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Abstract

Increasing size, complexity and heterogeneity of software-intensive systems make it
nearly impossible that single persons develop a whole system. Therefore, different
stakeholders with different concerns are involved and are supported with tailored
views on the system. These views conform to viewpoints and enable multi-view mod-
eling of the system under development. Since these views are realized with models
and jointly represent the whole system under development, the models semantically
depend on each other in terms of redundant information, explicit links and further
constraints, and therefore must be consistent to each other regarding these depen-
dencies. Since the manual ensuring of consistency between models is error-prone,
time-consuming and restricted by limited knowledge of users about models of other
views, this thesis aims to develop an approach to automatically ensure consistency
between multiple models.

MoConseMI (MOdel CONSistency Ensured by Metamodel Integration) is the
newly designed and implemented approach for automatically ensuring inter-model
consistency. Its main and unique characteristic is the reuse of existing metamodels
and conforming models as data sources, which are integrated into an explicit Sin-
gle Underlying (Meta)Model (SU(M)M). This enables to propagate changes between
data sources and the SUM in order to re-establish the consistency after changes in
any of the models. By this means, MoConseMI supports users of views with au-
tomated fixes for inconsistencies, while the desired project-specific consistency goals
are configured only once for each project with reusable operators. MoConseMI
does not require a formalization of the desired consistency, but provides a pragmatic
strategy to initially create a SU(M)M in bottom-up way from existing (meta)models,
which is automatically realized by operators that are manually configured to realize
consistency. With this strategy, MoConseMI fills a gap in related work. In Mo-
ConseMI, existing data sources are complemented with new view(point)s which can
be derived from the SU(M)M and are kept consistent directly with the SUM as well.
The technical heterogeneity of models is overcome by reusable adapters for different
technical spaces.

MoConseMI is successfully applied to several application examples. This em-
phasizes that MoConseMI is reusable for and transferable to a broad range of
projects, allowing for even more than the presented applications. Additionally, the
evaluation of MoConseMI shows, that the designed operators are reusable and re-
duce the configuration effort, that MoConseMI is combinable with other research
and into other applications, and that MoConseMI can even fulfill intra-model con-
sistency. MoConseMI complements its main contribution for ensuring inter-model
consistency with further contributions for traceability, model co-evolution and differ-
ence representations for models and their metamodels.
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Kurzfassung

Die zunehmende Größe, Komplexität und Heterogenität von Software-intensiven Sys-
temen macht es nahezu unmöglich, dass Einzelpersonen ein System vollständig ent-
wickeln. Deshalb werden verschiedene Akteure mit unterschiedlichen Belangen einbe-
zogen und mit passgenauen Sichten auf das System unterstützt. Diese Sichten sind
konform zu Sichtbeschreibungen und ermöglichen die sichtenbasierte Modellierung
des sich in Entwicklung befindenden Systems. Da diese Sichten durch Modelle rea-
lisiert werden und gemeinsam das gesamte sich in Entwicklung befindende System
repräsentieren, hängen die Modelle hinsichtlich redundanter Informationen, explizi-
ter Verknüpfungen und weiterer Vorgaben semantisch voneinander ab und müssen
deshalb entsprechend dieser Abhängigkeiten konsistent zueinander gehalten werden.
Da die händische Sicherstellung von Konsistenz zwischen Modellen fehleranfällig,
zeitaufwendig und durch beschränktes Wissen von Anwendern über Modelle anderer
Sichten beeinträchtigt ist, entwickelt diese Arbeit einen Ansatz zur automatischen
Sicherstellung von Konsistenz zwischen mehreren Modellen.

MoConseMI (MOdel CONSistency Ensured by Metamodel Integration: Modell-
konsistenz sichergestellt durch Metamodellintegration) ist der neu entworfene und
implementierte Ansatz zur automatischen Sicherstellung von Konsistenz zwischen
Modellen. Dessen wichtigste und einzigartige Eigenschaft ist die Wiederverwendung
bestehender Metamodelle und konformer Modelle als Datenquellen, die in ein expli-
zites Single Underlying (Meta)Modell (SU(M)M) integriert werden. Dies ermöglicht
es, Änderungen zwischen Datenquellen und dem SUM auszutauschen, um die Kon-
sistenz nach Änderungen in einem der Modelle wiederherzustellen. Auf diese Wei-
se unterstützt MoConseMI Anwender von Sichten mit automatischen Korrekturen
von Inkonsistenzen, während die gewünschten projektspezifischen Konsistenzziele nur
einmal für jedes Projekt mit wiederverwendbaren Operatoren konfiguriert werden.
MoConseMI erfordert keine Formalisierung der gewünschten Konsistenz, sondern
stellt eine pragmatische Strategie bereit, um ein SU(M)M durch die Wiederverwen-
dung bestehender (Meta)Modelle initial zusammenzustellen, was durch Operatoren
automatisiert wird, die manuell für die Realisierung der Konsistenz konfiguriert wur-
den. Mit dieser Strategie füllt MoConseMI eine Lücke in der Forschungslandschaft.
In MoConseMI werden existierende Datenquellen durch neue Sichten gemäß neuer
Sichtbeschreibungen ergänzt, die vom SU(M)M abgeleitet werden und ebenfalls mit
dem SUM konsistent gehalten werden. Die technische Heterogenität von Modellen
wird durch wiederverwendbare Adapter für unterschiedliche technische Lösungsräume
überwunden.

MoConseMI wird erfolgreich für mehrere Anwendungsbeispiele angewendet. Dies
zeigt, dass MoConseMI wiederverwendbar für und übertragbar auf ein breites Spek-
trum von Projekten ist, sodass über die gezeigten Anwendungen hinaus weitere
möglich sind. Darüber hinaus zeigt die Evaluierung von MoConseMI, dass die
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entwickelten Operatoren wiederverwendbar sind und den Konfigurationsaufwand re-
duzieren, dass MoConseMI kombinierbar mit anderer Forschung und in andere
Anwendungen ist und dass MoConseMI Konsistenz sogar innerhalb von Modellen
sicherstellen kann. MoConseMI ergänzt seinen Hauptbeitrag für die Sicherstellung
von Konsistenz zwischen Modellen um weitere Beiträge für Nachverfolgbarkeit, Co-
Evolution von Modellen und Darstellungen von Änderungen in Modellen und deren
Metamodellen.
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Typesetting Conventions

To support the structure and readability, this thesis uses some conventions, renderings
and fonts. They are introduced here and are valid in all parts of the thesis.

• The short statements in the sidebar Statements in the
Sidebar

summarize the current content of the main
text as “take-away” and help to navigate inside the running text.

• In order to emphasize some keywords or other terminology in the running text,
they are set in italics. Bold type is not used in this thesis.

• References in the running text (or links to other parts) are set with black font
color.

• In order to ease browsing to a reference, the number after the Z icon specifies
the page number of a reference. As an example, Section 1.2.1Z 31 can be found
on page 31. This page number is shown only, if the source of the reference is
not located on the current page of the reference.

• Keys in the running text for publications with three or less authors contain
the last names of all authors, like for Meier, Kateule and Winter (2020). For
publications with more than three authors, only the first two authors are named,
like for Meier, Kuryazov et al. (2015).

• Footnotes are used to add some additional short information, mainly exceptions
which do not contradict the statements in the running text and concretizing
technical details which are not important to understand the running text.

• Names in metamodels follow usual Java coding conventions.

• Names of approaches and tools are capitalized like MoConseMI.

• Small parts of inlined source code like method names are set in typewriter like
myMethod(). Longer parts of source code are set in own figures as code listings
with syntax highlighting. All code listings are listed in Section A.5Z 510.

• Fully-qualified names are rendered in this way: package Class attribute

• Different kinds of boxes lift out special parts of the text, including, among
others, definitions, requirements, parts of the ongoing example, important pub-
lications, pointers to future work and side notes:

– Side notes and excursions highlight details which are not required for the
general understanding of the thesis.
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Side note / Excursion

These side notes and excursions are set in dark gray boxes. They
are not set as footnotes, since some of them are too long or contain
graphics.

– All definitions in this thesis are rendered inside dark gray boxes like for
the following Definition 1:

Definition 1: Definition of Definitions

To make important terminology clear, this thesis defines several
terms in form of definitions.

A list of all definitions can be found in Section A.2Z 506.

– Requirements are documented in the following way:

Requirement R 0: Structure of Requirements

Requirements must be documented in a structured way.

Requirement R 0 consists of a label (“R 0”), a short summary (“Structure
of Requirements”) and the main requirement as text (“Requirements must
be documented in a structured way.”). Requirements can be concretized
by sub-requirements, its label would be R 0.1 for example. In the digital
version of this thesis, clicking on parts of a requirement allows to jump to
its main definition, not to its first occurrence. A list of all requirements of
this thesis can be found in Section 4.3Z 158.

– This thesis develops an ongoing example, which is extended throughout
the thesis. Each extension is rendered inside a box like this one:

Ongoing Example, Part 1: Typesetting Conventions ← List →

Parts of this example are highlighted by rendering them in boxes like this
one. Clicking on the left/right arrows in the top-right corner of the box
allows to jump to the previous/next part of this ongoing example. “List”
refers to Section A.1Z 505 listing all parts of this ongoing example.

In Part 2Z 25 of the ongoing example, the ongoing example is introduced.
Note, that these parts of the ongoing example are different from the parts
of this document, that contain chapters and are numbered with Roman
letters.

– Important aspects to extend the results of this thesis are indicated as
future work using boxes like the following one:

Future Work: Outlook to Future Work

Important future work is made explicit at the place, where it is identified.
All future work is picked up and summarized in Section 14.4Z 496.
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– Important statements for this thesis are set in darf gray boxes:

Important Statement

These boxes are used to clarify the problem statement, objectives,
deliverables and final result of this thesis.

– Own publications (i. e. publications with the author of this thesis being
one of their authors), which are relevant for this thesis, are rendered in
prominent way:

Related MoConseMI Publication

Johannes Meier and Andreas Winter (2016): Towards Metamodel
Integration Using Reference Metamodels. In: Proceedings of the 4th
Workshop on View-Based, Aspect-Oriented and Orthographic Soft-
ware Modelling (VAO 2016), pp. 19–22.

This publication is cited as Meier and Winter (2016) in this thesis.

• Operators are set in the following ways: �AddRemoveAssociation in-
dicates a bidirectional operator, which consists of the unidirectional opera-
tor →AddAssociation in main direction and the unidirectional operator
←RemoveAssociation in inverse direction.

• To indicate the position or role of (meta)models for an application realized with
MoConseMI, the following renderings are used:

– Data sources as introduced in Definition 4Z 37 are rendered as DataSource .

– New view(point)s which are introduced in Definition 5Z 40 are rendered as
NewView(Point) .

– The SU(M)M as introduced in Section 3.4Z 120 is rendered as SU(M)M .

– Intermediate nodes at position i ∈ N as introduced in Section 6.4.2Z 204

are rendered as i , while a chain of intermediate nodes k , k +1, . . . , l −1, l
with k , . . . , l ∈ N is rendered as k → l .

Using terms like view(point)s indicates, that views (on model level) and their
viewpoints (on metamodel level) are both affected. The same counts for SU(M)M
comprising the SUM and its SUMM. Linguistically not that obvious, a data
source consists of a view and its viewpoint, too (see Definition 4Z 37). This
counts also in general for a (meta)model comprising the model and its meta-
model.

• Changes in graphics are visualized by using colors to draw the changed elements:
Added elements are rendered with red color. Deleted elements are rendered with
green color.

• As the title of this thesis indicates, consistency is an important concept, which
is concretized into consistency goals and consistency rules in Section 2.3Z 71.
Consistency goals and consistency rules are rendered in the following way:
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Contents in Detail

Consistency Goal C 0 Requirements + Java

Requirements must be linked with their fulfilling Java methods.

This Consistency Goal C 0 summarizes a consistency issue in the ongoing ex-
ample between the data sources Requirements and Java .

Consistency Rule C 0 a for C 0

Links between requirements and fulfilling methods are added manually.

This Consistency Rule C 0 a adds a hint, how to realize its related Consistency
Goal C 0.

•Legend

Mandatory

Optional

Or

Xor

I Sub-Diagram

This thesis uses feature models (Kang, Cohen et al., 1990; Nešić, Krüger et al.,
2019) to depict possible features including their dependencies and restricting
constraints. The legend for feature models is placed in the sidebar and explains
their concepts. An example can be found in Figure 3.2Z 100. Selected features
are marked with light gray color.
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Part I

Introduction

This part motivates this thesis by establishing multi-perspective
modeling as usual paradigm for the development of software-
intensive systems. Since these perspectives are realized with
models and depend on each other in order to jointly represent
the same system under development, ensuring the consistency of
depending models is an important challenge. The development
and evaluation of a new approach for overcoming this challenge
is the objective of this thesis.
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Chapter 1

Motivation

Since today’s software-intensive systems increase regarding size, complexity and hetero-
geneity, multiple Perspectivestheir development cannot be realized by single persons anymore. To manage the
development of systems, different persons with different skills are involved. They use dif-
ferent tools tailored to their tasks. These different tools deal with different information and
represent multiple perspectives of the system under development.

Since perspectives describing the same system are realized with different tools, but have
interrelations like overlaps or inter-perspective constraints, Inconsistencies between

multiple Perspectives
the data managed by different

perspectives depend on each other. Therefore, inconsistencies between perspectives can
occur, if stakeholders change information in one perspective only and this information is
contained also in another perspective. To fix such inconsistencies, the other perspective
must be changed accordingly. Since such fixes are error-prone and time-consuming, they
should be automated. This problem is illustrated along an example in the following box.

Ongoing Example, Part 2: Introduction ← List →

As running example, a small and strongly simplified Software Development Project simplified Software
Development
Project

is chosen
with perspectives for requirements, UML class diagrams and Java source code. Goal of
this project is to develop a new information system managing students and lectures at a
university. Initially, this project does not use any approach or tool for ensuring consistency
automatically.

To keep the example manageable, only three different perspectives are described. To
cover multiple steps of a software development lifecycle, requirements as early artifacts (list
of textual requirements), UML class diagrams to specify the design like data models (only
classes with associations), and Java source code for the implementation are chosen (only
classes with methods).

Since these three perspectives together describe the system under development, they
overlap content-wise: The same classes are modeled with class diagrams and implemented
in the source code. When a software architect renames an existing class in the class diagram
only, this results in an inconsistency with the source code. Renaming the class in the source
code accordingly fixes this inconsistency. This renaming should be automated to relieve
the software architect and to keep the system consistent.

As another example, each attribute defined in the class diagram must have a correspond-
ing getter-method in the source code. When a software architect deletes the attribute in
the class diagram only, this results in an inconsistency with the source code. Deleting the
corresponding getter in the source code fixes this inconsistency. This deletion should be
automated to relieve the software architect and to keep the system consistent.

There is also an consistency issue for which no automation is available: Requirements
should be traceable to those methods which implement the functionalities specified by
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1 Motivation

these requirements (and vice versa). This can be realized with traceability links between
requirements and their fulfilling methods. When a developer creates a new method in order
to fulfill a particular requirement, the developer must also create a traceability link between
both. Without creating this traceability link, the developer introduced a new inconsistency.

This sketched example is used as ongoing example for the whole thesis.ongoing Example for
the whole Thesis

Therefore, this
example is not described completely here, but is picked up continuously in the following
sections for conceptual clarifications and technical realizations. Until the last part, the
described project will have applied the new approach of this thesis. Variants of this
example are already used in some publications (Meier and Winter, 2018a; Meier, Klare
et al., 2019; Meier, Werner et al., 2020). This ongoing example is described in more detail
regarding the existing perspectives in Part 5Z 37 of the ongoing example and regarding the
consistency issues in Part 3Z 34 of the ongoing example.

The problem are inconsistencies between related perspectives: This problem is not re-
stricted to this small ongoing example or software development on a larger scale. Instead, it
is a general problem of all perspectives which together describe the same system. It occurs
also in, among others, the management of distributed access rights or knowledge manage-
ment in research projects. Therefore, this thesis aims to solve this problem in general and
shows application examples also for these domains in Chapter 9Z 283 and Chapter 11Z 387.

In order to solve the problem of consistency between perspectives, some challenges
must be overcome:Challenges in

multi-perspectives
Consistency
Preservation

There are different kinds of consistency issues between perspectives, i. e.
redundancies when same information is contained in multiple perspectives, links establishing
explicit connections between elements of two or more perspectives and constraints in form
of additional rules which must hold between perspectives. These consistency issues are
project-specific, like the classes in the ongoing example as an example for redundancies,
since each class conceptually exists only once, but is represented twice in source code and
class diagrams. Additionally, already existing data must be reused by approaches. Since
such data conform to the structure of their tools, these structures must be reused, too.
These challenges are elaborated in Section 1.2Z 31.

The main objective of this thesis (Section 1.3.1Z 42) is to overcome those challenges,
Outline of the Chapter whose outline is motivated in Section 1.4Z 47. Before that, Section 1.1 describes the idea

of modeling with multiple perspectives for system development in more detail and derives
problems in multi-perspective modeling.

1.1 Multi-perspective modeling

During the development of systems including software-intensive systems,Introduction of Term
multiple Perspectives

a perspective al-
lows to focus on only some selected parts of the system, instead of dealing with all infor-
mation of the whole system under development. This reflects the principle of abstraction,
which is central for modeling (see Definition 12Z 59). Using multiple perspectives enables
different stakeholders to concentrate on their individual tasks and to work together on the
same system.

With growing size, complexity and heterogeneity of software-intensive systems, also
their description amounts during development increase accordingly.Reasons for using

multiple Perspectives
This requires using

multiple perspectives due to the following reasons:

Size At some point, the development by a single person becomes inefficient or even im-
possible due to the systems size. To align the development power to the systems
size, multiple persons or even teams are required for development. Therefore, the
systems needs to be decomposed into different parts, which are manageable by single
persons. These parts represent different perspectives. As an example from industry,
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1.1 Multi-perspective modeling

Burden, Heldal and Whittle (2014) reported on single models containing 8000 UML
sequence diagrams or converted 3000 pages of specifications, whose size decreased its
understanding and maintenance.

Complexity To manage increasing complexity regarding functionality, the system needs
to be decomposed into multiple parts, i. e. multiple sub systems representing different
functional parts of the system. Different sub systems can be treated as different per-
spectives and provided to different groups of persons for development. Thus different
perspectives can cover different sub systems. As an example, Bucchiarone, Cabot
et al. (2020, p. 8) require different perspectives to cope with the complexity of smart
city applications.

Heterogeneity The heterogeneity of systems and their sub systems regarding design and
realization techniques (Lee, 2010) requires multiple tasks during development with
different skills. Involving multiple persons with different skills or specializations helps
to distribute development tasks according to the required skills. Thus, different
perspectives are tailored to different skills of different persons. As an example, the
software architect is provided with higher-level information like data classes, while
details of the implementation like single Java statements are hidden.

Summarizing, the use of multiple perspectives tailors system descriptions to characteristics
of sub systems and to the skills of the involved persons.

In order to realize perspectives for developing systems, modeling is used, since modeling
is a fundamental activity in the context of software engineering (Ludewig, 2004): The de-
velopment of systems is done via modeling using multiple perspectives, which leads to the
term multi-perspective modeling. multi-perspective

Modeling
Modeling represents all information as models conform-

ing to metamodels, since metamodels define the structure for and the concepts usable by
models. While information is represented as model, the structure of this information, i. e.
the concepts, is represented as metamodel. Summarizing, everything is a model (Bézivin,
2005), including source code (Heidenreich, Johannes et al., 2009).

Therefore, required terminology is concretized according to modeling terminology and to
the ISO Standard for Architecture Description 42010:2011 (IEEE, 2011), which is detailed
in Chapter 2Z 51: TerminologyInstead of persons involved in system development, the term stakeholder
is used (see Definition 8Z 55). The interests of stakeholders in the system are described
by concerns (see Definition 9Z 55). Perspectives reflect these concerns by defining, which
parts of systems are selected, and are named viewpoints (see Definition 10Z 55). When a
stakeholder looks at one concrete system, a viewpoint targeting his concerns determines,
what is shown to him. The shown result is named view (see Definition 11Z 56). In this
thesis, views are technically realized as models (see Definition 12Z 59), while viewpoints are
technically realized as metamodels (see Definition 13Z 61). View vs ViewpointThese concepts help to clearly
distinguish the particular, provided information about the particular system of perspectives
as views from the general, structural concepts of perspectives as viewpoints.

Using multiple perspectives in form of viewpoints is an established and often used
concept to model complex systems, as the following examples demonstrate: widely established Use

of multi-perspective
Modeling• The Unified Modeling Language (UML) (Object Management Group, 2017) uses

different diagrams to focus on different aspects of the system under developement,
e. g. UML class diagrams for static aspects of a system like data classes or UML
activity diagrams and UML state machines to describe dynamic aspects.

• For the development and management of software systems and organizations, Winter
(2000) identified lots of visual modeling languages representing multiple perspectives
for structures, tasks, processes and data including organization charts, communica-
tion networks, data flow diagrams, use case diagrams, state charts, petri nets, Gantt
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charts, decision tables, object diagrams and collaboration diagrams. These languages
are classified and their general, overlapping concepts are identified and represented
in form of reference metamodels for their conceptual integration.

• For automated production systems engineering, Feldmann, Herzig et al. (2015b) pro-
pose multiple viewpoints including SysML models for systems engineers to define
the mechatronic architecture, MATLAB/Simulink models for simulating and eval-
uating properties of the system and unspecified viewpoints for non-functional re-
quirements and test cases. Feldmann, Wimmer et al. (2016) add CAD drawings for
geometric visualizations for mechanical engineers and circuit diagrams for electrical
engineers.

• For Industry 4.0 and its concerns like 3D modeling, architectures, specification ex-
change, formal modeling and simulation, Wortmann, Barais et al. (2020) collected
various different languages including AutomationML, UML modeling, SysML, Au-
toCAD, MATLAB/Simulink and petri nets.

• Pohlmann, Meyer et al. (2014) present multiple viewpoints for developing hardware
platforms for smart cyber-physical systems (CPSs), including viewpoints for resource
types describing possible kinds of resources including its main parts, resource in-
stances describing all required instances of the defined resource types for the partic-
ular CPS, platform types describing possible kinds of platforms including its main
parts, platform instances describing all required instances of the defined platform
types for the particular CPS and allocation planning for mapping software compo-
nents to the defined platform instances for execution.

• Bucchiarone, Cabot et al. (2020, p. 8) require different perspectives to cope with the
complexity of smart city applications.

• For enterprise modeling, Frank (2014) propose different viewpoints including strategy
nets and value chain diagrams for defining business strategies, business process dia-
grams for modeling the organization, and class diagrams for describing the underlying
information system (Section 3.6.5Z 144).

cover Problem in
application-domain
independent Way

This small excerpt of examples using multi-perspective modeling in different application
domains shows its wide usage and justifies to the cover the problem of inconsistencies
between corresponding views in a generic, i. e. application domain-independent way.

The different viewpointsmultiple Views are
enabled by Redundancy

are established by, among others, different tools (Broy, Feilkas
et al., 2010), environments, file formats, and domain-specific languages (DSLs) (France
and Rumpe, 2007). These tools allow to manage some information of the whole system
as views. For that, each tool provides its own view to its current user, i. e. stakeholder.
In general, different tools are used by multiple stakeholders at the same or different time
and possibly at different locations. That leads to the fact, that information of the system
under development is managed separately or is duplicated in multiple views by multiple
stakeholders. These problems are also reported by Broy, Feilkas et al. (2010) in the domain
of embedded software-intensive systems and by Thomas and Nejmeh (1992) as important
challenge for tool integration. The benefit of this idea is, that each stakeholder can work
independently from all other stakeholders and on only that information which is currently
relevant for him. Therefore, redundancy of the information presented in views enables
environments with multiple views and viewpoints working on the same system.

While the development with multiple viewpointsProblems of multiple
Viewpoints:

is a widely used principle, since it
supports different stakeholders with tailored views, it introduces also some problems: Due
to the tools which manage only the current information in different formats, data bases or
files, the different views are separated on technical level.technical Separation vs

contentwise
Interrelations

But the different views describe

28



1.1 Multi-perspective modeling

different aspects of the same system, which form one system. Therefore, the different views
are interrelated contentwise to describe the same system under development in consistent
way.

Between multiple views of the same system, there are always interrelations: Interrelations between
Views always exist

If there
are no interrelations between two views, they describe two independent systems, instead of
two sub systems of the same system. The practical background for this theoretic finding
is, that some information is required, how to stick two views together to form the whole
system. The points where to stick the views together represent the interrelations between
the views. Nevertheless, Atkinson and Tunjic (2014a, p. 49) recommend to minimize the
interrelations of viewpoints, but in the sense of an optimization problem.

Main forms of these interrelations are redundancies and dependencies: DependenciesRedundan-
cies are characterized by information which are represented in multiple views (Hailpern
and Tarr, 2006). Goldschmidt, Becker and Burger (2012) identified elements occurring
redundantly within multiple views as important feature of views, but use the term over-
laps instead. Dependencies define relations which hold between information encoded in
different views. Since these information could also be the same, redundancies are a special
case of dependencies. Therefore, this thesis calls all interrelations between view(point)s
dependencies. This thesis assumes no order between two depending views regarding time
or construction process, while Persson, Torngren et al. (2013) classify two depending views
as one input view and one output view for each other.

All kinds of dependencies can lead to inconsistencies between views: InconsistenciesIf a relation holds
between two views, they are consistent to each other regarding this relation. If a stake-
holder changes one of the views, this relation can be hurt, if the other view is not changed
accordingly to ensure a valid relation. In that case, inconsistencies are introduced and must
be fixed. The potential for inconsistencies grows with the number of involved views (Muss-
bacher, Amyot et al., 2014).

As motivated above, changing only one view is the usual way of systems development
in multi-view environments. changing Views requires

Changes in related
Views

At the same time, consistency relations hold between multiple
views. Therefore, stakeholders working on views usually introduce inconsistencies, which
must be fixed in the related views afterwards. This problem is an inherent one, since each
stakeholder works only on a single view and has no chance to directly change the other views
accordingly. This can cause also organizational problems in bigger companies, if multiple
stakeholders have to know about other views and their responsible persons and have to
agree with them on joint changes in different views, as exemplarily reported by Burden,
Heldal and Whittle (2014). Consistency ⇔

@ Inconsistency
Summarizing, changing one view requires to change related

views according to consistency relations. If all consistency relations are fulfilled, i. e. there
are no inconsistencies, consistency is achieved.

If consistency between views is ensured manually, manual Consistency
Preservation is
error-prone

the stakeholders change their view
and have to change all related views accordingly. This step is error-prone, since required
adjustments may be forgotten, some related information may not be found or the applied
changes may be incorrect. Another problem is, that stakeholders usually know only “their
own” view, lack knowledge of “other foreign” views (which is the idea of having multiple
views!) or do not even know about the existence of related views, which limits the chance
to find senseful changes fixing inconsistencies in the other views (Hailpern and Tarr, 2006).
Another problem is incomplete understandings of stakeholders about the reasons for oc-
curred inconsistencies (Grundy, Hosking and Mugridge, 1998, p. 975). Even if other views
can be fixed in principle, with a large number of views it is difficult to keep track of views
that are still inconsistent and views that are already fixed (Burden, Heldal and Whittle,
2014). Such manual consistency preservation requires high effort in time and complexity,
even though the consistency preservation usually follows strict rules, which could be auto-
mated. As idea, specialists describe the strict rules for consistency once, so that related
views can be changed accordingly automatically, after the stakeholder changed his view
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manually. Finally, the amount of involved views and requests for instant feedback for users
requires an automation (Egyed, Zeman et al., 2018).

To get rid of such manual work, sometimes transformations between two views are writ-
ten to (re-)generate one view, if the other view changed.unstructured

Consistency
Preservation requires
high Effort

Alternatively, scripts are hacked to
synchronize some information between views (Burden, Heldal and Whittle, 2014). Usually,
only two views (e. g. source and target) are involved in such transformations. In practice,
multiple pairs of such transformations might be written by different users, lacking synchro-
nization due to missing knowledge of foreign views and lacking a holistic understanding of
the whole system. Sindico, Natale and Sangiovanni-Vincentelli (2012) report on a bigger
industrial development process with multiple transformations and scripts between the in-
volved artifacts. Usually, such automation efforts are done in an unstructured way without
general idea, approach or framework behind. These findings motivate the development of
a new approach for rigorously ensuring consistency between multiple views.

Problem Statement

In order to manage size, complexity and heterogeneity of software-intensive systems,
multiple viewpoints are used to describe parts of the system regarding the concerns of
involved stakeholders.Summary: changing

separated Views
introduces
Inconsistencies with
related Views

These views are used independently from other views, but all
views together describe the whole system under development and therefore depend
on each other.

If a stakeholder changes one view, this view may become inconsistent with the
other views. Inconsistencies between views prevent successfully developing the sys-
tem and must be fixed to realize the desired system in a consistent way. Doing this
in manual or in an unstructured way is error-prone and time-consuming.

Summarizing, the problem are inconsistencies between multiple views which are
not automatically fixed. This thesis aims at overcoming this problem in a structured
and automated way.

This problem of upcoming inconsistencies between different views is an important one
in literature:Consistency of Views is

important in Literature
Changing other views according to the change made in one view is called

change propagation by Persson, Torngren et al. (2013). Stevens (2008) emphasizes the
need for handling inconsistencies in views which are manually changed by users, in contrast
to views which are completely and automatically generated from other views. In 2014,
Mussbacher, Amyot et al. (2014, p. 188) state, that inconsistencies between artifacts are still
a major problem, which is not solved during the last 20 years. Still in 2020, Bucchiarone,
Cabot et al. (2020) emphasize the need for traceability and consistency across different
views. Mohagheghi, Gilani et al. (2013a, p. 102) identified, that companies may expect
consistency preservation as benefit when using modeling techniques. France and Rumpe
(2007) propose synchronization transformations to propagate changes from one view to
other views. Persson, Torngren et al. (2013) give a broad overview of groups of approaches
for multi-view modeling. The spectrum of existing tools and approaches targeting inter-
view consistency in various forms is investigated in Chapter 3Z 93 and its broadness shows
the importance of this problem. Additionally, that section shows, that there is no uniform
approach yet, which overcomes all challenges, which are concretized in Section 1.2Z 31.

Lettner, Tschernuth and Mayrhofer (2011, p. 236) report on an example, what can
happen, if consistency between views for different stakeholders is not ensured in a struc-
tured way:Example for bypassing

Inconsistency
Users started to split the model into parts and worked only on their parts, in

order to prevent the occurrence of inconsistency, and put the changed parts together after-
wards. Here, inappropriate granularity or structuring of the complete model are identified
to be problematic for splitting the model, while the problem behind the problem is missing
support for consistency.

The root of this problem, respectively the problem behind this problem, i. e. inconsis-
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tencies between multiple views, are conflicts of involved principles: conflicting Principles:
Separation of Concerns
vs Redundancy
Reduction

A holistic description
of the system under development describes it completely (principle of completeness), but
becomes usually too big and too complex for single stakeholders. Therefore, views follow
the principle of separation of concerns (Tarr, Ossher et al., 1999) (and the related principle
of decomposition) to manage the complexity and size of the system. Since multiple views of
the same system have overlaps, they introduce redundancy between the views, which hurts
the principle of redundancy reduction.

In essence, most existing tools including UML tools work on and with single views,
as if the represented information is independent first-order information. But in fact, this
information describes only a sub system of the whole system, i. e. a view on the system,
which must be kept consistent to all other views and the underlying system. This issue is an
important criteria in the classification of viewpoints by Darke and Shanks (1996), already
few years after the introduction of viewpoints by Finkelstein, Kramer and Goedicke (1990).

multiple Views enable
Separation of Concerns,
but introduce
Consistency Challenges

Summarizing, on the one hand, multi-perspective modeling fulfills the need of separation
of different concerns in system development by providing multiple views. On the other
hand, multiple views introduce danger of inconsistencies between them, since they describe
together the whole system under development and therefore depend on each other. This
problem behind the problem is inherent and is not solved by this thesis. Instead, this thesis
ensures inter-model consistency in a structured way to cope with this conflict of paradigms.
The next Section 1.2 identifies the challenges which must be overcome in order to fix these
problems.

1.2 Challenges

In order to solve the general problem, Challenges in ensuring
multi-view Consistency

i. e. inconsistencies between multiple views, some
challenges must be overcome to realize multi-perspective modeling (Section 1.1Z 26). The
challenges are identified in this section and are derived from the motivation (Chapter 1Z 25)
and literature.

Keeping different models consistent to each other is already identified as main problem,
therefore, it is concretized as challenge in Section 1.2.1. Since consistency is defined as a
relationship between views (cf. Definition 2Z 32), these views are investigated and classi-
fied regarding their temporal origin: Views which are already existing before applying an
approach for ensuring consistency are called data sources and are challenging due to the
reuse of already existing information, as investigated in Section 1.2.2Z 36. Views which
are derived after applying an approach for ensuring consistency are called new views and
are challenging due to the supply of information stemming from multiple data sources in
an editable way, as investigated in Section 1.2.3Z 39. This classification is complete, since
each view is established either before or after introducing an approach for ensuring consis-
tency in the particular project. This distinction was already made by Guerra and de Lara
(2006) calling data sources as “system views” and new views as “derived views”. Their
terms are not used here, since data sources emphasize the already existing information
more than system views and new views emphasize their late definition reusing information
and providing no new information more than derived views, since data sources can be also
seen as derived after their integration into a SUM.

1.2.1 Model Consistency

As motivated in Section 1.1Z 26, the main problem is to ensure consistency between multiple
views. This section identifies the main challenges to overcome in order to solve the problem
of inconsistencies between views. Before discussing challenges of consistency, the term
consistency is clarified here and summarized in Definition 2Z 32. Before that, definitions
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for consistency from the related work are discussed.
reviewing Definitions for
Consistency

Persson, Torngren et al. (2013) define, that views are inconsistent to each other, if there
is no system which matches the semantics of all views. While consistency between views
is expressed clearly as a question of satisfiability by this definition, the underlying system
is a bit vague, since the definition allows, that different systems are described by views at
different points in time.

Spanoudakis and Zisman (2001) define in a more formal way, that overlaps of views
which are defined as overlaps of interpretations of these views are the source for inconsis-
tencies. Basing on that, an inconsistency arises, if a so-called consistency rule is hurt by
the views. This definition makes clear, that consistency depends on the interpretations of
stakeholders, which are project-specific. Again, the strong relation of the views to their
underlying system is missing in this definition.

Engels, Küster et al. (2001) distinguish between syntactic and semantic consistency:
Syntactic consistency is given, if a model conforms to its metamodel. This definition is
complemented with a confusing example, since it does not target the model-metamodel-
relation, but a relation between two models. This understanding of model consistence as
conformance with its metamodel goes along with other works like Maro, Steghöfer et al.
(2015). Semantic consistency includes syntactic consistency and requires, that views se-
mantically correspond with the described system. This definition conforms to the other
definitions for consistency from literature, as discussed above. This distinction will be
taken up when discussion different kinds of heterogeneity of models in Section 3.1Z 94.

In similar way, Paige, Brooke and Ostroff (2007) distinguish model conformance (syn-
tactic consistency), i. e. the model conforms to its metamodel, and multi-model consistency
(semantic consistency), i. e. the models “do not contradict each other according to a set of
(metalevel) rules” (Paige, Brooke and Ostroff, 2007).

The IEEE defines consistency as “[t]he degree of uniformity, standardization, and free-
dom from contradiction among the documents or parts of a system or component” (IEEE
Standards Board, 1990, p. 21). This definition emphasizes the relation of the parts i. e.
views of interest to their system. While the other definitions allow only consistency and
inconsistency, this definitions enables more graduations for the degree of (in)consistency.

The SWEBOK defines, that “[c]onsistency is the degree to which models contain no
conflicting requirements, assertions, constraints, functions, or component descriptions”
(Bourque and Fairley, 2014). Again, the strong relation of the models i. e. views to their
underlying system is missing in this definition.

Sometimes, other terms are used instead of the term consistency, like “model in-
tegrity” (Rose, Kolovos et al., 2010), but consistency emphasizes the semantics more clearly
than integrity with its legal connotation. Instead of change propagation for ensuring con-
sistency, Berardinelli, Biffl et al. (2015) use the term “co-evolution”, which is not used here,
since it is usually used for required adaptations of artifacts depending on changed schemata
respectively metamodels, for which Section 6.2.1Z 193 presents several related approaches.

Definition 2: Consistency

One or more views are consistent, if these views describe parts of the same system
under development without semantic contradictions within a particular project. All
views together describe the system in its entirety.

Contradictions occur, when defined conditions for dependencies between views do not
hold for particular views, e. g. when expected overlaps between two views are hurt due to
a mismatch of corresponding elements in the views, explicit links are missing or broken
due to elements which are deleted in one view only or defined constraints do not hold.
These conditions for dependencies between views are clarified by Definition 15Z 72 and
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Definition 16Z 75 later on, which concretize the relevant contradictions. Contradictions
occur between a view and its system in the first place. In the second place, contradictions
between a view and its system transitively lead also to contradictions between that view
and all other views.

Contradictions target the semantics of the involved views according to Engels, Küster
et al. (2001), but syntactical differences of the views, e. g. different metamodels of their
viewpoints, must be overcome, too. Challenge: Consistency

depends on Semantics of
Views

This definition makes clear, that the consistency is
specific and depends on the understandings of the views within the current project, in
which the system is developed using multiple views. Therefore, the challenge is to take the
semantics of the involved views into account during the automation of ensuring consistency.
If the views are consistent, they describe the system in a consistent way. If the views are
inconsistent, they describe the system in an inconsistent way, meaning that the system in
its current state cannot be created respectively used due to the inconsistencies. Since such
an inconsistent description of the system does not delete its semantic purpose, fixing the
inconsistencies leads to a consistent description of the same system with the same purpose
again.

After defining the term consistency, Kinds of Dependencies:this section now discusses, how consistency chal-
lenges look like, i. e. which kinds of dependencies (as motivated on page 29) are possible
between elements of different views. These kinds must be targeted by approaches for en-
suring consistency, which is the first challenge.

Redundancies describe information which is contained in multiple views. redundant Information
in multiple Views

Changing re-
dundant information in one view requires to change the other views accordingly.

Explicit links depict strong and explicit relations between information of different views. explicit Links between
ViewsKuhn, Murphy and Thompson (2012) studied a large automotive company and found,

that explicit links for traceability are strongly needed, but insufficiently supported.

Constraints describe additional rules which have to hold between information of different
views, independently from redundant information and explicit links. Constraints between

different Views
Such conven-

tions might be documented explicitly as guidelines for the current project or company
or represent implicit best-practices.

Comparing with a classification of Persson, Torngren et al. (2013), these kinds are complete:
They call redundancies as semantic overlap instead. They call explicit links as associations
instead, but think of an additional explicit “association view” linking elements of two other
views explicitly. Here, explicit links subsumes also links between views, which are not
made explicit, but should be explicit. They treat constraints as special kind of associa-
tions between two views. Additionally, Persson, Torngren et al. (2013) define the categories
semantic equivalence and refinement/abstract between two views. Since they describe se-
mantic overlap of complete views, these two categories are subsumed under redundancies
here. Syntantic overlap of two views as last category is not relevant here, since combination
of concrete syntax is out of scope of this thesis. Following Persson, Torngren et al. (2013),
the three listed kinds of dependencies are complete. In contrast to Persson, Torngren et al.
(2013), this classification targets single elements of views, which allows to have multiple
dependencies with different kinds of dependencies between two views.

Another possible kind of dependency could be instance-of, i. e. elements in the first view
are instances of types which are defined in the second view. In other words, the first view
describes a model and the second view describes the metamodel of that model. This refers
to multi-level modeling and is out of the scope of this thesis. Generalizations between
elements of views are not possible, while generalizations between elements of viewpoints
are possible and might be used for combining viewpoints.

Summarizing, Challenge: support
different Kinds of
Dependencies

the challenge is to cover the heterogeneity of possible kinds of depen-
dencies, i. e. redundant information in multiple views, explicit links between views and
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additional constraints between information of different views. The ongoing example has
some examples for consistency challenges, which can be classified according the presented
kinds of dependencies:

Ongoing Example, Part 3: Consistency Challenges ← List →

Since the three views for requirements, class diagram and source code together describe the
same system under development in entirety,Consistency

Challenges:
there are consistency challenges between these

three view due to their contentwise overlaps:

1. Since programmers develop the Java source code to fulfill the requirements, there are
interrelations between the requirements and the source code. Making these interrela-
tions explicitly, allows to navigate from the requirements to their realizing methods
in the Java source code and to trace methods back to their motivating requirements.

Traceability between
Requirements and
Methods

Therefore, the traceability between requirements and their fulfilling methods should
be kept consistent here.

As an example for possible inconsistencies, the programmer realized the requirement
r1 (“The student must be able to register for an event.”) in the method
“register” of the class “Student”. Therefore, a traceability link between this require-
ment and this method must be created. To keep the example simple, traceability
links are manually created, e. g. by the programmer.

This consistency challenge is chosen as an example for different concepts in different
views which are interrelated by explicit links as kind of dependency: Usually, these
links are only implicitly existing in practice, but should be explicitly maintained. The
simplest way to enable explicit links between views is to connect their viewpoints by
associations. Of course, such explicit relations can be modeled differently, e. g. by
annotating links with additional information or by typifying them. An additional
challenge is, that these traceability links represent additional content which is con-
tained in none of the existing views. This consistency challenge is managed manually,
since interactions with users are usually required, as demonstrated by Gorp, Altheide
and Janssens (2006) in general and reported for this case by Becker, Herold et al.
(2007, p. 288).

2. Class diagrams and Java have overlaps in form of the redundant description of classes.
Classes in UML ⊆
Classes in Java

Same classes in class diagrams and Java can be identified by matching names. All
classes must be represented always in Java source code, but not necessarily in the
UML class diagram. Note that although the concept of classes is existing redundantly,
the features of the classes are different in the two viewpoints of this restricted example,
since associations are only described in class diagrams and methods are only part of
the Java source code in this restricted example.

As an example for possible inconsistencies, the architect decided to rename the class
“Student” to “Person” in the class diagram. Now the source code is inconsistent,
since the corresponding class has still the name “Student”. To fix this inconsistency,
the class “Student” in the source code must be renamed to “Person”, too. This fix
can be automated.

This consistency challenge is chosen as an example for redundancies as kind of de-
pendency, while the concepts of classes are completely redundant, but the amount of
concrete classes is overlapping, but is not equal in Java and UML. Another challenge
is to deal with different properties of the redundant concepts (associations only in
UML, methods only in Java). This consistency challenge can be managed automati-
cally.
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3. Usually, associations in UML class diagrams are implemented as attributes in Java
source code. Getters for

Associations
Since these attributes are private due to the paradigms of object-

orientation, public methods are required which provide the values for the attributes.
Therefore to be usable, each UML association should have a Java getter-method.

As an example for possible inconsistencies, the software architect just adds the asso-
ciation “university” in the “Student” class in the class diagram. Since the “Student”
class in the source code has no getter method called “getUniversity”, there occurred
an inconsistency. This inconsistency can be automatically fixed by creating such a
method in the source code.

This consistency challenge is chosen as an example for two concepts in two different
viewpoints, which have no direct overlap, but are related to each other by constraints
as kind of dependency. Compared to traditional software development, the relation
between an association and a method playing a special role for that association is not
made explicit and exists only implicitly by convention. This consistency challenge
can be managed automatically. To keep the example short, corresponding setters are
not required.

Up to now, these consistency challenges are tried to fix manually in the ongoing development
project. Since some of these consistency challenges are automatable, an automated solution
is desired. Part 4 of the ongoing example discusses some possible alternatives for these
consistency challenges.

Usually, consistency targets only some elements of a view, not the whole view. While
consistency establishes strong conditions for these elements, the other elements are not re-
lated and therefore do not depend on elements of other views. Challenge: keep

non-depending Content
When ensuring consistency

of depending elements, the challenge is to keep these non-depending elements unchanged.
In particular, it must be ensured, that these elements do not get lost when using model
transformations (Section 2.2.3Z 67) for ensuring consistency, since simple model transfor-
mations can generate only those parts of the target view which are somehow encoded in
the source view. In the ongoing restricted example, classes are contained in class diagrams
and source code and will be kept consistent, but their associations are contained only in
class diagrams, while their methods are contained only in the source code.

Another challenge is, that the concrete consistency challenges are specific for the current
project : Challenge: Consistency

is project-specific
Depending on the currently used tools, the project settings and the involved

stakeholders, the consistency challenges can be different. While the general traceability
between requirements and Java source code is natural, its granularity must be specified, e. g.
if requirements are linked to classes or to methods or even to single statements. Spanoudakis
and Zisman (2001) advocate a clear policy how to manage inconsistencies, which depends
also on the team members. Usually, such specifications are defined in a project manual to be
clear and binding for all involved stakeholders. Already with their definition of consistency,
Spanoudakis and Zisman (2001) make clear, that consistency depends on the interpretations
of models by stakeholders regarding a particular setting. Lucas, Molina and Toval (2009, p.
1639) support the need for configurable consistency challenges. Even the desired consistency
in the ongoing example is project-specific, as indicated by demonstrating some alternatives
for the desired consistency:

Ongoing Example, Part 4: Alternative Consistency Challenges ← List →

Part 3Z 34 of the ongoing example introduced consistency challenges for a simplified software
development project. While those consistency specifications are usable for that project
setting, it is possible to sketch some alternatives for the desired consistency for another
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project setting:

1. Instead of specifying, that the classes in UML are a subset of the classes in Java, all
classes could be shown always in Java and UML. With this alternative, all classes
can be seen completely in UML, which helps (only) in small development projects.
Another alternative is to allow classes in UML which are not part of Java, which
helps e. g. for designing a conceptual data model.

2. Instead of manually maintaining traceability links between requirements and Java,
traceability links could be automatically created by using a (very simple) heuristic:
If the name of a method is contained in the text of a requirements, that method must
be linked with this requirement.

Summarizing, even a strongly simplified setting for software development allows different
specifications of the desired consistency, depending on the current project, on company
guidelines and on other concerns of stakeholders. Therefore, approaches for ensuring
consistency must support project-specific consistency challenges.

After identifying challenges for the consistency of interrelated models in this section,
the following two sections (Section 1.2.2 and Section 1.2.3Z 39) discuss the temporal origins
of these models and their roles in multi-perspective modeling. All these challenges are
summarized and condensed into the objectives of this thesis in Section 1.3.1Z 42.

1.2.2 Reuse existing Artifacts

A
rtifa

ct

Metamodel

Model

This section investigates views and their viewpoints which already exist before applying an
approach for ensuring consistency in the particular project. Therefore, these views and their
viewpoints must be reused by such approaches, which raises challenges as discussed below.
These views respectively viewpoints introduce new content respectively new concepts, which
must be kept consistent. Reuse as important principle of software engineering is done here
“as the view(point)s are” without variation and customization in the sense of Kienzle,
Mussbacher et al. (2016).

Since the term “artifact” allows different interpretations (Méndez Fernández, Penzen-
stadler et al., 2010), it is introduced for the software engineering area with the following
reused Definition 3:

Definition 3: Artifact

“An artefact is a self-contained work result, having a context-specific purpose and
constituting a physical representation, a syntactic structure and a semantic content,
forming three levels of perception.” (Méndez Fernández, Böhm et al., 2019)

While the users of artifacts interact with their physical representations, their syntactic
structures enable the automatic processing of artifacts.Artifact described by

Model and its
Metamodel

Here, these syntactic structures are
realized with metamodels, since an artifact should be described by an explicit metamodel
(schema) and an explicit model (instance) conforming to the metamodel, even when the
schema is only implicitly defined by the artifact (Jin, Cordy and Dean, 2002). This model
reflects the content of the artifact and is used for automatic processing instead of using
the original physical representation. Pfeiffer and Wasowski (2013, p. 386) use the term
“mogram” instead, including, among others, models, source code and configuration files.
Summarizing, existing artifacts provide metamodels and conforming models, which can be
reused in order to avoid to recreate them.

The viewpoints used by stakeholders during system development are realized by tools
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or files in fixed file formats, existing Viewpoints are
project-specific

as motivated in Section 1.1Z 28. Usually, existing tools for
development in a project are initially identified, selected and used, instead of the creation
of new tools. The tool selection depends on, among others, already existing tools, company
guidelines, experience with tools, guidelines of the customers and further concerns of the
stakeholders. Since such tools and file formats are predefined and should not be changed
in the project, since the tools usually do not support the evolution of their expected data
structures, they are fixed and must be covered by approaches for ensuring consistency
“as they are”. Challenge: reuse

existing Viewpoints
The existing viewpoints to be reused might be different, even if the same

information is encoded, depending on different versions of tools or file formats, e. g. xlsx vs
xls for Excel. Findings from practice show, that long support for modeling languages is
very important for industry, so existing languages must be reused (Briand, Falessi et al.,
2012; Whittle, Hutchinson et al., 2013). The challenge is to reuse existing viewpoints.

Nowadays, new systems are not developed from scratch on the greenfield, but in inter-
play with existing systems and environments, Challenge: reuse

existing Views
leading to initial information for the system

architecture. Early prototypes for requirements elicitation or technical feasibility studies
lead to initial implementations. Established knowledge in the company can be reused in
form of libraries or reference models leading to some initial data to be reused. Therefore,
approaches for ensuring consistency need to deal with already existing models. This in-
cludes importing existing models into such approaches and exporting them again to keep
the initial models up-to-date and conforming to the fixed viewpoints. This is summarized
as challenge to reuse existing views as they are. Moreno and Vallecillo (2004) identified the
reuse of existing systems as an important challenge in modeling, since there exist already
developed COTS components, which should be reused for developing a new system or there
exist legacy code, which should be maintained. Bucchiarone, Cabot et al. (2020) emphasize
the need for ongoing co-existence of legacy models, since they have been developed over
decades and should continue to be used.

Before using an approach for automatically ensuring consistency, existing views might
conform to their viewpoints, Challenge: fix existing

Views
but are not necessarily consistent to the other existing views,

since they were managed without help of such automated approaches. Reusing such views
requires to fix them to be consistent to the other views. Therefore, approaches for ensuring
consistency are faced with the challenge to fix possible inconsistencies in the initial models.

Predefined viewpoints and their already existing views are subsumed as data sources,
as defined in the following Definition 4. A concrete data source is rendered as DataSource
in this thesis.

Definition 4: Data Source

A data source incorporates one view and its viewpoint which both exist before start-
ing to apply an approach for ensuring consistency. Data sources represent input for
such approaches.

This definition is applied to the ongoing example in order to emphasize the data sources
to reuse:

Ongoing Example, Part 5: Data Sources ← List →

The ongoing example comes with already existing data sources for requirements, Java and
UML, as introduced in Part 2Z 25 of the ongoing example. This box emphasizes the exis-
tence of data sources with metamodels, models and concrete syntax. This part of the on-
going example describes the involved data sources in more detail regarding their concepts
in general (the viewpoint as itemize list), the already developed parts for the university
information system in particular and their concrete syntaxes (the view as figure).
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Requirements are elicited by requirements engineers in CSV files focusing on the func-
tionalities of the project to realize.textual

Requirements
Viewpoint

To keep the example simple, textual requirements
(instead of user stories) are used with the following features:

• A requirements specification contains multiple requirements.

• All requirements have a unique identifier, a text representing the content of the
requirement in one sentence, and the author of the requirement.

• The requirements specification is written in form of a CSV table.

For the university information system, there are already two requirements, as depicted in
Figure 1.1, referring to two functionalities for students, i. e. the enrollment at the university
and the registration for events like lectures.textual

Requirements
View

The requirements are stored in CSV-formatted
files. This CSV format is supported directly, as shown later in Part 24Z 276 of the ongoing
example.

Table 1.1: The initial input of Requirements in CSV format

# ID Author Text

1 r1 Andreas Winter The student must be able to register for an event.
2 r2 Johannes Meier The student must be enroled at the university.

Java source code is written by programmers in their IDE to fulfill the requirements
according to the design in form of class diagrams.Java Source Code

Viewpoint
Java source code is strongly simplified

with the following features:

• The Java source code consists of multiple classes, without packages.

• Classes are described by their names.

• Classes contain methods identified by their names, without parameters.

• Methods know which methods they call and by which methods they are called.

For the university information system, there is already some source code, written in
Java, depicted in Figure 1.1Z 39. It contains the two classes “University” and “Student”.
The Java source code is developed using the Eclipse IDE.Java Source Code

View
Since the figure uses a screenshot

of Eclipse, it shows some more aspects of Java, which are ignored in this strongly reduced
ongoing example.

UML class diagrams are developed by software architects using modeling tools for im-
portant parts of the architecture and data models to provide a solid foundation for the
system under development.Class Diagram

Viewpoint
Class diagrams are simplified with the following features:

• A class diagram contains multiple classes.

• Classes are described by their names.

• Classes contain unidirectional associations having a name, lower bound, upper bound
and a class as type.
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Figure 1.1: Java source code of the ongoing example

For the university information system, there is already a first design for the system,
in form of a class diagram, as depicted in Figure 1.2. Class Diagram

View
It contains only one class named

“University”.

University Student

+Name : String
university[1]

students[*]

Figure 1.2: Class diagram of the ongoing example

The amount of concepts contained in the three viewpoints is chosen to cover the consis-
tency challenges described in Part 3Z 34 of the ongoing example, to be as small as possible
and to represent a practical application from the software engineering domain. The work-
shop series for consistency challenges in software engineering with UML (Huzar, Kuzniarz
et al., 2005) shows the relevance of ensuring consistency for UML models and therefore
motivates the use of UML in the ongoing example.

The class diagrams for the corresponding viewpoints behind these visualizations of the
data to reuse are shown later in following boxes, e. g. in Part 9Z 64 of the ongoing example.
This counts also for the views rendered as object diagrams.

1.2.3 Define new View(point)s

This section investigates views and their viewpoints which are derived after applying an
approach for ensuring consistency in the particular project. Therefore, such approaches
must provide techniques to define these views and their viewpoints, which raises challenges
as discussed below. These views respectively viewpoints do not introduce new content
respectively new concepts, but structure already existing content respectively concepts in
a different way.

new View(point)s
represent existing
Information in new i. e.
different Ways

Therefore, one overall challenge in multi-perspective modeling is to introduce new view-
points to support additional stakeholders with information about the system under devel-
opment targeting their concerns. New viewpoints reduce the big amount of information
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about the whole systems and provide only that information in form of a new view which is
needed by the stakeholders.

Newly created viewpoints and conforming views are called new view(point)s, as defined
in the following Definition 5. A concrete new view(point) is rendered as NewView(Point)
in this thesis.

Definition 5: New View(Point)

A new view(point) incorporates a view and its viewpoint which are introduced newly
during the application of an approach for ensuring consistency. New view(point)s
represent already existing information in a different way.

In contrast to data sources, new viewpoints represent concepts already encoded in the
systems description or the data sources, but are tailored and restructured according to
the needs of other stakeholders. Since the reused data sources are project-specific (see
Section 1.2.2Z 36),new View(point)s are

project-specific
new views and their new viewpoints are project-specific, too. Addition-

ally, their purposes and therefore their designs are depending on the stakeholders and their
concerns of the current project.

Other related work also emphasizes the need for defining new view(point)s: France
and Rumpe (2007) require new views to be customized to better understand single parts
of the system on the one hand and their interactions on the other hand, supported by
different kinds of new views in order to reduce complexity and to cover different levels of
abstraction. Persson, Torngren et al. (2013) classified the inclusion of new views as one
of the main challenges in multi-view modeling under the term extendability, but without
further motivations.

The reuse of already existing information from views of data sources includes also in-
formation covering multiple viewsChallenge: restructure

Information stemming
from multiple Data
Sources

and information “between” views, e. g. explicit links
between views (see page 33). The challenge is to collect information from multiple views
and to provide it in a uniform and restructured way.

Another challenge is to keep such new views consistent to the already existing ones, since
new views contain information stemming from other views by definition.Challenge: keep new

Views consistent
Therefore, changes

in the other views must be propagated also into new views, according to Section 1.2.1Z 31.

The most important challenge is to support editable new views:Challenge: enable
editable new Views

A read-only mode for
new views is helpful for reading information, in particular for getting an high-level overview
with aggregated values. But changing information shown in new views is very important to
enable stakeholders with concerns which are not supported by the existing data sources to
work actively on the current information. Challenging is the propagation of changes in new
views back into all other views due to the view-update problem (Bancilhon and Spyratos,
1981), for which not always a solution exists or the solution is not always unique (Dayal
and Bernstein, 1982; Reder and Egyed, 2012). More related work in this area is discussed in
Chapter 3Z 93. Summarizing, the challenge is to enable editable new views by propagating
changes in these views back into the other views.

Ongoing Example, Part 6: New View(Point)s ← List →

In the project of the ongoing example, a project manager wants to see the progress of
the project. More concrete, the project manager is interested, if requirements are already
realized in Java source code. Such mapping between requirements and Java will be realized
as shown in Figure 1.3Z 41.

The requirements are shown with their ID (first column) and text (second column).
The third column lists all methods in the Java source code (separated by comma, prefixed
by their class names), which realize the corresponding requirements (it is empty, since the
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data sources do not contain such traceability links). Since the project manager does not
want to deal with technical documents, this new view will be realized as Excel sheet and
not as CSV file.

But the project manager wants not only to see the current realization of requirements,
but also to manage them: In particular, the project manager wants to add Java methods,
which were added by programmers in the mean time to fulfill the requirements. Removing
methods should be possible, too, e. g. after new test cases showed, that the implementation
still contains errors.

Figure 1.3: The final concrete syntax of Traceability in Excel format

It is not possible to create or to delete methods, only their mapping to requirements
can be adjusted. Renaming methods or classes is impossible, too. If the project manager
uses methods which do not exist, they will be removed from the new view. Additionally, it
is possible to change the text of the shown requirements.

This example shows the need to define new view(point)s containing information stem-
ming from multiple data sources (here: requirements and Java), in a different structure as
in their original data source (here: qualified method names instead of mesh of objects) and
in an editable way.

These three challenges, i. e. consistency between multiple views (Section 1.2.1Z 31),
which might already exist (Section 1.2.2Z 36) or are newly derived (Section 1.2.3Z 39), are
the foundation for the objectives of this thesis, as clarified in the next Section 1.3.

1.3 Aims

After establishing the problem of inconsistencies between multiple views in Section 1.1Z 26

and identifying related major challenges in Section 1.2Z 31, the main objectives to overcome
these problems and challenges are clarified in Section 1.3.1Z 42, forming first high-level
requirements for a corresponding approach in Section 1.3.3Z 46. As demarcation, Sec-
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tion 1.3.2Z 43 presents other challenges and related research areas which are no objectives
of this thesis.

1.3.1 Objectives

The main challenge is to ensure consistency between multiple views, as discussed in Sec-
tion 1.2.1Z 31. As preparation for the objectives of this thesis to be defined in this section,
the term consistency as summarized in Definition 2Z 32 is concretized here: This thesis
distinguishesintra vs inter-model

Consistency
consistency into intra-model consistency in Definition 6 and inter-model con-

sistency in Definition 7, depending on the number of involved models. The models describe
the information of relevant views which represent parts of the system under development:

Definition 6: Intra-Model Consistency

One model is consistent, if this model describes one system without semantic con-
tradictions within a particular project.

Intra-model consistency targets the consistency of a single model and requires,intra: #Models = 1 that
this model describes a system without (internal) contradictions. Intra-model consistency
considers only one view and its representation of a system. This system might be part
of a bigger system, which is represented by some more views, which leads to inter-model
consistency, while intra-model consistency is restricted to the (internal) consistency of one
view. An example for intra-model consistency in Java is the specification, that all methods
within the same class must be unique regarding their names in the ongoing example (and
the types of their parameters in complete Java), as discussed in Part 28Z 480 of the ongoing
example.

According to Definition 6, Definition 7 defines:

Definition 7: Inter-Model Consistency

Two or more models are consistent to each other, if these models describe parts of
the same system without semantic contradictions within a particular project. All
models realize views which together describe the whole system. Each model must
fulfill intra-model consistency.

Inter-model consistency focuses on the relations between multiple models and requires,
inter: #Models ≥ 2 that the models do not contradict each other. If some of these models do not fulfill intra-

model consistency, they introduce inconsistencies into the whole system. Therefore, all
involved models must also fulfill intra-model consistency as precondition. All presented
consistency issues in the ongoing example target inter-model consistency.

The terms intra and inter-model consistency are not explicitly used by Persson, Torn-
gren et al. (2013), but they define the consistency between views only for views which
are consistent internally, which corresponds to intra and inter-model consistency. Egyed,
Zeman et al. (2018) use the corresponding terms “intratool consistency” and “intertool
consistency” from a tooling point of view. Goldschmidt, Becker and Burger (2012) defined
“intra view overlap” and “inter view overlap” comparable as the multiple occurrence of
same elements within one view respectively two or more views.

In contrast to these definitions,alternative Definitions
from Related Work

Huzar, Kuzniarz et al. (2005) define intra-model and
inter-model consistency regarding the level of abstraction of the involved models: Intra-
model consistency targets models with same abstraction level, while inter-model consis-
tency targets models with different abstract levels. This distinction is not needed here,
since this approach aims to keep arbitrary models (i. e. with same or different abstraction
levels) consistent. With requirements and source code, the ongoing example directly targets
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different abstraction levels. Section 13.4.2Z 479 discusses different levels of abstractions in
general.

Broy, Feilkas et al. (2010) distinguish between vertical and horizontal consistency, tar-
geting consistency issues in models of the same (horizontal) or of different (vertical) de-
velopment phases like requirements elicitation and implementation. This distinction is not
necessary here, since this approach aims to keep models consistent independently of their
number, order or size of changes, as shown by the ongoing example targeting requirements
and source code.

Engels, Küster et al. (2001) do not clearly distinct the level of abstraction and the
development phase from each other, when using the terms horizontal and vertical consis-
tency. Usually, early development phases correspond with views of higher abstraction (e.g.
requirements), while subsequent development phases correspond with views of lower ab-
straction (e.g. source code). But this is not always true, e.g. for prototypes in early design
space explorations.

Lucas, Molina and Toval (2009) reuse the definitions for intra/inter-model consistency
from Huzar, Kuzniarz et al. (2005) and syntactic/semantic consistency from Engels, Küster
et al. (2001). They complement them by examples, which seem to intermix syntactic/se-
mantic consistency as defined by Engels, Küster et al. (2001) with consistency between
views for static and dynamic aspects of the system. This Definition 2Z 32 does not dis-
tinguish between consistency of models describing static aspects of the system and models
describing dynamic aspects of the same system, since both kinds are targeted.

Regarding versioning of models, Van Der Straeten, Mens et al. (2003) distinguish hori-
zontal consistency targeting different models at the same version and evolution consistency
targeting one model at different versions. Vertical consistency between a model and its
refining model is mentioned, too, but not deepened. This thesis focuses on the consistency
between models at the same version by fixing occurred inconsistencies. Of course, fixing an
inconsistent model leads to a new version of this model.

These clarifications of the terminology for consistency help to state the objectives of
this thesis:

Objectives

The main objectives of this thesis are development and evaluation of a new approach
to ensure consistency between interrelated models (inter-model consistency) auto-
matically. The involved models can be reused from ongoing activities or derived as
new views.

This thesis is focusing on inter-model consistency and assumes as precondition, that the
data sources to manage are already consistent in itself. This allows to focus on consistency
issues between different models, without being contradicted by intra-model inconsistency.
Nonetheless, Section 13.4.5Z 480 shows, that the approach of this thesis can also fulfill
intra-model consistency.

Usually, the interrelated models are conforming to different metamodels, since they
describe different parts of the system under development. Therefore, changes in one model
have to be synchronized into all related models while taking different metamodels into
account. Later, this is realized by using an explicit Single Underlying Model (SUM), as
introduced and discussed in the related work (Section 3.4Z 120).

1.3.2 Demarcation

This section makes explicit, which aspects are not objective of this thesis, and demarcates
it from other fields of related research. This section thereby emphasizes the main objective
of this thesis.
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Here, it is not sufficient to detect inconsistencies, which is called “impact analysis” by
Persson, Torngren et al. (2013).fix Inconsistencies

specifically for the
Project

Objective is to fix inconsistencies, which requires changing
actions. While manual fixes are senseful in some cases (Gorp, Altheide and Janssens, 2006),
the approach of this thesis focuses on automated fixes for inconsistencies. These fixes must
fulfill the needs of the particular project setting, rejecting approaches which determine fixes
in non-deterministic way like graph repair (Sandmann and Habel, 2019).

This thesis focuses on data integration in terms of Wasserman (1990) only.Dimensions of
Integration

With the
background of tool integration, Wasserman (1990) classifies five dimensions of integration:

Platform Integration covers network and operating system services as provided by mid-
dleware or operating systems. While software, tools, and services are not in the
focus of this thesis, the Eclipse Modeling Framework (EMF) as central data format
(Section 2.5.3Z 87) could be seen as precondition for integration in this category.

Presentation Integration covers unique interfaces for the users of tools, e. g. graphical
user interfaces. Focusing on the pure data, their (re)presentations are not relevant in
this thesis and can be realized in different ways (Section 6.6.5Z 226), i. e. the concrete
syntax does not matterconcrete Syntax does

not matter
and can be realized with any approach, e. g. with Xtext

(Chapter 9Z 283) or Excel.

Data Integration covers exchange and sharing of data used by multiple tools. This is
highly relevant for this thesis, since different tools using different data lead to the
need for a management of these data in terms of consistency, as motivated in Sec-
tion 1.1Z 26.

Control Integration covers communication between tools in order to send notifications
from one tool to other tools about occurred events. Since the interaction between the
different views can be summarized as “changes inside one view must be propagated
into all other views”, only one trigger like “view is changed” is required to start the
process of change propagation. As long as this trigger is existing, a general solution
for arbitrary communication between tools or views is not required here.

Process Integration covers the integration of tools by a superordinate process manage-
ment. Since the change propagation is designed to run automatically without user
interaction, it can be realized within one process and can be easily integrated into
other process managers or tools.

While this distinction shows, that tool integration is a multi-dimensional challenge in gen-
eral, this thesis focuses on the data dimension:Tool vs Data

Integration
The main challenge of change propagation,

identified as objective of this thesis, falls in the category of data integration. The survey
of Asplund and Törngren (2015) shows, that the dimension of data integration is the most
important aspect, together with control integration. In this thesis, the term tool integra-
tion subsumes platform, presentation, control and process integration. Additionally, the
distinction above indicates, that the aspects for tool integration do not introduce additional
serious challenges when overcoming the challenge of data integration.

This thesis aims for integration regarding data and not for integration regarding tools,
as there are other approaches for tool integration like SENSEI (Jelschen, 2015). Conse-
quently, the change propagation is not realized in form of another more or less enclosed
tool like JetBrains MPS (Section 3.6.2Z 137),ensure tool-independent

Data Consistency
but in a stand-alone library for ensuring

tool-independent data consistency. Thomas and Nejmeh (1992) summarize very accurate:

“The goal is to maintain consistent information, regardless of how parts of it
are operated on and transformed by tools.” (Thomas and Nejmeh, 1992)

44



1.3 Aims

But an integrated data structure can be used as data structure for an integrated tool-
ing (Wasserman, 1990). Therefore, solving the challenge of data integration provides foun-
dations for realizing tool integration.

As already motivated earlier, this thesis concentrates on data described by an explicit
schema (Jin, Cordy and Dean, 2002). The data are instances conforming to one schema.
This thesis narrows the data to one instance-of level, while approaches for multi-level mod-
eling with two or more instance-of levels are not supported. Later, data and their schema
are realized by a model and its metamodel, as concretized in Section 2.2Z 58.

Since the consistency is project-specific (see page 35), project-specific
Solutions

this thesis does not provide a
generic integration which is valid for each application domain, but enables a specific inte-
gration for each particular system, developed in a particular project by a particular com-
pany with a particular team. This counts not only for the consistency rules, but also for
the involved models and metamodels.

This thesis will not solve all problems of software development: Software DevelopmentSoftware development is
used only for demonstration with the small, ongoing example. Applications in Part IVZ 283

outside of software development show, that the new approach solves data consistency in
various domains, not only software development.

This thesis does not focus on enabling collaboration between multiple users on the same
data in real-time, Types of Collaborationbut enables stakeholders to work independently from other data on their
individual data subsets, which are kept consistent to the data of the other stakeholders.
The stakeholder can work in spatial separation, as discussed in Section 13.4.4Z 480.

This thesis will not solve all problems in model-based engineering Model-based
Engineering

(introduced in Sec-
tion 2.2Z 58), in particular, the integration of various modeling techniques and their tools is
not covered. But with the focus on consistent models managed through multiple views, this
thesis realizes a step towards realizing integrated model-based engineering, as motivated in
the vision of Broy, Feilkas et al. (2010).

A related, higher-level research topic is Multi-Paradigm
Modeling

multi-paradigm modeling (MPM) (Mosterman
and Vangheluwe, 2004): MPM is motivated by the heterogeneity in the dimensions appli-
cation domains, viewpoints, development activities (like implementation and verification)
and levels of abstraction and aims to overcome the heterogeneity of models corresponding
to these four dimensions (Hardebolle and Boulanger, 2009). MPM emphasizes the behavior
of systems and development activities like model-based simulations (Vangheluwe, de Lara
and Mosterman, 2002). The heterogeneity of viewpoints leads to consistency challenges be-
tween views, which is the main motivation of the new approach this thesis. This approach is
project-specific (see above) covering the heterogeneity of application domains and supports
models with different levels of abstraction (see Section 1.3.1Z 42 and Section 13.4.2Z 479).
On the one hand, the heterogeneity of development activities requires to integrate different
tools, which is not the objective of this thesis (see above). On the other hand, development
activities require tailored views, which can be provided by the new approach.

In the field of distributed systems and shared data storages, the term consistency targets
the results of read and write operations by multiple processors on the same data, read/write consistent

Data in Processors
for which

many different consistency models exist (Viotti and Vukolić, 2016). This is not relevant here,
since it deals with the consistency of the same data for multiple processors, while this thesis
ensures consistency of different data to each other in terms of contentwise interrelations.

Out of scope is also the concept of data replication (Tos, Mokadem et al., 2015), Data Replicationsince
it duplicates the same data for improving non-functional properties like robustness. In
contrast to keeping the same data up-to-date at different locations, this thesis keeps differ-
ent but interrelated data consistent with each other regarding these interrelations. Some
insights into data replication are given by Antkiewicz and Czarnecki (2008, p. 40f) from a
model synchronization perspective, basing on the survey for replication strategies by Saito
and Shapiro (2005).

With a similar motivation, the identification and management of model clones (Störrle,
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2013) is also out of scope,Model Clones since clones represent duplicates within models conforming to the
same metamodel. Since model clones are finally detected by heuristics, human interaction
is required to verify found candidates to be actual clones, which prevents fully-automated
approaches as desired here.

Data migration, i. e. the migration of data during migration projects, is also not in the
focus of this thesis.Data Migration A major difference is, that migrations are done once (or a limited
number) during the limited duration of the migration project, while data consistency is
an ongoing task and is required as long as the involved data are used. Additionally, data
migration usually migrates existing data from the old system into the new system, but
not vice versa. In order to keep existing data sources up-to-date, fulfilling this challenge
of Section 1.2.2Z 36 requires to propagate changes back from the new system into the old
system, too. Since the new approach supports this as “additional use case”, the new
approach could be used to realize also data migration, as discussed in Section 14.4.3Z 498.

Data interoperability,Data Interoperability i. e. supplying the same data in different data formats, is also
not the motivation for this thesis. Thanks to the adapters (Section 6.6.5Z 226), such data
conversations are possible to some degree, as discussed in Section 14.4.3Z 498, but are not
in the foreground of this thesis.

TheConformance of Models
to their Metamodels

conformance of models to their metamodels is important in general and also in par-
ticular for this thesis. In order to distinguish this relation between models and their meta-
models from definitions for syntactical consistency from related work (Section 1.2.1Z 31), it
is called conformance and not (syntactical) consistency in this thesis.Model Co-Evolution This conformance can
be hurt by two cases, i. e. by changing the metamodel or by editing the model: Changing the
metamodel requires to change existing models and is called model co-evolution (Wachsmuth,
2007). Model co-evolution is neither the main motivation nor the main objective of this the-
sis, but is an important part of the solution for the chosen approach, since metamodels are
changed together with their models (Section 6.2Z 192). Therefore, this new approach can
be used for realizing model co-evolution, too, as discussed in Section 14.1.2.3Z 487. Editing
the model must comply with the specifications and constraints of the metamodel.Model Editors Addi-
tional semantic constraints represent intra-model consistency. Since this thesis targets the
inter-model consistency between multiple models, this case is out of scope. There are other
approaches in related work focusing on this case, e. g. Nassar, Radke and Arendt (2017),
Barriga, Rutle and Heldal (2019) and Kehrer, Taentzer et al. (2016). Nevertheless, this
new approach can realize also this case to some degree, as discussed in Section 13.4.5Z 480.

This thesis ensures consistency between different views, but not the correctness of single
views or the whole system under development.Consistency vs

Correctness
In particular, information which is wrong or

does not make any sense is allowed in views, but this (wrong) information must be identical
(i. e. consistent) in all views. Therefore, the approach of this thesis does not locate bugs in
models (Arcega, Font et al., 2019), but inconsistencies between models.

While this thesis demonstrates, how data can be kept consistent by their integration,
there are also legal conditions for managing data:legal Issues

as Precondition
Before integrating data, legal issues and

conditions regarding their handling and combination must be checked and fulfilled. This
might limit some application scenarios of the presented approach in practice, but is out of
scope of this thesis in general.

1.3.3 High-level Requirements

After defining the objective of this thesis in Section 1.3.1Z 42 and demarcating it from other
aspects in Section 1.3.2Z 43, the following high-level requirements are directly derived from
the objectives established on page 43:
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First high-level Requirements

R 1 Changes in one model have to be propagated into all related models. (Model
Consistency)

R 2 The approach must allow to reuse existing artifacts. (Reuse existing Arti-
facts)

R 3 The approach must allow to define new view(point)s. (Define new
View(point)s)

Requirement R 1Z 154 covers the main objective of this thesis, to keep models consistent
to each other after occurred changes, as motivated in the challenge Model Consistency (Sec-
tion 1.2.1Z 31). Change propagation is the behavior desired by users of models, as deepened
in Section 2.3Z 71. Additionally, change propagation is no concrete realization strategy for
ensuring consistency, since Section 3.2Z 99 identifies several classes of concrete realization
strategies for change propagation. Requirement R 2Z 155 covers the challenge Reuse existing
Artifacts (Section 1.2.2Z 36) to reuse existing artifacts and keep them consistent, too. While
the focus is to reuse existing artifacts and to keep their models consistent to each other,
it is also possible to start without any reused artifacts, as discussed in Section 13.3.2Z 474.
Requirement R 3Z 156 covers the challenge Define new View(point)s (Section 1.2.3Z 39) to
define new viewpoints with reuse of existing and consistent information. These high-level
requirements will be concretized in following sections, in particular in Section 4.1Z 154.

1.4 Summary & Outline

SummaryThis Part IZ 25 identified the preservation of consistency in multi-view environments as
important challenge. It forms the main motivation and objectives of this thesis, comple-
mented with the need to support already existing artifacts as data sources and to define
new view(point)s. The introduced ongoing example showing a strongly simplified software
development project is used during all parts of the thesis for demonstration purpose.

OutlineThe most important basic concepts for managing the consistency for models, like ter-
minology for consistency, modeling foundations and technical spaces, are introduced in
Chapter 2Z 51. More basics which are less important are introduced at that location, where
they are needed the first time.

The main related work discussing existing approaches for ensuring consistency in multi-
view environments is located in Chapter 3Z 93. More related work discussing alternatives for
the current topic is located directly at the location of that topic. This counts in particular
for design decisions in Chapter 6Z 185, which are enriched with related approaches. The
lessons learned from analyzing related approaches are used to establish requirements for
the new approach of this thesis in Chapter 4Z 153. The requirements take up also the main
challenges of model consistency.

The new approach for ensuring consistency between models is designed and realized in
Part IIIZ 163, starting with an overview of the new approach called MoConseMI in Chap-
ter 5Z 163. The main design decisions are made and discussed in Chapter 6Z 185 to fulfill
the requirements. Operators as central part of the developed approach are documented
in Chapter 7Z 241. Chapter 8Z 263 presents the implementation of the designed approach
including the operators in form of a reusable framework.

This framework is used in Part IVZ 283 to apply the designed approach in different
application domains, including management of access rights (Chapter 9Z 283), viewpoint-
driven architectures for smart environmental information systems (Chapter 10Z 373), and
knowledge management for projects (Chapter 11Z 387). Best practices for application in
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general are derived in Chapter 12Z 455 from these concrete applications.
In Part VZ 467, these applications provide reliable arguments to evaluate the applica-

bility of MoConseMI and the fulfillment of the requirements (Chapter 13Z 467). These
results are summarized in Chapter 14Z 483 with contributions of this thesis, identified lim-
itations and possible future work.

The described outline aims at developing the targeted deliverables of this thesis,Deliverables mainly
a new approach for ensuring inter-model consistency, targeting the main objective of this
thesis. This conceptual approach is realized as reusable framework in Java. The frame-
work is applied to multiple application scenarios evaluating the design approach. These
deliverables are summarized in the following box:

Deliverables

To fulfill the objectives of this thesis, the following deliverables are developed and
documented in this thesis:

1. a new approach to ensure the consistency between interrelated models auto-
matically (called MoConseMI)

2. a framework realizing this approach (the MoConseMI framework)

3. several applications using this framework to evaluate the developed approach

To realize these deliverables, required foundations are introduced in the next Part IIZ 51.
Central design decisions for the new MoConseMI approach are motivated in Chapter 5Z 163,
while its details are developed in Chapter 6Z 185. The supporting MoConseMI framework
is implemented in Chapter 8Z 263. The applications are documented in Part IVZ 283.
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Part II

Foundations

This part provides foundations for ensuring inter-model consis-
tency. Basic concepts for views, their realization with models
and technical spaces as well as concretized concepts for consis-
tency and their involved stakeholders lay out foundations for
the analysis, classification and evaluation of related approaches.
Although there are lots of approaches for ensuring inter-model
consistency in various research areas with various realization
techniques and strategies, there is no approach which fulfills all
needs for ensuring inter-model consistency with satisfactory de-
gree, which motivates to develop a new approach for ensuring
inter-model consistency in this thesis. The findings from ana-
lyzing basic concepts and related approaches are summarized as
requirements for this new approach.
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Chapter 2

Basic Concepts

This section clarifies some terms from the motivation (Chapter 1Z 25) and lays out the
foundations for the analysis of related work (Chapter 3Z 93) and the design of the new
approach (Part IIIZ 163). Outline of this SectionSince the use of multiple views during system development intro-
duces a potential for inconsistencies, Section 2.1Z 54 clarifies the understanding of views and
their viewpoints. Since views of interest and their represented information are conceptually
realized by models, Section 2.2Z 58 introduces terminology of model-based engineering.

In order to ensure consistency between views as main objective of this thesis, the un-
derstanding of consistency is increased in Section 2.3Z 71. Since different groups of persons
are differently involved in the specification and application of consistency, Section 2.4Z 79

introduces four types of stakeholders involved in the management of consistency. In order
to technically realize models for automation, Section 2.5Z 84 motivates the use of EMF as
technical space for realizing models in this thesis. Section 2.6Z 89 summarizes the resulting
foundations.

During the presentation and discussion of foundations, Concretize
Requirements

the high-level requirements of
Section 1.3.3Z 46 are concretized respectively complemented by additional requirements,
whose need is motivated by currently discussed foundations. All requirements are motivated
and collected in Chapter 4Z 153 as summary.

In order to clarify the relationships between the concepts used within this section and
to show their impact for consistency, Big Picture of Concepts

along the Ongoing
Example:

these concepts are applied to the ongoing example
resulting in a big picture, which shows also the relevance of the terminology. Afterwards,
this terminology is introduced in detail in the following parts.

Ongoing Example, Part 7: Applied Concepts as Megamodel ← List →

The concepts and terminology of this section are applied to the ongoing example in
Figure 2.1Z 52. Since these concepts can be treated as models and in particular views
are realized with models (Section 1.1Z 26), Megamodels

formalize
Relationships
between Models

the idea of megamodeling (Bézivin, Jouault
and Valduriez, 2004) is used to analyze possible relationships between different models. A
megamodel is a graph, whose nodes represent models and whose edges represent different
kinds of relationships between these models. According to the principle of “everything is a
model” (Section 2.2Z 58), it is possible to treat the depicted elements as models.
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Figure 2.1: Concepts as Megamodel, applied to the ongoing Example

The left part describes the elements in reality : Requirements, class diagrams and Java
source code are the artifacts in reality (Definition 3Z 36) as presented in Part 5Z 37 of
the ongoing example,Reality: Artifacts

for the System
under Development

which are used by stakeholders to jointly realize the system under
development of the current project. Since the system under development usually does
not exist as a single, explicit artifact, but represents the objective of the ongoing project
and therefore implicitly exists, it is visualized as cloud in Figure 2.1. In general, nodes
visualized as cloud indicate concepts which exist at least implicitly and might exist also
explicitly, if they are manifested. The system under development consists of the artifacts (δ-
relationships), therefore, the artifacts are abstracted parts of the system under development.

The right part (gray area) describes the elements for modeling the elements in reality:
Modeling: Views
represent Artifacts
(called Concrete
Renderings)

The artifacts, which are used in reality, are treated as views in modeling (µ-relationships),
leading to views for requirements, for class diagrams and for Java source code. The other
way around, views are visualized in reality called concrete renderings for requirements with
Excel files, for UML class diagrams and for textual Java source code.

Additionally, the system under development in reality can be completely described by
a view in modeling (“System uD Description”, “uD” is the shortcut for “under Develop-
ment”).Complete View

consists of Partial
Views

This view is a complete view for the system under development in contrast to
partial views for artifacts. The partial views can be composed into the complete view
(δ-relationships), even when the complete view is not made explicit.

In order to determine, which parts of the complete view are in the partial views, view-
points are used, leading to viewpoints for requirements, for class diagrams and for Java
source code.Viewpoints

determine Content
of Views

These viewpoints select (depicted as δ-relationships) some concepts of the
system under development (“System uD Concepts”), which should be depicted in conform-
ing views (χ-relationships). This (complete) viewpoint (cloud “System uD Concepts” in
Figure 2.1) often exists not explicitly, but implicitly.

Up to now, the terminology with system under development, artifacts respectively con-
crete renderings, views and viewpoints targets the conceptual level. Multiple perspectives
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are multiple views conforming to different viewpoints. Views encode their
Information as
Models

As the term multi-perspective mod-
eling suggests, views are realized by models (Section 1.1Z 26) on more technical level, i. e.
the information of the system under development which is selected to be represented by a
view is encoded as model. Therefore, the views are depicted as models in Figure 2.1Z 52.
Accordingly, viewpoints encode the structure desired for the models of conforming views as
metamodels and are depicted as metamodels in Figure 2.1Z 52.

Summarizing, a view can be seen as a mapping of one system under development and
one viewpoint, leading to one model. Views map one

System and one
Viewpoint to one
Model with
Concrete Renderings

This model represents those parts of the system under
development which are indicated by the viewpoint, and in the structure which is determined
by the metamodel of the viewpoint. Since a stakeholder requests a view, but is usually not
used to work on the view’s model directly, concrete renderings of the model are provided,
which are determined by the viewpoint.

All relationships between two nodes as depicted in Figure 2.1Z 52 require synchroniza-
tion in order to ensure these relationships. Note, that synchronization can follow relation-
ships in transitive way, which is important in particular for δ-relationships, as deepened
below. The impact of changes within nodes is analyzed regarding related nodes depending
on the kind of relationship:

RepresentedBy µ describes the relationship between models and their systems (accord-
ing to Definition 12Z 59 following in Section 2.2.1Z 59). Here, views represent parts
of the system under development like the concrete requirements, class diagrams and
source code.

µ-relationships require synchronization on technical level: Synchronize Views
with represented
(Parts of) Systems
regarding technical
Presentation

Stakeholders usually do not
directly work on the models of the views, but work on parts of the represented systems
as concrete renderings of the models (Figure 2.22Z 90). Therefore, the information
about the system under development is the same, but it is presented with different
techniques. This relationship is deepened in Section 2.2.1Z 59.

DecomposedIn δ describes the relation between a composite and one of its parts. Applied
to Figure 2.1Z 52, there are three cases of δ-relationships: First, the system under
development consists of requirements, class diagrams and Java source code in reality.
Second, the model-based description of the system under development (complete
view) consists of the information of all (partial) views. Third, the concepts for the
description of the system under development consist of the concepts of all viewpoints.

Keep Complete
View as complete
System Description
and its partial
Views consistent to
each other

Looking at the second case for the involved models, partial views represent some
information (as reduction) of the system under development. Therefore, changes
in partial views must be transferred also into the description of the system under
development (the complete view), otherwise the δ-relationships are hurt. The other
way around, changes in the complete view must be reflected also in all its partial
views to ensure δ. This relationship is deepened in Section 2.3Z 71.

If information of the complete view which is part of multiple, overlapping partial
views is changed, these changes affect multiple views: If the information is changed
in one partial view, the complete view must be changed accordingly and then tran-
sitively also all other partial views containing the changed information, along the
δ-relationships in the case of an explicit complete view. In the case of an implicit
complete view, changes within one partial view must be directly propagated to other
partial views.

ConformsTo χ describes the relationship between a viewpoint and its views, View conforms to its
Viewpoint

i. e. the
view conforms to its viewpoint. According to IEEE (2011), each view is governed by
exactly one viewpoint.
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Changing views must ensure, that they still fulfill the guidelines of their viewpoints.
Changing viewpoints must ensure, that their views are changed accordingly without
accidental information loss. As already discussed in Section 1.3.2Z 43, the confor-
mance of views (and their models) to their viewpoints (and their metamodels) must
be ensured, but must be distinguished from ensuring consistency between models
representing views here. This relationship is deepened in Section 2.2.2Z 60.

Since the objective of this thesis is the semantic consistency of different models (Sec-
tion 1.3.1Z 42), δ-relationships between partial views and the complete description of their
system under development in Figure 2.1Z 52δ between Models target

semantic Consistency
here

are the most important relationships here.
Therefore, this Chapter 2Z 51 focuses on semantic consistency between different models,
which counts also for the investigated related approaches covering semantics in Chap-
ter 3Z 93.

2.1 Views and Viewpoints

The objective of using different views is to support the persons who are involved in the de-
velopment of the system with exactly that information which they require.Views for

multi-perspective
Modeling

Since supporting
multiple views is an established concept during modeling and development of complex sys-
tems (Section 1.1Z 26), this section introduces the terminology for views, their viewpoints
and involved persons. Additionally, this section is the foundation to investigate possible
inconsistencies between views in Section 2.3Z 71.

The terminology, clarified in this section, follows mostly the ISO Standard for Architec-
ture Description 42010:2011 (IEEE, 2011). While IEEE (2011) focuses on the architecture
domain, its definitions are generalized here to the description of any systems, including ar-
chitectures. In order to summarize the introduced terms and their relationships, Figure 2.2
represents them as class diagram: Parts of the system under development are represented
by views guided by viewpoints which address concerns of stakeholders interested in the
system under development and using these views. This figure is extended in the following
sections.

Concern Stakeholder

Viewpoint View

System

concerns [1..∗]

stakeholders [1..∗]
addressing [1..∗]

addressedBy [∗]

involvedStakeholders [∗]

systemOfInterest [1]
requestedBy [1]

lookingAt [∗]
conformsTo [1]

instances [∗]

representedBy [∗]

system [1]

Figure 2.2: Concepts for Stakeholders, Systems and Views

Persons involved in the system under development are stakeholdersStakeholders of the
System under
Development

and introduced in
Definition 8Z 55:
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Definition 8: Stakeholder

A stakeholder is an “individual, team, organization, or classes thereof, having an
interest in a system” (IEEE, 2011) or is involved somehow in the development of a
system.

Possible stakeholders of projects for system development include project manager, cus-
tomers, developers, requirements engineers, testers, operators and end users, but also gov-
ernments establishing laws. Stakeholders relevant for the new approach of this thesis as a
concrete system are introduced in Section 2.4Z 79. Note, that persons can act as different
stakeholders for the system, i. e. stakeholders can be seen as roles taken up by persons. Concerns reflect

Interests of Stakeholders
An

interest of stakeholders in the system under development is called concern, introduced in
Definition 9:

Definition 9: Concern

A concern is the “interest in a system relevant to one or more of its stakehold-
ers” (IEEE, 2011).

Possible concerns of stakeholders for software system development include knowing the
objectives and requirements of the system, defining the design of the system, checking if
and where requirements are implemented in the source code, and testing the developed
regarding the requirements.

Perspectives reflect these concerns by defining, which parts of systems are selected, and
are named viewpoints in Definition 10:

Definition 10: Viewpoint

A viewpoint defines “the conventions for the construction, interpretation and use of
[parts of systems] to frame specific system concerns” (IEEE, 2011).

These conventions reflect one or more concerns of stakeholders which are involved in
the current system under development. Viewpoints reflect

Concerns by selecting
appropriate Concepts of
Systems (realized as
Metamodel)

It is important, that viewpoints do not describe
actual information of concrete systems, but specify more generically, which information
of systems should be focused on and which information should be ignored, depending on
the concerns which are addressed by the viewpoint. Therefore, viewpoints are usually
applicable not only to the current system under development but also to other systems
of similar kind. This allows the reuse of viewpoints for same concerns for similar, but
different systems. Additionally, viewpoints are later used to specify the desired consistency
in a generic way (Section 2.3Z 71). Viewpoints rendered as

Class Diagrams
As look-ahead, in order to explicitly define the concepts

and their structure of the selected parts of the system, viewpoints use abstract vocabulary
for this task in form of metamodels. Therefore, each viewpoint comes with a metamodel
(Definition 13Z 61), which is rendered as class diagram, as discussed in Section 2.2.2Z 60.

Excursion: Related Work for Viewpoints

Originally, the term viewpoint was introduced by Finkelstein, Kramer and Goedicke
(1990). selected Related Work

for Viewpoints
Darke and Shanks (1996) present a survey and classification on viewpoint ap-

proaches in the field of requirements engineering. Atkinson and Tunjic (2014a) give
hints for identifying orthogonal dimensions, which help to organize and align a high
number of viewpoints according to some principles: Two examples for such orthogo-
nal dimensions are components respectively sub systems in the system and the level
of abstraction matching the concerns of involved stakeholders. These dimensions can
be used to identify and develop viewpoints for each combination of one value per di-
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mension, e. g. a viewpoint for the user management (value for dimension sub system)
with focus on the data (value for dimension level of abstraction) for developing the
data base, or a viewpoint for the web interface (value for dimension sub system) with
the focus on the user interface (value for dimension level of abstraction) for usability
studies, and so on.

Clements, Garlan et al. (2002) use the term viewtype with the following defini-
tion:Viewtype “A viewtype defines the element types and relationship types used to describe
the [. . . ] system from a particular perspective” (Clements, Garlan et al., 2002, p.
18). This definition is very similar to the above definition for viewpoints, while Defi-
nition 10Z 55 emphasizes the applicability of viewpoints to multiple systems accord-
ing to multiple concerns more. Goldschmidt, Becker and Burger (2012) distinguish
between viewpoints and viewtypes with slightly different understandings:Viewpoint vs Viewtype Each view-
point targets somea concerns by selecting concepts of the system under development
on more conceptual level. Viewpoints define multiple viewtypes which are metamo-
dels (Bruneliere, Burger et al., 2019) and which additionally define concrete syntaxes
(Goldschmidt, Becker and Burger, 2012). In this thesis, only the term viewpoint is
used like a mapping of concerns to a metamodel and to definitions for concrete syn-
taxes for views. Concrete syntaxes are discussed in following paragraphs.

aGoldschmidt, Becker and Burger (2012) define, that one viewpoint covers exactly one
concern (and vice versa), while this strong 1-to-1 mapping is relaxed to “a combination,
partioning and/or restriction of concerns” (Bruneliere, Burger et al., 2019) later.

Views show Parts of a
particular System
according to a
Viewpoint

When a stakeholder looks with particular concerns at one concrete system, a viewpoint
supporting her/his concerns determines, which parts of the system are shown to her/him.
The shown result is named view in Definition 11:

Definition 11: View

A view represents one concrete “system from the perspective of specific system con-
cerns” (IEEE, 2011) according to a viewpoint which supports these concerns.

It should be highlighted, that views whose inter-view consistency is discussed all have
to represent parts of the same system. The other way around, a system can be represented
by multiple views at the same time (Figure 2.2Z 54), which must be consistent to the
system under development and to each other. In particular, the whole system is completely
described by its views. As look-ahead, each view comes with a model (Section 2.2.1Z 59)
to store its information in this thesis.

For the visualization of views, their viewpoints come with an arbitrary number of defi-
nitions for concrete syntaxes1, as depicted in Figure 2.3Z 57, which extends Figure 2.2Z 54:

Views are visualized by
Concrete Renderings

These concrete syntax definitions enable to render each view (i. e. its model) into a “con-
crete rendering”, if the particular view conforms to the viewpoint of the particular concrete
syntax definition. With this design, viewpoints can determine concrete syntaxes for ren-
dering views according to the concerns of the particular viewpoint. Concrete renderings
can be any visualizations including graphics, diagrams, text and dedicated tools like editors
for domain-specific languages (DSLs, Section 3.6.2Z 137). Users request views and work on
concrete renderings of these views. IEEE (2011) defines model kinds as “conventions for a
type of modelling” (IEEE, 2011), which is unclear, but the given examples (“data flow di-
agrams, class diagrams, Petri nets, balance sheets, organization charts and state transition
models” (IEEE, 2011)) coincide with the definitions for concrete syntaxes of viewpoints.

1Maro, Steghöfer et al. (2015) show an example from industry for this case, where a textual
concrete syntax and a graphical concrete syntax cover the same metamodel.
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Viewpoint View

ConcreteSyntaxDefinition ConcreteRendering

conformsTo [1]

instances [∗]
usedBy [∗]

concreteSyntaxes [∗]

usedBy [1]

concreteRenderings [∗]
conformsTo [1]

instances [∗]

Figure 2.3: Concepts for Views and their Concrete Syntaxes

As default visualization which is always applicable, this thesis visualizes views by render-
ing them as object diagrams conforming to the corresponding viewpoint. Views rendered as

Object Diagrams
(by default)

Object diagrams
are selected for rendering views here, since this notation is independent from the current
domain and the current viewpoint. As an alternative, concrete renderings defined by DSLs
provide a tailored and more specific visualization according to the particular domain and
concerns, but needs to be developed for each viewpoint, which is not in the focus of this
thesis.

Coming back to Figure 2.1Z 52, views are depicted in its right part (gray area). Views
model parts of the system under development in reality, leading to views for requirements,
for class diagrams and for Java source code. Since the information about parts of the system
under development is encoded as model, Views in the Megamodeleach view has one such model (see Figure 2.22Z 90)
and the views are depicted as models in Figure 2.1Z 52. The system under development can
be completely described as a whole with a view, which can be seen as a “complete view of
the complete system”. This view often does not explicitly exists and therefore is visualized
as cloud “System uD Description” in Figure 2.1Z 52. Compared with IEEE (2011), it refers
to the “Architecture Description”, which describes the architecture of the system under
development as a whole.

View

�abstract�
CompleteView

�abstract�
PartialView

PureSUM ModularSUM DataSource NewView

composite [1]

parts [1..∗]

Figure 2.4: Kinds of Views in Multi-Perspective Modeling

Therefore, views can be distinguished into partial views and complete views, as depicted
in Figure 2.4: Partial vs Complete

Views
According to Figure 2.1Z 52, views representing parts of the system under

development like requirements, class diagrams and Java source code are called partial views.
According to Section 1.2Z 31, partial views either are already existing as data sources or
are newly derived as new views: Data sources have an already existing view and viewpoint
which must be reused (Definition 4Z 37), while new views and viewpoints are created by the
approach for the first time (Definition 5Z 40). In order to keep Figure 2.1Z 52 short, it shows
only the three data sources as introduced in Part 5Z 37 of the ongoing example and not the
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2 Basic Concepts

new view as introduced in Part 6Z 40 of the ongoing example. Since the whole model-based
description of the system under development provides a complete view on it, it is called
complete view. The information within the complete view is composed of the information
of all partial views, indicated by the composition in Figure 2.4Z 57. As look-ahead, it can
be explicitly realized as pure SUM or as modular SUM, as discussed in Section 3.4Z 120.
With these clarifications for views, Figure 2.4Z 57 complements Figure 2.22Z 90.

Since views respectively viewpoints are conceptually realized by models respectively
metamodels, the foundations of modeling with models and metamodels are discussed in
Section 2.2. The models encode the information of views, which should be kept consistent.

2.2 Modeling

Multi-perspective modeling was already motivated in Section 1.1Z 26 as foundation for de-
veloping software-intensive systems with models.Modeling for multiple

Perspectives
The multiple perspectives are realized by

viewpoints and conforming views. As views and viewpoints are the central concepts for
developing systems, views and viewpoints must be realized, which is done by models and
metamodels. Therefore, this section discusses foundations for modeling models and meta-
models. The relationships between view(point)s and (meta)models is depicted in Figure 2.5,
which is explained in the following sections in step-wise way.

Viewpoint View

Metamodel Model

ConcreteSyntaxDefinition ConcreteRendering

conformsTo [1]

instances [∗]
usedForViewpoints [∗]

realizedBy [1]

usedBy [∗]

concreteSyntaxes [∗]

usedBy [1]

realizedBy [1]

usedBy [1]

concreteRenderings [∗]

conformsTo [1]

instances [∗]
metamodel [1]

usedForConcreteSyntaxes [∗]

model [1]

concreteRenderings [∗]
conformsTo [1]

instances [∗]

Figure 2.5: Concepts for Views and their Models

As defined in Definition 11Z 56 in Section 2.1Z 54,Models realize Views,
Metamodels realize
Viewpoints

views are used by users in order
to be informed about parts of the system under development and to change them. As
defined in Definition 10Z 55, viewpoints define which parts of a system under development
are contained in the views and are often given by existing tools used in the current project.

Viewpoints and views are realized by metamodels and models, leading to the need to
discuss some foundations of modeling:Modeling is an Activity Modeling is an activity which creates, changes and
manages models and treats models as first-order elements (Bézivin, 2006, p. 40) due to the
principle, that “everything is a model” (Bézivin, 2005). When using modeling techniques
for system development, various terms like “model-based engineering” and “model-driven
development” occur:
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2.2 Modeling

• Jelschen (2024, p. 136f) works out, that there is no common understanding of the
exact difference between the terms “model-driven X” and “model-based X”: Model-driven vs

Model-based
Bram-

billa, Cabot and Wimmer (2012, p. 9) and Pastor and Molina (2007, p. 41) both
distinguish the terms model-driven and model-based regarding completeness of the
used models and automation using model transformations, but place them on oppo-
site ends of the spectrum, i. e. the definitions of terms are switched. Here, the terms
model-driven X are used, since “driven sounds stronger than based” corresponding
to the design decision, that all data including source code are realized as models.

• Model-driven engineering ( MDEMDE) uses modeling as key activity and involves models
as central artifacts in engineering various systems along their whole life cycles.

• Model-driven development ( MDDMDD) restricts MDE to the pure development activities
for systems.

• Model-driven software engineering/development ( MDSE / MDSDMDSE / MDSD) applies MDE /
MDD techniques for engineering software systems.

• Model-driven architecture ( MDAMDA) is a MDSD approach of the Object Management
Group (OMG) (Kleppe, Warmer and Bast, 2003; Brambilla, Cabot and Wimmer,
2012) using standards and tools of OMG and focusing on generating executable code
from high-level models using chains of model transformations.

Therefore, definitions for models (Definition 12) and the related concepts metamodel (Def-
inition 13Z 61) and model transformation (Definition 14Z 67), and discussions about tech-
nical spaces (Section 2.5Z 84) are required, which are inspired by definitions of Jelschen
(2024, pp. 132ff.).

2.2.1 Model

Models are the central artifacts of modeling. Models are defined using the definition of
Jelschen (2024, pp. 132ff.), which bases on among others Stachowiak (1973), Skyttner
(2005) and Hesse and Mayr (2008) in slightly simplified way.

Definition 12: Model

“A model represents a part of a real system, reduced to serve a particular purpose.”
(Jelschen, 2024)

This definition condenses the three characteristics of models, i. e. first their description
of real systems, second their abstraction i. e. representation of only some aspects of the
systems by means for reduction Purpose determines the

Reduction of the
modeled System

and third their purpose, which determines the selection
of aspects of the systems to represent. Models as representations of real systems help to
deal with them as representatives, instead of working with the elements of the real systems
directly, in particular for cases, when that is impossible, since the real system e. g. is not
digital or does not yet exist.

Therefore, models are suited to store the information which shall be provided by views,
Models store the
Information of Views

since views describe parts of the system under development tailored to the concerns of its
viewpoint (Figure 2.2Z 54). While models store information for views, their visualizations
for stakeholders is defined by the viewpoint as concrete syntax (Figure 2.5Z 58): Executing
such a definition for concrete syntax with the particular model of the view leads to a
concrete rendering for the view. Visualization of Models

(default: Object
Diagrams)

In this thesis, all models are visualized as object diagrams
by default, as already discussed for views in Section 2.1Z 54. The technical realization of
models in memory is discussed in Section 2.5Z 84.

59



2 Basic Concepts

As preparation to define metamodels in Section 2.2.2, different kinds of models are
investigated: Following Kühne (2006), the “model-of” relationships between models and
their systems must be distinguished into “token-model-of” and “type-model-of”. Such
models can also be called token models or type models:Token Model:

1-to-1
transitive
“represented by”

Token models represent elements
of the system in a one-to-one manner by creating one corresponding element in the model
(but reduced according to the purpose of the model) for each element in the system. Type
models classify the elements of the system into groups of elements with similar properties
and creates one element in the model for each of these groups representing the “main
nature” of the included elements of the system in a many-to-one manner. This can be
used to describe elements in the system as instances of an element in the model as their
type.Type Model:

n-to-1
not transitive
“conforms to”

This distinction corresponds to the terms “representedBy” for token models and
“conformsTo” for type models in Bézivin (2005). Another important difference is, that
representedBy is transitive, i. e. if A is represented by B and B is represented by C , then
A is also represented by C , while conformsTo is not transitive, i. e. A does not conform to
C , if A conforms to B and B conforms to C (Kühne, 2006).

Ongoing Example, Part 8: Modeling ← List →

Modeling is applied to the ongoing example in Figure 2.1Z 52 in form of µ-relationships:
They describe the relationships between models and their represented systems. Here, views
represent parts of the system under development like the concrete requirements, class dia-
grams and source code. As an example, the view for Java source code consists of a model
(called Abstract Syntax Graph (ASG)) representing the Java source code under develop-
ment in textual form. Since this representation is 1-to-1 according to token models, the
µ-links are annotated with “representedBy” in Figure 2.1Z 52.

Since this representation property of models comes also with a reduction, i. e. not every-
thing of the system under development is reflected in the model, synchronization is needed
on technical level: Stakeholders usually work not directly on the models of the views,
but work on parts of the represented systems as concrete renderings of the models (Fig-
ure 2.5Z 58). Therefore, the information about the system under development is the same,
but it is presented with different techniques.Synchronize Views

with represented
(Parts of) Systems
regarding technical
Presentation →
Adapter

Therefore, it is necessary to switch between
different technical spaces (introduced in Definition 21Z 84) of the view and its concrete
renderings of the represented systems in reality. Additionally, changes in the concrete ren-
derings of the represented systems must be propagated into the views and vice versa. Later
on, this leads to the motivation for and the realization by adapters (Section 6.6.5Z 226).

2.2.2 Metamodel

Models are systems, following Skyttner (2005, pp. 59–62), who distinguishes systems as
“conceptual systems” from “concrete systems”. Systems under development can be seen
as concrete systems here and models as conceptual systems, while all are systems.modeling Models This
allows to create models which describe models as targeted systems. This can be used to
conceptually specify the allowed concepts and their relationships in models by metamodels:
By abstracting from individual details of all concrete elements of the model, each model
conforms to a metamodel (Bézivin, 2005).Model conforms to

Metamodel
This relationship between models and their

metamodels is not called “instance of” (i. e. a model is an instance of its metamodel), since
the term “instance of” is overloaded, in particular by object-orientation (Bézivin, 2005,
p. 172). Therefore, “conforms to” is chosen as alternative. The statement, that a model
conforms to its metamodel, indicates, that a metamodel is not only “a model used to model
modeling itself ” (Object Management Group, 2019, p. 3), often summarized as “a model
for a model”, but that the metamodel must be a type model for the model (Kühne, 2006).
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2.2 Modeling

Summarizing, metamodels are defined in Definition 13:

Definition 13: Metamodel

A model MM is called metamodel for the model M , if MM is used as type model
for M .

Compared with classical data bases, if the model represents the instances, then the
metamodel represents their schema. Another important aspect is the recursive behaviour
of metamodels: Recursion of

Metamodels
Since a metamodel is also a model, it is possible to define a metamodel for

a metamodel, which can be called a meta-metamodel, and so on. This emphasizes, that the
designation of a metamodel is a role of a model regarding another model (Kühne, 2006).
Note, that generalization is a completely different concept, since it relates model elements
within the same meta level and is transitive (Kühne, 2006).

To clarify the understandings of the central term metamodel, two different approaches
for (meta-)modeling, the OMG model stack and Multi-Level Modeling (MLM), are com-
pared regarding their understanding of the term metamodel in the following. In order
to see applications instead, this excursion into theory can be skipped and applications of
metamodels and models can be found afterwards in Part 9Z 64 of the ongoing example.

Excursion: Metamodels as understood by OMG and Multi-Level Modeling

The OMG defines their model stack with four levels, OMG Model Stackcalled M0, M1, M2 and M3, with
conformsTo relationships between them, shown in Figure 2.6: The system with its real
elements (M0) is described by models in form of UML diagrams in various kinds (M1), which
are defined by the metamodel in form of the UML super structure (Object Management
Group, 2017). The UML super structure (M2) is defined by the meta-metamodel in form
of the Meta Object Facility (MOF) (Object Management Group, 2019), which is defined
with its own concepts (M3).

UML Super Structure

M0

M1

M2

M3

conformsTo

conformsTo

conformsTo

conformsTo

System

Model

Metamodel

Meta-Metamodel

Elements of Reality

UML Diagrams

UML Super Structure

MOF

id : EString [0..1]

author : EString [0..1]

text : EString [0..1]

Requirement

id = ”r2”
author = ”Johannes Meier”
text = ”. . . enroled . . . ”

r2 : Requirement
id = ”r1”
author = ”Andreas Winter”
text = ”. . . register . . . ”

r1 : Requirement

Classifier InstanceSpecification

MOF.Classifier

con-
formsTo

conformsTo

conformsTo

conformsTo

represen-
tedBy

conformsTo

Object
Diagram

conformsTo

CSV

Class
Diagram

MOF

Figure 2.6: The OMG Model Stack (left) applied to represent the ongoing requirements (right)
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Applied to requirements of the ongoing example, the current set of elicited requirements
in the CSV file are located at M0 and can be described with the class diagrams (left) and
object diagrams (right) in UML at M1. Comparing class diagram and object diagram
regarding their relation to the real requirements shows, that the requirements conformTo
the class diagram, since many requirements are described by one class (type-model-of),
while each requirement on M0 is representedBy one corresponding object in M1 in a one-to-
one manner (token-model-of).M0 conforms to VS

represented by M1

This is inconsistent and is mirrored by different statements
about the relationship between M0 and M1 in literature (e. g. conformsTo in Hesse and
Mayr (2008, p. 390) and representedBy in Bézivin (2005, p. 178)).

Only the elements in M2, e. g. the UML super structure, together are called metamodel
by definition.M2 is the

Metamodel (for M0)
This can be relaxed on the one hand and more formalized on the other hand

by the definition of Hesse and Mayr (2008) for metamodels: A model C is called metamodel
for model A, if there is another model B which conformsTo C and A conformsTo B . By
allowing the real system to be A (the original definition requires a model for A) and taking
the class diagram for B , this definition confirms, that the UML super structure (as C ) is
the metamodel (for the real system as A). As already discussed, that is not really true,
if the object diagram is taken for B , since the requirements do not conformTo the object
diagram. As benefit of the relaxed definition of Hesse and Mayr (2008), M3 can be called
a metamodel for M1.

Between the requirements in the object diagram and the requirement in the class di-
agram, there is another conformsTo relationship, since multiple requirements are mapped
to the single concept of requirements (type-model-of). But this introduces a conflict with
transitivity of conformsTo:Conflict with

Transitivity
Requirements in the object diagram (as A) conformTo the re-

quirement in the class diagram (as B), which conformsTo the UML super structure (as C ).
Since conformsTo must not be transitive, the transitive “shortcut” A conformsTo C must
not exist, but the object diagram A conformsTo the UML super structure C , too.

Due to these issues in the OMG model stack (Atkinson and Kühne, 2002b) and in order
to “reduc[e] accidental complexity in domain models” (Atkinson and Kühne, 2008) in gen-
eral,Multi-Level

Modeling (MLM)
multi-level modeling (MLM) distinguishes two kinds of conformsTo relations (Atkinson

and Kühne, 2003; Kühne, 2006): Ontological conformsTo, leading to the ontological levels
Oi in Figure 2.7Z 63, targets the contentwise conformsTo within the problem domain.conformsTo:

Ontological vs
Linguistic

Lin-
guistic conformsTo, leading to the linguistic levels Li in Figure 2.7Z 63, targets the technical
realization of (meta)models.
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O0

O1

O2

MoMM

L0 L1

id2 : EString [0..1]

author2 : EString [0..1]

SpecKind2

id1 : EString [0..1]

author1 : EString [0..1]

text1 : EString [0..1]

Requirement1 : SpecKind

id0 = ”r2”

author0 = ”Johannes Meier”

text0 = ”. . . enrole . . . ”

r20 : Requirement
id0 = ”r1”

author0 = ”Andreas Winter”

text0 = ”. . . register . . . ”

r10 : Requirement

Clabject

∗ type1

represen-
tedBy

representedBy

representedBy
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conformsTo

linguistic
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Figure 2.7: Multi-level modeling (MLM) applied to represent the ongoing requirements

Foundations of
multi-level Modeling

The real requirements (bottom left) are represented in a one-by-one manner by objects
in O2 with the type Requirement, which is defined in O1 to represent the concept (or idea)
of requirements (middle left). Since there are different kinds, how functionality can be spec-
ified in system development, O0 represents the concept of different concepts for specifying
requirements (top left) by SpecKind (specification kind). Additionally to requirements, user
stories are another way to formulate functionality, which could be stated as UserStory1 :

SpecKind in O1 (not part of the figure).
The potency of elements and their attributes (superscripted numbers) is reduced by one

for each following ontological level and indicates at the value zero, that no more instantia-
tions are possible for elements (e. g. r10) respectively that concrete values must be given for
attributes (e. g. id0 = “r1”). Note, that the understanding of potency and the numbering
of ontological levels is reworked by Kühne (2018).

Up to now, only content in form of concepts is described in the ontological levels Oi ,
called together one multi-level model, which is organized in the column L0: L1 defines the

Concepts of
multi-level Models

To realize the
complete multi-level model technically, a data structure is required, which is located in L1

and can be seen as linguistic metamodel. Clabject (fusing the terms class + object) indi-
cates the most central element of a linguistic metamodel for multiple metalevels (MoMM)
(Atkinson and Kühne, 2001), sometimes also called model element or instance. Since the
type of a clabject is again a Clabject (on higher ontological level), the MoMM can describe
the whole multi-level model (linguistic conformsTo).

By organizing ontological and linguistic levels clearly separated as orthogonal concepts
as visualized in Figure 2.7, Resolve Conflicts

with Transitivity of
conformsTo

conflicts with transitivity can be prevented, since the transitivity
must not exist for the same kind of conformsTo. Compared with the OMG model stack in
Figure 2.6Z 61, conformsTo between class diagram and object diagram is ontological, while
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conformsTo between the UML diagrams and the UML super structure is linguistic. These
relationships between the involved (meta)models could be formalized with megamodels, too
(Gašević, Kaviani and Hatala, 2007).

With MLM, it is possible to support an arbitrary number of ontological levels (O0,1,2,...).
In contrast, UML supports only modeling with two ontological levels, e. g. with object
diagrams and class diagrams (both in M1), which refer to O2 and O1 in Figure 2.7Z 63.

O0 +O1 +O2 + . . . =
multi-level Model

The elements in all ontological levels Oi together form one multi-level model. Therefore,
the term metamodel is not that important in MLM, but is formally defined by Kühne
(2006) and is formulated simplified and similar to Hesse and Mayr (2008) as follows: A
model C is called (ontological) metamodel for model A, if there is another model B which
(ontological) conformsTo C and A (ontological) conformsTo B .O0 is Metamodel for

O2

Applying this definition to
Figure 2.7Z 63 results in the finding, that O0 is a metamodel for O2, since O2 ontological
conformsTo O1 and O1 ontological conformsTo O0.

The handling of metamodels, i. e. model elements on three or more linguistic levels
with type-model-of relationships between them, would be out of the scope of this thesis,
following MLM.Compare

Definition 13Z 61

with OMG and
MLM

Therefore, Definition 13Z 61 requires only one conformsTo relationship
between two models as precondition for calling one of them being a metamodel for the
other model. Another finding when reflecting Definition 13Z 61 is, that the mentioned
conformsTo relationship can be concretized to target only ontological relationships. There
are other approaches for multi-level modeling (Atkinson, Gerbig and Kühne, 2014) as the
one sketched in Gonzalez-Perez and Henderson-Sellers (2008), but they are skipped here,
since they are not required for the general understanding of modeling with multiple levels.

Part 13Z 90 of the ongoing example demonstrates, how the chosen definitions for meta-
models and models are applied, in comparison to the understandings of OMG and MLM. To
avoid the term meta-metamodel of the OMG in this thesis, technical spaces similar to L1 in
MLM are discussed in Section 2.5Z 84 for technical realization of models and metamodels.

In this thesis, all metamodels are visualized as class diagrams. The technical realization
of metamodels is discussed in Section 2.5Z 84. To give a practical understanding of models
and metamodels, examples for them are given for the ongoing example now:

Ongoing Example, Part 9: Used Metamodels and Models ← List →

In order to make clear, how the finally used metamodels and models for the ongoing exam-
ple look like, they are shown now. For all data sources (as introduced in Part 5Z 37 of the
ongoing example), their metamodels and models are visualized here: Since the concepts
and used data of data sources are already described, the metamodels and models are not
discussed in detail here. Metamodels are visualized as class diagrams and models are visu-
alized as object diagrams. EMF is used as technical space, as discussed in Section 2.5Z 84

and Part 13Z 90 of the ongoing example.
The metamodel for requirements is shown in Figure 2.8Z 65: The RequirementsSpeci-

fication contains multiple Requirements, whose content is stored as text. The structure
of the metamodel depends on the CSV format and its supporting adapter, which is intro-
duced in Part 24Z 276 of the ongoing example.
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dataRequirementsSpecification

rowNumber : EInt [0..1]

id : EString [0..1]

author : EString [0..1]

text : EString [0..1]

Requirement

container [1]

content [∗]

Figure 2.8: Metamodel for the data source Requirements

The model for requirements is shown in Figure 2.9 and contains the requirements r1

and r2 representing the two requirements in the data source.

model rs : RequirementsSpecification

rowNumber = 1
id = ”r1”
author = ”Andreas Winter”
text = ”The student must be able to register for an event.”

r1 : Requirement

rowNumber = 2
id = ”r2”
author = ”Johannes Meier”
text = ”The student must be enroled at the university.”

r2 : Requirement

container[0]

content[0]

container[0]

content[1]

Figure 2.9: Model for the data source Requirements

The metamodel for Java is shown in Figure 2.10: The JavaASG represents the whole
source code consisting of ClassTypes, which have Methods. The call hierarchy of methods
is modeled with the bidirectional association calling respectively calledBy.

asgjavaJavaASG

name : EString [1]

ClassType
name : EString [1]

Method

asg [1]

classes [∗]

class [1]

methods [∗]

calledBy [∗] calling [∗]

Figure 2.10: Metamodel for the data source Java

The model for Java is shown in Figure 2.11Z 66 and contains the two classes “University”
(j1) and “Student” (j2). Both have one method and the method “register” calls “start”.
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model-java asg : JavaASG

name = ”Student”

j2 : ClassType

name = ”University”

j1 : ClassType

name = ”register”

m2 : Method

name = ”start”

m1 : Method

asg[0]

classes[0]

asg[0]

classes[1]

class[0]

methods[0]

class[0]

methods[0]

calledBy[0]

calling[0]

Figure 2.11: Model for the data source Java

The metamodel for UML class diagrams is shown in Figure 2.12: A ClassDiagram

contains Classes, which contain unidirectional Associations. Associations have, among
others, one type which is again a class.

umlclasses ClassDiagram

className : EString [1]

Classname : EString [1]

lowerBound : EInt [0..1]

upperBound : EInt [0..1]

Association

diagram [1]

classes [∗]
class [1]

associations [∗]

type [1]

usedBy [∗]

Figure 2.12: Metamodel for the data source UML

The model for UML class diagrams is shown in Figure 2.13. It models one class diagram
(uml) with only one class “University” (cd1).

model-uml uml : ClassDiagram

className = ”University”

cd1 : Class

diagram[0]

classes[0]

Figure 2.13: Model for the data source UML
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These metamodels and models for data sources are used as starting point, as presented
in the following parts of the ongoing example.

After defining models and their metamodels, these two concepts are compared regarding
the objectives of this thesis (Section 1.3.1Z 42): Consistency

Preservation targets
Models, but is defined
on their Metamodels

Objective of this thesis is to keep models
(not their metamodels) consistent to each other, while these models conform to different
metamodels. These metamodels are used for the technical description and realization of the
desired consistency in order to be valid for all models which conform to these metamodels.
With this idea, users can create any models using their viewpoint respectively metamodel
and the consistency which is generically specified on level of the metamodel can be ensured
automatically.

This works only, if models really conform to their metamodels. Therefore, this rela-
tionship is important, is depicted as “conformsTo χ” in Figure 2.1Z 52 and describes the
relationships between a schema and its instances (Bézivin, Jouault and Valduriez, 2004),

Model conforms to its
Metamodel

i. e. the instance (model) conforms to its schema (metamodel). This relationships between
models and their metamodels must be ensured, when models or metamodels are changed:
Changing models must ensure, that they still conform to their metamodels. Changing meta-
models must ensure, that their models are changed accordingly, Model Co-Evolutionwhich points to the chal-
lenge of model co-evolution, which is discussed in Section 6.2.1Z 193. As already discussed
in Section 1.3.2Z 43, the conformance of models to their metamodels must be ensured, but
must be distinguished from ensuring consistency between models representing views here.

In order to keep models synchronized with their systems, bidirectional model transfor-
mations are one possibility for the technical realization of synchronization in both directions
(Stevens, 2018), Model Transformations

for synchronizing
Models and their
Systems

i. e. update models as representatives of their updated (parts of the) system
(according to the descriptive role of models) and update the systems under development
according to updates in their models (according to the prescriptive role of models). This
use case for model transformations in this thesis is covered by the concept of adapters
(Section 6.6.5Z 226).

In order to relate models to each other regarding their consistency, model transfor-
mations can be used to make these relations explicit and to maintain it, as deepened in
Section 3.2Z 99. Model Transformation

for synchronizing
Models with each other

This use case for model transformations is more important in this thesis
due to its direct relation to consistency than the first use case. These discussions are deep-
ened in Section 2.3Z 71. But both use cases motivate the need for model transformations
as introduced in the next Section 2.2.3.

2.2.3 Model Transformation

After defining the central terms model and metamodel, model transformations as important
technique to work with models conforming to metamodels are introduced in Definition 14,
similarily to Jelschen (2024), following definitions of Kleppe, Warmer and Bast (2003):

Definition 14: Model Transformation

Model TransformationA model transformation produces a target model out of a source model, following a
given model transformation definition.

In order to distinguish specification and execution, this definition for executed model
transformation are accompanied with three additional terms (Kleppe, Warmer and Bast,
2003, pp. 23–26): Model Transformation

Definition
A model transformation definition specifies unambiguously, how the

source model is transformed into the target model, by using model transformation rules and
controlling their application (Czarnecki and Helsen, 2006, p. 627). Model Transformation

Rule
A model transformation

rule specifies unambiguously, how single elements of the source model are transformed into
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single elements in the target model. Model transformation rules are the “smallest units
of transformation” (Czarnecki and Helsen, 2006, p. 627).Model Transformation

Engine
A model transformation engine

realizes a model transformation automatically by producing the target model out of the
source model according to the given model transformation definition.

Kleppe, Warmer and Bast (2003) define these four terms without the prefix “mo-
del”, e. g. transformation instead of model transformation. Since modeling concepts can
be mapped to graph terminology for realization (Ehrig, Ermel et al., 2015b, p. 49), the
generic definitions of Kleppe, Warmer and Bast (2003) could be applied also to graph
transformations. Here, the prefix “model” is added to emphasize the context of modeling.

Kleppe, Warmer and Bast (2003) use the term transformation tool, while model trans-
formation engine is preferred here,Engine vs Tool since tools could contain additional parts like a graphical
user interface, next to the model transformation engine. The term engine is used also in
other work like Czarnecki and Helsen (2006).

While the term model transformation (the execution) refers to the execution of a model
transformation definition (the specification),Model Transformation

(Definition)
model transformation is often used as abbre-

viation for model transformation definition, since the context shows, if the execution phase
or the specification phase is discussed. Therefore, this thesis uses this abbreviation, too.

The specifications of model transformation definitions and model transformation rules
are done on metamodel level, e. g. on the source metamodel,Specifications on

Metamodels,
Executions on
conforming Models

to be directly applicable to all
source models which conform to this source metamodel.

Model transformations can also use metamodels as source input and produce models
or metamodels as target output, since metamodels are also models.Input: all kinds of

Models, e. g. Models,
Metamodels, Model
Transformations, . . .

Corresponding mo-
del transformation definitions are specified on the metamodel of these metamodels then.
Additionally, model transformation (definitions) can be source model or target model of mo-
del transformations, since model transformations are also models (Bézivin, 2005; Bézivin,
Büttner et al., 2006). Therefore, each approach for model transformations provides a meta-
model describing the concepts which can be used for model transformation definitions.

There is a wide range of model transformation approaches, as shown by surveys of
Jakumeit, Buchwald et al. (2014) and Kahani, Bagherzadeh et al. (2019).generic Surveys Model transfor-
mation approaches can be classified regarding different properties, as done by Czarnecki
and Helsen (2006) in form of feature models for functional criteria. Mens and Van Gorp
(2006) propose additional quality criteria for model transformations. Classifications which
are required for this thesis are adapted from Czarnecki and Helsen (2006), depicted in
Figure 2.14 and introduced now:

Legend

Mandatory

Optional

Or

Xor

I Sub-Diagram

Model Transformation

Target

New Existing

Update In-place

Direction

Unidirect. Multidirect.

1 Definition ≥ 2 Definitions

Incrementality

Target Source

Preserve
Target

Changes

Tracing

Creation

Automatic Manual

Location

Inside

Source Target

Separate

Concepts
(Metamodel)

generic
Domain-
specific

Incrementality ⇐⇒ Update ∧ New (Target)
Tracing =⇒ New (Target)
In-place =⇒ ¬ Tracing

Figure 2.14: Feature Model for Model Transformations (adapted and extended from Czarnecki
and Helsen (2006))

• Model transformation work with one or more models: Each model can be either read
or written or both, referring to e. g. source models, target models or models which
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are transformed in-place. As an example, model merging has two or more source
models and creates one target model (Mens and Van Gorp, 2006). new vs updated TargetThe target model
can be created newly or is already existing, since the source model is transformed
in-place into the target model transform Source

in-place
or since the target model of an out-place model trans-

formation already exists (due to previous activities, e. g. a previous execution of the
transformation which created the target model newly) and will be updated only. endogenous vs

exogenous
Mo-

del transformations whose involved models all conform to the same metamodel are
called endogenous and exogenous otherwise (Mens and Van Gorp, 2006).

These classifications for the involved models are important for this thesis, since models
of existing data sources must be reused and updated on the one hand, while new
models must be created for new views.

• Unidirectional model transformations always use the source model to provide the
target model (one and same direction). Multidirectional model transformations (MX)
can switch the roles of source and target models to support multiple directions, e. g.
bidirectional model transformations (BX) as special case of multidirectional model
transformations can transform the source model into the target model and the target
model into the source model (two directions). unidirectional vs

bidirectional
Multidirectional model transformations

can be defined by providing one set of (multidirectional) model transformation rules
which cover multiple directions within each model transformation rule or by providing
one set of (unidirectional) model transformation rules for each direction. In literature,
bidirectional model transformations are often understood to have only one definition
for both directions (Abou-Saleh, Cheney et al., 2018).

Bidirectionality is important for this thesis, since information of models of existing
data sources must be transformed into models of new views, while changed informa-
tion in these models for new views must be transferred back into the models of the
data sources.

• Incrementality aims to benefit from known changes in models instead of complete
transformations in batch-mode and comprises three different aspects: Incrementality

transforms only changed
Elements again– Target incrementality enables to update an existing target model, when running

the model transformation with an updated source model again. This feature
corresponds to the already used term change propagation of user changes in the
source model.

– Source incrementality enables to execute only those model transformation rules
again, which use updated elements of the source model. After an impact analysis
of the user changes in the source model, only the identified model transformation
rules are executed to update the target model accordingly. This can improve
the performance, in particular for huge source models.

– Preservation of user changes in the target model deals with the challenge of user
changes in the target model: When running the model transformation again
with an updated source model, the target model must be updated accordingly,
but additional user changes in the target model should be preserved, too.

