
Institute of Chemistry

Describing the Statically Correlated

Si-terminated 3C-SiC(001) Surface with

Single- and Multiconfigurational Methods

The school of Mathematics and Science of the Carl von Ossietzky Universität
Oldenburg has accepted as partial fulfillment of the requirements for the

degree and title of

Doktor der Naturwissenschaften (Dr. rer. nat.)

the above-mentioned thesis

by

Mr. Niklas Thoben

born on 08.03.1995 in Löningen, Germany
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Space has a beginning but it has no end – infinite.
Stars too have a beginning but are by their own power destroyed – finite.
History dictates that he who holds wisdom is the greatest fool.
The fish in the sea know not the land.
If they too hold wisdom, they too will be destroyed.
It is more ridiculous for man to exceed light speed than for fish to live ashore.
This could be called God’s final warning to those that still rebel.

— Hououin Kyouma



Abstract

In this thesis, the spatial and electronic structure of the Si-terminated
(001) surface of cubic silicon carbide (3C-SiC) and its reconstructions was
investigated theoretically by employing restricted and unrestricted single-
configurational periodic slab model calculations as well as multiconfigurational
cluster model calculations.

The single-configurational methods identified the well-known p(2×1) recon-
struction with symmetric Si dimers and a p(4×1) reconstruction, in which
two such dimers further dimerize, to be the most stable structures. Here,
the reconstruction strength, characterized by the dimer bond length and the
energy gain, significantly depends on the restricted or unrestricted approach
applied, with the former generally showing lower and the latter stronger recon-
struction. This can be explained by the energetically close and thus statically
correlated bonding and antibonding interdimer (ID) surface state bands being
poorly described by single-configurational methods in general but slightly bet-
ter by the unrestricted approach due to its ability of partially including static
correlation effects. The spin-symmetry breaking of the unrestricted methods
results in a singlet diradicalic electronic structure of each dimer by basically
bisecting the ID bonds at the expense of severe spin contamination. The re-
stricted methods, on the other hand, enforce a double occupation of the ID
bonds, inhibiting the formation of the actual dimer bonds and thus lowering
the reconstruction strength. In contrast to the spin-symmetry breaking of the
unrestricted methods, the restricted structures were further able to slightly
stabilize by spatial symmetry breaking, leading to possibly artificial p(2×1)
and p(4×2) reconstructions with buckled dimers.

Multiconfigurational methods do not suffer from spin contamination and the
corresponding cluster model calculations of the p(2×1) reconstruction with
symmetric dimers confirmed the anticipated static correlation of the ID and
ID∗ bands. Here, the composition of the wave function reveals an approxi-
mately equal mixture of the closed-shell and radicalic configurations, which is
further supported by the reconstruction strength being located in between the
values obtained for the restricted and unrestricted methods. Therefore, it can
be concluded that single-configurational approaches are insufficient for a faith-
ful description of this system. Furthermore, the multiconfigurational character
of the ideal p(1×1) surface could be confirmed and excited state calculations
suggest both p(2×1) and p(1×1) surfaces to be semiconducting.
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Kurzfassung

In dieser Arbeit wurde die räumliche und elektronische Struktur der Si-
terminierten (001) Oberfläche von kubischem Siliciumcarbid (3C-SiC) und
deren Rekonstruktionen unter Durchführung von restricted und unrestricted
Ein-Determinanten-Rechnungen an periodischen Schichtmodellen sowie durch
Multikonfigurationsrechnungen an Clustermodellen theoretisch untersucht.

Die Ein-Determinanten-Methoden lieferten die wohlbekannte p(2×1)-Rekon-
struktion mit symmetrischen Si-Dimeren und eine p(4×1)-Rekonstruktion, in
welcher zwei dieser Dimere weiter dimerisieren, als stabilste Strukturen. Die
Stärke der Rekonstruktion, welche durch die Länge der Dimerbindung und den
Energiegewinn charakterisiert wird, hängt hierbei deutlich davon ab, ob ein
restricted oder unrestricted Ansatz angewandt wurde, wobei ersterer generell
schwächere und zweiterer stärkere Rekonstruktionen hervorbrachte. Dies ist
begründet in den energetisch ähnlichen und damit statisch korrelierten binden-
den und antibindenden inter-Dimer (ID) Oberflächenzustandsbändern, welche
im Allgemeinen ungenügend durch Ein-Determinanten-Methoden beschrieben
werden, jedoch etwas besser durch den unrestricted Ansatz, da dieser einen Teil
der statischen Korrelation berücksichtigen kann. Der Spin-Symmetriebruch
der unrestricted Methoden führt zu einer diradikalischen elektronischen Struk-
tur jedes Dimers durch das Zerschneiden der ID-Bindungen, jedoch auf Kosten
von starker Spinkontamination. Die restricted Methoden erzwingen dage-
gen eine doppelte Besetzung der ID-Bindungen, wodurch die Ausbildung der
eigentlichen Dimerbindung gehemmt und damit die Stärke der Rekonstruktion
verringert wird. Im Gegensatz zu dem Spin-Symmetriebruch der unrestricted
Methoden konnten sich die restricted Strukturen durch weiteres Brechen der
räumlichen Symmetrie stabilisieren, wodurch vermutlich artifizielle p(2×1)-
und p(4×2)-Rekonstruktionen mit geknickten Dimeren erhalten wurden.

Multikonfigurationsmethoden sind frei von Spinkontamination und die
entsprechenden Clustermodellrechnungen der p(2×1)-Rekonstruktion mit
symmetrischen Dimeren konnten die vermutete statische Korrelation der ID-
und ID∗-Bänder bestätigen. Die Zusammensetzung der Wellenfunktion of-
fenbart etwa gleiche Anteile der geschlossenschaligen und der radikalischen
Konfigurationen, was zusätzlich dadurch bestätigt wird, dass sich die Rekon-
struktionsstärke zwischen den restricted und unrestricted Methoden einordnet.
Daraus kann geschlussfolgert werden, dass der Ein-Determinanten-Ansatz un-
zureichend für eine genaue Beschreibung dieses Systems ist. Weiterhin konn-
te der Multikonfigurationscharakter der idealen p(1×1)-Oberfläche bestätigt
werden und Berechnungen der angeregten Zustände suggerieren halbleitende
Eigenschaften für beide p(2×1)- und p(1×1)-Oberflächen.
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1 Introduction

Silicon carbide (SiC) is a group 14 wide band gap semiconductor, i.e., its
band gap is larger than 2 eV,[1] and it exhibits favorable material properties
for everyday applications like ecological friendliness, chemical and mechanical
stability, and a high abundance of the involved elements Si and C.[2] It shows
polytypism, which is a one-dimensional (1D) subtype of polymorphism. Here,
each polytype consists of identical atomic planes with equal amounts of Si and
C stacked on top of each other in one direction, but these atomic planes can
take three different lateral positions along the remaining two directions, overall
resulting in a multitude of possible stacking sequences.[3,4] The two simplest of
these for SiC are the two-layer AB type with a hexagonal crystal structure and
the three-layer ABC type corresponding to a cubic crystal system, accordingly
denoted as 2H-SiC and 3C-SiC, respectively.[3,4] Other polytypes are obtained
by mixing these two structural extremes, of which especially the 4H- and 6H-
analogues are of further scientific and technical relevance.[2,5,6] The different
stacking sequences of the discussed polytypes are schematically depicted in
Fig. 1.1. Also, with respect to the electronic structure, 2H- and 3C-SiC corre-
spond to limiting cases showing the largest and smallest band gaps Eg of all
polytypes amounting to 3.33 eV and 2.36 eV, respectively.[5,7]

The mechanical properties of SiC are, however, mostly independent of the
polytype.[4,6] Traditionally, this material is used, for example, as an abrasive
for cutting, grinding, and polishing[6,8] due to its very high Mohs hardness
of 9.[4] Furthermore, it decomposes around 2000 °C and is generally not at-
tacked by acids,[4,8] making it suitable for application as a fireproof material.[8]

Even though the semiconducting properties had already been observed in 1907
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C

2H-SiC
Eg = 3.33 eV

4H-SiC
Eg = 3.23 eV

6H-SiC
Eg = 3.02 eV

3C-SiC
Eg = 2.36 eV

...

Si

C
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B
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B
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Figure 1.1: Stacking sequences of a small selection of different polytypes of SiC. The
experimental values for the bulk band gaps Eg are taken from the following references:
2H-SiC[7], 4H-SiC[5], 6H-SiC[6], 3C-SiC[5,6]. Created based on Ref. [2].
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1 Introduction

through the discovery of electroluminescence to lay the foundation for the de-
velopment of light-emitting diodes (LEDs), the challenging production of high-
quality 6H- and 4H-SiC wafers was only commercialized in the 1990s. This can
be attributed to the sensitive polytype control, the complex high-temperature
sublimation or vapor deposition methods, as well as difficult subsequent slicing
and polishing due to the extreme material properties.[6]

While SiC will most likely not dethrone Si as most commonly used semicon-
ductor in the near future, it still generally exhibits more favorable properties
like higher breakdown electric field strength, higher thermal conductivity and
lower on-state resistance, resulting in much higher efficiency in electric power
conversion compared to Si.[6,9,10] These properties are especially useful for high-
power applications like electric vehicles, where SiC devices were introduced for
the first time in 2014,[10] enabling a greater range and more efficient charging
of these vehicles.[11] Since electrification is one of the key measures to miti-
gate the climate crisis according to the Intergovernmental Panel on Climate
Change (IPCC),[12] in the last few years several companies have already and
are further aiming to increase their SiC manufacturing capacity worldwide.[13]

Generally, almost exclusively 4H-SiC is produced due to slightly superior elec-
tronic properties and a more refined commercial production of corresponding
single-crystalline wafers compared to other polytypes.[6]

Besides these already existing applications, SiC is a promising material in the
field of quantum computing as it is able to host quantum bits by the introduc-
tion of vacancies.[14] Quantum computing itself might become important with
respect to the mitigation of climate change since smart grids for an efficient
management of the available electric energy will be essential in this regard.[12]

As the electricity grids grow, traditional computers might at some point not be
powerful enough to fulfill this task effectively and quantum computers could
be needed instead.[15]

As already indicated, the manufacturing of 3C-SiC wafers is not yet commer-
cialized and still in development.[2,6,16] Since 3C-SiC is the thermodynamically
most favored polytype, the lower temperature required to obtain it selectively
actually limits the development of sublimation growth technology, in which
high temperatures are necessary for high-quality results.[16] Accordingly, 3C-
SiC can only be obtained by chemical vapor deposition (CVD) in the form of
thin films on cubic Si or hexagonal SiC substrates,[2,6] though the deposition on
the latter is generally not economic.[16] While the Si substrates are of low cost
due to their high availability, the mismatch in lattice constant and thermal
expansion coefficient for both materials of 20 % and 8 %, respectively, com-
plicates obtaining low defect density thin films.[2,16] Nevertheless, the smaller
band gap of 3C-SiC shows advantageous properties for certain high-power ap-
plications compared to its 4H- and 6H-counterparts, making the improvement
of 3C-SiC growth methods desirable.[16]

Since 3C-SiC exhibits the smallest band gap of all polytypes with 2.36 eV, it
is able to absorb the largest fraction of the solar spectrum and thus bears
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a) conventional fcc unit cell

a = b = c = 4.36 Å

α = β = γ = 90°

b) primitive rhombohedral unit cell

a = b = c = 3.08 Å

α = β = γ = 60°

dSi−C = 1.89 Å[100]

[010]

[001]

[110]

[101]

[011]

Figure 1.2: a) Conventional fcc and b) primitive rhombohedral bulk unit cells of 3C-SiC.
The experimental values for the lattice parameters and the Si–C bond length dSi−C are
taken from Ref. [5].

the highest potential as a photoactive material. Furthermore, the band gap
conveniently straddles the redox potentials of the hydrogen and oxygen evolu-
tion reactions, characterizing it as a promising material for photocatalytic or
photoelectrochemical water splitting.[2] Traditionally investigated photocata-
lysts often show large band gaps greater than 3 eV like TiO2 or ZnO, do not
fully straddle the water splitting redox potentials like WO3 or Fe2O3, or are
not stable under reaction conditions like Cu2O or CdS.[2,17] Accordingly, be-
sides promoting the electric energy transformation by offering more efficient
high-power devices, 3C-SiC could also potentially enable the chemical energy
transformation through the renewable production of hydrogen. That is why
increasing research effort has been devoted to 3C-SiC in this regard, especially
in the last few years as the quality of corresponding samples improved.[2,18–25]

Obviously, any photocatalytic reaction has to take place at the surface of
3C-SiC. Since a large fraction of the corresponding thin films are grown on
Si(001) substrates, 3C-SiC(001) is accordingly the most commonly investigated
surface of this material[16,26–28] and derived in more detail in the following. The
starting point is the bulk unit cell of 3C-SiC, which, according to its space
group number 216, is generally described by its conventional face-centered
cubic (fcc) unit cell exhibiting the zincblende structure[28] with a cell parameter
a of 4.36�A as depicted in Fig. 1.2a). Since the crystal system is cubic, the
unit cell edges and thus the directions [100], [010], and [001] are conveniently
parallel to the cartesian axes. Alternatively, the 3C-SiC bulk can also be
described by the smaller primitive rhombohedral unit cell given in Fig. 1.2b)
with lattice parameters of 3.08�A in the [110], [101], and [011] directions and
with angles of 60°. Here, the fundamental building block of CSi4 or conversely
SiC4 tetrahedrons in 3C-SiC is directly apparent. If now the (001) surface
has to be constructed, the corresponding plane is perpendicular to the [001]
direction, which is simply represented by the top face of the fcc unit cell in
Fig. 1.2a). It should be noted that the (100) and (010) surfaces are identical
to their (001) counterpart due to the cubic symmetry. However, instead of
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using the whole conventional bulk unit cell to construct the (001) surface, its
size can be halved by transformation into a tetragonal unit cell as depicted
in Fig. 1.3b). Here, the lattice parameters a and b are shortened to the same
value of 3.08�A as in the primitive bulk unit cell and are aligned with the [110]
and [1̄10] directions, generally denoted as x- and y-directions for the rest of
this work. When ignoring the translational repetition of atoms on the corners,
edges, and faces as depicted in c), this unit cell contains four atoms along [001]
or the z-direction, each corresponding to one atomic layer of the (001) surface.
As illustrated in d), stacking multiples of this unit cell on top of each other
and adding vacuum regions above and below to obtain a proper surface unit
cell, the helical building block becomes apparent, which essentially constructs

[100]

[010]

[001]
z

[110]
x

[110]
y

a) tetragonal unit cell
a = b = 3.08 Å
c = 4.36 Å

α = β = γ = 90°

b) c)

d) e) f)
Si-terminated ideal p(1×1) surface

C-terminated ideal p(1×1) surface

Figure 1.3: a) Conventional fcc 3C-SiC bulk unit cell with the tetragonal bulk unit cell used
for the construction of the ideal 3C-SiC(001)-p(1×1) surface, b+c) the isolated tetragonal
bulk unit cell b) with and c) without the repetition of atoms placed on the corners, edges,
and faces of the unit cell due to translational symmetry, d) singular and e+f) multiples
of an 8-layer surface unit cell of the ideal 3C-SiC(001)-p(1×1) surface f) with and d+e)
without the repetition of atoms placed on the corners, edges, and faces of the unit cell due
to translational symmetry. For the sake of clarity, no bonds between atoms of neighboring
unit cells are depicted in e).
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the 3C-SiC(001) surface as shown in e) and f). Due to the alternating Si and
C layers in the z-direction, either a Si- or a C-terminated 3C-SiC(001) surface
is possible. Since so far these surface unit cells are simply constructed from
the bulk structure without any reconstruction or relaxation and since its size
cannot be further reduced in x- and y-direction, they are denoted as ideal
p(1×1) unit cells.

It was shown theoretically that the Si-terminated surface is hydrophilic, while
its C-terminated counterpart is hydrophobic,[29–33] making the former poten-
tially more suitable for the water splitting reactions and accordingly the focus
of this work. However, even though a considerable amount of research was
devoted to this system both experimentally and theoretically in the 1990s and
early 2000s, the nature of the Si-terminated 3C-SiC(001) surface is not re-
solved in a fully consistent manner, as summarized and debated intensively in
the two reviews by Soukiassian and Enriquez[27] and Pollmann and Krüger.[28]

Generally, there is an experimental consensus that a c(4×2) reconstruction is
the most stable phase at room temperature (RT). Furthermore, a p(2×1) re-
construction was also observed at the same conditions, which could be shown
to occur especially for higher densities of defects or contaminations, inter-
preting it as a failed formation of the supposedly favored c(4×2) reconstruc-
tion.[27,34] Moreover, a reversible transition between the c(4×2) reconstruction
and a p(2×1) phase was reported when increasing the temperature from RT
to 400 °C.[27,35] Based on this, Soukiassian and Enriquez suggested two closely
related structural models that could explain this behavior, namely the alter-
nating up- and down-dimer (AUDD) model for the c(4×2) reconstruction and
a failed AUDD[27,36] or symmetric dimer (SD) model[37] for the p(2×1) re-
construction depicted in Fig. 1.4c) and b), respectively. As apparent, both
models consist of parallel rows of symmetric or unbuckled Si dimers aligned
in x-direction, but in case of the AUDD model, these dimers alternate in
height and bond length in x- and y-direction, i.e., every down-dimer is sur-
rounded by four up-dimers and vice versa. Here, the down-dimers show a
shorter and the up-dimers a longer dimer bond. However, the temperature-
induced p(2×1) surface exhibits metallic character,[35] while the p(2×1) and
c(4×2) reconstructions are both semiconducting at RT,[35,38] which questions
the relation of these three phases.[28] To resolve this issue, it was argued that
the high-temperature phase actually originates from the AUDD model and
that the temperature-induced vibrations simply distort the originally covalent
surface states to exhibit metallic character. This could also explain the ap-
parent p(2×1) symmetry as result of the time-averaging in the experimental
methods.[27,35,38]

Coming from a more theoretical background, Pollmann and Krüger reasoned
the existence of the AUDD and SD models to be improbable due to the very
low energy gain per dimer for the latter model of about −0.01 eV with respect
to the ideal p(1×1) surface (Fig. 1.4a) obtained in various periodic slab model
calculations employing density functional theory (DFT).[28,39–45] While it was
never actually calculated in any of the studies finding the AUDD model,[42,46] it
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0.5 ML Si

a) ideal p(1×1) surface b) p(2×1) reconstruction (SD model)

c) c(4×2) reconstruction (AUDD model) d) c(4×2) reconstruction (MRAD model)
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Figure 1.4: Top and lateral view of the topmost atomic layers of the a) ideal p(1×1),
b) p(2×1) reconstructed symmetric dimer (SD) model, c) c(4×2) reconstructed alternating
up-and-down dimer (AUDD) model, and d) c(4×2) reconstructed missing-row asymmetric-
dimer (MRAD) model for the Si-terminated 3C-SiC(001) surface. In case of the c(4×2)
reconstructions, the actual centered rectangular c(4×2) unit cell is depicted in orange and
the primitive rhombic (

√
5×
√

5)R(2 · tan−1(0.5)) unit cell is colored blue. Reprinted with
permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American
Chemical Society. Slightly modified and extended by c) and d).

is reasonable to expect comparably low stabilization energies due to their close
structural relation. Accordingly, it is questionable whether these two weakly
stabilized models can actually exist at RT, where the p(2×1) and c(4×2) re-
constructions have been observed in the experiments. Besides, the theoretical
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studies generally favor the SD model over the AUDD model for unstrained sur-
face unit cells[28,42,46–48] and only application of tensile stress by increasing the
lateral lattice parameters in x- and y-direction yields the AUDD model.[28,42,46]

Keeping in mind that the experimentally investigated 3C-SiC samples are thin
films grown on a Si substrate exhibiting a larger lattice parameter compared
to 3C-SiC, this mismatch might justify the consideration of tensile strain in
the calculations. However, Pollmann and Krüger remark it is unresolved if the
surface stress at the interface of the two materials can carry through several
thousand atomic layers of the thin film of a few micrometers to the actual
3C-SiC surface.[28] Consequently, an alternative model for the c(4×2) recon-
struction featuring an additional half monolayer of Si atoms was suggested by
these authors, namely the missing-row asymmetric dimer (MRAD) model, in
which the additional Si atoms form dimers as depicted in Fig. 1.4d).[28,47] How-
ever, as pointed out by Soukiassian and Enriquez, this model is not suitable to
explain the reversible temperature-induced transition between the c(4×2) and
p(2×1) reconstructions since the latter phase is not achievable without adding
or removing Si atoms.[27] In conclusion, the discussion regarding the structure
of the Si-terminated 3C-SiC(001) surface is not fully resolved until today, with
only sparse additional research devoted to this topic in the last two decades.

Taking a closer look at the electronic structure of the AUDD and SD model, the
unbuckled Si dimers of both models form to reduce the number of energetically
unfavorable singly occupied dangling bonds present at the ideal p(1×1) surface
from two to one per surface Si atom, which is comparable to the dimer forma-
tion of the closely related and extensively investigated Si(001) surface. This
also explains why the ideal p(1×1) surface is not observed experimentally[28]

as it reconstructs immediately. For Si(001), however, these dimers buckle as
a result of the Jahn-Teller (JT) effect, which further stabilizes the surface by
splitting the remaining degenerate singly occupied dangling bonds into a dou-
bly occupied sp3-like orbital at the upper and an empty pz-like orbital at the
lower Si atom.[49–52] Such JT splitting is not observed in the large majority of
theoretical studies regarding the Si-terminated 3C-SiC(001) surface and thus
the dimers remain unbuckled.[39–46,48,53,54] This difference between the two sys-
tems is supposedly caused by the smaller lattice parameter of 3C-SiC resulting
in a stronger Coulomb repulsion between the Si–Si dimer bond and the Si–C
back bonds to the surface,[28] or, put differently, by the higher ring strain of
the involved five-membered rings in case of 3C-SiC (see Fig. 1.4b) compared
to Si. Accordingly, two singly occupied dangling bonds remain at each dimer
of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface, which repre-
sents the typical example of a statically or strongly correlated singlet diradical.
Such systems cannot be described faithfully by single-configurational methods
like DFT and multiconfigurational wave function-based approaches are needed
instead.[52,53,55,56] Alternatively, unrestricted single-configurational calculations
might recover some of the static correlation compared to the usually applied
restricted approach, but presumably at the expense of spin contamination.
This negative effect is especially severe when the spin multiplicity is not max-
imal with respect to the number of singly occupied orbitals present, which is
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obviously the case for a singlet diradical. Besides the symmetric dimers of
the p(2×1) reconstruction, it can be anticipated that the ideal p(1×1) surface
supposedly shows even greater multiconfigurational character since there are
basically two dangling bonds present per surface atom, which could already be
confirmed for the Si(001) analogue.[56]

Despite this simple qualitative analysis of the electronic structure, to the best
of this work’s author’s knowledge, the majority of theoretical studies regarding
the Si-terminated 3C-SiC(001) surface employed restricted calculations,[39–46,48]

while multiconfigurational[53] and unrestricted[54] approaches were only applied
once, respectively. In 2003, Tamura and Gordon carried out the pioneering
multiconfigurational calculations for a cluster model with a single Si dimer to
observe a significant dimer bond shortening compared to previous restricted
results and a supposedly fully diradicalic electronic structure.[53] Since no larger
cluster models were investigated by the authors, most likely due to the limited
computational power at that time, the question regarding the interaction of
multiple dimers, which is the case on the real surface, is left unanswered. The
first unrestricted periodic slab model calculation of this system by Xi et al. in
2019 gave a similar dimer bond shortening, though they did not further discuss
this with respect to previous restricted results as they focused their work on
the corrosion of this surface.[54]

Accordingly, the aim of this work is to gain a better understanding of the true
nature of the spatial and electronic structure of the Si-terminated 3C-SiC(001)
surface and its reconstructions. For this, single-configurational periodic slab
model calculations are carried out to study the effect of the restricted and unre-
stricted approach as well as the influence of different DFT functionals to fill out
the remaining gaps present in the literature. This is combined with a detailed
analysis of the electronic structure to explain the difference in reconstruction of
the several approaches. Afterwards, multiconfigurational calculations of clus-
ter models containing multiple surface dimers are conducted to go beyond the
single-dimer approach of Tamura and Gordon[53] and thus determine the inter-
action of multiple dimers at the supposedly highest theoretical level available
to this date. Before presenting the actual results, however, a comprehensive
introduction into the applied electronic structure theory methods is given for
a better understanding. In particular, a large part is devoted to the electronic
structure theory of solids to build a bridge between the band structure tradi-
tionally assigned to the field of physics and the orbital picture generally used
by chemists.
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2 Theoretical Foundations

2.1 General Electronic Structure Theory

2.1.1 Single-Configurational Methods

2.1.1.1 Hartree-Fock

In theoretical chemistry, the main goal is to solve the electronic, non-
relativistic, time-independent Schrödinger equation (TISE) for an N -electron
system like an atom or a molecule:[57–59]

Ĥ |Ψ〉 = E |Ψ〉 (2.1)

By solving this equation, the electronic wave function |Ψ〉 and its total energy
E can be obtained. While the wave function of an arbitrary N -electron system
with K nuclei is generally unknown, the corresponding electronic Hamiltonian
Ĥ can be exactly written as the sum of the operators of the kinetic energy of
electrons T̂e, the potential energy between nuclei and electrons V̂ne, between
electrons V̂ee, and between nuclei V̂nn. The Hamiltonian can also be further
reorganized to the one- and two-electron operators ĥi and ĝij:

[57–59]

Ĥ = T̂e + V̂ne + V̂ee + V̂nn (2.2)

= −
N∑
i=1

1

2
~∇2
i −

K∑
α=1

N∑
i=1

Zα
|~rαi|

+
N∑
i=1

N∑
j>i

1

|~rij|
+

K∑
α=1

K∑
β>α

ZαZβ
|Rαβ|

(2.3)

=
N∑
i=1

(
−1

2
~∇2
i −

K∑
α=1

Zα
|~rαi|

)
+

N∑
i=1

N∑
j>i

1

|~rij|
+

K∑
α=1

K∑
β>α

ZαZβ
|Rαβ|

(2.4)

=
N∑
i=1

ĥi +
N∑
i=1

N∑
j>i

ĝij + V̂nn (2.5)

In combination with the variational principle, the Hamiltonian can be used
to find the ground state wave function of the investigated system by consecu-
tively changing an arbitrary starting wave function until its energy is minimal.
Afterwards, any observable/expectation value of interest is accessible by ap-
plying the corresponding operator. However, since the solution of the TISE for
an N -electron system is very complex, the full N -electron wave function can
be approximated by an antisymmetric product of N molecular spin orbitals
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2 Theoretical Foundations

χa(~xi) (one-electron wave functions) in the form of a single Slater determinant
(SD), which fulfills the Pauli principle:[57–59]

|Ψ〉 = Ψ(~x1, ~x2, . . . , ~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(~x1) χ2(~x1) . . . χN(~x1)
χ1(~x2) χ2(~x2) . . . χN(~x2)

...
...

. . .
...

χ1(~xN) χ2(~xN) . . . χN(~xN)

∣∣∣∣∣∣∣∣∣ (2.6)

= |χ1χ2 . . . χN〉 (2.7)

Here, the electronic coordinates ~xi correspond to the space and spin coordi-
nates ~ri and ωi of electron i. A molecular spin orbital χa(~xi) is the product of
a spatial molecular orbital ψa(~ri) (MO) and a spin function, either α(ωi) (spin
up) or β(ωi) (spin down):[57–59]

|χa(~x1)〉 = χa(~x1) =


ψa(~r1)α(ω1) = |ψa(~r1)〉 |α(ω1)〉

or
ψa(~r1)β(ω1) = |ψa(~r1)〉 |β(ω1)〉

(2.8)

To now utilize the variational principle and find the best spin MOs, a way
of obtaining the energy has to be derived. For this, the expectation value
of the Hamiltonian is calculated using the SD, which results in the following
energy expression including the sums over the one-electron integrals ha and
the two-electron integrals Jab and Kab, corresponding to the Coulomb and
exchange interactions, respectively.[57–59] Note that the electronic coordinates
are abbreviated by their indices in the following, e.g., ~x1 as 1.

E = 〈Ψ|Ĥ|Ψ〉 (2.9)

=
N∑
a=1

〈χa(1)|ĥ(1)|χa(1)〉

+
N∑
a=1

N∑
b>a

(〈χa(1)|Ĵb(1)|χa(1)〉 − 〈χa(1)|K̂b(1)|χa(1)〉) + V̂nn

(2.10)

=
N∑
a=1

ha +
N∑
a=1

N∑
b>a

(Jab −Kab) + Vnn (2.11)

While the Coulomb interaction is simply the classical electrostatic repulsion of
two electrons, the non-classical exchange interaction only occurs for electrons of
parallel spin, which have a reduced probability of coming close to one another
due to the Pauli principle. That is why the exchange interaction reduces the
magnitude of the Coulomb repulsion for electrons of parallel spin, indicated by
its negative sign.[58] The operators ĥ(1), Ĵb(1), and K̂b(1) are defined as follows,
with P̂12 being a permutation operator to change the positions of electrons 1
and 2 (change the orbital in which they are located in), which arises from the
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Pauli principle/antisymmetry of the SD:[57–59]

ĥ(1) = −1

2
~∇2

1 −
K∑
α=1

Zα
|~rα1|

(2.12)

Ĵb(1) = 〈χb(2)|ĝ12|χb(2)〉 (2.13)

K̂b(1) = 〈χb(2)|ĝ12P̂12|χb(2)〉 (2.14)

Note that the sums are running over all spin MOs (indices a and b) instead
of over all electrons (indices i and j) and that the indices of the electrons
are kept fixed at 1 and 2. However, since the numbers of occupied electrons
and of spin MOs are identical up to this point and the values of the one-
and two-electron integrals are independent of the actual index of the electron,
the calculation of the energy is unchanged. If the energy expression is now
combined with the Lagrange method to find its minimum value upon changing
the spin MOs while maintaining their orthonormality, the N Hartree-Fock[60,61]

(HF) equations with the one-electron Fock operators f̂a(1) and the Lagrange
coefficients λba are obtained:[57–59]

f̂a(1) |χa(1)〉 =
N∑
b=1

λba |χb(1)〉 (2.15)

f̂a(1) = ĥ(1) +
N∑
b=1

(
Ĵb(1)− K̂b(1)

)
(2.16)

By unitary transformation, the right hand side of equation Eq. 2.15, when
thought of as a matrix, can be diagonalized to obtain the canonical HF equa-
tions with the canonical spin MOs. This results in the the Lagrange coefficients
being transformed into the canonical spin MO energies εa as eigenvalues on
the matrix diagonal:[57,59]

f̂ ′a(1) |χ′a(1)〉 = εa |χ′a(1)〉 (2.17)

These canonical HF equations are a set of pseudo-eigenvalue equations since
the Fock operators themselves depend on all the occupied spin MOs. Accord-
ingly, to solve the eigenvalue equation of one spin MO, all other spin MOs
need to be determined in advance, so an iterative treatment with a trial start-
ing wave function is necessary until self-consistency is reached. Therefore, such
approaches are often classified as SCF (self-consistent field) methods.[58,59] Fur-
thermore, by inspection of the Fock operator in Eq. 2.16, it is apparent that the
electron-electron repulsion is considered in an average manner since each elec-
tron only interacts with the charge clouds of the other electrons in the form
of orbitals. Thus, this mean-field approach neglects the so-called dynamic
electron correlation, which corresponds to a more realistic and advanced de-
scription of the electrons avoiding each other. These effects can be accounted
for by using post-HF Methods like Møller-Plesset perturbation theory of sec-
ond order (MP2),[62] configuration interaction (CI) or coupled cluster (CC),[63]
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which consider additional excited SDs constructed from the HF reference SD to
obtain a more accurate wave function[59] (more details follow in Section 2.1.2).

The total energy of the whole N -electron wave function in form of the SD is
not simply the sum of orbital energies since this would result in the electron-
electron repulsions being counted twice. Accordingly, it is calculated as:[57,59]

E =
N∑
a=1

εa −
1

2

N∑
a=1

N∑
b=1

(Jab −Kab) + Vnn (2.18)

εa = 〈χa(1)|f̂a(1)|χa(1)〉 = ha +
N∑
b=1

(Jab −Kab) (2.19)

Note that the ’ as indicator for the canonical MOs/Fock operators are dis-
regarded in the following for convenience. Furthermore, the Coulomb and
exchange integrals cancel each other for i = j.[57,59]

Up to this point, the spin MOs |χa〉 were only discussed conceptually and their
actual description in practice was omitted so far. As already mentioned, the
shape of the spin MOs is given by the spatial MOs |ψa〉. These spatial MOs
can take various shapes and are, just like the full N -electron wave function,
generally unknown at the start. However, it is mathematically possible to
exactly represent any unknown function by a linear combination of a complete
set of known basis functions φµ(~r), the basis set {φµ(~r)}. Since complete basis
sets can consist of an infinite number of basis functions, in real calculations
the basis set size has to be reduced to a finite value k:[57–59]

|ψa〉 = ψa(~r) =
k∑

µ=1

cµa φµ(~r) =
k∑

µ=1

cµa |φµ〉 (2.20)

In principle, any kind of mathematical function can serve as a basis function
as long as the basis set as a whole is able to recover the necessary proper-
ties of the wave function (e.g., for large ~r, the wave function should approach
zero). Accordingly, since the orbitals of an atom or a molecule are to be de-
scribed, atomic orbitals (AOs) are a reasonable choice, hence the approach
in Eq. 2.20 is called MO-LCAO (molecular orbitals from linear combination
of atomic orbitals). Here, atom-centered Gaussian type orbitals (GTOs) are
the computationally most efficient choice.[57–59] Due to the introduction of the
MO-LCAO approach, the spin MOs and thus the N -electron wave function
can now be changed through the expansion coefficients cµa in order to actually
utilize the variational principle and minimize the total energy. By inserting
the MO-LCAO approach into the restricted closed-shell variant of the canon-
ical HF equations (not explicitly derived previously), multiplying with the
AO basis functions on the left, and integrating, the Roothaan-Hall equations
can be obtained, which correspond to the restricted closed-shell HF (RHF)
method. These equations can be efficiently solved in the form of a matrix
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pseudo-eigenvalue problem by computers:[57,59]

FC = SCε (2.21)

Fµν = 〈φµ|f̂ |φν〉 (2.22)

Sµν = 〈φµ|φν〉 (2.23)

Here, F corresponds to the Fock matrix, which contains integrals Fµν of the
Fock operator and the AO basis functions (Eq. 2.22), the C matrix contains the
coefficients cµa for the MO-LCAO, the S matrix contains the overlap integrals
Sµν of the AO basis functions (Eq. 2.23), and ε corresponds to the eigenvalue
matrix, which is diagonalized and thus contains the orbital energies εa.

[57,59]

Though not explicitly written in 2.21, due to the pseudo-eigenvalue character
of HF theory, the F matrix is dependent on the occupied MOs and thus on the
C matrix. While the details of the derivation of the Roothaan-Hall equations
will not be discussed further, it should be noted that since the number of AOs
and MOs is equal in MO-LCAO, k accordingly has to be equal (minimal basis
set) or greater than N

2
so there is at least one spin MO for each electron (k

spatial MOs generally lead to 2k spin MOs). In real calculations, k is actually
about four to six times as large as N

2
because a larger number of basis functions

allows for a more precise approximation of the exact MOs. Accordingly, the
MOs can be split into occupied and unoccupied/virtual MOs, of which only
the N occupied MOs are included in the SD. Thus, only these occupied MOs
contribute to the total energy of the system and accordingly only these MOs
are optimized during the SCF procedure.[58,59]

Overall, due to the neglect of the electron correlation beyond the mean-field
approach, the HF method generally does not give good quantitative results.[58]

Still, the appeal of the HF method is to use its wave function as a reference for
the post-HF methods to systematically improve towards the exact wave func-
tion and energy. However, there are cases where the single-determinantial and
-configurational approach of HF is already insufficient to serve as a reference
for post-HF methods, which will be discussed in Sections 2.1.1.4 and 2.1.2.

2.1.1.2 Restricted and Unrestricted Slater Determinants

Since the HF method utilizes the variational principle, solving the Roothaan-
Hall equations generally yields the ground state SD, corresponding to the re-
stricted closed-shell singlet electron configuration with the energetically lowest
spatial MOs being doubly occupied according to the Aufbau principle. To also
make the calculation of open-shell systems possible, two additional flavors of
the HF method have been developed besides RHF, which mainly differ in the
way the α and β spin MOs of the SD are constrained: restricted open-shell HF
(ROHF) and unrestricted HF (UHF). As already mentioned in Section 2.1.1.1,
one set of k spatial MOs |ψa〉 will result in 2k spin MOs |χa〉:[57]

|χ2a−1〉 = |ψa〉 |α〉
|χ2a〉 = |ψa〉 |β〉

}
a = 1, 2, . . . , k (2.24)
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In case of restricted SDs, for each α spin MO there exists one β spin MO with
an identical spatial part, resulting in both spin MOs to also be energetically
degenerate. This restriction is also kept during the whole SCF procedure. To
make this pairing more clear when using the shorthand notation for a determi-
nant as in Eq. 2.7, instead of simply numbering the spin MOs independently
from |χ1〉 to |χ2k〉, one can use the k spatial MOs and add or omit a bar above
the symbol ψ to identify them as β or α spin MOs, respectively:[57]

|ψa〉 = |ψa〉 |α〉
|ψa〉 = |ψa〉 |β〉

}
a = 1, 2, . . . , k (2.25)

This notation also represents the SCF procedure more accurately since only
the spatial part of the spin MOs is varied via the coefficients and not the spin
function. This is why in the restricted closed-shell Roothaan-Hall equations of
the RHF method (Eq. 2.21) actually only k spatial MOs and not 2k spin MOs
are considered and accordingly the involved matrices are of the size k×k. The
correct interaction of electrons of different spin is then recovered by adjusted
spatial Fock operators and an adjusted energy expression of an SD with spatial
MOs.[57] If the number of electrons of the investigated system is now even, a
restricted closed-shell SD with singlet configuration as used in RHF is obtained,
exemplarily depicted in Fig. 2.1a). If, e.g., one additional electron is present as
shown in Fig. 2.1b), a restricted open-shell SD with doublet spin configuration
as utilized in ROHF is acquired. While the difference in occupation is subtle
compared to the RHF formalism, the corresponding equations are a lot more
complicated,[57] which is why they will not be presented in detail. The case of
unrestricted spin MOs was basically assumed in most of Section 2.1.1.1 and
before in Eq. 2.24, where they are denoted as |χa〉. In unrestricted SDs, the
spatial part of each spin MO pair can (but does not have to) differ, which
can result in energetically non-degenerate spin MO pairs (see Fig. 2.1c). To
express this independence in the notation of spatial MOs as in Eq. 2.25, one set
of k α and one set of k β spatial MOs with their respective α and β expansion

a) RHF b) ROHF c) UHF

ψ1⟩|

ψ2⟩|

ψ3⟩|

ψ4⟩|

ψ1⟩|

ψ2⟩|

ψ3⟩|

ψ4⟩|

ψ1⟩|

ψ2⟩|

ψ3⟩|

ψ4⟩|

≡

α β

ψ1⟩|

ψ2⟩|

ψ3⟩|

ψ4⟩|

ψ1⟩|

ψ2⟩|

ψ3⟩|

ψ4⟩|

ψ1⟩|

ψ2⟩|

ψ3⟩|

ψ4⟩|

≡

α β

ψβψ1⟩|

ψβψ2⟩|

ψβψ3⟩|

ψβψ4⟩|

ψαψ1⟩|

ψαψ2⟩|

ψαψ3⟩|

ψαψ4⟩|

α β

1ΨRHF⟩| ψ1ψ1ψ2ψ2⟩|= 2ΨROHF⟩| = ψ1ψ1ψ2ψ2 ⟩| ψ3 ≈2ΨUHF⟩| = ψβψβψαψ1ψ1ψ
αψ2ψ2 ⟩| ψαψ3

Figure 2.1: Example SDs according to a) RHF, b) ROHF, and c) UHF methods. In the
equation at the bottom, the leading superscript of the wave function corresponds to the spin
multiplicity M of the determinant, which in case of the UHF SD is not an exact doublet
state due to spin contamination (see Section 2.1.1.4). Created based on Refs. [57, 59]
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coefficients are needed:[57]

|ψαa 〉 = |ψαa 〉 |α〉
|ψβa〉 = |ψβa 〉 |β〉

with
|ψαa 〉 =

∑k
µ=1 c

α
µa |φµ〉

|ψβa 〉 =
∑k

µ=1 c
β
µa |φµ〉

}
a = 1, 2, . . . , k (2.26)

Inserting these two sets of unrestricted spin MOs into the HF equations yields
the two so-called Pople-Nesbet equations, which are the unrestricted equivalent
to the restricted Roothaan-Hall equations and are accordingly used in the UHF
method:[57]

FαCα = SCαεα (2.27)

FβCβ = SCβε
β

(2.28)

Even though there are two separate equations for each electron spin, obviously
the two-electron parts in the Fock operators of one spin also depend on the
electrons of opposite spin, which is why both equations have to be solved
simultaneously in the self-consistent procedure.[57]

While the ROHF and UHF methods open up the possibility of calculating
open-shell systems, there are certain systematic limitations and problems that
are either tied to the respective method in particular or, as already indicated
in Section 2.1.1.1, to the usage of single-determinantial and -configurational
methods in general. These shortcomings will be further discussed in detail in
Sections 2.1.1.4 and 2.1.2.

2.1.1.3 Density Functional Theory

The arguably most commonly used method for electronic structure calculations
is the density functional theory (DFT). The foundation of this theory was laid
out by Hohenberg and Kohn in 1964,[64] who showed that the energy of the
ground state of a system can be exactly derived from its electron density
ρ(~r). In comparison to wave function methods like HF, the appeal is the
significantly reduced complexity. This is apparent inN -electron wave functions
within the framework of the Born-Oppenheimer approximation (BOA) being
dependent on N electronic coordinates ~x, amounting to 4N variables in total,
while the electron density is always dependent on only three spatial coordinates
combined in ~r and thus independent of N . The correlation between the wave
function and the electron density is clearly given by integrating out all but one
spatial coordinate ~r of the absolute square of the wave function:[58,59,65]

ρ(~r1) = N

∫
|Ψ(~r1, ω1, ~x2, . . . , ~xN)|2dω1d~x2 . . . d~xN (2.29)

While the calculation of the exact energy using a wave function is known
in, e.g., full CI, the exact functional for obtaining the energy from only the
electron density is unknown. This unknown exact DFT functional can, in
analogy to the electronic Hamiltonian of Eq. 2.2, be written as the sum of the
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exact functional of the kinetic energy of electrons T [ρ(~r)], the exact functional
of the potential energy between nuclei and electrons Vne [ρ(~r)], and the exact
functional of the potential energy between electrons Vee [ρ(~r)]:[58,59]

EDFT [ρ(~r)] = T [ρ(~r)] + Vne [ρ(~r)] + Vee [ρ(~r)] (2.30)

The attraction between the nuclei and the electrons, or, more specifically, the
electron density, is given exactly by the following classical expression:[58,59]

Vne [ρ(~r)] = −
K∑
α=1

∫
Zα ρ(~r)

|~r − ~Rα|
d~r (2.31)

However, the other two exact functionals are both unknown. In a first ap-
proximation, the exact functional of electron-electron repulsion can be split
further:[59]

Vee [ρ(~r)] = J [ρ(~r)] + Exc [ρ(~r)] (2.32)

Here, in analogy to the nomenclature in the HF method, J [ρ(~r)] corresponds
to the Coulomb repulsion of a classical charge distribution:[58,59]

J [ρ(~r)] =
1

2

∫∫
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
d~r1d~r2 (2.33)

However, in contrast to the HF method, the electrons are not treated sepa-
rately in spin MOs but as one single electron density. From this, it follows
that the unphysical interaction of “one electron” of this density with itself
(self-interaction error) cannot be prevented and that the quantum mechanical
exchange interaction K as well as further electron correlation are not consid-
ered. Accordingly, these missing effects and corrections are included in the
exchange-correlation functional Exc [ρ(~r)], which will be presented in detail
further below. Prior to that, the exact functional of the kinetic energy T [ρ(~r)]
is discussed. Describing this interaction mathematically by only relying on
the electron density turned out to be challenging. By fermion statistical me-
chanics, Thomas[66] and Fermi[67] had already derived an expression in the
1920s to calculate the kinetic energy of the uniform electron gas, correspond-
ing to an infinite number of electrons in an infinite volume with uniformly
positively charged background. With the inclusion of exchange effects for the
same model system derived by Bloch,[68] Dirac,[69] and Slater,[70] the resulting
orbital-free Thomas-Fermi-Dirac DFT is only applicable to certain periodic
metallic systems but not suitable for chemical problems due to the inability
to describe bonds. Apparently, the lowest limit of complexity for solving the
TISE for such systems seems to be MO theory,[58] which is why in 1965 Kohn
and Sham[71] introduced orbitals into DFT, hence denoted as KS DFT and
KS orbitals. While with this the advantage of DFT being dependent on only
three spatial coordinates is lost, it is now possible to describe the functional of
the kinetic energy of non-interacting electrons TS [ρ(~r)] by summing over the
kinetic energy of each single electron:[58,59]

TS [ρ(~r)] =
N∑
a=1

〈χa(~r1)| −
1

2
~∇2

1|χa(~r1)〉 (2.34)
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The term non-interacting might be a bit confusing at first since the expression
in Eq. 2.34 contains the same one-electron operator of the kinetic energy as in
Eq. 2.3 of the mean-field approach of HF, in which the electrons do interact
and “only” the dynamic electron correlation is missing. However, the kinetic
part of these correlation effects cannot be accounted for by such a simple sum
of the kinetic energy of single particles, hence the respective expressions for T
actually do resemble independent, non-interacting electrons both in HF and
DFT. Still, most of the exact kinetic energy is covered in this way and thus this
calculation is justified.[58,59] The subscript S in Eq. 2.34 highlights this single-
particle nature[65] or, put differently, that it stems from an SD with single-
particle wave functions.[59] Other than obtaining a reasonable expression for the
kinetic energy, the main goal of Kohn and Sham was to create a Hamiltonian
that can act on a system of non-interacting electrons, represented by a single
SD of one-electron wave functions like in HF, but still give the electron density
of the exact system of interacting electrons and thus the exact ground state
energy. Within this MO approach, the total electron density of an N -electron
system is given as:[58,59,65,72]

ρ(~r) =
N∑
a=1

|χa(~r)|2 (2.35)

It should be noted that the total electron density itself is a spinless quantity
and hence only depends on ~r, as do the functionals/potentials of DFT in its
most general form.[72] That is why, for the sake of simplicity, the spin MOs
|χa〉 in Eqs. 2.34 and 2.35 and the following equations only depend on ~r, i.e.,
only the spatial MOs are used. Utilizing the MO approach, the integral of the
electron density over ~r can be expressed in Dirac notation:∫

ρ(~r) d~r =
N∑
a=1

〈χa(~r)|χa(~r)〉 (2.36)

Insertion into Vne [ρ(~r)] (Eq. 2.31) and J [ρ(~r)] (Eq. 2.33) results in the follow-
ing total KS DFT functional:[58,72]

EKS DFT [ρ(~r)] =
N∑
a=1

〈χa(~r1)| −
1

2
~∇2

1|χa(~r1)〉

−
K∑
α=1

N∑
a=1

〈χa(~r1)|
Zα
|~rα1|
|χa(~r1)〉

+
1

2

N∑
a=1

〈χa(~r1)|
∫
ρ(~r2)

|~r12|
d~r2|χa(~r1)〉+ Exc [ρ(~r)]

(2.37)

In this equation, only the exchange-correlation functional Exc [ρ(~r)] remains
unknown. However, this is the crucial term since it contains, the missing parts
of the exact electron-electron interaction functional Vee [ρ(~r)], which are not
covered by the classical mean-field functional J [ρ(~r)] (self-interaction error,
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missing exchange interaction, potential energy correlation effects), as well as
the missing correlation effects of the exact kinetic energy of electrons T [ρ(~r)],
which are not covered by the functional of the kinetic energy of non-interacting
electrons TS [ρ(~r)]:[58,59,72]

Exc [ρ(~r)] = (T [ρ(~r)]− TS [ρ(~r)]) + (Vee [ρ(~r)]− J [ρ(~r)]) (2.38)

Utilization of the variational principle for Eq. 2.37 and the Lagrange minimiza-
tion method for the energy yields the KS equations and KS operators, which
are the KS DFT analogues to the HF equations and Fock operators:[58,72]

f̂KSa (~r1) |χa(~r1)〉 = εa |χa(~r1)〉 (2.39)

f̂KSa (~r1) = ĥ(~r1) +

∫
ρ(~r2)

|~r12|
d~r2 + V̂xc (2.40)

Here, ĥ(~r1) is identical to the one-electron operator of the Fock operator in HF
(Eq. 2.12). Since the Lagrange method minimizes the total energy by changing
the orbitals and thus the electron density, this is also applied to the exchange-
correlation functional Exc [ρ(~r)], hence the corresponding exchange-correlation
potential V̂xc is obtained:[58,72]

V̂xc =
δExc [ρ(~r)]

δρ(~r)
(2.41)

Mathematically, V̂xc is a so-called functional derivative and represents the po-
tential acting on the one-electron wave functions that arises from all effects
combined in the exchange-correlation functional. Just like the corresponding
functional, however, this potential remains unknown and has to be approxi-
mated.[58,72] Applying the MO-LCAO approach to the restricted closed-shell
variant of the KS equations (not explicitly derived previously) yields the re-
stricted closed-shell Kohn-Sham-Roothaan matrix eigenvalue equations, which
are the restricted closed-shell KS DFT (RKS) analogues of the Roothaan-Hall
equations (Eq. 2.21):[73]

FKSC = SCε (2.42)

While DFT, in principle, does not need any spin information in the electron
density to give the exact ground state energy, in practice this is not the case
since the exact exchange-correlation functional is not known. Accordingly, re-
stricted and unrestricted open-shell variants of KS DFT, abbreviated as ROKS
and UKS, are available to obtain improved results for open-shell systems.[72]

Just like their HF counterparts, they utilize restricted and unrestricted SDs
as presented in Section 2.1.1.2 and the corresponding functionals show depen-
dencies on the α and β electron densities, the latter being calculated as follows
from the spatial MOs:[65]

ρα(~r) =
Nα∑
a=1

|ψαa (~r)|2 and ρβ(~r) =

Nβ∑
a=1

|ψβa (~r)|2 (2.43)
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While the total electron density ρ(~r) is just the sum of both partial densities,
the so-called spin density Q(~r) is the difference of both, in which positive and
negative values correspond to an excess of α or β electrons at a given point ~r,
respectively:[65]

ρ(~r) = ρα(~r) + ρβ(~r) (2.44)

Q(~r) = ρα(~r)− ρβ(~r) (2.45)

A comparison of KS DFT to HF is now helpful to understand their differences
since they might appear to be quite similar up to this point. Both KS DFT
and HF use one single SD with one-electron wave functions and corresponding
effective one-electron operators, the Fock and KS operators. Accordingly, both
methods can be classified as mean-field theories. The one-electron operators
only differ in the fact that DFT includes all correlation effects and is thus, in
principle, an exact theory, while the approximate HF theory does not include
correlation effects beyond the mean-field approach. To account for the missing
correlation interactions, post-HF methods would be needed to include addi-
tional excited SDs in the wave function. The problem of DFT, on the other
hand, is that the exact exchange-correlation functional is unknown and thus,
in reality, has to be approximated, resulting in the large variety of different
available DFT functionals.[58,72] As concisely summarized by Cramer, HF is an
approximate theory, which can be solved exactly, while KS DFT is an exact
theory, which can only be solved approximately.[58] Put differently, while HF
accepts the approximate nature of using a single SD as wave function, DFT
tries to “bend” this single SD in a way that it still gives the correct density
and energy, which, as the Hohenberg-Kohn theorem proofs, is, in principle,
possible. It is important to stress, however, that the exact wave function is
not available in DFT.[72] Coming back to the similarities, if one replaces the
integral over ρ(~r2) in the total KS DFT functional (Eq. 2.37) with its MO
representation and compares it to the energy of an SD (Eq. 2.10), HF and
DFT share the same formulas to calculate the one-electron and Coulomb in-
tegrals ha and Jab, respectively. Furthermore, since the KS operators depend
on the electron density and the density itself depends on the KS orbitals, the
KS equations also have to be solved iteratively in a SCF procedure just like
HF.[58,59]

There are several different ways to approximate the exact exchange-correlation
functional Exc [ρ(~r)], of which the most relevant in general and with respect
to this work are presented in the following. Generally, all of these functionals
contain parameters, resulting in KS DFT, strictly speaking, not being an ab
initio method in practice. These parameters are, e.g., fitted to experimen-
tal data or to fulfill certain physically required properties. However, since
these fits are done using a limited number of test systems, the performance of
different functionals is accordingly also system- and property-dependent and
thus there is no standard functional to use. The simplest functionals utilize
the local density approximation (LDA), in which the electron density at each
position in space ~r is treated as a uniform electron gas. Thus, the corre-
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sponding exchange-correlation functionals are only dependent on the value of
the electron density at each local point ~r (ELDA

xc [ρ(~r)]).[58,59] Within this ap-
proach, different exchange and correlation functionals have emerged, of which
the Dirac-Slater exchange[69] and the Perdew-Zunger correlation[74] function-
als are used in this work when employing LDA calculations. Going a step
further in accuracy beyond the uniform electron gas, the generalized gradient
approximation (GGA) adds a dependency on the gradient of the electron den-

sity (EGGA
xc [ρ(~r), ~∇ρ(~r)]). With this, the calculation of the energy in a sense

also takes the surroundings of the electron density at a given point ~r into ac-
count, even though the derivative mathematically is also just a local property
at ~r.[58,59] The most commonly used GGA functional is the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional[75] also utilized in this work.
Further improvements are possible in form of meta-GGA methods, where also
the second derivative of the electron density ~∇2ρ(~r) is included. However,
much more common are the so-called hybrid functionals, which are based on
LDA or GGA functionals with a certain fraction a of the exchange-part of the
DFT functional being replaced by HF exchange EHF

x (computed with the KS
orbitals):[58,59]

EhDFT
xc = EDFT

xc − a EDFT
x + a EHF

x (2.46)

The idea behind this approach is that the exchange energy is the largest part
of the exchange-correlation energy and this exchange energy is calculated ex-
actly for one SD in the HF method. However, using 100 % HF exchange is
not possible since its non-local nature combined with the local DFT correla-
tion functionals leads to unphysical results for long-range electron interactions,
which normally would cancel each other in wave function-based approaches
due to the correlation also being non-local. Since the fraction a is determined
by fitting, a similar system- and property-dependence as mentioned before
is present. Still, generally the hybrid-DFT functionals perform better than
pure GGA and meta-GGA functionals, being partly owed to the reduction of
the self-interaction error, which in HF is nonexistent due to the previously
mentioned cancellation of J and K for the interaction of one electron with
itself.[58,59,73] The hybrid variant of the PBE functional, namely PBE0,[76,77] is
used in this work, in which a amounts to 0.25. However, it was shown that
exchange interactions in insulators/metals decay exponentially/algebraically
with the distance between electrons due to shielding/screening effects.[78] But
since the exact HF exchange is non-local, it considers both short- and long-
range interactions at the same time. This leads to unnecessarily high com-
putation times for hybrid functionals if the long-range exchange interactions
can be neglected[78] and to calculated band gaps being too large compared
to the experiment.[73] Thus, to further increase the accuracy and performance
especially for extensive or periodic solid-state systems, so-called screened or
range-separated hybrid DFT functionals were developed. For this, the two-
electron operator is divided into a short- and long-range part by using error
functions erf(ω), whose shapes are very similar to a natural growth function
with function values in the range from 0 to 1 and thus serve as a smooth
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transition between both regions:[73,78]

1

|~r12|
=

1− erf(ω · |~r12|)
|~r12|

+
erf(ω · |~r12|)
|~r12|

(2.47)

Here, the parameter ω adjusts the slope of the error function and thus the
position at which the short-range interactions end and the long-range interac-
tions start.[78] Now, the HF exchange is only applied to the short-range region
with a fraction a:[73,78]

EshDFT
xc = EDFT

xc − a EDFT,SR
x + a EHF,SR

x (2.48)

In case of the popular HSE06 functional[78–80] also used in this work, ω amounts
to 0.11 a0 and a to 0.25, thus representing a screened variant of the PBE0 hy-
brid functional, significantly improving calculated properties for semiconduc-
tors like the band gap and lattice constants.[73]

To summarize, even with the exchange-correlation functionals being only ap-
proximated, DFT generally gives quantitatively better results than HF and
often even of the same quality as MP2.[59] Especially for systems too large for
post-HF methods, DFT most of the time is the only option to account for cor-
relation effects in electronic structure calculations. However, the large variety
of different DFT functionals and the strong system- and property dependence
makes its usage less universal and requires careful validation of the obtained
results. Even though it is debatable,[72] DFT can also be regarded as a single-
determinantial and -configurational method and thus its limits in this regard
are also included in the discussion of the following Section 2.1.1.4.

