
SOFTWARE EVOLUTION SERVICES

A Framework for the Integration and Development
of Flexible and Reusable Toolchains

S SE

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften
der Carl von Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels

Doktors der Ingenieurwissenschaften (Dr-Ing.)

angenommene Dissertation von Herrn

Jan Jelschen

geboren am 20. Oktober 1983 in Oldenburg.

Gutachter: Prof. Dr. Andreas Winter
Weitere Gutachter: Prof. Dr. Oliver Theel,

Prof. Dr. Rainer Koschke

Tag der Disputation: 9. Oktober 2023

Abstract
The growing size and complexity of software systems, as well as a constant pressure

to adapt them to address changing requirements and keep up with fast-paced techno-
logical advancements, demands their decomposition into, and assembly from, smaller,
more manageable parts, and the reliance on existing off-the-shelf components. There-
fore, software integration has become a critical challenge in software development. A
particular instance of this challenge presents itself in the field of software evolution,
where the modernization of large legacy software systems calls for tailored, integrated
tool-support able to adapt quickly to shifting requirements.
This thesis presents SENSEI (Software EvolutioN SErvices Integration), a framework

and method for creating flexible integrated toolchains and software systems.
To derive the solution, this thesis establishes increased flexibility, reusability, and

productivity as its key objectives. Based on an analysis of the toolchain-building pro-
cess in software evolution, and a comprehensive review of the field of tool integration
and existing, related integration approaches, the focus of the thesis is further refined,
and the scope of SENSEI clearly demarcated. Component-based, service-oriented, and
model-driven software engineering paradigms are reviewed and identified as suitable
foundations, and combined with novel concepts to form the SENSEI framework.
At the core of SENSEI lies a clear separation of concerns, distinguishing services that

abstract from technologies and interoperability issues on the one hand, and concrete im-
plementations in the form of components on the other hand. It enables domain experts
to model processes to be automated as orchestrations of services, which are chosen
from a standardizing catalog, and are technology-agnostic, abstracting interoperability
issues away. Developers of individual components or tools provide service-conforming
adapters and enter their implementations into a component registry. The capability
model, a distinguishing feature of the approach, allows the declarative specification
of required and provided capabilities, which is leveraged by SENSEI to automatically
match services to implementing components. Using model-driven tooling, SENSEI then
automatically generates an integrated, executable solution.

SENSEI confers flexibility due to the abstraction from technical aspects, which makes
changing orchestrations easy, and its ability to simply discard and quickly regenerate
integration code. The structures it establishes promote reuse of both individual com-
ponents, and interface adapters and data transformers, which are explicitly separated
from the rest of the integration code. Separation of concerns, elimination of acciden-
tal complexities, a structuring framework interlinked by capabilities, and automation
substantially reduce the required effort for integration and evolution, and thus yield
increased productivity.
The feasibility of the approach and its benefits have been demonstrated by practi-

cal application in two different case studies: In the first study, the SENSEI method and
framework has been used to model and integrate the extensive tool support of a soft-
ware evolution project. In the second study, SENSEI was used to model the business
processes of a software application, map them to appropriate components and auto-
matically integrate them.

iii

Kurzfassung
Die zunehmende Größe und Komplexität von Softwaresystemen, sowie der stän-

dige Druck, sie an sich ändernde Anforderungen anzupassen und mit dem rasanten
technologischen Fortschritt mitzuhalten, erfordern deren Zerlegung in handhabbarere
Teilbausteine und den Rückgriff auf Standardkomponenten. Softwareintegration ist da-
her zu einer entscheidenden Herausforderung in der Softwareentwicklung geworden.
Ein konkretes Beispiel findet sich im Bereich der Software-Evolution: hier werden für
die Modernisierung von Altsystemen maßgeschneiderte, integrierte Werkzeugketten
benötigt, die sich leicht an wechselnde Anforderungen anpassen lassen.
Die vorliegende Arbeit präsentiert SENSEI (Software EvolutioN SErvices Integration),

ein Framework und eine Methodik zur Erstellung flexibler integrierter Werkzeugketten
und Softwaresysteme.
Die Erarbeitung des Lösungsansatzes leiten die Kernziele Flexibilitäts-, Wiederver-

wendbarkeits- und Produktivitätssteigerung. Es erfolgt eine weitere Fokussierung durch
die Analyse des Vorgehens bei der Erstellung von Werkzeugketten für die Software-
Evolution, und eine klare Positionierung und Abgrenzung anhand einer umfassenden
Literaturrecherche von Arbeiten zur Werkzeugintegration und verwandter Integrations-
ansätze. Hieraus werden komponentenbasierte, serviceorientierte und modellgetrie-
bene Softwareentwicklungsparadigmen als geeignete Grundlagen abgeleitet, erarbeitet
und mit eigenen Konzepten zum SENSEI-Framework kombiniert.
Im Mittelpunkt von SENSEI steht eine klare Trennung der Belange, bei der strikt zwi-

schen Services, die von technischen Interoperabilitätsaspekten abstrahieren, und im-
plementierenden Komponenten unterschieden wird. Der Ansatz ermöglicht es Fachan-
wendern, zu automatisierende Prozesse alsOrchestrierungen technologieunabhängiger
Services zu modellieren, die aus einem der Standardisierung dienenden Katalog aus-
gewählt werden. Entwickler einzelner Komponenten stellen Service-konforme Adapter
zur Verfügung und tragen ihre Implementierungen in ein Komponentenverzeichnis ein.
Ein Alleinstellungsmerkmal des Ansatzes ist das Capability-Model, das die deklarative
Angabe benötigter bzw. bereitgestellter Eigenschaften ermöglicht, und der automa-
tischen Zuordnung von Services zu geeigneten Komponenten dient. Mittels modell-
getriebener Codegenerierung erzeugt SENSEI automatisch eine ausführbare, integrierte
Anwendung.

Flexibilität erreicht SENSEI mittels Abstraktion von technischen Belangen, was Or-
chestrierungen leicht veränderbar macht, und durch die Möglichkeit, Integrationscode
jederzeit neu generieren zu können. Durch strukturelle Vorgaben und die Trennung
vom übrigen Integrationscode wird die Wiederverwendbarkeit von Komponenten,
Schnittstellenadaptern und Datentransformatoren erhöht. Die Trennung von Belan-
gen, die Beseitigung unnötiger Komplexität, ein durch Capabilities verknüpftes Struk-
turgerüst und die Automatisierung reduzieren den erforderlichen Integrations- und
Entwicklungsaufwand erheblich und führen somit zu einer Produktivitätssteigerung.
Die Umsetzbarkeit des Ansatzes und seine Vorteile wurden durch die praktische

Anwendung in zwei Fallstudien nachgewiesen: In der ersten Studie wurde die SEN-
SEI-Methodik und das Framework verwendet, um die umfangreiche Werkzeugunter-
stützung für ein Software-Evolutionsprojekt zu modellieren und zu integrieren. In der
zweiten Studie wurden mit SENSEI die Geschäftsprozesse einer Softwareanwendung
modelliert, den entsprechenden Komponenten zugeordnet und automatisch integriert.

v

Brief Contents

I Challenges 1

1 Introduction 3

2 The Q-MIG Project 11

II Analysis 23

3 Requirements 25

4 Tool Integration 39

5 Existing Approaches 63

III Key Technologies 97

6 Component-Based Software Engineering 99

7 Service-Oriented Software Engineering 109

8 Model-Driven Software Engineering 129

IV Solution 147

9 SENSEI at a Glance 149

10 Service Catalog 163

11 Service Orchestration 179

12 Service-Component Matching 195

13 The SENSEI Editor 209

14 SCAffolder: A SENSEI Toolchain Generator 231

V Evaluation 261

15 The Q-MIG Toolchain 263

16 The NEMo Mobility Platform 307

17 Achievement of Objectives 329

18 Conclusion 337

Appendices 346

vii

Contents

I Challenges 1

1 Introduction 3
1.1 Integration Challenges in Software Evolution and Beyond 4
1.2 Objectives . 7

1.2.1 Increasing Flexibility . 7
1.2.2 Increasing Reusability . 8
1.2.3 Increasing Productivity . 8

1.3 Thesis Outline . 9

2 The Q-MIG Project 11
2.1 Overview . 11
2.2 Example: Base Metric Calculation . 14
2.3 Challenges . 17

2.3.1 Integrating Existing Tools . 18
2.3.2 Reusing Custom Tools . 18
2.3.3 Supporting a Distributed Process 19
2.3.4 Supporting Domain Experts 19

2.4 Conclusion . 20

II Analysis 23

3 Requirements 25
3.1 The Toolchain-Building Process . 26

3.1.1 Toolchain Specification . 28
3.1.2 Toolchain Implementation . 28

3.2 Toolchain-Building Support Framework Requirements 30
3.2.1 Task Identification . 31
3.2.2 Task Coordination . 32
3.2.3 Task Instantiation . 33
3.2.4 Adapter Creation . 34

ix

Contents

3.2.5 Transformer Creation . 34
3.2.6 Coordination Logic Creation 35

3.3 Summary . 36

4 Tool Integration 39
4.1 A Brief History of Tool Integration . 39

4.1.1 Integrated Project Support Environments 40
4.1.2 Computer-Aided Software Engineering 41
4.1.3 Lessons Learned . 42

4.2 Basic Terminology . 44
4.3 Dimensions of Integration . 48

4.3.1 Integration Types According to Wasserman 48
4.3.2 Integration Levels According to Brown and McDermid 51
4.3.3 Integration Patterns According to Karsai, Lang, and Neema . . . 53
4.3.4 Integration Effectiveness According to Yang and Han 55
4.3.5 Integration Infrastructure Classification According to Fuggetta . 58

4.4 Summary . 61

5 Existing Approaches 63
5.1 Exchange File Formats . 64
5.2 Common Data Models . 65
5.3 Software Evolution Workbenches . 68
5.4 Software Evolution Environments . 72
5.5 Component-based, Service-Oriented, and Model-Driven Integration . . 75
5.6 SOFAS: Software Analysis as a Service 78

5.6.1 Comparison . 79
5.6.2 Summary . 82

5.7 TIL: Tool Integration Language . 82
5.7.1 Comparison . 83
5.7.2 Summary . 86

5.8 Workflow-based Integration . 87
5.9 Conceptual Works . 89

5.9.1 Software Bookshelf . 89
5.9.2 Reference Model for Frameworks of Software Engineering Envi-

ronments . 90
5.9.3 Component-based Tool-Building Lessons 91

5.10 Summary . 93

x

Contents

III Key Technologies 97

6 Component-Based Software Engineering 99
6.1 Overview . 100
6.2 Components . 101
6.3 Component Model . 104
6.4 Component Framework . 105
6.5 Summary . 106

7 Service-Oriented Software Engineering 109
7.1 Overview . 110
7.2 Services . 112
7.3 Service Design . 114
7.4 Service-Oriented Architecture . 118
7.5 Service Orchestration . 122

7.5.1 Origins . 123
7.5.2 Orchestration and Choreography 125

7.6 Summary . 126

8 Model-Driven Software Engineering 129
8.1 Overview . 131
8.2 Models . 132
8.3 Metamodels . 133
8.4 Model-Driven Development . 136
8.5 Transformations . 139
8.6 Domain-Specific Languages and Modeling 140
8.7 Technical Spaces . 142
8.8 Summary . 144

IV Solution 147

9 SENSEI at a Glance 149
9.1 The SENSEI Architecture . 150
9.2 The SENSEI Metamodel . 152
9.3 Service Capabilities . 154
9.4 Building a Toolchain with SENSEI . 156
9.5 Summary . 161

10 Service Catalog 163
10.1 Services and Data Structures . 164

10.1.1 Example Services . 167

xi

Contents

10.2 Service Capabilities . 171
10.2.1 Capability Modeling Pragmatics 172
10.2.2 Capability Semantics . 173

10.3 Service Restrictions . 174
10.4 Summary . 177

11 Service Orchestration 179
11.1 Service Instances . 181
11.2 Required Capabilities . 182
11.3 Data Flow . 185
11.4 Control Flow . 187
11.5 Summary . 191

12 Service-Component Matching 195
12.1 Component Registry . 196

12.1.1 Components . 198
12.1.2 Artifacts . 199
12.1.3 Data Definitions . 200

12.2 Finding Compositions . 201
12.3 Orchestration Consistency . 202

12.3.1 Component Availability . 206
12.3.2 Component Compatibility . 206

12.4 Summary . 207

13 The SENSEI Editor 209
13.1 Technology Evaluation . 211

13.1.1 Eclipse Sirius . 211
13.1.2 Alternative Language Workbenches 212

13.2 SENSEI Editor Implementation . 214
13.2.1 Metamodel Extensions . 214
13.2.2 Implementation with Sirius . 215

13.3 Using the SENSEI Editor . 217
13.3.1 Creating SENSEI Modeling Projects 218
13.3.2 Defining Services . 219
13.3.3 Modeling Orchestrations . 221
13.3.4 Registering Components . 227

13.4 Summary . 229

14 SCAffolder: A SENSEI Toolchain Generator 231
14.1 Specification . 233
14.2 Technology Evaluation . 235

14.2.1 Model-to-Model Transformations with TGraphs 236

xii

Contents

14.2.2 Model-to-Text Transformations with Velocity 236
14.2.3 Target Platform Service Component Architecture 237

14.3 SCAffolder Implementation . 240
14.3.1 Composition Finder Component 242
14.3.2 SCA Transformation Component 244
14.3.3 SCA Code Generator Component 247

14.4 Using SCAffolder . 252
14.5 The SENSEI Model Interpreter SNOrcInS 256
14.6 Summary . 259

V Evaluation 261

15 The Q-MIG Toolchain 263
15.1 Goal Determination . 264
15.2 Service Identification . 266

15.2.1 Services to Parse, Migrate, Measure 267
15.2.2 Data Consolidation Services 270
15.2.3 Composite and Aggregate Metric Services 272

15.3 Service Orchestration . 274
15.3.1 Orchestrations to Parse, Migrate, and Measure 274
15.3.2 Orchestrations to Consolidate Data 277
15.3.3 Orchestrations to Generate a Quality Comparison Report . . . 279

15.4 Service-Component Matching . 283
15.5 Adapter Creation . 285

15.5.1 Java Frontend Adapter . 286
15.5.2 DuDe Adapter . 287
15.5.3 Java Metric Calculator Adapter 289

15.6 Transformer Creation . 291
15.7 Composer Creation . 293

15.7.1 Integrated Tool Support for Data Consolidation 294
15.7.2 Integrated Distributed Cross-Platform Tool Support 297

15.8 Results . 304

16 The NEMo Mobility Platform 307
16.1 The NEMo Project . 308

16.1.1 Inter-Modal Routing . 309
16.1.2 Challenges . 310

16.2 Application . 311
16.3 Flexibility Scenarios . 315

16.3.1 Adding Capabilities . 317
16.3.2 Extending Orchestrations . 318

xiii

Contents

16.3.3 Changing Component Mappings 319
16.4 Results . 321

16.4.1 Technical Observations . 322
16.4.2 Interaction Modeling . 323

17 Achievement of Objectives 329
17.1 Flexibility . 330
17.2 Reusability . 332
17.3 Productivity . 334
17.4 Summary . 335

18 Conclusion 337
18.1 Contributions . 337
18.2 Limitations . 339
18.3 Outlook . 340

18.3.1 Future Research . 341
18.3.2 Practical Relevance . 342

Appendices 346

A SENSEI Models 347
A.1 The Q-MIG SENSEI Model . 347

A.1.1 The Q-MIG Service Catalog 348
A.1.2 Q-MIG Orchestrations . 364
A.1.3 The Q-MIG Component Registry 371

A.2 The NEMo SENSEI Model . 372
A.2.1 The NEMo Service Catalog . 372
A.2.2 NEMo Orchestrations . 375
A.2.3 The NEMo Component Registry 378

B SCAffolder Model-to-Model Transformation Reference 379
B.1 Utility Functions . 379
B.2 Transformation-Embedded Composition Finding 382
B.3 Tool Stubs . 386
B.4 SCA Service Interfaces . 387
B.5 Types . 389
B.6 Composer Structure . 391
B.7 Composer Implementation . 393

References 397
References by Order of First Appearance 397
References by Author Name, Year, and Title 431

xiv

PART I

Challenges
This thesis presents SENSEI (Software EvolutioN SErvices Integration), a framework

and method for creating flexible integrated toolchains and software systems. The work
is presented in five parts: Part I – Challenges, Part II – Analysis, Part III – Key Technolo-
gies, Part IV – Solution, and Part V – Evaluation. This, the first part, aims at establishing
the context of the thesis, its motivation and problem statement, its relevance, and its
objectives. The second part aims at further refining the objectives by analyzing the
problem statement and reviewing existing work and related approaches. The third part
describes component-based, service-oriented, and model-driven software engineering,
whose techniques form the cornerstones of the approach. The fourth part describes
the solution derived from these insights. The fifth part presents practical applications,
and reflects on the adequacy and quality of the solution with respect to the original
objectives.
Part I consists of two chapters: Chapter 1 introduces the context, describes the

challenges, provides evidence of their practical relevance, and derives a clear problem
statement and objectives. It concludes with an overview of the outline of the thesis.
Chapter 2 presents the Q-MIG software quality and migration project as a motivating
example, that will be used throughout the thesis.

CHAPTER 1
Introduction

Software systems used and being developed today are expected to automate tasks
and solve problems so extensive and complex that developing them completely from
scratch is usually completely infeasible. These limitations were first felt in the nineteen-
sixties, described as software crisis, and gave rise to the field of software engineering
[Naur and Randell, 1968]. To overcome these challenges, McIlroy [1968] called for
the assembly of applications from prefabricated software components. Since then, re-
search and practice has created software engineering principles and paradigms like
object orientation [Dahl, 2004; Kay, 1993], component-based software engineering
[Szyperski, 1997], and service orientation [Erl, 2005], to counteract size and complex-
ity with structure, abstraction, and reuse.
This approach to building software systems has given rise to a new challenge, the

need to integrate individual pieces of software into a coherent whole. Due to a lack
of interoperability, this is often a demanding task, introducing its own complexities.
In fact, there may now be an integration crisis [Manes, 2003], with Gorton, Thurman,
and Thomson [2003] citing estimates of up to 70 percent of “information technology
spending” due to integration efforts.
Aggravating this issue is the high speed of technical progress and shifting require-

ments, putting software systems under constant pressure to evolve [Lehman, 1980,
1996]. By the early eighties, this had already eroded many large software systems to
the point of having become technically outdated and hard to maintain, yet still fulfill-
ing indispensable tasks, and being too expensive to simply discard and replace [Brodie
and Stonebraker, 1995]. A study by Lientz and Swanson [1980] showed that, on aver-
age, about half of software costs were due to maintenance. This legacy crisis [Seacord,
Plakosh, and Lewis, 2003] persists to this day [Broy, 2018], and has spawned extensive
research in areas such as software reengineering, migration, reverse engineering, pro-
gram understanding, analysis, and more, often subsumed now as software evolution.

3

1. Introduction

Software integration today is approached with different tools and techniques in
different areas, ranging from ad-hoc, UNIX-style pipes and filters or using scripting
languages [Sanner, 1999], to enterprise application integration based on heavy-weight
middleware, service orientation, and open standards efforts [Land and Crnkovic, 2004].
Few, if any, approaches directly account for the need for flexibility to rapidly modify
and extend integrated systems. Agile methods such as Extreme Programming [Beck,
2004] or Scrum [Schwaber and Beedle, 2002], meant to bring about such flexibility on
the process level, might actually have adverse effects on evolvability in the long run,
due to their shunning of foresight and up-front architectural design in favor of “You ain’t
going to need it” (YAGNI) [Boehm, 2002; Knodel and Naab, 2014; Kruchten, 2010].
An area with a particularly pronounced integration challenge are software evolution

tools [Ghezzi and Gall, 2013; Jin and Cordy, 2005b; Müller et al., 2000; Sim, 2000].
A high degree of automation through integrated toolchain support is an absolute pre-
requisite for large software reengineering and migration projects [Borchers, 1996] to
succeed, and a huge body of individual tools exists, yet with little to no means for in-
teroperability. The need for experimentation, and the ability to react quickly to new
insights into the legacy systems being modernized, demand a flexible toolchain, which
a one-off, hard-wired integration of technically highly disparate tools is scarcely able
to provide. Ironically, the very software intended to improve evolvability falls victim
to the same issues that turned the systems under study into legacy in the first place.
This thesis presents SENSEI – Software EvolutioN SErvices Integration, an approach

for service-oriented specification and semi-automatic integration of flexible software
solutions from reusable components. The driving motivation behind its creation has
been toolchain-building for software evolution projects. But, since many of the chal-
lenges are the same when integrating software applications in general, the approach
will be shown to be applicable beyond software evolution toolchains, as well. The
titular Software Evolution Services refer to the elementary unit of functionality used in
SENSEI for specification, and allude to both the application domain of software evolu-
tion, as well as the imparted flexibility facilitating continued evolution.
In the remainder of this chapter, the need for a toolchain-building support frame-

work in the field of software evolution in particular, but also for similarly process-centric
integration challenges in software development in general, are motivated in Section 1.1.
Section 1.2 derives and defines the main objectives of the thesis. The chapter closes
with an outline of the remainder of the thesis in Section 1.3.

1.1 Integration Challenges in Software Evolution andBeyond

Modernizing legacy systems is, due to their size and complexity, only feasible with
a high degree of automation. Every software evolution project has individual mod-
ernization goals, and is as different as the legacy systems to be modernized. Each
project requires a combination of different software evolution techniques, e.g. for anal-

4

1.1. Integration Challenges in Software Evolution and Beyond

ysis, reverse engineering, measurement, and visualization, as well as transformation,
reengineering, and migration. These techniques have to be tool-supported, and the
tools in turn have to be integrated into a tailor-fit toolchain. Thus, a major challenge
of the field is the provision of integrated tool support, as recognized by both scientists
working in the field of software evolution, as well as experts from industry:
• Borchers [1996] emphasizes the importance of establishing manufacturing pro-
cesses to achieve high levels of automation, which are necessary to realize reengi-
neering projects timely and cost-efficient. He proposes the creation of reengi-
neering factories: integrated toolchains to automate the planned reengineering
activities, tailored to project-specific needs based on a specification “cookbook”.

• Bergey et al. [1999] confirm this industry insight by reporting on a reengineering
project to be supported by a toolchain, integrated “in a seamless way”. While
the individual tools were tried and tested, the required effort for integration was
gravely underestimated, leading to loss of “time and millions of dollars”.

• Müller et al. [2000] include the lack of tool interoperability in reverse engineering
as amajor challenge in the field, besides a lack of adoption and awareness of tools.
They criticize existing reverse engineering tools for building closed systems and
ignoring interoperability. They contrast this with tools designed according to the
Unix philosophy [Pike and Kernighan, 1984], which are kept simple, but can be
combined to solve more complex tasks.

• Sim [2000] acknowledges the development of standard exchange file formats (like
the Graph Exchange Language GXL [Holt, Winter, and Schürr, 2000]), but points
out the slowness of toolchains integrated on this level, which impedes neces-
sary experimentation. She advocates tool interoperability on a higher level, and
discusses, among other approaches, using component-based technologies.

• Mens et al. [2005] argue, from an academic research perspective, that the tools
and toolchains required to handle the software evolution challenges posed by
industry-scale legacy software systems are too complex to be created by individ-
ual research groups. They propose a common platform or application framework
to base interoperable tools on.

• Jin and Cordy [2005b] assert “a very poor record of interoperability” of software
analysis and reengineering tools, and distinguish between prescriptive and non-
prescriptive integration, the former enforcing the adoption of special APIs or stan-
dard exchange file formats. They propose services as a means for abstraction,
and ontologies for data description and integration.

• Sneed, Wolf, and Heilmann [2010, pp 171f] underline the indispensability of tool
support for software migration projects, and the necessity of using individual
tools effectively together. In essence, an inverse proportionality between the
degree of automation by a proper tool infrastructure, and the riskiness of the
project is suggested, with full automation resulting in an almost risk-free project.

5

1. Introduction

• Ghezzi and Gall [2013] point out difficulties in combining different software anal-
ysis tools, and highlight the area of empirical studies, where a lack of tool in-
teroperability impedes the ability to replicate empirical research. The authors
propose a full-fledged approach called SOFAS, based on (“RESTful”) services and
ontologies, as well. SOFAS will be described in more detail in Section 5.6.

• Rajlich [2014] provides a recent review of the state of research and practice, and
future challenges and directions, in software evolution and maintenance. He
identifies the “need for a seamless software environment” as a major area for
future work, and confirms that the “lack of tool integration [is] a major hindrance”.
This shows that tool integration is still unresolved, and thus remains an important
research topic.

In summary, research and industry agree on a persistent need for more efficient
tool integration that allows for flexibly evolving toolchains able to reuse existing tools.
Academia has made steady but slow progress in tool integration research, focussing

instead on developing and refining a large variety of techniques and tools to analyze,
reverse engineer, transform, and visualize software systems. As for industrial software
evolution projects, specialized consultancies are usually contracted, of which there are
only a few in the market; in this situation, they have no incentives to provide interop-
erability beyond their own tools.
Examples of concrete challenges arising during toolchain-building for software evo-

lution projects are given in Chapter 2, which will introduce Q-MIG, a research project
with industry participation concerned with software quality analysis and software mi-
gration, which SENSEI has been applied to (Chapter 15).
Beyond software evolution, software system integration is becoming more and

more important as well, as architectural paradigms have shifted from monolithic ap-
plications to service-oriented architecture, and particularly microservices [Cerny, Don-
ahoo, and Trnka, 2018; Jamshidi et al., 2018; Newman, 2015] in recent years, with
deployments to cloud infrastructures. In general, the increasing interconnectedness
of software-intensive systems, driven by trends variously subsumed as the Internet of
Things (IoT) [Atzori, Iera, andMorabito, 2010], Industry 4.0, and cyber-physical systems
[Lee, Bagheri, and Kao, 2015] leads to their “rapidly growing complexity coupled with
an unprecedented increase in scale” [Ebert, Hoefner, and Mani, 2015]. The interoper-
ability of individual software parts and their integration are naturally among the most
pressing challenges [Zimmermann, 2017].
The scope of this thesis is, first and foremost, defined by the toolchain-building

problem in software evolution. However, an important aspect of software system in-
tegration in general is largely analogous to this: mapping business processes onto an
application landscape that provides the necessary services, and deriving integration
solutions. This transferability of the approach developed in this thesis will be shown
in Chapter 16. Its precise objectives are defined in the following Section 1.2, and its
scope will be further refined in Part II.

6

1.2. Objectives

1.2 Objectives

Software Evolution Services introduce a conceptual abstraction layer over the tools to
be integrated, which only views their provided functionality – its services, but hides
interoperability issues due to different implementation technologies and data formats.

The core objective of this thesis is the creation of a support framework for the
complete toolchain creation process,to increase flexibility, facilitate reuse, and thereby
improve overall productivity.

The main contribution of this thesis is SENSEI (“Software EvolutioN SErvices Integra-
tion”), which is just such a framework, created around the idea of software evolution
services. It is motivated by the need for tool integration in software evolution projects,
but not necessarily limited to this application area. The core objective names three
sub-objectives: 1. increasing flexibility, 2. increasing reusability, and 3. increasing
productivity, described in more detail in the following. The toolchain creation pro-
cess will be described and analyzed in Chapter 3 to further refine the core objective.

1.2.1 Increasing Flexibility

Like regular software projects, software evolution projects often require an iterative
process (e.g. SOAMIG [Fuhr et al., 2012]). Requirements cannot usually be elicited
up-front, completely. Although for migration and reengineering projects, at least the
functional requirements of the final product are fully specified by the legacy system
(the new system is expected to be functionally equivalent to the old one [Sneed, Wolf,
and Heilmann, 2010, p. 25]), the very nature of legacy software systems makes it hard
to foresee all process and toolchain requirements in advance. Legacy systems are huge,
complex, and undocumented. To gain insight into these old systems, they must initially
be analyzed – a software evolution activity which itself requires tool support.
Adapting project toolchains to newly found insights in an iterative manner is there-

fore a sensible approach, provided that the toolchain can sustain repeated changes
without slowing down the project. Sim [2000] confirms the need for this kind of agility,
underlining the importance of experimentation. Grieger and Fazal-Baqaie [2015] also
emphasize flexibility of software transformation processes as a significant factor.
Thus, the notions of agility and flexibility are intertwined. In this thesis, the former

is used in the context of software (evolution) projects and their processes, in the mean-
ing established by the Agile Manifesto [Beck et al., 2001]. The latter refers to the effort
required to adapt such projects’ toolchains, to account for changing requirements as
the project progresses. This corresponds to an understanding of flexibility as used by
Eden and Mens [2006], who provide evolution cost metrics to quantify the degree of
flexibility. The authors further highlight that flexibility is always measured with respect

7

1. Introduction

to a concrete type of change. This may be used to distinguish the concept from more
general terms, like maintainability, extendability [ISO/IEC/IEEE 24765, 2017], change-
ability [ISO/IEC 9126-1, 2001], and modifiability [ISO/IEC 25010, 2011]1.

1.2.2 Increasing Reusability

The lack of tool interoperability manifests as an inability to reuse both the glue code
that ties the individual tools together into a toolchain, as well as the tools themselves.
From literature, it seems there might be two different persuasions:
Mens et al. [2005] seem to suggest developing tools for a single platform to achieve

interoperability, which could be interpreted as the kind of “closed systems” Müller
et al. [2000] are warning against. Their example is Moose, a platform that arguably
requires tools to be specifically built for it, as it restricts them to work in close con-
finements.Tools build for such platforms are inherently interoperable, but only within
these confines. Existing tools are effectively excluded, i.e. reusing and integrating tools
existing outside of such an ecosystem would be tedious and expensive.
A light-weight interoperability approach would be able to better incorporate exist-

ing tools. Müller et al. [2000] suggest the Unix philosophy as an analogy, and Jin and
Cordy [2005b] suggest service-oriented concepts as a means of abstraction.

1.2.3 Increasing Productivity

Large software evolution projects are often chosen as an alternative to complete re-
developments, because of reduced risk and cost. Borchers [1996] points out the im-
portance of automation for cost-efficiency. Creating project-tailored integrated tool
support takes a lot of effort. Once established, the actual modernization process is
mostly automated. Reducing the toolchain-building effort is therefore an opportunity
to considerably reduce effort and costs overall.
In contrast to this industry perspective, Ghezzi and Gall [2013] highlight an aspect

relevant to academic research: the effort required to rebuild toolchains representing
experiment setups is often prohibitively high. Consequently, experiments of one re-
search group are rarely repeated by other scientists for confirmation, an important and
common practice in empirical research in other domains.
Both the flexibility of toolchains, as well as the reusability of its individual parts and

the code integrating them, contribute to increasing productivity by reducing the effort
required to build and adapt the overall tool support. Flexible tooling allows projects
to become more agile – to react to new insights and requirements quickly, and allow
for more experimentation and exploration of the solution space. Reusability eliminates
repetitive work, leading to productivity gains growing over time. Such an increase in

1The notion of flexibility established by these standards differs to varying degrees from the one de-
scribed here. The definition of flexibility by ISO/IEC 25010 [2011], for example, refers to user experience.

8

1.3. Thesis Outline

Major PublicationsMethodological Phases

I Challenges

V Evaluation

IV Solution
14 The SENSEI Editor
13 SCAffolder: A SENSEI

Toolchain Generator

9 SENSEI at a Glance
10 Service Catalog
11 Service Orchestration
12 Service-Component Matching

Ba
si

s
fo

r V
er

ifi
ca

tio
n

Tools and
Techniques

Assessment Criteria

Ba
si

s
fo

r D
es

ig
n

Subject of Verification and
Prototype for Application

• Vision
Jelschen and Winter [2011]

• Application Scenario
Jelschen and Winter [2012]

• Service Discovery
Jelschen [2013]

• SENSEI Model
Jelschen et al. [2013]

• Capabilities
Jelschen and Winter [2014]

• Overall Approach and
Proof of Concept
Jelschen [2014a],
Jelschen [2015]

• Application
Jelschen, Meier, and
Winter [2015],
Jelschen et al. [2016]

15 The Q-MIG Toolchain
16 The NEMo Mobility Platform

17 Achievement of Objectives
18 Conclusion

II Analysis

III Key Technologies

Concepts
and Methods

6 Component-Based Software Engineering
7 Service-Oriented Software Engineering
8 Model-Driven Software Engineering

1 Introduction 2 The Q-MIG Project

Objectives

understanding the problem
domain

eliciting requirements and
reviewing related work

deriving the solution, and
providing a detailed
description and proof of
concept

applying the solution and
reviewing its suitability and
merits

assessing foundational
technologies

3 Requirements 5 Existing Approaches4 Tool Integration

Figure 1.1: The structure and outline of this thesis, with associated methodological
phases, and the most relevant scientific publications.

productivity makes software evolution projects more economically viable; in particular,
it may enable carrying out projects that would be infeasible without the productivity
boost gained through integrated, flexible, and reusable tool support.

