
Carl von Ossietzky Universität Oldenburg

Faculty II - Computer Science, Business and Law

Department of Computer Science

An integrated environment for modeling and

deploying Digital Twins

From the faculty of Computer Science, Business and Law at the Carl

von Ossietzky University Oldenburg to obtain the degree and title of

Doctor of Engineering (Dr.-Ing.)

Accepted dissertation from

Msc. Charles Steinmetz

born on 02.05.1991 in Cerro Largo, Rio Grande do Sul (Brazil)



Evaluators: Prof. Dr. Martin Fränzle

Prof. Dr. Carlos Eduardo Pereira

Prof. Dr. Achim Rettberg

Day of Disputation: 25.09.2024

2



Acknowledgments

The journey from a small farm in a small city in Brazil to completing my PhD in Com-

puter Science in Germany has been �lled with challenges and invaluable opportunities

for learning and growth. At every stage of this journey, I have been fortunate to receive

immense support, without which this achievement would not have been possible. I would

like to express my deepest gratitude to those who have guided, encouraged, and helped

me along the way.

First, I would like to thank my supervisor, Prof. Achim Rettberg. Thank you for

giving me the opportunity to pursue this PhD, for believing in my work and abilities,

and for constantly encouraging me to persevere. Your kindness and humanity create an

environment where people feel welcome and supported�something especially important

for those entering new phases in their lives. I am also deeply grateful for your advices,

not only on academic matters but on life itself, demonstrating your unique ability to

lead and teach with compassion. Simple things, like "in Germany, we say our last name

when answering the phone," along with many other insights, were invaluable in helping

me adapt and learn. Thank you, Achim!

I would also like to extend my sincere thanks to Prof. Carlos Eduardo Pereira. Your

guidance since my Master's, countless opportunities, and invaluable advice have been in-

strumental in my growth, both professionally and personally. You have an admirable tal-

ent for connecting with people from di�erent backgrounds and recognizing their strengths.

I am always inspired by that. I deeply appreciate your mentorship over the past years

and all the opportunities you have given me.

To my parents, Telmo Steinmetz and Lisete Catarina Krein Steinmetz, my grand-

parents, João Francisco Steinmetz and Nelsi Helena Kuhn Steinmetz, Soeli and Valdir

Semprebon, and my extended family�only we know how hard it was to get here. There

is a vast gap between working with farming tools and programming a computer. I can

only imagine the di�culty you faced when advising me on whether to pursue Computer

Science or something else, and in so many other life decisions that, from a farming

perspective, seemed even harder than NP-complete problems. Thankfully, from you, I

learned the most important values, which gave me the strength to overcome the chal-

3



lenges I faced on this journey. To me, you are the real doctors I am proud of. I am

deeply grateful for your unwavering love, support, and sacri�ces. I would not be where

I am today without you.

Alyona Moskova, my girlfriend�you and your family have been my rock. You have

been my biggest supporter throughout this journey. Your unwavering love, patience, and

understanding have been my guiding light, and I am so grateful for your presence in my

life. I am so lucky to have you by my side. I love you.

A heartfelt thank you to my friends and their partners: Andre Faria, Breno Menezes,

Cintia Martins, Daniel Flores Bastos, Diego Siqueira, Henrique Martins, Laercio Antonio

Krein, Lauren Bohner, Luis Filipe Araujo Pessoa, Meher Malik, Priscila Ferreira, and

Rebeca Montenegro. You patiently listened to my struggles and were always there to

o�er help and encouragement. Your support has been my foundation. I am grateful for

your friendship and for the countless moments of joy and laughter we shared. So many

others also helped me, but I can't write another thesis only with names :/. You know

who you are, and I am grateful for your support.

A special thank you goes to Greyce Schroeder and Alecio Binotto for their signi�cant

contributions to my PhD. Without your help, this thesis and the accompanying publi-

cations would not have reached the level of quality we achieved. I am truly grateful for

your friendship and support.

To the most supportive and collaborative research group, my colleagues and friends

at HSHL: Bettina Weiÿ, Christopher Beck, Fatima Idrees, Gido Wahrmann, Katrin

Glöwing, Kathleen Strodick, Kristian Rother, Mehdi Azarafza, Narmada Ambigapathy,

Peer Adelt, Pia Arens, Prof. Stefan Henkler and your group, and many others in this

wonderful working environment. I am grateful for the countless discussions, brainstorm-

ing sessions, and collaborations that have enriched both my research and my life. I am

proud to be part of this group. Thank you, Department 2, Lippstadt, for everything.

Finally, I would like to extend my sincere thanks to all the members of my PhD

committee and the department secretary for taking the time to review and evaluate my

work. Your valuable insights and thoughtful feedback have been instrumental, and I

deeply appreciate your commitment and dedication.

4



Abstract

In recent years, advancements in digitalization technologies, such as Meta's Metaverse

and Apple's Vision Pro, have rede�ned human-computer interaction, emphasizing the

need for virtual representations of physical entities. The evolution of concepts such as

Internet of Things (IoT) and Cyber Physical Systems (CPSs), Digital twins, serving as

these virtual counterparts, optimize system performance, enhance decision-making, and

drive innovation. However, challenges remain in creating a uni�ed, extensible methodol-

ogy and ensuring interoperability across di�erent systems and stakeholders. This thesis

investigates the modeling and deployment of semantic digital twins (DTs), focusing on

their application across various domains.

The research explores �ve key areas: developing a generic and domain-independent

modeling approach, enabling parallel operation of DTs at the edge, integrating ISO 23247

and Web of Things (WoT) standards, creating semantic models comprehensible to both

machines and stakeholders, and simplifying the extension of existing applications with

DT capabilities.

A universal modeling approach, implemented on Node-RED, demonstrates the feasi-

bility of these objectives. The proposed nodes, adhering to ISO 23247 and WoT stan-

dards, enable interoperability and standardization. Implementing these models in diverse

scenarios, such as industrial and smart city applications, validates their �exibility and

extendability. The ability to execute models in parallel at the edge enhances performance

and scalability, con�rming the approach's utility in dynamic environments.

The thesis also highlights the importance of semantic modeling for better stakeholder

collaboration and machine understanding. By utilizing knowledge graphs, the developed

models facilitate accurate inferences and decision-making. However, limitations such as

the lack of real-time capabilities and version control are noted.

Overall, the proposed methodology and framework signi�cantly contribute to the �eld

of digital twins, o�ering a scalable, interoperable, and semantically rich approach to mod-

eling and deploying DTs. Future research directions include exploring machine learning

for complex system modeling, enhancing version control, applying the methodology to

new domains, and developing advanced tools for DT deployment.
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Zusammenfassung

In den letzten Jahren haben Fortschritte bei den Digitalisierungstechnologien, wie Metas

Metaverse und Apples Vision Pro, die Interaktion zwischen Mensch und Computer neu

de�niert und den Bedarf an virtuellen Darstellungen physischer Einheiten betont. Die

Entwicklung von Konzepten wie Internet of Things (IoT) und Cyber Physical Systems

(CPS), digitale Zwillinge, die als diese virtuellen Gegenstücke dienen, optimieren die

Systemleistung, verbessern die Entscheidungs�ndung und fördern die Innovation. Die

Scha�ung einer einheitlichen, erweiterbaren Methodik und die Gewährleistung der In-

teroperabilität zwischen verschiedenen Systemen und Akteuren stellen jedoch nach wie

vor eine Herausforderung dar. In dieser Doktorarbeit werden die Modellierung und der

Einsatz semantischer digitaler Zwillinge (DTs) untersucht, wobei der Schwerpunkt auf

ihrer Anwendung in verschiedenen Domänen liegt.

Die Forschung untersucht fünf Schlüsselbereiche: die Entwicklung eines generischen

und domänenunabhängigen Modellierungsansatzes, die Ermöglichung des parallelen Be-

triebs von DTs am Rande, die Integration von ISO 23247 und Web of Things (WoT)-

Standards, die Erstellung semantischer Modelle, die sowohl für Maschinen als auch für

Stakeholder verständlich sind, und die Vereinfachung der Erweiterung bestehender An-

wendungen mit DT-Funktionen.

Ein universeller Modellierungsansatz, der auf Node-RED implementiert wurde, zeigt

die Machbarkeit dieser Ziele. Die vorgeschlagenen Knoten, die sich an die Normen ISO

23247 und WoT halten, ermöglichen Interoperabilität und Standardisierung. Die Imple-

mentierung dieser Modelle in verschiedenen Szenarien, wie Industrie- und Smart-City-

Anwendungen, bestätigt ihre Flexibilität und Erweiterbarkeit. Die Möglichkeit der par-

allelen Ausführung von Modellen am Netzwerkrand verbessert die Leistung und Skalier-

barkeit und bestätigt den Nutzen des Ansatzes in dynamischen Umgebungen.

Die Arbeit unterstreicht auch die Bedeutung der semantischen Modellierung für eine

bessere Zusammenarbeit der Beteiligten und ein besseres maschinelles Verständnis. Durch

die Verwendung vonWissensgraphen erleichtern die entwickelten Modelle genaue Schlussfol-

gerungen und Entscheidungen. Allerdings gibt es auch Einschränkungen, wie z. B. das

Fehlen von Echtzeitfunktionen und Versionskontrolle.
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Insgesamt leisten die vorgeschlagene Methodik und das Framework einen wichtigen

Beitrag zum Bereich der digitalen Zwillinge, indem sie einen skalierbaren, interopera-

blen und semantisch reichhaltigen Ansatz für die Modellierung und den Einsatz von

digitalen Zwillingen bieten. Zukünftige Forschungsrichtungen umfassen die Erforschung

des maschinellen Lernens für die Modellierung komplexer Systeme, die Verbesserung der

Versionskontrolle, die Anwendung der Methodik auf neue Bereiche und die Entwicklung

fortschrittlicher Werkzeuge für die DT-Bereitstellung.
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1. Introduction

In recent years, a wave of transformative applications and technologies, such as Meta's

Metaverse, Apple's Vision Pro, and others, have begun to rede�ne the landscape of

human-computer interaction and system development. These innovations o�er immer-

sive experiences that blend the digital and physical realms, paving the way for novel

ways of communicating, collaborating, and creating. As these technologies become in-

creasingly integrated into daily life, they play a key role in the broader digitalization

movement, pushing the boundaries of what's possible in virtual spaces. This shift to-

wards more interactive and interconnected digital environments naturally aligns with the

concept of Digital Twins (DTs), which serve as virtual representations of physical enti-

ties. DTs are becoming an essential concept in optimizing system performance, enhancing

decision-making processes, and driving innovation in various industries. Together, these

advancements are not only transforming how we interact with systems but also how

systems are conceived, designed, and deployed, marking a signi�cant milestone in the

journey towards a more digitalized world.

Concepts like the Internet of Things (IoT) [AIM10] and Cyber-Physical Systems (CPS)

have tractioned the development of systems that are more connected and that can interact

with the physical world, enabling people to interact with these systems in di�erent ways

[BG11]. This is one of the key elements of Industry 4.0 [Las+14] and is the basis for the

digitalization process of application.

This Chapter aims to introduce the context of the research, the motivation (Section

1.1), a short overview of the current state of the art and the hypotheses, the goals and

contributions of the thesis, the structure of the thesis, and the publications produced

from the thesis.

1.1. Motivation

The DT concept has gotten more attention since the development of new digitalization

technologies and it has been used as a solution for applications that deal with big, dis-

tributed and isolated data [Liu+21]. Understanding what all this data means and how

1



1. Introduction

assets can be related to each other is essential for building smart systems. Additionally,

handling dynamic and heterogeneous models is still an open challenge [Sah+21]. There-

fore, adding semantics is crucial for adding meaning to the parts of the system since the

modeling phase.

The digitalization opens a new set of challenges and opportunities for the development

of systems. Data-driven approaches [BD24] and the increasing usage of AI-based solu-

tions have been changing the way systems are developed and operated. Additionally, the

advent of Generative AI [Bor+24] and Large Language Models (LLMs) has strengthened

the importance of semantics in the development of systems and the integration of di�er-

ent data sources. The use of semantics is crucial for the development of systems that can

be understood by di�erent stakeholders and that can be integrated with other systems.

Applications based on the DT concept usually involve di�erent stakeholders and di�er-

ent phases of the lifecycle of the system (as can be seen in Figure 1.1). The development

of a uni�ed methodology, modeling language, and architecture for semantic modeling of

digital twins is essential to address the complexity and diverse requirements of stake-

holders in IoT applications, ultimately enhancing the e�ectiveness and interoperability

of these digital representations [Zha24].

Figure 1.1.: Digital Twin model [Zha24].

1.2. Challenges

This section aims to give a brief overview of the current challenges identi�ed in the �eld of

digital twins and semantic modeling. A deeper analysis of the literature will be presented

in Chapter 3.

Figure 1.2 illustrates the traditional scenario of systems development. It usually starts

with the modeling phase, where the system is represented using di�erent modeling lan-
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guages and tools. These high-level representations will then be used to generate the

instances that will run in the real world.

Figure 1.2.: Challenges in the development of digital twins.

When the instances start running in the real world, the data generated by these in-

stances will be collected and analyzed. This data is then stored and used to generate

insights that will be used to improve the system. This process is usually done by di�er-

ent stakeholders, each one using di�erent tools and languages. This scenario is usually

complex and hard to manage, especially when the system is large and involves di�erent

stakeholders since the knowledge is usually distributed and isolated.

One key challenge in the development of digital twins is the lack of a common language

and approach for modeling the system. This is crucial for enabling di�erent stakeholders

to express their knowledge in a way that other stakeholders and machines can under-

stand. The lack of a common language and approach can lead to misunderstandings and

misinterpretations, which can result in errors and ine�ciencies in the system.

Additionally, modern systems must be ready to overcome the challenge of living in

silos [DJM22] [PI21], especially with the advent of AI-based solutions. The integration

of di�erent data sources and the development of systems that can be understood by

3
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di�erent stakeholders is crucial for the development of systems that can be integrated

with other systems and that can be used in di�erent domains.

As DT applications are based on the IoT concept, it is important to consider how mod-

els can run in parallel and close to the edge. This is crucial for ensuring that the models

are up-to-date and accurate, especially in dynamic and distributed environments. The

use of semantics is essential for improving the representation of the system and ensuring

that the models are comprehensible to both machines and stakeholders, particularly those

situated close to the edge of the network. Bringing the model close to the edge devices

can help to avoid misinterpretations at the higher level of the system since as soon as the

data is generated, it can be correctly modeled with all necessary semantic information.

For example, if a sensor is measuring the temperature of a machine, the data generated

by this sensor can be directly modeled with the necessary semantic information (such as

the unit in Celsius), avoiding misinterpretations at the higher level of the system.

Besides, the lack of a generic standard [YPK17] for modeling digital twins is another

challenge [ZLK22]. This makes it di�cult to develop systems that can be easily extended

and used in di�erent domains.

In this context, after understanding the motivation and the main challenges, the next

section describes a vision of an ideal scenario where the development of systems based

on the DT concept will be more accessible and collaborative.

1.2.1. Vision

The primary objective in integrating Digital Twins (DTs) seamlessly is to shift towards

technological ecosystems that are more accessible, adaptable, and collaborative. Indus-

tries aim to fully leverage DTs for operational excellence and innovation, highlighting

the need to simplify the transition of current applications to DT-enabled platforms. This

ambition extends beyond the mere technical capability for such integrations; it envisions

a scenario where diverse domains of knowledge and applications merge. Through this

convergence, the advancement into a new era of digital innovation is propelled.

In this context, the vision of this thesis is that in the near future the development of

systems based on the DT concept will be more accessible and collaborative. This vision

is based on three main aspects:

� To create a vendor-independent and cross-domain solution for helping current ap-

plications implement the DT concept with less e�ort.

� stakeholders from di�erent domains can express their knowledge in a way other

stakeholders and machines can understand.
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1.3. Research Questions and Hypothesis

� enhancing the collaboration between di�erent stakeholders and AI-based solutions.

In this context, several research questions and hypothesis have been de�ned to guide

the development of the thesis. These questions and hypotheses will be presented in the

next section.

1.3. Research Questions and Hypothesis

The foundation of this thesis is established through the de�nition of speci�c research

questions and hypotheses. These elements are intended to guide the formulation of

methodologies, the development of modeling languages, and the architectural design

for semantic modeling of digital twins. Aimed at investigating the creation of a more

inclusive, adaptable, and universally applicable framework for integrating digital twins

across various �elds, the following research questions and hypotheses have been developed

in response to the identi�ed objectives and challenges:

Research Question 1.3.1. Can a generic and not domain-speci�c approach, com-

parable to the current state of the art in semantic modeling of Digital Twins, be

developed to facilitate its application across di�erent domains and ensure its exten-

sibility?

Hypothesis 1.3.1. A universal modeling framework can be created, which,

while maintaining the depth and utility of current domain-speci�c models, of-

fers greater generic applicability and ease of extension across various industry

sectors.

Research Question 1.3.2. Is it feasible to design DTs where models operate in

parallel, close to the edge devices and are maintained by experts for each asset?

Hypothesis 1.3.2. By employing innovative strategies, Digital Twin mod-

els can be set up to function concurrently and operate on edge devices, with

maintenance and updates performed by domain experts using a standardized

language, thereby enhancing the relevance and accuracy of each model.
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1. Introduction

Research Question 1.3.3. How can the principles of ISO 23247 and the Web of

Things (WoT) be integrated into the design of digital twins to promote standardiza-

tion and interoperability?

Hypothesis 1.3.3. By embedding the guidelines of ISO 23247 and the WoT

framework into the DT design process, a standardized and interoperable model

can be achieved, facilitating seamless communication and data exchange across

di�erent platforms and devices.

These research questions and hypotheses aim to direct the thesis, towards addressing

key challenges in the �eld of digital twins, with a focus on creating a versatile and user-

friendly environment for semantic modeling and deployment.

1.4. Goals and contributions of the thesis

The main goal of this thesis is to help existing IoT-focused applications apply the Digital

Twin concept with less e�ort, enabling stakeholders from di�erent domains to express

their knowledge in a way that other stakeholders and machines can understand. This will

be achieved by developing a uni�ed methodology, modeling language, and architecture

for semantic modeling of digital twins that can address the complexity and diverse re-

quirements of stakeholders in IoT applications, ultimately enhancing the e�ectiveness and

interoperability of these digital representations. This goal will be achieved by addressing

the following research objectives:

� De�ne modeling elements that can be used to represent the structural aspects of

digital twins, addressing the diverse needs and applications of di�erent stakeholders

within IoT ecosystems.

� Develop a methodology for modeling digital twins that can be applied across dif-

ferent domains and ensure its extensibility.

� Propose a layered architecture that can help system designers structure their sys-

tems based on the responsibilities of each component.

� Design digital twins where models operate concurrently, close to the edge devices,

and are maintained by experts for each asset.
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� Integrate the principles of ISO 23247 and the Web of Things (WoT) into the design

of digital twins to promote standardization and interoperability.

� Enable the creation of semantic and connected models that are comprehensible to

both machines and stakeholders, particularly those situated close to the edge of the

network.

1.5. Structure of the thesis

The thesis is structured as follows. This chapter, the Introduction, provides an overview

of the context, motivation, research questions, and hypotheses, as well as the goals,

contributions of the thesis, and the publications produced during the development of the

thesis.

In Chapter 2, the main concepts and technologies used in the thesis are presented.

The chapter aims to provide a basis for understanding the concepts and technologies

used in the thesis, including IoT, CPS, model-based design, and semantic technologies.

The chapter also presents an overview of the DT concept, followed by a discussion of

how semantic is applied in DTs, applications and modeling approaches. Finally, as the

DT concept is still under construction, the chapter presents the de�nition that is used in

this thesis.

Chapter 3 presents the state of the art with a focus on the digital twin concept, semantic

modeling, and related technologies. The chapter aims to provide an overview of the

current state of the art in these areas, highlighting the main challenges and opportunities

for future research.

In Chapter 4, the proposed layered architecture is presented. It describes each layer

in detail, which is important to understand how to design the system in a modular way.

Chapter 5 presents the proposed modeling elements that can be used to represent the

structural aspects of digital twins. The chapter aims to provide a detailed description of

the modeling elements and how they can be combined to represent knowledge. The formal

de�nition of the model and the grammar for the modeling language are also presented.

Additionally, an overview of the implementation of the concept in Node-RED is given.

Chapter 6 presents the proposed methodology for modeling digital twins. The chap-

ter aims to provide a detailed description of the steps of the methodology and how it

can be applied across di�erent domains. The chapter also presents an overview of the

architecture and the modeling elements used in the methodology.

In Chapter 7, two use cases are presented to demonstrate the application of the pro-

posed approach in this thesis. The chapter aims to provide a detailed description of the
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use cases and how the proposed methodology, modeling elements and architecture can

be applied in practice.

Chapter 8 presents the evaluation of the proposed approach, highlighting the main

�ndings and limitations of the research. The chapter aims to provide an overview of the

evaluation process and the results obtained.

Finally, Chapter 9 concludes the thesis, summarizing the key �ndings and contribu-

tions, and outlining potential future research directions.

1.6. Publications produced during the develop of the thesis

Also as a form of validation and opportunity for discussions and feedback, several publi-

cations have been produced from the content of this thesis. Below, the list of publications

with their main contributions are listed.

� An IoT-based ontology for DTs has been proposed in [Ste+18b]. The use of on-

tologies and standard middleware for integration IoT systems in the context of

Industry 4.0 have been explored in [Ste+18c]

� Applications and product-as-a-service based on DT have been explored in [Ste+21a]

and considering the interaction with di�erent users/stakeholders in [Ste+20].

� The proposed architecture and the key components for modeling DTs have been

presented in [Ste+21b]. A study of the use of Hierarchical Colored Petri Nets has

been conducted in [SSR22]. The connectivity topologies for building DTs have been

proposed in [Sch+21a].

� The basis for the proposed methodology has been discussed in [Sch+21b] and ex-

tended in [Ste+22a], and support for Knowledge graphs using Node-RED have

been presented in [Ste+23]. The use of Node-RED for implementing Digital Twins

focused on the autonomous driving and smart city context was done in [Ste+22b].

� Finally, the overall concept of this thesis has been presented in the PhD Forums at

DATE 2023 and DAC 2023.
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This chapter aims to give an overview of the foundations of the research. It starts by

discussing the IoT and its relation to CPS. Then, it presents the Industry 4.0 and its

relation to the previous concepts. After that, it discusses the Model-based Design and,

then, it presents the concept of semantic models and knowledge graphs, and their relation

to the previous concepts.

2.1. Internet of Things

The Internet of Things (IoT) was �rst introduced by Kevin Ashton in 1999, who de-

scribed IoT as a network of objects that are uniquely identi�able and interconnected

through radio-frequency identi�cation (RFID) technology, enabling them to communi-

cate [Ash+09]. Nevertheless, the precise de�nition of IoT remains under development,

evolving based on the various perspectives considered [LXZ15].

IoT is distinguished by the utilization of interconnected devices that integrate physical

components, software, and embedded technologies. These components are capable of

interacting and collaborating with one another to achieve a uni�ed goal [AIM10]. This

enables these devices to produce, share, and use data with little to no human involvement

[REC15].

As outlined by [AIM17], there are three primary evolutionary stages of IoT (Figure

2.1): (a) the era of tagged objects, focusing on the identi�cation and tracking of physical

items; (b) the era of device interconnectivity through web technologies; and (c) the era

of social objects, which emphasizes semantic data representation and the integration

of cloud technologies, facilitating more sophisticated interactions and data management

within the IoT ecosystem.

