
II. School of Computing Science,
Business Administration,
Economics, and Law
Department of Computing Science

Master’s Thesis
Submitted to the Formal Methods Research Group

in Partial Fullfilment of the Requirements for the Degree of

Master of Science

Interval Reasoning for C11 RAR

by
Florian Dyck

Thesis Supervisor:
Prof. Dr. Heike Wehrheim,

Lara Bargmann, M. Sc.

Oldenburg, October 17, 2024

Erklärung

Hiermit versichere ich an Eides statt, dass ich diese Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Außerdem
versichere ich, dass ich die allgemeinen Prinzipien wissenschaftlicher Arbeit und Veröf-
fentlichung, wie sie in den Leitlinien guter wissenschaftlicher Praxis der Carl von Ossi-
etzky Universität Oldenburg festgelegt sind, befolgt habe.

Ort, Datum Unterschrift

Abstract.
Owicki-Gries reasoning extends Hoare logic to concurrent programs under the
assumption of sequential consistency. In this thesis, we develop a proof calculus
using interval reasoning for C11 RAR, a fragment of C11 with relaxed and
release-acquire memory operations. Our proof calculus allows all Owicki-Gries
proof rules not specific to memory operations to remain unchanged. We use an
existing model for the C11 RAR semantics and adapt the assertion language
Piccolo to reason on its states. For each thread we overapproximate in which
order its thread views might occur in sets of lists, on which we define interval
assertions. This way we need only a small number of model-specific assertions,
which can be combined to create more complex assertions. We formally prove
the soundness of our proof rules and show their utility by verifying a number
of C11 litmus tests, and a C11 version of Peterson’s algorithm.

Contents

1 Introduction 1

2 Program Syntax and Semantics 5
2.1 Program Syntax . 5
2.2 Actions . 6
2.3 Program States . 7
2.4 Initial State . 8
2.5 Program Semantics . 8

2.5.1 Local Program Semantics . 9
2.5.2 Memory Semantics . 10

2.6 Well Formedness . 12

3 Assertions 13
3.1 Views . 14
3.2 Extended Expressions . 14
3.3 Interval Assertions . 16
3.4 Assertions . 18
3.5 Assertions on the Initial State ΓInit . 20

4 Proof Rules 21
4.1 Classical Proof Rules . 21
4.2 Basic Rules . 23
4.3 Load Rules . 23
4.4 Write Rules . 25

4.4.1 Soundness Proof Strategy . 25
4.4.2 WR-TOP . 27
4.4.3 Additional Write Rules . 28

4.5 Release/ Acquire . 29
4.6 Swap . 29

vii

5 Examples 31
5.1 Load Buffering . 31
5.2 RRC2 . 32
5.3 RRC . 34
5.4 Message Passing . 36
5.5 Peterson’s Algorithm . 38

6 Discussion and Related Work 41
6.1 Unifying Weak Memory Verification with Piccolo 41
6.2 Alternative Definitions . 42
6.3 Related Work . 43
6.4 Conclusion . 44

Bibliography 45

A Axioms and Proof Rules 51

B Proofs 53
B.1 Well Formedness of Global States . 53
B.2 Sublist Validity . 55
B.3 Simplified List definition . 55
B.4 Exchanged States on Write . 56

C Soundness of Proof Rules 59
C.1 Basic Rules . 59
C.2 Write Rules . 61
C.3 Release-Acquire Rules . 64
C.4 Rules for Perception with Swap . 65
C.5 Rules for Writing with Swap . 67

D Validity of Proof Outlines 69
D.1 Load Buffering . 69
D.2 RRC2 . 70
D.3 RRC . 73
D.4 Message Passing . 76
D.5 Peterson’s Algorithm . 78

viii

Introduction
1

In this thesis we construct and use a proof calculus for C11 RAR [DDDW20]. We
adapt Piccolo’s [LDW23] syntax to C11 and define their evaluation on program states.
With this, we construct proof rules and use them to verify the correctness of several
examples.

In 1969 Hoare established his axiomatic reasoning technique to verify the correct-
ness of sequential programs [Hoa69]. Susan Owicki and David Gries extended it to
concurrent programs [OG76] with an additional rule for parallel composition. This,
however, works only under the assumption of sequential consistency [Lam79].

Memory models which give only weaker guarantees and allow behavior violating
sequential consistency are called weak memory models, for example SRA [LGV16], C11
RAR [DDDW20], and TSO [OSS09, SSO+10]. These describe behavior of modern
programming languages and hardware architectures like C11 and x86 processors.

The C11 Memory Model One such weak memory model was introduced for the
C programming language with C11 [ISO11]. Early program logics and their extensions
[VN13, TVD14, HVQF16, DV16, DV17, HVQF18, HQF18, HQX20] used separation
logic to reason directly on an axiomatic semantics. However, this approach uses a
notion of ownership, which requires many additional proof rules.

[LV15] used Owicki-Gries reasoning, albeit with a strengthened noninterference
check. To improve reasoning and solve problems like out-of-thin-air reads, stronger
versions of the C11 memory model were introduced, e. g. SRA [LGV16], RA+NA
[KDD+17] and RC11 [LVK+17]. The former two are already defined in an operational
manner and for RC11 an operational semantics equivalent to its RAR-subset (including
releasing, acquiring and relaxed operations) has been developed in [DDWD19]. This
allows reasoning about programs with the standard validity definition of Hoare logic.
[DDDW20] further develops the RC11 operational semantics and introduces standard
Owicki-Gries reasoning for it. We build our proof calculus on this semantics.

1

Init : x := 0 ; y := 0;
{t0 ⋉ (1x

0 ∧ 1
y
0)}

Thread t1
{t0 ⋉ (1x

0 ∧ 1
y
0)}

1 : x := 1;
{t1 ⋉ ([x = 1] ∧ 1y) ∧ t2 ⋉ 1

y
0}

2 : y :=R 1
{true}

Thread t2
{t2 ⋉ 1

y
0; [A(y)]; [x = 1]}

3 : a←A y;
{a = 1⇒ t2 ⋉ [x = 1]}
4 : b← x
{a = 1⇒ b = 1}

{a = 1⇒ b = 1}

Figure 1.1: Message Passing. More details in Section 5.4

Reasoning with Potentials For reasoning on weak memory models, [LDW23] in-
troduced Piccolo, which uses inspirations from interval logics like LTL [Mos12] and
duration calculus [CHR91] to reason about which values shared variables may assume
in which sequence. These sequences of possible future values are called potentials. The
underlying program semantics is parametric with regards to the memory model and was
first instantiated with SRA. First steps to reason over multiple weak memory models
at the same time were taken in [BW23]. In the same spirit [BDW24] extends Piccolo
to work with both SC and TSO, showing that it is possible and yields useful results.
Additionally, this allows techniques like [DLW24] to extend Piccolo with the capability
to reason about deadlocks, which then can be used in all instances where the Piccolo
framework is employed. In this thesis, we adapt Piccolo to C11 RAR.

Motivating Example We show how Piccolo can be used for C11 in Figure 1.1.
Thread t1 writes the message 1 to the shared variable x and then writes 1 to y,

indicating that the message is written. To ensure proper synchronization, y must be
written by a releasing write and read by an acquiring read, denoted by the R and
A in the operations, respectively. After this synchronization occurred, thread t2 is
guaranteed to read the message 1 from x.

In the beginning all threads perceive only one write with value 0 to both x and
y, which we describe with t0 ⋉ (1x

0 ∧ 1
y
0). t ⋉ I denotes that thread t perceives some

interval assertion I, t0 is a shortcut to describe the perception of all threads, and 1
x
e

describes that only one write to x with value e is observed.
First, t1 may write x := 1, after which t1 must perceive [x = 1], which is written

down as t1⋉ [x = 1]. 1y describes that there is only one write to y and does not restrict
its value. Next, a releasing write y :=R 1 may occur. Afterwards, t2⋉1

y
0; [A(y)]; [x = 1]

holds. The first part, 1y
0, describes the time until the new write is perceived by t2.

[A(y)] describes state which cannot occur after an acquiring read, which is necessary
for synchronization. Finally, [x = 1] describes the message x, which is transferred in
the synchronization process.

Thread t2 initially perceives 1y
0; [A(y)]; [x = 1]. After executing a ←A y, the asser-

tion a = 1⇒ t2 ⋉ [x = 1] holds, because a = 1 cannot result from a read in 1
y
0, where

2

Chapter 1. Introduction

y is 0, and an acquiring read from y cannot read state described by [A(y)]. Only the
final part [x = 1] of the interval assertion remains. The assertion t2 ⋉ [x = 1] resulting
from this describes a state, where the only value that can be read from x is 1, resulting
in the postcondition a = 1⇒ b = 1.

Overview Chapter 2 presents the syntax and semantics of C11 RAR [DDDW20].
For this semantics, Chapter 3 adapts assertion syntax of Piccolo [LDW23] and defines
the validity of assertions. Chapter 4 introduces our proof rules, which Chapter 5 uses
to show the validity of several standard litmus tests and a C11 version of Peterson’s
algorithm. Chapter 6 puts our results in the context of related and possible future
work.

3

4

Program Syntax
and Semantics

2
This chapter introduces the C11 RAR (release-acquire relaxed) semantics from [DDDW20].
There they are shown to coincide with previous semantics from [DDWD19], which itself
coincides with the axiomatic semantics from [LVK+17].

2.1 Program Syntax

The syntax of sequential programs is given in Figure 2.1. It uses the set of local variables
VarL, a set of shared variables VarG and a set of allowed values Val. We usually use
a, b, c, . . . to denote local variables VarL and x, y, . . . to denote shared variables VarG.
If we refer to generic variables of those types, we instead use r and x, respectively.
Let Var = V arL ⊎ VarG denote the set of all variables. Here ⊎ denotes the union of
disjoint sets. This avoids confusion and ambiguity regarding which variable is used in
an expression.

Arithmetic expressions ea are built from constant values, local variables and their
combinations using arithmetic operators. Boolean expressions eb are built from con-
stant values, local variables, their combinations using logical operators and comparisons
of arithmetic expressions. Expressions e are either arithmetic expressions or boolean
expressions.

Statements c may change the state of the program and can read or write shared
variables. x :=R n and r ←A x denote a releasing write and acquiring read respectively,
while the versions without the R/A annotation denote their relaxed versions. The RA
in the x.swap(vW)RA operation denotes that it is both an acquiring read and then a
releasing write with value vW.

Instrumented statements c̃ extend statements with auxiliary variables, which do
not affect the meaning of the program. They are required to be used in only one
thread each, and only in assignments to auxiliary variables. These assignments happen
atomically with the statement before them, denoted by the angled brackets.

5

2.2 Actions

arithmetic expressions ea ::= v | r | ea + ea | ea − ea | ea ∗ ea | ea ÷ ea | . . .
boolean expressions eb ::= v | r | ¬eb | eb ∧ eb | eb ∨ eb | . . . |

ea = ea | ea < ea | ea > ea | . . .
expressions e ::= eb | ea

statements c ::= skip | x.swap(v)RA | r := e |
x := e | x :=R e | r ← x | r ←A x

instrumented statements c̃ ::= ⟨c, aux := e⟩
compound statements C ::= c | c̃ | C ; C |

if eb thenC elseC fi | while eb doC od

Figure 2.1: Sequential Program Grammar for r ∈ VarL, x ∈ VarG, v ∈ Val and
auxiliary variables aux ∈ VarL

A sequential program C consists of statements, their sequential compositions, con-
ditionals and loops.

This semantics assumes concurrency at top level only. Therefore the structure of
a parallel program is assumed to be Init ; (C1∥ . . . ∥Cn). Here C1∥ . . . ∥Cn denotes
the parallel composition of the programs C1, . . . , Cn. Init initializes the values of the
variables, which determines the initial state. The parallel program is represented by a
mapping Prog : Tid → C, mapping a set of thread identifiers Tid to their respective
sequential programs. We usually use t and t′ to refer to a generic thread and denote
specific threads with ti for some integer i to avoid confusion between thread identifiers
and constant values.

2.2 Actions

Actions are used in for synchronization between local and global state transitions and
as part of the global state. They are defined in Figure 2.2. The formal definitions of
the smallest sets containing certain actions are given in the upper half of the figure.
In the table below, the composition of the other sets is shown. In the bottom line are
representations for what the different actions look like. Any set denoted in an area
above an action contains all actions like the ones denoted below. Any set stretching
over multiple other sets is their union.

U = {updRA(x, vR, vW) | x ∈ VarG, vR, vW ∈ Val} is the set of all update actions. The
graphic visualizes the relations of the different sets. WR = U ∪ {wrR(x, vW) | x ∈ VarG,

vW ∈ Val} and RA = U∪{rdA(x, vR) | x ∈ VarG, vR ∈ Val} are the sets of releasing writes
and acquiring reads respectively. Notice that both contain the set of update actions.
WX = {wr(x, vW) | x ∈ VarG, vW ∈ Val} and RX = {rd(x, vR) | x ∈ VarG, vR ∈ Val} are
the sets of relaxed writes and reads. W = WR ∪ WX and R = RA ∪ RX are the sets of all
writes and reads, no matter whether they are releasing, acquiring or relaxed. Finally,

6

Chapter 2. Program Syntax and Semantics

Actτ = Act ∪ {τ}
Act = R ∪ W

R = WR ∪ RX W = WR ∪ WX

RX RA ⊇ U WR ⊇ U WX

U
rd(x, vR) rdA(x, vR) updRA(x, vR, vW) wrA(x, vW) wr(x, vW) τ

Figure 2.2: Actions

a var(a) rdval(a) wrval(a)
rd(x, vR) x vR -
rdA(x, vR) x vR -
wr(x, vW) x - vW
wrA(x, vW) x - vW

updRA(x, vR, vW) x vR vW

Table 2.1: Accessing the variable, read value and written value of an action a

Act = W ∪ R is the set of both reads and writes. Actτ = Act ∪ {τ} adds an additional
τ , representing a silent action.

Table 2.1 defines ways to access the variables, read and written values of actions.
For these the functions var, rdval and wrval are used respectively.

2.3 Program States

A C11 state Γ ∈ ΣC11 consists of both a local state lst ∈ ΣL and a global state σ ∈ ΣG.
They are defined in Figure 2.3. The local state lst maps for each thread its local
variables to their values. ls : VarL ↛ Val is the local state of a single thread. Let
↛ refer to partial functions, which in this case only map the variables of the thread
in question to values. To avoid confusion, let the local states of different threads be
disjoint, i. e. dom(lst(t)) ∩ dom(lst(t′)) = ∅ if t ̸= t′. Let JeKls be the evaluation of an
expression e in ls. We further use ls[r := n] to represent the local state ls with only
the value of r replaced by n.

A global state σ consist of all previous writes, a family of thread views for each
thread, of modification views for each write and a set of covered writes. A write is a
combination of a write action w ∈ W and a timestamp q ∈ Q. Thread views map each
thread to the writes it currently perceives and modification views map each write to
the thread view of the writing thread directly after the write. covered is a subset of
writes, specifying which writes were read by an atomic read-modify-write operation.

We lift var and wrval from write actions to writes (var((a, q)) = var(a) and
wrval((a, q)) = vrwal(a)) and introduce tst to access their timestamp tst((a, q)) = q.

7

2.4 Initial State

ΣL = {lst | lst : Tid→ (V arL ↛ Val)}

ls[r := n] : a 7→
{
n if a = r

lst(a) otherwise
for ls : VarL ↛ Val

ΣG = {(writes, (tviewt)t∈Tid, (mvieww)w∈writes, covered) |
covered ⊆ writes ⊆ W×Q, tviewt,mvieww : VarG → writes}

Figure 2.3: C11 RAR States

Init = x1 := k1 ; · · · ; xn := kn ; [r1 := l1;] . . . [rm := lm;]
lstInit(t) : ri 7→ li for each thread t and its local variables ri

writesInit = {(wr(xi, ki), 0) | 1 ≤ i ≤ n}
viewInit : V arG → writes, xi 7→ (wr(xi, ki), 0) for each xi ∈ VarG

tviewInit = viewInit for each thread t

mviewInit = viewInit for each w ∈ writesInit

σInit = (writesInit, (tviewInit)t∈Tid, (mviewInit)w∈writes, ∅)
ΓInit = (lstInit, σInit)

Figure 2.4: Initial State

2.4 Initial State

The initial state is defined in Figure 2.4. It is determined by Init, which initializes
a value to each shared variable and any number of local variables. The local state of
each thread maps its local variables to their initial values written in Init. writesInit

contains a write with each shared variable’s initial value and timestamp 0. The initial
thread and modification views all map each shared variable to its initial write. σInit

is composed of writesInit, tviewt for each thread t, mviewInit for each initial write w
and an empty set covered. Finally, ΓInit is defined as the combination of the local and
shared initial state.

2.5 Program Semantics

The transition relation =⇒ on C11 states are defined by a combination of transitions
on the local and global state. They synchronize using the set of actions Actτ :

(P, lst) τ→t (P ′, lst′)
(P, lst, σ) =⇒ (P ′, lst′, σ)

(P, lst) a→t (P ′, lst′) σ
a
⇝t σ

′

(P, lst, σ) =⇒ (P ′, lst′, σ′)

A synchronized transition step is possible if and only if there are a local transition

8

Chapter 2. Program Syntax and Semantics

r ∈ VarL n = JeKls

(r := e, ls) τ→ (skip, ls[r := n])
x ∈ VarG a = wr[R](x, JeKls)

(x :=[R] e, ls) a→ (skip, ls)

a = rd[A](x, n) n ∈ Val
(r ←[A] x, ls) a→ (skip, ls[r := n])

a = updRA(x,m, n) m ∈ Val
(x.swap(n)RA, ls) a→ (skip, ls)

(C1, ls) a→ (C ′
1, ls

′)
(C1 ; C2, ls) a→ (C ′

1 ; C2, ls
′) (skip ; C2, ls) τ→ (C2, ls)

JebKls

(if eb thenC1 elseC2 fi, ls) τ→ (C1, ls)
¬JebKls

(if eb thenC1 elseC2 fi, ls) τ→ (C2, ls)

JebKls WHILE = while eb doC od
(WHILE, ls) τ→ (C ; WHILE, ls)

¬JebKls

(while eb doC od, ls) τ→ (skip, ls)

Aux

(c, ls) a→ (skip, ls′)
(a := e, ls′ τ→ (skip, ls′′))

(⟨c, a := e⟩, ls) a→ (skip, ls′′)
Prog

(P (t), lst(t)) a→ (C, ls) a ∈ Actτ

(P, lst) a→t (P [t := C], lst[t := ls])

Figure 2.5: Local Transitions

step a→ on the local state and a memory transition step a
⇝t on the global state with

the same action a. Transitions with the silent action τ do not need to be synchronized.
There is only a rule for local transitions with the silent action because in C11 RAR
there are no memory transitions with the silent action.

This definition allows for a generic local transition relation which can be used for
different memory models. The memory transition relation on the other hand is specific
to the memory model, in this case C11 RAR.

2.5.1 Local Program Semantics

The local transition relation is defined in Figure 2.5. An assignment assigns the value
of an expression e in the local state of a thread. Memory transition steps update the
local state as necessary and use the annotated action to synchronize with matching
memory transition steps. The other transition steps are as expected. Transition steps
are lifted from a single statement to a sequence of statements. An if statement executes
the first subprogram if the condition is true, otherwise the second subprogram. A while
loop executes its body and itself again if the condition is true, otherwise it is skipped.
Assignments to auxiliary variables atomically change the local state additionally to
whatever the original statement was doing. Finally, Prog lifts sequential programs to
parallel programs.

9

2.5 Program Semantics

2.5.2 Memory Semantics

In this section, we introduce the memory transition relation ⇝ for C11. This is the
part of the semantics specific to C11. We begin by introducing the definitions which
are used in the transition rules.

For new writes a new timestamp must be established, such that it occurs after the
writes the writing thread read. σ.fresh gives the opportunity to define a timestamp
directly after another write:

σ.fresh(q, q′) ≡ q < q′ ∧ (∀w′ ∈ σ.writes : q < tst(w′) =⇒ q′ < w′) (2.1)

The writes to a shared variable are strictly ordered by their timestamps. To achieve
this, a thread must only perceive writes which are the current write or occur after this
write. For this, the set of observable writes defines which writes to a variable a thread
may perceive:

σ.OW(t, x) := {(a, q) ∈ σ.writes | var(a) = x ∧ tst(σ.tviewt(x)) ≤ q} (2.2)

When synchronizing with releasing writes and acquiring reads, we update the thread
view of the reading thread. For this, we take the newer timestamp for each shared
variable from the thread view and modification view of the write which is read from.
This is done using the function ⊗:

(δ1 ⊗ δ2)(x) :=

δ1(x) if tst(δ2(x)) ≤ tst(δ1(x))

δ2(x) otherwise
(2.3)

Using these functions, Figure 2.6 defines the memory transition relation.
Read chooses an observable write (w, q) to read from. If the write is releasing and

the read is acquiring, the view of the reading thread is updated to be at least as new
for each shared variable as the modification view of that write, using ⊗. Otherwise,
only the read variable is updated to the read write.

Write chooses an observable write (w, q) to write after, which is not already covered
by an update. It updates the thread view of the written variable to the write and copies
the current thread view to the modification view of the write. The write is also added
to the set writes of the global state σ.

Update chooses an observable write (w, q) the same way as Write. It has the
same effect as first reading a value acquiringly and then writing directly after the read.
Additionally, the write is added to the set covered, preventing further writes (and
updates) directly after this write.

Example 2.1. An example can be seen in Figure 2.7. The figure on the left shows views
from a state σ after statements 1, 2 and 3 of the program on the right are executed in
this order and a state σ′ after additionally statement 4 is executed. In this case, tviewt1

10

Chapter 2. Program Syntax and Semantics

Read
a ∈ {rd(x, vR), rdA(x, vR)} (w, q) ∈ σ.OW(t, x)

wrval(w) = vR tview′
t =

{
σ.tviewt ⊗ σ.mview(w,q) if (w, a) ∈ WR × RA

σ.tviewt[x := (w, q)] otherwise
σ

a
⇝t σ[tviewt := tview′

t]

Write
a ∈ {wr(x, vW), wrR(x, vW)} (w, q) ∈ σ.OW(t, x)\σ.covered

σ.fresh(q, q′) writes′ = σ.writes ∪ {(a, q′)} tview′
t = tviewt[x := (a, q′)]

σ
a
⇝t σ[tviewt := tview′

t,mview(a,q′) := tview′
t, writes := writes′]

Update
a = updRA(x, vR, vW) (w, q) ∈ σ.OW(t, x)\σ.covered wrval(w) = vR

σ.fresh(q, q′) writes′ = σ.writes ∪ {(a, q′)} covered′ = σ.covered ∪ {(a, q)}

tview′
t =

{
σ.tviewt[x := (a, q′)]⊗ σ.mview(w,q) if w ∈ WR

σ.tviewt[x := (a, q′)] otherwise
σ

a
⇝t σ[tviewt := tview′

t,mview(a,q′) := tview′
t,

writes := writes′, covered = covered′]

Figure 2.6: Memory Transitions

z

y

x

time

(wr(x, 0), 0)

(wr(y, 0), 0)

(wr(z, 0), 0)

(wr(x, 1), 3)

(wrR(y, 2), 4)

(wr(z, 3), 5)

Init : x := 0 ; y := 0 ; z := 0;
Thread t1
1 : z := 3;
2 : y :=R 2

Thread t2
3 : x := 3;
4 : a←A y

Figure 2.7: Illustration of views and their updates: blue: thread view before a ←A y,
orange: mview(wrR(y,2),4), violet: thread view after acquiring read on (wrR(y, 2), 4)

11

2.6 Well Formedness

and mview(wrR(y,2),4) are the orange thread views of t1 and modification views of the
write (wrR(y, 2), 4) both before and after the transition step, in both σ and σ′. σ.tviewt2

is the blue thread view of t2 before and σ′.tviewt2 is the violet thread view of t2 after
the transition step.

