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Abstract

Big data analyses in audiology have the potential to uncover patterns of hearing
loss that, when linked to audiological findings and treatment recommendations,
can significantly provide benefit to audiological patients in the long term. To
achieve this, existing datasets must be thoroughly analyzed, and new datasets
need to be collected with a sufficient number of participants, which can be
achieved efficiently via remote self-testing. Moreover, the development of suit-
able methods is crucial to integrate and facilitate large-scale datasets. This thesis,
therefore, introduces the concept of auditory profiles as a framework for big data
analyses and remote hearing loss characterization. Auditory profiles are data-
driven representations of patient groups that share similar hearing loss patterns,
enabling the identification of novel patterns and relationships within datasets.
By leveraging machine learning techniques and remote testing capabilities, this
approach can expand the participant pool, facilitate the collection of large-scale
datasets and uncover complex relations within the datasets. If these methods are
established, patients can be classified into a specific auditory profile even using a
minimum set of (remotely performed) hearing tests, which will have a big impact
on audiological diagnostics and treatment for the whole population. This thesis
consists of three studies that tackle different aspects of big data analytics and
remote testing in audiology. The first study proposes a general auditory profile
generation pipeline that can generate auditory profiles from a single dataset. The
second study extends this pipeline to a federated learning approach, enabling the
integration of multiple datasets and the continuous update of the knowledge con-
tained in the auditory profiles. In both studies, classification models are built that
can classify patients into the varying auditory profiles. The third study focuses
on adapting the matrix sentence test for a smartphone-based implementation to
facilitate remote self-testing. It evaluates the feasibility of administering the test
via a smartphone and proposes a user-friendly interface for the predominantly
elderly target group. In conclusion, this thesis provides a framework for char-
acterizing patient groups across datasets through the profile generation pipeline.
Users of remote testing applications can be classified into specific auditory pro-
files, allowing the additional information contained within these profiles to be
used in research and diagnostic processes, and future data collection efforts. In
the long term, additional datasets should be integrated to create a comprehensive
global auditory profile set that covers the entire audiological patient population.
Linking these profiles to audiological findings and treatment recommendations
could ultimately enable remote diagnostics for hearing loss.



iii

Zusammenfassung

Die Analyse von großen Datensätzen in der Audiologie hat das Potenzial, Muster
von Hörverlusten aufzudecken, die, wenn sie mit audiologischen Befunden und Be-
handlungsempfehlungen verknüpft werden, audiologischen Patienten langfristig
zugutekommen können. Um groß angelegte Datenanalysen durchführen zu kön-
nen, müssen bestehende Datensätze analysiert und neue Datensätze mit einer aus-
reichenden Anzahl von Teilnehmern gewonnen werden, was durch mobile Fern-
tests effizient erreicht werden kann. Anschließend müssen geeignete Methoden
entwickelt werden, die sowohl die Integration als auch die Auswertung großer
Datensätze ermöglichen. Zu diesem Zweck führt die vorliegende Dissertation
das Konzept der Auditorischen Profile als Rahmen für Big-Data-Analysen und
die mobile Charakterisierung von Hörverlusten ein. Auditorische Profile sind
datengetriebene Darstellungen von Patientengruppen, die ähnliche Hörverlust-
muster aufweisen, und ermöglichen die Identifizierung neuer Muster und Beziehun-
gen innerhalb von Datensätzen. Durch den Einsatz von maschinellen Lernver-
fahren und mobiler Ferntests hat dieser Ansatz das Potenzial, den Teilnehmerpool
zu erweitern, die Erfassung großer Datensätze zu erleichtern und Zusammenhänge
in den Datensätzen aufzudecken. Wenn diese Methoden etabliert sind, können
Patienten auch mit einer minimalen Anzahl von (ferngesteuerten) Hörtests in ein
bestimmtes Profil eingeteilt werden, was einen großen Einfluss auf die audiolo-
gische Diagnostik und Behandlung der gesamten Bevölkerung haben kann. Diese
Dissertation besteht aus drei Studien, die sich mit verschiedenen Aspekten der
Analyse von großen Datensätzen und der mobilen Selbsttestung befasst. In der
ersten Studie wird eine allgemeine Pipeline zur Erstellung von Auditorischen Pro-
filen entwickelt, die Profile aus einem einzigen Datensatz generieren kann. Die
zweite Studie erweitert diese Pipeline um einen föderierten Lernansatz, der die In-
tegration mehrerer Datensätze und die kontinuierliche Aktualisierung des in den
Auditorischen Profilen enthaltenen Wissens ermöglicht. In beiden Studien werden
Klassifikationsmodelle gebaut, die es ermöglichen, Patienten in eines der Profile zu
klassifizieren. Die dritte Studie befasst sich mit der Anpassung des Oldenburger
Satztests (Matrix sentence test) für eine Smartphone-basierte Implementierung,
um die Selbsttestung aus der Ferne zu erleichtern. Dazu wird die generelle Mach-
barkeit der Testdurchführung über ein Smartphone evaluiert und eine geeignete
Benutzeroberfläche vorgeschlagen, die speziell auf die überwiegend ältere Ziel-
gruppe zugeschnitten ist. Zusammenfassend ermöglicht diese Dissertation, dass
Patientengruppen über Datensätze hinweg durch die Profilgenerierungs-Pipeline
charakterisiert werden können. Darüber hinaus können Nutzer einer mobilen
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Messumgebung spezifischen Auditorische Profile zugeteilt werden, sodass die zu-
sätzlichen Informationen, die in diesen Profilen enthalten sind, für die Forschung,
die Diagnostik und für zukünftige Datensammlungsmaßnahmen genutzt werden
können. Langfristig sollten weitere Datensätze integriert werden, um ein um-
fassendes globales Auditorisches Profil zu erstellen, das die gesamte audiologische
Patientenpopulation abdeckt. Die Verknüpfung dieser Profile mit audiologischen
Befunden und Behandlungsempfehlungen könnte letztendlich Ferndiagnosen von
Hörverlusten ermöglichen.
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1 General introduction

Data is becoming increasingly important in today’s society to extract insights and
foster knowledge generation. This development is aided by advances in comput-
ing powers, machine learning models, and data storage capabilities. To extract
valuable insights, analyses need to consider the sampling, the accuracy of the
data, and the reasoning behind the analyses. Here, larger datasets can lead to
more robust results (Shi, 2022). These developments towards big data analytics
have tremendously benefited the medical domain, where maintaining biobanks
has facilitated the advancement of personalized medicine, by enabling analyses
into prevention, diagnosis, treatment, and monitoring of patients (Kinkorová and
Topolčan, 2020; Jagadeeswari et al., 2018; Christensen et al., 2018; Wasmann
et al., 2021). The benefits of big data analyses in the medical field are, thus,
widely acknowledged and the field of audiology can equally benefit from big data
analytics.

Another factor, fostered by the Covid-19 epidemic, is that remote testing has been
on the rise (Omboni et al., 2022; Saunders and Roughley, 2021). Remote testing
has the potential to provide easy access to hearing health care (Swanepoel et al.,
2010) and also facilitate the collection of large-scale datasets. These datasets, in
turn, can provide valuable insights into hearing loss patterns and also longitudinal
trajectories of hearing loss patterns. To achieve these goals, it is essential that
individuals are measured on a comprehensive yet concise test battery of audio-
logical tests, which can also be measured remotely. These tests should not only
yield accurate audiological findings, but also encompass enough measures to be
able to detect and classify most of the potentially underlying pathologies as well
as to ensure robust data for statistical analyses.

1.1 Hearing loss characterization

To characterize hearing loss, different audiological measures exist, and their us-
age varies according to which institution performs the assessment. An Ear-Nose-
Throat (ENT) physician or audiologist, for instance, uses a different set of au-
diological measures to characterize hearing loss, as compared to a hearing care
professional for fitting a hearing aid.

An ENT physician’s primary focus in characterizing hearing loss is to diagnose
underlying conditions, provide appropriate treatment, or refer patients to spe-
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cialized care when needed. Initially, an otoscopy is used to visually inspect the
outer ear canal and tympanic membrane, and to assess the presence of active
ear diseases, such as ear infections, excessive cerumen, or a perforated tympanic
membrane. This is often accompanied by a tympanogram to measure middle ear
functioning via the compliance of the tympanic membrane. Next, the type of
hearing loss (sensorineural-, mixed-, or conductive hearing loss) is assessed via
tuning forks or an audiogram (Hoth and Baljić, 2017; Gelfand, 2016; Akşit and
Kösemihal, 2024).

Audiologists are hearing specialists that conduct both objective and subjective
measurements to evaluate a patient’s hearing status. Subjective measurements
include the audiogram, which assesses the general type of hearing loss and the
degree of hearing loss across frequencies, as well as speech tests which assess
speech understanding in both quiet and noise. Speech tests are highly relevant,
as most individuals complaining about hearing loss suffer from reduced speech
understanding (especially in noise), which results in a loss of communicative abil-
ities. The Freiburg speech intelligibility test (Hahlbrock, 1953) is one of the most
commonly used speech tests in Germany (Gemeinsamer Bundesausschuss, 2021)
and employs single words or numbers in the assessment. However, this test has
been widely criticized due to test lists that are phonemically imbalanced, vary in
their difficulty, and have low sensitivity, among others (Hoth and Baljić, 2017;
Baljić et al., 2016; Winkler and Holube, 2016). Better alternatives are tests that
use sentences, instead of single words to more adequately represent speech un-
derstanding, and at the same time show test list equivalence and high sensitivity.
Two candidates for this are the Goettingen sentence test (GOESA, Kollmeier
and Wesselkamp (1997)) and the matrix sentence test (MST, Wagener (2004);
Kollmeier et al. (2015)). The GOESA uses sentence of every-day-life, and can
be used for speech testing, hearing aid indication, and hearing aid assessment.
The MST, in contrast, uses sentences that are matrix-based (5x10 words) and
follow a fixed semantic structure of name-verb-number-adjective-noun (“Thomas
hat fünf grüne Messer”, engl. translation: “Thomas has five green knives”). Due
to the matrix structure, the sentences are unpredictable and especially suited for
repeated use (Kollmeier et al., 2015).

When a patient visits a hearing care professional for a hearing aid fitting, the
primary audiological measures used to characterize the hearing loss are the au-
diogram and a speech test. While the speech test is required for hearing aid indi-
cation, its information is rarely used to improve the fitting of the hearing aids. As
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a result, hearing aid fittings predominantly rely on audiogram data, overlooking
additional factors from audiological tests that could enhance the characterization
of the hearing loss and improve the effectiveness of the fitted hearing aid. An
example for such an additional factor is the usage of adaptive categorical loud-
ness scaling (ACALOS, Brand and Hohmann (2002)) for loudness compensation
in hearing aid fitting.

ENT-physicians, audiologists, and hearing care professionals, thus, use different
audiological tools in their daily practice in order to capture different aspects of
hearing loss. Regardless, the main audiological test and gold standard is still the
audiogram. Research has, however, repeatedly shown that the audiogram alone
does not suffice in characterizing individual hearing deficits sufficiently (Musiek
et al., 2017; Houtgast and Festen, 2008; Schoof and Rosen, 2014; Humes, 2021;
Van Esch and Dreschler, 2015). This highlights the need to incorporate additional
measures beyond the audiogram for an accurate data-driven characterization of
hearing loss. To cover a broader range of measures, beyond the audiogram,
datasets need to be collected that either already contain a variety of measures,
or can be combined in a sensible way to use the varying measures, such that a
comprehensive yet concise data pool can be obtained for big data analyses in
audiology.

1.2 Big data in audiology

Big data is more than just the size of the dataset and is commonly described
by the five "Vs": volume, velocity, variety, veracity and value (Anuradha et al.,
2015). Volume refers to what one typically conceives as "big" data, namely the
size of the data. Velocity refers to the speed with which data is added or changed.
In audiology for instance, data with high velocity could refer to time-varying
signal data from additional sensors in hearing aids. Data variety implies that
datasets contain varying measures, for instance varying audiological measures
next to questionnaire data from cognitive domains or hearing care professionals.
Veracity refers to the accuracy of the data or potential errors contained in the
dataset. Finally, data value describes how well the data is suited to extract the
desired insights of the dataset (Mellor et al., 2018; Anuradha et al., 2015). If
these prerequisites are fulfilled, big data analytics can become a powerful tool for
knowledge generation and decision support in the medical field.

In order to analyze and interpret the data, various statistical and machine learn-
ing models are available. Traditional research models, such as regression and
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classification models, are primarily supervised and used to predict specific out-
comes and identify influential factors. Commonly used classification models are
random forests and neural nets. Both random forests (Breiman, 2001) and neural
nets have their advantages and disadvantages. While neural nets can generally
achieve high precision with large datasets, they are often less interpretable and
make it more challenging to derive insights about feature importance (Hastie
et al., 2009). For smaller sample sizes and improved interpretability, random
forests are a more suitable choice, as they are based on decision trees and can
effectively handle smaller datasets. This makes them a more attractive option for
applications where transparency and understanding of the model’s behavior are
crucial.

In contrast, unsupervised machine learning models, like clustering, are designed
to uncover hidden patterns and relationships within the data, thus offering the
potential to reveal previously unknown associations (Hastie et al., 2009). Unsu-
pervised clustering is, therefore, particularly well-suited for identifying patterns
of hearing loss in audiological datasets. Clustering enables the stratification of
data into distinct clusters, maximizing the distinctions between them. Model-
based clustering goes a step further by assuming that the data is generated from
a mixture of subgroups based on an underlying model, which it aims to recover
(Fraley and Raftery, 2002; Banerjee and Shan, 2010). Hence, this approach al-
lows for the identification of different patterns of hearing loss in a data-driven
manner. The detected hearing loss patterns have the potential to provide benefit
to audiological patients in the long term, especially when related to subgroup-
specific audiological findings and treatments.

Recently, federated learning (McMahan et al., 2017) has emerged as a promis-
ing approach to increase the available data pool by overcoming data sharing
restrictions due to privacy concerns. With federated learning, data analyses and
training of models occur at the data ownership site, allowing for access to data
that would otherwise be restricted. This is achieved by sharing only the learned
parameters, rather than the underlying data, which preserves data privacy. The
combined learned parameters from diverse data sources can then be used to train
a global model that benefits from a larger dataset, leading to more robust and
accurate analyses. For clustering, however, a sufficiently large initial dataset is
still required to produce reliable estimates of the underlying clusters.
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1.3 Remote testing

Obtaining large datasets in the traditional way, that means in the lab, is difficult
due to the location and time constraints. Participants of such studies need to
travel to the site of the lab, which can become infeasible, if a multi-center study
is not planned that enables easy access for participants from various regions. In
addition, experimenters need to measure each participant individually, which lim-
its the ability to gather large datasets quickly. Remote testing offers a solution for
this, allowing research institutes to conduct large-scale and longitudinal studies
more efficiently by eliminating the need for travel and experimenter time. This
approach can tremendously broaden the participant pool, enabling the collection
of large-scale datasets, which in turn facilitates the use of machine learning for
knowledge extraction.

In addition to research, clinical practice can also benefit from remote testing, as
it has the potential to improve both the access to hearing healthcare and improve
healthcare monitoring. Again, the access to healthcare is improved, as tests can
be performed remotely, without having to travel to a hearing care professional.
This is beneficial for individuals who are underserved with hearing care profes-
sionals, as well as individuals who are not mobile enough to frequently travel to
a hearing care professional. Healthcare monitoring can be improved in clinical
practice by using remote testing for large-scale screening approaches to catch, for
instance, disease onset (Mishra et al., 2020). Likewise, it can be used for dis-
ease monitoring, when a progression of the disease can be expected (Shaik et al.,
2023). In the field of audiology, for example, age-related hearing loss often wors-
ens over time (Fischer et al., 2016). Here, remote testing could first track when
a hearing aid would become beneficial. Later it could serve as a quality check
for the hearing aid, where the remote tests could indicate when the hearing aid
needs to be refitted. For this purpose, the remote-testing application would need
to be connected to the hearing aids. Here, Sonova, among other manufacturers,
provides an online-tool to check hearing aid candidacy. After hearing aids are
purchased, audiograms can be measured via the fitted hearing aids, and remote
fitting can be performed (Sonova, n.d.).

To enable the benefits of remote testing, the technology for remote testing needs
to be accessible by all. For this, smartphone applications are most suitable,
as they are easily accessible, and the majority of the population has access to
smartphones (Degenhard, 2024). For remote hearing testing to be applicable in
research and clinical practice, relevant audiological measures need to be included
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to be able to characterize hearing deficits adequately. For this, information on
threshold, speech understanding, and loudness perception is important, as these
cover different aspects of hearing loss, and were consistently defined as relevant
measures (Sanchez-Lopez et al., 2020; Van Esch and Dreschler, 2015; Buhl et al.,
2019). They are, therefore, plausible candidates for inclusion in a remote testing
tool, as they can effectively assess users’ hearing statuses and be used for the
collection of larger datasets.

Traditionally, tests to assess threshold information (audiogram), speech under-
standing (speech test), and loudness perception (adaptive categorical loudness
scaling) are measured in the lab with an experimenter present. The participants
can respond to the test material through either verbal reports, button presses,
or by selecting answer options on a computer screen. However, to measure these
tests on a smartphone, it is crucial to ensure that the interface is accessible and
usable by the target group, particularly considering the small screen size of a
smartphone.

As hearing loss predominantly affects elderly individuals (World Health Organi-
zation, 2021), the main target group for such a smartphone-based implementation
will also be elderly. Hence, the small screen size and potential unfamiliarity with
smartphones could prove to be problematic for the elderly target group, poten-
tially hindering their ability to accurately complete the tests.

From the three domains (threshold, speech understanding, loudness perception),
measures of loudness perception and speech understanding (in noise) can be eas-
ily implemented on a smartphone in terms of calibration. Both are suprathresh-
old measures and therefore less dependent on the absolute level. For measuring
loudness perception, adaptive categorical loudness scaling (ACALOS, Brand and
Hohmann (2002); Oetting et al. (2014)) can be used. ACALOS measures an indi-
vidual loudness perception by presenting stimuli with varying sound intensities.
Participants can rate the sounds in eleven categories from "not heard" to "too
loud" (Brand and Hohmann, 2002). The responses are then mapped to a scale of
50 categorical units (CU) in steps of 5 ("not heard" = 0; "too loud" = 50 CU).
The eleven categories have been a compromise between Heller’s 50-CU scale and
the LGOB-method (loudness growth in 1/2 octave bands) that uses only five
to seven categories (Kollmeier, 1997). For a smartphone implementation, these
eleven categories would need to displayed.
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The audiogram can also be easily implemented on a smartphone in terms of the
user interface, as it only requires one to three buttons, depending on the test
procedure (Lecluyse and Meddis, 2009; Kaernbach, 1990; Xu et al., 2024). It can,
however, only result in valuable results if the smartphone setup (smartphone +
headphones) is calibrated. For large-scale studies, where individuals are mea-
sured with their own devices, calibration remains difficult, even though there are
first attempts to calibrate smartphone setups remotely (Masalski et al., 2016;
Scharf et al., 2023). Hence, for the smartphone-based implementation, the main
difficulty lies in estimating precise audiograms.

While the Goettingen sentence test (GOESA) is included in the current set of
auditory profiles, the matrix sentence test (MST) is more suitable for measur-
ing the speech understanding domain on a smartphone. That is, because the
MST is a repeatable sentence test, currently available in more than 20 languages
(Hörzentrum Oldenburg gGmbH, n.d.; Kollmeier et al., 2015). Further, the re-
sults between GOESA and MST are comparable, if the required training is ini-
tially performed (Zinner, 2021). Given this, the MST is the more preferable
choice for a smartphone-implementation and could replace the GOESA in the
future as the main speech test of the auditory profiles. Sentences of the MST
are matrix-based (5x10 words) and follow a fixed semantic structure of name-
verb-number-adjective-noun (“Thomas hat fünf grüne Messer”, engl. translation:
“Thomas has five green knives”). It can either be measured in an open or in a
closed version. In the open version, patients verbally report the word they under-
stood to an experimenter; in the closed version participants select the words they
understood from the 5x10 matrix on a computer screen. The matrix sentence
test, however, is more difficult to implement than the ACALOS or the audio-
gram. Instead of eleven buttons, as with ACALOS, 50 buttons (5x10 matrix)
would need to be displayed on screen for participants to mimic the traditional
closed version of the matrix sentence test. This could result in button and font
sizes that are too small for the elderly target group, where tactile impairments
may be present. It is therefore necessary to investigate appropriate interfaces for
the small screen size of smartphones, to integrate the matrix sentence test on a
smartphone.

1.4 Auditory Profiles

Comprehensive audiological patient characterization is a well-established goal,
and various approaches have been developed to comprehensively describe pa-
tients. Traditional methods focused on creating audiological test batteries that
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encompass a wide range of measures, enabling individual patients to be char-
acterized across multiple dimensions. For instance, Dreschler et al. (2008) have
proposed a comprehensive test battery, which serves as an auditory profile by
covering key aspects of hearing ability. By measuring patients across these stan-
dardized tests, a comprehensive characterization is possible. Further, the aim
was to establish a standardized test battery that would facilitate consistent pa-
tient characterization across institutions and countries (Van Esch et al., 2013).
Further, Jepsen and Dau (2011) conducted a study involving 13 participants,
who underwent an audiogram and additional psychoacoustic masking and dis-
crimination experiments. The goal was to not only quantify individual hearing
impairments through test results, but also to apply a model of auditory signal
processing and perception. They emphasize the importance of characterizing pa-
tients beyond the standard audiogram, as individuals with similar audiograms
can exhibit distinct results on other tests.

Subsequently, approaches have focused on deriving patient profiles from test bat-
teries, using either existing, or newly developed test batteries. Lecluyse et al.
(2013), for instance, used a test battery that measures absolute threshold, fre-
quency selectivity, and compression, to provide individual auditory profiles that
can be visualized. They also defined a normal-hearing reference profile and a
hearing-impaired profile for patients with sensorineural hearing loss. Here, they
observe that the impaired profile is characterized by significant variability in test
scores among patients, implying that it may be composed of multiple distinct
sub-profiles.

Building on this foundation, statistical approaches to deriving patient profiles
have emerged that use unsupervised learning to extract patient groups from
the data, instead of individual profiles. Notably, the standard audiograms by
Bisgaard et al. (2010) and the auditory profiles proposed by Sanchez et al.
(Sanchez Lopez et al., 2018; Sanchez-Lopez et al., 2020) have demonstrated the
potential of this approach. While the standard audiograms rely on a single audi-
ological measure (the audiogram), the auditory profiles by Sanchez Lopez et al.
(2018); Sanchez-Lopez et al. (2020) use a comprehensive set of audiological mea-
sures. However, the profiles are limited to four profiles, which are assumed to
arise from two underlying distortion types. As a result, further sub-profiles may
not be identified. Nevertheless, they successfully defined separable patient groups
which could benefit from different treatment schemes (Wu et al., 2020), and thus
demonstrate the potential for auditory profiling.
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In this thesis, we introduce auditory profiles as a framework that can facilitate big
data collection, analyses, and remote characterization of hearing loss. Here, au-
ditory profiles describe patient groups within datasets that share similar patterns
of hearing loss within a profile but can be distinguished from remaining profiles
based on their distributions across audiological measures. As they are derived
purely data-driven, they have the potential to uncover patterns of hearing loss
that are independent of a priori hypotheses, which could, in the long run, aid
in the diagnostic and treatment process of audiological patients. Additionally,
they could be used in a remote testing tool for hearing loss characterization as
a background classification system, where individuals are tested on certain au-
diological measures and then classified into one of the auditory profiles to add
further profile information to the remote assessment.

However, several aspects need to be addressed to ensure practical usability. First,
it should be feasible to derive patient groupings, in the form of auditory pro-
files, that are audiologically plausible from various datasets. Second, this process
should be independent of the underlying feature set, allowing profile derivation
even with datasets that vary in included measures. Third, profiles need to be able
to integrate multiple datasets in order to cover all distinct patterns of hearing
loss and work towards big data analyses in audiology. Fourth, if the profiles are
intended to function as a background classification tool, such as in a remote test-
ing application using smartphones, the respective relevant audiological measures
need to first be available on a smartphone. Then, it becomes possible to clas-
sify users into one of the available profiles. This requires the use of classification
models, which can also facilitate feature importance estimation to assess audi-
ological plausibility, and measurement relevance. By employing these classifica-
tion models, users can be categorized into specific profiles, allowing the knowledge
contained within these profiles to be used in the diagnostic and treatment process.

For this purpose, auditory profiles need to cover a broader range of measures
beyond the traditional audiogram to capture comprehensive information. The
initial auditory profiles, therefore, contain information from the domains of hear-
ing threshold, speech understanding and loudness perception, along with other
relevant measures available in the respective datasets used in the analyses. As
the number of included measures increases with the incorporation of additional
datasets, it is essential that the main measures can be easily measured remotely
using a smartphone to facilitate large-scale data collection. However, this would
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require addressing challenges related to calibration and developing user-friendly
interfaces to ensure accurate and reliable data collection.

1.5 Outline of the thesis

The aim of this thesis is to (1) contribute towards big data analytics in the field
of audiology by deriving patient groups from multiple datasets and (2) foster
remote testing in audiology. Figure 1.1 illustrates the overarching goals of this
thesis, highlighting the connection between big data analysis and remote hearing
loss characterization.

Figure 1.1: Schematic visualization of the auditory profile framework and its
connection to remote hearing loss characterization. Auditory profiles can be derived
from available datasets in the data pool, including clinical, research, and remote data
sources. Remote data sources can significantly increase the data pool, thus facilitating
robust data analyses. By merging these profiles, a comprehensive global auditory
profile set can be established. This could enable the estimation of treatment
recommendations, audiological findings, and missing features, and ultimately facilitate
remote diagnostics.

Three different studies were conducted which tackle three different aspects: effi-
cient patient characterization, integration of additional datasets to make use of
the large-scale data collection potential, and tailoring a smartphone-based imple-
mentation of the matrix sentence test towards the mainly elderly target group to
facilitate remote testing.

In the first study (Chapter 2), the general auditory profile generation pipeline
is proposed. The introduced profile generation pipeline can generate auditory
profiles from a single dataset that contains information on threshold, loudness
scaling, and speech understanding. These auditory profiles then describe hearing
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loss patterns in the form of auditory profiles and individuals can be classified
into one of the auditory profiles using the provided classification models. For the
first dataset, 13 auditory profiles were generated ranging from normal hearing to
strongly impaired. This study was published as Saak et al. (2022).

In the second study (Chapter 3), the general auditory profile generation pipeline
is extended to a federated learning approach such that multiple datasets can be
integrated. The aim is to develop a method that enables continuous knowledge
integration from available and newly collected datasets into the knowledge con-
tainer of the auditory profiles. To achieve this, a merging approach was developed
that can merge the profiles generated in the first study with a set of newly gen-
erated profiles from a second dataset also containing information on threshold,
loudness scaling, and speech understanding. This approach should generalize to
further datasets that share common information and therefore enables the future
integration of remotely collected data from the remote testing application into
the auditory profiles. This study was submitted to Trends in Hearing.

