removed from the data analysis. 

After the headphone screening, three song excerpts were presented aiming to provide 

an impression of the dynamic range of the stimuli. During the presentation, participants 

were instructed to adjust the sound to a comfortable level. This was followed by a 

training phase, where participants were familiarized with the detection task. Participants 

listened to stimuli akin to those used in the main experiment and were asked whether 

the target was present or absent in the mixture. For each category, one stimulus with 

and without target was presented. To help participants understand the task and to make 

them more sensitized for the acoustic scene, feedback was given after each answer. 

This was followed by the main experiment where the same procedure was used but no 

feedback was given. Stimuli presented in the training segment were not reused in the 

experiment segment. All stimuli were presented in a random sequence that intermixed 

all conditions (except for the between-subjects factor of presentation order). The number 

of stimuli, the conditions and the target categories differed from experiment to 

experiment and are therefore described in the sections on the individual experiments 

below. 

Data analysis 

Following the methodology recommended by the American Statistical Association 

(Wasserstein et al., 2019), we refrain from the assignment of binary labels of 

significance or non-significance depending on an immutable probability threshold. We 

provide mean detection accuracies, followed by a square bracket containing the 95% 

confidence intervals computed by means of bootstrapping and round brackets 

containing the decrease or increase through a change in presentation order.  

A generalized binominal mixed-effect model  (West, 2014) was used for the statistical 

analysis. All mixed-effects analyses were computed with the software R (R Core Team, 

2014) using the packages lme4 (Bates et al., 2015) which was also used to estimate 

marginal means and confidence intervals. Our model included random intercepts for 

each participant and item (i.e., stimulus). All binary categorical predictors were sum-

coded. The correlation coefficients of the model are given as standardized coefficients 

(β), followed by 95% confidence intervals in square brackets and probability (p). To 

summarize the main effects and interactions, results are presented in the form of an 

ANOVA table, derived from the GLME models via the anova function from the car 

package (Fox et al., 2019). A detailed view of the behavioral results, models and statistic 

evaluations for each experiment are presented in the supplementary material (see 

Table. 1-6). 

Method validation 

Since the experiment was conducted online, and therefore did not undergo the strict 

controls of a laboratory experiment, we compared results for using calibrated laboratory 

equipment and consumer devices. In order to achieve this, a pilot experiment that was 
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very similar to Experiment 1 was completed by the members of the Oldenburg research 

lab. In one condition, participants used their own computer and headphones. In another 

condition, they used calibrated audio equipment, and the presentation order of these two 

conditions was counterbalanced across participants. The calibrated equipment consisted 

of a laptop, RME Babyface soundcard, and Sennheiser HD650 headphones. The long-

term sound level was set to 75 dB SPL (A), measured with Norsonic Nor140 sound-level 

meter using music-shaped noise as the excitation signal. Results showed very similar 

data for both types of equipment (for details see supplementary Figure 2.1), which did 

not indicate any systematic problem in conducting the present study via online 

experiments. 

2.2.4 Experiment 1 – Unmodified excerpts 

The first experiment was our starting point to investigate selective auditory attention in 

musical scenes. We left the excerpts in their original state (as described in 2 B). As 

target categories besides the lead vocals, we chose four instrument categories that had 

shown rather diverse results in a pilot experiment.  

Participants 

A total of 84 participants with a mean age of 25.1 years (SD = 4.5, range = 19-44) were 

tested in the experiment. A total of 25 out of 42 participants passed the headphone 

screening for the Target-Mixture condition and 22 out of 42 for the Mixture-Target 

condition (age = 25.3, SD = 5, range = 19-44). Only participants passing the headphone 

screening were included in further analysis. 11 participants in the Target-Mixture 

condition and 10 participants in the Mixture-Target condition described themselves as 

either amateur or professional musicians. 

Stimuli & Procedure  

For the first experiment, the following five target categories were selected: lead vocals, 

bass, synthesizer, piano, drums. Headphone screening was based on Woods et al. 

(2017). In the training phase of the main experiment, one excerpt with a target and one 

excerpt without a target were presented for each of the five target categories, summing 

up to 10 stimuli in total. In the experimental phase, 150 stimuli were presented, divided 

into 30 stimuli for each of the five target categories. The average duration of the 

experiment was 25 minutes.  

Results & Discussion 

Figure 2.3 displays the average results of the first experiment for each instrument and 

presentation order (for numerical values, see supplementary Table 1&2). Detection 

accuracy differed depending on the target category and order of presentation which was 

also evident in our model (Instrument: χ2 = 97.881, p < 0.001, Order: χ2 = 38.878, p < 

0.001.). Averaged across target categories, the Target-Mixture condition yielded the 

highest accuracy of 84% [70% - 97%], which deteriorated in the Mixture-Target condition 

to 72% [55% - 88%] (-12%). This decline was strongest for the bass category in which 

the mean accuracy dropped by -19% from the Target-Mixture to the Mixture-Target 

condition. A nearly identical decrease was found for the synthesizers (-11%), piano (-
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8%) and drums (-11%). The lead vocals had the best performance overall and were 

least affected by a change in the presentation order (-2%). This resulted in an interaction 

effect between the instrument factor and the presentation order (χ2 = 13.059, p = 0.011).  

Five instrument categories were used as targets (lead vocals, drums, synthe-
sizer, piano, bass). The Square marks the mean detection accuracy for a given 
instrument category. Error bars indicate 95% confidence intervals. Asterisks 
represent the average accuracy of an individual participant for the given instru-
ment category. “TAR” denotes the presentation order “Target-Mixture” where 
the target instrument cue was presented followed by a mixture. “MIX” denotes 
the presentation order “Mixture-Target” where a mixture was presented followed 
by the target instrument cue.  

All instruments except the lead vocals showed degraded detection accuracy when 

listeners were required to listen to the musical scenes without a cue. While the 

degradation of detection accuracy in a global listening scenario was to be expected (Bey 

& McAdams, 2002; Janata et al., 2002; Richards, 2004), the specific attentional bias 

towards lead vocals is, to our knowledge, a novel finding. We will refer to this unique 

characteristic as "lead vocal salience" in the following. This finding is in line with the 

unique role of singing voices documented in previous experiments, where voices were 

processed faster and more accurately in comparison to other musical instruments (e.g. 

Agus et al., 2012; Suied et al., 2014; Isnard et al., 2019) and were shown to have a 

unique cortical voice-specific-response indicating a specialized processing for human 

voices (e.g. Levy, 2001). 

The bass was found to be most strongly affected by a change in presentation order, 

having a medial detection accuracy in the Target-Mixture condition that, however, 

Figure 2.3: Detection accuracy in experiment 1 
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decreased almost twofold compared to the other instruments. One explanation for this 

could be tied to the spectral characteristics of the bass. The bass mostly occurs in a 

rather narrow band in the low frequencies, whereas other instruments cover a wider 

frequency range. When a cue is given, attention may be focused selectively towards that 

frequency band, and thus narrow signals like the bass can be reliably perceived. 

Another explanation could be derived from the high-voice superiority effect that has 

been observed in polyphonic music. The effect describes a pre-attentive attentional bias 

(Trainor, 2014), which, in the presence of multiple voices, draws attention towards the 

highest voices. In the current experiment, bass signals naturally correspond to low 

voices, and hence high-voice superiority may come into play. 

It is to be noted, that our analysis revealed no systematic differences between 

participants who declared themselves as musician and those who did not. This held true 

across all three experiments, even though in previous studies musicians showed 

improved results in ASA tasks (e.g., Başkent et al., 2018; S. M. K. Madsen et al., 2019; 

Siedenburg et al., 2020). The most likely reason to explain this may be that we did not 

specifically control for an equal number of musicians and non-musicians in a large 

sample; thus, the proportion of participants considered musicians were only a fraction of 

the total participants, and therefore the sample size may be too small for an adequate 

statistical comparison. We further analyzed how performance was affected by possible 

fatigue over the course of the experiment. Considering performance over the duration of 

the experiment averaged across subjects suggested that the difference between 

performance at the beginning and end of the experiment was negligible (for details, see 

supplementary Figure 2). 

To further evaluate the acoustic origins of the lead vocal salience, we analyzed the 

music database in terms of spectral features and sound levels features. For each song 

and target category, we evaluated the broadband sound level as well as the sound level 

on an ERB-scale between all instruments and voices in a category and all other 

instruments and voices. We used a sliding window of 500 ms moving over the duration 

of a song and discarded all windows in which the sound level was less than 20 dB below 

the maximum sound level of the instruments, voices, or mixtures. The results of the time 

windows were then averaged for each song and are displayed in Figure 2.4. 

The spectral analysis revealed a frequency region from 0.5 kHz to 4 kHz where the 

difference between the lead vocals and remaining mixtures had a positive level ratio (up 

to 2.5 dB), meaning that the lead vocals exhibited higher levels than the sum of 

accompaniment instruments and were therefore released from energetic masking in 

those spectral regions. While the lead vocals had a relative sound level of more than 0 

dB in such a broad spectral region, only the bass and drums showed similar levels in 

either low or high frequencies. The other instruments did not have such a differentiated 

spectral range and their level was substantially below the level of the lead vocals. This 

was also evident in the broadband level analysis, in which the lead vocals had a 

significantly higher level than the other instruments. Accordingly, two acoustically-based 

explanations for the superior detection accuracy of the lead vocals could be a) less 
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susceptibility to masking by other instruments or b) higher loudness levels of lead 

vocals. To scrutinize these two hypotheses, we conducted a second experiment where 

the vocals and the instruments were released from masking in the same frequency 

band, and a third experiment equalizing the sound level differences between lead vocals 

and instruments.   

We analysed the average sound level in ERB-bands (A) and 

broadband sound level (B) between each voice or instrument and the 

remaining mixture for each song. (A) Each coloured line represents 

the average sound level for the given centre frequency. The filled area 

represents the 95% confidence intervals for the lead vocals. (B) The 

circle marks the mean detection accuracy for a given instrument 

category. Error bars indicate 95% confidence intervals. Crosses 

represent the average level of an individual song for the given 

instrument category.  

Figure 2.4: Database feature analysis 
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2.2.5 Experiment 2 – Spectral unmasking equalization 

To investigate whether the observed lead vocal saliency was due to spectral masking, 

we here examined the spectral regions where vocals tended to be unmasked and 

applied the same unmasking to different target instruments. For this purpose, we 

analyzed the database for spectral regions in which the lead vocals exhibited particularly 

high sound levels. A broad spectral region from about 0.5 to 5 kHz was found. To 

provide equal masking and unmasking for all vocals and instruments, we used octave 

bands adjacent to the center of this region (1-2 kHz and 2-4 kHz) and designed filters to 

pass signals only into one of the two bands (bandpass) or to suppress signals only into 

this range (bandstop). To compensate for level-dependent differences, the sound levels 

of all target instruments were adjusted identically. Only instruments with relevant 

intensity in the selected frequency bands were considered as targets for the experiment. 

Therefore, lead vocals, guitars and piano were used as target categories. To avoid 

listeners focusing only on the octave bands, a randomly drawn accompaniment 

instrument was passed through the octave band for one third of trials, whereas the 

target category sound was attenuated in the octave band. 

Participants 

A total of 49 participants with a mean age of 25.6 years (SD = 4.2, range: 20-39) were 

tested in the experiment. A total of 20 out of 25 participants passed the headphone 

screening for the Target-Mixture condition and 20 out of 24 or the Mixture-Target 

condition (age = 23.5, SD = 2.9, range: 20-29). Only participants passing the headphone 

screening were included in the analysis. Among these, 12 participants in the Target-

Mixture condition and 4 participants in the Mixture-Target condition described 

themselves as either amateur or professional musicians.  

Stimuli & Procedure 

In two out of three excerpts, the target was filtered through a passband either from 1 to 2 

kHz or from 2 to 4 kHz, while the mixture was filtered through a bandstop in the same 

octave band. Excerpts filtered in this way are referred to as “TBP” in the following. To 

prevent participants to focus on only one of the two octave bands, in one third of the 

excerpts, a randomly drawn accompanying instrument was filtered through a passband 

of either 1 to 2 kHz or 2 to 4 kHz, while the other accompaniment instruments and the 

target was filtered through a bandstop in the same octave band. Excerpts filtered this 

way are referred to as “TBS” in further analysis. Bandpass and bandstop filters were 

designed and applied using the corresponding Matlab functions bandpass and bandstop 

(Signal Processing Toolbox Release 8.3, MathWorks Inc., Natick, MA, USA). The filtered 

target signal was used both during the presentation of the cue and when it was 

presented in the mix. The signal components in the stopband were attenuated to -80 dB 

FS (decibels relative to full scale). Sound levels ratios between targets and mixtures 

were adjusted for all targets to -10 dB. In a final step, the average sound level of each 

stimulus was normalized to -15 dBFS. As target categories, lead vocals, guitar and 

piano were chosen.  
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The headphone screening test was based on Milne et al. (2020). In the training phase of 

the main experiment, one stimulus with and one without a target were presented for 

each of the three target categories, each of the two octave bands and one additional 

stimulus for each target category and octave band where the target was filtered by a 

bandstop and an accompaniment instrument was filtered by a bandpass, summing up to 

18 stimuli in total. In the experimental phase of the main experiment, 180 stimuli were 

presented, divided into groups of 60 for each of the three target categories and further 

subdivided into 20 stimuli for each octave band where the target was filtered by a 

bandpass plus 10 for each octave band where the target was filtered by a bandstop. The 

average duration of the experiment was 35 minutes. 

Results & Discussion 

Results are displayed in Figure 2.5 (for details, see supplementary Table 3&4). 

Detection accuracy was affected by the filter type (TBP = target is filtered with a 

bandpass, TBS = target is filtered with bandstop), presentation order and instrument 

type. While we used two different adjacent octave bands to filter the signals (1 – 2 kHz, 

2 – 4 kHz), results for both frequency bands showed nearly identical results with no 

systematic differences (differences for all conditions between both octave bands: 

Difference_MEAN = 2.5%, Difference_MIN = 1.5%, Difference_MAX = 3.5%). This finding 

was underpinned by the GLME model, which revealed no effect for the usage of different 

octave bands (Octave: χ2 = 0.002, p = 0.963).  

As in Experiment 1, the detection accuracy was better in the Target-Mixture condition 

and best when the target signal was filtered by a bandpass. The influence of both the 

order and the filter was reflected in our model (Order: χ2 = 3.547, p = 0.06, Filter: χ2 = 

18.657, p < 0.001). For the Target-Mixture TBP condition an average accuracy of 96% 

[95% - 97%] was observed compared to the 85% [82% - 89%] (-11%) in the Mixture-

Target condition. For the Target-Mixture TBS condition an average accuracy of 85% 

[82% - 88%] was achieved compared to the Mixture-Target condition 76% [72% - 80%] 

(-9%).   

Lead vocals performed best with an accuracy of 96% [93% - 99%] and showed the 

smallest decrease by changing the order (TBP: -1%, TBS: -2%) or removing the 

isolation by changing the filtering (Target-Mixture: -4%, Mixture-Target: -5%). This was 

followed by the guitar with an accuracy of 84% [80% - 86%], which in contrast to the 

vocals and pianos, achieved higher accuracies in the Target-Mixture TBS than in the 

Mixture-Target TBP condition and almost as well in the Mixture-Target TBP and the 

Mixture-Target TBS conditions (difference by order TBP: -17%, TBS: -7%. Difference by 

filter Target-Mixture: -11%, Mixture-Target: -1%). The piano with an accuracy of 79% 

[75% - 83%], showed a similar pattern as for the lead vocals and was generally better 

when it was isolated than when the isolation was lifted (difference by order TBP: -15%, 

TBS: -15%. Difference by filter Target-Mixture: -18%, Mixture-Target: -18%).  This 

dependence on instruments was also corroborated by our model (Instrument: χ2 = 

42.177, p < 0.001). 
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Three instrument categories were used as targets (lead vocals, guitar, piano). 
Either a bandpass or bandstop was applied to the filter and the mixture. The 
target instrument filter type is listed in the upper area of the figure with TBP 
indicating a bandpass was used and TBS indicating a bandstop was used. 
The Square marks the mean detection accuracy for a given instrument cate-
gory. Error bars indicate 95% confidence intervals. Asterisks represent the 
average accuracy of an individual participant (n = 40) for the given instrument 
category. “TAR” denotes the presentation order “Target-Mixture” where the 
target cue was presented followed by a mixture. “MIX” denotes the presenta-
tion order “Mixture-Target” where a mixture was presented followed by the 
target cue.  

 

Compared to the unmodified stimuli in the first experiment, applying a bandpass filter to 

the target improved the detection of instruments for both presentation orders by up to 

16%. Specifically, this improvement raised the accuracies in the Target-Mixture 

condition to 99% (Exp.1: 88%) for the lead vocals, 95% for the guitar and 95% for the 

piano (Exp.1: 79%). This indicates that whereas the frequency content of the instrument 

signals was narrowed down to an octave band and isolated, the additional selective 

attention in the Target-Mixture condition may have acted as searchlight, allowing for the 

detection of the target with an improved accuracy. However, whereas the overall 

accuracy was generally higher compared to the first experiment, the gaps between the 

accuracy in the Target-Mixture and the Mixture-Target conditions were larger than 

before for all instruments except the lead vocals. This gap was smallest and almost non-

existent for the lead vocals (Exp.1: -2%, Exp.2 TBS: -2%), and enhanced for the guitar 

(in comparison to the average of non-bass instruments in Exp.1: -10%, Exp.2 TBS: -

Figure 2.5: Detection accuracy in experiment 2 
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17%) and the piano (Exp.1: -8%, Exp.2 TBS: -15%). An instrument specific deterioration 

was underpinned by our model, which revealed a notable smaller contribution of the 

order alone (Order: χ2 = 3.5474, p = 0.060) and a much stronger contribution for the 

interaction between instruments and presentation order (Interaction: χ2 = 8.3447, p < 

0.015).  

Relative to Exp. 1, the increased effect of presentation order in Exp. 2 could be 

interpreted as related to the narrowband nature of the target signals, as it was already 

discussed for the bass in the first experiment. In a global mode of listening, listeners are 

required to distribute attention across the whole musical scene, which may make it 

easier to miss narrowband signals in a mixture of wideband signals, or not to perceive 

them as individual signals. In contrast to the bass in Experiment 1, instruments in 

Experiment 2 occurred in frequency ranges in which the human hearing is particularly 

sensitive, which in turn still led to a generally high detection accuracy. Here, the lead 

vocals also showed advantages over other instruments, which suggests that other 

characteristics of the lead vocals can be detected within the narrow band, leading to 

better detection accuracy.  

Detection accuracies additionally dropped in all target categories and for both 

presentation orders when the passband-filter was applied to an accompaniment 

instrument rather than the target. Again, the lead vocals were by far the least affected 

target category, showing that the lead vocal salience remains prominent even when the 

voice is suppressed in frequency regions where it is usually mixed louder than the mix. 

The general deterioration for all instruments and orders could be the by-product of a 

strategy in which participants listened primarily to the octave bands in which two-thirds 

of the targets appeared. Another reason for this pattern of results could be that the 

target did no longer occur in single octave band and thus targets were again subject to 

masking. A further possibility would be that the passband used here covers a particularly 

sensitive frequency region of human hearing, so that sound events in this area may be 

particularly salient.  

Taken together, the spectral filtering guaranteed that the target stood out from the 

mixture, hence resulting in high detection accuracies in the Target-Mixture condition. In 

the Mixture-Target condition, accuracies were distinctly lower. As in the first experiment, 

the lead voice showed by far the smallest difference between the different orders of 

presentation. When the isolation of the target was removed, all instruments showed a 

deterioration of detection accuracies. Again, the lead vocals achieved the highest 

accuracy compared to the other instruments, yet with a smaller deterioration across 

presentation orders. Thus, an explanation of the lead vocal salience does not seem to 

be due to less susceptibility to masking in frequency regions in which the vocals are 

mixed with higher levels than the sum of the accompanying instruments. 
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2.2.6 Experiment 3 – Sound Level Equalization 

Motivated by the relatively high sound levels of the lead vocals, here we aimed to 

manipulate the level ratios of targets relative to the accompaniment to investigate 

whether this manipulation would affect detection performance and the observed 

differences between the presentation orders. As target categories, we selected the bass 

and lead vocals categories, because both were shown to be the conditions with lowest 

and highest performance in the first experiment, respectively. Since both target 

categories differ greatly in their spectral components, with bass being present mainly in 

the low frequencies and lead vocals in the mid and high frequencies, listeners could 

adopt a strategy where they would only listen to one of the distinct spectral regions. To 

avoid this, we added an additional experimental condition that contained instruments 

from all other target categories.  

Participants 

A total of 55 participants with a mean age of 24.4 years (SD = 5.1, range = 18-33) were 

tested in the experiment. A total of 20 out of 27 participants passed the headphone 

screening for the Target-Mixture condition and 20 out of 28 for the Mixture-Target 

condition (age = 24, SD = 3.5, range: 19-33). 9 participants in the Target-Mixture 

condition and 7 participants in the Mixture-Target condition described themselves as 

either amateur or professional musicians. Only participants passing the headphone 

screening were included in the analysis.  

Stimuli & Procedure 

The target categories lead vocals, bass, and individual instruments from the categories 

drums, guitar, piano, synthesizer, strings, and winds were chosen as targets for the 

instrument conditions. Excerpts with targets from lead vocals, bass, and the mixed 

category appeared equally often. The sound level ratio between the targets and mixtures 

was set to one of three possible levels where the broadband level of the target was 

either 5 dB, 10 dB or 15 dB below the level of the mixture (referred here as -5 dB, -10 dB 

and -15 dB condition). To accomplish this, the 2-second instrument and mixture signal 

was separately analysed using a 100 ms sliding window. For every window, the A-

weighted sound level was computed using the weightingFilter function in Matlab (Audio 

Toolbox Version 2.1, MathWorks Inc., Natick, MA, USA) followed by a sound level 

estimation via RMS calculation. We normalized the average sound levels of each 

stimulus to -15 dBFS.  

The headphone screening test was based on Milne et al. (2020). In the training phase of 

the main experiment, one excerpt with and without a target were presented for each of 

the three target categories and for each of the three sound level ratio conditions, 

summing up to 18 stimuli in total. In the experimental phase of the main experiment, 180 

stimuli were presented, divided into 60 stimuli for each of the three target categories and 

further subdivided into 20 stimuli for each sound level conditions. The average duration 

of the experiment was 35 minutes. 
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Results & Discussion 

Results for the third experiment are shown in Figure 2.6 (for details see supplementary 

Table 5&6). Changes in the sound level ratio, presentation order and target category 

affected the detection accuracy. The best performing condition was the lead vocal target 

category with a level ratio of -5 dB with an averaged accuracy of 99% [98% - 100%] in 

the Target-Mixture condition and 100% [100% - 100%] in the Mixture-Target order. 

Lowest detection accuracy was achieved by the lowest level ratio of -15 dB in the bass 

category ranging from 60% [57% - 64%] in the Target-Mixture condition to 58% [53% - 

63%] in the Mixture-Target order. Within the same presentation order, the Target-

Mixture condition achieved a generally higher accuracy, whereas the mean accuracy of 

all categories in the Mixture-Target condition deteriorated from 83% [82% - 84%] to 78% 

[75% - 80%] (-5%).  

Averaged across all sound level ratios, the lead vocals showed the highest detection 

accuracy and was most unaffected by a change in presentation order showing a slightly 

better accuracy of 97% [96% - 98%] in the Target-Mixture condition compared to the 

Mixture-Target condition with an accuracy of 95% [93% - 96%] (-2%). In the category of 

multiple instruments, the detection accuracy deteriorated from 84% [81% - 86%] in the 

Target-Mixture condition to 79% [76% - 82%] (-5%) in the Mixture-Target condition. The 

bass achieved the overall lowest accuracy dropping from 71% [68% - 74%] in the 

Target-Mixture condition to 63% [60% - 66%] (-8%) in the Mixture-Target condition. 

These results are similar to the results of Experiment 1, where the lead vocals 

performed best while the bass performed worst.  

In summary, contrary to our assumptions using higher sound levels and equalizing the 

levels had not resulted in a cancellation of the order influence, as it was still present in 

most conditions but not present for the lead vocals. This reasoning was further 

supported by the statistical model, which showed relevant interaction between the 

instruments and presentation orders for the third experiment (Interaction: χ2 = 1.257, p < 

0.001). However, if we draw a comparison between Exp. 1 and Exp. 3, the effect of 

presentation order was reduced considerably (Bass: Exp.1 = -19%, Exp.3 = -10%. Other 

instruments: Exp.1 = -12%, Exp.3 = -5%). 
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Three instrument categories were used as targets (lead vocals, bass, others = 
drums, guitar, piano, strings, synthesizer, winds). The sound level ratio between 
the target and mixture was adjusted to either -5 dB, -10 dB, -15 dB and is listed 
in the upper area of the figure, decreasing from right to left. The Square marks 
the mean detection accuracy for a given instrument category. Error bars indicate 
95% confidence intervals. Asterisks represent data from individual participants 
for the given instrument category.  “TAR” denotes the presentation order “Tar-
get-Mixture” where the target cue was presented followed by a mixture. “MIX” 
denotes the presentation order “Mixture-Target” where a mixture was presented 
followed by the target cue. The green cross above the lead voice in the -15 dB 
condition marks the averaged detection accuracy when all stimuli that were con-
sistently answered incorrectly were excluded (for details see results). 

Similar to the first and second experiment, the lead vocals stood out and achieved the 

highest accuracy. A decline in accuracy of 7% in the Target-Mixture and a considerably 

larger decline of 15% in the Mixture-Target conditions could only be observed in the 

lowest sound level condition. An observation of the individual sound levels shows a clear 

difference between both presentation orders in the lowest level condition: -0% (-5 dB), -

0% (-10 dB), -8% (-15 dB). Yet, a closer look at individual stimuli revealed that this 

decrease was based on a few distinct stimuli that achieved low detection accuracies (for 

a detailed view see supplementary Figure 3&4). In the Target-Mixture condition, 17 out 

of 20 stimuli exceeded 90% detection accuracies, while one stimulus was close to 

chance level at 56%, whereas two stimuli were almost collectively answered incorrectly, 

achieving an accuracy of only 15%. This agreement was even stronger in the Mixture-

Target condition where 15 out of 20 stimuli achieved 100% accuracy, one stimulus 

achieved 95% accuracy, and the last four stimuli achieved an accuracy of less than 

Figure 2.6: Detection accuracy in experiment 3 
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16%. When we excluded all stimuli that were consistently answered incorrectly 

(detection accuracy of 0%), the results remained identical for all conditions except for 

the lead vocals in the lowest level ratio. Here, accuracy in the Target-Mixture condition 

remained at 92% (+0%) and in the Mixture-Target condition from 86% to 91% (+5%), 

almost closing the gap between the two presentation orders that arose in the -15 dB 

condition (from an order effect of 6% to 3%), although we only conservatively screened 

out stimuli that were consistently answered incorrectly by all participants (for a detailed 

view, see supplementary Table 5). For these reasons, a generalization of the results of 

the lead vocals at the lowest level ratios seems questionable, because accuracies here 

seem to be mainly driven by a few stimuli rather than the systematic change in level 

ratio.  

The target category “others” was most affected by a level decrease, declining by 18% in 

both presentation orders. Differences between presentation orders in this target 

category varied at different levels: -7% (-5 dB), -1% (-10 dB), -8% (-15 dB). At the -10 dB 

condition revealed an ambiguous result, where the difference between the two 

presentation orders is only marginal.   Considering all seven remaining conditions, which 

show clear effects, we interpret the present pattern of results as indication that the 

adjustment of the sound level ratios did not eliminate the order effect for the instruments 

and did not cause any robust order effect for the lead vocals.  

The bass was slightly less affected by a decrease in level, achieving 18% in the Target-

Mixture and 9% in the Mixture-Target conditions. With decreasing level, a consistently 

deteriorating detection of the mixture-target condition could be observed: -12% (-5 dB), -

14% (-10 dB), -3% (-15 dB).   

In summary, by varying the target-to-accompaniment level ratio, we here observed 

effects of presentation order at different level ratios for a mixed category of instruments 

and for the bass instrument but no notable effect for the lead vocals. This once more 

confirmed the inherent salience of lead vocals in musical mixtures, which seems to be 

stable across sound levels. 