Incrementality is important for this thesis, since it allows to keep only some informa-
tion in models consistent, while all other information is kept unchanged, in contrast
to complete model transformations in batch-mode which tend to recreate such mo-
dels in order to replace the previous model which deletes information not covered by
the model transformation. Incremental execution must be distinguished from lazy
execution (Tisi, Mart́ınez et al., 2011), which updates model elements in delayed way
at the moment, when the model elements are requested.
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• Tracing adds trace links between source elements of the source model and correspond-
ing target elements of the target model into the model transformation, according to
the model transformation rules.Traces between Source

and Target
Traces can be created automatically or manually

by writing requests for traces within the model transformation rules. Traces can be
stored inside the involved (source or target) models, e. g. by using dedicated UML
profiles (Vanhooff and Berbers, 2005), or outside in a separate model conforming to a
trace metamodel (Schwarz, Ebert and Winter, 2010). The concepts of traces (which
are not covered by Czarnecki and Helsen (2006), but discussed by Hidaka, Tisi et al.
(2016) and by Samimi-Dehkordi, Zamani and Kolahdouz-Rahimi (2018)), e. g. the
trace metamodel in case of a separate storage location, can be generic, e. g. the same
trace metamodel is used for any source and target metamodels, or domain-specific,
e. g. the trace metamodel depends on the particular source or target metamodels.

Trace links are important for this thesis, since trace links indicate corresponding
elements in source and target models, which is usually required for incrementality.

Additionally, there are surveys focusing only on classes of model transformations with spe-
cial properties,specific Surveys e. g. Kusel, Etzlstorfer et al. (2013) for incremental model transformations,
Hildebrandt, Lambers et al. (2013) for Triple Graph Grammars (TGGs) as concrete model
transformation approach (Schürr and Klar, 2008) or Stevens (2008) and Anjorin, Buchmann
et al. (2020) for bidirectional model transformations.

The big picture for terminology in form of a megamodel in Figure 2.1Z 52 does not show
model transformations directly, although Bézivin, Jouault and Valduriez (2004) explicitly
define model transformation as possible relationships between models: τ describes the
relationship between a source model which is transformed into a target model by a model
transformation. While they provide no conceptual findings for consistency in Figure 2.1Z 52,
model transformations can be used to technically ensure consistency:

If the complete view (“System uD Description”) is realized as explicit model, e. g. as
SUM as it will be introduced in Section 3.4Z 120,Projections by

Transformations
this model could be transformed into

models for partial views by removing all information which is not part of this view, according
to the δ-relationship. This leads directly to the idea of projectional management of views
(Section 3.5Z 121).

If there is no such complete view, parts of the information from one partial view could
be generated from parts of another partial view.Update partial Views

regarding overlapping
Information

Such model transformations could update
the model of the target view in case of changes of overlapping information in the model of
the source view, described as synthetic management of views (Section 3.3Z 108). Changing
the target view makes it inconsistent to the source view, as long as there is no inverse
transformation to update also the source view. In the ongoing example, classes in UML
can be transformed into classes in Java, but without methods, since they are not described
in UML. But renaming classes in UML requires to rename the corresponding classes in Java
and vice versa.

Additionally, transformations can be used to realize µ-relationships in form of bridges
between different technical spaces.Model Transformations

for bridging Technical
Spaces

Summarizing, definitions and classifications of model
transformations are important, since they represent important related approaches for mo-
del consistency in Section 3.3Z 108 and they are used as part of the designed solution in
Section 6.1Z 185.

Using multiple models as views conforming to metamodels as viewpoints introduces
the potential for inconsistency between them, as already motivated in Section 1.1Z 26.
Therefore, the next Section 2.3Z 71 provides some foundations for understanding consistency
in more detail.
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2.3 Consistency

2.3 Consistency

When developing the system under development with multiple views conforming to different
viewpoints, inconsistencies can occur between those views, which describe overlapping and
related parts of this system under development. Since all views together describe the
system under development in its entirety (Definition 2Z 32), these views always have some
dependencies leading to possible inconsistencies, as discussed in Section 1.1Z 26. Objective: Deepen the

Understanding of
Consistency

Therefore,
this section continues to investigate the foundations of consistency. Consistency of views
is already defined in Definition 2Z 32 in Section 1.2.1Z 31 and its main message is repeated
here for readability: One or more views are consistent, if these views describe parts of
the same system under development without semantic contradictions within a particular
project.

This understanding for consistency is concretized here and substantiated by analyz-
ing the involved views of a system, their relationships and their impacts to consistency.
This investigation is done along the ongoing example in form of the megamodel in Fig-
ure 2.1Z 52. DecomposedIn-relationships δ describe the relations between a composite and
one of its parts (Favre and Nguyen, 2005). Applied to multi-view modeling according to
Figure 2.1Z 52, there are three cases of δ-relationships: δ-RelationshipsFirst, the system under develop-
ment consists of requirements, class diagrams and Java source code in reality. Second, the
model-based description of the system under development (complete view) consists of the
information of all (partial) views. Third, the concepts for the description of the system
under development consists of the concepts of all viewpoints.

Looking at the second case for the involved models, partial views represent some in-
formation (as reduction) of the complete view for the complete description of the system
under development. Keep complete View

and its partial Views
consistent to each other
. . .

Therefore, changes in partial views must be transferred also into the
complete view, otherwise the δ-relationships are hurt. The other way around, changes in
the complete view must be reflected also in all its partial views to ensure δ.

Since a partial view is a reduction of the complete view in the sense of the abstraction
property of models (Section 2.2.1Z 59), the purpose of the partial view, i. e. the concerns
targeted by its viewpoint, determines, which information of the complete view is selected
to be part of the partial view. . . . depending on the

Purpose i. e. Semantics
of partial Views

Therefore, δ-relationships depend on the purpose of (par-
tial) views here and require to ensure (semantic) consistency between the models of the
partial views in order to model the same system under development in coherent way. If the
complete view is made explicit, synchronization between partial views and their complete
view are sufficient, otherwise, the partial views are synchronized directly with each other,
as discussed in Section 3.2Z 99.

After clarifying, that the semantic consistency between different views is the main chal-
lenge of this thesis, now some activities around consistency are analyzed. The Defini-
tion 2Z 32 for consistency describes a state, as visualized in Figure 2.15: Consistency is a StateViews are consistent
to each other (state consistent), then a user changes one view (transaction User Changes)
by changing its model, which results in model differences depicted as User∆. User∆ introduce

Inconsistencies
Afterwards,

inconsistent consistent

User Changes / User∆

Consistency Management
according to Consistency Goals / E∆

Figure 2.15: Terminology for Consistency

the views are inconsistent to each other (state inconsistent). In order to make the system

71



2 Basic Concepts

consistent again, this transition from the inconsistent state to the consistent state is realized
by consistency management:

Consistency management comprises the activities which ensure consistency according
to guidelines, which are called consistency goals in the following Definition 15, by manag-
ing inconsistencies,Consistency

Management
including detecting dependencies between views corresponding to the

consistency goals, detecting inconsistencies and fixing inconsistencies (Spanoudakis and Zis-
man, 2001). In order to transfer an inconsistent state to a consistent state, inconsistencies
are detected and fixed, which results in model differences depicted as E∆ (E stands for
execution).E∆ fixes Inconsistencies The concepts User∆ and E∆ allow an explicit designation of these manual and
automated changes. These symbolic notations are introduced here, since they are required
for formal visualizations for the design in Chapter 6Z 185. Technically, they are model
differences, which are technically realized by difference operations (see Section 6.7Z 227).
Initially, the system is expected to be inconsistent (initial state in Figure 2.15Z 71), since
reused views might be inconsistent due to manual consistency management before (see
Section 1.2.2Z 36).

Since the Definition 2Z 32 for consistency does not define possible contradictions between
views, it does not help to determine, if given views are consistent to each other or not, i. e.
if state consistent or if state inconsistent holds in Figure 2.15Z 71. Therefore, Definition 15
allows to formulate conditions for consistency:

Definition 15: Consistency Goal

A consistency goal formulates a relation between elements of one ore more viewpoints.
If this relation holds between corresponding elements of conforming views, these
views are called consistent, otherwise, they are called inconsistent, regarding this
consistency goal.

Since the viewpoints and their relations for consistency are project-specific (see page 35),
each consistency goal is specific for that project, too:Consistency Goals

formulate Conditions
for Consistency

Consistency goals make these project-
specific consistency challenges explicit and can be seen as special requirements for the
desired consistency for the current project, i. e. the consistency is defined by consistency
goals as its parts (Figure 2.17Z 73).

Consistency goals should clarify dependencies between elements of different views, since
they are the origin for possible inconsistencies.Consistency Goals

clarify Dependencies
between Views

Possible kinds of dependencies are identified
on page 33 as redundancies, explicit links and constraints. Each consistency goal makes one
of such dependencies between views explicit, so that it can be checked in order to determine,
if the dependency is fulfilled or not.

This relationship between views and consistency goals is depicted in Figure 2.16Z 73 as
extension of Figure 2.4Z 57: Consistency goals explicitly describe goals for the consistency
of multiple views which comprise information which semantically depend on each other.Consistency Goals

describe Semantics to
hold between depending
Information of any
Views

If
a consistency goal is linked with only one view, it describes its intra-model consistency. In
general, consistency goals can target any views: If there is no complete view, consistency
must hold only between partial views. If there is an explicit complete view, consistency
must be ensured between the partial views and its complete view, too. From the perspec-
tive of stakeholders, they expect consistency goals to hold for partial views (only), since
stakeholders usually work only with them and do not care about a possible complete view.

Note, that consistency goals are formulated in terms of elements of the viewpoints, but
must hold for corresponding elements of conforming views.Consistency Goals are

formulated on
Viewpoints and checked
on Views

Therefore, consistency goals can
be evaluated like constraints for all conforming views in order to determine, whether the
views are consistent or inconsistent. If all relations of all consistency goals for a project and
its system under development hold, the views of this system are called consistent (otherwise,
they are called inconsistent) to each other as well as to the system.
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View

�abstract�
CompleteView

�abstract�
PartialView

ConsistencyGoal
relatedConsistency [0..1]

dependingViews [1..∗]

composite [1]

parts [1..∗]

Figure 2.16: Concepts for Views and their Consistency

Instead of consistency goal, Reder and Egyed (2012) call it “design rule” and use expres-
sions to describe the consistency formally, alternative Terminologywhile consistency goal emphasizes the purpose
of consistency. Dijkman, Quartel and van Sinderen (2008) call it “consistency rule”, but
this term is used differently here, as defined below.

Consistency label : String [1]

text : String [1]

description : String [1]

ConsistencyGoal

label : String [1]

text : String [1]

description : String [1]

ConsistencyRule

project [1]

goals [∗]

goal [1]

rules [∗]

Figure 2.17: Concepts for Consistency

While Definition 15Z 72 allows to determine, if consistency is reached or not, it is still
unclear, what to do in order to fix inconsistencies: Inconsistent views must be changed
in order to get updated views which are consistent to each other afterwards. There are multiple

possible Fixes
Usually, an

occurred inconsistency can be fixed in multiple ways, i. e. there are multiple possible fixes to
repair a single inconsistency. An example is found in the following Part 10 of the ongoing
example:

Ongoing Example, Part 10: Multiple possible Fixes ← List →

When an inconsistency occurred, usually, there is not exactly one possible fix for the incon-
sistency, but there are multiple possible fixes in general. As an example, the same class is
represented in source code and in class diagrams: After the user renamed a class A in the
class diagram to B , there are multiple ways to eliminate the occurred inconsistency, e. g.

• by creating a new class B in the source code (with or without deleting A in the source
code),

• by renaming the class A in the source code to B (the chosen fix in Consistency
Rule C 2 cZ 77)

• or even by deleting the renamed class B in the class diagram.

To fix the introduced inconsistency, one fix of this (incomplete) list of possible fixes must
be chosen.

In general, there are multiple possible fixes for inconsistencies (Reder and Egyed, 2012).
This observation can be found not only in practice but also in theoretical way: Hettel,
Lawley and Raymond (2008) give another explicit example and formalize the need for
a selection strategy, when defining round-trip engineering for change propagation (more
details are given in Section 3.3.1Z 108). Formalizing consistency as relation, as it is done in
the following, formally shows, why multiple possible solutions occur. Another motivation
for formalizing consistency is, that it shows the need to change also the source view in
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order to fix inconsistencies. Both findings are mapped to provided functionality of related
approaches in Chapter 3Z 93.

Stevens (2010) formalizes consistency as mathematical relation R ⊆ L(S ) × L(T ) be-
tween source models s ∈ L(S ) and target models t ∈ L(T ) with S and T as their metamo-
dels and L(S ) and L(T ) their induced languages as sets of all conforming models:Consistency

mathematically
formalized as Relation ∀s ∈ L(S ), t ∈ L(T ) : R(s, t)⇐⇒ s and t are consistent to each other (2.1)

Informally, for each possible pair of one source model and one target model it is checked,
if they are consistent to each other: If they are consistent, this pair is stored respectively
marked by the relation R. If they are not consistent, this pair is not part of the relation
R. In the following example in Figure 2.18, there are five combinations of five possible
source models and of six possible target models which indicate consistent models, i. e.
(s1, t1), (s3, t2), (s4, t2), (s5, t5), (s5, t6) ∈ R. Note, that the assignment of two models as
source model respectively target model is artificial here and could be switched without
impact.

Exemplary Consistency
Relation

Source Models Target Models

s1

s2

s3

s4

s5

t1

t2

t3

t4

t5

t6

Case 1

Case 2

Case 3

Case 4

Figure 2.18: Exemplary Consistency Relation between source and target models

When looking only at the source models (in general, the same counts when switching
source and target), there are four different cases, how they could be related as consistent
to target models:Cases of related Models

• In Case 1, a source model is related to exactly one target model which is related to
no further source models, e. g. (s1, t1) in Figure 2.18.

• In Case 2, a source model is related to no target model, e. g. s2 in Figure 2.18.

• In Case 3, a source model is related to exactly one target model which is related to
two or more source models, e. g. (s3, t2), (s4, t2) in Figure 2.18.

• In Case 4, a source model is related to two or more target models, e. g. (s5, t5), (s5, t6)
in Figure 2.18.

With these distinctions, the following results regarding the selection of possible consistent
target models for a particular source model can be achieved:Selecting consistent

models

• If only Case 1 occurs in R, R is bijective and s and t determine each other com-
pletely and contain the same information with different structures (Stevens, 2008).
In that bijective setting, there is only one possible fix for an inconsistent source model
respectively target model without the need for selection.
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• If Case 2 occurs in R, there is no related target model to be consistent with the source
model. Since there is no target model, the current source model must be changed to
come to another source model which have one or more related target models. Change (also) the

Source Model (again)
With

other words, the current source model is the root of the current inconsistent state
and must be fixed itself. In practice, this Case 2 can occur, when the current source
model does not fulfill intra-model consistency.

• If Case 2 does not occur in R, R can be written as function f : L(S ) −→ L(T ): If Case
4 occurs in R, f must select one of the possible target models, otherwise f cannot
be established. If Case 3 does not occur, f is called injective. If R is bijective, f is
bijective, too, and there is an inverse function f −1 : L(T ) −→ L(S ) for f (Stevens,
2008).

As look ahead, functions f and f −1 (if existing) can be realized as (unidirectional)
model transformations (see Section 2.2.3Z 67). If f −1 exists, since f is bijective, f
can be written as bidirectional model transformation and f and f −1 can be executed
without further specifications. If f −1 does not exist, a (unidirectional or bidirectional)
model transformation for the inverse direction must cope with the challenge to select
one of multiple possible results for the desired consistency (Section 3.2Z 99).

• Case 4 shows the need to select from multiple possible target models which are
consistent to the current source model. Therefore, a strategy for the selection of the
desired fix i. e. consistent target model is required. Such selection is not required for
the Cases 1 and 3, since there is exactly one related target model.

Summarizing, relations help to formalize consistency. Selection of related
(Source or Target)
Models

Depending on the particular
consistency relation, a selection of one of the possible target models to be consistent to
the current source model is required in general. This counts in particular for cases, where
the source models contain less information than the target models, since the additional
information in the target model is unknown in the source model and result in ambiguities.
Another important finding is, that not only a related target model can be selected for the
current source model (which remains unchanged), but also the current source model could
be changed, so that another (or even any) target model related as consistent to the changed
source model can be determined.

Since the resolution of inconsistencies is not unique, Selection of one Fix
required

the selection of one of these possible
fixes for application is required (Spanoudakis and Zisman, 2001): It is important, that
it is not sufficient for selected fixes to make views consistent to each other, the views
must be consistent to the system under development, too. In particular, changes by users
in one view must be reflected in the other views in order to update the system under
development accordingly. Therefore, the fix to select must fit to the purpose of the system
under development and to the changes of the users. This makes also the selection of fixes
project-specific. To specify the desired fixes of inconsistencies, Definition 16 is required to
guide the selection of possible fixes:

Definition 16: Consistency Rule

A consistency rule provides a strategy to ensure the consistency defined by its con-
sistency goal.

Consistency rules are specific for a consistency goal (Figure 2.17Z 73) and concretize
them in order to operationalize them: Consistency Rules

formulate Strategies for
fixing Inconsistencies

This is done by providing strategies, how the consis-
tency is ensured, which is determined by the consistency goals. This can be done by defining
the desired degree of automation (e. g. manual, automated) or the general strategy (e. g.
heuristics), by defining required reactions on occurred changes or by defining special cases
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for the consistency. In contrast, consistency goals describe the desired state of consistency
in more generic way.

Kramer (2017, p. 57) distinguishes consistency check specification and consistency
enforcement specification for consistency specification:Related Work for

Consistency
Specification

The consistency enforcement spec-
ification specializes the consistency check specification by actions to realize consistency,
additionally to the check, if consistency is fulfilled. Here, the consistency rules are designed
to complement their consistency goals by concretizing the desired transition from the in-
consistent state to a consistent state. Kramer (2017, pp. 106ff.) provides also some formal
definitions for consistency using the term consistency rule, which corresponds to the term
consistency goal in this thesis. To annotate consistency checking constraints with repair
rules to fix inconsistencies detected with such constraints is a strategy also found in re-
lated approaches like Stünkel, König et al. (2018), which are presented with more details
in Chapter 3Z 93.

This motivates to concretize Requirement R 1 (Model Consistency)Z 154 with the fol-
lowing Requirement R 1.2Z 155:

Requirement R 1.2: Generic Consistency Goals

The approach must support arbitrary consistency goals concretized by consistency
rules.

This requirement will be chosen in Chapter 4Z 153 in order to support project-specific
consistency challenges in form of concrete consistency goals and their consistency rules.

The consistency can be formulated in formal way, e. g. as demonstrated by Diskin, König
and Lawford (2018) or with OCL as by Dijkman, Quartel and van Sinderen (2008) and
Egyed, Zeman et al. (2018).Consistency formulated

in natural Language
Here, all consistency goals and consistency rules are formulated

as text in natural language, since they should be used for discussions with stakeholders
(Section 2.4Z 79), who usually have no formal knowledge for that. Each consistency goal
and each consistency rule is represented by one sentence, complemented with a longer
description for motivation and description, as demonstrated for the ongoing example:

Ongoing Example, Part 11: Consistency Goals and Rules ← List →

Now, the consistency issues, which are described only roughly up to now, are summa-
rized in form of consistency goals now. To realize the consistency goals, some concretizing
consistency rules are added.

Consistency Goal C 1

Requirements must be linked with their fulfilling Java methods.

This consistency goal summarizes the first consistency issue in the ongoing example. It
links requirements from the requirements data source explicitly with those methods from
the Java data source, which fulfill the requirements.

Consistency Rule C 1 a for C 1

Links between requirements and fulfilling methods are added manually.

Since the identification of methods which fulfill requirements should be done manually,
no automation is described here.
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Consistency Rule C 1 b for C 1

If a requirement or a method is deleted, all its links must be deleted automatically,
but not the other linked element.

After removing a requirement or a method, all direct traceability links must be removed,
too. The element at the other end of the link is kept. This is important, since these deletions
can be done independently from the traceability, e.g. by removing the elements in their
original data sources.

Consistency Goal C 2

All classes must be represented always in Java source code, but not necessarily in
the UML class diagram.

The classes in UML are a subset of the classes in Java . This allows to keep UML on a
higher level showing only classes which are relevant for the architecture.

Consistency Rule C 2 a for C 2

A new class in UML must be created also in Java , but a new class in Java is not
added to UML.

If the new class in UML is already existing in Java , which is possible due to C 2, these
two classes are identified as same, but nothing more happens.

Consistency Rule C 2 b for C 2

A deleted class in Java must be deleted also in UML, but a class which is deleted
in UML remains in Java .

In the end, each class in Java can be shown or hidden in UML, which counts also for
deletion of classes.

Consistency Rule C 2 c for C 2

A renamed class in UML must be renamed also in Java and vice versa, if the class
is also represented in UML.

Since the same class is represented in UML and Java , it must have the same name in
both representations.

Consistency Goal C 3

Each association in UML must have exactly one method which provides its values
(getter).

Since associations in UML are usually realized as private attributes in Java , a public
getter-method is required to retrieve the values of that attribute. By convention, the name
of the getter starts with the prefix get and ends with the name of the method whose first
letter is a capital. If there is no getter, a new getter will be created explicitly for the
association. Note, that associations are part of ClassDiagram and methods are part of

Java : Due to C 2, all classes of UML defining associations are part of the Java source
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code, so creating getters is always possible.

Consistency Rule C 3 a for C 3

If an association is renamed, its getter must be renamed accordingly.

Otherwise the names of association and getter do not match the convention anymore.
The special case, that the renamed getter conflicts with another already existing method,
is ignored here for simplicity.

Consistency Rule C 3 b for C 3

If a method which is used as getter for an association is renamed, this association
must be renamed accordingly.

Otherwise the names of association and getter do not match the convention anymore.
The special case, that the renamed association conflicts with another newly created asso-
ciation, is ignored here for simplicity.

Consistency Rule C 3 c for C 3

If a method which is used as getter for an association is removed, a new getter is
created for this association.

A new getter is created, otherwise the still existing association has no getter anymore,
which hurts C 3.

Consistency Rule C 3 d for C 3

If an association is removed, its getter is removed, too.

Since the purpose of getter methods is only to provide the value of the association, the
getter is no longer used, when its association is removed.

Figure 2.19 presents an overview of all consistency goals, annotated along the edgesa.
The nodes in the graphic represent the data sources in this application.

Requirements Java

ClassDiagram

C 2, C 3

C 1

Figure 2.19: Overview of Consistency Goals in the ongoing Example

Since all involved data sources have models, Figure 2.19 could be treated also as macro-
model with consistency goals as used type for relations (Salay, Mylopoulos and Easterbrook,
2009; Stevens, 2017), since megamodels have a fixed set of relation kinds between models
(Favre and Nguyen, 2005).

aHyperlinks at the consistency goals allow to jump to their introductions.
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Usually, it is sufficient to specify consistency goals for views representing data sources
only and not for new views, Consistency Goals for

Data Sources only
since new views provide only some already existing information

of the data sources in a different way, but do not introduce new information. But this
reused information is already targeted by the consistency goals for the views representing
data sources. Therefore, Part 11Z 76 of the ongoing example presents consistency goals and
consistency rules for data sources only and not for new views.

This formulation of the desired consistency in terms of consistency goals and consis-
tency rules helps to discuss it with stakeholders and to clarify their roles in consistency
management (Section 2.4).

2.4 Stakeholders

The management of inconsistencies (Spanoudakis and Zisman, 2001) involves four groups of
stakeholders, i. e. users, methodologists, platform specialists and adapter providers, which
are motivated and clarified in this section. Stakeholders for

Consistency
Management

Later on, these stakeholders help to adjust the
design of the new approach (Chapter 6Z 185) and its application (Chapter 12Z 455) to their
skills. Examples for these groups of stakeholders in the software development domain are
collected in Part 12Z 83 of the ongoing example.

Figure 2.20: Use Cases of Consistency Management

In order to motivate the proposed stakeholders, the use cases for consistency manage-
ment are discussed and depicted in Figure 2.20, Use Cases for

Consistency
Management

in order to derive involved stakeholders for
consistency management:

Fix Inconsistencies automatically This use case automatically fixes possible inconsis-
tencies in views, after one view was manually changed by a stakeholder involved in
the current development project. The stakeholders using and changing views man-
ually and requiring automated fixes afterwards by triggering this use case are called
users. To automate such fixes for manually introduced inconsistencies within this use
case is the main objective of this thesis (Section 1.3.1Z 42).

Specify Consistency The consistency to ensure in a project is specified during this use
case by explicitly formulating consistency goals and consistency rules (Section 2.3Z 71).
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Objective of this use case is to establish explicit specifications for the desired consis-
tency in order to automatically fix inconsistencies in the previous use case.

Develop Adapter Since different views are technically realized with different tools, en-
vironment and data formats (Section 1.2.2Z 36) or different concrete syntaxes (Sec-
tion 2.1Z 54), the information encoded by these views must be mapped to the same
technical representation in order to work with them in a uniform way.Technical Space These techni-
cal representations are called technical spaces and are concretized in Section 2.5Z 84.
This bidirectional mapping between the technical spaces is done by adapters,Adapter which
are developed during this use case.

It makes sense to distinguish the introduced use cases in this way, since the functionality
of these use cases is needed with different frequency:Frequency of Use Cases For each project, the use case for
specifying consistency is done only once and these specifications are often used for executing
the use case for fixing inconsistencies after each use of a view. A new adapter is developed
only once for each new technical space to support, since adapters can be reused for all
projects.

The first use case to automatically fix inconsistencies is triggered by stakeholders of
the system development after they manually changed their views.User These stakeholders are
grouped under the term users of consistency management (Section 2.4.1).Derived Stakeholders Since specifying
consistency for the second use case requires knowledge about all views and the domain
of the system and users usually do not have this knowledge,Methodologist another stakeholder is re-
sponsible for realizing this use case, called methodologist (Section 2.4.2Z 81). Since fixing
inconsistencies as first use case should be automated, a realizing conceptual approach and
supporting software system must be developed: This requires researchers called platform
specialists as additional group of stakeholders,Platform Specialist since they have knowledge about consistency
challenges independent from the application domain, while this knowledge cannot be re-
quested by users and methodologists focusing on single projects. These three stakeholders,
users, methodologists and platform specialists, are shortly mentioned by Meier, Werner
et al. (2020) already, but are elaborated in the following sections. An additional, fourth
stakeholder is dealing with the technical heterogeneity of views and is identified by the
third use case to develop adapters:Adapter Provider In order to bridge different technical spaces of different
views, the adapter provider develops adapters, which can be used for all following projects
by methodologists.

All three use cases in Figure 2.20Z 79 are not actively executed, but supported by
platform specialists:Use Cases guided by

Platform Specialists
Since platform specialists develop the approach for consistency man-

agement and its implementing framework, they provide guidelines and APIs how to specify
consistency for methodologists, they determine the automated execution of fixing incon-
sistencies for users and specify the supported technical space, for which adapter providers
have to implement adapters from other technical spaces.

A forth use case (“Initialize SU(M)M”) is introduced in Section 5.2.3Z 176, but not
shown in Figure 2.20Z 79, since it is not required for managing inconsistencies in general,
but depends on design choices.

2.4.1 User

Users are the stakeholders, who benefit from ensuring inter-model consistency automati-
cally, as defined in Definition 17:

Definition 17: User (Stakeholder)

Users read and write single views and expect them to be consistent to all other views
before and after their manual changes.
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Users are all stakeholders of a project which use one or more of its views. Users use Views and
want automatic Fixes
for Inconsistencies

Before using
a view, they expect, that views presented to them are consistent with the other views.
Using a view includes reading information and writing information and is done often via
tools with fixed viewpoints or with concrete syntax. In case of writing, the user causes
changes in the view in order to update the underlying system. Since only the current view
is changed, it might become inconsistent to the other views. Therefore, the users expect,
that the views are made consistent automatically after their manual changes, i. e. their
changes are propagated accordingly into all other views. Summarizing, users execute the
following activities:

• users read and write single views

• users request automated fixes for possible inconsistencies after their changes

Meier, Werner et al. (2020) call this stakeholder “developer”, which is fine in the area of
software development, but is not generalizable to domains outside of software development.

related TerminologyEven within software development, there are stakeholders falling in the group of users
like requirements engineers and software architects, who are using views like requirements
specifications and UML diagrams and expect them to be consistent to each other. Therefore,
the developer is renamed to user here. In the context of views representing classical models
like UML models, the user is sometimes called “designer”, e. g. by Demuth, Lopez-Herrejon
and Egyed (2015). Here, the term user is used, since it is more general for arbitrary
application domains than the mentioned alternatives.

2.4.2 Methodologist

Methodologists are the stakeholders, who automate the consistency for a concrete project
using an approach for consistency preservation, as defined in Definition 18:

Definition 18: Methodologist (Stakeholder)

Methodologists apply approaches for consistency preservation in order to realize the
automated consistency preservation desired by users.

Initially, methodologists identify and specify the consistency goals and their consistency
rules for the current project, together with involved users and perhaps further domain
experts. Methodologists realize

Consistency
Management

Note, that the understanding of consistency might be subjective depending on the
particular users and further stakeholders (Branco, Xiong et al., 2014, p. 933). The identified
consistency rules are realized technically using the provided concepts of the chosen approach
in order to ensure the consistency goals automatically. Therefore, methodologists need
knowledge about meta-modeling, since consistency goals and consistency rules are defined
on the viewpoints respectively metamodels, and about the application domain, which could
be supported by domain experts or users. This contains also legal issues as precondition for
data integration, which are out of the scope of this thesis (Section 1.3.2Z 43). Additionally,
methodologists have to unify the technical spaces of different viewpoints by using adapters.
Summarizing, methodologists execute the following activities:

• methodologists identify the desired consistency goals within projects

• methodologists specify consistency rules for the collected consistency goals

• methodologists realize consistency goals and their consistency rules using an approach
and framework for consistency management

• methodologists use adapters to bridge different technical spaces of different viewpoints

81



2 Basic Concepts

When identifying overlaps of heterogeneous views in collaborative way,related Terminology Bennani, El Ham-
laoui et al. (2018) propose a similar role having knowledge about the domain, its semantics
and meta-modeling, called “semantics expert” there. In a following paper (El Hamlaoui,
Bennani et al., 2019), a similar role is usually called “expert” (and once “integrator expert”).
Vara Larsen, DeAntoni et al. (2015) call the stakeholder responsible for coordinating differ-
ent models to each other as “integrator”. Nentwich, Emmerich and Finkelstein (2003) call
the stakeholder to select and customize possible fixes for detected inconsistencies as “repair
administrator”. Here, the term methodologist is used, since it was coined and agreed upon
along with other SUM approaches in Meier, Klare et al. (2019). Additionally, these findings
show, that the role of the methodologist is identified as senseful by related work.

Users and methodologists must be distinguished, since users usually know only their
own views and have no knowledge about the other views.User vs Methodologist But the knowledge about inter-
view consistency issues is required to solve them, which requires to have methodologists.
The other main difference between these two groups of stakeholders is, that users work with
their views often, while methodologists configure the automation of consistency only once.

2.4.3 Platform Specialist

Platform specialists are the stakeholders, who develop generic approaches for consistency
preservation in multi-view environments, as defined in Definition 19:

Definition 19: Platform Specialist (Stakeholder)

Platform specialists design approaches for consistency management and implement
frameworks which support methodologists during their application for concrete con-
sistency problems in projects.

Platform specialists solve classes of consistency problems with conceptual approaches
and provide technical frameworks, languages or librariesPlatform Specialists

develop Approaches for
Consistency
Management

in order to support methodologists
during the application those approaches. The technical support in form of a framework
defines at least one technical space, for which adapters as bridges to other technical spaces
are required. Summarizing, platform specialists execute the following activities:

• platform specialists design approaches for consistency management

• platform specialists implement such approaches as framework

Meier, Werner et al. (2020) introduce the platform specialist shortly.related Terminology The word platform
can be seen as aggregation of the approach and its implementing framework. As developer of
both, platform specialists are specialists for their platforms, i. e. approaches with supporting
frameworks. An alternative term for platform specialist could be “researcher”. Here, the
term platform specialist is used, since it was coined and agreed upon along with other SUM
approaches in Meier, Klare et al. (2019).

Methodologists and Platform Specialists must be distinguished, since methodologists
apply consistency approaches for each project,Methodologist vs

Platform Specialist
since the consistency is specific for the

current project, while it is sufficient for platform specialists to develop a generic approach
only once. By providing reusable frameworks, platform specialists can help methodologists
to save effort.

2.4.4 Adapter Provider

Adapter providers are the stakeholders, who support different technical spaces, i. e. the
formats and tools used by users, as defined in Definition 20Z 83:
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Definition 20: Adapter Provider (Stakeholder)

Adapter providers develop techniques to automatically transform data used by users
into the technical spaces used by approaches for consistency management and vice
versa.

Users often use predefined tools, DSLs and data formats for their views, called tech-
nical spaces, whose models must be handled by the framework. Adapter Providers

ensure automatic Data
Transformation between
Views and Consistency
Management
Approaches

Therefore, the framework
determines at least one technical spaces to be supported by the framework. This selection
is discussed in Section 2.5Z 84 for the new approach of this thesis. Adapter providers de-
velop transformations as bridges between technical spaces of viewpoints used by users and
the technical space of the framework of the approach for consistency management. These
transformations are bundled as adapters (see Section 6.6.5Z 226). Summarizing, adapter
providers execute the following activities:

• adapter providers develop bidirectional bridges between two different technical spaces

Alternatively, this work could be done by methodologists, if the technical space to
support is project-specific. An example is the adapter for Xtext, which is developed
by the methodologist as specialization of the EMF adapter in the application for rights
management in Chapter 9Z 283.

Platform specialists and adapter providers must be distinguished, since platform spe-
cialists do not know all possible technical spaces and tools whose data should be handled.

Platform Specialist vs
Adapter Provider

In particular, data formats like DSLs can be developed explicitly for the current project
and must be supported, too, which can not be handled in advance by platform specialists.
To support new adapters by adapter providers, platform specialists define mechanisms for
developing new adapters in the approach and a corresponding API in the framework.

Ongoing Example, Part 12: Stakeholders ← List →

Mapped to the running example, the four groups of stakeholders can be identified, too, and
concretized with involved persons:

User Users are requirements engineers, software architects, programmers and project man-
agers, who use and change only their views (usually they use its representation with
concrete syntax for that) and benefit from the automated updating of the other views.
End users of the developed software system for university management like students
and lecturers are no users in this context, since there is no view to support their
needs in this restricted example. In real projects, users want to get the final software
for using it, therefore, such a view for the final product after deployment is useful.

Methodologist The methodologist is a person, who has knowledge about the software
development project and its desired consistency challenges and has meta-modeling
skills, like an expert for quality assurance in software development of the company
or of a consulting company.

Platform Specialist is the author of this thesis, since he developed the approach Mo-
ConseMI and its realizing framework.

Adapter Provider Since the used formats CSV and Excel are provided together with
the framework, the platform specialist is also the adapter provider here, who is the
author of this thesis.

The design of the new approach (Chapter 6Z 185) takes these stakeholders into account
and supports their concerns by providing tailored ways for application (Chapter 12Z 455).
Section 14.3.1.3Z 493 discusses the required skills of stakeholders as summary.
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As discussed above, views are used by users and viewpoints are used by methodologists.
To realize models technically in order to automatically work with them in software tools like
model transformation engines, in particular used by adapter providers, Section 2.5 presents
the concept of technical spaces, discusses some existing technical spaces and decides to use
EMF in this thesis finally.

2.5 Technical Spaces

Models and metamodels are often realized as graphs. Accordingly, model transformations
can be realized by graph transformations (Taentzer, Ehrig et al., 2005). From technical
perspective, tools using models like model transformation engines require, that the in-
volved models, metamodels and model transformation definitions follow the same technical
foundations. They are summarized as technical spaces,Technical Spaces

provide Techniques and
Tooling to realize
Models

as defined in Definition 21:

Definition 21: Technical Space

“A technical space is a model management framework accompanied by a set of tools
that operate on the models definable within the framework.” (Bézivin and Kurtev,
2005)

More informal, “the intuitive meaning behind a technical space is a certain technology”
(Bézivin and Kurtev, 2005) to technically realize models including supporting tooling like
serialization and deserialization of models and metamodels. Since everything is a model,
technical spaces as defined above can realize not only models,more than Modeling but also programming lan-
guages and data bases (Bézivin and Kurtev, 2005), ontologies (Kurtev, Bézivin and Akcsit,
2002) or other data like CSV files. In the end, each view is realized by a technical space.

Djuric, Gaševic and Devedžic (2006) introduce the term modeling space as “a modeling
architecture defined by a particular meta-metamodel” (Djuric, Gaševic and Devedžic, 2006,
p. 132).Modeling Space The meta-metamodel like MOF refers to the central concepts which can be used in
metamodels. Compared with multi-level modeling, modeling spaces refer to the particular
concepts defined in L1. Djuric, Gaševic and Devedžic (2006, p. 140) use modeling spaces to
concretize technical spaces:Technical Space =

1 realized Modeling
Space +
n used Modeling Spaces
+
Tooling

Objective of a technical space is to realize one modeling space.
During that realization and the supply of tooling for this modeling space, further modeling
spaces can be used. As an example, MOF is the modeling space of the MDA technical
space, that uses also EBNF as modeling space to support programming languages like Java
for the generated source code.

In this thesis, the term technical space is used, since also the particular realization
of the main modeling space including existing tooling is reused. Note, that the similar
term “model space” is sometimes differently used for other things by different authors,
e. g. to distinguish artifacts in the modeling world from artifacts in the programming world
(Angyal, Lengyel and Charaf, 2008) or to define a graph of all models conforming to the
same metamodel as nodes with model differences between each pair of these models as edges
(Diskin, Gholizadeh et al., 2016). The next Section 2.5.1 sketches some existing technical
spaces to realize models and metamodels technically.

2.5.1 Related Work: Technical Spaces

This section sketches some of the existing technical spaces usable to technically realize
models and metamodels.sketch existing

Technical Spaces
Objectives are neither completeness nor a reliable comparison,

but to show some existing alternatives. The existence of different technical spaces mo-
tivates adapters (Section 6.6.5Z 226) as bridges between different technical spaces. The
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presented selection is restricted to technical spaces which realize models (and not program-
ming languages, as an example)

Modeling Technical
Space Space
MOF MDA
ECore EMF
KM3 KM3
TGraph JGraLab

and focuses on technical spaces which are targeted by other
approaches for model consistency or metamodel evolution, presented in Chapter 3Z 93.

• The Object Management Group introduced the Meta Object Facility (MOF) 2.0
(Object Management Group, 2019) to realize (meta)models for their MDA initiative.
MOF can be distinguished into the Complete MOF (CMOF) containing all con-
cepts and Essential MOF (EMOF) containing only a subset of concepts. MOFWachsmuth
(2007) presents metamodel adaptations for the complete MOF 2.0.

• The Eclipse Modeling Framework (EMF) is a Java-based framework to enable mod-
eling with a bunch of tools in the frame of the Eclipse IDE. Within EMF, ECore
describes the possible concepts in EMF metamodels and is very similar to EMOF
(Steinberg, Budinsky et al., 2009). ECoreDifferences between EMOF and ECore are dis-
cussed by Kramer (2017, pp. 26–28) together with simplified metamodels for the
concepts of EMOF and ECore. In terms of Djuric, Gaševic and Devedžic (2006),
ECore is the modeling space, which is realized and accompanied by, among oth-
ers, XMI serialization and Java source code generation within the technical space
EMF. EMF is used by multiple approaches, including Gruschko, Kolovos and Paige
(2007) for model conformance and Vitruvius (see Section 3.5.2Z 126) for model con-
sistency. For describing the evolution of metamodels, Vermolen, Wachsmuth and
Visser (2012) use a simplified subset of ECore, without enumerations and packages,
among others.

• The Kernel MetaMetaModel (KM3) is a technical space with the purpose to define
metamodels (Jouault and Bézivin, 2006). KM3It contains similar concepts like ECore,
but not all concepts of ECore. Next to the meta-metamodel defining the concepts
of metamodels, KM3 comes with a textual DSL and transformations to bridge KM3
with the technical spaces MOF and ECore. KM3 is used by Cicchetti, Di Ruscio
et al. (2008) for model co-evolution and is supported directly by the transformation
language ATL (Jouault, Allilaire et al., 2008).

• The TGraphs approach allows to realize models and metamodels in form of typed,
attributed and ordered nodes and edges TGraphand is implemented with Java in JGraLab
with additional tools for serialization and transformation (Ebert, Riediger and Win-
ter, 2008). TGraphs are used for managing traceability between artifacts of software
development (Schwarz, Ebert and Winter, 2010).

There are also more formal technical spaces, more Technical Spacese. g. colored petri nets used for consis-
tency of dynamic UML diagrams (Shinkawa, 2006) or hypergraphs with constraints used
as intermediate data structure for bridging technical spaces (McBrien and Poulovassilis,
1999). Other technical spaces focus on realizing graphs (as model) without explicit and
user-defined graph-schema (as metamodel) like JGraphT (Michail, Kinable et al., 2020).
Another variation is to restrict graphs to trees as data structure, as in Harmony (Foster,
Greenwald et al., 2007). Other research areas enrich modeling spaces with additional con-
cepts like roles for role-based modeling (Kühn, Böhme et al., 2015) or multiple meta-levels
for multi-level modeling (Atkinson and Kühne, 2001). More technical spaces can be found
in Jelschen (2024, p. 143f), in surveys on model transformations like Jakumeit, Buchwald
et al. (2014) and Kahani, Bagherzadeh et al. (2019) and in surveys on workbenches for
domain-specific languages like Erdweg, Storm et al. (2013).

Unrelated to technical spaces is the concept of UML profiles (Pardillo, 2010): Demarcation: UML
Profiles

While
MOF (at M3) allows to model metamodels like the UML super structure (Object Manage-
ment Group, 2017) (at M2), which is used by developers to model activity diagrams and
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state machines (at M1), the profile mechanism is provided by the UML super structure
(at M2) in order to support developers to define UML profiles (at M1). Profiles are used
by developers to annotate, extend and constrain elements which are modeled in core UML
diagrams (at M1). Among others, there are profiles for performance testing (Bernardino,
Rodrigues and Zorzo, 2016) and developing hardware and software systems in form of the
SysML (Wolny, Mazak et al., 2020), on which other profiles can be defined, e. g. for re-
quirements (Maschotta, Wichmann et al., 2019). Atkinson and Kühne (2002a) discuss some
hassles with UML profiles and propose to use ideas of strict multi-level modeling to improve
and clarify the profile mechanism. On the other hand, Mallet, Lagarde et al. (2010) real-
ize multi-level models as UML profiles. While profiles are not usable as technical space,
since they are located on the metamodel level and not on the meta-metamodel level, the
suitability of profiles for combining existing view(point)s is reviewed in Section 3.5.4Z 131.

The next section Section 2.5.2 argues, why EMF is chosen as technical space for this
thesis. The concept of adapters as designed in Section 6.6.5Z 226 conceptually allows to
support more technical spaces than EMF.

2.5.2 Descision: EMF

After presenting some existing technical spaces in Section 2.5.1Z 84, this section motivates,
why EMF is used to realize models and metamodels in this thesis.de-facto Standard EMF and ECore are
selected for this thesis, since EMF is a de-facto standard for modeling. Following Ehrig,
Ermel et al. (2015b, p. 52), EMF became a standard technology for modeling languages.

EMF inspired a huge bunch of tools supporting ECore for (meta)models: Already in
the frame of Eclipse, Canovas Izquierdo, Cosentino and Cabot (2017) count 55 modeling
projects in 2017, whose degrees of maturity are similar to those of non-modeling Eclipse pro-
jects in general.lots of Tools support

EMF
This includes, among others, model transformations like Henshin (Strüber,

Born et al., 2017) and work benches for domain-specific languages (DSLs) like Xtext (Bet-
tini, 2013) for textual DSLs and Sirius (Viyovic, Maksimovic and Perisic, 2014) for graph-
ical DSLs. In the field of model transformation approaches, Kahani, Bagherzadeh et al.
(2019, p. 2372) report, that EMF is the most supported technical space. Additionally, the
underlying Eclipse framework eases tool integration (Mohagheghi, Gilani et al., 2013b, p.
633) for plugins of these approaches.

Focusing on the specifics of the approach of this thesis, choosing EMF is beneficial,
too: According to own statement, EMF is suited for detailed data integration (Steinberg,
Budinsky et al., 2009, p. 38).Implementation reuses

EMF-based Tools
Tools of the technical space EMF are realized for the

implementation like (de)serialization of (meta)model elements and their identifiers. The
technical representation of models reuses parts of the Edapt project (see details in Sec-
tion 6.2.1Z 193), which uses EMF. In the application of Chapter 9Z 283, the EMF-based tool
Xtext (Bettini, 2013) is reused to convert grammar-based text into (meta)models directly
usable for consistency issues.

Finally, the use of EMF is increasing in academia and industry (Babur, Cleophas et al.,
2018):increasing (re)use of

EMF-based Models
Since the reuse of already existing artifacts in terms of models and metamodels is

one of the central challenges of this thesis (see Section 1.2.2Z 36), EMF is a good choice,
since many models and metamodels are realized with EMF.

Summarizing, EMF is chosen as technical space due to its wide use and benefits from
reusing existing EMF-based tooling. Therefore, EMF is described with more details in the
following Section 2.5.3Z 87.

While EMF is used as technical space for the approach and its implementation, the
wide range of existing technical spaces and their use in practice show the need for another
requirement:
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Requirement R 4: Technical Spaces

The approach must support views realized in different technical spaces.

Since each view could be realized with a different technical space, it must be possible
to reuse models encoded in different technical spaces. bridge Technical Spaces

→ Adapters
Since it is impossible to realize

all technical spaces beforehand (Section 2.4.4Z 82), the adapter provider is introduced as
important stakeholder role in Definition 20Z 83, who is able to support new technical spaces.
To support adapter providers, the approach must support a mechanism to bridge technical
spaces. Later on, this is realized by the concept of adapters, presented in Section 6.6.5Z 226.
As an example, Part 24Z 276 of the ongoing example shows, how the technical space CSV
is supported.

2.5.3 Foundations of EMF

Since EMF is used as technical space (Section 2.5.2Z 86), this section presents those concepts
and features of EMF, which are targeted by the consistency management or used later by
the implementation of the new approach. Some more specific features which are only
supported by adapters are introduced during their implementation in Section 8.4Z 271. The
main reference for this section is Steinberg, Budinsky et al. (2009).

ECore as meta-metamodel used in EMF contains several concepts for defining meta-
models. Concepts of EMF for

Metamodels
The concepts which are supported by the approach, are shown in Figure 2.21Z 88,

hiding all other concepts2.

All elements provided by ECore start with the letter “E” by convention. All elements
of metamodels defined in ECore are organized in EPackages, which can be nested. Main
elements, i. e. EClassifiers, are EClasses representing classes, EClassifier: EClass,

EDataType, EEnum
EDataTypes representing

data types like String or double and EEnums representing enumerations. Note, that EEnum
inherits from EDataType and not directly from EClassifier. Enumerations contain mul-
tiple EEnumLiterals having a name, a value and an optional literal. Classes are either
abstract or non-abstract and can have multiple super classes (and multiple sub classes
accordingly).

Features of classes are generalized EStructuralFeature:
EAttribute, EReference

as EStructuralFeatures having a name, a lower
bound and an upper bound. There are attributes in form of EAttributes with an EDataType

(or an EEnum) as type. EReferences can be compared with unidirectional UML associa-
tions, since they have one EClass as type and allow to navigate only from its containing
class to its type. To enable navigation for a EReference also from its type to its containing
class, it must be combined with another EReference using the opposite attribute. This
EReference has the containing class of the first EReference as type and the type of the
first EReference as class. In this way, bidirectional associations are realized by combining
two unidirectional EReferences as pair.

Additionally, an EReference can be marked as containment: Containment TreeCompared with UML,
the visualization of a containment reference looks like a composition, in contrast to “nor-
mal” non-containment references looking like usual associations3. But its impact for the
conforming models is slightly different than in UML: Each object within a model realized
with EMF, i. e. an instance of an EClass represented as EObject, must be contained exactly
once within another object, except for a root object. This containment is realized by a link
conforming to a EReference which is marked as containment in the metamodel. Therefore,

2Figure 2.21Z 88 does not mirror the implementation of these concepts in EMF perfectly, e. g. the
types of attributes and references are modeled slightly different and a ENamedElement generalizing
the name attribute is ignored, but represents the concepts in conceptual way. The concrete syntax
of Figure 2.21Z 88 uses the concepts of ECore for metamodels.

3There is no comparable concept for UML aggregations in ECore.
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name : EString [1]

EPackage

abstract : EBoolean [1]

EClass
instanceTypeName :

EString [0..1]

EDataType
EEnum

lowerBound : EInt [1]

upperBound : EInt [1]

name : EString [1]

�abstract�
EStructuralFeature

EAttribute
containment : EBoolean [1]

EReference

name : EString [1]

value : EInt [1]

literal : EString [0..1]

EEnumLiteral

name : EString [1]

�abstract�
EClassifier

superPackage [0..1] subPackages [∗]

superTypes [∗] subTypes [∗]

opposite [0..1]

package [1]

classifiers [∗]

containingClass [1]

structuralFeatures [∗]

enum [1]

literals [∗]

type [1]

type [1]

Figure 2.21: Relevant Concepts of ECore

objects form a tree in terms of containment (links) in the model, while these containment
references must be provided in the metamodel accordingly. This containment tree is used
by EMF for (de)serialization as XMI, since one (or more) root objects are associated to a
file (EResource) and the root objects and all their recursively contained objects are stored
in that file. Additionally, if an object is removed from the model, all its contained objects
(the “children”) are removed from the model, too. In the case of multiple root objects, they
can be associated to different files in order to spread the model over multiple files, which
can improve the management of huge models (Jahed, Bagherzadeh and Dingel, 2021).

By default, EMF needs no unique identifiers for objects in the model, since they are rep-
resented as mesh of objects in memory and a hierarchical key for identifying objects is used
for (de)serialization. But as an alternative strategy for object identification, EMF supports
to assign textual identifiers (String) to objects in the model.XMI-IDs During (de)serialization
with XMI, these identifiers are used and stored with xmi:id="myID" in the resulting
XMI files. The in-memory representation of objects does not contain a method like ob-

ject.setID("myID"), but the identifiers are stored within XMI files (XMIResource is a
special Resource) with file.setID(object, "myID"). Additionally, it is possible to as-
sign XMI-IDs also to all elements of metamodels. Since the design of the new approach
needs unique and stable identifiers (Section 6.6.4Z 225), this concept of XMI-IDs is used to
store identifiers.

Models and metamodels can be used with EMF in static or in dynamic way:static vs dynamic EMF In static
mode, Java source code is generated from defined metamodels, which represents the clas-
sifiers and their features in Java, e. g. by containing one Java class for each EClass. This
static Java source code is used at runtime to represent objects of EMF models as Java
objects with Java class as type which was generated from the corresponding EClass. This
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static mode eases programming in Java with the data structures defined in the metamodel,
but requires the regeneration of code, if the metamodel evolves. In dynamic mode, no code
generation is required, since metamodel and model are both represented as mesh of objects
at runtime: The classes of the metamodel are represented as instances of EClass and the
objects of the model are represented as instances of EObject4. Both Java classes EClass

and EObject are provided by EMF and can be reused without further adaptations. Since
the metamodels must be adapted (Section 6.2Z 192), the implementation uses dynamic EMF
later on, but supports also static EMF for data sources (Section 8.4.2Z 273). Part 13Z 90 of
the ongoing example shows, how dynamic EMF is applied to realize parts of the metamodel
for requirements.

The motivation for selecting these features are mainly to enable modeling with the
main features of UML class diagrams (all EClassifiers, all EStructuralFeatures) Motivation for

supporting these
Features

and to
enable grouping of elements with EPackages in order to simplify the management of huge
metamodels (Section 13.3.3.3Z 476). The amount of supported EMF features corresponds
with the amount of developed operators, as presented in Chapter 7Z 241, since they directly
work with and change the features of models and metamodels.

Some popular features of EMF are explicitly not supported, since they are not required
for modeling in general, but could be supported later as future work: some not supported

EMF Features
This includes the

concept of proxies when dealing with models which are spread across multiple files. Non-
containment links to objects stored in another file initially refer to a proxy object, which is
resolved to the real object in the other file, if it is explicitly accessed the first time. This
lazy-loading improves performance. Another performance improvement when dealing with
huge models could be partial loading, as done by Wei, Kolovos et al. (2016).

EMF as described with these concepts and features is used as technical space for this
thesis. Class and Object

Diagrams reflect
Characteristics of
ECore

Therefore, the conventions of ECore are used in the graphics of this thesis for
metamodels and models. As an example, EInt is shown as data type in diagrams instead of
int and links within metamodels with filled diamonds are looking like UML compositions,
but are containment references in the sense of ECore.

2.6 Summary

Views conforming to viewpoints are suited to provide stakeholders with information about
the current system under development tailored to their concerns which are reflected by the
viewpoints (Section 2.1Z 54). Summary of

Terminology
Since using multiple views can introduce inconsistencies, the

desired consistency in particular projects must be clarified, which is done by introducing
the terms consistency goal, which provide single conditions for consistency, and consistency
rule, which provide strategies to ensure single consistency goals by fixing corresponding
inconsistencies (Section 2.3Z 71). The involved stakeholders in the process of consistency
management are clarified as users using their known views in the usual way and expect-
ing automated fixes for occurred inconsistencies, as methodologists specifying and realizing
these fixes for particular projects, as platform specialists developing approaches for con-
sistency management and as adapter providers realizing the technical integration of views
into consistency management (Section 2.4Z 79).

Since views are represented as models, modeling terminology is introduced in Sec-
tion 2.2Z 58, in particular models, whose structures and allowed concepts are determined
by metamodels. Metamodels enable to formulate consistency goals and consistency rules
once in a general way, Consistency Goals

target overlapping
Semantics of different
Views

which can be used to ensure consistency at any time for all models

4This is a strongly simplified description: In reality, special implementations of EClass and
EObject are used, e. g. DynamicEObjectImpl having more super classes. Additionally, EObject and
EClass are interfaces in the Java source code of EMF and EClass is an (indirect) sub interface of
EObject.
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conforming to these metamodels. Summarizing, consistency goals formulate conditions for
semantically overlapping information of different views (Figure 2.16Z 73) on the level of
their viewpoints.

This relationships between terminology are summarized in Figure 2.22. Most important
is the understanding of views, as they reduce the whole information of one system under
development according to one viewpoint (realizing the concerns of stakeholders)Views come with

Models and Concrete
Renderings

into one
model, which is visualized with concrete renderings according to the defined concrete syn-
taxes of the particular viewpoint. In Figure 2.22, the system of a model is the system of
the view of this model ((Model.usedBy).system).

Concern Stakeholder

Viewpoint
�abstract�

View

Metamodel Model

ConcreteSyntaxDefinition ConcreteRendering

System

concerns [1..∗]

stakeholders [1..∗]
addressing [1..∗]

addressedBy [∗]

involvedStakeholders [∗]

systemOfInterest [1]
requestedBy [1]

lookingAt [∗]

conformsTo [1]

instances [∗]
usedForViewpoints [∗]

realizedBy [1]

usedBy [∗]

concreteSyntaxes [∗]

representedBy [∗]
system [1]

usedBy [1]

realizedBy [1]

usedBy [1]

concreteRenderings [∗]

conformsTo [1]

instances [∗]
metamodel [1]

usedForConcreteSyntaxes [∗]

model [1]

concreteRenderings [∗]
conformsTo [1]

instances [∗]

�abstract�
CompleteView

�abstract�
PartialView

PureSUM ModularSUM

DataSource NewView

composite [1]

parts [1..∗]

Figure 2.22: Concepts for Stakeholders, Views, Models and Concrete Syntaxes

Important is the distinction between different kinds of views: When discussing the
consistency between views, usually partial views are discussed, which represent parts of
the system under development. Partial views are distinguished into data sources to reuse
(Section 1.2.2Z 36) and new views (Section 1.2.3Z 39). Complete views represent the whole
system under development and contain the information of all partial views on the system
under development. Complete views exist at least implicitly, but might be explicitly realized
depending on the approach for ensuring consistency, as investigated in Chapter 3Z 93.

Model transformations (Section 2.2.3Z 67) enable to work with models in a structured
way. In order to technically realize models and metamodels, technical spaces are required
and reviewed in Section 2.5Z 84.Model Transformations

and EMF for technical
Realization

Finally, the choice of EMF as technical space for this
thesis is motivated.

To illustrate the theoretic concepts of the system under development, views and their
realization with models and technical spaces given in this Chapter 2Z 51, they are applied
to the partial view for the used requirements in Part 13 of the ongoing example:

Ongoing Example, Part 13: Concepts of Modeling ← List →

Figure 2.23Z 91 summarizes the modeling concepts as understood and used in this thesis,
in contrast to OMG and MLM, arranged in four columns.

The left column (without background color) contains the data for the requirements
view(point) of the system under development. Note, that they contain the amount of
elicited requirements (one row for each instance) together with an implicit schema (the
header row). Part 24Z 276 of the ongoing example discusses that finding in more detail.
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Schema and instances are represented by metamodel and model in the neighbored sec-
ond column as class Requirement and object r1 (r2 is mostly hidden). The model (onto-
logically) conforms to the metamodel and correspond to O1 respectively O2 in multi-level
modeling (see Figure 2.7Z 63 in the excursion above). In the OMG model stack, these parts
are both located in M1 (see Figure 2.6Z 61 in the excursion above).

The other two columns depict the technical realization of the concepts in the second
column. The forth column shows the technical space at development time, which is used in
the third column to represent the models and metamodels in the second column at runtime:
All elements in the metamodel, in particular the class Requirement, (linguistically) conform
to the EClass in the forth column in many-to-one manner. EClass is part of the source code
of the ECore project and is included as library into the implementation of the framework
(Section 6.6.2Z 222). At runtime (third column), each metamodel element is represented by
one object with (linguistic) type EClass in one-to-one manner.

Modeling Concepts
(+ Visualizations)

Representation in Memory
(at runtime)

Java Classes in Code
(at development time)

Data in real System
(Schema + Instance)

id : EString [0..1]

author : EString [0..1]

text : EString [0..1]

Requirement

id = ”r2”
author = ”Johannes Meier”
text = ”. . . enrole . . . ”

r2 : Requirement
id = ”r1”
author = ”Andreas Winter”
text = ”. . . register . . . ”

r1 : Requirement

name = ”Requirement”

: EClass

uuid = ”r2”

: Instance
uuid = ”r1”

: Instance

type

name : EString [1]

EClass

uuid : EString [1]

Instance

type1

∗

split

split

represen-
tedBy

represen-
tedBy

represen-
tedBy

ontological
conformsTo

linguistic
conformsTo

linguistic
conformsTo

represen-
tedBy

represen-
tedBy

linguistic
conformsTo

linguistic
conformsTo

Metamodel

Model

ECore

Edapt

Figure 2.23: Modeling concepts of MoConseMI applied to represent the ongoing requirements

On model level, all elements of the model, in particular all requirements like r1 (r2 is
mostly hidden), (linguistically) conform to the Instance in the forth column in many-to-
one manner. Instance is part of the source code of the EDapt project and is included as
library into the implementation of the framework (Section 6.6.3Z 223). At runtime (third
column), each model element is represented by one object with (linguistic) type Instance

in one-to-one manner.
The ontological type in the third and forth columns for the technical realization is

realized by the type association between the classes Instance and EClass (forth column)
respectively the type links between the Instance-objects and the EClass-objects (third
column).

As a preview, the adapters as designed in Section 6.6.5Z 226 take the data (left column)
at runtime as input and transform them into a mesh of EClass-objects for the metamodel
and into a mesh of Instance-objects for the model (third column). These two meshes are
input for the first operator.

This terminology and its application establish also relationships between models, views,
and so on, which are discussed in this section as megamodels. The lesson learned from dis-
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cussing them with megamodeling is, that there are (consistency) relationships as challenges
to be solved in multi-perspective modeling.Lessons learned from

Megamodeling
In detail, the findings of Figure 2.1Z 52 are the

following ones:

• Both relationships µ and δ use the means of abstraction in order to provide reduced
models and therefore require synchronization effort, but vary regarding what is re-
duced: µ represents mainly the same information with different renderings in different
technical spaces without semantic differences, leading to reduced visual or technical
details. δ remains within the same technical space, but reduces information according
to semantic purposes.

• When changing models (or metamodels), the conformance between models and their
metamodels must be ensured, but this must be distinguished from consistency be-
tween different models.

• Model transformations τ provide means to realize some of the mentioned relationships
between models. Therefore, they are introduced in Section 2.2.3Z 67 and investigated
as related approaches in Section 3.3Z 108.

Side note: Use of Megamodels

Megamodels are not only used for theoretic discussions about general relations be-
tween different models, but are also applied in practice, e. g. for managing big data
analyses (Ceri, Valle et al., 2012), software process lines (Simmonds, Perovich et al.,
2015) and traceability issues (Seibel, Neumann and Giese, 2010).

In such applications, the megamodels usually do not contain the “elements of the
real world” directly, but contain models as representatives for them instead. Since
such megamodels are new views on the whole system with additional consistency
relations to all other views, megamodels are not used for the realization in this
thesis, but only for discussions. Summarizing, “[m]egamodelling is better seen as a
mental discipline than as a technology” (Stevens, 2017).

After discussing terminology and basics for view(point)s, consistency, modeling and
technical spaces, they serve as foundations to analyze existing approaches in Chapter 3Z 93.
In particular, the wide range of available technical spaces as sketched in Section 2.5.1Z 84

requires to analyze them regarding approaches for consistency focusing on a particular
technical space, which is done in Section 3.6Z 135.
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Chapter 3

Related Work

After defining ensuring of consistency between multiple views as main objective of this thesis
(Chapter 1Z 25) and clarifying the terms for consistency and modeling (Chapter 2Z 51), this
section identifies and discusses existing related approaches for ensuring consistency between
views. Compare related

Approaches
Objective of the investigations in this section is to learn about related approaches,

their characteristics and their suitability for ensuring inter-model consistency. The result
of these investigations will be in Section 3.7Z 146, that the investigated related approaches
fulfill some requirements for ensuring consistency, but not all. This motivates the need for
a new approach called MoConseMI (Part IIIZ 163).

Therefore, related approaches are shortly described with their contributions for consis-
tency management and are compared to the requirements, Requirements for

ensuring Consistency
which are directly derived from

the challenges for ensuring consistency in Section 1.3.3Z 46 and therefore are on high-level:

High-level Requirements

R 1 Changes in one model have to be propagated into all related models. (Model
Consistency)

R 2 The approach must allow to reuse existing artifacts. (Reuse existing Arti-
facts)

R 3 The approach must allow to define new view(point)s. (Define new
View(point)s)

Since these requirements are on a high level, another contribution of this section are
improved requirements: Another Contribution:

Improved Requirements
When investigating related approaches, some more challenges for

ensuring consistency are found, which are depicted as sub-requirements. Additionally, some
more requirements are found, which should be fulfilled by approaches and their realizations
on technical level. All requirements are motivated and collected in Chapter 4Z 153 as
summary.

Due to the huge amount of related approaches in different research areas, this section
first applies some strategies to identify and select related approaches for investigation and
second applies some strategies to compare these related approaches with requirements. The
following strategies to identify and select related approaches for investigation are applied: Selection of related

Approaches to
investigate

• Section 3.1Z 94 identifies criteria to classify the functional objectives of related ap-
proaches, i. e. the supported levels of heterogeneity of data to keep consistent, multi-
directionality and involved stakeholders during the fix of found inconsistencies. These
criteria are used to clarify the focus of selected approaches. These criteria are no di-
rect requirements, but are partially derived from requirements.
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• The following research areas with related approaches are selected for investigation:
Outline is Research
Area-oriented

Since the focus of this thesis is on modeling, related approaches in the modeling
domain are investigated (Section 3.3Z 108 – Section 3.5Z 121). Since software engi-
neering is an application domain of modeling, UML (Section 3.6.1Z 136) and DSLs
(Section 3.6.2Z 137) are discussed as representatives for languages for engineering,
which are realized with modeling techniques. Due to the long history and wide usage
of information systems, consistency in terms of data bases (Section 3.6.3Z 139) and
ontologies (Section 3.6.4Z 142) is discussed. As an example outside of computing sci-
ence with strong need for managing lots of data, data consistency within enterprises
is discussed in Section 3.6.5Z 144, leading to a comprehensive consideration of inter-
model consistency in a broad application domain. Additionally, these research areas
cover modeling within software engineering, software engineering and information
systems within computing science and outside of computing science.

• To show the broadness of existing approaches for managing consistency beyond these
previously selected research areas, some sections point to some more related ap-
proaches outside these research areas, but these are not discussed in detail. These
sections are Section 3.5Z 121 and Section 3.6Z 135.

The following strategies to compare related approaches with requirements are applied:Compare related
Approaches with
Requirements • Related approaches with similar characteristics are grouped together and compared

with requirements in group-wise way.

• Not each approach is compared with each requirement, but only the most important
requirements are compared, focusing on not fulfilled requirements as limitations of
the presented approaches.

Since lots of related approaches use similar techniques with different purposes, differ-
ent frequency or different forms,Recurring generic

Techniques before
concrete related
Approaches

such recurring generic techniques are described in Sec-
tion 3.2Z 99, before concrete related approaches are discussed. This allows to focus on the
individual characteristics of related approaches with short references to the used generic
techniques.

3.1 Criteria for Classification

In order to evaluate existing approaches in a structured way, some early criteria to classify
approaches are identified. All criteria are functional objectives of related approaches and
are orthogonal to each other. More motivations for these criteria are given directly when
discussing them in detail. They are visualized as a feature model in Figure 3.1. The main
features, which are numbered, are explained in the following five sections.

Legend

Mandatory

Optional

Or

Xor

I Sub-Diagram

Functional Objectives

1. Inter-Model
Consistency

2. Levels of
Heterogeneity

Technical Structural Semantic

3. Multi-
Directionality

4. Stakeholders
(who decide)

Platform
Specialist

Methodologist User
Adapter
Provider

Figure 3.1: Feature Model for classifying functional Objectives of related Approaches
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3.1.1 Inter-Model Consistency

The first criterion “Inter-Model Consistency” in Figure 3.1Z 94 Ensure Consistency
between different
Models

makes clear, that related
approaches must target ensuring consistency between different models conforming to differ-
ent metamodels. Therefore, this criterion is mandatory. This criterion is already motivated
and established in Section 2.3Z 71 and bases on Requirement R 1 (Model Consistency)Z 154.

3.1.2 Levels of Heterogeneity

Since heterogeneity of the involved views and their models is one major problem for con-
sistency management as explained in Section 1.1Z 26, Levels of Heterogeneity:possible levels of heterogeneity are
analyzed as second criterion in order to focus the analysis of related approaches regard-
ing the levels of heterogeneity at which inconsistencies might occur which are fixed by the
related approaches. Related approaches must overcome at least one of these levels to be rel-
evant here, therefore, this criterion is mandatory. The three relevant levels of heterogeneity
are introduced and discussed in the following:

Technical heterogeneity covers different representations of the same information in terms
of technical aspects like different exchange formats, encodings, or separator signs.

different technical
Representations

The concrete syntax of a view and its embedding into tooling falls into this cate-
gory of heterogeneity. Additionally, technical heterogeneity occurs, if different data
sources use different concepts to describe metamodels, like object-oriented, relational
or XML, referring to different modeling spaces, as presented in Section 2.5Z 84. The
technical realizations of views are summarized as technical spaces (Section 2.5Z 84).

Structural heterogeneity covers the aspect, that the same concepts can be described by
different metamodels. different Metamodels

for same Concepts
An example are the different strategies to resolve multiple

inheritance into single inheritance.

Semantic heterogeneity targets conflicts regarding the meanings of different concepts lead-
ing to information: different Meanings of

Concepts
Information occurs by interpretation of the available data. These

interpretations depend on the context, i. e. the particular project. Doan, Halevy and
Ives (2012, p. 92f) give two examples for semantic heterogeneity in details, first dif-
ferent scales of values, e. g. for temperature in Celsius and Fahrenheit or currency
in Euro and Dollar, Data × Interpretation

→ Information
and second the mapping of different names for the same ele-

ment, e. g. “MDA”, “Model Driven Architecture” and “OMG MDA” refer to the
same modeling initiative.

In the following, the levels of heterogeneity are applied to the ongoing example to make
them clear and to give some concrete examples:

Ongoing Example, Part 14: Levels of Heterogeneity ← List →

The data sources of the ongoing example provide challenges regarding the three levels of
heterogeneity as presented above:

Technical Since the three data sources are presented to users with different concrete syn-
tax, there is technical heterogeneity, e. g. requirements are realized in CSV format,
while Java and class diagrams are realized directly with EMF. The use of different
signs for separators in the CSV format is also technical heterogeneity (Leser and
Naumann, 2007). But different row numbers for Excel (starting with 1) and CSV
(starting with 0) is not technical, but semantic heterogeneity.

Structural In the ongoing example, the concepts which are described twice, are classes
representing for Java and class diagrams: In the metamodels for both data sources,
classes are described by one (meta-)class, but these two classes have different names
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(ClassType in Java, Class in class diagrams), which can be treated as tiny struc-
tural difference. Associations and methods are different concepts, which occur only
once, and therefore represent no structural heterogeneity. Going beyond this small
development project, the designation of classes to be either abstract or non-abstract,
could be realized differently: as simple boolean attribute, as attribute with an explicit
enumeration having the literal abstract and non-abstract or as sub classes. Examples
for different metamodels for the same information are existing in form of different
Abstract Syntax Graphs (ASGs) for Java, among others, JaMoPP (Heidenreich, Jo-
hannes et al., 2009) and an JavaASG basing on the Java Development Tools (JDT)
of Eclipse (Meyer, 2016).

Semantic All consistency goals which are described in Part 11Z 76 of the ongoing example
fall into this category of semantic heterogeneity: Consistency Goal C 2Z 77 targets the
different meanings of the concept for classes in Java and ClassDiagram by requiring,

that all classes must be in Java , but in ClassDiagram , some classes might be missing.

Summarizing, these levels of heterogeneity help to emphasize the main objective for
related approaches to investigate:Main Focus: semantic +

structural
Heterogeneity,
Adapters: technical
Heterogeneity

Ensuring consistency between models regarding semantic
issues represented by consistency goals is the most important level of heterogeneity here.
This fits to Definition 2Z 32, which requires semantic agreement of models for consistency.
To overcome this semantic heterogeneity, the other types of heterogeneity must be solved,
too: Structural heterogeneity is important, since overlapping concepts are usually realized
with different metamodels. In database management, interoperability of heterogeneous
data is one of the oldest and most important problems requiring significant amounts of
time in practice (Bernstein and Melnik, 2007). The new approach of this thesis focuses
on semantic and structural heterogeneity, while technical heterogeneity is overcome by the
concept of adapters. This criterion is named “Levels of Heterogeneity” in Figure 3.1Z 94.

In the context of data integration in the data base area, Leser and Naumann (2007, pp.
60–78) classify six levels of heterogeneity:alternative

Classifications for Data
Integration

Technical heterogeneity as introduced above is
distinguished into technical, syntactical and data model heterogeneity in order for a more
fine-grain classification and to address the way, how to access and manage the desired
data in terms of communication protocols and query languages. Structural heterogeneity
as introduced above is distinguished into structural and schematic heterogeneity in order
to reflect specific challenges for data base queries. Semantic heterogeneity is defined in
coincident way. Since the groups of heterogeneity of Leser and Naumann (2007) fit to the
proposed levels of heterogeneity above in general, this shows, that they are reasonable and
do not cover specific details of data bases.

In the context of tool integration, Thomas and Nejmeh (1992) extend the classification
of Wasserman (1990) (cf. Section 1.3.2Z 43) regarding different properties of data integra-
tion. This classification targets data integration from the perspective of tool integration.
Therefore, this classification is not taken as main classification here, but reviewed in con-
trast to the own classification above. Thomas and Nejmeh (1992) distinguish involved data
into persistent data, e. g. the involved data of the system under development, and non-
persistent data, e. g. data to synchronize tools running in parallel at runtime. Technical
heterogeneity is covered by the terms interoperability (for persistent data) and data ex-
change (for non-persistent data). Structural and semantic heterogeneity are covered by the
terms data consistency (for persistent data) and synchronization (for non-persistent data).
The distinction between persistent and non-persistent data is not necessary here, since only
persistent data must be kept consistent with other views, while non-persistent data might
be used to manage single views at runtime, e. g. to realize the concrete syntax, but are
independent from other views, since the stakeholders use their views independently from

96



3.1 Criteria for Classification

other views. Summarizing, the classification of Thomas and Nejmeh (1992) is structured
differently, but emphasizes again the semantic consistency between data of different views.
The survey of Darke and Shanks (1996) for viewpoint approaches emphasizes the handling
of semantic conflicts, too.

De Lara, Guerra and Vangheluwe (2006) distinguish syntactic and semantic consistency:
Semantic consistency corresponds to the presented classification for overcoming semantic
heterogeneity, while syntactic consistency refers to the abstract syntax, which corresponds
to structural heterogeneity here and emphasizes the suitability of the introduced levels of
heterogeneity. Additionally, de Lara, Guerra and Vangheluwe (2006) distinguish semantic
consistency into static semantic consistency and dynamic semantic consistency, referring to
consistency of models describing static or dynamic aspects of the system under development.
This distinction is not necessary here, since models with any purposes are targeted here.

3.1.3 Multi-Directionality

As already motivated in Section 1.2Z 31, targeted by Requirement R 1 (Model Consis-
tency)Z 154 and named as third criterion “Multi-Directionality” here, changes in each view
must be propagated into all other related views: Multi-DirectionalityIn general, each view might be changed
by the user leading to model changes, which are propagated to other views and each view
might receive model changes originated from other views. Therefore, all related approaches
must support change propagation in multiple directions between multiple involved views.
Therefore, this criterion is mandatory. While this criterion is called symmetric organiza-
tional dominance by Diskin, Gholizadeh et al. (2016), it is named “Multi-Directionality” in
Figure 3.1Z 94, since this term emphasizes the different directions more.

3.1.4 Stakeholders who decide

After identifying with the previous criteria, for what existing approaches need to be evalu-
ated, i. e. the semantic consistency between heterogeneous data in all directions, Which stakeholders

decide?
as fourth

criterion now the stakeholders of Section 2.4Z 79 are evaluated regarding their involvement
of finding fixes for inconsistencies, i. e. who decides about fixes for inconsistency. These
involvements can be seen as concerns of the stakeholders regarding (in)consistencies. In
order to fix inconsistencies, fixes must be identified and selected, which makes this criterion
mandatory.

Platform Specialists decide by integrating their decisions directly into the developed
approach. Such decisions are fixed and must be used for all projects and applications
domains. Examples are hard-coded heuristics used in graph repair (Sandmann and
Habel, 2019) or bidirectional transformations like least change (Abou-Saleh, Cheney
et al., 2018).

Methodologists should decide on inconsistencies which are project-specific (and which
cannot be handled by platform specialists) and which automatically provide fixes for
such inconsistencies (which should not be decided again and again by users).

Users should decide on possible fixes for inconsistencies, when there is no unique solution
for the particular situation or there is no automatable solution. Users should not
decide, if the desired unique solution can be found in an automatic way.

Adapter Providers provide adapters to bridge technical spaces in order to support exist-
ing tools, DSLs and data formats, but are not directly involved in consistency issues.
Therefore, adapter providers are usually not discussed for consistency issues anymore.
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Demuth, Lopez-Herrejon and Egyed (2015, pp. 580–582) summarize fixes by platform spe-
cialists and methodologists as “automated fixing” and motivate its need with large numbers
of inconsistencies. Additionally, they propose “guided fixing” to support inconsistencies re-
solved by users with providing possible fixes and information about depending consistency
goals. This shows, that the discussed involvement of stakeholders is in line with other re-
search. Involved stakeholders for fixing inconsistencies are analyzed for the ongoing example
now:

Ongoing Example, Part 15: Which Stakeholders decide? ← List →

In the project of the ongoing example, there are different consistency issues (Part 11Z 76 of
the ongoing example), which must be ensured. If one of these consistency goals is hurt,
possible fixes for the resulting inconsistencies must be identified and applied by someone.
Now this box discusses, which stakeholders should be responsible for identifying such fixes:

Platform Specialists have only very little chances to provide useful fixes for the con-
sistency goals here, since they are project-specific, while platform specialists design
approaches for managing consistency in general way to be applicable for diverse pro-
jects and application domains. A small example can be identified for Consistency
Goal C 1Z 76 nevertheless: If there is a traceability link L between requirement R
and Java method M and R or M is deleted, then the traceability link L must be
deleted, too (corresponding to Consistency Rule C 1 bZ 77). This issue is a generic
one and must be solved automatically by approaches, if it is technically realized with
an association connecting the classes Requirement and Method with each other, due
to modeling foundations, since links cannot exist without their connected objects.
Therefore, this case targets also structures (and not only semantics) and can be
solved by platform specialists.

Methodologists should identify and select fixes for inconsistencies according to all con-
sistency goals (except for the cases discussed for the other stakeholders), since the
consistency goals are project-specific, which excludes platform specialists, since they
can fix only inconsistencies which are valid for all kinds of projects. These consis-
tency goals could be managed by users of course, but since they are automatable,
users would have to decide on similar inconsistencies again and again, which adds ac-
cidental complexity to users. Instead, methodologists should decide once, how these
inconsistencies should be fixed.

Users should decide on possible fixes for inconsistencies, when there is no unique solution
for the particular situation or there is no automatable solution: This is the case for
the Consistency Goal C 1Z 76, since in the ongoing project, there is no heuristic to
decide, if a method fulfills a requirement or not. Instead, the developers should decide
during the implementation, if there is traceability between the developed methods
and the requirements (corresponding to Consistency Rule C 1 aZ 76). Developers fall
into the category of users.

Adapter Providers are not directly involved in ensuring consistency, but provide bridges
between technical spaces, e. g. for the CSV format of the requirements specification.

These investigations show, that the particular consistency goals and consistency rules de-
termine, which stakeholders are responsible for fixing violations of the current consistency
goal respectively consistency rule.Focus on automatable

and project-specific
Consistency to be
decided by
Methodologists

Since this thesis focuses on consistency issues which are
automatable and project-specific, related approaches which support decisions of methodolo-
gists are most interesting. The ongoing example emphasizes this focus, since its consistency
goals are mostly automatable and project-specific to be decided by the methodologist. This
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criterion is named “Stakeholders (who decide)” in Figure 3.1Z 94.

Another result of these investigations are relations between stakeholders and levels of
heterogeneity: Stakeholders

×
Levels of Heterogeneity

Users use only the technical spaces of their views, but expect automated
management of semantic heterogeneity. Methodologists overcome semantic and structural
heterogenities according consistency goals which are desired by users. Therefore, consis-
tency goals and consistency rules are coming from the concerns of users, but are formulated
and realized by methodologists. Since adapter providers (only) overcome technical het-
erogeneity, methodologists do not care about technical heterogeneity anymore. Platform
specialists provide means for methodologists and adapter providers to overcome all three
levels of heterogeneity.

3.1.5 Summary

Figure 3.1Z 94 summarizes the introduced orthogonal criteria for classifications with their
following particular purposes:

Inter-Model Consistency is a required feature for approaches for ensuring consistency,
determining the focus on consistency challenges between different models. This in-
cludes both checking consistency and fixing found inconsistencies and conforms to
Requirement R 1 (Model Consistency)Z 154.

Level of heterogeneity of the data to keep consistent The classification regarding lev-
els of heterogeneity helps to restrict the related work to present approaches which
target semantic consistency. Since structural heterogeneity is also important, since
modeling always involves metamodels which can be different, Section 6.2.1Z 193 re-
views related work to deal with structural differences of metamodels, too.

Multi-Directionality is a required feature for approaches for ensuring consistency, as
discussed above. Therefore, the focus is on related approaches which support multi-
directionality, while other approaches are only sketched, if at all.

Stakeholders who decide on fixes for inconsistencies The classification regarding the
stakeholders who can decide how to fix inconsistencies help to evaluate existing ap-
proaches, since they often support users or platform specialists, but rarely methodo-
logists.

Before reviewing existing approaches in detail, if they fulfill these functional criteria
(“what?”), the next Section 3.2 introduces some general techniques which are used by lots
of approaches in order to realize consistency management (“how?”).

3.2 Overall Realization Techniques

After identifying functional objectives of related approaches in Section 3.1Z 94, e. g. what to
ensure and who decides on fixes for inconsistencies between data, Objective: introduce

technical Design
Choices and generic
Techniques for realizing
Consistency

objective of this section
is to identify some overall techniques, how to ensure consistency by providing possible
fixes for inconsistencies. The first reason for discussing these techniques is, that they show
some design choices of the technical solution space for possible approaches. The second
reason is, that these techniques are used by various related approaches for consistency
management. Therefore, they are introduced only once now in general way. All design
choices are orthogonal to each other. Some of these design choices are explicitly discussed by
publications, others are included, since they occur in several investigated related approaches.
More motivations for these design choices are given directly when discussing them in detail.
With this selection, this list of technical design choices is not complete, since techniques used
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only by single related approaches might not be included. The design choices are visualized
as a feature model in Figure 3.2. Since most techniques are supporting and can be used by
approaches, most of the features are optional. Techniques which represent design choices
which must be decided are marked as mandatory features. The main features, which are
numbered, are explained in the following four sections.
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Figure 3.2: Design Choices for technical Realization

3.2.1 Intermediate Model

Main motivation for approaches to use an optional “Intermediate Model” is to store addi-
tional information, which are not part of all existing models.intermediate Model to

store (additional)
Information

The sub-features in Figure 3.2
concretize the content which is stored in the intermediate model, i. e. elements which are re-
lated to inter-model consistency issues (“Overlaps”) in contrast to elements which are only
relevant for exactly one model (“Non-Overlaps”, also discussed in Section 13.3.3.2Z 476) and
explicit links connecting different models (“Inter-Correspondences”, as discussed below in
the following).

Whether approaches use an intermediate model or not usually depends on, how the
approaches manage interrelated models: The IEEE standard 42010 for architecture de-
scription (IEEE, 2011)Synthetic vs

Projectional
distinguishes approaches for managing viewpoints and their views

into synthetic and projectional approaches. Synthetic approaches manage interrelations
between views directly in a pair-wise manner. Projectional approaches introduce a new
intermediate structure (called “repository” in IEEE (2011)) and synchronize views only
with the intermediate structure. Interrelations between two views are managed indirectly
via the intermediate structure as step in between.

Side Discussion: Definitions for Consistency revised

The distinction into synthetic and projectional approaches could be an explanation,
why existing definitions in the related work for consistency, as discussed for the
Definition 2Z 32, might miss the strong role of the system: Perhaps, they are focused
on synthetic approaches, where the whole system is assembled by the collection of
involved views. Therefore, they define the consistency of views to each other. In
projectional thinking, the consistency of views to their underlying system is more
important, since these relations transitively allow to argue on the consistency of
views to each other, too.

By design, synthetic approaches require to manage a square number of interrelations
between all views (Feldmann, Wimmer et al., 2016; Atkinson, Gerbig and Tunjic, 2013a),
while projectional approaches need a linear number of interrelations between the views and
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the intermediate structure, which is realized as intermediate model. Synthetic:
n·(n−1)

2

Projectional: n

(n is the Number of
involved Views)

If views are inconsistent
to each other, the intermediate model of projectional approaches can be used as single point-
of-truth to decide conflicts, while synthetic approaches require an “order of importance” or
other strategies to decide conflicts.

Ongoing Example, Part 16: Synthetic vs Projectional ← List →

The following Figure 3.3 applies the presented classification of IEEE (2011) for viewpoint
combination to the ongoing example.

synthetic
IEEE 42010 (2011)

Requirements Java

ClassDiagramTestCases

projectional
IEEE 42010 (2011)

Requirements Java

ClassDiagramTestCases

Figure 3.3: Classification of synthetic vs projectional approaches for the ongoing example

In synthetic approaches (left side), all three data sources for requirements, Java and
UML class diagrams (marked in light gray) are synchronized directly with each other. This
leads to square effort in general, while in practice the data sources are not fully-meshed. This
counts also for the ongoing example, since consistency goals do not target requirements and
UML class diagrams directly, as shown in Figure 2.19Z 78. In projectional approaches (right
side), the data sources are not synchronized directly, but via an intermediate structure.

After adding a fourth data source (marked in dark gray) like test cases, synthetic ap-
proaches require to check the interrelations of the new data source to all existing ones
(linear effort), while projectional approaches need to interrelate the new data source only
with the intermediate structure (constant effort).

Figure 3.2Z 100 reflects synthetic and projectional approaches on technical level by the
optional feature for an “Intermediate Model”, which is used by projectional approaches. It
is the natural location to store correspondences between models (“Inter-Correspondences”,
as deepened in Section 3.2.2) and to store the overlaps of models in order to provide a
single point-of-truth (“Overlaps”). Additionally, the intermediate model could contain the
information which is relevant only for exactly one model (“Non-Overlaps”). If non-overlaps
are contained or not is also discussed in Section 13.3.3.2Z 476.

3.2.2 Explicit Links

Often, explicit links are used to establish relations between involved (meta)models explicitly.
Kinds of explicit Links:Such links can occur in three terminologies, with similar technical realization, but used for

different purpose:

• Such links can be called correspondencies connecting two or more elements of different
models (IEEE, 2011; Bézivin, Bouzitouna et al., 2006), Correspondenciesintensional on model level
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or extensional on metamodel level as in Romero, Jaén and Vallecillo (2009). If
correspondences relate same elements in different models with each other, they can
be used for comparing and merging of those models and as an alternative for persistent
identifiers (Selonen and Kettunen, 2007).

• Another kind of explicit links is represented by model weaving, “which consists of es-
tablishing correspondences with semantic meaning between model elements” (Del Fabro,
Bézivin et al., 2005).Model Weaving They are stored in a weaving model conforming to a weaving
metamodel. Weaving models can also be used to generate model transformations
(Del Fabro and Valduriez, 2009; Del Fabro and Jouault, 2005). In particular, weav-
ing is used to compose different models into a single model (as multi-to-one model
transformation), e. g. for weaving aspects into a base model in aspect-oriented mod-
eling (Jézéquel, 2008).

• Traceability approaches use also explicit traceability links in order to trace the his-
toric evolution of concepts across different artifacts and development steps,Traceability Links e. g. from
requirements over architecture to source code. Traceability links can be stored in
a traceability model conforming to a traceability metamodel (Schwarz, Ebert and
Winter, 2010). Broy (2018) formalizes traceability and their connected artifacts with
logical expressions.

Explicit links are created and maintained by, among others, humans in manual way or
automatically by model matching (Bézivin, Bouzitouna et al., 2006) or by model trans-
formation (see the tracing feature in Figure 2.14Z 68). Explicit links are used for, among
others, understanding relations between models like traceability, as support for propagating
changes or even for the formalization and representation of consistency as in Diskin, Xiong
et al. (2011). If explicit links are used, they must be maintained regarding changes in the
linked models to remain usable for these tasks. Explicit links as depicted in the feature
model of Figure 3.2Z 100 cover all kinds of explicit links, i. e. correspondences, traceability
and model weaving.

3.2.3 Change Propagation

This criteria classifies techniques how they ensure consistency by identifying and apply-
ing fixes for inconsistencies, which subsumes checking for (in)consistency. The other way
around, approaches for checking of consistency without possibilities to fix found incon-
sistencies are neglected, according to Requirement R 1 (Model Consistency)Z 154. Since
approaches must ensure consistency to be relevant, this feature “Change Propagation” is
mandatory in Figure 3.2Z 100.

Approaches for managing consistency, which in particular propagate changes into all
affected models,Realize Change

Propagation by . . .
are classified by Feldmann, Herzig et al. (2015a) into proof-theory-based,

rule-based and (model) synchronization-based approaches. The fourth category of change
translation-based approaches is not mentioned by them and added here, since such ap-
proaches are identified which do not fit into the three other categories. The general concepts
of these four categories of approaches are depicted in Figure 3.4Z 103.

• Proof-theory-based approaches (Figure 3.4aZ 103) transform the involved models into
formal, well-defined descriptions as expressions or theoretic models (called semantic
views by Guerra and de Lara (2006)),. . . Proof-Theory-based

Approaches, . . .
e. g. into first-order logic (Finkelstein, Gab-

bay et al., 1993) or communicating sequential processes (Engels, Heckel et al., 2002).
Gabmeyer, Kaufmann et al. (2019) present different formal verification techniques.
These formal specifications must be selected or created for the involved metamodels
in order to handle the constraints. Additionally, the transformations from models
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Figure 3.4: Conceptual designs of different approaches for consistency management

into formal descriptions require additional computation effort and decrease the per-
formance. Therefore, proof-theory-based approaches are not investigated in detail
here, only some approaches are sketched to get an impression for them.

• Rule-based approaches (Figure 3.4b) explicitly establish rules in form of constraints
whose successful evaluations indicate consistency (by positive constraints) or incon-
sistency (by negative constraints). . . . Rule-based

Approaches, . . .
The used constraint checkers might be incremental

taking the changes of the user into account. The strategies to find fixes for inconsis-
tencies depend on the particular approach and comprise complementing rules with
additional resolution rules and automatically calculating possible fixes for selection by
users or heuristics, e. g. by state space exploration (Feldmann, Herzig et al., 2015a).
Depending on the particular approach, fixes can be whole models or model differ-
ences. Since the rules are evaluated on the current models, no transformations into
formal descriptions are needed, which reduces effort at development time and at run-
time. Instead, the used constraint approaches must support constraints targeting
multiple models (for workarounds, see below), preferred in incremental way (Diskin
and König, 2016). Rule-based approaches are investigated in the following.

• Model synchronization-based approaches (Figure 3.4c) use out-place, exogeneous mo-
del transformations to define how elements of the first model are related to ele-
ments of the second model (Feldmann, Herzig et al., 2015a). . . . Model

Synchronization-based
Approaches or . . .

Feldmann, Herzig
et al. (2015a) called them “synchronization-based”, while they are called “model
synchronization-based” here, since this term emphases the use of model transforma-
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tions, relates directly to the corresponding research area of model synchronization
and is an usual intent of model transformations as investigated by Lúcio, Amrani
et al. (2016, p. 655). Since model transformations are able to create consistent
counter-parts in the second model for model elements in the first model, model
synchronization-based approaches directly include capabilities for fixing inconsisten-
cies in a natural way: The changed model plays the role of the source model and
the related models to update are the target models for such model transformations.
Since the roles of changed and related models can be switched, bidirectional model
transformations are important to enable synchronization in both directions.

Since model transformations can automatically create only information in the tar-
get model which is available in the source model,bijective vs

asymmetric vs
symmetric

Figure 3.5 compares the possible
kinds, how information encoded in a source model (S , always right) and in a target
model (T , always left) can overlap (Diskin, Gholizadeh et al., 2016): In the bijec-

bijective

∅ ∅T = S

asymmetric

∅ T ⊂ S

symmetric

Figure 3.5: Kinds of information overlaps between source models (S , always right) and target
models (T , always left) as Venn diagrams

tive case, source model and target model contain the same information, only their
structure might be different. The bijective case rarely occurs and often makes less
sense (Stevens, 2010), in particular here, since different views conforming to different
viewpoints are usually tailored to different concerns requiring different information.
In the asymmetric case, all information of the target model is contained in the source
model, while the source model has more information which is not transformed to
the target model. The asymmetric case is interesting, when new views are derived
from a base model. In the symmetric case, some information from the source mo-
del is transformed into the target model, while source model and target model have
additional “private” information which is not involved in the model transformation.
The symmetric case is important to keep two models consistent to each other, which
are not completely transformable from each other. These three kinds are complete,
since model transformations are not applicable in cases without information overlap
(T ∩ S = ∅) and the asymmetric case counts also for switched source and target
models. This classification is mostly orthogonal to the kinds of dependencies and
therefore specific for approaches which use model transformations: Consistency can
cover information which is contained in both models like redundancies on the one
hand. On the other hand, consistency can relate information which is contained
only in one model to information which is contained only in the other model, e. g.
by constraints or explicit links. In the latter case, these explicit links can be seen
as additional information which is contained in none of the two models. The ex-
pressiveness of model synchronization-based approaches depends on the supported
kinds of information overlap, as depicted as features for model synchronization-based
approaches in Figure 3.2Z 100.

In non-bijective cases, i. e. in asymmetric and symmetric cases, the non-overlapping
information which is not covered by model transformations must be preserved, other-
wise model transformations become lossy (in terms of Kurtev (2008, p. 383)). To keep
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manual changes in the target models, incrementality-related features of model trans-
formations can be exploited to be lossless (see Figure 2.14Z 68). Additionally, incre-
mentality can improve the performance of model transformations. Therefore, incre-
mentality is a crucial dimension of model synchronization-based approaches (Diskin,
Gholizadeh et al., 2016). Model synchronization-based approaches are investigated
in the following.

• Change Translation-based approaches (Figure 3.4dZ 103) translate changes in the first
model directly into corresponding changes for the second model: Instead of using
model transformation, updates in form of changes made in the first model are directly
propagated . . . Change

Translation-based
Approaches.

by converting them into changes which are applicable for the other models
in order to update them according to the updates in the first model. Often this
change translation can improve the performance, since the amount of particular model
changes is usually much lower than the amount of all model elements. Therefore,
change translation-based approaches are investigated in the following.

In the context of consistent UML diagrams, Knapp and Mossakowski (2018) use a dif-
ferent, but not contradicting classification by emphasizing rule-based approaches in gen-
eral: different ClassificationsModel-synchronization-based approaches are called “heterogeneous transformation”
approaches, while proof-theory-based approaches are distinguished into “system model”
approaches and “universal logic” approaches: System model approaches use one uniform
language to describe all semantic aspects of the different views, like xUML and fUML for
UML. Universal logic approaches use one uniform formal technique into which all semantic
aspects of the different views are converted, like transition systems to cover all seman-
tics of UML. This distinction of proof-theory-based approaches is also done by Usman,
Nadeem et al. (2008). Similar to Feldmann, Herzig et al. (2015a), change translation-
based approaches are not covered by these two classifications, but Knapp and Mossakowski
(2018) introduce “dynamic meta-modeling” as additional category, whose approaches ex-
tend the metamodels of the views with semantic information, which results in a integrated
metamodel for all viewpoints. This last category is very similar to the chosen approach
in Chapter 5Z 163, but is subsumed under model synchronization-based approaches here.
Approaches basing on “human-centered collaborative exploration” (Spanoudakis and Zis-
man, 2001) are not investigated in this thesis, since they cannot be automated due to their
involvement of human stakeholders into the identification of inconsistencies.

Snoeck, Michiels and Dedene (2003) distinguish three strategies for managing consis-
tency: Consistency by analysis takes the models with user changes and searches for in-
consistencies by checking constraints. Consistency by monitoring monitors all models and
immediately rejects changes which introduce inconsistencies. Consistency by construction
generates corresponding consistent elements for related models from changed elements. This
last strategy can be distinguished into passive, i. e. related models are informed about chan-
ges and construct corresponding elements themselves, and active, i. e. the changed model
creates corresponding elements for all other models (Haesen and Snoeck, 2005). Com-
pared with the classification above, proof-theory-based and rule-based approaches manage
consistency by analysis, while model synchronization-based and change translation-based
approaches manage consistency by (active) construction. Consistency by monitoring is not
relevant here, since it would require technical facilities for ongoing monitoring, which might
require the technical adaption of existing tools. Additionally, immediately fixing inconsis-
tencies is not useful in practice (Stevens, 2017). Since existing tools should be kept as they
are, this strategy is not applicable for this thesis. Instead of immediately handling each
change, bundled model changes at explicitly defined points in time are used for managing
consistency.

Lämmel (2016) call model synchronization-based approaches as co-transformation and
change translation-based approaches as co-transformation with delta, since he identified
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these kinds of transformations as generalized patterns which occur not only in model con-
sistency settings.

In the context of model synchronization-based approaches, when formalizing round-
tripping properties, Hettel, Lawley and Raymond (2008) use the term “change translation”
not for the direct translation of changes as defined here, but for the generic change propa-
gation.

Hearnden, Lawley and Raymond (2006) call the strategy of using (only unidirectional)
model transformations as re-transformation and change translation as live transformation.

valide Approaches with
each other

If there is support for both model synchronization and change translations, both approaches
can be applied in order to evaluate each other, e. g. the resulting model of the backward
transformation must be the same as the model which is the result of applying the translated
changes to the initial source model (Hearnden, Lawley and Raymond, 2006). This strategy
can be generalized by applying each combination of two of these approaches in order to
validate them.

3.2.4 Choose from multiple Fixes

Since there are multiple possible fixesDesign Choices for
choosing Fixes for
Inconsistencies

for each inconsistency in general, as found in Sec-
tion 2.3Z 71, approaches for ensuring consistency often provide multiple of the possible
solutions to fix an occurred inconsistency. Therefore, design choices to select one of mul-
tiple possible fixes are mandatory and are discussed along Figure 3.6, which complements
Figure 3.2Z 100. The presented classification summarizes the results of a survey for model
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Figure 3.6: Design Choices for selecting one of multiple possible Fixes

repair approaches (Macedo, Jorge and Cunha, 2017, p. 629f) and of design space analyses
for model synchronization (Antkiewicz and Czarnecki, 2008, p. 38), but clearly separates
the particular selection from heuristics for ordering and filtering fixes before. While the
special cases of having some meta-data for heuristics is ignored here, all other features from
literature including least change and least surprise which are important for BX (Cheney,
Gibbons et al., 2017) are covered here:Selection: automated vs

interactive
The particular selection of one solution . . .

• . . . can be interactive, i. e. one of the stakeholders introduced in Section 2.4Z 79 de-
cides for each occurred inconsistency. With growing number of decisions and possible
fixes, appropriate tool support (Mussbacher, Combemale et al., 2020) for deciding is
useful.

• Otherwise, the selection is automated without involved humans by an algorithm,
which can be either non-deterministic or deterministic, i. e. the decision can be pre-
dicted. Note, that deterministic selections are possible, even with multiple possible
fixes for inconsistency (Stevens, 2018, p. 7).
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Hybrid selections using automation where possible and interactive elsewhere are possible,
too, as suggested e. g. for model merging (Dam, Egyed et al., 2016). Non-deterministic
selection is used e. g. by graph repair (Sandmann and Habel, 2019), a proof-theory-based
approach using typed graphs, graph grammars, graph formulas and graph programs in
order to repair graphs regarding graph constraints to fulfill. This graph repair approach
can be used also for meta-modeling with ECore (Sandmann, 2020).

Since three different stakeholders are involved in ensuring consistency according to Sec-
tion 3.1Z 94, Selection by different

Stakeholders
the distinction between automated and interactive can be done for each stake-

holder: As an example, the platform specialist can decide not to automate some inconsis-
tencies, since their fixes might be project-specific. Now the methodologist has to decide
and chooses to provide an automation, since the particular inconsistencies can be solved
automatically for the particular project setting. Otherwise, the user had to provide an auto-
mated or interactive strategy for fixing. Section 3.1Z 94 already discussed, that approaches
which allow methodologists to manually determine fixes once are more helpful here.

To support these selections, the amount of possible fixes can be ordered and/or filtered
before the selection by using and combining various single heuristics, as listed now. Ordering/Filtering with

various Heuristics
Some

more ideas for combinations and heuristics are given by Macedo, Jorge and Cunha (2017,
p. 617).

• Since some fixes might not fix all occurred inconsistencies but only a subset, fixes can
be ordered according to priorities of corresponding consistency constraints.

• The presented fixes can be weighted e. g. with cost functions according to the affected
parts of the model and of the metamodel and to the kinds of change operations used in
the fixes like create, change, delete. Such weights could be used to realize higher-level
heuristics including least change, least surprise and target preservation:

• Target preservation ensures that parts of the target model are preserved, e. g. by
increasing the costs for deletions in the target model.

• Least change uses metrics to minimize the amount of change operations in fixes, i. e.
least change ensures, that the inconsistency is fixed, but nothing more.

• Least surprise prefers fixes which minimize unexpected disruptions in the models,
but which are not always of minimal size (Cheney, Gibbons et al., 2017).

• Finally, previous selections can be reused as source for default fixes and for mining
fixes with techniques like machine learning with an example in Barriga, Mandow
et al. (2020).

In order to make different fixes and their resulting models explicit, uncertainty modeling
(Troya, Moreno et al., 2021) can be used (feature “Uncertainty Modeling for representing
Fixes” in Figure 3.6Z 106): modeling UncertaintySince the details of the final models after fixing inconsistencies
are unclear, the case of design uncertainty can be used to model all possible options explic-
itly. This can be done by specifying confidence values for all models elements like objects
and links (with strategies of occurrence uncertainty) and for all primitive values of slots
for attributes (with strategies of measurement uncertainty). For UML and OCL, Bertoa,
Burgueño et al. (2020) extend the primitive data types (e. g. UBoolean for Boolean) with
an additional Real value in the range [0, 1] indicating the confidence value of the modeled
primitive (here: boolean) value. These confidence values can reflect also the order of fixes
determined by the used heuristics. Most approaches do not explicitly use such techniques
or only argue using uncertainty terminology. As an example for an approach which explic-
itly involves uncertainty, Salay, Gorzny and Chechik (2013) model uncertainty of modeled
elements directly within the models with special annotations. Basing on that explicit un-
certainty information, propagation of changes affects also uncertainty information and can
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be triggered also by changed uncertainty values. Since uncertainty of models can also be
defined as a set of possible concrete models without uncertainty as done by Salay and
Chechik (2015), uncertainty modeling is comparable with other research areas like software
product lines, that use variability modeling (Pol’la, Buccella and Cechich, 2021) to make
different possible model alternatives explicit.

3.2.5 External Support for Multi-Models

Other supporting techniques are required, when a modeling technique must cope with mul-
tiple models, but the available tools supports only a single model (optional feature “external
support for Multi-Models” in Figure 3.2Z 100):supporting

Multi-Models
As workaround, approaches without multi-

model-support can be used after nesting the involved models into one container model
(Macedo, Jorge and Cunha, 2017, p. 622). An extended version of this workaround is to
match same objects and links in the models and merge them in order to unify the models
(König and Diskin, 2017). Further approaches directly lead to the question, how views can
be composed into a single model, as discussed in Section 3.5.4Z 131. Use cases which re-
quire multi-model-support include constraint checking in rule-based approaches and model
transformations for new views in synthetic settings.

3.2.6 Summary

All presented techniques, the various kinds of explicit links and the strategies for change
propagation including selection of the final fix, can be used for synthetic and projectional
approaches in general.Outline for the following

concrete Approaches
The classification regarding synthetic and projectional approaches

is used for structuring the rest of this section: Section 3.3 describes synthetic approaches,
Section 3.4Z 120 introduces the intermediate model called SUM as prerequisite for the fol-
lowing projectional approaches in Section 3.5Z 121, Section 3.6Z 135 contains less generic
approaches in different application domains and Section 3.7Z 146 evaluates the presented
related approaches and summarizes the lessons learned from these analyses and evaluations.

3.3 Synthetic Approaches

The main characteristic of synthetic approaches is, that they establish direct relations
between pairs of models. If an intermediate model is used, it stores only explicit links
between (usually two) models, but usually no overlaps or other parts of the models. Sec-
tion 3.3.1 analyzes approaches for keeping models in this setting consistent (according to
Requirement R 1 (Model Consistency)Z 154), while Section 3.3.2Z 119 reviews, how new
view(point)s can be defined on top of multiple existing source (meta)models (according to
Requirement R 3 (Define new View(point)s)Z 156), since synthetic approaches usually are
restricted to fulfill only one of these two requirements.

3.3.1 Synthetic Consistency Preservation

Synthetic approaches require lots of direct relations between the views for their direct change
propagation. In the extreme case of spatial separation of the involved models, peer-to-peer
approaches like in global software development (Mukherjee, Kovacevic et al., 2008) fall into
the category of synthetic approaches. The projectional Vitruvius approach using synthetic
techniques is presented in Section 3.5.2Z 126. The change propagation along these relations
can be realized by proof-theory-based, by rule-based, by model synchronization-based or
by change translation-based techniques, for which examples are presented in the following
paragraphs in this order.
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Proof-Theory-based
Approaches

The proof-theory-based approaches are only shortly investigated here, due to their re-
stricted scalability, as discussed above. Pinna Puissant, Van Der Straeten and Mens
(2015) determine possible fixes for previously identified inconsistencies using regression
planning. planning Fixes with

Prolog
Since this automated planning is implemented with logic-programming in Pro-

log, this approach falls into the category of proof-theory. Since there might be multiple
generated fixes called plans, their selection and order can be controlled using customized
cost functions. In earlier works, Van Der Straeten, Mens et al. (2003) use description logics,
a decidable subset of first-order predicate logic.

Another proof-theory-based approach using Prolog to support multiple repair plans
is presented by Almeida da Silva, Mougenot et al. (2010): Prolog-based searching

for Repair Plans on
Model Differences

Based on the sequence of model
differences which represent the current model (Blanc, Mougenot et al., 2009), a depth-first
tree search algorithm with depth-limitation and back-tracking identifies repair plans for
model differences which introduced inconsistencies. Afterwards, the users manually select
one of these generated repair plans.

Summarizing proof-theory-based approaches, for which some examples are sketched here,
Summary of
Proof-Theory-based
Approaches

they require transformations of models into formal specifications: While these approaches
allow to proof consistency or to derive fixes for inconsistencies on the formal descrip-
tions (Requirement R 1 (Model Consistency)Z 154), e. g. by using SAT solvers like in Al-
loy (Jackson, 2019), it is complex and requires high effort to define the required formal spec-
ifications and to create the required transformations5 leading to limitations in practice, since
they cannot be automatically created in each case due to different semantics of metamodels
and desired consistency constraints. This counts also for extensions, when a new viewpoint
with additional semantics (Requirement R 3 (Define new View(point)s)Z 156) leads to ex-
tensions of the already established formal specifications (Knapp and Mossakowski, 2018, p.
47). Therefore, at least for mechatronic manufacturing system, “ensuring the completeness
of such a formal system and, by that, proving the full consistency of models of mechatronic
manufacturing systems is difficult if not impossible” (Feldmann, Herzig et al., 2015a, p.
163). Additionally, the transformations from models into formal descriptions require ad-
ditional computation effort and decrease the performance. This counts also for the used
solvers themselves (Macedo and Cunha, 2013, p. 310).

Rule-based ApproachesThe rule-based approaches differ from each other regarding the ways to check for incon-
sistency and to determine corresponding fixes. Some examples for such rule-based approach
are presented now: Nentwich, Emmerich et al. (2003) introduce xlinkit for incremental
checking of constraints defined in restricted first-order logic on multiple XML documents us-
ing XPath for navigation within XML. xlinkit: first-order

Logic Constraints on
XML for checking,
identify Repairs by
fulfilling hurt
Constraints

For detected inconsistencies, i. e. expressions which
are evaluated to false, possible repair actions are automatically detected in order to fulfill
these hurt expressions. These repair actions might be restricted and commented by metho-
dologists and are presented to users afterwards, who manually select one of these solutions
(Nentwich, Emmerich and Finkelstein, 2003). In order to increase the understanding of
found inconsistencies, the evaluation creates and presents hyper-links between the concrete
elements in the XML documents which are involved in the current evaluation.

Another example for a rule-based approach is provided by Egyed, Zeman et al. (2018):
Rule-based Consistency
checking with OCL
based on Links

Project-specific consistency rules are specified with OCL and incrementally executed in
order to detect inconsistencies. Found inconsistencies are not automatically fixed, but pos-
sible fixes are generated, arranged in form of a tree (Reder and Egyed, 2012) and presented
to the users for guidance. To overcome tool boundaries, information which is relevant for
consistency is extracted from each tool and provided as model with metamodel at a ded-
icated server application called DesignSpace (Demuth, Riedl-Ehrenleitner et al., 2015).
These models are explicitly linked with each other. The resulting links are used and checked

5Examples for such transformations are UML class diagrams with OCL constraints (Cunha, Garis
and Riesco, 2015) and UML state machines (Garis, Paiva et al., 2012) transformed into Alloy.
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by the OCL constraints. This approach is successfully applied in the area of production
automation (Demuth, Kretschmer et al., 2016).

The Epsilon Validation Language (EVL) (Kolovos, Paige and Polack, 2009) is a
DSL with tool support within the Epsilon framework (Paige, Kolovos et al., 2009)EVL Constraints with

imperative Fixes
and

allows to specify and evaluate constraints which might depend on each other on multiple
models. Additionally, each constraint can be complemented with an arbitrary number
of fixes, which can be selected by users to be executed, when the constraint is hurt at
runtime. These fixes (keyword fix) contain imperative actions in EOL which must fix
detected inconsistencies in terms of hurt constraints. “EOL is the core DSL in Epsilon,
providing OCL-like model navigation and modification facilities” (Paige, Kolovos et al.,
2009, p. 164). EVL can be executed in distributed and parallel way (Madani, Kolovos and
Paige, 2021), but not in incremental way.

Users select one of the
provided Quick-Fixes
(generated by
Constraint Satisfaction)
for Inconsistencies
(found by Graph
Pattern Matching)

Hegedus, Horvath et al. (2011) support users to select fixes for inconsistencies in form
of “quick fixes” inspired from auto-completion of IDEs for programming languages: They
use incremental graph pattern matching to identify inconsistencies and a heuristics-guided
traversal algorithm with backtracking and cycle detection for state-space exploration, both
directly on the current model for better performance. The approach aims to enable users
to specify rules for inconsistencies by their own, since corresponding graph patterns can be
added (and removed) in flexible way.

Summarizing rule-based approaches,Summary of Rule-based
Approaches

they all evaluate constraints for consistency directly
on the current (inconsistent) models in similar way using techniques like OCL, first-order
logic or pattern matching. The strategies to fix found inconsistencies in form of hurt
constraints vary in terms of finding repairs and selecting the final repair, which will be
applied in order to fix the model in-place. The final selection is usually done by users,
while methodologists sometimes can predefine, restrict or comment possible fixes. Some
approaches improve performance by incremental constraint checking.

The model synchronization-based approaches differ from each other regarding the fea-
tures of the used model transformation approaches (Kahani, Bagherzadeh et al., 2019), as
depicted in Figure 2.14Z 68.Model

Synchronization-based
Approaches:
Transformations
between Models

Usually, the used model transformation approaches are out-
place and exogeneous in order to relate two models conforming to different metamodels to
each other. Some approaches using model transformations for consistency are presented
in the following paragraphs, grouped by the main characteristics of model transformation
approaches (Figure 2.14Z 68).

The first group of model synchronization-based approaches uses unidirectional model
transformations:unidirectional Model

Transformations
The MDA initiative (Section 2.2Z 58) established CIM, PIM, PSM and

Code as groups of viewpoints for development with high need of consistency between cor-
responding views, but does not propose techniques for ensuring the required consistency,
since mainly transformations from CIM to PIM to PSM to Code are addressed. As an
example, such a workflow of model transformations is reported by Sindico, Natale and
Sangiovanni-Vincentelli (2012). Accordingly, various unidirectional model transformation
approaches including ATL (Jouault, Allilaire et al., 2008) or QVT-O (Object Management
Group, 2015) can be used for such synchronizations. In case of bidirectional synchroniza-
tions, pairs of unidirectional model transformations can be combined, one unidirectional
model transformation for each direction. The drawback of this strategy is, that manual
effort is required to ensure, that the two transformations match and do not contradict each
other.

Up to now, the presented approaches support only forward transformations from higher-
level models to lower-level models, in the sense of MDA.bidirectional

Transformations (BX)
Since both involved models for

such a transformation can be changed and these changes must be synchronized to the other
model, bidirectional model transformations (BX) are often used (Abou-Saleh, Cheney et al.,
2018). Bidirectionality is an important concept not only for MDE and model respectively
graph transformation, but also for programming languages and data bases (Czarnecki, Fos-
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ter et al., 2009). The latter is investigated in general and regarding the view-update problem
in detail in Section 3.6.3Z 139. Focusing on model transformations here, there are several
bidirectional model transformation approaches, as presented by Stevens (2008), by Hidaka,
Tisi et al. (2016) and by Anjorin, Buchmann et al. (2020). Some approaches using bidi-
rectional model transformations for consistency are depicted in the following paragraphs,
including the approaches TGG and QVT-R as representatives for model synchronization
with automated selection and EVL+Strace and JTL as representatives for model syn-
chronization with interactive selection (see Figure 3.6Z 106). Samimi-Dehkordi, Zamani and
Kolahdouz-Rahimi (2016) also selected exactly these four bidirectional model transforma-
tion approaches for their classification. BXtend(DSL) (Bank, Buchmann and Westfechtel,
2021) is investigated as fifth and quite new approach, since it increases expressiveness of
BX with automated selection.

Triple Graph Grammars (TGGs) realize out-place bidirectional model transformations
Triple Graph Grammars
(TGGs)

by relating the source model as graph and the target model as graph to each other by
explicit links as correspondence graph, as the third graph (Schürr and Klar, 2008). TGGs
use declarative patterns and can be non-deterministically executed in forward direction
from source model to target model and in backward direction from target model to source
model, leading to bidirectionality with one model transformation definition. Usually, one
pattern in the source model is related to one pattern in the target model, but multi-
amalgamated TGG rules allow to relate one pattern match in the source model to an
arbitrary and dynamic number of pattern matches in the target model (Leblebici, Anjorin
et al., 2015). With MoTE (Hasso-Plattner-Institute), TGG Interpreter (University
of Paderborn) and eMoflon (TU Darmstadt), there are different model transformation
engines to execute TGG model transformation definitions (Hildebrandt, Lambers et al.,
2013). Hermann, Ehrig et al. (2011, 2015) showed, that TGGs can be used for model
synchronization, since TGGs always ensure consistency between any source model and any
target model, if the execution of the particular TGG is deterministic in both directions.
Keeping more than two models consistent to each other is possible with TGGs, since TGGs
can be extended to relate multiple models to each other (Trollmann and Albayrak, 2015,
2016), but is not supported by TGG engines in practice (Anjorin, Leblebici and Schürr,
2016).

QVT-R is the QVT Relations language, one of the three languages of the QVT stan-
dard of the OMG (Object Management Group, 2015). QVT-RQVT-R allows to specify exogeneous
bidirectional model transformations. There are several engines for QVT-R (Kurtev, 2008),
including engines build with TGGs (Greenyer and Kindler, 2010), Echo build with Al-
loy for relational logic with SAT solving for model finding (Macedo and Cunha, 2013),
build with XSLT for XML documents (Li, Li and Stolz, 2011) and build as transformations
into the executable UML-RSDS (Lano and Kolahdouz-Rahimi, 2021) or into colored petri
nets (Guerra and de Lara, 2014). Echo translates ECore metamodels (Cunha, Garis and
Riesco, 2015) and ECore models (Macedo and Cunha, 2013) to Alloy and uses SAT
solving techniques to identify (target) models which match the QVT-R model transforma-
tion definition and additional OCL constraints. Users select one of these possible models as
final result of the QVT-R model transformation. Stevens (2010) and Lano and Kolahdouz-
Rahimi (2021) identified some semantic issues and open questions of QVT-R, e. g. whether
QVT-R supports also non-bijective transformation scenarios. Stevens (2013) proposes
clarifications for the semantics of QVT-R. The outdated QVT medini implementation
of “QVT-R can support target-incrementality to provide change propagation, but it cannot
preserve user updates in the target” (Samimi-Dehkordi, Zamani and Kolahdouz-Rahimi,
2016, p. 317). There are attempts to extend QVT-R for multi-directional model transfor-
mations in order to support consistency between more than two models (Macedo, Cunha
and Pacheco, 2014).

EVL+Strace uses the Epsilon Validation Language (EVL) (Kolovos, Paige and
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Polack, 2009, see above) together with a domain-specific trace metamodel to realize ex-
ogenous bidirectional model transformations (Samimi-Dehkordi, Zamani and Kolahdouz-
Rahimi, 2018):EVL+Strace:

domain-specific Traces
and directed
Constraints with
Repairs, interactively
chosen

The EVL is used to express constraints in order to detect inconsistencies.
The domain-specific trace metamodel prevents invalid trace links and enables to store cur-
rent values of source and target models together with traces in order to detect changed
values later on. Constraints are directed and check consistency between one model and the
trace model. Each constraint can be complemented with possible fixes for the trace model
and the other model in EOL. If inconsistencies are detected, corresponding fixes are applied
automatically or presented to the user for selection in an interactive way.

The Janus Transformation Language (JTL) realizes bidirectional model trans-
formations supporting non-determinism in a declarative way (Cicchetti, Di Ruscio et al.,
2011):JTL (using

Proof-Theory)
Model transformation definitions are written in QVT-R-style and are automatically

translated into search problems expressed in Answer Set Programming (ASP). Since
also the involved models and their metamodels are automatically transformed into ASP,
JTL can be seen also as proof-theory-based, too. An ASP solver identifies all possible mo-
dels fulfilling the constraints which are induced by the model transformation definitions.
The users choose the preferred model as result. To ease the handling with the amount
of possible models, they are represented as one model explicitly encoding the alternatives
using uncertainty terminology (Eramo, Pierantonio and Rosa, 2015). To enable bidirection-
ality, trace links between source and target elements are automatically maintained to store
information about mappings and deleted elements (Eramo, Pierantonio and Tucci, 2018).
Summarizing, JTL uses model finding in terms of (Lúcio, Amrani et al., 2016, p. 654) for
realizing model transformations.

BXtend(DSL) aims to increase expressiveness of incremental BX with automated se-
lection, since other BX approaches restrict expressiveness for formal guarantees (Bank,
Buchmann and Westfechtel, 2021):BXtend(DSL)

combines declarative
bidirectional and
imperative
unidirectional
Definitions

The higher-level DSL BXtendDSL allows to declara-
tively describe incremental and bidirectional model transformations. In order to complete
these definitions, imperative and unidirectional code written with BXtend must be used to
specify details of the desired transformations. The BXtendDSL definitions are automat-
ically generated into BXtend definitions, which are complemented with the hand-written
BXtend definitions. Therefore, this approach is very pragmatic and increase expressiveness
with limited formal guarantees (Bank, Buchmann and Westfechtel, 2021).

Summarizing bidirectional transformation approaches in Figure 3.1,Summary of BX
Approaches

there is an active
ongoing research of multiple BX approaches fulfilling consistency of models in both direc-
tions (Requirement R 1 (Model Consistency)Z 154). In order to derive transformation for
two direction from one specification, TGGs, QVT-R and BXtend(DSL) provide com-
pletely automated transformations, while EVL+Strace and JTL let humans select the
final transformation result. Only some approaches, i. e. TGGs and QVT-R, aim to ex-
plicitly support also consistency of more than two models. Surprising is the use of proof-
theory-based techniques by some BX approaches, e. g. by JTL and some QVT-R imple-
mentations, while other approaches include imperative definitions, e. g. EVL+Strace and
BXtend(DSL). Incrementality is discussed in following paragraphs.

Criterion TGG QVT-R EVL+Strace JTL BXtend(DSL)

Selection automated automated interactive interactive automated
Proof-Theory – (X) – X –
Imperative Details – – X – X
Incrementality X – X – X
Multi-Models X (X) – – –

Table 3.1: Comparing BX Approaches
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Inter-modeling (Guerra, de Lara et al., 2010) describes relations between two meta-
models, specified by bidirectional, declarative patterns (de Lara and Guerra, 2012). Inter-ModelingFrom
these patterns, specifications for other inter-modeling activities can be generated, for e. g.
forward and backward model transformations, creating and updating traceability links and
model matching. While the latter could be used to check consistency of redundant concepts,
real model synchronization is marked as future work (Guerra, de Lara and Orejas, 2013, p.
172). Therefore, this approach does not fulfill Requirement R 1 (Model Consistency)Z 154.

SyncATL (Xiong, Liu et al., 2007) tries to propagate changes in the target model
back into the source model having a unidirectional model transformation, applied to ATL
(Jouault, Allilaire et al., 2008), without an inverse model transformation: derive Changes for

Back-Propagation from
unidirectional Model
Transformation

During the ex-
ecution of the model transformation, among others, mappings between source and tar-
get elements are identified and remembered (which can be seen as some kind of links),
which are used to propagate changes in the target model back into the source model.
This approach has some limitations in detail, which is not surprising, since the view-
update problem is not decidable in general (Dayal and Bernstein, 1982), e. g. elements
which are manually created in the target model cannot be propagated back into the source
model, if these elements are also created by the model transformation. Therefore, this
approach does not completely fulfill Requirement R 1 (Model Consistency)Z 154. The per-
formance of this approach is challenging, since it requires the complete execution of the
model transformation (with complexity linear to model size) and difference calculations of
two versions of the target model (with complexity squared to model size). The implemen-
tation of this approach is limited to ATL, since the ATL model transformation engine is
adapted on byte-code level. “Only a small portion of the ATL standard library is sup-
ported” (https://xiongyingfei.github.io/modelSynchronization.html, 2021-07-14).

Since model transformations enforce exactly one solution for fixing an inconsistency
(i. e. the generated target elements), constrain possible Fixes

for occurred
Inconsistencies

but there are situations with several possible and
reasonable solutions, Demuth, Lopez-Herrejon and Egyed (2015) propose not to generate
a single fix in the target model, but to generate constraints for the target model instead:
These constraints specify the solution space for possible fixes in the target model depending
on the current source model, which enables different solutions for fixing inconsistencies, as
long as the constraints are fulfilled. The selection of the desired solution is done by the
user in this approach, i. e. the solution space is calculated automatically, but the solution
is selected manually by the user.

incremental Model
Transformations

Incremental model transformations can improve the performance compared to full-batch
model transformations by transforming only elements or model transformation rules which
are impacted by model changes. Additionally and more important, incrementality can
ensure, that manual changes and information which are not in the source model are kept
in the other model by updating transformed elements which already exist and by not
replacing them, which is important in particular for the symmetric case. Some approaches
using incremental model transformations for consistency are presented in the following
paragraphs.

incremental TGGsGiese and Wagner (2009) enable incrementality for TGGs by adapting the execution
algorithm for TGG model transformation definitions. The correspondence graph which was
created during the first complete transformation of the TGG is reused during the incremen-
tal transformation and provides the mapped elements (one in the source model and one in
the target model), the executed patterns for these mapped elements and the execution order
of patterns in form of a directed acyclic graph (DAG): If a previously executed pattern does
not match anymore due to changes like deleted elements, the pattern execution (including
all its executed sub-patterns) is reverted by deleting the corresponding element and its re-
lated elements. If a previously executed pattern still matches, but conditions for attribute
values are invalid due to changes like changed values, the current values are propagated
to the other model. If there are elements which are not matched by previously executed
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patterns due to changes like newly created elements, the usual TGG transformations are
applied to them. This algorithm saves matches and transformations for unchanged ele-
ments, resulting in improved performance (Giese and Wagner, 2009). It is fully automatic,
in contrast to an ancestor algorithm which lets users decide in case of conflicting rule ap-
plications (Becker, Herold et al., 2007). The presented algorithm is improved by Greenyer,
Pook and Rieke (2011) in order to prevent unnecessary deletions of elements in the target
together with their manual changes: Instead of immediately deleting elements of invalid
patterns, these elements are only marked as deleted and are reused, if they are (re-)created
by other TGG patterns. Lauder, Anjorin et al. (2012) present an algorithm for incremental
execution of TGGs with improved performance and the formal guarantees of Hermann,
Ehrig et al. (2011) (see above), mainly done by also un-transforming elements related to
created (and not only deleted) elements and establishing fixed execution orders. As an
alternative, Leblebici, Anjorin et al. (2017) use incremental pattern matching for incremen-
tality. For TGG engines, there is a trade-off between performance and formal guarantees,
at least regarding backtracking capabilities for incrementality (Leblebici, Anjorin et al.,
2014). Blouin, Eustache and Diguet (2014) show an example, how a synthetic approach for
model consistency preservation is realized with TGGs for incremental model synchroniza-
tion. Abilov, Mahmoud et al. (2015) apply eMoflon for incremental bidirectional model
synchronization in the domain of software development artifacts.

Also BX has to deal with the selection of one of multiple possible fixes for the back-
transformation (Zan, Pacheco and Hu, 2014) in order to resolve ambiguities (Eramo, Marinelli
and Pierantonio, 2014). This selection should be deterministic (Stevens, 2010), so current
research investigates possible heuristics to choose fixes.least Change and least

Surprise
Cheney, Gibbons et al. (2017) in-

vestigated least change and least surprise for bidirectional model transformations: While
working in general, they found some issues with least change including, that metrics for
least change on amount of change operations do not always fit to the expectations of users
working with tool environments or DSLs, including the problem that changes can be real-
ized also with adding and deleting but with different numbers of change operations, that
least changes are often useful, but not always and that “metric-least consistency restoration
is NP-hard” (Cheney, Gibbons et al., 2017). Least surprise, i. e. small changes in one model
are reflected by small (but not minimal) changes in the other model, requires further inves-
tigations in general. Echo realizes least change for QVT-R (Macedo and Cunha, 2016).
The TGG engines MoTE and TGG Interpreter apply some strategies to realize least
change in practice, but cannot guarantee least change in general (Leblebici, Anjorin et al.,
2014).

Since explanations and other heuristics prevent project-specific decisions,customize
Back-Propagation

Zan, Pacheco
and Hu (2014) allow to imperatively customize the desired back-propagation of changes
for bidirectional model transformations, demonstrated in contrast to QVT-R. Since these
approaches support methodologists, these approaches are discussed in Section 6.3.1Z 199.