1.3 Thesis Outline

The thesis consists of five parts: I Challenges, II Analysis, III Key Technologies, IV Solu-
tion, and V Evaluation. The overall structure is depicted in Figure 1.1, where the parts
are represented by boxes, containing the associated chapters. The arrows indicate de-
pendencies: Part I provides an overview of the problem domain and identifies the core
objectives of this thesis (Chapter 1), and presents the software evolution projectQ-MIG
(Chapter 2), used throughout as a motivating example.

9

1. Introduction

Using this problem and domain understanding, the objectives are further refined in
Part II, by deriving requirements for creating a toolchain-building support framework
from the general activities that make up the process of toolchain-building (Chapter 3),
and by analyzing the field of tool integration to clearly place this work within it (Chap-
ter 4). Both chapters provide reference frames for assessing and demarcating related
work and existing approaches with respect to these requirements (Chapter 5).

Part III provides extensive overviews of fundamentals and state of the art in compo-
nent-based (Chapter 6), service-oriented (Chapter 7), and model-driven software engi-
neering (Chapter 8). The principles, techniques, and tools of these software engineering
paradigms are evaluated for their suitability towards satisfying the objectives defined,
and to form the foundations of the pursued solution approach, using the requirements
elicited in Part I as assessment criteria.
With the overall objectives and requirements described in Part I and Part II as basis

for design, the solution, SENSEI, is derived and described in Part IV. SENSEI is based
on concepts and methods identified from reviewing key technologies (Part III), and es-
tablishes clear structures for tool development and integration, based on a metamodel,
methods and principles to fill and work within these structures, and specifies means
and techniques to automate large parts of the toolchain-building process. An overview
of SENSEI is given in Chapter 9, with Chapter 10, Chapter 11, and Chapter 12 provid-
ing detailed accounts on particular parts of the overall framework. SENSEI depends on
tooling to support the toolchain-building process, namely a toolchain generator, and
editors to create and modify the models used within the approach. As proof of concept,
prototypes have been implemented, using tools and techniques identified in Part III: the
SENSEI editor (Chapter 13) and the toolchain generator SCAffolder (Chapter 14).
The solution is evaluated in Part V, to provide proof of its general, practical feasibil-

ity, and corroborate its utility with respect to the objectives. Part II provides the basis for
verification, and Part IV provides both the subject of verification and prototype for appli-
cation: the SENSEI approach is practically applied to concrete toolchain-building prob-
lems using SCAffolder and the SENSEI editor. Using SENSEI, toolchains have been built
for the software migration and quality project Q-MIG (Chapter 15). Furthermore, SEN-
SEI has also been used outside of the domain of software evolution toolchain-building,
to model business processes, and subsequently derive and integrate the corresponding
software support for the NEMo mobility platform (Chapter 16). Chapter 17 revisits the
objectives of the thesis and examines their achievement. The overall results of this
thesis, its scientific contributions and expected benefits are summarized in Chapter 18.
The parts of the thesis correspond to research phases as indicated in Figure 1.1 on

the left-hand side. The most relevant publications are indicated on the right-hand side,
in relation to the topic and stage of the thesis being covered.

10

CHAPTER 2
The Q-MIG Project

The origin of this thesis are the challenges posed by having to create integrated tool-
chains to automate reengineering andmigration processes of software evolution projects.
Chapter 1 gave a brief glimpse of the field of software evolution, and provided evi-
dence that the issue of toolchain-building largely remains an open one. In this chapter,
a concrete software evolution project is presented as a motivating example to further
substantiate these claims, and to provide a tangible impression of the general condi-
tions and practical constraints characterizing such projects. In particular, the chapter
introduces the processes that needed to be automated with appropriate tool-support.
First, Section 2.1 gives a high-level overview of the project. Next, a small, simple

subprocess and its associated tooling is described in Section 2.2, which will be used
throughout the thesis as a running example. Then, the challenges faced during the
project’s run are described in Section 2.3, and conclusions are drawn in Section 2.4,
providing further evidence for the need for a toolchain-building support framework,
and support for the objectives of this thesis.

2.1 Overview

Q-MIG was a BMWi-funded1, joint research and development project of the Software
Engineering Group of the Carl von Ossietzky University, and industry partner pro et
con GmbH. It ran from January 1, 2014 until March 31, 2015. The two main objectives
were to 1. extend the existing COBOL-to-Javamigration tools of pro et con into a generic,
customizable migration toolchain, and 2. complement the migration toolchain with a

1The project Q-MIG was funded by the Central Innovation Program SME (Zentrales Innovationspro-
gramm Mittelstand – ZIM) of the Federal Ministry of Economics and Technology (Bundesministeriums für
Wirtschaft und Technologie - BMWi), Funding code: KF3182501KM3.

11

2. The Q-MIG Project

Software Migration Toolchain

Quality Control Center

Q-MIG

Quality Assurance Tools

COBOL
Metric

Calculator

Java
Metric

Calculator

Rating
Tool

Visualizer

Prediction
Tool

Data
Improver

Quality
Charac-
teristics

Visuali-
zations

Quality
Reports

Metrics

M4M3

COBOL
Transformator

COBOL
Source
Code

Java
Source
Code

JGen M4M1 M2 M3

M1 M1 M4M2

CobolFE

Figure 2.1: Q-MIG migration toolchain and quality control center [Meier et al., 2015].

quality control center to measure, compare, and predict the inner quality of software
systems before and after migration, allowing the toolchain to be tailor-fitted towards
project-specific quality goals.
While the first objective was worked on by pro et con, the second objective was

mainly realized by researchers of the Software Engineering Group of Carl vonOssietzky
University. Figure 2.1, taken from Meier et al. [2015], depicts the tools of the migration
toolchain (upper part) and the quality control center (lower part), integrated at moni-
toring points M1 through M4. Some intermediate steps, sub-activities, and tools have
been omitted for simplicity, so the general setup can be conveyed clearly. A drill-down
into a small part of it, considering the parsers and metric calculators more closely, is
provided in Section 2.2, to serve as simple, illustrative example throughout the thesis.
Chapter 15 will further describe the toolchain.
The software migration toolchain shows COBOL source code on the left, being

processed first by a parser, the CobolFE (COBOL Frontend). The resulting COBOL
abstract syntax tree (AST) is transformed into a corresponding Java AST by the COBOL
Transformator. JGen produces compilable Java source code from this. The intermediate
results between those steps can be accessed for quality anaylsis via monitoring points.
The quality control center calculates values for various softwaremetrics on both the

original COBOL (COBOL Metric Calculator) and the resulting Java systems (Java Metric
Calculator). Inner quality characteristics like modularity, reusability, or changeability
(in accordance with ISO/IEC 25010 [2011]) are used to quantify high-level observable
quality properties, as opposed to measurable metrics. The characteristics are used to
represent the “real” quality as assessed by human experts. By way of correlation, they
provide an interpretation for metrics, which in turn allows to infer characteristics from
metrics.

12

2.1. Overview

Figure 2.2: A page from an HTML report generated with the Q-MIG toolchain. Some
file names have been pixelated for confidentiality reasons.

The Rating Tool supports software migration experts in recording quality estimates
for Java and COBOL systems. Experts can browse all relevant entities and levels (e.g.
for packages, files, classes, methods, etc. in Java) and enter their ratings for each con-
sidered quality characteristics.

Metrics calculated for both COBOL and Java systems, as well as expert quality es-
timates, are passed into the Data Improver for preprocessing. The consolidated data
is used by the Prediction Tool to either “train” prediction techniques (linear regression,
artificial neural networks), to infer quality characteristics from metrics, or to project the
quality of a prospective Java system if it were migrated from a given COBOL system
using a particular migration setup. The Visualizer component provides the ability to
create diverse graphs and diagrams, as well as HTML-based quality reports from mea-
sured, expert-estimated, or predicted metric and quality characteristics data for COBOL
and Java systems, to aid comparison and further analysis. Figure 2.2 depicts a page from
such a HTML report as an example, showing several metric values for both an origi-
nal COBOL file and a corresponding Java file, along with the absolute and relative
difference.

13

2. The Q-MIG Project

1. Parse

Source Code

AST :
SOAMIG MM

2. Extract
Structure

3. Calculate
Metrics

Hier. Structure :
Q-MIG DM

Metric Values :
Map

4. Map Res.
to Structure

Metric Report :
Q-MIG DM

Figure 2.3: Base metric calculation in Q-MIG.

2.2 Example: Base Metric Calculation

This section provides a simple example of a tool-supported software evolution process.
It is just a small subprocess of the overall, quality-driven migration process and tool-
chain developed within the Q-MIG, and will be used throughout the remainder of this
thesis as a running example.
The base metric calculation process is the basis for subsequent quality analysis

steps that make up the quality control center of the Q-MIG project (Chapter 2). Since
the overall toolchain of the project is quite extensive, only this small sub-toolchain is
presented here for illustrative purposes.
While COBOL metric values were calculated with existing pro et con tools, much

of the Java metric calculation infrastructure was implemented from scratch for Q-MIG.
Base metric calculation for both COBOL and Java takes a software system and a list of
metrics, and calculates their respective values for all applicable source elements. As
depicted in Figure 2.3, the process can be broken down into four basic steps:
1. Parse. The source code of the input system is parsed into an abstract syntax
tree representation, which is more adequate for the expression and calculation
of most metrics2.

2. Extract Structure. The basic, structural elements are extracted from the AST for a
simple, hierarchical representation. Java systems are decomposed into packages,
files, classes, and methods, COBOL systems into files, devisions, and sections.

3. Calculate Metrics. All metrics in the provided list are iterated, evaluated, and the
resulting values are stored with a reference to the source element the refer to.

4. Map Results to Structure. The metric values produced in Step 3. are merged
with the hierarchical system representation of Step 2. to derive the final result,
a report of base metric values for the whole system, hierarchically decomposed
into its subsystem structure.

2Lines of code would be the prime counter-example; in the Java Metric Calculator, the original files
are therefore passed through to also be able to evaluate metrics directly on the source code.

14

2.2. Example: Base Metric Calculation

Figure 2.4: Simplified excerpt of the Q-MIG data model.

The parsers for both COBOL and Java were provided by pro et con. Their output
conforms to COBOL and Java metamodels which have been defined for the previous
project, SOAMIG [Fuhr et al., 2012]. The ASTs are represented in an XML-based file
format also developed for SOAMIG based on the metamodels.
In Q-MIG it was necessary to define another model to represent quality measure-

ments for storage and exchange. Due to legal restrictions, it had to be ensured that
the industrial-scale software systems used for evaluation in Q-MIG would not leave the
premises of project partner pro et con, i.e. neither source code nor abstract syntax trees
were transferred to the University of Oldenburg. Instead, the whole base metric calcu-
lation was performed at pro et con’s site, who then only transferred the resulting metric
reports conforming to the Q-MIG data model, and expressed in its corresponding XML
exchange file format [Jelschen, 2014b]. A simplified excerpt of the Q-MIG data (meta-)
model is depicted in Figure 2.4. Out of a total of 23 classes, 8 are shown, which form
the basis for expressing quality measurements as a collection of values measured for
quality criteria (such as metrics), and to describe the basic hierarchical decomposition
of software systems.
For analysis, full knowledge of the source code was not necessary, but the basic

structure was still needed to make sense of the fine-grained metric values. Therefore,
this structure is extracted in Step 2. This also only leaves arbitrary, numeric identifiers
in place of the original names, so that no conclusions about the nature of the original
software systems is possible. As shown in Figure 2.3, Steps 2. and 3. are independent
of each other and can therefore be executed concurrently. The implementation does
not exploit this fact, though.
In Step 3., the actual metric values are derived. The COBOL metric calculator

was developed and used exclusively by pro et con, and its inner workings were not

15

2. The Q-MIG Project

package metrics.java.CohesionExample;

/* 8 lines omitted */
public class CohesionExample {

 public class Case1 {
 private int a1, a2, a3, a4;

 public void m1() {
 a1 = 1;
 a2 = 2;
 }

 public void m2() {
 a1++;
 }

 public void m3() {
 a3 = 3;
 a4 = 4;
 }

 public void m4() {
 a4--;
 }
 }

 class Case2 {
 private Object a1, a2, a3, a4;

 public Object m1() {
 return a1;
 }

 public void m2() {
 this.a2.toString();
 }

 public void m3() {
 System.out.println(a3);
 }

 public void m4() {
 this.a4.toString();
 }
 }

 public class Case3 {
 private int a1, a2, a3, a4;

 public void m1() {
 a1++;
 a2++;
 a3 = a3*a4;
 }

 /* 23 lines omitted */

 }
}

Source Code

91 lines of code

��
�������	
������
����������

������	����������� � �������������������� ��������� �����
���� �� �!"#����"����"��$������������������"����"�����"������"�����������
���� �� �!"%�$������&��'���"��(��)*"����'��
� � �� �!"%�$������&��'���"��(��)*"��������
���
 �� �
����	��+ � �#,-�.�
���� � �(�/01 �
*
))2�

�*

�������	
����
(�����-���

��������	/��� � ����
���+����/��� � ��!"%�$������&��'���"��(��)*"��������� �����
�����
��������	/��� � ���������� �����
�����
������&��� � ��!"%�$������&��'���"��(��)*�

�3 ! �������	
������
��������-���

�224

�������	
������
���'+-���

������� � �(5(,�6
�#,-7����������
���
 ��
(5(,�6
��8�&9��#,-�.

&,:�(
��((&,:�
;
&,:�(
(�#���&,:�
;
&,:�(
<��,&,:���=
���;

&,:�(
6(9&,:�

&,:�(
>6�&,:�

&,:�(
8�<#9&,:�

>6�9�/
,�?�/�7(,�5�(

>6�9�/
%:7,�(&��(�5�(
>6�9�/
��66�/,(�5�(
>6�9�/
8�,7�(�5�(
8�<#9
1��,��������

�
���� � ��!"#����"����"��$������������������"����"�����"������"�����������
�����

��)*3 ! �������	
������
#������'+-���

�4
�������	
����
0���,�@��

��� � A������������B ����������B ���+���2B ��������B ���������2B ��������C
�� � � ����@�+��
���� � &�?9�

�� ! �������	
������
:��-����,�@��

�34D

�������	
����
0���,�@��

��� � A�����������*B ���������E�B ���+����B ��������.)2B ���������*B �������E�C
�� � � �

�
���� � /��* ! �������	
������
:������,�@��

�343
�������	
����
&��@�+�(�������� ������� � ����

�4 ! �������	
����
:��&��@�+�(��������

�3D4

�������	
����
�����

��	�'�� � F&#<�7�G
���� � ���������� ������
������� � ����
����(����+ � �������

�D ! �������	
����
:��,������������,���

�= ! �������	
����
:��0���,�@��

�2 ! �������	
����
:��(����0���,�@��

�E
�������	
����
0���,�@��

��� � A�����������**B ����������B ���+����3B �������**B ���������4=B ��������C
�� � � ���������� ������
���� � 78�/,

�. ! �������	
����
:����	0���,�@��

�34=
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�*. ! �������	
����
��������&��@�+�� ��������

��3
�������	
����
0���,�@��

��� � A������������B ����������*B ���+���=B �������4DDB ���������=B ��������*C
�� � � ���$����
���� � &#<�7�

�4= ! �������	
����
:��(����0���,�@��

��E
�������	
����
0���,�@��

��� � A������������DB ����������*B ���+����3B �������432B ���������*.B ��������*C
�� � � ���������� ������
���� � 78�/,

�43 ! �������	
����
:��0���,�@��

�42 ! �������	
����
:����	0���,�@��

�3DD
�������	
����
8���������� ������� � ����

�*D= ! �������	
����
:��8����������

�3D3
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I������
���� � �������
������� � F8�-7/�8�7/���((G

�*D2 ! �������	
����
:��/����	�����

�3.E
�������	
����
8���������� ������� � ����

�3*= ! �������	
����
:��8����������

�3E)
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����*�
���� � �����*�
������� � F8�-7/�8�7/���((G

�3*2 ! �������	
����
:��/����	�����

�=33
�������	
����
8���������� ������� � ����

��)�) ! �������	
����
:��8����������

�=3=
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����4�
���� � �����4�
������� � F8�-7/�8�7/���((G

��)�� ! �������	
����
:��/����	�����

�3
�������	
����
0���,�@��

��� � A�����������EB ����������B ���+���2B �������EB ����������3B ��������C
�� � � ���������
���� � 78�/,

�=
�������	
����
0���,�@��

��� � A������������=B ����������B ���+����B ��������=B ����������=B ��������C
�� � � �
�
���� � &�7/,

�2
�������	
����
0���,�@��

��� � A������������2B ����������B ���+���DB ��������2B ���������*)B ��������C
�� � � ������
���� � 78�/,

�.
�������	
����
0���,�@��

��� � A�����������*�B ����������B ���+����B �������*�B ���������*�B ��������C
�� � � �
�
���� � &�7/,

��4

�������	
����
0���,�@��

��� � A������������B ���������4B ���+���4)4B �������D)B ���������4B ���������C
�� � � �"JJ

J ,��� ���+��� ���������� ��� � ����� ��� �������� �� +���� �� ��� �������
J ������
 ,��� �����	 +��� ��� �����K��+ ����������� �������!
J � � (��8�����������$����������	 � * L � L * L � � =

J @ � /��$��6����	� � D
J � � /��$������$����������	 � D

J �������� � 3"=
J M������ �@���@��

J"�
���� � ��66�/,

�*3
�������	
����
0���,�@��

��� � A�����������3B ����������DB ���+���=B �������4.)B ����������)B ��������DC
�� � � ���$����
���� � &#<�7�

�*E
�������	
����
0���,�@��

��� � A������������.B ����������DB ���+���3B �������4E4B ���������**B ��������DC
�� � � �������
���� � 78�/,

�4D
�������	
����
0���,�@��

��� � A�����������EB ����������3B ���+���2B �������D)EB ����������3B ��������3C
�� � � ���������
���� � &�71,�

�4=
�������	
����
0���,�@��

��� � A������������2B ����������3B ���+���4B �������D�2B ����������EB ��������3C
�� � � �����
���� � 7/,

�4.
�������	
����
0���,�@��

��� � A�����������*�B ����������3B ���+���*B �������D*�B ���������**B ��������3C
�� � � ����
���� � 78�/,

�D�
�������	
����
0���,�@��

��� � A�����������*3B ����������3B ���+���*B �������D*3B ���������*=B ��������3C
�� � � ��*�
���� � 78�/,

�DD
�������	
����
0���,�@��

��� � A�����������*EB ����������3B ���+���*B �������D*EB ���������4)B ��������3C
�� � � ��4�
���� � 78�/,

�D2
�������	
����
0���,�@��

��� � A�����������44B ����������3B ���+���*B �������D44B ���������4DB ��������3C
�� � � ��D�
���� � 78�/,

�3*
�������	
����
0���,�@��

��� � A�����������EB ����������2B ���+���=B �������DD=B ����������DB ��������2C
�� � � ���$����
���� � &#<�7�

�3D
�������	
����
0���,�@��

��� � A������������=B ����������2B ���+���DB �������D34B ����������EB ��������2C
�� � � ����	�
���� � 1�78

�3=
�������	
����
0���,�@��

��� � A�����������*�B ����������2B ���+���*B �������D3.B ���������**B ��������2C
�� � � ����
���� � 78�/,

�=)
�������	
����
0���,�@��

��� � A�����������*=B ����������2B ���+����B �������D=4B ���������*=B ��������2C
�� � � �F�
���� � ��<���

�=4
�������	
����
0���,�@��

��� � A������������4B ����������.B ���+���*B �������D22B ����������DB ��������.C
�� � � ����
���� � 78�/,

�=3
�������	
����
0���,�@��

��� � A������������=B ����������.B ���+����B �������D.)B ����������=B ��������.C
�� � � ���
���� � ((79/

�=2
�������	
����
0���,�@��

��� � A������������.B ����������.B ���+����B �������D.*B ����������.B ��������.C
�� � � ���
���� � 7/,��7,���

�2�
�������	
����
0���,�@��

��� � A������������4B ����������EB ���+���*B �������DE2B ����������DB ��������EC
�� � � ��*�
���� � 78�/,

�24
�������	
����
0���,�@��

��� � A������������=B ����������EB ���+����B �������3))B ����������=B ��������EC
�� � � ���
���� � ((79/

�23
�������	
����
0���,�@��

��� � A������������.B ����������EB ���+����B �������3)*B ����������.B ��������EC
�� � � �*�
���� � 7/,��7,���

�2E
�������	
����
0���,�@��

��� � A�����������EB ���������*)B ���+����B �������3�4B ���������EB �������*)C
�� � � �G�
���� � ��<���

�.4
�������	
����
0���,�@��

��� � A�����������EB ���������**B ���+���=B �������3*DB ����������DB �������**C
�� � � ���$����
���� � &#<�7�

�.2
�������	
����
0���,�@��

��� � A�����������*�B ���������**B ���+���*B �������34=B ���������**B �������**C
�� � � ��*�
���� � 78�/,

�E�
�������	
����
0���,�@��

��� � A�����������*=B ���������**B ���+����B �������3D�B ���������*=B �������**C
�� � � �F�
���� � ��<���

�ED
�������	
����
0���,�@��

��� � A������������4B ���������*4B ���+���*B �������333B ����������DB �������*4C
�� � � ����
���� � 78�/,

�E3
�������	
����
0���,�@��

��� � A������������3B ���������*4B ���+���*B �������332B ����������=B �������*4C
�� � � �LL�
���� � 7/�

�EE
�������	
����
0���,�@��

��� � A�����������EB ���������*DB ���+����B �������3=EB ���������EB �������*DC
�� � � �G�
���� � ��<���

��)4
�������	
����
0���,�@��

��� � A�����������EB ���������*=B ���+���=B �������3.)B ����������DB �������*=C
�� � � ���$����
���� � &#<�7�

��)2
�������	
����
0���,�@��

��� � A�����������*�B ���������*=B ���+���*B �������3E*B ���������**B �������*=C
�� � � ��4�
���� � 78�/,

����
�������	
����
0���,�@��

��� � A�����������*=B ���������*=B ���+����B �������3E2B ���������*=B �������*=C
�� � � �F�
���� � ��<���

���D
�������	
����
0���,�@��

��� � A������������4B ���������*2B ���+���*B �������=��B ����������DB �������*2C
�� � � ��4�
���� � 78�/,

���=
�������	
����
0���,�@��

��� � A������������=B ���������*2B ���+����B �������=�DB ����������=B �������*2C
�� � � ���
���� � ((79/

���.
�������	
����
0���,�@��

��� � A������������.B ���������*2B ���+����B �������=�=B ����������.B �������*2C
�� � � �4�
���� � 7/,��7,���

��**
�������	
����
0���,�@��

��� � A������������4B ���������*.B ���+���*B �������=4�B ����������DB �������*.C
�� � � ��D�
���� � 78�/,

��*D
�������	
����
0���,�@��

��� � A������������=B ���������*.B ���+����B �������=4DB ����������=B �������*.C
�� � � ���
���� � ((79/

��*=
�������	
����
0���,�@��

��� � A������������.B ���������*.B ���+����B �������=4=B ����������.B �������*.C
�� � � �D�
���� � 7/,��7,���

��4)
�������	
����
0���,�@��

��� � A�����������EB ���������*EB ���+����B �������=D2B ���������EB �������*EC
�� � � �G�
���� � ��<���

��4D
�������	
����
0���,�@��

��� � A�����������EB ���������4�B ���+���=B �������=3.B ����������DB �������4�C
�� � � ���$����
���� � &#<�7�

��4.
�������	
����
0���,�@��

��� � A�����������*�B ���������4�B ���+���*B �������=2)B ���������**B �������4�C
�� � � ��D�
���� � 78�/,

��D*
�������	
����
0���,�@��

��� � A�����������*=B ���������4�B ���+����B �������=23B ���������*=B �������4�C
�� � � �F�
���� � ��<���

��D3
�������	
����
0���,�@��

��� � A������������4B ���������4*B ���+���*B �������=.EB ����������DB �������4*C
�� � � ��D�
���� � 78�/,

��D=
�������	
����
0���,�@��

��� � A������������3B ���������4*B ���+���*B �������=E�B ����������=B �������4*C
�� � � ����
���� � 8��

��3)
�������	
����
0���,�@��

��� � A�����������EB ���������44B ���+����B �������2)4B ���������EB �������44C
�� � � �G�
���� � ��<���

��34
�������	
����
0���,�@��

��� � A�����������3B ���������4DB ���+����B �������2)EB ���������3B �������4DC
�� � � �G�
���� � ��<���

��32
�������	
����
0���,�@��

��� � A�����������3B ���������4=B ���+���3B �������2�=B ���������EB �������4=C
�� � � �������
���� � ��((

��3E
�������	
����
0���,�@��

��� � A�������������B ���������4=B ���+���3B �������2**B ����������3B �������4=C
�� � � �����*�
���� � 78�/,

��=D
�������	
����
0���,�@��

��� � A�����������EB ���������42B ���+���2B �������24.B ����������3B �������42C
�� � � ���������
���� � &�71,�

��==
�������	
����
0���,�@��

��� � A������������2B ���������42B ���+���=B �������2D=B ���������**B �������42C
�� � � ��$�����
���� � 78�/,

��=.
�������	
����
0���,�@��

��� � A�����������*DB ���������42B ���+���*B �������234B ���������*3B �������42C
�� � � ����
���� � 78�/,

��2�
�������	
����
0���,�@��

��� � A�����������*.B ���������42B ���+���*B �������232B ���������*EB �������42C
�� � � ��*�
���� � 78�/,

��2D
�������	
����
0���,�@��

��� � A�����������4*B ���������42B ���+���*B �������2=�B ���������44B �������42C
�� � � ��4�
���� � 78�/,

��22
�������	
����
0���,�@��

��� � A�����������4=B ���������42B ���+���*B �������2=3B ���������42B �������42C
�� � � ��D�
���� � 78�/,

��.*
�������	
����
0���,�@��

��� � A�����������EB ���������4EB ���+���=B �������22.B ����������DB �������4EC
�� � � ���$����
���� � &#<�7�

��.D
�������	
����
0���,�@��

��� � A������������=B ���������4EB ���+���=B �������2.3B ���������*�B �������4EC
�� � � ��$�����
���� � 78�/,

��.=
�������	
����
0���,�@��

��� � A�����������*4B ���������4EB ���+���*B �������2E*B ���������*DB �������4EC
�� � � ����
���� � 78�/,

��E)
�������	
����
0���,�@��

��� � A�����������*.B ���������4EB ���+����B �������2E2B ���������*.B �������4EC
�� � � �F�
���� � ��<���

��E4
�������	
����
0���,�@��

��� � A������������4B ���������D)B ���+���=B �������.��B ����������.B �������D)C
�� � � ��������
���� � ��,#�/

��E3
�������	
����
0���,�@��

��� � A�����������*)B ���������D)B ���+���*B �������.�.B ���������*�B �������D)C
�� � � ����
���� � 78�/,

��EE
�������	
����
0���,�@��

��� � A�����������EB ���������D�B ���+����B �������.4)B ���������EB �������D�C
�� � � �G�
���� � ��<���

�*)4
�������	
����
0���,�@��

��� � A�����������EB ���������D4B ���+���=B �������.D�B ����������DB �������D4C
�� � � ���$����
���� � &#<�7�

�*)2
�������	
����
0���,�@��

��� � A�����������*�B ���������D4B ���+���*B �������.34B ���������**B �������D4C
�� � � ��*�
���� � 78�/,

�*��
�������	
����
0���,�@��

��� � A�����������*=B ���������D4B ���+����B �������.3.B ���������*=B �������D4C
�� � � �F�
���� � ��<���

�*�D
�������	
����
0���,�@��

��� � A������������4B ���������DDB ���+���DB �������.2*B ����������=B �������DDC
�� � � ������
���� � ,:7(

�*�3
�������	
����
0���,�@��

��� � A������������2B ���������DDB ���+����B �������.2=B ����������2B �������DDC
�� � � �
�
���� � &�7/,

�*�=
�������	
����
0���,�@��

��� � A������������.B ���������DDB ���+���*B �������.22B ����������EB �������DDC
�� � � ��*�
���� � 78�/,

�*�2
�������	
����
0���,�@��

��� � A�����������*)B ���������DDB ���+����B �������.2EB ���������*)B �������DDC
�� � � �
�
���� � &�7/,

�*�.
�������	
����
0���,�@��

��� � A�����������*�B ���������DDB ���+���.B �������..)B ���������*.B �������DDC
�� � � ���(����+�
���� � 78�/,

�**)
�������	
����
0���,�@��

��� � A�����������4)B ���������DDB ���+����B �������..EB ���������4)B �������DDC
�� � � �N�
���� � ��&��/

�**D
�������	
����
0���,�@��

��� � A�����������EB ���������D3B ���+����B �������E))B ���������EB �������D3C
�� � � �G�
���� � ��<���

�**.
�������	
����
0���,�@��

��� � A�����������EB ���������D2B ���+���=B �������E��B ����������DB �������D2C
�� � � ���$����
���� � &#<�7�

�*4*
�������	
����
0���,�@��

��� � A�����������*�B ���������D2B ���+���*B �������E*4B ���������**B �������D2C
�� � � ��4�
���� � 78�/,

�*4=
�������	
����
0���,�@��

��� � A�����������*=B ���������D2B ���+����B �������E*.B ���������*=B �������D2C
�� � � �F�
���� � ��<���

�*4E
�������	
����
0���,�@��

��� � A������������4B ���������D.B ���+���=B �������ED*B ����������.B �������D.C
�� � � �(������
���� � 78�/,�*D)