An important point to consider in the adoption of IoT is the heterogeneity of its system

components [AIM10]. It's essential that interoperability is ensured to facilitate service

provision and data exchange. Addressing this challenge involves the implementation

of middleware that acts as a communicative bridge between devices and applications,
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Figure 2.1.: Evolution of the IoT [AIM17]

enabling interaction across various devices, operating systems, and architectural frame-

works [Far+17].

Nowadays, IoT is being used in several domain areas such as smart cities, smart homes,

smart healthcare, and smart agriculture. Figure 2.2 shows the use of IoT in di�erent

domains.

These applications are not always isolated in a single domain and they can impact

other domains. For example, a smart city application can impact the smart healthcare

domain, as it can provide data for the healthcare system to make decisions. This opens

a new set of challenges and opportunities for the development of systems that are not

isolated in silos.

The IoT concept works as a basis for the development of Cyber-Physical Systems

(CPS), connecting the physical world and the cyber world. More details about CPS are

given in the next section.

2.2. Cyber Physical Systems

Cyber-Physical Systems (CPS) are systems that link computer-based algorithms with

physical processes. Through embedded computing devices and networks, these systems

actively monitor and manage physical operations, creating dynamic interactions where

the physical state in�uences the computation and vice versa. This interdisciplinary �eld

necessitates innovative computing and networking solutions to address its inherent com-
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Figure 2.2.: IoT in di�erent domains ©IoT Now
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plexities, including safety and timing constraints, across a wide range of applications like

transport systems, healthcare monitoring, and infrastructure control [Lee08]. It inte-

grates the acting ability of the real world with the intelligence and computational power

of the cyber world, enabling the development of smart systems that can adapt to changing

conditions and optimize their performance.

Figure 2.3 illustrates a simpli�ed architecture of a typical CPS, which contains two

main layers: the physical where sensors and actuators are located; and the cyber where

the software part is hosted. The usual �ow is that measurements are taken from the

physical layer and sent to the cyber layer, where they are processed and used to control

(via commands) the physical layer. This interaction is what makes CPS a unique �eld,

as it requires the integration of both layers to work properly. The seamless operation of

these components within a uni�ed architecture is essential for the functionality of CPS,

enabling sophisticated applications such as autonomous vehicles and real-time patient

monitoring systems [Son+16].

Figure 2.3.: Simpli�ed CPS Architecture

The authors of [LS16] describe CPS as integrative mechanisms that orchestrate com-

putation with physical processes. Through this integration, CPS enables real-time mon-

itoring, control, and analysis of the physical world via cyber infrastructure. They also

provide a foundational understanding of CPS, emphasizing their role in enhancing inter-

action between digital and physical domains across various sectors, including healthcare,

transportation, and manufacturing.

CPS systems are pivotal in the development and advancement of various other tech-

nologies such as smart vehicles, autonomous driving in urban environments, and medical

devices controlled by brain signals. CPS requires a multidisciplinary approach, blending
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insights from system science, engineering, networking, software, and human interaction to

foster the creation, integration, and e�cient operation of these complex systems [BG11].

CPS presents several challenges such as the complexity of CPS due to their intrinsic

heterogeneity, concurrency, and timing sensitivity. The authors of [DLV11] highlight

that hybrid system modeling, concurrent and heterogeneous models of computation,

domain-speci�c ontologies, and the joint modeling of functionality and implementation

architectures can help to address these challenges.

The adoption of CPS raises critical ethical and societal questions, particularly concern-

ing privacy and the potential displacement of jobs due to automation. The ethical use

of CPS, especially in sensitive applications such as personal health monitoring, requires

careful consideration of privacy concerns and the development of stringent data protec-

tion measures. Moreover, policy frameworks that balance technological advancement

with societal values are essential for ensuring the equitable distribution of CPS bene�ts

[Hum+17]. This also highlights the need for bringing models closer to the physical world,

avoiding misuse or misunderstanding of data at the higher levels of the system.

The integration of the physical and the cyber world is a key concept in the Industry

4.0 domain [Jaz14]. A deeper overview of the Fourth Industrial Revolution is given in

the next section.

2.3. Industry 4.0

The concept of Industry 4.0 was �rst introduced in 2011 through a collaborative e�ort by

the German government, universities, and private entities, aiming to advance manufac-

turing systems to bolster the productivity and e�ciency of the country's industrial sector

[KWH+13]. This initiative signi�es a transformative phase in manufacturing, incorporat-

ing emerging and converging technologies to enrich the entire product lifecycle [Dal+18].

Additionally, it calls for a socio-technical shift in the role humans play within production

systems, moving towards smart working practices across the value chain, all rooted in

the foundations of information and communication technologies (ICTs) [Sto+18].

Industry 4.0 marks a huge shift in manufacturing, propelled by IT advancements that

integrate digital technologies with physical production processes. This convergence fos-

ters a move from product-centric to service-oriented models within traditional industries,

potentially leading to the emergence of new business types that play specialized roles in

the manufacturing and value creation networks. The development and management of

these complex, dynamic, and integrated systems present both a signi�cant challenge and

opportunity for the Business and Information Systems Engineering (BISE) discipline,
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aiming to enhance the competitiveness of industrial enterprises through innovative inte-

gration, automation, and decentralization strategies [Las+14].

This concept touches di�erent knowledge areas such as Automation, CPS, Cloud com-

puting, IoT, the Internet of People, Digital Twins, Semantic technologies, Smart products

and more. It is a complex and multidisciplinary �eld that requires a deep understand-

ing of the physical world and the digital world, and how they interact with each other

[Gho20]. Figure 2.4 shows an architectural design of Industry 4.0.

Figure 2.4.: Industry 4.0 Architectural design: [Gho20]

To build applications in this new industrial revolution, it is important to have a good

understanding of the system in early development stages, enabling early design validation,

and facilitating complex simulations, optimizing resource allocation. This is where the

Model-based Design comes in. The next section presents an overview of this concept.

2.4. Model-based Design

Model-Based Design (MBD) is a systematic approach to engineering that uses virtual

models for the design, simulation, veri�cation, and validation of complex systems and

products. Central to MBD is the use of mathematical and visual models as the foundation

of all phases of development, from conceptual design through to implementation. This
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methodology enables engineers to explore and re�ne systems in a virtual environment,

signi�cantly reducing the need for physical prototypes and accelerating the development

process. By facilitating early detection of design issues and supporting system-level opti-

mization, MBD enhances product quality and development e�ciency. The core principles

of MBD include abstraction, where complex system behaviors are represented in simpli-

�ed forms; automation, enabling automatic code generation and testing; and veri�cation,

ensuring the model meets speci�ed requirements before physical realization [Eke+03].

The adoption of MBD across various industries, including automotive, aerospace, and

electronics, has been instrumental in addressing the challenges of designing complex sys-

tems. Tools and standardized languages such as MATLAB/Simulink [Cha17], Modelica

[Til01], and UML (Uni�ed Modeling Language) [BRJ97] play a pivotal role in MBD by

providing environments for simulation, model veri�cation, and automatic code genera-

tion. They support the MBD methodology by allowing for the iterative re�nement of

models, integration with legacy systems, and the simulation of system behavior under dif-

ferent scenarios. The bene�ts of employing MBD extend beyond development e�ciency

to include improved system reliability, faster time-to-market, and enhanced capability

to handle increasing system complexity [Lee08]. As such, MBD represents a paradigm

shift in engineering design, moving away from traditional document-based approaches to

a more integrated and holistic model-centric methodology.

MBD approach o�ers numerous bene�ts compared to traditional methods such as early

validation and veri�cation through simulation, allowing engineers to identify and address

potential issues early in the design phase [FM08]. Additionally, it facilitates downstream

activities such as automated programming of tools and equipment, ultimately leading to

improved product quality, reduced development time, and enhanced cost-e�ectiveness.

While model-based design provides a framework for visualizing, simulating, and val-

idating system designs and behaviors, semantic modeling takes this a step further by

adding a layer of meaning to the models. It focuses on the relationships and data within

these systems, enabling a deeper understanding of how components interact and the

signi�cance of these interactions. The next section presents an overview of semantic

models and knowledge graphs, highlighting their role in enhancing the capabilities of

model-based design and digital twins.

2.5. Semantic models and Knowledge graphs

While semantic modeling provides a foundation by de�ning relationships and meanings

within data, knowledge graphs build on this by creating an intricate network of inter-
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connected information. This allows for a more nuanced understanding and utilization

of data, facilitating advanced analysis and insights. In essence, knowledge graphs ex-

tend the capabilities of semantic modeling, o�ering a powerful tool for synthesizing and

leveraging knowledge across various domains.

Knowledge graphs have been gaining popularity since 2012 when Google announced

that they were using it in their search engine, and since then it has gotten several de�-

nitions published in literature [EW16].

They can be de�ned as an interlinked set of concepts that describe things from the

real world such as entities, events, and their relationships within a context that is under-

standable by humans and machines [BHW21].

In [Wan+17] a knowledge graph is de�ned as a multi-relational graph where entities

are represented as nodes and relations as edges that connect two nodes. Figure 2.5 shows

an example of two nodes (dog and animal) and their relationship (is).

Figure 2.5.: Example of two nodes and one edge: dog is animal

This form of organizing data can be found in many services of companies around the

world. Uber Eats, for instance, uses graph technology to learn which food is more likely

to appeal to a speci�c user [Jai+22].

As a Knowledge graph can be used to describe things from the real world, this tech-

nology has also been used in IoT applications, making lots of connected devices easily

discoverable via semantic queries [Le-+16]. It has also been applied to solve the hetero-

geneity problem of the di�erent devices that might be connected via the IoT [Xie+21].

There are several databases available in the market nowadays that support knowledge

graphs [FB18] such as Neo4j, TypeDB, and others. Neo4j [Neo22], for example, stores
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the connections between data nodes which enables e�cient queries in Cypher language

to be executed.
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2.6. Digital Twin

This section presents the concept of DT and its applications. It also presents the modeling

and deployment of DT systems. Finally, a de�nition of DT is presented for this thesis.

2.6.1. Concept

The Digital Twin concept can be seen as an evolution of the IoT and CPS. IoT enables

the connection of physical objects to the internet, while CPS connects physical and com-

putational systems. The Digital Twin concept goes beyond these concepts by creating

a virtual representation of observable assets from the real world, enabling, for example,

the simulation of its behavior and the prediction of its future states. This virtual repre-

sentation is continuously updated with real-world, enabling the monitoring and control

of the physical object [AIA22].

This concept has been applied in di�erent areas, as for example, to manage the Product

lifecycle [Gri14]. In 2010 the National Aeronautics and Space Administration (NASA)

started investigating this concept and in 2012 they reviewed and de�ned it as a �mul-

tiphysics, multiscale, probabilistic, ultra �delity simulation that re�ects the state of an

asset", composed by current and historical data and physical models [GS12]. Later, in

2017, Grieves formally de�ned the concept of a digital twin in a white paper, where he

introduced the fundamental model of digital twins. This model encompasses physical

objects, their virtual counterparts, and the data connection that bridges the physical

and virtual realms [GV17]. Figure 2.6 shows the timeline of the DT concept proposed

by the authors of [Zha24].

Digital Twin can also be seen as a set of virtual information that mimics the structure,

context, and behavior of an asset or group of assets. It is dynamically updated real-

world data from its physical twin during its whole life cycle, informing decisions that

bring value [AIA22].

In [RSK20], authors de�ne DT as a virtual representation of a physical asset that,

via data and simulators, enables prediction, optimization, monitoring, controlling, and

improvements of decision-making. The virtual representation should be continuously

updated with real-world data.

It is possible to notice that the concept of DT is still under development and research,

and there is no single and unique de�nition that de�nes this concept and is agreed upon

by the community. Therefore, it is expected that di�erent contributions will be made

aiming to construct a global understanding of this new digitalization approach.
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Figure 2.6.: Digital Twin timeline [Zha24]

Within the Digital Twin concept, a specialized subset known as the Cognitive Digital

Twin incorporates Arti�cial Intelligence, emphasizing the critical role of semantic models.

The following section will provide a concise overview of this concept.

2.6.2. Cognitive Digital Twin

Currently, there is a move in research from traditional Digital Twins to Cognitive Dig-

ital Twins (CDT) [DAm+22]. Figure 2.7 shows this advent where authors are adding

semantics to Digital Twins.

Figure 2.7.: Searches for Digital Twin [DAm+22]

The concept of the Cognitive Digital Twin has been introduced as a solution to the

challenge of integrating di�erent domains, enhancing digital twins with advanced se-
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mantic capabilities [Jin+22]. CDT serves as a comprehensive digital counterpart and

intelligent partner to its physical twin, encompassing all subsystems and spanning every

phase of its life cycle and evolutionary stages [Adl16].

The CDT is a specialized subset of the Digital Twin concept that incorporates AI

and emphasizes the critical role of semantic models. It uses AI to learn from the data

generated by the DT and other sources to improve its performance and decision-making

capabilities. It can also be used to predict future events and optimize the operation of

the system [ZLK22].

This subset of DT has a big synergy with the proposal of this thesis, since both deals

with the use of semantics to improve the performance of the DT. In the next section,

some of the main applications of DT are presented to better understand how this concept

is used and its potential.

2.6.3. Digital Twin de�nition for the thesis

As it was possible to see, the DT has been the focus of research by many researchers in

academia and industry. However, no single and unique de�nition still de�nes this concept

and is agreed upon by the community. One of the reasons is that the concept is still

under development and research; therefore, it is expected that di�erent contributions will

be made aiming to construct a global understanding of this new digitalization approach.

This thesis also contributes with a de�nition, which is partly extracted from the litera-

ture and other parts de�ned by the author's experience and point of view. It is important

to de�ne how the digital twin is understood to have a better comprehension of the next

chapters of this work.

Figure 2.8 shows the main elements and how they interact with each other to form a

DT representation.

An asset represents an instance of the real world that can be observed. An asset

can also be composed of other assets. For example, a car is an asset, and its engine is

another asset. Assets have properties, which can be de�ned directly or indirectly (e.g.

through data fusion) by sensor readings. For example, an engine can have one or many

temperature sensors that provide the temperature of this observable element or part of

it.

Assets can also perform actions that enable them to interact with the real world. For

example, a car's engine can be turned on or o�. Actions can impact other assets as well,

and not necessarily the asset performing the action. Events can be generated by the

asset or by the environment. For instance, a car can generate an event when its engine
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Figure 2.8.: Digital Twin conceptual diagram

is turned on. Actions and events can trigger each other and cause changes in the asset's

state (properties).

Additionally,models represent the asset from di�erent perspectives, such as behavior,

geometry, and context.

In this context, a DT is a combination of models that represents an observable asset

from the real-world (device, process, or anything that can be observed) in di�erent per-

spectives (behavior, geometry -3D models-, . . . ), is continuously updated and can interact

with the real-world. It can enable simulations, and learning mechanisms and track the

whole life-cycle of an asset.

21





3. State of the Art

This chapter presents the most related works in the literature, with the aim of identifying

the main contributions of this thesis. The related works are divided into sections based

on their areas. An analysis comparing these works with the thesis is shown at the end

of this chapter.

3.1. Internet of Things technologies and applications

As already discussed in previous chapters, the Digital Twin concept is built on top of the

IoT, enabling a new interaction paradigm between the cyber and the physical world. In

this context, this section presents the state of the art related to IoT, technologies and its

applications.

There are many �elds of application for IoT, such as Healthcare, Manufacturing, Smart

cities, Agriculture, Smart homes, and more [ARJ19] [Ans+21]. Figure 3.1 illustrates some

of the applications areas of this concept.

Figure 3.1.: Taxonomy of IoT applications (adapted from [ARJ19])

This variety of application domains shows, on the one hand, the importance of this

concept, but on the other hand, it brings several challenges, such as interoperability, dis-
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coverability, data representation and storage, integration, etc., that need to be addressed

[Niº+20] [Man+22] [Niº+20].

Addressing the semantic issues of most available approaches in the literature, the the-

sis of [Thu22] proposes a semantic extension to the Node-RED tool in the context of

Industrial automation and IoT applications. This extension incorporates semantic de�-

nitions, particularly those from iot.schema.org, into Node-RED to address the challenge

of semantic interoperability in IoT applications.

The main goals of this work are:

� To guide non-experts in semantic technologies, including device vendors and ma-

chine builders, in con�guring device semantics consistently within IoT applications.

� To enable engineers and IoT application developers to design and develop seman-

tically interoperable IoT applications with minimal e�ort, ultimately enhancing

the ease of creating applications that can work across di�erent vendor devices and

ecosystems.

� To accelerate the application development process by introducing semantic appli-

cation templates, referred to as "Recipes," which automate complex tasks such as

skill matching between Recipes and existing components, facilitating the creation

of complex IoT orchestrations.

The outcomes of the work [Thu22] have been used as a basis for the present thesis,

which also aims to provide a semantic-based approach for modeling systems. However,

this thesis extends that work by providing a concept of digitalizing real-world systems

and assets with an emphasis on a common language and methodology that di�erent

stakeholders can use to express their knowledge.

In the agriculture �eld, the IoT concept is also applied to help evaluate soil state,

atmospheric conditions, control and monitor variables such as temperature, humidity,

vibration, or shocks during the transportation of products [Tal+17]. This paper sug-

gests that while current IoT solutions in the agriculture domain rely on heterogeneous

components and wireless sensor networks, future advancements may pivot towards cloud

services and improved connectivity to realize a more integrated IoT ecosystem, which

highlights the need for a common semantics to integrate these data sources.

In the Smart City context, several researches on IoT have been made exploring how

to improve quality of life of the society [Sye+21]. The paper [Gha+21] explores the

transformative potential of AI and IoT in fostering smart healthcare system within smart

cities. By examining the application of sensor networks, IoT, and machine learning, the
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study reveals their crucial role in enhancing disease diagnosis and alleviating the burdens

on healthcare professionals. The research anticipates a future where even everyday health

items are IoT-enabled, contributing to signi�cant improvements in quality of life and

lifesaving capabilities. The authors highlight that the integration of smart technologies is

not just an opportunity but a requisite for all healthcare stakeholders, aiming to optimize

smart city living and improve the healthcare experience through AI innovations. This

shows the need of having approaches for semantic modeling that integrate knowledge

from di�erent applications and stakeholders.

The IoT works as a basis for the DT implementation, and, therefore, the reviewed

papers in this section will help to understand the path in which the next steps have to

be taken. In the next section, several research works related to DT topic are discussed

in detail.

3.2. Digital Twin applications and models

Digital Twins are virtual instances of real-world assets. They can be represented in

di�erent perspectives (in other words, models), and are continuously interacting with

their physical twin. This section presents some of the most related research available in

the literature.

The authors of [RSK20] present a comprehensive review of the bene�ts and challenges

associated with modeling digital twins. It highlights values such as real-time monitoring,

optimization, and enhanced decision-making while highlighting the challenges of data

integration and scalability. However, the paper's exploration of the critical role of se-

mantics in digital twins is somewhat limited. While it acknowledges the importance of

accurate and meaningful data representation, a deeper analysis of semantic modeling

(essential for ensuring the contextual relevance and interoperability of digital twin data)

is still needed. This gap highlights a promising area for future research, particularly

in developing semantically-rich digital twin models that can more e�ectively mirror the

characteristics of their physical counterparts.

In the industrial context, DT models are being used for di�erent purposes, such as

focusing on production, predictive maintenance, and after-sale services. Implementation

challenges in digital twin models can be identi�ed, particularly in extending their role in

various application domains. A more detailed exploration of semantic modeling would

enrich the understanding of how DTs can accurately represent complex industrial sys-

tems and processes, ensuring more e�ective interoperability and contextual relevance in

industrial settings [MDR20].
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Modeling DT is the focus of several researchers, especially in the context of Industry

4.0 [JU20][RSK20]. However, other researchers still point out that standards for modeling

and deploying DTs are still needed [YPK17]. In this section, some of the related works

are presented.

Di�erent models can be used for modeling DTs. One well-known industrial modeling

language is AutomationML (Automation Markup Language - AML). This language has

been used in a methodology for modeling data exchange for digital twins [Sch+16]. Fur-

thermore, it has also been used for modeling DTs in several other researchers [Sie+18],

[UWQ17] and [ZYW20].

Models can have relationships between them called dependencies. These dependencies

show the process taken to create a solution, and they help to understand the implications

of changes at any point of the process [BCT05].

Semantics are an important feature when knowledge has to be added to the model

or to de�ne relationships between elements [Xu+15] [Ste+18a]. Also in this context,

a methodology based on ontologies uses the concept of part digital twin for supporting

suppliers and assembly workshops[Bao+22].

Currently, there is no universally agreed-upon approach for Digital Twin (DT) model-

ing. Previous research has not fully encompassed the �ve key dimensions of DTs: physical

component, virtual component, data, connectivity, and service modeling. Consequently,

there is a signi�cant need for more generic and comprehensive modeling methodologies

and processes since modeling is the core of DTs [Tao+18].

3.2.1. Asset Administration Shell

In the context of digitalization in Industry 4.0, the Asset Administration Shell (AAS)

[Mar+18] has been proposed. It consists of a set of submodels that contain information

about a given asset, providing a virtual representation of this object. Figure 3.2 shows

the AAS structure from a high-level point of view.

It is possible to see that the AAS also uses the idea of model composition (in the

body section) for representing an industrial asset. Each model is composed of a set of

properties that can be monitored from the real world. This is a common point with

the thesis, since, as explained in the DT chapter, its concept de�nition is based on the

combination of di�erent models that represent an observable asset.

The AAS is mainly used in the manufactory context. The autors of [TA17] propose

combining World Wide Web Consortium (W3C) speci�cations with Plattform Industry

4.0 guidelines to standardize communication interfaces and enhance CPS interoperability

using asset administration shell. This approach aims to achieve interoperability between
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Figure 3.2.: AAS structure from a high-level point of view [CS20]

Industry 4.0 components and the IoT. The paper demonstrates the application of this

structure in a use case involving the adaptation and remote maintenance of a production

robot. In this research, stakeholders with di�erent backgrounds and knowledge were not

considered, which is a common fact when talking about system integration and the new

industrial revolution.

There are technologies that support the implementation of AASes. Motivated by

the large amount of computational resources AAS needs to be implemented, the paper

[PBD21] presents a review of open-source solutions available in the literature and market,

introducing a methodology on how to combine AAS and OPC-UA for achieving global

communication and semantic interoperability. The authors claim that their approach

can signi�cantly reduce the resources needed for this implementation, enabling it to run

on some embedded devices.

AAS has a similar idea as the one provided by this thesis; however, the proposed ap-

proach aims to be generic enough to allow designers to model any part of the system, from

the physical devices up to the processes and work�ows, using the same modeling language.

Therefore, it might not o�er the �exibility needed to seamlessly connect with varied ex-

ternal stakeholders, who may use heterogeneous systems, protocols, and vocabularies,

potentially hindering interoperability and collaboration across di�erent ecosystems.

When implementing complex systems, with many components and relationships be-

tween them, it is important to organize the system's parts by responsibilities. This is

usually done via a de�nition of an architecture. The next section will present the main

related works that discuss the use and de�nition of architectures in IoT and DT.
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3.3. IoT and DT architectures

IoT architecture encompasses an array of components including physical objects, sen-

sors, actuators, and developers, along with cloud services, various communication layers,

user interfaces, business frameworks, and speci�c IoT protocols. Due to the extensive

range of objects connected to the internet, there is no universally accepted standard for

IoT architecture. Various researchers have proposed di�erent architectural frameworks,

re�ecting the diverse nature of IoT applications [Jab+20].