Lenses formalize Model
Synchronization

Lenses (Foster, Greenwald et al., 2007) are a theoretical concept6 to formalize the se-
mantics of pairs of model transformations and their properties for model synchronization:
Since lenses describe the relation of models in total to each other and not of single consis-
tency relations, the cases of information overlaps between these models are relevant, i. e.
bijective, asymmetric and symmetric (see Figure 3.5Z 104). Asymmetric lenses for the asym-
metric case consist of two functions get and put (or putback)asymmetric Lenses which allow to synchronize a
source model s ∈ S with a view v ∈ V of it (Abou-Saleh, Cheney et al., 2018):

get : S −→ V (3.1)

put : S ×V −→ S (3.2)

6Note, that the formalisms given in the cited publications for lenses are strongly summarized
here with strongly simplified notations.
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get(s0) = v0 derives the current view v0 from the current source s0, while put(s0, v1) = s1

propagates user changes User∆ in the updated v1 back into the source s1 to update it accord-
ingly. S as additional input for put is required to prevent information loss, since v does not
contain all information of s. Except for this additional parameter, these formalizations fit
to the generic visualization of model synchronization-based approaches in Figure 3.4cZ 103.
Based on these formalizations, some laws for lenses are proposed in order to specify the
desired behavior for model synchronization:

• Well-behaved lenses do not change the source (respectively view), if the view (respec-
tively source) is unchanged: put(s, get(s)) = s respectively get(put(s, v)) = v

• Very-well behaved lenses (this property is also known as “history ignorance”) ignore
effects of views in older states, i. e. only the newest state of the view influences the
source: put(put(s, v0), v1) = put(s, v1)

This formalization is state-based up to now, since only changed models are involved,
but no information about the concrete changes. Since there are multiple possible model
differences between two versions of a model, state-based approaches have more ambiguities
to deal with than delta-based approaches. A typical example in practice are simple changes
of attribute values in v , which could also be represented as deleting an object and recreating
it with a different value. But the result of put is different regarding values of this object
which are only in the source s. asymmetric

Delta-Lenses
Therefore, asymmetric delta-lenses are introduced (Diskin,

Xiong and Czarnecki, 2011, 2010):

dget : ∆S −→ ∆V (3.3)

dput : S × ∆V −→ ∆S (3.4)

dget and dput are similar to get and put , but work with model differences instead of
models. Concretizing the model differences helps to uniquely determine, which objects are
created, changed or deleted, as (vertical) alignment of objects in two different model versions
(Anjorin, Buchmann et al., 2020). Since the preparation of model differences is separated
from the direct model synchronization, they can be controlled better by using different
strategies. Usual model difference calculation can be used to calculate ∆V between v0 and
v1, which allows to map “simple” lenses to delta-lenses. The laws for lenses are accordingly
adapted for delta-lenses (Diskin, Xiong and Czarnecki, 2011). Therefore, delta-lenses with
dget and dput can be seen as the transition from model synchronization-based approaches
to change translation-based approaches, investigated in following paragraphs. Delta-lenses
for the asymmetric case can be complemented with explicit links (as in incremental model
transformations) as additional inputs into dget and dput , which provide updated explicit
links as additional outputs (Diskin, Xiong and Czarnecki, 2011) and is also used for the
symmetric case now.

Symmetric lenses for the symmetric case between source model s ∈ S and target mo-
del t ∈ T are investigated in similar way including support for deltas by Diskin, Xiong
et al. (2011) with the two operations fPpg (f orward Propagation) and bPpg (backward
Propagation), symmetric Delta-Lenseswhich take the current user diff and the old correspondences r ∈ R between
s and t as input (see Section 2.3Z 71) and produce the other model differences and the
updated correspondences as output:

fPpg : ∆S × R −→ ∆T × R (3.5)

bPpg : ∆T × R −→ ∆S × R (3.6)

Since symmetric lenses target the symmetric case between two models, these signatures
are symmetric, too, and the terms forward and backward (as well as source and target)
could be switched. Adapted laws for symmetric delta-lenses target only the information
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overlap between s and t and therefore are weaker versions of the strong laws covering all
information.

Since the lenses which are described up to now are binary lenses working with only
two models, Diskin, König and Lawford (2018) investigate symmetric multiary lenses with
deltassymmetric multiary

Delta-Lenses
in order to keep n ≥ 2 models m1,...,n ∈ M1,...,n consistent to each other:

ppgi : ∆Mi
× R −→ ∆M1

× ∆M2
× . . .× ∆Mn

× R (∀i ∈ 1, 2, . . . ,n) (3.7)

As for binary symmetric lenses, the propagation operators ppg1,...,n use and update cor-
respondences r ∈ R for horizontal alignment between n models. Again, adapted laws for
symmetric multiary delta-lenses target only the information overlap between the models
m1,...,n . Note, that if ∆Mi

in the output is not empty, it amends the input ∆Mi
and is

concatenated with it in order to specify the model differences from M 0
i to M 1

i .

Summarizing lenses, they are only a formalization of BX.Summary of Lenses Lenses are distinguished
regarding the number of involved models (binary vs multiary), the information overlap of
involved models (asymmetric vs symmetric) and the encoding of model changes (updated
model vs model deltas). Since lenses provide formal hints guiding implementations, they
lack a direct, concrete implementation: Lenses can be implemented with TGGs for the
binary symmetric case with deltas (Hermann, Ehrig et al., 2015) and can be realized as
composable combinators respectively operators forming a DSL for BX (Diskin, König and
Lawford, 2018; Foster, Greenwald et al., 2007). Some more relations to other approaches are
summarized in Section 3.7Z 146. An alternative formalization for BX is relational (Abou-
Saleh, Cheney et al., 2018, p. 6f) basing on the formalisms in Section 2.3Z 71.

Round-trip engineering in the context of models is defined by Hettel, Lawley and Ray-
mond (2008) as a property of model transformations for two directionsRound-trip Engineering and is required,
since model “transformations in general are neither total nor injective” (Hettel, Lawley
and Raymond, 2008) in the symmetric case: As visualized in Figure 3.7, after executing a
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Figure 3.7: Round-Trip Engineering of Model Transformations

forward model transformation (“Model Transformation”), an inverse model transformation
(“Inv. Model Transformation”) executed on the updated M 1

T fulfills round-trip properties,
if the forward model transformation provides the same M 1

T from the output M 1
S of the

inverse model transformation. In other words, forward and inverse model transformations
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do not contradict each other regarding the information targeted by them. With this design,
properties for round-trip engineering are very similar to symmetric lenses with their laws.
“In contrast to reverse engineering, round-trip engineering does not aim at recovering lost
or otherwise unavailable source models, but is rather concerned with propagating changes
from target to the source model” (Hettel, Lawley and Raymond, 2008). Approaches fulfill-
ing round-trip engineering often use incremental bidirectional model transformations (see
above), but there is also another proof-theory-based approach using “abductive reasoning,
the inference to the best explanation” (Hettel, Lawley and Raymond, 2009, p. 113).

Having models and code, Stahl, Völter et al. (2005, p. 74) define round-trip engineering
as having the transition from model to code (forward engineering) Round-trip with Source

Code
and the transition from

code to model (reverse engineering). In that sense, model-driven software development
is only forward engineering without reverse engineering and therefore without round-trip
engineering. Angyal, Lengyel and Charaf (2008) realize model-code-round-trip by model
difference calculation and merging on the AST representing the code.

Summarizing model synchronization-based approaches, Summary of Model
Synchronization-based
Approaches

they use model transformations
to ensure that parts of two models fit together in terms of consistency (Requirement R 1
(Model Consistency)Z 154). BX is well-suited for this task, since one specification allows
to execute model transformations in both directions. Incremental model transformations
improve performance and ensure, that changes are propagated from one model into the
other, while other, manually edited parts of the models remain unchanged, which is impor-
tant in symmetric settings occurring in synthetic approaches. The presented approaches
strongly vary in the strategies, how to determine the final results of model transformations
(in particular for the inverse direction), including non-deterministic automated selection,
manual selections by users, heuristics like least change, additional imperative specifications
and only defining the possible solution space. Since model transformations for both direc-
tions must ensure consistency for both involved models, formalizations in form of lenses
and round-tripping specify the desired behavior.

While the presented approaches using model transformations work out-place and exo-
geneous, using model transformations also in in-place and endogeneous way is possible for
ensuring consistency: Mens, Van Der Straeten and D’Hondt (2006) use graph transforma-
tion rules on AGGs working like pattern matching for both searching for inconsistencies
and fixing them. in-place Graph

Transformation Rules
for 1st marking and 2nd
fixing Inconsistencies

Possible cycles and conflicts of depending rules are covered by critical
pair analysis at development time. At runtime, all rules for inconsistency checking are ap-
plied and inconsistent elements are annotated with special nodes. Afterwards, these nodes
are used by the rules for inconsistency fixing for matching and fixing the inconsistent pat-
tern (Mens and Van Der Straeten, 2007). This approach requires additional support for
multi-models. To improve performance, Blanc, Mougenot et al. (2009) present the idea
of representing the model as sequence of model differences, specifying the rules not on
(meta)models but on model differences and evaluate only relevant rules on the currently
added model differences. This extension can be seen as incremental execution, very similar
to change translation-based approaches.

Change
Translation-based
Approaches

Change translation-based approaches propagate only changes made in one view to all
other related views (and do not transform whole views). The challenge is to cover the
syntactic and semantic heterogeneity of views in form of different metamodels and meanings
on level of model changes, since changes of the first view must be converted, i. e. translated
in changes for the next view. These converted changes allow to give up incremental model
transformations as used in model synchronization-based approaches. Change translation-
based approaches allow to give single views more control about the changes which they
communicate to other related views, e. g. Lee (2010) proposes an actor-based design to
communicate changes between models.

El Hamlaoui, Bennani et al. (2019) establish explicit correspondences between the het-
erogeneous models as first step. In the second step, changes of elements within one model
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are propagated along their correspondences into the other models.propagate Creations
and Deletions along
1-to-1 Correspondences

This approach supports
automated change propagation for created and deleted elements and semi-automated solu-
tions for changed elements, which must be decided by experts. Experts might collaborate
with each other in order to identify (more) correspondences, to decide consistency issues
and to break cycles of the consistency management process (Bennani, El Hamlaoui et al.,
2018; El Hamlaoui, Bennani et al., 2019). Up to now, this approach does not support
consistency goals which establish no direct one-to-one links between the involved elements.
Therefore, this approach fulfills Requirement R 1 (Model Consistency)Z 154 only partially.

Feldmann, Wimmer et al. (2016) establish links stored in link models between pairs of
involved models.Establish

consistency-specific
explicit Links

These links are typed to indicate different relationships like refinement or
equivalence. Together with project-specific constraints (formulated as patterns, see de Lara
and Guerra (2012) above) and consistency rules, the links are used to check consistency and
to fix inconsistencies. Details of the inconsistency handling seem to be under development.

Xiong, Hu et al. (2009) develop a restricted OCL-like language Beanbag that combines
checking and fixing inconsistencies with the same declarative expression.Beanbag: translate

Updates through
OCL-like Expressions

These expressions
are evaluated on the current model in order to detect inconsistencies, like in rule-based ap-
proaches. Additionally, these expressions can be evaluated in case of changes by users with
previous values and updated values resulting in further updates, which makes Beanbag a
change translation-based approach. For that, all language concepts are complemented with
semantics, how to deal with occurred changes. Mainly, this includes “to propagate updates
through equality constraints [(=, let)], control the propagation order by logic operators [(and,
or, not)], derive structural updating through logic quantifiers [(forall, exists)], restrict fixing
behavior through special constructs [(protect, test)], and introduce recursion for describing
more involved fixing strategies” (Xiong, Hu et al., 2009, p. 320). Evaluated in the context
of UML, Beanbag “can support many, though not all, useful fixing scenarios in practice”
(Xiong, Hu et al., 2009, p. 324), due to the small number of language concepts. Therefore,
this approach fulfills Requirement R 1 (Model Consistency)Z 154 only partially. Beanbag
is applied for synchronizing views for web-development (Ruiz-González, Koch et al., 2009).

Summarizing change translation-based approaches,Summary of Change
Translation-based
Approaches

they directly react on occurred chan-
ges in one model and generate changes for related models to keep them consistent to the
changed model. Some approaches exploit explicit links between models to directly propa-
gate changes along them, similar to incremental model transformations also using explicit
links in order to improve performance and to keep unchanged model elements. All the
presented change translation-based approaches have some limitations regarding Require-
ment R 1 (Model Consistency)Z 154. Another more generic change translation-based ap-
proach as part of Vitruvius is presented in Section 3.5.2Z 126.

Summarizing the technique of explicitly linking models, all approaches which use explicit
links between pairs of models can be classified as synthetic approaches.Synthetic Settings by

explicitly linking
Models with each other

In order to store ex-
plicit links outside of the linked models, an additional model is introduced, which makes the
setting even “more synthetic”. This counts for all kinds of explicit links (Figure 3.2Z 100):
As an example for traceability, Baumgart and Ellen (2014) use traceability links to explicitly
relate models of different tools to each other in order to enable validation and verification
across tool boundaries, but without fixing inconsistencies (Requirement R 1 (Model Con-
sistency)Z 154) or other findings. As an example for model weaving, Mehner, Monga and
Taentzer (2009) check the consistency between use case diagrams and concretizing activ-
ity diagrams according to pre- and post-conditions by weaving them together controlled
by defined pointcuts following aspect-orientation. Fixing inconsistencies is not targeted
(Requirement R 1 (Model Consistency)Z 154). Section 3.5.4Z 131 reviews approaches using
aspect-orientation to weave different models into a single model. But only linking models
without ensuring consistency is not sufficient here. The other way around, linking models
can be used as supporting technique for approaches ensuring inter-model consistency.

There are also approaches, which are not related to the synchronization of models, but
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are synthetic: DemarcationZhang and Moller-Pedersen (2013) define “tool integration models” which
are models used for integrating tools: These integration models define APIs, used models
and more specifics of tools, which are used to orchestrate integrations of the described tools.
This is done in synthetic way, but not with the focus on consistency of the involved models
the tools are working with. In particular, propagation of changes in both directions is not
covered (Requirement R 1 (Model Consistency)Z 154).

Summarizing synthetic approaches, Summary of synthetic
Approaches

they realize the consistency between different models
(Requirement R 1 (Model Consistency)Z 154) by directly propagating changes between re-
lated models without intermediate models. Synthetic approaches use various techniques for
change propagation. Since nearly all of the presented approaches support Requirement R 1
(Model Consistency)Z 154, but not explicitly Requirement R 3 (Define new View(point)s)Z 156,
the following Section 3.3.2 reviews approaches for defining new views in synthetic settings.

3.3.2 Synthetic View Definition

This section presents some selected approaches to define new view(point)s in the synthetic
setting, since there are approaches which allow to define new views, that do not support
consistency of existing data sources in synthetic way: Such approaches could be integrated
with synthetic consistency approaches in order to define new views according to Require-
ment R 3 (Define new View(point)s)Z 156. The easiest way is to create a new view(point)
manually and treat it as existing data source using the mechanisms for consistency preser-
vation in Section 3.3.1Z 108, but there are more advanced approaches specially designed to
define new views. Bruneliere, Burger et al. (2019) provide a survey for such approaches.

Important in the synthetic setting is, that new view(point)s are defined on top of multi-
ple existing view(point)s, new View(Point) on top

of multiple View(Point)s
if the new view should contain concepts of different existing data

sources, since there is no SUM in synthetic approaches. As an example, the new view in
Part 6Z 40 of the ongoing example for the traceability between requirements and source
code needs the requirements sentences from the requirements data source and the imple-
menting methods from the Java data source. This motivates to concretize Requirement R 3
(Define new View(point)s)Z 156 with the following Requirement R 3.1Z 157:

Requirement R 3.1: New Views reuse whole System Description

New views must be able to reuse all information which represent the whole system
under development.

Only approaches fulfilling this requirement are presented in this section. If the new view
contains only concepts of one existing view, Section 3.5.5Z 134 presents approaches to define
new views on top of exactly one existing view. Keeping a new view consistent to the exist-
ing views is slightly easier than keeping existing views consistent to each other, since the
new view contains only information which is already present in the existing views. asymmetric Approaches

are sufficient
There-

fore, asymmetric approaches are sufficient in this section here, while ensuring consistency
between existing views in Section 3.3.1Z 108 requires symmetric approaches.

With EMF Views (formally known as VirtualEMF (Clasen, Jouault and Cabot,
2011)), there is an approach to define non-materialized view(point)s from multiple source
(meta)models (Bruneliere, Perez et al., 2015). EMF Views are

read-only
Bruneliere, de Kerchove et al. (2018) im-

proved scalability for performance and add support for EMF models stored in different data
bases and queries (Bruneliere, de Kerchove et al., 2020). Since these new views are read-
only7, EMF Views does not fulfill Requirement R 3 (Define new View(point)s)Z 156 com-

7In Bruneliere, Burger et al. (2019) with overlapping authors, there is a hint for some limited
support for back-propagation. Following Burger and Schneider (2016), only changes for primitive
attributes can be propagated. Bruneliere, de Kerchove et al. (2020) mark editability as future work.
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pletely and it again motivates to concretize Requirement R 3 (Define new View(point)s)Z 156

with the following Requirement R 3.3Z 157:

Requirement R 3.3: Editable new Views

New views must be editable by users.

Since EMF Views does not target the consistency between existing data sources, but
only to derive new view(point)s from multiple data sources, it is helpful in synthetic ap-
proaches for realizing (read-only) views. In general for read-only views, any approaches for
model analyses including model querying can be used, including incremental model queries
(Hinkel, Heinrich and Reussner, 2019).

Debreceni, Horváth et al. (2014) realize new views by incremental queries on multiple
(meta)models using EMF-IncQueryEMF-IncQuery:

incremental
Back-Propagation with
Proof-Theory

as a unidirectional model transformation as part of
the VIATRA framework (Varró, Bergmann et al., 2016). Correspondences between the
view and the source models are used to incrementally back-propagate changes in the view
by using the SAT solver of Alloy (Semeráth, Debreceni et al., 2016), which generates
possible corresponding source models for selection by users, representing a proof-theory-
based technique. This approach fulfills Requirement R 3 (Define new View(point)s)Z 156

with limited automation of the back-propagation of changes.

Summarizing approaches for synthetic view definition,Summary of synthetic
View Definition

they are required to present in-
formation spread over multiple models in a different way within one new view. The other
challenge is to propagate changes in the new view back into the source models, which occur
also for BX (see Section 3.3.1Z 108) and for the view-update problem (see Section 3.6.3Z 139).
Both challenges occur for the definition of new views in synthetic settings and strongly re-
duce the number of usable approaches. Another approach to define editable viewpoints
and views on multiple base (meta)models is ModelJoin in the context of the Vitruvius
approach, presented in Section 3.5.2Z 126.

3.4 Single Underlying Model (SUM)

After analyzing synthetic approaches in Section 3.3Z 108, projectional approaches are ana-
lyzed in Section 3.5Z 121.SUM as intermediate

Structure for
projectional Approaches

In contrast to synthetic approaches, projectional approaches use
an intermediate structure to store at least overlaps of views in order to synchronize them
indirectly via the intermediate structure. Therefore, this section introduces the concept of
Single Underlying Models (SUMs) as intermediate structure as preparation for the analyses
of projectional approaches in Section 3.5Z 121.

To realize the intermediate structure required for projectional approaches, Atkinson,
Stoll and Bostan (2009) present the idea of a Single Underlying Model (SUM),SUM conforms to

SUMM
which

conforms to a corresponding Single Underlying MetaModel (SUMM). The SUM completely
describes the system under development of the particular project in total.SUM describes System

completely
In particular,

it contains the information of all view, as well as additional information like explicit links
between non-overlapping information from different views. Compared with Figure 3.2Z 100,
the SUM stores all “Non-Overlaps”, “Overlaps” and “Inter-Correspondences”.

Views are projected from the SUM by users on-demand. Users work only on their
views and changes in the views are propagated back into the SUM.Ensure Consistency

between View and SUM
In this way, consistency

is not ensured in pair-wise manner between all views directly as in synthetic approaches,
but consistency is ensured between the particular view and the SUM. Since all views are
projected from the SUM, e. g. by model transformations, changes in the SUM are propagated
also into the other views (Requirement R 1 (Model Consistency)Z 154).

Since the SUM contains all information of the system in a uniform way, the SUM serves
as single point-of-truth in projectional settings.Advantages of a SUM Another advantage of a SUM is, that the
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management of dependencies between information spread over multiple views (page 33)
could be simplified in a SUM: Redundancies of views could be reduced by representing the
redundant information only once in the SUM, links between views can explicitly represented
in the SUM and constraints can be checked with usual techniques directly on the SUM.

The single model principle of Paige and Ostroff (2002) can be seen as an early ancestor
of the SUM idea, Related Worksince it advocates the use of multiple views which are derived from a
single model to ensure their consistency. While in particular views with different levels of
abstraction are considered for SUMs, the definition of the single model principle restricts
its scope to software development with levels for modules and systems. The single model
principle is used by (Haesen and Snoeck, 2005) for the single formal specification and
different views for conceptual modeling. The One-Thing-Approach (Margaria and Steffen,
2009) advocates the use of a single and consistent representation for all information of a
system during its whole life cycle and different views on it.

In related work, lots of different terms are used to name structures covering important
overall information, alternative Terminologywhich act similar to SU(M)Ms, even if not all properties of the SUM
idea are fulfilled, including “repository” (Guerra, Diaz and de Lara, 2005) according to the
original term used in IEEE (2011): In the field of embedded software-intensive systems,
Broy, Feilkas et al. (2010) call the SUM as “product model” covering all artifacts and their
relations of the whole development. Other terms are “unique model” (de Lara, Guerra and
Vangheluwe, 2006), “pivot model” (Kurtev, 2008, p. 382) and “global model” containing
only explicit links in a synthetic setting (El Hamlaoui, Bennani et al., 2019). A SUMM
is called “common metamodel” (Baumgart, 2010; Persson, Torngren et al., 2013), while
Persson, Torngren et al. (2013) provide also the alternatives “shared metamodel” and “pivot
metamodel” (Kappel, Kapsammer et al., 2006, p. 14). This thesis uses the terms SUM and
SUMM in the sense of Atkinson, Stoll and Bostan (2009), since this SUM idea is designed
for projectional settings and is already used by realizing approaches (Meier, Werner et al.,
2020).

While the SUM idea focuses on a single, central model, other ideas use other infras-
tructures as single means for synchronization: Demarcation:

ModelBus
As an example, ModelBus (Hein, Ritter

and Wagner, 2009) provides a central model repository and an interaction pattern for com-
munication for the integration of tools, but without a single model, and does not focus on
consistency, but provides sharing of models and versioning support for models. In contrast,
the tool support and communication infrastructure are not specified.

Since the SUM describes the current system under development in its entirety, SUM
and SUMM are specific for the current system and its project for development and are
not generic as UML. towards realizing SUMsApproaches fulfilling this SUM idea realize the SUM either explicitly
as OSM (Section 3.5.1Z 124) or implicitly as Vitruvius (Section 3.5.2Z 126). Persson,
Torngren et al. (2013) raise the question, how complete the SUM should be, e. g. whether
non-overlapping information should be stored in the SUM (Figure 3.2Z 100). Following
the SUM idea as presented above, the SUM contains all information about the system
under development including all information of all views in this thesis. Nevertheless, this
discussion is taken up in Section 13.3.3.2Z 476.

3.5 Projectional Approaches

The main characteristic of projectional approaches is, that they establish direct relations be-
tween models of views and an intermediate structure, not between views directly. Following
the SUM idea (Section 3.5.3Z 129), this section focuses on related projectional approaches,
which use a SU(M)M as intermediate structure. generic vs specific

Approaches
The focus of this section is on generic

approaches to support arbitrary development projects by projectional view management.
In particular, projectional approaches which represent a specific solution for a restricted
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project setting are neglected.

Some examples for restricted approaches are sketched here to get an impression for such
approaches and to see the practical relevance of projectional approaches.Restricted SUMM

Approaches
In particular,

such restricted approaches follow the main idea of the OSM approach (even if they are
not explicitly stated as SUM approaches), but have fixed viewpoints (France and Rumpe,
2007), in contrast to generic approaches, which support arbitrary viewpoints:

• Cicchetti, Ciccozzi et al. (2012) present the projectional tool environment CHESS
for modeling complex industrial systems with some fixed viewpoints and hard-coded
support for automated consistency management: The integrated modeling language
CHESSML supports viewpoints for requirements, system design, components, de-
ployment, analysis and instances (Debiasi, Ihirwe et al., 2021).

• Shah, Kerzhner et al. (2010) use the SysML metamodel extended by using its pro-
files mechanism as SUMM and derive new views with model transformations. They
marked the involvement of a general approach for consistency management as open
question.

• Makedonski and Grabowski (2020) improve consistency of specifications in standards
by keeping a unified information model as SUM up-to-date which represents all in-
formation elements of all specifications.

• UML uses different diagram kinds which can be treated as different viewpoints of
the same SUMM, e. g. by de Lara, Guerra and Vangheluwe (2006) for consistency
preservation using TGGs. Section 3.6.1Z 136 analyzes some existing approaches for
consistency between UML diagrams.

• The Siemens views approach (Hofmeister, Nord and Soni, 2000) introduces viewpoints
for conceptual for functional components, modules, the execution and code artifacts
to describe software architectures. Their integration into a SUMM to describe the
architecture as a whole is sketched, but not made explicit. Therefore, the integration
of these extended viewpoints with MoConseMI is demonstrated in Chapter 10Z 373.

• Vogel-Heuser, Fay et al. (2015, p. 65) present some approaches using predefined
SU(M)Ms for system design and call the problem to be solved with these approaches,
but do not answer the question, how the required SU(M)Ms can be developed in a
structured way.

• Rinker, Waltersdorfer et al. (2021) follow the projectional SUM idea for continuous
integration in the domain of production systems engineering. Since this approach
is ongoing research, it is unclear, if this approach is generic and could be applied to
other application domains. While the approach seems to be bottom-up taking existing
view(point)s into account, the concrete strategy to develop the required SU(M)M is
left open.

Summarizing, these restricted approaches and tools show, that the projectional manage-
ment of multiple views works in practice. Disadvantage of them is, that they support only
views which are realized with the techniques specified by the tools or whose viewpoints
and consistency goals are fixed in the approach.Generic Data

Consistency without
Tool Integration

In contrast, MoConseMI aims to keep
the data of multiple views consistent to each other, independently from the underlying
tools: The objective is to achieve data consistency (by means of data integration) without
forcing tool integration. These findings motivate to concretize Requirement R 1 (Model
Consistency)Z 154 with the following Requirement R 1.1Z 154:
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Requirement R 1.1: Generic Metamodels

The approach must support arbitrary metamodels.

Therefore, generic approaches are analyzed here, which are able to support arbitrary
viewpoints and consistency goals. Reuse synthetic

Techniques for
projectional Settings

If the views and the SUM are available as explicit mo-
dels, they can be kept consistent in projectional way by reusing synthetic techniques, as
investigated in Section 3.3Z 108: Since the SUM contains all information of all views by
design, techniques for the asymmetric case are sufficient to synchronize each view with the
SUM. This counts in particular for model synchronization-based approaches like BX, but
also proof-theory-based, rule-based and change translation-based approaches can be used
for projectional settings, since again models are kept consistent to each other, only with
differences in topologies (stars vs mashed graphs) and information overlap (asymmetric vs
symmetric). This includes also formalizations with (asymmetric) lenses and round-tripping.
Since these techniques are already discussed, the following sections analyzes approaches
which explicitly follow projectional ideas. In particular, the approaches which are explic-
itly designed to support projectional development following the SUM idea are discussed,
according to the following papers:

Related MoConseMI Publication

Johannes Meier, Christopher Werner, Heiko Klare, Christian Tunjic, Uwe Aßmann,
Colin Atkinson, Erik Burger, Ralf Reussner and Andreas Winter (2020): Classify-
ing Approaches for Constructing Single Underlying Models. In: Slimane Hammoudi,
Lúıs Pires Ferreira and Bran Selic (Eds.): Model-Driven Engineering and Software
Development. MODELSWARD 2019. Communications in Computer and Informa-
tion Science (CCIS), Springer, Cham, pp. 350–375.

This publication is cited as Meier, Werner et al. (2020) in this thesis.

It is an extension of this paper:

Related MoConseMI Publication

Johannes Meier, Heiko Klare, Christian Tunjic, Colin Atkinson, Erik Burger, Ralf
Reussner and Andreas Winter (2019): Single Underlying Models for Projectional,
Multi-View Environments. In: Proceedings of the 7th International Conference on
Model-Driven Engineering and Software Development, pp. 119–130.

This publication is cited as Meier, Klare et al. (2019) in this thesis.

Additionally, these papers provide some conceptual design choices to classify projec-
tional approaches. While these design choices target the conceptual solution space, the de-
sign choices of Figure 3.2Z 100 focus on the technical realization of approaches after deciding
their conceptual design choices. additional conceptual

Design Choices
The design criteria of Meier, Klare et al. (2019) describe two

conceptual design choices for projectional approaches, which are depicted in Figure 3.8Z 124:
The construction process (criterion C1 in Meier, Werner et al. (2020)) refers to the process
of creating the SU(M)M, which can be top-down by designing the SU(M)M on the green-
field or bottom-up by combining reused (meta)models into the SU(M)M. Bork and Sinz
(2013, p. 29) use the same distinction, but without explicitly using this terminology. The
resolved dependencies (Pureness as criterion C2 in Meier, Werner et al. (2020)) refer to the
dependencies like redundancies between views, which could be all unresolved in the SUM
(none), completely resolved with a pure SUM (all) or resolved in some cases, but not all
depending on the particular project (adjustable).

Since Meier, Klare et al. (2019) focus only on projectional approaches, Figure 3.8Z 124
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Figure 3.8: Design Choices for conceptual Realization (derived from Meier, Werner et al. (2020))

makes this explicit with the feature “organization”.Conceptual Design
Choices for synthetic
Approaches

In order to make this conceptual design
choices generic, the feature model supports synthetic approaches, too: Since there is no
SU(M)M in synthetic settings, synthetic approaches are always bottom-up. Since there is
no SU(M)M in synthetic settings, the existing views remain with all their dependencies and
none of them are resolved. Since Figure 3.8 supports synthetic and projectional approaches
now, it can be used to design new approaches for ensuring inter-model consistency with
synthetic vs projectional as additional design choice, as it is done in Section 5.1Z 163.

Since they state to be generic projectional SUM approaches, three approaches of Meier,
Werner et al. (2020) are analyzed in more detail in the following three sections:Outline for related

projectional Approaches
OSM

in Section 3.5.1, Vitruvius in Section 3.5.2Z 126 and RSUM in Section 3.5.3Z 129. The
design of the fourth approach MoConseMI of this thesis is presented in Part IIIZ 163.
While these approaches target all challenges of projectional SUM approaches, other generic
approaches fulfilling only some of these challenges are investigated, too: Section 3.5.4Z 131

investigates, how a SU(M)M can be created, if only its view(point)s exist. As follow-up
step, Section 3.5.5Z 134 reviews, how new view(point)s can be defined on top of an existing
SU(M)M.

3.5.1 OSM

The “Orthographic Software Modeling” (OSM) approach uses modeling techniques to sup-
port software development (initially), but also other domains like enterprise architecture
modeling and service modeling (Atkinson, Stoll and Tunjic, 2011), by multiple viewpoints,
which are arranged in orthogonal way. Two main concepts of OSM are the generation of
views on-demand to manage consistency and the alignment of viewpoints along orthogonal
dimensions Atkinson and Stoll (2008b), investigated in the following paragraphs.

explicit SU(M)M OSM uses one explicit model as SUM, which conforms to one explicit metamodel as
SUMM. The SUM contains all information about the system under development in uniform
way without any dependencies (pure in terms of Meier, Werner et al. (2020)).Ensuring Consistency

in OSM
Since the

SUM contains no dependencies, no inconsistencies can occur and no additional mechanisms
to ensure consistency inside the SUM are required. This corresponds to Thomas and Nejmeh
(1992), who have “nonredundancy” as important property: “Redundant information [. . . ]
is undesirable because it is difficult to maintain consistency” (Thomas and Nejmeh, 1992,
p. 32). Instead, consistency must be ensured between the SUM and the views: Views
are generated from the SUM on request be users and are initially consistent to the SUM
therefore. After the user changed the view, the changes are propagated back into the SUM
to keep it consistent. Other views are projected from the (updated) SUM again and are
directly consistent and so on, as sketched in Figure 3.9Z 125. Users are not allowed to
change the SUM directly.
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Req

Java ClassDiagram

Trac.

SUMM
+

SUM

VP Viewpoint

SU(M)M pure SU(M)M

DeepATL Transfor-
mation / Projection

Figure 3.9: SUM approach OSM (taken and slightly adapted from Meier, Werner et al. (2020))

The change propagation between SUM and views is model synchronization-based: Restricted
unidirectional Model
Transformation from
SUM to View with
Traces

A
view is created on-demand from the SUM by executing a unidirectional full-batch model
transformation. To propagate changes in the view back into the SUM, an inverse unidirec-
tional model transformation was used initially (Atkinson, Gerbig and Tunjic, 2013b). As
improvement, Tunjic and Atkinson (2015) require only one unidirectional model transfor-
mation from the SUM to the view (get in terms of asymmetric lenses (Diskin, Xiong and
Czarnecki, 2011), see above in Section 3.3.1Z 108) which is restricted to map each element in
the SUM to zero or one elements in the view and which automatically creates trace links be-
tween transformed elements. Propagate Changes

along Traces back into
the SUM

In that cases, changes for created and deleted elements can be
propagated along the trace links to realize dget and dput functionalities including updated
trace links (asymmetric delta-lenses with explicit links). The update facilities for attribute
values are not discussed. Atkinson and Tunjic (2017) allow projections of one or more ele-
ments in the SUM to one or more elements in the view, probably leading to hyper-links, but
do not discuss the view-update problem for these cases. The same counts for aggregating
information from the SUM, which are probably read-only, meaning, that their changes in
the view are not propagated to the SUM and are lost. If the new view is only an exact
subset of the elements in the SUM, such a filtering for this special case can be specified by
(deep) OCL expressions instead of complex model transformations (Lange, Atkinson and
Tunjic, 2020). Summarizing, OSM fulfills Requirement R 1 (Model Consistency)Z 154 and
Requirement R 3 (Define new View(point)s)Z 156 with the same mechanisms in general, but
with some lack in detail.

OSM organizes viewpoints along orthogonal dimensions (Atkinson and Tunjic, 2014a),
which helps users to choose the best view for their current needs and methodologists to
keep an overview of already developed and still missing viewpoints. Orthogonal Dimensions

for Viewpoints
Main idea is, that n

orthogonal dimensions form a n-dimensional hypercube, while each dimension has some
values as possible choices for this dimension. Each cell in the hypercube is defined by one
value for each of the n dimensions and can be realized by one viewpoint. Examples for such
dimensions (with possible values in round brackets) include high-level components (dynam-
ically depending on the particular system), level of abstraction (services, classes, code),
development stage (specification, implementation, validation), variant (selected features in
a product line) and version (released versions).

Clarification: Orthogonal dimensions vs. Consistency

Note, that the hypercube does not represent all information of the system, but
organizes all ways how stakeholders can look on this information. Consistency is not

ensured by orthogonal
Dimensions

In particular,
orthogonal dimensions target the alignment of viewpoints and do not separate the
information into independent parts, e. g. the same source code can be visualized by
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the different values of the dimension level of abstraction (see above). Therefore, there
is still the need for keeping information in different views consistent. Consistency is
not ensured by orthogonal dimensions, nevertheless, the overlap of views in terms of
shared information should be minimal (Atkinson and Tunjic, 2014a, p. 49).

Application examples with orthogonally aligned viewpoints include among others mod-
elingApplications of OSM of component-based systems according to the KobrA method (Atkinson, Bostan et al.,
2008) and of components and their orchestration for workflow engines (Atkinson and Stoll,
2008a). Additionally, orthogonal dimensions and viewpoints are defined for the Archi-
mate approach (Atkinson and Tunjic, 2014b). The activities for modeling architectures for
enterprise applications are embedded into the general vision of multi-level modeling with
orthographic viewpoints (Tunjic, Atkinson and Draheim, 2018) and can be seen as one
important application of OSM.

Methodologists using the OSM approach create the SUMM (and the SUM if necessary)
by hand from scratch,Methodologists

manually create the
SU(M)M when applying
OSM

i. e. OSM is a top-down approach starting with the SUMM and
viewpoints are defined afterwards on top of the SUMM. Therefore, methodologists can
not directly reuse existing metamodels and models, i. e. Requirement R 2 (Reuse existing
Artifacts)Z 155 is not fulfilled. As benefit, the desired SUMM can be created completely
free in an optimized way, without being restricted by existing metamodels to reuse. By
this top-down design, an optimized SUMM as in Figure 3.10 for the ongoing example can
be realized. Beyond that, OSM provides no explicit method to cope with the challenge to
create the optimized SUMM, but requires such methods (Atkinson, Stoll et al., 2013). As
look-ahead, the MoConseMI approach of this thesis provides such a method.

SUMM

ClassUseClass

name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

Class

name : EString [1]

Method

name : EString [1]

Requirement

id : EString [0..1]
author : EString [0..1]
text : EString [0..1]

fullfills [∗]

fulfilledBy [∗]

class [1]

methods [∗]

class [1]

classUseClass [∗]

type [1]
usedBy [∗]

calling [∗]calledBy [∗]

Figure 3.10: Exemplary Metamodel for SUMM in OSM (taken from Meier, Werner et al. (2020))

The implementation of OSM is done in nAOMi (Atkinson, Stoll et al., 2013) and
OSM Implementation use MelanEE (Atkinson and Gerbig, 2016) as technical space which supports multi-level

modeling (MLM) (Atkinson, Gerbig and Tunjic, 2013a): Some basics for the understanding
of metamodels in MLM are already given in Section 2.2.2Z 60. Therefore, transformations
between SUM and views require model transformation approaches which support multiple
levels like DeepATL (Atkinson, Gerbig and Tunjic, 2013b) as extension of ATL (Jouault,
Allilaire et al., 2008). A generic visual language to visualize multi-level models in UML-like
style (Atkinson, Kennel and Goß, 2011) is complemented with facilities to develop domain-
specific textual and graphical languages for multi-level models (Atkinson and Gerbig, 2013).

3.5.2 Vitruvius

The “VIew-cenTRic engineering Using a VIrtual Underlying Single model” (Vitruvius)
approach (Kramer, Burger and Langhammer, 2013; Klare, Kramer et al., 2021) aims to
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fulfill the projectional SUM idea in pragmatic and scalable way. In contrast to the ex-
plicit SU(M)M in OSM, Vitruvius uses a virtual SU(M)M which reuses the existing
(meta)models as parts of it, as depicted in Figure 3.11. modular SU(M)M,

composed of reused
(Meta)Models with
Correspondences

This modular SU(M)M consists of
the (meta)models (Java, Req and ClassDiagram with package icons in Figure 3.11) which
are reused in unchanged and non-invasive way (VPReq, VPJava, VPClassDiagram). There-
fore, Figure 3.12 shows the SUMM for the ongoing example with Vitruvius with the
three reused metamodels. Vitruvius is bottom-up and realizes an easy reuse of existing
(meta)models, but resolves none of their dependencies. Therefore, an explicit mechanism
for consistency preservation between the single (meta)models (CPR in Figure 3.11) is re-
quired. The reused (meta)models are provided to users as initial view(point)s. An addi-
tional approach is required to define new view(point)s. Both mechanisms are presented in
the following paragraphs.

Req

Class
Diagram

Java
CPR

CPR
VPReq

VPJava VPClassDiagram

VPTrac.

MM
(Meta)Model

CPR
Consistency
Preservation
Rule

VP Viewpoint

View Trans-
formation

Figure 3.11: SUM approach Vitruvius (taken and slightly adapted from Meier, Werner et al.
(2020))

Req

JavaClassDiagram RequirementsSpecification

Requirement

id : EString [0..1]
author : EString [0..1]
text : EString [0..1]

JavaASG

ClassType

name : EString [1]

Method

name : EString [1]

ClassDiagram

Class

className : EString [1]

Association

name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

container [1]

content [∗]

asg [1]

classes [∗]

class [1]

methods [∗]

calledBy [∗] calling [∗]

diagram [1]

classes [∗]

class [1]

associations [∗]

type [1]
usedBy [∗]

Figure 3.12: Exemplary Metamodel(s) for SUMM in Vitruvius (taken from Meier, Werner et al.
(2020))

Vitruvius uses Consistency Preservation Rules (CPRs) to keep depending models in
the SUM consistent to each other in pair-wise way. The CPRs use and maintain explicit
links in form of correspondences which can be annotated with further metadata between
related elements in two different models. Ensuring Consistency

in Vitruvius
CPRs are change translation-based by reacting

on changes made by a user in one model and deriving corresponding changes for the other
model to keep it consistent (Kramer, 2015). With this design, Vitruvius fulfills the projec-
tional SUM idea for users having multiple views with automated consistency preservation
(Requirement R 1 (Model Consistency)Z 154) by internally using synthetic techniques.

Since this change translation-based approach requires consistent models connected with
correspondences before a user changes one view, Reuse existing Modelsthe reuse of existing models in Vitruvius
is challenging, when these models are not consistent to each other or not connected: Since
the mechanisms for consistency preservation react only on user changes, more complex stra-
tegies for the initial import of existing models into Vitruvius are required. Leonhardt,
Hettwer et al. (2015) propose two strategies to create corresponding elements in other mo-
dels together with correspondences when importing models conforming to the same meta-
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model, i. e. first by inserting the current elements as active delta into the change-driven
consistency preservation mechanism and second by explicitly creating linking other models
using forward or reverse engineering techniques. Importing multiple models conforming
to different metamodels and importing models which are not consistent to each other is
targeted by Mazkatli, Burger et al. (2018): Corresponding elements in different models are
searched by using the defined mappings (see below) and additionally defined identifiers.
Missing corresponding elements are created and conflicting values of found matches are
edited, whose resulting changes are synchronized in the usual way of Vitruvius. There-
fore, Vitruvius supports Requirement R 2 (Reuse existing Artifacts)Z 155, but with some
restrictions. These findings motivate to concretize Requirement R 2 (Reuse existing Arti-
facts)Z 155 with the following Requirement R 2.3Z 156:

Requirement R 2.3: Fix existing Models

The approach must allow to fix inconsistencies within reused models.

Another challenge is to realize consistency between multiple models (Klare, 2018):Multi-Model
Consistency

Since
consistency is ensured in pair-wise way, redundant information in three or more models
require a dense or even complete graph of consistency specifications between them, in
order to fulfill modularity, i. e. the possibility to use arbitrary subsets of these models.
Since changes can be propagated transitively, there are multiple execution paths, which
could be contradicting and leading to termination problems (Klare, Syma et al., 2019).
As solution, such redundant concepts should be made explicit with concept metamodels,
which form trees together with the concrete metamodels as leaves: This design aims to
prevent contradicting consistency specifications by design and to keep modularity (Klare
and Gleitze, 2019).

In order to provide new view(point)s which are derived from the concepts and informa-
tion of the modular SU(M)M (e. g. VPTrac. in Figure 3.11Z 127), ModelJoin is design as
textual DSL (Burger, 2013b, 2014):Define new

View(point)s with
ModelJoin

Using this DSL, the methodologist can select and com-
bine concepts from multiple metamodels of the SUMM, which lead to a new viewpoint and
its conforming new view, which can be used by users. Therefore, methodologists can rapidly
define flexible views and their viewpoints (Burger, 2013a). Similar to SQL, ModelJoin
defines declarative queries on different metamodels and provides concepts for joining, pro-
jection, selection and aggregation of model elements. With ModelJoin it is not possible
to define any viewpoint, but only elements already existing in the input metamodels and
models can be explicitly selected to be part of the new viewpoint and view (keywords for
the textual syntax in round brackets) as defined in Burger, Henss et al. (2014):

• Classes can be reused for the new viewpoint in same form, renamed or joined with
other elements (natural join, outer join, theta join with any conditions as OCL
expressions). Super-classes and sub-classes of such classes must be explicitly specified
to be in the viewpoint (keep supertype, keep subtype).

• Attributes for reused classes can be explicitly selected to be reused (keep attributes)
or calculated with five predefined arithmetic functions (keep aggregate) or arbitrary
OCL expressions (keep calculated attribute) over any information in the source
models.

• References for reused classes can be explicitly selected to be reused (keep outgoing,
keep incoming).

• All elements in the new viewpoint can be renamed (as [type]).

• The amount of objects conforming to a class which is part of the new viewpoint can
be restricted with any OCL expressions (selection).
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These restrictions and the creation of internal traces between reused objects during execu-
tion allow to enable editability for ModelJoin views (Burger and Schneider, 2016): For
each concept of ModelJoin, a fixed strategy for change translation i. e. to propagate up-
dates in the view back into the source models is chosen. Additionally, OCL constraints for
each chosen change translation strategy are formulated which define the possible changes
in the new view by users, after which the resulting updates in view are still translatable
into the source models. These OCL constraints allow to decide, if an updated view is trans-
latable back into the source models, and could be used to inform users during their work
on the view about the translatability of their changes without doing the translation. De-
tails of the chosen translation strategies can be found in Schneider (2015). Some changes
are not translated, e. g. values of aggregated and calculated attributes remain read-only.
Summarizing, Vitruvius in form of ModelJoin support Requirement R 3 (Define new
View(point)s)Z 156, but with some restrictions in detail.

Completed and ongoing application examples of Vitruvius include among others Applications of
Vitruvius

com-
ponent-based software systems supported by consistency preservation of architectural mo-
dels in the Palladio Component Model language (Becker, Koziolek and Reussner, 2007),
contracts in the Java Modeling Language and Java source code (Kramer, Langhammer
et al., 2015). The last application could be extended with UML component diagrams and
configuration files for Eclipse plugins (Kramer and Langhammer, 2014). New viewpoints
include Java source code annotated with related components and component diagrams ex-
tended with realizing Java classes and interfaces (Kramer and Langhammer, 2014). Other
applications include modeling of hardware-system-systems like automotive systems with
SysML, AMALTHEA and ASCET (Mazkatli, Burger et al., 2017), electrical engineering
with printed circuit boards and electronic circuit simulations (Zimmermann and Reussner,
2018), smart grids for the energy domain (Burger, Mittelbach and Koziolek, 2016) and
automated production systems with AutomationML (Ananieva, Burger and Stier, 2018).
Another application is to keep architectural models up-to-date (Monschein, Mazkatli et al.,
2021), e. g. to keep performance models in software architectures up-to-date in incremental
way (Mazkatli, Monschein et al., 2020). An ongoing application is to manage variants and
versions of models in a consistent way (Ananieva, Klare et al., 2018).

The implementation of Vitruvius uses EMF as technical space. Vitruvius
Implementation

The textual DSL
ModelJoin is realized with Xtext for IDE-like tool support. For ensuring consistency
within the SUM, there are two languages (Kramer, 2017; Klare, Kramer et al., 2021): Ex-
pressions in the unidirectional reactions language are triggered by user changes and specify
imperative actions as reactions to these changes in order to fix occurred inconsistencies.
Expressions in the mappings language define consistency goals between related objects of
different models in declarative and bidirectional way (Kramer and Rakhman, 2016) and are
transformed into expressions of the reactions language for executions and for both direc-
tions. While the reactions language is Turing-complete, the mappings language has reduced
expressiveness in order to automatically derive unidirectional reactions for both directions.

3.5.3 RSUM

The “Role-oriented Single Underlying Model” (RSUM) approach (Werner and Aßmann,
2018) realizes the projectional SUM idea with a pragmatic SU(M)M composed of loosely-
coupled existing (meta)models (Figure 3.13Z 130). Similar to Vitruvius, by reusing ex-
isting (meta)models RSUM is bottom-up and does not resolve any dependencies. Central
element in RSUM is the role concept of role-based modeling which is used to couple the
(meta)models into the SU(M)M and to ensure consistency within the SUM. In order to
provide new views with information derived from the SUM, the syntax of ModelJoin of
the Vitruvius approach is reused.

The role concepts (Kühn, Leuthäuser et al., 2014) extend object-orientated model-
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Figure 3.13: Exemplary Metamodel for SUMM in RSUM (taken and slightly adapted from Meier,
Werner et al. (2020))

ing, since usual associations between classes are replaced by compartment typesRole-based Modeling and links
conforming to associations are replaced by compartments conforming to the compartment
type which replaced the association. Within compartments, objects play roles conforming
to the compartment types. With this design, compartment types realize usual associa-
tions (relational compartments), but in a more flexible way, since compartment types and
compartments can be added and removed depending on the current context. Additionally,
roles adapt the behavior of objects and interact with other roles, which allows to realize
consistency preservation between the adapted objects at runtime (consistency management
compartments, CMC). Figure 3.14 uses the concrete syntax for role-oriented modeling of
Kühn, Böhme et al. (2015). The role-based technical space makes RSUM suitable in par-
ticular for models-at-runtime applications.

RSUM

11 11 11

RequirementsSpecificationClassDiagram

Requirement

id : EString [0..1]
author : EString [0..1]

text : EString [0..1]

Class

className : EString [1]
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name : EString [1]
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upperBound : EInt [0..1]
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Method
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TargetSource
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Legend:

Figure 3.14: SUM approach RSUM (taken from Meier, Werner et al. (2020))

Metamodels to be reused can be transformed into the role-based paradigmReuse (Meta)Models by replacing
associations by relational compartment types (white compartments in Figure 3.14). Links
within models can be extended accordingly to support roles at runtime. Therefore, RSUM
supports Requirement R 2 (Reuse existing Artifacts)Z 155 in general.

The methodologist ensures consistency challenges by defining further compartment
types depending on their kind:Compartments ensure

Consistency
Explicit links are realized by relational compartment types

(gray MethodsFulfillRequirement in Figure 3.14), while redundancies and constraints are
realized by consistency management compartments (e. g. gray ConsistencyManagement for
redundant classes in Figure 3.14). Therefore, the metamodels of Java and requirements
are combined with a relational compartment type, as depicted in Figure 3.13, similar to
an association which would integrate the two metamodels with an association. Redun-
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dant classes in ClassDiagram and Java are kept consistent by a consistency management
compartment in contrast. One overall RsumManagement compartment manages the whole
consistency management, in particular, recording of changes by users. Since the CMCs
react on these recorded user changes and provide additional changes to fix occurred incon-
sistencies, RSUM with RSYNC for change propagation (Werner, Schön et al., 2018) falls
into the category of change translation-based approaches: Consistency management com-
partments use different contexts and roles (Destructor, Constructor, Sync) to react on
changes for deletion, creation and changes of elements. Bindings of these roles to affected
elements work as correspondences and support the direct change propagation. Therefore,
RSUM fulfills Requirement R 1 (Model Consistency)Z 154. The base RSYNC is extended
to Parallel RSYNC in order to support concurrent editing of multiple users with conflict
handling (Ebert, Kluge and Götz, 2021).

Additional new view(point)s (which are not depicted in Figure 3.14Z 130) can be de-
fined with the syntax of ModelJoin (see Section 3.5.2Z 126), New View(Point)sfrom which relational com-
partment( type)s for new view(point)s are generated (Meier, Werner et al., 2020). These
relational compartments provide the objects in the SUM as projections to users, whose
changes are done directly on the SUM, since the views are virtual and not materialized.
Therefore, RSUM inherits the restrictions of ModelJoin and supports Requirement R 3
(Define new View(point)s)Z 156, but with some restrictions in detail.

The implementation of RSUM uses SCROLL (Leuthäuser and Aßmann, 2015), a li-
brary for Scala, to realize the role-based modeling. RSUM ImplementationThe current research prototype requires
writing compartments, views and consistency management with this library in Scala by
hand (Werner, Bergmann et al., 2019), but DSLs for easier definitions and code generation
are desired for future work, in particular, for the definition of views (Werner and Aßmann,
2018) and for synchronization (Werner, Schön et al., 2018).

3.5.4 Combining Views into a SUM

As motivated in Section 1.2.2Z 36, often views and their viewpoints already exist and must
be reused. For projectional approaches for ensuring consistency of such views, a SU(M)M
is required as intermediate structure. In bottom-up projectional approaches, such SU(M)M
must be created from the existing view(point)s as starting point, while top-down projec-
tional approaches start with designing the SU(M)M from scratch. Creating an appropriate
SUMM is an open question, indicated by OSM (see Section 3.5.1Z 124). Another challenge
is, that the views to reuse conform to different viewpoints and different metamodels must be
reflected in the SUMM. Therefore, this section investigates approaches to combine multiple
different view(point)s into a SU(M)M.

Walter and Ebert (2009) present an example for a manual integration of a particular
DSL, feature models and ontologies on the metamodel level only.

Already Darke and Shanks (1996) propose the integration of viewpoints to be a central
activity for managing viewpoints and sketches some approaches, including to merge existing
viewpoints into each other to form an integrated metamodel, which could serve as SUMM,
and to translate the different viewpoints into the same formal description as in proof-theory-
based approaches for consistency (Section 3.2Z 99).

Model MergingChechik, Nejati and Sabetzadeh (2012) discuss the integration of models using auto-
mated model merging operators, which depend on links between related elements which
must be provided by users. The presented operators unidirectionally merge only models
into each other which conform to the same metamodel.

Stünkel, König et al. (2018) present a very similar approach, merge (Meta)Models
using Correspondences
indicating
Commonalities

but define commonalities
i. e. the direct overlaps of elements between metamodels with correspondences represented
as an additional commonalities metamodel first. As second step, this commonalities meta-
model is used to compose a comprehensive metamodel like a SUMM by merging the initial
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metamodels. After defining correspondences between the models by hand or by special
identification rules, the models can be virtually merged in similar way. If the result of this
merge is made explicit, a SUM is available. Since only direct overlaps of elements in meta-
models and models can be unified, the SU(M)M can still have dependencies. As future work,
Stünkel, König et al. (2018) plan extensions for ensuring consistency on these integrated
(meta)models by formulating inter-model constraints on the comprehensive metamodel and
checking them on the virtually merged model. Fixes for inconsistencies are derived from
completion rules which are added to the constraints.

Another general idea for combining views into a SUM is to keep the views as they
are, but link them explicitly with each other (see the overall techniques for linking in
Section 3.2Z 99).SU(M)M as explicitly

linked View(Point)s
This idea is realized in the RSUM approach (Section 3.5.3Z 129) as an

example. Note, that the resulting SUM contains all information of all views, but with
redundancies. A corresponding SUMM can be created with the same idea.

Redundancies between multiple views can be treated as crosscutting concerns, which
motivate the use of aspect-oriented modeling (Wimmer, Schauerhuber et al., 2011):aspect-oriented

Modeling and Weaving
Kienzle,

Al Abed and Jacques (2009) provide an approach for multi-view modeling supported by
aspect-oriented modeling in the domain of UML diagrams (classes, states, sequences): It
allows to define directed acyclic graphs (DAGs) of dependencies between aspects of mul-
tiple models. These dependencies are used to weave the different models into one model
representing the whole system. The used weaver checks also semantic consistency between
the UML models, but does not fix inconsistencies. However, it is unclear, how easy the
approach can be generalized to other domains outside of UML.

Jézéquel (2008) even defines, that “modeling is the activity of separating concerns”
(Jézéquel, 2008, p. 210) as aspects, while “the design process can be characterized as a
weaving of these aspects into a detailed design model” (Jézéquel, 2008, p. 210). Analyzing
and discussing examples with sequence diagrams, Jézéquel (2008) summarizes, that there is
no generic model weaving approach,Model Weaving is

project-specific and
unidirectional

since defining patterns (called pointcuts) and compos-
ing the aspects into the matched patterns (called join points) both must take the semantics
of the models into account and are project-specific therefore. While aspect weaving enables
to generate the design model whenever the base models or aspect models evolved, it is not
possible to propagate changes in the design model back into into its source models, since
weaving is a unidirectional model transformation. Therefore, model weaving can be used
to create a SUM from single views, sometimes with their consistency is precondition, but
is not usable to enforce consistency (Requirement R 1 (Model Consistency)Z 154).

Jung, Heinrich et al. (2014) propose to extend base metamodels with aspect metamodels
in a non-intrusive way, i. e. without explicitly weaving them.extend Base

Metamodels with
Aspect Metamodels for
Metamodel Evolution

Main objective seems not to
ensure consistency between base and aspect models, but to keep mainly existing editors for
DSLs, model transformations and simulations working on the unchanged base metamodel
and conforming models, while they are extended at the same time in non-intrusive way to
overcome the challenge of evolving metamodels.

UML Profiles are not usable as technical space (see Section 2.5.1Z 84),UML Profiles but could be
used to combine multiple viewpoints into one metamodel. Since UML profiles are defined
by the UML super structure, this idea works only for viewpoints whose metamodels are
part of the UML super structure or are realized as UML profiles. Egyed, Zeman et al.
(2018) sketch a corresponding example combining UML models and CAD components. To
overcome this limitation in general, the border between UML profiles and other technical
spaces like EMF must be bridged, e. g. by transforming UML models to EMF models and
vice versa (Maro, Steghöfer et al., 2015) or by explicitly linking the UML profile with
the EMF metamodel using model weaving in order to generate transformations on model
level (Abouzahra, Bézivin et al., 2005). Maro, Steghöfer et al. (2015) discuss some more
approaches for bridging UML profiles with EMF. Related studies show, that the use of
UML profiles seems to be decreasing in general, probably due to the increasing quality of
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language workbenches for DSLs (Pardillo, 2010, p. 416), which is supported by evaluations
in detail like of Bernardino, Rodrigues and Zorzo (2016), who report on faster modeling
with a DSL compared to a UML profile.

Since EMF does not provide a profile mechanism, Langer, Wieland et al. (2011) adapt
the concept of profiles as introduced by UML for EMF: EMF ProfilesWhile UML profiles are a specific
concept for UML and not generic for MOF, EMF profiles allow to define extensions with
stereotypes and tagged values for arbitrary existing metamodels modeled with ECore.
Such extensions result in EMF models representing the defined profiles and conforming to
the EMF metamodel presented by Langer, Wieland et al. (2011) representing the concepts
for profiles in EMF. These EMF models are automatically transformed into EMF metamo-
dels (model-to-metamodel-transformation), whose instantiations allow to apply the profile
for regular EMF models in a non-invasive way. Instead of using this EMF profiles mech-
anism, the generated EMF metamodels could be created directly by hand, which would
allow to introduce also non-stereotype EClasses.

The composition of multiple, overlapping languages, i. e. DSLs or Profiles, called the
language extension problem (Leduc, Degueule et al., 2020), requires the composition of mul-
tiple abstract syntaxes and the composition of multiple concrete syntaxes (Noyrit, Gérard
et al., 2010): Composition of DSLsThe composition of abstract syntax is related to the integration of viewpoints,
as discussed above. But the additionally required composition of concrete syntaxes is not
required here when keeping models consistent to each other. Therefore, related work for
composing concrete syntaxes is out of scope.

Other approaches aim to compose executable software applications from multiple parts:
Composition for
integrated Applications

Estublier, Ionita et al. (2009) and Estublier, Vega and Ionita (2005) aim to compose ap-
plications for different domains by targeting two dimensions: In the first dimension (called
horizontal), domains are described with DSLs and the developed (meta)models are com-
posed by annotated links between them. In the second dimension (called vertical), software
building blocks like tools, services, libraries, legacy applications and components are devel-
oped, configured and executed according to their domain models. Composition of Software

Building Blocks with
AOP according to
composed i. e. linked
Domain Models

These software building
blocks are composed by aspect-oriented programming to enable communication between
them. This approach is synthetic by explicitly linking corresponding elements (for the do-
main models and for the software building blocks), but focuses mainly on the combination
of bigger software building blocks at runtime, less on the consistency preservation of the in-
volved domain models (Requirement R 1 (Model Consistency)Z 154) at development time.
Therefore, this approach focus more on tool integration with the help of composing the
corresponding domain models. Additionally, the redundancy within the composed domain
model can not be reduced.

Yie, Casallas et al. (2010, 2009a) try to avoid a strong composition of high-level models
conforming to different metamodels by transforming them into low-level models conform-
ing to the same metamodel, e. g. into models for general-purpose programming languages.

Composition of low-level
Models by Links

These low-level models are combined automatically by transforming links between elements
of the high-level models into links between corresponding elements of the low-level models.
This approach convinces not completely, since the number of possible links between models
increase with growing number of models (Yie, Casallas et al., 2010, p. 239) and the ap-
proach requires completely automated transformations from high-level models to low-level
models, which is not always possible.

Summarizing approaches for combining views into a SUM, Summarythey usually use manual
techniques to define corresponding elements in different models as first step. This step is
manual, since correspondences dependent on the semantics of the models, which is project-
specific. If these correspondences are materialized as explicit links between (meta)models, a
SU(M)M with all remaining dependencies results. In an optional second step, the specified
correspondences are automatically exploited to merge corresponding elements of different
models in order to improve the SU(M)M by reducing redundancies. But these transfor-
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mations for merging are unidirectional and do not allow to update the source models after
their merge anymore, therefore hurting Requirement R 2 (Reuse existing Artifacts)Z 155.
Since profiles add additional information (or restrict existing concepts), but are not able to
restructure or to remove already existing concepts, it is not possible to reduce redundant
information in the SU(M)M. Composing DSLs or complete software applications often de-
pend on composed models. Often the combination of views into a SUM requires the views
to be consistent to each other: Therefore, executing combination approaches can be used
as checking for consistency, but the combination approaches usually do not support fixing
inconsistencies.

3.5.5 Projectional View Definition

This section presents some selected approaches to define new view(point)s in the projec-
tional setting, since there are approaches which allow to define new views, that do not
support consistency of existing data sources in projectional way: Such approaches could be
integrated with projectional consistency approaches in order to define new views according
to Requirement R 3 (Define new View(point)s)Z 156. The easiest way is to create a new
view(point) manually and treat it as existing data source using the mechanisms for con-
sistency preservation, but there are more advanced approaches specially designed to define
new views. Bruneliere, Burger et al. (2019) provide a survey for such approaches.

Important in the projectional setting is, that new view(point)s are defined on top of
one existing view(point) i. e. the SU(M)M,new View(Point) on top

of one View(Point) i. e.
the SU(M)M

even if the new view should contain concepts
of different existing data sources, since the SUM contains all their information. Only such
approaches are presented in this section. Approaches which define new views on top of
multiple existing views could be used here, too, but are presented in Section 3.3.2Z 119.
Keeping a new view consistent to the existing views is comparable with keeping existing
views consistent to each other,asymmetric Approaches

are sufficient
since all views (the new view and the existing views) are

synchronized directly with the SUM and contain only information which is already present
in the SUM. Therefore, for both kinds of views, asymmetric approaches are sufficient to
keep the views consistent with the SUM.

Cicchetti, Ciccozzi and Leveque (2012) derive new viewpoints from an existing SUMM
by selecting a subset of the elements available in the SUMM:editable new

View(Point)s as Sub Set
of the Elements of the
SU(M)M

To decide, if an element of the
SUM (mainly classes, attributes, associations) should appear in the new viewpoint or not,
eases the definition of new viewpoints by the methodologist, e. g. by providing graphical
dialogs (Cicchetti, Ciccozzi and Leveque, 2011). Additionally, this approach eases the back-
propagation of changes in the new view to the SUM and to the other views, since changes
in the view are directly applicable to the SUM, since the new view(point) is a direct subset
of the SU(M)M. The drawback of this approach is, that restructurings of the concepts in
the SUMM and additionally computed concepts are not possible. Instead, the quality of
the SUMM is inherited to the new viewpoints, which cannot be tailored to all needs of the
users.

The same strategy is used and shortly described by de Lara, Guerra and Vangheluwe
(2006) in order to keep multiple UML diagrams consistent to each other.similar Approaches In similar way,
Guerra, Diaz and de Lara (2005) support multiple view(point)s for one meta(model) for the
development of DSLs, including existing data sources called system views and new views
called derived views (Guerra and de Lara, 2006).

According to the presented practical approaches, Ehrig, Ehrig et al. (2008) use typed
attribute graphs to formalizeFormalizations with

injective Graph
Morphisms

viewpoints as injective graph morphisms vp : Viewpoint →
SUMM , meaning that the viewpoint contains only, but not necessarily all elements of the
SUMM. Additionally, the selected elements might be renamed in the viewpoint. Ehrig,
Ehrig et al. (2008) provide similar formalizations for views as injective graph morphisms v :
View → SUM . These findings motivate the Requirement R 3.2Z 157 in order to concretize
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Requirement R 3 (Define new View(point)s)Z 156:

Requirement R 3.2: New Viewpoints with arbitrary Metamodels

New viewpoints must be able to use arbitrary metamodels.

Jakob, Königs and Schürr (2006) present an approach to define non-materialized views
on top of a single source model like the SUM. editable virtual new

Views using adapted
TGGs

They adapt TGGs in order to keep one
side (the view) and the correspondences virtual and to have only the other side (the SUM)
explicitly materialized. Since such new views are editable, this approach is helpful in
projectional approaches for realizing new views on top of the SUM.

Anjorin, Rose et al. (2014) restrict TGGs restricted TGGs for
editable Views

to View Triple Graph Grammars (VTGGs)
for the asymmetric case in order to increase the performance of transformations for views
on a SUM.

Wang, Gibbons and Wu (2011) formally define incremental updates, Formalizing incremental
Updates for Views (on
Trees)

which can be used
to keep new views consistent to a SUM, but are restricted to tree-like data structures.

Summarizing approaches for defining new view(point)s in projectional settings, sim-
ple approaches exactly design for this setting provide new view(point)s as subsets of the
elements provided by the SU(M)M, Summaryeasing their specifications and fulfillment of the view-
update problem. Additionally, generic approaches for model synchronization including bidi-
rectional model transformations (Section 3.3.1Z 108) can be used with the SUM as source
model and the new view as target model. Using these generic approaches for this purpose
is simplified on the one hand, since the setting here is asymmetric and not symmetric as
in synthetic settings. Therefore, sometimes these generic approaches are restricted to im-
prove the support for this setting, e. g. TGGs. On the other hand, the metamodels for new
viewpoints must be created before by hand.

3.6 Further Research Areas

After identifying several generic approaches for ensuring consistency, this section analyses
some exemplary approaches, which are designed for single application domains or other
research areas. In particular, approaches for consistency of spread information outside the
modeling domain are analyzed, which can show much research for ensuring consistency or
combining spread information. further Research Areas

with Consistency
Challenges

This list of further application domains is not complete and
presents only some prominent examples. Of course, there are more research areas facing
consistency challenges like the following ones:

• Franzago, Ruscio et al. (2018) discovered several projectional and synthetic ap-
proaches for collaborative modeling.

• Feldmann, Herzig et al. (2015a) reviewed consistency management approaches and
discussed them regarding their applicability for mechatronic manufacturing system
design.

• When supporting MDSD with software product line engineering, Corrêa (2011) iden-
tified consistency challenges between the involved artifacts, in particular, between
the features and the software product under development, but did not provide solu-
tions. The survey of Pol’la, Buccella and Cechich (2021) supports the importance of
consistency for variability modeling. Buchmann and Westfechtel (2014) ensure con-
sistency between a feature model and domain models: After relating an element in
domain models for a feature, all dependent elements are related to the same feature,
which mainly targets conformance of domain models to their domain metamodels
and intra-model consistency in a synthetic setting.
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Some of these and of the following approaches are already investigated above, if they
contain generic ideas which are usable for different application domains.Outline UML is analyzed
in Section 3.6.1 as an example for a language with multiple overlapping diagrams, which is
widely used during the development of software systems. Language workbenches allow to
develop such languages with overlappings representations, whose build-in mechanisms for
ensuring consistency are analyzed in Section 3.6.2Z 137. Since they are mainly designed and
used for storing and representing information, data bases (Section 3.6.3Z 139) and ontologies
(Section 3.6.4Z 142) are analyzed. As an example for an application domain with the strong
need to manage a huge amount of distributed information, enterprises are selected and
analyzed in Section 3.6.5Z 144. Additionally, the existence of several related approaches for
discussing consistency in the following research areas shows, that it makes sense to select
them for discussion.

3.6.1 UML

The Unified Modeling Language (UML) is a language to model software-based systems
introduced by the OMG and specified by the UML super structure (Object Management
Group, 2017).UML with a single

Metamodel and multiple
Viewpoints . . .

UML provides several diagram kinds to model the system under development
regarding static aspects by e. g. class diagrams and object diagrams and dynamic aspects
by e. g. sequence diagrams, activity diagrams, use case diagrams and state machines. These
diagram kinds can be treated as viewpoints. The particularity of consistency challenges with
UML is, that UML provides a single metamodel, which can be split into multiple viewpoints
(diagram kinds). Therefore, UML can be seen as projectional. Accordingly, Paige, Brooke
and Ostroff (2007) assume a single metamodel involved in managing consistency.

. . . has Consistency
Challenges

Aziz Ahmad and Nadeem (2010) identify groups of consistency challenges for class dia-
grams, sequence diagrams and state machines, classified regarding among others structure
vs behavior and type vs instance level.

There are several surveys investigating approaches targeting consistency in UML:Surveys In a
recent survey, (Knapp and Mossakowski, 2018) identify 57 approaches for consistency in
UML, classified regarding their support for UML1 or UML2. They report, that existing
approaches support only some diagram kinds, in particular, not more than six diagram
kinds. Lucas, Molina and Toval (2009) identify 32 approaches for consistency for UML
diagrams and found limited extendability and limited support for consistency of models
at different levels of abstraction as recurring properties. Additionally, they sketch another
approach for consistency management in UML using Maude as formal specification for a
SUMM with model transformations written in QVT-R. Usman, Nadeem et al. (2008) sur-
vey approaches for only checking consistency with a classification depending on the used
intermediate representations for UML (formal, extended UML, none). Aziz Ahmad and
Nadeem (2010) analyze some of these approaches which use description logic in more detail.
Gabmeyer, Kaufmann et al. (2019) present model checking approaches for UML diagrams.

some exemplary
Approaches

Egyed, Letier and Finkelstein (2008) identify possible fixes for inconsistencies in UML
models automatically and represent a rule-based approach. This approach is extended
later for generic models, as presented in Section 3.3.1Z 108. Paige, Brooke and Ostroff
(2007) realize consistency for the BON modeling language, having similar diagram kinds
as UML, i. e. class diagrams, collaboration diagrams and contracts expressible as state
machines in UML.

Summarizing approaches for keeping different UML diagrams consistent to each other,
Summary the surveys found lots of approaches, mainly in the first decade of the twenty-first century

and supporting only a small subset of UML diagrams. Therefore, theses approaches can be
seen as preceding research for the more general approaches ensuring consistency (including
projectional and BX approaches) in terms of history. The sketched approaches specific for
UML already use the different techniques for change propagation (Section 3.2Z 99).
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3.6.2 Domain-Specific Languages (DSLs)

While UML (Section 3.6.1Z 136) can be seen as general-purpose modeling language, Domain-Specific
Languages (DSLs)

domain-
specific languages (DSLs) (Kosar, Bohra and Mernik, 2016) are languages tailored to se-
lected concerns of particular stakeholders. DSLs realize concrete syntaxes for users to edit
models conforming to one metamodel. Language workbenches are frameworks to techni-
cally realize editors for such DSLs. Usually language workbenches allow to define more
than one DSL on top of the same metamodel. Therefore, they follow projectional SUM
ideas in the sense of Section 3.4Z 120.

Additionally, editors for DSLs are distinguished into parser-based editors and projec-
tional editors depending on the kind how editors update the abstract syntax tree (AST) as
underlying model (Voelter, Siegmund et al., 2014): parser-based vs

projectional DSL
Editors• In parser-based editors, parsing is used to analyze the concrete representation edited

by the user and to extract the (updated) AST.

• In projectional editors, users change the AST directly by their actions, while the
(updated) AST is rendered to visualize it for the users.

This distinction does not target synthetic vs projectional viewpoints, but how the concrete
syntax is technically realized for one viewpoint and how the user interacts with the DSL
editor (Erdweg, Storm et al., 2013). projectional DSL Editor

=⇒ projectional
Viewpoint

Therefore, projectional editors realize projectional
viewpoints, but the concrete syntax of projectional viewpoints is not always realized by
projectional editors. Examples for widely used language workbenches which use parsing are
Sirius (Viyovic, Maksimovic and Perisic, 2014) for graphical DSLs and Xtext (Bettini,
2013) for textual DSLs. Spoofax is another example for a language workbench producing
parser-based editors (Wachsmuth, Konat and Visser, 2014).

An example for a language workbench whose editors use projections is JetBrains MPSJetBrains
MPS8 (Voelter, Warmer and Kolb, 2015): Users use no free-form editors, but the DSL
provides an editor in form of a “template” which is pre-filled with the information of the
current AST. This information can be edited by users, while the template ensures, that
changed information is directly updated at the corresponding position in the AST. With
this design, no inconsistencies arise, since all changes in views are directly reflected into the
underlying AST which plays the role of a SUM. This design follows the idea of OSM how
to avoid inconsistencies. JetBrains MPS supports different notations including textual,
symbolic, tabular and graphical (by plugins) notations and supports their composition and
extension, since projectional editors enable multiple and diverse notations (Voelter, Warmer
and Kolb, 2015). The most important application of JetBrains MPS is mbeddr, an
integrated set of 81 DSLs with IDE support for developing embedded software (Voelter,
Kolb et al., 2019) unifying modeling and programming (Voelter, 2010). As in general for
projectional editors, usability is also for JetBrains MPS a challenge (Voelter, Siegmund
et al., 2014). To enable direct projections between the concrete syntax and the underlying
model, JetBrains MPS requires to have all projectional editors integrated within on tool,
which hinders to add new viewpoints only on data level without the dimension of tool
integration. This motivates the following requirement to avoid approaches which require to
use a single tool as precondition for data consistency:

Requirement R 5: Reusable Library

The approach must be realized in form of a reusable library.

8More publications related to JetBrains MPS can be found here: https://confluence.

jetbrains.com/display/MPS/MPS+publications+page
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Schröpfer, Buchmann and Westfechtel (2020) started a comparable approach in the
technical space EMF to define projectional textual syntaxes for EMF models.projectional Editors for

EMF
This ap-

proach is extended for modeling multi-variant models for software product line engineering
(Schröpfer, Buchmann and Westfechtel, 2021).

The development of DSLs and language workbenches touches also other directions of
related work:

• While the discussion of parser-based vs projectional editors focuses on the ques-
tion, how to model models which conform to the metamodel of the DSL,DSLs with additional

Constraints
additional

constraints like OCL constraints defined for the metamodel must be ensured, too:
Neubauer, Bill et al. (2017) present an approach to generate editors which ensure
such additional constraints using rule-based approaches for ensuring consistency, as
discussed in Section 3.3.1Z 108, while they are applied here for intra-model consistency
of a single DSL.

• The integration of multiple DSLs covers not only the metamodel level, which is dis-
cussed in Section 3.5.4Z 131,Integration of DSLs but also the concrete syntax with additional challenges
regarding composing grammars (Kats, Visser and Wachsmuth, 2010) for parser-based
editors, while projectional editors can be composed easily, since they do not require
sometimes ambiguous grammar composition (Voelter, 2010).

• Additionally, the development of DSLs itself often involves multiple viewpoints,Developing DSLs with
multiple Viewpoints

usu-
ally at least one viewpoint to define the abstract syntax and one viewpoint to the
define the concrete syntax of the DSL under development: While these viewpoints
again rise consistency and combination challenges, usually the models of views of the
current DSL are used for code generation for the resulting editor for the DSL without
round-trip facilities. Examples for language workbenches with multiple viewpoints
to develop DSLs include GMF, Sirius (Viyovic, Maksimovic and Perisic, 2014) and
Kermeta (Jézéquel, Combemale et al., 2015). Finally, these approach have to deal
with the challenge of evolving abstract syntaxes like GMF-co-evolution (Di Ruscio,
Lämmel and Pierantonio, 2011, p.152f), which is discussed in Section 6.2.1Z 193 as
impact of metamodel evolution.

Blended modelingBlended Modeling (Ciccozzi, Tichy et al., 2019) generalizes the idea of having DSLs
with concrete syntaxes tailored to users concerns by researching, how to enable multiple
concrete syntaxes respectively notations for the same metamodel: Therefore, blended mod-
eling can be seen as projectional from an conceptual point of view, but is orthogonal to
multi-perspective modeling, which concentrates on view(point)s with their (meta)models
(View-Model-relationship in Figure 2.22Z 90). Consistency in blended modeling targets to
propagate changes between the view (respectively its model) and all its concrete render-
ings (Model-ConcreteRendering-relationship in Figure 2.22Z 90) according to the concrete
syntaxes coming with the viewpoint of the view.

Grundy, Hosking et al. (2013) present the language workbench Marama for visual
DSLs, each realized by one SU(M)M including constraints and multiple view(point)s with
graphical representations.Marama Language

Workbench with Subset
Views and Reactions on
Changes

SUM and views are kept consistent, since changes to the view
are directly applicable for the SUM, since views present only a subset of the elements of
the SUM. Additionally, changes in views can be used as events to trigger further actions,
which can be used for follow-up changes (Grundy, Mugridgett and Hosking, 1998), e. g. to
fix inconsistencies.

Summarizing consistency in DSL research,Summary language workbenches for DSLs usually fol-
low projectional concepts, but technically realize editors either parser-based or with projec-
tional editing. Therefore, they lead to a stronger binding of viewpoints to concrete tooling.
Research regarding consistency of multiple DSLs focuses on how to keep multiple concrete
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syntaxes consistent to the underlying model. Depending on parser-based or projectional
editing, language workbenches provide different concepts for DSL engineers with build-in
strategies to ensure consistency.

3.6.3 Data Bases

Since data bases are designed to store and persistent data in software applications, Scopethis
section investigates research approaches in the area of data bases for keeping redundant
data consistent, integrating data and deriving new views. This section restricts itself to
relational data bases ignoring, among others, key-value-based and document-based data
bases (Lu and Holubová, 2019), since relational data bases have a clear schema, which does
not always (explicitly) exist, e. g. for NoSQL approaches (Roy-Hubara and Sturm, 2020).
Such schemata are similar to metamodels in the modeling domain. The evolution of data
base schemata is discussed in Section 6.2.1Z 193.

Combination of Data
Bases

An important challenge in data base research is, how related or redundant data located
in different data bases can be combined. For this, the following approaches are shortly
described:

• integrate data bases into one data base

• ETL and data ware houses

• federated data bases

A central role in these approaches plays the mediated schema (Doan and Halevy, 2005),
mediated Schema ≈
SUMM

which provides the concepts of all original schemata, comparable with the SUMM in mod-
eling. Distributed data bases are not investigated here, since they have a single schema and
the conforming data are spread over multiple data bases, which lead to challenges of data
replication (Section 1.3.2Z 43), but not of consistency between heterogeneous data.

The combination of data stemming from multiple data bases can be made explicit by
introducing a new data base containing all concepts and all data of all original data bases
as data sources (Helms, 2020). Usually, this is realized with the three steps9 schema match-
ing, schema integration and schema mapping (Özsu and Valduriez, 2020): Schema MatchingSchema matching
identifies semantic relationships called mappings between two independent schemata, sur-
veyed by Bernstein, Madhavan and Rahm (2011) and Rahm and Bernstein (2001), who
found, that there are lots of different techniques to find matching elements, but still require
humans for final validation, in particular, since deciding the information capacity equiva-
lence (Miller, Ioannidis and Ramakrishnan, 1993) is undecidable (Miller, Ioannidis and Ra-
makrishnan, 1994). This counts even for approaches which focus on semantics in terms of
semantic relationships and between concepts and their meanings in the schema (Giunchiglia,
Shvaiko and Yatskevich, 2005). Schema IntegrationSchema integration takes the mappings found by schema
matching and uses them to create the mediated schema. Schema MappingSchema mapping transforms the
data from the original data bases into the new data base according to the mappings and
conforming to the mediated schema. Batini, Lenzerini and Navathe (1986) analyze dif-
ferent strategies for schema matching and schema integration, while Batini and Lenzerini
(1984) present an example for such an approach. The tool support for these three steps
is poor (Bernstein, Madhavan and Rahm, 2011; Skok, 2020). In the data base research,
the original data sources are ignored after the integration and are not kept up-to-date.
Therefore, this approach can be seen as data migration, while the general integration idea
is projectional. This approach relates to the question in terms of modeling, how a SU(M)M
can be created from multiple independent (meta)models, as discussed in Section 3.5.4Z 131.

9Other authors like Batini and Lenzerini (1984) comprise schema matching and schema integra-
tion as schema integration only.
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The previous paragraph discussed, how a mediated schema can be provided by explicitly
integrating the data (“combination by integration” (Helms, 2020)).Combination by

Integration
vs
Combination by
Synchronization

Instead of this explicit
data integration, the data could remain within the original data bases and be accessed via
the mediated schema with the global-as-view approach (“combination by synchronization”
(Skok, 2020)): While this approach allows reading the data of all source data bases, but
without reducing duplicates, writing changes is usually impossible. As an example, the
SQL operator UNION used to return elements from two data bases leaves the question
open, in which of the two data bases a new element should be added. In general, to
propagate changes back, the view-update problem must be solved, as discussed in following
paragraphs.

Other approaches follow the ETL principle “extract-transform-load” (Leser and Nau-
mann, 2007):ETL The extraction step extracts the desired data from the underlying data
sources. The transform step transforms the extracted data into the format used within
the data ware house. The load step executes the extraction and transformation steps de-
pending on required time intervals and performance issues. A prominent example for ETL
approaches are data ware houses, which collect and store various data in order to present
them for analyses and decision-making (Chandra and Gupta, 2018).Data Ware Houses Other frameworks for
integration data following the ETL principle are shortly surveyed by Sharma, Tripathi and
Srivastava (2021) including Gobblin (Qiao, Li et al., 2015) as an example. Even when
treating the extracted and collected data as SUM (with pure quality and possible redun-
dancies) with derived new views, the main problem remains unsolved, that all these data
are provided read-only, i. e. no propagation of changes back is possible by design of ETL.
The underlying data sources and their use remain as they are, independently from data
ware houses.

federated Data Bases Federated data bases provide a mediated schema in order to provide a unique access
to multiple underlying data sources (Leser and Naumann, 2007): This mediated schema
contains only the concepts of the underlying data sources which are explicitly exported by
them for this purpose (Leser and Naumann, 2007). Therefore, the mediated schema is not
always complete in contrast to a SUMM. The underlying data sources remain active and
can be still used independently from the mediated schema.

In all analyzed cases, the mediated schema can be realized using techniques for schema
matching and schema integration, sometimes combined as schema merging.Model Management

Operators
These generic

techniques are operationalized as model management operators (Bernstein and Melnik,
2007): These operators realize transformations with schemata and mappings between sche-
mata as inputs and outputs. These operators are generic for the data base research area and
therefore are not able to realize project-specific situations like project-specific consistency
goals. Therefore, they are not able to fulfill Requirement R 1 (Model Consistency)Z 154.
Some examples for such model management operators include schema matching, map-
ping composition, mapping inversion, schema difference calculation and schema merging
(Bernstein and Melnik, 2007; Melnik and Bernstein, 2004). Bernstein (2003) shows model
management operators and their application to schema integration, schema evolution and
round-trip engineering, but on conceptual level.

Data base views present information which is derived from the materialized relations of
the data base, often defined by SQL queries.Views of Data Bases In particular for materialized views, as used
in data ware houses, it is important to keep them up-to-date in efficient way, which can be
realized with incrementality (Gupta, Mumick and Subrahmanian, 1993; Mohania, Konomi
and Kambayashi, 1997).incremental Views This involves complex algorithms for incrementality for different
kinds of SQL expressions like aggregate and outerjoin (Gupta and Mumick, 2006). Varde
and Rundensteiner (2002) present an approach to keep views provided by data ware houses
consistent to changes in multiple underlying data sources in an incremental way.

More interesting is the view-update problem arising from the question, whether and
how to propagate changes in the view back into the underlying data base:View-update Problem To propagate
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updates of relational views into the underlying data base relations, among others, Bancilhon
and Spyratos (1981) and Dayal and Bernstein (1982) investigate view-update strategies and
conditions. In general, a view-update operation to update the underlying relations does not
always exist or is not unique (Dayal and Bernstein, 1982) or there are infinitely many repair
actions (Dam, Egyed et al., 2016, p. 138). Therefore Tran, Kato and Hu (2020) develop
an approach to explicitly write code to realize the view-update problem. While the view-
update problem stems from the data bases area, it is also applied to tree structures (Foster,
Greenwald et al., 2007). Comparing with the modeling domain, the view-update problem
is a historical precedent of BX (Abou-Saleh, Cheney et al., 2018).

The provenance of information investigates “the origin, context, or history of data”
(Cheney, Chong et al., 2009) Data Provenanceand is a research area cross-cutting domains like modeling, data
bases or ontologies, since they all handle with information. Data provenance is discussed
here with the focus on data bases, since most research for provenance is focusing on data
managed with data bases. When combining multiple data bases as discussed above, knowing
the initial source of information after the combination is necessary for updating the initial
data sources in terms of Requirement R 1 (Model Consistency)Z 154 and Requirement R 2.2
(Reuse existing Models)Z 156, but not sufficient. But provenance is not only important
when combining multiple data bases, but also when querying information and representing
them as views (Rani, Goyal and Gadia, 2015). In both cases, provenance can be seen as
links back into the original sources of the current information, while these links can be
realized by annotations or by explicit links (Doan, Halevy and Ives, 2012). In any case,
provenance requires additional meta-data, whose amount can be challenging, e. g. in big
data settings (Wang, Crawl et al., 2015), while “it is impossible in practice to record all
relevant provenance information” (Buneman and Tan, 2019, p. 5), which shows the need
to define context-specific provenance scenarios (Buneman and Tan, 2019). In the area of
modeling, explicit links between models, e. g. between source models and target models of
model transformations, could be used for provenance, as discussed by Anjorin and Cheney
(2019). Since BX is a model synchronization-based approach ensuring consistency between
models, they propose, that “provenance will play an important role in explaining consistency
management operations” (Anjorin and Cheney, 2019).

Summarizing consistency challenges in data base research, Summarythere are lots of approaches
for combining, selecting and representing information from multiple sources, but propagat-
ing changes back is rarely supported. This counts in particular for combination approaches,
ETL approaches including data ware houses and data base views. Therefore, Require-
ment R 1 (Model Consistency)Z 154 and Requirement R 3 (Define new View(point)s)Z 156

are usually not fulfilled, since only one transformation direction is supported. Even ap-
proaches for data provenance provide only meta-data about the origin of information, but
no realization techniques for back propagation up to now. The investigated approaches for
composing multiple data base into a single data base like a SU(M)M are either read-only
(see above) or do not support the source data bases after integration anymore, leading to
restricted support for Requirement R 2 (Reuse existing Artifacts)Z 155. Techniques for data
base integration require manual effort as for schema matching to create a SUMM and rarely
supported by tools. There are two more cross references between research areas within data
base research (Doan, Halevy and Ives, 2012): Uncertainty modeling can be used also for
the metamodel level, e. g. to enrich automatically found mappings during schema matching
with probability information. Another cross reference in data base research is, that data
provenance information can help to concretize uncertainty information. Both cross refer-
ences are not deepened here, since this thesis expects methodologists to explicitly decide on
the mappings between metamodels basing on domain knowledge about the data sources.
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3.6.4 Ontologies

As an alternative to models, ontologies can be used to describe information. Therefore,
ontologies with related or interfering information must be mediated or combined. This
section discusses, how some research areas of ontologies are related to the consistency of
models.

Ontologies are a means to describe knowledge in a certain domain (Hesse, 2002) as
graph.Ontologies describe

Domain Knowledge
While being models, ontologies describe domains mainly in analyses phases, in

contrast to models used in software engineering, which describe systems mainly in design
and implementation phases (Aßmann, Zschaler and Wagner, 2006). Therefore, ontologies
can be used to reuse domain knowledge in multiple software engineering projects within
the same domain (Horst, Bachmann and Hesse, 2012).

Ontologies support multiple levels of instance-of relationships, i. e. ontologies support
multi-level modeling in general, as sketched in Section 2.2.2Z 60, but this distinction often
blurs (Leser and Naumann, 2007, p. 274f), in particular, using the term ontology does not
make clear, if the ontology schema or the ontology instance is discussed.Ontologies allow

multi-level Modeling
Since this thesis is

restricted to two meta-levels, i. e. metamodels and models, ontologies are discussed in this
section with two meta-levels called schema and instance, too. The evolution of ontologies
is discussed in Section 6.2.1Z 193 with the focus on the distinction between schema and
instance.

Note, that ontologies in knowledge representation follow the open world assumption,
meaning, that elements which are not modeled might exist, so far, it is only unknown, if
they exist or not.open vs closed World

Assumption
In contrast, modeling in software engineering follows the closed world

assumption, meaning, that elements which are not modeled do not exist. This is reflected
by the Definition 2Z 32, which states, that all views together describe the system in its
entirety, i. e. there is no more information required for the system outside of the views.
In particular, this thesis focuses on ensuring consistency of information which is explicitly
known and available.

Ontologies are realized in technical spaces (Section 2.5Z 84) which are different to tech-
nical spaces for modeling, in particular, for EMF.Technical Space To bridge technical spaces for ontologies
and modeling, Rahmani, Oberle and Dahms (2010) present a transformation between OWL
for ontologies and ECore with OCL for modeling. An alternative formal approach for uni-
fying ontologies and models is presented by Mossakowski, Codescu et al. (2015). In general,
such bridges can be defined on the meta-metamodel level, i. e. the modeling space of models
and ontologies are mapped, or on the metamodel level, i. e. the classes in the metamodel
are mapped to classes in the ontology schema (Staab, Walter et al., 2010).

In order to realize model checking, models can be translated into ontologies, whose
reasoning techniques are reused for this purpose (Parreiras, Staab and Winter, 2007).Intra-Model

Consistency
When

translating only single (meta)models, only intra-model consistency, conformance of models
to their metamodel and conflicting constraints can be checked using techniques to check
the internal consistency of ontologies like Baclawski, Kokar et al. (2002). The approach of
Haase and Stojanovic (2005) is change translation-based and supports arbitrary consistency
goals with explicit repair strategies to fix occurring inconsistencies.

Discussing relations of ontologies to inter-model consistency requires to distinguish two
cases, whether the different ontologies target same or different domains:Inter-Model Consistency

• If the two ontologies aim to describe the same domain, there are many redundancies
between them, but usually they do not lead to inconsistencies in the understanding
of this thesis: If a particular ontology is accepted for a particular domain, then
there are no misunderstandings and no inconsistencies. Otherwise, an alternative
domain is developed, probably, with a slightly shifted focus. There is no request to
fix the differences between these two versions, since the differences are not seen as
inconsistencies, but as alternatives.
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• If the ontologies describe different domains, redundancies between different ontologies
are small, since only concepts which are part of both domains are redundant. Such
ontologies can be combined into one joint ontology (see below), but usually do not
lead to inconsistencies, since they complement each other.

The need for fixing probably occurring inconsistencies between ontologies is decreased in
both cases, since ontologies usually describe domains with a generalized claim instead of
systems, compared to models describing the same, concrete system under development,
whose inconsistencies lead to failing development projects.

Additionally, in both cases, same concepts described in different ontologies can be identi-
fied by ontology matching: Ontology MatchingOntology matching “finds correspondences between semantically
related entities of ontologies” (Shvaiko and Euzenat, 2013, p. 158). Additionally, Shvaiko
and Euzenat (2013) describe the state of art of ontology matching including references to
additional surveys. Since fully-automatic mapping of ontologies seems not be possible in
general, i. e. their results require human reviews, heuristics and machine learning algorithms
are used (Noy, 2004). After identifying the overlaps of ontologies on schema level, these
overlaps must be made explicit, e. g. in form of explicit links or translation rules, in order
to use them to translate conforming instance ontologies into each other (Parreiras, Staab
et al., 2008). Another use case is to merge ontologies for different domains according to
the found correspondences into an integrated ontology in order to describe the domains in
integrated way.

While some ontologies are designed as abstract foundation and are reused and con-
cretized for more specific ontologies (Noy, 2004), which can be seen as top-down procedure,

Top-down vs Bottom-upcombining ontologies as described above is usually bottom-up (Choi, Song and Han, 2006).
While combining ontologies is a means for their reuse in the ontology research (Choi, Song
and Han, 2006), combination is a means for ensuring consistency in this thesis.

Ontologies can be used as supporting technique for challenges in software engineering,
Ontologies as
supporting Technique

with some some concrete examples for ontologies used for software engineering collected by
Bernstein (2011). More interesting are applications of ontologies for modeling:

• France and Rumpe (2007) propose the use of ontologies for metamodel integration.

• Walter, Parreiras and Staab (2014) integrate the modeling spaces of ontologies and
ECore in order to support the development of and reasoning on DSLs.

• Jin, Cordy and Dean (2003) propose to use ontologies for realizing adapters.

• Feldmann, Herzig et al. (2015b) propose to use knowledge representation formalisms
like RDF for describing commonalities of different views in production system devel-
opment projects.

Finally, ontologies can be used to deal with the heterogeneity of data, as shown by this
example: In order to enable tool integration regarding data interoperability, Kramler, Kap-
pel et al. (2006) propose to use ontologies for a semi-automatic approach: Ontologies for Data

Interoperability
The concepts of

metamodels describing the data of single tools are lifted into ontologies. These ontologies
are mapped to a predefined ontology for tool integration and commonalities between them
are identified based on these mappings. These commonalities are used to derive bridges
implemented in QVT which realize data interoperability between the tools (Kappel, Kap-
sammer et al., 2006). This approach uses a projectional and fixed SUMM, but without a
SUM. As another approach, Hakimpour and Geppert (2001) integrate ontologies in order
to integrate equivalent schemata of data bases (Section 3.6.3Z 139). El Hamlaoui, Trojahn
et al. (2014) transform ECore (meta)models into ontologies and use ontology matching to
identify correspondences between different models for consistency purpose. On the other
hand, knowledge encoded as ontology can be used as vocabularies or thesaurus for other
(schema) matching approaches (Leser and Naumann, 2007, p. 280f).
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Since knowledge representations can become huge, Bork, Buchmann and Karagiannis
(2015) propose to use multiple views to represent only parts of the whole amount of knowl-
edge.multiple Views on the

same Ontology
They distinguish approaches for realizing views into views-by-generation conforming

to model transformation-based approaches here and views-by-design conforming to change
translation-based approaches here. Since these views are read-only, consistency is ensured
by re-generating the views after changes in the whole knowledge representation.

Summarizing the sketched research approaches in the ontologies area,Summary consistency plays
a more supporting role at various points, but is not the main purpose, in contrast to e. g.
BX research: Since particular ontologies as representations of knowledge live by agree-
ments of their particular communities, there is no need for automated approaches changing
ontologies, even not for ensuring consistency, since changes need the understanding and
agreement of the involved communities, making updates of ontologies a manual process.
Nevertheless, there are approaches to ensure intra-ontology consistency, which could be
applied to multiple ontologies by applying the ideas of multi-models to ontologies. Similar
to schema matching in data base research, ontology matching can be used to determine
overlapping elements of ontologies as first step for merging ontologies into each other. On-
tologies are also used as supporting technique in software engineering including for data
interoperability.

3.6.5 Enterprise Applications

In the context of enterprise applications, data occur with two different purposes (Ehrig,
Ermel et al., 2015a, p. 328):Enterprises at Runtime

vs at Development Time
Data are used by enterprise applications to realize their

business goals at runtime or data are used by stakeholders of enterprise applications to
design and realize them at development time. If two or more sources with such data are used
due to distributed organizations or acquisitions, there is the need for enterprise integration
in order to synchronize the different units of enterprises.Levels of

Enterprise Integration
(at Runtime)

Giachetti (2004) distinguish four
levels of enterprise integration focusing on the runtime dimension:

Network targets the physical connectivity of hardware and platforms and is not relevant
here.

Data overcomes the separation of heterogeneous data: “The integration goal is data shar-
ing where two or more subsystems or organizational units exchange data with each
other” (Giachetti, 2004, p. 1151). This aspect is highly related here and is discussed
in the following paragraphs.

Application aims at interoperability as “the ability of one software application to ac-
cess/use data generated by another software system” (Giachetti, 2004, p. 1151). This
aspect is clear distinguished by Halevy, Ashish et al. (2005) as “enterprise applica-
tion integration” from “enterprise information integration”, their name for the data
aspect before. The application level focuses on interoperable interfaces of software
applications and components and is related to tool integration (Section 1.3.2Z 43)
and therefore is not related here.

Process targets the coordination of dependencies between processes and of resources re-
quired by different processes at runtime and is therefore not related here.

These four levels are called vertical integration by Kühn, Bayer and Karagiannis (2003),
vertical and horizontal
Integration

while horizontal integration covers different models within the same vertical level of differ-
ent business units or partners of a supply chain. Mixing vertical and horizontal integration
leads to hybrid integration. At development time, the static dependencies between these
four vertical levels as well as the horizontal dimension must be taken into account:Levels at Development

Time
Busi-

ness process models (located on the process level) must be realized with underlying IT
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applications (application level) which use heterogeneous and depending data (data level),
shared via hardware (network level). Therefore some information on other levels than the
data level are shortly sketched in this section, too, like business process models at the end
of this section. In all cases, heterogeneous and depending data must be consistent: Van
Belle (2003) identified consistency as quality criterion for enterprise models, but focuses
more on intra-model consistency, while this section focuses on inter-model consistency in
the enterprise domain, not explicitly distinguishing horizontal and vertical dimensions.

Since companies use multiple data bases for managing their data (Section 3.6.3Z 139),
Data Integration at
Runtime

they have the usual needs to integrate or keep their underlying enterprise data consistent, in
order to combine different enterprise applications fulfilling the different business use cases.
Means for this are SU(M)M-like approaches, federated data bases and data ware houses
(Giachetti, 2004). The term enterprise information integration is clarified and demarcated
from data ware houses by Halevy, Ashish et al. (2005), focusing on virtually integrating dis-
tributed and heterogeneous data by federated queries on a mediated schema, in contrast to
data ware houses, which duplicate and integrate data outside of their sources. Since enter-
prise information integration (respectively interoperability) usually is read-only, updates of
data via defined business process require enterprise application integration (Halevy, Ashish
et al., 2005, p. 779, 782). Additionally, they can use ontologies (Section 3.6.4Z 142) and
their integrations to manage understandings of different domains and knowledge required
for their business use cases (Giachetti, 2004).

The development of enterprise applications requires additional concerns and therefore
viewpoints. Multiple Viewpoints for

developing Enterprise
Applications

In particular, different viewpoints are used also in enterprise architectures with
the example of the Archimate approach (Atkinson and Tunjic, 2014b). Therefore, the
consistency of different views must be ensured, which is aimed by some frameworks in the
enterprise domain:

• As an example, the MEMO approach (Frank, 2014) integrates viewpoints for, among
others, object-oriented information modeling, organizations including structures and
processes, business strategies and the IT infrastructure into one integrated metamo-
del. Therefore, MEMO can be realized also as an instantiation of the OSM approach
(Tunjic, Atkinson and Draheim, 2018) due to its top-down procedure and the explicit
SUMM, which shows the feasibility of OSM and of projectional SUMM approaches
for enterprise modeling with multiple viewpoints in general.

• Another example approach for realizing multiple viewpoints is MODELMOSAIC
(Delen, Dalal and Benjamin, 2005), whose general design is projectional, but with a
SUM as collection of multiple models and change propagation, similar to Vitruvius.
It supports collaborative development, simulation and code generation, while the
different viewpoints and consistency goals seem to be fixed (Fernandes, Li et al.,
2009). This approach supports also the mapping of ontologies (Section 3.6.4Z 142)
representing schemata of different business units in order to exchange data between
them (Fernandes, Li et al., 2010) at runtime for business application integration (see
above).

• An even more generic approach is Dijkman, Quartel and van Sinderen (2008), hav-
ing viewpoints for behavior, structure and information, establishing explicit links on
metamodel and model level and checking OCL constraints for consistency, but with-
out fixing found inconsistencies, while the approach is not restricted to enterprise in
general.

• Bork and Sinz (2013) propose a high-level conceptual approach for realizing multi-
view modeling and apply it to Semantic Object Model (SOM) business process mod-
eling (see below). Bork and Karagiannis (2014) sketch the MuVieMOT tool which
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should work as workbench for multi-view modeling with some support for consistency
between views, but the details are not shown.

An important means to design enterprise applications are business process models to
model use cases in the enterprise domain:Business Process Models For business process modeling, consistency is
an important challenge, e. g. between business process models and supporting IT models
(Branco, Xiong et al., 2014) or between business models and enterprise architectures (Ia-
cob, Meertens et al., 2012), and there are synthetic and projectional approaches to ensure
consistency (Awadid and Nurcan, 2019). As an example, Küster, Völzer et al. (2016) sup-
port different viewpoints for business analysts and IT experts on the same business process
using a SUM called “Shared Process Model” here with a fixed set of viewpoints and fixed
consistency goals.

In order to realize consistency also for models from the enterprise domain,Technical Space technical
spaces used in enterprise modeling must be bridged to technical spaces used in modeling
for software engineering. As an example, Kern and Kühne (2007) present a bridge between
ARIS for enterprise architectures and EMF. Generalizing this idea, all information used by
enterprise applications and all information about the design of enterprise applications can
be treated as views conforming to viewpoints.

After treating enterprise information as models,Reuse Inter-Model
Consistency Approaches
for Enterprises

all presented approaches for ensuring
inter-model consistency can be applied, in particular, synthetic approaches (Section 3.3Z 108)
and projectional approaches (Section 3.5Z 121). This explicitly counts also for more formal
approaches like TGGs (Ehrig, Ermel et al., 2015a).

Summarizing consistency within enterprises,Summary of Enterprise
Consistency

lots of approaches for models, data bases
and ontologies can be reused for enterprises as an application domain, mainly at their run-
time. More specific approaches are available for the development of enterprise applications
with specific enterprise views including some support for their consistency. In particular,
the consistency between business process models and realizing IT applications is investi-
gated. Also in the domain of enterprises, there is the discussion between explicitly storing
the integrated information e. g. within a data ware house and keeping the data of interest
within their sources together with a virtual integration e. g. with enterprise information in-
tegration, which is similar to the discussion between projectional and synthetic approaches
in the modeling domain.

3.7 Summary: Lessons Learned

Objective of this section is to summarize the lessons learned when investigating related ap-
proaches for ensuring consistency.Objectives of this

Section
Additionally, groups of related approaches are compared

with the requirements and the criteria of Figure 3.1Z 94 as summary. Design decisions based
on these comparisons are done in the design of the new approach of this thesis in Chap-
ter 5Z 163. The requirements identified during this Chapter 3Z 93 are explicitly established
in the following Chapter 4Z 153.

Initially, some criteria (depicted in Figure 3.1Z 94) for the functional objectives of ap-
proaches for ensuring model consistency (Section 3.1Z 94) successfully guide the selection
of related approaches to investigate and help to roughly evaluate the investigated related
approaches. In particular, the levels of heterogeneity help to focus on approaches targeting
semantic heterogeneity. However, the clear distinction between semantic and structural
heterogeneity is difficult or not always possible, since they often depend on each other.
Therefore, also structural heterogeneity must be supported, when overcoming semantic het-
erogeneity as main objective. Important is the finding, that supporting multi-directionality
of change propagation is an important challenge,Multi-Directionality of

ensuring Consistency
which is not decidable in general e. g.

for the view-update problem and is not covered by most approaches in data base (Sec-
tion 3.6.3Z 139), ontology (Section 3.6.4Z 142) and enterprise (Section 3.6.5Z 144) research.
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In that research areas, integrated or aggregated data and new views are usually read-only
and their changes can not be propagated back into the sources. In particular, data base
research and ontology research seem to focus on composing or aggregating data and not on
ensuring their consistency (Requirement R 1 (Model Consistency)Z 154). For the data base
research, data provenance can be seen as first but not sufficient step to update initial data
sources after their combination.

Even bidirectionality, the simplest form of multidirectionality, introduces the challenge
of having multiple possible results, when transforming information in two directions: Non-bijective

Bidirectionality leads to
multiple possible Fixes
for Inconsistencies

If a
transformation transforms information as bijection between two models, the result is unique.
Otherwise, the relationship is non-bijective and there are multiple possible solutions in
general. Therefore, someone has to decide about the final solution (or the solution is done
in non-deterministic way). This problem can be faced and found from different perspectives:

• Strategies for fixing inconsistencies in particular projects depend on the current
project (Section 1.2.1Z 31).

• BX need to derive two unidirectional transformations from the same specification:
As an example, if one direction is explicitly specified, can the inverse direction be
automatically executed with a predictable result? If the result is the expected one,
then the BX satisfies the principle of least surprise. Again, the surprise is project-
specific.

• Does a function have an inverse function and is the particular result of the function
sufficient for the inverse function to produce the original input of the function? If
additionally the original input is still known, this setting refers to lenses.

• The view-update problem is not decidable in general.

Therefore, different possible strategies to decide the final fix for inconsistencies are depicted
in Figure 3.6Z 106, which can be used by different stakeholders (Section 2.4Z 79).

The solution space for deciding the final fix for inconsistencies involves the degree of au-
tomation and the involved stakeholders: Users of BX expect automated selections to be de-
terministic (Stevens, 2010). Selecting Fixes:

deterministic,
Degree of Automation,
involved Stakeholders

Transferring this result to model consistency, users want fully-
automated and predictable fixes for inconsistencies. Fixed heuristics hard-coded within ap-
proaches are often not usable in practice, e. g. least change provides not always the results
desired by users (beside technical issues) and least surprise requires more theoretical in-
vestigations, while the surprise depends on the particular project requiring domain-specific
information (Cheney, Gibbons et al., 2017) and therefore cannot be solved by platform
specialists. In the investigated approaches, methodologists are rarely supported, but in par-
ticular by the three projectional SUM approaches. The clear distinction between users and
methodologists is usually not done or not exploited, e. g. persons using BX approaches to
specify a concrete BX (methodologists) have different skills and needs than persons using
the concrete BX by starting the engine of the BX approach for automated execution (users).
In particular, model synchronization-based approaches try to solve the selection challenge
on level of platform specialists with heuristics like least change and least surprise. In order
to enable project-specific selections (according to project-specific consistency goals), plat-
form specialists should provide means to enable methodologists to specify the selections
which are desired by users.

Another important finding in the BX research during extensions of bidirectional to
multidirectional model transformations is, binary vs n-ary

Consistency Goals
that there are consistency goals targeting three

or more models which cannot directly be split into multiple pairs of binary consistency
relations between two models (Stevens, 2017; Macedo, Cunha and Pacheco, 2014), with a
simple example in Stünkel, König et al. (2021). In the data base domain, it is challenging
to realize even cardinality constraints for ternary relationships (Cuadra, Mart́ınez et al.,
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2013). Therefore, realizing n-ary consistency goals is another challenge when fulfilling
Requirement R 1 (Model Consistency)Z 154.

Another challenge is to fix initial inconsistencies which occurred before applying an
approach for ensuring consistency:Fix initial

Inconsistencies
This challenge is rarely discussed in related approaches,

but relevant for all approaches expecting consistency as precondition at some point in time
“before their application”, in particular for change translation-based approaches. In order
to make this challenge explicit, Requirement R 2.3 (Fix existing Models)Z 156 is established
later.

Techniques for change propagation require the model changes, usually done by users
(User∆), to propagate them to related models.Representing Changes Changes in the model are encoded in three
different ways by the investigated approaches:

• Changes in the model can be explicitly encoded by using model deltas, as in delta-
lenses.

• Changes in the model can be implicitly encoded by the current (and updated) version
of the model with two different options to derive the actual model deltas:

– The current version of the models is compared with its previous version (state-
based), if the current model version is given as an additional model (“out-
place”). This option introduces accidental i. e. unnecessary ambiguity, since the
changes as result of model difference calculation between two model versions
are not unique.

– If the model is updated in-place and explicit links or other meta-data for the
previous state of the model are available, they can be exploited to identify
created and deleted elements, leading to explicit model deltas. An example are
the correspondences in TGGs, which indicate previously matched patterns and
are used for realizing incremental TGGs (Section 3.3.1Z 108).

The model changes are directly required for change translation-based approaches or for
incrementality of the other kinds of approaches for change propagation:Explicit Model Deltas

are more expressive
than new Model
Versions

It is important

to use the changes like the User∆ directly and not only the updated model, as seen for
(delta) lenses, since deletions and (re-)creations tend to loose information, which can be
prevented or restored by model differences. Additionally, correspondences as representa-
tives for consistency between source model and target model are reused and updated, too,
i. e. the model synchronization does not provide “any new model” which is consistent to
the other model, but provides an updated model according to the previous consistency cor-
respondences and to the User∆ (Abou-Saleh, Cheney et al., 2018, p. 10). Therefore, model
synchronization-based approaches taking the User∆ into account tend to behave as change
translation-based approaches.

Another generic finding from symmetric multiary delta-lenses is,User∆ can be amended
during Change
Propagation

that the User∆ can
be amended during the change propagation. This fits to findings in Section 2.3Z 71 when
formalizing consistency as relation, that there are cases, where the currently changed (and
inconsistent) model must be fixed in order to fulfill consistency. Therefore, amending the
User∆ is allowed in consistency rules.

Section 3.2Z 99 identifies lots of cross-cutting techniques and strategies to realize ap-
proaches for ensuring consistencyCross-cutting

Techniques
including the distinction between projectional and syn-

thetic settings, explicit links and four different techniques for change propagation. This
section uses these techniques for the outline here in order to summarize main characteris-
tics of these techniques in the following paragraphs.

Summarizing proof-theory-based approaches,Proof-Theory-based
Approaches

they need bridges between technical spaces
for modeling and technical spaces for formal specifications, but can explicitly span the
solution space. Proof-theory-based approaches often have a performance in NP , due to
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the used solvers. The investigated proof-theory-based approaches usually do not support
incrementality, the exception of Almeida da Silva, Mougenot et al. (2010) directly represents
model differences instead of model elements in Prolog. This fits to the observation for BX
approaches, that only JTL using proof-theory techniques does not support incrementality,
while the other three BX approaches support incrementality (Samimi-Dehkordi, Zamani
and Kolahdouz-Rahimi, 2016).

Summarizing rule-based approaches, Rule-based Approachesthey are very flexible in adding and removing rules
for consistency goals, depending on the current needs of the current project. There are
several rule engines which support the incremental evaluation of rules in order to improve
performance. Checking consistency by evaluating rules is very similar in the investigated
approaches, but often require external support for multi-models. In contrast, the strategies
for providing fixes for found inconsistencies vary.

Summarizing model synchronization-based approaches, Model
Synchronization-based
Approaches

they use model transformations
and therefore require similar granularity levels for the information in the involved models.
Compared with the ongoing example, representations for classes can be transformed be-
tween Java and class diagrams, but transformations between requirements and Java do
not work. Even in the case, that some information can be transformed between models,
usually there is more information which cannot be transformed. In particular in symmetric
cases (Figure 3.5Z 104), often some information is missing in some of the models. This re-
quires incremental model transformations to keep such information unchanged and to keep
transformable information consistent. The surveys of Kusel, Etzlstorfer et al. (2013) and
Kahani, Bagherzadeh et al. (2019) report, that all investigated incremental model trans-
formation approaches require correspondences between the transformed model elements10.
The case study of Buchmann and Westfechtel (2016, p. 179f) for incremental consistency
between class diagrams and Java source code with TGGs shows, that rules in TGGs have
limited flexibility due to fixed elements and changes in the patterns, which results in the
combinatorial explosion of rules to transform associations for example. BX approaches have
to deal with the trade-off between formal guarantees and expressiveness, leading to more
practical approaches with imperative parts (Bank, Buchmann and Westfechtel, 2021). The
model synchronization-based approaches which support the symmetric case are required
for synthetic settings, symmetric for synthetic,

asymmetric for
projectional, bijective
rare

for projectional settings, the asymmetric case is sufficient, while the
bijective case rarely occurs in practice. Composability of model transformations is an im-
portant design goal, in particular for BX (Stevens, 2010) and for lenses (Diskin, König and
Lawford, 2018), which is deepened in Section 6.4.1Z 203.

Summarizing change translation-based approaches, Change
Translation-based
Approaches

they are incremental by design, since
they directly react on occurring changes. With this design, they immediately translate
changes and can not control the point in time of change propagation (as the other three
kinds of approaches can do), otherwise, generated follow-up changes and stored changes
must be merged and might be in conflict. Another limitation is, that all models must
initially be consistent to each other, before changes occur and can be translated, leading to
Requirement R 2.3 (Fix existing Models)Z 156.

Comparing the four groups of approaches for change propagation with each other is
done along Table 3.2Z 150: comparing Change

Propagation Techniques
Interesting is the comparison regarding checking consistency

(first row) and fixing inconsistencies (second row): These two steps are explicitly separated
by rule-based approaches, while model synchronization-based and change translation-based
approaches focus on fixing inconsistencies without explicitly searching for inconsistencies
before. The classification regarding additional technical spaces (third row), incremental-
ity with a performance depending on the amount of model changes (fourth row) and the
possibility of delayed inconsistency fixing (fifth row) are already discussed during the sum-

10The only exception is Echo (Macedo and Cunha, 2013), since it realizes QVT-R model trans-
formations not directly, but with a proof-theory-based technique (details above).
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Criterion Proof-Theory Rules Model Synchro. Change Translation

Checking X X (implicitly) –
Fixing X X X X

Within Space – X X X
Incrementality – X X X
Delayed Fixes X X X –

Table 3.2: Comparing Techniques for Change Propagation

maries of the respective outlier approaches. Beyond this comparison, proof-theory-based
approaches seem to be used more for behavioral aspects and the other approaches for static
aspects, e. g. Van Der Straeten, Mens et al. (2003) use description logics for dynamic aspects
of UML and Mens and Van Der Straeten (2007) as rule-based approach for static aspects
of UML, as mentioned by the research group of Tom Mens (Mens, Van Der Straeten and
D’Hondt, 2006, p. 212).

Looking at concrete approaches within the four groups, the clear separation of the four
techniques (proof-theory, rules, model synchronization, change translation) is blurring:clear Separation of

Techniques is blurring
In-

place model transformations for checking consistency are similar to rule-based approaches
evaluating constraints. Bidirectional and incremental model transformations behave simi-
larly like change translation-based approaches with similar performance depending on the
amount of model changes. This results in approaches for change-driven model transforma-
tions with model changes as first-class citizens (Bergmann, Ráth et al., 2012). Accordingly,
the focus of BX research is moving from model transformations to maintain consistency
(Stevens, 2018), e. g. with principles of least change and least surprise. Proof-theory is used
by other approaches like model transformations for BX.

Summarizing synthetic approaches,Synthetic Approaches they require lots of direct relations between pairs
of models, in form of rules or model transformations, sometimes with additional explicit
links between them. This graph is not always completely mashed, but in the magnitude of
O(n2) in general with n as the number of models to keep consistent to each other. A chal-
lenge are n-ary consistency relations due to their missing “binarization” in general: Some
model transformation approaches allow to target multiple models at the same time (in-
cluding TGGs). As an alternative, multiple pairs of model transformations can be used, if
the corresponding n-ary consistency relation can be split into binary consistency relations.
Another challenge is the execution order in networks of BX, since it is not obvious and must
be explicitly specified in general (Stevens, 2017). But also in rule-based approaches, the
order of applying rules is important, since fixes by the first rule can influence possible fixes
of the following rules or introduce new inconsistencies requiring additional rules for their
fixes. Interestingly, approaches for synthetic settings support either Requirement R 1 (Mo-
del Consistency)Z 154 or Requirement R 3 (Define new View(point)s)Z 156, i. e. the according
Section 3.3.1Z 108 and Section 3.3.2Z 119 have no overlap of approaches11. Therefore, one
approach for keeping source models consistent should be combined with one approach for
deriving new view(point)s.

Summarizing projectional approaches,Projectional Approaches they depend on the SUM idea (Section 3.4Z 120),
having one SUM conforming to one SUMM containing all information respectively concepts
about the system under development. All views are projections from the SUM.SU(M)M idea Therefore,
for model synchronization-based approaches, it is sufficient to support the asymmetric case,
while the symmetric case is required for synthetic settings. There are specific approaches
with fixed viewpoints and consistency goals and there are generic approaches enabling arbi-

11This counts for specifically designed approaches for synthetic settings, generic model transfor-
mation approaches can be used for both use cases.
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trary viewpoints and consistency goals. The specific approaches show, that the projectional
idea is working in practice in different application domains.

There are three generic approaches (Section 3.5Z 121) which are explicitly designed
to realize the projectional SUM idea: generic projectional

Approaches
Vitruvius and RSUM are very similar, since

they both are bottom-up, use ModelJoin for deriving new view(point)s and use change
translation-based synthetic techniques internally for keeping the models consistent to each
other, without an explicit and redundancy-free SUM. Since these two approaches are change
translation-based, their reuse of initially inconsistent models is restricted (Requirement R 2
(Reuse existing Artifacts)Z 155). The CPRs of Vitruvius enforce only binary consistency
goals, not n-ary ones, with ongoing research to overcome this challenge (Klare, 2018).
The top-down approach OSM in contrast is missing a strategy to develop a clean and
redundancy-free SU(M)M from existing source (meta)models (Requirement R 2 (Reuse ex-
isting Artifacts)Z 155). Section 3.5.4Z 131 investigates approaches for this purpose with
the result, that transformations are required to eliminate redundancies, depending on the
project-specific semantics of the source models. But these transformation approaches are
unidirectional and do not update the source models after their combination into the SUM
anymore, therefore hurting Requirement R 2 (Reuse existing Artifacts)Z 155. The con-
cepts of all three SUM approaches for deriving new view(point)s are restricted in order
to enable editability by change propagation, e. g. ModelJoin used by Vitruvius and
RSUM does not support new classes in new viewpoints (Requirement R 3 (Define new
View(point)s)Z 156). Therefore, all three SUM approaches do not completely fulfill all re-
quirements.

Language workbenches supporting the development of multiple representations for the
same model follow also the projectional SUM idea, more Projectionsindependently, if parser-based editing
or projectional editing is used for realizing concrete syntaxes. Since they are top-down,
language workbenches do not support the reuse of existing models conforming to arbi-
trary metamodels (Requirement R 2 (Reuse existing Artifacts)Z 155). The organization of
viewpoints along orthogonal dimensions by OSM is independent i. e. orthogonal to the
mechanisms for ensuring consistency, therefore, this approach for viewpoint organization
can be reused by other approaches ensuring consistency between different views.

Summarizing formalizations with lenses and round-trip engineering, Formalizations: Lenses,
Round-trip

they formalize con-
ditions for approaches ensuring consistency, in particular for model synchronization-based
approaches. They do not propose concrete implementations, but point to conceptual chal-
lenges and motivate some ideas for implementation, including . . .

• the explicit specification and use of explicit links for horizontal alignment between
different models and of model differences for vertical alignment between different
versions of the same model,

• the use of model deltas instead of updated models to reduce ambiguities and

• the possibility for amending the User∆ during the change propagation.

Summarizing different research and application areas, Consistency in different
Research and
Application Areas

in the end, ensuring consistency as
the main challenge is the same in different research and application areas like modeling (Sec-
tion 3.3Z 108, Section 3.4Z 120, Section 3.5Z 121), modeling languages (Section 3.6.1Z 136,
Section 3.6.2Z 137), data bases (Section 3.6.3Z 139), ontologies (Section 3.6.4Z 142) and en-
terprises (Section 3.6.5Z 144). This is discussed along two aspects: In the first aspect, sim-
ilar matching techniques can be applied in principle both for schemata of data bases and
for schemata of ontologies, Matching Techniques

for Schemata of Data
Bases, Ontologies and
Models

as proposed by the classification and survey of Shvaiko (2005).
Since these schemata describe the concepts and structures of data, which counts also for
metamodels, these matching techniques could be transferred to metamodels, too. The other
way around, techniques for (meta)model matching (Somogyi and Asztalos, 2020) could be
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transferred to schemata of data bases and ontologies. In the second aspect, fixing incon-
sistencies in the modeling domain and the view-update problem in data base research look
quite differently first,Fix Inconsistencies

vs
View-update Problem

but can be seen as two sides of the same problem: Both mainly target
the model (or instance) level, not the metamodel (or schema) level, but are solved on the
metamodel level. Fixing inconsistencies between interrelated models (usually used as views)
sounds synthetic, but can be solved also in projectional way, while the view-update problem
arises in projectional settings between views and their SUM. Since data base views can be
described by “in general unidirectional, partial and non-injective functions; very similar
to model transformations” (Hettel, Lawley and Raymond, 2008), they are similar to mo-
del synchronization-based approaches using model transformations to ensure consistency.
Therefore, the main challenge of fixing inconsistencies in modeling and of the view-update
problem in data base research is the same.

Summarizing this summary,Summary there are lots of approaches for ensuring inter-model con-
sistency in various research areas with various realization techniques and strategies. During
their exemplary investigation, the challenges for ensuring consistency are concretized and
extended, which results in concretized requirements, which are finally motivated and col-
lected in the following Chapter 4Z 153. Additionally, promising realization techniques are
detected, which could be reused for new approaches. As main classification, approaches for
ensuring inter-model consistency can be distinguished into synthetic and projectional ap-
proaches: Synthetic approaches fulfill the main requirements in general, even with some re-
strictions in details like n-ary consistency goals in model synchronization-based approaches
and execution orders, but require a square amount of explicit links, rules or model transfor-
mations between the involved models. Generic projectional approaches can be distinguished
into bottom-up and top-down approaches: The investigated bottom-up approaches reuse
existing (meta)models, but have restrictions with initially inconsistent models and use syn-
thetic techniques internally. The investigated top-down approaches lack strategies to reuse
existing models and their metamodels. Summarizing, there is no approach which fulfills all
requirements for ensuring inter-model consistency with satisfactory degree. Therefore, a
new approach for ensuring inter-model consistency is required and designed in Part IIIZ 163

of this thesis. Based on the findings and comparisons of this Chapter 3Z 93, design decisions
for that approach are made in Chapter 5Z 163.
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Chapter 4

Requirements

Objective of this section is to collect and document the requirements for the design of Mo-
ConseMI, the new approach which is proposed in this thesis. Objective: collect

Requirements
The first high-level require-

ments are directly derived from the objectives of this thesis, described in Section 1.3.3Z 46:

High-level Requirements

R 1 Changes in one model have to be propagated into all related models. (Model
Consistency)

R 2 The approach must allow to reuse existing artifacts. (Reuse existing Arti-
facts)

R 3 The approach must allow to define new view(point)s. (Define new
View(point)s)

During the analyses of foundations for inter-model consistency (Chapter 2Z 51) and of
related approaches (Chapter 3Z 93), these requirements were concretized by refining sub-
requirements and detecting additional requirements. These new requirements were already
shortly mentioned at their first occurrence, but officially introduced in this Chapter 4 with
more explanations and with their origins. Therefore, this section can be seen as a summary
of Part IZ 25 and Part IIZ 51.

The identified requirements for MoConseMI are grouped into functional requirements
(Section 4.1Z 154), which focus on the conceptual design of the approach, and into tech-
nical requirements (Section 4.2Z 157), which focus on the technical implementation of the
approach. Grouping and Content

of Requirements
The quality of the desired approach is not described by requirements, but is

evaluated and discussed later in the evaluation in Part VZ 467. Each requirement is pre-
sented with an description and its origin. Possible origins of requirements are motivation
and challenges of ensuring consistency, the objective of this thesis, foundations or related
approaches including their implementations.

The first three high-level requirements (see above) are motivated by the challenges of
ensuring inter-model consistency (Section 1.2Z 31). They reflect all objectives of this thesis
(Section 1.3.1Z 42) Validityand thus form the complete set of functional requirements, which only
needs refinement by sub-requirements. Since these requirements focus on objectives and
not on realization strategies, they are valid also for other approaches and help to evaluate
existing approaches for ensuring inter-model consistency.
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4.1 Functional Requirements

This section collects functional requirements, which must be fulfilled by MoConseMI
for ensuring inter-model consistency. The three high-level requirements are directly de-
rived from the objectives of this thesis (Section 1.3.1Z 42) and are already depicted in
Section 1.3.3Z 46. As summary of the motivated challenges of ensuring inter-model consis-
tency (Section 1.2Z 31), they are complete, but are concretized according to the findings in
Chapter 2Z 51 and Chapter 3Z 93.

Since the use of multiple views can lead to inconsistencies between their respective mo-
dels (Section 1.1Z 26), the main challenge is to ensure consistency between different models
by changing related models according to changes within one model (Section 1.2.1Z 31).Ensure Inter-Model

Consistency as main
requirement

To
overcome this challenge is the main motivation for this thesis and leads to the following
Requirement R 1:

Requirement R 1: Model Consistency

Changes in one model have to be propagated into all related models.

Since manual consistency preservation is error-prone, requires high effort and is an
repetitive task, change propagation requires support for automation. Such an automation
reduces the knowledge and care of users using views, since they can concentrate on their
particular tasks within their views,Automation to relieve

Users
but impacts caused by their changes can be automat-

ically propagated into all related views. Ensuring consistency between different models
is aimed, independently from the models’ roles. In particular, this includes models of
existing data sources (Requirement R 2Z 155) as well as models of newly derived views (Re-
quirement R 3Z 156). Change propagation is the behavior desired by users of models, as
deepened in Section 2.3Z 71. But change propagation is no concrete realization strategy for
ensuring consistency, since Section 3.2Z 99 identifies several classes of concrete realization
strategies for change propagation, including model synchronization and change translation.

Since the models to be kept consistent not only have different roles but also represent
different information from various domains including different views tailored to particular
concerns of different stakeholders, models contain different kinds of information and are
structured differently. Nevertheless, consistency between such heterogeneous models must
be ensured.Models conforming to

arbitrary Metamodels
Since metamodels are the means to determine the general concepts of models

(Section 2.2.2Z 60), arbitrary metamodels must be supported. The amount of projectional
approaches supporting the consistency between models conforming to fixed metamodels
(Section 3.5Z 121) shows, that there is the need for generic approaches supporting models
conforming to arbitrary metamodels. This leads to Requirement R 1.1:

Requirement R 1.1: Generic Metamodels

The approach must support arbitrary metamodels.

Since metamodels guide the construction of models and determine valid models, the
support for arbitrary metamodels enables the support for arbitrary conforming models.Support any Models,

independent from their
Metamodels and
concrete Renderings

The
information encoded by these models might have different concrete renderings including
different formats, DSLs and so on, as the adapters for different formats demonstrate in
Section 8.4Z 271. Again, the approach should be independent from concrete renderings of
models.

