Carl von Ossietzky

Universitat
Oldenburg

Ensuring Inter-Model Consistency

ClassDiagram

Traceability

Von der Fakultat fir Informatik, Wirtschafts- und Rechtswissenschaften
der Carl von Ossietzky Universitiat Oldenburg zur Erlangung des Grades und Titels

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation von Herrn

Johannes Meier

geboren am 24. November 1991 in Hannover.

Gutachter Prof. Dr. Andreas Winter, Universitat Oldenburg

Weitere Gutachter Prof. Dr. Colin Atkinson, Universitdt Mannheim
Tag der Einreichung 31. Dezember 2021
Tag der Disputation 6. November 2023

Abstract

Increasing size, complexity and heterogeneity of software-intensive systems make it
nearly impossible that single persons develop a whole system. Therefore, different
stakeholders with different concerns are involved and are supported with tailored
views on the system. These views conform to viewpoints and enable multi-view mod-
eling of the system under development. Since these views are realized with models
and jointly represent the whole system under development, the models semantically
depend on each other in terms of redundant information, explicit links and further
constraints, and therefore must be consistent to each other regarding these depen-
dencies. Since the manual ensuring of consistency between models is error-prone,
time-consuming and restricted by limited knowledge of users about models of other
views, this thesis aims to develop an approach to automatically ensure consistency
between multiple models.

MoCoNSEMI (MOdel CONSistency Ensured by Metamodel Integration) is the
newly designed and implemented approach for automatically ensuring inter-model
consistency. Its main and unique characteristic is the reuse of existing metamodels
and conforming models as data sources, which are integrated into an explicit Sin-
gle Underlying (Meta)Model (SU(M)M). This enables to propagate changes between
data sources and the SUM in order to re-establish the consistency after changes in
any of the models. By this means, MOCONSEMI supports users of views with au-
tomated fixes for inconsistencies, while the desired project-specific consistency goals
are configured only once for each project with reusable operators. MOCONSEMI
does not require a formalization of the desired consistency, but provides a pragmatic
strategy to initially create a SU(M)M in bottom-up way from existing (meta)models,
which is automatically realized by operators that are manually configured to realize
consistency. With this strategy, MOCONSEMI fills a gap in related work. In Mo-
CONSEMI, existing data sources are complemented with new view(point)s which can
be derived from the SU(M)M and are kept consistent directly with the SUM as well.
The technical heterogeneity of models is overcome by reusable adapters for different
technical spaces.

MoCoNSEMI is successfully applied to several application examples. This em-
phasizes that MOCONSEMI is reusable for and transferable to a broad range of
projects, allowing for even more than the presented applications. Additionally, the
evaluation of MOCONSEMI shows, that the designed operators are reusable and re-
duce the configuration effort, that MOCONSEMI is combinable with other research
and into other applications, and that MOCONSEMI can even fulfill intra-model con-
sistency. MOCONSEMI complements its main contribution for ensuring inter-model
consistency with further contributions for traceability, model co-evolution and differ-
ence representations for models and their metamodels.

Kurzfassung

Die zunehmende Grofie, Komplexitit und Heterogenitét von Software-intensiven Sys-
temen macht es nahezu unméglich, dass Einzelpersonen ein System vollstdndig ent-
wickeln. Deshalb werden verschiedene Akteure mit unterschiedlichen Belangen einbe-
zogen und mit passgenauen Sichten auf das System unterstiitzt. Diese Sichten sind
konform zu Sichtbeschreibungen und ermoglichen die sichtenbasierte Modellierung
des sich in Entwicklung befindenden Systems. Da diese Sichten durch Modelle rea-
lisiert werden und gemeinsam das gesamte sich in Entwicklung befindende System
reprasentieren, hingen die Modelle hinsichtlich redundanter Informationen, explizi-
ter Verkniipfungen und weiterer Vorgaben semantisch voneinander ab und miissen
deshalb entsprechend dieser Abhéngigkeiten konsistent zueinander gehalten werden.
Da die héndische Sicherstellung von Konsistenz zwischen Modellen fehleranfillig,
zeitaufwendig und durch beschréinktes Wissen von Anwendern iiber Modelle anderer
Sichten beeintrachtigt ist, entwickelt diese Arbeit einen Ansatz zur automatischen
Sicherstellung von Konsistenz zwischen mehreren Modellen.

MoCoNSEMI (MOdel CONSistency Ensured by Metamodel Integration: Modell-
konsistenz sichergestellt durch Metamodellintegration) ist der neu entworfene und
implementierte Ansatz zur automatischen Sicherstellung von Konsistenz zwischen
Modellen. Dessen wichtigste und einzigartige FEigenschaft ist die Wiederverwendung
bestehender Metamodelle und konformer Modelle als Datenquellen, die in ein expli-
zites Single Underlying (Meta)Modell (SU(M)M) integriert werden. Dies ermoglicht
es, Anderungen zwischen Datenquellen und dem SUM auszutauschen, um die Kon-
sistenz nach Anderungen in einem der Modelle wiederherzustellen. Auf diese Wei-
se unterstiitzt MOCONSEMI Anwender von Sichten mit automatischen Korrekturen
von Inkonsistenzen, wahrend die gewiinschten projektspezifischen Konsistenzziele nur
einmal fiir jedes Projekt mit wiederverwendbaren Operatoren konfiguriert werden.
MoConNSEMI erfordert keine Formalisierung der gewiinschten Konsistenz, sondern
stellt eine pragmatische Strategie bereit, um ein SU(M)M durch die Wiederverwen-
dung bestehender (Meta)Modelle initial zusammenzustellen, was durch Operatoren
automatisiert wird, die manuell fiir die Realisierung der Konsistenz konfiguriert wur-
den. Mit dieser Strategie fiillt MOCONSEMI eine Liicke in der Forschungslandschaft.
In MoCoNSEMI werden existierende Datenquellen durch neue Sichten geméfl neuer
Sichtbeschreibungen erginzt, die vom SU(M)M abgeleitet werden und ebenfalls mit
dem SUM konsistent gehalten werden. Die technische Heterogenitéit von Modellen
wird durch wiederverwendbare Adapter fiir unterschiedliche technische Losungsraume
iiberwunden.

MoConNsSEMI wird erfolgreich fiir mehrere Anwendungsbeispiele angewendet. Dies
zeigt, dass MOCONSEMI wiederverwendbar fiir und {ibertragbar auf ein breites Spek-
trum von Projekten ist, sodass iiber die gezeigten Anwendungen hinaus weitere
moglich sind. Dariiber hinaus zeigt die Evaluierung von MOCONSEMI, dass die

entwickelten Operatoren wiederverwendbar sind und den Konfigurationsaufwand re-
duzieren, dass MOCONSEMI kombinierbar mit anderer Forschung und in andere
Anwendungen ist und dass MOCONSEMI Konsistenz sogar innerhalb von Modellen
sicherstellen kann. MOCONSEMI ergénzt seinen Hauptbeitrag fiir die Sicherstellung
von Konsistenz zwischen Modellen um weitere Beitrige fiir Nachverfolgbarkeit, Co-
Evolution von Modellen und Darstellungen von Anderungen in Modellen und deren
Metamodellen.

Contents at a Glance

Contents at a Glance
Contents in Detail

Typesetting Conventions

I Introduction

1 Motivation

1.1 Multi-perspective modeling
1.2 Challenges
1.3 Alms
1.4 Summary & Outline L

I Foundations

2 Basic Concepts

2.1 Views and Viewpoints
2.2 Modeling
2.3 Consistency
2.4 Stakeholders
2.5 Technical Spaces
2.6 SUMMATY

3 Related Work

3.1 Criteria for Classification
3.2 Overall Realization Techniques
3.3 Synthetic Approaches
3.4 Single Underlying Model (SUM)
3.5 Projectional Approaches L
3.6 Further Research Areas
3.7 Summary: Lessons Learned

4 Requirements

4.1 Functional Requirements
4.2 Technical Requirements
4.3 Summary

11

19

23

25
26
31
41
47

49

51
o4
o8
71
79
84
89

93
94
99
108
120
121
135
146

Contents at a Glance

III Approach

5 MoConseMI at a glance
5.1 Design Decisions L
5.2 Overview of the Approach
5.3 Summary: MOCONSEMI

6 Design
6.1 Operators as Transformations
6.2 Metamodel Decisions
6.3 Model Decisions
6.4 Operator Combination
6.5 Operator Execution o0
6.6 Model and Metamodel Representation
6.7 Model and Metamodel Differences
6.8 Summary

7 Operators
7.1 Related Work
7.2 Template to describe Operators
7.3 List of Bidirectional Operators
T4 SUMMATYo e

8 Implementation
8.1 Overview
8.2 Modeling Infrastructure
8.3 Operator Implementation
84 Adapters
8.5 Visualizations
8.6 Summary

IV Application

9 Access Data
9.1 Application Domain
9.2 Integration of existing Data Sources
9.3 Definition of a new View(point)
9.4 Validation Scenarios Lo
9.5 Summary: Contributions

10 SEIS Viewpoints
10.1 Application Domain
10.2 Ensure Consistency between existing Data Sources
10.3 Define new Viewpoints Lo
10.4 Validation Scenarios

10.5 Summary: Contributions oo

161

163
163
171
179

185
185
192
198
203
213
221
227
238

241
241
241
243
262

263
263
264
267
271
279
280

281

283
284
299
313
328
368

Contents at a Glance

11 Knowledge Management 387
11.1 Application Domain 388
11.2 Integration of existing Data Sources 404
11.3 Definition of a new View(point) 425
11.4 Validation Scenarios L 434
11.5 Summary: Contributions 452

12 Application in general 455
12.1 Process of Configuration, 455
12.2 Recommendations for Orchestrations 458
12.3 Processof Use 462
12.4 Summary 463

V Achievements 465

13 Evaluation 467
13.1 Fulfillment of Requirements 467
13.2 Properties of Operators 469
13.3 Characteristics of Orchestrations 473
13.4 Conceptual Discussions on MOCONSEMI 478
13.5 Summary of the Evaluation 481

14 Conclusion 483
14.1 Contributions L 483
14.2 Preconditions 489
14.3 Limitations 490
14.4 Outlook 496
14.5 Summary of the Thesis oL 499

V1 Appendix 503

A Collected Lists 505
A.1 Parts of the Ongoing Example 505
A.2 List of Definitions 505
A3 Listof Figures 506
A4 Listof Tables 510
A5 List of Code Listings 510

Bibliography 513

Contents at a Glance

10

Contents in Detail

Contents at a Glance

Contents in Detail

Typesetting Conventions

I Introduction

1 Motivation

1.1
1.2

1.3

1.4

Multi-perspective modeling
Challenges
1.2.1 Model Consistency
1.2.2 Reuse existing Artifacts
1.2.3 Define new View(point)s
Aims . . L
1.3.1 Objectives
1.3.2 Demarcation Lo
1.3.3 High-level Requirements
Summary & Outline

I Foundations

2 Basic Concepts

2.1
2.2

2.3
2.4

2.5

Views and Viewpoints
Modeling
221 Model
2.2.2 Metamodel
2.2.3 Model Transformation
Consistency
Stakeholders
241 User e
2.4.2 Methodologist
2.4.3 Platform Specialist
2.4.4 Adapter Provider L.
Technical Spaceso
2.5.1 Related Work: Technical Spaces
2.5.2 Descision: EMF L
2.5.3 Foundations of EMF

11

19

23

25
26
31
31
36
39
41
42
43
46
47

Contents in Detail

2.6 Summary

3 Related Work
3.1 Criteria for Classification

3.2

3.3

3.4
3.5

3.6

3.1.1
3.1.2
3.1.3
3.14
3.1.5

Inter-Model Consistency
Levels of Heterogeneity
Multi-Directionality
Stakeholders who decide

Summary ...

Overall Realization Techniques

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6

Intermediate Model
Explicit Links
Change Propagation
Choose from multiple Fixes
External Support for Multi-Models
SUMMATY

Synthetic Approaches

3.3.1
3.3.2

Synthetic Consistency Preservation
Synthetic View Definition

Single Underlying Model (SUM)
Projectional Approaches L.

3.5.1
3.5.2
3.5.3
3.5.4
3.5.9

OSM e
Vitruvius
RSUM
Combining Views intoa SUM
Projectional View Definition

Further Research Areas

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5

UML . . .
Domain-Specific Languages (DSLs)
Data Baseso o
Ontologies
Enterprise Applicationso

3.7 Summary: Lessons Learned

4 Requirements
4.1 Functional Requirements
4.2 Technical Requirements
4.3 SUMMATY

III Approach

5 MoConseMI at a glance
Design Decisions

5.1

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5

Bottom-Up: Existing Artifacts as Starting Point
Projectional with an explicit SUM as End Point
Adjustable Approach towards an essential SUM
Model Synchronization for Change Propagation
Methodologists decide the final Fix

12

93

94

95

95

97

97

99

99
100
101
102
106
108
108
108
108
119
120
121
124
126
129
131
134
135
136
137
139
142
144
146

153
154
157
158

Contents in Detail

5.1.6 Reuse Parts of Model Transformations 170
5.2 Overview of the Approach, 171
5.2.1 Specify Consistency 171
5.2.2 Fix Inconsistencies automatically 173
5.2.3 Inmitialize SUM)M 176
5.2.4 Develop Adapter 178
5.3 Summary: MOCONSEMI, 179
Design 185
6.1 Operators as Transformations 185
6.1.1 Related Work: Operator-based Approaches 186
6.1.2 Related Work: Model Transformations 188
6.1.3 Design 189
6.2 Metamodel Decisions 192
6.2.1 Related Work: Model Co-Evolution 193
6.2.2 Design 196
6.3 Model Decisions 198
6.3.1 Related Work 199
6.3.2 Design 200
6.4 Operator Combination 203
6.4.1 Related Work 203
6.4.2 Chain of Operators 204
6.4.3 Integration of existing Data Sources 205
6.4.4 Definition of new View(point)s. 209
6.4.5 Final Result: Tree 213
6.5 Operator Execution 213
6.5.1 Related Work 214
6.5.2 Executing single unidirectional Operators. 214
6.5.3 Execution Loop 217
6.5.4 Initial Execution 219
6.5.5 Ongoing Change Propagation 220
6.6 Model and Metamodel Representation 221
6.6.1 Related Work 222
6.6.2 Metamodel Representation 222
6.6.3 Model Representation 223
6.6.4 UUIDs 225
6.6.5 Adapters. 226
6.7 Model and Metamodel Differences 227
6.7.1 Related Work 228
6.7.2 Model Difference Representation. 229
6.7.3 Model Difference Co-Evolution 235
6.7.4 Branch Difference Calculation 236
6.8 Summary 238
Operators 241
7.1 Related Work 241
7.2 Template to describe Operators 241
7.3 List of Bidirectional Operators, 243
7.3.1 AddDeleteOppositeRelation 243

13

Contents in Detail

7.3.1.1 AddOppositeRelation
7.3.1.2 DeleteOppositeRelation

7.3.2 AddDeleteAttribute
7.3.2.1 AddAttributeo
7.3.2.2 DeleteAttribute

7.3.3 DeleteAddNamespace
7.3.3.1 DeleteNamespace

7.3.3.2 AddNamespace

7.3.4 ChangeAttributeType
7.3.4.1 ChangeAttributeType

7.3.5 ChangeModelo
7.3.5.1 ChangeModel

7.3.6 ChangeMultiplicity
7.3.6.1 ChangeMultiplicity

7.3.7 MergeSplitClasses
7.3.7.1 MergeClasses
7372 SplitClass

7.3.8 RenameClassifier
7.3.8.1 RenameClassifier

7.3.9 RenameFeature L.
7.3.9.1 RenameFeature

7.3.10 ReplaceAttributeByReference
7.3.10.1 ReplaceAttributeByReference
7.3.10.2 ReplaceReferenceByAttribute

T4 SUMMATY o v

8 Implementation
8.1 Overview. e
8.2 Modeling Infrastructure
8.3 Operator Implementation

8.3.1
8.3.2
8.3.3

Unidirectional Operators
Bidirectional Operators
Java-API for Orchestration.

8.4 Adapters

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5

Dynamically typed EMFo
Statically typed EMF 0oL
EXCEL
CSV e
XTEXT . . v oo vt e e e

8.5 Visualizations e
8.6 Summary

IV Application

9 Access Data
9.1 Application Domain

9.1.1
9.1.2

DataSource Htpasswd
DataSource Authz

Contents in Detail

9.1.3 DataSource Htaccess 289
9.1.4 SUMM 290
9.1.5 New ViewPoint Overview 292
9.1.6 Realization Overview 295

9.2 Integration of existing Data Sources 299
9.2.1 Integrate Htpasswd and Authz 302
9.2.2 Integrate Htaccess 307

9.3 Definition of a new View(point) 313
9.4 Validation Scenarioso 328
9.4.1 [Initialization by Execution 328
9.4.2 Scenario: renamed Mapping, reload externally (Authz) 332
9.4.3 Scenario: removed Mapping, reload externally (Authz) 336
9.4.4 Scenario: added Mapping, reload externally (Authz). 340
9.4.5 Scenario: added Mapping, reload externally (Authz). 344
9.4.6 Scenario: removed Mapping, reload externally (Authz) 348
9.4.7 Scenario: renamed HtaccessUser, reload externally (Htaccess) 352
9.4.8 Scenario: change Htaccess right for Bob (Overview) 356
9.4.9 Scenario: change number of Authz rights for Bob (Overview) . 359
9.4.10 Scenario: change the name of Bob to David (Overview) 359
9.4.11 Scenario: removed user, reload externally (Overview) 363

9.5 Summary: Contributions oL 368
10 SEIS Viewpoints 373
10.1 Application Domain Lo 373
10.1.1 Conceptual Viewpoint 373
10.1.2 Module Viewpoint 373
10.1.3 Execution Viewpoint 373
10.1.4 Code Viewpoint 374
10.1.5 Topology Viewpoint 374
10.1.6 Data Viewpointo 374

10.2 Ensure Consistency between existing Data Sources 374
10.2.1 Conceptual — Module 375
10.2.2 Module — Data 375
10.2.3 Module — Code 376
10.2.4 Module — Execution — Code 379
10.2.5 Execution — Topologyo 380
10.2.6 Realization Overview 382

10.3 Define new Viewpoints 382
10.3.1 Conceptual-Module-Mappings 383
10.3.2 Intersections 383
10.3.3 ModulesOnly 384
10.3.4 LayersOnly 384

10.4 Validation Scenarios 384
10.5 Summary: Contributions o0 384
11 Knowledge Management 387
11.1 Application Domain oL 388
11.1.1 DataSource Work oL 388
11.1.2 DataSource Employees 391

Contents in Detail

11.1.3 DataSource Tasks 393
11.1.4 DataSource Materials 395
1115 SUMM . .. 396
11.1.6 New ViewPoint Costs 398
11.1.7 Realization Overview 401

11.2 Integration of existing Data Sources 404
11.2.1 Improve Work 404
11.2.2 Integrate Employees with Work 408
11.2.3 Integrate Tasks with Work 413
11.2.4 Integrate Materials with Work 420

11.3 Definition of a new View(point) 425
11.4 Validation Scenarios 434
11.4.1 Imitialization by Execution 434
11.4.2 Scenario: Create new Work 437
11.4.3 Scenario: Change real Human Costs 442
11.4.4 Scenario: Delete existing Work 442
11.4.5 Scenario: Renamed Task in Costs View 446
11.4.6 Scenario: Change Salary 449

11.5 Summary: Contributions 452
12 Application in general 455
12.1 Process of Configuration 455
12.2 Recommendations for Orchestrations 458
12.2.1 Explicit Links between Models 459
12.2.2 Reduce Redundancies 460
12.2.3 Remaining Dependencies in the SUM 460
12.2.4 New View(point)s 461

12.3 Processof Use 462
12.4 Summary 463
V Achievements 465
13 Evaluation 467
13.1 Fulfillment of Requirements 467
13.2 Properties of Operators 469
13.2.1 Formal Properties 469
13.2.2 Completeness of Operators 470
13.2.3 Complexity of Operators in O-Notation 471
13.2.4 Reusability of Operators 471
13.2.5 Imperative vs Declarative Operators 471
13.2.6 Design of Operators revised 472

13.3 Characteristics of Orchestrations 473
13.3.1 Language Evolvability 473
13.3.2 MoCoNsSEMI without reusing Data Sources 474
13.3.3 Characteristics of the SUIM)M 475
13.3.3.1 Quality of the SUM)M 475

13.3.3.2 Content of the SUM)M 476

13.3.3.3 Large (Meta)Models 476

16

Contents in Detail

13.4

13.5

13.3.4 Reusability of Orchestrations
Conceptual Discussions on MOCONSEMI
13.4.1 Reuse existing Modeling Techniques
13.4.2 Integrate Data Sources with different Abstraction Levels

13.4.3 Integrate other Research into MOCONSEMI
13.4.4 Integrate MOCONSEMI into other Applications
13.4.5 Intra-Model Consistency
Summary of the Evaluation

14 Conclusion

14.1

14.2

14.3

14.4

14.5

Contributions
14.1.1 Contributions to Model Consistency
14.1.1.1 New SUM Approach
14.1.1.2 Characteristics of MOCONSEMI revised
14.1.2 Contributions to other Research Areas
14.1.2.1 Traceability oo
14.1.2.2 Round-trip Engineering
14.1.2.3 Model Co-Evolution
14.1.2.4 Model Transformations.
14.1.2.5 Model Differences
14.1.3 Contributions to Application Domains
14.1.3.1 SEIS Architecture
14.1.3.2 Table-oriented Data Management
Preconditions
14.2.1 Data as Model
14.2.2 Supportable Consistency Goals
Limitations
14.3.1 Limitations of the Approach
14.3.1.1 Termination
14.3.1.2 Performance
14.3.1.3 Skills of Stakeholders
14.3.2 Limitations of the Implementation
14.3.3 Limitations of the Evaluation
Outlook
14.4.1 Outlook for the Approach
14.4.2 Outlook for the Implementation
14.4.3 Outlook for further Applications
Summary of the Thesis,

V1 Appendix

A Collected Lists

Al
A2
A3
A4
A5

Parts of the Ongoing Example
List of Definitions
List of Figures
List of Tables
List of Code Listings

483
483
483
483
484
486
486
487
487
488
488
488
488
489
489
489
489
490
490
491
492
493
495
495
496
496
497
498
499

Contents in Detail

Bibliography 513

18

Typesetting Conventions

To support the structure and readability, this thesis uses some conventions, renderings
and fonts. They are introduced here and are valid in all parts of the thesis.

e The short statements in the sidebar summarize the current content of the main Statements in the
text as “take-away” and help to navigate inside the running text. Sidebar

e In order to emphasize some keywords or other terminology in the running text,
they are set in italics. Bold type is not used in this thesis.

e References in the running text (or links to other parts) are set with black font
color.

e In order to ease browsing to a reference, the number after the s icon specifies
the page number of a reference. As an example, Section 1.2.1*3! can be found
on page 31. This page number is shown only, if the source of the reference is
not located on the current page of the reference.

e Keys in the running text for publications with three or less authors contain
the last names of all authors, like for Meier, Kateule and Winter (2020). For
publications with more than three authors, only the first two authors are named,
like for Meier, Kuryazov et al. (2015).

e Footnotes are used to add some additional short information, mainly exceptions
which do not contradict the statements in the running text and concretizing
technical details which are not important to understand the running text.

e Names in metamodels follow usual Java coding conventions.
e Names of approaches and tools are capitalized like MOCONSEMI.

e Small parts of inlined source code like method names are set in typewriter like
myMethod (). Longer parts of source code are set in own figures as code listings
with syntax highlighting. All code listings are listed in Section A.5% 510,

e Fully-qualified names are rendered in this way: packagerClass»attribute

e Different kinds of boxes lift out special parts of the text, including, among
others, definitions, requirements, parts of the ongoing example, important pub-
lications, pointers to future work and side notes:

— Side notes and excursions highlight details which are not required for the
general understanding of the thesis.

19

Contents in Detail

Side note / Excursion

These side notes and excursions are set in dark gray boxes. They
are not set as footnotes, since some of them are too long or contain
graphics.

— All definitions in this thesis are rendered inside dark gray boxes like for
the following Definition 1:

Definition 1: Definition of Definitions

To make important terminology clear, this thesis defines several
terms in form of definitions.

A list of all definitions can be found in Section A.2% 5%,

— Requirements are documented in the following way:

Requirement R 0: Structure of Requirements

Requirements must be documented in a structured way.

Requirement R 0 consists of a label (“R07), a short summary (“Structure
of Requirements”) and the main requirement as text (“Requirements must
be documented in a structured way.”). Requirements can be concretized
by sub-requirements, its label would be R 0.1 for example. In the digital
version of this thesis, clicking on parts of a requirement allows to jump to
its main definition, not to its first occurrence. A list of all requirements of
this thesis can be found in Section 4.3 158,

— This thesis develops an ongoing example, which is extended throughout
the thesis. Each extension is rendered inside a box like this one:

Ongoing Example, Part 1: Typesetting Conventions + List —

Parts of this example are highlighted by rendering them in boxes like this
one. Clicking on the left/right arrows in the top-right corner of the box
allows to jump to the previous/next part of this ongoing example. “List”
refers to Section A.1% 9% listing all parts of this ongoing example.

In Part 2% 2° of the ongoing example, the ongoing example is introduced.
Note, that these parts of the ongoing example are different from the parts
of this document, that contain chapters and are numbered with Roman
letters.

— Important aspects to extend the results of this thesis are indicated as
future work using boxes like the following one:

Future Work: Outlook to Future Work

Important future work is made explicit at the place, where it is identified.
All future work is picked up and summarized in Section 14.4* 4%,

20

Contents in Detail

— Important statements for this thesis are set in darf gray boxes:

Important Statement

These boxes are used to clarify the problem statement, objectives,
deliverables and final result of this thesis.

— Own publications (i.e. publications with the author of this thesis being
one of their authors), which are relevant for this thesis, are rendered in
prominent way:

Related MoConseMI Publication

Johannes Meier and Andreas Winter (2016): Towards Metamodel
Integration Using Reference Metamodels. In: Proceedings of the 4th
Workshop on View-Based, Aspect-Oriented and Orthographic Soft-
ware Modelling (VAO 2016), pp. 19-22.

This publication is cited as Meier and Winter (2016) in this thesis.

e Operators are set in the following ways: —=ADDREMOVEASSOCIATION in-
dicates a bidirectional operator, which consists of the unidirectional opera-
tor —ADDASSOCIATION in main direction and the unidirectional operator
+REMOVEASSOCIATION in inverse direction.

e To indicate the position or role of (meta)models for an application realized with
MoConNsEMI, the following renderings are used:

— Data sources as introduced in Definition 437 are rendered as (DataSource/.

5:&*40

— New view(point)s which are introduced in Definition are rendered as

(New View (Point)].
— The SU(M)M as introduced in Section 3.4 % is rendered as SUM)M).

— Intermediate nodes at position i € N as introduced in Section 6.4.2 2%
are rendered as @), while a chain of intermediate nodes k, k+1,...,1—1,1
with k,...,l € N is rendered as @—@.

Using terms like view(point)s indicates, that views (on model level) and their
viewpoints (on metamodel level) are both affected. The same counts for SU(M)M
comprising the SUM and its SUMM. Linguistically not that obvious, a data
source consists of a view and its viewpoint, too (see Definition 4=37). This
counts also in general for a (meta)model comprising the model and its meta-
model.

e Changes in graphics are visualized by using colors to draw the changed elements:
Added elements are rendered with red color. Deleted elements are rendered with
green color.

e As the title of this thesis indicates, consistency is an important concept, which
is concretized into consistency goals and consistency rules in Section 2.3% L.
Consistency goals and consistency rules are rendered in the following way:

21

Contents in Detail

Legend

> > Qe

Mandatory
Optional
Or

Xor

Sub-Diagram

Consistency Goal CO0 -

Requirements must be linked with their fulfilling Java methods.

This Consistency Goal C0 summarizes a consistency issue in the ongoing ex-

ample between the data sources and .

Consistency Rule CO0a

Links between requirements and fulfilling methods are added manually.

This Consistency Rule C0a adds a hint, how to realize its related Consistency
Goal CO.

e This thesis uses feature models (Kang, Cohen et al., 1990; Nesi¢, Kriiger et al.,
2019) to depict possible features including their dependencies and restricting
constraints. The legend for feature models is placed in the sidebar and explains
their concepts. An example can be found in Figure 3.2 1% Selected features
are marked with light gray color.

22

Part 1

Introduction

This part motivates this thesis by establishing multi-perspective
modeling as usual paradigm for the development of software-
intensive systems. Since these perspectives are realized with
models and depend on each other in order to jointly represent
the same system under development, ensuring the consistency of
depending models is an important challenge. The development
and evaluation of a new approach for overcoming this challenge
is the objective of this thesis.

23

Chapter 1

Motivation

Since today’s software-intensive systems increase regarding size, complexity and hetero-
geneity, their development cannot be realized by single persons anymore. To manage the
development of systems, different persons with different skills are involved. They use dif-
ferent tools tailored to their tasks. These different tools deal with different information and
represent multiple perspectives of the system under development.

Since perspectives describing the same system are realized with different tools, but have
interrelations like overlaps or inter-perspective constraints, the data managed by different
perspectives depend on each other. Therefore, inconsistencies between perspectives can
occur, if stakeholders change information in one perspective only and this information is
contained also in another perspective. To fix such inconsistencies, the other perspective
must be changed accordingly. Since such fixes are error-prone and time-consuming, they
should be automated. This problem is illustrated along an example in the following box.

multiple Perspectives

Inconsistencies between
multiple Perspectives

Ongoing Example, Part 2: Introduction

As running example, a small and strongly simplified Software Development Project is chosen
with perspectives for requirements, UML class diagrams and Java source code. Goal of
this project is to develop a new information system managing students and lectures at a
university. Initially, this project does not use any approach or tool for ensuring consistency
automatically.

To keep the example manageable, only three different perspectives are described. To
cover multiple steps of a software development lifecycle, requirements as early artifacts (list
of textual requirements), UML class diagrams to specify the design like data models (only
classes with associations), and Java source code for the implementation are chosen (only
classes with methods).

Since these three perspectives together describe the system under development, they
overlap content-wise: The same classes are modeled with class diagrams and implemented
in the source code. When a software architect renames an existing class in the class diagram
only, this results in an inconsistency with the source code. Renaming the class in the source
code accordingly fixes this inconsistency. This renaming should be automated to relieve
the software architect and to keep the system consistent.

As another example, each attribute defined in the class diagram must have a correspond-
ing getter-method in the source code. When a software architect deletes the attribute in
the class diagram only, this results in an inconsistency with the source code. Deleting the
corresponding getter in the source code fixes this inconsistency. This deletion should be
automated to relieve the software architect and to keep the system consistent.

There is also an consistency issue for which no automation is available: Requirements
should be traceable to those methods which implement the functionalities specified by

25

simplified Software
Development
Project

ongoing Example for
the whole Thesis

1 Motivation

these requirements (and vice versa). This can be realized with traceability links between
requirements and their fulfilling methods. When a developer creates a new method in order
to fulfill a particular requirement, the developer must also create a traceability link between
both. Without creating this traceability link, the developer introduced a new inconsistency.

This sketched example is used as ongoing example for the whole thesis. Therefore, this
example is not described completely here, but is picked up continuously in the following
sections for conceptual clarifications and technical realizations. Until the last part, the
described project will have applied the new approach of this thesis. Variants of this
example are already used in some publications (Meier and Winter, 2018a; Meier, Klare
et al., 2019; Meier, Werner et al., 2020). This ongoing example is described in more detail
regarding the existing perspectives in Part 537 of the ongoing example and regarding the
consistency issues in Part 3" 34 of the ongoing example.

Challenges in
multi-perspectives
Consistency
Preservation

Outline of the Chapter

Introduction of Term
multiple Perspectives

Reasons for using
multiple Perspectives

The problem are inconsistencies between related perspectives: This problem is not re-
stricted to this small ongoing example or software development on a larger scale. Instead, it
is a general problem of all perspectives which together describe the same system. It occurs
also in, among others, the management of distributed access rights or knowledge manage-
ment in research projects. Therefore, this thesis aims to solve this problem in general and
shows application examples also for these domains in Chapter 9% 283 and Chapter 1137,

In order to solve the problem of consistency between perspectives, some challenges
must be overcome: There are different kinds of consistency issues between perspectives, i. e.
redundancies when same information is contained in multiple perspectives, links establishing
explicit connections between elements of two or more perspectives and constraints in form
of additional rules which must hold between perspectives. These consistency issues are
project-specific, like the classes in the ongoing example as an example for redundancies,
since each class conceptually exists only once, but is represented twice in source code and
class diagrams. Additionally, already existing data must be reused by approaches. Since
such data conform to the structure of their tools, these structures must be reused, too.
These challenges are elaborated in Section 1.2 3!,

The main objective of this thesis (Section 1.3. is to overcome those challenges,
whose outline is motivated in Section 1.4 47. Before that, Section 1.1 describes the idea
of modeling with multiple perspectives for system development in more detail and derives
problems in multi-perspective modeling.

1-:%42)

1.1 Multi-perspective modeling

During the development of systems including software-intensive systems, a perspective al-
lows to focus on only some selected parts of the system, instead of dealing with all infor-
mation of the whole system under development. This reflects the principle of abstraction,
which is central for modeling (see Definition 12*%9). Using multiple perspectives enables
different stakeholders to concentrate on their individual tasks and to work together on the
same system.

With growing size, complexity and heterogeneity of software-intensive systems, also
their description amounts during development increase accordingly. This requires using
multiple perspectives due to the following reasons:

Size At some point, the development by a single person becomes inefficient or even im-
possible due to the systems size. To align the development power to the systems
size, multiple persons or even teams are required for development. Therefore, the
systems needs to be decomposed into different parts, which are manageable by single
persons. These parts represent different perspectives. As an example from industry,

26

1.1 Multi-perspective modeling

Burden, Heldal and Whittle (2014) reported on single models containing 8000 UML
sequence diagrams or converted 3000 pages of specifications, whose size decreased its
understanding and maintenance.

Complexity To manage increasing complexity regarding functionality, the system needs
to be decomposed into multiple parts, i. e. multiple sub systems representing different
functional parts of the system. Different sub systems can be treated as different per-
spectives and provided to different groups of persons for development. Thus different
perspectives can cover different sub systems. As an example, Bucchiarone, Cabot
et al. (2020, p. 8) require different perspectives to cope with the complexity of smart
city applications.

Heterogeneity The heterogeneity of systems and their sub systems regarding design and
realization techniques (Lee, 2010) requires multiple tasks during development with
different skills. Involving multiple persons with different skills or specializations helps
to distribute development tasks according to the required skills. Thus, different
perspectives are tailored to different skills of different persons. As an example, the
software architect is provided with higher-level information like data classes, while
details of the implementation like single Java statements are hidden.

Summarizing, the use of multiple perspectives tailors system descriptions to characteristics
of sub systems and to the skills of the involved persons.

In order to realize perspectives for developing systems, modeling is used, since modeling
is a fundamental activity in the context of software engineering (Ludewig, 2004): The de-
velopment of systems is done via modeling using multiple perspectives, which leads to the
term multi-perspective modeling. Modeling represents all information as models conform-
ing to metamodels, since metamodels define the structure for and the concepts usable by
models. While information is represented as model, the structure of this information, i.e.
the concepts, is represented as metamodel. Summarizing, everything is a model (Bézivin,
2005), including source code (Heidenreich, Johannes et al., 2009).

Therefore, required terminology is concretized according to modeling terminology and to
the ISO Standard for Architecture Description 42010:2011 (IEEE, 2011), which is detailed
in Chapter 2 °!: Instead of persons involved in system development, the term stakeholder
is used (see Definition 8*5%). The interests of stakeholders in the system are described
by concerns (see Definition 9 5%). Perspectives reflect these concerns by defining, which
parts of systems are selected, and are named viewpoints (see Definition 10 5%). When a
stakeholder looks at one concrete system, a viewpoint targeting his concerns determines,
what is shown to him. The shown result is named view (see Definition 11*56). In this
thesis, views are technically realized as models (see Definition 12" %), while viewpoints are
technically realized as metamodels (see Definition 13" 1), These concepts help to clearly
distinguish the particular, provided information about the particular system of perspectives
as views from the general, structural concepts of perspectives as viewpoints.

Using multiple perspectives in form of viewpoints is an established and often used
concept to model complex systems, as the following examples demonstrate:

e The Unified Modeling Language (UML) (Object Management Group, 2017) uses
different diagrams to focus on different aspects of the system under developement,
e.g. UML class diagrams for static aspects of a system like data classes or UML
activity diagrams and UML state machines to describe dynamic aspects.

e For the development and management of software systems and organizations, Winter
(2000) identified lots of visual modeling languages representing multiple perspectives
for structures, tasks, processes and data including organization charts, communica-
tion networks, data flow diagrams, use case diagrams, state charts, petri nets, Gantt

27

multi-perspective
Modeling

Terminology

View vs Viewpoint

widely established Use
of multi-perspective
Modeling

cover Problem in
application-domain
independent Way

multiple Views are
enabled by Redundancy

Problems of multiple
Viewpoints:

technical Separation vs
contentwise
Interrelations

1 Motivation

charts, decision tables, object diagrams and collaboration diagrams. These languages
are classified and their general, overlapping concepts are identified and represented
in form of reference metamodels for their conceptual integration.

e For automated production systems engineering, Feldmann, Herzig et al. (2015b) pro-
pose multiple viewpoints including SYsML models for systems engineers to define
the mechatronic architecture, MATLAB /SIMULINK models for simulating and eval-
uating properties of the system and unspecified viewpoints for non-functional re-
quirements and test cases. Feldmann, Wimmer et al. (2016) add CAD drawings for
geometric visualizations for mechanical engineers and circuit diagrams for electrical
engineers.

e For Industry 4.0 and its concerns like 3D modeling, architectures, specification ex-
change, formal modeling and simulation, Wortmann, Barais et al. (2020) collected
various different languages including AUTOMATIONML, UML modeling, SYysML, Au-
TOCAD, MATLAB/SIMULINK and petri nets.

e Pohlmann, Meyer et al. (2014) present multiple viewpoints for developing hardware
platforms for smart cyber-physical systems (CPSs), including viewpoints for resource
types describing possible kinds of resources including its main parts, resource in-
stances describing all required instances of the defined resource types for the partic-
ular CPS, platform types describing possible kinds of platforms including its main
parts, platform instances describing all required instances of the defined platform
types for the particular CPS and allocation planning for mapping software compo-
nents to the defined platform instances for execution.

e Bucchiarone, Cabot et al. (2020, p. 8) require different perspectives to cope with the
complexity of smart city applications.

e For enterprise modeling, Frank (2014) propose different viewpoints including strategy
nets and value chain diagrams for defining business strategies, business process dia-
grams for modeling the organization, and class diagrams for describing the underlying
information system (Section 3.6.5% 144).

This small excerpt of examples using multi-perspective modeling in different application
domains shows its wide usage and justifies to the cover the problem of inconsistencies
between corresponding views in a generic, i.e. application domain-independent way.

The different viewpoints are established by, among others, different tools (Broy, Feilkas
et al., 2010), environments, file formats, and domain-specific languages (DSLs) (France
and Rumpe, 2007). These tools allow to manage some information of the whole system
as views. For that, each tool provides its own view to its current user, i.e. stakeholder.
In general, different tools are used by multiple stakeholders at the same or different time
and possibly at different locations. That leads to the fact, that information of the system
under development is managed separately or is duplicated in multiple views by multiple
stakeholders. These problems are also reported by Broy, Feilkas et al. (2010) in the domain
of embedded software-intensive systems and by Thomas and Nejmeh (1992) as important
challenge for tool integration. The benefit of this idea is, that each stakeholder can work
independently from all other stakeholders and on only that information which is currently
relevant for him. Therefore, redundancy of the information presented in views enables
environments with multiple views and viewpoints working on the same system.

While the development with multiple viewpoints is a widely used principle, since it
supports different stakeholders with tailored views, it introduces also some problems: Due
to the tools which manage only the current information in different formats, data bases or
files, the different views are separated on technical level. But the different views describe

28

1.1 Multi-perspective modeling

different aspects of the same system, which form one system. Therefore, the different views
are interrelated contentwise to describe the same system under development in consistent
way.

Between multiple views of the same system, there are always interrelations: If there
are no interrelations between two views, they describe two independent systems, instead of
two sub systems of the same system. The practical background for this theoretic finding
is, that some information is required, how to stick two views together to form the whole
system. The points where to stick the views together represent the interrelations between
the views. Nevertheless, Atkinson and Tunjic (2014a, p. 49) recommend to minimize the
interrelations of viewpoints, but in the sense of an optimization problem.

Main forms of these interrelations are redundancies and dependencies: Redundan-
cies are characterized by information which are represented in multiple views (Hailpern
and Tarr, 2006). Goldschmidt, Becker and Burger (2012) identified elements occurring
redundantly within multiple views as important feature of views, but use the term over-
laps instead. Dependencies define relations which hold between information encoded in
different views. Since these information could also be the same, redundancies are a special
case of dependencies. Therefore, this thesis calls all interrelations between view(point)s
dependencies. This thesis assumes no order between two depending views regarding time
or construction process, while Persson, Torngren et al. (2013) classify two depending views
as one input view and one output view for each other.

All kinds of dependencies can lead to inconsistencies between views: If a relation holds
between two views, they are consistent to each other regarding this relation. If a stake-
holder changes one of the views, this relation can be hurt, if the other view is not changed
accordingly to ensure a valid relation. In that case, inconsistencies are introduced and must
be fixed. The potential for inconsistencies grows with the number of involved views (Muss-
bacher, Amyot et al., 2014).

As motivated above, changing only one view is the usual way of systems development
in multi-view environments. At the same time, consistency relations hold between multiple
views. Therefore, stakeholders working on views usually introduce inconsistencies, which
must be fixed in the related views afterwards. This problem is an inherent one, since each
stakeholder works only on a single view and has no chance to directly change the other views
accordingly. This can cause also organizational problems in bigger companies, if multiple
stakeholders have to know about other views and their responsible persons and have to
agree with them on joint changes in different views, as exemplarily reported by Burden,
Heldal and Whittle (2014). Summarizing, changing one view requires to change related
views according to consistency relations. If all consistency relations are fulfilled, i.e. there
are no inconsistencies, consistency is achieved.

If consistency between views is ensured manually, the stakeholders change their view
and have to change all related views accordingly. This step is error-prone, since required
adjustments may be forgotten, some related information may not be found or the applied
changes may be incorrect. Another problem is, that stakeholders usually know only “their
own” view, lack knowledge of “other foreign” views (which is the idea of having multiple
views!) or do not even know about the existence of related views, which limits the chance
to find senseful changes fixing inconsistencies in the other views (Hailpern and Tarr, 2006).
Another problem is incomplete understandings of stakeholders about the reasons for oc-
curred inconsistencies (Grundy, Hosking and Mugridge, 1998, p. 975). Even if other views
can be fixed in principle, with a large number of views it is difficult to keep track of views
that are still inconsistent and views that are already fixed (Burden, Heldal and Whittle,
2014). Such manual consistency preservation requires high effort in time and complexity,
even though the consistency preservation usually follows strict rules, which could be auto-
mated. As idea, specialists describe the strict rules for consistency once, so that related
views can be changed accordingly automatically, after the stakeholder changed his view

29

Interrelations between
Views always exist

Dependencies

Inconsistencies

changing Views requires
Changes in related
Views

Consistency <
Inconsistency

manual Consistency
Preservation is
error-prone

unstructured
Consistency
Preservation requires

high Effort

Summary: changing
separated Views
introduces
Inconsistencies with
related Views

Consistency of Views is
important in Literature

Example for bypassing
Inconsistency

1 Motivation

manually. Finally, the amount of involved views and requests for instant feedback for users
requires an automation (Egyed, Zeman et al., 2018).

To get rid of such manual work, sometimes transformations between two views are writ-
ten to (re-)generate one view, if the other view changed. Alternatively, scripts are hacked to
synchronize some information between views (Burden, Heldal and Whittle, 2014). Usually,
only two views (e.g. source and target) are involved in such transformations. In practice,
multiple pairs of such transformations might be written by different users, lacking synchro-
nization due to missing knowledge of foreign views and lacking a holistic understanding of
the whole system. Sindico, Natale and Sangiovanni-Vincentelli (2012) report on a bigger
industrial development process with multiple transformations and scripts between the in-
volved artifacts. Usually, such automation efforts are done in an unstructured way without
general idea, approach or framework behind. These findings motivate the development of
a new approach for rigorously ensuring consistency between multiple views.

Problem Statement

In order to manage size, complexity and heterogeneity of software-intensive systems,
multiple viewpoints are used to describe parts of the system regarding the concerns of
involved stakeholders. These views are used independently from other views, but all
views together describe the whole system under development and therefore depend
on each other.

If a stakeholder changes one view, this view may become inconsistent with the
other views. Inconsistencies between views prevent successfully developing the sys-
tem and must be fixed to realize the desired system in a consistent way. Doing this
in manual or in an unstructured way is error-prone and time-consuming.

Summarizing, the problem are inconsistencies between multiple views which are
not automatically fixed. This thesis aims at overcoming this problem in a structured
and automated way.

This problem of upcoming inconsistencies between different views is an important one
in literature: Changing other views according to the change made in one view is called
change propagation by Persson, Torngren et al. (2013). Stevens (2008) emphasizes the
need for handling inconsistencies in views which are manually changed by users, in contrast
to views which are completely and automatically generated from other views. In 2014,
Mussbacher, Amyot et al. (2014, p. 188) state, that inconsistencies between artifacts are still
a major problem, which is not solved during the last 20 years. Still in 2020, Bucchiarone,
Cabot et al. (2020) emphasize the need for traceability and consistency across different
views. Mohagheghi, Gilani et al. (2013a, p. 102) identified, that companies may expect
consistency preservation as benefit when using modeling techniques. France and Rumpe
(2007) propose synchronization transformations to propagate changes from one view to
other views. Persson, Torngren et al. (2013) give a broad overview of groups of approaches
for multi-view modeling. The spectrum of existing tools and approaches targeting inter-
view consistency in various forms is investigated in Chapter 3* 93 and its broadness shows
the importance of this problem. Additionally, that section shows, that there is no uniform
approach yet, which overcomes all challenges, which are concretized in Section 1.2 3

Lettner, Tschernuth and Mayrhofer (2011, p. 236) report on an example, what can
happen, if consistency between views for different stakeholders is not ensured in a struc-
tured way: Users started to split the model into parts and worked only on their parts, in
order to prevent the occurrence of inconsistency, and put the changed parts together after-
wards. Here, inappropriate granularity or structuring of the complete model are identified
to be problematic for splitting the model, while the problem behind the problem is missing
support for consistency.

The root of this problem, respectively the problem behind this problem, i.e. inconsis-

30

1.2 Challenges

tencies between multiple views, are conflicts of involved principles: A holistic description
of the system under development describes it completely (principle of completeness), but
becomes usually too big and too complex for single stakeholders. Therefore, views follow
the principle of separation of concerns (Tarr, Ossher et al., 1999) (and the related principle
of decomposition) to manage the complexity and size of the system. Since multiple views of
the same system have overlaps, they introduce redundancy between the views, which hurts
the principle of redundancy reduction.

In essence, most existing tools including UML tools work on and with single views,
as if the represented information is independent first-order information. But in fact, this
information describes only a sub system of the whole system, i.e. a view on the system,
which must be kept consistent to all other views and the underlying system. This issue is an
important criteria in the classification of viewpoints by Darke and Shanks (1996), already
few years after the introduction of viewpoints by Finkelstein, Kramer and Goedicke (1990).

Summarizing, on the one hand, multi-perspective modeling fulfills the need of separation
of different concerns in system development by providing multiple views. On the other
hand, multiple views introduce danger of inconsistencies between them, since they describe
together the whole system under development and therefore depend on each other. This
problem behind the problem is inherent and is not solved by this thesis. Instead, this thesis
ensures inter-model consistency in a structured way to cope with this conflict of paradigms.
The next Section 1.2 identifies the challenges which must be overcome in order to fix these
problems.

1.2 Challenges

In order to solve the general problem, i.e. inconsistencies between multiple views, some
challenges must be overcome to realize multi-perspective modeling (Section 1.1 26). The
challenges are identified in this section and are derived from the motivation (Chapter 1 2%)
and literature.

Keeping different models consistent to each other is already identified as main problem,
therefore, it is concretized as challenge in Section 1.2.1. Since consistency is defined as a
relationship between views (cf. Definition 2 32), these views are investigated and classi-
fied regarding their temporal origin: Views which are already existing before applying an
approach for ensuring consistency are called data sources and are challenging due to the
reuse of already existing information, as investigated in Section 1.2.2°36. Views which
are derived after applying an approach for ensuring consistency are called new views and
are challenging due to the supply of information stemming from multiple data sources in
an editable way, as investigated in Section 1.2.3 39, This classification is complete, since
each view is established either before or after introducing an approach for ensuring consis-
tency in the particular project. This distinction was already made by Guerra and de Lara
(2006) calling data sources as “system views” and new views as “derived views”. Their
terms are not used here, since data sources emphasize the already existing information
more than system views and new views emphasize their late definition reusing information
and providing no new information more than derived views, since data sources can be also
seen as derived after their integration into a SUM.

1.2.1 Model Consistency

As motivated in Section 1.1 26, the main problem is to ensure consistency between multiple
views. This section identifies the main challenges to overcome in order to solve the problem
of inconsistencies between views. Before discussing challenges of consistency, the term
consistency is clarified here and summarized in Definition 2% 32. Before that, definitions

31

conflicting Principles:
Separation of Concerns
vs Redundancy
Reduction

multiple Views enable
Separation of Concerns,
but introduce
Consistency Challenges

Challenges in ensuring
multi-view Consistency

reviewing Definitions for
Consistency

1 Motivation

for consistency from the related work are discussed.

Persson, Torngren et al. (2013) define, that views are inconsistent to each other, if there
is no system which matches the semantics of all views. While consistency between views
is expressed clearly as a question of satisfiability by this definition, the underlying system
is a bit vague, since the definition allows, that different systems are described by views at
different points in time.

Spanoudakis and Zisman (2001) define in a more formal way, that overlaps of views
which are defined as overlaps of interpretations of these views are the source for inconsis-
tencies. Basing on that, an inconsistency arises, if a so-called consistency rule is hurt by
the views. This definition makes clear, that consistency depends on the interpretations of
stakeholders, which are project-specific. Again, the strong relation of the views to their
underlying system is missing in this definition.

Engels, Kiister et al. (2001) distinguish between syntactic and semantic consistency:
Syntactic consistency is given, if a model conforms to its metamodel. This definition is
complemented with a confusing example, since it does not target the model-metamodel-
relation, but a relation between two models. This understanding of model consistence as
conformance with its metamodel goes along with other works like Maro, Steghdfer et al.
(2015). Semantic consistency includes syntactic consistency and requires, that views se-
mantically correspond with the described system. This definition conforms to the other
definitions for consistency from literature, as discussed above. This distinction will be
taken up when discussion different kinds of heterogeneity of models in Section 3.1* 94,

In similar way, Paige, Brooke and Ostroff (2007) distinguish model conformance (syn-
tactic consistency), i.e. the model conforms to its metamodel, and multi-model consistency
(semantic consistency), i.e. the models “do not contradict each other according to a set of
(metalevel) rules” (Paige, Brooke and Ostroff, 2007).

The IEEE defines consistency as “[t/he degree of uniformity, standardization, and free-
dom from contradiction among the documents or parts of a system or component” (IEEE
Standards Board, 1990, p. 21). This definition emphasizes the relation of the parts i.e.
views of interest to their system. While the other definitions allow only consistency and
inconsistency, this definitions enables more graduations for the degree of (in)consistency.

The SWEBOK defines, that “[c/onsistency is the degree to which models contain no
conflicting requirements, assertions, constraints, functions, or component descriptions”
(Bourque and Fairley, 2014). Again, the strong relation of the models i.e. views to their
underlying system is missing in this definition.

Sometimes, other terms are used instead of the term consistency, like “model in-
tegrity” (Rose, Kolovos et al., 2010), but consistency emphasizes the semantics more clearly
than integrity with its legal connotation. Instead of change propagation for ensuring con-
sistency, Berardinelli, Biffl et al. (2015) use the term “co-evolution”, which is not used here,
since it is usually used for required adaptations of artifacts depending on changed schemata
respectively metamodels, for which Section 6.2.1* 193 presents several related approaches.

Definition 2: Consistency

One or more views are consistent, if these views describe parts of the same system
under development without semantic contradictions within a particular project. All
views together describe the system in its entirety.

Contradictions occur, when defined conditions for dependencies between views do not
hold for particular views, e.g. when expected overlaps between two views are hurt due to
a mismatch of corresponding elements in the views, explicit links are missing or broken
due to elements which are deleted in one view only or defined constraints do not hold.
These conditions for dependencies between views are clarified by Definition 15 " and

32

1.2 Challenges

Definition 16 7 later on, which concretize the relevant contradictions. Contradictions
occur between a view and its system in the first place. In the second place, contradictions
between a view and its system transitively lead also to contradictions between that view
and all other views.

Contradictions target the semantics of the involved views according to Engels, Kiister
et al. (2001), but syntactical differences of the views, e.g. different metamodels of their
viewpoints, must be overcome, too. This definition makes clear, that the consistency is
specific and depends on the understandings of the views within the current project, in
which the system is developed using multiple views. Therefore, the challenge is to take the
semantics of the involved views into account during the automation of ensuring consistency.
If the views are consistent, they describe the system in a consistent way. If the views are
inconsistent, they describe the system in an inconsistent way, meaning that the system in
its current state cannot be created respectively used due to the inconsistencies. Since such
an inconsistent description of the system does not delete its semantic purpose, fixing the
inconsistencies leads to a consistent description of the same system with the same purpose
again.

After defining the term consistency, this section now discusses, how consistency chal-
lenges look like, i.e. which kinds of dependencies (as motivated on page 29) are possible
between elements of different views. These kinds must be targeted by approaches for en-
suring consistency, which is the first challenge.

Redundancies describe information which is contained in multiple views. Changing re-
dundant information in one view requires to change the other views accordingly.

Explicit links depict strong and explicit relations between information of different views.
Kuhn, Murphy and Thompson (2012) studied a large automotive company and found,
that explicit links for traceability are strongly needed, but insufficiently supported.

Constraints describe additional rules which have to hold between information of different
views, independently from redundant information and explicit links. Such conven-
tions might be documented explicitly as guidelines for the current project or company
or represent implicit best-practices.

Comparing with a classification of Persson, Torngren et al. (2013), these kinds are complete:
They call redundancies as semantic overlap instead. They call explicit links as associations
instead, but think of an additional explicit “association view” linking elements of two other
views explicitly. Here, explicit links subsumes also links between views, which are not
made explicit, but should be explicit. They treat constraints as special kind of associa-
tions between two views. Additionally, Persson, Torngren et al. (2013) define the categories
semantic equivalence and refinement/abstract between two views. Since they describe se-
mantic overlap of complete views, these two categories are subsumed under redundancies
here. Syntantic overlap of two views as last category is not relevant here, since combination
of concrete syntax is out of scope of this thesis. Following Persson, Torngren et al. (2013),
the three listed kinds of dependencies are complete. In contrast to Persson, Torngren et al.
(2013), this classification targets single elements of views, which allows to have multiple
dependencies with different kinds of dependencies between two views.