2.1.1.4 Limits of Single-Configurational Methods

As indicated multiple times in the previous sections, the presented methods
HF and DFT are limited in the systems they are able to describe, which is
owed the single-configurational and/or the single-determinantial approach they
utilize. At first, the discussion is focused on the HF method since the problems
are well defined for wave function-based method and less clear for DFT.

Since HF is derived from the non-relativistic TISE, the spin has to be intro-
duced via the spin functions |α〉 and |β〉, corresponding to the spin-up and
spin-down states, respectively. These spin functions have to be eigenfunc-
tions of the spin angular momentum operator for the z component ŝz and the
squared total spin angular momentum operator ŝ2, giving the magnetic quan-
tum number ms and s(s+1) as eigenvalues, respectively, with s being the total
spin quantum number:[57,58]

ŝ2 = ŝ · ŝ = ŝ2x + ŝ2y + ŝ2z (2.49)

ŝz |α〉 =
1

2
|α〉 ŝ2 |α〉 =

1

2

(
1

2
+ 1

)
|α〉 = 0.75 |α〉 (2.50)

ŝz |β〉 = −1

2
|β〉 ŝ2 |β〉 =

1

2

(
1

2
+ 1

)
|β〉 = 0.75 |β〉 (2.51)
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Here, the total spin s can generally take values of 0, 1
2
, 1, 3

2
, . . . and the magnetic

quantum number ms values of −s,−s+1, . . . , s−1, s, even though for a single
fermion like an electron the total spin is always 1

2
and thus ms is either 1

2
or

−1
2
. For an N -electron system, the total spin angular momentum operator Ŝ

and the corresponding operator Ŝz for the z component are simply the sums
of the operators for one electron:[57,58]

Ŝ =
N∑
i=1

ŝ(i) Ŝz =
N∑
i=1

ŝz(i) (2.52)

Accordingly, the squared total spin angular momentum operator Ŝ2 is the
product of two sums:[57,58]

Ŝ2 =
N∑
i=1

N∑
j=1

ŝ(i) · ŝ(j) (2.53)

While not going into the mathematical details, it should be noted that, due to
the independent indices, one-electron operators arise for i = j and two-electron
operators for i 6= j within Ŝ2.[57,58] Since the non-relativistic Hamiltonian Ĥ
itself does not contain spin coordinates, it commutes with both spin operators
Ŝz and Ŝ2 and accordingly the N -electron wave function also has to be an
eigenfunction of both operators:[57]

[Ĥ, Ŝ2] = [Ĥ, Ŝz] = 0 (2.54)

Ŝz |Ψ〉 = MS |Ψ〉 Ŝ2 |Ψ〉 = S(S + 1) |Ψ〉 (2.55)

The quantum numbers S and MS correspond to the total spin and its z com-
ponent of the N -electron system, respectively. With S available, the spin
multiplicity of the system can be calculated via M = 2S+1, defining it as sin-
glet, doublet, triplet, and so on. Due to the discrete nature of S, the eigenvalue
S(S+1) can accordingly also only take discrete values of 0, 0.75, 2, . . . . If the
spin operators are now applied to a single SD as HF utilizes to approximate
the N -electron wave function, it shows that the SD is always an eigenfunction
of Ŝz, with MS simply being equal to the sum of all individual ms, but not nec-
essarily an eigenfunction of Ŝ2.[57] While a detailed mathematical application
of the spin operators to SDs of a system with two electrons and two orbitals is
given in the appendix of Ref. [58], the corresponding final results are presented
in the following: The first case is a restricted closed-shell SD, which is always
an eigenfunction of Ŝ2 with the eigenvalue 0(0+1) = 0:[57,58]

|1ΨRHF 〉 = |ψ1ψ1〉 =
1√
2

(ψ1(1)ψ1(2)− ψ1(2)ψ1(1)) (2.56)

〈1ΨRHF |Ŝ2|1ΨRHF 〉 = 0 (2.57)

Thus, a single SD is capable of describing a pure closed-shell singlet state with
S = 0 as one would intuitively expect. Note that in the following the super-
script in front of the wave function gives its spin multiplicity M . The next
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case is a restricted open-shell SD with both electrons exhibiting the same spin
and thus occupying different orbitals. This also corresponds to an eigenfunc-
tion of Ŝ2 with the eigenvalue 1(1+1) = 2 and accordingly describing a pure
diradicalic triplet state with S = 1:[57,58]

|3ΨROHF 〉 = |ψ1ψ2〉 =
1√
2

(ψ1(1)ψ2(2)− ψ1(2)ψ2(1)) (2.58)

〈3ΨROHF |Ŝ2|3ΨROHF 〉 = 2 (2.59)

By flipping the spin of one of the orbitals, a restricted open-shell SD with two
electrons of opposite spin in different orbitals is obtained. Application of Ŝ2

and integration then gives an expectation value of S(S+1) = 1, which is not
an allowed eigenvalue and thus the SD is not an eigenfunction of Ŝ2:[57,58]

|1?ΨROHF 〉 = |ψ1ψ2〉 =
1√
2

(ψ1(1)ψ2(2)− ψ1(2)ψ2(1) (2.60)

〈1?ΨROHF |Ŝ2|1?ΨROHF 〉 = 1 (2.61)

The problem might get more intuitive by wondering why the spin-up is always
located in orbital 1 and the spin-down in orbital 2 and not the other way
around, indicating a broken spin-symmetry. Hence, both of these possible
SDs show spin polarization, i.e., the spin density (Eq. 2.45) has positive and
negative values in different regions of space, even though a pure singlet wave
function should have zero spin density at every point in space.[81] However,
by forming a linear combination of both possible restricted open-shell SDs, a
two-determinantial wave function is obtained, which then is a pure diradicalic
singlet state with correct spin-symmetry:[57,58]

|1ΨCSF 〉 =
1√
2

(|ψ1ψ2〉 − |ψ1ψ2〉) (2.62)

〈1ΨCSF |Ŝ2|1ΨCSF 〉 = 0 (2.63)

Interestingly, by changing the sign of the linear combination, an additional
pure triplet wave function is obtained, which has an eigenvalue of MS = 0 in
contrast to the single-determinantial triplet |3ΨROHF 〉 with MS = 1 (or −1 for
two β electrons):

|3ΨCSF 〉 =
1√
2

(|ψ1ψ2〉+ |ψ1ψ2〉) (2.64)

〈3ΨCSF |Ŝ2|3ΨCSF 〉 = 2 (2.65)

Wave functions that are proper eigenfunctions of Ŝ2 are called configuration
state functions (CSF) or spin-adapted configurations. While more details re-
garding CSFs and their connection to configurations are discussed in Sec-
tion 2.1.2.1, it is important to note that closed-shell or maximum-spin open-
shell CSFs (e.g., a triplet diradical) can be described qualitatively correct by
a single restricted SD in RHF and ROHF, a low-spin open-shell CSF (e.g., a
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singlet diradical) is only obtainable by a linear combination of two or more
restricted SDs, which cannot be generated within the single-determinantial
methods RHF and ROHF. Accordingly, multiconfigurational methods are
needed,[57–59,81–83] which are further discussed in Section 2.1.2. An illustra-
tive overview of the presented SDs/CSFs and further examples are given in
Fig. 2.2.

+
1
√2

−
1
√2

⟩⟩Ŝz =MS

configuration

⟩⟩Ŝ2

[20] [11] [11] [11] [11] [11] [11] [02]

CSF?

0 0 0 0 01 −1 0

0 2 2 1 1 0 02

Figure 2.2: Possible SDs, CSFs, and configurations for a two-electron two-orbital system.
Created based on Refs. [57–59, 83]

Up to this point, the spin properties were only analyzed for the restricted SDs
of RHF and ROHF. UHF is also able to describe open-shell systems by uti-
lizing unrestricted SDs. Generally, the same problems for low-spin open-shell
CSFs persist since UHF is also a single-determinantial method. Additionally,
UHF SDs are generally impure spin states. This phenomenon is called spin
contamination because the impure UHF spin state can be expanded in a basis
of pure spin states (CSFs):[57–59]

|≈1ΨUHF 〉 = C1 |1ΨCSF 〉+ C2 |3ΨCSF 〉+ C3 |5ΨCSF 〉+ . . . (2.66)

Here, approximate UHF singlets are always contaminated by triplets, quintets,
etc., approximated UHF doublets by quartets, sextets, etc., and so on. The
amount of spin contamination ∆ 〈Ŝ2〉 is quantified by the difference between
the calculated expectation value 〈Ŝ2〉 of the unrestricted SD and the ideal
expectation value 〈Ŝ2〉pure for the corresponding pure spin state:[57–59,84]

∆ 〈Ŝ2〉 = 〈Ŝ2〉 − 〈Ŝ2〉pure (2.67)

〈Ŝ2〉pure = MS(MS + 1) with MS =
Nα −Nβ

2
(2.68)

Since the contaminating states of the UHF SD are always of higher multiplic-
ity, they also have a larger total spin S and thus the spin contamination is
always positive.[57] Generally, as soon as the spin contamination exceeds a few
percent, the obtained UHF wave function should be treated with caution and
multiconfigurational methods using CSFs should be considered.[59] The reason
for the spin contamination is that the two sets of spatial orbitals {ψαa } and
{ψβa} can differ in their spatial part and are thus not necessarily orthogonal.[57]

Using the example of a doublet state, this results in spin polarization, i.e., pos-
itive and negative values for the spin density, in the approximate doublet UHF
SD, while the spin density is always zero or positive in the pure doublet ROHF
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SD (if the unpaired electron is of α spin). Geometrically speaking, since in
ROHF the spatial orbitals of α and β electrons are identical, the spin densities
of the individual electrons cancel each other exactly except for the unpaired α
electron. However, spin polarization is a real phenomenon, which can actually
be observed in experiments, e.g., for the methyl radical, where the unpaired
α electron is present in the pz orbital orthogonal to the molecular plane. The
other electrons in the molecular plane with the same spin are “pulled” towards
the unpaired electron due to the exchange interaction reducing their Coulomb
repulsion with the unpaired electron. This overall lowers the energy of the α
orbitals compared to their β counterparts[57] (as already indicated in Fig. 2.1)
and results in slightly negative spin density in the molecular plane. This spin
polarization leads to hyperfine coupling between the magnetic moments of
the nuclei and the unpaired electron,[58] observable in electron spin resonance
(ESR) spectroscopy. From this, it can be concluded that ROHF sacrifices spin
polarization for the sake of spin purity, while UHF sacrifices the spin purity to
be able to describe spin polarization, so neither method can give a physically
consistent description in this regard.

However, so called spin-projection or annihilation methods have been devel-
oped to reduce the spin contamination in UHF solutions. For this, the weights
of the contaminating spin states in the UHF wave function, corresponding to
the expansion coefficients Cr in Eq. 2.66, are determined by applying projec-
tion operators to the UHF wave function in order to subsequently subtract
the contaminants so only the pure spin state remains. Since a UHF wave
function can generally be contaminated by a lot of higher pure spin states
but usually the next higher spin state than the desired one shows the highest
contribution, approximate spin-projection methods like the AP (approximate
projection) procedure[85] can be applied, in which only the next higher spin
state is projected out. While AP methods generally improve energetics, the
orbitals and geometries are not optimized for the corrected but only the con-
taminated wave function. Furthermore, if higher spin states are present to a
larger degree, the spin contamination can even increase after the application
of projection methods.[58,59]

With the definition of the spin contamination at hand, the wrong, broken spin-
symmetry ROHF description of a singlet diradical |1?ΨROHF 〉 (Eq. 2.60) can
be revisited, for which ∆ 〈Ŝ2〉 shows a very high value of 1. This might be
contradicting at first since it was just established that ROHF gives pure spin
states due to restricted spatial orbitals. However, for this particular case, the
reason for such high-spin contamination is the inability of single-determinantial
methods to describe low-spin open-shell systems. Still, the obtained expecta-
tion value 〈Ŝ2〉 = 1 is not arbitrary since it is the mean value of the expectation
values for a pure singlet of 0 and a pure triplet of 2. These are exactly the two
states that each can be described by a two-determinantial CSF, obtained from
linearly combining the two spin arrangements of the erroneous |1?ΨROHF 〉 SD
(Eqs. 2.62 and 2.64). Conversely, |1?ΨROHF 〉 can also be obtained by a 50:50
linear combination of these two CSFs when the spatial orbitals of both CSFs
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are identical:[58]

|1?ΨROHF 〉 =
1√
2

(|1ΨCSF 〉+ |3ΨCSF 〉) (2.69)

This perfectly fits the definition of spin contamination in Eq. 2.66, with the ex-
ception of only containing exactly two CSFs due to the restricted character of
the SDs. If a UHF SD instead would be used, the higher contaminants would
also be present even though it is easily imaginable that the main spin contam-
ination still stems from the triplet state, making the previously discussed AP
method very attractive and effective for such singlet diradical systems.[85]

Turning the attention to the ROHF method, one of the major drawbacks of
this approach is that the ROHF equations cannot be diagonalized, resulting
in no unique canonical MOs and thus no unique MO energies being available.
Accordingly, interpretations of the orbital energies according to Koopmans’
theorem are difficult as well as the additional implementation of electron cor-
relation methods like perturbation theory. UHF, on the other hand, does not
show these problems since the orbital energies are well-defined. Furthermore,
due to the higher flexibility of the unrestricted SDs, UHF wave functions are
generally of lower energy than their ROHF counterparts, resulting in UHF
being the more popular method for the calculation of open-shell systems at
HF level.[57–59]

As already mentioned, due to its mean-field approach, HF lacks dynamic elec-
tron correlation, which can be regarded as the temporary, instantaneous avoid-
ance of electrons that are already in close spatial proximity, e.g., occupying
the same orbital. However, for certain systems with (near-)degenerate orbitals
and thus (near-)degenerate electron configurations, the so-called static elec-
tron correlation is also important, corresponding to the permanent avoidance
of electrons by occupying different orbitals of similar energy. While dynamic
correlation effects can be easily recovered in post-HF methods by including
excited SDs built from the reference HF wave function, static correlation al-
ready has to be treated beforehand at HF level. But since HF itself is a
single-determinantial and -configurational method, it is not able to describe
the multiconfigurational character of these (near-)degenerate systems.[58,59] Ac-
cordingly, because in this work such systems are to be investigated, multicon-
figurational methods are needed, which are presented in Section 2.1.2.

To finish this section, the classification of DFT within single- and multicon-
figurational methods is attempted. Simply speaking, KS DFT is a single-
determinantial method since it utilizes only one single SD of KS orbitals.
Accordingly, it should suffer from the same problems as HF, namely miss-
ing spin polarization for ROKS, spin contamination for UKS, and the prob-
lems for describing multi-determinantial low-spin open-shell systems as well
as (near-)degenerate multiconfigurational systems. However, it should be kept
in mind that DFT in general is an exact theory and should thus be able to
describe all of these systems. For this, “only” the exact electron density of
the fully interacting N -electron system is needed, which KS DFT obtains by
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using a single SD of non-interacting electrons as foundation. Accordingly, if
the exact exchange-correlation functional was known, KS DFT would give a,
in the language of wave function theory, multiconfigurational electron density
with a single SD, making the classification as a single-configurational method,
as done in this work, ambiguous.[72] Along these lines, calculating the spin
contamination for a KS SD is of limited value since it was not constructed to
be a proper wave function in the first place.[58,59,65,72,86] It is even argued that
non-spin-contaminated KS SDs for open-shell systems are wrong, implying
that UKS should always be used instead of ROKS.[87] Regardless, for a correct
evaluation of the spin contamination, a way to calculate 〈Ŝ2〉 based on the KS
density would be required, which is not known to date.[86] Still, UKS generally
shows less spin contamination than UHF for the same systems, making it a
suitable correlated alternative to post-HF methods not performing well with
spin-contaminated references.[58,86] While, in principle, KS DFT would be able
to recover all of the dynamic and static correlation, the approximate exchange-
correlation functionals were mainly developed to cover the dynamic part, thus
being deficient with respect to the static interactions.[86] Furthermore, in case
of low-spin open-shell states like singlet diradicals, even the exact KS DFT
would need a multi-determinantial treatment for meaningful results to avoid
mixing of the singlet and triplet state and thus spin-symmetry breaking.[86,88]

On the other hand, spin-symmetry breaking in UKS and UHF can be regarded
as the partial inclusion of static correlation. But without a reliable method of
calculating the spin contamination like in UHF, an evaluation of the quality
of the UKS solution is complicated.[86] Overall, the performance of approx-
imate KS DFT for the problematic low-spin open-shell systems of this work
seems to be hard to predict, which is why a comparison to wave function-based
multiconfigurational methods is necessary.

2.1.2 Multiconfigurational Methods

2.1.2.1 Configurations, Configuration State Functions and Slater
Determinants

Before going into the details of the multiconfigurational wave function-based
methods employed in this work, some definitions connected to these approaches
should be specified since they can sometimes but not always be used synony-
mously. As already established in the previous Section 2.1.1, a Slater deter-
minant (SD) is the antisymmetric product of N MOs, i.e., one-electron wave
functions, serving as an approximate N -electron wave function. However, as
further discussed in Section 2.1.1.4, not every single SD is an eigenfunction
of the squared total spin operator Ŝ2, even though a proper wave function
should fulfill this property. Using the example of the singlet diradical, it was
shown that a fixed linear combination of two restricted SDs is needed to cre-
ate a spin-adapted configuration or configuration state function (CSF), which
then again is actually an eigenfunction of Ŝ2. A single restricted closed-shell
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+ − −
1
2= A⋅ + +−2 −2 + +6

√3
+ B⋅

+ b + c + d + e + f= a

Figure 2.3: Description of the singlet tetraradical configuration [1111] of a four-electron
four-orbital system by a linear combination of either the two possible CSFs or the six possible
SDs. Created based on Ref. [82]

SD or single high-spin open-shell SD, on the other hand, does already fulfill
this requirement and thus is SD and CSF at the same time. Accordingly,
spin-pure CSFs can either be one or a fixed linear combination of multiple
restricted SDs. Now, every SD and every CSF can be associated with one
single electron/orbital configuration, which can be written as a vector of MO
occupation numbers starting from the energetically lowest MO as previously
depicted for the two-electron two-orbital case in Fig. 2.2. Since generally mul-
tiple CSFs can exist for a given configuration, one SD can be involved in
multiple CSFs.[82] While in the example of Fig. 2.2 this was only true when
considering singlet and triplet configurations, it can also be the case within
one spin multiplicity as the example of a singlet tetraradicalic configuration
in Fig. 2.3 illustrates. Here, two CSFs are possible, whose coefficients A and
B are not fixed but depend on the actual system to be described. However,
instead of first constructing the two CSFs, the configuration can also be de-
scribed by a linear combination of the six possible SDs with the coefficients
a to f , which still have to contain the fixed ratios between the SDs inside
the two CSFs to ensure spin purity.[82] Using lines instead of arrows for the
electrons in the illustration of the configuration emphasizes that up and down
spins cannot be assigned to either of the orbitals, just as a spin-pure singlet
with zero spin density at every point in space requires.[81] Because there are
two CSFs for the one tetraradicalic configuration, the number of all possible
CSFs for the four-electron four-orbital system of singlet multiplicity amounts
to 20, while there are only 19 configurations in total.

With these definitions at hand, one can now classify HF more precisely. Gen-
erally, RHF, ROHF, and UHF are all single-determinantial. However, only
RHF is always a true single-configurational method since restricted closed-
shell SDs are always also a CSF and there exists only one configuration for
one closed-shell CSF. ROHF, on the other hand, is, strictly speaking, not
always single-configurational because, e.g., low-spin open-shell configurations
need more than one SD for correct CSFs and sometimes even multiple CSFs for
the description of the whole configuration. It should be noted, however, that
ROHF in its most general formulation is able to handle multiple-determinants
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and thus multiple CSFs, accordingly considerable as single-configurational.[58]

UHF is never single-configurational since it suffers from the same problems
as ROHF and additionally always contains some level of spin contamination,
thus never describing spin-pure configurations. Still, as also done regularly
in the literature, in this work all of these methods will be referred to as
single-configurational. The same will be done for the single-determinantial
KS DFT even though it could, in principle, be considered as somewhat multi-
configurational as already discussed at the end of the previous Section 2.1.1.4.

2.1.2.2 Exact Wave Function and Static Correlation

Since the single HF SD is by definition approximate due to the missing elec-
tron correlation caused by the mean-field approach, one could ask how to
actually obtain the exact wave function. For this, the same approach as in
MO-LCAO can be utilized: any unknown function can be exactly described
by a linear combination using a complete basis set of known functions. While
in MO-LCAO these basis functions are single-particle basis functions, namely
the AOs for electrons, in case of the exact wave function, N -particle basis
functions, namely SDs for the whole system, are used instead.[59] The idea of
the configuration interaction (CI) method is now to construct this N -particle
basis set from the single HF reference SD, hence classified as single-reference
method, by creating excited SDs without further optimization of the HF MOs.
As already mentioned, since the size k of the AO basis set is generally four to
six times as large as N

2
, a large number of unoccupied orbitals is available for

the construction of excited SDs. If all possible excitations (single, double, . . . ,
N -times) within the k MOs are considered, the method is called full CI, the
best solution possible within the incomplete AO basis set:[58,59]

|ΨCI〉 = C0 |ΨHF
0 〉+

exc. SDs∑
r=1

Cr |Ψexc. SD
r 〉 (2.70)

Accordingly, if all possible excited restricted SDs are available, also all possible
CSFs and configurations are considered, hence the name of the method. From
this, it can be concluded that any N -electron system is strictly speaking only
correctly representable by a multiconfigurational wave function. Since the
full CI wave function is exact within the incomplete basis set, all of dynamic
and static correlation is included. This is even true for statically correlated
systems, although it was mentioned in the previous Section 2.1.1.4 that static
correlation has to be treated at the HF level prior to the application of a post-
HF method like CI. However, the complete N -particle basis set of full CI can
compensate the lack in quality of the HF reference.[58] But since the number
of excited SDs scales factorially with the number of electrons and orbitals, full
CI is only feasible for very small systems, which is why truncated variants
of CI like CIS (CI singles) or CISD (CI singles doubles) have been developed,
only considering the lower but most important excitations.[58,59] However, these
methods can no longer make up for poor HF references if statically correlated
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systems are treated due to the incompleteness of the N -particle basis set.
On top of that, even truncated CI methods are very demanding and only
applicable to quite small systems. To be able to treat statically correlated
systems somewhat efficiently, multi-configurational methods are needed. But
prior to their definition, it should be clarified what static correlation, also
called strong correlation in the physics community, is in more detail.

As mentioned in the previous Section 2.1.1.4, static correlation can be re-
garded as the permanent avoidance of electrons by the occupation of different
orbitals of similar energy. For this, revisiting the four-electron four-orbital
example system is helpful. In Fig. 2.3, the energetic separation between the
four orbitals was never defined since it is not important for the construction
of CSFs. However, intuitively one would assume that the most stable singlet
configuration is [2200], which corresponds to the RHF solution. Accordingly,
when constructing the corresponding full CI wave function, the coefficient C0

for the HF reference is very large, i.e., close to one, compared to the remaining
SDs/CSFs and thus is allegedly a good single-determinantial approximation
of the exact wave function. But if now the two central orbitals approach each
other energetically or are even degenerate as depicted in Fig. 2.4, the ener-
getic difference between the configurations [2200], [2020], and [2110] becomes
very small. Accordingly, their coefficients are of comparable magnitude and
thus of similar importance for the CI wave function, which is an indication
of static correlation.[58] Higher excited configurations like [2101] or [0022] can
be assigned to dynamic correlation since they are of higher energy and thus
exhibit smaller CI coefficients. However, it should be noted that the distinc-
tion between static and dynamic correlation is not clear but instead there is a
rather smooth transition between them[59] as indicated by the color gradient in
Fig. 2.4. The problem is now that RHF would never arrive at degenerate or-
bitals since it would by definition only doubly occupy and optimize one orbital,
while the other stays empty and unoptimized. A broken-symmetry “singlet”
ROHF reference could achieve the correct degeneracy, but only strongly spin-
contaminated due to the mixture of singlet and triplet states discussed above.
Furthermore, it would not be able to include the closed-shell [2200] and [2020]
CSFs at the same time. Accordingly, a HF reference SD is not suitable for
truncated CI in case of statically correlated systems.

To overcome this issue, the multiconfigurational self-consistent field (MCSCF)

[2200] [2020] [2110] [2101] [0022]

−
1
√2

−
1
√2

...

static correlation dynamic correlation

Figure 2.4: Excerpt of the possible configurations/CSFs for a four-electron four-orbital
system with two degenerate central orbitals and assignment to static or dynamic correlation.
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method can be employed. At maximum accuracy, the expansion of the MCSCF
wave function is done in the same way as for full CI, namely by inclusion of all
possible restricted SDs/CSFs. However, while CI uses a HF SD as reference to
construct all excited SDs, meaning that the HF MOs are unchanged and only
the expansion coefficients Cr of the SDs have to be optimized to minimize the
energy utilizing the variational principle, MCSCF constructs the whole wave
function from scratch, thus both the SD expansion coefficients Cr and the MO
coefficients cµa have to be optimized. As pointed out previously, since full CI
already gives the exact wave function within the incomplete AO basis set, the
additional MO optimization of MCSCF will give no improvement.[58] But just
like full CI is not feasible for bigger systems, the same is true for MCSCF at
maximum accuracy, which is why it also has to be truncated as discussed in
the following section.

2.1.2.3 Complete Active Space Self-Consistent Field

Instead of restricting MCSCF to certain types of excitations for all MOs and
all electrons as in truncated CI, it still utilizes the full CI approach but only
within a subset of electrons and orbitals of the whole system, the so-called
active space. The corresponding method is called complete active space self-
consistent field[89–93] (CASSCF) and an active space of m electrons and n or-
bitals is denoted as CAS(m,n). The orbitals below and above the active space
are labeled as inactive and external space, respectively,[94] and remain doubly
occupied and unoccupied for all SDs/CSFs as depicted in Fig. 2.5. From this
figure, it is also apparent that CASSCF can recover the static correlation but
generally just a small part of the dynamic correlation due to the missing exci-
tations involving the inactive and external space.[59] The MCSCF or CASSCF
wave function of the I-th electronic state (e.g., ground state (0), first excited
state (1), . . . ), also often denoted as I-th root, for a given spin multiplicity M

active space
CAS(4,4)
19 configurations
20 CSFs

inactive space

external space

...
...

Figure 2.5: Example CAS(4,4) based on the four-electron four-orbital system of Fig. 2.4.
Created based on Refs. [58, 59]
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can be expanded in the basis set of CSFs of the same multiplicity M :[94]

|MΨMCSCF
I 〉 =

CSFs∑
r=0

CrI |MΨCSF
r 〉 (2.71)

Accordingly, the MCSCF energy can be calculated as:[58,59]

EI = 〈MΨMCSCF
I |Ĥ|MΨMCSCF

I 〉 (2.72)

=
CSFs∑
r=0

CSFs∑
s=0

CrICsI 〈MΨCSF
r |Ĥ|MΨCSF

s 〉 (2.73)

Just like in the CI method, the so-called CI matrix with the integrals involving
the CSFs and the Hamiltonian (Eq. 2.73) arises. However, as already pointed
out in the previous section, the energy is not only dependent on the CI co-
efficients CrI of the respective state I but also on the MO coefficients cµaI .
Utilizing the variational principle through the Lagrange method, the energy of
the MCSCF wave function can be minimized using the respective sets of co-
efficients, which also involves the diagonalization of the CI matrix. However,
due to the factorial increase of the number of CSFs, the CI matrix, whose
size is determined by the number of CSFs, grows even more rapidly. For ex-
ample, a singlet CAS(14,14) gives rise to about 2.7 · 106 singlet CSFs[59] and
thus about 7.3 · 1012 CI matrix elements, making the method computationally
very demanding and larger active spaces than this virtually impractical. Nev-
ertheless, another great advantage of MCSCF methods is that, as indicated in
Eq. 2.71, electronically excited states I are also accessible, which have their
own CI and MO coefficients CrI and cµaI , respectively.[58] Since excited states
are also often of multiconfigurational character, single-configurational meth-
ods accordingly give poor results for these and the usage of MCSCF methods
is required.[58,59,95] Furthermore, compared to single-reference methods, the
additional orbital optimization also of excited states in the MCSCF method
resembles real orbital relaxation effects more accurately.[59]

The sum of the square of all CI coefficients has to be unity due to the or-
thogonality of the CSFs and accordingly the squared CI coefficient gives the
percentage of the corresponding CSF in the full MCSCF wave function:[58]

CSFs∑
r=0

|CrI |2 = 1 (2.74)

However, as soon as not just one single CSF dominates the MCSCF wave func-
tion, its interpretation is generally less intuitive since the multiconfigurational
nature is not easily transferable to the single-configurational picture chemistry
is usually taught in. Still, this is not a problem of the method or the wave func-
tion but rather a human constraint.[58] A helpful tool to still interpret MCSCF
wave functions conveniently are natural orbital occupation numbers (NOON).
Since the active orbitals in the CSFs can either be occupied by two, one or zero
electrons, no unique energy eigenvalues can be assigned to them, just like it is
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also the case for ROHF.[58] Accordingly, instead of the corresponding canonical
orbitals, so-called natural orbitals (NOs) can be obtained by diagonalizing the
first-order density matrix.[55] The associated NOONs can take any real value
between 0.0 and 2.0, where orbitals with NOONs in the range of 1.98 – 0.02
should generally be included in the active space for a faithful description of
multiconfigurational systems.[58] Active orbitals with NOONs of about 2.0, 1.0,
and 0.0 can be interpreted as doubly, singly, and unoccupied, respectively.[55]

Since the MCSCF wave function is constructed from spin-pure CSFs, it does
not suffer from spin contamination like UHF does in general and like ROHF
does for multi-determinantial systems (e.g., singlet diradicals) and at the same
time is able to correctly describe spin-polarization due to the inclusion of mul-
tiple CSFs (e.g., for the discussed methyl radical[96]) compared to ROHF as
well as statically correlated systems in general. Even though these drawbacks
of single-configurational methods can be overcome in this way, CASSCF cal-
culations are generally missing a large part of dynamic correlation due to the
limited size of the active space. To account for this, the CI method could be
utilized in combination with the multiconfigurational CASSCF reference wave
function, hence denoted as multireference CI (MRCI). However, as imaginable,
applying the CI approach to every CSF of the CASSCF reference is very ex-
pensive and thus also only feasible for very small systems.[59] More economic
alternatives are MR perturbation theory approaches, which will be presented
in the following section.

2.1.2.4 Perturbation Theory

Since the mathematics behind perturbation theory in general and the MR
analogues in particular are quite lengthy and advanced, it is only introduced
for the single-reference case at the example of MP2. The basic idea behind
perturbation theory is that the exact solution of a problem is unknown, while
for a slightly less sophisticated model system the solution is known, so the
difference is just a small perturbation. In case of electronic structure the-
ory, such problems are the exact and the approximate (e.g., HF) solution to
the N -electron TISE, in which the approximate method does not include all
electron correlation effects. Perturbation theory now divides the exact Hamil-
tonian Ĥ into the less sophisticated unperturbed model Hamiltonian Ĥ(0) and
a perturbation operator Ĥ ′, where the parameter λ adjusts the strength of the
perturbation:[57–59]

Ĥ = Ĥ(0) + λĤ ′ (2.75)

Since λ can be changed continuously from 0 to 1, the corresponding perturbed
ground state wave function |Ψ0〉 and energy E0 have to do so analogously,
which can be realized by a Taylor expansion of both as a function of λ using the
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unperturbed reference ground state wave function |Ψ(0)
0 〉 and energy E

(0)
0 :[57–59]

|Ψ0〉 = λ0 |Ψ(0)
0 〉+ λ1 |Ψ(1)

0 〉+ λ2 |Ψ(2)
0 〉+ λ3 |Ψ(3)

0 〉+ . . . (2.76)

E0 = λ0E
(0)
0 + λ1E

(1)
0 + λ2E

(2)
0 + λ3E

(3)
0 + . . . (2.77)

with A(n) =
1

n!

∂nA(0)

∂λn
(2.78)

Here, the superscript (n) denotes the n-th-order correction terms for the wave
function and energy, i.e., the n-th differentiation with respect to λ as well as
the factor 1

n!
, with the zeroth-order terms being simply the known reference

wave function and energy of the unperturbed approximate Hamiltonian Ĥ(0).
Accordingly, if λ is set to 0, Eqs. 2.75 to 2.77 reduce to the first term and the
unperturbed TISE is obtained:[57–59]

Ĥ(0) |Ψ(0)
0 〉 = E

(0)
0 |Ψ

(0)
0 〉 (2.79)

For all other values of λ, the full expansions of Eqs. 2.75 to 2.77 have to be
inserted into the TISE. The resulting equation with an infinite number of terms
can then be split with respect to the different orders n, indicated by λn:[57–59]

λ0 : Ĥ(0) |Ψ(0)
0 〉 = E

(0)
0 |Ψ

(0)
0 〉 (2.80)

λ1 : Ĥ(0) |Ψ(1)
0 〉+ Ĥ ′ |Ψ(0)

0 〉 = E
(0)
0 |Ψ

(1)
0 〉+ E

(1)
0 |Ψ

(0)
0 〉 (2.81)

λ2 : Ĥ(0) |Ψ(2)
0 〉+ Ĥ ′ |Ψ(1)

0 〉 = E
(0)
0 |Ψ

(2)
0 〉+ E

(1)
0 |Ψ

(1)
0 〉+ E

(2)
0 |Ψ

(0)
0 〉 (2.82)

λn : Ĥ(0) |Ψ(n)
0 〉+ Ĥ ′ |Ψ(n−1)

0 〉 =
n∑
i=0

E
(i)
0 |Ψ

(n−i)
0 〉 (2.83)

Since the infinite expansions can obviously not be realized in real calculations,
the perturbed TISE can be approximated by only including the terms to a
certain order n. Accordingly, the accuracy increases with the order of the per-
turbation theory. Now, all first- and higher-order correcting wave functions
and energies are unknown. The former, however, can be expressed as a linear
combination of all eigenfunctions |Ψ(0)

r 〉 of the unperturbed model Hamiltonian

Ĥ(0) with eigenvalues E
(0)
r , which is the approach of the Rayleigh-Schrödinger

perturbation theory.[97] Consequently, the first- and second-order wave func-
tions are written as:[57–59]

|Ψ(1)
0 〉 =

∑
r>0

Cr |Ψ(0)
r 〉 (2.84)

|Ψ(2)
0 〉 =

∑
r>0

Dr |Ψ(0)
r 〉 (2.85)

Without going into the details, inserting these expansions into the first- and
second-order parts of the perturbed TISE (Eqs. 2.81 and 2.82) then allows to
derive the corresponding coefficients Cr and Dr by multiplying from the left
with |Ψ(0)

0 〉 and |Ψ(0)
s 6=0〉, respectively, and integrating. Furthermore, the first-
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and second-order energy corrections are obtained:[57–59]

E
(1)
0 = 〈Ψ(0)

0 |Ĥ ′|Ψ
(0)
0 〉 (2.86)

E
(2)
0 =

∑
s>0

〈Ψ(0)
0 |Ĥ ′|Ψ

(0)
s 〉 〈Ψ(0)

s |Ĥ ′|Ψ(0)
0 〉

E
(0)
0 − E

(0)
s

(2.87)

Møller and Plesset[62] applied this Rayleigh-Schrödinger perturbation theory to
the HF formalism. Here, the HF wave function is used as unperturbed zeroth-
order reference |Ψ(0)

0 〉 and the approximate unperturbed model Hamiltonian
Ĥ(0) is simply the sum of Fock operators (Eq. 2.16) of all k MOs:[58,59]

Ĥ(0) =
k∑
a=1

f̂a(1) =
k∑
a=1

(
ĥ(1) +

k∑
b=1

(
Ĵb(1)− K̂b(1)

))
(2.88)

Applying this to the HF reference SD, which only consists of the N occu-
pied MOs, gives the sum of the respective orbital energies as the zeroth-order
energy:[58,59]

EMP0
0 = E

(0)
0 = 〈Ψ(0)

0 |Ĥ(0)|Ψ(0)
0 〉 =

Nocc∑
i=1

εi =
Nocc∑
i=1

(
hi +

Nocc∑
j=1

(Jij −Kij)

)
(2.89)

As already pointed out in Section 2.1.1.1, this is not the correct HF energy
due to the double counting of the electron-electron interactions. Accordingly,
the Møller-Plesset perturbation theory of zeroth order, hence denoted as MP0,
performs worse than the HF method. However, the perturbation operator Ĥ ′

can now be constructed to correct this error to give the result of the exact
Hamiltonian Ĥ by subtracting half of the two-electron operators:[58,59]

Ĥ ′ = −1

2

k∑
a=1

k∑
b=1

(
Ĵb(1)− K̂b(1)

)
(2.90)

With this, the first-order correction energy modifies the zeroth-order correction
energy to yield the MP1 energy, which is equal to the HF energy (Eq. 2.18,
without Vnn):[58,59]

E
(1)
0 = 〈Ψ(0)

0 |Ĥ ′|Ψ
(0)
0 〉 = −1

2

Nocc∑
i=1

Nocc∑
j=1

(Jij −Kij) (2.91)

EMP1
0 = E

(0)
0 + E

(1)
0 = EHF

0 (2.92)

Accordingly, the first estimation of post-HF electron correlation is included in
MP2, which is the most widely used variant of the MPn method. For this, the
second-order correction energy E

(2)
0 (Eq. 2.87) has to be evaluated, where all

possible excited SDs/CSFs constructed from the HF reference are used as basis

functions |Ψ(0)
r 〉 for the expansion of the higher-order correcting wave functions.

Thus, the numerator of Eq. 2.87 contains integrals of the perturbation operator
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with the HF reference SD |Ψ(0)
0 〉 and the excited SDs, which vanish for all

but the doubly excited SDs |Ψab
ij 〉 according to the Slater-Condon rules and

Brillouins theorem. Furthermore, since Ĥ ′ is only a two-electron operator
and the corresponding integrals in the numerator contain SDs differing by
two orbitals, only one Coulomb and one exchange integral with the orbitals
involved in the excitation, i.e., |χi〉, |χj〉, |χa〉, and |χb〉, remains according
to the Slater-Condon rules. In the denominator, the difference between the
zeroth-order energies reduces to the difference of the corresponding orbital
energies. Thus, the second-order energy correction is written as:[58,59]

E
(2)
0 =

Nocc∑
j>i

Nvirt∑
b>a

〈Ψ(0)
0 |Ĥ ′|Ψab

ij 〉 〈Ψab
ij |Ĥ ′|Ψ

(0)
0 〉

E
(0)
0 − Eab

ij

(2.93)

=
Nocc∑
j>i

Nvirt∑
b>a

(〈χi(1)χj(2)|ĝ12|χa(1)χb(2)〉 − 〈χi(1)χj(2)|ĝ12|χb(1)χa(2)〉)2

εi + εj − εa − εb
(2.94)

Accordingly, the MP2 energy can be calculated as:[58,59]

EMP2
0 = EHF

0 + E
(2)
0 (2.95)

Generally, it is possible to include higher orders of correction (MP3, MP4, . . . ),
but MP2 is the most economical choice to include dynamic correlation. It
should be noted that the expansion coefficients of the reference HF MOs cµa
and of the correcting wave functions Cr and thus the correction energies are not
optimized further. Moreover, while perturbation theory in general performs
best when the perturbation is small, the electron-electron repulsion energy
defined as such in the MP formalism is a rather large part of the total energy,
which is why it is not guaranteed to give reliable results.[58,59]

With this overview of the MP2 method using a single-determinantial HF SD
as reference at hand, a qualitative look at perturbation theory with multi-
determinantial CASSCF references is taken. The main problem is that, as
already mentioned, the active orbitals of a CASSCF wave function cannot be
canonicalized and thus have no unique set of orbital energies and one-electron
operators, which are needed in the correction energies and the definition of the
unperturbed model Hamiltonian Ĥ(0), respectively. Accordingly, different fla-
vors of MR perturbation theory have been proposed, generally of only second
order,[58,59,98] with one of the most popular methods being the CAS perturba-
tion theory of second order (CASPT2),[99,100] which, just like MP2, is based
on one electron operators for Ĥ(0). However, it was shown that this results
in only the zeroth-order reference CASSCF wave function already consider-
ing the dielectronic interactions of the active electrons but not the correcting
wave functions. Thus, a partly dielectronic model Hamiltonian Ĥ(0) was pro-
posed,[101] leading to the n-electron valence state perturbation theory of second
order (NEVPT2).[102–104] The main advantage of this approach compared to
MR perturbation theory methods using one-electron model Hamiltonians is
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the absence of so-called intruder states. These show zeroth-order energies E
(0)
s

close to the zeroth-order reference energy E
(0)
0 , which leads to very small en-

ergy differences in the denominator of Eq. 2.87 and hence erroneously large
contributions to the second-order correction energy.[94,98] Overall, MR pertur-
bation theory methods are still very demanding and are thus only applicable
to systems smaller than what is feasible for CASSCF regarding the number of
AO basis functions and the active space size.

2.2 Electronic Structure Theory of Solids

2.2.1 Periodic Boundary Conditions

2.2.1.1 Reciprocal Space and Bloch Functions

Solid-state systems are macroscopic objects and, in comparison to molecules,
contain an extremely large number of atoms in the magnitude of a mole, i.e.,
about 1023 atoms, and accordingly an even greater number of electrons. Ob-
viously, solving the TISE for such systems as a whole is impossible.[105,106]

Thankfully, many solids are crystalline and thus exhibit a unit cell as smallest
building block, only amounting to a fraction of the whole system. Each three-
dimensional (3D) unit cell is a parallelepiped defined by three non-coplanar 3D
basis vectors ~a1, ~a2, and ~a3 or alternatively by six lattice parameters, namely
the length of the basis vectors a, b, and c and the angles α, β, and γ between
them. If a unit cell contains only one lattice point, it is called a primitive unit
cell and the infinite translational repetition of a unit cell in the three direc-
tions of its basis vectors builds the so-called real or direct lattice. Note that a
lattice point is only a mathematical object, which, in the end, can represent
one or multiple atoms. In three dimensions, there exist seven primitive lattices
and corresponding crystal systems, namely triclinic, monoclinic, orthorhom-
bic, tetragonal, cubic, trigonal, and hexagonal, differing in the relationship
between the lattice parameters, e.g., a = b = c and α = β = γ = 90° in
case of the cubic system. Even though the primitive (p) lattices are sufficient
to describe any possible crystal, there are seven additional non-primitive lat-
tices derived from the primitive ones. Assuming the primitive lattice points
are located on the corners, non-primitive lattices contain additional lattice
points centered (c) either on the unit cell faces or in the unit cell itself, hence
denoted as face-centered (fc) or body-centered (bc), respectively. These non-
primitive or conventional unit cells generally better reflect the point symmetry
of the whole lattice compared to their primitive analogues as, e.g., apparent in
Fig. 1.2 for the case of 3C-SiC. Overall, this gives 14 so-called Bravais lattices,
whose translational symmetries combined with point group symmetries result
in the 230 different space groups,[106,107] with 3C-SiC belonging to the cubic
space group 216. Each of these space groups has specific symmetry elements,
which can be exploited to only give the coordinates for a minimum number of
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atoms, the so-called asymmetric unit, and then let the symmetry operations
fill the rest of the conventional unit cell.[106] Generally, the coordinates of an
atom i in a unit cell is given in fractional units xi, yi, and zi ranging from 0 to
1, which then can be multiplied with the basis vectors of the unit cell to give
the actual coordinates:[106–108]

~ri = xi~a1 + yi~a2 + zi~a3 (2.96)

In case of 3C-SiC, the asymmetric unit only contains one Si and one C atom
with fractional coordinates of (0, 0, 0) and (1

4
, 1
4
, 1
4
), respectively. As apparent

in Fig. 1.2a), this corresponds to one of the C atoms in the volume of the
conventional unit cell and one of the Si atoms at its corners. While there
are a total of eight identical Si atoms present at the eight corners, only one
eighth of their volume is actually located in the unit cell due to the transla-
tional symmetry, thus in total still representing only one single Si atom. The
symmetry operations of space group 216 then yield three additional C and Si
atoms each, the latter being located at the center of the six unit cell faces,
hence only counting one half each to give the correct total amount of three Si.