Section 1.2.1Z 31 analyzes, that the desired consistency depends on the particular de-
velopment project, since consistency depends on the particular semantics of the involved
models, as understood by the particular stakeholders.Consistency Goals

depend on
project-specific
Semantics

Part 4Z 35 of the ongoing example
shows different possible consistency goals for the same (meta)models, which both might
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be used in different projects. Therefore, approaches with fixed consistency goals are not
sufficient, leading to Requirement R 1.2:

Requirement R 1.2: Generic Consistency Goals

The approach must support arbitrary consistency goals concretized by consistency
rules.

In particular, this requirement also includes the support of n-ary consistency relations
(Section 3.7Z 146) between n > 2 models as consistency goals. This is in line with Stünkel,
König et al. (2021), who establish n-ary consistency goals as an important requirement for
inter-model consistency. Since consistency goals should be specifiable in a generic way, even
their consistency rules must not be fixed. Requirement R 1.2 depends on Requirement R 1.1
(Generic Metamodels)Z 154, since the consistency goals are formulated for elements of meta-
models (Section 2.3Z 71): Related approaches supporting only a fixed set of metamodels,
usually support also only fixed consistency goals (Section 3.5Z 121). Flexible Consistency

Goals and Consistency
Rules

Requirement R 1.2 en-
sures, that even for the same set of metamodels, different consistency goals can be specified
in different projects. Section 14.2.2Z 489 discusses some preconditions for consistency goals
and their consistency rules, which must hold for them in order to be realizable, i. e. “arbi-
trary” does not mean “any” consistency goals, but “arbitrary” within those preconditions.
Aim of this requirement is to ensure, that the consistency goals are not pre-defined, but
highly configurable by methodologists within those preconditions.

The second high-level requirement is already motivated by Section 1.2.2Z 36: Reuse existing
environments including
developed artifacts

Since there
exist lots of standards, tools and environments in already running development projects with
lots of already developed artifacts, they must be reused, when introducing an approach for
supporting consistency. This leads to Requirement R 2:

Requirement R 2: Reuse existing Artifacts

The approach must allow to reuse existing artifacts.

Part 5Z 37 of the ongoing example shows some examples for artifacts to reuse. While
the focus is to reuse existing artifacts and to keep their models consistent to each other, it is
also possible to start without any reused artifacts, as discussed in Section 13.3.2Z 474. The
following sub-requirements concretize the artifacts to reuse, by proposing what to reuse and
in which way.

Since artifacts to reuse (according to Requirement R 2) come with metamodels (accord-
ing to Definition 3Z 36), they must be reused, too. Support existing ToolsAs already motivated in Section 1.2.2Z 36,
the metamodels are given by existing standards, tools, environments and DSLs. This leads
to Requirement R 2.1:

Requirement R 2.1: Reuse existing Metamodels

The approach must allow to keep existing metamodels as initial viewpoints.

To make the approach interoperable with existing tools, the metamodels given by the
tools have to be supported as initial viewpoints. Enable Consistency

Goals for Concepts of
interoperable Tools

In particular, the concepts of the meta-
models of the tools must be addressable by consistency goals for formulating the desired
consistency. This is the precondition for reusing data developed with these tools, as de-
scribed in the following paragraphs.

Since artifacts to reuse (according to Requirement R 2) come not only with metamo-
dels but also with models (according to Definition 3Z 36), they must be reused, too. Reuse existing DataAs
already motivated in Section 1.2.2Z 36, models developed in projects without consistency
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management often stem from (legacy) results of previous projects or are reused libraries.
This leads to Requirement R 2.2:

Requirement R 2.2: Reuse existing Models

The approach must allow to reuse existing models as initial views.

To support existing data, existing data are treated as initial models to reuse. Reusing
such models means, that existing models are treated as existing views in form of a data
source and are imported by approaches.Import existing Models

and keep them
consistent

After their initial reuse, the views must be kept con-
sistent to all other views, according to Requirement R 1 (Model Consistency)Z 154. Reusing
models depends on the reuse of their metamodels, therefore Requirement R 2.2 depends on
Requirement R 2.1 (Reuse existing Metamodels)Z 155.

Since models to reuse (according to Requirement R 2.2 (Reuse existing Models)) are
handled manually or in an unstructured way in projects so far, there is a high probability
for inconsistencies in such approaches.Fix initial

Inconsistencies in reused
Models

When reusing existing models and subsequently
ensuring their consistency, it must be ensured, that the models are also initially consistent
with other reused models. This leads to Requirement R 2.3:

Requirement R 2.3: Fix existing Models

The approach must allow to fix inconsistencies within reused models.

This requirement is important for approaches which assume consistency before users
apply manual changes which are automatically complemented with fixes. Since Require-
ment R 1 (Model Consistency)Z 154 asks (only) for propagating changes, it must be ensured,
that the initial models are consistent to each other before.Challenge depends on

particular Approaches,
e. g. Change
Translation-based

In particular, this counts for
change translation-based approaches (Section 3.2Z 99) like Vitruvius (Section 3.5.2Z 126).
Fixing initial models is only necessary when models are reused, therefore Requirement R 2.3
depends on Requirement R 2.2 (Reuse existing Models).

The third high-level requirement is already motivated in Section 1.2.3Z 39:Define new derived
Viewpoints

In order
to support additional stakeholders with tailored views and to realize interoperability with
additional tools over time, the information of the other views must be combined, selected
and provided as new, derived views according to the stakeholders concerns. Therefore, new
viewpoints must be specified, which enable the construction of such derived new views.
This leads to Requirement R 3:

Requirement R 3: Define new View(point)s

The approach must allow to define new view(point)s.

Newly derived views do not come with an initial model to reuse as data sources in
Requirement R 2.2 (Reuse existing Models), but all information for the new view is derived
from already existing, reused views. Therefore, this Requirement R 3 and Requirement R 2
(Reuse existing Artifacts)Z 155 complement each other. Part 6Z 40 of the ongoing example
shows an example for a new, derived view(point). The following sub-requirements concretize
the derived view(point)s and are partially proposed also by Jakob, Königs and Schürr (2006,
p. 322).

As explicitly motivated in Section 3.3.2Z 119, new views should contain not only (some
selected) information of already existing views, but information spread over multiple views.

Provide Information
which is spread over
multiple Views

This counts in particular for information which is located in different reused views. This
leads to Requirement R 3.1Z 157:
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Requirement R 3.1: New Views reuse whole System Description

New views must be able to reuse all information which represent the whole system
under development.

Reusing all information of the description of the particular system under development
(complete view, according to Figure 2.1Z 52), involves not only the information of the
multiple reused (partial) views, All Information

including Inter-View
Links

but also dependencies like explicit links between them.
This requirement is a challenge in particular for synthetic settings (Section 3.3.2Z 119),
since there is no single model containing all information as in projectional settings.

Already shortly motivated in Section 1.2.3Z 39, new viewpoints have to reflect additional
concerns of additional stakeholders or must fit to a metamodel given by an additional tool.

Restructuring existing
Concepts

Therefore, arbitrary metamodels for new viewpoints must be definable. Generally, it is
not sufficient to provide only a direct subset of the elements which are already existing
(Section 3.5.5Z 134). Instead, existing elements could be restructured, including renamings,
and additional elements could be added. This leads to Requirement R 3.2:

Requirement R 3.2: New Viewpoints with arbitrary Metamodels

New viewpoints must be able to use arbitrary metamodels.

While this requirement is formulated for metamodels, conforming models for new views
have to be derived and restructured from the existing information in a similar way.

Already explicitly motivated in Section 1.2.3Z 39, additional stakeholders getting new
views might want to influence the development of the current system and therefore need
to change their views. Users change derived

Views
These changes have to be propagated into all related existing views

resulting in editable views (Section 3.3.2Z 119) according to Requirement R 1 (Model Con-
sistency)Z 154. Additionally, Goldschmidt, Becker and Burger (2012) identify editability as
a feature of views. This leads to Requirement R 3.3:

Requirement R 3.3: Editable new Views

New views must be editable by users.

This requirement directly refers to the view-update problem, which is not solvable in
general (Section 3.6.3Z 139) and approaches need to provide appropriate strategies to deal
with it or to make clear, when information in new views is editable and when information
in new views is read-only.

4.2 Technical Requirements

This section collects technical requirements, which must be fulfilled by the approach for
ensuring inter-model consistency. These requirements mainly target the implementation
of the approach, but also the design of the approach, since the approach must enable the
implementation of the desired requirements. These requirements are derived from findings
during the investigation of related approaches in Chapter 3Z 93 and their supporting tooling.

Since different approaches for model consistency expect the model to be realized ac-
cording to different techniques, e. g. the three projectional SUM approaches presented in
Section 3.5Z 121 support three different technical spaces, Different Approaches

support different
Technical Spaces

the structural heterogeneity of
models (Section 3.1Z 94) must be covered. Additionally, there are various technical spaces,
as sketched in Section 2.5.1Z 84. In order to support and reuse arbitrary models (Require-
ment R 2 (Reuse existing Artifacts)Z 155), their technical spaces must be supported, too.
This leads to Requirement R 4Z 158:
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Requirement R 4: Technical Spaces

The approach must support views realized in different technical spaces.

Accordingly, the new approach also needs a technical space to technically realize the
managed models.Bridges for EMF As motivated in Section 2.5.2Z 86, EMF is chosen as technical space of the
new approach. Therefore, bridges between other technical spaces and EMF are required,
which are realized as adapters (Section 6.6.5Z 226).

Since this thesis aims to ensure consistency between models, but should not depend on
tool integration as precondition (Section 1.3.2Z 43), the approach should be realized in a
stand-alone and reusable way.Ensuring Consistency

independent of Tools
In particular, the implementation should not depend on a

particular tool or environment, as it is often the case for language workbenches that realize
DSLs (Section 3.6.2Z 137). This leads to Requirement R 5:

Requirement R 5: Reusable Library

The approach must be realized in form of a reusable library.

The implementation of the approach as reusable library allows to easily apply the ap-
proach to different application domains.Reusable Library for

different Applications
Since ensuring consistency should be automated

according to Requirement R 1 (Model Consistency)Z 154, there is no need to force particular
GUIs to use the approach.

4.3 Summary

In order to summarize the results from the motivating challenges, the objectives of this the-
sis, the foundations and investigated related approaches, this sections collects and explic-
itly documents functional (Section 4.1Z 154) and technical (Section 4.2Z 157) requirements.
These requirements are summarized in the following box:

Collected functional Requirements

R 1 Changes in one model have to be propagated into all related models. (Model
Consistency)

R 1.1 The approach must support arbitrary metamodels. (Generic Metamo-
dels)

R 1.2 The approach must support arbitrary consistency goals concretized by
consistency rules. (Generic Consistency Goals)

R 2 The approach must allow to reuse existing artifacts. (Reuse existing Arti-
facts)

R 2.1 The approach must allow to keep existing metamodels as initial view-
points. (Reuse existing Metamodels)

R 2.2 The approach must allow to reuse existing models as initial views.
(Reuse existing Models)

R 2.3 The approach must allow to fix inconsistencies within reused models.
(Fix existing Models)

R 3 The approach must allow to define new view(point)s. (Define new
View(point)s)
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R 3.1 New views must be able to reuse all information which represent the
whole system under development. (New Views reuse whole System
Description)

R 3.2 New viewpoints must be able to use arbitrary metamodels. (New View-
points with arbitrary Metamodels)

R 3.3 New views must be editable by users. (Editable new Views)

R 4 The approach must support views realized in different technical spaces.
(Technical Spaces)

R 5 The approach must be realized in form of a reusable library. (Reusable Li-
brary)

The fulfillment of these requirements is explicitly discussed in Section 13.1Z 467. These
requirements form the starting point to design and implement a solution in Part IIIZ 163.
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Part III

Approach

This part designs and implements MoConseMI (MOdel CON-
Sistency Ensured by Metamodel Integration) as a new approach
for ensuring inter-model consistency. The main design decisions
for MoConseMI in order to fulfill the requirements are dis-
cussed, before this design is detailed with bidirectional oper-
ators which realize small transformations in models and their
metamodels as main concept. Concrete operators are developed
in form of a collection of reusable operators. In addition, the
designed MoConseMI approach is implemented as MoCon-
seMI framework. This framework enables the application and
evaluation of MoConseMI in practice in the next Part IVZ 283.
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Chapter 5

MoConseMI at a glance

Chapter 3Z 93 investigated related approaches for ensuring inter-model consistency regard-
ing the requirements, and identified restrictions for all investigated approaches. MoConseMI as new

Approach for ensuring
Inter-Model Consistency

Therefore,
Part III develops MoConseMI (MOdel CONSistency Ensured by Metamodel Integration)
as a new approach for ensuring inter-model consistency. In particular, the OSM approach
raises the challenge to create an optimized SUMM and requires according methods (Atkin-
son, Stoll et al., 2013). MoConseMI provides such a method.

Objective of this section is to give a rough overview of the design of the new approach
MoConseMI and its main design decisions. Objectives: Overview +

Design Decisions
Based on the findings from related approaches

(Chapter 3Z 93), Section 5.1 discusses and decides the main design choices in order to fulfill
the requirements, identified in Chapter 4Z 153. Afterwards, an overview of MoConseMI
with its main concepts is given in Section 5.2Z 171, together with use cases and the ongoing
example. Section 5.3Z 179 summarizes the results. This section serves as overview of the
general design, before it is discussed in detail in Chapter 6Z 185. This Chapter 5 is inspired
by a corresponding section in Jelschen (2024).

The main design ideas of MoConseMI are published in this publication as well:

Related MoConseMI Publication

Johannes Meier and Andreas Winter (2018a): Model Consistency ensured by Meta-
model Integration. In: 6th International Workshop on The Globalization of Modeling
Languages, co-located with MODELS 2018.

This publication is cited as Meier and Winter (2018a) in this thesis.

5.1 Design Decisions

This section discusses and decides design choices for the conceptual realization of MoCon-
seMI. The first three design choices of this section are already depicted in Figure 3.8Z 124

and are used in Chapter 3Z 93 to classify related approaches: The first design choice in
Section 5.1.1Z 164 concerns the starting point of the construction process for ensuring inter-
model consistency. Outline and Motivation

of Design Decisions
The next two design choices discuss the outcomes of the construction

process for establishing inter-model consistency as end point, i. e. they determine the us-
age of a SUM (Section 3.4Z 120): Section 5.1.2Z 165 decides, whether the approach uses a
projectional setting with an explicit SUM or a synthetic setting without any SUM. Sec-
tion 5.1.3Z 167 bases on the decision of the previous design choice for using an explicit SUM
and determines its quality. The last three design choices discuss the way from the starting
point to the end point: Section 5.1.4Z 168 decides to use model synchronization techniques
for change propagation. Section 5.1.5Z 169 determines the interplay of stakeholders for
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ensuring consistency with the focus on methodologists. Section 5.1.6Z 170 establishes the
reuse of parts of model transformations as means to ease the work of methodologists when
they realize consistency by model synchronization. These design decisions are visualized in
Figure 5.4Z 180 as summary in Section 5.3Z 179.

With starting point, end point and the way between them, the whole construction
process is completely covered by design choices. The first and the third design choices are
introduced by Meier, Klare et al. (2019) as design criteria to span the complete solution
space for projectional approaches, and are extended by the second design choice to cover
synthetic approaches as well. Some design choices depend on previous design decisions,
which is deepened in the sections of respective design choices. These design choices in
Section 5.1Z 163 are not complete, but intended to guide the main design of MoConseMI.
Additional, more fine-grained design choices are discussed in Chapter 6Z 185.

Each design decision is discussed within its own section,Pattern for Design
Decisions

starting with a short explana-
tion of the design choice and its motivation and origin. The possible concrete choices are
listed afterwards. Then the choice is named and motivated, that is selected as decision by
MoConseMI for the respective design decision. Finally, possible impacts of this design
decision are listed, which emphasize some details and technical challenges to be overcome
in the detailed design in Chapter 6Z 185.

There are also some specifications before these design decisions, which are already dis-
cussed in the sections before:Early Design Decisions

• The objectives and demarcations of Chapter 1Z 25 including its focus on inter-model
consistency with the reuse of existing (meta)models and the aimed levels of hetero-
geneity do not restrict the solution space (and are no design decisions therefore), but
determine the (functional) requirements for the desired solution.

• The formulation of consistency with consistency goals and consistency rules (Fig-
ure 2.17Z 73) is early design,Consistency Goals and

Consistency Rules
but the formulations are independent from concrete

approaches. Therefore, they can be seen as a kind of requirements specification for
consistency.

• The proposed use cases (Figure 2.20Z 79) and their stakeholder groups (Section 2.4Z 79)
are early design decisions,different Stakeholders but are already introduced in order to compare them with
related approaches in Chapter 3Z 93. Since their degree of involvement into managing
consistency is a design choice, this design choice is discussed in Section 5.1.5Z 169.

• Using EMF as technical space (Section 2.5.2Z 86) might be seen as early technical
design decision.EMF as Technical Space But the supported concepts of ECore (Figure 2.21Z 88) are only
mentioned as look-ahead, while their selection is finally decided in Section 6.6.2Z 222.
Since technical spaces realize models technically, the conceptual design is not influ-
enced by this early design decision for EMF as technical space used within MoCon-
seMI.

Summarizing, the only relevant conceptual design decision, which is already decided, is the
design of stakeholders and is deepened in Section 5.1.5Z 169. The following sections discuss
new design choices and motive their design decisions.

5.1.1 Bottom-Up: Existing Artifacts as Starting Point

This design choice targets the question, what the starting point of the construction process
for establishing inter-model consistency is.Design Choice:

Top-down vs Bottom-up
This design choice fits to the design criterion C1

in Meier, Klare et al. (2019) for projectional approaches, which is generalized here to cover
both synthetic and projectional settings, and is already established as conceptual design
choice in Figure 3.8Z 124. Possible choices are the following ones:
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Bottom-up approaches use the existing artifacts as starting point and build the synchro-
nization on top of them.

Top-down approaches establish the means for synchronization first in an ideal way and
tries to make existing artifacts interoperable afterwards.

MoConseMI decides to be a bottom-up approach, Design Decision:
Bottom-up for reusing
(Meta)Models

since the reuse and fix of existing
models and their metamodels is easier in bottom-up approaches, since the (meta)models
to reuse form the starting point. With this design decision, Requirement R 2 (Reuse ex-
isting Artifacts)Z 155 can be fulfilled easier. In particular, OSM as a top-down approach
does not come with build-in strategies to reuse existing (meta)models (Section 3.5.1Z 124).
This example fits to observations of Moreno and Vallecillo (2004), who propose bottom-
up approaches for reusing existing models. Kurpjuweit and Winter (2007) also propose a
bottom-up procedure, which identifies viewpoints first and integrates them into a SUMM
afterwards, but leaves the concrete integration strategy open.

5.1.2 Projectional with an explicit SUM as End Point

This design choice targets the question, whether the approach is projectional using an
explicit SUM or synthetic without any SUM. Design Choice:

Synthetic without SUM
vs Projectional with
explicit SUM

This design choice is already established as
conceptual design choice in Figure 3.8Z 124. Possible choices are the following ones:

Synthetic without SUM Synthetic approaches use only the existing models and their
metamodels and propagate changes directly between pairs of these models, without
any SUM.

Projectional with explicit SUM Projectional approaches establish an explicit SUM ac-
cording to Section 3.4Z 120, which is used to propagate changes between the existing
models and the SUM in both directions, but not between existing models directly.
The quality of such an explicit SUM is covered by the next design choice.

MoConseMI decides to be a projectional approach with an explicit SUM, mainly since
the necessary number of relationships between n models is in the order of O(n) for projec-
tional approaches, while it is in the order of O(n2) for synthetic approaches: Scalability of

Inter-Model
Relationships

In particular,
when adding a new model, projectional approaches require only one additional relationship
(which can be seen as constant effort in terms of complexity), while synthetic approaches
require n additional relationships in the worst case (Kurtev, 2008, p. 382). Even in the
domain of synthetic approaches, some authors are aware of this problem: Feldmann, Wim-
mer et al. (2016) report on the square number of relationships between models. Therefore,
Broy, Feilkas et al. (2010) mention missing scalability of synthetic approaches, while Jin,
Cordy and Dean (2003) call the synthetic integration an “utopia” for creating direct con-
verters between reverse engineering tools. If the relationships are realized with model
transformations, there is a high effort for transformations between large sets of metamo-
dels (Baumgart, 2010). Therefore, “a strategy to reduce this number is essential for a
model-synchronization-based inconsistency management approach to become feasible within
the context of manufacturing systems design” (Feldmann, Herzig et al., 2015a, p. 164).
Such a strategy is provided by projectional approaches. In practice, the models are usually
not completely meshed in synthetic settings, e. g. in the ongoing example in Figure 2.19Z 78

or for the application in Figure 10.7Z 379. This is the reason, why also some approaches
with a projectional user experience internally use synthetic techniques, like Vitruvius
(Section 3.5.2Z 126). Another strategy to deal with the problem is to use models only in a
strict (transformation) order (Shinkawa, 2006). But in general, the number of relationships
still remains in the order of O(n2). Besides the scalability, there are other aspects that
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distinguish synthetic and projectional approaches and they are discussed in the following
paragraphs.

Since the relationships in synthetic settings are usually organized as a non-directed
graph,unclear Execution

Orders in synthetic
Approaches

synthetic approaches face problems with an unclear or complicated execution order
when maintaining and exploiting these relationships. This concerns in particular networks
of BX, that employ dense graphs. Since transformations are transitive in this graph type,
in BX networks there are multiple possible transformation ways to update the models.
Therefore, the execution paths usually must be explicitly controlled or specified (Stevens,
2017). In contrast, an explicit SUM is the root of a tree with the views as leafs and
therefore avoids this problem. This problem occurs also in rule-based approaches with an
example of Mens, Van Der Straeten and D’Hondt (2006), where the order of checking rules
and resolution rules is unclear and therefore can lead to different results depending on the
chosen execution order of rules.

An advantage of synthetic approaches is their higher modularity, i. e. it is easier to
add another model or to remove an already combined model (Yie, Casallas et al., 2009b).

Modularity Trade-offs Therefore, Knapp and Mossakowski (2018, p. 48) propose a synthetic approach for UML
consistency, since a global realization might be hard for behavioral concepts. A high mod-
ularity is a main design goal of Vitruvius in order to increase the reusability of defined
relationships between models in other projects (Klare, Kramer et al., 2021). On the other
hand, there are n-ary consistency goals which cannot be split into pairs of binary con-
sistency relations, which reduce modularity and require additional concepts in synthetic
settings to deal with them. Together with unclear execution orders (see above) and consis-
tency of pairwise relationships, summarized as compatibility, this design choice is a trade-off
between modularity and compatibility (Klare, 2018).

The explicit SUM in projectional approaches can be used as single point-of-truth:single Point-of-Truth Since
each view reads the data from the SUM and writes changes back into the SUM, the SUM
is a natural mediator for possible conflicts, since views do not directly interact with each
other as in synthetic approaches.

Having the SUM with all information about all views allows to discard the views,discard and recreate
Views

since
they can be recreated as projections from the SUM afterwards. This fits to the SUM vision,
where views are projected on-demand from the SUM (Section 3.4Z 120).

Having an explicit SUM, it can be used to store additional information which is not
part of any existing model.store additional

Information in the SUM
Exploiting the SUMM can be used to structure these additional

information properly. A typical example for such additional information are traceability
links between elements located within different models. This discussion is continued in
Section 14.1.2.1Z 486. Synthetic approaches need to introduce additional models which
store inter-model links, if the initial models should remain unchanged.

Finally, this thesis values the lower complexity of the number of explicit relationships be-
tween models and the better support for n-ary consistency goals of projectional approaches

Design Decision:
Projectional and
explicit SUM

as more important than the higher modularity of synthetic approaches. Additionally, pro-
jectional approaches come with natural solutions for the single point-of-truth and for storing
additional information. Therefore, MoConseMI follows the projectional SUM idea. Al-
ready France and Rumpe (2007) argue, that a comprehensive metamodel (here: the SUMM)
supports the consistency of interrelated views.

This design decision has the following impacts:Impact

• The explicit SUM contains the whole information of all views, not only depend-
ing information of different views, according to the SUM idea as presented in Sec-
tion 3.4Z 120. Together with the following design decision in Section 5.1.3Z 167 for
a pure explicit SUM, this design provides some additional advantages, as discussed
below. Nevertheless, this discussion is taken up in Section 13.3.3.2Z 476.

• Since the SUM contains all information of the project as single point-of-truth, the
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views can be discarded and recreated from the SUM afterwards, according to the
SUM vision of on-demand projecting views from the SUM (Section 3.4Z 120).

• The SUM is project-specific, since the SUM contains all information of all views
within the current project and these views are project-specific, including data sources
as “input” (Section 1.2.2Z 36) and new views as “output” (Section 1.2.3Z 39). These
project-specific SUMs are in contrast to e. g. Pfeiffer and Wasowski (2012) with a
generic SUM for all kinds of textual languages (not only for modeling languages).

5.1.3 Adjustable Approach towards an essential SUM

This design choice depends on the design decision in Section 5.1.2Z 165 for an explicit
SUM Design Choice:

Pragmatic vs Essential
vs Adjustable SUM

and targets the question, how many dependencies exist between elements within the
SUM. This design choice fits to the design criterion C2 “pureness” in Meier, Klare et al.
(2019) for projectional SUM approaches and is already established as conceptual design
choice in Figure 3.8Z 124. Possible choices are the following ones:

Pragmatic approaches keep all initial dependencies and resolve none of them, like e. g.
the modular SUMs of Vitruvius and of RSUM.

Essential (or pure) approaches have no dependencies within the SUM (any more) like
OSM.

Adjustable approaches (still) have some internal dependencies, e. g. since they resolved
some initial dependencies in order to move from pragmatic approaches towards essen-
tial approaches. Therefore, this choice is floating inbetween the two extreme choices
“pragmatic” and “essential”.

If an approach is not essential, i. e. it has some internal dependencies, it requires means to
manage the dependencies and keep depending information consistent to each other.

MoConseMI decides to be adjustable, since it starts according to Section 5.1.1Z 164

with existing models and inherits all their initial dependencies, leading to a pragmatic SUM
by default. Design Decision:

Adjustable
In order to keep the dependencies consistent, the SUM should contain depend-

ing information like redundant elements only once, which allows to propagate changes for
depending elements from one model to according elements in the SUM and from them
(as single point-of-truth) to the elements in other models. This design follows the ideas
for change propagation of the OSM approach with an essential SUM. In contrast to the
top-down OSM, MoConseMI is bottom-up and therefore usually does not reach the es-
sential quality for the SUM as in OSM, but an essential SUM is reachable in the long-term.
Additionally, methodologists might explicitly decide to keep some dependencies, which are
synchronized in a different way or should not be automatically synchronized at all. This
discussion is deepened in Section 12.2.3Z 460. Summarizing, MoConseMI is adjustable by
moving from pragmatic to essential by removing dependencies within the SUM in order to
keep them consistent in the existing models.

An essential SUM provides advantages when using it as starting point for defining
newly derived views: Reuse for new ViewsAll information about the current project can be reused directly in
high quality, in particular without redundancies or other dependencies. Effort spent for
transitioning a pragmatic SUM into an essential SUM is easily reused, when deriving new
views from the nearly essential SUM. In particular, only one model and not multiple models
must be queried without any redundancies, easily fulfilling Requirement R 3.1 (New Views
reuse whole System Description)Z 157, compared with ModelJoin used by Vitruvius
(Section 3.5.2Z 126) and RSUM (Section 3.5.3Z 129). Some more characteristics of the
SUM are discussed in Section 13.3.3Z 475.

This design decision has the following impacts: Impact
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• Since the SUM usually does not exist at the beginning in bottom-up approaches (Sec-
tion 5.1.1Z 164), MoConseMI must create one explicit SU(M)M at the beginning.
This creation must be taken into account by the next design decision in Section 5.1.4
for the way between starting point and end point. Additionally, the initial creation
of the first SU(M)M represents an additional use case which is executed once without
changes and triggers of users, and is designed in detail in Section 6.5.4Z 219.

5.1.4 Model Synchronization for Change Propagation

This design choice targets the question, which technique should be used to realize the
change propagationDesign Choice:

Proof-Theory vs Rules
vs Model
Synchronization vs
Change Translation

between the reused views (Section 5.1.1Z 164) and the explicit SUM
(Section 5.1.2Z 165). This design choice is already identified as design choice for the technical
realization with the feature “Change Propagation” in Figure 3.2Z 100, whose sub-features
are taken as possible choices here. Possible choices are the following ones, according to
their descriptions in Section 3.2Z 99:

Proof-Theory is used to check consistency and finds fixes for inconsistencies on formal
descriptions instead of on models.

Rules in form of constraints are executed on models in order to find inconsistencies and
fix them with additional strategies.

Model Synchronization is realized with model transformations, which transform parts
of source models into parts of target models, leading to consistency between them
after transformation.

Change Translation is used to directly transform (i. e. translate) changes within one
model into corresponding changes for depending models.

MoConseMI decides to be a model synchronization-based approach using model trans-
formations between views and the SUM,Design Decision: Model

Synchronization
mainly since the views exist, but not the SUM

(Section 5.1.1Z 164). Therefore, the SUM must be created first before using it, which can
be done easiest with model transformations, leading to a model synchronization-based ap-
proach. The same counts for newly derived views, since they must be created before they
can be kept consistent (Requirement R 3 (Define new View(point)s)Z 156).

But there are some additional reasons, as investigated and summarized in Table 3.2Z 150

in Section 3.7Z 146:Review Change
Propagation Techniques

Change translation-based approaches provide only follow-up changes,
but no complete models, which are required here to create the initial SUM. Additionally,
they expect the reused models to be consistent to each other initially, which is not al-
ways true (Requirement R 2.3 (Fix existing Models)Z 156). Proof-theory-based approaches
are not chosen here, since they require formal specifications which are context-specific.
Therefore, methodologists have to spend additional effort for each project in order to se-
lect or create a formal specification which covers the whole SU(M)M. Additionally, specific
bridges between technical spaces for modeling and technical spaces for formal specifications
are required. Rule-based approaches are sufficiently flexible for project-specific consistency
management and fulfill the requirements. But this counts also for model synchronization-
based approaches. Since they additionally provide natural means to create the missing SUM
initially, they are chosen here.

This design decision has the following impacts:Impact

• Since changes within one view must be propagated first into the SUM and then into
all other views, the model synchronization between views and SUM must allow model
transformations in both directions, according to the feature “Multi-Directionality” of
Figure 3.1Z 94.
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• Since the SUM contains all information of the system under development, the views
contain only a subset of this information. Therefore, the asymmetric case is sufficient
for model synchronization here, as in all projectional settings (Section 5.1.2Z 165).
Symmetric model synchronization-based approaches can be used, too, but are not
necessary.

• While the model transformations of a model synchronization-based approach are
able to create the initial SUM (the model), they are usually not able to create its
SUMM (the metamodel). Since the SUMM is required to create the conforming
SUM, MoConseMI must cope with this challenge.

5.1.5 Methodologists decide the final Fix

Since there are multiple possible fixes for an inconsistency (Section 2.3Z 71), this design
choice tackles the question, how the final fix is selected by which stakeholders, Design Choice: Select

the final Fix for an
Inconsistency

according to
the “Selection” feature in Figure 3.6Z 106. Before the possible choices for this design choice
are presented, the stakeholders are taken up in the next paragraph as preparation.

The proposed use cases (Figure 2.20Z 79) and the groups of stakeholders (Section 2.4Z 79)
are early design decisions, Stakeholders who

decide: User vs
Methodologist vs
Platform Specialist

but are already introduced by Meier, Klare et al. (2019) in general
for projectional SUM approaches. The separation of platform specialists and methodolo-
gists is particularly motivated by the finding in Chapter 3Z 93, that on the one hand least
surprise is aimed by BX approaches and their platform specialists, but on the other hand
least surprise depends on the consistency goals of the current project, that are determined
by methodologists. Additionally, these groups of stakeholders exist also for model trans-
formations in general, even if these roles are usually not explicitly mentioned. Adapter
providers provide additional adapters to support information realized with additional tech-
nical spaces, fulfilling Requirement R 4 (Technical Spaces)Z 158. This design of stakeholders
was already decided in Section 2.4Z 79, since these stakeholders are required for analyzing
related work in Chapter 3Z 93, leading to the feature “Stakeholders (who decide)” in Fig-
ure 3.1Z 94.

Therefore, for each of these three stakeholders, their involvement into the selection of
the final fix can be decided. Stakeholder × SelectionPossible choices are the following ones, according to the feature
“Selection” of Figure 3.6Z 106:

Interactive or manual selection is explicitly and manually done by stakeholders for each
occurred inconsistency.

Deterministic and automated selection is automatically done by an algorithm without
directly involved stakeholders, if the finally selected fix is predictable.

Non-deterministic and automated selection is automatically done by an algorithm
without directly involved stakeholders, if the finally selected fix is not always pre-
dictable.

MoConseMI decides the following: Design Decision:
Interplay of
Stakeholders

MoConseMI aims to support users using views
with deterministic and automated fixing of inconsistencies, depending on the current project.
Methodologists apply MoConseMI for this aim and configure the desired consistency goals
and consistency rules once and manually, i. e. interactive with means which are designed
by platform specialists and provided by MoConseMI. Additionally, platform specialists
realize MoConseMI in a way, that the configured consistency goals and consistency rules
can be executed in a deterministic and automated way. With this design, the selection of
the final fix for an inconsistency is deterministic and automated for users by automations
provided by platform specialists, but interactive for methodologists, as they manually con-
figure the desired consistency goals and consistency rules. Additionally, this design fulfills
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the Requirement R 1.2 (Generic Consistency Goals)Z 155 for project-specific consistency
goals and consistency rules, since they are manually realized by methodologists. Since the
final fix is selected in this way, it is not required to model further fixes and to order or filter
them, which counts for all stakeholders. Consequently, the features “Uncertainty Modeling
for representing Fixes” and “Order / Filtering” of Figure 3.6Z 106 are not used. This design
decision is in line with Kramer (2017, pp. 89–94), who proposes fully-automated repairs,
while in cases for necessary decisions, not users should be asked, but decisions should be
configured by methodologists before-hand.

This design decision has the following impacts:Impact

• Since the users should be provided with automated fixing of inconsistencies, Mo-
ConseMI must provide means to execute the configurations of methodologists auto-
matically.

• The automations must be deterministic, since determinism is expected by users
(Stevens, 2010): Therefore, consistency goals and their consistency rules must spec-
ify predictable fixes for inconsistencies (also discussed in Section 14.2.2Z 489), which
are realized by methodologists. Platform specialists must ensure, that the means
to configure consistency and their automation with MoConseMI are deterministic,
too.

5.1.6 Reuse Parts of Model Transformations

This design decision aims to ease the work of methodologists,Aim: Ease the Work of
Methodologists

since they manually realize
the consistency goals and consistency rules for each project (Section 5.1.5Z 169). Metho-
dologists use means, which are developed by platform specialists manually, but only once
for developing MoConseMI. Users of a project are supported with automated fixes of in-
consistencies, provided by the work of methodologists. Not only the manual and recurrent
manner of the methodologists’ work requires support but also the mostly very complex
project-specific consistency. An example for this is the finding (Section 5.1.4Z 168), that
techniques for change propagation must support both directions and must also provide the
required metamodels for the SUMM and new viewpoints.

In order to facilitate the methodologists’ work, recurring work can be eased by reusing
techniques to realize consistency goals and consistency rules.Reuse Parts of Model

Transformations
The applicability of reusing

techniques, in turn, depends on the degree of modularization of the model transforma-
tions, since in MoConseMI change propagation is realized by model synchronization (Sec-
tion 5.1.4Z 168), which itself is handled by model transformations. Therefore, the main
idea is the reuse of parts of model transformations. This approach is also found in related
approaches for model transformations by supporting their composability like lenses and BX
(Section 3.7Z 146).

The structure of model transformations determines the extent of their reusability.Design Choice: Singe
Transformation vs
Transformation with
Parts

Pos-
sible choices are the following ones:

Single Transformation Usually, model transformations are written as single, compact
definition containing lots of meshed model transformation rules (Section 2.2.3Z 67)
in order to fulfill the desired transformation task.

Transformation with Parts Alternatively, model transformations can be split into parts.
Each part fulfills a sub-task of the whole transformation task and contains a small(er)
number of model transformation rules. Depending on the design of these parts, they
cloud be reused for recurring (partial) tasks. Terms describing parts (most generic
term) of model transformations include, e.g., operators (chosen in Section 6.1Z 185)
and patterns. “Patterns reuse” is also motivated by Del Fabro and Jouault (2005).
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The modeling community highly requests reuse of model transformations (Bruel,
Combemale et al., 2020).

MoConseMI decides to use transformations with parts in order to increase the reuse of
such parts. Design Decision: Reuse

Transformation Parts
for Methodologists

Predefined parts of model transformations should be provided by MoConseMI
in order to support methodologists and to ease their work, as motivated above.

This design decision has the following impacts: Impact

• Realizing this design decision is challenging, since reuse and modularization are still
a challenge in model transformation approaches (Götz, Tichy and Groner, 2021, p.
480f). Therefore, Section 6.4.1Z 203 discusses some related approaches for modular
model transformations.

• In order to enable reuse of model transformation parts (requiring generic parts in
general) for project-specific purposes (requiring specific solutions in general), the
parts to reuse should provide means to configure them according to project-specific
needs. This configuration fits to the impact of Section 5.1.5Z 169. The required design
for configuration is discussed in Section 6.2Z 192 and Section 6.3Z 198.

This design decision is central for the realization of change propagation between the mo-
dels to be kept consistent to each other. The details of the design for parts of model
transformation, which are called operators, are discussed in Section 6.1Z 185.

5.2 Overview of the Approach

Based on the design decisions in Section 5.1Z 163, this section gives an overview of the
overall design of MoConseMI and demonstrates it with the help of the ongoing example.

Overview along Use
Cases

Additionally, this section motivates parts of the design, that are detailed in Chapter 6Z 185.
This section is structured according to the use cases of consistency management. To each
use case depicted in Figure 2.20Z 79 a separate section is dedicated (Section 5.2.1, Sec-
tion 5.2.2Z 173 and Section 5.2.4Z 178). A fourth use case is added in Section 5.2.3Z 176

that results from to the design decision in Section 5.1.3Z 167.

5.2.1 Specify Consistency

In this use case, the methodologist completes two tasks: First, the methodologist formulates
the consistency which is desired by users with consistency goals and consistency rules. Use Case:

Methodologists
configure the desired
Consistency . . .

Sec-
ond, the methodologist realizes these consistency goals and consistency rules with means
provided by MoConseMI. The first task is an organizational task with collecting, dis-
cussing and approving the consistency desired by users. Objective of MoConseMI is to
support methodologists during their second task with conceptual and technical means. In
particular, methodologists have to decide, how inconsistencies are fixed (Section 5.1.5Z 169).
This work is manual and is done for each project, since the consistency is project-specific.

Since MoConseMI uses model synchronization techniques (Section 5.1.4Z 168), me-
thodologists realize consistency with model transformations: . . . with OperatorsIn order to ease this metho-
dologists’ work, MoConseMI provides reusable model transformation parts as operators
(Section 5.1.6Z 170), which are composed of chains of operators. These chains of operators
connect views with the SUM. The operator chains are executed at runtime in order to
propagate changes between views (use case in Section 5.2.2Z 173) or to create the initial
SUM (use case in Section 5.2.3Z 176). This idea is applied to the ongoing example in the
following way:
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Ongoing Example, Part 17: Overview of MoConseMI ← List →

Figure 5.1 shows the main concepts of MoConseMI: The nodes on the circle are views
usable by users, while the content within the circle is hidden for users and contains the
internals for change propagation realized by methodologists. The white nodes represent the
data sources for Req(uirements) , Java and ClassDiagram as starting points, which are

integrated into the SU(M)M as end point by applying operators, which are annotated along

edges. Operators are also used to derive the new view for Traceability from the SUM . Since
the mechanisms for model synchronization are split into parts of model transformations,
the nodes i represent internal (meta)models as intermediate steps after applying some,
but not all operators of a chain between a view and the SUM.

Req.

Java ClassDiagram

Traceability

SU(M)M1 2 3 4 5

VP Data Source

VP SU(M)M

VP New View(Point)

i Intermediate (Meta)Model

Bidirectional/Integration Operator

Figure 5.1: SUM approach MoConseMI (taken and slightly adapted from Meier, Werner et al.
(2020))

The operators are shorter special model transformations, which are used to create the
initial SUM from of the existing reused data sources once and to propagate changes between
the views and the SUM afterwards on-demand. The details of the used operators are
discussed in Part 21Z 206 of the ongoing example for the integration of data sources into the
SU(M)M (which is presented in Part 19Z 176 of the ongoing example) and in Part 22Z 209 of
the ongoing example for the definition of a new view(point) from the SU(M)M. Here, it is
sufficient to note, that all models (nodes) together with their connecting operators (edges)
form a tree, with the SU(M)M as root and the views usable by users as leafs.

With these ideas, operators realize shorter model transformations, which can be com-
bined to chains between the SUM and views:Design of Operators Since the whole transformation between a view
and the SUM is split into multiple operators as parts, each operator usually changes only
a small portion of the current model, while most parts of the model remain unchanged. In
order to improve performance, operators transform models in-place, since out-place trans-
formations would copy lots of unchanged elements for each operator again and again, which
is deepened in Section 6.1Z 185. Since changes must be propagated from a view to the SUM
and from other views via the SUM into the view, operators must allow to transform models
in both directions, which is deepened in Section 6.1Z 185. Additionally, operators trans-
form also the metamodels in order to create the initial SUMM and the metamodels for
newly derived views, which is deepened in Section 6.2Z 192. This design of single oper-
ators is deepened in Section 6.1Z 185, while their combination into chains is deepened in
Section 6.4Z 203.
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5.2.2 Fix Inconsistencies automatically

After methodologists used MoConseMI to specify the desired consistency goals and con-
sistency rules at development time (Section 5.1.5Z 169), the use case tackled in this section
exploits the configurations of methodogists in order to ensure consistency at runtime. Use Case: Users trigger

automated Fixing of
Inconsistencies . . .

As

discussed along Figure 2.15Z 71, a user takes a view and applies some changes User∆ to
the model of this view only. These changes could introduce inconsistencies with the SUM
and other views. In order to fix these inconsistencies, the user changes must be propagated
into the SUM and all other views to update them accordingly. This automated change
propagation is triggered i. e. started by users after finishing their manual work with the
view.

To automatically realize the triggered change propagation, MoConseMI executes the
chains of operators and by this means realizes model transformations for model synchro-
nization (Section 5.1.4Z 168). . . . realized by

Executing the Chains of
Operators

Starting with the view which is changed by the user, the
operators of its chain are executed one-by-one until the SUM is reached and updated. All
other views are updated accordingly by executing the chains between them and the SUM.
Finally, the SUM and all views which contain the changed or depending information are
updated with model changes E∆. Note, that the view which is changed by the user might
be automatically changed by MoConseMI, too (Section 3.7Z 146). Such a scenario is
demonstrated for the ongoing example now:

Ongoing Example, Part 18: Exemplary Inconsistency Fix ← List →

This box demonstrates an exemplary scenario for a manual user change within one view and
resulting changes in other views, which are automatically executed by MoConseMI. This
scenario is already introduced in Part 2Z 25 of the ongoing example with some text only:
The software architect as user takes the current class diagram and renames an existing
class. Afterwards, the software architect tells MoConseMI, that the manual changes are
complete. Thereupon, MoConseMI automatically renames the class in the Java source
code, too, as fix for the inconsistency between class diagram and source code, as specified
by Consistency Rule C 2 cZ 77. The details of the interactions are described below.

The user applies the desired changes to the ClassDiagram view by changing its EMF
model. The model changes are represented graphically within the current model:

model-uml uml : ClassDiagram

className = ”Institution””University”

cd1 : Class

diagram[0]

classes[0]

As result after completing the synchronization, the following changes are expected,
according to Consistency Rule C 2 cZ 77:

• In ClassDiagram , exactly the changes of the user are expected in the model, as
visualized above, and no more changes.

• In Requirements , no changes are expected in the model.

• In Java , the following changes are expected in the model.

The model changes are represented graphically within the current model:
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5 MoConseMI at a glance

model-java

name = ”start”

m1 : Method
name = ”register”

m2 : Method

name = ”Institution””University”

j1 : ClassType

name = ”Student”

j2 : ClassType

asg : JavaASG

methods[0]

class[0]

calling[0]

calledBy[0]

methods[0]

class[0]

classes[1]

asg[0]

classes[0]

asg[0]

• In the SUM , as shown in Part 19Z 176 of the ongoing example, the following changes
are expected in the model.

The model changes are represented graphically within the current model:
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5 MoConseMI at a glance

• In Traceability , no changes are expected in the model.

This scenario serves as test case for the consistency management in the ongoing ex-
ample, i. e. as an acceptance test case from the perspective of users for an application of
MoConseMI. In particular, the execution as shown in Part 23Z 220 of the ongoing example
must provide these changes in order to fulfill this test case.

This section roughly depicted the challenge of automated inconsistency fixes. In Sec-
tion 6.5Z 213, the execution scheme of operators is deepened. One challenge it has to deal
with is, that the operators are in-place model transformations and therefore must prevent
information loss.Design of Execution Since consistency goals and therefore also fulfilling operators could depend
on each other, operators might be executed multiple times, until a fix-point is reached, i. e.
no model changes occur anymore. Therefore, model changes must be tracked and made
explicit, which is deepened in Section 6.7Z 227.

5.2.3 Initialize SU(M)M

According to Section 5.1.2Z 165, consistency is not ensured directly between views, but
between each view and the SUM that conforms to a SUMM.Use Case: Create the

initial explicit SU(M)M
. . .

Since this requires the SU(M)M
to be explicit as a single (meta)model (Section 5.1.2Z 165), the SU(M)M has to be initially
created therefore, since it does not yet exist, when the starting point are the existing data
sources, as explained in Section 5.1.1Z 164. This initial creation is fundamental and therefore
requires a separate use case. It is not depicted in Figure 2.20Z 79, since this use case is
only required for projectional approaches and the design choice synthetic vs projectional
was decided later in (Section 5.1.2Z 165). The SUM as end point and its SUMM for the
ongoing example are shown in the following box:

Ongoing Example, Part 19: Initial SUMM and SUM ← List →

Since MoConseMI follows the projectional idea with an explicit SUM for change propaga-
tion (Section 5.1.2Z 165), this box shows the SUMM and conforming SUM as complete view
for the system under development. SUM and its SUMM are both constructed from the
initial models and metamodels of the data sources, as they are presented in Part 9Z 64 of
the ongoing example. The namespaces respectively packages are taken from the original
data sources and indicate roughly the origins of the contained meta-classes.

The SUMM is a single, explicit metamodel and is visualized in Figure 5.2Z 177. Com-
pared with the metamodels of the single data sources in Part 9Z 64 of the ongoing ex-
ample, the SUMM contains all their concepts, but in an integrated way according to a
more pure SUMM (Section 5.1.3Z 167): Classes are represented only once by ClassType,
since Class of ClassDiagram is unified with ClassType of Java in order to fulfill Con-
sistency Goal C 2Z 77. Requirements of Requirements are linked with their fulfilling

Methods of Java by an association in order to enable traceability according to Consistency
Goal C 1Z 76.
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Figure 5.2: Metamodel for the SUMM (left/top) and model for the SUM (right/bottom)
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The SUM is visualized in Figure 5.2Z 177 as a single, explicit model conforming to the
SUMM. Compared with the models of the single data sources in Part 9Z 64 of the ongoing
example, the SUM contains all their information, but in an integrated way according to
a more pure SUMM (Section 5.1.3Z 167): Each class of the system under development is
represented only once as an instance of ClassType. The initial SUM does not contain any
links between requirements and methods, since such traceability links are not known in the
existing data sources, neither in Requirements nor in Java .

Additionally, this use case fixes possible inconsistencies within the reused data sources
(Section 5.1.1Z 164), fulfilling Requirement R 2.3 (Fix existing Models)Z 156.. . . and fix initial

Inconsistencies within
Data Sources

Such inconsis-
tencies might occur, since users tried to fix them manually and made some mistakes during
that, before MoConseMI was introduced (Section 1.2.2Z 36).

This use case is triggered by methodologists and is executed once after configuring the
desired consistency (Section 5.2.1Z 171) and before the first change propagation triggered
by users (Section 5.2.2Z 173). This use case is realized by executing the chains of operators
with the existing data sources as starting point and no user changes, but similar to the use
case in Section 5.2.2Z 173. The details of this design are deepened in Section 6.5.4Z 219.

5.2.4 Develop Adapter

In order to fulfill Requirement R 4 (Technical Spaces)Z 158 and to reuse and support existing
artifacts realized with different technical spaces (Section 2.5Z 84), adapters are required to
bridge technical spaces of artifacts to EMF as the technical space used by MoConseMI.
While MoConseMI comes with some predefined adapters (Section 8.4Z 271), in this use
case, adapter providers develop additional adapters for additional technical spaces. The
design of adapters is deepened in Section 6.6.5Z 226. Methodologists use provided adapters
and apply them in projects. The following box emphasizes the technical spaces required
for the ongoing example:

Ongoing Example, Part 20: Overview of Adapters ← List →

MoConseMI uses EMF as technical space internally, but needs to support other technical
spaces. Therefore, bridges between different technical spaces are required and realized by
adapters. Figure 5.3 extends Figure 5.1Z 172 by showing the artifacts used by users ( pen-
tagons) with their technical spaces (black labels). Adapters realize the dotted bidirectional
arrows between artifacts and view(point)s.

Req.

Java ClassDiagram

Traceability

SU(M)M

Java ClassDiagram

TraceabilityRequirements

CSV

EMF EMF

Excel

1 2 3 4 5

Figure 5.3: MoConseMI with Adapters
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The technical spaces of the reused data sources are introduced in Part 5Z 37 of the
ongoing example: Requirements are realized within a CSV file, which is deepened in
Part 24Z 276 of the ongoing example. Complete Java is realized in the Java technical
space, but since Java is a strongly and artificially reduced part of Java in this example,
it is directly realized with EMF here. Accordingly, ClassDiagram is directly realized with
EMF, since it is a strongly and artificially reduced part of complete UML. According to
Part 6Z 40 of the ongoing example, the new view Traceability is realized with Excel in
order to support project managers. Summarizing, the ongoing example requires adapters
for EMF, CSV and Excel.

5.3 Summary: MoConseMI

This Chapter 5Z 163 provides a rough overview of MoConseMI by deciding high-level
design choices and concretizing the use cases for ensuring inter-model consistency according
to these design decisions.

The design decisions are depicted in Figure 5.4Z 180: The first column contains the six
design choices, while their possible choices are depicted in the second column. The third
column lists the functional requirements, which are fulfilled by the decided design choices,
which are marked in gray in the second column. The six design choices are grouped into
those concerning either the starting point with reused artifacts or the end point with the
explicit SUM with an adjustable number of internal dependencies. The remaining three
design choices are related to the way between starting point and end point with model
synchronization techniques, configured by methodologists and split into reusable parts.

These design choices are decided in order to fulfill the functional requirements for en-
suring inter-model consistency. Design Decisions fulfill

Requirements
Therefore, the fulfillment of functional requirements of

Section 4.3Z 158 by the design decisions is reviewed here and summarized in the “Req.”
column of Figure 5.4Z 180.

• Requirement R 1 (Model Consistency)Z 154 is fulfilled by using model synchronization
techniques for change propagation (Section 5.1.4Z 168). In particular, inconsistencies
are fixed automatically and deterministically for users (Section 5.1.5Z 169).

• Requirement R 1.1 (Generic Metamodels)Z 154 is fulfilled by methodologists, who con-
figure the desired consistency manually and specifically for the individual metamodels
of each project (Section 5.1.5Z 169), which allows to support arbitrary metamodels.

• Requirement R 1.2 (Generic Consistency Goals)Z 155 is fulfilled by methodologists,
who configure the desired consistency manually and specifically for each project (Sec-
tion 5.1.5Z 169), which allows to support arbitrary consistency goals and consistency
rules.

• Requirement R 2 (Reuse existing Artifacts)Z 155 is fulfilled by MoConseMI’s bottom-
up design with existing artifacts as starting point (Section 5.1.1Z 164).

• Requirement R 2.1 (Reuse existing Metamodels)Z 155 is fulfilled by MoConseMI’s
bottom-up design with existing metamodels of the reused artifacts as starting point
(Section 5.1.1Z 164).

• Requirement R 2.2 (Reuse existing Models)Z 156 is fulfilled by the bottom-up de-
sign of MoConseMI with existing models of the reused artifacts as starting point
(Section 5.1.1Z 164).
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Design Choice Possible Choices Req.

1. Construction Process → Bottom-up R 2, R 2.1,
R 2.2

→ Top-down

2. With(out) SUM → Synthetic without SUM

→ Projectional with explicit SUM

3. Internal Dependencies → Pragmatic

→ Essential

→ Adjustable R 3.1

4. Change Propagation → Proof-Theory

→ Rules

→ Model Synchronization
R 1, R 2.3,
R 3, R 3.2,
R 3.3

→ Change Translation

5. Select the final Fix for each Stakeholder:

→ Interactive Methodologist R 1.1, R 1.2

→ Deterministic
+ automated

User, Platform
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Figure 5.4: Design Choices with possible and decided (in gray) Choices fulfilling Requirements

• Requirement R 2.3 (Fix existing Models)Z 156 is fulfilled by using model transfor-
mations for model synchronization (Section 5.1.4Z 168), which allows to transfer the
current information of a model into other models, resulting in consistent models.

• Requirement R 3 (Define new View(point)s)Z 156 is fulfilled by using model transfor-
mations for model synchronization (Section 5.1.4Z 168), which allow to create com-
plete models for new views from the SUM.

• Requirement R 3.1 (New Views reuse whole System Description)Z 157 is fulfilled by
using a SUM (Section 5.1.2Z 165), which contains all information of all data sources
and usually contains less internal dependencies (Section 5.1.3Z 167), which eases the
reuse of the information of the SUM for new views.

• Requirement R 3.2 (New Viewpoints with arbitrary Metamodels)Z 157 is fulfilled by
using model transformations for model synchronization (Section 5.1.4Z 168), since
they allow to propagate changes between models conforming to different metamodels,
enabling metamodels for new viewpoints which are different to the SUMM.

• Requirement R 3.3 (Editable new Views)Z 157 is fulfilled by using model synchroniza-
tion techniques for change propagation (Section 5.1.4Z 168), which are designed to
support both directions: from views (including new views) to the SUM and from the
SUM to views.
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5.3 Summary: MoConseMI

This list shows, that all functional requirements are fulfilled with these conceptual design
decisions. The fulfillment of the technical requirements is presented in Chapter 6Z 185,
while their implementation is described in Chapter 8Z 263.

The design decisions forming MoConseMI’s design are not only driven by the defined
requirements, but are also guided by features of related approaches (Chapter 3Z 93). In
particular, some design choices of this section are derived from these features as results of
investigating related approaches. In the following, these features are compared with the
design decisions for MoConseMI in order to show, that the design decisions are senseful
according to the investigations of related approaches. For that, the feature models of
Chapter 3Z 93 are repeated here and the selected features are marked with light gray color.

The functional objectives for consistency management approaches of Figure 3.1Z 94 are
decided for MoConseMI as depicted in Figure 5.5: MoConseMI aims to ensure inter-
model consistency with the focus to overcome semantic heterogeneity. Structural hetero-
geneity is supported together with supporting arbitrary metamodels, since semantic and
structure heterogeneity cannot be clearly distinguished in all cases. Technical heterogeneity
is solved by adapters as precondition, but is not the main objective of MoConseMI (Sec-
tion 3.1Z 94). In order to propagate changes between all semantically depending models,
MoConseMI uses model synchronization techniques to fulfill multi-directionality (Sec-
tion 5.1.4Z 168). To solve inconsistencies, methodologists apply means of MoConseMI to
configure the desired consistency manually. These configurations are applied automatically
by MoConseMI according to the design of platform specialists in order to support users
with automated and deterministic fixes for inconsistencies which are introduced by the
users.
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Figure 5.5: Selected Features for classifying functional Objectives of MoConseMI

The design choices of Figure 3.8Z 124 are decided for MoConseMI as depicted in Fig-
ure 5.6Z 182. MoConseMI is projectional with an explicit SUM (Section 5.1.2Z 165),
but starts bottom-up in order to reuse existing artifacts easier (Section 5.1.1Z 164). The
initial dependencies between the reused artifacts can be resolved within the SUM (Sec-
tion 5.1.3Z 167), adjustable to the needs of the current project.

The design choices for technical realization of Figure 3.2Z 100 are decided for MoCon-
seMI as depicted in Figure 5.7Z 182: Since MoConseMI follows the projectional SUM
idea (Section 5.1.2Z 165), it uses an intermediate model which contains all information of
all partial models, i. e. information which is contained in different models (overlaps), infor-
mation which is contained only in one model (non-overlaps), and additional information
“between” models like explicit links between them (inter-correspondences). These explicit
links are on semantic level between the models of interest, while the feature “explicit links”
in Figure 5.7Z 182 describes links for technical realization: Semantic and technical links
can overlap and should be realized explicitly within the SU(M)M. For technical purposes,
MoConseMI internally use UUIDs for uniquely identifying elements, which can be seen
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as implicit links and is introduced in Section 6.6.4Z 225. For change propagation, Mo-
ConseMI uses model synchronization techniques (Section 5.1.4Z 168), which support the
asymmetric case for the projectional setting here including the bijective case. The detailed
design in Section 6.1Z 185 further explains, that the symmetric case is supported. Since the
SUM contains all information, no external support for multi-models is required.
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The design for the choose from multiple fixes strongly depends on the design of use
cases (Section 5.2Z 171): Methodologists specify the desired consistency with reusable parts
of model transformations for model synchronization. This specification contains also the
selection of the final fix for inconsistencies according to the consistency rules. These spec-
ifications are done manually and once by methodologists, for which MoConseMI provides
means for configuration (Section 5.2.1Z 171). Afterwards, the initial SUM is created au-
tomatically and once by executing these specifications (Section 5.2.3Z 176). After these
preparations, users can use views and change their models. After having finished these
changes, users trigger MoConseMI to automatically propagate their changes into all de-
pending views and the SUM (Section 5.2.2Z 173). In order to support views realized with
different techniques, adapter providers can develop additional adapters to bridge technical
spaces (Section 5.2.4Z 178).

Summarizing MoConseMI, it follows projectional ideas for change propagation with
a single, integrated (meta)model called SU(M)M and provides a bottom-up strategy to
develop such SU(M)Ms with the reuse of existing (meta)models as starting point and re-
duced internal dependencies. For realization, MoConseMI uses model synchronization
techniques in order to propagate changes and to create the initial SUM. In order to support
project-specific consistency, MoConseMI provides means for configurations, which are
used by methodologists to manually specify the desired fixes for inconsistencies according
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5.3 Summary: MoConseMI

to the project-specific consistency rules and (meta)models. These configurations are auto-
matically executed by MoConseMI in order to fix inconsistencies, which are introduced by
users using single views. These design decisions guide the refinement of the design, which
is discussed in the following Chapter 6Z 185.
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Chapter 6

Design

Basing on the design decisions of Chapter 5Z 163, this section develops the design of Mo-
ConseMI in detail. In particular, operators are designed as means to reuse parts of mo-
del transformations (Section 5.1.6Z 170) in Section 6.1. Operators transform metamodels
and conforming models in-place and can be configured with metamodel decisions (Sec-
tion 6.2Z 192) and model decisions (Section 6.3Z 198). Operators are selected and combined
into a tree of operators in order to describe the transformations between views and the
SUM (Section 6.4Z 203). The execution of this tree of configured operators is designed in
Section 6.5Z 213, and transforms models and metamodels, whose technical representations
are designed in Section 6.6Z 221. Additionally, changes in models and metamodels are ex-
plicitly represented as differences and are required to control the execution of operators
(Section 6.7Z 227).

The main ideas of the execution of operators and their use for defining new view(point)s
are published in this publication:

Related MoConseMI Publication

Johannes Meier, Ruthbetha Kateule and Andreas Winter (2020): Operator-based
viewpoint definition. In: MODELSWARD 2020 - Proceedings of the 8th International
Conference on Model-Driven Engineering and Software Development, pp. 401–408.

This publication is cited as Meier, Kateule and Winter (2020) in this thesis.

6.1 Operators as Transformations

Since MoConseMI is model synchronization-based (Section 5.1.4Z 168) with an explicit
SUM (Section 5.1.2Z 165), model transformation definitions must be specified between the
(partial) viewpoints and the SUMM. These model transformation definitions are executed
(as designed in Section 6.5Z 213) to propagate changes between the (partial) views and the
SUM. This leads to the following two demands on model transformations:

1. As an impact of the design decision to use model synchronization (Section 5.1.4Z 168)
between reused views (Section 5.1.1Z 164) and the explicit and optimized SUM (Sec-
tion 5.1.3Z 167), Transform Models and

Metamodels
model transformations for the model level are not sufficient, since the

SUMM (and metamodels for new viewpoints) are not available before MoConseMI
is introduced, but are required to define model transformations and to guide conform-
ing models. Therefore, the metamodel level must be supported as well. The need
for creation and maintenance of metamodels for model transformations is strongly
motivated by Kainz, Buckl and Knoll (2012).
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2. Since changes should be propagated from one view via the SUM to other views
(Section 5.1.2Z 165),Transformations in two

Directions
the model transformations between views and the SUM (Sec-

tion 5.1.4Z 168) must support transformations in both directions.

According to Section 5.1.6Z 170, no single, compact model transformation definition should
be specified between a viewpoint and its SUMM, but the required model transformation
should be split into parts: These parts allow to fulfill the listed demands in a reusable way
are called operators. This section specifies only the design of such operators in general,
but no concrete operators (except for examples), since the list of operators provided by
MoConseMI is documented in Chapter 7Z 241.

Before developing the design of operators to fulfill these demands in Section 6.1.3Z 189,
related work for operators (Section 6.1.1) and model transformations (Section 6.1.2Z 188)
is investigated as preparation.

6.1.1 Related Work: Operator-based Approaches

This section investigates related approaches which are operator-based, even when other
terms like patterns or operations are used. Approaches from various domains beside model
transformation are considered. The features found during the analysis of related approaches
are summarized in the feature model in Figure 6.1 as result of this investigation. Afterwards,
the feature model helps to design the operators of MoConseMI in Section 6.1.3Z 189.
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Figure 6.1: Feature Model for classifying Operator-based Approaches

In general and according to Lano, Kolahdouz-Rahimi et al. (2018), patterns are used in
model transformations, often unsystematically, but with increasing trend. Lano, Kolahdouz-
Rahimi et al. (2014) define multiple formal patterns for model transformation rules. In the
area of multi-level modeling, Kainz, Buckl and Knoll (2011) use operators to transform
models between meta-levels in order to reuse modeling tools which support only two meta-
levels. These operators are configurable in order to cover recurring transformation patterns,
which are chained to build whole model-to-metamodel-transformations.

Operators for model management are not only applied in data base research (Sec-
tion 3.6.3Z 139), but also for models:Model Management

Operators
These operators work on complete models (feature

“All” in Figure 6.1) and are therefore on the same conceptual level as megamodels (Chap-
ter 2Z 51) with exemplary operators like match, merge, diff and slice (Salay, Kokaly et al.,
2020). These techniques are often also investigated outside of model management, like
model merging (Kolovos, Paige and Polack, 2006). Bernstein (2003) shows model manage-
ment operators and its application to schema integration, schema evolution and round-trip
engineering, but on conceptual level (Section 3.6.3Z 139). Chechik, Nejati and Sabetzadeh
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6.1 Operators as Transformations

(2012) use three of these model management operators (compose, weave, merge) for the
integration of models. Kensche and Quix (2007) present the operators export and import
to bridge models between different technical spaces. Since these operators are designed to
work in a generic i. e. metamodel-independent way on complete models, usually there is less
need for configurations of these operators.

On granularity level of working with complete models, there are some more operator-
based approaches: more generic and

high-level Operators
Persson, Torngren et al. (2013) define comparable operators like com-

position, projection, extension and synthesis, which are applicable to whole models, which
are used for views. Reiter, Kapsammer et al. (2005) wrap model weaving (Chapter 3Z 93)
and sewing (a loosely coupling variant of weaving) into operators. Degueule, Combemale
et al. (2015) provide similar higher-level operators for the composition of multiple DSLs.
Broy, Feilkas et al. (2010) give an overview of related approaches for composing modeling
languages with high-level operators. In the enterprise domain, Kühn, Bayer and Kara-
giannis (2003) present some higher-level patterns similar to the procedure for metamodel
integration. Specific for the domain of feature models, Acher, Collet et al. (2010) present
different high-level operators for merging feature models.

In the area of X co-evolution, operator-based approaches are often used: If a metamodel
evolves, depending artifacts X must co-evolve, too, in order to keep X conform to the
changed metamodel. Metamodel Evolution

with Co-Evolution of
depending Artifacts

Since the evolution of metamodels is coupled with the evolution of
depending artifacts, this challenge is also called the coupled evolution problem (Di Ruscio,
Iovino and Pierantonio, 2012a). While change propagation aims to keep depending models
consistent to each other in ongoing processes, co-evolution is done once for each change in
metamodels, leading to the term model migration for model co-evolution. Therefore, co-
evolution for depending artifacts is specified only for one direction from the old to the new
version of the artifacts and is not bidirectional. Since metamodels and conforming models
are on different meta-levels, Visser (2008) uses the term two-level transformation. Since
changes in metamodels lead to changes in depending artifacts like models, representing
changes explicitly as (meta)model differences is important, but is discussed in its own
Section 6.7.1Z 228.

There are lots of different artifacts which depend on metamodels and must be co-
evolved with evolving metamodels. Some examples for depending modeling artifacts and
co-evolution approaches are given:

Model Co-Evolution targets models conforming to a metamodel: If this metamodel is
changed, models conforming to the old version of the metamodel must be co-evolved
in order to conform to the new version of the metamodel. Since model co-evolution
addresses changes of models and their metamodels, as required for MoConseMI as
well, related approaches are investigated in more detail in Section 6.2Z 192.

Constraint Co-Evolution targets constraints which complement metamodels and must
be fulfilled by models conforming to that metamodel. These constraints explicitly
address elements of the metamodel and must be co-evolved according to changes
within this metamodel. There are different approaches for constraint co-evolution,
including approaches focusing on multiplicity constraints (Taentzer, Mantz et al.,
2013) and OCL constraints (Khelladi, Hebig et al., 2016).

Transformation Co-Evolution targets model transformations, which are usually de-
fined on a source metamodel and a target metamodel. Changes in the source meta-
model must be reflected by the model transformation. Rutle, Iovino et al. (2018) for-
malize automatically resolvable transformation co-evolution scenarios (Rutle, Iovino
et al., 2020). Other approaches including Kruse (2011), Levendovszky, Balasub-
ramanian et al. (2010), Garcés, Vara et al. (2014) and Garćıa, Diaz and Azanza
(2013) provide semi-automated solutions for more generic settings. Users of these
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approaches have to provide additional information, how to solve certain co-evolution
cases.

DSL Co-Evolution targets definitions for DSLs or other concrete syntaxes for model
editors. These definitions base on the metamodel of the models to edit and must be
changed according to metamodel changes. An example for the co-evolution of the
Eclipse Graphical Modeling Framework (GMF) is given by Di Ruscio, Lämmel and
Pierantonio (2011).

These definitions are models conforming to metamodels provided by GMF. If GMF
and its metamodels change, e. g. due to new versions of GMF, it is necessary to co-
evolve DSL definition models developed with earlier versions of GMF accordingly
(Herrmannsdoerfer, Ratiu and Wachsmuth, 2010), which falls into the category of
model co-evolution (see above).

These depending artifacts are depicted as features of “Kinds of Elements” in Figure 6.1Z 186.
Granularity of
Operators oriented
along Metamodel
Changes

Most of these examples use operators explicitly or implicitly by patterns or rules, which
are oriented at small metamodel changes. Therefore, only some elements of metamodels
and depending artifacts are changed by these operators. The granularity of operators is
often oriented at single metamodel changes and these operators provide the corresponding
co-evolution strategy for that metamodel change. Changes in metamodels can be done
for the purpose of refactoring, leading to refactoring operators which realize the model
co-evolution, as the example of Reimann, Seifert and Aßmann (2010) shows.

Since co-evolution is also a problem which can be solved with model transformations
(Paige, Matragkas and Rose, 2016), operators for co-evolution are a possible choice for model
transformations here.Co-Evolution Operators

require Configurations
Since the desired automation of co-evolution operators reduces the

control over the details of the co-evolution (Paige, Matragkas and Rose, 2016), possible
configurations for operators are needed (feature “configurable” in Figure 6.1Z 186), realized
as model decisions here and discussed in Section 6.3Z 198. Similarily, Di Ruscio, Iovino and
Pierantonio (2012b, p. 29f) propose to define reusable patterns with a default co-evolution
strategy, which can be extended and customized. Co-evolution cases without automated
solution require additional information by users of approaches for co-evolution, but usually
do not explicitly distinguish users and methodologists from each other. Since users should be
supported with automated decisions, methodologists have to specify additional information
or custom co-evolution strategies.

Single (meta)model differences are sometimes called operators, which are investigated
in Section 6.7.1Z 228.representing Model

Changes with Operators
They are not configurable, since they represent only historic changes

or can be executed in-place to get an updated version. Composite changes are sequences of
changes, leading to nestable operators in terms of Figure 6.1Z 186. The relevant elements
of these operators are metamodel differences and model differences.

Summarizing, operators vary in the levels of their granularity, ranging from generic
operators between complete models like model merging over co-evolution operators changing
some parts of depending models to model difference operators changing single elements of
models.Summary: Operators

often used and varying
regarding Granularity

The discussed features of operators are summarized in Figure 6.1Z 186. The wide-
spread use of operators for different purposes shows, that operators work and can capture
recurring tasks. Therefore, following the concepts of operators is a reasonable choice for
structuring model synchronization in MoConseMI.

6.1.2 Related Work: Model Transformations

Since MoConseMI uses model synchronization techniques with model transformations
for change propagation (Section 5.1.4Z 168), this section takes up the discussion in Sec-
tion 3.3.1Z 108 about model transformations and applies the most relevant findings here.
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Model transformations for both directions are required (demand 2), which is explicitly
addressed by BX (summarized in Figure 3.1Z 112): BX for both

Transformation
Directions

EVL+Strace and JTL do not pro-
vide the required automated selection of fixes, while QVT-R and JTL are not incremental.
The expressiveness of TGGs is limited in contrast to BXtend(DSL), which uses imper-
ative definitions in detail. In general, Bucchiarone, Cabot et al. (2020) call bidirectional
transformations for model synchronization a grand challenge.

For non-bijective transformation cases, it is important to keep information unchanged
which is not covered by the transformation: Keep non-transformed

Information unchanged
For out-place model transformations as the

discussed BX approaches, this is ensured with incrementality. For in-place model transfor-
mations, incrementality is not applicable, since it requires two different models explicitly
linked with each other, while in-place model transformations have only one model. There-
fore, other means are required to prevent information loss.

Usually, model transformations are applied to transform only models and no metamo-
dels, while transformations of metamodels are required here as well (demand 1). Missing Approaches for

transforming Model and
its Metamodel together

Since
metamodels are also models, additional model transformations can be defined which work
on source metamodels and target metamodels. But all investigated model transformations
can transform either models or metamodels, not both. Also an action-based approach man-
aging models like Mosser and Blay-Fornarino (2013) addresses only the model level and not
the metamodels. An exception are model transformation approaches which are designed
to work with multi-level models like DeepATL, which supports only unidirectional trans-
formations. Model transformations supporting multi-level models are not used here, since
this thesis is restricted to two-level modeling.

Additionally, reuse and modularization are still a challenge in model transformation ap-
proaches (Götz, Tichy and Groner, 2021, p. 480f), Limited Support for

Reuse
which is deepened in Section 6.4.1Z 203.

Here it is sufficient to notice, that the discussed approaches provide no explicit mechanisms
for reuse of model transformation parts, in particular, not for reuse in different transforma-
tion scenarios.

Summarizing, there are no model transformation approaches which support all the
required features. More concrete, the joint transformation of models and their metamodels
together with reuse and two directions is not supported. Therefore, Section 6.1.3 develops
a new approach for model transformations with the desired features.

6.1.3 Design

This section describes the main design of operators along Figure 6.2Z 190, which depicts
the designed signature of operators. The depicted operators are unidirectional operators,
which are introduced first with its features in Figure 6.3Z 191. Afterwards, two inverse
unidirectional operators are combined as bidirectional operator.

Since transformations for models are not sufficient (demand 1), unidirectional operators
in MoConseMI change both a model and its metamodel. Operators transform

Models and their
Metamodels together

Therefore, one model and its
metamodel are the input for an operator, and a (changed) model and its (changed) meta-
model are the output. This design enables model transformations for change propagation
according to model synchronization techniques and keeps models conform to their meta-
models. Since the data types for input and output are the same, i. e. one model and its
metamodel, operators are chainable, as deepened in Section 6.4Z 203. Since the metamo-
del is explicitly transformed, operators can create not only the initial SUM, but also the
SUMM. Additionally, this design allows operators to internally mesh transformations of
models and their metamodels, e. g. first change the metamodel a bit, then change the mo-
del and finally change the metamodel again. In contrast, traditional model transformations
would need two transformations, one for the models and another one for the metamodel,
which are executed at once and independently from each other.

Since metamodels and conforming models are transformed, operators of MoConseMI
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Figure 6.2: Main Design of the Operator Signature

have some similarities with operators for model co-evolution.Granularity of
Operators: single/few
Metamodel Changes

The investigations in Sec-
tion 6.1.1Z 186 show, that operators are useful for this purpose. Additionally, their gran-
ularity is taken over here with few changes in the metamodel and more changes for the
model co-evolution.

As deepened in Section 6.5Z 213, operators are executed in-place and not out-place:
Operators work
in-place!

Since operators change only some parts and lots of operators should be chained, executing
operators in out-place way would copy all unchanged elements of (meta)models into a new
(meta)model for each operator (Kainz, Buckl and Knoll, 2012). In order to improve this
unnecessary performance overhead, operators are executed in-place by changing only the
elements to be changed directly within the input (meta)model. Therefore, the output of
operators is the input in changed form. As depicted in Figure 6.2, the model M and its
metamodel MM in version 1 (indicated by subscript 1) are changed in-place by the operator
into version 2. Afterwards, M2 must conform to MM2. Further explanations of Figure 6.2
fill follow further down.

This design of unidirectional operators is depicted in Figure 6.3Z 191 as selection of the
features of Figure 6.1Z 186:Summary of

Unidirectional
Operators

Unidirectional operators work on some elements of a given mo-
del and its metamodel and change them in-place. Additionally, unidirectional operators are
nestable to realize composite changes and to reuse functionalities of other unidirectional
operators, if reasonable. In order to be applicable to arbitrary (meta)models (accord-
ing to Requirement R 1.1 (Generic Metamodels)Z 154) and to ensure arbitrary consistency
goals (according to Requirement R 1.2 (Generic Consistency Goals)Z 155), unidirectional
operators are configurable, which is realized with metamodel decisions, as designed in Sec-
tion 6.2Z 192, and with model decisions, as designed in Section 6.3Z 198.

This design of unidirectional operators is summarized in Definition 22:

Definition 22: Unidirectional Operator

A unidirectional operator is a unidirectional and in-place model transformation def-
inition on one model and its metamodel.

In order to support transformations in two directions (demand 2), one unidirectional
operator is combined with its inverse unidirectional operator into one bidirectional operator
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Figure 6.3: Selected Features (light gray) for unidirectional Operators in MoConseMI

(Figure 6.2Z 190): Compose two inverse
unidirectional Operators
into a bidirectional
Operator

Two unidirectional operators are inverse to each other, if the changed
metamodel of the first operator (MM2 in Figure 6.2Z 190) can be used as input for the
second operator and the (again) changed metamodel is equal to the input metamodel of
the first operator (MM1). With other words, the metamodel changes of the second (in-
verse) operator exactly revert the metamodel changes of the first operator. This design
ensures, that metamodels of viewpoints and the SUMM remain stable, when executing
bidirectional operators often and in changing directions. In contrast, model changes of the
two unidirectional operators often are not inverse to each other. This is required to fix
existing inconsistencies in the models and to propagate changes in the model of a view to
the SUM and to all other views. Both these cases lead to different models by the two unidi-
rectional operators in consecutive executions. Since these models might be different, their
symbols in Figure 6.2Z 190 have not only subscript numbers as the metamodels have, but
also superscript numbers indicating the current execution by unidirectional operators. In
Figure 6.2Z 190, superscript 1 indicates the forward execution, while superscript 2 is for the
inverse execution (and superscript 3 (not in Figure 6.2Z 190) would be the forward execu-
tion again and so on). The differences between models of consecutive executions are called
branch differences B∆, e. g. B∆2

1 describes the differences between the model M 1
1 and the

model M 2
1 . Summarizing, Figure 6.2Z 190 depicts one bidirectional operator, which consists

of two unidirectional operators which are inverse to each other regarding the metamodel
changes.

With this design, the features of unidirectional operators in Figure 6.3 and bidirec-
tional operators in Figure 6.4Z 192 are similar, but not same: Comparison of

unidirectional and
bidirectional Operators

By design, only bidirectional
operators are bidirectional, and unidirectional operators are only unidirectional. While uni-
directional operators are nestable, bidirectional operators could also be nestable in principle,
but here they are designed to be not nestable, since nesting of bidirectional operators is not
required and provides no significant benefits: Bidirectional operators are directly used “for
management” for chaining (only bidirectional) operators and for internally combining two
unidirectional operators which are inverse to each other. Unidirectional operators focus on
executing unidirectional transformations and can (re)use other unidirectional operators for
nesting.

This design of bidirectional operators is summarized in Definition 23Z 192:

191



6 Design

Legend

Mandatory

Optional

Or

Xor

I Sub-Diagram

Criteria of Operators

Configurable Bidirectional Nestable In-place Involved Elements

Kinds of
Elements

Model Metamodel
Model
Diffs

Metamodel
Diffs

Trans-
formation

Constraint DSL

Number of
Elements

Some All

Figure 6.4: Selected Features (light gray) for bidirectional Operators in MoConseMI

Definition 23: Bidirectional Operator

A bidirectional operator is a bidirectional and in-place model transformation def-
inition on one model and its metamodel, which is composed by a corresponding
unidirectional operator and its inverse unidirectional operator.

Summarizing, operators are used to define reusable parts of model transformations in
MoConseMI (Section 5.1.6Z 170). The conceptual design of these operators is developed
along Figure 6.2Z 190. As an example, the bidirectional operator �AddDeleteAssoci-
ation consists of the unidirectional operator →AddAssociation and its inverse unidi-
rectional ←DeleteAssociation.�AddDeleteAssoci-

ation with
→AddAssociation and
←DeleteAssociation

→AddAssociation creates a new association in the
metamodel and allows to create conforming links in the model, controlled by a model de-
cision. ←DeleteAssociation deletes this association in the metamodel and deletes all
conforming links in the model in any case. Additionally, �DeleteAddAssociation can
be easily developed by switching the unidirectional operators of �AddDeleteAssoci-
ation, i. e. by combining →DeleteAssociation and ←AddAssociation as inverse uni-
directional operator. Some more examples for operators12 fulfilling this concept are named
in the following Section 6.2, which are collected in a library for reuse and combination by
methodologists (Section 6.4Z 203).

Summarizing, bidirectional operators are composed of two unidirectional operators which
are inverse to each other in order to enable bidirectional executions (demand 2).MoConseMI is

Operator-based
Depending

on the current direction, one of these unidirectional operators is executed and changes one
model and its metamodel in-place (demand 1). Changing both a model together with its
metamodel fulfills the challenge to create the initial SUM and its conforming SUMM (last
impact of Section 5.1.4Z 168). Means for configuring unidirectional and bidirectional oper-
ators are discussed in the following sections in order to realize project-specific consistency
with reusable operators.

6.2 Metamodel Decisions

Since MoConseMI splits definitions for model synchronization into parts for their reuse
(Section 5.1.6Z 170), Section 6.1Z 185 introduces the general design for bidirectional and uni-

12When using the term operator, usually the statement can be applied to both unidirectional and
bidirectional operators. Otherwise, the context makes clear, that operators currently mean either
unidirectional or bidirectional operators.
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directional operators. Their designs are deepened here regarding means for configuration.
There are the following two demands on both bidirectional operators and unidirectional
operators:

1. Since MoConseMI uses operators in order to enable the reuse of parts of definitions
for model synchronization (Section 5.1.6Z 170), generic Operator

for Reuse
these operators must be generic to be

applicable for different projects on the one hand.

2. On the other hand, the consistency goals (Requirement R 1.2 (Generic Consistency
Goals)Z 155) and the (meta)models (Requirement R 1.1 (Generic Metamodels)Z 154)
are different for each project project-specific

Operators
for actual Use

and therefore require project-specific definitions for the
actual use in particular projects, leading to project-specific operators.

In order to fulfill these two demands, the main idea is to design operators which are
generic for reuse in general (demand 1) and are configurable for project-specific adapta-
tions in detail (demand 2). Decisions . . .This counts for both bidirectional and unidirectional operators
(leading to the selected feature “configurable” in Figure 6.3Z 191 and Figure 6.4Z 192).
These configurations are called decisions. Kleppe, Warmer and Bast (2003, p. 78f) call
them “transformation parameters”, but the term “decision” emphasizes the active role for
deciding them more than “parameter”.

Since operators transform metamodels and models, decisions for configuring the trans-
formation of metamodels and decisions for configuring the transformation of models are
required. . . . for Metamodels and

Models
Since metamodels specify, which models are conforming to them, and since

metamodels are means to specify consistency independently from actual models (Sec-
tion 2.2.2Z 60), this Section 6.2Z 192 investigates metamodel decisions first, before model
decisions are investigated in Section 6.3Z 198. This is also indicated by the research for
model co-evolution, which derives changes for models from metamodel changes which oc-
curred before. Therefore, related approaches for model co-evolution are investigated in the
following Section 6.2.1.

6.2.1 Related Work: Model Co-Evolution

This section investigates related approaches for model co-evolution, since they target the
joint evolution of models and metamodels and often use operator-based approaches (Sec-
tion 6.1.1Z 186), very similar to the design of operators in MoConseMI (Section 6.1.3Z 189).
The Transformation Tool Contest 2010 (Rose, Herrmannsdoerfer et al., 2012, p. 350), com-
paring different tools for model co-evolution including generic model transformations, Focus on specific

Approaches for Model
Co-Evolution

found,
that specific tools for model co-evolution are more suited than generic model transforma-
tions, in particular in terms of conciseness and understandability, since specific tools can
focus on the differences between the (meta)model versions, while generic model transfor-
mations must handle also unchanged parts of (meta)models. Depending on their provided
features, such behavior could be reconstructed with generic model transformations, as dis-
cussed e. g. for the GReTL transformation language (Ebert and Horn, 2014, p. 316).
Additionally, generic model transformations handle only one meta-level, as discussed in
Section 6.1.2Z 188. Therefore, only specific approaches for model co-evolution are discussed
in this section.

Hebig, Khelladi and Bendraou (2017) classify and survey approaches dedicated to model
co-evolution. Strategies to identify

the required Model
Changes

They classify approaches into five groups, regarding the resolution strategies,
how the required model changes depending on the metamodel changes are found:

Resolution Strategy Generation approaches generate multiple possible resolution stra-
tegies depending on the current metamodel change and are not investigated here, since
they only provide possible candidates for resolution strategies, while the methodolo-
gist usually knows, which resolution strategy is desired by users.
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Resolution Strategy Learning approaches learn resolution strategies from previously
selected resolutions and are not interesting here, since the resolution strategy to
realize is already known by the needs of users. An example is provided by Kessentini,
Sahraoui and Wimmer (2016), who apply machine learning techniques with multi-
objective optimization to search and find useful candidates for co-evolved models.

Constrained Model Search approaches search for possible model changes or updated
models, depending on the current metamodel change and the current model, and are
not interesting here, since these approaches force users to manually select the desired
resolution, while users should be provided with automated solutions. An example is
provided by Demuth, Riedl-Ehrenleitner et al. (2016), who apply their approaches for
rule-based consistency management (Section 3.3.1Z 108) to model co-evolution, since
the conformance of models to their metamodel can be described also with rules.

Resolution Strategy Languages are approaches which use tailored model transforma-
tion languages to co-evolve models from the old to the new metamodel version. These
approaches are interesting here, since they allow methodologists to explicitly and once
specify the desired model changes.

Predefined Resolution Strategies approaches provide predefined resolution strategies
for metamodel changes and are interesting here, since they allow methodologists to
reuse resolution strategies.

Therefore, only the last two groups of model co-evolution approaches are deepened with
some exemplary approaches.

In the groups of resolution strategy languages approaches,Epsilon Flock Epsilon Flock (Rose,
Kolovos et al., 2014) is an exogeneous model-to-model-transformation approach tailored
to the transformation of models from a source metamodel to a target metamodel, which is
an evolved version of the source metamodel. While the transformation of objects conform-
ing to evolved parts of the metamodel must be explicitly and manually defined according
to the current evolution scenario, objects conforming to unchanged or only renamed parts
of the metamodel are automatically copied from the source model to the target model.
Manual definitions contain mappings between classes in the source metamodel and classes
in the target metamodel as well as conditions and statements written with EOL (Paige,
Kolovos et al., 2009). Defining more generic co-evolution for special cases is marked as
future work (Rose, Kolovos et al., 2014, p. 753).

Another example isEMFMigrate EMFMigrate (Wagelaar, Iovino et al., 2012), which supports not
only model co-evolution, but aims to support the co-evolution of any depending artifacts:
Rules can be defined, which combine one metamodel change with actions, which are exe-
cuted in-place on the depending artifact to co-evolve it according to the metamodel change.
These rules can be collected and organized in libraries for their reuse and customization.

TheModel Change
Language (MCL)

Model Change Language (MCL) (Narayanan, Levendovszky et al., 2009) is a
DSL for specifying model co-evolution with graphical support and formalizations in Leven-
dovszky, Balasubramanian et al. (2013). MCL explicitly maps parts of the old metamodel
to parts of the new metamodel in graphical way and specifies details in imperative and tex-
tual way. Since MCL is a DSL, it supports usual and recurring cases for reuse, but complex
and very specific cases require to use other approaches like generic model transformations
(Levendovszky, Balasubramanian et al., 2013, p. 821).

Wimmer, Kusel et al. (2010) provide a strategy to enable the use of generic in-place
model transformations for the model co-evolution between two different metamodels.enable in-place Model

Transformations for
Model Co-Evolution

This
approach restricts the metamodel evolution by allowing metamodel elements to be only
either deleted, created or unchanged, but not to be changed or refactored. Accordingly,
model elements in the updated model are either newly created by hand-written in-place
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model transformations or kept unchanged, while model elements which do not conform to
the new metamodel anymore are deleted automatically.

In the groups of predefined resolution strategies approaches, Cicchetti, Di Ruscio et al.
(2008) provide lots of change scenarios (similar to operators) for metamodels and predefined
automated model co-evolution strategies, which can be refined, if relevant information for
the model co-evolution is missing. They propose to chain change scenarios one after another
to realize bigger change scenarios.

Another, more elaborated example is Edapt: EdaptEdapt provides lots of coupled oper-
ators, explicitly designed for reuse, which couple small changes in the metamodel with
automated changes for co-evolution of conforming models (Herrmannsdoerfer, Vermolen
and Wachsmuth, 2011). These coupled operators are chained in order to explicitly model
the change history of metamodels. Edapt is provided as graphically Eclipse plugin and
allows to graphically select and configure coupled operators to actively evolve metamodels
(Herrmannsdoerfer, 2010). The corresponding model co-evolution is predefined and cannot
be adapted. Custom model co-evolution can be manually realized with explicit code written
in Groovy (Herrmannsdoerfer, Benz and E, 2008). Therefore, an easy reuse is possible
only for the predefined operators, whose model co-evolution cannot be adapted to project-
specific needs, violating Requirement R 1.2 (Generic Consistency Goals)Z 155. Additionally,
Edapt supports only model co-evolution in one direction, although the predefined opera-
tors are introduced with their conceptual inverse operators by Herrmannsdoerfer, Vermolen
and Wachsmuth (2011). Initially, Edapt was called COPE (Herrmannsdoerfer, Benz and
Juergens, 2009). The approach of Wachsmuth (2007) using QVT-R for co-evolving models
according to metamodel changes can be seen as predecessor for COPE/Edapt. Addition-
ally, Wachsmuth (2007, p. 621) explicitly requires in-place transformations for realizing
model co-evolution.

Data base co-evolution deals with evolving schemata of data bases (Section 3.6.3Z 139)
and corresponding co-evolution for the instances within data bases, which is still a challenge
in practice (Delplanque, Etien et al., 2018) and in research (Möller, Scherzinger et al., 2020):

Data Base Co-EvolutionThe counterpart to model co-evolution is called schema evolution (Rahm and Bernstein,
2006) in data base research and focuses on evolving data base schemata without information
loss. Two examples are CHiSEL using unidirectional operators to transform schemata and
instances together (Schuler and Kessleman, 2019), and BiDEL using bidirectional operators
to transform schemata and instances together (Herrmann, Voigt et al., 2018). On top of
schema evolution, schema versioning manages the history of schema versions and enables to
access data also with older versions of the schema (Roddick, 1995). These examples show,
that operator-based co-evolution is successful also for evolving data bases. Additionally,
schema evolution and model co-evolution are very similar, since both target evolution of
schema information and co-evolution of conforming instance data (Milovanovic and Milicev,
2015).

Evolution occurs also in ontologies (Section 3.6.4Z 142) with changes in ontology sche-
mata and co-evolution changes in ontology instances: Ontology Co-EvolutionNoy and Klein (2004) give an intro-
duction to ontology co-evolution and propose to use (unidirectional) operators which are
oriented at few changes in the schema and co-evolution changes in the instances. Since on-
tologies can have more than two meta-levels, co-evolution must cover all lower meta-levels
and not only one (Noy and Klein, 2004).

Summarizing the lessons learned from investigating approaches for model co-evolution,
Summaryoperator-based approaches are often used and are useful, since predefined operators are

reusable for recurring metamodel evolution scenarios. Examples for such operators, which
are often used by the investigated related approaches, include creation of single metamodel
elements like add class and add attribute, deletion of single metamodel elements like delete
class and delete association, change of single metamodel elements like change attribute type,
change multiplicity and rename, and more complex scenarios like to move an attribute from
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one class to another class. Since these metamodel changes are small, often consisting of
single metamodel changes, complex metamodel evolution scenarios can be split into parts,
which are described by such operators. Operators oriented along small metamodel changes
are not only used for model co-evolution, but also for the co-evolution of data bases and
ontologies.

While all approaches target model co-evolution, only some approaches explicitly per-
form also the metamodel evolution, like Edapt, while other approaches perform only the
model migration between two different metamodels, like most resolution strategy languages.
All investigated approaches target only one model and its metamodel, while MoConseMI
needs to transform multiple (meta)models into the SU(M)M, which is designed in Sec-
tion 6.4.3Z 205.

Another important finding is, that there are multiple possible strategies to co-evolve
the same model according to the same metamodel changes.Adaptations for the

Model Co-Evolution
required

Gruschko, Kolovos and Paige
(2007) classify the impact of metamodel changes into non breaking changes, breaking and
resolvable changes, and breaking and unresolvable changes:

• Creating new metamodel elements is usually non breaking, since they enable new
model elements, but do not expect on the one hand, that such model elements exist
just after the metamodel evolution. On the other hand, depending on the needs of
the current project, some model elements could be initialized.

• Renaming a metamodel element is breaking and resolvable, since conforming model
elements referring to the renamed metamodel element by their name need to update
this name, which can be done automatically without needing any adaptations.

• Changing types of attributes is breaking and unresolvable in general, since old values
like floating-point values must be converted to the new type, which is unclear e. g.
for boolean as new type and requires a project-specific co-evolution.

• Deleting metamodel elements could be automated by deleting all conforming model
elements (non breaking), but this leads to information loss and might be prevented
in some cases by defining custom model co-evolutions.

Summarizing, even for non breaking and breaking and resolvable metamodel changes, mo-
del co-evolution provides some degrees of freedom, which can be used for project-specific
adaptations. Predefined resolution strategies often support only one variant of the model
co-evolution. Therefore, additional configurations for the model level are required, which
are discussed in Section 6.3Z 198. Additionally, support for custom evolution scenarios is
required for special cases.

6.2.2 Design

This sections extends the general design of operators in Figure 6.2Z 190 with metamodel
decisions, as depicted in Figure 6.5Z 197. Metamodel decisions are means to control the
changes of unidirectional operators on metamodel level.Metamodel Decisions

for unidirectional
Operators

By configuring metamodel deci-
sions, methodologists reuse and adapt generic and reusable operators (demand 1) for the
needs of the current project (demand 2). As an example, a generic →AddAssociation
operator creates a new association between two existing classes. This case can occur in
different evolution scenarios and can be adapted to the current situation with metamodel
decisions for the two existing classes A,B . Accordingly, the methodologist takes the oper-
ator provided by MoConseMI and fills these metamodel decisions with the two particular
names of the classes in the current metamodel to evolve. Other metamodel decisions control
the role names and multiplicities of the new association.
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Figure 6.5: Metamodel Decisions for the Operator Signature

This general design for unidirectional operators is strongly influenced by Edapt, as
investigated above: unidirectional Operators

designed according to
Edapt

Edapt covers both levels for models and metamodels together and
provides reusable operators, which are oriented along small metamodel changes, which can
be controlled in detail. Additionally, Edapt predefines one model co-evolution strategy for
each of its operators, while the model co-evolution for MoConseMI is designed later in
Section 6.3Z 198. Edapt fits here, since it fulfills the needs for explicit transformations of
models and their metamodels (Section 6.1.3Z 189) in a generic (demand 1) and adaptable
(demand 2) way. Additionally, Edapt was successfully evaluated during the Transformation
Tool Contest 2010 (Rose, Herrmannsdoerfer et al., 2012), comparing different tools for
model co-evolution including generic model transformations.

Since MoConseMI combines unidirectional operators into bidirectional operators, Metamodel Decisions
for bidirectional
Operators

both
unidirectional operators might have metamodel decisions: Since the metamodel changes
of inverse operators must be inverse to each other, not only the unidirectional operators
depend on each other, but also their metamodel decisions and their configurations by me-
thodologists. Therefore, the metamodel decisions of the inverse unidirectional operator are
called “Metamodel Decisions Inv” in Figure 6.5. As an example, while→AddAssociation
creates a new association C between the existing classes A and B (see above), its inverse
unidirectional operator ←DeleteAssociation must delete exactly this association C . In
order to ensure these dependencies, the configurations for the metamodel decisions of the
unidirectional operators are given to the bidirectional operator. The bidirectional opera-
tor forwards them to the unidirectional operator and automatically derives corresponding
configurations for the metamodel decisions of the inverse unidirectional operator. Since
some information about the metamodel, which is required to derive the inverse metamodel
configurations, is initially not known, each bidirectional operator has two methods for this
initialization, which are called during the first execution of the operator with the current
metamodel as parameter, one of these methods is called before the first execution, the other
method is called after the first execution. This design eases the work of methodologists,
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since metamodel decisions need to be configured only once for one direction, and ensures,
that unidirectional operators and configurations for their metamodel decisions fit together,
as defined in Section 6.1.3Z 189.

According to most of the investigated related approaches for operator-based co-evolution,
the operators of MoConseMI execute only few changes in the metamodel, since short se-
quences of changes occur more often than long sequences of changes, i. e. short change
sequences can be found more often in evolution scenarios than long change sequences in
general.Operators oriented

along small Metamodel
Changes

In the extreme case, any metamodel evolution scenario can be split into atomic
metamodel changes. Therefore, MoConseMI provides such operators like for creating new,
deleting old and changing existing metamodel elements, as documented in Section 7.3Z 243.
To be reusable, the number of these metamodel changes is fixed for each operator in order to
be predictable for methodologists for explicitly specifying the desired metamodel evolution.
As an example,→AddAssociation always creates one new association, leading to exactly
the metamodel changes for creating the new association and setting its initial values for
connected classes, roles names and multiplicities. Therefore, configurations for metamodel
decisions are usually single, static values like the names of the two classes (String values)
and the desired multiplicities (int values). Metamodel differences for the representation of
the metamodel evolution are discussed in Section 6.7Z 227. Since the metamodel changes
are small and are done in-place, there is no need to merge different metamodel versions as
in Wimmer, Kusel et al. (2010).

This design is summarized in Definition 24:

Definition 24: Metamodel Decision

Metamodel decisions are means of unidirectional operators to control their changes on
metamodel level. If methodologists apply these operators, they provide metamodel
configurations for each of the metamodel decisions.

Summarizing, the design of operators is oriented along successful co-evolution ap-
proaches (Section 6.1.1Z 186),Summary while the design of their metamodel decisions is oriented
along successful model co-evolution approaches (Section 6.2.1Z 193). Metamodel decisions
control the changes of generic operators (demand 1) on metamodel level and are means
for methodologists to adapt reusable operator to the current project, in particular, to the
current metamodel (demand 2). Metamodel decisions are provided by unidirectional oper-
ators and configured by methodologists during their reuse. These configurations are given
to bidirectional operators, which forward them to the first unidirectional operator and au-
tomatically derive corresponding configurations for its inverse unidirectional operator. The
configurations for metamodel decisions of operators are done by methodologists during the
use case “specify Consistency” (Section 5.2.1Z 171).

6.3 Model Decisions

Since MoConseMI uses operators to jointly transform metamodels and models (Sec-
tion 6.1.3Z 189), operators evolve metamodels with small and configurable changes (Sec-
tion 6.2.2Z 196). This section focuses on the design of the required co-evolution of conform-
ing models with the following two demands:

1. As already motivated in Section 6.2.1Z 193, there are multiple variants for the mo-
del co-evolution, even for the same metamodel changes and the same current model.

project-specific Model
Co-Evolution

Depending on the current needs, different strategies for model co-evolution might
be desired in different projects. In particular, it must be ensured, that no still re-
quired information is lost by accident i. e. by inaccurate and non-adaptable model
co-evolution.
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2. Metamodel evolution and model co-evolution are not the main objectives of Mo-
ConseMI, but are means to realize model synchronization (Section 5.1.4Z 168) with
transformations on model and metamodel level. realize Consistency

Rules
Instead, the objective is to ensure

consistency of models with model synchronization. Therefore, the model transfor-
mations must realize the defined consistency rules in order to ensure the consistency
goals of the current project.

In order to fulfill these two demands, the main idea is to make the operators, whose
metamodel changes are configurable, configurable by methodologists for the model level
as well. These means for configurations are called model decisions. Before deepening this
design idea in Section 6.3.2Z 200, the next Section 6.3.1 investigates related approaches
which allow methodologists to customize model transformations in detail.

6.3.1 Related Work

The general ideas of model co-evolution are already discussed in Section 6.2.1Z 193. An
important result is, that model co-evolution can vary even for the same metamodel changes
and the same current model. This can be exploited to adapt the model changes according
to the needs of the current project, which is done by methodologists (Section 5.1.5Z 169).
Therefore, this section investigates related approaches which allow methodologists to cus-
tomize model transformations in detail, including related approaches for model co-evolution,
but also for BX.

For model co-evolution, Hebig, Khelladi and Bendraou (2017, p. 405f) explicitly group
strategies for model co-evolution regarding the amount of human interaction into so-called
“benefit classes”: Model Co-EvolutionBenefit class 1 : 1 collects model co-evolution strategies, which require
human interaction for each model to co-evolve, and therefore maps to decisions made by
users. Benefit class 1 : n collects model co-evolution strategies, which require human
interaction for each metamodel evolution and handles the co-evolution of all conforming
model automatically, and therefore maps to decisions made by methodologists. Benefit
class 0 : n collects model co-evolution strategies, which require no human interaction at all
and therefore maps to situations which can be solved by platform specialists for the whole
approach. Here, the benefit class 1 : n maps exactly to the cases which should be decided
by methodologists and automated afterwards by MoConseMI for users. This shows, that
the idea of model decisions for methodologists to configure the desired model co-evolution
is reasonable and is already used in practice.

Additionally, research for bidirectional transformation (BX) provides also some exam-
ples for customizations of model transformations in details: BX

• Stevens (2010) motivates in the area of BX to let the methodologist decide once the
desired model transformations for the inverse direction.

• Zan, Pacheco and Hu (2014) allow to imperatively customize the desired back-
propagation of changes for bidirectional model transformations, written with XML
syntax and demonstrated in contrast to QVT-R.

• In the approach of Bank, Buchmann and Westfechtel (2021), a high-level DSL called
BXtendDSL is used to declaratively describe the general BX, which is comparable
with chaining predefined operators, and is complemented with additional imperative
code for the details of the transformation, which is comparable with model decisions.

Similar design ideas can be found also in data-oriented research: Data-oriented Research

• Tran, Kato and Hu (2020) develop an approach to explicitly write code to realize the
view-update problem in the data base area, which can be seen as model decisions for
the inverse direction of operators here.
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•GraphQL GraphQL (Kress, 2021; Wittern, Cha et al., 2019) is a platform-independent query
language for graphs. It is often used as interface in form of an API between server and
client in web-based applications, technically often used with REST and JSON. The
server has a GraphQL schema describing the structures of the available data, which
can be read using queries and changed using mutations by clients. The declaration
of allowed queries and mutations as well as their implementation are done on the
server, strongly connected with the schema and platform-specific depending on the
underlying realization of the data. Here, it is interesting to see, that reading and
writing data using GraphQL are completely independent of each other with two
separated specifications: This design solves the view-update problem by restricting
allowed updates and implementing them explicitly.

Summarizing, these investigated related approaches demonstrate, that there is a need for
explicit specifications or customizations for model transformations in detail. Although BX
research aims to provide model transformations for both directions with a single transforma-
tion definition, in practice, there are some approaches which define (parts of) unidirectional
transformations explicitly, sometimes in imperative way.

6.3.2 Design

This section extends the design of operators including metamodel decisions in Figure 6.5Z 197

with model decisions, as depicted in Figure 6.6Z 201.Model Decisions for
unidirectional Operators

Model decisions are means to control
the changes of unidirectional operators on model level. By configuring model decisions,
methodologists adapt the model co-evolution of generic operators (demand 1) according
to the needs of the current project, in terms of consistency rules (demand 2). In particu-
lar, the possible degrees of freedom during model co-evolution are identified and are made
configurable as model decisions. Methodologists use these model decisions to configure the
consistency rules in order to ensure the project-specific consistency goals. As an example,
after creating a new association in the metamodel, →AddAssociation allows to create
additional links in the model by a model decision. Depending on the consistency rules,
methodologists can configure to create none or some links, depending on the current mo-
del. There are also operators without any model decisions e. g. to rename a metamodel
element, since the only reasonable model co-evolution strategy is to update the type name
of conforming model elements and this strategy can be automated.

Since MoConseMI combines unidirectional operators into bidirectional operators, both
unidirectional operators might have model decisions.configuring Model

Decisions for both
unidirectional Operators
for Flexibility

Since the model changes of such unidi-
rectional operators do not need to be completely inverse to each other (Section 6.1.3Z 189),
in order to fix inconsistencies within the current model, methodologists can explicitly con-
figure the model decisions of both unidirectional operators. While there are technically
independent configurations, they have semantic dependencies in order to fulfill the desired
consistency rules and to prevent information loss. This design introduces some more addi-
tional configuration effort for methodologists, but provides the benefit to explicitly configure
the transformations for both directions in unidirectional way, according to the findings of
related approaches in Section 6.3.1Z 199 and Section 3.7Z 146. This design trades configu-
ration effort for flexibility.

The configurations for model decisions can depend not only on the current metamodel
change and the consistency rules, but also on the current model.Configurations for

Model Decisions take
the current Model into
account

Therefore, configurations
for model decisions can provide dynamic values, depending on the current model to co-
evolve.

While some model decisions are “questions to answer” with predefined values for certain
parts of the model, other model decisions require to explicitly change the current model
like the model decisions of →AddAssociation to create some links within the model. In
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Figure 6.6: Model Decisions for the Operator Signature

order to support methodologists to query the current model and to specify details of model
transformations for single directions, imperative statements are supported. Configurations with

imperative
general-purpose
Programming
Languages

This fits to the
principle of model synchronization with model transformations, which enforce consistency
by active overriding of possible inconsistencies with transformations. Since model decisions
are configured for each direction, they can be configured in imperative way, while declarative
statements of BX languages like TGGs allow to derive transformations for two directions,
but decrease flexibility and expressiveness (Section 3.7Z 146). In particular, no formal spec-
ifications are used, neither for configuring model decisions nor for formalizing consistency,
since model transformations are still required for model synchronization. There is no spe-
cial DSL for configuring model decisions, since the model decisions for variation points of
model co-evolution are diverse. Defining new operators with special model decisions would
require to extend the DSL accordingly. Therefore, methodologists use a general-purpose
programming language for configuring model decisions. This reduces the learning curve for
methodologists, since no new DSL must be learned.

This design for model decisions is summarized in Definition 25:

Definition 25: Model Decision

Model decisions are means of unidirectional operators to control their changes on
model level for model co-evolution. If methodologists apply these operators, they
provide model configurations for each of the model decisions.

In order to ease the configuration work for methodologists again, reusable default
Configurations for
Model Decisions

MoConseMI provides
default configurations for model decisions, which can be reused in recurring situations. In
particular, complex configurations for recurring situations are made reusable with default
configurations. As an example, →AddAssociation provides a default configuration for
its model decision, which creates no links at all. By using the usual means of the general-
purpose programming language like methods, methodologists could create also their own
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reusable and project-specific configurations for model decisions.

Since model decisions are configured with imperative general-purpose programming lan-
guages,custom Model

Transformations with
�ChangeModel

model decisions can be used to support methodologists with �ChangeModel in
order to configure custom model transformations scenarios, as it is required for customized
handling of specific model co-evolution scenarios in Section 6.2.1Z 193. →ChangeModel
provides one model decision which allows methodologists to transform the model in arbi-
trary way, as long as the model remains conform to the metamodel, which is never changed
by→ChangeModel. While�ChangeModel provides the whole flexibility for changing
models, it comes with the drawback, that the transformation for the inverse direction for
←ChangeModel must be specified accordingly and manually as well.

When configuring, how to transform the model in detail, methodologists can take not
only the current model into account, but also the following additional information:

Current Branch Differences are model differences B∆, which describe, how the current
model which is the input for the unidirectional operator was changed, not by the pre-
vious operator, but compared to the previous version of this model.current Branch

Differences B∆

A special case

for branch differences are user differences User∆, which are applied by users to the
model of a view, leading to an updated version of this model, which is given to the
unidirectional operator as input. These branch differences are the input for change
translation-based approaches, which work like “if model element x was changed, then
change model element y , else do nothing” as reactions on model changes (Kramer,
2017, pp. 80–81). In the ongoing example, realizing Consistency Goal C 3Z 77 for
renamings of associations and their getter methods requires to know, if either the
association or its getter was renamed in order to rename the counterpart to fix con-
tradicting current names. Additionally, using B∆ is motivated by the theoretical
findings of Diskin, Xiong and Czarnecki (2011), that delta-based approaches reduce
ambiguities compared to state-based approaches (Section 3.7Z 146). Accordingly, the
branch differences are used in the definition for round-trip engineering by Hettel,
Lawley and Raymond (2008). Note, that after executing the current unidirectional
operator, a new B∆ must be calculated (requiring the design in Section 6.7.4Z 236),
which is given to the next unidirectional operator as input.

History Maps store key-value pairs and are used by unidirectional operators and con-
figurations for their model decisions.History Maps History maps allow to remember information
like details of previous transformations or removed information and increases flex-
ibility in general. History maps are deepened in Section 6.5.2Z 214. History maps
make operators state-full, while they are state-less without history maps. Already
Finkelstein, Gabbay et al. (1993) motivate the use of historic data like changes in
the past. Only few model transformation approaches using meta-data “like authoring
and versioning information” (Macedo, Jorge and Cunha, 2017, p. 630) are found in
a survey for approaches for ensuring model consistency.

History maps and current branch differences are also used to prevent possible information
loss during the execution of operators, which is discussed in detail in Section 6.5.2Z 214.

Summarizing model decisions, model co-evolution ensures the conformance of models
to their changed metamodel in the first place.Summary Since there are multiple possible solu-
tions and since the selected solution depends on the semantics of the current model and is
project-specific, the degrees of freedom during model co-evolution in general (demand 1)
are exploited to ensure semantic consistency of models and to realize the project-specific
consistency rules (demand 2). Model decisions allow methodologists to configure the be-
havior of operators accordingly. Such configurations take the current model, current branch
differences and history maps into account and are written with imperative general-purpose
programming languages in general. The configurations of model decisions of operators
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is done by methodologists during the use case “specify Consistency” (Section 5.2.1Z 171).
Model differences for the representation of the model co-evolution are discussed in Sec-
tion 6.7Z 227.

6.4 Operator Combination

Up to now, single operators are designed as parts of model transformations for model syn-
chronization (Section 5.1.6Z 170). In order to describe the whole transformations between
view(point)s and the SU(M)M, operators must be combined into a chain of operators. Since
the data types for input and output are the same, i. e. one model and its metamodel, op-
erators are chainable by design (Section 6.1.3Z 189). The combination of operators into
chains from view(point)s to the SU(M)M is done by methodologists during the use case
“specify Consistency” (Section 5.2.1Z 171), together with the selection of operators and the
configuration of their metamodel decisions and model decisions. There are the following
two demands, how to combine operators:

1. In order to create the SU(M)M, it is not sufficient to create it from a single data
source, combine multiple Data

Sources into the
SU(M)M

but all reused data sources must be integrated into the SU(M)M, since it
should contain all information of the project. Therefore, combining operators must
allow to integrate multiple (meta)models into the SU(M)M.

2. Additionally, the same operators should be combinable also combine Operators for
new View(point)s

to derive new view(point)s
from the SU(M)M, according to Requirement R 3 (Define new View(point)s)Z 156.

Therefore, Section 6.4.1 investigates related approaches for combining parts of model
transformations as preparation to design the combination of operators in Section 6.4.2Z 204.
Combining operators is used afterwards to integrate existing data sources into the SU(M)M
in Section 6.4.3Z 205 and to define new view(point)s for the SU(M)M in Section 6.4.4Z 209.
The result of these combinations is summarized in Section 6.4.5Z 213.

6.4.1 Related Work

There are some related approaches for the reuse in model transformations by composing
smaller transformations into bigger transformations or by splitting transformations into
smaller parts. This section classifies the combinations of operators of MoConseMI into
two classifications for model transformation reuse. By relating the design of MoConseMI
to some more selected related approaches, this section will show, that reuse is possible with
the general design of MoConseMI. More approaches for reusing model transformations
can be found in Kusel, Schönböck et al. (2015) and Bruel, Combemale et al. (2020).

According to the first classification for model transformation reuse by Kusel, Schönböck
et al. (2015), reuse of model transformations can be distinguished into Classifications for Reuse

of Model
Transformations

intra-transformation
reuse, i. e. same parts are reused within the same transformation like module superimposi-
tion for ATL (Wagelaar, Van Der Straeten and Deridder, 2010), and inter-transformation
reuse, i. e. same parts are reused in multiple different transformations (Kusel, Schönböck
et al., 2015). In MoConseMI, operators should be reusable for multiple applications and
also multiple times within one chain of operators between a particular view(point) and the
SU(M)M. By configuring the metamodel decisions, the operators are bound to concrete
parts of metamodels and have a small granularity in the classification of Kusel, Schönböck
et al. (2015).

According to the second classification for model transformation reuse by Bruel, Combe-
male et al. (2020), MoConseMI provides systematic reuse by providing a library of opera-
tors, reuses operators as transformation code by referencing them in applications, since they
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describe the whole transformation only partially, and transforms in-place. Each selected
operator is applied once in a 1− 1 way by applying the metamodel changes to the current
metamodel, defined in intensional way like with matching names. Since they are configured
with metamodel decisions, they are defined in explicit way by methodologists. MoCon-
seMI uses operators, which are bidirectional. Additionally, the operators provide syntactic
checking, that they apply to the current metamodel, by static checking, as deepened in
Section 6.5.2Z 214.

While small parts of transformations in form of operators should be chained,Granularity other
research targets chaining of complete model transformations like Lúcio, Mustafiz et al.
(2013), which allows no configurations as operators in MoConseMI do and decreases reuse
due to the too coarse-grained granularity.

Etien, Muller et al. (2015) motivate to modularize model transformations and propose
localized transformations, which change only small parts of metamodels and are chained to
fulfill the complete model transformation. While their localized transformations are similar
to operators here, their approach is out-place and not in-place. There are also languages
dedicated to the specification of model transformation chains like UniTI (Vanhooff, Ayed
et al., 2007).

Summarizing these related approaches,Summary reuse of model transformations is required and
is an active topic of research, in which operator-based approaches are used. Therefore, the
design of operators in MoConseMI fits also to the design of model transformation reuse
in research. Composing parts into a complete transformation is done here by containment
(Kusel, Schönböck et al., 2015), i. e. the complete transformation consists of operators,
which is designed in the following Section 6.4.2.

6.4.2 Chain of Operators

This section designs, how to combine operators, which represent reusable parts of trans-
formations, into complete transformations. Two operators can be concatenated, since the
output of the first operator is the input for the second operator.combine Operators as

Chain
That is possible, since

the signature of inputs and outputs of all operators is the same, since the operators work
in-place. Therefore, methodologists can explicitly select operators and chain them in a
self-defined order. This design is depicted in Figure 6.7.

Operator

MM1

M 1
1

MM2

M 1
2

Inverse
Operator

MM1

M 2
1

MM2

M 2
2

Operator

MM0

M 1
0

. . . Operator

MM3

M 1
3

. . .

Inverse
Operator

MM3

M 2
3

. . .Inverse
Operator

MM0

M 2
0

. . .

Figure 6.7: Chaining Operators according to the Operator Signature
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By selecting operators with particular metamodel changes, methodologists explicitly
decide the desired metamodel evolution. Since methodologists configure the metamodel
decisions of operators according to the current metamodel, chaining configured operators
specifies their order: fixed Order of

configured Operators
As an example, if →AddAssociation is selected and configured to

create a new association C between the classes A and B , renaming A to D with →Re-
nameClassifier should be done after →AddAssociation, since →AddAssociation is
configured with the name of A, not of D . As alternative, the renaming could be done
before creating the association, but then→AddAssociation must be configured to create
the new association between D and B . Therefore, the order of selected and configured
operators is restricted. Even if there are operators within the same chain, which do not
depend on each other in this way, their order should be constant and fixed in the way, as
the methodologist designed it, otherwise readability and maintainability of operator chains
is hampered.

Additionally, unidirectional operators define constraints for the configurations of meta-
model decisions in order to ensure, that the operator fits to the current metamodel. Constraints for

Metamodel Decisions
As an

example, →AddAssociation has constraints, that the two classes must exist, i. e. config-
uring →AddAssociation with A and B will result in error messages, if A or B do not
exist.

After designing the foundations for chaining operators, the next sections design, how
multiple data sources can be integrated into the SU(M)M (Section 6.4.3) and how to define
new view(point)s (Section 6.4.4Z 209), both with chains of operators.

6.4.3 Integration of existing Data Sources

This section designs, how selecting and configuring operators and concatenating them into
chains can be used to integrate data sources into the SU(M)M, according to consistency
rules. If there is exactly one data source in the project, a single chain of operators according
to Section 6.4.2Z 204 is sufficient to transform it into the SU(M)M. If there is no data source,
this special case is discussed in Section 13.3.2Z 474 for using MoConseMI without reuse.
This section focuses on the case with two or more data sources to reuse.

If there are two or more data sources to reuse, two independent operator chains could
be created, which even might result in equal metamodels for the SUMM, but there are
two independent models for the SUM, since the first one contains only the information of
the first data source and the second one contains only the information of the second data
source. Combination of

Information from two
Models required

Additionally, it is not possible to link these two models with each other, since they
are created by independent chains of operators. Therefore, a special solution is required
to enable having information of two models of two data sources within the same chain of
operators.

Since operators are designed to work only with one (meta)model (Section 6.1.3Z 189),
special Operator
�CombineSeparate-
DataSources

information stemming from two different data sources in form of two models must be
combined into one model. This is realized with a special operator called→CombineData-
Sources, specially designed and only used for this situation: It is the only unidirectional
operator which takes two (meta)models as input, technically combines them in-place into
one (meta)model and returns this (meta)model. With this design, it combines two chains
of operators, starting at two data sources, into one chain of operators towards the SU(M)M.
→CombineDataSources is combined with←SeparateDataSources into�Combine-
SeparateDataSources.

→CombineDataSources technically combines two (meta)models by moving all their
contained elements into one (meta)model. technical Combination

of two (Meta)Models
The elements of the two (meta)models are still

completely independent of each other (they are only with the same shell), which is ex-
ploited by the inverse←SeparateDataSources for separating the (meta)model into two
(meta)models again. This design is also the usual strategy to enable tools without explicit
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support for multiple models (Macedo, Jorge and Cunha, 2017, p. 622), as introduced in
Section 3.2.5Z 108. The combination is done in explicit way “by copy”13 and not by link-
ing e. g. with proxies as provided by EMF or investigated by Amalio, de Lara and Guerra
(2015). Just after this combination, the result can be seen as “multi-model” in the sense
of Diskin, König and Lawford (2018). This operator →CombineDataSources realizes
technical composition of models and metamodels as technical precondition for doing the
semantic composition (Kienzle, Mussbacher et al., 2019) afterwards with subsequent oper-
ators in order to realize consistency rules and to reduce dependencies for a more essential
SUM (Section 5.1.3Z 167).

Since →CombineDataSources combines exactly two (meta)models, in order to com-
bine n > 0 data sources, this operator must be applied n− 1-times.Tree of Data Sources The resulting chains of
operators form a “tree of data sources”, allowing arbitrary arrangements: After combining
the first two data sources, the third data source could be combined, then the fourth data
source and so on. A possible alternative is to combine the first and the second data source
with each other, then the third and fourth data source and afterwards the first two data
sources are combined with the last two data sources. Additionally, both kinds can be mixed.

In the area of data base integration, the first kind is called “binary-ladder” and the
second kind “binary-balanced” (Batini, Lenzerini and Navathe, 1986, p. 343).Related Work The strategy
to extend metamodels in step-wise way with more concepts and other viewpoints is also used
by Knapp and Mossakowski (2018, p. 43f) for UML, even since there is already a somehow
integrated SUMM. In the same step-wise way, Misbhauddin and Alshayeb (2019) integrate
viewpoints for UML and for OCL. These related approaches show, that the design for
integrating data sources into a SU(M)M is a known and working solution.

GraphQL as introduced in Section 6.3.1Z 199 allows to combine multiple GraphQL
schemata into one single schema,combining Data Sources

with GraphQL
which is called “stitching”14: It allows to rename existing

types, to merge types with the same name automatically and to transform single schemata.
In MoConseMI in contrast, transformations, renamings and merges are realized by single
operators. Therefore, the (technical) combination of two data sources can be eased with a
single operator in MoConseMI, since possible conflicts are solved by previous operators
and the integration is done by subsequent operators. Additionally, the operators couple
transformations in forward and backward direction, while GraphQL requires completely
independent implementations for reading and writing data.

In principle, each order for the combination of data sources is possible, as described
above.arbitrary, but fixed

Order of Data Sources
But after the methodologist selected and explicitly specified an order, this order

is fixed, since the selected operators and their configurations depend on each other, as
discussed in Section 6.4.2Z 204. This can be found also for merging n ≥ 2 models, where
the order matters and leads to different results (Rubin and Chechik, 2013; Boubakir and
Chaoui, 2016).

An example for its application is given in the ongoing example now. Walter and Ebert
(2009) show another example for chains of step-wise transformations and integrations of
three models in the domains of ontologies, DSLs and feature modeling.

Ongoing Example, Part 21: Integration of Data Sources ← List →

This box roughly sketches the integration of the three data sources into the SU(M)M.
The configured operators are depicted in Figure 6.8Z 207.

13In out-place transformations, elements are copied into the same (meta)model, while the term
“moving” is better suited for in-place transformations.

14https://www.graphql-tools.com/docs/schema-stitching/stitch-combining-schemas,
https://hasura.io/blog/the-ultimate-guide-to-schema-stitching-in-graphql-f30178ac0072/
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Requirements 01 02
Add Delete
Association

03 04
Merge Split

Classes

05
Merge Split
Attributes

SU(M)M
Add Delete
Association

Java ClassDiagram

Figure 6.8: Operators for the Integration of Data Sources into the SU(M)M

Starting point are the Requirements and the Java source code, which are technically
combined with �CombineSeparateDataSources. Afterwards, �AddDeleteAssoci-
ation 01←→02 realizes C 1, since the new association, as depicted in Figure 6.9, enables
users to create traceability links in the model.

asgjava dataRequirementsSpecification

rowNumber : EInt [0..1]

id : EString [0..1]

author : EString [0..1]

text : EString [0..1]

Requirement

JavaASG

name : EString [1]

ClassType
name : EString [1]

Method

container [1]

content [∗]

fulfilled [∗]

fulfilledBy [∗]

asg [1]

classes [∗]

class [1]

methods [∗]

calledBy [∗] calling [∗]

Figure 6.9: Metamodel Changes from 01 to 02

After combining ClassDiagram with the current (meta)model 02 by �CombineSep-

arateDataSources, the operators �MergeSplitClasses (03↔04) and �Merge-

SplitAttributes (04↔05) unify the duplicate representations for classes in Java and
ClassDiagram for ensuring C 2, as depicted in Figure 6.10Z 208. →MergeClasses merges
umlclasses.Class into asgjava.ClassType, while →MergeAttributes merge the du-
plicate attributes asgjava.ClassType.className and asgjava.ClassType.name. The
corresponding merges of objects and their slots ensures, that this redundancy is not con-
tained in the SUM anymore. Since the views are updated via the SUM, consistent models
are derived from the SUM by design.
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Figure 6.10: Metamodel Changes from 03 to 05 (left/top) and 05 to SUMM (right/bottom)
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Finally, �AddDeleteAssociation (05↔SUMM ) realizes C 3 by introducing a new
association in order to indicate that one Method for each Association, which serves as
getter for the association, as depicted in Figure 6.10Z 208. Making this relationship explicit,
allows to detect diverging names of associations and their getters and to handle them via
renamings configurations in →AddAssociation.

6.4.4 Definition of new View(point)s

This section designs, how chains of operators can be used to define new view(point)s on top
of the SU(M)M. new Views represent

existing Information
differently

The purpose of new view(point)s is to represent only selected parts of the
system under development, tailored to the concerns of users (Section 1.2.3Z 39). Since the
system under development is represented as a whole by the SUM conforming to the SUMM,
the SU(M)M is the natural starting point to derive new view(point)s, which present no new
information, but already existing information in a different way.

Since a new view(point) consists of a model and its metamodel, both must be created,
since they do not exist initially. Operator Chain for

defining new
View(point)s

Therefore, operators can be reused also for this purpose,
since they jointly transform models and metamodels. Chaining bidirectional operators
together allows to describe the complete way from the SU(M)M to the new view(point)
and to restructure the concepts of the SUMM and information of the SUM.

Since the new view contains only information which stems from the SUM and contains
only some parts of this information, special Operator

�SubSet
the operator chain reduces the available information

during the way from the SUM to the new view, according to the asymmetric case (Fig-
ure 3.5Z 104). This is supported with the special operator �SubSet, consisting of →Sub-
SetFilter and ←SubSetRecreate: →SubSetFilter removes some elements in the
metamodel (selected by metamodel decisions with configurations for a metamodel decision)
and all conforming elements in the model. Section 6.5.2Z 214 explains the foundations, how
←SubSetRecreate restores the removed information.

Usually, the starting point for defining new view(point)s is the SU(M)M, define new View(point)s
on top of any
(Meta)Model

since it allows
to reuse all represented concepts and information of the system under development in an
integrated and improved way, since internal dependencies are reduced during the integra-
tion of data sources (Section 6.4.3Z 205) according to Section 5.1.3Z 167. But in general, it
is possible to use any (meta)model as starting point, including the data sources and inter-
mediate (meta)models in operator chains. Therefore, it is also possible to start at another
new view(point) or at an intermediate (meta)model in its operator chain.

An example for a definition of a new view(point) is given for the ongoing example:

Ongoing Example, Part 22: Definition of the new View(point) ← List →

This box roughly sketches the definition of the new view(point) with a chain of config-
ured operators, starting at the SU(M)M, as visualized in Figure 6.11.

Requirements 01 02
Add Delete
Association

03 04
Merge Split

Classes

05
Merge Split
Attributes

SU(M)M
Add Delete
Association

Java ClassDiagram

Traceability 12
Rename
Classifier

11
Rename
Classifier

10
Change Model

09
Delete Add
Namespace

08
Delete Add
Namespace

07
Sub Set

06
Change

Multiplicity

R
ep

la
ce

R
ef

er
en

ce

B
y

A
tt

rib
ute

Figure 6.11: All Operators: Integration and Definition of new View(point)s
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6 Design

�ReplaceReferenceByAttribute ( SUMM→06) replaces the traceability links
between requirements and methods, so that requirements store the names of their fulfilling
methods as String values, as depicted in Figure 6.12Z 211.
�ChangeMultiplicity (06→07) switches the multi-value attribute to a single-value

attribute and concatenates the names of methods with commas as separators, since the final
CSV format supports only one value for each table cell, as depicted in Figure 6.12Z 211.