�������	
����
0���,�@��

��� � A������������EB ���������D.B ���+����B �������ED.B ����������EB �������D.C
�� � � �
�
���� � &�7/,

�*D�
�������	
����
0���,�@��

��� � A�����������*)B ���������D.B ���+���4B �������EDEB ���������**B �������D.C
�� � � �����
���� � 78�/,

�*D*
�������	
����
0���,�@��

��� � A�����������*4B ���������D.B ���+����B �������E3*B ���������*4B �������D.C
�� � � �
�
���� � &�7/,

�*D4
�������	
����
0���,�@��

��� � A�����������*DB ���������D.B ���+���2B �������E34B ���������4)B �������D.C
�� � � ���������
���� � 78�/,

�*D3
�������	
����
0���,�@��

��� � A�����������4*B ���������D.B ���+���*B �������E=�B ���������44B �������D.C
�� � � ��4�
���� � 78�/,

�*D=
�������	
����
0���,�@��

��� � A�����������4DB ���������D.B ���+����B �������E=4B ���������4DB �������D.C
�� � � �N�
���� � ��&��/

�*3)
�������	
����
0���,�@��

��� � A�����������EB ���������DEB ���+����B �������E2DB ���������EB �������DEC
�� � � �G�
���� � ��<���

�*3D
�������	
����
0���,�@��

��� � A�����������EB ���������3�B ���+���=B �������E.3B ����������DB �������3�C
�� � � ���$����
���� � &#<�7�

�*3.
�������	
����
0���,�@��

��� � A�����������*�B ���������3�B ���+���*B �������EE2B ���������**B �������3�C
�� � � ��D�
���� � 78�/,

�*=*
�������	
����
0���,�@��

��� � A�����������*=B ���������3�B ���+����B ��������))*B ���������*=B �������3�C
�� � � �F�
���� � ��<���

�*=3
�������	
����
0���,�@��

��� � A������������4B ���������3*B ���+���DB ��������)�=B ����������=B �������3*C
�� � � ������
���� � ,:7(

�*==
�������	
����
0���,�@��

��� � A������������2B ���������3*B ���+����B ��������)*)B ����������2B �������3*C
�� � � �
�
���� � &�7/, �*=2

�������	
����
0���,�@��

��� � A������������.B ���������3*B ���+���*B ��������)*�B ����������EB �������3*C
�� � � ��D�
���� � 78�/,

�*=.
�������	
����
0���,�@��

��� � A�����������*)B ���������3*B ���+����B ��������)*4B ���������*)B �������3*C
�� � � �
�
���� � &�7/,

�*=E
�������	
����
0���,�@��

��� � A�����������*�B ���������3*B ���+���.B ��������)*DB ���������*.B �������3*C
�� � � ���(����+�
���� � 78�/,

�*2�
�������	
����
0���,�@��

��� � A�����������4)B ���������3*B ���+����B ��������)44B ���������4)B �������3*C
�� � � �N�
���� � ��&��/

�*23
�������	
����
0���,�@��

��� � A�����������EB ���������34B ���+����B ��������)DDB ���������EB �������34C
�� � � �G�
���� � ��<���

�*2.
�������	
����
0���,�@��

��� � A�����������3B ���������3DB ���+����B ��������)3)B ���������3B �������3DC
�� � � �G�
���� � ��<���

�*.*
�������	
����
0���,�@��

��� � A�����������3B ���������3=B ���+���=B ��������)32B ����������)B �������3=C
�� � � ���$����
���� � &#<�7�

�*.=
�������	
����
0���,�@��

��� � A������������.B ���������3=B ���+���3B ��������)2)B ���������**B �������3=C
�� � � �����4�
���� � 78�/,

�*E�
�������	
����
0���,�@��

��� � A�����������EB ���������32B ���+���2B ��������).=B ����������3B �������32C
�� � � ���������
���� � &�71,�

�*E3
�������	
����
0���,�@��

��� � A�����������*�B ���������32B ���+���*B ��������)E.B ���������**B �������32C
�� � � ����
���� � 78�/,

�*E.
�������	
����
0���,�@��

��� � A�����������*3B ���������32B ���+���*B ���������)*B ���������*=B �������32C
�� � � ��*�
���� � 78�/,

�4)�
�������	
����
0���,�@��

��� � A�����������*EB ���������32B ���+���*B ���������)=B ���������4)B �������32C
�� � � ��4�
���� � 78�/,

�4)D
�������	
����
0���,�@��

��� � A�����������44B ���������32B ���+���*B ����������)B ���������4DB �������32C
�� � � ��D�
���� � 78�/,

�4)E
�������	
����
0���,�@��

��� � A�����������EB ���������3EB ���+���=B ���������*4B ����������DB �������3EC
�� � � ���$����
���� � &#<�7�

�4�4
�������	
����
0���,�@��

��� � A�����������*�B ���������3EB ���+���*B ���������43B ���������**B �������3EC
�� � � ����
���� � 78�/,

�4�2
�������	
����
0���,�@��

��� � A�����������*=B ���������3EB ���+����B ���������D)B ���������*=B �������3EC
�� � � �F�
���� � ��<���

�4*)
�������	
����
0���,�@��

��� � A������������4B ���������=)B ���+���*B ���������3DB ����������DB �������=)C
�� � � ����
���� � 78�/,�4*�

�������	
����
0���,�@��

��� � A������������3B ���������=)B ���+���*B ���������3=B ����������=B �������=)C
�� � � �LL�
���� � 7/�

�4*3
�������	
����
0���,�@��

��� � A������������4B ���������=�B ���+���*B ���������2*B ����������DB �������=�C
�� � � ��*�
���� � 78�/,

�4*=
�������	
����
0���,�@��

��� � A������������3B ���������=�B ���+���*B ���������2DB ����������=B �������=�C
�� � � �LL�
���� � 7/�

�44)
�������	
����
0���,�@��

��� � A������������4B ���������=*B ���+���*B ���������E)B ����������DB �������=*C
�� � � ��4�
���� � 78�/,�44*

�������	
����
0���,�@��

��� � A������������=B ���������=*B ���+����B ���������E4B ����������=B �������=*C
�� � � ���
���� � ((79/

�44D
�������	
����
0���,�@��

��� � A������������.B ���������=*B ���+���*B ���������E3B ����������EB �������=*C
�� � � ��4�
���� � 78�/,

�443
�������	
����
0���,�@��

��� � A�����������*)B ���������=*B ���+����B ���������E2B ���������*)B �������=*C
�� � � �J�
���� � 6#�,

�44=
�������	
����
0���,�@��

��� � A�����������*�B ���������=*B ���+���*B ���������E.B ���������**B �������=*C
�� � � ��D�
���� � 78�/,

�4D)
�������	
����
0���,�@��

��� � A�����������EB ���������=4B ���+����B ��������*�)B ���������EB �������=4C
�� � � �G�
���� � ��<���

�4DD
�������	
����
0���,�@��

��� � A�����������EB ���������=3B ���+���=B ��������**�B ����������DB �������=3C
�� � � ���$����
���� � &#<�7�

�4D.
�������	
����
0���,�@��

��� � A�����������*�B ���������=3B ���+���*B ��������*44B ���������**B �������=3C
�� � � ��*�
���� � 78�/,

�43*
�������	
����
0���,�@��

��� � A�����������*=B ���������=3B ���+����B ��������*4.B ���������*=B �������=3C
�� � � �F�
���� � ��<���

�433
�������	
����
0���,�@��

��� � A������������4B ���������==B ���+���*B ��������*3*B ����������DB �������==C
�� � � ����
���� � 7-

�43.
�������	
����
0���,�@��

��� � A������������2B ���������==B ���+���*B ��������*3=B ����������.B �������==C
�� � � ����
���� � 78�/,

�4=)
�������	
����
0���,�@��

��� � A�����������*)B ���������==B ���+����B ��������*3EB ���������*)B �������==C
�� � � �O�
���� � 9,

�4=*
�������	
����
0���,�@��

��� � A�����������**B ���������==B ���+����B ��������*=�B ���������**B �������==C
�� � � �)�
���� � 7/,��7,���

�4=3
�������	
����
0���,�@��

��� � A�����������*3B ���������==B ���+����B ��������*=DB ���������*3B �������==C
�� � � �F�
���� � ��<���

�4=.
�������	
����
0���,�@��

��� � A������������2B ���������=2B ���+���*B ��������*.*B ����������.B �������=2C
�� � � ��*�
���� � 78�/,

�4=E
�������	
����
0���,�@��

��� � A������������EB ���������=2B ���+���*B ��������*.DB ���������*)B �������=2C
�� � � �LL�
���� � 7/�

�424
�������	
����
0���,�@��

��� � A������������4B ���������=.B ���+����B ��������4))B ����������4B �������=.C
�� � � �G�
���� � ��<���

�422
�������	
����
0���,�@��

��� � A�����������*)B ���������=.B ���+���*B ��������4)2B ���������*�B �������=.C
�� � � ����
���� � 7-

�4.)
�������	
����
0���,�@��

��� � A�����������*DB ���������=.B ���+���*B ��������4��B ���������*3B �������=.C
�� � � ��4�
���� � 78�/,

�4.*
�������	
����
0���,�@��

��� � A�����������*2B ���������=.B ���+����B ��������4�DB ���������*2B �������=.C
�� � � �P�
���� � �,

�4.D
�������	
����
0���,�@��

��� � A�����������*EB ���������=.B ���+����B ��������4�=B ���������*EB �������=.C
�� � � �)�
���� � 7/,��7,���

�4.2
�������	
����
0���,�@��

��� � A�����������4*B ���������=.B ���+����B ��������4�EB ���������4*B �������=.C
�� � � �F�
���� � ��<���

�4E)
�������	
����
0���,�@��

��� � A������������2B ���������=EB ���+���=B ��������442B ���������**B �������=EC
�� � � ��K�����
���� � (%7,�:

�4E4
�������	
����
0���,�@��

��� � A�����������*3B ���������=EB ���+���*B ��������4D3B ���������*=B �������=EC
�� � � ��D�
���� � 78�/,

�4EE
�������	
����
0���,�@��

��� � A�����������*�B ���������2)B ���+���DB ��������42�B ���������*DB �������2)C
�� � � ������
���� � �(�

�D)�
�������	
����
0���,�@��

��� � A�����������*=B ���������2)B ���+����B ��������42=B ���������*=B �������2)C
�� � � ���
���� � 7/,��7,���

�D)=
�������	
����
0���,�@��

��� � A�����������*3B ���������2�B ���+���*B ��������D)DB ���������*=B �������2�C
�� � � ��D�
���� � 78�/,

�D)2
�������	
����
0���,�@��

��� � A�����������*2B ���������2�B ���+���*B ��������D)=B ���������*.B �������2�C
�� � � ����
���� � 8��

�D��
�������	
����
0���,�@��

��� � A�����������*3B ���������2*B ���+���3B ��������D4DB ���������*EB �������2*C
�� � � �$���@�
���� � <��?

�D�3
�������	
����
0���,�@��

��� � A������������2B ���������24B ���+����B ��������D32B ����������2B �������24C
�� � � �G�
���� � ��<���

�D�.
�������	
����
0���,�@��

��� � A������������4B ���������2DB ���+����B ��������D2�B ����������4B �������2DC
�� � � �G�
���� � ��<���

�D*�
�������	
����
0���,�@��

��� � A�����������EB ���������23B ���+����B ��������D.�B ���������EB �������23C
�� � � �G�
���� � ��<���

�D*3
�������	
����
0���,�@��

��� � A�����������EB ���������22B ���+���=B ��������DE*B ����������DB �������22C
�� � � ���$����
���� � &#<�7�

�D*E
�������	
����
0���,�@��

��� � A�����������*�B ���������22B ���+���*B ��������3)DB ���������**B �������22C
�� � � ��4�
���� � 78�/,

�D44
�������	
����
0���,�@��

��� � A�����������*=B ���������22B ���+����B ��������3)EB ���������*=B �������22C
�� � � �F�
���� � ��<���

�D4=
�������	
����
0���,�@��

��� � A������������4B ���������2.B ���+���DB ��������3*4B ����������=B �������2.C
�� � � �6����
���� � 78�/,

�D42
�������	
����
0���,�@��

��� � A������������2B ���������2.B ���+����B ��������3*2B ����������2B �������2.C
�� � � �
�
���� � &�7/,

�D4.
�������	
����
0���,�@��

��� � A������������.B ���������2.B ���+���DB ��������3*.B ���������*�B �������2.C
�� � � ��Q���
���� � 78�/,

�DD)
�������	
����
0���,�@��

��� � A�����������*4B ���������2.B ���+���*B ��������344B ���������*DB �������2.C
�� � � ����
���� � 78�/,�DD�

�������	
����
0���,�@��

��� � A�����������*3B ���������2.B ���+����B ��������343B ���������*3B �������2.C
�� � � �N�
���� � ��&��/

�DD3
�������	
����
0���,�@��

��� � A������������4B ���������2EB ���+���DB ��������33)B ����������=B �������2EC
�� � � �6����
���� � 78�/,

�DD=
�������	
����
0���,�@��

��� � A������������2B ���������2EB ���+����B ��������33DB ����������2B �������2EC
�� � � �
�
���� � &�7/,

�DD2
�������	
����
0���,�@��

��� � A������������.B ���������2EB ���+���4B ��������333B ���������*)B �������2EC
�� � � ��$��
���� � 78�/,

�DDE
�������	
����
0���,�@��

��� � A�����������**B ���������2EB ���+���*B ��������33EB ���������*4B �������2EC
�� � � ��*�
���� � 78�/,

�D3)
�������	
����
0���,�@��

��� � A�����������*DB ���������2EB ���+����B ��������3=�B ���������*DB �������2EC
�� � � �N�
���� � ��&��/

�D3D
�������	
����
0���,�@��

��� � A������������4B ���������.)B ���+���DB ��������32=B ����������=B �������.)C
�� � � �6����
���� � 78�/,

�D33
�������	
����
0���,�@��

��� � A������������2B ���������.)B ���+����B ��������3.)B ����������2B �������.)C
�� � � �
�
���� � &�7/,

�D3=
�������	
����
0���,�@��

��� � A������������.B ���������.)B ���+���DB ��������3.�B ���������*�B �������.)C
�� � � ������
���� � 78�/,

�D3.
�������	
����
0���,�@��

��� � A�����������*4B ���������.)B ���+���*B ��������3.=B ���������*DB �������.)C
�� � � ��4�
���� � 78�/,

�D3E
�������	
����
0���,�@��

��� � A�����������*3B ���������.)B ���+����B ��������3..B ���������*3B �������.)C
�� � � �N�
���� � ��&��/

�D=4
�������	
����
0���,�@��

��� � A������������4B ���������.�B ���+���DB ��������=)4B ����������=B �������.�C
�� � � �6����
���� � 78�/,

�D=D
�������	
����
0���,�@��

��� � A������������2B ���������.�B ���+����B ��������=)2B ����������2B �������.�C
�� � � �
�
���� � &�7/,

�D=3
�������	
����
0���,�@��

��� � A������������.B ���������.�B ���+����DB ��������=).B ���������4�B �������.�C
�� � � ����������� ����
���� � 78�/,

�D=2
�������	
����
0���,�@��

��� � A�����������44B ���������.�B ���+���*B ��������=*4B ���������4DB �������.�C
�� � � ��D�
���� � 78�/,

�D=.
�������	
����
0���,�@��

��� � A�����������43B ���������.�B ���+����B ��������=*3B ���������43B �������.�C
�� � � �N�
���� � ��&��/

�D2*
�������	
����
0���,�@��

��� � A�����������EB ���������.*B ���+����B ��������=4=B ���������EB �������.*C
�� � � �G�
���� � ��<���

�D2=
�������	
����
0���,�@��

��� � A�����������EB ���������.DB ���+���=B ��������=D2B ����������DB �������.DC
�� � � ���$����
���� � &#<�7�

�D.)
�������	
����
0���,�@��

��� � A�����������*�B ���������.DB ���+���*B ��������=3EB ���������**B �������.DC
�� � � ��D�
���� � 78�/,

�D.D
�������	
����
0���,�@��

��� � A�����������*=B ���������.DB ���+����B ��������==DB ���������*=B �������.DC
�� � � �F�
���� � ��<���

�D.2
�������	
����
0���,�@��

��� � A������������4B ���������.3B ���+���=B ��������=2.B ����������.B �������.3C
�� � � ��$�����
���� � 78�/,

�D.E
�������	
����
0���,�@��

��� � A�����������*)B ���������.3B ���+���*B ��������=.3B ���������*�B �������.3C
�� � � ����
���� � 78�/,

�DE4
�������	
����
0���,�@��

��� � A�����������*3B ���������.3B ���+���*B ��������=E)B ���������*=B �������.3C
�� � � ����
���� � 78�/,

�DE2
�������	
����
0���,�@��

��� � A������������4B ���������.=B ���+���=B ��������2)=B ����������.B �������.=C
�� � � ��$�����
���� � 78�/,

�DEE
�������	
����
0���,�@��

��� � A�����������*)B ���������.=B ���+���*B ��������2�4B ���������*�B �������.=C
�� � � ��*�
���� � 78�/,

�3)4
�������	
����
0���,�@��

��� � A�����������*3B ���������.=B ���+���*B ��������2�.B ���������*=B �������.=C
�� � � ��*�
���� � 78�/,

�3)2
�������	
����
0���,�@��

��� � A������������4B ���������.2B ���+���=B ��������24DB ����������.B �������.2C
�� � � ��$�����
���� � 78�/,

�3)E
�������	
����
0���,�@��

��� � A�����������*)B ���������.2B ���+���*B ��������2D�B ���������*�B �������.2C
�� � � ��4�
���� � 78�/,

�3�4
�������	
����
0���,�@��

��� � A�����������*3B ���������.2B ���+���*B ��������2D=B ���������*=B �������.2C
�� � � ��4�
���� � 78�/,

�3�2
�������	
����
0���,�@��

��� � A������������4B ���������..B ���+���=B ��������2=*B ����������.B �������..C
�� � � ��$�����
���� � 78�/,

�3�E
�������	
����
0���,�@��

��� � A�����������*)B ���������..B ���+���*B ��������2=EB ���������*�B �������..C
�� � � ��D�
���� � 78�/,

�3*4
�������	
����
0���,�@��

��� � A�����������*3B ���������..B ���+���*B ��������22DB ���������*=B �������..C
�� � � ��D�
���� � 78�/,

�3*.
�������	
����
0���,�@��

��� � A�����������EB ���������.EB ���+����B ��������2E.B ���������EB �������.EC
�� � � �G�
���� � ��<���

�34�
�������	
����
0���,�@��

��� � A�����������3B ���������E)B ���+����B ��������.)DB ���������3B �������E)C
�� � � �G�
���� � ��<���

�344
�������	
����
0���,�@��

��� � A������������B ���������E�B ���+����B ��������.)=B ����������B �������E�C
�� � � �G�
���� � ��<���

��) ! �������	
����
:��(����0���,�@��

�E ! �������	
����
:��0���,�@��

��� ! �������	
����
:����	0���,�@��

�342
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�*4 ! �������	
����
:��������	

�3D)
�������	
����
�����

���� � ���������� ������
�������� � 78�/,
������� � ����

�*2 ! �������	
����
:��������	

��4 ! �������	
����
:��(����0���,�@��

��* ! �������	
����
:��0���,�@��

��D ! �������	
����
:����	0���,�@��

�34.
�������	
����
�����

���� � ���������
�������� � 78�/,
������� � ����

��. ! �������	
����
:��������	

�34E
�������	
����
�����

���� � ������
�������� � 78�/,
������� � �����** ! �������	
����
:��������	

�*D ! �������	
����
:��0���,�@��

�*3 ! �������	
����
:��(����0���,�@��
�*= ! �������	
����
:����	0���,�@��

��3 ! �������	
����
:��0���,�@��

��= ! �������	
����
:��(����0���,�@��

��2 ! �������	
����
:����	0���,�@��

��E ! �������	
����
:��0���,�@��

�*) ! �������	
����
:��(����0���,�@��

�*� ! �������	
����
:����	0���,�@��

�3D�
�������	
����
8���������� ������� � ����

�4) ! �������	
����
:��(����0���,�@��

�*E ! �������	
����
:��0���,�@��

�4� ! �������	
����
:����	0���,�@��

�3D*
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� ������
���� � ���������� ������
������� � ����

��)�4 ! �������	
����
8����������8�������

�233

�������	
����
0����������

������� � �"JJ
J ,��� ���+��� ���������� ��� � ����� ��� �������� �� +���� �� ��� �������

J ������
 ,��� �����	 +��� ��� �����K��+ ����������� �������!
J � � (��8�����������$����������	 � * L � L * L � � =

J @ � /��$��6����	� � D
J � � /��$������$����������	 � D

J �������� � 3"=
J M������ �@���@��

J"�
������� � ����

��)�3 ! �������	
����
:��0���������� ��)�* ! �������	
����
8����$����:��,���

�44 ! �������	
����
:��(����0���,�@��

�4* ! �������	
����
:��0���,�@��

�4D ! �������	
����
:����	0���,�@��

��)�D ! �������	
����
:��0���,�@��

�4E ! �������	
����
:��(����0���,�@��

�4. ! �������	
����
:��0���,�@��

�D) ! �������	
����
:����	0���,�@��

�*D3 ! �������	
����
8����������8�������

�D* ! �������	
����
:��(����0���,�@��

�D� ! �������	
����
:��0���,�@��

�D4 ! �������	
����
:����	0���,�@��

�3D=

�������	
����
�����

��	�'�� � F&#<�7�G
���� � �������
������� � ����
����(����+ � �������

�*DD ! �������	
����
8����$����:��,���

�*DE ! �������	
����
:��(����0���,�@��

�*D. ! �������	
����
:��0���,�@��

�*3) ! �������	
����
:����	0���,�@��

�3*3 ! �������	
����
8����������8�������

�*3* ! �������	
����
:��(����0���,�@��

�*3� ! �������	
����
:��0���,�@��

�*34 ! �������	
����
:����	0���,�@��

�3E�

�������	
����
�����

��	�'�� � ����
���� � �����*�
������� � ����
����(����+ � �������

�3*D ! �������	
����
8����$����:��,���

�3*E ! �������	
����
:��(����0���,�@��

�3*. ! �������	
����
:��0���,�@��
�34) ! �������	
����
:����	0���,�@��

��))E ! �������	
����
8����������8�������

�34* ! �������	
����
:��(����0���,�@��

�34� ! �������	
����
:��0���,�@��

�344 ! �������	
����
:����	0���,�@��

�=32

�������	
����
�����

��	�'�� � F&#<�7�G
���� � �����4�
������� � ����
����(����+ � �������

��)). ! �������	
����
8����$����:��,���

�D3 ! �������	
����
:��(����0���,�@��

�DD ! �������	
����
:��0���,�@��

�D= ! �������	
����
:����	0���,�@��

�3D2
�������	
����
8���������� ������� � �����24 ! �������	
����
:��8����������

�3D.
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I�����
���
���� � ����
������� � F8�-7/�8�7/���((G

�2D ! �������	
����
:��-���	

�33)
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I�����
�*�
���� � ��*�
������� � F8�-7/�8�7/���((G

�23 ! �������	
����
:��-���	

�33�
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I�����
�4�
���� � ��4�
������� � F8�-7/�8�7/���((G

�2= ! �������	
����
:��-���	

�33*
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I�����
�D�
���� � ��D�
������� � F8�-7/�8�7/���((G�22 ! �������	
����
:��-���	

�334
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I�����
��RN1�
���� � ����
������� � F8�-7/�8�7/���((G

��4D ! �������	
����
:��6����	

�3==
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I�����
�*RN1�
���� � ��*�
������� � F8�-7/�8�7/���((G

��=* ! �������	
����
:��6����	

�32*
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I�����
�4RN1�
���� � ��4�
������� � F8�-7/�8�7/���((G

�*�3 ! �������	
����
:��6����	

�3.4
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I�����
�DRN1�
���� � ��D�
������� � F8�-7/�8�7/���((G

�*D4 ! �������	
����
:��6����	

�D. ! �������	
����
:��(����0���,�@��

�D2 ! �������	
����
:��0���,�@��

�DE ! �������	
����
:����	0���,�@��

�32 ! �������	
����
8����������8�������

�=* ! �������	
����
8����������8�������

�=2 ! �������	
����
8����������8�������

�2* ! �������	
����
8����������8�������

�3� ! �������	
����
:��(����0���,�@��

�3) ! �������	
����
:��0���,�@��
�3* ! �������	
����
:����	0���,�@��

�3DE

�������	
����
&��������,���

	��������� �)
��	�'�� � F&�71,�G
���� � ����
������� � ����
���� � 7/,
����(����+ � �����
�����$�����+�� � �����

�3= ! �������	
����
8����$����:��,���

�3E ! �������	
����
:��(����0���,�@��

�3. ! �������	
����
:��0���,�@��

�=) ! �������	
����
:����	0���,�@��

�=� ! �������	
����
8����$����:��,���

�=D ! �������	
����
:��(����0���,�@��
�=4 ! �������	
����
:��0���,�@��

�=3 ! �������	
����
:����	0���,�@��

�== ! �������	
����
8����$����:��,���

�=E ! �������	
����
:��(����0���,�@��

�=. ! �������	
����
:��0���,�@��

�2) ! �������	
����
:����	0���,�@��

�2� ! �������	
����
8����$����:��,���

�2E ! �������	
����
:��(����0���,�@��

�2. ! �������	
����
:��0���,�@��

�.) ! �������	
����
:����	0���,�@��

�33D

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ����
������� � ����
����(����+ � ������	��

��44 ! �������	
����
8����$����:��,���

��4= ! �������	
����
:��(����0���,�@��

��43 ! �������	
����
:��0���,�@��

��42 ! �������	
����
:����	0���,�@��

�3=2

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ��*�
������� � ����
����(����+ � ������	��

��=� ! �������	
����
8����$����:��,���

��=D ! �������	
����
:��(����0���,�@��

��=4 ! �������	
����
:��0���,�@��

��=3 ! �������	
����
:����	0���,�@��

�324

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ��4�
������� � ����
����(����+ � ������	��

�*�D ! �������	
����
8����$����:��,���

�*�2 ! �������	
����
:��(����0���,�@��

�*�= ! �������	
����
:��0���,�@��

�*�. ! �������	
����
:����	0���,�@��

�3.D

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ��D�
������� � ����
����(����+ � ������	���*D* ! �������	
����
8����$����:��,���

�3D ! �������	
����
:��(����0���,�@��

�34 ! �������	
����
:��0���,�@��
�33 ! �������	
����
:����	0���,�@��

�.* ! �������	
����
:��(����0���,�@��

�.� ! �������	
����
:��0���,�@��

�.4 ! �������	
����
:����	0���,�@��

�333

�������	
����
&��������,���

	��������� �)
��	�'�� � ����
���� � ����
������� � ����
���� � 1�78
����(����+ � ����	�
�����$�����+�� � �����

�.2 ! �������	
����
:��������,���

�33=
�������	
����
<���@ ������� � F6�,:�8�<�85G

��4* ! �������	
����
:��6����	<���@

�.D ! �������	
����
:��0���,�@��

�.3 ! �������	
����
:��(����0���,�@��

�.= ! �������	
����
:����	0���,�@��

��*E ! �������	
����
:��0���,�@��

��4) ! �������	
����
:��(����0���,�@��

��4� ! �������	
����
:����	0���,�@��

�332
�������	
����
� ��������(�������� ������� � ����

��). ! �������	
����
<���@��������(��������

�3=*
�������	
����
� ��������(�������� ������� � ����

��*. ! �������	
����
<���@��������(��������

�.E ! �������	
����
:��(����0���,�@��

�.. ! �������	
����
:��0���,�@��

�E) ! �������	
����
:����	0���,�@��

�33.
�������	
����
���������

����� � *
�������� � ((79/
������� � ����

��)2 ! �������	
����
:��� ��������

���) ! �������	
����
:��(����0���,�@��

��)E ! �������	
����
:��0���,�@��

���� ! �������	
����
:����	0���,�@��

�3=4
�������	
����
���������

����� � *
�������� � ((79/
������� � ����

��*2 ! �������	
����
:��� ��������

�E* ! �������	
����
:��(����0���,�@��

�E� ! �������	
����
:��0���,�@��

�E4 ! �������	
����
:����	0���,�@��

�33E

�������	
����
&��������,���

	��������� �)
��	�'�� � ����
���� � ����
������� � ����
���� � 7/,
����(����+ � �����
�����$�����+�� � �����

�E3 ! �������	
����
:��� ��������,���

�3=)
�������	
����
�����

���� � ����
�������� � 78�/,
������� � ����

��)� ! �������	
����
:��������	

�3=�
�������	
����
�������

�������� � 7/,��7,���
������� � ����
����� � ���

��)= ! �������	
����
:��������	

�ED ! �������	
����
:��0���,�@��

�E= ! �������	
����
:��0���,�@��

�E2 ! �������	
����
:��(����0���,�@��

�E. ! �������	
����
:����	0���,�@��

��)) ! �������	
����
:��8����$����

�EE ! �������	
����
:��� ��������,���

��)* ! �������	
����
:��0���,�@��

��)4 ! �������	
����
:��(����0���,�@��

��)D ! �������	
����
:����	0���,�@��

��)3 ! �������	
����
:��� ��������,���

���4 ! �������	
����
:��(����0���,�@��

���* ! �������	
����
:��0���,�@��

���D ! �������	
����
:����	0���,�@��

���3 ! �������	
����
:��� ��������,���

�3=D
�������	
����
�����

���� � ��*�
�������� � 78�/,
������� � ����

��*� ! �������	
����
:��������	

�3=3
�������	
����
�������

�������� � 7/,��7,���
������� � ����
����� � �*�

��*= ! �������	
����
:��������	

���= ! �������	
����
:��0���,�@��

���2 ! �������	
����
:��(����0���,�@��

���. ! �������	
����
:����	0���,�@��

��*) ! �������	
����
:��8����$����

���E ! �������	
����
:��� ��������,���

��** ! �������	
����
:��0���,�@��

��*4 ! �������	
����
:��(����0���,�@��

��*D ! �������	
����
:����	0���,�@��

��*3 ! �������	
����
:��� ��������,���

��4E ! �������	
����
:��(����0���,�@��

��4. ! �������	
����
:��0���,�@��

��D) ! �������	
����
:����	0���,�@��

��D� ! �������	
����
:��������,���

�3=.
�������	
����
<���@ ������� � F6�,:�8�<�85G

��=) ! �������	
����
:��6����	<���@

��32 ! �������	
����
:��0���,�@��

��3. ! �������	
����
:��(����0���,�@��

��3E ! �������	
����
:����	0���,�@��

�3=E
�������	
����
� ��������(�������� ������� � ������3= ! �������	
����
<���@��������(��������

��D4 ! �������	
����
:��(����0���,�@��

��D* ! �������	
����
:��0���,�@��
��DD ! �������	
����
:����	0���,�@��

�32)
�������	
����
���������

����� � �
�������� � 7/�
������� � F&�(,-7>��&��,��G

��33 ! �������	
����
:��� ��������

��D= ! �������	
����
:��(����0���,�@��

��D3 ! �������	
����
:��0���,�@��

��D2 ! �������	
����
:����	0���,�@��

��D. ! �������	
����
:��� ��������,���

�32�
�������	
����
�����

���� � ����
�������� � 78�/,
������� � ����

��3D ! �������	
����
:��������	

��DE ! �������	
����
:��0���,�@��

��3) ! �������	
����
:��(����0���,�@��

��3� ! �������	
����
:����	0���,�@��

��34 ! �������	
����
:��8����$����

��3* ! �������	
����
:��� ��������,���

��=2 ! �������	
����
:��(����0���,�@��

��== ! �������	
����
:��0���,�@��

��=. ! �������	
����
:����	0���,�@��

��=E ! �������	
����
:��������,���

�32D
�������	
����
<���@ ������� � F6�,:�8�<�85G

�*�4 ! �������	
����
:��6����	<���@

�*�) ! �������	
����
:��0���,�@��

�*�� ! �������	
����
:��(����0���,�@��

�*�* ! �������	
����
:����	0���,�@��

�323
�������	
����
� ��������(�������� ������� � ����

��.E ! �������	
����
<���@��������(��������

�32E
�������	
����
� ��������(�������� ������� � ����

�*)E ! �������	
����
<���@��������(��������

��2� ! �������	
����
:��(����0���,�@��

��2) ! �������	
����
:��0���,�@��

��2* ! �������	
����
:����	0���,�@��

�32=
�������	
����
���������

����� � *
�������� � ((79/
������� � ����

��.. ! �������	
����
:��� ��������

��E� ! �������	
����
:��(����0���,�@��

��E) ! �������	
����
:��0���,�@��

��E* ! �������	
����
:����	0���,�@��

�3.)
�������	
����
���������

����� � *
�������� � ((79/
������� � ����

�*). ! �������	
����
:��� ��������

��2D ! �������	
����
:��(����0���,�@��

��24 ! �������	
����
:��0���,�@��

��23 ! �������	
����
:����	0���,�@��

��2= ! �������	
����
:��� ��������,���

�322
�������	
����
�����

���� � ��4�
�������� � 78�/,
������� � ������.* ! �������	
����
:��������	

�32.
�������	
����
�������

�������� � 7/,��7,���
������� � ����
����� � �4�

��.2 ! �������	
����
:��������	

��22 ! �������	
����
:��0���,�@��

��2. ! �������	
����
:��(����0���,�@��

��2E ! �������	
����
:����	0���,�@��

��.� ! �������	
����
:��8����$����

��.) ! �������	
����
:��� ��������,���

��.4 ! �������	
����
:��0���,�@��

��.D ! �������	
����
:��(����0���,�@��

��.3 ! �������	
����
:����	0���,�@��

��.= ! �������	
����
:��� ��������,���

��ED ! �������	
����
:��(����0���,�@��

��E4 ! �������	
����
:��0���,�@��

��E3 ! �������	
����
:����	0���,�@��

��E= ! �������	
����
:��� ��������,���

�3.�
�������	
����
�����

���� � ��D�
�������� � 78�/,
������� � ����

�*)* ! �������	
����
:��������	

�3.*
�������	
����
�������

�������� � 7/,��7,���
������� � ����
����� � �D��*)2 ! �������	
����
:��������	

��E2 ! �������	
����
:��0���,�@��
��E. ! �������	
����
:��(����0���,�@��
��EE ! �������	
����
:����	0���,�@��

�*)� ! �������	
����
:��8����$����

�*)) ! �������	
����
:��� ��������,���

�*)4 ! �������	
����
:��0���,�@��

�*)D ! �������	
����
:��(����0���,�@��

�*)3 ! �������	
����
:����	0���,�@��

�*)= ! �������	
����
:��� ��������,���

�**) ! �������	
����
:��(����0���,�@��

�*�E ! �������	
����
:��0���,�@��

�**� ! �������	
����
:����	0���,�@��

�*** ! �������	
����
:��������,���

�3.3
�������	
����
<���@ ������� � F6�,:�8�<�85G�*D� ! �������	
����
:��6����	<���@ �*4. ! �������	
����
:��0���,�@��

�*4E ! �������	
����
:��(����0���,�@��

�*D) ! �������	
����
:����	0���,�@��

�3.=
�������	
����
� ��������(�������� ������� � ����

�*42 ! �������	
����
<���@��������(��������

�**D ! �������	
����
:��(����0���,�@��

�**4 ! �������	
����
:��0���,�@��

�**3 ! �������	
����
:����	0���,�@��

�3.2
�������	
����
���������

����� � �
�������� � 8��
������� � F&�(,-7>��&��,��G

�*4= ! �������	
����
:��� ��������

�**2 ! �������	
����
:��(����0���,�@��

�**= ! �������	
����
:��0���,�@��

�**. ! �������	
����
:����	0���,�@��

�**E ! �������	
����
:��� ��������,���

�3..
�������	
����
�����

���� � ��D�
�������� � 78�/,
������� � ����

�*43 ! �������	
����
:��������	
�*4) ! �������	
����
:��0���,�@��

�*4� ! �������	
����
:��(����0���,�@��

�*4* ! �������	
����
:����	0���,�@��

�*4D ! �������	
����
:��8����$����

�*44 ! �������	
����
:��� ��������,���

�*33 ! �������	
����
:��(����0���,�@��

�*3D ! �������	
����
:��0���,�@��

�*3= ! �������	
����
:����	0���,�@��

�3E*
�������	
����
8���������� ������� � ����

�4)� ! �������	
����
:��8����������

�3E4
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����*
���
���� � ����
������� � F8�-7/�8�7/���((G

�4)* ! �������	
����
:��-���	

�3E2
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����*
�*�
���� � ��*�
������� � F8�-7/�8�7/���((G

�4)4 ! �������	
����
:��-���	

�3EE
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����*
�4�
���� � ��4�
������� � F8�-7/�8�7/���((G�4)D ! �������	
����
:��-���	

�=)�
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����*
�D�
���� � ��D�
������� � F8�-7/�8�7/���((G

�4)3 ! �������	
����
:��-���	

�=)4
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����*
��RN�����"���+"�$����;�
���� � ����
������� � F8�-7/�8�7/���((G

�442 ! �������	
����
:��6����	

�=�)
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����*
�*RN1�
���� � ��*�
������� � F8�-7/�8�7/���((G

�D)D ! �������	
����
:��6����	

�=4)
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����*
�4RN1�
���� � ��4�
������� � F8�-7/�8�7/���((G

�D=2 ! �������	
����
:��6����	

�=D4
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����*
�DRN1�
���� � ��D�
������� � F8�-7/�8�7/���((G

�3*4 ! �������	
����
:��6����	

�*3. ! �������	
����
:��(����0���,�@��

�*32 ! �������	
����
:��0���,�@��

�*3E ! �������	
����
:����	0���,�@��

�*24 ! �������	
����
8����������8�������

�*.* ! �������	
����
8����������8�������

�*E� ! �������	
����
8����������8�������

�4)) ! �������	
����
8����������8�������

�*=� ! �������	
����
:��(����0���,�@��

�*=) ! �������	
����
:��0���,�@��

�*=* ! �������	
����
:����	0���,�@��

�3ED

�������	
����
,������������

	��������� �)
��	�'�� � F&�71,�G
���� � ����
������� � ����
���� � ��-���/��
����(����+ � ��$�����
�����$�����+�� � �����

�*2* ! �������	
����
8����$����:��,���

�*23 ! �������	
����
:��(����0���,�@��

�*2D ! �������	
����
:��0���,�@��

�*2= ! �������	
����
:����	0���,�@��

�3E.