Some of the most common IoT architectures are composed of 3 and 5 layers. Figure

3.4 shows one example of these common architectures.

Figure 3.3.: 3 and 5 layers IoT architectures [CS20]

The 2 approaches di�er basically only on the level of detail. The 3-layered one contains

only the main parts of an IoT system whereas the 5-layered one divides the application

layer into processing, application and business layers.

Architectures with 4 layers are also common in the IoT context. The authors of [SRP20]

proposed a 4-layered architecture based on blockchain technology. The main goal was

to enable a secure and distributed IA system. In this work, the four layers are Device

intelligence, Edge Intelligence, Fog intelligence and Cloud intelligence. This approach can

be reused in other works where distributed systems are needed, for example, distributed

DTs.

In the industrial context (IIoT), architectures are also de�ned focusing on connect-

ing industrial equipment for data acquisition, exchange and analytics. The research of

[Qiu+20] highlights the signi�cant role of edge computing in IIoT, particularly in reduc-

ing decision-making latency, conserving bandwidth, and enhancing privacy. The paper
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discusses the advantages of edge computing in IIoT and suggests a prospective architec-

tural framework for the future. The proposed architecture is divided into 3 layers: The

device layer (containing the physical devices), the Edge layer (that enables the cyber and

physical to interact) and the Cloud Application Layer (that contains the applications).

Several initiatives to standardize DTs have already been proposed [Wan+22]. The Ref-

erence Architectural Model Industrie 4.0 (RAMI 4.0) [HR15] provides a three-dimensional

layer model that describes aspects of the fourth industrial revolution. Some aspects of

this standard are commonly shared with the proposed approach in this thesis such as

the six layers to describe the composition of a machine as well as the use of semantics to

enable interoperability between cross-vendor assets.

Based on the RAMI 4.0, the work [Ahe+21] proposes a concept of Digital Twin as a

Service (DTaaS). The Digital Twin reference architecture model presented in this con-

text is a multi-layered, three-dimensional structure, simplifying complex interrelations

into more manageable segments. This model leverages the DIKW (Data, Information,

Knowledge, Wisdom) matrix but can bypass its linear hierarchy if necessary, using smart

sensors, IoT, Big Data, and cloud computing to achieve autonomous actions. This ap-

proach is demonstrated in the application of DTaaS for predictive maintenance, where

an API is used to integrate DTaaS outcomes directly.

Figure 3.4.: A Digital Twin Reference Architecture Model in Industry 4.0 [Ahe+21]

An expansion of the original de�nition of DT from the manufacturing context has been

presented in [MLC20] including developments in augmented and virtual reality, multia-

gent systems, and virtualization. This analysis identi�es an extensive set of DT features,

emphasizing the 'softwarization' of physical objects. The article proposes foundational

properties to establish a shared, consolidated de�nition of DT, focusing on its essential
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characteristics. It then explores the technical and business value of DT, discussing its

applicability and opportunities in di�erent scenarios. The article illustrates this through

four application scenarios, demonstrating the practical use of DT. These scenarios also

provided a generic DT architectural model that is based on software architecture models

and guidelines.

Another important aspect when implementing DT and IoT applications is the sup-

porting technologies that help users realize their solutions. The next chapter presents

related works in this context.

3.4. Digital Twin and IoT technologies

For developing DT and IoT applications, several technologies have been proposed by

private companies and open-source communities to facilitate the development of IoT

applications. New methods, tools and technologies have been proposed private companies

and open-source communities to facilitate the development of IoT applications. Microsoft

proposes Azure Digital Twin [Mic21]. It is a platform that enables users to create IoT

applications and modeling elements of the system and their relationships. They provide

a modeling language called Digital Twins De�nition Language (DTDL) which is used

to import/export models. This platform also supports the monitoring of data streams

coming from the physical world into the cyber world, as well as it has a querying feature

to run against the model.

Another possible option available in the market is the AWS IoT TwinMaker [Ama22].

It o�ers features to integrate 3D models to the platform which can be useful for use

cases like smart buildings, production lines, factories, and other use cases this kind of

visualization is helpful.

Node-RED [Nod22] is also a well-known platform in the IoT area. It provides a high-

level programming tool (or so-called low-code) that allows connecting hardware devices,

APIs, services and applications. It provides a graphical user interface with nodes that

can perform a speci�c task. It is possible to connect nodes to each other, allowing them

to exchange messages. Flows can also be built to orchestrate parts of the system.

Additionally, Node-RED can run on devices such as a Raspberry Pi, which allows it

to work directly on edge devices. In this context, the same technology, standard and

methodology can be used for edge devices up to the high level of the whole system.

However, Node-RED has limitations regarding adding semantics to the model. This

feature is important when it comes to analyzing and extracting information from the

model and avoiding applications to work in silos.

30



3.5. Digital Twin methodologies

Several supporting approaches and tools have been provided for enabling DTs [Qi+21].

Figure 3.5 shows some of the available technologies in this context, divided into four

categories of models: Geometric model, Physical model, Rule model, and Behavioral

model.

Figure 3.5.: Enabling technologies for DTs [Qi+21]

While it covers the technological and tool-based enablers extensively, a more thorough

exploration of how these technologies handle the semantics of the data they process would

provide a more holistic understanding of the challenges and solutions in the �eld of DTs.

Therefore, a methodology for guiding users can be necessary to create a standardized

model.

3.5. Digital Twin methodologies

Methodologies are developed for several reasons such as providing structured frameworks

for tackling complex tasks, ensuring standardization, consistency, and the incorporation

of best practices across di�erent projects. They play a crucial role in risk management,

and quality control, and facilitate e�cient knowledge transfer. Additionally, methodolo-

gies are adaptable since they can continuously evolve based on feedback and changing
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needs. This evolution can bring innovation and e�ective problem-solving within a de�ned

and e�cient framework.

Implementing DTs can also be a complex task, and, therefore not only requires method-

ologies to support the implementation but also need that these methodologies are con-

tinuously updated and improved. Several methodologies have already been developed in

the context of DT, as can be seen in [PM23].

A �exible and generic methodology, based on model-driven engineering, for designing

DTs is proposed in [Sch+20]. The approach is divided into two steps: �rst, a DT is

de�ned as a composition of components that provide basic functionalities like storage,

communication, identi�cation, data management, HMI, simulation and security. Then,

it is possible to de�ne the DTs by aggregating them with other DTs.

While the work of [Sch+20] and [Sch+16] uses AutomationML to implement their

methodology, this thesis extends this methodology and adds generic modeling elements

to de�ne the structure of the digital representations.

Considering the need for �exibility, the authors of [Sto+21] explore �exible manage-

ment methods to handle this complexity e�ciently. It discusses the challenges in engi-

neering and managing DTs and proposes conceptualizing methods and tools supporting

the entire DT lifecycle. They introduce the FA3ST toolkit, a generic and �exible ar-

chitecture for DT management. This toolkit is designed to integrate with existing DT

frameworks and Industrie 4.0 standards like AAS, OPC UA, and AutomationML. Addi-

tionally, the paper highlights the need for DT ecosystems to support sustainability and

resilience in supply chain networks, suggesting future DT architectures and tools should

align with initiatives like GAIA-X to maintain control over DT usage.

In [Qam+21] the authors introduce a methodology for DT development in manufac-

turing, grounded in the System Development Life Cycle (SDLC) process. The object-

oriented paradigm is used to provide capabilities such as scalability and extensibility.

Similarly to [Sch+20], the authors also use the approach of having a �rst step to de�ne

the devices of the physical world and a second step to aggregate this representation with

others, forming a combined twin.

It is possible to identify that there are several approaches proposing methods for im-

plementing DTs. However, most of the approaches are isolated and use-case-speci�c,

making it di�cult to extend or use in di�erent domains. For enabling di�erent domains

to interact and exchange information in a clear way, the use of semantics plays a crucial

role. The next section will present related works that use semantics in their approaches.
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3.6. Semantic models and data speci�cation

Semantics in designing models is important because it brings clarity, precision, and con-

text into the representation of a system. It helps to de�ne clear meanings for system

elements and their relationships. Semantics ensures a common understanding among all

stakeholders. This is also applicable when mapping real-world applications into system

models [BR23].

Using semantics can also facilitate the integration of di�erent applications and data

sources. The research of [Jia+23] explores the application of DTs and web semantics

for controlling building �re protection (BFP) systems. It highlights the use of data

fusion and various control mechanisms derived from these technologies. A speci�cally

designed BFP ontology serves as the semantic model for fusing static building geometric

information with dynamic sensor data. This information is integrated into a DT data

model, representing a virtual mapping of the physical space. To ensure intelligent control

and synchronization between the DT data model and the physical environment, rule and

process models are developed.

The authors of [Yan+23] introduce a meta-model-based method for constructing shop-

�oor digital twins, using an architecture based on RAMI 4.0. This meta-model o�ers

new ways to describe manufacturing resources and their status. The proposed shop-

�oor DT architecture involves three core components: 1- constructing the meta-model;

2- data modeling (including data interactions between cyber and physical spaces), and;

3- developing various integration-level models for the shop-�oor DT, guided by iterative

feedback between model demands and development.

Ontologies can also be used to model and represent knowledge. The authors of

[Göp+21] explore the use of ontologies for specifying industrial components in the man-

ufacturing domain. The paper provides a pipeline for modeling and deploying digital

twins based on ontologies. This approach goes in a similar direction as the present the-

sis, however, it does not deal with a fully connected model with the real application.

Additionally, the work provides a solution for a speci�c use case (manufacturing), while

this thesis proposes a generic approach that aims to combine di�erent assets' perspectives

(domain-speci�c models) into one single model.

Numerous studies have explored the incorporation of semantics in DT models, yet these

tend to be domain-speci�c and lack a standardized methodology applicable across various

domains. This limitation presents a signi�cant challenge for future applications aiming

to interconnect diverse applications. Consequently, there remains a pressing need for
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innovative approaches, particularly in terms of facilitating integration among stakeholders

from varied backgrounds and with distinct knowledge bases.

3.7. Discussion of the state of the art

The state-of-the-art is rich in diversity and innovative ideas regarding the topic of the

digital twin, its design and implementation. It is possible to see, that there is a natural

evolution from IoT concept, architecture and applications towards the concept of digital

twin and the use of semantics for creating these virtual replicas. Similar to IoT, the DT

is applied in a variety of areas, and, therefore, touches a heterogeneous group of users

and stakeholders.

These varied applications also bring forth challenges in interoperability and data inte-

gration, emphasizing the need for standardized, semantic-rich approaches. The thesis by

Aparna, which proposes a semantic extension to Node-RED for IoT applications, partic-

ularly in industrial automation, aligns well with these challenges, o�ering insights into

the importance of semantic interoperability and ease of application development across

diverse IoT ecosystems.

Still in the industry 4.0 context, the AAS is a well-known standard and, as mentioned

before, it has several similarities to this work. However, as it is speci�cally designed for

industry 4.0 applications, it can be complex for users without deep knowledge of the

standard to realize their models.

Furthermore, the majority of existing approaches tend to focus on a single facet of

Digital Twins' conceptualization, be it an ontology, an architecture, or a methodology.

None of the reviewed works present an integrated approach that is generic to support

di�erent kinds of applications from various domains.

The table 3.1 shows some of the related works and their similarities to the present

thesis.

In summary, the state-of-the-art works collectively underscore the imperative of seman-

tic integration and standardized methodologies in IoT and DT realms. These �ndings

lay a foundational understanding for this thesis, guiding the proposed approach towards

addressing the highlighted gaps and challenges in the �eld.

In this context, this proposal aims to provide a generic approach for modeling and

deploying DTs. It provides an architecture that helps to organize the system, a modeling

language that enables semantic models, and a methodology that guides users in the

process of modeling DTs. The target of this approach is generic systems with di�erent

stakeholders. As standards, it uses the ISO 23247 and the WoT standard, that can be
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Research Type Target Standard External
Models

Extendable
Connected to

real-world

[Thu22] architecture,
method, use
case

industrial iot.schema
.org

not di-
rectly

yes yes

[Göp+21] method, use
case

manufacturingontology yes yes no

[Sch+20] architecture,
method, use
case

industry 4.0 AML links,
not data
propaga-
tion

yes No

[SG22] methodology,
architecture

generic not covered not cov-
ered

yes yes

[GSH20] architecture industry 4.0 RAMI4.0 not cov-
ered

yes yes

[Bic+20] methodology,
simulation

Naval un-
manned
system,
mainte-
nance

not men-
tioned

not men-
tioned

domain-
speci�c

yes

[Hug+20] methodology generic AADL/C
code gener-
ation

not cov-
ered

yes yes

[Kal+21] methodology,
semantics

logistics not men-
tioned

not cov-
ered

yes no

[DO21] architecture manufacturingontology yes yes not men-
tioned

[Bor+21] architecture Healthcare not men-
tioned

yes yes yes

[Gou+23] architecture energy not men-
tioned

no domain
speci�c

yes

[Rod+23] methodology drone appli-
cations

communication
standards

no domain
speci�c

yes

This
work

architecture,
modeling
elements,
methodol-
ogy

generic,
di�erent
stakehold-
ers

ISO 23247,
WoT

yes yes yes

Table 3.1.: Comparison of related works with the present thesis
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used in di�erent domains. This approach also covers the possibility of connecting the

model to the real-world system, meaning that the model contains the latest state of the

physical counterpart. This also means that the model is connected to the physical world,

and, therefore, it is possible to make precise queries and inferences, since the current

state of the application will also be semantically re�ected in the model. Finally, the

approach is extendable, meaning that it can be used in di�erent use cases, not only in

the Industry 4.0 context.

The next sections will present the open challenges and main contributions of this thesis,

aiming to �ll the lacks identi�ed in the literature.

3.8. Open challenges

In the literature, there are several identi�ed open challenges in the context of implement-

ing digital twins. The main challenges pertinent to this thesis are described below.

� Need for standards: One of the primary challenges is the lack of standardized

methodologies that can be applied across various domains.

� Generic way of modeling: There is a need for a generic way of modeling within

the context of digital twins, the focus is on creating a framework that can e�ec-

tively integrate domain-speci�c models. This integration is crucial for extracting

and synthesizing knowledge from various stakeholders, ensuring a comprehensive

understanding of the system or process being modeled. Such a framework should

also provide a structured approach for feeding machine learning algorithms with

the necessary data. This structured approach is essential for enhancing the e�ec-

tiveness of ML algorithms, as it enables them to learn from a diverse range of inputs

and apply this learning to improve the accuracy and e�ciency of the digital twin.

By tackling these aspects, the generic modeling approach should facilitate a more

versatile and adaptive DT, capable of handling complex, multi-faceted scenarios.

� Methods based on the ISO 23247: The ISO 23247 aims to standardize the

concept of DT in the manufacturing domain, however, it can be reused in di�erent

domains. Methods and approaches that easier its implementation are needed to

bring it to the real world.

� Semantically connect the model with the real system: Semantic models are

crucial to bringing interoperability between di�erent entities. However, they often

get out-of-date. Additionally, connecting them to the real system can enable more
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precise queries and inferences, since the current state of the application will also

be semantically re�ected in the model.

� User-Friendly approaches: Many good approaches can be proposed, but if they

are not user-friendly and close to the end users, they will probably remain on paper

and their potential will be hidden. Therefore, it is important that new approaches

also consider their ease and e�cient use.

While frameworks such as Azure DT and AWS TwinMaker provide powerful platforms

for speci�c use cases, they face challenges related to semantic modeling and cross-domain

interoperability. These platforms often struggle to integrate seamlessly with heteroge-

neous systems, particularly at the edge, where resource constraints limit their e�ective-

ness. To address these challenges, the proposed framework leverages ISO 23247 and WoT,

providing a universally applicable semantic model that can bridge di�erent application

domains and reduce vendor lock-in.

Similarly, tools like Node-RED excel in accessibility but lack comprehensive semantic

support, restricting their use for complex digital twin systems. By integrating semantic

models directly into a low-code platform, the proposed approach retains the ease of use

for non-experts while signi�cantly enhancing the capacity for semantic interoperability,

online updates, and cross-domain application.

An overview of the proposed approach, relating these contributions, can be found the

the next section.

3.9. Overview of the proposed approach

This chapter aims to provide an overview of the proposed approach. Figure 3.6 illustrates

the main steps of the methodology placed next to the architecture in the corresponding

layers. Also, some examples of technical components are shown on the right side.

At the foundational Observe layer (Section 4.1), the physical realm is captured through

the identi�cation of observable assets (Section 6.1), which are crucial for model creation.

Typically, this encompasses devices, sensors, and actuators.

Transitioning to the Collect layer (Section 4.2), the bridge between the tangible and

digital worlds is constructed. Within this sphere, the communication interfaces are es-

tablished (Section 6.6), accommodating elements like databases and communication pro-

tocols.

The Model layer (Section 4.3), which is the centerpiece of this dissertation, is dedicated

to the formulation of the DT model (6.4) using the basic elements proposed in Chapter
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Figure 3.6.: Schematic representation of the proposed architecture
with methodology steps and examples of technical components38
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5. This stage is crucial for semantic enhancement (6.3) and integration with external

models (6.5). The output of this phase is the generation of a Knowledge Graph that

systematically organizes assets and elucidates their interconnections. The foundational

elements proposed herein are applied to construct the model, and a Node-RED-based

implementation is pro�ered to seamlessly integrate the model with its physical counter-

parts.

The �nal layer is Learn and act (Section 4.4), designated for interaction, is the domain

where applications and machine learning frameworks are sculpted to engage with the

user interface. These components translate the complex data and processes of the lower

layers into actionable insights and user-responsive actions.

This thesis proposed a harmonized approach that seamlessly integrates architecture,

modeling elements, and methodology into a uni�ed integration environment. This fusion

facilitates system designers in creating their virtual representations, providing compre-

hensive support across various domains of the system design.

In this context, the next chapter describes the main contributions of this thesis, trying

to �ll the lacks identi�ed in the literature.

3.10. Contributions

As identi�ed in the literature review, there are still gaps to be addressed in the process of

modeling and deploying Digital Twins. Especially in the era of Large Language Models

(LLM), that are able to connect and understand di�erent sources of information, it is

important to have a common language and methodology that di�erent stakeholders can

use to express their knowledge.

Most of the existing approaches are isolated and use-case-speci�c, making it di�cult

to extend or use in di�erent domains. For enabling di�erent domains to interact and

exchange information in a clear way, the use of semantics plays a crucial role. This thesis

aims to provide a generic approach for modeling and deploying DTs, based on the ISO

23247, that can be used in di�erent domains. This approach is based on a four-layered

architecture, a set of basic elements for modeling DTs, and a methodology for guiding

designers in the process of modeling DTs. The main contributions of this thesis are:

� Architecture for DT-based systems: A four-layered architecture based on ISO

23247 has been de�ned to identify the responsibilities of each part of the system

[Ste+21b] [Ste+21a]. The architecture is presented in the Chapter 4.
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� Basic elements for modeling DTs: These basic elements were de�ned to provide

a standard way of modeling DTs. These components are generic and can be used

to model any DT [Ste+22b] [Ste+22a]. The elements are presented in the Chapter

5.

� Methodology for modeling DTs: steps were de�ned to guide designers in the

process of modeling DTs [Ste+20] [Sch+21b] [Ste+22a] [Ste+23]. The methodology

is presented in the Chapter 6.

Additionally, the semantic models that are combined to work as a virtual replica of

a real-world asset are also connected to the real-world system, meaning that the model

contains the latest state of the physical counterpart.

3.11. Conclusion of the chapter

This chapter has presented the current state of the art by introducing the most related

works. As DT is based on the IoT concept, an introduction to the basis has been done.

Then applications and models that are already DT-speci�c were presented and discussed.

Aiming to understand how these kinds of applications are built, a review of archi-

tectures for both IoT and DT was carried out. It was possible to identify that most

approaches work with 3, 4 or 5 layers, varying the details of each use case. To realize

these applications, several tools and applications can support designers and engineers.

It is possible to identify the path taken from IoT and CPS, passing to DT and reach-

ing the semantic DT, aiming to enhance interoperability and enabling more seamless

communication across diverse systems and domains. This shift marks a signi�cant stride

towards more intelligent and uni�ed system integration.

This chapter sets the basis for the upcoming sections of the thesis, which aim to

contribute to this evolving �eld by proposing novel solutions and methodologies that

address these identi�ed gaps and challenges, ultimately pushing the boundaries of what

is currently achievable in DT design and implementation.
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One of the contributions of this thesis is an architecture that can be used to design DT-

based systems. An architecture can serve as a comprehensive blueprint of the system

by highlighting its components and relationships as well as separating them by respon-

sibilities. It is an essential part of guiding the development team and helps to identify

possible problems in the early stages of development.

An architecture can also help to enhance the scalability and �exibility of the system

since each component is classi�ed by its responsibilities, it is possible to replace or modify

speci�c elements of the system without requiring a complete reimplementation. In the

DT context, it is particularly important due to the variety of heterogeneous systems and

the amount of data they can generate. For example, if the system needs more storage

capabilities, the components responsible for that can be upgraded and the rest of the

system remain working normally. In other words, architectures are an important peace

for keeping the system maintainable.

In this context, this thesis proposes an architecture that is inspired by ISO 23247

[ISO20] and de�nes the main 4 layers for DT applications. This ISO also de�nes a set

of assets types that might exist in systems: Equipment, Personnel, Material, Process,

Facility, Environment, Supporting documents, and Product. A so-called Generic type

has been added to the proposed concept in case none of the previous ones �t the asset.

The ISO 23247 is one of the �rst standardization initiatives in the context of DTs. It

is mainly meant to be used in the manufacturing domain, but it is also generic enough

to be adapted in other areas.

Figure 4.1 illustrates the proposed architecture.

� Observe: this layer is composed of the real-world elements that will be observed

and might also have acting capabilities.

� Collect: in this layer, all communication details are de�ned. This layer enables the

IoT and connects all elements of the real world with the cyber part of the system.
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� Model: assets, their characteristics, and relationships are de�ned in this layer.

This virtual representation is connected to its corresponding asset from the real-

world and provides a high-level instance to the upper layer of the architecture.

� Learn & Act: interfaces that allow interaction with users, machine learning

algorithms, simulations, reports, and so on are de�ned in this layer.

Figure 4.1.: Architecture for DT-based systems

Data �ows from the lower layers up to the top feeding models, applications, and en-

abling learning and monitoring mechanisms. Meanwhile, commands and adjustments are

sent from the top layers down to the bottom layers where the real world is contained.

This architecture can also be compared to layers of the RAMI4.0 reference architec-

ture model [HR15]. Observe layer is equivalent to the Asset layer of RAMI, since they

represent the real-world elements of the system. The layers Collect and Model can be

related to the three layers Integration, Communication, and Information, since they are

responsible of providing virtual representations of the assets as well as dealing with com-

munication and storage capabilities. Finally, the Learn & Act layers can be compared

to the Functional and Business layers.
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The proposed approach, however, provides modeling elements that can be used through-

out all layers of the system, enabling di�erent stakeholders to use the same language and

avoiding misunderstandings or incompatibilities.

In the next sections, each layer of the architecture will be detailed.

4.1. Observe layer

The Observe layer forms the foundational level of the (DT) architecture, representing the

real world in its entirety, including physical devices, environment, processes, stakeholders

and any other instance that can be observed.

For instance, in a manufacturing setting, this layer would include sensors and mon-

itoring equipment attached to machinery, capturing data on their operational status,

environmental conditions, and other critical parameters.