In the beginning there are initial writes to x, y and z with the value 0 at the times-
tamp 0. By executing the statements in the order 1, 2 and finally 3, the resulting writes
have increasingly lower timestamps because the fresh relation inserts new writes directly
after another write to the same variable.

The tviewt1 is created by executing statements 1 and 2, and by virtue of being tviewt1

after statement 2 also tview(wrR(y,2),4). σ.tviewt2 simply results by executing statement
3, only changing the value of the written variable. In this case executing statement 4
and reading (wrR(y, 2), 4) not only updates the value of the view of y, but also each
other value to the newer one of the corresponding memory view and the current thread
view. This way only the value for x is updated, resulting in σ′.tviewt2.

2.6 Well Formedness

Every global state reachable with a finite computation fulfills certain conditions, which
we summarize as it being well-formed, as defined below:

wfs(σ) ≡ ran((
⋃
t

σ.tviewt) ∪ (
⋃
w

σ.mvieww)) ⊆ σ.writes ∧

finite(σ.writes) ∧ σ.covered ⊆ σ.writes ∧

(∀w : w ∈ σ.writes⇒ σ.mvieww(var(w)) = w)

Lemma 2.2. Every reachable global state σ is well-formed, i. e. wfs(σ) holds.

This is proven by induction in Appendix B.1.
Because only such states are reachable, from now on we only consider well-formed

global states. In the next chapter we continue by defining our assertions on C11 states
(with such well-formed global states).

12

Assertions
3

In this chapter, we introduce assertions, which we use to describe C11 states. The syn-
tax for assertions, interval assertions and extended expressions is defined in Figure 3.1.

Extended expressions are evaluated on views (and C11 states), which map shared
variables to writes, identical to thread and modification views. In comparison to ex-
pressions (see Figure 2.1) which only contain local variables, they may also include
shared variables. They make assertions at one possible point in time, for a specific
thread view of a thread.

Interval assertions hold for lists of views (and C11 states), which overapproximate
in which order views can be thread views of a thread. For both of these, the C11 states
are necessary to provide information not contained in the lists, such as values of local
variables and modification views. They make assertions for all possible sequences of
thread views in which thread views of some thread might occur.

Assertions hold for C11 states. They can make assertions for every thread by con-
taining interval assertions and the information for which thread these interval assertions
hold.

extended arithmetic expressions Ea ::= ea | x |
Ea + Ea | Ea − Ea | Ea ∗ Ea | . . .

extended boolean expressions Eb ::= eb | x | A(x) |
Ea = Ea | Ea ≥ Ea | . . . |
¬Eb | Eb ∧ Eb | . . .

interval assertions I ::= [Eb] | 1x | Cx | I; I | I ∧ I | I ∨ I
assertions φ,ψ ::= t⋉ I | eb | φ ∧ φ | φ ∨ φ

Figure 3.1: Assertion Syntax

13

3.1 Views

3.1 Views

We begin by defining views and the precedence relation. A view is a mapping of
shared variables to writes, the same way as thread views and modification views. These
mappings are only restricted in that shared variables must be mapped to writes of the
same variable.

σ.Views := {δ : V arG → σ.writes | ∀x ∈ V arG : var(δ(x)) = x} (3.1)

Further we define the precedence/ succession relation, which describes in which
orderings thread views might occur. A write w precedes another write w′ (w ⪯ w′) if
and only if tst(w) ≤ tst(w′). We alternatively write w′ succeeds w (w′ ⪰ w), which
has the same meaning as w ⪯ w′. We lift these definitions to views, such that a view
δ precedes δ′ and δ succeeds δ′ if and only if for each shared variable x, δ(x) precedes
δ′(x):

δ ⪯ δ′ ≡ δ′ ⪰ δ ≡ ∀x ∈ V arG : δ(x) ⪯ δ′(x) (3.2)

The semantic of our assertions is built on the principle that the succession relation
overapproximates in which order thread views can occur. Theorem 3.1 states that, if a
thread observes first the view δ and then δ′, then δ ⪯ δ′ must hold. This means that if
δ ⪯ δ′ does not hold, δ′ cannot occur as thread view of some thread after δ.

Theorem 3.1. For any thread t and any states Γ = (lst, σ) and Γ′ = (lst′, σ′) with
(P,Γ) =⇒ (P ′,Γ′), the thread view of t cannot decrease: σ.tviewt ⪯ σ′.tviewt

Proof. The updates in the memory transitions only allow changing the value of the
thread t view in the following ways.

• The thread view may be updated using ⊗. This new thread view must succeed
the old one because for each shared variable ⊗ maps to the write with the greater
timestamp by definition of ⊗ (Equation (2.3)).

• Updating the value for a single shared variable x. Choosing an observable write
(a, q) ∈ σ.OW(tst(σ.tviewt(x)), x) lets us conclude tst(σ.tviewt(x)) ≤ q by defini-
tion of OW (Equation (2.2)). In case of a read, the new write is updated to this
q. In case of a write, the new write is also updated to some q′, which is greater
than q by definition of fresh (Equation (2.1)).

Other changes to the thread view are not possible. Thus we can conclude σ.tviewt(x) ⪯
σ′.tviewt(x).

3.2 Extended Expressions

With an understanding of precedence, we define the evaluation of extended expressions.
These are used in interval assertions and assertions.

14

Chapter 3. Assertions

Definition 3.2. For a C11 state Γ = (σ, lst) and view δ ∈ σ.Views, we define the
evaluation of extended expressions:

J·KΓ,δ : Ea ∪ Eb → Val

JrKΓ,δ = n iff ∃t ∈ Tid : lst(t)(r) = n

JxKΓ,δ = val(δ(x))

J¬EKΓ,δ = ¬ JEKΓ,δ

JE1 ⊕ E2KΓ,δ = JE1KΓ,δ ⊕ JE2KΓ,δ

for ⊕ ∈ {+,−, ∗,÷, . . . ,=,≤,≥, . . . ,∧,∨, . . . }

q
A(x)

y
Γ,δ

=

true, if δ(x) ∈ WR ×Q ∧ ¬(σ.mviewδ(x) ⪯ δ)

false, otherwise

Local variables a are evaluated to the value of the local state of that variable lst(t)(a)
of the thread t which uses them, because they are only defined for that thread. Shared
variables x are evaluated to the value of the view of that variable val(δ(x)).

Example 3.3. Let Γ = (lst, σ) be a C11 state with lst(t)(a) = 1 for some thread t and
δ = {x 7→ (wr(x, 1), 1)}. Then both JaKΓ,δ and JxKΓ,δ evaluate to 1 and consequently
Ja = xKΓ,δ evaluates to true.

A(x) is used for releasing writes and acquiring reads. It describes a view which
cannot occur after an acquiring read from x, as stated in Lemma 3.4. δ(x) ∈ WR × Q
describes that δ(x) must be a releasing write and ¬(σ.mviewδ(x) ⪯ δ) describes that
the view δ cannot occur after the modification view σ.mviewδ(x) of the write δ(x) which
would be read by such a transition. This way we know if A(x) evaluates to true for
σ.tviewt, then σ′.tviewt must be a different view, which we later use for our proof rule
Ld-a-shift for acquiring reads.

Lemma 3.4. For any thread t and any global states σ and σ′ with σ
rdA(x,v)
⇝t σ′ and

any local state lst′,
q
A(x)

y
(lst′,σ′),σ′.tviewt

= false.

Proof. Proof by contradiction. Let δ = σ′.tviewt. Given the action a = rdA(x, v),
note that δ(x) ∈ {wrR(x, v)} × Q, because this is the write w the thread reads in
Read. For the contradiction assume δ(x) ∈ WR ×Q ∧ ¬(σ′.mviewδ(x) ⪯ δ). By Read,
δ = σ.tviewt ⊗ σ.mviewδ(x). By definition of ⊗ (Equation (2.3)), it maps to a view
which maps each shared variable y to the write of σ.tviewt(y) and σ.mvieww(y) with
the greater timestamp. We can conclude σ.mviewδ(x) ⪯ δ. Further σ.mviewδ(x) =
σ′.mviewδ(x) holds because modification views cannot be changed, only added for new
writes. With this σ′.mviewδ(x) ⪯ δ must hold, which contradicts our assumption.

Note that ¬(δ ⪯ δ′) and δ′ ⪯ δ are not identical. For example the views {x 7→
(wr(x, 0), 0), y 7→ (wr(y, 1), 1)} and {x 7→ (wr(x, 1), 1), y 7→ (wr(y, 0), 0)} do fulfill the

15

3.3 Interval Assertions

y

x

time

(wr(x, 0), 0)

(wr(y, 0), 0)

(wr(x, 1), 3)

(wrR(y, 1), 4)
Init : x := 0 ; y := 0;

Thread t1
1 : x := 3;
2 : y :=R 2

Thread t2
3 : a←A y;
4 : b← x

Figure 3.2: Illustration for Example 3.5 where
q
A(y)

y
Γ,δ

= true:
violet: σ.mview(wrR(y,1),4) after statement 2, orange: view δ

former, but not the latter. The former indicates that views cannot occur in some order,
the latter that they can occur in the reverse order.

Example 3.5. In this example, we construct a state and view with
q
A(y)

y
Γ,δ

= true.
Let Γ = (lst, σ) be a C11 state with σ.mview(wrR(y,1),4) = {x 7→ (wr(x, 1), 3), y 7→
(wrR(y, 1), 4)} and δ be a view with δ = {x 7→ (wrR(x, 0), 0), y 7→ (wr(y, 1), 4)}.
These views are illustrated in Figure 3.2. On the right side of the figure the Mes-
sage Passing program is shown, where said state could occur after executing state-
ments 1 and 2. Then

q
A(y)

y
Γ,δ

evaluates to true because δ(y) is a releasing write and
the corresponding modification view σ.mview(wrR(y,1),4) does not precede δ because the
write σ.mview(wrR(y,1),4)(x) = (wr(x, 1), 3) occurs at a later timestamp than δ(x) =
(wr(x, 0), 0).

As stated in Lemma 3.4 this means that δ cannot occur after an acquiring read from
y, because the write transition step would use ⊗ to update the thread view, resulting
in violet: σ.mview(wrR(y,1),4). From there on the thread can never perceive δ(x) =
(wr(x, 0), 0) again, because the timestamps of perceived writes must not decrease.

3.3 Interval Assertions

For interval assertions, we are interested in lists of views. Such a list overapproximates
a possible sequence of thread views for some thread.

A list L = ⟨δ1, . . . , δn⟩ is a sequence of elements δi. Let L(i) := δi retrieve the ith
element of L and |L| := n be the length of the list. With this, for 1 ≤ i ≤ j ≤ |L|, let
L|ji := ⟨δi, . . . , δj⟩ be the sublist of L from i to j. We say L contains δ (written δ ∈ L)
if there exists a 1 ≤ i ≤ |L| with L(i) = δ. Additionally, we use · to concatenate lists:
L1 · L2 := ⟨L1(1), . . . , L1(|L1|), L2(1), . . . , L2(|L2|)⟩.

For a list of views specifically, let L.writes ≡ ⋃δ∈L ran(δ) be the set of all writes
viewed by some view δ ∈ L. Here ran refers to the range of a function, in this specific
case the writes mapped to by that view.

A list of views can be understood as a possible order in which a thread might
perceive views. Later we restrict these lists in their construction such that each view
in the list succeeds each previous entry in the list and the thread view of some thread.
This overapproximates in which order they might occur as thread views, as stated by

16

Chapter 3. Assertions

Theorem 3.1. We define the validity of interval assertions for such a list, which specifies
a possible ordering of thread views, and a C11 state, which contains further information
like values of local variables and modification views.

Definition 3.6. For a C11 state Γ = (σ, lst) and a list L = ⟨δ1, . . . , δn⟩ ∈ σ.Views∗ of
views we define the validity of an interval assertion:

Γ, L ⊨ [Eb] iff ∀δ ∈ L : JEbKΓ,δ = true

Γ, L ⊨ Cx iff ∀δ ∈ L : δ(x) ∈ σ.covered

Γ, L ⊨ 1x iff ∀δ, δ′ ∈ L : δ(x) = δ′(x)

Γ, L ⊨ I1; I2 iff Γ, L1 ⊨ I1 and Γ, L2 ⊨ I2 for some (possibly empty)

L1 and L2 with L1 · L2 = L

Γ, L ⊨ I1 ∧ I2 iff Γ, L ⊨ I1 and Γ, L ⊨ I2 (similarly for ∨)

For extended boolean expressions [Eb] to hold on a list, Eb must evaluate to true
for all views in that list. Cx describes that all writes to x in views in the list are in the
covered set. This being part of interval assertions prevents its negation, which makes
our proof rules sound for the swap operation.

1x describes that there is only one unique write to x in the list. This is useful to
reason on possible behaviors when a new write (to x) is introduced. Such a new write
then can only precede or succeed this single write. On the other hand, if there are
multiple writes to x in a list, the new write could succeed some writes and precede
others.

The chop operator ; requires the existence of some split of the list, such that the
first interval assertion is fulfilled by the first sublist and the second interval assertion
is fulfilled by the second sublist. This is how we reason about sequence of events.

Finally, boolean operations ∨ and ∧ are defined as usual, but negations are not
allowed. This allows us to derive Lemma 3.7, stating that if a formula holds on a list,
that it also holds on any sublist (including the empty list). This allows us for a given
list to derive that all its sublists fulfill interval assertions that the original list fulfills,
which is essential for many of our proofs.

If we allowed negation with the usual definition Lemma 3.7 would not hold, a
counterexample is Γ, ⟨δ⟩ ⊨ ¬[false] and Γ, ⟨⟩ ⊭ ¬[false] for an arbitrary C11 state Γ
and view δ.

Lemma 3.7. For a C11 state Γ and a list L of views, when Γ, L ⊨ I, then Γ, L|ji ⊨ I
for every 0 ≤ i− 1 ≤ j ≤ n (This may be the empty list for i = j + 1).

For the proof see Appendix B.2.

Example 3.8. Let Γ be a C11 state and L = ⟨{x 7→ (wr(x, 0), 0)}, {x 7→ (wr(x, 1), 1)},
{x 7→ (wr(x, 2), 2)}⟩ be a list of views. Then Γ, L|11 ⊨ 1x holds because there is only one

17

3.4 Assertions

y

x

time

(wr(x, 0), 0)

(wr(y, 0), 0)

(wr(x, 1), 1)

(wr(y, 1), 1)

Figure 3.3: ⟨δ1, δ2⟩ ∈ σ.Lists(t):
orange: σ.tviewt, blue: δ1, green: δ2

y

x

time

(wr(x, 0), 0)

(wr(y, 0), 0)

(wr(x, 1), 1)

(wr(y, 1), 1)

Figure 3.4: ⟨δ1, δ
′
2⟩ /∈ σ.Lists(t):

orange: σ.tviewt, blue: δ1, red: δ′
2

unique write to x in L|11 and Γ, L|32 ⊨ [x > 1] holds because the extended expressions
evaluate to true on both views in L|32. Consequently Γ, L ⊨ 1x; [x > 1] holds because
L = L|11 · L|32 and these lists fulfill the interval assertions respectively.

3.4 Assertions

In a global state σ, we are interested in lists which could reasonably represent an order
in which a thread might perceive views. We restrict lists L in the following three ways:

1. Every L(i) has to be in σ.Views, i. e. ∀1 ≤ i ≤ |L| : L(i) ∈ σ.Views

2. Every view L(i+1) should be able to occur after L(i), so we require that L(i+1)
succeeds L(i), i. e. ∀1 ≤ i < |L| : L(i) ⪯ L(i+ 1)

3. The views of the list should be able to occur after the current (thread) view δ

and thus must succeed it, i. e. ∀1 ≤ i ≤ |L| : δ ⪯ L(i)

This is equivalent to the following definition:

σ.Lists(δ) := {⟨δ1, . . . , δn⟩ ∈ σ.Views∗ | ∀1 ≤ i ≤ j ≤ n : δ ⪯ δi ⪯ δj} (3.3)

Most of the time we use this as σ.Lists(σ.tviewt) for a global state σ and a thread t.
Therefore, we introduce the shortcut below if the argument is a thread instead of a
view:

σ.Lists(t) := σ.Lists(σ.tviewt) (3.4)

Lemma 3.9 supports that Equation (3.3) describes the criteria above. Further, the
right side is simpler and thus less work to show that it holds for a given list. We use
this equivalence in proofs to show that certain lists are in σ.Lists(δ).

Lemma 3.9. For any C11 state σ and ⟨δ1, . . . , δn⟩ ∈ σ.Views∗ holds

∀1 ≤ i ≤ j ≤ n : δ ⪯ δi ⪯ δj ⇐⇒ (n = 0 ∨ δ ⪯ δ1) ∧ ∀1 ≤ i < n : δi ⪯ δi+1

The proof is given in Appendix B.3

18

Chapter 3. Assertions

Example 3.10. Let Γ = (lst, σ) be a C11 state with σ.tviewt = {x 7→ (wr(x, 1), 1), y 7→
(wr(y, 0), 0)} and containing the used writes in σ.writes (implying that all following
views are in σ.Views).

With the views from Figure 3.3, ⟨δ1, δ2⟩ = ⟨{x 7→ (wr(x, 1), 1), y 7→ (wr(y, 0), 0)},
{x 7→ (wr(x, 1), 1), y 7→ (wr(y, 1), 1)}⟩ is a list in σ.Lists(t). In this example σ.tviewt ⪯
δ1 ⪯ δ2 holds and thus ⟨δ1, δ2⟩ ∈ σ.Lists(t). Note that the empty list ⟨⟩ is in σ.Lists(δ)
for any global state σ and view δ.

With the views from Figure 3.4, ⟨δ1, δ
′
2⟩ = ⟨{x 7→ (wr(x, 1), 1), y 7→ (wr(y, 0), 0)},

{x 7→ (wr(x, 0), 0), y 7→ (wr(y, 1), 1)}⟩ is in not in σ.Lists(δ) for any global state σ and
view δ, because the timestamp for x decreases: δ1(x) ⪯̸ δ′

2(x). Additionally for this
thread view σ.tviewt(x) ⪯̸ δ′

2(x) also prevents the list from being in σ.Lists(t).

In the definition of validity for assertions, we use σ.Lists(t) to overapproximate in
which order thread views may occur.

Definition 3.11. For a C11 state Γ = (σ, lst) we define the validity of assertion:

Γ ⊨ t⋉ I iff Γ, L ⊨ I for every L ∈ σ.Lists(tviewt)

Γ ⊨ e iff ∃δ ∈ σ.Views : JeKΓ,δ = true

Γ ⊨ I1 ∧ I2 iff Γ, L ⊨ I1 and Γ, L ⊨ I2 (similarly for ∨)

t⋉ I holds in Γ = (σ, lst) if I holds for all lists describing some order in which the
thread could perceive views, as described by σ.Lists(t). Additionally, we introduce the
shortcut t0 ⋉ I ≡

∧
t∈T id t⋉ I to assert that all threads must perceive I.

For brevity and to avoid confusion we evaluate expressions the same way as in
extended expressions (Definition 3.2), except for an arbitrary global state δ. This is
possible because their evaluation is independent of δ, since expressions do not contain
shared variables.

Finally, boolean operations ∨ and ∧ are defined as usual and negations are not
allowed for the same reasons as with interval assertions.

Example 3.12. Let Γ = (lst, σ) be a C11 state with σ.tviewt = {x 7→ (wr(x, 1), 1)}
and σ.writes = {(wr(x, 0), 0), (wr(x, 1), 1), (wr(x, 2), 2)}. Then every L ∈ σ.Lists(t)
consists of lists only containing {x 7→ (wr(x, 1), 1)} and {x 7→ (wr(x, 2), 2)} and only
in this order. Then Γ, L|k1 ⊨ 1x holds for some first part of L with (wr(x, 1), 1). For the
second part Γ, L||L|

k+1 ⊨ [x = 2] holds. We can combine this to derive Γ, L ⊨ 1x; [x = 2]
and consequently Γ ⊨ t⋉ 1x; [x = 2].

One key observation is that each thread may observe the final write (i. e. with the
greatest timestamp) to each shared variable. We can derive that every thread may
perceive some nonempty list and the observations of all threads must hold for the list
with the view mapping to the final writes. Thus, a disagreement is a contradiction, as
stated in Theorem 3.13. We use this mostly to derive false from t ⋉ [false] for some

19

3.5 Assertions on the Initial State ΓInit

thread t. Sometimes this also can be used to derive a contradiction when different
threads assume different write orderings which disagree on some final write.

Theorem 3.13. If there are a number of threads ti, . . . , tj with ti ⋉ Ii ∧ · · · ∧ tj ⋉ Ij

and Ii ∧ · · · ∧ Ij =⇒ [false], then (ti ⋉ Ii ∧ · · · ∧ tj ⋉ Ij) =⇒ false.

Proof. Assume ti ⋉ Ii ∧ · · · ∧ tj ⋉ Ij and Ii ∧ · · · ∧ Ij =⇒ [false]. For defining
the final view, let δmax(x) = w if and only if var(w) = x and w′ ⪯ w for every
w ∈ σ.writes with var(w′) = x. By construction, δ ⪯ δmax for every δ ∈ σ.Views.
Thus, ⟨δmax⟩ ∈ σ.Lists(δ) for every δ ∈ σ.Views. We can derive Γ, ⟨δmax⟩ ⊨ Ii up to
Γ, ⟨δmax⟩ ⊨ Ij . By definition of ∧, we can derive Γ, ⟨δmax⟩ ⊨ Ii ∧ · · · ∧ Ij . We know
by our requirement that this implies [false]. Thus, Γ, ⟨δmax⟩ ⊨ [false] holds. This is
false; thus we can derive (ti ⋉ Ii ∧ · · · ∧ tj ⋉ Ij) =⇒ false.

3.5 Assertions on the Initial State ΓInit

In this section, we show which of these assertions hold on the initial state. The initial
state ΓInit is defined by the Init statements:

Init = x1 := k1 ; · · · ; xn := kn ; [r1 := l1;] . . . [rm := lm;]

The local variables and writes are defined to agree with these statements:

lstInit(t) : ri 7→ li for each thread t and its local variables ri

writesInit = {(wr(xi, ki), 0) | 1 ≤ i ≤ n}

To describe the interval in which specific writes occur, we introduce the following
notation: 1

x
v1...vn

≡ (1x ∧ [x = v1]); . . . ; (1x ∧ [x = vn]). Additionally we assume
atoms(Init) to return the set of assignments and writes in Init. With this we define
rules to derive statements holding in the initial state ΓInit.

Init-asgn
r := v ∈ atoms(Init)

ΓInit ⊨ r = v

Init-wr
x := v ∈ atoms(Init)

ΓInit ⊨ t⋉ 1
x
v

Theorem 3.14. Init-asgn and Init-wrare sound.

Proof. Let Init = x1 := k1 ; · · · ; xn := kn ; [r1 := l1;] . . . [rm := lm;] and ΓInit =
(lstInit, σInit) be an according initial state.

Init-asgn holds by the definition of lstInit.
Init-wr. Each view δ ∈ L in a list L ∈ σInit.Lists(tviewInit) must map shared

variables to writes in σInit.writes of the same variable xi. Thereby we know that every
xi is mapped to δ(xi) = (wr(xi, ki), 0) by the definition of writesInit. Also for every
shared variable there is only one write in σ.writes. With this, ΓInit, L ⊨ t ⋉ 1xi and
ΓInit, L ⊨ t⋉ [x = ki] hold. We can derive ΓInit, L ⊨ t⋉ 1

xi
ki

20

Proof Rules
4

In this chapter, we present our proof rules and prove the soundness of some of them
to give insights into the mechanics. The other soundness proofs work on the same
principles, and are included in Appendix C. In Chapter 5, these rules are applied in
examples, which do not require understanding of these inner workings.