�������	
����
,������������

	��������� �)
��	�'�� � F&�71,�G
���� � ����
������� � ����
���� � ��-���/��
����(����+ � ��$�����
�����$�����+�� � �����

�*.� ! �������	
����
8����$����:��,���
�*.D ! �������	
����
:��(����0���,�@��

�*.4 ! �������	
����
:��0���,�@��

�*.3 ! �������	
����
:����	0���,�@��

�=))

�������	
����
,������������

	��������� �)
��	�'�� � F&�71,�G
���� � ����
������� � ����
���� � ��-���/��
����(����+ � ��$�����
�����$�����+�� � �����

�*E) ! �������	
����
8����$����:��,���

�*E4 ! �������	
����
:��(����0���,�@��

�*E* ! �������	
����
:��0���,�@��

�*ED ! �������	
����
:����	0���,�@��

�=)*

�������	
����
,������������

	��������� �)
��	�'�� � F&�71,�G
���� � ����
������� � ����
���� � ��-���/��
����(����+ � ��$�����
�����$�����+�� � �����

�*EE ! �������	
����
8����$����:��,���

�4)2 ! �������	
����
:��(����0���,�@��

�4)= ! �������	
����
:��0���,�@��

�4). ! �������	
����
:����	0���,�@��

�=)D

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ����
������� � ����
����(����+ � ������	��

�44= ! �������	
����
8����$����:��,���

�44E ! �������	
����
:��(����0���,�@��

�44. ! �������	
����
:��0���,�@��

�4D) ! �������	
����
:����	0���,�@��

�=��

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ��*�
������� � ����
����(����+ � ������	��

�D)4 ! �������	
����
8����$����:��,���

�D)= ! �������	
����
:��(����0���,�@��

�D)3 ! �������	
����
:��0���,�@��

�D)2 ! �������	
����
:����	0���,�@��

�=4�

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ��4�
������� � ����
����(����+ � ������	��

�D== ! �������	
����
8����$����:��,���

�D=E ! �������	
����
:��(����0���,�@��

�D=. ! �������	
����
:��0���,�@��

�D2) ! �������	
����
:����	0���,�@��

�=DD

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ��D�
������� � ����
����(����+ � ������	��

�3** ! �������	
����
8����$����:��,���

�*=3 ! �������	
����
:��(����0���,�@��

�*=D ! �������	
����
:��0���,�@��

�*== ! �������	
����
:����	0���,�@��

�3E3
�������	
����
�����

���� � ��$�����
�������� � 78�/,
������� � ����

�*=4 ! �������	
����
:��/���	,���

�*=2 ! �������	
����
:��0���,�@��

�*=. ! �������	
����
:��(����0���,�@��
�*=E ! �������	
����
:����	0���,�@��

�3E=

�������	
����
�����

��	�'�� � ����
���� � ��$�����
������� � ����
����(����+ � �������

�*2) ! �������	
����
:��� ��������,���

�2=�
�������	
����
8����$����

�����H����'�	/��� � �����
���+
�$�����
���� � ��$�����
������� � ����

�*2� ! �������	
����
:��8����$����

�*2E ! �������	
����
:��(����0���,�@��

�*2. ! �������	
����
:��0���,�@��

�*.) ! �������	
����
:����	0���,�@��

�*22 ! �������	
����
:��/���	,���
�*.. ! �������	
����
:��(����0���,�@��

�*.2 ! �������	
����
:��0���,�@��

�*.E ! �������	
����
:����	0���,�@��

�*.= ! �������	
����
:��/���	,���

�*E2 ! �������	
����
:��(����0���,�@��

�*E= ! �������	
����
:��0���,�@��

�*E. ! �������	
����
:����	0���,�@��

�*E3 ! �������	
����
:��/���	,���

�4�) ! �������	
����
:��(����0���,�@��

�4)E ! �������	
����
:��0���,�@��

�4�� ! �������	
����
:����	0���,�@��

�=)3

�������	
����
,������������

	��������� �)
��	�'�� � ����
���� � ����
������� � ����
���� � ��-���/��
����(����+ � ��$�����
�����$�����+�� � �����

�4*� ! �������	
����
:��������,���

�=)2
�������	
����
<���@ ������� � F6�,:�8�<�85G

�443 ! �������	
����
:��6����	<���@

�4�4 ! �������	
����
:��0���,�@��

�4�D ! �������	
����
:��(����0���,�@��

�4�3 ! �������	
����
:����	0���,�@��

�=)=
�������	
����
�����

���� � ��$�����
�������� � 78�/,
������� � ����

�4�* ! �������	
����
:��/���	,���

�44* ! �������	
����
:��0���,�@��

�444 ! �������	
����
:��(����0���,�@��

�44D ! �������	
����
:����	0���,�@��

�=).
�������	
����
������(�������� ������� � ����

�44� ! �������	
����
<���@��������(��������

�4�= ! �������	
����
:��0���,�@��

�4�2 ! �������	
����
:��(����0���,�@��

�4�. ! �������	
����
:����	0���,�@��

�4�E ! �������	
����
:��� ��������,���

�4*) ! �������	
����
:��8����$����

�4** ! �������	
����
:��0���,�@��
�4*4 ! �������	
����
:��(����0���,�@��

�4*D ! �������	
����
:����	0���,�@��

�=)E
�������	
����
�����

���� � ����
�������� � 78�/,
������� � ����

�44) ! �������	
����
:��������1����

�4*3 ! �������	
����
:��0���,�@��

�4*= ! �������	
����
:��(����0���,�@��

�4*2 ! �������	
����
:����	0���,�@��

�4*E ! �������	
����
:��8����$����

�4*. ! �������	
����
:��� ��������,���

�4D* ! �������	
����
:��(����0���,�@��

�4D� ! �������	
����
:��0���,�@��

�4D4 ! �������	
����
:����	0���,�@��

�4DD ! �������	
����
:��������,���

�=�*
�������	
����
<���@ ������� � F6�,:�8�<�85G

�D)* ! �������	
����
:��6����	<���@

�23.
�������	
����
8����$����

�����H����'�	/��� � �����
���+
�$����
��(����+RN�����"���+"(����+;�
���� � ���(����+�
������� � �����4D3 ! �������	
����
� �
�����6����	

�4EE ! �������	
����
:��0���,�@��

�D)) ! �������	
����
:��(����0���,�@��

�D)� ! �������	
����
:����	0���,�@��

�=�4
�������	
����
� ��������(�������� ������� � ����

�4E. ! �������	
����
<���@��������(��������

�4D2 ! �������	
����
:��(����0���,�@��

�4D= ! �������	
����
:��0���,�@��

�4D. ! �������	
����
:����	0���,�@��

�=�D
�������	
����
6����	����

����� � �
�������� � ���
������� � ����

�4E2 ! �������	
����
:��� ��������

�43) ! �������	
����
:��(����0���,�@���4DE ! �������	
����
:��0���,�@��

�43� ! �������	
����
:����	0���,�@��

�4E= ! �������	
����
�����6����	
�=�3

�������	
����
,������������

	��������� �)
��	�'�� � ����
���� � ����
������� � F,5&��(,�7/9�,5&�G
���� � ��-���/��
����(����+ � �����
���+
(����+�
�����$�����+�� � �����

�43E ! �������	
����
:��� ��������,���

�=**
�������	
����
���������

����� � *
�������� � &�7/,
������� � �����4E3 ! �������	
����
:��������	

�=�=
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�43* ! �������	
����
:��/���	,���

�4=� ! �������	
����
:��(����0���,�@��

�4=) ! �������	
����
:��0���,�@��

�4=* ! �������	
����
:����	0���,�@��

�4=4 ! �������	
����
:��� ��������,���

�=*4
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�4.E ! �������	
����
:��������	

�=*E
�������	
����
�����

���� � ���(����+�
�������� � 78�/,
������� � ����

�4ED ! �������	
����
:��������	

�=�2

�������	
����
�����

��	�'�� � ����
���� � �(����+�
������� � ����
����(����+ � �������

�434 ! �������	
����
:��� ��������,���

�=�.
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�43= ! �������	
����
:��������	

�=*�
�������	
����
�����

���� � �(����+�
�������� � 78�/,
������� � ����

�43. ! �������	
����
:��������	

�=�E
�������	
����
�����

���� � ������
�������� � 78�/,
������� � ����

�43D ! �������	
����
:��������	

�=*)
�������	
����
�����

���� � ����+�
�������� � 78�/,
������� � ����

�433 ! �������	
����
:��������	

�2=)
�������	
����
8����$����

�����H����'�	/��� � �����
���+
(����+�
���� � �(����+�
������� � �����432 ! �������	
����
:��8����$����

�4=3 ! �������	
����
:��(����0���,�@��

�4=D ! �������	
����
:��0���,�@��

�4== ! �������	
����
:����	0���,�@��

�4=2 ! �������	
����
:��� ��������,���

�=*D
�������	
����
�����

���� � ������
�������� � 78�/,
������� � F��(��1�8�/6�G

�4.4 ! �������	
����
:��������	

�=*.
�������	
����
�����

���� � ��*�
�������� � 78�/,
������� � ����

�4.. ! �������	
����
:��������	

�4E) ! �������	
����
:��0���,�@��
�4E� ! �������	
����
:��(����0���,�@��

�4E* ! �������	
����
:����	0���,�@��

�4E4 ! �������	
����
:��8����$����

�4=. ! �������	
����
:��0���,�@��

�4=E ! �������	
����
:��(����0���,�@��

�42) ! �������	
����
:����	0���,�@��

�=*3

�������	
����
,������������

	��������� �)
��	�'�� � ����
���� � ����
������� � ����
���� � ��-���/��
����(����+ � �����*�
�����$�����+�� � �����

�422 ! �������	
����
:��� ��������,���

�=*2
�������	
����
8����$����

�����H����'�	/��� � ������
���� � ������
������� � ����

�4.* ! �������	
����
:��8����$����

�4.D ! �������	
����
:��0���,�@��

�4.3 ! �������	
����
:��(����0���,�@��

�4.= ! �������	
����
:����	0���,�@��

�4.2 ! �������	
����
:��8����$����

�42* ! �������	
����
:��0���,�@��

�424 ! �������	
����
:��(����0���,�@��

�42D ! �������	
����
:����	0���,�@��

�=*=
�������	
����
�����

���� � �����*�
�������� � 78�/,
������� � ����

�42� ! �������	
����
:��/���	,���

�42. ! �������	
����
:��0���,�@��

�42E ! �������	
����
:��(����0���,�@��

�4.) ! �������	
����
:����	0���,�@��

�4.� ! �������	
����
8����$����:��,���

�423 ! �������	
����
:��0���,�@��

�42= ! �������	
����
:��8����$����

�D)E ! �������	
����
:��(����0���,�@��

�D). ! �������	
����
:��0���,�@��

�D�) ! �������	
����
:����	0���,�@��

�D�� ! �������	
����
:��������,���

�=4*
�������	
����
<���@ ������� � F6�,:�8�<�85G

�D=3 ! �������	
����
:��6����	<���@

�2=3
�������	
����
8����$����

�����H����'�	/��� � �����
��
&����(�����
�������R�����"���+"(����+;N1�
���� � ���������
������� � ����

�D�* ! �������	
����
� �
�����6����	

�D=* ! �������	
����
:��0���,�@��
�D=4 ! �������	
����
:��(����0���,�@��

�D=D ! �������	
����
:����	0���,�@��

�=44
�������	
����
� ��������(�������� ������� � ����

�D=� ! �������	
����
<���@��������(��������

�D�D ! �������	
����
:��(����0���,�@��

�D�4 ! �������	
����
:��0���,�@��

�D�3 ! �������	
����
:����	0���,�@��

�=4D
�������	
����
6����	����

����� � *
�������� � ���
������� � ����

�D=) ! �������	
����
:��� ��������

�D�2 ! �������	
����
:��(����0���,�@��

�D�= ! �������	
����
:��0���,�@��

�D�. ! �������	
����
:����	0���,�@��

�D�E ! �������	
����
:��� ��������,���

�D3E ! �������	
����
�����6����	

�=43
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�D3* ! �������	
����
:��������	

�=D*
�������	
����
�����

���� � ��4�
�������� � 78�/,
������� � ����

�D3. ! �������	
����
:��������	

�D*� ! �������	
����
:��(����0���,�@��

�D*) ! �������	
����
:��0���,�@��

�D** ! �������	
����
:����	0���,�@��

�D*4 ! �������	
����
:��� ��������,���

�=4=
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�DD= ! �������	
����
:��������	

�=D�
�������	
����
�����

���� � ���������
�������� � 78�/,
������� � ����

�D3� ! �������	
����
:��������	

�D34 ! �������	
����
:��0���,�@��

�D3D ! �������	
����
:��(����0���,�@��

�D33 ! �������	
����
:����	0���,�@��

�D32 ! �������	
����
:��8����$����

�D3= ! �������	
����
:��� ��������,���

�D*3 ! �������	
����
:��(����0���,�@��

�D*D ! �������	
����
:��0���,�@��

�D*= ! �������	
����
:����	0���,�@��

�=42

�������	
����
,������������

	��������� �)
��	�'�� � ����
���� � ����
������� � ����
���� � ��-���/��
����(����+ � �&����(������
�����$�����+�� � �����

�D43 ! �������	
����
:��� ��������,���

�=4E
�������	
����
�����

���� � �(������
�������� � 78�/,
������� � �����DD) ! �������	
����
:��������	

�=D)
�������	
����
�����

���� � �����
�������� � 78�/,
������� � ����

�DD3 ! �������	
����
:��������	

�DD2 ! �������	
����
:��0���,�@��

�DD. ! �������	
����
:��(����0���,�@��

�DDE ! �������	
����
:����	0���,�@��

�D3) ! �������	
����
:��8����$����

�D*. ! �������	
����
:��0���,�@��

�D*E ! �������	
����
:��(����0���,�@��

�D4) ! �������	
����
:����	0���,�@��

�=4.
�������	
����
�����

���� � �&����(������
�������� � 78�/,
������� � �����D*2 ! �������	
����
:��/���	,���

�D4= ! �������	
����
:��0���,�@��

�D42 ! �������	
����
:��(����0���,�@��

�D4. ! �������	
����
:����	0���,�@��

�232
�������	
����
8����$����

�����H����'�	/��� � �����
���+
(������
���� � �(������
������� � ����

�D4E ! �������	
����
:��8����$����

�DD� ! �������	
����
:��0���,�@��

�DD* ! �������	
����
:��(����0���,�@��

�DD4 ! �������	
����
:����	0���,�@��

�2=4
�������	
����
8����$����

�����H����'�	/��� � �����
���+
(�����
����
���� � �����
������� � ����

�DDD ! �������	
����
:��8����$����

�D4� ! �������	
����
:��0���,�@��
�D4* ! �������	
����
:��(����0���,�@��

�D44 ! �������	
����
:����	0���,�@��

�2==
�������	
����
8����$����

�����H����'�	/��� � �����
��
&����(������
���� � �&����(������
������� � ����

�D4D ! �������	
����
:��8����$����

�D2* ! �������	
����
:��(����0���,�@��

�D2� ! �������	
����
:��0���,�@��
�D24 ! �������	
����
:����	0���,�@��

�D2D ! �������	
����
:��������,���

�D23 ! �������	
����
� �
�����6����	

�=D3
�������	
����
<���@ ������� � F6�,:�8�<�85G�3*� ! �������	
����
:��6����	<���@

�3�. ! �������	
����
:��0���,�@��
�3�E ! �������	
����
:��(����0���,�@��

�3*) ! �������	
����
:����	0���,�@��

�=D=
�������	
����
� ��������(�������� ������� � ����

�3�2 ! �������	
����
<���@��������(��������

�D22 ! �������	
����
:��(����0���,�@��

�D2= ! �������	
����
:��0���,�@��

�D2. ! �������	
����
:����	0���,�@��

�=D2
�������	
����
6����	����

����� � �
�������� � ���
������� � ����

�3�= ! �������	
����
:��� �������� �D.) ! �������	
����
:��(����0���,�@��

�D2E ! �������	
����
:��0���,�@��

�D.� ! �������	
����
:����	0���,�@��

�3�3 ! �������	
����
�����6����	

�D.* ! �������	
����
:��� ��������,���

�=D.
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�3�D ! �������	
����
:��������	

�D.D ! �������	
����
:��(����0���,�@��

�D.4 ! �������	
����
:��0���,�@��

�D.3 ! �������	
����
:����	0���,�@��

�D.= ! �������	
����
:��� ��������,���

�=DE
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�3). ! �������	
����
:��������	

�=3D
�������	
����
�����

���� � ���(����+�
�������� � 78�/,
������� � ����

�3�4 ! �������	
����
:��������	

�D.. ! �������	
����
:��(����0���,�@��

�D.2 ! �������	
����
:��0���,�@��

�D.E ! �������	
����
:����	0���,�@��

�DE) ! �������	
����
:��� ��������,���

�=3)
�������	
����
�����

���� � ������
�������� � 78�/,
������� � F��(��1�8�/6�G�3)* ! �������	
����
:��������	

�=34
�������	
����
�����

���� � ��D�
�������� � 78�/,
������� � ����

�3)2 ! �������	
����
:��������	

�3)E ! �������	
����
:��0���,�@��

�3�) ! �������	
����
:��(����0���,�@��

�3�� ! �������	
����
:����	0���,�@��

�3�* ! �������	
����
:��8����$����
�DE� ! �������	
����
:��0���,�@��

�DE* ! �������	
����
:��(����0���,�@��

�DE4 ! �������	
����
:����	0���,�@���3)� ! �������	
����
:��8����$����

�=3�

�������	
����
,������������

	��������� �)
��	�'�� � ����
���� � ����
������� � ����
���� � ��-���/��
����(����+ � �����*�
�����$�����+�� � �����

�3)) ! �������	
����
:��� ��������,���

�3)4 ! �������	
����
:��0���,�@��

�3)D ! �������	
����
:��(����0���,�@��

�3)3 ! �������	
����
:����	0���,�@��

�3)= ! �������	
����
:��8����$����

�DE3 ! �������	
����
:��0���,�@��

�DE= ! �������	
����
:��(����0���,�@��
�DE2 ! �������	
����
:����	0���,�@��

�=3*
�������	
����
�����

���� � �����*�
�������� � 78�/,
������� � ����

�DED ! �������	
����
:��/���	,���

�DE. ! �������	
����
:��0���,�@���DEE ! �������	
����
:��8����$����

�343 ! �������	
����
:��(����0���,�@��

�34D ! �������	
����
:��0���,�@��

�34= ! �������	
����
:����	0���,�@��

�=3.
�������	
����
8���������� ������� � ����

�3=) ! �������	
����
:��8����������

�=3E
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����4
���
���� � ����
������� � F8�-7/�8�7/���((G

�3=� ! �������	
����
:��-���	

�==)
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����4
�*�
���� � ��*�
������� � F8�-7/�8�7/���((G

�3=* ! �������	
����
:��-���	

�==�
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����4
�4�
���� � ��4�
������� � F8�-7/�8�7/���((G

�3=4 ! �������	
����
:��-���	

�==*
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����4
�D�
���� � ��D�
������� � F8�-7/�8�7/���((G

�3=D ! �������	
����
:��-���	

�==4
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����4
��RN1�
���� � ����
������� � F8�-7/�8�7/���((G

�=4E ! �������	
����
:��6����	

�=2.
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����4
�*RN1�
���� � ��*�
������� � F8�-7/�8�7/���((G

�23D ! �������	
����
:��6����	

�2)4
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����4
�4RN1�
���� � ��4�
������� � F8�-7/�8�7/���((G

�.E. ! �������	
����
:��6����	

�24*
�������	
����
8����$����

�����H����'�	/��� � ��������
����
��������� �����
��������� �����I����4
�DRN1�
���� � ��D�
������� � F8�-7/�8�7/���((G

��))2 ! �������	
����
:��6����	

�34. ! �������	
����
:��(����0���,�@��

�342 ! �������	
����
:��0���,�@��

�34E ! �������	
����
:����	0���,�@��

�3DD ! �������	
����
8����������8�������

�3DE ! �������	
����
8����������8�������

�33D ! �������	
����
8����������8�������

�33E ! �������	
����
8����������8�������

�3D� ! �������	
����
:��(����0���,�@��

�3D) ! �������	
����
:��0���,�@��

�3D* ! �������	
����
:����	0���,�@��

�3D4 ! �������	
����
8����$����:��,���

�3D= ! �������	
����
:��(����0���,�@��

�3D3 ! �������	
����
:��0���,�@��

�3D2 ! �������	
����
:����	0���,�@��

�3D. ! �������	
����
8����$����:��,���

�33� ! �������	
����
:��(����0���,�@��

�33) ! �������	
����
:��0���,�@��

�33* ! �������	
����
:����	0���,�@��

�334 ! �������	
����
8����$����:��,���

�33= ! �������	
����
:��(����0���,�@��

�333 ! �������	
����
:��0���,�@��

�332 ! �������	
����
:����	0���,�@��

�33. ! �������	
����
8����$����:��,���

�3== ! �������	
����
:��(����0���,�@��

�3=3 ! �������	
����
:��0���,�@��

�3=2 ! �������	
����
:����	0���,�@��

�==D

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ����
������� � ����
����(����+ � ������	��

�=4. ! �������	
����
8����$����:��,���

�=D� ! �������	
����
:��(����0���,�@��

�=D) ! �������	
����
:��0���,�@��

�=D* ! �������	
����
:����	0���,�@��

�=2E

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ��*�
������� � ����
����(����+ � ������	��

�234 ! �������	
����
8����$����:��,���

�23= ! �������	
����
:��(����0���,�@��

�233 ! �������	
����
:��0���,�@��

�232 ! �������	
����
:����	0���,�@��

�2)D

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ��4�
������� � ����
����(����+ � ������	��

�.E2 ! �������	
����
8����$����:��,���

�E)) ! �������	
����
:��(����0���,�@��

�.EE ! �������	
����
:��0���,�@��

�E)� ! �������	
����
:����	0���,�@��

�244

�������	
����
6����	,���

��	�'�� � F&#<�7�G
���� � ��D�
������� � ����
����(����+ � ������	��

��))= ! �������	
����
8����$����:��,���

�3=E ! �������	
����
:��(����0���,�@��

�3=. ! �������	
����
:��0���,�@��

�32) ! �������	
����
:����	0���,�@��

�32� ! �������	
����
:��������,���

�==3
�������	
����
<���@ ������� � F6�,:�8�<�85G

�=42 ! �������	
����
:��6����	<���@

�=4D ! �������	
����
:��0���,�@��

�=43 ! �������	
����
:��(����0���,�@��

�=4= ! �������	
����
:����	0���,�@��

�===
�������	
����
� ��������(�������� ������� � ����

�3.= ! �������	
����
<���@��������(��������

�==E
�������	
����
� ��������(�������� ������� � ����

�=)� ! �������	
����
<���@��������(��������

�=2*
�������	
����
� ��������(�������� ������� � ����

�=44 ! �������	
����
<���@��������(��������

�324 ! �������	
����
:��(����0���,�@��

�32* ! �������	
����
:��0���,�@��
�32D ! �������	
����
:����	0���,�@��

�==2
�������	
����
���������

����� � �
�������� � 7/�
������� � F&�(,-7>��&��,��G�3.3 ! �������	
����
:��� ��������

�3.. ! �������	
����
:��(����0���,�@��

�3.2 ! �������	
����
:��0���,�@��

�3.E ! �������	
����
:����	0���,�@��

�=2)
�������	
����
���������

����� � �
�������� � 7/�
������� � F&�(,-7>��&��,��G

�=)) ! �������	
����
:��� ��������

�=)4 ! �������	
����
:��(����0���,�@��

�=)* ! �������	
����
:��0���,�@��

�=)D ! �������	
����
:����	0���,�@��

�=24
�������	
����
���������

����� � *
�������� � ((79/
������� � �����=4* ! �������	
����
:��� ��������

�32= ! �������	
����
:��(����0���,�@��
�323 ! �������	
����
:��0���,�@��

�322 ! �������	
����
:����	0���,�@��

�32. ! �������	
����
:��� ��������,���

�==.
�������	
����
�����

���� � ����
�������� � 78�/,
������� � �����3.D ! �������	
����
:��������	

�32E ! �������	
����
:��0���,�@��

�3.) ! �������	
����
:��(����0���,�@��

�3.� ! �������	
����
:����	0���,�@��

�3.* ! �������	
����
:��� ��������,���

�3.4 ! �������	
����
:��8����$����

�3E� ! �������	
����
:��(����0���,�@��

�3E) ! �������	
����
:��0���,�@��

�3E* ! �������	
����
:����	0���,�@��

�3E4 ! �������	
����
:��� ��������,���

�=2�
�������	
����
�����

���� � ��*�
�������� � 78�/,
������� � �����3EE ! �������	
����
:��������	 �3ED ! �������	
����
:��0���,�@��

�3E3 ! �������	
����
:��(����0���,�@��

�3E= ! �������	
����
:����	0���,�@��

�3E2 ! �������	
����
:��� ��������,���

�3E. ! �������	
����
:��8����$����

�=)= ! �������	
����
:��(����0���,�@��

�=)3 ! �������	
����
:��0���,�@��

�=)2 ! �������	
����
:����	0���,�@��

�=). ! �������	
����
:��� ��������,���

�=2D
�������	
����
�����

���� � ��4�
�������� � 78�/,
������� � �����=�D ! �������	
����
:��������	

�=23
�������	
����
���������

����� � *
�������� � 6#�,
������� � ����

�=4� ! �������	
����
:��������	

�=)E ! �������	
����
:��0���,�@��

�=�) ! �������	
����
:��(����0���,�@��

�=�� ! �������	
����
:����	0���,�@�� �=�* ! �������	
����
:��� ��������,���

�=�4 ! �������	
����
:��8����$����

�=�= ! �������	
����
:��(����0���,�@��

�=�3 ! �������	
����
:��0���,�@��

�=�2 ! �������	
����
:����	0���,�@��

�=�. ! �������	
����
:��� ��������,���

�=2=
�������	
����
�����

���� � ��4�
�������� � 78�/,
������� � �����=*D ! �������	
����
:��������	

�=22
�������	
����
�����

���� � ��D�
�������� � 78�/,
������� � ����

�=4) ! �������	
����
:��������	

�=�E ! �������	
����
:��0���,�@��

�=*) ! �������	
����
:��(����0���,�@��

�=*� ! �������	
����
:����	0���,�@��

�=** ! �������	
����
:��� ��������,���

�=*4 ! �������	
����
:��8����$����

�=*3 ! �������	
����
:��0���,�@��

�=*= ! �������	
����
:��(����0���,�@��

�=*2 ! �������	
����
:����	0���,�@��
�=*. ! �������	
����
:��� ��������,���

�=*E ! �������	
����
:��8����$����

�=DD ! �������	
����
:��(����0���,�@��

�=D4 ! �������	
����
:��0���,�@��

�=D3 ! �������	
����
:����	0���,�@��

�=D= ! �������	
����
:��������,���

�=.)
�������	
����
<���@ ������� � F6�,:�8�<�85G

�23* ! �������	
����
:��6����	<���@

�2DE ! �������	
����
:��0���,�@��

�23) ! �������	
����
:��(����0���,�@��

�23� ! �������	
����
:����	0���,�@��

�=.�
�������	
����
7�(�������� ������� � �����2D. ! �������	
����
<���@��������(��������

�=D2 ! �������	
����
:��0���,�@��

�=D. ! �������	
����
:��(����0���,�@��

�=DE ! �������	
����
:����	0���,�@��

�=.*
�������	
����
���������

����� � *
�������� � 9,
������� � ����

�=== ! �������	
����
7�(��������:��,�������������	�����

�=.=
�������	
����
<���@ ������� � F#/?/�%/�<���?G

�=.3 ! �������	
����
:��,���<���@

�=E)
�������	
����
7�(�������� ������� � ����

�2D2 ! �������	
����
:������(��������

�=3� ! �������	
����
:��(����0���,�@��

�=3) ! �������	
����
:��0���,�@��

�=3* ! �������	
����
:����	0���,�@��

�=.4

�������	
����
&��������,���

	��������� �)
��	�'�� � ����
���� � ����
������� � ����
���� � <����/
����(����+ � �$�������
�����$�����+�� � �����

