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Sea-purple harmony
While Kogi hid secrets into seashells

And even the ocean laughed
Beneath that celestial canopy

Cuz it started out so nice - Sixto Rodriguez.

... el mundo por suerte es un sinfin de incomprensiones.
Por eso hacemos libros,

por la ilusion siempre fallida
de alguna vez entender algo - Martin Caparros, Ñamerica.
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Abstract

Biodiversity is a concept which has become transversal in modern society. Although its core idea
is linked to ecology, its influence goes beyond natural sciences, reaching disciplines as distinct
as economics, politics, law, and conservation biology. Perhaps it was due to the realization of
its accelerated loss, or the awareness of our responsibility on it, that increasing international
efforts have been advocated to ‘improve the status of biodiversity’. Yet unclear or incomplete
reports about biodiversity changes and trends remain, a direct consequence of the limited
availability of long-term biodiversity indicators. Furthermore, the focus of what biodiversity
itself means and how it should be measured in ecosystems, has shifted from just considering
the amount of species on ecosystems, towards considering the influence that those species and
their interactions have on the functionality of ecosystems. An approach known as functional
biodiversity.

Ideally, we should measure functional biodiversity directly in ecosystems, seeking to establish
well-designed programmes to measure its change in key ecosystems or species groups. But such
programmes have high operation costs, their logistics are complicated, and the expertise needed
to maintain them is probably not available where is needed, thus efforts will remain local or
regional, or inoperative. Currently there is an effort to use existing information, often collected
for other purposes, to gain insights on how the state of biodiversity is changing. Ecological
long-term datasets of species, which gathered data on biomass, abundance or just presence-
absence, represent a unique source for assessing biodiversity, given the appropriate tools and
methodology. Diffusion maps offer an appropriate approach.

Diffusion maps, a method from networks science, can coarse-grain the ecological communi-
ties in terms of their structuring traits, without dismissing the species interactions. Therefore,
high-dimensional ecological datasets are turned to a lower, more relevant dimensional space,
in which species can be located and assessed according to their similarity or dissimilarity. Ul-
timately, the functional diversity can be computed from the pairwise distances in this lower
dimensional space, for each sample in the dataset. The result is a functional diversity time
series of the monitored ecosystem, and the ecological community. However, the application of
this approach to ecology is quite recent, having yet multiple knowledge gaps to be filled.

In this thesis, I work towards expanding the applications of diffusion maps, as well as on
seeking solutions for the limitations imposed by data availability. Firstly, I apply the diffusion
map approach to a long-term abundance dataset of demersal fish in the North Sea obtained
from the ICES coordinated, International Bottom Trawl Survey (IBTS). To date, diffusion maps
were mainly applied to unicellular organisms. Therefore, this is one of the first application of
this approach to biological communities of more complex organisms. Subsequently, I seek to
address a limitation that diffusion maps have for its application to biodiversity assessment,
the scarcity of long-term datasets. I propose an approach to aggregate datasets from multiple
origins, which allows not just to obtain a larger, more robust dataset, but also to expand
spatially the assessment of functional diversity. Lastly, I seek to scale-up the assessment of
functional diversity from a local to a regional scale by means of dataset aggregation. The
scenario is the North Sea and the protagonists are phytoplankton abundance datasets from
different monitoring programmes conducted and maintained by research institutions located at
its shorelines.
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Zusammenfassung

Biodiversität ist ein Konzept, welches in der modernen Gesellschaft eine übergreifende Bedeu-
tung erlangt hat. Obwohl der Kerngedanke der Biodiversität auf der Ökologie basiert, geht ihr
Einfluss über die Naturwissenschaften hinaus und erstreckt sich auf unterschiedliche Disziplinen
wie Wirtschaft, Politik, Recht und Naturschutzbiologie. Die Erkenntnis des beschleunigten Bio-
diversitätsverlusts, sowie das wachsende Verantwortungsbewusstsein, führten möglicherweise
dazu, dass verstärkte internationale Bemühungen zur ‘Verbesserung des Zustands der biologis-
chen Vielfalt’ befür- wortet wurden. Dennoch bestehen weiterhin unklare oder unvollständige
Berichte zu Veränderungen und Trends in der Biodiversität, was aus begrenzter Verfügbarkeit
von langfristigen Biodiversitätsindikatoren resultiert. Zudem hat sich der Fokus, was Biodiver-
sität bedeutet und wie es in einem Ökosystem gemessen werden soll, verändert: von der bloßen
Betrachtung der Artenvielfalt hin zum Einfluss der Arten und deren Interaktion untereinander
auf die Funktionsweise des Ökosystems. Ein Ansatz, der als funktionelle Biodiversität bekannt
ist.

Idealerweise sollten wir funktionale Biodiversität direkt im Ökosystem messen und ver-
suchen, gut konzipierte Programme zu entwickeln, die Verän- derungen in wichtigen Ökosystemen
oder Artengruppen messen können. Allerdings sind die Kosten für solche Programme oftmals
sehr hoch, sie verfügen über eine komplizierte Logistik und die Expertise, die nötig ist, um
solche Programme zu warten, ist oft nicht dort verfügbar, wo sie benötigt wird. Daher bleiben
Bemühungen entweder nur lokal oder regional, oder wirkungslos. Derzeit gibt es Bemühungen,
bestehende Informationen, die häufig für andere Zwecke gesammelt werden, zu nutzen, um
Erkenntnisse zu dem aktuellen Zustand der Biodiversität zu gewinnen. Ökologische Langzeit-
datensätze von Arten, die Daten zu Biomasse, Abundanz oder bloßem Fehlen zusammentragen,
stellen mit den richtigen Instrumenten und Methoden eine gute Möglichkeit zur Bewertung der
Biodiversität dar. Sogenannte ‘diffusion maps’ bieten einen geeigneten Ansatz.

Diffusion Maps sind eine Methode aus der Netzwerkwissenschaft, welche ökologische Gemein-
schaften grob hinsichtlich ihrer strukturellen Eigenschaften unterscheiden können, ohne die
Arteninteraktion zu vernachlässigen. Dabei werden hochdimensionale ökologische Datensätze
einem niedrigeren, relevanteren Raum zugeordnet, in dem Arten lokalisiert und anhand ihrer
Ähnlichkeit oder Unähnlichkeit bewertet werden können. Letztendlich kann die funktionale
Diversität aus den paarweisen Abständen im niedrig-dimen- sionalen Raum für jede Stichprobe
im Datensatz berechnet werden. Das Ergebnis ist eine Zeitreihe der funktionalen Diversität des
überwachten Öko- systems und der ökologischen Gemeinschaft. Allerdings ist die Anwendung
dieses Ansatzes auf die Ökologie noch recht neu und weist noch zahlreiche Wissenslücken auf,
die geschlossen werden müssen.

In dieser Promotionsarbeit arbeite ich daran, sowohl die Anwendungs- möglichkeiten von
Diffusionskarten zu erweitern als auch Lösungen für die Einschränkungen durch limitierte
Datenverfügbarkeit zu finden. Zunächst wende ich den Ansatz der Diffusionskarten auf einen
Datensatz an, der die Abundanz von Grundfischen in der Nordsee dokumentiert. Dieser Daten-
satz stammt aus der vom ICES koordinierten International Bottom Trawl Survey (IBTS). Bisher
wurden Diffusionskarten hauptsächlich auf einzellige Organismen angewendet. Daher ist dies
eine der ersten Anwendungen von dieses Methode auf biologische Gemeinschaften komplexerer
Organismen. Anschließend möchte ich auf eine Einschränkung eingehen, die Diffusionskarten
für ihre Anwendung bei der Bewertung der biologischen Vielfalt haben: die limitierte Verfüg-
barkeit von Langzeitdatensätzen. Ich schlage einen Ansatz vor, der Datensätzen aus mehreren
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Quellen vereint, um nicht nur einen größeren und robusteren Datensatz zu erhalten, sondern
auch die Bewertung der funktionalen Biodiversität räumlich zu erweitern. Schließlich versuche
ich, die Bewertung der funktionalen Vielfalt mittels Datensatzaggregation von einer lokalen auf
eine regionale Ebene anzuwenden. Das Untersuchungsgebiet ist die Nordsee und die Protag-
onisten sind Datensätze zur Abundanz von Phytoplankton aus verschiedenen Monitoringpro-
grammen, die von Forschungseinrichtungen entlang der Nordseeküste durchgeführt und gepflegt
werden.
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Chapter 1

Introduction

Beginnings are shadowy. So it is with the term biodiversity. Although it has, apparently,
always being there, it had no name. Nothing does really. But strangely, it was not until one
component of it, the only one with the capacity to name things, provided it with one that
awareness of its existence emerged over disciplines as distinct as ecology, economics, politics or
conservation biology [194, 211, 407, 430]. Perhaps it was the fact that naming it, also brought
the realization that it was disappearing. Slowly, yes, but with an accelerating rate [184, 323].
However, no matter the amount of questions raised about it or the solutions proposed to stop
its loss, naming biodiversity is never enough to understand it.

The term biodiversity is a blend of the phrase biological diversity [255]. Although the term
counts with several historical origins from ecology, genetics and evolutionary biology [161], it
was first mainstreamed by Edward O. Wilson in his book The Diversity of Life [431]. In his
book Wilson draws attention to species loss and in particular to such loss caused by human
activities. No a new message, certainly, but with the use of biodiversity as a synthesis term,
the debate became tangible. Despite the birth and popularization of biodiversity was certainly
concerned with species and the amount of them in ecosystems, the term biodiversity meant
more.

Biodiversity refers to the fact that heterogeneity at different ecological levels is a funda-
mental property of natural systems [161]. Even E. O. Wilson, although largely concerned with
species numbers, recognized that an important theme of his work is the idea that diversity
cannot be captured by species numbers alone. Species are important, but it should not be as-
sumed that we can measure biodiversity just by counting species numbers. For the functioning
of biological systems depends on the kinds and combinations of organisms present [272]. In
few words, biodiversity is not only the variety of organisms on our planet, but also the interde-
pendence of all these living beings, including humans, and the influence that such interactions
have on the functionality of ecosystems [391].

This new approach towards diversity is known as functional diversity. Although, there is
not a standard definition of functional diversity [383], most of the proposed definitions can be
summarized into two categories: the first one sees the organism as a unit, emphasizing on the
quantity and properties of the organism, i.e., diversity of functional groups [401]; and the second
regards the trait as a unit, and it emphasizes the range and distribution of traits, i.e., functional
traits diversity [178]. Under this new paradigm ecologists acknowledge first, that biota plays an
essential role in ecosystem processes [59, 410], and second, that the biodiversity of an ecosystem
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Chapter 1. Introduction 2

plays a significant role in such processes [46]. However, accepting that biodiversity is important,
and even than there is more to biodiversity than species number, opens two important questions:
how do we measure functional biodiversity in an ecosystem? And, would this measure capture
the effect of biodiversity in the functionality of such ecosystem?

Researchers have attempted to calculate the functional diversity in different ways [364]. An
initial common method for calculating functional diversity is expressed by functional group
richness [401]. It has been more effective though, to use species traits for calculating functional
diversity. One of the simplest functional diversity index, uses the sum of the Euclidean distance
between any two species within the assemblage based on how distinct the species traits are
[421]. This index, however, depends strongly on species richness [282]. Schmera and colleagues
suggested that functional diversity should be calculated by the distance matrix divided by
the number of functional units [365]. Increasing knowledge of functional diversity has led the
indices to include species abundance weight (such as the community weighted mean CWM)
[145], functional divergence [264], functional regularity [282], multiple traits [50], intraspecific
variation [364], and many more indices [224] which were developed over the past two decades.

The relationship between functional diversity and ecosystem functioning can be explained
via two mechanisms. The first mechanism is ‘diversity hypothesis’ [399]. Tilman found that or-
ganisms and their functional traits in the community had an effect on ecosystem functioning by
complementarity of resources use. Therefore, a highly diverse community displays less resource
utilization overlap than that of a low diversity community, having also a higher proportion of
resources available for consumption. Consequently, ecosystem functioning would increase [105,
401]. The other mechanism is ‘mass ratio hypothesis’ [156]. Grime found that the contribution
of species to ecosystem functioning is mainly dominated by the dominant species traits, and
low abundance species is relatively insensitive [145, 226]. Some traits make particular species
utilize a greater proportion of resources than other species in a community, thus these species
contribute disproportionately to ecosystem functioning [61]. While the diversity hypothesis re-
flects the trait difference between species which could maximize resource utilization strategies,
the mass ratio hypothesis describes the weight of community traits. These two mechanisms are
not contradictory, they are two forms of functional diversity and they show that both functional
diversity and dominant species identity have significant impact on ecosystem functioning [249,
383].

A good method to measure functional diversity in an ecosystem, which considers the points
previously touched, is the Rao’s quadratic entropy [342]. With this approach we can compute
functional diversity from pairwise functional distances between species [349]. To obtain those
distances, we need first to identify traits of the species under consideration and then, compute
functional diversity from distances in trait space [295, 341, 421]. Nevertheless, a bottleneck
typically occurs when the researcher must quantify the trait space of all organisms considered.
Moreover, the decision of which traits are relevant functional characteristics is made based on
the researcher’s experience and it is dependent on the group of species and functions under
consideration. Some traits may be difficult to measure, and their values may be dependent on
environmental conditions [395], hence, being context dependent. All these constraints mean
that trait-based functional diversity quantification remains constrained to comparatively small
groups of well-studied organisms and suffers from limited data availability [68, 359].

Nevertheless the difficulties to measure traits, a more feasible option would be to infer those
traits from data [285]. The former are o-traits, physiological characteristics directly identified
from observation, the latter are i-traits, approximations to the fundamental niche axis which



Chapter 1. Introduction 3

species occupy in an ecosystem. Trait reconstruction builds on the possibility to identify those
traits which make species fit to their environment by monitoring where they are distributed
over time, thus, obtaining those particular traits which make species coexist in an ecosystem
[114, 285]. Questions remain however on, what approach to use? And what kind of data is
adequate for such purpose?

One extraordinary source of information on species distribution is such provided by the
multiple ecological monitoring programmes. Over long periods of time, in some cases spanning
few decades, these programmes have focused their attention towards more accessible and easier
to quantify characteristics of species in ecosystems, such as the species identity, their biomass,
and/or their abundance [32, 297]. The result are long-term datasets that have captured hun-
dreds of species over large spatial scales. These datasets are, in fact, a fingerprint of the history
of ecological communities and the ecosystems they inhabit [432].

Precisely using long-term monitoring data, Ryabov and colleagues [359] have developed an
approach to infer i-traits. Using diffusion maps [79, 80], a nonlinear dimensionality reduction
method, Ryabov’s approach is able to reconstruct the i-trait space of a phytoplankton commu-
nity by using only the biomass of phytoplankton species in samples. Diffusion map is a method
from networks science. Its feasibility for ecological research is based on the fact that it considers
not just isolated species in an ecosystem but also the interactions between them [127, 267]. At
its core this method establishes a network of species in which only reliable comparisons are
considered. High-dimensionality of ecological datasets is then turn to a lower, more relevant
dimensional space, in which species can be located and evaluated according to their similarity
or dissimilarity [79, 98]. Those species located closer to others in the network, either share sim-
ilar functional attributes or tend to respond similarly to environmental factors. Consequently,
the functional diversity can be computed from the pairwise distances in the i-trait space, for
each sample in the dataset.

In spite of the feasibility of the method, its application in ecology is quite recent, thus
multiple knowledge gaps must be filled. In one hand, diffusion maps have so far been applied
to monitoring datasets of unicellular organisms, e.g., marine bacteria and phytoplankton com-
munities [68, 127, 267, 359]. Biologically, this organisms have short time-spans, hence, fast
reproduction and seasonal succession [57, 138]. Ecologically, due to limited mobility and size,
their spatial distribution tends to be homogeneous at short scales, but highly influenced by sea-
sonality, or inter-annual oceanographic changes [347]. Species with a longer time-spam, varying
from few years to decades, might have a single species occupying different habitats according to
age-specific living requirements, mobility and competitive advantages [75, 259, 389]. A longer
timespam also means they are subject to environmental disturbances which other organisms,
e.g., bacteria or phytoplankton, are not [113, 141]. Expanding the application of diffusion maps
to more complex organisms will allow us to asses the fitness of this method when dealing with
species whose biology and ecology provide an extra layer of complexity.

On the other hand, most of the available long-term ecological datasets are gathered by
monitoring programmes which, due to logistic or budget limitations, have focused mainly on
monitoring stations [297]. Hence, the spatial resolution covered is usually low and mainly re-
stricted to coastal areas [397]. Furthermore, these datasets are often cross-sectionally wide
(e.g., census many interacting species) but short in the time dimension [76, 188]. This lack of
appropriate time series data would limit the application of diffusion maps, and provide poor
reconstruction of the i-trait space [21]. A feasible solution to address this issue is to aggregate
those individual efforts (e.g. Helgoland, Marsdiep, Norderney, Rijkswaterstaat monitoring pro-
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gramme) into a single time series which overcomes the shortcomings of a low spatial resolution,
and a short time dimension [68, 266]. In this thesis, I extend the diffusion maps approach,
testing its feasibility when assessing functional diversity in marine communities, seeking to fill
exiting knowledge gaps, and overcoming the limitations imposed by the availability of data
itself.

I start in Chapt. 2, first introducing important concepts and tools that I use in this work.
After I give a brief introduction to the idea of complexity in ecosystems, I provide an overview of
the paradigm change towards a functional view of biodiversity, the relation of biodiversity and
ecosystem functioning, and the approaches to measure functional biodiversity in ecosystems.
Thereafter, I explain the methodological approaches and main analytical tools which are used
in this research. I introduce briefly some concepts of networks, to then focus on diffusion maps.
In particular, I show how diffusion maps can overcome pervasive issues, such as the curse of
dimensionality, and identify major explanatory variables in high-dimensional datasets. Lastly,
I detail the process to calculate functional diversity from the reconstructed i-trait space.

In Chapt. 3, I apply the diffusion maps method to a long-term dataset of North Sea demer-
sal fish abundances obtained from the ICES coordinated, International Bottom Trawl Survey
(IBTS). The diffusion maps reveal the community variation is well-explained by two i-trait axis,
which have structured the fish community in both the spatial and temporal scales. Using these
newly identified variables, I could measure the functional diversity of each sampling haul, thus
converting the long-term dataset into a functional diversity time series.

In Chapt. 4, I develop an approach to aggregate individually gathered monitoring datasets.
Aggregation of datasets cannot be done directly, as any artifact from the data gathering pro-
duces clusters in data, delivering poor ecological insights. Instead, a more careful approach is
proposed, one in which the particularities present in the data, which are the products of dif-
ferences in sampling methodologies or personnel expertise in taxonomic identification, are not
neglected. Therefore, we avoid the shortcoming of short datasets, and we expand the spatial
area in which we can assess functional diversity.

In Chapt. 5 I use the previously developed dataset aggregation method to generate a dataset
of phytoplankton abundance for the North Sea basin. To do this, I developed a computer pro-
gramme which can standardize the process of data harmonization, data aggregation, diffusion
mapping, and functional diversity measuring. Using this programme, I was able to evaluate the
performance of diffusion maps with increasing addition of data. Furthermore, I could measure
the functional diversity of the monitoring stations in the North Sea basin.

Finally, in Chapt. 6 I conclude this work by summarizing the results and expressing a
brief outlook for future research. In particular, I envision the expansion of diffusion maps
to heterogeneous groups of species and larger spatial areas. Equally relevant is to seek new
sources of data (e.g. eDNA), and other tools, such as machine learning, which enhance the
performance of this approach. An ultimate goal is the generation of an online engine which,
powered by diffusion maps, can estimate functional diversity in samples, for regions that were
already adequately assessed.



Chapter 2

Concepts and Methodology

Evelyn Hutchinson in his book ’An Introduction to Population Ecology ’ [192], explores the
evolution of the term niche as an ecological concept. Starting with Gause’s idea on competitive
exclusion [148], R. H. Johnson’s conjecture about the species’ assigned place in nature [203],
or Joseph Grinnell’s wondering whether the fauna of an ecosystem could ever be full [157]; the
niche was always considered natural to any species, but affected only by competition with other
species [148]. Hutchinson, however, highlighted C. S. Elton’s book, Animal Ecology [123], as
a significant change of direction for the ecological concept of the niche. For Elton, the niche
is affected by ”all manner of external factors acting on an animal... so, the niche should
be characterized as the place of an animal in the biotic environment, in relation to food and
enemies” [123]. Although preserving the idea of the niche as a species’ given role in nature,
Elton included the role of environmental factors on the shaping of any species niche [192].

Hutchinson’s definition builds on Elton’s idea, and considers that the niche, a geometrical
shape with ‘n-dimensions,’ is influenced by a non-linear combination of species traits and envi-
ronmental features [191]. Ecologist have suggested that to understand ecological communities
we must first understand the factors which structure their constituent species’ niche space [186].
Additionally, understanding how the niche space varies in different ecological communities could
shade light into another relevant, but often elusive, concept in ecology, the biological diversity
[39].

Simply known as biodiversity [255], the concept of biodiversity has evolved from a mere
focus on species numbers, i.e., taxonomic richness [206], towards one in which more attention
is given to the influence of species assemblages on the functioning of ecosystems [179, 391].
In other words, on the functionality of biodiversity for ecosystems. A functionality that is
driven by particular species traits or environmental features, which make species fit to their
environment and have a relevant role powering multiple ecosystem processes.[30] The main
challenge in functional diversity is, consequently, to identify those composite traits that map
ecological roles, or the properties that summarize organisms’ functional capabilities [83, 178].
A powerful analysis method for meeting this challenge is offered by diffusion maps [79, 80].
This method defines a new coordinate system, a niche space for the species in the ecological
community, where the axes, or variables, are non-linear composites of the most important
factors structuring such community.

In this chapter the objective is to introduce important concepts and the methodology applied
to develop this research. I begin in Sec. 2.1 with an introduction to the concept of complexity

5
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applied to ecosystems. Then, I provide a short overview about the concept of biodiversity in
the context of complexity, its role for ecosystems functioning, and the paradigm shift towards
a functional view of biodiversity (Sec. 2.2). In Sec. 2.3, I will provide an introduction to the
key ideas of Networks borrowed for this research. In Sec. 2.4 there is a detailed introduction to
the non-linear dimensionality reduction method, diffusion maps, which is the key methodology
driving this research. I close in Sec. 2.5, with a explanation on the methodology to measure
functional diversity from the reconstructed trait space obtained via the diffusion maps.

2.1 Complexity in Ecosystems

Ecologist have long dedicated to study species and ecological communities. From pioneering
works like those of Charles Darwin in the Galapagos Islands [92], Alfred Wallace in the Malay
Archipelago [422], Charles W. Thomson and John Murray with the HMS Challenger Expedition
[284], towards more recent examples such as the extensive surveys of Simon Ferrier in Australia
[130] or Jorge Cortes in Costa Rica [85], the goal has been to find, describe and taxonomically
classify new species. The focus has been mostly centered on the species [142].

Nevertheless, descriptive ecology is not a futile exercise [149]. Description is a first step
towards understanding a system, stated Ricard Sole and Jordi Bascompte in 2006. A variety of
authors however, acknowledge that description alone is not enough. Instead, the development
of a theoretical framework is necessary. One that allows the generation of further insights and
increases our capacity for forecasting and prediction [382].

Ecologist are increasingly facing the challenge of predicting the consequences of human-
induced changes in the biosphere [382]. The consequences of biodiversity decline [67, 437], the
reduction of ecosystems functionality [128, 287], the impact of harvesting activities over trophic
webs [141, 344], or the vulnerability of socio-ecological systems to climate change [243, 283],
are just a few of the many issues for which the formulation of general laws, such as the ones in
physical sciences, are still unreachable [251].

But why is that ecology has not reached the formulation of any important law applicable
to all natural systems or biological communities? Does something intrinsic exist in biological
systems which prevents us from that? [227, 241, 355]. When comparing biological systems,
i.e., a phytoplankton cell or a coral reef, to physical systems, i.e., the solar system or a simple
pendulum, there are three fundamental differences which are worth paying attention. Biological
systems posses features which provide them with functionality [187]. In other words, compo-
nents of the system posses functions which resemble little to none the individual parts which
they are composed of [381]. Second, this components can reproduce at multiple levels [428].
Third, such cycles of reproduction lead to the evolution of biological systems [54], eventually
leading to the whole change of the system.