Another possible kind of dependency could be instance-of, i. e. elements in the first view
are instances of types which are defined in the second view. In other words, the first view
describes a model and the second view describes the metamodel of that model. This refers
to multi-level modeling and is out of the scope of this thesis. Generalizations between
elements of views are not possible, while generalizations between elements of viewpoints
are possible and might be used for combining viewpoints.

Summarizing, the challenge is to cover the heterogeneity of possible kinds of depen-
dencies, i.e. redundant information in multiple views, explicit links between views and

33

Challenge: Consistency
depends on Semantics of
Views

Kinds of Dependencies:

redundant Information
in multiple Views

explicit Links between
Views

Constraints between
different Views

Challenge: support
different Kinds of
Dependencies

1 Motivation

additional constraints between information of different views. The ongoing example has
some examples for consistency challenges, which can be classified according the presented
kinds of dependencies:

Ongoing Example, Part 3: Consistency Challenges < List —

Since the three views for requirements, class diagram and source code together describe the
Consistency same system under development in entirety, there are consistency challenges between these

Challenges: three view due to their contentwise overlaps:

1. Since programmers develop the Java source code to fulfill the requirements, there are
interrelations between the requirements and the source code. Making these interrela-
tions explicitly, allows to navigate from the requirements to their realizing methods
in the Java source code and to trace methods back to their motivating requirements.

Traceability between Therefore, the traceability between requirements and their fulfilling methods should
ﬁi‘i‘ﬁgg?ents and be kept consistent here.

As an example for possible inconsistencies, the programmer realized the requirement
rl (“The student must be able to register for an event.”) in the method
“register” of the class “Student”. Therefore, a traceability link between this require-
ment and this method must be created. To keep the example simple, traceability
links are manually created, e. g. by the programmer.

This consistency challenge is chosen as an example for different concepts in different
views which are interrelated by explicit links as kind of dependency: Usually, these
links are only implicitly existing in practice, but should be explicitly maintained. The
simplest way to enable explicit links between views is to connect their viewpoints by
associations. Of course, such explicit relations can be modeled differently, e.g. by
annotating links with additional information or by typifying them. An additional
challenge is, that these traceability links represent additional content which is con-
tained in none of the existing views. This consistency challenge is managed manually,
since interactions with users are usually required, as demonstrated by Gorp, Altheide
and Janssens (2006) in general and reported for this case by Becker, Herold et al.
(2007, p. 288).

2. Class diagrams and Java have overlaps in form of the redundant description of classes.
Classes in UML C Same classes in class diagrams and Java can be identified by matching names. All
Classes in Java classes must be represented always in Java source code, but not necessarily in the
UML class diagram. Note that although the concept of classes is existing redundantly,
the features of the classes are different in the two viewpoints of this restricted example,
since associations are only described in class diagrams and methods are only part of
the Java source code in this restricted example.

As an example for possible inconsistencies, the architect decided to rename the class
“Student” to “Person” in the class diagram. Now the source code is inconsistent,
since the corresponding class has still the name “Student”. To fix this inconsistency,
the class “Student” in the source code must be renamed to “Person”, too. This fix
can be automated.

This consistency challenge is chosen as an example for redundancies as kind of de-
pendency, while the concepts of classes are completely redundant, but the amount of
concrete classes is overlapping, but is not equal in Java and UML. Another challenge
is to deal with different properties of the redundant concepts (associations only in
UML, methods only in Java). This consistency challenge can be managed automati-
cally.

34

1.2 Challenges

3. Usually, associations in UML class diagrams are implemented as attributes in Java
source code. Since these attributes are private due to the paradigms of object-
orientation, public methods are required which provide the values for the attributes.
Therefore to be usable, each UML association should have a Java getter-method.

As an example for possible inconsistencies, the software architect just adds the asso-
ciation “university” in the “Student” class in the class diagram. Since the “Student”
class in the source code has no getter method called “getUniversity”, there occurred
an inconsistency. This inconsistency can be automatically fixed by creating such a
method in the source code.

This consistency challenge is chosen as an example for two concepts in two different
viewpoints, which have no direct overlap, but are related to each other by constraints
as kind of dependency. Compared to traditional software development, the relation
between an association and a method playing a special role for that association is not
made explicit and exists only implicitly by convention. This consistency challenge
can be managed automatically. To keep the example short, corresponding setters are
not required.

Up to now, these consistency challenges are tried to fix manually in the ongoing development
project. Since some of these consistency challenges are automatable, an automated solution
is desired. Part 4 of the ongoing example discusses some possible alternatives for these
consistency challenges.

Getters for
Associations

Usually, consistency targets only some elements of a view, not the whole view. While
consistency establishes strong conditions for these elements, the other elements are not re-
lated and therefore do not depend on elements of other views. When ensuring consistency
of depending elements, the challenge is to keep these non-depending elements unchanged.
In particular, it must be ensured, that these elements do not get lost when using model
transformations (Section 2.2.3"67) for ensuring consistency, since simple model transfor-
mations can generate only those parts of the target view which are somehow encoded in
the source view. In the ongoing restricted example, classes are contained in class diagrams
and source code and will be kept consistent, but their associations are contained only in
class diagrams, while their methods are contained only in the source code.

Another challenge is, that the concrete consistency challenges are specific for the current
project: Depending on the currently used tools, the project settings and the involved
stakeholders, the consistency challenges can be different. While the general traceability
between requirements and Java source code is natural, its granularity must be specified, e. g.
if requirements are linked to classes or to methods or even to single statements. Spanoudakis
and Zisman (2001) advocate a clear policy how to manage inconsistencies, which depends
also on the team members. Usually, such specifications are defined in a project manual to be
clear and binding for all involved stakeholders. Already with their definition of consistency,
Spanoudakis and Zisman (2001) make clear, that consistency depends on the interpretations
of models by stakeholders regarding a particular setting. Lucas, Molina and Toval (2009, p.
1639) support the need for configurable consistency challenges. Even the desired consistency
in the ongoing example is project-specific, as indicated by demonstrating some alternatives
for the desired consistency:

Ongoing Example, Part 4: Alternative Consistency Challenges

Challenge: keep
non-depending Content

Challenge: Consistency
is project-specific

Part 3 34 of the ongoing example introduced consistency challenges for a simplified software
development project. While those consistency specifications are usable for that project
setting, it is possible to sketch some alternatives for the desired consistency for another

35

Metamodel
A

Model

Artifact described by
Model and its
Metamodel

1 Motivation

project setting:

1. Instead of specifying, that the classes in UML are a subset of the classes in Java, all
classes could be shown always in Java and UML. With this alternative, all classes
can be seen completely in UML, which helps (only) in small development projects.
Another alternative is to allow classes in UML which are not part of Java, which
helps e. g. for designing a conceptual data model.

2. Instead of manually maintaining traceability links between requirements and Java,
traceability links could be automatically created by using a (very simple) heuristic:
If the name of a method is contained in the text of a requirements, that method must
be linked with this requirement.

Summarizing, even a strongly simplified setting for software development allows different
specifications of the desired consistency, depending on the current project, on company
guidelines and on other concerns of stakeholders. Therefore, approaches for ensuring
consistency must support project-specific consistency challenges.

10RJIIY

After identifying challenges for the consistency of interrelated models in this section,
the following two sections (Section 1.2.2 and Section 1.2.3"3%) discuss the temporal origins
of these models and their roles in multi-perspective modeling. All these challenges are
summarized and condensed into the objectives of this thesis in Section 1.3.1* 42,

1.2.2 Reuse existing Artifacts

This section investigates views and their viewpoints which already exist before applying an
approach for ensuring consistency in the particular project. Therefore, these views and their
viewpoints must be reused by such approaches, which raises challenges as discussed below.
These views respectively viewpoints introduce new content respectively new concepts, which
must be kept consistent. Reuse as important principle of software engineering is done here
“as the view(point)s are” without variation and customization in the sense of Kienzle,
Mussbacher et al. (2016).

Since the term “artifact” allows different interpretations (Méndez Ferndndez, Penzen-
stadler et al., 2010), it is introduced for the software engineering area with the following
reused Definition 3:

Definition 3: Artifact

“An artefact is a self-contained work result, having a context-specific purpose and
constituting a physical representation, a syntactic structure and a semantic content,
forming three levels of perception.” (Méndez Fernandez, B6hm et al., 2019)

While the users of artifacts interact with their physical representations, their syntactic
structures enable the automatic processing of artifacts. Here, these syntactic structures are
realized with metamodels, since an artifact should be described by an explicit metamodel
(schema) and an explicit model (instance) conforming to the metamodel, even when the
schema is only implicitly defined by the artifact (Jin, Cordy and Dean, 2002). This model
reflects the content of the artifact and is used for automatic processing instead of using
the original physical representation. Pfeiffer and Wasowski (2013, p. 386) use the term
“mogram” instead, including, among others, models, source code and configuration files.
Summarizing, existing artifacts provide metamodels and conforming models, which can be
reused in order to avoid to recreate them.

The viewpoints used by stakeholders during system development are realized by tools

36

1.2 Challenges

or files in fixed file formats, as motivated in Section 1.1 28. Usually, existing tools for
development in a project are initially identified, selected and used, instead of the creation
of new tools. The tool selection depends on, among others, already existing tools, company
guidelines, experience with tools, guidelines of the customers and further concerns of the
stakeholders. Since such tools and file formats are predefined and should not be changed
in the project, since the tools usually do not support the evolution of their expected data
structures, they are fixed and must be covered by approaches for ensuring consistency
“as they are”. The existing viewpoints to be reused might be different, even if the same
information is encoded, depending on different versions of tools or file formats, e. g. xlsx vs
xls for EXCEL. Findings from practice show, that long support for modeling languages is
very important for industry, so existing languages must be reused (Briand, Falessi et al.,
2012; Whittle, Hutchinson et al., 2013). The challenge is to reuse existing viewpoints.

Nowadays, new systems are not developed from scratch on the greenfield, but in inter-
play with existing systems and environments, leading to initial information for the system
architecture. Early prototypes for requirements elicitation or technical feasibility studies
lead to initial implementations. Established knowledge in the company can be reused in
form of libraries or reference models leading to some initial data to be reused. Therefore,
approaches for ensuring consistency need to deal with already existing models. This in-
cludes importing existing models into such approaches and exporting them again to keep
the initial models up-to-date and conforming to the fixed viewpoints. This is summarized
as challenge to reuse existing views as they are. Moreno and Vallecillo (2004) identified the
reuse of existing systems as an important challenge in modeling, since there exist already
developed COTS components, which should be reused for developing a new system or there
exist legacy code, which should be maintained. Bucchiarone, Cabot et al. (2020) emphasize
the need for ongoing co-existence of legacy models, since they have been developed over
decades and should continue to be used.

Before using an approach for automatically ensuring consistency, existing views might
conform to their viewpoints, but are not necessarily consistent to the other existing views,
since they were managed without help of such automated approaches. Reusing such views
requires to fix them to be consistent to the other views. Therefore, approaches for ensuring
consistency are faced with the challenge to fix possible inconsistencies in the initial models.

Predefined viewpoints and their already existing views are subsumed as data sources,
as defined in the following Definition 4. A concrete data source is rendered as
in this thesis.

Definition 4: Data Source

A data source incorporates one view and its viewpoint which both exist before start-
ing to apply an approach for ensuring consistency. Data sources represent input for
such approaches.

This definition is applied to the ongoing example in order to emphasize the data sources
to reuse:

existing Viewpoints are
project-specific

Challenge: reuse
existing Viewpoints

Challenge: reuse
existing Views

Challenge: fix existing
Views

Ongoing Example, Part 5: Data Sources

The ongoing example comes with already existing data sources for requirements, Java and
UML, as introduced in Part 2 2% of the ongoing example. This box emphasizes the exis-
tence of data sources with metamodels, models and concrete syntax. This part of the on-
going example describes the involved data sources in more detail regarding their concepts
in general (the viewpoint as itemize list), the already developed parts for the university
information system in particular and their concrete syntaxes (the view as figure).

37

textual
Requirements
Viewpoint

textual
Requirements
View

Java Source Code
Viewpoint

Java Source Code
View

Class Diagram
Viewpoint

1 Motivation

Requirements are elicited by requirements engineers in CSV files focusing on the func-
tionalities of the project to realize. To keep the example simple, textual requirements
(instead of user stories) are used with the following features:

e A requirements specification contains multiple requirements.

o All requirements have a unique identifier, a text representing the content of the
requirement in one sentence, and the author of the requirement.

e The requirements specification is written in form of a CSV table.

For the university information system, there are already two requirements, as depicted in
Figure 1.1, referring to two functionalities for students, i. e. the enrollment at the university
and the registration for events like lectures. The requirements are stored in CSV-formatted
files. This CSV format is supported directly, as shown later in Part 24 275 of the ongoing
example.

Table 1.1: The initial input of (Requirements| in CSV format
ID Author Text
1 rl Andreas Winter The student must be able to register for an event.
2 12 Johannes Meier The student must be enroled at the university.

Java source code is written by programmers in their IDE to fulfill the requirements
according to the design in form of class diagrams. Java source code is strongly simplified
with the following features:

e The Java source code consists of multiple classes, without packages.

e (lasses are described by their names.

e Classes contain methods identified by their names, without parameters.

e Methods know which methods they call and by which methods they are called.

For the university information system, there is already some source code, written in
Java, depicted in Figure 1.1*39. It contains the two classes “University” and “Student”.
The Java source code is developed using the Eclipse IDE. Since the figure uses a screenshot
of Eclipse, it shows some more aspects of Java, which are ignored in this strongly reduced
ongoing example.

UML class diagrams are developed by software architects using modeling tools for im-
portant parts of the architecture and data models to provide a solid foundation for the
system under development. Class diagrams are simplified with the following features:

e A class diagram contains multiple classes.
o (lasses are described by their names.

e (Classes contain unidirectional associations having a name, lower bound, upper bound
and a class as type.

38

1.2 Challenges

IZE Package Explorer &4 % ¥ =0 |1| Lecture.java _.'T_l Student.java ta m University.java

s

FEE‘JASCFramework package university;

PEE‘J commons-lang3

Pr,-f‘«J»cc-mmons—mathﬁf 3 import java.util.List;
Pr.-ij»guaua 4 .
PF-:‘J ot 5 public class Student {
%:Jguava g) an B private String name;
b%ijguaua—testl|h 7 private List<lLecture> lectures;
b = guava-tests]
,-l_'/ av, Bz public void register{lLecture lecture
= JavaasG bl d ter(Lecture lecture) |
[JavaTestProject 14 lectures.add{lecture);
» (= Provider)DT 11 ¥
‘Fr.-f‘«J'TestPorject 1‘? ¥
= 4
¥ B .

¥ i university
b [J] Lecture java
P_,'T_| Student.java
> |I| University.java
P & JRE System Library [lava SE 8 [1.8.0_25]]

Figure 1.1: Java source code of the ongoing example

For the university information system, there is already a first design for the system,
in form of a class diagram, as depicted in Figure 1.2. It contains only one class named
“University”.

University | suniversity[1] Student

students[*] | +Name : String

Figure 1.2: Class diagram of the ongoing example

The amount of concepts contained in the three viewpoints is chosen to cover the consis-
tency challenges described in Part 3" 34 of the ongoing example, to be as small as possible
and to represent a practical application from the software engineering domain. The work-
shop series for consistency challenges in software engineering with UML (Huzar, Kuzniarz
et al., 2005) shows the relevance of ensuring consistency for UML models and therefore
motivates the use of UML in the ongoing example.

The class diagrams for the corresponding viewpoints behind these visualizations of the
data to reuse are shown later in following boxes, e. g. in Part 9% 54 of the ongoing example.
This counts also for the views rendered as object diagrams.

Class Diagram
View

1.2.3 Define new View(point)s

This section investigates views and their viewpoints which are derived after applying an
approach for ensuring consistency in the particular project. Therefore, such approaches
must provide techniques to define these views and their viewpoints, which raises challenges
as discussed below. These views respectively viewpoints do not introduce new content
respectively new concepts, but structure already existing content respectively concepts in
a different way:.

Therefore, one overall challenge in multi-perspective modeling is to introduce new view-
points to support additional stakeholders with information about the system under devel-
opment targeting their concerns. New viewpoints reduce the big amount of information

39

new View(point)s
represent existing
Information in new i.e.
different Ways

new View(point)s are
project-specific

Challenge: restructure
Information stemming
from multiple Data
Sources

Challenge: keep new
Views consistent

Challenge: enable
editable new Views

1 Motivation

about the whole systems and provide only that information in form of a new view which is
needed by the stakeholders.

Newly created viewpoints and conforming views are called new view(point)s, as defined
in the following Definition 5. A concrete new view(point) is rendered as [NewView(Point))
in this thesis.

Definition 5: New View(Point)

A new view(point) incorporates a view and its viewpoint which are introduced newly
during the application of an approach for ensuring consistency. New view(point)s
represent already existing information in a different way.

In contrast to data sources, new viewpoints represent concepts already encoded in the
systems description or the data sources, but are tailored and restructured according to
the needs of other stakeholders. Since the reused data sources are project-specific (see
Section 1.2.2*3%) new views and their new viewpoints are project-specific, too. Addition-
ally, their purposes and therefore their designs are depending on the stakeholders and their
concerns of the current project.

Other related work also emphasizes the need for defining new view(point)s: France
and Rumpe (2007) require new views to be customized to better understand single parts
of the system on the one hand and their interactions on the other hand, supported by
different kinds of new views in order to reduce complexity and to cover different levels of
abstraction. Persson, Torngren et al. (2013) classified the inclusion of new views as one
of the main challenges in multi-view modeling under the term extendability, but without
further motivations.

The reuse of already existing information from views of data sources includes also in-
formation covering multiple views and information “between” views, e.g. explicit links
between views (see page 33). The challenge is to collect information from multiple views
and to provide it in a uniform and restructured way.

Another challenge is to keep such new views consistent to the already existing ones, since
new views contain information stemming from other views by definition. Therefore, changes
in the other views must be propagated also into new views, according to Section 1.2.1% 3,

The most important challenge is to support editable new views: A read-only mode for
new views is helpful for reading information, in particular for getting an high-level overview
with aggregated values. But changing information shown in new views is very important to
enable stakeholders with concerns which are not supported by the existing data sources to
work actively on the current information. Challenging is the propagation of changes in new
views back into all other views due to the view-update problem (Bancilhon and Spyratos,
1981), for which not always a solution exists or the solution is not always unique (Dayal
and Bernstein, 1982; Reder and Egyed, 2012). More related work in this area is discussed in
Chapter 3 9. Summarizing, the challenge is to enable editable new views by propagating
changes in these views back into the other views.

Ongoing Example, Part 6: New View(Point)s + List —

In the project of the ongoing example, a project manager wants to see the progress of
the project. More concrete, the project manager is interested, if requirements are already
realized in Java source code. Such mapping between requirements and Java will be realized
as shown in Figure 1.3 4%,

The requirements are shown with their ID (first column) and text (second column).
The third column lists all methods in the Java source code (separated by comma, prefixed
by their class names), which realize the corresponding requirements (it is empty, since the

40

1.3 Aims

data sources do not contain such traceability links). Since the project manager does not
want to deal with technical documents, this new view will be realized as EXCEL sheet and
not as CSV file.

But the project manager wants not only to see the current realization of requirements,
but also to manage them: In particular, the project manager wants to add Java methods,
which were added by programmers in the mean time to fulfill the requirements. Removing
methods should be possible, too, e. g. after new test cases showed, that the implementation
still contains errors.

@0 Aucsave @F A HE O

Home Insert Draw Page Layout Formulas Data Review \

ﬂ . . -~ v — —
Dv & Calibri v N v A A == | ©
(3 v -
Paste @ B I U v v O v ﬁ v = — I — =
A
Al - fx D
A B C D E F G H
1 |ID IText Fulfilling Methods
2 r1 -1hestudentmustbeabletoregisterfnranevent.
3 |r2 The student must be enroled at the university.

00N oYUV B

Figure 1.3: The final concrete syntax of [Traceability| in Excel format

It is not possible to create or to delete methods, only their mapping to requirements
can be adjusted. Renaming methods or classes is impossible, too. If the project manager
uses methods which do not exist, they will be removed from the new view. Additionally, it
is possible to change the text of the shown requirements.

This example shows the need to define new view(point)s containing information stem-
ming from multiple data sources (here: requirements and Java), in a different structure as
in their original data source (here: qualified method names instead of mesh of objects) and
in an editable way.

These three challenges, i.e. consistency between multiple views (Section 1.2.1%31),
which might already exist (Section 1.2.2*36) or are newly derived (Section 1.2.3"3%), are
the foundation for the objectives of this thesis, as clarified in the next Section 1.3.

1.3 Aims

After establishing the problem of inconsistencies between multiple views in Section 1.1* 26
and identifying related major challenges in Section 1.2 3!, the main objectives to overcome
these problems and challenges are clarified in Section 1.3.1* 42, forming first high-level
requirements for a corresponding approach in Section 1.3.3®46. As demarcation, Sec-

41

intra vs inter-model
Consistency

intra: #Models =1

inter: #Models > 2

alternative Definitions
from Related Work

1 Motivation

tion 1.3.2" 43 presents other challenges and related research areas which are no objectives
of this thesis.

1.3.1 Objectives

The main challenge is to ensure consistency between multiple views, as discussed in Sec-
tion 1.2.131. As preparation for the objectives of this thesis to be defined in this section,
the term consistency as summarized in Definition 232 is concretized here: This thesis
distinguishes consistency into intra-model consistency in Definition 6 and inter-model con-
sistency in Definition 7, depending on the number of involved models. The models describe
the information of relevant views which represent parts of the system under development:

Definition 6: Intra-Model Consistency

One model is consistent, if this model describes one system without semantic con-
tradictions within a particular project.

Intra-model consistency targets the consistency of a single model and requires, that
this model describes a system without (internal) contradictions. Intra-model consistency
considers only one view and its representation of a system. This system might be part
of a bigger system, which is represented by some more views, which leads to inter-model
consistency, while intra-model consistency is restricted to the (internal) consistency of one
view. An example for intra-model consistency in Java is the specification, that all methods
within the same class must be unique regarding their names in the ongoing example (and
the types of their parameters in complete Java), as discussed in Part 28 480 of the ongoing
example.

According to Definition 6, Definition 7 defines:

Definition 7: Inter-Model Consistency

Two or more models are consistent to each other, if these models describe parts of
the same system without semantic contradictions within a particular project. All
models realize views which together describe the whole system. Each model must
fulfill intra-model consistency.

Inter-model consistency focuses on the relations between multiple models and requires,
that the models do not contradict each other. If some of these models do not fulfill intra-
model consistency, they introduce inconsistencies into the whole system. Therefore, all
involved models must also fulfill intra-model consistency as precondition. All presented
consistency issues in the ongoing example target inter-model consistency.

The terms intra and inter-model consistency are not explicitly used by Persson, Torn-
gren et al. (2013), but they define the consistency between views only for views which
are consistent internally, which corresponds to intra and inter-model consistency. Egyed,
Zeman et al. (2018) use the corresponding terms “intratool consistency” and “intertool
consistency” from a tooling point of view. Goldschmidt, Becker and Burger (2012) defined
“intra view overlap” and “inter view overlap” comparable as the multiple occurrence of
same elements within one view respectively two or more views.

In contrast to these definitions, Huzar, Kuzniarz et al. (2005) define intra-model and
inter-model consistency regarding the level of abstraction of the involved models: Intra-
model consistency targets models with same abstraction level, while inter-model consis-
tency targets models with different abstract levels. This distinction is not needed here,
since this approach aims to keep arbitrary models (i.e. with same or different abstraction
levels) consistent. With requirements and source code, the ongoing example directly targets

42

1.3 Aims

different abstraction levels. Section 13.4.2% 4™ discusses different levels of abstractions in
general.

Broy, Feilkas et al. (2010) distinguish between wvertical and horizontal consistency, tar-
geting consistency issues in models of the same (horizontal) or of different (vertical) de-
velopment phases like requirements elicitation and implementation. This distinction is not
necessary here, since this approach aims to keep models consistent independently of their
number, order or size of changes, as shown by the ongoing example targeting requirements
and source code.

Engels, Kiister et al. (2001) do not clearly distinct the level of abstraction and the
development phase from each other, when using the terms horizontal and vertical consis-
tency. Usually, early development phases correspond with views of higher abstraction (e.g.
requirements), while subsequent development phases correspond with views of lower ab-
straction (e.g. source code). But this is not always true, e.g. for prototypes in early design
space explorations.

Lucas, Molina and Toval (2009) reuse the definitions for intra/inter-model consistency
from Huzar, Kuzniarz et al. (2005) and syntactic/semantic consistency from Engels, Kiister
et al. (2001). They complement them by examples, which seem to intermix syntactic/se-
mantic consistency as defined by Engels, Kiister et al. (2001) with consistency between
views for static and dynamic aspects of the system. This Definition 232 does not dis-
tinguish between consistency of models describing static aspects of the system and models
describing dynamic aspects of the same system, since both kinds are targeted.

Regarding versioning of models, Van Der Straeten, Mens et al. (2003) distinguish hori-
zontal consistency targeting different models at the same version and evolution consistency
targeting one model at different versions. Vertical consistency between a model and its
refining model is mentioned, too, but not deepened. This thesis focuses on the consistency
between models at the same version by fixing occurred inconsistencies. Of course, fixing an
inconsistent model leads to a new version of this model.

These clarifications of the terminology for consistency help to state the objectives of
this thesis:

Objectives

The main objectives of this thesis are development and evaluation of a new approach
to ensure consistency between interrelated models (inter-model consistency) auto-
matically. The involved models can be reused from ongoing activities or derived as
new views.

This thesis is focusing on inter-model consistency and assumes as precondition, that the
data sources to manage are already consistent in itself. This allows to focus on consistency
issues between different models, without being contradicted by intra-model inconsistency.
Nonetheless, Section 13.4.5 480 shows, that the approach of this thesis can also fulfill
intra-model consistency.

Usually, the interrelated models are conforming to different metamodels, since they
describe different parts of the system under development. Therefore, changes in one model
have to be synchronized into all related models while taking different metamodels into
account. Later, this is realized by using an explicit Single Underlying Model (SUM), as
introduced and discussed in the related work (Section 3.4 120).

1.3.2 Demarcation

This section makes explicit, which aspects are not objective of this thesis, and demarcates
it from other fields of related research. This section thereby emphasizes the main objective
of this thesis.

43

fix Inconsistencies
specifically for the
Project

Dimensions of
Integration

concrete Syntax does
not matter

Tool vs Data
Integration

ensure tool-independent
Data Consistency

1 Motivation

Here, it is not sufficient to detect inconsistencies, which is called “impact analysis” by
Persson, Torngren et al. (2013). Objective is to fix inconsistencies, which requires changing
actions. While manual fixes are senseful in some cases (Gorp, Altheide and Janssens, 2006),
the approach of this thesis focuses on automated fixes for inconsistencies. These fixes must
fulfill the needs of the particular project setting, rejecting approaches which determine fixes
in non-deterministic way like graph repair (Sandmann and Habel, 2019).

This thesis focuses on data integration in terms of Wasserman (1990) only. With the
background of tool integration, Wasserman (1990) classifies five dimensions of integration:

Platform Integration covers network and operating system services as provided by mid-
dleware or operating systems. While software, tools, and services are not in the
focus of this thesis, the Eclipse Modeling Framework (EMF) as central data format
(Section 2.5.3%°87) could be seen as precondition for integration in this category.

Presentation Integration covers unique interfaces for the users of tools, e.g. graphical
user interfaces. Focusing on the pure data, their (re)presentations are not relevant in
this thesis and can be realized in different ways (Section 6.6.5" 226) i. e. the concrete
syntax does not matter and can be realized with any approach, e.g. with XTEXT
(Chapter 9 283) or EXCEL.

Data Integration covers exchange and sharing of data used by multiple tools. This is
highly relevant for this thesis, since different tools using different data lead to the
need for a management of these data in terms of consistency, as motivated in Sec-
tion 1.1%26,

Control Integration covers communication between tools in order to send notifications
from one tool to other tools about occurred events. Since the interaction between the
different views can be summarized as “changes inside one view must be propagated
into all other views”, only one trigger like “view is changed” is required to start the
process of change propagation. As long as this trigger is existing, a general solution
for arbitrary communication between tools or views is not required here.

Process Integration covers the integration of tools by a superordinate process manage-
ment. Since the change propagation is designed to run automatically without user
interaction, it can be realized within one process and can be easily integrated into
other process managers or tools.

While this distinction shows, that tool integration is a multi-dimensional challenge in gen-
eral, this thesis focuses on the data dimension: The main challenge of change propagation,
identified as objective of this thesis, falls in the category of data integration. The survey
of Asplund and Térngren (2015) shows, that the dimension of data integration is the most
important aspect, together with control integration. In this thesis, the term tool integra-
tion subsumes platform, presentation, control and process integration. Additionally, the
distinction above indicates, that the aspects for tool integration do not introduce additional
serious challenges when overcoming the challenge of data integration.

This thesis aims for integration regarding data and not for integration regarding tools,
as there are other approaches for tool integration like SENSEI (Jelschen, 2015). Conse-
quently, the change propagation is not realized in form of another more or less enclosed
tool like JETBRAINS MPS (Section 3.6.2"137) but in a stand-alone library for ensuring
tool-independent data consistency. Thomas and Nejmeh (1992) summarize very accurate:

“The goal is to maintain consistent information, regardless of how parts of it
are operated on and transformed by tools.” (Thomas and Nejmeh, 1992)

44

1.3 Aims

But an integrated data structure can be used as data structure for an integrated tool-
ing (Wasserman, 1990). Therefore, solving the challenge of data integration provides foun-
dations for realizing tool integration.

As already motivated earlier, this thesis concentrates on data described by an explicit
schema (Jin, Cordy and Dean, 2002). The data are instances conforming to one schema.
This thesis narrows the data to one instance-of level, while approaches for multi-level mod-
eling with two or more instance-of levels are not supported. Later, data and their schema
are realized by a model and its metamodel, as concretized in Section 2.2 %8,

Since the consistency is project-specific (see page 35), this thesis does not provide a
generic integration which is valid for each application domain, but enables a specific inte-
gration for each particular system, developed in a particular project by a particular com-
pany with a particular team. This counts not only for the consistency rules, but also for
the involved models and metamodels.

This thesis will not solve all problems of software development: Software development is
used only for demonstration with the small, ongoing example. Applications in Part IV *= 283
outside of software development show, that the new approach solves data consistency in
various domains, not only software development.

This thesis does not focus on enabling collaboration between multiple users on the same
data in real-time, but enables stakeholders to work independently from other data on their
individual data subsets, which are kept consistent to the data of the other stakeholders.
The stakeholder can work in spatial separation, as discussed in Section 13.4.4% 480

This thesis will not solve all problems in model-based engineering (introduced in Sec-
tion 2.2*%8), in particular, the integration of various modeling techniques and their tools is
not covered. But with the focus on consistent models managed through multiple views, this
thesis realizes a step towards realizing integrated model-based engineering, as motivated in
the vision of Broy, Feilkas et al. (2010).

A related, higher-level research topic is multi-paradigm modeling (MPM) (Mosterman
and Vangheluwe, 2004): MPM is motivated by the heterogeneity in the dimensions appli-
cation domains, viewpoints, development activities (like implementation and verification)
and levels of abstraction and aims to overcome the heterogeneity of models corresponding
to these four dimensions (Hardebolle and Boulanger, 2009). MPM emphasizes the behavior
of systems and development activities like model-based simulations (Vangheluwe, de Lara
and Mosterman, 2002). The heterogeneity of viewpoints leads to consistency challenges be-
tween views, which is the main motivation of the new approach this thesis. This approach is
project-specific (see above) covering the heterogeneity of application domains and supports
models with different levels of abstraction (see Section 1.3.1* 42 and Section 13.4.2%47).
On the one hand, the heterogeneity of development activities requires to integrate different
tools, which is not the objective of this thesis (see above). On the other hand, development
activities require tailored views, which can be provided by the new approach.

In the field of distributed systems and shared data storages, the term consistency targets
the results of read and write operations by multiple processors on the same data, for which
many different consistency models exist (Viotti and Vukoli¢, 2016). This is not relevant here,
since it deals with the consistency of the same data for multiple processors, while this thesis
ensures consistency of different data to each other in terms of contentwise interrelations.

Out of scope is also the concept of data replication (Tos, Mokadem et al., 2015), since
it duplicates the same data for improving non-functional properties like robustness. In
contrast to keeping the same data up-to-date at different locations, this thesis keeps differ-
ent but interrelated data consistent with each other regarding these interrelations. Some
insights into data replication are given by Antkiewicz and Czarnecki (2008, p. 40f) from a
model synchronization perspective, basing on the survey for replication strategies by Saito
and Shapiro (2005).

With a similar motivation, the identification and management of model clones (Storrle,

45

project-specific
Solutions

Software Development

Types of Collaboration

Model-based
Engineering

Multi-Paradigm
Modeling

read/write consistent
Data in Processors

Data Replication

Model Clones

Data Migration

Data Interoperability

Conformance of Models
to their Metamodels

Model Co-Evolution

Model Editors

Consistency vs
Correctness

legal Issues
as Precondition

1 Motivation

2013) is also out of scope, since clones represent duplicates within models conforming to the
same metamodel. Since model clones are finally detected by heuristics, human interaction
is required to verify found candidates to be actual clones, which prevents fully-automated
approaches as desired here.

Data migration, i.e. the migration of data during migration projects, is also not in the
focus of this thesis. A major difference is, that migrations are done once (or a limited
number) during the limited duration of the migration project, while data consistency is
an ongoing task and is required as long as the involved data are used. Additionally, data
migration usually migrates existing data from the old system into the new system, but
not vice versa. In order to keep existing data sources up-to-date, fulfilling this challenge
of Section 1.2.2% 36 requires to propagate changes back from the new system into the old
system, too. Since the new approach supports this as “additional use case”, the new
approach could be used to realize also data migration, as discussed in Section 14.4.3* 498,

Data interoperability, i.e. supplying the same data in different data formats, is also
not the motivation for this thesis. Thanks to the adapters (Section 6.6.5" 220), such data
conversations are possible to some degree, as discussed in Section 14.4.3% 498 but are not
in the foreground of this thesis.

The conformance of models to their metamodels is important in general and also in par-
ticular for this thesis. In order to distinguish this relation between models and their meta-
models from definitions for syntactical consistency from related work (Section 1.2.1%3%), it
is called conformance and not (syntactical) consistency in this thesis. This conformance can
be hurt by two cases, i. e. by changing the metamodel or by editing the model: Changing the
metamodel requires to change existing models and is called model co-evolution (Wachsmuth,
2007). Model co-evolution is neither the main motivation nor the main objective of this the-
sis, but is an important part of the solution for the chosen approach, since metamodels are
changed together with their models (Section 6.2 192). Therefore, this new approach can
be used for realizing model co-evolution, too, as discussed in Section 14.1.2.3% 487 Editing
the model must comply with the specifications and constraints of the metamodel. Addi-
tional semantic constraints represent intra-model consistency. Since this thesis targets the
inter-model consistency between multiple models, this case is out of scope. There are other
approaches in related work focusing on this case, e.g. Nassar, Radke and Arendt (2017),
Barriga, Rutle and Heldal (2019) and Kehrer, Taentzer et al. (2016). Nevertheless, this
new approach can realize also this case to some degree, as discussed in Section 13.4.5% 480,

This thesis ensures consistency between different views, but not the correctness of single
views or the whole system under development. In particular, information which is wrong or
does not make any sense is allowed in views, but this (wrong) information must be identical
(i.e. consistent) in all views. Therefore, the approach of this thesis does not locate bugs in
models (Arcega, Font et al., 2019), but inconsistencies between models.

While this thesis demonstrates, how data can be kept consistent by their integration,
there are also legal conditions for managing data: Before integrating data, legal issues and
conditions regarding their handling and combination must be checked and fulfilled. This
might limit some application scenarios of the presented approach in practice, but is out of
scope of this thesis in general.

1.3.3 High-level Requirements
After defining the objective of this thesis in Section 1.3.1* 42 and demarcating it from other

aspects in Section 1.3.2% 43, the following high-level requirements are directly derived from
the objectives established on page 43:

46

1.4 Summary & Outline

First high-level Requirements

R 1 Changes in one model have to be propagated into all related models. (Model
Consistency)

R 2 The approach must allow to reuse existing artifacts. (Reuse existing Arti-
facts)

R 3 The approach must allow to define new view(point)s. (Define new
View(point)s)

Requirement R 1% 174 covers the main objective of this thesis, to keep models consistent
to each other after occurred changes, as motivated in the challenge Model Consistency (Sec-
tion 1.2.13!). Change propagation is the behavior desired by users of models, as deepened
in Section 2.3 71, Additionally, change propagation is no concrete realization strategy for
ensuring consistency, since Section 3.2 %9 identifies several classes of concrete realization
strategies for change propagation. Requirement R 2" %% covers the challenge Reuse existing
Artifacts (Section 1.2.2* 35) to reuse existing artifacts and keep them consistent, too. While
the focus is to reuse existing artifacts and to keep their models consistent to each other,
it is also possible to start without any reused artifacts, as discussed in Section 13.3.2* 47,
Requirement R 3% 1% covers the challenge Define new View(point)s (Section 1.2.3%3%) to
define new viewpoints with reuse of existing and consistent information. These high-level
requirements will be concretized in following sections, in particular in Section 4.1 154,

1.4 Summary & Outline

This Part 1*?° identified the preservation of consistency in multi-view environments as
important challenge. It forms the main motivation and objectives of this thesis, comple-
mented with the need to support already existing artifacts as data sources and to define
new view(point)s. The introduced ongoing example showing a strongly simplified software
development project is used during all parts of the thesis for demonstration purpose.

The most important basic concepts for managing the consistency for models, like ter-
minology for consistency, modeling foundations and technical spaces, are introduced in
Chapter 2 5. More basics which are less important are introduced at that location, where
they are needed the first time.

The main related work discussing existing approaches for ensuring consistency in multi-
view environments is located in Chapter 3 3. More related work discussing alternatives for
the current topic is located directly at the location of that topic. This counts in particular
for design decisions in Chapter 6% 8% which are enriched with related approaches. The
lessons learned from analyzing related approaches are used to establish requirements for
the new approach of this thesis in Chapter 4 153, The requirements take up also the main
challenges of model consistency.

The new approach for ensuring consistency between models is designed and realized in
Part I11* 163, starting with an overview of the new approach called MoCONSEMI in Chap-
ter 5163, The main design decisions are made and discussed in Chapter 6" 185 to fulfill
the requirements. Operators as central part of the developed approach are documented
in Chapter 7241, Chapter 8 203 presents the implementation of the designed approach
including the operators in form of a reusable framework.

This framework is used in Part IV 23 to apply the designed approach in different
application domains, including management of access rights (Chapter 9 283) viewpoint-
driven architectures for smart environmental information systems (Chapter 10 373) and
knowledge management for projects (Chapter 11387). Best practices for application in

47

Summary

Outline

Deliverables

1 Motivation

general are derived in Chapter 12" %% from these concrete applications.

In Part V*467_ these applications provide reliable arguments to evaluate the applica-
bility of MOCONSEMI and the fulfillment of the requirements (Chapter 13 467). These
results are summarized in Chapter 14 483 with contributions of this thesis, identified lim-
itations and possible future work.

The described outline aims at developing the targeted deliverables of this thesis, mainly
a new approach for ensuring inter-model consistency, targeting the main objective of this
thesis. This conceptual approach is realized as reusable framework in Java. The frame-
work is applied to multiple application scenarios evaluating the design approach. These
deliverables are summarized in the following box:

Deliverables

To fulfill the objectives of this thesis, the following deliverables are developed and
documented in this thesis:

1. a new approach to ensure the consistency between interrelated models auto-
matically (called MOCONSEMI)

2. a framework realizing this approach (the MOCONSEMI framework)

3. several applications using this framework to evaluate the developed approach

To realize these deliverables, required foundations are introduced in the next Part IT1* 5.
Central design decisions for the new MoCONSEMI approach are motivated in Chapter 5 163,
while its details are developed in Chapter 6* ¥, The supporting MoCONSEMI framework
is implemented in Chapter 8" 263, The applications are documented in Part IV ™ 283,

48

Part 11

Foundations

This part provides foundations for ensuring inter-model consis-
tency. Basic concepts for views, their realization with models
and technical spaces as well as concretized concepts for consis-
tency and their involved stakeholders lay out foundations for
the analysis, classification and evaluation of related approaches.
Although there are lots of approaches for ensuring inter-model
consistency in various research areas with various realization
techniques and strategies, there is no approach which fulfills all
needs for ensuring inter-model consistency with satisfactory de-
gree, which motivates to develop a new approach for ensuring
inter-model consistency in this thesis. The findings from ana-
lyzing basic concepts and related approaches are summarized as
requirements for this new approach.

49

Chapter 2

Basic Concepts

This section clarifies some terms from the motivation (Chapter 1*2%) and lays out the

foundations for the analysis of related work (Chapter 3 9) and the design of the new

approach (Part III* 163). Since the use of multiple views during system development intro- Outline of this Section
duces a potential for inconsistencies, Section 2.1 54 clarifies the understanding of views and

their viewpoints. Since views of interest and their represented information are conceptually

realized by models, Section 2.2* °® introduces terminology of model-based engineering.

In order to ensure consistency between views as main objective of this thesis, the un-
derstanding of consistency is increased in Section 2.3 7!, Since different groups of persons
are differently involved in the specification and application of consistency, Section 2.4 ™
introduces four types of stakeholders involved in the management of consistency. In order
to technically realize models for automation, Section 2.5 % motivates the use of EMF as
technical space for realizing models in this thesis. Section 2.6 %) summarizes the resulting
foundations.

During the presentation and discussion of foundations, the high-level requirements of Concretize
Section 1.3.3%%6 are concretized respectively complemented by additional requirements, Reduirements
whose need is motivated by currently discussed foundations. All requirements are motivated
and collected in Chapter 4 %3 as summary.

In order to clarify the relationships between the concepts used within this section and
to show their impact for consistency, these concepts are applied to the ongoing example Big Picture of Concepts
resulting in a big picture, which shows also the relevance of the terminology. Afterwards, gﬁ;‘i ;ﬁf Ongoing
this terminology is introduced in detail in the following parts.

Ongoing Example, Part 7: Applied Concepts as Megamodel

The concepts and terminology of this section are applied to the ongoing example in

Figure 2.1*°2. Since these concepts can be treated as models and in particular views

are realized with models (Section 1.1*26), the idea of megamodeling (Bézivin, Jouault Megamodels
and Valduriez, 2004) is used to analyze possible relationships between different models. A g;g;gizhips
megamodel is a graph, whose nodes represent models and whose edges represent different between Models

kinds of relationships between these models. According to the principle of “everything is a
model” (Section 2.2 58), it is possible to treat the depicted elements as models.

o1

Reality: Artifacts
for the System
under Development

Modeling: Views
represent Artifacts
(called Concrete
Renderings)

Complete View
consists of Partial
Views

Viewpoints
determine Content
of Views

2 Basic Concepts

Reality Modeling
System under 4 SystemuD \ System uD
Development __}epresentedBy, Description _JconformsTo, & O8i&E 000
é

Requirements
Viewpoint

Requirements | é

representedBy, u View @ gormsTo, X
é

|

ClassDiagram ClassDiagram
epresentedBy, View \(ionformsTo, X Viewpoint
JavaCode JavaCode
JavaCode e - bocccoceoocco : :
representedBy, p View conformsTo, x Viewpoint

virtual

Liggemd: Concepts

Concrete Renderingsw

Figure 2.1: Concepts as Megamodel, applied to the ongoing Example

The left part describes the elements in reality: Requirements, class diagrams and Java
source code are the artifacts in reality (Definition 3 36) as presented in Part 537 of
the ongoing example, which are used by stakeholders to jointly realize the system under
development of the current project. Since the system under development usually does
not exist as a single, explicit artifact, but represents the objective of the ongoing project
and therefore implicitly exists, it is visualized as cloud in Figure 2.1. In general, nodes
visualized as cloud indicate concepts which exist at least implicitly and might exist also
explicitly, if they are manifested. The system under development consists of the artifacts (6-
relationships), therefore, the artifacts are abstracted parts of the system under development.

The right part (gray area) describes the elements for modeling the elements in reality:
The artifacts, which are used in reality, are treated as views in modeling (u-relationships),
leading to views for requirements, for class diagrams and for Java source code. The other
way around, views are visualized in reality called concrete renderings for requirements with
EXcEL files, for UML class diagrams and for textual Java source code.

Additionally, the system under development in reality can be completely described by
a view in modeling (“System uD Description”, “uD” is the shortcut for “under Develop-
ment”). This view is a complete view for the system under development in contrast to
partial views for artifacts. The partial views can be composed into the complete view
(6-relationships), even when the complete view is not made explicit.

In order to determine, which parts of the complete view are in the partial views, view-
points are used, leading to viewpoints for requirements, for class diagrams and for Java
source code. These viewpoints select (depicted as d-relationships) some concepts of the
system under development (“System uD Concepts”), which should be depicted in conform-
ing views (x-relationships). This (complete) viewpoint (cloud “System uD Concepts” in
Figure 2.1) often exists not explicitly, but implicitly.

Up to now, the terminology with system under development, artifacts respectively con-
crete renderings, views and viewpoints targets the conceptual level. Multiple perspectives

52

are multiple views conforming to different viewpoints. As the term multi-perspective mod-
eling suggests, views are realized by models (Section 1.1 25) on more technical level, i.e.
the information of the system under development which is selected to be represented by a
view is encoded as model. Therefore, the views are depicted as models in Figure 2.1 52,
Accordingly, viewpoints encode the structure desired for the models of conforming views as
metamodels and are depicted as metamodels in Figure 2.1 2,

Summarizing, a view can be seen as a mapping of one system under development and
one viewpoint, leading to one model. This model represents those parts of the system under
development which are indicated by the viewpoint, and in the structure which is determined
by the metamodel of the viewpoint. Since a stakeholder requests a view, but is usually not
used to work on the view’s model directly, concrete renderings of the model are provided,
which are determined by the viewpoint.

All relationships between two nodes as depicted in Figure 2. require synchroniza-
tion in order to ensure these relationships. Note, that synchronization can follow relation-
ships in transitive way, which is important in particular for d-relationships, as deepened
below. The impact of changes within nodes is analyzed regarding related nodes depending
on the kind of relationship:

1-@52

RepresentedBy p describes the relationship between models and their systems (accord-
ing to Definition 1259 following in Section 2.2.15%). Here, views represent parts
of the system under development like the concrete requirements, class diagrams and
source code.

u-relationships require synchronization on technical level: Stakeholders usually do not
directly work on the models of the views, but work on parts of the represented systems
as concrete renderings of the models (Figure 2.22"%%). Therefore, the information
about the system under development is the same, but it is presented with different
techniques. This relationship is deepened in Section 2.2.1% 59,

DecomposedIn é describes the relation between a composite and one of its parts. Applied
to Figure 2.1 °2, there are three cases of d-relationships: First, the system under
development consists of requirements, class diagrams and Java source code in reality.
Second, the model-based description of the system under development (complete
view) consists of the information of all (partial) views. Third, the concepts for the
description of the system under development consist of the concepts of all viewpoints.

Looking at the second case for the involved models, partial views represent some
information (as reduction) of the system under development. Therefore, changes
in partial views must be transferred also into the description of the system under
development (the complete view), otherwise the d-relationships are hurt. The other
way around, changes in the complete view must be reflected also in all its partial
views to ensure §. This relationship is deepened in Section 2.3 L.

If information of the complete view which is part of multiple, overlapping partial
views is changed, these changes affect multiple views: If the information is changed
in one partial view, the complete view must be changed accordingly and then tran-
sitively also all other partial views containing the changed information, along the
d-relationships in the case of an explicit complete view. In the case of an implicit
complete view, changes within one partial view must be directly propagated to other
partial views.

ConformsTo x describes the relationship between a viewpoint and its views, i.e. the
view conforms to its viewpoint. According to IEEE (2011), each view is governed by
exactly one viewpoint.

23

Views encode their
Information as
Models

Views map one
System and one
Viewpoint to one
Model with
Concrete Renderings

Synchronize Views
with represented
(Parts of) Systems
regarding technical
Presentation

Keep Complete
View as complete
System Description
and its partial
Views consistent to
each other

View conforms to its
Viewpoint

2 Basic Concepts

Changing views must ensure, that they still fulfill the guidelines of their viewpoints.
Changing viewpoints must ensure, that their views are changed accordingly without
accidental information loss. As already discussed in Section 1.3.2* 43 the confor-
mance of views (and their models) to their viewpoints (and their metamodels) must
be ensured, but must be distinguished from ensuring consistency between models
representing views here. This relationship is deepened in Section 2.2.2* 60,

& between Models target
semantic Consistency
here

Views for
multi-perspective
Modeling

Stakeholders of the
System under
Development

Since the objective of this thesis is the semantic consistency of different models (Sec-
tion 1.3.1"42), §-relationships between partial views and the complete description of their
system under development in Figure 2.1° 52 are the most important relationships here.
Therefore, this Chapter 25! focuses on semantic consistency between different models,
which counts also for the investigated related approaches covering semantics in Chap-
ter 3% 93,

2.1 Views and Viewpoints

The objective of using different views is to support the persons who are involved in the de-
velopment of the system with exactly that information which they require. Since supporting
multiple views is an established concept during modeling and development of complex sys-
tems (Section 1.1 26), this section introduces the terminology for views, their viewpoints
and involved persons. Additionally, this section is the foundation to investigate possible
inconsistencies between views in Section 2.3* L.

The terminology, clarified in this section, follows mostly the ISO Standard for Architec-
ture Description 42010:2011 (IEEE, 2011). While IEEE (2011) focuses on the architecture
domain, its definitions are generalized here to the description of any systems, including ar-
chitectures. In order to summarize the introduced terms and their relationships, Figure 2.2
represents them as class diagram: Parts of the system under development are represented
by wiews guided by wviewpoints which address concerns of stakeholders interested in the
system under development and using these views. This figure is extended in the following
sections.

concerns [1..%] involvedStakeholders [*]
Concern y Stakeholder |4
. stakeholders [1..%] —
addressing [1..%] requestedBy [1] systemOfinterest [1]
System
system [1]
addressedBy [*] lookingAt [x]
v
. . conformsTo [1] TK lrepresentedBy [*]
Viewpoint ¢ 3 View <
instances [*]

Figure 2.2: Concepts for Stakeholders, Systems and Views

Persons involved in the system under development are stakeholders and introduced in
Definition 8" 55

o4

2.1 Views and Viewpoints

Definition 8: Stakeholder

A stakeholder is an “individual, team, organization, or classes thereof, having an
interest in a system” (IEEE, 2011) or is involved somehow in the development of a
system.

Possible stakeholders of projects for system development include project manager, cus-
tomers, developers, requirements engineers, testers, operators and end users, but also gov-
ernments establishing laws. Stakeholders relevant for the new approach of this thesis as a
concrete system are introduced in Section 2.4 7. Note, that persons can act as different
stakeholders for the system, i. e. stakeholders can be seen as roles taken up by persons. An
interest of stakeholders in the system under development is called concern, introduced in
Definition 9:

Definition 9: Concern

A concern is the “interest in a system relevant to one or more of its stakehold-
ers” (IEEE, 2011).

Possible concerns of stakeholders for software system development include knowing the
objectives and requirements of the system, defining the design of the system, checking if
and where requirements are implemented in the source code, and testing the developed
regarding the requirements.

Perspectives reflect these concerns by defining, which parts of systems are selected, and
are named viewpoints in Definition 10:

Definition 10: Viewpoint

A viewpoint defines “the conventions for the construction, interpretation and use of
[parts of systems] to frame specific system concerns” (IEEE, 2011).

These conventions reflect one or more concerns of stakeholders which are involved in
the current system under development. It is important, that viewpoints do not describe
actual information of concrete systems, but specify more generically, which information
of systems should be focused on and which information should be ignored, depending on
the concerns which are addressed by the viewpoint. Therefore, viewpoints are usually
applicable not only to the current system under development but also to other systems
of similar kind. This allows the reuse of viewpoints for same concerns for similar, but
different systems. Additionally, viewpoints are later used to specify the desired consistency
in a generic way (Section 2.3 7). As look-ahead, in order to explicitly define the concepts
and their structure of the selected parts of the system, viewpoints use abstract vocabulary
for this task in form of metamodels. Therefore, each viewpoint comes with a metamodel
(Definition 13 61), which is rendered as class diagram, as discussed in Section 2.2.2* 0,

Excursion: Related Work for Viewpoints

Originally, the term viewpoint was introduced by Finkelstein, Kramer and Goedicke
(1990). Darke and Shanks (1996) present a survey and classification on viewpoint ap-
proaches in the field of requirements engineering. Atkinson and Tunjic (2014a) give
hints for identifying orthogonal dimensions, which help to organize and align a high
number of viewpoints according to some principles: Two examples for such orthogo-
nal dimensions are components respectively sub systems in the system and the level
of abstraction matching the concerns of involved stakeholders. These dimensions can
be used to identify and develop viewpoints for each combination of one value per di-

25

Concerns reflect
Interests of Stakeholders

Viewpoints reflect
Concerns by selecting
appropriate Concepts of
Systems (realized as
Metamodel)

Viewpoints rendered as
Class Diagrams

selected Related Work
for Viewpoints

Viewtype

Viewpoint vs Viewtype

Views show Parts of a
particular System
according to a
Viewpoint

Views are visualized by
Concrete Renderings

2 Basic Concepts

mension, e. g. a viewpoint for the user management (value for dimension sub system)
with focus on the data (value for dimension level of abstraction) for developing the
data base, or a viewpoint for the web interface (value for dimension sub system) with
the focus on the user interface (value for dimension level of abstraction) for usability
studies, and so on.

Clements, Garlan et al. (2002) use the term viewtype with the following defini-
tion: “A wviewtype defines the element types and relationship types used to describe
the [...] system from a particular perspective” (Clements, Garlan et al., 2002, p.
18). This definition is very similar to the above definition for viewpoints, while Defi-
nition 10" °® emphasizes the applicability of viewpoints to multiple systems accord-
ing to multiple concerns more. Goldschmidt, Becker and Burger (2012) distinguish
between viewpoints and viewtypes with slightly different understandings: Each view-
point targets some® concerns by selecting concepts of the system under development
on more conceptual level. Viewpoints define multiple viewtypes which are metamo-
dels (Bruneliere, Burger et al., 2019) and which additionally define concrete syntaxes
(Goldschmidt, Becker and Burger, 2012). In this thesis, only the term viewpoint is
used like a mapping of concerns to a metamodel and to definitions for concrete syn-
taxes for views. Concrete syntaxes are discussed in following paragraphs.

?Goldschmidt, Becker and Burger (2012) define, that one viewpoint covers exactly one
concern (and vice versa), while this strong 1-to-1 mapping is relaxed to “a combination,
partioning and/or restriction of concerns” (Bruneliere, Burger et al., 2019) later.

\. J

When a stakeholder looks with particular concerns at one concrete system, a viewpoint
supporting her/his concerns determines, which parts of the system are shown to her/him.
The shown result is named view in Definition 11:

Definition 11: View

A view represents one concrete “system from the perspective of specific system con-
cerns” (IEEE, 2011) according to a viewpoint which supports these concerns.

It should be highlighted, that views whose inter-view consistency is discussed all have
to represent parts of the same system. The other way around, a system can be represented
by multiple views at the same time (Figure 2.2 5%), which must be consistent to the
system under development and to each other. In particular, the whole system is completely
described by its views. As look-ahead, each view comes with a model (Section 2.2.1*5%)
to store its information in this thesis.