Now, an infinite crystal lattice is translationally invariant with respect to all
lattice vectors ~G being linear combinations of the basis vectors of the primitive
unit cell with integer-valued coefficients n1, n2, and n3 because such transla-
tions map identical points of two different unit cells of the crystal onto each
other:[105–107]

~G = n1~a1 + n2~a2 + n3~a3 (2.97)

Accordingly, the TISE also has to be invariant to the translations along all
lattice vectors ~G:[105,106]

Ĥ(~r + ~G)Ψ(~r + ~G) = EΨ(~r + ~G) (2.98)

Bloch[109] could show that eigenfunctions for the solution of such translational
invariant TISEs have to be of the form of a so-called Bloch function:[105,106]

ψ(~r + ~G;~k) = ei
~k ~Gψ(~r;~k) (2.99)

Here, the 3D wave vector ~k is a parameter determining the periodicity of the
eigenfunction, which does not have to show the exact same periodicity as the
crystal lattice,[106] as will be clarified in the example following in Section 2.2.1.2.
Basically, this Bloch theorem states that translating the eigenfunction along
a lattice vector ~G is the same as multiplying the untranslated eigenfunction

with the complex phase factor ei
~k ~G, which mathematically is a complex number

of absolute value 1, thus not changing the eigenfunction in a physical sense.
Furthermore, it is evident from this equation that by knowledge of the eigen-
function at a point ~r in the reference unit cell, the eigenfunction at the points
~r+ ~G of all other unit cells is known, only differing by the complex phase factor
dependent on ~G.[105] This drastically reduces the infinitely sized problem of the
whole crystal to a finitely sized problem of one unit cell. However, in return
the TISE has to be solved for different values of ~k:[105,106]

Ĥ(~r)ψ(~r;~k) = E(~k)ψ(~r;~k) (2.100)
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Different wave vectors or quantum numbers ~k can also be interpreted as a label
for different irreducible representations of the translational group of the crystal.
Similar to the point groups in MO theory, this results in the Bloch functions
of different irreducible representations being orthogonal to each other, making
the solution of the TISE for different ~k independent of each other.[105,106]

Furthermore, ~k is not only a wave vector/quantum number and an irreducible
representation for translational symmetry but also a point in reciprocal space.
The concept of reciprocal space seems to be intuitive for most physicists[108]

but this is generally not the case for chemists (including this work’s author),
which is why here it is attempted to shed some light on this topic to be able
to interpret results of electronic structure calculations on solids in more detail.
Due to its infinity and periodicity, the real/direct lattice is perfectly suited

for the Fourier transform using plane waves ei
~k~r as basis functions, which

can, according to Euler’s formula, be split into a real and an imaginary part
containing sine and cosine and thus infinite, periodic functions:[107]

ei
~k~r = cos(~k~r) + i · sin(~k~r) (2.101)

The corresponding reciprocal lattice itself is infinite and periodic with basis
vectors ~b1, ~b2, and ~b3 that can be derived from the real lattice basis vectors ~a1,
~a2, and ~a3 as follows:[105,107,108]

~b1 = 2π
~a2 × ~a3

~a1 · ~a2 × ~a3
~b2 = 2π

~a3 × ~a1
~a1 · ~a2 × ~a3

~b3 = 2π
~a1 × ~a2

~a1 · ~a2 × ~a3
(2.102)

Here, · corresponds to the scalar product and × to the cross product (the
latter is defined in Eq. A.2), thus the denominators overall giving the volume
of the primitive unit cell in real space. Accordingly, each of the fractions in
Eq. 2.102 is the division of an area by a volume, resulting in the reciprocal basis
vectors having the unit of inverse length, hence the name.[107] Especially in the
context of quantum dynamics, the reciprocal space is also called momentum
space since the wave vector ~k is proportional to the momentum via the reduced
Planck constant ~p = h̄~k.[110,111] While the reciprocal space at first glance is
mainly a mathematical concept, it is actually observed in the patterns of crystal
diffraction measurements.[107] From this, it might also be clear that one point
~r in real space is not mappable to only one point ~k in reciprocal space and
vice versa since one point in the diffraction pattern of the reciprocal lattice
is the result of constructive interference of electromagnetic waves scattered
from multiple different atoms in the real lattice. Or in the case of quantum
dynamics, a wave packet can exhibit one specific value for the momentum ~k
(one point in momentum space), in principle, at every position ~r in real space.

Just like its real counterpart, the reciprocal lattice is invariant to translations
along the reciprocal lattice vectors ~K:[106,107]

~K = m1
~b1 +m2

~b2 +m3
~b3 (2.103)

Furthermore, the Bloch functions show an even more general translational
behavior in reciprocal space compared to real space (Eq. 2.99), namely trans-

lation along a reciprocal lattice vector ~K does not change the Bloch function,
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not even the phase factor.[106] From this, it can be concluded that, just as in
real space, only the Bloch function at ~k in one reciprocal reference unit cell
has to be known to know all Bloch functions at ~k + ~K in the entire reciprocal
lattice.

As already mentioned at the start of the section, a primitive unit cell contains
all information necessary to built the real lattice and the same is true for the
reciprocal lattice. However, an alternative primitive unit cell to the paral-
lelepiped defined by the reciprocal basis vectors ~b1, ~b2, and ~b3 is the so-called
first Brillouin zone (BZ), which corresponds to a Wigner-Seitz cell in reciprocal
space. For this, one central lattice point is connected to all other lattice points
and then a plane is placed in the middle of and orthogonal to each connecting
line. The volume enclosed inside corresponds to the first BZ.[105–107] In Fig. 2.6,
this is shown exemplarily for the two-dimensional (2D) case, namely the first
surface Brillouin zones (SBZ) of the p(1×1), p(2×1), and c(4×2) surfaces of
Si-terminated 3C-SiC(001) investigated in this work. As apparent, the first BZ
can but does not have to coincide with the primitive reciprocal unit cell. An-
other example where this is not the case is the first BZ of fcc lattices like bulk
3C-SiC, which unintuitively is a truncated octahedron despite the conventional
unit cell being a cube.[107,112] Even though all possible primitive reciprocal unit
cells of a specific crystal lattice contain the same information, i.e., all relevant,
non-duplicate Bloch functions with respect to ~k, the first BZ is somewhat more
intuitive. It is easily imaginable that after going halfway to the next reciprocal
lattice point, namely after the edge of the first BZ, the information in ~k starts
to repeat itself. Additionally, depending on the space group of the real lattice,
the reciprocal lattice also exhibits symmetry elements, which reduce the area
in the first BZ with unique wave vectors ~k, the so-called irreducible BZ (IBZ).
But even if the real lattice has no symmetry elements besides the identity,
the Bloch functions are always complex conjugate for positive and negative
~k:[105,107,111,113]

ψ(~r;~k) =
(
ψ(~r;−~k)

)∗
(2.104)

Mathematically speaking, this is simply a property of every Fourier transform
of real functions. From a physical perspective, this behavior of the Bloch
functions can be attributed to time-reversal symmetry.[113] In crystallography,
this effect is known as Friedel’s law, resulting in all diffraction patterns being
centrosymmetric even if the crystal in real space does not show this point
symmetry.[114] From whatever perspective one might come, this property of
reciprocal space ultimately results in the IBZ generally being at least only half
the size of the BZ. However, there are cases where time-reversal symmetry is
broken and this symmetry cannot be exploited, e.g., when applying external
magnetic fields.[113]

It should be noted that, even if the direct lattice is not infinite, application
of the Fourier transform automatically enforces Born-von Karman or periodic
boundary conditions (PBCs), which ensures each Bloch function to show iden-
tical function values at the edges of the finite lattice for each dimension. This
allows to seamlessly connect an infinite amount of the finite crystals to still
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obtain an infinite lattice, or, put differently but mathematically identical, to
connect the ends of each dimension of one singular finite crystal, yielding a
circular structure.[105,107,111,115]
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Figure 2.6: Real and reciprocal lattices of the ideal p(1×1), p(2×1) reconstructed (SD
model), and c(4×2) reconstructed (AUDD model) Si-terminated 3C-SiC(001) surface. Dots
represent equal lattice points in different unit cells and the first SBZ is indicated by red
lines. Additionally, the ~k-paths for each SBZ are given according to the following references:
p(1×1),[116] p(2×1),[38] c(4×2).[47,117] The detailed calculation of the reciprocal lattice basis
vectors is presented in Appendix A.1.1.

2.2.1.2 Interpretation of ~k: Band Structures

Up to this point, the wave vector ~k was denoted as a parameter. However,
with the knowledge of the reciprocal space at hand, one would assume it to
be a continuous variable just like ~r is in real space. This is in fact the case
for infinitely sized crystals as was assumed for the majority of this section.
However, the number of unique ~k is actually equal to the number of unit cells
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contained in the crystal.[106,111] To show the reasoning for this and to make
other points stated in the previous section more comprehensible as well as
understand the significance of ~k in a general physical/chemical context, some
simple example systems will be discussed in the following in close relation to
a great publication of Hoffmann.[111]

Assuming an infinite 1D chain of unit cells with lattice parameter a and one
s orbital at each lattice point, one could ask what the Bloch functions, up to
this point just some abstract mathematical object suitable to describe eigen-
functions of the TISE in periodic systems, actually look like. Since a crystal in
its essence is just a giant molecule, there should also be MOs present, i.e., one-
electron eigenfunctions of the TISE, which are now called crystalline orbitals
(COs) instead. Just like in MO theory, one could start to create all possible
linear combinations of the s orbitals, of which there are an infinite number
since the 1D chain is also infinite. It is easily imaginable that, as depicted in
Fig. 2.7, the limiting cases are the fully bonding and fully antibonding linear
combinations between the s orbitals and thus between the unit cells. Now, the
wave vector, which in the 1D case is just a scalar value k like the real space co-
ordinate x, serves as an irreducible representation labeling the different linear

x

k = 0 (Γ)
1

−1 a

x

1

−1

k = π/a (edge of first BZ)

x

1

−1

k = π/(2a)

real part of eikx

imaginary part of eikx

real lattice

reciprocal lattice
with the first BZ

x

1

−1

k = −π/(2a)
k

b = 2π/a IBZ

Figure 2.7: Correlation between the plane wave/phase factor eikx of Bloch functions and
the phases of the corresponding linear combinations between orbitals of neighboring unit
cells for certain wave vectors k (at certain k-points) of a periodic 1D chain of s orbitals.
Purely imaginary orbitals are displayed in a faded manner.
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combinations. The reciprocal lattice parameter b is simply 2π
a

and accordingly
the IBZ ranges from k = 0 to k = π

a
, corresponding to the fully bonding and

fully antibonding linear combinations, respectively. This assignment is mathe-
matically consistent since a Bloch function ψ(~r;~k) is a product of a plane wave

ei
~k~r and a periodic function u(~r;~k), the latter corresponding to the sum of the

s orbitals repeated periodically throughout the crystal:[106,108,113]

ψ(~r;~k) = ei
~k~ru(~r;~k) (2.105)

Accordingly, the plane wave part of the Bloch function determines the complex
phase factor of each orbital. Since the period length of the plane wave depends
on ~k, different ~k yield different linear combinations of orbitals. In the example
in Fig. 2.7, the real and imaginary parts of the 1D plane wave eikx are shown,
from which the connection between the plane wave and the phase factor of
each s orbital is apparent. While not explicitly mentioned in the literature,
it appears from the given equations[105,106,111] that the complex phase factor is
only evaluated at the lattice points and then its value is transferred to all AOs
inside the respective unit cell. This is indicated in Fig. 2.7 by the additional
marks on the plane waves at each lattice point position and apparent from
the following equation describing the µ-th AO-Bloch function ψµ(~r;~k) as the

sum of all the µ-th AO basis functions φµ(~r − ~rµ − ~Gj), located at the atomic
position ~rµ with respect to the origin/lattice point of each unit cell, while

each of the M unit cells is accessible through the lattice vectors ~Gj from the
absolute origin/central lattice point of the system:[106]

ψµ(~r;~k) =
1√
M

M∑
j=1

ei
~k ~Gjφµ(~r − ~rµ − ~Gj) (2.106)

Accordingly, instead of the continuous plane wave ei
~k~r, only the values at the

lattice points ei
~k ~G are used. Of course, one CO-Bloch function ψa(~r;~k), being

the MO equivalent of crystals, can then be a linear combination of all available
AO-Bloch functions ψµ(~r;~k) in the fashion of MO-LCAO.

From Fig. 2.7, it is also apparent that the Bloch functions halfway through the
first BZ in both directions, namely at k = π

2a
and k = − π

2a
, are complex conju-

gates of each other (Eq. 2.104), i.e., the real part of both linear combinations is
identical and only the imaginary part is inverted. It should be noted that the
imaginary part of the Bloch functions is important, only the illustration and
comprehension of complex functions is less intuitive. However, just like the
purely real px and py orbitals are “only” convenient linear combinations of the
true degenerate complex conjugate p+ and p− eigenfunctions with magnetic
quantum numbers ml of +1 and −1, respectively,[118] the same can be done
for the degenerate complex conjugate Bloch functions with quantum numbers
~k and −~k. Application to the example in Fig. 2.7 results in purely real linear
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combinations, which are easier to grasp:[105]

ψ(x;
π

2a
) = · · · − φ−2 − i · φ−1 + φ0 + i · φ1 − φ2 . . . (2.107)

ψ(x;− π

2a
) = · · · − φ−2 + i · φ−1 + φ0 − i · φ1 − φ2 . . . (2.108)

1√
2

(
ψ(x;

π

2a
) + ψ(x;− π

2a
)
)

=
1√
2

(· · · − 2φ−2 + 2φ0 − 2φ2) (2.109)

i√
2

(
ψ(x;

π

2a
)− ψ(x;− π

2a
)
)

=
1√
2

(· · ·+ 2φ−1 − 2φ1 . . . ) (2.110)

Here, the indices of the AOs corresponds to the number of the respective lattice
point. The corresponding linear combinations are depicted in Fig. 2.8 and are
easily characterized as fully nonbonding, thus in accordance with being located
halfway through the first BZ from the fully bonding to the fully antibonding
Bloch function.[115]

≡

Figure 2.8: Linear combinations of the degenerate complex Bloch functions (left side) of a
periodic 1D chain of s orbitals for k = π

2a and k = − π
2a as depicted in Fig. 2.7 and given in

Eqs. 2.107 and 2.108 to obtain purely real Bloch functions (right side) as given in Eqs. 2.109
and 2.110. Purely imaginary orbitals are displayed in a faded manner. Created based on
Refs. [105, 111, 115].

Two points mentioned in the previous section are also apparent in Fig. 2.7:
firstly, one point ~k in reciprocal space corresponds to a Bloch function spanning
the whole real space and thus all ~r or, vice versa, one point in real space ~r
“contains” a part of all Bloch functions and thus of all ~k. Secondly, the plane
waves of the Bloch functions can have different periodicity than the lattice,
which can lead to a change in the phase upon translation along an arbitrary
lattice vector ~G, as expressed in the Bloch theorem in Eq. 2.99. Furthermore, it
is easily imaginable from Fig. 2.7 that, as mentioned at the start of this section,
the number of wave vectors ~k inside the first BZ is equal to the number of unit
cells M of a finite crystal since this is also the maximum amount of different
possible linear combinations between them.[106,111]

Just like in MO theory, the different COs can be listed according to their
energy in an MO diagram. While the number of COs is only dependent on
the number of AO basis functions k, the TISE, on the other hand, as already
indicated in the previous section, has to be solved for every of the M wave
vectors ~k, resulting in a very large number of linear combinations and energies
for each CO. Instead of now vertically displaying the energy levels of all these
linear combinations in an MO diagram, an additional horizontal dimension is
added, which gives the dependence of the COs on the wave vector ~k and thus
results in a band structure plot.[105,111,115] Put simply, a band structure is just
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all the M MO diagrams put next to each other with the COs forming the
bands, of which there are as many as AO basis functions.

Fig. 2.9 shows the qualitative band structure of the discussed periodic 1D chain
of s orbitals as well as the same system with p orbitals, which will be used in
the following to better understand the information given in band structures
in general. It is apparent that the bands of the s and p orbitals show a
different trend, namely the s band increasing and the p band decreasing in
energy when going from the center of the first BZ at k = 0 to its edge at
k = π

a
. This can simply be explained by the different symmetry of the s and

p orbitals. At the BZ center, the phase between neighboring unit cells is the
same, resulting in the fully bonding linear combination of s orbitals and a
fully antibonding linear combination of p orbitals. At the edge of the first
BZ, the phase alternates from unit cell to unit cell, inverting the situation
and accordingly the s orbitals are fully antibonding, while the p orbitals are
fully bonding.[105,111,115] It should be noted that, for the sake of simplicity, the
bands in these examples are centrosymmetric even though the antibonding
linear combinations should actually be destabilized more strongly than the
bonding linear combinations are stabilized.[111] Another interesting feature of
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Figure 2.9: Correlation between the qualitative band structure of a periodic 1D chain
of s (top) and p orbitals (bottom) and the corresponding linear combinations between the
respective orbitals of neighboring unit cells for certain wave vectors k (at certain k-points).
Created based on Ref. [111].
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band structures is the band width with respect to the energy range they cover,
also called dispersion. The magnitude of dispersion is directly connected to the
strength of overlap between neighboring unit cells. In Fig. 2.9, this is indicated
by additional bands shown in gray, which represent the same systems but with
smaller or larger lattice parameters a′ and a′′, respectively, compared to the
reference band structure with lattice parameter a. Here, for the smaller a′

the dispersion increases due to stronger overlap between unit cells and thus
stronger energy level splitting, while it decreases for the larger a′′ for opposite
reasons.[105,111]

Increasing the dimensionality of the 1D example, a 2D square lattice of s
orbitals is obtained. Accordingly, the reciprocal space, the first BZ, and the
wave vectors ~k are also 2D as depicted in Fig. 2.10. While in the 1D case it
was quite obvious that the band structure has to be analyzed along the only
existing direction, it is less clear in this higher-dimensional case. Generally, to
not lose any information on the energy levels, every ~k of the IBZ would have to
be plotted, which would result in a very large graph. Instead, the properties of
the first BZ can be exploited. In the 1D example, it was shown that the fully
bonding and fully antibonding linear combinations are located at the center
and the edges of the first BZ. This concept can be transferred to the 2D case,
i.e., the extremes of the band structure are located at the center, corners, and
edges of the BZ/IBZ, as the corresponding linear combinations in Fig. 2.10

show. These positions in the first BZ are called special or high-symmetry ~k-
points, which are generally abbreviated by single letters. For example, Γ is

a
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Y=X M
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Figure 2.10: Assignment of linear combinations between orbitals of neighboring unit cells
to high symmetry ~k-points of the first BZ (red) for a 2D square lattice of s orbitals. The

IBZ is shaded in gray and the ~k-path for the calculation of band structures is indicated by
black lines. Created based on Refs. [105, 111].
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the center of the first BZ (already indicated in Figs. 2.6, 2.7 and 2.9).[105,111]

The classification as high-symmetry ~k-points stems from the fact that they
are located on point symmetry elements of the first BZ, whose corresponding
symmetry operations map these points onto themselves.[113] Since these high-
symmetry ~k-points generally also represent the extremes of the band structure,
it is reasonable to only plot the bands along a ~k-path connecting these points
in the IBZ. In this way, the most important energy values of the system are
considered while minimizing the overall size of the band structure plot. In
the example of Fig. 2.10, a reasonable ~k-path would be Γ→X→M→Γ . The
point Y can be discarded since it is degenerate to X due to the high symmetry
of the square lattice.[105,111] The ~k-paths of the first SBZs of the investigated
Si-terminated 3C-SiC(001) surfaces were already given in Fig. 2.6.

While band structures can always be interpreted from a chemical perspective
as shown for the discussed examples,[111] their complexity further increases
for 3D systems and thus a detailed analysis is rarely attempted.[105] A more
popular alternative are density of states (DOS) plots, in which the energy axis
of the band structure is divided into small intervals of equal size. Now, the
number of energy eigenvalues falling into each interval are counted for all ~k in
the IBZ and the respective numbers are plotted and connected to each other
to obtain a curve,[111] generally in a smoothed manner by representing every
point by, e.g., a Gaussian function.[105] In a DOS plot, the dependence on ~k
and thus on the reciprocal space is lost, allowing for a simplified overview of
the electronic structure of the investigated material. The generation of the
DOS plot from one band is shown exemplarily in Fig. 2.11. The small slopes
at both ends of the depicted band correspond to a high number of energy
eigenvalues per interval and thus two peaks arise at these positions in the
DOS plot. Accordingly, the steep slope at the center of the band results in
smaller DOS values. From this, it follows that bands with strong dispersion
correspond to broad peaks and bands with low dispersion to narrow peaks in
the DOS.[105,111]

E(k)

k DOS [arb. u.]

EDOS creation

Figure 2.11: Creation of the DOS plot for a single band. Created based on Ref. [111].
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2.2.1.3 Band Folding and Peierls Distortion

Going back to the 1D example of s orbitals, if the structure is unchanged but
the unit cell size is now doubled to 2a and thus contains 2 s orbitals, i.e., a
supercell is created, an effect called band folding occurs in the band structure
as depicted in Fig. 2.12. Doubling the lattice parameter a in real space results
in the lattice parameter b of the reciprocal space, which is also the length of the
first BZ, being halved from 2π

a
to 2π

2a
= π

a
. Accordingly, the length of the IBZ is

also halved from π
a

to π
2a

, resulting in the k-axis of the band structure for the
supercell being only half the length of the original band structure. Doubling
of the real space unit cell allows two possibilities of linearly combining the two
s orbitals inside the supercell itself, namely a bonding σ and an antibonding
σ∗ combination. Each of these give rise to one band as shown on the right
side of Fig. 2.12. However, since the overall system is unchanged, the two
bands combined give exactly the same energies and contain the same linear
combinations of s orbitals as the band of the system with the original unit cell
size. This is easily understandable by the folding process depicted in the center
of Fig. 2.12 and is transferable to further multiplications of the real space unit
cell size.[105,111,115] The limiting case would be the whole crystal fitting inside
one unit cell, resulting in the band structure collapsing to an MO diagram
without dependence on k since there are no neighboring unit cells available to
form different linear combinations between their orbitals. Understanding the
process of band folding allows for a better interpretation of band structures
since it corresponds to one electronic unit being present more than once inside
a unit cell.[111]

Up to this this point, the creation of the supercell and folding of the bands
seems to be redundant. However, it allows the orbitals or atoms inside to be
less constrained by translational symmetry. In the case of the minimal unit
cell, movement of the s orbital inside a reference unit cell does not affect the
electronic structure since the positions of all other s orbitals are changed ac-
cordingly. If instead two s orbitals are present inside one supercell, they can,
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Figure 2.12: Band folding upon duplication of the unit cell for a periodic 1D chain of s
orbitals. Created based on Ref. [111].
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e.g., move towards each other, resulting in a different band structure. As the
chemist can easily imagine, this is exactly what happens when the s orbitals
receive a proton and an electron each: at ambient pressure, rather than an
infinite chain of H atoms, H2 molecules are formed. As Fig. 2.13 illustrates,
this can also be explained by the corresponding band structures. For the case
of equally spaced H atoms, there are two electrons per supercell but each of
the two s/σ orbitals can be occupied by two electrons each. Accordingly, the
energetically lower σ band will be almost fully occupied, while the energetically
higher σ∗ band is almost fully unoccupied, indicated by the Fermi level EF lo-
cated exactly at the contact point of both bands. As apparent from Fig. 2.13,
two degenerate linear combinations are present at k = π

2a
, only differing by a

translation in their phase, which have to share the last two electrons available,
thus being singly occupied each (in a single-configurational picture). From
the perspective of the minimal unit cell, the non-folded band would be cut
in half by the Fermi energy level, corresponding to a metallic system with a
partly filled band. To overcome this energetically unfavorable situation, the
two H atoms inside each unit cell move towards each other to form H2, re-
sulting in the opening of a band gap Eg by stabilizing the σ and destabilizing
the σ∗ band, removing the singly occupation and overall lowering the energy
of the system. This sacrifice of translational symmetry for energetic stabiliza-
tion is called Peierls distortion, which is the solid-state analogue of the JT
effect and very important for understanding the structure of solids. Since the
synchronized movement of all atoms is basically a lattice vibration, namely
a phonon, this process can be characterized as an electron-phonon coupling.
The (de)stabilization is most pronounced for the region of the band structure
around the originally degenerate linear combinations and less important for
the bottom of the valence and the top of the conduction band.[105,111,115]
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Figure 2.13: Influence of the Peierls distortion (periodic JT effect) on the band structure
of a periodic 1D chain of H atoms. Created based on Ref. [111].

49



2 Theoretical Foundations

2.2.1.4 Hybridization of Bands

Besides the Peierls distortion, band gaps can also open up through hybridiza-
tion of bands compatible in energy and symmetry. If the 1D chain of s orbitals
is extended by px, py, and pz orbitals located at the lattice points, this effect is
observable as depicted in Fig. 2.14. Just like before, the s orbitals form a band
of σ symmetry, being bonding at Γ (k = 0), nonbonding halfway through the
IBZ (k = π

2a
) and antibonding at the edge of the first BZ/IBZ (k = π

a
). Assum-

ing that the z-axis is parallel to the direction of the chain, the pz orbitals also
form a band of σ symmetry but with inverse trend compared to the s band.
These pure pre-hybridization bands, indicated by gray dotted lines, cross near
k = π

2a
and due to similar symmetry and energy are able to hybridize. The

degenerate px and py bands, on the other hand, are of π symmetry and can
accordingly not hybridize with the s and pz bands and also not with each
other due to their orthogonality. The hybridization of the s and pz bands
leads to one σ and one σ∗ band, the former starting with the fully bonding
linear combination of only s orbitals at k = 0 and ending with the fully bond-
ing linear combination of only pz orbitals at k = π

a
, the latter starting with

fully antibonding pz and ending with fully antibonding s orbital linear combi-
nations.[105,115,119] It should be noted that this swapping of orbitals within the
hybrid bands is caused by the crossing of the pure bands but is not manda-
tory for hybridization itself, which only requires sufficient energetic proximity
and matching symmetry.[105,115] Furthermore, it can be shown that the bands
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Figure 2.14: Hybridization of bands for a periodic 1D chain of s and p orbitals. The
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depicted in Fig. 2.8. The normalization constants of the σ and σ∗ linear combinations are
ignored for the sake of clarity. Created based on Refs. [105, 115, 119].
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hybridize through the whole first BZ except at the center and at the edges,
where they remain pure.[105,115] Here, the term pure does not mean that the
bands at these ~k-points are exclusively constructed from one kind of AOs since
they can also be constructed from MOs,[105] as will be observable in the results
of Chapter 3.

What the hybridization halfway through the IBZ at k = π
2a

actually looks
like in detail is depicted at the bottom of Fig. 2.14. As was shown before in
Figs. 2.8 and 2.9, by linearly combining the complex Bloch functions at k and
−k, the purely real and fully nonbonding linear combinations for the pure pre-
hybridization s and pz bands can be obtained, labeled as s1, s2, p1, and p2. As
apparent, s1 and p2 as well as s2 and p1 perfectly complement each other since
they fill each others orbital gaps responsible for their nonbonding character.
Accordingly, the respective linear combinations result in the bonding hybrid
σ1 and σ2 as well as antibonding hybrid σ∗1 and σ∗2 linear combinations, which
cause the energy splitting at k = π

2a
in the band structure. Further linear

combinations among σ1 and σ2 as well as σ∗1 and σ∗2 allow a representation
with only sp hybrid orbitals (σ3, σ4, σ

∗
3, and σ∗4), also fitting the common

picture of hybridization in MO theory.[119]

2.2.1.5 Periodic Slab Models and Projected Bulk Band Structure

While an infinite bulk crystal is periodic in all three dimensions, a surface cor-
responds to losing the periodicity in the direction of the surface normal,[108,120]

resulting in an infinite vacuum on one side and an infinite crystal on the other
side of the surface. Accordingly, the unit cell also would need to be of infinite
size in this direction, thus containing an infinite number of atoms and break-
ing the PBCs. Since such systems are obviously not feasible for electronic
structure calculations, an alternative approach is to still employ PBCs along
all basis vectors of a 3D unit cell and place a finite number of atomic layers
of the surface to be investigated inside, the so-called periodic slab model, as
depicted exemplary for the Si-terminated 3C-SiC(001)-p(2×1) reconstruction
in Fig. 2.15a). Generally, there are two possibilities for slab models available,
namely a symmetric or an asymmetric slab model. In case of a symmetric
slab model, the middle layers are kept fixed during geometry optimization,
resulting in the description of one surface on each side of the slab. To reduce
the computational effort, mirror symmetry can be exploited in symmetric slab
models if the crystal structure allows this. For example, the 3C-SiC(001) sur-
face to be investigated in this work consists of helical building blocks (see
Fig. 1.3) and is thus not suitable for mirror symmetry. Alternatively, a smaller
asymmetric slab model can be utilized, in which only a few bottom layers are
kept fixed.[108] It is often reasonable to saturate such asymmetric slabs with
H atoms, as depicted in Fig. 2.15a), to avoid the presence of spurious unsat-
urated dangling bonds.[45,121] To now prevent the surfaces of neighboring unit
cells from interacting with each other while applying PBCs, a sufficiently sized
vacuum region has to be added above/below the layers.[105,108,120] While in elec-
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tronic structure codes employing plane wave basis functions like VASP[122,123]

this vacuum region also adds to the computational cost, this is not the case
for programs utilizing atom-centered basis functions like the CRYSTAL17[84]

program used in this work. Accordingly, the lattice parameter parallel to the
surface normal is generously set to 500�A by default for surface unit cells in
the latter program.[124] As was already indicated in Section 2.2.1.3, lengthen-
ing of a real space basis vector results in the shortening of the corresponding
reciprocal space basis vector,[108] hence ~b3 of the reciprocal space surface unit
cell associated with the real space basis vector ~a3 is very short (Fig. 2.15a)

and b). Now, the depicted ~k-path for the band structure of the surface slab

is restricted to the directions of ~b1 and ~b2 and does not contain portions of
this very short ~b3. This is consistent with the model surface with an infinitely
large ~a3 and thus ~b3 being zero, corresponding to no dependence on ~k in this
direction because there are simply no neighboring unit cells available to form
different linear combinations. But also for the slab model with PBCs and hence
neighboring unit cells being present, this 2D ~k-path is appropriate since the
vacuum layer prevents overlap between orbitals of neighboring unit cells along
~a3, resulting in a dispersionless band along ~b3 and thus making its analysis
redundant in the third dimension.[108]

While the electronic structure of the surface is generally different from the
bulk due to the missing periodicity and unsaturated surface atoms and is con-
sequently of high interest, it still represents just a very small fraction of the
whole crystal. This is also the reason why the application of PBCs simulat-
ing an infinite crystal is reasonable in the first place because the perturbation
of the surface of a real finite crystal on the bulk properties is usually very
small.[105,106] Accordingly, the main contribution to the electronic and thus
band structure is coming from the bulk. This would be included in the band
structure of the model surface with an infinite number of atoms but not by the
finite slab models only containing a small number of surface layers and no bulk
atoms. To account for this shortcoming of the slab models, the so-called pro-
jected bulk band structure (PBBS) can be calculated and plotted in addition
to the band structure of the surface slab.[120,125] Basically, the PBBS is just the
band structure of the bulk material but not evaluated for the ~k-path in the
first BZ/IBZ of the conventional unit cell. Instead, a bulk unit cell is created
matching the size and alignment of the investigated surface unit cell so that it
could, in principle, be placed seamlessly underneath. For the example of the
p(2×1) reconstruction in Fig. 2.15, the corresponding orthorhombic real space
bulk unit cell is shown in c), with the basis vectors ~a1 and ~a2 being identical
to the surface unit cell. ~a3 is still parallel to the corresponding vector in the
surface unit cell but significantly shorter, namely 4.36�A, which is the lattice
parameter of the conventional bulk unit cell (see Figs. 1.2 and 1.3). Accord-

ingly, the basis vector ~b3 in the corresponding reciprocal space bulk unit cell
in d) is longer than in the reciprocal surface unit cell in b). Furthermore, in
contrast to the surface unit cell, the orbitals of the bulk unit cell are obviously
able to form linear combinations with neighboring unit cells also in the direc-
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tion of ~a3, which is why the band structure has to be evaluated along ~b3. To
be able to simultaneously plot the band structure of this reciprocal bulk unit
cell d) and the reciprocal surface unit cell b), the same ~k-path of the latter has

to be calculated in the former. But due to the additional dependence along ~b3,
the ~k-path has to be calculated at different ~k-values along this vector as indi-
cated in d), denoted as ~k⊥ because of their orthogonal alignment with respect

to the surface. One can interpret each point in the ~k-path of the reciprocal
surface unit cell as a rod reaching into the “underlying” reciprocal bulk unit
cell.[120,125] In this particular case of the 3C-SiC(001) surface, it is sufficient

to only calculate the ~k-paths halfway along ~b3 as a result of the symmetry of
the bulk. For an arbitrary example, the two bands for the same ~k path at
four different ~k⊥-values are plotted, all showing different curvature. If now all
possible ~k⊥-values are evaluated and plotted at the same time, the PBBS is
obtained, in which the individual bands are not distinguishable anymore. If
now the band structure of the surface slab is plotted additionally, it is eas-
ily discernible if there are bands located within the band gaps of the PBBS,
hence corresponding to surface states deviating from the bulk states. Often,
these surface states also reach into the PBBS and thus hybridize with the bulk
states, resulting in so-called surface resonances.[120,125] For the creation of the
actual PBBS of 3C-SiC, see Fig. A.8.

When plotting the surface band structure and the PBBS simultaneously, a
reasonable energetic alignment has to be considered.[126] It is easily imagin-
able that the atoms of the slab models feel a substantially different chemical
environment than the bulk atoms due to the small number of layers. This
can result in different total energies of supposedly equal states of both system
and a large offset between both band structures. To try to account for this
problem in this work, the lowest energy eigenvalues, i.e., the Si 1s core levels,
are averaged for the most inner and thus most bulk-like Si atoms. Then, the
whole surface band structure, including the Fermi energy, is shifted in a way
that these averaged Si core levels match the Si core levels of the bulk atoms in
the PBBS (more details are given in Section 3.2.1). This strategy was inspired
by the work of Sagisaka et al. covering a similar problem, namely the compari-
son of the energy levels of differently sized slab models.[127] However, it should
be noted that, as indicated in the work of Bechstedt and Furthmüller,[126]

there seem to be different possible strategies for the alignment of surface slab
band structures and the PBBS, albeit unfortunately not described in the text-
books[120,125] or publications[35,39,43–45,47,126] considered in this work, in which
the topic of the PBBS is treated.
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2.2.1.6 ~k-Point Sampling

As was pointed out in the previous sections, for an infinite lattice there are
an infinite number of possible ~k-values inside the first BZ/IBZ. At each of
these, there are a finite number of COs, depending on the number of AO basis
functions. The shape of the COs has to only be determined inside one unit
cell instead of the whole crystal. Accordingly, the usage of Bloch functions
transforms the infinitely sized problem of the whole infinite crystal into an
infinite number, namely at each ~k, of finitely sized problems. While this might
not seem like a big advantage in the first place, the energy eigenvalues of the
COs/bands generally show a smooth dependence on ~k. Thus, it is sufficient

to only solve the TISE for a small selection of wave vectors ~k, which can
geometrically be interpreted as a ~k-point grid in the first BZ/IBZ.[106,113] Re-

calling that Bloch functions of different wave vectors ~k are orthogonal to each
other, the Roothaan-Hall equations (for the closed-shell case) can be solved

independently for each ~k-point:[106]

F(~k)C(~k) = S(~k)C(~k)ε(~k) (2.111)

The most common method of constructing the ~k-point grid is the scheme
proposed by Monkhorst and Pack.[128] Here, a q1×q2×q3 Monkhorst-Pack grid
corresponds to the reciprocal space basis vectors ~b1, ~b2, and ~b3 being divided
into q1, q2, and q3 equally spaced segments, respectively, overall resulting in a
division of the reciprocal space unit cell into multiple identical subcells with
one ~k-point in each center.[128] Depending on the integers q1 to q3 being odd
or even, the Γ -point is excluded from a fully even ~k-point grid and included
in a ~k-point grid being sampled by an odd number of ~k-points for at least
one reciprocal basis vector, as depicted in Fig. 2.16a) and b) for the example
of the 2D square lattice discussed before, respectively. After acknowledging
the physical meaning of the Γ -point in the previous sections, one might think
that considering this high-symmetry ~k-point is important because it resembles
linear combinations of orbitals with the same phase between neighboring unit
cells, often corresponding to band maxima or minima,[113] as apparent in the
examples shown before in Fig. 2.9. This physical importance does not only
concern the Γ -point but all high-symmetry ~k-points in general, which are also
not included in the Monkhorst-Pack scheme since they are located on the BZ

Γ

Ma)

X Γ

b) M

X Γ

c) M

X

b2

b1

Figure 2.16: a) 4×4, b) 5×5, and c) Γ -centered 4×4 Monkhorst-Pack ~k-point grids (black
dots) in the first BZ (red) of a 2D square lattice. The IBZ is shaded in gray.
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edges. A solution to this are the so-called Γ -centered Monkhorst-Pack ~k-point
grids as depicted in Fig. 2.16c), which include these high-symmetry ~k-points.
However, it has to be noted that Γ -centering is only possible for fully even
~k-point grids because grids with already only one oddly sampled basis vector
are always centered at Γ .

Still, from a computational efficiency perspective, generally even ~k-point grids
are preferred since less ~k-points are located on symmetry planes or axes. If
a ~k-point is located on these symmetry elements, it gets mapped onto itself
for the respective symmetry operation. Accordingly, symmetry cannot be ex-
ploited for these high-symmetry ~k-points, resulting in an overall higher number
of ~k-points being needed to sample the IBZ.[108,113] The different efficiency of
the introduced ~k-point grid types is exemplarily indicated in Fig. 2.16, where
18.75 % of the ~k-points are located in the IBZ (gray area) for the even ~k-point
grid, 24 % for the odd and 37.5 % for the Γ -centered grid. Accordingly, the
general suggestion for electronic structure calculations is to use an even ~k-
point grid for self-consistent calculations and only contain the high-symmetry
~k-points in consecutive non-self-consistent calculations for, e.g., DOS or band
structure analysis.[113] However, the program package CRYSTAL17[84] used in
this work always employs Γ -centered ~k-point grids, which is why this sugges-
tion was ignored.

As one would expect, the higher the number of ~k-points, i.e., the denser the
~k-point grid, the more accurate the solution of the TISE gets.[108,113] How
high this density has to be can change with the system or the accuracy to be
achieved. For example, metals generally require a more dense ~k-point grid than
semiconductors or insulators. But also surface states of the latter can exhibit
metallic character, requiring denser ~k-point sampling.[113] Nevertheless, the ~k-
point density is obviously dependent on the (inverse) volume of the reciprocal

unit cell. Accordingly, if one has decided on a sufficient ~k-point density for a
certain system and unit cell volume, for consistency it is reasonable to use the
same density for all supercells.[108] Since enlarging the unit cell in real space
results in a reduction of the reciprocal unit cell size, a smaller ~k-point grid can
be employed in this case. This is apparent in Fig. 2.17, where the different Γ -
centered Monkhorst-Pack grids employed for the surface supercells of this work
are depicted, ensuring a constant ~k-point density. For example, when going
from a 1×1 to a 2×1 supercell, the ~k-point grid has to be halved just like the
corresponding reciprocal space vector, i.e., from 12×12×1 to 6×12×1. Also
from a physical perspective, this ~k-point grid reduction is reasonable since, as
apparent from the example of band folding in Section 2.2.1.3, enlarging the
unit cell results in multiple electronic units being present. These form different
linear combinations inside the supercell, thus in a sense already doing a part
of the work that the different wave vectors ~k are supposed to do, justifying
the inclusion of less ~k-points. Besides consistency reasons, computational cost
can also be reduced in this way without generally changing the accuracy of the
calculations.[108] Further details and examples regarding the reciprocal space
surface supercells and the ~k-point grids employed in this work are given in
Appendices A.1.1 and A.1.2.
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Figure 2.17: Geometric relation of the real and reciprocal space surface supercells with
constant ~k-point density for the Γ -centered Monkhorst-Pack grids used in this work. The
irreducible part of the reciprocal space surface unit cell in case of the imposed P1-symmetry
is shaded in gray.

2.2.2 Cluster Models

Unfortunately, most post-HF and especially the multiconfigurational methods
to be used in this work and presented in Section 2.1.2 are not available in
combination with PBCs. Though there have been recent developments for,
e.g., periodic CC[129] or CASSCF,[130] the most common and efficient approach
is to represent the bulk or surface of interest by a small cutout of atoms, the so-
called cluster model, which can then be described with the discussed methods
implemented in standard molecular electronic structure codes.

The most simplistic cluster model is a free cluster, which directly uses the
aforementioned cutout for the respective calculations. While such cluster mod-
els can be created easily and their convergence can, in principle, be checked
systematically by increasing the size, the high percentage of surface atoms
generally causes slow convergence with cluster size, especially of bulk proper-
ties. Local properties like adsorption energies/geometries or defect energies,
on the other hand, converge faster, particularly properties that are free of
charge generation/transfer. Still, since multipoles are additive, they increase
with the size of the cluster model and thus possibly prevent the convergence
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of certain properties.[131] Furthermore, free clusters are lacking the influence
of the remaining virtually infinite crystal surrounding them. To account for
this, so-called embedded cluster models can be constructed. In case of covalent
crystals, a molecular mechanics (MM) environment can be applied to the free
cluster, corresponding to moveable host atoms being placed at the positions of
the surrounding crystal. These host atoms are connected to each other and the
quantum cluster by force constants adjusted to reproduce the mechanical con-
ditions in the investigated system calculated with PBCs.[132] For ionic crystals,
it is more common to replace the host atoms by static point charges to account
for the long-range Coulomb interactions.[131,132] While simply using the formal
charges has proven to be reasonable for strongly ionic systems, for partly co-
valent crystals this choice is less obvious since theoretical and experimental
methods for determining the effective charges can deviate quite strongly.[131]

To prevent electron density from flowing towards the positive charges of the
point charge field, an additional embedding layer consisting of effective core
potentials can be inserted in between.[131,132]

However, these embedding approaches are not feasible for metals since the
corresponding quantum clusters suffer from quantum size effects due to the
inability of describing the usual strong delocalization of the electrons in met-
als, thus severely altering the properties compared to the calculations with
PBCs. Accordingly, more advanced periodic embedding potentials derived
from, e.g., DFT calculations are required.[131,133–136] But also the embedded
quantum clusters of covalent systems suffer from dangling bonds arising at
the cluster edges as a result of cutting it out of the periodic system. These
unsaturated and, in principle, singly occupied dangling bonds often manifest
as spurious states within the band gap, causing problems especially for multi-
configurational calculations. To account for this within the embedded cluster
approach, Gerhards and Klüner recently developed an anionic quantum clus-
ter for TiO2, in which the additional electrons fill the singly occupied dangling
bonds.[137] For covalent and weakly ionic systems, an alternative to the em-
bedding scheme are saturated cluster models. Here, the dangling bonds are
saturated by monovalent pseudo atoms, whose parameters are fitted to obtain
a saturated bond with properties as close as possible to the bond originally
present in the periodic crystal. An even simpler and often sufficient approach
is the saturation with H atoms, similar to the periodic slab models presented in
Fig. 2.15. Even though the electronegativity of H most of the time is different
from the atom it represents, thus resulting in an artificial dipole layer at the
cluster edges, H-saturated cluster models generally perform well for adsorption
phenomena.[131,132] However, with the knowledge about the electronic structure
of solids of Section 2.2.1 in mind, it is easily imaginable that cluster models,
embedded or saturated, are generally not able to recover the band structure
due to the limited number of unit cells and thus linear combinations between
the orbitals of these, which is why, e.g., the band gap converges very slowly
with cluster size.[132] Accordingly, all of the presented cluster models need care-
ful investigation regarding convergence with respect to their size, shape, and
properties of interest.[131]
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In this chapter, the theoretical results of this work are presented, starting
with a qualitative in-depth analysis of the surface state band structure of
the investigated Si-terminated 3C-SiC(001) surface. Afterwards, the single-
configurational results utilizing PBCs are presented, shortly discussing the
calculations regarding the bulk structure of 3C-SiC, then focusing on the afore-
mentioned surface and bringing the results into the context of published exper-
imental and theoretical studies. In the last section, the high-level multiconfig-
urational cluster model calculations of the Si-terminated 3C-SiC(001) surface
are presented and compared to the preceding single-configurational findings.

The most relevant results of this work can also be found in the following
publication:

N. Thoben, T. Klüner, J. Phys. Chem. C 2023, 127, 23475–23488.
DOI: 10.1021/acs.jpcc.3c06305

3.1 Surface States of the Si-terminated

3C-SiC(001) Surface

Before presenting the computational results of this work, a closer qualitative
look at the surface states of the Si-terminated 3C-SiC(001) surface is taken
to better understand the calculations following afterwards. When the (001)
surface is cut from the 3C-SiC bulk, in an intuitive picture this also results in
bisecting the bonds of the SiC tetrahedra at the position of the surface plane.
Accordingly, two singly occupied sp3 dangling bond surface states are present
at each Si surface atom and thus in each unit cell of the ideal p(1×1) surface
as depicted on the left side of Fig. 3.1. As further apparent, this situation vio-
lates the C2v-symmetry of the system, which is why these sp3 dangling bonds
dehybridize to the actual eigenfunctions being one sp2 dangling bond (D) per-
pendicular and one bridging (Br) px orbital parallel to the surface plane. The
same situation occurs at the closely related Si(001) surface, where the D state
is stabilized relative to the Br state due to its s character.[28,45,138] From a
chemists perspective, this electronic structure is equivalent to the frontier or-
bitals of silylenes, whose ground state generally is a singlet with a doubly occu-
pied sp2 and an empty p orbital.[139,140] At the surface, however, the orbitals of
neighboring unit cells can overlap to form bands, resulting in a more complex
electronic structure. LDA calculations of the ideal Si(001)-p(1×1) surface pre-
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Figure 3.1: Dehybridization of the two sp3 surface state orbitals to one dangling bond (D)
sp2 and one bridging (Br) px orbital at the ideal Si-terminated 3C-SiC(001)-p(1×1) surface
to fulfill the C2v-symmetry of the system.

dict a metallic character, while the 3C-SiC(001) counterpart is supposed to be
semiconducting,[45,138] presumably caused by the differing lattice constants and
thus stronger overlap between neighboring unit cells in case of 3C-SiC(001).
However, as indicated in Chapter 1, single-configurational calculations might
not be able to correctly describe the predicted multiconfigurational character
of these surfaces. This could already be confirmed by Paulus for the Si(001)
case by MCSCF calculations on a cluster model containing four surface Si
atoms arranged in a square giving averaged NOONs in the range of 1.5 to 0.5
and multiple configurations in the wave function exhibiting coefficients greater
than 0.1, hence questioning the LDA results.[56] Furthermore, the conductivity
cannot be verified experimentally because the ideal p(1×1) surface of both sys-
tems is not observable due to reconstruction taking place immediately. Still, a
correct description of this surface is important for the calculation of reasonable
reconstruction energies, for which its energy is needed as reference.

Since in the multiconfigurational cluster model calculations to be employed
in Section 3.3 an active space has to be selected manually, a detailed under-
standing of the surface state band structure is necessary, which is proposed
qualitatively in Fig. 3.2. Because the px orbitals of the Br state are aligned
in x-direction, the strongest interaction between these orbitals of neighboring
unit cells and thus the strongest dispersion of the associated bands is expected
in the corresponding Γ−J-section of the ~k-path as apparent from the depicted
first SBZ. Overlap in y-direction is presumably negligible for the Br state and
in all directions for the sp2 orbitals of the D state due to the small spatial
extension in both directions of the latter, which is why other sections of the
~k-path are ignored here. The pure pre-hybridization band (dotted gray line) of
the D state accordingly shows presumably small dispersion with slightly lower
energy at Γ with the same phase in all unit cells than at J with alternat-
ing phases. The pure pre-hybridization Br band, on the other hand, exhibits
strong dispersion with high energy at the Γ -point due to a fully antibonding
linear combination and low energy for the fully bonding linear combination
at J . It is reasonable to expect the latter to be energetically close to, and
in this case slightly lower than, the fully “bonding” situation of the D state,
resulting in a crossing of both pure pre-hybridization bands. Since both bands
have a σ-like electronic structure connecting the surface Si atoms, they are of
matching symmetry and can hybridize to open up a band gap just like in the
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Figure 3.2: Surface unit cell, first SBZ, and proposed qualitative surface state band struc-
ture along the Γ−J-path with corresponding linear combinations of the surface states be-
tween neighboring unit cells of the ideal Si-terminated 3C-SiC(001)-p(1×1) surface. The
pure pre-hybridization bands are implied by gray dotted lines. The linear combinations
of the hybrid bands in the middle of the band structure plot are created according to the
example in Fig. 2.14.

previous example of Fig. 2.14. The corresponding hybrid linear combinations
consisting of alternating sp2 and px orbitals halfway through the Γ−J-section
show the nature of this hybridization with the lower band being of bonding
and the upper band of antibonding character. Accordingly, the crossing and
hybridization of the bands makes labeling them as D and Br bands, as is done
in the literature,[45] imprecise, which is why in this work they are denoted as
bonding interatomic (IA) and antibonding interatomic (IA∗) bands. Since
there are two electrons per unit cell available for the two surface states, the IA
band is fully occupied and the IA∗ band is empty as indicated by the Fermi
energy level EF . The actual calculated band structure with the depiction of
the COs of both bands to illustrate the energetic swapping of the orbitals with
~k is shown in Fig. A.9.