We reason about validity of programs using Hoare triples, which we define below for
partial correctness. This means we consider all possible final states of executions and
ignore infinite executions. Proving that there are no infinite executions is considered
in total correctness, which is not topic of this thesis.

Definition 4.1. For assertions p and q, a parallel program P , and the empty program
E, mapping each thread identifier to skip, we define the validity of a Hoare triple as
follows:

⊨ {p} P {q} iff Γ′ ⊨ q for every Γ′ ∈ ΣC11 with (P,Γ) =⇒∗ (E,Γ′)

for some Γ ∈ ΣC11 with Γ ⊨ p

For a parallel program with an Init statement we additionally require ΓInit ⊨ p to hold.

To be able to refer to the executing thread in proof rules, we denote it in the index
of the operation, e. g. x :=t e for a writing thread t.

4.1 Classical Proof Rules

Figure 4.1 shows classical proof rules for compound statements, logical reasoning and
parallel composition. Classical proof rules for compound statements (combining mul-
tiple statements to non-atomic statements) hold by the same reasoning as for Hoare
Logic [Hoa69, AdBO09]. The logical rules other than Disj2 are included in [AdBO09]
and hold by reasoning over the transition system and are independent of what specific
transition steps are possible. Disj2 can be easily derived by Disj1 and Cons.

21

4.1 Classical Proof Rules

Seq
{p} C1 {r} {r} C2 {q}

{p} C1 ; C2 {q}

If
{p ∧ b} C1 {q} {p ∧ ¬b} C2 {q}
{p} if b thenC1 elseC2 fi {q}

While
{p ∧ b} C {p}

{p} while bdoC od {p ∧ ¬b}

Until
{p} C {r} {r} while¬bdoC od {r ∧ b}

{p} doC until bod {r ∧ b}

Aux
{p} C {q} vars(q) ∩ V = ∅

{p} C0 {q}

Parallel
Proof outlines {pi} Ci {qi} are interference free

{
∧n

i=1
pi} C1∥ . . . ∥Cn {

∧n

i=1
qi}

Cons
p⇒ p′ {p′} C {q′} q′ ⇒ q

{p} C {q}

Conj
{p1} C {q1} {p2} C {q2}
{p1 ∧ p2} C {q1 ∧ q2}

Disj1
{p1} C {q} {p2} C {q}

{p1 ∨ p2} C {q}

Disj2
{p1} C {q1} {p2} C {q2}
{p1 ∨ p2} C {q1 ∨ q2}

Figure 4.1: Classical proof rules

The Aux rule is the standard proof rule to remove auxiliary variables from a proof
outline [AdBO09]. Here we obtain C0 from C by removing all assignments to a set of
auxiliary variables V . Statements of the form ⟨c, aux := e⟩ for an auxiliary variable
aux ∈ V for example are replaced by the statement c, removing the auxiliary assign-
ment. Further, this is only allowed if no auxiliary variable aux ∈ V occurs in C0 any
more, for example in another assignment or a condition.

The Parallel rule combines sequential programs into parallel programs the usual
way [OG76, AdBO09]. Next, we define noninterference for this rule.

Definition 4.2. A statement R with precondition pre(R) (in the standard proof outline)
does not interfere with an assertion p if {p ∧ pre(R)} R {p}.

A standard proof outline of a sequential program is the program with exactly one
assertion in {} brackets before and after each statement. We call the assertion before
a statement R its precondition pre(R) and the assertion afterward its postcondition
post(R). Standard proof outlines are interference free if no statement of one proof
outline interferes with any assertion of another.

A parallel proof outline is valid if the proof outlines of the sequential programs
are valid, and the proof outlines are interference free. A proof outline of a sequential
program is valid if for every statement R and C11 states Γ,Γ′ ∈ ΣC11 if Γ ⊨ pre(R)
and (R,Γ) =⇒∗ (skip,Γ′) implies Γ′ ⊨ post(R).

22

Chapter 4. Proof Rules

4.2 Basic Rules

There are some basic rules shown below. They preserve assertions of which no free
variable is changed in the statement. The set of free variables fv(φ) for an assertion φ
is the set of all local and shared variables used in the assertion and all shared variables
x used in A(x), 1x or Cx in the assertion. These rules are (syntactically) equivalent
to the rules Subst-asgn/Subst, Stable-ld/Stable-Ld, and Stable-wr/Stable-
St in [LDW23]/[BDW24], where ld, wr, and st are shortcuts for load, write and store
respectively. We later use them in proof outlines and to show that the rules ending on
single are instances of their more complex versions, usually by preserving false.

Subst-asgn

{φ(r := e)} r :=t e {φ}

Stable-ld
r /∈ fv(φ)

{φ} r ←t x {φ}

Stable-wr
x /∈ fv(φ)

{φ} x :=t e {φ}

Theorem 4.3. Subst-asgn, Stable-ld and Stable-wr are sound.

This holds by induction over the structure of the formula, as shown in Appendix C.1.

4.3 Load Rules

In this section, we introduce our load rules. Write transition steps change the set of
writes; therefore we handle loads first. Lemma 4.4 states that for every view, there is
a specific part of an interval assertion that must hold for that view. We use this in the
soundness proofs below to reason about interval assertions of the form I1; I2.

Lemma 4.4. For a state Γ = (lst, σ) with Γ ⊨ I1; I2 and any views δ′, δ ∈ σ.Views, the
following holds:

Γ, L1 · ⟨δ⟩ ⊨ I1 for all lists of the form L = L1 · ⟨δ⟩ · L2 in σ.Lists(δ′) or

Γ, ⟨δ⟩ · L2 ⊨ I2 for all lists of the form L = L1 · ⟨δ⟩ · L2 in σ.Lists(δ′)

Proof. By contradiction. Let L = L1 · ⟨δ⟩ · L2 ∈ σ.Lists(δ′) such that Γ, L1 · ⟨δ⟩ ⊭ I1.
Let L′ = L′

1 · ⟨δ⟩ · L′
2 ∈ σ.Lists(δ′) such that Γ, ⟨δ⟩ · L′

2 ⊭ I2. Then we can construct a
list L′′ = L1 · ⟨δ⟩ · L′

2. Now L′′ ∈ σ.Lists(δ′) holds because both L and L′ are also in
σ.Lists(δ′). L′′ however can’t fulfill I1; I2, because either the part before the split would
have to begin with L = L1 · ⟨δ⟩ or the part after the split has to end with ⟨δ⟩ · L2. By
Lemma 3.7, that part cannot fulfill I1 or I2, respectively.

Especially, an interval assertions of the form I1; I2 occurs in Ld-shift. The rules
below are equivalent to the rules with the same name in [BDW24].

Ld-shift
{t⋉ I} r ←t x {ψ}

{t⋉ [e(r := x)]; I} r ←t x {e ∨ ψ}

Ld-single

{t⋉ [e(r := x)]} r ←t x {e}

23

4.3 Load Rules

Theorem 4.5. Ld-shift and Ld-single are sound.

The intuition behind Ld-single is that an expression holding for x on all thread
views possible after the transition step, after we read its value into r, the same expres-
sion must evaluate to true for r afterwards. For Ld-shift the new thread view after
the transition step can be either in the first interval [e(r := x)] or in the latter I. In
the first case, similar to Ld-single, e must hold. Otherwise, we may assume that t⋉ I
held before, because a transition from a state where it holds is possible.

Proof. Ld-shift
Let Γ = (lst, σ) be the state before and Γ′ = (lst′, σ′) be the state after the transition
step. There are only two changes by this transition: σ.tviewt is updated to σ′.tviewt

and lst(t)(r) is updated to val(σ′.tviewt(x)). All other thread views, all modification
views, the covered set of the global state, σ and all other local variables of lst are the
same in the state Γ before the read transition and Γ′ after it.

With this we can continue to prove the soundness of Ld-shift. By Lemma 4.4 we
know that one of the following holds for every L = L1 · ⟨σ′.tviewt⟩ · L2 ∈ σ.Lists(t):

(i) (lst, σ), L1 · ⟨σ′.tviewt⟩ ⊨ t⋉ [e(r := x)].
We can derive Je(r := x)K(lst,σ),σ′.tviewt

= true. By the transition rules we know
that σ′.ls(t) = σ.ls(t)[r := tviewt(x)]. By structural induction over the formula,
we can conclude JeKlst′ = true. For this let δ = σ′.tviewt.

(a) Ja(r := x)K(lst,σ),δ =

val(δ(x)) if a = r

lst(a) otherwise
= lst′(a) = JaK(lst′,σ)

(b) J¬e(r := x)K(lst,σ),δ = ¬ Je(r := x)K(lst,σ),δ = ¬ JeK(lst′,σ) = J¬eK(lst′,σ)

(c) Je1(r := x)⊕ e2(r := x)K(lst,σ),δ = Je1(r := x)K(lst,σ),δ ⊕ Je2(r := x)K(lst,σ),δ =
Je1K(lst′,σ) ⊕ Je2K(lst′,σ) = Je1 ⊕ e2K(lst′,σ)
for ⊕ ∈ {+,−, ∗,÷, . . . ,=,≤,≥, . . . ,∧,∨, . . . }

With this, (lst′, σ) ⊨ e holds. Then (lst′, σ′) ⊨ e holds because σ and σ′ are not
used to evaluate e.

(ii) (lst, σ), ⟨σ′.tviewt⟩ · L2 ⊨ t⋉ I.
By Lemma 3.7, L2 ⊨ t ⋉ I. For L2 the same restrictions hold as for any list in
σ′.Lists(t). Therefore, the set of Lists allowed for L2 is σ′.Lists(t). With this we
can derive (lst, σ′) ⊨ t ⋉ I. (r ←t x, lst, σ

′) =⇒ (skip, lst′, σ′) is possible by a
transition, therefore (lst′, σ′) ⊨ ψ holds by the precondition.

We can conclude (lst′, σ′) ⊨ e ∨ ψ, which makes Ld-shift sound.
Ld-single

This is an instance of Ld-shift for I ≡ [false] and ψ ≡ false. t ⋉ [false] ⇒ false

holds by Theorem 3.13 and {false} r ←t x {false} holds by Stable-ld.

24

Chapter 4. Proof Rules

4.4 Write Rules

In this section we first introduce our general strategy to proof the soundness of our proof
rules for writes. Then we show it on the example of Wr-top. Finally, we introduce
our other write proof rules.

4.4.1 Soundness Proof Strategy

To show that a write proof rule is sound, we need to show that every state Γ′ = (lst′, σ′)
after a write transition fulfills some assertion of the form t ⋉ I ′. To do so, we take an
arbitrary list L from σ′.Lists(t) and show that it fulfills I ′. For this, we replace the newly
introduced write w with the write wprev before it in L to produce a list L[w/wprev] which
we know is in σ.Lists(t), assuming Γ = (lst, σ) is the state before the write transition.
This is formalized in Lemma 4.7.

Example 4.6. As an example we look at the following program, for executing x := 1
after x := 2 is already executed:

Init : x := 0;
Thread t1

x := 1
Thread t2

x := 2
Thread t3

skip

Let the resulting state have the set σ′.writes = {w0, w1, w2} for writes wi = (wr(x, i), i)
with value and timestamp i. In this state thread t3 can observe for example the list
L′ = ⟨δ0, δ1, δ2⟩ ∈ σ′.Lists(t3) for views δi : x 7→ wi.

Replacing the new write w1 by the previous one w0 results in L = ⟨δ0, δ0, δ2⟩. This
list is obviously in σ.Lists(t3), because it does not contain the newly introduced write
and all views succeed all previous ones.

Finally, for the part around the replacement, the same interval assertions as before
hold, e. g. [x = 0] for ⟨δ0⟩ = L|11 = L′|11 and [x = 2] for ⟨δ2⟩ = L|33 = L′|33. For the part
L′|22 = ⟨δ1⟩ containing the newly introduced write w holds 1

x
e. We can combine these

together into [x = 0];1x
1; [x = 2], which holds for L′.

Our general proof strategy shows that such a replacement works for all lists in
σ′.Lists(t), allowing us to guarantee such a newly constructed interval assertion.

First we need to formally define what it means to replace a write in a view δ and
list L = ⟨δ1, . . . , δ|L|⟩. For a view δ, if it contains w, we replace that write with some
other write, usually wprev, which is the write directly before the newly introduced write
w. Otherwise the view remains unchanged. We lift this to lists such that for each view
in the list, the write w is replaced.

δ[w/wprev] :=

δ[var(w) := wprev] if δ(var(w)) = w

δ otherwise

L[w/wprev] := ⟨δ1[w/wprev], . . . , δ|L|[w/wprev]⟩

25

4.4 Write Rules

Let Γ = (lst, σ) be the state before and Γ′ = (lst′, σ′) be the state after the write
transition step. Let w = (a, q) be the write written by the transition step and wprev

be the write previous to w, which is wprev = maxq′{(a′, q′) ∈ σ.writes | var(a′) =
var(w) ∧ q′ < tst(w)}. This write always exist because all newly introduced writes
have a timestamp strictly greater than some other timestamp by σ.fresh. We use this
replacement in Lemma 4.7 to create a list for which we know that it was in σ.Lists(t).
With this we know that it fulfills the precondition of the Hoare triple which we use in
most proofs for write rules.

Lemma 4.7. Let σ, σ′ be arbitrary global states with σ
a
⇝t σ

′ for a ∈ {wr(x, vW),
wrR(x, vW), updRA(x, vR, vW)} and L′ be an arbitrary list from σ′.Lists(t). Then, for
the write w = σ′.tviewt(var(a)) introduced in the transition and the write before it
wprev = maxq′{(a′, q′) ∈ σ.writes | var(a′) = var(w) ∧ q′ < tst(w)}, holds:

L′[w/wprev] ∈ σ.Lists(t)

Proof. Let L = L′[w/wprev]. L(i) ∈ σ.Views holds because all instances of the only new
write in σ′, w, are replaced by wprev which is in σ.writes by definition. With Lemma 3.9
we only need to derive L(i) ⪯ L(i+ 1) and σ.tviewt ⪯ L(i) to show δ ⪯ δi ⪯ δj for all
1 ≤ i ≤ j ≤ n, the other requirement for L to be in σ.Lists(t).

First we need to show L(i) ⪯ L(i + 1). This holds by the definition of σ′.Lists.
There are four cases:

1. L′(i)(x) = w and L′(i+ 1)(x) = w:
L(i) = L′(i)[x := wprev] ⪯ L′(i+ 1)[x := wprev] = L(i+ 1)

2. L′(i)(x) ̸= w and L′(i+ 1)(x) = w:
L(i) = L′(i) ⪯ L′(i+ 1)[x := wprev] = L(i+ 1) because w′ ⪯ wprev for all w′ ≺ w

3. L′(i)(x) = w and L′(i+ 1)(x) ̸= w:
L(i) = L(i)[x := wprev] ⪯ L′(i+ 1) = L(i+ 1) because wprev ⪯ w

4. L′(i)(x) ̸= w and L′(i+ 1)(x) ̸= w:
L(i) = L′(i) ⪯ L′(i+ 1) = L(i+ 1)

We conclude L(i) ⪯ L(i+ 1) in every case.
Finally we need to show σ.tviewt ⪯ L(i). For L(i) ∈ σ.Views, there are two cases:

1. L′(i)(x) ̸= w: σ.tviewt ⪯ σ′.tviewt by Theorem 3.1 and σ′.tviewt ⪯ L′(i) by
definition of σ′.Lists. L′(i)[w/wprev] = L′(i) = L(i) because L′(i)(x) ̸= w. We
can conclude σ.tviewt ⪯ L(i).

2. L′(i)(x) = w: wprev is the write selected from σ.OW(t, x), since σ.fresh guarantees
that the new write w has the next timestamp. σ.tviewt ⪯ σ′.tviewt [x := wprev]
holds since wprev ∈ σ.OW(t, x). Further σ′.tviewt [x := wprev] ⪯ L′(i) [x := wprev]

26

Chapter 4. Proof Rules

holds because σ′.tviewt ⪯ L′(i) since L′ ∈ σ′.Lists(t). Also L′(i) [x := wprev]
= L(i) by definition of L. We can derive σ.tviewt ⪯ L(i).

We conclude σ.tviewt ⪯ L(i) in either case.
By Lemma 3.9 this is sufficient to prove δ ⪯ δi ⪯ δj for all 1 ≤ i ≤ j ≤ n. With

L(i) ∈ σ.Views, we can derive L ∈ σ.Lists(t).

Now, we know L′[w/wprev] ∈ σ.Lists(t). We use this in our soundness proofs to split
the list in parts with and without the new write w. 1x

e holds trivially for the parts with
the new write w, because it is the only write to x in that part and its value is e. For
the parts without the new write, interval assertions fulfilled by Γ, L are also fulfilled by
Γ′, L. This is formalized in Lemma 4.8.

Lemma 4.8. For Write and Update transition steps with the C11 states Γ before
and Γ′ after the transition step, if L ∈ σ.Lists(t′) for some thread t′ and I is an interval
formula, then Γ, L ⊨ I implies Γ′, L ⊨ I.

The proof by induction over the formula is included in Appendix B.4. The intuition
is that for each view, extended expressions are evaluated the same, and for each list, if
an interval assertion held before the transition step, it still holds afterwards.

This is our general strategy to prove the soundness of our proof rules. Because
we cannot derive useful postconditions with this alone, we need multiple proof rules
with different, stronger preconditions. In the next section, we show the soundness of
Wr-top as an example, where we restrict the writing thread t to only observes a single
write on the written variable x in the precondition: t⋉ 1x.

4.4.2 WR-TOP

Below we introduce Wr-top, a proof rule requiring the writing thread to perceive only
a single write. This requires the thread view of that thread to map to the newest write
to that variable and create a new write with an even greater timestamp. Thus, in the
postcondition of the Hoare triple, we may insert the new write at the end. To describe
this write, we use the previously established notation 1

x
e ≡ 1x∧ [x = e]. This proof rule

is similar to Wr-other-1 from [LDW23], which has an additional assertion R(x) for
older writes, and St-Other1 from [BDW24], which specifies the writing thread with
x.tid = t. On the other hand, we guarantee that there is only one new write with 1x.

Wr-top

{t⋉ 1x ∧ t′ ⋉ I} x :=t e {t′ ⋉ I; 1x
e}

Theorem 4.9. Wr-top is sound.

27

4.4 Write Rules

Proof. Let wmax := maxq{(a, q) ∈ σ.writes | var(a) = x} be the write to x with
the maximal timestamp. Then ⟨σ.tviewt, σ.tviewt[x := wmax]⟩ ∈ σ.Lists(t) because
σ.tviewt(x) ⪯ wmax. With t⋉ 1x we can derive σ.tviewt(x) = wmax.

Write guarantees with σ.fresh that the newly introduced write w has an even
greater timestamp than the previously latest write: tst(w) > tst(σ.tviewt(x)). Because
it is the only new write (σ′.writes = σ.writes ∪ {w}), it succeeds all other writes to
x in σ: tst(w′) < tst(w) for all w′ ∈ σ′.writes with var(w′) = x. Therefore, no other
write to x can occur in L′ after w in any L′ ∈ σ′.Lists(t).

Let 0 ≤ k ≤ |L′ such that w /∈ L′|k1.writes and δ(x) = w for every δ ∈ L′||L
′|

k+1.
We know that L′[w/wprev] ∈ σ.Lists(t) by Lemma 4.7, therefore also L′|k1[w/wprev] ∈
σ.Lists(t). Further, by definition of k, L′|k1[w/wprev] = L′|k1 because w /∈ L′|k1.writes.
Therefore, we can derive Γ, L′|k1 ⊨ I and by Lemma 4.8 Γ′, L′|k1 ⊨ I.

Γ′, L′||L
′|

k+1 ⊨ 1x ∧ [x = e] holds trivially because δ(x) = w for every δ ∈ L′||L
′|

k+1. We
can derive Γ′, L′|k1 ·L′||L

′|
k+1 ⊨ I;1x

e . As L′|k1 ·L′||L
′|

k+1 = L′, this is what we needed to show:
Γ′, L′ ⊨ I;1x

e .

4.4.3 Additional Write Rules

In combination with Wr-top from the previous chapter, we often use Wr-own-1wr
to preserve that the writing thread perceives only one write (to the written variable).
The rules Wr-Own from [LDW23] and Un from [BDW24] are similar. The former
holds for a stronger memory model where the precondition true is sufficient to derive
the postcondition t ⋉ [x = e]. The latter is syntactically equivalent to our rule if
we restrict our rule to I ≡ [false], thereby removing ; I, and ignore the additional
guarantees x.tid = t they provide, assuming t⋉ 1x and t ↑ x are equivalent.

Additionally, in cases with more than one writing thread the rule Wr-1wr can be
used, of which Wr-1wr-single is a simplified and weaker version.

Wr-own-1wr

{t⋉ 1x; I} x :=t e {t⋉ 1
x
e ; I}

Wr-1wr-single

{t′ ⋉ 1x ∧ I} x :=t e {t′ ⋉ I;1x
e}

Wr-1wr
{t′ ⋉ I2} x :=t e {t′ ⋉ I ′

2}

{t′ ⋉ (I1 ∧ 1x); I2} x :=t e {t′ ⋉
(
(I1; 1x

e ; I2) ∨ (I1; I ′
2)
)
}

Theorem 4.10. Wr-own-1wr, Wr-1wr and Wr-1wr-single are sound.

The soundness proofs are similar to that for Wr-top and are given in Appendix C.2.
For Wr-own-1wr we use that the current thread view is updated to the new write,
thus replacing the write which can only occur at the beginning of the list, σ.tviewt(x).
For Wr-1wr we use that the new write w can only be inserted at one point in a list,
without any other writes in between views with w. Wr-1wr-single is an instance of
Wr-1wr, similar to how Ld-single is an instance of Ld-shift.

28

Chapter 4. Proof Rules

4.5 Release/ Acquire

For release acquire we need additional rules for the new operations. Because all assump-
tions made proving the previous rules also hold for acquiring reads and releasing writes,
they can be applied the same way to those operations. Additionally, the new rules below
can be used, which are not sound for the relaxed reads and writes. Here A(x) describes
a view which cannot occur after an acquiring read from x, as stated in Lemma 3.4 and
argued for in Section 3.2. We introduce Ax

e as a shortcut for Ax
e ≡ [A(x)]∧1x

e , denoting
that there is only one write and it cannot occur after an acquiring read. This holds
when the reading thread observes a write, but its thread view does not succeed the
modification view of that write.

Ld-a-shift
{t⋉ I} r ←A

t x {ψ}

{t⋉ [A(x)]; I} r ←A
t x {ψ}

Wr-r-top
{t⋉ It} x :=R

t e {t⋉ I ′
t}

{t⋉ (It ∧ 1x) ∧ t′ ⋉ I} x :=R
t e {t′ ⋉ I;Ax

e ; I ′
t}

Theorem 4.11. Ld-a-shift and Wr-r-top are sound.

The soundness proofs are given in Appendix C.3. Ld-a-shift details that A(x) can
be ignored at the beginning of an assertion if the perceiving thread reads that variable.
The intuition is that because this cannot hold on the thread view after an acquiring
read, we know that we can add this thread view at the beginning of each list. Then
A(x) can only hold on the empty list and the rest of the interval assertion must hold
on the full list. When Wr-r-top can be applied, the new write can only occur at
the end of its interval, because the writing thread observes only one write, similar to
Wr-top. Then, after the thread view of the reading thread succeeds the modification
view (i. e. A(x) does not hold any more), its lists are a subset of the writing threads
and therefore, the writing threads interval assertion must hold.

4.6 Swap

All rules for relaxed and releasing writes may also be used for swap operations, because
all assumptions made during the proofs also are valid for it. Additionally, we need
proof rules both for the swap operation and for covered writes it introduces. For the
latter, we use the interval assertion Cx, asserting that all writes to x in a list are in the
set σ.covered of the global state σ. These rules have a small similarity with Swap-skip
from [LDW23], in that both rules allow ignoring a leading interval assertion.