Assets can be composed of other assets. For example, an asset car is composed of

several assets such as engine, brake system, infotainment system and so on. Envi-

ronmental variables such as weather forecast, road condition or current driver (user) are

common examples of assets that can be related to the asset car. Actions such as braking,

turning or driving could be represented as processes that are not physical (hardware) but

can be observed and are crucial parts of such use cases.

The composition of assets allows to de�ne systems with di�erent levels of granularity.

From the device level up to processes and management levels that touch the end users.

4.2. Collect layer

The Collect layer primarily deals with the connection between the cyber and physical

worlds, acting as a bridge that facilitates the �ow of data from the physical assets to the

digital platform. In this layer, technologies such as IoT devices, edge computing, and

communication protocols play a vital role. For example, in a smart city DT, the Collect

layer would involve the aggregation of data from various sources like tra�c cameras,

weather stations, and pedestrian footfall sensors. The primary function of this layer is to

ensure that the data collected from the physical world is transmitted e�ectively, securely,

and e�ciently to the digital environment, where it can be further processed and analyzed.

Communication interfaces, access control, protocols and storage are some of the key

components in this layer. They enable data from the physical world can be transmitted

to the cyber world while commands and recommendations can be sent back to the real

assets.
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This layer is crucial because it ensures that the digital replica is continuously fed with

up-to-date and accurate information from the physical world, forming the basis for all

subsequent analysis and decision-making processes within the DT.

4.3. Model layer

The Model layer is the core of the DT architecture, where the actual Digital Twin is

created and maintained. This layer involves the integration of external models, addition

of semantic information, and the construction of a detailed digital replica. Here, vari-

ous modeling techniques, such as geometrical models for physical structures or process

simulation models for industrial work�ows, are integrated. Additionally, semantic tech-

nologies like ontologies and knowledge graphs are used to add context and meaning to

the data, enhancing the interpretability and usefulness of the DT.

One example in the industrial manufactory domain could be a CAD model of a robotic

assembly line, where each robot, conveyor belt, and tool is precisely represented in the

digital space. This digital representation is augmented with real-time operational data,

like machine speed, temperature, vibration levels, and output rates, allowing for a dy-

namic and accurate re�ection of the physical assets.

4.4. Learn and act

The Learn and Act layer hosts applications and user interfaces that enable stakeholders to

interact with the DT, extract insights, and make informed decisions. These applications

can also present to users results and reports generated from the systems or AI models

and allow them to generate commands that will be sent to the physical counterpart.

One application within this layer could be a predictive maintenance tool that contin-

uously learns from data related to engine performance, tire wear, brake conditions, and

other critical components. The DT can predict when parts are likely to fail or require

service. This predictive analysis enables car owners and service centers to proactively

address maintenance needs, thereby reducing the likelihood of breakdowns and extending

their product's lifetime.

4.5. Conclusion of the chapter

This chapter has presented the proposed architecture for implementing DT applications,

delineating its four distinct layers: Observe, Collect, Model, and Learn and Act. Each
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layer plays a critical role in the seamless functioning and e�cacy of the DT, with the

architecture designed to ensure robust data collection, e�cient processing, and intelligent

response mechanisms. The Model layer, the focal point of this thesis, stands as the key

element in this structure. It's here that the DT is semantically modeled and brought to

life, bridging the gap between raw data and actionable insights.

Many existing IoT architectures are structured in 3, 4, or 5 layers, depending on the

level of granularity they aim to provide. The most common examples include architec-

tures that focus on the basic components�physical devices, communication protocols,

data processing, and business logic. These architectures have been instrumental in var-

ious applications of IoT, but they often lack a clear connection to the speci�c needs of

DT systems, where a precise re�ection of real-world assets is essential.

The novelty of this thesis lies in the integration of ISO 23247 elements to de�ne assets

and WoT elements to describe assets and their relationships within the context of a

four-layer architecture designed speci�cally for DT applications. This architecture is a

solution where the Observe and Model layers are representations of each other, providing

a robust structure for online synchronization between the physical and digital worlds.

In the context of DT, this architecture also enables that the Model layer goes beyond

merely representing physical assets by enabling the link to simulation environments,

predictions, and even combinations of properties that do not exist in the current state

of the physical system. In some cases, the Model layer may contain more detailed or

enriched data than the Observe layer, due to its ability to simulate future events or infer

missing properties or relationships through advanced algorithms and data processing

techniques. This approach enhances the capacity of DT systems to not only re�ect but

also anticipate real-world changes, ensuring that the DT can act as both a mirror and a

predictor of the system it represents.

The architecture outlined in this chapter lays the groundwork for a comprehensive

understanding of how Digital Twins can be e�ciently structured and operated. It em-

phasizes the importance of a layered approach, ensuring that each aspect of a DT, from

data acquisition to user interaction, is considered for performance and scalability. This

is particularly crucial in the context of rapidly evolving technologies and the increasing

complexity of systems that DTs are expected to replicate and interact with.

The next chapter will dive into the basic modeling elements that are central to de�ning

the structure of DTs. This exploration will include an in-depth discussion of the modeling

language developed speci�cally for this purpose, highlighting how it complements the

architecture. The forthcoming chapter aims not only to elucidate the technical speci�cs
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of these modeling elements but also to showcase their practical applications and the value

they add to the task of creating digital twins.
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Twins

The advent of Digital Twins in the Web of Things [ZGC11] landscape marks a signi�cant

evolution in how we understand and interact with physical systems through their digital

counterparts. At the heart of this evolution is the necessity for a semantic modeling

approach, which ensures that digital twins not only replicate physical entities but also

meaningfully interpret and utilize the data associated with them. This semantic layer is

vital for bridging the gap between the raw data collected from various sources and the

actionable insights required for e�ective decision-making [Kal+20]. It enhances the DT's

ability to not only represent physical entities but to also understand their interactions,

dependencies, and behaviors in a context-rich environment.

In this exploration of Digital Twins, the focus is placed on how semantic modeling can

be e�ectively applied using the Web of Things concepts. This approach de�nes basic

elements for modeling the structure of digital twins. Figure 5.1 shows the main elements

that cover the concept of DT.

A DT is a combination of models that represents an observable asset from the real-world

(device, process, or anything that can be observed) in di�erent perspectives (behavior,

geometry -3D models-, . . . ), is continuously updated and can interact with the real world

and digital world. It can enable simulations, and learning mechanisms and track the

whole life-cycle of an asset.

5.1. Asset

In the context of digital twins, assets ("dt-asset") are key elements that mirror observable

entities from the real world [Tao+18]. They can be constituted from other assets, creating

a combined and/or hierarchical and interconnected structure. For instance, consider the

asset "valve," which might be linked to another asset, "pipe." These individual assets

can then collectively form a part of a larger asset, such as a "re�nery." This composition

is represented through a "composition link". The possibility of combining assets allows

designers to model systems with di�erent levels of granularity.
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Figure 5.1.: Basic modeling elements
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Each asset can encapsulate metadata that can enrich the data related to this entity.

This includes the asset's name, context, identi�cation, and type. The type category is

particularly versatile, encompassing options like "Generic" or other classi�cations de-

�ned in the ISO 23247 standards [ISO20]. These standards include varied asset types

such as parts, products, equipment, materials, processes, facilities, environments, person-

nel, and supporting documents. Such a structured approach ensures that every asset is

comprehensively represented and accurately linked within the digital twin environment.

Assets can be used to also represent non-physical entities, including processes, work-

�ows, external software, and similar elements.

Relationships between assets are expressed using semantic nodes termed "dt-relation".

These nodes serve to connect di�erent assets and nodes to semantically manifest their

associations.

5.2. Property

As assets' properties are usually linked to a variable from the real world and can carry

several metadata, an extra node to represent them is needed. These properties are contin-

uously monitored via sensor readings and de�ne the asset's state. For instance, an asset

"valve" has a temperature sensor that provides the temperature variable. The tempera-

ture property could be enriched with metadata such as measurement units (e.g., Celsius

or Fahrenheit), precision level, timestamp of the reading, and the sensor's location.

This node also allows the inclusion of a context metadata, which can be used to de�ne

the property's datatype. Metadata plays a vital role in the system such as avoiding

mistaken conversion in the subsequent layers of the system (e.g., user interface or ML

algorithms), or that parts of the system work in silos.

Data can be annotated as soon as it enters the cyber world, avoiding misinterpretations

at later levels of the system. It also allows system designers to restrict data usage

and privileges needed to access it in the other parts of the system. For instance, the

temperature can be accessed by ML models to estimate the device's health condition.

However, user-related data such as email, messages or identi�ers should be annotated as

sensible data, not allowing it to be sent to external systems.

5.3. Action

Assets within a digital twin concept can possess Actions (dt-action), also known as meth-

ods. These actions have the capacity to transmit commands from the digital world to
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the physical world. This functionality can result in changes in the state of a device. A

classic example is a lamp, which might have actions such as on(), o�(), setColor(), or

setBrightnessLevel(). These actions enable remote control of the lamp's various states

and features from the digital interface.

In addition to in�uencing physical devices, actions in assets can also be designed to

initiate internal procedures within the digital model itself. These procedures operate

within the boundaries of the digital environment and do not directly impact the physical

counterpart of the asset.

Such internal actions are crucial for the maintenance and management of the digital

twin system. They may include tasks like updating system logs, recalibrating virtual

models, or running diagnostic checks. These actions ensure that the digital twin remains

accurate, e�cient, and re�ective of its physical counterpart, even though they don't

manifest any direct physical changes.

5.4. Event

Events (dt-events) are a signi�cant component of digital twin, functioning as triggers or

indicators of speci�c occurrences or conditions. These events can be internal, originat-

ing within the digital model, or external, stemming from changes or conditions in the

physical world. Internal events might be generated by mechanisms like machine learning

algorithms within the model. For instance, a predictive maintenance algorithm might

determine a new maintenance date for a piece of equipment, signaling this as an event.

Metadata can be added to events, such as its duration, frequency, timestamps, or the

conditions that trigger it.

External events, on the other hand, are often linked to real-world changes or thresholds

being met or exceeded. A typical example of this could be an asset reaching a critical

temperature level. This kind of event is usually detected by sensors and then communi-

cated to the digital twin, where it is processed and logged. External events are crucial for

real-time monitoring and response, allowing the digital twin to re�ect current conditions

accurately and promptly. For handling the challenge of communication delays between

the sensor readings and the digital twin, the event can be annotated with a timestamp,

indicating when the event occurred in the real world.

The interaction between events and actions within a digital twin is dynamic and in-

terconnected. When an event occurs, it can trigger speci�c actions related to that event.

For instance, if an event signi�es that a machine's temperature has exceeded safe oper-

ating limits, it might trigger an action to shut down the machine or activate a cooling
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system. Similarly, events can lead to changes in the properties of assets, like adjusting the

status or operational parameters. This interconnectedness ensures that the digital twin

responds appropriately to both internal predictions and external realities, maintaining

the system's integrity and functionality.

5.5. Model

In the domain of digital twins, the concept of a 'Model' (dt-model) plays a central role in

representing assets. An asset within a digital twin environment can be depicted through

various models, each o�ering a di�erent perspective or aspect of the asset. This multi-

model approach allows system designers to create a comprehensive and multifaceted

digital representation of each asset. For example, a single asset could be represented by

a 3D model that visualizes its physical structure and geometry [Dan+18]. Simultaneously,

it could also have a requirements model that details the expected operational parameters

and functionalities of the asset [Moy+20]. The consistency problem between these models

can be partially solved by using the DT-model constructed with the proposed elements

of this thesis as a central point of reference and all the other models connected to it can

be updated when the DT-model is updated.

Additionally, assets might be represented through specialized models like machine

learning algorithms. These models are particularly valuable as they can continuously

assess the asset's condition, predicting maintenance [EBA20] needs or potential failures.

Such predictive models contribute signi�cantly to proactive management of the asset,

enhancing its e�ciency and longevity. When an algorithm (e.g. machine learning model)

makes a new prediction, it can generate events within the digital twin system, ensuring

that the system remains responsive and up-to-date.

To e�ectively integrate these diverse models, it's crucial to implement drivers that

facilitate communication between the model and the digital twin system. These drivers

are necessary especially when the models are developed using di�erent software tools or

are hosted on separate machines. This interoperability is key to maintaining a seamless

�ow of information and updates. Moreover, models can be dynamically updated with

real-world data, ensuring that the digital representation remains in sync with its physical

counterpart. This continual updating process solidi�es the digital twin as a reliable and

current source of truth, regardless of the models' physical locations or the platforms on

which they are built.

Figure 5.2 illustrates the relationships between assets and models. One asset can have

models. It is also possible that models have dependencies. For allowing the twin state is
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propagate through the other models, it might be necessary to implement custom drivers

that enable this communication. Additionally, events can be generated by these models

and might cause some reactions in the system.

Figure 5.2.: Concept of model integration

A common example of an artifact is a simulation output. Consider a model designed

to simulate the operational dynamics of a manufacturing process. This model could

generate a time-series visualization artifact [BM24], depicting various parameters like

production rate, energy consumption, or machine wear over time.

Models can be hosted externally, which means they reside outside the primary digital

twin platform. This external hosting can occur on various platforms or servers, separated

from the main system. The advantage of this approach is that it allows for specialized

handling and management of the model, often using tools and software speci�cally de-

signed for that model's needs. For instance, a complex machine learning model might be

hosted on a server equipped with the necessary computational power and resources for

its operations.

Alternatively, models can also be imported directly into the proposed digital twin

environment. This method involves integrating the model into the core platform of the

digital twin. The bene�t of this approach is the close integration it o�ers, allowing for

seamless communication and interaction within the digital twin environment. Imported

or local models are directly accessible within the system, facilitating easier management

and synchronization with other components of the digital twin.

The choice between external hosting and importing models depends on several factors,

such as the complexity of the model, the resources available, and the speci�c requirements

of the digital twin system. External hosting is often chosen for models that require

specialized environments or computational resources, while importing is preferred for

models that need to be closely integrated with the digital twin's core functionalities. In
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both scenarios, the aim is to ensure that the models contribute e�ectively to the accurate

and dynamic representation of the physical assets they mirror.

Extending the model node

As the model node serves as a generic abstraction of various domain-speci�c models,

it enables the creation of specialized nodes that encapsulate the technical intricacies of

each model type. This capability represents a signi�cant contribution of this thesis, as it

contrasts with many approaches in the literature that predominantly focus on developing

domain-speci�c models tailored to speci�c application contexts. By o�ering a �exible yet

detailed approach, this work facilitates the representation of a wide range of models while

maintaining extensibility across di�erent domains.

One particularly useful example of this is the creation of models that incorporate state

machines. State machines are computational models used to identify and document the

various states an entity can be in and the transitions between these states based on

certain inputs or conditions.

By integrating state machines into a digital twin model, designers can create sophisti-

cated representations that more accurately mirror the dynamic behavior of the physical

asset. For instance, a state machine model could be used to track and predict the oper-

ational status of industrial machinery during its lifecycle (5.3). In this setup, the state

machine would delineate di�erent states of the machinery, such as 'idle', 'running', 'main-

tenance mode', and 'error state'. Transitions between these states would be triggered by

speci�c conditions or inputs, like sensor readings or time schedules.

Figure 5.3.: State machines and digital twins

53



5. Basic elements for modeling Digital Twins

Each new state captured within the system serves as a valuable record of the lifecycle of

assets. This accumulation of data can be utilized to understand and analyze the behavior

of these assets over time. Moreover, insights gained from these state transitions can be

instrumental in enhancing the work�ow of the corresponding physical entities, leading to

more e�cient and e�ective operations.

The bachelor thesis developed by Aditya Kumar, at the Hochschule Hamm-Lippstadt,

has implemented the feature of creating state machines inside the proposed DT environ-

ment for modeling DTs that this thesis proposes. Figure 5.4 illustrates how the dt- are

used to build and update the state machine.

Figure 5.4.: DT nodes used integrated with state machines

By reading the properties of the assets, it is possible to have the current state of the

system. In this implementation, only events (dt-event) were used to trigger transitions

and then generate a new state. Furthermore, as previously discussed, such transitions

can also potentially activate new actions, creating a dynamic, responsive system that

adapts to evolving conditions and inputs.

The state machine can be modeled di�erently based on the use case and the system

designer. For instance, an event can trigger an action, causing a transition to the state

executing this action. The action can then generate a new event (e.g., �nished) that

triggers a transition to another state.

However, when considering state machines for modeling digital twins within CPS, it

is essential to acknowledge the limitations that arise from relying on instantaneous tran-
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sitions. From a physical perspective, many CPS applications are bound by physical

conservation laws (such as energy, mass, or momentum) that may not be adequately

represented through discrete state transitions alone. Instantaneous transitions, which

are characteristic of transition-system-based models, can inadvertently violate these con-

servation laws. This issue poses a particular challenge in digital twin models, where the

digital representation must remain faithful to the underlying physical processes. To mit-

igate the challenge of maintaining physical conservation laws in state machine models for

digital twins, a more robust approach is required. As part of the methodology (section

6.1), it is essential to �rst identify the key physical laws, such as the conservation of

energy, relevant to the system. Transitions between states should be designed to include

appropriate conditions that attempt to uphold these laws. This can be achieved by intro-

ducing intermediary continuous states that simulate gradual changes in physical systems,

or by embedding di�erential equation-based components to capture ongoing dynamics.

For example, when modeling an industrial valve transitioning from a closed to an open

state, the model should re�ect the gradual changes in pressure and �ow rate. By integrat-

ing continuous dynamics alongside discrete state transitions, designers can ensure that

digital twins remain accurate and reliable, making them e�ective tools for monitoring

and control. In this thesis, which focuses on the fundamental aspects of modeling digital

twins, the state machine was implemented with instantaneous transitions. Future work

will explore incorporating continuous dynamics into the state machine model, aiming to

improve the �delity and accuracy of the digital twin representation.

5.6. Relationship

The relationship is another element for modeling DTs. It enables designers to add seman-

tic annotations that connect two assets. This is a basic feature used to de�ne knowledge

graphs and makes it possible to add as many semantics as necessary. Every use case/ap-

plication has its own requirements, and, therefore, the amount of semantics of the models

is highly related to the application goal and user expectations.

Figure 5.5 illustrates the potential application of the node relationship. This node is

capable of linking two distinct assets and enhancing their connection through the addi-

tion of semantic descriptions. Additionally, it serves a crucial role in associating di�erent

models. This is particularly useful in scenarios where demonstrating the interrelation

between two models is essential, employing terms like "specializedBy", "extends", "over-

rides", among others, to describe their connections.
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Figure 5.5.: Use of the relationship node

The nature of relationships within a digital twin framework is characterized by their di-

rectionality, which is a crucial aspect to de�ne for accurate representation and interaction

between assets. These relationships can be categorized into three types:

� forward : A �>B: This type of relationship indicates a one-way connection where

asset A in�uences or is linked to asset B, but not vice versa. It represents a

directional �ow of in�uence or dependency from A to B.

� backward : A <� B: In contrast to the forward relationship, a backward relation-

ship suggests that asset B has an in�uence or connection to asset A. This type of

relationship signi�es a reverse directional in�uence, where the �ow is from B to A.

� bidirectional : A <�>B: This relationship type denotes a two-way connection be-

tween assets A and B. It implies that each asset in�uences or is linked to the other,

creating a reciprocal relationship. This is particularly relevant in systems where

assets interact or depend on each other mutually.

These directional relationships are essential in de�ning the structure and dynamics of

interactions within the digital twin system. They help in accurately mapping out the

network of asset interdependencies, which is critical for the correct understanding of the

model.
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5.7. Common aspects to all elements

Each element can have annotations associated with it, allowing adding metadata to

di�erent parts of the system. For instance, annotations such as assumption and guarantee

are important in contract-based design of safety-critical systems[SDP12]. Contracts can

be used to describe the expected behavior of a speci�c part of the system. Annotations

concerning data privacy can also be added to nodes, allowing designers to specify which

group of users have access to certain information.

An additional node called dt-graph is also provided. This node is used for monitoring

the whole model and generating a graph of all elements, enabling, for instance, the

persistence of the updated model in a database. Every time real-world data comes in,

or when the model is changed and deployed, the dt-graph outputs an updated graph

with the system's current state. Distributed models are also listened to by this node,

e.g. models that are running in di�erent locations can be linked together to a central

model. For example, in a scenario of an industrial plant that contains �ve machines and

one central station, each machine can have its own model running on it while the central

station listens to updates coming from these distributed entities, integrating everything

into one main model.

The next chapter will formalize the proposed model, de�ning the nodes and relation-

ships that constitute the knowledge graph. This formalization is essential for ensuring

consistency and clarity in the model's structure, facilitating e�ective communication and

validation of the models.

5.8. Formal de�nition of the model

The proposed model is based on the concept of a knowledge graph. A knowledge graph

is a graph-based knowledge representation that captures complex relationships between

entities and their attributes. It is a powerful way of organizing and representing data,

enabling the creation of a comprehensive and interconnected web of knowledge. This

approach is particularly well-suited for digital twins, as it allows for the accurate and

detailed representation of the relationships and attributes of the various elements within

the system.

This chapter aims to formalize the proposed model, de�ning the nodes and relation-

ships that constitute the knowledge graph. This formalization is essential for ensuring

consistency and clarity in the model's structure, facilitating e�ective communication and

validation of the models.
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Knowledge Graph De�nition

Figure 5.6 illustrates the concept of nodes and edges in a knowledge graph.

Figure 5.6.: Example of nodes and edge in KGs

De�nition 5.8.1 (Knowledge Graph). A Knowledge Graph is a knowledge base that

connects entities (such as objects, events, or concepts) in a network, representing the

relationships and properties among them. It encodes knowledge in a machine-readable

format, enabling semantic queries and inference, thereby facilitating a more intuitive

understanding of complex datasets. By leveraging nodes (entities) and edges (relation-

ships), knowledge graphs provide a comprehensive framework for integrating, analyzing,

and visualizing data across various domains and applications.

De�nition 5.8.2 (Node). A node in a knowledge graph represents an entity, such as

an asset, property, action, event, or model, and encapsulates metadata that captures its

attributes and characteristics. Each node is uniquely identi�ed and can be connected to

other nodes through relationships, forming a network of interconnected entities.

De�nition 5.8.3 (Edge). An edge in a knowledge graph represents a relationship between

two nodes, capturing the connections and interactions between entities. Each edge is

characterized by its directionality, name, and associated metadata, providing a structured

representation of the relationships within the knowledge graph.

Knowledge graphs can be de�ned as KG = (N,Ed), where:

� N is the set of nodes representing assets, properties, actions, events, and models,

each with its associated metadata.

� Ed is the set of edges representing relationships between these nodes, also with

associated metadata.

Knowledge graphs play a pivotal role in enhancing the understanding, integration,

and utilization of data across various domains, particularly in the context of semantic
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Digital Twins. By encapsulating the semantics of data � its meaning, relationships,

and properties � knowledge graphs facilitate a more natural, human-like comprehension

of complex information systems. This semantic foundation enables the integration of

heterogeneous data sources, overcoming silos and disparate data formats to create a

uni�ed, accessible view of information. Additionally, knowledge graphs enhance search

and query capabilities, moving beyond simple keyword searches to more context-aware,

intent-driven queries that yield relevant and precise results.

By providing structured, contextual data, knowledge graphs support the training of

more sophisticated models, enabling nuanced reasoning and enhanced natural language

processing capabilities. Furthermore, they facilitate dynamic system evolution, allowing

for the seamless adaptation of digital twins as real-world conditions change. This adapt-

ability, combined with the capability to foster interdisciplinary collaboration through a

common semantic framework, underscores the transformative impact of knowledge graphs

on digitalization and automation e�orts.