Decreasing the translational symmetry of the system by enlarging the unit
cell from 1×1 to 2×1 allows the formation of Si dimers and thus leads to the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface, for which the two
Si atoms of each unit cell have to move towards each other. Restricting the
attention to the isolated Si dimers at first as depicted in the qualitative MO
diagram of Fig. 3.3, a rehybridization of the D and Br surface states to two
degenerate sp3 orbitals is reasonable to enhance the overlap for the formation
of a σ bond between the two Si atoms. The driving force for the dimerization
thus is to reduce the number of energetically unfavorable singly occupied dan-
gling bonds. Accordingly, the strongly split σ- and σ∗-like surface states arise.
The remaining two possible linear combinations of the two sp3 orbitals facing
away from each other result in the almost degenerate π- and π∗-like surface
states still exhibiting dangling bond character at each dimer atom. With a
total of four electrons for one dimer, assigning the occupation numbers two
and zero to the σ and σ∗ orbitals, respectively, is straight forward. However,
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Figure 3.3: Qualitative MO scheme of the surface states of one Si dimer of the Si-
terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model). A total of four electrons
are present, which are not shown due to the multiconfigurational character of the system.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society. Modified and extended. Created based on CAS(4,4) NOs
from Ref. [53].

the two remaining electrons now have to be split among the almost degenerate
π states, which is a similar situation as the statically correlated four-electron
four-orbital example system discussed before in Fig. 2.4. Accordingly, it is eas-
ily imaginable for the configurations [2200], [2020], and [2110] to be of similar
energy (occupation numbers in the order [σππ∗σ∗]), indicating the necessity of
a multiconfigurational approach for a correct description of the singlet ground
state. In fact, Tamura and Gordon could confirm this with a CAS(4,4) calcu-
lation for a 1-dimer cluster model of the Si-terminated 3C-SiC(001)-p(2×1) re-
constructed surface yielding NOONs of 1.98, 1.08, 0.92, and 0.02, concluding a
fully diradical character of the dimer.[53] Single-configurational methods would
by definition only consider the [2200] configuration in the restricted case or
a strongly spin-contaminated singlet diradicalic [1100] + [1100] configuration
(brackets representing α- and β-electron configurations) in the unrestricted
case.

Since the ideal p(1×1) surface can be interpreted as a 2D array of silylenes,
the p(2×1) reconstruction accordingly is the dimerization of these to yield dis-
ilenes.[141] The dimerization of such group 14 carbene analogues is well inves-
tigated. As depicted in Fig. 3.4a), singlet carbenoids are not able to dimerize
when approaching each other with all substituents being in the same molec-
ular plane due to the repulsion of the two doubly occupied sp2 orbitals. In
case of actual carbenes, which generally have a triplet ground state, this reac-
tion is possible by recombination of the radicalic electrons to form one σ and
one π bond and thus a planar alkene. Heavier group 14 carbene analogues
with a singlet ground state have to tilt out of the molecular plane instead for
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Figure 3.4: Comparison of a) the dimerization of molecular carbenes and heavier group
14 analogues to b) the constrained dimerization of surface silylenes. Created a) based on
Refs. [139, 142–144] and b) based on Refs. [52, 53, 145].

the doubly occupied sp2 orbitals to attack the empty px orbitals of the other
molecule, resulting in the formation of trans-bent alkene analogues.[139,144,146]

Consequently, the singlet-triplet energy gap of the carbenoids has proven to
be a useful metric to predict the structure of the corresponding dimers, which
are planar if the energy gain of the σ and π bonds is greater than twice the
excitation energy and vice versa.[142,147] From an MO theory perspective, the
bending flexibility can be attributed to the decreasing px orbital overlap and
thus π bond strength in the planar structure when increasing the σ bond length
upon going down group 14 in the periodic table.[146] In the literature,[143,144]

the trans-bending is then rationalized by a second-order JT effect with respect
to the planar situation, splitting the occupied and unoccupied MOs by σ+π∗

and π + σ∗ mixing and resulting in an overall energetic stabilization of the
whole molecule. While this is consistent from a symmetry perspective, the
shape of the MOs does not quite clarify why the resulting nonbonding n−
and n+ orbitals should split up since the reduced overlap should make them
more degenerate and the additional s character should stabilize both of them.
However, it is indicated that the mixing is somewhat more involved than de-
scribed above[146] and hard to generalize for the whole group 14 due to the
strong shifts in MO energies when exchanging the elements.[144] Nevertheless,
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disilenes often exhibit this trans-bent structure but, as the first of the heavier
alkene analogues, only with small angles in the magnitude of about 10°.[139,143]
Accordingly, the n− and n+ orbitals are not as nonbonding and degenerate as
the exaggerated depiction in Fig. 3.4a) might indicate. This can be confirmed
by a NEVPT2 optimization of Si2H4 with a CAS(4,4) and def2-TZVP[148] basis
set yielding NOONs of about 1.84 and 0.16, respectively, in accordance with
previous calculations by Windus and Gordon.[149] While this still corresponds
to considerable multiconfigurational character with the [2200] and [2020] con-
figurations amounting to about 91 % and 7 %, respectively, the responsible
bending-angle of 34.6° for Si2H4 is comparatively large within the group of ex-
perimentally observed disilenes that are generally higher-substituted.[144] The
latter are accordingly expected to show less multiconfigurational character.

Now, as apparent from Fig. 3.4b), the p(2×1) reconstruction at the ideal Si-
terminated 3C-SiC(001)-p(1×1) and Si(001)-p(1×1) surfaces corresponds to a
constrained dimerization of the surface silylenes. Here, instead of approaching
each other with the sp2 orbitals and within a shared molecular plane, each sily-
lene is rotated by 90° so that the resulting dimer resembles a strongly cis-bent
disilene with the same frontier orbitals already presented in the MO diagram
of Fig. 3.3. Transferring the concept of reactivity of the molecular carbenoids
with respect to the electronic ground state being either singlet or triplet to
these surface silylenes is redundant since the constraint of being bound to the
surface permits only one possible way for the dimerization to occur in the first
place, namely the cis-bent route. Also, considering the band structure of the
ideal p(1×1) surface discussed before, there is basically electron density present
in the sp2 and the px orbitals at the same time without excitation, as implied
by the corresponding initial occupation of the silylenes in Fig. 3.4b). To the
best of this work’s author’s knowledge, only one molecular cis-bent disilene
with an angle of 3.6° has been found so far.[150] Just like on the 3C-SiC(001)
and Si(001) surfaces, the cis-bending is imposed by two cyclic substituents
each connecting both ends of the disilene, resulting in an overall bicyclo[3.3.0]
structure of two five-membered Si rings. As apparent from Fig. 3.4b), the
overlap within the π and π∗ orbitals for cis-bent disilenes is supposedly even
smaller than for the trans-bent counterparts since only the small orbital lobes
of each sp3-like orbital are facing each other. This increases the degeneracy and
the partial multiconfigurational and thus diradicalic character already present
in trans-disilenes. While the experimentally observed cis-bent disilene was
unfortunately not further investigated theoretically to confirm this trend, a
comparable but significantly more strongly cis-bent disilene, caused by ex-
changing three Si atoms with C atoms in each of the five-membered rings,
exhibits NOONs of 1.32 and 0.68 in a CAS(4,4) calculation.[145] Since on the
mentioned surfaces these five membered rings are further constrained by the
incorporation into the crystal, the cis-angles are even more sharp as apparent
from Fig. 1.4b), increasing the diradicality compared to the molecular case.
This effect is more pronounced for 3C-SiC(001) due to its smaller surface lat-
tice constant of 3.08�A compared to the 3.84�A of Si(001). Additional CAS(4,4)
1-dimer cluster calculations of the Si(001) surface of Tamura and Gordon con-

64



3.1 Surface States of the Si-terminated 3C-SiC(001) Surface

firm this with NOONs amounting to 1.71 and 0.29 for the π and π∗ orbitals of
symmetric dimers, contrasting the almost fully diradicalic NOONs of 3C-SiC
acquired in the same study.[53] Paulus obtained similar results for MCSCF cal-
culations on a Si(001) cluster model of two parallel symmetric Si dimers with
averaged NOONs of 1.63 and 0.37.[56] Furthermore, due to the lower spatial
constraints, Si(001) can undergo a JT splitting to asymmetric/buckled dimers
and reduce the partial diradical character, resulting in a doubly occupied sp3

orbital at the upper and an empty pz orbital at the lower Si atom[50–52] in
the limiting case of a single-configurational picture as shown at the bottom of
Fig. 3.4b).

Nevertheless, since there are multiple dimers present at the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface, the MO-like surface states of neigh-
boring unit cells can also overlap to form bands, possibly compensating the
multiconfigurational character of the isolated disilene-like dimers. Just like in
case of the ideal p(1×1) surface, the Γ−J-path of the corresponding first SBZ
is supposedly showing the strongest dispersion, for which the proposed band
structure is shown in Fig. 3.5. The σ and σ∗ bands remain strongly split like
the MOs of a single dimer and, if any, show small dispersion since there is
negligible overlap between the orbitals of neighboring unit cells. The dangling
bonds of the π and π∗ orbitals, however, can reach neighboring unit cells, giv-
ing rise to a much more pronounced dispersion of the pure pre-hybridization
bands depicted by gray dotted lines. At Γ , the π band is stabilized by the fully
bonding interaction between neighboring dimers, while the π∗ band shows fully
antibonding character due to the opposite symmetry. This symmetry discrep-
ancy causes an inverted situation at J , namely the π∗ band being fully bonding
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Figure 3.5: Surface unit cell, first SBZ, and proposed qualitative surface state band struc-
ture along the Γ−J-path with corresponding linear combinations of the surface states be-
tween neighboring unit cells of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface.
The pure pre-hybridization bands are implied by gray dotted lines. The linear combinations
of the hybrid bands in the middle of the band structure plot are created according to the
example in Fig. 2.14. Reprinted with permission from J. Phys. Chem. C 2023, 127, 48,
23475–23488. Copyright 2023 American Chemical Society. Modified and extended.
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and the π band fully antibonding. Overall, this results in the crossing of these
pure pre-hybridization bands and a potentially metallic situation with the
Fermi level being located at the crossing point. However, just like at the ideal
p(1×1) surface, due to compatible symmetry and energy, the π and π∗ bands
are able to hybridize to open up a band gap and give the actual bands repre-
sented by black lines. The corresponding hybrid linear combinations halfway
through the Γ−J-path illustrate the π and π∗ orbitals complementing each
other to still consistently maintain a bonding or antibonding interaction be-
tween neighboring dimers in the respective bands. While in the literature these
bands are often simply named like the involved π and π∗ orbitals,[28,39,42,43,45]

thus disregarding the hybridization taking place, in this work they will be de-
noted more precisely as bonding interdimer (ID) and antibonding interdimer
(ID∗) bands. The actual calculated band structure with the depiction of the

COs of both bands to illustrate the energetic swapping of the orbitals with ~k
is shown in Fig. A.10.

Instead of starting from the MO-like surface states of one Si dimer, the band
structure can also be derived from the band structure of the ideal p(1×1)
surface as depicted in Fig. 3.6 by using the concepts of band folding and
Peierls distortion introduced in Section 2.2.1.3. By doubling the unit cell
in the x-direction, the corresponding first SBZ and thus the Γ−J-section as
well as the band structure is halved in this direction. The resulting band
folding flips the Bloch functions from J to Γ and the sp2 + px hybrid bands
are now located at the new J , i.e., the edge of the first SBZ of the p(2×1)
reconstruction. Both the IA and the IA∗ bands are each cut into two separate
bands and exhibit degenerate linear combinations at their touching point at J ,
only differing by a translational shift of one ideal p(1×1) surface basis vector
in x. Here, in analogy to Fig. 2.14, these sp2 + px states can alternatively
be linearly combined to give Bloch functions of actual sp3 character, which
show bonding and antibonding interaction between pairs of neighboring surface
Si atoms for the former IA and IA∗ bands, respectively. Since they still
exhibit the translational shift, the Peierls distortion forming dimers will split
these bands at J , resulting in the former IA band to yield the σ and the
ID bands and the former IA∗ band to yield the antibonding counterparts.
While it was established in Section 2.2.1.3 that the Peierls distortion only
influences the band structure in the region of the touching point, namely J
in this example, this does not prevent the bands at Γ to hybridize as a result
of the reconstruction. Accordingly, the former pure px band is stabilized by
mixing with the former pure sp2 band to give better σ bonds. Conversely,
the former pure sp2 band obtains more px character and is thus energetically
elevated but also gains some energy from forming interdimer bonds. Since
both of the corresponding σ and ID bands are fully occupied as indicated by
the Fermi level, it is easily imaginable that not too much energy can be gained
by this splitting. This explains the very low reconstruction energies found
in theoretical studies, as was already argued more generally by Sabisch et
al.[45] Put differently, when going from the ideal p(1×1) surface to the p(2×1)
reconstruction, the IA band, which consists of px bonding between all surface
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atoms of each row and nonbonding but quite stable sp2-orbitals, is replaced
by the σ band containing strong σ bonds and the ID band showing weak
interdimer bonds, both only between every other dimer. This low energy
gain is not obvious when solely focusing on the reduction of the number of
singly occupied dangling bonds for isolated dimers as the driving force for
the dimerization and thus disregarding the interaction between neighboring
dimers.

To conclude this section, it has to be emphasized that the presented analysis
of the surface state band structure is purely qualitative and based on pre-
vious theoretical and experimental investigations finding both surfaces to be
semiconducting.[28,38–40,42–45,151–154] Any quantitative statements require the in-
clusion of all other atoms and their orbitals, which is why the corresponding
calculations are presented in the following sections.

3.2 Single-Configurational Calculations with

PBCs

3.2.1 Computational Details

The CRYSTAL17[84] program package (version 1.0.1) was used to carry out
single-configurational calculations utilizing PBCs. Restricted and unrestricted
Hamiltonians according to HF[60,61] theory or KS DFT[71] were employed, with
the LDA,[69,74] PBE,[75] PBE0,[76,77] and HSE06[78–80] functionals being used
for the latter method. In CRYSTAL17, the electronic structure is described
via MO-LCAO of atom-centered GTOs. Basis sets of triple-zeta-valence and
double polarization (TZVPP) quality for Si[155] and of TZVP quality for C
and H[156] were chosen, which have been derived from the molecular def2-
TZVPP[148] and def-TZVP[157] basis sets and optimized for calculations using
PBCs by the respective authors. As further recommended by the basis set au-
thors,[155] the truncation thresholds for two-electron integrals in CRYSTAL17
were slightly tightened to TOLINTEG 8 8 8 8 16 for these basis sets compared
to the default values. Furthermore, the pob-TZVP[158] basis set was used for
Si, C, and H for comparison utilizing the same two-electron integral thresholds.
The reciprocal space unit cell of the primitive bulk unit cell of 3C-SiC (see right
side of Fig. 1.2) was sampled by a Γ -centered 12×12×12 Monkhorst-Pack[128]

~k-point grid. For the different reciprocal space surface unit cells associated with
the M×N supercells of the periodic slab models representing the Si-terminated
3C-SiC(001) surface, 12

M
×12
N
×1 Γ -centered Monkhorst-Pack ~k-point grids were

used to ensure a constant ~k-point density (see Fig. 2.17). The periodic slab
models were constructed from the converged bulk structures (see Table 3.1)
and, in case of asymmetric H-saturated slab models, contained an in total even
number of alternating Si and C atomic layers with the dangling bonds of the
lowest C layer being saturated by H atoms (see Fig. 2.15). The symmetric slab
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models contained an odd number of atomic layers, meaning both surfaces were
Si-terminated and the central layer was a C layer. For unrestricted calcula-
tions of the reconstructed Si-terminated 3C-SiC(001) surfaces, the spin density
sum was fixed to a value of zero until total energy convergence of 10−6Eh was
reached (SPINLOCK 0 −6) for strongly spin-contaminated singlets and to a
value of two (SPINLOCK 2 −6) for slightly spin-contaminated triplets. For
the unrestricted singlet solution to differ from the restricted results, the spins
of the Si dimer atoms at the surface had to be set individually at the start
of each calculation to match the intended spin arrangement (ATOMSPIN).
During geometry optimizations, the unit cell parameters were kept fixed to
simulate the constraint of the underlying bulk. The four lowest atomic lay-
ers with the saturating H layer were kept fixed in case of the asymmetric
H-saturated slab models and the central five atomic layers (three C and two
Si) in case of the symmetric slab models. P1-symmetry was imposed to achieve
the highest possible translational freedom for the atoms to move in the slab
models. To plot the band structure of the periodic slab models and the PBBS
at the same time, the average Si 1s core energy level of all Si layers except for
the topmost two and the lowermost one Si layers is calculated as these inner
layers generally exhibited Mulliken[159] charges virtually identical to the one of
the bulk atoms. Subsequently, the energy eigenvalues of the slab models are
shifted by this mean value to match the Si 1s core levels of the bulk Si atoms.
Molecular structures and orbital or electron density isosurfaces were visualized
with Jmol[160] and VESTA.[161]

3.2.2 Bulk 3C-SiC

Before treating the Si-terminated 3C-SiC(001) surface theoretically, a sophisti-
cated bulk structure of 3C-SiC has to be determined by geometry optimization.
Due to the high symmetry of the cubic space group 216 this material belongs
to, only the lattice parameter a can be changed. Table 3.10 shows the ob-
tained lattice parameters a and bulk band gaps Eg for the different functionals
and basis sets applied as well as corresponding experimental values. Regard-
ing the lattice parameter a, all functionals achieve very good agreement with
the experiment for both basis sets, quantified by small deviations of less than
1 %. Especially the two hybrid functionals PBE0 and HSE06 in combination
with the TZVPP/TZVP basis set as well as the HF method with the pob-
TZVP basis set yield the best results with deviations smaller than 0.1 % and
the closest agreement for the HSE06 functional. It should be noted that the
HF method with the TZVPP/TZVP basis set was not able to converge in the
SCF cycle as soon as the lattice constant fell below a certain value over the
course of the geometry optimization. This might indicate the known possi-
ble problem of linear dependencies when using atom-centered GTO basis sets
in solid-state calculations[106] since the basis functions of the TZVPP/TZVP
basis are slightly more diffuse than the pob-TZVP basis. These linear depen-
dencies get more relevant as the atoms move closer to another and their basis
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Table 3.1: Optimized conventional fcc bulk unit cell parameters of 3C-SiC for different
restricted methods and basis sets. Reprinted with permission from J. Phys. Chem. C 2023,
127, 48, 23475–23488. Copyright 2023 American Chemical Society. Extended by pob-TZVP
and experimental values.

Method
Lattice Parameter a [�A] Bulk Band Gap Eg [eV]

pob-TZVP TZVPP/TZVP pob-TZVP TZVPP/TZVP

HF 4.3559 - 8.58 -

LDA 4.3303 4.3401 1.31 1.32

PBE 4.3742 4.3876 1.39 1.39

PBE0 4.3433 4.3575 2.91 2.88

HSE06 4.3449 4.3591 2.25 2.25

Exp.[5,162] 4.3596 2.36

sets overlap more strongly. However, why this problem only occurred for the
HF method and not also for the hybrid functionals utilizing the same basis set
is not clear. It might be possible that the approximate local DFT correlation
and exchange of the hybrid functionals is able to stabilize the convergence
of the only partially included non-local exact HF exchange, which might be
vulnerable to diffuse basis sets. This is supported by additional PBE0 bulk
optimizations with the TZVPP/TZVP basis set also not converging for 50 %
and higher percentages of HF exchange, while the amount of HF exchange can
go up to 100 % when using the pob-TZVP basis set. Furthermore, in HSE06
calculations, the HF exchange can also be increased to 100 % for both basis
sets without any issues. Since the HF exchange is restricted to a short range
in HSE06 compared to PBE0, this hints towards the non-local HF exchange
causing convergence problems for the more diffuse TZVPP/TZVP basis set.
However, this is rather speculative and to the best of this work’s author’s
knowledge has not been discussed in the literature yet.

While the basis set virtually does not influence the value of the bulk band gap
Eg, the deviations from the experiment with respect to the functional used
are far more severe compared to the lattice constant a. As is well known, the
pure DFT functionals LDA and PBE generally underestimate[73,106,163] and
the HF method strongly overestimates[106,164] band gaps. Still, it should be
noted that energy gaps between the highest occupied MO (HOMO) and the
lowest unoccupied MO (LUMO) are conceptionally not the same as excita-
tion energies, which are obtained correctly from excited state calculations.[73]

Nevertheless, it is accordingly easily imaginable that mixing a certain amount
of HF exchange into DFT functionals increases the otherwise underestimated
band gap values,[165] hence the hybrid PBE0 and the range-separated hybrid
HSE06 functionals give the best agreement, the latter only deviating by about
0.1 eV.

Overall, the results regarding the lattice parameter a and the bulk band gap
Eg are in accordance with the generally observed trend of DFT functionals
containing some amount of HF exchange to perform better than pure DFT
functionals.[73] Here, specifically the HSE06 functional with the TZVPP/TZVP
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basis set shows the most accurate results for 3C-SiC, as was already established
for the band gap in a previous study using a different basis set.[166] Accordingly,
this combination of functional and basis set will mainly be employed in the
rest of this work. However, it should still be noted that hybrid functionals have
shown to be less accurate for non-sp bonded semiconductors,[165] stressing the
system-dependence of DFT functionals mentioned in Section 2.1.1.3.

While nothing more of the 3C-SiC bulk has to be analyzed in the context of
this work, a noteworthy observation was made related to the convergence of
the two parameters a and Eg with the ~k-point grid applied. Using the results
for the HSE06 functional with the TZVPP/TZVP basis set as an example, it
is apparent from Fig. 3.7 that the lattice constant a shows regular convergence
behavior when increasing the number of ~k-points in the first BZ with a very
tight convergence window of only a few 0.001�A (violet curve). The black
convergence curve of the bulk band gap Eg, on the other hand, is strongly
diverging and thus can be divided into two significantly differing curves, one
for an even and one for an odd number q of ~k-points along each reciprocal basis
vector. While Eg is basically converged from the start for an even 4×4×4 ~k-
point grid with a convergence window of less than 0.002 eV, this is not the
case for odd values of q, resulting in a convergence window of about 1.4 eV
and no full convergence even for a 11×11×11 ~k-point grid. This unexpected
convergence behavior of Eg can directly be connected to the details of ~k-point
sampling established in Section 2.2.1.6: without plotting the band structure,
the CRYSTAL17 output reveals the indirect band gap to occur between the
Γ - and the X-point, as is typically the case for zincblende materials.[167] Since
X is a high-symmetry ~k-point, it is located on the edge of the first BZ of the
bulk. This edge, however, is not included in Γ -centered Monkhorst-Pack ~k-
point grids with an odd number q of ~k-points along each reciprocal basis vector
(see Fig. 2.16) and vice versa for even numbers q, resulting in the slow and
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Figure 3.7: Convergence of the the bulk band gap Eg and the fcc lattice parameter a of
3C-SiC at RKS DFT HSE06 level with the TZVPP/TZVP basis set with respect to the

density of the Γ -centered Monkhorst-Pack ~k-point grid applied.
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3 Results and Discussion

fast convergence of the bulk band gap Eg with respect to odd and even values
q, respectively. This stresses the importance of checking the convergence of Eg
with respect to the ~k-point sampling.

3.2.3 Si-terminated 3C-SiC(001) Surface

3.2.3.1 Hydrogen Layer Optimization

With the optimized bulk structures at hand, the slab models for the Si-
terminated 3C-SiC(001) surface could be constructed. In the following inves-
tigations, mainly the asymmetric H-saturated slab models will be used as the
symmetric slab models only serve as a validation system later in Section 3.2.3.5.
Accordingly, the H layer had to be optimized as a first step to obtain these slab
models, which was done by saturating both the Si- and C-terminated sides of
an asymmetric 12-layer 1×1 supercell periodic slab model of the ideal p(1×1)
surface with two H per surface atom. Only the H atoms were then able to move
during the optimization. Interestingly, when imposing no further optimization
constraints, the C atoms give an expected, though tilted, tetrahedral structure,
while on the Si-terminated side the Si atoms are bridged almost horizontally in
x-direction (dSi−H = 1.55�A, 6 (Si−H−Si) = 166.5°, RKS DFT HSE06 with
TZVPP/TZVP basis set) by one H. The second H is located directly on top
of each Si, forming a bond perpendicular to the surface and resulting in over-
all trigonal-bipyramidal coordinated Si atoms as depicted in Fig. 3.8a). This
bonding situation structurally seems to maintain the electronic structure of
the surface silylenes of the ideal p(1×1) surface with the perpendicular sp2

and the horizontal px orbitals. Apparently, this structure is energetically more
favorable than trying to achieve a tetrahedral sp3 coordination of the Si atoms
as depicted in Fig. 3.8b) due to the associated repulsion between neighboring H
atoms in the latter case caused by the limited space. Acquiring the tetrahedral
geometry was only possible by not allowing the H atoms to move along y and
force their z-coordinates to be equal during optimization. These constraints
were also applied to the C-terminated side for consistency reasons.

x
y

z

a) b)

Figure 3.8: a) Unconstrained and b) constrained geometry optimization of the saturating
H atom layer on the Si-terminated side of a 1×1 supercell 8-layer periodic slab model for
the ideal 3C-SiC(001)-p(1×1) surface at RKS DFT HSE06 level with the TZVPP/TZVP
basis set. In case of the constrained optimization in b), the H atoms were not allowed to
relax in y and their z-coordinates had to be equal. The lattice parameter of the unit cells
in z is depicted smaller than it is in the actual calculations.
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Very similar Si–H–Si bridges (dSi−H = 1.62�A, 6 (Si−H−Si) = 166°) have
been found before by Gali et al.[168] and Aradi et al.[169] in LDA calculations for
interstitial H atoms at single C vacancies in bulk 3C-SiC. In the charge-neutral
doublet state, the electron introduced by the H occupies the antibonding linear
combination of the sp3 orbitals of the two triply substituted Si atoms, where
the H atom is located on the corresponding nodal plane. Furthermore, the
singly positively charged singlet state is also stable with the same bridged
structure. Along these lines, Müller reported a singly charged silyl cation
with two triply substituted Si atoms bridged by one H atom in a three-center
two-electron bond, so an overall tetrahedral Si coordination.[170] According
to the associated hybrid DFT calculations, the LUMO also corresponds to
the antibonding combination of two sp3-like orbitals of both Si atoms (the
nonbonding combination in the language of three-center bonds) with the H
atom on the nodal plane, thus in agreement with the cationic state of the
aforementioned defect calculations of bulk 3C-SiC. Pavlova found a similar
singly cationic Si–H–Si bridge when inserting H into the hydrogenated dimers
of the Si(001) surface in PBE DFT calculations.[171] In case of the results of
this work, cutting the ideal p(1×1) surface can also be regarded as introducing
a periodic array of C vacancies into the bulk, explaining the same bridging
geometry, which is periodic in x since there are basically two C vacancies
for each Si atom. However, while the three-center two-electron bond in the
silyl cation of Müller shows an expected negatively charged bridging H and
positively charged Si atoms, at the surface of this work the situation is inverted
with a Mulliken charge of 0.45 e at the bridging H and of −0.53 e for the
Si atom (RKS DFT HSE06 with TZVPP/TZVP basis set). This indicates
a different bonding situation that cannot be explained easily. Nevertheless,
since the ideal p(1×1) surface and thus such H-saturation is not observable
experimentally and the H layer on the Si-terminated side of the asymmetric
periodic slab models is discarded anyway to reveal the surface states, no further
analysis of these scientifically still interesting periodic Si–H–Si bridge bonds
was undertaken. Accordingly, the H layer coordinates of the C-terminated
surface obtained from the constrained geometry optimization were used for all
following calculations that utilize asymmetric H-saturated slab models.
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3.2.3.2 Spatial Structure of p(2×1) Reconstructions

As presented in Chapter 1, the ideal Si-terminated 3C-SiC(001)-p(1×1) sur-
face is not observable since it immediately reconstructs to lower its energy.
While experimentally c(4×2) and p(2×1) reconstructions have been found at
RT with the former supposedly being the more stable structure, periodic slab
model DFT calculations prefer the p(2×1) reconstruction with the SD model
over the AUDD model for the c(4×2) case.[28,42,46–48] The latter model is only
observed for strained surfaces[28,42,46] or cluster model DFT calculations.[172]

More recently, alternative p(4×1) and p(4×2) reconstructions have also been
found, in which two neighboring dimers further dimerize, resulting in buckled
structures.[173] However, most of the periodic slab model calculations in the lit-
erature only utilized restricted approaches, which, after discussing the delicate
electronic structure in Section 3.1, might be insufficient as the only published
unrestricted[54] and multiconfigurational[53] calculations indicate. Accordingly,
a comprehensive theoretical study of the possible reconstructions of the Si-
terminated 3C-SiC(001) surface is presented in the following using periodic
slab model calculations in combination with restricted and unrestricted single-
configurational HF and DFT.

At first, only the smallest possible supercell, namely a 2×1 supercell, was em-
ployed to restrict the additional translational freedom and thus the number of
possible reconstructions to a minimum. Both buckled and unbuckled dimers
have been used as starting structures for the geometry optimizations of the
periodic slab models containing a generous number of 12 atomic layer as de-
picted in Fig. 3.9b). Besides the singlet state, also the high-spin configuration,
which is a triplet in case of the 2×1 supercell, was investigated to check if it
is energetically favored and to serve as a structure for comparison due to the
generally negligible amount of spin contamination of unrestricted high-spin
states. The most common parameters to discuss the strength of the recon-

x
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z

a) b)

Figure 3.9: H-saturated 12-layer periodic slab models for the a) unoptimized ideal p(1×1)
surface in a 1×1 supercell and b) optimized p(2×1) reconstructed surface (SD model) in a
2×1 supercell of the Si-terminated 3C-SiC(001) surface. b) was optimized at singlet UKS
DFT HSE06 level with the TZVPP/TZVP basis set (see Table 3.2). The lattice parameter
of the unit cells in z is depicted smaller than it is in the actual calculations.
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struction are the Si dimer bond length dSi−Si and the energy gain per dimer
or reconstruction energy ∆Edimer, the latter being calculated according to the
following equation:

∆Edimer =
Erecons,M×N −M ·N · Eideal,1×1

M ·N
2

(3.1)

Here, M and N give the size of the supercell in x and y, respectively,
Erecons,M×N is the total energy of the optimized reconstructed M×N super-
cell, and Eideal,1×1 is the total energy of the unoptimized 1×1 supercell of
the ideal p(1×1) surface (Fig. 3.9a). It should be noted that the latter en-
ergy was calculated only using a restricted approach since unrestricted singlet
calculations always collapsed to the restricted solution. This is generally a
known occurrence for unrestricted methods[57] when the energy-raising effect
of (often) energetically less stable higher-spin states (spin contamination) out-
weighs the energy gain by the inclusion of partial static correlation achieved
by the spin-symmetry breaking.[59] Furthermore, in this particular case, an
unrestricted solution for the the ideal p(1×1) should not be possible because
the positive and negative parts of the spin density would be located at the
same surface atom and thus cancel each other. Accordingly, the ATOMSPIN
keyword of CRYSTAL17 does not even offer the possibility of assigning such
starting spins.

Table 3.2 lists the results of the conducted calculations for the 2×1 supercell
slab models. Here, values are only given if the converged geometry corresponds
to the SD model. If the calculations instead gave buckled dimers, no recon-
struction, or even no convergence at all, only a “-” is displayed. From the
additional comments at the bottom, it is apparent that a significant part of
the calculations virtually gave no reconstruction with the dimer atoms show-
ing distances in the range of 3.04�A – 3.09�A, which are almost identical to
the distances on the ideal p(1×1) surface ranging from 3.06�A – 3.10�A for the
different DFT functional and basis set combinations. The corresponding re-
construction energies are also very low with values of only −0.01 eV –−0.02 eV.
This phenomenon mainly occurred for the slightly less sophisticated and less
diffuse pob-TZVP basis set, especially in case of the restricted calculations,
where for none of the DFT functionals a reconstruction took place and only a
buckled dimer emerged for the HF method. This indicates a high sensitivity
of the reconstruction to the basis set accuracy, which is indirectly supported
by the only other published GTO study for this system of Sabisch et al. em-
ploying more basis functions specifically for the surface atoms than for the
bulk atoms.[45] Concerning the unrestricted results, the convergence towards
the ideal p(1×1) surface resulted in a collapse to the the restricted solution,
as was expected with the discussion at the end of the previous paragraph in
mind. The LDA high-spin geometry optimizations were trapped in a trailing
convergence without meeting the associated thresholds for both basis sets. In
case of the PBE functional for both basis sets and in case of the the HSE06
functional for the pob-TZVP basis set, the high-spin calculations did converge
but gave unreasonable spin density sums of less than the required value of
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Table 3.2: Dimer bond lengths dSi−Si and reconstruction energies ∆Edimer of H-saturated
2×1 supercell 12-layer periodic slab models of the Si-terminated 3C-SiC(001) surface with
respect to the DFT functional, spin state, and basis set applied. Geometry optimizations not
converging, giving unreasonable results, or other reconstructions than the symmetric dimers
of the p(2×1) reconstruction (SD model) are indicated by “-” and further characterized by
the comments at the bottom. HF calculations with the TZVPP/TZVP basis set were not
possible since the bulk structure did not converge.

Para-
meter

Functional

Singlet Restricted Singlet Unrestricted High-Spin Unrestricted

pob-TZVP
TZVPP/

TZVP
pob-TZVP

TZVPP/
TZVP

pob-TZVP
TZVPP/

TZVP

d
S
i−
S
i

[� A
] HF -a 2.46 2.41

LDA -b 2.71 -b,c 2.72c -d -d

PBE -b 2.72 -b,c 2.56 -e -e

PBE0 -b 2.80 2.54 2.45 2.42 2.38

HSE06 -b 2.80f 2.56 2.46 -e 2.39

∆
E
d
im
e
r

[e
V

] HF -a −1.25 −1.22

LDA -b −0.03 -b,c −0.03c -d -d

PBE -b −0.03 -b,c −0.06 -e -e

PBE0 -b −0.02 −0.14 −0.28 +0.01 −0.21

HSE06 -b −0.01f −0.10 −0.23 -e −0.14
a buckled dimer found instead (dSi−Si = 2.84�A, ∆zSi−Si = 0.13�A, ∆Edimer = −0.37 eV)

b virtually no reconstruction (dSi−Si = 3.04�A – 3.09�A, ∆Edimer = −0.01 eV –−0.02 eV)
c unrestricted solution collapses to restricted solution
d no convergence in geometry optimization
e erroneous spin density sum of 1.57 (PBE + pob-TZVP), 1.61 (PBE + TZVPP/TZVP) and 1.95

(HSE06 + pob-TZVP)

f a more stable buckled dimer was found additionally (dSi−Si = 2.61�A, ∆zSi−Si = 0.21�A,

∆Edimer = −0.05 eV, see Fig. 3.10)

two. Overall it can be concluded that the Si-terminated 3C-SiC(001) surface
represents a challenging system for single-configurational periodic slab model
calculations.

Going into the details of the converged restricted calculations yielding sym-
metric dimers, the DFT functionals with the TZVPP/TZVP basis set all yield
very weak p(2×1) reconstructions with dSi−Si ranging from about 2.7�A – 2.8�A
and ∆Edimer from −0.01 eV –−0.03 eV. Here, the pure DFT functionals LDA
and PBE show slightly stronger reconstruction with dimer bond lengths closer
to 2.7�A and reconstruction energies of −0.03 eV, while the hybrid function-
als PBE0 and HSE06 both give values of 2.80�A and −0.02 eV and −0.01 eV,
respectively. Accordingly, the additional exact HF exchange seems to slightly
inhibit the reconstruction for the restricted calculations, which is in accordance
with the RHF optimization not giving symmetric dimers at all.

Interestingly, the restricted HSE06 optimizations furthermore yielded a more
stable buckled dimer as depicted in Fig. 3.10 with dSi−Si of 2.61�A, a height dif-
ference between the dimer atoms ∆zSi−Si of 0.21�A and ∆Edimer of −0.05 eV.
For the HF Hamiltonian with the pob-TZVP basis set, a similar but less pro-
nounced buckling with dSi−Si of 2.84�A and ∆zSi−Si of 0.13�A was observed, yet
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x

z
dSi−Si = 2.61 Å
ΔzSi−Si= 0.21 Å
ΔEdimer= −0.05 eV

Figure 3.10: Buckled/asymmetric dimer of the Si-terminated 3C-SiC(001)-p(2×1) recon-
structed surface found for a H-saturated 2×1 supercell 12-layer periodic slab model at RKS
DFT HSE06 level with the TZVPP/TZVP basis set.

giving a rather high reconstruction energy of −0.37 eV. Since HF is missing
any post-HF electron correlation, this might indicate a distinct energetic bal-
ance between stabilizing exchange effects and destabilizing correlation effects,
which are both considered in the DFT calculations, thus leading to lower re-
construction energies compared to HF. Buckled dimers for periodic slab model
calculations of the Si-terminated 3C-SiC(001)-p(2×1) reconstruction have only
been reported before twice, namely in the semi-empirical calculations of Craig
and Smith[174] and the DFT calculations of Yan et al.[175] Sabisch et al.[45] ex-
plained these results, which contradict the large majority of other theoretical
studies giving symmetric dimers, by the insufficient quality of semi-empirical
methods for this delicate reconstruction as well as a poor ~k-point sampling in
case of the cited DFT study. In fact, when Sabisch et al. applied a similarly
sparse ~k-point grid, they also arrived at semiconducting buckled dimers, which
are metallic when applying a more accurate ~k-grid. In this work, however, this
should not be an issue because more than twice as many ~k-points are sampled
compared to the study of Sabisch et al. Furthermore, the buckled structures of
both HF and HSE06 are found to be semiconducting. Since in this work the
HF method and hybrid functionals are applied for the first time, the buckling
behavior might be a feature of the exact HF exchange since additional PBE
and LDA calculations with the same buckled starting structure as the HSE06
result still converged to symmetric dimers. However, with regard to the sup-
posedly multiconfigurational character of the surface and buckled dimers only
occurring for restricted calculations, they still appear to be unreasonable and
could be an artifact instead.

Turning the attention to the unrestricted singlet calculations in Table 3.2, a
significantly stronger degree of reconstruction is observable compared to the re-
stricted formalism with dimer bond lengths in the range of 2.46�A – 2.56�A and
reconstruction energies of −0.06 eV –−1.25 eV. Here, the very high ∆Edimer
of −1.25 eV for the UHF method might again be attributed to the missing
and supposedly compensating post-HF electron correlation. In case of the
PBE0 and HSE06 functional, the basis set sensitivity is apparent once more
as ∆Edimer approximately doubles and dSi−Si reduces by about 0.1�A when go-
ing from the pob-TZVP to the TZVPP/TZVP basis. Furthermore, while the
exact HF exchange supposedly inhibits the reconstruction for the restricted
calculations, it seems to amplify this effect in case of the unrestricted methods
because the hybrid functionals give shorter dimer bonds and more negative re-
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construction energies of about 2.45�A compared to the PBE results of 2.56�A.
In case of the reconstruction energies, this dependence is even more clear as it
increases with the amount of HF exchange included, i.e., from PBE with 0 %
HF exchange and −0.06 eV, HSE06 with 25 % short-range HF exchange and
−0.23 eV, PBE0 with 25 % full-range HF exchange and −0.28 eV, and pure HF
without correlation effects giving −1.25 eV. A similar trend is observable in
the corresponding Mulliken atomic spin densities and the spin contamination
∆ 〈Ŝ2〉 listed in Table 3.3, also increasing with the amount of HF exchange.
This is in accordance with the general observations that HF exchange favors
spin localization[84] and that the degree of spin contamination increases with
amount of HF exchange,[58,176] thus UKS generally showing less spin contami-
nation than UHF.[58,86] Furthermore, the values of ∆ 〈Ŝ2〉 approach one, which,
as established in Section 2.1.1.4, corresponds to the expected value of an un-
restricted singlet determinant being a 50:50 mixture of the spin-pure singlet
and triplet states.

The unrestricted high-spin optimizations shown in Table 3.2 were only suc-
cessful for the HF method and the hybrid functionals, also in accordance with
the favored spin localization when including HF exchange, which is further
apparent in the atomic spin densities in Table 3.3. Moreover, as expected
for unrestricted high-spin determinants, the spin contamination amounts to
negligible values of less than 0.01. The dimer bond lengths are in the range
of 2.42�A – 2.38�A and thus shorter by about 0.05�A – 0.12�A than their singlet
counterparts. This shortening is easily explainable by the missing ID bond-
ing due to the parallel spins of all dangling bonds at the dimer atoms, which
would otherwise counteract the dimer formation. Furthermore, the additional
exchange interaction between these parallel spins within each dimer possibly
also reduces the Coulomb repulsion. With respect to the reconstruction energy,
the HF method again shows very strong and supposedly overestimated stabi-
lization of −1.22 eV. For the pob-TZVP basis set, only the PBE0 functional

Table 3.3: Mulliken atomic spin densities of the two dimer atoms and spin contamination
∆ 〈Ŝ2〉 for the H-saturated 2×1 supercell 12-layer periodic slab models of the Si-terminated
3C-SiC(001)-p(2×1) reconstructed surface (SD model). The given values belong to some of
the optimizations already presented in Table 3.2. The TZVPP/TZVP basis set was used
except for the HF results, in which the pob-TZVP basis was applied. The values for ∆ 〈Ŝ2〉
slightly differ from the ones given in the author’s publication (J. Phys. Chem. C 2023, 127,

48, 23475–23488.) as they accidentally were not fully converged with respect to the ~k-point
grid in the latter.

Functional

Singlet Unrestricted High-Spin Unrestricted

Spin Density at
Si Dimer Atoms

∆ 〈Ŝ2〉 Spin Density at
Si Dimer Atoms

∆ 〈Ŝ2〉

HFa +0.87,−0.87 0.96 +0.90,+0.90 < 0.01

PBE +0.46,−0.46 0.48

PBE0 +0.66,−0.66 0.83 +0.81,+0.81 < 0.01

HSE06 +0.64,−0.64 0.80 +0.81,+0.81 < 0.01
a obtained with the pob-TZVP basis set
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gave physically reasonable results with ∆Edimer being 0.01 eV, thus slightly
destabilized compared to the unreconstructed ideal p(1×1) surface. However,
just like for the singlet case, employing the TZVPP/TZVP basis set increases
the reconstruction strength to −0.21 eV for PBE0 and yielding a value of
−0.14 eV for HSE06, opening up the possibility for the surface to also ex-
ist in this high-spin state, though less stabilized than the singlet state due to
the missing ID bonds. Such high-spin surfaces could show magnetic properties
and similar theoretical and experimental investigations in this regard have been
undertaken for the same or other covalent semiconductors exhibiting dangling
bond surface states.[177–183]

However, it should be noted that single-configurational approaches are not
able to correctly describe antiferromagnetic states, i.e., singlet polyradicals,
because the spin density should be zero everywhere,[81] which is not the case
and leads to spin contamination as apparent from Table 3.3. Since the ferro-
magnetic states, i.e., high-spin polyradicals, are correctly described, relative
energies between such singlet and triplet states have to be taken with care.
Unfortunately, correction methods for spin contamination like the AP scheme
presented in Section 2.1.1.4 are object of current research for calculations em-
ploying PBCs[184] and could thus not be utilized in this work to obtain more
reliable quantitative results. Furthermore, the influence of the spin contam-
ination on the total energy cannot be generalized to allow for an estimation
of its impact, e.g., always a decrease or an increase, but it is system depen-
dent instead. While often the higher-spin contaminants are higher in energy
and thus result in an increase in total energy through spin contamination,[59]

the opposite is the case, e.g., for methylene, where mixing of the triplet state
stabilizes the unrestricted singlet diradical.[185] Then again, because singlet
methylene is not solely defined by the diradical configuration but is of multi-
configurational character,[55,83] the unrestricted single-configurational methods
cannot be expected to always yield accurate results for such systems even with
spin contamination correction. Nevertheless, since the unrestricted diradicalic
singlet states of the Si-terminated 3C-SiC(001) surface in this work are sup-
posedly contaminated by the pure diradicalic triplet states, the latter showing
shorter dimer bonds and less negative reconstruction energies than the former,
the uncontaminated diradicalic singlet configuration can roughly be estimated
to exhibit longer dimer bonds and more negative reconstruction energies than
the spin-contaminated singlets. However, the longer dimer bonds could obvi-
ously also make the reconstruction energies more positive, so this estimation
has to be taken with care. Furthermore, the reconstruction energies are calcu-
lated with respect to the restricted single-configurational total energy Eideal,1×1
of the ideal p(1×1) surface, in which, contrary to the reconstructed surfaces,
no spin polarization could be induced and which is most likely of multiconfig-
urational character as established in Section 3.1. Accordingly, if this energy
is decreased through a more correct description, the relative energies ∆Edimer
could get more positive. Of course, this reduction in total energy could also
occur for the multiconfigurational description of the reconstructed surfaces,
possibly leading to an error compensation. From this lengthy discussion, it
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is obvious that quantitative results for the Si-terminated 3C-SiC(001) surface
cannot be expected from single-configurational approaches, which is why the
multiconfigurational calculations presented in Section 3.3 hopefully give fur-
ther insight.

Table 3.4 lists the singlet results of this work as well as theoretical and exper-
imental results from the literature regarding the Si-terminated 3C-SiC(001)-
p(2×1) reconstructed surface, mostly concerning the SD model. In case of this
work’s results, except for the HF method, only the calculations utilizing the

Table 3.4: Methodological and reconstruction parameters for several theoretical and exper-
imental studies of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model).
The TZVPP/TZVP basis set was used for the calculations of this work except for the HF
result, where the pob-TZVP basis was applied. Energy values listed below “Method” repre-
sent the cutoff energy Ecut for calculations employing plane wave basis sets. If values are not
given in the corresponding reference, they are denoted with “-”. Reprinted with permission
from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical
Society. Slightly modified.

Reference Method
Unre-

stricted?
dSi−Si [�A] ∆Edimer [eV] Eg,surf [eV]

[39, 40] LDA/259 eV no 2.75 −0.02 0.26

[41, 42] LDA/544 eV no 2.58, 2.63a −few meV 0.3

[43] LDA/- eV no 2.72 - 0.25

[44, 45] LDA/GTO no 2.73 −0.02 -

this work LDA/GTO no 2.71 −0.03 0.24

[46] PBE/400 eV no 2.69 - -

this work PBE/GTO no 2.72 −0.03 0.15

this work PBE0/GTO no 2.80 −0.02 1.01

this work HSE06/GTO no 2.80 −0.01 0.53

[54] PBE/500 eV yes 2.45 - -

this work LDA/GTO yes collapses to restricted solution

this work PBE/GTO yes 2.56 −0.06 0.39

this work PBE0/GTO yes 2.45 −0.28 2.07

this work HSE06/GTO yes 2.46 −0.23 1.34

this work HF/GTOb yes 2.46 −1.25 7.86

[53] CAS(4,4)/GTO 2.46 - -

[186] Fit to LEED 2.31c

[46] Fit to PED 2.2−2.5d

[35] STS 1.7d

a dimer bond length dependent on size of supercell
b obtained with the pob-TZVP basis set
c obtained for the p(2×1) reconstruction with buckled dimers

d obtained for the c(4×2) reconstruction (AUDD model)
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TZVPP/TZVP basis set are considered due to the higher basis set accuracy
and generally higher reliability during the calculations. As apparent, the avail-
able restricted LDA and PBE data align well with the restricted results of this
work showing long dimer bonds of about 2.7�A – 2.8�A and low reconstruction
energies of only a few −0.01 eV. An exception are the studies of Catellani et al.
with significantly shorter dSi−Si of 2.58�A and 2.63�A.[41,42] Here, the two values
were obtained for different supercell sizes, namely the one- and twofold of a
2
√

2×2
√

2R(45°) supercell with respect to the 1×1 surface supercells defined
in this work (this simply corresponds to a 2×2 supercell of the (001) face of
the fcc bulk unit cell of 3C-SiC with a = 4.36�A, see Fig. 1.3a). Since for both

of these supercells only Γ was included in the ~k-point grid, this insufficient ~k-
sampling resulted in two differently well converged geometries. This explains
why the longer dimer bond closer to the other converged theoretical data is
found for the larger supercell because the corresponding smaller reciprocal unit
cell utilized an overall denser ~k-point grid.

The unrestricted results of this work also agree with the only other published
unrestricted calculation of the Si-terminated 3C-SiC(001)-p(2×1) reconstruc-
tion of Xi et al., who also obtained a significantly shorter dimer bond of 2.45�A
using the PBE functional.[54] While this is slightly shorter than the PBE result
of this work, this deviation is most likely caused by the different plane wave
basis set since changes of similar magnitude were also observed in this work for
different basis sets as apparent from Table 3.2. Unfortunately, no information
regarding the reconstruction energy is given in the cited publication as their
work focused on the corrosion of this surface. Nevertheless, these unrestricted
calculations are in very good agreement with the high-level CAS(4,4) results
of Tamura and Gordon yielding a dimer bond length of 2.46�A.[53] As the cor-
responding NOONs revealed an almost pure diradicalic dimer, this agreement
might come to no surprise because the unrestricted single-configurational cal-
culations approximately simulate the same electronic structure. However, the
cluster model of Tamura and Gordon featured only one single dimer, thus
neglecting the interaction between neighboring dimers to form the band struc-
ture, which is why this effect on the structure of this surface will be accounted
for using multi-dimer cluster models in Section 3.3.

Regarding the dimer bond length, only two experimental studies are available
to the knowledge of this works’s author, in which structural models of the Si-
terminated 3C-SiC(001) surface were fitted to low electron energy diffraction
(LEED)[186] and photoelectron diffraction (PED)[46] data, resulting in values
of 2.31�A and 2.2�A – 2.5�A, respectively. However, the final model for the
LEED measurements yielded buckled dimers for the observed p(2×1) recon-
struction,[186] thus disagreeing with most of the theoretical studies. In case
of the PED experiment, the structural model was actually fitted to a c(4×2)
reconstructed surface, resulting in the AUDD model giving the best agree-
ment. But since the AUDD model is related to the SD model in a symmetric
manner, the actual bond length of the latter model should be in the range of
2.2�A – 2.5�A, thus in good agreement with the LEED study. Even though the
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experimental dimer bond lengths are accordingly of limited value, they seem
to be in better accordance with the shorter dimer bonds of the unrestricted
than the restricted calculations.