Swap-a-shift
{t⋉ I} x.swap(v)RA

t {ψ}

{t⋉ [A(x)]; I} x.swap(v)RA
t {ψ}

Wr-cvd
{t⋉ I} x :=t e {ψ}

{t⋉ Cx; I} x :=t e {ψ}

Theorem 4.12. Swap-a-shift and Wr-cvd are sound.

29

4.6 Swap

The soundness proofs are given in Appendix C.4. Swap-a-shift is identical to Ld-
a-shift, except that it can be applied to swaps instead of reads. Wr-cvd describes
that no write can be inserted directly after a write which is already covered by an
atomic swap operation.

Additionally, we need rules allowing us to derive Cx when a swap operation is
executed. The two rules below guarantee the written value and the passing of an
interval assertion respectively.

Swap-wr

{t⋉ Cx;1x ∧ t′ ⋉ Cx; 1x} x.swap(v)RA
t {t′ ⋉ Cx; 1x

v}

Swap-r
{t⋉ It} x.swap(v)RA

t {t⋉ I ′
t}

{t⋉ (It ∧ Cx;1x) ∧ t′ ⋉ Cx; 1x} x.swap(v)RA
t {t′ ⋉ Cx;Ax

v ; I ′
t}

Theorem 4.13. Swap-wr and Swap-r are sound.

The soundness proofs are given in Appendix C.5. These are the proof rules for
writing a value with a swap. The precondition guarantees that both the writing thread
t and perceiving thread t′ observe only a single uncovered write to x, which allows us
to derive that this write is added to the covered set and the only write they might
perceive afterwards is the new one, since it is the only one not in covered. Other than
that, Swap-wr is very similar to Wr-top and Swap-r to Wr-r-top.

30

Examples
5

After introducing our proof rules in the previous chapter, we show how they can be used
in validity proofs for proof outlines. Classical proof rules are explained in Section 4.1,
and we recall our new rules before they are first used. There is also a quick reference
in Appendix A, where all proof rules are printed. We showcase most proof rules only
once, for full validity proofs see Appendix D. We begin with several standard litmus
tests, which are minimal examples showing of behavior of different memory models. In
the end, we also verify Peterson’s algorithm as a case study.

5.1 Load Buffering

In this section, we take a look at Load Buffering, a simple litmus test to showcase some
of the simpler rules. Our new rules we use here are the following:

Stable-ld
r /∈ fv(φ)

{φ} r ←t x {φ}

Stable-wr
x /∈ fv(φ)

{φ} x :=t e {φ}

Ld-single

{t⋉ [e(r := x)]} r ←t x {e}

Theorem 5.1. The proof outline for Load Buffering in Figure 5.1 is valid.

Init : x := 0 ; x := 0 ; a := 0 ; b := 0;
{t1 ⋉ [x = 0] ∧ t2 ⋉ [y = 0] ∧ a = 0 ∧ b = 0}

Thread t1
{t2 ⋉ [y = 0] ∧ b = 0}
1 : a← x;
{t2 ⋉ [y = 0] ∧ b = 0}
2 : y := 1
{a = 0 ∨ b = 0}

Thread t2
{t1 ⋉ [x = 0] ∧ a = 0}
3 : b← y;
{t1 ⋉ [x = 0] ∧ a = 0}
4 : x := 1
{a = 0 ∨ b = 0}

{a = 0 ∨ b = 0}

Figure 5.1: Proof outline for Load Buffering, with a, b ∈ VarL and x, y ∈ VarG

31

5.2 RRC2

The full proof can be seen in Appendix D.1, but here we showcase where the new
proof rules are used. The proof outline is very similar to the proof outline in [DDDW20],
and holds the same way in Piccolo for other (weak) memory models with these proof
rules, such as SC, TSO, and SRA [LDW23, BDW24].

We use Stable-ld and Stable-wr to derive the validity of the sequential programs
of the threads. For example, below Stable-ld preserves an assertion only containing
the free variables y and b for loading a value into a. Writing to y on the other hand
only preserves b = 0, but this is sufficient to derive the postcondition a = 0 ∨ b = 0.

1 by Stable-ld:
{t2 ⋉ [y = 0] ∧ b = 0}
a← x

{t2 ⋉ [y = 0] ∧ b = 0}

2 by Stable-wr, Cons:
{t2 ⋉ [y = 0] ∧ b = 0}
{b = 0}
y := 1
{b = 0}
{a = 0 ∨ b = 0}

We need Ld-single only to show noninterference. This means that, even if a
statement of a thread is executed, the assertions of the other threads are preserved.
Below we show that the assertion t2 ⋉ [x = 0]∧b = 0 of t2 is preserved when statement
1 (of t1) is executed. Here t1 ⋉ [x = 0] can be preserved by Stable-ld. On the other
hand, we can derive b = 0 afterwards by Ld-single only because we also know that
t1 ⋉ [x = 0] holds before the execution.

(I) by Stable-ld:
{t1 ⋉ [x = 0]}a← x{t1 ⋉ [x = 0]}

(II) by Ld-single:
{t1 ⋉ [x = 0]}a← x{a = 0}

by (I), (II), Conj and Cons:
{t2 ⋉ [y = 0] ∧ b = 0 ∧ t1 ⋉ [x = 0] ∧ a = 0}
{t1 ⋉ [x = 0] ∧ t1 ⋉ [x = 0]}
a← x

{t1 ⋉ [x = 0] ∧ a = 0}

5.2 RRC2

In this section, we take a look at RRC2 (read-read coherence), which reasons about
coherence of writes of one thread to the one variable. For this we use the rules below
in addition to rules shown in the previous section.

Wr-top

{t⋉ 1x ∧ t′ ⋉ I} x :=t e {t′ ⋉ I; 1x
e}

Wr-own-1wr

{t⋉ 1x; I} x :=t e {t⋉ 1
x
e ; I}

Ld-shift
{t⋉ I} r ←t x {ψ}

{t⋉ [e(r := x)]; I} r ←t x {e ∨ ψ}

32

Chapter 5. Examples

Init : x := 0;
{t1 ⋉ 1x ∧ t2 ⋉ [x = 0]}

Thread t1
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}
1 : x := 1;
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}
2 : x := 2
{true}

Thread t2
{t2 ⋉ [x ̸= 2]; [x = 2]}
3 : a← x;
{a = 2⇒ t1 ⋉ [x = 2]}
4 : b← x
{a = 2⇒ b = 2}

{a = 2⇒ b = 2}

Figure 5.2: Proof outline of RRC2, with a, b ∈ VarL and x ∈ VarG

In Figure 5.2 we can see a proof outline for RRC2. We expect the initial value 0
for x and then writes with values 1 and 2. This could be described by t2 ⋉ [x = 0]; [x =
1]; [x = 2], but here t2 ⋉ [x ̸= 2]; [x = 2] is sufficient. It also shortens the validity proof,
because some proof rules must be applied iteratively on each interval. The assertion
t1⋉1x implies that t1 only perceives a single write. Because all threads may perceive the
write with the maximal timestamp, t1 must perceive only that write. Consequently, all
new writes t1 introduces must succeed that write and have a new maximal timestamp
at their time of creation. This is what allows Wr-top to add new writes at the end of
the interval some thread might perceive.

Theorem 5.2. The proof outline for RRC2 in Figure 5.2 is valid.

The full proof can be seen in Appendix D.2, here we showcase our new proof rules.
With similar rules and when replacing t1 ⋉ 1x with t1 ↑ x, the proof outline holds in
Piccolo for SC, TSO, and SRA [LDW23, BDW24].

The same litmus test is also verified in [DDDW20], but their proof outline seems
more complex. Instead of constructing a sequential proof for t2, which guarantees
a = 2 ⇒ b = 2 as postcondition, they derive as postconditions of t1 and t2 that all
writes to x with value 2 succeed those with value 1 and a ̸= b implies that a write with
value a precedes one with value b. Their combination allows them to derive the weaker
postcondition a = 2 =⇒ b = 2 for the parallel program.

For our proof, if we look at the proof for statement 1 below, x ̸= 2 is preserved by
Wr-top, because we additionally know t1 ⋉ 1x and 1 ̸= 2, which allows the intervals
to be combined.

Wr-own-1wr allows us to derive that t1 only perceives the newest write to x both
before and after the transition. The intuition behind the rule is that the single write
at the beginning of the interval before the write must observe the write σ.tviewt(x) of
the global state σ before the transition. Because the thread view of t is updated by the
transition to observe the newly introduced write, we know that the old write cannot
be observed anymore and that the new write must be at the beginning of the interval.

Note that [false] is only fulfilled by the empty list and therefore can be freely added
and removed when using it with the chop (;) operator.

33

5.3 RRC

(I) by Wr-top and Cons:
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}
x := 1
{t2 ⋉ [x ̸= 2]; [x = 1]}
{t2 ⋉ [x ̸= 2]}

(II) by Wr-own-1wr and Cons:
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}
{t1 ⋉ 1x; [false]}
x := 1
{t1 ⋉ 1

x
1; [false]}

{t1 ⋉ 1x}

By (I), (II), Conj and Cons:
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}x := 1{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}

The other newly introduced rule is Ld-shift. The intuition behind the rule is that
a thread either reads from the current interval, or if it reads from a later interval, it
won’t be able to perceive the previous interval any more.

by Stable-ld, Ld-shift and Cons
{t2 ⋉ [x ̸= 2]; [x = 2]}
a← x

{a ̸= 2 ∨ t2 ⋉ [x = 2]}
{a = 2⇒ t2 ⋉ [x = 2]}

5.3 RRC

In this section, we take a look at RRC, a litmus test, which reasons about coherence
of writes of different threads to the same variable. Because of this the rule Wr-1wr
is necessary. Wr-1wr-single is a weaker version of this rule which allows us to prove
the validity of proof outlines with fewer applications of proof rules.

Wr-1wr-single

{t′ ⋉ 1x ∧ I} x :=t e {t′ ⋉ I;1x
e}

Wr-1wr
{t′ ⋉ I2} x :=t e {t′ ⋉ I ′

2}

{t′ ⋉ (I1 ∧ 1x); I2} x :=t e {t′ ⋉
(
(I1; 1x

e ; I2) ∨ (I1; I ′
2)
)
}

Theorem 5.3. The proof outline for RRC in Figure 5.3 is valid.

The full proof can be seen in Appendix D.3, but here we showcase where the new
proof rules are used. The new rules are applied to guarantee that statement 1 does not
interfere with the precondition of statement 3.

This proof outline is not applicable to Piccolo with other weak memory models,
because there are no similar proof rules to Wr-1wr and Wr-1wr-single for them

34

Chapter 5. Examples

Init : x := 0;
{t0 ⋉ 1

x
0}

Thread t1{
a ̸= 1 ∧
t0 ⋉ 1

x
02

}
1 : x := 1
{true}

Thread t2{
c ̸= 2 ∧
t0 ⋉ 1

x
01

}
2 : x := 2
{true}

Thread t3
{t3 ⋉ 1

x
012 ∨ 1x

021}
3 : a← x;
{a = 1⇒ t3 ⋉ 1

x
12}

4 : b← x{
(a = 1 ∧ b = 2)
⇒ t3 ⋉ 1

x
2

}

Thread t4
{t4 ⋉ 1

x
012 ∨ 1x

021}
5 : c← x;
{c = 2⇒ t4 ⋉ 1

x
21}

6 : d← x{
(c = 2 ∧ d = 1)
⇒ t4 ⋉ 1

x
1

}
{(a = 1 ∧ b = 2 ∧ c = 2)⇒ d ̸= 1}

Figure 5.3: Proof outline for RRC, with a, b, c, d ∈ VarL and x ∈ VarG

[DDDW22], but there are similar proof outlines with Piccolo for SRA [LDW23] and
for C11 RAR with Owicki-Gries reasoning [DDDW20]. That SRA proof outline is very
similar to ours, except swapping the values of the local variables and not needing the
restrictions to one write (1x), because of the stronger memory model. That C11 proof
outline is different, and the differences are similar to those found with RRC2: They
derive that writes are ordered one way in t3 and another way in t4. This, combined
with the restriction that there are only one write with the values 1 and 2 each, derived
in t1 and t2, leads to a a = 1 ∧ b = c = 1⇒ d ̸= 1.

Below we begin with reasoning on the rightmost part of the interval, t0⋉1x
2. Here, by

Wr-1wr-single, we can derive t0 ⋉ 1
x
21. We can use this with Wr-1wr to guarantee

that t0 either perceives 1x
012 (resulting from (I1;1x

e; I2)) or 1x
021 (resulting from (I1; I ′

2)).

(I) by Wr-1wr-single and Cons
{t0 ⋉ 1

x
2}

{t0 ⋉ 1x ∧ [x = 2]}
x := 1
{t0 ⋉ (1x ∧ [x = 2]); (1x ∧ [x = 1])}
{t0 ⋉ 1

x
21}

pre(3) by (I), Wr-1wr and Cons
{a ̸= 1 ∧ t0 ⋉ 1

x
02 ∧ t3 ⋉ 1

x
012 ∨ 1x

021}
{t0 ⋉ 1

x
02}

{t0 ⋉ (1x ∧ [x = 0]);1x
2}

x := 1{
t0 ⋉

(
((1x ∧ [x = 0]);1x

1; 1x
2) ∨

((1x ∧ [x = 0]);1x
21)

)}
{t3 ⋉ 1

x
012 ∨ 1x

021}

Further t3 ⋉ [x = 2] ∧ t4 ⋉ [x = 1] is a contradiction by Theorem 3.13. With this
the postcondition of the parallel program can be derived as seen below.

true ∧ true ∧ ((a = 1 ∧ b = 2)⇒ t3 ⋉ 1
x
2) ∧ ((c = 2 ∧ d = 1)⇒ t4 ⋉ 1

x
1)

=⇒ (a = 1 ∧ b = 2 ∧ c = 2 ∧ d = 1)⇒ (t3 ⋉ [x = 2] ∧ t4 ⋉ [x = 1])

=⇒ (a = 1 ∧ b = 2 ∧ c = 2 ∧ d = 1)⇒ false

=⇒ (a = 1 ∧ b = 2 ∧ c = 2)⇒ d ̸= 1

35

5.4 Message Passing

Init : x := 0 ; y := 0;
{t0 ⋉ (1x

0 ∧ 1
y
0)}

Thread t1
{t0 ⋉ (1x

0 ∧ 1
y
0)}

1 : x := 1;
{t1 ⋉ ([x = 1] ∧ 1y) ∧ t2 ⋉ 1

y
0}

2 : y :=R 1
{true}

Thread t2
{t2 ⋉ 1

y
0; [A(y)]; [x = 1]}

3 : a←A y;
{a = 1⇒ t2 ⋉ [x = 1]}
4 : b← x
{a = 1⇒ b = 1}

{a = 1⇒ b = 1}

Figure 5.4: Proof outline for message passing, with a, b ∈ VarL and x, y ∈ VarG

The reason is that there always exists a last view which is only succeeded by itself in
σ.Views for any global state σ. Both assertions must hold for this view. Thus, if there
are multiple threads ti, ..., tj with ti ⋉ Ii ∧ · · · ∧ tj ⋉ Ij and t′ ⋉ Ii ∧ · · · ∧ Ij =⇒ [false],
then also ti ⋉ Ii ∧ · · · ∧ tj ⋉ Ij is a contradiction.

5.4 Message Passing

In this section, we take a look at Message Passing, a litmus test with a releasing write
and an acquiring read. In addition to the rules for relaxed reads and writes, the rules
below can be used for releasing writes and acquiring reads.

A(x) describes a view δ that cannot occur directly after an acquiring read, because
some write δ(y) has a smaller timestamp than the write mviewδ(x)(y) to the same
variable in the corresponding modification view, to which that acquiring read would
update it. When we can guarantee A(x), it usually holds for exactly one write, which
we know the value of. Therefore, we use the shortcut Ax

e ≡ [A(x)] ∧ 1x
e.

Wr-r-top
{t⋉ It} x :=R

t e {t⋉ I ′
t}

{t⋉ (It ∧ 1x) ∧ t′ ⋉ I} x :=R
t e {t′ ⋉ I;Ax

e ; I ′
t}

Ld-a-shift
{t⋉ I} r ←A

t x {ψ}

{t⋉ [A(x)]; I} r ←A
t x {ψ}

Theorem 5.4. The proof outline for message passing in Figure 5.4 is valid.

The full proof can be seen in Appendix D.4, but here we showcase where the
new proof rules are used. There are a different proof outline for message passing in
C11 [DDDW20], and slightly different ones in Piccolo for other weak memory models
[LDW23, BDW24]. In Piccolo, because there are no different types of load operations
in the used memory models, they do not require the synchronization part A(y), which
tells us that we need an acquiring read to finish the synchronization in C11. Further,
we need stronger preconditions in t1 to guarantee noninterference.

In our proof, the interesting part for the write is that statement 2 does not interfere
with the precondition of statement 3. As seen below, this holds rather straightforward

36

Chapter 5. Examples

with the precondition of statement 2.

statement 2 and pre(3) by Wr-r-top and Cons
{t1 ⋉ ([x = 1] ∧ 1y) ∧ t2 ⋉ 1

y
0 ∧ t2 ⋉ 1

y
0; [A(y)]; [x = 1]}

{t1 ⋉ ([x = 1] ∧ 1y) ∧ t2 ⋉ 1
y
0}

y :=R 1
{t2 ⋉ 1

y
0; [A(y)]; [x = 1]}

The intuition behind Wr-r-top is that the writing thread perceives the newest
write to x. Before statement 2 this would be the write with value 1. The newly
introduced write succeeds even this write and therefore is the newest write to x after
the transition. After statement 2 this would be the releasing write with value 2.

The thread view of t1 after executing statement 2 is also the modification view
of that write. Guarantees for lists from this thread view onward thus also must hold
from the modification view onward. In Wr-r-top, this is captured by I ′

t. Because the
modification view is the view after the write, we need the additional precondition
{t⋉ It} x :=R

t e {t⋉ I ′
t} to make assertions on lists from this view onward. After

statement 2 the modification view of the releasing write maps y to the write with value
1. Because the introduced releasing write is the newest write, the final interval is split
in two parts:

1. In the first part, views in the list do not succeed the modification view. Therefore,
these views must not occur after an acquiring read. The view fulfilling this after
statement 2 is executed is the view δ with val(δ(x)) = 1 and val(δ(y)) = 0.

2. In the second part, the view in the list does succeed the modification view. There-
fore, it fulfills I ′

t. In the litmus test, this is the view δ with val(δ(x)) = 1 and
val(δ(y)) = 1, for which Jy = 1KΓ,δ = true for any C11 state Γ.

This first part is used by Ld-a-shift to guarantee that if a thread perceives an
interval beginning with A it can be omitted after the read because such a view cannot
be the thread view after that thread acquiringly read an releasing write. This can be
seen below in (I), which is used for the sequential reasoning for statement 3. Then we
can use this with Ld-shift to derive that either a = 0 or t2 must perceive x = 1.

(I) by Ld-a-shift and Stable-ld
{t2 ⋉ [A(y)]; [x = 1]}
{t2 ⋉ [x = 1]}
a←A y

{t2 ⋉ [x = 1]}

3 by (I), Ld-shift and Cons
{t2 ⋉ 1

y
0; [A(y)]; [x = 1]}

a←A y

{a = 0 ∨ t2 ⋉ [x = 1]}
{a = 1 =⇒ t2 ⋉ [x = 1]}

37

5.5 Peterson’s Algorithm

5.5 Peterson’s Algorithm

In this section, we take a look at Peterson’s algorithm, a case study for mutual exclusion.
It revolves around the write to turn being atomic, thereby granting the other thread
access to the critical section if its flag is set. This achieves mutual exclusion, because
the second thread executing swap must perceive the flag which was set before the first
swap operation, preventing it from entering the critical section.

In addition to the previously used language constructs, the C11 version of the
algorithm requires the atomic operation x.swap(v)RA. It adds the write after which
the swap operation occurs to the covered set and synchronizes with it like an acquiring
read. No new write can be introduced directly after a write in covered. We use the
interval assertion Cx to denote that all writes to x in a list are in this covered set. With
this we use the following rules for swaps and covered writes:

Swap-a-shift
{t⋉ I} x.swap(v)RA

t {ψ}

{t⋉ [A(x)]; I} x.swap(v)RA
t {ψ}

Wr-cvd
{t⋉ I} x :=t e {ψ}

{t⋉ Cx; I} x :=t e {ψ}

Swap-wr

{t⋉ Cx;1x ∧ t′ ⋉ Cx; 1x} x.swap(v)RA
t {t′ ⋉ Cx; 1x

v}

Swap-r
{t⋉ It} x.swap(v)RA

t {t⋉ I ′
t}

{t⋉ (It ∧ Cx;1x) ∧ t′ ⋉ Cx; 1x} x.swap(v)RA
t {t′ ⋉ Cx;Ax

v ; I ′
t}

In the proof outline in Figure 5.5, all write operations to the shared variable turn

are swap operations. In such a case, we use the notation Cx
e ≡ t0 ⋉ Cx;1x

e to describe
that all threads observe only a single write not in the covered set with some value
matching e. Note that Cx

x is a relaxed version of this, describing that there is only one
write not in σ.covered, since the expression x = x is trivially true.

This example is special, since we want to prove that no two threads can be in
the critical section at the same time, instead of a postcondition. We show this by
contradiction, assuming they would be. Such a state must fulfill pre(6) for both threads:
a1 ∧ (¬a2 ∨ t2 ⋉ 1

turn
1) and a2 ∧ (¬a1 ∨ t1 ⋉ 1

turn
2). We derive t2 ⋉ 1

turn
1 ∧ t1 ⋉ 1

turn
2 ,

which is a contradiction by Theorem 3.13. Thus, our assumption must be false.

Theorem 5.5. The proof outline for Peterson’s algorithm in Figure 5.5 is valid.

The full proof can be seen in Appendix D.5, here we showcase our new proof rules.
The program is identical to [DDDW20] and our proof outline is similar to theirs. The
proof outlines look somewhat different, because we only allow negations within extended
expressions, but for most of their primitive assertions we construct an assertion with
similar meaning. There is also a proof outline for Peterson’s algorithm with Piccolo

38

Chapter 5. Examples

Init : flag1 := false ; flag2 := false ; turn := 0 ; a1 := false ; a2 := false;
Thread t1
{¬a1 ∧ t1 ⋉ 1flag1 ∧ C

turn
turn ∧ (¬a2 ∨ (Cturn

1 ∧ t1 ⋉ Cturn;A(turn); [flag2]))}
1: flag1 := true;
{¬a1 ∧ t1 ⋉ [flag1] ∧ Cturn

turn ∧ (¬a2 ∨ (Cturn
1 ∧ t1 ⋉ Cturn;A(turn); [flag2]))}

2: ⟨turn.swap(2)RA ; a1 := true⟩
{a1 ∧ (¬a2 ∨ t2 ⋉ 1

turn
1 ∨ t1 ⋉ [flag2 ∧ turn ̸= 1])}

do
3: fl1 ←A flag2;

{a1 ∧ (¬a2 ∨ t2 ⋉ 1
turn
1 ∨ (t1 ⋉ [flag2 ∧ turn ̸= 1] ∧ fl1))}

4: tu1 ← turn
{a1 ∧ (¬a2 ∨ t2 ⋉ 1

turn
1 ∨ (t1 ⋉ [flag2 ∧ turn ̸= 1] ∧ fl1 ∧ tu1 ̸= 1))}

5: until (¬fl1 ∨ tu1 = 1) do
{a1 ∧ (¬a2 ∨ t2 ⋉ 1

turn
1)}

6: Critical section;
{true}

7: ⟨flag1 :=R false ; a1 := false⟩
{true}

Figure 5.5: Peterson’s algorithm (as in [DDDW20]) and its Proof outline,
t2 is symmetric, with fli, tui, ai ∈ VarL and flagi, turn ∈ VarG for i ∈ {1, 2}

in SRA [LDW23], where the assertions are a little bit shorter, because in SRA, there
is no for all but one writes to be in the covered set to achieve noninterference when
executing the swap operation.