Modeling-Elements Speci�cation

De�nition 5.8.4. Assets (A): is represented with a node. It has attributes such as:

� id: a UUID �eld that uniquely identi�es the asset.

� name: a String �eld that contains the name of the asset.

� context: a String �eld that contains the context of the asset.

� DTType: a String �eld that contains the type of the asset de�ned by the ISO

23247 (parts, products, equipment, materials, processes, facilities, environments,

personnel, and supporting documents or generic) [ISO20].

De�nition 5.8.5. Properties (P): is represented with a node in the KG. It has at-

tributes such as:

� id: a UUID �eld that uniquely identi�es the property.

� name: a String �eld that contains the name of the property.

� accessGroup: a String �eld that contains the access group of the property. This

�eld can be used to de�ne the group of users who have access to the property in

further layers of the system.
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� context: a String �eld that contains the context of the property. This �eld can be

used to de�ne the datatype or schemas of the property.

� type: a String �eld that contains the type of the property.

De�nition 5.8.6. Actions (Ac): is represented with a node in the KG. It has attributes

such as:

� id: a UUID �eld that uniquely identi�es the action.

� name: a String �eld that contains the name of the action.

� topic: a String �eld that contains the topic (mainly MQTT-based) of the action.

� payload: a String �eld that contains the payload of the action. This �eld usually

contains a complex data structure in JSON format that can be deserialized and used

as an object.

De�nition 5.8.7. Events (E): is represented with a node in the KG. It has attributes

such as:

� id: a UUID �eld that uniquely identi�es the event.

� name: a String �eld that contains the name of the event.

� topic: a String �eld that contains the topic (mainly MQTT-based) of the event.

De�nition 5.8.8. Models (M): is represented with a node in the KG. It has attributes

such as:

� id: a UUID �eld that uniquely identi�es the model.

� name: a String �eld that contains the name of the model.

� link: a String �eld that contains the link to the model. This �eld usually contains

a URL that points to the location of the model.

De�nition 5.8.9. Relationships (R): is represented with an edge in the KG. It has

attributes such as:

� id: a UUID �eld that uniquely identi�es the relationship.

� name: a String �eld that contains the name of the relationship.
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� direction: a String �eld that contains the direction of the relationship. It can be

one of the following values: →, ↔, ←.

Nodes creation and Edges: For each element type Node x in {A,P,Ac,E,M}, a
function fx that maps elements of type x to nodes in the knowledge graph is de�ned,

capturing the speci�ed attributes.

fA : A→ N,

fP : P → N,

fAc : Ac→ N,

fE : E → N,

fM : M → N

Each fx incorporates the relevant attributes into the metadata (attributes) of the

created node.

Edges creation is de�ned by the function g : R → Ed, where each relationship r in

R is mapped to an edge in Ed. For each relationship r with attributes id, name, and

direction, the function g(r) uses these attributes to create an edge and its metadata in

the knowledge graph.

Given a relationship r with attributes:

id = "r1", name = "ConnectedTo", direction = "->"

The function g(r) creates an edge e ∈ Ed capturing this relationship as:

e = g(r) = "edge"(id = "r1", name = "ConnectedTo", direction = "->", from = "a1", to = "a2")

Consider an asset a ∈ A representing a car with the following attributes:

id = "car001", name = "Passat", context = "Automotive",DTType = "Product"

The transformation function fA(a) would create a node n ∈ N in the knowledge graph

with metadata capturing these attributes:

n = fA(a) = "node"(id = "car001", name = "Passat", context = "Automotive",

DTType = "Product")

Assuming the car has a property for fuel level with attributes:
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id = "prop001", name = "Fuel Level", accessGroup = "Driver", context = "Fuel",

type = "Percentage"

The transformation for this property into a node in the KG would be represented as:

p = fP (property) = "node"(id = "prop001", name = "Fuel Level", accessGroup = "Driver",

context = "Fuel", type = "Percentage")

For an action of starting the car, with attributes:

id = "act001", name = "Start Car", topic = "Engine", payload = "Ignition On"

The corresponding node creation is:

ac = fAc(action) = "node"(id = "act001", name = "Start Car", topic = "Engine",

payload = "Ignition On")

If there's a relationship indicating the car "has" a fuel level property, represented as:

id = "rel001", name = "hasProperty", direction = "->"

The edge creation capturing this relationship is:

e = g(r) = "edge"(id = "rel001", name = "hasProperty", direction = "->",

from = "car001", to = "prop001")

This example formalizes the mapping of an automotive asset (a car) and its related

elements into a structured knowledge graph using speci�ed transformation functions.

Given the transformation functions for creating nodes and edges, the overall transfor-

mation T of the detailed model into a knowledge graph can be formalized as a combination

of these transformations:

T =

 ⋃
x∈{A,P,Ac,E,M}

⋃
y∈x

fx(y)

⋃(⋃
r∈R

g(r)

)
(5.1)

Where:
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� A,P,Ac,E,M represent the sets of assets, properties, actions, events, and models,

respectively.

� R represents the set of relationships.

� fx(y) represents the function that transforms elements y of type x into nodes in

the knowledge graph, capturing the speci�ed attributes for each element type.

� g(r) represents the function that transforms relationships r into edges in the knowl-

edge graph, de�ning the connections between nodes based on the speci�ed at-

tributes of each relationship.

The formula provided describes a transformation process, T , that converts a detailed

model (comprising various types of elements such as assets, properties, actions, events,

and models) into a knowledge graph. The transformation is achieved by applying speci�c

transformation functions to both the elements of the model and the relationships among

these elements.

In the next section, an overview of how the modeling elements can be combined to-

gether is given in the form of BNF Grammar.

5.9. BNF Grammar

The proposed modeling elements allow system designers to model their system's struc-

ture with di�erent granularities. Therefore, it is important to combine and connect the

elements to represent the desired system.

Each of the elements has its purpose (Sections 5.1 - 5.6 ) and can be combined with

others to create a complex system. �A complex system is literally one in which there are

multiple interactions between many di�erent components� [Rin99].

In this context, it is also important to de�ne a grammar that allows the creation of

complex models using the proposed elements. This grammar is essential for ensuring

consistency and clarity in the model's structure, facilitating e�ective communication and

validation of the models.

A Backus-Naur Form (BNF) grammar has been created to express the rules for mod-

eling using the proposed modeling elements (Figure 5.1) of this approach. Figure 5.7

shows the BNF grammar for modeling DT proposed by this thesis.

An asset can be followed by any other of the proposed nodes. This connection could

be enriched by using the relationship node, allowing to add semantic information re-

garding this relationship. Finally, models can also be connected together setting their

relationship, such as dependencies, generalizations and so on.

63



5. Basic elements for modeling Digital Twins

<dt-asset> ::= <dt-property>

| <dt-action>

| <dt-event>

| <dt-relation>

<dt-relation> ::= <dt-asset>

| <dt-model>

Figure 5.7.: BNF grammar for modeling with the basic elements

This grammar is important because it plays a fundamental role in de�ning the lan-

guage's structure, ensuring consistency and clarity, facilitating automation, and support-

ing e�ective communication and validation of models.

For example, in a scenario where a manufacturer1 produces and sells vehicle1, the

model could be represented as two assets (Def. 5.8.4) connected by two relationships

(Def. 5.8.9). According to the grammar, relationships can not be connected together,

which would be an incorrect model. This is an example of how grammar can be used to

validate the model and ensure its consistency. Figure 5.8 illustrates this example of an

invalid model.

Figure 5.8.: Example of an invalid model

Figure 5.9 shows the valid model for the example given. The model is valid because it

follows the grammar rules.

Figure 5.9.: Example of a valid model
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At this point, the formal de�nition of the model has been established, providing a struc-

tured representation of the proposed elements and their relationships. This formalization

is essential for ensuring consistency and clarity in the model's structure, facilitating e�ec-

tive communication and validation of the models. The BNF grammar further enhances

the model's expressiveness and utility, enabling the creation of complex models using

the proposed elements. This grammar is fundamental for ensuring the correctness and

coherence of the models, supporting the development and validation of digital twins in

diverse domains and applications. These aspects are needed to start the implementation

of the proposed model, which is the next step in this thesis.

5.10. Implementation of the elements on top of Node-RED

The proposed approach could have been implemented in any platform that supports the

creation of nodes and edges. However, the implementation was done on top of Node-

RED. It is a well-known IoT platform, which is renowned for its open-source nature and

versatile �ow-based programming environment.

The implementation in Node-RED not only validates the concept but also showcases

the potential for broader applications in the �eld of IoT and digital twins.

Overview of the implementation

The selection of Node-RED as the platform for implementing the thesis' approach was

driven by the inherent synergy between DTs and the IoT. Node-RED is known for its

strong foundations in IoT and it provides a set of ready-to-use nodes that facilitate build-

ing IoT applications. Additionally, this platform has been utilized by several applications

in di�erent domains which can now be extended with a semantic layer to build twins.

This choice ensures that the transition to a more sophisticated DT-based system is not

only seamless but also leverages the existing IoT infrastructure, thereby enhancing ef-

�ciency and reducing the need for extensive redevelopment. Node-RED's adaptability

and IoT-centric design thus play a pivotal role in the successful implementation and

realization of the proposed DT approach.

Figure 5.10 shows a screenshot of Node-RED with the implemented nodes. The nodes

palette is located on the left side of the screen, and the 7 proposed elements (de�ned

in Defs. 5.8.4 - 5.8.9) are shown. The central part of the platform is where the models

can be built by dragging and dropping the nodes. On the right side, the debug screen is

shown. This feature can show printed debug messages when the system is running.
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Another important feature is the deployment (red button on the top right). When

Deploy is clicked, the model is validated against the grammar de�ned in Section 5.9

and then deployed: the changes made are activated, with all nodes restarting to re�ect

the latest con�gurations. This process initiates the �ow's execution, including triggering

any 'inject' nodes set to activate on startup. Additionally, the con�guration is saved for

future restarts, and the user interface updates to show the current state. The deployment

also involves error checks, alerting users to any potential issues in the �ow.

Figure 5.10.: Node-RED screen with the implemented nodes

When building a model, there must be one node dt-graph since it is responsible for

monitoring changes in the model and emitting updates when new data comes from the

real world.

There are two kinds of updates that a DT model can have: structural updates and

new data received from the real world, as can be seen in Figure 5.11.

� Structural updates: Structural updates refer to the modi�cations made to mod-

els, which result in generating new updates each time a change occurs. These

updates are crucial in ensuring that the models accurately represent the current

state of the system. When a model is altered � whether it's a change in parame-

ters, addition or removal of components, or any modi�cation to its structure � an

update is triggered. This update process is essential for maintaining the integrity

and relevance of the data stored in databases or used by inference algorithms.

An example of a structural update could be in a digital twin model of a manufac-

turing process. If a new machine is added to the production line, the model must be
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Figure 5.11.: dt-graph updates

updated to include this machine. This structural update would then be re�ected

in the database, ensuring that any inference algorithms or analytics tools using

this data are working with the most current representation of the manufacturing

process. Such updates are fundamental in dynamic environments where continuous

learning and adaptation are key to e�ciency and e�ectiveness.

The output of structural updates is a knowledge graph in the JSON-LD format.

This format is particularly well-suited for representing complex, interlinked data

structures like knowledge graphs, which are essential for capturing the detailed

relationships and attributes of the updated models. Whenever a model under-

goes a structural change, the resulting update is systematically encoded into this

knowledge graph, ensuring that the JSON-LD representation is both current and

accurate. This approach not only facilitates the e�cient storage and retrieval of

complex data but also enhances the interoperability with other web-based technolo-

gies and systems, leveraging the structured, machine-readable format of JSON-LD.

� Data updates: Data updates happen when new sensor readings from the real

world are received by the system. These updates are a critical aspect of maintaining

runtime accuracy in the model. For instance, consider an asset in the real world

whose temperature is being monitored. When the temperature changes and this

new reading is captured by the sensors, the information is immediately transmitted
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to the model. As soon as this data is received, a data update is generated. This

update includes both the asset in question and its corresponding property, in this

case, the updated temperature value. This process ensures that the model re�ects

the states of the real-world asset in runtime, allowing for more precise monitoring

and decision-making based on current data. This implementation does not address

real-time requirements, as ful�lling these would necessitate di�erent technologies.

However, the model supports the description of real-time characteristics, which can

subsequently be leveraged to generate platform-speci�c code designed to manage

real-time aspects e�ectively.

The implementation of these concepts in existing IoT applications is crucial for their

transition into the realm of Digital Twins. Here, Node-RED plays a pivotal role, serving

as a bridge that enables existing IoT applications to migrate seamlessly to Digital Twin

models. Node-RED's versatility and wide adoption in IoT make it an ideal platform for

this transition, ensuring that the shift to more sophisticated, semantically-rich DT models

is both e�cient and e�ective. This integration highlights the potential of enhancing

existing IoT infrastructures with advanced DT capabilities, opening up new avenues for

innovation and optimization in the digital modeling space.

Distributed models

This section discusses the potential of running the proposed model on distributed systems.

The implementation of the model on such devices can signi�cantly enhance its utility in

various applications, particularly in the domain of Digital Twins. The Research Question

1.3.2 is addressed in this section.

Node-RED's compatibility with compact computing devices like the Raspberry Pi

signi�cantly enhances its utility in the domain of Digital Twins. This �exibility allows

Node-RED to operate on smaller, more cost-e�ective hardware, which is particularly

bene�cial for deploying distributed Digital Twin models. Running Node-RED on devices

like Raspberry Pi enables the creation of decentralized, yet interconnected digital twin

systems. Each individual unit can host and manage the digital twin of a speci�c machine

or sector within a larger network, such as a manufacturing line.

In a practical application, each machine or sector in a manufacturing factory could run

Node-RED and contain the speci�c digital twin model. This setup allows for localized

processing and management of data, reducing latency and enhancing responsiveness.

Simultaneously, these individual models can be connected to a central model, enabling

a holistic view of the entire manufacturing process. Figure 5.12 depicts a setup where
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three distinct machines are each connected to their respective Raspberry Pi units. These

units are then interconnected, as well as linked to a central computer. Additionally,

there is the possibility of connecting these systems to a storage solution, enabling data

preservation and archiving.

Figure 5.12.: Parallel models illustration

In the envisioned scenario (Figure 5.12), each machine within the system can be mod-

eled and managed by a domain expert, harnessing their specialized knowledge for optimal

operation and e�ciency. Crucially, despite the diversity of expertise and the uniqueness

of each machine, all experts can utilize the same uni�ed modeling language as proposed

in this thesis. This common language fosters a collaborative environment where di�erent

specialists can work cohesively, ensuring that their individual models integrate seamlessly

into the broader system. This approach not only enhances the accuracy and e�ectiveness

of each digital twin but also streamlines communication and coordination among the

various experts, leading to a more harmonious and e�cient overall system.

An innovative approach to further enhance the e�ciency and scalability of distributed

Digital Twin models on Raspberry Pi devices is the use of containerization technologies,

such as Docker. Containerization allows for the encapsulation of the Node-RED (namely,

the DT model) environment and its dependencies into a compact, isolated unit, making

it easier to deploy and manage across multiple devices. By encapsulating the Node-
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RED environment and its dependencies within a container, it ensures consistent behavior

across various Raspberry Pi devices, regardless of their individual con�gurations. This

standardization is particularly vital when expanding the system to encompass additional

machinery or sectors, as it streamlines deployment and reduces complexity.

Furthermore, the isolated nature of containers enhances the overall security and sta-

bility of the system. Each container operates independently, ensuring that processes and

issues within one container do not impact others. This isolation is crucial in a distributed

environment, as it minimizes the risk of systemic failures and security breaches, thereby

maintaining the integrity and reliability of the entire network.

Lastly, containerization simpli�es the processes of updating and maintaining the Node-

RED environment and the digital twin models. Modi�cations or upgrades can be made

to a single container image, which can then be easily and uniformly distributed across

all devices in the network. This approach not only ensures consistency across the system

but also signi�cantly reduces the e�ort and complexity involved in system maintenance.

This distributed approach can enable systems to be e�ectively scaled, accommodating

additional machines or sectors with ease. It exempli�es the power of this approach in

creating a �exible, scalable network of DTs, where each node contributes to a compre-

hensive understanding and control of the entire system. The ability to run these models

on small devices like Raspberry Pis opens up numerous possibilities for e�cient and

advanced digital twin implementations in various small, medium and large industries.

5.10.1. Technical Details of Node-RED Development

The development of nodes in Node-RED incorporates various technical aspects, including

supported operating systems and programming languages. This section gives an overview

of these technical details.

Node-RED is designed to be highly compatible across multiple operating systems,

ensuring broad accessibility and �exibility. Key supported operating systems include

Windows, Linux (including the Raspberry Pi versions), and MacOS. Node-RED's com-

patibility with Raspberry Pi is particularly noteworthy, as it enables the deployment of

lightweight, distributed Digital Twin models in various applications.

The creation of custom nodes in Node-RED leverages a combination of programming

languages and technologies to ensure both functionality and user-friendliness. JavaScript,

known for its versatility and widespread use in web development, serves as the core lan-

guage for Node-RED development, with the option to use TypeScript for more structured

and type-safe coding. To enhance the visual appeal and usability of the Node-RED user

interface, Cascading Style Sheets (CSS) are utilized for styling purposes. Additionally,
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Hypertext Markup Language (HTML) plays a crucial role in structuring the content

and layout of the nodes, particularly in con�guring their properties and user interface

elements. This blend of JavaScript/TypeScript, CSS, and HTML allows for the creation

of e�cient, e�ective, and aesthetically pleasing custom nodes in Node-RED.

Node-RED runs on top of Node.js, a JavaScript runtime. This underlying Node.js

framework provides a robust and scalable foundation for Node-RED, enabling it to handle

asynchronous events and a wide range of network tasks. Running on Node.js allows Node-

RED to bene�t from its event-driven architecture, making it highly e�cient for event-

based applications. This combination enhances Node-RED's capabilities in managing

data �ows and integrating various services and APIs seamlessly. The use of Node.js also

contributes to Node-RED's lightweight nature and its ability to run on various devices,

including low-power hardware like the Raspberry Pi, making it a �exible choice for diverse

IoT environments and digital twin implementations.

5.11. Conclusion of the chapter

In conclusion, this chapter has introduced the basic modeling elements for de�ning the

structure of Digital Twins. Emphasizing the need for a semantic modeling approach

reveals how DT can evolve beyond simple digital replicas into context-aware, intelligent

systems. These systems are designed to interact seamlessly with their physical coun-

terparts, showcasing a revolution in the way digital and physical entities coexist and

collaborate. The incorporation of semantic layers into DTs ensures a deeper understand-

ing of data, leading to more accurate and actionable insights. This approach not only

enhances the �delity of DTs but also elevates their role in predictive analysis, decision-

making, and monitoring.

The proposed modeling elements are fully aligned with the WoT standard, enabling

seamless integration with modern web-based applications. Incorporating widely recog-

nized standards like WoT into DT modeling represents a signi�cant advancement, as

it facilitates interoperability and allows for the integration of web technologies. This

approach also supports the use of existing DT frameworks, such as the Asset Adminis-

tration Shell (AAS) [Pak+21], further enhancing the �exibility and applicability of the

proposed models across various domains.

Moreover, the application of this approach in existing IoT infrastructures, facilitated

by tools like Node-RED, is a signi�cant step towards the evolution of IoT systems. By

enabling existing IoT applications to migrate e�ortlessly to Digital Twins, the proposed

approach ensures a smooth transition to more advanced, semantically-enriched models.
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This not only preserves existing investments in IoT but also paves the way for future

innovations and enhancements.

To support system engineers in building their DTs system, a methodology has been

introduced in the next chapter. This methodology serves as a roadmap, o�ering step-

by-step guidance on how to utilize the previously discussed semantic modeling elements

and architecture to construct semantic digital representations of physical entities.
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To support the design and implementation of DTs, using the previously explained archi-

tecture and modeling elements, this chapter introduces a novel methodology that sys-

tematically guides the development process from conceptualization to deployment. By

following this structured approach, practitioners can e�ectively bridge the gap between

theoretical models and practical applications, creating DTs that are both functional and

contextually relevant. This approach is designed to assist engineers and system designers

in the creation and implementation of their DT models. The methodology is graphically

represented in Figure 6.1, which outlines the speci�c modeling steps to be followed.

Figure 6.1.: Steps of the mothodology

This methodology follows the Model-based design approach, by starting with the sys-

tem models that are built at the beginning of the process. Each step is described as

follows:

6.1. Identify Observable Assets

The initial phase in modeling Digital Twins involves a detailed analysis of the real-world

components that are observable or interactable. These components are referred to as

Observable Assets (Def. 5.8.4). An Observable Asset is not just a standalone entity;

it can encompass a composite structure made up of other assets, forming a network of

interrelated entities. For instance, in a manufacturing setting, an observable asset like a
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conveyor belt system might include individual components such as motors, sensors, and

control units, each of which is an asset in its own right.

In this crucial step, it's important to meticulously identify the properties and actions

associated with each asset. Properties refer to the static and dynamic characteristics of

an asset, such as size, color, temperature, or speed. For example, a motor might have

properties like rotational speed and operating temperature. Actions, on the other hand,

are the functions or operations that an asset can perform. Continuing with the motor

example, possible actions could include 'start', 'stop', or 'adjust speed'.

The process of identifying these assets, their properties, and actions requires close

collaboration with domain experts and thorough observation of the operational environ-

ment [Liu+21]. This ensures that the digital twin accurately mirrors the complexities

and nuances of each physical asset. By comprehensively mapping out these observable

assets, their properties, and actions, a solid foundation is laid for constructing a detailed

and functional model.

6.2. Developing the DT Model

Following the identi�cation of observable assets, the next step involves the modeling of

each asset, along with the integration of their respective actions and properties. This

modeling process is conducted using the speci�c nodes outlined in the previous section,

as visualized in Fig. 5.1. In this phase, each asset is not just represented digitally but

is also enriched with its unique characteristics and functionalities. For example, if an

asset is a temperature sensor, its model will include properties like current temperature

readings, operating range, and accuracy, along with actions like 'activate' or 'reset'.

In addition to these individual representations, semantic relationships between assets

are established to re�ect their real-world interactions and dependencies. For instance,

in a smart building context, a thermostat (an asset) might have a semantic relationship

with HVAC systems (another asset), indicating a control or feedback loop.

A critical aspect of this step is the �exibility to revisit and re�ne the models. As insights

are gained or changes occur in the real-world setup, it becomes necessary to loop back

to the initial step of identifying observable assets. This iterative process allows for the

reorganization and updating of asset models to ensure they continue to accurately mirror

the physical world. Such iterative re�nements are key in maintaining the relevance and

accuracy of the Digital Twin model, ensuring it adapts to evolving real-world conditions

and requirements.
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6.3. Enhancing with Semantic Annotations

Beyond the initial semantics integrated into relationships and asset compositions and DT

structure modeling, this stage focuses on enriching properties, actions, and assets with

more detailed semantic annotations. This enhancement aligns the model with a universal

standard, ensuring consistency and clarity across all elements. For instance, consider

an asset with a temperature property, typically represented by a single �oat number.

Without semantic annotation, the unit of measurement for this temperature�whether

Celsius, Fahrenheit, or Kelvin�remains unspeci�ed. However, leveraging insights from

the research by [Thu+20], designers can utilize standards like iot.schema.org to annotate

assets with precise semantic de�nitions. This means the temperature property would be

clearly de�ned with its unit of measurement, eliminating any ambiguity.