Since the parts for ClassDiagram and Java are no longer required in the new
view(point), all their corresponding metamodel and model elements are removed with the
operators �SubSet and twice �DeleteAddNamespace (07→10), as depicted in Fig-
ure 6.12Z 211.
�ChangeModel (10→11) adapts the row numbers for Excel, since they stem from

CSV originally, without changes in the metamodel.
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Figure 6.12: Metamodel Changes from SUMM to 06 (left/top), from 06 to 07 (middle) and

from 07 to 10 (right/bottom)
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6 Design

Finally, to provide known terminology to the manager, some elements are renamed by
applying �RenameClassifier twice (11→Traceability ), as depicted in Figure 6.13.

dataProjectRequirementsSpecification

rowNumber : EInt [0..1]

id : EString [0..1]

text : EString [0..1]

fulfilledBy : EString [0..1]

FunctionalityRequirement

container [1]

content [∗]

Figure 6.13: Metamodel Changes from 11 to Traceability

The resulting metamodel for the new viewpoint Traceability is shown in Figure 6.14:
Requirements are depicted by Functionality with the fulfilled methods as String repre-
sentation in the attribute fulfilledBy.

data Project

rowNumber : EInt [0..1]

id : EString [0..1]

text : EString [0..1]

fulfilledBy : EString [0..1]

Functionality

container [1]

content [∗]

Figure 6.14: Metamodel for the new viewpoint Traceability

The model for the new view Traceability is shown in Figure 6.15, containing the two
functionalities r1 and r2. Since the initial data have no relationships between methods and
requirements, the slots for fulfilledBy are still empty.

model rs : Project

rowNumber = 2
id = ”r1”
text = ”The student must be able to register for an event.”
fulfilledBy =

r1 : Functionality

rowNumber = 3
id = ”r2”
text = ”The student must be enroled at the university.”
fulfilledBy =

r2 : Functionality

container[0]

content[0]

container[0]

content[1]

Figure 6.15: Model for the new view Traceability
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6.5 Operator Execution

6.4.5 Final Result: Tree

The design of operators (Section 6.1.3Z 189) enables to concatenate operators into chains
of operators. The special operator�CombineSeparateDataSources allows to combine
two (meta)models into one (meta)model Tree of configured

Operators
and enables the integration of data sources into

the SU(M)M (demand 1, in Section 6.4.3Z 205). This design prevents independent operator
chains for each data source and leads to a tree. Chains of operators can also be used to
define new view(point)s from the SU(M)M (demand 2), possibly supported by �SubSet
(Section 6.4.4Z 209). Since new view(point)s are defined with additional operator chains,
which start at an arbitrary (meta)model (but usually at the SU(M)M) and end at the new
view(point), the “tree of data sources” is extended to a “tree of view(point)s” including
data sources and new view(point)s. This design is summarized in Definition 26:

Definition 26: Orchestration

The orchestration consists of the whole tree of selected and configured bidirec-
tional operators as edges, with the SU(M)M as root and the data sources and new
view(point)s as leaves. The order of all operators is defined by the methodologist
and remains stable.

This tree of configured operators is important for the execution of operators, as designed
in the following Section 6.5: Since the tree topology ensures, that there is only one possible
path between two nodes (when traversing each edge not more than once), Tree prevents

contradicting Execution
Paths

there is only one
transformation path between these nodes and no contractions between alternative transfor-
mation specifications are possible. In particular, no duplications of model elements due to
multiple alternative transformation executions can occur (Klare, Syma et al., 2019). While
MoConseMI has a tree to organize data sources, which is directed, since �AddDelete-
Association and �DeleteAddAssociation are different, synthetic approaches usually
have directed graphs of model transformations between them. Another possible topology is
a directed acyclic graph (DAG), as used by model weaving for depending parts of different
models (Kienzle, Al Abed and Jacques, 2009).

6.5 Operator Execution

Up to now, the operators, their details and their combination are designed for the use case
of the methodologist to specify consistency at development time (Section 5.2.1Z 171). Execution of Operators

for fixing Inconsistencies
This

section focuses on the execution of operators in order to automatically fix inconsistencies
for users at runtime (Section 5.2.2Z 173). Precondition for this use case is to have the
orchestration, i. e. the tree of configured operators, which is executed in this use case.

Since the operators are in-place transformations (Section 6.1.3Z 189), the main idea for
change propagation in MoConseMI is to transform the currently changed model (and
its metamodel) along the tree of configured operators to all other models (including the
SUM) to update them in-place. During these in-place transformations, elements which are
changed by users are propagated to the other models. Since the model transformations of
the selected operators are configured in order to fulfill consistency rules, additional model
elements might be updated and propagated to all other models.

There are the following two demands on executing the tree of operators:

1. Since the chains of operators which start at the SU(M)M and end at the view(point)s
conform to the asymmetric case, there is potential for information loss: prevent

Information Loss
When trans-

forming the current model in-place from the SUM to the view, the amount of infor-
mation is reduced. But this reduced information must be restored when transforming
from the view back to the SUM.
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6 Design

2. Since consistency goals might depend on each other,depending Consistency
Goals

the one-time execution of opera-
tors might not be sufficient, if the operators which realize the depending consistency
goals are placed at different locations in the orchestration.

The second demand is investigated in more detail in related work (Section 6.5.1). The
execution of single operators as partial transformations is designed in Section 6.5.2, before
designing the execution of the whole model synchronization process in Section 6.5.3Z 217.
This execution is used for the initialization of the SUM (Section 6.5.4Z 219) as well as for
the ongoing change propagation (Section 6.5.5Z 220).

6.5.1 Related Work

Persson, Torngren et al. (2013, p. 5) already predicted the need for multiple iterations
for the execution in theory, before reaching a fix-point. Conceptual reasons for that are

Dependencies and
multiple Execution
Iterations

depending consistency goals and consistency rules (Kramer, 2017, p. 65), concrete data
depending on each other, e. g. call-hierarchies of methods, and inconsistency fixes which
lead to new inconsistencies (Dam, Egyed et al., 2016, p. 138), which might be fixed already
before (Mens and Van Der Straeten, 2007). If these reasons matter, might depend also on
the concrete configuration of operators, in terms of their order and their configured model
decisions.

Executing chains of operators multiple times requires also to terminate the execution:
Fix-Point Defining a fix-point depends on the understanding, that the models are not changed any-

more, if they are (already) consistent to each other (now): Formally, this correspond to
the hippocraticness property of BX (Stevens, 2010, p. 14), which is also formalized for
symmetric delta-lenses (Diskin, Xiong et al., 2011, p. 314).

6.5.2 Executing single unidirectional Operators

This section designs the execution of single unidirectional operators only, while the execution
of bidirectional operators is designed in Section 6.5.3Z 217. A single unidirectional operator
is executed by providing the current model and its metamodel to the operator as input.
Usually, the operator executes a small number of changes within the metamodel and more
changes in the model to ensure its conformance to the changed metamodel.unidirectional Operators

transform the current
Model and its
Metamodel in-place

The details of
changes are determined by the implementation of the current operator, depending on the
configurations for possible metamodel decisions and model decisions. Note, that metamodel
changes and model changes can occur in any order, even mixed. There are operators, which
change only the metamodel, e. g. →RenameClassifier, or which change only the model,
e. g. →ChangeModel. The (changed) model and its (changed) metamodel are provided
by the operator as output. This conforms to Figure 6.2Z 190 with emphasizing, that the
operator transforms in-place.

Before executing a unidirectional operator, its constraints for the configurations of meta-
model decisions are checked in order to make sure, that the operator is applicable, since it
is properly configured into the operator chain (Section 6.4.2Z 204). Additionally, the exe-
cution of a single unidirectional operator is validated for internal quality assurance.internal Validations These
validations cross-check, that the implementation of operators by platform specialists, the
configurations of operators by methodologists and the implementation of the framework for
the execution fit together and conform to the design, described in Chapter 6Z 185:

• It is checked, that the metamodel is still a valid metamodel after executing the
operator, according to the design of EMF.

• It is checked, that the model is still a valid model after executing the operator,
according to the design of EMF and conforming to its metamodel.
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6.5 Operator Execution

• It is checked, that the metamodel changes of a configured unidirectional operator and
its configured inverse unidirectional operator are inverse. For that, it is necessary to
record the changes done in the metamodel during the operator execution and to
remember the recorded metamodel changes, which is deepened in Section 6.7Z 227.

History maps, as introduced and motivated in Section 6.3.2Z 200, History Mapsallow concrete mo-
del decisions to read and write key-value pairs in order to remember them over multiple
executions of the same operator: The key-value pairs of history maps use simple text as
key, since they allow a speaking designation of the values, and arbitrary serializable con-
tent for values, since they maximize flexibility for methodologists (including other maps
as content) and ensure, that the values are serializable for shutting down and restarting
the framework. The history maps remain the same for each execution of the bidirectional
operator, as indicated in Figure 6.16: Each selected and configured bidirectional operator
in an orchestration has its own history maps and they are given to each execution of the
two unidirectional operators of this bidirectional operator. This design allows to remember
important information of the current execution of a unidirectional operator for following
executions. There are two different history maps in order to support both stakeholders, the
methodologist, who configures model decisions (“History Map Decisions”), and the plat-
form specialist, who implements operators in general (“History Map Operator”), since both
stakeholders might need history maps, but should not interfere with each other.

Operator

MM1

M 1
1

MM2

M 1
2

Inverse
Operator

MM1

M 2
1

MM2

M 2
2

History Map
Operator

for the
platform specialist

History Map
Decisions

for the
methodologist

Figure 6.16: Execution Information within the Operator Signature

The current branch differences, as motivated in Section 6.3.2Z 200, Branch Differences B∆allow to change the
model depending on the current (user) changes in the current model. When executing
the inverse unidirectional operator as visualized in Figure 6.17Z 216, the current branch
differences are depicted as B∆2

2 (abbreviated as “Branch Diff”) and are available as read-
only input for model decisions. These branch differences describe the changes from the
model M 1

2 to the model M 2
2 , i. e. the model at the same position in the orchestration

at different points in execution times. In particular, branch differences are no operator

differences, which are directly caused by operators, e. g.
←−
Op
M∆2

2 is executed by the inverse
unidirectional operator and describes its in-place model changes from M 2

2 to M 2
1 . These

215



6 Design

changes in the model are directly executed by unidirectional operators and are recorded
as Op

M∆ by the framework. The following branch differences B∆2
1, given as input to the

following next operator, are not provided by the unidirectional operator, but are calculated
by the framework, as designed in Section 6.7.4Z 236.

Operator

MM1

M 1
1

MM2

M 1
2

−→
Op
M∆1

2

−→
Op

MM∆2

Inverse
Operator

MM1

M 2
1

MM2

M 2
2

←−
Op
M∆2

2

←−
Op

MM∆2

Branch Diff
B∆2

2

Branch Diff
B∆1

1

Branch Diff
B∆2

1

Figure 6.17: Model Differences and Metamodel Differences within the Operator Signature

According to demand 1, in-place executions of unidirectional operators in the outgoing
direction, i. e. from the SUM to views, reduce the information in the current model.prevent

Information Loss
In-

place executions of unidirectional operators in the incoming direction, i. e. from views to the
SUM, have to restore these information in the current model, according to the asymmetric
case. Therefore, such information must be stored somehow between consecutive executions
of unidirectional operators belonging to the same configured bidirectional operator. Accord-
ing to the principle of locality, removed information is stored at the particular configured
bidirectional operator, since it manages the executed two unidirectional operators which
are inverse to each other. This design is in line with other researchers: Kleppe, Warmer
and Bast (2003, pp. 80–82) advocate to store additionally required information directly at
the model transformation, which is a concrete execution conforming to the model transfor-
mation definition. In similar way, Eramo, Pierantonio and Tucci (2018, p. 38) remember
deleted elements in trace information of the out-place JTL approach for BX. Hidaka, Tisi
et al. (2016, p. 915f) call lost information “complement” and classify possibilities to store
lost information within the transformed model or outside, as it is used here. MoConseMI
provides three strategies to remember information which is currently removed in order to
update views and which will be restored later to update the SUM (Meier, Kateule and
Winter, 2020):

1. The history maps, as designed above, can be used to store information before remov-
ing them and to restore them later from history maps.use History Maps This strategy provides full
flexibility for methodologists when configuring model decisions of arbitrary operators.

2. Since models are changed in-place by unidirectional operators, these model changes
can be recorded and remembered: These model changes are exploited to restore
removed information by remembering removed information as model differences and
by restoring information by applying the inverted model differences.apply inverted Op

M ∆ As an example
for �AddDeleteAssociation, →AddAssociation enables to create new links in
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6.5 Operator Execution

the model (but is configured to create no new links itself), which might be introduced
manually by new views, but these links are deleted when executing ←DeleteAs-
sociation: When executing →AddAssociation the next time, the removed links
cannot be recreated by →AddAssociation directly, since it does not know which
links were created manually by users. Instead, the links are remembered in the
←−
Op
M∆ of ←DeleteAssociation and can be applied in inverted way to restore the
links. This strategy is also used by �SubSet, since it removes multiple metamodel
elements and all conforming model elements in the main direction and recreates
the metamodel elements and restores the removed model elements in the inverse
direction. This strategy is provided in generic form by the framework and can be
requested by methodologists during the configuration of bidirectional operators. This
strategy works like a post-treatment for the execution of unidirectional operators and
is hidden to the unidirectional operators. This design requires to record and provide
changes in models as explicit model differences which must be invertible, as designed
in Section 6.7Z 227.

3. This strategy is a special case to support�CombineSeparateDataSources: �CombineSeparate-
DataSources
remembers the split
Model

When
executing the inverse unidirectional ←SeparateDataSources, the current model
is split into two models, one for each of the two data sources. One model is provided
by the operator as output, the other model is remembered in-memory inside�Com-
bineSeparateDataSources as complete model. Later,→CombineDataSources
takes this remembered model and combines it again with the current model.

In general, this information preservation is also a challenge for related BX approaches.
As an example, Ehrig, Ehrig et al. (2014) investigate the conditions for TGGs, so that
their “corresponding forward and backward transformations are inverse to each other in the
sense of information preservation” (Ehrig, Ehrig et al., 2014, p. 72). Using the presented
strategies is not required for bijective settings, since there is no information loss. While
MoConseMI focuses on the asymmetric case, the symmetric case could be supported with
these strategies and operators as well in principle. Summarizing, the three strategies help
to prevent information loss (demand 1).

6.5.3 Execution Loop

This section designs, how the tree of operators is executed in order to propagate changes
from one view into all other views. First, the execution of a single chain of operators between
the SUM and one view is designed. Second, the change propagation between the SUM and
all views is designed. Third, this execution is used for the initialization of the SUM in
Section 6.5.4Z 219 as well as for the ongoing change propagation in Section 6.5.5Z 220.

To design the execution of a single operator chain, the chain is considered from the
SU(M)M in the direction to the view(point): execute single Operator

Chain
If the SUM is changed (B∆SUM 6= ∅), these

changes should be propagated to the view, which is done by executing the chain of operators,
operator by operator. Since this chain consists of bidirectional operators, when executing a
bidirectional operator, its unidirectional operator is executed whose direction points from
the SUM to the view. For the transformation in the other direction, i. e. from the view
to the SUM, the other unidirectional operator is executed. The identified unidirectional
operator is executed according to the design in Section 6.5.2Z 214. In this way, unidirectional
operators are executed one after another according to the chain of bidirectional operators,
starting with the first operator connected with the SU(M)M, then its neighbored operator,
and so on, until the view(point) is reached. Since the unidirectional operators transform
the model in-place, the model of the view is updated now, since it also contains a subset of
the changed elements of the SUM (B∆View). The subset of changed information is coming
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from the asymmetric case. If this subset is empty, then the changes in the SUM do not
affect the current view. In order to improve the execution performance, the execution of
the operator chain is stopped, when there are no branch differences anymore. Again, the
details of the calculation of the current B∆ are designed in Section 6.7.4Z 236.

After stopping the execution of the current operator chain, since the view is reached or
the current B∆ is empty,execute Operator Chain

in inverse Direction
the operator chain is executed in inverse direction back to the SUM

for two reasons: First, the configured model decisions of the unidirectional operators for the
inverse direction might fix some inconsistencies and therefore need to be executed. Second,
the SUM must be reached again as starting point to propagate changes also to other views
by executing other operator chains. For the transformation in the other direction from the
view to the SUM, the chain of operators is executed in inverse order and with the other
unidirectional operators, until the SUM is reached.

If the executed operators change the model (B∆B 6= ∅) and these model changes are
relevant for the SUM, the SUM is changed (again) with a non-empty B∆SUM. Since these
changes might be occurred by unidirectional operators between the view and the SUM,

execute the Operator
Chain again
→ Execution Loop

these changes are not yet propagated to the view. Therefore, the current operator chain is
executed (again) from the SUM to the new view in order to propagate the new changes in
the SUM to the view. This leads to the looped execution of the operator chain between the
SUM and the view. This execution loop ends, if neither the SUM nor the view are changed
anymore, i. e. the current B∆SUM and B∆View are both empty, which defines the fix-point
of the execution loop.

After updating one view as described up to now, all other views have to be updated
as well:execute whole

Operator Tree
Therefore, the other views are updated in the same way as the first view is up-

dated. Regarding the order of views to update, data sources are updated before new views
and the most recently integrated views are updated first. If the SUM is changed during
updating a view, all other views must be updated afterwards again in order to propagate
the changes in the SUM to these views. Summarizing, the execution loop ends, if neither
the SUM nor all the views are changed anymore, i. e. the current B∆SUM and the B∆ of
all views are empty, which defines the fix-point of the execution loop. This design fulfills
demand 2, since fixing inconsistencies is spread to configured model decisions of multiple
unidirectional operators in both directions, in particular, operators fulfilling depending con-
sistency rules could be spread elsewhere in the orchestration. These practical reasons for
multiple execution iterations in MoConseMI complement the theoretical motivations in
Section 6.5.1Z 214.

With this design, termination of the execution loop cannot be guaranteed, as discussed
in Section 14.3.1.1Z 491, but is flexible and independent of the configured operators.empty B∆ is the

Fix-Point
Ad-

ditionally, the execution order must not be specified by methodologists, but is provided
by MoConseMI, while in related approaches the execution order can be implicitly (often
in declarative transformations) or explicitly specified (Eramo, Marinelli and Pierantonio,
2014). To detect, if the fix-point of the execution is reached, the branch differences B∆
must be available, which motivates their calculation in Section 6.7.4Z 236.

After finishing the execution loop, the final changes for all views are calculated as
execution differences E∆:calculate Execution

Differences E∆

If the current view is not updated during the execution loop, its
E∆ is empty. If the current view is updated once, that B∆ is also the E∆. If the current
view is updated twice or more, E∆ is the optimized concatenation of all B∆. If the current
view is the view which is changed manually by users, the resulting User∆ is the first B∆
to take into account. After calculation, the E∆ are forwarded to the adapters of views in
order to update also the concrete renderings of the views with updated models. Note the
special case, that the user differences User∆ are already known at the adapter of the view
which was changed directly and manually by the user. Therefore, the execution differences
E∆ without the User∆ must be given as update to this adapter.
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Future Work: Improved Execution Order

This design of the execution loop could be improved, in particular, since the design works
also for independent operator chains, i. e. one independent operator chain for each view,
and does not exploit the tree topology of operators. There following ideas might improve
the execution order:

• When transforming the model from the view back to the SUM, this transformation
could be stopped, if there are no new changes for the SUM.

• The designed order of views to update could be improved, e. g. operator chains for
views which often introduce new changes could be executed first, since the generated
follow-up changes could be propagated all together to the other views.

• The details of the configured operators could be analyzed in order to calculate im-
proved execution orders, in particular, knowledge about operators which never fix
inconsistencies but do only refactorings could save executions which are only done to
be on the safe side.

• The update of new read-only views could be improved by updating them as last views
and reaching them only once, if the operators for the new view do not update the
SUM.

In general, these first ideas show, that more experiments and theoretical investigations
are possible for improving the execution order within the execution loop in terms of per-
formance. Nevertheless, the applications of MoConseMI in Part IVZ 283 show, that the
change propagation works and leads to the expected results in terms of execution differences
E∆.

6.5.4 Initial Execution

This sections describes the additional use case to initialize the SU(M) and new view(point)s
and to fix initial inconsistencies within data sources (Section 5.2.3Z 176). Since initially
only the data sources exist with the (meta)models, there is one first special execution of the
configured operator chains starting at the data sources to the SU(M)M: integrate

(Meta)Mmodels of Data
Sources into the initial
SU(M)M

This transformation

is not triggered by users, in particular, there are no user differences User∆, but it is started
by methodologists after finishing the orchestration. All operator chains starting at data
sources are executed into the direction of the (not yet existing) SU(M)M. When reaching
a �CombineSeparateDataSources, its execution combines the (meta)models of two
data sources into one (meta)model. Afterwards, the subsequent operators are executed.
At the end of this execution, all (meta)models of all data sources are integrated into the
SUMM and the conforming initial SUM. There are no branch differences B∆0, since they
represent the differences between the current models, which are executed, and the previous
versions of these models, which do not exist, since this is the first execution.

After the creation of the SU(M)M in this way, the execution loop as designed in Sec-
tion 6.5.3Z 217 is started. fix initial InconsistenciesSince there are no current B∆, the execution is forced to reach
all view(point)s, i. e. all data sources and all new view(point)s. This procedure creates the
metamodels and conforming initial models for the new view(point)s. The resulting E∆ for
data sources represent fixes for initial inconsistencies in the reused models. Additionally,
the two methods of bidirectional operators are called directly before and after the first
execution of one of its unidirectional operators. These calls can be used by bidirectional
operators to automatically derive the configurations for the metamodel decisions of the
inverse unidirectional operator (Section 6.2.2Z 196). After the execution loop reached its
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fix-point, MoConseMI is ready for users, who change single views and are supported with
automated change propagation, as described in Section 6.5.5.

6.5.5 Ongoing Change Propagation

This section describes the use case for fixing inconsistencies automatically as described
in Section 5.2.2Z 173. A user gets the desired view, changes its model resulting in a non-
empty User∆View and triggers MoConseMI to automatically propagate the changes into all
related views.propagate User∆ into all

Views
For that, the execution loop as designed in Section 6.5.3Z 217 is started and

executed. After finishing the execution loop, the E∆ is calculated for each view including
the SUM and the changed view, which might be empty for those views which have no
semantic dependencies with the changed view. Note, that the User∆ could be changed
(i. e. amended) by the execution loop, which is useful in some cases (Diskin, König and
Lawford, 2018, p. 25f), e. g. to revert user changes of read-only information in new views.
In theory, the model of any view including the SUM, as proposed by Bork and Sinz (2013,
p. 30), and even any intermediate model within the orchestration could be changed by
users. In practice, only data sources and new views are changed by users, since these views
are tailored to their concerns. The following box presents an execution for the ongoing
example.

Ongoing Example, Part 23: Exemplary Execution Order ← List →

Figure 6.18Z 221 sketches the execution of the orchestration for the ongoing example
along Figure 6.18Z 221. The execution traverses along the configured operators, which could
be summarized as “customized linearization of the tree of operators”. Each row depicts
the execution of a single operator chain in one direction, i. e. a new row is depicted after
the execution direction is reversed. The initialization of the SU(M)M (Section 6.5.4Z 219)
is already done with the (hidden) rows 01–08.

Now, row 09 provides the desired view by deriving it from the SUM, and the user changes
this view, leading to the user differences User∆10

ClassDiagram. Afterwards, the execution loop
is executed, which propagates the changes along the executed operators in order to update
the SUM (in row 10) and Java (in row 15). Nodes with red text depict, that this node
was updated, while red operator executions depict new branch differences, which must be
propagated to all depending views.
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Figure 6.18: Execution Order to update all Views

6.6 Model and Metamodel Representation

This section designs the technical spaces to represent metamodels and models within Mo-
ConseMI. In particular, this section introduces the possible concepts for metamodels and
conforming models, i. e. the modeling space according to Section 2.5Z 84. The platform
specialist selected EMF as technical space for realizing models and metamodels in Mo-
ConseMI, as motivated in Section 2.5.2Z 86. Operators and model decisions configured by
methodologists directly operate on models and metamodels. Since users work on concrete
renderings of models, the information and user changes must be transformed to models and
model differences, as requested by Requirement R 4 (Technical Spaces)Z 158. The design
has to fulfill the following two demands:

1. Since (meta)models are transformed in-place by unidirectional operators, flexible for in-place
Transformations

the techni-
cal spaces for technically realizing models and metamodels must allow flexible in-place
transformations of models and metamodels. In particular, invalid and incompletely
initialized objects and classes must be possible during the execution.

221



6 Design

2. Each element in models and metamodels must be uniquely identifiable.uniquely identifiable
Model and Metamodel
Elements

This de-
mand is required for the management of differences in models and metamodels, as
designed in Section 6.7Z 227, but must be enabled by the design for models and meta-
models in this Section 6.6Z 221. In general, the identification of elements is a “crucial
requirement for consistency preservation” (Kramer, 2017, pp. 66).

Section 6.6.1 shortly discusses EMF and some alternatives for technical spaces. Sec-
tion 6.6.2 designs the realization of metamodels and their concepts. Section 6.6.3Z 223

determines the realization of models and their concepts. Section 6.6.4Z 225 introduces the
concept of UUIDs for model and metamodel elements to fulfill demand 2. Section 6.6.5Z 226

introduces the concept of adapters to fulfill Requirement R 4 (Technical Spaces)Z 158.

6.6.1 Related Work

Possible alternatives for EMF as technical space for modeling metamodels and conforming
models are already discussed in Section 2.5.1Z 84 and EMF as technical space with ECore
as modeling space is selected for MoConseMI in Section 2.5.2Z 86. Here, some important
features of EMF are revived and an alternative for representing EMF models is introduced.

SUM and its SUMM are realized as explicit model and its metamodel, without using
profiles, neither UML profiles nor EMF profiles (Section 2.5.1Z 84):no Use of Profiles Since profiles add
additional information (or restrict existing concepts), but are not able to restructure or
to remove already existing concepts, it is not possible to reduce redundant information in
the SU(M)M and profiles are not sufficiently flexible. Therefore, profiles are not used for
combining (meta)models in this thesis.

In EMF, models and metamodels can be spread over multiple files (Jahed, Bagherzadeh
and Dingel, 2021). This concept is supported by MoConseMI and its implementing frame-
work, since it improves flexibility.multiple Files and

Namespaces
Namespaces can be seen as scopes for grouping elements

in order to improve scalability in terms of performance and visualization (Jukšs, Verbrugge
et al., 2018). By default, EMF supports nestable namespaces for metamodels with nestable
EPackages, while namespaces for models are not supported. MoConseMI adds limited
support for non-nestable namespaces for models by interpreting each file for models as
model namespace.

Some important features of EMF (Section 2.5.3Z 87) to revive here are the use of EMF
either in static or in dynamic way.relevant EMF Features When serializing EMF models and metamodels with
XMI, EMF elements can be annotated with IDs. The selection of the concepts for EMF
metamodels is motivated in Section 6.6.2.

Edapt, as already discussed as a related approach for model co-evolution in Sec-
tion 6.2.1Z 193, whose design ideas are partially reused,Edapt Models provides an alternative modeling
space to realize EMF models, but not their EMF metamodels (Herrmannsdoerfer, Benz
and Juergens, 2009, Figure 3). These models are called Edapt models in contrast to EMF
models. It reuses the default EMF means to realize metamodels and its technical space is
realized with EMF itself. Since Edapt models provide more flexibility compared with the
default EMF means to realize models, Edapt is selected to realize models and its details
are introduced in Section 6.6.3Z 223.

6.6.2 Metamodel Representation

According to Section 2.5.3Z 87, using EMF in static way requires to generate static Java
source code which replicates the elements of the EMF metamodel.dynamic EMF for

Metamodels
Since the metamodel is

slightly changed by most of the operators, which causes to generate according Java source
code for each of these unidirectional operators and loading and unloading this Java source
code into the JVM, using static EMF does not scale. Instead, dynamic EMF is chosen
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to realize metamodels in MoConseMI, since it allows to model metamodels dynamically
in-memory and to update them in-place. This realization is the simplest way, since it is
directly provided by EMF, and is sufficiently dynamic to fulfill demand 1.

The supported amount of concepts of ECore for metamodels is already depicted in
Figure 2.21Z 88 and already shortly introduced in Section 2.5.3Z 87: selected Concepts of

ECore for Metamodels
EClasses, EDataTypes

and EEnums are chosen as typical classifiers for data modeling, also known and widely used
and accepted from UML class diagrams. Associations and attributes known from UML
class diagrams are realized with EReferences and EAttributes in ECore, generalized as
features with EStructuralFeature. Nestable EPackages are supported as namespaces for
structuring metamodels, as discussed in Section 13.3.3.3Z 476. Generics are not selected, but
could be supported in future extensions. Annotations with EAnnotation are not selected,
since annotations are a means of EMF to allow practitioners to annotate EMF elements
with arbitrary information, which is not required by MoConseMI. Concepts for modeling
dynamics like EOperations similar to methods are not selected, since this thesis focuses on
modeling data and not on their behavior or their business logic. Derived features of ECore
are not directly supported, since this would require to explicitly model the functionality to
calculate the values of derived features as well. But they can be simulated by configuring
operators: Instead of writing Java source code into the generated (static) EMF code or using
model queries (Ráth, Hegedüs and Varró, 2012) for derived features with EMF, operators
can be used for calculating (and updating) additional values, e. g. →AddAttribute. The
Java source code for calculating the derived values is integrated into the configured model
decision of the operator.

Since unidirectional operators are designed to slightly and directly change metamodels,
the design of concrete operators depends on the supported concepts of metamodels. Metamodel Concepts

influence List of
concrete Operators

There-
fore, concrete operators depend on the supported concepts for metamodels of ECore, e. g.
simple UML associations and UML compositions are supported with EReferences, but no
UML aggregations. Therefore, the supported concepts for metamodels are selected in order
to be as generic as possible. Summarizing, the technical details of EMF are important
for the implementation of operators, the concepts for metamodels influence the list of con-
crete operators (Section 7.3Z 243), and the general design of operators (Section 6.1Z 185) is
independent from selected metamodel concepts.

6.6.3 Model Representation

In contrast to Section 6.6.2Z 222, dynamic EMF is not used for realizing models, since the
EMF implementation restricts the management of possible models to its current metamodel,
e. g. adding values is possible only for slots with a conforming attribute in the metamodel.
This is beneficial for managing models with stable metamodels, but burdens the coupled
transformations of models and their metamodels (demand 1). Edapt for ModelsAs alternative, means of
Edapt are reused for realizing models in MoConseMI, since Edapt is successfully used for
this purpose. Additionally, parts of the existing infrastructure for managing EMF models
with Edapt can be reused for the implementation of MoConseMI. A disadvantage of
using Edapt is, that the reuse of existing transformations in model decisions becomes
harder. As look-ahead for Section 6.6.4Z 225, another advantage of Edapt is, that objects
in models directly store their UUID (with Instance.uuid).

Figure 6.19Z 224 depicts the most important concepts to realize EMF models conforming
to EMF metamodels: Concepts of Edapt for

Models
In the upper part of the graphic, some concepts of ECore for

metamodels are depicted, selected from Figure 2.21Z 88. In the lower part of the graphic, the
concepts of Edapt to realize models are depicted. Each object in the model is represented
as an instance of Instance. The type of the object is a EClass in the metamodel, modeled
via the Type container of the Instance ((Instance.type).eClass). Values of objects are
stored in Slots, which point to their conforming EStructuralFeature in the metamodel,
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Figure 6.19: Concepts of Edapt to represent EMF Models, similar to Herrmannsdoerfer, Benz
and Juergens (2009, Figure 3)

distinguished into primitive values for EAttributes which are arbitrary Java objects, and
into objects for EReferences which are instances of Instance. This design for model
concepts allows to explicitly model types of objects and values of their slots in a flexible
way.

Objects in a Model are organized into one or multiple files, represented by ModelRe-

sources, which point to their contained root objects according to the ECore containment
tree (Section 2.5.3Z 87). These ModelResources are interpreted as (non-nestable) name-
spaces within EMF models and allow operators to manage objects of models in multiple
namespaces.

After showing the concepts for models in Figure 6.19, this graphic is extended by Fig-
ure 6.20Z 225combine EMF for

Metamodels with
Edapt for Models

in order to show, how metamodels realized with EMF and models realized
with Edapt are managed together15 and provided to unidirectional operators: Migra-

tionInformation is given to the operators for execution and serves as container for one
metamodel and one conforming model. The metamodel is represented as a ResourceSet

consisting of multiple XMIResources which represent files to store parts of metamodels in
them in XMI format. The metamodel is structured by nestable EPackages as namespaces
containing the classifiers. Each root EPackages is allocated to one XMIResources, which
realizes the distribution of the metamodel over multiple files. Models in Edapt refer to
their current Metamodels by using MetamodelResources, which point to the root EPack-

ages of the metamodel in EMF. ResourceSet, XMIResource and EPackage are provided
by EMF, MigrationInformation is provided by MoConseMI, and all other concepts are
provided by Edapt.

15Note, that the means of EMF are depicted in a strongly simplified way by focusing on the
relevant aspects, e. g. XMIResource is a XMLResource is a Resource, which is contained by the
ResourceSet in reality.
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Figure 6.20: Combining EMF for representing Metamodels and Edapt for representing Models

6.6.4 UUIDs

In order to fulfill demand 2, all elements in models and metamodels must be identifiable.
The main motivation stems from the management of differences for models and metamo-
dels, which must unambiguously point to the related model or metamodel element. This
motivation will be deepened in Section 6.7Z 227. For this identification, each element gets
its own UUID, which is defined in Definition 27:

Definition 27: UUID

An UUID is a universally unique identifier which is stable over multiple executions
of operators.

UUIDs are universally i. e. globally unique for all elements of models and metamodels,
UUIDs are globally
unique

i. e. all instances of Instance in models and all instances of EPackage, EClassifier, ES-
tructuralFeature and EEnumLiteral in metamodels. This counts for all metamodels
and models at all positions in the orchestration, e. g. objects which are newly created and
derived from the SUM for different new views must not have already used UUIDs.

UUIDs must be stable over multiple executions of operators UUIDs are stablein order to identify same
elements in different execution runs of operators (vertical) at the same position within
the orchestration (horizontal). In contrast, elements which represent same concepts might
have different UUIDs at different positions within the orchestration (horizontal), e. g. since
they are changed by operators like �MergeSplitClasses from one model (position) to
another model (position) in the orchestration. This refers to (vertical) alignment of objects
in two different model versions (Anjorin, Buchmann et al., 2020), as in lenses (Diskin, Xiong
and Czarnecki, 2011). As an alternative to UUIDs, explicit links could be used also for this
vertical case (Diskin, König and Lawford, 2018, p. 24) in order to mark corresponding
elements in different versions, but explicit links are not possible in MoConseMI, since the
transformations are in-place.

In order to get and to store the UUID of each element, the element could be annotated
with its UUID. storing UUIDsIn particular, it is neither necessary nor desired to extend domain-specific
metamodels with domain-independent concepts like UUIDs, as done by Goldschmidt (2010,
pp. 283–284) and Kuryazov (2019, p. 116). Here in MoConseMI, for objects in models,
the uuid attribute of Instance is exploited, which is designed by Edapt for this purpose.
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For elements in metamodels, ECore annotations could be used to store UUIDs, but EMF
supports IDs for serialization with XMIResources (Figure 6.20Z 225), since XMIResources

internally manage maps to map elements to their ID for serialization. This approach is used,
since it allows to directly serialize and persist UUIDs as well with the concept, which is
dedicated by EMF for this purpose. In order to support the implementation of operators and
the configuration of model decisions by methodologists, MigrationInformation provides
supporting getters for retrieving UUIDs of metamodel elements.

6.6.5 Adapters

MoConseMI internally uses EMF for realizing metamodels (Section 6.6.2Z 222) and Edapt
for realizing models (Section 6.6.3Z 223). But users usually work on concrete renderings of
views realized with other technical spaces than the technical spaces used for (meta)models
of these view(point)s. Therefore, bridges between EMF and other technical spaces are
required and are designed in this section as adapters to fulfill Requirement R 4 (Technical
Spaces)Z 158. Adapters are developed by adapter providers during the use case “develop
adapter” (Section 5.2.4Z 178). This section discusses the general design of adapters, while
Section 8.4Z 271 presents some implementations of adapters for concrete technical spaces.
A concrete example for an adapter supporting the CSV format is given in Part 24Z 276 of
the ongoing example.

Adapters are special projectors in terms of Bézivin and Kurtev (2005) for EMF respec-
tively Edapt as used in MoConseMI for importing and exporting metamodels and models.

Related Work Mens and Van Gorp (2006) motivate the use of special transformations for switching be-
tween different technical spaces. Anjorin, Saller et al. (2013) provide a formal framework
for adapters and motivate to use multiple transformation steps. Note the different meanings
of the term adapter in Jelschen (2024) and in this thesis: While adapters realize the trans-
formation between the original data in their concrete renderings and the Edapt format
required by MoConseMI here,Adapter vs Transformer Jelschen (2024) calls this functionality transformer, since
adapters are used to provide a uniform way to interact with tools there. On the other hand,
adapters in MoConseMI ensure also the correct loading and saving of data at required
points in time (including the possible sending of information to other locations), so that
they provide also starting points for interaction with existing tools, while transformers in
Jelschen (2024) are restricted to data conversation only.

Since the models of views conform to metamodels, adapters have to provide the meta-
model once as precondition:provide the Metamodel Depending on the particular technical space for concrete ren-
derings, the schema is explicit or implicit (Jin, Cordy and Dean, 2002). Explicit schemata
can be transformed into EMF metamodels, while implicit schemata need to be derived from
the concrete renderings or require other means like to transform parts of models into meta-
models (Bézivin, 2005, p. 184), as for CSV, where the top row is interpreted as schema
information (Section 8.4.4Z 275).

Having the metamodel, conforming models can be transformed from the concrete ren-
derings realized with the external technical space:transform Models The relevant information depicted with
concrete renderings must be transformed into Edapt models (“import”) and vice versa
(“export”). Since MoConseMI requires UUIDs for all (meta)model elements, UUIDs must
be managed by adapters as well. In particular, the stability of UUIDs must be ensured,
when importing and exporting models.

But adapters not only provide the metamodel in EMF and transform models in Edapt,
but also handle model differences,handle Model

Differences
i. e. User∆ done on concrete renderings must be provided

for MoConseMI, and E∆ can be used to update the concrete renderings instead of com-
pletely recreating them. In order to provide user changes User∆ as model differences (as
designed in Section 6.7Z 227), the adapter itself chooses and realizes one of the following
possible strategies:
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6.7 Model and Metamodel Differences

• If the concrete rendering is integrated in an appropriate tool or other environment,
recorded user actions can be translated into model differences for the User∆.

• If there is no dedicated strategy for directly identifying the User∆, it can be calculated
by comparing the previous complete model and the changed complete model e. g. with
EMF Compare (Brun and Pierantonio, 2008).

A comparable discussion is done by Cicchetti, Ciccozzi and Leveque (2012) and more for-
mally by Diskin, Xiong and Czarnecki (2010, p. 64).

Future Work: UUID Mapping in Adapters

Since model elements must have globally unique UUIDs, it is not sufficient, if the model
elements of a single view have IDs which are unique within this view (“locally” unique).
Usually, model elements can be uniquely identified by some domain-specific IDs like matric-
ulation numbers for students or inventory numbers for products, but these “external IDs”
are only locally unique and do not fulfill the requirements for real UUIDs, as used inter-
nally within MoConseMI. In order to handle (possible) collisions of internal and external
UUIDs, adapters must map internal to external UUIDs and vice versa. This mapping must
be maintained during import and export of models. While the MoConseMI framework
provides some rudimentary support for this problem, e. g. with using view-specific prefixes
to extend IDs to UUIDs, more concepts might be required for generic solutions.

6.7 Model and Metamodel Differences

Model differences respectively metamodel differences are modeling artifacts which describe
changes in models respectively in metamodels. They are required to control and validate
the execution of operators (Section 6.5Z 213) and therefore are a central part of the design
of MoConseMI. In particular, differences for models and metamodels have to fulfill the
following three demands:

1. Representing and managing differences are required for elements in metamodels and
models: integrated Differences

for Models and
Metamodels

Metamodel differences are required to validate, that unidirectional operators
are inverse to each other regarding metamodel changes. Model differences are required
to control the execution of operators, as deepened by the following demands. Model
differences are influenced by changes in metamodels, which is deepened later for model
difference co-evolution (Section 6.7.3Z 235) and requires the integrated representation
of model differences and metamodel differences.

2. As discussed in Section 6.5.3Z 217, calculate Branch

Differences B∆

in order to detect the fix-point, the loop to ex-

ecute operators requires branch differences B∆. These branch differences must be
calculated.

3. Differences must be invertible in order to restore removed information to prevent
information loss in operators (Section 6.5.2Z 214). invertible DifferencesAdditionally, some special details
of the implementing MoConseMI framework require to invert differences. In the
future, transaction management would require to roll back transactions, i. e. user
changes and automated follow-up changes of MoConseMI, by inverting and applying
the occurred changes, as it will be discussed in Section 12.3Z 462.

Section 6.7.1Z 228 investigates related approaches for model and metamodel differ-
ences, with the focus on the representation of model differences, which is designed in
Section 6.7.2Z 229. Dependencies between model differences and metamodel differences
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are needed for the valid and joint representation of model differences and metamodel differ-
ences and are handled in Section 6.7.3Z 235. The calculation of the required B∆ is designed
in Section 6.7.4Z 236.

6.7.1 Related Work

There are lots of related approaches for the representation of differences in models and
metamodels as well as for the management of differences. Stephan and Cordy (2013) survey
approaches for model comparison and model differences in various research areas including
UML models, EMF models, product lines and process models. Kolovos, Di Ruscio et al.
(2009) survey approaches to calculate differences between models based on model match-
ing. Altmanninger, Seidl and Wimmer (2009) classify and survey approaches for model
versioning and provide some features to represent differences in the following.

Focusing on the representation of actual differences, there are two fundamental ap-
proaches to realize differences (Diskin, Xiong and Czarnecki, 2011): Overriding represen-
tations specifies the updated elements as additional, small (meta)model containing the
updates,overriding vs

operational
Representation

which can be applied to the previous version by overriding the old elements, like
a special model merging. Operational representations encode the real differences explic-
itly, which can be applied directly on the previous version in order to update it to the
new version. Here, operational representations are used and investigated only, since op-
erational representations usually need less data, since overriding representations are valid
(meta)models conforming to a (meta)metamodel. Additionally, operational representations
could be designed to jointly represent differences for models and metamodels, as designed
in Section 6.7.2Z 229.

The features for representing differences, which are relevant for MoConseMI, are de-
picted in Figure 6.21Z 229. According to demand 1, changes can be described for metamo-
dels as metamodel differences or for models as model differences (or both). According to
demand 3, differences might be invertible without additional information. This feature is
called “reversibility” by Herrmannsdoerfer and Koegel (2010). In order to identify same
elements in different versions, either heuristics or UUIDs can be used (Altmanninger, Seidl
and Wimmer, 2009). Another alternative are traces, which connect same elements in dif-
ferent versions explicitly with each other, like in Van Der Straeten, Mens et al. (2003) or
similar to trace links of out-place model transformations. The concepts (i. e. the abstract
syntax) used to represent differences in models conforming to the same metamodel can be
either specific for this metamodel or generic i. e. independent from the metamodel. Note,
that approaches with metamodel-specific representations might be metamodel-generic as
a whole, if means for the metamodel-specific representation are automatically generated
for the actual metamodel. Changes are conceptually represented as sequences of single
changes, which might be primitive or composite changes, by composing multiple changes.
The technical representation of differences in-memory can be text-based, usually with lines,
or model -based, usually with graphs or trees (Altmanninger, Seidl and Wimmer, 2009).
A textual representation could be used for the visualization of differences and is directly
available, if differences are represented as text in-memory.

There are several related approaches to represent model differences, including the fol-
lowing examples:Model Differences Cicchetti, Di Ruscio and Pierantonio (2007) represent model differences
model-based with a (automatically generated) metamodel-specific difference metamodel,
which is applied for incrementally updating views (Cicchetti, Ciccozzi and Leveque, 2012).
The DL approach (Kuryazov, 2019) represents model differences text-based with a (auto-
matically generated) metamodel-specific syntax, supported with different services working
on such model differences including difference calculator and difference optimizer (Kurya-
zov and Winter, 2014). Le Noir, Delande et al. (2011) encode model differences as state-
ments for Prolog, which can be seen as text-based representation, which uses IDs and is
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Figure 6.21: Feature Model for classifying functional Features of Difference Representation Ap-
proaches

metamodel-independent.

There are several related approaches to represent metamodel differences, including the
following examples: Metamodel DifferencesVermolen, Wachsmuth and Visser (2012) present possible primitive
and some composite changes in metamodels. Bruneliere, Perez et al. (2015) introduce a
textual DSL for primitive metamodel changes, which is metamodel-independent. Burger
and Gruschko (2010) present changes for MOF metamodels in form of a change metamodel.

There are few related approaches to represent model and metamodel differences: For the
concurrent evolution of models and their metamodels, Cicchetti, Ciccozzi et al. (2011) ap-
ply the same techniques for model differences twice in order to represent model differences
and metamodel differences by treating metamodels as models conforming to the meta-
metamodel. This leads to two concurrent difference representations, but not to an inte-
grated difference representation. In similar way, the model-based difference representation
of Burger (2014, pp. 121ff, 138) can be applied twice to represent model differences and
metamodel differences for EMF. Kramer (2017, pp. 152–155) presents a classification for
changes in ECore-based models with a similar intention.

Other approaches analyze available differences to derive new findings from them, derive Findings by
analyzing Differences

e. g.
Vermolen, Wachsmuth and Visser (2012) reconstruct composite changes from primitive
metamodel changes, while Maoz and Ringert (2018) relate syntactic model differences to
semantic differences in the application domain of the models. Such ideas are not neces-
sary for MoConseMI, since semantic consistency is defined on models and not on model
differences.

6.7.2 Model Difference Representation

Basing on the identified features for differences in Section 6.7.1Z 228, this sections designs the
representation of differences for models and metamodels (demand 1). The main features of
this design are depicted in Figure 6.22Z 230 by marking the selected features of Figure 6.21.

Due to demand 1, both model differences and metamodel differences are jointly repre-
sented and might occur within the same change sequence, since unidirectional operators
jointly change a model and its metamodel with an arbitrary order of model and metamodel
changes. general DesignChanges are represented in model -based way, in order to relate model changes
and metamodel changes directly to each other, which is required for Section 6.7.3Z 235.
The model-based difference representation is metamodel-generic, since metamodel-specific
representations would require a different representation for most of the nodes in the or-
chestration, i. e. the number of difference representations would be linear to the number
of configured operators, which usually change metamodels. A textual representation of
changes is provided for compact documentations in human-readable way.

In order to detect same elements in different (meta)model versions, UUIDs are selected:
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Figure 6.22: Selected Features for the Difference Representation in MoConseMI

UUIDs Globally unique identifiers for elements enable to “identify them over time” (Wenzel, 2014,
p. 679), since highly changed elements can still be matched (Altmanninger, Seidl and
Wimmer, 2009). UUIDs provide reliable identifications in contrast to heuristics, which
come with some degree of uncertainty. Therefore, the framework must support UUIDs
(Altmanninger, Seidl and Wimmer, 2009, p. 281f), i. e. model elements and metamodel
elements must have UUIDs, as designed in Section 6.6.4Z 225. Van Der Straeten, Mens
et al. (2003) present an UML profile to express evolution traces between different versions
of the same UML model. Traces following this idea are not used here, since it would require
to keep two complete versions of the same (meta)model in memory. This is not applicable,
since the operators work in-place and update the current (meta)model, but do not provide
new, additional (meta)models.

While Figure 6.22 shows the main features of difference representation in MoConseMI,
the designed concrete differences are depicted for models and metamodels now. Afterwards,
their completeness is discussed and the design in detail to realize the required functionalities
is motivated.

The following kinds of changes are designed to represent relevant differences in Edapt
models (Figure 6.19Z 224).Model Changes The arguments for these changes are discussed later.

Instance createInstance, deleteInstance, changeInstanceType

Slot addValue, removeValue

When representing added and removed values in slots, slots for EAttributes and slots for
EReferences do not need to be dinstinguished,Changes in Slots since values for EReference slots point to
an objects as value. The slot to change is identified by the UUID of the object and by the
feature the slot is conforming to. Both information are given as arguments to addValue and
removeValue. With this design, slots for multi-value and single-value EStructuralFea-

tures can be addressed in uniform way. Slots themselves do not need to be created, since
slots exist in Edapt by design only when there are some relevant values in the slot and
therefore can be automatically created and deleted. All changes are delta-based, i. e. they
describe only changed information and do not repeat unchanged information in models, in
particular, unchanged values in multi-value slots are not repeated.

Objects in models are called instances by Edapt, therefore, the names of relevant
changes for objects contain the term Instance.Changes in Objects To change the type of an object would
be possible also by deleteInstance with the old type and createInstance with the new
type, in order to save one change kind for a more minimal set of change kinds, but then
the recreated object would have a different UUID, according to Section 6.6.4Z 225. This is
disadvantageous, if the semantics of the current change scenario is to keep the object stable,
but to change only its type, e. g. within the same type hierarchy. Changing types of objects
is done also by other research: De Lara and Guerra (2017) explicitly propose to use dynamic
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types to increase flexibility and reusability. When merging models, Westfechtel (2014, p.
768) explicitly cover the case to merge objects, whose types are different in different versions
of the model. The “dynamic classification” is allowed by the OMG for an extended version
of the MOF (Object Management Group, 2013). The Transformation Tool Contest 2010
(Rose, Herrmannsdoerfer et al., 2012, p. 351), comparing different tools for model co-
evolution including classical model transformations, found, that retyping is beneficial for
model co-evolution approaches, in particular for conciseness, as already motivated above.
Therefore, the UUID is treated here as stable object identifier, while the type of the object
is changable with changeInstanceType. Note, that the Type-class is used by Edapt as a
container to group all objects having the same type. Therefore, the type of objects can be
changed in this easy way without creating or deleting types, since types are defined in the
metamodel as EClasses with EMF.

The following kinds of changes are designed to represent relevant differences in EMF
metamodels (Figure 2.21Z 88): Metamodel Changes

Namespace createNamespace, deleteNamespace

Enum createEnum, deleteEnum

Literal createLiteral, deleteLiteral, changeLiteralValue, changeLiteralLiteral

DataType createDataType, deleteDataType

Class createClass, deleteClass, changeClassPotency, addSuperType, removeSuper-
Type

Feature createFeature, deleteFeature, changeFeatureLowerBound, changeFeature-
UpperBound, changeFeatureOpposite, changeFeatureKind (i. e. association vs con-
tainment), changeFeatureType, changeFeatureOwner

Additionally, the name of namespaces, enums, literals, data types, classes and features can
be changed with the generic changeName change. The namespace of (other) namespaces,
enums, data types and classes in metamodels as well as of objects in models can be changed
with the generic changeNamespace change.

These presented kinds of changes are complete to describe changes in models (Fig-
ure 6.19Z 224) and metamodels (Figure 2.21Z 88), Completeness of

Differences
since the following strategies are applied

to derive change kinds for all relevant concepts of models and metamodels (i. e. the meta-
metamodel):

• For each non-abstract class X, there is a createX and a deleteX change, with the
desired UUID as argument. The exceptions are Slot and Type in Edapt, as discussed
above. The X is part of the name for the change in order to indicate the wanted type
of the newly created element.

• For each single-value attribute and association X, there is a changeX change with
the previous value and the new value as well as the UUID for the element to change
as arguments. The X indicates the attribute or association. The exceptions are
the UUID attribute, since it is unchangable by design as discussed above, and the
instanceTypeName of EDataTypes, since their values are assumed to be constant.

• For each multi-value attribute and association X, there is an addX and removeX change
with the added respectively removed value as well as the UUID for the element to
change as argument. This design allows to specify only the changes within a multi-
value slot and avoids to repeat unchanged values. The X indicates the attribute or
association.
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If attributes or associations belong to super-classes or are generalizable, corresponding
changes are defined only once and are valid for all affected classes. All these changes are
primitive changes and no composite changes are designed, since they are not required by
MoConseMI.
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Figure 6.23: Overview about the Model-based Representation of Differences

These changes are managed in model-based way, as depicted in Figure 6.23 in simplified
way:Containers for

Differences
All changes for the same element are collected by a dedicated container, leading to

NamespaceContainer for namespaces, DatatypeContainer for data types, EnumContainer
for enums, LiteralContainer for literals, FeatureContainer for features including EAt-

tributes and EReferences, SlotContainer for slots, and InstanceContainer for objects
in models and classes in metamodels. These containers reflect (only) changed parts of the
models and metamodels and collect all changes for them (changesOrdered in Element-

Container). The possible kinds of changes are listed above in the text and are skipped in
Figure 6.23. The required containers for changed elements in models and metamodels are
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managed by the ChangeContainer, as depicted in Figure 6.24.
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Figure 6.24: ChangeContainer as central Point to manage Model-based Differences

In order to integrate model differences and metamodel differences, this design can be
seen as a first attempt for multi-level model differences: unified Concepts for

Models and Metamodels
This counts for objects in models

(Instance in Edapt) and classes in metamodels (EClass in EMF), which are unified as
InstanceContainer, having super types (within the same meta-level) and a type (in a
higher meta-level), which are other InstanceContainers. This design fulfills demand 1,
since a changed object could directly navigate to its class as type and analyze its differences.
Accordingly, the distinction between abstract and non-abstract classes is done by potency

values, while classes and objects are distinguished by different level values refering to
different ontological levels. EPackage for EMF metamodels and ModelResource for Edapt
models are unified as NamespaceContainer and changes for namespaces work for both
models and metamodels.

This tight integration is a precondition for model difference co-evolution, as designed
in Section 6.7.3Z 235. Integration of Model

and Metamodel
Differences

As an example, changes for adding values to a slot (in the mo-
del) can detect, if the feature of the slot is currently renamed (in the metamodel), since
the addValue-change is stored by the corresponding SlotContainer, which points to its
FeatureContainer.

This design of differences ensures, that differences are invertible and fulfill demand 3,
invertible Differencesi. e. the inversion of differences is possible without additional information like the current

(meta)model: For the inversion of a sequence of changes, each change is inverted and the
order of changes is reversed in the sequence as well. The inversion of the designed kinds of
changes is possible, since all kinds of changes have an inverse change kind and the required
arguments are information preserving, therefore, for each change an inverse change can be
derived, which reverts the impact of the change. Applying a change and its inverse change
to the same (meta)model in version i results in the version i + 1 which is the same as
version i .

• createX and deleteX are invertible to each other, since the UUID as argument is
given to both changes and indicates the elements to delete respectively to create.
This counts also for the type X of the element, which indicates the desired type of
the element, i. e. delete is not invertible, since the desired type of the element to
create is missing, but deleteX specifies this type.

• changeX for single-value attributes and associations is invertible, since the change
gets the new and the previous value as arguments. Therefore, changeX(oldValue,
newValue) can be inverted to changeX(newValue, oldValue).
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• addX and removeX for multi-value attributes and associations are invertible to each
other, since they describe the previous state of the slot: addX(v) indicates, that the
added value v did not exist before the change, therefore, this change can be reverted
with removeX(v), and vice versa.

Additionally, this design of differences ensures, that differences can be optimized, as
required for Section 6.7.4Z 236,optimize Differences in order to validate, that metamodel changes of inverse
unidirectional operators are really inverse to each other, and to optimize user changes in
views. Difference optimization means, that those changes are removed from a valid sequence
of changes, which do not impact differences in the (meta)model before and after applying
the whole, non-optimized change sequence. In other words, all changes in an optimized
change sequence have an impact which is still “visible” after applying the whole optimized
change sequence.

• Elements might be created and deleted in alternating way:createX, deleteX ⇒ ∅;
deleteX, createX ⇒ ∅

Since createX and dele-

teX are inverse to each other, applying both together have no effect. Therefore, pairs
of createX/deleteX are removed for optimization.

• The value of single-value attributes or associations might be changed multiple times.
changeX(a,b),
changeX(b,c) ⇒
changeX(a,c);
changeX(a,a) ⇒ ∅

All these changes can be optimized to a single change from the old value of the first
changeX change to the new value of the last changeX change. Additionally, changeX
changes, where the old value and the new value are equal, can be removed, since they
have no impact at all.

• Adding and removing the same valueaddX(v), removeX(v)
⇒ ∅;
removeX(v), addX(v)
⇒ ∅

for multi-value attributes or associations might
occur: Since addX and removeX for the same value are inverse to each other, such
pairs are removed for optimization.

Note, that changes for single-value attributes like “a → b → a” are not completely op-
timized by some related approaches, if the difference representation is not accurately de-
signed, e. g. the DL approach (Kuryazov, 2019) describes these changes with changeX(b),
changeX(a), resulting in changeX(a) after optimization, which is an incomplete optimiza-
tion, since the initial value before the first change is unknown. The design in MoConseMI
enables to optimize changeX(a,b), changeX(b,a) into ∅ as the expected result, since
the change sequence has no impact at the end. Note, that only changes targeting the same
element are removed by difference optimization: In order to identify changes for the same el-
ement, the difference optimization needs UUIDs for all model elements (Section 6.6.4Z 225),
which are also used for the difference representation (Figure 6.22Z 230).

This difference optimization is used for, among others,validate Metamodel
Changes of inverse
unidirectional Operators

the validation, that metamodel
changes of inverse unidirectional operators are really inverse to each other. According

to Figure 6.17Z 216, the first unidirectional operators changes the metamodel with
−→
Op

MM∆2,

while its inverse unidirectional operator should revert these metamodel changes with
←−
Op

MM∆2.
Therefore, after these two changes, the initial metamodel MM1 should be reached again,
which is formalized as following:

optimize

( −→
Op

MM∆2 ,
←−
Op

MM∆2

)
!

= ∅ (6.1)

There are some more functionalities for managing differences, which are provided by
most of the difference management approaches and which are shortly explained now, since
they are required for MoConseMI as well:

Application of represented differences on the current (meta)model is done by the repre-
sented changes themselves: Changes are applied directly to MigrationInformation
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containing the current model and its metamodel, i. e. the concrete change determines
the related element(s) in the model or the metamodel and change them accordingly.
This is depicted by the method applyDiff of Change in Figure 6.23Z 232. Applying
differences is required by MoConseMI to restore removed information by applying
model differences in inverted form (Section 6.5.2Z 214).

Recording of differences listens to (meta)models which might be changed in-place and
provides these changes as differences. Difference recording is required in MoCon-
seMI to identify the changes of unidirectional operators in models and metamodels,
which work in-place and therefore enable listening. Difference recording is realized
by registering listeners, one listener for the current EMF metamodel and one listener
for the current Edapt model. These two listeners are synchronized with each other,
since both listeners write their detected changes into the same ChangeContainer.
Herrmannsdoerfer and Koegel (2010) provide a metamodel-independent listener for
EMF models in the context of Edapt, which is not reused here, since MoConseMI
uses its own representation for differences and therefore needs custom listeners.

Calculation of differences takes two (meta)models conforming to the same (meta)meta-
model as input and provides the calculated differences between them as model dif-
ferences as output. Difference calculation is required by adapters in MoConseMI
in order to detect user changes (Section 6.6.5Z 226). Here, EMF Compare (Brun
and Pierantonio, 2008) is used to calculate differences in the EMF Compare rep-
resentation, which are translated into differences according to the representation in
MoConseMI.

6.7.3 Model Difference Co-Evolution

In traditional model versioning approaches, the metamodel is stable. Motivation for Model
Difference Co-Evolution

Since operators change
models and metamodels, in MoConseMI the metamodel is changed as well. While the
operators ensure model co-evolution, i. e. that models conform to their metamodels after the
complete execution of operators, the representation of model differences must be adapted
to evolving metamodels as well, leading to model difference co-evolution.

Since the operators ensure model co-evolution, the recorded differences for models fit to
the evolved metamodel and its metamodel differences by design. But there are some other
impacts of evolving metamodels, which are shortly discussed here:

• Renaming attributes and associations in metamodels influences the representation of
model differences for changed values in slots conforming to the renamed attributes
or associations. rename Metamodel

Elements
As an example, if the value for the attribute “name” of an object o

is changed from a to b with o.removeValue(name, a), o.addValue(name, b) and
afterwards this attribute is renamed to “key”, then the model change should look
like o.removeValue(key, a), o.addValue(key, b) according to the evolved meta-
model. This co-evolution of model differences is solved by the model-based design
of differences in MoConseMI, since addValue and removeValue do not explicitly
encode “name” (or “key”) as pointer to the feature, but these changes directly point
to the affected SlotContainer, which points to its FeatureContainer, which col-
lects the changeName change. Using this design, the old name and the new name of
the feature can be retrieved, e. g. for printing changes with textual representation.
Similarily model difference co-evolution is realized for renamed classes and renamed
enum literals. Summarizing, the model-based representation of model and metamo-
del differences as designed in Section 6.7.2Z 229 fulfills this case for model difference
co-evolution by design.
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• ECore stipulates default values for slots conforming to EAttributes under certain
conditions, but these default values are not explicitly stored in slots by Edapt.Metamodel Evolution

changes default Values
in Models

As an
example, single-value attributes with Java primitive data types as attribute type have
the Java-specific default value for this primitive data type as default value in EMF.
Changing the attribute type in the metamodel, e. g. from EBoolean (Java default
value for boolean: false) to EInt (Java default value for int: 0), might lead to chan-
ges in the model like removeValue(attribute, false), addValue(attribute, 0).
Since these default values are not explicitly stored in Edapt models, no explicit chan-
ges occur in the model, which therefore cannot be detected by difference recorders.
But when looking at the actual models, these changes occurred and must be made
explicit by adding the mentioned model differences.

• The containment tree in EMF models organizes all objects in one or multiple trees,
i. e. each object (except for root objects) is contained in another object, forming trees
(Section 2.5.3Z 87).changing Containments

changes Namespaces of
Objects

These containments are indicated by usual links conforming
to EReferences which are marked as containment in the metamodel. Changing
some of these containment flags in the metamodel might lead to changes of the
containment tree of objects in the model, even without explicit model changes. Since
the namespace of an object is the namespace of its parent object (ModelResources
point only to root objects in Figure 6.19Z 224), the namespaces of objects could be
changed implicitly. Again, these model changes must be made explicit by adding the
mentioned model differences.

Summarizing, metamodel evolution mostly affects models, but also model differences are
affected in some special cases:Summary While the renaming of metamodel elements affects mostly the
representation of model differences and not the model differences directly in the first case,
the other two cases depend on special features of the technical spaces EMF and Edapt,
where metamodel evolution changes conforming models implicitly without changing the
elements of model explicitly. The technical realization of model difference co-evolution for
the second and the third case is done by the listener for Edapt models, which reacts on
metamodel changes identified by the listener for EMF metamodels and adds some more
model differences. Having correct model differences, even in special and rare situations, is
important for the calculation of branch differences (Section 6.7.4), since the execution loop
depends on them (Section 6.5.3Z 217).

6.7.4 Branch Difference Calculation

This section designs the calculation of branch differences B∆ in order to fulfill demand 2.
B∆ vs Op∆ Executing operators in-place allows to navigate the current model between views and the

SUM in order to update them. When executing operators, they produce model differences
called operator differences Op

M∆ in “horizontal direction”, which describe, how models for
views and the SUM can be transformed into each other. In contrast, branch differences
describe the model changes between consecutive versions of the model at the same position
within the orchestration “in vertical direction”. These versions occur, when operators are
executed multiple times (Section 6.5.3Z 217). The user differences User∆ are special branch
differences, since User∆ are manually done by users. Branch differences (as well as execution
differences) occur only on model level, since the metamodel level is unchanged by design
(Figure 6.2Z 190).

Branch differences are required in Section 6.5.3Z 217 in order to detect the fix-point
of the execution loop for operators.Motivation for B∆ Additionally, execution differences E∆, which are
optimized concatenations of branch differences, are useful for adapters in order to update
their concrete renderings for changed views.
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6.7 Model and Metamodel Differences

Operators should not calculate the branch differences themselves, since it is possible to
calculate branch differences in a generic way, as designed in this section. possible Strategies for

B∆ Calculation

In general, there
are two possible strategies to calculate branch differences, i. e. by difference calculation
between two complete versions of the same model (Section 6.7.2Z 229) or by comparing
the model differences which led to the different model versions (Altmanninger, Seidl and
Wimmer, 2009, p. 281). Both strategies are discussed in the following, along the example
for a very simple orchestration in Figure 6.25: There is one view(point), which is derived by
one operator from the SU(M)M. The user requested the view, got the corresponding model
M 0

View as projected by the unidirectional operator from the current M 0
SUM, and changed

the model by applying User∆1
View, resulting in the model M 1

View, which is transformed by
the inverse unidirectional operator back into the SUM resulting in the updated M 1

SUM.

The model changes
←−
Op
M∆0

View and
−→
Op
M∆1

View of the unidirectional operators are recorded
(Section 6.7.2Z 229) and therefore known. The user differences User∆1

View are also known,
since they are directly applied by users. While the updated SUM is known as M 1

SUM, it
is unclear, how the SUM is changed compared to the previous version M 0

SUM of the SUM.
Therefore, a reasonable design to calculate these differences as B∆1

SUM is required.

M 0
View M 0

SUM

M 1
View M 1

SUM

MMView MMSUM

MMView MMSUM

M 0
SUMM 0

View

M 1
View M 1

SUM

User∆1
View

B∆1
SUM

Operator

←−
Op
M ∆0

View

Inv. Operator

−→
Op
M ∆1

View

= optimize

(←−
Op
M ∆0

View, User∆1
View,

−→
Op
M ∆1

View

)

Figure 6.25: Conceptual Idea for the Calculation of Branch Differences

As first strategy, the calculation of B∆1
SUM by difference calculation between M 0

SUM and
M 1

SUM is possible in general, but comes with some drawbacks: 1. Calculation by
Model Comparison

While M 1
SUM is available as

final result of executing the inverse unidirectional operator, M 0
SUM is not available anymore,

since it was transformed in-place into M 0
View, then into M 1

View and finally into M 1
SUM. There-

fore, M 0
SUM must be remembered for difference calculation. While this would be possible for

this small orchestration, bigger orchestrations need to remember all intermediate models
for all operators as well, leading to high memory consumption. Additionally, the difference
calculation needs to take the whole models into account, not only the model differences.
Since the second strategy can be realized as designed in the following and decreases these
disadvantages, the second strategy is used by MoConseMI.

The second strategy does not compare the whole models with each other, but com-
pares relevant model differences with each other: 2. Calculation by

Difference Comparison
As depicted by the solid black arrow in

Figure 6.25, the M 0
SUM is changed three times in order to become the M 1

SUM. First, the

unidirectional operator transformed M 0
SUM into M 0

View leading to
←−
Op
M∆0

View, second, the user
changed the model of the view to M 1

View with User∆1
View, third, M 1

View is transformed by
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the inverse unidirectional operator to the M 1
SUM leading to

−→
Op
M∆1

View. The concatenation of

these three change sequences, i. e.
←−
Op
M∆0

View, User∆1
View and

−→
Op
M∆1

View, describes the changes
between the SUM in version 0 and the SUM in version 1. By optimizing these concatenated
changes, unnecessary differences are removed and the differences, which really changed
the SUM in version 1 in comparison to version 2, remain as B∆1

SUM. This calculation of
branch differences is done after executing the inverse unidirectional operator, since it has
to produce the required current operator differences before.

This strategy needs to remember all these model differences, which are usually smaller
than whole models and therefore require less memory than the first strategy.improved Performance Additionally,
the optimization of model differences (Section 6.7.2Z 229) requires less calculation effort
than the comparison of models in the first strategy, since the complexity depends on the
number of model differences and not on the number of model elements.

This idea, depicted along an example in Figure 6.25Z 237, is generalized to calculate the
branch differences after each execution of each unidirectional operator (fulfilling demand 2).
In general, a unidirectional operator transformed the model from previous position P within

the orchestration to the current position Cgeneralized B∆
Calculation

and produced the model differences
−→
Op
M∆i during

the current execution i . Comparing it with the previous execution i − 1, which resulted in
←−
Op
M∆i−1, and the current branch differences B∆i

P at the previous position P results in the
new branch differences B∆i

C, formalized as following:

B∆i
C = optimize

(←−
Op
M∆i−1, B∆i

P,
−→
Op
M∆i

)
(6.2)

This formalizations counts also for switched directions of operators, i. e. with
−→
Op
M∆i−1 and

←−
Op
M∆i . One exception for this general calculation is �CombineSeparateDataSources,
whose unidirectional operators do not change the content of models at all,Exceptions resulting in

unchanged branch differences B∆i
P = B∆i

C. Another exception is the first execution of each
bidirectional operator leading to Op∆0, since no branch differences can be calculated for its
unidirectional operator, since the calculation needs the previous operator differences Op∆−1,
which do not exist in this situation, since it is the first execution. This situation occurs
during the initialization of the SUM and of the new views, as described in Section 6.5.4Z 219.

This design for the calculation of branch differences requires the proper difference op-
timization and motivates its design in Section 6.7.2Z 229.Motivation for the

Design of Differences
In order to identify changes for

the same element, which are not relevant, the difference optimization needs UUIDs for all
model elements (Section 6.6.4Z 225), which are also used for the difference representation
(Section 6.7.2Z 229). Additionally, the model differences must be accurate, even with evolv-
ing metamodels, leading to the need for model difference co-evolution in Section 6.7.3Z 235.

6.8 Summary

This Chapter 6Z 185 established the design of MoConseMI with all its concepts, bas-
ing on the main design decisions made in Chapter 5Z 163. MoConseMI uses operators,
which are generic for reuse in recurring transformation scenariosMoConseMI is

Operator-based
and can be adapted to the

project-specific metamodels by metamodel decisions (overcoming structural heterogeneity)
and to the project-specific consistency rules by model decisions (overcoming semantic het-
erogeneity). There are bidirectional operators and unidirectional operators: While each
unidirectional operator transforms one model and its metamodel in-place in one direction,
each bidirectional operator couples one unidirectional operator with its inverse unidirec-
tional operator for both directions. Bidirectional operators are selected, configured and
combined into a tree, with the SU(M)M as root and the views, including data sources and
new views, as leafs.

238



6.8 Summary

Legend

Mandatory

Optional

Or

Xor

I Sub-Diagram

Model Transformation

Target

New Existing

Update In-place

Direction

Unidirect. Multidirect.

1 Definition ≥ 2 Definitions

Incrementality

Target Source

Preserve
Target

Changes

Tracing

Creation

Automatic Manual

Location

Inside

Source Target

Separate

Concepts
(Metamodel)

generic
Domain-
specific

Incrementality ⇐⇒ Update ∧ New (Target)
Tracing =⇒ New (Target)
In-place =⇒ ¬ Tracing

UUIDsdetermine the
final Changes History Maps

Figure 6.26: Selected Features of Model Transformations for unidirectional Operators

With this design, unidirectional operators represent small model transformations, as
investigated in Section 2.2.3Z 67. unidirectional Operators

as (Model)
Transformations

The selection of features of model transformations (Fig-
ure 2.14Z 68) for unidirectional operators is depicted in Figure 6.26: Unidirectional opera-
tors can be seen as unidirectional and in-place model transformations with two models as
source and target, while one model is a metamodel for the other model. While unidirectional
operators do not improve performance by incrementality, they preserve target changes by
in-place transformations and additional means to prevent information loss. There is no ex-
plicit tracing, since the transformation is in-place, but history maps can be used for storing
trace information and stable UUIDs of elements can be used for some tracing.
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Figure 6.27: Selected Features of Model Transformations for the whole MoConseMI approach

Since MoConseMI as a whole realizes change propagating by model synchronization
with model transformations, MoConseMI is aligned to features of model transformations
in Figure 6.27: MoConseMI as

(Model) Transformation
Framework

While most of the selected features for MoConseMI are inherited from the
selected features of unidirectional operators in Figure 6.26, MoConseMI is bidirectional as
a special case of multidirectional transformations, while the bidirectional operators require
one definition for metamodel decisions and two definitions for model decisions. Since his-
tory maps are an internal concept, history maps are not visible outside of MoConseMI.
While the model synchronization is done in-place in general, new (meta)models for the
SU(M)M and new view(point)s can be created by storing these (meta)models once during
the initialization.

The general design of unidirectional operators including metamodel decisions is taken
from Edapt and is extended here with model decisions and inverse unidirectional operators
coupled into bidirectional operators. Additionally, the execution of operators is designed
for bidirectional operators: Execution of OperatorsThe current (meta)models is transformed by chains of operators
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in-place between the views and the SUM in order to propagate changes. This execution
is looped in order to handle depending consistency goals and flexible orders of operators,
which might result in automatically generated follow-up changes, which must be propagated
to all views as well, until a fix-point is reached. For the execution order, a conservative
strategy is chosen and needs more investigations in the future in order to improve the
execution performance, while the results of applications will show that the execution works
and provides the expected results.

Metamodels are realized by EMF and conforming models are realized by Edapt as tech-
nical spaces. For the validation and controlling of the execution loop, differences in models
and their metamodels are jointly represented.EMF, Edapt and

Differences
The designed difference representation al-

lows to invert and optimize differences, which is required to calculate branch differences
and execution differences, which define the fix-point of the execution loop.

Concrete operators conforming to this design are presented in Chapter 7Z 241. While
most of the concrete operators realize small, recurring metamodel evolution scenarios with
configurable model co-evolution, �ChangeModel enables custom model transformations
for cases, where the other predefined operators are not beneficial. Limitations of this design
are discussed in Section 14.3.1Z 490. This design is realized as framework in Chapter 8Z 263

to be reusable for several application examples in order to evaluate this design.
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Chapter 7

Operators

After establishing the general design of operators in Section 6.1Z 185, this section presents
designed and implemented operators, which are applied in the evaluation in Part VZ 467.
Objectives of this section are the following:

• list the provided operators as overview for methodologists

• provide details about the operators, in particular metamodel and model decisions,
which must be configured by methodologists, together with examples

• serve as reference for details of the operators, so that these details can be reduced in
Part VZ 467 during application

The next Section 7.1 presents some related work in which some of the operators are al-
ready introduced or discussed. Section 7.2 introduces the template, which is used in Sec-
tion 7.3Z 243 to describe the operators. Section 7.4Z 262 summarizes the operators.

7.1 Related Work

This section shows some related work which propose or motivate operators, which target
metamodel and model level and which are documented in details in the following Sec-
tion 7.3Z 243.

Burger and Gruschko (2010) analyze possible atomic changes for elements and their
properties in MOF-based metamodels and classify their impact on conforming models. From
these atomic changes, corresponding operators like→AddClass or→RenameClassifier
can be derived.

Herrmannsdoerfer, Vermolen and Wachsmuth (2011) present a catalog of operators for
EMOF-based metamodels like ECore in the context of Edapt (Section 6.2.1Z 193) and
include also more complex operators like →MergeClasses. Some of these operators are
taken and adapted here.

Similar operators are also sketched by Cicchetti, Di Ruscio et al. (2008), by Meyers,
Wimmer et al. (2012) and by Wachsmuth (2007), which are explicitly designed to support
the model co-evolution. Some of these operators are taken and adapted here.

7.2 Template to describe Operators

This sections describes the template, which is used in Section 7.3Z 243 to document op-
erators: Each bidirectional operator is documented in its own sub-section. documentation template

for bidirectional
operators

Following the
design of operators as motivated in Section 6.1Z 185, each bidirectional operator consists of
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two unidirectional operators, which are documented as sub-sub-sections. The following sub-
sub-sections describe an abstract example for the current bidirectional operator, including
a visualization of the impact on metamodels and models, the corresponding configurations
of decisions and the execution details. The used exemplary metamodels and models are
artificial and tailored to the current operator to be small and to present the specific impact
of the operator at the same time, which is hard to realize with the same metamodel and
model for all operators. This application is only an example and does not demonstrate all
features of the operator.

Usually, an inverse bidirectional operator can be designed by swapping the involved
unidirectional operators. Here, such inverse operators are named, but not documented,
since its details are nearly the same, since the same unidirectional operators are involved. In
rare cases, such an inverse bidirectional operator does not make sense, which is documented,
too. In analogous way, unidirectional operators, which are inverse to each other, e. g.
RenameClassifier, are documented only once.

To document unidirectional operators, the following structure is used:documentation template
for unidirectional
operators

At the beginning
of the sub-sub-section, a longer text motivates the operator and describes some details of
the operator. Afterwards, its details are documented using the following structure:

Metamodel Decisions lists all possible decisions for the metamodel level with its name,
its data type and a description for its purpose.

Model Decisions lists all possible decisions for the model level with its name, its data
type and a description for its purpose. Since model decisions allow to decide for each
current object or value individually, they are rendered like methods: Parameters
specify the current situation in form of current objects, values and so on, while the
return type specifies possible answers.

Enumeration types Some decisions introduce new enumerations to define the possible
values selectable by the methodologist. Such enumerations are listed with their pos-
sible literals here. If there are no new enumerations for this operator, this part is not
shown.

Unidirectional Operators mentions, which other unidirectional operators are used in-
ternally by the current operator, and adds the purposes of all reused operators. If no
sub operators are used by this operator, this part is not shown.

Preconditions lists all preconditions, which must be fulfilled, before the operator is ex-
ecutable. These preconditions target the input metamodel (and therefore also the
input model) or the configurations for metamodel decisions done by the methodolo-
gist.

Default Configurations lists some configurations for model decisions for situations, which
occur often. They can be reused (and adapted, if necessary) by the methodologist
and ease his work. If there are no provided default configurations for this operator,
this part is not shown.

For brevity, some technical aspects are hidden in this section:hidden details

• the parameters infos : MigrationInformation and decisionInfos : Decision-

Information, since they are given to most model decisions

• metamodel and model decisions, which control UUIDs for created or deleted elements
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7.3 List of Bidirectional Operators

7.3 List of Bidirectional Operators

This section lists the most important bidirectional operators, which are often used in the
ongoing example or in the application examples in Part VZ 467. Some rarely used operators
are skipped here in order for brevity. This includes special operators like �CombineSep-
arateDataSources for combining two data sources presented in Section 6.4.3Z 205, and
�SubSet for filtering out unnecessary information presented in Section 6.4.4Z 209, but
also rarely used operators for creating and deleting rarely used concepts of EMF (see Sec-
tion 6.6.2Z 222) including the creation and deletion of data type, enums and enum literals,
which are developed for completeness (as discussed in Section 13.2.2Z 470), but which are
not directly used for the presented application examples.

Each bidirectional operator is documented only for one direction, the bidirectional op-
erator for the inverse direction simply swaps the two unidirectional operators.

7.3.1 AddDeleteOppositeRelation

As bidirectional operator,�AddDeleteOppositeRelation consists of the following two
unidirectional operators, which are inverse to each other:

• forward unidirectional operator →AddOppositeRelation in Section 7.3.1.1

• backward unidirectional operator←DeleteOppositeRelation is described in Sec-
tion 7.3.1.2Z 244

The inverse bidirectional operator is�DeleteAddOppositeRelation with swapped
undirectional operators.

7.3.1.1 AddOppositeRelation

If the used technical space supports unidirectional and bidirectional associations (like EMF),
modelers can choose for each association, if it should be unidirectional or bidirectional, de-
pending on their needs. Using bidirectional association links allows the explicit navigation in
both directions, while unidirectional associations support navigation only in one direction.
On the other hand, unidirectional associations require less memory for their representation
compared with bidirectional associations. If bidirectionality for navigation is not required
anymore, this operator can be applied.

This operator is used to change an existing unidirectional association into a bidirectional
one in the metamodel. In the model, all existing unidirectional links are enhanced to
bidirectional links.

Metamodel Decisions of →AddOppositeRelation:

• existingReferenceFullyQualified : String [1]

The fully-qualified name of the reference for which the opposite is created.

• newFeatureName : String [1]

The name of the new opposite reference.

• newFeatureLowerBound : int [1]

The lower bound of the new opposite reference. The selected bound must cover the
number of links in the model. Otherwise, a wider bound has to be selected.

• newFeatureUpperBound : int [1]

The upper bound of the new opposite reference. The selected bound must cover the
number of links in the model. Otherwise, a wider bound has to be selected.
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Model Decisions of →AddOppositeRelation: This operator has no individual mo-
del decisions.

Preconditions to be fulfilled before executing →AddOppositeRelation:

• The reference must not already have an opposite. (restricts existingReferenceFul-
lyQualified)

• If the existing reference is a containment reference, the upper bound of the new
opposite reference must be 1.

7.3.1.2 DeleteOppositeRelation

If the used technical space supports unidirectional and bidirectional associations (like EMF),
modelers can choose for each association, if it should be unidirectional or bidirectional,
depending on their needs. Using bidirectional association links allows the explicit navi-
gation in both directions, while unidirectional associations support navigation only in one
direction. On the other hand, unidirectional associations require less memory for their rep-
resentation compared with bidirectional associations. If unidirectionality is enough for the
initial (meta)model, but the integration would benefit from navigation also in the missing
direction, this operator can be applied.

This operator is used to change an existing bidirectional association into an unidirec-
tional one in the metamodel, which restricts the navigability to only one direction. In the
model, all existing bidirectional links are reduced to unidirectional links.

Metamodel Decisions of →DeleteOppositeRelation:

• referenceFullyQualified : String [1]

The fully qualified name of the reference whose opposite reference should be deleted.

Model Decisions of →DeleteOppositeRelation: This operator has no individual
model decisions.

Preconditions to be fulfilled before executing →DeleteOppositeRelation:

• The opposite reference must not be containment. (restricts referenceFullyQualified)

• The reference needs to define an opposite reference. (restricts referenceFullyQualified)

7.3.2 AddDeleteAttribute

As bidirectional operator, �AddDeleteAttribute consists of the following two unidi-
rectional operators, which are inverse to each other:

• forward unidirectional operator →AddAttribute in Section 7.3.2.1Z 245

• backward unidirectional operator ←DeleteAttribute in Section 7.3.2.2Z 246

The inverse bidirectional operator is�DeleteAddAttribute with swapped undirec-
tional operators.
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7.3.2.1 AddAttribute

In order to store additional information for objects, this operator enables to create an
attribute and to determine the desired initial value for each object. A typical application
scenario is also to calculate values and to provide this derived information in read-only way.

This operator creates a new attribute to the specified class in the metamodel and allows
to specify the initial values in conforming attribute slots in the model.

Metamodel Decisions of →AddAttribute:

• classWithNewAttributeFullyQualified : String [1]

The fully-qualified name of the class with the new attribute.

• attributeName : String [1]

The name of the new attribute.

• attributeLowerBound : int [1]

The lower bound of the new attribute.

• attributeUpperBound : int [1]

The upper bound of the new attribute.

• attributeDataTypeFullyQualified : String [1]

The fully qualified name of the type for the new attribute.

Model Decisions of →AddAttribute: Model decisions are encoded in decision :
AddAttributeDecision [1], whose type is defined in de unioldenburg se mmi frame-

work operator unidirectional AddAttribute AddAttributeDecision (“Determines
the initial value(s) for this new attribute for each instance.”). All their individual model
decisions are listed here:

• computeInitialValue ( instanceToFix : Instance, newAttribute : EAttribute ) :
Object

This decision is called for each object conforming to the class with the new attribute
and allows to specify the initial value for the attribute slot. Use null to indicate,
that there is no initial value. Return a List with the values for a new multi-value
attribute.

Preconditions to be fulfilled before executing →AddAttribute:

• Ensures, that the value for the lower bound is not negative. (restricts attributeLower-
Bound)

• Ensures, that the value for the upper bound is not zero. (restricts attributeUpper-
Bound)

• Ensures, that the value for the lower bound is not bigger than the value for the upper
bound.

• Ensures, that the class does not yet have a feature with the desired name. (restricts
attributeName)
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Default Configurations for model decisions for reuse in recurring situations are bun-
dled in the following classes:

• de unioldenburg se mmi framework operator unidirectional decisions

AddAttributeIdUuid: Uses the UUID of the instance as initial value for the new
attribute.

• de unioldenburg se mmi framework operator unidirectional decisions

AddAttributeNothing: Leaves the slot empty, i.e. no value is added.

7.3.2.2 DeleteAttribute

In order to remove values which are not required anymore, this operator allows to delete
an attribute and all values conforming to this attribute.

This operator deletes an attribute in the metamodel. In the model, all values in con-
forming attribute slots are deleted.

Metamodel Decisions of →DeleteAttribute:

• fullyQualifiedAttributeName : String [1]

The fully-qualified name of the attribute to delete.

Model Decisions of →DeleteAttribute: This operator has no individual model
decisions.

Preconditions are not existing for →DeleteAttribute.

7.3.3 DeleteAddNamespace

As bidirectional operator, �DeleteAddNamespace consists of the following two unidi-
rectional operators, which are inverse to each other:

• forward unidirectional operator →DeleteNamespace in Section 7.3.3.1

• backward unidirectional operator ←AddNamespace in Section 7.3.3.2Z 247

The inverse bidirectional operator is �AddDeleteNamespace with swapped undi-
rectional operators.

7.3.3.1 DeleteNamespace

Since an empty namespace is not used anymore, this operator deletes such an empty
namepace.

This operator deletes an existing, empty namespace either in the metamodel or in the
model.

Metamodel Decisions of →DeleteNamespace:

• namespaceFullName : String [1]

The fully-qualified name of the namespace to be deleted.

Model Decisions of →DeleteNamespace: This operator has no individual model
decisions.
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Preconditions are not existing for →DeleteNamespace.

7.3.3.2 AddNamespace

In order to improve the structure and grouping of elements, this operator creates a new
namespace.

This operator creates a new namespace, either in the metamodel or in the model.
Nothing more is changed.

Metamodel Decisions of →AddNamespace:

• parentNamespaceFullQualifiedName : String [0..1]

The fully-qualified name of the parent namespace (might be null).

• namespaceName : String [1]

The name of the new namespace.

• kind : NamespaceKind [0..1]

Configures, if the new namespace is used for model elements or for metamodel ele-
ments (or if this information is unknown).

Model Decisions of →AddNamespace: This operator has no individual model deci-
sions.

Enumeration types used for decisions in →AddNamespace:

• The enumeration NamespaceKind allows METAMODEL, MODEL and UNDEFINED as possi-
ble values.

Preconditions are not existing for →AddNamespace.

7.3.4 ChangeAttributeType

As bidirectional operator, �ChangeAttributeType consists of the following two unidi-
rectional operators, which are inverse to each other:

• forward unidirectional operator →ChangeAttributeType in Section 7.3.4.1

• backward unidirectional operator ←ChangeAttributeType in Section 7.3.4.1

The inverse bidirectional operator is�ChangeAttributeType, because�Change-
AttributeType is inverse to itself. Therefore, no additional inverse bidirectional operator
needs to be introduced in this case.

7.3.4.1 ChangeAttributeType

If an inaccurate type is used for an attribute, this operator enables to change the type of
the attribute and provides the customizable migration of values in attribute slots in the
model. Inaccurate attribute type might stem from adapters for technical spaces which do
not support all desired types, as an example, only String values are represented in the CSV
format for spreadsheets.

This operator changes the type of an attribute in the metamodel. In the model, the
values in corresponding attribute slots conforming to the old attribute type are replaced by
values conforming to the new attribute type.
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Metamodel Decisions of →ChangeAttributeType:

• fullyQualifiedAttributeName : String [1]

The fully-qualified name of the attribute whose type should be changed.

• fullyQualifiedNewTypeName : String [1]

The fully-qualified name of the new type for the attribute.

Model Decisions of →ChangeAttributeType: Model decisions are encoded in
decision : ChangeAttributeTypeDecision [1], whose type is defined in de uniolden-

burg se mmi framework operator unidirectional ChangeAttributeTypeExtended

ChangeAttributeTypeDecision (“Converts the current value conforming to the old at-
tribute type into a new value conforming to the new attribute type.”). All their individual
model decisions are listed here:

• convert ( input : Object ) : Object

This decision is called for each existing value conforming to the old attribute type in
order to calculate a new value conforming to the new attribute type.

Preconditions to be fulfilled before executing →ChangeAttributeType:

• Ensures, that the new type is different than the current type of the attribute. (re-
stricts fullyQualifiedNewTypeName)

Default Configurations for model decisions for reuse in recurring situations are bun-
dled in the following classes:

• de unioldenburg se mmi framework operator unidirectional decisions

ConvertBooleanToString: Uses the usual Java way to convert a boolean to String.

• de unioldenburg se mmi framework operator unidirectional decisions

ConvertDoubleRoundedToString: Converts a double value after rounding to the
desired number of decimals to String.

• de unioldenburg se mmi framework operator unidirectional decisions

ConvertDoubleToInteger: Rounds a Double value to a Long value (i.e. removes the
decimals) and converts it to String.

• de unioldenburg se mmi framework operator unidirectional decisions

ConvertDoubleToLongToString: Rounds a Double value to a Long value (i.e. re-
moves the decimals) and converts it to String.

• de unioldenburg se mmi framework operator unidirectional decisions

ConvertDoubleToString: Uses the usual Java way to convert a double to String.

• de unioldenburg se mmi framework operator unidirectional decisions

ConvertFloatToString: Uses the usual Java way to convert a float to String.

• de unioldenburg se mmi framework operator unidirectional decisions

ConvertIntegerToDouble: Converts the integer value to double by Java casting.

• de unioldenburg se mmi framework operator unidirectional decisions

ConvertIntegerToString: Uses the usual Java way to convert an integer to String.
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• de unioldenburg se mmi framework operator unidirectional decisions

ConvertStringToBoolean: Converts the String value to boolean by using the default
Java parsing method.

• de unioldenburg se mmi framework operator unidirectional decisions

ConvertStringToDouble: Converts the String value to double by using the default
Java parsing method.

• de unioldenburg se mmi framework operator unidirectional decisions

ConvertStringToFloat: Converts the String value to float by using the default Java
parsing method.

• de unioldenburg se mmi framework operator unidirectional decisions

ConvertStringToInteger: Converts the String value to integer by using the default
Java parsing method.

7.3.5 ChangeModel

As bidirectional operator, �ChangeModel consists of the following two unidirectional
operators, which are inverse to each other:

• forward unidirectional operator →ChangeModel in Section 7.3.5.1

• backward unidirectional operator ←ChangeModel in Section 7.3.5.1

The inverse bidirectional operator is �ChangeModel, because �ChangeModel
is inverse to itself. Therefore, no additional inverse bidirectional operator needs to be
introduced in this case.

7.3.5.1 ChangeModel

There are two motivations for this case: First, this operator allows to change the model
in situations which do not require changes in the metamodel, because the metamodel (or
at lease its relevant parts) is already sufficient. Second, complex evolution scenarios which
require changes in metamodels and models and which are not realizable with single (or
some chained) provided operators, could be realized with this operator, by doing (only)
the metamodel evolution first without changing the model and by doing (only) the model
evolution afterwards and as a whole with this operator.

This operator allows to change the model in arbitrary way, but does not change the
metamodel.

Metamodel Decisions are not specified for →ChangeModel.

Model Decisions of →ChangeModel: Model decisions are encoded in decision :
ChangeModelDecision [0..1], whose type is defined in de unioldenburg se mmi frame-

work operator unidirectional ChangeModel ChangeModelDecision (“Allows to change
the model in arbitrary way.”). All their individual model decisions are listed here:

• changeModel ( )

This decision allows to change the current model in arbitrary way. Changes in the
metamodel are forbidden.

Preconditions are not existing for →ChangeModel.
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Default Configurations for model decisions for reuse in recurring situations are bun-
dled in the following classes:

• de unioldenburg se mmi framework operator unidirectional decisions

ChangeModelNothing: Nothing is changed in the model.

7.3.6 ChangeMultiplicity

As bidirectional operator, �ChangeMultiplicity consists of the following two unidirec-
tional operators, which are inverse to each other:

• forward unidirectional operator →ChangeMultiplicity in Section 7.3.6.1

• backward unidirectional operator ←ChangeMultiplicity in Section 7.3.6.1

The inverse bidirectional operator is �ChangeMultiplicity, because �Change-
Multiplicity is inverse to itself. Therefore, no additional inverse bidirectional operator
needs to be introduced in this case.

7.3.6.1 ChangeMultiplicity

In order to concretize multiplicities of existing features, it is necessary to ensure, that slots
of objects in the model have the desired number of values, which is done by this operator.

This operator changes the multiplicities of a structural feature in the metamodel. In
the model, this multiplicity is ensured for each affected object with the help of the model
decision.

Metamodel Decisions of →ChangeMultiplicity:

• fullyQualifiedFeatureName : String [1]

The fully-qualified name of the structural feature whose multiplicities should be
changed.

• newLowerBound : int [1]

The new multiplicity for the lower bound

• newUpperBound : int [1]

The new multiplicity for the upper bound

Model Decisions of →ChangeMultiplicity: Model decisions are encoded in deci-
sion : ChangeMultiplicityDecision [0..1], whose type is defined in de unioldenburg se

mmi framework operator unidirectional ChangeMultiplicity ChangeMultiplic-

ityDecision (“Allows to fix slots whose number of values hurt the new lower or upper
bounds. If there is no need to fix slots, no decision is required to configure.”). All their
individual model decisions are listed here:

• handleInstanceWithHurtLowerBound ( slot : Slot, hurtLowerBound : int )

This decision is called for each Slot which hurts the new lower bounds and allows to
add some additional values to the slot.

• handleInstanceWithHurtUpperBound ( slot : Slot, hurtUpperBound : int )

This decision is called for each Slot which hurts the new upper bounds and allows to
remove some existing values from the slot.
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• handleInstanceWithValidBounds ( slot : Slot, newLowerBound : int, newUpper-
Bound : int )

This decision is called for each Slot which does not hurt the new bounds and allows
to adapt non-critical slots as well. There is a default configuration for this model
decision (“By default, nothing is changed, since slots which do not hurt the new
bounds do not need to be changed.”).

Preconditions to be fulfilled before executing →ChangeMultiplicity:

• Ensures, that the value for the lower bound is not negative. (restricts newLower-
Bound)

• Ensures, that the value for the upper bound is not zero. (restricts newUpperBound)

• Ensures, that the value for the lower bound is not bigger than the value for the upper
bound.

• Ensures, that at least one bound of the multiplicity is changed.

Default Configurations for model decisions for reuse in recurring situations are bun-
dled in the following classes:

• de unioldenburg se mmi framework operator unidirectional decisions

ChangeMultiplicityNothingTodo: Nothing is changed, due to the assumption of
this configuration, that all bound are never hurt.

Additionally, one model decision provides a default configuration, directly together with its
introduction, as documented above.

7.3.7 MergeSplitClasses

As bidirectional operator, �MergeSplitClasses consists of the following two unidirec-
tional operators, which are inverse to each other:

• forward unidirectional operator →MergeClasses in Section 7.3.7.1

• backward unidirectional operator ←SplitClass in Section 7.3.7.2Z 254

No inverse bidirectional operator is defined for�MergeSplitClasses, because it was
not required for application examples up to now.

7.3.7.1 MergeClasses

If the same concept is represented twice by two different classes, those classes can be unified
by using this operator. This case occurs often after combining two data sources having
overlaps in form of two classes describing the same concept.

This operator merges two classes on the metamodel level and merges corresponding
instances on model level. The merging of instances is done 1-to-1, i.e. one source and
one target instance are merged (exactly: 0..1-to-0..1), while merging 1-to-n or m-to-n is
impossible with this operator.
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Metamodel Decisions of →MergeClasses:

• targetClassName : String [1]

The target class (fully qualified) which will be filled with the features of the source
class.

• sourceClassName : String [1]

The source class (fully qualified) which will be removed afterwards.

• fullyQualifiedFeatureNamesToMakeNonContainment : String [∗]
A list of fully qualified feature names (before(!) the merge on metamodel and model
level) which are containments, but should be made non-containments during the
metamodel evolution (without any additional model changes).

• fullyQualifiedFeatureNamesContainmentToChangeMultiplicity : String [∗]
A list of fully qualified feature names (before(!) the merge on metamodel and mo-
del level) which have an opposite containment reference, whos multiplicities should
be changed (lower bound: 1 ←→ 0) during the metamodel evolution (without any
additional model changes).

Model Decisions of →MergeClasses: Model decisions are encoded in decision :
MergeClassesDecision [1], whose type is defined in de unioldenburg se mmi frame-

work operator unidirectional MergeClasses MergeClassesDecision (“Decides main-
ly, which instances are merged into each other.”). All their individual model decisions are
listed here:

• mergeAgain ( sourceInstance : Instance, targetInstance : Instance ) : MergeA-

gainDecision

After merging one source instance and one target instance into each other in a pre-
vious execution, this decision controls, if this merge should be done again, whichout
checking their matching again.

• mergedSourceHasNoTargetAnyMore ( sourceInstance : Instance ) : MergedNowMiss-
ingDecision

After merging one source instance and one target instance into each other in a pre-
vious execution, that target instance is missing now, while the source instance still
exists, which raises the question, how to deal with the remaining source instance.

• mergedTargetHasNoSourceAnyMore ( targetInstance : Instance ) : MergedNowMiss-
ingDecision

After merging one source instance and one target instance into each other in a pre-
vious execution, that source instance is missing now, while the target instance still
exists, which raises the question, how to deal with the remaining target instance.

• areMatching ( sourceInstance : Instance, targetInstance : Instance ) : MatchDe-

cision

Decides if one given source object and one given target object should be merged.

• initializeTargetFeatures ( instance : Instance )

Allows to initialize features of the target class for (direct or indirect) instances of
the source class. There is a default configuration for this model decision (“Here, no
initialization for slots of target features is required.”).
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• initializeSourceFeatures ( instance : Instance )

Allows to initialize features of the source class for (direct or indirect) instances of
the target class. There is a default configuration for this model decision (“Here, no
initialization for slots of source features is required.”).

• handleSourceWithoutMatch ( sourceInstance : Instance ) : SearchedNoMatchDe-

cision

Decides, how source instances without matching target instance should be treated.
There is a default configuration for this model decision (“The source instance without
target match is kept.”).

• handleTargetWithoutMatch ( targetInstance : Instance ) : SearchedNoMatchDeci-
sion

Decides, how target instances without matching source instance should be treated.
There is a default configuration for this model decision (“The target instance without
source match is kept.”).

• determineMissingMatchForSource ( sourceInstance : Instance ) : Instance

If requested, this decision allows to specify a matching target instance manually.
It can be used to create a new instance for that, as example. There is a default
configuration for this model decision (“Here, this case does not occur.”).

• determineMissingMatchForTarget ( targetInstance : Instance ) : Instance

If requested, this decision allows to specify a matching source instance manually.
It can be used to create a new instance for that, as example. There is a default
configuration for this model decision (“Here, this case does not occur.”).

• mergeValuesOfAttributeOfCommonSuperClasses ( sourceSlot : AttributeSlot, tar-
getSlot : AttributeSlot )

For the special case, that source instance and target instance to be merged have same
super classes, this decision controls, how to merge their slots for attributes of such
joint super classes. There is a default configuration for this model decision (“Realizes
a simple merging without duplicate values.”).

• mergeValuesOfReferenceOfCommonSuperClasses ( sourceSlot : ReferenceSlot, tar-
getSlot : ReferenceSlot )

For the special case, that source instance and target instance to be merged have same
super classes, this decision controls, how to merge their links for references of such
joint super classes. There is a default configuration for this model decision (“Realizes
a simple merging without duplicate links.”).

Enumeration types used for decisions in →MergeClasses:

• The enumeration MergeAgainDecision allows MERGE AGAIN, MERGE NOT BUT SEARCH -

ONLY SOURCE, MERGE NOT BUT SEARCH ONLY TARGET, MERGE NOT BUT SEARCH BOTH and
MERGE NOT NO SEARCH as possible values.

• The enumeration MergedNowMissingDecision allows SEARCH MATCHING, NO SEARCH -

NO MERGE and DELETE THIS INSTANCE as possible values.

• The enumeration MatchDecision allows MATCH FOUND, NO MATCH and NEVER MATCH

THIS TARGET as possible values.

• The enumeration SearchedNoMatchDecision allows MIGRATE WITHOUT MATCH, DELETE -

THIS INSTANCE and DETERMINE MISSING MATCH as possible values.
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Unidirectional Operators which might be used internally by →MergeClasses:

• →ChangeContainmentsOfClass: TODO

• →ChangeMultiplicity: TODO

Preconditions to be fulfilled before executing →MergeClasses:

• The source and the target class have to be different.

• The source class and the target class must be both either abstract or non-abstract.

• The source class and the target class must be both either an interface or non interface.

• The source class must not be a (direct or indirect) sub class of the target class.

• The target class must not be a (direct or indirect) sub class of the source class.

• All features of Source and Target Classes have to have unique names.

• All features to change have to be containers.

• All features to change their multiplicities must have 0 or 1 as lower bound, since these
two values will be switched.

• All features to change have to point to the source or target class (or to one of their
super classes).

Default Configurations for model decisions for reuse in recurring situations are bun-
dled in the following classes:

• de unioldenburg se mmi framework operator unidirectional decisions

NeverMergeClass: Using this decision, all objects are kept, but no objects are
merged.

Additionally, eight model decisions provide a default configuration, directly together with
their introductions, as documented above.

7.3.7.2 SplitClass

If the same concept is represented by one class, but it is required to describe it with two
classes, this operator can be used.

This operator splits one class into two classes on the metamodel level. On model level,
each instance can either be split or become an instance of the new class or remains an
instance of the existing class.

Metamodel Decisions of →SplitClass:

• classToSplitName : String [1]

The fully qualified name of the class which should be split.

• outgoingFeaturesToMoveNames : (String → ReferenceKind) [∗]
The outgoing (not fully qualified) feature names (which should be moved to the new
class) of the class which should be split. The ReferenceKind specifies the wanted
direction of the feature in the new class.
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• incomingReferencesToMoveNames : (String → ReferenceKind) [∗]
The incoming (fully qualified) feature names (which should be moved to the new
class) of the class which should be split. The ReferenceKind specifies the wanted
direction of the feature in the new class.

• superClassesToMoveNames : (String → Boolean) [∗]
The (fully qualified) names of the direct super classes (which should be moved to the
new class) of the class which should be split. The Boolean encodes, whether the class
should be a super class only for the existing class (null/not specified) or only for the
new class (false) or for both classes (true).

• subClassesToMoveNames : (String → Boolean) [∗]
The (fully qualified) names of the direct sub classes (which should be moved to the
new class) of the class which should be split. The Boolean encodes, whether the class
should be a sub class only for the existing class (null/not specified) or only for the
new class (false) or for both classes (true).

• newFullClassName : String [1]

The (fully qualified) name of the new class.

• fullyQualifiedFeatureNamesToMakeContainment : String [∗]
A list of fully qualified feature names (before(!) the split on metamodel level) which
are non-containments, but should be made containments during the metamodel evo-
lution (without any additional model changes).

• fullyQualifiedFeatureNamesContainmentToChangeMultiplicity : String [∗]
A list of fully qualified feature names (before(!) the split on metamodel level) which
have an opposite containment reference, whos multiplicities should be changed (lower
bound: 1 ←→ 0) during the metamodel evolution (without any additional model
changes).

Model Decisions of →SplitClass: Model decisions are encoded in decision : Split-
ClassesDecision [1], whose type is defined in de unioldenburg se mmi framework

operator unidirectional SplitClasses SplitClassesDecision (“Decides mainly,
how instances are split.”). All their individual model decisions are listed here:

• shouldSplit ( instanceToSplit : Instance ) : SplitOption

Decides, if an existing instance either is split (i.e. a new instance of the new class
is created) or becomes an instance of the new class or remains an instance of the
existing class.

• recreateContainmentForInstanceOfExistingClass ( instanceOfExistingClass : Instance,
instanceOfNewClass : Instance )

This allows to ensure the containment for instances of the existing class. Reasons for
the missing containment can be, that this instance is created newly or that the pre-
vious containment feature is moved to the new class. There is a default configuration
for this model decision (“Does nothing, since this case is not relevant here.”).

• recreateContainmentForInstanceOfNewClass ( instanceOfExistingClass : Instance,
instanceOfNewClass : Instance )

This allows to ensure the containment for instances of the new class. Reasons for the
missing containment can be, that this instance is created newly or that the previous
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containment feature remains at the existing class. There is a default configuration
for this model decision (“Does nothing, since this case is not relevant here.”).

• recreateContainmentForSplitSubInstance ( subInstance : Instance )

This allows to recreate the (now missing) containment for instances of sub-classes
which remain sub-classes only for the existing class. By moving existing (contain-
ment) features to the new class, an existing containment can be removed and must
be fixed now. There is a default configuration for this model decision (“Does nothing,
since this case is not relevant here.”).

• recreateContainmentForNewSubInstance ( subInstance : Instance )

This allows to recreate the (now missing) containment for instances of sub-classes
which will be sub-classes only for the new class. Since existing (containment) features
might remain at the existing class, that existing containment is removed and must be
fixed now. There is a default configuration for this model decision (“Does nothing,
since this case is not relevant here.”).

• splitValuesOfAttributeSlotOfCommonSuperClasses ( slotToSplit : AttributeSlot,
newSlot : AttributeSlot )

If an instance is split, this allows to handle values for an attribute which belongs
to a super-class which becomes a super-class of the new and(!) the existing class.
This decision can be used e.g. to distribute the existing values to the two slots or to
create some more new values. There is a default configuration for this model decision
(“Does nothing, since this case is not relevant here.”).

• splitValuesOfReferenceSlotOfCommonSuperClasses ( slotToSplit : ReferenceSlot,
newSlot : ReferenceSlot )

If an instance is split, this allows to handle values for a reference which belongs to
a super-class which becomes a super-class of the new and(!) the existing class. This
decision can be used e.g. to distribute the existing values to the two slots or to create
some more new values. There is a default configuration for this model decision (“Does
nothing, since this case is not relevant here.”).

• splitIncomingValue ( instanceWhichWasSplitted : Instance, instanceWhichIsNew :
Instance, incomingOppositeSlot : ReferenceSlot ) : SplitOptionIncomingLink

If an instance is split, this allows to decide for (unidirectional!) links pointing to the
existing instance, whether the link should point to the existing instance XOR the
new instance XOR to both. There is a default configuration for this model decision
(“Does nothing, since this case is not relevant here.”).

Enumeration types used for decisions in →SplitClass:

• The enumeration ReferenceKind allows LOOP, BETWEEN SOURCE TO TARGET, BETWEEN -

TARGET TO SOURCE and OTHER as possible values.

• The enumeration SplitOption allows SPLIT, ONLY NEW and ONLY EXISTING as pos-
sible values.

• The enumeration SplitOptionIncomingLink allows BOTH, ONLY NEW and ONLY EXIST-

ING as possible values.
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Unidirectional Operators which might be used internally by →SplitClass:

• →ChangeContainmentsOfClass: TODO

• →ChangeMultiplicity: TODO

Preconditions to be fulfilled before executing →SplitClass:

• The name of the new class name must be unique inside the wanted package.

• Each super classes to move must be a (direct or indirect) super class of the existing
class.

• Each sub classes to move must be a (direct or indirect) sub class of the existing class.

• The features to be moved to the new class must exist at the existing class. (restricts
outgoingFeaturesToMoveNames)

• The incoming references to be moved to the new class must exist at the existing class.
(restricts incomingReferencesToMoveNames)

• All features to become containers must be no containers before. (restricts fullyQual-
ifiedFeatureNamesToMakeContainment)

• All features to change their multiplicities must be used as containers. (restricts
fullyQualifiedFeatureNamesContainmentToChangeMultiplicity)

• All features to change their multiplicities must have 0 or 1 as lower bound, since these
two values will be switched.

• All features to change have to point to the existing class (or to one of its super
classes).

Default Configurations for model decisions for reuse in recurring situations are bun-
dled in the following classes:

• de unioldenburg se mmi framework operator unidirectional decisions

SplitClassesAlways: Each object is always split into two objects.

Additionally, seven model decisions provide a default configuration, directly together with
their introductions, as documented above.

7.3.8 RenameClassifier

As bidirectional operator, �RenameClassifier consists of the following two unidirec-
tional operators, which are inverse to each other:

• forward unidirectional operator →RenameClassifier in Section 7.3.8.1Z 258

• backward unidirectional operator ←RenameClassifier in Section 7.3.8.1Z 258

The inverse bidirectional operator is�RenameClassifier, because�RenameClas-
sifier is inverse to itself. Therefore, no additional inverse bidirectional operator needs to
be introduced in this case.
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7.3.8.1 RenameClassifier

If an existing name is misleading or the name does not reflect the meaning of its element
during the integration anymore, the current name can be changed with this operator. An-
other reason for a renaming is to ensure the uniqueness of names as preparation for following
operators.

This operator renames a classifier (class, enumeration, data type), i.e. its name is
changed, while the model remains unchanged.

Metamodel Decisions of →RenameClassifier:

• elementFullyQualified : String [1]

The fully qualified name of the existing classifier in the metamodel to be renamed

• name : String [1]

The new name for the classifier

Model Decisions of →RenameClassifier: This operator has no individual model
decisions.

Preconditions to be fulfilled before executing →RenameClassifier:

• The new name must not be empty. (restricts name)

• The new name must be different than the existing name. (restricts name)

• The new name must not be already used by children of the element’s parent. (restricts
name)

7.3.9 RenameFeature

As bidirectional operator, �RenameFeature consists of the following two unidirectional
operators, which are inverse to each other:

• forward unidirectional operator →RenameFeature in Section 7.3.9.1

• backward unidirectional operator ←RenameFeature in Section 7.3.9.1

The inverse bidirectional operator is�RenameFeature, because�RenameFeature
is inverse to itself. Therefore, no additional inverse bidirectional operator needs to be
introduced in this case.

7.3.9.1 RenameFeature

If an existing name is misleading or the name does not reflect the meaning of its element
during the integration anymore, the current name can be changed with this operator. An-
other reason for a renaming is to ensure the uniqueness of names as preparation for following
operators.

This operator renames a feature (attribute, unidirectional reference), i.e. its name is
changed, while the model remains unchanged.
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Metamodel Decisions of →RenameFeature:

• elementFullyQualified : String [1]

The fully qualified name of the existing classifier in the metamodel to be renamed

• name : String [1]

The new name for the classifier

Model Decisions of →RenameFeature: This operator has no individual model de-
cisions.

Preconditions to be fulfilled before executing →RenameFeature:

• The new name must not be empty. (restricts name)

• The new name must be different than the existing name. (restricts name)

• The new name must not be already used by children of the element’s parent. (restricts
name)

7.3.10 ReplaceAttributeByReference

As bidirectional operator, �ReplaceAttributeByReference consists of the following
two unidirectional operators, which are inverse to each other:

• forward unidirectional operator →ReplaceAttributeByReference is described
in Section 7.3.10.1

• backward unidirectional operator←ReplaceReferenceByAttribute is described
in Section 7.3.10.2Z 261

The inverse bidirectional operator is�ReplaceReferenceByAttribute with swapped
undirectional operators.

7.3.10.1 ReplaceAttributeByReference

If there is an attribute whose values can be interpreted as pointers to other objects (like
for example foreign keys in data base terminology), this operator enables to replace these
values by explicit links to the corresponding objects.

Migrates the values 1-to-1 in the model by replacing each attribute value to one object.

Metamodel Decisions of →ReplaceAttributeByReference:

• sourceClassName : String [1]

The fully-qualified name of the source class containing the attribute to replace.

• attributeName : String [1]

The simple name of the attribute to remove.

• targetClassName : String [1]

The fully-qualified name of the target class as type of the new reference.

• oppositeReferenceName : String [0..1]

The simple name of the opposite reference to create.
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• oppositeLowerBound : int [0..1]

The lower bound of the opposite reference to create.

• oppositeUpperBound : int [0..1]

The upper bound of the opposite reference to create.

Model Decisions of →ReplaceAttributeByReference: Model decisions are en-
coded in decision : ReplaceAttributeByReferenceDecision [1], whose type is defined in
de unioldenburg se mmi framework operator unidirectional ReplaceAttribute-

ByReference ReplaceAttributeByReferenceDecision (“Calculates for each value in all
attribute slots the corresponding object for the link to create instead.”). All their individual
model decisions are listed here:

• replaceValue ( oldAttributeSlot : AttributeSlot, oldValue : Object, operator :
ReplaceAttributeByReference ) : Instance

This decision is called for each existing value in each attribute slot and provides the
object to link to as replacement for the old value. If no object is returned (null), the
old value is removed and no new link is created.

• determineOppositeLinkOrder ( newOppoSlot : ReferenceSlot, newValueForOppo-
siteSlot : Instance ) : int

If the new association is bidirectional and its inverse association allows many values
(i.e. upper bound is higher than one), this decision can be used to determine the
wanted index for the inverse link for a replaced value. There is a default configuration
for this model decision (“The index of the previous execution is reused. If this is the
first execution, an arbitrary index is used.”).

• determineOppositeLinkIndexInterpretation ( ) : IndexInterpretation

This method is called exactly once before replacing values (if there is a multi-value
opposite reference) and informs, how the indices (which are provided by ’determi-
neOppositeLinkOrder(...)’) should be interpreted. There is a default configuration
for this model decision (“Ensures, that the indices of the previous execution are
reused. If this is the first execution, the given indices are directly used.”).

• handleInstanceWithoutValues ( sourceWithoutValues : Instance, newReferenceSlot
: ReferenceSlot, operator : ReplaceAttributeByReference )

This decision is called for each object which as no old values in the attribute slot in
order to allow to create links nevertheless. There is a default configuration for this
model decision (“Nothing is done for objects without old attribute values.”).

Enumeration types used for decisions in →ReplaceAttributeByReference:

• The enumeration IndexInterpretation allows INDICIES ARE VALID NOW, INDICIES -

REPRESENT FINAL STATE and INDICIES DONT MATTER DO NOT ASK as possible values.

Unidirectional Operators which might be used internally by →ReplaceAttri-
buteByReference:

• →AddAssociation: Used to create the new association.

• →DeleteAttribute: Used to delete the existing attribute.
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Preconditions to be fulfilled before executing →ReplaceAttributeByReference:

• Ensures for the new opposite reference, that the value for the lower bound is not
negative. (restricts oppositeLowerBound)

• Ensures for the new opposite reference, that the value for the upper bound is not
zero. (restricts oppositeUpperBound)

• Ensures for the new opposite reference, that the value for the lower bound is not
bigger than the value for the upper bound.

• The name of new opposite reference has to be unique, i.e. there is no feature with
this name in the target class yet. (restricts oppositeReferenceName)

7.3.10.2 ReplaceReferenceByAttribute

When reducing the available information, there are cases, where linked information in terms
of linked objects should not be used anymore, but only a name or another identifier for the
linked object should be shown only instead (like for example the foreign key in data base
terminology). Therefore, this operator enables to replace explicit links by values, whose
interpretations refer indirectly to the previously linked objects.

Migrates the values 1-to-1 on model level.

Metamodel Decisions of →ReplaceReferenceByAttribute:

• sourceClassName : String [1]

The fully-qualified name of the source class containing the reference.

• referenceName : String [1]

The simple name of the reference to remove.

• newAttributeType : String [1]

The type of the new attribute.

Model Decisions of →ReplaceReferenceByAttribute: Model decisions are en-
coded in decision : ReplaceReferenceByAttributeDecision [1], whose type is defined in
de unioldenburg se mmi framework operator unidirectional ReplaceReference-

ByAttribute ReplaceReferenceByAttributeDecision (“Calculates for each existing link
the new value for the attribute slot.”). All their individual model decisions are listed here:

• replaceLink ( oldReferenceSlot : ReferenceSlot, oldValue : Instance, operator :
ReplaceReferenceByAttribute ) : Object

This decision is called for each existing link in each reference slot and provides the
attribute value as replacement for the old link. If no value is returned (null), the old
link is removed and no new value is added.

• handleInstanceWithoutLinks ( sourceWithoutValues : Instance, newAttributeSlot :
AttributeSlot, operator : ReplaceReferenceByAttribute )

This decision is called for each object which as no old links in the reference slot in
order to allow to add values nevertheless. There is a default configuration for this
model decision (“Nothing is done for objects without old links.”).
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Unidirectional Operators which might be used internally by →ReplaceRefer-
enceByAttribute:

• →AddAttribute: Used to create the new attribute.

• →DeleteAssociation: Used to delete the association.

Preconditions are not existing for →ReplaceReferenceByAttribute.

7.4 Summary

While this section focuses on introducing the designed bidirectional and unidirectional
operators, discussions of properties for these operators will follow in later sections:Discussions of operator

properties
Sec-

tion 13.2.2Z 470 discusses, that the set of these operators is complete, but not minimal.
Section 13.2.3Z 471 discusses the theoretic complexity of operators in O-Notation. Sec-
tion 13.2.4Z 471 summarizes, that the operators are reusable, since they are used several
times within the same application.

Before discussing these properties, the implementation of operators is sketched in Sec-
tion 8.3Z 267 to prepare their application in several domains in Part VZ 467.
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Chapter 8

Implementation

This section sketches the technical realization of the MoConseMI approach of Chap-
ter 6Z 185 as framework, MoConseMI

Framework realizes the
MoConseMI Design

which is reusable for several application examples in Part IVZ 283

in order to evaluate the design of MoConseMI. The implementation of this MoConseMI
framework can be seen as first, small validation of the design regarding its technical feasibil-
ity. Additionally, the framework is implemented in order to fulfill the technical requirements
in Section 4.2Z 157.

The described parts of the implementation are selected in order to support mainly
platform specialists when extending the MoConseMI framework, but also methodologists
are supported with technical details. OutlineSection 8.1 provides an overview of the MoConseMI
framework with its main architectural concepts. Section 8.2Z 264 sketches the realization of
models, metamodels and differences, which are important for methodologists and adapter
providers. Section 8.3Z 267 provides technical details to implement the concretely designed
operators of Chapter 7Z 241. Section 8.4Z 271 supports adapter providers with foundations
how to implement adapters and presents predefined adapters. Section 8.5Z 279 sketches
visualizations which are provided by the MoConseMI framework in order to support
methodologists during their application of MoConseMI. This section is summarized in
Section 8.6Z 280.

8.1 Overview

The MoConseMI framework is implemented with the general-purpose programming lan-
guage Java, implemented in Javasince Java applications are executable on the main desktop operating systems
Windows, Linux and MacOS. Additionally, EMF as technical space for ECore metamodels
and Edapt as technical space for EMF models are written in Java, which allows a seamless
reuse of these technical spaces for the framework.

In order to provide MoConseMI as reusable library according to Requirement R 5
(Reusable Library)Z 158, developed as Maven

Project
the framework is developed as Maven project, which can reuse

other Maven projects like for EMF and Edapt easily. Additionally, developing the frame-
work as Maven project makes it independent from the used IDE, e. g. the framework can
be developed not only with Eclipse, but also with other IDEs like IntelliJ.

The source code for the implementation of the MoConseMI framework is split into
multiple Maven projects, Dependencies between

Maven Projects
as depicted by the dark gray boxes in Figure 8.1Z 264. The light

gray boxes are external dependencies and the directed edges indicate, that the dependency
at the edge end with an arrow tip is used by the project at the other end. The dependencies
in Figure 8.1Z 264 are strongly simplified, i. e. some direct dependencies are hidden, if they
are already transitively included, some dependencies are renamed for readability and some
dependencies which are depicted as single boxes consist of multiple Maven projects like
EMF.
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Figure 8.1: Maven Projects and Dependencies

The source code for MoConseMI is split into the Maven projects as shown in Fig-
ure 8.1,own Maven Projects since they improve the architecture according to the principle of separation of con-
cerns and they allow the reuse of functionality, e. g. ecoreedapthelper contains reusable
supporting functionalities to deal with EMF and Edapt. The main functionalities of Mo-
ConseMI are realized in the framework, which (transitively) reuses implementations for
EMF and Edapt to represent metamodels and models, as deepened in Section 8.2. The
projects csv2emf, excel2emf and excel2emf-meta-model are used by adapters for CSV
and Excel (Section 8.4Z 271). EMF Compare is used to calculate differences between
EMF models in order to detect user changes. The rest of the own projects are used to
realize various visualizations (Section 8.5Z 279).

Since the MoConseMI approach and its framework do not force methodologists to use
any graphical user interface (GUI) for the orchestration,MoConseMI as

reusable Library
the framework can be implemented

and deployed as library, which is done by Maven. This library can be included into other
software applications for ensuring inter-model consistency, e. g. as Maven dependency into
other Maven projects. This design fulfills Requirement R 5 (Reusable Library)Z 158.

8.2 Modeling Infrastructure

This section provides some technical insights into the technical realizations of models, meta-
models and differences for models and metamodels, complementing their general design in
Section 6.6Z 221 and Section 6.7Z 227. Additionally, these technical insights are required
to implement operators, which change models and metamodels (Section 8.3Z 267). The
current model and its metamodel are coupled by an instance of MigrationInformation

(Figure 6.20Z 225) called infos by convention, which is given to unidirectional operators
and their model decisions for in-place transformations. Additionally, MigrationInforma-
tion provides several supporting methods to ease the work to implement and configure
unidirectional operators. Therefore, this section provides technical support for modeling
models and metamodels for methodologists, platform specialists and adapter providers.

As designed in Section 6.6.2Z 222, metamodels are realized with dynamic EMF.Metamodels The
possible concepts for metamodels are depicted in Figure 2.21Z 88. The current metamodel
as collection of one or more EPackages and their classifiers can be retrieved from Migra-
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tionInformation infos by methods, for which some examples are given:

• List<EPackage> metamodel = infos.getRootPackages(); provides all root name-
spaces of the current metamodel.

• EAttribute attrib = (EAttribute) infos.getMetamodelElementByName("pack-

age.Class.attribute"); provides arbitrary elements in the metamodel by specify-
ing its fully-qualified name.

• Alternatively, EEnumLiteral literal = infos.getLiteralByName("package.Enum

.literal"); provides elements without type casting.

The values of metamodel elements, which are identified in this way, can be queried and
changed by the usual means of dynamic EMF (Steinberg, Budinsky et al., 2009). Creat-
ing and deleting instances of the meta-classes in Figure 2.21Z 88 must not be done with
the usual means of dynamic EMF, but with special methods provided explicitly for these
purposes by MigrationInformation infos. These methods must be used, since Migra-

tionInformation internally checks and enforces uniqueness of UUIDs (Section 6.6.4Z 225).

• As an example for creation, a new class can be created with EClass newClass = in-

fos.createClass("uuid", "name", abstractFlag, containerPackage); by spec-
ifying its UUID (or null resulting in a random UUID), the desired name for the new
class, a boolean indicating whether the new class is abstract or not, and the EPackage
of the new class.

• As an example for deletion, infos.deleteEnum(enum); deletes the specified EEnum

and all its EEnumLiterals.

As designed in Section 6.6.3Z 223, models are realized with Edapt: ModelsThe concepts for
models are depicted in Figure 6.19Z 224. The objects in the current model can be retrieved
from MigrationInformation infos by methods, for which some examples are given:

• List<Instance> instances = infos.getInstances("package.Class"); provides
all objects which have the specified class (but not one of its super classes) as type.

• List<Instance> instances = infos.getAllInstances("package.Class"); pro-
vides all objects which have the specified class (or one of its super classes) as type.

• Instance instance = infos.getInstanceByUuid("UUID of the object"); pro-
vides a single object by its UUID.

The objects, which are identified in this way, can be queried and changed with the following
means, which internally maintain the Slots for internal representation in Edapt:

• In order to get the value for a feature (EAttribute xor EReference) with the name
“featureName”, use the following methods provided by Instance:

– For an EAttribute, use instance.get("featureName") to get the concrete
value in case of single-value attributes or to get a List of values in case of
multi-value attributes.

– For a single-value EReference, use instance.getLink("featureName") to get
the Instance (or null).

– For a multi-value EReference, use instance.getLinks("featureName") to get
a List of Instances.
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In some cases, these easy methods do not find an existing Slot, since the opera-
tor already did some changes in the metamodel (currently, this is true at least for
→MergeClasses). In that case, use the methods getSlotValueSingle(...) or
getSlotValueMulti(...) of EcoreHelper.

• In order to change the value for a feature (EAttribute xor EReference) with the
name “featureName”, use the following methods provided by Instance:

– For single-value features, use instance.set("featureName", newValue).

– For adding a new value to a multi-value feature, use instance.add("feature-

Name", additionalValue).

– For removing an existing value from a multi-value feature, use instance.remove
("featureName", existingValueToRemove).

If the feature is a bidirectional EReference, it is sufficient to change one direction
(the other one will be automatically fixed by Edapt).

Creating and deleting objects must not be done with the usual means of Edapt, but
with special methods provided explicitly for these purposes by MigrationInformation

infos. These methods must be used, since MigrationInformation internally checks and
enforces uniqueness of UUIDs (Section 6.6.4Z 225). Additionally, the Types of Edapt are
automatically and internally maintained.

• In order to create a new object, use Instance newInstance = infos.createIn-

stance("new UUID", "package.Class");.

• In order to delete an existing object, use infos.deleteInstance("UUID", "true,

if contained instances should be deleted as well, false otherwise");.

Differences for models and metamodels are designed in Section 6.7Z 227.Differences Although
this difference representation is designed to be model-based, the difference representation
is directly and manually realized with Java inside the Maven project framework (Fig-
ure 8.1Z 264) and not explicitly model-based with EMF, since the representation contains
lots of additional functionalities including parts of the model difference co-evolution (Sec-
tion 6.7.3Z 235), which is easier to realize in pure Java as in EMF. Differences can be
represented in textual form for documentation. Differences can be serialized with EMF,
i. e. the serialization of differences is explicitly model-based.

All differences are collected in a ChangeContainer (Figure 6.24Z 233): Each difference
targets one particular element in either the model or the metamodel. Differences which
target the same element are collected by the ChangeContainer in a container which repre-
sents this changed element. In order to check, whether an element is changed, the following
methods of ChangeContainer changes can be used, demonstrated here for features:

• If the UUID of the element is known, FeatureContainer feature = changes.get-

Feature("featureUuid"); provides the feature by UUID.

• If the current name of the element is known, FeatureContainer feature = (Fea-

tureContainer) changes.getContainedElementByFullyQualifiedName("package

.Class.feature"); provides the feature by its fully-qualified name.

• In both cases, List<Change> list = feature.getChangesOrdered(); provides the
differences, which directly changed this feature. Alternatively, boolean changed =

feature.isNotEmpty(); determines, whether the feature is directly changed.
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8.3 Operator Implementation

This section supports platform specialists with technical details, how to implement addi-
tional operators. Section 8.3.1 implements unidirectional operators completely in Java and
discusses, why no traditional model transformations are used. Section 8.3.2Z 270 imple-
ments bidirectional operators by coupling two unidirectional operators which are inverse to
each other. Section 8.3.3Z 270 implements a Java API, which is used by methodologists to
select and combine bidirectional operators for the orchestration.