From an ecological point of view, this systemic view is summarized in the emergence of
the term ecosystem [392]. Initially coined as a reaction to the excessive focus of naturalist on
individual species, it proposed a study of the biotic as well as the abiotic world as a whole [3].
Currently, ecosystems are largely considered a complex environment, affected no just by the
underlying variation of geophysical conditions, such as regional climate or nutrients availability,
but also by the outcomes of self-organization, and the properties arisen from the interactions
of their components [235].
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This interaction between the internal organization of an ecosystem and the influence of
external factors, makes it worth to wonder, how does this happens? How is that a group of
apparently unrelated individuals formed an intricate network of interactions. More importantly,
why an ecosystem is complex? Complexity refers to the impossibility to analytically decompose,
reduce, or simplify a system without losing important characteristics [176]. In complex systems,
the relevance attached to the interactions between their components, would compromise our
understanding of the system’s behavior if we analyze the system based solely on its components,
ignoring these relationships by breaking such interactions [88].

If we consider true that any ecosystem is a complex environment, then the level of complex-
ity that it exhibits can be understood as the dynamic interactions of its components. However,
ecosystems can be understood at very different nested scales [382] (Fig. 2.1). At the basics
of them all, single species. But beyond this level, interactions with other species must be
considered. Phenomena such as population cycles [144, 223], the appearance of parasites and
pests [166], or the organization of community assemblages and the influence of spatial vari-
ability on their distribution [424], cannot be understood by single-pointing a specific level of
organization. Especially because this nested structure does not represent a hierarchical one,
but rather a bidirectional influence between component and organizational levels. Therefore,
understanding how complexity shapes ecosystems requires a frame of reference, which focuses
on both components and interactions.

Figure 2.1: Levels of ecological organization represented by a set of Russian Nesting Dolls with varying degrees of feedback. As
depicted, the largest doll in the set has the most complex flow of feedback and organization. But a similar process is occurring at
every local level, with each inner doll responding to its own stream of feedback, self-regulation at the relevant scale in time and
space, together accomplishing unified coherence across the whole. Reproduced from Kauffman 2015 [212]; open access under the
Creative Commons Attribution License - CC BY 4.0.

Ricard Sole and Jordi Bascompte in their book Self-Organization in Complex Ecosystems
considered that ’...ecosystems are the result of historical processes. The building of an ecosys-
tem involves, on short time scales, path-dependent processes defining ecological succession. On
larger time scales, species themselves change and co-evolutionary dynamics arise [382].’ This
statement summarizes important characteristics of ecosystems, e.g., scale dependency, influ-
ence of physical constraints, dynamic interactions of species, lack of a clear top-down control,



Chapter 2. Concepts and Methodology 8

absence of stability [104, 260]. Such properties lead the authors to catalogue ecosystems as a
particular kind of far-from-equilibrium system, a complex adaptive system (CAS).

Back in 1995 the ecologist Simon A. Levin had already defined ecosystems as ‘prototypical
examples of complex adaptive systems... [235].’ The concept of CAS refers to a particular type
of open system in which their composing elements have a high interactivity between themselves
and with the environment, thus, they can learn and modify the way they interact. These allow
the system to self-organize and to adapt to changes in the surrounding environment [88].

John Holland attributed to any CAS four properties: aggregation, non-linearity, diversity,
and flows [185]. But it was again Simon Levin, expanding the findings of Arthur and col-
leagues [14] from economics to ecology, who recognized that ecological CAS posses five intrinsic
characteristic [235, 236], none totally independent to each other:

1. Localized interactions: the components of any ecosystem are constraint to local interac-
tions, which are responsible for the emergence of features such as spatial patterns [46,
398], or the coexistence of competing species [373, 404].

2. Absence of well-defined top-down control: Top-down control in ecosystems is usually
counterbalance by bottom-up forces [41].

3. Heterogeneity in network organization: Exist a network structure in ecosystems which
pervades their behaviour and response to perturbations [163, 353, 441]. But it also
influences the possibilities for adaptation of species. Heterogeneity also refers to the
‘diversity’ among components of the ecosystem [236].

4. Adaptation: The capacity to change as a response to external and internal influences.
Such adaptation response occur both at single species level [261, 411] as well as at higher
hierarchical levels, e.g., foodwebs [273].

5. Evolvability: This characteristic is what, ultimately, allows new features to emerge from
the rearrangement of components and structures whitin ecosystems. What originally was
might not be anymore given a considerable amount of time [277, 322].

Heterogeneity is one of he most recognizable features in any CAS [185, 235], but in an
ecological context, it is commonly known as diversity. Diversity in ecosystems remains central in
the ecological debate [100, 352]. Explored from a variety of disciplines and using multiple tools,
the concept of diversity in ecosystems remains elusive and debatable. In the following sections
the attention will be focused on grasping diversity in the context of complexity, addressing
relevant questions such as, what tools can be used to understand diversity from a complexity
approach? Can we measure the diversity of an ecological CAS, such as a marine ecosystems?
How this diversity is distributed spatially? And, is diversity stable, or temporarily dynamic?

2.2 Biodiversity: functional or not?

The diversity of biological organisms, better known as biodiversity, is a powerful concept in
ecology. It has been used in a variety of contexts and with slightly different variations, but
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when it was first introduced it served as an indicator of the number of species which were
present in a particular habitat [252]; and as a linking term for genetic diversity and ecological
diversity, i.e., the number of species in a community of organisms [292]. Although neither of
those publications offered a formal definition of biodiversity, it was clear that for the authors
it was indisputably linked to taxonomic diversity [167].

Taxonomic diversity is the usual place to begin when thinking about biodiversity [83, 236].
This paradigm is based in two main assumptions: (1) all species are equal and their relative
abundance determines their relative importance for the ecosystem, and (2) all the individuals
of a particular species are equal in spite their length and weight [83, 257]. Consequently, a
variety of methodologies were developed to measure the influence that the number of species,
the dominance of certain species, the proportion of species, or the proportion of species change,
have in structuring the distribution and patterns of diversity in ecosystems [177, 199, 206, 320,
371, 376].

Nevertheless, focusing only on taxonomic diversity meant that the distribution of species was
largely a function of abiotic (physical and chemical conditions) and biotic factors (interactions
among species such as competition, facilitation, disease, and predation). In other words, under
this paradigm biodiversity is a passive consequence of extrinsic factors (i.e., climate, geology,
and chance events), which set regional patterns in distribution and abundance, while biotic
factors (i.e., number, type, and arrangement of interspecific interactions) secondarily modify
regional patterns [78, 214, 333]. Such approach to biodiversity prevailed for many decades [286,
416]. But in the decade of 1990’s the first traces of a new paradigm started to emerge [287,
367].

Ecologist started to abandon the idea of diversity limited to taxonomy and equilibrial no-
tions, in favor of a view in which physical and chemical conditions of the environment are
increasingly recognized as driven by ecosystem function (e.g., nutrient cycling and energy flow)
[167, 286]. Shahid Naeem summarized this emerging view: ”...the existence of life alters the
environment and the diversity of life determines the manner in which life alters the environ-
ment, much as if diversity were a catalyst to life’s biogeochemical activities” [286]. Under this
new paradigm two issues take relevance. First, that biota plays an essential role in ecosystem
processes [59, 410]. Second, that biodiversity plays a significant role in such processes [46].

2.2.1 The Biodiversity-Ecosystem function relation

The influence of life on ecosystem process has been reported in the literature decades before
the new paradigm started to emerge. A classic example is the role of the sea otter (Enhy-
dra lutris), in structuring the littoral and sub-littoral community of the Aleutian Archipelago
[126]. Overexploited for most of the 18th century, sea otters disappeared in many islands of
this archipelago, surviving only in remote, unpopulated bays. When James Estes and John
Palmisano studied the continuing reduction of kelp forest and seagrass beds of this area, they
found a direct relation between the overpopulation of sea urchins and the lack of sea otters.
Sea otters control herbivorous invertebrate populations by predation, so after their removal,
the increasing sea urchin grazing resulted in the destruction of macrophyte associations in the
coastal ecosystem of the Aleutian Archipelago. This is a seminal example of what Robert Paine
defined as a ‘keystone species’ [305], a species highly relevant in the configuration of the food
web topology, thus, with capacity to affect ecosystem functionality in spite of their relative low
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biomass [332].

The influence of diversity in ecosystems processes, however, is usually not that simple [250,
401]. In a variety of ecosystems, there are groups of species, rather that single species, per-
forming critical tasks for the maintenance of ecosystem’s functionality, e.g., honey bees, wasps,
beetles, bats or flying foxes undertaking pollination [15, 306]; or highly specialized bacteria and
cyanobacteria carrying the nitrogen-fixation function in ecosystems [372]. In either of these
cases, the loss of a few pollinator species or nitrogen-fixing bacteria, would not cause a total
collapse of the function [132, 356].

Paul and Anne Ehrlich have a great metaphor which points towards this: ”...ecosystems are
like well-made airplanes, with redundant subsystems and features that permit them to continue
functioning after absorbing a certain amount of abuse. A dozen rivets, or a dozen species, might
be missed. On the other hand, a thirteenth rivet popped from a wing flap, or the extinction of
a key species could lead to a serious accident” [119]. These renowned ecologists highlighted
two important points with this metaphor. First, that ecosystems might have ‘alternatives’ to
replace those missing components, thus, avoiding the collapse of system functions. Second,
that cumulative effect of species loss might have a higher impact, even if the loss of individual
species does not.

The two previous examples show the importance that species diversity have for ecosystem
processes, either as top-down regulators or as bottom-up providers. This is why a sole focus
on taxonomic diversity would miss the importance of biodiversity below, as well as above the
species level [236]. Moreover, we must remember that, in any ecosystem, species are present
in populations rather than as isolated organisms. Population ecologists have argued that dec-
imated species populations, with just a handful of individuals cannot fulfill the same role in
the ecosystems, so whether a species is present or not provides limited information to asses
diversity [146].

Nonetheless, it is yet unclear how diversity contributes to ecosystem functionality [198].
Initial experimental research supported a positive relationship of biodiversity to ecosystem
functionality and stability, thus having a higher variety of species worked as a sort of insur-
ance which prevented declines in ecosystems functioning caused by environmental fluctuations
[276, 287, 439]. Empirical research has reported examples of ecosystems in which the relation
biodiversity-ecosystem function appeared more complicated than initially thought [383]. Thus,
it is now relevant to focus attention on how scientist assess functionality in ecosystems and how
functional, in fact, is biodiversity.

2.2.2 How can functional diversity be measured?

Due to the growing interest for understanding the relation between diversity and ecosystem
functioning [47, 159, 440], the definition and limits of what functional diversity represents has
varied over the past 30 years. Whereas for David Tilman functional diversity represents, ‘the
value and range of those species and organismal traits that influence ecosystem functioning ’
[400]; for Diaz and Cabido it was related to ‘the number, type and distribution of functions
performed by organisms within an ecosystem’ [105]. Petchey and Gaston talked about functional
diversity of communities as ‘the diversity of traits present in a community weighted by their
abundances ’ [317]. More recently Zhang and colleagues argued that functional diversity is
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‘based on the various traits of species and their adaptations and responses to environmental
change’ [442].

In spite the multiple definitions, most researchers have agreed on the direct link between
functionality and traits [317], because the diversity of traits can better reflect species resource
acquisition and niche complementarity [265, 328]. Therefore, functional diversity is related to
the diversity of functional traits which are present in a biological community with respect to
their presence and abundance [83, 356, 418]. In simple words, measuring functional diversity is
about measuring functional trait diversity [317]. Consequently, quantifying functional diversity
in ecosystems is, in theory feasible, but in practice it is not simple.

Several methods and indices have been described and discussed on how to calculate func-
tional diversity [73, 317, 326, 349, 364]. However, most of them do not estimate all the compo-
nents of biodiversity that influence ecosystem functioning in a satisfactory way, thus rendering
the interpretation of results difficult and controversial [349]. While a focus on species diversity
only demands to count individuals from different species (i.e., sort them into several categories),
to focus on trait-functional diversity, demands extensive knowledge about the species and the
identification of those traits which influence functionality [242]. Although, intuitively we might
expect that different species posses different traits, in ecosystems some species are very sim-
ilar to each other, i.e., functional redundancy; while some are very different, i.e., functional
distinctiveness [363].

In order to understand this, we can think again about the two cases described in the previous
section. In ecosystems exist a variety of manners in which species support functionality. For
example, for the coastal area of the Aleutian Archipelago, only one species held control on
invertebrate grazers population [126]. For a grassland, pollinators hold major relevance, but
probably there will be more than one species undertaking this function [331]. For many ecologist
this was the first approach toward functional diversity. Because in ecosystems, function seems
to be supported by a group of ‘key-species,’ rather than by a single species. Simon Levin called
this a ‘keystone group’ [236]. Currently, that idea diverged to what is commonly known as a
‘functional group’ [218, 343, 400].

A functional group is defined as a set of species exhibiting similar responses to environmental
conditions and having similar effects on the dominant ecosystem processes [132]. Although it of-
fered more insights to the initial taxonomic approach, this idea soon reached serious limitations,
because it demanded exhaustive knowledge about what characteristics of the species could be
considered functional or not, it does not distinguish possible ontogenic changes on species, it as-
sumes that inter-specific differences are higher than intra-specific differences among species, and
lastly, because it considers absolute functional equivalence within a group [34, 317]. Since the
constitution of groups anticipates the assessment, the determination of the functional groups
quantity as well as the placing of species within groups is attain to high subjectivity and the
researcher level of expertise [83]

On the contrary, a direct approach, one that can assess functional diversity based on specific
functional traits measured for each species is more desirable and promises a finer resolution [52,
317]. On this regard, Owen Petchey and Kevin Gaston argued that an index would successfully
measure functional diversity if, ideally, meet each of the following conditions [317]:

1. Appropriate functional information (traits) about organisms to be included in the mea-
sure, and irrelevant information to be excluded (what functional traits should be in-
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cluded?) [233].

2. Traits to be weighted according to their relative functional importance [316, 354].

3. The statistical measure of trait diversity to have desirable mathematical characteristics
[50, 349]. For example, discontinuous vs. continuous measures of diversity.

4. The measure to be able to explain and predict variation in ecosystem level processes.

Three of the conditions are related to the second most relevant concept for this research,
‘the functional trait.’ A trait is a well-defined, measurable property of organisms, usually
measured at the individual level and used comparatively across species. A functional trait
is one that strongly influences organismal performance [275, 419]. Functional traits can be
morphological traits that represent adaptations to different diets or habitats, physiological traits
(e.g., temperature tolerance), reproductive traits (e.g., number of eggs and egg diameter), or
behavioral traits (e.g., migratory behavior or parental care) [52, 233].

But regardless the great enthusiasm that trait-based functional diversity generated among
ecologist in the decade of the 2000’s [275], serious limitations soon emerged. The obvious one
is related to the availability of traits themselves. For instance, it is easier to categorize fish
species by their general diet than to obtain measurements on their size, gape width, stomach
length, etc. [87]. Furthermore, ecosystems are composed of dozen if not hundreds of species,
thus, having a complete list of functional traits is an almost impossible task.

When functional traits are available, researchers interested in applying functional diversity
indices need to make various methodological decisions such as, how many and which traits to
use, how to weight them, how to combine traits that are measured at different scales and how
to quantify the species’ relative abundances in a community [233]. This again circles around to
the initial problem of the functional groups approach. As subjectivity is unavoidable in science,
the ideal is to minimize its influence, therefore, a functional diversity index should reduce to
the minimum the steps in which subjective decision can bias the analysis [359].

If the points addressed by Owen Petchey and Kevin Gaston [317] advocated for an ideal
index, following them in sequential order would demand an extensive knowledge about the
ecosystem and their biological communities. This limits the application of any index to just
a handful of well-researched environments. On the contrary, in this thesis I argue that an
inverse sequential approach to this conditions would provide the necessary basic raw material
to evaluate functional diversity in any ecosystem which has been adequately monitored:

1. Use a measure which is able to predict variations in the presence and abundance of species.

2. Create a product with mathematical characteristics, which allows to discern those species
according to their functional redundancy (functionally similar species), or to their func-
tional distinctiveness (functionally dissimilar species).

3. Based on the organization and distinctiveness of our community, we will discern those
likely traits which made them organized in such particular manner, therefore, inversely
reconstruct those traits which can be functional.

4. After traits have been weighted according to their relative functional importance, a func-
tional diversity assessment can be perform using an adequate index.
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This approach requires to reconstruct the functional trait space (i.e., coordinates which
corresponds to a selected trait), in which points will represent species of the community [364].
This is a novel approach to ecological research, one which seeks to turn around the usual
ecological postulate [215], using a measure of how species varied in the ecosystem first, obtaining
those functional traits which had likely influenced such organization afterwards. We will return
to a detail explanation of the postulate and the method used to calculate functional diversity
from long-term monitoring datasets in the Sec. 2.5. It is now time to explain in detail the
methods used in this research.

2.3 Networks

Ecosystems are the union of hundreds, if not thousands, of species interacting dynamically
with each other and with the physical environment surrounding them [153]. Although these
interactions have a key role for ecology and evolutionary biology, it was only recently that the
increasing availability of computational tools to store and retrieve biological data and multi-
disciplinary approaches to science, have facilitated a wider application of networks theory by
biologists to address multiple open questions in ecology [336].

Network thinking is by no means new to ecology. Great ecologists such as Lindenman
and Odum pioneered the use of networks as a way to represent and describe food webs [239,
298]. Recent decades have seen the application of networks theory to diverse areas of ecology
such as spatial ecology and metapopulations [163, 408], epidemiology [12, 308], or evolutionary
dynamics [238, 360]. This is because, from a complexity perspective, the patterns of connections
in a given biological system can be represented as a network [288].

A network is a collection of units which interact with each other as a system [336]. In
the most simple case, a network can be represented by a set of uniform nodes connected by
undirected edges (Fig. 2.2). The nodes represent units at most levels of the biological hierarchy,
from genes and proteins to neurons and organs and limbs, and from individuals in a population
to species in a community. Edges, or links, represent some kind of interaction between nodes,
including transcriptional control, biochemical interaction, energy flow and species interactions
[288, 336].

Figure 2.2: Example network of two nodes connected by one undirected link.

Representation and description of networks has been the domain of a branch of discrete
mathematics known as graph theory [44, 45]. With a large history, whose beginning dates
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back to 1736 when Leonhard Euler published the solution to the Königsberg bridge problem
[42], graph theory has provided answers to a series of practical questions such as: what is the
maximum flow per unit time from source to sink in a network of pipes, how to color the regions
of a map using the minimum number of colors so that neighboring regions receive different
colors, or how to fill n jobs by n people with maximum total utility. The end of the 1990s
decade nonetheless, saw the raise of a new movement of interest and research which focused on
‘complex networks’ [271, 288].

The rise of the internet fueled the interest in complex networks, and two seminal papers
disseminated its application to biological systems, that by Watts and Strogatz on small-world
networks in 1998 [425], and that by Barabási and Albert on scale-free networks which appeared
one year later [19]. Biological systems are perfect examples of complex networks, a network
whose structure is irregular and dynamic [271, 336]. Applications of this framework on real
networks has raised continuously covering novel topics and problems in network structure and
their dynamical behaviour [120, 406]. In spite network representation of biological systems will
necessarily involve condensation of information, this approach provides a useful tool to tackle
full communities interactions and dynamics, rather than interactions of pairs of species [22].

Networks has raised as a science on its own, with proper terminology, an evolving theory
and methodologies which are applied to other scientific disciplines [390]. Extensive reviews,
such as [42, 289, 390], or specialized books, e.g., [31, 49, 110] offer an in-depth exploration of
networks theory and applications. In the next subsection, I will focus on introducing a formal
mathematical description of network representation in the context of this research, touching
upon the most relevant theoretical background borrowed from the networks theory.

2.3.1 Network representation

The arrangement of nodes and interactions within a network is known as topology, and the
best way to represent such topology is by using an adjacency matrix [42, 288]. The adjacency
matrix is a square matrix with dimensions corresponding to the size of the network. For every
link in the network, e.g. from node i to node j the adjacency matrix has a nonzero entry at
position Ai,j, whereas all other entries are set to zero, indicating the absence of a link. For an
unweighted network, the entries are 1 (link present) or 0 (link absent), whereas for a weighted
network, the adjacency entries represent the weights of the corresponding links. The adjacency
matrix for the example network in Fig. 2.2 is

A =

(
0 1
1 0

)
(2.1)

Closely related to the adjacency matrix is the laplacian matrix [74], which can be derived
as follows:

L = D−A (2.2)

In the Eq. 2.2, D represents the degree matrix of the network. For the case of undirected
networks, the number of links that connects to the respective node. D contains the sum over
each row of A on its diagonal, as

Di,i =
∑
j

Ai,j (2.3)



Chapter 2. Concepts and Methodology 15

So replacing Eq. 2.2 with matrix notation we obtain

L =

(
0 1
1 0

)
−
(

1 0
0 1

)
(2.4)

L =

(
1 −1
−1 1

)
(2.5)

The Laplacian matrix captures the amount of divergence from a point, i.e., it measures
whether the neighboring points of a point are larger than it or smaller than it or are on a line,
thus, showing how much linear the neighborhood of a point is [150]. In a single phrase the
Laplacian is a measure of relation of neighbor points [28].

Matrices such as the Adjacency or Laplacian are useful in ecology because they allow re-
duction of multi-factor systems, such as a biological community, into linear systems which can
be mathematically handled [443]. This is performed by means of what in spectral theory is
known as eigenvalues and eigenvectors of a matrix [361]. To understand what eigenvectors
and eigenvalues represent, let’s introduce a simple example. Imagine we have a vector ν of
coordinates [1,2], multiply by a matrix A as

(
5
10

)
=

(
1
2

)
·
(

1 2
8 1

)
(2.6)

The product of νA, could also be represented as

νA = 5

(
1
2

)
(2.7)

In this case, we call 5, an eigenvalue (λ) and

(
1
2

)
, an eigenvector (ν) [27]. The eigenvectors

of a matrix are those vectors for which multiplication by a matrix results in a vector in the
same direction or opposite direction to the original, as

Aν = λν (2.8)

The eigenmodes are also useful because they allow to track how a system evolves step-by-
step [13]. Therefore, the matrices used to represent and resolve networks will be the cornerstone
for understanding and developing further our methodology in the next section.

2.4 Diffusion maps

David Donoho called this the ‘century of data.’ He claimed that: ”A combination of blind faith
and serious purpose makes our society invest massively in the collection and processing of data
of all kinds, on scales unimaginable until recently” [108]. For Donoho at the verged of the new
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century, our society faced three major intellectual trends: that data will be more than ever
ubiquitous; data analysis will be extremely relevant to make sense of data; and that more that
ever there will be a pervasiveness of high-dimensionality [108].

The dimensionality of a dataset, refers to the number of variables measured per sample which
can easily amount to thousands [98]. Consider the following example, a sampling campaign in
a bay to collect information about its fish community. Each time we do a hauling we catch tens
or even hundreds of species, the dimensionality of the data space equals the number of different
variables that are recorded in the dataset, e.g. the number of detected species, the weight of
each fish, the temperature or salinity of the water at the moment it was catch, hence several
hundreds, if not thousands.

High dimensionality in datasets makes it challenging to understand what drives the variation
in such system. Let’s imagine that in our previous example one fish species is enough to describe
the community and its variation. For instance, we would need to check in our dataset those
samples with the highest and the lowest abundance of that particular species. If in our bay two
rather than one species matter, the number of extreme points would double. The dataspace has
now four corners, the lowest value of species 1, the highest value of species 1, the lowest value
of species 2 and the highest value of species 2. Therefore, each variable that is added, doubles
the number or corners of the dataspace. Let’s say we find 1,000 different species, each sample
would then map to a point in a 1,000 dimensional space. This space would have 21000 corners,
which is greater than the estimated number of species on Earth of around 1-6 billion (∼ 2230 -
2233) [225]. This exponential increase is the first consequence of what is usually referred as the
‘curse of dimensionality’ [29, 417, 438].