�=3D ! �������	
����
:��� ��������,���

�=.D
�������	
����
�����

���� � ����
�������� � 78�/,
������� � ����

�==) ! �������	
����
:��������	

�=.3
�������	
����
�������

�������� � 7/,��7,���
������� � ����
����� � �)�

�==3 ! �������	
����
:��������	

�=.* ! �������	
����
:��0���,�@��
�=.4 ! �������	
����
:��(����0���,�@��
�=.D ! �������	
����
:����	0���,�@��

�=.2
�������	
����
� ��������(�������� ������� � ����

�=.� ! �������	
����
<���@��������(��������

�=.= ! �������	
����
:��0���,�@��

�=.2 ! �������	
����
:��(����0���,�@��

�=.. ! �������	
����
:����	0���,�@��

�=E�
�������	
����
���������

����� � *
�������� � �,
������� � ����

�2)D ! �������	
����
7�(��������:��,�������������	�����

�=ED
�������	
����
<���@ ������� � F#/?/�%/�<���?G

�2D= ! �������	
����
:��,���<���@

�=34 ! �������	
����
:��0���,�@��

�=33 ! �������	
����
:��0���,�@��

�=3= ! �������	
����
:��(����0���,�@��

�=32 ! �������	
����
:����	0���,�@��

�=3. ! �������	
����
:��� ��������,���

�=3E ! �������	
����
:��8����$����

�==� ! �������	
����
:��0���,�@��

�==* ! �������	
����
:��(����0���,�@��
�==4 ! �������	
����
:����	0���,�@��

�==D ! �������	
����
:��� ��������,���

�==. ! �������	
����
:��(����0���,�@��

�==2 ! �������	
����
:��0���,�@��

�==E ! �������	
����
:����	0���,�@��

�=..
�������	
����
���������

����� � �
�������� � 7/�
������� � F&�(,-7>��&��,��G

�=.) ! �������	
����
:��� ��������

�=2� ! �������	
����
:��(����0���,�@��

�=2) ! �������	
����
:��0���,�@��

�=2* ! �������	
����
:����	0���,�@��

�=24 ! �������	
����
:��� ��������,���

�=.E
�������	
����
�����

���� � ��*�
�������� � 78�/,
������� � ����

�=2E ! �������	
����
:��������	

�=2D ! �������	
����
:��0���,�@��
�=23 ! �������	
����
:��(����0���,�@��

�=2= ! �������	
����
:����	0���,�@��

�=22 ! �������	
����
:��� ��������,���

�=2. ! �������	
����
:��8����$����

�=E) ! �������	
����
:��(����0���,�@��

�=.E ! �������	
����
:��0���,�@��

�=E� ! �������	
����
:����	0���,�@��

�=E* ! �������	
����
:��� ��������,���

�=E*
�������	
����
�����

���� � ��4�
�������� � 78�/,
������� � �����=E. ! �������	
����
:��������	

�=E4
�������	
����
�������

�������� � 7/,��7,���
������� � ����
����� � �)�

�2)4 ! �������	
����
:��������	

�2D4 ! �������	
����
:��0���,�@��
�2DD ! �������	
����
:��(����0���,�@��

�2D3 ! �������	
����
:����	0���,�@��

�=E3
�������	
����
(K����(�������� ������� � ����

�2D* ! �������	
����
<���@��������(��������

�=E4 ! �������	
����
:��0���,�@��

�=ED ! �������	
����
:��(����0���,�@��

�=E3 ! �������	
����
:����	0���,�@��

�=E= ! �������	
����
:��� ��������,���

�=E2 ! �������	
����
:��8����$����

�=EE ! �������	
����
:��0���,�@��

�2)) ! �������	
����
:��(����0���,�@��

�2)� ! �������	
����
:����	0���,�@��

�2)* ! �������	
����
:��� ��������,���

�2)3 ! �������	
����
:��0���,�@��

�2)= ! �������	
����
:��(����0���,�@��

�2)2 ! �������	
����
:����	0���,�@��

�=E=
�������	
����
�����

���� � ��D�
�������� � 78�/,
������� � ����

�2�4 ! �������	
����
����@�(K����� ��������

�=E2
�������	
����
����(�������� ������� � ����

�2D� ! �������	
����
(K����(��������������������(��������

�2). ! �������	
����
:��0���,�@��

�2)E ! �������	
����
:��(����0���,�@��

�2�) ! �������	
����
:����	0���,�@��

�2�� ! �������	
����
:��� ��������,���

�2�* ! �������	
����
:��8����$�����2�D ! �������	
����
:��0���,�@��

�2�3 ! �������	
����
:��(����0���,�@��

�2�= ! �������	
����
:����	0���,�@��

�=E.
�������	
����
�������

�������� � 7/,��7,���
������� � ����
����� � ���

�2*� ! �������	
����
6�������������

�=EE
�������	
����
� ��������(�������� ������� � ����

�24= ! �������	
����
����(����������������(��������

�2)*
�������	
����
<���@ ������� � �����2D) ! �������	
����
����(����������������(��������

�2�2 ! �������	
����
:��0���,�@��

�2�. ! �������	
����
:��(����0���,�@��

�2�E ! �������	
����
:����	0���,�@��

�2*) ! �������	
����
:��� ��������,���

�2*4 ! �������	
����
:��(����0���,�@��

�2** ! �������	
����
:��0���,�@��

�2*D ! �������	
����
:����	0���,�@��

�2))
�������	
����
���������

����� � �
�������� � 8��
������� � F&�(,-7>��&��,��G

�243 ! �������	
����
:��� ��������

�242 ! �������	
����
:��0���,�@��

�24. ! �������	
����
:��(����0���,�@��

�24E ! �������	
����
:����	0���,�@��

�2*= ! �������	
����
:��(����0���,�@��

�2*3 ! �������	
����
:��0���,�@��

�2*2 ! �������	
����
:����	0���,�@��

�2*. ! �������	
����
:��� ��������,���

�2)�
�������	
����
�����

���� � ��D�
�������� � 78�/,
������� � ����

�24D ! �������	
����
:��������	

�2*E ! �������	
����
:��0���,�@��

�24) ! �������	
����
:��(����0���,�@��

�24� ! �������	
����
:����	0���,�@��

�24* ! �������	
����
:��� ��������,���

�244 ! �������	
����
:��8����$����

�23E ! �������	
����
:��(����0���,�@��

�23. ! �������	
����
:��0���,�@��

�2=) ! �������	
����
:����	0���,�@��

�2=� ! �������	
����
:��������,���

�2)3
�������	
����
<���@ ������� � F6�,:�8�<�85G

�.E= ! �������	
����
:��6����	<���@

�23E
�������	
����
8����$����

�����H����'�	/��� � �����
���+
6���
�$�R7N7�
���� � ��$��
������� � ����

�2=4 ! �������	
����
� �
�����6����	

�2=*
�������	
����
8����$����

�����H����'�	/��� � �����
���+
6���
����R8N8�
���� � ������
������� � ����

�2=D ! �������	
����
� �
�����6����	

�2=D
�������	
����
8����$����

�����H����'�	/��� � �����
���+
6���
�Q��R8N8�
���� � ��Q���
������� � ����

�2=* ! �������	
����
� �
�����6����	

�.E4 ! �������	
����
:��0���,�@��

�.ED ! �������	
����
:��(����0���,�@��

�.E3 ! �������	
����
:����	0���,�@��

�2)=
�������	
����
� ��������(�������� ������� � ����

�.)) ! �������	
����
<���@��������(��������

�2�D
�������	
����
� ��������(�������� ������� � ����

�.4* ! �������	
����
<���@��������(��������

�2*)
�������	
����
� ��������(�������� ������� � ����

�.=D ! �������	
����
<���@��������(��������

�2*=
�������	
����
� ��������(�������� ������� � ����

�.E* ! �������	
����
<���@��������(��������

�2== ! �������	
����
:��(����0���,�@��

�2=3 ! �������	
����
:��0���,�@��

�2=2 ! �������	
����
:����	0���,�@��

�2)2
�������	
����
6����	����

����� � *
�������� � ���
������� � ����

�2EE ! �������	
����
:��� ��������

�.)* ! �������	
����
:��(����0���,�@��

�.)� ! �������	
����
:��0���,�@��

�.)4 ! �������	
����
:����	0���,�@��

�2�3
�������	
����
6����	����

����� � *
�������� � ���
������� � ����

�.4� ! �������	
����
:��� ��������

�.4D ! �������	
����
:��(����0���,�@��

�.44 ! �������	
����
:��0���,�@��

�.43 ! �������	
����
:����	0���,�@��

�2*�
�������	
����
6����	����

����� � *
�������� � ���
������� � ����

�.=4 ! �������	
����
:��� ��������

�.== ! �������	
����
:��(����0���,�@��

�.=3 ! �������	
����
:��0���,�@��

�.=2 ! �������	
����
:����	0���,�@��

�2*2
�������	
����
6����	����

����� � *
�������� � ���
������� � ����

�.E� ! �������	
����
:��� ��������

�2=E ! �������	
����
:��(����0���,�@��

�2=. ! �������	
����
:��0���,�@��

�22) ! �������	
����
:����	0���,�@��

�2E. ! �������	
����
�����6����	

�2).

�������	
����
&��������,���

	��������� �)
��	�'�� � ����
���� � ����
������� � F,5&��(,�7/9�,5&�G
���� � 8�#<��
����(����+ � �	��$���
�����$�����+�� � �����

�22* ! �������	
����
:��� ��������,���

�2)E
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�2E� ! �������	
����
:��������	

�2�4
�������	
����
�����

���� � ����
�������� � 78�/,
������� � ����

�2E2 ! �������	
����
:��������	

�22� ! �������	
����
:��0���,�@��

�22D ! �������	
����
:��(����0���,�@��

�224 ! �������	
����
:��0���,�@��

�223 ! �������	
����
:����	0���,�@��

�22= ! �������	
����
:��� ��������,��� �2�)
�������	
����
�����

���� � �6����
�������� � 78�/,
������� � ����

�2.3 ! �������	
����
:��������	

�2�*
�������	
����
�����

���� � ��Q���
�������� � 78�/,
������� � ����

�2E) ! �������	
����
:��������	

�2E* ! �������	
����
:��0���,�@��

�2E4 ! �������	
����
:��(����0���,�@��

�2ED ! �������	
����
:����	0���,�@��

�2E3 ! �������	
����
:��� ��������,���

�2E= ! �������	
����
:��8����$����

�222 ! �������	
����
:��0���,�@��

�22. ! �������	
����
:��(����0���,�@��

�22E ! �������	
����
:����	0���,�@��

�2��

�������	
����
�����

��	�'�� � ����
���� � �6����
������� � ����
����(����+ � �������

�2.4 ! �������	
����
:��� ��������,���

�23=
�������	
����
8����$����

�����H����'�	/��� � �����
���+
6����
���� � �6����
������� � ����

�2.D ! �������	
����
:��8����$����

�2.= ! �������	
����
:��0���,�@��
�2.2 ! �������	
����
:��(����0���,�@��
�2.. ! �������	
����
:����	0���,�@��
�2.E ! �������	
����
:��8����$����

�2.) ! �������	
����
:��0���,�@��

�2.� ! �������	
����
:��(����0���,�@��

�2.* ! �������	
����
:����	0���,�@��

�.)3 ! �������	
����
:��(����0���,�@��

�.)D ! �������	
����
:��0���,�@��

�.)= ! �������	
����
:����	0���,�@��

�.)2 ! �������	
����
:��� ��������,���

�.4) ! �������	
����
�����6����	

�2�=
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�.*4 ! �������	
����
:��������	

�2�E
�������	
����
�����

���� � ��*�
�������� � 78�/,
������� � ����

�.*E ! �������	
����
:��������	

�.)E ! �������	
����
:��(����0���,�@��

�.). ! �������	
����
:��0���,�@��

�.�) ! �������	
����
:����	0���,�@��

�.�� ! �������	
����
:��� ��������,���

�2�2
�������	
����
�����

���� � �6����
�������� � 78�/,
������� � ����

�.�2 ! �������	
����
:��������	

�2�.
�������	
����
�����

���� � ��$��
�������� � 78�/,
������� � ����

�.** ! �������	
����
:��������	

�.*D ! �������	
����
:��0���,�@��
�.*3 ! �������	
����
:��(����0���,�@��

�.*= ! �������	
����
:����	0���,�@��

�.*2 ! �������	
����
:��� ��������,���

�.*. ! �������	
����
:��8����$����

�.�* ! �������	
����
:��0���,�@��

�.�4 ! �������	
����
:��(����0���,�@��

�.�D ! �������	
����
:����	0���,�@��

�.�3 ! �������	
����
:��� ��������,���

�.�= ! �������	
����
:��8����$����

�.�. ! �������	
����
:��0���,�@��

�.�E ! �������	
����
:��(����0���,�@��

�.*) ! �������	
����
:����	0���,�@��

�.*� ! �������	
����
:��8����$����

�.42 ! �������	
����
:��(����0���,�@��

�.4= ! �������	
����
:��0���,�@��

�.4. ! �������	
����
:����	0���,�@��
�.=* ! �������	
����
�����6����	

�.4E ! �������	
����
:��� ��������,���

�2**
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�.33 ! �������	
����
:��������	

�2*3
�������	
����
�����

���� � ��4�
�������� � 78�/,
������� � ����

�.=� ! �������	
����
:��������	

�.D� ! �������	
����
:��(����0���,�@��

�.D) ! �������	
����
:��0���,�@��

�.D* ! �������	
����
:����	0���,�@��

�.D4 ! �������	
����
:��� ��������,���

�2*4
�������	
����
�����

���� � �6����
�������� � 78�/,
������� � ����

�.DE ! �������	
����
:��������	

�2*D
�������	
����
�����

���� � ������
�������� � 78�/,
������� � ����

�.3D ! �������	
����
:��������	

�.3= ! �������	
����
:��0���,�@��

�.32 ! �������	
����
:��(����0���,�@��

�.3. ! �������	
����
:����	0���,�@��

�.3E ! �������	
����
:��� ��������,���

�.=) ! �������	
����
:��8����$����

�.DD ! �������	
����
:��0���,�@��
�.D3 ! �������	
����
:��(����0���,�@��
�.D= ! �������	
����
:����	0���,�@��

�.D2 ! �������	
����
:��� ��������,���

�.D. ! �������	
����
:��8����$����

�.3) ! �������	
����
:��0���,�@��
�.3� ! �������	
����
:��(����0���,�@��

�.3* ! �������	
����
:����	0���,�@��

�.34 ! �������	
����
:��8����$����

�.=E ! �������	
����
:��(����0���,�@��

�.=. ! �������	
����
:��0���,�@��

�.2) ! �������	
����
:����	0���,�@��

�2*.
�������	
����
���������

����� � *
�������� � &�7/,
������� � ����

�..D ! �������	
����
:��������	

�24�
�������	
����
�����

���� � ��D�
�������� � 78�/,
������� � ����

�.E) ! �������	
����
:��������	

�.2* ! �������	
����
:��(����0���,�@��

�.2� ! �������	
����
:��0���,�@��

�.24 ! �������	
����
:����	0���,�@��

�2*E
�������	
����
�����

���� � �6����
�������� � 78�/,
������� � ����

�.2E ! �������	
����
:��������	

�24)
�������	
����
�����

���� � ����������� ����
�������� � 78�/,
������� � ����

�..4 ! �������	
����
:��������	

�..3 ! �������	
����
:��0���,�@��

�..= ! �������	
����
:��(����0���,�@��

�..2 ! �������	
����
:����	0���,�@��

�... ! �������	
����
:��� ��������,���

�..E ! �������	
����
:��8����$����

�.2D ! �������	
����
:��0���,�@��

�.23 ! �������	
����
:��(����0���,�@��

�.2= ! �������	
����
:����	0���,�@��

�.22 ! �������	
����
:��� ��������,���

�.2. ! �������	
����
:��8����$����

�..) ! �������	
����
:��0���,�@��

�..� ! �������	
����
:��(����0���,�@��
�..* ! �������	
����
:����	0���,�@��

�E)4 ! �������	
����
:��(����0���,�@��

�E)* ! �������	
����
:��0���,�@��
�E)D ! �������	
����
:����	0���,�@��

�E)3 ! �������	
����
:��������,���

�24D
�������	
����
<���@ ������� � F6�,:�8�<�85G

��))3 ! �������	
����
:��6����	<���@

��))* ! �������	
����
:��0���,�@��

��))4 ! �������	
����
:��(����0���,�@��

��))D ! �������	
����
:����	0���,�@��

�243
�������	
����
8���������� ������� � ����

�E*E ! �������	
����
<���@��������(��������

�2D)
�������	
����
8���������� ������� � ����

�E34 ! �������	
����
<���@��������(��������

�2D3
�������	
����
8���������� ������� � ����

�E22 ! �������	
����
<���@��������(��������

�23)
�������	
����
8���������� ������� � ����

��))� ! �������	
����
<���@��������(��������

�E)2 ! �������	
����
:��(����0���,�@��

�E)= ! �������	
����
:��0���,�@��

�E). ! �������	
����
:����	0���,�@��

�24=
�������	
����
8����$����

�����H����'�	/��� � ����
���� � ����
������� � F8�-7/�8�7/�6�,:�8G

�E*. ! �������	
����
8����������8�������

�E4� ! �������	
����
:��(����0���,�@��

�E4) ! �������	
����
:��0���,�@��

�E4* ! �������	
����
:����	0���,�@��

�2D�
�������	
����
8����$����

�����H����'�	/��� � ��*�
���� � ��*�
������� � F8�-7/�8�7/�6�,:�8G

�E3* ! �������	
����
8����������8�������

�E33 ! �������	
����
:��(����0���,�@��

�E3D ! �������	
����
:��0���,�@��

�E3= ! �������	
����
:����	0���,�@��

�2D=
�������	
����
8����$����

�����H����'�	/��� � ��4�
���� � ��4�
������� � F8�-7/�8�7/�6�,:�8G�E2= ! �������	
����
8����������8�������

�E2E ! �������	
����
:��(����0���,�@��

�E2. ! �������	
����
:��0���,�@��

�E.) ! �������	
����
:����	0���,�@��

�23�
�������	
����
8����$����

�����H����'�	/��� � ��D�
���� � ��D�
������� � F8�-7/�8�7/�6�,:�8G��))) ! �������	
����
8����������8�������

�E�) ! �������	
����
:��(����0���,�@��

�E)E ! �������	
����
:��0���,�@��

�E�� ! �������	
����
:����	0���,�@��

�242

�������	
����
,������������

	��������� �)
��	�'�� � ����
���� � ����
������� � ����
���� � ��-���/��
����(����+ � ��$�����
�����$�����+�� � �����

�E*� ! �������	
����
8����$����:��,���

�24E
�������	
����
�����

���� � ����
�������� � 78�/,
������� � ����

�E*2 ! �������	
����
:��7���1����

�E�4 ! �������	
����
:��0���,�@��

�E�D ! �������	
����
:��(����0���,�@��

�E�3 ! �������	
����
:����	0���,�@��

�24.
�������	
����
�����

���� � ��$�����
�������� � 78�/,
������� � ����

�E�* ! �������	
����
:��/���	,���

�E** ! �������	
����
:��0���,�@��

�E*4 ! �������	
����
:��(����0���,�@��

�E*D ! �������	
����
:����	0���,�@��

�E*3 ! �������	
����
:��� ��������,���

�E*= ! �������	
����
:��8����$����

�E�= ! �������	
����
:��0���,�@��

�E�2 ! �������	
����
:��(����0���,�@��

�E�. ! �������	
����
:����	0���,�@��

�E�E ! �������	
����
:��� ��������,���

�E*) ! �������	
����
:��8����$����

�E4D ! �������	
����
:��(����0���,�@��

�E44 ! �������	
����
:��0���,�@��

�E43 ! �������	
����
:����	0���,�@��

�2D*

�������	
����
,������������

	��������� �)
��	�'�� � ����
���� � ����
������� � ����
���� � ��-���/��
����(����+ � ��$�����
�����$�����+�� � �����

�ED3 ! �������	
����
8����$����:��,���

�2DD
�������	
����
�����

���� � ��*�
�������� � 78�/,
������� � ����

�E3� ! �������	
����
:��7���1����

�E42 ! �������	
����
:��0���,�@��

�E4. ! �������	
����
:��(����0���,�@��

�E4E ! �������	
����
:����	0���,�@��

�2D4
�������	
����
�����

���� � ��$�����
�������� � 78�/,
������� � ����

�E4= ! �������	
����
:��/���	,���

�ED= ! �������	
����
:��0���,�@��

�ED2 ! �������	
����
:��(����0���,�@��

�ED. ! �������	
����
:����	0���,�@��

�EDE ! �������	
����
:��� ��������,���

�E3) ! �������	
����
:��8����$����

�ED) ! �������	
����
:��0���,�@��
�ED� ! �������	
����
:��(����0���,�@��
�ED* ! �������	
����
:����	0���,�@��

�ED4 ! �������	
����
:��� ��������,���

�EDD ! �������	
����
:��8����$����

�E3. ! �������	
����
:��(����0���,�@��
�E32 ! �������	
����
:��0���,�@��

�E3E ! �������	
����
:����	0���,�@��

�2D2

�������	
����
,������������

	��������� �)
��	�'�� � ����
���� � ����
������� � ����
���� � ��-���/��
����(����+ � ��$�����
�����$�����+�� � �����

�E=E ! �������	
����
8����$����:��,���

�2DE
�������	
����
�����

���� � ��4�
�������� � 78�/,
������� � ����

�E23 ! �������	
����
:��7���1����

�E=� ! �������	
����
:��0���,�@��

�E=* ! �������	
����
:��(����0���,�@��

�E=4 ! �������	
����
:����	0���,�@��

�2D.
�������	
����
�����

���� � ��$�����
�������� � 78�/,
������� � ����

�E=) ! �������	
����
:��/���	,���

�E2) ! �������	
����
:��0���,�@��

�E2� ! �������	
����
:��(����0���,�@��

�E2* ! �������	
����
:����	0���,�@��

�E24 ! �������	
����
:��� ��������,���

�E2D ! �������	
����
:��8����$����

�E=D ! �������	
����
:��0���,�@��

�E=3 ! �������	
����
:��(����0���,�@��

�E== ! �������	
����
:����	0���,�@��

�E=2 ! �������	
����
:��� ��������,���

�E=. ! �������	
����
:��8����$����

�E.* ! �������	
����
:��(����0���,�@��

�E.� ! �������	
����
:��0���,�@��

�E.4 ! �������	
����
:����	0���,�@��

�23*

�������	
����
,������������

	��������� �)
��	�'�� � ����
���� � ����
������� � ����
���� � ��-���/��
����(����+ � ��$�����
�����$�����+�� � �����

�EE4 ! �������	
����
8����$����:��,���

�23D
�������	
����
�����

���� � ��D�
�������� � 78�/,
������� � ����

�EEE ! �������	
����
:��7���1����

�E.3 ! �������	
����
:��0���,�@��

�E.= ! �������	
����
:��(����0���,�@��

�E.2 ! �������	
����
:����	0���,�@��

�234
�������	
����
�����

���� � ��$�����
�������� � 78�/,
������� � ����

�E.D ! �������	
����
:��/���	,���

�EED ! �������	
����
:��0���,�@��

�EE3 ! �������	
����
:��(����0���,�@��

�EE= ! �������	
����
:����	0���,�@��

�EE2 ! �������	
����
:��� ��������,���

�EE. ! �������	
����
:��8����$����

�E.. ! �������	
����
:��0���,�@��

�E.E ! �������	
����
:��(����0���,�@��

�EE) ! �������	
����
:����	0���,�@��

�EE� ! �������	
����
:��� ��������,���

�EE* ! �������	
����
:��8����$����

�2=2
�������	
����
0���&��@�+�

���� � ��
������� � ����

�2=.
�������	
����
0���&��@�+�

���� � ���������
������� � ����

��)�E ! �������	
����
&��@�+����������������

�22�
�������	
����
0���&��@�+�

���� � ������
������� � ����

��)*D ! �������	
����
&��@�+����������������

�2=E
�������	
����
0���&��@�+�

���� � ������
������� � ����

��)�. ! �������	
����
&��@�+����������������

�22*
�������	
����
0���&��@�+�

���� � ����+�
������� � ����

��)*4 ! �������	
����
&��@�+����������������

�22)
�������	
����
0���&��@�+�

���� � ���������� ������
������� � ����

��)�2 ! �������	
����
&��@�+����������������

��)�= ! �������	
����
&��@�+����������������

��)*� ! �������	
����
&��@�+����������������

��)*) ! �������	
����
&��@�+����������������

��)** ! �������	
����
&��@�+����������������

AST : SOAMIG MM

773 vertices, 1025 edges (w/ token data)

Package: “metrics”

Package: “java”

Package: “CohesionExample”

File: “CohesionExample.java”

Class: “CohesionExample”

Class: “Case1”

Method: “m1”

Method: “m2”

Method: “m3”

Method: “m4”

Class: “Case2”

Hier. Structure : Q-MIG DM

22 elements

80

657

11

4

591

91

4

3

Measured ValueAST Element ID

2

6

3

643

543

3

Metric Name

543

3

572

0
546

610

5
583

…

546

SLOC

732

…

703

21

603

3630

35

6

19

3

NumberMethods

678

4

663

566

553

…

Metric Values : Map

418 metric values

Metric Report : Q-MIG DM

Package: “metrics”

Package: “java”

Package: “CohesionExample”

File: “CohesionExample.java”

Class: “CohesionExample”

Class: “Case1”

Method: “m1”

Method: “m2”

Class: “Case2”

SLOC = 91

NumberMethods = 4

SLOC = 21

SLOC = 80

NumberMethods = 0

SLOC = 4

SLOC = 3

NumberMethods = 4

NumberDistinctOperators=16

NumberDistinctOperands=33

22 elements w/ 418 metric values

Figure 2.5: Base metric calculation example artifacts.

16

2.3. Challenges

disclosed. In contrast, the Java metric calculator was developed from scratch by Uni-
versity of Oldenburg’s software engineering group, internally using a TGraph-based
representation [Ebert, Riediger, and Winter, 2008] of the AST. Metrics are expressed
as GReQL queries (Graph Repository Query Language). Each metric is coded for a
particular level in the system hierarchy, e.g. package, class, or method. Therefore, the
input list of metrics also has to be specific about this, and list a metric together with,
and once for each granularity level it should be evaluated over. In the actual imple-
mentation though, the metric calculator has been hard-wired to always loop through
all defined metrics. The result of a single metric evaluation is a map of code element
references to corresponding metric values.

In the final step, the metric values are written into the hierarchical system repre-
sentation. The result is an instance of the Q-MIG datamodel, which is represented
internally as another TGraph, and is written out as XML, conforming to the correspond-
ing exchange file format.

Figure 2.5 shows examples of the artifacts that are produced during a run of the
base metric calculation toolchain. The system being measured consists only of a very
small Java source code file called CohesionExample, an example taken from the Q-
MIG test suite, originally intended to test the cohesion metrics of the tools. The parser
produces an abstract syntax graph (an abstract syntax tree with additional crosslinks).
Full token information from lexical analysis is preserved in this structure, required for
certain metrics. This makes it exceptionally large, which is also why it is only depicted
as “10,000 foot” overview – even zooming in would yield little insight, as vertices
carrying fine-grained token information are cluttering the view towards more interesting
elements and relationships. These central, structural elements are extracted in the next
step, depicted as tree structure.The actual metric calculation also uses the AST as input
and produces a table mapping metric values to the AST elements they were measured
on by referring to their IDs. Finally, the latter two results are merged into a single result
by attaching the metric values to the corresponding elements in the hierarchical system
representation, yielding the metric report for the CohesionExample system.

2.3 Challenges

As with every project, the overall requirements evolved as it progressed, e.g. due to
new insights and added practical constraints. To cope with this, the software indus-
try in general has moved away from rigid, waterfall-like development models, towards
more agile methods, which was also practiced in Q-MIG. However, the efforts towards
building the quality control center toolchain proved to be a major bottleneck, consider-
ably impeding overall flexibility and constricting the available options for action. The
following sections list examples of concrete challenges encountered during the project.

17

2. The Q-MIG Project

2.3.1 Integrating Existing Tools

The most overt challenge was the selection and integration of existing tools. Even
though many tools for software metric calculation and analysis were readily available,
it was decided to recreate most of this functionality from scratch. One aspect was that
using existing tools would somewhat limit the control over the precise functionality,
e.g. the kind and extent of the available metrics, and the exact calculation rules used
for them. This was traded off against the development effort of creating custom tools.
However, the decisive reason to develop custom tools for most of the functionality was
tool interoperability, and the required integration effort.
The metric tools considered for use were found to be self-contained tool suites,

meant to be used on their own. Stovepipe systems like this are hard to integrate [Boehm,
2006]. The only case in which an existing tool was chosen was to calculate code clones.
Creating a custom code clone detector was considered too expensive, so existing tools
were researched and evaluated under Q-MIG-specific criteria, a task of non-negligible
overhead in itself. The results were compiled in an internal report [Pandey, 2014]. After
an initial, broad overview, most tools were excluded quickly, mostly due to a general
lack of interoperability, or technical implementation choices too different fromQ-MIG’s
technical requirements that would have incurred major integration hurdles. Juergens,
Deißenböck, and Hummel [2009] come to a similar conclusion regarding code clone
detection tools presented in scientific publications, reporting that the tools themselves
are either closed source, inextensible, or not publicly available, at all.
Therefore, only three tools were considered more closely, ConQAT [Juergens,

Deißenböck, and Hummel, 2009], CCFinderX [Kamiya, Kusumoto, and Inoue, 2002],
and DuDe [Wettel and Marinescu, 2005]. The latter was selected, almost exclusively
on interoperability grounds. That said, DuDe has not been designed for interoper-
ability, offering a self-contained solution with a graphical user interface, but no pro-
gramming interface. However, it is Java-based, which allowed for a rather immediate,
programmatic integration with the rest of the toolchain. This still required to review
and understand the tool’s implementation internals, and use them to create an adapter
to the rest of the Q-MIG toolchain, a use case the tool clearly was not build for.

2.3.2 Reusing Custom Tools

The Q-MIG toolchain was created incrementally as a result of an iterative process, a
sound practice, particularly considering the innovative nature of the project. An early
increment of the Java metric calculator only supported calculating metric values for
the analyzed system as a whole. With later increments, granularity levels were intro-
duced, allowing the calculation of metric values for individual parts of a system, such
as methods, classes, and packages.
The addition of these features required quite heavy refactoring, possibly due to

insufficient up-front architectural design to anticipate these features, an issue often en-

18

2.3. Challenges

countered within the scope of agile development processes [Knodel and Naab, 2014].
More significantly, these features were integrated quite tightly within the metric calcu-
lator, which made sense for the project’s use cases: they always required a complete
analysis of a given software system, with metric values calculated for all sub-artifacts
on all granularity levels.
Only later it was realized (when recreating the toolchain using the approach devel-

oped in this thesis, see Chapter 15) that these design decisions considerably reduced
the metric calculator’s generic reuse value. While not really a challenge during Q-MIG,
potential future projects requiring metric calculation would have to heavily adapt the
tool, or it may not even be effectively reusable, at all.

2.3.3 Supporting a Distributed Process

Q-MIG also required the integration with data from the existing migration toolchain of
the project’s industry partner pro et con. Due to non-disclosure agreements, it turned
out that pro et con would not be able to provide any real-world COBOL or migrated
Java programs to evaluate metrics on. Therefore, parts of the toolchain had to be decou-
pled and relocated to the premises of pro et con, and additional interfaces had to be
introduced to exchange measurement data transparently between the project partners.
Non-disclosure concerns are common in reengineering and migration projects, as

the corporations owning the legacy systems being modernized view them as important
assets facilitating their competitiveness. Projects including external partners, e.g. con-
sultancies and outsourcing service providers, will therefore have to take organizational,
process, and technical measures to ensure data security, or perform certain tasks only
on the premises of the company owning the legacy systems under modernization.
In Q-MIG, fully integrating and deploying the toolchain to a distributed environ-

ment was infeasible within the frame of the project, both from an organizational (travel
expenses, communication overhead) and a technical perspective (additional effort to
set up a distributed computing environment). Invocation of remote toolchain parts was
therefore not automated, and always required human intervention and coordination
with the project partner.
This turned out to be a major impediment, since the kind and extent of the data

exchanged between Q-MIG’s partners evolved with the gaining of new insights as the
project advanced, but the lack of automation did not allow for fast turnarounds, and the
physical distance limited the ability to experiment, and debug the evolving toolchain.

2.3.4 Supporting Domain Experts

The central objective of software evolution projects is not tool integration – it is evolv-
ing (reengineering, migrating, modernizing) software systems. In Q-MIG, the main
research questions revolved around comparative software quality analysis. Therefore,
the team included data scientists, who were less experienced as programmers.

19

2. The Q-MIG Project

Designing data analysis experiments includes setting up the tool support, however.
Lacking interoperable tools or an integration framework, this is a task that requires pro-
gramming expertise. To integrate third-party tools, familiarity with all the technologies
underlying each and every tool is required, or has to be acquired. For custom tool
implementation, solid software development skills are even more essential, while also
requiring expertise regarding the software evolution technique to be realized.
In Q-MIG, it proved hard to break work packages down into tasks appropriate to

the skill set of the different team members. This resulted in team members waiting on
each other, and in having to compromise on the tools’ and toolchain’s inner quality;
both lead to impeded experimentation, and generally lowered project agility.