For the visualization of views, their viewpoints come with an arbitrary number of defi-
nitions for concrete syntaxes®, as depicted in Figure 2.3 ®7, which extends Figure 2.2 %4
These concrete syntax definitions enable to render each view (i.e. its model) into a “con-
crete rendering”, if the particular view conforms to the viewpoint of the particular concrete
syntax definition. With this design, viewpoints can determine concrete syntaxes for ren-
dering views according to the concerns of the particular viewpoint. Concrete renderings
can be any visualizations including graphics, diagrams, text and dedicated tools like editors
for domain-specific languages (DSLs, Section 3.6.2 137). Users request views and work on
concrete renderings of these views. IEEE (2011) defines model kinds as “conventions for a
type of modelling” (IEEE, 2011), which is unclear, but the given examples (“data flow di-
agrams, class diagrams, Petri nets, balance sheets, organization charts and state transition
models” (IEEE, 2011)) coincide with the definitions for concrete syntaxes of viewpoints.

Maro, Steghéfer et al. (2015) show an example from industry for this case, where a textual
concrete syntax and a graphical concrete syntax cover the same metamodel.

26

2.1 Views and Viewpoints

. . conformsTo [1 ;
Viewpoint ¢ = 3 View

instances [*]

< A~
usedBy [x] usedBy [1]

concreteSyntaxes [*] concreteRenderings [*]
b b

- f To [1 -
ConcreteSyntaxDefinition (Con ormsTo [1] y| ConcreteRendering

instances [*]

Figure 2.3: Concepts for Views and their Concrete Syntaxes

As default visualization which is always applicable, this thesis visualizes views by render-
ing them as object diagrams conforming to the corresponding viewpoint. Object diagrams
are selected for rendering views here, since this notation is independent from the current
domain and the current viewpoint. As an alternative, concrete renderings defined by DSLs
provide a tailored and more specific visualization according to the particular domain and
concerns, but needs to be developed for each viewpoint, which is not in the focus of this
thesis.

Coming back to Figure 2.1 °2, views are depicted in its right part (gray area). Views
model parts of the system under development in reality, leading to views for requirements,
for class diagrams and for Java source code. Since the information about parts of the system
under development is encoded as model, each view has one such model (see Figure 2.22* 90)
and the views are depicted as models in Figure 2.1 %2, The system under development can
be completely described as a whole with a view, which can be seen as a “complete view of
the complete system”. This view often does not explicitly exists and therefore is visualized
as cloud “System uD Description” in Figure 2.1 52, Compared with IEEE (2011), it refers
to the “Architecture Description”, which describes the architecture of the system under
development as a whole.

View
< abstract>> parts [1..x] | <abstract>>
al \
CompleteView vcgmposite (1] /| PartialView

I I
[| [|

PureSUM ModularSUM DataSource NewView

Figure 2.4: Kinds of Views in Multi-Perspective Modeling

Therefore, views can be distinguished into partial views and complete views, as depicted
in Figure 2.4: According to Figure 2.1 %2, views representing parts of the system under
development like requirements, class diagrams and Java source code are called partial views.
According to Section 1.2%31, partial views either are already existing as data sources or
are newly derived as new views: Data sources have an already existing view and viewpoint
which must be reused (Definition 4 37), while new views and viewpoints are created by the
approach for the first time (Definition 5% 49). In order to keep Figure 2.1 52 short, it shows
only the three data sources as introduced in Part 537 of the ongoing example and not the

57

Views rendered as
Object Diagrams
(by default)

Views in the Megamodel

Partial vs Complete
Views

Modeling for multiple
Perspectives

Models realize Views,
Metamodels realize
Viewpoints

Modeling is an Activity

2 Basic Concepts

new view as introduced in Part 6 4° of the ongoing example. Since the whole model-based

description of the system under development provides a complete view on it, it is called
complete view. The information within the complete view is composed of the information
of all partial views, indicated by the composition in Figure 2.4 7. As look-ahead, it can
be explicitly realized as pure SUM or as modular SUM, as discussed in Section 3.4 120,
With these clarifications for views, Figure 2.4 ®7 complements Figure 2.22* 9,

Since views respectively viewpoints are conceptually realized by models respectively
metamodels, the foundations of modeling with models and metamodels are discussed in
Section 2.2. The models encode the information of views, which should be kept consistent.

2.2 Modeling

Multi-perspective modeling was already motivated in Section 1.1* 26 as foundation for de-

veloping software-intensive systems with models. The multiple perspectives are realized by
viewpoints and conforming views. As views and viewpoints are the central concepts for
developing systems, views and viewpoints must be realized, which is done by models and
metamodels. Therefore, this section discusses foundations for modeling models and meta-
models. The relationships between view(point)s and (meta)models is depicted in Figure 2.5,
which is explained in the following sections in step-wise way.

. . conformsTo [1
Viewpoint & . 5 View
(_> instances [*] - (N\

A~

usedForViewpoints [*] usedBy [1]
usedBy [x] usedBy [1]

realizedBy [1] realizedBy [1]

~ ~

conformsTo [1]

Metamodel 7 5 Model

instances [*]

A< A<
metamodel [1] model [1]
concreteSyntaxes [*] concreteRenderings [*]
usedForConcreteSyntaxes [x] concreteRenderings [*]
~ ~
‘—) .. conformsTo [1 ; (—4
ConcreteSyntaxDefinition ¢] y ConcreteRendering
instances [*]

Figure 2.5: Concepts for Views and their Models

As defined in Definition 1156 in Section 2.1 %%, views are used by users in order
to be informed about parts of the system under development and to change them. As
defined in Definition 10* ®®, viewpoints define which parts of a system under development
are contained in the views and are often given by existing tools used in the current project.

Viewpoints and views are realized by metamodels and models, leading to the need to
discuss some foundations of modeling: Modeling is an activity which creates, changes and
manages models and treats models as first-order elements (Bézivin, 2006, p. 40) due to the
principle, that “everything is a model” (Bézivin, 2005). When using modeling techniques
for system development, various terms like “model-based engineering” and “model-driven
development” occur:

o8

2.2 Modeling

e Jelschen (2024, p. 136f) works out, that there is no common understanding of the
exact difference between the terms “model-driven X” and “model-based X”: Bram-
billa, Cabot and Wimmer (2012, p. 9) and Pastor and Molina (2007, p. 41) both
distinguish the terms model-driven and model-based regarding completeness of the
used models and automation using model transformations, but place them on oppo-
site ends of the spectrum, i.e. the definitions of terms are switched. Here, the terms
model-driven X are used, since “driven sounds stronger than based” corresponding
to the design decision, that all data including source code are realized as models.

e Model-driven engineering (MDE) uses modeling as key activity and involves models
as central artifacts in engineering various systems along their whole life cycles.

e Model-driven development (MDD) restricts MDE to the pure development activities
for systems.

e Model-driven software engineering/development (MDSE / MDSD) applies MDE /
MDD techniques for engineering software systems.

e Model-driven architecture (MDA) is a MDSD approach of the Object Management
Group (OMG) (Kleppe, Warmer and Bast, 2003; Brambilla, Cabot and Wimmer,
2012) using standards and tools of OMG and focusing on generating executable code
from high-level models using chains of model transformations.

Therefore, definitions for models (Definition 12) and the related concepts metamodel (Def-
inition 13*61) and model transformation (Definition 14 67), and discussions about tech-
nical spaces (Section 2.5 8%) are required, which are inspired by definitions of Jelschen
(2024, pp. 132fF.).

2.2.1 Model

Models are the central artifacts of modeling. Models are defined using the definition of
Jelschen (2024, pp. 132ff.), which bases on among others Stachowiak (1973), Skyttner
(2005) and Hesse and Mayr (2008) in slightly simplified way.

Definition 12: Model

“A model represents a part of a real system, reduced to serve a particular purpose.”
(Jelschen, 2024)

This definition condenses the three characteristics of models, i.e. first their description
of real systems, second their abstraction i.e. representation of only some aspects of the
systems by means for reduction and third their purpose, which determines the selection
of aspects of the systems to represent. Models as representations of real systems help to
deal with them as representatives, instead of working with the elements of the real systems
directly, in particular for cases, when that is impossible, since the real system e.g. is not
digital or does not yet exist.

Therefore, models are suited to store the information which shall be provided by views,
since views describe parts of the system under development tailored to the concerns of its
viewpoint (Figure 2.2*54). While models store information for views, their visualizations
for stakeholders is defined by the viewpoint as concrete syntax (Figure 2.5 %8): Executing
such a definition for concrete syntax with the particular model of the view leads to a
concrete rendering for the view. In this thesis, all models are visualized as object diagrams
by default, as already discussed for views in Section 2.1*%%. The technical realization of
models in memory is discussed in Section 2.5 84,

29

Model-driven vs
Model-based

MDE

MDD

MDSE / MDSD

MDA

Purpose determines the
Reduction of the
modeled System

Models store the
Information of Views

Visualization of Models
(default: Object
Diagrams)

Token Model:
1-to-1

transitive
“represented by”

Type Model:

n-to-1

not transitive
“conforms to”

Synchronize Views
with represented
(Parts of) Systems
regarding technical
Presentation —
Adapter

modeling Models

Model conforms to
Metamodel

2 Basic Concepts

As preparation to define metamodels in Section 2.2.2, different kinds of models are
investigated: Following Kiihne (2006), the “model-of” relationships between models and
their systems must be distinguished into “token-model-of” and “type-model-of”. Such
models can also be called token models or type models: Token models represent elements
of the system in a one-to-one manner by creating one corresponding element in the model
(but reduced according to the purpose of the model) for each element in the system. Type
models classify the elements of the system into groups of elements with similar properties
and creates one element in the model for each of these groups representing the “main
nature” of the included elements of the system in a many-to-one manner. This can be
used to describe elements in the system as instances of an element in the model as their
type. This distinction corresponds to the terms “representedBy” for token models and
“conformsTo” for type models in Bézivin (2005). Another important difference is, that
representedBy is transitive, i.e. if A is represented by B and B is represented by C, then
A is also represented by C', while conformsTo is not transitive, i.e. A does not conform to
C, if A conforms to B and B conforms to C' (Kiihne, 2006).

Ongoing Example, Part 8: Modeling

Modeling is applied to the ongoing example in Figure 2.1*°2 in form of u-relationships:
They describe the relationships between models and their represented systems. Here, views
represent parts of the system under development like the concrete requirements, class dia-
grams and source code. As an example, the view for Java source code consists of a model
(called Abstract Syntax Graph (ASG)) representing the Java source code under develop-
ment in textual form. Since this representation is 1-to-1 according to token models, the
p-links are annotated with “representedBy” in Figure 2.1 %2,

Since this representation property of models comes also with a reduction, i. e. not every-
thing of the system under development is reflected in the model, synchronization is needed
on technical level: Stakeholders usually work not directly on the models of the views,
but work on parts of the represented systems as concrete renderings of the models (Fig-
ure 2.5 %8). Therefore, the information about the system under development is the same,
but it is presented with different techniques. Therefore, it is necessary to switch between
different technical spaces (introduced in Definition 21 8%) of the view and its concrete
renderings of the represented systems in reality. Additionally, changes in the concrete ren-
derings of the represented systems must be propagated into the views and vice versa. Later
on, this leads to the motivation for and the realization by adapters (Section 6.6.5 226).

2.2.2 Metamodel

Models are systems, following Skyttner (2005, pp. 59-62), who distinguishes systems as
“conceptual systems” from “concrete systems”. Systems under development can be seen
as concrete systems here and models as conceptual systems, while all are systems. This
allows to create models which describe models as targeted systems. This can be used to
conceptually specify the allowed concepts and their relationships in models by metamodels:
By abstracting from individual details of all concrete elements of the model, each model
conforms to a metamodel (Bézivin, 2005). This relationship between models and their
metamodels is not called “instance of” (i.e. a model is an instance of its metamodel), since
the term “instance of” is overloaded, in particular by object-orientation (Bézivin, 2005,
p. 172). Therefore, “conforms to” is chosen as alternative. The statement, that a model
conforms to its metamodel, indicates, that a metamodel is not only “a model used to model
modeling itself” (Object Management Group, 2019, p. 3), often summarized as “a model
for a model”, but that the metamodel must be a type model for the model (Kiihne, 2006).

60

2.2 Modeling

Summarizing, metamodels are defined in Definition 13:

Definition 13: Metamodel

A model MM is called metamodel for the model M, if MM is used as type model
for M.

Compared with classical data bases, if the model represents the instances, then the
metamodel represents their schema. Another important aspect is the recursive behaviour
of metamodels: Since a metamodel is also a model, it is possible to define a metamodel for
a metamodel, which can be called a meta-metamodel, and so on. This emphasizes, that the
designation of a metamodel is a role of a model regarding another model (Kiihne, 2006).
Note, that generalization is a completely different concept, since it relates model elements
within the same meta level and is transitive (Kiihne, 2006).

To clarify the understandings of the central term metamodel, two different approaches
for (meta-)modeling, the OMG model stack and Multi-Level Modeling (MLM), are com-
pared regarding their understanding of the term metamodel in the following. In order
to see applications instead, this excursion into theory can be skipped and applications of
metamodels and models can be found afterwards in Part 9* %4 of the ongoing example.

Recursion of
Metamodels

Excursion: Metamodels as understood by OMG and Multi-Level Modeling

The OMG defines their model stack with four levels, called My, My, Ms and Ms, with
conformsTo relationships between them, shown in Figure 2.6: The system with its real
elements (Mp) is described by models in form of UML diagrams in various kinds (), which
are defined by the metamodel in form of the UML super structure (Object Management
Group, 2017). The UML super structure (Ms) is defined by the meta-metamodel in form
of the Meta Object Facility (MOF) (Object Management Group, 2019), which is defined
with its own concepts (Ms).

5 : . . VOF

: contorms 1o ¥ : conformsTo
M3 ' Meta-Metamodel MOF.Classifier |..:

A MOF A

conformsTo DRIl

: UML Super Structure

M2 Metamodel Classifier InstanceSpecification

. UML Super Structure

: A A

conformsTo conformsTo : conformsTo

Requirement rl : Requirement
M- id : EString [0..1] Qe p——
1 UMN([)S%I author : EString [0..1] con- ;uthorrz ” Andreas Winter”

A lagrams text : EString [0..1] formsTo [text = ”... register ...” [

o A Class [fext = 7. /:~enroled L.

! conformsTo 5 DF Object : represen-

: conformsTo : Diagram Diagram : tedBy

: CSV :
D Author Text
MO System R1 Andreas Winter The student must be able to register for an event.
Elements of Reality R2 Johannes Meier The student must be enroled at the university.
Figure 2.6: The OMG Model Stack (left) applied to represent the ongoing requirements (right)

61

OMG Model Stack

My conforms to VS
represented by M;

Ms is the
Metamodel (for Mp)

Conflict with
Transitivity

Multi-Level
Modeling (MLM)

conformsTo:
Ontological vs
Linguistic

2 Basic Concepts

Applied to requirements of the ongoing example, the current set of elicited requirements
in the CSV file are located at M and can be described with the class diagrams (left) and
object diagrams (right) in UML at M;. Comparing class diagram and object diagram
regarding their relation to the real requirements shows, that the requirements conformTo
the class diagram, since many requirements are described by one class (type-model-of),
while each requirement on My is representedBy one corresponding object in M; in a one-to-
one manner (token-model-of). This is inconsistent and is mirrored by different statements
about the relationship between My and M; in literature (e.g. conformsTo in Hesse and
Mayr (2008, p. 390) and representedBy in Bézivin (2005, p. 178)).

Only the elements in My, e. g. the UML super structure, together are called metamodel
by definition. This can be relaxed on the one hand and more formalized on the other hand
by the definition of Hesse and Mayr (2008) for metamodels: A model C is called metamodel
for model A, if there is another model B which conformsTo C' and A conformsTo B. By
allowing the real system to be A (the original definition requires a model for A) and taking
the class diagram for B, this definition confirms, that the UML super structure (as C) is
the metamodel (for the real system as A). As already discussed, that is not really true,
if the object diagram is taken for B, since the requirements do not conformTo the object
diagram. As benefit of the relaxed definition of Hesse and Mayr (2008), M3 can be called
a metamodel for Mj.

Between the requirements in the object diagram and the requirement in the class di-
agram, there is another conformsTo relationship, since multiple requirements are mapped
to the single concept of requirements (type-model-of). But this introduces a conflict with
transitivity of conformsTo: Requirements in the object diagram (as A) conformTo the re-
quirement in the class diagram (as B), which conformsTo the UML super structure (as C).
Since conformsTo must not be transitive, the transitive “shortcut” A conformsTo C must
not exist, but the object diagram A conformsTo the UML super structure C', too.

Due to these issues in the OMG model stack (Atkinson and Kiihne, 2002b) and in order
to “reducfe] accidental complexity in domain models” (Atkinson and Kiihne, 2008) in gen-
eral, multi-level modeling (MLM) distinguishes two kinds of conformsTo relations (Atkinson
and Kiihne, 2003; Kiithne, 2006): Ontological conformsTo, leading to the ontological levels
O; in Figure 2.7 93, targets the contentwise conformsTo within the problem domain. Lin-
guistic conformsTo, leading to the linguistic levels L; in Figure 2.7 %3, targets the technical
realization of (meta)models.

62

2.2 Modeling

Lo Ll

OO MoMM

SpecKind?
e 1 YD) T TP FFE— -
represented By id“ : EString [0..1]

author? : EString [0..1] % \‘/'«\;
i -. YO {9
: c o Ly O,
. ontological " o
: conformsTo R
Requirement! : SpecKind 2 * 1:,type
idl : EString [0..1] feverreeeniens p Clabject
author! : EString [0..1] linguistic
text! : EString [0..1] conformsTo
A .
: ontological Lo
: = RPN
O : conformsTo RIS
2 : £ %0 &
5 L Ko’(/
. RN
r1% : Requirement LY
D Author Text| . C_)o
R1 Andreas Winter The student must be able > ido = rrl1”
RZ Johannes Meier The student must be enrol authoro — » Andreas Winter”
represen-| text? = ”... register ...”
tedBy [fext” = 7... enrole ...

Figure 2.7: Multi-level modeling (MLM) applied to represent the ongoing requirements

The real requirements (bottom left) are represented in a one-by-one manner by objects
in O, with the type Requirement, which is defined in O; to represent the concept (or idea)
of requirements (middle left). Since there are different kinds, how functionality can be spec-
ified in system development, Oy represents the concept of different concepts for specifying
requirements (top left) by SpecKind (specification kind). Additionally to requirements, user
stories are another way to formulate functionality, which could be stated as UserStory!
SpecKind in O; (not part of the figure).

The potency of elements and their attributes (superscripted numbers) is reduced by one
for each following ontological level and indicates at the value zero, that no more instantia-
tions are possible for elements (e. g. r1°) respectively that concrete values must be given for
attributes (e.g. id’ = “r1”). Note, that the understanding of potency and the numbering
of ontological levels is reworked by Kiihne (2018).

Up to now, only content in form of concepts is described in the ontological levels O,
called together one multi-level model, which is organized in the column Lg: To realize the
complete multi-level model technically, a data structure is required, which is located in L
and can be seen as linguistic metamodel. Clabject (fusing the terms class + object) indi-
cates the most central element of a linguistic metamodel for multiple metalevels (MoMM)
(Atkinson and Kiihne, 2001), sometimes also called model element or instance. Since the
type of a clabject is again a Clabject (on higher ontological level), the MoMM can describe
the whole multi-level model (linguistic conformsTo).

By organizing ontological and linguistic levels clearly separated as orthogonal concepts
as visualized in Figure 2.7, conflicts with transitivity can be prevented, since the transitivity
must not exist for the same kind of conformsTo. Compared with the OMG model stack in
Figure 2.6 61, conformsTo between class diagram and object diagram is ontological, while

63

Foundations of
multi-level Modeling

L1 defines the
Concepts of
multi-level Models

Resolve Conflicts
with Transitivity of
conformsTo

Oo+ 014+ 02+4... =
multi-level Model

Op is Metamodel for
O3

Compare
Definition 13 61
with OMG and
MLM

2 Basic Concepts

conformsTo between the UML diagrams and the UML super structure is linguistic. These
relationships between the involved (meta)models could be formalized with megamodels, too
(Gasevié¢, Kaviani and Hatala, 2007).

With MLM, it is possible to support an arbitrary number of ontological levels (Op 1,2,...).
In contrast, UML supports only modeling with two ontological levels, e.g. with object
diagrams and class diagrams (both in M), which refer to O, and O; in Figure 2.7 63,
The elements in all ontological levels O; together form one multi-level model. Therefore,
the term metamodel is not that important in MLM, but is formally defined by Kiihne
(2006) and is formulated simplified and similar to Hesse and Mayr (2008) as follows: A
model C is called (ontological) metamodel for model A, if there is another model B which
(ontological) conformsTo C' and A (ontological) conformsTo B. Applying this definition to
Figure 2.7 %3 results in the finding, that Op is a metamodel for O, since O, ontological
conformsTo O; and O; ontological conformsTo Oy.

The handling of metamodels, i.e. model elements on three or more linguistic levels
with type-model-of relationships between them, would be out of the scope of this thesis,
following MLM. Therefore, Definition 136! requires only one conformsTo relationship
between two models as precondition for calling one of them being a metamodel for the
other model. Another finding when reflecting Definition 136! is, that the mentioned
conformsTo relationship can be concretized to target only ontological relationships. There
are other approaches for multi-level modeling (Atkinson, Gerbig and Kiihne, 2014) as the
one sketched in Gonzalez-Perez and Henderson-Sellers (2008), but they are skipped here,
since they are not required for the general understanding of modeling with multiple levels.

Part 13" % of the ongoing example demonstrates, how the chosen definitions for meta-
models and models are applied, in comparison to the understandings of OMG and MLM. To
avoid the term meta-metamodel of the OMG in this thesis, technical spaces similar to L in
MLM are discussed in Section 2.5 84 for technical realization of models and metamodels.

In this thesis, all metamodels are visualized as class diagrams. The technical realization
of metamodels is discussed in Section 2.5 8. To give a practical understanding of models
and metamodels, examples for them are given for the ongoing example now:

Ongoing Example, Part 9: Used Metamodels and Models + List —

In order to make clear, how the finally used metamodels and models for the ongoing exam-
ple look like, they are shown now. For all data sources (as introduced in Part 537 of the
ongoing example), their metamodels and models are visualized here: Since the concepts
and used data of data sources are already described, the metamodels and models are not
discussed in detail here. Metamodels are visualized as class diagrams and models are visu-
alized as object diagrams. EMF is used as technical space, as discussed in Section 2.5 84
and Part 13 % of the ongoing example.

The metamodel for requirements is shown in Figure 2.8 %%: The RequirementsSpeci-
fication contains multiple Requirements, whose content is stored as text. The structure
of the metamodel depends on the CSV format and its supporting adapter, which is intro-
duced in Part 24 276 of the ongoing example.

64

2.2 Modeling

RequirementsSpecification

container [1]

content [x]

Requirement

rowNumber
id : EString [0..1]
EString [0..1]
text : EString [0..1]

author :

: Elnt [0..1]

Figure 2.8: Metamodel for the data source Requirements

The model for requirements is shown in Figure 2.9 and contains the requirements ri
and r2 representing the two requirements in the data source.

model

rs : RequirementsSpecification

container[0
content[0]

ontainer[0]

<
content [1]

rl : Requirement

r2 : Requirement

rowNumber = 1
id = 7r1”

author = ” Andreas Winter”
text = ”The student must be able to register for an event.”

rowNumber = 2

id = »r2”

author = ”Johannes Meier”
text = ”The student must be enroled at the university.”

Figure 2.9: Model for the data source Requirements

The metamodel for Java is shown in Figure 2.10: The JavaASG represents the whole
source code consisting of ClassTypes, which have Methods. The call hierarchy of methods
is modeled with the bidirectional association calling respectively calledBy.

Figure 2.10: Metamodel for the data source Java

|
as8! JavaASG

asg [1]

classes [*]

ClassType

name : EString [1]

calledBy [x] ‘ ’ calling [*]

Method

class [1]

methods [x] [pame :

EString [1]

The model for Java is shown in Figure 2.11 % and contains the two classes “University”
(j1) and “Student” (j2). Both have one method and the method “register” calls “start”.

65

2 Basic Concepts

Mw

asg[0] asg[0]
classes[1] classes[0]
j1 : ClassType j2 : ClassType
name = ”University” name = ”Student”
class[0] class[0]
methods[0] methods[0]

ml : Method |,°"180 | m2 . Method

7
name = "start” calledBy[0] | name = ”register”

Figure 2.11: Model for the data source Java
The metamodel for UML class diagrams is shown in Figure 2.12: A ClassDiagram

contains Classes, which contain unidirectional Associations. Associations have, among
others, one type which is again a class.

umlclasses I ClassDiagram

diagram [1]

UsedBy [*]
\L type [1]l classes [x]

Association
class [1]
name : EString [1] y) ‘e Class
lowerBound : Elnt [0..1] \associations [%] ’ className : EString [1]
upperBound : Elnt [0..1]

Figure 2.12: Metamodel for the data source UML

The model for UML class diagrams is shown in Figure 2.13. It models one class diagram
(uml) with only one class “University” (cd1l).

model-uml J uml : ClassDiagram

diagram|[0]

classes[0]
cdl : Class
className = ” University”

Figure 2.13: Model for the data source UML

66

2.2 Modeling

These metamodels and models for data sources are used as starting point, as presented
in the following parts of the ongoing example.

After defining models and their metamodels, these two concepts are compared regarding
the objectives of this thesis (Section 1.3.142): Objective of this thesis is to keep models
(not their metamodels) consistent to each other, while these models conform to different
metamodels. These metamodels are used for the technical description and realization of the
desired consistency in order to be valid for all models which conform to these metamodels.
With this idea, users can create any models using their viewpoint respectively metamodel
and the consistency which is generically specified on level of the metamodel can be ensured
automatically.

This works only, if models really conform to their metamodels. Therefore, this rela-
tionship is important, is depicted as “conformsTo x” in Figure 2.1 %2 and describes the
relationships between a schema and its instances (Bézivin, Jouault and Valduriez, 2004),
i.e. the instance (model) conforms to its schema (metamodel). This relationships between
models and their metamodels must be ensured, when models or metamodels are changed:
Changing models must ensure, that they still conform to their metamodels. Changing meta-
models must ensure, that their models are changed accordingly, which points to the chal-
lenge of model co-evolution, which is discussed in Section 6.2.1= 193, As already discussed
in Section 1.3.2% %3 the conformance of models to their metamodels must be ensured, but
must be distinguished from ensuring consistency between models representing views here.

In order to keep models synchronized with their systems, bidirectional model transfor-
mations are one possibility for the technical realization of synchronization in both directions
(Stevens, 2018), i. e. update models as representatives of their updated (parts of the) system
(according to the descriptive role of models) and update the systems under development
according to updates in their models (according to the prescriptive role of models). This
use case for model transformations in this thesis is covered by the concept of adapters
(Section 6.6.5 226),

In order to relate models to each other regarding their consistency, model transfor-
mations can be used to make these relations explicit and to maintain it, as deepened in
Section 3.2 99, This use case for model transformations is more important in this thesis
due to its direct relation to consistency than the first use case. These discussions are deep-
ened in Section 2.3 7', But both use cases motivate the need for model transformations
as introduced in the next Section 2.2.3.

2.2.3 Model Transformation

After defining the central terms model and metamodel, model transformations as important
technique to work with models conforming to metamodels are introduced in Definition 14,
similarily to Jelschen (2024), following definitions of Kleppe, Warmer and Bast (2003):

Definition 14: Model Transformation

A model transformation produces a target model out of a source model, following a
given model transformation definition.

In order to distinguish specification and execution, this definition for executed model
transformation are accompanied with three additional terms (Kleppe, Warmer and Bast,
2003, pp. 23-26): A model transformation definition specifies unambiguously, how the
source model is transformed into the target model, by using model transformation rules and
controlling their application (Czarnecki and Helsen, 2006, p. 627). A model transformation
rule specifies unambiguously, how single elements of the source model are transformed into

67

Consistency
Preservation targets
Models, but is defined
on their Metamodels

Model conforms to its
Metamodel

Model Co-Evolution

Model Transformations
for synchronizing
Models and their
Systems

Model Transformation
for synchronizing
Models with each other

Model Transformation

Model Transformation
Definition

Model Transformation
Rule

Model Transformation
Engine

Engine vs Tool

Model Transformation
(Definition)

Specifications on
Metamodels,
Executions on
conforming Models

Input: all kinds of
Models, e.g. Models,
Metamodels, Model
Transformations, ...

generic Surveys

Legend
Mandatory

Optional
Or

> > Qe

Xor

» Sub-Diagram

2 Basic Concepts

single elements in the target model. Model transformation rules are the “smallest units
of transformation” (Czarnecki and Helsen, 2006, p. 627). A model transformation engine
realizes a model transformation automatically by producing the target model out of the
source model according to the given model transformation definition.

Kleppe, Warmer and Bast (2003) define these four terms without the prefix “mo-
del”, e.g. transformation instead of model transformation. Since modeling concepts can
be mapped to graph terminology for realization (Ehrig, Ermel et al., 2015b, p. 49), the
generic definitions of Kleppe, Warmer and Bast (2003) could be applied also to graph
transformations. Here, the prefix “model” is added to emphasize the context of modeling.

Kleppe, Warmer and Bast (2003) use the term transformation tool, while model trans-
formation engine is preferred here, since tools could contain additional parts like a graphical
user interface, next to the model transformation engine. The term engine is used also in
other work like Czarnecki and Helsen (2006).

While the term model transformation (the execution) refers to the execution of a model
transformation definition (the specification), model transformation is often used as abbre-
viation for model transformation definition, since the context shows, if the execution phase
or the specification phase is discussed. Therefore, this thesis uses this abbreviation, too.

The specifications of model transformation definitions and model transformation rules
are done on metamodel level, e. g. on the source metamodel, to be directly applicable to all
source models which conform to this source metamodel.

Model transformations can also use metamodels as source input and produce models
or metamodels as target output, since metamodels are also models. Corresponding mo-
del transformation definitions are specified on the metamodel of these metamodels then.
Additionally, model transformation (definitions) can be source model or target model of mo-
del transformations, since model transformations are also models (Bézivin, 2005; Bézivin,
Biittner et al., 2006). Therefore, each approach for model transformations provides a meta-
model describing the concepts which can be used for model transformation definitions.

There is a wide range of model transformation approaches, as shown by surveys of
Jakumeit, Buchwald et al. (2014) and Kahani, Bagherzadeh et al. (2019). Model transfor-
mation approaches can be classified regarding different properties, as done by Czarnecki
and Helsen (2006) in form of feature models for functional criteria. Mens and Van Gorp
(2006) propose additional quality criteria for model transformations. Classifications which
are required for this thesis are adapted from Czarnecki and Helsen (2006), depicted in
Figure 2.14 and introduced now:

Model Transformation

O
Direction Tracing

O
Incrementality

O
Preserve
Target

Changes
[Automatic} [Manual} [Inside} [Separate} {generic} Dsggé?fi:;

Concepts

Creation (Metamodel)

[Existing} [Unidirect. } [Multidirect. } Target | | Source

Update | | In-place [1 Deﬁnition} [>2 Deﬁnitions}

Incrementality <= Update A New (Target)
Tracing => New (Target)
In-place = — Tracing

Figure 2.14: Feature Model for Model Transformations (adapted and extended from Czarnecki
and Helsen (2006))

o Model transformation work with one or more models: Each model can be either read
or written or both, referring to e.g. source models, target models or models which

68

2.2 Modeling

are transformed in-place. As an example, model merging has two or more source
models and creates one target model (Mens and Van Gorp, 2006). The target model
can be created newly or is already existing, since the source model is transformed
in-place into the target model or since the target model of an out-place model trans-
formation already exists (due to previous activities, e.g. a previous execution of the
transformation which created the target model newly) and will be updated only. Mo-
del transformations whose involved models all conform to the same metamodel are
called endogenous and exogenous otherwise (Mens and Van Gorp, 2006).

These classifications for the involved models are important for this thesis, since models
of existing data sources must be reused and updated on the one hand, while new
models must be created for new views.

Unidirectional model transformations always use the source model to provide the
target model (one and same direction). Multidirectional model transformations (MX)
can switch the roles of source and target models to support multiple directions, e. g.
bidirectional model transformations (BX) as special case of multidirectional model
transformations can transform the source model into the target model and the target
model into the source model (two directions). Multidirectional model transformations
can be defined by providing one set of (multidirectional) model transformation rules
which cover multiple directions within each model transformation rule or by providing
one set of (unidirectional) model transformation rules for each direction. In literature,
bidirectional model transformations are often understood to have only one definition
for both directions (Abou-Saleh, Cheney et al., 2018).

Bidirectionality is important for this thesis, since information of models of existing
data sources must be transformed into models of new views, while changed informa-
tion in these models for new views must be transferred back into the models of the
data sources.

Incrementality aims to benefit from known changes in models instead of complete
transformations in batch-mode and comprises three different aspects:

— Target incrementality enables to update an existing target model, when running
the model transformation with an updated source model again. This feature
corresponds to the already used term change propagation of user changes in the
source model.

— Source incrementality enables to execute only those model transformation rules
again, which use updated elements of the source model. After an impact analysis
of the user changes in the source model, only the identified model transformation
rules are executed to update the target model accordingly. This can improve
the performance, in particular for huge source models.

— Preservation of user changes in the target model deals with the challenge of user
changes in the target model: When running the model transformation again
with an updated source model, the target model must be updated accordingly,
but additional user changes in the target model should be preserved, too.

Incrementality is important for this thesis, since it allows to keep only some informa-
tion in models consistent, while all other information is kept unchanged, in contrast
to complete model transformations in batch-mode which tend to recreate such mo-
dels in order to replace the previous model which deletes information not covered by
the model transformation. Incremental execution must be distinguished from lazy
execution (Tisi, Martinez et al., 2011), which updates model elements in delayed way
at the moment, when the model elements are requested.

69

new vs updated Target

transform Source
in-place

endogenous vs
exogenous

unidirectional vs
bidirectional

Incrementality
transforms only changed
Elements again

Traces between Source
and Target

specific Surveys

Projections by
Transformations

Update partial Views
regarding overlapping
Information

Model Transformations
for bridging Technical
Spaces

2 Basic Concepts

e Tracing adds trace links between source elements of the source model and correspond-
ing target elements of the target model into the model transformation, according to
the model transformation rules. Traces can be created automatically or manually
by writing requests for traces within the model transformation rules. Traces can be
stored inside the involved (source or target) models, e.g. by using dedicated UML
profiles (Vanhooff and Berbers, 2005), or outside in a separate model conforming to a
trace metamodel (Schwarz, Ebert and Winter, 2010). The concepts of traces (which
are not covered by Czarnecki and Helsen (2006), but discussed by Hidaka, Tisi et al.
(2016) and by Samimi-Dehkordi, Zamani and Kolahdouz-Rahimi (2018)), e.g. the
trace metamodel in case of a separate storage location, can be generic, e. g. the same
trace metamodel is used for any source and target metamodels, or domain-specific,
e. g. the trace metamodel depends on the particular source or target metamodels.

Trace links are important for this thesis, since trace links indicate corresponding
elements in source and target models, which is usually required for incrementality.

Additionally, there are surveys focusing only on classes of model transformations with spe-
cial properties, e. g. Kusel, Etzlstorfer et al. (2013) for incremental model transformations,
Hildebrandt, Lambers et al. (2013) for Triple Graph Grammars (TGGs) as concrete model
transformation approach (Schiirr and Klar, 2008) or Stevens (2008) and Anjorin, Buchmann
et al. (2020) for bidirectional model transformations.

The big picture for terminology in form of a megamodel in Figure 2.1 52 does not show
model transformations directly, although Bézivin, Jouault and Valduriez (2004) explicitly
define model transformation as possible relationships between models: 7 describes the
relationship between a source model which is transformed into a target model by a model
transformation. While they provide no conceptual findings for consistency in Figure 2.1 52,
model transformations can be used to technically ensure consistency:

If the complete view (“System uD Description”) is realized as explicit model, e.g. as
SUM as it will be introduced in Section 3.4 120, this model could be transformed into
models for partial views by removing all information which is not part of this view, according

to the d-relationship. This leads directly to the idea of projectional management of views
(Section 3.5 121).

If there is no such complete view, parts of the information from one partial view could
be generated from parts of another partial view. Such model transformations could update
the model of the target view in case of changes of overlapping information in the model of
the source view, described as synthetic management of views (Section 3.3 19). Changing
the target view makes it inconsistent to the source view, as long as there is no inverse
transformation to update also the source view. In the ongoing example, classes in UML
can be transformed into classes in Java, but without methods, since they are not described
in UML. But renaming classes in UML requires to rename the corresponding classes in Java
and vice versa.

Additionally, transformations can be used to realize u-relationships in form of bridges
between different technical spaces. Summarizing, definitions and classifications of model
transformations are important, since they represent important related approaches for mo-
del consistency in Section 3.3 0% and they are used as part of the designed solution in
Section 6.1 185,

Using multiple models as views conforming to metamodels as viewpoints introduces
the potential for inconsistency between them, as already motivated in Section 1.1% 26,
Therefore, the next Section 2.3 ™! provides some foundations for understanding consistency
in more detail.

70

2.3 Consistency

2.3 Consistency

When developing the system under development with multiple views conforming to different
viewpoints, inconsistencies can occur between those views, which describe overlapping and
related parts of this system under development. Since all views together describe the
system under development in its entirety (Definition 2 32), these views always have some
dependencies leading to possible inconsistencies, as discussed in Section 1.1 26, Therefore,
this section continues to investigate the foundations of consistency. Consistency of views
is already defined in Definition 232 in Section 1.2.1 3! and its main message is repeated
here for readability: One or more views are consistent, if these views describe parts of
the same system under development without semantic contradictions within a particular
project.

This understanding for consistency is concretized here and substantiated by analyz-
ing the involved views of a system, their relationships and their impacts to consistency.
This investigation is done along the ongoing example in form of the megamodel in Fig-
ure 2.1%52. DecomposedIn-relationships ¢ describe the relations between a composite and
one of its parts (Favre and Nguyen, 2005). Applied to multi-view modeling according to
Figure 2.1 52 there are three cases of d-relationships: First, the system under develop-
ment consists of requirements, class diagrams and Java source code in reality. Second, the
model-based description of the system under development (complete view) consists of the
information of all (partial) views. Third, the concepts for the description of the system
under development consists of the concepts of all viewpoints.

Looking at the second case for the involved models, partial views represent some in-
formation (as reduction) of the complete view for the complete description of the system
under development. Therefore, changes in partial views must be transferred also into the
complete view, otherwise the d-relationships are hurt. The other way around, changes in
the complete view must be reflected also in all its partial views to ensure 9.

Since a partial view is a reduction of the complete view in the sense of the abstraction
property of models (Section 2.2.1 %), the purpose of the partial view, i.e. the concerns
targeted by its viewpoint, determines, which information of the complete view is selected

to be part of the partial view. Therefore, d-relationships depend on the purpose of (par- ...

tial) views here and require to ensure (semantic) consistency between the models of the
partial views in order to model the same system under development in coherent way. If the
complete view is made explicit, synchronization between partial views and their complete
view are sufficient, otherwise, the partial views are synchronized directly with each other,
as discussed in Section 3.2 9.

After clarifying, that the semantic consistency between different views is the main chal-
lenge of this thesis, now some activities around consistency are analyzed. The Defini-
tion 2" 32 for consistency describes a state, as visualized in Figure 2.15: Views are consistent
to each other (state consistent), then a user changes one view (transaction User Changes)
by changing its model, which results in model differences depicted as V*A. Afterwards,

? User Changes / YA

inconsistent - consistent

Consistency Management
according to Consistency Goals / ©A

Figure 2.15: Terminology for Consistency

the views are inconsistent to each other (state inconsistent). In order to make the system

71

Objective: Deepen the
Understanding of
Consistency

d-Relationships

Keep complete View
and its partial Views
consistent to each other

depending on the
Purpose i.e. Semantics
of partial Views

Consistency is a State

User A introduce
Inconsistencies

Consistency
Management

EA fixes Inconsistencies

Consistency Goals
formulate Conditions
for Consistency

Consistency Goals
clarify Dependencies
between Views

Consistency Goals
describe Semantics to
hold between depending
Information of any
Views

Consistency Goals are
formulated on
Viewpoints and checked
on Views

2 Basic Concepts

consistent again, this transition from the inconsistent state to the consistent state is realized
by consistency management:

Consistency management comprises the activities which ensure consistency according
to guidelines, which are called consistency goals in the following Definition 15, by manag-
ing inconsistencies, including detecting dependencies between views corresponding to the
consistency goals, detecting inconsistencies and fixing inconsistencies (Spanoudakis and Zis-
man, 2001). In order to transfer an inconsistent state to a consistent state, inconsistencies
are detected and fixed, which results in model differences depicted as FA (E stands for
execution). The concepts V* A and PA allow an explicit designation of these manual and
automated changes. These symbolic notations are introduced here, since they are required
for formal visualizations for the design in Chapter 6™ 8%, Technically, they are model
differences, which are technically realized by difference operations (see Section 6.7 227).
Initially, the system is expected to be inconsistent (initial state in Figure 2.15 1), since
reused views might be inconsistent due to manual consistency management before (see
Section 1.2.2*39).

Since the Definition 2" 32 for consistency does not define possible contradictions between
views, it does not help to determine, if given views are consistent to each other or not, i.e.
if state consistent or if state inconsistent holds in Figure 2.15* 7' Therefore, Definition 15
allows to formulate conditions for consistency:

Definition 15: Consistency Goal

A consistency goal formulates a relation between elements of one ore more viewpoints.
If this relation holds between corresponding elements of conforming views, these
views are called consistent, otherwise, they are called inconsistent, regarding this
consistency goal.

Since the viewpoints and their relations for consistency are project-specific (see page 35),
each consistency goal is specific for that project, too: Consistency goals make these project-
specific consistency challenges explicit and can be seen as special requirements for the
desired consistency for the current project, i.e. the consistency is defined by consistency
goals as its parts (Figure 2.17% 73).

Consistency goals should clarify dependencies between elements of different views, since
they are the origin for possible inconsistencies. Possible kinds of dependencies are identified
on page 33 as redundancies, explicit links and constraints. Each consistency goal makes one
of such dependencies between views explicit, so that it can be checked in order to determine,
if the dependency is fulfilled or not.

This relationship between views and consistency goals is depicted in Figure 2.16" ™ as
extension of Figure 2.4 °7: Consistency goals explicitly describe goals for the consistency
of multiple views which comprise information which semantically depend on each other. If
a consistency goal is linked with only one view, it describes its intra-model consistency. In
general, consistency goals can target any views: If there is no complete view, consistency
must hold only between partial views. If there is an explicit complete view, consistency
must be ensured between the partial views and its complete view, too. From the perspec-
tive of stakeholders, they expect consistency goals to hold for partial views (only), since
stakeholders usually work only with them and do not care about a possible complete view.

Note, that consistency goals are formulated in terms of elements of the viewpoints, but
must hold for corresponding elements of conforming views. Therefore, consistency goals can
be evaluated like constraints for all conforming views in order to determine, whether the
views are consistent or inconsistent. If all relations of all consistency goals for a project and
its system under development hold, the views of this system are called consistent (otherwise,
they are called inconsistent) to each other as well as to the system.

72

2.3 Consistency

dependingViews [1..x]
Vi

View ConsistencyGoal

~N

relatedConsistency [0..1]

[|

< abstract>> parts [1..x] | Kabstract>>

ol
PartialView

<>

h)
composite [1]

~

CompleteView

Figure 2.16: Concepts for Views and their Consistency

Instead of consistency goal, Reder and Egyed (2012) call it “design rule” and use expres-
sions to describe the consistency formally, while consistency goal emphasizes the purpose alternative Terminology
of consistency. Dijkman, Quartel and van Sinderen (2008) call it “consistency rule”, but
this term is used differently here, as defined below.

ConsistencyGoal ConsistencyRule
. goals [*] rules [x]
Consistency i 3| label : String [1] < 3{ label : String [1]
project [1] text : String [1] goal [1] text : String [1]
description : String [1] description : String [1]

Figure 2.17: Concepts for Consistency

While Definition 15" 7 allows to determine, if consistency is reached or not, it is still
unclear, what to do in order to fix inconsistencies: Inconsistent views must be changed
in order to get updated views which are consistent to each other afterwards. Usually, an There are multiple
occurred inconsistency can be fixed in multiple ways, i. e. there are multiple possible fixes to PossiPle Fixes
repair a single inconsistency. An example is found in the following Part 10 of the ongoing
example:

Ongoing Example, Part 10: Multiple possible Fixes

When an inconsistency occurred, usually, there is not exactly one possible fix for the incon-
sistency, but there are multiple possible fixes in general. As an example, the same class is
represented in source code and in class diagrams: After the user renamed a class A in the
class diagram to B, there are multiple ways to eliminate the occurred inconsistency, e. g.

e by creating a new class B in the source code (with or without deleting A in the source
code),

e by renaming the class A in the source code to B (the chosen fix in Consistency
Rule C2c=)

e or even by deleting the renamed class B in the class diagram.

To fix the introduced inconsistency, one fix of this (incomplete) list of possible fixes must
be chosen.

In general, there are multiple possible fixes for inconsistencies (Reder and Egyed, 2012).
This observation can be found not only in practice but also in theoretical way: Hettel,
Lawley and Raymond (2008) give another explicit example and formalize the need for
a selection strategy, when defining round-trip engineering for change propagation (more
details are given in Section 3.3.1* 108). Formalizing consistency as relation, as it is done in
the following, formally shows, why multiple possible solutions occur. Another motivation
for formalizing consistency is, that it shows the need to change also the source view in

73

Consistency
mathematically
formalized as Relation

Exemplary Consistency
Relation

Cases of related Models

Selecting consistent
models

2 Basic Concepts

order to fix inconsistencies. Both findings are mapped to provided functionality of related
approaches in Chapter 3= 93.

Stevens (2010) formalizes consistency as mathematical relation R C L(S) x L(T) be-
tween source models s € L(S) and target models ¢ € L(T) with S and T as their metamo-
dels and L(S) and L(T') their induced languages as sets of all conforming models:

Vs e L(S),t € L(T) : R(s,t) <= s and t are consistent to each other (2.1)

Informally, for each possible pair of one source model and one target model it is checked,
if they are consistent to each other: If they are consistent, this pair is stored respectively
marked by the relation R. If they are not consistent, this pair is not part of the relation
R. In the following example in Figure 2.18, there are five combinations of five possible
source models and of six possible target models which indicate consistent models, i.e.
(s1,11), (83, t2), (84, 2), (85, 15), (85, t6) € R. Note, that the assignment of two models as
source model respectively target model is artificial here and could be switched without
impact.

Source Models Target Models

Case 1
51 @

®

t:
S2 @ Case 2 2
Case 3 o i3

53
o 1y

S4

t5
S5 ® i

Figure 2.18: Exemplary Consistency Relation between source and target models

When looking only at the source models (in general, the same counts when switching
source and target), there are four different cases, how they could be related as consistent
to target models:

e In Case 1, a source model is related to exactly one target model which is related to
no further source models, e.g. (s1,) in Figure 2.18.

e In Case 2, a source model is related to no target model, e.g. sz in Figure 2.18.

e In Case 3, a source model is related to exactly one target model which is related to
two or more source models, e. g. (s3, t2), (84, t2) in Figure 2.18.

e In Case 4, a source model is related to two or more target models, e. g. (ss, t5), (S5, 6)
in Figure 2.18.

With these distinctions, the following results regarding the selection of possible consistent
target models for a particular source model can be achieved:

e If only Case 1 occurs in R, R is bijective and s and ¢ determine each other com-
pletely and contain the same information with different structures (Stevens, 2008).
In that bijective setting, there is only one possible fix for an inconsistent source model
respectively target model without the need for selection.

74

2.3 Consistency

e If Case 2 occurs in R, there is no related target model to be consistent with the source
model. Since there is no target model, the current source model must be changed to
come to another source model which have one or more related target models. With
other words, the current source model is the root of the current inconsistent state
and must be fixed itself. In practice, this Case 2 can occur, when the current source
model does not fulfill intra-model consistency.

e If Case 2 does not occur in R, R can be written as function f : L(S) — L(T): If Case
4 occurs in R, f must select one of the possible target models, otherwise f cannot
be established. If Case 3 does not occur, f is called injective. If R is bijective, f is
bijective, too, and there is an inverse function f~! : L(T) — L(S) for f (Stevens,
2008).

As look ahead, functions f and f~! (if existing) can be realized as (unidirectional)
model transformations (see Section 2.2.3*67). If f~1 exists, since f is bijective, f
can be written as bidirectional model transformation and f and f~! can be executed
without further specifications. If f =1 does not exist, a (unidirectional or bidirectional)
model transformation for the inverse direction must cope with the challenge to select
one of multiple possible results for the desired consistency (Section 3.2 99).

e Case 4 shows the need to select from multiple possible target models which are
consistent to the current source model. Therefore, a strategy for the selection of the
desired fix i. e. consistent target model is required. Such selection is not required for
the Cases 1 and 3, since there is exactly one related target model.

Summarizing, relations help to formalize consistency. Depending on the particular
consistency relation, a selection of one of the possible target models to be consistent to
the current source model is required in general. This counts in particular for cases, where
the source models contain less information than the target models, since the additional
information in the target model is unknown in the source model and result in ambiguities.
Another important finding is, that not only a related target model can be selected for the
current source model (which remains unchanged), but also the current source model could
be changed, so that another (or even any) target model related as consistent to the changed
source model can be determined.

Since the resolution of inconsistencies is not unique, the selection of one of these possible
fizes for application is required (Spanoudakis and Zisman, 2001): It is important, that
it is not sufficient for selected fixes to make views consistent to each other, the views
must be consistent to the system under development, too. In particular, changes by users
in one view must be reflected in the other views in order to update the system under
development accordingly. Therefore, the fix to select must fit to the purpose of the system
under development and to the changes of the users. This makes also the selection of fixes
project-specific. To specify the desired fixes of inconsistencies, Definition 16 is required to
guide the selection of possible fixes:

Definition 16: Consistency Rule

A consistency rule provides a strategy to ensure the consistency defined by its con-
sistency goal.

Consistency rules are specific for a consistency goal (Figure 2.1773) and concretize
them in order to operationalize them: This is done by providing strategies, how the consis-
tency is ensured, which is determined by the consistency goals. This can be done by defining
the desired degree of automation (e.g. manual, automated) or the general strategy (e.g.

heuristics), by defining required reactions on occurred changes or by defining special cases

5

Change (also) the
Source Model (again)

Selection of related
(Source or Target)
Models

Selection of one Fix
required

Consistency Rules
formulate Strategies for
fixing Inconsistencies

Related Work for
Consistency
Specification

Consistency formulated
in natural Language

2 Basic Concepts

for the consistency. In contrast, consistency goals describe the desired state of consistency
in more generic way.

Kramer (2017, p. 57) distinguishes consistency check specification and consistency
enforcement specification for consistency specification: The consistency enforcement spec-
ification specializes the consistency check specification by actions to realize consistency,
additionally to the check, if consistency is fulfilled. Here, the consistency rules are designed
to complement their consistency goals by concretizing the desired transition from the in-
consistent state to a consistent state. Kramer (2017, pp. 106ff.) provides also some formal
definitions for consistency using the term consistency rule, which corresponds to the term
consistency goal in this thesis. To annotate consistency checking constraints with repair
rules to fix inconsistencies detected with such constraints is a strategy also found in re-
lated approaches like Stiinkel, Konig et al. (2018), which are presented with more details
in Chapter 3% 93,

This motivates to concretize Requirement R 1 (Model Consistency)™ 1% with the fol-
lowing Requirement R 1.2 15

Requirement R 1.2: Generic Consistency Goals

The approach must support arbitrary consistency goals concretized by consistency
rules.

This requirement will be chosen in Chapter 4* 3 in order to support project-specific

comnsistency challenges in form of concrete consistency goals and their consistency rules.

The consistency can be formulated in formal way, e. g. as demonstrated by Diskin, Konig
and Lawford (2018) or with OCL as by Dijkman, Quartel and van Sinderen (2008) and
Egyed, Zeman et al. (2018). Here, all consistency goals and consistency rules are formulated
as text in natural language, since they should be used for discussions with stakeholders
(Section 2.4 ™), who usually have no formal knowledge for that. Each consistency goal
and each consistency rule is represented by one sentence, complemented with a longer
description for motivation and description, as demonstrated for the ongoing example:

Ongoing Example, Part 11: Consistency Goals and Rules

Now, the consistency issues, which are described only roughly up to now, are summa-
rized in form of consistency goals now. To realize the consistency goals, some concretizing
consistency rules are added.

Consistency Goal C1

must be linked with their fulfilling methods.

This consistency goal summarizes the first consistency issue in the ongoing example. It
links requirements from the requirements data source explicitly with those methods from
the data source, which fulfill the requirements.

Consistency Rule C1la

Links between requirements and fulfilling methods are added manually.

Since the identification of methods which fulfill requirements should be done manually,
no automation is described here.

76

2.3 Consistency

Consistency Rule C1b

If a requirement or a method is deleted, all its links must be deleted automatically,
but not the other linked element.

After removing a requirement or a method, all direct traceability links must be removed,
too. The element at the other end of the link is kept. This is important, since these deletions
can be done independently from the traceability, e.g. by removing the elements in their
original data sources.

Consistency Goal C 2

All classes must be represented always in source code, but not necessarily in
the UML class diagram.

The classes in UML are a subset of the classes in . This allows to keep UML on a
higher level showing only classes which are relevant for the architecture.

Consistency Rule C2a

A new class in UML must be created also in , but a new class in is not
added to UML.

If the new class in UML is already existing in , which is possible due to C 2, these
two classes are identified as same, but nothing more happens.

Consistency Rule C2b

A deleted class in must be deleted also in UML, but a class which is deleted
in UML remains in .

In the end, each class in can be shown or hidden in UML, which counts also for
deletion of classes.

Consistency Rule C2c

A renamed class in UML must be renamed also in and vice versa, if the class
is also represented in UML.

Since the same class is represented in UML and , it must have the same name in
both representations.

Consistency Goal C3

Each association in UML must have exactly one method which provides its values
(getter).

Since associations in UML are usually realized as private attributes in (Java), a public
getter-method is required to retrieve the values of that attribute. By convention, the name
of the getter starts with the prefix get and ends with the name of the method whose first
letter is a capital. If there is no getter, a new getter will be created explicitly for the
association. Note, that associations are part of and methods are part of
: Due to C2, all classes of UML defining associations are part of the source

7

2 Basic Concepts

code, so creating getters is always possible.

Consistency Rule C3a

If an association is renamed, its getter must be renamed accordingly.

Otherwise the names of association and getter do not match the convention anymore.
The special case, that the renamed getter conflicts with another already existing method,
is ignored here for simplicity.

Consistency Rule C3b

If a method which is used as getter for an association is renamed, this association
must be renamed accordingly.

Otherwise the names of association and getter do not match the convention anymore.
The special case, that the renamed association conflicts with another newly created asso-
ciation, is ignored here for simplicity.

Consistency Rule C3c

If a method which is used as getter for an association is removed, a new getter is
created for this association.

A new getter is created, otherwise the still existing association has no getter anymore,
which hurts C 3.

Consistency Rule C3d

If an association is removed, its getter is removed, too.