To overcome this issue it is important to realize that, although datapoints lie in a coordinate
space, they only cover a part of such space. In our fish sampling we would not expect to find all
possible combination of fish species of the bay, but rather species appearing together may do
so because they use similar resources, profit from certain interactions or benefit from the same
environmental conditions [373, 426]. Due to such interactions and dependencies our datapoints
might approximate a curved surface, or some other comparatively low-dimensional object within
the data (Fig. 2.3). These underlying structures are summarized under the term manifold [253]
and the goal of locating such structures is known as dimensionality reduction [69, 384]. It
would therefore be possible to characterize the data and the relationship between individual
datapoints using fewer dimensions, if we were able to measure distances on the manifold itself
[98].

PCA (Principal Component Analysis)[204] is the most traditional tool used for dimension-
ality reduction. PCA projects data on a lower-dimensional space, choosing axes that keep a
maximum of the data initial variance. Unfortunately, PCA is a linear tool, thus, non-linear
relations between the components of the initial data may get lost [417]. In fact many statistical
frameworks (e.g., principal components analysis, generalized linear models, multivariate au-
toregressive models), which reduce linearly high-dimensional data, assume that causal factors
do not interact with each other and have independent or additive effects on a response variable
[440]. Such assumptions might cause the loss of relevant information, specially when dealing
with data in biological fields, where the relevant units (e.g., species or other variables) may not
behave according to fundamental equations [99] and where datasets are often cross-sectionally
wide (e.g., census many interacting species) but short in the time dimension [76, 188].

The challenge, then, is to determine the lower-dimensional data structure that encapsulates
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Figure 2.3: Example of a data manifold. The datapoints can be described in terms of ‘One variable,’ and ‘Another variable.’
However, since the datapoints cluster around the spiral structure, dataset could also be explained in terms of this new variable,
that follows the main dimension of the data manifold.

the data, achieving dimensionality reduction at the time the important relationships between
datapoints are preserved. A methodology offering a solution is diffusion maps [79, 80]. Diffusion
maps, a non-linear technique, achieve dimensionality reduction by re-organising data according
to parameters of their underlying geometry. This method has proven more reliable because it
allows to establish a network of species in which only reliable comparisons are considered. Thus,
species located closer to other in the network either share similar functional attributes, or tend
to respond similarly to environmental factors. The establishment of such network recreates the
original high dimensional space in a manifold which will then allow us to measure the diffusion
space between points to determine how dissimilar, or not, the points of our network are [79].

The next section will provide a detail explanation of how diffusion map works; but also of
how by applying diffusion maps it is possible to approximate the inverse approach to determin-
ing functional diversity of ecosystems by using long-term ecological datasets.

2.4.1 Diffusion maps process method

Diffusion map was first introduced by Ronald Coifman and colleagues [80], here we use a
variation of the method by Edmund Barter and Thilo Gross [21], which consist of the following
six steps:

1. Standardize the data.

2. Compute distances between all datapoints.

3. Construct a similarity matrix.

4. Threshold the similarity matrix.

5. Define a Laplacian matrix.
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6. Eigendecomposition of the Laplacian provides new variables

We examine each step of the diffusion map method by revisiting our hypothetical bay fish
community. Our starting point is the data matrix A with the dimensions M x N, where
M=1,000 is the number of datapoints, i.e., the fish sampled, and N=200 is the number of
sampling hauling performed in the bay.

First step is to standardize the data. Standardization is a common procedure to the analysis
of complex ecological datasets. Its objective is either bring data recorded in distinct units to a
common scale or eliminate size differences in datapoints [230, 293]. Here we bring all values in
the range [0, 1], i.e., a mean equal to zero and a standard deviation equal to 1 [62], according
to

Âm,n =
Am,n − µn

σn

(2.9)

with

µn =

∑
m Am,n

M
(2.10)

σn =

√∑
m (Am,n − µn)2

M
(2.11)

being the mean (µn) and standard deviation (σn) of the nth column of A.

In the step 2 the standardized datapoints will be used to compute the Euclidean distances
between all datapoints. Thereby we obtain an M x M distance matrix D, where

Di,j =

√∑
n

(
Âi,n − Âj,n

)2

(2.12)

is the Euclidean distance between the datapoints i and j in the data space. This includes
also many long-distance comparisons.

Now we define similarities of two datapoints as the inverse of the Euclidean distance of the
respective datapoint pair. As a result, we convert the distance matrix into a similarity matrix
C (step 3), where

Ci,j =
1

Di,j

(2.13)

is the similarity of the datapoint pair i, j. The diagonal elements of the matrix C, those
comparing each datapoint to itself, are set to zero. The selection of the distance and similar-
ity metric depends on the dataset at hand. Hence, a variation might be necessary in this step
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depending on the selected index of similarity [21, 359]. For instance, in some research the Spear-
man correlation coefficient [385] has been applied as similarity measure, e.g., for phytoplankton
abundance dataset [359]; in others the hamming distance was used as distance measure to com-
pare bacterial genomes using gene presence-absence data [127, 267], whereas the most common
measure of similarity, the Pearson Correlation Coefficient [310], might be of limited use due to
being mostly appropriate for linear correlations [311].

Here it is worth pausing to explain the concept of similarity and how it operates for diffusion
maps. The idea of distance as a measure of similarity is not new for ecology [380]. Originally
applied to measure taxonomic similarity [11, 172], it is used now in a broader sense, implying
similarity as a measure of correlation between datapoints due to not just intrinsic but also
extrinsic factors. For the case of high-dimensional space, distances are often large due to
datapoints being sparsely distributed. As a consequence we are left with a mixed of small
similarity distances indicating high correlation, but also large distances, which provide very little
information on the nature of the discrepancy [98]. Translating this to the bay fish community,
we could have that ten fish species appear together in most of the samples, whereas the rest
of fish species appear in lower frequency or in specific locations. In one hand, when comparing
those ten species, a high similarity score is likely, which could be assessed against factors
common to the environment or others which might influence such shared distribution. On the
other hand, when comparison are done to the less frequent species, a lower degree of similarity
might result, but the reasons for that can be hardly attributed to any particular factor.

To eliminate all long-distance comparisons, diffusion maps threshold the similarity matrix
to local comparisons only, thus, defining the area within which we trust our local similarity
measure to be accurate [21, 79, 98]. This is done in step 4, where we introduce a kernel
threshold number (α). This kernel will modify the degree of connectivity of our network. By
tweaking the kernel scale, we choose the size of the neighborhood, based on prior knowledge of
the structure and density of the data. For intricate, non-linear, lower-dimensional structures,
a small neighborhood is chosen. For sparse data, a larger neighborhood is more appropriate.
Previous research studies showed that the value of 10 is often a good threshold, providing the
most robust results [127, 147, 267, 359]. Hence, for this research the threshold kernel was set
to 10, i.e., only the top-10 highest similarity entries were kept for each datapoint and all other
entries in the matrix were set to zero. Therefore, an entry Ci,j is kept if it is among the top-10
highest similarity scores for either datapoint i or for datapoint j, or both.

For step 5, having now built a network of trusted comparisons, we will quantify the distance
between dissimilar datapoints as the distance on this network. A way to approach this is to
consider the shortest path distance [330]. However, due to the dependence of this distance
on the presence and absence of single links, it is very susceptible to noise. Diffusion maps
use the concept of diffusion distance [80, 98], which robustly quantifies the distance between
datapoints. Along the geometric structure, points are dense and therefore highly connected.
Pathways form along short, high probability jumps. On the other hand, paths that do not
follow this structure include one or more long, low probability jumps, which lowers the path’s
overall probability, as for example in Fig. 2.4, where the red path becomes a viable alternative
to the green path as the number of steps increases when we follow the red manifold.

The diffusion distances can be computed from the eigenvectors of the Laplacian matrix.
Accordingly, from the thresholded similarity matrix we compute the corresponding M x M
row-normalized Laplacian matrix, defined by
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Figure 2.4: Paths along the low-dimensional geometric structure of the dataset. The red path becomes a viable alternative to the
green path as the number of steps increases when we follow the red manifold. The circles A and B are dataset points in the manifold

Lij =

{
1 for i=j

− cij∑
k ckj

otherwise
(2.14)

Laplacian matrices, introduced in Sec. 2.3.1, are positive semi-definite matrices closely re-
lated to many natural processes such as different types of diffusion processes, heat conduction,
or the spreading of vibrations [325]. They hold some interesting, useful dynamical properties
[361]:

1. At least one of its eigenvalues is zero.

2. All the other eigenvalues are either zero or positive.

3. The number of its zero eigenvalues corresponds to the number of connected components
in the network.

4. If the network is connected, the dominant eigenvector is a homogeneity vector.

5. The smallest non-zero eigenvalue is called the spectral gap of the network, which deter-
mines how quickly a diffusion process takes place on the network.

The properties 1, 2 and 3 will help us to keep the connectivity of our network. If we obtain
more than a single zero eigenvalue, the number of components of the network is more than one
[131], which means that the network has become disconnected. When this happens we have to
repeat our analysis applying a higher threshold, in step 4. The properties 4 and 5 point out
towards our next and final step 6.

The diffusion map preserve a dataset’s intrinsic geometry, and since the mapping measures
distances on a lower-dimensional structure, we expect to find that fewer coordinates are needed
to represent datapoints in the new space. The question becomes which dimensions to neglect, in
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order to preserve diffusion distances (and therefore geometry) optimally [98]. Eigenvectors have
a dimensionality equal to the number of datapoints, thus each eigenvector assigns one value
to every datapoint, with an associate eigenvalue. This eigenvalue indicates the importance of
each dimension, having the smallest non-zero eigenvalue gathering the directions of the largest
variation, or the main dimensions of the data manifold [253].

The eigenvectors represent new variables that are non-linear combinations of the original
variables and can be interpreted as coordinates in trait space [21, 80]. Hereby, we have moved
from a high-dimensional space which is difficult to make sense of, to a space in which we can
confidently compare datapoints by measuring the Euclidean distances in this new trait space
[359].

We can conclude that diffusion map is a dimensionality reduction method, which is able
to find non-linear structures embedded in complex high-dimensional systems, such a biological
communities [127, 359]. This method’s only parameter is the selection of the threshold kernel,
thus, it reduces to a minimum subjectivity and avoids over-parametrisation, which is often an
issue in data analysis and ecological modeling.

2.5 Calculation of functional diversity

Diffusion maps have had successful applications into distinct research in ecology. Using this
method researchers were able to identify metabolic strategies in marine bacterial communi-
ties [127, 267], reconstruct functional traits from marine phytoplankton time series [359], even
enhancing trait reconstruction by merging phytoplankton datasets from different origins [68],
and to interpret the β-diversity between geographically distant samples [147]. This highlights
diffusion maps as a tool that yields new explanatory variables that represent composite func-
tional traits of the studied organisms. Such new variables are derived solely from ecological
monitoring data.

Returning to our postulate of an inverse approach to the Owen Petchey and Kevin Gas-
ton ideal index [316] (SubSect. 2.2.2), the application of diffusion map to a long-term time
series have allowed the reconstruction of a functional trait space. Therefore, it is possible now
to determine the distinctiveness of species based on the approach developed by Ryabov and
colleagues [359]. Consequently, for each species pair, i and j, functional distinctiveness is de-
fined as dij, which is the euclidean distance in the reconstructed trait space, where the species
traits are now given by the eigenvector elements corresponding to the species, re-scaled by the
respective eigenvalue, as in

dij =

√√√√∑
k

(
υk,i − υk,j

λk

)2

(2.15)

where υk,i is the eigenvector of species i present in sample k, whereas υk,j is the eigenvector
of species j present in sample k, λk is the eigenvalue corresponding to sample k.

The pairwise functional distances are then used to calculate the functional diversity of each
sample by means of the Rao’s quadratic entropy [342]. The functional diversity (FD) for sample
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k is computed as

FDk =
n−1∑
i=1

n∑
j=i+1

dijp
(i)
k p

(j)
k (2.16)

where dij is the pair-wise distance between species i and j, p
(i)
k and p

(j)
k are the relative abundance

of species i and j in sample k and the summation indices i, j run over all n species in the system
[50, 350].

Obtaining a functional diversity score for each sample of our dataset will allow functional
diversity variation assessment, both in the temporal and the spatial scale, of any ecosystem that
has been moderately monitored. Hence, all the information which remains store in ecological
monitoring datasets can be unravel and re-interpreted by means of diffusion maps. Nevertheless,
there still remain multiple knowledge gaps, precisely on determining how far this methodology
is useful to understand functional biodiversity (Chapter 3), the limitations imposed by data
availability, extension and standardization for the accuracy of results (Chapter 4), as well as
the applicability to different group of organisms, or to wider and longer spatial and temporal
scales (Chapter 3 and 5). In the following chapters we will address this knowledge gaps,
approaching functional diversity from a complexity perspective by applying the methods of
networks introduced here.



Chapter 3

Diffusion mapping a long-term time
series: The North Sea Fish Community

Since 2010, when the parties of the United Nations Convention on Biological Diversity (CBD)
adopted the Aichi Targets for 2020 [407], increasing efforts have been advocate to ‘improve the
status of biodiversity’. But in spite of global agreement, and the urgency in the matter, pres-
sures on biodiversity have increased. Having unclear or incomplete reports about biodiversity
changes and trends [72, 179, 402] is a direct consequence of the limited availability of long-term
biodiversity indicators [5]. Although good biodiversity-indicator programmes exist, they are
biased towards developed countries in temperate regions [190, 262], or are limited to short-time
periods, thus making it difficult to monitor biodiversity change across wide spatial scales and
longtime frames [208, 274].

While there is an urgent need to initiate well-designed programmes to measure changes in
biodiversity [5, 240], there is currently an effort to use existing information, often collected for
other purposes, to gain insights on how the state of biodiversity is changing [247, 335, 359].
Ecological long-term datasets of species, which gathered data on biomass, abundance or just
presence-absence, represent a unique source for assessing biodiversity, given the appropriate
tools and methodology [269, 279].

This chapter focuses on presenting a framework based on diffusion maps to coarse-grain
a taxonomically-rich fish community in terms of their most relevant functional traits. Our
approach reduces the high-dimensionality of the time series, reconstructing the trait-space
and creating a network of trusted connections. Applying this framework to a long-term fish
abundance time series from the North Sea, I am able to reconstruct the dynamics of the
functional diversity of the individual samples in the dataset.

We start with a general introduction to the dynamics of fish communities of the North Sea
(Sec. 3.1). In Sec. 3.2, the diffusion map approach is applied to the North Sea fish community
time series. The method identifies important functional i-traits associated with community
variation and delineates the network structure of the community. In Sec. 3.3, I estimate the
functional diversity of the North Sea fish community over time and across the North Sea basin.
Finally, I discuss the results in Sec. 3.4.

23
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3.1 Dynamics of fish communities

In an ideal community scenario, an homogeneous species spatial distribution would spread the
risks of extinction over various habitats when species encounter environmental changes [35].
However, species naturally distribute heterogeneously and adjust their spatial distribution in
response to population dynamics and environmental variability [63, 296, 340]. For instance,
heterogeneous distribution of fish species is ruled by biotic or abiotic factors which, according
to different degrees of relevance, shape what is known as the ‘species niche’ [111].

The niche as defined by Hutchinson, is a multidimensional hypervolume in which a species
can maintain a viable population [191]. The niche concept is enhanced by M. Tokeshi’s ideas of
the niche changing over ecological times, and niches of different species overlapping partially, but
not completely in ecosystems [403]. The niche is, therefore, a proxy of those factors structuring
a particular biological community, and the niche space the key to understand the functionality
of species in ecosystems [337].

Diffusion maps offer a way to reconstruct the niche space of a community, by assessing
ecological similarities of co-occurring species [79, 80]. In other words, by assessing those species
which occur together we can get a hint on the factor, or traits, which summarize a species’ niche
in a given community [234]. Nevertheless, for the case of fish, their biology provides a layer of
complexity. Fish species have a longer timespan, varying from few years to decades, opening
the possibility for a single species to occupy different habitats according to age-specific living
requirements, mobility and competitive advantages [75, 259, 389]. Moreover, some species are
massively abundant, which leads to a high intraspecific competition [209]. A longer timespan
also means they are subject to environmental disturbances, which other organisms, e.g., bac-
teria or phytoplankton, are not. Therefore, oceanographic cycles, or other man-made induced
changes will also influence the survival rates of fish species or the habitats they can occupy.
[113, 141].

Additionally, assessment of functional diversity in fish communities also needs careful at-
tention. It has been shown that for fish communities the scale in which we perform the analysis
might influence the relevance of some factors over others. In one hand, at short spatial scales,
biotic factors, also known as ‘limiting similarity’ or interspecific competition [254], prevents
species with similar ecological niches from co-occurring [17, 77, 101, 312]. On the other hand,
at larger spatial scales a strong abiotic control, known as ‘environmental filtering,’ results in
co-existing species that are likely to share similar ecological traits that enable them to survive
in such environment [213, 419]. Therefore, whether the resulting functional diversity is high
[281] or low [281, 312], careful consideration of scale is vital to interpret the results.

3.2 Reconstructing the functional trait space

The diffusion map analysis was performed on scientific bottom-trawl survey data available
from the International Council for the Exploration of the Sea (ICES) online database [195],
specifically on one of the longest time series for North Sea demersal fish species abundance,
the ICES coordinated International Bottom Trawl Survey (IBTS). This monitoring program
carries annual campaigns since February 1965 [169]. Herring (Clupea harengus) was, initially,
the only targeted species, having the survey restricted to the southern and central North Sea.
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Since 1974 although, the entire North Sea has been included and all demersal fish species are
monitored [77]. Therefore, we selected the IBTS surveys carried during the period 1980-2021.
Additionally, two younger ICES coordinated surveys were included to the analysis in order to
increase the spatial coverage and data availability. The Scottish West Coast Bottom Trawl
Survey (SWC-IBTS), with data available from 1985 to 2018 [18]; and The Irish Groundfish
Survey (IGFS), with available surveys for the period 2003-2017 [387]. These surveys were also
recovered from the ICES DATRAS portal [195]. Our analysis covers the entire North Sea basin,
the eastern English Channel, the north and west Scottish Coast, as well as the Irish north coast
and the Celtic Sea.

3.2.1 Long-term data and area of study

For each survey haul (i.e., sampling unit), the species were identified, the number of individuals
were counted, and their length was measured, representing an indirect measure of abundance
in number of individuals at size caught per species and haul. Hauls last approximately 30 min
and the data was converted into abundance per hour fishing. Only taxonomic groups for which
the species names were specified were kept, and scientific names were checked with the World
Register of Marine Species [7] as well as with FishBase [137]. All invertebrates and strictly
pelagic species were excluded, limiting the analysis to demersal and other bottom related fish
species. To standardize for haul duration, only hauls with a minimum duration of 20 min were
retained. No restriction was done for depth of hauling. The final dataset included in total
36,467 hauls and 229 species.

To assess the contribution of abiotic and biotic variables to the variation of the reconstructed
i-trait space, we recovered supplementary data. Accordingly, we used some oceanographic
parameters that were gathered at the moment of the sampling haul, such as depth of sampling,
hence data was available in the DATRAS portal [195]. Furthermore, we used fish ecological
traits, gathered by Esther Beukhof and colleagues [36], which are available to retrieve from the
PANGEA open source data repository [129]. This data is based on fish taxa observed during
international scientific bottom-trawl surveys regularly conducted in the North Sea, Northeast
and Northwest Atlantic, and the Northeast Pacific. The majority of trait values were verified
via FishBase [137], or supplemented with values from primary literature.

3.2.2 Diffusion mapping the functional trait space

We will follow the algorithm introduced in Sec. 2.4.1 for diffusion mapping the fish abundance
dataset, using the co-occurrence of species as similarity measure. The starting point for the
analysis is the data table of fish species (rows) and haul sampling identifier (columns). When a
species is present in a particular sample the entry will be the abundance recorded in the dataset,
if the fish species is absent in the sample the table entry is 0. Now, we establish a notion of
similarity between our species. Due to the massive disparities between recorded abundances
of some fish species, we use the Spearman correlation [385]. The similarity values are now
standardized in the range [0, 1], i.e., its mean is zero and its standard deviation is 1 [62]. The
resulting similarity scores are gathered in a similarity matrix, which is thresholded to keep
only the top-10 highest similarity entries for each datapoint. From the thresholded similarity
matrix we calculate the row-normalized Laplacian matrix. Finally, we compute the eigenvectors
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and eigenvalues of the Laplacian matrix. All the diffusion maps steps were implemented and
executed in the Julia programming language [38].

After the diffusion map analysis, the dataset dimensionality has been reduced to fewer, new
variables that represent the functional trait space of the fish community. The eigenvectors
assign an entry to each fish species for each new variable. Each one of these new variables
corresponds to an eigenvalue which encloses information on the importance of the identified
variable (Sect. 2.3.1). The most important eigenvector, hereafter called variable 1, corresponds
to the smallest non-zero eigenvalue. The eigenvector corresponding to the second-smallest
non-zero eigenvalue is the second most important, hereafter called variable 2, and so on [21,
266].

Each new variable represents a possible functional response of the fish community to abiotic
or biotic forcing. However, we must make sure the diffusion map analysis captures the main
features of compositional change across the community. A fast way to determine if our analysis
has identified the main dimensions of variation in the data is to plot the inverse of the ranked
non-zero eigenvalues [147]. The inverse eigenvalues should be larger for meaningful dimensions
of variation and relatively small for non-meaningful dimensions of variation. In Fig. 3.1, there
is a substantial gap between the first non-zero eigenvalue and the remaining eigenvalues, hence,
most of the data variation was gathered and can be explained by it.

(a) (b)

Figure 3.1: Ranking of diffusion maps variables in four scenarios. The ranking score is calculated with the inverse eigenvalue
spectrum (1/λ), across all datapoints of (a) the IBTS, and the IBTS with the adult/juvenile segregation; (b) the aggregation
of IBTS, SWC, IGFS, and the aggregation of IBTS, SWC, IGFS with the adult/juvenile segregation. For all scenarios the first
non-zero eigenvalue explains most of the variation. However, with adult/juvenile segregation the eigenvalue becomes larger and the
second eigenvalue becomes more relevant.

Moreover, in Fig. 3.1 we can also observe two panels that represent different amounts of
datapoints used in the analysis. Diffusion maps is a data-hungry method, it delivers best
outcomes when more datapoints are used [21, 127]. This can be clearly seem when comparing
Fig. 3.1(a), where the analysis was only performed with data from the International Bottom
Trawl Survey (IBTS); and Fig. 3.1(b), where the analysis was performed with the aggregation
of data from IBTS, the Scottish West Coast Bottom Trawl Survey (SWC-IBTS) and The Irish
Groundfish Survey (IGFS). In Fig. 3.1 (b), the relative magnitude of the first inverse non-zero
eigenvalue becomes larger, therefore, the magnitude of variation contained in the corresponding
dimension is also larger [21, 147].

We also must consider that we are dealing with more complex organisms than in previous
ecological applications of diffusion maps [127, 267, 359]. For unicellular organisms, their short



Chapter 3. Diffusion mapping a long-term time series 27

life timespan, which ranges from hours to a few days, in addition to a limited spatial motility,
reduces significantly the ecological considerations for the diffusion map analysis. After a parent
phytoplankton cell reproduces, there is a high certainty that daughter-cells will occupy the same
geographical location [347]. Moreover, different generations will not overlap in time, therefore,
reducing significantly the intraspecific competition [86]. For fish species, biology and ecology
are more complicated, as explained in Sect. 3.1. Thus, key ecological features which influence
the spatial or time distribution of fish species, must be included in the analysis when it is
possible.

A feature which might be relevant, is the sometimes dissimilar spatial distribution of adults
and juveniles fish species [84, 154, 183]. It has been reported in the scientific literature that most
fish species provide little to none parental care, having instead spawning events with million of
larvae, which are then indistinctly transported by currents to the open sea, or by tides to bays
or shallow waters [9, 248, 339]. In other cases, fish travel to specific spawning locations, quite
different and distant from where the adult population live (e.g., Atlantic Salmon (Salmo salar)
[2, 151], or the European Eel (Anguilla anguilla) [366, 435]). There are also cases in which
not much movement is performed, thus, the juvenile and adult population tend to have certain
degree of overlap [205, 294] Therefore, separating juveniles from adults in our diffusion map
analysis will be relevant so that the diffusion distance successfully captures the relationship
between environmental distance and compositional dissimilarity in the fish community [147].