8.3.1 Unidirectional Operators

When executing a unidirectional operator, its generic behavior together with concrete con-
figurations for its metamodel decisions and its model decisions are executed. All these three
parts determine the behavior of unidirectional operators and are realized with Java and not
with traditional model transformations, as discussed in the following paragraphs.

While there are lots of formal approaches for consistency (Lucas, Molina and Toval,
2009) like Reder and Egyed (2012) with mathematical expressions for formally describing
consistency, no FormalizationsJava is easier to learn and to apply than formal specifications for methodologists
inexperienced with formalisms. In general, formal methods seem to be not very popular (Lu-
cas, Molina and Toval, 2009, p. 1637). Le Noir, Delande et al. (2011) compare direct Java
checks for consistency with Prolog-based consistency checking finding that Java is faster,
while the comparison is limited due to prototypical implementations. The most important
argument against formalizations is, that MoConseMI is model synchronization-based and
therefore requires transformations but no formalizations for execution, as discussed and
designed in Section 6.3.2Z 200.

The generic behavior of unidirectional operators is implemented with imperative state-
ments written in Java, implementing

unidirectional Operators
with Java

which directly transform the current model and its metamodels
in-place. Imperative specifications with Java are preferred over traditional model transfor-
mation approaches for the following reasons:

• When comparing transformations written in Java and in model transformations re-
garding (accidental) complexity, like for ATL, Götz, Tichy and Kehrer (2021) found,
that “even newer versions of Java still having to deal with the complexity overhead
that ATL is able to hide. Specifically, while the traversal complexity could be greatly
reduced through the use of newer language features, handling traces still entails a
large overhead” (Götz, Tichy and Kehrer, 2021, p. 132). Since the implementation
of unidirectional operators enforces methodologists to configure model decisions along
dedicated Java interfaces, this overhead is reduced, since “only some questions” in
form of model decisions must be answered. Traversing models in Java is eased by
the streaming API (Götz, Tichy and Kehrer, 2021), while explicit links are not re-
quired by MoConseMI. Instead, more flexible history maps can be used to remember
arbitrary information, while such mechanisms are usually not supported by model
transformation languages.

• Additionally, “there is insufficient evidence for and [. . . ] research about properties
of model transformation languages” (Götz, Tichy and Groner, 2021, p. 489), which
makes a comparison hard in general. For model co-evolution as a specific applica-
tion of model transformations, dedicated approaches might be preferred about model
transformations and general-purpose languages (Rose, Kolovos et al., 2014; Götz,
Tichy and Groner, 2021), but again this statement is weak, since it served as moti-
vation for developing such approaches.

• Even if dedicated languages provide concepts tailored to specific problems resulting
in better solutions, stakeholders might have more (self-)confidence in general-purpose
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languages like Java, since they are more experienced with them, as found for speci-
fying constraints (e. g. for consistency goals in rule-based approaches) with OCL in
contrast to Java (Maraee and Sturm, 2021; Yue and Ali, 2016).

• Even the model transformation community itself is noticing or expecting, that dedi-
cated model transformation approaches are becoming less popular (Burgueño, Cabot
and Gérard, 2019). In particular, the development of huge and complex transforma-
tion scenarios seems to be easier to manage with general purpose languages.

• Henshin as in-place model transformation approach, for which Arendt, Biermann
et al. (2010) sketched a prototype for model co-evolution with transformations for
metamodels and transformations for models, organized as operators, is not used,
since there are two Henshin transformations, one transformation for the metamodel
and one transformation for the model, which are independently executed. With
that design, transformations for models and metamodels cannot be mixed, which is
necessary e. g. for→ReplaceAttributeByReference, which first creates the new
EReference in the metamodel, then converts attribute values into links in the model,
and finally deletes the EAttribute in the metamodel.

• Transformations for multi-level modeling, which could easily transform elements in
different meta-levels, are hard to use here, since models and metamodels are not
represented as multi-level models by MoConseMI.

Summarizing, Java is chosen as imperative general-purpose programming language for im-
plementing unidirectional operators, since Java is chosen for the implementation of the
whole MoConseMI framework (Section 8.1Z 263), transformations for models and meta-
models can be mixed with each other depending on the particular operators, and additional
information in form of history maps and branch differences can be exploited in a more
generic way.

After selecting Java for the implementation of unidirectional operators, there are some
guidelines for platform specialists, when they implement a new unidirectional operator to
realize a generic metamodel evolution scenario:Guideline for

implementing
unidirectional Operators • Classes implementing unidirectional operators inherit the class ExtendedMigration-

Operator, since it specifies the API for unidirectional operators. In particular, the
method execute(MigrationInformation infos, DecisionInformation decision-

Infos, OperatorExecutor subOperatorExecutor) contains the transformation of
models and metamodels as provided by MigrationInformation infos. Decision-

Information decisionInfos provides access to the history maps and the current
branch differences. OperatorExecutor subOperatorExecutor allows to execute other
unidirectional operators as sub-operators.

• Since the framework must support UUIDs, operators must manage UUIDs for all
model and metamodel elements, in particular, the stability of UUIDs must be ensured.
The UUIDs for newly created elements can be made configurable by methodologists
with decisions. UUIDs of elements which are deleted by the unidirectional operator
and are restored by its inverse unidirectional operator could be remembered in history
maps.

• Platform specialists must use only their own history map (decisionInfos.getHisto-
ryOperator()) for implementing the unidirectional operator, since the other history
map is reserved for methodologists for configuring model decisions. This detail en-
sures, that platform specialists and methodologists do not need to agree about their
keys used in the history maps and accidental key conflicts cannot occur.
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• If the metamodel evolution scenario consists of multiple metamodel differences, parts
of it could be realized by already existing unidirectional operators as sub-operators.
This strategy is recommended, since it allows the reuse of (sometimes very complex)
logic for metamodel evolution and model co-evolution scenarios. Such sub-operators
must be executed with the method operator.checkAndExecute(MigrationInforma-

tion infos, DecisionInformation decisionInfos, Op-eratorExecutor subOp-

eratorExecutor) and infos and subOperatorExecutor as values of the parent oper-
ator, only decisionInfos might be different to the given decisionInfos and should
be calculated with decisionInfos.forSubOperator("keySubOperator") as easiest
solution.

• Section 8.2Z 264 provides technical hints, how to create, delete and change objects
in Edapt models and elements in EMF metamodels. Additionally, the new unidi-
rectional operators must be registered in IntegrationOperations due to technical
issues of the Edapt infrastructure.

• Platform specialists should define metamodel decisions for new operators in order to
map the generic metamodel evolution scenario to the current metamodel.

• Model decisions should be defined for degrees of freedom within the required model co-
evolution, e. g. how to deal with model elements which are invalid after the metamodel
evolution, or how to create new model elements for newly created elements in the
metamodel. In model decisions, the parameters

– infos : MigrationInformation

– decisionInfos : DecisionInformation

should be always provided by platform specialists, since they are required for flex-
ible configurations by methodologists, e. g. to create new objects (via infos) or to
remember important information (with history maps in decisionInfos). In the doc-
umentation of operators in Section 7.3Z 243, these parameters are hidden, since they
are default parameters for all model decisions.

Metamodel decisions allow to control the changes of unidirectional operators in the cur-
rent metamodel. configuring Metamodel

Decisions with Java
expressions

Since these changes are oriented along small, single metamodel evolution
scenarios, metamodel decisions request single, static values like class names or multiplicities
for associations (Section 6.2.2Z 196). To configure these values, no model transformations
are necessary, but single values can be directly provided with simple Java expressions.

Model decisions allow to adapt the model co-evolution to project-specific needs and
allow to realize project-specific consistency rules. configuring Model

Decisions with Java
Java is chosen for configuring model de-

cisions by methodologists, since they increase the flexibility to deal with history maps and
branch differences, similar to the argumentation for implementing unidirectional operators
with Java by platform specialists (see above). Imperative configurations for model deci-
sions are similar to imperative fixes in EVL (Kolovos, Paige and Polack, 2009), used also
for EVL+Strace (Samimi-Dehkordi, Zamani and Kolahdouz-Rahimi, 2018) as BX ap-
proach (Section 3.3.1Z 108). Additionally, using Java prevents the need for methodologists
to learn a possibly new model transformation language and decreases their learning curves,
as discussed in Section 14.3.1.3Z 493.

After selecting Java for the configuration of model decisions, there are some guidelines
for methodologists, when they configure model decisions to fulfill project-specific needs: Guideline for

configuring Model
Decisions• When they create, delete or change objects, methodologists have to ensure, that

UUIDs remain stable. UUIDs of elements which are deleted by a model configuration
for the unidirectional operator and are restored by the model configuration of its
inverse unidirectional operator could be remembered in history maps.
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• Methodologists must use only their own history map (decisionInfos.getHistoryDe-
cisions()) for configuring model decisions, since the other history map is reserved
for platform specialists for implementing the unidirectional operator. This detail en-
sures, that platform specialists and methodologists do not need to agree about their
keys used in the history maps and accidental key conflicts cannot occur.

• Section 8.2Z 264 provides technical hints, how to create, delete and change objects in
Edapt models.

8.3.2 Bidirectional Operators

Bidirectional operators couple two unidirectional operators which are inverse to each other
and whose implementation is done according to Section 8.3.1Z 267. When executing a bidi-
rectional operator, one of its configured unidirectional operators is executed, depending on
the current direction of the transformation (Section 6.5.3Z 217). Bidirectional operators are
selected, configured and combined into the orchestration by methodologists.forward Configurations

for Decisions to
unidirectional Operators

Therefore, the
configurations for model decisions and metamodel decisions of both unidirectional opera-
tors are given by methodologists to the bidirectional operator. The bidirectional operator
forwards these configurations to its unidirectional operators. In other words, the decisions
of the unidirectional operators determine the decisions of the bidirectional operator. The
implementation of bidirectional operators by platform specialists requires to take the con-
figurations for decisions of unidirectional operators from methodologists and to forward
them to the unidirectional operators.

Classes implementing bidirectional operators inherit the class BaseOperatorBidirec-

tional, since it defines the API for bidirectional operators.concrete
Implementation

BaseOperatorBidirectional

has two sub-classes, NoSettingsBidirectional and RecreateRevertBidirectional. Usu-
ally, NoSettingsBidirectional is chosen as super class. As alternative, RecreateRevert-
Bidirectional can be chosen as super class, if the bidirectional operator allows to restore
removed information, since RecreateRevertBidirectional provides some default support
for configuring and executing this case (Section 6.5.2Z 214).

In order to the ease the configuration effort of methodologists and to prevent conflict-
ing configurations by accident, configurations for metamodel decisions must be provided by
methodologists only for the forward unidirectional operator,automatically derive

Configurations for
Metamodel Decisions of
the backward
unidirectional Operator

since the configurations for the
backward unidirectional operator can be automatically derived by proper design. These
backward configurations could be derived directly from the forward configuration or are
taken from the metamodel before or after executing the forward unidirectional operator
for the first time, which can be done by implementing the methods initializeImport-

BeforeFirstForwardExecution(...) or initializeImportAfterFirstForwardExecu-

tion(...).

Note, that for most bidirectional operators it is possible to implement an “inverse”
bidirectional operator by switching the two unidirectional operators (Section 6.1.3Z 189).
As an example, the bidirectional operator �AddDeleteAssociation is implemented by
using →AddAssociation for the forward direction and its inverse unidirectional ←De-
leteAssociation for the backward direction. An “inverse” bidirectional operator �De-
leteAddAssociation can be easily implemented by using →DeleteAssociation for
the forward direction and using ←AddAssociation for the backward direction.

8.3.3 Java-API for Orchestration

To ease the work of methodologists, when they select, configure and combine bidirectional
operators into a tree,Java API for configuring

bidirectional Operators
a Java API is developed to declare the whole orchestration includ-

ing API calls for each bidirectional operator. The use of this API by methodologists is
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deepened in Section 12.1Z 455. This API for configuring and combining operators can be
seen as an internal DSL, i. e. a DSL embedded into a host general-purpose language (here:
Java). Internal DSLs are used also by other related approaches, e. g. by Hinkel and Burger
(2019) for an internal incremental BX approach.

An example for this API is given in Listing 8.1, whose Java source code is developed
by the methodologist in order to configure an orchestration: The method collectOpera-

tors() is called by the MoConseMI framework and creates the orchestration. Examples for the API
calls for bidirectional
Operators

Here, the
bidirectional operator �RenameClassifier is selected and configured twice, leading to
a chain of two configured bidirectional operators. The parameters are the configurations
of the methodologist for the metamodel decisions of →RenameClassifier. Executing
the first operator, →RenameClassifier renames the classifier with the fully-qualified
name “pack.ClassType” to “DataType” in the metamodel. Since this renaming does not
influence conforming models, →RenameClassifier does not define model decisions and
therefore no configuration for model decisions are provided here. Executing the second op-
erator afterwards, →RenameClassifier renames the (same renamed) classifier with the
fully-qualified name “pack.DataType” to “Type” in the metamodel.

1 @Override
2 protected void c o l l e c t O p e r a t o r s ( ) {
3 // . . .
4 r e n a m e C l a s s i f i e r ( ”pack . ClassType” , ”DataType” ) ;
5 r e n a m e C l a s s i f i e r ( ”pack . DataType” , ”Type” ) ;
6 // . . .
7 }

Listing 8.1: Examples for the Java API to configure bidirectional Operators

According to this idea, platform specialists have to implement an API call for the new
bidirectional operator, at least one API Call

for each bidirectional
Operator

which accepts configurations for all decisions by methodologists,
according to the implementation of the bidirectional operator in Section 8.3.2Z 270. Addi-
tionally, more than one API call for each bidirectional operator could be implemented in
order to provide “shortcuts” for some operators by providing some default configurations
for rarely used decisions.

8.4 Adapters

This section supports adapter providers with technical details, how to develop new adapters
in order to bridge additional technical spaces with EMF as used by MoConseMI and to
fulfill Requirement R 4 (Technical Spaces)Z 158. Additionally, the following subsections
introduce some predefined adapters, which can be reused by methodologists for all views
in various projects.

There is some related research, which proposes some realization techniques for adapters:
Implementation Ideas
from Related Work

Dimitrieski (2017) proposes an approach for supporting more technical spaces, in particular,
for Industry 4.0, which could be used to develop further adapters. Adapters could use
model-to-text transformations (Rose, Matragkas et al., 2012) to represent the model of the
view in textual representations. Excel and CSV (see below) show the need for having two-
level to multi-level transformations (Atkinson, Gerbig and Tunjic, 2013b), since a model
in classical modeling approaches is transferred into a model with two ontological levels in
multi-level-modeling.

Depending on the concrete implementation of the MoConseMI framework, Guideline for
implementing Adapters

there are
some technical details for adapter providers in order to develop new adapters:
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• All implementations for adapters must be sub-classes of DataAdapter, which defines
the API of adapters as it is used in the orchestration and during the execution.
Additionally, DataAdapter provides lots of internal support for managing data spread
over multiple files and for ensuring unique UUIDs.

• The most important methods in the signature of DataAdapter are the following ones
and must be adapted by new adapters according to the characteristics of the new
technical space:

– When the adapter is used for a data source, it must provide the initial model
and metamodel during the initialization of the SU(M)M (Section 6.5.4Z 219) via
the signature MigrationInformation initialize(...).

– When the adapter is used for a new view(point), it gets the current model and
metamodel for the first time during the initialization of the SU(M)M (Sec-
tion 6.5.4Z 219) via the signature void initialize(MigrationInformation

infos, ...).

– During the change propagation, a user changes one view within its technical
space. These user changes are provided by adapters via the signature Change-

Container loadUserChanges(...) to MoConseMI.

– The user changes are automatically propagated by MoConseMI to all views,
resulting in execution differences for views (Section 6.5.3Z 217). If the execution
differences are not empty for a view, they are provided to its adapter via the
signature void applyChanges(ChangeContainer modelChangesToApply).

• Since all elements in models and metamodels must have stable UUIDs, adapters have
to ensure a proper handling of UUIDs for all model and metamodel elements as well.
If internal mechanisms for stable UUIDs are not sufficient, desired UUIDs could be
made configurable for methodologists.

While this information helps adapter providers to develop new adapters for additional
technical spaces,predefined Adapters some adapters are already provided by MoConseMI and shortly pre-
sented here. Models and metamodels in EMF can be supported with predefined adapters
for dynamic EMF (Section 8.4.1) and static EMF (Section 8.4.2Z 273), according to the two
modes of EMF (Section 2.5.3Z 87). Data managed by users in spreadsheets can be used in
MoConseMI by adapters for CSV (Section 8.4.4Z 275) and Excel (Section 8.4.3Z 273).
In general, it is common to use data managed in spreadsheets also for model-based engi-
neering, as the approaches of Cunha, Fernandes et al. (2012) and Francis, Kolovos et al.
(2013) demonstrate. Section 8.4.5Z 278 shortly presents the reuse of text which is structured
with a grammar and conforms to a textual DSL in the technical space EMF.

8.4.1 Dynamically typed EMF

This adapter supports users who work on concrete renderings of views which are realized
with dynamically typed EMF. This adapter is implemented in the framework Maven
project in de unioldenburg se mmi framework data source EmfDataAdapter.

The EmfDataAdapter gets paths for the metamodel in *.ecore files and for the model in
*.xmi files.Configuration If the (meta)model is spread about multiple files, one instance of PackageInfo
must be specified for each file, while their order might be important:

• Use the constructor PackageInfo(String pathContent, String nsPrefix, String

nsUri, String namespaceName, String namespaceUuid) for metamodel files.
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• Use the constructor PackageInfo(String pathContent, String pathContentOut-

put, String namespaceName, String namespaceUuid) for model files. For each
model file its namespaceName and its namespaceUuid must be defined, since the
UUIDs must be unique and the names are not contained in the model files!

If the adapter is used for new view(point)s, a MetaModelFileProviderFilesSameFolder

could be used to store all root namespaces into single files into one folder instead of speci-
fying lots of PackageInfos. The parameter String setMissingUuids provides additional
support for elements without UUIDs in data sources:

• set no missing UUIDs at all (value: null)

• generate default UUIDs for elements without UUIDs (value: "" i. e. the empty String,
which is the default option)

• use the value of a EStructuralFeature as UUID (value: the simple name of the
EStructuralFeature)

8.4.2 Statically typed EMF

This adapter supports users who work on concrete renderings of views which are realized
with statically typed EMF. This adapter is implemented in the framework Maven project
in de unioldenburg se mmi framework data source EmfStaticPackageAdapter.

The difference between dynamically typed EMF and statically typed EMF is, that
statically typed EMF uses generated Java classes as metamodel static vs dynamic EMFand represents objects in
EMF models as Java objects with the generated Java classes as types, while dynamically
typed EMF finally uses instances of EObject to represent objects in models and classes
in metamodels (Section 2.5.3Z 87). Using statically typed EMF has the benefit, that the
generated Java source code could be extended with manually added functionality, e. g. for
derived features.

EmfStaticPackageAdapter for static EMF extends EmfDataAdapter for dynamic EMF
replace static and
dynamic Metamodel
Elements with each
other

by replacing the generated, specific EPackages with dynamic, generic EPackages in the
metamodel. In the model, the types of objects and slots are replaced from the static
EClasses and EStructuralFeatures to the corresponding dynamic types. Additionally,
static enum literals in slots conforming to EAttributes with an enumeration as data type
are replaced with the corresponding dynamic enum literals. When the model of a view which
is realized with static EMF is updated due to changes in other views, this transformation
is reversed, from dynamic metamodel elements to static metamodel elements.

Since the adapter for static EMF is an extended version of the adapter for dynamic
EMF, Configurationthe configurations of Section 8.4.1Z 272 for the dynamic case are valid for the static
case here as well. Additionally, the generated, static and specific EPackage of the view
must be given to the adapter for static EMF.

8.4.3 Excel

This adapter supports users who work on concrete renderings of views which are realized as
spreadsheets with Excel. This adapter is implemented in the framework Maven project
in de unioldenburg se mmi framework data source ExcelAdapter and uses the
excel2emf-meta-model Maven project, which depends on the excel2emf Maven project.

In general, this adapter converts one (or more) Excel files into one EMF metamodel
and into one conforming Edapt model, while configurations control the details of this
transformation. general IdeaThe adapter extracts one metamodel in the EMF format from one header
row in one sheet inside one Excel file. The adapter extracts one model in the Edapt

273



8 Implementation

format from multiple rows with content in one sheet inside one (or more) Excel files,
following the (same) generated metamodel. This idea is also depicted in Figure 2.23Z 91

in Part 13Z 90 of the ongoing example for CSV, while this idea counts for all spreadsheets
including CSV and Excel. In order to adapt these transformations, the Excel adapter
provides lots of configurations. The Excel adapter transforms only content in Excel cells,
no formatting and also no formulas. The Excel adapter could be extended with support
for Excel formulas (Aivaloglou, Hoepelman and Hermans, 2017) for derived features.

For the technical transformation between Excel and EMF, the project excel2emf

is reused,excel2emf and
excel2emf-meta-model

which is developed by Säfken (2020) using the Java API of Apache POI to
access Excel files (Figure 8.1Z 264). Since excel2emf transforms one whole Excel file
into one EMF model (conforming to a static metamodel representing the main features of
Excel) without loosing information, it does not provide specific models and metamodels
depending on the content of the Excel file, which is done by excel2emf-meta-model.
The transformation from Excel to EMF as provided by excel2emf-meta-model covers
only the information which is specified by configurations. All excluded sheets, rows and
columns (and all formatting stuff) are not transformed into EMF and are lost, if the Excel
file is deleted after the transformation. The transformation from EMF back into Excel
merges the information currently available in EMF back into the Excel sheet(s), so that
the information excluded from the transformation in the direction Excel-to-EMF is kept.

In order to configure the Excel files, the header row for the metamodel, and the rows
with content for the model,Metamodel for

Configurations
a flexible configuration is provided, which is realized again

with EMF, since EMF provides means to load and save them easily in the file system.
The metamodel for this configuration is shown in Figure 8.2 and some general ideas are
sketched, while other details are skipped here.

Column

index : EInt

headerExcel : EString

headerEcore : EString

headerEcoreUuid : EString

Document

pathForInput : EString

pathForOutput : EString

contentRowFirst : EInt

contentRowLast : EInt

multiDocumentsAttributeValue : EString

multiDocumentsRootUuid : EString

sheetName : EString

ExcelView

headerRow : EInt

packageName : EString

packageUuid : EString

containerClassName : EString

containerClassUuid : EString

containerRootUuid : EString

multiDocumentsClassName : EString

multiDocumentsClassUuid : EString

multiDocumentsReferenceName : EString

multiDocumentsReferenceUuid : EString

multiDocumentsReferenceOppositeName : EString

multiDocumentsReferenceOppositeUuid : EString

multiDocumentsAttributeName : EString

multiDocumentsAttributeUuid : EString

contentClassName : EString

contentClassUuid : EString

contentReferenceName : EString

contentReferenceUuid : EString

contentReferenceOppositeName : EString

contentReferenceOppositeUuid : EString

rowNumberAttributeUuid : EString

[0..*] uniqueColumns[0..1] viewUnique

[1..*] documents[1..1] view

[1..*] relevantColumns[1..1] view

Figure 8.2: Metamodel for the possible Configurations of the Excel Adapter

In order to apply the Excel adapter, an instance of ExcelView has to be createdConfiguration with
one Column for each column in the Excel file to process (identified by the index) and one
Document for each Excel file to extract rows from for the model. The other configurations
allow methodologists to control some details of the transformations:
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• The header row which determines the attributes in the metamodel must be the same
in each used Excel file. Therefore, the configuration for the header row is located
in ExcelView.headerRow.

• If more than one Excel document (with the same structure) should be transformed
into the model, rows of different documents must be distinctable for the backward
transformation. For that, a new attribute with the name ExcelView.multiDocuments
AttributeName is used, which gets the values of Document.multiDocumentsAttri-
buteValue. There are two approaches, where to put this attribute and how to orga-
nize objects stemming from different documents:

– This first (simple) approach is to add this additional attribute into the class
which represents rows with content.

– As (recommended) alternative, an “intermediate container” is used, which stores
the rows of one Excel sheet. These intermediate containers are stored inside
the root container. The intermediate container is configured with the other
configurations starting with multiDocuments*.

• Inside an Excel file, only one of its sheets can be used. If there is only one sheet,
Document.sheetName can be empty.

• Inside an Excel sheet, the lines with content are read starting with Document.con-

tentRowFirst (including). If not all rows of the sheet should be read, the end can
be specified with Document.contentRowLast (including), otherwise ”-1” indicates to
read all rows in the sheet. Note, that indices for rows and columns in Excel start
with 1 (not with 0).

• Most of the other configurations allow to specify the desired names and UUIDs for
the generated elements in the metamodel.

After doing the Excel-to-EMF-transformation, it is possible to change the resulting
model, before doing the EMF-to-Excel-transformation in order to propagate changes in
models back into Excel: UUIDs and

transforming changed
Models back into Excel

For this backward transformation, it is important to identify
and to map each object in the model with its corresponding Excel row. To identify
corresponding rows and objects, keys are used for this identification. The chosen keys
for identification must be stable during transformations and during changes in the model.
Methodologists are supported with two possible strategies for stable identification keys:

• One strategy is to store the row number in objects via an additional attribute with
the restriction, that the row number must not be changed in the model.

• The other, more flexible and recommended strategy is to calculate the UUID of the
object by composing some of its values (which are selected via ExcelView.uniqueCo-

lumns) with the restriction, that the composition of these values is unique for all
objects. Since the UUID is stable, the used values (including the row number) can
be changed in EMF, since the backward transformation takes the unchanged values
in the Excel file for matching (unchanged) rows with the (unchanged) UUID of
objects.

8.4.4 CSV

This adapter supports users who work on concrete renderings of views which are realized as
spreadsheets with CSV. This adapter is implemented in the framework Maven project in
de unioldenburg se mmi framework data source CsvAdapter and uses the csv2emf
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CsvView

separatorSign : EChar

quoteSign : EChar

headerRow : EInt

packageName : EString

packageUuid : EString

containerClassName : EString

containerClassUuid : EString

containerRootUuid : EString

multiDocumentsClassName : EString

multiDocumentsClassUuid : EString

multiDocumentsReferenceName : EString

multiDocumentsReferenceUuid : EString

multiDocumentsReferenceOppositeName : EString

multiDocumentsReferenceOppositeUuid : EString

multiDocumentsAttributeName : EString

multiDocumentsAttributeUuid : EString

contentClassName : EString

contentClassUuid : EString

contentReferenceName : EString

contentReferenceUuid : EString

contentReferenceOppositeName : EString

contentReferenceOppositeUuid : EString

rowNumberAttributeUuid : EString

Column

index : EInt

headerCsv : EString

headerEcore : EString

headerEcoreUuid : EString

CsvDocument

pathForInput : EString

pathForOutput : EString

contentRowFirst : EInt

contentRowLast : EInt

multiDocumentsAttributeValue : EString

multiDocumentsRootUuid : EString

[1..1] view

[1..*] relevantColumns

[0..1] viewUnique

[0..*] uniqueColumns

[1..1] view

[1..*] documents

Figure 8.3: Metamodel for the possible Configurations of the CSV Adapter

Maven project.Adapters for CSV and
Excel are very similar

Since CSV is also a spreadsheet format like Excel, most of the information
for the Excel adapter counts for the Excel adapter as well.

The possible configurations for CSV adapters are depicted in Figure 8.3.Configuration Most configu-
rations of the Excel adapter count also for the CSV adapter, with the following exceptions:

• Row and column numbers start with 0.

• Since CSV documents contain only one sheet, there is no sheet name in CSV (sheet
names are required only for Excel).

• All CSV files must be encoded using UTF-8.

• The characters for encoding separators and quotes can be configured using CsvView.se-

peratorSign and CsvView.quoteSign.

To make these configurations concrete, the following box shows an application of the
CSV adapter for the ongoing example.

Ongoing Example, Part 24: CSV Adapter for Requirements ← List →

The CSV format is used to collect requirements for the requirements specification, as de-
picted in Figure 1.1Z 38 in Part 5Z 37 of the ongoing example for Requirements . In order
to keep these requirements in CSV format consistent to the models of the other views, the
methodologist applies the CSV adapter for Requirements and configures it by providing
an instance of Figure 8.3.

The resulting metamodel is shown in Figure 8.4Z 277. The most interesting parts of the
configuration are sketched here. The configuration of the instance of CsvView contains the

276



8.4 Adapters

following values:

• The headerRow is set to 0, since the CSV row 0 contains the headline of the data and
its headers for the columns are used for the attributes in the metamodel (see below).

• The contentClassName is set to “RequirementsSpecification” and represents the con-
tainer, which contains all Requirements (specified by contentClassName). Since no
intermediate container for handling multiple CSV files is required, no values are given
for the multiDocument* configurations.

• The role names for the containment EReference are specified with “container” for
contentReferenceOppositeName and with “content” for contentReferenceName.

In order to extract all three columns of the CSV file (the first column in Figure 1.1Z 38

visualizes only the row numbers), three instances of Column are configured, each with the
index and the header of the column in the CSV file. The first column with the “ID” of
the requirements is used for calculating stable UUIDs for the requirements objects in the
model. These three columns result in the attributes id, author and text in Requirement

in the metamodel with EString as default data type. The attribute rowNumber is always
created in the metamodel by the CSV adapter.

As last step, the CSV file is configured with an instance of CsvDocument:

• The pathForInput points to the CSV file in the file system.

• The rows with content i. e. concrete requirements start at row 1 (value 1 for con-

tentRowFirst) until the end of the CSV file (value -1 for contentRowLast).

dataRequirementsSpecification

rowNumber : EInt [0..1]

id : EString [0..1]

author : EString [0..1]

text : EString [0..1]

Requirement

container [1]

content [∗]

Figure 8.4: Metamodel for the data source Requirements

The resulting model is shown in Figure 8.5Z 278. One object of type RequirementsSpec-
ification is created, which contains one Requirement for each row with content in the
CSV file. Accordingly, there are two Requirements, since the CSV file contains contains
two rows starting at contentRowFirst. These row numbers are set as values for rowNum-

ber. For the other attributes, the values from the CSV file are taken and put into the
corresponding slots for each Requirement. The values for id are reused for the UUIDs of
the Requirements objects.
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model rs : RequirementsSpecification

rowNumber = 1
id = ”r1”
author = ”Andreas Winter”
text = ”The student must be able to register for an event.”

r1 : Requirement

rowNumber = 2
id = ”r2”
author = ”Johannes Meier”
text = ”The student must be enroled at the university.”

r2 : Requirement

container[0]

content[0]

container[0]

content[1]

Figure 8.5: Model for the data source Requirements

8.4.5 Xtext

This adapter supports users who work on concrete renderings of views which are realized as
structured text in form of a textual DSL with Xtext. This adapter is implemented in the
application of MoConseMI for managing access rights in Chapter 9Z 283 and uses Xtext
libraries as dependencies. More details of Xtext are provided in Chapter 9Z 283.

Since Xtext is realized for EMF as technical space, the adapter for Xtext is a special
adapter for dynamic EMF:Xtext transforms

structured text into
EMF models and vice
versa

When the EMF model is requested, the text conforming to the
textual DSL is parsed by Xtext and results in its desired representation as EMF model,
which is transformed into an Edapt model by the adapter for dynamic EMF. For the other
direction, the current Edapt model is transformed in an EMF model by the adapter for
dynamic EMF and afterwards into the text conforming to the textual DSL by Xtext. The
required EMF metamodel is generated once by Xtext.

Therefore, the adapter for Xtext is configuredConfiguration with paths and folders for the files
containing structured text and containing the EMF (meta)models. Additionally, the DSL-
specific transformers of Xtext are given to the adapter.

Future Work: More Adapters

In order to manage data in further technical spaces with MoConseMI, additional adapters
for additional technical spaces could be developed and existing adapters could be extended
as future work:

• Relational data bases come with schema and instance data, which directly refer to
metamodels and models, and could be supported by dedicated adapters.

• Adapters for additional formats for spreadsheets tables could be developed including
for LibreOffice or Apple Numbers. Additionally, the adapters for spreadsheets
could be extended with support for two dimensional tables.

• Documentations describe lots of information, which might need consistency support,
therefore, adapters for documentation formats like LATEX or Microsoft Word are
useful. Developing adapters for documentation faces challenges to define project-
specific metamodels for the documented information, since documents usually contain
arbitrary, unstructured text without explicit schema.
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8.5 Visualizations

This section supports methodologists to develop orchestrations and to supervise the ex-
ecutions of orchestrations. The MoConseMI framework applies the observer pattern to
inform interested observers about certain situations and events during the configuration
and execution of orchestrations. This infrastructure is used to collect runtime information
about the orchestration and the current state of the execution, which are graphically vi-
sualized. Some visualizations are predefined by the MoConseMI framework in order to
support methodologists. Additionally, the observer infrastructure allows to define custom
visualizations. The MoConseMI framework supports the following kinds of observers: supported Observers

OrchestrationObserver are informed about the configuration of the orchestration during
the use case for initialization (Section 5.2.3Z 176), in particular, observers are informed
about new bidirectional operators and the end of the execution for the initialization of
the SU(M)M. The main purpose of this observer is to be informed about the progress
of the use case for initialization (Section 5.2.3Z 176).

SynchronizationExecutionObserver are informed about the execution loops including
their starts, ends, applied user changes and the remaining views to update. The main
purpose of this observer is to understand the execution loop and the order in which
views are updated.

OperatorExecutionObserver are informed about the steps to execute single unidirec-
tional operators, including the calculation of branch differences and the execution of
sub-operators. The main purpose of this observer is to get the current (meta)model
and branch differences.

AdapterObserver are informed about certain situations during the work of adapters,
including their initialization, user changes and applied execution differences. The
main purpose of this observer is to get insights, when the adapters of views are used
and when they transform information between technical spaces.

Some examples for visualizations, which are provided by the MoConseMI framework
to support methodologists, are sketched here: provided Visualizations

• Visualizations of the static structure of the orchestration with its configured bidi-
rectional operators, like in Figure 6.11Z 209, are implemented in OrchestrationVi-

sualization and triggered by InternalOrchestrationVisualizer, notified as Or-
chestrationObserver.

• Visualizations of the execution loop and its order of updated models, like in Fig-
ure 6.18Z 221, are implemented in RunVisualization and are triggered by Inter-

nalRunVisualizer, notified as SynchronizationExecutionObserver.

• Visualizations of the current (meta)models after each operator execution, like in Fig-
ure 5.2Z 177,are implemented in MetaModelVisualizationControllerTikzSingle,
notified as OperatorExecutionObserver and as SynchronizationExecutionObserver.

• Visualizations of the execution of a single unidirectional operator with the model
before and the model after the operator execution, similar to visualizations in Walter
and Ebert (2009), are implemented in OperatorVisualizationSingleExecution

notified as OperatorExecutionObserver.

All visualizations are realized as LATEX graphics with the TikZ package in order to in-
clude them into LATEX documentations. Infrastructure for

realizing Visualizations
Models and metamodels are rendered by the emf-

umlgraphmodel-visualization project as “UmlGraphModel” (UGM), which is a generic
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representation for class diagrams and object diagrams provided by the uml-graph-model

project. This UGM model is transformed into a model-based representation for TikZ graph-
ics, which is transformed into TikZ code as part of the tikz-model project (Figure 8.1Z 264).
This design allows to reuse transformation logic and eases creation and maintenance of vi-
sualizations.

8.6 Summary

This Chapter 8Z 263 provides some insights into the implementation of the MoConseMI
framework, which technically realizes the MoConseMI approach as designed in Chap-
ter 6Z 185. By realizing the MoConseMI framework as stand-alone Maven project with-
out forcing methodologists to use a GUI, Requirement R 5 (Reusable Library)Z 158 is ful-
filled (Section 8.1Z 263). Section 8.2Z 264 provides technical insights for methodologists
and adapter providers, how to work with models and metamodels. Section 8.3Z 267 pro-
vides guidelines, how to implement additional operators. Section 8.4Z 271 supports adapter
providers with technical hints for bridging additional technical spaces by adapters and
sketches the predefined adapters of MoConseMI. Section 8.5Z 279 supports methodologists
with visualizations for the configuration and for the execution of orchestrations, supported
by the observer infrastructure.

This implemented MoConseMI framework allows to apply MoConseMI in several
application examples in Part IVZ 283 for evaluation. Limitations of this implementation are
discussed in Section 14.3.2Z 495. Possible extensions of this implementation are discussed
as future work in Section 14.4.2Z 497.
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Part IV

Application

This part applies the MoConseMI framework in order to eval-
uate the applicability of MoConseMI in practice. The appli-
cation examples show, how methodologists apply MoConseMI
to configure orchestrations for ensuring project-specific consis-
tency. These configurations are validated with acceptance tests,
where users change one view and these changes are automati-
cally propagated to all other views in order to keep them consis-
tent to the changed view. In order to generalize these concrete
applications, Chapter 12Z 455 provides some guidelines for me-
thodologists.
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Chapter 9

Access Data

This application applies MoConseMI to distributed access management. Distributed Access
Management

Objective of
access management is to control the access of persons, users or systems to critical resources.
This is done by managing users, resources and different rights like read-only or read-and-
write. Later on, the access of users to parts of a subversion repository and folders on a web
server is managed in simplified way.

In growing landscapes of information systems of companies, more and more such critical
resources like applications or documents are upcoming. The same counts for users with
potential access rights to those resources. If each critical resource comes with its own small
procedure to manage the access to it, the access management is distributed without global
view on all registered users and given access rights. distributed without

global View
Those local systems represent data

sources, since they come with a fixed structure and existing access rights which must be
kept. Systems like data bases managing registered users represent additional data sources.

These data sources are overlapping, since same users might have access rights for differ-
ent resources. This can lead to inconsistencies, e. g. when users are deleted incompletely and
not all of their access rights are deleted in all systems, or when details of users are changed,
like their user names, and these changes are not propagated to all systems managing access
rights.

Since local access rights are already existing and it is not always possible to replace
them, it makes sense to complement them with an access management which is global for
e. g. the whole company. This requests for a synchronized access system in order to ensure,
among others, that a user is deleted with all access rights. Therefore, a new view is required
showing all given access rights for each user.

Because of the existence of different overlapping data sources which must be kept con-
sistent to each other and the need for new views which allow to change the data sources, the
sketched distributed access management is a senseful application for MoConseMI: Users
are people who manage the different small systems for local access management. They add
and remove single access rights. Methodologists are managers of the whole access manage-
ment inside e. g. the company. They know all existing systems for access management and
know, which groups of people with potential access rights exist.

As representatives for existing systems for access management, outlineSection 9.1Z 284 intro-

duces the used data sources in more detail and presents the developed SU(M)M and the
new view(point). After that, the operators to form the SU(M)M are described in Sec-
tion 9.2Z 299. The definition of the new view(point) is shown in Section 9.3Z 313. Along
multiple scenarios with changes of the users, Section 9.4Z 328 demonstrates, that the con-
sistency between all data sources, the SUM and the new view is ensured by the configured
operators. Section 9.5Z 368 summarizes the findings and contributions of this application
example.

This application bases on the works of Michel (2019), with improved and extended
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consistency goals as well as with the new view(point). The orchestration is simplified on
the one hand and extended with additional operators on the other hand, together with
comprehensive documentations. Additionally, the role names in the UML diagrams for the
models are hidden for an improved readability.

9.1 Application Domain

The domain consists of the data sources Htpasswd (Section 9.1.1), Authz (Section 9.1.2Z 285)

and Htaccess (Section 9.1.3Z 289) as input. All relevant information for the domain are
contained in the SUM (Section 9.1.4Z 290). Parts of the SU(M)M are represented in the

new view(point) Overview (Section 9.1.5Z 292).

9.1.1 DataSource Htpasswd

The first data source is shown in Listing 9.1.Htpasswd: users +
password hashes

Its purpose is to manage users with their
passwords in form of hashes. The content is usually stored in a text file called htpasswd

and is maintained by the command-line tool htpasswd which is part of the Apache HTTP
Server project (The Apache Software Foundation, 2020b). Therefore, this first data source
is called Htpasswd .

The initial concrete syntax before the initialization of Htpasswd is shown in the format
Htpasswd in Listing 9.1.

1 #hp1
2 a l i c e : theu9Naig7fophed #u1

4 bob : eengohbu4naisa i7 #u2

6 f rank : Ahch9iemai4Ui3si #u3
7 walte r : e i f e i h o 3 i e x 3 a h n g #u4

Listing 9.1: The initial input of Htpasswd in Htpasswd format

Each non-empty row start with the user name of a user, followed by a colon, and ends
with the hashed password of the user. htpasswd supports different hashing algorithms like
MD5 or SHA1. Comments start with # and end at the end of the current line. The amount
of white space does not matter.

Therefore, the example defines four users (alice, bob, frank and walter) with their
password hashes. The comments are used as identifiers later.

To bring the structured text into the technical space of EMF, an EBNF-based grammar
is defined for Htpasswd filesXtext and realized with Xtext (Bettini, 2013). Xtext is chosen,
because it generates a corresponding EMF metamodel and generates transformations from
text to an EMF model and vice versa.

The metamodel of Htpasswd is shown in Figure 9.1Z 285.
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htpasswd

id : EString [0..1]

Htpasswd

name : EString [0..1]

password : EString [0..1]

id : EString [0..1]

User

users [∗]

Figure 9.1: Metamodel of Htpasswd

Htpasswd represents a whole htpasswd-file containing an arbitrary number of users.
Each User has a name and a password hash, which are both String values. The multiplicities
0..1 are generated by Xtext, nevertheless, a name and a password are always mandatory.

The initial input model of Htpasswd is shown in Figure 9.2.

model-htpasswd

id = ”hp1”

hp1 : Htpasswd

name = ”alice”
password = ”theu9Naig7fophed”
id = ”u1”

u1 : User
name = ”bob”
password = ”eengohbu4naisai7”
id = ”u2”

u2 : User
name = ”frank”
password = ”Ahch9iemai4Ui3si”
id = ”u3”

u3 : User
name = ”walter”
password = ”eifeiho3iex3ahng”
id = ”u4”

u4 : User

users[0] users[1]
users[2] users[3]

Figure 9.2: The initial input model of Htpasswd

The root object of type Htpasswd contains the four User instances with the names and
password hashes from the htpasswd-file.

Since switching between technical spaces is not the main objective of this thesis, the
details of the used grammar and its technical realization with Xtext are skipped here,
but are described by Michel (2019). More important is the handling of required UUIDs:

UUIDs with XtextSince each instance in the model must have a UUID, each type in the metamodel has an
additional String-value attribute named id. Since the concrete UUIDs must be stable while
switching between the technical spaces, the values for UUIDs are stored as comments in the
htpasswd-file and used as values for the attribute, which is automated by Xtext. These
attribute values are used as object identifiers, which is realized by the developed adapter
for Xtext. As an example, the user “alice” has “u1” as value for its id-slot which is also
used as object identifier in Figure 9.2. In Listing 9.1Z 284, “u1” is stored as comment in
the text line of “alice”.

All used data are artificial, created for the purpose of demonstration. In particular,
the shown password hashes are not hashed from real passwords, but randomly generated
strings.

9.1.2 DataSource Authz

The second data source is shown in Listing 9.2Z 286. Authz: path-based
access rights
(Subversion)

Its purpose is to manage access
rights of users for Subversion (SVN) repositories (Collins-Sussman, Fitzpatrick and Pilato,
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2011). These access rights distinguish between read and write access and are given for
single directories. The content is usually maintained by hand and stored in a text file called
authz. Therefore, this second data source is called Authz .

The initial concrete syntax before the initialization of Authz is shown in the format
Authz in Listing 9.2.

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e = rw #m1

5 [ / some/path/ to / repo / r2 ] #r2
6 a l i c e = rw #m2
7 bob = rw #m3

9 [ / some/path/ to / repo / r3 ] #r3
10 c h a r l i e = r #m4
11 e r i c = rw #m5

Listing 9.2: The initial input of Authz in Authz format

Access rights are always bound to one directory (and its child directories, if not overrid-
den), which is defined by the path surrounded by brackets in one line: The user with access
to this directory are added afterwards, one user per line, with the user name, followed by
the equal sign and the given access mode. Supported access modes are read-only (r) and
read-and-write (rw).

The example is giving access rights for three directories (r1, r2, r3, all located in inside
the directory /some/path/to/repo/): The user “alice” got read-and-write access to the
directories r1 and r2, but no access to r3. The user “charlie” got read-only access to only
the directory r3. The users “bob” and “eric” got also read-and-write access rights to r2,
respectively r3. The comments are used as identifiers later.

Subversion supports much more features like groups of users, but they are not supported
here (Collins-Sussman, Fitzpatrick and Pilato, 2011). Again, Xtext is used to bring these
data into the technical space EMF with the same strategy of handling stable UUIDs.

The metamodel of Authz is shown in Figure 9.3Z 287.
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authz

id : EString [0..1]

Authz

path : EString [0..1]

id : EString [0..1]

Repository

authzUsername : EString [0..1]

permission : PermissionEnum [0..1]

id : EString [0..1]

Mapping

READ
READWRITE

�enumeration�
PermissionEnum

repositories [∗]

mappings [∗]

Figure 9.3: Metamodel of Authz

Authz represents as root the whole authz-document, in which multiple directories and
their enabled users are managed: Repository represents one directory, whose path is stored
in the path-attribute. Each repository has an arbitrary number of Mappings which are
giving one permission to one user, represented by its user name in the authzUsername-
attribute. The possible permissions are modeled with the enum PermissionEnum.

The initial input model of Authz is shown in Figure 9.4Z 288.
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Figure 9.4: The initial input model of Authz

The root object of type Authz stores the three defined directories as instances of Repos-
itory with their paths. Each repository holds one Mapping instance for each user with
access to it. Therefore, there are two mappings with the user name “alice”, connected to
the two different directories.

All used data are artificial, created for the purpose of demonstration.
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9.1.3 DataSource Htaccess

The third data source is shown in Listing 9.3. Htaccess: access to
directory (Webserver)

Its purpose is to manage access rights of
users for one directory inside a Apache HTTP Server (The Apache Software Foundation,
2020a). The content is usually maintained by hand and stored in a text file called .htaccess

which is located inside the protected directory. Therefore, this third data source is called
Htaccess .

The initial concrete syntax before the initialization of Htaccess is shown in the format
Htaccess in Listing 9.3.

1 #ha1
2 AuthUserFile /some/path/ to / u s e r F i l e #s1
3 AuthGroupFile /some/path/ to / groupFi l e #s2
4 AuthName ”Some Name For This Auth −− R e s t r i c t e d Access ” #s3
5 AuthType Bas ic #s4

7 r e q u i r e user a l i c e #hu1
8 r e q u i r e user dave #hu2

Listing 9.3: The initial input of Htaccess in Htaccess format

A .htaccess files starts with some initial configurations (lines 1–4). Here, only Au-
thUserFile is interesting, since it points to the htpasswd-file of Htpasswd and accepts only
users which are defined there. After the initial configurations, all users with access are
listed (lines 6–7) within their own line, starting with “require user” and ending with the
their user names. The shown .htaccess example file specifies access exactly for the users
with the user names “alice” and “dave”.

In general, some more features like groups are possible in .htaccess-files, but they are
not supported here. Again, Xtext is used to bring these data into the technical space
EMF with the same strategy of handling stable UUIDs.

The metamodel of Htaccess is shown in Figure 9.5.

htaccess

id : EString [0..1]

Htaccess

id : EString [0..1]

Setting

path : EString [0..1]

AuthUserFile
path : EString [0..1]

AuthGroupFile
name : EString [0..1]

AuthName
authtype : AuthTypeEnum [0..1]

AuthType

htaccessUsername : EString [0..1]

id : EString [0..1]

HtaccessUser

Basic
Digest

�enumeration�
AuthTypeEnum

settings [∗]htaccessUsers [∗]

Figure 9.5: Metamodel of Htaccess

Htaccess is the root representing one .htaccess-file, which contains an arbitrary num-
bers of settings and allowed users. There are four different types of Settings, namely
AuthzUserFile, AuthzGroupFile, AuthzName and AuthzType, having paths or names or
further properties like specified by the enumeration AuthzTypeEnum. More interesting are
the users, represented by the type HtaccessUser, which stores the user name in the at-
tribute htaccessUsername.
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The initial input model of Htaccess is shown in Figure 9.6.

model-htaccess

id = ”ha1”

ha1 : Htaccess

id = ”s1”
path = ”/some/path/to/userFile”

s1 : AuthUserFile

id = ”s2”
path = ”/some/path/to/groupFile”

s2 : AuthGroupFile

id = ”s3”
name = ””Some Name For This Auth – Restricted Access””

s3 : AuthName

id = ”s4”
authtype = Basic

s4 : AuthType

htaccessUsername = ”alice”
id = ”hu1”

hu1 : HtaccessUser
htaccessUsername = ”dave”
id = ”hu2”

hu2 : HtaccessUser

settings[0]

settings[1]

settings[2]

settings[3]

htaccessUsers[0]htaccessUsers[1]

Figure 9.6: The initial input model of Htaccess

The root object of type Htaccess (ha1) stores the four settings (s1, s2, s3, s4) and the
two users as instances of HtaccessUser. Their user names “alice” (hu1) and “dave” (hu2)
are stored as htaccessUsername. All used data are artificial, created for the purpose of
demonstration.

9.1.4 SU(M)M

Initially, there is no SU(M)M, but it is created for the first time during the initialization
by executing the configured operators with the introduced data sources as starting point.
The configurations of the operators control the final structure of the SU(M)M, which are
documented in detail in Section 9.2Z 299. This section serves as look-ahead and is useful for
understanding the new view(point). The metamodel of SUMM is shown in Figure 9.7Z 291.
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Figure 9.7: Metamodel (left/top) and the final model after the initialization (right/bottom) of

SUMM
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The three namespaces htpasswd, authz and htaccess of the three data sources are
still existing in the SUMM and indicate the origins of the contained classes. Additionally,
some integrations are visible in form of associations crossing the bounds of these namespa-
ces, e. g. between the classes Mapping, User and Htaccess. Other content like the class
HtaccessUser is missing in the SUMM, since it was removed as redundancies. The details
of this integration are explained later.

The final model after the initialization of SUMM is shown in Figure 9.7Z 291.

Corresponding to the SUMM, also the SUM still contains the namespaces of the three
data sources on model level. There are lots of links connecting the namespaces with each
other, since users in model-htpasswd are connected with their access rights in model-authz

and model-htaccess. Names of users with multiple access rights like “alice” appear only
once, according to the removal of redundancies.

9.1.5 New ViewPoint Overview

The new view called Overview addresses the problem, that there is no holistic summary

about all given access rights for all users, since the data sources Authz and Htaccess target
only one kind of access rights. For the needs of an access rights engineer, an Excel table
is ideal, since it abstracts from the concrete technical realization.

The final concrete syntax after the initialization of Overview is shown in the format
Excel in Figure 9.8.

Figure 9.8: The final concrete syntax of Overview in Excel format

Each user gets one row in the table with name (column A) and ID (column E). Column
“htaccess” (D) contains “TRUE”, if the user has the htaccess-right, and “FALSE” otherwise.
If these values are changed by the user, the corresponding access right is added or removed.
The columns “authzReadOnly” (B) and “authzWrite” (C) contain the numbers of given
access rights for each user. Changes in these columns are ignored.

The metamodel of Overview is shown in Figure 9.9Z 293.
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htpasswdRightsCollection

name : EString [0..1]

authzReadOnly : EDouble [0..1]

authzWrite : EDouble [0..1]

htaccess : EBoolean [0..1]

rowNumber : EInt [0..1]

id : EString [0..1]

User

users [∗]

Figure 9.9: Metamodel of Overview

The general structure of this metamodel is determined by the adapter for Excel (Sec-
tion 8.4.3Z 273): RightsCollection represents the whole Excel file and contains one User
for each row. The headers of the columns correspond to the attributes of User with same
names. Additionally, the attribtue rowNumber stores the current number of the correspond-
ing row (row numbers start with one). The id is used to identify users in rows uniquely.
The attributes authzReadOnly and authzWrite store numbers of access rights and are
integers, but are represented as doubles in the metamodel, because the transformations
between Excel and EMF support only double for numerical values.

The final model after the initialization of Overview is shown in Figure 9.10Z 294.
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Figure 9.10: The final model after the initialization of Overview
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9.1 Application Domain

The root object hp1 with type RightsCollection contains one User instance for each
row representing a user in Excel (u1, u2, u3, u4, u5, u6). The values of the cells in Excel
are transferred into the corresponding slots of the instances.

9.1.6 Realization Overview

Figure 9.11 presents an overview about all consistency goals, annotated along the edges.
Hyperlinks at the consistency goals allow to jump to their introductions. The nodes in the
graphic represent the data sources in this application. Hyperlinks at the nodes allow to
jump to their introductions.

Htpasswd

Authz Htaccess

C 1 C 2

Figure 9.11: Overview about Consistency Goals in Access Data Management

The consistency is described by the following consistency goals and their concretizing
consistency rules. Figure 9.11 visualizes the consistency goals and their involved data
sources or new viewpoints.

Consistency Goal C 1 Htpasswd + Authz

User with access rights given by Authz must be registered in Htpasswd .

While Authz specifies the concrete access rights for users, their credentials are defined
in Htpasswd . The credentials contain their hashed password, which is stored only once,

but used for all rights in Authz . The mapping between Authz and Htpasswd is done by

matching user names. Users in Htpasswd without any rights in Authz are allowed.

Consistency Rule C 1 a for C 1

If the user of an access right in Authz is not defined in Htpasswd , a corresponding
user is added in Htpasswd with a random password.

Since each access right must be related to a user as required by C 1, missing users are
added in Htpasswd . This might lead to security issues, which are minimized, since the ran-
dom password must be known to the person owning the access right. This consistency rule
is explicitly tested by the test cases documented in Section 9.4.4Z 340 and Section 9.4.5Z 344.

Consistency Rule C 1 b for C 1

If an access right is removed and its related user has no access rights anymore, that
user is also removed.

Usually, only the access right is removed. If this access right was the only one for its
user, the user is removed to keep the user management clean from unused users. This
consistency rule is explicitly tested by the test cases documented in Section 9.4.3Z 336 and
Section 9.4.6Z 348.
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9 Access Data

Consistency Rule C 1 c for C 1

If a user is removed in Htpasswd , all its access rights in Authz are removed.

Removing a user indicates, that the whole user is to be removed, including all its access
rights.

Consistency Rule C 1 d for C 1

If the user name of an access right is changed, the corresponding user is renamed
accordingly, if the user has not more than this access right. Otherwise, a new user
with the new user name is created.

This ensures, that other access rights remain unchanged. The new user gets a random
password, as in C 1 a. This behavior is analogous to C 1 b. The easier alternative is to
rename the corresponding user in each case. This consistency rule is explicitly tested by
the test case documented in Section 9.4.2Z 332.

Consistency Rule C 1 e for C 1

If a user is renamed, all its rights in Authz are renamed accordingly.

Since the user name is used and required for mapping to its access rights, renamings of
the user must be applied also to all its access rights.

Consistency Goal C 2 Htpasswd + Htaccess

User with access rights given by Htaccess must be registered in Htpasswd .

While Htaccess specifies the concrete access rights for users, their credentials are defined
in Htpasswd . The credentials contain their hashed password, which is stored only once,

but used for all rights in Htaccess . The mapping between Htaccess and Htpasswd is done

by matching user names. Users in Htpasswd without any rights in Htaccess are allowed.

Consistency Rule C 2 a for C 2

If the user of an access right in Htaccess is not defined in Htpasswd , this access

right is removed in Htaccess .

Since each access right must be related to a user as required by C 1, missing users lead
to invalid access rights. This is in contrast to C 1 a to show an alternative solution and can
be rated as a more secure solution.

Consistency Rule C 2 b for C 2

If an access right is removed, only this access right is removed, while the related user
remains.

Only the access right is removed. Even users without any access rights anymore are
kept, showing an alternative solution contrasting C 1 b.

Consistency Rule C 2 c for C 2

If a user is removed in Htpasswd , all its access rights in Htaccess are removed.
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9.1 Application Domain

Removing a user indicates, that the whole user is to be removed, including all its access
rights.

Consistency Rule C 2 d for C 2

If the user name of an access right is changed, the corresponding user is renamed
accordingly.

This ensures, that user and Htaccess rights still fit together. This behavior shows an
alternative to C 1 d. This consistency rule is explicitly tested by the test case documented
in Section 9.4.7Z 352.

Consistency Rule C 2 e for C 2

If a user is renamed, all its rights in Htaccess are renamed accordingly.

Since the user name is used and required for mapping to its access rights, renamings of
the user must be applied also to all its access rights.

All operators configured for the realization are visualized in Figure 9.12Z 298 along the
edges. Data sources are rendered as white rectangles. New viewpoints are rendered as gray
rectangles. Intermediate (meta)models are rendered as black circles. The operators for the
integration of the data sources into the SU(M)M are described in Section 9.2Z 299. The
operators to derive the new view(point) from the SU(M)M are described in Section 9.3Z 313.
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Figure 9.12: Configured Tree of Operators for Access Data Management
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9.2 Integration of existing Data Sources

9.2 Integration of existing Data Sources

This section documents, how the existing data sources are integrated into the SU(M)M. For
each used operator, its impact is highlighted and its configuration is sketched. The changes
of the operator within the current metamodel are graphically visualized. The changes of
the operator within the current model are graphically visualized. Only the combination
of two (meta)models is not shown, since only two (meta)models are combined into one
(meta)model on technical level without semantic changes.

In order to improve the readability, the documentation focuses on the most important
information about the operators: For brevity, only the forward unidirectional operator is
depicted in detail, while its inverse unidirectional operator is only mentioned. For some
neighbored operators which realize similar objectives or work together for the same objec-
tive, the visualization of their impact is combined into a single graphic. Configurations for
model decisions which are predefined by the operator and reused here, are not repeated
again.

Htpasswd ←→ 01: DeleteAddAllIDAttributes

This operator removes the IDs which are used only internally to prevent their change by
users. Therefore, this part of the orchestration changes the metamodel, as depicted in
Figure 9.13.

htpasswd

id : EString [0..1]

Htpasswd

name : EString [0..1]

password : EString [0..1]

id : EString [0..1]

User

users [∗]

Figure 9.13: Metamodel Changes from Htpasswd to 01

Accordingly, this part of the orchestration changes the model, as depicted in Figure 9.14.

model-htpasswd

id = ”hp1”

hp1 : Htpasswd

name = ”alice”
password = ”theu9Naig7fophed”
id = ”u1”

u1 : User
name = ”bob”
password = ”eengohbu4naisai7”
id = ”u2”

u2 : User
name = ”frank”
password = ”Ahch9iemai4Ui3si”
id = ”u3”

u3 : User
name = ”walter”
password = ”eifeiho3iex3ahng”
id = ”u4”

u4 : User

users[0] users[1]
users[2] users[3]

Figure 9.14: Model Changes from Htpasswd to 01

For the direction Htpasswd→01, the unidirectional operator is →DeleteAllIDAt-
tributes (id).
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Metamodel Decisions are not used by →CompositeOperator.

Model Decisions configured for →CompositeOperator: This operator has no config-
urations for model decisions.

For the inverse direction Htpasswd←01, the unidirectional operator is ←AddAllID-
Attributes (id).

Authz ←→ 02: DeleteAddAllIDAttributes

This operator removes the IDs which are used only internally to prevent their change by
users. Therefore, this part of the orchestration changes the metamodel, as depicted in
Figure 9.15.

authz

id : EString [0..1]

Authz

path : EString [0..1]

id : EString [0..1]

Repository

authzUsername : EString [0..1]

permission : PermissionEnum [0..1]

id : EString [0..1]

Mapping

READ
READWRITE

�enumeration�
PermissionEnum

repositories [∗]

mappings [∗]

Figure 9.15: Metamodel Changes from Authz to 02

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 9.16Z 301.

300



9.2 Integration of existing Data Sources

m
o
d
e
l-

a
u
th

z

id
=

”
a
1
”

a
1

:
A

u
th

z

p
a
th

=
”
/
so

m
e
/
p
a
th

/
to

/
re

p
o
/
r1

”

id
=

”
r1

”r1
:

R
ep

o
si

to
ry

p
a
th

=
”
/
so

m
e
/
p
a
th

/
to

/
re

p
o
/
r2

”

id
=

”
r2

”r2
:

R
ep

o
si

to
ry

p
a
th

=
”
/
so

m
e
/
p
a
th

/
to

/
re

p
o
/
r3

”

id
=

”
r3

”r3
:

R
ep

o
si

to
ry

a
u
th

z
U

se
rn

a
m

e
=

”
a
li

c
e
”

p
e
rm

is
si

o
n

=
rw

id
=

”
m

1
”

m
1

:
M

a
p

p
in

g

a
u
th

z
U

se
rn

a
m

e
=

”
a
li

c
e
”

p
e
rm

is
si

o
n

=
rw

id
=

”
m

2
”

m
2

:
M

a
p

p
in

g

a
u
th

z
U

se
rn

a
m

e
=

”
b

o
b
”

p
e
rm

is
si

o
n

=
rw

id
=

”
m

3
”

m
3

:
M

a
p

p
in

g

a
u
th

z
U

se
rn

a
m

e
=

”
c
h
a
rl

ie
”

p
e
rm

is
si

o
n

=
r

id
=

”
m

4
”

m
4

:
M

a
p

p
in

g

a
u
th

z
U

se
rn

a
m

e
=

”
e
ri

c
”

p
e
rm

is
si

o
n

=
rw

id
=

”
m

5
”

m
5

:
M

a
p

p
in

g

re
p

o
si

to
ri

e
s[

0
]

re
p

o
si

to
ri

e
s[

1
]

re
p

o
si

to
ri

e
s[

2
]

m
a
p
p
in

g
s[

0
]

m
a
p
p
in

g
s[

0
]

m
a
p
p
in

g
s[

1
]

m
a
p
p
in

g
s[

0
]

m
a
p
p
in

g
s[

1
]

Figure 9.16: Model Changes from Authz to 02

For the direction Authz→02, the unidirectional operator is →DeleteAllIDAttri-
butes (id).

Metamodel Decisions are not used by →CompositeOperator.

Model Decisions configured for →CompositeOperator: This operator has no config-
urations for model decisions.
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For the inverse direction Authz←02, the unidirectional operator is ←AddAllIDAt-
tributes (id).

9.2.1 Integrate Htpasswd and Authz

Integrates Htpasswd and Authz regarding overlapping user names.

03 ←→ 04: AddDeleteAssociation

This operator relates Authz rights and users explicitly to each other for C 1. In case
of a missing matching user, a new user is created in Htpasswd , according to C 1 a. By
remembering all links, the corresponding user of a deleted access right can be identified and
removed, if wanted by C 1 b. Removed users are detected in the same way, which leads to a
deletion of its access rights, according to C 1 c. Renamings according to C 1 d and C 1 e are
also realized by remembering links and checking the current changes. Therefore, this part
of the orchestration changes the metamodel, as depicted in Figure 9.17Z 303. Accordingly,
this part of the orchestration changes the model, as depicted in Figure 9.17Z 303.
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Figure 9.17: Changes in Metamodel (left/top) and Model (right/bottom) from 03 to 04

For the direction 03→04, the unidirectional operator is →AddAssociation (au-
thz.Mapping.htpasswdUser).

Metamodel Decisions configured for →AddAssociation:

• firstClassNameFullyQualified = authz.Mapping

• secondClassNameFullyQualified = htpasswd.User
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• firstEndName = authzUser

• firstEndLowerBound = 0

• firstEndUpperBound = -1

• firstEndComposition = false

• secondEndName = htpasswdUser

• secondEndLowerBound = 0

• secondEndUpperBound = 1

• secondEndComposition = false

Model Decisions configured for→AddAssociation: Configurations for model decisions
are realized in de unioldenburg se mmi rights integration decisions Ad-

dAuthzUserRelationDecision. All their configurations for model decisions are listed
here:

• createLinks ( arg0 : AddReference, arg2 : EReference )

Manages links between Authz rights and users by first exploiting the remem-
bered historic links and second find new mappings based an matching names.

For the inverse direction 03←04, the unidirectional operator is←DeleteAssociation
(authz.Mapping.htpasswdUser).

04 ←→ 05: DeleteAddAttribute

By removing the user name from Authz , redundancy is reduced. The user name is still
stored in Htpasswd , which allows mappings to Htaccess later on. This produces a cleaner

SU(M)M and prevents inconsistencies in the SUM . Therefore, this part of the orchestra-
tion changes the metamodel, as depicted in Figure 9.18Z 305. Accordingly, this part of the
orchestration changes the model, as depicted in Figure 9.18Z 305.
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Figure 9.18: Changes in Metamodel (left/top) and Model (right/bottom) from 04 to 05

For the direction 04→05, the unidirectional operator is →DeleteAttribute (au-
thz.Mapping.authzUsername).

Metamodel Decisions configured for →DeleteAttribute:

• fullyQualifiedAttributeName = authz.Mapping.authzUsername
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9 Access Data

Model Decisions configured for →DeleteAttribute: This operator has no configura-
tions for model decisions.

For the inverse direction 04←05, the unidirectional operator is ←AddAttribute
(authz.Mapping.authzUsername).

Htaccess ←→ 06: DeleteAddAllIDAttributes

This operator removes the IDs which are used only internally to prevent their change by
users. Therefore, this part of the orchestration changes the metamodel, as depicted in
Figure 9.19.

htaccess

id : EString [0..1]

Htaccess

id : EString [0..1]

Setting

path : EString [0..1]

AuthUserFile
path : EString [0..1]

AuthGroupFile
name : EString [0..1]

AuthName
authtype : AuthTypeEnum [0..1]

AuthType

htaccessUsername : EString [0..1]

id : EString [0..1]

HtaccessUser

Basic
Digest

�enumeration�
AuthTypeEnum

settings [∗]htaccessUsers [∗]

Figure 9.19: Metamodel Changes from Htaccess to 06

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 9.20Z 307.
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model-htaccess

id = ”ha1”

ha1 : Htaccess

path = ”/some/path/to/userFile”

id = ”s1”

s1 : AuthUserFile

path = ”/some/path/to/groupFile”

id = ”s2”

s2 : AuthGroupFile

name = ””Some Name For This Auth – Restricted Access””
id = ”s3”

s3 : AuthName

authtype = Basic
id = ”s4”

s4 : AuthType

htaccessUsername = ”alice”
id = ”hu1”

hu1 : HtaccessUser
htaccessUsername = ”dave”
id = ”hu2”

hu2 : HtaccessUser

settings[0]

settings[1]

settings[2]

settings[3]

htaccessUsers[0]htaccessUsers[1]

Figure 9.20: Model Changes from Htaccess to 06

For the direction Htaccess→06, the unidirectional operator is →DeleteAllIDAt-
tributes (id).

Metamodel Decisions are not used by →CompositeOperator.

Model Decisions configured for →CompositeOperator: This operator has no config-
urations for model decisions.

For the inverse direction Htaccess←06, the unidirectional operator is ←AddAllID-
Attributes (id).

9.2.2 Integrate Htaccess

Integrates Htaccess into the previous integration of Htpasswd and Authz.

07 ←→ 08: AddDeleteOppositeRelation

This operator changes the existing unidirectional association into a bidirectional one. This
is a preperation for the next operator and ensures, that a user can directly check, if it has
an Htaccess right, by using this new direction for navigation, which is used in the model
decision of the inverse operator. Since each Htaccess User is always contained, 1 is chosen
as new multiplicity. This association is created in unidirectional way by Xtext. Therefore,
this part of the orchestration changes the metamodel, as depicted in Figure 9.21Z 308. Ac-
cordingly, this part of the orchestration changes the model, as depicted in Figure 9.21Z 308.
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Figure 9.21: Changes in Metamodel (left/top) and Model (right/bottom) from 07 to 08
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9.2 Integration of existing Data Sources

For the direction 07→08, the unidirectional operator is →AddOppositeRelation
(add htaccess.HtaccessUser.htaccess as new opposite reference for htaccess.Htaccess.htaccess
Users).

Metamodel Decisions configured for →AddOppositeRelation:

• existingReferenceFullyQualified = htaccess.Htaccess.htaccessUsers

• newFeatureName = htaccess

• newFeatureLowerBound = 1

• newFeatureUpperBound = 1

Model Decisions configured for →AddOppositeRelation: This operator has no con-
figurations for model decisions.

For the inverse direction 07←08, the unidirectional operator is ←DeleteOpposite-
Relation (delete htaccess.HtaccessUser.htaccess, but keep its opposite htaccess.Htaccess.
htaccessUsers).

08 ←→ 09: MergeSplitClasses

This operator relates Htaccess rights and users explicitly to each other for C 2. This is
done by merging the classes for users and rights into each other, as contrast to C 1. This
is possible here, because each user has at maximum one Htaccess right. If there are more
Htaccess rights possible, merging becomes impossible, but the Htaccess rights should be
linked to ther user with AddDeleteAssociation again. In case of a missing matching user, the
right is deleted, according to C 2 a. C 2 b does not required additional effort. Removed users
are detected by remembering which rights and users are merged, which leads to a deletion of
its access right, according to C 2 c. Renamings according to C 2 d and C 2 e are also realized
by merge objects again, which were merged before. Because all users are contained in the
Htpasswd -container, they must not be contained in the Htaccess -container (any more),

the association is made non-containment. Since only some users have Htaccess -rights, the
multiplicity is widened. Therefore, this part of the orchestration changes the metamodel,
as depicted in Figure 9.22Z 310. Accordingly, this part of the orchestration changes the
model, as depicted in Figure 9.22Z 310.
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Figure 9.22: Changes in Metamodel (left/top) and Model (right/bottom) from 08 to 09

For the direction 08→09, the unidirectional operator is →MergeClasses (merge ht-
access.HtaccessUser into htpasswd.User).
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9.2 Integration of existing Data Sources

Metamodel Decisions configured for →MergeClasses:

• targetClassName = htpasswd.User

• sourceClassName = htaccess.HtaccessUser

• fullyQualifiedFeatureNamesToMakeNonContainment = { htac-
cess.Htaccess.htaccessUsers }

• fullyQualifiedFeatureNamesContainmentToChangeMultiplicity = { htac-
cess.HtaccessUser.htaccess }

Model Decisions configured for →MergeClasses: Configurations for model decisions
are realized in de unioldenburg se mmi rights integration decisions

MergeHtaccessHtpasswdUsers. All their configurations for model decisions are listed
here:

• mergeAgain ( arg0 : Instance, arg1 : Instance ) : MergeAgainDecision

Merges rights and users again, since they correspond to each other, which is
known from the previous execution.

• mergedSourceHasNoTargetAnyMore ( arg0 : Instance ) : MergedNowMiss-

ingDecision

Rights without user anymore are deleted, since their users were deleted before.

• mergedTargetHasNoSourceAnyMore ( arg0 : Instance ) : MergedNowMiss-

ingDecision

Users without right are allowed and remain unchanged.

• areMatching ( arg0 : Instance, arg1 : Instance ) : MatchDecision

Matches rights and users with same names.

• handleSourceWithoutMatch ( arg0 : Instance ) : SearchedNoMatchDecision

Rights without user are deleted.

• initializeTargetFeatures ( arg0 : Instance )

Missing names are set, due to 1 as lower bound for the multiplicity of the
corresponding attribute.

• initializeSourceFeatures ( arg0 : Instance )

Missing names are set, due to 1 as lower bound for the multiplicity of the
corresponding attribute.

For the inverse direction 08←09, the unidirectional operator is ←SplitClass (split
htpasswd.User, new class: htaccess.HtaccessUser).

09 ←→ SUMM : MergeSplitAttributes

By removing the htaccessUsername, redundancy in terms of a duplicated attribute is re-
duced. The user name is still stored in name. This produces a cleaner SU(M)M and

prevents inconsistencies in the SUM . Renamings are reflected in the merging process by
using the changed name and ignoring the unchanged name, according to C 2 d and C 2 e.
Therefore, the superfluous attribute is not deleted, but merged into the remaining attribute,
which allows to take the newest value of both existing values. Therefore, this part of the
orchestration changes the metamodel, as depicted in Figure 9.23Z 312. Accordingly, this
part of the orchestration changes the model, as depicted in Figure 9.23Z 312.
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Figure 9.23: Changes in Metamodel (left/top) and Model (right/bottom) from 09 to SUMM

For the direction 09→SUMM , the unidirectional operator is →MergeAttributes
(merge htpasswd.User.htaccessUsername into htpasswd.User.name).
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9.3 Definition of a new View(point)

Metamodel Decisions configured for →MergeAttributes:

• sourceAttributeNameFullyQualified = htpasswd.User.htaccessUsername

• targetAttributeNameFullyQualified = htpasswd.User.name

Model Decisions configured for →MergeAttributes: Configurations for model deci-
sions are realized in de unioldenburg se mmi framework operator unidirec-

tional decisions MergeAttributesWithoutConflict. All their configurations
for model decisions are listed here:

• merge ( instance : Instance, sourceSlot : AttributeSlot, targetSlot : At-

tributeSlot )

Merges two attributes with the assumption, that missing values can be copied
and duplicate value are the same. If values are changed, the changed values are
used as merged result. Precondition: The source slot and the target slot are
valid, i.e. contain useful values. That is required to enable checking for changed
values and to distinguish a missing value from an empty slot. (In case of conflicts
(which should not occur in theory), the values of the target slot win!) This is
a default configuration, reused from de unioldenburg se mmi framework

operator unidirectional decisions MergeAttributesWithoutConflict.

For the inverse direction 09←SUMM , the unidirectional operator is ←SplitAttri-
bute (split htpasswd.User.name, new: htpasswd.User.htaccessUsername).

9.3 Definition of a new View(point)

This section documents, how the new view(point) is derived from the SU(M)M. For each
used operator, its impact is highlighted and its configuration is sketched.

SUMM ←→ 10: SubSet

Since the configuration stuff Htaccess is not needed in the new view, it is removed. There-
fore, this part of the orchestration changes the metamodel, as depicted in Figure 9.24Z 314.
Accordingly, this part of the orchestration changes the model, as depicted in Figure 9.24Z 314.
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Figure 9.24: Changes in Metamodel (left/top) and Model (right/bottom) from SUMM to 10
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9.3 Definition of a new View(point)

For the direction SUMM→10, the unidirectional operator is →SubSetFilter (htac-
cess.Setting, htaccess.AuthType, htaccess.AuthName, htaccess.AuthGroupFile, htaccess.
AuthUserFile, htaccess.AuthTypeEnum).

Metamodel Decisions are not used by →SubSetFilter.

Model Decisions configured for →SubSetFilter: This operator has no configurations
for model decisions.

For the inverse direction SUMM←10, the unidirectional operator is←SubSetRecreate
(htaccess.Setting, htaccess.AuthType, htaccess.AuthName, htaccess.AuthGroupFile, htac-
cess.AuthUserFile, htaccess.AuthTypeEnum).

10 ←→ 11: AddDeleteAttribute

To show, how many read-only Authz permission a user has, all users get such a new
attribute. This new information in the view is read-only, i.e. changes of these cumulative
values are reverted. Therefore, this part of the orchestration changes the metamodel, as
depicted in Figure 9.25Z 316. Accordingly, this part of the orchestration changes the model,
as depicted in Figure 9.25Z 316.
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Figure 9.25: Changes in Metamodel (left/top) and Model (right/bottom) from 10 to 11

For the direction 10→11, the unidirectional operator is →AddAttribute (htpasswd.
User.authzReadOnly).

Metamodel Decisions configured for →AddAttribute:

• classWithNewAttributeFullyQualified = htpasswd.User

• attributeName = authzReadOnly
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9.3 Definition of a new View(point)

• attributeLowerBound = 0

• attributeUpperBound = 1

• attributeDataTypeFullyQualified = ecore.EDouble

Model Decisions configured for →AddAttribute: Configurations for model decisions
are realized in de unioldenburg se mmi rights integration AuthIntegra-

tionExample 2. All their configurations for model decisions are listed here:

• computeInitialValue ( arg0 : Instance, arg1 : EAttribute ) : Object

The configuration counts, how many Authz mappings have a read-only permis-
sion.

For the inverse direction 10←11, the unidirectional operator is ←DeleteAttribute
(htpasswd.User.authzReadOnly).

11 ←→ 12: AddDeleteAttribute

To show, how many read-and-write Authz permission a user has, all users get such a new
attribute. This new information in the view is read-only, i.e. changes of these cumulative
values are reverted. Therefore, this part of the orchestration changes the metamodel, as
depicted in Figure 9.26Z 318. Accordingly, this part of the orchestration changes the model,
as depicted in Figure 9.26Z 318.
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Figure 9.26: Changes in Metamodel (left/top) and Model (right/bottom) from 11 to 12

For the direction 11→12, the unidirectional operator is →AddAttribute (htpasswd.
User.authzWrite).

Metamodel Decisions configured for →AddAttribute:

• classWithNewAttributeFullyQualified = htpasswd.User

• attributeName = authzWrite
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9.3 Definition of a new View(point)

• attributeLowerBound = 0

• attributeUpperBound = 1

• attributeDataTypeFullyQualified = ecore.EDouble

Model Decisions configured for →AddAttribute: Configurations for model decisions
are realized in de unioldenburg se mmi rights integration AuthIntegra-

tionExample 3. All their configurations for model decisions are listed here:

• computeInitialValue ( arg0 : Instance, arg1 : EAttribute ) : Object

The configuration counts, how many Authz mappings have a read-and-write
permission.

For the inverse direction 11←12, the unidirectional operator is ←DeleteAttribute
(htpasswd.User.authzWrite).

12 ←→ 13: ReplaceReferenceByAttribute

To inform, whether the user has the Htaccess right or not, a new boolean attribute is
introduced. Its value can be changed in the view and the Htaccess right is added or
removed in the SUM accordingly. Therefore, this part of the orchestration changes the
metamodel, as depicted in Figure 9.27Z 320. Accordingly, this part of the orchestration
changes the model, as depicted in Figure 9.27Z 320.
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9 Access Data
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Figure 9.27: Changes in Metamodel (left/top) and Model (right/bottom) from 12 to 13

For the direction 12→13, the unidirectional operator is →ReplaceReferenceBy-
Attribute (htpasswd.User.htaccess : htaccess.Htaccess).

Metamodel Decisions configured for →ReplaceReferenceByAttribute:

• sourceClassName = htpasswd.User

• referenceName = htaccess
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9.3 Definition of a new View(point)

• newAttributeType = ecore.EBoolean

Model Decisions configured for →ReplaceReferenceByAttribute: Configurations
for model decisions are realized in de unioldenburg se mmi rights integration

AuthIntegrationExample 4. All their configurations for model decisions are listed
here:

• replaceLink ( arg0 : ReferenceSlot, arg1 : Instance, arg2 : ReplaceRefer-

enceByAttribute ) : Object

If this method is called, the ’oldValue’ exists and indicates, that the user has
the Htaccess right, and returns TRUE. Otherwise, the default value FALSE is
used implicitly.

For the inverse direction 12←13, the unidirectional operator is ←ReplaceAttri-
buteByReference (htpasswd.User.htaccess −→ htaccess.Htaccess).

13 ←→ 16

Since the details about the Htaccess and Authz rights are not necessary anymore, they
are removed now. Therefore, this part of the orchestration changes the metamodel, as
depicted in Figure 9.28Z 322. Accordingly, this part of the orchestration changes the model,
as depicted in Figure 9.28Z 322.
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Figure 9.28: Metamodel Changes from 13 to 16

This is realized by the following three operators:

1. For the direction 13→14, the unidirectional operator is →SubSetFilter (authz,
htaccess, htpasswd.User.password).

Deleting the two packages with all their classes in the metamodel, leads also to the
deletion of all instances.
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9.3 Definition of a new View(point)

Metamodel Decisions are not used by →SubSetFilter.

Model Decisions configured for →SubSetFilter: This operator has no configu-
rations for model decisions.

For the inverse direction 13←14, the unidirectional operator is←SubSetRecreate
(authz, htaccess, htpasswd.User.password).

2. For the direction 14→15, the unidirectional operator is→DeleteNamespace (model-
authz).

The previous operator deleted all instances inside this model namespace, so it can be
deleted now. It is not deleted together with the previous operator, since it allows only
to specify elements of the metamodel explicitly, but not namespaces of the model.

Metamodel Decisions configured for →DeleteNamespace:

• namespaceFullName = model-authz

Model Decisions configured for→DeleteNamespace: This operator has no con-
figurations for model decisions.

For the inverse direction 14←15, the unidirectional operator is ←AddNamespace
(model-authz).

3. For the direction 15→16, the unidirectional operator is→DeleteNamespace (model-
htaccess).

Now the second empty model namespace is deleted.

Metamodel Decisions configured for →DeleteNamespace:

• namespaceFullName = model-htaccess

Model Decisions configured for→DeleteNamespace: This operator has no con-
figurations for model decisions.

For the inverse direction 15←16, the unidirectional operator is ←AddNamespace
(model-htaccess).

16 ←→ 17: RenameClassifier

To make clear, that this is a new view(point) and not Htpasswd anymore, some elements
are renamed now. Therefore, this part of the orchestration changes the metamodel, as
depicted in Figure 9.29Z 324.
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9 Access Data

htpasswdRightsCollectionHtpasswd

name : EString [0..1]

authzReadOnly : EDouble [0..1]

authzWrite : EDouble [0..1]

htaccess : EBoolean [0..1]

User

users [∗]

Figure 9.29: Metamodel Changes from 16 to 17

Accordingly, this part of the orchestration does not change the model. For the direc-
tion 16→17, the unidirectional operator is→RenameClassifier (htpasswd.Htpasswd→
RightsCollection).

Metamodel Decisions configured for →RenameClassifier:

• elementFullyQualified = htpasswd.Htpasswd

• name = RightsCollection

Model Decisions configured for →RenameClassifier: This operator has no configura-
tions for model decisions.

For the inverse direction 16←17, the unidirectional operator is ←RenameClassifier
(htpasswd.RightsCollection → Htpasswd).

17 ←→ 18: AddDeleteAttribute

Since the Excel format needs a row number for each entry, each user will get an Integer
number, sorted by the user name. Therefore, this part of the orchestration changes the
metamodel, as depicted in Figure 9.30.

htpasswdRightsCollection

name : EString [0..1]

authzReadOnly : EDouble [0..1]

authzWrite : EDouble [0..1]

htaccess : EBoolean [0..1]

rowNumber : EInt [0..1]

User

users [∗]

Figure 9.30: Metamodel Changes from 17 to 18
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Accordingly, this part of the orchestration changes the model, as depicted in Figure 9.31.
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Figure 9.31: Model Changes from 17 to 18
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For the direction 17→18, the unidirectional operator is →AddAttribute (htpasswd.
User.rowNumber).

Metamodel Decisions configured for →AddAttribute:

• classWithNewAttributeFullyQualified = htpasswd.User

• attributeName = rowNumber

• attributeLowerBound = 0

• attributeUpperBound = 1

• attributeDataTypeFullyQualified = ecore.EInt

Model Decisions configured for →AddAttribute: Configurations for model decisions
are realized in de unioldenburg se mmi rights integration AuthIntegra-

tionExample 6. All their configurations for model decisions are listed here:

• computeInitialValue ( arg0 : Instance, arg1 : EAttribute ) : Object

To determine the order/position of the current user, this configuration counts,
how many other users have a name which is earlier in the alphabet, than the
name of the current user.

For the inverse direction 17←18, the unidirectional operator is ←DeleteAttribute
(htpasswd.User.rowNumber).

18 ←→ Overview : AddDeleteAttribute

Since the current Excel adapter requires to have a column usable as UUID, such column is
created here. Therefore, this part of the orchestration changes the metamodel, as depicted
in Figure 9.32.

htpasswdRightsCollection

name : EString [0..1]

authzReadOnly : EDouble [0..1]

authzWrite : EDouble [0..1]

htaccess : EBoolean [0..1]

rowNumber : EInt [0..1]

id : EString [0..1]

User

users [∗]

Figure 9.32: Metamodel Changes from 18 to Overview

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 9.33Z 327.
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Figure 9.33: Model Changes from 18 to Overview

For the direction 18→Overview , the unidirectional operator is→AddAttribute (ht-
passwd.User.id).

Metamodel Decisions configured for →AddAttribute:

• classWithNewAttributeFullyQualified = htpasswd.User

• attributeName = id
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• attributeLowerBound = 0

• attributeUpperBound = 1

• attributeDataTypeFullyQualified = ecore.EString

Model Decisions configured for →AddAttribute: Configurations for model decisions
are realized in de unioldenburg se mmi framework operator unidirectional

decisions AddAttributeIdUuid. All their configurations for model decisions are
listed here:

• computeInitialValue ( instanceToFix : Instance, newAttribute : EAttribute

) : Object

Uses the UUID of the instance as initial value for the new attribute. This is
a default configuration, reused from de unioldenburg se mmi framework

operator unidirectional decisions AddAttributeIdUuid.

For the inverse direction 18←Overview , the unidirectional operator is ←DeleteAt-
tribute (htpasswd.User.id).

9.4 Validation Scenarios

This section documents acceptance test cases for this application domain. Each test case
is documented in its own section. The first section shows the initialization of the SU(M)M
before running the test case. Additionally, the initialization shows the models for all views,
before they might be changed in the particular test case. The initialization is the same for
all following test cases and is documented only once.

9.4.1 Initialization by Execution

This is the description of the first execution run for the initialization: Starting with the
initial data sources, the SU(M) and the new view(point)s are created, while possible incon-
sistencies in the data sources are fixed. The resulting models serve as starting point for the
following test case scenarios.

As result after completing the synchronization, the following changes are expected:

• In Htpasswd , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #hp1
2 a l i c e : theu9Naig7fophed #u1
3 bob : eengohbu4naisa i7 #u2

5 f rank : Ahch9iemai4Ui3si #u3
6 walte r : e i f e i h o 3 i e x 3 a h n g #u4
7 c h a r l i e : r f lhpxnqltbybvno #u5
8 e r i c : naop j tv sg l q rqa jp #u6

The model with highlighted changes is represented graphically:
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9 Access Data

• In Authz , no changes are expected in the model.

• In Htaccess , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #ha1
2 AuthUserFile /some/path/ to / u s e r F i l e #s1
3 AuthGroupFile /some/path/ to / groupFi l e #s2
4 AuthName ”Some Name For This Auth −− R e s t r i c t e d Access ” #s3
5 AuthType Bas ic #s4

7 r e q u i r e user a l i c e #hu1
8 r e q u i r e user dave #hu2

The model with highlighted changes is represented graphically:

model-htaccess

id = ”ha1”

ha1 : Htaccess

id = ”s1”
path = ”/some/path/to/userFile”

s1 : AuthUserFile

id = ”s2”
path = ”/some/path/to/groupFile”

s2 : AuthGroupFile

id = ”s3”
name = ””Some Name For This Auth – Restricted Access””

s3 : AuthName

id = ”s4”
authtype = Basic

s4 : AuthType

htaccessUsername = ”alice”
id = ”hu1”

hu1 : HtaccessUser
id = ”hu2”
htaccessUsername = ”dave”

hu2 : HtaccessUser

settings[0]

settings[1]

settings[2]

settings[3]

htaccessUsers[0]htaccessUsers[1]

• Since no model existed for SUM before this execution, it is conceptually not possible
to specify expected changes. Only the model after the execution can be defined (left):
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• Since no model existed for Overview before this execution, it is conceptually not
possible to specify expected changes. Only the model after the execution can be
defined in the figure before on the right.

The real changes after execution of the configured operators correspond to the expected
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changes in the models. Therefore, the scenario is successfully fulfilled by this test case.

9.4.2 Scenario: renamed Mapping, reload externally (Au-
thz)

Changing the user name of an existing Authz access right of a user with multiple rights
leads to the creation of a new user with the changed user name, since such user is missing.
This test case tests mainly C 1 d.

The User applies the desired changes to Authz by changing its external representation.
The model with highlighted changes is represented with its concrete rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e a l i ceChangedExterna l ly = rw #m1
4 [ / some/path/ to / repo / r2 ] #r2
5 a l i c e = rw #m2
6 bob = rw #m3

8 [ / some/path/ to / repo / r3 ] #r3
9 c h a r l i e = r #m4

10 e r i c = rw #m5

The model differences are represented in textual form:
1 m1.remove(authzUsername, 0, ”alice”)

2 m1.add(authzUsername, 0, ”aliceChangedExternally”)

User∆14
Authz

As result after completing the synchronization, the following changes are expected:

• In Htpasswd , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #hp1
2 a l i c e : theu9Naig7fophed #u1
3 bob : eengohbu4naisa i7 #u2
4 f rank : Ahch9iemai4Ui3si #u3
5 walte r : e i f e i h o 3 i e x 3 a h n g #u4
6 c h a r l i e : royugvknxydtwytq #u5
7 e r i c : dpgvkgvqevopntmu #u6
8 a l i ceChangedExterna l ly : kqc lvh ingcvekek l #u7

The model with highlighted changes is represented graphically (left):
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• In Authz , some changes are expected in the model (including the user changes
User∆14

Authz). The model with highlighted changes is represented with its concrete
rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e a l i ceChangedExterna l ly = rw #m1
4 [ / some/path/ to / repo / r2 ] #r2
5 a l i c e = rw #m2
6 bob = rw #m3
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8 [ / some/path/ to / repo / r3 ] #r3
9 c h a r l i e = r #m4

10 e r i c = rw #m5

The model with highlighted changes is represented graphically in the figure before on
the right.

• In Htaccess , no changes are expected in the model.

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically (left):
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• In Overview , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

The model with highlighted changes is represented graphically in the figure before on
the right.

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Authz applied to Authz are
propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

9.4.3 Scenario: removed Mapping, reload externally (Authz)

Removing an Authz access right of a user with multiple rights leads only to the removal
of this right. This test case tests mainly C 1 b.

The User applies the desired changes to Authz by changing its external representation.
The model with highlighted changes is represented with its concrete rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e = rw #m1

5 [ / some/path/ to / repo / r2 ] #r2
6 a l i c e = rw #m2
7 bob = rw #m3

9 [ / some/path/ to / repo / r3 ] #r3
10 c h a r l i e = r #m4
11 e r i c = rw #m5

The model differences are represented in textual form:
1 r1.remove(mappings, 0, m1)

2 m1.remove(authzUsername, 0, ”alice”)

3 m1.remove(permission, 0, e34)

4 m1.remove(id, 0, ”m1”)

5 m1.changeNamespace(model-authz ⇒ null)

6 m1.changeType(authz.Mapping ⇒ null)

7 m1.deleteInstance()

User∆14
Authz

As result after completing the synchronization, the following changes are expected:

• In Htpasswd , no changes are expected in the model.
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• In Authz , some changes are expected in the model (including the user changes
User∆14

Authz). The model with highlighted changes is represented with its concrete
rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e = rw #m1

5 [ / some/path/ to / repo / r2 ] #r2
6 a l i c e = rw #m2
7 bob = rw #m3

9 [ / some/path/ to / repo / r3 ] #r3
10 c h a r l i e = r #m4
11 e r i c = rw #m5

The model with highlighted changes is represented graphically:
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• In Htaccess , no changes are expected in the model.

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically (left):
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• In Overview , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:
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9 Access Data

The model with highlighted changes is represented graphically in the figure before on
the right.

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Authz applied to Authz are
propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

9.4.4 Scenario: added Mapping, reload externally (Authz)

Adding a new Authz access right without matching user leads to the creation of such a
user. This test case tests mainly C 1 a.

The User applies the desired changes to Authz by changing its external representation.
The model with highlighted changes is represented with its concrete rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e = rw #m1

5 [ / some/path/ to / repo / r2 ] #r2
6 a l i c e = rw #m2
7 bob = rw #m3

9 [ / some/path/ to / repo / r3 ] #r3
10 c h a r l i e = r #m4
11 e r i c = rw #m5
12 dennis = r

The model differences are represented in textual form:
1 m6.createInstance()

2 m6.changeNamespace(null ⇒ model-authz)

3 m6.changeType(null ⇒ authz.Mapping)

4 m6.add(permission, 0, 447)

5 r3.add(mappings, 2, m6)

6 m6.add(authzUsername, 0, ”dennis”)

User∆14
Authz

As result after completing the synchronization, the following changes are expected:

• In Htpasswd , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #hp1
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2 a l i c e : theu9Naig7fophed #u1
3 bob : eengohbu4naisa i7 #u2
4 f rank : Ahch9iemai4Ui3si #u3
5 walte r : e i f e i h o 3 i e x 3 a h n g #u4
6 c h a r l i e : bsukfbxmxvbqlbxx #u5
7 e r i c : iwoedgmhvqajofwc #u6
8 dennis : wd f fqkdscagd lq f t #u7

The model with highlighted changes is represented graphically (left):
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9 Access Data

• In Authz , some changes are expected in the model (including the user changes
User∆14

Authz). The model with highlighted changes is represented with its concrete
rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e = rw #m1

5 [ / some/path/ to / repo / r2 ] #r2
6 a l i c e = rw #m2
7 bob = rw #m3

9 [ / some/path/ to / repo / r3 ] #r3
10 c h a r l i e = r #m4
11 e r i c = rw #m5
12 dennis = r #m6

The model with highlighted changes is represented graphically in the figure before on
the right.

• In Htaccess , no changes are expected in the model.

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically (left):
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9 Access Data

• In Overview , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

The model with highlighted changes is represented graphically in the figure before on
the right.

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Authz applied to Authz are
propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

9.4.5 Scenario: added Mapping, reload externally (Authz)

Adding a new Authz access right with matching user leads to its linkage to that user. This
test case tests mainly C 1 a.

The User applies the desired changes to Authz by changing its external representation.
The model with highlighted changes is represented with its concrete rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e = rw #m1
4 f rank = r
5 [ / some/path/ to / repo / r2 ] #r2
6 a l i c e = rw #m2
7 bob = rw #m3

9 [ / some/path/ to / repo / r3 ] #r3
10 c h a r l i e = r #m4
11 e r i c = rw #m5

The model differences are represented in textual form:
1 m6.createInstance()

2 m6.changeNamespace(null ⇒ model-authz)

3 m6.changeType(null ⇒ authz.Mapping)

4 m6.add(permission, 0, 447)

5 r1.add(mappings, 1, m6)

6 m6.add(authzUsername, 0, ”frank”)

User∆14
Authz

As result after completing the synchronization, the following changes are expected:

• In Htpasswd , no changes are expected in the model.
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9.4 Validation Scenarios

• In Authz , some changes are expected in the model (including the user changes
User∆14

Authz). The model with highlighted changes is represented with its concrete
rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e = rw #m1
4 f rank = r #m6
5 [ / some/path/ to / repo / r2 ] #r2
6 a l i c e = rw #m2
7 bob = rw #m3

9 [ / some/path/ to / repo / r3 ] #r3
10 c h a r l i e = r #m4
11 e r i c = rw #m5

The model with highlighted changes is represented graphically:
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• In Htaccess , no changes are expected in the model.

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically (left):

346



9.4 Validation Scenarios

m
o
d
e
l-

a
u
th

z
m

o
d
e
l-

h
ta

c
c
e
ss

m
o
d
e
l-

h
tp

a
ss

w
d

h
p

1
:

H
tp

a
ss

w
d

n
a
m

e
=

”
a
li
c
e
”

p
a
ss

w
o
rd

=
”
th

e
u
9
N

a
ig

7
fo

p
h
e
d
”

u
1

:
U

se
r

n
a
m

e
=

”
b

o
b
”

p
a
ss

w
o
rd

=
”
e
e
n
g
o
h
b
u
4
n
a
is

a
i7

”

u
2

:
U

se
r

n
a
m

e
=

”
fr

a
n
k
”

p
a
ss

w
o
rd

=
”
A

h
c
h
9
ie

m
a
i4

U
i3

si
”

u
3

:
U

se
r

n
a
m

e
=

”
w

a
lt

e
r”

p
a
ss

w
o
rd

=
”
e
if

e
ih

o
3
ie

x
3
a
h
n
g
”

u
4

:
U

se
r

n
a
m

e
=

”
c
h
a
rl

ie
”

p
a
ss

w
o
rd

=
”
q
h
v
h
ll
rr

d
fk

iu
d
rk

”

u
5

:
U

se
r

n
a
m

e
=

”
e
ri

c
”

p
a
ss

w
o
rd

=
”
u
u
x
e
p
x
c
d
o
lb

lw
y
tt

”

u
6

:
U

se
r

h
a
1

:
H

ta
cc

es
s

p
a
th

=
”
/
so

m
e
/
p
a
th

/
to

/
u
se

rF
il
e
”

s1
:

A
u

th
U

se
rF

il
e

p
a
th

=
”
/
so

m
e
/
p
a
th

/
to

/
g
ro

u
p
F

il
e
”

s2
:

A
u

th
G

ro
u

p
F

il
e

n
a
m

e
=

”
”
S
o
m

e
N

a
m

e
F
o
r

T
h
is

A
u
th

–
R

e
st

ri
c
te

d
A

c
c
e
ss

”
”

s3
:

A
u

th
N

a
m

e

a
u
th

ty
p

e
=

B
a
si

c

s4
:

A
u

th
T

y
p

e

p
e
rm

is
si

o
n

=
rw

m
5

:
M

a
p

p
in

g

p
e
rm

is
si

o
n

=
r

m
4

:
M

a
p

p
in

g

p
e
rm

is
si

o
n

=
rw

m
3

:
M

a
p

p
in

g

p
e
rm

is
si

o
n

=
rw

m
2

:
M

a
p

p
in

g

p
e
rm

is
si

o
n

=
rw

m
1

:
M

a
p

p
in

g

p
e
rm

is
si

o
n

=
r4

4
7

m
6

:
M

a
p

p
in

g

p
a
th

=
”
/
so

m
e
/
p
a
th

/
to

/
re

p
o
/
r3

”

r3
:

R
ep

o
si

to
ry

p
a
th

=
”
/
so

m
e
/
p
a
th

/
to

/
re

p
o
/
r2

”

r2
:

R
ep

o
si

to
ry

p
a
th

=
”
/
so

m
e
/
p
a
th

/
to

/
re

p
o
/
r1

”

r1
:

R
ep

o
si

to
ry

a
1

:
A

u
th

z

u
se

rs
[0

]
u
se

rs
[1

]
u
se

rs
[2

]
u
se

rs
[3

]
u
se

rs
[4

]
u
se

rs
[5

]

h
tp

a
ss

w
d
U

se
r[

0
]

a
u
th

z
U

se
r[

0
]

h
tp

a
ss

w
d
U

se
r[

0
]

a
u
th

z
U

se
r[

1
]

h
ta

c
c
e
ss

U
se

rs
[0

]

h
ta

c
c
e
ss

[0
]

h
tp

a
ss

w
d
U

se
r[

0
]

a
u
th

z
U

se
r[

0
]

h
tp

a
ss

w
d
U

se
r[

0
]

a
u
th

z
U

se
r[

0
]

h
tp

a
ss

w
d
U

se
r[

0
]

a
u
th

z
U

se
r[

0
]

h
tp

a
ss

w
d
U

se
r[

0
]

a
u
th

z
U

se
r[

0
]

se
tt

in
g
s[

0
]

se
tt

in
g
s[

1
]

se
tt

in
g
s[

2
]

se
tt

in
g
s[

3
]

m
a
p
p
in

g
s[

0
]

m
a
p
p
in

g
s[

1
]

m
a
p
p
in

g
s[

0
]

m
a
p
p
in

g
s[

1
]

m
a
p
p
in

g
s[

0
]

m
a
p
p
in

g
s[

1
]

re
p

o
si

to
ri

e
s[

0
]

re
p

o
si

to
ri

e
s[

1
]

re
p

o
si

to
ri

e
s[

2
]

m
o
d
e
l-

h
tp

a
ss

w
d

h
p

1
:

R
ig

h
ts

C
o
ll
ec

ti
o
n

n
a
m

e
=

”
a
li

c
e
”

a
u
th

z
R

e
a
d
O

n
ly

=
0
.0

a
u
th

z
W

ri
te

=
2
.0

h
ta

c
c
e
ss

=
tr

u
e

ro
w

N
u
m

b
e
r

=
2

id
=

”
u
1
”

u
1

:
U

se
r

n
a
m

e
=

”
b

o
b
”

a
u
th

z
R

e
a
d
O

n
ly

=
0
.0

a
u
th

z
W

ri
te

=
1
.0

h
ta

c
c
e
ss

=
fa

ls
e

ro
w

N
u
m

b
e
r

=
3

id
=

”
u
2
”

u
2

:
U

se
r

n
a
m

e
=

”
fr

a
n
k
”

a
u
th

z
R

e
a
d
O

n
ly

=
1
.0

0
.0

a
u
th

z
W

ri
te

=
0
.0

h
ta

c
c
e
ss

=
fa

ls
e

ro
w

N
u
m

b
e
r

=
6

id
=

”
u
3
”

u
3

:
U

se
r

n
a
m

e
=

”
w

a
lt

e
r”

a
u
th

z
R

e
a
d
O

n
ly

=
0
.0

a
u
th

z
W

ri
te

=
0
.0

h
ta

c
c
e
ss

=
fa

ls
e

ro
w

N
u
m

b
e
r

=
7

id
=

”
u
4
”

u
4

:
U

se
r

n
a
m

e
=

”
c
h
a
rl

ie
”

a
u
th

z
R

e
a
d
O

n
ly

=
1
.0

a
u
th

z
W

ri
te

=
0
.0

h
ta

c
c
e
ss

=
fa

ls
e

ro
w

N
u
m

b
e
r

=
4

id
=

”
u
5
”

u
5

:
U

se
r

n
a
m

e
=

”
e
ri

c
”

a
u
th

z
R

e
a
d
O

n
ly

=
0
.0

a
u
th

z
W

ri
te

=
1
.0

h
ta

c
c
e
ss

=
fa

ls
e

ro
w

N
u
m

b
e
r

=
5

id
=

”
u
6
”

u
6

:
U

se
r

u
se

rs
[0

]
u
se

rs
[1

]

u
se

rs
[2

]
u
se

rs
[3

]
u
se

rs
[4

]

u
se

rs
[5

]

• In Overview , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:
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9 Access Data

The model with highlighted changes is represented graphically in the figure before on
the right.

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Authz applied to Authz are
propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

9.4.6 Scenario: removed Mapping, reload externally (Authz)

Removing an Authz access right of a user with only this right leads also to the removal of
that user. This test case tests mainly C 1 b.

The User applies the desired changes to Authz by changing its external representation.
The model with highlighted changes is represented with its concrete rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e = rw #m1

5 [ / some/path/ to / repo / r2 ] #r2
6 a l i c e = rw #m2
7 bob = rw #m3

9 [ / some/path/ to / repo / r3 ] #r3
10 c h a r l i e = r #m4
11 e r i c = rw #m5

The model differences are represented in textual form:
1 r2.remove(mappings, 1, m3)

2 m3.remove(authzUsername, 0, ”bob”)

3 m3.remove(permission, 0, e34)

4 m3.remove(id, 0, ”m3”)

5 m3.changeNamespace(model-authz ⇒ null)

6 m3.changeType(authz.Mapping ⇒ null)

7 m3.deleteInstance()

User∆14
Authz

As result after completing the synchronization, the following changes are expected:

• In Htpasswd , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #hp1
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2 a l i c e : theu9Naig7fophed #u1
3 bob : eengohbu4naisa i7 #u2
4 f rank : Ahch9iemai4Ui3si #u3
5 walte r : e i f e i h o 3 i e x 3 a h n g #u4
6 c h a r l i e : c y b i a i f v c c x n v f g c #u5
7 e r i c : ayepnkj s lpa j f rbm #u6

The model with highlighted changes is represented graphically (left):
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• In Authz , some changes are expected in the model (including the user changes
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User∆14
Authz). The model with highlighted changes is represented with its concrete

rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e = rw #m1

5 [ / some/path/ to / repo / r2 ] #r2
6 a l i c e = rw #m2
7 bob = rw #m3

9 [ / some/path/ to / repo / r3 ] #r3
10 c h a r l i e = r #m4
11 e r i c = rw #m5

The model with highlighted changes is represented graphically in the figure before on
the right.

• In Htaccess , no changes are expected in the model.

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically (left):
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• In Overview , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:
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The model with highlighted changes is represented graphically in the figure before on
the right.

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Authz applied to Authz are
propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

9.4.7 Scenario: renamed HtaccessUser, reload externally (Ht-
access)

Renaming a Htaccess right leads to the renaming of the corresponding user. Because of

C 1 e, the rights of this user in Authz are also renamed. This test case tests mainly C 2 d.
The User applies the desired changes to Htaccess by changing its external representa-

tion. The model with highlighted changes is represented with its concrete rendering:

1 #ha1
2 AuthUserFile /some/path/ to / u s e r F i l e #s1
3 AuthGroupFile /some/path/ to / groupFi l e #s2
4 AuthName ”Some Name For This Auth −− R e s t r i c t e d Access ” #s3
5 AuthType Bas ic #s4
6 r e q u i r e user a l i c e a l i ceChangedExterna l ly #hu1

The model differences are represented in textual form:
1 hu1.remove(htaccessUsername, 0, ”alice”)

2 hu1.add(htaccessUsername, 0, ”aliceChangedExternally”)

User∆14
Htaccess

As result after completing the synchronization, the following changes are expected:

• In Htpasswd , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #hp1
2 a l i c e a l i ceChangedExterna l ly : theu9Naig7fophed #u1
3 bob : eengohbu4naisa i7 #u2
4 f rank : Ahch9iemai4Ui3si #u3
5 walte r : e i f e i h o 3 i e x 3 a h n g #u4
6 c h a r l i e : qkrwoyaxvdeepntl #u5
7 e r i c : acfawxmnywxydjgi #u6

The model with highlighted changes is represented graphically (left):
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• In Authz , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e a l i ceChangedExterna l ly = rw #m1
4 [ / some/path/ to / repo / r2 ] #r2
5 a l i c e a l i ceChangedExterna l ly = rw #m2
6 bob = rw #m3
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8 [ / some/path/ to / repo / r3 ] #r3
9 c h a r l i e = r #m4

10 e r i c = rw #m5

The model with highlighted changes is represented graphically in the figure before on
the right.

• In Htaccess , some changes are expected in the model (including the user changes
User∆14

Htaccess). The model with highlighted changes is represented with its concrete
rendering:

1 #ha1
2 AuthUserFile /some/path/ to / u s e r F i l e #s1
3 AuthGroupFile /some/path/ to / groupFi l e #s2
4 AuthName ”Some Name For This Auth −− R e s t r i c t e d Access ” #s3
5 AuthType Bas ic #s4
6 r e q u i r e user a l i c e a l i ceChangedExterna l ly #hu1

The model with highlighted changes is represented graphically:

model-htaccess

id = ”ha1”

ha1 : Htaccess

id = ”s1”
path = ”/some/path/to/userFile”

s1 : AuthUserFile

id = ”s2”
path = ”/some/path/to/groupFile”

s2 : AuthGroupFile

id = ”s3”
name = ””Some Name For This Auth – Restricted Access””

s3 : AuthName

id = ”s4”
authtype = Basic

s4 : AuthType

htaccessUsername = ”aliceChangedExternally””alice”
id = ”hu1”

hu1 : HtaccessUser

htaccessUsers[0]

settings[0]

settings[1]

settings[2]

settings[3]

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically (left):
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• In Overview , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:
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The model with highlighted changes is represented graphically in the figure before on
the right.

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Htaccess applied to Htaccess are
propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

9.4.8 Scenario: change Htaccess right for Bob (Overview)

Changing the Htaccess right in the new Overview view will be propagated back to the
SUM .

The User applies the desired changes to Overview by changing its internal EMF mo-
del. Therefore, the external representation is not yet updated. The model differences are
represented in textual form:

1 u2.remove(htaccess, 0, ”false”)

2 u2.add(htaccess, 0, ”true”)

User∆14
Overview

As result after completing the synchronization, the following changes are expected:

• In Htpasswd , no changes are expected in the model.

• In Authz , no changes are expected in the model.

• In Htaccess , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #ha1
2 AuthUserFile /some/path/ to / u s e r F i l e #s1
3 AuthGroupFile /some/path/ to / groupFi l e #s2
4 AuthName ”Some Name For This Auth −− R e s t r i c t e d Access ” #s3
5 AuthType Bas ic #s4
6 r e q u i r e user bob #hu3
7 r e q u i r e user a l i c e #hu1

The model with highlighted changes is represented graphically:
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9.4 Validation Scenarios

model-htaccess

id = ”ha1”

ha1 : Htaccess

id = ”s1”
path = ”/some/path/to/userFile”

s1 : AuthUserFile

id = ”s2”
path = ”/some/path/to/groupFile”

s2 : AuthGroupFile

id = ”s3”
name = ””Some Name For This Auth – Restricted Access””

s3 : AuthName

id = ”s4”
authtype = Basic

s4 : AuthType

htaccessUsername = ”alice”
id = ”hu1”

hu1 : HtaccessUser
htaccessUsername = ”bob”
id = ”hu3”

hu3 : HtaccessUser

htaccessUsers[0]
htaccessUsers[1]

settings[0]

settings[1]

settings[2]

settings[3]

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically (left):
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• In Overview , some changes are expected in the model (including the user changes
User∆14

Overview). The model with highlighted changes is represented with its concrete
rendering:
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The model with highlighted changes is represented graphically in the figure before on
the right.

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Overview applied to Overview
are propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

9.4.9 Scenario: change number of Authz rights for Bob (Overview)

Changes of the numbers of Authz rights inside the new Overview view will be reverted.
The User applies the desired changes to Overview by changing its internal EMF mo-

del. Therefore, the external representation is not yet updated. The model differences are
represented in textual form:

1 u2.remove(authzReadOnly, 0, ”0.0”)

2 u2.add(authzReadOnly, 0, ”5.0”)

User∆14
Overview

As result after completing the synchronization, the following changes are expected:

• In Htpasswd , no changes are expected in the model.

• In Authz , no changes are expected in the model.

• In Htaccess , no changes are expected in the model.

• In SUM , no changes are expected in the model.

• In Overview , no changes are expected in the model (including the user changes
User∆14

Overview, which are reverted due to the viewpoint definition).

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Overview applied to Overview
are propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

9.4.10 Scenario: change the name of Bob to David (Overview)

Changing the name in the new Overview view will be propagated back to the SUM . Ad-
ditionally, the order of users in Overview is changed, since Bob/David change the position
with Charlie.

The User applies the desired changes to Overview by changing its internal EMF mo-
del. Therefore, the external representation is not yet updated. The model differences are
represented in textual form:
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1 u2.remove(name, 0, ”bob”)

2 u2.add(name, 0, ”david”)

User∆14
Overview

As result after completing the synchronization, the following changes are expected:

• In Htpasswd , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #hp1
2 a l i c e : theu9Naig7fophed #u1
3 bob david : eengohbu4naisa i7 #u2
4 f rank : Ahch9iemai4Ui3si #u3
5 walte r : e i f e i h o 3 i e x 3 a h n g #u4
6 c h a r l i e : wwdcrqwikvbfwnsj #u5
7 e r i c : phvwnjxjpplmobkx #u6

The model with highlighted changes is represented graphically (left):
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• In Authz , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e = rw #m1

5 [ / some/path/ to / repo / r2 ] #r2
6 a l i c e = rw #m2
7 bob david = rw #m3

361



9 Access Data

8 [ / some/path/ to / repo / r3 ] #r3
9 c h a r l i e = r #m4

10 e r i c = rw #m5

The model with highlighted changes is represented graphically in the figure before on
the right.

• In Htaccess , no changes are expected in the model.

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically (left):
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• In Overview , some changes are expected in the model (including the user changes
User∆14

Overview). The model with highlighted changes is represented with its concrete
rendering:

The model with highlighted changes is represented graphically in the figure before on
the right.

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Overview applied to Overview
are propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

9.4.11 Scenario: removed user, reload externally (Overview)

Removing of a user leads to the removal of all its access rights.

The User applies the desired changes to Overview by changing its external represen-
tation. The model with highlighted changes is represented with its concrete rendering:

The model differences are represented in textual form:
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1 u2.remove(rowNumber, 0, ”3”)

2 u2.add(rowNumber, 0, ”2”)

3 u5.remove(rowNumber, 0, ”4”)

4 u5.add(rowNumber, 0, ”3”)

5 u6.remove(rowNumber, 0, ”5”)

6 u6.add(rowNumber, 0, ”4”)

7 u3.remove(rowNumber, 0, ”6”)

8 u3.add(rowNumber, 0, ”5”)

9 u4.remove(rowNumber, 0, ”7”)

10 u4.add(rowNumber, 0, ”6”)

11 hp1.remove(users, 0, u1)

12 u1.remove(name, 0, ”alice”)

13 u1.remove(authzWrite, 0, ”2.0”)

14 u1.remove(htaccess, 0, ”true”)

15 u1.remove(rowNumber, 0, ”2”)

16 u1.remove(id, 0, ”u1”)

17 u1.changeNamespace(model-htpasswd ⇒ null)

18 u1.remove(authzReadOnly, 0, ”0.0”)

19 u1.changeType(htpasswd.User ⇒ null)

20 u1.deleteInstance()

User∆14
Overview

As result after completing the synchronization, the following changes are expected:

• In Htpasswd , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #hp1
2 a l i c e : theu9Naig7fophed #u1
3 bob : eengohbu4naisa i7 #u2
4 f rank : Ahch9iemai4Ui3si #u3
5 walte r : e i f e i h o 3 i e x 3 a h n g #u4
6 c h a r l i e : i cqrcplmpqbrekys #u5
7 e r i c : aosrsqpenpxxemnd #u6

The model with highlighted changes is represented graphically (left):

364



9.4 Validation Scenarios

m
o
d
e
l-

h
tp

a
ss

w
d

id
=

”
h
p
1
”

h
p

1
:

H
tp

a
ss

w
d

n
a
m

e
=

”
b

o
b
”

p
a
ss

w
o
rd

=
”
e
e
n
g
o
h
b
u
4
n
a
is

a
i7

”
id

=
”
u
2
”

u
2

:
U

se
r

n
a
m

e
=

”
fr

a
n
k
”

p
a
ss

w
o
rd

=
”
A

h
c
h
9
ie

m
a
i4

U
i3

si
”

id
=

”
u
3
”

u
3

:
U

se
r

n
a
m

e
=

”
w

a
lt

e
r”

p
a
ss

w
o
rd

=
”
e
if

e
ih

o
3
ie

x
3
a
h
n
g
”

id
=

”
u
4
”

u
4

:
U

se
r

n
a
m

e
=

”
c
h
a
rl

ie
”

p
a
ss

w
o
rd

=
”
ic

q
rc

p
lm

p
q
b
re

k
y
s”

id
=

”
u
5
”

u
5

:
U

se
r

n
a
m

e
=

”
e
ri

c
”

p
a
ss

w
o
rd

=
”
a
o
sr

sq
p

e
n
p
x
x
e
m

n
d
”

id
=

”
u
6
”

u
6

:
U

se
r

p
a
ss

w
o
rd

=
”
th

e
u
9
N

a
ig

7
fo

p
h
e
d
”

id
=

”
u
1
”

n
a
m

e
=

”
a
li
c
e
”

u
1

:
U

se
r

u
se

rs
[0

]
u
se

rs
[1

]
u
se

rs
[2

]
u
se

rs
[3

]
u
se

rs
[4

]
u
se

rs
[0

]

m
o
d
e
l-

a
u
th

z

p
e
rm

is
si

o
n

=
rw

a
u
th

z
U

se
rn

a
m

e
=

”
e
ri

c
”

id
=

”
m

5
”

m
5

:
M

a
p

p
in

g

p
e
rm

is
si

o
n

=
r

a
u
th

z
U

se
rn

a
m

e
=

”
c
h
a
rl

ie
”

id
=

”
m

4
”

m
4

:
M

a
p

p
in

g

p
e
rm

is
si

o
n

=
rw

a
u
th

z
U

se
rn

a
m

e
=

”
b

o
b
”

id
=

”
m

3
”

m
3

:
M

a
p

p
in

g

p
a
th

=
”
/
so

m
e
/
p
a
th

/
to

/
re

p
o
/
r3

”

id
=

”
r3

”r3
:

R
ep

o
si

to
ry

p
a
th

=
”
/
so

m
e
/
p
a
th

/
to

/
re

p
o
/
r2

”

id
=

”
r2

”r2
:

R
ep

o
si

to
ry

p
a
th

=
”
/
so

m
e
/
p
a
th

/
to

/
re

p
o
/
r1

”

id
=

”
r1

”r1
:

R
ep

o
si

to
ry

id
=

”
a
1
”

a
1

:
A

u
th

z

a
u
th

z
U

se
rn

a
m

e
=

”
a
li

c
e
”

id
=

”
m

1
”

p
e
rm

is
si

o
n

=
e
3
4

m
1

:
M

a
p

p
in

g

a
u
th

z
U

se
rn

a
m

e
=

”
a
li

c
e
”

id
=

”
m

2
”

p
e
rm

is
si

o
n

=
e
3
4

m
2

:
M

a
p

p
in

g

m
a
p
p
in

g
s[

0
]

m
a
p
p
in

g
s[

1
]

m
a
p
p
in

g
s[

0
]

re
p

o
si

to
ri

e
s[

0
]

re
p

o
si

to
ri

e
s[

1
]

re
p

o
si

to
ri

e
s[

2
]

m
a
p
p
in

g
s[

0
]

m
a
p
p
in

g
s[

0
]

• In Authz , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #a1
2 [ / some/path/ to / repo / r1 ] #r1
3 a l i c e = rw #m1

5 [ / some/path/ to / repo / r2 ] #r2
6 a l i c e = rw #m2
7 bob = rw #m3
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9 [ / some/path/ to / repo / r3 ] #r3
10 c h a r l i e = r #m4
11 e r i c = rw #m5

The model with highlighted changes is represented graphically in the figure before on
the right.

• In Htaccess , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

1 #ha1
2 AuthUserFile /some/path/ to / u s e r F i l e #s1
3 AuthGroupFile /some/path/ to / groupFi l e #s2
4 AuthName ”Some Name For This Auth −− R e s t r i c t e d Access ” #s3
5 AuthType Bas ic #s4
6 r e q u i r e user a l i c e #hu1

The model with highlighted changes is represented graphically:

model-htaccess

id = ”ha1”

ha1 : Htaccess

id = ”s1”
path = ”/some/path/to/userFile”

s1 : AuthUserFile

id = ”s2”
path = ”/some/path/to/groupFile”

s2 : AuthGroupFile

id = ”s3”
name = ””Some Name For This Auth – Restricted Access””

s3 : AuthName

id = ”s4”
authtype = Basic

s4 : AuthType

id = ”hu1”
htaccessUsername = ”alice”

hu1 : HtaccessUser

settings[0]

settings[1]

settings[2]

settings[3]

htaccessUsers[0]

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically (left):
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• In Overview , some changes are expected in the model (including the user changes
User∆14

Overview). The model with highlighted changes is represented with its concrete
rendering:
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The model with highlighted changes is represented graphically in the figure before on
the right.

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Overview applied to Overview
are propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

9.5 Summary: Contributions

After showing the configured operators and their purpose by ensuring the consistency in
multiple test cases, the application of MoConseMI and its contributions are summarized
now. All consistency goals and their rules of this application are listed below:

Collected Consistency Goals and their Rules

C 1 User with access rights given by Authz must be registered in Htpasswd .

C 1 a If the user of an access right in Authz is not defined in Htpasswd , a
corresponding user is added in Htpasswd with a random password.

C 1 b If an access right is removed and its related user has no access rights
anymore, that user is also removed.

C 1 c If a user is removed in Htpasswd , all its access rights in Authz are
removed.

C 1 d If the user name of an access right is changed, the corresponding user
is renamed accordingly, if the user has not more than this access right.
Otherwise, a new user with the new user name is created.

C 1 e If a user is renamed, all its rights in Authz are renamed accordingly.

C 2 User with access rights given by Htaccess must be registered in Htpasswd .

C 2 a If the user of an access right in Htaccess is not defined in Htpasswd ,

this access right is removed in Htaccess .

C 2 b If an access right is removed, only this access right is removed, while the
related user remains.

C 2 c If a user is removed in Htpasswd , all its access rights in Htaccess are
removed.
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9.5 Summary: Contributions

C 2 d If the user name of an access right is changed, the corresponding user is
renamed accordingly.

C 2 e If a user is renamed, all its rights in Htaccess are renamed accordingly.

The consistency goals C 1 and C 2 target two data sources and therefore represent inter-
model consistency issues.

These consistency goals and their consistency rules are successfully tested by test cases
documented in Section 9.4Z 328. The mapping of test cases and their explicitly targeted
consistency goals and rules are summarized in Table 9.1: The first column lists all con-
sistency goals and their consistency rules. The second refers to the test cases which test
explicitly the consistency goal or their consistency rule inside the same row in the first
column.

Table 9.1: Mapping of Consistency Goals and their Consistency Rules tested in Sections for Access
Data Management

Consistency Test Cases

C 1
C 1 a 9.4.4, 9.4.5
C 1 b 9.4.3, 9.4.6
C 1 c
C 1 d 9.4.2
C 1 e

C 2
C 2 a
C 2 b
C 2 c
C 2 d 9.4.7
C 2 e

Table 9.1 shows, that all consistency goals and their consistency rules are successfully
tested, only C 1 c, C 1 e, C 2 a, C 2 b, C 2 c and C 2 e have no test cases. Test cases for
consistency rules test also their corresponding consistency goals.

The details of the test cases are summarized in Table 9.2Z 370: Each scenario is repre-
sented by one row. The “Source” column indicates the view in the orchestration, at which
the user applied the wanted changes. The “Kind” column indicates, if the user changed the
external representation (E) or the internal EMF model (I). The “#” column contains the
number of changes, made by the user. The following columns with the names of the data
sources, SUM and new view contain the number of resulting changes, after finishing the
synchronization. The last column “Testing” refers to the consistency goals and consistency
rules, which are explicitly evaluated by the current test case.

The scenario 9.4.1 is described with more details above, but is not summarized in the
table to keep it short. Scenarios with no reference to a subsection in the table are not
documented in detail above.
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Table 9.2: Summary of Test Cases for Access Data Management

Description Source K
in

d

# H
tp

a
ss

w
d

A
u

th
z

H
ta

c
c
e
ss

S
U

M

O
v
e
rv

ie
w

Testing

renamed User (Authz) Authz I 2 2 2 0 2 2
9.4.2 renamed Mapping,

reload externally (Au-
thz)

Authz E 2 7 2 0 10 22 C 1 d

renamed User (Authz) Authz I 2 7 2 0 10 22
9.4.3 removed Mapping,

reload externally (Au-
thz)

Authz E 7 0 7 0 7 2 C 1 b

delete Mapping (Authz) Authz I 7 7 7 0 13 18
delete Mapping (Authz) Authz I 7 0 7 0 7 2
added Mapping to
Repository r1 (Authz)

Authz I 6 7 7 0 13 12 C 1 a

9.4.5 added Mapping, reload
externally (Authz)

Authz E 6 0 7 0 7 2 C 1 a

added Mapping to
Repository r1 (Authz)

Authz I 6 0 7 0 7 2

renamed Mapping,
reload externally (Au-
thz)

Authz E 2 2 2 0 2 2

9.4.6 removed Mapping,
reload externally (Au-
thz)

Authz E 7 7 7 0 13 18 C 1 b

added User (Htpasswd) Htpasswd I 6 7 0 0 6 12
renamed User, reload
externally (Htpasswd)

Htpasswd E 6 6 4 2 6 2

removed User, reload
externally (Htpasswd)

Htpasswd E 11 11 14 6 26 20

added User, reload ex-
ternally (Htpasswd)

Htpasswd E 10 11 0 0 10 12

renamed User (Ht-
passwd)

Htpasswd I 2 2 4 2 2 2

removed User (Ht-
passwd)

Htpasswd I 7 7 14 6 22 20

added HtaccessUser,
reload externally (Ht-
access)

Htaccess E 5 0 0 6 2 2

9.4.7 renamed HtaccessUser,
reload externally (Htac-
cess)

Htaccess E 2 2 4 2 2 2 C 2 d

added HtaccessUser,
reload externally (Ht-
access)

Htaccess E 5 0 0 0 0 0

added User (Htaccess) Htaccess I 5 0 0 0 0 0

continued on next page
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Description Source K
in

d

# H
tp

a
ss

w
d

A
u

th
z

H
ta

c
c
e
ss

S
U

M

O
v
e
rv

ie
w

Testing

remove HtaccessUser,
reload externally (Ht-
access)

Htaccess E 6 0 0 6 2 2

renamed User (Htac-
cess)

Htaccess I 2 2 4 2 2 2

removed User (Htac-
cess)

Htaccess I 6 0 0 6 2 2

added User (Htaccess) Htaccess I 5 0 0 6 2 2
9.4.8 change Htaccess right

for Bob (Overview)
Overview I 2 0 0 6 2 2

9.4.9 change number of
Authz rights for Bob
(Overview)

Overview I 2 0 0 0 0 0

9.4.10 change the name of Bob
to David (Overview)

Overview I 2 2 2 0 2 6

9.4.11 removed user, reload ex-
ternally (Overview)

Overview E 20 7 14 6 22 20

removed User (SUM) SUM I 12 7 14 6 22 20
added User, reload ex-
ternally (SUM)

SUM E 10 11 0 0 10 12

removed User, reload
externally (SUM)

SUM E 26 11 14 6 26 20

renamed User (SUM) SUM I 2 2 4 2 2 2
renamed User, reload
externally (SUM)

SUM E 6 6 4 2 6 2

added User (SUM) SUM I 6 7 0 0 6 12

In the test case 9.4.9, the user changes are reverted due to the consistency goals and
consistency rules or the definitions of new view(point)s, like read-only information. This
shows an extreme strategy to ensure consistency, namely by reverting the wanted changes.
Usually, the users change the data sources or the new views, since they are tailored for
their needs: The test cases 9.4.8, 9.4.10 and 9.4.11 show one of the main benefits of the
approach: The user can change a new view and the changes are propagated back into the
initial data sources. The test cases 9.4.2, 9.4.3, 9.4.5, 9.4.6, 9.4.7 and 9.4.11 applied the
wanted user changes to the external representation of the view, which correspond to the
real usage by users in practise and represent acceptance tests for users. For the fast and
easy definition of test cases, 9.4.8, 9.4.9 and 9.4.10 applied the wanted user changes to the
internal EMF model, not to the external representation.