2.2.7 General Discussion     

In this study, we aimed to investigate auditory scene analysis for musical instruments 

and singing voices and its modulation by selective auditory attention. Excerpts of 

popular music were presented in an instrument and singing voice detection task. 

Participants listened to a two-second excerpt either globally with a mixture preceding a 

target cue or selectively with a target cue preceding the mixture. We hypothesized that 

listeners’ performance would be facilitated when a target cue is presented prior to the 

presentation of the mixture. In addition, we suspected a detection advantage of lead 

vocals relative to other instruments. 

In line with our assumptions regarding the presentation order and previous studies (e.g., 

Bey & McAdams, 2002; Janata et al., 2002), detection performance was best when the 

target cue was presented before the mixture, highlighting the role of endogenous top-
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down processing to direct selective auditory attention. Accuracy worsened when 

listeners were presented the target after the mixture. This was the case for all target 

categories, apart from the lead vocals, which not only achieved the best detection 

accuracies among all target categories, but also showed no (or clearly much smaller) 

decreases of detection accuracies across the two orders of presentation. Although we 

initially assumed a higher detection accuracy for the lead vocals, the latter finding 

exceeded our expectations about vocal salience in musical mixtures. 

In a second and third experiment, we investigated how manipulations of acoustical 

features would affect lead vocal salience by eliminating differences between the target 

categories in relative sound level or release from spectral masking. However, contrary to 

our hypothesis, even when targets were completely unmasked from the mixture, or 

when the same sound levels were applied, lead vocals retained a unique role and 

robustly achieved the highest detection accuracies results across all manipulations, with 

a clear advantage over all other instruments. These findings support a unique role of the 

lead vocals in musical scene perception. More generally, this pattern of results is 

consistent with previous work in which singing voices have been shown to be 

perceptually privileged compared to other musical instruments by yielding faster 

processing (Agus et al., 2012) and more precise recognition rates (e.g., Suied et al., 

2014; Isnard et al., 2019) as well as a stronger cortical representation (e.g. Levy, 2001) 

compared to other instruments. Our results demonstrate that auditory attention is drawn 

to the lead vocals in a mix, which complements knowledge about pre-attentive 

perceptual biases in musical scene analysis such as the high-voices superiority effect 

(Trainor et al., 2014). 

From a music production point of view, it may be argued that the facilitated detection of 

lead vocals could be a result of acoustic cues that arise from common tools such as 

compression and notch filtering, which allow the vocals to “come through” and be 

perceived as the most prominent sound “in front of” the mixture. The results of Exp. 2 

and 3 render this hypothesis unlikely, however. Despite complete unmasking of target 

categories in Exp. 2 and drastic changes of level in Exp. 3, the lead vocals remained the 

only target category that did not show an order effect and hence may be interpreted as 

the only target category with specific auditory salience.  

In several recent studies, Weiss and colleagues provided evidence for a memory 

advantage of vocal melodies compared to melodies played by non-vocal musical 

instruments. Analyses of the recognition ratings for old and new melodies revealed that 

listeners more confidently and correctly recognized vocal compared to instrumental 

melodies (Weiss et al., 2012). It was further shown that the presentation of vocal 

melodies, as well as previously encountered melodies, was accompanied by an increase 

in pupil dilation (Weiss et al., 2016), often indirectly interpreted as indicator of raised 

engagement and recruitment of attentional resources. Our results directly highlight that 

those vocal melodies appear to act as a type of robust attentional attractors in musical 

mixtures, hence providing converging evidence for a privileged role of voices in auditory 

scene analysis.  
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The lead vocal salience observed here could be due to a human specialization to 

process speech sounds. Therefore, lead vocals may have benefited from their speech 

features. Previous studies have demonstrated that phonological sounds, such as words 

and pseudo-words, are easier to detect than non-phonological complex sounds 

(Signoret et al., 2011). Therefore, an idea worth exploring is whether the advantage of 

lead vocals is still present when the vocal melody is sung with non-phonological speech, 

sung by humming or played by an instrument. Another speech-like aspect that could 

make vocals more salient is the semantic content of the lyrics. Trying to grasp the 

meaning behind the lyrics could therefore draw attention to the vocals. Although test 

participants were not English native speakers, in Germany, it is common to listen to 

songs with English lyrics.  

Another origin for the lead vocal salience could lie on a compositional level. In the used 

excerpts of popular music, lead voices certainly acted as the melodic center of the 

songs. The resulting melodic salience is known to dominate the perception of a musical 

scene (Ragert et al., 2014). A question which would be interesting to examine is whether 

the vocal salience found here would also be found if the main melody were played by 

another instrument and whether in this case the instrument would show enhanced 

auditory salience.  

2.2.8 Conclusion 

We used short excerpts of popular music in a detection task to investigate the influence 

of selective auditory attention in the perception of instruments and singing voices. 

Participants were either directed to a cued target vocal or instrument in a musical scene 

or had to listen globally in the scene before the cued target was presented. As expected, 

in the presentation order where no cue was given before the mixture and thus no 

additional support for endogenous top-down processing was provided, detection 

accuracy deteriorated. Whereas all instruments were affected by a change in the 

presentation order, the lead vocals were robustly detected and achieved the best 

detection accuracies among all target categories. To control for potential spectral and 

level effects, we filtered the target signals so that they were unmasked in a particular 

frequency band and eliminated sound levels differences between the targets. This 

facilitated instrument detection for the presentation order where the target was 

presented first, but not for the order where the mixture was presented first. These results 

indicate that the observed lead vocal salience is not based on acoustic cues in 

frequency region where the lead vocals are mixed at higher levels than the sum of 

accompanying instruments. It was further found that higher sound levels resulted in 

more similar scores across the presentations orders, but there remained clear order 

effect for all instruments except for the lead vocals, suggesting that the higher level-

ratios of vocals are not the origin of the lead vocal salience. This confirms previous 

studies on vocal significance in auditory scene analysis. Further research is needed to 

assess whether these features are based on its unique vocal qualities, semantic aspects 

of the vocal signal, or on the role of the center melody in musical mixtures.  
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2.3 Synopsis 

The result of the study illustrates the significant influence of top-down processing on the 

perception of auditory scenes and the varying salience of different target categories. 

Prior information about a target sound enabled listeners to focus their attention on it, 

emphasizing sounds that would otherwise be lost in the mixture; this effect was 

particularly pronounced for bass instruments. Furthermore, a distinct vocal salience 

emerged, with vocals being recognized at the same accuracy regardless of whether 

prior information was provided. Investigations into whether spectral masking or level 

differences caused this saliency ruled out these factors, indicating that vocal salience is 

not based on these acoustic features.  
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3. SALIENCE OF FREQUENCY MICRO-

MODULATIONS IN POPULAR MUSIC 

3.1 Introduction 

To further investigate the fundamentals of vocal perception, additional experiments were 

conducted using the same recognition paradigm. The emphasis here focused on how 

the main melody of a song, phonetic cues, and frequency micro-modulations of vocals 

contribute to recognizability. In addition, stimuli were extracted from a different music 

database to investigate whether the saliency effect persists across different databases 

that may differ in their titling technique. 

3.2 Study 2 

This chapter has been published as: Bürgel, M., & Siedenburg, K. (2023). Salience of 

Frequency Micro-modulations in Popular Music. Music Perception, 41(1), 1–14. 

https://doi.org/10.1525/mp.2023.41.1.1: The content of this chapter is identical to the 

manuscript. 

Author Contributions: Michel Bürgel formulated the research question, participated in the 

study design, carried out the experiments, analyzed the data and wrote the manuscript. 

Kai Siedenburg formulated the research question, guided the study design and data 

analysis, and revised the manuscript. 

 

3.2.1 Abstract 

Singing voices attract auditory attention in music unlike other sounds. In a previous 

study, we investigated the salience of instruments and vocals using a detection task, in 

which cued target sounds were to be detected in musical mixtures. The presentation 

order of cue and mixture signals influenced the detection of all targets except the lead 

vocals, indicating that listeners focus on voices regardless of whether these are cued or 

not, highlighting a unique vocal salience in music mixtures. The aim of the present online 

study was to investigate the extent to which phonological cues, musical features of the 

main melody, or frequency micro-modulation (FMM) inherent in singing voices contribute 
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to this vocal salience. FMM was either eliminated by using an autotune effect 

(Experiment 1) or transferred to other instruments (Experiment 2). Detection accuracy 

was influenced by presentation order for all instrumental targets and the autotuned 

vocals, but not for the unmodified vocals, suggesting that neither the phonological cues 

that could provide a facilitated processing of speech-like sounds nor the musical 

features of the main melody are sufficient to drive vocal salience.  Transferring FMM 

from vocals to instruments or autotuned vocals reduced the magnitude of the order 

effect considerably. These findings suggest that FMM is an important acoustical feature 

contributing to vocal salience in musical mixtures. 

3.2.2 Introduction 

Who has not experienced it: While listening to music, the ear seamlessly picks up a 

catchy vocal melody from a musical mix.  A melody emerges in the mind of the listeners, 

seemingly independent from the musical background that it was embedded in. 

Notwithstanding the ease of auditory processing, multi-instrumental music confronts 

listeners with complex acoustic scenes, in which instruments and voices overlap in both 

time and frequency. Despite the potential complexity of musical scenes, the auditory 

system analyzes and groups musical mixtures into representations of individual streams. 

This ability to organize sounds into perceptual streams is referred to as auditory scene 

analysis (ASA; Bregman, 1994). This framework assumes that ASA is determined by 

primitive (bottom-up) and schema-driven (top-down) processing. The latter is thought to 

incorporate processes of scene parsing based on attention, memory, and knowledge. 

Selective attention in ASA has been studied using an interleaved melody recognition 

paradigm with simple melodies (Bey & McAdams, 2002), which has listeners detect a 

target sound in a mixture. The target can be presented before or after the mixture and 

the resulting difference in detection accuracy is assumed to be due to processes of 

selective attention. In a previous study (Bürgel et al., 2021), we found that all sound 

categories except the lead vocals showed effects of selective attention. Because 

accuracy was particularly high and independent of selective attention for vocals, we 

dubbed this pattern of results vocal salience. Here, we wished to further explore the 

basis of vocal salience in popular music. Generally, this approach extends previous 

research by using mixtures of popular music as highly realistic and representative stimuli 

for ASA research. 

Auditory attention, such as the reflex-like focusing on a loud sound or deliberate listening 

to an instrument in a mixture, modulates the cognitive representation of the acoustic 

scene by allocating processing resources to distinct elements of a scene (e.g., Shamma, 

Mounya, Christophe, 2010; Sussman, 2017).  Studies of auditory attention in musical 

scenes found that the voice occupies a unique role among other sound sources, 

enabling the voice to stand out from other instruments in a mixture: When human 

listeners are asked to recognize isolated voices and instruments, responses to voices 

occur faster and with higher accuracy (Agus et al., 2012). Moreover, voice sounds 

require a shorter time of exposure for recognition compared to other musical instrument 

sounds (Suied et al., 2014; Isnard et al., 2019). When comparing vocal melodies and 
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instrumental melodies, previously presented vocal melodies are more precisely 

recognized compared to instrumental melodies (Weiss, Trehub, Schellenberg, 2012). 

Neurophysiological experiments underpin this unique role of the vocals, showing an 

enhanced cortical response when vocal signals are presented in isolation among speech 

and non-vocal environmental sounds (Belin et al., 2000; Belin, Zatorre, & Ahad, 2002), 

and among other instruments (Levy, Granot, Bentin, 2001; Gunji et al., 2003). Further, 

when presented in a musical mixture, specific neural populations were found that 

respond distinctively to music with singing voices but not to instrumental music (S. V. 

Norman-Haignere et al., 2022).  

This facilitated processing of vocals also plays out in multi-instrumental musical 

mixtures. Previously,  we investigated the detection of cued target instruments and 

voices in short excerpts of popular music mixtures (Bürgel, Picinali, & Siedenburg, 

2021). The cue consisted of an isolated instrument or voice and was either presented 

before or after the mixture. Notably, all target signals except the lead vocals showed a 

clear surplus of detection accuracy when the target cue was presented before the 

mixture, highlighting the intrinsic salience of the vocals that attracts the listeners 

attention regardless of the presentation of a cue. This salience persisted and was 

unmatched by other instruments, even when the instruments and vocals were matched 

in sound level or were spectrally filtered to pass through the mixture unmasked.  

The question arises as to which features of vocal signals contribute to their unique role 

among natural sounds. Here, we considered three candidate features. First, it may seem 

reasonable to suggest that the unique salience of vocals could arise from the 

phonological information they contain. Language specific processing may potentially 

activate increased attentional resources (Signoret et al., 2012). Second, another feature 

contributing to the unique presence of the vocals could be their favorable musical role in 

the multi-instrument mixtures. In Western popular music, the lead vocals contribute the 

main melody of a song and thus are composed to possess a prominent role with respect 

to the accompanying instruments and background vocals. When listening to music 

hierarchically structured into main melody and accompaniment, previous studies have 

shown that attention is drawn towards the main melody (Ragert, Fairhurst & Keller, 

2014).  

Third, a more acoustically based candidate feature may be related to frequency micro-

modulation (FMM). Here, we understand FMM as non-stationary frequency changes in 

acoustic signals, usually less than one semitone, which are not perceived as irregular or 

as intonation errors. In singing, FMM tends to be caused by imperfect control of 

intonation caused by vocal-motor control adjustments of the human voice (Hutchins, 

Larrouy-Maestri, & Peretz, 2014) and is present even in highly trained singers (e.g., 

Sundberg, Prame, Iwarsson, 1996; Mori et al., 2004; Hutchins & Campbell, 2009). Even 

though pitch detection for vocals seems to be less precise than for musical instruments 

(Hutchins, Roquet, Peretz, 2012; Sundberg, Lã, Himonides, 2013; Gao & Oxenham, 

2022), FMM influences the perception of intonation (Larrouy-Maestri & Pfordresher 

2018), is known to facilitate the prominence of vowel sounds (McAdams 1989; Marin & 
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McAdams, 1991), and evokes cortical responses that can be traced by 

neurophysiological measurements (Wang, Tan & Martin, 2013). Experiments with 

speech signals indicate that both the exaggeration and reduction of the modulations 

result in decreased speech intelligibility (Miller, Schlauch, Watson, 2010); frequency 

modulations naturally inherent in speech signals were associated with highest speech 

intelligibility scores.  

The purpose of the present study is to further investigate the unique ability of the vocals 

to be the focal point of auditory attention in musical scenes (vocal salience), which was 

found in our previous experiments (Bürgel, Picinali & Siedenburg, 2021). More precisely, 

we investigate how these three candidate features contribute to vocal salience. We 

analyze the role of FMM as well as phonological cues in natural singing voices, either by 

eliminating the modulations in the vocals (Experiment 1) or by transferring the 

modulations to instruments (Experiment 2). We further examine how having instruments 

play the vocal melody affects their salience in the mixture (Experiment 1 & Experiment 

2). We use the same experimental paradigm as in our prior experiments (Bürgel, Picinali 

& Siedenburg, 2021): participants are asked to detect a cued target signal (vocal or 

instrument) embedded in a mixture of multiple instruments. Because detection accuracy 

is influenced not only by the salience of the target but also by factors such as sound 

level or spectral masking (Bürgel et al, 2021; Siedenburg et al., 2020), we test the effect 

of the presentation order of target cue and mixture to isolate how the detection of the 

target signal is modulated by auditory attention. For one half of the participants, the 

target cue is presented first and followed by the mixture, allowing the cue to be used to 

“search” the mixture for the target. This order is used to measure detection accuracy in a 

facilitated listening situation where participants have prior knowledge of the target. For 

the other half of participants, the presentation order is reversed, with the mixture 

presented first, so that the detection of targets strongly depends on the salience of the 

target in the mixture. A comparison between both presentation orders allows us to 

quantify the influence of the effect of selective attention through the surplus of the 

accuracy in the target-mixture condition compared to the mixture-target condition.  

For the conditions where FMM is eliminated from the vocal signals, we speculate on two 

possible outcomes: Either the facilitated detection for singing voices remains intact 

because it is driven by phonological cues that encourage a facilitated processing of 

speech-like sounds, and that are retained throughout the pitch quantization. 

Alternatively, detection of singing voices degrades, because vocal salience is a result of 

the human sensitivity towards FMM. Considering the role of the melodic material, we 

speculate that in trials in which instruments replace the vocals and play the main melody 

detection accuracy is clearly facilitated. For transferring the melody and FMM of the lead 

vocals to instruments, we expect that the presence of FMM that are uncommon for the 

instruments introduces a cue that results in an increase of detection accuracy compared 

to conditions presenting the main melody without FMM. If the FMM is driving the 

facilitated detection of vocals, this transfer of FMM may decrease or even eliminate the 

effect of presentation order. 
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3.2.3 Method 

Participants 

All participants were recruited via an online call for participation on the e-learning 

platform of the University of Oldenburg. The call included a briefing, a link to the online 

experiments, and inclusion criteria such as the use of headphones, a stable internet 

connection, and self-reported normal hearing. Participants could take part in the 

experiment online at any time during a one-month time window. Participants who took 

part in Experiment 1 were not permitted to take part in Experiment 2. A total of 69 

participants (age: x̅ = 25.1, std = 3.5) took part in Experiment 1 and 70 participants (age: 

x̅ = 24.7, std = 3.5) in Experiment 2.  

In Experiment 1, the overall scores of individual listeners were distributed bimodally, with 

three participants exhibiting drastically worse results (< 60% correct responses) 

compared to most other listeners, indicating that they did not actively participate in the 

experiment and were therefore discarded from the analysis. A histogram with overall 

accuracies of included and excluded participants is part of to the supplementary material 

(see Individual results). The same was true for two participants in Experiment 2 (< 60% 

correct responses). The results of 67 participants (age: x̅ = 25.1, std = 3.2) in 

Experiment 1 and 67 participants (age: x̅ = 24.7, std = 3.4) in Experiment 2 were 

analyzed. In both experiments, participants were randomly assigned to one of two 

groups that determined the order in which the target cue and mixture were presented: 33 

participants (age: x̅ = 24.8, std = 3.3) in Experiment 1 and 33 participants (age: x̅ = 24.8, 

std = 3.3) in Experiment 2 were assigned to the order in which the target was presented 

before the mixture. For the reverse order, 34 (age: x̅ = 25.3, std = 3) participants in 

Experiment 1 and 35 participants (age: x̅ = 24.7, std = 3.8) in Experiment 2 were 

assigned. We acquired information on the participants’ musical abilities using a subset of 

the Gold-MSI (Müllensiefen et al., 2014) consisting of nine questions on music 

perception abilities and seven questions on musical training.  

Stimuli and Task 

Stimuli were generated in MATLAB (MathWorks Inc., Natick, MA, USA) by extracting 

two-second excerpts of a single target instrument or vocals and a mixture of multiple 

instruments and vocals from a multitrack music database (“MedleyDB”, 

https://medleydb.weebly.com/), see Figure 3.1A for a schematic. The database consisted 

of 127 royalty-free songs covering a wide range of popular music genres, with individual 

audio files for each instrument and vocals. The majority of the songs had English lyrics. 

Instruments and vocals were mixed so that the overall mix adhered to the conventions of 

popular music. We coarsely categorized the Instruments and vocals in the database as: 

Backing Vocals, Bass, Drums, Guitars, Lead Vocals, Piano, Percussion, Strings, 

Synthesizer, Winds. For each excerpt, a to-be attended instrument or vocal was chosen 

(target). Remaining instruments or voices in the excerpts that did not belong to the same 

category as the target functioned as maskers (mixture). Instruments or voices in the 

excerpt that belonged to the same category as the target were not included in the 

excerpt. In the case where the lead vocals were assigned as the target, all backing 
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vocals were also excluded. Guitar, synthesizer, and winds were selected as instrument 

targets and the category lead vocals was selected as vocal targets. For guitar, 

synthesizer and wind targets that were adapted to the main melody, excerpts of the lead 

vocals were used as the basis. 

To examine song excerpts for potential stimuli, we computed an instrument and vocal 

activity analysis for each song, indicating which instrument or vocals were likely audible 

in a given time frame. The activity analysis was created by calculating the sound level of 

each instrument and vocal in each song using a 500 ms sliding window. In each window, 

the root-mean-square value (RMS) of the sound level was calculated. For each 

instrument or vocal, the instrument or vocal was considered active in a time window, 

when the sound level in the window was above -20 dB relative to the maximum sound 

level of the entire song of the respective instrument or vocal.  To further control the 

complexity of musical scenes in our stimuli, we removed all time windows from the 

activity map in which fewer than five and more than nine instruments or vocals were 

active. For each target category, we drew a 2000 ms excerpt with four adjacent, 

previously unused 500 ms time windows in which the target category and up to seven 

other vocals or instrument categories were considered active. Time slices were drawn 

from pseudo-randomly selected songs, with a preference to use the same song as 

infrequently as possible. In this way a total of 30 excerpts for each instrument target and 

150 excerpts for vocal targets were drawn. The excerpts for the vocal target were then 

subdivided to be used either as vocal target, pitch-quantized vocal targets (autotune), or 

instrument targets playing the main melody. Furthermore, the excerpts contained sung 

English words, which could foster a potential facilitated processing of phonological 

features. 

120 vocal tracks were pitch quantized using the pitch correction software Melodyne 

(Melodyne Version 5, Celemony Software). The corresponding manipulation of FMM is 

illustrated in Figure 3.1B by two exemplary excerpts and in the supplementary Figure 2. 

Quantization was set to both match pitch to a tempered scale and to eliminate all FMM, 

resulting in a robotic voice quality typical of the autotune effect. Thirty vocal tracks were 

modified in this way and were used as targets for the “autotune” category. The pitch of 

the remaining 90 quantized vocal tracks was used as a basis for the instrument main 

melody targets by having the melodies being played by three different MIDI-based 

instruments that corresponded to a guitar, synthesizer, or wind sound, thus creating 30 

tracks for each of the three instruments. MIDI notes were programmed manually to 

accurately match the vocals in pitch, on- and offset times. For Experiment 2, the original 

frequency trajectory of the unquantized vocal tracks was reapplied to the autotuned 

vocals und instrument main melody targets by using the Auto-Tune Pro Plugin (Auto-

Tune Pro, Antares).  
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Figure 3.1: Schematic overview of the methods. 

(A)  Stimulus extraction: Short excerpts from the open source “medleyDB” multitrack da-
tabasewere used. Songs were drawn randomly without replacement. From each ex-
cerpt, two signals were extracted: One signal containing only the target signal, another 
signal either containing the mixture with or without the target signal. See the text for de-
tails. (B) Vocal manipulation: Lead vocal excerpts were pitch-quantized to create auto-
tune or instrument main melody targets (lead) in Experiment 1. The original frequency 
trajectory of the unquantized vocal tracks was reapplied to the autotune und instrument 
main melody targets in Experiment 2. The gray waveform is representing the amplitude 
of the excerpt over time. Within the waveform, colored lines indicate the frequency tra-
jectory. The light and dark gray shades indicate divisions of a chromatic scale in semi-
tone steps. 

Three monophonic signals were compiled from each 2-second excerpt: 1) a signal 

containing only the target, 2) a signal containing a mixture of five to eight instruments or 

vocals from non-target categories plus the target, 3) a signal containing a mixture of six 

to nine instruments or vocals without the target. For mixtures, the full number of 

instruments that were also present in the original excerpt of the song were used. A 

logarithmic fade-in and fade-out with a duration of 200 ms was applied to the beginning 

and end of all extracted signals. The sound level ratio between the target and the 

mixture was adjusted to -10 dB (cf., Bürgel, Picinali, & Siedenburg, 2021). For half of the 
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trials, the mixture signals were arranged to contain the target signals; for the other half, 

the mixture did not contain the target signal. To prevent the presence of the three MIDI 

instruments from serving as a cue of the target, the lead vocals of the mix were replaced 

by one of the MIDI instruments using the same sound level as the vocals in one-third of 

the excerpts where an accompanying instrument was the target. Stimuli were created 

using the isolated target signal and a mixture signal in which the target was either 

present or absent. A 500 ms pause was inserted between the two signals, resulting in a 

total stimulus duration of 4500 ms. By interchanging the presentation order of target and 

mixture signal, two order conditions were created: In the “Target-Mixture” condition, the 

target signal was followed by a pause and the mixture signal; in the “Mixture-Target” 

condition, the presentation order was reversed. For use on the online platform, stimuli 

were converted from WAV format to MP3 at a bit rate of 320 kbit/s. Example stimuli and 

sound samples are provided on the website: https://uol.de/en/musik-wahrnehmung/sound-

examples/akrs 

Procedure 

The experiments were approved by the ethics committee of the University of Oldenburg 

and conducted online via the web platform www.testable.org. Experiment 1 and 

Experiment 2 were identical in design, used the same song excerpts, and differed only in 

the absence (Experiment 1) or presence (Experiment 2) of FMM in the autotune and 

main melody instrument targets. Participants were automatically assigned to one of two 

groups, determining the presentation order of target cue and mixture. In the first group 

all stimuli appeared in the “Target-Mixture” presentation order, whereas for the second 

group the order was reversed to the “Mixture-Target” order. Each experiment used the 

same excerpts and was structured into five consecutive segments.  

In the first segment, participants had to complete a headphone screening task based on 

Milne et al (2020). Here, a sequence of three white noise signals were presented, with 

one of the noise signals being phase shifted by 180 degrees in a narrow frequency band 

at around 600 Hz on the left headphone channel. When headphones were worn, the 

phase shift is perceived as a narrow tone embedded in the broadband noise. The task 

began with an instruction and a presentation of the noise signal, a 600 Hz tone in 

isolation and three mixtures of the tone in noise. Listeners had to detect the tone and 

passed the test if five out of six responses were correct. Participants who did not pass 

the headphone screening were returned to the instruction panel and reminded that they 

must pass the headphone screening before they were allowed to continue.  

After the headphone screening, three song excerpts were presented to provide an 

impression of the dynamic range of the stimuli. During the presentation, participants 

were instructed to adjust the sound to a comfortable level. This was followed by a 

training phase, to familiarize participants with the detection task. Participants were 

presented with stimuli that were very similar but different from those used in the main 

experiment and were asked whether the target was present or absent in the mixture. 

Participants were allowed as much time as they needed to respond to the questions. To 

help participants understand the task, feedback was given after each answer. One 
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stimulus with target and one without target in the mixture among the target categories 

lead vocals, autotune, guitar (accompaniment), synth (accompaniment) and winds 

(accompaniment) were presented. After the ten stimuli, participants had the option to 

repeat the training section or to continue with the main experiment. 

During the main experiment, the same procedure as in the training was used, but no 

feedback was given. In this section, a total of 240 stimuli were presented in random 

order, corresponding to 30 stimuli for each of the eight target categories.  

The final section of the experiment consisted of a questionnaire regarding personal data, 

questions from the Gold-MSI and a debriefing that presented the achieved average 

detection accuracy. On average participants took 41 minutes to complete the 

experiments. 

Behavioral Analysis  

Detection accuracy was determined directly from participants’ responses. Following 

recommendations by the American Statistical Association (Wasserstein et al. 2019), we 

avoid assigning binary labels of “significance” to empirical results but instead provide 

confidence intervals of estimates where possible. Accuracies are always structured as a 

pair, with the first indicating the result of the target-mixture condition and the second 

indicating the result of the mixture-target condition. We provide mean detection 

accuracies followed by round brackets containing the decrease or increase through a 

change in presentation order.  

Generalized binominal mixed-effect models (GLME; West et al., 2014) were used for 

statistical analyses. All mixed-effects analyses were computed in MATLAB using the 

glme function in the Statistics and Machine Learning Toolbox (Statistics and Machine 

Learning Toolbox Release 8.7, MathWorks Inc., Natick, MA, USA). Our model included 

random intercepts for each participant and item (i.e., stimulus). All binary categorical 

predictors were sum-coded. To summarize the main effects and interactions, results are 

presented in the form of an ANOVA table, with fixed effects coefficients provided as 

statistical parameter (F) and probability (p), derived from the GLME models via 

MATLAB’s anova function. A detailed view of the behavioral results, models and statistic 

evaluations are presented in the supplementary material (see supplementary Tables 1-

4).  