A proxy way to differentiate juveniles from adults is by using the concept of size at maturity,
which is defined as the length at which 50 % of a population become sexually mature for the
first time (Lm) [405]. Since the IBTS has gathered information of the length of each collected
individual, we will use the Lm to separate a fish species in a juvenile and an adult version of
itself (Fig. 3.2), so all the individuals whose size is smaller than Lm will be tagged juvenile (J),
whereas individuals with a size equal or larger than their reported Lm will be tagged as adults
(A). The values of Lm were recovered for 130 fish species, available at the dataset by Esther
Beukhof and colleagues [36] as well as from FishBase [137].

In panels (a) and (b) of Fig. 3.1 we can appreciate the effectiveness of including this feature.
The magnitude of the variable 1 is larger in both cases, when the analysis is performed with size
differentiation species data from IBTS only (Fig. 3.1(a)), and when the analysis is performed
with size segregated species data from IBTS, SWC-IBTS and IGFS (Fig. 3.1(b)). Moreover,
the variable 2 also becomes more relevant (Fig. 3.1(b)), therefore, the two largest non-zero
inverse eigenvalues should identify the major axes of variation in the data. The eigenvectors
associated with these two eigenvalues provide a new coordinate system for the data, i.e. the
diffusion map [79, 147].

3.2.3 Identifying functional traits

Once the i-trait space has been reconstructed, and the most relevant variables that explain the
variation in the community were identified, we must attribute a meaning to those variables.
Diffusion maps do not provide a biological interpretation of the eigenvectors. This might be
seem as a disadvantage, as long as there is no intuitive sense on how the eigenvector emerges
from the original dataset. But there are coherent structures in the long-term dataset which act
as explanatory variables, independent of human interpretation. Those variables can be uncover
and interpreted by analyzing additional data [21, 127, 359].
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Figure 3.2: Anchovy (Engraulis encrasicolus) growth chart representing the association between fish length to age. The chart
shows the hypothetical Lm attributed when fish reaches 8.0 cm or 1 year of age. Every individual whose size is lower than 8.0 cm is
assumed a juvenile, whereas an individual whose size is equal or larger than 8.0 cm is considered an adult. Modified from OSPAR
Portal; open access under the Creative Commons Attribution License - CC BY 4.0.

An initial approach is to verify the extreme values in the respective variable and check for
biological or ecological characteristics of those species [127, 267]. These species might provide a
working hypothesis to be tested with additional data, or via scientific literature [21]. However,
it is usual that for ecological datasets, information on environmental parameters were also
gathered at the moment of sampling (e.g., day of year, sea surface temperature, total NO−3

concentration, total PO−4 concentration, salinity, dissolved inorganic nitrogen (DIN), dissolved
inorganic phosphorus (DIP), suspended particles, depth of capture). When this data is available
we can calculate the mean environmental conditions at which each species was observed. This
is done by computing a weighted average of each environmental parameter, where the biomass
of the species under consideration is used as the statistical weight of the sample.

Ê(r,i) =

∑n
j=1 a

(i)
j E

(r)
j∑n

j=1 a
(i)
j

(3.1)

where a
(i)
j is the relative abundance of species i in sample, E

(r)
j is the environmental factor

r in this sample, and n is the number of samples. In this way we obtain the species-specific
environmental value for each phytoplankton species, then used to colorize the diffusion maps
results.
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3.2.4 Important functional traits in the North Sea fish dataset

Further analysis is performed only in the diffusion map that provides the best possible recon-
structed trait space, as explained in Sec. 3.2.2. This diffusion map corresponds to the analysis
performed on the merged fish dataset from IBTS, SWC-IBTS and IGFS, with a juvenile/adult
differentiation for fish species with an available size at maturity value (Lm). The environmen-
tal data gathered during sampling was either incomplete for the entire period of monitoring,
or was not available for most of listed parameters in previous Sec. 3.2.3. Only the depth of
hauling was consistently reported, as well as sampling date. Fish traits [36], both categorical
and quantitative, were also used for assessing the variables of the diffusion map [36].

First variable: Depth

The first i-trait identified by the diffusion map, or EV1 in Fig. 3.3, aligns datapoints along
a manifold which represents the depth in which the fish species was more abundant. In the
positive extreme of EV1, we find fish more abundant at shallow areas, not deeper than 50
meters, e.g., Gasterosteus aculeatus, Syngnathus rostellatus, Platichthys flesus, juveniles of Clu-
pea harengus. Whereas in the negative extreme we find fish that reached abyssal areas, up to
depths of around 400-500 meters, e.g., Polymetme corythaeola, Notacanthus bonaparte, Syna-
phobranchus kaupii, Mora moro.

Figure 3.3: Diffusion map displays the reconstructed i-traits that explained best the variation of dataset. Color coded is the
environmental conditions under which the species were observed with high relative abundance. The EV1 aligns well with depth of
sampling. The manifold alignment might represent the response of fish species to the depth gradient of the North Sea basin and a
sign of adaptation to the oceanographic conditions that are characteristic of different depths, i.e., salinity, water temperature, food
availability, light availability.
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That depth plays a key role in structuring the North Sea fish community is not a surprise [36,
90, 101]. Diverse fish communities, at different latitudes and habitats, have strong responses
to changes in depth. Fish communities usually get replaced partially or totally for others.
For instance, species in coastal shallow waters will resemble little to none those inhabiting the
twilight zone or the abyssal planes [155, 334]. However, what might result counter-intuitive is
that the reconstruction of the functional trait-space shows depth as the most important trait
in the fish community, when depth itself is not a functional trait which can be attribute to any
fish species. Therefore, we must examine closer, using further knowledge about the North Sea
oceanographic conditions, so that we can interpret the diffusion map axis in an ecologically
meaningful manner [21].

The North Sea, including the Skagerak, has a surface area of 575,000 km2 [219]. A massive
extension which nevertheless, is an exceptionally well-studied basin [301]. An example of what
in oceanography is known as a shelf sea. A coastal system at the interface of land and sea,
driven by weather and climate patterns that either promote inflow of oceanic waters from the
ocean, or dominance of terrestrial runoff [124, 228]. This binary influence makes the North Sea
a two-part system [124, 193]. In one hand, the southern portion is a shallow sea, with depths
bellow 50 meters (Fig. 3.4), a well-mixed water column and high nutrient concentrations, hence,
high seasonal phytoplankton production (Fig. 3.5). On the other hand, the central and northern
section have average depths of 100 meters (Fig. 3.4), a seasonally stratified water column but
nutrient-limited surface mix-layer, hence, with low primary production [124, 193] (Fig. 3.5).

The oceanographic differences between the north-central and southern North Sea ecosystem
will influence the possibilities of fish species to thrive in either part of the system [36, 64, 346]. In
this sense, depth becomes a summary variable of the oceanographic conditions that are affecting
fish. What the first variable of diffusion map is capturing, is a complex nonlinear combination of
environmental parameters which co-vary with depth (e.g. temperature, seasonality, salinity and
primary productivity), and that are a direct derivation of the North Sea two-part system [116,
124, 193]. From a functional trait perspective, the diffusion map first axis could represent the
physiological adaptation of fish to water temperature and salinity [122, 256, 321], the fish larval
survival rate [189, 209], the adaptability of fish to seasonal extremes [16, 117], diet preferences
[58, 139], or even behavioral responses to oceanographic conditions [229].

Applications of diffusion map to ecology have not used, so far, any extra ecological consid-
eration. In part because they deal with unicellular organisms [127, 267, 359] with a simpler
life cycle, or because relevant ecological data was not available. For diffusion mapping a fish
community dataset, the incorporation of size at maturity (Lm) is an asset which, nonetheless,
is not excepted from certain assumptions. It is worth noticing that neither all fish species
show adults/juveniles habitat segregation nor it is possible to know the value of Lm for all fish
species displaying such behaviour. Moreover, size at maturity (Lm) has been recently consid-
ered a non-fixed parameter, i.e., a parameter whose value could vary temporally, or between
different fish populations [309, 368]. This observation is most relevant for species holding com-
mercial value, whose populations have experienced significant size reduction [357], or have been
subject to habitat distribution reduction [107]. In spite of these considerations, the differentia-
tion of fish species between juvenile and adults, improved the explanatory power of variable 1
(see Sect. 3.2.2).

The diffusion map captured correctly differences in preferred depth for juveniles or adults.
For instance in Fig. 3.6(a) and Fig. 3.6(b), it can be noticed how adults of herring (Clupea
harengus) and whiting (Merlangius merlangus) were more abundant on depths below 80 meters,
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Figure 3.4: Bathymetry and topography of the North Sea displaying some important regions. Red dashed line represents a country
Exclusive Economic Zone (EEZ). Prominent regions are the Norwegian trench with depths bellow 200 meters, the Dogger Bank, a
sand bank located in the central basin and the southern shallow sea with depth bellow 50 meters. The International Bottom Trawl
Survey (IBTS) is carried out over the entire basin. Reproduced from Martinez-Gordon and colleagues [263]; open access under the
Creative Commons Attribution License - CC BY 4.0.

whereas juveniles were so on depths between 40 and 60 meters. This coincides with reported
herring spawning grounds located on the eastern English coast up to the Strait of Dover, while
alevines are transported by residual currents towards nursery areas in southern North Sea,
particularly the German bay [33, 84, 196]. The whiting showed a similar behaviour, however
with a smaller depth range between juveniles and adults (approximately 25 meters). This
could be explained by Whiting population dynamics. Two main spawning grounds have been
reported, one in the south and western North Sea and the other in the northern North Sea [154,
182], while juveniles and old adults are predominantly found in offshore waters [23, 171]. Thus,
while recently settled whiting occur extensively throughout coastal waters, juvenile whiting
tend to migrate off-shore, returning to shallower waters to spawn [71, 154].

In Fig. 3.6(c) and Fig. 3.6(d) there are two examples of milder spatial separation. In one
hand, the juveniles of the european river lamprey (Lampetra fluviatilis), showed preference for
depths between 20-30 meters, whereas few adults were found up to 70 meters depth. This
coincide with the extensive literature about the lamprey anadromous life cycle [106, 268, 377],
and the reports of metamorphosed ammocoetes in southern North Sea and Skagerak shallow
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Figure 3.5: North Sea two-part sys-
tem. The southern area is shallow,
and highly influenced by continen-
tal runoff; thus, the nutrient rich
waters attain high seasonal produc-
tivity. The northern and central
areas, are highly influenced by At-
lantic water inflow. Average depth
is 100 meters, the water column gets
seasonally stratified, and the sur-
face mixed-layer is nutrients-limited,
hence, with low productivity. Ar-
rows with numbers denote average
water mass transports (Sv). Re-
produced from Emeis and colleagues
[124]; open access under the Creative
Commons Attribution License - CC
BY 4.0.

waters and river estuaries [4, 121, 377]. The long rough dab (Hippoglossoides platessoides), an
inhabitant of deeper waters of the northern North Sea, has minor reports on spatial segregation
or spatial movements towards spanning grounds [294, 423]. The habitat segregation strategy
results advantageous in some cases, because it reduces intra-specific competition, or cannibalism
[89, 183, 318]. But the high levels of energy necessary for massive spawning, or large migrations
between feeding and spawning grounds, leaves little or none energy to adult fish to provide
parental care, thus, natural mortality of fish is extremely high during the first years of life
[270, 374]. Other fish species did not evolve such behavior, hence having adults and juveniles
occupying indistinctly the same habitat, e.g. the dab (Limanda limanda) and the flounder
(Platichthys flesus) [43, 65] (Fig. 3.6(e) and Fig. 3.6(f)).

Second variable: Year of maximum abundance

The second i-trait identified by the diffusion maps, or EV2 as shown in Fig. 3.7, aligns datapoints
along a manifold which represents the year in which the fish species was present in higher
abundance. The manifold shows asymmetry between its positive and negative extreme. While
the manifold is wider in relation to the negative side of EV1, it is narrower in relation to the
positive side of EV1 (Fig. 3.7). The gap between the inverse eigenvalue (1/λ) of EV1 and EV2
(Fig. 3.1) suggested that EV2 gathers less of the variation in the fish community. However, this
might also be a response of the system itself rather than a less satisfactory result. When plotting
separately the species which were more abundant during the period 1980-1999 (Fig. 3.8(a)) and
those more abundant between 2010-2021 (Fig. 3.8(b)), we get a hint of what this diffusion map
variable might represent.

A first impression would suggest that at the deeper northern North Sea, i.e., datapoints at
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Figure 3.6: Diffusion map of the reconstructed i-trait space, color-coded according to depth of higher abundance. Panels highlight
some examples of fish species separated in adults (A) and juveniles (J) according to their size at maturity (Lm). Panels (a) and
(b) show fish with marked spatial segregation (Clupea harengus and Merlangius merlangus); panels (c) and (d) fish with milder
spatial segregation (Lampetra fluviatilis and Hippoglossoides platessoides); and panels (e) and (f) fish which did not show any
spatial segregation (Limanda limanda and Platichthys flesus).

EV1 negative side, species reaching abundance peak in the period 1980-1990 are very distant
from those reaching their abundance peak at the period 2010-2021. On the contrary, in the
shallower southern North Sea and Shagerrak-Kattegat, i.e., datapoints at EV1 positive side,
the species dominant for each period are quiet similar, thus, they locate close in the man-
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Figure 3.7: Diffusion map displays the reconstructed i-traits that explained best the variation of dataset. Color coded is the factor
under which the species were observed with high relative abundance. The EV2 aligns with year in which the species abundance
was highest. The manifold alignment might represent the response of fish traits to temporal variations in environmental trends,
population dynamic oscillations or the outcome of human exploitation in the North Sea basin.

ifold (Fig. 3.8). This might be a result of distinct responses of fish species inhabiting the
North Sea two-part system [124, 193]. For instance, the shallower southern North Sea display-
ing a dominance shift between species which tend to coexist, either due to distinct dynamics
in their population abundances or due to favorable environmental conditions. In the deeper
North-Central North Sea however, such coexistence fades away, giving room to a likely shift in
dominance by species turnover. To discern this, at least partially, we can take a closer look to
those species which dominate in each period and region of the North Sea.

In one hand, those species that were more abundant in the period 1980-1999 have either
almost disappeared, or suffered severe decreasing abundance trends in the forward decades
(Fig. 3.9, Fig. 3.10 and Fig. 3.11). In the northern and central North Sea (Areas 1, 2, 3
or 7), the former includes adults of Hippoglossoides platessoides, Anarhichas lupus, Sebastes
viviparus, Pollachius pollachius, Molva molva, and juveniles of Anarhichas lupus (Fig. 3.9).
The latter includes juveniles of Amblyraja radiata, Gadus morhua, Melanogrammus aeglefinus,
Merlangius merlangus and adults of Gadus morhua, Microstomus kitt (Fig. 3.10). In Southern
North Sea (Areas 4, 5, or 6), the Shagerrak (Area 8) or the Kattegat (Area 9), fish species
experienced mostly decreasing abundance trends in subsequent decades, e.g., juveniles and
adults of Gadus morhua; adults of Myoxocephalus scorpius and Enchelyopus cimbrius ; Lycodes
vahlii and Lycenchelys sarsii (Fig. 3.11).

On the other hand, fish species that were more abundant in the period of 2010-2021 have
experienced diverse trends in the North Sea. For instance, in the northern and central North Sea
(Areas 1, 2, 3 or 7), adults and juveniles of Merluccius merluccius and Pleuronectes platessa;
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Figure 3.8: Diffusion map displays the reconstructed i-traits that explained best the variation of dataset. Color coded is the decade
in which the fish had highest abundance peak. Panel (a) displays species which reached highest abundance in the period 1980-1999.
Panel (b) displays species which reached highest abundance in the period 2010-2021. The asymmetry between the positive and
negative side of EV2 is related to the different dynamics of fish inhabiting the deeper northern and the shallower southern North
Sea.

juveniles of Microstomus kitt and adults of Scyliorhinus canicula, have experienced a dramatic
increasing abundance trend, especially after mid-2000s (Fig. 3.12). A moderate increasing,
or stationary, trend in abundance could be seen in species at the southern North Sea (Areas
4, 5, or 6), the Shagerrak (Area 8) or the Kattegat (Area 9), e.g., juveniles and adults of
Pleuronectes platessa; juveniles of Merlangius merlangus, Solea solea, Microstomus kitt and
Eutrigla gurnardus (Fig. 3.13). Few other species were only recorded from mid 2000s in Area
1 or Area 3, and some areas of the Irish Sea, reaching peaks of abundance during the 2010s
decade, e.g., Phycis blennoides ; adults of Capros aper ; adults and juveniles of Micromesistius
poutassou (Fig. 3.14).

The geographical position of the North Sea, mades its fish community highly connected
to the North Atlantic fauna through the entrance between Scotland and Norway, with the
Baltic Sea fauna through Shagerrak and Kattegat, and with the Celtic Sea/ Bay of Viscay
fauna through the English Channel [118]. Yan Jimming, based on the work of Wheeler [429],
considered that the North Sea fish fauna was composed of three main groups [202]. The
‘Boreal fish’, with distribution centered north of the English Channel; the ‘Lusitanian fish’, with
distribution centered south of the English Channel; and the ‘Atlantic fish’, widely distributed
in the Atlantic Ocean.

The variety of fish species living together in the North Sea is a clear indication of the
pronounced differences in adaptation that have allowed them to coexist [90]. However, commu-
nities are dynamic and shifts in dominance are rather a rule than an exception in ecosystems.
The initial reported dominance of the Boreal fish fauna during most of the 70 and 80s decades
[170, 202], is giving room to an ever more documented shift towards a dominance of Lusitanian
fish fauna in the North Sea, especially since the beginning of the new century [25, 113, 118,
315].

The EV2 is likely detecting this shift from Boreal towards Lusitanian fish species in ei-
ther the northern or the southern areas of the North Sea. Boreal fish such as the starry ray
(Amblyraja radiata), the four-bearded rockling (Enchelyopus cimbrius), the bullrout (Myox-
ocephalus scorpius), the cod (Gadus morhua) and the haddock (Melanogrammus aeglefinus)
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Figure 3.9: Box-plot abundance time series of ‘Boreal fish’ which disappeared from areas of the northern and central North Sea
(Areas 1, 2, 3 and 7), including adults of Long rough dab (Hippoglossoides platessoides), Ling (Molva molva), Norway haddock
(Sebastes viviparus), Pollack (Pollachius pollachius); adults and juveniles of Wolffish (Anarhichas lupus). Abundances were yearly
Log transformed. The blue line represents the time series trend.

showed a decreasing abundance trend since the beginning of 2000s (Fig. 3.10 and Fig. 3.11),
while Lusitanian fish, e.g., the hake (Merluccius merluccius), the whiting (Merlangius merlan-
gus), the grey gurnard (Eutrigla gurnardus), or the dogfish (Scyliorhinus canicula), reached
abundance peaks during the same period (Fig. 3.12 and Fig. 3.13).

The asymmetry in the EV2 might be related to the lost of some boreal fish species, such
as e.g., wolffish (Anarhichas lupus), the Norway haddock (Sebastes viviparus), the long rough
dab (Hippoglossoides platessoides) and the ling (Molva molva), from northern North Sea areas
where they used to be abundant previous to the 2000s (Fig. 3.9). Furthermore, Lusitanian fish,
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Figure 3.10: Box-plot abundance time series of ‘Boreal fish’ with decreasing abundance trends in areas of the northern and
central North Sea (Areas 1, 2, 3 and 7), including juveniles of Starry ray (Amblyraja radiata), Cod (Gadus morhua), Haddock
(Melanogrammus aeglefinus), Whiting (Merlangius merlangus); and adults of Cod (Gadus morhua), and Lemon sole (Microstomus
kitt). Abundances were yearly Log transformed. The blue line represents the time series trend.

such as the fork beard (Phycis blennoides), the Boar-fish (Capros aper), or the Atlantic Blue
whiting (Micromesistius poutassou), are registered first in the Irish Sea areas and Area 1 and
3 of the northern North Sea, mostly from mid-2000s (Fig. 3.14).

The apparent local extinctions in the northern areas and subsequent fish migrations into the
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Figure 3.11: Box-plot abundance time series of ‘Boreal fish’ with decreasing abundance trends in areas of the southern North Sea
(Areas 4, 5, or 6), the Shagerrak (Area 8), and the Kattegat (Area 9), including juveniles and adults of Cod (Gadus morhua);
adults of Bullrout (Myoxocephalus scorpius) and Four-bearded rockling (Enchelyopus cimbrius); Vahl’s eelpout (Lycodes vahlii)
and Sars’s eelpout (Lycenchelys sarsii). Abundances were yearly Log transformed. The blue line represents the time series trend.

North Sea have enhanced the dissimilarities of fish species in the deeper northern rather than in
the shallower southern areas. Indeed, relatively warm winter temperatures in the northwestern
North Sea might result in stronger inflow of warmer North Atlantic Current waters [116, 324].
Consequently, the main route into the North Sea for southern warm-tolerant species could be
stronger via the Shetland–Orkney gap rather than via the English Channel. Besides the species
previously mentioned, other warm-water species, such as the john dory (Zeus faber) and the
snake pipefish (Entelurus aequoreus) which also invaded in the beginning of the 2000s, were
first reported in the northwestern North Sea before expanding southward [118, 164, 216].
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Figure 3.12: Box-plot abundance time series of ‘Lusitanian fish’ with increasing abundance trends in areas of the northern and
central North Sea (Areas 1, 2, 3 and 7), including juveniles and adults of Hake (Merluccius merluccius) and Plaice (Pleuronectes
platessa); juveniles of Lemon sole (Microstomus kitt); and adults of Dogfish (Scyliorhinus canicula). Abundances were yearly Log
transformed. The blue line represents the time series trend.

Nevertheless the examples given so far, some exceptions are present as well. Boreal fish
such as the dab (Limanda limanda) and the lemon sole (Microstomus kitt) had an increasing
abundance trend indistinctly of which North Sea area we observe. In other cases, such as the
coalfish (Pollachius virens) and the greater argentine (Argentina silus), a positive abundance
trend was maintained only in northern areas, the Shagerrak and the Kattegat, being totally
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Figure 3.13: Box-plot abundance time series of ‘Lusitanian fish’ with increasing abundance trends in areas of the southern North
Sea (Areas 4, 5, or 6), the Shagerrak (Area 8), and the Kattegat (Area 9), including juveniles and adults of Plaice (Pleuronectes
platessa); juveniles of Sole (Solea solea), Lemon sole (Microstomus kitt), Whiting (Merlangius merlangus) and Grey gurnard
(Eutrigla gurnardus). Abundances were yearly Log transformed. The blue line represents the time series trend.

absent or barely reported in the shallower southern areas. Few other fish have a relative
stationary trend, with oscillatory tendency over periods of 5 to 10 years, e.g., the herring (Clupea
harengus) and the Norway pout (Trisopterus esmarkii). In the case of Lusitanian fish, the few
exceptions are related to species which did not have wider expansion, thus, being mostly limited
to southern areas, e.g., the anchovy (Engraulis encrasicolus), the Pilchard (Sardina pilchardus),
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Figure 3.14: Box-plot abundance time series of ‘Lusitanian fish’ which appeared in Area 1 or 3 of the northern North Sea and
the Irish Sea (Area 27.6.a, 27.7.b, 27.7.c.2, 27.7.g, 27.7.j.2), including Fork beard (Phycis blennoides); adults of Boar-fish (Capros
aper); adults and juveniles of Blue whiting (Micromesistius poutassou). Abundances were yearly Log transformed. The blue line
represents the time series trend.

the john dory (Zeus faber) and the roker (Raja clavata).