2.4 Conclusion

Q-MIG concluded as a success, in the end, although the number and extent of per-
formed quality measurements and experiments had to be lowered to account for the
overhead incurred by the described tool development and integration issues.
Within Q-MIG, the developed toolchain was used to calculate metrics, and predict

quality characteristics of prospective migration results, but it was also a major outcome
in its own right. In most software evolution projects, the toolchain is a means to an
end, subordinate to the core objectives of the project, e.g. improving inner quality,
or migrating it to a new technological ecosystem. Domain experts may perceive the
toolchain merely as disposable, one-off software, and treat its development with less
care because of this, potentially aggravating later issues that require changing it.
From the project experience, the following list sums up the key lessons learned

with respect to software evolution toolchain-building, as well as derived target criteria,
which will be revisited in Chapter 3:
• Existing software evolution tools lack interoperability. Furthermore, it requires
effort to find and evaluate tools to be potentially used in a toolchain.
Target Criteria: domain experts need to get an overview of available tools ap-
propriate to their goals more quickly. It should also be possible to choose tools
based on functional requirements, not technical interoperability concerns.

• Building reusable software is hard [Schmidt, 1999]. Building custom tools during
software evolution projects is a means to an end, making the tools themselves
merely a by-product. Within the scope of individual projects, there is usually no
clear incentive to spend extra effort to make the tools reusable – although this
may pay off even within the scope of the same project, if requirements change
and the toolchain needs to be adapted.
Target Criteria: there should be light-weight support mechanisms that guide de-
sign towards interoperability and reusability. Tool development should ideally
be cleanly separable from toolchain definition and integration.

20

2.4. Conclusion

• Automation is key. Gaps in the toolchain requiring manual steps to be performed
will slow down a project considerably, and reduce the overall ability to react to
changes. If a single project team member has to manually copy some files over,
this will incur a delay of a couple of minutes; if the manual tasks are more in-
volved, this might become a few hours. However, if multiple persons of different
teams, located at different offices (potentially far apart) have to coordinate and
wait on each other, the projects may come to a halt for days. A distributed project
requires a distributed, fully integrated toolchain.
Target Criteria: there needs to be a support framework to base the integration
of individual tools into toolchains on. Such a framework should provide an ab-
straction layer from concrete deployment schemes and interoperability issues,
automating the integration process as much as possible

• The lack of interoperable tools and toolchain-building support demands that do-
main experts are also experts in software development and integration.
Target Criteria: a process and structure is needed that properly separates the de-
sign of software evolution processes from both tool development and toolchain
integration, so domain experts can define processes in terms of necessary steps
and their arrangement, independent of concrete tools, implementation technolo-
gies, data formats, and general interoperability.

In their sum, these findings already point toward three major software engineering
paradigms that will be reviewed for their shared objectives with this thesis: component-
based software engineering (Chapter 6) is motivated mainly be reusability and compos-
ability of software building blocks, service-oriented software engineering (Chapter 7) is
domain-centric and focuses on interoperability and flexibility, and model-driven soft-
ware engineering (Chapter 8) offers the means to (automatically) map non-technical
problem specifications expressed in the language of the domain to appropriate techni-
cal implementations, without entangling the two.
Besides the importance of automation through fully integrated toolchain support,

another essential insight from Q-MIG is that software evolution projects require experi-
mentation, and are subject to change, therefore requiring to sustain their agility. This is
something software projects of any variety – not just software evolution projects – have
to deal with all the time, and usually struggle to do so. In fact, the need to change is iron-
ically what made legacy systems legacy, and gave rise to software evolution projects,
in the first place. The key takeaway is that software evolution projects have to be able
to evolve themselves – and when they do, their tool support has to follow suit.

21

PART II

Analysis
With fundamental objectives defined in Chapter 1, and the Q-MIG project intro-

duced in Chapter 2 as motivating example providing concrete evidence for the need
for toolchain integration in practice, the following chapters aim to further refine the ob-
jectives, clearly place this thesis within the overall field of tool integration, and analyze
and evaluate existing work and related approaches for comparison and delimitation.
This will yield a refined, clear-cut view of what SENSEI intends and does not intend to
achieve, which will guide the exploration of suitable software engineering paradigms
in Part III, and the design of the solution, presented in Part IV.
First, Chapter 3 refines the already established objectives by breaking down and

analyzing the toolchain-building process, and deriving requirements from the individ-
ual steps. Then, Chapter 4 reviews the field of tool integration, its history, terminology,
and its different aspects and branches. Both chapters provide reference frames for fur-
ther analysis: The former mainly to assess the suitability of both existing approaches
as well as foundational technologies for SENSEI, with respect to the objectives of this
thesis. The latter is used to refine and particularize the scope of SENSEI, and delineate
the approach from related work.
Therefore, both of these reference frames form a basis for the comprehensive re-

view of existing tool integration approaches and other related work in Chapter 5. The
requirements are used for evaluation, leading to an overview and comparison grid. Re-
viewing other approaches using a common terminology and classifying them within
the tool integration space helps identifying differences in terms of focus, scope, and ap-
plication areas. This way, the chapter further stresses the need for a toolchain-building
support framework, and highlights SENSEI’s unique features and novelty.

CHAPTER 3
Requirements

SENSEI is intended to support the building of toolchains for automating processes,
mainly motivated by the need to do so in many software evolution projects. Chapter 4
will review the field of tool integration to clarify what kinds of toolchains there are,
and which of those this thesis addresses. Before that, this chapter will take a purely
problem-driven approach to determine what is required to support the creation of
integrated toolchains. There are different ways to go about this:
1. Study literature for challenges in software evolution toolchain-building, for exam-
ple (industrial) case study reports.

2. Perform case studies to discover challenges of the toolchain-building process.

3. Analyze the toolchain-building process itself, by breaking it down into activities,
and identify opportunities for automation, or support of manual tasks.

From literature, general challenges have been identified. They motivated the devel-
opment of SENSEI and have already been presented in Chapter 1. They are at the basis
of this thesis and its objectives. The requirements presented in this chapter are more
specific and more readily mechanizable, but they all serve to meet the main objectives.
Several case studies of different size and scope have been performed, as well. The

first one was based on a hypothetical project to migrate COBOL systems to Java. A
toolchain prototype was built manually and described by Jelschen et al. [2012]. The
conceived software evolution scenario was based on first ideas on researching the dy-
namics of the inner quality of software undergoing migration. These ideas evolved into
the Q-MIG project, with the goal of “building a quality-driven, generic toolchain for
software migration” [Q-MIG, 2015], with the ability to measure, compare, and predict
the quality of software systems being – or planned to be – migrated from COBOL to
Java. The Q-MIG project was used to apply and evaluate the SENSEI approach (Chap-
ter 15). Another evaluation was performed outside of software evolution (Chapter 16),

25

3. Requirements

which shows that, while this thesis is rooted in that field, the particular kind of integra-
tion problem that is being studied here is not confined to software evolution, and so
neither is the derived solution, SENSEI.
Another set of studies have been performed by students under the author’s super-

vision. These studies were each targeting a particular sub-field of software evolution:
software measurement, architecture reconstruction, and impact analysis. The goal of
the studies was to break these software evolution activities down into logical, reusable
steps, and to analyze for concepts required to model and compose them as services.
These studies have informed the design of the SENSEI meta-model (Chapter 9), and led
to a publication [Jelschen et al., 2013]. They have provided both conceptual and tech-
nical insights of how to model and implement toolchains, which have informed design
decisions in the creation of SENSEI. The studies will be referred to in Chapter 9.
They also guided the break-down of the general toolchain-building process. Its anal-

ysis for requirements is the central focus of this chapter. First, Section 3.1 describes the
steps of the toolchain-building process. Section 3.2 considers the steps of the toolchain-
building process one by one, and derives requirements for a support framework. A
summary of all requirements is provided in Section 3.3, with an overview in Table 3.1.
These requirements will provide the frame of reference for selecting appropriate

techniques to utilize for building SENSEI, and for evaluating existing approaches in
Chapter 5. They will again be referred to as guiding principles in designing SENSEI
(Chapter 9), and in implementing a reference prototype (Chapter 14).

3.1 The Toolchain-Building Process

Toolchains are built to automatically perform one or more activities, which are com-
posed of interdependent tasks: if there are individual tools able to automate the tasks,
but none that can perform the entire activity, the tools need to be integrated into a
toolchain. Conceptually, the process of creating toolchains can be broken down into
a series of steps, depicted in Figure 3.1. On the highest level, three phases are iden-
tified: goal determination, specification, and implementation. Goal determination is
about defining the activities to be automated in terms of their purposes and intended
outcomes. This is a prerequisite to the actual design and realization of the toolchain,
and thus viewed the “zeroth” step of the process, not to be considered here any further.
Toolchain specification is about breaking down activities to be automated into its

logical steps (task identification), and connecting them in such a way that they jointly
achieve the overall goal (task coordination). Toolchain implementation is about map-
ping the conceptual process resulting from the previous phase onto concrete tools, and
wiring them up in the required manner. This involves finding appropriate tools for each
task (task instantiation), and then actually integrating them: tools must be enabled to
be invoked by each other or by a central process manager, so their interfaces must be
connected to (adapter creation), and data must be brought into the expected formats

26

3.1. The Toolchain-Building Process

2. Implementation

2.2 Tool Integration

1. Specification

1.1 Task
Identification

1.2 Task
Coordination

0. Goal
Determination

2.1 Task
Instantiation

2.2.1 Adapter
Creation

2.2.2 Transformer
Creation

2.2.3 Coordination
Logic Creation

Figure 3.1: Activities of the toolchain-building process.

(transformer creation), before the specified process can be manifested in code (coordi-
nation logic creation).
This process is to be understood as an idealized view that, in practice, will probably

rarely be followed to the letter. However, the individual steps of the process are all
necessary for creating toolchains, and have to be performed in some way, shape, or
form, which can be more implicit, and intermix and entangle some steps. The purpose
of the process is mainly to identify the individual pieces of work for a clear picture of
what is involved, so that it can guide the elicitation of requirements in Section 3.2.
Breaking down the toolchain creation process into its constituent parts also allows

to assign responsibility for individual steps to different roles. At least two distinct roles
can be readily identified:

Domain experts know and understand the problem that needs to be addressed with
a toolchain. They do not necessarily have the technical skills required to build
tools or integrate them into toolchains.

Tool developers know the technical characteristics of the tools they have created. They
possess software development skills, but do not necessarily have experience with
the technologies used in tools they did not develop themselves, or with methods
and techniques required for tool integration.

A third role, responsible for taking the tools made by tool developers and combining
them into an integrated toolchain that conforms to the specification provided by do-
main experts, could be introduced: integration experts. However, this role’s tasks are
precisely those that this thesis seeks to automate, as manual integration would work
against its objectives, particularly the need for flexibility.
The toolchain-building process reveals that only domain experts have the knowl-

edge to perform the specification steps, while implementing a conforming toolchain
may well be outside their area of expertise. Tool developers have the required, techni-
cal skills, but are usually not involved in the process, unless tools get specifically created
for a particular project. Put differently, domain experts know what is to be done (spec-

27

3. Requirements

ification in terms of tasks and activities), whereas tool developers know how to realize
it technically (implementation in terms of tools and toolchains).
This chapter intentionally refrains from using the more specific terminology which

will be introduced later when presenting SENSEI (Chapter 9), to avoid confusing the
problem and solution spaces. That being said, in SENSEI, tasks roughly correspond to
services, and tools get encapsulated by components.

3.1.1 Toolchain Specification

Step 1.1 identifies the necessary tasks on theway towards the defined goal. For example,
creating side-by-side comparison charts for quality metrics of COBOL andmigrated Java
systems, metrics have to be calculated on COBOL (first task) and Java systems (second
task), and the result has to be rendered into the desired quality reports (third task).
Conceptually, this step is kept separate from deciding which tools to use, or how to
implement the tasks (Step 2.1), even if in practice those steps might get mingled. This
step is also not (mainly) concerned with sub-tasks necessary solely for technical reasons,
e.g. data format transformations. However, the borderline between functional and
technical tasks can be a bit fuzzy. For example, to calculate metrics, the source code
will probably have to be parsed first, a very common and natural reverse engineering
task. As a possible criterion for exclusion, parsing is never an end in itself, but rather
a means to an end. Still, if the technical task is sufficiently complex, it makes sense to
explicitly identify it, so that a dedicated tool can be chosen or created in Step 2.1, as
opposed to handling the data transformation solely as pre- or post-processing as part
of Step 2.2.2.
Step 1.2 concludes the specification of the toolchain, by describing the intended

data and control flow. Data flow specifies which tasks’ outputs should be used as
input for which other tasks. Defining data flow might be sufficient for simple tool-
chains, where the data flow completely determines control flow as well, i.e. where
tasks are performed as soon as all input data becomes available. If a process requires
the toolchain to perform certain tasks conditionally or repeatedly, explicit control flow
has to be specified, accordingly. A simple, graphical depiction of the intended data
flow, only, is shown in Figure 2.1 (p. 12). Notice, though, that in that figure, the boxes
represent tools rather than tasks, indicated by the way they are labeled.

3.1.2 Toolchain Implementation

Once the specification is complete, the toolchain can be realized technically, to au-
tomate the software evolution project’s processes. Again, note that this is a purely
conceptual model of how the tool support for a process is built. In reality, although
all of the steps mentioned here probably have to occur in some form, they may not be
separated as cleanly as presented here, at all.

28

3.1. The Toolchain-Building Process

Step 2.1 represents a decision to be made for each task that has been defined in the
specification: can the task be instantiated – fully or partially – by an existing, freely or
commercially available tool, or does it have to be created from scratch? There are a lot
of aspects to be factored into these decisions, e.g. the availability of appropriate tools,
their level of interoperability, the required level of control over a tool’s implementation,
or the ability to customize it, etc. Obviously, there is a tradeoff to be made between
the effort required to implement a custom tool, and the level of control, flexibility and
adaptability a generic tool usually cannot offer. However, even with a readily available
tool, the effort required to integrate it into the overall toolchain can also be prohibitive.
Step 2.2 aims at combining all tools into an integrated toolchain. This is potentially

simpler, or even trivial, if all or most of the tools are custom-made, as they can be
designed for interoperation. In fact, the whole tool support could be instantiated by
a single, monolithic application realizing the whole toolchain. A lack of modularity
in such a solution will impede its evolution, though, should the project’s parameters
change. This step consists of three substeps: creating adapters, creating transformers,
and creating the coordination logic between all the tools.
Step 2.2.1 is about the tools’ interfaces and the way they can be addressed. For

example, one tool might offer a command-line interface, another has a programming
interface (API) in a certain programming language, and yet another can be accessed as
web service. To enable different tools to interoperate with each other, or be coordinated
by some central controller, some translation is needed, so that the tools can speak each
others languages, or are made to all speak a common “lingua franca”. This is referred
to as creating adapters for the tools, and is a prerequisite to define control flow of
toolchains. The metaphor of “speaking the same language” does not extent to data the
tools are exchanging, however.
Step 2.2.2 complements the adapters with transformers to take care of differing ways

in handling data. There are different levels of such a transformation, from just chang-
ing the representation or format of the data (e.g. data marked up as XML vs. JSON),
or transforming the way the data is modeled (e.g. between tool- or vendor-specific
schemas for modeling an abstract syntax tree of a Java program), to translating the data
into something entirely different (e.g. deriving a control-flow graph from an abstract
syntax tree). The latter case borderlines on being a tool in itself, as opposed to just a
transformer attached to one. This situation corresponds to technical subtasks discussed
as part of Step 1.1. The former cases represent data transformers needed to realize data
flow integration for tools lacking compatible means for data interoperability.
Step 2.2.3 concludes the toolchain-building process by tying everything together.

It encompasses the creation of an application that encompasses all the tools, as well as
the required adapters and data transformers, implements the toolchain’s use cases, and
coordinates the tools accordingly, i.e. invokes them in the right order, and passes data
between as specified in Step 1.2. While adapters and transformers will be required in
almost any case (to a varying degree, depending on the level of interoperability of the

29

3. Requirements

tools involved), this step can theoretically be realized only partially, or left completely
un-automated. If the Q-MIG project is any indication, though, manual steps in the
toolchain can severely impede progress.

3.2 Toolchain-Building Support Framework Requirements

The objective of this thesis is to provide assistance to domain experts and tool devel-
opers in the toolchain-building process by creating a support framework, SENSEI, as
established in Section 1.2. Using the steps of the toolchain-building process, require-
ments for such a support framework will be derived, guided by the three sub-objectives,
also introduced in Section 1.2, from which the following key evaluation criteria can be
derived as
• the degree of flexibility afforded to adapt toolchains for experimentation, and to
account for evolving requirements,

• the ability to reuse existing parts in the creation of toolchains, and

• the overall productivity boost conferred by reduced toolchain creation effort.
To elicit requirements, the following sections go through the steps of the toolchain-

building process one by one. Each section will discuss the particular challenges, and
conclude with one or more requirement sentences summarizing the observed needs.
Before that, issues that do not pertain to any step in particular, but to the toolchain-
building process as a whole, are addressed here: the lack of separation of concerns,
and the diversity of tasks and tools in any given application domain.
Section 1.1 briefly summarized statements of software evolution experts regarding

the challenges of toolchain-building. All the issues discussed there come down to a
general lack of interoperability of software evolution tools. This means that, before
being able to create toolchains, domain experts have to establish those missing inter-
operability means first (Objective 3 – productivity). This is a task that would be a
much better fit for tool developers, as they are the experts for their tools. The fact that
these aspects of toolchain-building get mixed up in practice is a major reason for the
lack of reusability (Objective 2 – reusability) of integration code, and for its brittleness
(Objective 1 – flexibility).
The envisioned support framework has to support both domain experts and tool

developers, by freeing the former from having to deal with technical integration issues
as much as possible, so they can concentrate on their actual goals, and providing the
latter with the means needed to make their tools interoperable. It might sometimes be
necessary that the same persons take on both roles, e.g. if suitable tools are not avail-
able for all the tasks, and custom ones have to be built. Still, clearly separating between
these two roles and associated activities, namely the specification of toolchains on the
one side, and the provision of tool interoperability means and the actual integration of
tools on the other side.

30

3.2. Toolchain-Building Support Framework Requirements

Drawing this borderline is an absolutely essential, fundamental requirement, which,
apart from the argument given here so far, also follows from software design principles
such as abstraction, separation of interface and implementation, and separation of con-
cerns [Bourque and Fairley, 2014], which are well aligned with the overall objectives
of the thesis.
There is another requirement that is independent of any particular step in the

toolchain-building process. It is more straight-forward, and may even seem obvious:
to be of maximum use, a support framework must be able to support the whole range
of the application domain’s techniques and tools.
Many existing software evolution tool suites, workbenches, and integration ap-

proaches (see Chapter 5) limit their scope to software analysis and reverse engineer-
ing. While this may be appropriate in many scenarios, for industry-scale migration or
reengineering projects, these approaches are of limited value, as there is an integration
barrier between tools facilitating analysis and fact extraction, and software transforma-
tion tools. As an example, large-scale refactorings in a reengineering project need a
tight integration between the analysis phase of finding “code smells” [Fowler et al.,
1999], and the refactoring phase, which changes the system undergoing reengineer-
ing to remove the code smells. The same is true for using refactoring in continuous
software evolution.
These two requirements are summed up as follows:

Separation of Concerns The support framework must establish a clear separation be-
tween toolchain specification and toolchain integration.

Comprehensiveness The support framework must support the complete range of tools
and techniques available in a given application domain.

3.2.1 Task Identification

Building on the goals defined for the toolchain, each one has to be broken down into
one or more tasks that can together achieve the overall goal. These tasks can often
be performed using standard software evolution techniques, for which tools already
exist. Such standard techniques have to be inspected for their appropriateness given
project-specific needs, and alternatives have to be gathered and compared.
In the Q-MIG project, only a few tasks were identified which were both recognized

as representing standard techniques, and which later got instantiated with third-party
tools. Among these was the task of calculating the code clone percentage, for which
a wide array of mature clone detection techniques exist. Though there are myriads of
publications, including several surveys over the field (e.g. Roy, Cordy, and Koschke
[2009]), which help to gain an overview, spotting the relevant properties with respect
to project and toolchain integration needs, takes a time- and effort-consuming literature

31

3. Requirements

review. The result of such a literature and market review for Q-MIG has been docu-
mented in a report [Pandey, 2014], which shortlisted three tools, and compared them
according to nine criteria.
A perceived issue is that the information relevant for supporting the decision for or

against certain techniques and tools is not organized in a way which is easily queried
for particular properties. Hence, the following requirements to support this step in the
toolchain creation process are derived:

Task Discovery The support framework must aid domain experts in finding existing
techniques relevant to a given task.

Task Description The support framework must provide domain experts with a means
to describe required properties of tasks in a standardized way.

3.2.2 Task Coordination

When all tasks required for each project goal that needs to be tool-supported has been
identified, they have to be coordinated in a way that matches the respective goal and
produces the desired output. This is – at least – a two-fold step:
First, the tasks consume and produce data. To achieve an overall goal, tasks have

to build on each other’s results. Therefore, a way to specify data routing is required.
Second, the tasks have to be performed in a certain order to achieve a common,

meaningful goal. For simple, batch-like data-processing jobs, a data-driven chain of
tasks is sufficient. More complex processes might require the definition of optional,
alternative, concurrent or iterative paths. Such workflows require an additional means
for control flow specification.
There are more dimensions to task (or tool) integration, a widely used classification

scheme being that of Wasserman [1990], which was discussed in Section 4.3.1. For the
objectives of this thesis, data and control integration are the essential qualities needed
in a support framework for toolchain-building. Deeper issues to be considered in terms
of data integration, as discussed in Chapter 4, will be addressed briefly in Section 3.2.5.
The central requirements to support this step are thus considered to be as follows:

Data Flow The support framework must aid domain experts in specifying the data flow
between tasks.

Control Flow The support framework must aid domain experts in specifying the con-
trol flow between tasks.

32

3.2. Toolchain-Building Support Framework Requirements

3.2.3 Task Instantiation

With all tasks identified and their goal-directed coordination defined, specification is
complete. The first step in implementing the toolchain is instantiating tasks, i.e. finding
and selecting appropriate tools for their automation.
Finding appropriate tools and evaluating them for their suitability with respect to the

capabilities required by a task can be tedious, as elaborated in Section 3.2.1. Analogous
to the issue of finding tasks in the first place, matching them up with appropriate tools is
not straight-forward, because the information necessary is not arranged for the purpose
of software evolution toolchain-building.
Depending on the project’s goals and the tasks’ required capabilities, there might

not always be a single tool to fit the bill. For example, a task to calculate metrics
might request a certain set of metrics to be supported. If there is no single tool that
can calculate all of them, but several tools each support a subset of metrics so that
they complement each other in the desired way, then the support framework should
aid domain experts in finding such matches for tasks. Finding solutions “the other way
around”, i.e. when there are tools which can support more than one of the tasks in the
toolchain specification, should be supported, as well.
This is an area where the tool developers also need to be supported, as it is them

who supply the tools and information about their capabilities. If they are given a stan-
dardized framework to associate their tools with the tasks they can perform, and the
capabilities they are offering, it will also ease the job of domain experts.
Another central issue that tool developers, not domain experts, should be responsi-

ble for, is the level of interoperability of their tools. Non-interoperable tools mean that
domain experts will have to create appropriate solutions themselves. It is reasonable
to assume that they will integrate the tools according to their specific needs, leading
to tight coupling, and point-to-point, non-reusable integration logic. Tool developers
can provide generic interoperability means, which only has to be created once to work
in arbitrary toolchains. A support framework for toolchain-building therefore needs to
aid tool developers in making their tools compatible with it.
From the issues described here, these requirements are derived:

Tool Discovery The support framework must aid domain experts in finding tools that
match their task requirements.

Tool Description The support framework must aid tool developers in specifying which
tasks their tools can support.

Tool Interoperability The support framework must aid tool developers in creating in-
teroperable tools.

33

3. Requirements

3.2.4 Adapter Creation

The creation of adapters for tools is necessary, because no assumptions can be made
regarding the nature of existing tools’ interfaces. They may offer command-line or
graphical user interfaces, APIs for particular programming languages, or expose its ser-
vices via standards like CORBA [CORBA 2020], or SOAP/WSDL- [Booth et al., 2004]
or REST-based [Fielding and Taylor, 2002] web services.
The only way to remedy this issue, and to avoid having to create custom adapters,

is to have all tools agree on a single interface standard, or enforce a kind of “super-
standard” that itself can provide bindings to the different kinds of aforementioned in-
terfaces. Partly, this is covered by Tool Interoperability, which calls for corresponding
support for tool developers to provide compatible adapters as part of their tools. To dis-
pense with custom adapters, in addition, the support framework has to dictate a single,
common interface standard, which is embodied by the following requirement:

Uniform Interfaces The support framework must impose standardized, uniform inter-
faces on tools.

3.2.5 Transformer Creation

The creation of transformers is kept conceptually distinct from the creation of adapters
in the previous step: Adapters are about imposing uniform interfaces so tools can be
addressed and controlled in a consistent, generic way. Transformers are about the
data that gets consumed, produced, and exchanged between tools. Existing tools often
expect their data in specific, non-standardized formats, so to interoperate, data has to
be transformed to be exchanged.
As already discussed in Section 3.1.2 (Step 2.2.2), the differences can be in both con-

crete and abstract syntax – data differences on the level of semantic domains should be
addressed by explicit tasks in the specification phase. These differences can be reme-
died by appropriate mappings between the tools’ data formats. In an ad-hoc integration,
this is done point-to-point, with the clear drawback of having to have n2 transformers
implementing appropriate mapping rules for n different data formats. Worse, those
transformers will not be easily reusable, without putting some thought into it and de-
signing an integration architecture that supports it.
Therefore, the minimum requirement for a proper support framework for toolchain-

building is to make transformers first-class citizens, so they can be built in a standard
way, and used to fill up a library for future reuse.
On closer look, there is a lot more room for optimization in this area: For example,

software evolution projects are often data-intensive, which means processing it all can
take substantial amounts of time, even if the supporting toolchain is fully integrated.
This can impede projects and limit their agility, improving upon which is part of the

34

3.2. Toolchain-Building Support Framework Requirements

core objective of this thesis. Such issues could be addressed by keeping data in dif-
ferent formats synchronized, i.e. only propagating changes instead of re-transforming
whole data sets. Aspects of this will be discussed in Chapter 4; however, the focus
of this thesis is firmly on supporting the process of toolchain-building. Therefore, its
scope is clearly delimitated against any deeper investigation of data integration, and
the proposed solution will be expected to only support the following:

Reusability The support framework must promote reusability of data transformers.

3.2.6 Coordination Logic Creation

The last step in building toolchains is the creation of the coordination logic, which
controls individual tools as previously specified, and passes data between them, go-
ing through adapters and transformers as necessary. It allows domain experts to use
toolchains as seamless, single entities.
When toolchains need to change (because of evolving project parameters), parts

of the coordination logic usually have to be adapted, or discarded and rewritten from
scratch. This, again, limits the agility of software evolution projects. With the require-
ments already in place, a lot of the complexity and effort required for creating and
adapting this “glue code” is already taken care of: Separation of Concerns enforces
that all steps of the toolchain-building process are kept clearly separate, so that this
step has really only to deal with the creation of the actual coordination logic, and ev-
erything else has been taken care of, where possible in a reusable manner.
There is no reuse value to the remaining code for the tools’ coordination, though,

as it embodies the individual needs of the projects it is written for. However, these
individual needs can be assumed to have been specified as per the requirements on
Data Flow and Control Flow. The coordination logic that makes the specifications
executable is therefore completely discardable. Furthermore, with Uniform Interfaces
allowing to make simplifying assumptions regarding tool interfaces, and with Reusa-
bility taking care of incompatible data, the coordination logic becomes largely, if not
completely, automatically derivable.
The domain experts can therefore be supported to have to evolve their toolchains

on specification level, only, which is far simpler, as it abstracts from any technical in-
teroperability issues, and also a lot faster, allowing for shorter toolchain development
turnarounds, and more agile projects. The execution of toolchains according to speci-
fications should be completely taken care of by the support framework:

Automatic Coordination The support framework must provide automatic tool coordi-
nation and toolchain execution in conformance with its specification.

35

3. Requirements

3.3 Summary

All requirements are directed at the core objective of the thesis (see Section 1.2). An
overview over all of them is provided in Table 3.1.
The first and last requirements are arguably special: The first is a sine qua non for

most of the following requirements. The demand for strong separation of concerns [Par-
nas, 1972], which is substantiated by the remaining requirements, is the key foundation
to enable reuse (Sub-Objective 2).
The latter requirement is the opposite, being enabled by the conditions set by the

previous requirements, and providing the most marked payoff by demanding automa-
tion, to increase flexibility (Sub-Objective 1) and overall productivity (Sub-Objective 3).
The objectives of the thesis, and the requirements refining them, are the starting

point for deriving the key concepts and making the design decisions underlying SENSEI.
Part II of this thesis is dedicated to reviewing existing technologies and other related
work, whose properties can help support and fulfill the devised requirements. The
requirements will be used to assess the suitability of existing methods and techniques
to use as a basis for creating the toolchain-building support framework, as well as to
delimit this thesis and its proposed approach, SENSEI, from related work.
To this end, existing techniques and approaches will be rated on a simple, four-scale

range to reflect the degree of support for each of the requirements. These degrees are:
No Support The approach does not provide any means specifically aimed at support-

ing the requirement, nor does it comprise any features that could be applied to
support it (with less effort than otherwise required). It may rely on concepts or
techniques that would actually counteract or impede the requirement’s satisfac-
tion.

Foundational Support The approach does not necessarily provide any means specif-
ically aimed at supporting the requirement, but it comprises features that can
serve as a sound basis for its realization.

Substantial Support The approach provides means specifically aimed at supporting
the requirement, or it comprises features that can be applied to support it with
substantially less effort than would otherwise be required. It has some limitations,
requires modest modifications, or some other additional work to fully satisfy the
requirement. Offering substantial support does not necessarily imply that it is
easy to extent an approach to fully satisfy a requirement.

Full Support The approach provides means specifically aimed at supporting the re-
quirement, satisfying it fully. While no additional effort is needed to support this
particular requirement, using the approach might necessitate adaptions with re-
spect to the remaining requirements. In particular, an approach supporting one
requirement fully may still rely on concepts or techniques that would counteract
or impede satisfying one or more of the other requirements.

36

3.3. Summary

Name Requirement Support

Separation of
Concerns

The support framework must establish a clear separa-
tion between toolchain specification and toolchain inte-
gration.

Process

Comprehen-
siveness

The support framework must support the complete range
of tools and techniques available in a given application
domain.

Task
Discovery

The support framework must aid domain experts in find-
ing existing techniques relevant to a given task.

Task
Identification

Task
Description

The support framework must provide domain experts with
a means to describe required properties of tasks in a stan-
dardized way.

Data Flow The support framework must aid domain experts in spec-
ifying the data flow between tasks.

Task
Coordination

Control Flow The support framework must aid domain experts in spec-
ifying the control flow between tasks.

Tool
Discovery

The support framework must aid domain experts in find-
ing tools that match their task requirements.

Task
Instantiation

Tool
Description

The support framework must aid tool developers in spec-
ifying which tasks their tools can support.

Tool Interop-
erability

The support framework must aid tool developers in creat-
ing interoperable tools.

Uniform
Interfaces

The support framework must impose standardized, uni-
form interfaces on tools.

Adapter
Creation

Reusability The support framework must promote reusability of data
transformers.

Transformer
Creation

Automatic
Coordination

The support framework must provide automatic tool coor-
dination and toolchain execution in conformance with its
specification.

Coordination
Logic Creation

Table 3.1: Summary of requirements for a toolchain-building support framework.

37

CHAPTER 4
Tool Integration

For software evolution projects to be successful, its activities must be tool-supported,
and the tools need to be integrated into a toolchain to automate the processes. As
argued in Chapter 1, this challenge remains unresolved in general, with existing ap-
proaches (see Chapter 5) addressing it only partially. This chapter provides historic
context, and introduces basic concepts, terminology, and diverse classification frame-
works to arrive at a broad, multi-perspective view of tool integration. It will be used to
place and delimit SENSEI, and will serve as a common reference frame for the remainder
of this thesis, particularly for the review of related work presented in Chapter 5.
In the following, a brief retrospect of the origins of tool integration is given, and

lessons for the SENSEI approach are derived (Section 4.1). Terminology is discussed in
Section 4.2. Section 4.3 presents classification and partitioning schemes of tool integra-
tion. For each one, an embedding of SENSEI is given, refining objectives and delimiting
the scope of this thesis. The chapter concludes with a summary in Section 4.4.