In the third study (Chapter 4), a relevant test speech test for remote testing,
namely the matrix sentence test, is tailored towards the elderly target population.
Here, the general ability to measure the matrix sentence test via a smartphone
with household in-ear headphones is assessed. In addition, an appropriate user
interface is proposed for the mobile version of the matrix sentence test. This is
needed, as the traditional interface does not comply with design guidelines when
implemented on the small screen of a smartphone. This study was published as
Saak et al. (2024).

Finally, Chapter 5 provides a summary of the main research findings of all three
studies and discusses the results in the context of big data analyses and remote
testing in audiology.
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Abstract

For characterizing the complexity of hearing deficits, it is important to consider
different aspects of auditory functioning in addition to the audiogram. For this
purpose, extensive test batteries have been developed aiming to cover all relevant
aspects as defined by experts or model assumptions. However, as the assessment
time of physicians is limited, such test batteries are often not used in clinical
practice. Instead, fewer measures are used, which vary across clinics. This study
aimed at proposing a flexible data-driven approach for characterizing distinct
patient groups (patient stratification into auditory profiles) based on one proto-
typical database (N = 595) containing audiogram data, loudness scaling, speech
tests, and anamnesis questions. To further maintain the applicability of the au-
ditory profiles in clinical routine, we built random forest classification models
based on a reduced set of audiological measures which are often available in clin-
ics. Different parameterizations regarding binarization strategy, cross-validation
procedure, and evaluation metric were compared to determine the optimum clas-
sification model. Our data-driven approach, involving model-based clustering,
resulted in a set of 13 patient groups, which serve as auditory profiles. The 13
auditory profiles separate patients within certain ranges across audiological mea-
sures and are audiologically plausible. Both a normal hearing profile and profiles
with varying extents of hearing impairments are defined. Further, a random
forest classification model with a combination of a one-vs.-all and one-vs.-one
binarization strategy, 10-fold cross-validation, and the kappa evaluation metric
was determined as the optimal model. With the selected model, patients can
be classified into 12 of the 13 auditory profiles with adequate precision (mean
across profiles = 0.9) and sensitivity (mean across profiles = 0.84). The pro-
posed approach, consequently, allows generating of audiologically plausible and
interpretable, data-driven clinical auditory profiles, providing an efficient way
of characterizing hearing deficits, while maintaining clinical applicability. The
method should by design be applicable to all audiological data sets from clinics
or research, and in addition be flexible to summarize information across databases
by means of profiles, as well as to expand the approach toward aided measure-
ments, fitting parameters, and further information from databases.

Keywords: auditory profiles, precision audiology, data mining, machine learning,
patient stratification, audiology
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2.1 Introduction

It has become increasingly evident that characterizing hearing deficits by the
audiogram alone is not enough. In addition to a loss of sensitivity, other fac-
tors, such as suprathreshold distortions, determine how well individuals can un-
derstand speech in daily life and communicate efficiently (Musiek et al., 2017;
Houtgast and Festen, 2008; Schoof and Rosen, 2014; Humes, 2021; Van Esch and
Dreschler, 2015). However, it is yet an open issue which measures should be ap-
plied to achieve “precision audiology,” i.e., to characterize the individual patient
as completely and exactly as necessary without losing too much time on compara-
tively irrelevant measurements. Hence, a number of approaches were described in
the literature that differ in their general purpose, their amount of measurements
included, and their evaluation method to characterize the most relevant measures.

For instance, Van Esch et al. (2013) proposed a test battery (“auditory pro-
file”) for standardized audiological testing comprising eight domains (pure-tone
audiometry, loudness perception, spectral and temporal resolution, speech per-
ception in quiet and in noise, spatial hearing, cognitive abilities, listening effort,
and self-reported disability and handicap) aiming to describe all major aspects
of hearing impairment without introducing redundancy among measures. Simi-
larly, the BEAR test battery was proposed for research purposes to characterize
different dimensions of hearing and was evaluated with patients with symmetric
sensorineural hearing loss (Sanchez-Lopez et al., 2021). In spite of the benefit of
the proposed test batteries, widespread adoption in clinical practice is currently
lacking. The complete BEAR test battery, for instance, takes ∼ 2.5 h to complete
(Sanchez-Lopez et al., 2021), even though a shorter version for clinical purposes
was also proposed in (Lopez et al., 2019). Nevertheless, in clinical practice, time
is short and the assessment of patients on such a multitude of tests may not be
feasible.

To tackle time constraints, Gieseler et al. (2017) aimed at determining clinically
relevant predictors for unaided speech recognition from a large test battery, thus,
reducing the amount of required tests. They showed that pure-tone audiometry,
age, verbal intelligence, self-report measures of hearing loss (e.g., familial hearing
loss), loudness scaling at 4 kHz, and an overall physical health score were most im-
portant in predicting unaided speech recognition, with the pure-tone audiometry
serving as the best predictor. Their model, however, left 38% of the variance in
predicting unaided speech recognition unexplained, indicating that further mea-
sures may be related to unaided speech recognition. At the same time, their
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analyses were tailored toward explaining unaided speech recognition performance
as an outcome measure. Predictors for aided speech recognition performance, in
contrast, or other outcome measures, may vary. In Lopez-Poveda et al. (2017), for
instance, temporal processing deficits as measured by the frequency-modulation
detection threshold (FMDT) were shown to be most relevant in predicting aided
speech recognition performance. When including only predictors available in clin-
ical situations, however, the unaided speech recognition threshold (SRT) in quiet
was determined to be the best predictor. This demonstrates the discrepancy be-
tween research and clinical applications and highlights the importance to analyze
insights from both clinical and research datasets in combination. It further shows
that the relevance of predictors depends on the outcome measures, as different
predictors were determined most relevant for unaided and aided speech recogni-
tion.

To improve patient characterization in the field of audiology, patient data, there-
fore, need to be summarized efficiently and flexibly. By summarizing patient data
flexibly, the generated knowledge could be used in a variety of settings (e.g., in
clinics, for mobile assessments, and decision-support systems in general), and for
a variety of outcome measures (e.g., diagnostic outcomes or unaided and aided
speech recognition performance). This, however, poses several challenges. First,
patients need to be characterized across different dimensions of hearing loss. Sec-
ond, to gain insights from a diverse patient population, data aggregation across
databases is required, which, however, is hindered by the heterogeneity in the
applied measures across clinical and research databases in the field of audiology
(Buhl et al., 2019). Lastly, for the general applicability of the stored information,
it needs to be accessible via measures also applied in clinical settings, such that
physicians can be supported.

To tackle these challenges, different approaches toward patient stratification exist
that involve identifying subgroups in patient populations based on measurement
data from single measures or from interrelations of measures. An example of a
data-driven stratification based on single measures is the Bisgaard standard au-
diograms by Bisgaard et al. (2010). There, a set of 10 standard audiogram pat-
terns occurring in clinical practice were defined. This has subsequently resulted
in a variety of studies investigating outcome measures such as aided SRTs in re-
lation to the 10 audiograms [(Gieseler et al., 2017; Dörfler et al., 2020; Folkeard
et al., 2020; Kates et al., 2018), to name a few], aiming toward precision audiol-
ogy, thus, demonstrating the promising nature of finding sub-classes in the field
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of audiology. In contrast, an expert-based approach, based on single measures,
was proposed by Dubno et al. (2013) that linked four audiometric phenotypes
to knowledge about possible etiologies from animal models of presbyacusis via
expert decisions. Schematic boundaries for the five phenotypes “older-normal,”
“pre-metabolic,” “metabolic,” “sensory,” and “metabolic+sensory” are provided
which allow for inferences of etiologies, given patient presentations of presbyacu-
sis.

In contrast to patient stratification based on single measures, Sanchez Lopez et al.
(2018) introduced a data-driven profiling method based on multiple measures us-
ing a combination of unsupervised and supervised machine learning. Based on the
hypothesis that two distortion types for the characterization of hearing loss exist,
four distinct profiles were generated by means of principal component analysis
and archetypal analysis. Thereby, the most important variables for the charac-
terization of each distortion dimension were estimated and employed to identify
the most extreme data combinations (archetypes). All patients of two existing
research data sets (containing a certain battery of tests) were labeled with the
most similar archetype. In a second step, decision trees were built to allow for the
classification of new patients into the four auditory profiles. The obtained profiles
are interpretable as they were defined based on the hypothesis of two distortion
components and the variables used for classification are known. The meaning of
the two distortions, however, was different depending on the available measures
in the respective data set.

Sanchez-Lopez et al. (2020) improved the profiling method to be more robust
(e.g., due to bootstrapping, a more flexible number of allowed variables, and esti-
mating the association of a patient to a profile based on probability) and applied
it to the BEAR test battery (Sanchez-Lopez et al., 2021), which was designed
for the purpose of including all relevant measures according to the literature and
previous work. As a result, a plausible interpretation of the two distortion di-
mensions was obtained, namely being associated with speech intelligibility and
loudness perception, respectively (Sanchez-Lopez et al., 2020). However, by tai-
loring their analyses toward four extreme distinct profiles and by using archetypal
analysis, a priori hypotheses were included in the derivation of the profiles. Con-
sequently, further distinctions between patient groups may be lost.

A further example of summarizing audiological data efficiently is provided by Buhl
et al. (2019; 2020). The Common Audiological Functional Parameters (CAF-



2.1 Introduction 23

PAs) were derived by experts and aim at representing audiological functions in
an abstract and measurement-independent way. The CAFPAs further act as an
interpretable intermediate layer in a clinical decision-support system. Prediction
models allow for a data-driven prediction of CAFPAs (Saak et al., 2020) and
a subsequent classification into audiological findings (Buhl, 2022). However, to
relate new measures from further data sets to the CAFPAs, experts are currently
required for labeling purposes, which consequently does not allow for the auto-
matic integration of new data sets containing additional measures.

The aforementioned methods all contribute toward enhancing patient characteri-
zation but are either restricted to single measures or include prior assumptions re-
garding the distinction of patient groups or audiological functions. Consequently,
not all existent differences between patient groups may be detected. In this study,
we aim at (1) providing a method for a fully data-driven stratification of patients
into subgroups based on audiological measures, namely auditory profiles. This
patient stratification approach is not restricted in terms of prior assumptions, the
number of patient groups, and contained measures. In that way, all differences
between patient groups can be summarized independently of outcome measures.
The auditory profiles aim to describe patient groups with similar measurement
ranges across audiological measures and are defined based on the contained pa-
tient patterns, instead of prior assumptions. In future, profiles could, hence, be
combined, added, or removed, depending on the provided insights gained from
applying the profiling approach to further data sets, as well as based on the
relevance of profile distinctions in clinical routine. The applicability of defined
profiles to different settings (e.g., clinical settings) can, however, only be obtained
if the knowledge from within the profiles, in the form of plausible ranges for the
contained measures, can be linked to patients, given their results on widely used
measures (e.g., pure-tone and speech audiometry). We, therefore, further aim
at (2) maintaining clinical applicability by building classification models using
random forests, based on measures available in clinical routine. This allows for
classifying new patients into the auditory profiles. In clinics, it could support
physicians to associate a new patient to a profile and in that way exploit statis-
tical knowledge available for the respective profile.

The current study, thus, aims at answering the following two research questions:

RQ1: Does our proposed profiling approach result in a meaningful and distinct
grouping (auditory profiles) of patients with respect to important hearing loss
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factors contained in the employed data set?

RQ2: Which classification model can provide high precision and sensitivity in
classifying patients into the auditory profiles using only a subset of the contained
audiological measures?

2.2 Materials and Methods

2.2.1 Data set

To define the first set of auditory profiles, we analyzed an existing data set that
was provided by Hörzentrum Oldenburg gGmbH and is described in detail in
Gieseler et al. (2017). In contrast to Gieseler et al. (2017), we did not exclude
any patients with, e.g., an air-bone gap >10 dB HL but aimed for a diverse pa-
tient sample. Our patient sample, consequently, consisted of all patients that
completed the full test battery, resulting in 595 patients (mean age = 67.6, SD
= 11.9, female = 44%) with normal to impaired hearing. For each patient, in-
formation with respect to a broad range of measures, including audiogram data,
loudness scaling, speech tests, cognitive measures, and anamnesis questions is
contained.

The contained measures either are, or can easily be integrated into clinical rou-
tine. The audiogram and the Goettingen sentence test (GOESA, Kollmeier and
Wesselkamp (1997)) are commonly used for the assessment of individuals’ hearing
status. The former assesses an individual’s thresholds across frequencies; the lat-
ter assesses speech recognition threshold (SRT), here, in noise for the collocated
condition (S0N0). Both the audiogram and the GOESA are used in hearing aid
fitting, for gain adjustments, and as an outcome measure, respectively. From the
contained measures, we used several features to generate the auditory profiles
(see Table 2.1 for an overview of the features). For the audiogram, the pure-tone
average (PTA, threshold averaged across 0.5, 1, 2, and 4 kHz) for air-, and bone
conduction was used for the more severely affected ear. Asymmetric hearing loss
was accounted for via the inclusion of an asymmetry score (absolute difference
between PTA of left and right ear). Additionally, the air-bone gap (ABG), the
PTA of the uncomfortable loudness level (UCL), and the Bisgaard standard au-
diograms (Bisgaard et al., 2010) were derived from the audiogram. The Bisgaard
standard audiograms were included to allow for a separation of different audio-
gram patterns (e.g., moderately and steeply sloping audiograms), while reducing
the dimensionality of the audiogram. A further speech test (digit-triplet test
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Table 2.1: Overview of audiological domains and features used for the generation of
the profiles.

Domain Number of
features Features

Audiogram 6
AC PTA, BC PTA, Asymmetry
(left/right ear), ABG, UCL PTA,
Bisgaard standard audiograms

Loudness Scaling 6 ACALOS (L15, L35, L15-L35) for 1.5
& 4 kHz

Speech tests 3 GOESA (SRT, slope), DTT (SRT)
Cognitive measures 2 DemTect score, WST score
Anamnesis 3 Tinnitus, Socio-economic status, age

Features used for the classification into the profiles are shown in bold.

(DTT), Smits et al. (2004)) was included to add information to the auditory pro-
files from a measure mainly used for screening purposes. The adaptive categorical
loudness scaling (ACALOS, Brand and Hohmann (2002)) provides relevant infor-
mation with respect to an individual’s loudness perception and recruitment, and
has also shown its effectiveness in hearing aid fitting (Oetting et al., 2018). To
characterize both the lower and upper part of the loudness curves, both L15, L35,
and the difference between L15 and L35 were selected as features. As a relation
between cognition and hearing exists (Fulton et al., 2015), the age-normed sum
score from a screening test for dementia (Demtect, Kalbe et al. (2004)) and the
raw score from a measure of verbal intelligence (Vocabulary test (WST), Schmidt
and Metzler (1992)) were also included. Further, information regarding the socio-
economic status (sum score of education, income, and occupation) (Winkler and
Stolzenberg, 2009), the presence of tinnitus [none (1), unilateral (2), bilateral
(3)], and the age of the patients were available.

2.2.2 Generating auditory profiles using model-based clustering

To generate auditory profiles that are capable of separating patients with respect
to ranges of audiological tests, we applied clustering, as it has shown promising
for purposes of patient stratification. For the current analyses, the clustering
pipeline consists of two steps, namely robust learning and profile generation (see
Figure 2.1 for visualization).

2.2.2.1 Robust learning
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Figure 2.1: Analysis pipeline to generate auditory profiles. After selecting the
optimal model parameters (robust learning, upper part), model-based clustering is
applied to the original data set (profile generation, lower part).

Bootstrapping and imputation of missing data As bootstrapping tech-
niques have shown to improve the robustness of clustering solutions (Fang and
Wang, 2012; Von Luxburg et al., 2010), we first subsampled the data set 1,000
times containing 95% of the original data set. We chose subsampling over re-
sampling with replacement, in order to avoid duplicate samples being seen as a
“mini”-cluster, hence, artificially increasing the number of clusters. As missing
values existed in the original data set, each of the 1,000 subsamples also con-
tained missing values and needed to be imputed. Missing values pose a common
problem in clinical data sets, and a loss of patient information, e.g., complete-case
analysis, is often undesirable, thus, requiring an adequate technique to solve it.

Consequently, for audiogram data, prior to extracting pure-tone averages and Bis-
gaard standard audiograms, missing thresholds were interpolated if the thresholds
prior to and after missing values were available. For the remainder of missings (on
average 1.5% with a maximum of 2.5%), multivariate imputations with chained
equations (MICE) (Azur et al., 2011) was applied. MICE results in multiple
completed data sets that account for the uncertainty that stems from imputing
missings. With MICE, the analyses of interest are subsequently performed on all
completed data sets and the results are combined (Azur et al., 2011). For the
present analyses, we generated 20 completed data sets. Accordingly, clustering
was performed on each of the 1,000 × 20 data sets.

Model-based clustering Before clustering, we transformed the features of
Bisgaard standard audiograms and tinnitus and treated them as continuous for
clustering purposes. Bisgaard standard audiograms were ordered with respect
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to increasing PTA; tinnitus with respect to its absence, unilateral, or bilateral
presence. All features (see Table 2.1) were then scaled using min–max scaling,
resulting in values between 0 and 1. As the number of features (N = 20) can be
considered small, we refrained from further dimensionality reduction and instead
aimed at maintaining a balance of the number of features stemming from the dif-
ferent measures. Depending on the clustering goal, dimension reduction with, e.g.,
principal component analysis can prove problematic as the reduction of dimen-
sionality could also lead to the removal of information that would have proved to
be discriminatory for the clustering goal (Bouveyron and Brunet-Saumard, 2014).

On the scaled feature set, we applied model-based clustering. Model-based clus-
tering was especially suitable for our purposes of uncovering patient groups exis-
tent in the data set, as it assumes that the data stem from a mixture of subgroups.
The mixture of subgroups is further assumed to be generated by an underlying
model which model-based clustering aims to recover (Fraley and Raftery, 2002;
Banerjee and Shan, 2010). For this purpose, the number of clusters k and a pa-
rameterization of the covariance matrices with respect to their shape, size, and
orientation (see Fraley and Raftery (2003) for possible covariance parameteriza-
tions) need to be specified beforehand. Subsequently, each cluster’s mean vector
µk and covariance matrix Σk is learned and a likelihood estimate for the given
clustering solution is computed.

In contrast to simpler clustering techniques such as k-means clustering, model-
based clustering is able to detect more complex shapes in the data (Greve et al.,
2016). It is, therefore, more suitable for our purposes of detecting all plausible
differences in the data. At the same time, the parameterization of the covariance
matrices can constrain the complexity of the clustering solution by enforcing
stronger restrictions and reducing the number of parameters that need to be esti-
mated (Bouveyron et al., 2019). To select the most suitable model, all candidate
parameterizations (k and covariance matrix parameterization) are computed and
the model with the highest likelihood of explaining the underlying data structure
is selected using the bayesian information criterion (BIC, Schwarz (1978)). More
complex clustering structures (i.e., less covariance matrix restrictions) may suf-
fice in explaining the dataset with fewer clusters but require the estimation of a
much larger number of parameters and are, thus, not always feasible with smaller
datasets. Less complex clustering structures, in contrast, could explain the same
underlying data structure by increasing the number of clusters (Bouveyron et al.,
2019). This also holds for increasing the number of features used for clustering.
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Increasing the number of features increases the number of parameters to be esti-
mated (i.e., the complexity), which, however, can be reduced by restraining the
covariance matrices. This may, in turn, increase the number of estimated clusters
required to explain the data. To avoid increasing the number of clusters beyond
clusters that enhance the explanation of the data structure, however, the BIC
penalizes for the complexity of the covariance parameterization and number of
clusters k, and thus, results in a trade-off between model complexity and over-
parameterization (Fraley and Raftery, 2002).

Here, for each of the 1,000 × 20 data sets, we computed all potential parameter-
izations for 2–30 clusters and then derived the optimal model for each data set
using the BIC, which resulted in 1,000 × 20 candidate models. The dimensional-
ity of the candidate models was then reduced across the 20 completed data sets
of each of the 1,000 subsamples. The most frequently occurring model parame-
terization was selected as a candidate model, resulting in a reduced set of 1,000
candidate models. We then defined the overall optimal model via its frequency
across the 1,000 candidate models, which resulted in an estimate for the model
parameters (i.e., the number of profiles and the model’s covariance parameteri-
zation).

2.2.2.2 Profile generation In the profile generation step, we generated the
auditory profiles using the original data set without prior subsampling. First, we
imputed missings using multivariate imputations with chained equations (MICE)
in the same manner as described in Section 2.2.2.1. Thus, 20 completed data sets
were generated with differing estimates for missings. Second, we applied model-
based clustering using the estimated optimal model structure from the robust
learning step for each completed data set, which resulted in 20 candidate cluster-
ing solutions. From these 20 candidate clustering solutions, we aimed to select
the solution showing the highest overlap with the remaining solutions regarding
patient allocation into the clusters. The rationale behind this is that, since model
parameters are kept constant, differences between clustering solutions stem from
differences in the imputed values. The solution showing the highest overlap can
then be assumed to be least influenced by imputed values, as patient allocations
into the clusters were agreed upon by most solutions.
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2.2.3 Building classification models to classify patients into auditory
profiles

2.2.3.1 Features and labels To allow for the usage of the auditory profiles
for different purposes (e.g., clinical applications), it is necessary to classify pa-
tients into the profiles based on a subset of measures widely available. Therefore,
we built classification models using the profiles as labels and a reduced set of
measures as features. From the aforementioned features used for clustering (see
Table 2.1), only the features from ACALOS, GOESA, and the air-conduction
audiogram (PTA, Asym PTA, Bisgaard) were used next to the age of the pa-
tients (12 features), to simulate the case that these measures were conducted for
a to-be-classified patient.

2.2.3.2 Model training For model training, we split the reduced data set,
containing the above-mentioned 12 features, into a training (75% of patients)
and test data set (25% of patients). The training data set was used for training
the model, which included cross-validation (CV), model tuning, and the selection
of the best model tuning parameters containing different binarization strategies,
CV procedures, and evaluation metrics defining the prediction error, and are de-
scribed in more detail in the following. The best model is defined as the model
minimizing prediction error. We then evaluated the training data set’s best model
on the test data set to estimate its predictive performance on patient cases not
used for model training, which indicates how the classification model would gen-
eralize on unseen patient cases.

To build the classification models on the training data set, we used random forests
(Breiman, 2001), as it has shown competitive classification performance, while re-
maining interpretable. It is also less prone to overfitting and handles relatively
small sample sizes well (Hastie et al., 2009; Biau and Scornet, 2016). Random
forests are an extension of simple decision trees. Multiple decision trees are built,
each segmenting the predictor space into several smaller regions, based on derived
decision rules. Predictions are consequently derived from the ensemble of trees.
For classification purposes, the label predicted most frequently among trees is se-
lected. In other words, it has the highest estimated probability among candidate
labels. To avoid building correlated trees, the tuning parameter mtry defines the
number of features considered at each split. At each split, the specified number of
features is then randomly sampled from the feature set, thus, enforcing different
tree structures, which in turn reduce the variance of the predictions (Hastie et al.,
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2009). For the current analyses, we tuned mtry using cross-validation.

To provide optimal prediction models for each of the profiles, we applied different
binarization techniques. Binarization strategies to tackle multi-class problems
have proved beneficial in enhancing predictive performance. They involve build-
ing base learners for binary classification tasks which are subsequently aggregated
to provide a prediction (Galar et al., 2011; Adnan and Islam, 2015).

Consequently, we compared multi-class classification to three different binariza-
tion strategies. First, we built predictive models for each auditory profile sepa-
rately (k models), with the one-vs.-all (OVA) technique, allowing the model to
learn the specific differences of a profile, as compared to all remaining ones. Thus,
for each profile, we built a classification model that decides whether a patient be-
longs to a given profile, or not. If more than one of the k OVA models predicted
that a patient belonged to its profile, the profile with the highest probability
among candidate profiles is selected, as defined by the frequency of its prediction
in the random forest. Second, we used a one-vs.-one (OVO) technique to build
predictive models for all k(k-1)/2 profile combinations. Thus, differences between
each pair of profiles were learned. To provide a prediction, voting aggregation
was applied, which means that the most frequently predicted profile was selected.
Lastly, we used a combination of OVA and OVO (OVAOVO). Here, again, we
used OVA to predict profile classes. However, for uncertain cases, if more than
one profile was predicted, instead of selecting the profile with the higher proba-
bility, we used OVO to decide upon the final profile prediction.

Across profiles, a class imbalance exists, either due to differing profile sizes or
due to the applied binarization strategy. Classifiers trained on imbalanced data
sets tend to favor the majority class over the minority class in order to reduce
the prediction error, which leads to undesirable results if the minority class is
of interest (e.g., in an OVA or OVO model). Consequently, we upsampled all
profiles to contain at least the number of patients of the largest profile p in terms
of sample size (maxNp). Upsampled patients were selected randomly from each
profile and across features Gaussian noise was added to the observations (+/-
1 SD). Upsampling with Gaussian noise was shown to be especially suitable for
clinical data sets (Beinecke and Heider, 2021). As a result, no class imbalance
was present for multi-class and OVO. For OVA, the class imbalance was still
present due to the OVA design. As upsampling would require upsampling for
several magnitudes of the original profile size, and downsampling would discard
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too much valuable information, a different technique was applied. In addition
to upsampling to maxNp, we used a weighted random forest model using cost-
sensitive learning. Thus, weights were introduced, which more severely punished
for the misclassification of the minority class over the majority class (Thai-Nghe
et al., 2010). The issue of the tendency toward majority predictions was, there-
fore, addressed also for the OVA binarization strategy.

Further, we compared two different CV schemes for optimal model tuning, namely,
leave-one-out CV (LOOCV) and 10-fold CV repeated 10 times (RepCV). LOOCV
is a special case of CV, in which the validation set consists of only one observation;
RepCV splits the training set randomly into 10-folds, which is then repeated 10
times. LOOCV provides advantages for small data sets, as models are trained on
larger sample size as compared to RepCV. However, in return, predictions may
have high variance, as the variation in training sets is small. RepCV, in contrast,
has lower variance due to differing training sets, but may be biased due to smaller
sample size (Hastie et al., 2009).

Lastly, we compared different evaluation metrics which optimize classifiers to dif-
ferent aspects of predictive performance. The main measures to evaluate the
performance of a classifier are accuracy, sensitivity, specificity, and precision.
Accuracy defines the ratio between correctly classified instances and the total
sample size. Sensitivity (also called recall) and specificity are evaluation metrics
for binary classification problems, but can be easily extended toward multi-class
classification problems by employing an OVA binarization of the classification
problem. This, however, again introduces an imbalance in the data regarding
the evaluation. Sensitivity refers to correctly classifying all classes of interest
as positive, whereas specificity refers to the ability to correctly classify all re-
maining classes as negative. The precision of a classifier, in contrast, determines
the preciseness of a classifier. That means precision is high if no other class
was misclassified as the class of interest (Hicks et al., 2022). The four evalua-
tion metrics we compared in the current study, namely, Cohen’s kappa, balanced
accuracy, F1-score, and the area under the precision–recall curve (AUPRC) dif-
ferently weight aspects of accuracy, sensitivity, specificity, and precision. Cohen’s
kappa is inherently capable of evaluating multi-class problems, by comparing the
accuracy to the baseline accuracy obtained by chance (Cohen, 1960). Balanced
accuracy weights sensitivity with specificity, and is consequently less able to han-
dle multi-class problems, since specificity increases with imbalanced data sets.
The F1-score addresses this issue by calculating the harmonic mean between sen-
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sitivity and precision, instead of sensitivity and specificity. Likewise, the AUPRC
has shown to be especially suitable for imbalanced data (Sofaer et al., 2019). To
determine the optimal classifier, it is important to select an adequate evaluation
metric, suitable for the class distribution in the data set. Since we have differ-
ent class distributions across our four classification strategies (multi-class, OVA,
OVO, OVAOVO), we compared different evaluation metrics.