Any attempt at grouping tends to be highly artificial, thus, when trying to generalise, excep-
tions will certainly emerge [90]. The main difficulty in moving from species specific information
to generalised insights about the fish community resides not just in the 40 years long-term
dataset, but in the vast spatial scale over which such data was gathered [237]. For the North
Sea fish community the geographical distinctiveness between north-central and southern North
Sea is the major driver of community organization, summarized by variable 1 of diffusion map,
i.e., depth of species higher abundance. This influence is as strong as to affect the temporal
community changes in different manners according to region under assessment. Precisely, tem-
poral compositional changes, an apparent species turnover or community shift, is detected by
variable 2 of the diffusion map, i.e., the year of species higher abundance. Now, a key ques-
tion is whether the individual responses of species are context-specific phenomena or whether
they are symptomatic of a change in the North Sea ecosystem resulting from deterministic or
stochastic processes [338]. And if such an ecosystem-scale change has been taking place, how
the functional diversity was affected by it?
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3.3 Functional Diversity

In Sect. 2.5 we have seen that the diffusion distances in the reconstructed i-trait space can be
used to robustly estimate functional diversity of ecological communities [267, 359]. Adopting the
approach of Ryabov and colleagues [359], functional distinctiveness between all pairs of species
can be calculated (Eq. 2.15) from the variables obtained via diffusion maps. These distances
are then used to quantify the functional diversity of each sample (Eq. 2.16), by means of the
Rao’s quadratic entropy [342]. The outcome obtained is a time series with a functional diversity
score per sample.

The assessment of functional diversity variation was done in both the temporal and spatial
scale. Summarizing all sampling hauls according to area and season, the functional diver-
sity displays different variations over the yearly cycle regarding the area under observation
(Fig. 3.15). The northern and central North Sea (Areas 1, 2, 3 and 7) have wider variation
in functional diversity, reaching the highest values in winter or spring, and the lowest values
mostly in summer. The southern North Sea (Areas 4, 5, or 6), generally displayed narrower
variability, except for the winter period in which both highest and lowest values of functional
diversity were present. The Shagerrak (Area 8) and the Kattegat (Area 9) also showed wide
variability, with winter and summer scoring the highest values of functional diversity, whereas
lowest values are usually found in summer or autumn (Fig. 3.15).

Figure 3.15: North Sea functional diversity variation according to area and season. While the northern and central North Sea
(Areas 1, 2, 3 and 7) displays wider seasonal variation, the southern North Sea (Areas 4, 5, or 6) generally displayed narrower
variability in functional diversity. Highest functional diversity values are usually found in winter in the north and in summer or
autumn in the south. The Shagerrak (Area 8) and the Kattegat (Area 9) also showed wider variability but with highest and lowest
values in winter.

Summarizing all sampling hauls according to area and year of sampling, functional diversity
displays an oscillatory behaviour from year to year in many areas of the North Sea, however,
there are clear trends emerging in some areas. In the northern and central North Sea (Areas
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1, 2, 3 and 7) most of the stations show a stationary trend over the entire period, or a mild
increasing trend, which nevertheless is not significant. On the contrary, the southern North Sea
displayed a significant negative trend for Area 6, and a positive trend for Area 4 (Fig. 3.16).
Likewise, the Kattegat (Area 9) shows a significant negative trend, whereas the Shagerrak
(Area 8) displayed no significant trend (Fig. 3.16). It is noticeable the major oscillations in
Area 1 and Area 5 which take place in periods ranging from 5 to 10 years. In these areas,
highest functional diversity values are followed by steep declines in the subsequent years. Less
pronounce oscillations are also present in other areas, whether in the northern or southern
regions of the North Sea.

Figure 3.16: North Sea functional diversity variation according to area and year of sampling. While the northern and central North
Sea (Areas 1, 2, 3 and 7) displayed either a stationary or a non-significant increasing trend, the southern North Sea did show a
significant negative trend for Area 6, and a positive trend for Area 4. In the Kattegat (Area 9) there is a significant negative trend,
whereas the Shagerrak (Area 8) showed no significant trend. Major oscillations in Area 1 and Area 5 are happening in time frames
of 5 to 10 years.

The oscillations in functional diversity values in Area 1 might be related to the abundance
variability of some Gadoid fishes, whose abundance decreased significantly at the end of 1990s,
e.g., the haddock (Melanogrammus aeglefinus), the Cod (Gadus morhua) or the whiting (Mer-
langius merlangus) (Fig. 3.17(a)). The recovery in functional diversity during the decade of
2000s might be related to peaks of abundance of juveniles of various cartilaginous fish, such as
the Cuckoo ray (Leucoraja naevus), the starry smooth hound (Mustelus asterias), the spotted
ray (Raja montagui) or the dogfish (Scyliorhinus canicula) (Fig. 3.17(b)). In the case of Area 4,
the positive trend display smaller oscillations. A likely explanation, could be related to a steady
positive abundance trend of some Lusitanian species, e.g., the dragonet (Callionymus lyra), the
grey gurnard (Eutrigla gurnardus) or the whiting (Merlangius merlangus) (Fig. 3.17(c)); the
variability in juvenile abundance of flatfish such as the dab (Limanda limanda) or the plaice
(Pleuronectes platessa); and the invasion of some other juvenile flatfish species, e.g., the scald-
fish (Arnoglossus laterna) or the solenette (Buglossidium luteum) (Fig. 3.17(d)).

The steady decreasing trend in Area 6 might be explained by the abundance reduction of
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(a) (b)

(c) (d)

Figure 3.17: Box-plot abundance time series of key species reported in Area 1 and Area 4 of North Sea. Panel (a) shows the 6
most important Gadoid species, the Cod, the Haddock, the Whiting, the Hake, the Coalfish and the Norway pout, whereas panel
(b) displays some cartilaginous fish, such as the Cuckoo ray, the Starry smooth hound, the Spotted ray or the dogfish. Panel (c)
display Lusitanian fish with a steady positive abundance trend, e.g., the Dragonet, the Grey gurnard or the Whiting, whereas panel
(d) shows juvenile abundance of permanent resident flatfish such as the Dab or the Plaice; and invader juvenile of flatfish such as
the Scaldfish or the Solenette. Abundances were yearly Log transformed. The blue line represents the time series trend.

the Cod (Gadus morhua) and the haddock (Melanogrammus aeglefinus), or the disappearance
of the coalfish (Pollachius virens) and the Norway pout (Trisopterus esmarkii) (Fig. 3.18(a)).
However, multiple juvenile of flatfish species saw a steady increasing trend during the 2000s,
e.g., the scaldfish (Arnoglossus laterna), the solenette (Buglossidium luteum), the lemon sole
(Microstomus kitt) or the dab (Limanda limanda) (Fig. 3.18(b)). Conversely, in Area 9 both
boreal species and flatfish species presented decreasing trends. For the former the most dramatic
cases are the Cod (Gadus morhua), the vahl’s eelpout (Lycodes vahlii), or the herring (Clupea
harengus) (Fig. 3.18(c)). The latter includes the solenette (Buglossidium luteum), the lemon
sole (Microstomus kitt), and the flounder (Platichthys flesus) (Fig. 3.18(d)).

In spite of the adequate summary that the analysis by area provides, it is likely that an
assessment over such large spatial scales is masking the local variations within those areas.
To accomplish a finer spatial resolution of functional diversity variation, we will summarize all
sampling hauls according to subarea and year of sampling. The ICES subareas are standardized
boxes (0.5°Lat x 1°Lon), which were sampled homogeneously during the International Bottom
Trawl Survey (IBTS). A regression line was run for each subarea, as done for each Area in
Fig. 3.16, thus, obtaining a slope that represents the yearly percentage variation of functional
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(a) (b)

(c) (d)

Figure 3.18: Box-plot abundance time series of key species reported in Area 6 and Area 9 of North Sea. Panel (a) shows some
Boreal fish species with either a decreasing trend, e.g., the Cod or the Raitt’s sandeel; or that totally disappeared by the end of the
time series, e.g. the Haddock, the Coalfish and the Norway pout. Panel (b) displays flatfish species with mostly increasing trends,
e.g., the Solenette, the Lemon sole or the Dab. Panel (c) displays boreal species with dramatic decreasing trends, such as the Cod,
the Vahl’s eelpout, or the Herring. Lastly, panel (d) shows a similar scenario for flatfish such as the solenette, the lemon sole, and
the flounder. Abundances were yearly Log transformed. The blue line represents the time series trend.

diversity (Fdiv/year(%)). The results are shown in a North Sea map with each sampling haul
colored according to its respective subarea. The color-scale assigns warm colors to declining
trends and cold colors to increasing trends. Stationary trends are colored in beige (Fig. 3.19).

Observing Fig. 3.19, we notice that, in fact, within areas there are multiple trends happening.
Some geographically close subareas present totally different trends, but there are also large
regions which share similar positive or negative trends. In the case of Area 1, most of the
Fladen Ground displays the greatest losses in functional diversity, having loss around 0.3%
yearly over a course of 40 years. However, the area known as Ulsira High and the segment
running along the Norwegian Trench display a trend of around 0.4-0.5% yearly increase in
functional diversity. For the case of Area 4, most subareas displayed either a positive or
stationary trend, particularly in the area west of the Dogger Bank and along the eastern and
central English coast. The southern North Sea, especially the Oyster Ground, the German and
Southern Bight, had the most dramatic decreasing functional diversity trends. Some subareas
reach peaks of 0.4 % yearly loss. Similarly, the Kattegat display mostly losses in functional
diversity in its subareas (Fig. 3.19).
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Figure 3.19: North Sea Map displaying the sampling hauls location which were executed as part of the International Bottom
Trawl Survey (IBTS) during the period 1980-2021. Each sampling haul is colored by the yearly percentage variation of functional
diversity (Fdiv/year(%)) of its respective subarea. The color-scale displays warm colors representing declining trends and cold
colors representing increasing trends. Stationary trends are colored in beige

3.4 Discussion

In this chapter, I showed that diffusion map is a powerful tool to coarse-grain complex biological
communities, such as the North Sea demersal fish community, in terms of certain structuring
i-traits. The approach is able to handle multivariate long-term ecological datasets and unfold
the lower-dimensional geometrical structure, or manifold, in which the system variation can be
explain better. The results show that independent of human interpretation, there are coherent
structures in the dataset which act as major explanatory variables. Although, knowledge, and
perhaps some level of human intuition, is still necessary to add the labels ‘depth’ and ‘year of
higher abundance’ to these structures, the results are not a mere product of interpretation, but
rather have a reality which is independent of these labels [21].

The analysis revealed depth as the most important variable structuring the fish community
in the North Sea. In fact, depth has been referred in numerous studies as an important deter-
minant of fish distribution and community structure in the North Sea [36, 64, 113, 135, 346].
Perhaps in our diffusion map, depth is working as a summary variable which encapsulates those
other variables that co-vary with depth, e.g., temperature, seasonality, salinity and productivity
[36]. Moreover, the described two-part system nature of the North Sea basin [124, 228] and the
different dynamics taking place in the deeper northern region and the shallower southern one,
will either limit or enhance the possibilities of the fish fauna to thrive [116, 193]. Consequently,
we see dominance of different groups of fish in either region. While in the northern and central
North Sea there are usually uneven communities composed of species with a high mean trophic
level and a low proportion of benthivory (e.g. gadoids and generalist/piscivorous species), in
the southern North Sea there are uneven communities with lower trophic level species primarily
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feeding on benthos (e.g. flatfish) [90, 173, 269].

The second most important variable is the year of highest abundance for the fish. The
interpretation of this is less straightforward as with the case of depth. It was detected that
species which reached their abundance peak in the period 1980-1999 were mostly associated to
the negative side of EV2, whereas those fish reaching abundance peak in the period 2010-2021
did mostly to the positive side of EV2 (Fig. 3.8). Our hypothesis suggests this is correlated to a
decreasing abundance trend of boreal fish species, e.g., the starry ray (Amblyraja radiata), the
four-bearded rockling (Enchelyopus cimbrius), the bullrout (Myoxocephalus scorpius), the cod
(Gadus morhua) and the haddock (Melanogrammus aeglefinus); while increasing abundance of
multiple lusitanian fish species, e.g., the hake (Merluccius merluccius), the whiting (Merlangius
merlangus), the grey gurnard (Eutrigla gurnardus), or the dogfish (Scyliorhinus canicula).
Reports in the literature have extensively suggested the North Sea ha been losing temperate-
incline species in favor of warm-inclined fish from lower latitudes [8, 118, 315]. Some extreme
cases, such as the wolffish and the starry ray, point towards a northward contraction in their
distribution [40, 370], or a tendency to expand their range towards deeper areas of the North
Sea [113].

However, the ‘lusitanian invasion’ in the North Sea does not seem to be spatially homo-
geneous. In the deeper northern region, dominant species in either period do not coexist
temporally. On the contrary, in the shallower southern region most of dominant species in
the 2010s were present as early as the mid-90s. These asymmetry might be due to southern
fish establishing first in northern-central areas rather than in southern ones. Such result rein-
forces the higher relevance of the Shetland–Orkney gap over the English Channel as a main
route into the North Sea for southern warm-tolerant species [112]. Moreover, species which
invaded from the southern English Channel, such as the anchovy (Engraulis encrasicolus) or
the Pilchard (Sardina pilchardus), did barely expand to central North Sea, but remained absent
from northern areas [209, 339].

Whether the lusitanian fish are newcomers or local opportunists, such change implies a shift
towards new fish traits [37, 101, 160]. The North Sea fish community is giving room to traits
of opportunistic and equilibrium strategists at the expense of traits of periodic strategist [313,
434]. In other words, dominant traits during the first 20 years were a medium to long life
span and length, high trophic level, high fecundity but low parental care and offspring size,
characteristic of gadoid species or large flatfish [181, 269]. Dominance in the last 10 years has
turned to traits such as small size, low trophic level and short life span but with relatively high
fecundity and low parental care, e.g., small pelagic fish, gobidae species and small flatfish; or
traits like long length and life span and high trophic level, low fecundity but large offspring size
and high parental care, which are characteristic of rays and sharks [36, 125, 393].

Based on the identified i-traits and having reconstructed the trait space in which the species
locate, calculation of the functional diversity was done by using the Rao’s quadratic entropy
[342]. This method is, in fact, a generalization of the Simpson’s index of diversity [376], and it
can be used with various measures of dissimilarity between species. Such index might be viewed
as a multivariate measure of functional divergence, i.e., the degree of resource differentiation and
thus competition, but also of the predominance of extreme species [265, 364]. High functional
divergence indicates a high degree of niche differentiation, and thus low resource competition.
Communities with high functional divergence may have increased ecosystem function as a result
of more efficient resource use [265].
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Our approach addresses common issues when intending to quantify functional diversity. It
uses multiple traits to determine species dissimilarity, weights the traits relevance accordingly
to their respective eigenvalue, and since the reconstruction of trait space is done from long-term
monitoring dataset, it also avoids issues of traits measured at different scales [147, 233, 359].
Although issues such as interspecific overlap in niche space, or within species niche differen-
tiation might be a possibility, we consider the former is an aspect of functional redundancy
rather than of functional diversity [265, 356], whereas the later has been addressed by applying
the concept of size at maturity [405], considering there might be important differences in the
immediate functioning of adult individuals vs. juvenile individuals within the same species
[121, 154, 183].

In the North Sea, the last 40 years have seen multiple trends in the variation of functional
diversity both in the spatial and temporal scale. Within the year there were no significant
differences for functional diversity values. This might be related to the biology of fish itself
[90]. Fish have longer timespans, but reproduction tends to vary widely between species, not
being restricted to a specific season [9, 158]. Moreover, fish are not immediately recruited into
the community, as they spend a significant amount of time in the pelagic environment as larvae,
and then in coastal nursery areas as small alevines [23, 43]. Consequently, when compared to
highly seasonal organisms, e.g., bacteria and phytoplankton [68, 267, 359], a fish community
functional diversity is less subject to seasonal oscillations

Unlike seasonal variations, functional biodiversity values showed notorious fluctuations at
inter-annual, quinquennial or even decadal periods. At the same time, such oscillations were not
spatially uniform. At the scale of ICES areas, the strongest oscillations were present at Area 1
in the north, Area 5 in the southwest, and the Kattegat (Area 9). With less marked oscillations,
but displaying a clear decreasing yearly trend in functional diversity, we find the southern areas
6 and 5. While solely area 4 displayed a significant positive increasing yearly trend of functional
diversity. Nevertheless, whitin those areas such trends were not homogeneous either. Distinct
trends are observed at the scale of ICES subareas, with outstanding loses in the areas known as
Fladen Ground, the Oyster Ground, the German and Southern Bight; and important gains at
the Ulsira High, along the Norwegian Trench and along the eastern and central English coast
(Fig. 3.19).

This changes are likely linked to the strong fluctuations in the abundance of juveniles
gadoids, the invasion of some cartilaginous fish in north-western areas, as well as the ever
more prominent predominance of small flatfish in the southern and central North Sea. Al-
though biological populations will fluctuate in size from time to time, reasons to this are not
always the same. An exploration of possible factors influencing such abundance fluctuations,
hence, trends in functional diversity, can be divided into two kinds: deterministic and stochastic
factors [338]. The former is related to those straightforward cause-and-effect relations that to
some extend can be predicted, e.g., usually human activities such as fishing, habitat alteration
or destruction, introduction of alien species, blockading migration routes. The later instead is
related to those operating in a realm beyond human prediction and control, either because they
are truly random or because they are linked to complex geophysical or biological causes [338].

Although this research cannot provide a definitive answer to which factors are driving func-
tional diversity variations, possible explanations can be hypothesized. In our results scale
provides an important hint about what factors might be influencing the ecosystem [77]. As the
observed changes have impacted the North Sea over large geographical areas, processes inducing
them must also operate on a similar large scale, the most evident of which is climatic forcing
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[81, 319, 351]. The most important large-scale hydro-meteorological drivers of the North Sea
ecosystem are the sea-surface temperatures and the strength of the westerly winds in this re-
gion which is linked to the North Atlantic Oscillation [116, 303]. Both have undergone marked
changes in the last 50 years, but the most dramatic has been the stepwise increase in the sea
surface temperature (SST). The SST has increased about 1.2°C relative to the pre-1980 mean
value, with a trend of 0.4 °C/decade, a ten-fold sudden increase [124].

Anthropogenic effects tend to be restricted to a much smaller spatial area, usually around
the immediate area of the impact into the marine system (e.g., sewage sludge dumping, mining
among others). Although there are exceptions. Fishing exploitation is one of those exceptions.
Fishing can influence fish populations because by removing large individuals they alter the
age-length population structure, abundance and occupancy of target species. Fish that went
through overexploitation, such as the cod, are now rare or are restricted to the northern areas
[82]. However, fishing effort is not spatially homogeneous, in fact, fishing effort, particularly
by beam trawls, has been greater in the southern North Sea compared to the northern part
[201]. Our results have shown southern areas, which have been heavily impacted by bottom
trawling fishing, e.g., the Oyster Grounds, The Dogger Bank and the Southern Bight [136, 152],
displaying particular losses in functional diversity. Moreover, other activities might have also
played a role. It is intriguing the significant decreasing trend in the Fladen Ground, an area of
oil production, where some reports of hydrocarbons in sediments have been reported [6, 358].

Ultimately, the long-term changes in the North Sea ecosystem are likely to be a combination
of both deterministic and stochastic factors. Nevertheless the reasons, our results suggest a
change has been undergoing in the fish community of the North Sea fish community. Such
changes in functional diversity might imply either a temporal species turnover [232, 258, 386],
or could be considered an ecosystem regime shift [26, 362, 427]. Regime changes in the North
Sea phytoplankton community have been detected around 1978, 1989 and 1998. The first two
changes were defined as a cold episodic events and the later a regime shift towards a warm
dynamic regime [10]. Future research might point towards exploring such scenario and the
consequences it might bring [280].

In conclusion, the diffusion maps approach allows us to coarse-grain complex marine fish
communities in terms of their functional i-traits. Thus, providing a quantitative framework to
reconstruct an i-trait space, a potential niche space over time for fish of the North Sea. This
approach enhances our possibilities to assess functional diversity directly from long-term abun-
dance datasets, hence, allowing us to unfold new insights from an ecosystem which has been
adequately monitored. The results demonstrate the power of manifold learning approaches to
highlight the relationships between community diversity composition and ecosystem function-
ing, making it feasible to asses variation of functionality in ecosystems over time.



Chapter 4

Aggregation of time series: Computing
functional diversity of the Wadden Sea
and southern North Sea phytoplankton
community

Long-term monitoring data is central for the analysis of biodiversity change and its drivers.
Known as time series, they have allowed a more accurate evaluation of diversity indices, trait
identification and community turnover. This kind of datasets help to resolve both short- and
long-term scales of variability, providing context for traditional process-oriented studies [297].
In spite of their relevance, time series of biological communities are not abundant. The few
examples expanding over 20 years of sustained monitoring, have faced severe funding difficul-
ties, being forced to either reduce sampling frequency, thus resulting in temporal gaps in the
observations, or cease their operations completely [297]. And when new surveys are established,
data collecting methods might be modified to better address their primary research questions.

A possible solution to obtain more adequate time series, one that monitors an ecosystem over
time spans of a few decades and beyond a local scale, is to aggregate datasets of different origins.
This aggregation of datasets is, nonetheless, a non-trivial task. Difficulties in harmonizing the
data will arise as variations in the observation of taxa and taxonomic names are the outcome of
the discrepancies in the equipment, personnel expertise, and procedures employed by different
sampling teams [266].

Here we propose a method for aggregating datasets using diffusion maps. Our approach
is illustrated by aggregating long-term phytoplankton abundance datasets from the Wadden
Sea and the southern North Sea gathered by two institutions located in Germany and The
Netherlands. The aggregated data allowed us to infer species traits (i-traits), to reconstruct
the main i-trait axis driving community functionality, to ultimately quantify functional diversity
of the individual samples, having used only the co-occurrence of species in samples.

This chapter follows the lines of Carrasco and colleagues [68]. I start with an introduction
to the issues of biological time series (Sec. 4.1). In Sec. 4.2, the diffusion maps approach is
applied to a new time series generated via a simple aggregation of two phytoplankton abundance
datasets. With this approach, diffusion maps fail to identify important i-traits from the newly
merged time series. In Sec. 4.3, I apply a different approach to adequately aggregate datasets. In
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this case, after diffusion mapping the aggregated time series, a trait space can be reconstructed
and relevant i-traits were identified. In addition, I estimate the functional diversity of the
phytoplankton community over time (Sec. 4.4). Lastly, a summary of the approach is presented
in Sec. 4.5.

4.1 Issues of ecological time series

Time series are measurements of a quantity taken over time, with a regular frequency, and
covering different spatial scales [140, 297]. Depending on research question, sampling frequency,
and temporal and spatial extension, time series can be used for different purposes and are of
critical importance to enable or facilitate:

1. the acquisition of ecosystem baselines and rate and scale of environmental change, includ-
ing climate change and biodiversity loss [165]

2. the understanding of ocean, earth, and climate system processes [375]

3. the monitoring of ecosystem dynamics and its variability [307]

4. the detection of hazards and environmental disturbances and the estimation of recovery
times [162]

5. the forecast of ecosystem changes [102]

6. the effective policy-making and sustainable management of the seas and oceans [143]

However, the fact that oceanographic processes occur at multiple scales makes it necessary
that observational time series have to be several-fold longer than the time-scale they are trying
to resolve [32, 48]. For example, outputs of oceanographic models have suggested that at least
three decades would be needed to resolve climate change response in the North Atlantic for cer-
tain variables (e.g., primary production) [175], but less for others (e.g., sea surface temperature)
[174].

It is paradoxical that while longer time series are necessary to resolve biological processes,
they are the most scarce and restricted [240]. In one hand, ecological time series are concen-
trated in the coastal ocean but almost completely absence in the open ocean. Moreover, within
coastal areas there is a clear bias towards coastal zones in North America and Europe, while
ecological time series in other coastal regions around the world are less mature [24, 297]. On the
other hand, time series are often cross-sectionally wide (e.g., census many interacting species)
but short in the time dimension [76, 188].