Another parameter to check is the surface band gap Eg,surf determined by the
surface states of the Si-terminated 3C-SiC(001) surface. Aristov et al. observed
this to be 1.7 eV for the c(4×2) reconstruction using scanning tunneling spec-
troscopy (STS).[35] Again, due to the close structural relation of the AUDD
model and the SD model of the p(2×1) reconstruction, a similar surface band
gap can be expected for both reconstructions, as was shown before by DFT
calculations.[28,42,47] Just like in case of the bulk band gaps, it is apparent from
Table 3.4 that the surface band gaps also vary strongly with respect to the
DFT functional used. Since the HSE06 calculations proved to give the best
bulk band gaps, the same can be assumed for the surface analogue, which is
why only the corresponding restricted and unrestricted results of 0.53 eV and
1.34 eV are considered, respectively. Hence, also in this regard, the unrestricted
calculations show better agreement than the restricted methodology.

While the reconstruction energy is not accessible experimentally, the higher
values of the hybrid UKS results of about −0.20 eV appear to be more rea-
sonable than the RKS values of about −0.02 eV. In the context of the p(2×1)
reconstruction being observable at RT, where kBT , which was used as a met-
ric by Dabrowski to characterize the temperature stability of the Si dimers at
the Si(001) surface,[138] amounts to 0.025 eV, such low reconstruction energies
might not be sufficient to form dimers under these conditions. On the other
hand, since the dimers supposedly interact with each other in each dimer row
through the ID bonds, the effective stability might be higher nonetheless.

3.2.3.3 Electronic Structure of p(2×1) Reconstructions

The most striking observation of the theoretical results presented so far is the
large difference between the restricted and unrestricted calculations regarding
the p(2×1) reconstruction strength of symmetric dimers on the Si-terminated
3C-SiC(001) surface. To explain this, a closer look at the electronic structure
of both methodologies is taken as presented in Fig. 3.11. Since the HSE06
functional supposedly gives the best bulk and surface band gaps, the results
of this functional will be discussed representatively but the conclusions can
also be transferred to the other functionals. First off, the calculated electronic
structure of the reference system, the ideal p(1×1) surface, is shown in a) but
for a 2×1 supercell for a direct comparability to the p(2×1) reconstructions.
As apparent from the band structure plot, most of the bands of the surface
slab are located in the PBBS and can thus be regarded as bulk states. Fur-
thermore, all bands are subject to band folding due to the doubled size of the
supercell. The IA and IA∗ bands extensively derived in Section 3.1 are partly
located within the band gap of the PBBS, as is expected for surface states
that are less stable/unstable than the occupied/unoccupied bulk states. Since
these bands are not exclusively located within the bulk band gap but also
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c) p(2×1) reconstruction at singlet UKS DFT HSE06 level
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b) p(2×1) reconstruction at singlet RKS DFT HSE06 level
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a) ideal p(1×1) surface (2×1 supercell) at singlet RKS DFT HSE06 level
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β-UKS bands
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Figure 3.11: Electronic structure of the a) ideal p(1×1) and b+c) p(2×1) reconstructed
(SD model) Si-terminated 3C-SiC(001) surface at singlet a+b) RKS and c) UKS DFT HSE06
level with the TZVPP/TZVP basis set for H-saturated 2×1 supercell 12-layer periodic slab
models. The isosurface value of the calculated orbitals and densities amounts to 0.01 a0

−3.
In c), only the β-UKS bands are visible as they coincide with their degenerate α counterparts.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society. Slightly modified and extended by a).
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overlap with the PBBS, they accordingly hybridize with the bulk-like states of
the slab model to yield surface resonances or at least swap energetic positions
with these bulk-like states. This results in the actual orbitals of the surface
states, i.e., the px/Br and the sp2/D orbitals of the surface Si atoms, to be
located in other bands with respect to their numbering, as is depicted together
with bulk-like state examples in Fig. A.9 (and analogously for π and the π∗

orbitals of the p(2×1) reconstruction in Figs. A.10 to A.13). In Fig. 3.11a), the
degenerate COs of the folded IA band at the K-point are also shown, illustrat-
ing the hybridization of the sp2 and px orbitals within the bands as discussed
before in Section 3.1. The depicted electron density of the IA band, which
is integrated over all ~k, accordingly also exhibits both the dangling bond (D)
and bridging (Br) character of these orbitals. At the bottom of Fig. 3.11a),
a simplified schematic configuration of the IA band of the ideal p(1×1) sur-
face using localized banana-shaped bonds between the surface atoms is shown,
which will be helpful to understand the p(2×1) reconstruction process.

Turning the attention to the band structures of the RKS and UKS DFT HSE06
calculations of the p(2×1) reconstruction in Fig. 3.11b) and c), respectively, it
is apparent that the folded IA and IA∗ bands of the ideal p(1×1) surface split
into the depicted σ, ID, ID∗ and σ∗ bands as a result of the Peierls distortion
responsible for the dimerization. Since the folded IA band is located below
the Fermi level EF and is thus fully occupied, the same is true for the σ and
ID bands emerging from it. Consequently, as the IA∗ band is unoccupied,
so are the corresponding ID∗ and σ∗ bands. Accordingly, the occupation of
the band structure for both RKS and UKS is identical. However, as apparent
from Fig. 3.11b) and c), the COs at the K-point are different for both methods.
In case of the RKS results, the established π∗-like orbital with C2v-symmetry
and dangling bond lobes of opposing phase at each dimer atom is depicted,
which can form the ID bonds to neighboring dimers due to the alternating
phase factor in x-direction at K. The corresponding UKS orbital for the α-ID
band, on the other hand, shows a broken spin-symmetry shape with only one
dangling bond lobe at one of the dimer atoms. Basically, this corresponds
to a linear combination of the π and π∗ frontier orbitals, in which only one
dangling bond survives. On a side note, such HOMO-LUMO-mixing is actually
a common approach to obtain broken spin-symmetry starting orbitals from a
regular closed-shell or high-spin solution.[94,187] As the α- and β-ID bands
are degenerate, the corresponding CO of the β-ID band is identical to its α
counterpart but symmetric to the σyz mirror plane centered in the dimer bond.
Unfortunately, plotting the β-COs seems to be corrupted in CRYSTAL17,
which is why they are not displayed here explicitly. Due to the broken spin-
symmetry of the α- and β-ID bands, opposing spin density arises at both dimer
atoms as was shown in Table 3.3 and is also visible in the spin density plot of
Fig. 3.11c), mimicking diradicalic behavior. However, it is important to stress
that in this UKS solution, only the broken spin-symmetry ID bands are singly
occupied each, which contrasts a high-spin or true diradicalic configuration
with the ID and ID∗ bands of correct spin-symmetry carrying one electron
each. Still, this approximate spin-contaminated diradicalic UKS description
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greatly influences the reconstruction compared to the RKS case. Since the
α- and β-ID COs can only overlap with themselves on neighboring dimers
under PBCs and not with the orbital of opposite spin, the single dangling
bond lobe is not able to form a significant ID bond. This contradicts the
RKS solution and is easily understandable when comparing the two schematic
configurations of Fig. 3.11b) and c): in the RKS calculation, the ID band has
to be fully occupied, thus forming the ID bond counteracting the formation of
the intradimer σ bond and inhibiting a stronger reconstruction. In the UKS
solution, this ID bond is bisected, yielding two singly occupied dangling bonds
and consequently resulting in stronger reconstruction with shorter dSi−Si and
more negative ∆Edimer. The depicted calculated electron densities also support
this since the dangling bond lobes of neighboring dimers overlap in the RKS
case and do not in the UKS case.

The difference in reconstruction strength should also be the reason for the
significantly different surface band gaps Eg,surf of 0.53 eV for the RKS and
1.34 eV for the UKS HSE06 solution. As apparent from the band structures,
the shorter dimer bonds of UKS obviously results in a stronger energetic split-
ting of the σ and σ∗ bands compared to RKS. Consequently, it would be rea-
sonable for the UKS ID and ID∗ bands to become more degenerate since the
shorter dimer bond is accompanied by larger ID distances and thus reduced
overlap between neighboring dimers, which should decrease the bonding and
antibonding character of both bands, respectively. This is, however, not the
case as the surface band gap determined by these two bands increases signifi-
cantly with respect to the RKS solution. A closer comparison of the ID band
electron densities of both methodologies reveals the additional small electron
cloud right below the σ bond of the dimer in the UKS case, which is quite sim-
ilar to the small bonding orbital lobe at the same position of the π-like orbital
in the MO diagram in Fig. 3.3. This intradimer bonding interaction might be-
come more relevant in the UKS case due to the enhanced overlap as the dimer
bond shortens and due to the supposed absence of the ID bonding. Accord-
ingly, the corresponding antibonding interaction of the π∗-like orbital might
also increase owed to the shorter dimer bond, explaining the observed increase
in energy of the ID∗ band parallel to the ID band. Since this increase of the
surface band gap of UKS compared to RKS is most prominent at the J ′-point,
the corresponding ID and ID∗ COs for both methodologies are additionally
depicted in Fig. 3.12. While there is not any obvious antibonding intradimer
interaction in the UKS α-ID∗ CO, there certainly is intradimer bonding in
the RKS ID∗ CO, explaining the lower energy of the corresponding RKS ID∗

band compared to its UKS counterpart. However, since only investigating a
few ~k-points might not be sufficient as it represents just a small part of the
whole band structure, this interpretation has to be treated with caution.

Interestingly, as further apparent from Fig. 3.11a) and b), the RKS HSE06
surface band gap of the p(2×1) reconstruction with 0.53 eV is even smaller
than for the ideal p(1×1) surface with 0.61 eV. Sabisch et al. observed a very
similar behavior in their LDA calculations with virtually no change of the
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singlet COs at J' of the p(2×1) reconstruction at

a) RKS DFT HSE06 level

ID band ID* band

b) UKS DFT HSE06 level

α-ID band α-ID* band

Figure 3.12: Singlet COs at J ′ of the ID and ID∗ bands of the Si-terminated 3C-SiC(001)-
p(2×1) reconstruction (SD model) at a) RKS and b) UKS DFT HSE06 level with the
TZVPP/TZVP basis set for 2×1 supercell 12-layer periodic slab models. The isosurface
value of the calculated orbitals and densities amounts to 0.01 a0

−3.

band gap upon reconstruction.[45] This behavior is reasonable as the folded IA
and IA∗ bands split up, causing the emerging ID and ID∗ bands to approach
each other to overall reduce the band gap. The symmetry breaking of UKS,
on the other hand, can counteract this effect, mainly by raising the energy
and flattening the dispersion of the ID∗ band, while the ID band is mostly
unaffected in Fig. 3.11c).

As summarized in the review of Pollmann and Krüger,[28] various experimental
studies confirm the presence of two occupied surface states for the p(2×1) re-
construction,[26,38,151–153,188,189] one emerging above the valence band maximum
(VBM) of the bulk and the second about 1 eV below the first band,[28] which
should correspond to the σ and ID bands in the calculated band structures
of this work and previous theoretical studies.[39,43–45,151] However, as Pollmann
and Krüger point out, the experiments only measured the band structure along
the Γ−J and Γ−J ′, namely the x- and y-directions, showing a very flat band
for the higher-lying surface state. This would correspond to the ID band,
which in all previous calculations shows stronger dispersion than in the exper-
iment. Accordingly, it was concluded that there is no good agreement between
experiment and theory, which could also not be resolved by other structural
models than the symmetric dimer, indicating further work to be necessary.[28]

Unfortunately, the RKS and UKS band structures of this work, calculated with
hybrid functionals for the first time, also do not give any better agreement with
the experiment.

Benesch et al. determined several unoccupied surface states experimentally
by inverse photoemission (IPE) spectroscopy.[154] The authors also compared
their own IPE data and previous ultraviolet photoemission (UPS) results with
published theoretical RKS LDA studies, to which the RKS and UKS HSE06
results of this work are added in Table 3.5. Here, the authors tried to match the
experimental energy levels of the surface states at J ′ and Γ with the LDA val-
ues of the ID∗ and σ∗ band. Since the LDA band gap strongly underestimates
the experimental band gap, the calculated bands were shifted to better fit to
the experimental data. Furthermore, because the σ∗ band is located within
the PBBS at Γ , they estimated the LDA value at this position by assuming
the dispersion of this band to be equal to the σ band in the Γ−J section
due to the same symmetry. However, they referred to the work of Sabisch

86



3.2 Single-Configurational Calculations with PBCs

Table 3.5: Experimental and theoretical energetic positions of surface states (SS) and

surface resonances (SR) at certain high-symmetry ~k-points of the Si-terminated 3C-SiC(001)-
p(2×1) reconstructed surface (SD model) with respect to the VBM of the 3C-SiC bulk. The
corresponding COs for the results of this work are depicted in Fig. 3.13. Created based on
a table from Ref. [154].

Reference Method

occupied unoccupied

SR at
J ′ [eV]

SS at
Γ [eV]

SS at
Γ [eV]

SR at
Γ [eV]

SR at
Γ [eV]

SR at
Γ [eV]

SR at
Γ [eV]

[38, 153] UPS −0.7 0.3 - - - - -

[152] UPS −0.6 0.7 - - - - -

[151] UPS −1.5 0.7 - - - - -

[154] IPE - - 2.0 3.6 4.3 6.8 9.1

[45] RKS LDAa −1.1 0.5 2.2 ≈ 3.6b - - -

[151] RKS LDAa −1.3 0.5 1.9 ≈ 3.5b - - -

this work RKS HSE06 −0.9 0.9 1.6 3.4 4.5 - 8.1

this work UKS HSE06 −1.4 0.6 2.4 3.5 4.4 - 8.5
a LDA bands shifted in Ref. [154] to match the experimental band gap

b estimated values from Ref. [154] by extrapolating the dispersion of the σ∗ band from the ID∗

band (erroneously labeled as σ in the respective work[154]) for the Γ−J section

CO 121 at J' CO 122 at Γ CO 123 at Γ CO 124 at Γ CO 125 at Γ CO 141 at Γ

CO 231 at J' CO 243 at Γ CO 246 at Γ CO 248 at Γ CO 250 at Γ CO 286 at Γ

occupied unoccupied

−0.93 eV 0.92 eV 1.60 eV 3.41 eV2.57 eV 8.07 eV

−1.41 eV 0.62 eV 2.42 eV 2.73 eV 3.49 eV 8.46 eV

σ ID ID* σ*

σ ID ID* σ*

singlet COs of the p(2×1) reconstruction at
a) RKS DFT HSE06 level

b) UKS DFT HSE06 level

CO 252 at Γ
4.44 eV

CO 126 at Γ
4.50 eV

Figure 3.13: Singlet COs near the band gap and their energy levels of the Si-terminated
3C-SiC(001)-p(2×1) reconstructed surface (SD model) at a) RKS and b) UKS DFT HSE06
level with the TZVPP/TZVP basis set for 2×1 supercell 12-layer periodic slab models. The
energy levels are given with respect to the VBM of the 3C-SiC bulk. In case of the UKS
orbitals, only the COs of the α bands are shown. Only the energy levels highlighted in gray
are listed in Table 3.5. The isosurface value of the calculated orbitals amounts to 0.01 a0

−3.
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et al., where the unoccupied surface states were labeled as σ and σ∗ and the
occupied surface states as π and π∗.[45] This was also done in other theoretical
studies,[28,43] which is incorrect when taking the considerations of Section 3.1
into account. Accordingly, the values of the LDA calculations in Table 3.5
have to be treated with caution. The RKS and UKS HSE06 results of this
work are more reliable as no artificial band gap enhancement is needed and
the energetic values can actually be characterized by the COs of the surface
states as depicted in Fig. 3.13.

Since the experimental values of the occupied surface states already differ
quite strongly, a quantitative comparison appears to be difficult, which can be
attributed to the determination of the VBM not being trivial experimentally
and theoretically.[151,154] Still, the RKS and UKS HSE06 energy values for the
lowest occupied surface resonance, i.e., the σ band, at J ′ fit into the range
of the previous experimental and theoretical results. In case of the highest
occupied surface state, namely the ID band, two of the three experimental
studies[151,152] find an energy of 0.7 eV at Γ , which is in between the RKS and
UKS HSE06 values of 0.9 eV and 0.6 eV, respectively. The same is true for the
IPE results of the lowest unoccupied surface state, i.e., the ID∗ band, with a
value of 2.0 eV surrounded by the RKS and UKS HSE06 of 1.6 eV and 2.4 eV,
respectively. Concerning the highest listed unoccupied surface resonance, the
IPE experiments yield an energy of 3.6 eV, which is in good agreement with
the RKS and UKS HSE06 values of 3.4 eV and 3.5 eV, respectively. It should
be noted that, as apparent from Fig. 3.13, the corresponding COs of this
unoccupied surface resonance (CO 125 for RKS and CO 250 for UKS) do
not show the intuitively expected σ∗ character. Instead, they appear to be a
surface resonance mixed from a bulk state formed by Si dx2−y2 orbitals and
a σ bond at the Si dimer atoms constructed from the same orbitals. This
d orbital σ bond is more pronounced in the very similar and energetically
subsequent surface resonance (CO 126 and CO 252). Actually, in the surface
band structure of Benesch et al., there is an energy level at 4.3 eV (2.7 eV in
the study before considering the VBM shift of 1.6 eV for the bulk) at Γ ,[154]

which nicely matches the RKS and UKS values for the latter surface resonance
with 4.5 eV and 4.4 eV, respectively. While for an isolated Si dimer the σ∗

bond of sp3 orbitals should be lower in energy than the d orbital σ bond,
the former is supposedly destabilized due to the inferior overlap with the d
orbital bulk states. The d orbitals contribute significantly to the bulk band
structure near the conduction band minimum (CBM) as apparent in the COs
and projected DOS (PDOS) plots in Fig. A.8, hence the σ∗ bond is found at
higher energies of 8.1 eV and 8.5 eV for RKS and UKS (CO 141 and CO 286),
respectively. In the data of Benesch et al. there further is an energy level of
9.1 eV at Γ (7.5 eV before bulk VBM shift),[154] which might correspond to
this σ∗ surface resonance. The σ bond from d orbitals, on the other hand,
shows superior overlap with the bulk orbitals of the same kind, explaining why
this surface resonance is stabilized and thus located at such low energies. From
this discussion, it can be concluded that the extrapolation of the LDA σ∗ band
done by Benesch et al.[154] giving such a good agreement with the experiment
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is apparently a coincidence as the d orbital σ surface resonance is energetically
just at this position. Besides, the intermediate state (CO 124 and CO 248)
not discussed so far is most likely not found experimentally as it is a pure
bulk state with low surface amplitudes not detectable by the experimental
surface sensitive methods. Regarding the experimental surface band structure
of Benesch et al., only one energy level at 6.8 eV (5.2 eV before bulk VBM shift)
at Γ [154] is left over and not assigned to a certain CO in this work. However,
as there are various states in this energy region, an unambiguous assignment
proves to be difficult and will thus not be attempted here.

Overall, as stated before by the cited authors,[28,154] while the qualitative agree-
ment between experiment and theory regarding the electronic structure ap-
pears to be good, the quantitative results can neither fully confirm nor rule
out the SD model to be the correct structure for the p(2×1) reconstruction
of the Si-terminated 3C-SiC(001) surface. As Pollmann and Krüger indicated,
other structural models could also not resolve this issue.[28] Since the UKS re-
sults of this work could also not give a substantially improved agreement with
the experiment, a multiconfigurational treatment of the surface might resolve
this issue. Unfortunately, the corresponding cluster model calculations con-
ducted in Section 3.3 will also not be able to answer this particular question
because the derivation of a band structure is not possible as will be discussed
later. Nevertheless, it can be concluded that the HSE06 method appears to
be the best choice with respect to DFT functionals for 3C-SiC since no sub-
sequent shift of the energy levels is needed for a reasonable comparison to the
experiment.

Turning the attention to the p(2×1) reconstruction with buckled dimers found
for the RKS HSE06 calculations of the Si-terminated 3C-SiC(001) surface,
the corresponding electronic structure is depicted in Fig. 3.14. In analogy
to the buckled dimers on the Si(001) surface, where the JT splitting results
in a doubly occupied sp3 orbital at the upper and an unoccupied pz orbital
at the lower Si dimer atom,[49–52] the bands determining the band gap are
denoted analogously. While the depicted COs do not clearly resemble this
electronic structure also given schematically at the bottom of Fig. 3.14, the
plotted electron density of the sp3 band clearly shows the dangling bond lobe
at the upper dimer atom. Still, the charge transfer to this atom is very small
as the difference in Mulliken charges only amounts to 0.1 e. However, in early
semiempirical calculations of the buckled dimers on the Si(001)-p(2×1) recon-
structed surface, a comparably low value of 0.36 e was found.[49] The lower
charge transfer on the 3C-SiC surface might be attributed to the less pro-
nounced buckling due to the smaller lattice constant compared to the Si(001)
counterpart. While on the Si(001) surface both dimer atoms move closer to
one another with respect to the ideal surface, on the 3C-SiC(001) surface one
of the atoms basically stays in the ideal position with only the bond length to
the underlying C atoms slightly increasing.

Interestingly, the band gap increase to 0.85 eV of the RKS HSE06 calcula-
tion of buckled dimers with respect to the ideal p(1×1) surface with 0.61 eV
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Figure 3.14: Electronic structure of the buckled dimer p(2×1) reconstructed Si-terminated
3C-SiC(001) surface at singlet RKS DFT HSE06 level with the TZVPP/TZVP basis set for
a 2×1 supercell 12-layer periodic slab model. The isosurface value of the calculated orbitals
and densities amounts to 0.01 a0
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seems to be in contrast to the calculation of symmetric dimers with the same
methodology, which shows a smaller band gap of 0.52 eV. Previous studies
even predict the buckled dimer to be metallic,[45] which can, however, suppos-
edly be attributed to the less sophisticated LDA functional and especially the
calculations being conducted for an unoptimized buckled structure. A com-
parison of the frontier COs at J ′ of the buckled dimer at RKS HSE06 level
in Fig. 3.14 and of the symmetric dimer at UKS HSE06 level in Fig. 3.12
shows a very high similarity. This is reasonable as the buckling of the JT
effect can be regarded as a spatial-symmetry breaking, while the UKS method
induces a spin-symmetry breaking, both with the goal to further decrease the
energy compared to the symmetric dimers with restricted and thus also spin-
symmetric electronic structure. With this in mind, the band gap increase of
the buckled dimers is in agreement with the UKS calculations also giving a
larger band gap. However, it also follows from this that buckled dimers might
still just be an artifact as a result of the inability of RKS to include static
correlation because the UKS calculations, which can consider it to a certain
extent, yield stronger reconstruction for symmetric dimers.

Lastly, the electronic structure of the high-spin state of the Si-terminated
3C-SiC(001)-p(2×1) reconstructed surface with symmetric dimers is shown in
Fig. 3.15. As apparent in the band structure plot, the α and β bands are
no longer degenerate and, as established in Section 2.1.1.2, the α bands are
stabilized compared to their β counterparts due to the increased number of α
electrons and thus the increased exchange interaction between them. In the
electron density plots of the ID and ID∗ bands, the shape of the π∗ and π
orbitals is clearly visible and since both bands are occupied by one electron
per unit cell, a true diradicalic character of each dimer is obtained. As already
mentioned in the previous section, the parallel spins of the dangling bonds
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Figure 3.15: Electronic structure of the p(2×1) reconstructed (SD model) Si-terminated
3C-SiC(001) surface at triplet UKS DFT HSE06 level with the TZVPP/TZVP basis set for
a 2×1 supercell 12-layer periodic slab model. The isosurface value of the calculated electron
densities amounts to 0.005 a0

−3.

prevent the formation of interdimer bonds, which expresses itself in the missing
overlap between the dangling bond lobes of neighboring dimers in the electron
density plots. While the electron densities might suggest otherwise, it should
be noted that both ID and ID∗ bands still exhibit π∗ and π character at the
same time but to a lesser extent than the corresponding singlet RKS bands as
apparent from Fig. A.13. Since the α and β bands are non-degenerate, there
are two different surface band gaps, namely Eg,surf,α and Eg,surf,β, of which
the latter is given in Fig. 3.15 with 0.99 eV. However, because the CBM of the
slab model located at Γ is higher in energy than the CBM of the PBBS, the
true band gap under consideration of the bulk band structure should amount
to about 0.67 eV. From this, it can be concluded that the periodic slab models
are not able to properly recover the electronic structure of the bulk, which will
be further investigated in Section 3.2.3.5.

3.2.3.4 Reconstructions in Larger Supercells

In the next step, the translational freedom of the Si-terminated 3C-SiC(001)
surface was further extended by utilizing larger supercells, namely a rhombic
(
√

5×
√

5)R(2 · tan−1(0.5)) supercell and a 4×2 supercell, with the correspond-
ing 12- and 10-layer periodic slab models being depicted in Fig. 3.16. As
the HSE06 functional with the TZVPP/TZVP basis set appeared to be the
most reliable choice in the previous sections to investigate the Si-terminated
3C-SiC(001) surface, this methodological combination will mainly be used in
the following. Furthermore, only the singlet spin-state will be discussed since
the high-spin states yielded, as expected, results identical to the 2×1 super-
cell calculations presented earlier. At first, it should be checked whether the
AUDD or the SD model is favored for the unstrained surface, for which the
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x
y

z

a) b)

Figure 3.16: H-saturated a) 12- and b) 10-layer periodic slab models for the p(2×1)
reconstructed (SD model) Si-terminated 3C-SiC(001) surface in a a) rhombic (

√
5×
√

5)R(2 ·
tan−1(0.5)) supercell and a b) 4×2 supercell. Both structures were optimized at singlet UKS
DFT HSE06 level with the TZVPP/TZVP basis set and spin arrangement 1 of Table 3.6
for a) and spin arrangement 1 of Table 3.7 for b). The lattice parameter of the unit cells in
z is depicted smaller than it is in the actual calculations.

rhombic supercell is sufficient. AUDD model starting structures of different
dimer bond lengths and z-height differences between the dimers were created
and optimized. In case of the singlet UKS calculations, different spin arrange-
ments are possible since there are four dimer atoms per rhombic unit cell, to
which the two α and two β electrons have to be distributed. The total number
of different spin arrangements amounts to:

4!

2! · 2!
= 6 (3.2)

Since two arrangements of identical order but inverted spins are energetically
degenerate, e.g., ↑↑ ↓↓ is equal to ↓↓ ↑↑, the number is halved to three and the
different possibilities are listed in the first column of Table 3.6, which corre-
spond to the numbering of the dimer atoms depicted in Fig. 3.17a). Regarding
the RKS DFT HSE06 calculations, the c(4×2) AUDD starting structure al-
ways converged towards a p(2×1) reconstruction either of symmetric or buck-
led dimers with reconstruction energies ∆Edimer of −0.01 eV and −0.05 eV,
respectively, already found in the previous sections. As apparent from Ta-
ble 3.6, the UKS calculations with the three different spin arrangements all
converged exclusively to the SD model but with different dimer bond lengths,
reconstruction energies, and surface band gaps. The first spin arrangement is
equal to the one chosen before for the singlet UKS calculations of the 2×1 su-
percells and accordingly gives the same results with ∆Edimer of −0.23 eV. The
reconstruction energies of the spin arrangements 2 and 3 amount to −0.10 eV
and −0.31 eV, respectively, which corresponds to quite substantial relative de-
viations of over 50 %. The decreased reconstruction of spin arrangement 2 can
be intuitively explained by the parallel spin of the dangling bonds of neighbor-
ing dimers in each dimer row preventing the formation of an interdimer bond,
which also significantly reduces the dimer bond length to 2.40�A. Spin arrange-
ment 3 basically consists of α and β high-spin dimers, which occur alternately
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Table 3.6: Dimer bond lengths dSi−Si, reconstruction energies ∆Edimer, surface band
gaps Eg,surf , and spin contamination ∆ 〈Ŝ2〉 per dimer for the H-saturated rhombic
(
√

5×
√

5)R(2 · tan−1(0.5)) supercell 12-layer periodic slab model of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) optimized at singlet UKS DFT HSE06
level with the TZVPP/TZVP basis set for the different possible spin arrangements. The
assignment of the spins to the atoms is done according to the numbering in Fig. 3.17a). Spin
density values are available in Table A.2.

Start Spins at Si Dimer
Atoms 1 to 4 in Fig. 3.17a)

dSi−Si [�A] ∆Edimer [eV] Eg,surf [eV] ∆ 〈Ŝ2〉 per Dimer

1:a ↑ ↓ ↑ ↓ 2.46 −0.23 1.36 0.80

2: ↑ ↓ ↓ ↑ 2.40 −0.10 1.01 0.95

3: ↑ ↑ ↓ ↓ 2.45 −0.31 1.64 0.81
a equal to singlet UKS HSE06 of Table 3.3

x

y
1 2

3 4

a)
1 2 3 4

5 6 7 8

b)

Figure 3.17: Numbering of the dimer atoms of the Si-terminated 3C-SiC(001) surface to
define the different spin arrangements used in the singlet UKS DFT calculations for the a)
rhombic (

√
5×
√

5)R(2 · tan−1(0.5)) supercell in Table 3.6 and for the b) 4×2 supercell in
Table 3.7.

in each dimer row. In this way, an interdimer bond can supposedly be formed
and at the same time, a stabilizing intradimer exchange interaction exists, fur-
ther reducing the total energy compared to spin arrangement 1. Interestingly,
the surface band gaps also increase or decrease with the reconstruction energy
as the new spin arrangements yield values of 1.01 eV and 1.64 eV, respectively,
surrounding the value of 1.36 eV of spin arrangement 1. However, as further
apparent from Table 3.6, these singlet polyradicals are spin-contaminated and
can each be interpreted as one determinant needed for a linear combination
to give the true singlet radicalic configuration. Furthermore, since the spin
contamination is comparable but not equally high for each of the spin ar-
rangements, a comparison of the energies and an energetic ordering proves to
be difficult. Nevertheless, from these results one could estimate the correct
spatial and electronic structure to be somewhere in the region of these three
values. In any case, the hybrid DFT calculations of this work further support
the previous theoretical studies finding the SD model to be favored over the
AUDD model for unstrained surfaces.[28,42,46–48]

With this in mind, the AUDD model was not considered further for the 4×2
supercell calculations of the Si-terminated 3C-SiC(001) surface presented in the
following. Accordingly, the starting structures for the geometry optimizations
were restricted to the SD model obtained in the singlet UKS calculations on the
2×1 supercell to investigate the effect of additional spin arrangements, which
are possible due to the lower translational symmetry of the 4×2 supercell.
Again, the total number of different spin arrangements when assigning four α
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and four β electrons to eight dimer atoms calculates as:

8!

4! · 4!
= 70 (3.3)

Besides halving this value to 35 to exclude identical arrangements of inverted
spin, additionally, as empirically determined, translational and rotational sym-
metry have to be considered. To be more precise, this corresponds to trans-
lating the spin arrangement by one dimer along x, by one dimer row along y,
diagonally by the combination of both of these operations, as well as the com-
bination of the previous three translational operations with the C2-rotation
around the supercell center as well as the sole C2-rotation, giving overall seven
symmetry operations. This reduces the number of unique spin arrangements
from 35 to 14 for the 4×2 supercell, which are listed in the first column of Ta-
ble 3.7 and are associated to the dimer atom numbering depicted in Fig. 3.17b).
Among these are, of course, the previous one p(2×1) and two c(4×2) spin ar-
rangements from the 2×1 and rhombic supercells, namely spin arrangements
1, 5, and 14, which stay in their SD model structure with the same spatial
and electronic parameters obtained before. All of the remaining spin arrange-

Table 3.7: Reconstruction energies ∆Edimer, surface band gaps Eg,surf , and spin contam-

ination ∆ 〈Ŝ2〉 per dimer for the H-saturated 4×2 supercell 10-layer periodic slab model of
the Si-terminated 3C-SiC(001) reconstructed surface optimized at singlet UKS DFT HSE06
level with the TZVPP/TZVP basis set for the different possible spin arrangements. The
assignment of the spins to the atoms is done according to the numbering in Fig. 3.17b).
Spin density values and dimer bond lengths are available in Table A.3.

Start Spins at Si Dimer
Atoms 1 to 8 in Fig. 3.17b)

∆Edimer [eV] Eg,surf [eV] ∆ 〈Ŝ2〉 per Dimer

1:a ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ −0.23 1.36 0.80

2: ↑ ↓ ↑ ↓ ↓ ↑ ↑ ↓ −0.24 1.50 0.79

3: ↑ ↓ ↓ ↑ ↑ ↓ ↑ ↓ −0.17 1.08 0.86

4: ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ −0.09 0.78 0.98

5:b ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓ −0.10 1.02 0.95

6: ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↓ −0.20 1.10 0.88

7: ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↑ −0.21 1.08 0.85

8:c ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↓ −0.29 1.12 0.48

9: ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ −0.21 1.03 0.85

10:c ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ −0.29 1.12 0.48

11: ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ −0.17 0.55 0.95

12: ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓ −0.27 1.42 0.81

13: ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ −0.29 1.17 0.83

14:d ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ −0.31 1.65 0.81
a equal to singlet UKS HSE06 of Table 3.3 and spin arrangement 1 of Table 3.6
b equal to spin arrangement 2 of Table 3.6
c change of sign in atomic spin densities (see Table A.3) during geometry

optimization to p(4×1) reconstruction (see Fig. 3.18a)

d equal to spin arrangement 3 of Table 3.6
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ments, except for 8 and 10, also gave symmetric dimers but the bond length
of the four dimers in one supercell could differ in the range of 2.38�A – 2.48�A
as apparent from Table A.3. The general correlation of equally in- or de-
creasing ∆Edimer and Eg,surf values already observed for the rhombic spin
arrangements seems to continue but not as strict as anticipated. The range of
reconstruction energies is extended to −0.09 eV –−0.31 eV and of surface band
gaps to 0.55 eV – 1.65 eV compared to the rhombic unit cell, though both the
strongest reconstruction and largest band gap were already achieved for the
spin arrangement 3 of the rhombic case.

The spin arrangements 8 and 10 stand out in Table 3.7 due to their low spin
contamination value of 0.48 each, which is about half as low as the remain-
ing spin arrangements. This is reasonable since these calculations did not
converge towards a p(2×1) reconstruction with symmetric dimers but instead
gave a p(4×1) reconstruction within the 4×2 supercell, which is depicted in
Fig. 3.18a). Basically, two dimers themselves dimerize again in this structure
by lengthening the intradimer bonds and shortening the interdimer distance
compared to the UKS SD model, which also results in each of the original
dimers to buckle by ∆zSi−Si = 0.19�A. The reconstruction energy amounts to
−0.29 eV and thus is the second most stable of all possible spin arrangements
in the 4×2 supercell. While the outer two Si surface atoms of each p(4×1) unit
remain radicalic with spin densities of ±0.66 (see Table A.3), the additional
dimerization leads to reduced spin densities at the inner two surface atoms
amounting to ±0.13, thus almost representing a closed-shell situation overall
reducing the spin contamination. Obviously, in principle, there also exist 14
different spin arrangements for this p(4×1) reconstruction in the 4×2 supercell
but since the inner dimer atoms show such low spin densities, only the three
possibilities listed in Table 3.8 were explored. Here, spin arrangement 2 is
identical to the converged spin arrangements 8 and 10 of Table 3.7. Generally,
it appears that the influence of the spin arrangement on the reconstruction
energy is negligible, probably due to the large distance of about 4.2�A – 4.3�A
between the surface Si atoms of neighboring p(4×1) units, which carry the spin

x

z

ΔEdimer= −0.29 eV
Eg,surf= 1.12 eV

dID = 2.85 Å

dSi−Si = 2.62 Å
ΔzSi−Si= 0.19 Å

dID = 2.88 Å

dSi−Si,1 = 2.79 Å
ΔzSi−Si,1= 0.35 Å

dSi−Si,2 = 2.55 Å
ΔzSi−Si,2= 0.08 Å

ΔEdimer= −0.15 eV
Eg,surf= 0.78 eV

a) p(4×1) reconstruction
a) UKS DFT HSE06

b) p(4×2) reconstruction
b) RKS DFT HSE06

Figure 3.18: a) p(4×1) and b) p(4×2) reconstructions of the Si-terminated 3C-SiC(001)
surface found for a H-saturated 4×2 supercell 10-layer periodic slab model at singlet a) UKS
and b) RKS DFT HSE06 level with the TZVPP/TZVP basis set. Structure a) corresponds
to spin arrangements 8 and 10 in Table 3.7 or spin arrangement 2 in Table 3.8. The structural
parameters of b) are given for the dimer row in the front.
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Table 3.8: Reconstruction energies ∆Edimer, surface band gaps Eg,surf , and spin contam-

ination ∆ 〈Ŝ2〉 per dimer for the H-saturated 4×2 supercell 10-layer periodic slab model of
the Si-terminated 3C-SiC(001)-p(4×1) reconstructed surface optimized at singlet UKS DFT
HSE06 level with the TZVPP/TZVP basis set for the different possible spin arrangements.
The assignment of the spins to the atoms is done according to the numbering in Fig. 3.17b).
Spin density values and bond lengths are available in Table A.4.

Start Spins at Si Dimer
Atoms 1 to 8 in Fig. 3.17b)

∆Edimer [eV] Eg,surf [eV] ∆ 〈Ŝ2〉 per Dimer

1: ↑ 0 0 ↓ ↑ 0 0 ↓ −0.29 1.12 0.49

2:a ↑ 0 0 ↑ ↓ 0 0 ↓ −0.29 1.12 0.48

3: ↑ 0 0 ↓ ↓ 0 0 ↑ −0.30 1.31 0.48
a equal to converged spin arrangements 8 and 10 of Table 3.7

density. Still, spin arrangement 3 shows a significantly larger surface band gap
of 1.31 eV compared to the 1.12 eV of the other two arrangements.

To check if this p(4×1) reconstruction could also be obtained for the restricted
approach, a geometry optimization at RKS HSE06 level of such a starting
structure in the 4×2 supercell was additionally conducted. Interestingly, a
p(4×2) reconstruction as depicted in Fig. 3.18b) resulted instead, which con-
sists of two dimerized buckled dimers within each of the two 4×1 units. Here,
one 4×1 unit buckles in positive and the other in negative x-direction. This
reconstruction is remarkably strong for an RKS structure with ∆Edimer of
−0.15 eV compared to the symmetric and buckled dimer p(2×1) reconstruc-
tions giving values of−0.01 eV and−0.05 eV for the same method, respectively.

Trabada and Ortega[173] were able to find identical p(4×1) and p(4×2) recon-
structions for the Si-terminated 3C-SiC(001) surface. However, they obtained
the p(4×1) structure in LDA calculations with a plane wave basis set but
not the p(4×2) reconstruction at the same level of theory. The latter was only
found in semiempirical tight-binding (TB) calculations as the minimum energy
structure, with the p(4×1) reconstruction also representing a local minimum.
As these authors could obtain the p(4×1) reconstruction using a restricted
formalism, it was further attempted to do the same in this work by reducing
the supercell size to 4×1 to avoid the formation of the p(4×2) reconstruc-
tion, which was successful eventually with a structure very similar to the UKS
case (see bond lengths in Table A.5). It was also tried to converge a buckled
p(4×1) reconstruction using RKS in the 4×1 supercell, which simply corre-
sponded to one 4×1 unit of the p(4×2) reconstruction, but it converged to
the p(2×1) buckled dimer structure. Furthermore, an UKS calculation of the
p(4×2) reconstruction was also attempted but it collapsed to the RKS solu-
tion immediately. All calculations were additionally carried out with the LDA
and PBE functional for a better comparability to the RKS LDA and TB re-
sults of Trabada and Ortega[173] as listed in Table 3.9. Regarding the surface
band gap, the RKS calculations of the cited authors are in accordance with
the results of this work, namely giving a conducting p(4×1) reconstruction
and a semiconducting p(4×2) structure. The very small band gap of 0.02 eV
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Table 3.9: Comparison of the reconstruction energies ∆Edimer and surface band gaps
Eg,surf for the p(4×1) and p(4×2) reconstructed Si-terminated 3C-SiC(001) surfaces at
singlet RKS and UKS DFT level with the TZVPP/TZVP basis set and different DFT
functionals to the theoretical results of Trabada and Ortega.[173] The UKS calculations of
this work used spin arrangement 1 of Table 3.8. Spin density values, bond lengths, and spin
contamination per dimer of this work’s results are available in Table A.5.

Recon-
struction

Parameter

RKS UKS

This Work Ref. [173] This Work

HSE06 PBE LDA LDA TB HSE06 PBE LDA

p(4×1)
∆Edimer [eV] −0.03 −0.07 −0.04 −0.12 −0.17 −0.29 −0.14 −0.05

Eg,surf [eV] cond. 0.02 cond. - cond. 1.12 0.35 0.14

p(4×2)
∆Edimer [eV] −0.15 −0.10 −0.07 - −0.21 collapse to p(4×2)

RKS solutionEg,surf [eV] 0.78 0.23 0.22 - 0.33

in the PBE case supposedly still indicates metallic character and might just
be a numerical issue. Furthermore, most of the calculations find the p(4×2)
reconstruction to be more stable than the p(4×1) reconstruction with the only
exception being the LDA calculations of Trabada and Ortega not obtaining
the former as a local minimum at all. This might be a consequence of the
quite low energy cutoff of 280 eV and thus a rather small plane wave basis
set since the TB calculations of the same authors could also only obtain the
p(4×2) structure when using a double-zeta GTO basis set and not for a min-
imal basis. This insufficient basis could also be a reason for the significantly
stronger reconstruction energies compared to this work’s results. When em-
ploying an unrestricted approach to the p(4×1) structure, the reconstruction
is even stronger energetically than the RKS p(4×2) case. Interestingly, at the
same time, the surface changes from conducting to semiconducting with respect
to the RKS p(4×1) reconstruction. This can be explained as follows: when
forming the p(4×1) reconstruction, the interdimer bond inside the 4×1 unit
is shortened, while the interdimer bond towards the neighboring 4×1 units is
lengthened compared to the p(2×1) reconstruction of symmetric dimers. This
results in the IDshort and ID∗short bands to further split and the IDlong and
ID∗long bands to become more degenerate due to the increased and decreased
overlap, respectively, as apparent from the RKS band structure and COs in
Fig. 3.19a). Consequently, the Fermi level cuts through both of these bands
in the RKS case, causing a partial occupation and thus conducting or metal-
lic behavior of the surface. The UKS formalism in Fig. 3.19b), on the other
hand, is able to separate the IDlong and ID∗long bands again by spin-symmetry
breaking and the resulting localization of the α- and β-COs at either of the
two Si atoms. Basically, the situation is similar to the p(2×1) reconstruction
of symmetric dimers: while RKS tries to maintain a double occupation of the
energetically unfavorable IDlong bond, UKS is able to break this bond to gain
energy. This also explains the substantially stronger reconstruction energies of
the p(4×1) UKS results compared to the RKS analogue in Table 3.9. However,
despite the different conductivity, the electron densities of the involved bands
of both methodologies are almost identical as apparent from Fig. 3.20a) and
b). This is reasonable as the situation of half-filled IDlong and ID∗long bands

97



3 Results and Discussion

RKS or α-UKS bands
β-UKS bands

PBBS

b) p(4×1) reconstruction at singlet UKS DFT HSE06 level

COs at K

a) p(4×1) reconstruction at singlet RKS DFT HSE06 level

band structure

−4

−2

0

2

4

6

Γ J K J' Γ

EF = 1.78 eV

E
−

E
F,

bu
lk
 [e

V
]

IDshort

IDshort*
IDlong*

IDlong

IDshort band:

IDshort band:*

IDlong band:

IDlong band:*

α-COs at K

IDshort band:

IDshort band:*

IDlong band:

IDlong band:*

E
−

E
F,

bu
lk
 [e

V
]

band structure

−4

−2

0

2

4

6

Γ J K J' Γ

Eg,surf = 1.12 eV

IDshort

IDshort*

IDlong*

IDlong

K

J

J'

Γ
first SBZ4×1 surface unit cell

Figure 3.19: Electronic structure of the p(4×1) reconstructed Si-terminated 3C-SiC(001)
surface at singlet a) RKS and b) UKS DFT HSE06 level with the TZVPP/TZVP basis set
for H-saturated 4×1 supercell 10-layer periodic slab models. The UKS calculation used spin
arrangement 1 of Table 3.8. In b), only the β-UKS bands are visible as they coincide with
their degenerate α counterparts. The isosurface value of the calculated orbitals amounts to
0.01 a0

−3. The surface unit cell and the corresponding first SBZ with the employed ~k-path
is additionally depicted at the bottom.

of RKS is conceptionally very similar to the singly occupied α- and β-IDlong

bands of UKS. Besides the singlet diradical character itself, this strong change
in conductivity with respect to the restricted or unrestricted approach is sup-
posedly also an indicator of the strong multiconfigurational character of this
p(4×1) reconstruction.

The RKS p(4×2) reconstruction is the analogue of the buckling of symmetric
p(2×1) dimers found before for RKS HSE06: to separate the metallic IDlong

and ID∗long bands of the p(4×1) RKS geometry, the spatial symmetry with
respect to the σyz mirror plane in the center of the 4×1 unit is broken. Con-
sequently, the IDshort and IDlong bonds localize as lone pairs at the upper
Si atoms of the two buckled dimers of each 4×1 unit as apparent from the
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*IDlong and IDlong bands (2e−)

p(4×1) reconstruction p(4×2) reconstruction

a) UKS DFT HSE06 b) RKS DFT HSE06 c) RKS DFT HSE06

α- and β-IDlong bands (2e−) IDlong bands (4e−)

IDshort bands (4e−)α- and β-IDshort bands (2e−) IDshort band (2e−)

Figure 3.20: Electron and spin densities for the a+b) p(4×1) and c) p(4×2) reconstruc-
tions of the Si-terminated 3C-SiC(001) surface found for a H-saturated a+b) 4×1 and c)
4×2 supercell 10-layer periodic slab model at singlet a) UKS and b+c) RKS DFT HSE06
level with the TZVPP/TZVP basis set. Structure a) corresponds to spin arrangement 1 in
Table 3.8. The isosurface value amounts to 0.01 a0

−3.

electron density plots in Fig. 3.20c). While this leads to a regular sp3 orbital
at the outer upwards buckled Si atom of each 4×1 unit similar to the p(2×1)
buckled dimers, the sp3 orbital of the inner upwards buckled Si atom seems
to donate electron density to the neighboring pz orbital of the inner down-
wards buckled Si atom, which can be interpreted as a dative interdimer bond.
Why this buckled structure is favored over the p(2×1) buckled dimers only
as p(4×2) and not as p(4×1) reconstruction might be a consequence of the
repulsion of neighboring lone pairs at the upmost Si atoms in the p(4×1) case.
This effect is reduced in the p(4×2) case due to the alternating buckling of
the 4×1 units neighbored in y-direction. Though not stated explicitly in the
literature, the same reasoning should explain why the p(2×2) reconstruction
of alternately buckled dimers in y-direction is stabilized with respect to the
p(2×1) structure of dimers buckled in the same direction on the Si(001) sur-
face.[190] As the lattice constant of 3C-SiC is smaller than that of Si, this effect
is supposedly more pronounced for the former material. This smaller lattice
constant should also be the reason why further dimerization of the dimers to
4x1 units is possible for Si-terminated 3C-SiC(001) but not for Si(001), where
it was not observed yet.

As established before, experimentally a c(4×2) reconstruction is found to be
the most stable surface at RT for Si-terminated 3C-SiC(001).[27,28] While the
AUDD model fulfills this translational symmetry, theoretically it was generally
not observed for unstrained surfaces. Trabada and Ortega[173] already pointed
out the close relation of the p(4×2) reconstruction and the AUDD model as
the former also shows dimers of alternating height in z. The authors suggest
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that the p(4×2) reconstruction is only stable at very low temperatures and
that the observed c(4×2) reconstruction is only the result of time-averaging of
temperature-induced dimer motion in the experiment. While this argumenta-
tion is reasonable, the newly obtained UKS p(4×1) reconstruction being more
stable than the RKS p(4×2) structure and not showing dimers of alternating
height might question this conclusion. On the other hand, since the UKS so-
lution is spin-contaminated, it is hard to judge if this energetic order is correct
with respect to the small absolute energy differences.

Nevertheless, using the p(4×1) structure, a novel reconstruction of actual
c(4×2) symmetry was additionally created by shifting every second row of
4×1 units by two times the ideal p(1×1) surface basis vector of 3.08�A in x-
direction as depicted in Fig. 3.21. Since this was done in a 4×2 supercell,
again three different singlet spin arrangements analogously to Table 3.8 were
tested for the UKS formalism and a regular RKS calculation was conducted
as well. Furthermore, a UKS and RKS calculation in the rhombic supercell
depicted in Fig. 3.21b) was carried out. The rhombic RKS calculation led to
buckled dimers of p(2×1) symmetry and the RKS 4×2 supercell calculation
was not able to converge at all. The UKS calculation in the rhombic and two
of the UKS calculations in the 4×2 supercell gave symmetric dimers, namely
spin arrangement 3 in Table 3.6 and spin arrangements 13 and 14 in Table 3.7,
respectively. The remaining UKS calculation actually maintained the c(4×2)
symmetry with the structure depicted in Fig. 3.22. However, the 4×1 units
within this structure are quite different from the p(4×1) reconstruction as the
buckling is negligible with ∆zSi−Si of 0.01�A. Furthermore, the bonding inter-
action between the two dimers in each 4×1 unit seems to be weaker with a
distance dID of 3.10�A, which is even slightly larger than their distance of 3.08�A
on the ideal p(1×1) surface. This further expresses itself in the relatively weak
reconstruction energy of −0.16 eV. Accordingly, this c(4×2) reconstruction
energetically ranks among the weaker UKS p(2×1) structures of symmetric
dimers in Table 3.7, explaining why the other two c(4×2) calculations con-
verged to symmetric dimers instead. Along these lines, the spin arrangement
of the successful c(4×2) optimization can be associated with spin arrangement
11 of Table 3.7 with a reconstruction energy of −0.17 eV, thus weak enough to
actually reach the local c(4×2) minimum of similar energy of −0.16 eV. Over-

x

y

a) p(4×1) reconstruction b) c(4×2) reconstruction

Figure 3.21: b) Novel c(4×2) reconstruction for the Si-terminated 3C-SiC(001) surface
derived from the a) p(4×1) structure in a 4×2 supercell by shifting the upper 4x1 unit by
two times the ideal p(1×1) surface basis vector of 3.08�A in x-direction. The interdimer
interaction between the two dimers of each 4x1 unit is indicated by the dotted line and the
primitive rhombic (

√
5×
√

5)R(2 · tan−1(0.5)) unit cell is additionally depicted in b).
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x

z

ΔEdimer= −0.16 eV
Eg,surf= 0.76 eV

dID = 3.10 Å

dSi−Si = 2.59 Å
ΔzSi−Si= 0.01 Å

c(4×2) reconstruction
UKS DFT HSE06

x

z

y

α- and β-IDlong bands (4e−)

Figure 3.22: Spatial structure and spin density of the novel c(4×2) reconstruction of the Si-
terminated 3C-SiC(001) surface found for a H-saturated 4×2 supercell 10-layer periodic slab
model at singlet UKS DFT HSE06 level with the TZVPP/TZVP basis set. The isosurface
value amounts to 0.01 a0

−3. The Mulliken atomic spin densities at the outer Si atoms of the
4×1 units amount to ±0.66 and at the inner Si atoms to ±0.12. The spin contamination
per dimer amounts to 0.50.

all, this novel c(4×2) reconstruction seems to be less likely than the p(2×1) or
p(4×1) reconstructions in the UKS case and than the p(4×2) reconstruction
in the RKS case.