Since the purpose of getter methods is only to provide the value of the association, the
getter is no longer used, when its association is removed.

Figure 2.19 presents an overview of all consistency goals, annotated along the edges®.
The nodes in the graphic represent the data sources in this application.

Requirements }— C1

C2,C3

‘ ClassDiagram ’

Figure 2.19: Overview of Consistency Goals in the ongoing Example

Since all involved data sources have models, Figure 2.19 could be treated also as macro-
model with consistency goals as used type for relations (Salay, Mylopoulos and Easterbrook,
2009; Stevens, 2017), since megamodels have a fixed set of relation kinds between models
(Favre and Nguyen, 2005).

“Hyperlinks at the consistency goals allow to jump to their introductions.

78

2.4 Stakeholders

Usually, it is sufficient to specify consistency goals for views representing data sources
only and not for new views, since new views provide only some already existing information
of the data sources in a different way, but do not introduce new information. But this
reused information is already targeted by the consistency goals for the views representing
data sources. Therefore, Part 11 76 of the ongoing example presents consistency goals and
consistency rules for data sources only and not for new views.

This formulation of the desired consistency in terms of consistency goals and consis-
tency rules helps to discuss it with stakeholders and to clarify their roles in consistency
management (Section 2.4).

2.4 Stakeholders

The management of inconsistencies (Spanoudakis and Zisman, 2001) involves four groups of
stakeholders, i.e. users, methodologists, platform specialists and adapter providers, which
are motivated and clarified in this section. Later on, these stakeholders help to adjust the
design of the new approach (Chapter 6 !8%) and its application (Chapter 12 4%) to their
skills. Examples for these groups of stakeholders in the software development domain are
collected in Part 1233 of the ongoing example.

1]

Consistency Management

fix Inconsistencies automatically

specify Consistency

Platform Specialist

o

U‘LL

Adapter Provider

develop Adapter

Methodologist

Figure 2.20: Use Cases of Consistency Management

In order to motivate the proposed stakeholders, the use cases for consistency manage-
ment are discussed and depicted in Figure 2.20, in order to derive involved stakeholders for
consistency management:

Fix Inconsistencies automatically This use case automatically fixes possible inconsis-
tencies in views, after one view was manually changed by a stakeholder involved in
the current development project. The stakeholders using and changing views man-
ually and requiring automated fixes afterwards by triggering this use case are called
users. To automate such fixes for manually introduced inconsistencies within this use
case is the main objective of this thesis (Section 1.3.1*42).

Specify Consistency The consistency to ensure in a project is specified during this use

case by explicitly formulating consistency goals and consistency rules (Section 2.3 71).

79

Consistency Goals for
Data Sources only

Stakeholders for
Consistency
Management

Use Cases for
Consistency
Management

Technical Space

Adapter

Frequency of Use Cases

User
Derived Stakeholders

Methodologist

Platform Specialist

Adapter Provider

Use Cases guided by
Platform Specialists

2 Basic Concepts

Objective of this use case is to establish explicit specifications for the desired consis-
tency in order to automatically fix inconsistencies in the previous use case.

Develop Adapter Since different views are technically realized with different tools, en-
vironment and data formats (Section 1.2.2*30) or different concrete syntaxes (Sec-
tion 2.154), the information encoded by these views must be mapped to the same
technical representation in order to work with them in a uniform way. These techni-
cal representations are called technical spaces and are concretized in Section 2.5 84,
This bidirectional mapping between the technical spaces is done by adapters, which
are developed during this use case.

It makes sense to distinguish the introduced use cases in this way, since the functionality
of these use cases is needed with different frequency: For each project, the use case for
specifying consistency is done only once and these specifications are often used for executing
the use case for fixing inconsistencies after each use of a view. A new adapter is developed
only once for each new technical space to support, since adapters can be reused for all
projects.

The first use case to automatically fix inconsistencies is triggered by stakeholders of
the system development after they manually changed their views. These stakeholders are
grouped under the term users of consistency management (Section 2.4.1). Since specifying
consistency for the second use case requires knowledge about all views and the domain
of the system and users usually do not have this knowledge, another stakeholder is re-
sponsible for realizing this use case, called methodologist (Section 2.4.2%81). Since fixing
inconsistencies as first use case should be automated, a realizing conceptual approach and
supporting software system must be developed: This requires researchers called platform
specialists as additional group of stakeholders, since they have knowledge about consistency
challenges independent from the application domain, while this knowledge cannot be re-
quested by users and methodologists focusing on single projects. These three stakeholders,
users, methodologists and platform specialists, are shortly mentioned by Meier, Werner
et al. (2020) already, but are elaborated in the following sections. An additional, fourth
stakeholder is dealing with the technical heterogeneity of views and is identified by the
third use case to develop adapters: In order to bridge different technical spaces of different
views, the adapter provider develops adapters, which can be used for all following projects
by methodologists.

All three use cases in Figure 2.20% ™ are not actively executed, but supported by
platform specialists: Since platform specialists develop the approach for consistency man-
agement and its implementing framework, they provide guidelines and APIs how to specify
consistency for methodologists, they determine the automated execution of fixing incon-
sistencies for users and specify the supported technical space, for which adapter providers
have to implement adapters from other technical spaces.

A forth use case (“Initialize SU(M)M”) is introduced in Section 5.2.3* 170 but not
shown in Figure 2.20% ™, since it is not required for managing inconsistencies in general,
but depends on design choices.

2.4.1 User

Users are the stakeholders, who benefit from ensuring inter-model consistency automati-
cally, as defined in Definition 17:

Definition 17: User (Stakeholder)

Users read and write single views and expect them to be consistent to all other views
before and after their manual changes.

80

2.4 Stakeholders

Users are all stakeholders of a project which use one or more of its views. Before using
a view, they expect, that views presented to them are consistent with the other views.
Using a view includes reading information and writing information and is done often via
tools with fixed viewpoints or with concrete syntax. In case of writing, the user causes
changes in the view in order to update the underlying system. Since only the current view
is changed, it might become inconsistent to the other views. Therefore, the users expect,
that the views are made consistent automatically after their manual changes, i.e. their
changes are propagated accordingly into all other views. Summarizing, users execute the
following activities:

e users read and write single views
e users request automated fixes for possible inconsistencies after their changes

Meier, Werner et al. (2020) call this stakeholder “developer”, which is fine in the area of
software development, but is not generalizable to domains outside of software development.
Even within software development, there are stakeholders falling in the group of users
like requirements engineers and software architects, who are using views like requirements
specifications and UML diagrams and expect them to be consistent to each other. Therefore,
the developer is renamed to user here. In the context of views representing classical models
like UML models, the user is sometimes called “designer”, e. g. by Demuth, Lopez-Herrejon
and Egyed (2015). Here, the term user is used, since it is more general for arbitrary
application domains than the mentioned alternatives.

2.4.2 Methodologist

Methodologists are the stakeholders, who automate the consistency for a concrete project
using an approach for consistency preservation, as defined in Definition 18:

Definition 18: Methodologist (Stakeholder)

Methodologists apply approaches for consistency preservation in order to realize the
automated consistency preservation desired by users.

Initially, methodologists identify and specify the consistency goals and their consistency
rules for the current project, together with involved users and perhaps further domain
experts. Note, that the understanding of consistency might be subjective depending on the
particular users and further stakeholders (Branco, Xiong et al., 2014, p. 933). The identified
consistency rules are realized technically using the provided concepts of the chosen approach
in order to ensure the consistency goals automatically. Therefore, methodologists need
knowledge about meta-modeling, since consistency goals and consistency rules are defined
on the viewpoints respectively metamodels, and about the application domain, which could
be supported by domain experts or users. This contains also legal issues as precondition for
data integration, which are out of the scope of this thesis (Section 1.3.243). Additionally,
methodologists have to unify the technical spaces of different viewpoints by using adapters.
Summarizing, methodologists execute the following activities:

e methodologists identify the desired consistency goals within projects
e methodologists specify consistency rules for the collected consistency goals

e methodologists realize consistency goals and their consistency rules using an approach
and framework for consistency management

e methodologists use adapters to bridge different technical spaces of different viewpoints

81

Users use Views and
want automatic Fixes
for Inconsistencies

related Terminology

Methodologists realize
Consistency
Management

related Terminology

User vs Methodologist

Platform Specialists
develop Approaches for
Consistency
Management

related Terminology

Methodologist vs
Platform Specialist

2 Basic Concepts

When identifying overlaps of heterogeneous views in collaborative way, Bennani, El Ham-
laoui et al. (2018) propose a similar role having knowledge about the domain, its semantics
and meta-modeling, called “semantics expert” there. In a following paper (El Hamlaoui,
Bennani et al., 2019), a similar role is usually called “expert” (and once “integrator expert”).
Vara Larsen, DeAntoni et al. (2015) call the stakeholder responsible for coordinating differ-
ent models to each other as “integrator”. Nentwich, Emmerich and Finkelstein (2003) call
the stakeholder to select and customize possible fixes for detected inconsistencies as “repair
administrator”. Here, the term methodologist is used, since it was coined and agreed upon
along with other SUM approaches in Meier, Klare et al. (2019). Additionally, these findings
show, that the role of the methodologist is identified as senseful by related work.

Users and methodologists must be distinguished, since users usually know only their
own views and have no knowledge about the other views. But the knowledge about inter-
view consistency issues is required to solve them, which requires to have methodologists.
The other main difference between these two groups of stakeholders is, that users work with
their views often, while methodologists configure the automation of consistency only once.

2.4.3 Platform Specialist

Platform specialists are the stakeholders, who develop generic approaches for consistency
preservation in multi-view environments, as defined in Definition 19:

Definition 19: Platform Specialist (Stakeholder)

Platform specialists design approaches for consistency management and implement
frameworks which support methodologists during their application for concrete con-
sistency problems in projects.

Platform specialists solve classes of consistency problems with conceptual approaches
and provide technical frameworks, languages or libraries in order to support methodologists
during the application those approaches. The technical support in form of a framework
defines at least one technical space, for which adapters as bridges to other technical spaces
are required. Summarizing, platform specialists execute the following activities:

e platform specialists design approaches for consistency management
e platform specialists implement such approaches as framework

Meier, Werner et al. (2020) introduce the platform specialist shortly. The word platform
can be seen as aggregation of the approach and its implementing framework. As developer of
both, platform specialists are specialists for their platforms, i. e. approaches with supporting
frameworks. An alternative term for platform specialist could be “researcher”. Here, the
term platform specialist is used, since it was coined and agreed upon along with other SUM
approaches in Meier, Klare et al. (2019).

Methodologists and Platform Specialists must be distinguished, since methodologists
apply consistency approaches for each project, since the consistency is specific for the
current project, while it is sufficient for platform specialists to develop a generic approach
only once. By providing reusable frameworks, platform specialists can help methodologists
to save effort.

2.4.4 Adapter Provider

Adapter providers are the stakeholders, who support different technical spaces, i.e. the
formats and tools used by users, as defined in Definition 20 3

82

2.4 Stakeholders

Definition 20: Adapter Provider (Stakeholder)

Adapter providers develop techniques to automatically transform data used by users
into the technical spaces used by approaches for consistency management and vice
versa.

Users often use predefined tools, DSLs and data formats for their views, called tech-
nical spaces, whose models must be handled by the framework. Therefore, the framework
determines at least one technical spaces to be supported by the framework. This selection
is discussed in Section 2.5 8 for the new approach of this thesis. Adapter providers de-
velop transformations as bridges between technical spaces of viewpoints used by users and
the technical space of the framework of the approach for consistency management. These
transformations are bundled as adapters (see Section 6.6.5 226). Summarizing, adapter
providers execute the following activities:

e adapter providers develop bidirectional bridges between two different technical spaces

Alternatively, this work could be done by methodologists, if the technical space to
support is project-specific. An example is the adapter for XTEXT, which is developed
by the methodologist as specialization of the EMF adapter in the application for rights
management in Chapter 9 283,

Platform specialists and adapter providers must be distinguished, since platform spe-
cialists do not know all possible technical spaces and tools whose data should be handled.
In particular, data formats like DSLs can be developed explicitly for the current project
and must be supported, too, which can not be handled in advance by platform specialists.
To support new adapters by adapter providers, platform specialists define mechanisms for
developing new adapters in the approach and a corresponding API in the framework.

Ongoing Example, Part 12: Stakeholders

Adapter Providers
ensure automatic Data
Transformation between
Views and Consistency
Management
Approaches

Platform Specialist vs
Adapter Provider

Mapped to the running example, the four groups of stakeholders can be identified, too, and
concretized with involved persons:

User Users are requirements engineers, software architects, programmers and project man-
agers, who use and change only their views (usually they use its representation with
concrete syntax for that) and benefit from the automated updating of the other views.
End users of the developed software system for university management like students
and lecturers are no users in this context, since there is no view to support their
needs in this restricted example. In real projects, users want to get the final software
for using it, therefore, such a view for the final product after deployment is useful.

Methodologist The methodologist is a person, who has knowledge about the software
development project and its desired consistency challenges and has meta-modeling
skills, like an expert for quality assurance in software development of the company
or of a consulting company.

Platform Specialist is the author of this thesis, since he developed the approach Mo-
ConNsEMI and its realizing framework.

Adapter Provider Since the used formats CSV and EXCEL are provided together with
the framework, the platform specialist is also the adapter provider here, who is the
author of this thesis.

The design of the new approach (Chapter 6 '#5) takes these stakeholders into account
and supports their concerns by providing tailored ways for application (Chapter 12 4%%).
Section 14.3.1.3 493 discusses the required skills of stakeholders as summary.

83

Technical Spaces
provide Techniques and
Tooling to realize
Models

more than Modeling

Modeling Space

Technical Space =

1 realized Modeling
Space +

n used Modeling Spaces
+

Tooling

sketch existing
Technical Spaces

2 Basic Concepts

As discussed above, views are used by users and viewpoints are used by methodologists.
To realize models technically in order to automatically work with them in software tools like
model transformation engines, in particular used by adapter providers, Section 2.5 presents
the concept of technical spaces, discusses some existing technical spaces and decides to use
EMF in this thesis finally.

2.5 Technical Spaces

Models and metamodels are often realized as graphs. Accordingly, model transformations
can be realized by graph transformations (Taentzer, Ehrig et al., 2005). From technical
perspective, tools using models like model transformation engines require, that the in-
volved models, metamodels and model transformation definitions follow the same technical
foundations. They are summarized as technical spaces, as defined in Definition 21:

Definition 21: Technical Space

“A technical space is a model management framework accompanied by a set of tools
that operate on the models definable within the framework.” (Bézivin and Kurtev,
2005)

More informal, “the intuitive meaning behind a technical space is a certain technology”
(Bézivin and Kurtev, 2005) to technically realize models including supporting tooling like
serialization and deserialization of models and metamodels. Since everything is a model,
technical spaces as defined above can realize not only models, but also programming lan-
guages and data bases (Bézivin and Kurtev, 2005), ontologies (Kurtev, Bézivin and Akesit,
2002) or other data like CSV files. In the end, each view is realized by a technical space.

Djuric, Gasevic and Devedzic (2006) introduce the term modeling space as “a modeling
architecture defined by a particular meta-metamodel” (Djuric, Gasevic and Devedzic, 2006,
p. 132). The meta-metamodel like MOF refers to the central concepts which can be used in
metamodels. Compared with multi-level modeling, modeling spaces refer to the particular
concepts defined in Ly. Djuric, Gasevic and Devedzic (2006, p. 140) use modeling spaces to
concretize technical spaces: Objective of a technical space is to realize one modeling space.
During that realization and the supply of tooling for this modeling space, further modeling
spaces can be used. As an example, MOF is the modeling space of the MDA technical
space, that uses also EBNF as modeling space to support programming languages like Java
for the generated source code.

In this thesis, the term technical space is used, since also the particular realization
of the main modeling space including existing tooling is reused. Note, that the similar
term “model space” is sometimes differently used for other things by different authors,
e. g. to distinguish artifacts in the modeling world from artifacts in the programming world
(Angyal, Lengyel and Charaf, 2008) or to define a graph of all models conforming to the
same metamodel as nodes with model differences between each pair of these models as edges
(Diskin, Gholizadeh et al., 2016). The next Section 2.5.1 sketches some existing technical
spaces to realize models and metamodels technically.

2.5.1 Related Work: Technical Spaces

This section sketches some of the existing technical spaces usable to technically realize
models and metamodels. Objectives are neither completeness nor a reliable comparison,
but to show some existing alternatives. The existence of different technical spaces mo-
tivates adapters (Section 6.6.5" 220) as bridges between different technical spaces. The

84

2.5 Technical Spaces

presented selection is restricted to technical spaces which realize models (and not program-
ming languages, as an example) and focuses on technical spaces which are targeted by other
approaches for model consistency or metamodel evolution, presented in Chapter 3* 93.

e The Object Management Group introduced the Meta Object Facility (MOF) 2.0
(Object Management Group, 2019) to realize (meta)models for their MDA initiative.
MOF can be distinguished into the Complete MOF (CMOF) containing all con-
cepts and Essential MOF (EMOF) containing only a subset of concepts. Wachsmuth
(2007) presents metamodel adaptations for the complete MOF 2.0.

e The Eclipse Modeling Framework (EMF) is a Java-based framework to enable mod-
eling with a bunch of tools in the frame of the Eclipse IDE. Within EMF, ECORE
describes the possible concepts in EMF metamodels and is very similar to EMOF
(Steinberg, Budinsky et al., 2009). Differences between EMOF and ECORE are dis-
cussed by Kramer (2017, pp. 26-28) together with simplified metamodels for the
concepts of EMOF and ECORE. In terms of Djuric, Gasevic and Devedzic (2006),
ECORE is the modeling space, which is realized and accompanied by, among oth-
ers, XMI serialization and Java source code generation within the technical space
EMF. EMF is used by multiple approaches, including Gruschko, Kolovos and Paige
(2007) for model conformance and VITRUVIUS (see Section 3.5.2* 126) for model con-
sistency. For describing the evolution of metamodels, Vermolen, Wachsmuth and
Visser (2012) use a simplified subset of ECORE, without enumerations and packages,
among others.

e The Kernel MetaMetaModel (KM3) is a technical space with the purpose to define
metamodels (Jouault and Bézivin, 2006). It contains similar concepts like ECORE,
but not all concepts of ECORE. Next to the meta-metamodel defining the concepts
of metamodels, KM3 comes with a textual DSL and transformations to bridge KM3
with the technical spaces MOF and ECORE. KM3 is used by Cicchetti, Di Ruscio
et al. (2008) for model co-evolution and is supported directly by the transformation
language ATL (Jouault, Allilaire et al., 2008).

e The TGRAPHS approach allows to realize models and metamodels in form of typed,
attributed and ordered nodes and edges and is implemented with Java in JGRALAB
with additional tools for serialization and transformation (Ebert, Riediger and Win-
ter, 2008). TGRAPHS are used for managing traceability between artifacts of software
development (Schwarz, Ebert and Winter, 2010).

There are also more formal technical spaces, e.g. colored petri nets used for consis-
tency of dynamic UML diagrams (Shinkawa, 2006) or hypergraphs with constraints used
as intermediate data structure for bridging technical spaces (McBrien and Poulovassilis,
1999). Other technical spaces focus on realizing graphs (as model) without explicit and
user-defined graph-schema (as metamodel) like JGRAPHT (Michail, Kinable et al., 2020).
Another variation is to restrict graphs to trees as data structure, as in HARMONY (Foster,
Greenwald et al., 2007). Other research areas enrich modeling spaces with additional con-
cepts like roles for role-based modeling (Kiithn, Béhme et al., 2015) or multiple meta-levels
for multi-level modeling (Atkinson and Kiihne, 2001). More technical spaces can be found
in Jelschen (2024, p. 143f), in surveys on model transformations like Jakumeit, Buchwald
et al. (2014) and Kahani, Bagherzadeh et al. (2019) and in surveys on workbenches for
domain-specific languages like Erdweg, Storm et al. (2013).

Unrelated to technical spaces is the concept of UML profiles (Pardillo, 2010): While
MOF (at M3) allows to model metamodels like the UML super structure (Object Manage-
ment Group, 2017) (at M2), which is used by developers to model activity diagrams and

85

Modeling | Technical

Space Space
MOF MDA
ECoORE EMF
KM3 KM3

TGRAPH JGRALAB

MOF

ECORE

KM3

TGRAPH

more Technical Spaces

Demarcation: UML
Profiles

de-facto Standard

lots of Tools support
EMF

Implementation reuses
EMF-based Tools

increasing (re)use of
EMF-based Models

2 Basic Concepts

state machines (at M1), the profile mechanism is provided by the UML super structure
(at M2) in order to support developers to define UML profiles (at M1). Profiles are used
by developers to annotate, extend and constrain elements which are modeled in core UML
diagrams (at M1). Among others, there are profiles for performance testing (Bernardino,
Rodrigues and Zorzo, 2016) and developing hardware and software systems in form of the
SYsML (Wolny, Mazak et al., 2020), on which other profiles can be defined, e.g. for re-
quirements (Maschotta, Wichmann et al., 2019). Atkinson and Kiihne (2002a) discuss some
hassles with UML profiles and propose to use ideas of strict multi-level modeling to improve
and clarify the profile mechanism. On the other hand, Mallet, Lagarde et al. (2010) real-
ize multi-level models as UML profiles. While profiles are not usable as technical space,
since they are located on the metamodel level and not on the meta-metamodel level, the
suitability of profiles for combining existing view(point)s is reviewed in Section 3.5.4™ 131,

The next section Section 2.5.2 argues, why EMF is chosen as technical space for this
thesis. The concept of adapters as designed in Section 6.6.5" 226 conceptually allows to
support more technical spaces than EMF.

2.5.2 Descision: EMF

After presenting some existing technical spaces in Section 2.5.1% 84, this section motivates,
why EMF is used to realize models and metamodels in this thesis. EMF and ECORE are
selected for this thesis, since EMF is a de-facto standard for modeling. Following Ehrig,
Ermel et al. (2015b, p. 52), EMF became a standard technology for modeling languages.

EMF inspired a huge bunch of tools supporting ECORE for (meta)models: Already in
the frame of Eclipse, Canovas Izquierdo, Cosentino and Cabot (2017) count 55 modeling
projects in 2017, whose degrees of maturity are similar to those of non-modeling Eclipse pro-
jects in general. This includes, among others, model transformations like HENSHIN (Striiber,
Born et al., 2017) and work benches for domain-specific languages (DSLs) like XTEXT (Bet-
tini, 2013) for textual DSLs and Sir1US (Viyovic, Maksimovic and Perisic, 2014) for graph-
ical DSLs. In the field of model transformation approaches, Kahani, Bagherzadeh et al.
(2019, p. 2372) report, that EMF is the most supported technical space. Additionally, the
underlying Eclipse framework eases tool integration (Mohagheghi, Gilani et al., 2013b, p.
633) for plugins of these approaches.

Focusing on the specifics of the approach of this thesis, choosing EMF is beneficial,
too: According to own statement, EMF is suited for detailed data integration (Steinberg,
Budinsky et al., 2009, p. 38). Tools of the technical space EMF are realized for the
implementation like (de)serialization of (meta)model elements and their identifiers. The
technical representation of models reuses parts of the EDAPT project (see details in Sec-
tion 6.2.1" 193) which uses EMF. In the application of Chapter 9 283, the EMF-based tool
XTEXT (Bettini, 2013) is reused to convert grammar-based text into (meta)models directly
usable for consistency issues.

Finally, the use of EMF is increasing in academia and industry (Babur, Cleophas et al.,
2018): Since the reuse of already existing artifacts in terms of models and metamodels is
one of the central challenges of this thesis (see Section 1.2.2*36), EMF is a good choice,
since many models and metamodels are realized with EMF.

Summarizing, EMF is chosen as technical space due to its wide use and benefits from
reusing existing EMF-based tooling. Therefore, EMF is described with more details in the
following Section 2.5.3* 87,

While EMF is used as technical space for the approach and its implementation, the
wide range of existing technical spaces and their use in practice show the need for another
requirement:

86

2.5 Technical Spaces

Requirement R 4: Technical Spaces

The approach must support views realized in different technical spaces.

Since each view could be realized with a different technical space, it must be possible
to reuse models encoded in different technical spaces. Since it is impossible to realize
all technical spaces beforehand (Section 2.4.4™82), the adapter provider is introduced as
important stakeholder role in Definition 20* 83, who is able to support new technical spaces.
To support adapter providers, the approach must support a mechanism to bridge technical
spaces. Later on, this is realized by the concept of adapters, presented in Section 6.6.5 226,
As an example, Part 24" 276 of the ongoing example shows, how the technical space CSV
is supported.

2.5.3 Foundations of EMF

Since EMF is used as technical space (Section 2.5.2* 80), this section presents those concepts
and features of EMF, which are targeted by the consistency management or used later by
the implementation of the new approach. Some more specific features which are only
supported by adapters are introduced during their implementation in Section 8.4 27!, The
main reference for this section is Steinberg, Budinsky et al. (2009).

ECORE as meta-metamodel used in EMF contains several concepts for defining meta-
models. The concepts which are supported by the approach, are shown in Figure 2.21* 88,
hiding all other concepts?.

All elements provided by ECORE start with the letter “E” by convention. All elements
of metamodels defined in ECORE are organized in EPackages, which can be nested. Main
elements, i.e. EClassifiers, are EClasses representing classes, EDataTypes representing
data types like String or double and EEnums representing enumerations. Note, that EEnum
inherits from EDataType and not directly from EClassifier. Enumerations contain mul-
tiple EEnumLiterals having a name, a value and an optional 1iteral. Classes are either
abstract or non-abstract and can have multiple super classes (and multiple sub classes
accordingly).

Features of classes are generalized as EStructuralFeatures having a name, a lower
bound and an upper bound. There are attributes in form of EAttributes with an EDataType
(or an EEnum) as type. EReferences can be compared with unidirectional UML associa-
tions, since they have one EClass as type and allow to navigate only from its containing
class to its type. To enable navigation for a EReference also from its type to its containing
class, it must be combined with another EReference using the opposite attribute. This
EReference has the containing class of the first EReference as type and the type of the
first EReference as class. In this way, bidirectional associations are realized by combining
two unidirectional EReferences as pair.

Additionally, an EReference can be marked as containment: Compared with UML,
the visualization of a containment reference looks like a composition, in contrast to “nor-
mal” non-containment references looking like usual associations?®. But its impact for the
conforming models is slightly different than in UML: Each object within a model realized
with EMF i. e. an instance of an EClass represented as EObject, must be contained exactly
once within another object, except for a root object. This containment is realized by a link
conforming to a EReference which is marked as containment in the metamodel. Therefore,

2Figure 2.21" 88 does not mirror the implementation of these concepts in EMF perfectly, e. g. the
types of attributes and references are modeled slightly different and a ENamedElement generalizing
the name attribute is ignored, but represents the concepts in conceptual way. The concrete syntax
of Figure 2.21 88 uses the concepts of ECORE for metamodels.

3There is no comparable concept for UML aggregations in ECORE.

87

bridge Technical Spaces
— Adapters

Concepts of EMF for
Metamodels

EClassifier: EClass,
EDataType, EEnum

EStructuralFeature:
EAttribute, EReference

Containment Tree

XMI-IDs

static vs dynamic EMF

2 Basic Concepts

classifiers [x] <K abstract™>
EPackage -l

name : EString [1] package [1] EClassifier

name : EString [1]
superPackage [0..1] ! ’ subPackages [*] T
superTypes [*] | | subTypes [*]

h

EDataType
N EClass i yp < EEnum
(7 instanceTypeName :
type [1] | @bstract : EBoolean [1] EString [0..1]
containingClass [1] A enum [1]
type [1]
structuralFeatures [*]
literals [x]
<K abstract>> :
EEnumlLiteral
EStructuralFeature name : EString [1]
lowerBound : Elnt [1] value : Elnt [1]
upperBound : Elnt [1] literal : EString [0..1]
name : EString [1]
l lopstite [0..1]
X X

EReference EAttribute

containment : EBoolean [1]

Figure 2.21: Relevant Concepts of ECORE

objects form a tree in terms of containment (links) in the model, while these containment
references must be provided in the metamodel accordingly. This containment tree is used
by EMF for (de)serialization as XMI, since one (or more) root objects are associated to a
file (EResource) and the root objects and all their recursively contained objects are stored
in that file. Additionally, if an object is removed from the model, all its contained objects
(the “children”) are removed from the model, too. In the case of multiple root objects, they
can be associated to different files in order to spread the model over multiple files, which
can improve the management of huge models (Jahed, Bagherzadeh and Dingel, 2021).

By default, EMF needs no unique identifiers for objects in the model, since they are rep-
resented as mesh of objects in memory and a hierarchical key for identifying objects is used
for (de)serialization. But as an alternative strategy for object identification, EMF supports
to assign textual identifiers (String) to objects in the model. During (de)serialization
with XMI, these identifiers are used and stored with xmi:id="myID" in the resulting
XMI files. The in-memory representation of objects does not contain a method like ob-
ject.setID("myID"), but the identifiers are stored within XMI files (XMIResource is a
special Resource) with file.setID(object, "myID"). Additionally, it is possible to as-
sign XMI-IDs also to all elements of metamodels. Since the design of the new approach
needs unique and stable identifiers (Section 6.6.4™ 22%), this concept of XMI-IDs is used to
store identifiers.

Models and metamodels can be used with EMF in static or in dynamic way: In static
mode, Java source code is generated from defined metamodels, which represents the clas-
sifiers and their features in Java, e.g. by containing one Java class for each EClass. This
static Java source code is used at runtime to represent objects of EMF models as Java
objects with Java class as type which was generated from the corresponding EClass. This

88

2.6 Summary

static mode eases programming in Java with the data structures defined in the metamodel,
but requires the regeneration of code, if the metamodel evolves. In dynamic mode, no code
generation is required, since metamodel and model are both represented as mesh of objects
at runtime: The classes of the metamodel are represented as instances of EClass and the
objects of the model are represented as instances of EObject?. Both Java classes EClass
and EObject are provided by EMF and can be reused without further adaptations. Since
the metamodels must be adapted (Section 6.2 192), the implementation uses dynamic EMF
later on, but supports also static EMF for data sources (Section 8.4.2 273). Part 13" % of
the ongoing example shows, how dynamic EMF is applied to realize parts of the metamodel
for requirements.

The motivation for selecting these features are mainly to enable modeling with the
main features of UML class diagrams (all EClassifiers, all EStructuralFeatures) and to
enable grouping of elements with EPackages in order to simplify the management of huge
metamodels (Section 13.3.3.3476). The amount of supported EMF features corresponds
with the amount of developed operators, as presented in Chapter 7= 24! since they directly
work with and change the features of models and metamodels.

Some popular features of EMF are explicitly not supported, since they are not required
for modeling in general, but could be supported later as future work: This includes the
concept of proxies when dealing with models which are spread across multiple files. Non-
containment links to objects stored in another file initially refer to a proxy object, which is
resolved to the real object in the other file, if it is explicitly accessed the first time. This
lazy-loading improves performance. Another performance improvement when dealing with
huge models could be partial loading, as done by Wei, Kolovos et al. (2016).

EMF as described with these concepts and features is used as technical space for this
thesis. Therefore, the conventions of ECORE are used in the graphics of this thesis for
metamodels and models. As an example, EInt is shown as data type in diagrams instead of
int and links within metamodels with filled diamonds are looking like UML compositions,
but are containment references in the sense of ECORE.

2.6 Summary

Views conforming to viewpoints are suited to provide stakeholders with information about
the current system under development tailored to their concerns which are reflected by the
viewpoints (Section 2.1*54). Since using multiple views can introduce inconsistencies, the
desired consistency in particular projects must be clarified, which is done by introducing
the terms consistency goal, which provide single conditions for consistency, and consistency
rule, which provide strategies to ensure single consistency goals by fixing corresponding
inconsistencies (Section 2.3 ™). The involved stakeholders in the process of consistency
management are clarified as users using their known views in the usual way and expect-
ing automated fixes for occurred inconsistencies, as methodologists specifying and realizing
these fixes for particular projects, as platform specialists developing approaches for con-
sistency management and as adapter providers realizing the technical integration of views
into consistency management (Section 2.4 ™).

Since views are represented as models, modeling terminology is introduced in Sec-
tion 2.2 58 in particular models, whose structures and allowed concepts are determined
by metamodels. Metamodels enable to formulate consistency goals and consistency rules
once in a general way, which can be used to ensure consistency at any time for all models

4This is a strongly simplified description: In reality, special implementations of EClass and
EObject are used, e.g. DynamicEObjectImpl having more super classes. Additionally, EObject and
EClass are interfaces in the Java source code of EMF and EClass is an (indirect) sub interface of
EObject.

89

Motivation for
supporting these
Features

some not supported
EMF Features

Class and Object
Diagrams reflect
Characteristics of
ECORE

Summary of
Terminology

Consistency Goals
target overlapping
Semantics of different
Views

Views come with
Models and Concrete
Renderings

Model Transformations
and EMF for technical
Realization

2 Basic Concepts

conforming to these metamodels. Summarizing, consistency goals formulate conditions for
semantically overlapping information of different views (Figure 2.16 73) on the level of
their viewpoints.

This relationships between terminology are summarized in Figure 2.22. Most important
is the understanding of views, as they reduce the whole information of one system under
development according to one viewpoint (realizing the concerns of stakeholders) into one
model, which is visualized with concrete renderings according to the defined concrete syn-
taxes of the particular viewpoint. In Figure 2.22, the system of a model is the system of
the view of this model ((Model.usedBy) .system).

s [1.. involvedStakeholders
Concern (Concerm S 3| Stakeholder involvedStakeholders [+] l PureSUM ‘ l ModularSUM ‘
- stakeholders [1..x] e [I]
addressing [1..%] requestedBy [1] systemOflnterest [1] ﬂ_J

System
<abstract>>
lookingAt [%] system [1] CompleteView
addressedBy [*] hd representedBy [x]
v
Viewpoint IconformsTo [1] N <K abstract>> chomposite 1]
< ? i arts
3 . instances [x] View ¢ Vpdrta [1..%]
usedForViewpoints [*] /\uschy [1] < abstract>>
usedBy [*] usedBy [1] PartialView
realizedBy [1] realizedBy [1] r_%
~ conformsTo [1] ~
Metamodel 3 Model l DataSource ‘ l NewView ‘
> instances [*] o [I]
metamodel [1] model [1]
concreteSyntaxes [] concreteRenderings [*]
usedForConcreteSyntaxes [x] concreteRenderings [x]
v v
\—) - £ sTo [1 N <—/
ConcreteSyntaxDefinition <Con ormsTo [1] N ConcreteRendering
instances [x]

Figure 2.22: Concepts for Stakeholders, Views, Models and Concrete Syntaxes

Important is the distinction between different kinds of views: When discussing the
consistency between views, usually partial views are discussed, which represent parts of
the system under development. Partial views are distinguished into data sources to reuse
(Section 1.2.236) and new views (Section 1.2.3"39). Complete views represent the whole
system under development and contain the information of all partial views on the system
under development. Complete views exist at least implicitly, but might be explicitly realized
depending on the approach for ensuring consistency, as investigated in Chapter 3= 93,

Model transformations (Section 2.2.3% 67) enable to work with models in a structured
way. In order to technically realize models and metamodels, technical spaces are required
and reviewed in Section 2.5 8% Finally, the choice of EMF as technical space for this
thesis is motivated.

To illustrate the theoretic concepts of the system under development, views and their
realization with models and technical spaces given in this Chapter 2*°!, they are applied
to the partial view for the used requirements in Part 13 of the ongoing example:

Ongoing Example, Part 13: Concepts of Modeling < List —

Figure 2.23 %! summarizes the modeling concepts as understood and used in this thesis,
in contrast to OMG and MLM, arranged in four columns.

The left column (without background color) contains the data for the requirements
view(point) of the system under development. Note, that they contain the amount of
elicited requirements (one row for each instance) together with an implicit schema (the
header row). Part 24 276 of the ongoing example discusses that finding in more detail.

90

2.6 Summary

Schema and instances are represented by metamodel and model in the neighbored sec-
ond column as class Requirement and object r1 (r2 is mostly hidden). The model (onto-
logically) conforms to the metamodel and correspond to O; respectively Oz in multi-level
modeling (see Figure 2.7 %3 in the excursion above). In the OMG model stack, these parts
are both located in M (see Figure 2.6™ ®! in the excursion above).

The other two columns depict the technical realization of the concepts in the second
column. The forth column shows the technical space at development time, which is used in
the third column to represent the models and metamodels in the second column at runtime:
All elements in the metamodel, in particular the class Requirement, (linguistically) conform
to the EClass in the forth column in many-to-one manner. EClass is part of the source code
of the ECORE project and is included as library into the implementation of the framework
(Section 6.6.2"222). At runtime (third column), each metamodel element is represented by
one object with (linguistic) type EClass in one-to-one manner.

Data in real System Modeling Concepts Representation in Memory Java Classes in Code
(Schema + Instance) (4 Visualizations) (at runtime) (at development time)
Metamodel ECORE
...... linguistic
e T conformsTo """*+-....
Requirement Y
— — d: EString [0.1] leverernnn.. : EClass | . > EClass
| represen- | author : EString [0..1] [T€pPresen-| name = " Requirement”]jnguistic?ame EString [1]
: . . EN
| spli ted B toxt EStrAmg [0..1] tedBy type conformsTo 1 | type
I
| .
| 5 .
T e] Y : ontological
2o e T s mients] ropregen- : comitoEmals
! tedBy :
I .
| split : . s .
| - represen- linguistic *
| rl : Requirement tedBy P T
e I — : Instance [CPIIOTINS 1O Instance
e ey | S y : Instance [POT Bl :
represen- author = ” Andreas Winter” uuid = "r1” [uuid : EString [1]
text = ”... register ...” uuid = 7r2” | L.t
tedBy text =7... enrole ...7 "freee.aii 1nglns AG. et
conformsTo
Model EDAPT

Figure 2.23: Modeling concepts of MOCONSEMI applied to represent the ongoing requirements

On model level, all elements of the model, in particular all requirements like r1 (r2 is
mostly hidden), (linguistically) conform to the Instance in the forth column in many-to-
one manner. Instance is part of the source code of the EDapt project and is included as
library into the implementation of the framework (Section 6.6.3"223). At runtime (third
column), each model element is represented by one object with (linguistic) type Instance
in one-to-one manner.

The ontological type in the third and forth columns for the technical realization is
realized by the type association between the classes Instance and EClass (forth column)
respectively the type links between the Instance-objects and the EClass-objects (third
column).

As a preview, the adapters as designed in Section 6.6.5" 226 take the data (left column)
at runtime as input and transform them into a mesh of EClass-objects for the metamodel
and into a mesh of Instance-objects for the model (third column). These two meshes are
input for the first operator.

This terminology and its application establish also relationships between models, views,
and so on, which are discussed in this section as megamodels. The lesson learned from dis-

91

Lessons learned from
Megamodeling

2 Basic Concepts

cussing them with megamodeling is, that there are (consistency) relationships as challenges
to be solved in multi-perspective modeling. In detail, the findings of Figure 2.1 52 are the
following ones:

e Both relationships p and § use the means of abstraction in order to provide reduced
models and therefore require synchronization effort, but vary regarding what is re-
duced: p represents mainly the same information with different renderings in different
technical spaces without semantic differences, leading to reduced visual or technical
details. d remains within the same technical space, but reduces information according
to semantic purposes.

e When changing models (or metamodels), the conformance between models and their
metamodels must be ensured, but this must be distinguished from consistency be-
tween different models.

e Model transformations 7 provide means to realize some of the mentioned relationships
between models. Therefore, they are introduced in Section 2.2.3* 67 and investigated
as related approaches in Section 3.3 108,

Side note: Use of Megamodels

Megamodels are not only used for theoretic discussions about general relations be-
tween different models, but are also applied in practice, e. g. for managing big data
analyses (Ceri, Valle et al., 2012), software process lines (Simmonds, Perovich et al.,
2015) and traceability issues (Seibel, Neumann and Giese, 2010).

In such applications, the megamodels usually do not contain the “elements of the
real world” directly, but contain models as representatives for them instead. Since
such megamodels are new views on the whole system with additional consistency
relations to all other views, megamodels are not used for the realization in this
thesis, but only for discussions. Summarizing, “/m/egamodelling is better seen as a
mental discipline than as a technology” (Stevens, 2017).

J

After discussing terminology and basics for view(point)s, consistency, modeling and
technical spaces, they serve as foundations to analyze existing approaches in Chapter 3 93.
In particular, the wide range of available technical spaces as sketched in Section 2.5.1* 84
requires to analyze them regarding approaches for consistency focusing on a particular
technical space, which is done in Section 3.6 135,

92

Chapter 3

Related Work

After defining ensuring of consistency between multiple views as main objective of this thesis
(Chapter 1™ 2%) and clarifying the terms for consistency and modeling (Chapter 2 °!), this
section identifies and discusses existing related approaches for ensuring consistency between
views. Objective of the investigations in this section is to learn about related approaches,
their characteristics and their suitability for ensuring inter-model consistency. The result
of these investigations will be in Section 3.7 146 that the investigated related approaches
fulfill some requirements for ensuring consistency, but not all. This motivates the need for
a new approach called MOCONSEMI (Part IT1* 163).

Therefore, related approaches are shortly described with their contributions for consis-
tency management and are compared to the requirements, which are directly derived from
the challenges for ensuring consistency in Section 1.3.3 46 and therefore are on high-level:

High-level Requirements

R 1 Changes in one model have to be propagated into all related models. (Model
Consistency)

R 2 The approach must allow to reuse existing artifacts. (Reuse existing Arti-
facts)

R 3 The approach must allow to define new view(point)s. (Define new
View(point)s)

Since these requirements are on a high level, another contribution of this section are
improved requirements: When investigating related approaches, some more challenges for
ensuring consistency are found, which are depicted as sub-requirements. Additionally, some
more requirements are found, which should be fulfilled by approaches and their realizations
on technical level. All requirements are motivated and collected in Chapter 4= 153 as
summary.

Due to the huge amount of related approaches in different research areas, this section
first applies some strategies to identify and select related approaches for investigation and
second applies some strategies to compare these related approaches with requirements. The
following strategies to identify and select related approaches for investigation are applied:

e Section 3.1 9 identifies criteria to classify the functional objectives of related ap-
proaches, i.e. the supported levels of heterogeneity of data to keep consistent, multi-
directionality and involved stakeholders during the fix of found inconsistencies. These
criteria are used to clarify the focus of selected approaches. These criteria are no di-
rect requirements, but are partially derived from requirements.

93

Compare related
Approaches

Requirements for
ensuring Consistency

Another Contribution:
Improved Requirements

Selection of related
Approaches to
investigate

3 Related Work

Outline is Research
Area-oriented

e The following research areas with related approaches are selected for investigation:

Since the focus of this thesis is on modeling, related approaches in the modeling
domain are investigated (Section 3.3* 198 — Section 3.5 121). Since software engi-
neering is an application domain of modeling, UML (Section 3.6.1* 136) and DSLs
(Section 3.6.2%137) are discussed as representatives for languages for engineering,
which are realized with modeling techniques. Due to the long history and wide usage
of information systems, consistency in terms of data bases (Section 3.6.3" '39) and
ontologies (Section 3.6.4™ 142) is discussed. As an example outside of computing sci-
ence with strong need for managing lots of data, data consistency within enterprises
is discussed in Section 3.6.5% 144 leading to a comprehensive consideration of inter-
model consistency in a broad application domain. Additionally, these research areas
cover modeling within software engineering, software engineering and information
systems within computing science and outside of computing science.

To show the broadness of existing approaches for managing consistency beyond these
previously selected research areas, some sections point to some more related ap-
proaches outside these research areas, but these are not discussed in detail. These
sections are Section 3.5 12! and Section 3.6 13,

Compare related The following strategies to compare related approaches with requirements are applied:

Approaches with
Requirements

e Related approaches with similar characteristics are grouped together and compared

with requirements in group-wise way.

e Not each approach is compared with each requirement, but only the most important

requirements are compared, focusing on not fulfilled requirements as limitations of
the presented approaches.

Since lots of related approaches use similar techniques with different purposes, differ-

Recurring generic ent frequency or different forms, such recurring generic techniques are described in Sec-

Techniques before
concrete related

tion 3.2 9 before concrete related approaches are discussed. This allows to focus on the

Approaches individual characteristics of related approaches with short references to the used generic
techniques.

3.1 Criteria for Classification

In order to evaluate existing approaches in a structured way, some early criteria to classify
approaches are identified. All criteria are functional objectives of related approaches and
are orthogonal to each other. More motivations for these criteria are given directly when
discussing them in detail. They are visualized as a feature model in Figure 3.1. The main
features, which are numbered, are explained in the following five sections.

Legend
Mandatory

Optional

> > Qe

Or
Xor

» Sub-Diagram

{ Functional Objectives }

1. Inter-Model
Consistency

2. Levels of 3. Multi- 4. Stakeholders
(who decide)

Heterogeneity | | Directionality

[Technical} [Structural} [Semantic} [Methodologist} [User}

/?\ Platform Adapter
Specialist Provider

Figure 3.1: Feature Model for classifying functional Objectives of related Approaches

94

3.1 Criteria for Classification

3.1.1 Inter-Model Consistency

The first criterion “Inter-Model Consistency” in Figure 3.1 9% makes clear, that related
approaches must target ensuring consistency between different models conforming to differ-
ent metamodels. Therefore, this criterion is mandatory. This criterion is already motivated
and established in Section 2.3 ™' and bases on Requirement R 1 (Model Consistency) ™ 154,

3.1.2 Levels of Heterogeneity

Since heterogeneity of the involved views and their models is one major problem for con-
sistency management as explained in Section 1.1*26, possible levels of heterogeneity are
analyzed as second criterion in order to focus the analysis of related approaches regard-
ing the levels of heterogeneity at which inconsistencies might occur which are fixed by the
related approaches. Related approaches must overcome at least one of these levels to be rel-
evant here, therefore, this criterion is mandatory. The three relevant levels of heterogeneity
are introduced and discussed in the following:

Technical heterogeneity covers different representations of the same information in terms
of technical aspects like different exchange formats, encodings, or separator signs.
The concrete syntax of a view and its embedding into tooling falls into this cate-
gory of heterogeneity. Additionally, technical heterogeneity occurs, if different data
sources use different concepts to describe metamodels, like object-oriented, relational
or XML, referring to different modeling spaces, as presented in Section 2.5 34, The
technical realizations of views are summarized as technical spaces (Section 2.5 84).

Structural heterogeneity covers the aspect, that the same concepts can be described by
different metamodels. An example are the different strategies to resolve multiple
inheritance into single inheritance.

Semantic heterogeneity targets conflicts regarding the meanings of different concepts lead-
ing to information: Information occurs by interpretation of the available data. These
interpretations depend on the context, i.e. the particular project. Doan, Halevy and
Ives (2012, p. 92f) give two examples for semantic heterogeneity in details, first dif-
ferent scales of values, e.g. for temperature in Celsius and Fahrenheit or currency
in Euro and Dollar, and second the mapping of different names for the same ele-
ment, e.g. “MDA”, “Model Driven Architecture” and “OMG MDA” refer to the
same modeling initiative.

In the following, the levels of heterogeneity are applied to the ongoing example to make
them clear and to give some concrete examples:

Ongoing Example, Part 14: Levels of Heterogeneity < List —

Ensure Consistency
between different
Models

Levels of Heterogeneity:

different technical
Representations

different Metamodels
for same Concepts

different Meanings of
Concepts

Data x Interpretation
— Information

The data sources of the ongoing example provide challenges regarding the three levels of
heterogeneity as presented above:

Technical Since the three data sources are presented to users with different concrete syn-
tax, there is technical heterogeneity, e.g. requirements are realized in CSV format,
while Java and class diagrams are realized directly with EMF. The use of different
signs for separators in the CSV format is also technical heterogeneity (Leser and
Naumann, 2007). But different row numbers for EXCEL (starting with 1) and CSV
(starting with 0) is not technical, but semantic heterogeneity.

Structural In the ongoing example, the concepts which are described twice, are classes
representing for Java and class diagrams: In the metamodels for both data sources,
classes are described by one (meta-)class, but these two classes have different names

95

3 Related Work

(ClassType in Java, Class in class diagrams), which can be treated as tiny struc-
tural difference. Associations and methods are different concepts, which occur only
once, and therefore represent no structural heterogeneity. Going beyond this small
development project, the designation of classes to be either abstract or non-abstract,
could be realized differently: as simple boolean attribute, as attribute with an explicit
enumeration having the literal abstract and non-abstract or as sub classes. Examples
for different metamodels for the same information are existing in form of different
Abstract Syntax Graphs (ASGs) for Java, among others, JAMOPP (Heidenreich, Jo-
hannes et al., 2009) and an JavaASG basing on the Java Development Tools (JDT)
of Eclipse (Meyer, 2016).

Semantic All consistency goals which are described in Part 11 76 of the ongoing example
fall into this category of semantic heterogeneity: Consistency Goal C 2 77 targets the

different meanings of the concept for classes in and (ClassDiagram| by requiring,
that all classes must be in , but in (ClassDiagram|, some classes might be missing.

Main Focus: semantic +
structural
Heterogeneity,
Adapters: technical
Heterogeneity

alternative
Classifications for Data
Integration

Summarizing, these levels of heterogeneity help to emphasize the main objective for
related approaches to investigate: Ensuring consistency between models regarding semantic
issues represented by consistency goals is the most important level of heterogeneity here.
This fits to Definition 2 32, which requires semantic agreement of models for consistency.
To overcome this semantic heterogeneity, the other types of heterogeneity must be solved,
too: Structural heterogeneity is important, since overlapping concepts are usually realized
with different metamodels. In database management, interoperability of heterogeneous
data is one of the oldest and most important problems requiring significant amounts of
time in practice (Bernstein and Melnik, 2007). The new approach of this thesis focuses
on semantic and structural heterogeneity, while technical heterogeneity is overcome by the
concept of adapters. This criterion is named “Levels of Heterogeneity” in Figure 3.1* 94,

In the context of data integration in the data base area, Leser and Naumann (2007, pp.
60-78) classify six levels of heterogeneity: Technical heterogeneity as introduced above is
distinguished into technical, syntactical and data model heterogeneity in order for a more
fine-grain classification and to address the way, how to access and manage the desired
data in terms of communication protocols and query languages. Structural heterogeneity
as introduced above is distinguished into structural and schematic heterogeneity in order
to reflect specific challenges for data base queries. Semantic heterogeneity is defined in
coincident way. Since the groups of heterogeneity of Leser and Naumann (2007) fit to the
proposed levels of heterogeneity above in general, this shows, that they are reasonable and
do not cover specific details of data bases.

In the context of tool integration, Thomas and Nejmeh (1992) extend the classification
of Wasserman (1990) (cf. Section 1.3.2% 43) regarding different properties of data integra-
tion. This classification targets data integration from the perspective of tool integration.
Therefore, this classification is not taken as main classification here, but reviewed in con-
trast to the own classification above. Thomas and Nejmeh (1992) distinguish involved data
into persistent data, e.g. the involved data of the system under development, and non-
persistent data, e.g. data to synchronize tools running in parallel at runtime. Technical
heterogeneity is covered by the terms interoperability (for persistent data) and data ex-
change (for non-persistent data). Structural and semantic heterogeneity are covered by the
terms data consistency (for persistent data) and synchronization (for non-persistent data).
The distinction between persistent and non-persistent data is not necessary here, since only
persistent data must be kept consistent with other views, while non-persistent data might
be used to manage single views at runtime, e.g. to realize the concrete syntax, but are
independent from other views, since the stakeholders use their views independently from

96

3.1 Criteria for Classification

other views. Summarizing, the classification of Thomas and Nejmeh (1992) is structured
differently, but emphasizes again the semantic consistency between data of different views.
The survey of Darke and Shanks (1996) for viewpoint approaches emphasizes the handling
of semantic conflicts, too.

De Lara, Guerra and Vangheluwe (2006) distinguish syntactic and semantic consistency:
Semantic consistency corresponds to the presented classification for overcoming semantic
heterogeneity, while syntactic consistency refers to the abstract syntax, which corresponds
to structural heterogeneity here and emphasizes the suitability of the introduced levels of
heterogeneity. Additionally, de Lara, Guerra and Vangheluwe (2006) distinguish semantic
consistency into static semantic consistency and dynamic semantic consistency, referring to
consistency of models describing static or dynamic aspects of the system under development.
This distinction is not necessary here, since models with any purposes are targeted here.

3.1.3 Multi-Directionality

As already motivated in Section 1.2*3! targeted by Requirement R1 (Model Consis-
tency)™ 1% and named as third criterion “Multi-Directionality” here, changes in each view
must be propagated into all other related views: In general, each view might be changed
by the user leading to model changes, which are propagated to other views and each view
might receive model changes originated from other views. Therefore, all related approaches
must support change propagation in multiple directions between multiple involved views.
Therefore, this criterion is mandatory. While this criterion is called symmetric organiza-
tional dominance by Diskin, Gholizadeh et al. (2016), it is named “Multi-Directionality” in
Figure 3.1 %4, since this term emphasizes the different directions more.

3.1.4 Stakeholders who decide

After identifying with the previous criteria, for what existing approaches need to be evalu-
ated, i.e. the semantic consistency between heterogeneous data in all directions, as fourth
criterion now the stakeholders of Section 2.4 7 are evaluated regarding their involvement
of finding fixes for inconsistencies, i.e. who decides about fixes for inconsistency. These
involvements can be seen as concerns of the stakeholders regarding (in)consistencies. In
order to fix inconsistencies, fixes must be identified and selected, which makes this criterion
mandatory.

Platform Specialists decide by integrating their decisions directly into the developed
approach. Such decisions are fixed and must be used for all projects and applications
domains. Examples are hard-coded heuristics used in graph repair (Sandmann and
Habel, 2019) or bidirectional transformations like least change (Abou-Saleh, Cheney
et al., 2018).

Methodologists should decide on inconsistencies which are project-specific (and which
cannot be handled by platform specialists) and which automatically provide fixes for
such inconsistencies (which should not be decided again and again by users).

Users should decide on possible fixes for inconsistencies, when there is no unique solution
for the particular situation or there is no automatable solution. Users should not
decide, if the desired unique solution can be found in an automatic way.

Adapter Providers provide adapters to bridge technical spaces in order to support exist-
ing tools, DSLs and data formats, but are not directly involved in consistency issues.
Therefore, adapter providers are usually not discussed for consistency issues anymore.

97

Multi-Directionality

‘Which stakeholders
decide?

3 Related Work

Demuth, Lopez-Herrejon and Egyed (2015, pp. 580-582) summarize fixes by platform spe-
cialists and methodologists as “automated fixing” and motivate its need with large numbers
of inconsistencies. Additionally, they propose “guided fixing” to support inconsistencies re-
solved by users with providing possible fixes and information about depending consistency
goals. This shows, that the discussed involvement of stakeholders is in line with other re-
search. Involved stakeholders for fixing inconsistencies are analyzed for the ongoing example
now:

Focus on automatable
and project-specific
Consistency to be
decided by
Methodologists

Ongoing Example, Part 15: Which Stakeholders decide?