Ecological time series such as the the ICES coordinated International Bottom Trawl Survey
(IBTS) [195], used in Chapt. 3, are extraordinary in terms of both the spatial scale covered and
the duration it holds. More often what we find are local or countrywide efforts that sustain
observations over periods of a few decades. Such is the case of multiple phytoplankton abun-
dance datasets in the North Sea basin. Aggregation of phytoplankton datasets from multiple
origins represent a feasible solution to extend the temporal resolution as well as to improve the
spatial coverage that is not reached by individual or isolated time series [197].
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Although aggregating datasets seems a trivial and straightforward solution, bringing to-
gether datasets from different time series rises questions about the sampling and analytical
protocols used at each site. Were the methods used at each site homogeneous, consistent, and
intercomparable? What implications does the personnel expertise, or the institutions facilities
have on taxa identification? Such question are relevant considering that, while observations
of physical parameters and associated data processing and quality control procedures are well
established, biogeochemical parameters, particularly biological and ecological measurements,
are less mature [240].

Nevertheless the possible discrepancies between datasets, the development of an adequate an
careful aggregation approach is necessary if we want to obtain a time series which can help us to
obtain solid insights about ecological communities [266, 359]. In Sec. 2.4, I introduced diffusion
maps [79, 80] a manifold learning method which finds new dynamically relevant variables that
describe the most important dimensions in a system. In the following section we use this
methodology with a simple, almost naive dataset aggregation approach, to then diffusion map
the resulting time series.

4.2 Failure of simple aggregation

We start by illustrating the diffusion mapping procedure on single datasets. We will follow the
algorithm introduced in Sec. 2.4.1 for diffusion mapping the phytoplankton abundance, using
the co-occurrence of species as similarity measure, and implementing and executing all diffu-
sion map steps in the Julia programming language [38]. The phytoplankton dataset analyzed
next is part of the extensive monitoring program conducted by the Lower Saxony Water Man-
agement, Coastal Defence and Nature Conservation Agency (NLWKN), in Germany [291]. We
used harmonized data from 04 stations, including 1,664 samples and 249 species. The data har-
monization consisted of first removing all species identified as purely heterotrophic [300], and
second, homogenizing and updating phytoplankton species nomenclature using the WORMS
website taxonomic database [7]. Stations are located on the German area of the Wadden Sea,
including the Jade Bay and the Wesser river estuary (Fig. 4.1).

Following we have the phytoplankton dataset which is part of the extensive monitoring
program conducted by Rijkswaterstaat, in the Netherlands [20]. Here we used data from 18
stations, including 3,691 samples and 366 species. Data harmonization and taxonomic updating
was also performed using the WORMS website taxonomic database [7]. The geographical
extension covered by this dataset is significantly larger, as it spreads not just over the Dutch
area of the Wadden Sea, but also in the off-shore Terschelling and Rottumerplaat transects in
the southern North Sea (Fig. 4.1).

The reconstructed i-trait space of the German dataset is slightly skewed towards the negative
side of EV1 (Fig. 4.2 (a)). This variable is the most relevant to explain the variation in the
dataset. Although when assessing the inverse eigenvalue ranking, the first variable explained
poorly such variation (Fig. 4.2 (b)). On the contrary, for the Dutch dataset the first variable
gathered most of the variation, as it can be noted from the inverse eigenvalue ranking (Fig. 4.2
(d)). It is also noticeable that the i-trait space of the Dutch dataset is slightly skewed towards
the positive side of EV1 (Fig. 4.2 (c))

We observe that the analysis of individual datasets may limit our ability to construct a
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Figure 4.1: Map of the Wadden Sea and Southern North Sea areas including the phytoplankton monitoring stations. Four stations
(Bork W 1, Nney W 2, JaBu W 1 and WeMu W 1) were sampled by the Lower Saxony Water Management, Coastal Defence and
Nature Conservation Agency (NLWKN). German stations covered only the East Wadden Sea. A total of 18 stations were sampled
by Rijkswaterstaat, 10 stations in the off-shore southern North Sea, whereas 8 in the West Wadden Sea.

reliable network, especially for datasets in which the number of samples or the number of
species is small. When this happens, we are forcing a comparison between dissimilar species,
obtaining a degraded i-trait space quality [21, 127]. Therefore, the aggregation of datasets
becomes the best solution, although the procedure to execute it is not yet clear.

Following now, I will demonstrate that datasets cannot be aggregated directly. For this
purpose we use the previously introduced dataset by Rijkswaterstaat, in the Netherlands [20]
and the dataset collected from the monitoring program of the NLWKN in Germany [291].
The starting point for the analysis is to simply aggregate both datasets into a single table of
phytoplankton species (rows) and sampling identifier (columns). When a species is present in
a particular sample the entry will be the abundance recorded in the dataset, indistinctly of the
host institution. When the species is absent in the sample, the table entry is 0. Next, we will
follow the algorithm already introduced in Sec. 2.4.1 to diffusion map the aggregated dataset.

As a result, the EV1, which represents the primary pattern detected by the method in the
data, clustered some species into two groups: those phytoplankton species only observed in the
Netherlands and those only observed in Germany (Fig. 4.3). This is not a desired result, but
rather an artifact from the data gathering. Plankton monitoring is a difficult task. Attribution
of different taxonomic identities for similar observations might happen due to the high number
of taxa or their sometimes high morphological similarity. Although a certain degree of local
endemism is possible [60, 95, 246, 396, 415], the geographical context makes this only a partial
explanation. Consequently, what we see here is that diffusion maps picks up on an artefact that
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(a) (b)

(c) (d)

Figure 4.2: Diffusion map displaying the reconstructed i-traits that explained best the variation of German dataset (a) and Dutch
dataset (c). Panels (b) and (d) show the ranked inverse eigenvalue (1/λ) spectrum across all species datapoints for both datasets.
In both cases the first non-zero eigenvalue explains most of the variation, but with lower score for the German data (b) compare
to the Dutch data (d).

is rooted in the nature of the data collection and then is exacerbated by the naive aggregation.
This defines the need for an aggregation procedure that avoids such artefacts.

4.3 Successful aggregation of phytoplankton datasets

To find a better procedure for aggregation, let us analyze why the separation into Dutch and
German species occurred in the naive attempt. When considering different monitoring datasets,
the list of observed species in the respective areas may be different because some species are
absent in one of the areas. Unfortunately, consistency between datasets is compromised by
difficulties in identifying many phytoplankton taxa [388]. Severe problems may arise when
there is a change in personnel analysing samples during the course of a long-term programme.
For instance, major changes in phytoplankton community structure in the Helgoland Roads
phytoplankton time series [432], as well as in the Dutch North Sea monitoring programme
[314], arose from changes in the staff or laboratory responsible.
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Figure 4.3: Reconstructed i-trait space from the aggregated monitoring dataset using the simple aggregation method. Applying
a naive aggregation makes the species (dots) cluster in those observed only in Germany (blue dots) and those observed only in
The Netherlands (black dots). The species that are common to both datasets are colored in red. Reproduced from Carrasco and
colleagues [68]; open access under the Creative Commons Attribution License - CC BY 4.0.

Figure 4.4: Schematic of the proposed method for aggregating monitoring datasets. In step 1, we calculate similarities of German
and Dutch phytoplankton abundance data separately. In step 2 we choose the 10 highest similarities (known as threshold). In step
3, after identifying the common species-pairs, we average their similarities and store them in a new matrix. The rest of species-pairs
are store with their original similarity values. In step 4 we construct a Laplacian matrix, which is finally used to calculate the
eigenvectors in Step 5. Reproduced from Carrasco and colleagues [68]; open access under the Creative Commons Attribution
License - CC BY 4.0.

In addition to changes in the scientists responsible, the effects of more subtle modifications
in sampling protocol, which are likely to occur during a monitoring programme, are less clear.
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First, phytoplankton taxonomy has been under continuous change over the past few decades.
New identification keys have appeared since the 1980s; for instance, for diatoms [220–222]
and cyanobacteria [217]. Second, technological advances (i.e. better microscopes with higher
resolution) might have improved the scrutiny of samples during a programme spanning several
decades. Third, the design of the sampling programme (i.e. seasonal or depth resolution of
samples) might have changed. Fourth, species identification will have improved with an increase
in the experience and knowledge of those concerned [327].

In one hand, while it is clear that these are important problems, which possibly confound in-
terpretation of diversity estimates from long-term data, it is not clear how significant these prob-
lems actually are [388]. On the other hand, to just lament such differences between datasets,
and call for more standardisation is an easy answer. Different cultures and capabilities may
also open up different angles on a complex system that, when properly taken into account,
reveal additional information [68].

Figure 4.5: Reconstructed i-trait space from the aggregated monitoring dataset using our proposed aggregation method. Applying
our method breaks the cluster, having species observed only in Germany (blue dots) and those observed only in The Netherlands
(black dots) spreading indistinctly over the manifold. This provides a better reconstructed i-trait space, avoiding data artefacts.
The species that are common to both datasets are colored in red. Reproduced from Carrasco and colleagues [68]; open access under
the Creative Commons Attribution License - CC BY 4.0.

It must be recognized that if a species is not observed in a given sample, it may indicate the
actual absence of the species or it may signal that the species, while objectively present, was
not identified or was assigned a different name [231, 316]. In our naive merging procedure we
interpreted the absence of an observation as evidence for the absence of the species from the
respective sample. This assumption leads to an erroneous matrix of similarities, whose biases
make species that occur in only one of the countries appear different from the others.

We propose a more careful approach to dataset aggregation, one that fixes the epistemologi-
cal shortcomings of the naive procedure. We illustrate this approach using the datasets gathered
by Rijkswaterstaat [19] and by NLWKN [291](Fig. 4.4). After basic data harmonization each
of these datasets can be considered as internally consistent regarding the taxa identification.
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Thus, we can safely construct and threshold the similarity matrices for the individual datasets
as described in Sec. 2.4.1.

(a)
(b)

Figure 4.6: Inferred traits from the monitoring dataset. Color coded are environmental conditions under which the species were
observed with high relative abundance. The EV1 aligns well with salinity (left) and DIN concentrations, displayed in logarithmic
scale (right). This EV1 probably separates species by their adaptation to salinity levels or their nitrogen requirements. Reproduced
from Carrasco and colleagues [68]; open access under the Creative Commons Attribution License - CC BY 4.0.

We then merge the processed similarity matrices as follows: We consider all possible pairs
of species. For some of these pairs both species exist in both matrices. We interpret that as a
sign that the corresponding species are reliably identified by both agencies, and hence average
the value of the respective similarities. For some pairs one or both of the species exist only in
one of the matrices. We interpret this as an indication that only one of the agencies can make
this comparison reliably and hence accept the value from the matrix where the comparison
is possible. Finally, some comparisons cannot be made in either of the matrices because one
species exists only in one of the matrices while the other one exist only in the other matrix. In
this case we set the similarity of the species to zero as no reliable comparison is possible.

The final choice means that we may assign some zeros to comparisons between similar
species (or even between the same species which were identified by different taxonomic IDs).
However, setting some comparisons wrongly to zero does not degrade the quality of the diffusion
map result [359]. The reconstructed trait space shows that the EV1 does no longer clusters the
species into country of observation, rather we observe that they spread indistinctly over the
manifold (Fig. 4.5). The first i-trait aligns well with Dissolved Inorganic Nitrogen (DIN) as well
as with the water salinity (Fig. 4.6). We conclude that this i-trait could represent adaptation to
different water basin conditions (nutrient availability and salinity), which are different for the
Wadden Sea and the southern part of the North Sea [412, 413]. Such interpretation is likely,
as it is being considered in the scientific literature [70, 207].

4.4 Functional diversity status of southern North Sea

and Wadden Sea

Once the i-trait space has been successfully reconstructed for the aggregated datasets, we can
use it to calculate the distance in traits space for each species pair, i and j. Such distance,
defined as dij, is calculated by using the euclidean distance in the reconstructed trait space.
The species i-traits are now given by the eigenvector elements corresponding to the species,



Chapter 4. Aggregation of time series 58

re-scaled by the respective eigenvalue, as in Eq. 2.15. These distances are then used to quantify
the functional diversity of each sample (Eq. 2.16), by means of the Rao’s quadratic entropy
[342]. The outcome obtained is a time series with a functional diversity score per sample.

(a)

(b)

(c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.7: Wadden Sea functional diversity variation according to station and season. Although some stations showed higher
mean functional diversity values in winter and autumn (MARSDND, HUIBGOT or DANTZGT), such difference was not extreme.
In other stations the differences between seasons were minimum, e.g., WeMu W 1, JaBu W 1.

The assessment of functional diversity variation was evaluated both in the temporal and
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Figure 4.8: Southern North Sea monitoring stations functional diversity variation according to station and season. The stations
displayed a wider difference between autumn-winter and the spring season, e.g., TERSLG235, TERSLG10, ROTTMPT3.

spatial scale. For a better visualization the results are displayed in two groups; stations located
in the Wadden Sea (Fig. 4.7), and stations located in the southern North Sea (Fig. 4.8). Over
the yearly cycle there was a variety of trends among stations in both water basins. In one hand,
although some stations at the Wadden Sea showed higher mean functional diversity values in
winter and autumn (Station MARSDND, HUIBGOT or DANTZGT), such difference was not
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extreme. For other stations the differences between seasons were minimum, e.g., WeMu W 1,
JaBu W 1 (Fig. 4.7). On the other hand, some stations at the southern North Sea displayed a
wider difference between autumn-winter and the spring season, e.g., TERSLG235, TERSLG10,
ROTTMPT3 (Fig. 4.8).

There is significant annual, seasonal as well as inter-station variations in functional diversity
estimates. However, when considered over the entire period, clearer patterns emerge. On the
one hand, significant functional diversity loses occurred at most Dutch Wadden Sea stations,
with fastest decrease observed at the Marsdiep basin (MARSDND and DOOVBWT stations)
and off the coast of Groningen, Lauwers basin (ZUIDOLWOT station). On the other hand,
there is a mild increase of functional diversity in the German Wadden Sea stations, with the
fastest increase at the Weser estuary, WeMu W 1 station (Fig. 4.9).

Figure 4.9: Phytoplankton functional diversity on Wadden Sea monitoring stations. A decrease in functional diversity (% Fdiv
per year) is observed over the monitoring period at all Dutch stations (circles) whereas a mild increase (warmer colors) can be
observed in the German stations (triangles). The fastest decrease rate (colder colors) is found at coastal stations on the Marsdiep
and off Groningen. German Wadden Sea stations are in average the most functionally diverse (larger diameter). Reproduced from
Carrasco and colleagues [68]; open access under the Creative Commons Attribution License - CC BY 4.0.

Once catalogued as a ‘Changed Ecosystem’ [95], the Wadden Sea experimented a consistent
decreasing trend in eutrophication starting in the 1990s [60]. However, contrasting recent
reports have found significant signs of increasing eutrophication, persistent algal blooms, and
phytoplankton diversity alteration in the the West Wadden Sea [70, 91, 103, 200, 414, 436]. The
declining diversity in the Marsdiep basin is likely explained by dominance of the Phaeocystis
globosa spring and summer blooms [60, 103, 290]. The inter-annual variability among stations
also suggest a blooming limitation by nutrients or light, which triggered the prevalence of
fast-growing nutrient opportunist, C-strategist or R-strategist phytoplankton species such as
Micromonas pusila, Thalassiosira sp., Chaetoceros sp., particularly in the second half of the
last decade [347, 378, 442].

Stations at the Terschelling transect, in southern North Sea, also showed contrasting esti-
mations of functional diversity between off-shore stations (TERSLG235 to TERSLG100) and
in-shore stations (TERSLG50, TERSLG10 and TERSLG4). Whereas off-shore stations had
no significant trend variation, the in-shore stations had a clear negative trend (Fig. 4.10). A
possible explanation for this is the existence of a ‘line-of-no-return’ off the sand barrier islands
of the Wadden Sea [329], which decreases the exchange between water masses and increases the
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accumulation of suspended matter in the coastal zone [94]. Jung and colleagues [207] recently
estimated this line somewhere between 10 and 100 km off the coastline. At the Terschelling
transect, stations inside the ‘line-of-no-return’ will be highly influenced by the Wadden Sea dy-
namics and its particular environmental conditions. Therefore, the negative trend in functional
diversity observed in the in-shore stations, as well as in the Rottumerplaat transect stations
(ROTTMP), might be due to seasonal water exchange with the Wadden Sea phytoplanktonic
community.

Figure 4.10: Phytoplankton functional diversity in southern North Sea monitoring stations off the Dutch sand barrier islands.
Offshore stations (pale-yellow color) show no significant functional diversity trend (% Fdiv per year), contrary to those stations
located closer to barrier islands, which show a mild decrease rate (colder color). Offshore stations are in average the most functionally
diverse (larger diameter). Reproduced from Carrasco and colleagues [68]; open access under the Creative Commons Attribution
License - CC BY 4.0.

Lastly, the estimation of functional diversity were consistent with expectations based on
species composition. The low functional diversity in samples of 2006 and 2015 coincides with
the dominance of the flagellate Micromonas pusila, with numbers over 90% of the total phyto-
plankton abundance (Fig. 4.9). Similarly, low values of functional diversity in Dutch off-shore
waters is due to a major dominance of Phaeocystis sp., whose numbers got to represent up to
99% of the total phytoplankton abundance in 2016 (Fig. 4.10). On the contrary, the period of
increased functional diversity in German samples are due to the community being dominated by
two to three species constituting together more than 50% of the total abundance. Among this
species were Lithodesmium undulatum, Paralia sulcata, Leptocylindrus minimus, Skeletonema
costatum and other diatoms. The number of non-dominant species with relative abundance
less than 10% also increased.

4.5 Summary

In this chapter, a method to aggregate phytoplankton abundance datasets from different origins
was introduced. By applying diffusion map to the newly aggregated time series, we are able to
reconstruct the i-traits which best explain the variation in the community. This aggregated data
improved the reconstruction of i-trait axes and the subsequent estimation of functional diversity
from monitoring data. Our approach enables a robust estimation of functional diversity within
the system based solely on species abundances.
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We demonstrated that the failure of naive aggregation is rooted in the nature of the data
collection and then exacerbated to the point of clustering those species unique to individual
datasets, hence conflicting the trait reconstruction. If some species are not reported in a dataset,
it can be assumed that these species were never present there or were not identified, but total
certainty for any alternative is unlikely. Our approach to data aggregation avoids assuming a
total absence of those no-reported species by averaging similarity values of only those species
common to both datasets, obtaining a better reconstructed i-trait space.

The final result is a better estimation of functional diversity for both datasets and for the
entire analyzed geographical area. Significant declining estimations of functional diversity in the
West Wadden Sea are in line with recent reports [103, 200, 414, 436] and show the prevalence
of fast-growing nutrient opportunist phytoplankton species in this ecosystem. Additionally,
the difference in the functional diversity trends of the southern North Sea stations might be
explained by the existence of a ‘line-of-no-return’ off the sand barrier islands of the Wadden
Sea [207, 329] which isolated off-shore stations and their phytoplanktonic community.



Chapter 5

Scaling-up the aggregation of time
series: Functional diversity of the
North Sea phytoplankton community

In the oceans, ubiquitous microscopic phototrophs (phytoplankton) account for approximately
half the production of organic matter on Earth [51]. These microcosmic organisms are the base
of the marine food web. They are an integral part of the ecosystem, affecting trophic dynamics,
nutrient cycling, habitat condition, and fisheries resources [304]. Furthermore, phytoplankton
are closely coupled to environmental change [168, 347], making them sensitive indicators of
environmental disturbance.

In the North Sea, phytoplankton is still the major contributor to biomass and primary
production [66], in spite of the relevance of microphytobenthos production in the shallow tidal
flat areas bordering the coasts of England, the Netherlands, Germany and Denmark, or the
macroalgae crops along the coast of the U.K. and Norway [345]. However, changes in oceano-
graphic conditions, together with human-induced activities are impacting planktonic species,
their productivity, and possibly their capacity to thrive under new conditions.

Changes in phytoplankton of the North Sea can happen on different levels, i.e., new species,
changes in dominance, productivity variations; with scientist even suggesting decadal-scale
fluctuations linked to climate forcing [397]. Such long-term quantitative changes and trends in
the phytoplankton community can only be detected using long-term datasets [93, 433]. But
such long-term time series on phytoplankton composition are rare. What we often find are some
isolated efforts, which have either focused on productivity estimation, or have had a short-time
duration.

This lack of appropriate time series data has made it difficult to identify trends in phyto-
plankton dynamics and to establish linkages to natural variability or anthropogenic disturbance
[115]. However, time series on phytoplankton composition do exist, although mainly restricted
to a few stations at the coastline or in the nearshore coastal region [397] (e.g., Helgoland,
Marsdiep, Norderney, Rijkswaterstaat monitoring programme). A feasible solution to address
this issue is to aggregate those individual efforts into a single time series which overcomes the
shortcomings of a low-spatial resolution and a short-time dimension [68, 266].

In Sec. 4.3, we introduced a methodology to successfully aggregate time series from different
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origins, overcoming the possible discrepancies between datasets, using diffusion maps [68]. In
this Chapter I apply this approach to aggregate multiple phytoplankton abundance datasets
into a single time series. We start with an introduction to the phytoplankton datasets used for
the analysis, and the particularities of their monitoring programmes (Sec. 5.1). In Sec. 5.2, we
build the aggregation of datasets one by one, to evaluate the reconstruction of the i-trait space.
In Sec. 5.3, using the best aggregated time series, I estimate the functional diversity variation
of the North Sea phytoplankton community over time. Finally, I discuss the results in Sec. 5.4.

5.1 Phytoplankton monitoring programs in the North

Sea

All individual datasets which have been used in this work were processed via the Phytomerge
Julia programme [38]. Phytomerge was developed in this research to ensure the suitability of the
aggregation process and the standardization of the datasets. The programme used the database
WORMS [7] to extract updated phytoplankton taxonomic information. When a new dataset
is submitted to Phytomerge, the programme uses AphiaIDs to perform a full processing of all
of phytoplankton species within the dataset. Processing of the data included (i) the exclusion
of instances of “double counting” where, for example, a taxon is included in both higher and
lower taxonomic groupings within the same dataset and (ii) the correction or removal of taxa
that have not been correctly recorded over the entire time period, for example, due to spelling
mistakes or non-updated phytoplankton taxonomic names. Following the processing of the data,
a master list is generated which can be used to check the submitted phytoplankton species,
thus highlighting the final list of species to be included. Any phytoplankton species that does
not count with a proper AphiaIDs could be included or not in the final dataset, e.g., for cases
in which identification to the species level was not possible.

A total of seven long-term datasets were obtained and included into the diffusion map anal-
ysis. Each of them is sampled, maintained and curated by different research institutions. The
focus of the assessment will be on the period 1999 to 2020, since most of the datasets covered
such time period, in spite of minor gaps. Each monitoring programme analysed their sam-
ples for a full community of phytoplankton species using the Utermohl method on high-power
inverted microscopes, unless indicated otherwise. Phytoplankton cell counts are abundance
values reported in Cells per Litre.

First dataset included was collected in UK waters by the Centre for Environment Fisheries
and Aquaculture Science (CEFAS) for the years 2001-2017 [278]. Phytoplankton samples have
been collected using SmartBuoys at Dowsing, West Gabbard, Warp and Liverpool Bay stations.
After processing with Phytomerge we obtained a dataset including 824 samples and 311 species.
Second dataset included was collected by the Marine Scotland Science (MSS) in Scottish Waters
for the period 2000-2020. Phytoplankton samples have been collected at stations Stonehaven,
Scalloway, Scapa, Loch Ewe, and Millport (Clyde Sea), and reported as Fields of View, i.e.,
phytoplankton species abundance [53]. The processed dataset includes 3,932 samples and 179
species.

The third dataset was collected at the Helgoland Roads station by the Alfred Wegener Insti-
tute (AWI). This dataset has an extraordinary time resolution, as samples are collected 5 days
a week since 1962 [432]. Our dataset covers the period 1998-2018, including phytoplankton
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species which are confidently identified and certified by AWI scientists, i.e., 87 phytoplankton
species and a total of 8,401 samples. The fourth dataset was collected by the Flanders Marine
Institute (VLIZ) in the Belgian Exclusive Economic Zone using a continuous recording, or ship
of opportunity, covering the period 2010-2016 [1]. Processed dataset includes 75 phytoplankton
species and 513 samples. The fifth dataset was collected by the Havforskningsinstituttet, cover-
ing the time period 2017-2022. The samples are collected from a CTD and no pre-filtration was
performed [134]. The processed dataset includes 141 phytoplankton species and 114 samples.