Regarding the application domain of distributed access management, Benefits for distributed
Access Management

this application
shows, that distributed access management can benefit from MoConseMI:

• Existing access systems and their rights can be kept, their data are reused and can
be updated.

• The new view Overview presents an overview about all given access rights of all
known users, together with central management of some access rights. This eases
e. g. to delete a user completely with all given access rights, as demonstrated in
Section 9.4.11Z 363.
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• In general, the use of the SUM containing all access rights of all users allows central
changes in the data, e. g. to rename a user with the automated propagation into all
views.

This example represents an application from applied computing science, but outside of
software engineering, and demonstrates,application outside SE that MoConseMI coming from and motivated by
software engineering (see the ongoing example) is transferable to other disciplines.

Additionally, no information encoded as technical models e. g. in EMF are used,support existing
notations: Xtext for
structured text

but
the concrete syntax of the domain is directly supported: Structured text in the formats
of the existing data sources is supported by applying Xtext to transfer the notations of
the users to EMF models and metamodels. The developed Xtext adapter ensures, that
changes from the user within its known notation are propagated to MoConseMI, while
changes inside other views are mirrored back into the notation, so that the user is supported
within the known work environment. In general, this shows, that textual domain-specific
languages can be supported by MoConseMI by adapters. The management of UUIDs
inside the text-based notations show an alternative way to ensure stable UUIDs, while this
approach is not the most user-friendly one, since UUIDs could be changed by users by
accident.

The amount of test cases for the small number of concepts in the data sources ensures
a high test coverage.high Test Coverage While only some selected test cases are documented in details, lots
of more test cases are available and successfully executed: Applying the same changes
to the external Xtext-supported notation and to the internal EMF model shows, that
the same results in form of changes for the other views are produced (except of different
password hashes). This shows, that the transformation between text-based notations and
EMF models by adapters works as expected. The additional test cases with changes in the
SUM show, that not only dedicated views, but also the whole SUM is modifiable.

Summarizing, the contributions of this application areContributions the finding, that MoConseMI
is applicable for managing distributed access rights, that additional adapters for additional
technical spaces can be added, and that user changes can be applied to the SUM as well.
In general, access rights management is another example which shows, that MoConseMI
works in practice, i. e. it is successfully evaluated, that MoConseMI is able to integrate ex-
isting data sources into an explicit SU(M)M, to derive a new view(point) from the SU(M)M,
and to automatically keep all these views consistent to each other.
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Chapter 10

SEIS Viewpoints

This application sketches the description of architectures for sensor-based environmental
information systems (SEIS). Since such architectures are described with six viewpoints
(Kateule, 2019), these viewpoints need to be integrated in order to describe the architecture
of a SEIS as a whole and in consistent form. Since the metamodels for these viewpoints,
conforming models as well as the resulting orchestration are very large, in particular, too
big to visualize them in reasonable way, only some parts of this application are sketched
here. Parts of the conceptual ideas for the integration of these viewpoints are developed
together with Ruthbetha Kateule during her PhD thesis (Kateule, 2019). Therefore, there
are some overlaps regarding consistency goals, while the realization with MoConseMI is
done by the author of this thesis.

10.1 Application Domain

Four of these six viewpoints base on the Siemens views (Hofmeister, Nord and Soni, 2000),
i. e. the conceptual, module, execution and code viewpoints. The other two viewpoints, i. e.
for data and topology, are added by Kateule (2019).

10.1.1 Conceptual Viewpoint

The conceptual viewpoint describes the main components and their connectors, extended
with protocols for SEIS. The metamodel for the conceptual viewpoint is visualized in Fig-
ure 10.1Z 374.

10.1.2 Module Viewpoint

The module viewpoint describes the modules, which are organized in subsystems and lay-
ers. Modules communicate directly with each other, if they are located inside the same
layer. Otherwise, they have to communicate via interfaces. The metamodel for the module
viewpoint is visualized in Figure 10.2Z 375.

10.1.3 Execution Viewpoint

The execution viewpoint maps modules to runtime entities for their execution during run-
time. Runtime entities are organized in software resources, which are organized in plat-
form resources, which are organized in hardware resources. Additionally, communication
paths are represented. The metamodel for the execution viewpoint is visualized in Fig-
ure 10.3Z 376.
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Figure 10.1: Metamodel for the Conceptual Viewpoint

10.1.4 Code Viewpoint

The code viewpoint organizes the artifacts of the implementation with source components,
binaries, libraries, executables and configurations. The metamodel for the code viewpoint
is visualized in Figure 10.4Z 377.

10.1.5 Topology Viewpoint

The topology viewpoint describes the topology of deployed nodes with their numbers of
communications with other nodes, which can be constrained to reach certain topologies.
The metamodel for the topology viewpoint is visualized in Figure 10.5Z 377.

10.1.6 Data Viewpoint

The data viewpoint describes concepts for data, which can be seen as subset of ECore
(Section 2.5.3Z 87). The metamodel for the data viewpoint is visualized in Figure 10.6Z 378.

10.2 Ensure Consistency between existing Data

Sources

In order to integrate the viewpoints into the SUMM, possibilities for integration in terms of
depending concepts must be identified, which are depicted in Figure 10.7Z 379 as overview.
These consistency goals and consistency rules stem from the SEIS domain and are identified
together with Ruthbetha Kateule (Kateule, 2019).
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Figure 10.2: Metamodel for the Module Viewpoint

10.2.1 Conceptual — Module

The viewpoints for modules and conceptual components depend on each other regarding
the following consistency rules:

Consistency Goal C 1 Module + Conceptual

Conceptual components for functionality are organized with modules for realization.

This mapping must be done manually, since some components are realized by multiple
modules or modules support parts of multiple components.

10.2.2 Module — Data

The viewpoints for modules and data depend on each other regarding the following consis-
tency rules:

Consistency Goal C 2 Module + Data

Modules and Interfaces have to be linked with the packages which contain the data
structures which are required for them.

Modules and interfaces have to specify, which data are exchanged, which are designed
with the data viewpoint.

Consistency Rule C 2 a for C 2

Links between modules and interfaces and their used packages are added manually.

This has to be done manually, since there is no automation for that.

Consistency Rule C 2 b for C 2

If a module, an interface or a package is deleted, all its links must be deleted auto-
matically, but not the other linked element.
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Figure 10.3: Metamodel for the Execution Viewpoint

After removing a module, an interface or a package, all direct usage links must be
removed, too. The element at the other end of the link is kept. This is important, since
these deletions can be done independently from the mappings, e.g. by removing the elements
in their original data sources.

For the realization, a new association could be created between Packages and their
related Modules and Interfaces, which are generalized before. This is depicted in red in
the following graphic:

�abstract�
SingleElement name : EString [1]

Package

Module
name : EString [1]

Interface

usedBy [∗]

requiredDataStructures [∗]

The following operators were configured to realize this:

1. →AddClass to the create the new class “SingleElement” with their (already exist-
ing) sub classes “Module” and “Interface”

2. →AddAssociation to create the new association in the metamodel, without adding
any links in the model

10.2.3 Module — Code

The viewpoints for modules and code depend on each other regarding the following consis-
tency rules:

Consistency Goal C 3 Module + Code

Modules and Interfaces are implemented in SourceComponents.
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Figure 10.4: Metamodel for the Code Viewpoint

Figure 10.5: Metamodel for the Topology Viewpoint

For the execution at runtime, modules need a software-based realization in form of
source code (source component).

Consistency Rule C 3 a for C 3

Each Module and each Interface can have an unlimited number of implementations.

Multiple implementations are required to realize modules and interfaces for different
platforms. There might be modules or interfaces without any implementation.

Consistency Rule C 3 b for C 3

One SourceComponent can be linked to an arbitrary number of Modules or Interfaces.

Normally, each source component realizes only one module or interface. But there are
some special situations, for example, if there are various modules within one sensor node,
but they are all implemented within a single source component for that sensor node. There
might be source components without any module or interface.

Consistency Rule C 3 c for C 3

All mappings have to be specified manually.
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Figure 10.6: Metamodel for the Data Viewpoint

All mappings have to be specified manually, since there are no heuristics for automation.
In particular, the many-to-many nature of this mapping prevents heuristics using name
matching.

Consistency Goal C 4 Module + Code

The implementations of subsystems and layers from the Module view are contained
in code groups from the Code view.

While subsystems and layers are used to group modules, code groups are used to group
source code. Due to the relationships between modules and source code (see above), the
mechanisms for grouping modules and source code are related with each other as well.

Consistency Rule C 4 a for C 4

Each subsystem and layer can have an unlimited number of implementations.

Multiple implementations are required to realize subsystems and layers for different
platforms. There might be subsystems or layers without any implementation.

378



10.2 Ensure Consistency between existing Data Sources

Module

Data Conceptual

Execution CodeTopology

n-m-Mapping
for Realization

Annotate Modules and Interfaces
with Data Structures (Packages) SourceComponents

implement Modules

Modules are deployed
in RuntimeEntities in
form of Executables,
derived from corre-
sponding SourceCom-
ponents

synchronize HardwareResources with Nodes
CommunicationPaths get number of Nodes

Figure 10.7: Overview about the Viewpoints and their Integrations

Consistency Rule C 4 b for C 4

One code group realizes at maximum one subsystem or layer.

Normally, each code group realizes one subsystem or layer. But code groups can be used
also for hierarchical structuring, without an explicitly linked subsystem or layer. There
might be source components without any module or interface.

Consistency Rule C 4 c for C 4

Some mappings can be automated by comparing their names regarding equality.

Therefore, corresponding heuristics can be configured in model decisions in order to
detect and establish such mappings.

10.2.4 Module — Execution — Code

The viewpoints for modules, execution and code depend on each other regarding the fol-
lowing consistency rules:

Consistency Goal C 5 Module + Execution

The communication between runtime entities in the form of communication paths
in the Execution view is derived and aggregated from the (internal and external)

communication between modules in the Module view.

Communicating modules needs communication paths, when they are deployed at dif-
ferent runtime entities.

Consistency Rule C 5 a for C 5

If two modules communicate with each other (whether they use an interface or not,
does not care), the corresponding runtime entities are connected with a communica-
tion path.
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Two different communicating modules inside the same runtime entity are not repre-
sented by a communication path. If a module communicates with itself (“loop”), there will
be a “looping” communication path for the corresponding runtime entity.

Consistency Goal C 6 Module + Execution + Code

Each module in the Module view can be deployed at an arbitrary number of runtime
entities in the Execution view.

Since the deployment of modules on runtime entities is done in form of executables,
which are derived from the source code for the modules, the Code view, the Execution

view and the Module view need to fit together for the deployment of modules.

Consistency Rule C 6 a for C 6

If a module is deployed at a runtime entity, an arbitrary number of executables can
be specified (which are runnable on the hardware resource and are derived from the
implementation of the module).

An arbitrary number of executables is helpful, since there might by several executables
which are required to execute one module. On the other side, the executable might not be
available yet.

Consistency Rule C 6 a for C 6

The complete mapping for deployment has to be decided manually and cannot be
automated.

Deployment of modules strongly depends on their functionalities as well as on non-
functional needs like performance, which must be decided manually.

10.2.5 Execution — Topology

The viewpoints for execution and topology depend on each other regarding the following
consistency rules:

Consistency Goal C 7 Execution + Topology

Each hardware resource in the Execution view is represented by exactly one node
in the Topology view (and vice versa).

For each hardware resource, it embedding into topologies should be available. Therefore,
all hardware resources must be part of the Topology view.

Consistency Rule C 7 a for C 7

Newly created hardware resources are added to the other view, too.

Topology information must be available also for newly created hardware resource.

Consistency Rule C 7 b for C 7

Deleted hardware resources are deleted in the other view, too.
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Topology information is not required for removed hardware resources anymore.

Consistency Goal C 8 Execution + Topology

Each communication path in the Execution view is represented by zero or one link
in the Topology view (and vice versa).

Similar to the nodes (see above), also the links in terms of communication path are
important for topology considerations. In the SEIS domain, there is at maximum one
communication path between two hardware resources. There are no cases, where more
than one communication path between the same two hardware resources exist.

Consistency Rule C 8 a for C 8

If the communication path represents external communication, it has a corresponding
link in the Topology view.

This counts for communication paths which connect two (different) runtime entities
which belong to different hardware resources. Communication paths which connect the
same runtime entity (loop) are external, if the related hardware resource might exist more
than once (upper bound of instances).

Consistency Rule C 8 b for C 8

If the communication path represents internal communication, it is not reflected in
the Topology view.

This counts for communication paths which connect two (different) runtime entities
which belong to the same hardware resource. Communication paths which connect the
same runtime entity (loop) are internal, if the related hardware resource exists only once
(upper bound of instances).

Consistency Rule C 8 c for C 8

New (external) communication paths in the Execution view result in new links in
the Topology view.

Due to the strong relationships of Execution and Topology , links in the Topology
view could be automatically derived and maintained.

Consistency Rule C 8 d for C 8

New links in the Topology view are mapped to newly created communication paths

in the Execution view, if possible.

If the involved hardware resources have exactly one runtime entity, the corresponding
communication path could be automatically created between these two runtime entities. If
some of the involved hardware resources have zero or one runtime entity, missing runtime
entities are created, before they are used (see above). If some of the involved hardware
resources have more than one runtime entity, the new link in the Topology view will
be removed, since information about the related runtime entities to use are missing and
Topology view and Execution view have to be consistent to each other further on.
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Consistency Rule C 8 d for C 8

Deleted Links or CommunicationsPaths will be deleted in the other View, too.

Due to the strong relationships of Execution and Topology , links in the Topology
view could be automatically derived and maintained.

10.2.6 Realization Overview

A possible resulting technical integration with configured operators to fulfill the sketched
consistency goals is depicted in Figure 10.8. It is not shown in detail for brevity. Its
main purpose is to show, a lot of operators are required, since there are lots of viewpoints
to integrate and lots of consistency goals to ensure. With other words, this long chain
of operators show, that MoConseMI scales regarding the numbers of data sources and
consistency goals by adding more operators.
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Figure 10.8: Operator Orchestration for the technical Integration

10.3 Define new Viewpoints

In order to provide additional presentations of the integrated architecture in order to sup-
port additional stakeholders and their additional concerns, new view(point)s can be defined
on top of the SU(M)M. Some ideas for derived new view(point)s are presented in the fol-
lowing publication:
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Related MoConseMI Publication

Johannes Meier, Ruthbetha Kateule and Andreas Winter (2020): Operator-based
viewpoint definition. In: MODELSWARD 2020 - Proceedings of the 8th International
Conference on Model-Driven Engineering and Software Development, pp. 401–408.

This publication is cited as Meier, Kateule and Winter (2020) in this thesis.

In the following sections, some ideas for new view(point)s are motivated and their
realization is partially sketched. Figure 10.9 shows the simplified orchestration for two of
the discussed new view(point)s.
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Figure 10.9: Simplified Orchestration for the Definition of two new Viewpoints

10.3.1 Conceptual-Module-Mappings

According to Consistency Goal C 1Z 375, the mapping of components in the Conceptual

view with the modules in the Module view need to be done manually. In order to support
architects during this task, a “table” for the mappings should be introduced, similar to
Kateule (2019, Table 7.3) and with e. g. Excel support. Without such a dedicated view,
architects have to modify the SUM directly, since these mappings are neither in Conceptual

nor in Module .

10.3.2 Intersections

The Intersections view(point) provides a subset of information of the Module view(point)
in order to focus on intersections between subsystems and layers regarding shared modules
only, as depicted in Figure 10.10. This view is beneficial for project managers, who have
to organize developers according modules, layers and subsystems for large SEISs. The
definition for this view(point) with a configured operator chain is depicted in simplified
way in Figure 10.9.

name : EString [1]

SubSystem

Configuration

name : EString [1]

Layer

sharedModulesWithLayers [∗]

sharedModulesWithSubsystems [1]

parentSubsystem [0..1]

childSubsystems [∗]

subsystems [∗]

configuration [0..1] configuration [0..1]

layers [∗]

parentLayer [0..1]

childLayers [∗]

Figure 10.10: Metamodel for the new Viewpoint Intersections
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10.3.3 ModulesOnly

The ModulesOnly view(point) provides a subset of information of the Module view(point)
in order to focus on modules with their interfaces, as depicted in Figure 10.11. This view
is beneficial for developers, who can focus on the details of particular modules and their
communications with each other, while subsystems and layers might be more important for
architects. The definition for this view(point) with a configured operator chain is depicted
in simplified way in Figure 10.9Z 383.

Configuration

name : EString [1]

Interface
name : EString [1]

Module

ModuleCommunication

configuration [1]

interfaces [∗]

container [0..1]

modules [∗]

configuration [1]

communications [∗]

provided [∗] providedBy [1]

interface [0..1]

usedBy [∗]

from [1]

commInc [∗]

to [1]

commOut [∗]

parentModule [0..1]
childModules [∗]

Figure 10.11: Metamodel for the new Viewpoint ModulesOnly

10.3.4 LayersOnly

The LayersOnly view(point) would be the counterpart to ModulesOnly and provides only
layers and subsystems and their communications, but no modules as a subset of information
of the Module view(point). For large SEISs, this “simplification” might be beneficial for
architects to get an overview about the particular SEIS.

10.4 Validation Scenarios

Since models for views and the SUM are too large for small SEISs, this section does not
show concrete test scenarios for consistency. Nevertheless, for all presented consistency
goals and the details of their consistency rules, corresponding change scenarios can be
defined and evaluated. As a simple example, Consistency Goal C 7Z 380 can be tested by
adding a new and removed an existing hardware resource in the Execution view in order
to check, whether the Topology view is updated accordingly. Additionally, test cases for
more special situations like looping communications sould be evaluated.

10.5 Summary: Contributions

This application of MoConseMI contributes an example from related work, where meta-
models and consistency goals are not artificially developed, but are mainly predefined.
The integration of six data sources is sketched, while additional new view(point)s are de-
rived from the SU(M)M. Furthermore, this application of MoConseMI contributes an
explicit integration of four viewpoints for architectures, which is indicated by Hofmeister,
Nord and Soni (2000), but neither detailed nor technically integrated. As another benefit,
MoConseMI can ensure consistency between views, which complements the integration.
Additionally, two more viewpoints of Kateule (2019) are integrated as well. In general, this
integration of viewpoints for architectures fit to the definitions of the ISO Standard for
Architecture Description 42010:2011 (IEEE, 2011), since there are multiple architectural
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viewpoints which describe one architecture, which is made explicit by MoConseMI in form
of the SUMM. Interesting in detail is Consistency Goal C 6Z 380, since three data sources
are involved within the same consistency goal, pointing to n-ary consistency goals. Sum-
marizing, this section contributes a large application of MoConseMI in terms of numbers
of viewpoints and consistency goals in practical setting.
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Chapter 11

Knowledge Management

This application applies MoConseMI to knowledge management. Knowledge Management
. . .

Objective of knowledge
management is to use existing information which is spread over various files, data bases or
other data sources in order to identify relationships between these volumes of information.
These relationships can be established and provided as additional information. Combin-
ing this information along relationships enables to integrate data sources regarding their
semantics.

Since knowledge management deals with heterogeneous information which are spread
over multiple data sources which should be integrated regarding semantics in order to
provide newly derived information, MoConseMI is applied to knowledge management
in order to demonstrate, . . . as Application for

MoConseMI
that MoConseMI is able to realize knowledge management.

Main ideas of this application are, that existing information are reused as data sources in
MoConseMI, that they are integrated regarding their semantics into a SU(M)M, and that
the SU(M)M is exploited to provide newly derived information in new view(point)s.

Wegner (2021) applied MoConseMI for two simple and artificial examples in knowl-
edge management. Feasibility StudyThe first example describes existing knowledge in research projects with
scientific employees, developed software components as research prototypes and supervised
theses. Since scientific employees develop components and supervise theses, while some
components are also developed in some theses, all this information has semantic relation-
ships, which are not explicitly usable. Instead, the information is spread over multiple CSV
and Excel files and indirectly refer to each other by names or IDs. This example served
as feasibility study and showed, that spread knowledge can be integrated with MoCon-
seMI in order to provide relationships between knowledge in explicit way in form of new
view(point)s.

Therefore, this section presents a more elaborated example for knowledge management,
which is realized with MoConseMI. It bases on ideas from the second example of Wegner
(2021) and provides additional integration scenarios: Knowledge Management

in a Software
Development Company

This application example covers the
knowledge management in a fictitious software development company with information
about the employees (with roles and salaries), development tasks (with planned costs),
used materials (like servers or offices with costs) and performed work. While the performed
work is done by employees for a task using some materials, these implicit relationships are
not directly traceable, since the information are spread over four CSV files which refer to
each other with some IDs. This makes the calculation and the management of the real costs
hard for managers.

Objective of this application is to show the ability of MoConseMI to integrate existing
knowledge (Section 11.2Z 404) with an explicit SU(M)M as result (Section 11.1.5Z 396). As
preparation, Section 11.1Z 388 introduces the data sources in more detail and formulates
the information to integrate with consistency goals in Section 11.1.7Z 401. Basing on the
SU(M)M, this application shows, that additional knowledge can be derived from this in-
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tegration and provided in a new view(point) (Section 11.3Z 425). Section 11.4Z 434 shows
some validation scenarios, which demonstrate, how the knowledge can be manually updated,
while the integration of knowledge is automatically updated as well. More contributions of
this application are summarized in Section 11.5Z 452.

Note, that the presented application does not use real data:technical Hints All data are artificial and
developed for this fictitious software development company. Most data are reused from
Wegner (2021). In some visualizations of models, root objects are hidden for clarity, since
they are required only for the containment tree of ECore (Section 2.5.3Z 87) and do not
carry information which is required for knowledge management here. Additionally, the role
names in the UML diagrams for the models are hidden for an improved readability.

11.1 Application Domain

The domain consists of the data sources Work in Section 11.1.1, Employees in Sec-

tion 11.1.2Z 391, Tasks in Section 11.1.3Z 393 and Materials in Section 11.1.4Z 395 as input.
All relevant information for the domain are contained in the SUM (Section 11.1.5Z 396).
Parts of the SU(M)M are represented in the new view(point) Costs (Section 11.1.6Z 398).

11.1.1 DataSource Work

This data source stores all knowledge about the done work of employees for tasks using
materials. Each work entry documents the work of one employee for one day and for one
task. The company manages its work in a CSV file. The initial concrete syntax before the
initialization of Work is shown in the format CSV in Table 11.1.

Table 11.1: The initial input of Work in CSV format

# ID MID APID Day Materials

1 1 PN11 AP1 4012021 M02
2 2 PN12 AP1 4012021 M02
3 3 PN12 AP1 5012021 M02
4 4 PN13 AP2 5012021 M01
5 5 PN13 AP2 6012021 M01
6 6 PN13 AP2 10012021 M01, M03
7 7 PN14 AP2 11012021 M01, M03
8 8 PN11 AP3 7012021
9 9 PN14 AP3 6012021 M03

The first column (“#”) depicts the row numbers in the CSV file. The second column
(“ID”) contains IDs for each work which are unique for all work entries of the company.
The third column (“MID”) indicates the employee by its personnal number who did the
particular work. The fourth column (“APID”) indicates the task by its ID of the particular
work. The fifth column (“Day”) stores the day of the particular work. The sixth col-
umn (“Materials”) stores all used materials for the particular task, indicated by their IDs
and concatenated by commas. Each work entry can use an arbitrary number of different
materials. The metamodel of Work is shown in Figure 11.1Z 389.
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work

WorkCollection

rowNumber : EInt [0..1]

id : EString [0..1]

employeeID : EString [0..1]

taskID : EString [0..1]

day : EString [0..1]

materials : EString [0..1]

Work

container [1]
work [∗]

Figure 11.1: Metamodel of Work

The metamodel represents work done in the company as instances of Work, which are
collected in a WorkCollection. The names in the first row of the CSV file are used for the
attributes in Work, according to the CSV adapter as discussed in Section 8.4.4Z 275. All
attributes have EString as data type, since CSV files store only text. The initial input
model of Work is shown in Figure 11.2Z 390.
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work-model

w-root-id : WorkCollection

rowNumber = 1
id = ”1”
employeeID = ”PN11”
taskID = ”AP1”
day = ”4012021”
materials = ”M02”

w-1 : Work

rowNumber = 2
id = ”2”
employeeID = ”PN12”
taskID = ”AP1”
day = ”4012021”
materials = ”M02”

w-2 : Work

rowNumber = 3
id = ”3”
employeeID = ”PN12”
taskID = ”AP1”
day = ”5012021”
materials = ”M02”

w-3 : Work

rowNumber = 4
id = ”4”
employeeID = ”PN13”
taskID = ”AP2”
day = ”5012021”
materials = ”M01”

w-4 : Work

rowNumber = 5
id = ”5”
employeeID = ”PN13”
taskID = ”AP2”
day = ”6012021”
materials = ”M01”

w-5 : Work

rowNumber = 6
id = ”6”
employeeID = ”PN13”
taskID = ”AP2”
day = ”10012021”
materials = ”M01, M03”

w-6 : Work

rowNumber = 7
id = ”7”
employeeID = ”PN14”
taskID = ”AP2”
day = ”11012021”
materials = ”M01, M03”

w-7 : Work

rowNumber = 8
id = ”8”
employeeID = ”PN11”
taskID = ”AP3”
day = ”7012021”
materials = ””

w-8 : Work

rowNumber = 9
id = ”9”
employeeID = ”PN14”
taskID = ”AP3”
day = ”6012021”
materials = ”M03”

w-9 : Work

container[0]

work[0]

container[0]

work[1]

container[0]

work[2]

container[0]

work[3]

container[0]work[4]

container[0]

work[5]

container[0]

work[6]

container[0]

work[7]

container[0]

work[8]

Figure 11.2: The initial input model of Work

According to the metamodel and the transformations of the CSV adapter, the model
contains one object with Work as type for each row with content in the CSV file. The
attribute slots are assigned with the content of the corresponding cell in the CSV file. All
Work objects are stored in an instance of WorkCollection.
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11.1.2 DataSource Employees

This data source stores all knowledge about employees of the software development com-
pany. The company manages its employees in a CSV file. The initial concrete syntax before
the initialization of Employees is shown in the format CSV in Table 11.2.

Table 11.2: The initial input of Employees in CSV format

# Personnel Number Lastname Firstname Role Salary

1 PN11 Patterson Lori Developer 60000
2 PN12 Cortez Paulette Developer Sr 75000
3 PN13 Glass Venita Developer Sr 73000
4 PN14 Holland Scarlett Developer 76000

The first column (“#”) depicts the row numbers in the CSV file. The second column
(“Personnal Number”) contains IDs for each employee which are unique for all employees
of the company. The third and fourth columns contain the lastnames and firstnames of
the employees. The fifth column (“Role”) indicates the position of employees in the com-
pany. The sixth column (“Salary”) stores the annual salary (in Euro). The metamodel of
Employees is shown in Figure 11.3.

employeesHumanResources

rowNumber : EInt [0..1]

number : EString [0..1]

lastname : EString [0..1]

firstname : EString [0..1]

role : EString [0..1]

salary : EString [0..1]

Employee

container [1]

employees [∗]

Figure 11.3: Metamodel of Employees

The metamodel represents employees of the company as instances of Employee, which
are collected in HumanResources. The names in the first row of the CSV file are used for the
attributes in Employee, according to the CSV adapter as discussed in Section 8.4.4Z 275.
All attributes have EString as data type, since CSV files store only text. The initial input
model of Employees is shown in Figure 11.4Z 392.
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employees-model

e-root-id : HumanResources
rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = ”60000”

e-PN11 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = ”75000”

e-PN12 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = ”73000”

e-PN13 : Employee

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = ”76000”

e-PN14 : Employee

container[0]employees[0]

container[0]

employees[1]

container[0]

employees[2]

container[0]

employees[3]

Figure 11.4: The initial input model of Employees

According to the metamodel and the transformations of the CSV adapter, the model
contains one object with Employee as type for each row with content in the CSV file. The
attribute slots are assigned with the content of the corresponding cell in the CSV file. All
Employee objects are stored in an instance of HumanResources.
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11.1.3 DataSource Tasks

This data source stores all knowledge about tasks in the software development company.
The company manages its tasks in a CSV file. The initial concrete syntax before the
initialization of Tasks is shown in the format CSV in Table 11.3.

Table 11.3: The initial input of Tasks in CSV format

# ID Description Plan Duration Plan People Costs Plan Material Costs

1 AP1 Architecture 3 800 700
2 AP2 Database 6 1600 1400
3 AP3 Eventbus 5 1400 1100
4 AP4 Network 6 1600 1400

The first column (“#”) depicts the row numbers in the CSV file. The second column
(“ID”) contains IDs for each task which are unique for all tasks of the company. The
third column (“Description”) contains a short description for the tasks. The fourth column
(“Plan Duration”) stores the planned duration in people-days for each task. The fifth and
sixth columns store the planned costs (in Euro) for people, i. e. employees who worked for
the particular task, and for materials, which are used by employees during their work for
the particular task. The metamodel of Tasks is shown in Figure 11.5.

tasks Backlog

rowNumber : EInt [0..1]

id : EString [0..1]

description : EString [0..1]

planDuration : EString [0..1]

planCostsHuman : EString [0..1]

planCostsMaterial : EString [0..1]

Task

container [1]

tasks [∗]

Figure 11.5: Metamodel of Tasks

The metamodel represents tasks as instances of Task, which are collected in a Backlog.
The names in the first row of the CSV file are used for the attributes in Task, according
to the CSV adapter as discussed in Section 8.4.4Z 275. All attributes have EString as
data type, since CSV files store only text. The initial input model of Tasks is shown in
Figure 11.6Z 394.
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tasks-model

t-root-id : Backlog

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = ”3”
planCostsHuman = ”800”
planCostsMaterial = ”700”

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = ”6”
planCostsHuman = ”1600”
planCostsMaterial = ”1400”

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = ”5”
planCostsHuman = ”1400”
planCostsMaterial = ”1100”

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Network”
planDuration = ”6”
planCostsHuman = ”1600”
planCostsMaterial = ”1400”

t-AP4 : Task

container[0]

tasks[0]

container[0]

tasks[1]

container[0]

tasks[2]

container[0]

tasks[3]

Figure 11.6: The initial input model of Tasks

According to the metamodel and the transformations of the CSV adapter, the model
contains one object with Task as type for each row with content in the CSV file. The
attribute slots are assigned with the content of the corresponding cell in the CSV file. All
Task objects are stored in an instance of Backlog.
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11.1.4 DataSource Materials

This data source stores all knowledge about materials which are used in the software de-
velopment company. The company manages its available materials in a CSV file. The
initial concrete syntax before the initialization of Materials is shown in the format CSV in
Table 11.4.

Table 11.4: The initial input of Materials in CSV format

# ID Label Costs per Day

1 M01 Server 20
2 M02 IDE 35
3 M03 Office 100

The first column (“#”) depicts the row numbers in the CSV file. The second column
(“ID”) contains IDs for each material which are unique for all materials of the company. The
third column (“Label”) contains a short name for the material. The fourth column (“Costs
per Day”) stores the daily costs (in Euro, no decimals), which arise for each employee and
for each day, when the materials are used. Currently, employees can use servers, IDEs and
offices in the company. The metamodel of Materials is shown in Figure 11.7.

materialsMaterialCollection

rowNumber : EInt [0..1]

id : EString [0..1]

label : EString [0..1]

costs : EString [0..1]

Material

container [1]

materials [∗]

Figure 11.7: Metamodel of Materials

The metamodel represents materials as instances of Material, which are collected in
a MaterialCollection. The names in the first row of the CSV file are used for the
attributes in Material, according to the CSV adapter as discussed in Section 8.4.4Z 275.
All attributes have EString as data type, since CSV files store only text. The initial input
model of Materials is shown in Figure 11.8Z 396.
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materials-model

m-root-id : MaterialCollectionrowNumber = 1
id = ”M01”
label = ”Server”
costs = ”20”

m-M01 : Material

rowNumber = 2
id = ”M02”
label = ”IDE”
costs = ”35”

m-M02 : Material

rowNumber = 3
id = ”M03”
label = ”Office”
costs = ”100”

m-M03 : Material

container[0]materials[0]

container[0]

materials[1]

container[0]

materials[2]

Figure 11.8: The initial input model of Materials

According to the metamodel and the transformations of the CSV adapter, the model
contains one object with Material as type for each row with content in the CSV file. The
attribute slots are assigned with the content of the corresponding cell in the CSV file. All
Material objects are stored in an instance of MaterialCollection.

11.1.5 SU(M)M

Initially, there is no SU(M)M, but it is created for the first time during the initializa-
tion by executing the configured operators with the introduced data sources as starting
point. The configurations of the operators control the final structure of the SU(M)M,
which are documented in detail in Section 11.2Z 404. This section serves as look-ahead and
is useful for understanding the new view(point). The metamodel of SUMM is shown in
Figure 11.9Z 397.
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materials

tasks

employees

work

WorkCollection

rowNumber : EInt [0..1]

id : EString [0..1]

day : EString [0..1]

Work

HumanResources

rowNumber : EInt [0..1]

number : EString [0..1]

lastname : EString [0..1]

firstname : EString [0..1]

role : EString [0..1]

salary : EDouble [0..1]

Employee

Backlog

rowNumber : EInt [0..1]

id : EString [0..1]

description : EString [0..1]

planDuration : EDouble [0..1]

planCostsHuman : EDouble [0..1]

planCostsMaterial : EDouble [0..1]

Task

MaterialCollection

rowNumber : EInt [0..1]

id : EString [0..1]

label : EString [0..1]

costs : EDouble [0..1]

Material

container [1]

work [∗]

work [∗]

employee [0..1]

work [∗]

task [0..1]

work [∗]

materials [∗]

container [1]

employees [∗]

container [1]

tasks [∗]
container [1]

materials [∗]

Figure 11.9: Metamodel of SUMM

The four namespaces employees, tasks, work and materials of the four data sources
are still existing in the SUMM and indicate the origins of the contained classes. Additionally,
some integrations are visible in form of associations crossing the bounds of these namespaces,
which enable to make the implicit relationships via IDs explicit with links. The details of
this integration are explained later. The final model after the initialization of SUMM is
shown in Figure 11.10Z 398.
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work-model

employees-model

materials-model

tasks-model

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP4 : Task

rowNumber = 3
id = ”M03”
label = ”Office”
costs = 100.0

m-M03 : Material

rowNumber = 2
id = ”M02”
label = ”IDE”
costs = 35.0

m-M02 : Material

rowNumber = 1
id = ”M01”
label = ”Server”
costs = 20.0

m-M01 : Material

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = 76000.0

e-PN14 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = 73000.0

e-PN13 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = 75000.0

e-PN12 : Employee

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = 60000.0

e-PN11 : Employee

rowNumber = 9
id = ”9”
day = ”2021-01-06”

w-9 : Work

rowNumber = 8
id = ”8”
day = ”2021-01-07”

w-8 : Work

rowNumber = 7
id = ”7”
day = ”2021-01-11”

w-7 : Work

rowNumber = 6
id = ”6”
day = ”2021-01-10”

w-6 : Work

rowNumber = 5
id = ”5”
day = ”2021-01-06”

w-5 : Work

rowNumber = 4
id = ”4”
day = ”2021-01-05”

w-4 : Work

rowNumber = 3
id = ”3”
day = ”2021-01-05”

w-3 : Work

rowNumber = 2
id = ”2”
day = ”2021-01-04”

w-2 : Work

rowNumber = 1
id = ”1”
day = ”2021-01-04”

w-1 : Work

task[0]

work[0]

task[0] work[1]

task[0]

work[2]

task[0]

work[0]

task[0] work[1]

task[0]

work[2]

task[0]

work[3]

task[0]

work[0]

task[0]

work[1]

materials[0]

work[0]

materials[1]work[1]

materials[1]

work[2]

materials[0]work[0]

materials[0]

work[1]

materials[0]

work[2]

materials[0]

work[0]

materials[0]

work[1]

materials[0]work[2]

materials[0]

work[3]

employee[0] work[0]

employee[0]

work[1]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[2]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[0]

employee[0]

work[1]

Figure 11.10: The final model after the initialization of SUMM

Corresponding to the SUMM, also the SUM still contains the namespaces of the four
data sources on model level. There are lots of links connecting Employees, Tasks and
Materials with Work entries, which replace the indirect links via IDs.

11.1.6 New ViewPoint Costs

In order to exploit the integrated knowledge about employees, tasks, materials and work in
the software development company, a new view(point) is aimed, which support managers to
calculate real costs of tasks and to compare the real costs with the planned costs. Therefore,
the new view should contain one entry for each task with planned costs, real costs and their
difference. This new view is provided as Excel file to the manager in order to support
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number formats in contrast to CSV. The final concrete syntax after the initialization of
Costs is shown in the format Excel in Figure 11.11.

Figure 11.11: The final concrete syntax of Costs in Excel format

The row numbers for tasks in Excel are depicted not as own column, but in the
sidebar. The first five columns contain the same knowledge about tasks as in Tasks ,
since they represent the planned duration and costs of the tasks. Additionally, column F
(“realDuration”) contains the real number of days, which were worked by employees for
the particular task. Column G (“realCostsHuman”) contains the real costs for employees,
depending on their salary and the number of worked days. Column H (“realCostsMaterial”)
contains the real costs for materials, depending on their costs and the number of worked
days with used materials. The columns I (‘planCostsTotal‘) and J (“realCostsTotal”) sum
the planned respectively real costs of humans and materials. Depending on these total
costs, column K (“additionalCosts”) calculates the additionally required money for each
task, which might be negative. The metamodel of Costs is shown in Figure 11.12.

tasks Backlog

rowNumber : EInt [0..1]

id : EString [0..1]

description : EString [0..1]

planDuration : EDouble [0..1]

planCostsHuman : EDouble [0..1]

planCostsMaterial : EDouble [0..1]

realDuration : EDouble [0..1]

realCostsHuman : EDouble [0..1]

realCostsMaterial : EDouble [0..1]

planCostsTotal : EDouble [0..1]

realCostsTotal : EDouble [0..1]

additionalCosts : EDouble [0..1]

Task

container [1]

tasks [∗]

Figure 11.12: Metamodel of Costs

The metamodel is very similar to the metamodel of Tasks , but with additional at-
tributes for the additional columns in the Excel file. The names in the first row of the
Excel file are used for the attributes in Task, according to the Excel adapter as discussed
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in Section 8.4.3Z 273. The attributes for durations and costs have EDouble, since the Ex-
cel adapter supports only EDouble as data type for numbers. The final model after the
initialization of Costs is shown in Figure 11.13.

tasks-model

t-root-id : Backlog

rowNumber = 2
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0
realDuration = 3.0
realCostsHuman = 807.69
realCostsMaterial = 105.0
planCostsTotal = 1500.0
realCostsTotal = 912.69
additionalCosts = -587.3

t-AP1 : Task

rowNumber = 3
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 4.0
realCostsHuman = 1134.61
realCostsMaterial = 280.0
planCostsTotal = 3000.0
realCostsTotal = 1414.61
additionalCosts = -1585.39

t-AP2 : Task

rowNumber = 4
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0
realDuration = 2.0
realCostsHuman = 523.07
realCostsMaterial = 100.0
planCostsTotal = 2500.0
realCostsTotal = 623.07
additionalCosts = -1876.92

t-AP3 : Task

rowNumber = 5
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 0.0
realCostsHuman = 0.0
realCostsMaterial = 0.0
planCostsTotal = 3000.0
realCostsTotal = 0.0
additionalCosts = -3000.0

t-AP4 : Task
container[0]

tasks[0]

container[0]

tasks[1]

container[0]

tasks[2]

container[0]

tasks[3]

Figure 11.13: The final model after the initialization of Costs

According to the metamodel and the transformations of the Excel adapter, the model
contains one object with Task as type for each row with content in the Excel file. The
attribute slots are assigned with the content of the corresponding cell in the Excel file.
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All Task objects are stored in an instance of Backlog.

11.1.7 Realization Overview

Figure 11.14 presents an overview about all consistency goals, annotated along the edges.
Hyperlinks at the consistency goals allow to jump to their introductions. The nodes in the
graphic represent the data sources in this application. Hyperlinks at the nodes allow to
jump to their introductions.

Work

Employees

TasksMaterials

C 1

C 3 C 2

Figure 11.14: Overview about Consistency Goals in Knowledge Integration

The consistency is described by the following consistency goals and their concretizing
consistency rules. Figure 11.14 visualizes the consistency goals and their involved data
sources or new viewpoints.

Consistency Goal C 1 Work + Employees

Each work entry refers to its employee.

Each work entry refers to the employee who did this work. Since the employee is not
defined by its name, but by its personnal numbers, there is no need to react on changed
names of employees in the work entries, since the personnal number is stable in the company.
Additionally, employees are never removed, since they are kept for internal documentation of
the work, even when they leave the company. This consistency goal is explicitly tested by the
test cases documented in Section 11.4.2Z 437, Section 11.4.4Z 442 and Section 11.4.6Z 449.

Consistency Goal C 2 Work + Tasks

Each work entry refers to a task.

Each work entry refers to the task which was handled by this work. Since the task is not
defined by its description, but by its ID, there is no need to react on changed descriptions
of tasks in the work entries, since the ID is stable in the company. Additionally, tasks are
never removed, since they are kept for internal documentation of the work, even when they
become invalid. This consistency goal is explicitly tested by the test cases documented in
Section 11.4.2Z 437, Section 11.4.4Z 442, Section 11.4.5Z 446 and Section 11.4.6Z 449.

Consistency Goal C 3 Work + Materials

Each work entry refers to all used materials.

Each work entry refers to all the materials which were used for this work. Since the
material is not defined by its label, but by its ID, there is no need to react on changed
labels of materials in the work entries, since the ID is stable in the company. Additionally,
materials are never removed, since they are kept for internal documentation of the work,
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even when they are no longer used. This consistency goal is explicitly tested by the test
cases documented in Section 11.4.2Z 437, Section 11.4.4Z 442 and Section 11.4.6Z 449.

All operators configured for the realization are visualized in Figure 11.15Z 403 along the
edges. Data sources are rendered as white rectangles. New viewpoints are rendered as gray
rectangles. Intermediate (meta)models are rendered as black circles. The operators for the
integration of the data sources into the SU(M)M are described in Section 11.2Z 404. The op-
erators to derive the new view(point) from the SU(M)M are described in Section 11.3Z 425.
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Figure 11.15: Configured Tree of Operators for Knowledge Integration
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11.2 Integration of existing Data Sources

This section documents, how the existing data sources are integrated into the SU(M)M. For
each used operator, its impact is highlighted and its configuration is sketched. The changes
of the operator within the current metamodel are graphically visualized. The changes of
the operator within the current model are graphically visualized. Only the combination
of two (meta)models is not shown, since only two (meta)models are combined into one
(meta)model on technical level without semantic changes.

In order to improve the readability, the documentation focuses on the most important
information about the operators: For brevity, only the forward unidirectional operator is
depicted in detail, while its inverse unidirectional operator is only mentioned. For some
neighbored operators which realize similar objectives or work together for the same objec-
tive, the visualization of their impact is combined into a single graphic. Configurations for
model decisions which are predefined by the operator and reused here, are not repeated
again.

11.2.1 Improve Work

The orchestration starts with the central data source for work and improves it representation
in order to simplify the following integrations with other data sources.

Work ←→ 01: ChangeMultiplicity

In order to make the different materials explicit, the concatenation of materials with commas
as separator is prevented by changing multiplicity of the attribute in order to allow an
arbitrary number of materials in the metamodel. Additionally, the single materials are
calculated by splitting their concatenation at the commas in the model. Therefore, this
part of the orchestration changes the metamodel, as depicted in Figure 11.16.

work

WorkCollection

rowNumber : EInt [0..1]

id : EString [0..1]

employeeID : EString [0..1]

taskID : EString [0..1]

day : EString [0..1]

materials : EString [∗][0..1]

Work

container [1]
work [∗]

Figure 11.16: Metamodel Changes from Work to 01

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 11.17Z 405.
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work-model

rowNumber = 1
id = ”1”
employeeID = ”PN11”
taskID = ”AP1”
day = ”4012021”
materials = ”M02”

w-1 : Work

rowNumber = 2
id = ”2”
employeeID = ”PN12”
taskID = ”AP1”
day = ”4012021”
materials = ”M02”

w-2 : Work

rowNumber = 3
id = ”3”
employeeID = ”PN12”
taskID = ”AP1”
day = ”5012021”
materials = ”M02”

w-3 : Work

rowNumber = 4
id = ”4”
employeeID = ”PN13”
taskID = ”AP2”
day = ”5012021”
materials = ”M01”

w-4 : Work

rowNumber = 5
id = ”5”
employeeID = ”PN13”
taskID = ”AP2”
day = ”6012021”
materials = ”M01”

w-5 : Work

rowNumber = 6
id = ”6”
employeeID = ”PN13”
taskID = ”AP2”
day = ”10012021”
materials = ”M01””M03””M01, M03”

w-6 : Work

rowNumber = 7
id = ”7”
employeeID = ”PN14”
taskID = ”AP2”
day = ”11012021”
materials = ”M01””M03””M01, M03”

w-7 : Work

rowNumber = 8
id = ”8”
employeeID = ”PN11”
taskID = ”AP3”
day = ”7012021”
materials = ””

w-8 : Work

rowNumber = 9
id = ”9”
employeeID = ”PN14”
taskID = ”AP3”
day = ”6012021”
materials = ”M03”

w-9 : Work

Figure 11.17: Model Changes from Work to 01

For the direction Work→01, the unidirectional operator is →ChangeMultiplicity
(work.Work.materials: lower bound to 0, upper bound to -1).

Metamodel Decisions configured for →ChangeMultiplicity:

• fullyQualifiedFeatureName = work.Work.materials

• newLowerBound = 0
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• newUpperBound = -1

Model Decisions configured for→ChangeMultiplicity: Configurations for model de-
cisions are realized in de unioldenburg se mmi example knowledge Knowledge-

Configuration 1. All their configurations for model decisions are listed here:

• handleInstanceWithHurtLowerBound ( arg0 : Slot, arg1 : int )

This case does not occur here.

• handleInstanceWithHurtUpperBound ( arg0 : Slot, arg1 : int )

This case does not occur here.

• handleInstanceWithValidBounds ( arg0 : Slot, arg1 : int, arg2 : int )

Splits the concatenation of materials into the single materials at the commas.

For the inverse direction Work←01, the unidirectional operator is ←ChangeMulti-
plicity (work.Work.materials: lower bound to 0, upper bound to 1).

01 ←→ 02: ChangeModel

In order to improve the readability of the date information, the formatting is changed from
values like 22112000 to 2000-11-22 (and vice versa). Therefore, this part of the orchestration
does not change the metamodel. Accordingly, this part of the orchestration changes the
model, as depicted in Figure 11.18Z 407.
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work-model

rowNumber = 1
id = ”1”
employeeID = ”PN11”
taskID = ”AP1”
day = ”2021-01-04””4012021”
materials = ”M02”

w-1 : Work

rowNumber = 2
id = ”2”
employeeID = ”PN12”
taskID = ”AP1”
day = ”2021-01-04””4012021”
materials = ”M02”

w-2 : Work

rowNumber = 3
id = ”3”
employeeID = ”PN12”
taskID = ”AP1”
day = ”2021-01-05””5012021”
materials = ”M02”

w-3 : Work

rowNumber = 4
id = ”4”
employeeID = ”PN13”
taskID = ”AP2”
day = ”2021-01-05””5012021”
materials = ”M01”

w-4 : Work

rowNumber = 5
id = ”5”
employeeID = ”PN13”
taskID = ”AP2”
day = ”2021-01-06””6012021”
materials = ”M01”

w-5 : Work

rowNumber = 6
id = ”6”
employeeID = ”PN13”
taskID = ”AP2”
day = ”2021-01-10””10012021”
materials = ”M01””M03”

w-6 : Work

rowNumber = 7
id = ”7”
employeeID = ”PN14”
taskID = ”AP2”
day = ”2021-01-11””11012021”
materials = ”M01””M03”

w-7 : Work

rowNumber = 8
id = ”8”
employeeID = ”PN11”
taskID = ”AP3”
day = ”2021-01-07””7012021”
materials = ””

w-8 : Work

rowNumber = 9
id = ”9”
employeeID = ”PN14”
taskID = ”AP3”
day = ”2021-01-06””6012021”
materials = ”M03”

w-9 : Work

Figure 11.18: Model Changes from 01 to 02

For the direction 01→02, the unidirectional operator is →ChangeModel (Change-
Model).

Metamodel Decisions are not used by →ChangeModel.

Model Decisions configured for →ChangeModel: Configurations for model decisions
are realized in de unioldenburg se mmi example knowledge KnowledgeConfig-
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uration 3. All their configurations for model decisions are listed here:

• changeModel ( )

Converts values like 22112000 to 2000-11-22 and adds a possibly missing leading
zero before.

For the inverse direction 01←02, the unidirectional operator is ←ChangeModel
(ChangeModel).

11.2.2 Integrate Employees with Work

Adds the data source for employees, improves it and integrates it with work.

Employees ←→ 03: ChangeAttributeType

Since the CSV format supports only text, some values are converted from String to double
in order to ease numeric calculations. Therefore, this part of the orchestration changes the
metamodel, as depicted in Figure 11.19.

employeesHumanResources

rowNumber : EInt [0..1]

number : EString [0..1]

lastname : EString [0..1]

firstname : EString [0..1]

role : EString [0..1]

salary : EDoubleEString [0..1]

Employee

container [1]

employees [∗]

Figure 11.19: Metamodel Changes from Employees to 03

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 11.20Z 409.
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employees-model

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = 60000.0”60000”

e-PN11 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = 75000.0”75000”

e-PN12 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = 73000.0”73000”

e-PN13 : Employee

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = 76000.0”76000”

e-PN14 : Employee

Figure 11.20: Model Changes from Employees to 03

For the direction Employees→03, the unidirectional operator is →ChangeAttri-
buteType (attribute employees.Employee.salary: ecore.EString → ecore.EDouble).

Metamodel Decisions configured for →ChangeAttributeType:

• fullyQualifiedAttributeName = employees.Employee.salary

• fullyQualifiedNewTypeName = ecore.EDouble
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Model Decisions configured for →ChangeAttributeType: Configurations for model
decisions are realized in de unioldenburg se mmi framework operator unidi-

rectional decisions ConvertStringToDouble. All their configurations for model
decisions are listed here:

• convert ( input : Object ) : Object

Converts the String value to double by using the default Java parsing method.
This is a default configuration, reused from de unioldenburg se mmi frame-

work operator unidirectional decisions ConvertStringToDouble.

For the inverse direction Employees←03, the unidirectional operator is←ChangeAt-
tributeType (attribute employees.Employee.salary: ecore.EDouble → ecore.EString).

04 ←→ 05: ReplaceAttributeByReference

In order to realize C 1 by linking each work entry explicitly to the employee, this operator
replaces the personnal numbers by explicit links pointing to the corresponding employees.
Therefore, this part of the orchestration changes the metamodel, as depicted in Figure 11.21.

employees

work

WorkCollection

rowNumber : EInt [0..1]

id : EString [0..1]

taskID : EString [0..1]

day : EString [0..1]

materials : EString [∗]
employeeID : EString [0..1]

Work

HumanResources

rowNumber : EInt [0..1]

number : EString [0..1]

lastname : EString [0..1]

firstname : EString [0..1]

role : EString [0..1]

salary : EDouble [0..1]

Employee

container [1]
work [∗]

work [∗]

employeeID [0..1]

container [1]

employees [∗]

Figure 11.21: Metamodel Changes from 04 to 05

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 11.22Z 411.
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employees-model work-model

rowNumber = 1
id = ”1”
taskID = ”AP1”
day = ”2021-01-04”
materials = ”M02”
employeeID = ”PN11”

w-1 : Work

rowNumber = 2
id = ”2”
taskID = ”AP1”
day = ”2021-01-04”
materials = ”M02”
employeeID = ”PN12”

w-2 : Work

rowNumber = 3
id = ”3”
taskID = ”AP1”
day = ”2021-01-05”
materials = ”M02”
employeeID = ”PN12”

w-3 : Work

rowNumber = 4
id = ”4”
taskID = ”AP2”
day = ”2021-01-05”
materials = ”M01”
employeeID = ”PN13”

w-4 : Work

rowNumber = 5
id = ”5”
taskID = ”AP2”
day = ”2021-01-06”
materials = ”M01”
employeeID = ”PN13”

w-5 : Work

rowNumber = 6
id = ”6”
taskID = ”AP2”
day = ”2021-01-10”
materials = ”M01””M03”
employeeID = ”PN13”

w-6 : Work

rowNumber = 7
id = ”7”
taskID = ”AP2”
day = ”2021-01-11”
materials = ”M01””M03”
employeeID = ”PN14”

w-7 : Work

rowNumber = 8
id = ”8”
taskID = ”AP3”
day = ”2021-01-07”
materials = ””
employeeID = ”PN11”

w-8 : Work

rowNumber = 9
id = ”9”
taskID = ”AP3”
day = ”2021-01-06”
materials = ”M03”
employeeID = ”PN14”

w-9 : Work

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = 60000.0

e-PN11 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = 75000.0

e-PN12 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = 73000.0

e-PN13 : Employee

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = 76000.0

e-PN14 : Employee

work[1]

employeeID[0]

work[1]

employeeID[0]

work[0]

employeeID[0]

work[2]

employeeID[0]

work[1]

employeeID[0]

work[0]

employeeID[0]

work[1]

employeeID[0]

work[0]

employeeID[0]

work[0]employeeID[0]

Figure 11.22: Model Changes from 04 to 05

For the direction 04→05, the unidirectional operator is →ReplaceAttributeBy-
Reference (work.Work.employeeID −→ employees.Employee).

Metamodel Decisions configured for →ReplaceAttributeByReference:

• sourceClassName = work.Work

• attributeName = employeeID
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• targetClassName = employees.Employee

• oppositeReferenceName = work

• oppositeLowerBound = 0

• oppositeUpperBound = -1

Model Decisions configured for →ReplaceAttributeByReference: Configurations
for model decisions are realized in de unioldenburg se mmi example knowledge

KnowledgeConfiguration 5. All their configurations for model decisions are listed
here:

• replaceValue ( arg0 : AttributeSlot, arg1 : Object, arg2 : ReplaceAt-

tributeByReference ) : Instance

Searches all employees to find the employee with a matching number.

For the inverse direction 04←05, the unidirectional operator is ←ReplaceRefer-
enceByAttribute (work.Work.employeeID : employees.Employee).

05 ←→ 06: RenameFeature

After the previous replacement, the reference points directly to the objects, which should
be replected by its name. Therefore, this part of the orchestration changes the metamodel,
as depicted in Figure 11.23Z 413.
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employees

work

WorkCollection

rowNumber : EInt [0..1]

id : EString [0..1]

taskID : EString [0..1]

day : EString [0..1]

materials : EString [∗]

Work

HumanResources

rowNumber : EInt [0..1]

number : EString [0..1]

lastname : EString [0..1]

firstname : EString [0..1]

role : EString [0..1]

salary : EDouble [0..1]

Employee

container [1]

work [∗]

work [∗]

employeeemployeeID [0..1]

container [1]

employees [∗]

Figure 11.23: Metamodel Changes from 05 to 06

Accordingly, this part of the orchestration does not change the model. For the direction
05→06, the unidirectional operator is →RenameFeature (work.Work.employeeID →
employee).

Metamodel Decisions configured for →RenameClassifier:

• elementFullyQualified = work.Work.employeeID

• name = employee

Model Decisions configured for →RenameClassifier: This operator has no configura-
tions for model decisions.

For the inverse direction 05←06, the unidirectional operator is ←RenameFeature
(work.Work.employee → employeeID).

11.2.3 Integrate Tasks with Work

Adds the data source for tasks, improves it and integrates it with work.
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Tasks ←→ 10

Since the CSV format supports only text, some values are converted from String to double
in order to ease numeric calculations. Therefore, this part of the orchestration changes the
metamodel, as depicted in Figure 11.24.

tasks Backlog

rowNumber : EInt [0..1]

id : EString [0..1]

description : EString [0..1]

planDuration : EDoubleEString [0..1]

planCostsHuman : EDoubleEString [0..1]

planCostsMaterial : EDoubleEString [0..1]

Task

container [1]

tasks [∗]

Figure 11.24: Metamodel Changes from Tasks to 10

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 11.25Z 415.
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tasks-model

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = 3.0”3”
planCostsHuman = 800.0”800”
planCostsMaterial = 700.0”700”

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = 6.0”6”
planCostsHuman = 1600.0”1600”
planCostsMaterial = 1400.0”1400”

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0”5”
planCostsHuman = 1400.0”1400”
planCostsMaterial = 1100.0”1100”

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Network”
planDuration = 6.0”6”
planCostsHuman = 1600.0”1600”
planCostsMaterial = 1400.0”1400”

t-AP4 : Task

Figure 11.25: Model Changes from Tasks to 10

This is realized by the following three operators:

1. For the direction Tasks→07, the unidirectional operator is →ChangeAttribute-
Type (attribute tasks.Task.planDuration: ecore.EString → ecore.EDouble).
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Metamodel Decisions configured for →ChangeAttributeType:

• fullyQualifiedAttributeName = tasks.Task.planDuration

• fullyQualifiedNewTypeName = ecore.EDouble

Model Decisions configured for →ChangeAttributeType: Configurations for
model decisions are realized in de unioldenburg se mmi framework oper-

ator unidirectional decisions ConvertStringToDouble. All their con-
figurations for model decisions are listed here:

• convert ( input : Object ) : Object

Converts the String value to double by using the default Java parsing
method. This is a default configuration, reused from de unioldenburg

se mmi framework operator unidirectional decisions Convert-

StringToDouble.

For the inverse direction Tasks←07, the unidirectional operator is ←ChangeAt-
tributeType (attribute tasks.Task.planDuration: ecore.EDouble→ ecore.EString).

2. For the direction 07→08, the unidirectional operator is→ChangeAttributeType
(attribute tasks.Task.planCostsHuman: ecore.EString → ecore.EDouble).

Metamodel Decisions configured for →ChangeAttributeType:

• fullyQualifiedAttributeName = tasks.Task.planCostsHuman

• fullyQualifiedNewTypeName = ecore.EDouble

Model Decisions configured for →ChangeAttributeType: Configurations for
model decisions are realized in de unioldenburg se mmi framework oper-

ator unidirectional decisions ConvertStringToDouble. All their con-
figurations for model decisions are listed here:

• convert ( input : Object ) : Object

Converts the String value to double by using the default Java parsing
method. This is a default configuration, reused from de unioldenburg

se mmi framework operator unidirectional decisions Convert-

StringToDouble.

For the inverse direction 07←08, the unidirectional operator is ←ChangeAttri-
buteType (attribute tasks.Task.planCostsHuman: ecore.EDouble→ ecore.EString).

3. For the direction 08→09, the unidirectional operator is→ChangeAttributeType
(attribute tasks.Task.planCostsMaterial: ecore.EString → ecore.EDouble).

Metamodel Decisions configured for →ChangeAttributeType:

• fullyQualifiedAttributeName = tasks.Task.planCostsMaterial

• fullyQualifiedNewTypeName = ecore.EDouble

Model Decisions configured for →ChangeAttributeType: Configurations for
model decisions are realized in de unioldenburg se mmi framework oper-
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ator unidirectional decisions ConvertStringToDouble. All their con-
figurations for model decisions are listed here:

• convert ( input : Object ) : Object

Converts the String value to double by using the default Java parsing
method. This is a default configuration, reused from de unioldenburg

se mmi framework operator unidirectional decisions Convert-

StringToDouble.

For the inverse direction 08←09, the unidirectional operator is ←ChangeAttri-
buteType (attribute tasks.Task.planCostsMaterial: ecore.EDouble→ ecore.EString).

10 ←→ 11: ReplaceAttributeByReference

In order to realize C 2 by linking each work entry explicitly to the task, this operator
replaces the ID of the task by explicit links pointing to this task. Therefore, this part of
the orchestration changes the metamodel, as depicted in Figure 11.26.

tasks

employees

work

WorkCollection

rowNumber : EInt [0..1]

id : EString [0..1]

day : EString [0..1]

materials : EString [∗]
taskID : EString [0..1]

Work

HumanResources

rowNumber : EInt [0..1]

number : EString [0..1]

lastname : EString [0..1]

firstname : EString [0..1]

role : EString [0..1]

salary : EDouble [0..1]

Employee

Backlog

rowNumber : EInt [0..1]

id : EString [0..1]

description : EString [0..1]

planDuration : EDouble [0..1]

planCostsHuman : EDouble [0..1]

planCostsMaterial : EDouble [0..1]

Task

container [1]

work [∗]

work [∗]

employee [0..1]

work [∗]

taskID [0..1]

container [1]

employees [∗]

container [1]

tasks [∗]

Figure 11.26: Metamodel Changes from 10 to 11

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 11.27Z 418.
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tasks-model

employees-model
work-model

rowNumber = 1
id = ”1”
day = ”2021-01-04”
materials = ”M02”
taskID = ”AP1”

w-1 : Work

rowNumber = 2
id = ”2”
day = ”2021-01-04”
materials = ”M02”
taskID = ”AP1”

w-2 : Work

rowNumber = 3
id = ”3”
day = ”2021-01-05”
materials = ”M02”
taskID = ”AP1”

w-3 : Work

rowNumber = 4
id = ”4”
day = ”2021-01-05”
materials = ”M01”
taskID = ”AP2”

w-4 : Work

rowNumber = 5
id = ”5”
day = ”2021-01-06”
materials = ”M01”
taskID = ”AP2”

w-5 : Work

rowNumber = 6
id = ”6”
day = ”2021-01-10”
materials = ”M01””M03”
taskID = ”AP2”

w-6 : Work

rowNumber = 7
id = ”7”
day = ”2021-01-11”
materials = ”M01””M03”
taskID = ”AP2”

w-7 : Work

rowNumber = 8
id = ”8”
day = ”2021-01-07”
materials = ””
taskID = ”AP3”

w-8 : Work

rowNumber = 9
id = ”9”
day = ”2021-01-06”
materials = ”M03”
taskID = ”AP3”

w-9 : Work

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = 60000.0

e-PN11 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = 75000.0

e-PN12 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = 73000.0

e-PN13 : Employee

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = 76000.0

e-PN14 : Employee

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP4 : Task

work[1]

employee[0]

work[2]

taskID[0]

work[1]

employee[0]

work[1]taskID[0]

work[0]

employee[0]

work[0]

taskID[0]

work[2]

employee[0]

work[3]

taskID[0]

work[1]

employee[0]

work[2]

taskID[0]

work[0]

employee[0]

work[1]taskID[0]

work[1]

employee[0]

work[0]

taskID[0]

work[0]

employee[0]

work[1]

taskID[0]

work[0]employee[0]

work[0]

taskID[0]

Figure 11.27: Model Changes from 10 to 11

For the direction 10→11, the unidirectional operator is →ReplaceAttributeBy-
Reference (work.Work.taskID −→ tasks.Task).

Metamodel Decisions configured for →ReplaceAttributeByReference:

• sourceClassName = work.Work

• attributeName = taskID

418



11.2 Integration of existing Data Sources

• targetClassName = tasks.Task

• oppositeReferenceName = work

• oppositeLowerBound = 0

• oppositeUpperBound = -1

Model Decisions configured for →ReplaceAttributeByReference: Configurations
for model decisions are realized in de unioldenburg se mmi example knowledge

KnowledgeConfiguration 7. All their configurations for model decisions are listed
here:

• replaceValue ( arg0 : AttributeSlot, arg1 : Object, arg2 : ReplaceAt-

tributeByReference ) : Instance

Searches all tasks to find the task with a matching id.

For the inverse direction 10←11, the unidirectional operator is ←ReplaceRefer-
enceByAttribute (work.Work.taskID : tasks.Task).

11 ←→ 12: RenameFeature

After the previous replacement, the reference points directly to the objects, which should
be replected by its name. Therefore, this part of the orchestration changes the metamodel,
as depicted in Figure 11.28Z 420.
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tasks

employees

work

WorkCollection

rowNumber : EInt [0..1]

id : EString [0..1]

day : EString [0..1]

materials : EString [∗]

Work

HumanResources

rowNumber : EInt [0..1]

number : EString [0..1]

lastname : EString [0..1]

firstname : EString [0..1]

role : EString [0..1]

salary : EDouble [0..1]

Employee

Backlog

rowNumber : EInt [0..1]

id : EString [0..1]

description : EString [0..1]

planDuration : EDouble [0..1]

planCostsHuman : EDouble [0..1]

planCostsMaterial : EDouble [0..1]

Task

container [1]

work [∗]

work [∗]

employee [0..1]

work [∗]

tasktaskID [0..1]

container [1]

employees [∗]

container [1]

tasks [∗]

Figure 11.28: Metamodel Changes from 11 to 12

Accordingly, this part of the orchestration does not change the model. For the direction
11→12, the unidirectional operator is →RenameFeature (work.Work.taskID → task).

Metamodel Decisions configured for →RenameClassifier:

• elementFullyQualified = work.Work.taskID

• name = task

Model Decisions configured for →RenameClassifier: This operator has no configura-
tions for model decisions.

For the inverse direction 11←12, the unidirectional operator is ←RenameFeature
(work.Work.task → taskID).

11.2.4 Integrate Materials with Work

Adds the data source for materials, improves it and integrates it with work.

Materials ←→ 13: ChangeAttributeType

Since the CSV format supports only text, some values are converted from String to double
in order to ease numeric calculations. Therefore, this part of the orchestration changes the
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metamodel, as depicted in Figure 11.29.

materialsMaterialCollection

rowNumber : EInt [0..1]

id : EString [0..1]

label : EString [0..1]

costs : EDoubleEString [0..1]

Material

container [1]

materials [∗]

Figure 11.29: Metamodel Changes from Materials to 13

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 11.30Z 422.
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materials-model

rowNumber = 1
id = ”M01”
label = ”Server”
costs = 20.0”20”

m-M01 : Material

rowNumber = 2
id = ”M02”
label = ”IDE”
costs = 35.0”35”

m-M02 : Material

rowNumber = 3
id = ”M03”
label = ”Office”
costs = 100.0”100”

m-M03 : Material

Figure 11.30: Model Changes from Materials to 13

For the direction Materials→13, the unidirectional operator is→ChangeAttribute-
Type (attribute materials.Material.costs: ecore.EString → ecore.EDouble).

Metamodel Decisions configured for →ChangeAttributeType:

• fullyQualifiedAttributeName = materials.Material.costs

• fullyQualifiedNewTypeName = ecore.EDouble

Model Decisions configured for →ChangeAttributeType: Configurations for model
decisions are realized in de unioldenburg se mmi framework operator unidi-

rectional decisions ConvertStringToDouble. All their configurations for model
decisions are listed here:

• convert ( input : Object ) : Object

Converts the String value to double by using the default Java parsing method.
This is a default configuration, reused from de unioldenburg se mmi frame-

work operator unidirectional decisions ConvertStringToDouble.
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For the inverse direction Materials←13, the unidirectional operator is ←ChangeAt-
tributeType (attribute materials.Material.costs: ecore.EDouble → ecore.EString).

14 ←→ SUMM : ReplaceAttributeByReference

In order to realize C 3 by linking each work entry explicitly to the material, this operator
replaces the ID of the material by explicit links pointing to this material. Therefore, this
part of the orchestration changes the metamodel, as depicted in Figure 11.31.

materials

tasks

employees

work

WorkCollection

rowNumber : EInt [0..1]

id : EString [0..1]

day : EString [0..1]

materials : EString [∗]

Work

HumanResources

rowNumber : EInt [0..1]

number : EString [0..1]

lastname : EString [0..1]

firstname : EString [0..1]

role : EString [0..1]

salary : EDouble [0..1]

Employee

Backlog

rowNumber : EInt [0..1]

id : EString [0..1]

description : EString [0..1]

planDuration : EDouble [0..1]

planCostsHuman : EDouble [0..1]

planCostsMaterial : EDouble [0..1]

Task

MaterialCollection

rowNumber : EInt [0..1]

id : EString [0..1]

label : EString [0..1]

costs : EDouble [0..1]

Material

container [1]

work [∗]

work [∗]

employee [0..1]

work [∗]

task [0..1]

work [∗]

materials [∗]

container [1]

employees [∗]

container [1]

tasks [∗]
container [1]

materials [∗]

Figure 11.31: Metamodel Changes from 14 to SUMM

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 11.32Z 424.
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materials-model

tasks-model

employees-model

work-model

rowNumber = 1
id = ”1”
day = ”2021-01-04”
materials = ”M02”

w-1 : Work

rowNumber = 2
id = ”2”
day = ”2021-01-04”
materials = ”M02”

w-2 : Work

rowNumber = 3
id = ”3”
day = ”2021-01-05”
materials = ”M02”

w-3 : Work

rowNumber = 4
id = ”4”
day = ”2021-01-05”
materials = ”M01”

w-4 : Work

rowNumber = 5
id = ”5”
day = ”2021-01-06”
materials = ”M01”

w-5 : Work

rowNumber = 6
id = ”6”
day = ”2021-01-10”
materials = ”M03””M01”

w-6 : Work

rowNumber = 7
id = ”7”
day = ”2021-01-11”
materials = ”M03””M01”

w-7 : Work

rowNumber = 8
id = ”8”
day = ”2021-01-07”
materials = ””

w-8 : Work

rowNumber = 9
id = ”9”
day = ”2021-01-06”
materials = ”M03”

w-9 : Work

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = 60000.0

e-PN11 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = 75000.0

e-PN12 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = 73000.0

e-PN13 : Employee

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = 76000.0

e-PN14 : Employee

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP4 : Task

rowNumber = 1
id = ”M01”
label = ”Server”
costs = 20.0

m-M01 : Material

rowNumber = 2
id = ”M02”
label = ”IDE”
costs = 35.0

m-M02 : Material

rowNumber = 3
id = ”M03”
label = ”Office”
costs = 100.0

m-M03 : Material
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Figure 11.32: Model Changes from 14 to SUMM

For the direction 14→SUMM , the unidirectional operator is →ReplaceAttribute-
ByReference (work.Work.materials −→ materials.Material).

Metamodel Decisions configured for →ReplaceAttributeByReference:

• sourceClassName = work.Work

• attributeName = materials

• targetClassName = materials.Material

• oppositeReferenceName = work

• oppositeLowerBound = 0
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• oppositeUpperBound = -1

Model Decisions configured for →ReplaceAttributeByReference: Configurations
for model decisions are realized in de unioldenburg se mmi example knowledge

KnowledgeConfiguration 9. All their configurations for model decisions are listed
here:

• replaceValue ( arg0 : AttributeSlot, arg1 : Object, arg2 : ReplaceAt-

tributeByReference ) : Instance

Searches all materials to find the material with a matching id.

For the inverse direction 14←SUMM , the unidirectional operator is ←ReplaceRef-
erenceByAttribute (work.Work.materials : materials.Material).

11.3 Definition of a new View(point)

This section documents, how the new view(point) is derived from the SU(M)M. For each
used operator, its impact is highlighted and its configuration is sketched.

SUMM ←→ 20

Basing on the whole information in the SUM , the additional values for each task are
derived. Therefore, this part of the orchestration changes the metamodel, as depicted in
Figure 11.33.

tasks

employees

work

materialsMaterialCollection

rowNumber : EInt [0..1]

id : EString [0..1]

label : EString [0..1]

costs : EDouble [0..1]

Material

WorkCollection

rowNumber : EInt [0..1]

id : EString [0..1]

day : EString [0..1]

Work

HumanResources

rowNumber : EInt [0..1]

number : EString [0..1]

lastname : EString [0..1]

firstname : EString [0..1]

role : EString [0..1]

salary : EDouble [0..1]

Employee

Backlog

rowNumber : EInt [0..1]

id : EString [0..1]

description : EString [0..1]

planDuration : EDouble [0..1]

planCostsHuman : EDouble [0..1]

planCostsMaterial : EDouble [0..1]

realDuration : EDouble [0..1]

realCostsHuman : EDouble [0..1]

realCostsMaterial : EDouble [0..1]

planCostsTotal : EDouble [0..1]

realCostsTotal : EDouble [0..1]

additionalCosts : EDouble [0..1]

Task
container [1]

materials [∗]

materials [∗]

work [∗]

container [1]

work [∗]

work [∗]

employee [0..1]

work [∗]

task [0..1]

container [1]

employees [∗]

container [1]

tasks [∗]

Figure 11.33: Metamodel Changes from SUMM to 20

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 11.34Z 426.
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tasks-model

employees-model

work-model

materials-model

rowNumber = 1
id = ”M01”
label = ”Server”
costs = 20.0

m-M01 : Material

rowNumber = 2
id = ”M02”
label = ”IDE”
costs = 35.0

m-M02 : Material

rowNumber = 3
id = ”M03”
label = ”Office”
costs = 100.0

m-M03 : Material

rowNumber = 1
id = ”1”
day = ”2021-01-04”

w-1 : Work

rowNumber = 2
id = ”2”
day = ”2021-01-04”

w-2 : Work

rowNumber = 3
id = ”3”
day = ”2021-01-05”

w-3 : Work

rowNumber = 4
id = ”4”
day = ”2021-01-05”

w-4 : Work

rowNumber = 5
id = ”5”
day = ”2021-01-06”

w-5 : Work

rowNumber = 6
id = ”6”
day = ”2021-01-10”

w-6 : Work

rowNumber = 7
id = ”7”
day = ”2021-01-11”

w-7 : Work

rowNumber = 8
id = ”8”
day = ”2021-01-07”

w-8 : Work

rowNumber = 9
id = ”9”
day = ”2021-01-06”

w-9 : Work

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = 60000.0

e-PN11 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = 75000.0

e-PN12 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = 73000.0

e-PN13 : Employee

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = 76000.0

e-PN14 : Employee

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0
realDuration = 3.0
realCostsHuman = 807.69
realCostsMaterial = 105.0
planCostsTotal = 1500.0
realCostsTotal = 912.69
additionalCosts = -587.3

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 4.0
realCostsHuman = 1134.61
realCostsMaterial = 280.0
planCostsTotal = 3000.0
realCostsTotal = 1414.61
additionalCosts = -1585.39

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0
realDuration = 2.0
realCostsHuman = 523.07
realCostsMaterial = 100.0
planCostsTotal = 2500.0
realCostsTotal = 623.07
additionalCosts = -1876.92

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 0.0
realCostsHuman = 0.0
realCostsMaterial = 0.0
planCostsTotal = 3000.0
realCostsTotal = 0.0
additionalCosts = -3000.0

t-AP4 : Task
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Figure 11.34: Model Changes from SUMM to 20

This is realized by the following six operators:

1. For the direction SUMM→15, the unidirectional operator is →AddAttribute
(tasks.Task.realDuration).

Calculates the real duration for each task and stores these read-only values in a new
attribute.

Metamodel Decisions configured for →AddAttribute:

• classWithNewAttributeFullyQualified = tasks.Task

• attributeName = realDuration
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• attributeLowerBound = 0

• attributeUpperBound = 1

• attributeDataTypeFullyQualified = ecore.EDouble

Model Decisions configured for→AddAttribute: Configurations for model deci-
sions are realized in de unioldenburg se mmi example knowledge Knowl-

edgeConfiguration 11. All their configurations for model decisions are listed
here:

• computeInitialValue ( arg0 : Instance, arg1 : EAttribute ) : Object

Calculates the real duration by counting the number of registered work
for the current task.

For the inverse direction SUMM←15, the unidirectional operator is ←DeleteAt-
tribute (tasks.Task.realDuration).

2. For the direction 15→16, the unidirectional operator is→AddAttribute (tasks.Task.
realCostsHuman).

Calculates the real costs for humans for each task and stores these read-only values
in a new attribute.

Metamodel Decisions configured for →AddAttribute:

• classWithNewAttributeFullyQualified = tasks.Task

• attributeName = realCostsHuman

• attributeLowerBound = 0

• attributeUpperBound = 1

• attributeDataTypeFullyQualified = ecore.EDouble

Model Decisions configured for→AddAttribute: Configurations for model deci-
sions are realized in de unioldenburg se mmi example knowledge Knowl-

edgeConfiguration 12. All their configurations for model decisions are listed
here:

• computeInitialValue ( arg0 : Instance, arg1 : EAttribute ) : Object

Calculates the real costs for humans by calculating the day-costs for the
employees who worked for the current task.

For the inverse direction 15←16, the unidirectional operator is ←DeleteAttri-
bute (tasks.Task.realCostsHuman).

3. For the direction 16→17, the unidirectional operator is→AddAttribute (tasks.Task.
realCostsMaterial).

Calculates the real costs for materials for each task and stores these read-only values
in a new attribute.

Metamodel Decisions configured for →AddAttribute:

• classWithNewAttributeFullyQualified = tasks.Task

• attributeName = realCostsMaterial
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• attributeLowerBound = 0

• attributeUpperBound = 1

• attributeDataTypeFullyQualified = ecore.EDouble

Model Decisions configured for→AddAttribute: Configurations for model deci-
sions are realized in de unioldenburg se mmi example knowledge Knowl-

edgeConfiguration 13. All their configurations for model decisions are listed
here:

• computeInitialValue ( arg0 : Instance, arg1 : EAttribute ) : Object

Calculates the real costs for materials by calculating the day-costs for all
used meterials of each registered work for the current task.

For the inverse direction 16←17, the unidirectional operator is ←DeleteAttri-
bute (tasks.Task.realCostsMaterial).

4. For the direction 17→18, the unidirectional operator is→AddAttribute (tasks.Task.
planCostsTotal).

Calculates the planned total costs for each task and stores these read-only values in
a new attribute.

Metamodel Decisions configured for →AddAttribute:

• classWithNewAttributeFullyQualified = tasks.Task

• attributeName = planCostsTotal

• attributeLowerBound = 0

• attributeUpperBound = 1

• attributeDataTypeFullyQualified = ecore.EDouble

Model Decisions configured for→AddAttribute: Configurations for model deci-
sions are realized in de unioldenburg se mmi example knowledge Knowl-

edgeConfiguration 14. All their configurations for model decisions are listed
here:

• computeInitialValue ( arg0 : Instance, arg1 : EAttribute ) : Object

Sums the planned costs for humans and the planned costs for materials
for the current task.

For the inverse direction 17←18, the unidirectional operator is ←DeleteAttri-
bute (tasks.Task.planCostsTotal).

5. For the direction 18→19, the unidirectional operator is→AddAttribute (tasks.Task.
realCostsTotal).

Calculate the real total costs for each task and stores these read-only values in a new
attribute.

Metamodel Decisions configured for →AddAttribute:

• classWithNewAttributeFullyQualified = tasks.Task

• attributeName = realCostsTotal
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• attributeLowerBound = 0

• attributeUpperBound = 1

• attributeDataTypeFullyQualified = ecore.EDouble

Model Decisions configured for→AddAttribute: Configurations for model deci-
sions are realized in de unioldenburg se mmi example knowledge Knowl-

edgeConfiguration 15. All their configurations for model decisions are listed
here:

• computeInitialValue ( arg0 : Instance, arg1 : EAttribute ) : Object

Sums the real costs of humans and materials for the current task.

For the inverse direction 18←19, the unidirectional operator is ←DeleteAttri-
bute (tasks.Task.realCostsTotal).

6. For the direction 19→20, the unidirectional operator is→AddAttribute (tasks.Task.
additionalCosts).

Subtracts the additional costs for each task and stores these read-only values in a
new attribute.

Metamodel Decisions configured for →AddAttribute:

• classWithNewAttributeFullyQualified = tasks.Task

• attributeName = additionalCosts

• attributeLowerBound = 0

• attributeUpperBound = 1

• attributeDataTypeFullyQualified = ecore.EDouble

Model Decisions configured for→AddAttribute: Configurations for model deci-
sions are realized in de unioldenburg se mmi example knowledge Knowl-

edgeConfiguration 16. All their configurations for model decisions are listed
here:

• computeInitialValue ( arg0 : Instance, arg1 : EAttribute ) : Object

Subtracts the planned costs from the real costs for the current task.

For the inverse direction 19←20, the unidirectional operator is ←DeleteAttri-
bute (tasks.Task.additionalCosts).

20 ←→ 24

After calculating the values for the additional attributes for each task, most parts of the
(meta)model are not required anymore and are removed. Therefore, this part of the or-
chestration changes the metamodel, as depicted in Figure 11.35Z 430.
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employees

materials

work

tasks Backlog

rowNumber : EInt [0..1]

id : EString [0..1]

description : EString [0..1]

planDuration : EDouble [0..1]

planCostsHuman : EDouble [0..1]

planCostsMaterial : EDouble [0..1]

realDuration : EDouble [0..1]

realCostsHuman : EDouble [0..1]

realCostsMaterial : EDouble [0..1]

planCostsTotal : EDouble [0..1]

realCostsTotal : EDouble [0..1]

additionalCosts : EDouble [0..1]

Task

WorkCollection

id : EString [0..1]

day : EString [0..1]

rowNumber : EInt [0..1]

Work
id : EString [0..1]

costs : EDouble [0..1]

label : EString [0..1]

rowNumber : EInt [0..1]

Material

MaterialCollection

HumanResources

salary : EDouble [0..1]

role : EString [0..1]

number : EString [0..1]

firstname : EString [0..1]

rowNumber : EInt [0..1]

lastname : EString [0..1]

Employee

container [1]
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Figure 11.35: Metamodel Changes from 20 to 24

Accordingly, this part of the orchestration changes the model, as depicted in Fig-
ure 11.36Z 431.
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employees-model

materials-model

work-modeltasks-model

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0
realDuration = 3.0
realCostsHuman = 807.69
realCostsMaterial = 105.0
planCostsTotal = 1500.0
realCostsTotal = 912.69
additionalCosts = -587.3

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 4.0
realCostsHuman = 1134.61
realCostsMaterial = 280.0
planCostsTotal = 3000.0
realCostsTotal = 1414.61
additionalCosts = -1585.39

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0
realDuration = 2.0
realCostsHuman = 523.07
realCostsMaterial = 100.0
planCostsTotal = 2500.0
realCostsTotal = 623.07
additionalCosts = -1876.92

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 0.0
realCostsHuman = 0.0
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realCostsTotal = 0.0
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w-6 : Work

day = ”2021-01-06”
id = ”9”
rowNumber = 9

w-9 : Work
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label = ”Office”
id = ”M03”
costs = 100.0
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Figure 11.36: Model Changes from 20 to 24

This is realized by the following four operators:

1. For the direction 20→21, the unidirectional operator is→SubSetFilter (tasks.Task.
work, work, employees, materials).

Metamodel Decisions are not used by →SubSetFilter.

Model Decisions configured for →SubSetFilter: This operator has no configu-
rations for model decisions.

For the inverse direction 20←21, the unidirectional operator is←SubSetRecreate
(tasks.Task.work, work, employees, materials).
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2. For the direction 21→22, the unidirectional operator is→DeleteNamespace (work-
model).

Metamodel Decisions configured for →DeleteNamespace:

• namespaceFullName = work-model

Model Decisions configured for→DeleteNamespace: This operator has no con-
figurations for model decisions.

For the inverse direction 21←22, the unidirectional operator is ←AddNamespace
(work-model).

3. For the direction 22→23, the unidirectional operator is→DeleteNamespace (employ-
ees-model).

Metamodel Decisions configured for →DeleteNamespace:

• namespaceFullName = employees-model

Model Decisions configured for→DeleteNamespace: This operator has no con-
figurations for model decisions.

For the inverse direction 22←23, the unidirectional operator is ←AddNamespace
(employees-model).

4. For the direction 23→24, the unidirectional operator is→DeleteNamespace (mate-
rials-model).

Metamodel Decisions configured for →DeleteNamespace:

• namespaceFullName = materials-model

Model Decisions configured for→DeleteNamespace: This operator has no con-
figurations for model decisions.

For the inverse direction 23←24, the unidirectional operator is ←AddNamespace
(materials-model).

24 ←→ Costs : ChangeModel

Since the row numbers of tasks start with 0 due to its initial CSV format, the row numbers
are incremented by one, since Excel rows start with 1 (and vice versa). Therefore, this
part of the orchestration does not change the metamodel. Accordingly, this part of the
orchestration changes the model, as depicted in Figure 11.37Z 433.
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tasks-model

t-root-id : Backlog

rowNumber = 21
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0
realDuration = 3.0
realCostsHuman = 807.69
realCostsMaterial = 105.0
planCostsTotal = 1500.0
realCostsTotal = 912.69
additionalCosts = -587.3

t-AP1 : Task

rowNumber = 32
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 4.0
realCostsHuman = 1134.61
realCostsMaterial = 280.0
planCostsTotal = 3000.0
realCostsTotal = 1414.61
additionalCosts = -1585.39

t-AP2 : Task

rowNumber = 43
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0
realDuration = 2.0
realCostsHuman = 523.07
realCostsMaterial = 100.0
planCostsTotal = 2500.0
realCostsTotal = 623.07
additionalCosts = -1876.92

t-AP3 : Task

rowNumber = 54
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 0.0
realCostsHuman = 0.0
realCostsMaterial = 0.0
planCostsTotal = 3000.0
realCostsTotal = 0.0
additionalCosts = -3000.0

t-AP4 : Task
container[0]

tasks[0]

container[0]

tasks[1]

container[0]

tasks[2]

container[0]

tasks[3]

Figure 11.37: Model Changes from 24 to Costs

For the direction 24→Costs , the unidirectional operator is→ChangeModel (Change-
Model).

Metamodel Decisions are not used by →ChangeModel.

Model Decisions configured for →ChangeModel: Configurations for model decisions
are realized in de unioldenburg se mmi example knowledge KnowledgeConfig-
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uration 17. All their configurations for model decisions are listed here:

• changeModel ( )

Increments each row number by one.

For the inverse direction 24←Costs , the unidirectional operator is ←ChangeModel
(ChangeModel).

11.4 Validation Scenarios

This section documents acceptance test cases for this application domain. Each test case
is documented in its own section. The first section shows the initialization of the SU(M)M
before running the test case. Additionally, the initialization shows the models for all views,
before they might be changed in the particular test case. The initialization is the same for
all following test cases and is documented only once.

11.4.1 Initialization by Execution

This is the description of the first execution run for the initialization: Starting with the
initial data sources, the SU(M) and the new view(point)s are created, while possible incon-
sistencies in the data sources are fixed. The resulting models serve as starting point for the
following test case scenarios.

As result after completing the synchronization, the following changes are expected:

• In Work , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

# ID MID APID Day Materials

1 1 PN11 AP1 4012021 M02
2 2 PN12 AP1 4012021 M02
3 3 PN12 AP1 5012021 M02
4 4 PN13 AP2 5012021 M01
5 5 PN13 AP2 6012021 M01
6 6 PN13 AP2 10012021 M01, M03
7 7 PN14 AP2 11012021 M01, M03
8 8 PN11 AP3 7012021
9 9 PN14 AP3 6012021 M03

The model with highlighted changes is represented graphically:

434



11.4 Validation Scenarios

work-model

w-root-id : WorkCollection

rowNumber = 1
id = ”1”
day = ”4012021”
materials = ”M02”
taskID = ”AP1”
employeeID = ”PN11”

w-1 : Work

rowNumber = 2
id = ”2”
day = ”4012021”
materials = ”M02”
taskID = ”AP1”
employeeID = ”PN12”

w-2 : Work

rowNumber = 3
id = ”3”
day = ”5012021”
materials = ”M02”
taskID = ”AP1”
employeeID = ”PN12”

w-3 : Work

rowNumber = 4
id = ”4”
day = ”5012021”
materials = ”M01”
taskID = ”AP2”
employeeID = ”PN13”

w-4 : Work

rowNumber = 5
id = ”5”
day = ”6012021”
materials = ”M01”
taskID = ”AP2”
employeeID = ”PN13”

w-5 : Work

rowNumber = 6
id = ”6”
day = ”10012021”
materials = ”M01, M03”
taskID = ”AP2”
employeeID = ”PN13”

w-6 : Work

rowNumber = 7
id = ”7”
day = ”11012021”
materials = ”M01, M03”
taskID = ”AP2”
employeeID = ”PN14”

w-7 : Work

rowNumber = 8
id = ”8”
day = ”7012021”
materials = ””
taskID = ”AP3”
employeeID = ”PN11”

w-8 : Work

rowNumber = 9
id = ”9”
day = ”6012021”
materials = ”M03”
taskID = ”AP3”
employeeID = ”PN14”

w-9 : Work

container[0]

work[0]

container[0]

work[1]

container[0]

work[2]

container[0]

work[3]

container[0]work[4]

container[0]

work[5]

container[0]

work[6]

container[0]

work[7]

container[0]

work[8]

• In Employees , no changes are expected in the model.

• In Tasks , no changes are expected in the model.

• In Materials , no changes are expected in the model.

• Since no model existed for SUM before this execution, it is conceptually not possible
to specify expected changes. Only the model after the execution can be defined:
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work-model

employees-model

materials-model

tasks-model

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP4 : Task

rowNumber = 3
id = ”M03”
label = ”Office”
costs = 100.0

m-M03 : Material

rowNumber = 2
id = ”M02”
label = ”IDE”
costs = 35.0

m-M02 : Material

rowNumber = 1
id = ”M01”
label = ”Server”
costs = 20.0

m-M01 : Material

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = 76000.0

e-PN14 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = 73000.0

e-PN13 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = 75000.0

e-PN12 : Employee

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = 60000.0

e-PN11 : Employee

rowNumber = 9
id = ”9”
day = ”2021-01-06”

w-9 : Work

rowNumber = 8
id = ”8”
day = ”2021-01-07”

w-8 : Work

rowNumber = 7
id = ”7”
day = ”2021-01-11”

w-7 : Work

rowNumber = 6
id = ”6”
day = ”2021-01-10”

w-6 : Work

rowNumber = 5
id = ”5”
day = ”2021-01-06”

w-5 : Work

rowNumber = 4
id = ”4”
day = ”2021-01-05”

w-4 : Work

rowNumber = 3
id = ”3”
day = ”2021-01-05”

w-3 : Work

rowNumber = 2
id = ”2”
day = ”2021-01-04”

w-2 : Work

rowNumber = 1
id = ”1”
day = ”2021-01-04”

w-1 : Work

task[0]

work[0]

task[0] work[1]

task[0]

work[2]

task[0]

work[0]

task[0] work[1]

task[0]

work[2]

task[0]

work[3]

task[0]

work[0]

task[0]

work[1]

materials[0]

work[0]

materials[1]work[1]

materials[1]

work[2]

materials[0]work[0]

materials[0]

work[1]

materials[0]

work[2]

materials[0]

work[0]

materials[0]

work[1]

materials[0]work[2]

materials[0]

work[3]

employee[0] work[0]

employee[0]

work[1]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[2]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[0]

employee[0]

work[1]

• Since no model existed for Costs before this execution, it is conceptually not possible
to specify expected changes. Only the model after the execution can be defined:
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tasks-model

t-root-id : Backlog

rowNumber = 2
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0
realDuration = 3.0
realCostsHuman = 807.69
realCostsMaterial = 105.0
planCostsTotal = 1500.0
realCostsTotal = 912.69
additionalCosts = -587.3

t-AP1 : Task

rowNumber = 3
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 4.0
realCostsHuman = 1134.61
realCostsMaterial = 280.0
planCostsTotal = 3000.0
realCostsTotal = 1414.61
additionalCosts = -1585.39

t-AP2 : Task

rowNumber = 4
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0
realDuration = 2.0
realCostsHuman = 523.07
realCostsMaterial = 100.0
planCostsTotal = 2500.0
realCostsTotal = 623.07
additionalCosts = -1876.92

t-AP3 : Task

rowNumber = 5
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 0.0
realCostsHuman = 0.0
realCostsMaterial = 0.0
planCostsTotal = 3000.0
realCostsTotal = 0.0
additionalCosts = -3000.0

t-AP4 : Task
container[0]

tasks[0]

container[0]

tasks[1]

container[0]

tasks[2]

container[0]

tasks[3]

The real changes after execution of the configured operators correspond to the expected
changes in the models. Therefore, the scenario is successfully fulfilled by this test case.

11.4.2 Scenario: Create new Work

Creating a new work entry of an employee for a task increases the real costs of this task,
even when no materials are used, since the work of the employee adds another day of human
costs of the task. This test case tests mainly C 1, C 2 and C 3.

The User applies the desired changes to Work by changing its internal EMF model.
Therefore, the external representation is not yet updated. The model differences are rep-
resented in textual form:
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1 w-10.createInstance()

2 w-10.changeType(null ⇒ work.Work)

3 w-10.add(rowNumber, 0, ”10”)

4 w-10.add(id, 0, ”10”)

5 w-10.add(employeeID, 0, ”PN14”)

6 w-10.add(taskID, 0, ”AP3”)

7 w-10.add(day, 0, ”9012021”)

8 w-10.changeNamespace(null ⇒ work-model)

9 w-root-id.add(work, 9, w-10)

10 w-10.add(container, 0, w-root-id)

User∆14
Work

As result after completing the synchronization, the following changes are expected:

• In Work , some changes are expected in the model (including the user changes
User∆14

Work). The model with highlighted changes is represented with its concrete
rendering:

# ID MID APID Day Materials

1 1 PN11 AP1 4012021 M02
2 2 PN12 AP1 4012021 M02
3 3 PN12 AP1 5012021 M02
4 4 PN13 AP2 5012021 M01
5 5 PN13 AP2 6012021 M01
6 6 PN13 AP2 10012021 M01, M03
7 7 PN14 AP2 11012021 M01, M03
8 8 PN11 AP3 7012021
9 9 PN14 AP3 6012021 M03

10 10 PN14 AP3 9012021

The model with highlighted changes is represented graphically:
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work-model

rowNumber = 9
id = ”9”
day = ”6012021”
materials = ”M03”
taskID = ”AP3”
employeeID = ”PN14”

w-9 : Work

rowNumber = 8
id = ”8”
day = ”7012021”
materials =
taskID = ”AP3”
employeeID = ”PN11”

w-8 : Work

rowNumber = 7
id = ”7”
day = ”11012021”
materials = ”M01, M03”
taskID = ”AP2”
employeeID = ”PN14”

w-7 : Work

rowNumber = 6
id = ”6”
day = ”10012021”
materials = ”M01, M03”
taskID = ”AP2”
employeeID = ”PN13”

w-6 : Work

rowNumber = 5
id = ”5”
day = ”6012021”
materials = ”M01”
taskID = ”AP2”
employeeID = ”PN13”

w-5 : Work

rowNumber = 4
id = ”4”
day = ”5012021”
materials = ”M01”
taskID = ”AP2”
employeeID = ”PN13”

w-4 : Work

rowNumber = 3
id = ”3”
day = ”5012021”
materials = ”M02”
taskID = ”AP1”
employeeID = ”PN12”

w-3 : Work

rowNumber = 2
id = ”2”
day = ”4012021”
materials = ”M02”
taskID = ”AP1”
employeeID = ”PN12”

w-2 : Work

rowNumber = 1
id = ”1”
day = ”4012021”
materials = ”M02”
taskID = ”AP1”
employeeID = ”PN11”

w-1 : Work

rowNumber = 10
id = ”10”
day = ”9012021”
materials =
taskID = ”AP3”
employeeID = ”PN14”

w-10 : Work

w-root-id : WorkCollection

work[8]

container[0]

work[7]

container[0]

work[6]

container[0]

work[5]

container[0]

work[4]container[0]

work[3]

container[0]

work[2]

container[0]

work[1]

container[0]

work[0]

container[0]

work[9]

container[0]

• In Employees , no changes are expected in the model.

• In Tasks , no changes are expected in the model.

• In Materials , no changes are expected in the model.

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically:
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work-model

employees-model

materials-model

tasks-model

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP4 : Task

rowNumber = 3
id = ”M03”
label = ”Office”
costs = 100.0

m-M03 : Material

rowNumber = 2
id = ”M02”
label = ”IDE”
costs = 35.0

m-M02 : Material

rowNumber = 1
id = ”M01”
label = ”Server”
costs = 20.0

m-M01 : Material

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = 76000.0

e-PN14 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = 73000.0

e-PN13 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = 75000.0

e-PN12 : Employee

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = 60000.0

e-PN11 : Employee

rowNumber = 9
id = ”9”
day = ”2021-01-06”

w-9 : Work

rowNumber = 8
id = ”8”
day = ”2021-01-07”

w-8 : Work

rowNumber = 7
id = ”7”
day = ”2021-01-11”

w-7 : Work

rowNumber = 6
id = ”6”
day = ”2021-01-10”

w-6 : Work

rowNumber = 5
id = ”5”
day = ”2021-01-06”

w-5 : Work

rowNumber = 4
id = ”4”
day = ”2021-01-05”

w-4 : Work

rowNumber = 3
id = ”3”
day = ”2021-01-05”

w-3 : Work

rowNumber = 2
id = ”2”
day = ”2021-01-04”

w-2 : Work

rowNumber = 1
id = ”1”
day = ”2021-01-04”

w-1 : Work

rowNumber = 10
id = ”10”
day = ”2021-01-09”

w-10 : Work

task[0]

work[0]

task[0] work[1]

task[0]

work[2]

task[0]

work[0]

task[0]

work[1]

task[0] work[2]

task[0]

work[3]

task[0]

work[0]

task[0]

work[1]

task[0]

work[2]

materials[1]

work[0]

materials[1]work[1]

materials[0]

work[2]

materials[0]

work[0]

materials[0]

work[1]

materials[0]work[2]

materials[0]

work[0]

materials[0]work[1]

materials[0]

work[2]

materials[0]

work[3]

employee[0]

work[0]

employee[0]

work[1]

employee[0] work[2]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[2]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[0]

employee[0]

work[1]

• In Costs , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:
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The model with highlighted changes is represented graphically:

tasks-model

t-root-id : Backlog

rowNumber = 2
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0
realDuration = 3.0
realCostsHuman = 807.69
realCostsMaterial = 105.0
planCostsTotal = 1500.0
realCostsTotal = 912.69
additionalCosts = -587.3

t-AP1 : Task

rowNumber = 3
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 4.0
realCostsHuman = 1134.61
realCostsMaterial = 280.0
planCostsTotal = 3000.0
realCostsTotal = 1414.61
additionalCosts = -1585.39

t-AP2 : Task

rowNumber = 4
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0
realDuration = 3.02.0
realCostsHuman = 815.38523.07
realCostsMaterial = 100.0
planCostsTotal = 2500.0
realCostsTotal = 915.38623.07
additionalCosts = -1584.62-1876.92

t-AP3 : Task

rowNumber = 5
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 0.0
realCostsHuman = 0.0
realCostsMaterial = 0.0
planCostsTotal = 3000.0
realCostsTotal = 0.0
additionalCosts = -3000.0

t-AP4 : Task
container[0]

tasks[0]

container[0]

tasks[1]

container[0]

tasks[2]

container[0]

tasks[3]

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Work applied to Work are
propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.
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11.4.3 Scenario: Change real Human Costs

Changed real-only values in the new view are automatically reverted to the previous value,
since these values are recreated during the execution. Here, the real human costs of the
task AP2 are manually reduced, but they are automatically recalculated to the previous
value. Therefore, all views remain unchanged in the end.

The User applies the desired changes to Costs by changing its internal EMF model.
Therefore, the external representation is not yet updated. The model differences are rep-
resented in textual form:

1 t-AP2.remove(realCostsHuman, 0, ”1134.61”)

2 t-AP2.add(realCostsHuman, 0, ”800.0”)

User∆14
Costs

As result after completing the synchronization, the following changes are expected:

• In Work , no changes are expected in the model.

• In Employees , no changes are expected in the model.

• In Tasks , no changes are expected in the model.

• In Materials , no changes are expected in the model.

• In SUM , no changes are expected in the model.

• In Costs , no changes are expected in the model (including the user changes User∆14
Costs,

which are reverted due to the viewpoint definition).

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Costs applied to Costs are
propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

11.4.4 Scenario: Delete existing Work

Deleting an existing work entry of an employee for a task decreases the real costs of this
task in general. Here, not only the real costs for employees are reduced for one task, but
also its real costs for materials, since the removed work entry used one material. This test
case tests mainly C 1, C 2 and C 3.

The User applies the desired changes to Work by changing its internal EMF model.
Therefore, the external representation is not yet updated. The model differences are rep-
resented in textual form:

1 w-root-id.remove(work, 8, w-9)

2 w-9.changeNamespace(work-model ⇒ null)

3 w-9.remove(container, 0, w-root-id)

4 w-9.remove(id, 0, ”9”)

5 w-9.remove(rowNumber, 0, ”9”)

6 w-9.remove(materials, 0, ”M03”)

7 w-9.remove(taskID, 0, ”AP3”)

8 w-9.remove(employeeID, 0, ”PN14”)

9 w-9.remove(day, 0, ”6012021”)

10 w-9.changeType(work.Work ⇒ null)

11 w-9.deleteInstance()

User∆14
Work

As result after completing the synchronization, the following changes are expected:

• In Work , some changes are expected in the model (including the user changes
User∆14

Work). The model with highlighted changes is represented with its concrete
rendering:
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# ID MID APID Day Materials

1 1 PN11 AP1 4012021 M02
2 2 PN12 AP1 4012021 M02
3 3 PN12 AP1 5012021 M02
4 4 PN13 AP2 5012021 M01
5 5 PN13 AP2 6012021 M01
6 6 PN13 AP2 10012021 M01, M03
7 7 PN14 AP2 11012021 M01, M03
8 8 PN11 AP3 7012021

The model with highlighted changes is represented graphically:

work-model

rowNumber = 8
id = ”8”
day = ”7012021”
materials =
taskID = ”AP3”
employeeID = ”PN11”

w-8 : Work

rowNumber = 7
id = ”7”
day = ”11012021”
materials = ”M01, M03”
taskID = ”AP2”
employeeID = ”PN14”

w-7 : Work

rowNumber = 6
id = ”6”
day = ”10012021”
materials = ”M01, M03”
taskID = ”AP2”
employeeID = ”PN13”

w-6 : Work

rowNumber = 5
id = ”5”
day = ”6012021”
materials = ”M01”
taskID = ”AP2”
employeeID = ”PN13”

w-5 : Work

rowNumber = 4
id = ”4”
day = ”5012021”
materials = ”M01”
taskID = ”AP2”
employeeID = ”PN13”

w-4 : Work

rowNumber = 3
id = ”3”
day = ”5012021”
materials = ”M02”
taskID = ”AP1”
employeeID = ”PN12”

w-3 : Work

rowNumber = 2
id = ”2”
day = ”4012021”
materials = ”M02”
taskID = ”AP1”
employeeID = ”PN12”

w-2 : Work

rowNumber = 1
id = ”1”
day = ”4012021”
materials = ”M02”
taskID = ”AP1”
employeeID = ”PN11”

w-1 : Work

w-root-id : WorkCollection

employeeID = ”PN14”
day = ”6012021”
id = ”9”
taskID = ”AP3”
rowNumber = 9
materials = ”M03”

w-9 : Work

work[7]

container[0]

work[6]

container[0]

work[5]

container[0]

work[4]container[0]

work[3]

container[0]

work[2]

container[0]

work[1]

container[0]

work[0]

container[0]

work[8]

container[0]
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• In Employees , no changes are expected in the model.

• In Tasks , no changes are expected in the model.

• In Materials , no changes are expected in the model.

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically:

work-model

employees-model

materials-model

tasks-model

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP4 : Task

rowNumber = 3
id = ”M03”
label = ”Office”
costs = 100.0

m-M03 : Material

rowNumber = 2
id = ”M02”
label = ”IDE”
costs = 35.0

m-M02 : Material

rowNumber = 1
id = ”M01”
label = ”Server”
costs = 20.0

m-M01 : Material

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = 76000.0

e-PN14 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = 73000.0

e-PN13 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = 75000.0

e-PN12 : Employee

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = 60000.0

e-PN11 : Employee

rowNumber = 8
id = ”8”
day = ”2021-01-07”

w-8 : Work

rowNumber = 7
id = ”7”
day = ”2021-01-11”

w-7 : Work

rowNumber = 6
id = ”6”
day = ”2021-01-10”

w-6 : Work

rowNumber = 5
id = ”5”
day = ”2021-01-06”

w-5 : Work

rowNumber = 4
id = ”4”
day = ”2021-01-05”

w-4 : Work

rowNumber = 3
id = ”3”
day = ”2021-01-05”

w-3 : Work

rowNumber = 2
id = ”2”
day = ”2021-01-04”

w-2 : Work

rowNumber = 1
id = ”1”
day = ”2021-01-04”

w-1 : Work

day = ”2021-01-06”
id = ”9”
rowNumber = 9

w-9 : Work

task[0]

work[0]

task[0] work[1]

task[0]

work[2]

task[0]

work[0]

task[0]

work[1]

task[0] work[2]

task[0]

work[3]

task[0]

work[0]

materials[1]

work[0]

materials[1]work[1]

materials[0]

work[0]

materials[0]

work[1]

materials[0]work[2]

materials[0]

work[0]

materials[0]work[1]

materials[0]

work[2]

materials[0]

work[3]

employee[0]

work[0]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[2]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[0]

employee[0]

work[1]

work[0]

materials[0]

work[0]employee[0]

work[0]

task[0]

• In Costs , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:
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The model with highlighted changes is represented graphically:

tasks-model

t-root-id : Backlog

rowNumber = 2
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0
realDuration = 3.0
realCostsHuman = 807.69
realCostsMaterial = 105.0
planCostsTotal = 1500.0
realCostsTotal = 912.69
additionalCosts = -587.3

t-AP1 : Task

rowNumber = 3
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 4.0
realCostsHuman = 1134.61
realCostsMaterial = 280.0
planCostsTotal = 3000.0
realCostsTotal = 1414.61
additionalCosts = -1585.39

t-AP2 : Task

rowNumber = 4
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0
realDuration = 1.02.0
realCostsHuman = 230.76523.07
realCostsMaterial = 0.0100.0
planCostsTotal = 2500.0
realCostsTotal = 230.76623.07
additionalCosts = -2269.23-1876.92

t-AP3 : Task

rowNumber = 5
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 0.0
realCostsHuman = 0.0
realCostsMaterial = 0.0
planCostsTotal = 3000.0
realCostsTotal = 0.0
additionalCosts = -3000.0

t-AP4 : Task
container[0]

tasks[0]

container[0]

tasks[1]

container[0]

tasks[2]

container[0]

tasks[3]

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Work applied to Work are
propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.
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11.4.5 Scenario: Renamed Task in Costs View

This test case shows, that changing information which is directly contained in the SUM is
possible in new views. Here, the description of the task AP4 is changed in the new view
and this renaming is propagated into the data source for tasks. This test case tests mainly
C 2.

The User applies the desired changes to Costs by changing its internal EMF model.
Therefore, the external representation is not yet updated. The model differences are rep-
resented in textual form:

1 t-AP4.remove(description, 0, ”Network”)

2 t-AP4.add(description, 0, ”Communication”)

User∆14
Costs

As result after completing the synchronization, the following changes are expected:

• In Work , no changes are expected in the model.

• In Employees , no changes are expected in the model.

• In Tasks , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

# ID Description Plan Duration Plan People Costs Plan Material Costs

1 AP1 Architecture 3 800 700
2 AP2 Database 6 1600 1400
3 AP3 Eventbus 5 1400 1100
4 AP4 Communication 6 1600 1400

The model with highlighted changes is represented graphically:
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tasks-model

t-root-id : Backlog

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = ”3”
planCostsHuman = ”800”
planCostsMaterial = ”700”

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = ”6”
planCostsHuman = ”1600”
planCostsMaterial = ”1400”

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = ”5”
planCostsHuman = ”1400”
planCostsMaterial = ”1100”

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Communication””Network”
planDuration = ”6”
planCostsHuman = ”1600”
planCostsMaterial = ”1400”

t-AP4 : Task

container[0]

tasks[0]

container[0]

tasks[1]

container[0]

tasks[2]

container[0]

tasks[3]

• In Materials , no changes are expected in the model.

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically:
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materials-model

employees-model

work-model

tasks-model

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Communication””Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP4 : Task

rowNumber = 9
id = ”9”
day = ”2021-01-06”

w-9 : Work

rowNumber = 8
id = ”8”
day = ”2021-01-07”

w-8 : Work

rowNumber = 7
id = ”7”
day = ”2021-01-11”

w-7 : Work

rowNumber = 6
id = ”6”
day = ”2021-01-10”

w-6 : Work

rowNumber = 5
id = ”5”
day = ”2021-01-06”

w-5 : Work

rowNumber = 4
id = ”4”
day = ”2021-01-05”

w-4 : Work

rowNumber = 3
id = ”3”
day = ”2021-01-05”

w-3 : Work

rowNumber = 2
id = ”2”
day = ”2021-01-04”

w-2 : Work

rowNumber = 1
id = ”1”
day = ”2021-01-04”

w-1 : Work

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = 76000.0

e-PN14 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = 73000.0

e-PN13 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = 75000.0

e-PN12 : Employee

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = 60000.0

e-PN11 : Employee

rowNumber = 3
id = ”M03”
label = ”Office”
costs = 100.0

m-M03 : Material

rowNumber = 2
id = ”M02”
label = ”IDE”
costs = 35.0

m-M02 : Material

rowNumber = 1
id = ”M01”
label = ”Server”
costs = 20.0

m-M01 : Material

task[0]

work[0]

task[0] work[1]

task[0]

work[2]

task[0]

work[0]

task[0]

work[1]

task[0] work[2]

task[0]

work[3]

task[0]

work[0]

task[0]

work[1]

employee[0] work[0]

employee[0]

work[1]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[2]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[0]

employee[0]

work[1]

work[2]

materials[0]

work[3]

materials[0]

work[1] materials[1]

work[2]

materials[0]

work[0]

materials[1]

work[1] materials[0]

work[0]

materials[0]

work[2] materials[0]

work[1]

materials[0]

work[0]

materials[0]

• In Costs , some changes are expected in the model (including the user changes
User∆14

Costs). The model with highlighted changes is represented with its concrete
rendering:

The model with highlighted changes is represented graphically:
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tasks-model

t-root-id : Backlog

rowNumber = 2
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0
realDuration = 3.0
realCostsHuman = 807.69
realCostsMaterial = 105.0
planCostsTotal = 1500.0
realCostsTotal = 912.69
additionalCosts = -587.3

t-AP1 : Task

rowNumber = 3
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 4.0
realCostsHuman = 1134.61
realCostsMaterial = 280.0
planCostsTotal = 3000.0
realCostsTotal = 1414.61
additionalCosts = -1585.39

t-AP2 : Task

rowNumber = 4
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0
realDuration = 2.0
realCostsHuman = 523.07
realCostsMaterial = 100.0
planCostsTotal = 2500.0
realCostsTotal = 623.07
additionalCosts = -1876.92

t-AP3 : Task

rowNumber = 5
id = ”AP4”
description = ”Communication””Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 0.0
realCostsHuman = 0.0
realCostsMaterial = 0.0
planCostsTotal = 3000.0
realCostsTotal = 0.0
additionalCosts = -3000.0

t-AP4 : Task
container[0]

tasks[0]

container[0]

tasks[1]

container[0]

tasks[2]

container[0]

tasks[3]

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Costs applied to Costs are
propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

11.4.6 Scenario: Change Salary

Changing the salary of employees leads to updated real costs for the tasks they worked on.
Here, the salary of Lori Patterson is increased, which leads to increased costs for the two
tasks she worked on. This test case tests mainly C 1, C 2 and C 3.

The User applies the desired changes to Employees by changing its internal EMF
model. Therefore, the external representation is not yet updated. The model differences
are represented in textual form:

1 e-PN11.remove(salary, 0, ”60000”)

2 e-PN11.add(salary, 0, ”80000”)

User∆14
Employees
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As result after completing the synchronization, the following changes are expected:

• In Work , no changes are expected in the model.

• In Employees , some changes are expected in the model (including the user changes
User∆14

Employees). The model with highlighted changes is represented with its concrete
rendering:

# Personnel Number Lastname Firstname Role Salary

1 PN11 Patterson Lori Developer 80000
2 PN12 Cortez Paulette Developer Sr 75000
3 PN13 Glass Venita Developer Sr 73000
4 PN14 Holland Scarlett Developer 76000

The model with highlighted changes is represented graphically:

employees-model

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = ”76000”

e-PN14 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = ”73000”

e-PN13 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = ”75000”

e-PN12 : Employee

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = ”80000””60000”

e-PN11 : Employee

e-root-id : HumanResources

employees[3]

container[0]

employees[2]

container[0]

employees[1]

container[0]

employees[0]container[0]

• In Tasks , no changes are expected in the model.

• In Materials , no changes are expected in the model.

• In SUM , some changes are expected in the model. The model with highlighted
changes is represented graphically:
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work-model

employees-model

materials-model

tasks-model

rowNumber = 1
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0

t-AP1 : Task

rowNumber = 2
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP2 : Task

rowNumber = 3
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0

t-AP3 : Task

rowNumber = 4
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0

t-AP4 : Task

rowNumber = 3
id = ”M03”
label = ”Office”
costs = 100.0

m-M03 : Material

rowNumber = 2
id = ”M02”
label = ”IDE”
costs = 35.0

m-M02 : Material

rowNumber = 1
id = ”M01”
label = ”Server”
costs = 20.0

m-M01 : Material

rowNumber = 4
number = ”PN14”
lastname = ”Holland”
firstname = ”Scarlett”
role = ”Developer”
salary = 76000.0

e-PN14 : Employee

rowNumber = 3
number = ”PN13”
lastname = ”Glass”
firstname = ”Venita”
role = ”Developer Sr”
salary = 73000.0

e-PN13 : Employee

rowNumber = 2
number = ”PN12”
lastname = ”Cortez”
firstname = ”Paulette”
role = ”Developer Sr”
salary = 75000.0

e-PN12 : Employee

rowNumber = 1
number = ”PN11”
lastname = ”Patterson”
firstname = ”Lori”
role = ”Developer”
salary = 80000.060000.0

e-PN11 : Employee

rowNumber = 9
id = ”9”
day = ”2021-01-06”

w-9 : Work

rowNumber = 8
id = ”8”
day = ”2021-01-07”

w-8 : Work

rowNumber = 7
id = ”7”
day = ”2021-01-11”

w-7 : Work

rowNumber = 6
id = ”6”
day = ”2021-01-10”

w-6 : Work

rowNumber = 5
id = ”5”
day = ”2021-01-06”

w-5 : Work

rowNumber = 4
id = ”4”
day = ”2021-01-05”

w-4 : Work

rowNumber = 3
id = ”3”
day = ”2021-01-05”

w-3 : Work

rowNumber = 2
id = ”2”
day = ”2021-01-04”

w-2 : Work

rowNumber = 1
id = ”1”
day = ”2021-01-04”

w-1 : Work

task[0]

work[0]

task[0] work[1]

task[0]

work[2]

task[0]

work[0]

task[0]

work[1]

task[0] work[2]

task[0]

work[3]

task[0]

work[0]

task[0]

work[1]

materials[1]

work[0]

materials[1]work[1]

materials[0]

work[2]

materials[0]

work[0]

materials[0]

work[1]

materials[0]work[2]

materials[0]

work[0]

materials[0]work[1]

materials[0]

work[2]

materials[0]

work[3]

employee[0]

work[0]

employee[0] work[1]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[2]

employee[0]

work[0]

employee[0]

work[1]

employee[0]

work[0]

employee[0]

work[1]

• In Costs , some changes are expected in the model. The model with highlighted
changes is represented with its concrete rendering:

The model with highlighted changes is represented graphically:
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tasks-model

t-root-id : Backlog

rowNumber = 2
id = ”AP1”
description = ”Architecture”
planDuration = 3.0
planCostsHuman = 800.0
planCostsMaterial = 700.0
realDuration = 3.0
realCostsHuman = 884.61807.69
realCostsMaterial = 105.0
planCostsTotal = 1500.0
realCostsTotal = 989.61912.69
additionalCosts = -510.39-587.3

t-AP1 : Task

rowNumber = 3
id = ”AP2”
description = ”Database”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 4.0
realCostsHuman = 1134.61
realCostsMaterial = 280.0
planCostsTotal = 3000.0
realCostsTotal = 1414.61
additionalCosts = -1585.39

t-AP2 : Task

rowNumber = 4
id = ”AP3”
description = ”Eventbus”
planDuration = 5.0
planCostsHuman = 1400.0
planCostsMaterial = 1100.0
realDuration = 2.0
realCostsHuman = 600.0523.07
realCostsMaterial = 100.0
planCostsTotal = 2500.0
realCostsTotal = 700.0623.07
additionalCosts = -1800.0-1876.92

t-AP3 : Task

rowNumber = 5
id = ”AP4”
description = ”Network”
planDuration = 6.0
planCostsHuman = 1600.0
planCostsMaterial = 1400.0
realDuration = 0.0
realCostsHuman = 0.0
realCostsMaterial = 0.0
planCostsTotal = 3000.0
realCostsTotal = 0.0
additionalCosts = -3000.0

t-AP4 : Task
container[0]

tasks[0]

container[0]

tasks[1]

container[0]

tasks[2]

container[0]

tasks[3]

The real changes after execution of the configured operators correspond to the expected
changes in the models. In particular, all user changes User∆14

Employees applied to Employees
are propagated into all related views. Therefore, the scenario is successfully fulfilled by this
test case.

11.5 Summary: Contributions

Since knowledge management focuses more on the integrationConsistency Goals for
Integration

of existing information in
order to provide derived information, the consistency goals guide the possibilities for inte-
gration here. All consistency goals and their rules of this application are listed below:

Collected Consistency Goals and their Rules

C 1 Each work entry refers to its employee.
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C 2 Each work entry refers to a task.

C 3 Each work entry refers to all used materials.

The consistency goals C 1, C 2 and C 3 target two data sources and therefore represent
inter-model consistency issues.

These consistency goals and their consistency rules are successfully tested by test cases
documented in Section 11.4Z 434. The mapping of test cases and their explicitly targeted
consistency goals and rules are summarized in Table 11.10: The first column lists all con-
sistency goals and their consistency rules. The second refers to the test cases which test
explicitly the consistency goal or their consistency rule inside the same row in the first
column.

Table 11.10: Mapping of Consistency Goals and their Consistency Rules tested in Sections for
Knowledge Integration

Consistency Test Cases

C 1 11.4.2, 11.4.4, 11.4.6

C 2 11.4.2, 11.4.4, 11.4.5, 11.4.6

C 3 11.4.2, 11.4.4, 11.4.6

Table 11.10 shows, that all consistency goals and their consistency rules are successfully
tested.

The documented test cases reflect some typical change scenarios in knowledge man-
agement and demonstrate, that MoConseMI is able to keep all views up-to-date: Three
test cases explicitly show, that the derived values for real costs of tasks are updated in the
new Costs view, i. e. successful Test Cases for

ensuring Consistency
Section 11.4.2Z 437 adds another work entry leading to increased real

costs for employees, Section 11.4.4Z 442 deletes an existing work entry leading to decreased
real costs for employees and materials, and Section 11.4.6Z 449 increases the human costs
more indirectly by increasing the salary of an employee, leading to increased costs for work
for tasks. Section 11.4.3Z 442 demonstrates, that changes of derived read-only knowledge
are automatically reverted, while Section 11.4.5Z 446 demonstrates, that information which
directly stems from the SUM respectively data sources can be modified in new views. These
test cases show, that MoConseMI supports knowledge management with keeping knowl-
edge up-to-date. In general, these test cases show, that MoConseMI ensures inter-model
consistency.

The details of the test cases are summarized in Table 11.11Z 454: Each scenario is
represented by one row. The “Source” column indicates the view in the orchestration,
at which the user applied the wanted changes. The “Kind” column indicates, if the user
changed the external representation (E) or the internal EMF model (I). The “#” column
contains the number of changes, made by the user. The following columns with the names
of the data sources, SUM and new view contain the number of resulting changes, after
finishing the synchronization. The last column “Testing” refers to the consistency goals
and consistency rules, which are explicitly evaluated by the current test case.

The scenario 11.4.1 is described with more details above, but is not summarized in the
table to keep it short.
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Table 11.11: Summary of Test Cases for Knowledge Integration

Description Source K
in

d

# W
o
rk

E
m

p
lo

y
e
e
s

T
a
sk

s

M
a
te

ri
a
ls

S
U

M

C
o
st

s

Testing

11.4.2 Create new
Work

Work I 10 10 0 0 0 12 8 C 1, C 2, C 3

11.4.3 Change real
Human Costs

Costs I 2 0 0 0 0 0 0

11.4.4 Delete existing
Work

Work I 11 11 0 0 0 14 10 C 1, C 2, C 3

11.4.5 Renamed Task
in Costs View

Costs I 2 0 0 2 0 2 2 C 2

11.4.6 Change Salary Employees I 2 0 2 0 0 2 12 C 1, C 2, C 3

In the test case 11.4.3, the user changes are reverted due to the consistency goals and
consistency rules or the definitions of new view(point)s, like read-only information. This
shows an extreme strategy to ensure consistency, namely by reverting the wanted changes.
The test case 11.4.5 shows one of the main benefits of the approach: The user can change
a new view and the changes are propagated back into the initial data sources. For the fast
and easy definition of test cases, 11.4.2, 11.4.3, 11.4.4, 11.4.5 and 11.4.6 applied the wanted
user changes to the internal EMF model, not to the external representation.

While this example depicts a restricted and artificial knowledge management scenario,
it could be extended with additional data sources, e. g. with knowledge about projects in
order to group tasks, and with additional new view(point)s, e. g. with visualizations for
used materials in order to improve resource planning.possible Extensions Additional consistency goals could
be defined and realized with additional operators, e. g. to enforce, that employees, materials
and tasks are never deleted, since they are required for documenting work and managing
costs of tasks. This could be realized with →ChangeModel which reverts such deletions.
These extensions and some more are possible in principle, since the design of MoConseMI
is not restricted regarding the number of possible data sources, new view(point)s, and
consistency goals.

Summarizing, the contributions of this application areContributions the finding, that MoConseMI
is applicable for knowledge management, since MoConseMI is able to integrate existing
knowledge and to provide integrated and derived knowledge in new view(point)s. Addition-
ally, MoConseMI supports knowledge management by keeping the integrated data sources
up-to-date. In detail, this application shows, that MoConseMI can reuse non-normalized
data like the concatenation of the used materials for work and is able to improve them with
the help of the �ChangeMultiplicity operator ( Work↔01). In general, knowledge
management is another example which shows, that MoConseMI works in practice, i. e. it
is successfully evaluated, that MoConseMI is able to integrate existing data sources into
an explicit SU(M)M, to derive a new view(point) from the SU(M)M, and to automatically
keep all these views consistent to each other.
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Chapter 12

Application in general

Part IIIZ 163 discussed the design and implementation of MoConseMI made by the plat-
form specialist, while this Part IVZ 283 up to now presented the application of MoConseMI
in several application scenarios and showed the success of MoConseMI to fulfill consis-
tency challenges. This Chapter 12 summarizes some findings of these applications and
provides some guidelines for the application of MoConseMI in general. The application
of MoConseMI is done by methodologists and users, meaning that methodologists apply
MoConseMI once for each project to configure the desired consistency rules, while users
apply the “configured instance of MoConseMI” by methodologists to be often supported
with automated fixes for inconsistencies. Therefore, Section 12.1 supports methodologists
with general hints, how to apply MoConseMI in order to create orchestrations for projects,
while Section 12.3Z 462 supports users with general hints, how to apply the configurations
with MoConseMI in order to ensure consistency within a particular project. While these
two sections focus more on technical guidelines for the MoConseMI framework (Chap-
ter 8Z 263), Section 12.2Z 458 supports methodologists with some guidelines, how to solve
recurring “consistency patterns” with particular operators (Chapter 7Z 241).

12.1 Process of Configuration

This section supports methodologists during their application of MoConseMI in order to
automate ensuring consistency within a particular project with a one-time configuration.
This configuration is done during the use case “specify consistency”, as designed in Sec-
tion 5.2.1Z 171, while the general design of configurations is discussed in Section 6.4Z 203.
In this section, the general process for the configuration of MoConseMI for a particular
project is presented first. Then the Java API of MoConseMI is sketched, which is used by
methodologists for the technical realization and demonstrated along the ongoing example.
These parts together serve as a guideline for methodologists.

The process for specifying consistency by methodologists Process for specifying
Consistency

consists of the following four
steps:

1. Before using the MoConseMI framework, the desired consistency in the particular
project must be elicited by methodologists: 1. elicitate Consistency

Goals and Consistency
Rules

Since users expect automated fixes for
occurred inconsistencies, methodologists should work together with users and other
stakeholders of the particular project in order to identify the desired consistency.
Feldmann, Herzig et al. (2015b) provide some examples for possible consistency goals
in the domain of cyber-physical systems (CPSs), including best-practice, guidelines
and domain-specific standards like conversation of units and data formats or possible
violations of physical laws. The consistency is documented in terms of consistency
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goals and consistency rules, as designed in Section 2.3Z 71. These consistency goals
and consistency rules are used for discussions and agreement.

2. After collecting consistency goals and consistency rules as “requirements for consis-
tency”,2. check legal

Conditions
the legal aspects of them must be checked, since there might be some laws

or other restrictions for data processing including data integration. These legal con-
ditions are out of the scope of this thesis in general (Section 1.3.2Z 43).

3. The collected, documented and checked consistency goals and consistency rules are
realized by methodologists with the means provided by MoConseMI:3. configure

Orchestration with Java
API

On conceptual
level, existing operators are selected, configured and combined into the orchestration,
as designed in Section 6.4Z 203. On technical level, this is done with the Java API
provided by MoConseMI and sketched in the following.

4. After finishing the orchestration,4. initialize the
SU(M)M

the methodologist starts the use case “initialize
SU(M)M” (Section 5.2.3Z 176), which executes the orchestration once in order to
create the initial SU(M)M and the new view(point)s as well as to fix inconsistencies
in the initial data sources.