Frequency micro-modulation analysis  

To measure the difference in FMM between the original vocal and its pitch-quantized 

counterparts, we evaluated the range of FMM in short time windows for unmodified 

vocal excerpts and pitch-quantized vocals and instruments (see supplementary Figure 

3). We used a sliding window of 10 ms over the duration of the excerpt and extracted f0 

via the MATLAB function pitch (Audio Toolbox Release 3.7, MathWorks Inc., Natick, MA, 

USA). Given that the extraction contained artifacts such as irregular fluctuations, which 

occurred especially in the offsets and onsets of the vocals, additional artifact 

suppression was applied to the extracted f0s. The artifact rejection was based on a 

threshold for tonal components in the time window (harmonic ratio) as provided in the 
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pitch function, excluding samples below a harmonic ratio of 75%. Additionally, a 

threshold for maximum f0 distance within a 100 ms sliding time window with 50% 

overlap was applied, excluding frequencies with a distance greater than one octave 

relative to the median pitch within the time window. For each excerpt and signal, the 

FMM range was obtained within a 100 ms sliding window by evaluating the difference in 

cents between the highest and lowest note. As a final step, the median across the 

windows was evaluated for each excerpt and signal. This excluded the relative rare time 

windows that contained tonal transitions. Results are presented in Figure 3.2 and the 

supplementary material (see supplementary Table 5).  

To quantify the change in frequency micro-modulations between the original lead 

vocals, their pitch-quantized counterparts and their pitch-quantized counterparts 

with added frequency micro-modulation (FMM), the extracted f0 trajectories were 

transformed to cents and the f0 range in 100 ms time windows was evaluated. The 

median of the range was computed across all stimuli (30 excerpts) in each target 

category. “Quantized” refers to the FMM range in the autotune or melody 

instruments without FMM as used in Experiment 1.  “Quantized + FMM” refers to 

the FMM range in the autotune or melody instruments with FMM as used in 

Experiment 2.   

 

The pitch-quantized vocal alteration showed the smallest FMM range of 0.09 semitones, 

whereas the FMM range of 0.51 semitones for unquantized vocals and of 0.63 

semitones for the quantized alteration with FMM were considerably higher. Autotune 

Figure 3.2: Frequency modulation analysis 



 

49 

 

excerpts generated directly from pitch-quantized voices showed a higher range than the 

excerpts generated by MIDI instruments. An additional analysis of the distance analysis 

between estimated f0 to perfect tempered scale tone is included in the supplementary 

material. 

3.2.4 Results 

Experiment 1 – Pitch-quantized targets 

Detection accuracies of Experiment 1 are displayed in Figure 3.3 (for numerical values, 

see supplementary Table 1). A GLME included presentation order and target categories 

as fixed effects (see supplementary Table 2). Accuracy varied by presentation order and 

target category: averaged across target categories, the Target-Mixture condition yielded 

a higher accuracy of 88% compared to the reverse Mixture-Target condition 80% (-8%). 

A decline of the accuracy between the two orders was present in almost every target 

category but differed in size. These effects were reflected by the GLME model, with 

pronounced effects for the presentation order (F = 9.78, p=0.002), the targets (F = 

15.10, p < 0.001) and the interaction between the order and targets (F =5.93, p < 0.001). 

For readability, the following results are presented in pairs, with the first detection rate 

indicating the accuracy for the Target-Mixture order, and the subsequent detection rate 

indicating the accuracy for the Mixture-Target order. When examining the target 

categories, the best performing category was lead vocals with an accuracy of 99% and a 

minuscule decrease to 97% (-2%). The quantized voice had an accuracy of 96% but 

showed a decline to 87% (-9%). Targets in which the original lead vocals were replaced 

with an instrument showed the following accuracies: guitar from 90% to 80% (-10%), 

synths from 93% to 81% (-12%) and winds from 86% to 78% (-8%). Targets containing 

the instrumental excerpts taken from the original mixtures reached the following 

accuracies: guitar from 78% to 69% (-9%), the synths from 79% to 64% (-15%) and the 

winds from 88% to 78% (-10%).  

Inspecting differences between instrument categories part of the accompaniment and 

those playing the main melody (guitar, synths, winds), the main melody instruments 

yielded clearly higher accuracies. However, the average accuracy of all main melody 

targets decreased considerably between presentation orders, from 89% to 79% (-10%). 

A similar decrease was observed for the accompanying categories with a decline from 

82% to 71% (-11%). Differences between the two instrument types were analyzed using 

a GLME that included presentation order and instrument types as fixed effects (see 

supplementary Table 3). The model reflected the differences between accompaniment 

and main melody targets (F = 6.953, p = 0.009) and the influence of the presentation 

order (F = 151.96, p < 0.001). The presentation order affected each instrument in a 

similar way as indicated by the lack of an interaction effect between order and 

instrument type (F = 0.912, p = 0.340). The winds category behaved differently 

compared to the other instruments as it showed no benefit when playing the main 

melody, but rather a minor increase when playing in the accompaniment in the Target-

Mixture order (+2%) and a decrease of the same quantity in the Mixture-Target order (-

2%).  
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Six instruments and two vocal categories were used as targets. Each instrument 

category was used twice either using the instrument track which was present in the 

excerpt (acc) or replacing the lead vocals in the excerpt by MIDI instruments using the 

same melody as the vocals (lead). The “x” marks the mean detection accuracy for a 

given target category in the presentation order “Target-Mixture”. The “+” marks the mean 

detection accuracy for a given target category in the presentation order “Mixture-Target”. 

Error bars indicate 95% confidence intervals. Asterisks left and right to the average of a 

category present average accuracies of individual participants for the given condition. 

 

In summary, there was an effect of presentation order for all targets except the original 

vocals. Targets were detected considerably better when the isolated target was 

presented first, followed by the mixture. This was also evident when target instruments 

that otherwise played in the accompaniment replaced the vocals in the main melody. In 

contrast to the original vocals with FMM, the pitch-corrected vocals without FMM 

showed a clear effect of presentation order. This raised the question whether 

transferring FMM from vocals to instrumental signals could increase their salience. Thus, 

we repeated the experiment with a slight modification of the targets: we transferred the 

Figure 3.3: Detection accuracies for Experiment 1 
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FMM of the original vocals to the respective pitch quantized vocal and main melody 

instrument targets.  

Experiment 2 – Targets with frequency micro-modulations 

The average detection accuracies of the second experiment are displayed in Figure 3.4 

(for numerical values, see supplementary Table 1). A GLME included presentation order 

and target categories as fixed effects (see supplementary Table 2). Accuracy differed 

depending on the target category and order of presentation which was also evident in 

our model (Order: F = 0.414, p = 0.03, Target: F = 11.054, p < 0.001, Interaction: F = 

3.486, p = 0.001). Similar to Experiment 1, when inspecting the difference of 

presentation orders by averaging over target categories, the Target-Mixture condition 

held a higher accuracy of 90% than the Mixture-Target condition with an accuracy of 

82% (-9%). When looking into the target categories, targets maintaining the original 

frequency trajectory of the vocals (lead vocals, autotune and main melody instruments) 

revealed a clearly smaller decrease between both presentation orders than the 

accompanying instrument categories. This result was most pronounced in the lead 

vocals, which performed best with an accuracy of 98% and a decrease to 95% (-3%).  

Inspecting the differences between the instrument categories playing an accompanying 

role and those replacing the lead vocals, the main melody instruments yielded higher 

accuracies. Average accuracies of all main melody targets decreased across 

presentation orders from 91% to 87% (-4%). A larger decrease was shown for the 

targets part of the accompaniment with a decline from 83% to 70% (-13%). Differences 

between the two instrument types were analyzed using a GLME that included 

presentation order and musical material (accompaniment vs. main melody) as fixed 

effects (see supplementary Table 3). Our model reflected the differences between 

accompaniment and main melody targets (F = 6.953, p = 0.003), the influence of the 

presentation order (F = 93.70, p < 0.001), and in contrast to Experiment 1, that the 

presentation order affected the accompaniment and instrument targets differently by 

revealing an effect of the interaction between order and instrument type (F = 47.166, p < 

0.001). 
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Six instrument and two vocal categories were used as targets. Each instrument category 

was used twice either using the instrument track which was present in the excerpt (acc) 

or replacing the lead vocals in the excerpt by MIDI instruments using the same melody 

and frequency trajectory as the vocals (lead). Graphical conventions otherwise identical 

to Fig. 3.3.  

Musical experience 

Musical experience was analyzed in a questionnaire using a subset of the Gold-MSI. 

Nine questions regarding perceptual abilities and seven questions regarding musical 

training were included in the questionnaire. Scores between 1 and 7 could be obtained 

for each question. For Experiment 1, participants reached a score of 43.4 in the 

perceptual abilities subscale and a score of 22.4 in the musical training subscale. The 

correlation based on perception abilities for the Target-Mixture order was R²=0.001 (p = 

0.89) and for the Mixture-Target at R²=0.05 (p = 0.22). Similar results were shown for 

the set regarding musical training, with a correlation for the Target-Mixture order of 

R²=0.008 (p = 0.23) and for the Mixture-Target order R²=0.054 (p = 0.2). Regarding 

Experiment 2, participants reached an average score of 43.1 in the perceptual abilities’ 

subscale and an average score of 19.4 in the musical training subscale. As in 

Experiment 1, no notable correlations were found between the individual musical 

experience scores and detection accuracies. The correlation based on perception 

Figure 3.4: Detection accuracies for Experiment 2  
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abilities for the Target-Mixture order was R²=0.003 (p = 0.80) and for the Mixture-Target 

at R²=0.07 (p = 0.28). Similar results were shown for the set regarding musical training, 

with a correlation for the Target-Mixture order of R²=0.025 (p = 0.23) and for the Mixture-

Target order R²=0.112 (p = 0.10). Because we did not specifically recruit separate 

groups of participants with diverse degrees of musical experience, the lack of an effect 

of musical experience observed here was not surprising and consistent with previous 

research (Bürgel et al., 2021). 

Comparison of both Experiments 

The stimuli between Experiment 1 and Experiment 2 differed only in the exclusion of 

FMM (Experiment 1) and the inclusion of FMM (Experiment 2) for the autotune vocals 

and target instruments playing the main melody. The average detection accuracy across 

all instruments between the two presentation orders revealed a slightly better 

performance in Experiment 2 with a miniscule difference of two percentage points 

between experiments in both presentation orders. Stimuli that remained consistent 

across experiments showed differences in accuracy from zero to four percentage points. 

Yet overall performance was similar, with an average difference between the vocals and 

accompanying instruments of less than one percentage point. A direct comparison of 

detection accuracies in both experiments for the autotune and main melody instruments 

is shown in Figure 3.5A. There were negligible differences in the Target-Mixture 

condition by about one percentage point. However, in the Mixture-Target condition, the 

autotune and melody instruments in Experiment 2 showed an enhanced detection of six 

percentage points compared to Experiment 1. To statistically evaluate the differences 

between both experiments, a GLME was utilized that included presentation order, 

musical role, and the different experiments as fixed effects. The model corroborated the 

influence of FMM (see supplementary Table 4) by indicating no interaction between 

presentation order and musical role when averaged across both experiments (F = 0.624, 

p = 0.430), but a three-way interaction between presentation order, musical role, and 

experiment (F = 11.227, p < 0.001). This underlines that the presence of FMM in 

Experiment 2 boosted performance in the otherwise difficult Mixture-Target condition of 

the main melody targets (see Fig. 5A). In addition, a strong correlation of R2 = 0.9 was 

found between the FMM range and the order effect expressed as difference in detection 

accuracy of both presentation orders (see Fig 5B). Taken together, this further suggests 

that FMM enriches the vocals by an important factor for creating auditory salience in 

musical scenes.  
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(A) Detection accuracy in selected conditions from Experiment 1 (x-axis) and 

Experiment 2 (y-axis): Two-dimensional error bars indicate 95% confidence intervals. 

Note that for the presented target categories, average accuracies in the “Mixture-first” 

conditions were significantly higher in Experiment 2 (with FMM) compared to Experiment 

1 (without FMM), whereas this was not the case for “Target-first” conditions. (B) 

Correlation of frequency micro-modulation range and order effect: The FMM range is 

represented by the median range of each lead-melody target from Experiment 1 and 

Experiment 2. The order effect is quantified for each lead-melody target as the 

difference between the average detection accuracy of the “Target-first” and “Mixture-

first” conditions in the respective experiment and condition. 

  

Figure 3.5: Influence of frequency micro-modulations 
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3.2.5 Discussion 

In the present study, we analyzed the acoustical and musical underpinnings of the lead 

vocals, which contribute to their role as an elevated point of auditory attention in musical 

mixtures (vocal salience). We investigated the influence of frequency micro-modulation 

(FMM) of the lead vocals and the role of the main melody in hearing out individual 

instruments from a mix. Specifically, participants were asked to detect cued vocals and 

instruments in 2-second excerpts of western popular music. To investigate the influence 

of attentional cues on the detection of the target, the presentation order of cue and 

mixture was swapped between participants, whereby the comparison between both 

orders revealed to which degree detection was modulated by attention (order effect). To 

analyze the role of the main melody for contribution to the vocal salience, instrument 

targets were either used in their role as part of the musical accompaniment or they were 

used as a replacement for the lead vocals, that is, they played the melody of the vocals. 

We added a vocal target category with pitch-quantized lead vocals, eliminating FMM 

inherent in the vocals (Experiment 1). Additionally, we repeated a modified version of the 

experiment in which we transferred the FMM of the lead vocals to the pitch-quantized 

vocals and the instruments replacing the vocals (Experiment 2).  

Order Effect and Vocal Salience 

Consistent with classic studies (e.g., Bey & McAdams 2002), the presentation order of 

the cue played a key role in our results. When the cue preceded the mixture, listeners 

were able use this information to direct selective attention towards the cued signal. This 

resulted in higher detection rates compared to when the cue was presented subsequent 

to the mixture. Consistent with our previous experiments (Bürgel, Picinali, & Siedenburg, 

2021) and our hypothesis, this effect was evident in all target categories except the lead 

vocals, which showed only a slight decrease of accuracy when the cue was presented 

after the mixture. This finding highlights a unique vocal salience that enables the vocals 

to attract the listeners attention, even when listening blindly into a musical scene. The 

present study used a different database of music excerpts compared to our previous 

work (Bürgel, Picinali, & Siedenburg, 2021). The consistency of our findings across 

different music databases supports our general hypothesis that vocal salience in 

mixtures of popular music is not the result of a specific mixing strategy in music 

production, but rather an effect inherent in vocal signals. Previous studies have 

established a perceptually privileged role of the voice through the presentation of 

isolated voices and instruments (e.g., Levy, Granot, Bentin, 2001; Gunji et al., 2003, 

Agus et al., 2012). Our present results extend this line of research by demonstrating that 

this effect is also present in musical mixtures. 

Effect of main melody  

When the guitar and synthesizer replaced the vocals as the main melody of a song, 

overall detection accuracy improved, supporting our hypothesis and previous studies 

(Ragert, Fairhurst, Keller, 2014) of a stronger perceptual salience of melody instruments 

over accompaniment instruments. Surprisingly, wind instruments showed no 

improvement whatsoever. One likely reason for this contrasting effect relates to the 
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specific musical role of the different categories of instruments as part of the 

accompaniment. Whereas the guitar and synthesizer mostly played chord-based 

progressions in our excerpts, the winds played accompanying melodies. Consequently, 

the transition to the melody of the lead vocal might be a rather small change for the wind 

instruments, but a more drastic change of musical material for guitars and synthesizers. 

Nonetheless, it is important to note that the differences between the two presentation 

orders were still present and almost unaffected for instruments playing the vocal 

melodies. This implies that instruments playing the main melody are generally easier to 

detect, but playing the main melody does not automatically guarantee salience in a 

musical mixture (i.e., does not automatically attract auditory attention without a cue 

signal). It should be kept in mind that we used a consistent MIDI instrument for each of 

the individual instrument categories, which potentially may have added detection cues, 

although such cues would have been identical for both presentation orders. Whereas the 

timbre of accompanying instruments could vary between excerpts (because we used the 

original instruments within a song), the timbre of the three instruments playing the vocal 

melody did not vary. Even though we attempted to balance this aspect of experimental 

design by interspersing excerpts in which the vocals were replaced by instruments while 

the target was an accompaniment instrument, we cannot rule out that participants 

became accustomed to the timbre of the MIDI instruments over the duration of the 

experiment and implicitly memorized specific timbral properties of the MIDI instruments 

(Agus, Thorpe, Pressnitzer, 2010; Siedenburg & Müllensiefen, 2019; Siedenburg & 

McAdams, 2018). 

Effect of frequency micro-modulations 

The pitch-quantized vocal category showed degradation in the Mixture-Target order, 

while also performing somewhat worse compared to the lead vocals in the Target-

Mixture order. This suggests that excessively pitch-corrected voices do not capture 

listeners’ attention to the same extent as more naturalistic singing voices and therefore 

are more likely to fuse with elements of the accompaniment in musical mixtures. This 

pattern of results further refutes the assumption that phonological cues are the basis of 

vocal salience, because pitch quantization did not affect the phonological content of the 

vocals. One reason for the loss of attentional cues in the quantized vocals appears to be 

the lack of FMM, which was reduced compared to the original vocals. An acoustical 

analysis corroborated this interpretation by revealing a greater range of FMM for the 

unquantized vocals and instruments compared to their quantized counterparts that 

strongly correlated with the strength of the order effect. This finding is consistent with 

previous studies that have shown specific facilitated processing of speech with 

naturalistic frequency modulations, which is more intelligible compared to speech 

without, with decreased or exaggerated modulations (e.g., Wingfield et al., 1984, Miller, 

Schlauch, Watson, 2010). Furthermore, FMM has been shown to facilitate the detection 

of concurrently presented vowel sounds (McAdams, 1989, Marin & McAdams 1990). 

Our findings extend the literature in this regard by demonstrating that the salience of 

vocals in musical mixtures strongly relies on frequency modulations that are present in 
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naturalistic singing voices, helping the vocals to stand out from the mixture and attract 

listeners’ attention.  

The influence of FMM was further corroborated in our second experiment. We repeated 

the experiment using the same excerpts while adding the FMM of the original vocal 

excerpts to the instruments substituting the main melodies and quantized vocals. For the 

signals with artificially added FMM, our results showed a considerably reduced 

difference between the presentation orders in comparison to the first experiment. 

Interestingly, when the cue was presented before the mixture, the targets achieved very 

similar results across both experiments. This contradicted our hypothesis because the 

additional FMM did not increase overall detection but only seemed to increase the 

detection in the Mixture-Target order. Thus, the modulations appeared to increase the 

salience of the target when no prior cue was provided, drawing the attention towards the 

target in a similar way as seen in the lead vocals.  

Curiously, even the pitch-quantized vocals with micro-modulations showed small 

differences between the orders of presentation, although the differences to the original 

vocals were supposed to be eliminated by the transfer of FMM.  This result implies that 

although the micro-modulations make a strong contribution to vocal salience, it seems 

that the full salience effect may emerge from the conjunction of multiple features of the 

vocals. One of the features might be the pitch offset of the unaltered vocals that was 

eliminated by quantizing the pitch to a tempered scale. These intonation deviations 

occur even in professional singers (Sundberg, Prame & Iwarsson, Sundberg et al., 1996, 

pp. 291–306; Mori et al., 2004; Hutchins & Campbell, 2009) and are an inevitable 

consequence of imperfect motor controls of the voice (Hutchins, Larrouy-Maestri & 

Peretz, 2014.). Even though these deviations were unlikely to be perceived as intonation 

errors (Hutchins, Roquet & Peretz, 2012), it is possible that these deviations yield 

auditory grouping cues that let the vocals stand out of the mixture. Furthermore, singers 

intentionally create such deviations to add expressivity to the sound (Sundberg, Lã, 

Himonides, 2013) and therefore may add an important cue to the unaltered vocals, that 

is lost in pitch-quantization.  

More speculatively, the pitch quantization and re-introduction of pitch variation may have 

also altered timbral features of the vocals. Timbre is a multidimensional attribute 

(Siedenburg, Saitis, & McAdams, 2019) that enables the discrimination and identification 

of sound sources (e.g., sounds from a keyboard vs. a guitar), even though they may 

match in other acoustic cues such as loudness and pitch. Previous studies focusing on 

the recognition of instruments and voices showed that the human singing voice has an 

advantage over other instruments supposedly based on timbre alone (Agus et al., 2012; 

Suied et al., 2014; Isnard et al., 2019). Voice specific cortical areas remain selective to 

timbre of naturalistic vocal sounds even when vocal and non-vocal sounds where 

matched in acoustic cues (Bélizaire et al., 2007). Further, the facilitated recognition and 

cortical selective was observed only for natural vocals and was absent when “chimeras”, 

i.e., interpolations between instruments and vocals were presented (Agus et al., 2012; 

Agus et. al., 2017). Even though we think that in the present experiments timbre 



 

58 

 

changes were subtle, if noticeable at all, this interpretation would suggest that vocal 

salience could be a result of the joint contribution of timbre and pitch cues in auditory 

scene analysis. A distortion of such joint features due to the autotuning and f0-

modulation could have hindered voice-specific processing to occur, thus hindering the 

full salience effect to arise for our modified vocals.    

In summary, in line with previous experiments, the detectability of all non-vocal 

instruments was affected by a change in the presentation order, whereas lead vocals 

were detected with similarly high accuracies in both presentation orders. This effect 

corroborates a unique vocal salience that automatically attracts listeners’ attention. 

Instruments replacing vocals showed better detection accuracies compared to 

instruments playing as part of the musical accompaniment, but still exhibited reduced 

accuracy when the mixture preceded the target. Even for pitch-quantized vocals, this 

dependency on presentation order was evident, implying that phonological features that 

engage a facilitated processing of speech sounds are not sufficient to drive vocal 

salience. The difference between the presentation orders decreased considerably when 

the FMM originally present in the vocals were transferred to the instruments and pitch-

quantized vocals. Overall, this also implies that excessive pitch correction may strip 

vocals of a unique acoustical feature that helps turning the human voice into a focal 

point of musical scenes.  
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3.3 Synopsis 

The results underscore the effects observed in Study 1, highlighting the influence of top-

down processing on the perception of auditory scenes, the varying salience of different 

target categories, and a unique vocal salience. While neither the main melody nor 

phonetic cues were found to drive vocal salience, frequency micro-modulations stood 

out as a promising candidate, as a correlation between FMM intensity and salience was 

observed. This finding raises questions about whether FMM also contribute to other 

reported perceptual benefits of vocals. 
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4. IMPACT OF INTERFERENCE ON VOCAL AND 

INSTRUMENT RECOGNITION 

4.1 Introduction 

Motivated by the effect of frequency micro-modulations (FMM) and vocal salience in the 

detection of voices in musical mixtures, this study investigated whether similar patterns 

can be found in other areas of perception. The third study focused on the recognition of 

short sounds, where it has been demonstrated that vocals are recognized faster and 

more accurately than other instrument sounds. The aim was to investigate the influence 

of FMM on these recognition advantages and to determine whether the recognition of 

sounds accompanied by interfering sounds demonstrates parallels to salience in musical 

mixtures, that would manifest with vocals showing a distinct robustness to interference. 

4.2 Study 3 

This chapter is currently in press at The Journal of the Acoustical Society of America as: 

Bürgel. M. & Siedenburg, K. (2024) Impact of Interference on Vocal and Instrument 

Recognition. The content of this chapter is identical to the manuscript. 

Author Contributions: Michel Bürgel formulated the research question, participated in the 

study design, carried out the experiments, analyzed the data and wrote the final paper. 

Kai Siedenburg formulated the research question, guided the study design and data 

analysis, and revised the manuscript. 

 

4.2.1 Abstract 

Voices arguably occupy a superior role in auditory processing. Specifically, studies have 

reported that singing voices are processed faster and more accurately and possess 

greater salience in musical scenes compared to instrumental sounds. However, the 

underlying acoustic features of this superiority and the generality of these effects remain 

unclear. This study investigates the impact of frequency micro-modulations (FMM) and 

the influence of interfering sounds on sound recognition. Thirty young participants, half 

with musical training, engage in three sound recognition experiments featuring short 
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vocal and instrumental sounds in a go/no-go task. Accuracy and reaction times are 

measured for sounds from recorded samples and excerpts of popular music. Each 

sound is presented in separate versions with and without FMM, in isolation or 

accompanied by a piano. Recognition varies across sound categories, but no general 

vocal superiority emerges and no effects of FMM. When presented together with 

interfering sounds, all sounds exhibit degradation in recognition. However, whereas /a/ 

sounds stand out by showing a distinct robustness to interference (i.e., less degradation 

of recognition), /u/ sounds lack this robustness. Acoustical analysis implies that 

recognition differences can be explained by spectral similarities. Together, these results 

challenge the notion of general vocal superiority in auditory perception. 

4.2.2 Introduction 

The human auditory system possesses remarkable abilities to detect and distinguish 

sounds, even in complex acoustic scenes where various sounds occur simultaneously. 

This complexity is exemplified in musical scenes featuring multiple instruments and 

voices. Despite the simultaneity of sounds, the auditory system excels at identifying and 

selectively focusing on individual instruments and vocals within a musical scene. This 

ability is achieved through the process of auditory scene analysis (ASA, Bregman, 

1990), wherein sounds are separated and organized into mental representations of 

distinct auditory streams. Acoustic features of sounds play a crucial role in this process, 

providing cues to organize the auditory input into meaningful components. In the context 

of music, these cues encompass loudness, pitch, and timbre. Timbre, often simply 

described as “texture” or “tone color” (Helmholtz, 1877), is a multidimensional feature 

(Siedenburg et al., 2019) that enables the discrimination of sound sources (e.g., sounds 

from a singing voice vs. a cello), even when other acoustic features match.  

Neurophysiological experiments have demonstrated enhanced cortical “voice-specific” 

responses when isolated vocal sounds are presented alongside non-vocal 

environmental sounds (Belin et al., 2000; Belin et al., 2002), as well as other musical 

instrument sounds (Levy, et al., 2001; Gunji et al., 2003). Moreover, specific neural 

populations have been identified that respond selectively to music featuring singing 

voices but not to instrumental music mixtures (Norman-Haignere et al., 2022). This 

facilitated processing of vocal sounds extends to multi-instrumental musical scenes, 

where vocal sounds exhibit a unique salience that attracts listeners' attention unlike 

other sounds (Bürgel et al., 2021). In a comparative analysis of vocal and instrumental 

melodies, vocal melodies were shown to be more accurately recognized than 

instrumental melodies (Weiss et al., 2012) even when the melodies are sung without 

lyrics (Weiss et al., 2021). We here refer to the faster and more precise recognition of 

vocal sounds as ‘vocal superiority’.  

Agus and colleagues investigated the ability to recognize instrumental and vocal sounds 

in a multi-experiment study (Agus et al., 2012). The study used sounds excerpts with a 

duration of 250 ms extracted from a database of isolated musical sounds. Sounds were 

controlled in level and pitch with the aim of isolating timbre as the distinctive factor. 
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Participants were tasked with recognizing sounds of a target timbre in a sequence of 

diverse sounds, responding actively when detecting a target. As recognition was 

anticipated to be highly accurate, response times were measured to provide insights 

even in circumstances of perfect or indifferent recognition accuracy. Participants showed 

near-perfect accuracy and fast reaction times for all targets. Nevertheless, vocal 

superiority emerged via consistently faster reaction times and higher accuracy compared 

to instrumental sounds. Subsequent experiments further underscored recognition 

advantages for vocal sounds, revealing that vocals are recognizable from shorter sound 

snippets compared to other musical instruments (Suied et al., 2014; Isnard et al., 2019). 