After executing the swap statement in thread t1, we can derive ¬a2 ∨ t1 ⋉ [flag2 ∧
turn ̸= 1] from ¬a2 ∨ (t1 ⋉ Cturn;A(turn); [flag2] ∧ Cturn

1). t1 ⋉ [turn ̸= 1] holds
because t1 afterwards only sees its own write and t1 ⋉ [flag2] is shown below:

statement 2 of t2
{t1 ⋉ Cturn;A(turn); [flag2]}
{t1 ⋉A(turn); [flag2]}Wr-cvd
{t1 ⋉ [flag2]}Swap-a-shift
turn.swap(2)RA

{t1 ⋉ [flag2]}Stable-wr

Further, the operation turn.swap(2)RA of the other thread might interfere with
some operations. On the left, we show that afterwards any thread ti still perceives only
one write not in covered after the statement is executed. On the right, we show that
the assertion t1 ⋉ Cturn;A(turn); [flag2] can be derived afterwards.

ti ⋉ Cturn; 1turn
1 by Swap-wr

{t2 ⋉ Cturn;1turn ∧ ti ⋉ Cturn; 1turn}
turn.swap(1)RA

{ti ⋉ Cturn;1turn
1 }

t1 ⋉ Ct;A(turn); [flag2] by Swap-r
{Cturn

1 ∧ t2 ⋉ [flag2]}
turn.swap(1)RA

{t1 ⋉ Ct;A(turn); [flag2]}

39

5.5 Peterson’s Algorithm

40

Discussion and Related Work
6

In this chapter, we put our results in the context of related and possible future works.
Section 6.1 compares our proof calculus with Piccolo for different memory models.
Section 6.2 describes alternative definitions, which future work might benefit from.
Section 6.3 discusses more related work and Section 6.4 summarizes our results.

6.1 Unifying Weak Memory Verification with Piccolo

Piccolo was originally a program logic for SRA [LDW23]. Its success led to its extension
to TSO and SC [BDW24] and in this thesis we adapted it to C11 RAR. In this section
we will compare our adaptation with Piccolo for other weak memory models. We do
this by matching assertions with similar meanings or intentions. Using these matched
assertions, the proof rules are (syntactically) similar.

Writing thread x.tid This is an extended expression which evaluated to the thread
id of the thread having written that write. The C11 semantics do not store this infor-
mation, but could be easily extended to do so. We argue that in their proof rules where
the writing thread is guaranteed, doing the same in C11 would be straightforward.
While none of our proof rules take advantage of this, it might be useful to differentiate
writes with the same value by different threads, which could help with noninterference
proofs.

View-maximality t ↑ x denotes that t is view-maximal with regards to x. We argue
that this is similar to t⋉1x in our logic, describing that t must observe only the newest
write to x.

Proof Rule Soundness If we syntactically replace t ↑ x with t⋉1x and ignore x.tid,
we observe that for every rule other than MCA and St-Other2 we find an equivalent

41

6.2 Alternative Definitions

or stronger rule for C11 in this thesis. Most rules are similar, but their rule St-Own
is a weaker version of our rule Wr-own-1wr, identical to it for I ≡ [false]. MCA is
obviously unsound because C11 is not multicopy-atomic and St-Other2 must not hold
because it allows deriving t2⋉ [y ̸= 1]; [x = 1] as pre(3) in message passing (Figure 5.4),
which does not hold for C11.

One Write 1x is one of our novel interval assertions, which we need for example
for the RRC litmus test in Section 5.3, because we need to reason that there is only
one write with a certain value in an interval. We presume this assertion could also be
helpful with other weak memory models like TSO, where a newly introduced write also
may be added to the shared memory before previously introduced writes.

Release-Acquire A(x) allows us to assert that synchronization depends on an ac-
quiring read. The other memory models Piccolo currently supports have only a single
write type, and therefore, do not require such a differentiation.

Compare and Swap For the swap operation we introduced Cx, which we use similar
to R(x) in [LDW23] to describe all but the latest write to a variable. Because of this,
we presume it may be possible to unify Cx and R(x).

Altogether, we have adapted Piccolo to C11, and our assertions are generally com-
patible or more fine-grained (in the case of 1x). With this, our work adds an additional
memory model which can be reasoned about with Piccolo.

6.2 Alternative Definitions

In this section, we describe how some of our definitions might be changed to allow
stronger conclusions or a more efficient validity computation.

Stronger definition for t0 The definition below is stronger than the previous short-
cut and might allow deriving that different threads must perceive writes in the same
order, when t0 is used in a proof rule like any other thread.

Γ ⊨ t0 ⋉ I iff Γ, L ⊨ I for every L ∈ σ.Lists(tviewInit)

Efficient Validity Computation To show that an assertion t ⋉ I1; I2 holds in a
state, we need to show that for each list L ∈ σ.Lists(t) there exists a split of L such
that the interval assertions I1 and I2 hold on the parts. Lemma 4.4 states that each
view has a specific assertion which always holds for that view. Thus, the definition
below could lead to an equivalent validity definition, where we only need to find a split
for a single set. This might allow faster automatic validity computation at the cost of

42

Chapter 6. Discussion and Related Work

a more complex definition.

Γ, V ⊨ I1; I2 iff Γ, V1 ⊨ I1 and Γ, V2 ⊨ I2 for some V1 ⊎ V2 = V

with ¬∃δ1 ∈ V1, δ2 ∈ V2 : δ1 ⪰ δ2

Γ ⊨ t⋉ I iff Γ, σ.Views ⊨ I

6.3 Related Work

In this section, we give an overview of related works both in the context of C11 and
memory-model-generic reasoning.

C11 Previous logics reasoning about C11 mostly used separation logic (RSL [VN13],
GPS [TVD14, HVQF16], FSL [DV16], FSL++ [DV17], λRN and iGPS [KDD+17],
GPS+ [HVQF18, HQF18], and GPS++ [HQX20]) which require many additional rules
for handling ownership of state. These logics handle increasing subsets of C11, be-
ginning with release and acquire accesses and later also fences and release-sequences.
Owicki-Gries reasoning for the RA (release-acquire) fragment of C11 was first intro-
duced in [LV15], albeit with a strengthened noninterference check.

Out of thin air reads are a known problem of the C11 memory model. To im-
prove reasoning and this problem, stronger memory models were introduced, e. g. SRA
[LGV16], RA+NA [KDD+17], a promising semantics [KHL+17, SPD+18], and RC11
[LVK+17], with the former three being operational and RC11 axiomatic. [DDWD19]
developed an operational semantics equivalent to the RAR-fragment of RC11 [LVK+17],
which includes releasing, acquiring and relaxed operations. [DDDW20] introduces
Owicki-Gries reasoning for an adapted version of this semantics. A solution to al-
low this behavior is by using an event-structure, allowing reordering certain statements
[WBD21]. [WDBD23] builds an equivalent operational semantics based on [DDDW20].
While this mostly follows the Owicki-Gries reasoning style, it allows a partial program
order, which results in many additional proof obligations in their program logic.

Another attempt to verify the correctness is model checking [AAAK19, AAJN18].
[AAAK19] also shows that the reachability under RA semantics is undecidable.

Additionally, many of these are (partially) mechanized in theorem provers like Coq
[Tea24] and Isabelle [Pau94]. In contrast, our proofs are purely formal, and we only
use a semantics mechanized in Isabelle [DDDW20].

Memory-Model-Generic Reasoning We described in Section 6.1, that Piccolo can
be used to reason on multiple weak memory models, and we extended this to C11 RAR.
As such, this is a contribution to a broader effort to reason about multiple weak memory
models at the same time. A similar approach this is reasoning about a generic weak
memory model.

43

6.4 Conclusion

[DDDW22] describes a way to verify the validity of a proof outline for multiple
weak memory models at the same time by using weakest liberal preconditions. [BW23]
lifts these to the higher level of program constructs, allowing shorter proofs. [LDW23]
introduces a program semantic, which is parametric with regards to the memory model,
and the reasoning language Piccolo. It has been extended to reason about deadlocks
[DLW24] and multiple weak memory models at the same time [BDW24].

Other verification techniques independent of the memory model include storing
written values in pythia variables [AC17], a technique to systematically explore pos-
sible executions [KRV19], bounded model checking with the memory model as input
[dLFHM18, GdLF+19], verifying reordered programs depending on the memory model
[Col21] and checking reordering interference freedom for statements with assertions in
the same thread [CWS21, CWS23].

6.4 Conclusion

In this thesis, we adapted the Piccolo proof calculus to C11 RAR. For this we defined
assertions on C11 states, introduced proof rules and proved their soundness. We then
used our proof calculus to reason on litmus tests and Peterson’s algorithm. This brings
a simple and composable assertion language to C11 RAR and extends Piccolo to an
additional memory model.

As future work we see the extension of Piccolo to more memory models and unifi-
cation of our assertions with established ones. In the context of C11, possible avenues
include a mechanization of our proof rules and proofs, additional proof rules for release
sequences, and handling larger subsets than RAR.

44

Bibliography

[AAAK19] Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and
Shankara Narayanan Krishna. Verification of programs under the release-
acquire semantics. In Kathryn S. McKinley and Kathleen Fisher, editors,
Proceedings of the 40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June
22-26, 2019, pages 1117–1132. ACM, 2019.

[AAJN18] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and
Tuan Phong Ngo. Optimal stateless model checking under the release-
acquire semantics. Proc. ACM Program. Lang., 2(OOPSLA):135:1–135:29,
2018.

[AC17] Jade Alglave and Patrick Cousot. Ogre and Pythia: an invariance proof
method for weak consistency models. In Giuseppe Castagna and An-
drew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 3–18. ACM, 2017.

[AdBO09] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verifica-
tion of Sequential and Concurrent Programs. Texts in Computer Science.
Springer, 2009.

[BDW24] Lara Bargmann, Brijesh Dongol, and Heike Wehrheim. Unifying weak
memory verification using potentials. In André Platzer, Kristin Yvonne
Rozier, Matteo Pradella, and Matteo Rossi, editors, Formal Methods - 26th
International Symposium, FM 2024, Milan, Italy, September 9-13, 2024,
Proceedings, Part I, volume 14933 of Lecture Notes in Computer Science,
pages 519–537. Springer, 2024.

[BW23] Lara Bargmann and Heike Wehrheim. Lifting the reasoning level in generic
weak memory verification. In Paula Herber and Anton Wijs, editors, iFM
2023 - 18th International Conference, iFM 2023, Leiden, The Netherlands,

45

6.4 Conclusion

November 13-15, 2023, Proceedings, volume 14300 of Lecture Notes in
Computer Science, pages 175–192. Springer, 2023.

[CHR91] Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus of
durations. Inf. Process. Lett., 40(5):269–276, 1991.

[Col21] Robert J. Colvin. Parallelized sequential composition and hardware weak
memory models. In Radu Calinescu and Corina S. Pasareanu, editors,
Software Engineering and Formal Methods - 19th International Confer-
ence, SEFM 2021, Virtual Event, December 6-10, 2021, Proceedings, vol-
ume 13085 of Lecture Notes in Computer Science, pages 201–221. Springer,
2021.

[CWS21] Nicholas Coughlin, Kirsten Winter, and Graeme Smith. Rely/guarantee
reasoning for multicopy atomic weak memory models. In Marieke Huis-
man, Corina S. Pasareanu, and Naijun Zhan, editors, Formal Methods -
24th International Symposium, FM 2021, Virtual Event, November 20-26,
2021, Proceedings, volume 13047 of Lecture Notes in Computer Science,
pages 292–310. Springer, 2021.

[CWS23] Nicholas Coughlin, Kirsten Winter, and Graeme Smith. Compositional
reasoning for non-multicopy atomic architectures. Formal Aspects Com-
put., 35(2):8:1–8:30, 2023.

[DDDW20] Sadegh Dalvandi, Simon Doherty, Brijesh Dongol, and Heike Wehrheim.
Owicki-gries reasoning for C11 RAR. In Robert Hirschfeld and Tobias
Pape, editors, 34th European Conference on Object-Oriented Program-
ming, ECOOP 2020, November 15-17, 2020, Berlin, Germany (Virtual
Conference), volume 166 of LIPIcs, pages 11:1–11:26. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[DDDW22] Simon Doherty, Sadegh Dalvandi, Brijesh Dongol, and Heike Wehrheim.
Unifying operational weak memory verification: An axiomatic approach.
ACM Trans. Comput. Log., 23(4):27:1–27:39, 2022.

[DDWD19] Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick. Ver-
ifying C11 programs operationally. In Jeffrey K. Hollingsworth and Idit
Keidar, editors, Proceedings of the 24th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2019, Washing-
ton, DC, USA, February 16-20, 2019, pages 355–365. ACM, 2019.

[dLFHM18] Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland
Meyer. BMC with memory models as modules. In Nikolaj S. Bjørner

46

Chapter 6. Discussion and Related Work

and Arie Gurfinkel, editors, 2018 Formal Methods in Computer Aided De-
sign, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018,
pages 1–9. IEEE, 2018.

[DLW24] Brijesh Dongol, Ori Lahav, and Heike Wehrheim. A Rely-Guarantee
Framework for Proving Deadlock Freedom Under Causal Consistency,
pages 88–108. Springer Nature Switzerland, Cham, 2024.

[DV16] Marko Doko and Viktor Vafeiadis. A program logic for C11 memory fences.
In Barbara Jobstmann and K. Rustan M. Leino, editors, Verification,
Model Checking, and Abstract Interpretation - 17th International Con-
ference, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016.
Proceedings, volume 9583 of Lecture Notes in Computer Science, pages
413–430. Springer, 2016.

[DV17] Marko Doko and Viktor Vafeiadis. Tackling real-life relaxed concurrency
with FSL++. In Hongseok Yang, editor, Programming Languages and
Systems - 26th European Symposium on Programming, ESOP 2017, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, vol-
ume 10201 of Lecture Notes in Computer Science, pages 448–475. Springer,
2017.

[GdLF+19] Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach, Keijo Hel-
janko, and Roland Meyer. BMC for weak memory models: Relation anal-
ysis for compact SMT encodings. In Isil Dillig and Serdar Tasiran, editors,
Computer Aided Verification - 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume
11561 of Lecture Notes in Computer Science, pages 355–365. Springer,
2019.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[HQF18] Mengda He, Shengchao Qin, and João F. Ferreira. Towards a program
logic for C11 release-sequences. In Jun Pang, Chenyi Zhang, Jifeng He, and
Jian Weng, editors, 2018 International Symposium on Theoretical Aspects
of Software Engineering, TASE 2018, Guangzhou, China, August 29-31,
2018, pages 28–35. IEEE Computer Society, 2018.

[HQX20] Mengda He, Shengchao Qin, and Zhiwu Xu. A program logic for reason-
ing about C11 programs with release-sequences. IEEE Access, 8:173874–
173903, 2020.

47

6.4 Conclusion

[HVQF16] Mengda He, Viktor Vafeiadis, Shengchao Qin, and João F. Ferreira. Rea-
soning about fences and relaxed atomics. In 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, PDP
2016, Heraklion, Crete, Greece, February 17-19, 2016, pages 520–527.
IEEE Computer Society, 2016.

[HVQF18] Mengda He, Viktor Vafeiadis, Shengchao Qin, and João F. Ferreira. GPS+:
reasoning about fences and relaxed atomics. Int. J. Parallel Program.,
46(6):1157–1183, 2018.

[ISO11] ISO/IEC 9899:2011. Programming languages — C. International stan-
dard, 2011.

[KDD+17] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Vik-
tor Vafeiadis. Strong logic for weak memory: Reasoning about release-
acquire consistency in Iris. In Peter Müller, editor, 31st European Confer-
ence on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017,
Barcelona, Spain, volume 74 of LIPIcs, pages 17:1–17:29. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017.

[KHL+17] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek
Dreyer. A promising semantics for relaxed-memory concurrency. In
Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, Paris, France, January 18-20, 2017, pages 175–189.
ACM, 2017.

[KRV19] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. Model
checking for weakly consistent libraries. In Kathryn S. McKinley and
Kathleen Fisher, editors, Proceedings of the 40th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019, pages 96–110. ACM, 2019.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Computers, 28(9):690–691,
1979.

[LDW23] Ori Lahav, Brijesh Dongol, and Heike Wehrheim. Rely-guarantee reason-
ing for causally consistent shared memory. In Constantin Enea and Akash
Lal, editors, Computer Aided Verification - 35th International Conference,
CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part I, volume
13964 of Lecture Notes in Computer Science, pages 206–229. Springer,
2023.

48

Chapter 6. Discussion and Related Work

[LGV16] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming release-acquire
consistency. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, pages 649–662. ACM, 2016.

[LV15] Ori Lahav and Viktor Vafeiadis. Owicki-gries reasoning for weak memory
models. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, Automata, Languages, and Programming -
42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer
Science, pages 311–323. Springer, 2015.

[LVK+17] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. Repairing sequential consistency in C/C++11. In Albert Cohen
and Martin T. Vechev, editors, Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017, pages 618–632. ACM, 2017.

[Mos12] Ben C. Moszkowski. A complete axiom system for propositional interval
temporal logic with infinite time. Log. Methods Comput. Sci., 8(3), 2012.

[OG76] Susan S. Owicki and David Gries. An axiomatic proof technique for parallel
programs I. Acta Informatica, 6:319–340, 1976.

[OSS09] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-tso. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and
Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, 22nd
International Conference, TPHOLs 2009, Munich, Germany, August 17-
20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science,
pages 391–407. Springer, 2009.

[Pau94] Lawrence C. Paulson. Isabelle - A Generic Theorem Prover (with a contri-
bution by T. Nipkow), volume 828 of Lecture Notes in Computer Science.
Springer, 1994.

[SPD+18] Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and
Viktor Vafeiadis. A separation logic for a promising semantics. In Amal
Ahmed, editor, Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10801 of Lec-
ture Notes in Computer Science, pages 357–384. Springer, 2018.

49

6.4 Conclusion

[SSO+10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and
Magnus O. Myreen. x86-tso: a rigorous and usable programmer’s model
for x86 multiprocessors. Commun. ACM, 53(7):89–97, 2010.

[Tea24] The Coq Development Team. The Coq Reference Manual, 2024. Release
8.20.0. URL: https://coq.inria.fr/.

[TVD14] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: navigating weak
memory with ghosts, protocols, and separation. In Andrew P. Black and
Todd D. Millstein, editors, Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Ap-
plications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA,
October 20-24, 2014, pages 691–707. ACM, 2014.

[VN13] Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: a pro-
gram logic for C11 concurrency. In Antony L. Hosking, Patrick Th. Eu-
gster, and Cristina V. Lopes, editors, Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indi-
anapolis, IN, USA, October 26-31, 2013, pages 867–884. ACM, 2013.

[WBD21] Daniel Wright, Mark Batty, and Brijesh Dongol. Owicki-gries reasoning
for C11 programs with relaxed dependencies. In Marieke Huisman, Co-
rina S. Pasareanu, and Naijun Zhan, editors, Formal Methods - 24th In-
ternational Symposium, FM 2021, Virtual Event, November 20-26, 2021,
Proceedings, volume 13047 of Lecture Notes in Computer Science, pages
237–254. Springer, 2021.

[WDBD23] Daniel Wright, Sadegh Dalvandi, Mark Batty, and Brijesh Dongol. Mech-
anised operational reasoning for C11 programs with relaxed dependencies.
Formal Aspects Comput., 35(2):10:1–10:27, 2023.

50

https://coq.inria.fr/

Axioms and Proof Rules
A

The following axioms and proof rules were used in this thesis.

Compositional rules allow composing statements.

Seq
{p} C1 {r} {r} C2 {q}

{p} C1 ; C2 {q}

If
{p ∧ b} C1 {q} {p ∧ ¬b} C2 {q}

{p} if b thenC1 elseC2 fi {q}

While
{p ∧ b} C {p}

{p} while bdoC od {p ∧ ¬b}

Until
{p} C {r} {r} while¬bdoC od {r ∧ b}

{p} doC until bod {r ∧ b}

Parallel
Proof outlines {pi} Ci {qi} are interference free

{
∧n

i=1
pi} C1∥ . . . ∥Cn {

∧n

i=1
qi}

Aux
{p} C {q} vars(q) ∩ V = ∅

{p} C0 {q}

Logical Rules describe how logical conclusions can be applied.

Cons
p⇒ p′ {p′} C {q′} q′ ⇒ q

{p} C {q}

Conj
{p1} C {q1} {p2} C {q2}

{p1 ∧ p2} C {q1 ∧ q2}

Disj1
{p1} C {q} {p2} C {q}

{p1 ∨ p2} C {q}

Disj2
{p1} C {q1} {p2} C {q2}

{p1 ∨ p2} C {q1 ∨ q2}

Basic Rules preserve assertions unrelated to the statements.

Subst-asgn

{φ(r := e)} r :=t e {φ}

Stable-wr
x /∈ fv(φ)

{φ} x :=t e {φ}

Stable-ld
r /∈ fv(φ)

{φ} r ←t x {φ}

51

Load rules are applied to loads.

Ld-shift
{t⋉ I} r ←t x {ψ}

{t⋉ [e(r := x)]; I} r ←t x {e ∨ ψ}

Ld-single

{t⋉ [e(r := x)]} r ←t x {e}

Write rules are applied to writes.

Wr-own-1wr

{t⋉ 1x; I} x :=t e {t⋉ 1
x
e ; I}

Wr-top

{t⋉ 1x ∧ t′ ⋉ I} x :=t e {t′ ⋉ I;1x
e}

Wr-1wr-single

{t′ ⋉ 1x ∧ I} x :=t e {t′ ⋉ I;1x
e}

Wr-1wr
{t′ ⋉ I2} x :=t e {t′ ⋉ I ′

2}

{t′ ⋉ (I1 ∧ 1x); I2} x :=t e {t′ ⋉
(
(I1; 1x

e ; I2) ∨ (I1; I ′
2)
)
}

Release-acquire rules handle releasing writes and acquiring reads. Rules for relaxed
writes and reads may also be used for them.

Ld-a-shift
{t⋉ I} r ←A

t x {ψ}

{t⋉ [A(x)]; I} r ←A
t x {ψ}

Wr-r-top
{t⋉ It} x :=R

t e {t⋉ I ′
t}

{t⋉ (It ∧ 1x) ∧ t′ ⋉ I} x :=R
t e {t′ ⋉ I;Ax

e ; I ′
t}

Swap rules concern themselves with the swap operation and covered writes. Rules
for relaxed and releasing writes may also be used for swap operations.

Swap-a-shift
{t⋉ I} x.swap(v)RA

t {ψ}

{t⋉ [A(x)]; I} x.swap(v)RA
t {ψ}

Wr-cvd
{t⋉ I} x :=t e {ψ}

{t⋉ Cx; I} x :=t e {ψ}

Swap-wr

{t⋉ Cx;1x ∧ t′ ⋉ Cx; 1x} x.swap(v)RA
t {t′ ⋉ Cx; 1x

v}

Swap-r
{t⋉ It} x.swap(v)RA

t {t⋉ I ′
t}

{t⋉ (It ∧ Cx;1x) ∧ t′ ⋉ Cx; 1x} x.swap(v)RA
t {t′ ⋉ Cx;Ax

v ; I ′
t}

52

Proofs
B

In this chapter, we include proofs for statements and lemmas from the thesis other than
soundness proofs for proof rules and validity proofs for proof outlines, which are given
in Appendix C and Appendix D respectively.

B.1 Well Formedness of Global States

We show the definition of well-formedness again for reference:

wfs(σ)⇔ran((
⋃
t

σ.tviewt) ∪ (
⋃
w

σ.mvieww)) ⊆ σ.writes∧

finite(σ.writes) ∧ σ.covered ⊆ σ.writes∧

(∀w : w ∈ σ.writes⇒ σ.mvieww(var(w)) = w)

With respect to this definition, Lemma 2.2 states that every reachable global state σ
is well-formed, i. e. wfs(σ) holds.