In the project of the ongoing example, there are different consistency issues (Part 11 76 of
the ongoing example), which must be ensured. If one of these consistency goals is hurt,
possible fixes for the resulting inconsistencies must be identified and applied by someone.
Now this box discusses, which stakeholders should be responsible for identifying such fixes:

Platform Specialists have only very little chances to provide useful fixes for the con-
sistency goals here, since they are project-specific, while platform specialists design
approaches for managing consistency in general way to be applicable for diverse pro-
jects and application domains. A small example can be identified for Consistency
Goal C1*= 76 nevertheless: If there is a traceability link L between requirement R
and Java method M and R or M is deleted, then the traceability link L must be
deleted, too (corresponding to Consistency Rule C1b*™77). This issue is a generic
one and must be solved automatically by approaches, if it is technically realized with
an association connecting the classes Requirement and Method with each other, due
to modeling foundations, since links cannot exist without their connected objects.
Therefore, this case targets also structures (and not only semantics) and can be
solved by platform specialists.

Methodologists should identify and select fixes for inconsistencies according to all con-
sistency goals (except for the cases discussed for the other stakeholders), since the
consistency goals are project-specific, which excludes platform specialists, since they
can fix only inconsistencies which are valid for all kinds of projects. These consis-
tency goals could be managed by users of course, but since they are automatable,
users would have to decide on similar inconsistencies again and again, which adds ac-
cidental complexity to users. Instead, methodologists should decide once, how these
inconsistencies should be fixed.

Users should decide on possible fixes for inconsistencies, when there is no unique solution
for the particular situation or there is no automatable solution: This is the case for
the Consistency Goal C 1= 7%, since in the ongoing project, there is no heuristic to
decide, if a method fulfills a requirement or not. Instead, the developers should decide
during the implementation, if there is traceability between the developed methods
and the requirements (corresponding to Consistency Rule C1a™ 7). Developers fall
into the category of users.

Adapter Providers are not directly involved in ensuring consistency, but provide bridges
between technical spaces, e. g. for the CSV format of the requirements specification.

These investigations show, that the particular consistency goals and consistency rules de-
termine, which stakeholders are responsible for fixing violations of the current consistency
goal respectively consistency rule. Since this thesis focuses on consistency issues which are
automatable and project-specific, related approaches which support decisions of methodolo-
gists are most interesting. The ongoing example emphasizes this focus, since its consistency
goals are mostly automatable and project-specific to be decided by the methodologist. This

98

3.2 Overall Realization Techniques

criterion is named “Stakeholders (who decide)” in Figure 3.1 %4,
Another result of these investigations are relations between stakeholders and levels of
heterogeneity: Users use only the technical spaces of their views, but expect automated Stakeholders
management of semantic heterogeneity. Methodologists overcome semantic and structural Eevels of Heterogeneity
heterogenities according consistency goals which are desired by users. Therefore, consis-
tency goals and consistency rules are coming from the concerns of users, but are formulated
and realized by methodologists. Since adapter providers (only) overcome technical het-
erogeneity, methodologists do not care about technical heterogeneity anymore. Platform
specialists provide means for methodologists and adapter providers to overcome all three
levels of heterogeneity.

3.1.5 Summary

Figure 3.1 9% summarizes the introduced orthogonal criteria for classifications with their
following particular purposes:

Inter-Model Consistency is a required feature for approaches for ensuring consistency,
determining the focus on consistency challenges between different models. This in-
cludes both checking consistency and fixing found inconsistencies and conforms to
Requirement R 1 (Model Consistency)* 154,

Level of heterogeneity of the data to keep consistent The classification regarding lev-
els of heterogeneity helps to restrict the related work to present approaches which
target semantic consistency. Since structural heterogeneity is also important, since
modeling always involves metamodels which can be different, Section 6.2.1* 93 re-
views related work to deal with structural differences of metamodels, too.

Multi-Directionality is a required feature for approaches for ensuring consistency, as
discussed above. Therefore, the focus is on related approaches which support multi-
directionality, while other approaches are only sketched, if at all.

Stakeholders who decide on fixes for inconsistencies The classification regarding the
stakeholders who can decide how to fix inconsistencies help to evaluate existing ap-
proaches, since they often support users or platform specialists, but rarely methodo-
logists.

Before reviewing existing approaches in detail, if they fulfill these functional criteria
(“what?”), the next Section 3.2 introduces some general techniques which are used by lots
of approaches in order to realize consistency management (“how?”).

3.2 Overall Realization Techniques

After identifying functional objectives of related approaches in Section 3.1% %4, e. g. what to

ensure and who decides on fixes for inconsistencies between data, objective of this section Objective: introduce
is to identify some overall techniques, how to ensure comsistency by providing possible ?ﬁgggj;?gsgiigem
fixes for inconsistencies. The first reason for discussing these techniques is, that they show Techniques for realizing
some design choices of the technical solution space for possible approaches. The second Consistency

reason is, that these techniques are used by various related approaches for consistency

management. Therefore, they are introduced only once now in general way. All design

choices are orthogonal to each other. Some of these design choices are explicitly discussed by

publications, others are included, since they occur in several investigated related approaches.

More motivations for these design choices are given directly when discussing them in detail.

With this selection, this list of technical design choices is not complete, since techniques used

99

Legend
Mandatory

Optional
Or

> > Qe

Xor

» Sub-Diagram

intermediate Model to
store (additional)
Information

Synthetic vs
Projectional

3 Related Work

only by single related approaches might not be included. The design choices are visualized
as a feature model in Figure 3.2. Since most techniques are supporting and can be used by
approaches, most of the features are optional. Techniques which represent design choices
which must be decided are marked as mandatory features. The main features, which are
numbered, are explained in the following four sections.

{ Overall Realization Techniques }

2. explicit Links

4. Ch fi 3. Ch
[1. Intermediate Model} ‘ 0ose rom ‘ ‘ ange

multiple Fixes » Propagation

5. external Support
for Multi-Models

O -
Non- énifr SMOiEI Change intensional extensional
Overlaps Veraps ORres” YREO™ | Ty anslation (Model) (Metamodel)
pondences nization

Inter-Correspondences = Explicit Links

symmetric = asymmetric

bijective

asymmetric = bijective [Symmetrlc } [asymmetrlc}

Figure 3.2: Design Choices for technical Realization

3.2.1 Intermediate Model

Main motivation for approaches to use an optional “Intermediate Model” is to store addi-
tional information, which are not part of all existing models. The sub-features in Figure 3.2
concretize the content which is stored in the intermediate model, i. e. elements which are re-
lated to inter-model consistency issues (“Overlaps”) in contrast to elements which are only
relevant for exactly one model (“Non-Overlaps”, also discussed in Section 13.3.3.2 476) and
explicit links connecting different models (“Inter-Correspondences”, as discussed below in
the following).

Whether approaches use an intermediate model or not usually depends on, how the
approaches manage interrelated models: The IEEE standard 42010 for architecture de-
scription (IEEE, 2011) distinguishes approaches for managing viewpoints and their views
into synthetic and projectional approaches. Synthetic approaches manage interrelations
between views directly in a pair-wise manner. Projectional approaches introduce a new
intermediate structure (called “repository” in IEEE (2011)) and synchronize views only
with the intermediate structure. Interrelations between two views are managed indirectly
via the intermediate structure as step in between.

Side Discussion: Definitions for Consistency revised

The distinction into synthetic and projectional approaches could be an explanation,
why existing definitions in the related work for consistency, as discussed for the
Definition 2* 32, might miss the strong role of the system: Perhaps, they are focused
on synthetic approaches, where the whole system is assembled by the collection of
involved views. Therefore, they define the consistency of views to each other. In
projectional thinking, the consistency of views to their underlying system is more
important, since these relations transitively allow to argue on the consistency of
views to each other, too.

. J

By design, synthetic approaches require to manage a square number of interrelations
between all views (Feldmann, Wimmer et al., 2016; Atkinson, Gerbig and Tunjic, 2013a),
while projectional approaches need a linear number of interrelations between the views and

100

3.2 Overall Realization Techniques

the intermediate structure, which is realized as intermediate model. If views are inconsistent
to each other, the intermediate model of projectional approaches can be used as single point-
of-truth to decide conflicts, while synthetic approaches require an “order of importance” or
other strategies to decide conflicts.

Ongoing Example, Part 16: Synthetic vs Projectional < List —

Synthetic: %
Projectional: n

(n is the Number of
involved Views)

The following Figure 3.3 applies the presented classification of IEEE (2011) for viewpoint
combination to the ongoing example.

Requirementsj(—) Java Requirementsw Java

< A

TestCases |<—> ClassDiagramw TestCases ClassDiagram\}
synthetic projectional
IEEE 42010 (2011) IEEE 42010 (2011)

Figure 3.3: Classification of synthetic vs projectional approaches for the ongoing example

In synthetic approaches (left side), all three data sources for requirements, Java and
UML class diagrams (marked in light gray) are synchronized directly with each other. This
leads to square effort in general, while in practice the data sources are not fully-meshed. This
counts also for the ongoing example, since consistency goals do not target requirements and
UML class diagrams directly, as shown in Figure 2.19* ™. In projectional approaches (right
side), the data sources are not synchronized directly, but via an intermediate structure.

After adding a fourth data source (marked in dark gray) like test cases, synthetic ap-
proaches require to check the interrelations of the new data source to all existing ones
(linear effort), while projectional approaches need to interrelate the new data source only
with the intermediate structure (constant effort).

Figure 3.2 19 reflects synthetic and projectional approaches on technical level by the
optional feature for an “Intermediate Model”, which is used by projectional approaches. It
is the natural location to store correspondences between models (“Inter-Correspondences”,
as deepened in Section 3.2.2) and to store the overlaps of models in order to provide a
single point-of-truth (“Overlaps”). Additionally, the intermediate model could contain the
information which is relevant only for exactly one model (“Non-Overlaps”). If non-overlaps
are contained or not is also discussed in Section 13.3.3.2 476,

3.2.2 Explicit Links

Often, explicit links are used to establish relations between involved (meta)models explicitly.
Such links can occur in three terminologies, with similar technical realization, but used for
different purpose:

e Such links can be called correspondencies connecting two or more elements of different
models (IEEE, 2011; Bézivin, Bouzitouna et al., 2006), intensional on model level

101

Kinds of explicit Links:

Correspondencies

Model Weaving

Traceability Links

Realize Change
Propagation by ...

. Proof-Theory-based
Approaches, ...

3 Related Work

or extensional on metamodel level as in Romero, Jaén and Vallecillo (2009). If
correspondences relate same elements in different models with each other, they can
be used for comparing and merging of those models and as an alternative for persistent
identifiers (Selonen and Kettunen, 2007).

e Another kind of explicit links is represented by model weaving, “which consists of es-
tablishing correspondences with semantic meaning between model elements” (Del Fabro,
Bézivin et al., 2005). They are stored in a weaving model conforming to a weaving
metamodel. Weaving models can also be used to generate model transformations
(Del Fabro and Valduriez, 2009; Del Fabro and Jouault, 2005). In particular, weav-
ing is used to compose different models into a single model (as multi-to-one model
transformation), e. g. for weaving aspects into a base model in aspect-oriented mod-
eling (Jézéquel, 2008).

e Traceability approaches use also explicit traceability links in order to trace the his-
toric evolution of concepts across different artifacts and development steps, e. g. from
requirements over architecture to source code. Traceability links can be stored in
a traceability model conforming to a traceability metamodel (Schwarz, Ebert and
Winter, 2010). Broy (2018) formalizes traceability and their connected artifacts with
logical expressions.

Explicit links are created and maintained by, among others, humans in manual way or
automatically by model matching (Bézivin, Bouzitouna et al., 2006) or by model trans-
formation (see the tracing feature in Figure 2.14* %), Explicit links are used for, among
others, understanding relations between models like traceability, as support for propagating
changes or even for the formalization and representation of consistency as in Diskin, Xiong
et al. (2011). If explicit links are used, they must be maintained regarding changes in the
linked models to remain usable for these tasks. Explicit links as depicted in the feature
model of Figure 3.2 100 cover all kinds of explicit links, i. e. correspondences, traceability
and model weaving.

3.2.3 Change Propagation

This criteria classifies techniques how they ensure consistency by identifying and apply-
ing fixes for inconsistencies, which subsumes checking for (in)consistency. The other way
around, approaches for checking of consistency without possibilities to fix found incon-
sistencies are neglected, according to Requirement R1 (Model Consistency)™ %4, Since
approaches must ensure consistency to be relevant, this feature “Change Propagation” is
mandatory in Figure 3.2 190,

Approaches for managing consistency, which in particular propagate changes into all
affected models, are classified by Feldmann, Herzig et al. (2015a) into proof-theory-based,
rule-based and (model) synchronization-based approaches. The fourth category of change
translation-based approaches is not mentioned by them and added here, since such ap-
proaches are identified which do not fit into the three other categories. The general concepts
of these four categories of approaches are depicted in Figure 3.4 103,

e Proof-theory-based approaches (Figure 3.4a™ 193) transform the involved models into

formal, well-defined descriptions as expressions or theoretic models (called semantic
views by Guerra and de Lara (2006)), e.g. into first-order logic (Finkelstein, Gab-
bay et al., 1993) or communicating sequential processes (Engels, Heckel et al., 2002).
Gabmeyer, Kaufmann et al. (2019) present different formal verification techniques.
These formal specifications must be selected or created for the involved metamodels
in order to handle the constraints. Additionally, the transformations from models

102

3.2 Overall Realization Techniques

Consistency
Constraints

(a) Proof-Theory-based approaches

4 4
| |
MO Model MO
C Us Al
SerArlI‘ Aé

Inv. Model 1

ML M
1 1
v v

(¢) Model Synchronization-based approaches

s Consistency A
| Constraints |
| |

User x Inconsis- BAé :

tencies

User A1 Change BAL
et 3

v v

(d) Change Translation-based approaches

Figure 3.4: Conceptual designs of different approaches for consistency management

into formal descriptions require additional computation effort and decrease the per-
formance. Therefore, proof-theory-based approaches are not investigated in detail
here, only some approaches are sketched to get an impression for them.

Rule-based approaches (Figure 3.4b) explicitly establish rules in form of constraints
whose successful evaluations indicate consistency (by positive constraints) or incon-

sistency (by negative constraints). The used constraint checkers might be incremental ...

taking the changes of the user into account. The strategies to find fixes for inconsis-
tencies depend on the particular approach and comprise complementing rules with
additional resolution rules and automatically calculating possible fixes for selection by
users or heuristics, e. g. by state space exploration (Feldmann, Herzig et al., 2015a).
Depending on the particular approach, fixes can be whole models or model differ-
ences. Since the rules are evaluated on the current models, no transformations into
formal descriptions are needed, which reduces effort at development time and at run-
time. Instead, the used constraint approaches must support constraints targeting
multiple models (for workarounds, see below), preferred in incremental way (Diskin
and Konig, 2016). Rule-based approaches are investigated in the following.

Model synchronization-based approaches (Figure 3.4c) use out-place, exogeneous mo-
del transformations to define how elements of the first model are related to ele-

ments of the second model (Feldmann, Herzig et al., 2015a). Feldmann, Herzig ...

et al. (2015a) called them “synchronization-based”, while they are called “model
synchronization-based” here, since this term emphases the use of model transforma-

103

Rule-based
Approaches, ...

Model
Synchronization-based
Approaches or ...

bijective vs
asymmetric vs
symmetric

3 Related Work

tions, relates directly to the corresponding research area of model synchronization
and is an usual intent of model transformations as investigated by Ltcio, Amrani
et al. (2016, p. 655). Since model transformations are able to create consistent
counter-parts in the second model for model elements in the first model, model
synchronization-based approaches directly include capabilities for fixing inconsisten-
cies in a natural way: The changed model plays the role of the source model and
the related models to update are the target models for such model transformations.
Since the roles of changed and related models can be switched, bidirectional model
transformations are important to enable synchronization in both directions.

Since model transformations can automatically create only information in the tar-
get model which is available in the source model, Figure 3.5 compares the possible
kinds, how information encoded in a source model (S, always right) and in a target
model (T, always left) can overlap (Diskin, Gholizadeh et al., 2016): In the bijec-

bijective asymmetric symmetric

Figure 3.5: Kinds of information overlaps between source models (S, always right) and target

models (T, always left) as Venn diagrams

tive case, source model and target model contain the same information, only their
structure might be different. The bijective case rarely occurs and often makes less
sense (Stevens, 2010), in particular here, since different views conforming to different
viewpoints are usually tailored to different concerns requiring different information.
In the asymmetric case, all information of the target model is contained in the source
model, while the source model has more information which is not transformed to
the target model. The asymmetric case is interesting, when new views are derived
from a base model. In the symmetric case, some information from the source mo-
del is transformed into the target model, while source model and target model have
additional “private” information which is not involved in the model transformation.
The symmetric case is important to keep two models consistent to each other, which
are not completely transformable from each other. These three kinds are complete,
since model transformations are not applicable in cases without information overlap
(T'NS = @) and the asymmetric case counts also for switched source and target
models. This classification is mostly orthogonal to the kinds of dependencies and
therefore specific for approaches which use model transformations: Consistency can
cover information which is contained in both models like redundancies on the one
hand. On the other hand, consistency can relate information which is contained
only in one model to information which is contained only in the other model, e.g.
by constraints or explicit links. In the latter case, these explicit links can be seen
as additional information which is contained in none of the two models. The ex-
pressiveness of model synchronization-based approaches depends on the supported
kinds of information overlap, as depicted as features for model synchronization-based
approaches in Figure 3.2 100,

In non-bijective cases, i.e. in asymmetric and symmetric cases, the non-overlapping
information which is not covered by model transformations must be preserved, other-
wise model transformations become lossy (in terms of Kurtev (2008, p. 383)). To keep

104

3.2 Overall Realization Techniques

manual changes in the target models, incrementality-related features of model trans-
formations can be exploited to be lossless (see Figure 2.14% 68). Additionally, incre-
mentality can improve the performance of model transformations. Therefore, incre-
mentality is a crucial dimension of model synchronization-based approaches (Diskin,
Gholizadeh et al., 2016). Model synchronization-based approaches are investigated
in the following.

e Change Translation-based approaches (Figure 3.4d" 193) translate changes in the first
model directly into corresponding changes for the second model: Instead of using
model transformation, updates in form of changes made in the first model are directly

propagated by converting them into changes which are applicable for the other models ...

in order to update them according to the updates in the first model. Often this
change translation can improve the performance, since the amount of particular model
changes is usually much lower than the amount of all model elements. Therefore,
change translation-based approaches are investigated in the following.

In the context of consistent UML diagrams, Knapp and Mossakowski (2018) use a dif-
ferent, but not contradicting classification by emphasizing rule-based approaches in gen-
eral: Model-synchronization-based approaches are called “heterogeneous transformation”
approaches, while proof-theory-based approaches are distinguished into “system model”
approaches and “universal logic” approaches: System model approaches use one uniform
language to describe all semantic aspects of the different views, like XUML and FUML for
UML. Universal logic approaches use one uniform formal technique into which all semantic
aspects of the different views are converted, like transition systems to cover all seman-
tics of UML. This distinction of proof-theory-based approaches is also done by Usman,
Nadeem et al. (2008). Similar to Feldmann, Herzig et al. (2015a), change translation-
based approaches are not covered by these two classifications, but Knapp and Mossakowski
(2018) introduce “dynamic meta-modeling” as additional category, whose approaches ex-
tend the metamodels of the views with semantic information, which results in a integrated
metamodel for all viewpoints. This last category is very similar to the chosen approach
in Chapter 5 163 but is subsumed under model synchronization-based approaches here.
Approaches basing on “human-centered collaborative exploration” (Spanoudakis and Zis-
man, 2001) are not investigated in this thesis, since they cannot be automated due to their
involvement of human stakeholders into the identification of inconsistencies.

Snoeck, Michiels and Dedene (2003) distinguish three strategies for managing consis-
tency: Consistency by analysis takes the models with user changes and searches for in-
consistencies by checking constraints. Consistency by monitoring monitors all models and
immediately rejects changes which introduce inconsistencies. Consistency by construction
generates corresponding consistent elements for related models from changed elements. This
last strategy can be distinguished into passive, i. e. related models are informed about chan-
ges and construct corresponding elements themselves, and active, i.e. the changed model
creates corresponding elements for all other models (Haesen and Snoeck, 2005). Com-
pared with the classification above, proof-theory-based and rule-based approaches manage
consistency by analysis, while model synchronization-based and change translation-based
approaches manage consistency by (active) construction. Consistency by monitoring is not
relevant here, since it would require technical facilities for ongoing monitoring, which might
require the technical adaption of existing tools. Additionally, immediately fixing inconsis-
tencies is not useful in practice (Stevens, 2017). Since existing tools should be kept as they
are, this strategy is not applicable for this thesis. Instead of immediately handling each
change, bundled model changes at explicitly defined points in time are used for managing
consistency.

Lammel (2016) call model synchronization-based approaches as co-transformation and
change translation-based approaches as co-transformation with delta, since he identified

105

Change
Translation-based
Approaches.

different Classifications

valide Approaches with
each other

Design Choices for
choosing Fixes for
Inconsistencies

Legend
Mandatory

Optional
Or

> > Qe

Xor

» Sub-Diagram

3 Related Work

these kinds of transformations as generalized patterns which occur not only in model con-
sistency settings.

In the context of model synchronization-based approaches, when formalizing round-
tripping properties, Hettel, Lawley and Raymond (2008) use the term “change translation”
not for the direct translation of changes as defined here, but for the generic change propa-
gation.

Hearnden, Lawley and Raymond (2006) call the strategy of using (only unidirectional)
model transformations as re-transformation and change translation as live transformation.
If there is support for both model synchronization and change translations, both approaches
can be applied in order to evaluate each other, e.g. the resulting model of the backward
transformation must be the same as the model which is the result of applying the translated
changes to the initial source model (Hearnden, Lawley and Raymond, 2006). This strategy
can be generalized by applying each combination of two of these approaches in order to
validate them.

3.2.4 Choose from multiple Fixes

Since there are multiple possible fixes for each inconsistency in general, as found in Sec-
tion 2.3 "' approaches for ensuring consistency often provide multiple of the possible
solutions to fix an occurred inconsistency. Therefore, design choices to select one of mul-
tiple possible fixes are mandatory and are discussed along Figure 3.6, which complements
Figure 3.2 100 The presented classification summarizes the results of a survey for model

{ Choose from multiple Fixes}

Uncertainty Modeling
for representing Fixes

Selection Order / Filtering

{interaetive} {automate d} Constraint | | Weights Least Least Previous Target
Priorities (of ...) Change Surprise Selections Preservation

o

{as Default} {for Mining}

... non- operation
deterministic deterministic {Model} {Metamodel}

Figure 3.6: Design Choices for selecting one of multiple possible Fixes

repair approaches (Macedo, Jorge and Cunha, 2017, p. 629f) and of design space analyses
for model synchronization (Antkiewicz and Czarnecki, 2008, p. 38), but clearly separates
the particular selection from heuristics for ordering and filtering fixes before. While the
special cases of having some meta-data for heuristics is ignored here, all other features from
literature including least change and least surprise which are important for BX (Cheney,

Selection: automated vs Gibbons et al., 2017) are covered here: The particular selection of one solution . ..

interactive

e ... can be interactive, i.e. one of the stakeholders introduced in Section 2.4 ™ de-
cides for each occurred inconsistency. With growing number of decisions and possible
fixes, appropriate tool support (Mussbacher, Combemale et al., 2020) for deciding is
useful.

e Otherwise, the selection is automated without involved humans by an algorithm,
which can be either non-deterministic or deterministic, i.e. the decision can be pre-
dicted. Note, that deterministic selections are possible, even with multiple possible
fixes for inconsistency (Stevens, 2018, p. 7).

106

3.2 Overall Realization Techniques

Hybrid selections using automation where possible and interactive elsewhere are possible,
too, as suggested e.g. for model merging (Dam, Egyed et al., 2016). Non-deterministic
selection is used e.g. by graph repair (Sandmann and Habel, 2019), a proof-theory-based
approach using typed graphs, graph grammars, graph formulas and graph programs in
order to repair graphs regarding graph constraints to fulfill. This graph repair approach
can be used also for meta-modeling with ECORE (Sandmann, 2020).

Since three different stakeholders are involved in ensuring consistency according to Sec-
tion 3.1 %4, the distinction between automated and interactive can be done for each stake-
holder: As an example, the platform specialist can decide not to automate some inconsis-
tencies, since their fixes might be project-specific. Now the methodologist has to decide
and chooses to provide an automation, since the particular inconsistencies can be solved
automatically for the particular project setting. Otherwise, the user had to provide an auto-
mated or interactive strategy for fixing. Section 3.1* 94 already discussed, that approaches
which allow methodologists to manually determine fixes once are more helpful here.

To support these selections, the amount of possible fixes can be ordered and/or filtered
before the selection by using and combining various single heuristics, as listed now. Some
more ideas for combinations and heuristics are given by Macedo, Jorge and Cunha (2017,
p. 617).

e Since some fixes might not fix all occurred inconsistencies but only a subset, fixes can
be ordered according to priorities of corresponding consistency constraints.

e The presented fixes can be weighted e. g. with cost functions according to the affected
parts of the model and of the metamodel and to the kinds of change operations used in
the fixes like create, change, delete. Such weights could be used to realize higher-level
heuristics including least change, least surprise and target preservation:

e Target preservation ensures that parts of the target model are preserved, e.g. by
increasing the costs for deletions in the target model.

e Least change uses metrics to minimize the amount of change operations in fixes, i.e.
least change ensures, that the inconsistency is fixed, but nothing more.

e Least surprise prefers fixes which minimize unexpected disruptions in the models,
but which are not always of minimal size (Cheney, Gibbons et al., 2017).

e Finally, previous selections can be reused as source for default fixes and for mining
fixes with techniques like machine learning with an example in Barriga, Mandow
et al. (2020).

In order to make different fixes and their resulting models explicit, uncertainty modeling
(Troya, Moreno et al., 2021) can be used (feature “Uncertainty Modeling for representing
Fixes” in Figure 3.6 190): Since the details of the final models after fixing inconsistencies
are unclear, the case of design uncertainty can be used to model all possible options explic-
itly. This can be done by specifying confidence values for all models elements like objects
and links (with strategies of occurrence uncertainty) and for all primitive values of slots
for attributes (with strategies of measurement uncertainty). For UML and OCL, Bertoa,
Burgueno et al. (2020) extend the primitive data types (e.g. UBoolean for Boolean) with
an additional Real value in the range [0, 1] indicating the confidence value of the modeled
primitive (here: boolean) value. These confidence values can reflect also the order of fixes
determined by the used heuristics. Most approaches do not explicitly use such techniques
or only argue using uncertainty terminology. As an example for an approach which explic-
itly involves uncertainty, Salay, Gorzny and Chechik (2013) model uncertainty of modeled
elements directly within the models with special annotations. Basing on that explicit un-
certainty information, propagation of changes affects also uncertainty information and can

107

Selection by different
Stakeholders

Ordering/Filtering with
various Heuristics

modeling Uncertainty

supporting
Multi-Models

Outline for the following
concrete Approaches

3 Related Work

be triggered also by changed uncertainty values. Since uncertainty of models can also be
defined as a set of possible concrete models without uncertainty as done by Salay and
Chechik (2015), uncertainty modeling is comparable with other research areas like software
product lines, that use variability modeling (Pol’la, Buccella and Cechich, 2021) to make
different possible model alternatives explicit.

3.2.5 External Support for Multi-Models

Other supporting techniques are required, when a modeling technique must cope with mul-
tiple models, but the available tools supports only a single model (optional feature “external
support for Multi-Models” in Figure 3.2 199): As workaround, approaches without multi-
model-support can be used after nesting the involved models into one container model
(Macedo, Jorge and Cunha, 2017, p. 622). An extended version of this workaround is to
match same objects and links in the models and merge them in order to unify the models
(Konig and Diskin, 2017). Further approaches directly lead to the question, how views can
be composed into a single model, as discussed in Section 3.5.4 31, Use cases which re-
quire multi-model-support include constraint checking in rule-based approaches and model
transformations for new views in synthetic settings.

3.2.6 Summary

All presented techniques, the various kinds of explicit links and the strategies for change
propagation including selection of the final fix, can be used for synthetic and projectional
approaches in general. The classification regarding synthetic and projectional approaches
is used for structuring the rest of this section: Section 3.3 describes synthetic approaches,
Section 3.4 20 introduces the intermediate model called SUM as prerequisite for the fol-
lowing projectional approaches in Section 3.5 12!, Section 3.6 135 contains less generic
approaches in different application domains and Section 3.7 146 evaluates the presented
related approaches and summarizes the lessons learned from these analyses and evaluations.

3.3 Synthetic Approaches

The main characteristic of synthetic approaches is, that they establish direct relations
between pairs of models. If an intermediate model is used, it stores only explicit links
between (usually two) models, but usually no overlaps or other parts of the models. Sec-
tion 3.3.1 analyzes approaches for keeping models in this setting consistent (according to
Requirement R1 (Model Consistency)™ !54), while Section 3.3.2* !9 reviews, how new
view(point)s can be defined on top of multiple existing source (meta)models (according to
Requirement R 3 (Define new View(point)s)™ 1%6), since synthetic approaches usually are
restricted to fulfill only one of these two requirements.

3.3.1 Synthetic Consistency Preservation

Synthetic approaches require lots of direct relations between the views for their direct change
propagation. In the extreme case of spatial separation of the involved models, peer-to-peer
approaches like in global software development (Mukherjee, Kovacevic et al., 2008) fall into
the category of synthetic approaches. The projectional VITRUVIUS approach using synthetic
techniques is presented in Section 3.5.2" 126, The change propagation along these relations
can be realized by proof-theory-based, by rule-based, by model synchronization-based or
by change translation-based techniques, for which examples are presented in the following
paragraphs in this order.

108

3.3 Synthetic Approaches

The proof-theory-based approaches are only shortly investigated here, due to their re-
stricted scalability, as discussed above. Pinna Puissant, Van Der Straeten and Mens
(2015) determine possible fixes for previously identified inconsistencies using regression
planning. Since this automated planning is implemented with logic-programming in PRO-
LOG, this approach falls into the category of proof-theory. Since there might be multiple
generated fixes called plans, their selection and order can be controlled using customized
cost functions. In earlier works, Van Der Straeten, Mens et al. (2003) use description logics,
a decidable subset of first-order predicate logic.

Another proof-theory-based approach using PROLOG to support multiple repair plans
is presented by Almeida da Silva, Mougenot et al. (2010): Based on the sequence of model
differences which represent the current model (Blanc, Mougenot et al., 2009), a depth-first
tree search algorithm with depth-limitation and back-tracking identifies repair plans for
model differences which introduced inconsistencies. Afterwards, the users manually select
one of these generated repair plans.

Summarizing proof-theory-based approaches, for which some examples are sketched here,
they require transformations of models into formal specifications: While these approaches
allow to proof consistency or to derive fixes for inconsistencies on the formal descrip-
tions (Requirement R 1 (Model Consistency)™ '%4), e.g. by using SAT solvers like in AL-
LOY (Jackson, 2019), it is complex and requires high effort to define the required formal spec-
ifications and to create the required transformations® leading to limitations in practice, since
they cannot be automatically created in each case due to different semantics of metamodels
and desired consistency constraints. This counts also for extensions, when a new viewpoint
with additional semantics (Requirement R 3 (Define new View(point)s)™ 1°¢) leads to ex-
tensions of the already established formal specifications (Knapp and Mossakowski, 2018, p.
47). Therefore, at least for mechatronic manufacturing system, “ensuring the completeness
of such a formal system and, by that, proving the full consistency of models of mechatronic
manufacturing systems is difficult if not impossible” (Feldmann, Herzig et al., 2015a, p.
163). Additionally, the transformations from models into formal descriptions require ad-
ditional computation effort and decrease the performance. This counts also for the used
solvers themselves (Macedo and Cunha, 2013, p. 310).

The rule-based approaches differ from each other regarding the ways to check for incon-
sistency and to determine corresponding fixes. Some examples for such rule-based approach
are presented now: Nentwich, Emmerich et al. (2003) introduce XLINKIT for incremental
checking of constraints defined in restricted first-order logic on multiple XML documents us-
ing XPATH for navigation within XML. For detected inconsistencies, i. e. expressions which
are evaluated to false, possible repair actions are automatically detected in order to fulfill
these hurt expressions. These repair actions might be restricted and commented by metho-
dologists and are presented to users afterwards, who manually select one of these solutions
(Nentwich, Emmerich and Finkelstein, 2003). In order to increase the understanding of
found inconsistencies, the evaluation creates and presents hyper-links between the concrete
elements in the XML documents which are involved in the current evaluation.

Another example for a rule-based approach is provided by Egyed, Zeman et al. (2018):
Project-specific consistency rules are specified with OCL and incrementally executed in
order to detect inconsistencies. Found inconsistencies are not automatically fixed, but pos-
sible fixes are generated, arranged in form of a tree (Reder and Egyed, 2012) and presented
to the users for guidance. To overcome tool boundaries, information which is relevant for
consistency is extracted from each tool and provided as model with metamodel at a ded-
icated server application called DESIGNSPACE (Demuth, Riedl-Ehrenleitner et al., 2015).
These models are explicitly linked with each other. The resulting links are used and checked

SExamples for such transformations are UML class diagrams with OCL constraints (Cunha, Garis
and Riesco, 2015) and UML state machines (Garis, Paiva et al., 2012) transformed into ALLOY.

109

Proof-Theory-based
Approaches

planning Fixes with
ProLroc

PRrROLOG-based searching
for Repair Plans on
Model Differences

Summary of
Proof-Theory-based
Approaches

Rule-based Approaches

XLINKIT: first-order
Logic Constraints on
XML for checking,
identify Repairs by
fulfilling hurt
Constraints

Rule-based Consistency
checking with OCL
based on Links

EVL Constraints with
imperative Fixes

Users select one of the
provided Quick-Fixes
(generated by
Constraint Satisfaction)
for Inconsistencies
(found by Graph
Pattern Matching)

Summary of Rule-based
Approaches

Model
Synchronization-based
Approaches:
Transformations
between Models

unidirectional Model
Transformations

bidirectional
Transformations (BX)

3 Related Work

by the OCL constraints. This approach is successfully applied in the area of production
automation (Demuth, Kretschmer et al., 2016).

The EPSILON VALIDATION LANGUAGE (EVL) (Kolovos, Paige and Polack, 2009) is a
DSL with tool support within the EpSILON framework (Paige, Kolovos et al., 2009) and
allows to specify and evaluate constraints which might depend on each other on multiple
models. Additionally, each constraint can be complemented with an arbitrary number
of fixes, which can be selected by users to be executed, when the constraint is hurt at
runtime. These fixes (keyword fix) contain imperative actions in EOL which must fix
detected inconsistencies in terms of hurt constraints. “EOL is the core DSL in EPSILON,
providing OCL-like model navigation and modification facilities” (Paige, Kolovos et al.,
2009, p. 164). EVL can be executed in distributed and parallel way (Madani, Kolovos and
Paige, 2021), but not in incremental way.

Hegedus, Horvath et al. (2011) support users to select fixes for inconsistencies in form
of “quick fixes” inspired from auto-completion of IDEs for programming languages: They
use incremental graph pattern matching to identify inconsistencies and a heuristics-guided
traversal algorithm with backtracking and cycle detection for state-space exploration, both
directly on the current model for better performance. The approach aims to enable users
to specify rules for inconsistencies by their own, since corresponding graph patterns can be
added (and removed) in flexible way.

Summarizing rule-based approaches, they all evaluate constraints for consistency directly
on the current (inconsistent) models in similar way using techniques like OCL, first-order
logic or pattern matching. The strategies to fix found inconsistencies in form of hurt
constraints vary in terms of finding repairs and selecting the final repair, which will be
applied in order to fix the model in-place. The final selection is usually done by users,
while methodologists sometimes can predefine, restrict or comment possible fixes. Some
approaches improve performance by incremental constraint checking.

The model synchronization-based approaches differ from each other regarding the fea-
tures of the used model transformation approaches (Kahani, Bagherzadeh et al., 2019), as
depicted in Figure 2.14* %8, Usually, the used model transformation approaches are out-
place and exogeneous in order to relate two models conforming to different metamodels to
each other. Some approaches using model transformations for consistency are presented
in the following paragraphs, grouped by the main characteristics of model transformation
approaches (Figure 2.14" 68).

The first group of model synchronization-based approaches uses unidirectional model
transformations: The MDA initiative (Section 2.2* %) established CIM, PIM, PSM and
Code as groups of viewpoints for development with high need of consistency between cor-
responding views, but does not propose techniques for ensuring the required consistency,
since mainly transformations from CIM to PIM to PSM to Code are addressed. As an
example, such a workflow of model transformations is reported by Sindico, Natale and
Sangiovanni-Vincentelli (2012). Accordingly, various unidirectional model transformation
approaches including ATL (Jouault, Allilaire et al., 2008) or QVT-O (Object Management
Group, 2015) can be used for such synchronizations. In case of bidirectional synchroniza-
tions, pairs of unidirectional model transformations can be combined, one unidirectional
model transformation for each direction. The drawback of this strategy is, that manual
effort is required to ensure, that the two transformations match and do not contradict each
other.

Up to now, the presented approaches support only forward transformations from higher-
level models to lower-level models, in the sense of MDA. Since both involved models for
such a transformation can be changed and these changes must be synchronized to the other
model, bidirectional model transformations (BX) are often used (Abou-Saleh, Cheney et al.,
2018). Bidirectionality is an important concept not only for MDE and model respectively
graph transformation, but also for programming languages and data bases (Czarnecki, Fos-

110

3.3 Synthetic Approaches

ter et al., 2009). The latter is investigated in general and regarding the view-update problem
in detail in Section 3.6.3" 139, Focusing on model transformations here, there are several
bidirectional model transformation approaches, as presented by Stevens (2008), by Hidaka,
Tisi et al. (2016) and by Anjorin, Buchmann et al. (2020). Some approaches using bidi-
rectional model transformations for consistency are depicted in the following paragraphs,
including the approaches TGG and QVT-R as representatives for model synchronization
with automated selection and EVL+STRACE and JTL as representatives for model syn-
chronization with interactive selection (see Figure 3.6* 196). Samimi-Dehkordi, Zamani and
Kolahdouz-Rahimi (2016) also selected exactly these four bidirectional model transforma-
tion approaches for their classification. BXTEND(DSL) (Bank, Buchmann and Westfechtel,
2021) is investigated as fifth and quite new approach, since it increases expressiveness of
BX with automated selection.

Triple Graph Grammars (TGGs) realize out-place bidirectional model transformations
by relating the source model as graph and the target model as graph to each other by
explicit links as correspondence graph, as the third graph (Schiirr and Klar, 2008). TGGs
use declarative patterns and can be non-deterministically executed in forward direction
from source model to target model and in backward direction from target model to source
model, leading to bidirectionality with one model transformation definition. Usually, one
pattern in the source model is related to one pattern in the target model, but multi-
amalgamated TGG rules allow to relate one pattern match in the source model to an
arbitrary and dynamic number of pattern matches in the target model (Leblebici, Anjorin
et al., 2015). With MOTE (Hasso-Plattner-Institute), TGG INTERPRETER (University
of Paderborn) and EMOFLON (TU Darmstadt), there are different model transformation
engines to execute TGG model transformation definitions (Hildebrandt, Lambers et al.,
2013). Hermann, Ehrig et al. (2011, 2015) showed, that TGGs can be used for model
synchronization, since TGGs always ensure consistency between any source model and any
target model, if the execution of the particular TGG is deterministic in both directions.
Keeping more than two models consistent to each other is possible with TGGs, since TGGs
can be extended to relate multiple models to each other (Trollmann and Albayrak, 2015,
2016), but is not supported by TGG engines in practice (Anjorin, Leblebici and Schiirr,
2016).

QVT-R is the QVT Relations language, one of the three languages of the QVT stan-
dard of the OMG (Object Management Group, 2015). QVT-R allows to specify exogeneous
bidirectional model transformations. There are several engines for QVT-R (Kurtev, 2008),
including engines build with TGGs (Greenyer and Kindler, 2010), ECHO build with AL-
LoY for relational logic with SAT solving for model finding (Macedo and Cunha, 2013),
build with XSLT for XML documents (Li, Li and Stolz, 2011) and build as transformations
into the executable UML-RSDS (Lano and Kolahdouz-Rahimi, 2021) or into colored petri
nets (Guerra and de Lara, 2014). ECHO translates ECORE metamodels (Cunha, Garis and
Riesco, 2015) and ECORE models (Macedo and Cunha, 2013) to ALLOY and uses SAT
solving techniques to identify (target) models which match the QVT-R model transforma-
tion definition and additional OCL constraints. Users select one of these possible models as
final result of the QVT-R model transformation. Stevens (2010) and Lano and Kolahdouz-
Rahimi (2021) identified some semantic issues and open questions of QVT-R, e. g. whether
QVT-R supports also non-bijective transformation scenarios. Stevens (2013) proposes
clarifications for the semantics of QVT-R. The outdated QVT MEDINI implementation
of “QVT-R can support target-incrementality to provide change propagation, but it cannot
preserve user updates in the target” (Samimi-Dehkordi, Zamani and Kolahdouz-Rahimi,
2016, p. 317). There are attempts to extend QVT-R for multi-directional model transfor-
mations in order to support consistency between more than two models (Macedo, Cunha
and Pacheco, 2014).

EVL+STRACE uses the EPSILON VALIDATION LANGUAGE (EVL) (Kolovos, Paige and

111

Triple Graph Grammars
(TGGs)

QVT-R

EVL+STRACE:
domain-specific Traces
and directed
Constraints with
Repairs, interactively
chosen

JTL (using
Proof-Theory)

BXTEND(DSL)
combines declarative
bidirectional and
imperative
unidirectional
Definitions

Summary of BX
Approaches

3 Related Work

Polack, 2009, see above) together with a domain-specific trace metamodel to realize ex-
ogenous bidirectional model transformations (Samimi-Dehkordi, Zamani and Kolahdouz-
Rahimi, 2018): The EVL is used to express constraints in order to detect inconsistencies.
The domain-specific trace metamodel prevents invalid trace links and enables to store cur-
rent values of source and target models together with traces in order to detect changed
values later on. Constraints are directed and check consistency between one model and the
trace model. Each constraint can be complemented with possible fixes for the trace model
and the other model in EOL. If inconsistencies are detected, corresponding fixes are applied
automatically or presented to the user for selection in an interactive way.

The JANUS TRANSFORMATION LANGUAGE (JTL) realizes bidirectional model trans-
formations supporting non-determinism in a declarative way (Cicchetti, Di Ruscio et al.,
2011): Model transformation definitions are written in QVT-R-style and are automatically
translated into search problems expressed in ANSWER SET PROGRAMMING (ASP). Since
also the involved models and their metamodels are automatically transformed into ASP,
JTL can be seen also as proof-theory-based, too. An ASP solver identifies all possible mo-
dels fulfilling the constraints which are induced by the model transformation definitions.
The users choose the preferred model as result. To ease the handling with the amount
of possible models, they are represented as one model explicitly encoding the alternatives
using uncertainty terminology (Eramo, Pierantonio and Rosa, 2015). To enable bidirection-
ality, trace links between source and target elements are automatically maintained to store
information about mappings and deleted elements (Eramo, Pierantonio and Tucci, 2018).
Summarizing, JTL uses model finding in terms of (Liicio, Amrani et al., 2016, p. 654) for
realizing model transformations.

BXTEND(DSL) aims to increase expressiveness of incremental BX with automated se-
lection, since other BX approaches restrict expressiveness for formal guarantees (Bank,
Buchmann and Westfechtel, 2021): The higher-level DSL BXTENDDSL allows to declara-
tively describe incremental and bidirectional model transformations. In order to complete
these definitions, imperative and unidirectional code written with BXTEND must be used to
specify details of the desired transformations. The BXTENDDSL definitions are automat-
ically generated into BXTEND definitions, which are complemented with the hand-written
BXTEND definitions. Therefore, this approach is very pragmatic and increase expressiveness
with limited formal guarantees (Bank, Buchmann and Westfechtel, 2021).

Summarizing bidirectional transformation approaches in Figure 3.1, there is an active
ongoing research of multiple BX approaches fulfilling consistency of models in both direc-
tions (Requirement R 1 (Model Consistency)™ 1°*). In order to derive transformation for
two direction from one specification, TGGs, QVT-R and BXTEND(DSL) provide com-
pletely automated transformations, while EVL4STRACE and JTL let humans select the
final transformation result. Only some approaches, i.e. TGGs and QVT-R, aim to ex-
plicitly support also consistency of more than two models. Surprising is the use of proof-
theory-based techniques by some BX approaches, e.g. by JTL and some QVT-R imple-
mentations, while other approaches include imperative definitions, e.g. EVL4STRACE and
BXTEND(DSL). Incrementality is discussed in following paragraphs.

Criterion TGG QVT-R EVL+Strace JTL BXtend(DSL)
Selection automated automated interactive interactive automated
Proof-Theory - (V) - v -
Imperative Details - - v - v
Incrementality v - v - v
Multi-Models v (V) - - -

Table 3.1: Comparing BX Approaches

112

3.3 Synthetic Approaches

Inter-modeling (Guerra, de Lara et al., 2010) describes relations between two meta-
models, specified by bidirectional, declarative patterns (de Lara and Guerra, 2012). From
these patterns, specifications for other inter-modeling activities can be generated, for e. g.
forward and backward model transformations, creating and updating traceability links and
model matching. While the latter could be used to check consistency of redundant concepts,
real model synchronization is marked as future work (Guerra, de Lara and Orejas, 2013, p.
172). Therefore, this approach does not fulfill Requirement R 1 (Model Consistency)* 174,

SYNCATL (Xiong, Liu et al., 2007) tries to propagate changes in the target model
back into the source model having a unidirectional model transformation, applied to ATL
(Jouault, Allilaire et al., 2008), without an inverse model transformation: During the ex-
ecution of the model transformation, among others, mappings between source and tar-
get elements are identified and remembered (which can be seen as some kind of links),
which are used to propagate changes in the target model back into the source model.
This approach has some limitations in detail, which is not surprising, since the view-
update problem is not decidable in general (Dayal and Bernstein, 1982), e.g. elements
which are manually created in the target model cannot be propagated back into the source
model, if these elements are also created by the model transformation. Therefore, this
approach does not completely fulfill Requirement R 1 (Model Consistency)® 34, The per-
formance of this approach is challenging, since it requires the complete execution of the
model transformation (with complexity linear to model size) and difference calculations of
two versions of the target model (with complexity squared to model size). The implemen-
tation of this approach is limited to ATL, since the ATL model transformation engine is
adapted on byte-code level. “Only a small portion of the ATL standard library is sup-
ported” (https://xiongyingfei.github.io/modelSynchronization.html, 2021-07-14).

Since model transformations enforce exactly one solution for fixing an inconsistency
(i.e. the generated target elements), but there are situations with several possible and
reasonable solutions, Demuth, Lopez-Herrejon and Egyed (2015) propose not to generate
a single fix in the target model, but to generate constraints for the target model instead:
These constraints specify the solution space for possible fixes in the target model depending
on the current source model, which enables different solutions for fixing inconsistencies, as
long as the constraints are fulfilled. The selection of the desired solution is done by the
user in this approach, i.e. the solution space is calculated automatically, but the solution
is selected manually by the user.

Incremental model transformations can improve the performance compared to full-batch
model transformations by transforming only elements or model transformation rules which
are impacted by model changes. Additionally and more important, incrementality can
ensure, that manual changes and information which are not in the source model are kept
in the other model by updating transformed elements which already exist and by not
replacing them, which is important in particular for the symmetric case. Some approaches
using incremental model transformations for consistency are presented in the following
paragraphs.

Giese and Wagner (2009) enable incrementality for TGGs by adapting the execution
algorithm for TGG model transformation definitions. The correspondence graph which was
created during the first complete transformation of the TGG is reused during the incremen-
tal transformation and provides the mapped elements (one in the source model and one in
the target model), the executed patterns for these mapped elements and the execution order
of patterns in form of a directed acyclic graph (DAG): If a previously executed pattern does
not match anymore due to changes like deleted elements, the pattern execution (including
all its executed sub-patterns) is reverted by deleting the corresponding element and its re-
lated elements. If a previously executed pattern still matches, but conditions for attribute
values are invalid due to changes like changed values, the current values are propagated
to the other model. If there are elements which are not matched by previously executed

113

Inter-Modeling

derive Changes for
Back-Propagation from
unidirectional Model
Transformation

constrain possible Fixes
for occurred
Inconsistencies

incremental Model
Transformations

incremental TGGs

https://xiongyingfei.github.io/modelSynchronization.html

least Change and least
Surprise

customize
Back-Propagation

Lenses formalize Model
Synchronization

asymmetric Lenses

3 Related Work

patterns due to changes like newly created elements, the usual TGG transformations are
applied to them. This algorithm saves matches and transformations for unchanged ele-
ments, resulting in improved performance (Giese and Wagner, 2009). It is fully automatic,
in contrast to an ancestor algorithm which lets users decide in case of conflicting rule ap-
plications (Becker, Herold et al., 2007). The presented algorithm is improved by Greenyer,
Pook and Rieke (2011) in order to prevent unnecessary deletions of elements in the target
together with their manual changes: Instead of immediately deleting elements of invalid
patterns, these elements are only marked as deleted and are reused, if they are (re-)created
by other TGG patterns. Lauder, Anjorin et al. (2012) present an algorithm for incremental
execution of TGGs with improved performance and the formal guarantees of Hermann,
Ehrig et al. (2011) (see above), mainly done by also un-transforming elements related to
created (and not only deleted) elements and establishing fixed execution orders. As an
alternative, Leblebici, Anjorin et al. (2017) use incremental pattern matching for incremen-
tality. For TGG engines, there is a trade-off between performance and formal guarantees,
at least regarding backtracking capabilities for incrementality (Leblebici, Anjorin et al.,
2014). Blouin, Eustache and Diguet (2014) show an example, how a synthetic approach for
model consistency preservation is realized with TGGs for incremental model synchroniza-
tion. Abilov, Mahmoud et al. (2015) apply EMOFLON for incremental bidirectional model
synchronization in the domain of software development artifacts.

Also BX has to deal with the selection of one of multiple possible fixes for the back-
transformation (Zan, Pacheco and Hu, 2014) in order to resolve ambiguities (Eramo, Marinelli
and Pierantonio, 2014). This selection should be deterministic (Stevens, 2010), so current
research investigates possible heuristics to choose fixes. Cheney, Gibbons et al. (2017) in-
vestigated least change and least surprise for bidirectional model transformations: While
working in general, they found some issues with least change including, that metrics for
least change on amount of change operations do not always fit to the expectations of users
working with tool environments or DSLs, including the problem that changes can be real-
ized also with adding and deleting but with different numbers of change operations, that
least changes are often useful, but not always and that “metric-least consistency restoration
is NP-hard” (Cheney, Gibbons et al., 2017). Least surprise, i.e. small changes in one model
are reflected by small (but not minimal) changes in the other model, requires further inves-
tigations in general. ECHO realizes least change for QVT-R (Macedo and Cunha, 2016).
The TGG engines MOTE and TGG INTERPRETER apply some strategies to realize least
change in practice, but cannot guarantee least change in general (Leblebici, Anjorin et al.,
2014).

Since explanations and other heuristics prevent project-specific decisions, Zan, Pacheco
and Hu (2014) allow to imperatively customize the desired back-propagation of changes
for bidirectional model transformations, demonstrated in contrast to QVT-R. Since these
approaches support methodologists, these approaches are discussed in Section 6.3.1% 199,

Lenses (Foster, Greenwald et al., 2007) are a theoretical concept® to formalize the se-
mantics of pairs of model transformations and their properties for model synchronization:
Since lenses describe the relation of models in total to each other and not of single consis-
tency relations, the cases of information overlaps between these models are relevant, i.e.
bijective, asymmetric and symmetric (see Figure 3.5 104). Asymmetric lenses for the asym-
metric case consist of two functions get and put (or putback) which allow to synchronize a
source model s € S with a view v € V of it (Abou-Saleh, Cheney et al., 2018):

get: S —V (3.1)
put: Sx V— 8§

6Note, that the formalisms given in the cited publications for lenses are strongly summarized
here with strongly simplified notations.

114

3.3 Synthetic Approaches

get(s?) = 00 derives the current view v° from the current source s°, while put(s®, v!) = s!

propagates user changes V" A in the updated v! back into the source s! to update it accord-
ingly. S as additional input for put is required to prevent information loss, since v does not
contain all information of s. Except for this additional parameter, these formalizations fit
to the generic visualization of model synchronization-based approaches in Figure 3.4¢* 193,
Based on these formalizations, some laws for lenses are proposed in order to specify the
desired behavior for model synchronization:

e Well-behaved lenses do not change the source (respectively view), if the view (respec-
tively source) is unchanged: put(s, get(s)) = s respectively get(put(s,v)) = v

o Very-well behaved lenses (this property is also known as “history ignorance”) ignore
effects of views in older states, i.e. only the newest state of the view influences the
source: put(put(s,v°), v') = put(s,v')

This formalization is state-based up to now, since only changed models are involved,
but no information about the concrete changes. Since there are multiple possible model
differences between two versions of a model, state-based approaches have more ambiguities
to deal with than delta-based approaches. A typical example in practice are simple changes
of attribute values in v, which could also be represented as deleting an object and recreating
it with a different value. But the result of put is different regarding values of this object
which are only in the source s. Therefore, asymmetric delta-lenses are introduced (Diskin,
Xiong and Czarnecki, 2011, 2010):

dget : Ag — Ay (3.3)
dput : S x Ay — Ag (3.4)

dget and dput are similar to get and put, but work with model differences instead of
models. Concretizing the model differences helps to uniquely determine, which objects are
created, changed or deleted, as (vertical) alignment of objects in two different model versions
(Anjorin, Buchmann et al., 2020). Since the preparation of model differences is separated
from the direct model synchronization, they can be controlled better by using different
strategies. Usual model difference calculation can be used to calculate Ay, between vY and
v!, which allows to map “simple” lenses to delta-lenses. The laws for lenses are accordingly
adapted for delta-lenses (Diskin, Xiong and Czarnecki, 2011). Therefore, delta-lenses with
dget and dput can be seen as the transition from model synchronization-based approaches
to change translation-based approaches, investigated in following paragraphs. Delta-lenses
for the asymmetric case can be complemented with explicit links (as in incremental model
transformations) as additional inputs into dget and dput, which provide updated explicit
links as additional outputs (Diskin, Xiong and Czarnecki, 2011) and is also used for the
symmetric case now.

Symmetric lenses for the symmetric case between source model s € S and target mo-
del t € T are investigated in similar way including support for deltas by Diskin, Xiong
et al. (2011) with the two operations fPpg (forward Propagation) and bPpg (backward
Propagation), which take the current user diff and the old correspondences r € R between
s and t as input (see Section 2.3 ') and produce the other model differences and the
updated correspondences as output:

fPpg: Agx R — Ap x R (3.5)
bPpg: Ar x R — Ag x R
Since symmetric lenses target the symmetric case between two models, these signatures

are symmetric, too, and the terms forward and backward (as well as source and target)
could be switched. Adapted laws for symmetric delta-lenses target only the information

115

asymmetric
Delta-Lenses

symmetric Delta-Lenses

symmetric multiary
Delta-Lenses

Summary of Lenses

Round-trip Engineering

3 Related Work

overlap between s and ¢ and therefore are weaker versions of the strong laws covering all
information.