The specific acoustical features responsible for triggering vocal superiority are still 

unknown. Agus et al. (2012) argued that the full spectro-temporal envelope of sounds 

must be involved in vocal recognition, that is, neither solely spectral nor solely temporal 

features suffice for robust vocal recognition. This argument appears to be inconsistent 

with other studies on recognition of vocal sounds from short sound snippets below 8 ms 

duration (Suied et al., 2014), so short that reliable temporal cues are likely to be 

eradicated. Spectral envelope cues of vocal sounds such as formants have also been 

shown to be highly informative of instrument identity and the natural basis of vowel 

recognition (Reuter et al., 2018).  Using automatic instrument classification on a large 

set of sound samples, Siedenburg et al. (2021) observed that spectral envelope features 

alone sufficed to accurately discriminate vocal sounds from other harmonic musical 

instrument sounds. Thus, whether spectral envelope features alone contribute 

substantially to perception tasks based on fast recognition of vocal and musical 

instrument sounds remains to be determined.  

Our previous experiments on auditory attention in musical scenes highlighted yet 

another candidate feature: frequency micro-modulations (FMM) present in singing 

voices (Bürgel & Siedenburg 2023). In the context of this study, FMM refers to non-

stationary frequency changes in pitched sounds, usually smaller than one semitone 

(Larrouy-Maestri & Pfordresher 2018). In singing, FMM arises from imperfect control of 

intonation caused by vocal-motor control adjustments (Hutchins et al., 2014), that persist 

even in highly trained singers (e.g., Sundberg et al., 1996; Hutchins & Campbell, 2009), 

but can also be utilized intentionally as a form of expressive intonation (Sundberg, et al., 

2013). Although pitch perception for vocals appears to be less precise than for musical 

instruments (“vocal generosity effect” - Hutchins et al., 2012; Sundberg et al., 2013; Gao 

& Oxenham, 2022), the expressivity of FMM still provides perceptible additional musical 

information (Larrouy-Maestri & Pfordresher, 2018) and plays a role in enhancing the 

prominence of vowel sounds (McAdams 1989; Marin & McAdams, 1991). Hence, this 

line of work raises the question whether FMM, enhancing the prominence of singing 

voices in musical scenes, also plays a role in the fast and precise recognition of vocal 

sounds. 

The aim of this study is to critically revisit the phenomenon of vocal superiority in order 

to highlight various acoustical factors that affect the recognition of vocal and 

instrumental sounds. We aim to investigate recognition of vocals under consideration of 



 

66 

 

the specific vowel type within simplified musical scenes and explore the influence of 

FMM and other spectral features in a regression model. Furthermore, we investigate 

whether recognition is dependent on the used audio material or remain consistent 

across different stimulus sets and vocal sounds. Overall, this may help to further 

disentangle the roles of acoustical features and perceptual categorization processes in 

the perception of voice sounds.   

The experimental design emulates that of Agus et al. (2012): in a recognition go/no-go 

task participants are presented both vocal and instrumental sounds and are instructed to 

respond to one type of sound while ignoring the other (Agus et al., 2012). Participants 

are instructed to respond as quickly as possible when hearing sounds of a target 

category while ignoring sounds of the non-target category (distractors). We measure 

response times and recognition accuracy. All sounds are aligned in duration, sound level 

and controlled in pitch. The targets consist of either instrumental sounds (wind or string 

instruments) or vocal sounds (sung vowels or singing voices). To investigate the effect 

of FMM on sound recognition, here each sound is presented in both an unmodified 

version and a version with eliminated FMM. Throughout the experiment the target 

category alternates between blocks to gather category-dependent responses. 

Additionally, in one block for both vocal and instrument targets, sounds are 

accompanied by a spatially separated piano accompaniment forming a minor or major 

triad with the target. This design aims to assess recognition abilities when the target is 

embedded in a simplified musical scene. 

We conduct three experiments as illustrated in Figure 4.1: In Experiment 1A, sounds are 

extracted from a sample database, encompassing sung vowels /a/ and /u/ in both alto 

and soprano registers as vocal sounds, along with bassoon, trumpet, cello, and violin 

sounds as instrumental sounds. The results indicate frequent confusion between specific 

vocal and wind sounds, and the absence of an effect for FMM. To further investigate this 

issue, two additional experiments are conducted. Experiment 1B replicates Experiment 

1A but excludes wind instruments. In Experiment 2, sounds are extracted from a popular 

music database, featuring female and male singing voices as vocal sounds, alongside 

string and wind instruments as instrument sounds. This experiment aims to compare 

professionally manufactured samples of isolated sounds with relatively small FMM 

against excerpts of naturalistic popular music with relatively large FMM. 

Expanding upon previous studies, we hypothesize a discernible effect of vocal 

superiority, anticipating that vocal sounds are recognized faster and more accurately 

than instrument sounds. Furthermore, we expect that the human auditory system is 

specifically sensitive to the FMM occurring in singing voices, yielding pronounced vocal 

superiority for singing voices with FMM. Notably, our previous experiments (Bürgel & 

Siedenburg, 2023) demonstrated a high correlation between a larger frequency range of 

FMM and sound salience. Therefore, we expect the influence of FMM to be even more 

pronounced in the experiment that utilizes pop music excerpts. Given the reported 

robust detection of vocal sounds in complex musical scenes, demonstrating a partial 

immunity to interference from other sounds present within such scenes, we speculate 
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that the introduction of an accompanying piano interferer has a comparatively small 

impact on the recognition of vocals.  

Illustration of the sound categories used in the experiments. In Experiment 

1A and 1B, sounds were extracted from a sample database of isolated 

sounds, including sung vowels /a/ and /u/ from both alto (green) and 

soprano (red) registers, along with bassoon, trumpet, cello, and violin 

sounds. For Experiment 2, sounds were extracted from a popular music 

database, featuring female and male singing voices, along strings and 

wind instruments sounds. 

4.2.3 General Methods 

Participants  

All participants were recruited via calls for participation on the online learning platform of 

the University of Oldenburg. Separate calls for subjects with and without musical training 

were posted to ensure a diverse range of musical abilities in our sample. The inclusion 

criterion for musically trained participants was a minimum of four years of musical 

training on at least one instrument. All participants were required to self-report normal 

hearing as a prerequisite for participation. Information on the participants’ musical 

abilities was acquired using a subset of the Gold-MSI (Müllensiefen et al., 2014) 

consisting of nine questions on music perception abilities and seven questions on 

musical training. The number of participants is listed in the respective experiment 

sections. 

Figure 4.1: Overview of experiments 
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Stimuli and Task 

Stimuli were generated in MATLAB (MathWorks Inc., Natick, MA, USA) by using 

modified excerpts from two distinct databases. For Experiment 1, a sample database of 

orchestral instruments was utilized (Vienna Symphonic Library VI Series, 

https://www.vsl.co.at/en, see supplementary material Table 10). All sounds in the VSL 

database had a uniform duration, but featured variations of attack and decay length (see 

supplementary material S6). In Experiment 2 excerpts from a popular music multitrack 

database were employed (“MedleyDB”, https://medleydb.weebly.com/). A schematic 

illustration of the stimuli extraction is shown in Figure 4.2A.  

(A) Stimuli encompassed vocal sounds, as well as wind and string instruments. 

Each sound category was represented by twelve distinct sounds, covering 

fundamental frequencies across a one-octave range. Targets were aligned to 

a 250 ms duration and normalized in sound level. Two distinct variations were 

created for each target: one with inherent frequency micro-modulation (FMM) 

and another where FMM was eliminated. Half of the time the target sound was 

embedded in two piano sounds, creating a major or minor triad with the target. 

(B) The experimental procedure comprised five blocks. The initial block 

entailed a detection task, where participants were instructed to respond to all 

sounds regardless of their timbre. Subsequent blocks were randomized in 

order and encompassed a go/no-go recognition task, wherein participants 

were instructed to solely respond to either instrumental or vocal sounds, while 

ignoring the other sounds. Two blocks featured isolated sounds, whereas in 

the remaining two blocks, sounds were presented simultaneously with a piano 

accompaniment.  

Figure 4.2: Overview of methods 
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For the instrument sounds, two wind instruments and two string instruments were 

selected as target categories: bassoon, trumpet, cello, and violin. For vocal sounds, the 

vowels /a/ and /u/ in the registers alto and soprano were selected. Each instrument or 

vowel was selected in the mezzo forte dynamic level and in a range of twelve semitones, 

ranging from A3 to G#4 (one octave), resulting in 96 sounds. An alternative version of 

each sound without FMM was created using the frequency modulation tool in the pitch 

and time correction software Melodyne (Melodyne Version 5, Celemony Software). This 

process involved analyzing the FMM in Melodyne using the “pitch modulation” function 

and subsequently removing FMM by setting all modulations to zero. A quantification of 

the FMM reduction is included in the supplementary material (S8). Its perceptible impact 

on the sound ranged from being nearly inaudible without direct comparison to sounds 

with FMM, particularly for some sounds in the orchestral database, to being more 

noticeable for the pop music extracts. For transparency we uploaded example sound 

files on our website (https://github.com/MichelBuergel/Data/vocalRecognition). All 

sounds were truncated to a duration of 250 ms, starting 5 ms before the sound level 

reached a threshold of -20 dB relative to its maximum level. The first 5 ms were used to 

create a smoothed onset, while the last 5 ms were used for as a fading offset, utilizing a 

5 ms logarithmic ramp for both. Signals were converted to mono by summing up both 

channels and sound level was normalized in root-mean-square (rms). In total, 192 

distinct target sounds were generated this way, comprising twelve sounds each with and 

without FMM for each of the four instruments and four vocal sounds. For conditions in 

which the sounds were accompanied by a piano interferer, additional piano samples 

(Bösendorfer grand piano) were used, spanning the pitch range from A2 to A5, to 

encompass all possible pitch combinations required to create a triad with the target 

sound (cf., Siedenburg et al., 2020).  

Procedure 

The experiments were approved by the ethics committee of the University of Oldenburg. 

All experiments shared identical designs but varied in duration and the chosen stimulus 

set. Figure 4.2B provides a schematic overview of the procedure. Experiment 1A utilized 

all 192 stimuli extracted from the VSL database. In Experiment 1B, the wind instruments 

were replaced with string instruments, resulting in a balanced set of instrumental and 

vowel sounds and a total of 96 stimuli. Experiment 2A employed 96 stimuli from the 

popular music database.  

Each experiment started with a briefing session, during which participants were 

instructed about the experiment's structure, consisting of distinct blocks featuring either 

isolated or accompanied sounds. Additionally, participants were informed that they 

would need to react to and attend exclusively to vocal sounds, or sounds belonging to 

string or wind instruments. Subsequently, participants received specific instructions for 

the accompanied blocks. They were informed that an interfering piano sound would play 

in one ear, which they were instructed to ignore, while focusing their attention on either 

vocal or string and wind sounds presented in the other ear. This briefing was followed by 

a training section, during which participants freely listened to instrumental and vocal 

sounds, with or without a piano interferer. A description and icon for the presented 



 

70 

 

sound were provided before and during the sound presentation. Participants had to 

listen to each sound category in randomized order, both with and without piano 

interferer, before they could proceed to the main experiment. The main experiment 

comprised five blocks, each containing all stimuli in a randomized order. The first block 

always involved an „all-go“ detection task, where participants were instructed to respond 

to all stimuli as fast as possible, irrespective of timbre. Subsequent blocks were “go no-

go” tasks, where instrumental or vocal sounds acted as targets, and the other group had 

to be ignored. Sounds were either presented in isolation or accompanied by a piano 

dyad, forming a major or minor triad with the target sound. To attenuate effects of 

energetic masking , the piano signal was set to a level of -5 dB relative to the target and 

presented dichotically with respect to the target signal. The dichotic separation of piano 

and target (left or right channel), as well as the key of the triad (major or minor) and tonal 

position of the target in the triad (root, third, or fifth), were randomly assigned but 

balanced across all stimuli in one block. The number of target and distractor stimuli was 

also balanced. All sound levels were normalized. Instructions, using the same icons as 

in the trainings phase, were presented on a touch screen before each block and 

remained visible during each block. Participants manually continued the experiment by 

pressing a button on the touch screen before a block started. The stimuli presentation 

started after a 2000 ms pause. Stimuli were presented in a continuous stream with a 

2000 ms response window and a randomized 1000 to 2000 ms inter-trail interval to 

prevent a rhythmic presentation. All stimuli were presented diotically, except for the 

dichotic condition with a piano interferer. The experiment concluded with a questionnaire 

gathering demographic data and a subset of sixteen questions from the Gold MSI to 

assess participants' musical ability. 

Apparatus 

The experiment was conducted in a double-walled sound booth. Participants sat in a 

comfortable chair and interacted with the experiment using a touch screen attached to a 

movable arm in front of them. Stimuli were processed through a RME Fireface UCX 

soundcard at a 44.1 kHz sampling rate and presented on Sennheiser HD 650 

headphones. Participants’ responses were captured using a custom-made response 

box. Pressing a button on the box triggered a short signal burst, which was recorded 

simultaneously with the stimulus presentation at audio sampling rate, removing any 

potential time lag between stimulus presentation and response recording. Stimuli were 

presented at an average level of 70 dB SPL (A) as measured with a Brüel & Kjær Type 

2250 light sound-level meter and a Brüel & Kjær Type 4153 artificial ear to which the 

headphones were coupled.  

Behavioral Analysis 

Participant accuracy was evaluated by analyzing the error rate, which accounted for 

each missed stimulus. A stimulus was deemed a miss when the response time either 

exceeded 2000 ms or was less than 100 ms, aiming to mitigate responses based on 

anticipation (Suied et al., 2010). The inverse efficiency score (IES; Townsend and 

Ashby, 1978), combining accuracy as error rate (ER) and reaction time (RT) as defined 

in Eq. (1), was used as a dependent variable. The IES has been shown to be a straight-
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forward and useful synthesis of response times and accuracy measures, interpretable as 

an estimate of the average time needed to complete a correct response or simply as 

accuracy-corrected response time in ms (for a comprehensive review, see 

Vandierendonck, 2017; Mueller et al., 2020). To compute the IES, the ER and RT were 

averaged over every stimulus within a condition for each subject before dividing RT by 

1-ER: 

𝐼𝐸𝑆 =  
𝑅𝑇

1−𝐸𝑅
             (1) 

Adhering to the recommendations of Bruyer and Brysbaert (2013), it was ensured that 

strong correlations between ER and RT were present, along with comparable statistical 

effects in both variables and the IES. A representation of recognition accuracy as ER 

and speed as RT is provided in the supplementary material. 

Linear mixed-effect models (LME; West et al., 2014) were utilized for statistical 

analyses. All mixed-effects analyses were conducted in MATLAB using the fitlme 

function in the Statistics and Machine Learning Toolbox (Statistics and Machine 

Learning Toolbox Release 8.7, MathWorks Inc., Natick, MA, USA). The model 

incorporated random intercepts for each participant. In addition, IES and musical 

sophistication were used as numerical variables, whereas the presence of FMM, and 

sound category (vocal or instrumental sound) as categorical predictors. All binary 

categorical predictors were sum-coded. To present main effects and interactions 

succinctly, results are displayed in the form of an ANOVA table, with fixed effects 

coefficients presented as statistical parameters (F) and probability (p). These values 

were derived from the LME models using MATLAB's anova function. For a more detailed 

analysis, individual fixed effects coefficients are also reported as statistical parameters 

(t) and probability (p). For a comprehensive display of the behavioral results, models, 

and statistical evaluations, please refer to the supplementary material. 

4.2.4 Experiment 1A 

The aim of Experiment 1A was to investigate the influence of target category, FMM and 

accompaniment on the recognition of sounds. Two vowel sound categories were 

presented: vowel /a/ and /u/ in the register alto and soprano; and two instrumental sound 

categories: strings with cello and violin and winds with bassoon and trumpet. Each 

category comprised twelve sounds with notes spanning over the same one-octave 

range. Each sound was presented in two versions, one with naturally occurring FMM 

and another where FMM was eliminated. Additionally, each sound was both presented 

in isolation and accompanied by a piano interferer. 

Participants 

A total of 32 participants took part in Experiment 1A. Two participants were excluded 

from the analysis because they achieved notably lower accuracies in the isolated sound 

recognition (60% and 63%) than the average accuracy of the subjects (88%, minimum = 

77%, maximum = 100%). Consequently, 30 participants (age: x̅ = 24.1, std = 2.6) were 

included in the analysis. This group comprised 15 self-described musically trained 
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participants and 15 participants with no or less than four years of musical training. There 

were overlaps in the musical sophistication scores of both groups: Non-musicians had 

scores of 32.9 (minimum: 9, maximum: 45) in the nine questions regarding musical 

perception and scores of 12.8 (minimum: 7, maximum: 34) in the seven questions 

regarding musical training. In contrast, musicians had scores of 45.7 (minimum: 38, 

maximum: 52) in questions related to musical perception and 32.1 (minimum: 24, 

maximum: 41) in questions related to musical training. 

Results & Discussion 

Results 

In the initial "all-go" block, participants were involved in a sound detection task, where 

they were instructed to respond whenever they heard a sound, regardless of its timbre. 

The task was accomplished with perfect detection accuracy, and the average detection 

time was 314 ms, resulting in an IES of the same value (314 ms), with no significant 

effects of sound category observed in the statistical evaluation (F= 0.632, p = 0.729). 

The distinctions between sound categories became more pronounced during the go/no-

go recognition task, for which IES scores are displayed in Figure 4.3A. Averages across 

sounds with and without FMM are shown because there were virtually no effects of 

FMM, see the statistics below.  

Recognition was generally slower and less precise compared to the detection task. From 

a descriptive perspective, vocal sounds in the isolated presentation condition slightly 

outperformed instrumental sounds, yielding IES scores of 667 ms compared to 

instruments with a score of 692 ms. However, categories clustered into two groups, one 

with relatively fast and precise recognition and therefore low IES containing the /a/, 

strings and trumpets, and another group with slower and less precise recognition 

containing the /u/ and bassoon. Among vowels /a/, yielded a score of 582 ms, compared 

to /u/, with a score of 752 ms. Among instruments, recognition of strings and trumpet 

were closely similar with a score of 537 ms and a score of 553 ms, respectively, 

whereas the bassoon stood out with a total score of 820 ms. When embedded in a 

musical scene, recognition for both vowels and instruments worsened, albeit with a 

different impact for the categories. When comparing recognition between the isolated 

and accompanied presentations, voice sounds exhibited an increase of 353 ms. 

However, differences seen in the isolated presentation were even more pronounced 

among voice sounds as /a/ demonstrated robustness to the presence of the 

accompaniment, displaying a score increase of 64 ms, which was considerably smaller 

than in /u/ which showed an increase of IES by 640 ms as a result of with slower RT and 

an ER close to chance level. In contrast, instrument sounds exhibited an increase in IES 

of 413 ms. Consistent with the isolated presentation, the bassoon continued to stand out 

among instruments, revealing differences between the bassoon and all other 

instruments and having the largest score increase in 764 ms with not only a more 

increased RT but also an ER close to chance level. The strings and trumpet showed a 

deterioration similar to each other, with an increase in IES of 296 ms.   



 

73 

 

(A) Results from Experiment 1A. Inverse efficiency scores are displayed on the y-

axis, sound categories on the x-axis. Sounds were either presented in isolation 

(round) or accompanied by a piano (rectangles). The square marks the mean for a 

given sound category. Error bars indicate 95% confidence intervals. The mean of 

individual participant is represented by black asterisks. (B) Results from Experiment 

1B. Graphical conventions are otherwise identical to (A). 

In terms of the statistical evaluation, the coefficient of determination (R²) for the 

correlation between error rate (ER) and reaction time (RT) across all stimuli was 0.82. 

Contrary to our assumptions, the hypothesized vocal superiority was absent in the 

isolated presentation condition as sound recognition showed no differences between 

vocal and instrumental sounds (F = 0.014, p = 0.91). Additionally, the presence of FMM 

had minimal impact, yielding deviations of IES scores not larger than ±22 ms (F = 0.060, 

p = 0.806). Notably, no clear trend emerged for either vowels or instruments. Musical 

sophistication also showed no impact on the recognition of sounds, neither for musical 

perception scores (F = 0.326, p = 0.568), nor musical training scores (F = 1,487, p = 

0.222), nor as a categorical factor by differentiating between self-identified musicians 

and non-musicians (F = 0.55, p = 0.477). The presentation side of the target sound in 

the interfered presentation also showed no effect (F = 1.153, p = 0.288). However, the 

presence of accompaniment showed an effect on recognition for accuracy (F = 9.311, p 

= 0.002). In the isolated presentation, the average IES was 680 ms which increased 

further in the presentation with accompaniment, resulting in a score of 1120 ms. While 

no general difference between the vocals and instruments in a comparison between with 

and without accompaniment were apparent (F = 0.040, p = 0.95), considerable effects 

were observable between /a/ sounds and all other categories (/u/: t = 47.450, p < 0.001, 

bassoon: t = 71.232, p < 0.001, and for strings & trumpet: t = 23.471, p = 0.021), 

Figure 4.3: Recognition in Experiment 1 
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highlighting a robustness to interference for /a/ sounds, unmatched by instruments or the 

vowel /u/. 

Discussion 

Experiment 1A reinforces the fundamental fact that timbre cues are sufficient to guide 

the recognition of sound sources. In line with Agus and colleagues and further studies 

(Agus et al., 2012; Moskowitz et al., 2020), no differences between sound categories 

emerged in the simple detection task, suggesting that sound detection is equally fast 

and accurate for all sounds with similar onsets. When participants were asked to 

recognize sound categories in a stream of sounds, both recognition times and error 

rates increased compared to the simple detection task. Another similarity with previous 

work is that recognition does not seem to be driven by a tradeoff in which faster 

response times lead to lower accuracy. Rather, some sounds were recognized both fast 

and accurately, whereas others were recognized slowly and inaccurately. 

Contrary to previous work (Agus et al., 2012) and our hypothesis, a vocal superiority 

effect did not emerge for the isolated presentation of sounds. Instead, most of the 

instruments were in fact recognized slightly faster and more accurately with lower IES 

scores. Furthermore, differences between the vowels became apparent and revealed 

that the recognition of /a/ sounds were similar to the recognition of the instruments, 

whereas the recognition of /u/ yielded lower IES scores as a result of being both slower 

and less accurate. Curiously, the bassoon showed a similar pattern of performance 

compared to /u/ sounds. A possible explanation for this could lie in the confusion 

between /u/ and bassoon. This confusion seems to be a result of spectral similarity 

which may result from shared formant frequencies between the sounds (Reuter et al., 

2018). The confusion presents characteristics akin to an informational masking effect 

(Tanner, 1958; Eipert et al., 2019), wherein the shared acoustical characteristics 

interfere with the perceptual processing of both sounds, leading to confusion and 

difficulty in distinguishing between the two. Consequently, this uncertainty in the 

recognition of /u/ and bassoon sounds may have contributed to enhanced certainty for 

other sounds and facilitated better recognition. 

Nevertheless, this assumption does not explain the lack of vocal superiority for /a/, which 

is known to be spectrally distinct from /u/. Among vowels, /u/ is assigned to the group of 

lowest statistical format frequency as opposed to /a/, which is in the highest group (e.g., 

Maurer, 2016, pp 35). An argument could be made that the ambiguity of the bassoon 

has led to a general uncertainty in the recognition of vowels, which manifested in both 

vowels but especially for /u/ . Support of this assumption is the consideration that in the 

study by Agus, neither /u/ sounds, nor bassoon sounds were competing as target 

sounds, and it could be speculated that with the omission of these sounds, a vocal 

superiority was fostered. Coherent with this perspective, the sounds in Agus et al.’s 

experiment were also recognized with much higher accuracy, achieving error rates of 

less than two percent. This leaves room for speculation as to whether there is a general 

reaction time advantage only when the recognition accuracy is at ceiling level. However, 
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it is important to note that multiple studies utilizing a comparison in the recognition of 

speech and instrumental sounds have also demonstrated an advantage for speech 

sounds (Murray et al., 2006; Moskowitz et al., 2020) and even recognition advantages 

for singing voices (Suied et al., 2014). 

In parallel, participants’ familiarity with the sound categories may have influenced 

recognition (Siedenburg & McAdams 2017). Although a training phase was provided to 

familiarize participants with the sounds, this exposure may not have been extensive 

enough to achieve a sufficiently consolidated mental representation of the underlying 

sound categories, resulting in poor classification for certain categories.  

Furthermore, no effect of FMM was observed. In our previous experiment, we utilized 

excerpts featuring tone transitions, known to exhibit particularly perceptible FMM (Saitou 

et al., 2005; Hutchins & Campbell, 2009; Larrouy-Maestri & Pfordresher, 2018). This 

implies that the degree of FMM may have been too small to enrich sounds with 

perceptible information, leading to an alignment between sounds with and without FMM. 

Alternatively, a more straightforward explanation could be that FMMs are not a crucial 

feature for recognition but rather exploited for pattern matching in complex musical 

scenes, where they particularly help the vocals to stand out from other sounds. 

Notably, a unique robustness to interference emerged for the /a/ sounds in the 

comparison between the presentation with and without accompaniment. As recognition 

worsened for all sounds, vowel /a/ stood out by achieving a considerable smaller 

decrease of IES in the condition with accompaniment compared to the /u/ and all other 

instrument sounds. This robustness was a result of a distinctly faster recognition of /a/ 

sounds with almost no deterioration in accuracy between the isolated and accompanied 

presentation which was visible in both musically untrained and trained participants. 

However, it should be noted that due to the high error rate of /u/, a clear interpretation of 

the results for this sound category is involved. If the /u/ sounds were excluded from the 

results, it could be assumed that the robustness to interference of the /a/ sounds might 

demonstrate another facet of vocal superiority that shows parallels to the robust 

detection of voices in musical scenes (vocal salience, Bürgel et al. 2021). However, 

whether this represents an actual vocal-specific recognition, or whether it is a result of 

spectral similarities favorable to /a/ sounds and unfavorable to /u/ sound, remains 

unanswered in our experiment. 

Taken together, these findings prompt the question about the extent to which confusion 

impacted the recognition of vowel sounds and whether distinctiveness is the primary 

factor driving recognition scores. To investigate this, Experiment 1B was conducted with 

the focus of disentangling the confusion, by reducing the stimuli set to vowel and string 

sounds.  
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4.2.5 Experiment 1B 

To address questions regarding potential confusion between vowels and the bassoon, 

Experiment 1B used the same design as Experiment 1A but omitted wind instruments 

from the stimuli set. To balance the number of vocal and instrumental sounds, the 

instrumental samples were presented twice. Additionally, each sample was presented 

both in isolation and accompanied by a piano dyad. All stimuli were presented in 

versions with FMM. 

Participants 

A total of 30 participants (age: x̅ = 24.1, std = 2.6) took part in Experiment 1B. The 

experiment was carried out in the same session as Experiment 2, and consequently the 

same participants were part of both experiments. Participants were randomly assigned 

to start with either Experiment 1B or Experiment 2, with order counterbalanced among 

participants. No participants were excluded from the analysis. This resulted in 15 self-

described musically trained participants and 15 participants with no or less than four 

years of musical training. Overlaps between both groups were observed for musical 

sophistication scores, with non-musicians achieving scores of 38.8 (minimum: 23, 

maximum: 51) in the nine questions regarding musical perception and scores of 12.4 

(minimum: 7, maximum: 22) in the seven questions regarding musical training. In 

contrast, musicians scored 49.7 (minimum: 36, maximum: 58) in questions related to 

musical perception and 23.2 (minimum: 10, maximum: 42) in questions related to 

musical training. 

Results & Discussion 

Results 

The performance in the recognition task is depicted in Figure 4.3B. In the isolated 

presentation, the average IES was 598 ms. This increased in the accompanied 

presentation, resulting in an IES of 878 ms. In the isolated presentation vowels and 

strings were closely aligned, with vowels exhibiting an IES of 603 ms and strings an IES 

of 588 ms. Both vowel sounds /a/ and /u/, were recognized to a similar degree, with /a/ 

yielding an IES of 594 ms, and /u/ an IES of 611 ms. The inclusion of musical 

accompaniment had a detrimental impact on the recognition of /u/ and string sounds. 

Vowel /a/ showed the smallest degradation among sounds with an increase of 43 ms. In 

contrast vowel /u/, exhibited the largest increase of 599 ms with an accuracy close to 

chance level. Strings exhibited an increase of 264 ms. 

Error rate (RT) and reaction time (RT) shared substantial variance with an R² value of 

0.62. Consistent with the findings in Experiment 1A, no differences in recognition 

emerged between vocal and instrumental sounds (F = 1.505, p = 0.221). Recognition 

performance deteriorated for the presence of accompaniment (F = 11.528, p < 0.001). 