Proof. By structural induction.

Initial State:

ran((
⋃
t

σ.tviewt) ∪ (
⋃
w

σ.mvieww)) ⊆ σ.writesInit

holds because

∀t ∈ Tid, w ∈ writes, xi ∈ V arG :

σ.tviewt(xi) = σ.mvieww(xi) = viewInit(xi) = ((xi, ki), 0) ∈ σ.writesInit

finite(σ.writesInit) is trivial. σ.coveredInit ⊆ σ.writesInit holds because σInit.covered =

53

B.1 Well Formedness of Global States

∅. ∀w : w ∈ σ.writesInit ⇒ σ.mvieww(var(w)) = w holds by the definition of viewInit.
With all of this, wfs(σInit) holds.

Induction on Read:

ran((
⋃
t

σ.tviewt) ∪ (
⋃
w

σ.mvieww)) ⊆ σ.writes

holds because ∀x : tview′
t(x) = σ.tviewt(x) ∨ tview′

t(x) = σ.mview(w,q)(x) and both of
their ranges are in σ.writes by induction. finite(σ.writes) and σ.covered ⊆ σ.writes

holds by induction because none of the sets are changed. ∀w : w ∈ σ.writes ⇒
σ.mvieww(var(w)) = w also holds by induction. With this, wfs(σ[tviewt := tview′

t])
holds.

Induction on Write:

ran((
⋃
t

σ.tviewt) ∪ (
⋃
w

σ.mvieww)) ⊆ σ.writes

holds because ∀x : tview′
t(x) ∈ {σ.tviewt(x), (a, q′)}. σ.tviewt(x) ∈ writes by induction

and (a, q′) ∈ writes′ = σ.writes∪ {(a, q′)} is trivial. finite(σ.writes) and σ.covered ⊆
σ.writes holds by induction because only one write was added to σ.writes and σ.covered
is unchanged (and writes′ ⊇ σ.writes). ∀w : w ∈ σ.writes ⇒ σ.mvieww(var(w)) = w

also holds by induction for every σ.mvieww. tview′
t(var((a, q′))) = (a, q′), which is

the only new mview, holds because var(a) = x. With this, wfs(σ[tviewt := tview′
t,

mview(a,q′) := tview′
t, writes := writes′]) holds.

Induction on Update:

ran((
⋃
t

σ.tviewt) ∪ (
⋃
w

σ.mvieww)) ⊆ σ.writes

holds because ∀x : tview′
t(x) ∈ {σ.tviewt(x), σ.mview(a,q′)(x), (a, q′)}. σ.tviewt(x),

σ.mview(a,q′)(x) ∈ writes by induction and (a, q′) ∈ writes′ = σ.writes ∪ {(a, q′)} is
trivial. finite(σ.writes) and σ.covered ⊆ σ.writes holds by induction because only one
write was added to σ.writes and the write added to σ.covered by induction is in writes
(because it is in ran(σ.mview(w,q)) as σ.mview(w,q)((w, q)) = (w, q) by induction). ∀w :
w ∈ σ.writes ⇒ σ.mvieww(var(w)) = w also holds by induction for every σ.mvieww.
tview′

t(var((a, q′))) = (a, q′), which is the only new mview, holds because var(a) = x.
With this, wfs(σ[tviewt := tview′

t,mview(a,q′) := tview′
t, writes := writes′, covered :=

covered′]) holds.

54

Chapter B. Proofs

B.2 Sublist Validity

In this section, we prove Lemma 3.7 which states the following: For a C11 state Γ and
a list L of views, when Γ, L ⊨ I, then Γ, L|ji ⊨ I for every 0 ≤ i− 1 ≤ j ≤ n (This may
be the empty list for i = j + 1).

Proof. By Induction over the formula we show that Γ, L ⊨ I implies Γ, Lj
i ⊨ I for every

i, j with 0 ≤ i− 1 ≤ j ≤ |L|:

1. Induction base for [B]: Assume Γ, L ⊨ [B]. By definition JBKΓ,δ = true for every
δ ∈ L. Then JBKΓ,δ = true also holds for every δ ∈ L|ji . By definition Γ, L|ji ⊨ [B]
holds.

2. Induction base for 1x: Assume Γ, L ⊨ 1y for some x ∈ V arG. By definition
δ(x) = δ′(x) for every δ, δ′ ∈ L. Then δ(x) = δ′(x) also holds for every δ, δ′ ∈ L|ji .
By definition Γ, L|ji ⊨ 1x holds.

3. Induction for I1; I2: Assume Γ, L ⊨ I1; I2. By definition, there exists some 0 ≤
k ≤ |L| such that Γ, L|k1 ⊨ I1 and Γ, L||L|

k+1 ⊨ I2. We can derive Γ, L|min(k,j)
i ⊨ I1

and Γ, L|jmax(k+1,i) ⊨ I2 by induction, because L|min(k,j)
i is a sublist of L|k1 and

L|jmax(k+1,i) of L||L|
k+1 respectively. By definition Γ, L|ji ⊨ I1; I2 holds.

4. Induction for I1 ∧ I2: Assume Γ, L ⊨ I1 ∧ I2. Then Γ, L ⊨ I1 and Γ, L ⊨ I2 by
definition. We can derive Γ, L|ji ⊨ I1 and Γ, L|ji ⊨ I2 by induction. By definition
Γ, L|ji ⊨ I1 ∧ I2 holds.

5. Induction for I1 ∨ I2: Assume Γ, L ⊨ I1 ∨ I2. Then Γ, L ⊨ I1 or Γ, L ⊨ I2 by
definition. We can derive Γ, L|ji ⊨ I1 or Γ, L|ji ⊨ I2 by induction. By definition
Γ, L|ji ⊨ I1 ∨ I2 holds.

We derive Γ, L ⊨ I implies Γ, L|ji ⊨ I.

B.3 Simplified List definition

For the proof of Lemma 3.9 it is helpful to know that ⪯ is transitive, so we prove this
first.

Lemma B.1. ⪯ is transitive.

Proof. ⪯ is transitive on writes. Let w1, w2, w3 ∈ W × Q with w1 ⪯ w2 and w2 ⪯ w3.
Then tst(w1) ≤ tst(w2) and tst(w2) ≤ tst(w3). We can derive tst(w1) ≤ tst(w3).
⪯ is transitive on Views. Let δ1, δ2, δ3 ∈ (V arG → (W×Q)) with δ1 ⪯ δ2 and δ2 ⪯ δ3.

Then ∀x ∈ V arG : δ1(x) ⪯ δ2(x) and ∀x ∈ V arG : δ2(x) ⪯ δ3(x). We can derive
∀x ∈ V arG : (δ1(x) ⪯ δ2(x) ∧ δ2(x) ⪯ δ3(x)) and thus ∀x ∈ V arG : δ1(x) ⪯ δ3(x).

55

B.4 Exchanged States on Write

With this, we begin the proof of Lemma 3.9, which states the following: For any
C11 state σ and ⟨δ1, . . . , δn⟩ ∈ σ.Views∗ holds

∀1 ≤ i ≤ j ≤ n : δ ⪯ δi ⪯ δj ⇐⇒ (n = 0 ∨ δ ⪯ δ1) ∧ ∀1 ≤ i < n : δi ⪯ δi+1

Proof. Case n = 0 holds because both sides are true since there are no valid i, j.
Case =⇒ and n ≥ 1 holds by using j = i+ 1 for δi ⪯ δi+1 and i = j = 1 for δ ⪯ δ1.
Case ⇐= and n ≥ 1 holds because ⪯ is transitive by Lemma B.1. ∀1 ≤ i ≤ j ≤ n :

δi ⪯ δj holds by induction: From ∀1 ≤ i < n : δi ⪯ δi+1 and ∀1 ≤ i < n : δi ⪯ δi+z

for some z ∈ N, we can derive ∀1 ≤ i < n : δi ⪯ δi+z+1 by transitivity. Then
∀1 ≤ i ≤ n : δ ⪯ δi holds by δ ⪯ δ1 and ∀1 ≤ i ≤ j ≤ n : δi ⪯ δj .

B.4 Exchanged States on Write

In this section, we prove Lemma 4.8, which states the following: For Write and
Update transition steps with the C11 states Γ before and Γ′ after the transition step,
if L ∈ σ.Lists(t′) for some thread t′ and I is an interval formula, then Γ, L ⊨ I implies
Γ′, L ⊨ I.

Proof. Let Γ = (lst, σ) be the state before and Γ′ = (lst′, σ′) be the state after the
transition step. lst = lst′ holds for write transitions. We first need to show JEKΓ,δ =
JEKΓ′,δ for any global state δ and extended expression E because it is used in interval
assertions. We do so by induction over the formula:

1. JaKΓ,δ = lst(a) = lst′(a) = JaKΓ′,δ

2. JxKΓ,δ = δ(x) = JxKΓ′,δ

3.
q
A(x)

y
Γ,δ

=

true if δ(x) ∈ WR ×Q ∧ ¬(σ.mviewδ(x) ⪯ δ)

false otherwise

=

true if δ(x) ∈ WR ×Q ∧ ¬(σ′.mviewδ(x) ⪯ δ)

false otherwise
=

q
A(x)

y
Γ′,δ

σ.mviewδ(x) = σ′.mviewδ(x) holds because modification views are only introduced
for new writes and never changed for existing ones.

4. J¬eKΓ,δ = ¬ JeKΓ,δ = ¬ JeKΓ′,δ = J¬eKΓ′,δ

5. Je1 ⊕ e2KΓ,δ = Je1KΓ,δ ⊕ Je2KΓ,δ = Je1KΓ′,δ ⊕ Je2KΓ′,δ = Je1 ⊕ e2KΓ′,δ

for ⊕ ∈ {+,−, ∗,÷, . . . ,=,≤,≥, . . . ,∧,∨, . . . }

With this we can prove Γ, L ⊨ I implies Γ′, L ⊨ I. For this we may assume Γ, L ⊨ I.
Similar to before we prove it by induction over the formula:

56

Chapter B. Proofs

1. Induction base for [Eb]: Assume Γ, L ⊨ [Eb]. By definition JEbKΓ,δ = true for
every δ ∈ L. Then JEbKΓ′,δ = true for every δ ∈ L because JEKΓ,δ = JEKΓ′,δ for
every extended expression E and global state σ. By definition then Γ′, L ⊨ [Eb]
holds.

2. Induction base for 1x: Assume Γ, L ⊨ 1x for some x ∈ V arG. By definition
δ(x) = δ′(x) for every δ, δ′ ∈ L. By definition then Γ′, L ⊨ 1x holds.

3. Induction base for Cx: Assume Γ, L ⊨ Cx for some x ∈ V arG. By definition
δ(x) ∈ σ.covered. Because elements are never removed from covered, we can
derive δ(x) ∈ σ′.covered. By definition then Γ′, L ⊨ Cx holds.

4. Induction for I1; I2: Assume Γ, L ⊨ I1; I2. By definition there exists some L1, L2

with L1 · L2 = L such that Γ, L1 ⊨ I1 and Γ, L2 ⊨ I2. We can derive Γ′, L1 ⊨ I1

and Γ′, L2 ⊨ I2 by induction. By definition then Γ′, L ⊨ I1; I2 holds.

5. Induction for I1 ∧ I2: Assume Γ, L ⊨ I1 ∧ I2. Then Γ, L ⊨ I1 and Γ, L ⊨ I2 by
definition. We can derive Γ′, L ⊨ I1 and Γ′, L ⊨ I2 by induction. By definition
then Γ′, L ⊨ I1 ∧ I2 holds.

6. Induction for I1 ∨ I2: Assume Γ, L ⊨ I1 ∨ I2. Then Γ, L ⊨ I1 or Γ, L ⊨ I2 by
definition. We can derive Γ′, L ⊨ I1 or Γ′, L ⊨ I2 by induction. By definition then
Γ′, L ⊨ I1 ∨ I2 holds.

57

B.4 Exchanged States on Write

58

Soundness of Proof Rules
C

In this section, we include the soundness proofs for the rules we did not prove sound
in Chapter 4.

C.1 Basic Rules

In this section, we prove Theorem 4.3, i. e. the soundness of Subst-asgn, Stable-ld
and Stable-wr. For the soundness proofs of the proof rules, let Γ = (lst, σ) be the
C11 state before and Γ′ = (lst′, σ′) be the C11 state after the transition step. With
this we begin the proof of Theorem 4.3.

Subst-asgn

{φ(r := e)} r :=t e {φ}

Stable-ld
r /∈ fv(φ)

{φ} r ←t x {φ}

Stable-wr
x /∈ fv(φ)

{φ} x :=t e {φ}

Proof. Subst-asgn
By definition of the transition σ′ = σ and lst′ = lst[r := JeKΓ,δ] hold. We can prove
{φ(r := e)} t 7→ r := e {φ} by induction over the structure of φ and φ(r := e), which
are always evaluated the same. The evaluation of e is the same as the evaluation of
r after the assignment by the definition of changes by an assignment transition. This
holds by induction over the formula. The only interesting case is the evaluation of a
(possibly changed) local variable r′:

q
r′(r := e)

y
Γ,δ

=

JeKΓ,δ if r′ = r

lst(r′) otherwise
= lst′(r′) =

q
r′y

Γ′,δ

All other evaluations of formulas (Je(r := e)KΓ,δ = JeKΓ′,δ) and truth of statements
(Γ ⊨ φ(r := e) implies Γ′ ⊨ φ) are straightforward and will be omitted.

59

C.1 Basic Rules

Stable-ld
Proof by induction over the formula. Every L ∈ σ′.Lists(t) is also in σ.Lists(t) since
σ.tviewt ⪯ σ′tviewt by Theorem 3.1, the set of writes remains unchanged and thus the
restrictions are not stronger. The only change in the local state lst is the value of r.
Therefore Γ ⊨ φ implies Γ′ ⊨ φ holds by induction over the formula, similar to the
proof of Subst-asgn.

Stable-wr
By Lemma 4.7 we know for L = L′[w/wprev] that L ∈ σ.Lists(t′). We first show
JEKΓ,δ′[w/wprev] = JEKΓ′,δ′ for an extended expression E with x /∈ fv(E) because it is
used in interval assertions. We do so by induction over the formula:

1. JrKΓ,δ′[w/wprev] = lst(r) = lst′(r) = JrKΓ′,δ′

2. JyKΓ,δ′[w/wprev] = δ′[w/wprev](y) = δ′(y) = JyKΓ′,δ′ since x /∈ fv(φ) and thus y ̸= x

3. J¬eKΓ,δ′[w/wprev] = ¬ JeKΓ,δ′[w/wprev] = ¬ JeKΓ′,δ′ = J¬eKΓ′,δ′

4. Je1 ⊕ e2KΓ,δ′[w/wprev] = Je1KΓ,δ′[w/wprev] ⊕ Je2KΓ,δ′[w/wprev] = Je1KΓ′,δ′ ⊕ Je2KΓ′,δ′ =
Je1 ⊕ e2KΓ′,δ′

for ⊕ ∈ {+,−, ∗,÷, . . . ,=,≤,≥, . . . ,∧,∨, . . . }

Similarly, we can prove Γ, L ⊨ I implies Γ′, L′ ⊨ I for an interval assertion I with
x /∈ fv(I). For this we may assume Γ, L ⊨ I. Similar to before we prove it by induction
over the formula:

1. Induction base for [Eb]: Assume Γ, L′[w/wprev] ⊨ [Eb]. By definition JEbKΓ,δ′[w/wprev] =
true for every δ′[w/wprev] ∈ L′[w/wprev]. Then JEbKΓ′,δ′ = true for every δ ∈ L
because JEKΓ,δ′[w/wprev] = JEKΓ′,δ′ . By definition Γ′, L′ ⊨ [Eb] holds.

2. Induction base for 1y: Assume Γ, L′[w/wprev] ⊨ 1y for some y ∈ V arG. By
definition δ(y) = δ′(y) for every δ, δ′ ∈ L′[w/wprev]. Then δ(y) = δ′(y) for every
δ, δ′ ∈ L′ because the values of y ̸= x are identical. By definition Γ′, L′ ⊨ 1y holds.

3. Induction for I1; I2: Assume Γ, L′[w/wprev] ⊨ I1; I2. By definition there exists
some 0 ≤ k ≤ |L′| such that Γ, L′[w/wprev]|k1 ⊨ I1 and Γ, L′[w/wprev]||L

′|
k ⊨ I2. We

can derive Γ′, L′|k1 ⊨ I1 and Γ′, L′||L
′|

k ⊨ I2 by induction. By definition Γ′, L′ ⊨

I1; I2 holds.

4. Induction for I1 ∧ I2: Assume Γ, L′[w/wprev] ⊨ I1 ∧ I2. Then Γ, L′[w/wprev ⊨ I1

and Γ, L′[w/wprev ⊨ I2 by definition. We can derive Γ′, L′ ⊨ I1 and Γ′, L′ ⊨ I2 by
induction. By definition Γ′, L′ ⊨ I1 ∧ I2 holds.

5. Induction for I1 ∨ I2: Assume Γ, L′[w/wprev] ⊨ I1 ∨ I2. Then Γ, L′[w/wprev ⊨ I1

or Γ, L′[w/wprev ⊨ I2 by definition. We can derive Γ′, L′ ⊨ I1 or Γ′, L′ ⊨ I2 by
induction. By definition Γ′, L′ ⊨ I1 ∨ I2 holds.

60

Chapter C. Soundness of Proof Rules

Similarly we can prove Γ ⊨ φ implies Γ′ ⊨ φ for an assertion φ with x /∈ fv(φ).
For this we may assume Γ ⊨ φ. Similar to before we prove it by induction over the
formula:

1. Induction base for t ⋉ I: Assume Γ ⊨ t ⋉ I. By definition Γ, L ⊨ I for every
L ∈ σ.Lists(t). Then also Γ, L′[w/wprev] ⊨ I for every L′ ∈ σ′.Lists(t), because
L′[w/wprev] ∈ σ.Lists(t) by Lemma 4.7. By definition Γ′ ⊨ t⋉ I holds.

2. Induction base for eb: Assume Γ ⊨ eb. By definition JebKΓ,δ′[w/wprev] = true

for some δ ∈ σ.Views. Then JebKΓ′,δ′ = true for some δ ∈ σ′.Views because
JEKΓ,δ′[w/wprev] = JEKΓ′,δ′ and σ.Views ⊆ σ′.Views since σ.writes ⊆ σ′.writes. By
definition Γ′ ⊨ eb holds.

3. Induction for φ∧ψ: Assume Γ ⊨ φ∧ψ. Then Γ ⊨ φ and Γ ⊨ ψ by definition. We
can derive Γ′ ⊨ φ and Γ′ ⊨ ψ by induction. By definition Γ′ ⊨ φ ∧ ψ holds.

4. Induction for φ ∨ ψ: Assume Γ ⊨ φ ∨ ψ. Then Γ ⊨ φ or Γ ⊨ ψ by definition. We
can derive Γ′ ⊨ φ or Γ′ ⊨ ψ by induction. By definition Γ′ ⊨ φ ∨ ψ holds.

With Γ ⊨ φ implies Γ′ ⊨ φ we can derive {φ} x := e {φ}.

C.2 Write Rules

For an overview of our general proof idea, we recommend reading Section 4.4.1.
All our newly introduced proof rules derive exactly one Hoare triple with a single

statement. For this chapter, we concern ourselves only with some with exactly one
write statement. For the soundness proofs of the proof rules, let Γ = (lst, σ) be the
C11 state before and Γ′ = (lst′, σ′) be the C11 state after the transition.

For the soundness proofs in this section, let w = (a, q) be the write written by
the transition. Let wprev be the write previous to w, which is wprev = maxq{(a, q) ∈
σ.writes | q < tst(w)}. This write always exist because all newly introduced writes
have a timestamp strictly greater than some other timestamp by σ.fresh.

We begin by introducing some lemmas which are useful in multiple soundness proofs,
beginning with that write timestamps are unique.

Lemma C.1. For a global state σ all writes w ∈ σ.writes to a specific shared variable
have a unique timestamp:

∀w,w′ ∈ σ.writes : (tst(w) = tst(w′) ∧ var(w) = var(w′))⇒ w = w′

Proof. Initially there is only one write to each variable, therefore the lemma holds.
Every newly introduced write has a unique timestamp q′ by σ.fresh, because q′ ≥ q and
q′ < tst(w′′) for every w′′ ∈ σ.writes with tst(w′′) > q.

61

C.2 Write Rules

Many rules begin some assertion with 1x. To make better use of this, sometimes
we insert the thread view of the observing thread at the start of a list. The resulting
list is still in the lists of the observing thread by Lemma C.2. By the definition of 1x

we use this to derive that in this interval all writes are tviewt(x).

Lemma C.2. For δ ∈ σ.Views, if L ∈ σ.Lists(δ), then also ⟨δ⟩ · L ∈ σ.Lists(δ).

Proof. δ ∈ σ.Views holds by its definition. Let L′ = ⟨δ⟩ · L to show where we refer to δ
as the first element of the list. δ ⪯ L′(1) = δ holds because δ ⪯ δ. L′(1) = δ ⪯ L′(2)
holds because δ ⪯ L(1). For 1 < i < |L′|, δ ⪯ L′(i) ⪯ L′(i + 1) holds because
δ ⪯ L(i− 1) ⪯ L(i).

With these lemmas we prove Theorem 4.10, the soundness of Wr-own-1wr, Wr-
1wr and Wr-1wr-single.

Wr-own-1wr

{t⋉ 1x; I} x :=t e {t⋉ 1
x
e ; I}

Wr-1wr-single

{t′ ⋉ 1x ∧ I} x :=t e {t′ ⋉ I;1x
e}

Wr-1wr
{t′ ⋉ I2} x :=t e {t′ ⋉ I ′

2}

{t′ ⋉ (I1 ∧ 1x); I2} x :=t e {t′ ⋉
(
(I1; 1x

e ; I2) ∨ (I1; I ′
2)
)
}

1
x
e ≡ 1x ∧ [x = e]

Proof. Wr-own-1wr
Let L′ ∈ σ′.Lists(t).

L′ can be split at index k with 0 ≤ k ≤ |L′|, such that δ(x) = w for every δ ∈ L′|k1
and w /∈ L′||L|

k+1.writes. By definition of σ′.Lists(t) we know that σ′.tviewt ⪯ δ for
every δ ∈ L′. Further any write L′(i)(x) in L′ other than w has to have a unique and
therefore strictly bigger timestamp by Lemma C.1: ∀1 ≤ i ≤ |L′| : tst(L′(i)(x)) =
tst(w) ⇒ L′(i)(x) = w. Therefore, after a write to x other than w, with a strictly
greater timestamp, occured in L′, w cannot occur because L′(i) ⪯ L′(i+ 1) must hold
for every 1 ≤ i < |L|.

By Lemma 4.7 we know L′[w/wprev] ∈ σ.Lists(t). Let L := ⟨σ.tviewt⟩ ·L′[w/wprev].
By Lemma C.2 we know that L ∈ σ.Lists(t). With Γ, L ⊨ 1x; I we know that L can be
split at some index l with 0 ≤ l ≤ |L| such that Γ, L|l1 ⊨ 1x and Γ, L||L|

l+1 ⊨ I.
We previously established that all timestamps of writes to x in L′||L|

k+1 are greater
than tst(w) which in turn is greater than tst(σ.tviewt(x)) by definition of σ.OW and
σ.fresh. Thus 1x cannot hold for L|k+2

1 and we can derive l ≤ k + 1 (The indices
are shifted by one because L begins with σ.tviewt). By Lemma 3.7 we can derive
Γ, L′||L

′|
k+1[w/wprev] ⊨ I from Γ, L||L|

l+2 ⊨ I because L′||L
′|

k+1 = L||L|
k+2. Further L′||L

′|
k+1[w/wprev] =

L′||L
′|

k+1 because w /∈ L′||L|
k+1.writes. With Lemma 4.8 we can derive Γ′, L′||L

′|
k+1 ⊨ I.