2.2.3.3 Model selection and evaluation To select the optimal classifica-
tion model, we evaluated the four different classification strategies (multi-class,
OVA, OVO, OVAOVO) on the training data set with respect to the different met-
rics (Kappa, balanced accuracy, F1-score, and AUPRC) and cross-validation pro-
cedures (repCV, LOOCV). To compare the performance of the models that were
optimized with the different evaluation metrics, after training, a general post-hoc
performance measure is needed. Here, we chose the F1-score as it summarizes
both sensitivity and precision, and can adequately describe the performance of a
classifier in case of imbalance. Accordingly, we determined the model leading to
the highest F1-score by averaging the F1-scores across profiles and then selected
it as the best performing classification model. Lastly, to evaluate the predictive
performance of the selected classification model and its generalizability to new
data, we evaluated the model on the test data set. Here, instead of the F1-score,
we used both sensitivity and precision to provide a more thorough assessment of
the classifiers’ performance for the distinct auditory profiles.

2.3 Results

2.3.1 Generation of profiles

2.3.1.1 Estimation of profile number and covariance parameters To
generate auditory profiles which characterize a diverse range of patient patterns
across measures, the number of separable patient groups and the covariance pa-
rameter were determined. Figure 2.2 depicts the distribution of estimated cluster
numbers across the 1,000 bootstrapped samples. Across bootstrapped samples,
11–19 profiles were estimated as an optimal model with a maximum of 13 clus-
ters. Further, the covariance parameterization “VEI” was selected across all 1,000
subsamples. VEI (variable volume, equal shape, coordinate axes orientation) is
a rather parsimonious model as it restricts both the shape and axis alignment of
the clusters and requires a diagonal cluster distribution. The sizes of the clusters,
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however, may vary. Hence, 13 clusters with the covariance parameter “VEI” are
estimated to represent the data structure best.

Figure 2.2: Distribution of optimal profile numbers across bootstrapped samples.

Subsequently, the above-defined parameterization (k = 13, “VEI”) was used to
generate profiles on all 20 completed data sets of the original data set. The com-
pleted data set showing the highest overlap with the remaining completed data
sets regarding patient allocation into the profiles (max_similarity = 0.794) was
selected to base the auditory profiles on. Mean classification similarity across all
20 completed data sets was 0.75 (SD = 0.032).

2.3.1.2 Profile ranges across audiological measures Figure 2.3 shows
the profile ranges of the generated auditory profiles and Table 2.2 contains the
number of patients contained in each profile. The profiles cover a large range
across audiological measures and show profile-based differences in patient pre-
sentation of the contained measures. All profiles can be distinguished from each
other based on at least one audiological feature. The speech test results (Fig-
ure 2.3, blue box) regarding GOESA and the DTT are generally comparable.
The profiles cover different extents of impairments, ranging from normal hearing
(profile 1) to strong difficulties in understanding speech in noise (profile 13), as
indicated by the increasing SRT. Likewise, the slope of the GOESA decreases
with increasing SRT. Within the SRT range of -5 to 0 dB SNR, most of the pro-
files are contained. Here, the different profiles show similarities regarding SRT
ranges, and the difference between the profiles can be found via other measures.
Audiogram results (Figure 2.3, green box) indicate the existence of normal hear-
ing (profile 1), moderately (profiles 2, 3, 6, 7, 8, 9, 11, 13), and rather steeply



2.3 Results 34

Table 2.2: Number of patients contained in each auditory profile.

Profile 1 2 3 4 5 6 7 8 9 10 11 12 13
N 27 76 19 24 77 33 6 44 68 51 42 79 39

sloping (profiles 4, 5, 10, 12) patterns. Generally, we observe a trend of increasing
thresholds on the audiogram together with increasing SRTs. There are, however,
also exceptions. Profile 11 displays the highest thresholds across frequencies and
profiles, but does not show the strongest impairment on the GOESA. Instead, it
includes patients with an air–bone gap and asymmetric hearing loss, as indicated
by the asymmetry score. Profiles can also be distinguished based on the ACALOS
(Figure 2.3, loudness scaling—yellow box) and the UCL. With increasing SRTs,
we can observe an increase in the UCL, as well as a decrease in the dynamic
range, as shown by the difference between L35 and L15 for both 1.5 and 4 kHz.
In spite of this, differences exist across profiles unrelated to the increasing SRT.
Profiles 4 and 5, for instance, show overlapping ranges regarding the SRT, but
differ with respect to the UCL. Across cognitive measures (Figure 2.3, cognitive
measures—orange box), no clear distinctions across profiles were found. Likewise,
ranges for the age of patients and the socio-economic status (Figure 2.3, anamne-
sis—gray box) overlap across profiles, with the exception of profile 1 containing
younger patients.
To summarize, similarities exist to varying extents between profiles. Some profiles
can be easily distinguished. For instance, profiles 1 and 2 can be easily distin-
guished from profiles 11, 12, and 13 across audiogram, GOESA, and loudness
scaling data. In contrast, other profiles only differ on certain measures. Profiles
2 and 3, for instance, show overlapping ranges on both the audiogram and the
GOESA, but different average loudness curves and distinct distributions regard-
ing the UCL.

2.3.2 Classification into profiles

2.3.2.1 Model selection To allow for a classification of new patients into the
auditory profiles based on a reduced set of measures widely available in clinical
practice, classification models were built using random forests. Different param-
eterizations (optimization metrics, binarization strategies, and CV procedures)
were compared with the aim to provide the classification model best suited for
the auditory profiles. The mtry parameter was inherently determined within each
model.
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Figure 2.3: Profile ranges across measures. Plot backgrounds are colored according
to underlying domains. Blue corresponds to the speech domain, green to the
audiogram, yellow to the loudness domain, orange to the cognitive domain, and gray
to the anamnesis. Profiles are color-coded (yellow to violet) and numbered (1-13) with
respect to increasing SRT (impairment) on the GOESA.
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Figure 2.4 displays the results of the comparative performance with respect to
the binarization strategies, optimization metric, and cross-validation procedure
on the training data set. Model performances with respect to the F1-scores were
averaged across profiles to result in an overall F1-score. This allowed for a selec-
tion of the best model parameterization. Profile 7 was not selected for averaging,
as the number of patients contained in the profile (N = 6) is not large enough to
lead to reliable results and interpretations.

Figure 2.4: Performance of different models on the training data set. The mean
F1-score was calculated as the mean of F1-scores across profiles 1–6 and 8–13. Metrics
and cross-validation schemes can be distinguished by color and shape, respectively.
BA refers to balanced accuracy. LOOCV refers to leave-one-out cross-validation;
repCV to repeated 10-fold cross-validation.

All models perform well in predicting profile classes, as indicated by the overall
small and high range of mean F1-scores. The highest F1-score was obtained by
the OVAOVO model using the kappa evaluation metric and repeated 10-fold CV.
Consequently, the OVAOVO (kappa, repCV) model is selected as the classifica-
tion model to allow for a prediction of patients into profiles. Across models, the
kappa metric provided the best results, whereas optimal CV procedures differed
across binarization strategies, with the exception of the OVAOVO model in which
repCV provided the best results for all evaluation metrics.

2.3.2.2 Model evaluation The previously selected optimal model (OVAOVO,
repCV) was selected based on its performance on the training data set (75% of
the patients). To investigate the generalizability of the classification model to
new patients, its performance was subsequently evaluated on the test data set
(25% of the patients). Figure 2.5 displays the performance results with respect
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to the sensitivity and precision across all profiles.

Figure 2.5: Train-test data set performance for the OVAOVO (kappa, repCV model)
for both sensitivity and precision. The dashed lines indicate the mean across profiles
1–6 and 8–13 for the respective condition.

Generally, the classifier’s performance is adequate regarding achieved sensitivity
and precision on the test data set. Across profiles 1–6 and 8–13, average preci-
sion and sensitivity on the test data set are 0.9 and 0.84, respectively. Results
for profile 7 were plotted for completeness, however, are unreliable due to the
small sample size, since the test data set only consisted of two patients. Over-
all test performance is only slightly lower than training performance for most
profiles, except for profiles 3, 6, and 7. For these profiles, the generalization of
the learned classification approach toward unseen data is limited. Profile 3 and
profile 6 show low levels of sensitivity, but high levels of precision. Thus, not all
cases of the two profiles are detected, however, if the two profiles are predicted one
can be highly certain that the patient does, indeed, belong to profile 3 or profile 6.

2.4 Discussion

The aim of this study was to propose a flexible and data-driven approach to pa-
tient stratification in the field of audiology that allows for a detailed investigation
into the combination of hearing deficits across audiological measures. Our results
demonstrate the feasibility and efficiency of our proposed profiling pipeline in
characterizing hearing deficits in the form of patient groups, namely, auditory
profiles. The proposed 13 auditory profiles separate patients with respect to
ranges on audiological tests. Further, to ensure the applicability of the auditory
profiles in clinical practice with only a basic set of audiological tests, classification
models were built that allow for an adequate classification of the auditory profiles
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given such a reduced set of audiological measures.

2.4.1 Generation of profiles

The proposed profiles aim to represent the underlying patterns of the current
data set best. Hence, the profiles describe the patterns across measures for the
available patients and etiologies, rather than aiming to cover all generally exis-
tent patient groups with the current set of auditory profiles. Additionally, the
number of profiles that can be generated is variable and dependent on the un-
derlying data. This becomes evident when inspecting the distribution of optimal
profile numbers in Figure 2.2. Across bootstrapped data sets different profile
numbers were suggested. This may in part be due to the applied method. Dif-
ferent subsets of the bootstrapped data may miss extreme patient patterns, and
thus, lead to a reduction or increase in suggested profile numbers. This, next
to the added uncertainty that stems from imputing missings, may explain the
variability in suggested profile numbers across bootstrapped samples. By using
a bootstrapping approach, where the optimal number of profiles is defined as
the most frequently proposed profile number, it can be assumed, however, that
the effects of imputations and extreme patient patterns on the generated profile
number were minimized.

The number of profiles may further be influenced by the employed model restric-
tions. Since the covariance parameterization “VEI” restricts both the shape and
axis alignment and requires diagonal cluster distributions, a parsimonious model
was selected as describing the underlying data structure best. The number of
profiles, therefore, may be large in order to characterize the data structure best
with the given restrictions (Bouveyron et al., 2019). It would be of interest to
apply the modeling approach to a larger dataset that allows for a less restrictive
model in order to investigate if the resultant number of profiles would decrease.
A more parsimonious model that leads to a larger number of profiles, however,
is in line with our aim of detecting all plausible differences between patient groups.

2.4.2 Interpretation of profiles

The profiles, generally, cover a large range of different types and extents of hearing
deficits and appear audiologically plausible. All profiles can be distinguished from
each other by at least one audiological feature and can, thus, be considered as
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distinct patient groups regarding audiological measures (RQ1). The relevance
of the distinction has to be evaluated with respect to the outcome measure of
interest. Certain distinctions are, for instance, not necessarily relevant for diag-
nostic purposes. It can be assumed that profiles 4 and 5 would be categorized
as bilateral sensorineural hearing loss (ICD code h90.3) (World Health Organi-
zation, 2004) and could, thus, for purposes of coarse diagnostic classification be
combined. Profile 5, however, shows a lower range of UCL levels, indicating that
loudness would need to be compensated differently in a hearing aid for patients
within profile 5 as compared to profile 4. The distinctions regarding loudness
perception could influence the benefit that patients within the separate profiles
may experience from hearing aids, if the same hearing aid parameters are applied
to both groups. This highlights our motivation for flexible profiles that can be
combined or separately considered given different outcome measures. The exact
number of profiles may, therefore, change with the inclusion of further datasets
and also depend on the targeted outcome measure. The proposed auditory pro-
files, however, enable a detailed investigation into differences that exist between
patient groups.

Most of the profiles can be assumed to be caused by symmetrical sensorineural
hearing loss. Profile 11, however, also contains an asymmetric conductive hearing
loss, as indicated by the presence of both an asymmetry between the ears and
an air–bone gap in the group (Isaacson and Vora, 2003). For the remainder of
the profiles, however, we can interpret the profiles in the consideration of the
four-factor model for sensorineural hearing loss by Kollmeier (Kollmeier, 1999).
The current profiles contain measures that allow for an estimation of the first
two factors (attenuation and compression loss), but not binaural and central loss.
The audiogram can provide an indirect indication for the attenuation loss, which
is defined as the required amplification for each frequency to obtain an intermedi-
ate loudness perception (L25), whereas the ACALOS can indicate a compression
loss via a reduced dynamic range (Kollmeier, 1999). Overall, we can observe
differences in both the audiogram shapes and the dynamic ranges across profiles.
Most importantly, similar audiogram shapes (e.g., profiles 2 and 3) do not neces-
sarily lead to a similar compression loss and our profiles are able to detect these
differences, which is in line with the assumption of the four-factor model, that
the audiogram alone cannot explain all underlying characteristics of sensorineu-
ral hearing loss. We, therefore, conclude that the 13 auditory profiles provide
meaningful information regarding two important factors of hearing deficits, i.e.,
attenuation and compression loss (RQ1), and that the profiling pipeline has the
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potential for the detection of patient group differences also for further datasets,
if suitable measures are included.

In general, the interrelation across speech tests, loudness scaling, and audiogram
data lead to a separation of patients into profiles. For instance, profiles 2 and
3 contain patients with both similar SRTs and audiogram thresholds. Profile 3,
however, shows a reduced dynamic range with its uncomfortable loudness level
(UCL) thresholds derived from the audiogram and the range between soft (L15)
and loud (L35) sounds on the ACALOS reduced, which indicates recruitment.
This, in turn, has implications for hearing aid fitting. It can be assumed that
patients within the two profiles require different compression settings, in spite
of similar audiograms (Dreschler et al., 2008; Launer et al., 2016). In contrast,
the main difference for profiles 8 and 9 lies within their thresholds on the au-
diogram, with profile 9 showing about 10 dB higher thresholds, while showing
similar SRT and loudness curve ranges. The relevance of a distinction between
these two profiles, for both diagnostics and hearing aid fitting, thus, needs to be
further investigated. For other profiles, differences are more strongly pronounced
and they can well be separated.

Certain profiles also align well with the proposed phenotypes by Dubno et al.
(2013). Profiles 6, 7, and 9 are consistent with the metabolic phenotype, and
profiles 2 and 3 appear to be in between the pre-metabolic and metabolic phe-
notype with respect to the ranges on the audiogram. Profile 4 can be described
in terms of the sensory phenotype and profiles 5 and 10 as the metabolic + sen-
sory phenotype. However, the auditory profiles also contain different patterns,
with either more severe presentations as described by the phenotypes (profiles
11 and 13), or different slopes in the lower frequency range of the audiogram
(profiles 8 and 12). Further, instead of an older normal hearing profile to match
the older normal hearing phenotype, only a young normal hearing profile is in-
cluded. Regardless, certain probable etiologies can be inferred for the respective
profiles, exemplifying how alternate stratification approaches could be connected
to the auditory profiles proposed in this study. Since more than one profile can
be matched to sensory and metabolic phenotypes, however, it can, again, be
assumed that further contributors regarding individual presentations of hearing
deficits exist, which are not assessed via the pure-tone audiogram.

No distinctions across profiles regarding the cognitive measures were found (WST,
DemTect). Even though hearing deficits and cognitive impairments have been
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widely associated (Lin, 2011), the precise causal relationship remains unclear and
some studies did not find significant relations (Fulton et al., 2015). With the pro-
files, a slight trend toward increasing impairment on the DemTect with increasing
SRT can be observed; however, the ranges across profiles overlap substantially.
On the one hand, this may indicate, that none of the present profiles is signifi-
cantly influenced by cognitive abilities and that the observed patterns of hearing
deficits may occur for both cognitively impaired and non-impaired patients. This
would require further investigations and the inclusion of patients with more se-
vere cognitive impairments. On the other hand, the DemTect, as a screening
instrument, may not be sensitive enough for detecting a further association be-
tween cognitive impairment and hearing deficits. For the auditory profiles, this
indicates that cognitive differences are not well-represented, such that patients’
cognitive abilities would need to be assessed via further cognitive measures that
are currently not included in the database.

The currently available profiles naturally only provide a picture of the contained
measures. It can be assumed that the inclusion of further measures will enhance
the precision of patient characterization. Of the specified eight domains relevant
for characterizing hearing deficits, defined by Van Esch et al. (2013), currently,
four are contained in the defined profiles (pure-tone audiogram, loudness percep-
tion, speech perception in noise, and cognitive abilities). Spatial contributors, i.e.,
the intelligibility level difference (ILD) and binaural intelligibility level difference
(BILD) measures, were - unfortunately - not included in the original database so
no relation to the profiles given here can be provided. However, it can be assumed
that they could provide an enhanced characterization of patients’ hearing status,
as well as prove valuable for hearing aid fitting. Similarly, measures describing
the central factor of hearing loss could be incorporated if available in a data set,
to comply with all four factors as suggested by Kollmeier (1999). Consequently,
future studies should work toward incorporating these measures into the profiles.

2.4.3 Classification into profiles

By building classification models to match patients into the auditory profiles using
only features from the air-conduction audiogram, loudness scaling, and GOESA,
we aimed for the applicability of the profiles in a variety of settings. First, in
clinical routine, both the audiogram and a speech test, measuring the SRT, are
the current standard in hearing aid fitting (Hoppe and Hesse, 2017), and in Ger-
many, the GOESA is included in the German guideline for hearing aid fitting
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(Gemeinsamer Bundesauschuss, 2021). In addition, loudness scaling has proved
promising for hearing aid adjustments (Kiessling, 2001). The three measures are,
therefore, often available for hearing professionals and do not extend the testing
time of patients and physicians. If fewer measures are available, e.g., only the au-
diogram and the GOESA, or a different set of measures, the classification models
would have to be retrained for this purpose. We believe, however, that loudness
scaling provides valuable information for hearing aid fitting and should, thus, be
included in the fitting process. Second, to use the profiles in further research and
clinical data sets, it is important to include measures that are frequently mea-
sured and available. Thus, even though further measures may be contained in
the data sets, it is necessary to provide classification models containing measures
widely available across data sets.

The present results indicate the feasibility of classifying patients into most of the
profiles. The OVAOVO model with the kappa loss function and 10-fold repeated
CV reached the highest F1-score and was, therefore, selected as the optimal clas-
sification model for the analyzed dataset. With the model test set, sensitivity was
>75% for all profiles but profiles 3, 6, and 7 (RQ2). For profile 7, this can be
explained by the small sample size of the profile as only six patients were classified
into the profile. Consequently, the training of a classifier for profile 7 does not
lead to reliable results, and its generalizability is not assured. In spite of that, we
included the results for profile 7 for completeness, since it may provide further
separation from the remaining profiles for the multi-class classifier, by including
counter-examples of patients. Profile 7, however, cannot yet reliably be used to
classify new patients into it. Further information from databases is needed to
investigate whether this profile represents rare cases or whether this profile was
not represented enough in the present data set to provide a large enough sample
size for classification purposes. Profile ranges for profile 6 are generally broader
than for other profiles; therefore, misclassifications may have occurred more fre-
quently, thus, reducing the sensitivity for profile 6.

The current classification model naturally only covers patient populations that
were also contained in the analyzed dataset. Given the adequate classification
performance of the classifier, it can be assumed that new patients with similar
characteristics to the patients within the dataset would also be adequately pre-
dicted into the auditory profiles. At the same time, random forests allow for
an estimation of the classification uncertainty when classifying patients into the
profiles. This uncertainty estimation refers to how often a patient was predicted
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into a given profile across the decision trees of the random forest as compared to
the remainder of the profiles. For certain predictions, there is a high amount of
agreement of the random forest, whereas for uncertain predictions there is a lower
amount of agreement of the random forest. New patients are, therefore, classified
into a given profile with an estimate of uncertainty, which, in turn, could also
indicate if none of the profiles adequately represents the given patient. This could
then reveal a rare patient case or a patient belonging to an additional profile that
has not yet been defined. Generally, patients would always be allocated to a
profile based on all measures that are contained in the classification model (i.e.,
audiogram, ACALOS, age, GOESA) and no single feature would determine the
classification. For instance, the analyzed dataset contains mainly elderly hearing
impaired patients and younger normal hearing patients. Children and younger
individuals may, however, also experience hearing deficits. A classification based
solely on the feature age would lead to a misclassification into the normal hearing
profile 1. The generated classification model, in contrast, would also consider
information from the audiogram, ACALOS, and GOESA and in that way avoid
misclassification into the normal hearing profile 1.

It can be argued that predictive performance would have been improved by in-
cluding all measures in the classification models. However, we aimed at providing
classification models that can be readily used with measures available across clin-
ics in Germany, such that no additional testing is required and time constraints of
physicians are met. Consequently, we decided on a reduced set of measures and
aimed at predicting profiles with widely available measures. In future, it may be
of interest to provide classification models for all combinations of measures, such
that if, e.g., bone-conduction thresholds or more specific psychoacoustic tests are
also available in clinical settings, they can be used to increase predictive perfor-
mance with regard to, e.g., the “binaural” and “central noise” factor (Kollmeier,
1999) involved in characterizing the individual hearing problem.

One limitation of the present classification is the number of patients contained
in each profile. For further validation larger and more balanced data sets that
also contain more severe patients are required, which can also be assumed to lead
to improvements in the predictive performance. An increase in the size of the
training set will support the training of the classifier, whereas an increase in the
test set will improve the certainty of the predictions. Currently, test performance
may have been artificially high for some profiles due to the small sample size
in the test set. However, further reducing the training size would also not be
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desirable, as it would increase the bias of the classification models. Thus, further
evaluations on additional data sets containing further patients are required.

2.4.4 Properties of the profiling approach and comparison to existing
approaches

The current data-driven approach toward generating auditory profiles to charac-
terize patient groups is not aimed at being contradictory with hitherto available
profiling approaches but aims at providing a more detailed account of existing
patient groups and offers several advantages.

First, its flexibility in the definition of profiles derived via purely data-driven
clustering allows extending and refining the profiles, if in further data sets more
extreme patient representations are contained. More specifically, it can be as-
sumed that applying the profiling approach to additional data sets containing
both similar and more extreme patient presentations will result in a set of au-
ditory profiles that show overlap to herein proposed profiles, but also contain
additional profiles. The new set of profiles could then be used to update the
current set of auditory profiles. As a result, the total number of auditory profiles
is not fixed and instead remains flexible to include further profiles. Likewise, the
presented profiling pipeline can be applied to additional data sets with varying
measures. In case of differing measures across data sets, measures not used for
clustering purposes could serve as descriptive features and allow for inference, if
these features occur more frequently in certain profiles. The flexibility in terms
of derived profiles and contained measures could, in future, aid in comparing
patients across data sets. Appropriate means to combine profiles generated on
different data sets, however, need to be defined. For this purpose, a profile sim-
ilarity index based on, e.g., overlapping densities (Pastore and Calcagnì, 2019)
could provide a cut-off score on when to combine or extend profiles.

Second, profiles are not tailored toward a certain outcome such as diagnostics or
hearing aid fitting. This may, in part, explain the rather large number of gen-
erated profiles, since profiles may differ with respect to measurement ranges but
not with respect to audiological findings, diagnoses, or treatment recommenda-
tions. By tailoring our analyses toward certain outcomes, we could have possibly
reduced the number of generated profiles. Our aim, however, was to generate as
many profiles as plausibly contained within the data set such that all differences
between patient groups can be caught. More specifically, by using Bisgaard stan-
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dard audiograms also as a feature for clustering, patients were already separated
into 10 distinct audiogram ranges. Combining 10 separate audiogram ranges with
different loudness curves and SRT ranges already leads to a larger amount of pro-
files, if these patterns across measures and patients (i.e., profiles) occur frequently
and are well-distinguishable from other profiles. At the same time, the flexibility
of the profiles by their definition directly on measurement ranges allows reducing
the number of profiles if only certain outcomes are of interest. For instance, if,
in future, profiles are connected to diagnostic information from further data sets,
profiles leading to a distinction with respect to a diagnosis could be separated or
merged. Similarly, if profiles are used for hearing aid fitting, only those profiles
leading to separable groups with respect to aided parameters could be retained.

Third, all patients can be grouped into auditory profiles. In contrast, in Dubno
et al. (2013), around 80% of audiogram shapes were categorized as non-exemplar
and could not be matched into one of the phenotypes, whereas in Sanchez-Lopez
et al. (2020), an “uncategorizable” category in addition to the four profiles exists.

A fourth advantage of the flexibility of our auditory profiles pertains to its abil-
ity to provide complementary knowledge compared to other profiling approaches,
which allows analyzing the same data sets from different perspectives and poten-
tially learning more about the inherent patterns. To exemplify, the profiling ap-
proach by Sanchez-Lopez et al. (2020) is applicable to different audiological data
sets as well and also comprises the two steps of profile generation and classifica-
tion. Both approaches are data-driven; however, the approach by (Sanchez-Lopez
et al., 2020) is based on the hypothesis of two distortion types which limits the
number of profiles to four. In contrast, our approach is purely data-driven, that
is, the obtained number of profiles directly depends on the available combinations
of measurement ranges in the respective data set, in order to detect all existing
differences between patients. Each of our profiles (estimated by model-based
clustering) characterizes the group of included patients in terms of underlying
measurement data, while the profiles of (Sanchez-Lopez et al., 2020) are charac-
terized by one respective extreme prototypical patient (due to archetypal anal-
ysis) and all other patients classified into a respective profile show less extreme
results on the variables identified by principal component analysis. The profiles
of (Sanchez-Lopez et al., 2020) are interpretable due to the hypothesis of two
distortion types and the variables related to each distortion type; however, the
obtained interpretation depends on the available measures in the dataset. That
means that it needs to be ensured to employ an appropriate database, as was
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achieved in Sanchez-Lopez et al. (2020) with the BEAR test battery (Sanchez-
Lopez et al., 2021), following the findings of Sanchez Lopez et al. (2018) where the
choice of data led to different, not completely plausible interpretations based on
the two different analyzed datasets. In contrast, our profiling approach does not
include explicit interpretability of every profile yet, but instead, interpretability
needs to be added as an additional step. This can be done by relating the profiles
to the literature as discussed above, or by including expert knowledge to label the
different profiles. In addition, the type of interpretability required for different
outcome measures considered in future analyses may be different, and can then
be chosen appropriately.