3.2.3.5 Slab Model Convergence

As indicated at the end of Section 3.2.3.3, the periodic slab models are not able
to recover the electronic structure of the bulk. This was first noticeable in the
high-spin p(2×1) reconstruction because there the surface band gap would not
occur between two surface state bands in the bulk band gap of the PBBS but
between an occupied surface state band and an empty bulk band. But since
the bulk-like states of the slab model do not reach the CBM, the surface band
gap is overestimated. Sagisaka et al.[127] made a similar observation for their
DFT study on the Si(001)-p(2×2) reconstructed surface, in which they showed
that a converged bulk band gap within the slab model was only achieved for 78
atomic layers in z-direction. Accordingly, the same was done in this work by
optimizing H-saturated slab models of the Si-terminated 3C-SiC(001)-p(2×1)
reconstructed surface with symmetric dimers and up to 50 atomic layers at
RKS DFT HSE06 level with the TZVPP/TZVP basis set. In analogy to
Sagisaka et al., subsequent calculation the PDOS of the two middle layers, i.e.,
one Si and one C layer, allowed to determine the bulk band gap of each slab
model as depicted in Fig. 3.23. It should be noted that this determination was
not unambiguous for slab models containing a small number of layers because
the middle atomic layers are close enough to the surface to be involved in
the surface states, yielding spurious peaks in the energy region of interest.
Nevertheless, as further apparent from Table 3.10, the bulk band gaps of the
slab models do indeed converge very slowly also for the 3C-SiC(001) surface,
only reaching the actual bulk band gap for 50 atomic layers. Furthermore, as
anticipated, the surface band gap of the singlet RKS and UKS calculations is
already basically converged for eight layers, while the high-spin surface band
gap converges at the same rate as the bulk band gap, coming close to the value
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Figure 3.23: PDOS of the two middle atomic layers of H-saturated 2×1 supercell periodic
slab models of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) at
RKS DFT HSE06 level with the TZVPP/TZVP basis set to show the convergence of the
bulk band gap Eg,slab with respect to the number of atomic layers.

Table 3.10: Convergence of the bulk and surface band gaps (Eg,slab and Eg,surf ) of H-
saturated 2×1 supercell periodic slab models of the Si-terminated 3C-SiC(001)-p(2×1) re-
constructed surface (SD model) with respect to the number of atomic layers at RKS and
UKS DFT HSE06 level with the TZVPP/TZVP basis set. The values of Eg,slab were ex-
tracted from PDOS calculations of the two middle atomic layers of the respective RKS slab
model (see Fig. 3.23). The UKS calculations used the spin arrangements of Table 3.3. At
the bottom, the calculated band gap of bulk 3C-SiC is given. Reprinted with permission
from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical
Society. Added columns with UKS results. Corrected Eg,slab for 10 layers with respect to
the publication’s original value of 2.62 eV.

Number of
Atomic Layers

Eg,slab [eV]
Eg,surf [eV]

Singlet RKS Singlet UKS High-Spin UKS

8 2.92 0.532 1.372 1.303

10 2.71 0.529 1.362 1.118

12 2.64 0.526 1.347 0.995

14 2.56 0.523 1.345 0.919

26 2.36 0.524 1.340 0.754

38 2.31 0.524 1.340 0.713

50 2.25 0.522 1.340 no convergence

bulk 2.25

of 0.67 eV predicted before. Unfortunately, the 50-layer high-spin calculation
did not converge to fully confirm this. The convergence of the bulk band
gap within the slab models is also obvious when comparing the previous band
structures of the 12-layer slab models (e.g., Fig. 3.11) with the band structure
of the 50-layer slab model depicted in Fig. 3.24, where only in the latter case
the bands of the slab model reach the VBM and CBM of the PBBS. The
slow convergence can be simply explained by the electronic structure theory of
solids: due to the limited number of layers of the slab models in z, only a few
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Figure 3.24: Band structure of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed sur-
face (SD model) at RKS DFT HSE06 level with the TZVPP/TZVP basis set for a H-
saturated 2×1 supercell periodic slab model with 50 atomic layers. The PBBS is indicated
by the gray area. Reprinted with permission from J. Phys. Chem. C 2023, 127, 48,
23475–23488. Copyright 2023 American Chemical Society. Slightly modified.

different linear combinations between orbitals of each layer are possible, which
corresponds to an insufficient ~k-point sampling in this direction. This effect is
nicely observable in the charge density plots in the study of Sagisaka et al.,[127]

in which they plotted multiple eigenstates of the 78-layer slab models showing
different numbers of nodal planes in z-direction, corresponding to the different
wave lengths of the Bloch function’s wave vector ~k. Furthermore, the missing
periodicity at the bottom of the smaller slab models leads to an inaccurate
embedding potential, also distorting the energy levels of the bulk-like states
compared to a true bulk 3C-SiC calculation.

Besides the surface band gap, a closer look at the convergence of the dimer
bond length and the reconstruction energy listed in Table 3.11 is taken for the
singlet RKS, UKS, and high-spin UKS p(2×1) reconstructions of symmetric
dimers. Just like in the work of Sagisaka et al.,[127] the dimer bond length shows
a very weak dependence on the number of atomic layers. Despite this, the

Table 3.11: Convergence of the reconstruction energy ∆Edimer and dimer bond length
dSi−Si of H-saturated 2×1 supercell periodic slab models of the Si-terminated 3C-SiC(001)-
p(2×1) reconstructed surface (SD model) with respect to the number of atomic layers at
RKS and UKS DFT HSE06 level with the TZVPP/TZVP basis set. The UKS calculations
used the spin arrangements of Table 3.3.

Number of
Atomic Layers

Singlet RKS Singlet UKS High-Spin UKS

∆Edimer [eV] dSi−Si [�A] ∆Edimer [eV] dSi−Si [�A] ∆Edimer [eV] dSi−Si [�A]

8 −0.013 2.811 −0.226 2.465 −0.132 2.390

10 −0.014 2.806 −0.229 2.463 −0.135 2.388

12 −0.015 2.805 −0.230 2.462 −0.136 2.388

14 −0.016 2.797 −0.232 2.463 −0.137 2.388

26 −0.022 2.797 −0.238 2.463 −0.144 2.388

38 −0.030 2.797 −0.246 2.463 −0.153 2.388

50 −0.043 2.794 −0.257 2.463 no convergence
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reconstruction energy still lowers by about 0.03 eV when going from the 10- and
12-layer slab models generally used before to the 50-layer slab models. Such
behavior was not found by Sagisaka et al. for the Si(001)-p(2×2) reconstructed
surface. While the absolute value of this additional energy gain is very small,
in the context of the low reconstruction energies, especially for the RKS case,
it still represents a considerable relative amount. Unfortunately, increasing
the number of layers to 50 is not feasible for 4×1 and 4×2 supercells as the
number of atoms would amount to 208 and 416, respectively, which is why the
convergence could not be checked for the p(4×1) and p(4×2) reconstructions.
On the other hand, from the results regarding the p(2×1) reconstructions, it
is reasonable to expect that no change in the energetic order is occurring as
the energy gain per dimer with respect to the number of layers is equal for
all investigated cases. Accordingly, the reconstruction energies for the 10- and
12-layer slab models will be kept as a basis for the discussions in the rest of
this work with the effect of additional layers in mind when important in the
respective context.

It was further checked if the asymmetric H-saturated slab models are sufficient
compared to the conceptionally more sophisticated symmetric slab models, as
the latter do not need additional H atoms, which could distort the electronic
structure. As indicated in Section 2.2.1.5, the helical building blocks of the
3C-SiC(001) surface are not suitable for a simple mirror plane in the middle
of symmetric slab models and instead one of the 80 layer groups[191] with a
screw axis would be needed. If mirror symmetry would still be applied, this
would lead to a change in the layer stacking order, which could also change the
bulk band gap when considering the dependence of this quantity with the SiC
polytype as established in Chapter 1. Nevertheless, for the sake of simplicity,
no symmetry was exploited in this work for the symmetric slab models, of
which the 17-layer variant is depicted in Fig. 3.25. Here, a 2×2 supercell is

x
y

z

Figure 3.25: Symmetric 2×2 supercell 17-layer periodic slab model for the p(2×1) recon-
structed (SD model) Si-terminated 3C-SiC(001) surface. The structure was optimized at
singlet UKS DFT HSE06 level with the TZVPP/TZVP basis set and a spin arrangement of
p(2×1) symmetry (↑↓ ↑↓, like in Table 3.3) for the dimers of both surfaces. The size of the
unit cell in z is depicted smaller than it is in the actual calculations.
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Table 3.12: Convergence of the reconstruction energy ∆Edimer and dimer bond length
dSi−Si of asymmetric H-saturated 2×1 supercell and symmetric 2×2 supercell periodic
slab models of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model)
with respect to the number of atomic layers at singlet UKS DFT HSE06 level with the
TZVPP/TZVP basis set.

Number of Relaxed
Atomic Layers

per Surface

Asymmetric Slab Model Symmetric Slab Model

Total Number of
Atomic Layers

∆Edimer
[eV]

dSi−Si
[�A]

Total Number of
Atomic Layers

∆Edimer
[eV]

dSi−Si
[�A]

4 8 −0.226 2.465 13 −0.226 2.466

6 10 −0.229 2.463 17 −0.230 2.464

8 12 −0.230 2.462 21 −0.231 2.464

necessary to be able to generate a p(2×1) reconstruction as the Si dimers on
each side are twisted by 90°. As apparent from Table 3.12, both the symmetric
and asymmetric H-saturated slab models give virtually identical reconstruction
energies and dimer bond lengths for the same number of relaxed layers per
surface, thus confirming the asymmetric slabs to be sufficient to describe the
Si-terminated 3C-SiC(001) surface.

3.2.3.6 Summary

To summarize the single-configurational calculations on periodic slab mod-
els of the Si-terminated 3C-SiC(001) surface, Table 3.13 gives an overview of
the different reconstructions obtained in this work using this methodology at
singlet RKS and UKS DFT level with the TZVPP/TZVP basis set. Here,
it is focused solely on the HSE06 functional as it shows the best agreement
regarding the electronic structure of the investigated material. Overall, the
UKS formalism yields the strongest reconstruction energies, which indicates a
radicalic character of the surface and thus static correlation to be important
since UKS is able to include it to some degree by spin-symmetry breaking in
contrast to RKS. As a consequence, RKS instead breaks the spatial symmetry
due to the limited freedom in the electronic structure, resulting in buckled
p(2×1) and p(4×2) reconstructions not found for UKS. The UKS p(4×1) re-
construction overall shows the highest energy gain with the UKS p(2×1) SD
model also being similarly stable. For the latter, the range of reconstruction

Table 3.13: Overview of the reconstruction energies ∆Edimer of different reconstructions
considered in this work for the Si-terminated 3C-SiC(001) surface at singlet RKS and UKS
DFT HSE06 level with the TZVPP/TZVP basis set.

Reconstruction
∆Edimer [eV]

Singlet RKS HSE06 Singlet UKS HSE06

p(2×1) symmetric −0.01 −0.09 –−0.31

p(2×1) buckled −0.05 -

p(4×1) −0.03 −0.29 –−0.30

p(4×2) −0.15 -

c(4×2) - −0.16
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energies is quite high due to the different possible spin arrangements for the
dimer atoms in the 4×2 surface supercell, though in an exact description, there
exists only one “ground state” singlet polyradicalic configuration without spin
polarization. Along these lines, the novel UKS c(4×2) structure of this work
appears to only be an alternative to more unstable p(2×1) spin arrangements
and is thus quite unlikely to exist. Generally, it should be kept in mind that
the singlet UKS calculations exhibit severe spin contamination, which is why
the quantitative values have to be taken with care. Regarding the RKS re-
sults, only the p(4×2) reconstruction can compete energetically with the UKS
structures and due to its close relation to the AUDD model and thus to the ex-
perimentally most commonly observed c(4×2) reconstruction seems to be the
best structural model from a theoretical perspective. The AUDD model itself
could, in accordance with previous studies, not be observed for the unstrained
surface slabs used in this work.

Overall, the strong deviations between the RKS and UKS calculations mainly
caused by the close energetic proximity of the ID and ID∗ bands and vari-
ations thereof for the different reconstructions hint towards the supposedly
multiconfigurational character of the Si-terminated 3C-SiC(001) surface. Con-
sequently, it is attempted to give a proper description of this system in the
following Section 3.3 through multiconfigurational cluster model calculations.

3.3 Multiconfigurational Cluster Model

Calculations

3.3.1 Computational Details

Orca 5.0.0[192] was used to apply the multiconfigurational wave function-
based methods CASSCF[89–93] and (strongly contracted) NEVPT2[102–104] to
H-saturated cluster models of the ideal p(1×1) and p(2×1) reconstructed Si-
terminated 3C-SiC(001) surface. The differently sized cluster models were
created from the H-saturated 12-layer periodic slab models obtained before at
RKS and UKS DFT[71] HSE06[78–80] level with the TZVPP[155]/TZVP[156] basis
set. Before conducting the multiconfigurational calculations, the positions of
the saturating H atoms were optimized at RKS DFT HSE06 level with the
same TZVPP/TZVP basis used for the periodic slab models, while all other
cluster atoms were kept fixed as described in Section 3.3.2.1 in more detail.
The HSE06 functional is accessible in Orca via the LibXC[193] library. As fur-
ther described in Section 3.3.2.1, the size of the active space was dependent on
the number of dimers as well as the number of surface state bands included, the
latter leading to active spaces being either denoted as reduced (CASred) or full
(CASfull), respectively. For CASSCF and NEVPT2 level geometry optimiza-
tions, geometric constraints were imposed as described in Section 3.3.2.2 to ap-
proximately mimic the PBCs utilized in the single-configurational calculations.

106



3.3 Multiconfigurational Cluster Model Calculations

Generally, an optimization of the first two atomic layers according to Table 3.17
in Section 3.3.2.2 was conducted for all cluster models with the exception of the
results of the convergence study regarding the number of relaxed layers pre-
sented in Appendix A.2.2. All CASSCF and NEVPT2 wave functions were of
state-optimized nature. To significantly reduce the computational cost of the
NEVPT2 single-point calculations and geometry optimizations only available
with expensive numerical gradients, the resolution-of-identity chain-of-spheres
exchange (RIJCOSX) approximation[194] with def2/J[195] and def2/C[196] aux-
iliary basis sets was utilized. For an improved comparability to the previous
single-configurational calculations, the same TZVPP/TZVP basis set was gen-
erally employed for the cluster model calculations except for the convergence
studies in Appendix A.2.3, in which def2[148] basis sets of different quality were
used. A new approach introduced in Section 3.3.2.3 was developed to be able
to calculate reconstruction energies between the p(2×1) and p(1×1) cluster
models. Images of molecular structures and orbital isosurfaces were created
with VESTA.[161]

3.3.2 Si-terminated 3C-SiC(001) Surface

3.3.2.1 Cluster Model and Active Space Construction

Due to the limited size of the cluster models of the Si-terminated 3C-SiC(001)
surface in combination with the high-level multiconfigurational methods, the
investigations will be restricted to the ideal p(1×1) surface and the p(2×1)
reconstruction and not explore larger reconstructions. Still, as stated at the
end of the previous section, since all the different reconstructions explored show
a similar electronic structure with the ID- and ID∗-like bands responsible for
the band gap, the p(2×1) reconstruction can serve as a model system to show
the importance of the multiconfigurational treatment for the Si-terminated
3C-SiC(001) surface and its reconstructions as a whole.

As apparent from Table 3.14, the restricted single-configurational HF and DFT
calculations show Mulliken atomic charges for the bulk atoms of 3C-SiC in the
range of 0.03 e – 0.36 e with the Si atoms being positively and the C atoms
being negatively charged. This is in accordance with the Mulliken charges of
0.14 e obtained in the LDA LCAO periodic slab calculations of Sabisch et al.[45]

Table 3.14: Mulliken atomic charges of bulk 3C-SiC for different restricted methods and
basis sets.

Functional
Bulk Atomic Charges [e]

pob-TZVP TZVPP/TZVP

HF 0.08 -

LDA 0.36 0.03

PBE 0.30 0.13

PBE0 0.22 0.12

HSE06 0.21 0.14
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Though the known strong basis set and method dependence of the Mulliken
population analysis[58,59] is showing in Table 3.14, it can overall be concluded
that the ionicity is quite low in 3C-SiC. Consequently, embedding in a point
charge field is not necessary for cluster models of this material and simple
H-saturated cluster models can be used instead. Furthermore, H atoms are
especially suitable since their Pauling[197] electronegativity of 2.1 fits well in
between the values of 2.5 for C and of 1.9 for Si, respectively. This should
soften the error of introducing these saturating atoms because the C–H and
Si–H bonds are qualitatively similarly polarized as the C–Si bonds of the pure
material.

An overview of the cluster model creation workflow is given in Fig. 3.26. As
apparent, the cluster models exhibiting the ideal p(1×1) and the p(2×1) re-
constructed surface were created from the respective H-saturated 12-layer pe-
riodic slab models. Here, the ideal p(1×1) slab model was created from the
bulk structure optimized at RKS DFT HSE06 level with the TZVPP/TZVP
basis set and no further optimization afterwards, while the p(2×1) slab models
were optimized at UKS DFT HSE06 level with the TZVPP/TZVP basis set
and the p(2×1) spin arrangement of Table 3.3 to yield symmetric dimers with
a dimer bond length of 2.46�A. The UKS p(2×1) structure was chosen over the
RKS analogue due to the closer agreement of the former with previous exper-
imental results and especially with the multiconfigurational study of Tamura
and Gordon[53] as established before in Section 3.2.3.2. The cluster models var-
ied in size regarding the number of Si dimers in [110]/x- and [1̄10]/y-direction
and regarding the number of atomic layers in [001]/z-direction to check the
convergence for the different parameters of interest. Non-surface atoms were
saturated with H atoms and the dangling bonds of the two outermost dimer
atoms of each dimer row were saturated as well to ensure a reasonable embed-
ding of the supposedly statically correlated surface states in between. Before
conducting the multiconfigurational calculations, the positions of the saturat-
ing H atoms were optimized at RKS HSE06 level with the same TZVPP/TZVP
basis used for the periodic slab models while all other cluster atoms were kept
fixed. In case of the p(2×1) cluster models, also the inner dimer atoms were
saturated with H to obtain a closed-shell system more suitable for the RKS op-
timization. Unfortunately, this additional saturation was not possible for the
p(1×1) cluster models due to the limited space when trying to saturate each
surface atom with two H atoms as already discussed in Section 3.2.3.1. This
inconsistency between the two surfaces was unintentional and a chronologi-
cal issue because the p(1×1) cluster models were developed after most of the
calculations regarding the p(2×1) analogues were finished. Nevertheless, this
difference should be negligible because the p(1×1) surface states should mainly
influence the geometry of the two adjacent outer H atoms of each dimer row,
which are reoptimized during the multiconfigurational calculations anyway.

After the optimization of the saturating H atoms at DFT level, the active space
for the multiconfigurational calculations including the surface states could be
constructed, for which the H atoms of the p(2×1) cluster models saturating

108



3.3 Multiconfigurational Cluster Model Calculations

the inner dimer atoms had to be removed first. As discussed before when in-
troducing the MO diagram in Fig. 3.3, each Si dimer of the p(2×1) surface
exhibits the four surface states σ, π, π∗, and σ∗ with four electrons, of which

a) ideal p(1×1) surface

saturate all dangling bonds with H atoms (except for the inner dimer 
Si atoms due to limited space);
optimize only the H atom positions at RKS DFT HSE06 level with 
the TZVPP/TZVP basis set

build active space:
• IA: present among the doubly occupied orbitals near the HOMO-
  LUMO gap
• IA*: if not present among the unoccupied orbitals near the
  HOMO-LUMO gap, acquired by utilization of partner orbital
  creation routines for the active space like PMOS in Orca

b) p(2×1) reconstruction

cut from the H-saturated 12-layer periodic slab model, which was 
optimized at UKS DFT HSE06 level with the TZVPP/TZVP basis set

saturate all dangling bonds with H atoms;
optimize only the H atom positions at RKS DFT HSE06 level with 
the TZVPP/TZVP basis set

remove the H atoms at the inner dimer Si atoms to reveal the 
surface states

build active space:
 • ID and ID*: singly occupied orbitals of high-spin UKS calculation
 • σ: if not present among the doubly occupied orbitals near the
   HOMO-LUMO gap, acquired by orbital localization of the inactive
   space in CASSCF
 • σ*: if not present among the unoccupied orbitals near the HOMO-
   LUMO gap, acquired by utilization of partner orbital creation 
   routines for the active space like PMOS in Orca

cut from the H-saturated 12-layer periodic slab model constructed 
from the bulk structure, the latter being optimized at RKS DFT 
HSE06 level with the TZVPP/TZVP basis set

Figure 3.26: Cluster model creation workflow for the a) ideal p(1×1) and b) p(2×1)
reconstructed Si-terminated 3C-SiC(001) surface using the examples of the a) 3×1-dimer
and b) 3×3-dimer 4-layer cluster models (Si16C17H38 and Si38C39H66). The isosurface value
for the orbitals amounts to 0.03 a0

−3. Reprinted with permission from J. Phys. Chem. C
2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly modified.
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the two π states, corresponding to the ID and ID∗ bands, are supposedly
affected the most by static correlation. Consequently, active spaces of the size
CAS(4,4) or CAS(2,2) should be reasonable to describe one dimer faithfully
with the former CAS also including the σ and σ∗ states as was done before by
Tamura and Gordon in their 1-dimer cluster model.[53] In case of the p(1×1)
cluster models, each surface atom carries one sp2 and one px orbital with two
electrons that are responsible for the IA and IA∗ bands, which corresponds
to a CAS(4,4) for one pair of Si atoms forming one dimer. Since the surface
state bands are located within the bulk band gap of 3C-SiC, the correspond-
ing orbitals of the cluster models are often conveniently located around the
HOMO-LUMO gap as described at the bottom of Fig. 3.26. However, finding
the desired orbitals can get more challenging as the cluster models increase
in size. Thankfully, Orca offers helpful tools like transforming the canonical
orbitals of the inactive space to obtain localized orbitals, which is useful to find
the σ states for the p(2×1) cluster models. Along these lines, the PMOS rou-
tine of Orca (abbreviation not given in manual,[94] presumably means partner
molecular orbitals) can subsequently create bonding or antibonding partner
orbitals in the external space for the active space orbitals. If the σ states for
the p(2×1) or the IA states for the p(1×1) cluster models have already been
found and included in the active space, this method accordingly helps to also
obtain the corresponding σ∗ and IA∗ orbitals.

It is obvious that the size of the active space grows linearly with the num-
ber of dimers included in the cluster models, but the factorial scaling of the
multiconfigurational methods with the size of the CAS drastically limits the
extent of the model systems to be investigated. Geometry optimizations with
CASSCF or NEVPT2 are only feasible for active spaces up to CAS(14,14)
and thus restricted to cluster models of less than 10 dimers. Accordingly, it is
questionable if such cluster models are able to recover a sophisticated surface
state band structure in comparison to periodic slab models. Nevertheless, as
multiconfigurational methods in combination with PBCs are still in an early
stage of development, this is presumably among the best approaches available
to describe the statically correlated Si-terminated 3C-SiC surface. In case of
the p(2×1) reconstruction, it is thus reasonable to create two differently sized
active spaces, one including all four surface state bands and one including
only the ID and ID∗ bands, denoted as full and reduced CASs (CASfull and
CASred), respectively. Excluding the σ and σ∗ bands from the CASred is rea-
sonable since they are most likely not affected by static correlation, which is al-
ready indicated by the respective NOONs of 1.98 and 0.02 obtained by Tamura
and Gordon.[53] The CASred thus allows to explore larger cluster models and
accordingly increases the scope of convergence studies for the parameters of
interest with respect to the cluster model size.

The exact composition of the active spaces is easier to understand using the
example of the 3×1 dimer 4-layer cluster model depicted in Fig. 3.27. Here,
the label 3×1 corresponds to the cluster exhibiting three dimers in x- and one
dimer row in y-direction. Three dimers with a CAS(4,4) would result in a total
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x
y

z

1.97 e− 1.97 e− 1.97 e−

1.53 e− 1.52 e−

0.51 e− 0.45 e−

0.03 e− 0.02 e− 0.02 e−

σ

σ*

ID

ID*

1.90 e− 1.89 e− 1.87 e−

1.85 e− 1.82 e−

0.24 e− 0.17 e−

0.11 e− 0.08 e− 0.06 e−

IA

IA*

x

z

a) ideal p(1×1) surface b) p(2×1) reconstruction

Figure 3.27: H-saturated 3×1-dimer 4-layer cluster models (Si16C17H38) of the a) ideal
p(1×1) and b) p(2×1) reconstructed (SD model) Si-terminated 3C-SiC(001) surface with
the corresponding CASfull(10,10) orbitals and NOONs optimized at CASSCF level with the
TZVPP/TZVP basis set and the first two atomic layers relaxed according to Table 3.17.
The isosurface value of the orbitals amounts to 0.03 a0

−3. Reprinted with permission from
J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society.
Slightly modified.

CASfull(12,12), but since the two outer dimer atoms are saturated with H for
the improved embedding, the corresponding singly occupied dangling bonds are
removed from the active space. This results in a CASfull(10,10) for this example
and generally enables the calculation of slightly larger cluster models due to
smaller active spaces. With respect to the electronic structure, this cluster
model would thus be more precisely classified as a 2×1-dimer cluster because
it consists of one true dimer with the whole CAS(4,4), two half-dimers with a
CAS(2,2), each containing a bisected σ bond and one dangling bond, as well as
two capping H-saturated half-dimers with a CAS(1,1), representing the other
half of the bisected σ bond each. Still, the simple structural naming is kept for
the cluster models due to its intuitive derivation. As apparent from Fig. 3.27,
the depicted active space orbitals can be assigned to the different bands of the
p(1×1) and p(2×1) surfaces by their orbital shape and similar NOONs. Here,
the p(2×1) cluster model’s CASfull(10,10) includes all surface states, while the
CASred(4,4) accordingly only includes the ID and ID∗ orbitals. The sizes K
and L of the full and reduced active spaces can be universally calculated for
each M×N -dimer cluster model as follows:

CASfull(K,K): K = N(4(M − 1) + 2) (3.4)

CASred(L,L): L = N(2(M − 1)) (3.5)

With the explanation from above in mind, K for the full active space is ob-
tained from N dimer rows, each of which containing M−1 dimers with a
CAS(4,4) each and two capping H-saturated half-dimers with a CAS(1,1) each.
Accordingly, L for the reduced active space results from N dimer rows with
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M−1 dimers with a CAS(2,2) each and no contribution from the capping H-
saturated half-dimers since the σ orbitals are excluded. However, as is further
apparent from Fig. 3.27a), a reduction of the active space is not reasonable for
the p(1×1) cluster models because this would correspond to not fully includ-
ing the IA and IA∗ bands. This would result in an inconsistent description of
the surface states by basically excluding portions of the corresponding bands,
distort the total energy, and most likely lead to convergence problems. With
Eqs. 3.4 and 3.5 at hand, the number of cluster models feasible for the multi-
configurational methods to be applied can be narrowed down to 10 for CASred

and to four for CASfull as apparent from Table 3.15.

Table 3.15: CAS sizes of the reduced and full active spaces CASred and CASfull for different
M×N -dimer cluster models of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface
(SD model) according to Eqs. 3.4 and 3.5. Geometry optimizations for CAS sizes colored in
gray are neither feasible at CASSCF nor at NEVPT2 level.

CAS Type
Number

of Dimers in y (N)

CAS Size

Number of Dimers in x (M)

2 3 4 5

CASred

1 (2,2) (4,4) (6,6) (8,8)

2 (4,4) (8,8) (12,12) (16,16)

3 (6,6) (12,12) (18,18) (24,24)

4 (8,8) (16,16) (24,24) (32,32)

CASfull

1 (6,6) (10,10) (14,14) (18,18)

2 (12,12) (20,20) (28,28) (36,36)

3 (18,18) (30,30) (42,42) (54,54)

4 (24,24) (40,40) (56,56) (72,72)

Besides the number of dimers, which corresponds to the extension of the cluster
models in the x- and y-directions, the size in z, expressed by the number of
atomic layers, is another important convergence parameter to check. However,
adding more layers obviously increases the total number of basis functions and
thus the computational time for each model, which is already quite high for the
4-layer models due to the active spaces increasing with the number of dimers.
Accordingly, the 3×1- and 4×1-dimer cluster models were the only systems

4 layers 6 layers 8 layers

Figure 3.28: H-saturated 3×1-dimer 4-, 6-, and 8-layer cluster models (Si16C17H38,
Si28C35H58, and Si34C38H58) of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed sur-
face (SD model) optimized at CASSCF level with the full active space CASfull(10,10), the
TZVPP/TZVP basis set, and the first two atomic layers relaxed according to Table 3.17.
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also explored with six and eight layers besides the default 4-layer size used
otherwise in this work. The corresponding p(2×1) reconstructed 3×1-dimer
analogues are depicted exemplarily in Fig. 3.28 and all of the cluster models
used in this work with their active space orbitals are shown in Appendix A.2.4.

3.3.2.2 Geometry Optimization Constraints

With the cluster models for the Si-terminated 3C-SiC(001) surface being con-
structed, an approach for the geometry optimization of these had to be devel-
oped. Since a cluster model is just a small excerpt of a very large system, the
aim was to try to reproduce similar conditions as in the periodic slab model
calculations. In the latter, the surface unit cell parameters and the lowest
atomic layers were kept fixed with each unit cell being embedded in the pe-
riodic potential of the infinite number of identical neighboring unit cells. As
mentioned in Section 2.2.2, for covalent systems, the smaller quantum mechan-
ically described cluster model can be embedded into a larger MM cluster to
simulate the surrounding material, which was also done for the 1-dimer cluster
model of Tamura and Gordon.[53] However, as is apparent from the previous
results of Sections 2.1.1 and 3.1, the dimers of each dimer row interact with
each other quantum mechanically, which cannot be accounted for by neigh-
boring dimers described at MM level of theory. This boundary problem of
the multi-dimer cluster models in this work should be reasonably solved by
the saturating outer dimer H atoms encapsulating the surface states, thus, in
principle, actually allowing to combine them with MM clusters to provide the
steric embedding. However, for the sake of methodological simplicity, it will
be refrained from doing so in this work. Still, as Tamura and Gordon[53] point
out, generally geometric constraints in cluster models can lead to unphysi-
cal structures. Unfortunately, for example, a full CASSCF optimization of
the p(2×1) reconstructed 3×1-dimer 4-layer cluster model yields an arch-like
or nanotube-like structure with equal distances between all surface Si atoms,
which corresponds to a different system than intended. Accordingly, geometry
constraints are necessary for the simple H-saturated cluster models to actu-
ally obtain physical results in this work. Furthermore, it can be argued that
the cluster models are constructed from the periodic slab models and hence
already exhibit reasonable relaxation and reconstruction effects for the most
part.

To approximate the PBCs of the slab model calculations in Section 2.1.1, the
displacements of the different Si and C layers induced by the reconstruction and
relaxation of the p(2×1) reconstructed surface at RKS and UKS DFT HSE06
level listed in Table 3.16 are analyzed in detail. As apparent, all layers do vir-
tually not relax in y-direction due to the p(2×1) reconstruction only acting in
the x- and z-direction. Accordingly, during the CASSCF and NEVPT2 geom-
etry optimizations, all y-coordinates were fixed for the p(2×1) cluster models.
Regarding the x-coordinate, the relaxation apparently occurs alternately in
blocks of two layers, namely a rather strong movement of the first two layers,
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Table 3.16: Atomic displacements in the H-saturated 12-layer periodic slab models of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) compared to the ideal
p(1×1) surface after optimization at singlet RKS and UKS DFT HSE06 level. The UKS
calculations used the spin arrangement of Table 3.3. Reprinted with permission from J.
Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society.

Atomic
Layer

Number
Element

Atomic Displacements [Å]

RKS UKS

∆x ∆y ∆z ∆x ∆y ∆z

1
Si −0.139 0.000 0.011 −0.311 −0.001 −0.046

Si 0.138 0.000 0.011 0.312 −0.001 −0.046

2
C −0.011 0.000 −0.006 −0.027 0.000 −0.010

C 0.011 0.000 −0.006 0.028 0.000 −0.010

3
Si 0.000 0.000 −0.019 0.001 0.000 −0.058

Si 0.000 0.000 0.017 −0.002 0.000 0.044

4
C 0.000 0.000 −0.013 0.001 −0.001 −0.032

C 0.000 0.000 0.011 −0.002 −0.001 0.026

5
Si 0.006 0.000 0.000 0.014 −0.001 −0.002

Si −0.006 0.000 0.000 −0.012 −0.001 −0.002

6
C 0.003 0.000 0.000 0.007 0.000 −0.001

C −0.003 0.000 0.000 −0.006 0.000 −0.001

7
Si 0.000 0.000 0.002 0.001 0.000 0.005

Si 0.000 0.000 −0.002 −0.001 0.000 −0.005

8
C 0.000 0.000 0.001 0.001 −0.001 0.004

C 0.000 0.000 −0.001 −0.001 −0.001 −0.002

layers three and four being static, a relaxation of layers five and six, and so on.
Thus, geometric constraints in x mimicking this block-like behavior were also
imposed on the p(2×1) cluster models. The very small ∆x values for layers
three, four, seven, and eight as well as the ∆y values in the UKS case are sup-
posedly just numerical noise and not of actual physical importance. Since in
the slab models basically all atomic layers show relaxation in z, no constraints
in this direction were applied to the p(2×1) cluster models. An overview of the
discussed constraints is given in Table 3.17. Obviously, the Si and C atoms of
the cluster models representing the ideal p(1×1) surface are fully constrained.
Furthermore, for both the p(1×1) and p(2×1) cluster models, almost all satu-
rating H atoms are kept fixed to act as an embedding cage and thus indirectly
restrict the movement of the optimized Si and C atoms to simulate neighboring
unit cells. The H atoms saturating the outer dimer atoms are an exception to
this since the dimers themselves are supposed to have as much spatial freedom
as possible. Accordingly, just like the dimer atoms of the first layer they are
connected to, these H atoms are only constrained in y-direction. Besides the
approximate simulation of the surrounding material, the geometric constraints
are also favorable with respect to the NEVPT2 geometry optimizations only
available with expensive numerical gradients in Orca, resulting in every fixed
coordinate significantly reducing the computational cost.

Regarding the terminology, if an optimization is declared as “two-layer opti-
mization”, the constraints for atomic layers one and two as well as the H atom
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Table 3.17: Atomic layer constraints for the H-saturated cluster models of the ideal p(1×1)
and p(2×1) reconstructed (SD model) Si-terminated 3C-SiC(001) surface for geometry op-
timizations with CASSCF and NEVPT2. Reprinted with permission from J. Phys. Chem.
C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society. Extended by
p(1×1) column.

Atomic Layer
Number

Element

Constrained?

p(1×1) p(2×1)

x y z x y z

1 Si yes yes yes no yes no

2 C yes yes yes no yes no

3 Si yes yes yes yes yes no

4 C yes yes yes yes yes no

5 Si yes yes yes no yes no

6 C yes yes yes no yes no

outer dimer H H no yes no no yes no

all other H H yes yes yes yes yes yes

constraints given in table Table 3.17 are considered. In case of a four-layer
optimization, the constraints for atomic layers three and four are included ad-
ditionally and so on. Generally, a two-layer optimization was conducted for
all cluster models except for results of the convergence study regarding the
number of relaxed layers in Appendix A.2.2.

3.3.2.3 Calculation of Reconstruction Energies

Since the active space of the p(1×1) cluster models cannot be reduced as estab-
lished in Section 3.3.2.1, reconstruction energies ∆Edimer are consequently only
obtainable for systems utilizing the full active space CASfull. This stems from
the fact that total CASSCF energies are only comparable for the same active
space size and, more precisely, only for consistent active orbitals when consid-
ering different geometries of the same system,[198] thus making the calculation
of reconstruction energies between p(2×1) cluster models with CASred and
p(1×1) analogues with CASfull invalid. The calculation of reconstruction en-
ergies for cluster models representing surfaces is generally not a standard pro-
cedure in computational surface science and thus rarely attempted. Paulus[56]

actually determined reconstruction energies for the MCSCF calculations of the
1-dimer cluster model of the Si(001) surface. While not explicitly described in
the cited work, this was most likely done by simply calculating the energy dif-
ference between the p(2×1) reconstructed and the ideal p(1×1) cluster model.
In the context of the M×N -dimer cluster models of this work, this would
result in the following equation for the reconstruction energy ∆Edimer,M×N :

∆Edimer,M×N =
EM×N,p(2×1),CAS(K,K) − EM×N,p(1×1),CAS(K,K)

M ·N
(3.6)

Here, EM×N,p(2×1),CAS(K,K) and EM×N,p(1×1),CAS(K,K) are the total energies
of the p(2×1) and p(1×1) M×N -dimer cluster models calculated with the
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CASfull(K,K), respectively, and M ·N is simply the total number of dimers.
However, in contrast to the work of Paulus, the outer dimer atoms of each
dimer row are additionally saturated in this work. As already indicated in Sec-
tion 3.3.2.1, it is easily imaginable that the corresponding capping H-saturated
half-dimers show a different reconstruction energy than the unsaturated dimers
in between that carry the surface states of interest. This would lead to a poor
convergence of the actual reconstruction energy, which could be compensated
by averaging over very long dimer rows. Obviously, this approach is in contrast
to the cluster size restrictions imposed by the multiconfigurational methods
and thus adjusted formulas had to be developed:

∆EM×N = EM×N,p(2×1),CAS(K,K) − EM×N,p(1×1),CAS(K,K) (3.7)

∆E1×N = E1×N,p(2×1),CAS(2N,2N) − E1×N,p(1×1),CAS(2N,2N) (3.8)

∆Edimer,M×N =
∆EM×N −∆E1×N

N(M − 1)
(3.9)

For the sake of clarity, this approach is additionally depicted in Fig. 3.29 us-
ing the example of the 3×1-dimer 4-layer cluster model. Here, ∆EM×N is
the difference between the total energies of the p(2×1) and p(1×1) M×N -
dimer cluster models calculated with the CASfull(K,K), the latter being a
CAS(10,10) in the 3×1-dimer case. ∆E1×N is calculated analogously with
E1×N,p(2×1),CAS(2N,2N) and E1×N,p(1×1),CAS(2N,2N) corresponding to the total en-
ergies of 1×N -dimer cluster models of the p(2×1) and p(1×1) surfaces, re-
spectively. In the example of Fig. 3.29, this corresponds to 1×1-dimer cluster
models with a CAS(2,2) containing the σ and σ∗ orbitals of the dimer bond.
The energy difference ∆E1×N thus represents the reconstruction energy for
the formation of N rows of single fully saturated dimers, or, put differently,
the reconstruction energies of two capping H-saturated half-dimers for each of
the N dimer rows. In the final Eq. 3.9, this spurious reconstruction energy
is now subtracted from the uncorrected reconstruction energy of the whole
M×N -dimer cluster model, namely ∆EM×N , which is indicated at the bot-
tom of Fig. 3.29 by the color coding in the 3×1-dimer cluster. At last, this
corrected total reconstruction energy now has to be divided by the number
of actually unsaturated dimers, which calculates as N(M − 1), with the −1
excluding the capping H-saturated half-dimers in each of the N dimer rows.
In the 3×1-dimer example, the number of unsaturated dimers is accordingly
two. The drastically improved similarity of reconstruction energies of differ-
ently sized cluster models for the advanced calculation according to Eqs. 3.7
to 3.9 compared to the simple approach of Eq. 3.6 is apparent in Table 3.18.

It should be noted that the 1×N -dimer cluster models used for the correction
of the reconstruction energies always consisted of only four atomic layers, even
though the M×N -dimer clusters, for whose reconstruction energy calculation
the 1×N -dimer clusters were needed, sometimes also had six or eight layers.
While this seems unreasonable at a first glance, this decision is justified in
the discussion connected to the convergence study regarding the number of
relaxed atomic layers in Appendix A.2.2. Since the number of dimer rows is
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limited to a maximum of two for the full active space (see Table 3.15), the
1×1- and 1×2-dimer 4-layer cluster models depicted in Figs. A.15 and A.16
are the only two 1×N -dimer clusters considered for the corrected calculation
of reconstruction energies.

ΔEdimer,3×1

E1×1,p(1×1),CAS(2,2)E1×1,p(2×1),CAS(2,2)

E1×N,p(1×1),CAS(2N,2N)E1×N,p(2×1),CAS(2N,2N)ΔE1×N

ΔE1×1

−

−

=

=

E3×1,p(1×1),CAS(10,10)E3×1,p(2×1),CAS(10,10)

EM×N,p(1×1),CAS(K,K)EM×N,p(2×1),CAS(K,K)ΔEM×N

ΔE3×1

= −

= −

ΔEM×N − ΔE1×N

N(M−1)

ΔE3×1 − ΔE1×1

2

ΔEdimer,M×N =

=

Figure 3.29: Calculation of the CASSCF and NEVPT2 reconstruction energies ∆Edimer
for the H-saturated M×N -dimer cluster models of the Si-terminated 3C-SiC(001)-p(2×1)
reconstructed surface (SD model) using the example of the 3×1-dimer 4-layer cluster
model (Si16C17H38). Reprinted with permission from J. Phys. Chem. C 2023, 127, 48,
23475–23488. Copyright 2023 American Chemical Society. Slightly modified.

Table 3.18: Comparison of reconstruction energies ∆Edimer calculated according to Eq. 3.6
and according to Eqs. 3.7 to 3.9 for H-saturated M×1-dimer 4-layer cluster models of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) optimized at CASSCF
level for the full active space CASfull, the TZVPP/TZVP basis set, and the first two atomic
layers relaxed according to Table 3.17.

Cluster Model
∆Edimer [eV]

Eq. 3.6 Eqs. 3.7 to 3.9

2×1-dimer −0.564 −0.180

3×1-dimer −0.435 −0.179

4×1-dimer −0.371 −0.179
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Lastly, it can be rightfully argued that the comparability of the periodic slab
model calculations and the cluster model calculations is complicated by chang-
ing two methodologies at the same time, namely going from PBCs to the
cluster approach and from single- to multiconfigurational electronic structure
methods. However, an exploratory study comparing single-configurational re-
construction energies at RKS DFT HSE06 level in Appendix A.2.1 shows only
small differences between the periodic slab model and the cluster model ap-
proaches as well as indicating an insufficiency of the single-configurational
methods for this system. Accordingly, it is reasonable to expect the switch
to the cluster model approach to have a negligible impact on the structure
and energetics compared to the switch to the multiconfigurational approach,
justifying the change of both methodologies at the same time.

3.3.2.4 Spatial and Electronic Structure of the p(2×1)
Reconstruction

Since neighboring dimers on the Si-terminated 3C-SiC(001)-p(2×1) recon-
structed surface, as already shown before in the single-configurational calcu-
lations, interact with each other in x-direction to form the supposedly multi-
configurational ID and ID∗ bands, the convergence of the spatial structure of
the multi-dimer cluster models with respect to the number of dimers is of high
interest. Accordingly, Table 3.19 lists dimer bond lengths dSi−Si and recon-
struction energies ∆Edimer for 4-layer cluster models with differing numbers of
dimers M in x- and differing numbers of dimer rows N in y-direction optimized
at CASSCF and NEVPT2 level for both CASred and CASfull. Even though the
number of systems is limited due to the high computational cost of the mul-
ticonfigurational methods, if no unexpected convergence changes appear out-
side of the presented scope, some trends are indicated by the obtained data.
Overall, dSi−Si and ∆Edimer are already reasonably converged for a 3×1-dimer
cluster for both methods and both active spaces. There generally is a notable
increase in the dimer bond length when going from 2×N - to 3×N -dimer clus-

Table 3.19: Dimer bond lengths dSi−Si and reconstruction energies ∆Edimer for H-
saturated M×N -dimer 4-layer cluster models of the Si-terminated 3C-SiC(001)-p(2×1) re-
constructed surface (SD model) optimized at CASSCF and NEVPT2 level for the two dif-
ferent active space sizes CASred and CASfull, the TZVPP/TZVP basis set, and the first
two atomic layers relaxed according to Table 3.17. The dimer bond lengths are taken from
the most inner dimers. Reprinted with permission from J. Phys. Chem. C 2023, 127, 48,
23475–23488. Copyright 2023 American Chemical Society.

Method
Number

of Dimers
in y (N)

Number of Dimers in x (M)

2 3 4 5 2 3 4 2 3 4

dSi−Si,CASred
[�A] dSi−Si,CASfull

[�A] ∆Edimer,CASfull
[eV]

CASSCF

1 2.448 2.463 2.464 2.466 2.502 2.547 2.550 −0.180 −0.179 −0.179

2 2.446 2.462 2.463 2.500 −0.182

3 2.444 2.460

4 2.446

NEVPT2
1 2.449 2.505 2.472 2.560 −0.120 −0.110

2 2.452 2.483 −0.122
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ter models. This is caused by the former clusters only consisting of dimer rows
with two capping H-saturated half-dimers and two unsaturated half-dimers,
thus no true fully unsaturated dimers are present, which are only available in
M×N -dimer cluster models with M larger than two. The shortened dimer
bonds of the capping H-saturated half-dimers are in accordance with several
previous theoretical studies observing the same behavior upon chemisorption
of molecular fragments at one of the dimer atoms.[29,30,32,53,199] Furthermore,
the number of dimer rows N seems to play a subordinate role with respect
to the reconstruction energy and dimer bond length, indicating weak interac-
tion between the dimer rows and arguably determining the 3×1-dimer to be
of sufficient size to explore these two parameters.

Comparing the results for the two active space sizes, a substantial lengthening
of the dimer bonds is observable when going from the smaller CASred to the
larger CASfull. This can be attributed to the σ and σ∗ orbitals being addition-
ally included in the latter active space, enabling an electron transfer from the
bonding to the antibonding orbital indicated by the NOONs of 1.97 and 0.03 in
Fig. 3.27. The driving force for the resulting longer dimer bond is supposedly
the enhanced interaction of the ID orbitals and thus a stronger interdimer
bond. To a certain degree, this contradicts the initial considerations that the
σ and σ∗ orbitals are not important for the multiconfigurational character of
the dimers. While this after all is true as the deviations of the NOONs from
the single-configurational occupation numbers of 2 and 0 are minor, this addi-
tional small dynamic correlation still significantly influences the energetically
very delicate reconstruction connected to the statically correlated ID and ID∗

orbitals with NOONs of about 1.5 and 0.5 in Fig. 3.27, respectively. Thus,
for a faithful description of the p(2×1) reconstruction, including the σ and σ∗

orbitals in the active space is important, which is why the CASfull is the focus
of the subsequent calculations.

Along these lines, from Table 3.19, the well-known effect of dynamic correlation
being less impactful for larger active spaces[58] is also apparent since the dimer
bond lengthening is less significant for CASfull when going from CASSCF to
NEVPT2 compared to CASred. In this particular case, this observation can
be explained by the dynamic correlation already partially considered in the
CASfull through the inclusion of the σ and σ∗ orbitals. These orbitals are
not present in the CASred, resulting in the NEVPT2 method being able to
cover a larger extent of dynamic correlation and thus a greater dimer bond
lengthening for this smaller active space compared to the CASfull occurs. Nev-
ertheless, the absolute NEVPT2 dimer bond length for the 3×1-dimer cluster
is still substantially larger by about 0.05�A for CASfull than for CASred. Hence,
the dynamic correlation of NEVPT2 cannot fully compensate the insufficient
size of the CASred. Furthermore, when comparing the reconstruction energies,
the dynamic correlation of NEVPT2 also significantly reduces the reconstruc-
tion strength for CASfull by a significant relative amount to about −0.11 eV
compared to the value of −0.18 eV for CASSCF. This is in accordance with
the single-configurational periodic slab model calculations, where the inclu-
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sion of approximate dynamic correlation in the hybrid UKS DFT functionals
also resulted in less negative reconstruction energies compared to the pure HF
method.

Besides the number of dimers, the number of atomic layers is another impor-
tant convergence parameter to check. Table 3.20 lists the dimer bond lengths
and reconstruction energies of 3×1- and 4×1-dimer 4-, 6-, and 8-layer cluster
models of the p(2×1) reconstructed surface optimized at CASSCF level for the
CASfull. As apparent, dSi−Si is basically converged for six layers, yielding the
same value of 2.553�A for both 3×1- and 4×1-dimer cluster models. ∆Edimer,
on the other hand, does not show convergence even for eight atomic layers,
which could either be a real physical effect or a limitation of the method for
calculating the reconstruction energies because the dimer bond length seem-
ingly does converge. Calculations of even larger cluster models would be nec-
essary to answer this question, which is unfortunately not possible due to the
computational cost. For the same reason, NEVPT2 optimizations were also
not possible for the 4×1-dimer clusters and the 3×1-dimer 6- and 8-layer clus-
ters. However, with the NEVPT2 results of the 3×1-dimer 4-layer cluster of
Table 3.19, one could estimate dSi−Si to be longer by about 0.01�A – 0.02�A and
the reconstruction energies to be more positive by about 0.06 eV – 0.07 eV than
the CASSCF 8-layer cluster results, yielding values of about 2.56�A – 2.57�A and
−0.05 eV –−0.07 eV as given at the bottom of Table 3.20.