Since the lenses which are described up to now are binary lenses working with only
two models, Diskin, Kénig and Lawford (2018) investigate symmetric multiary lenses with
deltas in order to keep n > 2 models my ..., € M;, . , consistent to each other:

Ppgi s App X B — Ay X Ay x oo x Ay xR (Viel,2,...,n) (3.7)

As for binary symmetric lenses, the propagation operators ppgi, .., use and update cor-
respondences r € R for horizontal alignment between n models. Again, adapted laws for
symmetric multiary delta-lenses target only the information overlap between the models
mi,...n- Note, that if A,/ in the output is not empty, it amends the input A, and is
concatenated with it in order to specify the model differences from M, 0 to M. 1

Summarizing lenses, they are only a formalization of BX. Lenses are distinguished
regarding the number of involved models (binary vs multiary), the information overlap of
involved models (asymmetric vs symmetric) and the encoding of model changes (updated
model vs model deltas). Since lenses provide formal hints guiding implementations, they
lack a direct, concrete implementation: Lenses can be implemented with TGGs for the
binary symmetric case with deltas (Hermann, Ehrig et al., 2015) and can be realized as
composable combinators respectively operators forming a DSL for BX (Diskin, K6nig and
Lawford, 2018; Foster, Greenwald et al., 2007). Some more relations to other approaches are
summarized in Section 3.7 146, An alternative formalization for BX is relational (Abou-
Saleh, Cheney et al., 2018, p. 6f) basing on the formalisms in Section 2.3* 7!,

Round-trip engineering in the context of models is defined by Hettel, Lawley and Ray-
mond (2008) as a property of model transformations for two directions and is required,
since model “transformations in general are neither total nor injective” (Hettel, Lawley
and Raymond, 2008) in the symmetric case: As visualized in Figure 3.7, after executing a

Model
Tra,nsformamon

UserAl BAl

[Inv. Model
| Transformation |

Model
| Transformation |

Figure 3.7: Round-Trip Engineering of Model Transformations

forward model transformation (“Model Transformation”), an inverse model transformation
(“Inv. Model Transformation”) executed on the updated M3 fulfills round-trip properties,
if the forward model transformation provides the same MT1 from the output Msl of the
inverse model transformation. In other words, forward and inverse model transformations

116

3.3 Synthetic Approaches

do not contradict each other regarding the information targeted by them. With this design,
properties for round-trip engineering are very similar to symmetric lenses with their laws.
“In contrast to reverse engineering, round-trip engineering does not aim at recovering lost
or otherwise unavailable source models, but is rather concerned with propagating changes
from target to the source model” (Hettel, Lawley and Raymond, 2008). Approaches fulfill-
ing round-trip engineering often use incremental bidirectional model transformations (see
above), but there is also another proof-theory-based approach using “abductive reasoning,
the inference to the best explanation” (Hettel, Lawley and Raymond, 2009, p. 113).

Having models and code, Stahl, Volter et al. (2005, p. 74) define round-trip engineering
as having the transition from model to code (forward engineering) and the transition from
code to model (reverse engineering). In that sense, model-driven software development
is only forward engineering without reverse engineering and therefore without round-trip
engineering. Angyal, Lengyel and Charaf (2008) realize model-code-round-trip by model
difference calculation and merging on the AST representing the code.

Summarizing model synchronization-based approaches, they use model transformations
to ensure that parts of two models fit together in terms of consistency (Requirement R 1
(Model Consistency)™ 1%4). BX is well-suited for this task, since one specification allows
to execute model transformations in both directions. Incremental model transformations
improve performance and ensure, that changes are propagated from one model into the
other, while other, manually edited parts of the models remain unchanged, which is impor-
tant in symmetric settings occurring in synthetic approaches. The presented approaches
strongly vary in the strategies, how to determine the final results of model transformations
(in particular for the inverse direction), including non-deterministic automated selection,
manual selections by users, heuristics like least change, additional imperative specifications
and only defining the possible solution space. Since model transformations for both direc-
tions must ensure consistency for both involved models, formalizations in form of lenses
and round-tripping specify the desired behavior.

While the presented approaches using model transformations work out-place and exo-
geneous, using model transformations also in in-place and endogeneous way is possible for
ensuring consistency: Mens, Van Der Straeten and D’Hondt (2006) use graph transforma-
tion rules on AGGs working like pattern matching for both searching for inconsistencies
and fixing them. Possible cycles and conflicts of depending rules are covered by critical
pair analysis at development time. At runtime, all rules for inconsistency checking are ap-
plied and inconsistent elements are annotated with special nodes. Afterwards, these nodes
are used by the rules for inconsistency fixing for matching and fixing the inconsistent pat-
tern (Mens and Van Der Straeten, 2007). This approach requires additional support for
multi-models. To improve performance, Blanc, Mougenot et al. (2009) present the idea
of representing the model as sequence of model differences, specifying the rules not on
(meta)models but on model differences and evaluate only relevant rules on the currently
added model differences. This extension can be seen as incremental execution, very similar
to change translation-based approaches.

Change translation-based approaches propagate only changes made in one view to all
other related views (and do not transform whole views). The challenge is to cover the
syntactic and semantic heterogeneity of views in form of different metamodels and meanings
on level of model changes, since changes of the first view must be converted, i. e. translated
in changes for the next view. These converted changes allow to give up incremental model
transformations as used in model synchronization-based approaches. Change translation-
based approaches allow to give single views more control about the changes which they
communicate to other related views, e.g. Lee (2010) proposes an actor-based design to
communicate changes between models.

El Hamlaoui, Bennani et al. (2019) establish explicit correspondences between the het-
erogeneous models as first step. In the second step, changes of elements within one model

117

Round-trip with Source
Code

Summary of Model
Synchronization-based
Approaches

in-place Graph
Transformation Rules
for 1st marking and 2nd
fixing Inconsistencies

Change
Translation-based
Approaches

propagate Creations
and Deletions along
1-to-1 Correspondences

Establish
consistency-specific
explicit Links

BEANBAG: translate
Updates through
OCL-like Expressions

Summary of Change
Translation-based
Approaches

Synthetic Settings by
explicitly linking
Models with each other

3 Related Work

are propagated along their correspondences into the other models. This approach supports
automated change propagation for created and deleted elements and semi-automated solu-
tions for changed elements, which must be decided by experts. Experts might collaborate
with each other in order to identify (more) correspondences, to decide consistency issues
and to break cycles of the consistency management process (Bennani, El Hamlaoui et al.,
2018; El Hamlaoui, Bennani et al., 2019). Up to now, this approach does not support
consistency goals which establish no direct one-to-one links between the involved elements.
Therefore, this approach fulfills Requirement R 1 (Model Consistency)* 154 only partially.

Feldmann, Wimmer et al. (2016) establish links stored in link models between pairs of
involved models. These links are typed to indicate different relationships like refinement or
equivalence. Together with project-specific constraints (formulated as patterns, see de Lara
and Guerra (2012) above) and consistency rules, the links are used to check consistency and
to fix inconsistencies. Details of the inconsistency handling seem to be under development.

Xiong, Hu et al. (2009) develop a restricted OCL-like language BEANBAG that combines
checking and fixing inconsistencies with the same declarative expression. These expressions
are evaluated on the current model in order to detect inconsistencies, like in rule-based ap-
proaches. Additionally, these expressions can be evaluated in case of changes by users with
previous values and updated values resulting in further updates, which makes BEANBAG a
change translation-based approach. For that, all language concepts are complemented with
semantics, how to deal with occurred changes. Mainly, this includes “to propagate updates
through equality constraints [(=, let)], control the propagation order by logic operators [(and,
or, not)/, derive structural updating through logic quantifiers [(forall, exists)], restrict fizing
behavior through special constructs [(protect, test)], and introduce recursion for describing
more involved fizing strategies” (Xiong, Hu et al., 2009, p. 320). Evaluated in the context
of UML, BEANBAG “can support many, though not all, useful fixing scenarios in practice”
(Xiong, Hu et al., 2009, p. 324), due to the small number of language concepts. Therefore,
this approach fulfills Requirement R 1 (Model Consistency)*™ 14 only partially. BEANBAG
is applied for synchronizing views for web-development (Ruiz-Gonzalez, Koch et al., 2009).

Summarizing change translation-based approaches, they directly react on occurred chan-
ges in one model and generate changes for related models to keep them consistent to the
changed model. Some approaches exploit explicit links between models to directly propa-
gate changes along them, similar to incremental model transformations also using explicit
links in order to improve performance and to keep unchanged model elements. All the
presented change translation-based approaches have some limitations regarding Require-
ment R1 (Model Consistency)™ '®*. Another more generic change translation-based ap-
proach as part of VITRUVIUS is presented in Section 3.5.2* 126,

Summarizing the technique of explicitly linking models, all approaches which use explicit
links between pairs of models can be classified as synthetic approaches. In order to store ex-
plicit links outside of the linked models, an additional model is introduced, which makes the
setting even “more synthetic”. This counts for all kinds of explicit links (Figure 3.2 190):
As an example for traceability, Baumgart and Ellen (2014) use traceability links to explicitly
relate models of different tools to each other in order to enable validation and verification
across tool boundaries, but without fixing inconsistencies (Requirement R1 (Model Con-
sistency) ™ '54) or other findings. As an example for model weaving, Mehner, Monga and
Taentzer (2009) check the consistency between use case diagrams and concretizing activ-
ity diagrams according to pre- and post-conditions by weaving them together controlled
by defined pointcuts following aspect-orientation. Fixing inconsistencies is not targeted
(Requirement R'1 (Model Consistency)™ 1%4). Section 3.5.4* 3! reviews approaches using
aspect-orientation to weave different models into a single model. But only linking models
without ensuring consistency is not sufficient here. The other way around, linking models
can be used as supporting technique for approaches ensuring inter-model consistency.

There are also approaches, which are not related to the synchronization of models, but

118

3.3 Synthetic Approaches

are synthetic: Zhang and Moller-Pedersen (2013) define “tool integration models” which
are models used for integrating tools: These integration models define APIs, used models
and more specifics of tools, which are used to orchestrate integrations of the described tools.
This is done in synthetic way, but not with the focus on consistency of the involved models
the tools are working with. In particular, propagation of changes in both directions is not
covered (Requirement R 1 (Model Consistency)™ 1%4).

Summarizing synthetic approaches, they realize the consistency between different models
(Requirement R1 (Model Consistency)*™ '%4) by directly propagating changes between re-
lated models without intermediate models. Synthetic approaches use various techniques for
change propagation. Since nearly all of the presented approaches support Requirement R 1
(Model Consistency)* !5, but not explicitly Requirement R 3 (Define new View(point)s)
the following Section 3.3.2 reviews approaches for defining new views in synthetic settings.

3.3.2 Synthetic View Definition

This section presents some selected approaches to define new view(point)s in the synthetic
setting, since there are approaches which allow to define new views, that do not support
consistency of existing data sources in synthetic way: Such approaches could be integrated
with synthetic consistency approaches in order to define new views according to Require-
ment R 3 (Define new View(point)s)™ 176, The easiest way is to create a new view(point)
manually and treat it as existing data source using the mechanisms for consistency preser-
vation in Section 3.3.1% 198 but there are more advanced approaches specially designed to
define new views. Bruneliere, Burger et al. (2019) provide a survey for such approaches.

Important in the synthetic setting is, that new view(point)s are defined on top of multi-
ple existing view(point)s, if the new view should contain concepts of different existing data
sources, since there is no SUM in synthetic approaches. As an example, the new view in
Part 640 of the ongoing example for the traceability between requirements and source
code needs the requirements sentences from the requirements data source and the imple-
menting methods from the Java data source. This motivates to concretize Requirement R 3
(Define new View(point)s)™ 176 with the following Requirement R 3.1 157

Requirement R 3.1: New Views reuse whole System Description

New views must be able to reuse all information which represent the whole system
under development.

Only approaches fulfilling this requirement are presented in this section. If the new view
contains only concepts of one existing view, Section 3.5.5" 134 presents approaches to define
new views on top of exactly one existing view. Keeping a new view consistent to the exist-
ing views is slightly easier than keeping existing views consistent to each other, since the
new view contains only information which is already present in the existing views. There-
fore, asymmetric approaches are sufficient in this section here, while ensuring consistency
between existing views in Section 3.3.1% 108 requires symmetric approaches.

With EMF Views (formally known as VIRTUALEMF (Clasen, Jouault and Cabot,
2011)), there is an approach to define non-materialized view(point)s from multiple source
(meta)models (Bruneliere, Perez et al., 2015). Bruneliere, de Kerchove et al. (2018) im-
proved scalability for performance and add support for EMF models stored in different data
bases and queries (Bruneliere, de Kerchove et al., 2020). Since these new views are read-
only”, EMF VIEWS does not fulfill Requirement R 3 (Define new View(point)s)* % com-

"In Bruneliere, Burger et al. (2019) with overlapping authors, there is a hint for some limited
support for back-propagation. Following Burger and Schneider (2016), only changes for primitive
attributes can be propagated. Bruneliere, de Kerchove et al. (2020) mark editability as future work.

119

Demarcation

Summary of synthetic
Approaches

i 156
)

new View(Point) on top
of multiple View(Point)s

asymmetric Approaches
are sufficient

EMF Views are
read-only

EMF-INCQUERY:
incremental
Back-Propagation with
Proof-Theory

Summary of synthetic
View Definition

SUM as intermediate
Structure for
projectional Approaches

SUM conforms to
SUMM

SUM describes System
completely

Ensure Consistency
between View and SUM

Advantages of a SUM

3 Related Work

pletely and it again motivates to concretize Requirement R 3 (Define new View(point)s) = 156

with the following Requirement R 3.3" 157:

Requirement R 3.3: Editable new Views

New views must be editable by users.

Since EMF VIEWS does not target the consistency between existing data sources, but
only to derive new view(point)s from multiple data sources, it is helpful in synthetic ap-
proaches for realizing (read-only) views. In general for read-only views, any approaches for
model analyses including model querying can be used, including incremental model queries
(Hinkel, Heinrich and Reussner, 2019).

Debreceni, Horvéth et al. (2014) realize new views by incremental queries on multiple
(meta)models using EMF-INCQUERY as a unidirectional model transformation as part of
the VIATRA framework (Varrd, Bergmann et al., 2016). Correspondences between the
view and the source models are used to incrementally back-propagate changes in the view
by using the SAT solver of ALLOY (Semerath, Debreceni et al., 2016), which generates
possible corresponding source models for selection by users, representing a proof-theory-
based technique. This approach fulfills Requirement R 3 (Define new View(point)s)*= %6
with limited automation of the back-propagation of changes.

Summarizing approaches for synthetic view definition, they are required to present in-
formation spread over multiple models in a different way within one new view. The other
challenge is to propagate changes in the new view back into the source models, which occur
also for BX (see Section 3.3.1* 198) and for the view-update problem (see Section 3.6.3" 139).
Both challenges occur for the definition of new views in synthetic settings and strongly re-
duce the number of usable approaches. Another approach to define editable viewpoints
and views on multiple base (meta)models is MODELJOIN in the context of the VITRUVIUS
approach, presented in Section 3.5.2* 126,

3.4 Single Underlying Model (SUM)

After analyzing synthetic approaches in Section 3.3 19 projectional approaches are ana-

lyzed in Section 3.5 12!, In contrast to synthetic approaches, projectional approaches use
an intermediate structure to store at least overlaps of views in order to synchronize them
indirectly via the intermediate structure. Therefore, this section introduces the concept of
Single Underlying Models (SUMs) as intermediate structure as preparation for the analyses
of projectional approaches in Section 3.5 121,

To realize the intermediate structure required for projectional approaches, Atkinson,
Stoll and Bostan (2009) present the idea of a Single Underlying Model (SUM), which
conforms to a corresponding Single Underlying MetaModel (SUMM). The SUM completely
describes the system under development of the particular project in total. In particular,
it contains the information of all view, as well as additional information like explicit links
between non-overlapping information from different views. Compared with Figure 3.2 100,
the SUM stores all “Non-Overlaps”, “Overlaps” and “Inter-Correspondences”.

Views are projected from the SUM by users on-demand. Users work only on their
views and changes in the views are propagated back into the SUM. In this way, consistency
is not ensured in pair-wise manner between all views directly as in synthetic approaches,
but consistency is ensured between the particular view and the SUM. Since all views are
projected from the SUM, e. g. by model transformations, changes in the SUM are propagated
also into the other views (Requirement R 1 (Model Consistency)* 154).

Since the SUM contains all information of the system in a uniform way, the SUM serves
as single point-of-truth in projectional settings. Another advantage of a SUM is, that the

120

3.5 Projectional Approaches

management of dependencies between information spread over multiple views (page 33)
could be simplified in a SUM: Redundancies of views could be reduced by representing the
redundant information only once in the SUM, links between views can explicitly represented
in the SUM and constraints can be checked with usual techniques directly on the SUM.

The single model principle of Paige and Ostroff (2002) can be seen as an early ancestor
of the SUM idea, since it advocates the use of multiple views which are derived from a
single model to ensure their consistency. While in particular views with different levels of
abstraction are considered for SUMs, the definition of the single model principle restricts
its scope to software development with levels for modules and systems. The single model
principle is used by (Haesen and Snoeck, 2005) for the single formal specification and
different views for conceptual modeling. The One-Thing-Approach (Margaria and Steffen,
2009) advocates the use of a single and consistent representation for all information of a
system during its whole life cycle and different views on it.

In related work, lots of different terms are used to name structures covering important
overall information, which act similar to SU(M)Ms, even if not all properties of the SUM
idea are fulfilled, including “repository” (Guerra, Diaz and de Lara, 2005) according to the
original term used in IEEE (2011): In the field of embedded software-intensive systems,
Broy, Feilkas et al. (2010) call the SUM as “product model” covering all artifacts and their
relations of the whole development. Other terms are “unique model” (de Lara, Guerra and
Vangheluwe, 2006), “pivot model” (Kurtev, 2008, p. 382) and “global model” containing
only explicit links in a synthetic setting (El Hamlaoui, Bennani et al., 2019). A SUMM
is called “common metamodel” (Baumgart, 2010; Persson, Torngren et al., 2013), while
Persson, Torngren et al. (2013) provide also the alternatives “shared metamodel” and “pivot
metamodel” (Kappel, Kapsammer et al., 2006, p. 14). This thesis uses the terms SUM and
SUMM in the sense of Atkinson, Stoll and Bostan (2009), since this SUM idea is designed
for projectional settings and is already used by realizing approaches (Meier, Werner et al.,
2020).

While the SUM idea focuses on a single, central model, other ideas use other infras-
tructures as single means for synchronization: As an example, MODELBUS (Hein, Ritter
and Wagner, 2009) provides a central model repository and an interaction pattern for com-
munication for the integration of tools, but without a single model, and does not focus on
consistency, but provides sharing of models and versioning support for models. In contrast,
the tool support and communication infrastructure are not specified.

Since the SUM describes the current system under development in its entirety, SUM
and SUMM are specific for the current system and its project for development and are
not generic as UML. Approaches fulfilling this SUM idea realize the SUM either ezplicitly
as OSM (Section 3.5.1%124) or implicitly as VITRUVIUS (Section 3.5.2'!25). Persson,
Torngren et al. (2013) raise the question, how complete the SUM should be, e.g. whether
non-overlapping information should be stored in the SUM (Figure 3.2*09). Following
the SUM idea as presented above, the SUM contains all information about the system
under development including all information of all views in this thesis. Nevertheless, this
discussion is taken up in Section 13.3.3.2% 476,

3.5 Projectional Approaches

The main characteristic of projectional approaches is, that they establish direct relations be-
tween models of views and an intermediate structure, not between views directly. Following
the SUM idea (Section 3.5.3" 129) this section focuses on related projectional approaches,
which use a SUM)M as intermediate structure. The focus of this section is on generic
approaches to support arbitrary development projects by projectional view management.
In particular, projectional approaches which represent a specific solution for a restricted

121

Related Work

alternative Terminology

Demarcation:
MobpELBUS

towards realizing SUMs

generic vs specific
Approaches

Restricted SUMM
Approaches

Generic Data
Consistency without
Tool Integration

3 Related Work

project setting are neglected.

Some examples for restricted approaches are sketched here to get an impression for such
approaches and to see the practical relevance of projectional approaches. In particular,
such restricted approaches follow the main idea of the OSM approach (even if they are
not explicitly stated as SUM approaches), but have fixed viewpoints (France and Rumpe,
2007), in contrast to generic approaches, which support arbitrary viewpoints:

e Cicchetti, Ciccozzi et al. (2012) present the projectional tool environment CHESS
for modeling complex industrial systems with some fixed viewpoints and hard-coded
support for automated consistency management: The integrated modeling language
CHESSML supports viewpoints for requirements, system design, components, de-
ployment, analysis and instances (Debiasi, Thirwe et al., 2021).

e Shah, Kerzhner et al. (2010) use the SYSML metamodel extended by using its pro-
files mechanism as SUMM and derive new views with model transformations. They
marked the involvement of a general approach for consistency management as open
question.

e Makedonski and Grabowski (2020) improve consistency of specifications in standards
by keeping a unified information model as SUM up-to-date which represents all in-
formation elements of all specifications.

e UML uses different diagram kinds which can be treated as different viewpoints of
the same SUMM, e.g. by de Lara, Guerra and Vangheluwe (2006) for consistency
preservation using TGGs. Section 3.6.1* 136 analyzes some existing approaches for
consistency between UML diagrams.

e The Siemens views approach (Hofmeister, Nord and Soni, 2000) introduces viewpoints
for conceptual for functional components, modules, the execution and code artifacts
to describe software architectures. Their integration into a SUMM to describe the
architecture as a whole is sketched, but not made explicit. Therefore, the integration
of these extended viewpoints with MOCONSEMI is demonstrated in Chapter 10373,

e Vogel-Heuser, Fay et al. (2015, p. 65) present some approaches using predefined
SU(M)Ms for system design and call the problem to be solved with these approaches,
but do not answer the question, how the required SU(M)Ms can be developed in a
structured way.

e Rinker, Waltersdorfer et al. (2021) follow the projectional SUM idea for continuous
integration in the domain of production systems engineering. Since this approach
is ongoing research, it is unclear, if this approach is generic and could be applied to
other application domains. While the approach seems to be bottom-up taking existing
view(point)s into account, the concrete strategy to develop the required SU(M)M is
left open.

Summarizing, these restricted approaches and tools show, that the projectional manage-
ment of multiple views works in practice. Disadvantage of them is, that they support only
views which are realized with the techniques specified by the tools or whose viewpoints
and consistency goals are fixed in the approach. In contrast, MOCONSEMI aims to keep
the data of multiple views consistent to each other, independently from the underlying
tools: The objective is to achieve data consistency (by means of data integration) without
forcing tool integration. These findings motivate to concretize Requirement R 1 (Model
Consistency) ™ 1%* with the following Requirement R 1.1 154

122

3.5 Projectional Approaches

Requirement R 1.1: Generic Metamodels

The approach must support arbitrary metamodels.

Therefore, generic approaches are analyzed here, which are able to support arbitrary
viewpoints and consistency goals. If the views and the SUM are available as explicit mo-
dels, they can be kept consistent in projectional way by reusing synthetic techniques, as
investigated in Section 3.3 198: Since the SUM contains all information of all views by
design, techniques for the asymmetric case are sufficient to synchronize each view with the
SUM. This counts in particular for model synchronization-based approaches like BX, but
also proof-theory-based, rule-based and change translation-based approaches can be used
for projectional settings, since again models are kept consistent to each other, only with
differences in topologies (stars vs mashed graphs) and information overlap (asymmetric vs
symmetric). This includes also formalizations with (asymmetric) lenses and round-tripping.
Since these techniques are already discussed, the following sections analyzes approaches
which explicitly follow projectional ideas. In particular, the approaches which are explic-
itly designed to support projectional development following the SUM idea are discussed,
according to the following papers:

Related MoConseMI Publication

Johannes Meier, Christopher Werner, Heiko Klare, Christian Tunjic, Uwe Afimann,
Colin Atkinson, Erik Burger, Ralf Reussner and Andreas Winter (2020): Classify-
ing Approaches for Constructing Single Underlying Models. In: Slimane Hammoudi,
Luis Pires Ferreira and Bran Selic (Eds.): Model-Driven Engineering and Software
Development. MODELSWARD 2019. Communications in Computer and Informa-
tion Science (CCIS), Springer, Cham, pp. 350-375.

This publication is cited as Meier, Werner et al. (2020) in this thesis.

It is an extension of this paper:

Related MoConseMI Publication

Johannes Meier, Heiko Klare, Christian Tunjic, Colin Atkinson, Erik Burger, Ralf
Reussner and Andreas Winter (2019): Single Underlying Models for Projectional,
Multi- View Environments. In: Proceedings of the 7th International Conference on
Model-Driven Engineering and Software Development, pp. 119-130.

This publication is cited as Meier, Klare et al. (2019) in this thesis.

Additionally, these papers provide some conceptual design choices to classify projec-
tional approaches. While these design choices target the conceptual solution space, the de-
sign choices of Figure 3.2 190 focus on the technical realization of approaches after deciding
their conceptual design choices. The design criteria of Meier, Klare et al. (2019) describe two
conceptual design choices for projectional approaches, which are depicted in Figure 3.8 124;
The construction process (criterion C1 in Meier, Werner et al. (2020)) refers to the process
of creating the SU(M)M, which can be top-down by designing the SU(M)M on the green-
field or bottom-up by combining reused (meta)models into the SU(M)M. Bork and Sinz
(2013, p. 29) use the same distinction, but without explicitly using this terminology. The
resolved dependencies (Pureness as criterion C2 in Meier, Werner et al. (2020)) refer to the
dependencies like redundancies between views, which could be all unresolved in the SUM
(none), completely resolved with a pure SUM (all) or resolved in some cases, but not all
depending on the particular project (adjustable).

Since Meier, Klare et al. (2019) focus only on projectional approaches, Figure 3.8 124

123

Reuse synthetic
Techniques for
projectional Settings

additional conceptual
Design Choices

Legend
Mandatory

Optional
Or

> > Qe

Xor

» Sub-Diagram

Conceptual Design
Choices for synthetic
Approaches

Outline for related
projectional Approaches

explicit SUM)M

Ensuring Consistency
in OSM

3 Related Work

[Approaches for Inter-Model Consistency}

Resolved Dependencies

Oreanization Construction Process
= (C2 Pureness)

(C1)
: T None Some All
{Synthetm} [PI‘OJeCthHalJ {Top—down} [Bottom—up} (Pragmatic) | | (Adjustable) | | (Essential)

Synthetic = Bottom-up A None (resolved dependencies)

Figure 3.8: Design Choices for conceptual Realization (derived from Meier, Werner et al. (2020))

makes this explicit with the feature “organization”. In order to make this conceptual design
choices generic, the feature model supports synthetic approaches, too: Since there is no
SU(M)M in synthetic settings, synthetic approaches are always bottom-up. Since there is
no SU(M)M in synthetic settings, the existing views remain with all their dependencies and
none of them are resolved. Since Figure 3.8 supports synthetic and projectional approaches
now, it can be used to design new approaches for ensuring inter-model consistency with
synthetic vs projectional as additional design choice, as it is done in Section 5.1 163,

Since they state to be generic projectional SUM approaches, three approaches of Meier,
Werner et al. (2020) are analyzed in more detail in the following three sections: OSM
in Section 3.5.1, VITRUVIUS in Section 3.5.2% 126 and RSUM in Section 3.5.3 129, The
design of the fourth approach MOCONSEMI of this thesis is presented in Part III* 163,
While these approaches target all challenges of projectional SUM approaches, other generic
approaches fulfilling only some of these challenges are investigated, too: Section 3.5.4* 131
investigates, how a SU(M)M can be created, if only its view(point)s exist. As follow-up
step, Section 3.5.5" 134 reviews, how new view(point)s can be defined on top of an existing
SU(M)M.

3.5.1 OSM

The “Orthographic Software Modeling” (OSM) approach uses modeling techniques to sup-
port software development (initially), but also other domains like enterprise architecture
modeling and service modeling (Atkinson, Stoll and Tunjic, 2011), by multiple viewpoints,
which are arranged in orthogonal way. Two main concepts of OSM are the generation of
views on-demand to manage consistency and the alignment of viewpoints along orthogonal
dimensions Atkinson and Stoll (2008b), investigated in the following paragraphs.

OSM uses one explicit model as SUM, which conforms to one explicit metamodel as
SUMM. The SUM contains all information about the system under development in uniform
way without any dependencies (pure in terms of Meier, Werner et al. (2020)). Since the
SUM contains no dependencies, no inconsistencies can occur and no additional mechanisms
to ensure consistency inside the SUM are required. This corresponds to Thomas and Nejmeh
(1992), who have “nonredundancy” as important property: “Redundant information |[...]
is undesirable because it is difficult to maintain consistency” (Thomas and Nejmeh, 1992,
p. 32). Instead, consistency must be ensured between the SUM and the views: Views
are generated from the SUM on request be users and are initially consistent to the SUM
therefore. After the user changed the view, the changes are propagated back into the SUM
to keep it consistent. Other views are projected from the (updated) SUM again and are
directly consistent and so on, as sketched in Figure 3.9 !2°. Users are not allowed to
change the SUM directly.

124

3.5 Projectional Approaches

ClassDiagram

@ Viewpoint
SUM)M | pure SU(M)M

oy DEEPATL Transfor-
mation / Projection

Figure 3.9: SUM approach OSM (taken and slightly adapted from Meier, Werner et al. (2020))

The change propagation between SUM and views is model synchronization-based: A
view is created on-demand from the SUM by executing a unidirectional full-batch model
transformation. To propagate changes in the view back into the SUM, an inverse unidirec-
tional model transformation was used initially (Atkinson, Gerbig and Tunjic, 2013b). As
improvement, Tunjic and Atkinson (2015) require only one unidirectional model transfor-
mation from the SUM to the view (get in terms of asymmetric lenses (Diskin, Xiong and
Czarnecki, 2011), see above in Section 3.3.1* 108) which is restricted to map each element in
the SUM to zero or one elements in the view and which automatically creates trace links be-
tween transformed elements. In that cases, changes for created and deleted elements can be
propagated along the trace links to realize dget and dput functionalities including updated
trace links (asymmetric delta-lenses with explicit links). The update facilities for attribute
values are not discussed. Atkinson and Tunjic (2017) allow projections of one or more ele-
ments in the SUM to one or more elements in the view, probably leading to hyper-links, but
do not discuss the view-update problem for these cases. The same counts for aggregating
information from the SUM, which are probably read-only, meaning, that their changes in
the view are not propagated to the SUM and are lost. If the new view is only an exact
subset of the elements in the SUM, such a filtering for this special case can be specified by
(deep) OCL expressions instead of complex model transformations (Lange, Atkinson and
Tunjic, 2020). Summarizing, OSM fulfills Requirement R 1 (Model Consistency)* 54 and
Requirement R 3 (Define new View(point)s)® 16 with the same mechanisms in general, but
with some lack in detail.

OSM organizes viewpoints along orthogonal dimensions (Atkinson and Tunjic, 2014a),
which helps users to choose the best view for their current needs and methodologists to
keep an overview of already developed and still missing viewpoints. Main idea is, that n
orthogonal dimensions form a n-dimensional hypercube, while each dimension has some
values as possible choices for this dimension. Each cell in the hypercube is defined by one
value for each of the n dimensions and can be realized by one viewpoint. Examples for such
dimensions (with possible values in round brackets) include high-level components (dynam-
ically depending on the particular system), level of abstraction (services, classes, code),
development stage (specification, implementation, validation), variant (selected features in
a product line) and version (released versions).

Clarification: Orthogonal dimensions vs. Consistency

Note, that the hypercube does not represent all information of the system, but
organizes all ways how stakeholders can look on this information. In particular,
orthogonal dimensions target the alignment of viewpoints and do not separate the
information into independent parts, e.g. the same source code can be visualized by

125

Restricted
unidirectional Model
Transformation from
SUM to View with
Traces

Propagate Changes
along Traces back into
the SUM

Orthogonal Dimensions
for Viewpoints

Consistency is not
ensured by orthogonal
Dimensions

Applications of OSM

Methodologists
manually create the
SU(M)M when applying
OSM

OSM Implementation

3 Related Work

the different values of the dimension level of abstraction (see above). Therefore, there
is still the need for keeping information in different views consistent. Consistency is
not ensured by orthogonal dimensions, nevertheless, the overlap of views in terms of
shared information should be minimal (Atkinson and Tunjic, 2014a, p. 49).

Application examples with orthogonally aligned viewpoints include among others mod-
eling of component-based systems according to the KOBRA method (Atkinson, Bostan et al.,
2008) and of components and their orchestration for workflow engines (Atkinson and Stoll,
2008a). Additionally, orthogonal dimensions and viewpoints are defined for the ARCHI-
MATE approach (Atkinson and Tunjic, 2014b). The activities for modeling architectures for
enterprise applications are embedded into the general vision of multi-level modeling with
orthographic viewpoints (Tunjic, Atkinson and Draheim, 2018) and can be seen as one
important application of OSM.

Methodologists using the OSM approach create the SUMM (and the SUM if necessary)
by hand from scratch, i.e. OSM is a top-down approach starting with the SUMM and
viewpoints are defined afterwards on top of the SUMM. Therefore, methodologists can
not directly reuse existing metamodels and models, i.e. Requirement R 2 (Reuse existing
Artifacts) ™ 15° is not fulfilled. As benefit, the desired SUMM can be created completely
free in an optimized way, without being restricted by existing metamodels to reuse. By
this top-down design, an optimized SUMM as in Figure 3.10 for the ongoing example can
be realized. Beyond that, OSM provides no explicit method to cope with the challenge to
create the optimized SUMM, but requires such methods (Atkinson, Stoll et al., 2013). As
look-ahead, the MOCONSEMI approach of this thesis provides such a method.

SUMM
LusedBy [*])

type [1]
~

ClassUseClass

name : EString [1] < < Class
lowerBound : ElInt [0..1] | ¢lagsUseClass [pame : EString [1]
upperBound : Elnt [0..1] y

class [1]

) class [1]

methods [x]

Requirement h <

fulfilledBy [*] Method
\

7 .
fullfills [*] name : EString [1]

calledBy [x] calling [x]

id : EString [0..1]
author : EString [0..1
text : EString [0..1]

A~

Figure 3.10: Exemplary Metamodel for SUMM in OSM (taken from Meier, Werner et al. (2020))

The implementation of OSM is done in NAOMI (Atkinson, Stoll et al., 2013) and
use MELANEE (Atkinson and Gerbig, 2016) as technical space which supports multi-level
modeling (MLM) (Atkinson, Gerbig and Tunjic, 2013a): Some basics for the understanding
of metamodels in MLM are already given in Section 2.2.2* 60, Therefore, transformations
between SUM and views require model transformation approaches which support multiple
levels like DEEPATL (Atkinson, Gerbig and Tunjic, 2013b) as extension of ATL (Jouault,
Allilaire et al., 2008). A generic visual language to visualize multi-level models in UML-like
style (Atkinson, Kennel and Gof}, 2011) is complemented with facilities to develop domain-
specific textual and graphical languages for multi-level models (Atkinson and Gerbig, 2013).

3.5.2 Vitruvius

The “VIew-cenTRic engineering Using a VIrtual Underlying Single model” (VITRUVIUS)
approach (Kramer, Burger and Langhammer, 2013; Klare, Kramer et al., 2021) aims to

126

3.5 Projectional Approaches

fulfill the projectional SUM idea in pragmatic and scalable way. In contrast to the ex-
plicit SUM)M in OSM, VITRUVIUS uses a virtual SU(M)M which reuses the existing
(meta)models as parts of it, as depicted in Figure 3.11. This modular SU(M)M consists of
the (meta)models (Java, Req and ClassDiagram with package icons in Figure 3.11) which
are reused in unchanged and non-invasive way (VPRreq; VPjava, VP lassDiagram)- There-
fore, Figure 3.12 shows the SUMM for the ongoing example with VITRUVIUS with the
three reused metamodels. VITRUVIUS is bottom-up and realizes an easy reuse of existing
(meta)models, but resolves none of their dependencies. Therefore, an explicit mechanism
for consistency preservation between the single (meta)models (CPR in Figure 3.11) is re-
quired. The reused (meta)models are provided to users as initial view(point)s. An addi-
tional approach is required to define new view(point)s. Both mechanisms are presented in
the following paragraphs.

(Meta)Model
_ __ Consistency
Preservation
s Class Rule
Diagram @ Viewpoint
\
A < - - - - View Trans-
formation

Figure 3.11: SUM approach VITRUVIUS (taken and slightly adapted from Meier, Werner et al.

Req
ClassDiagram ‘ RequirementsSpecification ‘ Java J JavaASG
[]
diagram [1] container [1] asg [1]
iusedBy 1] content [+]
type [1] classes [¥] > classes [x] calledBy [] calling [%]
Association lass [1] — Requirement a VT o
- class S YlassType class /
name : EString [1] ¢ Class id : EString [0..1] yP! y Method
lowerBound : Elnt [0..1] | agsociations [+] | className : EString 1] author : EString [0..1] name : EString [1] methods [+] | name : EString [1]
upperBound : EInt [0..1] text : EString [0..1]

Figure 3.12: Exemplary Metamodel(s) for SUMM in VITRUVIUS (taken from Meier, Werner et al.
(2020))

VITRUVIUS uses Consistency Preservation Rules (CPRs) to keep depending models in
the SUM consistent to each other in pair-wise way. The CPRs use and maintain explicit
links in form of correspondences which can be annotated with further metadata between
related elements in two different models. CPRs are change translation-based by reacting
on changes made by a user in one model and deriving corresponding changes for the other
model to keep it consistent (Kramer, 2015). With this design, VITRUVIUS fulfills the projec-
tional SUM idea for users having multiple views with automated consistency preservation
(Requirement R1 (Model Consistency)* 154) by internally using synthetic techniques.

Since this change translation-based approach requires consistent models connected with
correspondences before a user changes one view, the reuse of existing models in VITRUVIUS
is challenging, when these models are not consistent to each other or not connected: Since
the mechanisms for consistency preservation react only on user changes, more complex stra-
tegies for the initial import of existing models into VITRUVIUS are required. Leonhardt,
Hettwer et al. (2015) propose two strategies to create corresponding elements in other mo-
dels together with correspondences when importing models conforming to the same meta-

127

modular SU(M)M,
composed of reused
(Meta)Models with
Correspondences

Ensuring Consistency
in VITRUVIUS

Reuse existing Models

Multi-Model
Consistency

Define new
View(point)s with
MoDELJOIN

3 Related Work

model, i.e. first by inserting the current elements as active delta into the change-driven
consistency preservation mechanism and second by explicitly creating linking other models
using forward or reverse engineering techniques. Importing multiple models conforming
to different metamodels and importing models which are not consistent to each other is
targeted by Mazkatli, Burger et al. (2018): Corresponding elements in different models are
searched by using the defined mappings (see below) and additionally defined identifiers.
Missing corresponding elements are created and conflicting values of found matches are
edited, whose resulting changes are synchronized in the usual way of VITRUVIUS. There-
fore, VITRUVIUS supports Requirement R 2 (Reuse existing Artifacts)™ 125, but with some
restrictions. These findings motivate to concretize Requirement R 2 (Reuse existing Arti-
facts)™ 155 with the following Requirement R 2.3* 156:

Requirement R 2.3: Fix existing Models

The approach must allow to fix inconsistencies within reused models.

Another challenge is to realize consistency between multiple models (Klare, 2018): Since
consistency is ensured in pair-wise way, redundant information in three or more models
require a dense or even complete graph of consistency specifications between them, in
order to fulfill modularity, i.e. the possibility to use arbitrary subsets of these models.
Since changes can be propagated transitively, there are multiple execution paths, which
could be contradicting and leading to termination problems (Klare, Syma et al., 2019).
As solution, such redundant concepts should be made explicit with concept metamodels,
which form trees together with the concrete metamodels as leaves: This design aims to
prevent contradicting consistency specifications by design and to keep modularity (Klare
and Gleitze, 2019).

In order to provide new view(point)s which are derived from the concepts and informa-
tion of the modular SUM)M (e.g. VPyac. in Figure 3.11%127) MODELJOIN is design as
textual DSL (Burger, 2013b, 2014): Using this DSL, the methodologist can select and com-
bine concepts from multiple metamodels of the SUMM, which lead to a new viewpoint and
its conforming new view, which can be used by users. Therefore, methodologists can rapidly
define flexible views and their viewpoints (Burger, 2013a). Similar to SQL, MODELJOIN
defines declarative queries on different metamodels and provides concepts for joining, pro-
jection, selection and aggregation of model elements. With MODELJOIN it is not possible
to define any viewpoint, but only elements already existing in the input metamodels and
models can be explicitly selected to be part of the new viewpoint and view (keywords for
the textual syntax in round brackets) as defined in Burger, Henss et al. (2014):

e (lasses can be reused for the new viewpoint in same form, renamed or joined with
other elements (natural join, outer join,theta join with any conditions as OCL
expressions). Super-classes and sub-classes of such classes must be explicitly specified
to be in the viewpoint (keep supertype, keep subtype).

e Attributes for reused classes can be explicitly selected to be reused (keep attributes)
or calculated with five predefined arithmetic functions (keep aggregate) or arbitrary
OCL expressions (keep calculated attribute) over any information in the source
models.

e References for reused classes can be explicitly selected to be reused (keep outgoing,
keep incoming).

o All elements in the new viewpoint can be renamed (as [typel).

e The amount of objects conforming to a class which is part of the new viewpoint can
be restricted with any OCL expressions (selection).

128

3.5 Projectional Approaches

These restrictions and the creation of internal traces between reused objects during execu-
tion allow to enable editability for MODELJOIN views (Burger and Schneider, 2016): For
each concept of MODELJOIN, a fixed strategy for change translation i.e. to propagate up-
dates in the view back into the source models is chosen. Additionally, OCL constraints for
each chosen change translation strategy are formulated which define the possible changes
in the new view by users, after which the resulting updates in view are still translatable
into the source models. These OCL constraints allow to decide, if an updated view is trans-
latable back into the source models, and could be used to inform users during their work
on the view about the translatability of their changes without doing the translation. De-
tails of the chosen translation strategies can be found in Schneider (2015). Some changes
are not translated, e.g. values of aggregated and calculated attributes remain read-only.
Summarizing, VITRUVIUS in form of MODELJOIN support Requirement R 3 (Define new
View(point)s) = %6 but with some restrictions in detail.

Completed and ongoing application examples of VITRUVIUS include among others com-
ponent-based software systems supported by consistency preservation of architectural mo-
dels in the Palladio Component Model language (Becker, Koziolek and Reussner, 2007),
contracts in the Java Modeling Language and Java source code (Kramer, Langhammer
et al., 2015). The last application could be extended with UML component diagrams and
configuration files for Eclipse plugins (Kramer and Langhammer, 2014). New viewpoints
include Java source code annotated with related components and component diagrams ex-
tended with realizing Java classes and interfaces (Kramer and Langhammer, 2014). Other
applications include modeling of hardware-system-systems like automotive systems with
SysML, AMALTHEA and ASCET (Mazkatli, Burger et al., 2017), electrical engineering
with printed circuit boards and electronic circuit simulations (Zimmermann and Reussner,
2018), smart grids for the energy domain (Burger, Mittelbach and Koziolek, 2016) and
automated production systems with AUTOMATIONML (Ananieva, Burger and Stier, 2018).
Another application is to keep architectural models up-to-date (Monschein, Mazkatli et al.,
2021), e. g. to keep performance models in software architectures up-to-date in incremental
way (Mazkatli, Monschein et al., 2020). An ongoing application is to manage variants and
versions of models in a consistent way (Ananieva, Klare et al., 2018).

The implementation of VITRUVIUS uses EMF as technical space. The textual DSL
MODELJOIN is realized with XTEXT for IDE-like tool support. For ensuring consistency
within the SUM, there are two languages (Kramer, 2017; Klare, Kramer et al., 2021): Ex-
pressions in the unidirectional reactions language are triggered by user changes and specify
imperative actions as reactions to these changes in order to fix occurred inconsistencies.
Expressions in the mappings language define consistency goals between related objects of
different models in declarative and bidirectional way (Kramer and Rakhman, 2016) and are
transformed into expressions of the reactions language for executions and for both direc-
tions. While the reactions language is Turing-complete, the mappings language has reduced
expressiveness in order to automatically derive unidirectional reactions for both directions.

3.5.3 RSUM

The “Role-oriented Single Underlying Model” (RSUM) approach (Werner and Afimann,
2018) realizes the projectional SUM idea with a pragmatic SU(M)M composed of loosely-
coupled existing (meta)models (Figure 3.13130). Similar to VITRUVIUS, by reusing ex-
isting (meta)models RSUM is bottom-up and does not resolve any dependencies. Central
element in RSUM is the role concept of role-based modeling which is used to couple the
(meta)models into the SU(M)M and to ensure consistency within the SUM. In order to
provide new views with information derived from the SUM, the syntax of MODELJOIN of
the VITRUVIUS approach is reused.

The role concepts (Kiihn, Leuthduser et al., 2014) extend object-orientated model-

129

Applications of
VITRUVIUS

VITRUVIUS
Implementation

Role-based Modeling

Reuse (Meta)Models

Compartments ensure
Consistency

3 Related Work

VPClassDiagram

Class
Diagram

pure (M)M

(MM
Consistenc

Manageme%t

Compartment

Viewpoint

<+ - - - -+ View Trans-
formation

Figure 3.13: Exemplary Metamodel for SUMM in RSUM (taken and slightly adapted from Meier,
Werner et al. (2020))

ing, since usual associations between classes are replaced by compartment types and links
conforming to associations are replaced by compartments conforming to the compartment
type which replaced the association. Within compartments, objects play roles conforming
to the compartment types. With this design, compartment types realize usual associa-
tions (relational compartments), but in a more flexible way, since compartment types and
compartments can be added and removed depending on the current context. Additionally,
roles adapt the behavior of objects and interact with other roles, which allows to realize
consistency preservation between the adapted objects at runtime (consistency management
compartments, CMC). Figure 3.14 uses the concrete syntax for role-oriented modeling of
Kiihn, Béhme et al. (2015). The role-based technical space makes RSUM suitable in par-
ticular for models-at-runtime applications.

Legend:
RsumManagement ClassUseType ConsistencyManagement MethodsCallingMethods ceen
Compartment
- 1 1 N . "1 "RoleGroup (1.1) 1) n.m
Extensions Destruction Construction '
0= So;rce Taiet = = i Source | Role]
.* ..* ..* gy pupnpipip—r mp—— ’
Extension / \ [Destructor] i Constructor J / Natural
3 =
T— / ClassUseClass \ e ClassHasMethods MethodsFulfillRequirement '
RoleGroup (n..m)
o2 L[1 = : . ! ! D nm |
:kRS”"'me . [Csource J (Target 0ct ! (Role) *** (Role) |
. Pal K |(syncManager K Y / Seemmeee ’

- —> Plays Relation
ClassType Requirement

| name : EString [1] |

| Method |
| name : EString [1] |

Association | Class | |

Relation

name : EString (1] id : EString [0..1]

lowerBound : Elnt [0..1]
upperBound : Eint [0..1]

className : EString [1]

ClassUseClass

JavaHasC}nsses

ContainRequirement

author : EString [0..1]
text : EString [0..1]

1
1
1
1
1
1
1
1
1
!
1
1
1
1
1
1 n.m
1 (Role) Role cardinality
1
!
1
1
1
1
1
1
1
1
1
1
!
1
1

1
1
1
1
1
1
1
1
1
1
i
1
1
|
' "
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1

e 1 1 \1 ;\._/
Target Source |<;\| e - | | JavaASG I/'[Source J[Target J [Target J[Source hgl:l
L 1

Figure 3.14: SUM approach RSUM (taken from Meier, Werner et al. (2020))

Metamodels to be reused can be transformed into the role-based paradigm by replacing
associations by relational compartment types (white compartments in Figure 3.14). Links
within models can be extended accordingly to support roles at runtime. Therefore, RSUM
supports Requirement R 2 (Reuse existing Artifacts)™ !5° in general.

The methodologist ensures consistency challenges by defining further compartment
types depending on their kind: Explicit links are realized by relational compartment types
(gray MethodsFulfillRequirement in Figure 3.14), while redundancies and constraints are
realized by consistency management compartments (e. g. gray ConsistencyManagement for
redundant classes in Figure 3.14). Therefore, the metamodels of Java and requirements
are combined with a relational compartment type, as depicted in Figure 3.13, similar to
an association which would integrate the two metamodels with an association. Redun-

130

3.5 Projectional Approaches

dant classes in ClassDiagram and Java are kept consistent by a consistency management
compartment in contrast. One overall RsumManagement compartment manages the whole
consistency management, in particular, recording of changes by users. Since the CMCs
react on these recorded user changes and provide additional changes to fix occurred incon-
sistencies, RSUM with RSYNC for change propagation (Werner, Schon et al., 2018) falls
into the category of change translation-based approaches: Consistency management com-
partments use different contexts and roles (Destructor, Constructor, Sync) to react on
changes for deletion, creation and changes of elements. Bindings of these roles to affected
elements work as correspondences and support the direct change propagation. Therefore,
RSUM fulfills Requirement R 1 (Model Consistency) ™ 4. The base RSYNC is extended
to PARALLEL RSYNC in order to support concurrent editing of multiple users with conflict
handling (Ebert, Kluge and Gétz, 2021).

Additional new view(point)s (which are not depicted in Figure 3.1 can be de-
fined with the syntax of MODELJOIN (see Section 3.5.2% 126) from which relational com-
partment(type)s for new view(point)s are generated (Meier, Werner et al., 2020). These
relational compartments provide the objects in the SUM as projections to users, whose
changes are done directly on the SUM, since the views are virtual and not materialized.
Therefore, RSUM inherits the restrictions of MODELJOIN and supports Requirement R 3
(Define new View(point)s)*™ %%, but with some restrictions in detail.

The implementation of RSUM uses SCROLL (Leuthéduser and Afmann, 2015), a li-
brary for SCALA, to realize the role-based modeling. The current research prototype requires
writing compartments, views and consistency management with this library in SCALA by
hand (Werner, Bergmann et al., 2019), but DSLs for easier definitions and code generation
are desired for future work, in particular, for the definition of views (Werner and Afimann,
2018) and for synchronization (Werner, Schon et al., 2018).

4= 130)

3.5.4 Combining Views into a SUM

As motivated in Section 1.2.2% 35 often views and their viewpoints already exist and must
be reused. For projectional approaches for ensuring consistency of such views, a SU(M)M
is required as intermediate structure. In bottom-up projectional approaches, such SU(M)M
must be created from the existing view(point)s as starting point, while top-down projec-
tional approaches start with designing the SU(M)M from scratch. Creating an appropriate
SUMM is an open question, indicated by OSM (see Section 3.5.1% 124). Another challenge
is, that the views to reuse conform to different viewpoints and different metamodels must be
reflected in the SUMM. Therefore, this section investigates approaches to combine multiple
different view(point)s into a SU(M)M.

Walter and Ebert (2009) present an example for a manual integration of a particular
DSL, feature models and ontologies on the metamodel level only.

Already Darke and Shanks (1996) propose the integration of viewpoints to be a central
activity for managing viewpoints and sketches some approaches, including to merge existing
viewpoints into each other to form an integrated metamodel, which could serve as SUMM,
and to translate the different viewpoints into the same formal description as in proof-theory-
based approaches for consistency (Section 3.2* 99).

Chechik, Nejati and Sabetzadeh (2012) discuss the integration of models using auto-
mated model merging operators, which depend on links between related elements which
must be provided by users. The presented operators unidirectionally merge only models
into each other which conform to the same metamodel.

Stiinkel, Konig et al. (2018) present a very similar approach, but define commonalities
i. e. the direct overlaps of elements between metamodels with correspondences represented
as an additional commonalities metamodel first. As second step, this commonalities meta-
model is used to compose a comprehensive metamodel like a SUMM by merging the initial

131

New View(Point)s

RSUM Implementation

Model Merging

merge (Meta)Models
using Correspondences
indicating
Commonalities

SUM)M as explicitly
linked View(Point)s

aspect-oriented
Modeling and Weaving

Model Weaving is
project-specific and
unidirectional

extend Base
Metamodels with
Aspect Metamodels for
Metamodel Evolution

UML Profiles

3 Related Work

metamodels. After defining correspondences between the models by hand or by special
identification rules, the models can be virtually merged in similar way. If the result of this
merge is made explicit, a SUM is available. Since only direct overlaps of elements in meta-
models and models can be unified, the SU(M)M can still have dependencies. As future work,
Stiinkel, Konig et al. (2018) plan extensions for ensuring consistency on these integrated
(meta)models by formulating inter-model constraints on the comprehensive metamodel and
checking them on the virtually merged model. Fixes for inconsistencies are derived from
completion rules which are added to the constraints.

Another general idea for combining views into a SUM is to keep the views as they
are, but link them explicitly with each other (see the overall techniques for linking in
Section 3.2%99). This idea is realized in the RSUM approach (Section 3.5.3* !2%) as an
example. Note, that the resulting SUM contains all information of all views, but with
redundancies. A corresponding SUMM can be created with the same idea.

Redundancies between multiple views can be treated as crosscutting concerns, which
motivate the use of aspect-oriented modeling (Wimmer, Schauerhuber et al., 2011): Kienzle,
Al Abed and Jacques (2009) provide an approach for multi-view modeling supported by
aspect-oriented modeling in the domain of UML diagrams (classes, states, sequences): It
allows to define directed acyclic graphs (DAGs) of dependencies between aspects of mul-
tiple models. These dependencies are used to weave the different models into one model
representing the whole system. The used weaver checks also semantic consistency between
the UML models, but does not fix inconsistencies. However, it is unclear, how easy the
approach can be generalized to other domains outside of UML.

Jézéquel (2008) even defines, that “modeling is the activity of separating concerns”
(Jézéquel, 2008, p. 210) as aspects, while “the design process can be characterized as a
weaving of these aspects into a detailed design model” (Jézéquel, 2008, p. 210). Analyzing
and discussing examples with sequence diagrams, Jézéquel (2008) summarizes, that there is
no generic model weaving approach, since defining patterns (called pointcuts) and compos-
ing the aspects into the matched patterns (called join points) both must take the semantics
of the models into account and are project-specific therefore. While aspect weaving enables
to generate the design model whenever the base models or aspect models evolved, it is not
possible to propagate changes in the design model back into into its source models, since
weaving is a unidirectional model transformation. Therefore, model weaving can be used
to create a SUM from single views, sometimes with their consistency is precondition, but
is not usable to enforce consistency (Requirement R 1 (Model Consistency)™ 154).

Jung, Heinrich et al. (2014) propose to extend base metamodels with aspect metamodels
in a non-intrusive way, i.e. without explicitly weaving them. Main objective seems not to
ensure consistency between base and aspect models, but to keep mainly existing editors for
DSLs, model transformations and simulations working on the unchanged base metamodel
and conforming models, while they are extended at the same time in non-intrusive way to
overcome the challenge of evolving metamodels.

UML Profiles are not usable as technical space (see Section 2.5.18%), but could be
used to combine multiple viewpoints into one metamodel. Since UML profiles are defined
by the UML super structure, this idea works only for viewpoints whose metamodels are
part of the UML super structure or are realized as UML profiles. Egyed, Zeman et al.
(2018) sketch a corresponding example combining UML models and CAD components. To
overcome this limitation in general, the border between UML profiles and other technical
spaces like EMF must be bridged, e.g. by transforming UML models to EMF models and
vice versa (Maro, Steghofer et al., 2015) or by explicitly linking the UML profile with
the EMF metamodel using model weaving in order to generate transformations on model
level (Abouzahra, Bézivin et al., 2005). Maro, Steghofer et al. (2015) discuss some more
approaches for bridging UML profiles with EMF. Related studies show, that the use of
UML profiles seems to be decreasing in general, probably due to the increasing quality of

132

3.5 Projectional Approaches

language workbenches for DSLs (Pardillo, 2010, p. 416), which is supported by evaluations
in detail like of Bernardino, Rodrigues and Zorzo (2016), who report on faster modeling
with a DSL compared to a UML profile.