For associating the profiles obtained by the two approaches, in a first step, the
distributions of patient data grouped to profiles can be manually compared, for
instance regarding audiogram and SRT ranges in Figure 6 of (Sanchez-Lopez
et al., 2020) and in our Figure 2.3. However, this comparison is limited as only a
small subset of measures is common in the BEAR test battery and our dataset, as
well as due to methodological differences as discussed above. Instead, it would be
interesting to apply the two profiling approaches to the respective other datasets.
As we have GOESA and ACALOS available to characterize speech intelligibil-
ity and loudness perception, it would be interesting if the profiling approach of
Sanchez-Lopez et al. (2020) also estimates speech intelligibility and loudness as
the two distortion dimensions based on our data. Vice versa, the application
of our approach to the BEAR test battery would generate a certain number of
profiles, which could be compared to the profiles obtained in this study (and
thereby to a comparison and potential combination of datasets), as well as reveal
measurement combinations leading to sub-classes of the four auditory profiles of
Sanchez-Lopez et al. (2020).

2.4.5 Limitations of the profiling approach

Despite the advantages of our purely data-driven profiling approach, certain lim-
itations persist. At the current stage, the profiling approach can detect plausible
patient subgroups in data sets. This property generalizes also to further data sets
containing different sets of measures and a different patient population. A restric-
tion in the application of the current profiling pipeline to additional databases is
the current requirement for continuous or at least ordinal features. Relevant au-
diological measures may, however, also be categorical with no inherent ordering.
Thus, to also incorporate these measures, the current pipeline would need to be



2.4 Discussion 47

adjusted to also allow for categorical features.

The ability to detect differences in patient groups also depends on the sample
size, the contained measures, as well as the presence of distinctive patient groups
within the data set. If sample sizes are small, a smaller number of patient groups
may be detected in the data sets, which in turn, would be defined by broader
ranges across measures. At the same time, this could result in an increase in
profiles, each containing only a few patients. This, however, would indicate that
the underlying data set is not suitable for the herein proposed profiling approach,
as nearly no similarities between patients could be detected. In such a case, it
would not be certain whether a profile corresponds to a patient group that could
also be identified in larger datasets, or whether it corresponds to outliers in the
analyzed data set. Likewise, if only a few measures are contained in new data
sets, not all existent distinctions between patients may be detected. Instead,
only distinctions regarding the included measures would be available. Combining
profiles generated on further data sets with the current profiles may, thus, prove
difficult. An estimate of profile “conciseness” could tackle this challenge. This
estimate could refer to the average similarity of patients within a profile regarding
relevant measures. The similarity between patients with broader profiles will be
smaller than the similarity between profiles with smaller ranges across audiologi-
cal measures. As a result, the conciseness estimate could indicate if the generated
profiles on the new data set only result in a coarse grouping of patients. It could
then be analyzed, whether the coarse grouping could be explained by a mixture
of already available auditory profiles. This would, however, require an overlap
between audiological measures across the profiles. If the profiling pipeline is ap-
plied to a data set with low overlap regarding measures, the generated profiles
would have to be interpreted separately from the current set of profiles, until
a relation between measures has been established. This could either occur via
available knowledge or by analyzing a data set that contains an overlap between
the measures of interest. Regardless, newly generated profiles on further data
sets would first need to be analyzed in terms of general audiological plausibility.

At the same time, the relevance of the distinctions between patient groups, in gen-
eral, and for clinical practice needs further evaluation. This could either comprise
asking experts to rate the plausibility and clinical applicability of the distinctions
between the profiles or incorporating expert knowledge from other approaches
toward patient characterization. The Common Audiological Functional Param-
eters (CAFPAs) by Buhl (2022), for instance, provide an expert-based concept
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of describing patient characteristics; and in Saak et al. (2020), regression models
were built to predict CAFPAs based on features that are also available for the
current auditory profiles. Hence, the predicted CAFPAs would be available as
additional descriptive information for the profiles generated in this study, and a
consistency check to previous CAFPA classification (Buhl et al., 2021) could be
obtained by analyzing the same data set from different perspectives (i.e., anal-
ysis tools). In that way, both approaches provide complementary insights, and
both contribute to future combined analysis of different audiological databases.
As a result, physicians’ trust toward applications (e.g., clinical decision-support
systems) using the auditory profiles could be enhanced, which has shown to be
a relevant factor in the adoption of such systems in clinical routine (Shibl et al.,
2013). Additionally, it can be assumed that the inclusion of more severe patient
cases, e.g., with indications for a cochlear implant, could enhance the current
profiles toward more extreme profile representations. Currently, profiles can be
mostly assigned to mild to moderate hearing loss. With the inclusion of further
data sets, containing a higher prevalence of severe patient cases, this aspect could
be addressed.

2.4.6 Application and outlook

The herein proposed profiling approach serves as a starting point for uncover-
ing patient groups and patient presentations across audiological measures for the
increasingly available amount of larger data sets. Consequently, the proposed
profiling approach needs to be applied to additional data sets, which include
more severe and diverse patient populations, as well as additional audiological
measures to cover further important factors of hearing loss (e.g., binaural and
central components). The set of auditory profiles would need to be updated after
the inclusion of every further data set by either merging similar generated profiles
or adding new profiles. In that way, it would conclude in a final set of auditory
profiles, if generated profiles converge. This means that generated profiles on new
datasets are already contained in the set of defined auditory profiles and no new
information is added, thus, resulting in a final set of auditory profiles describing
the audiological patient population.

If the generated auditory profiles describe the audiological patient population,
they could be used in a variety of applications due to their flexibility. The pro-
files could efficiently summarize patient information for a clinical decision-support
system. Likewise, they could also support mobile assessments of patients, in e.g.,
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a “virtual hearing clinic.” If patients are tested on the measures used for the
classification models (or appropriate mobile implementations of those measures,
ensuring that measurements near the hearing threshold are feasible in realistic
environments) they could be classified into a profile. In a clinical decision-support
system, physicians could then be provided with statistical insights into patients’
hearing statuses, whereas in a virtual hearing clinic patients themselves could
receive information regarding their hearing statuses. To also provide diagnostic
decision-support as well as aided benefit predictions, however, data from ad-
ditional data sets containing these measures need to be incorporated into the
current profiles. A metric allowing for the combination or separation of profiles,
if new profiles are generated on additional data sets, hence, needs to be defined.

After the final set of auditory profiles has been defined, it would also be of interest
to define a minimum set of tests that allow for adequate classification of patients
into the profiles across data sets. This could highlight the audiological measures
that are most relevant across all profiles. Likewise, the profiles could contribute
to the selection of the next to-be-performed measures for characterizing the pa-
tients. If classification models are available for all measurement combinations,
measures leading to the best discriminatory performance across profiles could be
selected next. This, in turn, could reduce the testing time of the patients, as
well as support the derivation of test batteries covering all relevant aspects of
hearing deficits, as in (Van Esch and Dreschler, 2015; Van Esch et al., 2013), by
highlighting the most important measures.

2.5 Conclusion

The proposed data-driven profiling approach resulted in 13 distinct and plausible
auditory profiles and allows for efficiently characterizing patients based on the in-
terrelations of audiological measures. All patients are characterized and patient
groups with certain characteristics, such as asymmetry, are not excluded. Due to
the profiles’ flexibility by being defined on the contained patients’ measurement
ranges, profiles could be added or refined, given insights derived from applying
the profiling approach to additional data sets. The profiles concur with other
profiling approaches but are able to detect differences in patient groups regarding
measurement ranges in more detail than hitherto available approaches.

New patients can be adequately classified into the auditory profiles for 12 of the
13 auditory profiles. For 10 profiles, both high precision and sensitivity were
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achieved (>0.75), and for two profiles, low to medium sensitivity and high pre-
cision were achieved, and for one profile no classification could be achieved due
to the profiles’ small sample size. Since the classification model was based on a
reduced set of measures often available in clinical practice in Germany (GOESA,
ACALOS, air-conduction audiogram, and age), clinicians could use the auditory
profiles even without performing a complete audiological test battery, if a quick
classification with less clinical detail is required. Likewise, all measures required
for classifying patients into the auditory profiles are potentially available also on
mobile devices, facilitating mobile assessments of the patient.

The proposed profiling approach depends on the underlying data set in terms of
the number of profiles or the covered range of patients. Its properties such as
flexibility, not being tailored toward a specific outcome, or ability to handle in-
complete patient data, however, generalize to other data sets including additional
measures. Appropriate means to combine profiles generated across data sets need
to be defined.

Future research should extend the profiling toward integrating different data sets
with more severe and diverse patient cases. In addition, binaural measures should
be included, as well as aided data to investigate hearing device benefits with the
profiles.
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Abstract

Audiological datasets contain valuable knowledge about hearing loss in patients,
which can be uncovered using data-driven, federated learning techniques. Our
previous approach summarized patient information from one audiological dataset
into distinct Auditory Profiles (APs). To cover the complete audiological patient
population, however, patient patterns must be analyzed across multiple, sepa-
rated datasets, and finally, be integrated into a combined set of APs.

This study aimed at extending the existing profile generation pipeline with an AP
merging step, enabling the combination of APs from different datasets based on
their similarity across audiological measures. The 13 previously generated APs
(NA = 595) were merged with 31 newly generated APs from a second dataset
(NB = 1272) using a similarity score derived from the overlapping densities of
common features across the two datasets. To ensure clinical applicability, random
forest models were created for various scenarios, encompassing different combi-
nations of audiological measures.

A new set with 13 combined APs is proposed, providing well-separable profiles,
which still capture detailed patient information from various test outcome combi-
nations. The classification performance across these profiles is satisfactory. The
best performance was achieved using a combination of loudness scaling, audio-
gram and speech test information, while single measures performed worst.

The enhanced profile generation pipeline demonstrates the feasibility of combin-
ing APs across datasets, which should generalize to all datasets and could lead
to an interpretable population-based profile set in the future. The classification
models maintain clinical applicability. Hence, even if only smartphone-based
measures are available, a given patient can be classified into an appropriate AP.

Keywords: auditory profiles, audiology, big data, data mining, machine learning

3.1 Introduction

Audiological datasets contain valuable knowledge about patients with hearing
loss that can be exploited to learn about patterns in the data, for instance,
for identifying patient groups that exhibit similar combinations of audiological
test outcomes and may therefore benefit from a similar treatment. Data-driven
techniques allow assessing these feature combinations without prior knowledge
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about audiological findings or diagnostic information. Performing such analyses
on large-scale datasets has received increasing attention across medical fields as
well as by policy-makers, due to its potential for precision medicine, the iden-
tification of risk factors for diseases, and health care quality control ((Sinkala
et al., 2020; Stöver et al., 2023; European Commision and Food Safety, 2016), to
name a few). In the domain of audiology, available data for large-scale analyses is
currently spread across institutions. While research institutes often have smaller
datasets available and may share them openly, larger datasets are available in
clinics, but these are restricted in terms of access. Further, clinical or research
institutions generally obtain data from patient groups in line with the respec-
tive institutions purpose or purpose of the respective study which may lead to
considerably different patient populations and audiological measures across data
sets. For example, a cochlear implant clinic will have a larger proportion of se-
vere hearing deficits in its datasets than an ambulant audiological center, which
will be frequented more often by hearing aid candidates. Even more variabil-
ity across datasets comes into play if online remote testing with smartphones is
included, allowing for data collection outside labs and clinics with a population
exhibiting a mild-to-moderate hearing loss. Hence, a comprehensive data analysis
describing the complete audiological patient population requires the combination
of available, but distributed data across institutions without having the access to
all databases simultaneously, since the principle of federated learning has been
shown to overcome the problem of distributed data ownership (McMahan et al.,
2017). This study introduces the « federated merging of Auditory Profiles » by
demonstrating the feasibility of sequentially extracting information from two dif-
ferent databases and then merging the resulting information in a second step.

Varying approaches exist to describe the audiological patient population. These
approaches range from epidemiological studies regarding the prevalence of hear-
ing loss in combination with different demographic factors (do Carmo et al.,
2008; Roth et al., 2011), to developing optimal test batteries to characterize
hearing deficits (Sanchez-Lopez et al., 2021; Van Esch et al., 2013), and ad-
vanced analyses into audiological groupings (Bisgaard et al., 2010; Saak et al.,
2022; Sanchez-Lopez et al., 2020). Bisgaard et al. (2010) grouped audiograms
into ten standard audiogram patterns. However, as no additional measures are
considered, a detailed description based on multiple domains of hearing, includ-
ing, e.g., suprathreshold auditory processing deficits like Plomp’s (Plomp, 1986)
“D-component”, is not possible. Sanchez-Lopez et al. (2020) applied principal
component analysis and archetypal analyses to multiple audiological measures
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to characterize patients into four distinct auditory profiles. By defining the au-
ditory profiles based on the hypothesis of two underlying distortion types they
limit the number of profiles to four. Saak et al. (2022) proposed a profile gener-
ation pipeline which resulted in a first set of 13 Auditory Profiles (APs). Again,
APs were generated based on multiple audiological measures (e.g. speech testing,
loudness scaling, audiogram). In contrast to Sanchez-Lopez et al. (2020), the
number of APs is not chosen based on a hypothesis, but dependent on the pa-
tient population of the underlying dataset, hence, completely data-driven. APs
are described in terms of data distributions across measures, which has the po-
tential to integrate additional profiles into a combined set of APs. If sufficient
datasets are accounted for, such a combined set of APs could ultimately lead to
robust, comprehensive AP set that can describe the complete audiological patient
population independent of a respective audiological dataset that is either present
or absent in the underlying profile generation process.

To create such a comprehensive AP set that accurately describes the patient pop-
ulation, it is necessary to compare and integrate multiple datasets, leveraging the
growing amount of available data, including various subtypes of hearing deficits as
well as different information collected in the respective dataset. Hence, a suitable
tool must be capable of integrating APs from different datasets, while ensuring
interpretability, flexibility, applicability to clinical practice, as well as comply-
ing with data privacy and protection regulations by implementing the federated
learning principle (McMahan et al., 2017).

First, the process to combine profiles generated across datasets, as well as the
resulting profiles need to remain interpretable to ensure the plausibility and ap-
plicability of the profiles in clinical practice. In clinical practice, for instance,
if patients are classified into the APs, the APs could serve as a look-up table
to obtain an estimation of the results on further audiological tests included in
the AP but not measured by the practitioner. Only if their generation is inter-
pretable and the resulting combined profiles are plausible, valuable insights can
be obtained from these profiles. Finding such interpretable subgroups or sub-
types of diseases via big data analyses has proven valuable and transformative
for medical research, and precision medicine (Grant et al., 2020; Parimbelli et al.,
2018). For example, molecular profiling has allowed to identify two pancreatic
cancer subtypes with subtype-specific biomarkers. The two subtypes have differ-
ent clinical outcomes and may be more responsive to different subtype-specific
treatments (Sinkala et al., 2020). In a similar way, APs could serve to identify
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subgroup-specific causes and treatment recommendations, for instance, by high-
lighting patient groups that exhibit a similar audiogram but may benefit from
different fitting rationales for the hearing aids or by prompting sub-group specific
research.

Second, it is important to achieve a flexible process for combining APs, such that
they can be used in a variety of settings. For instance, for research purposes
certain distinctions across audiological measures may be of interest, whereas for
clinical applications a coarser separation may suffice. More detailed profiles would
represent subtypes of coarser profiles and could, thus, inform on potential sub-
groups of individual profiles. Hence, providing a method that can make profiles
more detailed or coarser based on the individual use case helps in the applicability
of the profiles in practice.

Third, for APs to be useful in audiological/clinical practice, the identified subgroup-
specific causes and treatment recommendations need to be accessible to practi-
tioners, such as clinicians, hearing care professionals, and researchers. Hence,
different classification models are required that are based on different subsets
of audiological measurements (features) corresponding to the needs of the re-
spective clinicians or researchers. To exemplify, hearing care professionals in
Germany, thus far, mainly use the audiogram and the Freiburger speech test in
quiet in their hearing aid provision process, as these are required for a hearing
aid indication and hearing aid approval for the reimbursement of the health care
insurance (Gemeinsamer Bundesausschuss, 2021), even though research indicates
that loudness scaling can be beneficial in hearing aid fitting (Oetting et al., 2018).
Smartphone apps, in contrast, can easily perform loudness scaling, but measuring
bone conduction thresholds without special equipment is not as straightforward,
even though conductive hearing loss can be estimated with the antiphasic digits-
in-noise test (DIN, De Sousa et al. (2022)).

Finally, the process to combine and compare profiles needs to be able to also
handle sensitive data, such that clinical datasets can be used that underlie data
restrictions (European Parliament, 2016). Here, federated learning (McMahan
et al., 2017; Pfitzner, 2021) could serve as a solution for data privacy restric-
tions, which is closely related to distributed computing. Distributed computing
originally stems from distributing computing tasks across connected computers
to achieve better performance (Hajibaba and Gorgin, 2014), but has also found
its applications in machine learning and cloud computing for health care (Beyan
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et al., 2020; Ehwerhemuepha et al., 2020). Federated learning makes use of the
decentralized approach of distributed computing by aggregating results of locally
trained models. This tackles data privacy issues, as data-sensitive computing
could occur at the server of the sensitive data location without the need of shar-
ing sensitive data. That means, APs could be generated at a specific institution,
and the AP information could then be shared to update the already existing APs.
In other words, datasets could be integrated, and their insights extracted via the
APs without having to merge the respective datasets.

The present study aims to develop a flexible and interpretable approach for com-
bining auditory profiles (APs) of Saak et al. (2022) that complies with data
protection standards and can be used in clinical practice. That means, we aim
to investigate how APs can be merged from different datasets in a federated
way to allow for dataset integration via APs and take the next steps towards a
population-based estimate of APs. To achieve this, we (1) aim at comparing AP
generated across datasets with respect to their profile similarity. We hypothe-
size that some APs will be similar across datasets, while the inclusion of further
datasets will also result in new AP patterns, as a broader range of audiological
patients is covered. Further, we (2) aim to analyze the feature importance of
the distinct APs, such that APs can be easily identified by their specific patterns
across audiological measures. Finally, we (3) aim to make the APs applicable by
providing classification models for various settings, including research, hearing
aid fitting, and potential smartphone applications. The current study, thus, aims
to answer the following research questions:
RQ1: How can we obtain a combined set of auditory profiles from two audiolog-
ical datasets?

RQ1.1: How can auditory profiles, generated on different datasets, be merged,
such that a privacy-preserving combination of profiles from different datasets can
be achieved?

RQ1.2: Are the previously generated 13 auditory profiles also represented in the
second audiological dataset?

RQ1.3: How can we ensure flexibility of the proposed merging approach towards
different use cases and how does flexibility relate to feature importance in differ-
ent merging steps?
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RQ2: How well can we classify patients into the generated profiles and which
features are most important for this?

RQ3: Are the same audiological features important for merging and for classify-
ing patients into the auditory profiles?

3.2 Method

3.2.1 Datasets

We used two separate datasets (dataset A and B) in our analysis to generate
two separate AP sets (profile set A and B). Both datasets were provided by the
Hörzentrum Oldenburg gGmbH (Germany) and contain information with respect
to a broad range of measures. They include measures contained in both datasets,
i.e., common measures, as well as different additional measures. Common mea-
sures for both datasets are age, the Goettingen Sentence Test (GOESA, Kollmeier
and Wesselkamp (1997)), the audiogram for air- and bone-conduction, and the
Adaptive Categorical Loudness Scaling (ACALOS, Brand and Hohmann (2002)).
Both datasets use narrowband noise for ACALOS for the left and right ear mea-
sured with headphones. For dataset A results for the frequencies 1.5 and 4 kHz
are available and for dataset B for 1 and 4 kHz. For audiogram and ACALOS
measures, we only used the worse ear. In the following, we will refer to these as
measures, and refer to features both as specific sub-results of the measures, and
as summarizing features.

To exemplify, a common feature between the two datasets of the measure GOESA
is the speech recognition threshold (SRT) for the collocated S0N0 condition (spe-
cific sub-result). For the audiogram the common features we used are summa-
rizing features, derived from specific sub-results. These include the pure tone
average for air (AC PTA) and bone (BC PTA) conduction, an asymmetry score
between left and right ear (ASYM), the air-bone-gap (ABG), the Bisgaard class
to characterize the shape of the audiogram, and the pure tone average (0.5,1,2,4
kHz) of the uncomfortable level (UCL PTA). For ACALOS we used summarizing
features that can characterize both the lower and upper part of the loudness curve
(L15, L35, i.e., level corresponding to categorical loudness of 15 CU and 35 CU,
respectively), and the difference between L15 and L35 (as a feature representing
the dynamic range), for both available frequencies (i.e., 1_diff and 4_diff). More
information on common features between the two datasets is given in Table 3.1.
A description of ranges across common and additional features of the two datasets
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can be found in the supplementary material.

3.2.1.1 Original dataset A The original dataset A refers to the dataset
and the profile set used in Saak et al. (2022). The dataset was collected for
research purposes (Gieseler et al., 2017) and consists of 595 listeners (mean age
= 67.6, SD = 11.9, female = 44%) with normal to impaired hearing. Next to
the common measures and features, additional information is contained. In the
speech test domain, the SRT for the digit triplet test (Zokoll et al., 2012) and the
slope for the GOESA S0N0 condition is available. Further, information regarding
the socio-economic status and two cognitive measures are included, namely the
Demtect (Kalbe et al., 2004) and the Vocabulary test (Schmidt and Metzler,
1992). All these measures were used for the generation of the profiles. Detailed
information about this dataset can be found in Gieseler et al. (2017) and Saak
et al. (2022).

3.2.1.2 New dataset B The new dataset B was collected for diagnostic pur-
poses and consists of 1401 listeners. The main measures overlap with dataset A.
However, no cognitive measures are available for dataset B. Further, additional
GOESA conditions are available, namely the S0N90 binaural and monaural con-
ditions. Due to the diagnostic purpose of the dataset, information on the tym-
panogram (Type A, As, Ad, B, C, D, tympanic membrane perforation, not mea-
surable), Valsalva and otoscopy (not impaired, moderately impaired, impaired)
is also available for both ears. All these measures were used for the generation
of the profiles. Only patients with data for at least two measures (from the
audiogram, speech test, and loudness scaling) were included to ensure sufficient
information for the clustering. This resulted in 1272 patients (mean age = 63.74,
SD = 13.22, female = 42.26%) with normal to impaired hearing. In addition,
different outcome parameters are available, such as International Statistical Clas-
sification of Diseases and related Health Problems (ICD) codes, and information
on a potential hearing aid supply and the respective aided performance. Outcome
parameters were not used for the generation of the profiles.

3.2.2 Generation of Profiles

For dataset A, APs were already available and obtained from Saak et al. (2022).
They contain 13 distinct APs, and will be referred to as profile set A. Each profile
consists of distributions across different features from audiological measures (au-
diogram, ACALOS, GOESA, . . . ). These ranges provide an estimate of plausible
values for individuals that belong to a certain profile. To generate the profiles,
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both the common and additional features from dataset A were used.

For dataset B, APs (profile set B) were generated according to the profile genera-
tion pipeline from Saak et al. (2022). Features used for profile generation include
the common and additional features from dataset B. No outcome measures, such
as the ICD codes were included to cluster patients into the APs. The available
categorical features from the tympanogram, otoscopy, and Valsalva were trans-
formed to continuous features using multiple correspondence analysis (MCA‚ Lê
et al. (2008). MCA is a dimension reduction method, similar to principal compo-
nent analyses. It quantifies the relationship between categorical variables in the
form of principal components, and in in that way transforms the categorical fea-
tures into continuous components. We used the first three resulting components
instead of the original three categorical variables as features for the subsequent
data analyses. With this approach we retained some information regarding the
three categorical variables for the generation of profiles. The resulting compo-
nents, however, only represent the relationship across the categorical variables
and some information will be missing. Hence, in the future a different approach
to tackle the difficulty of handling mixed data may become preferable.

Model-based clustering was used to generate the profiles. Model-based clustering
assumes that an underlying model generated the data, and the clustering aims at
recovering the model (Banerjee and Shan, 2017). The model is a combination of
data clusters that describe the patterns in the data. These clusters serve as the
generated APs. The profile generation pipeline (Saak et al., 2022) using model-
based clustering consists of two steps:

The robust learning step results in a robust estimate of the underlying model
parameters for model-based clustering, namely the number of profiles present
in the dataset and the respective covariance parameterization. To achieve this,
bootstrapping without replacement was used to generate 1000 datasets, each
using 90% of the data. Next, missing data in each bootstrapped dataset was
imputed. Here, we made a small adjustment to the original pipeline. We re-
placed Multivariate Imputation by Chained Equations (MICE, Van Buuren and
Groothuis-Oudshoorn (2011)) by imputation based on factorial analysis for mixed
data (FAMD, Audigier et al. (2016)). FAMD is a competitive imputation tech-
nique based on principal components that reduces the computational complexity
of the profile generation pipeline. This means, that instead of multiple imputed
datasets only a single imputed dataset is generated for each bootstrapped dataset,
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which simplifies the following computations for cluster analyses. Internal simu-
lation analyses show the equivalence of FAMD to MICE for the current dataset.
Next, features were scaled using the min-max scaling, which transforms values
to range from 0 to 1. We then applied model-based clustering to each dataset
using different parameter combinations (number of profiles, covariance parame-
terization). The possible number of profiles was set to 1 to 40 profiles to cover a
broad potential range of profiles. The covariance parameterizations determine the
shape, volume and orientation of the profiles (see Fraley and Raftery (2003) for
all possible covariance parameterizations). The model describing the underlying
data best was then selected using the Bayesian information criterion (Schwarz,
1978). Finally, the most frequently occurring number of profiles and covariance
matrix across all bootstrapped datasets was selected as the model parameter so-
lution fitting the data best.

The profile generation step uses the original complete dataset and, again, im-
putes missing data with FAMD. Model-based clustering is then applied to the
scaled features with the learned model parameter solution to result in the APs
of profile set B. To allow for later merging with anonymized data distributions
from sensitive datasets, all profile data was transformed to count data with 100
equidistant steps. More details regarding the generation of profiles can be found
in Saak et al. (2022).

3.2.3 Dataset combination via Auditory Profiles

To compare and combine profiles generated across multiple datasets, they need
to share common features that allow to investigate how similar different profiles
are. We, therefore, selected the common features of the two datasets across
the domains of speech intelligibility, audiogram, loudness scaling, and anamnesis
information, namely the age of the individual. The columns of Table 3.1 display
all features used to combine the two datasets.

3.2.3.1 Overlapping density index A measure of similarity is required that
allows for an estimation of similarity between two profiles. For this purpose, we
use the overlapping index Pastore and Calcagnì (2019). The overlapping index is
a distribution-free index that calculates the overlapping area of two probability
density functions. To obtain the similarity between two respective profiles we cal-
culate the overlapping index for each feature of the two profiles and use the mean
as the final similarity score for the respective profiles. Sample size imbalances are
accounted for by using normalized density distributions.
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3.2.3.2 Merging procedure Starting from all profiles generated on datasets
A and B, profiles were merged iteratively, and the procedure is depicted in Figure
3.1. The similarity score was calculated for all profile combinations, and the two
profiles with the highest similarity score were merged. The SRT was used 6 times
when calculating the similarity score to balance the effect of the speech test to
the number of available features from the audiogram and ACALOS. Then, for the
new set of profiles containing the merged profile, the similarity score was calcu-
lated for all profile combinations, and the two profiles with the highest similarity
score were merged. This procedure continued until only two profiles remained.
Hence, we pre-generated all potential profile solutions and then derived a stop-
ping criterion to result in the final profile set, as described in section 3.2.3.3.