The two last datasets were already introduced in Chapt. 4. One dataset was gathered
at 04 stations in the German Wadden Sea, and was conducted by the Lower Saxony Water
Management, Coastal Defence and Nature Conservation Agency (NLWKN), in Germany for
the period 1999 to 2018 [291]. We used a processed dataset including 1,664 samples and
249 species. The last dataset corresponds to the extensive monitoring program conducted by
Rijkswaterstaat, in the Netherlands [20]. The programme collected data in 18 stations spread
over the Dutch Wadden Sea and the Dutch area of North Sea. The processed dataset includes
3,691 samples and 366 species.

5.2 Reconstructing the functional i-trait space

We use the Phytomerge programme to perform the aggregation of datasets following the al-
gorithm introduced in Sec. 4.3 for a successful aggregation [68]. Then, we diffusion map the
aggregated dataset. To illustrate the effect of datasets topology on the diffusion maps results,
we start by aggregating datasets with distinct characteristics, i.e., lower number of species
and high amount of samples, or the opposite. Subsequently we will aggregate one by one the
datasets to assess the variation in the reconstructed i-trait space as we increase the amount of
data available for the diffusion map analysis.

First diffusion map analysis was performed on the aggregated datasets of the Centre for
Environment Fisheries and Aquaculture Science (CEFAS) and the Marine Scotland Science
(MSS) (Fig. 5.1(a)). These datasets have opposite topologies. While CEFAS data has high
number of phytoplankton species and low amount of samples, the MSS dataset includes almost
half the amount of species than the CEFAS dataset, gathered in almost 4,000 samples. Second
diffusion map was done with the aggregated datasets of NLWKN and the Helgoland Roads
(Fig. 5.1(b)). These datasets also have opposite topologies, with NLWKN having three times
the amount of phytoplankton species than Helgoland Roads data. However, Helgoland Roads
has double the amount of samples compared to the NLWKN dataset.

The reconstructed i-trait space for both diffusion maps look quiet different, despite the
aggregated datasets for both cases display similar differences. Noticeable is the difference in
symmetry for the second diffusion map (Fig. 5.1(b)), which is highly skewed to the negative
side of EV1. While the first map is more symmetric, it spreads over a smaller area (Fig. 5.1(a)).
Furthermore, the first map counts with a higher number of phytoplankton species, with a total
of 320 phytoplankton species, whereas the second map has a total of 259 species. Nevertheless
the higher amount of species, the second map explains better the variation in the dataset, as
can be deduced from the ranked inverse eigenvalue (1/λ) (Table. 5.1).

Diffusion map is a method which delivers better results the more data is fed on [21, 359]. But
datasets come in different topologies, something intrinsic to the geographical area in which the
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(a) (b)

Figure 5.1: Diffusion map displaying the reconstructed i-traits that explained best the variation of the aggregated CEFAS and MSS
dataset (a) and the aggregated NLWKN and Helgoland Roads dataset (b). Blue dots represent the phytoplankton species located
in the reconstructed i-trait space.

monitoring takes place, i.e., number of species, and the capacity of the monitoring program in
terms of the frequency and duration of sampling. The nature of this datasets will influence the
quality of the reconstructed i-trait space, therefore, the best solution is to aggregate datasets
in order to balance the shortcomings of individual datasets. The question that arises then
is, how much data is enough? To approximate an answer, we will evaluate the reconstructed
i-trait space performing multiple diffusion map analysis over the aggregated datasets, adding
one dataset into the analysis at a time.

Table 5.1: Table with the ranking of diffusion maps first variable. Each ranking value (1/λ) is
shown according to the aggregated datasets used for the analysis.

Aggregated datasets Rank (1/λ)

CEFAS, MSS 4.4583
NLWKN, HRoads 5.1546

NLWKN, HRoads, FLM 5.1759
NLWKN, HRoads, FLM, CEFAS 6.0096

NLWKN, HRoads, FLM, CEFAS, NOR 5.5066
NLWKN, HRoads, FLM, CEFAS, NOR, MSS 5.3850

NLWKN, HRoads, FLM, CEFAS, NOR, MSS, Rijk 6.2853

Since the aggregation of the NLWKN and Helgoland Roads datasets delivers better results
(Table. 5.1) we will continue the aggregation of datasets from here. The third diffusion map
(Fig. 5.2(a)) includes the two previous datasets and the Flanders dataset (FLM). The shape
of the reconstructed i-trait space changes significantly, having a reduced skewness in the first
variable. However, the ranked inverse first eigenvalue (1/λ) indicates a similar variation was
gathered by this variable when compared with the previous diffusion map (Table. 5.1).

For the subsequent diffusion map analysis we use the previously aggregated dataset and pro-
gressively add one dataset at the time. Thus, we will first add the CEFAS dataset (Fig. 5.2(b)),
then the CEFAS and Norway dataset (Fig. 5.2(c)), and lastly the CEFAS, Norway and MSS
dataset (Fig. 5.2(d)). For this 3 diffusion maps, the i-trait space preserves a similar triangular
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Figure 5.2: Diffusion map displaying the reconstructed i-traits that explained best the variation of the aggregated NLWKN,
Helgoland Roads plus the Flanders dataset (a). Subsequent maps are based on the previous aggregated dataset plus the CEFAS
dataset (b), plus CEFAS and Norway dataset (c), and finally plus CEFAS, Norway and MSS dataset (d).

shape with an elongated branch, producing skewness for the first variable (EV1). According
to the ranked inverse first eigenvalue (1/λ) however, the best results are given in the diffusion
map four, with aggregated datasets of NLWKN, Helgoland Roads, Flanders and CEFAS (Ta-
ble. 5.1). Subsequent dataset aggregation generated a slight reduction in the EV1 capacity to
explain the dataset variation (Table. 5.1).

Finally, the Rijkswaterstaat dataset (Rijk), is aggregated into a single long-term dataset of
phytoplankton abundances, formed by seven datasets which were gathered by seven distinct
monitoring programmes (Fig. 5.3). The shape of the reconstructed trait space remains in its
triangular shape, having the elongated branch reduced, but keeping a skewness for the first
variable. However, according to the ranked inverse first eigenvalue (1/λ) we obtain the best
results so far [147], with the EV1 gathering most of the variation in the reconstructed i-trait
space (Table. 5.1).

Having no environmental data available for all the samples within the datasets, it is not
possible to compute a weighted average of each environmental parameter (Eq. 3.1), to assess the
nature of the EV1. As seen in Sec. 3.2.3, another approach is to verify the extreme values and
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Figure 5.3: Diffusion map displaying the reconstructed i-traits that explained best the variation of the aggregated NLWKN,
Helgoland Roads, Flanders, CEFAS, Norway, MSS, and Rijkswaterstaat datasets.

check for biological or ecological characteristics of the associated phytoplankton species. When
doing this, the species associated to the negative extreme of EV1 are some cyanobacteria (e.g.,
Aphanizomenon sp., Pseudanabaena sp., and Limnothrix sp.); chlorophytes (e.g., Closterium
sp., Koliella sp., and Gloeotila sp.); and small pennate diatoms (e.g., Synedra acus f. acus,
Melosira varians, and Aulacoseira sp.). Three different types of phytoplankton, which are
usually reported in freshwater or brackish environments, and that in our dataset are present
only in the Wadden Sea area. The positive side of EV1 is associated to dinnoflagelates (e.g.,
Amphidinium longum, Dinophysis hastata, Scrippsiella trochoidea, and Protoperidinium breve);
and marine chain-forming diatoms (e.g., Chaetoceros throndsenii, Thalassiosira conferta, and
Guinardia blavyana var. blavyana). Both of these groups are strict marine species that were
reported only in the CEFAS or the MSS datasets.

5.3 Functional diversity of North Sea and Wadden Sea

phytoplankton community

Using the reconstructed i-trait space obtained after diffusion mapping the aggregated seven
long-term datasets, we will now assess the functional diversity in each sample, by means of the
Rao’s quadratic entropy [342], and following the approach introduced in Sec. 4.4. The outcome
obtained is a time series with a functional diversity score per sample. Short datasets, with less
than 7 years duration, such as the Flanders dataset (FML) or the Norwegian dataset (NOR),
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as well as sampling stations within datasets with less than 7 years monitoring time, won’t be
considered for this assessment.

(a) Warp (b) West Gabbard (c) Liverpool Bay

(d) Dowsing (e) Stonehaven

(f) Scalloway

(g) Scapa (h) Millport (i) Loch Ewe

Figure 5.4: Phytoplankton functional diversity variation on the CEFAS U.K. monitoring stations of Warp, West Gabbard, Liverpool
Bay and Dowsing (stars); as well as in the Scotish MSS monitoring station of Stonehaven, Scalloway, Scapa, Millport and Loch Ewe
(dots). The black line represent a linear regression trend which runs over the yearly functional diversity values at each station. A
decrease in functional diversity is observed over the measurement period at Liverpool Bay, whereas a mild increase can be observed
in Scotish stations of Scapa and Loch Ewe.

At the CEFAS monitoring stations, functional diversity in the Warp and West Gabbard
stations had a increasing trend, whereas in the Liverpool Bay station, a negative trend is
evident during the time period 2001-2017 (Fig. 5.4). Inter-annual oscillations are evident in
this stations, in contrast to what can be seen at the Scottish MSS monitoring stations. These
stations displayed functional diversity values with low oscillations, and an almost stationary
trend for the period 2000-2020. Only the stations Scapa and Loch Ewe presented a slight
increasing trend in annual functional diversity values (Fig. 5.4). Additionally, it is quite evident
the higher values in functional diversity found at CEFAS stations compared to the lower values
at the Scottish stations.

When we assess the functional diversity in the Wadden Sea basin, major trends have re-
mained similar to those obtained in Chapt. 4 [68], despite some minor changes in functional
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diversity inter-annual values at German stations (Fig. 5.5). Two stations, JaBu W 1 and
Nney W 2, show a mild, non-significant negative trend, whereas station WeMu W 1 displays
now a significant gain in functional diversity. Functional diversity at Dutch stations have ex-
perienced decreasing trends (Fig. 5.5). Among the stations with the highest losses we have
ZUIDOLWOT, DOOVBWT and DANTZGT. Oscillations in functional diversity values are
present in all stations, being more evident in quinquennial periods.

A similar scenario with functional diversity is displayed in the southern North Sea basin,
with major trends similar to those obtained in Chapt. 4 [68] in spite of minor changes in
inter-annual values for some stations (Fig. 5.6). One station, TERSLG175, shows a significant
negative trend, whereas the Helgoland Roads station displays a significant gain in functional
diversity. For the rest of off-shore stations, functional diversity has experienced either mild de-
creasing or mild increasing trends (Fig. 5.6). In general, it can be considered that the southern
North Sea area has had a stationary trend during the period 2000-2018. Less pronounced oscil-
lations in functional diversity values were present at these stations, especially when compared
to those located in the Wadden Sea.

Although the spatial resolution covered by monitoring stations is not ideal to draw a strong
conclusion about patterns of functional diversity variation on the entire North Sea, we can draw
tentative conclusions for some of the areas covered by the monitoring datasets. In one hand, it
is clear that the West Wadden Sea has the higher losses in functional diversity, together with the
Liverpool Bay area and few off-shore stations at the southern North Sea (Fig. 5.7). On the other
hand, clear increases in functional diversity can be seen at the German Bay (Helgoland Roads)
and in the East coast of the UK (CEFAS stations). Finally, most of the Scottish monitoring
stations, as well as the southern North Sea tend to have an stationary trend (Fig. 5.7).

5.4 Discussion

In this chapter, I aggregated seven phytoplankton abundance datasets of the North Sea basin
gathered by different monitoring programmes. Applying the dataset aggregation approach,
which was introduced in Chapt. 4 [68], I was able to explore the effects of dataset aggregation
on the quality of the reconstructed i-trait space. It is evident that for diffusion maps the
more data the better, but the topology of datasets is also relevant. Whether our dataset is
crosssectionally larger (i.e., number of phytoplankton species larger, or almost similar, than the
number of samples), or crosssectionally wider (i.e., number of phytoplankton species smaller
than the number of samples) the diffusion map delivers results successfully but the shape of
the reconstructed trait space varies.

Diffusion mapping two crossectionally different datasets such as CEFAS and MSS recon-
structed a well covered i-trait space, in spite of the short area it covered. Such result might
be intrinsic to the community under study, since the total number of species (320 phytoplank-
ton species) was high enough to provide trustworthy results. However, the number of samples
seems to be more relevant for an adequate i-trait reconstruction. Diffusion maps obtained
from datasets with high number of samples, such as the Helgoland Roads dataset, covered
wider i-trait space, gathering more of the variation in the community in the first variable, thus
providing slightly better results.

Ecological datasets have always struggle with such issues. The number of species that can
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(a) Nney W 2 (b) JaBu W 1 (c) WeMu W 1

(d) Bork W 1

(e) MARSDND (f) DOOVBWT

(g) BOOMKDP (h) DANTZGT (i) ZUIDOLWOT

(j) HUIBGOT (k) BOCHTVWTM (l) GROOTGND

Figure 5.5: Phytoplankton functional diversity variation on the Wadden Sea basin, including stations of the NLWKN (triangles)
and Rijkswaterstaat (dots) extensive coastal monitoring programmes. The black line represent a linear regression trend which runs
over the yearly functional diversity values at each station. A mild decrease in functional diversity is observed at JaBu W 1 and
Nney W 2, whereas there is a mild increase in WeMu W 1 in the East German Wadden Sea. Most of the stations at the West
Dutch Wadden Sea displayed a decreasing trend.

be gathered in a sample is highly dependent in sampling effort, spatial resolution, local diversity
and the targeted group of organisms [279, 297]. Sampling fish in two sampling stations will
surely provide a reduced number of species, no matter the time extension of the monitoring
programme. However, the same sampling design, targeting a phytoplankton or a bacterial com-
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(a) TERSLG235 (b) TERSLG175 (c) TERSLG135

(d) TERSLG100 (e) TERSLG50 (f) TERSLG10

(g) ROTTMPT3 (h) ROTTMPT50 (i) ROTTMPT70

(j) Helgoland Roads

Figure 5.6: Phytoplankton functional diversity variation on the Southern North Sea basin, including stations of the Rijkswaterstaat
(dots) and of the Helgoland Roads (triangles) extensive monitoring programmes. The black line represent a linear regression trend
which runs over the yearly functional diversity values at each station. A significant decrease in functional diversity is observed at
TERSLG175, whereas a significant increasing trend is observed at Helgoland Roads. Most of the off-shore stations displayed either
a mild decreasing or increasing trend. Oscillations at this stations are less pronounced than those in the Wadden Sea basin.

munity could provide a representative amount of species, if monitoring is adequately extended
and frequency is consistent. In this sense, we must consider carefully those conclusions ob-
tained from a diffusion map of aggregated short-term datasets, or datasets with a low sampling
frequency. As results have showed, it might be better to aggregate at least one dataset with
large number of samples.
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Figure 5.7: Phytoplankton functional diversity on the North Sea and Wadden Sea. A decrease in functional diversity (△Fdiv per
year(%)) is observed over the measurement period at most Dutch stations at west Wadden Sea, whereas a mild increase (warmer
colors) can be observed in some CEFAS stations, the Helgoland Roads and few off-shore stations in southern North Sea. The fastest
decrease rate (colder colors) is found at coastal stations on the Marsdiep and off Groningen, and at the Liverpool Bay.

Another relevant question addressed here was the issue of the amount of data needed. This
can be understood from the perspective already touched, i.e., the topology of datasets, or from
the number of datasets that can be aggregated. In terms of the area covered by the reconstructed
trait space, it did not grow larger after the aggregation of the fourth dataset (CEFAS dataset).
This means that the added species did not fill a different space of the reconstructed i-trait,
but rather the species were functionally similar to the ones already present in the aggregated
dataset. Evidence tend to suggest the former. When aggregating the fifth (Norwegian dataset)
and later the sixth (MSS dataset) into the diffusion map, the i-trait space not only did not
grow larger, but the first variable decrease in quality, thus gathering less of the variation in the
community.

The latter could be related to a certain degree of endemicity in the phytoplankton species
within those datasets [115, 133, 345]. Up to that point the aggregated datasets only monitored
the Wadden Sea basin and some parts of the southern North Sea. The marked differences in
the North Sea oceanographic conditions [124], might influence the phytoplanktonic community
composition and the dominance of certain species. In one hand, the shallow, well-mixed, and
high nutrient concentrations of the southern region, becomes ideal for fast-growing planktonic
species, including some microphytobenthos diatoms which become suspended in the water
column [96, 97]. In the other hand, the seasonally stratified and nutrient-limited in the surface
mixed layer of the central and northern region, favors strict marine phytoplankton, larger cells
and chain-former diatoms [244].

Another possible explanation is the presence of more off-shore sampling stations in the
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Norway and MSS datasets. Most of the phytoplankton biomass develops in coastal areas [245],
where nutrients are abundant and water column is well mixed, thus allowing faster development
of phytoplankton blooms [200]. Therefore, the species gathered in off-shore stations tend to be
different to those in coastal areas, due to faster changing oceanographic conditions and limiting
nutrient availability [207, 369]. This explanation is reinforced by the increase in performance
of the first variable when the Rijkswaterstaat dataset is aggregated in the analysis. The Rijk-
swaterstaat monitored the Terschelling transect, with seven stations extending up to 235 Km
off-shore, and the Rottumerplaat transect, with three stations located at 3, 50 and 70 km from
the West Frisian barrier islands.

In spite of the lack of environmental factors to evaluate the nature of the diffusion map
variables, the species associated to extreme values in the i-trait space suggested a marked
difference between coastal-brackish and marine phytoplankton species. In the negative extreme
of EV1 we have three cyanobacteria, three chlorophyte and three small pennate diatom. All
of this phytoplankton are associated to high concentrated nutrients in water, and water-mass
with low salinity, characteristics of the Wadden Sea and coastal areas [60, 379, 420]. On the
contrary, in the positive extreme we find four dinnoflagelates and four marine chain-forming
diatoms, species that are characteristic of marine waters [180]. This conclusion is supported
by the results of Chapt. 4, in which the aggregation of NLWKN and Rijkswaterstaat datasets
showed a phytoplanktonic community driven mainly by the different oceanographic conditions
of the Wadden Sea and the southern North Sea [68].

Nevertheless the tentative conclusion, the recovery of environmental data associated to each
sample in the dataset will be a major issue to solve for the future of this research. For the
second most relevant variable, it was not possible to identify a key ecological characteristic
in the species associated to extreme values, hence, no hypothesis can be drawn at this stage.
Another limitation is the low-spatial coverage reached up to this point. Although this might
be an issue intrinsically linked to the phytoplankton monitoring design [297, 302], innovative
monitoring programmes, such as the Continuous Plankton Recorder (CPR) [348], will offer a
feasible solution to increase the spatial resolution in the North Sea off-shore area, thus improving
the results of the diffusion map.

In terms of the functional diversity assessment, no major conclusion can be drawn at the
spatial scale, although similar trends were found for the Wadden Sea as those found in Chapt. 4
[68]. In particular the west Wadden Sea had showed major losses in functional diversity. Such
results are supported by Di Carvahlo and colleagues [103] who working with Wadden Sea data
from NLWKN and Rijkswaterstaat found that the Dutch stations have loss around 20 % of
phytoplankton species, or 17.1 species per decade. In the German stations, however, there is
an increasing trend, corresponding to a gain of 13.5 species in a decade [103]. For the German
stations, our results showed that after a progressive decline in the first half of 2000s decade
(evident in stations JaBu W 1 and Nney W 2), there was a recovery of functional diversity up
to the end of the monitoring period.

Other stations with clear gains were the CEFAS stations, in particular those located in
the southeast British Coast (Warp, West Gabbard, and Dowsing ), as well as the Helgoland
Roads. It is quite interesting to point out that CEFAS stations had in average the highest
values of functional diversity, whereas Helgoland Roads had the lowest. The geographical
location of CEFAS stations, at the end of the Dover Channel could favor the mixing of their
phytoplankton community with the Atlantic water masses entering into the North Sea [55, 56],
thus, enhancing the phytoplankton diversity around this region. For the case of Helgoland
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Roads no clear answer is suggested. However, it might be necessary to add a raw dataset,
which includes all phytoplankton species which were identified per sample, with the purpose
of discarding that the functional diversity results for Helgoland Roads are an artefact of the
dataset used. Even though taxonomic accuracy is quiet relevant for any diversity analysis [388],
exclusion of species might be detrimental for the quality of results [327].

In summary, the aggregation of long-term monitoring datasets has improved the results
obtained from diffusion maps, allowing a better reconstruction of the i-trait space, and a trust-
worthy assessment of functional diversity in individual samples. This approach allows us to
translate complex ecological information store in time series into a straightforward value which
can be interpreted and compared within the region of study. In the future, to obtain a higher
spatial resolution coverage, new datasets might need to be aggregated into the analysis. Given
that individual time series are distributed across different areas and managed by different coun-
tries, open collaboration with national institutions managing the time series is essential [210,
297].



Chapter 6

Conclusions

Endings are always enlightening. An end is the point at which something no longer continues
to happen. An end is also a goal or purpose. Both meanings imply dimensions; a physical,
a temporal, a moral, an ethical. The end of this research was to understand biodiversity
from a functional perspective, in an ecological, spatial and temporal dimension. I focused on
ecological non-individual entities, like species, ecosystems, and on the processes which promote
and maintain those entities [299]. The concern are ”the wholes”. But the path to know, is via
its constituents [409]. The means to this end implied to use novel approaches which consider
the complexity of ecological communities. Diffusion maps provide such possibility. On the one
hand, this approach have enabled us to make sense of large datasets of ecological communities,
while on the other hand, we have not dismissed the interactions of the species forming them.
Nevertheless, in science there is always room for improvement.

In this work, I focused on assessing the feasibility of this approach, and filling in the knowl-
edge gaps which remain, specially in terms of its application to ecology. Consequently, I have
applied diffusion maps to ecologically and biologically more complex organisms, as the fish de-
mersal community from the North Sea. Moreover, the limitations imposed by the scarcity and
adequacy of ecological long-term datasets, led to propose datasets aggregation as an adequate
solution. Having an appropriate methodology to aggregate datasets, to scale-up the analysis
was the right step to take. Therefore, I last focused on trying the limits of diffusion maps when
aggregating datasets from different North Sea research institutions. In this section, I outline the
main conclusions of this work, at the time I give a brief outlook for future research directions.

Diffusion map making sense of demersal fish community

Diffusion map enabled us to make sense of high-dimensional datasets of demersal fish com-
munities by coarse-graining the 229 fish taxa in terms of their functional i-traits, providing a
quantitative framework to reconstruct an i-trait space, a potential niche space over time for
fish of the North Sea. With this approach, we achieved a dimensionality reduction in terms of
the most important variables, which for this community were ‘depth’ and ‘year of higher abun-
dance’. These results are not a mere product of interpretation, but rather have a reality which
is independent of these labels. Depth has been referred in multiple research as an important
determinant of fish species distribution and community structure in the North Sea [36, 64, 113,
135, 346]. The year of abundance is correlated to a decreasing abundance trend of some boreal
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fish species, while increasing abundance of multiple lusitanian fish species. The North Sea ha
been losing temperate-incline species in favor of warm-inclined fish from lower latitudes [8, 118,
315].

This is one of the earliest application of diffusion maps to fish communities, a biologically and
ecologically more complex group of species. Remarkable was how the addition of the concept
of size at maturity, a proxy to differentiate juveniles from adults in fishes [405], provided better
results when reconstructing the functional i-trait space. However, a similar effect was obtained
when adding the datasets from the Scottish West Coast Bottom Trawl Survey (SWC-IBTS)
and The Irish Groundfish Survey (IGFS). This suggest that, equally important as to have more
data it is to incorporate relevant ecological characteristics which capture changes in spatial
distribution of the taxa under analysis. Lacking this information would not totally degenerate
the quality of results but might cause inadequate interpretations. Application of diffusion maps
in long-timespan species, such as some invertebrates, birds or mammals, would benefit from
the incorporation in the analysis of migration patterns, habitat segregation, or reproductive
preferences.