Since EMF does not provide a profile mechanism, Langer, Wieland et al. (2011) adapt
the concept of profiles as introduced by UML for EMF: While UML profiles are a specific
concept for UML and not generic for MOF, EMF profiles allow to define extensions with
stereotypes and tagged values for arbitrary existing metamodels modeled with ECORE.
Such extensions result in EMF models representing the defined profiles and conforming to
the EMF metamodel presented by Langer, Wieland et al. (2011) representing the concepts
for profiles in EMF. These EMF models are automatically transformed into EMF metamo-
dels (model-to-metamodel-transformation), whose instantiations allow to apply the profile
for regular EMF models in a non-invasive way. Instead of using this EMF profiles mech-
anism, the generated EMF metamodels could be created directly by hand, which would
allow to introduce also non-stereotype EClasses.

The composition of multiple, overlapping languages, i.e. DSLs or Profiles, called the
language extension problem (Leduc, Degueule et al., 2020), requires the composition of mul-
tiple abstract syntaxes and the composition of multiple concrete syntaxes (Noyrit, Gérard
et al., 2010): The composition of abstract syntax is related to the integration of viewpoints,
as discussed above. But the additionally required composition of concrete syntaxes is not
required here when keeping models consistent to each other. Therefore, related work for
composing concrete syntaxes is out of scope.

Other approaches aim to compose executable software applications from multiple parts:
Estublier, Ionita et al. (2009) and Estublier, Vega and Ionita (2005) aim to compose ap-
plications for different domains by targeting two dimensions: In the first dimension (called
horizontal), domains are described with DSLs and the developed (meta)models are com-
posed by annotated links between them. In the second dimension (called vertical), software
building blocks like tools, services, libraries, legacy applications and components are devel-
oped, configured and executed according to their domain models. These software building
blocks are composed by aspect-oriented programming to enable communication between
them. This approach is synthetic by explicitly linking corresponding elements (for the do-
main models and for the software building blocks), but focuses mainly on the combination
of bigger software building blocks at runtime, less on the consistency preservation of the in-
volved domain models (Requirement R.1 (Model Consistency)™ %) at development time.
Therefore, this approach focus more on tool integration with the help of composing the
corresponding domain models. Additionally, the redundancy within the composed domain
model can not be reduced.

Yie, Casallas et al. (2010, 2009a) try to avoid a strong composition of high-level models
conforming to different metamodels by transforming them into low-level models conform-
ing to the same metamodel, e.g. into models for general-purpose programming languages.
These low-level models are combined automatically by transforming links between elements
of the high-level models into links between corresponding elements of the low-level models.
This approach convinces not completely, since the number of possible links between models
increase with growing number of models (Yie, Casallas et al., 2010, p. 239) and the ap-
proach requires completely automated transformations from high-level models to low-level
models, which is not always possible.

Summarizing approaches for combining views into a SUM, they usually use manual
techniques to define corresponding elements in different models as first step. This step is
manual, since correspondences dependent on the semantics of the models, which is project-
specific. If these correspondences are materialized as explicit links between (meta)models, a
SU(M)M with all remaining dependencies results. In an optional second step, the specified
correspondences are automatically exploited to merge corresponding elements of different
models in order to improve the SU(M)M by reducing redundancies. But these transfor-

133

EMF Profiles

Composition of DSLs

Composition for
integrated Applications

Composition of Software
Building Blocks with
AQOP according to
composed i.e. linked
Domain Models

Composition of low-level
Models by Links

Summary

new View(Point) on top
of one View(Point) i.e.
the SU(M)M

asymmetric Approaches
are sufficient

editable new
View(Point)s as Sub Set
of the Elements of the
SUM)M

similar Approaches

Formalizations with
injective Graph
Morphisms

3 Related Work

mations for merging are unidirectional and do not allow to update the source models after
their merge anymore, therefore hurting Requirement R2 (Reuse existing Artifacts)™ 157,
Since profiles add additional information (or restrict existing concepts), but are not able to
restructure or to remove already existing concepts, it is not possible to reduce redundant
information in the SU(M)M. Composing DSLs or complete software applications often de-
pend on composed models. Often the combination of views into a SUM requires the views
to be consistent to each other: Therefore, executing combination approaches can be used
as checking for consistency, but the combination approaches usually do not support fixing
inconsistencies.

3.5.5 Projectional View Definition

This section presents some selected approaches to define new view(point)s in the projec-
tional setting, since there are approaches which allow to define new views, that do not
support consistency of existing data sources in projectional way: Such approaches could be
integrated with projectional consistency approaches in order to define new views according
to Requirement R 3 (Define new View(point)s)™ 0. The easiest way is to create a new
view(point) manually and treat it as existing data source using the mechanisms for con-
sistency preservation, but there are more advanced approaches specially designed to define
new views. Bruneliere, Burger et al. (2019) provide a survey for such approaches.

Important in the projectional setting is, that new view(point)s are defined on top of
one existing view(point) i.e. the SUM)M, even if the new view should contain concepts
of different existing data sources, since the SUM contains all their information. Only such
approaches are presented in this section. Approaches which define new views on top of
multiple existing views could be used here, too, but are presented in Section 3.3.2< 119
Keeping a new view consistent to the existing views is comparable with keeping existing
views consistent to each other, since all views (the new view and the existing views) are
synchronized directly with the SUM and contain only information which is already present
in the SUM. Therefore, for both kinds of views, asymmetric approaches are sufficient to
keep the views consistent with the SUM.

Cicchetti, Ciccozzi and Leveque (2012) derive new viewpoints from an existing SUMM
by selecting a subset of the elements available in the SUMM: To decide, if an element of the
SUM (mainly classes, attributes, associations) should appear in the new viewpoint or not,
eases the definition of new viewpoints by the methodologist, e.g. by providing graphical
dialogs (Cicchetti, Ciccozzi and Leveque, 2011). Additionally, this approach eases the back-
propagation of changes in the new view to the SUM and to the other views, since changes
in the view are directly applicable to the SUM, since the new view(point) is a direct subset
of the SU(M)M. The drawback of this approach is, that restructurings of the concepts in
the SUMM and additionally computed concepts are not possible. Instead, the quality of
the SUMM is inherited to the new viewpoints, which cannot be tailored to all needs of the
users.

The same strategy is used and shortly described by de Lara, Guerra and Vangheluwe
(2006) in order to keep multiple UML diagrams consistent to each other. In similar way,
Guerra, Diaz and de Lara (2005) support multiple view(point)s for one meta(model) for the
development of DSLs, including existing data sources called system views and new views
called derived views (Guerra and de Lara, 2006).

According to the presented practical approaches, Ehrig, Ehrig et al. (2008) use typed
attribute graphs to formalize viewpoints as injective graph morphisms vp : Viewpoint —
SUMM , meaning that the viewpoint contains only, but not necessarily all elements of the
SUMM. Additionally, the selected elements might be renamed in the viewpoint. Ehrig,
Ehrig et al. (2008) provide similar formalizations for views as injective graph morphisms v :
View — SUM. These findings motivate the Requirement R 3.2 157 in order to concretize

134

3.6 Further Research Areas

Requirement R 3 (Define new View(point)s)* 155

Requirement R 3.2: New Viewpoints with arbitrary Metamodels

New viewpoints must be able to use arbitrary metamodels.

Jakob, Konigs and Schiirr (2006) present an approach to define non-materialized views
on top of a single source model like the SUM. They adapt TGGs in order to keep one
side (the view) and the correspondences virtual and to have only the other side (the SUM)
explicitly materialized. Since such new views are editable, this approach is helpful in
projectional approaches for realizing new views on top of the SUM.

Anjorin, Rose et al. (2014) restrict TGGs to View Triple Graph Grammars (VT GGs)
for the asymmetric case in order to increase the performance of transformations for views
on a SUM.

Wang, Gibbons and Wu (2011) formally define incremental updates, which can be used
to keep new views consistent to a SUM, but are restricted to tree-like data structures.

Summarizing approaches for defining new view(point)s in projectional settings, sim-
ple approaches exactly design for this setting provide new view(point)s as subsets of the
elements provided by the SU(M)M, easing their specifications and fulfillment of the view-
update problem. Additionally, generic approaches for model synchronization including bidi-
rectional model transformations (Section 3.3.1%10%) can be used with the SUM as source
model and the new view as target model. Using these generic approaches for this purpose
is simplified on the one hand, since the setting here is asymmetric and not symmetric as
in synthetic settings. Therefore, sometimes these generic approaches are restricted to im-
prove the support for this setting, e.g. TGGs. On the other hand, the metamodels for new
viewpoints must be created before by hand.

3.6 Further Research Areas

After identifying several generic approaches for ensuring consistency, this section analyses
some exemplary approaches, which are designed for single application domains or other
research areas. In particular, approaches for consistency of spread information outside the
modeling domain are analyzed, which can show much research for ensuring consistency or
combining spread information. This list of further application domains is not complete and
presents only some prominent examples. Of course, there are more research areas facing
consistency challenges like the following ones:

e Franzago, Ruscio et al. (2018) discovered several projectional and synthetic ap-
proaches for collaborative modeling.

e Feldmann, Herzig et al. (2015a) reviewed consistency management approaches and
discussed them regarding their applicability for mechatronic manufacturing system
design.

e When supporting MDSD with software product line engineering, Corréa (2011) iden-
tified consistency challenges between the involved artifacts, in particular, between
the features and the software product under development, but did not provide solu-
tions. The survey of Pol’la, Buccella and Cechich (2021) supports the importance of
consistency for variability modeling. Buchmann and Westfechtel (2014) ensure con-
sistency between a feature model and domain models: After relating an element in
domain models for a feature, all dependent elements are related to the same feature,
which mainly targets conformance of domain models to their domain metamodels
and intra-model consistency in a synthetic setting.

135

editable virtual new
Views using adapted
TGGs

restricted TGGs for
editable Views

Formalizing incremental
Updates for Views (on
Trees)

Summary

further Research Areas
with Consistency
Challenges

Outline

UML with a single
Metamodel and multiple
Viewpoints ...

. has Consistency
Challenges

Surveys

some exemplary
Approaches

Summary

3 Related Work

Some of these and of the following approaches are already investigated above, if they
contain generic ideas which are usable for different application domains. UML is analyzed
in Section 3.6.1 as an example for a language with multiple overlapping diagrams, which is
widely used during the development of software systems. Language workbenches allow to
develop such languages with overlappings representations, whose build-in mechanisms for
ensuring consistency are analyzed in Section 3.6.2" 137, Since they are mainly designed and
used for storing and representing information, data bases (Section 3.6.3" 139) and ontologies
(Section 3.6.4" 42) are analyzed. As an example for an application domain with the strong
need to manage a huge amount of distributed information, enterprises are selected and
analyzed in Section 3.6.5* 4. Additionally, the existence of several related approaches for
discussing consistency in the following research areas shows, that it makes sense to select
them for discussion.

3.6.1 UML

The Unified Modeling Language (UML) is a language to model software-based systems
introduced by the OMG and specified by the UML super structure (Object Management
Group, 2017). UML provides several diagram kinds to model the system under development
regarding static aspects by e.g. class diagrams and object diagrams and dynamic aspects
by e. g. sequence diagrams, activity diagrams, use case diagrams and state machines. These
diagram kinds can be treated as viewpoints. The particularity of consistency challenges with
UML is, that UML provides a single metamodel, which can be split into multiple viewpoints
(diagram kinds). Therefore, UML can be seen as projectional. Accordingly, Paige, Brooke
and Ostroff (2007) assume a single metamodel involved in managing consistency.

Aziz Ahmad and Nadeem (2010) identify groups of consistency challenges for class dia-
grams, sequence diagrams and state machines, classified regarding among others structure
vs behavior and type vs instance level.

There are several surveys investigating approaches targeting consistency in UML: In a
recent survey, (Knapp and Mossakowski, 2018) identify 57 approaches for consistency in
UML, classified regarding their support for UML1 or UML2. They report, that existing
approaches support only some diagram kinds, in particular, not more than six diagram
kinds. Lucas, Molina and Toval (2009) identify 32 approaches for consistency for UML
diagrams and found limited extendability and limited support for consistency of models
at different levels of abstraction as recurring properties. Additionally, they sketch another
approach for consistency management in UML using MAUDE as formal specification for a
SUMM with model transformations written in QVT-R. Usman, Nadeem et al. (2008) sur-
vey approaches for only checking consistency with a classification depending on the used
intermediate representations for UML (formal, extended UML, none). Aziz Ahmad and
Nadeem (2010) analyze some of these approaches which use description logic in more detail.
Gabmeyer, Kaufmann et al. (2019) present model checking approaches for UML diagrams.

Egyed, Letier and Finkelstein (2008) identify possible fixes for inconsistencies in UML
models automatically and represent a rule-based approach. This approach is extended
later for generic models, as presented in Section 3.3.1< 0%, Paige, Brooke and Ostroff
(2007) realize consistency for the BON modeling language, having similar diagram kinds
as UML, i.e. class diagrams, collaboration diagrams and contracts expressible as state
machines in UML.

Summarizing approaches for keeping different UML diagrams consistent to each other,
the surveys found lots of approaches, mainly in the first decade of the twenty-first century
and supporting only a small subset of UML diagrams. Therefore, theses approaches can be
seen as preceding research for the more general approaches ensuring consistency (including
projectional and BX approaches) in terms of history. The sketched approaches specific for
UML already use the different techniques for change propagation (Section 3.2 %9).

136

3.6 Further Research Areas

3.6.2 Domain-Specific Languages (DSLs)

While UML (Section 3.6.1% 136) can be seen as general-purpose modeling language, domain-
specific languages (DSLs) (Kosar, Bohra and Mernik, 2016) are languages tailored to se-
lected concerns of particular stakeholders. DSLs realize concrete syntaxes for users to edit
models conforming to one metamodel. Language workbenches are frameworks to techni-
cally realize editors for such DSLs. Usually language workbenches allow to define more
than one DSL on top of the same metamodel. Therefore, they follow projectional SUM
ideas in the sense of Section 3.4 120,

Additionally, editors for DSLs are distinguished into parser-based editors and projec-
tional editors depending on the kind how editors update the abstract syntax tree (AST) as
underlying model (Voelter, Siegmund et al., 2014):

o In parser-based editors, parsing is used to analyze the concrete representation edited
by the user and to extract the (updated) AST.

e In projectional editors, users change the AST directly by their actions, while the
(updated) AST is rendered to visualize it for the users.

This distinction does not target synthetic vs projectional viewpoints, but how the concrete
syntax is technically realized for one viewpoint and how the user interacts with the DSL
editor (Erdweg, Storm et al., 2013). Therefore, projectional editors realize projectional
viewpoints, but the concrete syntax of projectional viewpoints is not always realized by
projectional editors. Examples for widely used language workbenches which use parsing are
SIrIUS (Viyovic, Maksimovic and Perisic, 2014) for graphical DSLs and XTEXT (Bettini,
2013) for textual DSLs. SPOOFAX is another example for a language workbench producing
parser-based editors (Wachsmuth, Konat and Visser, 2014).

An example for a language workbench whose editors use projections is JETBRAINS
MPS?® (Voelter, Warmer and Kolb, 2015): Users use no free-form editors, but the DSL
provides an editor in form of a “template” which is pre-filled with the information of the
current AST. This information can be edited by users, while the template ensures, that
changed information is directly updated at the corresponding position in the AST. With
this design, no inconsistencies arise, since all changes in views are directly reflected into the
underlying AST which plays the role of a SUM. This design follows the idea of OSM how
to avoid inconsistencies. JETBRAINS MPS supports different notations including textual,
symbolic, tabular and graphical (by plugins) notations and supports their composition and
extension, since projectional editors enable multiple and diverse notations (Voelter, Warmer
and Kolb, 2015). The most important application of JETBRAINS MPS is MBEDDR, an
integrated set of 81 DSLs with IDE support for developing embedded software (Voelter,
Kolb et al., 2019) unifying modeling and programming (Voelter, 2010). As in general for
projectional editors, usability is also for JETBRAINS MPS a challenge (Voelter, Siegmund
et al., 2014). To enable direct projections between the concrete syntax and the underlying
model, JETBRAINS MPS requires to have all projectional editors integrated within on tool,
which hinders to add new viewpoints only on data level without the dimension of tool
integration. This motivates the following requirement to avoid approaches which require to
use a single tool as precondition for data consistency:

Requirement R 5: Reusable Library

The approach must be realized in form of a reusable library.

8More publications related to JETBRAINS MPS can be found here: https://confluence.
jetbrains.com/display/MPS/MPS+publications+page

137

Domain-Specific
Languages (DSLs)

parser-based vs
projectional DSL
Editors

projectional DSL Editor
= projectional
Viewpoint

JETBRAINS MPS

https://confluence.jetbrains.com/display/MPS/MPS+publications+page
https://confluence.jetbrains.com/display/MPS/MPS+publications+page

projectional Editors for
EMF

DSLs with additional
Constraints

Integration of DSLs

Developing DSLs with
multiple Viewpoints

Blended Modeling

MARAMA Language
Workbench with Subset
Views and Reactions on
Changes

Summary

3 Related Work

Schropfer, Buchmann and Westfechtel (2020) started a comparable approach in the
technical space EMF to define projectional textual syntaxes for EMF models. This ap-
proach is extended for modeling multi-variant models for software product line engineering
(Schropfer, Buchmann and Westfechtel, 2021).

The development of DSLs and language workbenches touches also other directions of
related work:

e While the discussion of parser-based vs projectional editors focuses on the ques-
tion, how to model models which conform to the metamodel of the DSL, additional
constraints like OCL constraints defined for the metamodel must be ensured, too:
Neubauer, Bill et al. (2017) present an approach to generate editors which ensure
such additional constraints using rule-based approaches for ensuring consistency, as
discussed in Section 3.3.1% 198 while they are applied here for intra-model consistency
of a single DSL.

e The integration of multiple DSLs covers not only the metamodel level, which is dis-
cussed in Section 3.5.4 131 but also the concrete syntax with additional challenges
regarding composing grammars (Kats, Visser and Wachsmuth, 2010) for parser-based
editors, while projectional editors can be composed easily, since they do not require
sometimes ambiguous grammar composition (Voelter, 2010).

e Additionally, the development of DSLs itself often involves multiple viewpoints, usu-
ally at least one viewpoint to define the abstract syntax and one viewpoint to the
define the concrete syntax of the DSL under development: While these viewpoints
again rise consistency and combination challenges, usually the models of views of the
current DSL are used for code generation for the resulting editor for the DSL without
round-trip facilities. Examples for language workbenches with multiple viewpoints
to develop DSLs include GMF, Sirius (Viyovic, Maksimovic and Perisic, 2014) and
KERMETA (Jézéquel, Combemale et al., 2015). Finally, these approach have to deal
with the challenge of evolving abstract syntaxes like GMF-co-evolution (Di Ruscio,
Lammel and Pierantonio, 2011, p.152f), which is discussed in Section 6.2.1* 193 as
impact of metamodel evolution.

Blended modeling (Ciccozzi, Tichy et al., 2019) generalizes the idea of having DSLs
with concrete syntaxes tailored to users concerns by researching, how to enable multiple
concrete syntaxes respectively notations for the same metamodel: Therefore, blended mod-
eling can be seen as projectional from an conceptual point of view, but is orthogonal to
multi-perspective modeling, which concentrates on view(point)s with their (meta)models
(View-Model-relationship in Figure 2.22* %), Consistency in blended modeling targets to
propagate changes between the view (respectively its model) and all its concrete render-
ings (Model-ConcreteRendering-relationship in Figure 2.22*90) according to the concrete
syntaxes coming with the viewpoint of the view.

Grundy, Hosking et al. (2013) present the language workbench MARAMA for visual
DSLs, each realized by one SU(M)M including constraints and multiple view(point)s with
graphical representations. SUM and views are kept consistent, since changes to the view
are directly applicable for the SUM, since views present only a subset of the elements of
the SUM. Additionally, changes in views can be used as events to trigger further actions,
which can be used for follow-up changes (Grundy, Mugridgett and Hosking, 1998), e. g. to
fix inconsistencies.

Summarizing consistency in DSL research, language workbenches for DSLs usually fol-
low projectional concepts, but technically realize editors either parser-based or with projec-
tional editing. Therefore, they lead to a stronger binding of viewpoints to concrete tooling.
Research regarding consistency of multiple DSLs focuses on how to keep multiple concrete

138

3.6 Further Research Areas

syntaxes consistent to the underlying model. Depending on parser-based or projectional
editing, language workbenches provide different concepts for DSL engineers with build-in
strategies to ensure consistency.

3.6.3 Data Bases

Since data bases are designed to store and persistent data in software applications, this
section investigates research approaches in the area of data bases for keeping redundant
data consistent, integrating data and deriving new views. This section restricts itself to
relational data bases ignoring, among others, key-value-based and document-based data
bases (Lu and Holubové, 2019), since relational data bases have a clear schema, which does
not always (explicitly) exist, e.g. for NOSQL approaches (Roy-Hubara and Sturm, 2020).
Such schemata are similar to metamodels in the modeling domain. The evolution of data
base schemata is discussed in Section 6.2.1* 193,

An important challenge in data base research is, how related or redundant data located
in different data bases can be combined. For this, the following approaches are shortly
described:

e integrate data bases into one data base
e ETL and data ware houses
o federated data bases

A central role in these approaches plays the mediated schema (Doan and Halevy, 2005),
which provides the concepts of all original schemata, comparable with the SUMM in mod-
eling. Distributed data bases are not investigated here, since they have a single schema and
the conforming data are spread over multiple data bases, which lead to challenges of data
replication (Section 1.3.2%43), but not of consistency between heterogeneous data.

The combination of data stemming from multiple data bases can be made explicit by
introducing a new data base containing all concepts and all data of all original data bases
as data sources (Helms, 2020). Usually, this is realized with the three steps” schema match-
ing, schema integration and schema mapping (Ozsu and Valduriez, 2020): Schema matching
identifies semantic relationships called mappings between two independent schemata, sur-
veyed by Bernstein, Madhavan and Rahm (2011) and Rahm and Bernstein (2001), who
found, that there are lots of different techniques to find matching elements, but still require
humans for final validation, in particular, since deciding the information capacity equiva-
lence (Miller, Ioannidis and Ramakrishnan, 1993) is undecidable (Miller, Ioannidis and Ra-
makrishnan, 1994). This counts even for approaches which focus on semantics in terms of
semantic relationships and between concepts and their meanings in the schema (Giunchiglia,
Shvaiko and Yatskevich, 2005). Schema integration takes the mappings found by schema
matching and uses them to create the mediated schema. Schema mapping transforms the
data from the original data bases into the new data base according to the mappings and
conforming to the mediated schema. Batini, Lenzerini and Navathe (1986) analyze dif-
ferent strategies for schema matching and schema integration, while Batini and Lenzerini
(1984) present an example for such an approach. The tool support for these three steps
is poor (Bernstein, Madhavan and Rahm, 2011; Skok, 2020). In the data base research,
the original data sources are ignored after the integration and are not kept up-to-date.
Therefore, this approach can be seen as data migration, while the general integration idea
is projectional. This approach relates to the question in terms of modeling, how a SU(M)M
can be created from multiple independent (meta)models, as discussed in Section 3.5.4 131,

90ther authors like Batini and Lenzerini (1984) comprise schema matching and schema integra-
tion as schema integration only.

139

Scope

Combination of Data
Bases

mediated Schema =
SUMM

Schema Matching

Schema Integration

Schema Mapping

Combination by
Integration

Vs

Combination by
Synchronization

ETL

Data Ware Houses

federated Data Bases

Model Management
Operators

Views of Data Bases

incremental Views

View-update Problem

3 Related Work

The previous paragraph discussed, how a mediated schema can be provided by explicitly
integrating the data (“combination by integration” (Helms, 2020)). Instead of this explicit
data integration, the data could remain within the original data bases and be accessed via
the mediated schema with the global-as-view approach (“combination by synchronization”
(Skok, 2020)): While this approach allows reading the data of all source data bases, but
without reducing duplicates, writing changes is usually impossible. As an example, the
SQL operator UNION used to return elements from two data bases leaves the question
open, in which of the two data bases a new element should be added. In general, to
propagate changes back, the view-update problem must be solved, as discussed in following
paragraphs.

Other approaches follow the ETL principle “extract-transform-load” (Leser and Nau-
mann, 2007): The extraction step extracts the desired data from the underlying data
sources. The transform step transforms the extracted data into the format used within
the data ware house. The load step executes the extraction and transformation steps de-
pending on required time intervals and performance issues. A prominent example for ETL
approaches are data ware houses, which collect and store various data in order to present
them for analyses and decision-making (Chandra and Gupta, 2018). Other frameworks for
integration data following the ETL principle are shortly surveyed by Sharma, Tripathi and
Srivastava (2021) including GOBBLIN (Qiao, Li et al., 2015) as an example. Even when
treating the extracted and collected data as SUM (with pure quality and possible redun-
dancies) with derived new views, the main problem remains unsolved, that all these data
are provided read-only, i.e. no propagation of changes back is possible by design of ETL.
The underlying data sources and their use remain as they are, independently from data
ware houses.

Federated data bases provide a mediated schema in order to provide a unique access
to multiple underlying data sources (Leser and Naumann, 2007): This mediated schema
contains only the concepts of the underlying data sources which are explicitly exported by
them for this purpose (Leser and Naumann, 2007). Therefore, the mediated schema is not
always complete in contrast to a SUMM. The underlying data sources remain active and
can be still used independently from the mediated schema.

In all analyzed cases, the mediated schema can be realized using techniques for schema
matching and schema integration, sometimes combined as schema merging. These generic
techniques are operationalized as model management operators (Bernstein and Melnik,
2007): These operators realize transformations with schemata and mappings between sche-
mata as inputs and outputs. These operators are generic for the data base research area and
therefore are not able to realize project-specific situations like project-specific consistency
goals. Therefore, they are not able to fulfill Requirement R 1 (Model Consistency)™ 154,
Some examples for such model management operators include schema matching, map-
ping composition, mapping inversion, schema difference calculation and schema merging
(Bernstein and Melnik, 2007; Melnik and Bernstein, 2004). Bernstein (2003) shows model
management operators and their application to schema integration, schema evolution and
round-trip engineering, but on conceptual level.

Data base views present information which is derived from the materialized relations of
the data base, often defined by SQL queries. In particular for materialized views, as used
in data ware houses, it is important to keep them up-to-date in efficient way, which can be
realized with incrementality (Gupta, Mumick and Subrahmanian, 1993; Mohania, Konomi
and Kambayashi, 1997). This involves complex algorithms for incrementality for different
kinds of SQL expressions like aggregate and outerjoin (Gupta and Mumick, 2006). Varde
and Rundensteiner (2002) present an approach to keep views provided by data ware houses
consistent to changes in multiple underlying data sources in an incremental way.

More interesting is the wiew-update problem arising from the question, whether and
how to propagate changes in the view back into the underlying data base: To propagate

140

3.6 Further Research Areas

updates of relational views into the underlying data base relations, among others, Bancilhon
and Spyratos (1981) and Dayal and Bernstein (1982) investigate view-update strategies and
conditions. In general, a view-update operation to update the underlying relations does not
always exist or is not unique (Dayal and Bernstein, 1982) or there are infinitely many repair
actions (Dam, Egyed et al., 2016, p. 138). Therefore Tran, Kato and Hu (2020) develop
an approach to explicitly write code to realize the view-update problem. While the view-
update problem stems from the data bases area, it is also applied to tree structures (Foster,
Greenwald et al., 2007). Comparing with the modeling domain, the view-update problem
is a historical precedent of BX (Abou-Saleh, Cheney et al., 2018).

The provenance of information investigates “the origin, context, or history of data”
(Cheney, Chong et al., 2009) and is a research area cross-cutting domains like modeling, data
bases or ontologies, since they all handle with information. Data provenance is discussed
here with the focus on data bases, since most research for provenance is focusing on data
managed with data bases. When combining multiple data bases as discussed above, knowing
the initial source of information after the combination is necessary for updating the initial
data sources in terms of Requirement R 1 (Model Consistency)™ '** and Requirement R 2.2
(Reuse existing Models)™ %%, but not sufficient. But provenance is not only important
when combining multiple data bases, but also when querying information and representing
them as views (Rani, Goyal and Gadia, 2015). In both cases, provenance can be seen as
links back into the original sources of the current information, while these links can be
realized by annotations or by explicit links (Doan, Halevy and Ives, 2012). In any case,
provenance requires additional meta-data, whose amount can be challenging, e.g. in big
data settings (Wang, Crawl et al., 2015), while “it is impossible in practice to record all
relevant provenance information” (Buneman and Tan, 2019, p. 5), which shows the need
to define context-specific provenance scenarios (Buneman and Tan, 2019). In the area of
modeling, explicit links between models, e. g. between source models and target models of
model transformations, could be used for provenance, as discussed by Anjorin and Cheney
(2019). Since BX is a model synchronization-based approach ensuring consistency between
models, they propose, that “provenance will play an important role in explaining consistency
management operations” (Anjorin and Cheney, 2019).

Summarizing consistency challenges in data base research, there are lots of approaches
for combining, selecting and representing information from multiple sources, but propagat-
ing changes back is rarely supported. This counts in particular for combination approaches,
ETL approaches including data ware houses and data base views. Therefore, Require-
ment R1 (Model Consistency)™ '** and Requirement R.3 (Define new View(point)s)* 196
are usually not fulfilled, since only one transformation direction is supported. Even ap-
proaches for data provenance provide only meta-data about the origin of information, but
no realization techniques for back propagation up to now. The investigated approaches for
composing multiple data base into a single data base like a SU(M)M are either read-only
(see above) or do not support the source data bases after integration anymore, leading to
restricted support for Requirement R 2 (Reuse existing Artifacts)*™ '%°. Techniques for data
base integration require manual effort as for schema matching to create a SUMM and rarely
supported by tools. There are two more cross references between research areas within data
base research (Doan, Halevy and Ives, 2012): Uncertainty modeling can be used also for
the metamodel level, e. g. to enrich automatically found mappings during schema matching
with probability information. Another cross reference in data base research is, that data
provenance information can help to concretize uncertainty information. Both cross refer-
ences are not deepened here, since this thesis expects methodologists to explicitly decide on
the mappings between metamodels basing on domain knowledge about the data sources.

141

Data Provenance

Summary

Ontologies describe
Domain Knowledge

Ontologies allow
multi-level Modeling

open vs closed World
Assumption

Technical Space

Intra-Model
Consistency

3 Related Work

3.6.4 Ontologies

As an alternative to models, ontologies can be used to describe information. Therefore,
ontologies with related or interfering information must be mediated or combined. This
section discusses, how some research areas of ontologies are related to the consistency of
models.

Ontologies are a means to describe knowledge in a certain domain (Hesse, 2002) as
graph. While being models, ontologies describe domains mainly in analyses phases, in
contrast to models used in software engineering, which describe systems mainly in design
and implementation phases (ABmann, Zschaler and Wagner, 2006). Therefore, ontologies
can be used to reuse domain knowledge in multiple software engineering projects within
the same domain (Horst, Bachmann and Hesse, 2012).

Ontologies support multiple levels of instance-of relationships, i.e. ontologies support
multi-level modeling in general, as sketched in Section 2.2.2 59 but this distinction often
blurs (Leser and Naumann, 2007, p. 274f), in particular, using the term ontology does not
make clear, if the ontology schema or the ontology instance is discussed. Since this thesis is
restricted to two meta-levels, i. e. metamodels and models, ontologies are discussed in this
section with two meta-levels called schema and instance, too. The evolution of ontologies
is discussed in Section 6.2.1% 193 with the focus on the distinction between schema and
instance.

Note, that ontologies in knowledge representation follow the open world assumption,
meaning, that elements which are not modeled might exist, so far, it is only unknown, if
they exist or not. In contrast, modeling in software engineering follows the closed world
assumption, meaning, that elements which are not modeled do not exist. This is reflected
by the Definition 232, which states, that all views together describe the system in its
entirety, i.e. there is no more information required for the system outside of the views.
In particular, this thesis focuses on ensuring consistency of information which is explicitly
known and available.

Ontologies are realized in technical spaces (Section 2.5 8*) which are different to tech-
nical spaces for modeling, in particular, for EMF. To bridge technical spaces for ontologies
and modeling, Rahmani, Oberle and Dahms (2010) present a transformation between OWL
for ontologies and ECORE with OCL for modeling. An alternative formal approach for uni-
fying ontologies and models is presented by Mossakowski, Codescu et al. (2015). In general,
such bridges can be defined on the meta-metamodel level, i. e. the modeling space of models
and ontologies are mapped, or on the metamodel level, i.e. the classes in the metamodel
are mapped to classes in the ontology schema (Staab, Walter et al., 2010).

In order to realize model checking, models can be translated into ontologies, whose
reasoning techniques are reused for this purpose (Parreiras, Staab and Winter, 2007). When
translating only single (meta)models, only intra-model consistency, conformance of models
to their metamodel and conflicting constraints can be checked using techniques to check
the internal consistency of ontologies like Baclawski, Kokar et al. (2002). The approach of
Haase and Stojanovic (2005) is change translation-based and supports arbitrary consistency
goals with explicit repair strategies to fix occurring inconsistencies.

Discussing relations of ontologies to inter-model consistency requires to distinguish two

Inter-Model Consistency cases, whether the different ontologies target same or different domains:

e If the two ontologies aim to describe the same domain, there are many redundancies
between them, but usually they do not lead to inconsistencies in the understanding
of this thesis: If a particular ontology is accepted for a particular domain, then
there are no misunderstandings and no inconsistencies. Otherwise, an alternative
domain is developed, probably, with a slightly shifted focus. There is no request to
fix the differences between these two versions, since the differences are not seen as
inconsistencies, but as alternatives.

142

3.6 Further Research Areas

e If the ontologies describe different domains, redundancies between different ontologies
are small, since only concepts which are part of both domains are redundant. Such
ontologies can be combined into one joint ontology (see below), but usually do not
lead to inconsistencies, since they complement each other.

The need for fixing probably occurring inconsistencies between ontologies is decreased in
both cases, since ontologies usually describe domains with a generalized claim instead of
systems, compared to models describing the same, concrete system under development,
whose inconsistencies lead to failing development projects.

Additionally, in both cases, same concepts described in different ontologies can be identi-
fied by ontology matching: Ontology matching “finds correspondences between semantically
related entities of ontologies” (Shvaiko and Euzenat, 2013, p. 158). Additionally, Shvaiko
and Euzenat (2013) describe the state of art of ontology matching including references to
additional surveys. Since fully-automatic mapping of ontologies seems not be possible in
general, i. e. their results require human reviews, heuristics and machine learning algorithms
are used (Noy, 2004). After identifying the overlaps of ontologies on schema level, these
overlaps must be made explicit, e.g. in form of explicit links or translation rules, in order
to use them to translate conforming instance ontologies into each other (Parreiras, Staab
et al., 2008). Another use case is to merge ontologies for different domains according to
the found correspondences into an integrated ontology in order to describe the domains in
integrated way.

While some ontologies are designed as abstract foundation and are reused and con-
cretized for more specific ontologies (Noy, 2004), which can be seen as top-down procedure,
combining ontologies as described above is usually bottom-up (Choi, Song and Han, 2006).
While combining ontologies is a means for their reuse in the ontology research (Choi, Song
and Han, 2006), combination is a means for ensuring consistency in this thesis.

Ontologies can be used as supporting technique for challenges in software engineering,
with some some concrete examples for ontologies used for software engineering collected by
Bernstein (2011). More interesting are applications of ontologies for modeling:

e France and Rumpe (2007) propose the use of ontologies for metamodel integration.

e Walter, Parreiras and Staab (2014) integrate the modeling spaces of ontologies and
ECORE in order to support the development of and reasoning on DSLs.

e Jin, Cordy and Dean (2003) propose to use ontologies for realizing adapters.

e Feldmann, Herzig et al. (2015b) propose to use knowledge representation formalisms
like RDF for describing commonalities of different views in production system devel-
opment projects.

Finally, ontologies can be used to deal with the heterogeneity of data, as shown by this
example: In order to enable tool integration regarding data interoperability, Kramler, Kap-
pel et al. (2006) propose to use ontologies for a semi-automatic approach: The concepts of
metamodels describing the data of single tools are lifted into ontologies. These ontologies
are mapped to a predefined ontology for tool integration and commonalities between them
are identified based on these mappings. These commonalities are used to derive bridges
implemented in QVT which realize data interoperability between the tools (Kappel, Kap-
sammer et al., 2006). This approach uses a projectional and fixed SUMM, but without a
SUM. As another approach, Hakimpour and Geppert (2001) integrate ontologies in order
to integrate equivalent schemata of data bases (Section 3.6.3* 39). El Hamlaoui, Trojahn
et al. (2014) transform ECORE (meta)models into ontologies and use ontology matching to
identify correspondences between different models for consistency purpose. On the other
hand, knowledge encoded as ontology can be used as vocabularies or thesaurus for other
(schema) matching approaches (Leser and Naumann, 2007, p. 280f).

143

Ontology Matching

Top-down vs Bottom-up

Ontologies as
supporting Technique

Ontologies for Data
Interoperability

multiple Views on the
same Ontology

Summary

Enterprises at Runtime
vs at Development Time

Levels of
Enterprise Integration
(at Runtime)

vertical and horizontal
Integration

Levels at Development
Time

3 Related Work

Since knowledge representations can become huge, Bork, Buchmann and Karagiannis
(2015) propose to use multiple views to represent only parts of the whole amount of knowl-
edge. They distinguish approaches for realizing views into views-by-generation conforming
to model transformation-based approaches here and views-by-design conforming to change
translation-based approaches here. Since these views are read-only, consistency is ensured
by re-generating the views after changes in the whole knowledge representation.

Summarizing the sketched research approaches in the ontologies area, consistency plays
a more supporting role at various points, but is not the main purpose, in contrast to e.g.
BX research: Since particular ontologies as representations of knowledge live by agree-
ments of their particular communities, there is no need for automated approaches changing
ontologies, even not for ensuring consistency, since changes need the understanding and
agreement of the involved communities, making updates of ontologies a manual process.
Nevertheless, there are approaches to ensure intra-ontology consistency, which could be
applied to multiple ontologies by applying the ideas of multi-models to ontologies. Similar
to schema matching in data base research, ontology matching can be used to determine
overlapping elements of ontologies as first step for merging ontologies into each other. On-
tologies are also used as supporting technique in software engineering including for data
interoperability.

3.6.5 Enterprise Applications

In the context of enterprise applications, data occur with two different purposes (Ehrig,
Ermel et al., 2015a, p. 328): Data are used by enterprise applications to realize their
business goals at runtime or data are used by stakeholders of enterprise applications to
design and realize them at development time. If two or more sources with such data are used
due to distributed organizations or acquisitions, there is the need for enterprise integration
in order to synchronize the different units of enterprises. Giachetti (2004) distinguish four
levels of enterprise integration focusing on the runtime dimension:

Network targets the physical connectivity of hardware and platforms and is not relevant
here.

Data overcomes the separation of heterogeneous data: “The integration goal is data shar-
ing where two or more subsystems or organizational units exchange data with each
other” (Giachetti, 2004, p. 1151). This aspect is highly related here and is discussed
in the following paragraphs.

Application aims at interoperability as “the ability of one software application to ac-
cess/use data generated by another software system” (Giachetti, 2004, p. 1151). This
aspect is clear distinguished by Halevy, Ashish et al. (2005) as “enterprise applica-
tion integration” from “enterprise information integration”, their name for the data
aspect before. The application level focuses on interoperable interfaces of software
applications and components and is related to tool integration (Section 1.3.2%43)
and therefore is not related here.

Process targets the coordination of dependencies between processes and of resources re-
quired by different processes at runtime and is therefore not related here.

These four levels are called vertical integration by Kiihn, Bayer and Karagiannis (2003),
while horizontal integration covers different models within the same vertical level of differ-
ent business units or partners of a supply chain. Mixing vertical and horizontal integration
leads to hybrid integration. At development time, the static dependencies between these
four vertical levels as well as the horizontal dimension must be taken into account: Busi-
ness process models (located on the process level) must be realized with underlying IT

144

3.6 Further Research Areas

applications (application level) which use heterogeneous and depending data (data level),
shared via hardware (network level). Therefore some information on other levels than the
data level are shortly sketched in this section, too, like business process models at the end
of this section. In all cases, heterogeneous and depending data must be consistent: Van
Belle (2003) identified consistency as quality criterion for enterprise models, but focuses
more on intra-model consistency, while this section focuses on inter-model consistency in
the enterprise domain, not explicitly distinguishing horizontal and vertical dimensions.

Since companies use multiple data bases for managing their data (Section 3.6.3 139),
they have the usual needs to integrate or keep their underlying enterprise data consistent, in
order to combine different enterprise applications fulfilling the different business use cases.
Means for this are SU(M)M-like approaches, federated data bases and data ware houses
(Giachetti, 2004). The term enterprise information integration is clarified and demarcated
from data ware houses by Halevy, Ashish et al. (2005), focusing on virtually integrating dis-
tributed and heterogeneous data by federated queries on a mediated schema, in contrast to
data ware houses, which duplicate and integrate data outside of their sources. Since enter-
prise information integration (respectively interoperability) usually is read-only, updates of
data via defined business process require enterprise application integration (Halevy, Ashish
et al., 2005, p. 779, 782). Additionally, they can use ontologies (Section 3.6.4™ '42) and
their integrations to manage understandings of different domains and knowledge required
for their business use cases (Giachetti, 2004).

The development of enterprise applications requires additional concerns and therefore
viewpoints. In particular, different viewpoints are used also in enterprise architectures with
the example of the ARCHIMATE approach (Atkinson and Tunjic, 2014b). Therefore, the
consistency of different views must be ensured, which is aimed by some frameworks in the
enterprise domain:

e As an example, the MEMO approach (Frank, 2014) integrates viewpoints for, among
others, object-oriented information modeling, organizations including structures and
processes, business strategies and the IT infrastructure into one integrated metamo-
del. Therefore, MEMO can be realized also as an instantiation of the OSM approach
(Tunjic, Atkinson and Draheim, 2018) due to its top-down procedure and the explicit
SUMM, which shows the feasibility of OSM and of projectional SUMM approaches
for enterprise modeling with multiple viewpoints in general.

e Another example approach for realizing multiple viewpoints is MODELMOSAIC
(Delen, Dalal and Benjamin, 2005), whose general design is projectional, but with a
SUM as collection of multiple models and change propagation, similar to VITRUVIUS.
It supports collaborative development, simulation and code generation, while the
different viewpoints and consistency goals seem to be fixed (Fernandes, Li et al.,
2009). This approach supports also the mapping of ontologies (Section 3.6.4" 112)
representing schemata of different business units in order to exchange data between
them (Fernandes, Li et al., 2010) at runtime for business application integration (see
above).

e An even more generic approach is Dijkman, Quartel and van Sinderen (2008), hav-
ing viewpoints for behavior, structure and information, establishing explicit links on
metamodel and model level and checking OCL constraints for consistency, but with-
out fixing found inconsistencies, while the approach is not restricted to enterprise in
general.

e Bork and Sinz (2013) propose a high-level conceptual approach for realizing multi-
view modeling and apply it to Semantic Object Model (SOM) business process mod-
eling (see below). Bork and Karagiannis (2014) sketch the MUVIEMOT tool which

145

Data Integration at
Runtime

Multiple Viewpoints for
developing Enterprise
Applications

Business Process Models

Technical Space

Reuse Inter-Model
Consistency Approaches
for Enterprises

Summary of Enterprise
Consistency

Objectives of this
Section

Multi-Directionality of
ensuring Consistency

3 Related Work

should work as workbench for multi-view modeling with some support for consistency
between views, but the details are not shown.

An important means to design enterprise applications are business process models to
model use cases in the enterprise domain: For business process modeling, consistency is
an important challenge, e.g. between business process models and supporting I'T models
(Branco, Xiong et al., 2014) or between business models and enterprise architectures (Ia-
cob, Meertens et al., 2012), and there are synthetic and projectional approaches to ensure
consistency (Awadid and Nurcan, 2019). As an example, Kiister, Volzer et al. (2016) sup-
port different viewpoints for business analysts and IT experts on the same business process
using a SUM called “Shared Process Model” here with a fixed set of viewpoints and fixed
consistency goals.

In order to realize consistency also for models from the enterprise domain, technical
spaces used in enterprise modeling must be bridged to technical spaces used in modeling
for software engineering. As an example, Kern and Kiihne (2007) present a bridge between
ARIS for enterprise architectures and EMF. Generalizing this idea, all information used by
enterprise applications and all information about the design of enterprise applications can
be treated as views conforming to viewpoints.

After treating enterprise information as models, all presented approaches for ensuring
inter-model consistency can be applied, in particular, synthetic approaches (Section 3.3 108)
and projectional approaches (Section 3.5 121). This explicitly counts also for more formal
approaches like TGGs (Ehrig, Ermel et al., 2015a).

Summarizing consistency within enterprises, lots of approaches for models, data bases
and ontologies can be reused for enterprises as an application domain, mainly at their run-
time. More specific approaches are available for the development of enterprise applications
with specific enterprise views including some support for their consistency. In particular,
the consistency between business process models and realizing I'T applications is investi-
gated. Also in the domain of enterprises, there is the discussion between explicitly storing
the integrated information e.g. within a data ware house and keeping the data of interest
within their sources together with a virtual integration e. g. with enterprise information in-
tegration, which is similar to the discussion between projectional and synthetic approaches
in the modeling domain.

3.7 Summary: Lessons Learned

Objective of this section is to summarize the lessons learned when investigating related ap-
proaches for ensuring consistency. Additionally, groups of related approaches are compared
with the requirements and the criteria of Figure 3.1 ** as summary. Design decisions based
on these comparisons are done in the design of the new approach of this thesis in Chap-
ter 5163, The requirements identified during this Chapter 3* %3 are explicitly established
in the following Chapter 4% 193,

Initially, some criteria (depicted in Figure 3. for the functional objectives of ap-
proaches for ensuring model consistency (Section 3.1 %4) successfully guide the selection
of related approaches to investigate and help to roughly evaluate the investigated related
approaches. In particular, the levels of heterogeneity help to focus on approaches targeting
semantic heterogeneity. However, the clear distinction between semantic and structural
heterogeneity is difficult or not always possible, since they often depend on each other.
Therefore, also structural heterogeneity must be supported, when overcoming semantic het-
erogeneity as main objective. Important is the finding, that supporting multi-directionality
of change propagation is an important challenge, which is not decidable in general e.g.
for the view-update problem and is not covered by most approaches in data base (Sec-
tion 3.6.3 139), ontology (Section 3.6.4™ 142) and enterprise (Section 3.6.5" 144) research.

1!594)

146

3.7 Summary: Lessons Learned

In that research areas, integrated or aggregated data and new views are usually read-only
and their changes can not be propagated back into the sources. In particular, data base
research and ontology research seem to focus on composing or aggregating data and not on
ensuring their consistency (Requirement R 1 (Model Consistency)™ 1%4). For the data base
research, data provenance can be seen as first but not sufficient step to update initial data
sources after their combination.

Even bidirectionality, the simplest form of multidirectionality, introduces the challenge
of having multiple possible results, when transforming information in two directions: If a
transformation transforms information as bijection between two models, the result is unique.
Otherwise, the relationship is non-bijective and there are multiple possible solutions in
general. Therefore, someone has to decide about the final solution (or the solution is done
in non-deterministic way). This problem can be faced and found from different perspectives:

e Strategies for fixing inconsistencies in particular projects depend on the current
project (Section 1.2.1%31).

e BX need to derive two unidirectional transformations from the same specification:
As an example, if one direction is explicitly specified, can the inverse direction be
automatically executed with a predictable result? If the result is the expected one,
then the BX satisfies the principle of least surprise. Again, the surprise is project-
specific.

e Does a function have an inverse function and is the particular result of the function
sufficient for the inverse function to produce the original input of the function? If
additionally the original input is still known, this setting refers to lenses.

e The view-update problem is not decidable in general.

Therefore, different possible strategies to decide the final fix for inconsistencies are depicted
in Figure 3.6 1% which can be used by different stakeholders (Section 2.4 7).

The solution space for deciding the final fix for inconsistencies involves the degree of au-
tomation and the involved stakeholders: Users of BX expect automated selections to be de-
terministic (Stevens, 2010). Transferring this result to model consistency, users want fully-
automated and predictable fixes for inconsistencies. Fixed heuristics hard-coded within ap-
proaches are often not usable in practice, e. g. least change provides not always the results
desired by users (beside technical issues) and least surprise requires more theoretical in-
vestigations, while the surprise depends on the particular project requiring domain-specific
information (Cheney, Gibbons et al., 2017) and therefore cannot be solved by platform
specialists. In the investigated approaches, methodologists are rarely supported, but in par-
ticular by the three projectional SUM approaches. The clear distinction between users and
methodologists is usually not done or not exploited, e.g. persons using BX approaches to
specify a concrete BX (methodologists) have different skills and needs than persons using
the concrete BX by starting the engine of the BX approach for automated execution (users).
In particular, model synchronization-based approaches try to solve the selection challenge
on level of platform specialists with heuristics like least change and least surprise. In order
to enable project-specific selections (according to project-specific consistency goals), plat-
form specialists should provide means to enable methodologists to specify the selections
which are desired by users.

Another important finding in the BX research during extensions of bidirectional to
multidirectional model transformations is, that there are consistency goals targeting three
or more models which cannot directly be split into multiple pairs of binary consistency
relations between two models (Stevens, 2017; Macedo, Cunha and Pacheco, 2014), with a
simple example in Stiinkel, Konig et al. (2021). In the data base domain, it is challenging
to realize even cardinality constraints for ternary relationships (Cuadra, Martinez et al.,

147

Non-bijective
Bidirectionality leads to
multiple possible Fixes
for Inconsistencies

Selecting Fixes:
deterministic,

Degree of Automation,
involved Stakeholders

binary vs n-ary
Consistency Goals

Fix initial
Inconsistencies

Representing Changes

Explicit Model Deltas
are more expressive
than new Model
Versions

User A can be amended
during Change
Propagation

Cross-cutting
Techniques

Proof-Theory-based
Approaches

3 Related Work

2013).
Requirement R1 (Model Consistency)

Another challenge is to fix initial inconsistencies which occurred before applying an
approach for ensuring consistency: This challenge is rarely discussed in related approaches,
but relevant for all approaches expecting consistency as precondition at some point in time
“before their application”, in particular for change translation-based approaches. In order
to make this challenge explicit, Requirement R 2.3 (Fix existing Models)* 156 is established
later.

Techniques for change propagation require the model changes, usually done by users
(UserA), to propagate them to related models. Changes in the model are encoded in three
different ways by the investigated approaches:

Therefore, realizing n-ary consistency goals is another challenge when fulfilling
w154

e Changes in the model can be explicitly encoded by using model deltas, as in delta-
lenses.

e Changes in the model can be implicitly encoded by the current (and updated) version
of the model with two different options to derive the actual model deltas:

— The current version of the models is compared with its previous version (state-
based), if the current model version is given as an additional model (“out-
place”). This option introduces accidental i. e. unnecessary ambiguity, since the
changes as result of model difference calculation between two model versions
are not unique.

— If the model is updated in-place and explicit links or other meta-data for the
previous state of the model are available, they can be exploited to identify
created and deleted elements, leading to explicit model deltas. An example are
the correspondences in TGGs, which indicate previously matched patterns and
are used for realizing incremental TGGs (Section 3.3.1% 108),

The model changes are directly required for change translation-based approaches or for
incrementality of the other kinds of approaches for change propagation: It is important
to use the changes like the U"A directly and not only the updated model, as seen for
(delta) lenses, since deletions and (re-)creations tend to loose information, which can be
prevented or restored by model differences. Additionally, correspondences as representa-
tives for consistency between source model and target model are reused and updated, too,
i.e. the model synchronization does not provide “any new model” which is consistent to
the other model, but provides an updated model according to the previous consistency cor-
respondences and to the " A (Abou-Saleh, Cheney et al., 2018, p. 10). Therefore, model
synchronization-based approaches taking the V" A into account tend to behave as change
translation-based approaches.

Another generic finding from symmetric multiary delta-lenses is, that the YS"A can
be amended during the change propagation. This fits to findings in Section 2.3 7! when
formalizing consistency as relation, that there are cases, where the currently changed (and
inconsistent) model must be fixed in order to fulfill consistency. Therefore, amending the
User A is allowed in consistency rules.

Section 3.299 identifies lots of cross-cutting techniques and strategies to realize ap-
proaches for ensuring consistency including the distinction between projectional and syn-
thetic settings, explicit links and four different techniques for change propagation. This
section uses these techniques for the outline here in order to summarize main characteris-
tics of these techniques in the following paragraphs.

Summarizing proof-theory-based approaches, they need bridges between technical spaces
for modeling and technical spaces for formal specifications, but can explicitly span the
solution space. Proof-theory-based approaches often have a performance in NP, due to

148

3.7 Summary: Lessons Learned

the used solvers. The investigated proof-theory-based approaches usually do not support
incrementality, the exception of Almeida da Silva, Mougenot et al. (2010) directly represents
model differences instead of model elements in PROLOG. This fits to the observation for BX
approaches, that only JTL using proof-theory techniques does not support incrementality,
while the other three BX approaches support incrementality (Samimi-Dehkordi, Zamani
and Kolahdouz-Rahimi, 2016).

Summarizing rule-based approaches, they are very flexible in adding and removing rules
for consistency goals, depending on the current needs of the current project. There are
several rule engines which support the incremental evaluation of rules in order to improve
performance. Checking consistency by evaluating rules is very similar in the investigated
approaches, but often require external support for multi-models. In contrast, the strategies
for providing fixes for found inconsistencies vary.

Summarizing model synchronization-based approaches, they use model transformations
and therefore require similar granularity levels for the information in the involved models.
Compared with the ongoing example, representations for classes can be transformed be-
tween Java and class diagrams, but transformations between requirements and Java do
not work. Even in the case, that some information can be transformed between models,
usually there is more information which cannot be transformed. In particular in symmetric
cases (Figure 3.5 194) often some information is missing in some of the models. This re-
quires incremental model transformations to keep such information unchanged and to keep
transformable information consistent. The surveys of Kusel, Etzlstorfer et al. (2013) and
Kahani, Bagherzadeh et al. (2019) report, that all investigated incremental model trans-
formation approaches require correspondences between the transformed model elements!C.
The case study of Buchmann and Westfechtel (2016, p. 179f) for incremental consistency
between class diagrams and Java source code with TGGs shows, that rules in TGGs have
limited flexibility due to fixed elements and changes in the patterns, which results in the
combinatorial explosion of rules to transform associations for example. BX approaches have
to deal with the trade-off between formal guarantees and expressiveness, leading to more
practical approaches with imperative parts (Bank, Buchmann and Westfechtel, 2021). The
model synchronization-based approaches which support the symmetric case are required
for synthetic settings, for projectional settings, the asymmetric case is sufficient, while the
bijective case rarely occurs in practice. Composability of model transformations is an im-
portant design goal, in particular for BX (Stevens, 2010) and for lenses (Diskin, Kénig and
Lawford, 2018), which is deepened in Section 6.4.1" 203,

Summarizing change translation-based approaches, they are incremental by design, since
they directly react on occurring changes. With this design, they immediately translate
changes and can not control the point in time of change propagation (as the other three
kinds of approaches can do), otherwise, generated follow-up changes and stored changes
must be merged and might be in conflict. Another limitation is, that all models must
initially be consistent to each other, before changes occur and can be translated, leading to
Requirement R 2.3 (Fix existing Models)* 1%,

Comparing the four groups of approaches for change propagation with each other is
done along Table 3.2 1%0: Interesting is the comparison regarding checking consistency
(first row) and fixing inconsistencies (second row): These two steps are explicitly separated
by rule-based approaches, while model synchronization-based and change translation-based
approaches focus on fixing inconsistencies without explicitly searching for inconsistencies
before. The classification regarding additional technical spaces (third row), incremental-
ity with a performance depending on the amount of model changes (fourth row) and the
possibility of delayed inconsistency fixing (fifth row) are already discussed during the sum-

0The only exception is ECHO (Macedo and Cunha, 2013), since it realizes QVT-R model trans-
formations not directly, but with a proof-theory-based technique (details above).