As de�ned in Section 5.8, the semantic annotations are added to the relationships in

asset compositions, properties, actions, and assets.

Furthermore, the relationships between assets can be established according to the

speci�c needs of the use case. For example, in a smart building scenario, an asset named

'room1' could have a 'belongsTo' relationship with another asset, 'building1'. This not

only de�nes the physical association but also implies a semantic connection, such as

'room1' being a part of 'building1'.

Once these semantic relationships are established, a comprehensive graph of the model

is generated, encapsulating all the semantic annotations. This graph serves as a visual

and interactive representation of the model, illustrating the intricate web of connections

and dependencies between di�erent assets. Importantly, the process remains �exible,

allowing for iterative modi�cations and re�nements. Designers can revisit and adjust

the model as required, ensuring that it continually aligns with real-world changes and

maintains its semantic integrity. This ongoing process of enhancement and re�nement is

vital in keeping the Digital Twin model both accurate and semantically rich.

6.4. Process of de�ning the DT models

The initial three steps�Identifying Observable Assets, Developing the DT Model, and

Enhancing with Semantic Annotations�are executed collaboratively by system designers

from various �elds, using the common language and methodologies outlined in earlier sec-

tions. This interdisciplinary approach is crucial, as it brings together diverse perspectives

and expertise, ensuring a comprehensive and accurate representation of the structure of

the real-world system in the digital twin.
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Relating these steps to the architecture, Figure 6.2 shows the transfer of information

from the observable layer to the model layer. This is one of the main steps in the

digitalization process and helps business models to be shifted to a data-driven approach

since the data is one of the main assets of modern companies.

Figure 6.2.: Transfer of information from the observable layer to the model layer

Similarly to current technologies such as GitHub Copilot [NN22] that helps program-

mers to write code, Grammarly [Fit21], which helps to write better texts and other AI

tools that help in the creative process, AI can also be used to help in the DT modeling

process. The goal of this thesis is not to provide a complete solution for applying AI to

DT modeling but to show that it is possible to use AI to help in the process, possibly

called DT-Copilot. For this thesis, an API of OpenAI was used to generate Assets based

on MQTT messages. The API receives a message and returns a list of assets that could

be generated based on the message. This is a simple example of how AI can help in the

process of de�ning the DT models and working as a DT-Assistant.

The evolution of AI and Natural Language Processing (NLP) technologies can play

a signi�cant role in this process [Sun+22]. Advanced AI algorithms assist in analyzing

complex systems and identifying key components and their interactions. A designer may

manually craft the component models, or these models can be generated through AI al-

gorithms that are capable of processing a set of requirements. These algorithms can use

NLP to analyze text descriptions, interpret machine messages, and deduce the relation-
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ships and characteristics of various devices within the system. Alternatively, a combined

approach can be employed where human insights and AI capabilities are integrated. In

this collaborative model, the precision and analytical strength of AI complement the

nuanced understanding and creative problem-solving skills of the human designer. This

partnership aims to construct a more accurate and e�cient DT system, harnessing the

best of both worlds: the intuitive, contextual intelligence of humans and the speed and

scalability of AI.

By listening and analyzing messages exchanged by the physical assets, the AI can help

to identify the assets and their relationships. For example, if a message is sent from a

sensor to a controller, the AI can understand that these two assets are related and can

help to de�ne the relationship between them. This is a very complex task and is not

in the scope of this thesis, but it is important to mention that it is possible to use AI

to help in the process of de�ning the DT models. AI can also help system designers by

suggesting new assets, properties, and actions based on the messages exchanged by the

physical assets.

In the scope of this thesis, an API of OpenAI was used to generate Assets based on

MQTT messages. The API receives a message and returns a list of assets that could be

generated based on the message. This is a simple example of how AI can help in the

process of de�ning the DT models and working as a DT-Assistant.

While AI-based approaches have made signi�cant strides, they still face critical chal-

lenges such as hallucinations, where the AI generates information that is not grounded

in reality, or incorrect suggestions, as noted by [Li+24]. Therefore, it remains essential

to keep a human in the loop to validate and re�ne these AI-generated outputs, ensuring

the reliability and accuracy of the �nal model. As this is a rapidly evolving �eld, future

research and development are expected to further re�ne and enhance the capabilities of

AI in DT modeling, making it an indispensable tool for system designers.

According to the methodology, at this point, the main structure of the model is already

de�ned, and the next steps are to integrate the external models. This is the focus of the

next section.

6.5. Integrating External Models

This phase of the methodology is centered around the integration of external models,

which provide diverse and unique perspectives of each asset. Considering that an as-

set can be represented through various models and technologies [TTA23], this step in-

volves aggregating these models and establishing semantic connections to their respective
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Figure 6.3.: Integration of external models in the DT model through drivers

components within the system. For example, a motor in an industrial setup might be

represented by a mechanical model detailing its physical structure, an electrical model

outlining its circuitry, and a performance model predicting its e�ciency over time.

Each of these models adheres to its speci�c standards and formats. As a result, it

becomes necessary to implement custom drivers that facilitate communication with these

external models. These drivers act as interpreters, translating the data and commands

between the system's language provided in this thesis and the model-speci�c language.

For instance, a driver could translate sensor readings into speci�c instructions for 3D

modeling software that represents the physical structure of the motor.

Drivers can be developed for speci�c types of models and then reused for similar

models. For example, a driver implemented in JavaScript to interact with a REST API

that updates a 3D model of a motor can be reused for other models that also use REST

APIs. Figure 6.3 shows the integration of external models in the DT model.

The successful linking of these models within the Digital Twin framework enhances

the depth and accuracy of the asset representation. By ensuring that all models are con-

nected and accessible, a comprehensive, multi-dimensional view of each asset is achieved.

This not only enriches the system's understanding and simulation capabilities but also

allows for more informed decision-making and predictive analysis. The integration of ex-

ternal models, therefore, is a crucial step in building a robust and dynamic Digital Twin

environment, capable of re�ecting the complexities of real-world assets while keeping all

linked models updated with the current state of the system.

After adding external models, the next step is to de�ne the communication interfaces

to allow the model to be connected to the real world.

6.6. Establishing Communication Interfaces

Once the Digital Twin model is de�ned and enriched with semantic annotations (rela-

tionship between the assets that are re�ected in the KG), the focus shifts to setting up
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communication interfaces. This critical phase bridges the gap between the digital model

and the physical world, ensuring seamless interaction between the two realms. The

con�guration of these interfaces involves detailing how the digital (cyber) and physical

components of the system will communicate. This step is crucial as it enables the contin-

uous �ow of data from the physical world into the digital model, and conversely, allows

the digital model to in�uence the physical world by sending adjustments and commands.

To facilitate this two-way communication, Node-RED plays a signi�cant role. It o�ers

a diverse range of nodes, many of which are community-developed, supporting vari-

ous well-established communication technologies. These technologies include MQTT (a

lightweight messaging protocol for small sensors and mobile devices), REST APIs (allow-

ing for web-based requests and data exchange), sockets (for stream of data), and direct

�le access, among others.

By leveraging these technologies, the digital twin can maintain an up-to-date repre-

sentation of the physical assets, re�ecting changes and states. Conversely, it can also

exert control over the physical assets, enabling actions like altering settings, initiating

processes, or even triggering emergency shutdowns. This level of interaction is crucial

for the e�ective functioning of DTs, as it ensures that the models are not only re�ec-

tive of the current state of their physical counterparts but are also capable of actively

participating in their operation and management.

Having established the communication interfaces, the next step is to deploy the system,

making it operational and connected to the physical twin. The next section details the

deployment process.

6.7. System Deployment Process

Reaching the end of the setup process, the DT model is ready for deployment. This

pivotal stage marks the transition from a theoretical model to an operational system

[Sch+21b]. Upon deployment, Node-RED plays a crucial role in saving the model locally

within its environment. There's also the �exibility to export the model for external use

or backup purposes. This step is essential as it signi�es the activation of communica-

tion channels between the digital twin and the real world, enabling the system to start

functioning based on the data and interactions.

Concurrently, a comprehensive knowledge graph in JSON-LD format is generated,

encompassing all the de�ned elements of the model. This graph format is particularly

bene�cial as it aligns with web standards, making the data universally understandable

and accessible. The JSON-LD graph can then be stored in a graph database, such as
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TypeDB or Neo4j. These databases are capable of handling complex, interrelated data

structures, making them ideal for managing the intricate networks of relationships and

properties inherent in DTs.

Furthermore, the deployed system allows for the execution of queries and inferences

on the updated graph. This capability is vital for extracting meaningful insights from

the data, as it enables the exploration and analysis of the semantic layers within the

model. By querying and analyzing the graph, users can gain a deeper understanding

of the relationships, patterns, and trends that de�ne the digital twin's operation and

interactions with the physical world. In essence, the deployment phase not only brings

the Digital Twin model to life but also sets the stage for ongoing analysis, optimization,

and adaptation of the system.

Details of what happens after the deployment and its output are explained in the next

section.

6.8. After deployment stage

After the deployment of the model is done, the Digital Twin model is live and ready

for ongoing analysis, optimization, and adaptation of the system. Every time a change

is made in the model, it must be deployed to bring this modi�cation to life, and then

a knowledge graph of the assets and relationships is generated and can be stored on

databases and used with ML algorithms to learn and perform inferences. Finally, all this

information can be presented to users to help in the decision-making and/or result in

commands to the physical twin.

6.8.1. Knowledge Graph

The KG (de�ned in Def. 5.8.1) in a DT model is a semantically rich, graph-based

data structure that encapsulates the relationships and properties of all the system's

elements. It provides an intuitive visualization of how di�erent parts of the system are

interconnected, making it easier to understand complex dependencies and operational

�ows. This detailed representation is crucial for accurately mirroring the real-world

system and providing actionable insights.

It is important to notice that every time there is a change in the model (data change

or structural change), a new snapshot of the model is created and can be stored, keeping

track of the system life cycle. It works as a snapshot of a speci�c timestamp and can

be reused not only for learning patterns but also for visualizing previous states of the

system after a crash.
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For example, if an Asset called gripper would have the properties position, pressure,

temperature, and load, and the action moveToStorage, it could be modeled like in Figure

6.4.

Figure 6.4.: Example of a model

This model would generate a graph in JSON-LD similar to the following (the complete

JSON can be found in the appendix A.1):

1 {

2 "model": {

3 "projectName": "project1",

4 "projectId": "uuid1",

5 "version": "1.0.0+1",

6 "assets": [

7 {

8 "id": "8 caf970c47b84ea6",

9 "type": "dt-asset",

10 "name": "gripper",

11 "aTtype": "Generic",

12 "context": "",

13 "actions": [

14 {

15 "id": "dc665aa4cf49dac3",

16 "type": "dt-action",

17 "name": "moveToStorage",

18 "topic": "",

19 "payload": ""

20 }
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21 ],

22 "properties": [

23 {

24 "id": "e5ba81d75d4b83c8",

25 "type": "dt-property",

26 "name": "position",

27 "accessGroup": "",

28 "context": "",

29 "aType": "float"

30 }

31 ...

32 ]

33 }

34 ]

35 }

36 }

It is possible to see that this JSON contains information about the model in general,

such as:

� project name: a string that represents the name of the project (e.g. "Gripper

Machine").

� project id: a unique identi�er for the project (e.g. a UUID identi�es).

� version: a string that represents the version of the model (e.g. "1.0.0+1"). Every

time a change is made in the model, this version is updated, allowing the tracking

of the model life cycle.

Within the model, there is an array of assets, and each asset has its properties and

actions. For example, the asset gripper has the action moveToStorage and the property

position.

Assets, according to the de�nition 5.8.4 have attributes such as id, name, context,

and type (aTtype), and properties and actions. Properties and actions are de�ned in

the de�nition 5.8.5 and 5.8.6, respectively. Properties have attributes such as id, name,

context, and type (aType), and actions have attributes such as id, name, topic, and

payload.

The attribute �type� is used by Node-RED to identify which kind of node it is, therefore,

to represent the type (de�ned in Defs. 5.8.4, 5.8.5) the attribute �aType� is used.
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Based on the DT model structured in this way, it is possible to convert it into di�erent

formats such as Cypher using the transformation de�ned in Section 5.8. This format is

usually used by knowledge graph databases as a query language. Figure 6.5 shows the

knowledge graph stored on Neo4J.

Figure 6.5.: Example of a model

If designers do not specify the relationships between assets with properties and actions,

these relationships are always referred to as "has_property" and "has_action".

In this context, if the asset gripper has the property position, the relationship between

them is "has_property", and if the formula de�ned in (5.1) is applied, the result in a

KG-way would be:

1. De�ne the Elements:

� Let the Asset (de�ned in 5.8.4) A = {"Gripper"}

� Let the Property (de�ned in 5.8.5) P = {"Temperature"}

� Let the Relationship (de�ned in 5.8.9)R = {"has_property"} where "has_property"
is the relation between "Gripper" and "Temperature".

2. Transform the Elements:
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� For fx(y) where x = A and y = "Gripper", this function would transform

"Gripper" into a set of triples 1 that de�ne it as an asset in the KG 2. Similarly,

for x = P and y = "Temperature", it transforms "Temperature" into a set of

triples 3.

� For g(r) where r is the "has_property" relation between "Gripper" and "Tem-

perature", this function would transform this relation into a set of triples that

represent the relationship.

3. Apply the Formula:

� The transformation T results in a knowledge graph that includes nodes for the

Gripper and its Temperature, along with an edge representing the "has_property"

relationship between them.

While KGs o�er a semantically rich and intuitive representation of system elements

and their interconnections, databases provide the infrastructure for storing, querying,

and managing these representations over time. The next section discusses the role of

databases in the DT modeling process.

6.8.2. Database

The choice of database for a DT system is contingent on the speci�c needs of the appli-

cation. A multi-faceted approach, combining di�erent types of databases, often provides

the most comprehensive solution.

Graph Databases for DT Structure: Graph databases are particularly well-suited for

storing the DT model's structure and current state. They excel in representing complex

relationships and interdependencies among various assets, mirroring the KG's structure.

Time-Series Databases for Historical Data: Time-series databases are ideal for tracking

the historical data of the system (and its assets). They e�ciently store and manage

chronological data, such as sensor readings or operational logs. This historical data is

crucial for analytics like predictive maintenance, enabling the system to learn from past

patterns and anticipate future needs.

1In the context of knowledge graphs, transforming an entity into a set of triples allows for a structured

representation of information. A triple consists of a subject, predicate, and object, forming the basic

building block of semantic data models.
2Subject: Gripper, Predicate: type, Object: Asset, indicating that the "Gripper" is of type "Asset"
3Subject: Gripper, Predicate: hasProperty, Object: Temperature, indicating that the "Gripper" has a

property "Temperature".
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The choice of databases is usually highly dependent on the use case and the speci�c

requirements of the system, therefore, it is not in the scope of this thesis to de�ne which

database should be used.

However, storing data is crucial for the system to be able to learn and perform infer-

ences. The next section gives an overview of this concept.

6.8.3. Learning and inferences

The DT model, supported by its comprehensive database and KG, becomes a fertile

ground for advanced learning algorithms and inference mechanisms.

Machine learning algorithms can analyze the accumulated data to detect patterns,

predict future states, and suggest optimizations. These algorithms can learn from both

the current state of the system (as represented in the KG) and its historical data.

In the scope of this thesis, through the use cases in Chapter 7, inferences on a Knowl-

edge Graph (KG) are performed using the Cypher query language. Cypher is a declarative

query language for graph databases, allowing for complex queries and pattern matching.

By executing Cypher queries on the KG, users can extract valuable insights, identify

relationships, and uncover hidden patterns within the system. However, it is important

to note that complex algorithms can also be used to perform inferences and learn from

the data.

The insights and predictions derived from these algorithms can be translated into

actionable commands. These commands can be communicated to end-users through

applications or directly implemented to e�ect changes in the physical assets, optimizing

performance and preempting issues. The next section discusses the applications that can

be used to interact with the DT model.

6.8.4. Applications

Applications serve as the user interface of the DT system, translating complex data and

insights into an accessible and actionable format for end-users.

These applications can provide a user-friendly interface to interact with the DT system.

They display information derived from the KG and database analyses in a comprehensible

manner, aiding in decision-making processes.

Updates and Commands: Through these applications, users can receive updates on

the system's status, view predictions and recommendations, and issue commands. These

commands, in turn, are relayed back to the physical assets, closing the feedback loop

between the digital and physical twins.
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6.9. Conclusion of the Chapter

The methodology presented in this chapter delineates a comprehensive framework for DT

modeling, crucial to the evolution of Industry 4.0. The structured approach outlined here

bridges the gap between theoretical constructs and their practical applications, ensuring

that DTs are not only conceptually robust but also functionally relevant and contextually

adaptable.

Beginning with the identi�cation of observable assets, this methodology highlights the

importance of understanding and capturing the real-world components that the DT will

re�ect. It then transitions into the development of the DT model, emphasizing the need

to integrate both actions and properties of each asset. This includes the critical task of

semantic annotation, which ensures clarity and consistency across the DT environment

by standardizing de�nitions and relationships within the model.

The process is reinforced by the integration of external models, each o�ering a di�erent

perspective of the asset, and the establishment of communication interfaces that enable

real-world interactions. The deployment phase makes the model come to life, enabling

runtime data �ow and interactive management of the physical assets.

The culmination of this process is a live DT model that can be continuously analyzed,

optimized, and adapted. This dynamic model is ever-evolving, with changes and updates

reinforcing its accuracy with the physical counterpart. The knowledge graph that emerges

from this model serves as a structured representation of the system's complexity and the

relationships of its components.

By adopting this approach, system designers are equipped with a powerful toolkit that

not only aids in the design and implementation of DTs but also in the ongoing evolution

of these systems. The convergence of AI, machine learning, and human expertise within

this framework heralds a new era of DT modeling�one that is more intuitive, predictive,

and responsive to the needs of both the system and its users.

Thus, this thesis sets forth a methodological paradigm that is expected to signi�cantly

contribute to the �eld of DTs, o�ering system designers a path that is as innovative as it

is practical. It is a pathway marked by continuous re�nement, learning, and adaptation,

ensuring that DTs remain at the forefront of new advanced systems.
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To illustrate the utility and versatility of the proposed approach presented in the previous

chapters, two distinct use cases have been developed. The �rst use case is situated within

the Industry 4.0 domain, demonstrating the application of DT in a manufacturing and

production context. The second use case explores the automotive domain, showcasing the

potential of DT models in vehicle design, performance optimization, and maintenance.

7.1. Industry 4.0

In the context of Industry 4.0, the introduced concept is applied to a comparatively

conventional setting where the system structure remains mainly static, and the main

changes are observed in the asset properties rather than their fundamental con�gurations

or functions.

DTs are extensively utilized in Industry 4.0 to replicate physical assets in a virtual

environment, enabling monitoring, simulation, and analysis. This digital mirroring facil-

itates a deeper understanding of asset performance under various conditions, predictive

maintenance, and optimization of production processes. The essence of DT in Industry

4.0 lies in its ability to create a seamless bridge between the physical and digital worlds,

enhancing operational e�ciency, reducing downtime, and fostering innovation.

By mirroring the factory modules such as the storage and retrieval station, vacuum

gripper robot, high-bay warehouse, and others in a virtual environment, stakeholders can

have a digital representation of the system, experiment with new settings, analyze reports

and so on. This hands-on experience with DT models prepares users for the complexi-

ties of modern manufacturing environments, emphasizing the importance of data-driven

decision-making and the integration of IoT technologies for optimized performance based

on current data. Additionally, in the era of LLMs, industries must have ways of integrat-

ing di�erent information sources, feeding decision-making systems with the knowledge of

the various stakeholders that can be involved.
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Thus, this use case underscores the practical bene�ts of adopting the proposed DT

approach, demonstrating its relevance and applicability in enhancing the understanding

and optimization of manufacturing processes within the context of Industry 4.0.

More speci�c details about the developed use case are given in the next subsection.

Description of the use case

For this use case, the Industry 4.0 simulator from Fischer Technik has been used to

demonstrate how the proposed concepts of this thesis can be applied in this kind of

application. It is suitable for vocational training, academic research, and professional

development in universities, corporations, and IT sectors. It o�ers a simulated environ-

ment showcasing the digital and interconnected stages of ordering, manufacturing, and

delivery processes. Figure 7.1 shows the mentioned simulator.

Figure 7.1.: Fischer Technik Industry 4.0 simulator ©�schertechnik GmbH

This interactive Training Factory features modules such as a storage and retrieval sta-

tion, a vacuum gripper robot, high-bay storage, a multi-functional station with an oven,

a sorting conveyor with color detection, an environmental sensor, and a pivoting camera.
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From the moment raw materials are delivered and stored in the high-bay warehouse,

through to processing orders via the dashboard, each step is visualized in runtime on the

dashboard. The environmental sensor enhances the setup by monitoring temperature,

humidity, air pressure, and air quality, while the camera's extensive pivot range supports

comprehensive web-based remote surveillance.

Each component is monitored using NFC technology, assigning a unique ID to every

item to track and display its progress through the production line.

The Factory operates on a 24V (or 9V) system and is controlled by a PLC (pro-

grammable logic controller), which is compatible with various brands, though not in-

cluded.

The aim of this use case is to illustrate the practical application of the thesis's proposed

concepts by integrating them within the Industry 4.0 applications. By doing so, it seeks

to demonstrate the e�ectiveness of using a knowledge graph to represent the structural

and operational aspects of an industrial plant. This approach enables the execution

of precise inferences based on actual data collected from the various components of the

simulator. Through this real-world application, the use case aims to highlight how digital

twin models can be e�ectively utilized to enhance decision-making processes, optimize

performance, and predict future outcomes in an Industry 4.0 setting. For example, if one

of the machines is broken or will stop working soon, inferences can be made to �nd out

what is the current best strategy for replacing this equipment.

This industrial plant is composed of several sectors/components that work together

to execute di�erent processes. For this use case, the process of Inbound Delivery and

Storage has been executed to demonstrate the proposed concepts. Some of the main

components of this process are the Delivery and Pickup Station, the Gripper Robot, and

the Warehouse Storage.

Figure 7.2 shows these three components with some of their parts.

� 1. Delivery and Pickup Station: The Delivery and Pickup Station is a critical

component of the factory, serving as the initial entry and �nal exit point for work-

pieces. It is divided into four main work areas, integrating several functionalities

to facilitate the processing of materials as they come in and out of the production

line. These areas include:

Input/Output Unit: This area manages the introduction of raw materials into

the system and the dispatch of �nished products. Equipped with a light barrier,

it detects the presence of workpieces, signaling the system to initiate subsequent

processing steps. Color Detection: Once a workpiece is identi�ed, it passes
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Figure 7.2.: Inbound Delivery and Storage Process ©�schertechnik GmbH

through the color detection area. Here, a color sensor assesses the workpiece's

color, gathering essential data for the production process. This information can be

used to sort workpieces or tailor the manufacturing process to speci�c requirements.

NFC Reader: After color detection, the vacuum gripper positions the workpiece

onto the NFC reader. This step involves clearing the NFC tag's memory and

marking the item as raw material, before proceeding to write production-related

data onto the NFC tag. This data includes, but is not limited to, the workpiece's

color, processing steps completed, and quality control metrics. Output Area:

Completed workpieces are moved to the output area, where they can be organized

for further processing or prepared for shipping. This area also allows for additional

data to be stored on the NFC tag, providing comprehensive traceability of the

workpiece's journey through the production line.