The convergence of the p(2×1) cluster models is further influenced by the
choice of the basis set and the number of relaxed atomic layers. In case of the
former, the TZVPP/TZVP basis set used so far seems to describe the spatial
structure of the p(2×1) surface appropriately as discussed in Appendix A.2.3
in more detail. Concerning the number of relaxed layers, the situation is less
clear and it is referred to the detailed discussion in Appendix A.2.2. To quickly
summarize, the decision to optimize only the first two atomic layers of the clus-

Table 3.20: Dimer bond lengths dSi−Si and reconstruction energies ∆Edimer for H-
saturated 3×1- and 4×1-dimer 4-, 6-, and 8-layer cluster models (Si16C17H38, Si28C35H58,
Si34C38H58, Si22C23H50, Si40C49H78, and Si50C54H78) of the Si-terminated 3C-SiC(001)-
p(2×1) reconstructed surface (SD model) optimized at CASSCF level with the full active
space CASfull, the TZVPP/TZVP basis set, and the first two atomic layers relaxed according
to Table 3.17. The dimer bond lengths are taken from the most inner dimers. Additionally,
estimated NEVPT2 values extrapolated from the 3×1-dimer 4-layer cluster of Table 3.19
are given at the bottom. Reprinted with permission from J. Phys. Chem. C 2023, 127,
48, 23475–23488. Copyright 2023 American Chemical Society. Extended by the estimated
NEVPT2 values.

Number of
Atomic Layers

in z

Cluster Model

3×1-dimer 4×1-dimer

dSi−Si,CASfull
[�A] ∆Edimer,CASfull

[eV] dSi−Si,CASfull
[�A] ∆Edimer,CASfull

[eV]

4 2.547 −0.179 2.550 −0.179

6 2.553 −0.132 2.553 −0.141

8 2.553 −0.120 2.553 −0.132

8 (estimated
NEVPT2)

dSi−Si,CASfull
: 2.56�A – 2.57�A ∆Edimer,CASfull

: −0.05 eV –−0.07 eV
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ter models is a compromise between the multi-configurational reoptimization
of the surface states located mainly in the first two layers and keeping the relax-
ation of all the lower atomic layers already present in the single-configurational
UKS DFT HSE06 reference structure used for the construction of the cluster
models.

Now, a comparison of the estimated high-level multiconfigurational dimer bond
lengths and reconstruction energies of 2.56�A – 2.57�A and −0.05 eV –−0.07 eV
given at the bottom of Table 3.20 with the DFT calculations of Section 3.2
is made. Regarding dSi−Si, the RKS results with values of 2.7�A – 2.8�A are
in lesser accordance with the multiconfigurational calculations than the UKS
results with 2.45�A – 2.55�A. The UKS reconstruction energies of −0.06 eV –
−0.28 eV also show better agreement than the RKS values of about −0.02 eV,
though it is apparent from the different convergence studies that the method
of calculating ∆Edimer for cluster models is presumably not fully sophisticated
and thus these numbers have to be treated with care. Furthermore, as dis-
cussed in the atomic layer convergence study of the periodic slab models in
Section 3.2.3.5, the single-configurational reconstruction energies are suppos-
edly also more negative by about 0.03 eV, which would then favor the RKS
results. Nevertheless, overall there is no definitive agreement with either the
RKS or the UKS formalism, which can be explained by a closer analysis of
the electronic structure of the multiconfigurational calculations. As apparent
from Table 3.21, the NOONs of the ID and ID∗ orbitals of the p(2×1) recon-
structed 3×1- and 4×1-dimer 4-layer cluster models at CASSCF and NEVPT2
level with the CASfull amount to about 1.5 and 0.5, respectively, which indi-
cates an approximately equal mixture of the fully closed-shell and the fully
radicalic configurations. This is further supported when examining the com-
position of the corresponding CASSCF wave function of the 3×1-dimer 4-layer
cluster model given in Table 3.22. Here, about 56 % are contributed by the pure
closed-shell configuration [...2200...] (only considering the two ID and the two
ID∗ orbitals) and about 17 % by the fully radicalic configuration [...1111...].
Furthermore, there is a sum of about 23 % of the five configurations with the
remaining possible permutations of two doubly occupied and two unoccupied
ID and ID∗ orbitals, of which two linearly combined also result in radicalic
character, e.g, [...2002...] and [...0220...]. This interpretation is done analo-

Table 3.21: NOONs of the ID and ID∗ orbitals for H-saturated 3×1- and 4×1-dimer 4-
layer cluster models (Si16C17H38 and Si22C23H50) of the Si-terminated 3C-SiC(001)-p(2×1)
reconstructed surface (SD model) optimized at CASSCF and NEVPT2 level for the full
active space CASfull, the TZVPP/TZVP basis set, and the first two atomic layers relaxed
according to Table 3.17. The corresponding NOs are depicted in Figs. A.23, A.24, A.31
and A.32.

Cluster
Model

NOONs of CASfull

CASSCF NEVPT2

ID Orbitals ID∗ Orbitals ID Orbitals ID∗ Orbitals

3×1-dimer 1.53, 1.52 0.51, 0.45 1.54, 1.53 0.50, 0.44

4×1-dimer 1.53, 1.52, 1.52 0.52, 0.48, 0.44
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gously to the assignment of diradicalic character to methylene by Schmidt and
Gordon,[55] who described the molecule by a two-configurational wave func-
tion including the configurations [20] and [02]. With this knowledge about the
wave function at hand, it is reasonable for the dimer bond length and recon-
struction energies of the multiconfigurational calculations to lie in between the
single-configurational RKS and UKS results. The wave function composition
also confirms the suspected strong multiconfigurational character of the Si-
terminated 3C-SiC(001)-p(2×1) reconstructed surface. From the NOONs of
1.5 and 0.5 for the ID and ID∗ orbitals, it can further be concluded that the
closed-shell RKS solution with occupation numbers of 2 and 0 overestimates
the interdimer bond strength, while the UKS formalism underestimates this
interaction with occupation numbers of 1 and 1. However, it has to be kept in
mind that a true diradicalic solution, in which both ID and ID∗ bands would
be singly occupied, is not present in the UKS solution but instead the broken
spin-symmetry α- and β-ID bands are singly occupied.

Comparing the multiconfigurational multi-dimer results of this work to the
1-dimer cluster model of Tamura and Gordon,[53] the effect of the interaction
of neighboring dimers in the x-direction becomes apparent. In the CAS(4,4)
calculation of the cited authors, the isolated π and π∗ orbitals are almost
degenerate with NOONs of 1.08 and 0.92. Optimizing an identical cluster
model without MM embedding depicted in Fig. A.17 at CASSCF level with
the TZVPP/TZVP basis set and the topmost two atomic layers allowed to
relax, the dimer is slightly less diradicalic with NOONs of 1.17 and 0.83. Nev-
ertheless, through the linear combination of neighboring dimers, these π and
π∗ orbitals energetically split up further into the resulting ID and ID∗ states
showing significantly different NOONs of about 1.5 and 0.5. This increased in-
terdimer interaction also expresses itself in longer dimer bonds of about 2.55�A

Table 3.22: Configuration composition of the CASSCF singlet ground state wave function
for the H-saturated 3×1-dimer 4-layer cluster model (Si16C17H38) of the ideal p(1×1) and
p(2×1) reconstructed (SD model) Si-terminated 3C-SiC(001) surface optimized at CASSCF
level with the full active space CASfull, the TZVPP/TZVP basis set, and the first two atomic
layers relaxed according to Table 3.17. The occupation numbers in the configurations belong
to the orbitals depicted in Figure 3.27 in the order of going from bottom up and from left
to right. Only configurations with a percentage greater than 1 % are listed. Reprinted with
permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American
Chemical Society.

Ideal p(1×1) Surface p(2×1) Reconstruction

Configuration Percentage [%] Configuration Percentage [%]

[2222200000] 70.6 [2222200000] 55.6

[2221111000] 2.1 [2221111000] 17.2

[2222020000] 1.7 [2222020000] 6.0

[2212110100] 1.3 [2220022000] 5.3

[2220202000] 4.6

[2220220000] 4.0

[2222002000] 2.9
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for the CASfull M×N -dimer clusters with M greater than two compared to the
value of 2.46�A in case of the 1-dimer cluster of Tamura and Gordon[53] or of
2.49�A for the identical 1-dimer cluster model optimized as mentioned above.

The composition of the wave function of the ideal p(1×1) 3×1-dimer 4-layer
cluster model is also listed in Table 3.22 with 70 % being contributed by the
closed-shell configuration. The second most relevant configuration makes up
only about 2 % and only two further configurations are contributing more
than 1 %. On one hand, this confirms the highly multiconfigurational charac-
ter anticipated before due to a very large number of different configurations
representing the wave function. This is also apparent from the NOONs of
the IA and IA∗ orbitals given in Figs. A.23, A.24, A.31 and A.32 being in
the range of about 1.90 – 1.80 and 0.25 – 0.05, respectively, thus all deviating
significantly from the single-configurational occupation numbers of 2 and 0.
On the other hand, it can be argued that an RKS description of the ideal
p(1×1) surface is more reasonable than an RKS or UKS calculation of the
p(2×1) surface because of the comparatively high contribution of the single
closed-shell configuration to the wave function in the former case, which for
the RKS formalism is also free of spin contamination.

With the multiconfigurational multi-dimer cluster model calculations at hand,
it is interesting to ask if any insights regarding the band structure can be
obtained. Paulus[56] already addressed this issue in their multiconfigurational
cluster calculations of the supposedly metallic Si(001)-p(2×1) reconstructed
surface with symmetric dimers. There, it was concluded that cluster model
approaches cannot answer this question, which, even though not explicitly
stated, is supposedly owed to the small system size compared to the real sur-
face or periodic slab model calculations. However, using the example of the
3×3-dimer 4-layer cluster model of the p(2×1) reconstruction, the correspond-
ing ID and ID∗ orbitals of the CASred(12,12) depicted in Fig. 3.30 already
show a band-like behavior by forming different linear combinations between
the π and π∗ orbitals of neighboring unit cells. As apparent, these orbitals can
be assigned to different ~k-points on the ~k-path of the corresponding first SBZ.
For example, the different lobes of the ID orbitals all show the same phase fac-
tor at Γ , a fully alternating phase factor in the y-direction at J ′, and the phase
factor alternating for every second unit cell in y-direction while being zero for
the unit cell in between at the midpoint of the Γ−J ′-path, which is in accor-
dance with the electronic structure theory of solids established in Section 2.2.1.
However, the size of this cluster model limits the number of ~k-points to six
compared to the slab model calculations, in which the PBCs basically give
free choice over the ~k-point sampling and thus the number of different linear
combinations/Bloch functions considered. Furthermore, besides the limited
number of atomic layers in the cluster models, the missing PBCs also result in
an inferior embedding of the clusters and thus distorts their electronic struc-
ture. Nevertheless, even if these systematic problems were not present and one
would conduct multiconfigurational periodic slab model calculations, the band
structure is generally interpreted with a single-configurational picture in mind.
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Γ J

KJ'
1.45 e−0.60 e−

1.44 e−0.58 e−

1.44 e−0.59 e−

1.42 e− 0.56 e−

1.42 e− 0.54 e−

1.44 e− 0.52 e−[110]
x

[110]
y

ID*ID* ID ID

Figure 3.30: H-saturated 3×3-dimer 4-layer cluster model (Si38C39H66) with the corre-

sponding CASred(12,12) orbitals assigned to different points on the ~k-path of the first SBZ
of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) optimized at
CASSCF level with the TZVPP/TZVP basis set, and the first two atomic layers relaxed ac-
cording to Table 3.17. The isosurface value of the orbitals amounts to 0.01 a0

−3. Reprinted
with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023
American Chemical Society. Slightly modified.

Accordingly, for semiconductors and insulators, bands can either be fully occu-
pied or completely empty and for metals, there additionally exist partly filled
bands at the intersection with the Fermi level. Multiconfigurational methods
break with this convention as the wave function can consist of configurations
that would be regarded as excited states in a single-configurational picture,
which results in NOONs being able to take any real value between 0 and 2.

As described in Section 2.1.2.3, NOONs and NOs are used in multiconfigura-
tional calculations because canonical orbitals with canonical orbital energies
are not available in the first place. Accordingly, it is not possible to determine
HOMO and LUMO and thus no energy gap between them to estimate the band
gap of the material using multiconfigurational approaches. Thankfully, these
methods offer the calculation of excited states and thus of excitation energies,
which, as discussed before in Section 3.2.2, are the correct way to calculate the
optical band gap in contrast to orbital energy differences, anyway. Table 3.23
lists such vertical state-optimized CASSCF and NEVPT2 excitation energies
Eexc for the excitation from the singlet ground state to the first excited singlet
state for the 3×1- and 4×1-dimer 4-layer cluster models of the ideal p(1×1)
and p(2×1) reconstructed surface and the full active space CASfull. The given
values indicate both surfaces to be semiconducting and are thus in agreement
with previous DFT calculations of the p(2×1) reconstructed[39,40,42–45,151] and
the ideal p(1×1) surface,[42,44,45] the DFT results of this work as well as exper-
imental work done on the p(2×1) reconstruction.[38,151–154] Interestingly, the
excitation energies for the p(1×1) surface with about 2.1 eV – 2.2 eV are larger
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Table 3.23: Vertical state-optimized CASSCF and NEVPT2 excitation energies Eexc for
H-saturated 3×1- and 4×1-dimer 4-layer cluster models (Si16C17H38 and Si22C23H50) of the
ideal p(1×1) and p(2×1) reconstructed (SD model) Si-terminated 3C-SiC(001) surface opti-
mized at CASSCF and NEVPT2 level for the full active space CASfull, the TZVPP/TZVP
basis set, and the first two atomic layers relaxed according to Table 3.17. The values corre-
spond to the energy difference between the singlet ground state and the first excited singlet
state. Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488.
Copyright 2023 American Chemical Society.

Cluster
Model

Ideal p(1×1) Surface p(2×1) Reconstruction

Eexc,CASSCF [eV] Eexc,NEV PT2 [eV] Eexc,CASSCF [eV] Eexc,NEV PT2 [eV]

3×1-dimer 2.22 2.10 0.69 0.87

4×1-dimer 2.09 0.65

than for the p(2×1) reconstruction with about 0.6 eV – 0.9 eV. This relative
trend is apparently in accordance with the RKS DFT HSE06 calculations of
the respective surfaces giving surface band gaps Eg,surf of 0.61 eV and 0.53 eV,
while contradicting the UKS p(2×1) value of 1.34 eV. On the other hand,
from a quantitative perspective, the RKS value of the p(1×1) surface seems to
drastically underestimate the multiconfigurational surface band gaps. Overall,
a comparison appears to be quite complicated since the multiconfigurational
approach is necessary for a faithful description of the investigated system but
the cluster models are apparently too small to give quantitative results. The
insufficient size regarding the number of dimers is indicated by the slight but
significant decrease and increase of the p(1×1) and p(2×1) CASSCF excitation
energies, respectively, when going from a 3×1- to a 4×1-dimer cluster model.
The inclusion of dynamic correlation using the NEVPT2 method for the 3×1-
dimer cluster slightly amplifies this decrease for the p(1×1) excitation energy,
while it counteracts this decrease for the p(2×1) reconstruction. However, due
to the low number of investigated systems, reliable generalized trends for the
excitation energies cannot be derived. Regarding the number of atomic layers,
the excitation energies seem to be virtually unaffected as apparent from Ta-
ble 3.24, which is presumably owed to the high localization of the surface states
in the first two atomic layers as exemplary depicted in Fig. 3.27. Concerning
the basis set, it is well-known that diffuse basis functions are needed for highly

Table 3.24: Vertical state-optimized CASSCF excitation energies Eexc for H-saturated
3×1- and 4×1-dimer 4-, 6-, and 8-layer cluster models (Si16C17H38, Si28C35H58, Si34C38H58,
Si22C23H50, Si40C49H78, and Si50C54H78) of the ideal p(1×1) and p(2×1) reconstructed (SD
model) Si-terminated 3C-SiC(001) surface optimized at CASSCF level with the full active
space CASfull, the TZVPP/TZVP basis set, and the first two atomic layers relaxed according
to Table 3.17. The values correspond to the energy difference between the singlet ground
state and the first excited singlet state. Reprinted with permission from J. Phys. Chem. C
2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society.

Number of
Atomic Layers

in z

Cluster Model

3×1-dimer 4×1-dimer

Eexc,p(1×1) [eV] Eexc,p(2×1) [eV] Eexc,p(1×1) [eV] Eexc,p(2×1) [eV]

4 2.22 0.69 2.09 0.65

6 2.24 0.71 2.11 0.67

8 2.24 0.71 2.12 0.67
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excited electronic states.[58] However, as apparent from Table A.12 in the basis
set convergence study of Appendix A.2.3, the TZVPP/TZVP basis set used
for the cluster calculations is already sufficient in comparison to def2 basis sets
of different quality[148] including diffuse basis functions.

To summarize, the cluster models show promising results regarding the dimer
bond length and the local description of the statically correlated ID and ID∗

orbitals of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface but
proper multiconfigurational methods for periodic slab models, which are unfor-
tunately still in development, are needed for reasonable reconstruction energies
and a faithful band structure.
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In this work, a detailed theoretical description of the Si-terminated 3C-
SiC(001) surface was carried out utilizing periodic slab model calculations
with single-configurational HF and KS DFT and multiconfigurational cluster
model calculations using CASSCF and NEVPT2. As illustrated in Fig. 4.1,
the single-configurational calculations gave rise to a variety of reconstructions
highly sensitive to the usage of a restricted or unrestricted approach. Start-
ing from the ideal p(1×1) surface, two weak reconstructions can be obtained
when applying the restricted flavor, namely the p(2×1) structure with sym-
metric dimers and a p(4×1) structure with an additional dimerization of two
such dimers. Speaking in the depicted localized orbital picture, the degenerate
doubly occupied interatomic (IA) bonds of the ideal p(1×1) surface split up
into the intradimer σ and interdimer (ID) bonds of the p(2×1) surface. In case
of the p(4×1) reconstruction, the ID bonds further split up into one bond for
the short and the long interdimer distances each, namely IDshort and IDlong.
The corresponding antibonding interdimer (ID∗) bonds are energetically close
to their bonding counterpart, which results in a statically correlated situa-
tion and thus questions the usage of single-configurational methods. For the
p(4×1) surface, this even induces metallic behavior as the bands correspond-

RKS
→ spatial symmetry breaking
→ weak reconstruction

RKS
→ further spatial symmetry breaking
→ slightly stronger reconstruction

UKS
→ spin-symmetry breaking
→ stronger reconstruction

symmetric RKS p(2×1)

RKS p(4×1)

buckled RKS p(2×1)

UKS p(4×1)

symmetric UKS p(2×1)

RKS p(1×1)

RKS p(4×2)

Figure 4.1: Summary of the restricted and unrestricted single-configurational calculations
for the different reconstructions of the Si-terminated 3C-SiC(001) surface.
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ing to the severely stretched IDlong and ID∗long bonds cross at the Fermi level,
even though the experimentally observed p(2×1) and c(4×2) reconstructions
as well as all other theoretical results of this work observed semiconducting
properties.

Now, two processes have emerged to further energetically lower these weakly
stabilized structures with poor restricted description. On one hand, additional
spatial symmetry breaking within this restricted approach is possible (left side
of Fig. 4.1). This results in the p(2×1) structure to give bucked dimers with a
slightly stronger reconstruction energy. Here, the former ID bonds localize as
sp3-like lone pairs at the upper dimer atom and empty pz-like orbitals emerge
at the lower dimer atom like on the closely related Si(001) surface. Similarly,
the p(4×1) structure transforms into a p(4×2) reconstruction, consisting of
two buckled dimers in each structural 4×1 unit, which are again additionally
dimerized. The alternative process to breaking spatial symmetry corresponds
to spin-symmetry breaking when applying the unrestricted approach (right side
of Fig. 4.1). Here, the p(2×1) structure still consists of symmetric dimers but
with shorter dimer bonds and stronger stabilization than the buckled dimers.
This is achieved by the spin-localization basically bisecting the ID bonds into
singly occupied sp3-like dangling bonds. The same effect is observable for
the p(4×1) reconstruction, whose electronic structure changes from metallic
to semiconducting over the course of this process. Since the spin-symmetry
breaking gives structures favored over the ones with broken spatial symmetry
and since it is able to partially include static correlation, the buckled structures
are most likely artifacts as a result of the overall very flat potential energy sur-
face of this system. However, the unrestricted single-configurational solutions
are also merely mimicking a singlet polyradicalic electronic structure because
only the α- and β-ID orbitals are singly occupied instead of both the ID and
ID∗ orbitals. This causes severely spin-contaminated results and questions the
quantitative reliability also of the unrestricted single-configurational methods.

The multiconfigurational cluster model calculations of the p(2×1) recon-
structed surface with symmetric dimers are able to resolve the problems of the
single-configurational approaches. Here, the NOONs of the ID and ID∗ or-
bitals amount to about 1.5 and 0.5, respectively. This indicates a highly multi-
configurational character of this system and an approximately equal mixture of
the closed-shell and radicalic configurations, which could be further confirmed
by the composition of the corresponding wave function. The reconstruction
strength is also in accordance with this observation as the multiconfigurational
dimer bond lengths and the reconstruction energies are located in between
the restricted and unrestricted single-configurational values for the p(2×1) re-
construction with symmetric dimers obtained before as indicated in Fig. 4.2,
though there is slightly better agreement with the unrestricted approach. Ac-
cordingly, it can be concluded that the restricted single-configurational method
overestimates the strength of the ID bond by its enforced double occupation
and the unrestricted counterpart underestimates it by its complete bisection.
It should be emphasized that the inclusion of multiple dimers in each dimer
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restricted single-configuration
→ weak reconstruction

unrestricted single-configuration
→ stronger reconstruction

multiconfiguration
→ intermediate reconstruction

α β

c0 + c1 + c2 + ...

Figure 4.2: Summary of the single- and multiconfigurational calculations for the Si-
terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model). Reprinted with per-
mission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American
Chemical Society. Modified.

row of the cluster models is essential to obtain these results since otherwise a
mainly radicalic solution is obtained like in the study of Tamura and Gordon[53]

because no formation of the ID and ID∗ orbitals is possible. Furthermore,
the cluster models of the ideal p(1×1) surface confirmed the anticipated strong
multiconfigurational character of this system through the NOONs of the IA
and IA∗ orbitals and the composition of the wave function. While no band
structure can be obtained for these cluster models due to their insufficient size,
vertical excitation energies from the singlet ground state to the first excited
singlet state indicate both the p(1×1) and p(2×1) surfaces to be semiconduct-
ing.

Overall, the Si-terminated 3C-SiC(001) surface proved to be highly challenging
from a theoretical perspective due to its strongly correlated surface state bands.
Even though this work was already able to improve the understanding of the
spatial and electronic structure of this system, the cluster model approach is
far from optimal to represent the actual surface as became apparent in the
various convergence studies. While the strong multiconfigurational character
could be shown, as of today, single-configurational periodic slab model calcula-
tions might still be the only viable option for extensive subsequent theoretical
investigations like, e.g., surface reactions due to the limited computational
power and multiconfigurational methods for solid state systems still being at
an early stage of development. Here, the unrestricted approach is supposedly
preferred over the restricted calculations as it gave slightly better agreement
with the multiconfigurational methods and experimental data. It can be ar-
gued that the error introduced by the spin contamination for this methodology
is most likely in the same order of magnitude as the error of KS DFT itself
and should thus not be overemphasized from a pragmatic point of view. Along
these lines, the application of the AP scheme recently developed for DFT cal-
culations employing PBCs[184] might improve the UKS results by obtaining
the non-spin-contaminated configuration representing true singlet diradicalic
Si dimers. On the other hand, it should be kept in mind that the multicon-
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4 Conclusion and Outlook

figurational cluster model calculations showed this exact configuration to only
contribute about 17 % to the exact ground state wave function, questioning
the relevance of such corrections for this particular system. Still, it is interest-
ing from a scientific perspective how this would influence the spatial structure
of the reconstruction. Concerning the ideal p(1×1) surface, presumably no
further improvement is possible with single-configurational methods because
unrestricted calculations will always collapse to the restricted solutions. Since
this system is also of multiconfigurational character, using it as reference struc-
ture to calculate reconstruction energies will at all times introduce an error that
could only be quantified by multiconfigurational slab model calculations. Still,
it might be possible that both the ideal and the reconstructed surfaces exhibit
errors of similar size, leading to reasonable single-configurational results due
to error cancellation.

Turning the attention to the multiconfigurational description of the Si-
terminated 3C-SiC(001) surface, the cluster model approach is generally infe-
rior to periodic slab models due to the missing periodic boundary conditions.
In this work in particular, the limited number of dimers and atomic layers
due to the computational cost of the high-level methods further reduces the
accuracy of the obtained results. Nevertheless, in recent years, some groups
have developed approximate solvers for CASSCF to enable calculations for
large active spaces with up to about 50 electrons and 50 orbitals,[200–202] which
would enable to extend the cluster model size beyond what was achieved here
and gain more reliable results. However, geometry optimizations seem not to
be implemented for these methods, thus limiting their value when trying to
find the actual multiconfigurational spatial structure. Furthermore, it might
be possible that the number of basis functions becomes the limiting factor for
the cluster model size because the cited studies restricted their benchmarks to
comparably small molecules.

Instead of simply increasing the cluster model size, an alternative approach
would be to use advanced embedding methods going beyond the simple H-
saturation applied in this work. Here, several approaches are possible, for
example, an embedding of the quantum cluster in a larger MM cluster like
done by Tamura and Gordon[53] or into a periodic embedding potential ob-
tained from periodic slab model DFT calculations, which can either be static
during the high-level calculation as done by Klüner et al.[133] or updated in
a self-consistent manner with the wave-function-in-DFT method of Chulhai
and Goodpaster.[134] However, it is questionable whether such MM or single-
configurational DFT embedding potentials can improve the results compared
to the plain H-saturated cluster models because the multiconfigurational treat-
ment would still be limited to the orbitals in the small quantum cluster instead
of the actual periodic Bloch functions. This concern is supported by the excita-
tion energies not converging with the number of dimers in this work. Recently,
density matrix embedding theory (DMET) for solid state systems employing

PBCs and ~k-point sampling has been developed, where in each unit cell a so-
called impurity can be treated with high-level methods.[135,136] However, the
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interaction between these impurities of different unit cells are only considered
at a lower mean-field level of theory, which also does not correspond to true
periodic bands calculated at a multiconfigurational level. Nevertheless, these
methods have shown to perform quite well in benchmark calculations against
periodic full CI or periodic CCSD for small systems and even a band structure
can be obtained.[135] For a true description of the Si-terminated 3C-SiC(001)
surface, a combination of multiconfigurational methods like CASSCF with pe-
riodic slab models would be necessary. The PySCF program package[130,203]

actually allows to carry out such calculations but it is restricted to only con-
tain the Γ -point in the ~k-point grid. Hence, the size of the supercell would
need to be increased to counteract the poor ~k-point sampling to arrive at
the thermodynamic limit. Accordingly, just like in case of the cluster mod-
els, the supercell size is then quickly limited by the active space size.[130,203]

Nevertheless, this approach should still give an improved embedding and thus
description of the surface compared to the cluster model calculations of this
work.

With this, it can be concluded that a faithful description of the statically corre-
lated Si-terminated 3C-SiC(001) surface goes beyond the limitations of current
state-of-the-art electronic structure methods and can thus be regarded as an
excellent benchmark system for future developments in this field. Nevertheless,
in this work, it was still possible to shed light on this dark frontier of multi-
configurational solid state surface calculations to a degree not being achieved
before for this material and the corresponding results are eagerly waiting to
be measured against future investigations.
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A Appendix

A.1 Single-Configurational Calculations with

PBCs

A.1.1 Calculation of Reciprocal Space Surface Basis
Vectors

In this section, it is shown how the reciprocal space surface basis vectors ~b1
and ~b2 are derived from the real space surface basis vectors ~a1 and ~a2 using
the example of the ideal p(1×1) surface, the p(2×1) reconstruction, and the
c(4×2) reconstruction of 3C-SiC(001). In analogy to the bulk case presented
in Section 2.2.1.1, the reciprocal space surface basis vectors are calculated as
follows:[204]

~b1 = 2π
~a2 × ~n
|~a1 × ~a2|

~b2 = 2π
~n× ~a1
|~a1 × ~a2|

(A.1)

Here, ~n is the surface normal of the respective surface and × indicates the cross
product of two vectors, giving a new vector orthogonal to the plane spanned
by the two initial vectors, which in the 3D case is calculated according to the
formula below:

~a×~b =

 a1
a2
a3

×
 b1

b2
b3

 =

 a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 (A.2)

The length of the resulting vector is proportional to the area of the parallelo-
gram spanned by the two initial vectors. Accordingly, the size of this area is
dependent on the angle between both vectors, resulting in a maximum value
for orthogonal and a minimum value of zero for parallel or antiparallel vectors.
The size of the area of the two real space surface basis vectors ~a1 and ~a2 is
calculated in the denominator of Eq. A.1, which can alternatively be written
as:

|~a1 × ~a2| = |~a1| |~a2| sin(6 (~a1,~a2)) (A.3)

In case of a (001) surface for a cubic system (basis vectors coinciding with the
Cartesian axes), the surface normal ~n is:

~n =

 0
0
1

 (A.4)
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A.1 Single-Configurational Calculations with PBCs

The length or magnitude of a vector is calculated as follows:

|~a| =
√
a21 + a22 + a23 (A.5)

With this information at hand, the reciprocal space surface basis vectors for
the different surfaces in this work can be calculated.

Ideal p(1×1) Surface

For the ideal p(1×1) surface, the real space surface basis vectors ~a1 and ~a2 are:

~a1 =

 1
0
0

 ~a2 =

 0
1
0

 (A.6)

Insertion into the numerators of the fractions in Eq. A.1 yields:

~b1: ~a2 × ~n =

 0
1
0

×
 0

0
1

 =

 1 · 1− 0 · 0
0 · 0− 0 · 1
0 · 0− 1 · 0

 =

 1
0
0

 (A.7)

~b2: ~n× ~a1 =

 0
0
1

×
 1

0
0

 =

 0 · 0− 1 · 0
1 · 1− 0 · 0
0 · 0− 0 · 1

 =

 0
1
0

 (A.8)

Since in case of the ideal p(1×1) surface the real space basis vectors are or-
thogonal, the denominators of the fractions in Eq. A.1 simply amount to:

|~a1| =
√

12 + 02 + 02 = 1 (A.9)

|~a2| =
√

02 + 12 + 02 = 1 (A.10)

|~a1 × ~a2| = |~a1| |~a2| sin (90◦) = 1 · 1 · 1 = 1 (A.11)

Thus, the reciprocal space surface basis vectors are:

~b1 = 2π

 1
0
0


1

=

 2π
0
0

 (A.12)

~b2 = 2π

 0
1
0


1

=

 0
2π
0

 (A.13)
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p(2×1) Reconstruction

For the p(2×1) reconstructed surface, the real space surface basis vectors ~a1
and ~a2 are:

~a1 =

 2
0
0

 ~a2 =

 0
1
0

 (A.14)

Insertion into the numerators of the fractions in Eq. A.1 yields:

~b1: ~a2 × ~n =

 0
1
0

×
 0

0
1

 =

 1 · 1− 0 · 0
0 · 0− 0 · 1
0 · 0− 1 · 0

 =

 1
0
0

 (A.15)

~b2: ~n× ~a1 =

 0
0
1

×
 2

0
0

 =

 0 · 0− 1 · 0
1 · 2− 0 · 0
0 · 0− 0 · 2

 =

 0
2
0

 (A.16)

Since in case of the p(2×1) reconstructed surface the real space basis vectors
are orthogonal, the denominators of the fractions in Eq. A.1 simply amount
to:

|~a1| =
√

22 + 02 + 02 = 2 (A.17)

|~a2| =
√

02 + 12 + 02 = 1 (A.18)

|~a1 × ~a2| = |~a1| |~a2| sin (90◦) = 2 · 1 · 1 = 2 (A.19)

Accordingly, the reciprocal space surface basis vectors are:

~b1 = 2π

 1
0
0


2

=

 π
0
0

 (A.20)

~b2 = 2π

 0
2
0


2

=

 0
2π
0

 (A.21)

c(4×2) Reconstruction

For the c(4×2) reconstructed surface, the real space surface basis vectors of
the rhombic unit cell ~a1 and ~a2 are:

~a1 =

 2
−1
0

 ~a2 =

 2
1
0

 (A.22)

134
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Insertion into the numerators of the fractions in Eq. A.1 yields:

~b1: ~a2 × ~n =

 2
1
0

×
 0

0
1

 =

 1 · 1− 0 · 0
0 · 0− 2 · 1
2 · 0− 1 · 0

 =

 1
−2
0

 (A.23)

~b2: ~n× ~a1 =

 0
0
1

×
 2
−1
0

 =

 0 · 0− 1 · (−1)
1 · 2 − 0 · 0
0 · (−1)− 0 · 2

 =

 1
2
0

 (A.24)

The angle between the real space surface basis vectors of the rhombic unit cell
of the c(4×2) reconstructed surface can be calculated using the arctangent (see
Fig. A.1):

6 (~a1,~a2) = 2 · tan−1
(

1

2

)
≈ 53.13◦ (A.25)

a2

a1

2

1

Figure A.1: Calculation of the angle between the real space surface basis vectors in the
primitive rhombic (

√
5×
√

5)R(2 · tan−1(0.5)) unit cell of the Si-terminated 3C-SiC(001)-
c(4×2) reconstructed surface.

Hence, the denominators of the fractions in Eq. A.1 amount to:

|~a1| =
√

22 + (−1)2 + 02 =
√

5 (A.26)

|~a2| =
√

22 + 12 + 02 =
√

5 (A.27)

|~a1 × ~a2| = |~a1| |~a2| sin
(

2 · tan−1
(

1

2

))
=
√

5 ·
√

5 · 0.8 = 4 (A.28)

Accordingly, the reciprocal space surface basis vectors are:

~b1 = 2π

 1
−2
0


4

=

 0.5π
−π
0

 (A.29)

~b2 = 2π

 1
2
0


4

=

 0.5π
π
0

 (A.30)
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Comparison of the p(1×1), p(2×1), and c(4×2) lattices

As apparent from Table A.1, in case of the ideal p(1×1) surface and the p(2×1)
reconstruction, the intuitive rule applies that doubling a vector in real space
results in the corresponding reciprocal space vector to be halved. However, it
is also apparent that this proportionality seems to not be fulfilled in case of
the c(4×2) reconstruction, which might be confusing at first but is explained
in the following. When, for example, going from the real space vector 1

0
0

 to

 2
0
0


with lengths of 1 and 2, respectively, the corresponding lengths in reciprocal
space amount to 2π and π. The latter values can be obtained by the simple
ratios 2π

1
and 2π

2
with the real space lengths in the denominator, respectively.

These ratios are often the first intuitive approach when being confronted with
the inversely proportional relation of the real and reciprocal space basis vectors
for the first time. But this would also imply that in case of the real space vector 2

−1
0


of the c(4×2) reconstruction with a length of about 2.24, the length of the
corresponding reciprocal space vector should be 2π

2.24
≈ 0.89π. This at first

glance would also make sense intuitively since one would expect a vector with
a real space length of 2.24 to be shorter in reciprocal space than a vector with
a real space length of 2. However, as the calculations conducted above show,
the actual length of the former vector in reciprocal space amounts to 1.12π.
This difference is caused by the calculation of reciprocal space basis vectors
not only considering the length of the real space vector in the denominator of
Eq. A.1 but instead the length of the cross product of both real space vectors.

Table A.1: Comparison of the real and reciprocal space surface basis vectors for the ideal
p(1×1), p(2×1) reconstructed, and c(4×2) reconstructed surfaces and their relative lengths
in Fig. 2.6.

Recon-
struction

Real Space Reciprocal Space

Basis Vectors ~ai Length |~ai|
Relative
Length

in Fig. 2.6

Corresponding

Basis Vectors ~bi
Length |~bi|

Relative
Length

in Fig. 2.6

p(1×1),
p(2×1)

 1
0
0

,

 0
1
0

 1 1

 2π
0
0

,

 0
2π
0

 2π 2

p(2×1)

 2
0
0

 2 2

 π
0
0

 π 1

c(4×2)

 2
−1
0

,

 2
1
0

 √
5 ≈ 2.24 ≈ 2.24

 0.5π
−π
0

,

 0.5π
π
0

 √
5
2 π ≈ 1.12π ≈ 1.12
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As already explained above, this cross product corresponds to the area of the
parallelogram spanned by the two real space vectors, which is dependent on
the angle between both vectors. Since this angle in the c(4×2) case is not
orthogonal, the area spanned by the two vectors is not at its maximum value
but only at 80 % with a value of 4 as indicated in Eq. A.28. When using the
maximum area of 5, one would in fact obtain the intuitively expected reciprocal
space basis vector length of about 0.89π. Accordingly, one has to be careful
when comparing the lengths of reciprocal space basis vectors of two different
reciprocal lattices with different angles between the respective real space basis
vectors.

A.1.2 Details on ~k-Point Grids in CRYSTAL17

Since the CRYSTAL17 manual[124] is quite sparse at times, here some addi-
tional information regarding the ~k-point grids are given, which were acquired
over the course of this (and previous) work. Hopefully, this comes to good
use for future users of the mentioned program package or users conducting
calculations with PBCs in general.

A detailed understanding of the ~k-point grids employed in CRYSTAL17 is
important to correctly interpret and conduct the respective calculations. While
not explicitly mentioned in the manual, from the analysis of the output files, it
is apparent that Γ -centered grids are used by default in CRYSTAL17 without
any possibility of changing the sampling scheme like in, e.g., VASP.[122,123]

The first SBZ of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface

investigated in this work with the Γ -centered 6×12×1 Monkhorst-Pack ~k-point
grid is depicted in Fig. A.2 and used as first example. Since in the calculations

Γ: (0 0 0)

J: (3 0 0)

K: (3 6 0)J': (0 6 0)

b2

b1

Figure A.2: Γ -centered 6×12×1 Monkhorst-Pack ~k-point grid (black dots) used in the
calculations of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model).
The first SBZ is indicated by red lines, the IBZ when imposing P1-symmetry is shaded
in gray, and the ~k-path for band structure calculations is indicated by black lines. The
neighboring first SBZ is additionally shown in a faded manner. The blue dots represent the
irreducible ~k-points of the IBZ that are actually calculated.
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only P1-symmetry was applied to enable a maximum of variational freedom for
the geometry optimizations, the IBZ corresponds to half the BZ as established
in Section 2.2.1.1. It has to be kept in mind that the actual surface in real space
is of higher symmetry, which is why the actual IBZ corresponds to only one
fourth of the BZ where the ~k-path for band structure calculations is located.
Under P1-symmetry, 38 irreducible ~k-points are present as highlighted by the
blue dots in Fig. A.2. The four apparently missing irreducible ~k-points at the
top and bottom right hand side of this blue grid are actually not needed since
they are obtainable by applying the translation and inversion symmetry of the
reciprocal space on other irreducible ~k-points. As apparent in the output of
CRYSTAL17 in Fig. A.3, further information regarding the coordinates of the
~k-points are available. These coordinates are obtained by simply counting the
position of the respective ~k-point along the three reciprocal basis vectors ~b1,
~b2, and ~b3. Since the output corresponds to a surface slab model, one ~k-point
along ~b3 is sufficient as already discussed in Section 2.2.1.5. Consequently,
in combination with Fig. A.2, the high-symmetry ~k-points of the ~k-path Γ ,
J , K, and J ′ are assignable to the coordinates (0 0 0), (3 0 0), (3 6 0), and
(0 6 0), respectively. This is further indicated by the descriptors C and R,

corresponding to complex and purely real ~k-points, respectively, with only
the high-symmetry ~k-points being classified as R. This is consistent with the
discussion in the context of the 1D example in Fig. 2.7, where only the Bloch
functions at the center of the first BZ at k = 0 and at the edges at k = π

a

have purely real phase factors, which is transferable to higher dimensions.
Knowledge of the reciprocal space coordinates of the high-symmetry ~k-points
was important in this work to correctly plot the band structure and find the
corresponding orbitals. Especially in the latter case, this was relevant because
one CRYSTAL17 orbital calculation creates one orbital file for each ~k-point of
the ~k-point grid employed, with the names of the orbital files only differing in
the three coordinate numbers listed in the output.

 SHRINK. FACT.(MONKH.)          6 12  1  NUMBER OF K POINTS IN THE IBZ       38
 SHRINKING FACTOR(GILAT NET)   12  NUMBER OF K POINTS(GILAT NET)    146
 *******************************************************************************
 *** K POINTS COORDINATES (OBLIQUE COORDINATES IN UNITS OF IS =  6)
    1-R(    0    0   0)       2-C(    1    0    0)        3-C(    2    0    0)        4-R(    3    0    0)
    5-C(    0    1   0)       6-C(    1    1    0)        7-C(    2    1    0)        8-C(    3    1    0)
    9-C(    4    1   0)     10-C(    5    1   0)     11-C(    0    2    0)      12-C(    1    2    0)
  13-C(    2    2    0)      14-C(    3    2    0)      15-C(    4    2    0)      16-C(    5    2    0)
  17-C(    0    3    0)      18-C(    1    3    0)      19-C(    2    3    0)      20-C(    3    3    0)
  21-C(    4    3    0)      22-C(    5    3    0)      23-C(    0    4    0)      24-C(    1    4    0)
  25-C(    2    4    0)      26-C(    3    4    0)      27-C(    4    4    0)      28-C(    5    4    0)
  29-C(    0    5    0)      30-C(    1    5    0)      31-C(    2    5    0)      32-C(    3    5    0)
  33-C(    4    5    0)      34-C(    5    5    0)      35-R(    0    6    0)      36-C(    1    6    0)
  37-C(    2    6    0)      38-R(    3    6    0)

Figure A.3: Excerpt of the CRYSTAL17 output regarding the ~k-point grid for the calcu-
lation of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) using the

Γ -centered 6×12×1 Monkhorst-Pack ~k-point grid depicted in Fig. A.2.

With the information presented, for the calculation of orbitals, it can further
be concluded that one has to pay attention to the CRYSTAL17 output if
the ~k-point grid applied does actually contain the ~k-points of interest. For
example, when using the odd ~k-point grid of Fig. 2.16b), none of the high-
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Γ J

KJ'

b2

b1

Figure A.4: Γ -centered 5×10×1 Monkhorst-Pack ~k-point grid (black dots) for the Si-
terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model). The first SBZ is indi-

cated by red lines, the IBZ when imposing P1-symmetry is shaded in gray, and the ~k-path
for band structure calculations is indicated by black lines. This ~k-point grid was not used
in the calculations conducted in this work.

symmetry ~k-points on the BZ edges would be included. Or if one would apply
a Γ -centered 5×10×1 ~k-point grid to the BZ of the p(2×1) reconstruction as

shown in Fig. A.4, J and K would be excluded from the ~k-point grid due to an
odd number of ~k-points along ~b1. Thankfully, CRYSTAL17 offers to specify a
new ~k-point grid for the non-self-consistent calculation of orbitals or the band
structure (as discussed in Section 2.2.1.6), so one does not need to repeat the,
e.g., geometry optimization conducted in advance.

Going a step further, one has to be even more careful when the first BZ does
not coincide with the reciprocal unit cell like it was conveniently the case for
the p(2×1) reconstruction. In case of the c(4×2) reconstruction, the real and
reciprocal surface unit cells are rhombuses, while the first SBZ is an irregular
hexagon (see Fig. A.5). However, CRYSTAL17 is still using the reciprocal
space surface unit cells and not the SBZ during the actual calculations, which
is why the ~k-point grid has to be chosen carefully to also include the high-
symmetry ~k-points of the SBZ. This issue is apparent in Fig. A.5a), showing

the Γ -centered 6×6×1 ~k-point grid used in the calculations. Here, the high-
symmetry ~k-points U and M are not included in the ~k-point grid since they
would correspond to non-integer coordinates when using the nomenclature de-
fined in the CRYSTAL17 calculations. Now, one should not get misled by
the corresponding output in Fig. A.6 because the descriptor R is not necessar-
ily connected to the high-symmetry ~k-points but only to the center, corners,
and edge centers of the reciprocal surface unit cell. Instead, a Γ -centered
16×16×1 ~k-point grid as shown in Fig. A.5b) would be needed to consider

all high-symmetry ~k-points. Again, in CRYSTAL17 the ~k-point grid can be
adjusted after, e.g., a geometry optimization. For the sake of completeness,
the corresponding inputs for the calculation of orbitals and the band structure
using this ~k-point grid for the Si-terminated 3C-SiC(001)-c(4×2) reconstruc-
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tion are given in Fig. A.7. Further information regarding the input parameters
are available in the CRYSTAL17 manual.[124]

Γ: (0 0 0)

X: (3 3 0)

M: (1.875 8.25 0)

U: (−1.875 1.875 0)

Γ: (0 0 0)

X: (8 8 0)

M: (5 11 0)

U: (−5 5 0)
a) b)

b2

b1

Figure A.5: Γ -centered a) 6×6×1 and b) 16×16×1 Monkhorst-Pack ~k-point grids (black
dots) for the Si-terminated 3C-SiC(001)-c(4×2) reconstructed surface (AUDD model). The
reciprocal surface unit cell is depicted by black lines, the irreducible part of the reciprocal
surface unit cell when imposing P1-symmetry is shaded in gray, the first SBZ is indicated
by red lines, and the ~k-path for band structure calculations is indicated by the black lines
on top. Only ~k-point grid a) was used for the c(4×2) calculations conducted in this work.

 SHRINK. FACT.(MONKH.)           6  6  1  NUMBER OF K POINTS IN THE IBZ       20
 SHRINKING FACTOR(GILAT NET)   12  NUMBER OF K POINTS(GILAT NET)      74
 *******************************************************************************
 *** K POINTS COORDINATES (OBLIQUE COORDINATES IN UNITS OF IS =  6)
    1-R(    0    0    0)        2-C(    1    0   0)       3-C(    2    0    0)        4-R(    3    0    0)
    5-C(    0    1    0)        6-C(    1    1   0)       7-C(    2    1    0)        8-C(    3    1    0)
    9-C(    4    1    0)      10-C(    5    1    0)      11-C(    0    2    0)      12-C(    1    2    0)
  13-C(    2    2    0)      14-C(    3    2    0)      15-C(    4    2    0)      16-C(    5    2    0)
  17-R(    0    3    0)      18-C(    1    3    0)      19-C(    2    3    0)      20-R(    3    3    0)

Figure A.6: Excerpt of the CRYSTAL17 output regarding the ~k-point grid for the calcu-
lation of the Si-terminated 3C-SiC(001)-c(4×2) reconstructed surface (AUDD model) using

the Γ -centered 6×6×1 Monkhorst-Pack ~k-point grid depicted in Fig. A.5a).

a)
a
NEWK
16 32
  1   0
ORBITALS
calculation_title
1
0
END
END

b)
a
BAND
calculation_title
4 16 1000 1 1296 1 0
0 0 0      8 8 0
8 8 0      5 11 0
5 11 0    −5 5 0
−5 5 0    0 0 0
END

Figure A.7: Exemplary CRYSTAL17 inputs for the calculation of a) orbitals and b)
the band structure of the Si-terminated 3C-SiC(001)-c(4×2) reconstructed surface (AUDD

model) using the Γ -centered 16×16×1 Monkhorst-Pack ~k-point grid depicted in Fig. A.5b)

to include all high-symmetry ~k-points of the first SBZ.
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A.1.3 Projected Bulk Band Structure of 3C-SiC(001)
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Figure A.8: Creation of the PBBS for a reciprocal unit cell (center right) corresponding to
a bulk 3C-SiC unit cell fitting underneath the 2×1 supercell slab models of the (001) surface
at RKS DFT HSE06 level with the TZVPP/TZVP basis set. For more information on the
process, see Section 2.2.1.5. Additionally, the COs near the band gap at Γ and J ′ for a slice
of the PBBS at ~k⊥,0 and the PDOS of the bulk band structure are given. The isosurface
value for the orbitals amounts to 0.015 a0

−3.
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A.1.4 2×1 Supercell Band Structures with Crystalline
Orbitals
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Figure A.9: COs of the surface states of the ideal Si-terminated 3C-SiC(001)-p(1×1)
surface (2×1 supercell) at RKS DFT HSE06 level with the TZVPP/TZVP basis set for a
2×1 supercell 12-layer periodic slab model to show the swapping of the sp2 dangling bond
(D) and the bridging (Br) px orbitals of the folded IA and IA∗ bands around the HOCO-

LUCO gap with respect to the high-symmetry ~k-points. Additionally, two exemplary bulk-
like states of the slab model located in the PBBS are also shown. CO 122 is the HOCO and
CO 123 is the LUCO. The isosurface value for the orbitals amounts to 0.01 a0

−3. Reprinted
with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023
American Chemical Society. Slightly modified and extended by bulk-like state COs.
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Figure A.10: COs of the surface states of the Si-terminated 3C-SiC(001)-p(2×1) recon-
structed surface (SD model) at singlet RKS DFT HSE06 level with the TZVPP/TZVP
basis set for a 2×1 supercell 12-layer periodic slab model to show the swapping of the π
and π∗ orbitals of the ID and ID∗ bands around the HOCO-LUCO gap with respect to
the high-symmetry ~k-points. Additionally, the σ and σ∗ COs and two exemplary bulk-like
states of the slab model located in the PBBS are also shown. CO 122 is the HOCO and
CO 123 is the LUCO. The isosurface value for the calculated orbitals amounts to 0.01 a0

−3.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society. Slightly modified and extended by σ, σ∗, and bulk-like
state COs.
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Figure A.11: COs of the surface states with respect to the high-symmetry ~k-points of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) at singlet UKS DFT
HSE06 level with the TZVPP/TZVP basis set for a 2×1 supercell 12-layer periodic slab
model. The label π±π∗ indicates that the respective ID and ID∗ band COs are supposedly
broken-symmetry linear combinations of the pure π and π∗ orbitals. Additionally, two
exemplary bulk-like states of the slab model located in the PBBS are also shown. COs
243/244 are the α/β-HOCOs and COs 245/246 are the α/β-LUCOs. Only the COs of the
α bands are shown. The isosurface value for the calculated orbitals amounts to 0.01 a0

−3.
Only the β-UKS bands are visible as they coincide with their degenerate α counterparts.
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Figure A.12: COs of the surface states with respect to the high-symmetry ~k-points of
the buckled dimer Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface at RKS DFT
HSE06 level with the TZVPP/TZVP basis set for a 2×1 supercell 12-layer periodic slab
model. Additionally, two exemplary bulk-like states of the slab model located in the PBBS
are also shown. CO 122 is the HOCO and CO 123 is the LUCO. The isosurface value for
the calculated orbitals amounts to 0.01 a0

−3.
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Figure A.13: COs of the surface states with respect to the high-symmetry ~k-points of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) at triplet UKS DFT
HSE06 level with the TZVPP/TZVP basis set for a 2×1 supercell 12-layer periodic slab
model. Additionally, two exemplary bulk-like states of the slab model located in the PBBS
are also shown. COs 244/242 are the α/β-HOCOs and COs 246/245 are the α/β-LUCOs.
Only the COs of the α bands are shown. The isosurface value for the calculated orbitals
amounts to 0.01 a0

−3.
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A.1.5 Additional Supercell Calculation Data

Table A.2: Mulliken atomic spin densities for the H-saturated rhombic (
√

5×
√

5)R(2 ·
tan−1(0.5)) supercell 12-layer periodic slab model of the Si-terminated 3C-SiC(001)-p(2×1)
reconstructed surface (SD model) optimized at singlet UKS DFT HSE06 level with the
TZVPP/TZVP basis set for the different possible spin arrangements. The assignment of the
spins to the atoms is done according to the numbering in Fig. 3.17a).