However, in line with the robustness to interference observed in Experiment 1A, this 

effect was less pronounced for /a/ sounds, as underlined by effects between /a/ and /u/ 

(t = 6.842, p < 0.001), as well as /a/ and strings (t = 2.745, p = 0.006). Musical 

sophistication did not appear to affect recognition in a substantial way, as no main 
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effects for either musical perception (F = 0.443, p = 0.506) or musical training (F = 

0.031, p = 0.859) were evident. Also, in line with Experiment 1A the presentation side of 

the target sound in the interfered presentation showed no effect (F = 0.024, p = 0.876) 

Discussion 

Experiment 1B aimed to investigate vocal sound recognition in the absence of wind 

instruments which were frequently confused with /u/ sounds in Experiment 1A. Contrary 

to expectations, no recognition advantage emerged for vocals in the isolated 

presentation, even though only string and vocal sounds were presented, closely 

mirroring the conditions of the shared distractor experiment by Agus and colleagues 

(Experiment 2: voice-processing advantage; Agus et al., 2012). Unlike Experiment 1A, 

no differences were observed between vowel /a/ and /u/ in the isolated presentation. 

This underscores our assumption that the relatively poor recognition of /u/ in Experiment 

1A was due to confusion with the bassoon, indicating that vocal sound identity itself 

does not guarantee superior recognition and does not make sounds unsusceptible to 

confusion with non-vocal sounds. This assumption is further supported by the 

contrasting behavior of vowels when embedded in a musical scene. As observed in 

Experiment 1A, /a/ sounds exhibited unique robustness to interference, with a smaller 

decrease in recognition performance distinct from /u/ and instrumental sounds. 

However, even without wind instruments, /u/ sounds yielded the worst recognition 

scores among all sounds.  

Another interesting observation arises in the isolated presentation: an equalization 

between strings and voices. In Experiment 1A the strings, especially the cello, exhibited 

faster recognition compared to vocal sounds. However, this difference is no longer 

evident. It remains unclear whether this change is due to the absence of the bassoon, 

the reduction of target categories, or a specific behavior of the cello. Nevertheless, it 

underscores the necessity  of contextualizing results within the stimulus set and 

emphasizes the importance of testing with diverse stimuli sets. 

Furthermore, recognition accuracy for /u/ dropped close to chance level in the condition 

with accompaniment, suggesting that the piano dyad strongly interfered with the /u/ 

sounds. However, stimuli were deliberately designed to hinder complete energetic 

masking by reducing the piano’s sound level and spatially separating the target and 

interferer sounds, resulting in binaural presentation. An argument could be made that 

informational masking occurred with both sounds remaining audible but listeners’ 

attention shifting towards the masking sound (Pollack, 1975; Kidd et al., 2008), 

potentially due to the uncertainty associated with the random assignment of target and 

accompaniment to left and right channels. However, this would not explain why certain 

sound categories such as the /a/ are very robust to the presence of the accompaniment. 

The significantly better recognition of /u/ in the isolated performance in Experiment 1B 

together with the poor recognition of /u/ in Experiment 1A suggests that most likely a 

combination of confusion with the bassoon and interference by the piano, both of which 

can be attributed to informational masking, were at the source of the observed effect. 
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In summary, the results underline the findings from Experiment 1A and support the 

assumption that vocal sounds in musical scenes do not inherently evoke enhanced 

recognition. Instead, it appears that the recognition of vocal sounds seems to be highly 

influenced by the vocal sound quality itself (here, the vowel type). Thus, it would be 

intriguing to explore whether the recognition of other vowels or vocal sounds would be 

similar to the /a/ or /u/ sounds. To explore the generality of the observed effects and 

further assess the effect of FMM, we conducted Experiment 2, in which stimuli were 

generated by extracting snippets of vocals or instruments from a pop music database. 

4.2.6 Experiment 2 

Sounds were extracted from songs in a multitrack popular music database used in 

previous work, which demonstrated a correlation between FMM range and vocal 

salience (Bürgel & Siedenburg, 2023). The excerpts were taken from the onset of notes 

and thus contained pitch transitions encompassing more pronounced FMM compared to 

Experiment 1. 

Participants 

The same participants as in Experiment 1B took part. 

Stimuli and procedure 

The popular multi-track music database comprises 127 songs across a variety of 

popular music genres, each with individual audio files for instrument and vocal tracks. 

Given the continuous nature of the tracks and the presence of overlaid audio effects, 

potential sound candidates had to be manually selected to resemble the clean and 

unmodified samples in the VSL database. In line with the selected sound categories in 

the database used for Experiment 1, string and wind instruments were chosen as 

instrumental targets. For vocal sounds, rather than different voice registers or vowels, 

female and male vocal tracks were selected. To control pitch, the chosen tracks were 

analyzed in Melodyne, and twelve different excerpts for each target sound were 

extracted, covering the same pitch in a range of one octave (from A3 to G#4) as in our 

VSL samples. This process resulted in vocalizations that could be categorized as nine 

/a/ sounds, four /u/ sounds, one /o/ sounds, one /e/ sound, one hissed sound, and eight 

mixed sounds with multiple vowels. FMM manipulation, truncation, ramping, and 

normalization were performed similarly to the sounds from Experiment 1. In total, 96 

different stimuli were extracted this way, including twelve sounds with and without FMM 

for two instrumental and two vocal sounds each. Additionally, each target sound was 

both presented in isolation and embedded in a musical scene with a piano dyad 

accompanying the target sound. The procedure was identical to Experiment 1A and B.  

 

Results & Discussion 

Results 

In the detection task, all sounds were detected perfectly, with only minor differences 

visible for reaction time. Vocals yielded an IES of 365 ms, and instruments had an IES of 
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350 ms, with no significant effects present in the LME (F=0.817, p=0.44). Additionally, 

no difference was observed for participants who started either with Experiment 1B or 

Experiment 2 (F = 0.603 p = 0.616). The performance for the recognition task in 

Experiment 2 is displayed as averages across sounds with and without FMM in Figure 

4.4A.  

(A) IES: Vocal sounds (female and male) and two instrument sounds (strings and 

winds) as targets in a go/no-go task. Graphical conventions are otherwise identical 

to Fig. 3. (B) Vowel analysis: Vocal sounds were categorized by vocalizations in 

nine /a/ sounds, four /u/ sounds, one /o/ sounds, one /e/ sound, one hissed sound, 

and eight mixed sounds with multiple vowels. The recognition for a given 

vocalization is represented as the average IES in isolation (rectangles) or in 

accompanied presentation (round).  

Overall, recognition was generally slower and less precise compared to the detection 

task. In the isolated presentation, the average IES was 621 ms. This increased in the 

presentation with accompaniment, resulting in an IES of 800 ms. The absence of FMM 

showed neither a positive nor negative trend, leading to average variances of IES not 

larger than ±24 ms. Differences between vocals and strings were closely aligned in the 

isolated presentation: female vocals exhibited a IES of 624 ms, male vocals of 589 ms, 

strings of 654 ms, and winds of 594 ms. When presented with accompaniment, 

recognition worsened for both vowels and strings. However, this effect was less 

pronounced for the vocal sounds, which exhibited an increase of 53 ms compared to an 

Figure 4.4: Recognition in Experiment 2 
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increase of 214 ms for instruments, demonstrating a robustness to interference as seen 

in both previous experiments for vowel /a/. The increase differed slightly between female 

and male vocals with no effects in the LME, with an increase of 37 ms for female vocals 

and an increase of 69 ms for male vocals. In contrast, strings yielded an increase of 134 

ms, and winds an increase of 294 ms. 

Discrimination between the vocalizations within the sounds revealed notable differences 

in recognition, as depicted in Figure 4.4B. The increase in IES between the isolated to 

accompanied presentation ranged from -18 ms to 64 ms, with the one /o/ sound 

standing out with an increase of 130 ms. Notably, the eight sounds with /a/ had an 

average IES of 531 ms in the isolated presentation, with an increase of 46 ms in the 

accompanied presentation. In contrast the four /u/ sounds had an IES of 646 ms in 

isolation, with an increase of 33 ms. Thus, /u/ sounds held higher IES, aligning with 

observations in Experiment 1. Contrary to those observations, no pronounced 

differences in the deterioration were observed between /a/ and /u/ sounds. However, it is 

important to note that this analysis is not balanced, as the number of stimuli within each 

vocalization greatly differed and the observed differences may be an artifact of individual 

stimuli.  

Error rate (ER) and reaction time (RT) shared substantial variance with an R² value of 

0.86. Consistent with Experiment 1, neither an effect of FMM emerged (F = 0.776, p = 

0.378) nor an effect for musical sophistication in musical perception (F= 0.939, p = 

0.332) or training (F= 0.012, p = 0.912) or an effect for target presentation side (F= 

0.169, p = 0.682). However, an overall recognition advantage for vocal sounds was 

present (F = 20.449, p < 0.001), as well as an effect for accompaniment (F = 15.813 p < 

0.001) and interaction effects between both (F = 20.252, p < 0.001). Differences 

between vocal and instrumental sounds were negligible in the isolated presentation but 

pronounced in the accompanied presentation with effects between vocals and strings (t 

= 3.784, p < 0.001), as well as vocals and winds (t = 9.313, p < 0.001), highlighting a 

specific robustness to interference for the vocals. As a synopsis of the experiments, 

Figure 4.5 displays the differences between the isolated and accompanied presentation 

of all three experiments.  
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The presence of accompaniment worsened recognition for all categories. 

The difference in IES between the isolated and accompanied presentation 

is displayed for all experiments and categories. The stars mark the average 

difference for a given category. Error bars indicate 95% confidence 

intervals. 

 

Discussion 

Experiment 2 investigated the recognition of vocal and instrument sounds extracted from 

a pop music database, focusing on the effect of Frequency Micro-Modulation (FMM) and 

assessing the generalizability of recognition advantages found in previous experiments. 

The results mirrored those of Experiment 1. Notably, the anticipated superior recognition 

for vocal sounds was only present in the condition with accompanied presentation but 

was not present in the condition with isolated presentation. Furthermore, the presence of 

FMM showed no impact on sound recognition, supporting the conclusion that cues 

related to FMM are not exploited or do not affect the recognition of musical sounds. 

Additionally, the previously observed robustness to interference for /a/ sounds persisted 

between the isolated and accompanied presentation for the vocal sounds of Experiment 

2. Additionally, an overall less pronounced deterioration of recognition in the 

accompanied presentation was observed for all sound categories, even though the 

sounds used within a category were less homogeneous than in Experiment 1. This 

inhomogeneity stemmed from extracting instrumental and vocal sounds from various 

songs with different instruments or singers, lacking strict control for intonation dynamics 

Figure 4.5: Robustness to interference 
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and articulation. It is likely that the less controlled pop music excerpts could stand out 

more easily from the piano accompaniment than the orchestral samples, which were 

aligned with the piano in intonation dynamics and articulation. Yet, despite the 

inhomogeneity of sounds, a clear robustness to interference was pronounced in the 

experiment, indicating that diverse vocal sounds are capable of exhibiting robust 

recognition. Interestingly, despite the distinctions observed between /a/ and /u/ in 

Experiment 1, this robustness was evident for most vocalizations, this robustness was 

evident for most vocalizations, except for three sounds (/o/, /e/, and /hiss/) which 

showed either no robustness or slightly worse performance in isolated presentation. This 

inconsistency might be a consequence of the sound’s inhomogeneity, allowing them to 

provide more distinct cues compared to the orchestral samples.  

4.2.7 Acoustical Analysis 

To explore relations between acoustic features of the sound and recognition 

performance, linear regression analysis was employed to predict human recognition 

scores using the spectral similarity between sounds and their FMM range. Spectral 

information of sound signals was obtained through cepstral coefficients derived of 

sounds’ energy in filter bands with equivalent rectangular bandwidth (ERBCC). This 

representation served two purposes: first, to compare spectral attributes of the 

competing target sounds that participants were asked to recognize, and second, to 

assess the similarity between the target sounds and piano interferers. The ERBCC 

extraction process was analogous to the computation of Mel-frequency cepstral 

coefficients (MFCC) known for their effectiveness in computational sound classification 

(Monir et al., 2022), but with using an ERB-filter bank (instead of the Mel-spectrum) to 

better align with data of human frequency selectivity (Glasberg & Moore, 1990). The 

ERBCC extraction process involved extracting the long-term spectrum over the whole 

250 ms duration, filtering the spectral energy of the target sounds into 64-ERB bands in 

the frequency range between 20 Hz to 16000 Hz, taking the logarithm, and deriving the 

first thirteen cepstral coefficients using discrete cosine transformation. In a last step, the 

first coefficient was discarded as it contains no information about the spectral shape, but 

only a constant level offset information and the temporal dimension was discarded by 

averaging each coefficient across the time windows.  

In order to extract the similarity between vocal and instrumental sounds, a principal 

component analysis (PCA) was performed on the ERBCC data of all target signals for 

each target category, encompassing all twelve notes, and the same twelve notes of the 

piano interferer (A3 - G#4). The first two principal components (PC1 & PC2), that 

explained the most variation in the dataset, were used to create a two-dimensional 

component space. The proximity of sounds in the space indicates their spectral 

similarity, with sounds closer together being more similar. A measure of spectral 

distinctiveness was derived by calculating the Euclidean distance between a target 

sound and the center of the space with the rationale that more spectrally distinct sounds 

would occupy regions further separated from the center of the space. To represent the 

similarity to the piano interferer, the distance between the target and the spatial centroid 
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of the piano sounds was computed. Additionally, to examine potential correlations 

between recognition accuracies and acoustic features, a confusion matrix was 

generated using the ERBFCC. This involved determining the similarity between sounds 

through a sound-by-sound correlation analysis. The resulting confusion matrix can be 

found in the supplementary material (S7). 

To gather information regarding the FMM intensity, the FMM range as the difference 

between highest and lowest fundamental frequency (f0) within each sound was 

analyzed. To do so, the fundamental frequency was extracted using the MATLAB 

function pitch (Audio Toolbox Release 3.7) in 10 ms sliding time windows over the 

duration the sound. An additional artifact suppression was implemented to counteract 

irregular fluctuations, by applying a threshold for tonal components in the time window 

(harmonic ratio) as provided in the pitch function, excluding samples below a harmonic 

ratio of 75%. Additionally, a one octave frequency threshold around the sounds median 

f0 was applied to each window, to eliminate erroneous leaps and octave errors in pitch 

recognition. As a final step the f0 frequencies were transformed to a scale with a 

resolution of one cent and the distance between largest and smallest f0 was computed.  

Both distance metrics and FMM range were employed as independent variables in a 

multiple linear regression model to predict IES. To mitigate the potential influence of 

adding independent variables to the regression, a bootstrap hypothesis testing was 

incorporated. In this process, linear regression models were generated using 

randomized independent variables to predict IES values in a bootstrap procedure 

comprising 1000 iterations. The results of the model using the true (non-randomized) 

similarities were then compared with the distribution of R² values from the bootstrap 

models, considering the model suitable when the adjusted R² of the analyzed data was 

greater than the 99th percentile of the bootstrap distribution. 

4.2.7.1 Experiment 1 

For Experiment 1, the first two principal components explained 91 percent of the 

variance, with PC1 accounting for 80 percent and PC2 explaining 11 percent. The two 

components are depicted in a component space in Figure 4.6A. Vowel /u/ and bassoon 

sounds are clustered throughout the component space. Along PC1, these are adjacent 

to /a/ sounds, whereas string and trumpet sounds create their own region on the 

opposite side of the space. Piano sounds appear in the center of the space and overlap 

on the edges mostly with /u/ and bassoon sounds. Interestingly, clusters that appeared 

on the opposite side of the component space, e.g., /a/ sounds, trumpet, and strings, 

were also the sounds with the best recognition scores. Conversely, the merged cluster 

of vowel /u/ sounds and instrumental bassoon sounds in the center is in concordance 

with assumptions about potential confusion between these categories. Further, this 

cluster underlines our hypothesis that /u/ and bassoon sounds had pronounced spectral 

similarities, which could explain their relatively poor recognition. Furthermore, the 

relatively small distance between those and the piano sounds implies that the piano 

interferer could have had a much greater influence on recognition for those sounds than 

for the other more distant sounds. 
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The analysis of FMM range is presented in Figure 4.6B. Vocal sounds had a larger 

range than instrument sounds, with /a/ showing a range of 49 cents and /u/ of 45 cents. 

However, this range was smaller than in our previous detection experiments where 

vocals exhibited a range of 84 cents. The elimination of FMM reduced the range to 6 

cents for both sounds. Instruments initially had an overall reduced FMM range compared 

to vocal sounds, with a range of 28 for strings and 16 cents for winds, further minimized 

to 4 cents for strings and 5 cents for winds. 

Results of the multiple linear regression are illustrated in Figure 4.6C. Similar to the LME 

analysis, a linear regression operating on the FMM range showed no considerable 

correlations with R² smaller than 0.02 in both the isolated and the accompanied 

presentation. Utilizing the distance between the target sounds in the component space 

yielded moderate correlations with R² values of 0.30 for the isolated presentation and 

0.38 presentation with the piano interferer. When considering the distance in the 

component space between the target and piano sounds, the linear regression for the 

presentation with the interferer yielded an R² value of 0.18. Operating on both distances 

improved the model to an R² of 0.54. The addition of the FMM range did not enhance 

the model. To examine whether the presence of FMM specifically impacts the 

recognition of vowels, a distinct linear regression was performed, focusing solely on 

vowel targets. However, even in this analysis, FMM range demonstrated no significant 

influence, with R² values remaining below 0.05 in both presentation conditions. All 

results, except for the one only operating on the FMM range, passed the bootstrap 

hypothesis test, with R² values exceeding the 99th percentile of the bootstrap 

distribution. In summary, the model supports our assumptions that spectral 

distinctiveness of the target sounds and the similarities between the target and the piano 

interferer guide sound source recognition. The consistently stronger correlations in the 

accompanied presentation for the similarities between the stimuli suggest that these 

similarities are particularly impactful when the musical scene is more demanding. 
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Figure 4.6: Acoustic analysis 

(A) Component space: A principal component analysis (PCA) was applied to the spectral 

features of all signals in Experiment 1. Sounds are presented in a component space of 

the first two components. Percentual values at the axis labels indicate the explained 

variance of the respective component. (B) FMM range: The average range of frequency 

micro-modulation (FMM) and average IES of the isolated presentation is displayed for 

each sound category in Experiment 1. (C) Linear correlation: A multiple linear regression 

was computed on features of individual sounds employed in Experiment 1 to predict IES. 

As features, the analysis utilized the sounds FMM range (FMM), distance between the 

sound and the center of a principal component space (ΔStim), distance between the 

sound and the mass of all piano sounds in a principal component space (ΔPiano) and 

combinations of all features. Transparent dotted boxes indicate the 99th percentile of a 

bootstrap hypothesis testing. (D), (E), (F) depicts the described analysis methods as in 

(A), (B), (C) but for Experiment 2. 

4.2.7.2 Experiment 2 

The component space for sounds utilized in Experiment 2 is shown in Figure 4.6D. In 

comparison to Experiment 1, sound categories were more intermingled in space. The 

first two principal components explained 92 percent of the variance, with PC1 

accounting for 85 percent and PC2 for 7 percent. Vocal and string sounds were mixed, 
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while wind instruments stood out and were mostly found in a distinct quadrant. 

Additionally, a densely packed cluster of piano sounds was visible. The lack of separate 

instrument and vocal clusters can be understood as a result of the less homogeneous 

excerpts utilized in this experiment, further emphasized by the pronounced cluster of 

piano sounds originating from the VSL database. Interestingly, despite the less 

homogeneous sound excerpts, better recognition was observed in Experiment 2 than for 

the more distinct sounds in Experiment 1. 

The analysis of FMM range is depicted in Figure 4.6E. Vocal sounds in Experiment 2 not 

only obtained a larger FMM range compared to Experiment 1 but also showed a close 

resemblance to the ranges found in our previous detection experiment. Female vocal 

sounds showed a range of 78 cents, and male sounds showed a range of 96, both being 

close to the salient vocal signals in our previous experiment with a range of 82 cents. 

After the FMM reduction, the range decreased to 15 cents for female vocals and to 29 

cents for male vocals. Instrumental sounds carried smaller ranges than vocals, which for 

strings were reduced from 24 cents to 4 cents, and for winds reduced from 21 cents to 9 

cents. 

As observed in the LME, a linear regression based on the FMM range showed no 

substantial correlations, with R² approximately 0.05 in both the isolated and the 

accompanied presentation. Utilizing the distance between target sounds in the 

component space yielded weak correlations, with R² values of 0.24 for the isolated 

presentation and 0.28 for the presentation with the piano interferer. When based on the 

distance in the component space between the target and piano sounds, the linear 

regression for the presentation with the interferer yielded an R² value of 0.11, which did 

not surpass the 99th percentile threshold. Utilizing both FMM range and the distance of 

target sounds slightly improved the model to an R² of 0.26 for the isolated and 0.29 in 

the accompanied presentation. Operating on both distance metrics held an R² of 0.29. 

Incorporating all predictors resulted in an R² of 0.32. Only models that operated on the 

similarities within the target sounds passed the bootstrap hypothesis testing. To 

investigate whether the FMM might only influence vocal sounds, a separate linear 

regression was performed focusing exclusively on female and male target sounds. 

However, even in this particular analysis, the FMM range showed no considerable 

correlation, with R² values remaining below 0.05 in both presentation conditions. Taken 

together, these results imply that spectral similarities between the targets impacted 

recognition, albeit to a somewhat smaller degree than in Experiment 1, as other distinct 

features of the inhomogeneous sounds may have been more dominant compared to 

spectral similarities. 

The diminished impact of the interferer sound appears to result from their spectral 

distinctiveness. The piano tones occupied a distinct area within the component space, 

lacking overlap with other sounds. This dissimilarity seems to have surpassed a critical 

threshold, leading to the recognition of the target sounds no longer being influenced by 

their similarity to the interferer. Therefore, the relatively smaller deterioration in the 

accompanied presentation in Experiment 2 could have been a combination of multiple 
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differences between the target and interferer, including intonation, articulation, and 

spectral dissimilarity. 

Despite the average FMM range of vocal sounds being comparable to our previous 

detection experiment, correlations between FMM range and recognition were negligible. 

This finding refutes our initial assumption in Experiment 1, that the absence of an FMM 

effect was due to insufficient FMM range. Additionally, the omission of FMM did not 

exhibit a consistent trend; instead, it appeared to unsystematically and marginally 

worsen or improve recognition. These findings reinforce our prior conclusion that cues 

related to FMM do not significantly affect the recognition of musical sounds. 

4.2.8 General Discussion 

In this study, we investigated recognition of vocal and instrumental sounds in three 

experiments. We tested the influence of frequency micro-modulations (FMM) and 

accompaniment on the recognition of vocal sounds. Sounds from multiple databases 

were utilized to examine the generality of effects across diverse audio material. 

Participants were tasked with classifying short vocal or instrumental sounds in a go/no-

go task. Sounds were controlled in level and pitch and each sound was presented in 

versions with naturalistic FMM and with reduced FMM. Additionally, sounds were either 

presented in isolation or formed a harmonic triad with an accompanying but spatially 

separated piano interferer. The audio material of the sounds varied between 

experiments. To assess whether human recognition could be explained by acoustic 

features, a multiple linear regression employing spectral features of the sounds was 

utilized.  

Contrary to our hypotheses and previous findings we did not observe vocal superiority 

(faster and more accurate recognition) across any of our three experiments. Instead, 

notable differences between sung vowels became apparent, with /a/ sounds 

outperforming /u/ sounds. Suspecting the absence of this effect due to spectral 

similarities between vocal and bassoon sounds (Reuter et al., 2018), as indicated by our 

acoustical model and observed in the behavioral data, we repeated the experiment and 

removed the wind instruments or used different audio material. While recognition 

improvement was evident, differences between the vowels persisted and the reported 

vocal superiority effect remained absent. An argument could be made that language 

differences between the singer and listener influenced the recognition of the vowels to 

some degree, thus potentially explaining one contributing factor  to the observed 

confusion. However, it's essential to note that the vowels used in classical singing may 

differ compared to those in everyday speech. The lack of vocal superiority is only 

sparsely reported in the literature (Bigand et al., 2011; Ogg et al., 2017). However, a 

direct comparison between our study and aforementioned studies is questionable. Ogg 

argued that the absence of vocal superiority in speech signals found in their study may 

not apply to the recognition of singing voices, as the investigated scenarios were too 

disparate. Bigand and colleagues pointed out that the absence of superiority in their 

study was likely caused by a peak level normalization. Furthermore, they reported that 
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when utilizing a root-mean-square (RMS) sound level normalization, as conducted in 

many sound recognition studies (i.e., Agus et al., 2012; Suied et al., 2014; Moskowitz et 

al., 2020) superior recognition of vocals was observed. They argued that the RMS 

normalization might have emphasized frequencies that facilitate a superior recognition of 

speech sounds. However, this suggestion is not supported by our results, as we applied 

root-mean-square level normalization but still observed an absence of vocal superiority, 

what makes our findings unique. 

Contrary to our assumptions, the removal of FMM showed no influence on vocal 

recognition. It is assumed that FMM enriches vocal sounds with additional information 

about pitch continuity (Weiss & Peretz, 2019) and enhances the prominence of sung 

vowels compared to vowels without FMM (McAdams, 1989). Our previous study on the 

influence of FMM on the detection of vocals in musical scenes underpinned the 

importance of FMM, as the reduction of FMM led to a reduced vocal salience (Bürgel & 

Siedenburg 2023). Consequently, our intention was to explore the effect of FMM on 

sound recognition. However, in the present study no such effects were found. To 

investigate whether this absence was based on using an orchestral database with 

stationary tones and generally lower FMM ranges, we conducted an additional 

experiment that used sounds extracted from continuous excerpts of the same pop music 

database used in our previous detection experiment. Although the FMM ranges were 

similar to the detection experiment, the effect of the FMM on recognition remained 

absent. An obvious disparity between both studies is the stimulus duration: two seconds 

in the previous experiment and a quarter-second in the current experiment. An argument 

could be made that such short stimuli do not provide sufficient exposure to allow a 

perceivable effect of FMM to unfold. However, this reasoning seems rather unlikely, 

considering that established perceptual thresholds for identifying the direction of pitch 

modulations are as low as 20 ms (Gordon & Poeppel, 2002). Moreover, FMM 

perceptibility has been demonstrated for tones of considerably shorter durations, such 

as 80 ms (d’Alessandro and Castellengo, 1991), as well as similar durations of 220 ms 

(Larrouy-Maestri & Pfordresher, 2018). On the other hand, this finding aligns with 

studies indicating that the auditory system utilizes multiple processes with different 

temporal resolutions (Poeppel 2002; Santoro et al., 2014; Giroud et al., 2020). These 

processes encompass mechanisms specialized in extracting information such as pitch 

and spectral shape, within short time intervals (~30 ms), while other processes analyze 

longer time intervals (~200 ms) to detect changes over time. Even though the time 

windows identified are both shorter than the stimulus duration we employed, this 

observation could indicate that our stimulus duration was too brief to give rise to a 

significant effect of time-variant features on detection. Moreover, in the previous 

detection experiment, we employed musical scenes featuring a variety of instruments 

and vocal sounds that overlapped in time and spatial location within the scene. This 

stands in contrast to the relatively simple dichotic scene utilized in the current 

recognition experiment, where the piano and target sound were clearly separated. This 

less saturated scene with strict peripheral separation might have offered a simplicity that 

rendered FMM cues obsolete for recognition. Taken together it seems likely that the 
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presence of FMM has no major impact on the recognition of musical sounds when other 

timbre cues are available.  