After completing this process, users can use MoConseMI to be supported with automated
fixes for inconsistencies, as described in Section 12.3Z 462. The Java API used in step 3 is
directly demonstrated along the ongoing example:

Ongoing Example, Part 25: Configuration by the Methodologist ← List →

The methodologist elicited the desired consistency in the ongoing project together with
the users and documented the consistency with consistency goals and consistency rules, as
documented in Part 11Z 76 of the ongoing example (step 1). Additionally, it is assumed
that all legal conditions are met (step 2). Therefore, the methodologist configured the
consistency goals and consistency rules for the ongoing example with the Java API, resulting
in Listing 12.1 (step 3), which demonstrates the main calls of the Java API in strongly
simplified and slightly renamed way.

1 @Override
2 protected void c o l l e c t O p e r a t o r s ( ) {
3 s tartDataSource ( ” Requirements ” , new CsvAdapter ( . . . ) { . . . } ) ;
4 s tartDataSource ( ”Java” , new EmfAdapter ( . . . ) ) ;
5 combineTwoDataSources ( ) ;

7 // f o r Consis tency Goal 1
8 addReference ( . . . ) ;

10 s tartDataSource ( ”ClassDiagram” , new EmfAdapter ( . . . ) ) ;
11 combineTwoDataSources ( ) ;

13 // f o r Consis tency Goal 2
14 mergeTwoClasses ( . . . ) ;
15 mergeTwoAttributes ( . . . ) ;

17 // f o r Consis tency Goal 3
18 addReference ( . . . ) ;

20 finishedSumm ( ) ;
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22 startNewViewPoint ( ) ;

24 r ep laceRe fe renceByAtt r ibute ( . . . ) ;
25 c ha ng e Mu l t i p l i c i t y ( . . . ) ;

27 s u b S e t F i l t e r ( . . . ) ;
28 deleteNamespace ( . . . ) ;
29 deleteNamespace ( . . . ) ;

31 changeModel ( . . . ) ;
32 r e n a m e C l a s s i f i e r ( . . . ) ;
33 r e n a m e C l a s s i f i e r ( . . . ) ;

35 f inishedNewViewPoint ( ” T r a c e a b i l i t y ” , new ExcelAdapter ( . . . )
{ . . . } ) ;

37 f i n i s h e d O r c h e s t r a t i o n ( ) ;
38 }

Listing 12.1: Orchestration for the ongoing Example with the Java API of MoConseMI

As entry point, the methodologist creates a new Java class which extends MetaMod-

elIntegrationEnvironment and implements the method collectOperators (lines 1–2,
38) with the configurations for the orchestrations. Since there is no SU(M)M initially, but
MoConseMI is bottom-up in order to reuse existing data sources (Section 5.1.1Z 164), the
orchestration starts with the integration of existing data sources into the SU(M)M, accord-
ing to Section 6.4.3Z 205: integrate Data

Sources with start-

DataSource(...)

and combineTwo-

DataSources()

An existing data source is reused with the API call startData-
Source(...) (lines 3, 4, 10), which specifies the adapters (Section 6.6.5Z 226) according to
technical spaces of the data sources (Chapter 8Z 263). After an optional chain of operators,
which is used for none of the three data sources in Listing 12.1Z 456, the (meta)models
of the last two data sources are technically combined into one (meta)model with combi-

neTwoDataSources() (lines 5, 11). As detailed in Part 21Z 206 of the ongoing example,
operator chains are added to integrate the (meta)models on semantic level in order to fulfill
the consistency goals (lines 7–8, 13–15, 17–18). The integration of data sources into the
SU(M)M is finished with finishedSUMM() (line 20).

Chains of operators consist of at least one selected and configured bidirectional operator,
Operator Chainsaccording to Section 6.4.2Z 204 and written with the Java API for bidirectional operators

according to Section 8.3.3Z 270. Section 12.2Z 458 provides some recommendations which
operators could be selected in particular situations for methodologists. Operator chains are
configured in the lines 8, 14–15, 18 and 24–33, hiding the configurations for all decisions
for brevity here.

In order to define new view(point)s according to Section 6.4.4Z 209, define new
View(point)s with
startNewView-

Point() and
finishedNewView-

Point(...)

the Java API of
MoConseMI allows to start the definition of a new view(point) at any point in the orches-
tration with startNewViewPoint() (line 22). As in Listing 12.1Z 456, usually the definitions
of new view(point)s start at the SU(M)M in order to reuse all available concepts and in-
formation. The definition of the new view(point) with a chain of operators as detailed
in Part 22Z 209 of the ongoing example (lines 24–33) is finished with finishedNewView-

Point(...) (line 35). After integrating all data sources and defining all new view(point)s,
the orchestration is finished with finishedOrchestration() (line 37).

These configurations with the Java API result in the orchestration with bidirectional
operators as already shown in Figure 6.11Z 209. Note, that the Java API for operators
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uses the names of unidirectional operators in order to emphasize the bottom-up integration
of data sources into the SU(M)M and the derivation of (smaller) new view(point)s from
other (bigger) (meta)models like the SU(M)M. Using names of unidirectional operators im-
proves the reading flow in these cases, while the orchestration is build up with bidirectional
operators.
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Figure 12.1: Unidirectional Operators of the whole Orchestration in the configured Direction

Figure 12.1 shows the unidirectional operators in the direction of the configuration,
matching the names of operators in the Java API, while Figure 12.2 shows the inverse
unidirectional operators.
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Figure 12.2: Unidirectional Operators of the whole Orchestration in the inverse Direction

Note, that the execution of operators does not care about these directions in the or-
chestration. For the execution, the directions import (from views to the SUM) and export
(from the SUM to views) are relevant, as demonstrated in Part 23Z 220 of the ongoing
example, and the bidirectional operators provide the unidirectional operator depending on
the current direction of execution. After the presented configuration of the orchestration
it is executed once to initialize the SU(M)M, according to Section 6.5.4Z 219 (step 4).

12.2 Recommendations for Orchestrations

This section provides some recommendations for methodologists, how to build orchestra-
tions, and complements the technical manual for methodologists in Section 12.1Z 455 with
recommendations and best practices for semantic details of orchestrations. In order to in-
tegrate reused data sources into the SU(M)M, Section 12.2.1Z 459 discusses, how to make
relationships between depending elements in different data sources explicit. In order to keep
redundant information in different data sources consistent to each other, Section 12.2.2Z 460

recommends operators for reducing redundancies. Section 12.2.3Z 460 discusses, how to
manage remaining dependencies within the SUM. In order to support the definition of new
view(point)s, Section 12.2.4Z 461 provides according recommendations.
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12.2.1 Explicit Links between Models

When reusing models from multiple data sources which represent parts of the same system
under development, elements in these models often have some semantic relationships to
elements in other models, which are not reflected by links within the models. More concrete,
such relationships . . .

• are always existing, but in most cases they are known only implicitly,

• are often manual documented and therefore need manually synchronization,

• are often less (or even outdated) documented due to the manual effort, or

• are sometimes hard coded in transformations for synchronization.

This section recommends to make such implicit relationships explicit with links during
the integration into the SUM, since the explicit and persistent formulation of relationships
and dependencies enables corresponding explicit links, that . . .

• can be queried, managed and changed in a structured way,

• can be persisted and stored permanently,

• can be used for documentation and discussion, and

• can be reused as explicit information, e. g. for new views.

Linking information of different views in form of explicit links is hard to realize, store Links between
Views

since
each view contains only information of one link end, not of both link ends by definition.
Again, another view could be introduced which stores the links with their connected in-
formation, as it is done by Persson, Torngren et al. (2013) with their “association views”.
This view would have lots of additional relations to the already existing views regarding the
linked information. This leads again to the main problem of ensuring consistency between
views.

Due to this difficulty, such links inbetween are often not made explicit, implicit Linksbut are only
remembered in the stakeholders heads resulting in follow-up problems like incomplete doc-
umentation, information asymmetries and information loss by fluctuation of developers.
Bézivin (2006, p. 37) also proposes to use links to cover the challenge of fragmentation into
multiple views.

Therefore, it is recommended to make implicit relationships explicit with links during
the integration of data sources into the SUM. These links conform to associations in the
SUMM. The strategy to define associations on metamodel level and conforming links on
model level is done also in Romero, Jaén and Vallecillo (2009) with intensional (in the
metamodel) and extensional (in the model) correspondences. The explicit links are not in
the data sources in order to reuse them as they are. In order to enable users to manage links
which require free interpretations of humans in contrast to fixed relationships which can
be automated (Pfeiffer and Wasowski, 2013, p. 387, 392), without forcing users to use the
SUM, dedicated new views (Section 12.2.4Z 461) should be defined which allow to manage
the links together with their connected elements stemming from different data sources.

MoConseMI provides operators for establishing explicit links: dedicated OperatorsIn particular, →Add-
Association can be used to introduce a new association between two depending classes
in the metamodel, which enables conforming explicit links in the model. As an example,
this strategy is used by the ongoing example to enable traceability between requirements
and Java methods. If the elements are linked to each other via names or foreign keys,
these values in attributes can be replaced by explicit links to the corresponding elements
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with →ReplaceAttributeByReference. As an example, this strategy is used for the
knowledge management in Chapter 11Z 387.

Traceability in general is a very prominent example, which manages explicit links and
is supported by MoConseMI, as discussed in the following paper:

Related MoConseMI Publication

Johannes Meier and Andreas Winter (2018c): Traceability enabled by Metamodel In-
tegration. In: Softwaretechnik-Trends, vol. 38(1), pp. 21–26.

This publication is cited as Meier and Winter (2018c) in this thesis.

12.2.2 Reduce Redundancies

During the integration of data sources into the SU(M)M, redundant information in overlap-
ping data sources should be removed as much as possible,Recommendation:

reduce Redundancies in
the SUM

since redundancies are possible
sources for inconsistencies. With other words, removing redundancies in the SUM is a
strategy to keep redundant information in different views consistent to each other, since
the views are automatically projected from the SUM and are up-to-date by design.

Additionally, reduced redundancies lead to less concepts in metamodels and to less in-
formation in models, which eases the integration of further data sources and the definition
of new view(point)s,further Configurations

benefit from reduced
Redundancy

since methodologist need to know and understand less concepts and
information in the (current) SU(M)M. In other words, the effort for reducing redundancies
is worthwhile for all following configurations for data sources and new view(point)s. Having
no redundancies directly leads to a single point-of-truth. Thomas and Nejmeh (1992) rec-
ommend to minimize redundant data as well, since redundancies require maintenance effort
for their consistency.

Keeping redundancies in the SUM (Section 12.2.3) requires additional configurations to
keep them consistent to each other.Operators for reducing

Redundancies
vs
Operators for ensuring
Consistency directly

Since these additional configurations are configured
operators like →ChangeModel again, these operators ensure consistency, e. g. in change
translation-based way, while operators reduce redundancies otherwise. Since the means
for both strategies are the same, i. e. configured operators, operators should be configured
to reduce redundancies with the benefits discussed above. By removing redundancies, an
optimal SUM as in OSM (Section 3.5.1Z 124) could be reached in the best case.

MoConseMI provides operators for reducing redundancies:dedicated Operators Completely redundant ob-
jects or values could be directly removed with operators like →DeleteClass or →De-
leteAttribute. The inverse unidirectional operators recreate the redundant information
from the remaining information in the SUM, e. g. ←AddAttribute calculates according
default values for the “new” attribute slots. If there are objects representing partially over-
lapping information, e. g. classes in Java and in UML in the ongoing example with different
additional information, they could be merged with →MergeClasses, since two objects
representing the same element are unified into one object, while keeping all non-overlapping
information of both objects. Afterwards, the merged objects might have redundant values
for redundant attributes and redundant links for redundant associations, which could be
merged with →MergeAttributes and →MergeReferences. In particular the merg-
ing of attributes often occurs, when these attributes are used before to identify redundant
objects in the configuration of the corresponding model decision of →MergeClasses.

12.2.3 Remaining Dependencies in the SUM

There are not only redundancies, but also explicit links and constraints as dependencies
(Section 1.2.1Z 31) within the SUM, whose consistency must be ensured as well. Addi-
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tionally, there might be some reasons for keeping some redundancies, leading to possible
inconsistencies, while redundancies should be minimized in general (Section 12.2.2Z 460).
In general, Vogel-Heuser, Fay et al. (2015, p. 66) say, that it is an open question, how
much inconsistencies can remain. Therefore, this section provides some discussions for de-
pendencies remaining in the SUM. More quality aspects of the SU(M)M are discussed in
Section 13.3.3.1Z 475.

Additionally to the finding, that “[m]aintaining absolute consistency is not always pos-
sible” (Finkelstein, Gabbay et al., 1993), Reasons for keeping

Dependencies
there are some more reasons for keeping some

dependencies within the SUM: Some dependencies might require too much effort for their
automation or “the completeness of such sets of rules can be varied, allowing for economic
trade-off ” (Feldmann, Herzig et al., 2015a, p. 158). There might be consistency goals
which cannot be automated at all (Section 14.2.2Z 489). Additionally, iterative integra-
tion processes might manage some dependencies in early iterations and automate other
dependencies in later iterations. The amount of remaining redundancies could be measured
with model clones (Störrle, 2013). All remaining dependencies in the SUM might lead to
inconsistencies, which must be managed explicitly by operators or manually.

Basing on these considerations, methodologists decide about the quality of the SU(M)M
regarding internal dependencies Strategies to deal with

Dependencies
and choose one of the following strategies to deal with each

dependency:

1. Redundancies can be removed with configured operators (Section 12.2.2Z 460).

2. All remaining dependencies can be maintained automatically with configured oper-
ators, if possible and reasonable: These operators ensure consistency directly, e. g.
→ChangeModel can be configured in change translation-based way to react on oc-
curred changes and to apply follow-up changes to fix an occurred inconsistency. But
also some more advanced techniques could be used inside →ChangeModel, like
automations supported by machine learning techniques using reinforcement learning
(Barriga, Rutle and Heldal, 2019).

3. All dependencies without automation support must be managed manually: Main-
taining consistency manually could be supported with dedicated new view(point)s
(Section 12.2.4), which provide only the depending information which must be main-
tained by users. They could be supported by showing inconsistency warnings and
some more hints (Balzer, 1991). Grundy, Hosking and Mugridge (1998) propose much
more ideas for presenting, annotating and grouping inconsistencies to support users
to manually fix inconsistencies, opening a wide field for user-friendly tool support for
manual inconsistency management.

12.2.4 New View(point)s

New view(point)s are useful to support additional stakeholders with additional concerns
(Section 1.2.3Z 39), Reasons for new

View(point)s
to manually maintain explicit links (Section 12.2.1Z 459), or to manually

manage remaining inconsistencies (Section 12.2.3Z 460).

Usually, the operator chain for the configuration of the new view(point) starts at the
SU(M)M, since it contains all information with minimized redundancies (Section 12.2.2Z 460).

general Procedures in
Operator Chains for
new View(point)s

If less information is required and available at other positions, the operator chain could start
at these positions instead. After starting the chain of operators, non-related content should
be filtered out, e. g. with →SubSetFilter, to make the current (meta)model smaller as
early as possible, also suggested by König and Diskin (2017). The relevant information
can be restructured and new values can be derived from existing information with various
operators. Information which was required for these restructurings and calculations, but
which should not be shown to users, should be filtered out again. Finally, adapters for
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technical spaces can be reused (Section 8.4Z 271) to support users with appropriate concrete
renderings.

12.3 Process of Use

Users apply MoConseMI by using the project-specific orchestration, which is configured
by methodologists with the means of MoConseMI (Section 12.1Z 455). During the use
case “fix inconsistencies automatically” (Section 5.2.2Z 173), a user requests a view, changes
this view and triggers MoConseMI to automatically propagate these changes into all other
views in order to keep them consistent to the manually changed view. Usually, the views are
changed by users, but the SUM or even any other intermediate model in the orchestration
could be changed (Section 6.5.5Z 220).

In order to support users to use MoConseMI,Java API for Use corresponding Java API calls are pro-
vided, which are directly demonstrated along the ongoing example. This API is used also
for the acceptance tests in the application examples.

Ongoing Example, Part 26: Application by Users ← List →

Since users usually work not directly on the EMF model for the current view, but on
the concrete rendering of the current view, the corresponding adapters determine the user
changes, as designed in Section 6.6.5Z 226.change external

Concrete Rendering
For the CSV representation of Requirements ,

the user gets the current requirements specification as CSV file, changes the CSV file and
triggers MoConseMI with the Java API call in Listing 12.2 to execute the orchestration:
Line 2 specifies the view by its name and line 3 allows to provide a user-defined description
of changes for documentation, similar to a commit message. The boolean flag in line 3
indicates, that the identified user changes should be propagated to all views (true) and
that are not only calculated (false).

1 framework . reloadChangedNode (
2 framework . ge tOrche s t ra t i on ( ) . getNodeByLabel ( ” Requirements ” ) ,
3 ” d e s c r i p t i o n o f my changes ” , true ) ;

Listing 12.2: Trigger MoConseMI to propagate User Changes made in the concrete Rendering
with CSV of the Requirements View

If the view to change is represented directly with EMF or if some fast test cases should
be developed, user changes can be directly executed with the Edapt API (Section 8.2Z 264)
with the current model of the view, as demonstrated in Listing 12.3 for the test scenario
presented in Part 18Z 173 of the ongoing example.change internal Edapt

Model
Line 2 specifies the view by its name and

the lines 6–9 leave room to explicitly change the model of the view: Since the UUID for
the class in ClassDiagram with the name “University” is known, it is retrieved directly in
line 7. Line 8 is used to ensure, that the desired class is identified and shows the previous
name of the class. Line 9 sets the name (encoded with the attribute “className”) of the
class to the new value “Institution”. Line 11 allows to provide a user-defined description
of changes for documentation, similar to a commit message.

1 framework . applyDiffToAnyNode (
2 framework . ge tOrche s t ra t i on ( ) . getNodeByLabel ( ”ClassDiagram” ) ,
3 new AppyModelChanges ( ) {
4 @Override
5 public void apply ( Migrat ionIn format ion i n f o s ) {
6 // change the model d i r e c t l y , prov ided by ” i n f o s ”
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7 In s tance c l s = i n f o s . getInstanceByUuid ( ”cd1” ) ;
8 a s s e r tEqua l s ( ” Un ive r s i ty ” , c l s . get ( ” className” ) ) ;
9 c l s . s e t ( ” className” , ” I n s t i t u t i o n ” ) ;

10 }} ,
11 ”renamed Un ive r s i ty ” ) ;

Listing 12.3: Change the Model of the View directly in the Edapt Format

Both API calls reloadChangedNode(...) and applyDiffToAnyNode(...) determine
the user changes and execute the execution loop. Afterwards, the execution differences E∆
are available for each view, as they are visualized in Part 18Z 173 of the ongoing example.

12.4 Summary

This section demonstrated the application of the MoConseMI framework including its
Java API by methodologists (Section 12.1Z 455) and users (Section 12.3Z 462). The process
for realizing inter-model consistency by methodologists (Section 12.1Z 455) is complemented
with recommendations for the design of orchestrations, including to make implicit relation-
ships explicit with links (Section 12.2.1Z 459), to reduce redundancies as much as possible
in order to ensure their consistency and to ease the orchestration (Section 12.2.2Z 460),
and to manage remaining dependencies with additional operators for automation (Sec-
tion 12.2.3Z 460) or with new view(point)s for manually maintenance (Section 12.2.4Z 461).

Future Work: Transaction Management

For now, a user works on a single view and changes it with the following change prop-
agation by MoConseMI, before another user can work on a view with following change
propagation and so on, similar to the lock-modify-unlock principle (Altmanninger, Seidl and
Wimmer, 2009). This works, but is only a first step towards a real transaction management
for working with multiple users on multiple views. Atkinson, Stoll and Bostan (2009, p.
77) already propose a transactional versioning system for managing multiple views.

In particular, a transaction management should enable to revert together the user chan-
ges in one view and their follow-up changes by MoConseMI in a structured way. Here,
a transaction would be the changes of a user in a view with the following execution loop
(Section 6.5.3Z 217).

Another extension for transaction management is to allow multiple users to change views
at the same time: This research area is called “model integration” by Anjorin, Leblebici and
Schürr (2016), “concurrent updates” by Diskin, Gholizadeh et al. (2016) and “bidirectional
synchronization with reconciliation” by Antkiewicz and Czarnecki (2008), who provide also
different realization strategies. For BX transformations specified with TGGs, Hermann,
Ehrig et al. (2012) present an approach for semi-automatic conflict resolution for concurrent
updates on source models and target models. The BX approach EVL+Strace (Samimi-
Dehkordi, Zamani and Kolahdouz-Rahimi, 2018) provides some support for concurrent
updates. Another approach for concurrent updates is described in Xiong, Song et al. (2013),
but there are still problems for non-bijective transformations. These related approaches
show, that supporting concurrent updates of multiple users is important and needs to be
solved also by MoConseMI as future work.

First ideas to extend MoConseMI with support for concurrent updates is to run the
execution loop twice, one after the other, and to merge the calculated execution differences
in the views. In case of conflicts, they must be solved manually by the users of the particular
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views. For merging of models, there is also some support, including by Dam, Egyed et al.
(2016) with some consistency support, by Sabetzadeh and Easterbrook (2006) with support
for incompleteness and inconsistencies, and by Sabetzadeh and Easterbrook (2003) with
traceability.
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Part V

Achievements

This part evaluates MoConseMI regarding the fulfillment of re-
quirements and discusses properties of operators, characteristics
of orchestrations and some more conceptual aspects of MoCon-
seMI. Additionally, this part summarizes the contributions of
this thesis, discusses preconditions and limitations of MoCon-
seMI, points to future work and concludes the thesis with a
summary.
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Chapter 13

Evaluation

Part IVZ 283 applied MoConseMI to several application examples and demonstrated, that
MoConseMI is able to ensure inter-model consistency in concrete applications. Chap-
ter 12Z 455 generalized these concrete applications and gave guidelines for successful appli-
cations of MoConseMI in general. In addition to the concrete applications before, this
Chapter 13 evaluates further aspects of the design of MoConseMI in order to point to
resulting characteristics of MoConseMI.

First of all, Section 13.1 validates that all requirements are fulfilled by MoConseMI.
OutlineThe following sections evaluate and discuss further aspects, which are grouped regarding

the properties of operators (Section 13.2Z 469), the characteristics of orchestrations (Sec-
tion 13.3Z 473) and general aspects of MoConseMI (Section 13.4Z 478).

13.1 Fulfillment of Requirements

Section 5.3Z 179 already discussed, that the main decisions for the design of MoConseMI
fulfill all functional requirements. Therefore, this section summarizes and concretizes those
arguments here, while focusing on practical arguments of the application of MoConseMI.
Additionally, the technical requirements of Section 4.2Z 157 are evaluated at the end of this
section.

Regarding functional requirements, functional RequirementsRequirement R 1 (Model Consistency)Z 154 is ful-
filled by MoConseMI by using model synchronization techniques for change propagation
(Section 5.1.4Z 168), which is demonstrated with the test cases for consistency in the appli-
cation examples in Part IVZ 283.

Requirement R 1.1 (Generic Metamodels)Z 154 is fulfilled by MoConseMI with the
metamodel decisions of reusable operators, which allow methodologists to adapt the generic
operators to the project-specific metamodels. The application examples in Part IVZ 283 use
different metamodels for different data sources in different projects.

Requirement R 1.2 (Generic Consistency Goals)Z 155 is fulfilled by MoConseMI with
the model decisions of reusable operators, which allow methodologists to adapt the model
transformations of the generic operators according to the project-specific consistency goals
and consistency rules. The application examples in Part IVZ 283 fulfill different consistency
goals and consistency rules in different projects.

Requirement R 2 (Reuse existing Artifacts)Z 155 is fulfilled by MoConseMI’s bottom-
up design with existing artifacts as starting point (Section 5.1.1Z 164) for their subsequent
integration into the SU(M)M (Section 6.4.3Z 205). The models and metamodels of the
reused artifacts are addressed also by the following sub-requirements. The application
examples in Part IVZ 283 reuse different artifacts as data sources in different projects.

Requirement R 2.1 (Reuse existing Metamodels)Z 155 is fulfilled by MoConseMI’s
bottom-up design with existing metamodels of the reused artifacts as starting point (Sec-
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tion 5.1.1Z 164) for their subsequent integration into the SU(M)M (Section 6.4.3Z 205). The
application examples in Part IVZ 283 reuse different metamodels of data sources in different
projects.

Requirement R 2.2 (Reuse existing Models)Z 156 is fulfilled by MoConseMI’s bottom-
up design with existing models of the reused artifacts as starting point (Section 5.1.1Z 164)
for their subsequent integration into the SU(M)M (Section 6.4.3Z 205). The application
examples in Part IVZ 283 reuse different models of data sources in different projects.

Requirement R 2.3 (Fix existing Models)Z 156 is fulfilled by MoConseMI by reusing
models according to Requirement R 2.2 (Reuse existing Models)Z 156 and executing the ex-
ecution loop with the initially reused (meta)models in order to fix initial inconsistencies in
the reused models (Section 6.5.4Z 219). With other words, the reused models are treated as
possibly inconsistent models after users changed them. In contrast to the ongoing change
propagation triggered by user changes (Section 6.5.5Z 220), during the first execution of the
execution loop, there are no historic data including empty history maps, which allows to
fix only a subset of those inconsistencies which would be fixed in subsequent executions.
Summarizing, MoConseMI is able to fix inconsistencies in initial models, if there is infor-
mation to find these inconsistencies. Otherwise, users or methodologists have to fix those
initial inconsistencies manually which require human knowledge.

Requirement R 3 (Define new View(point)s)Z 156 is fulfilled by MoConseMI by using
operators not only for integrating data sources into the SU(M)M, but also for defining new
view(point)s (Section 6.4.4Z 209). The application examples in Part IVZ 283 define different
new view(point)s in different projects.

Requirement R 3.1 (New Views reuse whole System Description)Z 157 is fulfilled by
MoConseMI by using the SUM, which contains all information of all data sources in
integrated way, as starting point for the operator chain for the new view, which allows to
reuse all information of the SUM for new views. The application examples in Part IVZ 283

define different new views, which reuse information stemming from different data sources
within the same project.

Requirement R 3.2 (New Viewpoints with arbitrary Metamodels)Z 157 is fulfilled by
MoConseMI by using operators, which jointly change metamodels and models, for the
definition of new viewpoints. The application examples in Part IVZ 283 define different new
viewpoints, whose metamodels are different to the SUMM of the same project.

Requirement R 3.3 (Editable new Views)Z 157 is fulfilled by MoConseMI by using the
same operators for defining the transformations between all partial views and the SUM
and by executing these operators in the same way (Section 6.5.3Z 217), which allows to
modify models of data sources as well as of new views in the same way. In particular, the
bidirectional operators support both directions, from views (including new views) to the
SUM and from the SUM to views. The application examples in Part IVZ 283 demonstrate
different test cases for user changes in new views in different projects.

Regarding technical requirements,technical Requirements Requirement R 4 (Technical Spaces)Z 158 is fulfilled
by MoConseMI with the concept of adapters, which bridge views realized in different tech-
nical spaces to ECore as the technical space used within MoConseMI (Section 6.6.5Z 226).
Section 8.4Z 271 presents several concrete adapters, which are successfully used by appli-
cation examples in Part IVZ 283. In particular, these applications contain some test cases,
where users change views not by changing the EMF models, but by changing their repre-
sentations in the technical spaces.

Requirement R 5 (Reusable Library)Z 158 is fulfilled by MoConseMI, since MoCon-
seMI is implemented as reusable Maven library without forcing users and methodologists
to use a GUI (Section 8.1Z 263). The reusability of the MoConseMI framework is shown
by all application examples in Part IVZ 283, since they are Maven projects which reuse
MoConseMI as dependency.

Summarizing, all functional requirements are fulfilled by the design of MoConseMI, as
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discussed in Chapter 5Z 163 and Chapter 6Z 185. Additionally, the application examples in
Part IVZ 283 demonstrate, that all functional requirements are fulfilled also in practice. The
technical requirement are all fulfilled by the implementation of the MoConseMI framework
in Chapter 8Z 263, supported by the design of the MoConseMI approach. Therefore,
MoConseMI fulfills all requirements of Chapter 4Z 153.

13.2 Properties of Operators

Since MoConseMI is operator-based and the operators of Section 7.3Z 243 are an important
part of the solution, this section discusses several properties of operators.

13.2.1 Formal Properties

The research for BX established several formal properties for BX transformations, which
could be used to evaluate bidirectional operators of MoConseMI. According to correctness,
which can be verified only, if the consistency is explicitly formalized (Anjorin, Buchmann
et al., 2020, p. 661), no Proofs of formal

Properties possible in
general

most of these formal properties cannot be successfully proved for
MoConseMI, since the consistency goals and consistency rules describe the desired con-
sistency in natural language and without formalizations. Additionally, the behavior of uni-
directional operators depends on the configurations for model decisions by methodologists
as well, which makes general proves hard.

Nevertheless, some statements can be given for some formal properties of BX ap-
proaches. These properties are selected and taken from BX research (Anjorin, Buchmann
et al., 2020; Hidaka, Tisi et al., 2016; Stevens, 2010):

• As already mentioned, correctness cannot be proved, since consistency is not formal-
ized in MoConseMI.

• Hippocraticness requires not to change models which are already consistent to each
other: Hippocraticness is ensured by MoConseMI after the execution loop stopped,
since no branch differences occur anymore, i. e. the models are consistent to each
other according to the configured orchestration. Note, that the termination of the
execution loop cannot be guaranteed, as discussed in Section 14.3.1.1Z 491.

• Orchestrations in MoConseMI do not fulfill least change (Section 3.2.4Z 106), since
they fulfill least surprise by design according to the project-specific configurations of
methodologists and according to the expectations of users for consistency.

• MoConseMI is Turing-complete (Hidaka, Tisi et al., 2016, p. 911), since→Change-
Model allows to transform models in arbitrary way with the Turing-complete Java
programming language.

• Section 14.2.2Z 489 discusses, that consistency goals and consistency rules might be
non-deterministic in MoConseMI under some circumstances.

Summarizing, the design of MoConseMI trades formal guarantees for expressiveness.
MoConseMI trades
formal Guarantees for
Expressiveness

This trade-off is a general one in BX research: “In general, the more expressive power the
transformation has, the less guarantees on well-behavedness the system can provide. In
the extreme case, Turing-complete transformation languages can express complex forward
transformations, making it difficult to define a backward transformation that, when com-
bined with the forward one, will form a well-behaved system” (Hidaka, Tisi et al., 2016, p.
916).
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13.2.2 Completeness of Operators

The list of operators in Section 7.3Z 243 is complete in the sense, that the provided opera-
tors are sufficient to transform each (meta)model into each other (meta)model. Operators
are complete to realize any (Meta)Model Transformation which is proved by applying the
following operators:

1. Use the operators→AddNamespace,→AddClass,→AddAttribute and→Add-
Association to create the missing elements in the current metamodel, without
changing the current model. Operators to create and delete data types, enums and
enum literals are implemented, but not documented in Section 7.3Z 243, since they
are not used for the application scenarios.

2. Use the existing information in the current model to create model elements conform-
ing to the new elements in the metamodel with the operator →ChangeModel.

3. Use the operators →DeleteNamespace, →DeleteClass, →DeleteAttribute,
→DeleteAssociation to delete all elements in the current metamodel which are
not used anymore. These operators delete conforming elements in the current model
as well.

The steps 1 and 3 of this strategy allow to create any metamodel, while step 2 prevents
undesired information loss in the model by creating model elements conforming to the new
metamodel elements. Note, that it is important not to switch steps 1 and 3, as it is done
in Herrmannsdoerfer, Vermolen and Wachsmuth (2011), since the deletion of metamodel
elements (step 3) leads to the deletion of all conforming model elements as well, resulting
in undesired information loss in the model.

Additionally,Operators are complete
regarding Kinds of
Integration

the list of operators is complete regarding the possible kinds of integration
in general, which are merging of redundancies, linking related elements with each other and
generalization of elements (Winter, 2000). This is justified in the following:

Merging of Redundancies can be done with operators to delete metamodel elements
and conforming model elements like→DeleteClass or→DeleteAttribute. Ad-
ditionally, objects representing partially overlapping information can be merged with
→MergeClasses and their slots with →MergeAttributes and →MergeRef-
erences, according to Section 12.2.2Z 460.

Linking related Elements can be done with →AddAssociation in order to create a
new association in the metamodel, which enables conforming links in the model,
according to Section 12.2.1Z 459.

Generalize Elements i. e. creating classes in the metamodel with a generalization hierar-
chy in terms of super classes and sub classes can be established with→AddClass for
new classes, since the operator provides metamodel configurations for the desired sub
classes and super classes for the new class, and with→ExtractSubClass, since the
operator extracts a new sub class from an existing class with a generalization between
them.

Instead off the above kinds of integration on the granularity of single (meta)model elements,
Chechik, Nejati and Sabetzadeh (2012) classify the model integration with higher-level
operators (Section 6.1.1Z 186) for composing semantically related models, for weaving for
integrating cross-cutting models into base models, and for merging of overlapping models.
These objectives usually cannot be realized with single operators in MoConseMI, but
require chains of operators.

Since Section 7.3Z 243 provides more operatorsOperators are not
minimal

than the here mentioned operators for
completeness, the list of operators is not minimal, since they are designed with the objective
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to ease configuration effort for methodologists by supporting recurring transformation pat-
terns. As an example, the functionality of→ReplaceAttributeByReference could be
reconstructed by chaining the operators →AddAssociation and →DeleteAttribute.

13.2.3 Complexity of Operators in O-Notation

Complexity of
Metamodel
Transformations is
constant

This section discusses the complexity of operators in terms of the O-notation, where the
number of changes in the (meta)model is the quantity of interest: Since the changes in the
metamodel are the same for each execution of the same configured unidirectional operator,
the effort on the metamodel can be seen as constant.

The effort of the transformations in the model depends on the operator and its con-
figurations, which is demonstrated along some examples: Complexity of Model

Transformations
depends on operators
and their configurations

→RenameClassifier does not
change the model at all, leading to constant complexity. →MergeClasses searches for
corresponding objects conforming to the two merged classes N ,M in order to merge two
matching objects, which results in the complexity O(n ·m) with n as the number of objects
conforming to N and m as the number of objects conforming to M , since each object con-
forming to N must be compared with each object conforming to M . This square amount
directly stems from the design of the unidirectional operator without considering concrete
configurations for its decisions. The impact of configurations for model decisions is very
clear for →ChangeModel, since the whole model transformation is configured by metho-
dologists, who could define model transformations with arbitrary complexity.

13.2.4 Reusability of Operators

The evaluation of the reusability of the designed and implemented operators is done by
collecting experiences by applying them to various application examples, which is proposed
also by other operator-based approaches (Herrmannsdoerfer, Vermolen and Wachsmuth,
2011). Some of such experiences regarding the reusability of operators are reported: Oper-
ators are used multiple times within the same application, leading to the reuse of operators,
e. g.→ReplaceAttributeByReference is used to replace indirect relationships via IDs
by explicit links in Chapter 11Z 387. The same operators are used in multiple applications,
leading to the reuse of operators, e. g. →AddAssociation is used in all applications in-
cluding the ongoing example in order to enable additional explicit links between model
elements. Additionally, the nesting of unidirectional operators is another way for reusing
unidirectional operators, e. g. →SubSetFilter uses operators like →DeleteClass or
→DeleteAttribute internally. Summarizing, these examples emphasize, that the de-
signed and implemented operators are reusable.

13.2.5 Imperative vs Declarative Operators

This sections sums up the discussion, why the mostly imperative operators of MoCon-
seMI are not designed to be completely declarative. Consistency goals according to Def-
inition 15Z 72 can be seen as declarative, since they describe the desired consistency, but
not how to reach this consistency. Since there are multiple ways to fix inconsistencies to
reach consistency again (Section 2.3Z 71), consistency rules according to Definition 16Z 75

concretize consistency goals by specifying strategies, how to fix inconsistency. Thus, con-
sistency rules can be seen as imperative.

Bidirectional operators can be seen as declarative from the point of methodologists, declarative Metamodel
Decisions

since
they select bidirectional operators and configure them with simple values for metamodel
decisions for one direction, while the configurations for the inverse indirection are derived
automatically. Additionally, operators realize a static metamodel evolution scenario.
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As discussed and decided in Section 8.3.1Z 267,imperative Model
Decisions

the configurations for the model deci-
sions of unidirectional operators are implemented by methodologists with Java as imperative
general-purpose programming language. Benefits are on pragmatic level with an easier use
of history maps, branch differences and mixing transformations for models and metamo-
dels. Additionally, managing consistency in change translation-based style derives follow-up
changes from the current user change, which is required by some consistency goals and is
imperative and not declarative.

Related approaches provide some additional hints for this discussion as well:Related Work The Vit-
ruvius approach (Section 3.5.2Z 126) has one restricted declarative language and one more
flexible imperative language for defining the desired consistency. “Declarativeness had no
positive impact on any of the case criteria” (Rose, Herrmannsdoerfer et al., 2012, p. 351) of
the Transformation Tool Contest 2010, comparing different tools for model co-evolution in-
cluding classical model transformations, Epsilon Flock and Edapt (Section 6.2.1Z 193).
This might be influenced by the compared declarative tools, since they were less mature
than the compared imperative tools. In general, some BX approaches start to include
imperative parts in order to improve the expressiveness (Chapter 3Z 93).

Summarizing, the operators in MoConseMI are designed as imperative,Summary: imperative since even
declarative consistency goals need imperative consistency rules for project-specific realiza-
tion and imperative configurations for model decisions increases the flexibility and expres-
siveness for methodologists.

13.2.6 Design of Operators revised

While the previous sections of Section 13.2Z 469 evaluated details of the design for operators,
this section discusses two general aspects of the operator design, i. e. the joint transformation
of models and metamodels, and the advantages of MoConseMI over hand-written code.

Since operators usually change metamodels and conforming models together,joint Transformation of
Models and Metamodels

structural
refactorings of the metamodel to form the SUMM are somehow mashed with semantic fixes
for inconsistencies in the model, which can be seen as violation of the principle for the sepa-
ration of concerns: Since semantic heterogeneity comes often with structural heterogeneity
(and vice versa), it is hard to clearly separate them from each other (Leser and Naumann,
2007, p. 69). With other words, it is necessary to overcome both semantic heterogeneity (in
the models) and structural heterogeneity (in the metamodels), which is done by operators,
which usually handle both meta-levels together and ensure, that models conform to their
metamodels. Changing metamodels requires model co-evolution in any case and the degrees
of freedom during model co-evolution can be exploited for semantic fixes. Changing only
models can be done with →ChangeModel in order to focus on semantic changes in the
model only. Summarizing, since there are situations where structural and semantic changes
occur together, since metamodel evolution requires model co-evolution, and since changing
models only is possible with →ChangeModel, the design of operators to jointly change
models and their metamodels is reasonable and does not introduce restrictions.

Since MoConseMI guarantees no important formal properties (Section 13.2.1Z 469),
the question might arise, why not manually writing pure Java code without the MoCon-
seMI framework for integrations and consistency preservation according to the statement
“Information integration is doable — write enough code and I will connect every software
system anywhere” (Halevy, Ashish et al., 2005, p. 785).hand-written Source

Code vs Configurations
with MoConseMI

While this strategy is possible in
general, using the MoConseMI framework provides lots of benefits, in particular, since
some model decisions are configurable with Java: The reusable operators guide the develop-
ment of transformations for models and their metamodels with defined degrees of freedom.
These operators ensure the conformance of (changed) models to their (changed) metamo-
dels (except for model decisions that are actively misused by methodologists). Additionally
and most importantly, reused operators provide bigger parts of transformations which can
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be reused as they are. As an example, the operators→MergeClasses and→SplitClass
are implemented in the MoConseMI framework with more than 1000 lines of code (in-
cluding documentation), covering lots of special cases in ECore, which do not need to be
understood by methodologists in all details when (re)using these operators. Additionally,
the MoConseMI framework provides the generic execution loop and the calculation of the
execution differences, which can be reused directly without writing any source code. Finally,
the MoConseMI framework and their providers reduce accidental complexity with man-
aging and bridging other technical spaces into EMF. Summarizing, MoConseMI comes
with less formal guarantees which are interesting for platform specialists and researchers,
but provides great support for methodologists in order to ensure inter-model consistency
in practical application scenarios. Since bigger parts of (meta)model transformations can
be reused with operators, using the MoConseMI framework is beneficial compared to
manually writing the whole transformation including its execution.

13.3 Characteristics of Orchestrations

Since orchestrations are the result of methodologists, who apply MoConseMI in order
to ensure consistency within a particular project, this section discusses some aspects of
orchestrations and their configured and chained bidirectional operators. Note, that orches-
trations are created and (if necessary) adapted by methodologists only and never by users.
Additionally, methodologists can freely chose the order of configured operators, but after
arranging operators in chains, their order is stable, since the input of operators depends on
the output of their previous operators, as designed in Section 6.4.2Z 204.

When investigating the orchestrations for application examples in Part IVZ 283, more Operators for new
View(point)s than for
integrating Data
Sources

a first
finding is, that operator chains for new view(point)s are often longer than the operator
chains for integrating a small number of data sources into the SU(M)M. One explanation
is, that the structure of the SU(M)M depends on the structure of the reused data sources
and the integration for depending information, while the structure for new view(point)s
usually is quite different to the SUMM, which requires more operators for restructuring.
Additionally, information which is contained only in one data source is (often unchanged)
transformed into the SUM and kept there, while at least one →SubSetFilter is required
to hide this information in new views.

13.3.1 Language Evolvability

Language evolvability discusses the scenario, when the metamodels of integrated data
sources change. Metamodels of

integrated Data Sources
evolve

This aspect is motivated by Broy, Feilkas et al. (2010), by France and
Rumpe (2007), by Persson, Torngren et al. (2013) (subsumed under extendability) and by
Meier, Werner et al. (2020) as selection criterion E4 for SUM approaches, who emphasize
the need to discuss this aspect here for MoConseMI as well. Since configured operators
and therefore the whole orchestration depend on the metamodel of integrated data sources,
the orchestration must be updated, if necessary.

Since chains of operators represent (meta)model transformations, this problem is re-
lated to transformation co-evolution (Section 6.1.1Z 186). Related WorkThis problem is also analyzed in
the context of data ware houses (Section 3.6.3Z 139), when schemata of their data sources
changed: Arora and Gosain (2011) survey various operators to handle different evolution
scenarios by various authors. Oueslati and Akaichi (2010) complemented the schema evolu-
tion of data sources with the corresponding maintenance i. e. update of materialized views.

The impacts of the evolution of single metamodels which are integrated as part of the
SUMM depend on the particular metamodel changes. In general, if a single metamodel
changes, the integration with all other metamodels into the SUMM has to be checked and
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the corresponding operatorsImpact of Metamodel
Evolution on the
Orchestration depends
on the particular
Changes

might need to be updated:

• If the changes of the metamodel effect only parts which are not interesting for the
integration, i. e. these parts are neither reused of nor linked by other metamodels,
the SUMM can be updated accordingly and automatically, since all metamodel con-
figurations for operators are still valid. This counts in particular for added concepts
in evolved metamodels, since the in-place transformations of operators transfer the
new concepts directly into the SUMM by design. If these concepts are also provided
by other data sources, this leads to some more consistency goals, which can be added
easily, as discussed in Section 13.3.4Z 477.

• If the changes in the metamodel effect parts which are interesting for the integration,
the impact of the changes have to be handled and all subsequent operators need to
be updated. In the worst case, all parts of the orchestration after the integration
of the data source with the changed metamodel have to be recreated. Therefore,
methodologists might integrate data sources with higher expected evolution pressure
later than data sources with less frequent evolution. If concepts in the metamodel
are only reworked or refactored without loss, these refactorings can be reconstructed
by additional operators.

Since the evolvability of languages, i. e. the metamodels of data sources, comes with
noticeable effort in MoConseMI, other approaches for ensuring inter-model consistency
might be more suited, if the metamodels of integrated data sources change very often. A
possible alternative are synthetic approaches like enterprise information integration (Halevy,
Ashish et al., 2005), since the impact of metamodel evolution can be solved directly at the
data source and its relationships to other viewpoints. On the other hand, the history
of integrated models can be tracked much easier in projectional approaches with explicit
SUMs, as mentioned by Halevy, Ashish et al. (2005) for more projectional data ware houses
in contrast to more synthetic federated data bases.

13.3.2 MoConseMI without reusing Data Sources

Usually, existing data sources are reused with their metamodels and conforming models
in order to integrate them into the SU(M)M, according to the design of MoConseMI
(Section 5.1.1Z 164). This section discusses some alternative scenarios without the strong
reuse of data sources.

The first variation is to reuse only the metamodel of a data source without a conforming
model, as for a just started project.reuse Metamodel of a

Data Source, but no
Model

In MoConseMI, this is possible in general with
the usual configuration of operators into an orchestration, since it mainly depends on the
reused metamodels. At the same time, the configurations for model decisions of selected
bidirectional operators must ensure, that the reused model of the data source is empty,
i. e. configurations for model decisions must no expect the existence of some objects in
the (not) reused model. Alternatively, expected objects could be created by additional
operators before using them in subsequent operators.

Another case is, that exactly one data source is reused:reuse exactly one Data
Source

In that case, this data source is
transformed to the SU(M)M without the combination of other data sources, i. e. the special
operator �CombineSeparateDataSources is not used in the orchestration.

The last case is to start top-down with an already existing SU(M)M and without reusing
any data source, as in MoConseMI (Section 3.5.1Z 124):top-down without

reusing any Data Source
In that case, the SU(M)M is

used as starting point and data sources are neither reused nor combined. Instead, chains
of operators are configured only to define new views with the SU(M)M as starting point.
Note, that the implementation of MoConseMI (not the approach itself) requires at least
one data source to reuse as technical limitation (Section 14.3.2Z 495). This limitation of
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the implementation can be overcome by using the SU(M)M as data source and applying a
single operator with less impact like �RenameClassifier in order to reach the SU(M)M
afterwards.

13.3.3 Characteristics of the SU(M)M

Since the SU(M)M is the central part of projectional approaches for ensuring inter-model
consistency, some characteristics of the SU(M)M in MoConseMI are discussed. SU(M)M depends on

Orchestration
This dis-

cussion is done here related to orchestrations, since the SU(M)M depends on the particular
orchestration and is initially created during the first execution of the orchestration.

13.3.3.1 Quality of the SU(M)M

The quality of the SU(M)M can be controlled by configuring more or less operators by the
methodologist. The quality of the SU(M)M in terms of the number of internal dependencies
is already discussed in Section 12.2.3Z 460 with the recommendation to reduce dependencies
as much as possible, since removed dependencies do not need to be kept consistent anymore.

This section focuses on the quality of the SU(M)M regarding simplicity, understand-
ability and best practices for (meta)modeling, improve

Understandability of the
SU(M)M with
additional Operators

since the quality of the SUMM can influence
transformations and analyses on it (Hinkel and Burger, 2018). Since the initial quality of
the SU(M)M is mainly inherited from the reused and integrated data sources, operators
might be configured to refactor the SU(M)M in order to ease the understanding of the
SU(M)M and to ease definitions of new view(point)s. This eases the integration process,
since previous refactorings of the (meta)models of data sources help preparing the subse-
quent integration, and since refactorings after the main integration focusing on reducing
redundancies for consistency result in an optimized SU(M)M. For these refactoring, all
operators might be used which prevent information loss in the model.

These theoretical considerations are made clear along the ongoing example:

Ongoing Example, Part 27: Quality of the SU(M)M ← List →

The integration of data sources as depicted in Part 21Z 206 of the ongoing example realizes
all consistency goals and results in a SU(M)M, as depicted in Part 19Z 176 of the ongoing
example, but there is still potential for simplifications in the SU(M)M:

• While the representations for classes in Java and UML are merged into ClassType,
there are still the two root classes ClassDiagram and JavaASG, which could be merged
in order to simplify the SU(M)M, e. g. with �MergeSplitClasses. Note, that the
associations ClassDiagram.classes and JavaASG.classes must not be merged, e. g.
with �MergeSplitReferences, since they have different semantics, i. e. Java-

ASG.classes contains all available ClassTypes, while ClassDiagram.classes indi-
cates the subset of ClassTypes which is depicted in the class diagram.

• An additional improvement might be to have all classes in the metamodel within a
single namespace. This might ease the SUMM, since there is only one namespace
instead of three namespaces, while the three namespaces provide some hints for the
origins of the contained classes in terms of their initial data sources. For the definition
of the new view(point) in Part 22Z 209 of the ongoing example, �SubSet must be
configured with all classifiers in the two namespaces umlclasses and asgjava to
hide, but not with only these two namespaces anymore, since they are “optimized”
i. e. removed in the SUMM now.

Summarizing, the quality of the SU(M)M depends also on the impressions of methodologists
and possible definitions for further new view(point)s.
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13.3.3.2 Content of the SU(M)M

This section discusses the content of the SU(M)M, i. e. the concepts in the SUMM and the
information stored in the SUM. In particular, this section continues the discussion, whether
the SUM should contain all information of all data sources (as designed for MoConseMI
in Section 5.1.2Z 165), or whether the SUM should contain only the depending information
which is relevant for the consistency goals,store Information which

is not necessary for
ensuring Consistency in
the SUM?

according to Figure 3.2Z 100. This includes
information which is not redundant, but is used in configurations for model decisions for
ensuring consistency.

Related approaches disagree on which option should be used and argue differently:
Related Approaches
disagree

The SUM idea strongly advocates to store all available information in the SUM (Sec-
tion 3.4Z 120). Egyed, Zeman et al. (2018) store only information which is required for
consistency in order to ease the development of adapters. Baumgart (2010) proposes in his
vision paper to store only “common concepts” in the SUMM. Following France and Rumpe
(2007), interrelated views should be integrated with the help of a metamodel, but with
describing (only) the interrelationships between the involved view(point)s. The Vitru-
vius approach stores all information in a modular SUM and additionally makes naturally
redundant concepts explicit as commonalities (Klare and Gleitze, 2019).

MoConseMI follows the SUM idea and stores all information in the SUM, due to
the following reasons: More information, which is superfluous in the sense, that they are
not needed for ensuring consistency,MoConseMI: all

Information in the SUM
eases to derive new
Views

does not hurt, if there are mechanisms for filtering
visualizations and building new tailored viewpoints in order to manage large (meta)models,
as discussed in Section 13.3.3.3. While the data sources to reuse and the consistency goals to
fulfill might be completely known and would allow to determine a border between necessary
and unnecessary information for the SUM, this is not always clear for the information which
is required to derive new views from the SUM. If an additional new view is derived later
which requires information which is in a data source, but not in the SUM, it is hard to
reuse this information for the new view. Having all information in the SUM allows to reuse
all information in flexible way for new views.

In MoConseMI, the SUM contains additional information which is not part of any
data source.store explicit Links in

the SUM
In particular, explicit links between information stemming from different data

sources (Section 12.2.1Z 459) are stored in the SUM. This counts also for traceability links,
since they usually cannot be stored within the data sources, since the information of the
other end of traceability links is not available.

Finally, the SUM in MoConseMI might store also information about concrete render-
ings like layout information.store Layout

Information in the SUM
As an example, the rowNumber from the adapters for Excel

CSV represent layout information. Such information is included into the SUM, since it
might encode semantics like an implicit prioritization (which is not the case here), it is
required for the backward transformation (which is not the case here), or it should be
used for new views (which is the case here, since the order of requirements is the same in
Requirements and in Traceability ).

13.3.3.3 Large (Meta)Models

Depending on the content of the SU(M)M (Section 13.3.3.2), the (meta)models for the
SU(M)M might become large.large SU(M)M

depending on the
particular Project

This challenge depends not on the integration in Mo-
ConseMI, but on the current projects, in particular, on the number and size of reused
(meta)models. According to France and Rumpe (2007), who mention the size of metamo-
dels as challenge and request better tool support for this challenge, large SU(M)Ms are a
problem of lacking tool support, not a limitation of MoConseMI in the general, since for
ensuring the consistency between large (meta)models, they must be related to each other
in any case, even in synthetic approaches. Since “Big Metamodels Are Evil” (Fondement,
Muller et al., 2013), they introduce operators to unmerge packages for reduction.
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In order to manage large (meta)models, MoConseMI provides several concepts: First
of all, the large SU(M)M is not given to users, only the smaller data sources or new views
which are tailored to the concerns of users are usually provided for users. Users use (partial)

Views, not the complete
the SUM

Therefore, large
SU(M)Ms are only a challenge for methodologists, which are supported with namespaces
for metamodels (Section 6.6.2Z 222) and models (Section 6.6.3Z 223). Since the models
and metamodels of each data source come with their own namespaces, these namespaces
are transformed into the SU(M)M by default and indicate the origin of their contained
elements. Support for

Methodologists
These namespaces are explicitly supported with operators and can be used also

for filtering with �SubSet. Thanks to redundancy reduction (Section 12.2.2Z 460), the
number of elements in the SU(M)M might be smaller than the number of all elements in
all data sources together. On technical level, most of the visualizations provided by the
MoConseMI framework (Section 8.5Z 279) support filters to visualize only elements of
interest.

13.3.4 Reusability of Orchestrations

The reusability of orchestrations covers the scenario, that parts of a complete orchestration
of a particular project are reused for another project. This scenario is motivated by Meier,
Werner et al. (2020) and called “SUMM Reusability” as selection criterion E5 for SUM
approaches, while the reusability of orchestrations emphasizes, that also the mechanisms
for ensuring consistency within a SU(M)M should be reused as well. adapt and reuse Parts

of Orchestrations
This scenario is done

by methodologists, never by users, since users use data sources and update their models, but
do not configure orchestrations. This scenario includes to add and remove data sources, new
view(point)s as well as consistency goals and consistency rules for an existing orchestration.

Similar to the evolution of single metamodels in Section 13.3.1Z 473, the effort for reusing
parts of orchestrations depends on the details what to reuse, since chains of operators are
fixed after configuration, since the output of one operator is the input for the subsequent
operator. Some of the possible cases during the reuse of orchestrations and their SUMMs
are sketched as evolution scenarios in the following publication:

Related MoConseMI Publication

Johannes Meier and Andreas Winter (2018b): Towards Evolution Scenarios of Inte-
grated Software Artifacts. In: Softwaretechnik-Trends, vol. 38(2), pp. 63–64.

This publication is cited as Meier and Winter (2018b) in this thesis.

• Adding another data source is easy, add Data Sourcesince the tree of operators is extended with
additional operators in order to integrate the current SU(M)M with the additional
data source.

• Removing an already integrated data source is harder, since the integrated parts of its
metamodel usually influence the configured operators, the SUMM and sometimes also
new viewpoints. remove Data SourceIn the worst case, all parts of the orchestration after the integration
of the removed data source have to be reworked. More consistency goals, in particular
n-ary consistency goals, increase the integration and coupling of data sources into
the SUMM and make the deletion of single data sources harder. Removing the last
integrated data source is the easiest case, since only its chain operators to the SUMM
must be updated or removed. An alternative might be to keep the data source and its
metamodel, which allows to keep all depending operators, but to use this data source
with an empty model, as discussed in Section 13.3.2Z 474. Only the configurations of
some model decisions might need an update in order to work with an empty model
of the “inactivated” data source.
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• Adding new viewpoints is easy,add new Viewpoint since only an additional chain of operators must be
configured.

• Removing new viewpoints is also easy, since its chain of operators to (usually) the
SUMM can be simply removed,remove new Viewpoint since new viewpoints neither introduce new consis-
tency goals nor provide new concepts, since they are completely derived from the
SUMM.

• Adding consistency goals results in additional operators, which improve the SU(M)M
in form of an operator chain between the old SU(M)M and the new SU(M)M.add Consistency Goal There-
fore, additional consistency goals can be supported easily.

• Removing realized consistency goals is harder, since operators which realize these
consistency goals become unnecessary.remove Consistency

Goal
If they are removed and they changed the

metamodel, subsequent operators have to check and to adapt accordingly, if necessary.
Therefore, an alternative could be keep the metamodel changes and to configure
another strategy for model co-evolution, which keeps all information, but does not
realize the consistency goal anymore.

Summarizing, adding additional data sources, new viewpoints and consistency goals is
easy, since the existing orchestration is extended with another chain of operators, starting
at the old SUMM and resulting in a new SUMM. Removing data sources and consistency
goals is much harder, since the subsequent parts of the orchestration must be reworked.
Due to their low modularity, the reusability of orchestrations and their SUMMs is limited
in MoConseMI. The modularity of orchestrations is better in approaches using synthetic
techniques, since the metamodel and its direct relationships to other metamodels can be
directly removed, like in Vitruvius, whose main design goals include high modularity
(Klare and Gleitze, 2019).

13.4 Conceptual Discussions on MoConseMI

This section discusses some conceptual characteristics of the whole MoConseMI approach.
In particular, the inter-play of existing techniques and applications with MoConseMI is
discussed.

13.4.1 Reuse existing Modeling Techniques

This section discusses, how existing modeling techniques can be applied for models managed
by MoConseMI.Modeling Techniques

use explicit
(Meta)Models

In general, reusing other modeling techniques is easy with MoConseMI,
sine the (meta)models for all data sources, new view(point)s and the SU(M)M are explic-
itly available and can be used as input for other modeling techniques. If information of
models of multiple views should be used by other modeling techniques, these modeling tech-
niques have to support multiple (meta)models as input, which is not true for each modeling
technique.Modeling Techniques

with one (Meta)Model
as input use the
SU(M)M

In these cases, the explicit SU(M)M of MoConseMI is beneficial, since it is
a single (meta)model, which contains all concepts and all information of all data sources
in integrated way and can be used as input for modeling techniques supporting only one
(meta)model. These general ideas count for most of the existing modeling techniques, as
detailed for some examples:

Cross-View Analyses Analyses of information which is spread over multiple views is
hard to realize with query languages which support only one metamodel. The same
counts for visualizations targeting information spread over multiple views. Here,
using the SU(M)M is beneficial, since it contains all concepts and all information of
all data sources in integrated way.
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Constraints between different (Meta-)Models Constraints for relations of elements
stemming from metamodels of different data sources can be expressed easier with a
SUMM, since the constraint developer has to take into account only the SUMM as
one metamodel, which contains the concepts of all data sources in integrated form.
Additionally from a technical point of view, most of the constraint languages work
only for one metamodel, which requires to use the SUMM.

Model Versioning For the combined versioning of models for different views, approaches
for model versioning usually require one metamodel which describes the complete
model, like the DL approach (Kuryazov, 2019). Therefore, the SUMM is beneficial
and can be used for versioning the whole SUM, from which the models for the views
can be derived.

Model Transformation Lots of model transformation languages support only one source
metamodel, while there are also some model transformation languages supporting
multiple source metamodels (Kahani, Bagherzadeh et al., 2019, p. 2374f). For trans-
formations requiring multiple models from different views, model transformation lan-
guages supporting only one source metamodel are not usable, since there are multiple
source metamodels. Here the SUMM allows to use even model transformation lan-
guages which support only one source metamodel in order to transform information
stemming from multiple data sources.

Model Refactoring Misbhauddin and Alshayeb (2019) evaluate for UML, that refac-
toring on an integrated (meta)model is beneficial compared to refactorings on the
single (meta)models. While they had to do the integration as preparation for the
refactoring, using MoConseMI provides the SU(M)M directly. Therefore, (other)
refactoring techniques could be reused and could be done directly on the SU(M)M.

13.4.2 Integrate Data Sources with different Abstraction Lev-
els

A big advantage of MoConseMI is, that it enables to integrate (meta)models of data
sources with heterogeneous levels of abstraction, e. g. in the ongoing example, requirements
at a high abstraction level are integrated with Java source code at a low abstraction level
with lots of details. supporting different

Abstraction Levels is
important

In general, supporting different levels of abstraction provides benefits
for companies (Mohagheghi, Gilani et al., 2013a, p. 107), while integration of models
with heterogeneous abstraction levels is a very difficult problem (Hailpern and Tarr, 2006).
For UML, Lucas, Molina and Toval (2009) found, that there are only few approaches for
consistency covering different levels of abstraction. Programmers tend to integrate on code
level (Burden, 2014), which is not sufficient, since there are also development projects
without source code.

MoConseMI supports the integration of data sources with different abstraction levels
in general Support by

MoConseMI
by providing operators for reuse, which are independent from the concrete meta-

models thanks to their metamodel decisions and which are independent from the abstraction
levels of these metamodels as well. Operators like →AddAssociation and →Replace-
AttributeByReference for linking elements, as discussed in Section 12.2.1Z 459, can be
used also for relating elements at different levels of abstraction with each other.

13.4.3 Integrate other Research into MoConseMI

The MoConseMI approach is open to other research and allows to integrate related re-
search, as sketched for the following examples: Since the managed (meta)models are explic-
itly available, other modeling techniques can be reused, as discussed in Section 13.4.1Z 478.
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Approaches which manage consistency in manual or semi-automated way by users could be
integrated into new view(point)s, provided by MoConseMI. Methodologists could be sup-
ported with results from metamodel matching (Lopes, Hammoudi et al., 2006) and with
techniques from data integration in the data base research for selecting and configuring
operators and configurations of their model decisions (Doan, Halevy and Ives, 2012). Con-
tributions of MoConseMI for further research areas are discussed in Section 14.1.2Z 486.

13.4.4 Integrate MoConseMI into other Applications

Since the implementation of MoConseMI is done as a reusable Java framework in form
of a Maven library according to Requirement R 5 (Reusable Library)Z 158, MoConseMI
could be integrated into other applications in general.

Additionally, ensuring inter-model consistency with MoConseMI could be deployed
on a server, since the MoConseMI framework does not force a GUI, and the adapters of
the views exchange models with clients, which enables the spatial separation of users, while
they are supported with automated fixes for inconsistencies. For future work, this idea
could be extended with support for model versioning of all models, transaction manage-
ment (Section 12.4Z 463) and management of access rights. In general, there is a need for
such central model repositories, as surveyed by Di Rocco, Di Ruscio et al. (2015). Model
repositories might ease to manage a SU(M)M by embedding a configured MoConseMI
instance together with support for collaboration.

13.4.5 Intra-Model Consistency

As defined in Definition 6Z 42, intra-model consistency addresses the internal consistency
within one model, while this thesis focuses on inter-model consistency addressing the con-
sistency of depending elements in different models. For TGGs, intra-model consistency
is called “domain correctness” and expressed by domain constraints to determine consis-
tent domain models (Anjorin, Leblebici and Schürr, 2016). This section discusses, how
MoConseMI can ensure also intra-model consistency.

In MoConseMI, intra-model consistency goals are realized with the same operators as
for inter-model consistency goals:Operators for

Intra-Model
Consistency

Removing possible redundancies or unused information
can be done with the same operators, which are also used for reducing redundancies for
inter-model consistency, as discussed in Section 12.2.2Z 460. Additionally, �ChangeMo-
del allows to realize other intra-model consistency goals. Since intra-model consistency
goals should be fulfilled before realizing inter-model consistency goals (according to Defini-
tion 7Z 42), operators for ensuring intra-model consistency are often configured after reusing
a data source and before their technical combination with other (meta)models.

By combing multiple data sources into one SU(M)M (Section 6.4.3Z 205),Inter-Model Consistency
becomes Intra-Model
Consistency in
MoConseMI

all inter-
model consistency goals are realized within one model like for intra-model consistency
goals. Therefore, there is no difference between intra-model consistency and inter-model
consistency on technical realization level in MoConseMI. In other words, by combining
(meta)models, inter-model consistency becomes intra-model consistency in general, which
is found by Egyed, Zeman et al. (2018, p. 32) as well.

Possible intra-model consistency goals are concretized along the ongoing example:

Ongoing Example, Part 28: Intra-Model Consistency ← List →

The ongoing example could be extended with consistency goals which address only one data
source and therefore represent intra-model consistency:

In Requirements , the row number of requirements (Requirement.rowNumber) could be
constrainted by consistency goals: In particular, a correct row number is required for newly
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created requirements. Additionally, each row number should occur only once, and gaps in
row numbers caused by removed requirements should be avoided. This could be realized
with an additional�ChangeModel for Requirements in the orchestration, which checks
the row numbers of all requirements and fixes wrong row numbers.

In Java , all methods within the same class must have unique names.
In Java , each class must have at least one constructor, which is a method with the

same name as the class. This could be realized with an additional →AddAssociation for
Requirements in the orchestration, which introduces a new association which indicates the
special method(s) used as constructors. This allows to rename classes and their construc-
tors.

In ClassDiagram , it might be ensured, that each Association has always a type, even
if the corresponding class was just removed. Usually, such a fix is not required, if the
change is done in ClassDiagram , since the multiplicity of 1 for the type ensures, that there

is always a class as type. But if the change is made inside Java (or in the SUM or a new
view), such a fix is required, if the Associations are hidden and therefore cannot be fixed
by users. The fix could be realized with an additional→ChangeModel for ClassDiagram
in the orchestration, which randomly adds a available class as new type. There is always
at least one such class i. e. the class owning the association. This example indicates, that
the clear separation between intra- and inter-model consistency becomes blurred during the
integration of data sources and the definition of new views.

13.5 Summary of the Evaluation

Summarizing the evaluation, the application examples in Part IVZ 283 show, that the Mo-
ConseMI approach as well as its implementing MoConseMI framework work and ensure
inter-model consistency in practice. Section 13.1Z 467 evaluated, that all requirements for
MoConseMI are fulfilled. Since the three challenges for ensuring inter-model consis-
tency in Section 1.2Z 31 are directly addressed by the three functional requirements Re-
quirement R 1 (Model Consistency)Z 154, Requirement R 2 (Reuse existing Artifacts)Z 155

and Requirement R 3 (Define new View(point)s)Z 156, the corresponding challenges in Sec-
tion 1.2.1Z 31, Section 1.2.2Z 36 and Section 1.2.3Z 39 are fulfilled as well. Since the ful-
fillment of these three challenges forms the objective of this thesis in Section 1.3.1Z 42,
MoConseMI fulfills the objective of this thesis. Additionally, the proposed deliverables
of Section 1.4Z 47 are provided with the MoConseMI approach (Chapter 5Z 163, Chap-
ter 6Z 185, Chapter 7Z 241), its implementing MoConseMI framework (Chapter 8Z 263)
and the applications examples (Part IVZ 283).

Furthermore, this section evaluates the characteristics of operators (Section 13.2Z 469)
and orchestrations (Section 13.3Z 473) in MoConseMI and justifies the applicability of
MoConseMI in a broader context (Section 13.4Z 478). Possible limitations of this evalu-
ation are discussed in Section 14.3.3Z 495. Remaining investigations which are possible in
the future are discussed in Section 14.4.1Z 496.
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Chapter 14

Conclusion

This section summarizes the thesis in terms of its contributions in Section 14.1, the pre-
conditions for MoConseMI in Section 14.2Z 489, its limitations in Section 14.3Z 490, and
possible extensions as future work in Section 14.4Z 496. Section 14.5Z 499 summarizes the
results of this thesis.

14.1 Contributions

This section summarizes the contributions of this thesis and in particular of the developed
MoConseMI approach for ensuring model consistency (Section 14.1.1), for other research
areas within software engineering (Section 14.1.2Z 486), and for some application domains
(Section 14.1.3Z 488).

14.1.1 Contributions to Model Consistency

Since ensuring the consistency of models is the main motivation and challenge to overcome
for this thesis (Section 1.2.1Z 31), this section summarizes the contributions of this thesis
for model consistency. In particular, MoConseMI as new projectional SUM approach for
ensuring inter-model consistency is summarized in Section 14.1.1.1, whose main character-
istics are discussed in comparison with related approaches in Section 14.1.1.2Z 484.

14.1.1.1 New SUM Approach

With MoConseMI, this thesis contributes a new SUM approach (Meier, Klare et al.,
2019) for ensuring inter-model consistency. MoConseMI follows the SUM idea (Sec-
tion 3.4Z 120) and propagates changes between views and the explicit SUM in order to
keep all views consistent to each other. MoConseMI is a new

SUM Approach for
ensuring Inter-Model
Consistency

Users use views and manually change them, while
MoConseMI propagates these user changes automatically to all other views, according to
the consistency goals of the particular project. The configuration of MoConseMI accord-
ing to the project-specific metamodels and consistency goals is done once by methodologists.
The MoConseMI approach is implemented in the MoConseMI framework, which is ap-
plied to several application examples, showing the applicability of MoConseMI for projects
with demand for ensuring inter-model consistency in practice. Additionally, MoConseMI
supports to integrate and to keep models with different levels of abstraction consistent to
each other (Section 13.4.2Z 479). Finally, MoConseMI ensures intra-model consistency as
well (Section 13.4.5Z 480).

MoConseMI is model synchronization-based and operator-based in order to support
methodologists during their configurations of MoConseMI for application in particular
projects. MoConseMI provides

reusable Operators for
Methodologists

MoConseMI provides lots of reusable bidirectional operators (Chapter 7Z 241),
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which are reused and configured by methodologists in order to define the transformations
between all view(point)s and the SU(M)M, which are automatically executed by MoCon-
seMI in order to propagate changed model parts between all views.

14.1.1.2 Characteristics of MoConseMI revised

Since MoConseMI is neither the first approach for ensuring inter-model consistency nor
the first SUM approach, this section discusses the main characteristics of MoConseMI in
comparison with some related approaches.

Two main characteristics of MoConseMI are the reuse of existing (meta)models by
starting bottom-up and the use of an explicit SU(M)M,conceptual

Characteristics of SUM
Approaches

which makes MoConseMI unique
compared with the other three SUM approaches, as discussed along the ongoing example:

Ongoing Example, Part 29: Related SUM approaches ← List →

The ongoing example can be realized also with other SUM approaches, as investigated by
Meier, Werner et al. (2020). Figure 14.1 shows the applications of all four SUM approaches
for the ongoing example by in graphical way. Additionally, Figure 14.1 visualizes the
classification of the projectional SUM approaches regarding the features of Figure 3.8Z 124

for conceptual design choices.

C1: Construction Process

C2: Pureness

bottom
-up

top-
down

pragmatic
(initial dependencies)

pragmatic → essential
(some dependencies resolved)

essential
(no dependencies)

Req

Java ClassDiagram

Trac.

SUMM
+

SUM

OSM

Req

Class
Diagram

Java
CPR

CPR
VPReq

VPJava VPClassDiagram

VPTrac.

Vitruvius

Class
Diagram

Java
+

Req

CMC

VPReq

VPJava VPClassDiagram

VPTrac.

RSUM

Req.

Java ClassDiagram

Traceability

SU(M)M1 2 3 4 5

MoConseMI

Figure 14.1: Conceptual Classification (taken from Meier, Werner et al. (2020))

Vitruvius and RSUM are both bottom-up in order to reuse existing (meta)models
as they are, and they are pragmatic with keeping all dependencies in a modular SU(M)M.
Dedicated mechanisms are provided to keep the depending models consistent to each other.
The complete visualizations of these two SUM approaches can be found in Figure 3.11Z 127

respectively in Figure 3.13Z 130. In contrast, OSM starts top-down with a predefined,
explicit SU(M)M without any internal dependencies, which makes additional means for
ensuring consistency superfluous, while a strategy to create such a SU(M)M with reuse of
existing (meta)models is missing.

This motivates to develop MoConseMI as the fourth projectional SUM approach (vi-
sualized in Figure 5.1Z 172). MoConseMI starts bottom-up in order to reuse (meta)models
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as they are, but integrates them into an explicit SU(M)M by explicitly linking depending
elements and reducing an adjustable number of redundancies in order to ensure consistency
(Section 12.2Z 458). Summarizing, MoConseMI combines ideas of the current SUM ap-
proaches Vitruvius and RSUM for reusing (meta)models on the one side, and of OSM
for an explicit SU(M)M without any internal dependencies on the other side. In particular,
MoConseMI provides a pragmatic strategy to create a SU(M)M in bottom-up way with
reusing exising (meta)models and therefore answers the question, how to create a SU(M)M
with reuse of existing view(point)s (Atkinson, Stoll et al., 2013).

Some more characteristics of SUM approaches are compared by Meier, Werner et al.
(2020) and are summarized in Table 14.1: The reusability of metamodels (E1) refers to Re-
quirement R 2.1 (Reuse existing Metamodels)Z 155 and is easily supported by all bottom-up
approaches MoConseMI reuses and

fixes existing
(Meta)Models

including MoConseMI, since they use existing metamodels as starting point.
The reusability of models (E2) refers to Requirement R 2.2 (Reuse existing Models)Z 156

which is supported by all bottom-up approaches, while MoConseMI outperforms due to
its ability to fix some initial inconsistencies within the reused models, according to Require-
ment R 2.3 (Fix existing Models)Z 156.

Criterion OSM Vitruvius RSUM MoConseMI

C1 Construction Process top-down bottom-up bottom-up bottom-up
C2 Pureness essential pragmatic pragmatic pragmatic → essential

E1 Metamodel Reusability hard easy easy easy
E2 Model Reusability hard middle middle easy
E3 Viewtype Definability easy hard middle middle
E4 Language Evolvability middle easy middle middle
E5 SUMM Reusability middle easy easy middle

T1 Configuration Languages
ECore,

DeepATL
Mappings/React.,

ModelJoin
RCs,

ModelJoin
Bidirectional

Operators
T2 Meta-Metamodel PLM ECore CROM ECore

Table 14.1: Classification of projectional SUM approaches (taken from Meier, Werner et al. (2020))

Defining new view(point)s (E3 “Viewtype Definability” in Meier, Werner et al. (2020))
is possible for all SUM approaches, while approaches with one explicit SUM including Mo-
ConseMI do not need to collect information from multiple models within a modular SUM.
Since the SUM of OSM contains no internal dependencies by design, the SUM of MoCon-
seMI might be completely optimized in theory, but often some dependencies of the reused
models remain (Section 12.2.3Z 460). MoConseMI enables

easy and flexible
Definitions for new
View(point)s

When defining new view(point)s with MoConseMI,
any operations on the SU(M)M can be realized to derive the new view(point), not only
typical ones like selection, joins and renames (Bruneliere, Burger et al., 2019). In partic-
ular, while the other three SUM approaches have restricted concepts for new view(point)s
in order to support modifiability, MoConseMI could support arbitrary new view(point)s
in general, but requires to specify also the inverse direction with configurations for model
decisions of the inverse unidirectional operators. Additionally, defining new view(point)s is
eased for methodologists by using the same operators as for the integration of data sources
into the SU(M)M for ensuring consistency.

The evolvability of languages i. e. the evolution of reused metamodels (E4) is lower in
approaches with some integrations of the reused metamodels including MoConseMI Evolution of

Metamodels and
Orchestrations is
limited in MoConseMI
for some Cases

com-
pared to approaches with a modular SUMM, since not only evolved metamodel must be
handled but also the integrated SUMM. Depending on the particular changes in the meta-
model, the adaptation effort might be small, e. g. only some operators need to be added,
or large, if large portions of the orchestration need to be reworked for MoConseMI, as
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discussed in Section 13.3.1Z 473. The reusability of SUMMs (E5) includes also the reusabil-
ity of the mechanisms for ensuring consistency within the SU(M)M. Approaches with a
modular SUMM allow to easily add and remove parts in comparison to approaches with an
explicit and optimized SUMM including MoConseMI. While integrating additional data
sources, defining new viewpoints and fulfilling additional consistency goals is easy, remov-
ing data sources is hard, since they are integrated with other data sources into the explicit
SUMM, as discussed in Section 13.3.4Z 477.

Furthermore, MoConseMI is projectional, but without restricted projectional editing
in contrast to some DSL workbenches like Jetbrains MPS, since views are loosely coupled
with the SUM by model transformations (Section 3.6.2Z 137) and therefore allow any editing
mode.

MoConseMI behaves like change translation-based approaches from an outside per-
spective, but realizes it like model synchronization-based approaches from an internally
perspective. In particular, the configured operators synchronize models by chains of model
transformations,MoConseMI is model

synchronization-based
and calculates E∆

and the desired execution differences E∆ are derived from these model

transformations in generic way, while change translation-based approaches create E∆ di-
rectly. As an example, such a direct translation of changes, as requested by (Hidaka, Tisi
et al., 2016, p. 922), is supported by Vitruvius (Section 3.5.2Z 126). MoConseMI might
change the model with the user changes and even might amend the user changes, therefore,
there are no authoritative models (Stevens, 2017) in MoConseMI.

Regarding the discussion synthetic vs projectional approaches, Karsai (2014) proposes,
that defining a unifying semantics (in form of a SUM) for all models is unrealistic in
practice. Instead, the integration should be tailored to the current purpose and needs.
Since Karsai (2014) proposes integration models for such an integration, that integration
tends to become synthetic. MoConseMI is suited here, since it allows methodologists to
integrate as much as desired and this integration results in an explicit SUM, integrated
at least regarding these concepts.MoConseMI’s SUM is

adjustable, supports
n-ary Consistency and
reduces Integration
Effort

By the explicit integration of data sources into the
SUM in MoConseMI, n-ary consistency relations between data sources which cannot
be realized by pairs of binary relations (Macedo, Cunha and Pacheco, 2014) in synthetic
approaches can be realized on the explicit SUM. Additionally, by reducing redundancies
during the integration of data sources into the SU(M)M, redundancies are treated only
once for each data source with these redundant information (linear effort) in contrast to
synthetic approaches, where redundancies need to be treated for each pair of data sources
with these redundant information (square effort).

MoConseMI handles the “balance between automation and personalization of repair”
(Barriga, Rutle and Heldal, 2019, p. 175)MoConseMI supports

Methodologists and
Users

by introducing the methodologist as additional
stakeholder, while BX approaches often discuss only users and platform specialists explicitly.
The methodologist realizes the personalization of generic operators for the particular project
once and enables the ongoing and automated support for users for fixing inconsistencies.
Additionally, the manual handling for some dependencies by users is still possible via new
views (Section 12.2.3Z 460).

14.1.2 Contributions to other Research Areas

The contributions of MoConseMI for model consistency (Section 14.1.1Z 483) come with
some further contributions for other research areas within software engineering, which are
summarized in the following sections.

14.1.2.1 Traceability

Traceability (Seibel, Neumann and Giese, 2010) interconnects related artifacts of develop-
ment projects and is motivated by several related works (Kuhn, Murphy and Thompson,
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2012; Briand, Falessi et al., 2012). Vogel-Heuser, Fay et al. (2015) identify, that traceabil-
ity between different artifacts and the automation of trace management require additional
support and future research. MoConseMI provides support for managing traceability, as
discussed in the following paper and shortly summarized here:

Related MoConseMI Publication

Johannes Meier and Andreas Winter (2018c): Traceability enabled by Metamodel In-
tegration. In: Softwaretechnik-Trends, vol. 38(1), pp. 21–26.

This publication is cited as Meier and Winter (2018c) in this thesis.

Pair-wise trace links between arbitrary elements of arbitrary data sources can be stored
directly and explicitly in the SUM, store Trace Links in the

SUM
which is supported by operators like →AddAsso-

ciation in order to make implicit relationships between models explicit, as detailed in
Section 12.2.1Z 459. Additionally, operators can react on changes and maintain trace links,
e. g. by removing trace links of deleted elements or by adding candidates for additional trace
links based on heuristics. manage Traceability like

Consistency Goals
In the end, traceability demands can be seen as special consis-

tency goals and managing traceability becomes a natural part within overall consistency
management with MoConseMI.

14.1.2.2 Round-trip Engineering

Round-trip engineering, as introduced in Section 3.3.1Z 108 and motivated by several re-
lated works (Hailpern and Tarr, 2006; Lettner, Tschernuth and Mayrhofer, 2011; Vogel-
Heuser, Fay et al., 2015), MoConseMI supports

Round-trips with
inverse Transformations
and prevents
Information Loss

can be fulfilled by transformations of MoConseMI, since the
bidirectional operators support backward transformations. Additionally, operators in Mo-
ConseMI prevent information loss (Section 6.5.2Z 214) even when models with different
levels of abstraction are integrated (Section 13.4.2Z 479).

Looking at the ongoing example, classes in Java and class diagrams are partially over-
lapping with associations only in class diagrams and methods only in Java. Nevertheless,
renaming of a class in the class diagrams does not remove methods of the corresponding
class in Java, but leads only to the corresponding renaming without information loss, as
depicted in Part 18Z 173 of the ongoing example.

14.1.2.3 Model Co-Evolution

Since unidirectional operators jointly change metamodels and conforming models, MoCon-
seMI contributes also to model co-evolution research. The unidirectional operators realize
recurring metamodel evolution scenarios and provide a generic strategy for corresponding
model co-evolution, that makes degrees of freedom configurable with model decisions. MoConseMI provides

flexible Model
Co-Evolution

With
this design, MoConseMI reduces the effort for writing the whole model migration com-
pared to resolution strategy langauges and improves the flexibility for project-specific model
co-evolution compared to predefined resolution strategies (Section 6.2.1Z 193). In particular,
the model decisions of unidirectional operators in MoConseMI improve the flexibility for
project-specific model co-evolution in comparison with Edapt, whose design was partially
reused for unidirectional operators in MoConseMI (Section 6.2.2Z 196), while Edapt pro-
vides only fixed model co-evolution. Therefore, MoConseMI is an approach for model
co-evolution, which balances reusable metamodel evolution scenarios with customizable
model co-evolution.
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14.1.2.4 Model Transformations

Model transformations can be orthogonally classified regarding the metamodels of source
and target, where exogeneous model transformations have different metamodels for source
and target and endogeneous model transformations have the same metamodel for source
and target, and regarding the models of source and target, where out-place model trans-
formations create a new model for the target and in-place model transformations update
the source model and provide it as target model (Section 2.2.3Z 67). This classifications are
depicted in Table 14.2 with some examples.

exogeneous endogeneous

in-place MoConseMI, Edapt various approaches e. g. Henshin
out-place various approaches e. g. ATL refine / merge / copy models

Table 14.2: Orthogonal Classification of Model Transformations

While most model transformation approaches are either out-place and exogeneous like
ATLMoConseMI enables

in-place and exogeneous
(Model)
Transformations

or in-place and endogeneous like Henshin, examples for out-place and endogeneous
model transformations include model refinements, model merging and copying models. Mo-
del synchronization approaches are usually exogeneous and out-place as well. MoConseMI
is a rare example for an in-place and exogeneous transformation approach, since different
metamodels for in-place (model) transformations require to change the metamodel as well,
which is beyond traditional model transformations approaches. This counts also for Edapt,
but MoConseMI with model decisions provides more expressiveness for transforming mo-
dels (Section 14.1.2.3Z 487).

14.1.2.5 Model Differences

MoConseMI provides several contributions for model differences: Section 6.7.2Z 229 de-
signs a new approach for the integrated, model-based and (meta)metamodel-independent
representation of differences in models and their metamodels,MoConseMI provides

an invertible and
integrated
Representation of Model
and Metamodel
Differences

which are invertible without
additional information like complete (meta)models. This integrated representation sup-
ports some cases for model difference co-evolution in Section 6.7.3Z 235. On technical level,
model differences calculated with EMF Compare can be converted to this new difference
representation and recorders are available for recording changes in EMF metamodels and
Edapt models.

14.1.3 Contributions to Application Domains

MoConseMI provides also contributions for some application domains, as sketched in the
following sections.

14.1.3.1 SEIS Architecture

Chapter 10Z 373 realizes the proposed integration of four viewpoints for architectures (Hof-
meister, Nord and Soni, 2000) (and two additional viewpoints for SEIS architectures) ex-
plicitly into a SUMM.MoConseMI integrates

Architecture Viewpoints
and Views into a
SU(M)M with some
Consistency Support

Additionally, conforming views are integrated in a conforming SUM.
Both integrations are supported technically with the MoConseMI framework. Further-
more, the realization with MoConseMI provides also some support for ensuring inter-view
consistency.
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14.1.3.2 Table-oriented Data Management

MoConseMI supports the table-oriented data management in form of spreadsheets by
providing model-based representations for such data managed in spreadsheets in order
to apply modeling techniques on them like approaches for managing consistency. MoConseMI provides

Adapters for CSV and
Excel

These
model-based representations are enabled by adapters for CSV (Section 8.4.4Z 275) and Ex-
cel (Section 8.4.3Z 273), which are used by several application examples in Part IVZ 283.
These adapters transform content of CSV and Excel files into EMF-based metamodels
and models.

14.2 Preconditions

This section discusses preconditions, which must be fulfilled, before MoConseMI is appli-
cable. These preconditions depend on the design of the MoConseMI approach.

14.2.1 Data as Model

Data which should be kept consistent by MoConseMI need to be available, e. g. data
managed by existing tools need to be exportable and importable from that tool. Available
data must conform to a structure, which can be expressed as metamodel. Precondition: available

Data as Models
conforming to
Metamodels

This structure
might be implicit (Jin, Cordy and Dean, 2002) or might depend on conventions, as in
spreadsheets with rows for the header i. e. the structure and rows for the content i. e. the
“real data”. Additionally, the data must be transformable into models conforming to this
metamodel. These transformations are supported by MoConseMI with the design of
reusable adapters (Section 6.6.5Z 226) and with predefined adapters for concrete technical
spaces (Section 8.4Z 271), while adapter providers are able to develop additional adapters for
additional technical spaces, as demonstrated in Chapter 9Z 283. This clear separation into
metamodels and conforming models is required to define consistency goals and consistency
rules on metamodels in a generalized way in order to ensure the consistency of all conforming
models (Section 2.2.2Z 60, Section 2.3Z 71). Summarizing, using data in form of models
conforming to metamodels is a precondition for MoConseMI.

Since the design of MoConseMI requires stable UUIDs for all model and metamodel
elements (Section 6.6.4Z 225), stable UUIDsoperators, their configurations and adapters need to ensure
stable UUIDs as another precondition for MoConseMI, which hamper the work of plat-
form specialists, methodologists and adapter providers. On the other hand, UUIDs are
also beneficial for transparency in visualizations, since models can be visualized with var-
ious model differences within the same graphic, including operator differences and branch
differences, with examples in Part 18Z 173 of the ongoing example.

14.2.2 Supportable Consistency Goals

While Requirement R 1.2 (Generic Consistency Goals)Z 155 requires MoConseMI to be
generic and to support project-specific consistency goals in general, Preconditions for

Consistency Goals
the following para-

graphs discuss some preconditions for consistency goals and consistency rules in order to
be supportable by MoConseMI. Complementing the following conceptual preconditions,
consistency goals and consistency rules must comply with legal requirements.

MoConseMI is able to automate fixes for inconsistencies only for consistency goals,
whose consistency rules can be automated in general. automatable

Consistency Goals and
Consistency Rules

Calculating fixes must be supportable
by algorithms without manual user interaction. These algorithms can be used as configu-
rations for model decisions of unidirectional operators in order to realize transformations,
which are fully automatic (Stevens, 2008). Non-automatable consistency goals cannot be
automated with operators, but might be supported with new view(point)s, as discussed in
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Section 12.2.3Z 460. This includes also other manual or collaborative modeling techniques
like matching of models (Bennani, El Hamlaoui et al., 2018). In the ongoing example, de-
termining traceability links between Java methods and requirements cannot be automated
in general, since algorithms do not know the intentions of developers and can provide only
candidates for traceability links with heuristics. Regarding the classification for levels of
possible automation for consistency goals by Kramer (2017, p. 90), consistency goals in
level 1 must be ensured completely manually by users, consistency goals in levels 2–5 can
be supported with dedicated hints and suggestions in new views for users, and consistency
goals in level 6 can be automated by configured operators. Demuth, Lopez-Herrejon and
Egyed (2015, p. 582) suggest, that users should decide, if a consistency goal is ensured au-
tomatically or manually. Here, the methodologist decides about the automation, since only
methodologists can realize the automation, not users. Of course, methodologists should re-
alize the needs of users, in particular, they should communicate with each other regarding
the desired degree of automation (Section 12.1Z 455).

Consistency goals and their consistency rules must not contradict each other,Consistency Goals must
have a Fix-Point

since fixing
the first inconsistency would lead to the second inconsistency whose fix introduces the first
inconsistency again. For example, when formalizing the consistency goals with OCL, the
resulting OCL constraints must not have conflicts, which could be checked, for example,
with MaxUSE (Wu and Farrell, 2021). While consistency rules are often deterministic,
non-deterministic consistency rules are possible in some cases: As an example, →AddAt-
tribute might initialize empty slots for a new attribute with random values for the first
time, if this random values is kept unchanged for the following executions. If different values
are used in different executions, the execution loops (correctly) detects branch differences
and executes the operator again and again. Therefore, non-determinism is allowed for
configurations of methodologists, as long as a fix-point for the execution is available. Here,
MoConseMI is more pragmatic than other rather formal BX approaches like Hermann,
Ehrig et al. (2011), who can guarantee consistency of TGGs for model synchronization only,
if the execution of the particular TGGs is deterministic in both directions.

Missing consistency goals due to incomplete knowledge of the domain or the particular
project (Klare, Syma et al., 2019) do not break the approach,incomplete Consistency

Goals
i. e. MoConseMI assumes the

final state to be consistent, but results in inconsistent results in the eyes of users. The same
counts, if too much i. e. unnecessary consistency goals are defined, which restrict the set of
consistent models too much. In other words, MoConseMI ensures no total consistency, but
ensures consistency regarding the realized consistency goals only, as discussed by Abilov,
Mahmoud et al. (2015) as well.

14.3 Limitations

This section about limitations shows disadvantages or open parts of the work documented
in this thesis. It informs about the reasons for limitations and points to possible solutions.
The limitations cover the approach (Section 14.3.1), the implementation of the approach
(Section 14.3.2Z 495) or their validation (Section 14.3.3Z 495).

14.3.1 Limitations of the Approach

This section discusses the limitations of the design of the MoConseMI approach, since
“semantic integration remains an extremely difficult problem” (Doan and Halevy, 2005, p.
85).
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14.3.1.1 Termination

MoConseMI cannot guarantee the termination of the execution of an orchestration: MoConseMI cannot
guarantee Termination

This is
a general interoperability problem in networks of transformation (Klare, Syma et al., 2019),
as they occur in synthetic settings, e. g. it can occur also in Vitruvius (Klare, 2018), due
to alternating and diverging loops between alternative transformation paths (Klare, Syma
et al., 2019). MoConseMI in contrast avoids this source for non-terminating executions by
design, since the tree of configured operators prevents alternating and possibly conflicting
transformation paths (Section 6.4.5Z 213), as in dense graphs of transformations.

Nevertheless, in MoConseMI there are other reasons for missing termination: In gen-
eral, multiple executions of operators are required, as shown in Section 6.5Z 213. One
possible reason are consistency goals and consistency rules which contradict each other or
provide no fix-point, as discussed in Section 14.2.2Z 489. Another possible reason are inac-
curate realizations of consistency goals and consistency rules in detail, with an example in
the following box:

Ongoing Example, Part 30: Termination ← List →

Since methodologists have a great flexibility for configurations of model decisions with
Java, MoConseMI cannot guarantee the termination of the execution of any orchestration.
In other words, methodologists have to ensure termination themselves. An example for a
missing termination, caused by inaccurate configurations by accident, is demonstrated along
Listing 14.1 (which terminates in the shown form) for 10↔11.

1 changeModel (new ChangeModelDecision ( ) {
2 @Override
3 public void changeModel ( Migrat ionIn format ion in f o s , . . . ) {
4 // CSV ==> Exce l : increment row numbers
5 i n f o s . g e t A l l I n s t a n c e s ( ” data . Requirement” ) . forEach ( req −>

req . s e t ( ”rowNumber” , req .< Integer>get ( ”rowNumber” ) + 1) ) ;
6 }
7 } , new ChangeModelDecision ( ) {
8 @Override
9 public void changeModel ( Migrat ionIn format ion in f o s , . . . ) {

10 // Exce l ==> CSV: decrement row numbers
11 i n f o s . g e t A l l I n s t a n c e s ( ” data . Requirement” ) . forEach ( req −>

req . s e t ( ”rowNumber” , req .< Integer>get ( ”rowNumber” ) − 1) ) ;
12 }
13 }) ;

Listing 14.1: Configuration of �ChangeModel for 10↔11 in the ongoing Example

Since the row numbers of requirements start with 0 due to its initial CSV format
in Requirements , the row numbers are incremented by one by →ChangeModel, since

Excel is used for Traceability where row numbers start with 1 (line 5). In contrast,
←ChangeModel decrements each row number by one (line 11). If line 11 for←Change-
Model would be empty by accident, the execution would not terminate, since→Change-
Model increments the row numbers for each execution, leading to new branch differences,
which lead to another execution of →ChangeModel with further increments and so on.
Line 11 is important, since it reverts the changes of →ChangeModel, which are required
only for Traceability , but should not change the SUM .
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A possibility to guarantee termination would be to formalize consistency goals and con-
sistency rules in order to proof the termination before execution or to restrict expressions to
guarantee termination by design. Another possibility would be to restrict possible configu-
rations for model decisions, since Java is Turing-complete, e. g. with a dedicated DSL or
a dedicated transformation language. Since a DSL might need to be extended for new op-
erators (Section 6.3.2Z 200) and transformation languages have limitations regarding model
and metamodel changes, history maps and branch differences (Section 8.3.1Z 267), MoCon-
seMI follows a very pragmatic strategy and allows Java for configuring model decisions,
with the disadvantage of missing guarantees for termination.

14.3.1.2 Performance

Decreased performance in terms of time in comparison to other approaches for model con-
sistency is a drawback of the MoConseMI approach, since real incrementality is not sup-
ported by the operators. In general, the performance and scalability is important for mod-
eling (Kolovos, Tisi et al., 2013) including incrementality for model queries, transformations
and multi-view languages. In particular, change-driven techniques with a performance de-
pending on the occurred model changes is required for scalability (Kulkarni, Reddy and
Rajbhoj, 2010), which is fulfilled by change translation-based approaches for ensuring mo-
del consistency by design. A benefit of MoConseMI compared to change translation-based
approaches is its ability to create the initial SUM and to recreate views.

Since the operators of MoConseMI are implemented to be in P and not in NP ,
MoConseMI outperforms some proof-theory-based approaches which are in NP (Chap-
ter 3Z 93). This holds as long as the configurations for model decisions in MoConseMI
are in P .Execution depends on

Size of Models, not on
Size of Model Changes

But compared with change translation-based approaches, MoConseMI is mo-
del synchronization-based without support for source-incrementality (Section 2.2.3Z 67),
i. e. the transformation effort depends on the size of models and not on the size of model
changes, while target-incrementality is supported and target changes are preserved by up-
dating models without information loss and providing execution differences for the external
adapters.

The actual reason, why transformations of operators in MoConseMI cannot support
real incrementality by design, depends on the decision to execute operators in-place and
not out-place,in-place vs out-place

Transformations
since incrementality is possible only for out-place model transformations

with trace links between source model and target model. In-place transformations work
only with one model, which prevents to create trace links and to transfer some changes from
the source model to the target model, since the “target” model does not exist and must
be created by updating the complete “source” model by executing the complete in-place
transformation.

Executing operators out-place with incrementality would be very inefficient for longer
chains of small transformations, since a vast amount of copy-operations of unchanged model
elements is required for each operator leading to poor performance (but only for the first
execution)Execution Time vs

Memory Consumption
and since all intermediate (meta)models must be kept in memory leading to huge

memory consumption (for all executions). Here, MoConseMI trades higher execution time
for less memory consumption.

When comparing MoConseMI with out-place model transformations without incre-
mentality,in-place vs out-place

without Incrementality
MoConseMI outperforms, since the performance of in-place transformations is

better, since only changed elements need to be transformed and unchanged elements remain
the same without the need to copy them.

Instead of using multiple small transformations in form of chained operators,Execution Time vs
Reusability for
Methodologists

MoCon-
seMI could ask methodologists to write a single, compact transformation, which could
be executed out-place with incrementality, but that would prevent the reuse of predefined
operators with intermediate steps in transformations in order to ease the work for metho-
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dologists. Here, MoConseMI trades higher execution time for reusability of operators to
support methodologists.

Future Work: Towards out-place and incremental Transformations

An idea to improve the execution nevertheless and to overcome these conceptual problems
would be to transform a chain of in-place operators into a single out-place model trans-
formation which supports incrementality once before execution. Probably, this requires to
restrict operators and their model decisions to enable incrementality, in particular, the han-
dling of UUIDs probably needs an improved design. This idea is future work, since it is a
general research question for model transformations. The current in-place execution should
be kept as debugging mode for methodologists in order to provide intermediate models.

14.3.1.3 Skills of Stakeholders

Another drawback of MoConseMI is, that high skills are required for some stakeholders.
Therefore, the required skills for all four groups of stakeholders are discussed. Additionally,
the scalability of MoConseMI regarding its applicability for each stakeholder is discussed.

The required skills for users are very low, less Skills required for
Users: their Views

since they work with their known views
as they are and work directly on the provided concrete renderings in particular technical
spaces. Therefore, users do not need to learn modeling or EMF. Users request consistent
views, submit changes in commit-based way and get updates for their views to be con-
sistent with other views automatically. The existing data sources with their particular
technical spaces are supported by adapters, while the consistency is ensured automatically
by the MoConseMI framework according to the configuration of methodologists. Since
additional new views can be provided by MoConseMI to support additional concerns of
users, the scalability of MoConseMI regarding views for users is very good, while the
performance of the consistency preservation at runtime could be improved, as discussed in
Section 14.3.1.2Z 492.

The required skills for methodologists are high, high Skills required for
Methodologists:
Domain Knowledge

since they need to know the artifacts
of the particular development project including the needs for their consistency. On the
other hand, they could be supported by users, when discussing and defining the particular
consistency goals and consistency rules.

For configuring orchestrations according to project-specific (meta)models and consis-
tency goals, high Skills required for

Methodologists:
Modeling, EMF

methodologists need (meta)modeling skills in general and knowledge about
EMF in particular, since (meta)models are the central artifacts for change propagation.
Compared with formal approaches like TGGs, the MoConseMI approach is very prag-
matic by guaranteeing less properties in general and providing more flexibility for configu-
rations with known imperative languages like Java. Using Java is easier for configurations
than formal specifications, as discussed in Section 8.3.1Z 267. high Skills required for

Methodologists:
Configurations with
MoConseMI

Additionally, methodolo-
gists are strongly supported by MoConseMI with reusable adapters for other technical
spaces, reusable operators, and some reusable predefined configurations for their model
decisions. In particular, the operator-based integration of data sources into the SU(M)M
and the operator-based definition of new view(point)s benefits from transparency in trans-
formations, since intermediate (meta)models are available for visualizations and for de-
bugging during execution, since debugging is a challenge (Kramer, 2017; Mannadiar and
Vangheluwe, 2011). Additionally, operators allow to integrate and extend step-wise, sup-
porting iterative development.

Furthermore, related approaches provide several ideas to ease the work of methodo-
logists: related Ideas supporting

Methodologists
Bennani, El Hamlaoui et al. (2018) propose ideas and tool support for multi-

ple methodologists working together with domain experts to distribute the high effort.
Sánchez-Cuadrado, de Lara and Guerra (2012) propose ideas to enable modeling for do-
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main experts, easing the discussions between methodologists and domain experts. Config-
uration by-example could be used to reduce the level of abstraction and to enable people
with lower modeling skills being methodologists, in analogy to model transformation by-
example (Kappel, Langer et al., 2012), DSL by-example (López-Fernández, Garmendia
et al., 2019), metamodel by-example (López-Fernández, Cuadrado et al., 2015) and def-
inition of view(point)s by-example (Werner, Wimmer and Aßmann, 2019). In order to
find corresponding elements in the metamodels of data sources to integrate, model match-
ing techniques (Somogyi and Asztalos, 2020) could be used. Since their results provide
only possible candidates for matches, methodologists have to manually check them before
realization.

The scalability of MoConseMI regarding the configuration tasks of methodologists at
development time is good,Scalability of

MoConseMI for
Methodologists

since operators ensure scalability with short operator chains for
few consistency goals and metamodels with less dependencies, and with longer operator
chains for many consistency goals and metamodels with lots of dependencies. The Trans-
formation Tool Contest 2010 (Rose, Herrmannsdoerfer et al., 2012, p. 351), comparing
different tools for model co-evolution including classical model transformations, found that
in-place transformations provide benefits for methodologists regarding conciseness, since
only the differences between old and new versions of (meta)models must be explicitly man-
aged. Reducing redundancies during the integration of data sources reduces the complexity
for methodologists, since only the current data source to integrate and the current “inter-
mediate SU(M)M” need to be understood. In particular, all already integrated data sources
do not need to be known anymore in detail, since they are completely integrated in the cur-
rent intermediate SU(M)M. This is the reason for the complexity reduction of projectional
approaches (linear complexity) compared to synthetic approaches (square complexity).

The required skills for platform specialists are very high,very high Skills required
for Platform Specialists:
Modeling, Consistency,
reusable Design,
Technical Spaces

since deep knowlege about
modeling for models and metamodels as well as for their evolution and difference represen-
tation are required. Additionally, model transformations and their use for ensuring model
consistency must be known. In order to ease the work of methodologists, knowledge about
reusable design for operators, their decisions and adapters for other technical spaces is
required. Nevertheless, the scalability is good, since this effort is spent once for develop-
ing MoConseMI in generic way and can be reused and configured by methodologists for
multiple applications in practice.

The required skills for adapter providers are high,high Skills required for
Adapter Providers:
Technical Spaces, EMF,
Edapt

since they need to know all details of
the new technical space and of EMF and Edapt. Additionally, they have to ensure stable
UUIDs and to deal with model differences (Section 8.4Z 271). Experience from practice
indicates, that building adapters is challenging (Demuth, Kretschmer et al., 2016, p. 537).
Nevertheless, the scalability is good, since this effort is spend once for developing a new
adapter, which can be reused by methodologists for multiple applications in practice.

Summarizing, the design of MoConseMI with the resulting skills for the groups of
stakeholdersStakeholders revised follows the principles of separation of concerns and to solve recurring aspects
only once in generic way for reuse. Without support, users have to ensure automatable
consistency goals manually and themselves. Therefore, MoConseMI shifts the general
automation of change propagation to platform specialists who provide mechanisms for en-
suring consistency once, while users use and change only their views as manual and ongoing
work. Users usually cannot manage all consistency goals within a project, since users usu-
ally know only their views according to the idea of multiple views for system development.
Therefore, methodologists are introduced as experts for the particular project and for en-
suring model consistency in general. Additionally, modeling skills cannot be expected for
each user, in contrast to methodologists, who configure the desired consistency goals once
for each project. Therefore, the methodologist is required only once for the configuration,
not for each execution of the operator tree, in contrast to the approach of El Hamlaoui,
Bennani et al. (2019). The distinction of the tasks of users and methodologists follows the
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principle of separation of concerns, since users concentrate on their development tasks for
the particular project, while methodologists manage consistency.

14.3.2 Limitations of the Implementation

There are also some limitations in the MoConseMI framework as the implementation of
the MoConseMI approach, which are discussed here. These limitations depend on open
or incomplete implementations, while they are fulfilled by the design of MoConseMI in
general.

As described in Section 6.5.3Z 217, the execution loop for orchestrations requires further
conceptual investigations for optimization. configure Execution

Loop
For this, the implementation of the execution

loop provides some first possibilities to adapt the order to change propagation, which need
to be extended for future investigations.

Currently, the Java API for configuring orchestrations (Section 12.1Z 455) restricted Java API for
configuring
Orchestrations

does not
completely support trees of new view(point)s, only independent chains of operators for each
new view(point) are supported. Additionally, starting directly with the SU(M)M without
any data source is not possible in the present implementation, but can be easily overcome
(Section 13.3.2Z 474). Nevertheless, both aspects are supported by the MoConseMI design
in general.

Currently, the implementation does not allow to shutdown the framework after handling
user changes and to restart before the next changes of users. shutdown and restart

the Framework
In general, the MoConseMI

approach supports the offline mode, since all required artifacts for the execution can be
persisted and loaded, including models, metamodels, differences (either model-based as
EMF models or text-based, see Section 6.7.2Z 229) and history maps (Section 6.5.2Z 214).

While the performance of the MoConseMI design is discussed in Section 14.3.1.2Z 492,
Performance of the
Implementation

the performance of the MoConseMI framework could be improved as well. Supporting
huge models could be improved via the proxy-concept or partial loading, as mentioned in
Section 2.5.3Z 87. The selection of EMF as internal technical space of MoConseMI might
be reconsidered, since there are more performant alternatives for EMF and its implemen-
tation, e. g. KMF (Fouquet, Nain et al., 2012). Creating visualizations requires additional
computation effort and increases performance, but the desired visualizations can be con-
figured. In general, no explicit performance tuning is done for the Java source code of the
developed MoConseMI framework.

14.3.3 Limitations of the Evaluation

While Part IVZ 283 shows the general applicability of MoConseMI in practice and Chap-
ter 13Z 467 evaluates further aspects of MoConseMI, there might be some limitations of
the evaluation itself.

There is no direct comparison with other synthetic or projectional approaches for en-
suring inter-model consistency. Such comparisons are hard due to conceptual problems.

direct Comparisons with
other Approaches

For example, it must be ensured that the same degree of knowledge about the consistency
problem to solve is available and that the experience with the applied approaches is simi-
lar. Furthermore, technical problems are challenging, e. g. different technical spaces of the
tool support. Regarding projectional SUM approaches, MoConseMI is most similar to
Vitruvius, since both use EMF as technical space (Meier, Werner et al., 2020). Addi-
tionally, different degrees of maturity of approaches and their tool support might influence
the evaluations, e. g. the Vitruvius approach is developed mainly with two PhD projects
by Burger (2014) and Kramer (2017) with another just completed PhD project by Klare
(2018), complemented with related PhD projects by Goldschmidt (2010) and Langhammer
(2017). Nevertheless, there is a higher-level conceptual comparison of SUM approaches
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done by Meier, Werner et al. (2020) and the contained discussions are already taken up in
Section 14.1.1.2Z 484.

The scalability of MoConseMI regarding the number of data sourcesScalability regarding
Number of Data Sources

to integrate into
the SU(M)M is not evaluated in practice, since Wiederhold (1999) mentions enterprise sys-
tems with hundreds of data sources and proposes, that SUMM-based approaches will not
work in such settings. In theory, redundancies could be reduced during the integration of
data sources into the SU(M)M, which enables linear integration effort, as discussed in Sec-
tion 14.3.1.3Z 493. The same counts for new views, which need to be directly synchronized
only with the SUM and not with all other views directly.

Finally, the evaluation might be limited, since the development and the evaluation of
MoConseMI are done by the same author.same Author of

Approach and
Evaluation

Nevertheless, MoConseMI was successfully
applied by two Bachelor theses by Michel (2019) and Wegner (2021), supervised by the
author of MoConseMI.

14.4 Outlook

This section discusses, how the ideas and works described in this thesis can be extended
in future work. Possibilities for future work cover the approach (Section 14.4.1), its imple-
mentation (Section 14.4.2Z 497) and additional application domains (Section 14.4.3Z 498).

14.4.1 Outlook for the Approach

Some possible extensions for the MoConseMI approach are already discussed during its
design and implementation. They are collected in the next box as reference and can be
summarized as follows: An improved execution order might improve the performance for the
execution of orchestrations.Summary of already

discussed Future Work
Mapping UUIDs, which are internally used by MoConseMI,

with IDs in other technical spaces of data sources would support the stability of UUIDs.
Adapters for additional technical spaces would ease the application of MoConseMI with
the reuse of further existing data sources in other application areas (Section 14.4.3Z 498).
An extended transaction management could support the roll-back of user changes and
automated follow-up changes as well as concurrent changes of multiple users. Executing
operators out-place and incrementally would improve the performance. In addition to these
already discussed aspects, further possible extensions are presented in the following.

Future Work: Summary

1 Outlook to Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Improved Execution Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
3 UUID Mapping in Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4 More Adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
5 Transaction Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
6 Towards out-place and incremental Transformations . . . . . . . . . . . . . 493
7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

While the orchestration is configured by methodologists at development time, it is
treated as stable after this configuration, and is executed during runtime in order to en-
sure inter-model consistency,dynamic Orchestrations future work could investigate, how “dynamic” orchestrations
could be realized, i. e. the orchestration changes at runtime, e. g. with additional operators
for additional consistency goals, additional data sources or additional new view(point)s.
Dynamic orchestrations are similar to the evolution and reuse of (stable) orchestrations at
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development time with similar restrictions, as discussed in Section 13.3.4Z 477. In 2014,
Mussbacher, Amyot et al. (2014) defined flexible model integration on the fly for current
and individual needs as grand challenge for model-driven engineering for the next 30 years.

While MoConseMI is restricted to ensure consistency of models, Inter-Model Consistency
of Multi-Level Models

extensions to ensure
the consistency of multi-level models might be possible. As preparation, ECore must be
replaced by a technical space which supports multi-level modeling. Additionally, this would
require to rework the current implementation of MoConseMI in order to support multi-
level modeling (Atkinson, Gerbig and Tunjic, 2013a), in particular for the model transfor-
mations in the operators (Atkinson, Gerbig and Tunjic, 2013b), the links and associations
on different levels (Atkinson, Gerbig and Kuhne, 2015), and even for the identification of
elements inside the multiple levels for the configuration of operators (Atkinson and Gerbig,
2014). Finally, model co-evolution could be extended to multi-level model co-evolution,
while the difference representation of Section 6.7.2Z 229 is a first step towards a multi-level
model difference representation.

While MoConseMI integrates concrete (meta)models into a concrete project-specific
SU(M)M, this integration could be done on reference level, as motivated by Kurpjuweit and
Winter (2007) in their outlook. Integration with

Reference Metamodels
Motivation for integrations on reference level is the missing

exchangeability of single metamodels in concrete SUMMs (similar to Section 13.3.1Z 473):
If Java should be exchanged by C++ in the SUMM for the ongoing example, then all parts
of the Java metamodel have to be removed from the SUMM and the C++ metamodel has
to be integrated in the SUMM. It might be easier, if only recurring parts of object-oriented
programming languages (like classes and methods) are collected as reference metamodel
for programming languages and this reference metamodel is integrated into a reference
SUMM (RSUMM). This might allow to exchange the reference metamodel with concrete
metamodels and to reuse the integration for the RSUMM, which is concretized with the con-
crete metamodel for Java or C++, coming with some language dependent information (like
pointer handling). In this way, recurring integration aspects could be realized once in more
generic way as well, e. g. for traceability, for which Schwarz, Ebert and Winter (2010) and
Seibel, Neumann and Giese (2010) present reference metamodels (Section 14.1.2.1Z 486).
This approach might ease also the evolution of concrete metamodels (Section 13.3.1Z 473),
since concrete metamodels could be replaced with the help of the corresponding reference
metamodel without affecting the integration of reference metamodels into the RSUMM.
This might also improve the modularity of SUMMs, while Klare (2018) follows a similar
strategy by aggregating redundant concepts in metamodels similar to reference metamodels
here, but with another purpose, i. e. in order to prevent alternating execution paths. First
ideas for integrations on reference level are proposed in the following publication:

Related MoConseMI Publication

Johannes Meier and Andreas Winter (2016): Towards Metamodel Integration Using
Reference Metamodels. In: Proceedings of the 4th Workshop on View-Based, Aspect-
Oriented and Orthographic Software Modelling (VAO 2016), pp. 19–22.

This publication is cited as Meier and Winter (2016) in this thesis.

14.4.2 Outlook for the Implementation

The implementation could be extended with providing a graphical DSL for methodologists
for developing orchestrations, as visualized in Figure 6.11Z 209, while the current Java API
could be seen as internal textual DSL with Java as host language. Additional tool support
could be provided for methodologists including better visualizations of intermediate models
in model transformation chains (Von Pilgrim, Vanhooff et al., 2008). In order to improve
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the performance of the implementation, the internal representations for models could be
replaced by other, more efficient implementations (Section 14.3.2Z 495).

14.4.3 Outlook for further Applications

Part IVZ 283 already showed, that MoConseMI is reusable and applicable to different
application areas.Introduction Therefore, this section sketches some additional application areas for
MoConseMI in the future. Before that, some characteristics of MoConseMI are sum-
marized, which indicate suitable application areas, where the benefits of MoConseMI are
exploited.

Application areas strongly benefit from MoConseMI, if they jointly combine, manage
or change depending and heterogeneous information,typical Application

Areas for MoConseMI
since MoConseMI overcomes tech-

nical heterogeneity with adapters and structural and semantic heterogeneity with operator-
based transformations, which explicitly integrate information into a SU(M)M. An important
benefit of MoConseMI is, that its bidirectional operators support transformations in both
directions, which enables to keep the original data sources up-to-date.multiple Views on

depending and
heterogeneous Data

As an example, data
ware houses (Section 3.6.3Z 139) usually combine heterogeneous information from multiple
data sources, but do not support to propagate changes back into the original data sources.
Therefore, MoConseMI might act as data ware house, but does not provide any benefit
in that read-only scenario.

Since MoConseMI uses an explicit SU(M)M, application scenarios in repository-style,
where different users, tools or actors work on overlapping information,Repository-style vs

Transformation Chains
benefit from Mo-

ConseMI, since the data is managed by the explicit SU(M)M in integrated work, while the
users, tools and actors are supported with dedicated view(point)s. In contrast, unidirec-
tional chains of transformations, where single transformations provide their output as input
for the next transformation, benefit less from MoConseMI, since the different input and
output data depend on each other. Even though they could be stored within the SU(M)M
with possible trace links, usually no support for consistency is required, since the data
are kept consistent by the transformations. In contrast, MoConseMI supports iterative
refinements of depending data with support for automated inter-model consistency, which
counts in particular for various development projects, where different users and tools work
together with heterogeneous and depending data which together form the system under
development.

After having identified key aspects where MoConseMI can support most, some possible
future application scenarios for MoConseMI are sketched in the following paragraphs.

Software reengineering projects might benefit from MoConseMI, as proposed in (Meier,
Werner et al., 2020),Software Reengineering since MoConseMI enables to reuse legacy artifacts as data sources,
to fix initial inconsistencies due to their legacy state, and to update legacy artifacts and
write them back into their original technical space. Additionally, new view(point)s could be
defined for collecting information from all legacy artifacts for overviews for understanding
and for supporting new stakeholders, special analysis tools, and so on. Here, the explicit
SU(M)M is beneficial, since software reengineering projects often follow the repository-style,
e. g. Kullbach, Winter et al. (1998) and Fuhr, Winter et al. (2012), where using the same
technical space is beneficial according to the experience of Bruneliere, Cabot et al. (2015).
Mens, Wermelinger et al. (2005) mention the integration of all data involved in software
development as challenge in software evolution, since not only the evolution of sourcecode
but also the evolution of higher-level artifacts is relevant. Therefore, all involved artifacts
can be kept consistent to each other, called “co-evolution” by Mens, Wermelinger et al.
(2005). Additionally, manual corrections can be supported by MoConseMI side-by-side
with automated corrections by evolution tools, both enabled by new view(point)s.

Since enterprise systems (Section 3.6.5Z 144) have lots of systems and data bases with
depending information,Enterprise Systems Chen, Doumeingts and Vernadat (2008, p. 656) expect, that mod-
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eling techniques will help for enterprise integration. In particular, in enterprises, there are
multiple perspectives by various stakeholders, while only simple integrations are realized
(Frank, 2014). Therefore, MoConseMI could help to ensure the consistency of data, which
are used by different tools and stakeholders as views and which are stored in various data
bases as data sources.

Data interoperability, i. e. supplying the same data in different formats, is a typical
BX scenario (Abou-Saleh, Cheney et al., 2018), Data Interoperabilitysince data in one representation is trans-
formed into another representation and vice versa. MoConseMI is beneficial here, since its
projectional SUM prevents direct transformations between each combination of two data
formats. Instead, only one transformation is required between each data format and a
SUM. In the ongoing example, requirements are (slightly adapted) visualized with CSV for
Requirements and with Excel for the new Traceability .

The development of hardware-software-systems complement software development pro-
jects with additional information and views for the hardware and its combination with
the software. Hardware-Software-

Systems
Therefore, MoConseMI could be applied also to development projects for

hardware-software-systems, in particular, to cyber-physical systems (Persson, Torngren
et al., 2013). Following Bucchiarone, Cabot et al. (2020), model-based development for
IoT and smart systems is a grand challenge, since models must be integrated with software
components and hardware components (Wortmann, Barais et al., 2020). In the embedded
systems domain, checking of consistency is one important purpose of models (Liebel, Marko
et al., 2018, p. 101), i. e. ensuring consistency is not only a precondition for using depend-
ing models, but also a direct benefit. First ideas for the integration of IoT languages are
sketched in the following publication:

Related MoConseMI Publication

Muzaffar Artikov, Johannes Meier and Andreas Winter (2019): Towards Integrated
IoT-Languages. In: 2019 International Conference on Information Science and Com-
munications Technologies (ICISCT).

This publication is cited as Artikov, Meier and Winter (2019) in this thesis.

MoConseMI is suited to realize MDA projects, since the bidirectional operators of
MoConseMI support also backward transformations and prevent undesired information
loss, solve MDAwhich supports the integration and consistency preservation of models with arbitrary
levels of abstraction (Section 13.4.2Z 479). In particular, chains of refinement transforma-
tions from abstract models to models representing code could be recreated with operators
in MoConseMI in order to support all modeling artifacts in MDA as views (Selic, 2011) on
a SU(M)M. For the case of UML, Lucas, Molina and Toval (2009) claimed, that support for
views on different levels of abstraction is important, but rarely supported. Compared with
the discussions of Zheng and Taylor (2013) regarding model-driven development (MDD),
which can be transferred to MDA, MoConseMI realizes domain-specific MDD extended
with project-specific adaptations and with support for round-tripping (since they defined
MDD to be unidirectional), and MoConseMI can ensure consistency between models and
code.

14.5 Summary of the Thesis

Increasing size, complexity and heterogeneity of software-intensive systems make it nearly
impossible that single persons develop a whole system. Therefore, different stakeholders
with different concerns are involved and are supported with tailored views on the system.
These views conform to viewpoints and enable multi-view modeling of the system under
development. Since these views are realized with models and jointly represent the whole
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system under development, the models semantically depend on each other in terms of redun-
dant information, explicit links and further constraints, and therefore must be consistent to
each other regarding these dependencies. Since the manual ensuring of consistency between
models is error-prone, time-consuming and restricted by limited knowledge of users about
models of other views, this thesis aims to develop an approach to automatically ensure
consistency between multiple models.

MoConseMI is the newly designed and implemented approach of this thesis for auto-
matically ensuring inter-model consistency. Its main and unique characteristic is the reuse
of existing metamodels and conforming models as data sources, which are integrated into
an explicit Single Underlying (Meta)Model (SU(M)M). This enables to propagate changes
between data sources and the SUM in order to re-establish the consistency after changes in
any of the models. By this means, MoConseMI supports users of views with automated
fixes for inconsistencies, while the desired project-specific consistency goals are configured
only once for each project with reusable operators. MoConseMI does not require a for-
malization of the desired consistency, but provides a pragmatic strategy to initially create
a SU(M)M in bottom-up way from existing (meta)models, which is automatically realized
by operators that are manually configured to realize consistency. With this strategy, Mo-
ConseMI fills a gap in related work by answering the question, how to create a SU(M)M
with the reuse of existing view(point)s (Atkinson, Stoll et al., 2013). In MoConseMI,
existing data sources are complemented with new view(point)s which can be derived from
the SU(M)M and are kept consistent directly with the SUM as well.

The change propagation is realized by a tree of reusable bidirectional operators, which
are selected and configured by methodologists. Methodologists configure the tree of bidi-
rectional operators manually and once in a project so that the consistency is automatically
fulfilled that is required by the users. The technical heterogeneity of models is overcome
by reusable adapters for different technical spaces.

MoConseMI is successfully applied to several application examples including manag-
ing distributed access rights, knowledge management and viewpoints for architectures of
sensor-based information systems as well as to a strongly simplified software development
project as ongoing example. These examples cover applications within and outside of soft-
ware engineering. This emphasizes that MoConseMI is reusable for and transferable to
a broad range of projects, allowing for even more than the presented applications (Sec-
tion 14.4.3Z 498). Additionally, the evaluation of MoConseMI shows among others, that
the designed operators are reusable and reduce the configuration effort for methodologists,
that MoConseMI is combinable with other research and into other applications, that Mo-
ConseMI can even fulfill intra-model consistency, and that all requirements of this thesis
are fulfilled by MoConseMI.

The motivation, design, implementation and evaluation of MoConseMI are supported
by an ongoing example, which depicts a software development project in strongly simplified
way with depending requirements, class diagrams and Java source code.

Limitations of MoConseMI (Section 14.3Z 490) cover mainly the performance of the
in-place change propagation, which depends on the size of models and not on the size of
the model changes to propagate, while the design of operators allows the initial creation of
the SU(M)M complementing the change propagation.

The possible future works (Section 14.4Z 496) show, that this thesis forms a sound base
for keeping diverse models consistent to each other, while the integration of reference level
might ease the application of MoConseMI and the evolution of configured operators in
similar projects.

MoConseMI complements its main contribution for ensuring inter-model consistency
with further contributions for traceability, model co-evolution and difference representations
for models and their metamodels.
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Final Result

Finally, this thesis developed the MoConseMI approach to ensure the consistency
between interrelated models automatically. MoConseMI is implemented in a sup-
porting framework and is successfully evaluated by several applications, showing the
reuse and transferability of MoConseMI to different application areas.

This thesis shows, that MoConseMI ensures the consistency between interre-
lated models automatically. Existing models and metamodels can be reused by Mo-
ConseMI transforming them into a Single Underlying (Meta) Model (SU(M)M).
New view(point)s can be derived from the SU(M)M and are kept consistent as well.

MoConseMI supports users with automated fixes for inconsistencies, while me-
thodologists need to configure the desired project-specific consistency goals only once
for each project with reusable operators. The technical heterogeneity of models is
overcome by reusable adapters for different technical spaces.
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Appendix

This part provides additional supporting information including
collected lists for definitions, figures and tables as well as the
bibliography with all used literature entries.
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Del Fabro and Frédéric Jouault (2005): A practical approach to bridging domain spe-
cific languages with UML profiles. In: Proceedings of the Best. Cited on page 132.

[Acher, Collet et al., 2010] Mathieu Acher, Philippe Collet, Philippe Lahire and Robert
France (2010): Comparing Approaches to Implement Feature Model Composition. In:
LNCS, vol. LNCS 6138, pp. 3–19. Cited on page 187.

[Aivaloglou, Hoepelman and Hermans, 2017] Efthimia Aivaloglou, David Hoepelman and
Felienne Hermans (2017): Parsing Excel formulas: A grammar and its application on
4 large datasets. In: Journal of Software: Evolution and Process, vol. 29(12), p. e1895.
Cited on page 274.

[Altmanninger, Seidl and Wimmer, 2009] Kerstin Altmanninger, Martina Seidl and
Manuel Wimmer (2009): A survey on model versioning approaches. In: International
Journal of Web Information Systems, vol. 5(3), pp. 271–304. Cited on pages 228, 230, 237

and 463.

[Amalio, de Lara and Guerra, 2015] Nuno Amalio, Juan de Lara and Esther Guerra (2015):
Fragmenta: A theory of fragmentation for MDE. In: 2015 ACM/IEEE 18th International
Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 106–
115. Cited on page 206.

[Ananieva, Burger and Stier, 2018] Sofia Ananieva, Erik Burger and Christian Stier (2018):
Model-Driven Consistency Preservation in AutomationML. In: IEEE International Con-
ference on Automation Science and Engineering, vol. 2018-Augus, pp. 1536–1541. Cited

on page 129.

[Ananieva, Klare et al., 2018] Sofia Ananieva, Heiko Klare, Erik Burger and Ralf Reuss-
ner (2018): Variants and Versions Management for Models with Integrated Consistency
Preservation. In: Proceedings of the 12th International Workshop on Variability Mod-
elling of Software-Intensive Systems, pp. 3–10. Cited on page 129.

513



Bibliography

[Angyal, Lengyel and Charaf, 2008] László Angyal, László Lengyel and Hassan Charaf
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[Küster, Völzer et al., 2016] Jochen Küster, Hagen Völzer, Cédric Favre, Moisés Castelo
Branco and Krzysztof Czarnecki (2016): Supporting different process views through a
Shared Process Model. In: Software & Systems Modeling, vol. 15(4), pp. 1207–1233.
Cited on page 146.
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Engels, Pierre Jeanjean, Jean-Marc Jézéquel, Thomas Kühn, Sébastien Mosser, Houari
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[Schürr and Klar, 2008] Andy Schürr and Felix Klar (2008): 15 Years of triple graph gram-
mars: Research challenges, new contributions, open problems. In: LNCS, vol. LNCS
5214, pp. 411–425. Cited on pages 70 and 111.

[Schwarz, Ebert and Winter, 2010] Hannes Schwarz, Jürgen Ebert and Andreas Winter
(2010): Graph-based traceability: a comprehensive approach. In: Software & Systems
Modeling, vol. 9(4), pp. 473–492. Cited on pages 70, 85, 102 and 497.

[Seibel, Neumann and Giese, 2010] Andreas Seibel, Stefan Neumann and Holger Giese
(2010): Dynamic hierarchical mega models: Comprehensive traceability and its effi-
cient maintenance. In: Software and Systems Modeling, vol. 9(4), pp. 493–528. Cited

on pages 92, 486 and 497.

[Selic, 2011] Bran V Selic (2011): A Short Catalogue of Abstraction Patterns for Model-
Based Software Engineering. In: International Journal of Software Informatics, vol. 5(1),
pp. 313–334. Cited on page 499.

[Selonen and Kettunen, 2007] Petri Selonen and Markus Kettunen (2007): Metamodel-
Based Inference of Inter-Model Correspondence. In: 11th European Conference on Soft-
ware Maintenance and Reengineering (CSMR’07), pp. 71–80. Cited on page 102.
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Schöne and Uwe Aβmann (2019): Transforming truth tables to binary decision diagrams
using the role-based synchronization approach. In: CEUR Workshop Proceedings, vol.
2550, pp. 45–50. Cited on page 131.

[Werner, Schön et al., 2018] Christopher Werner, Hendrik Schön, Thomas Kühn, Sebastian
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