Figure 3.1: Merging procedure. Profiles are merged iteratively until a stopping
criterion is fulfilled. The two profiles with the highest overlap are merged at each
iteration step.

3.2.3.3 Selection of merged profile set After each merge a potential pro-
file set is generated. That means the merging pipeline results in N -1 potential
profile sets, ranging from all N available profiles from the two datasets to the
last two remaining profiles. Depending on the intended use case in practice, a
plausible profile set needs to be selected. For instance, the last two to three
remaining profiles may be useful for a coarse classification into mild, moderate,
and severe hearing loss. It does not, however, provide a detailed differentiation
across features that may be needed for research purposes or detailed patient char-
acterization. In contrast, a profile set containing a larger number of profiles may
contain redundant information for clinical classification but may aid in investi-
gating specific differences between patient groups. For that reason, we aimed
at proposing a basic set of APs that remains detailed enough, whilst reducing
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the number of profiles and combining similar profiles contained in both datasets.
More specifically, we aimed at reducing redundancy across profiles for a proposed
general set of profiles, such that the differences between the profiles are maxi-
mized. To achieve this, we used a combination of two steps to manually select a
cutoff based on the overlapping density (see Figure 3.3A in the results section),
corresponding to a number of obtained profiles at a certain number of merging
iterations.

In the first step, we selected the cutoff based on two parameters, namely the slope
of the maximum overlapping density, and the variance of the median overlapping
density. The first parameter describes the slope over merging iterations for the
two profiles with the highest overlap in each merging iteration. A steeper slope
and lower overlap, thus, indicates when profiles are merged that are less similar
than in previous steps. We selected the parameter such that the slope decrease is
relatively larger after the cutoff, as compared to prior to the cutoff. The second
parameter describes the variance over iterations for the median overlap of all pro-
files. If the variance changes too much over iterations, it indicates that merges
took place between two profiles that differ strongly from each other. Hence, we
selected the cutoff such that the variance remains relatively stable prior to the
cutoff, contrasting the variance after the cutoff.

In the second step, we compared the overlapping index across features before and
after the previous cutoff. For an optimal cutoff, we expect a higher overlapping
index prior to the cutoff, and a lower overlapping index after the cutoff. In that
way, we can determine whether features were overall similar for the two profiles to
be merged, or whether they differ substantially from each other, in which case a
merge may not be advisable. Hence, it also allows to investigate which features are
most important for the merging procedure and the profiles, and likewise, which
features distinguish two profiles the most. We aimed for a cutoff that shows high
overlap of features prior to it, and substantial difference between profiles after
the cutoff.

3.2.3.4 Feature importance of the merges For an interpretable merging
procedure and interpretable APs, it is highly relevant to investigate which audi-
ological measures drive the profile merges (high overlap), and which audiological
measures hinder the profile merges (low overlap). That is because features that
drive the profile merges are less relevant, whereas features that hinder the profile
merges are more relevant and able to discriminate better between profiles. We,
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therefore, investigated which features had the least overlap across profiles, that is,
were most discriminative between profiles. For that purpose, we defined different
sets of iterations, for instance, iterations before the defined cutoff and after the
defined cutoff. Iterations before the defined cutoff indicate which features were
merged and which information may have been lost. Iterations after the defined
cutoff indicate which features are most important for discriminating between pro-
files. To exemplify, if we start at the last profile set with two remaining profiles,
we can investigate which measures are least similar across the two profiles and
would therefore lead to a split into three profiles. Hence, these features would
drive the split and can be considered as relevant features.

We further investigated which features were most relevant across different ranges
of iterations (merging areas, see A-E in Figure 3.3). A merging area, for instance,
can contain all merges from the selected profile set to the last two remaining
profiles, or all merges that led up to the selected profile set. For this, we calculated
the mean overlap for each feature within a merging area and compared this to
the average mean overlap for all features for the respective merging area. Hence,
we investigated whether a feature was more or less important than the average
of all features within the merging area.

3.2.4 Classification models

We built classification models for the APs for two reasons. First, we aimed at
enabling the classification of new patients into the profiles, such that the profiles
can be used in practice. Second, the feature importance of the classification
models allows to draw conclusions with respect to which features are most relevant
for classification into the respective profiles.

3.2.4.1 Feature sets and labels To simulate different use cases, enable ap-
plicability of the profiles in practice, and extract insights into feature importance,
different feature sets (subsets of the common features used for merging) were used
to build the classification models. The feature sets belong to three general cate-
gories, namely, use cases, combined, and single. The feature combinations “ALL”,
“APP” (smartphone app), and “HA” (hearing aid fitting) belong to the category
use case, as they are combinations that have use cases in practice. For instance,
“HA” defines features generally available for a hearing care professional, whereas
“APP” defines features that could potentially be measured via a smartphone.
“ALL”, in contrast, allows for an overall feature importance interpretation across
all features. The combined feature group explores the performance of only using
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Table 3.1: The different feature sets used in the analysis (see 3.2.1 for feature
descriptions). “ALL” corresponds to all features common to both datasets that were
also used for the profile generation; “APP” to measures potentially measurable via a
smartphone; “HA” to measures generally available for hearing care professionals. The
remaining feature groups describe feature combinations and the importance of single
features.

two of the three main features. In that way the classification models could be
used also for datasets only containing two of the three measures. The final fea-
ture group (single) investigates performance with each measure separately. All
sets are displayed in Table 3.1. While these feature groups allow for broader
applicability of the classification models, they also allow for feature importance
interpretations, as the performance across feature sets can be compared. Profile
numbers of the final combined profile set were used as labels for classification.

3.2.4.2 Classification model In Saak et al. (2022), a random forest (RF,
Breiman (2001)) classification model was built to classify new patients into the
profiles, which resulted in adequate performance. RF models work well with
smaller sample sizes and provide an inherent feature importance index. We,
therefore, also selected RF for the current analyses. RF uses an ensemble of
trees, where the results of independent trees are aggregated, and the most fre-
quently predicted label is used as the final prediction. Within each tree, only a
subset of the features is used to split the predictor space into smaller regions,
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which effectively decorrelates the trees.

To build the RF model we used the one-vs-all (OVA) design, as it provided good
performance in Saak et al. (2022), and eases the interpretation with respect to
feature importance. The OVA design splits a multiclass model into k binary mod-
els, where k is equal to the number of profiles. That means each model predicts
whether an instance belongs to a specific profile or not. The feature importance
therefore always highlights features that are most important for distinguishing
the profile of interest from all remaining profiles. Data imbalance naturally exists
with OVA design. To counter the imbalance, we upsampled labels using Gaussian
noise to the average amount of labels available for each profile, which means all
profiles have at least the average amount of patients in each profile, while profiles
with patient numbers above the average retained their larger sample size. The
rationale behind this was that we wanted to keep a balance between upsampled
and original data. The remaining imbalance was addressed by using weights for
the labels in the training. In that way, mistakes for the label of interest are more
costly in terms of prediction errors.

3.2.4.3 Train, validation, and test set The complete dataset was split
into a training (80%) and a test set (20%). The training set (containing 80% of
the data) was then further split into a training (80%) and validation set (20%).
The training set was used for training. For the training set we used 10 times
repeated 10-fold cross-validation to get a better estimate of the prediction error.
The validation set was then used to evaluate the performances of the models on
cases that were not used in the model training. After the model was specified
with the training and validation set, the final model performance was evaluated
with the test set.

3.2.4.4 Classification performance evaluation Each classification model
aims at reducing the prediction error, which is quantified by a specified evaluation
metric. Evaluation metrics have different properties, making them useful for dif-
ferent prediction problems. For instance, accuracy is an evaluation metric that is
easily interpretable, but does not perform well for imbalanced classification per-
formances. We chose Cohen’s kappa (Cohen, 1960) as the evaluation metric for
two reasons. First, Cohen’s kappa takes imbalances into account, by comparing
the accuracy to the baseline accuracy that could be achieved by chance. Second,
it proved to be the best evaluation metric among three others (balanced accuracy,
Area under the precision recall curve, F1-score) for the classification model for
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profile set A in Saak et al. (2022). Hence, in the model training process, we used
Cohen’s Kappa to tune the number of considered features at each split.

To evaluate the general performance of the trained classification models for each
feature set, we used two distinct but complementary metrics, namely sensitivity
and precision. Sensitivity describes the proportion of correctly classified cases for
the class of interest, whereas precision describes the proportion of misclassifica-
tions for the class of interest. Both sensitivity and precision were compared across
feature sets and further, for the overall profile classification and single profiles.

Finally, we build a dummy prediction model, which does not include any features
and predicts profile labels based on stratified sampling, that is, it reflects the
relative frequency of patients contained in different profiles. That way, we could
estimate the benefit of our prediction models as compared to the baseline dummy
model.

3.2.4.5 Feature importance of the classification model To estimate the
feature importance of the RF models we used the inherent feature importance
metric, namely the gini importance or rather the mean gini decrease (Breiman,
2001). The mean gini decrease is used in the training process to estimate how well
a feature can split the labels across nodes in the ensemble of trees. A good split
results in pure nodes where no misclassification occurs, whereas a bad split does
not aid in separating the labels for the classification and leads to “impure” nodes.
The mean gini decrease estimates how much a feature decreases the impurity on
average across all nodes in the ensemble of trees, where a feature can be used
multiple times in the same tree.
Overall feature importance across all profiles and feature importance specific for
each profile was calculated and compared via a feature importance plot. We
transformed the mean gini decrease to percentages (with the total mean gini
decrease of a profile equaling 100 %) to show the contribution of each feature for
each profile separately.

3.3 Results

3.3.1 Generation of Profiles

For dataset A, the optimal profile number of 13 was obtained from Saak et al.
(2022). For dataset B, the optimal profile number was determined according to
the profile generation pipeline described in the present paper. The distribution
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of estimated optimal profile numbers across the bootstrapped datasets can be
found in Figure 3.2. Both 31 and 32 were most frequently selected across the
bootstrapped datasets and there is only a marginal difference between these two
profile sets in terms of frequencies. In contrast, estimated profile numbers higher
or lower than 31/32 were selected less frequently for the bootstrapped datasets.
Since profile number 31 was slightly more frequently estimated than profile num-
ber 32, we selected 31 profiles as optimal for dataset B. Just as in Saak et al.
(2022), the best covariance parameterization for dataset B was “VEI”. “VEI”
refers to variable volume, equal shape, and coordinate axis orientation. It there-
fore allows clusters to be of different size but restricts them in terms of shape and
axis alignment.

Figure 3.2: Distribution of optimal profile numbers across the bootstrapped datasets.

3.3.2 Merging Profiles

The profiles of the two datasets were merged using the mean overlapping density.
This requires the definition of criteria to stop the merging process and result in
the final profile set. Figure 3.3 displays the two criteria that we used to select
the proposed combined profile set.

Figure 3.3A displays the highest overlap (i.e., profiles to be merged) next to the
median overlap across all profiles for each iteration of the merging pipeline. Two
cutoffs are depicted that show two potential profile sets. The first cutoff at 20 it-
erations is characterized by a steepening decrease of the highest overlap, next to a
reduction in variance. The second cutoff at 32 iterations precedes an even steeper
slope decrease and high variations in variance. The high variations in variance in-
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dicate that merges occurred where profile ranges became much broader such that
the similarity between profiles could increase again. Since this is undesirable, a
cutoff should occur prior to high variations in the variance.

Figure 3.3: Merging iterations. Vertical green lines indicate cutoff candidates (A)
Median and highest overlapping density across the merge iterations. Red numbers
indicate the slope of highest overlapping density for the respective merging area;
turquois numbers indicate the variance of median overlapping density of the respective
merging area. (B) Overlapping densities across features for the two profiles to be
merged at the given iteration. A, B, C, and D indicate different iteration sets.

Figure 3.3B displays the overlapping densities of the two profiles to be merged
at each merging iteration. In that way it corresponds to the highest overlap
from Figure 3.3A. The two cutoffs are indicated with the dashed green lines. We
can observe a general decrease in overlap with increasing merging iteration, that
corresponds to the results from Figure 3.3A but provide us with insights into
which features drove the decrease in overlap. We can observe that especially
after the cutoff at 32 iterations the mean overlap decreases substantially across
multiple features, which indicates that profiles would be merged that can be
distinguished. Hence, merging the profiles beyond 32 iterations would result in
a substantial loss of information. This widespread decrease in overlap is not as
pronounced for the cutoff at iteration 20. Hence, for the following analyses the
profile set at 32 iterations was selected, which leads to a proposed combined
profile set with thirteen APs. The corresponding analyses for the profile set at
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20 iterations can be found in the supplementary material.

3.3.3 Feature importance of the merges

To ensure that merges are based on plausible features we investigated the feature
importance of the merges. In other words, we estimated which features were
most responsible for merging profiles. Features important for merging indicate
they are less relevant for profile distinction, as they are similar across profiles.
Conversely, features that are less important for merging can be interpreted as
features relevant for profile separability. Hence, these features are determined as
important features. Figure 3.4 displays the feature importance of the merging
pipeline for different merging areas (A - E). A corresponds to the selected profile
set at iteration 32; C to the profile set at iteration 20 (in more detail in the
appendix); E visualizes profile importance across all iterations. B and D display
feature importance for remainders of the iterations.

Figure 3.4: Feature importance for different merging areas. A, B, C, D and E
correspond to the indicated areas in Figure 3.3. Mean feature overlap was calculated
for each feature in each merging area and then subtracted from 1 to indicate higher
importance with higher scores. Subsequently, scores are divided by the mean overlap
of all features of the merging set. Scores, thus, indicate the higher or lower importance
than the average. Turquoise bars with values above 1 indicate higher importance; red
bard with values below 1 indicate lower importance.

Feature importance, or profile separability for the 13 profiles of profile set 32
(merging area A) is mostly based on air- and bone-conduction PTA, the Bisgaard
class, the SRT, and L15 and the difference of L35-L15 of the ACALOS for 1
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kHz. For the complete set (E) the SRT becomes less important, and the L35-
L15 difference becomes more relevant, next to L15 for 4 kHz. This occurs due
to the higher importance of ACALOS features in merging area D. This means,
that in the first profile merges in D (or later profile splits – if going from right
to left iterations), loudness scaling based features are merged first (ACALOS
information is lost), whereas in A, profile merging is driven more by audiogram-
based features, the SRT, and L15 from the ACALOS. Vice versa, this also implies
that if we would start from only 2 profiles and would split until iteration 1, in
later split iterations (profile sets with a higher number of profiles) more detail
with respect to loudness scaling is added to the profiles.

3.3.4 Proposed profile set

Figure 3.5A visualizes the proposed profile set with 13 APs. Both the profile
ranges for each feature (A) and a proposal for single profile visualization are de-
picted (B). We can observe distinct patterns across APs. Profile 13 corresponds
to a normal hearing profile and profile 1 has the highest SRTs. Overall, the pro-
files cover a large range of hearing deficits in terms of test measurement ranges.
We can see a distinctiveness of the profiles based on the SRT, audiogram-related,
and loudness scaling-related features. The age was not found important in the
two datasets.

In the SRT range of -5 to 0 dB SNR differences between profiles are mainly driven
by audiogram and loudness scaling based features. For instance, profiles 10 and
11 show similar SRTs, but differ regarding loudness perception and the AC PTA.
Further, for profile 10 an asymmetry is present which could partly explain the
higher AC PTAs. As expected, the presence of a higher asymmetry and a higher
air-bone gap compensate for higher AC PTAs in terms of higher SRTs.

We can see a clear inverse trend of the dynamic ranges for the ACALOS 1 and
4 kHz to the SRT. That means, generally a higher SRT is accompanied by a
reduced dynamic range. This trend fluctuates, when an ABG and asymmetry is
also present in the profile.

The single profile visualization (Figure 3.5B) aids in visualizing the pattern for a
single profile. Not all profiles are displayed, but the remainder can be found in the
supplementary material. The polar plots depict the normalized median difference
of each profile to the normal hearing profile (green circle). We can clearly see the
impact that the presence of an ABG or asymmetry has on the relation between
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SRT and AC PTA (Profile 1 vs. Profile 3), that is, a smaller SRT results from a
higher AC PTA in profile 3 due to asymmetry and/or ABG that both mitigate
the general SRT deterioration with increasing AC PTA.

Figure 3.6 depicts the distribution of profiles from the two profile sets (A & B) in
the final 13 profiles. The 13 profiles from profile set A have been merged with the
31 profiles from profile set B. Hence, the previous profiles from Saak et al. (2022)
are also included within the new profile set. However, since, dataset B contains
patients with a larger variety and more severe deficits, the previous profiles are
merged in favor of retaining a broader profile distribution with the new profile
set. The number of patients per profile corresponds to the relative frequency of
patients contained in the datasets. This is because model-based clustering, used
for profile generation, does not impose any constraints on cluster size with the
variable volume parameterization (“VEI”).
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Figure 3.5: The 13 proposed APs across the speech, anamnesis, audiogram, and
loudness scaling domain. (A) Profile ranges are depicted for all features and are
ordered with respect to the increasing median SRT. (B) View of singular APs. Data is
referenced to the NH profile (value 0). All bar values represent the median deviation
from the NH profile, whereas the numbers indicate the true median value.

Figure 3.6: Distribution of profiles that were merged to result in the selected 13
auditory profiles. A corresponds to dataset A and presents the previous 13 profiles
detailed in (1). B refers to the new dataset B and the 31 profiles that were defined as
optimal by the profile generation pipeline. The x-axis depicts the sample size for each
sub-profile, as well as the proposed 13 profiles.

3.3.5 Classification models

Classification performance across profiles for different feature sets are shown in
Figure 3.7. The general classification performance is adequate for the “APP” and
“ALL” feature sets (Figure 3.7A), with “APP” performing best among all feature
sets. All feature sets performed better on average than the dummy model but
for different profiles different benefits are achieved (Figure 3.7B). The higher
performance of the dummy model for AP 8 can be explained by the larger sample
size of this profile, which increases the chances of belonging to this specific AP.
The “single” feature groups performed worst among the feature groups. This can,
however, be expected, as less information is available to discriminate between
APs with “single” sets. For the “single” feature group “AG” (audiogram), and
for the “combined” feature group “AG ACALOS” achieved the best performance.
The feature groups “SRT ACALOS” and “AG SRT” performed comparable on
average and differences can be observed when comparing performances across
profiles. For profiles with fewer deficits (higher profile number) “SRT ACALOS”
could generally discriminate better than “AG SRT“, and vice versa for profiles
with higher deficits (lower profile number). The feature sets “APP” and “ALL”
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both perform better than “HA” from the usecase feature group, which does not
contain ACALOS information. The results demonstrate the importance of using
audiological tests beyond the audiogram to adequately classify patients into APs.
All three measures contribute to better discriminability into the distinct APs and
the benefit of including ACALOS information for better discriminability is shown.

Figure 3.7: Classification performance across profiles for different feature sets.
Feature groups are categorized into “usecase”, “combined”, “single”. Profile 9 is not
displayed, as the sample size is too small for adequate training. (A) shows the mean
test performance across profiles and (B) show the test performance for each profile.
Dummy indicates the performance of the dummy model that predicts profile labels
based on stratified sampling.

To investigate the feature importance of the classification models, we selected
the best-performing feature set, namely the “APP” feature set of the “use case”
feature group (Figure 3.8). Hence, a reduced feature set performed best in
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classifying patients into the profiles. The AC PTA was determined to be overall
most important for classifying profiles. More specifically, this means that it
is most important for distinguishing between profiles in the presence of the
remaining features. This is seconded by the SRT. We can, generally, observe
that for profiles with higher SRTs (lower profile number) the SRT becomes more
important. For instance, for distinguishing profile 1 and 2 from the remaining
profiles, the SRT is more important than the AC PTA. We can further observe
the most important features by comparing them to the mean importance of all
features (Figure 3.8, dashed line in upper panel). The most important features
are the SRT, AC PTA, asymmetry, and L15 for 1 kHz, and the importance
of these features varies for different profiles. Profiles with lower SRTs (higher
profile numbers) show a slight trend for higher importance of ACALOS features
for differentiating the profiles from all remaining profiles.
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Figure 3.8: Feature importance for “APP” feature set. Feature importance refers to
percentage distribution of the mean gini decrease for each profile separately. Profile
specific importance is shown by the colors. Overall importance (transformed to
percentage) across all profiles is depicted by the grey bars. The dashed line indicates
the mean percentage across features

3.4 Discussion

With the present study we aimed at extending the existing profiling approach
such that datasets can be integrated into the auditory profiles (APs) towards
a population-based estimate of APs with a federated learning approach. Our
results show that APs generated across datasets can be plausibly merged using
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the mean density overlap of two profile distributions. The exact number of profiles
is flexible and can be adjusted regarding the required detail of the profiles. We
further trained classification models that allow for adequate classification of new
patients into the APs using different feature combinations. Finally, we determined
the importance of different features for both merging of and classification into the
APs.

3.4.1 Auditory profile generation for dataset B

The optimal number of profiles generated for dataset B is 31. In comparison to
the 13 APs from dataset A, this number can be considered rather high. However,
one must consider the differences between the two datasets. First, dataset A is a
research dataset where participants were recruited via a participant database of
the Hörzentrum. In contrast, dataset B is a clinical dataset where participants
approached the Hörzentrum themselves for the diagnostic support of an ENT-
physician. As a result, dataset B contains a larger sample covering a broader
range of hearing loss including patient patterns with more severe hearing loss, as
evident from the higher SRTs in profiles 1-3, which were not merged with profiles
from dataset A. Second, the two datasets vary in terms of additionally included
audiological measures. For dataset A, the most prominent additional features to
the common features are cognitive measures. Dataset B, in contrast, contains
additional features such as the S0N90 condition, both monaurally and binaurally,
and information from the tympanogram, valsalva, and otoscopy. As a result, these
additional features, in combination with the larger variation in patient patterns
can explain why dataset B resulted in a higher optimal profile number (see Section
“Role of common and additional features for profile generation, merging, and
classification”).

3.4.2 Merging procedure and its flexibility

Our proposed iterative merging procedure, using the highest mean density over-
lap between two APs, respectively, enables the integration of different datasets
via APs (RQ1.1). The separately generated profiles from the two datasets can,
thus, be combined to describe both datasets together. The newly proposed and
merged/combined profile set covers a wide range of hearing deficits and extends
the range of deficits to the APs of profile set A, which are described in detail
in Saak et al. (2022). Both sensorineural and conductive/mixed hearing losses
(APs 3, 6, and 7) are covered within the profiles. Integrating the two datasets
(A and B) has extended the range of hearing deficits contained in the profiles
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as compared to the profile set A. This is evident from the new profiles with
higher SRTs (Figure 3.6, APs 1-3) covering patients with more severe hearing
deficits. The APs now compactly describe varying hearing deficits patterns.
AP 1 and 3, for instance, vary with respect to the impairments across included
measures. AP 1 has a worse SRT score, but scores closer to the normal hearing
reference for ACALOS and Audiogram features compared to AP 3. This can
be explained by the larger ABG present in AP 3. The general prevalence of an
asymmetry and an ABG in the APs highlights the importance of including these
patient types in further research. For AP 5 we can observe a typical worsening
of hearing deficits with higher frequencies. More specifically, we observe a more
pronounced reduction in the dynamic range at higher frequencies (1_kHz diff vs.
4_kHz diff) compared to lower frequencies, which can aid in better speech in-
telligibility, as compared to a uniformly reduced dynamic range observed in AP 1.

The similarity score develops plausibly in a continuous way across merging
iterations and features can be identified that drive the AP merges. In that way
the merging procedure allows to plausibly combine, compare, and characterize
the content of two datasets containing common features.

The newly proposed profile set contains information from the two profile sets
(A & B). The previously generated 13 APs (profile set A) are also represented
in the dataset B. They are both merged with profiles from dataset B, and with
profiles from dataset A. That means, the profile set A is now represented by
fewer and coarser profiles, while additional profiles with more severe hearing
deficits were added to the new proposed profile set (RQ1.2). This behavior
can be explained by the continuous merges leading to a coarser profile sep-
aration, more severe cases being present in the dataset B, and that profiles
from profile set A were more similar to themselves than profiles from profile set B.

The profiles, further, are flexible regarding their precise number of profiles
following the merging. Depending on the use-case of the profiles, a more detailed
or a coarser separation between profiles may be needed. Generally, selecting a
cutoff in the later merging steps will lead to fewer profiles with broader ranges
and a coarser separation. Conversely, selecting a cutoff in the earlier merging
stages will lead to a higher number of profiles and allows to investigate smaller
differences between profiles (RQ1.3). For instance, for screening purposes, a
small number of profiles may suffice in broadly estimating mild, moderate, or
severe hearing deficits. To achieve this, profiles could be merged further than
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shown in the current paper to result in fewer profiles. In contrast, a hearing
care professional may need a more detailed separation of patients to potentially
incorporate information from the profiles into the fitting procedure for hearing
aids. Researchers may need an even more detailed separation of profiles to
investigate relations and effects of certain audiological features. Here, a cutoff
could be selected based on the loss of information for the feature of interest. For
instance, if a lot of information regarding a certain feature is lost after a merge,
one might select a cutoff prior to the information loss. An example for a more
detailed profile set is shown in the Appendix (Figures S.3 and S.4).

The two datasets A and B contained a different set of features but were merged
based on common features. While we only show the common features in the
current study, the remaining features are also available, e.g., S0N90 for dataset
B. This provides the possibility of estimating conditional probabilities of feature
ranges given a respective profile, and maintains information provided by the ad-
ditional features in a descriptive manner.

3.4.3 Classification model and its applications

With the “APP” feature set, we achieve an adequate classification into the 13
combined APs. The APs could, therefore, be predicted with a combination of
audiogram, ACALOS, age, and speech test information. The majority of features
were determined important, with the most important features being the SRT, AC
PTA, ASYM, and L15 1 kHz of the ACALOS (RQ2). As no bone conduction
measures are included in this feature set, the current set of APs could also be
measured via smartphone. Classification into APs could, thus, be performed on
data collected via smartphones. For audiogram-based measures, a variety of im-
plementations already exist (Chen et al., 2021), while implemented speech tests
include, for instance, DIN tests (Van den Borre et al., 2021), word recognition
tests ((Van Zyl et al., 2018), and the matrix sentence test ((Kollmeier et al.,
2015; Saak et al., 2024). As speech tests differ, it would be necessary to consider
appropriate ways how to achieve comparability between the available speech
tests in different datasets before merging APs generated on the respective dataset.

Hearing care professionals currently measure the audiogram for hearing aid fit-
ting. Depending on the respective regulations and tests available in each country,
a speech test in quiet or noise is also used for hearing aid indication (Hoppe
and Hesse, 2017). The first-fit of a hearing aid is, however, only based on the
audiogram. Speech or loudness measurements are not considered, which appears
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to be insufficient to cover all aspects involved for compensating a hearing loss
(Kollmeier and Kiessling, 2018). This is also reflected in the features required to
classify a patient with respect to the AP found here: While to some extent the
classification into profiles also works with the “AG SRT” feature set, the benefit
of including loudness scaling shows with the performance improvement of the
“APP” feature set. Single measures (single feature group, such as, e.g., the audio-
gram), in contrast, did not perform well in classifying patients into the profiles.
This demonstrates the inability of single measures to characterize the complete
extent of hearing deficits sufficiently and shows that, in practice, a combination
of measures is needed to adequately characterize audiological patients.