The presence of a musical accompaniment deteriorated recognition for all sounds 

considerably. Unexpectedly, however, this negative effect was consistently smaller for 

the recognition of /a/ sounds and vocal excerpts from the pop music database. This 

distinct robustness to interference primarily manifested as a faster recognition compared 

to other sounds, with almost no deterioration in accuracy. Importantly, this effect was 

present across all three experiments, despite variations in the excerpts, highlighting the 

consistency of the effect. The observed robustness in vocal recognition may be 

indicative of a specialized processing mechanism for acoustic features of vocal signals 

during the segregation of auditory objects in a musical scene. Suggesting that, when the 

auditory system segregates sound into mental representations of distinct streams, vocal 

features could trigger a prioritized, voice-specific processing (Belin et al., 2000; Levy et 

al., 2001; Gunji et al., 2003; Belin et al., 2004) that in turn might facilitate a better 

identification of vocal sounds within the complex auditory scene, contributing to 

accelerated recognition. However, distinctions between the tested vowels were 

apparent, with /u/ sounds lacking the robustness seen in /a/ sounds, suggesting that 

vocal sounds do not inherently trigger facilitated recognition. When also considering the 

susceptibility of /u/ to be confused with instruments, our results suggest that while vocal 

recognition in musical scenes can be uniquely robust, it does not possess properties that 

make it impervious to confusion with spectrally similar sounds. 

Musical sophistication showed no significant effects on sound recognition in our 

experiments. Musicians are often reported to have advantages in the discrimination pitch 

(e.g., Tervaniemi et al., 2005; Micheyl et al., 2006) or timbre (e.g., Chartrand & Belin, 

2006; Kannyo & DeLong, 2011), improved resistance against informational masking ( 

Oxenham et al., 2003) and the ability to hear out partials in tone complexes (Zendel & 

Alain, 2009), in chords (Fine & Moore, 1993) or even melodies in complex musical 

mixtures (Siedenburg et al., 2020). Furthermore, familiarity with instrumental sounds 

(typical for more musically experienced individuals) is known to enhance recognition 

(Siedenburg & McAdams, 2017). However, no effect for musical sophistication was 

observed in our study. It should be noted that a distinct analysis of accuracy and speed 

also revealed no tradeoff between them (Chartrand & Belin, 2006). Instead, most 

participants showed a behavior where sounds with higher accuracy tended to be 

detected faster. Partially in agreement with the absence of effects, studies specifically 

investigating low-millisecond sound recognition and discrimination have shown 

conflicting effects of musical sophistication, with influences either being absent (Bigoni 

F. & Dahl S., 2018) or present (Akça et al., 2023).  
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Limitations 

While our study has provided valuable insights into sound recognition, it is imperative to 

recognize the inherent limitations that may have influenced the interpretation of our 

findings. One caveat of the study is that certain sounds, primarily /u/ and the bassoon, 

exhibited a high error rate in recognition. While reaction time measurement has proven 

to be a useful tool, especially when assessing supra-threshold recognition, it may not be 

suitable for all signals tested in this study. This is particularly critical given the limited 

number of stimuli used for each condition (twelve). An alternative interpretation is that 

the response times measured in this case may reflect a measure of confidence rather 

than recognition speed. This alternative view is further supported by the correlation 

between errors and reaction times, indicating that a low error rate was associated with a 

faster reaction time. Nonetheless, we deliberately included these sounds because we 

believe they provide a valuable insight into the influence of acoustic similarity on sound 

recognition. To address the issue of high error rates, one perspective could also involve 

extending the training phase. Previous research by Agus and colleagues (Agus et al., 

2010) has demonstrated that even the recognition of seemingly meaningless noise 

signals can be improved above chance levels with training. One approach could be to 

design a training session in which a certain number of stimuli must be correctly 

recognized for each sound category before proceeding to the main experiment. Another 

attempt could involve investigating whether increased repetition of stimuli leads to a 

reduction in errors and how this in turn affects reaction times. In the same vein, it would 

also be intriguing to explore the recognition of /u/ or other vowel and instrumental 

sounds across different or more diverse stimuli pools containing spectrally similar or 

dissimilar sounds. This could shed light on how such variations influence the results, 

providing further insights into the hypothesized vocal superiority and the intricate 

interplay of spectral similarity. 

Another potential source of undesired variability in our results could stem from the use of 

stimuli that are intended to be more ecologically valid and therefore are less controlled. 

While we applied a standardized method to extract stimuli based on a sound-dependent 

level threshold to maintain consistency, this approach may in principle have led to 

varying degrees of transient truncation across different signals. However, based on our 

own close listening of the stimuli and as highlighted by Fig. S6, we do not think that the 

procedure truncated onset portions severely such that onset cues remained intact 

(Siedenburg, Schädler, & Hülsmeier, 2019). To further mitigate this potential issue, we 

included diverse sound categories (e.g., different vocal registers such as alto and 

soprano) and utilized multiple source databases. While the consistency observed in our 

results suggests the absence of significant bias caused by our extraction, further 

investigation into the generalizability of these findings across different databases could 

provide valuable insights. 

The methods used to investigate the effects of FMM also offer opportunities for 

expansion. It would be intriguing to explore whether presenting stimuli with and without 

FMM in separated blocks-wise presentation would yield different results. This approach 
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could potentially impact the already challenging recognition task, by allowing participants 

to adopt a strategy of extracting additional FMM information for blocks with FMM. It 

could be argued that our methodology did not facilitate this, as the alternation of signals 

with and without FMM within a presentation block may not have provided a reliable 

strategy for exploiting FMM cues. Moreover, increasing the number of stimulus 

repetitions could further enhance certainty regarding the influence of FMM. Additionally, 

selecting stimuli with a high modulation depth could maximize the contrast between 

signals with and without FMM, potentially affecting recognition outcomes. Related to 

this, the choice of stimuli could consider the fact that FMM are notably pronounced 

during note transitions, so it would be especially intriguing to employ excerpts featuring 

transitions. Taken together, these revised methods could provide a clearer picture of the 

influence of FMM on the recognition of short sounds. 

Conclusion 

In contrast to previous studies, our work did not demonstrate a general recognition 

advantage for vocal sounds in the isolated presentation condition, nor did FMM influence 

recognition. Notably, recognition between vowels /a/ and /u/ differed considerably, which 

was linked to similarities with instrumental sounds. When the sounds were accompanied 

by a piano dyad, recognition accuracy and speed deteriorated. However, a distinctive 

robustness to interference for the recognition of /a/ sounds was observed, while a lack of 

robustness was observed for /u/. An acoustical model highlighted the role of spectral 

envelope cues in sound recognition. In summary, these findings demonstrated that vocal 

recognition is not mandatorily more efficient compared to instrumental sound 

recognition. This calls for a revised concept of vocal processing, emphasizing the need 

for a comprehensive understanding of the various acoustic factors influencing both vocal 

and instrumental sound recognition. 
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4.3 Synopsis 

The lack of a general effect for FMM observed in the results illustrates that auditory 

processing uses or weights different cues dependent on the task at hand, as illustrated 

here by differences for the recognition of short sounds and the detection of sounds 

within mixtures. Additionally, the pronounced differences emerging for /a/ and /u/ 

sounds, which were linked to spectral similarities, imply that being a sound produced by 

the human vocal system is not a guarantee for salience. However, the influence of 

similarity was reduced in excerpts of singing voices from pop music that did not strictly 

incorporate only one vowel. The results raise questions about what evokes the 

advantage seen in vocals and whether there is a single attribute that shapes this 

advantage across different realms of auditory perception, or if this advantage is triggered 

by a multitude of attributes that differently impact the various facets of auditory 

perception. 
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5. ENHANCED SALIENCE OF EDGE 

FREQUENCIES IN AUDITORY PATTERN 

RECOGNITION 

5.1 Introduction 

The final study presented in this dissertation is motivated by the characteristic of bass 

instruments to attract auditory attention to a particularly low degree and the notable 

salience of high voices in polyphonic music. The methodology of Studies 1 and 2 was 

adopted, but this time the musical mixtures consisted of pseudo-randomized pure-tone 

melodies presented in separated frequency bands to investigate whether melodies in 

certain bands exhibit increased salience. 

5.2 Study 4  

This chapter is currently in press at Attention, perception & psychophysics as: Bürgel, 

M., Mares, D., Siedenburg, K. (2024) Enhanced salience of edge frequencies in auditory 

pattern recognition. The content of this chapter is identical to the manuscript. 

Author Contributions: Michel Bürgel formulated the research question, participated in the 

study design, analyzed the data, and wrote the manuscript. Diana Mares formulated the 

research question, participated in the study design carried out the experiments and 

wrote the manuscript. Kai Siedenburg formulated the research question, guided the 

study design and data analysis, and revised the manuscript. 

 

 

5.2.1 Abstract 

Within musical scenes or textures, sounds from certain instruments capture attention 

more prominently than others, hinting at biases in the perception of multi-source 

mixtures. Besides musical factors, these effects might be related to frequency biases in 

auditory perception. Using an auditory pattern recognition task, we here studied the 

existence of such frequency biases. Mixtures of pure tone melodies were presented in 
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six frequency bands. Listeners were instructed to assess whether the target melody was 

part of the mixture or not, with the target melody presented either before or after the 

mixture. In Experiment 1, the mixture always contained melodies in five out of the six 

bands. In Experiment 2, the mixture contained three bands that stemmed from the lower 

or the higher part of the range. As expected, Experiment 1 and 2 both highlighted strong 

effects of presentation order with higher accuracies for the target presented before the 

mixture. Notably, Experiment 1 showed that edge frequencies yielded superior 

accuracies compared to center frequencies. Experiment 2 corroborated this finding by 

yielding enhanced accuracies for edge frequencies irrespective of the absolute 

frequency region. Our results highlight the salience of sound elements located at 

spectral edges within complex musical scenes. Overall, this implies that neither the high 

voice superiority effect, nor the insensitivity to bass instruments observed by previous 

research can be explained by absolute frequency biases in auditory perception. 

5.2.2 Introduction 

Most acoustic scenes in the real world comprise sounds from multiple sources. Consider 

the realm of music, wherein the experience of listening to compositions featuring 

multiple instruments playing simultaneously is commonplace. In these complex scenes, 

certain instruments and their sounds and melodies often seem more prominent, standing 

out amidst the complex texture of overlapping sounds. Think of sung melodies, the lines 

of wind instruments, or guitar riffs – these elements frequently capture our attention. By 

contrast, the melodies of bass instruments less frequently stand out. This might suggest 

a potential perceptual bias that inhibits the recognition of low-frequency sound elements 

or melodies. Here we sought to study such spectral biases in auditory scene analysis 

(ASA).  

Principles of ASA (Bregman & McAdams, 1994) are key to understanding how the 

human auditory system differentiates sounds within complex auditory scenes. ASA 

encapsulates a range of processes through which the auditory system organizes sound 

elements by segregation and grouping to craft coherent mental representations known 

as streams, following Gestalt principles. This is achieved by utilizing external sound 

features (bottom-up), and internal cognitive processes of the listener (top-down).  

When dissecting a musical scene, bottom-up processing entails recognizing spectrally 

distinct sounds, differences in their continuity (onset and offset), or variations in 

spectrum. These factors contribute to the interpretation of distinct instruments and 

melodies within the scene. Conversely, top-down processing relies on learned musical 

patterns, expectations, and familiarity with specific instrumentations or musical 

arrangements, aiding in scene parsing.  

The role of auditory attention is the topic of an ongoing discussion (for a review see 

Snyder et al., 2012; Sussman, 2017). Despite discrepancies regarding the extent to 

which attention affects ASA, studies indicate that attention facilitates the organization of 

sounds (Alain & Arnott, 2000; Sussman, 2006) and that it can emphasize otherwise 

hidden elements in auditory scenes (Sussman & Steinschneider, 2009). Investigating 
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the audibility of instruments within musical scenes, Bürgel et al., (2021) conducted an 

instrument detection experiment using popular music excerpts, building upon a 

paradigm by Bey and McAdams (2002). Participants were tasked with detecting target 

instruments embedded in excerpts of popular music  featuring mixtures of instruments. 

Target sounds included various instrument categories, such as bass instruments and 

singing voices. In half of the mixtures, the target was absent. To cue participants to the 

target, an isolated target track identical to the one embedded in the mixture was 

presented. The study varied whether the target cue was presented first or after the 

mixture: In cases where the target was played first, participants could use prior 

knowledge gained from the cue to direct attention towards the target in the mixture, 

making detection dependent on both its acoustical salience and selective attention. 

When the mixture was presented first, no cue was given, and performance relied much 

more on the salience of the target. The comparison of presentation orders allowed us to 

isolate the impact of selective  attention from the target’s inherent acoustical salience, 

revealing the specific influence of attentional gain.  

Results indicated that the presentation order considerably impacted detection, with 

superior detection observed when the target was presented first. Notably, the extent of 

this impact varied across instrument categories, with vocal sounds exhibiting almost no 

effect and bass instruments displaying the most significant decrease in detection 

accuracy among all studied sounds. This suggested that when attention was not 

directed towards the bass, it was less likely perceived in the musical scene, suggesting 

the notion of a spectral hierarchy. This diminished accuracy for bass sounds persisted 

even when the sounds were aligned in sound level. One interpretation of these findings 

is that the human auditory system exhibits spectral biases, which have the greatest 

influence when freely listening into an auditory scene.  

Studies investigating polyphonic music with multiple independent voices have 

consistently reported a high-voice superiority effect (HVSE; Crawley et al., 2002), which 

could be related to potential spectral biases. The high-voice superiority effect refers to 

the phenomenon where, in the context of multiple simultaneous melodies, the melody 

with the highest pitch trajectory is more prominent in the cortical responses of listeners, 

rendering it more salient in polyphonic scenes (Fujioka et al., 2005). This effect has 

been observed even in infants (Marie & Trainor, 2013) and may stem from physiological 

factors within the human auditory system, influenced by the interplay of harmonic 

structures in tone complexes (Trainor et al., 2014). Research indicates that musical 

training in instruments within the soprano range enhances this effect, whereas training in 

the bass range doesn’t reverse the effect,but can lead to an equalization between lower 

and higher voices (Marie et al., 2012). Moreover, studies on instruments in the bass 

range have reported that while bass instruments may yield challenges in melody 

perception, they exhibit superior time perception (Hove et al., 2014). Taken together, 

these findings appear to imply that the human auditory system possesses mechanisms 

favoring melodies of higher voices in musical scenes.  
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Given this background, we explored if ASA is subject to spectral biases, in which sounds 

within specific frequency regions possess a distinct salience in auditory pattern matching 

tasks. Specifically, we aimed to discern absolute and relative biases. Absolute biases 

would manifest as increased salience of bands in distinct frequency regions, whereas 

relative biases would manifest systematically at specific positions within the musical 

scene regardless of the absolute position in the auditory spectrum. To study this, the 

same task as in Bürgel et al. (2021) was used with acoustically more controlled stimuli 

where natural musical instruments were replaced by random pure tone melodies in 

different frequency bands.  

We hypothesized that the presentation order between the target cue and mixture, as 

well as the frequency regions in which the target melodies appear, would impact 

detection accuracy. Specifically, due to the observed diminished performance of bass 

instruments, we expected the melodies in the lower frequencies to exhibit the poorest 

performance, with a significantly larger decline between the target-first and mixture-first 

presentation orders. Conversely, due to the reported high-voice superiority effect, we 

expected the melody in the highest frequency band to be more salient and outperform 

melodies in the low- and mid-frequency region. Additionally, we assumed that the high-

voice superiority effect would lead to better performance for melodies in high frequency 

bands, highlighting biases towards specific absolute frequency regions. 

5.2.3 Experiment 1  

Methods 

Participants  

A total of 26 normal-hearing participants took part in the experiment. While formal power 

analyses were not conducted, the sample size was based on previous studies 

employing a similar detection paradigm (Bürgel et al., 2021, Order effect - Experiment 1: 

β = -0.710, t = 15.542, p < 0.001; Bürgel & Siedenburg, 2023: Order effect - Experiment 

1: β = -0.545, t = 9.356, p < 0.001). One participant was excluded due to obtaining a 

below-chance performance in the Target-Mixture condition. Of the remaining 25 subjects 

(mean age=26.5, SD=5.23; age range=19-38, diverse = 4, female = 7, male=14), 20 

were categorized as musicians. In our study, musicianship was assigned based on 

whether an individual had received three or more years of formal training on a musical 

instrument, including voice.  Additionally, participants' musical abilities were evaluated 

using questions from subscales of the Goldsmith Musical Sophistication Index (Gold-

MSI; Müllensiefen et al., 2014). The average Gold-MSI score for the Perceptual Abilities 

subscale was 53.0 (SD=8.52) for musicians and 39.8 (SD=11.26) for non-musicians and 

the one for the Musical Training subscale was 35.85 (SD=5.45) for musicians and 15.8 

(SD=4.38) for non-musicians.  

Stimuli  

A schematic of the stimuli is presented in Figure 5.1. To mitigate energetic masking, 

each melody occupied a designated frequency space, maintaining sufficient frequency 
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distances between melodies. Six frequency bands were used in the experiments, which 

were spaced on the equivalent rectangular bandwidth (ERB) scale (Moore & Glasberg, 

1983)   with center frequencies between 65 and 2080 Hz. The target was present in half 

of the trials. Because the absence of the target resulted in a less dense mixture, one 

random band was muted each time the target was present in the mixture.  

The stimuli were created on the fly (open set design). Each frequency band contained 

eight pseudo-randomized pure-tone melodies, each lasting two seconds. Tone 

frequencies were drawn randomly from a uniform distribution on a logarithmic frequency 

scale with half-octave range, anchored at the center frequencies of the six ERB bands 

(65, 215, 441, 783, 1300, 2080 Hz). Frequencies were drawn with no constraints applied 

to musical intervals or semitone steps. For instance, melodies in the 1300 Hz band could 

encompass notes ranging from 1300 to 1838 Hz (1300 Hz + ½ octave). This approach 

ensured that frequencies spanned a sufficient frequency range to be discernible as 

melodies while maintaining sufficient spacing between bands. The resulting frequency 

distance between neighboring tones was at least 1 ERB to mitigate the potential effects 

of energetic masking. Tones had random durations, with onset and offset timepoints of 

the eight-tone sequence generated by drawing seven timepoints from a uniform 

distribution between 0 and 2. These randomly drawn timepoints were sorted in 

ascending order, and drawings were discarded that contained durations shorter or equal 

than 50 ms. Timepoint n would here serve as offset of tone n and onset of tone n+1; the 

onset of the first tone of the sequence was defined as t=0 ms and the offset of the last 

as t=2000 ms. Tones were then synthesized with the defined onset/offset times and 

separated by 10 ms offset and 10 ms onset cosine ramps. 

To eliminate sound level cues all sounds were aligned in level using A-weighting and 

every band was presented at a level of 40 dB SPL (A). In the initial section of the 

experiment, the target was followed by the mixture (Target-Mixture condition), while in 

the final section, the order was reversed (Mixture-Target condition). The frequency 

conditions were randomized.  

Procedure 

First, participants were informed about the experiment and provided informed consent. A 

short training session followed, during which participants received feedback. Afterwards, 

the main experiment started, and no feedback was provided anymore. After the 

completion of the main experiment, each participant filled out a brief questionnaire 

comprising demographic data and components of the Gold-MSI. Participants were 

financially compensated.  

Experiment 1 was divided into two blocks: Target-Mixture and Mixture-Target. Each 

block contained all six frequency conditions. The structure of a trial was as follows: 

presentation of a target sequence (2 s), short pause (1 s), presentation of a mixture (2 

s). The second block maintained this structure but interchanged the presentation of the 

target with the one of the mixture. In both instances, the task was to detect whether the 

target was present in the mixture (yes/no task).  
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The Target-Mixture block comprised a total of 120 trials, with 20 trials allocated for each 

frequency condition. Following a short break, the experiment proceeded with the 

Mixture-Target block, throughout which 240 trials, with 40 trials per frequency condition, 

were presented. This second section included a break after the first 120 trials. In both 

blocks, the number of instances in which the target was present or absent from the 

mixture was counterbalanced between frequency conditions. The different number of 

stimuli between two order conditions was due to experience from pilot experiments: It 

was anticipated that detection performance would approach ceiling level for many 

participants in the Target-Mixture condition, while performance in the Mixture-Target 

condition was expected to be lower. Therefore, for the sake of precise performance 

estimates, we increased the number of stimuli in the Mixture-Target condition while the 

Target-Mixture condition acted as a control condition. 

In the initial version of the experiment the mixture comprised six simultaneous melodies 

(one in each frequency band) when the target was present and five when the target was 

absent. There was a concern that participants might adopt a strategy of counting the 

number of melodies instead of focusing on detecting the target melody. To prevent this 

potential strategy, a second version of the experiment was conducted. In this version, 

when the target was present, one random non-target melody frequency band was 

muted. This adjustment ensured a consistent density of five melodies in the mixture, 

regardless of the target’s presence. As there were no statistically significant differences 

found between the two versions, with a correlation of R² = 0.94 between the mean 

results of both variants of the experiment, the results of all participants were analyzed 

conjointly.  

Apparatus 

The experiment took place in a double-walled sound booth at the University of 

Oldenburg. Participants sat in a comfortable chair and interacted with the experiment 

using a touch screen attached to a movable arm in front of them. Stimuli were processed 

through an RME Fireface UCX soundcard at a 44.1 kHz sampling rate and presented on 

Sennheiser HD 650 headphones. Stimuli were synthesized in Matlab. Sound levels were 

measured with a Brüel & Kjær Type 2250 light sound-level meter and a Brüel & Kjær 

Type 4153 artificial ear to which the headphones were coupled. 
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Figure 5.1: Illustration of the stimuli 

Isolated 2-second target melodies were presented either before a 2-second mixture 

(Target-Mixture) or afterwards (Mixture-Target), with a 1-second pause in between. The 

target could be present or absent from the mixture. In Experiment 1, five melodies played 

in the mixture occurring in separated frequency bands. In Experiment 2, the frequency 

bands were split into a low and high range, each containing four frequency bands, and 

only three melodies were playing simultaneously. The colored lines represent example 

melodies in each band. The gray area represents the empty space where no melody could 

occur.     

Results and discussion  

The average performance in Experiment 1 is displayed as d-prime scores in Figure 5.2A 

(numerical values are available in supplementary Table 1). When comparing the 

presentation orders by averaging over frequency conditions, the Target-Mixture 

condition yielded clearly better detection scores, with an average score of d’ = 2.68, 

compared to the Mixture-Target condition with an average score of d’= 1.58 (-1.10).  

Differences between melodies at the edge of the frequency range (lowest and highest) 

and those in the middle revealed an edge effect, with edge frequency bands yielding an 

average score of d'=2.54 compared to mid frequencies with an average score of d’=1.93 

(-0.61). Edge effects were pronounced in both presentation orders, with scores for 

edges in the Target-Mixture condition of d’=2.95, compared to scores for mid 

frequencies of d’=2.55 (-0.40), and for edges in the Mixture-Target condition with a score 

of d’=2.12, compared to scores for mid frequencies of d’= 1.31 (-0.81). To further 

evaluate the observed effects, the difference between the performance of edge and 

middle frequencies was computed for each participant separately. The magnitude of 
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individual edge effects is displayed in Figure 5.2B. Four participants showed differences 

close to zero (d’ < 0.1), wherein one participant exhibited better performance for the 

center frequencies with a reversed edge effect of d’ = -0.26. Overall, however, the 

majority of participants demonstrated clear edge effects.  

A Linear Mixed Effects model (LME) was employed to analyse the data, incorporating 

random intercepts for each participant. Presentation order and categorization of whether 

targets appeared as edge frequencies vs. in middle frequencies were used as binary 

predictors. Musical sophistication scores and the frequency band in which the melody 

appeared were used as numerical predictors. The factors presentation order and edge 

frequency showed pronounced effects as well as an interaction (Order: β = 0.514,  t = 

13.479, p < 0.001; Edge: β = 0.303,  t = 7.947, p < 0.001; Interaction: β = 0.106,  t = 

2.765, p = 0.005). The effects of  frequency band and musical sophistication were 

negligible (frequency band: β = 0.042,  t = 0.304, p = 0.761 ; Musical perception: β = 
0.004,  t = 0.268, p = 0.788; Musical training: β = 0.074,  t = 0.401, p = 0.522). Further 

underlining the lack of impact of musical sophistication, correlations between 

participants' averaged d-prime scores and sophistication scores revealed R² values 

below 0.05 for both musical perception and musical training. 

To further investigate the effect of local spectral edges caused by muting frequency 

bands adjacent to the target, we compared the results of detecting targets where a band 

adjacent to the target band was omitted and melodies where a band not adjacent to the 

target was omitted (see supplementary Figure 1). The results showed a close alignment 

in detection performance between the two conditions, with no considerable differences 

observed in the LME (main effect: β = -0.064, t = -0.169, p = 0.866; interaction with 

presentation order: β = -0.167, t = -0.699, p = 0.485). These findings suggest that there 

was no discernable impact of local edges resulting from the removal of aligned 

frequency bands. Additionally, the absence of differences between both conditions can 

be interpreted as an indication that energetic masking did not substantially contribute to 

the detection process. If energetic masking had a substantial effect, conditions with a 

missing neighbor would have performed better than those with neighbors present on 

both sides. 
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(A) Detection accuracy in Experiment 1 is represented as d’ scores. The square and circle 

marks denote the mean scores for melodies in the specified frequency bands. The square 

marks indicate the presentation order "Target-Mixture," where the target cue was 

presented first followed by a mixture. The circle marks indicate the presentation order 

"Mixture-Target," where a mixture was presented first followed by the target cue. Error 

bars represent 95% CIs computed using a bootstrapping method. (B) For each subject 

the magnitude of the edge effect is displayed as the difference between mean d’ scores 

for melodies in the first and last frequency band and mean d’ scores for melodies between 

the first and last frequency band. The bottom figures display individual d’ scores for the 

subject with the smallest, the average, and the largest edge effect respectively. 

 

Taken together, the observed order effect corroborates previous reports on the 

facilitating role of attention in auditory scene analysis ( Alain & Arnott, 2000; Bey & 

McAdams, 2002; Woods & McDermott, 2015; Bürgel et al., 2021;). Prior knowledge 

could be used to direct auditory attention towards the target sound and thus follow and 

highlight auditory representations in the auditory scene. Contrary to our hypothesis , 

neither a general bias towards higher frequencies, nor  an unawareness of activity in 

lower frequencies was observed. Instead, the results revealed a superior detection for 

both edges of the auditory scene. These results raise the question of whether an effect 

of relative frequency bias was at play, wherein the spectral edges of the acoustic scene 

were better recognized compared to sounds located closer to the frequency-center of 

the scene, or whether the resulting pattern was due to an absolute frequency bias in 

auditory pattern matching.  

Figure 5.2: Detection accuracy in Experiment 1 
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5.2.4 Experiment 2  

In Experiment 2, we aimed to explore whether the previously observed edge effect 

persisted despite global changes in frequency. For this purpose, the frequency range 

was divided into two equal ranges. The first range comprised frequency bands one to 

four, and the second range comprised frequency bands three to six.  

Participants  

30 normal-hearing participants with a mean age of 24.7 years (SD=2.54, range=20-29; 

diverse = 2, female = 17, male=11) performed the second experiment. Following the 

predefined criterion, 14 were designated as musicians. No participant was excluded. 

The average Gold-MSI score for the Perceptual Abilities subscale was 53.07 (SD=7.26) 

for musicians and 44.31 (SD=7.11) for non-musicians and the one for the Musical 

Training subscale was 32.42 (SD=5.97) for musicians and 13.37 (SD=6.67) for non-

musicians.  

Stimuli and procedure  

Experiment 2 consisted of four blocks: two Target-Mixture blocks, and two Mixture-

Target blocks. One block of each order condition contained conditions in the lower 

frequency range (bands 1-4) while the other block contained the ones in the higher 

range (bands 3-6). The order of the frequency ranges was counterbalanced, such that 

each participant began either with the low or the high range in the Target-Mixture block. 

Each condition was presented 20 times in each Target-Mixture block, which summed up 

to a total of 160 trials for the first two blocks. The Mixture-Target blocks comprised twice 

the number of trials compared to the Target-Mixture block, with a total of 320 trials. After 

each block, a short break followed. The mixture density was constrained to three 

simultaneous frequency bands across all trial types. The training section involved eight 

Target-Mixture trials -- four in the lower frequency range and four in the higher frequency 

range.  

Results and discussion  

Results are displayed in Figure 5.3A (numerical values are available in supplementary 

Table 2). Similar to Experiment 1, when examining the difference between presentation 

orders by averaging over frequency and frequency range conditions, the Target-Mixture 

condition showed clearly higher scores (d’ = 2.75), compared to the Mixture-Target 

condition (d’= 2.07).  