149

Rule-based Approaches

Model
Synchronization-based
Approaches

symmetric for synthetic,
asymmetric for
projectional, bijective
rare

Change
Translation-based
Approaches

comparing Change
Propagation Techniques

clear Separation of
Techniques is blurring

Synthetic Approaches

Projectional Approaches

SUM)M idea

3 Related Work

Criterion Proof-Theory Rules Model Synchro. Change Translation
Checking v v (implicitly) -
Fixing v v v v
Within Space - v v v
Incrementality - v v v
Delayed Fixes v v v -

Table 3.2: Comparing Techniques for Change Propagation

maries of the respective outlier approaches. Beyond this comparison, proof-theory-based
approaches seem to be used more for behavioral aspects and the other approaches for static
aspects, e. g. Van Der Straeten, Mens et al. (2003) use description logics for dynamic aspects
of UML and Mens and Van Der Straeten (2007) as rule-based approach for static aspects
of UML, as mentioned by the research group of Tom Mens (Mens, Van Der Straeten and
D’Hondt, 2006, p. 212).

Looking at concrete approaches within the four groups, the clear separation of the four
techniques (proof-theory, rules, model synchronization, change translation) is blurring: In-
place model transformations for checking consistency are similar to rule-based approaches
evaluating constraints. Bidirectional and incremental model transformations behave simi-
larly like change translation-based approaches with similar performance depending on the
amount of model changes. This results in approaches for change-driven model transforma-
tions with model changes as first-class citizens (Bergmann, Rath et al., 2012). Accordingly,
the focus of BX research is moving from model transformations to maintain consistency
(Stevens, 2018), e. g. with principles of least change and least surprise. Proof-theory is used
by other approaches like model transformations for BX.

Summarizing synthetic approaches, they require lots of direct relations between pairs
of models, in form of rules or model transformations, sometimes with additional explicit
links between them. This graph is not always completely mashed, but in the magnitude of
O(n?) in general with n as the number of models to keep consistent to each other. A chal-
lenge are n-ary consistency relations due to their missing “binarization” in general: Some
model transformation approaches allow to target multiple models at the same time (in-
cluding TGGs). As an alternative, multiple pairs of model transformations can be used, if
the corresponding n-ary consistency relation can be split into binary consistency relations.
Another challenge is the ezecution order in networks of BX, since it is not obvious and must
be explicitly specified in general (Stevens, 2017). But also in rule-based approaches, the
order of applying rules is important, since fixes by the first rule can influence possible fixes
of the following rules or introduce new inconsistencies requiring additional rules for their
fixes. Interestingly, approaches for synthetic settings support either Requirement R 1 (Mo-
del Consistency) ™ 14 or Requirement R 3 (Define new View(point)s) ™ %9, i. e. the according
Section 3.3.1% 198 and Section 3.3.2 9 have no overlap of approaches'!. Therefore, one
approach for keeping source models consistent should be combined with one approach for
deriving new view(point)s.

Summarizing projectional approaches, they depend on the SUM idea (Section 3.4 120)
having one SUM conforming to one SUMM containing all information respectively concepts
about the system under development. All views are projections from the SUM. Therefore,
for model synchronization-based approaches, it is sufficient to support the asymmetric case,
while the symmetric case is required for synthetic settings. There are specific approaches
with fixed viewpoints and consistency goals and there are generic approaches enabling arbi-

"' This counts for specifically designed approaches for synthetic settings, generic model transfor-
mation approaches can be used for both use cases.

150

3.7 Summary: Lessons Learned

trary viewpoints and consistency goals. The specific approaches show, that the projectional
idea is working in practice in different application domains.

There are three generic approaches (Section 3.5 !21) which are explicitly designed
to realize the projectional SUM idea: VITRUVIUS and RSUM are very similar, since
they both are bottom-up, use MODELJOIN for deriving new view(point)s and use change
translation-based synthetic techniques internally for keeping the models consistent to each
other, without an explicit and redundancy-free SUM. Since these two approaches are change
translation-based, their reuse of initially inconsistent models is restricted (Requirement R 2
(Reuse existing Artifacts)™ !5%). The CPRs of VITRUVIUS enforce only binary consistency
goals, not m-ary ones, with ongoing research to overcome this challenge (Klare, 2018).
The top-down approach OSM in contrast is missing a strategy to develop a clean and
redundancy-free SU(M)M from existing source (meta)models (Requirement R 2 (Reuse ex-
isting Artifacts)™ 1%). Section 3.5.4" 13! investigates approaches for this purpose with
the result, that transformations are required to eliminate redundancies, depending on the
project-specific semantics of the source models. But these transformation approaches are
unidirectional and do not update the source models after their combination into the SUM
anymore, therefore hurting Requirement R2 (Reuse existing Artifacts)™ 5. The con-
cepts of all three SUM approaches for deriving new view(point)s are restricted in order
to enable editability by change propagation, e.g. MODELJOIN used by VITRUVIUS and
RSUM does not support new classes in new viewpoints (Requirement R 3 (Define new
View (point)s) ™ 156). Therefore, all three SUM approaches do not completely fulfill all re-
quirements.

Language workbenches supporting the development of multiple representations for the
same model follow also the projectional SUM idea, independently, if parser-based editing
or projectional editing is used for realizing concrete syntaxes. Since they are top-down,
language workbenches do not support the reuse of existing models conforming to arbi-
trary metamodels (Requirement R 2 (Reuse existing Artifacts)™ !°°). The organization of
viewpoints along orthogonal dimensions by OSM is independent i.e. orthogonal to the
mechanisms for ensuring consistency, therefore, this approach for viewpoint organization
can be reused by other approaches ensuring consistency between different views.

Summarizing formalizations with lenses and round-trip engineering, they formalize con-
ditions for approaches ensuring consistency, in particular for model synchronization-based
approaches. They do not propose concrete implementations, but point to conceptual chal-
lenges and motivate some ideas for implementation, including ...

e the explicit specification and use of explicit links for horizontal alignment between
different models and of model differences for vertical alignment between different
versions of the same model,

e the use of model deltas instead of updated models to reduce ambiguities and
e the possibility for amending the Y**A during the change propagation.

Summarizing different research and application areas, in the end, ensuring consistency as
the main challenge is the same in different research and application areas like modeling (Sec-
tion 3.3 108 Section 3.4 120 Section 3.5 21), modeling languages (Section 3.6.1 136
Section 3.6.2" 137), data bases (Section 3.6.3" 139) ontologies (Section 3.6.4™ 142) and en-
terprises (Section 3.6.5" 144). This is discussed along two aspects: In the first aspect, sim-
ilar matching techniques can be applied in principle both for schemata of data bases and
for schemata of ontologies, as proposed by the classification and survey of Shvaiko (2005).
Since these schemata describe the concepts and structures of data, which counts also for
metamodels, these matching techniques could be transferred to metamodels, too. The other
way around, techniques for (meta)model matching (Somogyi and Asztalos, 2020) could be

151

generic projectional
Approaches

more Projections

Formalizations: Lenses,
Round-trip

Consistency in different
Research and
Application Areas

Matching Techniques
for Schemata of Data
Bases, Ontologies and
Models

Fix Inconsistencies
Vs
View-update Problem

Summary

3 Related Work

transferred to schemata of data bases and ontologies. In the second aspect, fixing incon-
sistencies in the modeling domain and the view-update problem in data base research look
quite differently first, but can be seen as two sides of the same problem: Both mainly target
the model (or instance) level, not the metamodel (or schema) level, but are solved on the
metamodel level. Fixing inconsistencies between interrelated models (usually used as views)
sounds synthetic, but can be solved also in projectional way, while the view-update problem
arises in projectional settings between views and their SUM. Since data base views can be
described by “in general unidirectional, partial and non-injective functions; very similar
to model transformations” (Hettel, Lawley and Raymond, 2008), they are similar to mo-
del synchronization-based approaches using model transformations to ensure consistency.
Therefore, the main challenge of fixing inconsistencies in modeling and of the view-update
problem in data base research is the same.

Summarizing this summary, there are lots of approaches for ensuring inter-model con-
sistency in various research areas with various realization techniques and strategies. During
their exemplary investigation, the challenges for ensuring consistency are concretized and
extended, which results in concretized requirements, which are finally motivated and col-
lected in the following Chapter 4 153, Additionally, promising realization techniques are
detected, which could be reused for new approaches. As main classification, approaches for
ensuring inter-model consistency can be distinguished into synthetic and projectional ap-
proaches: Synthetic approaches fulfill the main requirements in general, even with some re-
strictions in details like n-ary consistency goals in model synchronization-based approaches
and execution orders, but require a square amount of explicit links, rules or model transfor-
mations between the involved models. Generic projectional approaches can be distinguished
into bottom-up and top-down approaches: The investigated bottom-up approaches reuse
existing (meta)models, but have restrictions with initially inconsistent models and use syn-
thetic techniques internally. The investigated top-down approaches lack strategies to reuse
existing models and their metamodels. Summarizing, there is no approach which fulfills all
requirements for ensuring inter-model consistency with satisfactory degree. Therefore, a
new approach for ensuring inter-model consistency is required and designed in Part II1* 163
of this thesis. Based on the findings and comparisons of this Chapter 3 93, design decisions
for that approach are made in Chapter 5 163,

152

Chapter 4

Requirements

Objective of this section is to collect and document the requirements for the design of Mo-
CoNSEMI, the new approach which is proposed in this thesis. The first high-level require-
ments are directly derived from the objectives of this thesis, described in Section 1.3.3* 46:

High-level Requirements

R 1 Changes in one model have to be propagated into all related models. (Model
Consistency)

R 2 The approach must allow to reuse existing artifacts. (Reuse existing Arti-
facts)

R 3 The approach must allow to define new view(point)s. (Define new
View(point)s)

During the analyses of foundations for inter-model consistency (Chapter 2 5) and of
related approaches (Chapter 3 93), these requirements were concretized by refining sub-
requirements and detecting additional requirements. These new requirements were already
shortly mentioned at their first occurrence, but officially introduced in this Chapter 4 with
more explanations and with their origins. Therefore, this section can be seen as a summary
of Part 1™2% and Part I1*5!.

The identified requirements for MOCONSEMI are grouped into functional requirements
(Section 4.1 154) which focus on the conceptual design of the approach, and into tech-
nical requirements (Section 4.2 157, which focus on the technical implementation of the
approach. The quality of the desired approach is not described by requirements, but is
evaluated and discussed later in the evaluation in Part V=467, Each requirement is pre-
sented with an description and its origin. Possible origins of requirements are motivation
and challenges of ensuring consistency, the objective of this thesis, foundations or related
approaches including their implementations.

The first three high-level requirements (see above) are motivated by the challenges of
ensuring inter-model consistency (Section 1.2*31). They reflect all objectives of this thesis
(Section 1.3.142) and thus form the complete set of functional requirements, which only
needs refinement by sub-requirements. Since these requirements focus on objectives and
not on realization strategies, they are valid also for other approaches and help to evaluate
existing approaches for ensuring inter-model consistency.

153

Objective: collect
Requirements

Grouping and Content
of Requirements

Validity

Ensure Inter-Model
Consistency as main
requirement

Automation to relieve
Users

Models conforming to
arbitrary Metamodels

Support any Models,
independent from their
Metamodels and
concrete Renderings

Consistency Goals
depend on
project-specific
Semantics

4 Requirements

4.1 Functional Requirements

This section collects functional requirements, which must be fulfilled by MoCONSEMI
for ensuring inter-model consistency. The three high-level requirements are directly de-
rived from the objectives of this thesis (Section 1.3.1%42) and are already depicted in
Section 1.3.3 46, As summary of the motivated challenges of ensuring inter-model consis-
tency (Section 1.2 31), they are complete, but are concretized according to the findings in
Chapter 2°°! and Chapter 3 3.

Since the use of multiple views can lead to inconsistencies between their respective mo-
dels (Section 1.1*26), the main challenge is to ensure consistency between different models
by changing related models according to changes within one model (Section 1.2.1*31). To
overcome this challenge is the main motivation for this thesis and leads to the following
Requirement R 1:

Requirement R 1: Model Consistency

Changes in one model have to be propagated into all related models.

Since manual consistency preservation is error-prone, requires high effort and is an
repetitive task, change propagation requires support for automation. Such an automation
reduces the knowledge and care of users using views, since they can concentrate on their
particular tasks within their views, but impacts caused by their changes can be automat-
ically propagated into all related views. Ensuring consistency between different models
is aimed, independently from the models’ roles. In particular, this includes models of
existing data sources (Requirement R 2™ !5°) as well as models of newly derived views (Re-
quirement R3*156), Change propagation is the behavior desired by users of models, as
deepened in Section 2.3 7', But change propagation is no concrete realization strategy for
ensuring consistency, since Section 3.2 %9 identifies several classes of concrete realization
strategies for change propagation, including model synchronization and change translation.

Since the models to be kept consistent not only have different roles but also represent
different information from various domains including different views tailored to particular
concerns of different stakeholders, models contain different kinds of information and are
structured differently. Nevertheless, consistency between such heterogeneous models must
be ensured. Since metamodels are the means to determine the general concepts of models
(Section 2.2.2%60) arbitrary metamodels must be supported. The amount of projectional
approaches supporting the consistency between models conforming to fixed metamodels
(Section 3.5 121) shows, that there is the need for generic approaches supporting models
conforming to arbitrary metamodels. This leads to Requirement R 1.1:

Requirement R 1.1: Generic Metamodels

The approach must support arbitrary metamodels.

Since metamodels guide the construction of models and determine valid models, the
support for arbitrary metamodels enables the support for arbitrary conforming models. The
information encoded by these models might have different concrete renderings including
different formats, DSLs and so on, as the adapters for different formats demonstrate in
Section 8.4 271, Again, the approach should be independent from concrete renderings of
models.

Section 1.2.1%3! analyzes, that the desired consistency depends on the particular de-
velopment project, since consistency depends on the particular semantics of the involved
models, as understood by the particular stakeholders. Part 4*3° of the ongoing example
shows different possible consistency goals for the same (meta)models, which both might

154

4.1 Functional Requirements

be used in different projects. Therefore, approaches with fixed consistency goals are not
sufficient, leading to Requirement R 1.2:

Requirement R 1.2: Generic Consistency Goals

The approach must support arbitrary consistency goals concretized by consistency
rules.

In particular, this requirement also includes the support of n-ary consistency relations
(Section 3.7 16) between n > 2 models as consistency goals. This is in line with Stiinkel,
Konig et al. (2021), who establish n-ary consistency goals as an important requirement for
inter-model consistency. Since consistency goals should be specifiable in a generic way, even
their consistency rules must not be fixed. Requirement R 1.2 depends on Requirement R 1.1
(Generic Metamodels)™ 14, since the consistency goals are formulated for elements of meta-
models (Section 2.3 ™'): Related approaches supporting only a fixed set of metamodels,
usually support also only fixed consistency goals (Section 3.5 121). Requirement R 1.2 en-
sures, that even for the same set of metamodels, different consistency goals can be specified
in different projects. Section 14.2.2% 489 discusses some preconditions for consistency goals
and their consistency rules, which must hold for them in order to be realizable, i.e. “arbi-
trary” does not mean “any” consistency goals, but “arbitrary” within those preconditions.
Aim of this requirement is to ensure, that the consistency goals are not pre-defined, but
highly configurable by methodologists within those preconditions.

The second high-level requirement is already motivated by Section 1.2.2%36: Since there
exist lots of standards, tools and environments in already running development projects with
lots of already developed artifacts, they must be reused, when introducing an approach for
supporting consistency. This leads to Requirement R 2:

Requirement R 2: Reuse existing Artifacts

The approach must allow to reuse existing artifacts.

Part 537 of the ongoing example shows some examples for artifacts to reuse. While
the focus is to reuse existing artifacts and to keep their models consistent to each other, it is
also possible to start without any reused artifacts, as discussed in Section 13.3.2% 474, The
following sub-requirements concretize the artifacts to reuse, by proposing what to reuse and
in which way.

Since artifacts to reuse (according to Requirement R 2) come with metamodels (accord-
ing to Definition 3" 3%), they must be reused, too. As already motivated in Section 1.2.2* 36,
the metamodels are given by existing standards, tools, environments and DSLs. This leads
to Requirement R 2.1:

Requirement R 2.1: Reuse existing Metamodels

The approach must allow to keep existing metamodels as initial viewpoints.

To make the approach interoperable with existing tools, the metamodels given by the
tools have to be supported as initial viewpoints. In particular, the concepts of the meta-
models of the tools must be addressable by consistency goals for formulating the desired
consistency. This is the precondition for reusing data developed with these tools, as de-
scribed in the following paragraphs.

Since artifacts to reuse (according to Requirement R2) come not only with metamo-
dels but also with models (according to Definition 3" 3%), they must be reused, too. As
already motivated in Section 1.2.2* 36 models developed in projects without consistency

155

Flexible Consistency
Goals and Consistency
Rules

Reuse existing
environments including
developed artifacts

Support existing Tools

Enable Consistency
Goals for Concepts of
interoperable Tools

Reuse existing Data

Import existing Models
and keep them
consistent

Fix initial
Inconsistencies in reused

Models

Challenge depends on
particular Approaches,
e.g. Change
Translation-based

Define new derived
Viewpoints

Provide Information
which is spread over
multiple Views

4 Requirements

management often stem from (legacy) results of previous projects or are reused libraries.
This leads to Requirement R 2.2:

Requirement R 2.2: Reuse existing Models

The approach must allow to reuse existing models as initial views.

To support existing data, existing data are treated as initial models to reuse. Reusing
such models means, that existing models are treated as existing views in form of a data
source and are imported by approaches. After their initial reuse, the views must be kept con-
sistent to all other views, according to Requirement R 1 (Model Consistency)* %4, Reusing
models depends on the reuse of their metamodels, therefore Requirement R 2.2 depends on
Requirement R 2.1 (Reuse existing Metamodels) = 15,

Since models to reuse (according to Requirement R 2.2 (Reuse existing Models)) are
handled manually or in an unstructured way in projects so far, there is a high probability
for inconsistencies in such approaches. When reusing existing models and subsequently
ensuring their consistency, it must be ensured, that the models are also initially consistent
with other reused models. This leads to Requirement R 2.3:

Requirement R 2.3: Fix existing Models

The approach must allow to fix inconsistencies within reused models.

This requirement is important for approaches which assume consistency before users
apply manual changes which are automatically complemented with fixes. Since Require-
ment R 1 (Model Consistency)* 54 asks (only) for propagating changes, it must be ensured,
that the initial models are consistent to each other before. In particular, this counts for
change translation-based approaches (Section 3.2 %) like VITRUVIUS (Section 3.5.2 126).
Fixing initial models is only necessary when models are reused, therefore Requirement R 2.3
depends on Requirement R 2.2 (Reuse existing Models).

The third high-level requirement is already motivated in Section 1.2.33%: In order
to support additional stakeholders with tailored views and to realize interoperability with
additional tools over time, the information of the other views must be combined, selected
and provided as new, derived views according to the stakeholders concerns. Therefore, new
viewpoints must be specified, which enable the construction of such derived new views.
This leads to Requirement R 3:

Requirement R 3: Define new View(point)s

The approach must allow to define new view(point)s.

Newly derived views do not come with an initial model to reuse as data sources in
Requirement R 2.2 (Reuse existing Models), but all information for the new view is derived
from already existing, reused views. Therefore, this Requirement R 3 and Requirement R 2
(Reuse existing Artifacts)™ !5 complement each other. Part 640 of the ongoing example
shows an example for a new, derived view(point). The following sub-requirements concretize
the derived view(point)s and are partially proposed also by Jakob, Kénigs and Schiirr (2006,
p. 322).

As explicitly motivated in Section 3.3.2" 119 new views should contain not only (some
selected) information of already existing views, but information spread over multiple views.
This counts in particular for information which is located in different reused views. This
leads to Requirement R 3.1 157;

156

4.2 Technical Requirements

Requirement R 3.1: New Views reuse whole System Description

New views must be able to reuse all information which represent the whole system
under development.

Reusing all information of the description of the particular system under development
(complete view, according to Figure 2.1 52), involves not only the information of the
multiple reused (partial) views, but also dependencies like explicit links between them.
This requirement is a challenge in particular for synthetic settings (Section 3.3.2 119)
since there is no single model containing all information as in projectional settings.

Already shortly motivated in Section 1.2.3" 3% new viewpoints have to reflect additional
concerns of additional stakeholders or must fit to a metamodel given by an additional tool.
Therefore, arbitrary metamodels for new viewpoints must be definable. Generally, it is
not sufficient to provide only a direct subset of the elements which are already existing
(Section 3.5.5" 134). Instead, existing elements could be restructured, including renamings,
and additional elements could be added. This leads to Requirement R 3.2:

Requirement R 3.2: New Viewpoints with arbitrary Metamodels

New viewpoints must be able to use arbitrary metamodels.

While this requirement is formulated for metamodels, conforming models for new views
have to be derived and restructured from the existing information in a similar way.

Already explicitly motivated in Section 1.2.3" 3, additional stakeholders getting new
views might want to influence the development of the current system and therefore need
to change their views. These changes have to be propagated into all related existing views
resulting in editable views (Section 3.3.2* 119) according to Requirement R 1 (Model Con-
sistency)* 154, Additionally, Goldschmidt, Becker and Burger (2012) identify editability as
a feature of views. This leads to Requirement R 3.3:

Requirement R 3.3: Editable new Views

New views must be editable by users.

This requirement directly refers to the view-update problem, which is not solvable in
general (Section 3.6.3" 13%) and approaches need to provide appropriate strategies to deal
with it or to make clear, when information in new views is editable and when information
in new views is read-only.

4.2 'Technical Requirements

This section collects technical requirements, which must be fulfilled by the approach for
ensuring inter-model consistency. These requirements mainly target the implementation
of the approach, but also the design of the approach, since the approach must enable the
implementation of the desired requirements. These requirements are derived from findings
during the investigation of related approaches in Chapter 3* %3 and their supporting tooling.

Since different approaches for model consistency expect the model to be realized ac-
cording to different techniques, e.g. the three projectional SUM approaches presented in
Section 3.5 121 support three different technical spaces, the structural heterogeneity of
models (Section 3.1 rg94) must be covered. Additionally, there are various technical spaces,
as sketched in Section 2.5.1% 84, In order to support and reuse arbitrary models (Require-
ment R2 (Reuse existing Artifacts)™ 19%), their technical spaces must be supported, too.
This leads to Requirement R 4 198:

157

All Information
including Inter-View
Links

Restructuring existing
Concepts

Users change derived
Views

Different Approaches
support different
Technical Spaces

Bridges for EMF

Ensuring Consistency
independent of Tools

Reusable Library for
different Applications

4 Requirements

Requirement R 4: Technical Spaces

The approach must support views realized in different technical spaces.

Accordingly, the new approach also needs a technical space to technically realize the
managed models. As motivated in Section 2.5.2* 86, EMF is chosen as technical space of the
new approach. Therefore, bridges between other technical spaces and EMF are required,
which are realized as adapters (Section 6.6.5 220).

Since this thesis aims to ensure consistency between models, but should not depend on
tool integration as precondition (Section 1.3.2%43), the approach should be realized in a
stand-alone and reusable way. In particular, the implementation should not depend on a
particular tool or environment, as it is often the case for language workbenches that realize
DSLs (Section 3.6.2% 137). This leads to Requirement R 5:

Requirement R 5: Reusable Library

The approach must be realized in form of a reusable library.

The implementation of the approach as reusable library allows to easily apply the ap-
proach to different application domains. Since ensuring consistency should be automated
according to Requirement R 1 (Model Consistency)* 54, there is no need to force particular
GUIs to use the approach.

4.3 Summary

In order to summarize the results from the motivating challenges, the objectives of this the-
sis, the foundations and investigated related approaches, this sections collects and explic-
itly documents functional (Section 4.1 1%%) and technical (Section 4.2 '57) requirements.
These requirements are summarized in the following box:

Collected functional Requirements

R 1 Changes in one model have to be propagated into all related models. (Model
Consistency)

R 1.1 The approach must support arbitrary metamodels. (Generic Metamo-
dels)

R 1.2 The approach must support arbitrary consistency goals concretized by

consistency rules. (Generic Consistency Goals)

R 2 The approach must allow to reuse existing artifacts. (Reuse existing Arti-
facts)

R 2.1 The approach must allow to keep existing metamodels as initial view-
points. (Reuse existing Metamodels)

R 2.2 The approach must allow to reuse existing models as initial views.
(Reuse existing Models)

R 2.3 The approach must allow to fix inconsistencies within reused models.

(Fix existing Models)

R 3 The approach must allow to define new view(point)s. (Define new
View(point)s)

158

4.3 Summary

R 3.1 New views must be able to reuse all information which represent the
whole system under development. (New Views reuse whole System
Description)

R 3.2 New viewpoints must be able to use arbitrary metamodels. (New View-
points with arbitrary Metamodels)

R 3.3 New views must be editable by users. (Editable new Views)

R 4 The approach must support views realized in different technical spaces.
(Technical Spaces)

R 5 The approach must be realized in form of a reusable library. (Reusable Li-
brary)

J

The fulfillment of these requirements is explicitly discussed in Section 13.1% 467, These
requirements form the starting point to design and implement a solution in Part III* 163,

159

4 Requirements

160

Part 111

Approach

This part designs and implements MOCONSEMI (MOdel CON-
Sistency Ensured by Metamodel Integration) as a new approach
for ensuring inter-model consistency. The main design decisions
for MOCONSEMI in order to fulfill the requirements are dis-
cussed, before this design is detailed with bidirectional oper-
ators which realize small transformations in models and their
metamodels as main concept. Concrete operators are developed
in form of a collection of reusable operators. In addition, the
designed MOCONSEMI approach is implemented as MOCON-
SEMI framework. This framework enables the application and
evaluation of MOCONSEMI in practice in the next Part IV = 283,

161

Chapter 5

MoConseMI at a glance

Chapter 33 investigated related approaches for ensuring inter-model consistency regard-
ing the requirements, and identified restrictions for all investigated approaches. Therefore,
Part III develops MOCONSEMI (MOdel CONSistency Ensured by Metamodel Integration)
as a new approach for ensuring inter-model consistency. In particular, the OSM approach
raises the challenge to create an optimized SUMM and requires according methods (Atkin-
son, Stoll et al., 2013). MOCONSEMI provides such a method.

Objective of this section is to give a rough overview of the design of the new approach
MoCoNSEMI and its main design decisions. Based on the findings from related approaches
(Chapter 3" 93), Section 5.1 discusses and decides the main design choices in order to fulfill
the requirements, identified in Chapter 4193, Afterwards, an overview of MOCONSEMI
with its main concepts is given in Section 5.2 171, together with use cases and the ongoing
example. Section 5.3 ' summarizes the results. This section serves as overview of the
general design, before it is discussed in detail in Chapter 6* 185, This Chapter 5 is inspired
by a corresponding section in Jelschen (2024).

The main design ideas of MOCONSEMI are published in this publication as well:

Related MoConseMI Publication

Johannes Meier and Andreas Winter (2018a): Model Consistency ensured by Meta-
model Integration. In: 6th International Workshop on The Globalization of Modeling
Languages, co-located with MODELS 2018.

This publication is cited as Meier and Winter (2018a) in this thesis.

5.1 Design Decisions

This section discusses and decides design choices for the conceptual realization of MoCON-
SEMI. The first three design choices of this section are already depicted in Figure 3.8 124
and are used in Chapter 393 to classify related approaches: The first design choice in
Section 5.1.1% 164 concerns the starting point of the construction process for ensuring inter-
model consistency. The next two design choices discuss the outcomes of the construction
process for establishing inter-model consistency as end point, i.e. they determine the us-
age of a SUM (Section 3.4 120): Section 5.1.2" 165 decides, whether the approach uses a
projectional setting with an explicit SUM or a synthetic setting without any SUM. Sec-
tion 5.1.3" 167 bases on the decision of the previous design choice for using an explicit SUM
and determines its quality. The last three design choices discuss the way from the starting
point to the end point: Section 5.1.4* 68 decides to use model synchronization techniques
for change propagation. Section 5.1.5% 1% determines the interplay of stakeholders for

163

MoCoNSEMI as new
Approach for ensuring
Inter-Model Consistency

Objectives: Overview +
Design Decisions

Outline and Motivation
of Design Decisions

Pattern for Design
Decisions

Early Design Decisions

Consistency Goals and
Consistency Rules

different Stakeholders

EMF as Technical Space

Design Choice:
Top-down vs Bottom-up

5 MOoCoNSEMI at a glance

ensuring consistency with the focus on methodologists. Section 5.1.6* 170 establishes the
reuse of parts of model transformations as means to ease the work of methodologists when
they realize consistency by model synchronization. These design decisions are visualized in
Figure 5.4 180 3179,

With starting point, end point and the way between them, the whole construction
process is completely covered by design choices. The first and the third design choices are
introduced by Meier, Klare et al. (2019) as design criteria to span the complete solution
space for projectional approaches, and are extended by the second design choice to cover
synthetic approaches as well. Some design choices depend on previous design decisions,
which is deepened in the sections of respective design choices. These design choices in
Section 5.1 163 are not complete, but intended to guide the main design of MOCONSEMI.
Additional, more fine-grained design choices are discussed in Chapter 6 ¥,

Each design decision is discussed within its own section, starting with a short explana-
tion of the design choice and its motivation and origin. The possible concrete choices are
listed afterwards. Then the choice is named and motivated, that is selected as decision by
MoCONSEMI for the respective design decision. Finally, possible impacts of this design
decision are listed, which emphasize some details and technical challenges to be overcome
in the detailed design in Chapter 6 185,

There are also some specifications before these design decisions, which are already dis-
cussed in the sections before:

as summary in Section 5.

e The objectives and demarcations of Chapter 1™ 23 including its focus on inter-model
consistency with the reuse of existing (meta)models and the aimed levels of hetero-
geneity do not restrict the solution space (and are no design decisions therefore), but
determine the (functional) requirements for the desired solution.

e The formulation of consistency with consistency goals and consistency rules (Fig-
ure 2.177) is early design, but the formulations are independent from concrete
approaches. Therefore, they can be seen as a kind of requirements specification for
consistency.

e The proposed use cases (Figure 2.20" ™) and their stakeholder groups (Section 2.4 ™)
are early design decisions, but are already introduced in order to compare them with
related approaches in Chapter 3 93, Since their degree of involvement into managing
consistency is a design choice, this design choice is discussed in Section 5.1.5= 169,

e Using EMF as technical space (Section 2.5.2"%) might be seen as early technical
design decision. But the supported concepts of ECORE (Figure 2.21 88) are only
mentioned as look-ahead, while their selection is finally decided in Section 6.6.2* 222,
Since technical spaces realize models technically, the conceptual design is not influ-
enced by this early design decision for EMF as technical space used within MoCON-
SEMI.

Summarizing, the only relevant conceptual design decision, which is already decided, is the
design of stakeholders and is deepened in Section 5.1.5 169, The following sections discuss
new design choices and motive their design decisions.

5.1.1 Bottom-Up: Existing Artifacts as Starting Point

This design choice targets the question, what the starting point of the construction process
for establishing inter-model consistency is. This design choice fits to the design criterion C1
in Meier, Klare et al. (2019) for projectional approaches, which is generalized here to cover
both synthetic and projectional settings, and is already established as conceptual design
choice in Figure 3.8 24, Possible choices are the following ones:

164

5.1 Design Decisions

Bottom-up approaches use the existing artifacts as starting point and build the synchro-
nization on top of them.

Top-down approaches establish the means for synchronization first in an ideal way and
tries to make existing artifacts interoperable afterwards.

MoCoONSEMI decides to be a bottom-up approach, since the reuse and fix of existing
models and their metamodels is easier in bottom-up approaches, since the (meta)models
to reuse form the starting point. With this design decision, Requirement R 2 (Reuse ex-
isting Artifacts)™ 1% can be fulfilled easier. In particular, OSM as a top-down approach
does not come with build-in strategies to reuse existing (meta)models (Section 3.5.1% 124).
This example fits to observations of Moreno and Vallecillo (2004), who propose bottom-
up approaches for reusing existing models. Kurpjuweit and Winter (2007) also propose a
bottom-up procedure, which identifies viewpoints first and integrates them into a SUMM
afterwards, but leaves the concrete integration strategy open.

5.1.2 Projectional with an explicit SUM as End Point

This design choice targets the question, whether the approach is projectional using an
explicit SUM or synthetic without any SUM. This design choice is already established as
conceptual design choice in Figure 3.8 124, Possible choices are the following ones:

Synthetic without SUM Synthetic approaches use only the existing models and their
metamodels and propagate changes directly between pairs of these models, without
any SUM.

Projectional with explicit SUM Projectional approaches establish an explicit SUM ac-
cording to Section 3.4 20 which is used to propagate changes between the existing
models and the SUM in both directions, but not between existing models directly.
The quality of such an explicit SUM is covered by the next design choice.

MoCoONSEMI decides to be a projectional approach with an explicit SUM, mainly since
the necessary number of relationships between n models is in the order of O(n) for projec-
tional approaches, while it is in the order of O(n?) for synthetic approaches: In particular,
when adding a new model, projectional approaches require only one additional relationship
(which can be seen as constant effort in terms of complexity), while synthetic approaches
require n additional relationships in the worst case (Kurtev, 2008, p. 382). Even in the
domain of synthetic approaches, some authors are aware of this problem: Feldmann, Wim-
mer et al. (2016) report on the square number of relationships between models. Therefore,
Broy, Feilkas et al. (2010) mention missing scalability of synthetic approaches, while Jin,
Cordy and Dean (2003) call the synthetic integration an “utopia” for creating direct con-
verters between reverse engineering tools. If the relationships are realized with model
transformations, there is a high effort for transformations between large sets of metamo-
dels (Baumgart, 2010). Therefore, “a strategy to reduce this number is essential for a
model-synchronization-based inconsistency management approach to become feasible within
the context of manufacturing systems design” (Feldmann, Herzig et al., 2015a, p. 164).
Such a strategy is provided by projectional approaches. In practice, the models are usually
not completely meshed in synthetic settings, e. g. in the ongoing example in Figure 2.19* 78
or for the application in Figure 10.7% 3. This is the reason, why also some approaches
with a projectional user experience internally use synthetic techniques, like VITRUVIUS
(Section 3.5.2%126) Another strategy to deal with the problem is to use models only in a
strict (transformation) order (Shinkawa, 2006). But in general, the number of relationships
still remains in the order of O(n?). Besides the scalability, there are other aspects that

165

Design Decision:
Bottom-up for reusing
(Meta)Models

Design Choice:
Synthetic without SUM
vs Projectional with
explicit SUM

Scalability of
Inter-Model
Relationships

unclear Execution
Orders in synthetic
Approaches

Modularity Trade-offs

single Point-of-Truth

discard and recreate
Views

store additional
Information in the SUM

Design Decision:
Projectional and
explicit SUM

Impact

5 MOoCoNSEMI at a glance

distinguish synthetic and projectional approaches and they are discussed in the following
paragraphs.

Since the relationships in synthetic settings are usually organized as a non-directed
graph, synthetic approaches face problems with an unclear or complicated execution order
when maintaining and exploiting these relationships. This concerns in particular networks
of BX, that employ dense graphs. Since transformations are transitive in this graph type,
in BX networks there are multiple possible transformation ways to update the models.
Therefore, the execution paths usually must be explicitly controlled or specified (Stevens,
2017). In contrast, an explicit SUM is the root of a tree with the views as leafs and
therefore avoids this problem. This problem occurs also in rule-based approaches with an
example of Mens, Van Der Straeten and D’Hondt (2006), where the order of checking rules
and resolution rules is unclear and therefore can lead to different results depending on the
chosen execution order of rules.

An advantage of synthetic approaches is their higher modularity, i.e. it is easier to
add another model or to remove an already combined model (Yie, Casallas et al., 2009b).
Therefore, Knapp and Mossakowski (2018, p. 48) propose a synthetic approach for UML
consistency, since a global realization might be hard for behavioral concepts. A high mod-
ularity is a main design goal of VITRUVIUS in order to increase the reusability of defined
relationships between models in other projects (Klare, Kramer et al., 2021). On the other
hand, there are n-ary consistency goals which cannot be split into pairs of binary con-
sistency relations, which reduce modularity and require additional concepts in synthetic
settings to deal with them. Together with unclear execution orders (see above) and consis-
tency of pairwise relationships, summarized as compatibility, this design choice is a trade-off
between modularity and compatibility (Klare, 2018).

The explicit SUM in projectional approaches can be used as single point-of-truth: Since
each view reads the data from the SUM and writes changes back into the SUM, the SUM
is a natural mediator for possible conflicts, since views do not directly interact with each
other as in synthetic approaches.

Having the SUM with all information about all views allows to discard the views, since
they can be recreated as projections from the SUM afterwards. This fits to the SUM vision,
where views are projected on-demand from the SUM (Section 3.4 120).

Having an explicit SUM, it can be used to store additional information which is not
part of any existing model. Exploiting the SUMM can be used to structure these additional
information properly. A typical example for such additional information are traceability
links between elements located within different models. This discussion is continued in
Section 14.1.2.1= 48 Synthetic approaches need to introduce additional models which
store inter-model links, if the initial models should remain unchanged.

Finally, this thesis values the lower complexity of the number of explicit relationships be-
tween models and the better support for n-ary consistency goals of projectional approaches
as more important than the higher modularity of synthetic approaches. Additionally, pro-
jectional approaches come with natural solutions for the single point-of-truth and for storing
additional information. Therefore, MOCONSEMI follows the projectional SUM idea. Al-
ready France and Rumpe (2007) argue, that a comprehensive metamodel (here: the SUMM)
supports the consistency of interrelated views.

This design decision has the following impacts:

e The explicit SUM contains the whole information of all views, not only depend-
ing information of different views, according to the SUM idea as presented in Sec-
tion 3.4 29, Together with the following design decision in Section 5.1.3* 167 for
a pure explicit SUM, this design provides some additional advantages, as discussed
below. Nevertheless, this discussion is taken up in Section 13.3.3.2* 476,

e Since the SUM contains all information of the project as single point-of-truth, the

166

5.1 Design Decisions

views can be discarded and recreated from the SUM afterwards, according to the
SUM vision of on-demand projecting views from the SUM (Section 3.4 120).

e The SUM is project-specific, since the SUM contains all information of all views
within the current project and these views are project-specific, including data sources
as “input” (Section 1.2.2"36) and new views as “output” (Section 1.2.3*39). These
project-specific SUMs are in contrast to e.g. Pfeiffer and Wasowski (2012) with a
generic SUM for all kinds of textual languages (not only for modeling languages).

5.1.3 Adjustable Approach towards an essential SUM

This design choice depends on the design decision in Section 5.1.2 165 for an explicit
SUM and targets the question, how many dependencies exist between elements within the
SUM. This design choice fits to the design criterion C2 “pureness” in Meier, Klare et al.
(2019) for projectional SUM approaches and is already established as conceptual design
choice in Figure 3.8 24, Possible choices are the following ones:

Pragmatic approaches keep all initial dependencies and resolve none of them, like e.g.
the modular SUMs of VITRUVIUS and of RSUM.

Essential (or pure) approaches have no dependencies within the SUM (any more) like
OSM.

Adjustable approaches (still) have some internal dependencies, e.g. since they resolved
some initial dependencies in order to move from pragmatic approaches towards essen-
tial approaches. Therefore, this choice is floating inbetween the two extreme choices
“pragmatic” and “essential”.

If an approach is not essential, i.e. it has some internal dependencies, it requires means to
manage the dependencies and keep depending information consistent to each other.

MoCONSEMI decides to be adjustable, since it starts according to Section 5.1.1* 164
with existing models and inherits all their initial dependencies, leading to a pragmatic SUM
by default. In order to keep the dependencies consistent, the SUM should contain depend-
ing information like redundant elements only once, which allows to propagate changes for
depending elements from one model to according elements in the SUM and from them
(as single point-of-truth) to the elements in other models. This design follows the ideas
for change propagation of the OSM approach with an essential SUM. In contrast to the
top-down OSM, MOCONSEMI is bottom-up and therefore usually does not reach the es-
sential quality for the SUM as in OSM, but an essential SUM is reachable in the long-term.
Additionally, methodologists might explicitly decide to keep some dependencies, which are
synchronized in a different way or should not be automatically synchronized at all. This
discussion is deepened in Section 12.2.3" 460 Summarizing, MOCONSEMI is adjustable by
moving from pragmatic to essential by removing dependencies within the SUM in order to
keep them consistent in the existing models.

An essential SUM provides advantages when using it as starting point for defining
newly derived views: All information about the current project can be reused directly in
high quality, in particular without redundancies or other dependencies. Effort spent for
transitioning a pragmatic SUM into an essential SUM is easily reused, when deriving new
views from the nearly essential SUM. In particular, only one model and not multiple models
must be queried without any redundancies, easily fulfilling Requirement R 3.1 (New Views
reuse whole System Description)™ 7 compared with MODELJOIN used by VITRUVIUS
(Section 3.5.2126) and RSUM (Section 3.5.3129). Some more characteristics of the
SUM are discussed in Section 13.3.3" 475,

This design decision has the following impacts:

167

Design Choice:
Pragmatic vs Essential
vs Adjustable SUM

Design Decision:
Adjustable

Reuse for new Views

Impact

Design Choice:
Proof-Theory vs Rules
vs Model
Synchronization vs
Change Translation

Design Decision: Model
Synchronization

Review Change
Propagation Techniques

Impact

5 MOoCoNSEMI at a glance

e Since the SUM usually does not exist at the beginning in bottom-up approaches (Sec-
tion 5.1.1%164) MoCoONSEMI must create one explicit SU(M)M at the beginning.
This creation must be taken into account by the next design decision in Section 5.1.4
for the way between starting point and end point. Additionally, the initial creation
of the first SU(M)M represents an additional use case which is executed once without
changes and triggers of users, and is designed in detail in Section 6.5.4 219,

5.1.4 Model Synchronization for Change Propagation

This design choice targets the question, which technique should be used to realize the
change propagation between the reused views (Section 5.1.1164) and the explicit SUM
(Section 5.1.2165). This design choice is already identified as design choice for the technical
realization with the feature “Change Propagation” in Figure 3.2 190 whose sub-features
are taken as possible choices here. Possible choices are the following ones, according to
their descriptions in Section 3.2* 99:

Proof-Theory is used to check consistency and finds fixes for inconsistencies on formal
descriptions instead of on models.

Rules in form of constraints are executed on models in order to find inconsistencies and
fix them with additional strategies.

Model Synchronization is realized with model transformations, which transform parts
of source models into parts of target models, leading to consistency between them
after transformation.

Change Translation is used to directly transform (i.e. translate) changes within one
model into corresponding changes for depending models.

MoCONSEMI decides to be a model synchronization-based approach using model trans-
formations between views and the SUM, mainly since the views exist, but not the SUM
(Section 5.1.1%164). Therefore, the SUM must be created first before using it, which can
be done easiest with model transformations, leading to a model synchronization-based ap-
proach. The same counts for newly derived views, since they must be created before they
can be kept consistent (Requirement R 3 (Define new View(point)s)* 156).

But there are some additional reasons, as investigated and summarized in Table 3.2 159
in Section 3.7 146: Change translation-based approaches provide only follow-up changes,
but no complete models, which are required here to create the initial SUM. Additionally,
they expect the reused models to be consistent to each other initially, which is not al-
ways true (Requirement R 2.3 (Fix existing Models)™ 1°%). Proof-theory-based approaches
are not chosen here, since they require formal specifications which are context-specific.
Therefore, methodologists have to spend additional effort for each project in order to se-
lect or create a formal specification which covers the whole SU(M)M. Additionally, specific
bridges between technical spaces for modeling and technical spaces for formal specifications
are required. Rule-based approaches are sufficiently flexible for project-specific consistency
management and fulfill the requirements. But this counts also for model synchronization-
based approaches. Since they additionally provide natural means to create the missing SUM
initially, they are chosen here.

This design decision has the following impacts:

e Since changes within one view must be propagated first into the SUM and then into
all other views, the model synchronization between views and SUM must allow model
transformations in both directions, according to the feature “Multi-Directionality” of
Figure 3.1 %4,

168

5.1 Design Decisions

e Since the SUM contains all information of the system under development, the views
contain only a subset of this information. Therefore, the asymmetric case is sufficient
for model synchronization here, as in all projectional settings (Section 5.1.2* 165).
Symmetric model synchronization-based approaches can be used, too, but are not
necessary.

e While the model transformations of a model synchronization-based approach are
able to create the initial SUM (the model), they are usually not able to create its
SUMM (the metamodel). Since the SUMM is required to create the conforming
SUM, MoConNSEMI must cope with this challenge.

5.1.5 Methodologists decide the final Fix

Since there are multiple possible fixes for an inconsistency (Section 2.3 '), this design
choice tackles the question, how the final fix is selected by which stakeholders, according to
the “Selection” feature in Figure 3.6 196, Before the possible choices for this design choice
are presented, the stakeholders are taken up in the next paragraph as preparation.

The proposed use cases (Figure 2.20* ™) and the groups of stakeholders (Section 2.4 ™)
are early design decisions, but are already introduced by Meier, Klare et al. (2019) in general
for projectional SUM approaches. The separation of platform specialists and methodolo-
gists is particularly motivated by the finding in Chapter 3" 93, that on the one hand least
surprise is aimed by BX approaches and their platform specialists, but on the other hand
least surprise depends on the consistency goals of the current project, that are determined
by methodologists. Additionally, these groups of stakeholders exist also for model trans-
formations in general, even if these roles are usually not explicitly mentioned. Adapter
providers provide additional adapters to support information realized with additional tech-
nical spaces, fulfilling Requirement R 4 (Technical Spaces)™ 1°®. This design of stakeholders
was already decided in Section 2.4 ™ since these stakeholders are required for analyzing
related work in Chapter 3" 93, leading to the feature “Stakeholders (who decide)” in Fig-
ure 3.1 %4,

Therefore, for each of these three stakeholders, their involvement into the selection of
the final fix can be decided. Possible choices are the following ones, according to the feature
“Selection” of Figure 3.6 106:

Interactive or manual selection is explicitly and manually done by stakeholders for each
occurred inconsistency.

Deterministic and automated selection is automatically done by an algorithm without
directly involved stakeholders, if the finally selected fix is predictable.

Non-deterministic and automated selection is automatically done by an algorithm
without directly involved stakeholders, if the finally selected fix is not always pre-
dictable.

MoCoNSEMI decides the following: MOCONSEMI aims to support users using views
with deterministic and automated fixing of inconsistencies, depending on the current project.
Methodologists apply MOCONSEMI for this aim and configure the desired consistency goals
and consistency rules once and manually, i.e. interactive with means which are designed
by platform specialists and provided by MoOCoONSEMI. Additionally, platform specialists
realize MOCONSEMI in a way, that the configured consistency goals and consistency rules
can be executed in a deterministic and automated way. With this design, the selection of
the final fix for an inconsistency is deterministic and automated for users by automations
provided by platform specialists, but interactive for methodologists, as they manually con-
figure the desired consistency goals and consistency rules. Additionally, this design fulfills

169

Design Choice: Select
the final Fix for an
Inconsistency

Stakeholders who
decide: User vs
Methodologist vs
Platform Specialist

Stakeholder x Selection

Design Decision:
Interplay of
Stakeholders

Impact

Aim: Ease the Work of
Methodologists

Reuse Parts of Model
Transformations

Design Choice: Singe
Transformation vs
Transformation with
Parts

5 MOoCoNSEMI at a glance

the Requirement R 1.2 (Generic Consistency Goals)™ !5° for project-specific consistency
goals and consistency rules, since they are manually realized by methodologists. Since the
final fix is selected in this way, it is not required to model further fixes and to order or filter
them, which counts for all stakeholders. Consequently, the features “Uncertainty Modeling
for representing Fixes” and “Order / Filtering” of Figure 3.6" 1% are not used. This design
decision is in line with Kramer (2017, pp. 89-94), who proposes fully-automated repairs,
while in cases for necessary decisions, not users should be asked, but decisions should be
configured by methodologists before-hand.
This design decision has the following impacts:

e Since the users should be provided with automated fixing of inconsistencies, Mo-
CoNSEMI must provide means to execute the configurations of methodologists auto-
matically.

e The automations must be deterministic, since determinism is expected by users
(Stevens, 2010): Therefore, consistency goals and their consistency rules must spec-
ify predictable fixes for inconsistencies (also discussed in Section 14.2.2% 489 which
are realized by methodologists. Platform specialists must ensure, that the means
to configure consistency and their automation with MOCONSEMI are deterministic,
too.

5.1.6 Reuse Parts of Model Transformations

This design decision aims to ease the work of methodologists, since they manually realize
the consistency goals and consistency rules for each project (Section 5.1.5% '69). Metho-
dologists use means, which are developed by platform specialists manually, but only once
for developing MOCONSEMI. Users of a project are supported with automated fixes of in-
consistencies, provided by the work of methodologists. Not only the manual and recurrent
manner of the methodologists’ work requires support but also the mostly very complex
project-specific consistency. An example for this is the finding (Section 5.1.4™ 168) that
techniques for change propagation must support both directions and must also provide the
required metamodels for the SUMM and new viewpoints.

In order to facilitate the methodologists’ work, recurring work can be eased by reusing
techniques to realize consistency goals and consistency rules. The applicability of reusing
techniques, in turn, depends on the degree of modularization of the model transforma-
tions, since in MOCONSEMI change propagation is realized by model synchronization (Sec-
tion 5.1.4"168) which itself is handled by model transformations. Therefore, the main
idea is the reuse of parts of model transformations. This approach is also found in related
approaches for model transformations by supporting their composability like lenses and BX
(Section 3.7 146),

The structure of model transformations determines the extent of their reusability. Pos-
sible choices are the following ones:

Single Transformation Usually, model transformations are written as single, compact
definition containing lots of meshed model transformation rules (Section 2.2.3* 67)
in order to fulfill the desired transformation task.

Transformation with Parts Alternatively, model transformations can be split into parts.
Each part fulfills a sub-task of the whole transformation task and contains a small(er)
number of model transformation rules. Depending on the design of these parts, they
cloud be reused for recurring (partial) tasks. Terms describing parts (most generic
term) of model transformations include, e.g., operators (chosen in Section 6.1 189)
and patterns. “Patterns reuse” is also motivated by Del Fabro and Jouault (2005).

170

5.2 Overview of the Approach

The modeling community highly requests reuse of model transformations (Bruel,
Combemale et al., 2020).

MoCoNSEMI decides to use transformations with parts in order to increase the reuse of
such parts. Predefined parts of model transformations should be provided by MoCONSEMI
in order to support methodologists and to ease their work, as motivated above.

This design decision has the following impacts:

e Realizing this design decision is challenging, since reuse and modularization are still
a challenge in model transformation approaches (Gotz, Tichy and Groner, 2021, p.
480f). Therefore, Section 6.4.1% 203 discusses some related approaches for modular
model transformations.

e In order to enable reuse of model transformation parts (requiring generic parts in
general) for project-specific purposes (requiring specific solutions in general), the
parts to reuse should provide means to configure them according to project-specific
needs. This configuration fits to the impact of Section 5.1.5% 169 The required design
for configuration is discussed in Section 6.2 2 and Section 6.3 198,

This design decision is central for the realization of change propagation between the mo-
dels to be kept consistent to each other. The details of the design for parts of model
transformation, which are called operators, are discussed in Section 6.1 185,

5.2 Overview of the Approach

Based on the design decisions in Section 5.1 103 this section gives an overview of the
overall design of MOCONSEMI and demonstrates it with the help of the ongoing example.
Additionally, this section motivates parts of the design, that are detailed in Chapter 6 18,
This section is structured according to the use cases of consistency management. To each
use case depicted in Figure 2.20% 7 a separate section is dedicated (Section 5.2.1, Sec-
tion 5.2.2° 17 and Section 5.2.4=17). A fourth use case is added in Section 5.2.3 176
that results from to the design decision in Section 5.1.3* 167,

5.2.1 Specify Consistency

In this use case, the methodologist completes two tasks: First, the methodologist formulates
the consistency which is desired by users with consistency goals and consistency rules. Sec-
ond, the methodologist realizes these consistency goals and consistency rules with means
provided by MoCONSEMI. The first task is an organizational task with collecting, dis-
cussing and approving the consistency desired by users. Objective of MOCONSEMI is to
support methodologists during their second task with conceptual and technical means. In
particular, methodologists have to decide, how inconsistencies are fixed (Section 5.1.5* 169).
This work is manual and is done for each project, since the consistency is project-specific.

Since MOCONSEMI uses model synchronization techniques (Section 5.1.4* 168) me-

thodologists realize consistency with model transformations: In order to ease this metho- ...

dologists’ work, MOCONSEMI provides reusable model transformation parts as operators
(Section 5.1.6™17%), which are composed of chains of operators. These chains of operators
connect views with the SUM. The operator chains are executed at runtime in order to
propagate changes between views (use case in Section 5.2.217) or to create the initial
SUM (use case in Section 5.2.3" 176). This idea is applied to the ongoing example in the
following way:

171

Design Decision: Reuse
Transformation Parts
for Methodologists
Impact

Overview along Use
Cases

Use Case:
Methodologists
configure the desired
Consistency ...

with Operators

Design of Operators

5 MOoCoNSEMI at a glance

Ongoing Example, Part 17: Overview of MoConseMI < List —

Figure 5.1 shows the main concepts of MOCONSEMI: The nodes on the circle are views
usable by users, while the content within the circle is hidden for users and contains the
internals for change propagation realized by methodologists. The white nodes represent the
data sources for [Req(uirements)}, @J and as starting points, which are

integrated into the [SU(M)M] as end point by applying operators, which are annotated along

edges. Operators are also used to derive the new view for (Traceability) from the (SUM). Since

the mechanisms for model synchronization are split into parts of model transformations,
the nodes @ represent internal (meta)models as intermediate steps after applying some,
but not all operators of a chain between a view and the SUM.

ClassDiagram

Data Source
SUM)M
New View(Point)

o Intermediate (Meta)Model

<— Bidirectional /Integration Operator

Figure 5.1: SUM approach MOCONSEMI (taken and slightly adapted from Meier, Werner et al.
(2020))

The operators are shorter special model transformations, which are used to create the
initial SUM from of the existing reused data sources once and to propagate changes between
the views and the SUM afterwards on-demand. The details of the used operators are
discussed in Part 21 296 of the ongoing example for the integration of data sources into the
SU(M)M (which is presented in Part 19 176 of the ongoing example) and in Part 22209 of
the ongoing example for the definition of a new view(point) from the SU(M)M. Here, it is
sufficient to note, that all models (nodes) together with thei