3.4.4 Overall feature importance and interpretability

The feature importance of the merging procedure and the classification models
are generally comparable and appear audiologically plausible (RQ3). For both
merging and classification, the same common features were initially considered.
For merging, we performed no further feature selection. However, for the
classification models, the best performing model was selected. Consequently,
only features from the best performing model “APP” were considered from
the common feature set. This resulted in the AC PTA, SRT, and the L15 (1
kHz) of the ACALOS to be among the most important features. The most
important features, thus, cover the combination of threshold information, speech
intelligibility, and loudness perception for soft sounds at 1 kHz. Especially in the
later merging iterations (Figure 3.3B & Figure 3.4 - merging area A), the speech
intelligibility gains importance, which demonstrates the relevance of speech
information for our combined profile set. We, therefore, conclude that profiles
were merged plausibly, and the underlying procedure is explainable, as we can
observe which feature information is lost in each merging iteration and which
features are relevant. By investigating the feature importance of the merging
procedure, we can observe, for instance, that some information of loudness
scaling is lost in earlier iterations (merging area C). To capture all differences
regarding loudness scaling, an earlier cutoff could be selected.

Our feature importance results are in line with existing results that highlight
the importance of characterizing hearing deficits beyond the audiogram (Musiek
et al., 2017). While the audiogram is often seen as the gold standard for char-
acterizing hearing loss, it cannot characterize every aspect of existing deficits
(Gieseler et al., 2017; Musiek et al., 2017; Sanchez-Lopez et al., 2021; Van Esch
and Dreschler, 2015). Instead, a combination of threshold- and suprathreshold-
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based methods is needed, which are covered by audiogram, loudness scaling and
speech intelligibility in the present research. Loudness scaling provides additional
information beyond the audiogram (Kollmeier and Kiessling, 2018; Launer et al.,
1996; Oetting et al., 2016; van Beurden et al., 2021), which is confirmed by the
better performance of the classification models if ACALOS is included (“HA” vs.
“ALL” and “APP”). This effect is present even if the UCL PTA of the audiogram
is included, hence proving the benefit of ACALOS beyond the UCL measure of
the audiogram. One interesting finding is that the “AG SRT” and “SRT ACA-
LOS” classification models perform comparable on average. However, profiles
with lower SRTs (better speech intelligibility) are slightly better predicted by the
SRT in combination with loudness information, and profiles with higher SRTs
(worse speech intelligibility) are better predicted by the combination of audio-
gram information with the SRT. This trend can also be observed in Figure 3.8,
where there is a slight trend for higher importance of ACALOS in profiles with
lower SRTs as compared to profiles with higher SRTs. One potential explanation
could be that L15 from the ACALOS is related to the threshold of the audiogram,
as it measures sounds that were perceived as soft. In that way, it could partly
cover audiogram-related information and additionally cover loudness-based in-
formation. Here, we can note that especially 4 kHz diff (L35-L15, measure of
the dynamic range) is more important for profiles with lower SRTs than for pro-
files with higher SRTs. This is plausible, as it can be expected that individuals
that are close to the normal hearing reference have a higher dynamic range and
this dynamic range decreases more rapidly with increasing hearing loss for higher
frequencies. Regardless, the combination of SRT and ACALOS with audiogram-
related information remains necessary for adequate classification performance.
Hence, it appears crucial to include threshold and suprathreshold information in
characterizing hearing deficits.

3.4.5 Role of common and additional features for profile generation
and merging

The available features vary between datasets, and consequently also between
profile generation and merging steps. In the profile generation steps, common
features (see Table 3.1) and additional features are available (see descriptions
of the datasets). In the merging step, profiles can only be merged based on
common features. Merged profiles, therefore, contain integrated information
on the common features used in the merging process. Note that both datasets
employed included information on the individual audiogram, speech recognition
in noise and loudness scaling which has some impact on the resulting finding,
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that all three information areas are relevant for classifying the individual patient.
This would not have shown up if clinical datasets would have been employed
with much less suprathreshold audiological information, which is both a strength
and a potential pitfall of the current study. Additional features are not used
to merge the APs, as they are not contained within both datasets, but were
included for the generation of the profiles. The rationale behind this is that we
aimed to make the first patient grouping based on the most informed choice
using all available information - which includes the information contained in
the additional features. That means the additional features can impact the
initial grouping of the patients by allowing for finer distinctions, as compared
to profile generation based solely on the common features. To exemplify, using
only the AC PTA and the SRT would create coarser groupings and miss certain
subgroups that are revealed when including features from the ACALOS. In later
merging steps, it is then possible to obtain profile sets where the information
provided by additional features is either maintained or cancelled out by the
merging. It follows, that a certain number of common features should be
available to adequately merge profiles generated from different datasets and to
classify patients into a given profile. Given the provided feature importance
analysis, we advocate for using a combination of threshold, loudness- and speech
test information. That is because these measures were consistently estimated as
being important for both the merging and the later classification into the profile.
However, depending on the use case and data availability, profile generation and
potential later merging may also be used on an exploratory basis to learn about
the content of a dataset at hand.

Another property of the additional features is that they could be used to infer
probabilities within a given profile where data for the additional profiles is avail-
able. Here, it could be of interest to investigate whether certain feature ranges
occur more frequently in certain profiles – especially if profiles were merged with
at least one further profile containing the additional profile.

3.4.6 Towards a population-based set of combined auditory profiles

The combined profile set is the next step towards a population-based estimate
of APs. In the future, additional datasets need to be integrated to cover further
hearing deficits, as well as information from different audiological measures.
While the new set of APs does include new information, continuing to integrate
additional datasets can improve profile definitions and classification models.
Currently, one large profile (AP 8) describes most of the patients due to the
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obviously high relative frequency of this profile (corresponding to a moderate
hearing loss, potentially age-related hearing loss) in the two employed datasets.
Therefore, including additional datasets can help in better defining the remaining
profiles based on a higher, more representative number of patients. If repre-
sentative data for the whole population were included, the relative frequencies
of patients contained in different profiles would allow for a prevalence estimate
of different profiles. In addition, the current datasets mainly cover hearing
aid candidates, whereas cochlear implant candidates are rarely included. A
population-based set should, however, include all degrees of hearing deficits and
be as complete as possible.

Our AP merging approach presented in this study provides properties of a
federated learning procedure that can be used to obtain a population-based set
of APs in the future, without sharing individual patient data. The federated
learning procedure includes the steps to generate and later merge profiles. One
important property of the merging step is its ability to work with anonymized
data. This is important to integrate datasets containing sensitive clinical
data which often underly data sharing restriction (Gauthier, 2017). For these
datasets, the profile generation could occur at the sensitive data location and
only the anonymized count data would be shared. As overlapping density is
calculated for each feature separately and then averaged, it also enables shuffling
patient records for each feature to completely anonymize the patient data. This
does not impact the distributional descriptions of each feature contained in the
profiles and therefore enables integration of sensitive datasets to work towards a
population-based estimate of APs. However, to reach such a population-based
estimate, we need to continue to merge profiles generated on different datasets
until profiles converge on a final set of APs. A convergence would mean, that
no new APs are added to the existing set of APs when integrating additional
datasets. This follows the common principle of convergence in optimization
algorithms, where the optimal solution (here sets of APs) is selected when
parameters converge (Hastie et al., 2009).

The next step to obtain a population-based set of APs is, therefore, to integrate
further datasets. For this, data standards will be important. If data formats and
required meta data are standardized across institutions, barriers for integrating
datasets are reduced and could pave the way for big data analyses in the field of
audiology.
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Finally, with a sufficiently large AP set, in terms of included patients, and vary-
ing deficits, it could be interesting to investigate the feasibility of profile-based
first-fits for hearing aids. Profile-based fits have the potential to reduce the time
required to fine-tune hearing aids, by incorporating information from the audio-
gram, speech test results, and loudness scaling. Especially for the individual se-
lection of parameters for additional signal processing parameters a manufacturer-
independent profile-based recommendation would help hearing care professionals
by better individualize the first-fit parameters. Furthermore, first-fits could al-
ready include information on both thresholds and loudness loss. The benefit of
using loudness-based fitting has been shown by Kramer et al. (2020) and Oetting
et al. (2018). Since they highlight the importance of binaural broadband loud-
ness scaling, future profile generation and evaluation should also include binaural
broadband categorical loudness scaling.

3.5 Conclusions

The current study demonstrates the feasibility of integrating datasets using the
proposed profile generation and merging procedure, which qualifies as a federated
learning approach for a combined characterization of the content of audiological
datasets. Combining the two datasets yields a new combined set of APs, which
consists of 13 APs. Profiles can generally be well characterized based on the
three dimensions: audiogram-, speech test-, and loudness scaling features.

We further enable the classification of patients into the APs using random
forest classification models. The best performing classification models include a
combination of these three measures (audiogram, speech test, loudness scaling),
excluding the bone-conduction audiogram. While classification models tailored
for hearing care professionals, which use only the audiogram and a speech test,
are also available, their performance can be improved if loudness scaling is
included.

Audiogram-, speech test-, and loudness scaling-based measures provide com-
plementary information that aid in characterizing patients and are consistently
determined as important for both merging and classification. Even though
this finding is based on the composition of the two underlying datasets that
both include these measures, we nevertheless advocate for the inclusion of these
measures for detailed patient characterization.

Towards a population-based set of APs, it is necessary to incorporate additional
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datasets using the proposed method. These datasets should include a wider range
of audiological subpopulations, such as cochlear implant users, thereby extend-
ing the APs contained. The privacy-preserving approach, employing federated
learning, which involves the potential to share only data distributions from lo-
cally generated profiles, facilitates the integration of datasets that are subject to
privacy restrictions.
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S.1 Supplementary Materials

Table S.1: Distribution of common and additional features (prior to imputation) for
dataset A and B. Mean, mean, and standard deviation (SD) are shown. The hyphen
indicates that the features was not available for the respective dataset.



99

Table S.2: Number of patients in each category for Otoscopy and Valsalva (better
and worse ear). Missing data was not imputed and therefore sample sizes may vary.

Table S.3: Number of patients in each category for Tympanogram (better and worse
ear). Missing data was not imputed and therefore sample sizes may vary.

Table S.4: Number of patients in each Bisgaard class. Missing data was not imputed
and therefore sample size may vary.
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Figure S.1: Polar Profile plots for the 13 auditory profiles.
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Figure S.2: Distribution of profiles that were merged to result in the larger profile
set with 25 auditory profiles. A corresponds to dataset A and presents the previous 13
profiles detailed in (1). B refers to the new dataset B and the 31 profiles that were
defined as optimal by the profile generation pipeline. The x-axis depicts the sample
size for each sub-profile, as well as the proposed 25 profiles.
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Figure S.3: Profile distribution for the larger profile set with 25 Auditory Profiles
across the speech, anamnesis, audiogram, and loudness scaling domain. Profile ranges
are depicted for all features and are ordered with respect to the increasing median
SRT.

Figure S.4: Polar Profile plots for the 25 auditory profiles
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Abstract

Smartphone-based self-testing could facilitate large-scale data collection and
remote diagnostics. For this purpose, the matrix sentence test (MST) is an
ideal candidate due to its repeatability and accuracy. In clinical practice,
the MST requires professional audiological equipment and supervision, which
is infeasible for smartphone-based self-testing. Therefore, it is crucial to
investigate the feasibility of self-administering the MST on smartphones, in-
cluding the development of an appropriate user interface for the small screen size.

We compared the traditional closed matrix user interface (10x5 matrix) to
three alternative, newly-developed interfaces (slide, type, wheel) regarding SRT
consistency, user preference, and completion time. We included 15 younger
normal hearing and 14 older hearing-impaired participants in our study.

The slide interface is most suitable for mobile implementation, providing
consistent and fast SRTs and enabling all participants to perform the tasks
effectively. While the traditional matrix interface works well for most partici-
pants, some participants experienced difficulties due to its small size on the screen.

We propose the newly-introduced slide interface as a plausible alternative for
smartphone screens. This might be more attractive for elderly patients that
may exhibit more challenges with dexterity and vision than our test subjects
employed here.

Keywords: Speech test, matrix sentence test, mobile audiology, mobile self-
testing, user interfaces

4.1 Introduction

Smartphones can facilitate remote data collection and diagnostics and can
therefore enable the collection of large-scale datasets. Collecting large datasets
to extract information is highly relevant to investigate the complex interde-
pendencies between genetic, medical, environmental, and lifestyle aspects for
varying diseases (Allen et al., 2012). In this context, it is important to include
speech testing, as understanding speech is a crucial part of every-day life and
needed for effective communication with others (World Health Organization,
2021). The matrix sentence test (MST) provides the possibility to accurately
assess speech intelligibility with a high precision of ± 1 dB SNR (Wagener,
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2004). The MST is used in research, and is used in clinical contexts in several
countries, such as for hearing aid or cochlear implant benefit assessment. It
measures speech intelligibility in noise using semantically unpredictable 5-word
sentences, such as “Doris brought nineteen large sofas”. As a result, it provides
an ecologically more relevant estimate of an individual’s hearing challenges in
real life than a speech test in quiet, while being less dependent on a quiet test
environment and an exact calibration of the test equipment (Kollmeier et al.,
2015). Moreover, the (unaided) test outcomes are still grossly related to the
average audiogram (Wardenga et al., 2018). A smartphone implementation,
however, is currently missing to also allow for individual self-testing in a remote
setting, allowing precise characterisation of speech intelligibility deficits and
the assessment of hearing device benefit. The MST is an ideal candidate for
remote diagnostics, as it is a repeatable speech test available in 20 languages
covering 60% of the world’s population (Hörzentrum Oldenburg gGmbH, n.d.;
Kollmeier et al., 2015). If listeners conduct the MST by themselves (without
experimenter), the current user interface (UI) of the MST presents all 50 words
at once to the user in form of a 10 x 5 matrix. This may prove problematic for
a smartphone implementation, given the restricted display size of smartphones.
Current guidelines point out the necessity to simplify the user interface (UI)
design and increase the size and distance between interactive controls for
the elderly (Gomez-Hernandez et al., 2023). This is especially relevant, as
the majority of potential users of such a mobile speech test implementation
are above 65 years and could be affected by age-dependent declines in visual
acuity, motor skills, and cognitive abilities, which could hinder the effective in-
teraction with the UI (Farage et al., 2012; Salman et al., 2023; Wong et al., 2010).

First, a decline in visual acuity can lead to difficulties with detecting and
discriminating details (Farage et al., 2012) on mobile interfaces/small screens.
Second, age-related decline of fine motor control reduces the precision of arm,
hand, and finger movements (Bowden and McNulty, 2013; Saunders et al., 2021)
and in turn, also increase the required time for task completion (Seidler et al.,
2010). Presenting all 50 words of the MST could, therefore, be problematic on
the small screen of smartphones, as small fonts might pose a problem, buttons,
and button spacing might be too small (Hwangbo et al., 2013; Lee and Kuo,
2007), and too much information might be presented at once (Wong et al., 2010).
Third, an age-related decline in cognitive abilities can result in reduced working
memory capacities, and processing speed, among others (Park and Schwarz,
2000). Reduced working memory capacities could affect the ability to remember
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presented sentences, in that way adversely affecting task performance; reduced
processing speeds could more generally increase completion time and perceived
task demands (Borella et al., 2011; Murman, 2015).

For a successful smartphone-based implementation of the MST, it is therefore
crucial to employ an interface that users can perform the tasks with in general,
and also do so efficiently and satisfactorily (Lewis, 2014). In addition, the
interface needs to consider potential difficulties that elderly may experience with
the application. In other words, a potential interface for the MST needs to
be usable by the elderly target group. Unfortunately, older users are often not
considered in the development of technology applications (Chun and Patterson,
2012). As a result, usability for the elderly is often not optimal, fostering
technological anxiety and inhibiting its uptake (Frishammar et al., 2023).

To reduce the cognitive complexity, the simplified MST could be used. The
simplified MST is a reduced version of the MST, only contains 3-word sentences,
e.g. “seven old windows”, and is currently available in 5 languages (gGmbH, nd;
Wagener K, 2005). The simplified MST was first intended to be used with chil-
dren, but later turned out to be useful for older patients as well (Buschermöhle
et al., 2016). It could prove to be a useful speech test for smartphones, given
that it also reduces the amount of information that needs to be displayed on the
smartphone, and the number of physical interactions with the interface.

Next to fulfilling usability requirements for the elderly, an application needs to
be usable within its environment. If laboratory or advanced audio equipment
are required, most individuals will not have easy access to remote testing. In
contrast, readily available equipment may increase the usage. The feasibility
of audiometric screening via smartphones with inexpensive headphones has
been shown (Hussein et al., 2016; Swanepoel et al., 2014). Likewise, the
Digits-in-Noise (DIN) test has proven successful as a screening test via telephone
and the internet (Smits et al., 2004; Zokoll et al., 2012). The speech material
consists of spoken numbers, which can be selected from a telephone interface,
and the DIN is fast and easy to conduct. It is therefore well suited for hearing
screening and is also measured as part of the large-scale biomedical database
of the UK Biobank (Sudlow et al., 2015). However, these tools have primarily
focused on screening whereas the MST is focused on diagnostic evaluations. The
MST takes longer to conduct in order to achieve its high reliability but requires
training in order to compensate for the training effect which is measurable due
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to the high efficiency of the test (Kollmeier et al., 2015). The MST also offers
an advantage in that it represents every-day-language and its speech spectrum
in the form of syntactically correct sentences. The MST is currently used for
clinical evaluations and the fitting and benefit assessment of hearing aids and
cochlear implants. Consequently, a mobile version of the MST could facilitate
comprehensive speech recognition assessments in remote data collection and
allow for the comparability with clinical applications.

Several implementations already exist for measuring the German MST (also
called Oldenburg Sentence Test) outside the lab. Ooster et al. (2020) imple-
mented a system for measuring the German MST via Amazon Alexa using
automatic speech recognition (ASR). Likewise, Bruns et al. (2022) developed
a voice-over-IP system for measuring the German MST via telephone, also
using an ASR system. However, both implementations use technology without
a graphical UI, which represents the open-set version of the MST that yields
in most languages significantly different results from the clinically employed
closed-set version where all word options are displayed to the user (Kollmeier
et al., 2015), thus limiting the comparability to clinical data. Moreover, a mobile
user interface with the closed version of the MST could further ease the training
with the speech material as it enables the users to visually familiarise themselves
with the speech material.

Implementing the MST on a smartphone and providing an appropriate graphical
UI is, therefore, highly relevant to facilitate remote data collection. It is, how-
ever, not yet known to what extent elderly hearing-impaired (oHI) individuals
can conduct the MST and simplified MST accurately on a smartphone, given
the combination of a small screen size, and potential age-dependent declines
in cognitive ability, visual acuity, and motor skills. With the present study,
therefore, we aim at (1) exploring the general feasibility of measuring the MST
on a smartphone. For that purpose, we investigate the performance of younger
normal hearing (yNH) individuals on smartphone implementations of both the
German MST and the German simplified MST. We hypothesise that the test
will be feasible with a smartphone and household in-ear headphones. We further
aim at (2) proposing a suitable interface that complies with design needs of
elderly. To that end, we compare the yNH and the oHI group with respect to
usability aspects, namely, their performance consistency, completion time and
user preference, across four suggested potential interfaces for the MST, and
the typical (matrix) interface of the simplified MST. The four interfaces differ
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regarding layout and response options. Ultimately, we (3) propose an interface
for the MST that both user groups can easily cope with, is time efficient,
and provides accurate speech recognition threshold (SRT) results. Hence, our
research should allow us to answer the following research questions:

RQ1: Are SRTs obtained for the MST and simplified MST comparable between
(calibrated) smartphone measurements and controlled, typical lab measurements,
for both yNH and oHI participants?

RQ2a: Is there a group effect (age and hearing loss; yNH vs.oHI) on SRT
consistency, completion time, and user preference?

RQ2b: If a group effect is present, is it specific to certain interfaces?

RQ3: Which MST interface is most suitable for both oHI and yNH in terms of
SRT consistency, time efficiency, and user preference?

4.2 Materials and methods

4.2.1 Participants

We recruited 32 participants for our study: one young, normal-hearing (yNH)
group, and one older, hearing-impaired (oHI) group with mild to moderate hear-
ing loss. The yNH group was recruited via posts at the University website, while
participants for the oHI group were recruited via the Hörzentrum Oldenburg
gGmbH. The sample size was chosen such that an SRT difference of 1 dB SNR
can be statistically detected with a power of 80%. Calculations were performed
using the simr package in R (Green and MacLeod, 2016). All participants gave
written informed consent and were paid for their participation in the study. Inclu-
sion criteria for the yNH group were a pure tone average (PTA, hearing thresholds
averaged over for 500, 1000, 2000, and 4000 Hz) < 20 dB HL and age < 50 years;
inclusion criteria for the oHI group were a symmetric hearing loss (PTA difference
< 10 dB) with a PTA > 20 dB HL, and age ≥ 50 years. Fifteen participants
qualified for the yNH group (mean age = 23.67, SD = 2.32, female = 66.7%) and
14 qualified for the oHI group (mean age = 73.77, SD = 6.73, female = 53.8%).
The remaining three participants (oHI) were excluded, as they were not able to
manipulate a smartphone sufficiently with their fingers, but instead required a
pen. In the yNH group every participant owned a smartphone. 73.33% used it
almost continuously during the day; 26.67% used it once or more during the day.
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In contrast, for the oHI Group 10% used it almost continuously during the day,
and the remaining 90% used it once or more during the day. Figure 4.1 depicts
the audiogram ranges for the yNH and oHI groups.

Figure 4.1: Audiogram ranges for the yNH and oHI groups for their respective
better ear. Means are shown as well as ranges corresponding to one standard
deviation for yNH and oHI.

4.2.2 Research design

We designed a crossover study to examine the overall feasibility of measuring
both the MST (Wagener, 2004) and simplified MST (Wagener K, 2005) on a
smartphone, and to investigate which interface is best for measuring the MST.
The measurement language was German. The MST consists of a 10 x 5 matrix in
which sentences are built by presenting word combinations in a fixed name-verb-
number-adjective-object syntactical structure. For instance, “Peter has seven old
windows”. The simplified MST is a reduced version of the MST, consisting of
a 10 x 3 matrix (number-adjective-object). Each participant conducted several
measurement conditions of the MST and the simplified MST in both a refer-
ence laboratory control session and in the smartphone test session. The order
of test and control session, and the order of the measurement conditions were
randomised. All tests were conducted in a soundproof-booth and both sessions
used calibrated setups to control the levels and to allow comparing the influence
of equipment and UIs. Ethical approval was obtained from the Research Ethical
Committee of the Universität Oldenburg [Drs. 71/2015].

4.2.2.1 Laboratory control session The laboratory control session was
conducted using the software Oldenburg Measurement Application (OMA) by
the Hörzentrum Oldenburg gGmbH with HDA200 headphones. By using this
software, the exact same measurements are performed as in clinical practice.
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Both the MST and simplified MST in OMA were measured in an open version
to mimic the standard clinical procedure. That means, participants repeated the
words they understood to the experimenter (open version), instead of selecting
the respective words from a matrix displayed on a screen (closed version). OMA
uses the adaptive procedure by Brand and Kollmeier (2002) to control levels of
speech and noise. Calibration was performed using the test-specific noise of the
German MST and an artificial ear.

4.2.2.2 Smartphone test session We developed a web-based implementa-
tion to measure both the matrix and the simplified matrix test via an inter-
face optimised for smartphones. The underlying measurement procedures mimic
the procedure used by OMA. The backend of the application was build using
Python Flask, Octave, and Bash. Python Flask is a common framework for
web-development. Octave was chosen for implementing the sentence tests to
reuse available measurement scripts for the MST (Schädler, 2021). The com-
munication between Python Flask and Octave was then enabled via the shell
language Bash. The frontend and the interfaces were built using the common
mixture of JavaScript, HTML, and CSS. A Linux laptop served as a server to
host the application. The website was then opened via a browser on a OnePlus
Nord N10 (Android operating system) smartphone with inexpensive in-ear Head-
phones (Sony MDR-XB50AP). For data security reasons, the current website was
hosted within a secure network (eduroam). The adaptive procedure follows the
adaptive procedure by Brand and Kollmeier (2002) with fixed decreasing step
sizes (± 10, 6, 5, 3, 2, 1, 1.5, 0.5). The smartphone and in-ear headphones were
calibrated across frequencies (125–10,000 Hz) using the KEMAR artificial head.
The resulting noise level was also checked to match the control session.

4.2.2.3 Interfaces for the MST & simplified MST To investigate how to
best present the MST on a smartphone, we developed and compared four poten-
tial interfaces (Figure 4.2). The matrix interface served as a reference interface
and corresponds to the traditional closed interface of the MST. Here, the complete
matrix is displayed at once. The traditional matrix interface, however, does not
comply with design guidelines (Gomez-Hernandez et al., 2023) when implemented
on the small screen of a smartphone. Hence, three alternative interfaces were de-
veloped. The slide interface displays the columns of the matrix sequentially. The
next column is presented as soon as a word is selected, which makes the interface
faster. The buttons and the font are larger than with the matrix interface, but
the words have to be provided in the given order (name-verb-number-adjective-
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objective). The type interface requires users to type in the words they understood
in any order. Suggestions of words from the complete 50 words of the matrix are
provided based on the already typed input. As such, this interface serves as a
mixture between an open and a closed version of a MST. The wheel interface dis-
plays the columns as wheels that can be scrolled horizontally. All words can be
selected in any given order and fonts and buttons are larger than with the matrix
interface. The larger font and button sizes of the alternative interfaces aim to
reduce the potential impact of visual and fine motor declines. Further, the wheel
and type interface allow users to simultaneously see all selected words, whereas
the slide interface immediately shows the next column. The type and wheel in-
terface further assess different input modalities, namely horizontal scrolling vs.
typing. The order of presented interfaces was randomised. The simplified MST
was measured only with the matrix interface, as we assumed that the screen size
of smartphones is sufficient to display a 3 x 7 matrix of words.

Figure 4.2: Matrix Sentence Test (MST) interfaces. The four interfaces under
investigation. “Matrix” corresponds to the traditional closed MST UI. “Slide” presents
the columns of the matrix sequentially. “Type” asks users to type in the words, while
providing suggestions of words from the matrix. “Wheel” requires users to scroll the
words horizontally.