Γ, L|k1 ⊨ 1x holds trivially by its definition, because L′|k1(x) = w for every 1 ≤ i ≤
|L|. With σ, L||L|

k+1 ⊨ I and the definition of ; we can derive Γ′, L′|k1 · L′||L|
k+1 ⊨ 1x; I,

which is what we needed to show.

62

Chapter C. Soundness of Proof Rules

Wr-1wr
Let L′ ∈ σ′.Lists(t). Then let i, j be integers with 0 ≤ i − 1 ≤ j ≤ |L′| such that
L(l)(x) = w if and only if i ≤ l ≤ j. This is possible because the timestamps of writes
to each variable are monotonously increasing (by definition of σ.Lists) and unique for
each write (by Lemma C.1).

Let L = ⟨σ.tviewt⟩·L′[w/wprev], with L ∈ σ.Lists(t) by Lemma 4.7 and Lemma C.2.
Let 0 ≤ k ≤ |L| such that Γ, L|k1 ⊨ I1, Γ, L||L|

k+1 ⊨ I2 and either k = |L| or Γ, L′′ ⊨ I2

holds for all L′′ ∈ σ.Lists(L(k + 1)). This is possible because if Γ, L|k+1
1 ⊨ I1 does not

hold, for any such list L′′, Γ, L|k+1
1 ·L′′ ⊨ I1; I2 does not hold, but L|k+1

1 ·L′′ ∈ σ.Lists(t).
In the case that L′.writes does not contain w, L′ = L||L|

2 . From Γ, L ⊨ I1; I2 we
can derive Γ, L′ ⊨ I1; I2 by Lemma 3.7 and Γ′, L′ ⊨ I1; I2 by Lemma 4.8. We can derive
Γ′, L′ ⊨ I1;1x

e ; I2 by using the same sublists for I1 and I2 as before and the empty list
for the interval with 1

x
e . Then Γ′, L′ ⊨ ((I1;1x

e ; I2) ∨ (I1; I ′
2)) holds trivially.

Otherwise, there are two cases:

• Case 1, i ≤ k: We know that Γ, L|i1 ⊨ I1 by Lemma 3.7. We can derive L|i2 =
L′|i−1

1 because L′|i−1
1 .writes does not contain w. By Lemma 3.7, we can derive

Γ, L′|i−1
1 ⊨ I1 and by Lemma 4.8 we can derive Γ′, L′|i−1

1 ⊨ I1.

We know that Γ′, L′|ji ⊨ 1
x
e by definition of i and j, because δ(x) = w for every

δ ∈ L′|ji .

We know that L(1)(x) ⪯ wprev because it occurs earlier in L, wprev ≺ w by
definition of wprev and w ⪯ L(j + 1)(x) because it occurred later in L. We
conclude L(1)(x) ≺ L(j + 1)(x) and therefore L(1)(x) ̸= L(j + 1)(x). Thus
Γ, L|j+1

1 ⊨ 1x does not hold. By definition of Γ, L ⊨ I1; I2 and by Lemma 3.7 we
can derive that Γ, L|L|

j+1 ⊨ I2 must hold. Γ′, L
|L|
j+1 ⊨ I2 holds by Lemma 4.8.

Finally with Γ′, L′|i−1
1 ⊨ I1, Γ′, L′|ji ⊨ 1x

e and Γ′, L
|L|
j+1 ⊨ I2 we can derive Γ′, L ⊨

I1; 1x
e ; I2. Then Γ′, L′ ⊨ (I1;1x

e ; I2) ∨ (I1; I ′
2) holds trivially.

• Case 2, i > k: Because L|k2 = L′|k−1
1 and w /∈ L′|k−1

1 .writes, Γ′, L′|k−1
1 ⊨ I1 holds.

We know that k = |L| or Γ, L′′ ⊨ I2 holds for all L′′ ∈ σ.Lists(L(k+1)). If k = |L|,
the second list is empty and therefore does not contain w. The first part cannot
contain w because i > k and before index i the write w does not occur in L′.
Thus L′.writes does not contain w, which we already covered earlier.

Therefore, Γ, L′′ ⊨ I2 must for all L′′ ∈ σ.Lists(L(k + 1)).

It is possible that there is a thread t′′ ̸= t with σ.tviewt = L(k + 1), of which the
thread view is not changed by the transition step. For this thread holds Γ ⊨ t′′⋉I2

because Γ, L′′ ⊨ I2 holds and therefore Γ′ ⊨ t′′⋉I ′
2 must hold by the precondition.

This allows us to derive Γ′, L′′′ ⊨ I ′
2 for every L′′′ ∈ σ′.Lists(L(k + 1)).

We know that L′||L
′|

k ∈ σ′.Lists(L(k+ 1)) because L(k+ 1) ⪯ L(k+ 1) = L′||L
′|

k (1)
and all entries in L′ are succeeding each other because L′ ∈ σ.Lists(t′). Thus we

63

C.3 Release-Acquire Rules

can derive Γ′, L′||L
′|

k ⊨ I ′
2. With Γ′, L′|k−1

1 ⊨ I1 we can conclude Γ′, L′ ⊨ I1; I ′
2.

Then Γ′, L′ ⊨ (I1;1x
e ; I2) ∨ (I1; I ′

2) holds trivially.

In any case we can derive Γ′, L′ ⊨ ((I1;1x
e ; I2) ∨ (I1; I ′

2)).
Wr-1wr-single

Wr-1wr-single is an instance of Wr-1wr with I1 ≡ [false]. The additional require-
ment holds trivially by Stable-wr.

C.3 Release-Acquire Rules

In this section, we prove Theorem 4.11, the soundness of Ld-a-shift and Wr-r-top.

Ld-a-shift
{t⋉ I} r ←A

t x {ψ}

{t⋉ [A(x)]; I} r ←A
t x {ψ}

Wr-r-top
{t⋉ It} x :=R

t e {t⋉ I ′
t}

{t⋉ (It ∧ 1x) ∧ t′ ⋉ I} x :=R
t e {t′ ⋉ I;Ax

e ; I ′
t}

Proof. Ld-a-shift
If (r ←A x, σ, lst) =⇒ (skip, σ′, lst′) is possible with an (acquiring) Read transition
step, (r ←A x, σ′, lst) =⇒ (skip, σ′, lst′) is also possible. The only difference between σ
and σ′ is tviewt, the thread view of the writing thread t. σ.tviewt(x) is still contained
in σ′.OW(t, x). Further the thread view after the transition is identical, because re-
peatedly replacing the value of x to the same read write or applying ⊗ multiple times
does not change the thread view from the second time onward.

In addition we know that σ.tviewt ⪯ σ′.tviewt by Theorem 3.1. Because the re-
strictions are weaker, every L′ ∈ σ′.Lists(t) is also in σ.Lists(t).

Because Γ, L ⊨ [A(x)]; I for every L ∈ σ.Lists(t), we can then derive Γ, L′ ⊨ [A(x)]; I
for every L′ ∈ σ′.Lists(t) (because this is only a subset of the lists). Then by Lemma C.2,
Γ, ⟨σ′.tviewt⟩ · L′ ⊨ [A(x)]; I.

However, Γ, ⟨σ′.tviewt⟩ ⊭ [A(x)] by definition of Read, because tviewt(x) is a
nonreleasing write or the thread view was updated using ⊗. In the latter case, because
⊗ takes the maximum of both inputs for each shared variable, σ′.mviewσ′.tviewt(x) ⪯
σ′.tviewt holds. In either case we can derive Γ, ⟨σ′.tviewt⟩ ⊭ [A(x)].

With (σ′, lst), ⟨σ′.tviewt⟩ · L′ ⊨ [A(x)]; I we can derive Γ′, ⟨σ′.tviewt⟩ ·L′ ⊨ I. With
this we can derive Γ′, L′ ⊨ I. Because we allowed arbitrary L′, we know that Γ, L′ ⊨ I

for every L′ ∈ σ′.Lists(t). Then (σ′, lst) ⊨ t⋉ I holds.
Because (σ′, lst) =⇒ (σ′, lst′) is also possible with an acquiring read, (σ′, lst) ⊨ t⋉I

and we know {t⋉ I} r ←A
t x {ψ}, we can derive Γ′ ⊨ ψ.

Wr-r-top
We begin by showing that the newly introduced write w is the newest write to x. Let
wmax := maxq{(a, q) ∈ σ.writes | var(a) = x} be the write to x with the maximal
timestamp. Then ⟨σ.tviewt, σ.tviewt[x := wmax]⟩ ∈ σ.Lists(t) because σ.tviewt(x) ⪯

64

Chapter C. Soundness of Proof Rules

wmax. With t⋉ 1x we can derive σ.tviewt(x) = wmax.
Write guarantees with σ.fresh that the newly introduced write w has an even

greater timestamp than the previously latest write: tst(w) > tst(σ.tviewt(var(w))).
Because it is the only new write (σ′.writes = σ.writes ∪ {w}), it is succeeds all other
writes to x in σ: tst(w′) < tst(w) for all w′ ∈ σ′.writes with var(w′) = x. Therefore
no other write to x can occur in L′ after w in any L′ ∈ σ′.Lists(t′) of the thread t′.

Let 0 ≤ k ≤ |L′| such that w /∈ L′|k1.writes and δ(x) = w for every δ ∈ L′||L
′|

k+1. We
know that L′[w/wprev] ∈ σ.Lists(t), therefore also L′|k1[w/wprev] ∈ σ.Lists(t). Further
by definition of k, L′|k1[w/wprev] = L′|k1 because w /∈ L′|k1.writes. Therefore we can
derive Γ, L′|k1 ⊨ I and by Lemma 4.8 Γ′, L′|k1 ⊨ I.

Γ′, L′||L
′|

k+1 ⊨ 1x ∧ [x = e] holds because δ(x) = w for every δ ∈ L′||L
′|

k+1. Because
⪯ is transitive by Lemma B.1, there exists a k ≤ l ≤ |L′| splitting L′||L

′|
k+1 such that

¬(σ′.mvieww ⪯ δ1) holds for every δ1 ∈ L′|lk+1 and σ′.mvieww ⪯ δ2 holds for every
δ2 ∈ L′||L

′|
l+1.

Then, because w is a releasing write and ¬(σ′.mvieww ⪯ δ1), Γ′, L′|lk+1 ⊨ A(x)
holds. With w being the only write in that list, Γ′, L′|lk+1 ⊨ A(x) ∧ 1x

e holds.
Further, because σ′.mvieww ⪯ δ1 for every δ2 ∈ L′||L

′|
l+1 and σ′.mvieww = σ′.tviewt,

we know that L′||L
′|

l+1 ∈ σ′.Lists(t). Therefore, we can derive Γ′, L′||L
′|

l+1 ⊨ I ′
t by the

precondition {t⋉ It} t 7→ x :=R e {t⋉ I ′
t}.

As L′|k1 · L′|lk+1 · L|
|L′|
l+1 = L′, this is what we needed to show: Γ′, L′ ⊨ I;Ax

e ; I ′
t.

C.4 Rules for Perception with Swap

In this section, we prove Theorem 4.12, the soundness of Swap-a-shift and Wr-cvd.

Swap-a-shift
{t⋉ I} x.swap(v)RA

t {ψ}

{t⋉ [A(x)]; I} x.swap(v)RA
t {ψ}

Wr-cvd
{t⋉ I} x :=t e {ψ}

{t⋉ Cx; I} x :=t e {ψ}

Proof. Swap-a-shift
If (x.swap(r)RA, σ, lst) =⇒ (skip, σ′, lst′) is possible with an Update transition step,
then (x.swap(r)RA, σ′′, lst) =⇒ (skip, σ′, lst′) is also possible for

σ′′ =

σ[tviewt := σ.tviewt ⊗ σ.mvieww], if w ∈ WR ×Q

σ[tviewt := σ.tviewt[x := w]], otherwise

where w := maxq{(a, q) ∈ σ.writes | var(a) = x ∧ q < tst(σ′.tviewt(x))} is the write
after which the transition inserted σ′.tviewt(x).

By definition of OW (Equation (2.2)), w is still contained in σ′′.OW(t, x). Further
the thread view after the transition is identical, because applying ⊗ an additional time
does not change the resulting thread view.

65

C.4 Rules for Perception with Swap

In addition we know that σ.tviewt ⪯ σ′′.tviewt by construction of ⊗. Because the
restrictions are weaker, every L′ ∈ σ′′.Lists(t) is also in σ.Lists(t).

Because (σ, lst), L ⊨ [A(x)]; I for every L ∈ σ.Lists(t), we can then derive (σ′′, lst), L′ ⊨

[A(x)]; I for every L′ ∈ σ′′.Lists(t) (because this is only a subset of the lists). Then by
Lemma C.2, (σ′′, lst), ⟨σ′′.tviewt⟩ · L′ ⊨ [A(x)]; I.

However, (σ′′, lst), ⟨σ′′.tviewt⟩ ⊭ [A(x)] by definition of σ′′, because w is a nonre-
leasing write or the thread view was updated using ⊗. In the latter case, because ⊗
takes the maximum of both inputs for each shared variable, σ.mvieww ⪯ σ′′.tviewt

holds. In either case we can derive (σ′′, lst), ⟨σ′′.tviewt⟩ ⊭ [A(x)].

With (σ′′, lst), ⟨σ′′.tviewt⟩ ·L′ ⊨ [A(x)]; I we can derive (σ′′, lst), ⟨σ′′.tviewt⟩ ·L′ ⊨ I.
With this we can derive (σ′′, lst), L′ ⊨ I. Because we allowed arbitrary L′, we know
that (σ′′, lst), L′ ⊨ I for every L′ ∈ σ′′.Lists(t). Then (σ′′, lst) ⊨ t⋉ I holds.

Because (σ′′, lst) =⇒ (σ′, lst′) is also possible with an acquiring read, (σ′′, lst) ⊨ t⋉I
and we know {t⋉ I} x.swap(r)RA {ψ}, we can derive (σ′, lst′) ⊨ ψ.

Wr-cvd
If (x :=t e, σ, lst) =⇒ (skip, σ′, lst′) is possible with an Write/Update transition
step, then (x :=t e, σ

′′, lst) =⇒ (skip, σ′, lst′) is also possible for σ′′ = σ[tviewt :=
σ.tviewt[x := w]] where w := maxq{(a, q) ∈ σ.writes | var(a) = x∧q < tst(σ′.tviewt(x))}
is the write after which the transition inserted σ′.tviewt(x).

By definition of OW, w is still contained in σ′′.OW(t, x). Further the thread view
after the transition is identical, because the write w is the same and the value of other
shared variables of views are unchanged.

In addition we know that σ.tviewt ⪯ σ′′.tviewt since w ∈ σ.OW(t, x). Because the
restrictions are weaker, every L′ ∈ σ′′.Lists(t) is also in σ.Lists(t).

Because (σ, lst), L ⊨ Cx; I for every L ∈ σ.Lists(t), we can then derive (σ′′, lst), L′ ⊨

Cx; I for every L′ ∈ σ′′.Lists(t) (because this is only a subset of the lists). Then by
Lemma C.2, (σ′′, lst), ⟨σ′′.tviewt⟩ · L′ ⊨ Cx; I.

However, (σ′′, lst), ⟨σ′′.tviewt⟩ ⊭ Cx by definition of Write/Update, because w is
not allowed to be in σ.covered.

With (σ′′, lst), ⟨σ′′.tviewt⟩ · L′ ⊨ Cx; I we can derive (σ′′, lst), ⟨σ′′.tviewt⟩ · L′ ⊨ I.
With this we can derive (σ′′, lst), L′ ⊨ I. Because we allowed arbitrary L′, we know
that (σ′′, lst), L′ ⊨ I for every L′ ∈ σ′′.Lists(t). Then (σ′′, lst) ⊨ t⋉ I holds.

Because (σ′′, lst) =⇒ (σ′, lst′) is also possible with an acquiring read, (σ′′, lst) ⊨ t⋉I
and we know {t⋉ I} x :=t e {ψ}, we can derive (σ′, lst′) ⊨ ψ.

66

Chapter C. Soundness of Proof Rules

C.5 Rules for Writing with Swap

In this section, we prove Theorem 4.13, the soundness of Swap-wr and Swap-r.

Swap-wr

{t⋉ Cx;1x ∧ t′ ⋉ Cx;1x} x.swap(v)RA
t {t′ ⋉ Cx;1x

v}

Swap-r
{t⋉ It} x.swap(v)RA

t {t⋉ I ′
t}

{t⋉ (It ∧ Cx;1x) ∧ t′ ⋉ Cx; 1x} x.swap(v)RA
t {t′ ⋉ Cx;Ax

v ; I ′
t}

Proof. Here we show the soundness of Swap-wr and extend it to a proof of Swap-wr.
We are concerned with a transition step (x.swap(v)RA

t , σ, lst) =⇒ (skip, σ′, lst′).
For both rules we know (σ, lst) ⊨ t ⋉ Cx;1x ∧ t′ ⋉ Cx; 1x. We can derive that t (and
analogous t′) must only observe one write wprev ∈ σ.OW(t, x)\σ.covered not in covered.
Otherwise, if there were two such writes w1 and w2, a list ⟨δ1, δ2⟩ with δ1(x) = w1 and
δ2(x) = w2 would not fulfill Cx;1x because neither write is in σ.covered and they are
not identical. Further, wprev must be the final write to x in σ (i. e. with the maximal
timestamp among writes to x) by the same reasoning, since we can assume the final
write to occur after wprev.

With this we know that the Update transition step adds wprev to the covered
set and introduces a new write w = σ′.tviewt(x) with val(w) = JeK(σ,lst),σ.tviewt

and
σ.fresh(tst(wprev), tst(w)). By definition of fresh (Equation (2.1)), we know that this
new write w has the new maximal timestamp among writes to x. Therefore, no other
write to x can occur after w in any L′ ∈ σ′.Lists(t).

Let 0 ≤ k ≤ |L′ such that wprev /∈ L′|k1.writes and δ(x) = w for every δ ∈ L′||L
′|

k+1.
We know that L′[w/wprev] ∈ σ.Lists(t) by Lemma 4.7, therefore also L′|k1[w/wprev] ∈
σ.Lists(t). Further by definition of k, L′|k1[w/wprev] = L′|k1 because w /∈ L′|k1.writes.
Therefore we can derive (σ, lst), L′|k1 ⊨ I and by Lemma 4.8 (σ′, lst′), L′|k1 ⊨ I.

(σ′, lst′), L′||L
′|

k+1 ⊨ 1x ∧ [x = e] holds trivially because δ(x) = w for every δ ∈ L′||L
′|

k+1.
We can derive (σ′, lst′), L′|k1 ·L′||L

′|
k+1 ⊨ I; 1x

e . As L′|k1 ·L′||L
′|

k+1 = L′, this is what we needed
to show for Swap-wr: (σ′, lst′), L′ ⊨ I;1x

e .
Swap-r(continuation)

Because ⪯ is transitive by Lemma B.1, there exists a k ≤ l ≤ |L′| splitting L′||L
′|

k+1 such
that ¬(σ′.mvieww ⪯ δ1) holds for every δ1 ∈ L′|lk+1 and σ′.mvieww ⪯ δ2 holds for
every δ2 ∈ L′||L

′|
l+1.

Then, because w is a releasing write and ¬(σ′.mvieww ⪯ δ1), (σ′, lst′), L′|lk+1 ⊨ A(x)
holds. With w being the only write in that list, (σ′, lst′), L′|lk+1 ⊨ A(x) ∧ 1x

e holds.
Further, because σ′.mvieww ⪯ δ1 for every δ2 ∈ L′||L

′|
l+1 and σ′.mvieww = σ′.tviewt,

we know that L′||L
′|

l+1 ∈ σ′.Lists(t). Therefore we can derive (σ′, lst′), L′||L
′|

l+1 ⊨ I
′
t by the

precondition {t⋉ It} t 7→ x :=R e {t⋉ I ′
t}.

67

C.5 Rules for Writing with Swap

As L′|k1 ·L′|lk+1 ·L′||L
′|

l+1 = L′, this is what we needed to show: (σ′, lst′), L′ ⊨ I;Ax
e ; I ′

t.

68

Validity of Proof Outlines
D

In this chapter, we prove the validity of the proof outlines shown in this thesis. We do
so by first proving the sequential validity of each single thread by showing {pre(C)}
C {post(C)} for every (instrumented) statement C in that thread. For this we refer
to statements in a proof outline by their number to be concise and avoid ambiguity.
Additionally, we show noninterference for every statement with every assertion in each
other thread.

D.1 Load Buffering

In this section, we prove Theorem 5.1, the validity of the proof outline for load buffering
seen below.

Init : x := 0 ; x := 0 ; a := 0 ; b := 0;
{t1 ⋉ [x = 0] ∧ t2 ⋉ [y = 0] ∧ a = 0 ∧ b = 0}

Thread t1

{t2 ⋉ [y = 0] ∧ b = 0}
1 : a← x;
{t2 ⋉ [y = 0] ∧ b = 0}
2 : y := 1
{a = 0 ∨ b = 0}

Thread t2

{t1 ⋉ [x = 0] ∧ a = 0}
3 : b← y;
{t1 ⋉ [x = 0] ∧ a = 0}
4 : x := 1
{a = 0 ∨ b = 0}

{a = 0 ∨ b = 0}

69

D.2 RRC2

Proof. Thread t1

1 by Stable-ld:
{t2 ⋉ [y = 0] ∧ b = 0}
a← x

{t2 ⋉ [y = 0] ∧ b = 0}

2 by Stable-wr, Cons:
{t2 ⋉ [y = 0] ∧ b = 0}
{b = 0}
y := 1
{b = 0}
{a = 0 ∨ b = 0}

Thread t2

Because the threads are symmetrical, the proof is analogous to t1. Only the variable
names need to be swapped for their symmetric counterparts.

Noninterference

Statement 1

(I) by Stable-ld:
{t1 ⋉ [x = 0]}a← x{t1 ⋉ [x = 0]}

(II) by Ld-single:
{t1 ⋉ [x = 0]}a← x{a = 0}

stability of pre(3) and pre(4) by (I), (II), Conj and Cons:
{t2 ⋉ [y = 0] ∧ b = 0 ∧ t1 ⋉ [x = 0] ∧ a = 0}
{t1 ⋉ [x = 0] ∧ t1 ⋉ [x = 0]}
a← x

{t1 ⋉ [x = 0] ∧ a = 0}

stability of post(4) by Stable-ld and Cons:
{t2 ⋉ [y = 0] ∧ b = 0 ∧ (a = 0 ∨ b = 0)}
{b = 0}
a← x

{b = 0}
{a = 0 ∨ b = 0}

Statement 2-4 Statement 2 does not interfere with any assertion in Thread t2 by
Stable-wr because none of its assertions contain y. Statements 3 and 4 are analogous
to Statements 1 and 2 respectively, only variable names need to be swapped for their
symmetric counterparts.

D.2 RRC2

In this section, we prove Theorem 5.2, the validity of the proof outline for RRC2 seen
below.