� 2. Gripper Robot:The Gripper Robot is an automated mechanism designed

for precise handling and manipulation of workpieces within the factory. It plays

a pivotal role in moving materials from one station to the next, ensuring smooth

transitions between di�erent phases of the production process. Key functions in-

clude:

Picking and Placing: The robot's primary task is to pick up workpieces from

their incoming position and place them accurately for processing, whether it be for
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storage, color detection, or further manufacturing steps. Interacting with NFC

Reader: The Gripper Robot also interfaces with the NFC reader, positioning

workpieces so that their embedded NFC tags can be accurately read and written

to, facilitating the tracking and management of production data.

� 3. Warehouse Storage:Warehouse Storage represents the backbone of the fac-

tory's logistics and inventory management system. It is where raw materials, work-

in-progress items, and �nished goods are systematically stored and retrieved, op-

timizing space utilization and ensuring the availability of materials for continuous

production. Key aspects include:

� High-Bay Storage: This area is designed for e�cient storage, maximizing vertical

space to accommodate a large volume of workpieces in a compact footprint. It

ensures that materials are safely stored until needed for production.

� Automated Retrieval System: Integrated with the factory's control system, the

warehouse storage features an automated retrieval system that e�ciently locates

and moves items to and from the production line. This system is critical for main-

taining a seamless �ow of materials, reducing wait times, and increasing overall

productivity.

Each of these components was modeled individually and their model was also running

on di�erent instances. This allows technicians with domain-speci�c knowledge can create

and maintain the machine models that they are responsible for.

To illustrate one of the several bene�ts of this approach. For demonstration of the

bene�ts of knowledge graphs and inferences that can be made based on them, a failure

in color detection has been added.

The next section explains in more detail how the Inbound Delivery and Storage Process

works.

Inbound Delivery and Storage Process

For this thesis, the inbound delivery storage process has been implemented using the

proposed approach. Figure 7.3 illustrates this process with its main steps.

� 1. Introduction of Workpiece: Detected by a light barrier, signaling delivery.

� 2. Activation of Vacuum Gripper Robot: Moves to pick up the workpiece.
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Figure 7.3.: Inbound Delivery and Storage Process
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� 3. Color Detection: Workpiece color identi�ed by the sensor. NFC Tag Pro-

cessing: Data on the tag is erased and then rewritten with new information in-

cluding color, delivery speci�cs, and quality control data.

� 4. Gripper transports the piece to storage: After the piece is identi�ed, it is

transported by the robot to the storage warehouse.

� 5. Container Handling: An empty container is provided, �lled with the work-

piece. and then stored in the high-bay warehouse.

� 6. The piece is stored: Finally the piece is stored in the warehouse.

In the next section, details on how the proposed concepts of this thesis can be applied

are presented.

Application of the proposed approach

The �rst step de�ned in the methodology (Chapter 6) is to Identify the Observable

Assets (Section 6.1). For this use case, the �rst identi�ed assets are the main stations:

The delivery and Pickup Station, the Gripper Robot, the Warehouse Storage, and the

Work Piece that enters the line and is stored in the storage.

The "Pickup station" as referenced in Figure 7.4, is strategically positioned at the

commencement of the process �ow, serving as the gateway for items entering the system.

It is engineered to seamlessly handle the initial identi�cation and sorting of workpieces,

leveraging detection technologies. This station is equipped with sensors and readers to

ensure identi�cation from the moment the workpieces are introduced into the system.

The integration of a light barrier, an NFC (Near Field Communication) reader/writer,

and color recognition capabilities are the main parts of this station.

The primary operations of the "Pickup station" are represented in its two main ac-

tions: scanNFC and scanColor. The scanNFC function facilitates the identi�cation and

veri�cation of workpieces through embedded NFC tags, enabling the station to interact

with each workpiece's digital data. The scanColor action, on the other hand, allows

for the visual categorization of workpieces based on their color, supporting subsequent

sorting and processing activities.

This station is also adept at managing system �ow control through the generation

of speci�c events. The reqQuit event allows for the interruption of the process �ow,

providing a mechanism to halt operations when necessary. NFC-related events, including

nfcTagOk, emptyTag, and nfcError, o�er detailed feedback on the NFC scanning process,

highlighting successful scans, untagged workpieces, and errors, respectively. Similarly,
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Figure 7.4.: Model of the Pickup Station

color-related events such as wrongColor and colorOk deliver immediate insights into the

success or challenges encountered during color veri�cation.

The "Pickup station" thus plays an integral role in setting the stage for the processing

of workpieces throughout the system. Its functionalities not only ensure the smooth

transition of workpieces into the system but also lay the foundation for their subsequent

handling and processing, exemplifying its critical position at the outset of the work�ow.

The image 7.5 shows its behavior modeled in a state machine. This is part of the

methodology step Integrating External Models (Section 6.5).

Figure 7.5.: Pickup station - State Machine
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The state machine created for this asset has 4 states: idle, colour_detection, nfc_reader,

and fault. When the system starts, it goes to the state idle. The transitions between

these states are based on the events that are generated by the asset (see left table in

Figure 7.5). For example, when the scanNFC action is performed, the asset generates

the nfcTagOk event, which triggers the transition from nfc_reader to the idle state. This

state machine is updated with live data coming from the real-world twin and therefore,

it shows the current state of the system.

An extension of the model (de�ned in 5.8.8) node in Node-RED has been developed

to allow the creation of state machines. This extension allows the creation of state ma-

chines within the same environment the DT-models are created, using the same concepts

that were used to create the DT-models, such as the events (de�ned in 5.8.7) and ac-

tions (de�ned in 5.8.6) of an asset. This extension was developed within the scope of

a bachelor thesis at the University of Applied Sciences Hamm-Lippstadt (HSHL) under

the supervision of the author and supervisor of this thesis.

Linking di�erent models to form a more comprehensive representation of the system

is an important aspect of DTs. Furthermore, keeping all these models updated with

live data from the real world is crucial to ensure that the digital twin is an accurate

representation of the physical system. With the proposal approach, whenever there is a

change in the system's state, these modi�cations are propagated to the external models

(such as the state machine), enabling their timely update.

The Gripper is illustrated in the Figure 7.6. It is composed of the properties position,

pressure, temperature, and load. It has the actions moveToColorDetection (that moves

the piece to the color detection), and the moveToStorage (that moves the piece to the

storage). It also has the events requestQuite, fetched and next.

The asset labeled "storage", Figure 7.7, serves as a crucial component in the manage-

ment and organization of workpieces within the system. After the gripper transfers a

workpiece into the storage section, the storage's main function is to allocate space for

these items based on its current availability and capacity. The properties integral to

the storage asset include "workpieces," which lists the items currently stored; "history,"

detailing the sequence of stored and retrieved items over time; and "capacity," de�ning

the maximum number of workpieces it can accommodate.

In terms of operational capabilities, the storage can perform actions such as "store-

Container," allowing it to accept a container either with or without a workpiece, and

"fetchWorkPiece," which facilitates the retrieval of workpieces as needed. This asset is

also designed to emit two speci�c events: "workPieceStored" signi�es the successful stor-
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Figure 7.6.: Model of the Gripper

age of a workpiece, and "error" indicates any issues or malfunctions that occur during

the storage process.

Figure 7.7.: Storage model

To further encapsulate its functionality and operational logic, the storage asset is

complemented by an external model in state machine format, as shown in Figure 7.8.

This model delineates the various states the storage can be in, such as empty, partially

�lled, or full, and the transitions between these states based on the actions performed,

like storing or fetching workpieces. The state machine model provides a structured and

clear representation of the storage's behavior, enhancing the predictability and e�ciency

of its operations within the system.
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Figure 7.8.: Storage state machine model

The state machines are updated with live data coming from the real-world twin and

therefore, it shows the current state of the system.

The asset named "workpiece" 7.9 is a central element within the system, characterized

by distinct properties that include type, color, and history. The type property categorizes

the workpiece, di�erentiating it based on its intended function or role within the system.

The color property provides a visual identi�er, enabling the system to apply color-based

sorting or processing rules. Lastly, the history property tracks the workpiece's journey

through the system, documenting interactions, processes undergone, and any changes in

status. This comprehensive set of properties ensures that each workpiece can be accu-

rately identi�ed, tracked, and managed throughout its lifecycle in the system, facilitating

e�cient processing and quality control.

Figure 7.9.: Work piece model
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After the main assets are identi�ed and modeled, it is possible to add their relation-

ships via semantic annotations. This represents the step "Enhancing with Semantic

Annotations" of the methodology (Section 6.3).

Figure 7.10 presents a visual overview of the key assets within the system and the web

of relationships that connect them. This model serves a critical function by abstracting

away from the details of individual asset speci�cations to concentrate on how these

assets interact within the broader system architecture. Such a high-level perspective is

important in fostering an understanding of the system's functional dynamics without

becoming overwhelmed by the complexity of each component's details.

This strategic focus on relationships rather than on asset details plays a pivotal role in

the collaborative e�ort of system design and optimization. It enables stakeholders from

various domains to contribute e�ectively to the system's development. For instance, by

highlighting the connections between assets, the model allows a production engineer to

identify and optimize the work�ow and interdependencies of di�erent sectors. This could

involve streamlining the movement of workpieces between stations or ensuring e�cient

communication protocols are in place for asset coordination.

On the other hand, technicians or support engineers, with their rich technical expertise,

can leverage the same diagram to understand how the assets they are responsible for �t

into the larger operational scheme. This understanding is crucial for troubleshooting,

maintenance, and the �ne-tuning of machine performance, as it situates their technical

interventions within the context of the system's overall functionality.

Moreover, this level of abstraction facilitates cross-disciplinary collaboration and knowl-

edge sharing. It acts as a bridge between the macro-level understanding of system op-

erations and the micro-level technicalities of asset functionality. Doing so ensures that

the insights and innovations contributed by domain experts are harmonized toward the

common goal of enhancing system performance.

In essence, the diagram presented in Figure 7.10 is more than just a schematic; it is a

tool for strategic planning, a facilitator of interdisciplinary collaboration, and a catalyst

for innovation. It underscores the importance of a holistic view in system design, where

understanding the relationships between assets is just as crucial as understanding the

assets themselves. This step is important to show how the assets are connected and how

they can interact with each other.

It is possible to see on the model that either the technician or the pickUpStation

can trigger the gripper to move the workpiece to the storage. In case this component is

broken, the technician can trigger the gripper to move the workpiece to the storage. This

is an example of how the relationships can be used to make inferences on the system.
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Figure 7.10.: Assets and their relationships

The gripper is connected to the storage and can move the workpiece to this location.

All these assets belong to the section1, which contains an action shutdown and an event

alarm. Finally, the sector1 is connected to the asset factory.

As described in the previous chapters, an asset can also be something from the real

world that is not physical, as for example, a process. In this case, the process of Inbound

Delivery and Storage has been modeled as an asset, as can be seen in Figure 7.11.

Figure 7.11.: Inbound Delivery and Storage Process

The Inbound Delivery process has properties such as start and end time as well as its

current state. In the Figure, it is also possible to see that dependencies between processes

can be modeled through semantic annotations like dependsOn. This is important to show

how the processes are connected and how they can interact with each other.

These models were a simpli�ed version of how a model of the factory could look like.

The real model would have more details and more assets, but this is a good example of

how the proposed concepts can be applied in a real-world scenario.

The next step of the methodology is to Stablish the communication interfaces

with the real world. In this use case, the communication interface is established through

the MQTT protocol.
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Each asset has a topic in which it publishes its data. The data is published in a JSON

format and it is sent to a broker. The broker is responsible for receiving the data and

sending it to the subscribers. The subscribers are the assets that are interested in the

data. In this scenario, the DT model is a subscriber of this data and it is responsible for

updating the state of the assets based on the received data.

This step involves a considerable amount of technical work, as it deals with all the IoT

details on how to communicate with the real world. Existing applications already have

this kind of communication established, which makes it easier to integrate the proposed

concepts. These existing applications can add a layer of abstraction to their existing

communication interfaces so that the proposed concepts can be integrated.

After the communication channels with the real world are de�ned, the next step is

to System Deployment. This step is responsible for deploying the models and the

communication interfaces in the real world. This step outputs a knowledge graph of the

current structure of the system, which can be used to make inferences and optimize the

system.

In case the deployment is successfully done, both worlds should be connected and

communicating. The real world should be sending data to the DT model and the DT

model should be updating the real world based on the inferences made. Every time the

real world changes, the DT model should be updated and a new version of the knowledge

graph is generated.

Figure 7.12 shows a knowledge graph generated from the models (according de�nition

described in Section 5.8) of the assets and their relationships. This knowledge graph is

a representation of the current state of the system and it can be used to make inferences

and optimize the system. For example, if the pickUpStation is broken, the technician

can trigger the gripper to move the workpiece to the storage. This is an example of how

the relationships can be used to make inferences on the system.

The transformation of the model of the assets and their relationships into a knowledge

graph was done using the formal de�nitions explained in the previous sections. For

example, the asset technician can trigger the asset gripper to move the workpiece to the

storage. Transformation:

� Assets -> Nodes:

� pickUpStation

* ("pickUpStation", "id", "pickUpStation01")

* ("pickUpStation", "name", "pickUpStation")

* ("pickUpStation", "context", "Warehouse A")
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Figure 7.12.: Knowledge Graph of the Inbound Process

* ("pickUpStation", "DTType", "Equipment")

� gripper

* ("gripper", "id", "gripper01")

* ("gripper", "name", "gripper")

* ("gripper", "context", "Warehouse A")

* ("gripper", "DTType", "Equipment")

� Relationships -> Edges:

� triggers

* ("triggers", "id", "trigger01")

* ("triggers", "name", "triggers")

* ("triggers", "direction", "->")

Queries and inferences can be performed on this knowledge graph of the system. For

example, if the technician and the pickUpStation can trigger the gripper to move the

workpiece to the storage, it is possible to make an inference to �nd out what is the

current best strategy for replacing this equipment. And, as the KG is updated with live

data, the inferences are very precise based on the current state of the system. Another

inference that an AI algorithm can make is the relationship between the technician and

the workpiece (in this case, it could be possible to infer that the technician processes the

workpiece).
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Figure 7.13 shows a query on the knowledge graph of the Assets and their relationship

(model illustrated in Figure 7.10), forming a structural view of the system. It shows how

the system can �nd out that the technician can trigger the gripper to move the workpiece

to the storage because the pickUpStation is broken.

Figure 7.13.: Query on the Knowledge Graph of the Assets and their relationships

The output of the methodology is the knowledge graph of the system. It can then

be used by other applications that work as an interface to end users. For example, a

dashboard that shows the current state of the system and the inferences made. This

dashboard can be used by the technicians to make decisions based on the inferences

made by the system.

Some of the possible inferences that could be made using the knowledge graph of the

use case are shown in Table 7.1.

After the decision is made, the dashboard can send the decision to the DT model,

which will update the real world based on the decision made. This completes the loop of

the DT model, where it receives data from the real world, makes inferences, and updates

the real world based on the inferences made or user decisions.

The next section shows how this use case can be mapped into the architecture proposed

in this thesis.

Mapping components into the architecture

This section aims to show how the components of the use case can be mapped into the

proposed architecture (Chapter 4). Figure 7.14 illustrates this mapping.

In the Observe layer, the real world is represented. According to ISO 23247, these

assets could be Equipment, Personnel, Material, Process, Facility, Environment, Sup-
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Asset (s) Inference (s) Description

Gripper
Robot

Predictive Maintenance
and Fault Diagnosis: Early
Warning Signals

By monitoring the operational data
(like temperature, pressure, and load)
from the Gripper Robot and comparing
it with historical patterns, the knowl-
edge graph can be used to infer poten-
tial equipment failures before they oc-
cur. For instance, if the temperature
and load on the gripper's motor exceed
normal ranges, it could predict an im-
pending failure, prompting preemptive
maintenance actions.

Any asset Predictive Maintenance
and Fault Diagnosis: Fault
Diagnosis

In the event of a breakdown, such as the
color sensor malfunctioning, the knowl-
edge graph can help diagnose the is-
sue by correlating the failure with re-
cent system changes or similar past in-
cidents. This accelerates troubleshoot-
ing and repair, minimizing downtime.

Delivery
and Pickup
Station,
Gripper
Robot, and
Warehouse
Storage,
Workpiece

Process Optimization:
Bottleneck Identi�cation

By analyzing the �ow of workpieces
through the Delivery and Pickup Sta-
tion, Gripper Robot, and Warehouse
Storage, the knowledge graph can be
used to identify bottlenecks in the pro-
duction process. For example, if work-
pieces are consistently delayed at the
color detection stage, it might infer
that the color sensor is a throughput-
limiting factor and suggest process ad-
justments or equipment upgrades.

Warehouse
Storage

Process Optimization: Re-
source Allocation

The knowledge graph can be used to
infer optimal resource allocation strate-
gies by analyzing the current workload
and performance of the warehouse stor-
age system. If the system detects an
uneven distribution of workpieces, sug-
gesting potential overloading of certain
storage areas, a recommendation for re-
allocating the balance of the load to im-
prove e�ciency could be made.

Inbound
Process

Scenario Planning and
Simulation:

Before implementing changes in the
production line, the knowledge graph
can be used to simulate the impact of
those changes, inferring potential out-
comes based on historical and current
operational data. This helps in mak-
ing informed decisions about equip-
ment upgrades, process changes, or new
work�ows.

Table 7.1.: Possible inferences that can be done using the knowledge graph of the use case
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Figure 7.14.: Mapping of the use case into the proposed architecture

porting documents, and Product (also represented in Figure 4.1). A Generic type has

been added to cover cases that might not �t in one of these classi�cations. For this use

case, the assets are the Delivery and Pickup Station, the Gripper Robot, the Warehouse

Storage, and the Work Piece. The Inbound Delivery and Storage Process is also an asset

in this layer as well as the technician of the pickUpStation.

In the layer Collect, the communication and storage capabilities are represented. For

this use case, Node-RED has been used to realize the IoT capabilities in a low-code way.

The MQTT protocol has been used to communicate with the real world. The data and

models are stored in a database Neo4j, which is a graph database that is suitable for

storing and querying graph data.

For creating the semantic Model, Node-RED and the concepts and the extension

developed in this thesis have been used. This allows the creation of semantic models

within one environment. The models are then converted into a knowledge graph that

supports representing nodes and their connections/relationships.

The last layer is the Learn and Act. In this layer the applications that work as an

interface to end users are represented. For this use case, a dashboard from Node-RED

shows the current state of the system. A state machine viewer has also been used to

show the current state of the asset.

Having a layered architecture can help to separate the concerns and make the system

more maintainable and scalable. It also helps to understand the system better and to

replace or add new components without a�ecting the other layers.
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Conclusion of the use case

The DT concept has become a key element in the advancement and implementation of

Industry 4.0 paradigms, o�ering important insights into physical systems through their

virtual counterparts. In the context of our use case, DT's application has been oriented

towards a scenario characterized by more static structural compositions, where changes

as new assets being added or removed occur infrequently.

The methodology proposed in this thesis was adopted for this use case, ensuring a

comprehensive and systematic approach to the integration of DT within the speci�ed

scenario. Through this application, the use case was successfully mapped onto the pro-

posed DT architecture, highlighting the seamless fusion of theoretical principles with

practical implementation.

The knowledge graph serves as a potent tool for inference-making, o�ering a sophis-

ticated mechanism to analyze, understand, and optimize the system. It encapsulates

the relationships and dependencies within the system, enabling the identi�cation of op-

timization opportunities and the anticipation of potential issues before they arise.

An example of inference was presented where it was possible to identify the best

strategy for replacing a broken equipment. This demonstrates the practical utility of

the knowledge graph in making informed decisions based on real-time data and historical

patterns. Several other inferences were also described, as shown in Table 7.1, highlighting

the diverse applications of the knowledge graph.

It is acknowledged that the presented use case is a simpli�cation of a potentially more

complex system. This simpli�cation was intentional, designed to elucidate the core con-

cepts and demonstrate the viability of applying DT technology in a real-world context.

While the use case showcased a relatively straightforward application, DT's versatility

allows for its extension to encompass more intricate systems, involving a broader spec-

trum of components and interactions. This adaptability underscores DT's potential to

revolutionize system design, monitoring, and optimization across diverse industrial land-

scapes.

7.2. Automotive application in the context of smart city

This section presents the second use case, which is in the automotive and smart city

context. This use case aims to showcase a more dynamic scenario, where the assets,

relationships, and properties can change during the time. For example, now one car can

have a relationship to another one, or a parking lot, but in some minutes this relationship

is gone and the model has to adapt itself to this change.
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This use case was developed in the context of the GAIA-X 4 AGEDA project, which

is a German-funded project that aims to enable, via innovative middleware, vehicles to

be part of the GAIA-X ecosystem.

In the next subsection, a deeper description of the use case is given.

Description of the use case

For this thesis, a simpli�ed version of the use case Collective Vision and Control of the

GAIA-X 4 AGEDA project has been used to demonstrate how the proposed concepts of

this thesis can be applied in this kind of dynamic application.

The main idea of the whole use case is to enable vehicles can have a collective vision

of the surrounding environment and can then perform a control based on this vision.

The services and participants are registered and discoverable via GAIA-X services. The

services are registered in the GAIA-X services and the participants are registered in the

GAIA-X participants. The project GAIA-X 4 AGEDA aims then to enable the vehicles

to participate in a GAIA-X dataspace, which is a federated data infrastructure that

enables secure, trustworthy, and sovereign data exchange between di�erent participants.

This middleware will enable vehicles to connect, consume and provide services with

other participants, such as other vehicles, infrastructure, and service providers. This is

especially important in the context of smart cities, where vehicles can communicate with

each other and with the infrastructure to optimize tra�c and to provide better services

to the citizens. It can also enable traditional physical products such as vehicles to be

o�ered as services as previously explored in [Ste+21b].

Figure 7.15 illustrates a scenario of a smart city where vehicles are connected to each

other and to the infrastructure. All connected elements can interact and exchange data

with each other.

The use case contains two main services: the Tra�c Awareness Service that runs in

the cloud and collects data from di�erent participants to construct a collective vision;

and the Object Detection Service that runs on the vehicles and uses its sensors to detect

objects in the environment and then share with the Tra�c Awareness Service.

This computational resource could also be provided inside a speci�c area (as presented

in Figure 7.16) by another moving participant, such as a car, that has free resources at a

speci�c time. This is an example of how the DT can be used to simulate new scenarios

and make inferences based on the current state of the system. Queries and inferences

such as illustrated in the �rst use case (Figure 7.13) can be similarly applied in this

context.
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Figure 7.15.: Smart City scenario

Figure 7.16.: CARLA simulator - Crossing with a service o�er
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Application of the proposed approach

As mentioned before, this is a simpli�cation of the original use case from the project. The

main idea is to show how the proposed concepts can be applied in a dynamic scenario.

The �rst step de�ned in the methodology (Chapter 6) is to Identify the Observable

Assets (Section 6.1). For this use case, the �rst identi�ed asset would be the vehicle.

The vehicle has properties such as position, speed, direction, timestamp, and vehicleRe-

sources, as can be seen in Figure 7.17. Vehicles can also have a service asset called

objectDetectionService that runs on the edge and sensors data to detect objects in the

environment. This model represents the asset and its details, so it is a low-level model.

Figure 7.17.: Vehicle model

Figure 7.18 illustrates the relationship between the vehicles and the cloud-based ser-

vice called tra�cAwarenessService. This service is responsible for collecting data from

di�erent participants to construct a collective vision.