4.2.2.4 MST and simplified MST conditions The MST was measured
with ICRA1 (S0N0, S0N90 binaural & monaural) and ICRA5 noises, i.e. one
stationary and one fluctuating noise signal (Dreschler et al., 2001). During the
measurement, the noise level was fixed at 65 dB SPL and the speech level was
adapted starting from an SNR of 0 dB. The SRT50 was measured, i.e. the
threshold where 50% of the words are correctly understood. In the smartphone
application, ICRA1 was measured across interfaces. ICRA1 S0N90 binaural &
monaural, and ICRA5 were only measured with the slide interfaces to reduce
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testing time. We chose the slide interface for this, as we expected all participants
to be able to conduct the measurements with this interface, whereas the small
fonts and buttons of the matrix interface could prove difficult for the oHI group.
For the spatial conditions (S0N90 binaural & monaural) the noise direction (90◦

from left or right) was presented to the respective better ear according to PTA,
even though differences between ears were small as participants were required to
have asymmetrical hearing loss. For the monaural condition was only measured
with the better ear. Binaural measures were included as they provide more re-
alistic testing situations. They provide relevant information regarding binaural
and spatial hearing that cannot be captured with the collocated S0N0 condition
(Pastusiak et al., 2019). The simplified MST was also measured with ICRA1
and ICRA5 in S0N0. The MST test list consisted of 20 sentences, whereas the
simplified MST was measured with 14 sentences. For a tabular overview of all
conditions see column “Condition” of Table 4.2.

4.2.2.5 Questionnaire data Within the smartphone application, partici-
pants answered several short questions regarding age, gender, and general smart-
phone usage. In addition, users could provide open comments regarding the
different interfaces. Finally, after completion of both the laboratory control and
smartphone test sessions, participants were asked to rank the interfaces from
highest to lowest preference, and could provide verbal comments regarding the
different interfaces, which were noted by the experimenter.

4.2.3 Procedure

First, the pure-tone audiogram (500, 1000, 2000, 4000 Hz) was measured with
OMA to control for the correct group allocation (yNH, oHI). Second, two train-
ing runs were conducted with the MST to counter potential training effects. The
training lists were measured with the closed OMA version to familiarise the par-
ticipants with the speech material. The first list was measured in quiet, the
second list in the collocated S0N0 condition with test-specific noise (65 dB SPL).
Next, participants were randomly allocated to either start with the laboratory
control session (LAB), or with the smartphone test session (WEB). Within both
sessions, the different conditions were measured in random order. The only excep-
tion was that the S0N0 ICRA1 slide condition was always measured prior to the
remaining slide conditions. This was to ensure that the first encounter with each
interface was measured in the same noise and spatial condition. As a final step,
participants were asked to rank the interface according to their preference. They
also could provide verbal comments to the experimenter regarding the interfaces.
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4.2.4 Analyses

4.2.4.1 SRT consistency To test our hypothesis (RQ1) that both yNH and
oHI can self-conduct the matrix and simplified matrix test, we compared paired
SRT scores of participants for the smartphone test session to the laboratory
control session. For this, we calculated both the root mean square error (RMSE)
and bias for the different interface conditions (matrix, slide, type, wheel), spatial
conditions (S0N90 monaural & binaural), and noise (ICRA1, ICRA5) conditions.
The RMSE describes the general error between the WEB and LAB results,
whereas the bias indicates whether a trend towards over- or underestimation of
the SRTs exists (positive and negative bias, respectively). A high positive bias,
for instance, could reveal a general trend towards overestimating SRTs with a
specific interface. For the interfaces, we further tested for significant differences
to the laboratory control session (p<0.05). To determine which interface is best
in terms of SRT consistency (RQ2a), we tested for significant differences of
the interfaces compared to the control condition across the two groups (yNH,
oHI). To assess potential interface effects on SRT consistency, we further tested
for interaction effects. For this, we used a linear mixed model nested within
participants, with the following formula:

SRT = intercept(LAB) + UI +GROUP + UI ∗GROUP + (1|Participant)

Where SRT is the response variable, intercept refers to the control condition, UI
refers to the specific user interface (matrix, slide, wheel, type), GROUP refers to
either the yNH or the oHI group, UI*GROUP tests for an interaction effect, and
(1|Participant) refers to the design of the model being nested within subjects.

4.2.4.2 Completion time We analysed the completion time of the four in-
terfaces across the yNH and oHI groups via boxplots. This was done to find out
which interface is fastest (RQ2b). We further tested for significant differences
in completion time across interfaces, separately for both groups, and for general
differences between yNH and oHI, using the paired Wilcoxon signed-rank test.

4.2.4.3 User preferences To evaluate user preferences, we analysed the pro-
vided rankings of the participants. To that end, we calculated the preference
ratios for the interfaces to determine the overall preferred interface. That means,
we calculated how often (in percent) a given interface was ranked higher than
each of the remaining interfaces, for both the yNH and oHI group. As a result,
we could compare pairwise preference differences between the two groups for each
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interface. Next, we analysed the verbal or written comment data using concep-
tional concept analysis (Hsieh and Shannon, 2005). For each interface, written
comments obtained by the app and verbal comments of the participants were
combined. They were then categorised into different concepts in an inductive
manner. This means, concepts were generated during the coding, and updated
if new concepts were detected in the comments. To ensure all contained con-
cepts were covered, this process was reiterated several times. After a final set of
concepts was determined, their occurrence across interfaces was counted. Con-
cept analysis was performed in German, as participants provided their comments
also in German. The concepts and examples were then translated to English
via DeepL for an unbiased and standardised translation (see Table 4.3 for some
examples and Supplementary Table S.1 for all concepts with explanations).

4.3 Results

4.3.1 SRT consistency

4.3.1.1 MST interfaces Figure 4.3 depicts the comparison of speech
recognition thresholds (SRT) for the laboratory control session (LAB) and the
smartphone test session (WEB). The yNH group was able to accurately measure
the MST with a smartphone, as well as with all interfaces. The differences of
the interfaces to the control session are not significant (p > 0.05, see Table 4.1)
and the RMSE are around the test-retest error of 1 dB. For the type and wheel
interfaces, the SRTs are slightly more biased towards higher SRTs than for the
matrix (lowest) and the slide interface (Table 4.2). That means the wheel and
type interfaces show a trend to overestimate SRTs.

The oHI group had the highest SRT consistency with the matrix interface, as
indicated by (1) the low RMSE and bias scores (Table 4.2), and (2), the UI
coefficient of the linear mixed model (Table 4.1). However, we excluded the
visible outlier of the matrix interface (SRT = 5/-5 dB SNR) from the statistical
analyses, as it would have strongly biased the analyses. This participant
highlights that while most users would achieve accurate SRT scores with the
matrix interface, some may not be capable of performing speech-in-noise tests on
a smartphone with the matrix interface. A mobile implementation suitable for
MST measurements should, however, be robust enough to avoid such outliers.
For the other interfaces RMSE scores are higher, but also no extreme outliers are
found. The differences between wheel and slide are marginal. While the wheel
interface has slightly lower RMSE scores, it also results in slightly higher bias
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scores and UI coefficients. The type interface consistently had the highest SRT
elevation, as evident from Figure 4.3, the RMSE results, and biases.

Overall, the matrix interface is most accurate for both the yNH and oHI, with
the exception of the outlier. We can observe an effect of the oHI group on the
performance with the different interfaces. The lowest interface-specific effects can
be observed with the wheel interface, indicating that the wheel interface was most
stable across the two groups (yNH and oHI).

Figure 4.3: Comparison between SRTs obtained with the smartphone web-based
interface (WEB, ordinate) vs. the reference laboratory implementation using OMA
(LAB, abscissa). (A) SRT results for the younger normal hearing (yNH) group
(circles) and the older hearing impaired (oHI) group (triangles) across all four
interfaces for ICRA1 in the S0N0 session. The dashed line corresponds to a 1 dB
deviation from the line of perfect agreement. Data points within the dashed lines are
within the expected test-retest error. (B) SRT results for the yNH group (zoom from
small box in A) (C) SRT results for the oHI group (zoom from the large box in A).

4.3.1.2 MST spatial conditions and fluctuating noise (slide interface)
The ICRA1 S0N90 binaural condition resulted in adequate test-retest values for
the yNH group, while the SRTs with the ICRA1 S0N90 monaural condition yield
an underestimation for the smartphone web-based version (Figure 4.4), most
likely due to interaural crosstalk effects (see discussion). For the oHI group (N =
11 due to missing data) a slight bias can be observed in both conditions (see Table
4.2), similar to the bias observed with ICRA1 S0N0, but adequate consistencies
between smartphone and laboratory UI are achieved. For the fluctuating noise
condition ICRA5, we can, again, observe a bias similar to other slide interface
conditions. The bias and RMSE are higher for the ICRA5 condition. Since
the expected test-retest variability with ICRA5 is generally larger (2 dB for NH
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Table 4.1: Main and interaction effects of two linear mixed models for UI on SRT
score with either yNH or oHI as the reference category for the group
SRT = intercept(LAB) + UI +GROUP + UI ∗GROUP + (1|Participant).
Interaction effects are only shown for the yNH reference model; for the oHI reference
model the direction of the UI coefficients would be reversed. Laboratory control
session (LAB) serves as the control (intercept). UI and group (yNH/oHI) are fixed
effects nested within subjects. Bold values indicate that no significant difference to the
intercept exists.

Coefficients Estimate Conf. Interval P-value

yNH

intercept LAB -6.967 (-7.515,-6.418) 0.0000

UI

UImatrix -0.350 (-0.899,0.199) 0.2273
UIslide -0.050 (-0.796,0.696) 0.8626
UItype 0.050 (-0.499,0.599) 0.8626
UIwheel 0.300 (-0.249,0.849) 0.3003

oHI

intercept LAB -5.977 (-6.612,-5.201) 0.0000

UI

UImatrix 1.015 (0.885,2.429) 0.0014
UIslide 1.419 (0.617,2.161) 0.0000
UItype 2.746 (1.992,3.536) 0.0000
UIwheel 1.419 (0.689,2.233) 0.0005

GROUP oHI 0.990 (0.184,1.795) 0.0264

UI*GROUP

matrix*oHI 1.365 (0.560,2.171) 0.0017
slide*oHI 1.469 (0.664,2.275) 0.0007
type*oHI 2.696 (1.890,3.502) 0.0000
wheel*oHI 1.119 (0.314,1.925) 0.0094

listeners, (Wagener, 2004)), this effect is in line with expectations.

4.3.1.3 Simplified MST Due to the higher test-retest variability of the sim-
plified MST (Wagener K, 2005), the comparison between smartphone UI vs. lab-
oratory control UI session is expected to result in larger RMSE values than for the
MST. Since the S0N0 ICRA5 condition was only measured using the slide inter-
face, only the results for the respective slide interface conditions are displayed in
Figure 4.5 for the simplified MST and MST. For both the yNH and oHI groups
the simplified MST resulted in higher RMSE (as expected) and bias than the
MST with the matrix interface (Table 4.2). For ICRA5, we need to compare the
simplified MST matrix interface to the MST slide interface, as ICRA5 was only
measured with the slide interface for the MST. We again observe higher RMSE
and bias values for simplified MST with the yNH group. In contrast, for the oHI
group, we might observe an interface effect, as RMSE and bias scores are slightly
lower for simplified MST. However, this may be caused by the comparison of the
slide and matrix interface, where the slide interface generally resulted in higher
scores.
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Figure 4.4: SRT results for slide condition. Dashed lines indicate expected
test-retest variability (1 dB for ICRA1; 2 dB for ICRA5 (NH)).

Figure 4.5: SRT results for the simplified MST and comparison to the MST slide
interface for both the smartphone test session and the laboratory control session.
Dashed lines indicate test-retest variability (1 dB for ICRA1; 2 dB for ICRA5).

4.3.2 Completion time

Figure 4.6 compares the absolute completion times for the different MST in-
terfaces, as well as the simplified MST to infer completion times for practical
implementation. The fastest test was the simplified MST. This was expected,
as the simplified MST is a reduced version of the MST with only three words
per sentence and 14 sentences in a test list. The matrix interface ranks second
but is only marginally faster than the slide interface and this difference is not
statistically significant. The type interface took the longest time for both groups.
The yNH group was generally faster in completing the test with all interfaces, as
compared to the oHI group (p < 0.01). This difference appears stable across all
interfaces but the type interface. With the type interface, there appears to be
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Table 4.2: Condition overview, RMSE and bias for smartphone (Web SRT) vs.
laboratory tests (LAB SRT) for all conditions across all participants, and separately
for the yNH and oHI group.

Condition RMSE Bias

Test Spatial
condition Noise Interface All yNH oHI All yNH oHI

Matrix
sentence

test
(MST)

S0N0 ICRA1

matrix 1.07 0.68 1.335 0.28 -0.35 0.95
slide 1.54 1.01 1.96 0.64 -0.05 1.39
type 2.24 0.91 3.08 1.36 0.05 2.76
wheel 1.43 0.77 1.89 0.86 0.30 1.46

ICRA5 slide 3.48 3.18 3.78 1.79 0.94 2.98
S0N90
binaural ICRA1 slide 1.57 1.38 1.74 0.20 -0.49 0.52

S0N90
monaural ICRA1 slide 2.07 2.60 1.28 -0.63 -2.34 0.81

Simplified
MST S0N0 ICRA1 simplified

MST 2.02 2.05 2.00 -0.14 -0.77 1.12

ICRA5 simplified
MST 3.35 3.36 3.33 1.66 1.44 1.49

an interaction effect between the interface and the oHI group. That is, the oHI
group took much longer in completing the test with this interface as compared
to the remaining interfaces.

4.3.3 Interface ranking

Figure 4.7 compares the interface rankings between oHI and yNH as expressed
in the ratio how often an interface (color) was preferred over another interface
(shape). The line indicates perfect agreement between yNH and oHI with respect
to the ranking of a given interface. Symbols in the upper triangle indicate that
oHI preferred this interface over another interface to a greater extent than yNH.
Higher values of the preference ratio indicate a higher percentage of cases where
the respective interface was preferred over the other interfaces. Overall, between
yNH and oHI only slight preference differences exist. The results indicate that
on average the matrix interface (red symbols) was mostly preferred by both yNH
and oHI, especially since the matrix UI was preferred in the direct comparison
between slide and matrix UI by both groups. However, the matrix interface
was generally more strongly preferred by the yNH. This becomes most visible
by the matrix-wheel comparison (red square). The yNH group preferred the
matrix interface over the wheel interface to a greater extent (red square). The
resulting higher preference of the oHI for the wheel interface also transfers to
the comparison with the type interface. Here, we can observe a slight preference
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Figure 4.6: Completion time of the MST (20 sentences) measured with ICRA1 S0N0
for each interface, as well as simplified MST (14 sentences), separate for yNH and oHI
individuals. Statistically significant differences are indicated by an asterisk
(∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001) for both groups (yNH | oHI) and
nonsignificant differences by ns.

of the oHI for the wheel interface, and for the yNH for the type interface (blue
circle, turquoise square).

The second highest ranking was achieved by the slide interface (green symbols).
In comparison to the matrix interface, it is only slightly less preferred (green
triangle, red diamond) while the yNH group showed a stronger relative preference
for the matrix UI than the OHI group. Further, the slide UI consistently ranked
higher than the type and wheel interface. Noteworthy is that for the oHI group
the slide interface had a higher ranking than the matrix interface in comparison
to the wheel interface (green square vs. red square).

4.3.4 Interface preferences

To investigate how participants perceived the different UIs of the MST on a
smartphone, we analyzed the comments participants provided using concept
analysis. Figure 4.8 visualizes the frequency of reported concepts across interfaces
for both yNH and oHI. Examples for concepts, their explanation, and source
comments can be found in Table 4.3. For a complete description of all concepts
see Supplementary Table S.1. The results are clustered to highlight the relevant
concepts across interfaces. The concepts are, thus, in different order for yNH
and oHI.
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Figure 4.7: yNH vs. oHI preference ratios of the different interfaces. The ratio
indicates how often an interface (color) was preferred over another interface (shape).

The analysis of the written and verbal comments of the participants revealed
only slight differences across the two groups (yNH, oHI). The yNH provided
more comments (mean = 7.13) than the oHI group (3.64). However, every
participant provided at least one comment.

The type interface mainly received negative comments. For instance, it was
reported by both yNH and oHI that the interface was cumbersome and difficult
to handle. Similarly to the interface ranking, the wheel interface received rather
negative comments by the yNH. The oHI noted that the wheel interface had a
good size and was easy to use, but also that it was rather slow. The yNH also
noted that it was slow, and indicated that it was annoying and cumbersome,
among others. The oHI further noted that that they forgot the words while
providing their response during a trial with the type and wheel interface.

The yNH group rated the matrix interface mostly positive. They perceived it
as clear and easy, and noted positively that corrections were possible with this
interface. For the slide interface, they instead negatively highlighted that no cor-
rection was possible, and errors occurred due to choosing a non-intended button.
The oHI, in contrast, noted that the slide interface was easy and had good sizing.
Though to a smaller amount, the oHI also pointed out that no correction was
possible. In contrast to the slide interface, the oHI commented on the small size
of the matrix interface.
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Figure 4.8: Prevalence of different concepts in the written and verbal comments of
the participants. Concepts are clustered for visualization purposes. (A) displays the
results for the yNH group; (B) the results for the oHI group.

4.4 Discussion

The present study proved the feasibility of measuring the German Matrix sen-
tence test (MST) using a smartphone with household in-ear headphones for both
yNH and oHI. We tested appropriate interfaces for a mobile implementation of
the MST and compared them with respect to the following usability aspects:
SRT consistency, required time, and user preferences. Finally, we discuss group
effects (yNH vs. oHI) on interface usability and propose an interface for a mobile
implementation.

4.4.1 Group effects on the performance of the different interfaces

4.4.1.1 General feasibility of smartphone-based MST measurements
The different interfaces resulted in different SRTs, completion times, and user
preferences. The yNH results confirm that the MST could be tested in a valid
way with all four interfaces. This means, there are no interface-specific bound-
aries that hinder the assessment. The oHI results, conversely, demonstrates that
potential age-dependent declines and/or unfamiliarity with smartphones can
affect the feasibility of smartphone-based measurements.

Generally, we observed an increase in RMSEs with the oHI group. For all in-
terfaces this increase was significant (p < 0.05). The increase for the matrix,
slide, and wheel interface was, however, rather small. We therefore conclude that
it is generally feasible to conduct the MST on a smartphone with inexpensive
headphones, but there may be a slight SRT elevation with elderly hearing im-
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Table 4.3: Exemplary concept names and explanations are shown, next to examples
from provided comments (translated from German to English via DeepL for an
unbiased and standardized translation). Underlined words highlight what caused a
comment to be counted in the respective concept.

Concept Concept explanation Example comment parts

easy
Performing the tasks
with this interface
was easy or simple

- Super easy to use. Self-explanatory

Mistype Mistyping occurred /
wrong selection of a word

- similar, bad: quickly move on if
mistyped; if last word tapped:
immediately move on to next
sentence

- I couldn’t correct if I had clicked
the wrong way.

no_correction It was not possible to
correct one’s input

- In case of mistyping, is it possible
to come back?

- I couldn’t correct if I had clicked
the wrong way.

Slow
It took time to complete
the task with this interface,
it was not fast

- time-intensive

- It took quite a bit of time to write
it out, so I wasn’t sure about the
last few words.

words_forgotten

Sentence sound lost /
Words forgotten / You had
to remember the words for
too long

- As I said, somewhat cumbersome
and sometimes annoying, because
you did not know in which direction
the searched word was and so forgot
the other words. An overview of the
words available for selection would
have been nice.

paired individuals (RQ1). Further, we confirm that an interface effect is present
within the oHI group (also evident from the interaction effects). In other words,
the interfaces influence the consistency of the measurement for older adults with
hearing loss (RQ2). This highlights the necessity for including elderly in the
development of smartphone-based MSTs and mobile health applications. Oth-
erwise, applications may provide inaccurate results, or may not be easily usable
and lead to frustration by the users (Kalimullah and Sushmitha, 2017).

4.4.1.2 SRT consistency and preference The matrix interface resulted
in the most consistent SRT scores, was the fastest MST interface, and was
overall preferred both by yNH and oHI. For the yNH this could be expected,
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as the complete overview of the matrix is provided, the handling is fast, and
smaller buttons are not expected to be an issue. Conversely, it is surprising that
the matrix interface was mostly positively received by the oHI and generally
provided the most consistent results. Regardless, we did observe one participant
(outlier) to be unable to achieve consistent results with the matrix interface and
later noting the small size of the interface.

It could have been expected that the comparatively small button size and
spacing would lead to larger difficulties with more participants of the oHI group,
due to potentially reduced fine motor skills in the oHI group. However, several
explanations are possible for the general SRT consistency and positive perception
of the oHI group with the matrix interface.

First, the cognitive complexity of the matrix interface is smaller than with,
for instance, the wheel and type interface. The Cognitive Complexity Theory
(Kieras and Polson, 1985) in the context of UIs can be described as the number
of different production rules to be learned. Production rules, in turn, are defined
as IF (interface output) / THEN (user response) statements (Ziefle and Bay,
2005). To exemplify, following the playback of a sentence (IF), the user needs to
perform different steps for task completion with the different interfaces. With
the matrix interface, word buttons need to be selected (THEN). (IF) all buttons
are selected, the next button needs to be selected for the next sentence to be
played (THEN). With the slideshow interface, for instance, the last production
rule is omitted, as the next sentence is played automatically after the last word
is selected. The type interface, in contrast, requires further production rules
(e.g. (IF) a keyboard appears, words need to be typed (THEN) and (IF) a word
is suggested by the device, it can be selected (THEN)). The overall reduced
cognitive complexity of the matrix interface may therefore have led, to a certain
extent, to higher preferences of the oHI.

Second, a related explanation could be due to the enhanced error probability
with increasing steps, or production rules. In that way, it could explain the
higher SRT consistency of the matrix interface for most of the participants and
the comparatively lower SRT consistency of the type interface. The probability
of success can be modeled with: p(success) = (1−p(failure))N(steps) (Fisk et al.,
2014). It follows, that the increasing number of steps with the type interface
may have adversely affected the accuracy of the measurement.
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Finally, fine motor skill declines may not be as pronounced in the present
oHI group. Consequently, except for one participant, the oHI group may not
have experienced that many difficulties in performing the task with the matrix
interface, even though buttons and button spaces were comparatively small.
Nonetheless, three participants had to be excluded as they were not capable of
performing the tasks on a smartphone sufficiently without a pen. However, we
have not assessed fine motor skills systematically. For future studies, it would be
of interest to capture the exact impact of fine motor skills on UI preferences.

A preference difference between yNH and oHI individuals can be observed with
the wheel interface (RQ2b). The wheel preference ratio was higher for oHI
than yNH individuals in comparison to the type and matrix interface. For
the slide interface there was no pronounced difference between the two groups.
Considering that the matrix and type interface both displayed words in smaller
font sizes and smaller button sizes than the wheel interface, this suggests a
preference trend for larger font and button sizes with the oHI group.

4.4.1.3 Completion time Besides SRT consistency and user preference, it
is important for mobile measurements to be as fast as possible, whilst ensuring
accurate results. Generally, users prefer faster measurements, and one might
risk higher levels of inattentiveness and measurement abortion with longer
measurement duration (Möckel et al., 2015). Longer completion times may also
be attributed to the higher cognitive complexity of the interfaces. Specifically,
if more production rules need to be learned, the completion time can increase,
thereby hindering the interface’s effectiveness. Additionally, longer completion
times may negatively impact the consistency of SRT results. To exemplify, both
groups reported forgetting words while inputting results using the wheel and
type interface.

For the MST, the matrix and slide interface were the fastest. Regardless, the
oHI group took longer to perform the speech tests across all interfaces. This is in
line with research indicating that the cognitive decline with age and smartphone
unfamiliarity leads to slower response time of elderly (Tsai et al., 2017). The
reason for this is, however, that elderly choose their response more carefully to
avoid errors. This change in response behavior can yield results as accurate
as those obtained by younger users, compensating for any unfamiliarity with
the devices (Starns and Ratcliff, 2010). This can be observed with the matrix
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interface, where SRT consistency was similar across groups, but the oHI took
longer to complete the task.

The most striking group time difference can be observed with the type interface.
Here, the time prolongation for completion of the oHI is larger than what would
be expected from the observed time increases from the remaining interfaces. It
is, thus, clear that the time prolongation goes beyond general potential speed
reductions of the elderly, and instead demonstrates a group effect of this interface
(RQ2b). An explanation could be that younger individuals are more used to
writing text messages with their smartphones, than the elderly. Additionally,
the tactile demand was highest in this interface, and therefore, the impairment
by possible fine motor skill declines may be most noticeable here. Since the
type interface took the longest, provided the least accurate SRT results, and
was generally disliked by participants it can clearly be ruled out as a preferred
interface.

4.4.1.4 Performance with spatial and fluctuating noise conditions In-
terestingly, we observed a bias in the ICRA5 condition with the slide interface,
which we did not observe with the ICRA5 condition of the simplified matrix test
simplified MST. Similarly, a slightly higher bias is present for the slide interface as
compared to the matrix interface for the MST with ICRA1 (oHI). Consequently,
the bias appears to stem specifically from the slide interface. We infer that higher
accuracies would be achieved, if the slide interface would be adapted to address
potential error sources resulting in the bias (see Proposal of an adapted interface),
or the matrix interface would be used. It also becomes clear that the spatial and
fluctuating noise conditions lead to a better SRT separability of the yNH and oHI
group, in comparison to the S0N0 condition.

4.4.1.5 Performance with the simplified MST The simplified MST
resulted in adequate consistencies, however, was not as consistent as the MST
for the yNH group. This can be expected, as it is a reduced MST, both in
trials (14 vs. 20) and in sentence length (3 vs. 5). Test-retest variability
is also generally higher with simplified MSTs, than with MST. For instance,
the test-retest value for the SRT50 with adults for the Italian MST and the
simplified Italian MST are 0.6 dB and 1.2 dB, respectively (Puglisi et al.,
2021). In our experiment, the average RMSE for yNH and oHI is 1.9 dB. To
a certain extent, the RMSE value can therefore be explained by the general
test-retest error. As expected, the simplified MST had the shortest absolute
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completion time for both yNH and oHI, as it uses fewer trials and shorter
sentences compared to the MST. For an elderly target group with potential
cognitive declines, the simplified MST can serve as a good alternative to the
MST, if (1) none of the other interfaces seem plausible, and (2) the SRT con-
sistency achieved with the simplified MST is considered as being sufficiently high.

4.4.2 Potential crosstalk effect with low-cost consumer electronics

Our study showed that crosstalk between audio presentation channels is an issue
with non-professional audio equipment for conditions with a substantial interau-
ral dissimilarity. This crosstalk can be due to “spatial audio processing” of the
consumer electronic audio device, electric/electronic channel crosstalk, or due to
an acoustic crosstalk path at the headphone that all can be avoided under con-
trolled laboratory conditions, but not for arbitrary consumer electronic devices.
In our study, the monaural conditions with the MST (see Fig. 4.4, middle panel)
appear to be affected by this effect: If the signal (intended to be played only to
one ear) leaks over to the respective other headphone channel, normal hearing
listeners can utilize the resulting binaural information which results in lowering
the SRT in comparison to the reference value. While this effect can be seen
for the monaural S0N90 condition for the yNH group, it is not evident for the
oHI group. This could be because the crosstalk may be below the (increased)
threshold levels in the oHI group. For the monaural condition users with in-ear
headphones could be instructed to remove the earplug for the ear to which no
stimulus is presented (ear towards the noise direction). Alternatively, for over-
and on-ear headphones, a crosstalk effect could be avoided by only measuring
the spatial condition following an indication of hearing impairment via the S0N0
condition.