70

Chapter D. Validity of Proof Outlines

Init : x := 0;
{t1 ⋉ 1x ∧ t2 ⋉ [x = 0]}

Thread t1

{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}
1 : x := 1;
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}
2 : x := 2
{true}

Thread t2

{t2 ⋉ [x ̸= 2]; [x = 2]}
3 : a← x;
{a = 2⇒ t1 ⋉ [x = 2]}
4 : b← x

{a = 2⇒ b = 2}
{a = 2⇒ b = 2}

Proof. Thread t1

Statement 1

(I) by Wr-top and Cons:
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}
x := 1
{t2 ⋉ [x ̸= 2]; [x = 1]}
{t2 ⋉ [x ̸= 2]}

(II) by Wr-own-1wr and Cons:
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}
{t1 ⋉ 1x; [false]}
x := 1
{t1 ⋉ 1

x
1; [false]}

{t1 ⋉ 1x}

by (I), (II), Conj and Cons:
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}x := 1{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}

Statement 2

by Stable-wr and Cons
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}{true}x := 2{true}

Thread t2

Statement 3

By Stable-ld, Ld-shift and Cons
{t2 ⋉ [x ̸= 2]; [x = 2]}
a← x

{a ̸= 2 ∨ t2 ⋉ [x = 2]}
{a = 2⇒ t2 ⋉ [x = 2]}

71

D.2 RRC2

Statement 4

(I) by Ld-single
{t2 ⋉ [x = 2]}b← x{b = 2}

(II) by Stable-ld
{a ̸= 2}b← x{a ̸= 2}

by (I), (II), Disj2 and Cons
{a ̸= 2 ∨ t2 ⋉ [x = 2]}
b← x

{a ̸= 2 ∨ b = 2}
{a = 2⇒ b = 2}

Noninterference

pre(1), pre(2), post(2), post(4): No statement from t2 interferes with an asser-
tions of t1 by Stable-ld. Statements from t1 do not interfere with a = 2 =⇒ b = 2
by Stable-wr.

pre(4): The following holds for n ∈ {1, 2}:

t2 ⋉ [x ̸= 2] ∧ t2 ⋉ [x = 2] =⇒ false (D.1)

by Stable-wr, Cons and D.1
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x ∧ (t2 ⋉ [x = 2] ∨ a ̸= 2)}
{(t2 ⋉ [x ̸= 2] ∧ t2 ⋉ [x = 2]) ∨ a ̸= 2}
{a ̸= 2}
x := n

{a ̸= 2}
{a ̸= 2 ∨ t2 ⋉ [x = 2]}

pre(3)

1 by Wr-top and Cons{
t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x ∧
t2 ⋉ [x ̸= 2]; [x = 2]

}
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}
x := 1
{t2 ⋉ [x ̸= 2]; [x = 1]}
{t2 ⋉ [x ̸= 2]; [x ̸= 2]}
{t2 ⋉ [x ̸= 2]}
{t2 ⋉ [x ̸= 2]; [x = 2]}

2 by Wr-top and Cons{
t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x ∧
t2 ⋉ [x ̸= 2]; [x = 2]

}
{t2 ⋉ [x ̸= 2] ∧ t1 ⋉ 1x}
x := 2
{t2 ⋉ [x ̸= 2]; [x = 2]}

72

Chapter D. Validity of Proof Outlines

D.3 RRC

In this section, we prove Theorem 5.3, the validity of the proof outline for RRC seen
below.

Init : x := 0;
{t0 ⋉ 1

x
0}

Thread t1{
a ̸= 1 ∧
t0 ⋉ 1

x
02

}
1 : x := 1
{true}

Thread t2{
c ̸= 2 ∧
t0 ⋉ 1

x
01

}
2 : x := 2
{true}

Thread t3

{t3 ⋉ 1
x
012 ∨ 1x

021}
3 : a← x;
{a = 1⇒ t3 ⋉ 1

x
12}

4 : b← x{
(a = 1 ∧ b = 2)
⇒ t3 ⋉ 1

x
2

}

Thread t4

{t4 ⋉ 1
x
012 ∨ 1x

021}
5 : c← x;
{c = 2⇒ t4 ⋉ 1

x
21}

6 : d← x{
(c = 2 ∧ d = 1)
⇒ t4 ⋉ 1

x
1

}
{(a = 1 ∧ b = 2 ∧ c = 2)⇒ d ̸= 1}

Proof. Threads t1 and t2

by Stable-wr and Cons
{a ̸= 1 ∧ t0 ⋉ 1

x
02}{true}x := 1{true}

by Stable-wr and Cons
{c ̸= 2 ∧ t0 ⋉ 1

x
01}{true}x := 2{true}

Threads t3 and t4

Thread t4 is symmetric to t3. For its proofs, only the variable/ thread names and values
need to be swapped with their counterparts.

Statement 3

(I) by Stable-ld, Ld-shift and Cons
{t3 ⋉ 1

x
012}

{t3 ⋉ [x = 0];1x
12}

a← x

{a = 0 ∨ t3 ⋉ 1
x
12}

{a = 1⇒ t3 ⋉ 1
x
12}

(II) by Stable-ld, Ld-shift and Cons
{t3 ⋉ 1

x
021}

{t3 ⋉ [x ̸= 1];1x
1}

a← x

{a ̸= 1 ∨ t3 ⋉ 1
x
1}

{a = 1⇒ t3 ⋉ 1
x
12}

by (I), (II) and Disj1
{t3 ⋉ 1

x
012 ∨ 1x

021}
a← x

{a = 1⇒ t3 ⋉ 1
x
12}

73

D.3 RRC

Statement 4

(I) by Stable-ld, Ld-shift and Cons
{t3 ⋉ 1

x
12}

{t3 ⋉ [b ̸= 2];1x
2}

b← x

{b ̸= 2 ∨ t3 ⋉ 1
x
2}

by (I), Stable-ld, Disj2 and Cons
{a = 1⇒ t3 ⋉ 1

x
12}

{a ̸= 1 ∨ t3 ⋉ 1
x
12}

b← x

{a ̸= 1 ∨ b ̸= 2 ∨ t3 ⋉ 1
x
2}

{(a = 1 ∧ b = 2)⇒ t3 ⋉ 1
x
2}

Conclusion Here we prove that the conclusion (a = 1 ∧ b = 2 ∧ c = 2) =⇒ d ̸= 1
can be derived from post(1) ∧ post(2) ∧ post(4) ∧ post(6):

true ∧ true ∧ ((a = 1 ∧ b = 2)⇒ t3 ⋉ 1
x
2) ∧ ((c = 2 ∧ d = 1)⇒ t4 ⋉ 1

x
1)

=⇒ (a = 1 ∧ b = 2 ∧ c = 2 ∧ d = 1) =⇒ (t3 ⋉ 1
x
2 ∧ t4 ⋉ 1

x
1)

=⇒ (a = 1 ∧ b = 2 ∧ c = 2 ∧ d = 1) =⇒ false

=⇒ ¬(a = 1 ∧ b = 2 ∧ c = 2 ∧ d = 1)

=⇒ (a = 1 ∧ b = 2 ∧ c = 2) =⇒ d ̸= 1

Noninterference

The threads t1 and t2 as well as t3 and t4 are symmetric. So are their combinations
t1, t3 and t2, t4 as well as t1, t4 and t2, t3. The same holds for t1, t2 and t2, t1. The
noninterference proofs for symmetric pairs are analogous to each other, therefore we
omit those of t2 with either t3 or t4. For the combination t1 and t2 we only show
assertions of t1 with statements of t2.

Assertions in t1 {true} is interference-free with all other instructions by Stable-
ld or Stable-wr, depending on the statement. Statements 2 and 3 are the only ones
changing a or x, therefore all other statements do not interfere with {a ̸= 1 ∧ t0 ⋉ 1

x
02}

by Stable-ld or Stable-wr.

Statement 2

(I) by Stable-wr
{a ̸= 1}x := 2{a ̸= 1}

(II) by Wr-1wr-single
{t0 ⋉ 1

x
0}x := 2{t0 ⋉ 1

x
02}

by (I), (II), Conj and Cons
{c ̸= 2 ∧ t0 ⋉ 1

x
01 ∧ a ̸= 1 ∧ t0 ⋉ 1

x
02}

{a ̸= 1 ∧ t0 ⋉ 1
x
0}

x := 2
{a ̸= 1 ∧ t0 ⋉ 1

x
02}

74

Chapter D. Validity of Proof Outlines

Statement 3

(I) by Ld-single
{t0 ⋉ [x ̸= 1]}a← x{a ̸= 1}

(II) by Stable-ld
{t0 ⋉ 1

x
02}a← x{t0 ⋉ 1

x
02}

by (I), (II), Conj and Cons
{(t3 ⋉ 1

x
012 ∨ 1x

021) ∧ a ̸= 1 ∧ t0 ⋉ 1
x
02}

{t0 ⋉ [x ̸= 1] ∧ t0 ⋉ 1
x
02}

a← x

{a ̸= 1 ∧ t0 ⋉ 1
x
02}

Assertions in t2 These are stable by reasoning analogous to t1.

Assertions in t3 Statements of t4 do not interfere with the assertions by Stable-ld,
because neither c nor d are used in the assertions. Next we’ll show that statement 1
from t1 does not interfere with the assertions:

(I) by Wr-1wr-single and Cons
{t0 ⋉ 1

x
2}

{t0 ⋉ 1x ∧ [x = 2]}
x := 1
{t0 ⋉ (1x ∧ [x = 2]); (1x ∧ [x = 1])}
{t0 ⋉ 1

x
21}

pre(3) by (I), Wr-1wr and Cons
{a ̸= 1 ∧ t0 ⋉ 1

x
02 ∧ t3 ⋉ 1

x
012 ∨ 1x

021}
{t0 ⋉ 1

x
02}

{t0 ⋉ (1x ∧ [x = 0]);1x
2}

x := 1{
t0 ⋉

(
((1x ∧ [x = 0]);1x

1; 1x
2) ∨

((1x ∧ [x = 0]);1x
21)

)}
{t3 ⋉ 1

x
012 ∨ 1x

021}

pre(4) by Stable-wr and Cons{
a ̸= 1 ∧ t0 ⋉ 1

x
02 ∧

(a = 1⇒ t3 ⋉ 1
x
12)

}
{a ̸= 1}
1 : x := 1
{a ̸= 1}
{a = 1⇒ t3 ⋉ 1

x
12}

post(4) by Stable-wr and Cons{
a ̸= 1 ∧ t0 ⋉ 1

x
02 ∧

((a = 1 ∧ b = 2)⇒ t3 ⋉ 1
x
2)

}
{a ̸= 1}
1 : x := 1
{a ̸= 1}
{(a = 1 ∧ b = 2)⇒ t3 ⋉ 1

x
2}

Finally we need to show that statement 2 from t2 does not interfere with the as-
sertions. Noninterference with pre(3) holds by the same reasoning as with statement
1.

(I) by Stable-wr
{a ̸= 1}x := 2{a ̸= 1}

(II) by Wr-1wr-single
{t3 ⋉ 1

x
1}x := 2{t3 ⋉ 1

x
12}

pre(4) by (I), (II), Disj2 and Cons
{c ̸= 2 ∧ t0 ⋉ 1

x
01 ∧ (a = 1⇒ t3 ⋉ 1

x
12)}

{a ̸= 1 ∨ t3 ⋉ 1
x
1}

x := 1
{a ̸= 1 ∨ t3 ⋉ 1

x
12}

{a = 1⇒ t3 ⋉ 1
x
12}

75

D.4 Message Passing

post(4) by Stable-wr and Cons
{c ̸= 2 ∧ t0 ⋉ 1

x
01 ∧ ((a = 1 ∧ b = 2)⇒ t3 ⋉ 1

x
2)}

{a ̸= 1 ∨ b ̸= 2 ∨ (t0 ⋉ 1
x
01 ∧ 1x

2)}
{a ̸= 1 ∨ b ̸= 2}
x := 1
{a ̸= 1 ∨ b ̸= 2}
{(a = 1 ∧ b = 2)⇒ t3 ⋉ 1

x
2}

Assertions in t4 Noninterference with statement 1 and 2 is analogous to that of
the assertions of t3 with statement 2 and 1, respectively. Statements of t3 do not
interfere with the assertions by Stable-ld, because neither a nor b are used in the
assertions.

D.4 Message Passing

In this section, we prove Theorem 5.4, the validity of the proof outline for message
passing seen below.

Init : x := 0 ; y := 0;
{t0 ⋉ (1x

0 ∧ 1
y
0)}

Thread t1

{t0 ⋉ (1x
0 ∧ 1

y
0)}

1 : x := 1;
{t1 ⋉ ([x = 1] ∧ 1y) ∧ t2 ⋉ 1

y
0}

2 : y :=R 1
{true}

Thread t2

{t2 ⋉ 1
y
0; [A(y)]; [x = 1]}

3 : a←A y;
{a = 1⇒ t2 ⋉ [x = 1]}
4 : b← x

{a = 1⇒ b = 1}
{a = 1⇒ b = 1}

Proof. Thread t1

1 by Wr-own-1wr, Stable-wr, Conj and Cons
{t0 ⋉ (1x

0 ∧ 1
y
0)}

{t1 ⋉ 1x ∧ t1 ⋉ 1y ∧ t2 ⋉ 1
y
0}

x := 1
{t1 ⋉ [x = 1] ∧ t1 ⋉ 1y ∧ t2 ⋉ 1

y
0}

{t1 ⋉ ([x = 1] ∧ 1y) ∧ t2 ⋉ 1
y
0}

2 by Stable-wr and Cons
{t1 ⋉ ([x = 1] ∧ 1y) ∧ t2 ⋉ 1

y
0}{true}y :=R 1{true}

76

Chapter D. Validity of Proof Outlines

Thread t2

(I) by Ld-a-shift and Stable-ld
{t2 ⋉ [A(y)]; [x = 1]}
a←A y

{t2 ⋉ [x = 1]}

3 by (I), Ld-shift and Cons
{t2 ⋉ 1

y
0; [A(y)]; [x = 1]}

a←A y

{a = 0 ∨ t2 ⋉ [x = 1]}
{a = 1 =⇒ t2 ⋉ [x = 1]}

4 by Stable-ld, Ld-single and Disj2
{a = 1 =⇒ t2 ⋉ [x = 1]}
{a ̸= 1 ∨ t2 ⋉ [x = 1]}
4 : b← x

{a ̸= 1 ∨ b = 1}
{a = 1 =⇒ b = 1}

Noninterference

Statements from thread t2 do not interfere with assertions in t1 by Stable-ld, because
the assertions neither contain a nor b. Similarly Statements 1 and 2 do not interfere
with post(4) by Stable-wr, because the assertion does not contain either x or y.

statement 1 and pre(3) by Stable-wr and Cons
{t0 ⋉ (1x

0 ∧ 1
y
0) ∧ t2 ⋉ 1

y
0; [A(y)]; [x = 1]}

{t2 ⋉ 1
y
0}

x := 1
{t2 ⋉ 1

y
0}

{t2 ⋉ 1
y
0; [A(y)]; [x = 1]}

statement 1 and pre(4) by Stable-wr and Cons
{t0 ⋉ (1x

0 ∧ 1
y
0) ∧ (a = 1 =⇒ t2 ⋉ [x = 1])}

{a ̸= 1 ∨ (t0 ⋉ 1
x
0 ∧ t2 ⋉ [x = 1])}

{a ̸= 1}
x := 1
{a ̸= 1}
{a = 1 =⇒ t2 ⋉ [x = 1]}

statement 2 and pre(3) by Wr-r-top and Cons
{t1 ⋉ ([x = 1] ∧ 1y) ∧ t2 ⋉ 1

y
0 ∧ t2 ⋉ 1

y
0; [A(y)]; [x = 1]}

{t1 ⋉ ([x = 1] ∧ 1y) ∧ t2 ⋉ 1
y
0}

y :=R 1
{t2 ⋉ 1

y
0; [A(y)]; [x = 1]}

77

D.5 Peterson’s Algorithm

statement 2 and pre(4) by Stable-wr and Cons
{t1 ⋉ ([x = 1] ∧ 1y) ∧ t2 ⋉ 1

y
0 ∧ (a = 1 =⇒ t2 ⋉ [x = 1])}

{a = 1 =⇒ t2 ⋉ [x = 1]}
y :=R 1
{a = 1 =⇒ t2 ⋉ [x = 1]}

D.5 Peterson’s Algorithm

In this section, we show the mutual exclusion in the proof outline for Peterson’s algo-
rithm (as in [DDDW20]) seen below and show its validity, i. e. prove Theorem 5.5. We
only displays thread t1, thread t2 is symmetric. fli, tui, ai ∈ VarL are local variables
and flagi, turn ∈ VarG are global variables for i ∈ {0, 1}. We introduce the shortcut
Cx

e ≡ t0 ⋉ Cx;1x
e .

Init : flag1 := false ; flag2 := false ; turn := 0 ; a1 := false ; a2 := false;
Thread t1

{¬a1 ∧ t1 ⋉ 1flag1 ∧ C
turn
turn ∧ (¬a2 ∨ (Cturn

1 ∧ t1 ⋉ Cturn;A(turn); [flag2]))}
1: flag1 := true;
{¬a1 ∧ t1 ⋉ [flag1] ∧ Cturn

turn ∧ (¬a2 ∨ (Cturn
1 ∧ t1 ⋉ Cturn;A(turn); [flag2]))}

2: ⟨turn.swap(2)RA ; a1 := true⟩
{a1 ∧ (¬a2 ∨ t2 ⋉ 1

turn
1 ∨ t1 ⋉ [flag2 ∧ turn ̸= 1])}

do
3: fl1 ←A flag2;

{a1 ∧ (¬a2 ∨ t2 ⋉ 1
turn
1 ∨ (t1 ⋉ [flag2 ∧ turn ̸= 1] ∧ fl1))}

4: tu1 ← turn

{a1 ∧ (¬a2 ∨ t2 ⋉ 1
turn
1 ∨ (t1 ⋉ [flag2 ∧ turn ̸= 1] ∧ fl1 ∧ tu1 ̸= 1))}

5: until (¬fl1 ∨ tu1 = 1) do
{a1 ∧ (¬a2 ∨ t2 ⋉ 1

turn
1)}

6: Critical section;
{true}

7: ⟨flag1 :=R false ; a1 := false⟩
{true}

This example is special in that we are not interested in the postcondition, but in
that no two threads can be in the critical section at the same time. We can show this
by contradiction, assuming that a thread would be. Then it needed to fulfill pre(6) for
both threads: a1∧(¬a2∨t2⋉1

turn
1) and a2∧(¬a1∨t1⋉1

turn
2). From their conjunction we

can derive t2 ⋉1
turn
1 ∧ t1 ⋉1

turn
2 , which is false by Theorem 3.13. Thus, our assumption

must be false and no such state can exist.
Next, we prove Theorem 5.5, the validity of the proof outline.

78

Chapter D. Validity of Proof Outlines

Proof. Since the threads are symmetric, it is sufficient to only show the correctness for
thread t1 and the noninterference of the statements of t2 with the assertions of t1.

Because the correctness proof is rather large, we only show the parts which cannot
be derived with Stable-ld or Stable-wr. These can be combined with the parts we
show and the rules Conj and Disj1 to show the Hoare triples with the full assertions
from the proof outline.

Thread t1

statement 1 by Wr-own-1wr
{t1 ⋉ 1flag} flag1 := true {t1 ⋉ 1

flag
true}{t1 ⋉ [flag]}

statement 2 by Subst-asgn
{true} a1 := true {a1}

statement 2
{Cturn

turn}
{t1 ⋉ Cturn;1turn}Cons
{t1 ⋉ 1turn}Wr-cvd
turn.swap(2)RA

{t1 ⋉ 1
turn
2 }Wr-own-1wr

{t1 ⋉ [turn ̸= 1]}Cons

statement 2
{t1 ⋉ Cturn;A(turn); [flag2]}
{t1 ⋉A(turn); [flag2]}Wr-cvd
{t1 ⋉ [flag2]}Swap-a-shift
turn.swap(2)RA

{t1 ⋉ [flag2]}Stable-wr

statement 3 by Ld-single
{t1 ⋉ [flag2]} fl1 ←A flag2 {fl1}

statement 4 by Ld-single
{t1 ⋉ [turn ̸= 1]} fl1 ←A turn {tu1 ̸= 1}

statement 5 by While and Cons

a1 ∧
(

¬a2 ∨ t2 ⋉ 1
turn
1 ∨

(t1 ⋉ [flag2 ̸= 0 ∧ turn ̸= 1] ∧ fl1 ∧ tu1 ̸= 1)

)
∧ (fl1 = 0 ∨ tu1 = 1)

=⇒ a1 ∧ (¬a2 ∨ t2 ⋉ 1
turn
1)

Noninterference

Because the threads are symmetric, we only show the noninterference of the statements
of t2 with the assertions of t1.

Statement 3: fl2 ←A flag1 and 4: tu2 ← turn preserve all assertions by Stable-
ld. Statement 1: flag2 := 1 and 7: ⟨flag2 :=R 0 ; a2 := false⟩ preserve all parts of as-
sertions by Stable-wr, except assertions of the form ¬a2∨φ(flag2). Those assertions
hold because we can guarantee ¬a2 after the statements are executed by Stable-wr
for statement 1 since ¬a2 is in its precondition and Subst-asgn for statement 7.

The truly interesting statement is 2: ⟨turn.swap(1)RA ; a2 := true⟩. There are four
assertions this needs to preserve: Cturn

1 , Cturn
turn , Cturn

1 ∧ t1 ⋉ Ct;A(turn);1flag2
1 and

t2 ⋉ 1
turn
1 . We show these for turn.swap(1)RA, this can be combined with a2 := true

which preserves all of the postconditions by Subst-asgn. We begin with the last which

79

D.5 Peterson’s Algorithm

is the simplest.

t2 ⋉ 1
turn
1 by Wr-own-1wr

{C ⋉ 1
turn
turn}{t2 ⋉ Cturn;1turn} turn.swap(1)RA {t2 ⋉ 1

turn
1 }

For Cturn
1 we need to derive ti ⋉Cturn; 1turn

1 for every thread ti. Then we can derive
{Cturn

turn} turn.swap(1)RA {Cturn
1 } by applying Conj for all threads.

ti ⋉ Cturn
1 by Swap-wr

{Cturn
turn}{t2 ⋉ Cturn;1turn ∧ ti ⋉ Cturn; 1turn} turn.swap(1)RA {ti ⋉ Cturn; 1turn

1 }

Both Cturn
1 and Cturn

turn then are stable by Cons.
For stability of Cturn

1 ∧ t1 ⋉Ct;A(turn); [flag2] we reuse {Cturn
turn} turn.swap(1)RA

{Cturn
turn}. Additionally, we need t2 ⋉ [flag2] from the statements precondition.

(I), see above
{Cturn

1 }
turn.swap(1)RA

{Cturn
1 }

(II) by Swap-r
{Cturn

1 ∧ t2 ⋉ [flag2]}
turn.swap(1)RA

{t1 ⋉ Ct;A(turn); [flag2]}

Cturn
1 ∧ t1 ⋉ Ct;A(turn);1flag2

1 by (I), (II), Cons and Conj
{Cturn

turn ∧ t1 ⋉ Ct;A(turn); [flag2] ∧ t2 ⋉ [flag2]}
{Cturn

turn ∧ Cturn
1 ∧ t2 ⋉ [flag2]}

turn.swap(1)RA

{Cturn
1 ∧ t1 ⋉ Ct;A(turn); [flag2]}

80

	Introduction
	Program Syntax and Semantics
	Program Syntax
	Actions
	Program States
	Initial State
	Program Semantics
	Local Program Semantics
	Memory Semantics

	Well Formedness

	Assertions
	Views
	Extended Expressions
	Interval Assertions
	Assertions
	Assertions on the Initial State

	Proof Rules
	Classical Proof Rules
	Basic Rules
	Load Rules
	Write Rules
	Soundness Proof Strategy
	WR-TOP
	Additional Write Rules

	Release/ Acquire
	Swap

	Examples
	Load Buffering
	RRC2
	RRC
	Message Passing
	Peterson's Algorithm

	Discussion and Related Work
	Unifying Weak Memory Verification with Piccolo
	Alternative Definitions
	Related Work
	Conclusion

	Bibliography
	Axioms and Proof Rules
	Proofs
	Well Formedness of Global States
	Sublist Validity
	Simplified List definition
	Exchanged States on Write

	Soundness of Proof Rules
	Basic Rules
	Write Rules
	Release-Acquire Rules
	Rules for Perception with Swap
	Rules for Writing with Swap

	Validity of Proof Outlines
	Load Buffering
	RRC2
	RRC
	Message Passing
	Peterson's Algorithm