Figure 7.18.: Model of vehicles and the Tra�c Awareness Service

In this use case, it is possible that vehicles come and go and dynamically participate

in the system perceiving the surroundings and sending it to the cloud. As DTs deal with

unique instances, models should also be able to adapt to these changes.

One possible way of handling this challenge is to use AI-based algorithms to try to

automatically update the model based on the messages that are being exchanged in the

system.
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For example, if the system contains messages such as those described below in the

Listing 7.1.

Listing 7.1: JSON message of one vehicle

1 [

2 {

3 "carID": "Car_01",

4 "position": { "latitude": 40.7128, "longitude":

-74.0060 },

5 "timestamp": "2024 -02 -20 T12:00:00Z",

6 "speed": 50,

7 "direction": "north",

8 "vehicleResources": [

9 "camera", "lidar", "radar",

10 "cpu": {"cores":4, "availability":35}

11 ]

12 }

13 ]

In case two more vehicles are added to the system, the messages would be as shown

in the Listing 7.2, and this data could be used to update the model of the vehicles by

creating new instances of the vehicle model.

Listing 7.2: JSON message of three vehicles

1 [

2 {

3 "carID": "Car_01",

4 "position": { "latitude": 40.7128, "longitude":

-74.0060 },

5 "timestamp": "2024 -02 -20 T12:02:00Z",

6 "speed": 50,

7 "direction": "north",

8 "vehicleResources": [

9 "camera", "lidar", "radar",

10 "cpu": {"cores":4, "availability":50}
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11 ]

12 },

13 {

14 "carID": "Car_02",

15 "position": { "latitude": 40.7129, "longitude":

-74.0061 },

16 "timestamp": "2024 -02 -20 T12:02:00Z",

17 "speed": 55,

18 "direction": "east",

19 "vehicleResources": [

20 "camera", "lidar", "radar",

21 "cpu": {"cores":4, "availability":55}

22 ]

23 },

24 {

25 "carID": "Car_03",

26 "position": { "latitude": 40.7130, "longitude":

-74.0062 },

27 "timestamp": "2024 -02 -20 T12:02:00Z",

28 "speed": 60,

29 "direction": "south",

30 "vehicleResources": [

31 "camera", "lidar", "radar",

32 "cpu": {"cores":4, "availability":10}

33 ]

34 }

35 ]

By calling, for example, LLM-based solutions such as Chat-GPT4, it is possible to

identify the assets from the exchange messages and create these instances in the model.

The activity diagram in Figure 7.19 illustrates the logic of the dynamic recon�guration

of the model based on the messages exchanged in the system.

In this use case, the MQTT protocol was used to communicate with the real world.

The activity diagram for the dynamic recon�guration of the model starts when a new

message is received by the system. When a new message is received, the system checks if

the message belongs to a model node by checking the id contained in the data structure.
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Figure 7.19.: Activity diagram of the dynamic recon�guration of
the model based on the messages exchanged in the system.
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If the message belongs to an existing node, it is ignored by the dynamic recon�guration

process.

If the message does not belong to an existing node, the system determines the message

type. This is done via a call to LLMs pre-trained with the modeling elements proposed

in this thesis. This algorithm receives an MQTT message and returns a model with de

modeling elements de�ned in Chapter 5.

This returned model is then checked against the current model to see if it complies

with the BNF grammar (de�ned in Section 5.9). If it does not comply with the grammar,

(e.g. the returned model contains two assets connected without an explicit relationship),

the message is rejected.

If the message complies with the grammar, the system checks if there is an existing

asset of the same type (e.g. the LLM suggested a model of a product, then it is checked

if this type is already known in the model if there are other products in the model). If

there is an existing asset of the same type, the system updates the digital twin model. If

there is no existing asset of the same type, the message is rejected. This technique can

be highly optimized and other strategies can be used to validate the message without the

need of a human in the loop.

In this context, it is possible to formalize when a message is valid or not. Let M be the

set of all messages exchanged by elements in the system. The validation function could

be de�ned as V alid : M → {True, False} that determines whether a given message m

from M is valid based on its adherence to a grammar G (Section 5.9) and the presence

of other objects of the same type within the model.

G represents the BNF grammar de�ning the valid structure of messages. A message

m is said to comply with G if it can be derived from the start symbol of G using the

production rules of G.

Let Type(m) return the type of the asset described by message m (e.g., "product").

Let AssetsType be the set of all currently modeled assets of the type returned by Type(m).

The formal validation logic can then be expressed as follows:

V alid(m) =

True if m ∈ G and |AssetsType(m)| > 0,

False otherwise.

This logic ensures that a message m is considered valid if and only if it complies with

the BNF grammar G and there exists at least one asset of the same type as Type(m) in

the current model.
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At each valid change in the system, a new state of the model is generated and can be

saved to keep track of the whole lifecycle of this dynamic system.

Based on the lifecycle, stakeholders can run learning algorithms to understand the

behavior of the system and make inferences based on the current state of the system.

Conclusion of the use case

This use case aimed to demonstrate how the proposed concepts can be applied in a

dynamic scenario. The main idea was to show how assets, relationships, and properties

can change over time.

The level of detail was not so deep as in the �rst use case, but it was enough to show

how the proposed concepts can be applied in this kind of dynamic application.

With the DT it is also possible to simulate new scenarios and make inferences based

on the current state of the system, for example, add a cluster as a service o�ering in

a crossing and see how the cars would react to this new service. It would enable, for

example, cars with less processing capabilities could use the processing capabilities of the

cluster to make decisions.

The idea of having automatic model updates based on the messages exchanged in the

system is a promising approach to handling the dynamic nature of this kind of application.

It is important to notice that this is a simpli�cation of the original use case from the

project. Additionally, in a real-world application, the updates and new versions of the

models should be monitored and validated by domain experts to ensure that the model

is correctly updated. Keeping the human in the loop is crucial to ensure that the model

is correctly updated and that the inferences made are correct, since LLMs can make

mistakes and generate incorrect answers.

There is a clear need for more research in this area to understand how to handle the

dynamic nature of the assets and relationships in the DT. This is a promising area for

future research and development. Also, not known asset structures can be an issue to be

classi�ed and modeled.
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This chapter presents the evaluation of the proposed approach. The evaluation is done

in three parts: the �rst part presents a feature-based comparison with other tools, the

second part evaluates the modeling approach, and the third part evaluates the integrated

environment based on Node-RED in terms of execution time and scalability.

8.1. Feature-based comparison with other tools

As seen in the related works, there are several tools, concepts and methods that can be

used to model digital twins available in the market. This section aims to compare the

main features of the proposed approach with other tools and methods that can support

the creation of DT applications.

The Azure IoT platform (Figure 8.1) is a cloud-based solution that provides a set of

services for building and managing IoT applications. It provides a set of tools for building

DTs, including a modeling language (DTDL), a set of APIs for interacting with the DT,

and a set of tools for monitoring and managing the DTs. As it is a proprietary solution,

it requires some e�ort for setting up as well as adding �nancial information. It is well

integrated with other Azure services, which can be a good point for companies that are

already using Azure. However, it is not �exible and it is not possible to run the model

on the edge. It also does not support events. This thesis approaches all these points in

a di�erent way, as it is open-source, it is possible to run the model on the edge, it is

�exible and it supports events.

Azure Digital Twins enables the use of semantics and works with KGs, however, it does

not follow the WoT standard nor ISO 23247, which are two advantages of this thesis.

Comparing the current approach with AWS IoT TwinMaker it is possible to identify

that the main focus is di�erent from both approaches. The AWS solution focuses more

on the integration of 3D models with IoT data and it does not emphasize semantics and

interoperability. The AWS solution is also not open-source, which is a disadvantage when

compared to the proposed approach.
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Figure 8.1.: Azure Digital Twins tool

MindSphere from Siemens is a cloud-based IoT platform that, contrary to the proposed

approach, can not run on edge devices. It is also not open-source and it is not �exible.

It is well integrated with Siemens' hardware and software solutions, which can be a good

point for companies that are already using Siemens. It also does not support events,

which is a disadvantage when compared to the proposed approach.

The ability of the system to make inferences based on the current state of the system is

a powerful tool for decision-making and is not present on most of the available tools in the

literature. Models should be able to be updated and adapted as the system changes, and

not only be a static representation of the system at a given time and only the properties

being updated. This feature is also a key point for the proposed approach, compared to

the other tools. The updated models can then be used to perform precise queries and

inferences. It is important to notice that the inferences are only as good as the data

that is being fed to the system. Therefore, it is important to have good data and model

quality.

8.2. Evaluation of the Modeling Approach

This section evaluates the basic elements for modeling Digital Twins (DTs) and their

implementation on Node-RED. The evaluation addresses four research questions and their

corresponding hypotheses, providing detailed insights into the feasibility, applicability,

and e�ectiveness of the proposed approach.

8.2.1. Generic and Extensible Modeling Approach (RQ1 & H1)

The proposed nodes are generic elements (Chapter 5) designed to model the structure

of DT applications across various domains. This genericity aligns with Hypothesis 1.3.1,
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suggesting that a universal modeling approach can be created while maintaining the

depth and utility of current domain-speci�c models.

The implementation of these nodes in diverse scenarios, such as industrial and smart

city applications (Chapter 7), demonstrates their �exibility. Compared to existing ap-

proaches, this universal framework allows for the design of systems from multiple domains

using the same modeling language, signi�cantly reducing the learning curve for users and

lowering development time across projects.

In addition to �exibility, the approach supports extensibility (Section 5.5). New nodes

can be added to the model to represent additional assets or relationships, making it

adaptable to evolving requirements or new use cases. This ability to extend the model

ensures that it remains relevant and can be updated as necessary without requiring a

complete overhaul, which is a signi�cant advantage in maintaining long-term scalability.

The implementation of these nodes in Node-RED (Section 5.10) further demonstrates

their practical applicability, especially given Node-RED's capacity to integrate seamlessly

with real-world IoT systems.

Moreover, Node-RED's connectivity to physical devices ensures that the DT models

remain synchronized with their real-world counterparts, enabling online updates. This

connectivity enhances the overall utility of the proposed framework by ensuring contin-

uous alignment between the digital model and the physical world.

8.2.2. Parallel Operation and Edge Deployment (RQ2 & H2)

The ability to execute models in parallel, particularly close to edge devices, is a key

advantage of the proposed approach. This capability, as discussed in Section 5.10, aligns

with Hypothesis 1.3.2, which suggests that DT models can operate concurrently on edge

devices and be maintained by domain experts. Implementing these nodes on Node-RED

enables models to run e�ciently in parallel, signi�cantly enhancing both scalability and

model �delity. By allowing maintenance directly on edge devices, system experts can

ensure that the models are kept up-to-date and re�ect real-world conditions accurately.

In contrast, many existing tools face limitations when it comes to edge deployment.

For example, platforms like AWS IoT TwinMaker and Microsoft Azure Digital Twins

are heavily cloud-dependent and struggle with deployment on edge devices due to high

computational requirements and the need for continuous internet connectivity. These

tools often rely on proprietary technologies that demand centralized processing power,

which makes running them on resource-constrained edge devices infeasible. Additionally,

the closed nature of some proprietary platforms makes it di�cult for domain experts to
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maintain or update models independently without relying on external support or vendor-

speci�c modi�cations.

In comparison, the proposed approach using Node-RED is lightweight and capable of

running on edge devices with limited computational capabilities. Node-RED's support

for decentralized deployment enables online operation and parallel execution of models,

even on devices like Raspberry Pi or other constrained hardware. This �exibility, com-

bined with the use of standardized languages, allows domain experts to directly interact

with and update the models on-site, without the bottlenecks typically associated with

cloud-reliant solutions. Thus, the proposed method not only demonstrates feasibility but

also outperforms existing tools in terms of adaptability to edge environments, thereby

validating Hypothesis 1.3.2.

8.2.3. Standardization and Interoperability (RQ3 & H3)

The proposed approach adheres to ISO 23247 and WoT standards, which is a key-player

for achieving interoperability in heterogeneous environments. This compliance ensures a

consistent representation of assets and their properties, enabling seamless communication

and data exchange across di�erent platforms and devices. This standardization aligns

with Hypothesis 1.3.3, which posits that embedding ISO 23247 and WoT principles into

DT design promotes interoperability. The implementation examples in Chapter 7, such

as Figures 7.6, 7.7, and 7.9 show device-level models, while Figure 7.10 illustrates a

higher-level model of the assets and their relationships, and Figure 7.11 depicts a process

model. All these models use the same language, demonstrating the approach's capability

to maintain interoperability across di�erent levels and types of models.

In contrast to many existing approaches that rely on proprietary protocols or domain-

speci�c standards, which restrict interoperability across industries and platforms, the

proposed approach, by embedding ISO 23247 and Web of Things (WoT) principles, pro-

vides a more open and �exible solution. While ISO 23247 is primarily designed for

the manufacturing sector, its framework is adaptable across various domains, ensuring

that asset data is consistently represented in a standardized format. The WoT standard

further enhances this by enabling uniform interaction between devices and platforms,

regardless of their underlying protocols. This universal model allows for seamless inte-

gration and data exchange across di�erent layers and systems, fostering a more cohesive

and scalable DT ecosystem.
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8.2.4. Semantic and Connected Models

The development of semantic models that are connected to the real world and inter-

pretable by both machines and human stakeholders has been demonstrated as feasible

and e�ective. This validation is rooted in the practical implementation of the proposed

approach using Node-RED (Section 5.10), which supports the creation and deployment

of such models. The semantic nature of these models allows for automated processes and

analytics by machines, while the standardized modeling language and graphical interface

of Node-RED make the models accessible and understandable to human stakeholders.

This accessibility fosters deeper and more intuitive interactions, particularly for those

situated close to the edge of the network. Additionally, having the model connected to

the physical twin enables the system to perform precise inferences based on actual data,

as exempli�ed in Table 7.1 and in the dynamic of the use case in Smart City (Section

7.2).

While the scope of this work focused on non-real-time applications, this limitation

should be noted. Real-time requirements were not covered, meaning the virtual repre-

sentation cannot react within a de�ned deadline. Addressing this limitation in future

work could involve exploring methods to enhance the system's real-time capabilities.

8.3. Evaluation of the integrated environment based on

Node-RED

To evaluate the performance of the proposed approach, a set of tests were conducted.

The tests were performed on a Raspberry Pi 3 Model B with 1GB of RAM and a 16GB

microSD card. The operating system used was Raspbian GNU/Linux and the Node-RED

version used was v3.0.0-beta.4, running on Node.js version: v19.7.

The tests were performed by injecting data into the model and measuring the time it

took to generate the knowledge graph. The data was injected in the model and the KG

was generated. The time was measured from the moment the data was injected until the

KG was generated. IoT-related times were not considered.

Each asset used in this test was a simple object with �ve properties. The property

was a string with a random value. The tests were performed with di�erent numbers of

assets: 1, 10, 50, 100, 500, and 1000.

One thousand executions were performed for each test and the average time was cal-

culated. The jitter was calculated as the standard deviation of the execution times. The
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minimum and maximum times were also recorded. The table 8.1 and Figure 8.2 show

how the Node-RED reacts when adding more nodes to the model.

Assets AVG Execution Time Jitter Min Max

1x 3.48 1.69 1.53 9.12
10x 19.77 2.12 9.64 23.19
50x 72.91 14.69 65.00 122.01
100x 186.10 19.55 173.23 275.78
500x 594.21 58.30 522.00 734.06
1000x 1739.31 74.99 1585.00 1957.42

Table 8.1.: Execution time (in ms) of the software with di�erent parameters

Figure 8.2.: Execution time (in ms) of the software with di�erent parameters

As the number of assets increases, the average execution time increases signi�cantly.

This is expected in most systems as more assets typically mean more data to process,

more computations, and potentially more network tra�c in the case of distributed models

implementations.

The jitter increases with the number of assets, but not linearly. The relative increase

in jitter from 1x to 10x assets is smaller compared to the jump from 100x to 500x assets.

This indicates that as the system scales, the variability in execution time becomes more

signi�cant, suggesting that the system might be facing scaling challenges at higher loads.

120



8.3. Evaluation of the integrated environment based on Node-RED

The minimum and maximum execution times provide insight into the best and worst-

case scenarios. The variability increases in execution time as the system is scaled. This

is particularly evident in the jump from 100x to 500x and then to 1000x assets, where

the maximum execution time nearly doubles from 275.78ms at 100x assets to 734.06ms

at 500x assets, and then more than doubles again to 1957.42ms at 1000x assets.

In summary, your Node-RED implementation's performance degrades as the number

of assets increases, with both the average execution time and variability in execution

times increasing. This suggests that while the system can handle smaller numbers of

assets relatively e�ciently, it faces signi�cant challenges in scaling, potentially requiring

optimization for better resource management, parallel models, or other scaling techniques

to improve performance at higher asset counts. However, big models could also lead to

readability and maintainability issues, which is a trade-o� that should be considered.

Real-time applications can be monitored in runtime and criterias that are semantically

de�ned in the model can be checked. This feature can be useful for de�ning future actions

that do not need to be within a deadline. For example, an asset task1 has a property

execution time that is continuously taking longer than expected. An action could be

taken by reviewing why this behaviour is happening and a solution can be found for

future executions.

Security and safety aspects were not considered in this work. The proposed approach

does not have any security features, such as authentication, authorization, and encryp-

tion. It is important to notice that for using this approach in a real-world scenario, it

is important to have a good safety and security strategy in place, which might lead to

additional execution time.s
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This chapter concludes the thesis, summarizing the main �ndings and contributions, and

suggesting future research directions.

9.1. Summary of the Work

This thesis aimed to investigate the modeling and deployment of semantic digital twins

and their application across various domains. The primary objective was to propose an

integrated environment for modeling and deploying semantic digital twins and to validate

it through real-world use cases.

The literature review (Chapter 2) presented concepts related to digitalization, IoT,

DT, and the state-of-the-art in modeling and deployment techniques. It was identi�ed

that digital twins are a promising technology for current and future digitalized systems,

necessitating standards and methodologies for e�ective modeling and deployment.

In Section 2.6, a deeper examination of the DT concept was conducted, providing a

de�nition focused on the use of semantic technologies for modeling and deployment.

Chapter 3 presented the state-of-the-art in modeling and deployment techniques for

digital twins. It was found that there are several modeling techniques for digital twins,

such as AutomationML, AAS, ontologies, and others. There are also several deployment

strategies for digital twins, but most of them focus on cloud-based solutions and do not

consider the edge as part of the twin. Additionally, there is still a need for standards and

methodologies for modeling and deploying digital twins that consider the use of semantic

technologies such as WoT, and standards such as the ISO 23247 which focuses speci�cally

on DTs.

To �ll this gap, the thesis proposes an architecture that can support in the building

and maintenance of the system (Chapter 4), a set of modeling elements, compatible

with the WoT and the ISO 23247, that can be used to semantically model digital twins

in di�erent domains and levels of detail (Chapter 5), and a methodology for deploying

semantic digital twins in di�erent environments (Chapter 6).
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The research conducted in this thesis successfully addressed all the formulated research

questions. First, the generic and extensible modeling approach (RQ1) was validated,

demonstrating that the proposed method allows for the creation of a universal modeling

framework while maintaining depth and utility across di�erent domains, as seen in its

successful application in industrial and smart city scenarios. Regarding parallel opera-

tion and edge deployment (RQ2), it was con�rmed that DT models can indeed operate

concurrently on edge devices, providing signi�cant advantages in terms of scalability and

online system management. The research also demonstrated that the proposed approach

adheres to ISO 23247 and WoT standards (RQ3), enhancing interoperability in heteroge-

neous systems, seamless data exchange across platforms, and promoting a more �exible,

future-proof DT ecosystem. Finally, the proposed methodologies and tools simpli�ed

the process of extending existing applications with digital twin capabilities, which can

lead to reduced development time. Through these �ndings, each research question was

thoroughly examined and answered, con�rming the validity of the hypotheses outlined

at the start of the thesis.

9.2. Future Research Directions

The work presented in this thesis opens up several future research directions. Some of

the possible future research directions include:

� Exploring new modeling techniques for semantic digital twins, such as the use of

machine learning and deep learning for modeling complex systems.

� Models evolve during the lifecycle of the system. It is important to investigate how

version control can be implemented in the proposed methodology.

� Applying the proposed methodology to other domains, such as smart agriculture

and even try to combine di�erent domains.

� Explore the use of containerization and orchestration tools for deploying semantic

digital twins in di�erent environments.

� Developing new tools and frameworks for modeling and deploying semantic digital

twins, and evaluating their performance in real-world use cases.

� Investigating the use of semantic digital twins for enabling new applications, such

as augmented reality, virtual reality, and mixed reality.
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� Integrating models without losing consistency and coherence as well as automating

this task is also a future research direction.

� Incorporating continuous dynamics into the state machine models to enhance the

accuracy and �delity of digital twins, particularly for systems governed by physical

conservation laws, such as energy and �uid dynamics.

Research is needed to strengthen the human-in-the-loop concept, particularly by eval-

uating the bene�ts of semantic models as a common language for both humans and

machines. This direction would focus on developing connected models that can be easily

understood by stakeholders at di�erent levels, especially those working near the edge of

the network. By using knowledge graphs to bridge the gap between physical systems

and their digital counterparts, future work can enhance operational transparency and

decision-making.

Additionally, methods for extending existing tools and approaches to better support

the Digital Twin concept should be studied. This research can focus on strategies to

reduce development time and costs, which would facilitate broader adoption of Digital

Twin technology across various domains. Simplifying the integration process and mak-

ing it more accessible would help popularize the concept, promoting innovation while

maintaining e�ciency across industries.

These future research directions are expected to contribute to the advancement of the

�eld of semantic digital twins, and to the development of new applications and services

for digital application and beyond.
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A.1. JSON example of a model

1 {

2 "model": {

3 "projectName": "project1",

4 "projectId": "uuid1",

5 "version": "1.0.0+1",

6 "assets": [

7 {

8 "id": "8 caf970c47b84ea6",

9 "type": "dt-asset",

10 "z": "52 c43a8ac210a9ef",

11 "name": "gripper",

12 "dtType": "Generic",

13 "aContext": "",

14 "aId": "",

15 "actions": [

16 {

17 "id": "dc665aa4cf49dac3",

18 "type": "dt-action",

19 "z": "52 c43a8ac210a9ef",

20 "params": {},

21 "name": "moveToStorage",

22 "topic": "",

23 "payload": ""

24 }

25 ],

26 "properties": [

27 {
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28 "id": "e5ba81d75d4b83c8",

29 "type": "dt-property",

30 "z": "52 c43a8ac210a9ef",

31 "name": "position",

32 "accessGroup": "",

33 "aContext": "",

34 "aId": "",

35 "aType": ""

36 },

37 {

38 "id": "13 ace7450252822f",

39 "type": "dt-property",

40 "z": "52 c43a8ac210a9ef",

41 "name": "temperature",

42 "accessGroup": "",

43 "aContext": "",

44 "aId": "",

45 "aType": ""

46 },

47 {

48 "id": "9 cab9d7591b4ba84",

49 "type": "dt-property",

50 "z": "52 c43a8ac210a9ef",

51 "name": "pressure",

52 "accessGroup": "",

53 "aContext": "",

54 "aId": "",

55 "aType": ""

56 },

57 {

58 "id": "e4073145f20f4d8b",

59 "type": "dt-property",

60 "z": "52 c43a8ac210a9ef",

61 "name": "load",

62 "accessGroup": "",

63 "aContext": "",
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64 "aId": "",

65 "aType": ""

66 }

67 ]

68 }

69 ]

70 }

71 }
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