Aggregation of datasets as solution to data limitations

An important limitation, which diffusion map has for its application in ecology, is the availability
of data on the ecosystem we want to investigate. Previous diffusion map applications have used
bacteria genomic time series [127, 267], phytoplankton biomass time series [359], and in this
work, demersal fish abundance time series. However, we need a certain amount of data to
ensure the applicability of the diffusion map. Massing suggested that this method should not
be applied to datasets with less than ca. 30 samples for the case of marine bacteria communities
[266]. In the case of phytoplankton communities, it is more relevant to see the amount of species,
which should be ca. 100 species. However, for the case of long timespan organisms, i.e., fish,
birds or mammals, the focus should also be in the temporal resolution of the dataset. Having an
adequate number of species will matter little if we have a time series with a temporal resolution
lower than the average timespan of the targeted species group.

We have proposed an approach to address this issue, one that will help us to obtain ade-
quate time series, the aggregation of datasets from different origins. Although it might seem a
trivial task, a direct aggregation is not possible due to likely inconsistencies between datasets.
This inconsistencies are the outcome of differences in the equipment, personnel expertise, and
procedures employed by different sampling teams [266], which results in a successful, or not,
taxonomic identification of species. Our approach does not neglect that whether a species is
observed or not in a given sample, is an indicative of either the actual absence of the species, or
a signal that the species, while objectively present, was not identified or was assigned a different
name [231, 316].

Applying our approach to aggregate two datasets, one gathered by Rijkswaterstaat [19]
and another by NLWKN [291], provided a better reconstruction of the i-trait space than when
datasets were analyzed independently. Diffusion maps allowed the dimensionality reduction in
terms of the most important variable, which for this community was ‘salinity’ and ‘dissolved
inorganic nitrogen’. A clear signal obtained from the diffusion maps analysis was the marked
influence that water masses have on the structuring of phytoplankton communities. Moreover,
assessment of functional diversity was also consistent with reports of significant declining es-
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timations of functional diversity in the west Wadden Sea [103, 200, 414, 436] and showed the
ever prevalence of fast-growing nutrient opportunist phytoplankton species in this ecosystem.

From local to regional: Scaling-up the aggregation of time series

Assessment of functional diversity at regional scales requires a wider spatial coverage, an effort
that few monitoring programmes can afford. Ecological time series such as the the ICES
coordinated International Bottom Trawl Survey (IBTS) are extraordinary [195], both in the
spatial scale covered and the duration it holds. More often what we find are local or countrywide
efforts that sustain observations over periods of few decades. The last part of this work, gathered
seven long-term phytoplankton abundance time series, aggregated them into a single long-term
dataset, thus providing a starting point to move from local to regional assessment of functional
diversity by means of datasets aggregation.

It is important to remark that datasets will have different topologies, with either a high
number of species and low amount of samples (i.e., crossectionally wider), or a low number of
species gathered in a large number of samples (i.e., crossectionally larger). In order to test the
implications of such differences, it is recommended to perform a gradual aggregation of datasets.
This will allow the researcher to assess the variation in the reconstructed i-trait space as well
as its capacity to explain community variation. Based on this experience, it is recommended
to aggregate at least one dataset with large number of samples.

Another important insight is that aggregation of geographically close datasets is preferable,
as aggregation of datasets from very distant geographical areas might decreased the quality of
the i-trait space reconstruction, or the quality of the first variable. Having aggregated mostly
southern North Sea datasets, the aggregation of the Norwegian dataset reduced the capacity of
the first variable to explain the variation in the community. Moreover, if we seek for a regional
assessment, the best is to avoid large gaps in the data spatial resolution.

At this point the spatial coverage of the southern North Sea looks quiet optimal, but there
remain large areas of the central and northern North Sea in which no datasets were obtained.
The natural solution is to find and aggregate other monitoring programmes from those areas. A
feasible solution under the current positive trends for international collaboration and initiatives
to open data to research. Long-term programmes, such as the Continuous Plankton Recorder
(CPR) [302], are a great option to increased the spatial coverage. Moreover, it is neccesary
the incorporation of more off-shore monitoring points, a regular weak point for many marine
phytoplankton monitoring programmes, that have focused mainly on coastal areas [397].

At the end of this work, the usage of diffusion maps in ecology and functional diversity
assessment is just beginning. There remain still to explore the applicability of this method in
other complex organisms, not just biologically but also in terms of their ecological behavior
and their population dynamics. Moreover, the application of diffusion maps to mixed group
of organisms is a tentative option. Important collaborations were developed in the past years
to gather and organize ecological time series of a variety of biota in online servers, such as
BioTIME [109] or CRITTERBASE [394], thus providing a unique opportunity. Expanding the
boundaries of this novel approach is also important, either by making use of yet unexplored
sources of data (e.g. eDNA), which could expand the scale for datasets aggregation, or by
incorporating other tools, such as machine learning, that could lead to universally accepted
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trait spaces for important groups of organisms. A final goal is to develop an online engine
which, powered by diffusion maps, is able to measure functional diversity in new samples of a
well-assessed region.



Bibliography

[1] (VLIZ), F. M. I. “LifeWatch observatory data: phytoplankton observations by imaging
flow cytometry (FlowCam) in the Belgian Part of the North Sea.” In: VLIZ, Ostende.
Belgium (2022).

[2] Aas, Ø. et al. Atlantic salmon ecology. John Wiley & Sons, 2010.

[3] Aber, J. D. and Melillo, J. M. Terrestrial ecosystems. Vol. 429. Saunders College Pub-
lishing Philadelphia, 1991.

[4] Abou-Seedo, F. and Potter, I. “The estuarine phase in the spawning run of the river
lamprey Lampetra fluviatilis”. In: Journal of Zoology 188.1 (1979), pp. 5–25.

[5] Ahern, M. et al. “State of the Ocean Report 2024.” In: (2024).

[6] Ahmed, A. S. et al. “The distribution and composition of hydrocarbons in sediments from
the Fladen Ground, North Sea, an area of oil production”. In: Journal of Environmental
Monitoring 8.2 (2006), pp. 307–316.

[7] Ahyong, S. et al. World Register of Marine Species. Accessed 2023-02-06. 2023. url:
https://www.marinespecies.org.

[8] Alheit, J. et al. “Climate variability drives anchovies and sardines into the North and
Baltic Seas”. In: Progress in Oceanography 96.1 (2012), pp. 128–139.

[9] Alvarez-Fernandez, S. et al. “Effect of zooplankton on fish larval abundance and distri-
bution: a long-term study on North Sea herring (Clupea harengus)”. In: ICES Journal
of Marine Science 72.9 (2015), pp. 2569–2577.

[10] Alvarez-Fernandez, S., Lindeboom, H., and Meesters, E. “Temporal changes in plankton
of the North Sea: community shifts and environmental drivers”. In: Marine Ecology
Progress Series 462 (2012), pp. 21–38.

[11] Anderson, E. and Abbe, E. C. “A quantitative comparison of specific and generic dif-
ferences in the Betulaceae”. In: Journal of the Arnold Arboretum 15.1 (1934), pp. 43–
49.

[12] Anderson, R. M. and May, R. M. Population biology of infectious diseases. Springer,
1982.

[13] Andrew, A. L., Chu, K.-W. E., and Lancaster, P. “Derivatives of eigenvalues and eigen-
vectors of matrix functions”. In: SIAM journal on matrix analysis and applications 14.4
(1993), pp. 903–926.

[14] Arthur, W., Durlauf, S., and Lane, D. “Introduction. In The Economy as an Evolving
Complex System”. In: Santa Fe Institute Studies in the Science of Complexity, Vol. 27.
Addison-Wesley: Reading, MA. 1997, 10 pp.

[15] Aslan, C. E. et al. “The role of honey bees as pollinators in natural areas”. In: Natural
Areas Journal 36.4 (2016), pp. 478–488.

80

https://www.marinespecies.org


Bibliography 81

[16] Attrill, M. J. and Power, M. “Climatic influence on a marine fish assemblage”. In: Nature
417.6886 (2002), pp. 275–278.

[17] Auber, A. et al. “Decline of cold-water fish species in the Bay of Somme (English Chan-
nel, France) in response to ocean warming”. In: Estuarine, Coastal and Shelf Science
189 (2017), pp. 189–202.

[18] Auber, A. et al. “International Bottom Trawl Survey Working Group (IBTSWG)”. In:
(2023).

[19] Barabási, A.-L. and Albert, R. “Emergence of scaling in random networks”. In: science
286.5439 (1999), pp. 509–512.

[20] Baretta-Bekker, J. et al. “Description of the long-term (1991–2005) temporal and spatial
distribution of phytoplankton carbon biomass in the Dutch North Sea”. In: Journal of
Sea Research 61.1-2 (2009), pp. 50–59.

[21] Barter, E. and Gross, T. “Manifold cities: social variables of urban areas in the UK”.
In: Proceedings of the Royal Society A 475.2221 (2019), p. 20180615.

[22] Bascompte, J. “Networks in ecology”. In: Basic and applied ecology 8.6 (2007), pp. 485–
490.

[23] Bastrikin, D. K. et al. “Settlement length and temporal settlement patterns of juvenile
cod (Gadus morhua), haddock (Melanogrammus aeglefinus), and whiting (Merlangius
merlangus) in a northern North Sea coastal nursery area”. In: ICES Journal of Marine
Science 71.8 (2014), pp. 2101–2113.

[24] Batten, S. D. et al. “A global plankton diversity monitoring program”. In: Frontiers in
Marine Science 6 (2019), p. 321.

[25] Beare, D. et al. “Long-term increases in prevalence of North Sea fishes having southern
biogeographic affinities”. In: Marine Ecology Progress Series 284 (2004), pp. 269–278.

[26] Beaugrand, G. “The North Sea regime shift: evidence, causes, mechanisms and conse-
quences”. In: Progress in Oceanography 60.2-4 (2004), pp. 245–262.

[27] Beezer, R. A. A first course in linear algebra. Independent, 2015.

[28] Belkin, M. and Niyogi, P. “Towards a theoretical foundation for Laplacian-based mani-
fold methods”. In: International conference on computational learning theory. Springer.
2005, pp. 486–500.

[29] Bellmann, R. Adaptive Control Processes: A Guided Tour. Princeton University Press,
1961.

[30] Bellwood, D. et al. “Functional versatility supports coral reef biodiversity”. In: Proceed-
ings of the Royal Society B: Biological Sciences 273.1582 (2006), pp. 101–107.

[31] Ben-Naim, E., Frauenfelder, H., and Toroczkai, Z. Complex networks. Vol. 650. Springer
Science & Business Media, 2004.

[32] Benway, H. M. et al. “Ocean time series observations of changing marine ecosystems: an
era of integration, synthesis, and societal applications”. In: Frontiers in Marine Science
6 (2019), p. 393.

[33] Berg, F. et al. “Comparative biology and population mixing among local, coastal and
offshore Atlantic herring (Clupea harengus) in the North Sea, Skagerrak, Kattegat and
western Baltic”. In: PLoS One 12.10 (2017), e0187374.

[34] Berke, S. K. “Functional groups of ecosystem engineers: a proposed classification with
comments on current issues”. In: Integrative and comparative biology 50.2 (2010), pp. 147–
157.



Bibliography 82

[35] Berkeley, S. A. et al. “Fisheries sustainability via protection of age structure and spatial
distribution of fish populations”. In: Fisheries 29.8 (2004), pp. 23–32.

[36] Beukhof, E. et al. A trait collection of marine fish species from North Atlantic and North-
east Pacific continental shelf seas [dataset]. PANGEA, 2019. doi: 10.1594/PANGAEA.
900866.

[37] Beukhof, E. et al. “Marine fish traits follow fast-slow continuum across oceans”. In:
Scientific Reports 9.1 (2019), p. 17878.

[38] Bezanson, J. et al. “Julia: A fresh approach to numerical computing”. In: SIAM review
59.1 (2017), pp. 65–98.

[39] Blonder, B. “Hypervolume concepts in niche-and trait-based ecology”. In: Ecography
41.9 (2018), pp. 1441–1455.

[40] Bluemel, J. K. et al. “Decline in Atlantic wolffish Anarhichas lupus in the North Sea:
Impacts of fishing pressure and climate change”. In: Journal of Fish Biology 100.1 (2022),
pp. 253–267.

[41] Blum, M. J. “Environmental Pressures on Top-Down and Bottom-Up Forces in Coastal
Ecosystems”. In: Diversity 13.9 (2021), p. 444.

[42] Boccaletti, S. et al. “Complex networks: Structure and dynamics”. In: Physics reports
424.4-5 (2006), pp. 175–308.

[43] Bolle, L. J. et al. “Nursery grounds of dab (Limanda limanda L.) in the southern North
Sea”. In: Netherlands Journal of Sea Research 32.3-4 (1994), pp. 299–307.

[44] Bollobás, B. “Random graphs academic press”. In: New York (1985).

[45] Bollobás, B. and Bollobás, B. Random graphs. Springer, 1998.

[46] Bond, E. M. and Chase, J. M. “Biodiversity and ecosystem functioning at local and
regional spatial scales”. In: Ecology letters 5.4 (2002), pp. 467–470.

[47] Bongers, F. J. et al. “Functional diversity effects on productivity increase with age in a
forest biodiversity experiment”. In: Nature Ecology & Evolution 5.12 (2021), pp. 1594–
1603.

[48] Borja, A. Grand challenges in marine ecosystems ecology. 2014.

[49] Bornholdt, S. and Schuster, H. G. ( Handbook of Graphs and Networks: From the Genome
to the Internet. Wiley-VCH, 2002.

[50] Botta-Dukát, Z. “Rao’s quadratic entropy as a measure of functional diversity based on
multiple traits”. In: Journal of vegetation science 16.5 (2005), pp. 533–540.

[51] Boyce, D. G., Lewis, M. R., and Worm, B. “Global phytoplankton decline over the past
century”. In: Nature 466.7306 (2010), pp. 591–596.

[52] Bremner, J., Rogers, S., and Frid, C. “Assessing functional diversity in marine benthic
ecosystems: a comparison of approaches”. In: Marine Ecology Progress Series 254 (2003),
pp. 11–25.

[53] Bresnan, E. et al. “The Scottish coastal observatory 1997–2013. Part 2-description of
Scotland’s coastal waters”. In: Scottish Marine and Freshwater Science 7.26 (2016).

[54] Brooks, D. R. et al. “Entropy and information in evolving biological systems”. In: Biology
and Philosophy 4 (1989), pp. 407–432.

[55] Brunet, C. et al. “Phytoplankton dynamics during the spring bloom in the south-eastern
English Channel”. In: Estuarine, Coastal and Shelf Science 43.4 (1996), pp. 469–483.

https://doi.org/10.1594/PANGAEA.900866
https://doi.org/10.1594/PANGAEA.900866


Bibliography 83

[56] Brylinski, J. and Aelbrecht, D. “Plankton transfers and coastal front in the Dover Strait”.
In: Oceanologica acta 16.5-6 (1993), pp. 671–676.

[57] Bunse, C. and Pinhassi, J. “Marine bacterioplankton seasonal succession dynamics”. In:
Trends in microbiology 25.6 (2017), pp. 494–505.

[58] Buyse, J. et al. “European plaice movements show evidence of high residency, site fidelity,
and feeding around hard substrates within an offshore wind farm”. In: ICES Journal of
Marine Science (2023), fsad179.

[59] Byers, J. E. “Using ecosystem engineers to enhance multiple ecosystem processes”. In:
Functional Ecology 38.1 (2024), pp. 22–36.

[60] Cadée, G. C. and Hegeman, J. “Phytoplankton in the Marsdiep at the end of the 20th
century; 30 years monitoring biomass, primary production, and Phaeocystis blooms”.
In: Journal of Sea Research 48.2 (2002), pp. 97–110.

[61] Cadotte, M. W., Carscadden, K., and Mirotchnick, N. “Beyond species: functional di-
versity and the maintenance of ecological processes and services”. In: Journal of applied
ecology 48.5 (2011), pp. 1079–1087.

[62] Cain, A. J. and Harrison, G. “An analysis of the taxonomist’s judgment of affinity”. In:
Proceedings of the Zoological Society of London. Vol. 131. 1. Wiley Online Library. 1958,
pp. 85–98.

[63] Caley, M. J. “Community dynamics of tropical reef fishes: local patterns between lati-
tudes”. In: Marine Ecology Progress Series 129 (1995), pp. 7–18.

[64] Callaway, R. et al. “Diversity and community structure of epibenthic invertebrates and
fish in the North Sea”. In: ICES Journal of Marine Science 59.6 (2002), pp. 1199–1214.

[65] Campos, W. L., Kloppmann, M., and Westernhagen, H. von. “Inferences from the hor-
izontal distribution of dab Limanda limanda (L.) and flounder Platichthys flesus (L.)
larvae in the southeastern North Sea”. In: Netherlands Journal of Sea Research 32.3-4
(1994), pp. 277–286.

[66] Capuzzo, E. et al. “A decline in primary production in the North Sea over 25 years,
associated with reductions in zooplankton abundance and fish stock recruitment”. In:
Global change biology 24.1 (2018), e352–e364.

[67] Cardinale, B. J. et al. “Biodiversity loss and its impact on humanity”. In: Nature
486.7401 (2012), pp. 59–67.

[68] Carrasco De La Cruz, P. M. et al. “Aggregation of monitoring datasets for functional
diversity estimation”. In: Frontiers in Ecology and Evolution 11 (2023), p. 1285115.

[69] Carreira-Perpinán, M. A. “A review of dimension reduction techniques”. In: Department
of Computer Science. University of Sheffield. Tech. Rep. CS-96-09 9 (1997), pp. 1–69.

[70] Carstensen, J., Klais, R., and Cloern, J. E. “Phytoplankton blooms in estuarine and
coastal waters: Seasonal patterns and key species”. In: Estuarine, Coastal and Shelf
Science 162 (2015), pp. 98–109.

[71] Castro, C. de et al. “Evidence for substock dynamics within whiting (Merlangius merlan-
gus) management regions”. In: ICES Journal of Marine Science 70.6 (2013), pp. 1118–
1127.

[72] Chase, J. M. et al. “Species richness change across spatial scales”. In: Oikos 128.8 (2019),
pp. 1079–1091.

[73] Chiu, C.-H. and Chao, A. “Distance-based functional diversity measures and their de-
composition: a framework based on Hill numbers”. In: PloS one 9.7 (2014), e100014.



Bibliography 84

[74] Chung, F. R. Spectral graph theory. Vol. 92. American Mathematical Soc., 1997.

[75] Ciannelli, L. et al. “Theory, consequences and evidence of eroding population spatial
structure in harvested marine fishes: a review”. In: Marine Ecology Progress Series 480
(2013), pp. 227–243.

[76] Clark, A. T. et al. “Spatial convergent cross mapping to detect causal relationships from
short time series”. In: Ecology 96.5 (2015), pp. 1174–1181.

[77] Clark, R. A. and Frid, C. L. “Long-term changes in the North Sea ecosystem”. In:
Environmental reviews 9.3 (2001), pp. 131–187.

[78] Cody, M. L. and Diamond, J. M. Ecology and evolution of communities. Harvard Uni-
versity Press, 1975.

[79] Coifman, R. R. and Lafon, S. “Diffusion maps”. In: Applied and computational harmonic
analysis 21.1 (2006), pp. 5–30.

[80] Coifman, R. R. et al. “Geometric diffusions as a tool for harmonic analysis and structure
definition of data: Diffusion maps”. In: Proceedings of the national academy of sciences
102.21 (2005), pp. 7426–7431.

[81] Colebrook, J. “Environmental influences on long-term variability in marine plankton”.
In: Long-Term Changes in Coastal Benthic Communities: Proceedings of a Symposium,
held in Brussels, Belgium, December 9–12, 1985. Springer. 1987, pp. 309–325.

[82] Cook, R., Sinclair, A., and Stefansson, G. “Potential collapse of North Sea cod stocks”.
In: Nature 385.6616 (1997), pp. 521–522.
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[120] Eklöf, A. et al. “The dimensionality of ecological networks”. In: Ecology letters 16.5
(2013), pp. 577–583.

[121] Elliott, S. A. et al. “Shedding light on the river and sea lamprey in western European
marine waters”. In: Endangered Species Research 44 (2021), pp. 409–419.

[122] Ellis, J., Rogers, S., and Freeman, S. “Demersal assemblages in the Irish Sea, St George’s
channel and Bristol channel”. In: Estuarine, Coastal and Shelf Science 51.3 (2000),
pp. 299–315.

[123] Elton, C. S. Animal Ecology. Sigdwick and Jackson, 1927.

[124] Emeis, K.-C. et al. “The North Sea—A shelf sea in the Anthropocene”. In: Journal of
Marine Systems 141 (2015), pp. 18–33.

[125] Engelhard, G. H. et al. “Effort reduction and the large fish indicator: spatial trends
reveal positive impacts of recent European fleet reduction schemes”. In: Environmental
Conservation 42.3 (2015), pp. 227–236.

[126] Estes, J. A. and Palmisano, J. F. “Sea otters: their role in structuring nearshore com-
munities”. In: Science 185.4156 (1974), pp. 1058–1060.

[127] Fahimipour, A. K. and Gross, T. “Mapping the bacterial ways of life”. In: arXiv preprint
arXiv:1908.07631 (2019).

[128] Faria, D. et al. “The breakdown of ecosystem functionality driven by deforestation in a
global biodiversity hotspot”. In: Biological Conservation 283 (2023), p. 110126.

[129] Felden, J. et al. PANGAEA – Data Publisher for Earth Environmental Science. Scien-
tific Data. PANGEA, 2023. doi: 10.1038/s41597-023-02269-x.

https://doi.org/10.1038/s41597-023-02269-x


Bibliography 87

[130] Ferrier, S. et al. “Spatial turnover in species composition of ground-dwelling arthropods,
vertebrates and vascular plants in north-east New South Wales: implications for selection
of forest reserves”. In: The other 99 (1999), pp. 68–76.

[131] Fiedler, M. “Algebraic connectivity of graphs”. In: Czechoslovak mathematical journal
23.2 (1973), pp. 298–305.

[132] Fonseca, C. R. and Ganade, G. “Species functional redundancy, random extinctions and
the stability of ecosystems”. In: Journal of Ecology (2001), pp. 118–125.

[133] Ford, D. A. et al. “Observing and modelling phytoplankton community structure in the
North Sea”. In: Biogeosciences 14.6 (2017), pp. 1419–1444.
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[144] Gamarra, J. G. and Solé, R. V. “Bifurcations and chaos in ecology: lynx returns revis-
ited”. In: Ecology Letters 3.2 (2000), pp. 114–121.

[145] Garnier, E. et al. “Plant functional markers capture ecosystem properties during sec-
ondary succession”. In: Ecology 85.9 (2004), pp. 2630–2637.

[146] Gaston, K. J. and Fuller, R. A. “Commonness, population depletion and conservation
biology”. In: Trends in ecology & evolution 23.1 (2008), pp. 14–19.

[147] Gault, J. A. et al. “Dissimilarity analysis based on diffusion maps”. In: Oikos (2023),
e10249.

[148] Gause, G. F. The Strugle for Existence. Willians and Wilkins, 1934.

[149] Ghilarov, A. “The paradox of the plankton reconsidered; or, why do species coexist?”
In: Oikos (1984), pp. 46–52.

https://www.fishbase.org


Bibliography 88

[150] Ghojogh, B. et al. “Laplacian-based dimensionality reduction including spectral cluster-
ing, Laplacian eigenmap, locality preserving projection, graph embedding, and diffusion
map: Tutorial and survey”. In: arXiv preprint arXiv:2106.02154 (2021).

[151] Gibson, R. “The Atlantic salmon in fresh water: spawning, rearing and production”. In:
Reviews in fish biology and fisheries 3 (1993), pp. 39–73.

[152] Gislason, H. “Ecosystem effects of fishing activities in the North Sea”. In: Marine Pol-
lution Bulletin 29.6-12 (1994), pp. 520–527.

[153] Golley, F. B. A history of the ecosystem concept in ecology: more than the sum of the
parts. Yale University Press, 1993.
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angegebenen Quellen und Hilfsmittel benutzt und die allgemeinen Prinzipien wissenschaftlicher
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