4.1 A Brief History of Tool Integration

Tool integration became a field of research beginning in the 1980s, with many authors
[Asplund and Törngren, 2015; Boehm, 2006; Wasserman, 1990] referring to Buxton
and Stenning [1980] as one of the earliest works of the area. Software engineering as
a discipline had been in its infancy before that, being born in the late sixties [Naur
and Randell, 1968]. In the intervening years, structured programming was developed
[Dahl, Dijkstra, and Hoare, 1972; Dijkstra, 1968], and the development process began
to be analyzed and considered explicitly [Royce, 1970], to give just two examples. Also,
the realities of both computer users and software developers witnessed a major shift
from mainframe computing to mini computers to workstations and personal computers
[Wirth, 2008].

39

4. Tool Integration

Taking the first steps from computer programming as an art towards a more rigor-
ous discipline of software development, as well as a widened scope that, for example,
recognized requirements analysis, design, and quality assurance, as important activi-
ties of the overall process, led to a need for additional, different, and more integrated
tools. The availability of personal workstations with color displays able to depict graph-
ical user interfaces enabled completely new kinds of tools [Endres, 1996]. This led to
research and development of Integrated Project Support Environments (IPSE) in the
eighties (Section 4.1.1) and Computer-Aided Software Engineering (CASE) tools in the
nineties (Section 4.1.2). Key takeaways and their relevance for this thesis are summa-
rized in Section 4.1.3. Further developments in tool integration, particularly in software
evolution and embedded systems development, will be reviewed in Chapter 5.

4.1.1 Integrated Project Support Environments

By the beginning of the eighties, there was a rising awareness for the need for explicit,
structured development processes [Boehm, 2006]. With many tools having become
available to support individual activities and steps of the overall development process,
there was a desire to integrate them to reduce the amount of error-prone, manual effort
through better automation. This led to academic interest and several (large) projects re-
searching Integrated Project Support Environments: started off by the Stoneman project,
aimed at developing a comprehensive development environment for Ada [Buxton and
Stenning, 1980], these projects included Aspect [Brown, 1988], Eclipse1 [Bott, 1989],
and ISTAR [Dowson, 1987], among many others. Besides the IPSEs themselves, impor-
tant outcomes of these research efforts were the interface standard Portable Common
Tool Environment (PCTE) [Long and Morris, 1993], and the CASE Data Interchange
Format (CDIF) [Parker, 1992], soon to be replaced by XMI (XML Metadata Interchange)
[2015].
The standardization efforts also led to the development of the NIST/ECMA Refer-

ence Model for Frameworks of Software Engineering Environments [Martin, 1993] and
the Reference Model for Project Support Environments [Brown et al., 1993]. The for-
mer is a large catalog of services that environments should provide. A major goal was
to enable side-by-side comparisons of IPSEs and standards like PCTE, by mapping their
respective concepts to the reference model’s services.
The latter focuses on services supporting concrete software engineering activities,

as opposed to integration infrastructure services. Regarding terminology, notable dis-
tinctions are made between human-performed tasks and machine-provided services on
the one hand, and conceptual machine functionality described as services and its actual
implementation in tools on the other hand. Figure 4.1 illustrates these relationships.

1Unrelated to the well-known, open-source IDE and rich-client platform, which originated at IBM,
and is now developed under the auspices of the Eclipse Foundation [Eclipse Modeling Project 2020].

40

4.1. A Brief History of Tool Integration

Service Tool

Task

(Machine) Capability

(Human) Activity

Conceptual Actual

Figure 4.1: Faithful reproduction of a diagram found in Brown et al. [1993], delimiting
the terms service, task, and tool.

4.1.2 Computer-Aided Software Engineering

By the Nineties, IPSE research had evolved into the study of CASE tools (Computer-
Aided Software Engineering). The origin of the term is attributed by Chikofsky [1988]
to an article that had appeared in the Wall Street Journal in 1986. Brown and Mc-
Dermid [1992] criticize the efforts made within the IPSE movement as being focused
too much on framework infrastructure and integration issues, while failing to address
“broader issues like user functionality and productivity”. Boehm [2006] uses similar
language, describing IPSE research as “overfocused”, and CASE as having “broadened
their scope”. This may be considered curious, given that IPSE research had to provide
the very foundations, i.e. integration infrastructure, since there had not been any in-
tegrated environments before. Brown and McDermid further find fault with PCTE as
being too “broad and complex”, and lacking concrete software engineering support.
They make the point that, even though IPSEs were all about integration, the whole
concept of what (tool) integration is was not well understood at all.
This last issue raised might truly be a weak spot. Indeed, the first major treatise

considering tool integration ab initio is widely regarded to be by Wasserman [1990],
and there are more recent indications that the basic principles of tool integration might
still not be very well understood by the scientific community [Wicks and Dewar, 2007].
Brown andMcDermid [1992] and Sharon and Bell [1995] distinguish IPSE and CASE

along the following aspects:
• IPSEs are independent of specific development methods, while CASE tools are
not extensible.

• IPSEs support collaborative work, while CASE tools are aimed at single users.

• IPSEs have been applied mainly in research and engineering, while CASE tools
address information system development.

• IPSEs provide necessary foundations to integrate tools of potentially different ven-
dors, while CASE products are usually by a single vendor (incompatible with the
tools of competing vendors).

41

4. Tool Integration

Again, these criteria, the first two in particular, seem to indicate that in fact IPSE research
had the much broader scope. In contrast to IPSE, CASE has focussed on tool-supported
software engineering methodologies rather than tool integration. Some authors have
used the term ICASE to highlight the integration aspect of a CASE tool discussion.
CASE technology, as characterized by Schmidt [2006], often prescribed the use of

graphical modeling and programming languages, and was aimed at facilitating code
generation from such high-level artifacts. For a brief time, CASE tools were very suc-
cessful, commercially. However, studies showed [ElShazly and Grover, 1993; Lending
and Chervany, 1998] that most companies that invested into the technology only used
the tools briefly before dismissing them again, if they were ever properly adopted, at
all. By the mid-nineties, scientific interest into the field had also waned, with relevant
conferences and workshops disappearing, or dropping the term “CASE” from their title
to reflect a changed focus of research [Ocampo, Albizuri, and Botella, 1998].
Reasons given for the failure of most CASE tool efforts in the literature include:
• steep learning curves [Kemerer, 1992; Ocampo, Albizuri, and Botella, 1998],
and a markedly more formal process developers were not used to, and were not
trained for [Lending and Chervany, 1998],

• unmotivated developers, who found the tools, often forced upon them by man-
agement, unhelpful [Chau, 1996; Lending and Chervany, 1998],

• inflexibility for lack of customizability [Kelly and Tolvanen, 2008, pp. 360f],
[Schmidt, 2006], with methodologies hard-wired into each tool [Endres, 1996],

• vendor lock-in for lack of standardization [Stahl et al., 2006, pp. 12-13],

• graphical modeling languages ill-matched for the target platforms, which were
the operating systems, not higher-level, full-featured middleware solutions, and
code generation technology too immature to bridge this gap [Schmidt, 2006].

4.1.3 Lessons Learned

In more recent works on tool integration, IPSE is hardly discussed and seems mostly
forgotten. The oft-cited, extensive standard byMartin [1993] is often reduced to a single
figure, sometimes referred to as “toaster”, that was featured prominently in the original
document, and was meant to give an overview of the logical organization of services
into categories, and how they supported the integration of individual tools. Instead,
it was interpreted as a reference architecture by many authors, whose disregard of the
standard’s comprehensive set of services seems to have aggravated its authors to the
point that they removed the figure and put it into the appendix in later editions.
This is regrettable, because the crucial distinction made here between conceptual

services and actual implementations is lost, for example, in most treatises of service-
orientation. Based on their analysis, Brown, Feiler, and Wallnau proposed an integra-
tion scheme for federated environments resting on services, curiously applying princi-

42

4.1. A Brief History of Tool Integration

ples of service-oriented architecture (and using its terminology, as in “flexible, service-
oriented integration”) roughly a decade before the SOA hype (see Chapter 7).
Brown, Feiler, andWallnau [1992] highlight IPSEs complexity as a result of absolute

genericity, as well as a focus on data integration, only, based on central repositories as
major issues. CASE technology is criticized too, though, for an overall lack of interop-
erability. CASE still has a visible presence in tool integration research, although mainly
to point out why it has not prevailed. The various reasons for this can be summarized
into three categories: ignorance of human factors, insufficient maturity of the utilized
techniques and the targeted hard- and software systems, and technical unsuitability of
the CASE tools themselves to solve the problems they were advertised for.
Much of the issues CASE tools were not able to tackle have been picked up by

model-driven software engineering (MDSE), relying on richer target platforms and pro-
gramming languages, standards like the Unified Modeling Language [Booch, Rum-
baugh, and Jacobson, 1999], research and development of new model transformation
languages, and customizability through domain-specific languages (DSLs). However,
if the focus of IPSEs was firmly on tool integration, and had already shifted for CASE,
MDSE has even more different objectives, being more of a development methodol-
ogy aimed at portability and interoperability [Kleppe, Warmer, and Bast, 2003, pp. 4f;
Gašević, Djurić, and Devedžić, 2006, p. 111].
The design of SENSEI (see Part IV) is informed both by fundamental research findings

as well as the mistakes of past tool integration efforts:
• The distinction between conceptual and actual [Brown et al., 1993] is a major
cornerstone of the approach, manifested by services (Chapter 7) and components
(Chapter 6), respectively, to facilitate flexibility, reusability, and an abstraction
level appropriate for domain experts.

• In contrast to IPSE, and many later tool integration efforts, SENSEI does not focus
exclusively on data integration. It is mainly process-oriented and designed to
be complemented with existing data integration approaches, if necessary. Sec-
tion 4.3 will provide classification schemes for different kinds of tool integration,
and illustrate the place SENSEI takes within them.

• SENSEI is designed to be generic (see Section 3.2), light-weight, and technology-
agnostic, to avoid the issues that have been cited for the failure of most CASE
tools, i.e. vendor lock-in and inflexibility.

• While SENSEI aims to be generic, it avoids over-standardization by focusing on
providing practitioners the means to model concepts and integration solutions of
their problem domain themselves, instead of trying to anticipate every conceiv-
able integration task with a fully comprehensive catalog of services.

• Instead, it relies on model-driven techniques (Chapter 8), which evolved from
CASE origins, to bridge conceptual and implementation layers, and facilitate au-
tomation through model transformation and code generation.

43

4. Tool Integration

4.2 Basic Terminology

Up until this point in the thesis, the terms tool, toolchain, tool integration, and interop-
erability have already been used without a formal definition. One obvious source for
this terminology is the ISO/IEC/IEEE 24765 [2017]:

Definition 4.1: Software Tool

Several alternative meanings for just the term tool are offered by the standard, but
a more appropriate definition is provided for the term software tool as follows:

“ a computer program used in the development, testing, analysis, or
maintenance of a program or its documentation.

a software product providing automatic support for software life-
cycle tasks. ISO/IEC/IEEE 24765 [2017, p. 424]

”
In this thesis, “tool” can always be assumed to refer to a software tool, and, more

specifically, will often be a software evolution tool, as software evolution toolchain
integration is the major motivation for this thesis. A tool, by this definition, supports
development and maintenance of a software system, itself being a piece of software.
An important distinction for tools is whether they are interactive or not: interactive

tools guide and support users performing a specific activity – there is a constant back
and forth (i.e. input and output) between the user and the tool, e.g. modeling a class
diagram with the help of a UML tool. Non-interactive tools are invoked by users to
perform a task fully automatically. The tool receives input when it is started, describing
the task it should do, how it should do it, and on what data it should operate. It then
performs the task without requiring further human intervention, and outputs results
while it is running, and/or when it terminates. Examples for these kind of tools include
parsers, fact extractors, transformers, code generators, metric calculators – in short, the
tools from the Q-MIG example (Chapter 2) fall into this category. Because these tools
are used (interacted with) differently, they also require distinct integration approaches.
As this thesis is motivated by the need to automate software evolution processes, it
focuses on integrating non-interactive tools.
In a seminal work of the field, Wasserman [1990] defines tool integration as follows:

“ tool integration is intended to produce complete environments that support
the entire software life cycle. ”This refers to the objective of tool integration, and unsurprisingly, given the paper’s

topic, there is a focus on creating software engineering environments. Wasserman
considers five distinct types of tool integration – platform, presentation, data, control,

44

4.2. Basic Terminology

and process integration – which is the central contribution of the paper. These types,
along with classification schemes by other authors, will be discussed in Section 4.3.
To close in further on an appropriate definition for tool integration, its intended

outcome is considered. Wasserman seems to consider that to be a software engineering
environment – a term used here to subsume modern IDEs, but also IPSEs and CASE
suites [Terry and Logee, 1990]. However, such an environment might be meant to
support many different software engineering activities, some of which might have little
to no overlap in terms of their supporting tools. Therefore, not all tools have to be fully
integrated with all other tools contained within an environment to provide adequate
support. More importantly, this kind of integration is usually aimed at interactive tools.
In general, the result of integrating tools will be referred to as toolchains (as is done by
other authors, such as Biehl [2013] and Erdmenger and Uhlig [2011]):

Definition 4.2: Toolchain

A toolchain consists of multiple individual tools, that have been combined in a
way that allows them to conjointly support one or more particular activities by
fully automating their execution.
An automated toolchain is a toolchain that eliminates all need for human interac-
tion and performs the supported activities fully automatically.

A toolchain is not restricted to be an actual chain, i.e. there can be control flow
branches or concurrency. To stress non-interactivity, the notion of automated toolchain
is also introduced. However, this distinction will rarely be made, as this thesis only
considers non-interactive toolchains. So, unless explicitly noted otherwise, a toolchain
in the context of SENSEI is always meant to refer to an automated toolchain. Interactive
and non-interactive integration schemes can complement each other, though, which
will be briefly discussed as an outlook in Section 16.4.2.
Returning to tool integration, Thomas and Nejmeh [1992] state:

“ Tool integration is about the extent to which tools agree. The subject of
these agreements may include data format, user-interface conventions, use
of common functions, or other aspects of tool construction. ”This alludes toWasserman’s integration types, on which their work is based. They point

out another important aspect, namely that there are (at least) two perspectives towards
tool integration that have to considered: that of the users, and that of the builders
of integrated tools, coinciding with a desire for ease of use, and ease of integration,
respectively.
Still, these definitions remain rather abstract, partly because they fail to mention,

or only vaguely allude to, the underlying objective of tool integration. Obviously, tool
integration is not pursued as an end in itself. This is what Brown and McDermid [1992]
criticized about IPSE research – having lost sight of the actual goal of better supporting

45

4. Tool Integration

software developers. Yang and Han [1996] generalize this, by pointing out that the
ultimate goal of tool integration is increasing productivity (which aligns with the ob-
jectives of this thesis, see Section 1.2). They go on to classify different ways to achieve
control and data integration, and define three approaches of integration on different
points along a spectrum representing a trade-off between flexibility and reusability on
one end, and performance and productivity on the other.
Explicitly considering the aim of improving overall productivity makes integration

efforts testable, i.e. it allows to check whether it is successful, and even quantify the
extent of the improvement. Because integrating tools requires effort itself, this raises
the question, pointed out by Wicks and Dewar [2007], of whether there is a point at
which a more sophisticated integration solution would actually decrease the overall
productivity. In essence, tool integration is aimed at reducing accidental complexities
[Brooks, 1987], e.g. removing the need for human intervention as much as possible
to reduce the room for human error. A different accidental complexity arises from the
need to transform back and forth between different data formats of the individual tools
involved (unnecessarily increasing time complexity), but optimizing for performance
may be in conflict with other objectives such as reusability, as stated above. The dif-
ferent aspects must be traded off against each other, to find an integration strategy that
offers the highest overall productivity gain. In summary, the following definition will
be adopted:

Definition 4.3: Tool integration

Tool integration comprises the combination of tools into a toolchain to support a
particular software engineering activity with minimal accidental complexity and
maximum productivity gain.

What is not addressed by this definition is an issue raised by Thomas and Nejmeh
[1992], namely that the views of two stakeholder groups must be distinguished: tool-
chain users and toolchain developers2. Users of toolchains need it to bewell-integrated
to be productive, while toolchain developers need the individual tools to be easy to
integrate. These different views are, again, highly related to the trade-off between a
performance-tuned toolchain versus its flexibility and the reusability of its parts.
Although Thomas and Nejmeh use the term differently, interoperability is usually

taken as the property that expresses ease of integration. For example, Wegner [1996]
defines it as follows:

“ Interoperability is the ability of two or more software [tools] to cooperate
despite differences in language, interface, and execution platform.3 ”2In software evolution projects, these roles might be fulfilled by the same people, which is part of the

problem.
3Wegner addresses interoperability of software components. The definition has been narrowed down

46

4.2. Basic Terminology

This is a rather broad definition, but it establishes an important point, namely that
interoperability is a property of a set of tools. This makes sense: individual tools may
be prepared to work in concert with others, but if they do not all make compatible
preparations, then this will not necessarily improve their interoperability.
The IEEE standard ISO/IEC/IEEE 24765 [2017] offers three definitions for interop-

erability (though none for tool interoperability, specifically), one of which is heavily
linked to CORBA technology, and is therefore of little general use here. The other two
definitions for interoperability are:

“ [T]he ability of two or more systems […] to exchange information and to
use the information that has been exchanged. ”“ [T]he capability to communicate, execute programs, and transfer data
among various functional units in a manner that requires the user to have
little or no knowledge of the unique characteristics of those units. ”Notably, the first definition focuses on the ability to exchange data, only, which is com-

patible with the views of Thomas and Nejmeh. In contrast, the definition by Wegner
does not consider data exchange explicitly, at all. The latter definition offered by the
ISO/IEC/IEEE 24765 is the most comprehensive one, but it is not really phrased in terms
of integration ease. In this thesis, the following definition is adopted:

Definition 4.4: Tool Interoperability

Tool interoperability is a property of a set of tools, and a measure proportional to
the amount of effort required to effectively integrate these tools into a toolchain.

This wording intentionally refrains from explicitly referring to any particular means
of interoperability. By this definition, it is therefore irrelevant how interoperability is
achieved; it is only measured in terms of integration ease. Requiring the integration
to be effective is meant to stress the need to minimize accidental complexity, and to
maximize productivity gain, as per Definition 4.3.
There have been several approaches put forward to classify and measure the de-

gree of interoperability, such as Systems of Systems Interoperability (SOSI, Morris et al.
[2004]) and the Levels of Conceptual Interoperability Model [Tolk and Muguira, 2003].
Gürdür, Asplund, and El-Khoury [2016] provide a brief overview.
Concluding the terminology discussion, an important takeaway, aside from the pro-

vided definitions themselves, is that tool integration spans a wide field with many as-
pects that are emphasized differently by different groups in the overall tool integration
community. The next section therefore provides several breakdowns of, and classifi-
cation schemes for, tool integration by different authors, to sub-divide the field as a
whole, and be able to more precisely place this thesis within it.

here by replacing them with tools to avoid confusion. In in-depth introduction to software components is
provided in Chapter 6.

47

4. Tool Integration

4.3 Dimensions of Integration

The cornerstone for the study of tool integration from first principles was laid byWasser-
man [1990], to which most works on tool integration refer. Other authors have elabo-
rated his model further [Thomas and Nejmeh, 1992], or advanced independent classifi-
cation schemes [Brown andMcDermid, 1992; Yang and Han, 1996] that may be placed
within Wasserman’s categories. Also of interest are classification schemes aimed at the
infrastructure used as an integration basis, described in terms of design patterns [Kar-
sai, Lang, and Neema, 2005], and in terms of sophistication and scope of the resulting
solution [Fuggetta, 1993].
It is important to understand these different aspects of tool integration to refine the

objectives of this thesis, and to place it within a frame of reference for clear delimitation
and comparison with related approaches. The subsequent sections will review the
classification systems of the aforementioned authors, followed in every instance by a
placement of SENSEI within each respective framework.

4.3.1 Integration Types According toWasserman

Wasserman [1990] distinguishes between five types of tool integration: platform in-
tegration, presentation integration, data integration, control integration, and process
integration.
Platform integration refers to the provision of a basic, common infrastructure, that

also serves as virtual environment and abstraction layer that hides underlying
discrepancies in terms of hardware, software, and network distribution. In today’s
terminology, this role is taken on by middleware solutions (e.g. service-oriented
middleware like Tuscany SCA [Laws et al., 2011] andWSO2 [2020]).

Presentation integration refers to the provision of a “consistent user interface”. Partic-
ularly in terms of graphical user interfaces, this requires all tools to adhere to the
same design language, or human interface guidelines.

Data integration refers to the provision of data sharing and management facilities. For
tools to be able to use and manipulate each others data, compatibility of data
formats, models, and in-memory representation must be established, as well as
protocols to access the data (these aspects of data compatibility are discussed in
Section 12.1.3).

Control integration refers to the provision of event notification and tool invocation
facilities. For tools to be able to notify and invoke each others functionality,
compatibility of interfaces (describing what can be accessed) and protocols (de-
scribing how to access it) must be established.

Process integration refers to the provision of facilities for explicit representation, de-
sign, management, and automation of development processes consisting of indi-
vidual steps that require the support of multiple tools working in concert.

48

4.3. Dimensions of Integration

Control
Integration

Presentation
Integration

Data
Integration

Explicit Message

Dæmon

Trigger

Message server

Message Shared files Database Object base

Standard “look and feel”

Standard toolkit

Standard window manager

Standard window system
T1

T2

Figure 4.2: Faithful recreation of “[t]hree dimensions of tool integration” as presented
by Wasserman [1990].

Platform integration is a foundational layer allowing tools to make basic assump-
tions about each other, and establishing a certain degree of uniformity. It is therefore
usually not independent of data and control integration, even thoughWasserman seems
to treat all types as independent dimensions. Platforms at least provide basic means for
data exchange and invocation, e.g. through the file system and shell of an operating
system (arguably, the shell also offers rudimentary presentation integration, and basic
graphical user interface integration may be provided by a window manager). Mod-
ern middleware solutions offer sophisticated integration environments, e.g. message-
oriented middleware (enterprise service buses). Also, agreement on a particular level
of data integration may dictate means of control integration, and vice versa. It should
be noted that Wasserman [1996] briefly reiterates his integration types, with a definition
for platform integration narrowed down to providing network transparency, only.
Process integration is addressed only briefly by Wasserman [1990], as both process

management tools, as well as software processes in general, were still in their infancy.
It is also rather vaguely defined: the definition given here is influenced by the field of
workflow management, and by other authors discussing this aspect in the context of
tool integration [Asplund and Törngren, 2015]. Asplund and Törngren point out that
Wasserman himself redefined process integration later [Wasserman, 1996], although

49

4. Tool Integration

this might just appear this way because of the condensed, brief form of the second
definition. While tool integration research has seldom addressed this aspect, it is the
main concern in workflow management, business process automation, and scientific
workflow systems (see Section 5.8 and Section 7.5).
For each of the remaining integration types, presentation, data, and control, Wasser-

man gives some examples of concrete means to achieve integration in these “dimen-
sions”. Figure 4.2 provides an overview. Each point in this space identifies a combina-
tion of integration techniques. Tools that can be located on the same, or on neighboring
points, are more interoperable than those not sharing any techniques on either axis.
The methods to achieve the different types of integration that are shown on the

axes in Figure 4.2 are to be taken as examples – they neither represent a comprehen-
sive list, nor should their arrangement necessarily imply any notion of some methods
providing “better” integration than others. Generally speaking, the outer methods can
be considered more sophisticated. The depicted integration methods are only selected
examples, some of which are a bit dated.They are also actually too abstract to fix a par-
ticular point in the space. For example, point T1 uses “shared files” for data integration,
but for a working integration this needs to be narrowed down to a concrete file system
– Wasserman gives the Unix file system as example.
Thomas and Nejmeh [1992] offer an extension to Wasserman’s framework, refining

his integration types by defining interoperability properties for them. They can be
useful to classify and compare tools more precisely in terms of interoperability measures
provided by them. For example, data integration is subdivided into conformity4 and
data exchange (agreeing on common data models for persistent data and for ad-hoc
data exchange, respectively), non-redundancy (sharing data instead of replicating it),
data consistency (preserving consistency as multiple tools manipulate the data), and
synchronization (communicating with other tools directly, as opposed to exporting and
importing data). Their work also shows the multi-facetted nature of tool integration, for
which Wasserman provides fundamental, but necessarily coarse-grained, classes.

Placement and Delimitation of SENSEI in Terms of Wasserman

The requirements elicited from analyzing the toolchain-building process (Chapter 3)
emphasize supporting tool and toolchain builders, as opposed to toolchain users.
Therefore, SENSEI aims to provide the means and methodology for the creation and
evolution of tailor-made tooling, not the tooling itself.
Due to the focus on non-interactive toolchains (Section 4.2), presentation inte-

gration is considered to be out of the scope of this thesis, which positions SENSEI
somewhere in the bottom plane of Figure 4.2. All other types are taken into account:
As a general prerequisite, platform integration will be addressed by component-

4Actually referred to as interoperability in the original, and renamed here to avoid confusion with
terminology of this thesis, as established in Section 4.2.

50

4.3. Dimensions of Integration

Placement and Delimitation of SENSEI in Terms of Wasserman (cont.)

based and service-oriented concepts and technology, reviewed in Chapter 6 and
Chapter 7, respectively. Since SENSEI is about automating processes, process inte-
gration is maybe the most important integration type. Model-driven engineering
(Chapter 8) will provide essential ingredients to derive a language for modeling pro-
cesses, and to automatically transform them into executable toolchains. Control
and data integration are prerequisites of process integration. SENSEI emphasizes
the former over the latter due to its process-centric view; this will be elaborated
further in the context of the following classification schemes.

4.3.2 Integration Levels According to Brown andMcDermid

Brown and McDermid [1992] offer a classification of integration that overlaps with
that of Wasserman [1990] to a degree, while other aspects (team and management
integration) go beyond. However, these non-technical issues are not within the scope of
this thesis. The technical aspects are interface integration, which maps to Wasserman’s
presentation integration; process integration, which is similar, yet somewhat narrower
thanWasserman’s type of the same name; and tool integration, which is defined mostly
in terms of data integration, but also seems to include control integration aspects.
While these categories do not add considerable value to the discussion at this point,

the authors went on to further sub-divide their concept of tool integration into five levels,
which can be considered orthogonal to the Wasserman-based classification. They are
expressed here in terms of individual tools, i.e. describing levels of interoperability.
Integration solutions and toolchains can be classified in terms of the minimum level
of interoperability they require from tools to be applicable. From lowest to highest
sophistication, and amount of common conventions, the levels are the following:
Carrier level refers to tools agreeing on no more than a common representation form

for all data, e.g. UNIX command line tools reading and writing byte streams,
which allows them to be combined by pipes. Each tool has to perform its own
analysis and preprocessing of the input data; assumptions made regarding the
structure of the data cannot be made explicit, or be enforced, technically. On this
level, basic preprocessing is therefore implemented, and performed, redundantly.

Lexical level refers to tools agreeing on data conventions allowing them to recognize,
and break input up into individual tokens. This allows them to process parts of
an input they understand (e.g. based on particular keywords), while ignoring the
rest (which may follow a syntax that is only understood by some other tool). On
this level, the same data may have to be processed repeatedly through a toolchain,
an example being the processing of a LaTeX document, which usually requires
multiple passes of (at least) latex and bibtex.

51

4. Tool Integration

Syntactic level refers to tools agreeing on the data model (schema), and concrete syn-
tax rules to exchange. The latter may be achieved by using a standard exchange
format, while the former is, by its nature, specific to the kind of data being ex-
changed. On this level, basic data handling can be factored out of individual
tools, completely.

Semantic level refers to tools agreeing on semantics of operations on data, either by
each adhering to semantic conventions implicitly (which couples them together
tightly), or by explicitly factoring out data operations. On this level, tools have a
common understanding of both the structure and the meaning of the data they
process, eliminating the need for multi-pass processing.

Method level refers to tools agreeing on common processes, either by each adhering
to them implicitly, or by explicitly factoring out process conventions. On this
level, tools either understand their role in an overall process, and notify each
other about their activities, or processes are represented externally, so tools can
be controlled to appropriately support and automate them, accordingly.

The first three levels are degrees of data integration, only. The distinction is use-
ful, as the interoperability of tools on the lower levels is clearly limited. For example,
while the UNIX philosophy is a powerful one, carrier-level interoperability is useful for
ad-hoc, small-size, simple integrations, only. For integrating diverse tools that have not
been designed for each other, this lowest level offers almost no help at all, as poten-
tially complex data transformers will be required for each relevant tool combination.
Toolchains integrated at either the lexical or the syntactic level will scale badly for large
amounts of data. The syntactic level improves interoperability somewhat, as common
data handling logic can be factored out of individual tools, but if based on exchanging
whole files, integrations remain inflexible [Sim, 2000].
The semantic level can be achieved with data integration means, only, but real

interoperability and flexibility improvements are facilitated only when also introducing
control integration. This is necessary if data operations are factored out of individual
tools, as they will have to be able to invoke this external functionality.
Method level integration is basically synonymous with process integration, for

which both data and control integration means are prerequisites. Brown and Mc-
Dermid seem to implicitly assume that method level integration must be event-based
(Thomas and Nejmeh [1992] make similar assumptions), with tools knowing their role
in the processes they are involved in to some degree. However, they also point out
that factoring out process knowledge would provide greater flexibility.

Placement and Delimitation of SENSEI in Terms of Brown and McDermid

To support process automation, it seems clear that SENSEI must aim for the method
level, the highest one. The lower levels, concerned with data integration, have at-
tracted the highest attention of researchers [Asplund and Törngren, 2015], meaning

52

4.3. Dimensions of Integration

Placement and Delimitation of SENSEI in Terms of Brown and McDermid (cont.)

a large body of work already exists regarding these aspects, as will be shown in
Chapter 5. SENSEI will build on these foundations, rather than reinvent anything.
Regarding individual tools, a focus will be put on supporting tool developers

and domain experts in making them more interoperable, using existing techniques,
but ensuring their consistent use, overall. This includes establishing concepts and
structures to build data transformers, covering data interoperability up to the se-
mantic level, and adapters, providing method-level interoperability (compare Sec-
tion 3.2, particularly requirements Tool Interoperability, Uniform Interfaces and
Reusability). In terms of integrating these tools into toolchains, SENSEI will pro-
vide means for method level integration by “glueing” tools together into toolchains
with auto-generated control logic, while being designed to be complemented with
existing approaches to address the (data) integration challenges of the lower levels.

4.3.3 Integration Patterns According to Karsai, Lang, and Neema

Karsai, Lang, and Neema [2005] provide a constructive means to distinguish tool inte-
gration approaches in the form of two architectural patterns (in the sense of Buschmann
et al. [1996, p. 12]). Both patterns use model-driven foundations for data integration,
providing mechanisms to map data model concepts of different tools onto each other,
and transform data accordingly. They also both make use of tool adaptors to provide
uniform interfaces, and semantic translators to take care of data conversion. The pat-
terns apply these means differently, though, with one being based around a single
integrated model, and the other focusing on process flows:

Integration based on integrated models refers to an architecture using a common, in-
tegrated metamodel, combining all concepts of the tools to be integrated. Such a
model needs to be tailor-made for those tools to be able to represent specific fea-
tures and peculiarities of each tool, and not lose data while exchanging it. Tool
adaptors connect individual tools to a common model interface (e.g. a messag-
ing middleware like service buses). An integrated model server also connects to
this interface, and uses semantic translators to transform tool data into formats of
the integrated metamodel for storage, and back into tool-specific formats.

Integration based on process flows refers to an architecture using explicit workflow
representations that can be enacted to support and automate processes using
tools with direct tool-to-tool data integration. The architecture uses tool adaptors
to connect individual tools to the backplane (again, modern middleware stacks
can be used to fill this role). Semantic translators also connect to the backplane
and transform between the formats of tool pairs needing to exchange data.