Start Spins at Si Dimer
Atoms 1 to 4 in Fig. 3.17a)

Spin Density at Si Dimer Atoms

Si1 Si2 Si3 Si4

1:a ↑ ↓ ↑ ↓ +0.64 −0.64 +0.64 −0.64

2: ↑ ↓ ↓ ↑ +0.69 −0.69 −0.69 +0.69

3: ↑ ↑ ↓ ↓ +0.72 +0.72 −0.72 −0.72
a equal to singlet UKS HSE06 of Table 3.3

Table A.3: Mulliken atomic spin densities and dimer bond lengths dSi−Si for the H-
saturated 4×2 supercell 10-layer periodic slab model of the Si-terminated 3C-SiC(001) re-
constructed surface optimized at singlet UKS DFT HSE06 level with the TZVPP/TZVP
basis set for the different possible spin arrangements. The assignment of the spins to the
atoms is done according to the numbering in Fig. 3.17b).

Start Spins at Si Dimer
Atoms 1 to 8 in Fig. 3.17b)

Spin Density at Si Dimer Atoms

Si1 Si2 Si3 Si4 Si5 Si6 Si7 Si8

1:a ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ +0.64 −0.64 +0.64 −0.64 +0.64 −0.64 +0.64 −0.64

2: ↑ ↓ ↑ ↓ ↓ ↑ ↑ ↓ +0.63 −0.63 +0.63 −0.63 −0.63 +0.63 −0.63 +0.63

3: ↑ ↓ ↓ ↑ ↑ ↓ ↑ ↓ +0.71 −0.70 −0.69 +0.70 +0.63 −0.62 +0.60 −0.60

4: ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ +0.70 −0.70 −0.70 +0.70 +0.70 −0.70 −0.70 +0.70

5:b ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓ +0.69 −0.69 −0.69 +0.69 −0.69 +0.69 +0.69 −0.69

6: ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↓ +0.71 −0.69 −0.71 +0.69 +0.72 +0.70 −0.72 −0.70

7: ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↑ +0.60 −0.71 −0.76 −0.69 +0.71 −0.60 +0.69 +0.76

8:c ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↓ −0.13c −0.66 −0.66 −0.13 +0.13 +0.66 +0.66 +0.13c

9: ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ +0.61 −0.70 −0.77 −0.70 +0.78 +0.70 −0.61 +0.70

10:c ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ +0.13 +0.66 +0.66 +0.13c −0.13 −0.66 −0.66 −0.13c

11: ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ +0.78 +0.78 +0.78 +0.78 −0.78 −0.78 −0.78 −0.78

12: ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓ +0.73 +0.72 −0.72 −0.73 +0.64 −0.63 +0.63 −0.64

13: ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ +0.73 +0.73 −0.73 −0.73 +0.73 +0.73 −0.73 −0.73

14:d ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ +0.72 +0.72 −0.72 −0.72 −0.72 −0.72 +0.72 +0.72

Start Spins at Si Dimer
Atoms 1 to 8 in Fig. 3.17b)

Dimer Bond Lengths [�A]

dSi1−Si2 dSi3−Si4 dSi5−Si6 dSi7−Si8

1:a ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ 2.46 2.46 2.46 2.46

2: ↑ ↓ ↑ ↓ ↓ ↑ ↑ ↓ 2.46 2.46 2.46 2.46

3: ↑ ↓ ↓ ↑ ↑ ↓ ↑ ↓ 2.39 2.38 2.47 2.48

4: ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑ 2.40 2.40 2.40 2.40

5:b ↑ ↓ ↓ ↑ ↓ ↑ ↑ ↓ 2.40 2.40 2.40 2.40

6: ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↓ 2.39 2.39 2.45 2.45

7: ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↑ 2.44 2.43 2.44 2.43

8:c ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↓ 2.62 2.62 2.62 2.62

9: ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ 2.44 2.43 2.43 2.44

10:c ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ 2.62 2.62 2.62 2.62

11: ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ 2.39 2.39 2.39 2.39

12: ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓ 2.45 2.45 2.46 2.46

13: ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ 2.45 2.45 2.45 2.45

14:d ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ 2.45 2.45 2.45 2.45
a equal to singlet UKS HSE06 of Table 3.3 and spin arrangement 1 of Tables 3.6 and A.2
b equal to spin arrangement 2 of Tables 3.6 and A.2
c change of sign in atomic spin densities during geometry optimization to p(4×1) reconstruction

d equal to spin arrangement 3 of Tables 3.6 and A.2
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Table A.4: Mulliken atomic spin densities and bond lengths d for the H-saturated 4×2 su-
percell 10-layer periodic slab model of the Si-terminated 3C-SiC(001)-p(4×1) reconstructed
surface optimized at singlet UKS DFT HSE06 level with the TZVPP/TZVP basis set for
the different possible spin arrangements. The assignment of the spins to the atoms is done
according to the numbering in Fig. 3.17b). The bond lengths dSi−Si and dID are depicted
in Fig. 3.18a).

Start Spins at Si Dimer
Atoms 1 to 8 in Fig. 3.17b)

Spin Density at Si Dimer Atoms Bond Lengths [�A]

Si1 Si2 Si3 Si4 Si5 Si6 Si7 Si8 dSi−Si dID

1: ↑ 0 0 ↓ ↑ 0 0 ↓ +0.68 +0.14 −0.14 −0.68 +0.68 +0.14 −0.14 −0.68 2.61 2.88

2:a ↑ 0 0 ↑ ↓ 0 0 ↓ +0.66 +0.13 +0.13 +0.66 −0.66 −0.13 −0.13 −0.66 2.62 2.85

3: ↑ 0 0 ↓ ↓ 0 0 ↑ +0.67 +0.15 −0.15 −0.67 −0.67 −0.15 +0.15 −0.67 2.62 2.88
a equal to converged spin arrangements 8 and 10 of Tables 3.7 and A.3

Table A.5: Mulliken atomic spin densities, bond lengths d, and spin contamination ∆ 〈Ŝ2〉
per dimer for the p(4×1) and p(4×2) reconstructed Si-terminated 3C-SiC(001) surfaces for
different DFT functionals at singlet RKS and UKS level with the TZVPP/TZVP basis set.
The UKS calculations used spin arrangement 1 of Tables 3.8 and A.4. The bond lengths
dSi−Si and dID are depicted in Fig. 3.18a) and bond lengths dSi−Si,1, dID, and dSi−Si,2 in
Fig. 3.18b).

Recon-
struction

Method
Spin Density at Si Dimer Atoms Bond Lengths [�A] ∆ 〈Ŝ2〉

per DimerSi1/Si5 Si2/Si6 Si3/Si7 Si4/Si8 dSi−Si(,1) dID dSi−Si,2

p(4×1)

RKS

HSE06 - - - - 2.68 2.81 - 0.00

PBE - - - - 2.68 2.87 - 0.00

LDA - - - - 2.67 2.88 - 0.00

UKS

HSE06 +0.68 +0.14 −0.14 −0.68 2.61 2.88 - 0.49

PBE +0.63 +0.12 −0.12 −0.63 2.63 2.95 - 0.47

LDA +0.53 +0.09 −0.09 −0.53 2.64 2.94 - 0.36

p(4×2)

RKS

HSE06 - - - - 2.79 2.88 2.55 0.00

PBE - - - - 2.79 2.92 2.57 0.00

LDA - - - - 2.76 2.90 2.56 0.00

UKS

HSE06

collapse to p(4×2) RKS solutionPBE

LDA

A.2 Multiconfigurational Cluster Model

Calculations

A.2.1 Justification of the Cluster Model Approach

Table A.6 gives the reconstruction energies of single-configurational M×N -
dimer 4-layer cluster models of the Si-terminated 3C-SiC(001)-p(2×1) recon-
structed surface. The cluster models were created according to the workflow
depicted in Fig. 3.26 but using the RKS DFT HSE06 structure from the peri-
odic slab model calculations with a dimer bond length of 2.80�A for the p(2×1)
clusters. Furthermore, no additional optimization of the atomic layers or the
saturating H atoms was carried out. It is apparent that the reconstruction en-
ergies of both structural models are in the same order of magnitude of about
−0.01 eV and thus justify the usage of the cluster model approach. Unfortu-
nately, UKS cluster model calculations proved to be difficult since the spin
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Table A.6: Single-configurational reconstruction energies ∆Edimer for H-saturated M×N -
dimer 4-layer cluster models of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface
(SD model) at RKS DFT HSE06 level using the TZVPP/TZVP basis set. The cluster
models were created according to Fig. 3.26 but using the RKS DFT HSE06 periodic slab
model structure for the p(2×1) clusters (dSi−Si = 2.80�A). No further optimization of
the atomic layers and saturating H atoms was conducted. The reconstruction energies are
calculated according to the same formalism used for the multiconfigurational cluster model
calculations (Eqs. 3.7 to 3.9 in Section 3.3.2.3).

Number
of Dimers
in y (N)

Number of Dimers in x (M)

2 3 4 5

∆Edimer [eV]

1 +0.005 −0.004 −0.008 −0.010

2 −0.011

3 −0.012

PBCs −0.015

arrangements for the surface atoms could not be controlled as reliable as in
the periodic slab model calculations, possibly due to the missing translational
symmetry. Accordingly, no comparison to the presumably more sophisticated
UKS results with PBCs is possible.

As Table A.7 shows, the agreement between the cluster and periodic slab
models decreases when the optimization of the first two atomic layers is also
included like in the multiconfigurational cluster model calculations. This is
expected as the geometry constraints for the cluster models are not able to
exactly mirror the PBCs. Furthermore, the convergence of the dimer bond
lengths appears to be worse and requires larger cluster models than for the mul-
ticonfigurational calculations (compare Table 3.19). At least in the restricted
case, this could further indicate the insufficiency of the single-configurational
approaches to describe this surface and supports the usage of multiconfigura-
tional methods especially for cluster model calculations.

Table A.7: Single-configurational reconstruction energies ∆Edimer and dimer bond
lengths dSi−Si for H-saturated M×N -dimer 4-layer cluster models of the Si-terminated
3C-SiC(001)-p(2×1) reconstructed surface (SD model) at RKS DFT HSE06 level using
the TZVPP/TZVP basis set. The cluster models were created according to Fig. 3.26
but using the RKS DFT HSE06 periodic slab model structure for the p(2×1) clusters
(dSi−Si = 2.80�A). The first two atomic layers are relaxed according to Table 3.17. The
reconstruction energies are calculated according to the same formalism used for the multi-
configurational cluster model calculations (Eqs. 3.7 to 3.9 in Section 3.3.2.3).

Number
of Dimers
in y (N)

Number of Dimers in x (M)

2 3 4 5 2 3 4 5

∆Edimer [eV] dSi−Si [�A]

1 +0.066 +0.024 +0.005 −0.004 2.54 2.85 2.89 2.94

2 +0.001 2.81

3 −0.007 2.79

PBCs −0.015 2.80
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A.2.2 Relaxed Layer Convergence

In Table A.8, the dimer bond lengths dSi−Si and reconstruction energies
∆Edimer for 3×1-dimer 4-, 6-, and 8-layer cluster models optimized at CASSCF
and NEVPT2 level with the CASfull, the TZVPP/TZVP basis set, and differ-
ing numbers of relaxed atomic layers according to Table 3.17 are given. Even
though dSi−Si does not converge when increasing the number of relaxed lay-
ers as is normally the case when doing so in periodic slab calculations, the
changes are of small magnitude in the range of a few 0.001�A. Interestingly,
for the CASSCF calculations of the 6- and 8-layer cluster models, the dimer
bond length seems to decrease at first to a minimum value at three relaxed
layers and then increases again when going to six relaxed layers, almost cy-
cling back to the 1-layer relaxation value. ∆Edimer also does not converge the
more atomic layers are relaxed and instead continuously becomes more nega-
tive, especially for the 6-layer cluster model. It can be argued that this comes
to no surprise because the cluster models built from the UKS DFT HSE06
structure are allowed to further relax towards the multiconfigurational mini-
mum with each additional layer included in the optimization, which obviously
results in lower total energies with respect to the corresponding unoptimized
p(1×1) cluster model and thus more negative ∆Edimer values. Accordingly, it
could be argued that a geometry optimization without constraints might be
the best way to calculate the reconstruction energy but, as already mentioned
in Section 3.3.2.2, this can lead to unphysical cluster model geometries not
representing the surface of interest anymore.

Another possible approach to resolve the convergence problem was to adjust
the 1×N -dimer cluster models, which are used to correct the reconstruction
energies of the M×N -dimer clusters by the spurious reconstruction energies of
the capping H-saturated half-dimers in each of the N dimer rows as described
in detail in Section 3.3.2.3. As further mentioned, only the 1×1- and 1×2-

Table A.8: Dimer bond lengths dSi−Si and reconstruction energies ∆Edimer for H-
saturated 3×1-dimer 4-, 6-, and 8-layer cluster models (Si16C17H38, Si28C35H58, and
Si34C38H58) of the Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) opti-
mized at CASSCF and NEVPT2 level with the full active space CASfull, the TZVPP/TZVP
basis set, and differing numbers of relaxed atomic layers according to Table 3.17. The dimer
bond lengths are taken from the most inner dimer. Reprinted with permission from J. Phys.
Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society.

Method
Number of

Relaxed Atomic
Layers in z

Cluster Model

3×1-dimer 4-layer 3×1-dimer 6-layer 3×1-dimer 8-layer

dSi−Si [�A] ∆Edimer [eV] dSi−Si [�A] ∆Edimer [eV] dSi−Si [�A] ∆Edimer [eV]

CASSCF

1 2.550 −0.174 2.557 −0.125 2.557 −0.113

2 2.547 −0.179 2.553 −0.132 2.553 −0.120

3 2.548 −0.179 2.551 −0.144 2.551 −0.133

4 2.548 −0.181 2.552 −0.152 2.553 −0.143

5 2.556 −0.181 2.557 −0.162

6 2.558 −0.253 2.556 −0.163

NEVPT2

1 2.554 −0.100

2 2.560 −0.110

3 2.567 −0.115

4 2.562 −0.119
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dimer 4-layer cluster models depicted in Figs. A.15 and A.16 were used for
this purpose even though some of the M×N -dimer cluster models contained
more than four layers. This is also the case in Table A.8, for which the 1×1-
dimer 4-layer cluster model was used and only its number of relaxed atomic
layers was adjusted to match the geometry constraints of the corresponding
3×1-dimer cluster models. But because the 1×1-dimer cluster only contains
four layers, no 5- and 6-layer optimization could be conducted for that system.
Accordingly, for the 5- and 6-layer optimizations of the 3×1-dimer clusters,
only the 1×1-dimer correction value ∆E1×1 for four optimized layers could be
used. This discrepancy was assumed to be the cause of the poor convergence
of reconstruction energies as there actually is a significant jump in the cor-
responding values in Table A.8 when going from four to five relaxed layers.
Accordingly, additional 1×1-dimer cluster models with six atomic layers as
depicted in the second column of Table A.9 were created to also be able to op-
timize up to six layers within these. But as apparent from the ∆Edimer values
in the same table, no substantial improvement with respect to the convergence
was achieved. On the contrary, the absolute reconstruction strength decreases
to values as low as −0.015 eV for the larger 1×1-dimer cluster models. This
can presumably be attributed to them containing more atomic layers, which
results in more negative total energies when relaxing many of these layers and
thus more negative values for the correcting reconstruction energy ∆E1×1. If
these get subtracted from the unchanged total reconstruction energies ∆E3×1
of the 3×1-dimer cluster models, the values for ∆Edimer become more pos-
itive. However, the intended purpose of the correcting energy ∆E1×1 is to
only account for the spurious formation of the σ bond between the capping H-
saturated half-dimer and the unsaturated half-dimers that actually represent
the surface states. But by adding more layers to relax, the relaxation energy
of the atomic layers further below is also included in ∆E1×1. This effect was
intended to be accounted for by constructing the cluster models from the al-
ready relaxed UKS DFT HSE06 periodic slab models of the p(2×1) surface, so
actually no further relaxation of the lower atomic layers should be necessary
in the cluster model approach. Accordingly, using 1×1-dimer cluster models
with many relaxed atomic layers can be interpreted as an overcorrection of the
reconstruction energy of the 3×1-dimer cluster models and thus the 1×1-dimer
4-layer clusters should be sufficient.

In conclusion, when calculating cluster model reconstruction energies in this
work, it is aimed for a compromise between accounting for the multiconfigura-
tional reconstruction energy only by relaxing the topmost two atomic layers in
all p(2×1) cluster models and at the same time considering the relaxation of
atomic layers further below the surface by keeping the single-configurational
structure of the periodic slab models. Obviously, this approach is by no means
optimal but supposedly the only way of approximately determining multicon-
figurational cluster model reconstruction energies for the statically correlated
3C-SiC(001)-p(2×1) reconstructed surface.
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A.2.3 Basis Set Convergence

As mentioned in Section 3.3.2.4, the calculation of excited states often re-
quires diffuse basis functions to describe the electron density located further
away from the system compared to the ground state. Accordingly, different
basis set combinations were created using def2 basis sets of different qual-
ity[148], namely def2-SVP/def2-SVPD to def2-QZVPD, for comparison with the
TZVPP/TZVP basis set generally used otherwise. For this, the investigated
3×1- and 4×1-dimer 4-layer cluster models were divided into four different
regions according to Fig. A.14. Here, the Si dimer atoms and the outer satu-
rating H atoms represent region 1, which most likely needs the highest basis
set quality since it contains the major part of the surface states as apparent
from Fig. 3.27. Region 2 corresponds to the underlying C layer and region 3
to the third and fourth layer. All remaining H atoms are included in region
4, which arguably requires the lowest basis set quality as it only serves for
saturating purposes. According to this hierarchy, the basis set combinations
1 – 6 listed in Table A.10 are constructed with combination 6 exhibiting the
highest quality. Before tackling the excited state calculations, the influence

Region 1

Region 2

Region 3

Region 4

Figure A.14: Basis set regions for the convergence studies regarding the basis set size
using the example of the H-saturated 3×1-dimer 4-layer cluster model (Si16C17H38) of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model). Reprinted with per-
mission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American
Chemical Society.

Table A.10: Basis set combinations for the convergence studies regarding the basis set size
for the H-saturated M×1-dimer 4-layer cluster models of the Si-terminated 3C-SiC(001)-
p(2×1) reconstructed surface (SD model). The regions 1 to 4 are depicted in Fig. A.14.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society.

Basis Set
Combination

Employed Basis Set

Region 1 Region 2 Region 3 Region 4

1 def2-SVPD def2-SVP def2-SVP def2-SVP

2 def2-TZVPD def2-SVP def2-SVP def2-SVP

3 def2-TZVPD def2-TZVP def2-SVP def2-SVP

4 def2-TZVPD def2-TZVP def2-TZVP def2-SVP

5 def2-TZVPD def2-TZVP def2-TZVP def2-TZVP

6 def2-QZVPD def2-TZVP def2-TZVP def2-TZVP
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of the basis set quality on the ground state geometry given in Table A.11 is
discussed. As apparent, there is a significant jump for both the dimer bond
length and the reconstruction energy when going from basis set combination
1, which consists only of def2-SVP basis set with additional diffuse functions
for region 1, to basis set combination 2, which is identical to combination 1
but has a def2-TZVPD basis for region 1. All basis set combinations of higher
quality generally only show small changes, confirming the importance of a high
basis set quality for the dimer atoms. Basis set combination 3 seems to be an
outlier in case of the CASSCF reconstruction energies, which could not be re-
solved. The TZVPP/TZVP basis set shows reasonable performance within this
convergence series, generally ranking between basis set combinations 1 and 2
and showing deviations of about 0.01�A – 0.02�A for dSi−Si and about 0.01 eV –
0.02 eV for ∆Edimer compared to the basis set combination 6 for CASSCF and
basis set combination 4 for NEVPT2. This justifies the general usage of the
TZVPP/TZVP basis set for the rest of this work, especially for the sake of
the improved comparability with the single-configurational calculations. How-
ever, it should be noted that the difference in dimer bond lengths between
CASSCF and NEVPT2 are only 0.02�A for the TZVPP/TZVP basis set, while
it amounts to almost 0.05�A for basis set combination 6. This discrepancy can
be attributed to the rather low NEVPT2 value of the TZVPP/TZVP basis set,
falling out of the convergence series of the other basis sets, which is also true for
the corresponding reconstruction energy. This can be explained by correlation
methods like NEVPT2 generally showing a greater dependence on the basis
set quality,[58] resulting in the missing diffuse functions of the TZVPP/TZVP

Table A.11: Dimer bond lengths dSi−Si and reconstruction energies ∆Edimer for the H-
saturated 3×1- and 4×1-dimer 4-layer cluster models (Si16C17H38 and Si22C23H50) of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) optimized at CASSCF
and NEVPT2 level with the full active space CASfull, the respective basis set combination,
and the first two atomic layers relaxed according to Table 3.17. The detailed basis set
combinations are listed in Table A.10. The dimer bond lengths are taken from the most
inner dimer.

Method
Basis Set

Combination

Cluster Model

3×1-dimer 4-layer 4×1-dimer 4-layer

dSi−Si [�A] ∆Edimer [eV] dSi−Si [�A] ∆Edimer [eV]

CASSCF

1 2.551 −0.197 2.553 −0.196

2 2.539 −0.182 2.541 −0.182

3 2.537 −0.178 2.540 −0.177

4 2.537 −0.189 2.538 −0.188

5 2.536 −0.189 2.537 −0.188

6 2.535 −0.190 2.536 −0.189

TZVPP/TZVP 2.547 −0.179 2.550 −0.179

NEVPT2

1 2.609 −0.097

2 2.580 −0.088

3 2.583 −0.084

4 2.581 −0.096

TZVPP/TZVP 2.560 −0.110
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basis set to show a bigger impact for this method than for CASSCF.

The convergence study for the vertical CASSCF and NEVPT2 excitation en-
ergies Eexc for the 3×1-dimer 4-layer cluster models of the p(1×1) and p(2×1)
surfaces is given in Table A.12. Basically, the convergence behavior is simi-
lar to that of the dimer bond length and reconstruction energy shown before,
namely reaching reasonable convergence for basis set combination 2 and basis
set combination 3 giving an outlier value for the p(2×1) surface. Without
going into the details, the TZVPP/TZVP basis set again yields reasonable
values with respect to this convergence series, showing deviations of only a
few 0.01 eV compared to the basis set combination 6 for CASSCF and basis
set combination 4 for NEVPT2. Accordingly, using this basis set for the ex-
citation energies is also justified, especially when considering the significant
uncertainty of this metric with respect to the number of dimers discussed at
the end of Section 3.3.2.4.

Table A.12: Vertical state-optimized CASSCF and NEVPT2 excitation energies Eexc
for the H-saturated 3×1-dimer 4-layer cluster model (Si16C17H38) of the ideal p(1×1) and
p(2×1) reconstructed (SD model) Si-terminated 3C-SiC(001) surface optimized at CASSCF
and NEVPT2 level with the full active space CASfull, the respective basis set, and the first
two atomic layers relaxed according to Table 3.17. The detailed basis set combinations are
listed in Table A.10. The excitation energy values correspond to the energy difference be-
tween the singlet ground state and the first excited singlet state. Reprinted with permission
from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical
Society.

Basis Set
Combination

Ideal p(1×1) Surface p(2×1) Reconstruction

Eexc,CASSCF [eV] Eexc,NEV PT2 [eV] Eexc,CASSCF [eV] Eexc,NEV PT2 [eV]

1 2.39 2.40 0.75 0.89

2 2.28 2.30 0.72 0.81

3 2.26 2.13 0.70 0.96

4 2.25 2.12 0.71 0.80

5 2.25 0.71

6 2.25 0.70

TZVPP/TZVP 2.22 2.10 0.69 0.87
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A.2.4 Cluster Models

1×1-dimer 4-layer cluster model (Si4C5H14)
for the calculation of reconstruction energies

p(2×1) reconstruction ideal p(1×1) surface

CAS(2,2) 

NO 2          NOON(CAS) = 0.02     NOON(NEVPT2) = 0.02

NO 1          NOON(CAS) = 1.98     NOON(NEVPT2) = 1.98

NO 2          NOON(CAS) = 0.11     NOON(NEVPT2) = 0.10

NO 1          NOON(CAS) = 1.89     NOON(NEVPT2) = 1.90

x
y

z

Figure A.15: 1×1-dimer 4-layer cluster model (Si4C5H14) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1) surface with the
corresponding active space orbitals and NOONs at different levels of theory using the
TZVPP/TZVP basis set and the first two atomic layers being relaxed according to Ta-
ble 3.17. This cluster model was used to calculate the reconstruction energies for M×1-
dimer X-layer cluster models. The isosurface value of the orbitals amounts to 0.03 a0

−3.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society. Slightly modified.
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1×2-dimer 4-layer cluster model (Si7C8H20)
for the calculation of reconstruction energies

p(2×1) reconstruction ideal p(1×1) surface

CAS(4,4) 

NO 3

NOON(CAS) = 0.02
NOON(NEVPT2) = 0.02

NO 4

NOON(CAS) = 0.02
NOON(NEVPT2) = 0.02

NO 1

NOON(CAS) = 1.98
NOON(NEVPT2) = 1.98

NO 2

NOON(CAS) = 1.98
NOON(NEVPT2) = 1.98

NO 4

NOON(CAS) = 0.11
NOON(NEVPT2) = 0.10

NO 3

NOON(CAS) = 0.11
NOON(NEVPT2) = 0.10

NO 2

NOON(CAS) = 1.89
NOON(NEVPT2) = 1.89

NO 1

NOON(CAS) = 1.90
NOON(NEVPT2) = 1.90

x
y

z

y

x

Figure A.16: 1×2-dimer 4-layer cluster model (Si7C8H20) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1) surface with the
corresponding active space orbitals and NOONs at different levels of theory using the
TZVPP/TZVP basis set and the first two atomic layers being relaxed according to Ta-
ble 3.17. This cluster model was used to calculate the reconstruction energies for M×2-
dimer X-layer cluster models. The isosurface value of the orbitals amounts to 0.03 a0

−3.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society. Slightly modified.
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1×1-dimer 5-layer cluster model (Si14C7H24)
according to Tamura and Gordon

p(2×1) reconstruction

CAS(4,4) 

NO 1     NOON(CAS) = 1.98 NO 2     NOON(CAS) = 1.17 NO 3     NOON(CAS) = 0.83 NO 4    NOON(CAS) = 0.02

x
y

z

Figure A.17: 1×1-dimer 5-layer cluster model (Si14C7H24) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) according to Tamura and Gordon[53]

with the corresponding active space orbitals and NOONs using the TZVPP/TZVP basis set
and the first two atomic layers being relaxed according to Table 3.17. The isosurface value
of the orbitals amounts to 0.015 a0

−3. Reprinted with permission from J. Phys. Chem. C
2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly modified.
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2×1-dimer 4-layer cluster model (Si10C11H26)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(6,6) and CASred(2,2) 

NOON(CASfull) = 1.97     NOON(NEVPT2full) = 1.98

NOON(CASfull) = 1.97     NOON(NEVPT2full) = 1.98

NOON(CASfull) = 1.52     NOON(NEVPT2full) = 1.53
NOON(CASred) = 1.42     NOON(NEVPT2red) = 1.46

NOON(CASfull) = 0.49     NOON(NEVPT2full) = 0.48
NOON(CASred) = 0.58     NOON(NEVPT2red) = 0.54

NOON(CASfull) = 0.02     NOON(NEVPT2full) = 0.02

NOON(CASfull) = 0.02     NOON(NEVPT2full) = 0.02 NOON(CASfull) = 0.06     NOON(NEVPT2full) = 0.06

NOON(CASfull) = 0.11     NOON(NEVPT2full) = 0.11

NOON(CASfull) = 0.21     NOON(NEVPT2full) = 0.21

NOON(CASfull) = 1.84     NOON(NEVPT2full) = 1.84

NOON(CASfull) = 1.88     NOON(NEVPT2full) = 1.88

NOON(CASfull) = 1.90     NOON(NEVPT2full) = 1.90

y

x

x
y

z

NO 6

NO 5

NO 4

NO 3

NO 2

NO 1

Figure A.18: 2×1-dimer 4-layer cluster model (Si10C11H26) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1) surface with the
corresponding active space orbitals and NOONs at different levels of theory using the
TZVPP/TZVP basis set and the first two atomic layers being relaxed according to Ta-
ble 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3. Reprinted with per-
mission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American
Chemical Society. Slightly modified.
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A Appendix

2×2-dimer 4-layer cluster model (Si17C18H36)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(12,12) and CASred(4,4) 

NOON(CASfull) = 0.02
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NOON(NEVPT2full) = 0.02
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NOON(CASfull) = 0.48
NOON(CASred) = 0.57
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NOON(NEVPT2red) = 0.50
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Figure A.19: 2×2-dimer 4-layer cluster model (Si17C18H36) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1) surface with the
corresponding active space orbitals and NOONs at different levels of theory using the
TZVPP/TZVP basis set and the first two atomic layers being relaxed according to Ta-
ble 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3. Reprinted with per-
mission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American
Chemical Society. Slightly modified.

160

https://doi.org/10.1021/acs.jpcc.3c06305


A.2 Multiconfigurational Cluster Model Calculations

2×2-dimer 4-layer cluster model (Si17C18H36) (continuation)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(12,12) and CASred(4,4) 

NOON(CASfull) = 1.52
NOON(CASred) = 1.42

NOON(NEVPT2full) = 1.56
NOON(NEVPT2red) = 1.49

NOON(CASfull) = 1.52
NOON(CASred) = 1.43

NOON(NEVPT2full) = 1.57
NOON(NEVPT2red) = 1.49

NOON(CASfull) = 1.97
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NOON(NEVPT2full) = 1.97
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Figure A.20: Continuation of the 2×2-dimer 4-layer cluster model (Si17C18H36) of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1)
surface with the corresponding active space orbitals and NOONs at different levels of theory
using the TZVPP/TZVP basis set and the first two atomic layers being relaxed according
to Table 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3. Reprinted with
permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American
Chemical Society. Slightly modified.
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A Appendix

2×3-dimer 4-layer cluster model (Si24C25H46)

p(2×1) reconstruction

CASred(6,6) 

NO 4          NOON(CASred) = 0.59

NO 1          NOON(CASred) = 1.43

NO 3          NOON(CASred) = 1.42

NO 5          NOON(CASred) = 0.57 NO 6          NOON(CASred) = 0.56

NO 2          NOON(CASred) = 1.43
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Figure A.21: 2×3-dimer 4-layer cluster model (Si24C25H46) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) with the corresponding active space or-
bitals and NOONs using the TZVPP/TZVP basis set and the first two atomic layers being
relaxed according to Table 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society. Slightly modified.
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A.2 Multiconfigurational Cluster Model Calculations

2×4-dimer 4-layer cluster model (Si31C32H56)

p(2×1) reconstruction

CASred(8,8) 

NO 5          NOON(CASred) = 0.59

NO 1          NOON(CASred) = 1.44

NO 4          NOON(CASred) = 1.42

NO 6          NOON(CASred) = 0.58 NO 8          NOON(CASred) = 0.56

NO 2          NOON(CASred) = 1.43

NO 7          NOON(CASred) = 0.56

NO 3          NOON(CASred) = 1.42
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Figure A.22: 2×4-dimer 4-layer cluster model (Si31C32H56) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) with the corresponding active space or-
bitals and NOONs using the TZVPP/TZVP basis set and the first two atomic layers being
relaxed according to Table 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society. Slightly modified.
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A Appendix

3×1-dimer 4-layer cluster model (Si16C17H38)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(10,10) and CASred(4,4) 

NOON(CASfull) = 0.02     NOON(NEVPT2full) = 0.02

NOON(CASfull) = 0.02     NOON(NEVPT2full) = 0.02

NOON(CASfull) = 0.03     NOON(NEVPT2full) = 0.03

NOON(CASfull) = 0.45     NOON(NEVPT2full) = 0.44
NOON(CASred) = 0.55     NOON(NEVPT2red) = 0.51

NOON(CASfull) = 0.51     NOON(NEVPT2full) = 0.50
NOON(CASred) = 0.60     NOON(NEVPT2red) = 0.56

NOON(CASfull) = 0.06     NOON(NEVPT2full) = 0.06
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NOON(CASfull) = 0.11     NOON(NEVPT2full) = 0.11

NOON(CASfull) = 0.17     NOON(NEVPT2full) = 0.17

NOON(CASfull) = 0.24     NOON(NEVPT2full) = 0.24

x
y

z

y

x

NO 10

NO 6

NO 7

NO 8

NO 9

Figure A.23: 3×1-dimer 4-layer cluster model (Si16C17H38) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1) surface with the
corresponding active space orbitals and NOONs at different levels of theory using the
TZVPP/TZVP basis set and the first two atomic layers being relaxed according to Ta-
ble 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3. Reprinted with per-
mission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American
Chemical Society. Slightly modified.
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A.2 Multiconfigurational Cluster Model Calculations

3×1-dimer 4-layer cluster model (Si16C17H38) (continuation)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(10,10) and CASred(4,4) 

NOON(CASfull) = 1.52     NOON(NEVPT2full) = 1.53
NOON(CASred) = 1.42     NOON(NEVPT2red) = 1.46

NOON(CASfull) = 1.53     NOON(NEVPT2full) = 1.54
NOON(CASred) = 1.44     NOON(NEVPT2red) = 1.47

NOON(CASfull) = 1.97     NOON(NEVPT2full) = 1.97

NOON(CASfull) = 1.97     NOON(NEVPT2full) = 1.98

NOON(CASfull) = 1.97     NOON(NEVPT2full) = 1.98

NOON(CASfull) = 1.82     NOON(NEVPT2full) = 1.82

NOON(CASfull) = 1.85     NOON(NEVPT2full) =  1.85

NOON(CASfull) = 1.87     NOON(NEVPT2full) = 1.87
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Figure A.24: Continuation of the 3×1-dimer 4-layer cluster model (Si16C17H38) of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1)
surface with the corresponding active space orbitals and NOONs at different levels of theory
using the TZVPP/TZVP basis set and the first two atomic layers being relaxed according
to Table 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3. Reprinted with
permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American
Chemical Society. Slightly modified.
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A Appendix

3×1-dimer 6-layer cluster model (Si28C35H58)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(10,10) 

NOON(CASfull) = 0.02

NOON(CASfull) = 0.02

NOON(CASfull) = 0.03

NOON(CASfull) = 0.45
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Figure A.25: 3×1-dimer 6-layer cluster model (Si28C35H58) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1) surface with the
corresponding active space orbitals and NOONs using the TZVPP/TZVP basis set and the
first two atomic layers being relaxed according to Table 3.17. The isosurface value of the
orbitals amounts to 0.015 a0

−3. Reprinted with permission from J. Phys. Chem. C 2023,
127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly modified.
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A.2 Multiconfigurational Cluster Model Calculations

3×1-dimer 6-layer cluster model (Si28C35H58) (continuation)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(10,10) 

NOON(CASfull) = 1.53

NOON(CASfull) = 1.53

NOON(CASfull) = 1.97

NOON(CASfull) = 1.97
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Figure A.26: Continuation of the 3×1-dimer 6-layer cluster model (Si28C35H58) of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1)
surface with the corresponding active space orbitals and NOONs using the TZVPP/TZVP
basis set and the first two atomic layers being relaxed according to Table 3.17. The isosur-
face value of the orbitals amounts to 0.015 a0

−3. Reprinted with permission from J. Phys.
Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly
modified.
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A Appendix

3×1-dimer 8-layer cluster model (Si34C38H58)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(10,10) 

NOON(CASfull) = 0.02

NOON(CASfull) = 0.02

NOON(CASfull) = 0.03

NOON(CASfull) = 0.45
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Figure A.27: 3×1-dimer 8-layer cluster model (Si34C38H58) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1) surface with the
corresponding active space orbitals and NOONs using the TZVPP/TZVP basis set and the
first two atomic layers being relaxed according to Table 3.17. The isosurface value of the
orbitals amounts to 0.015 a0

−3. Reprinted with permission from J. Phys. Chem. C 2023,
127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly modified.
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A.2 Multiconfigurational Cluster Model Calculations

3×1-dimer 8-layer cluster model (Si34C38H58) (continuation)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(10,10) 

NOON(CASfull) = 1.53

NOON(CASfull) = 1.54

NOON(CASfull) = 1.97

NOON(CASfull) = 1.97

NOON(CASfull) = 1.97

NOON(CASfull) = 1.82
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Figure A.28: Continuation of the 3×1-dimer 8-layer cluster model (Si34C38H58) of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1)
surface with the corresponding active space orbitals and NOONs using the TZVPP/TZVP
basis set and the first two atomic layers being relaxed according to Table 3.17. The isosur-
face value of the orbitals amounts to 0.015 a0

−3. Reprinted with permission from J. Phys.
Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly
modified.
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A Appendix

3×2-dimer 4-layer cluster model (Si27C28H52)

p(2×1) reconstruction

CASred(8,8) 

NO 1          NOON(CASred) = 1.44 NO 2          NOON(CASred) = 1.44

NO 4          NOON(CASred) = 1.42NO 3          NOON(CASred) = 1.43

NO 5          NOON(CASred) = 0.60 NO 6          NOON(CASred) = 0.59

NO 7          NOON(CASred) = 0.56 NO 8          NOON(CASred) = 0.53
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Figure A.29: 3×2-dimer 4-layer cluster model (Si27C28H52) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) with the corresponding active space or-
bitals and NOONs using the TZVPP/TZVP basis set and the first two atomic layers being
relaxed according to Table 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society. Slightly modified.
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A.2 Multiconfigurational Cluster Model Calculations

3×3-dimer 4-layer cluster model (Si38C39H66)

p(2×1) reconstruction

CASred(12,12) 

NO 10          NOON(CASred) = 0.56

NO 7          NOON(CASred) = 0.60 NO 8          NOON(CASred) = 0.59

NO 11          NOON(CASred) = 0.54 NO 12          NOON(CASred) = 0.52

NO 9          NOON(CASred) = 0.58

NO 4          NOON(CASred) = 1.44 NO 5          NOON(CASred) = 1.42 NO 6          NOON(CASred) = 1.42

NO 3          NOON(CASred) = 1.44NO 2          NOON(CASred) = 1.44NO 1          NOON(CASred) = 1.45
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Figure A.30: 3×3-dimer 4-layer cluster model (Si38C39H66) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) with the corresponding active space or-
bitals and NOONs using the TZVPP/TZVP basis set and the first two atomic layers being
relaxed according to Table 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society. Slightly modified.
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A Appendix

4×1-dimer 4-layer cluster model (Si22C23H50)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(14,14) and CASred(6,6) 

NOON(CASfull) = 0.02

NOON(CASfull) = 0.02

NOON(CASfull) = 0.02

NOON(CASfull) = 0.03 

NOON(CASfull) = 0.44
NOON(CASred) = 0.53
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Figure A.31: 4×1-dimer 4-layer cluster model (Si22C23H50) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1) surface with the
corresponding active space orbitals and NOONs at different levels of theory using the
TZVPP/TZVP basis set and the first two atomic layers being relaxed according to Ta-
ble 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3. Reprinted with per-
mission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American
Chemical Society. Slightly modified.
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A.2 Multiconfigurational Cluster Model Calculations

4×1-dimer 4-layer cluster model (Si22C23H50) (continuation)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(14,14) and CASred(6,6) 

NOON(CASfull) = 1.52
NOON(CASred) = 1.42

NOON(CASfull) = 1.52
NOON(CASred) = 1.43

NOON(CASfull) = 1.53
NOON(CASred) = 1.44

NOON(CASfull) = 1.97
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Figure A.32: Continuation of the 4×1-dimer 4-layer cluster model (Si22C23H50) of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1)
surface with the corresponding active space orbitals and NOONs at different levels of theory
using the TZVPP/TZVP basis set and the first two atomic layers being relaxed according
to Table 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3. Reprinted with
permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American
Chemical Society. Slightly modified.
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A Appendix

4×1-dimer 6-layer cluster model (Si40C49H78)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(14,14)

NOON(CASfull) = 0.06
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Figure A.33: 4×1-dimer 6-layer cluster model (Si40C49H78) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1) surface with the
corresponding active space orbitals and NOONs using the TZVPP/TZVP basis set and the
first two atomic layers being relaxed according to Table 3.17. The isosurface value of the
orbitals amounts to 0.015 a0

−3. Reprinted with permission from J. Phys. Chem. C 2023,
127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly modified.
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A.2 Multiconfigurational Cluster Model Calculations

4×1-dimer 6-layer cluster model (Si40C49H78) (continuation)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(14,14)

NOON(CASfull) = 0.21

NOON(CASfull) = 0.26

NOON(CASfull) = 1.82
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Figure A.34: Continuation of the 4×1-dimer 6-layer cluster model (Si40C49H78) of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1)
surface with the corresponding active space orbitals and NOONs using the TZVPP/TZVP
basis set and the first two atomic layers being relaxed according to Table 3.17. The isosur-
face value of the orbitals amounts to 0.015 a0

−3. Reprinted with permission from J. Phys.
Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly
modified.
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A Appendix

4×1-dimer 6-layer cluster model (Si40C49H78) (continuation)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(14,14)

NOON(CASfull) = 1.89

NOON(CASfull) = 1.90

NOON(CASfull) = 1.90

NOON(CASfull) = 1.97
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Figure A.35: Continuation of the 4×1-dimer 6-layer cluster model (Si40C49H78) of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1)
surface with the corresponding active space orbitals and NOONs using the TZVPP/TZVP
basis set and the first two atomic layers being relaxed according to Table 3.17. The isosur-
face value of the orbitals amounts to 0.015 a0

−3. Reprinted with permission from J. Phys.
Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly
modified.
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A.2 Multiconfigurational Cluster Model Calculations

4×1-dimer 8-layer cluster model (Si50C54H78)

p(2×1) reconstruction ideal p(1×1) surface
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Figure A.36: 4×1-dimer 8-layer cluster model (Si50C54H78) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1) surface with the
corresponding active space orbitals and NOONs using the TZVPP/TZVP basis set and the
first two atomic layers being relaxed according to Table 3.17. The isosurface value of the
orbitals amounts to 0.015 a0

−3. Reprinted with permission from J. Phys. Chem. C 2023,
127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly modified.
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4×1-dimer 8-layer cluster model (Si50C54H78) (continuation)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(14,14)

NOON(CASfull) = 0.21

NOON(CASfull) = 0.26

NOON(CASfull) = 1.82
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Figure A.37: Continuation of the 4×1-dimer 8-layer cluster model (Si50C54H78) of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1)
surface with the corresponding active space orbitals and NOONs using the TZVPP/TZVP
basis set and the first two atomic layers being relaxed according to Table 3.17. The isosur-
face value of the orbitals amounts to 0.015 a0

−3. Reprinted with permission from J. Phys.
Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly
modified.
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A.2 Multiconfigurational Cluster Model Calculations

4×1-dimer 8-layer cluster model (Si50C54H78) (continuation)

p(2×1) reconstruction ideal p(1×1) surface

CASfull(14,14)

NOON(CASfull) = 1.89

NOON(CASfull) = 1.90
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Figure A.38: Continuation of the 4×1-dimer 8-layer cluster model (Si50C54H78) of the
Si-terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) and the ideal p(1×1)
surface with the corresponding active space orbitals and NOONs using the TZVPP/TZVP
basis set and the first two atomic layers being relaxed according to Table 3.17. The isosur-
face value of the orbitals amounts to 0.015 a0

−3. Reprinted with permission from J. Phys.
Chem. C 2023, 127, 48, 23475–23488. Copyright 2023 American Chemical Society. Slightly
modified.
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4×2-dimer 4-layer cluster model (Si37C38H68)

p(2×1) reconstruction

CASred(12,12) 

NO 5          NOON(CASred) = 1.43 NO 6          NOON(CASred) = 1.42

NO 8          NOON(CASred) = 0.60NO 7          NOON(CASred) = 0.60

NO 9          NOON(CASred) = 0.58 NO 10          NOON(CASred) = 0.56

NO 11          NOON(CASred) = 0.54 NO 12          NOON(CASred) = 0.51

x
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Figure A.39: 4×2-dimer 4-layer cluster model (Si37C38H68) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) with the corresponding active space or-
bitals and NOONs using the TZVPP/TZVP basis set and the first two atomic layers being
relaxed according to Table 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society. Slightly modified.
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A.2 Multiconfigurational Cluster Model Calculations

4×2-dimer 4-layer cluster model (Si37C38H68) (continuation)

p(2×1) reconstruction

CASred(12,12) 

NO 3          NOON(CASred) = 1.43

NO 1          NOON(CASred) = 1.45

NO 4          NOON(CASred) = 1.43

NO 2          NOON(CASred) = 1.44

y

x

Figure A.40: Continuation of the 4×2-dimer 4-layer cluster model (Si37C38H68) of the Si-
terminated 3C-SiC(001)-p(2×1) reconstructed surface (SD model) with the corresponding
active space orbitals and NOONs using the TZVPP/TZVP basis set and the first two atomic
layers being relaxed according to Table 3.17. The isosurface value of the orbitals amounts to
0.015 a0

−3. Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488.
Copyright 2023 American Chemical Society. Slightly modified.
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5×1-dimer 4-layer cluster model (Si28C29H62)

p(2×1) reconstruction

CASred(8,8) 

NO 1          NOON(CASred) = 1.44 NO 2          NOON(CASred) = 1.44

NO 4          NOON(CASred) = 1.42NO 3          NOON(CASred) = 1.43

NO 5          NOON(CASred) = 0.61 NO 6          NOON(CASred) = 0.59

NO 7          NOON(CASred) = 0.55 NO 8          NOON(CASred) = 0.53
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Figure A.41: 5×1-dimer 4-layer cluster model (Si28C29H62) of the Si-terminated 3C-
SiC(001)-p(2×1) reconstructed surface (SD model) with the corresponding active space or-
bitals and NOONs using the TZVPP/TZVP basis set and the first two atomic layers being
relaxed according to Table 3.17. The isosurface value of the orbitals amounts to 0.015 a0

−3.
Reprinted with permission from J. Phys. Chem. C 2023, 127, 48, 23475–23488. Copyright
2023 American Chemical Society. Slightly modified.
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List of Abbreviations

1D one-dimensional
2D two-dimensional
3D three-dimensional
AO atomic orbital
AP approximate projection
AUDD alternating up-and-down dimer
bc body-centered
BOA Born-Oppenheimer approximation
BZ Brillouin zone
CASPT2 complete active space perturbation theory of second order
CASSCF complete active space self-consistent field
CAS(m,n) complete active space with m electrons and n orbitals
c centered
CBM conduction band minimum
CC coupled cluster
CI configuration interaction
CIS configuration interaction singles
CISD configuration interaction singles doubles
CO crystalline orbital
CSF configuration state function
CVD chemical vapor deposition
DFT density functional theory
DMET density matrix embedding theory
DOS density of states
ESR electron spin resonance
fc face-centered
fcc face-centered cubic
GGA generalized gradient approximation
GTO Gaussian type orbital
HF Hartree-Fock
HOCO highest occupied crystalline orbital
HOMO highest occupied molecular orbital
HSE06 Heyd–Scuseria–Ernzerhof range-separated hybrid density

functional
IA interatomic
IBZ irreducible Brillouin zone
ID interdimer
IPCC Intergovernmental Panel on Climate Change
IPE inverse photoemission
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List of Abbreviations

JT Jahn-Teller
KS DFT Kohn-Sham DFT
LCAO linear combination of atomic orbitals
LDA local density approximation
LED light-emitting diode
LEED low energy electron diffraction
LUCO lowest unoccupied crystalline orbital
LUMO lowest unoccupied molecular orbital
MCSCF multiconfigurational self-consistent field
MM molecular mechanics
MO molecular orbital
MP2 Møller-Plesset perturbation theory of second order
MR multireference
MRAD missing-row asymmetric-dimer
MRCI multireference configuration interaction
NEVPT2 N -electron valence state perturbation theory of second order
NO natural orbital
NOON natural orbital occupation number
p primitive
PBBS projected bulk band structure
PBCs periodic boundary conditions
PBE Perdew-Burke-Ernzerhof density functional
PBE0 Perdew-Burke-Ernzerhof hybrid density functional
PDOS projected density of states
PED photoelectron diffraction
RHF restricted HF
RIJCOSX resolution-of-identity chain-of-spheres exchange
RKS restricted KS DFT
ROHF restricted open-shell HF
ROKS restricted open-shell KS DFT
RT room temperature
SBZ surface Brillouin zone
SCF self-consistent field
SD symmetric dimer (and Slater determinant in Chapter 2)
STS scanning tunneling spectroscopy
TB tight-binding
TISE time-independent Schrödinger equation
TZVP triple-zeta-valence + polarization
TZVPP triple-zeta-valence + double polarization
UHF unrestricted HF
UKS unrestricted KS DFT
UPS ultraviolet photoemission
VBM valence band maximum
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