When examining the averages within each frequency range, the low frequency range 

exhibited a slightly better score of d’=2.41 compared to the high range with a score of 

d’=2.36 (-0.05). Differences between frequency conditions at the edge of the frequency 

ranges and those in the center of the ranges revealed an edge effect, with edge 

frequencies achieving better detection with an average score of d’=2.66 compared to 

mid frequencies with an average score of d’=2.10 (-0.56). Negligible differences within 

the edge effects between presentation orders or intervals were observed, with scores for 

the Target-Mixture condition in low and high ranges both being d’=2.93, and for the 
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Mixture-Target condition in low and high ranges being d’=2.42 and d’=2.36, respectively. 

To further evaluate the observed effects, the difference between the performance of 

edge and middle frequencies was computed for each participant separately. The 

magnitude of individual edge effects is displayed in Figure 5.3B. Three participants 

showed differences close to zero (d’ < 0.1), whereas two participant exhibited better 

performance for the center frequencies with reversed edge effects of Δd’ = -0.26 and Δd’ 

= -0.09. Overall, the majority of participants demonstrated an edge effect, whereby the 

most pronounced effect showed an enhancement of Δd’ = 1.22.  

Participants with higher musical sophistication scores showed better detection accuracy. 

Correlations based on musical perception scores yielded an R2 of 0.16, while those 

based on musical training scores yielded an R2 of 0.36. Differences between order 

conditions were apparent, with an R2 of 0.06 for perception and an R2 of 0.18 for 

training in the target-mixture condition.  

Larger correlations were observed in the mixture-target condition, reaching an R2 of 

0.21 for perception and an R2 of 0.43 for training. The LME used in Experiment 2 

utilized the same fixed effects as in Experiment 1, with the addition of a binary variable 

determining whether the stimulus appeared in the low or high-frequency range. Effects 

were pronounced for presentation order and whether frequencies appeared on the 

edges of a frequency range, as well as for musical training scores  (Order: β = 0.353,  t 

= 13.064, p < 0.001; Edge: β = 0.267,  t = 9.790, p < 0.001; Musical training: β = 0.028,  

t = 3.084, p = 0.003;  Frequency band: β = 0.031,  t = 1.164, p = 0.245; Frequency 

range: β = 0.023,  t = 0.767, p = 0.443; Musical perception: β = 0.015,  t = 1.226, p = 

0.297).  

As a consequence of the experimental design, there were trials where the melody in the 

first or last frequency band was muted, resulting in the target melody in the second or 

third band taking the role of an edge frequency. For example, if frequency band 1 was 

muted, band number 2 became the lowest frequency in the mixture. In the reported 

results above, only instances where target melodies were truly embedded in the center 

of the musical scene, with melodies in frequency bands above and below the target 

frequency band, were analyzed. To investigate how the relative position of frequency 

bands impacted the detection of melodies, a separate analysis was conducted.  This 

involved analyzing separate hit rates for both variants using a generalized linear effects 

model to account for the constrained nature of hit rates. The model employed the same 

effects as the Linear Mixed-Effects Model (LME), except hit rates were used as a 

response variable. As observed for frequency bands on the edge of the frequency 

range, an edge effect was evident even within the same frequency band (F = 13.059, p 

< 0.001). Precisely, melodies on the edge outperformed melodies in the center, 

achieving hit rates of 89 [0.82 – 0.94] percentage points compared to the 75 [0.66 – 

0.83] percentage points achieved by melodies in the center (see supplementary Figure 

2). 
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(A) Detection accuracy in Experiment 2 is represented as d’ scores. Three melodies were 

presented simultaneously within either a low or high frequency range. The brighter color 

indicates the low-frequency range (65 - 783 Hz), and the darker color represents the high-

frequency range (441 - 2080 Hz). The square and circle marks denote the mean scores 

for target melodies in the specified frequency bands. The square marks indicate the 

presentation order ’Target-Mixture,’ where the target cue was presented first followed by 

a mixture. The circle marks indicate the presentation order ’Mixture-Target,’ where a 

mixture was presented first followed by the target cue. Error bars indicate 95% CIs 

computed using a bootstrapping method. (B) For each subject the magnitude of the edge 

effect is displayed as the difference between mean d’ scores for melodies in the first and 

last frequency bands and mean d’ scores for melodies in the second and third frequency 

bands. The bottom figures display individual d’ scores for the subject with the smallest, 

the average, and the largest edge effect respectively. 

 

Overall, Experiment 2 revealed pronounced edge effects across different frequency 

regions. Furthermore, a weak positive effect of musical training was evident, suggesting 

that individuals with higher musical sophistication scores also have improved abilities for 

the detection of melodies in complex acoustical scenes. The absence of this impact 

observed in Experiment 1 may be attributed to the participant pool, primarily consisting 

of musicians with a small range of musical sophistication scores.  

Figure 5.3 Detection accuracy in Experiment 2 



 

110 

 

5.2.5 General Discussion  

In line with our hypotheses and consistent with previous research ( Bey & McAdams, 

2002; Bürgel et al., 2021), the presentation order of the target played a crucial role in 

target detection, highlighting the influence of top-down processing on ASA. Presented 

with the target before the mixture, listeners were able to leverage this information to 

selectively direct attention towards the melody in the target frequency band, which 

resulted in a higher detection accuracy compared to the order where the target was 

presented after the mixture. Our hypothesis regarding perceptual biases towards 

specific absolute frequency regions, on the other hand, was clearly refuted. Instead of 

an inferior detection of low frequency bands or superior detection of high frequency 

bands, detection was facilitated for frequencies that appeared on the edges of the 

acoustical scene, implying biases towards relative frequency regions. This edge effect 

was consistent for melodies on the relative outer frequency bands of the acoustical 

scene, regardless of absolute frequency. The effect was even more pronounced in the 

more difficult Mixture-Target condition. We interpret this effect as a salience 

phenomenon, where the melodies at the spectral edges attract auditory attention, 

thereby detracting from melodies in between. This effect particularly shapes perception 

when listening to the scene holistically without prior target (Mixture-Target). In line with 

these findings, participants informally stated that they had used the outer melodies as 

landmarks to subsequently hear out melodies between these. It would be interesting to 

explore whether the occurrence of edge effects is influenced by acoustic cues within the 

melodies, such as tone onsets and frequency trajectories, or if the edge effects can be 

fully attributed to the frequency bands. This could be investigated by examining whether 

such effects persist even when the melodies are replaced with static tones within the 

individual frequency bands. 

MSI scores had a positive effect on melody detection (Müllensiefen et al., 2014). While 

this effect was not observed in the studies by Bey (2002) and Bürgel (Bürgel et al., 

2021), it aligns with numerous reports in the literature where musical training scores are 

positively associated with performance in music related tasks. It is reported that 

individuals with higher scores exhibited better perceptual abilities, such as pitch and 

rhythm discrimination (Micheyl et al., 2006; Marozeau et al., 2010 ;Kannyo & DeLong, 

2011), as well as the ability to recognize melodies and instruments in musical scenes ( 

Crawley et al., 2002; Slater & Marozeau, 2016; Siedenburg et al., 2020). Musicians’ 

auditory skills may have enabled them to better isolate individual melodies, allowing 

them to search the scene for the target melody more efficiently. Nevertheless, better 

recognition by musically trained individuals did not compensate for the order effect or the 

edge effects, indicating that these phenomena are fundamental even for high-performing 

individuals. 

The enhanced detection of edges, where no difference was observed between the lower 

and upper edges, may initially appear at odds with the high-voice superiority effect 

(HVSE; Fujioka et al., 2005; Marie et al., 2012; Marie & Trainor, 2013; Marie & Trainor, 

2014; Hove et al., 2014). However, studies on the HVSE suggest that it is grounded in 
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the nonlinear processing of harmonics in tone complexes, where the harmonics of the 

higher voice are more likely to mask those of the lower voice (Trainor et al., 2014). In our 

experiment, the use of pure tones without harmonic overtone structures thus may 

account for the absence of this perceptual hierarchy. Comparing this study with HVSE 

studies suggests additional discrepancies. HVSE studies typically involve only two 

simultaneous melodies, which could be interpreted as a comparison between the lower 

and upper edges, which exhibited no significant differences in our experiment. However, 

such an interpretation would disregard the potential influence of other melodies in the 

center of the presented ranges. Furthermore, the edge effect stands in striking contrast 

to our findings using acoustic excerpts of pop music that comprised sounds from real 

musical instruments, wherein bass instruments had the most pronounced detection 

differences between both presentation orders and also the lowest detection score among 

tested instruments (Bürgel et al., 2021), even though the sound levels of the instruments 

were equalized. The present edge effect, however, challenges the notion that the 

diminished performance of bass instruments is solely due to spectral biases (whether 

absolute or relative). Several factors may contribute to these discrepancies. Unlike the 

pure tones used in our experiment, sounds of bass instruments comprise tone 

complexes that spectrally overlap with other instruments in the musical scene. This 

overlap might result in the lower voice being more easily masked by the higher ones, as 

explained by HVSE. Importantly, in contrast to the randomly generated melodies in our 

experiment, which had no systematic relationship to each other, instruments and their 

lines or melodies in musical compositions are often created in a deliberate relationship 

to each other, both in pitch and in time. Bass instruments, in particular, often provide the 

harmonic basis of tonal music, thus support other melodies besides providing rhythmic 

accents, which associates them more with rhythm and groove perception (Hove et al., 

2014). However, these musical properties also make bass instruments more likely to be 

part of the musical background and avoid standing out.  

The results obtained in our two experiments are concordant with research investigating 

the importance of individual frequency components to the perceived loudness of 

multitone complexes (Leibold & Jesteadt, 2007; Oberfeld et al., 2012; Jesteadt et al., 

2017). By using a method called perceptual weight analysis, these studies have typically 

presented sound ranges with constant overall loudness but random trial-by-trial 

frequency level variation, and subsequently obtained weights by computing the 

correlation between these variations and the responses (Joshi et al., 2016). 

Consistently, these studies have shown that higher weights are given to the lower and 

the higher frequencies than to the middle frequencies, indicating a more substantial 

contribution of the edges to the overall loudness of a complex. Moreover, similar to the 

conclusions of our second experiment, the increased saliency of the edges seems to 

depend not on the absolute value of these frequencies, but rather on their relative 

position in a complex.  

Beyond the auditory domain, contrasting and analogous effects emerge in the visual 

domain (for reviews see Marisa Carrasco, 2011; Marisa Carrasco, 2018). Unlike the 

observed facilitated recognition of melodies at the edges of the acoustic scene, spatial 
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resolution in the visual domain adheres to a contrasting hierarchy, wherein central 

objects are identified more accurately and quickly, and in more detail than objects in the 

periphery or edges (Rijsdijk et al., 1980; Cannon, 1985). A decisive influence of attention 

has been well reported that allows for perceptual higher resolutions and thus the 

recognition of finer details at attended locations ( Lee et al., 1997; Dosher & Lu, 2000; L. 

Huang & Dobkins, 2005). Moreover, directing attention through prior cues has been 

shown to compensate for the preferential focus on central objects in the visual scene, 

enabling objects at the periphery to be brought into focus (M. Carrasco & Yeshurun, 

1998). This parallels observations in the acoustical realm (Alain & Arnott, 2000, Bey & 

McAdams, 2002) and mirrors our results, where auditory cues could be leveraged to 

spotlight specific frequency regions.  

In conclusion, the results of our study suggest the absence of distinct biases towards 

absolute frequency regions. Instead, we observed a relative frequency bias with a 

specific salience of edge frequencies in auditory pattern matching. Future work should 

probe the generality of these findings and the ways in which they extrapolate to 

naturalistic acoustic scenes.  
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5.3 Synopsis 

Contrary to expectations, both the lowest and highest melodies exhibited pronounced 

salience. When the spectral boundaries of the mixture were moved, the salient 

frequency bands also shifted towards the relatively lowest and highest melodies 

occurring in the mixture. This finding demonstrates that the auditory system does not 

inherently exhibit a reduced perception of bass voices, but rather that perception is 

shaped by the acoustic edges. Investigating how this behavior affects more naturalistic 

sounds than pure tones and examining the connection to the lack of salience in bass 

instruments provides an intriguing opportunity for future research. 
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6. CONCLUSION 

6.1 Summary 

Exploring salience in musical scenes 

This dissertation analyzes the salience of sound sources within auditory scenes, 

focusing on musical mixtures wherein multiple sounds appear simultaneously. Salience 

refers to the attribute of a sound that draws auditory attention towards the sound, 

making it more prominent than other sounds within the mixture. Listening experiments 

were conducted, and the behavioral responses of participants were investigated and 

related to acoustical analyses of the sound stimuli. Understanding the acoustic 

underpinnings that contribute to salience within musical scenes is crucial for 

understanding auditory scene perception and has practical implications, such as the 

development of hearing aids and sound engineering in general. 

Study 1 - Listening in the mix: Lead vocals robustly attract auditory 

attention in popular music 

To explore the trajectory of auditory attention in musical scenes, three online detection 

experiments with 40 to 47 young participants each were conducted. Participants were 

asked to detect single cued instruments or vocals in musical mixtures with multiple 

instruments. The mixture consisted of monophonic 2-second multi-track excerpts of 

popular music and a cue signal that incorporated an isolated target instrument or vocal 

track from the mixture. Half of the time, the target was missing in the mixture. To test the 

effects of selective attention, the presentation order varied among participants. For one 

half of the participants, the target cue preceded the mixture, allowing listeners to use this 

prior knowledge of the target to direct their attention to search for it in the mixture. For 

the second half of the participants, the target was presented after the mixture, so that 

the detection depended strongly on the salience of the target in the mixture. Detection 

accuracies were measured and data on the participants musical sophistication was 

acquired using subscales of the Gold-MSI. 

In the first experiment, excerpts were directly extracted from the pop music pieces 

without any spectral or level modification of the individual tracks. Results showed no 

significant correlations between recognition accuracy and musical sophistication scores, 

which continued throughout all three experiments. Target category-dependent detection 

accuracy was observed, with vocals showing the best performance, outperforming all 

instrument categories. The presentation order also highly influenced detection, with 

better results when target information was given prior to the mixture. This effect was 

especially pronounced for bass instruments, with detection accuracies dropping close to 

chance level without prior cue, suggesting that instruments in the low-frequency range 
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especially lack salience. Fascinatingly, while this was true for almost all target 

categories, the vocals stood out, showing only minor differences between the orders, 

implying that vocals always attracted auditory attention even when no prior cue was 

given.  

The acoustic origin of this unique vocal salience was then investigated in the following 

two experiments. In the second experiment, it was investigated if this salience was 

caused by spectral masking. Filtering was used to create a spectral composition in 

which all targets would appear in the same spectral region within the mixture. All non-

target sounds were suppressed in this region, creating an isolated spectral region for the 

target. While overall detection accuracy improved, the pronounced differences for all 

targets except the lead vocals remained, suggesting that vocal salience is not caused by 

masking effects. In the third experiment, it was investigated if vocal salience can be 

explained solely by sound level advantage, as an acoustical analysis of the music 

database revealed that vocals had the highest sound level among all tested categories. 

However, even when the sound levels for all targets were aligned, a clear order effect for 

all instruments except for the lead vocals persisted, suggesting that the higher sound 

levels of vocals are not the origin of lead vocal salience. This novel finding of vocal 

salience in musical mixtures provided the impetus for further research. 

Study 2 - Salience of frequency micro-modulations in popular music  

Continuing the search for the origins of vocal salience, two online detection experiments 

were conducted with 67 young participants each. While the detection paradigm 

remained the same as in Study 1, the extent to which phonological cues, musical 

features of the main melody, or frequency micro-modulation (FMM) contribute to 

salience and specifically to vocal salience was investigated. FMM in this study refers to 

frequency modulation inherent in singing voices, caused by the imperfect intonation of 

the human voice, which is usually smaller than one note and is particularly strong in note 

onsets, offsets, and transitions. The sound levels were aligned for all targets, and 

sounds were presented monophonically. As in Study 1, sound excerpts were extracted 

from a multi-track database consisting of pop music, though a different database was 

used. Detection accuracies were measured and data on the participants musical 

sophistication was acquired using subscales of the Gold-MSI. 

In the first experiment, the effect of FMM was investigated by producing an additional set 

of vocal excerpts and eliminating their FMM, creating an auto-tune-like robotic voice 

effect. The modified excerpts were then either used as stimuli for a singing voice without 

FMM category or processed to test the effect of their melody. For this, the pitch 

trajectory of the excerpts was estimated and recreated in various virtual instruments that 

were tested as target categories. 

Results revealed that detection accuracy was influenced by presentation order for all 

targets except the unmodified vocals, replicating the results observed in Study 1 and 

implying robustness of vocal salience, as it emerged across different music database. 

Playing the main melody did not eliminate the order effect. The removal of FMM for the 
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vocal excerpts introduced an order effect, stripping them of their unique vocal salience, 

even though phonological cues persisted. This suggests that neither the phonological 

cues that could facilitate the processing of speech-like sounds nor the musical features 

of the main melody are sufficient to drive vocal salience. No significant correlations were 

found between recognition accuracy and musical sophistication scores for both 

experiments. 

In the second experiment, the excerpts with eliminated FMM were modified by 

resynthesizing the original FMM of the singing voices to both the pitch-quantized vocal 

excerpts and the recreated instrument excerpts that played the vocal melody. 

Transferring FMM from vocals to the targets reduced the magnitude of the order effect 

considerably. A negative correlation between FMM intensity and order effect revealed 

that sounds with more intense FMM also had heightened salience. In summary, the 

results suggest that FMM is an important acoustical feature contributing to vocal 

salience in musical mixtures. 

Study 3 - Fast recognition of voice and instrument sounds in musical 

scenes 

Motivated by the influence of frequency micro-modulations (FMM) on the detection of 

instruments within musical mixtures, Study 3 aimed to investigate the influence of FMM 

on the recognition of vocal and instrument sounds. The study comprised of three 

experiments with thirty young participants each, half with musical training. In the 

experiments, participants were asked to classify the sounds into vocal or instrument 

sounds in a go/no-go task as fast as possible. Stimuli consisted of 250 ms sound 

excerpts, originating from recorded samples and single-source excerpts of popular 

music featuring various short sung vowels and vocal sounds alongside instrumental 

sounds. Each sound was presented in separate versions with and without FMM to 

analyze the influence of frequency modulation. Additionally, sounds were presented in 

isolation or accompanied by a spatially separated piano interferer to test the sounds' 

salience in the form of robustness to interference. Accuracy and reaction times were 

measured as well as data on the participants musical sophistication using subscales of 

the Gold-MSI. An acoustical analysis was performed by investigating spectral similarity 

between the sounds and quantifying the FMM intensity. 

In the first experiment, various orchestral sound samples from different target categories 

were utilized, including sung vowels /a/ and /u/ as well as string and wind sounds. 

Recognition performance varied across sound categories; recognition of vowel sounds 

was not superior to the recognition of instrumental sounds, and no effects of FMM were 

observed. When presented with interfering sounds, all sounds exhibited degradation in 

recognition. Notably, /a/ sounds showed distinct robustness to interference, displaying 

less degradation than other sounds, whereas /u/ sounds lacked this robustness and 

were surpassed by instrumental sounds. Acoustical analysis revealed a lack of 

correlation between FMM intensity and performance but highlighted correlations for 
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spectral similarities between the target sounds and interferers, which were particularly 

strong for /u/ and wind sounds. 

Therefore, a second experiment was conducted with a reduced stimulus set, removing 

the wind sound altogether to reduce the effects of spectral similarity. While the 

recognition in the isolated presentation improved for /u/ sounds, no recognition 

advantage for vowel sounds was observed. In the presentation with an interferer, the 

robustness for /a/ and the lack of robustness for /u/ persisted, which, as the acoustic 

analysis implied, was likely caused by relatively small and high similarity, respectively. 

For the third experiment, sound excerpts of popular music were used, incorporating 

female and male vocals as well as string and wind sounds extracted from the same 

multi-track database as in Study 2, where effects of FMM were apparent. Results still 

lacked a recognition advantage for vocal sounds in the isolated condition, while a distinct 

robustness in the interferer condition persisted, underscoring the robustness of the 

effect. However, no effect of FMM was found, and no notable correlation between 

recognition and intensity of FMM was observed. No notable correlations between 

musical sophistications were found in the experiments. Taken together, the findings 

demonstrate that vocal recognition is not inherently more efficient compared to 

instrumental sound recognition and does not possess properties that make it impervious 

to confusion with spectrally similar instrumental sounds. The lack of impact of FMM on 

the recognition of sounds suggests that cues related to FMM are not exploited or do not 

affect the recognition of short musical sounds. These results emphasize the necessity of 

a comprehensive understanding of various acoustic factors influencing both vocal and 

instrumental sound recognition. 

Study 4 - Enhanced salience of edge frequencies in auditory pattern 

recognition 

Motivated by the bass instruments' lack of attention attraction and reports of a high voice 

superiority effect, a study was conducted to investigate whether the auditory system 

operates under a frequency bias that dampens the detection of sounds in low-frequency 

regions and fosters the detection of sounds in higher frequency regions. Using the same 

detection paradigm with varying presentation orders of cue and mixture as in Studies 1 

and 2, two on-site experiments were conducted with 26 and 30 young participants. 

The mixtures consisted of pseudo-randomized pure tone melodies with eight notes. 

These melodies appeared in five out of six possible spectrally separated frequency 

regions, with a spectral distance between the regions of one ERB-filter bandwidth to 

mitigate spectral masking. The sound level of melodies was aligned to 40 dB(A) to 

compensate for frequency-specific hearing thresholds. The target was absent in half of 

the stimuli. All participants were tested on stimuli in both presentation orders, and each 

experiment followed a sequence starting with a presentation order where the target cue 

was presented before the mixture, followed by an order where the mixture was played 

first. Detection accuracies and data on musical sophistication using subscales of the 

Gold-MSI were recorded. 
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Results showed pronounced effects for presentation order, with higher detection 

accuracies when the target cue was presented first. This implies that even in scenes 

with spectrally distinct melodies, detection is highly influenced by prior information about 

the target, replicating the results from the first two studies. However, both the melodies 

in the lowest and highest frequency regions showed the least impact of the order effect, 

with similar performance in both regions, outperforming those in between. These 

findings question the notion of bass inferiority, implying a salience for sounds at the 

edges of the mixture. 

To further confirm this finding, a second experiment was conducted to investigate if the 

enhanced salience of edge frequencies is caused by the absolute frequencies utilized or 

shifts to the relative frequency edges of a mixture. For this, the mixture was reduced to 

three melodies that either appeared in the first four or last four frequency bands of the 

first experiment. The results corroborated the findings by yielding enhanced accuracies 

for edge frequencies irrespective of the absolute frequency region. 

While no notable correlations between musical sophistication and performance were 

observed in the first experiment, likely due to a participant pool primarily consisting of 

musicians, moderate positive correlations were seen in the second experiment, where 

participants with and without musical training were recruited in a balanced manner. The 

correlation between musical sophistication and performance implies that individuals with 

higher musical sophistication have better abilities to search the mixture for the target. 

The overall presence of the salience of edge frequencies refutes the assumption that the 

auditory system is driven by a frequency bias that favors higher frequencies and inhibits 

lower frequencies. Thus, the explanation for the effects of bass inferiority and high voice 

superiority observed in other studies likely stems from the interplay of complex harmonic 

structures of sounds outside of pure tones, such as those produced by realistic 

instruments. 

6.2 Implications 

The findings from the studies presented in this dissertation have several important 

implications for our understanding of attention and salience in musical mixtures. These 

implications extend across various aspects of auditory perception and contribute to the 

broader field of psychoacoustics. 

6.2.1 Attention and salience in musical scenes 

A constant finding throughout the studies is the remarkable human ability to extract 

acoustic cues, even in rich monophonic musical mixtures containing various 

instruments, and successfully detect individual instruments within these mixtures. This 

highlights the exceptional capabilities of the human auditory system in auditory scene 

analysis abilities (Bregman, 1990). The provision of prior information about a specific 

sound significantly enhanced the detection of melodies, instruments, or vocals. This 
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finding aligns with numerous reports that top-down processing can facilitate stream 

formation (Luce & Green, 1978; Mondor & Bregman, 1994;Sussman, Winkler, et al., 

1999; Bey & McAdams, 2002; Sussman, 2006; Fritz et al., 2007). Notably, this effect 

was particularly pronounced for bass instruments, which were otherwise obscured by 

other elements, as indicated by a detection accuracy close to chance level when no prior 

information was presented. This aligns with the notion, that  top-down processing is 

capable of highlighting otherwise obscure sounds within acoustic scenes (Botte et al., 

1997; Eramudugolla et al., 2005; Sussman & Steinschneider, 2009).  

In the absence of prior information, detection accuracy diminished. Nevertheless, the 

auditory system was still able to disentangle the scene to form separate auditory 

streams and achieve detection above chance levels. This ability persisted even under 

acoustically disadvantageous conditions where important cues were reduced, such as 

the lack of distinctive timbre in mixtures of pure tones, lower sound levels for the target, 

or a general lack of spatial separation (Huron, 1989; Mondor & Zatorre, 1995, Darwin & 

Hukin, 1999). This supports the notion of an attentive system governed by global 

(background) and local (foreground) organization (for a review see Sussman, 2017). 

Rather than merely gating out unattended sounds and enhancing attended ones, this 

system allows multiple sound organizations to be held in memory. In musical mixtures, 

listeners can access the interplay of instruments within the mixture (global) and also 

focus selectively on individual instruments (local). However, attention remains a limited 

resource. Therefore, allocating resources to local organizations detracts from global 

processing capabilities, particularly in complex acoustic scenes where the demand on 

finite cognitive resources is higher. This is reflected in studies that decoded neural 

activity in a speaker scenario, where one speaker had to be attended to while ignoring 

the other, revealing stronger neural representations of the attended speaker compared 

to the ignored speaker (Mesgarani & Chang, 2012; Zion Golumbic et al., 2013; Bednar & 

Lalor, 2020). Similar observations were studied in musical mixtures, where one 

instrument had to be attended among various instruments (Treder et al., 2014; Cantisani 

et al., 2019). This dual capability aligns with theories of auditory attention that propose 

simultaneous the perception of a large-scale auditory scene information alongside the 

selection of specific sounds (Bigand et al., 2000; Shinn-Cunningham & Best, 2008). 

Recent findings further support this view, demonstrating that unattended sounds are still 

processed through stream formation. Once segregated, these sounds become gradually 

more attenuated in deeper layers of auditory processing (Puschmann et al., 2024).  

This organization is shared across modalities as studies in visual attention show 

commonalities (Shinn-Cunningham, 2008): In a visual scene, objects are formed by an 

interplay of bottom-up processes operating on properties such as size, brightness or 

spatial position, and top-down processes such as prior knowledge, expectations, and 

specific task demands (Desimone & Duncan, 1995). Multiple objects can be formed 

within a scene, but they compete for visual attention, as only one object can be focused, 

mirroring the notion of global and local organizations in auditory attention. As attentional 

resources are limited, the greater the attentional resources devoted to focus one target 

object, the less the processing can be used for other non-target objects (Kastner & 
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Ungerleider, 2000). Salience is created by both inhomogeneities or sudden changes 

such as a red dot popping out of a field of green dots, or by new objects appearing in a 

scene. Similar to the auditory domain, prior knowledge of an object’s properties such as 

the shape, color or location can be used to search the visual scene (Bundesen, 1990; 

Pestilli et al., 2007). In an analogy between spectral locations in auditory scenes and 

spatial locations in visual scenes, a complementary effect regarding the salience of 

edges is observed. Central objects in the visual field are identified more accurately, 

quickly, and in greater detail than objects located in the periphery or at the edges 

(Rijsdijk et al., 1980; Cannon, 1985).  