4.4.3 Proposal of an adapted interface

Not every participant could perform the task with the matrix interface, even
though the interface resulted in accurate SRT scores for most participants. The
oHI group also noted the small size of the words on the screen with this inter-
face. This may be an issue with future participants and users with larger tactile
difficulties than the participants employed in our study. Hence, another inter-
face may be the preferable choice in the future. The slide and wheel interface
both achieved adequate SRT consistencies. The slide interface, however, ranked
higher in preference and was also faster to complete. In addition, one important
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outcome of the content analysis was that participants reported having acciden-
tally pressed the wrong button, without the possibility to correct their mistake.
Allowing participants to correct their mistake and to return to earlier parts of
the sentence could decrease accidental error sources when performing the MST.
As a result, the SRT deviations from the laboratory control session would be re-
duced. Additionally, the slide interface allows for an even further increase in font
sizes. That way, a fast, consistent, and intuitive interface would be provided that
avoids the small size when displaying the complete matrix. Figure 4.9 shows the
proposed adapted slide interface. We would therefore argue for the adapted slide
interface to be implemented for mobile implementations of the MST (RQ3).

Figure 4.9: Proposed interface for performing the MST via a smartphone. Arrows
allow to switch between the different “slides” or columns of the matrix. After a user
has selected the understood words, pressing “Next” (“weiter” in German) will start the
next sentence.

4.4.4 Limitations and future research

Even though the SRT is rather independent from the absolute presentation level
and headphone transfer function, it is possible that some potential variation
in SRT occurred due to loosening of the in-ear headphones. To estimate the
potential effect for everyday life, investigations into the robustness of different
headphone transfer functions (in-ear, on-ear, over-ear) against such mechani-
cal variations and the resulting impact on the measured SRT would be of interest.

Furthermore, the tests were performed with calibrated equipment in a laboratory
environment. It would be of interest to investigate how well the system would
work in uncontrolled environments, with different uncalibrated setups (smart-
phones & headphones). The interfaces would not be expected to lead to different
results in uncalibrated setups, but household headphones often have different
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frequency responses that boost certain frequencies and produce different overall
sound levels.

Further, low-cost consumer electronics, as shown in the present study can result
in a crosstalk effect, which can impede measuring spatial conditions (see section
“Potential crosstalk effect with low-cost consumer electronics”). In addition,
additional background noise present in the testing environment may have an
influence on measurement results. For that, it could be valuable to integrate
a background noise monitoring system, as in Hussein et al. (2016). However,
different sound levels are not expected to affect measurement acuity much, as
the results of the matrix sentence tests (MST) are based on the SNR rather than
on the absolute sound level and spectrum presented. Thus, it is less crucial to
perform the measurements at the exact same noise level, and more important
that the noise level is at least 20 dB higher than the PTA (Wardenga et al., 2018).

Contrary to speech-in-noise tests that provide higher test-retest variations in
their results for a given amount of measurement time and hence cannot clearly
detect a training effect, the matrix test exhibits a training effect of about 2 dB
(Wagener, 2004). For clinical audiology purposes, training with two test lists
of the MST is therefore recommended. In our experiments, the experimenter
conducted such a training session with a closed-set test version prior to the
control and test session. Participants were, consequently, already familiar with
the matrix user interface when they did the measurements with the distinct
interfaces. Being presented with the matrix interface may have been less
surprising than being presented with the newly-proposed interfaces. This could
have increased the preference for the matrix interface among the participants,
but at the same time it highlights the good performance of the slide interface in
comparison. Displaying the interfaces to untrained participants was not possible
though, as the repeated measurements with the distinct interfaces would then
have resulted in a training effect. For later implementation of the MST for
an openly available web application where usually no training sessions can be
performed, it would be important to control for the ongoing training effect, e.g.,
by monitoring the stability of the ongoing SRT estimate in real time.

Finally, while we aimed to include 15 individuals in both the yNH and the oHI
group, we could only include 14 oHI participants. Three additional oHI individu-
als were unable to complete the MST on a smartphone without special equipment
such as a pen. As a result, the sample size is slightly smaller than initially esti-
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mated. Future research should, therefore, aim to include larger sample sizes for
further investigations into smartphone-based MSTs. Here, our developed mobile
version of the MST, which enables remote testing via smartphones, can facilitate
large-scale sample collection.

4.5 Conclusions

Our study proves the general feasibility of measuring the matrix sentence test
(MST) and the simplified MST via a smartphone and in-ear headphones with
both yNH and oHI individuals. For the four distinct interfaces overall group ef-
fects exist, next to group effects specific for distinct interfaces. The SRTs of the
matrix interface were most consistent with the laboratory control for most of the
participants, but not every participant could perform the tasks with this inter-
face and the small size of the interface was noted. It is therefore less suitable for
an elderly target group with potential tactile and visual impairments. The slide
interface ranked second in terms of SRT consistency, preference, and completion
time. At the same time, the participants provided suggestions for the slide in-
terface (i.e., demanding the possibility of correcting the word selection), which
could improve SRT consistency and stability. Therefore, the slide interface might
eventually turn out to be a better alternative. The findings of this study should
be applicable to the MST in all available languages by translating the interfaces
to the respective language.
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S.2 Supplementary Materials

Table S.1: The concept names and explanations are shown, next to examples from
provided comments (translated from German to English via DeepL for an unbiased
and standardized translation). Underlined words highlight what caused a comment to
be counted in the respective concept in longer comments (with multiple concepts).

Concept Concept explanation Example comment parts

Annoying
The interface had annoying
properties

- Typing was super annoying

- As I said, somewhat cumbersome
and sometimes annoying, because
you did not know in which direction
the searched word was and so forgot
the other words. An overview of the
words available for selection would
have been nice.

clear The layout was clear

- overview was positive

- Clearly designed and
intuitive to use

Comprehensible
The interface was
comprehensible/
understandable

- Understandable

- It was comprehensible, but it took
some time to find and select the right
word, which often caused the sentence
sound to be lost and the words could
not be remembered.

correction_
possible

It was possible to correct
one’s input

- a bit more confusing than B, but no
problem if you get clicked wrong

Cumbersome
It was cumbersome to
perform the task or the
task was too complex

- As I said, somewhat cumbersome
and sometimes annoying, because
you did not know in which direction
the searched word was and so forgot
the other words. An overview of the
words available for selection would
have been nice.
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Concept Concept explanation Example comment parts

diff_handle
The interface was
difficult to handle

- it was difficult to write down the
answer freely; unsure whether to
capitalize the words or not

- Entering words into the text fields
is quite difficult with this smartphone

easy_handle
The interface was
easy to handle

- although small, but well selectable

easy
Performing the tasks
with this interface
was easy or simple

- Super easy to use. Self-explanatory

Fast
The interface was
fast (timewise)

- Nice and simple, short and clear,
. . . , fast, ...

free_order
One could freely choose
the order of providing
the answers

- Overview of all possibilities, any
order of input possible

good_size
The size of the layout
on the smartphone
was good

- Font size big enough, scrolling no
problem

Intuitive
Performing the task with
this layout was intuitive

- Clearly designed and intuitive to use

- Super easy to use. Self-explanatory

Old_answers_
marked

Negative perception that
old answers were still
marked.

- Again, clicked fields remain
highlighted, which can be a bit
confusing

Mistype
Mistyping occurred /
wrong selection of a word

- similar, bad: quickly move on if
mistyped; if last word tapped:
immediately move on to next
sentence

- I couldn’t correct if I had clicked
the wrong way.

no_correction
It was not possible to
correct one’s input

- In case of mistyping, is it possible
to come back?
- I couldn’t correct if I had clicked
the wrong way.
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Concept Concept explanation Example comment parts

no_free_order
One could not freely
choose the order of
providing the answer

- No free order

Slow
It took time to complete
the task with this
interface, it was not fast

- time-intensive

- It took quite a bit of time to write
it out, so I wasn’t sure about the last
few words.

small_size
The size of the layout on
the smartphone was rather
small

- Although small, but well selectable

Unclear The layout was not clear - ...,no overview of words,...

unintuitive
Performing the task with
this layout was not
intuitive

- unclear whether order of words is
important; unclear why not also
possible in one line

words_forgotten

Sentence sound lost /
Words forgotten/
You had to remember
the words for too long

- As I said, somewhat cumbersome
and sometimes annoying, because
you did not know in which direction
the searched word was and so forgot
the other words. An overview of the
words available for selection would
have been nice.
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5 General Discussion

This thesis made significant contributions to the field of audiology by introducing
an auditory profile generation pipeline for large-scale data analysis. The pipeline
utilizes a purely data-driven approach to generate auditory profiles and has a
special emphasis on enabling remote testing. Remote testing allows for the col-
lection of larger datasets without restrictions on measurement location, which is
highly relevant for covering the entire population.
Auditory profiles can be generated from datasets that are collected remotely, in
the lab, or in clinics and then be used in several ways. First, the profiles can be
generated from the datasets to understand the underlying data structure. Second,
the profiles can be merged from multiple datasets to work towards big data in
audiology and establish a global auditory profile. Finally, auditory profiles can
be estimated for individual patients using the provided classification models.
Additionally, the thesis also advanced user interface research in audiology for re-
mote testing on smartphones. It specifically focused on adapting the graphical
user interface of the matrix sentence test, which is a highly relevant audiological
measure for remote testing, to make it compatible with smartphones. This adap-
tation is particularly beneficial for the often elderly group of hearing loss patients
who may have problems with the small screen size of smartphones.

5.1 Contribution of this thesis

Chapter 2 introduced the concept of auditory profiles and describes a proof-of-
concept for the subdivision of patients into these profiles using a data-driven
approach. The proposed profile-generation approach aligns with existing profiling
methods, but is more sensitive to subtle differences in measurement ranges that
may have been overlooked previously, due to its data-driven nature, which oper-
ates without prior assumptions on the profile distributions. The auditory profiles,
thus, summarize information from datasets in smaller patient groups (auditory
profiles), each with unique characteristics that distinguish them from other au-
ditory profiles. A profile generation pipeline was developed to generate auditory
profiles using model-based clustering. For this, a dataset with 595 patients was
used. To obtain a robust estimate of the model parameters (underlying profile
number and covariance structure) for the dataset, a bootstrapping approach
was implemented. This approach allowed for the estimation of these parameters
by repeatedly sampling from the dataset. Finally, different configurations of
random forest classification models were compared to identify the best model
for classifying patients into the auditory profiles using the available audiological
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measures. These classification models can then be used to classify new patients
into the profiles in both research and clinical settings. Overall, this proof-of-
concept demonstrates the feasibility of subdividing patients into auditory profiles
in a purely data-driven manner, providing a useful tool for understanding and
classifying patients based on their audiological measures. The profile generation
pipeline is flexible and can be applied to various datasets. Although the profile
generation approach is independent of specific measures, the resulting profiles
are contingent on the underlying data, including the number of profiles, included
measures, and covered ranges of patients. It is, therefore, essential to inte-
grate further datasets with varying measures and diverse types of hearing deficits.

In Chapter 3 the profile generation pipeline described in Chapter 2 is extended
by a federated learning approach. Additionally, classification models are built
for varying feature combinations, such that the profiles can be used in a variety
of settings. The 13 profiles described in Chapter 2, were merged with 31 profiles
generated from a second dataset (N=1272). The combination of these profiles
resulted in a combined set of 13 auditory profiles. To merge the profiles, a profile
similarity index using the overlapping density (Pastore and Calcagnì, 2019) was
calculated for the common measures. The two datasets contain profiles that
exist in both datasets, as well as unique profiles that are only present in one of
the datasets. This integration of additional datasets demonstrated the feasibility
of expanding the auditory profile set, which should also be generalizable to
new datasets. To enable the combination of profiles, datasets may vary in
terms of included measures, but a certain number of overlapping measures is
needed. The additional information from the remaining measures can be used to
estimate plausible ranges for these measures, although with higher uncertainty,
as compared to the measures used to merge the profiles. The federated learning
approach enables the generation of profiles on sensitive data that is subject
to privacy restrictions. For this, the profiles can be generated at the sensitive
data location and only the fully anonymized profile distributions are shared to
integrate the profiles into the combined global set of auditory profiles.

Chapter 4 contributes to remote testing with the matrix sentence test. The
goal is to both develop auditory profiles from large-scale datasets obtained
from mobile devices, and classify users of a remote testing tool into one of the
auditory profiles using the provided classification models in Chapters 2&3. For
this purpose a speech test is needed that can be measured on a mobile device.
To achieve this, the matrix sentence test was implemented in a browser-based
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online application, allowing for remote measurements via smartphones. A
cross-over study was conducted to compare the mobile measurements (using
a calibrated setup: smartphone with household headphones) to laboratory
control measurements. In addition to a younger normal-hearing group, an older
hearing-impaired participant group was included to evaluate the specific impact
of mobile measurements for the target group. The first purpose was to assess
the general feasibility of conducting the matrix sentence test on a smartphone.
The second purpose was to provide an appropriate user interface for the matrix
sentence test. The traditional matrix interface requires the display of all 5x10
words on the screen of the smartphone. However, given that the primary target
group is predominantly elderly, who may experience challenges with vision and
dexterity, three alternative interfaces were evaluated for usability (slide, wheel,
type). Against expectations, the traditional matrix interface performed well
in terms of accuracy, time efficiency, and user preference. However, not all
participants were able to perform the task with this interface and the small
size of the interface was noted as a limiting factor. The slide interface ranked
second. Every participant was able to perform the task with this interface,
and suggestions for improvements were provided to enhance its usability. This
finding suggests that the slide interface would be a more suitable choice for
a smartphone-based remote testing tool, and highlights the importance of
involving the target group in the development of such applications. In future
studies, the older hearing-impaired participant group could be expanded to
include individuals with more severe dexterity challenges. In this case, it is
expected that the slide interface would perform even more effectively than in the
current participant group, as the smaller button sizes of the matrix interface may
pose an even greater challenge. Overall, this study successfully implements the
matrix sentence test in a format that is also suitable for the elderly population,
marking an important step towards developing a remote testing tool that can
facilitate both remote data collection and diagnostics.

5.2 Auditory profiles for patient characterization

The auditory profiles generated in this thesis are capable of characterizing
datasets using a combination of audiogram, ACALOS, and GOESA measures.
Although additional features are present in the two analyzed datasets, these
three measures were deemed crucial in the classification models and are available
for both datasets. This is plausible, as they collectively cover different aspects of
hearing loss. While the audiogram covers threshold information, both ACALOS
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and GOESA cover different aspects of suprathreshold information. Since only
these three main measures were common to both datasets, further reducing
the number of measures required for patient characterization is not feasible
with the current data. Nonetheless, this highlights the importance of including
these measures alongside the audiogram, as relying solely on the audiogram for
classifying patients into profiles did not yield adequate performance (see Chapter
3).

To achieve a potential reduction in required audiological measures for patient
characterization, a larger set of features would need to be included, initially. This
could include, for instance, varying speech tests, to determine the most valuable
in terms of patient group separability, but more importantly the addition of
new measures. In both the test battery of Van Esch et al. (2013) and the
BEAR test battery (Sanchez-Lopez et al., 2021) spectro-temporal resolution
was included. The former used the F&T test (Larsby and Arlinger, 1998)
and the latter a tone-in-noise test. The BEAR test battery further included a
spectro-temporal modulation test. Spectro-temporal modulation tests provide
additional information beyond the audiogram in predicting aided SRTs in noise
(Bernstein et al., 2016; Zaar et al., 2024), which is highly relevant for hearing aid
fitting and could therefore also prove beneficial if included in the auditory profiles.

The current set of auditory profiles mainly cover hearing aid candidates next to
few normal hearing individuals due to the source of the two datasets (Research
dataset and diagnostic dataset of the Hörzentrum Oldenburg gGmbH). In the
future, it would be of great interest to expand the auditory profiles such that
cochlear implant patients are also included. Here, datasets mostly include aided
performance with hearing aids to assess the speech perception, as the residual
hearing needed for unaided speech testing can be too low. In the current set of
auditory profiles, however, aided performance was not yet integrated, as it was
conceived as an outcome criterion. For cochlear implant patients, however, it can
be an indication criterion for the implantation of a cochlear aid. An integration
of aided measures into the auditory profiles could, therefore, be plausible in the
future.

A benefit of the auditory profiles is that they are derived purely data-driven.
While this enables big data analyses, it does not use expert knowledge in the
generation of the profiles. Including expert knowledge as labels in the auditory
profiles in the form of, for instance, treatment recommendation, audiological
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findings, or first fits for hearing aids, is however, important. Including expert
knowledge can facilitate the usage of the auditory profiles also in clinical practice
and enrich the profiles with important practical information. If profiles are
directly related to treatment recommendations, they could also work as part of
clinical-decision support system.

One option to connect the auditory profiles to expert knowledge would be by
letting audiological experts define audiological findings and treatment recom-
mendations for the different profiles. Such a procedure was used in Buhl et al.
(2019, 2020), where audiological experts coded the Common Audiological Func-
tional Parameters (CAFPAs) based on patients test results. The CAFPAs are
designed to represent the functional aspects of the human auditory system in an
abstract, measurement-independent manner. They function as an interpretable
intermediate representation layer in a clinical-decision support and are connected
to both audiological findings and treatment recommendations. Including expert
knowledge in the derivation of the CAFPAs ensures the plausibility of the CAF-
PAs. Likewise expert-based ratings could validate auditory profiles and highlight
the most valuable profiles. Next to letting experts rate the profiles, it would
also be possible to connect the CAFPAs directly to the profiles and in that way
include expert knowledge in the profiles. For the patients included in dataset
A (see Chapter 2), CAFPA labels are either already available or could be pre-
dicted using the classification models provided in Saak et al. (2020). For the
patients in dataset B (see Chapter 3), the classification models would need to be
adjusted such that the CAFPAs can be predicted based on the available measures
in dataset B.

5.3 Auditory profiles in the context of big data analytics

5.3.1 Federated learning

In Chapter 3 the auditory profiles are adapted to function within a federated
learning approach. That means profiles can be generated from a larger pool of
available data, as they can be computed locally at the sensitive data location,
thereby maintaining data privacy (Pfitzner, 2021). This approach allows for the
aggregation of large-scale data from various sources, including remotely collected
data via smartphones, research datasets, and clinical datasets. Each of these
data sources offer unique contributions to the characterization of the audiological
patient population. For instance, smartphone-based data collection offers the
advantage of accessibility and scalability, potentially capturing information from
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a wide demographic due to its easy access and the absence of geographical
constraints. Research datasets often provide a larger variety of included features
and can thus aid in detecting specific predictors for profile patterns and aid
in adapting the current audiological measures used in clinical practice to new
insights. Clinical datasets, in turn, provide data for more severe hearing loss
patterns, and models derived from this data pool can be directly implemented in
clinical practice.

Across each data source "local APs" can be computed that describe the specific
data source, while the combination of local APs results in the "global APs"
(see Figure 5.1 for a visualization of the federated learning principle with the
auditory profiles). Next to profile merging, it also enables the comparison of
profile characteristics across data sources. For instance, differences in hearing
loss patterns between clinical datasets and research datasets can be assessed by
comparing the profile distributions of the "local APs". These in turn, can be
compared to the global APs to assess the contribution of individual data sources
to the global AP set.

Figure 5.1: Visualization of the federated learning principle of the profile generation
pipeline. Sensitive datasets from mobile measurements, research institutes, and clinics
can be used to generate auditory profiles (APs) locally. Anonymized profile
information from local APs is used to merge the local APs into the global APs. This
computation step can occur centralized at a research institute location.
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5.3.2 Global auditory profile set

To establish comprehensive global auditory profiles, it is essential to integrate
diverse datasets that may vary in terms of the included measures. This can
encompass different audiological test batteries or incorporate distinct measures
such as genetic information. The profile generation pipeline can generally be
applied to these varying types of datasets, as the profile generation process is
independent of the specific measures, provided they contain continuous features
to meet the requirements of the clustering algorithm.

For profile integration through merging, however, a certain number of overlapping
features is required to produce plausible and informative integrated profiles. To
exemplify, in line with existing research (e.g., Jepsen and Dau, 2011; Oetting
et al., 2016), the profiles show, that profiles with similar audiogram ranges can
exhibit distinct differences in other features. Consequently, relying solely on the
audiogram for merging profiles would result in a loss of information regarding
other features. As a consequence, the merging procedure is currently limited to
datasets that share common features.

This raises the question of how to integrate datasets with different measures
or completely new data sources. To integrate genetic information, for instance,
datasets with both genetic and audiological data are needed initially, such as
those collected in the PRESAGE project, which focuses on a comprehensive
assessment of early-onset age-related hearing loss (Hochmuth et al., 2024). In
this case, genetic sub-profiles could be derived in the first step. In the second
step the classification models provided in chapters 2 and 3, could be used to
classify patients into one of the available profiles, thus linking profiles to the
genetic sub-profiles.

One consequence of merging profiles across datasets is that not all patient within
a profile may have information on all features generally included in that profile.
For example, dataset A & B share common features, but also contain additional
features. When profiles are merged based on these common measures, the ad-
ditional measures are retained within the profiles. In such cases, the partially
available feature information for the additional features can be used to estimate
probable ranges for these features, although with higher uncertainty.
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5.3.3 Integration of future datasets until profile convergence

The future integration of further local APs into the global AP set from additional
datasets, generates the question at which point the global AP set can be consid-
ered to actually cover the complete audiological population. To assess this, we
can make use of the common principle of iteration until convergence in machine
learning (Hastie et al., 2009). Iterating an algorithm until a specific parameter
converges is used for model-based clustering, and training classification models,
among others. For the auditory profiles, the parameter of interest would refer to
the number of profiles. One can assume that with the addition of further datasets
the number of profiles will likely increase to some extent. At some point, however,
when sufficient hearing loss patterns are included, the integration of additional
datasets will not lead to new auditory profiles, indicating that the global APs
converged. To avoid local convergence, it’s essential to be mindful of the datasets
being integrated. If the same patient distributions are repeatedly combined, the
profiles may converge prematurely, only to be expanded later when new patient
patterns are integrated. An example of this would be the late integration of
cochlear implant (CI) patients into the dataset, which would presumably add
new profiles to the existing profile set. Figure 5.2 visualizes the concept of the
iteration until convergence with the auditory profiles. Convergence is reached,
when no new profiles are added to the global AP set and the number of total
profiles remains stable.

Figure 5.2: Concept visualization of dataset integration until the profile numbers
converge. Solid line shows the data for the two integrated datasets. Dashed lines show
extrapolated data for the integration of further datasets.
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5.4 Auditory profiles in the context of remote testing

Next to the application of the auditory profiles as a facilitator for big data an-
alytics in the field of audiology (see 5.3), they also have the potential to be
used in remote testing. Users of a remote testing tool available on smartphones
could perform several audiological measures to receive an estimate of the indi-
vidual hearing deficits. Here, the three factors, namely thresholds (audiogram),
loudness perception (ACALOS), and speech perception (GOESA, MST), could
be assessed, as these factors were determined as relevant factors for the current
auditory profiles. In the future, if additional measures are integrated into the
auditory profiles, the remote testing tool could be expanded to incorporate these
measures. For measuring the audiogram, however, calibrated devices would be
needed to obtain useful results, which is hindered due to the non-trivial task of
self-calibrating devices by the non-professional target group of users.

5.4.1 Profile-based missing feature estimation

If certain desired measures, such as the audiogram, cannot be measured on the
remote testing tool, the profiles could be used for a statistical estimation of the
missing audiological measure. That means the provided classification models, us-
ing only the information from the remaining measures (e.g., ACALOS, GOESA,
and the age), could be used to classify individuals into an auditory profile and
estimate the missing data from the measurement ranges of the predicted profile.
For this, several methods could be worthwhile, which are explained with the au-
diogram as an example for the missing measure. First, a simple approach would
be to use the mean, or median audiogram of the respective profile. Second, the
audiogram of the individual within the profile that is most similar to the individ-
ual of interest could be used. Finally, classification models could be trained for
the specific task of estimating audiograms from the provided audiogram ranges of
the profile and the measured data. Via these three approaches one could estimate
individual audiograms, without needing to measure the audiogram. Generally,
it would be of interest to compare the estimated audiograms to both calibrated
and uncalibrated controls. The calibrated audiograms would indicate the error of
the estimated audiogram. The value of measuring uncalibrated audiograms could
be assessed with the uncalibrated audiograms. These could serve to correct the
shape of the audiogram estimated via one of the three approaches.
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5.4.2 Smartphone-based remote testing tool

The auditory profiles can also serve as a statistical classification system that
works in the background of a smartphone-based remote testing tool. Providing
individuals with a tool to monitor their hearing performance could motivate
individuals to seek help from a hearing care professional earlier. Currently, 8.9
years pass on average between hearing aid candidacy to the actual provision
of a hearing aid (Simpson et al., 2019). Given the adverse consequences of
hearing loss (poorer quality of life, social isolation, mental health, education, and
employment, among others) (Arlinger, 2003; World Health Organization, 2021),
it is highly relevant to motivate individuals to seek hearing healthcare early on.

For the auditory profiles, this means they could be connected to specific
treatment recommendations, such as profile-based first fits for hearing aids.
In the remote testing tool, this could be reflected through a simulation of a
personalized hearing aid, which could motivate individuals if they can experience
the benefit of a hearing aid. Here, it is likely that profiles that have similar
audiogram ranges, but varying ranges for ACALOS, would benefit from different
hearing aid settings (Dreschler et al., 2008; Launer et al., 2016), which could
be reflected in the different first fits for profiles. When remotely fitting, the
profile-based first fits could then be adjusted using self-adjustment to result in
an optimal performance (Gößwein et al., 2023). To demonstrate the benefits
of the remotely fitted hearing aid, the open Master Hearing Aid (openMHA,
Kayser et al. (2022)) could be connected to the remote testing application, such
that real-time audio-processing would be feasible. Another beneficial factor of
remote testing could be that it could foster remote diagnostics, especially for
individuals who are immobile and do not have easy access to hearing care pro-
fessionals otherwise. Here, the results of the audiological tests and the respective
auditory profile could be sent to a hearing care professional for further evaluation.

5.5 Summary

This thesis contributed to advancing big data analytics and remote testing in the
field of audiology. An auditory profile generation pipeline was developed that
can characterize individuals into auditory profiles. Audiological measures that
contribute to the discriminability of the profiles and describe complementary
aspects of hearing patterns are based on threshold, loudness perception, and
speech understanding. The pipeline can be applied to varying data sources, due
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to its federated learning approach that can result in fully anonymized profiles.
With the developed merging approach, profiles can be combined across datasets,
which paves the way for big data analytics in the field of audiology, as data can be
aggregated in the form of auditory profiles without needing to share sensitive data
for the computation. For the profiles to be used in practice, in a remote testing
setting, varying classification models, which differ with respect to the required
features, are provided so that users can be classified into a profile. As the matrix
sentence test is an ideal candidate for mobile speech testing, due to its accuracy
and repeatability, a mobile implementation was developed, and an appropriate
user interface was designed. In that way, the mainly elderly target group can
easily perform the tasks on a smartphone, and remote testing in audiology is
facilitated.
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