6.2.2 Salience of edge frequencies   

Interestingly striking differences appeared for the presentation of mixtures containing 

pure tones melodies and real instrument. In one study pure tone melodies showed an 

enhanced salience for the outer spectral melodies (lowest and highest). This salience of 

edge frequencies suggests that the auditory system utilizes frequency-based cues to 

parse complex auditory environments, potentially prioritizing sounds that mark the 

boundaries of perceptual streams. However, this seems to contradict the lack of salience 

seen in the bass instruments, which showed to be particularly bad at attracting attention 

when no attention was directed towards it. These differences can be partially attributed 

to the many spectro-temporal differences between pure-tones and natural instruments 

that provide acoustical cues exploitable for ASA, but also differences within the set of 

sounds used within the experiments. As the pure tones used provide no level, or timbral 

cues, the auditory system relied on temporal cues (synchrony in onset and offset) and 

differences in frequency. Both are known to provide enough information for enabling 

stream segregation (Vliegen et al., 1999). Spectral distance was mapped in a way that 

melodies always had a minimum distance of at least one equivalent rectangular 

bandwidth (ERB, Glasberg & Moore, 1990) so that the degree of overlap of excitation 

patterns evoked in the cochlea was minimized, shown to be a particularly strong cue for 

stream segregation (Rose & Moore, 2000).  

This was further supported by a melody discrimination study conducted by Brochard and 

colleagues (Brochard et al., 1999), which demonstrated that a distance of only one ERB 

was sufficient to focus on a single cued pure tone melody embedded in mixtures of up to 

four simultaneously presented pure tone melodies. Reflecting the edge effects found in 

Study 4, differences were found in the ability to judge whether a focused melody differed 

from a cued target melody. Specifically, inner melodies showed worse performance than 

both the lowest and highest melodies. Additionally, a second experiment was conducted 

to investigate the spectral spacing needed so that performance is independent of the 

target melody. This experiment again revealed better performance for outer melodies 

and inner melodies, with considerably increased ERB distance required for inner 

melodies to achieve comparable results to outer melodies. Interestingly, musically 

trained participants also demonstrated better results than those without training, another 

similarity between both studies. Regarding the enhanced salience, Brochard and 

colleagues (Brochard et al., 1999) argued that his phenomenon is caused by the fact 
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that the attentional system either needs to segregate two or three streams: Focusing on 

an outer sequence, creates two perceptual streams, one composed of the attended 

stream and another composed of all other sequences either above or below the 

attended sequence, conversely focusing on an inner sequence, divides the acoustic 

scene into three streams: an attended stream composed of the sequence in the center, 

a second stream composed of the sequences below the attended stream and a third 

stream composed of the sequence above the attended stream which demands higher 

processing resources. These findings were partially seen in another study which focused 

on musical mixtures consisting of three spectrally distinct piano melodies or pure tone 

melodies (Palmer & Holleran, 1994). The results contradicted the salience of edges 

partially as a hierarchy arises, in which the highest melody outperformed all outer 

melodies, and the lowest melody outperformed the center melody. They argue that the 

particularly sensitive perception of the high voice is caused by its frequency range which 

lies in the optimal range for vocal melodies. However, this is in strong contrast to the 

findings presented in this dissertation, as both in Study 1, a lack of salience was 

observed for instruments playing in the average spectral region of vocals, as well as in 

Study 2 a lack of salience was observed for instruments playing vocal melodies. 

Interestingly, the results of the study by Palmer and Holleran (Palmer & Holleran, 1994) 

demonstrated differences between melodies played by piano and pure tones that were 

associated with more distinct voices for the pure tones due to the absence of 

overlapping harmonics of the piano tones. The harmonics of the piano tones interfere 

with another, and thus hinder the segregation of both sounds. The differences seen 

reflect observations of differences in stream formation between pure-tones and 

naturalistic syllables, in which enhanced distance in fundamental frequency between two 

syllables was needed to enable a stable stream segregation compared to pure-tones 

(Gustafson et al., 2020).  

This interplay of complex spectral structures caused by naturalistic instruments is likely 

to be the key in understanding the differences between the pronounced edge effect and 

the lack of ability to attract attention for the bass resulting in a failure of stream 

segregation. In naturalistic musical mixtures, the mix of instruments create an acoustic 

scene in which each instrument dependent specto-temporal patterns overlap in both the 

temporal and spectral dimension. While timbre cues are known to foster stream 

segregation (Bregman, 1990; Huron, 2001), the scene can be so dense that timbre and 

pitch of the individual instruments tempo-spectrally superimpose another. This 

phenomenon also manifests in the high voice superiority effect (HVSE; Fujioka et al., 

2005), which is caused by the interplay of complex spectral tone structure caused by 

naturalistic timbre, in which the energy of tones in the higher melody superimposes 

harmonic structures of the tones in the lower melody (Trainor et al., 2014). Interestingly 

Trainor and colleagues even assumed a lack of the effect when pure tones are used, 

which reflects the results of Study 4, as otherwise a correlation between increasing 

frequency band and increasing detection accuracy would have emerged. However, this 

is somewhat in conflict with Huron (Huron, 1989) who also reported that in realistic 

polyphonic music excerpts, which contain multiple independent melodies, detection of 
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simultaneous melodies smears for those in between the outer edges. The term 

“independent” here adds a perspective that represents a stark contrast between the 

tested musical scenes: the pure-tone melodies represented independent melodies with 

equal structural weight. In contrast, in pop music, the primary role of bass instruments is 

not to play a lead melody but to strengthen groove perception by providing a rhythmic 

foundation. While the perception of groove and timing is enhanced for bass instruments 

(Hove et al., 2014), it appears to be more abstract than the perception of individual 

melodic elements within a musical mixture. This abstract perception contributes to bass 

instruments being perceived rather unconsciously and not as separate auditory streams 

within the mixture. Furthermore, the main melody in a musical mixture is usually 

arranged to have distinct acoustic cues, leading to its perception as more salient than 

the accompanying parts of the mixture (C. K. Madsen, 1997; Ragert et al., 2014). 

6.2.3 Vocal salience 

Another consistent finding emerged for lead vocals in the musical mixtures: vocals 

robustly attracted auditory attention, irrespective of prior cueing, implying an inherent 

salience of vocal sounds in musical mixtures. Additionally, singing voice excerpts 

showed robust recognition when presented simultaneously with interfering sounds, 

unmatched by instrumental sounds. These findings align with reports of enhanced 

cortical responses observed when isolated singing voices and isolated instrumental 

sounds were presented sequentially (Levy et al., 2001; Gunji et al., 2003). Furthermore, 

speech sounds have been observed to be processed faster (Parviainen et al., 2005) and 

robustly trigger distinct neural mechanisms associated with specialized voice-specific 

cortical areas (Belin et al., 2000; Belin et al., 2002; Murray et al., 2006; Agus et al., 

2017; Moskowitz et al., 2020). An interpretation of this salience could be indicative of a 

specialized processing mechanism for vocal features during the segregation of auditory 

objects in a musical scene. Therefore, when the auditory system segregates sound into 

mental representations of distinct streams, vocal features are able to trigger a prioritized 

voice-specific processing. This specialized processing might enable better isolation of 

vocal sounds within the auditory scene, contributing to better detection. This vocal 

salience aligns with the notion of timbral salience (Chon & McAdams, 2012), in which 

different instruments exhibit a unique degree of salience. The vocal salience could imply 

such a hierarchical structure where the timbre of singing voice dominates at the top. 

However, as indicated by the results of Study 3, namely the lack of salience for the 

vowel /u/, not all human vowels have a guaranteed superior level of salience. Rather, it 

seems as if the salience is an effect of unique features that can be produced by vocal 

sounds, helping them stand out from other instruments within musical mixtures. 

To explore the origins of vocal salience, various acoustic manipulations were conducted. 

An analysis of musical mixtures provided insights that the vocals are mixed at a higher 

sound level than any other sound within the mixture and are spectrally favorably 

positioned in a large spectral region where they can pass through the mixture 

unmasked. These advantages could provide pivotal cues that foster stream segregation, 

making it easier for vocals to stand out amidst other sounds within the mixture. 
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Therefore, the contribution of differences between vocals and instruments in sound level 

and spectral filtering was investigated. While equalization in level and spectral filtering 

enhanced the prominence of instruments aiding their overall detection. The ability to 

attract attention, regardless of prior direction, still lacked for all sounds except vocals. 

Additionally, even when the vocals were decreased to an unfavorable level or spectral 

position within the mixture, vocal salience still persisted, highlighting that those cues 

cannot be the driving factors enabling vocal salience.     

Another origin of vocal salience was assumed to be the role of the vocals in a musical 

mixture, as in pop music the vocals usually sing the main melody. Experiments have 

demonstrated that the main melody within a musical mixture is perceived to be more 

salient (C. K. Madsen, 1997; Ragert et al., 2014). Furthermore, vocals singing the main 

melody are shown to be better represented in memory (Weiss et al., 2012). To explore 

the influence of the main melody, the vocals singing the main melody in pop music 

excerpts were replaced by instruments playing the same melody. This substitution 

enhanced the prominence of the instruments in the musical mixture, aiding their overall 

detection. One probable explanation for this is that the main melody is arranged in a way 

that makes it stand out from other sounds within the musical mixture due to more distinct 

acoustic cues like differences in rhythm, playing a higher pitch range, and pitch 

variability (C. K. Madsen & Geringer, 1990; Uhlig et al., 2013; Ragert et al., 2014). 

However, like the manipulation of sound level and spectral filtering, these cues were not 

sufficient to recreate vocal salience on their own. This underscores the superior memory 

for sung melodies, excluding those played by instruments ( Weiss et al., 2012; Weiss et 

al., 2021). Regarding the notion of vocal salience (Chon & McAdams, 2012), one might 

expect that the absence of vocals in mixtures, where vocals were replaced with 

instruments, would create a perceptual gap filled by other instruments emerging as 

particularly salient. However, the absence of such an effect indicates some degree of 

perceptual balance between the instruments within the mixture, such that no other 

instrument systematically attracted the listeners’ attention. 

Experiments investigating the detection of phonological sounds containing lexical words, 

pseudo-words, and non-phonological sounds revealed better performance for 

phonological sounds, implying that an advantage is caused by phonological cues alone 

(Signoret et al., 2011). Additionally, detection was even more enhanced for words 

compared to pseudo-words, revealing an additional influence of lexical knowledge. This 

suggests hierarchical differences between lyrical singing with meaningful words and 

vocalizations of nonsense syllables like “la la la”. Underlining the impact of phonological 

cues is the assumption that the perception of pitched vocalizations creates heightened 

interconnectivity between brain hemispheres in otherwise lateralized human brain 

processes (Riecker et al., 2000; Zatorre et al., 2002; S. Norman-Haignere et al., 2015),  

These processes are associated with either timing and speech processing (left) or 

spectral and music processing (right). This interconnectivity, which could foster stream 

segregation, is observed in the perception and production of singing (Schön et al., 2005; 

Callan et al., 2006), and in the processing of tonal languages (Sammler et al., 2015; 

Chien et al., 2020). Also, remotely in assumption of the importance of phonetical cues, 
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stronger cortical responses were observed for singing than for humming (Ozdemir et al., 

2006). However, it should be noted that this view of lateralization is subject to ongoing 

debate, with contradictory results emphasizing overlaps in the processing of language 

and music (see Koelsch, 2011). Nonetheless, phonological cues are a distinct feature of 

the singing voice and a likely candidate for enabling their unique salience. Despite this, 

the results of Study 2 present a different picture. While these cues are likely candidates 

for the overall enhanced detection of vocal sounds within musical mixtures, the findings 

indicate that phonological cues alone are not sufficient to enable vocal salience. The 

elimination of frequency micro-modulation (FMM) resulted in the loss of this salience, 

even though phonological cues were kept intact, refuting phonological cues as the sole 

contributor to vocal salience.  

6.2.4 The role of FMM 

At the same time, this result demonstrated the importance of FMM, which was further 

emphasized in a follow-up experiment, as the reintroduction of FMM significantly 

increased salience. The ability of FMM to reduce the order effect and maintain vocal 

salience suggests that micro-modulation may be a key element in the auditory system's 

mechanism for distinguishing vocal sounds from other auditory stimuli. Further 

underscoring the effect of FMM, a correlation was observed between a sound's ability to 

attract attention and FMM intensity.  

To understand what makes FMM of singing voices such an important candidate for 

creating salience and how FMM enhances the perceptual distinctiveness of vocals, an 

inspection of its characteristics is needed: FMM of singing voices are characterized by 

subtle frequency variations caused by the imperfect pitch control of human singing 

(Hutchins et al., 2014), most extensively in the transition toward or away from a target 

pitch (Larrouy-Maestri et al., 2014). While these frequency modulations are likely too 

subtle to be perceived as pitch errors in singing voices (Hutchins et al., 2012; Sundberg 

et al., 2013; Gao & Oxenham, 2022), they are still detected by the auditory system 

(Gockel et al., 2001; Lyzenga et al., 2004; Larrouy-Maestri & Pfordresher, 2018), and 

are associated with natural singing (Merrill & Larrouy-Maestri, 2017). These modulations 

can be intentionally enhanced by singers to add expressiveness (Sundberg et al., 2013) 

and emotional prosody (Larrouy-Maestri et al., 2024). This enhancement is able to 

trigger automatic processes that prioritize sounds with emotional prosody within 

vocalizations, similar to the salience of emotional faces in the visual modality (Liebenthal 

et al., 2016). This processing adds top-down cues that guide attention towards the 

emotional vocalization (Vuilleumier, 2005), thus highlighting the singing voice within the 

musical mixture. Besides impacting emotional prosody, the existence of pitch transitions 

between notes enhances the perceived continuity of singing voices (Larrouy-Maestri & 

Pfordresher, 2018; Weiss & Peretz, 2019), while its constant frequency modulations also 

add irregularities to the signal, both providing additional acoustical cues that foster the 

segregation of singing voices. 
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In speech, FMM has demonstrated to be an important factor in enhancing speech 

detection and recognition. FMM enhances the prominence of voices (McAdams, 1989), 

plays a crucial role in speech intelligibility (Wingfield et al., 1984; Miller et al., 2010), and 

aids speech recognition by helping to identify and isolate a voice embedded in auditory 

scenes with various sounds (Strelcyk & Dau, 2009; Dupuis & Pichora-Fuller, 2014) or 

multiple competing speakers (Culling & Summerfield, 1995; Zeng et al., 2005; 

Parthasarathy et al., 2019). Additionally, memory advantages for vocalizations with 

emotional prosody have been demonstrated (Armony et al., 2007). Of course, this does 

not mean that vocal sounds or vocalizations are the only sounds that can create 

emotional prosody, as it is undeniable that non-vocal sounds such as instrumental music 

are capable of evoking emotional prosody (Koelsch, 2014). Rather, this supports the 

assumption that the auditory system is specialized towards naturalistic FMM in vocals, 

as evidenced by advantages for speech with natural FMM compared to no FMM (Dupuis 

& Pichora-Fuller, 2014), or speech with overly decreased or exaggerated modulations 

(Miller et al., 2010). This aligns with findings that the processing advantage of vocals is 

highly specific to features of naturalistic vocal sounds and is absent for non-vocal 

sounds, even when they are matched in various acoustic cues (Bélizaire et al., 2007; 

Agus et al., 2012; Agus et al., 2017). 

Interestingly, the FMM showed no effect on the recognition of short sounds presented 

outside of musical mixtures as observed in Study 3. Several reasons may explain this. 

Firstly, the use of stationary tones: The sounds used were mostly extracts of stationary 

tones with no transitions between notes and were truncated at the end. Studies on FMM 

have demonstrated that FMM are particularly intense in note transitions and perceptually 

more important at the end of the note compared to the beginning, where they are 

commonly associated with poor singing abilities (Larrouy-Maestri & Pfordresher, 2018). 

Additionally, the perception of FMM is particularly prominent in the context of preceding 

or following notes and thus likely not exploited in single stationary tones (Pearce & 

Wiggins, 2006; Larrouy-Maestri & Pfordresher, 2018). Moreover, the duration of the 

short sounds may have been too brief to extract meaningful FMM information. Studies 

on emotional prosody in vocalizations have demonstrated that a minimum exposure of 

roughly 200 milliseconds is needed for prosody extraction (Liebenthal et al., 2016). This 

aligns with the ‘Asymmetric Sampling in Time theory’ (Poeppel, 2003), that picks up on 

the notion that the brain has specialized and lateralized processes (Zatorre et al., 2002) 

that distinctly evaluate short time windows in one hemisphere that tracks what happens 

‘now’ and evaluate long time windows to compare events that change over time in the 

other hemisphere (Poeppel, 2003; Santoro et al., 2014; Giroud et al., 2020). The 

estimated time window for the change over time which could process FMM is 

approximately 200 milliseconds, similar to those found in emotional prosody. This 

implies that the perceptual advantage of FMM is relatively slow, too slow to explain the 

reported recognition advantages of the voice even for extremely short sound events 

(Suied et al., 2014; Isnard et al., 2019), suggesting that the vocals are endowed with 

additional cues that account for its unique salience.  
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In summary, FMM is shown to be an important component contributing to vocal salience 

as it provides acoustical cues about a sound’s continuity and adds emotional prosody, 

facilitating the detection and processing of vocal sounds. Investigations of other 

characteristics of the voice, such as favorable sound levels, spectral arrangement and 

dissimilarity, phonological information, and playing in the main melody showed further 

positive influences on the prominence of the voice in musical mixtures. Therefore, it is 

likely that the multitude of unique features possessed by vocals collectively contribute to 

vocal salience in auditory scenes. The observation that some vocal sounds do not 

exhibit enhanced salience highlights that vocal salience is not inherently produced by 

being a vocal sound, but rather is based on the interplay of acoustic cues. 

6.2.5 Musical sophistication 

The impact of musical sophistication was mostly lacking in all experiments, with one 

exception. Higher levels of musical sophistication are associated with improved results 

in various ASA tasks (e.g., Micheyl et al., 2006; Marozeau et al., 2010; Başkent et al., 

2018; Siedenburg et al., 2020; Hake et al., 2023). However, a lack of correlation 

between better performance and musical sophistication, as measured with subsets of 

the Gold-MSI (Müllensiefen et al., 2014), indicates that the effects revealed within the 

experiments are of a fundamental nature and irrespective of musical sophistication. 

Specifically, the vocal salience effect emerged in both groups, making it similar to other 

salience effects observed in musical mixtures, like the high voice superiority effect, 

which has been demonstrated to exist in both musicians and non-musicians, and even 

infants (Marie & Trainor, 2013; Marie & Trainor, 2014). Furthermore, the lack of effect for 

musical sophistication highlights that the segregation of sound sources within musical 

mixtures is trained to such a degree that it is independent of musical sophistication, 

supporting the notion that everyday exposure is sufficient to develop some musically 

relevant abilities without the need for explicit musical training (Bigand & Poulin-

Charronnat, 2006). Additionally, the lack of correlation aligns with the observations in the 

melody detection study by Bey & McAdams (2002), which served as a basis for the 

detection paradigm in the experiments. 

Interestingly, no correlation with musical sophistication was found in the recognition and 

differentiation of instrumental and vocal sounds. One might argue that this task should 

favor musically trained listeners, as familiarity with the presented timbres is known to 

modulate recognition (Siedenburg & McAdams, 2017b), and musically sophisticated 

listeners have demonstrated advantages in timbre discrimination (Kannyo & DeLong, 

2011; Martins et al., 2022). Yet, the lack of correlation is likely due to the demands of the 

task — the categorization between vocal and non-vocal sounds — which is a more 

fundamental ability already acquired through implicit training, and thus does not benefit 

from musical sophistication. This finding aligns with other studies that found no 

difference between both groups in timbre discrimination tasks (Allen & Oxenham, 2014; 

Bigoni & Dahl, 2018). Bigoni & Dahl (2018) reasoned that the lack of an effect can be 

attributed to the observation that inter-individual differences in timbre perception play a 

larger role than musical training, adding another possible explanation. 
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Conversely, a positive correlation with musical sophistication was observed in the 

detection of pure-tone melodies. The structural differences between the musical scenes, 

such as pop musical scenes structured with a defined leading melody and instrumental 

accompaniment, contrast with the structure of the pure-tone melodies, where each 

melody was independent and equal, lacking a clear hierarchy. These structural 

differences demand different capabilities from the auditory system, explaining the 

observed differences. This correlation aligns with studies that found better detection of 

melodies and instruments in complex auditory environments and musical mixtures 

among musically sophisticated listeners (Marozeau et al., 2010; Slater & Marozeau, 

2016; Siedenburg et al., 2020). Part of the reason for these ambiguous results could 

relate to the number of test subjects and the insufficient spread of different levels in their 

musical abilities, as positive correlations were also found in a large-scale study 

employing the same target-in-mixture detection paradigm but with a total of 525 normal-

hearing listeners (Hake et al., 2023).  

Taken together, these contradictory results emphasize that the question of differences 

between auditory skills associated with higher levels of musical sophistication is not as 

clear-cut as it might seem. Although the results presented in this dissertation 

demonstrate that everyday exposure to music is sufficient to elicit individual sounds in 

musical mixtures, the contradictions also highlight the need for more extensive studies 

involving a larger number of participants covering a wide range of musical sophistication 

levels. 
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6.3 Final conclusion and outlook 

6.3.1 Final conclusion 

The four studies incorporating a total of ten experiments presented in this dissertation 

provide a comprehensive examination of factors contributing to auditory attention and 

salience in musical mixtures. On the basis of these experiments, several key findings 

have emerged, enhancing our understanding of how certain sounds stand out in 

complex acoustic mixtures.  

The experiments demonstrated the significant interplay between bottom-up and top-

down processes in complex auditory scenes such as musical mixtures. Acoustic 

properties of sounds (bottom-up processes) play a crucial role in their detectability, while 

prior knowledge (top-down processes) also shapes the perception of the musical 

mixture. An inferior detection of bass instruments was observed, revealing that bass 

instruments lacked the ability to attract auditory attention. Investigations into whether the 

auditory system possesses perceptual biases that could explain this bass inferiority, 

utilizing mixtures of spectrally distinct pure-tone melodies, rejected this assumption. 

Instead, an enhanced salience of sounds at the spectral edges of auditory scenes 

appeared, implying that the bass inferiority results from musical structures with distinct 

lead and accompaniment roles and from spectral patterns evoked by naturalistic 

instruments. 

Conversely, the lead vocals attracted listeners’ auditory attention to a degree unmatched 

by any other sound within the mixture. This finding was consistent across multiple 

experiments, highlighting a unique vocal salience that manifested in musical mixtures 

and when presented alongside an interfering sound. This ability to attract auditory 

attention more effectively than other instruments suggests that the human singing voice 

possesses inherent acoustic properties that make it particularly prominent in auditory 

scenes. However, not all vocalizations showed such enhanced salience, revealing that 

being a vocal sound does not automatically produce this salience. This emphasizes that 

multiple acoustic factors contribute to enabling vocal salience. Still, vocal salience 

persisted across different sets of sounds and experimental conditions, including 

variations in spectral masking and sound levels. Additionally, this unique salience could 

not be reinforced by other instruments playing vocal melodies.  

The frequency micro-modulations (FMM) characterized by pitch variations inherent in 

natural singing were isolated as contributing to this salience, equipping the vocals with 

additional acoustical cues and features that are extracted for emotional prosody 

processing, thus facilitating their segregation by triggering additional cortical resources. 

As the FMM had no effect on the recognition of short single-note vocal excerpts, which 

nevertheless exhibited salience, it appears that other features of the voice also 

contribute to vocal salience. This is further supported by the observation that all 

attributes transferred from voice to instruments increased the prominence of the 

instruments, indicating that typical vocal sounds are equipped with a multitude of 

advantageous features that help attract auditory attention. 
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6.3.2 Outlook 

The above findings contribute to the broader field of psychoacoustics and open new 

avenues for further research into the intricate processes underlying auditory scene 

analysis. However, with every answered question, new ones arise in the pursuit of 

understanding human perception. 

The studies presented in this dissertation could be further expanded: For example, to 

better understand the interplay of stream segregation and attention, and the extent to 

which global organizations are monitored, the detection paradigm used in Study 1 could 

be complemented with an additional listening condition. In this condition, instead of 

cueing the target before the presentation of the mixture, a random instrument within the 

mixture is cued, and participants are asked if they have perceived a different non-cued 

target instrument within the scene. Utilizing this condition would distract auditory 

attention away from the target sound. An analysis of the detection accuracy of correctly 

identifying whether the non-cued target was playing may provide additional insights into 

the ability of the wrongfully cued instrument to distract from other sounds within the 

mixture. Additionally, by directing the listeners’ attention towards an irrelevant sound, 

this experimental condition would further study how global organizations within musical 

scenes are tracked by the auditory system. 

With respect to the salience of edge frequencies and the inability of the bass to attract 

auditory attention, several possibilities arise. To bridge the gap between artificial and 

naturalistic musical stimuli, pure tones could be replaced by tone complexes, ensuring 

no variation between the melodies within a scene to de-emphasize timbre cues. This 

could support the hypothesis that the differences between edge salience and the high 

voice superiority effect (HVSE; Fujioka et al., 2005) are based on harmonic structures. 

Alternatively, a melody recognition task could be used instead of a detection task. This 

would require participants to focus on subtleties in the melody, engaging more complex 

cognitive processes and potentially enhancing the differences between the melodies. 

Additionally, this approach would prevent participants from simply identifying the target 

by comparing the frequency band of the target with the frequency band missing from the 

mixture, which would increase the informative potential of the experiment. 

Investigating individual differences in auditory perception, such as the effects of musical 

training, age, or hearing impairment, could offer valuable insights. Experiments could be 

designed to explore how these factors influence the detection and processing of salient 

sounds. For example, as musicians show pronounced cortical responses when hearing 

their trained instruments (Pantev et al., 2001; Shahin, Roberts, & Trainor, 2008; Strait et 

al., 2012), it would be interesting to study if the experience in playing the instrument also 

shapes the perception of the musical scene in making the trained instrument more 

salient, potentially even counteracting the vocal salience. Another aspect could include 

investigating individual preferences for singing voices or even the dislike of certain 

voices (Bruder et al., 2024) and how this would shape vocal salience. As both age and 

hearing impairment are associated with decreasing musical scene analysis abilities 

(Hake et al., 2023), the investigation of these factors is a highly important topic. The 
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knowledge gained about the salience of different sound features can be further tested in 

hearing-impaired individuals and can inform the design of more effective hearing aids 

and auditory prosthetics. For example, incorporating algorithms that boost FMM could 

improve the user's ability to focus on these sounds in noisy environments and, if desired, 

in musical mixtures, enhancing the overall auditory experience for users. Additionally, 

experiments with hearing-impaired participants could add a new perspective by 

exploring whether the same salience effects are observed between normal hearing and 

hearing-impaired listeners. The effect of FMM would be particularly interesting, as 

hearing impairment is also associated with difficulties in the detection of frequency 

modulations (Moore & Skrodzka, 2002).  

Another direction for future research is multi-sensory integration. Auditory perception 

does not occur in isolation; it is often influenced by other sensory modalities. Future 

experiments could explore how visual or tactile cues interact with auditory information to 

influence salience and attention. For example, investigating how visual cues of a singer 

or instrumentalist impact the auditory perception of their sound could reveal important 

insights into multi-sensory integration. Exploring how vibro-tactile stimulation influences 

auditory perception and how particularly salient features can be exploited to enhance 

auditory perception for hearing aid users would be valuable. While it has been observed 

that vibro-tactile stimulation can enhance the music listening experience (Siedenburg et 

al., 2023), the extent to which such modalities improve musical scene analysis abilities 

remains open to be explored.  

To complement behavioral experiments, neurophysiological studies using techniques 

such as EEG or MEG could be conducted to investigate the neural correlates of auditory 

salience and investigate if a neural correlate for the vocal salience in musical mixtures 

can be found. Understanding the brain mechanisms underlying the detection and 

processing of salient sounds could provide deeper insights into the cognitive and neural 

processes involved in auditory scene analysis. 

Future research could also aim to increase the ecological validity of experiments by 

using more naturalistic and contextually rich auditory scenes. Studies could involve live 

music performances, real-world environments, or virtual reality setups to better 

understand how auditory salience operates in everyday listening situations. One 

approach to this was tested by Bürgel et al.(2024), in which the audience of a concert 

was tasked with recognizing intentionally inserted errors, exemplifying one of the many 

possibilities to bridge the gap between laboratory findings and real-world applications.  
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