53

4. Tool Integration

Themajor prerequisite for using the first pattern is significant overlap in the concepts
used by individual tools, i.e. it is most appropriate if all tools basically manipulate
the same (data) artifact, but potentially from different views, or focussing on different
details and aspects. Tools can operate in any arbitrary sequences, relying on the fact
that changes of one tool become available to all, and will be reflected, accordingly.
In the second pattern, the prerequisite is the opposite: each tool should only be

linked to few other tools. It is most appropriate for tools that cooperate in a well-defined,
step-by-step process, where tools only interoperate with direct predecessors and suc-
cessors in the toolchain. Data is not persisted, centrally, but send directly from tool to
tool, and tool invocation in accordance with defined workflows can be automated.
Conventional wisdom would suggest that the integrated metamodel approach

scales better with the number of tools to be integrated: with each new tool, only
one translator has to be created, as opposed to one per tool that is already part of the
integration. Put differently, to integrate n tools requires at least n translators with an
integrated metamodel, whereas without it, up to n2 tool-to-tool translators are needed.
Karsai et al. have practically applied and evaluated both patterns, and observed

the opposite. Even though the case study performed for the integration based on in-
tegrated models had small tool metamodels with large overlaps, adding a new tool
became significantly more complex as the number of tools increased. In fact, Karsai
et al. observed this while integrating the fourth tool, and suggest that this pattern is
not well-suited to integrate more than three or four tools. In contrast, the case study
performed for integration based on process flows showed no increase of effort required
to integrate additional tools.
One reason for these results is that integrating metamodels is all but trivial (e.g.,

see Burger et al. [2016], Meier and Winter [2016], and Tunjic and Atkinson [2015]).
Because all concepts are poured into a single metamodel, any change may, in principle,
have arbitrary side effects. With tool-to-tool integration, changes are always confined
locally. Similar experiences have been made in enterprise integration, trying to create,
maintain, and evolve business-wide data models: Josuttis [2007, p. 38-39] reports that
such endeavors usually had the metamodel grew too complex to remain effectively
manageable, and would actually lead to tight coupling, because of concepts of the
central metamodel “seeping” through the interfaces and into individual applications.
Also, the math of n2 translators for n tools is a worst case upper bound, that will

not be reached in most practical applications. In the simplest case, when the toolchain
is actually a chain (akin to an assembly line), n ´ 1 translators are required for n tools,
at least one less than the integrated metamodel solution.
In summary, both architectural patterns have valid use cases. E.g., Karsai et al. argue

that “incremental change propagation” (transmitting changes individually instead of
complete data sets) is easier with process flows, while for traceability (following the
interrelations of metamodel concepts across tools), integrated models are better suited.
Due to their case study results, they favor process flows, but also point out that this

54

4.3. Dimensions of Integration

pattern does not prohibit using an integrated metamodel (for some or all of the tools) by
adding a tool that plays the role of integrated model server, yielding a hybrid solution.

Placement and Delimitation of SENSEI in Terms of Karsai, Lang, and Neema

SENSEI embraces integration based on process flows, and the results of Karsai et al.
provide strong evidence supporting this decision, given the objectives of this thesis
(see Section 1.2): the pattern lends itself to the integration of non-interactive tool-
chains, and, according to the authors, scales better with the number of individual
tools. This is a key prerequisite to ensure the flexibility of integrated toolchains.
Concepts introduced by Karsai et al., have also been identified in this thesis, by an-
alyzing the toolchain-building process: separating adapters and transformers from
individual tools, and treating them as first-class citizens is crucial for reusability.
The adoption of the process flow-based architecture is also another justification

for emphasizing control and process integration over data integration. As has been
stated before, SENSEI will be designed to be complemented with data integration
solutions of arbitrary sophistication. This role can be filled with an integration
approach based on integrated models for a hybrid solution.

4.3.4 Integration Effectiveness According to Yang and Han

Yang and Han [1996] highlight the effectiveness of tool integration strategies with re-
spect to the productivity gain of toolchain users. The main contribution is a classifica-
tion system consisting of three classes with increasing effectiveness. In addition, they
provide subtypes of control and data integration, and three integration paradigms; the
latter are on a similar conceptual level as the architectural patterns of Karsai, Lang, and
Neema [2005], and are therefore not considered any further.
For both control and data integration, four categories of techniques are defined,

with an implied increasing level of sophistication: The control integration categories
span from invoking tools indirectly using their pre-existing user interfaces (C1), over
using external triggers like database events (C2) and using message servers (C3), to
direct procedure calls (C4). For data integration, the categories prescribe to use either
intermediate files (D1), databases (D2), message passing (D3), or internal canonical
representations common to all tools (D4).
Yang and Han argue that control and data integration cannot be viewed in total

isolation. The techniques used for either integration type have to be matched up judi-
ciously; some categories, such as C3 and D3 imply each other quite directly.
These categories of integration techniques are referenced by the central classifica-

tion scheme of their work, which is based on the level of productivity increase that can
be gained by using tools integrated into toolchains with increasing degrees of sophisti-
cation. The three classes distinguished by Yang and Han are the following:

55

4. Tool Integration

Class 1: Eliminating user-generated delay refers to increasing productivity by using
basic tool integration that automates data provision for, and invocation of, in-
dividual tools. This integration class can be achieved with [C1, D1] techniques.

Class 2: Eliminating tool-generated delay refers to increasing productivity by using in-
cremental data processing, and parallelizing toolchain execution and essential
manual work and input by users. This integration class can be achieved with
[C4, D4] techniques.

Class 3: Introducing tool construction refers to increasing productivity by 1. using
toolchains with fine-grained inter-tool synchronization to achieve highly interac-
tive task assistance, and 2. building toolchains from self-contained, independent,
reusable tools to reduce the integration effort required. This integration class can
be achieved with [C2, D2] or [C3, D3] techniques.

Another way of thinking of these classes is that they are aimed at removing acciden-
tal complexities [Brooks, 1987], i.e. factors that require additional effort not because
of the task’s inherent complexity, but because of how it is performed.
With class 1 integration, the tedious and error-prone manual labor of tool users is

reduced to the essential minimum by integrating the tools into a toolchain, and thereby
automating tool invocation and data exchange. Yang and Han seem to somewhat down-
play the impact of this class of integration. In the experience of this author (e.g., with
the Q-MIG project, see Chapter 2), the productivity gain from this level of integration
can be very substantial, particularly when factoring in time lost due to human error,
and technical, organizational, and communication hurdles, e.g. having to exchange
data with other project partners by e-mail. The delays caused by these circumstances
were in the order of days, and sometimes weeks, while the running time of individual
tools was in the order of seconds, minutes, and occasionally hours. So, even though
Yang and Han correctly point out that individual tool performance is exactly the same
with and without this level of integration, the room for productivity improvement can
potentially exceed the other classes by several orders of magnitude.
Class 2 integration aims at having toolchains run “in the background”, while users

continue to work. The idea is to cut down periods in which users have to wait on
tools to return results to a minimum. This requires more fine-grained data integration
for tools to be able to effectively work on incremental changes rather than having to
wait for complete data sets to process in bulk, and asynchronous control integration
mechanisms. Depending on the tasks and algorithms at hand, i.e. whether small or
localized changes can be exploited to reduce execution time, this integration class
can offer substantial productivity improvements, particularly for processes that require
incremental improvement, and thus repeated execution of supporting toolchains.
Class 3 integration has two very different aims: first, to increase the productivity

of users through collaborative interaction with (expert system-like) toolchains. And
second, to increase the productivity of tool and toolchain developers. The former is

56

4.3. Dimensions of Integration

arguably a natural progression of Class 2 that further deepens integration, while the
latter is not considered by the first two classes at all.
It is not clear why these two aspects have been combined into a single class. One

argument of Yang and Han is that the kind of tools involved are potentially very differ-
ent (in terms of implementation technology, for example), requiring a loosely coupled
integration mechanism. However, reducing the amount of effort needed to build tool-
chains to increase productivity, as opposed to increasing productivity by using a tool-
chain, is clearly a facet that is relevant in all three integration classes. In general, the
description by Yang and Han is a bit ambiguous as to what tool construction is meant
to refer to here: the ability of users to build toolchains in the context of highly inter-
active, tool-supported tasks, the ability of tools to “construct” a document in closely
interleaved cooperation with users, or the ability of tool developers and domain ex-
perts to construct interoperable tools and integrated toolchains, respectively.
In summary, the three categories of Yang and Han [1996] could be considered a bit

unbalanced, but they allow to make several key distinctions which could be expanded
into a refined classification scheme:
1. Separating productivity improvements achieved by automating tool coordination
through toolchain integration (Class 1), from those achieved by breaking down
the processes themselves in a way that allows for increased concurrency for better
overall tool performance (Class 2).

2. Separating productivity improvements achieved by passive, background tool-
chain support (Class 1 and Class 2), from those achieved bymore active toolchain
support that facilitates a direct collaboration between users and tools (Class 3).

3. Separating productivity improvements achieved by using toolchains to solve a
given task more effectively (Class 1 and Class 2), from those achieved by building
toolchains more effectively (Class 3).

Placement and Delimitation of SENSEI in Terms of Yang and Han

Improving productivity is one of the three major objectives of this thesis, introduced
in Section 1.2. As explained, the greatest productivity gains are to be expected
when only Class 1 integration is achieved, which is possible with relatively prim-
itive means. Relying on such simple means would, however, negatively impact
the other two objectives: low-level integration makes only minimal assumptions
about the tools to be integrated, requiring individual integration logic that tightly
couples tools together, thereby sacrificing flexibility. For the same reasons, neither
individual tools, nor the integration code will be reusable.

SENSEI will therefore aim at Class 2 integration, focusing on control (and pro-
cess) integration aspects, while leaving the data integration aspects to complemen-
tary approaches, i.e. SENSEI will be able to make control-based optimizations, e.g.

57

4. Tool Integration

Placement and Delimitation of SENSEI in Terms of Yang and Han (cont.)

identifying opportunities for concurrent execution, while a chosen data integration
approach might, for example, minimize data exchange redundancies.
As discussed, Class 3mixes two aspects: SENSEIwill not address user interaction

improvements, as its scope is confined to non-interactive toolchains. The second
aspect, supporting tool developers and domain experts in the toolchain-building
process is at the heart of SENSEI, and will be supported by providing a conceptual
framework guiding their work into explicit structures.
Its conceptual nature also means that SENSEI does not dictate concrete imple-

mentation techniques, however, the lower integration categories would not suffice
to achieve the aspired integration classes. With an explicit adapter concept, SENSEI
will ensure that even tools offering only C1 interoperability can be integrated.

4.3.5 Integration Infrastructure Classification According to Fuggetta

Fuggetta [1993] provides a classification not of integration or interoperability, but of its
subjects, tools and toolchains. Previously, in Section 4.2, the concept of “environment”
has been avoided in favor of the term “toolchain”, partly because the former term is
often only vaguely defined, and carries a connotation of presentation integration and
interactivity.
The classification by Fuggetta introduces more clear definitions for different stages

of tool collections and integrations. While the work offers quite a fine-grained taxon-
omy, with concrete CASE products as examples, the main distinction is tools, work-
benches, and environments, which are also shown in Figure 4.3:
Tools support individual tasks, which is in agreement with Definition 4.1.

Workbenches support one or more activities.

Environments support all major activities of a particular domain.
Figure 4.3 adds toolchain as the generic result of an integration, and another kind

not included by Fuggetta, the automated toolchain (as per Definition 4.2). Fuggetta
focuses on interactive toolchains supporting its users while performing activities, but
does not consider toolchains aimed at automating these activities.
Fuggetta’s classification is based on the scope of provided support, introducing

the terms task and activity. Both are performed by humans (e.g. software developers).
Recall Figure 4.1 [Brown et al., 1993] in this regard, which contrasted taskswith services
and tools. An example for an activity would be testing. Activities consist of multiple
tasks that need to be performed to complete the activity, e.g. for testing this would
comprise writing test cases, executing tests, and debugging. Section 3.1 also used this
terminology.

58

4.3. Dimensions of Integration

Figure 4.3: Class diagram of tool integration terms and their relationships, inspired by
the integration infrastructure classification of Fuggetta [1993].

The first category, tool, is congruent with the definition introduced in this thesis for
the term (Definition 4.1), particularly in terms of a single tool supporting only a single
task. Fuggetta provides a fine-grained taxonomy of tool classes and subclasses, which
will not be discussed further as it is very specific to one particular domain, namely
software development tools.

Workbenches are characterized by Fuggetta as focused on supporting a single ac-
tivity to a few activities, typically exhibiting presentation integration through coherent
user interfaces, control integration in terms of the ability to directly invoke tools, and
data integration through a shared data repository. There is a sub-division of this class
into eight types of workbenches, which will not be discussed any further, here. The
classification is according to the type of activities being supported, which is natural
giving the definition, but which is, again, specific to classical software engineering
phases. One category, maintenance and reverse engineering workbenches, deserves
mentioning though, as many products reviewed in Chapter 5 fall into that category.

Environments are formed from individual tools and workbenches, and are charac-
terized by a scope that covers the entirety of a particular domain – in Fuggetta’s discus-
sion, the complete software development life cycle. More generally, the environment
term can be extended to fully encompassing other application domains, e.g. software
evolution. This view also implies that, what is considered a workbench and what is
considered an environment depends on the context: for example, a reverse engineer-
ing environment may be considered a workbench in the context of the whole field of
software evolution.
Fuggetta provides five subclasses of environments, also depicted in Figure 4.3, and

described in the following:

59

4. Tool Integration

Toolkits refer to a loose collection of tools with only a low level of integration. With
data exchanged via files export and import and mostly manual tool invocation,
or partial automation through shell scripting, this corresponds to carrier level
integration, and (barely) Class 1 integration effectiveness.

Language-centered environments are build around, and focused on, a single program-
ming language. They provide presentation, limited levels of control, and no pro-
cess integration. Data integration is based on an internal model of the considered
programming language, i.e. syntactic or semantic integration level, which cou-
ples tools tightly together. The inaccessibility of integration mechanisms implies
low reusability, and makes for poor overall extensibility and interoperability.

Integrated environments provide “standard mechanisms” for tool integration, facili-
tating presentation integration through common GUI libraries, data integration
through extensible repositories, and control integration through means for inter-
tool communication. Integrating existing tools can be achieved by wrapping,
although the required effort may be high, depending on the comprehensiveness
of provided integration facilities, and tool interoperability requirements. In con-
trast to the previous classes, integrated environments are frameworks to facilitate
tool integration rather than ready-made solutions, first and foremost addressing
tool and toolchain builders, as opposed to the environments’ users.

Fourth-generation environments refer to tightly-integrated application development
environments based on closed-off integration mechanisms, and hard-wired, pro-
prietary development methodologies. In fact, this class seems to comprise CASE
tools exhibiting most or all of the criticisms raised against them (see Section 4.1.2).
In terms of integration effectiveness, these environments may reach Class 1 or
Class 2, but only for applications whose needsmatch the environment-embedded
development procedures very closely, with basically no room for customization,
severely limiting flexibility and areas of use.

Process-centered environments refer to environments that provide means for “process-
model execution” and “process-model production”, i.e. process or workflow
engines able to automatically coordinate tools according to explicitly provided
process descriptions, and editors that facilitate the modeling of such processes.
Like integrated environments, the objective is the provision of a framework for
tool and toolchain builders, with a focus on process integration, and varying
support for the other integration types.

Placement and Delimitation of SENSEI in Terms of Fuggetta

The classification scheme by Fuggetta is most readily applicable to existing tool
integration solutions, and will be referred to in the review and assessment of related
work in Chapter 5. SENSEI itself does not quite fit into the classification, which can
nonetheless be used to highlight what sets it apart.

60

4.4. Summary

Placement and Delimitation of SENSEI in Terms of Fuggetta (cont.)

Workbenches are not necessarily meant to be extensible, and are defined by a
limited scope, whereas SENSEI explicitly aims to make no restrictive assumptions
to support the whole field of software evolution (compare the Comprehensiveness
requirement, 31), or even completely different application domains. Toolkits are
extensible and flexible only with a lot of manual effort, providing very little produc-
tivity improvements. Both language-centered and fourth-generation environments
are limited in scope, similar to workbenches, but along different dimensions (a
particular programming language and a single tool vendor, respectively).

SENSEI is aimed at toolchain-building. The tools realizing the support frame-
work it defines may be classified as integrated environments, or more specifically,
process-centered environments. Still, both environments and workbenches carry
the connotation of user interaction and presentation integration, which is why Fig-
ure 4.3 contains another class that is not part of the original work of Fuggetta: auto-
mated toolchains are distinct, because they remove any need for interaction. They
represent the result of an application of SENSEI; above all, SENSEI does not aim to
provide integrated tool support for particular domains or specific problems itself
– rather, it will support the creation and evolution of them, yielding flexible auto-
mated toolchains built from reusable parts.

4.4 Summary

This chapter gave a brief overview of two past tool integration research phases, the first
focused on creating integrated project support environments (IPSE), which then devel-
oped into computer-aided software engineering (CASE) research. IPSE research seems
to have laid many important foundations, but few results made it out of the lab and into
practice. CASE contrasted this with a very practice-driven approach, but overcorrected
to the point of inflexible solutions with narrow application areas and poor customiz-
ability, and pronounced vendor lock-in. The lessons that can be learned from these
past research directions (summarized in Section 4.1.3) have shaped the architecture of
SENSEI.
More recent tool integration research builds upon principles and practices of

software system integration (component-based) and enterprise integration (service-
oriented). Core ideas of software development approaches that emerged with CASE
tools live on in the more general framework of model-driven software engineering,
which has also found applications within tool integration. These three software engi-
neering paradigms will provide a foundation for SENSEI, and have therefore each been
given a dedicated chapter in Part III.

61

4. Tool Integration

The bulk of this chapter, however, was dedicated to establishing a broader under-
standing of the field of tool integration, by discussing and defining terminology, and
reviewing different classification schemes of tool integration. It was shown that tool
integration is a very large, multi-faceted field that can be dissected along various di-
mensions and understood from different views.
The different classification schemes have been used to sharpen the boundary that

defines the scope of this thesis, and to clarify the objectives: Driven in particular by
the requirements of software evolution projects, with challenges such as a large body
of pre-existing, diverse tools with poor interoperability, and a need for factory-like pro-
cesses and their automation, a focus has been put on control and process integration.
This focus also coincides with the areas that seem to have been least addressed in re-
search and practice. In fact, some scholars of the field seem to implicitly equate tool
integration with data integration. This makes it even more important to delineate SEN-
SEI from other integration approaches with particular preconceptions about the scope
of tool integration, and place it clearly within the presented classification frameworks
to avoid confusion and misunderstandings.
While this chapter placed SENSEI within the different classification frameworks,

Chapter 5 will use these reference frames, together with the set of requirements elicited
in Chapter 3, to place related approaches for comparison, evaluation, and delimitation,
and to highlight the unique contributions of this thesis.

62

CHAPTER 5
Existing Approaches

This chapter takes a look at various related works and existing approaches that, to some
degree, address tool integration, either in general, or within the field of software evo-
lution. A goal is to present existing tool integration approaches, and compare them
with the objectives and requirements of this thesis using the holistic view and different
dimensions and classification schemes introduced in Chapter 4. This will give fur-
ther examples of the very wide, multi-faceted field of tool integration, and will clearly
delineate existing tool integration approaches, their objectives, scope, and application
areas, from SENSEI, emphasizing its distinctiveness, and contribute to a clear-cut picture
of what its aims are.
Existing research and approaches usually focus on only one, or a few tool integration

aspects – as does this thesis. A problem arises if the scope and its boundaries are not
made explicit: this may lead to a limited preconception about what tool integration is or
should entail. For example, some practitioners that are concerned with tool integration
– be it for software evolution, regular software engineering, or other projects – may
have been exposed to and worked with techniques that provide data integration, only.
Regardless of a discussion about whether other aspects deserve attention, as well, or
which are the most relevant, ignorance of the breadth and multi-faceted nature of tool
integration will inevitably lead to misunderstandings.
The approaches presented in the following sections have been organized into the

following categories: exchange file formats (Section 5.1) address technical aspects
of data integration through standardization. Common data models (Section 5.2) do
the same on a conceptual level. Software evolution workbenches (Section 5.3) are
pre-integrated solutions, and support only a subfield of software evolution such as re-
verse engineering. Software evolution environments (Section 5.4) are less limited in
scope, and are often more extensible and feature more explicit tool integration sup-
port. Component-based, service-oriented, and model-driven integration (Section 5.5)

63

5. Existing Approaches

subsumes approaches that are based on either one, or a combination of multiple of the
practices and principles described in Chapter 6, Chapter 7, and Chapter 8, respectively.
Building to varying degrees on concepts from these three engineering paradigms,

two concrete approaches have been identified that, at first glance, seem particularly sim-
ilar to SENSEI. These are Software Analysis as a Service (SOFAS) by Ghezzi [2012] and
the Tool Integration Language (TIL) by Biehl [2013]. They are described in Section 5.6
and Section 5.7, respectively. Comparing certain design decisions, these sections will
occasionally refer to properties of SENSEI, which has not yet been introduced in detail
– it will be described comprehensively in Part IV. However, the exact details should
not be necessary to understand the comparisons and distinctions being made here.
In tool integration, the process integration dimension is rarely studied or addressed

[Asplund and Törngren, 2015]. Since it is a focus of this thesis, workflow-based inte-
gration research and approaches will be reviewed in Section 5.8, most of which aim
at automating scientific analysis processes (scientific workflow systems).
Section 5.9 subsumes previous work that does not necessarily present concrete

integration approaches, but has contributed to the field on a conceptual level. The
chapter closes with a summary in Section 5.10, which also concludes Part II of this
thesis. It provides a comparative overview of the different kinds of approaches that
have been described (Table 5.1), and highlights the gaps that SENSEI is meant to fill.

5.1 Exchange File Formats

Exchange file formats (EFF) aim at improving data interoperability of tools supporting
the format, i.e. of the five dimensions introduced in Section 4.3.1, they only address
data integration. They usually prescribe concrete syntax rules, and abstract syntax on
a meta-metamodel level (see Section 8.3), which in turn allows to specify the abstract
syntax (the metamodel) of the data to be exchanged, as well as the data itself (the
model). In the classification by Brown and McDermid [1992] (Section 4.3.2), exchange
file formats provide at least the lexical integration level, and lay the foundations for the
syntactical level. For full syntactic level integration, common standardized data models
(schemas, metamodels, or ontologies) expressed in the terms of the format are needed,
additionally.
The scope of exchange file formats is narrow when projected onto the requirements

elicited in Chapter 3. For example, even though these formats are data-centric, they
do not provide any support for specifying data flow (Data Flow requirement). Truly,
the only aspect affected is transformer creation, which can become easier if many tools
adopt the same exchange format. The Reusability requirement demands reusability of
transformers: a standardized exchange file format allows to factor out parsers and un-
parsers, which can then be used as a foundation (as a program library) for all transform-
ers. However, exchange file formats alone do not ensure data transformer reusability;
particularly, they do not necessarily facilitate the separation of tools and transformers.

64

5.2. Common Data Models

Examples of standard exchange file formats are:

• CDIF (CASE Data Interchange Format) [Parker, 1992], which is not widely used
anymore, and has been superseded by

• XMI (XML Metadata Interchange) [2015], which is widely used in the context of
UML, and model-driven architecture, and

• GXL (Graph Exchange Language) [Holt et al., 2006], a graph-based XML format
developed specifically for the domain of software evolution.

• MSE (Moose Interexchange Format [sic]) [Ducasse et al., 2011] is a format with
an s-expression-like syntax. It was developed for the Moose platform [Nierstrasz,
2012], which had previously used CDIF, and then XMI. Ducasse et al. believe
previous attempts to unify tool-specific formats (such as the efforts that led to
GXL) were unsuccessful, so they chose to develop another format.

If ontologies – in the sense of the web ontology language [W3C OWL Working
Group, 2012] – are employed to specify common data models, RDF (Resource De-
scription Framework) [Cyganiak, Wood, and Lanthaler, 2014] may be used, as is the
case in OSLC [Open Services for Lifecycle Collaboration 2020].

5.2 Common DataModels

Common data models complement exchange file formats by providing definitions of
concepts and their relationships of the data to be exchanged (i.e. the abstract syntax),
whereas the exchange file format provides the concrete syntax and “carrier” medium
(see Lethbridge, Tichelaar, and Ploedereder [2004], and compare Brown and McDer-
mid’s carrier level integration, presented in Section 4.3.2). Using an exchange file
format without a common data model is possible (e.g., GXL can be used with or with-
out referring to a schema), but only provides carrier level integration. The other way
around, common data models can also be used for data exchange in the absence of
common syntactic conventions, but will reduce the reusability of transformers. Both
combined provide full syntactic level integration.
Ontology-based approaches [Jin and Cordy, 2005b; Würsch et al., 2012] are often

described to introduce a semantic level. However, this depends strongly on the defini-
tion of the term “semantic”. Ontologies, using semantic web technology, seem to adopt
an understanding of semantic information that refers to a (meta-)model enriched with
interrelationships (such as integrity constraints) as comprehensive as possible [Hesse
and Mayr, 2008]. Hesse and Mayr go on to argue that only mental models can truly
be semantic, since representing a model in any form would turn semantics back into
syntax. In this regard, ontologies and metamodeling may have their advantages and dis-
advantages in different application areas due to the technological basis each approach
usually employs, but on a fundamental level, they do not seem to differ in the level

65

5. Existing Approaches

of “semantic richness” they can achieve. For example, in MOF-based metamodeling,
integrity constraints can be formalized as OCL constraints.
Brown and McDermid [1992] define their semantic integration level in operational

terms, i.e. they require the explicit definition of data manipulation operations that are
allowed on the data. This is different from the syntactic level, on which it is possible
to test for data integrity, but not ensure that all operations preserve data integrity. Also,
even if data integrity is retained, operational semantics may prohibit certain transitions
from one state of the data to another.
Creating common data models for a domain as wide and diverse as software evo-

lution is all but trivial. With respect to the requirements of Chapter 3, their coverage
is minimal, providing support mostly only for the transformer creation step, and to a
smaller extend for task identification due to their provision of a universal language to
describe consumed or produced data. This is in contrast to a large body of work in tool
integration, both for general software engineering tools, as well as for software evo-
lution tools, which concentrate on this aspect, often exclusively. And it is true that a
common data model can increase tool interoperability considerably. The objective and
the approach of this thesis is different, however: it is focused on control and process
integration, to provide flexibility and reusability for productivity increases in the long-
term. As has been discussed before in Chapter 4 (Section 4.3.3), integration through a
single data model common to all tools may, in fact, not be the most flexible and scal-
able solution, particularly if the activities to be supported are mainly non-interactive.
Furthermore, such all-encompassing models may become hard to maintain, depending
on their scope and resulting size and complexity, and may even foster tight coupling.
In any case, common data models, and approaches centered around them, are seen as
complementary to this thesis, as opposed to rivaling it.
Several approaches have tried to address the inherent complexity in creating an all-

encompassing, generic data model for software evolution tools by introducing a hierar-
chy of granularity levels. For example, Lethbridge, Tichelaar, and Ploedereder [2004]
define low-level models, which represent software systems down to concrete program-
ming language syntax, middle-level models, which represent more general concepts
common to many programming language (at least within a paradigm, such as object
orientation), and high-level models, which represent the architectural level. Also, the
generality of approaches is often limited (e.g. to object-oriented languages, or even a
single programming language), as well as the coverage of the software evolution field
in terms of supported activities (e.g. only considering reverse engineering / software
analysis). There are models focussing on representing the software system under study,
while others extend to software analysis subjects, such as code clones.
Examples of common data models include the following:

• DMM (Dagstuhl Middle Metamodel) [Lethbridge, Tichelaar, and Ploedereder,
2004] has mid-level granularity, as the name suggests. Its scope does not extend
to representing, and therefore exchanging, fully detailed descriptions of programs.

66

5.2. Common Data Models

It is based on concepts common to object-oriented programming languages, so
its applicability for other paradigms (e.g. functional) is limited. DMM can only
represent mid-level source code concepts – it does not encompass documenta-
tion, source code history, issue tracking data, or program analysis results. It is
also too coarse-grained to base analyses on it that require program details down to
the level of individual statements and expressions, such as code clone detection.

• FAMIX (FAMOOS Information Exchange Model, with FAMOOS being the Frame-
work-based Approach for Mastering Object-Oriented Software Evolution, an EU-
funded research project) [Ducasse et al., 2011; Tichelaar, Ducasse, and Demeyer,
2000] is a “family of metamodels” on a similar level of abstraction as DMM, used
in the context of the Moose platform [Nierstrasz, 2012]. The scope is wider than
DMM, as there are extensions for representing source code history, concepts of
aspect orientation, duplication, and co-evolution. FAMIX is able to represent
concepts common to procedural and object-oriented languages.

• SEON [Würsch et al., 2012] is a “pyramid of ontologies” for the domain of soft-
ware analysis, with layers ranging from general concepts at the top, over domain
spanning concepts (e.g. code clones), domain specific concepts (e.g. issue track-
ing, source code, history), down to system specific concepts (e.g. concrete con-
structs of particular programming languages, like for Java). The scope is therefore
wider than DMM, for example, and it is meant to be extensible, which is a major
motivation for the use of semantic web technology. Several concrete ontologies
are available for download [SEON - Software Evolution ONtologies 2016]. SEON
is part of the SOFAS approach, which will be discussed in Section 5.6.

• KDM [Knowledge Discovery Metamodel 2016], defined within the technical
space of OMG’s Meta Object Facility [2013], is a common data model for soft-
ware modernization efforts. It is far more comprehensive and complex than
DMM, for example, and also has a wider scope. Besides source code organi-
zational aspects, middle level code representation, call and control flow graph
elements, it also supports modeling databases used by a system under study,
state-based representations, user interfaces, platform resources of a system’s en-
vironment, both static and dynamic high-level architectural views, and build man-
agement [Pérez-Castillo, De Guzmán, and Piattini, 2011].

• OSLC (Open Service for Lifecycle Collaboration) provides standard specifications
to represent and exchange data in forward engineering domains, such as change,
configuration, project, performance, quality, architecture, application lifecycle,
requirements management, and more. It is not meant to address software evo-
lution, and in contrast to models such as DMM and FAMIX, none of their speci-
fications is aimed at representing source code itself. They utilize semantic web
technologies (RDF) and promote a minimalistic approach.

A set of integrated metamodels was also developed for the CDIF exchange file for-
mat [Electronic Industries Association, 1994], but seems to have fallen into oblivion.

67

5. Existing Approaches

OSLC goes beyond specifying common data models by also defining standard inter-
faces and inter-tool communication means (based on REST [Fielding and Taylor, 2002]).
It therefore stands out by also providing support for adapter creation (Uniform Interfaces
requirement). However, Leitner, Herbst, and Mathijssen [2016] come to the conclusion
that, while OSLC is a solid foundation for standardized data formats and interfaces, it
does not provide support regarding workflows. Furthermore, interface specifications
are deemed not precise enough to be reused in different use cases. Since OSLC is
geared towards general (forward) software engineering, and not software evolution, it
will not be considered separately.
In the course of developing toolchains, problem-specific data models may be de-

veloped. Due to their nature, their reusability is rather limited. Examples include the
Q-MIG data model (see Chapter 2), which is able to represent the basic hierarchical
organization of Java and COBOL source code, along with associated measurements
of various metrics, and information about the migration processes and tools used to
transform COBOL into Java software systems.
As part of his thesis, Kraft [2007] created a “hierarchy of schemas”, a set of models

organized into five levels, spanning the low- and middle-level in terms of Lethbridge,
Tichelaar, and Ploedereder [2004]. The models include a fine-grained abstract syntax
graph-based schema on the lowest level, to higher-level abstractions such as call, con-
trol flow, and program dependency graphs. They only address reverse engineering and
analysis of C++ source code.

5.3 Software EvolutionWorkbenches

Workbenches support only a part of a larger application domain – software engineering
workbenches do not span the whole software lifecycle, e.g. they may support analysis
and design, but not coding or testing activities [Fuggetta, 1993]. Transferred to software
evolution, the supported subdomains of the most well-known workbenches are virtu-
ally always reverse engineering and program analysis. Thus, by definition, their scope
does not extent to the full range of software evolution activities as demanded by the
Comprehensiveness requirement.
For migration and reengineering, there are mostly only individual tools. The few

integrated solutions are hard to characterize – their integration is typically very loose,
indicating a toolkit, but their scopes are too narrow to be classified as an environment.
An example of this is the COBOL-to-Java converter CoJaC by pro et con [Erdmenger
and Uhlig, 2011], which technically consists of a couple of individual tools integrated
into a toolchain. It hardly constitutes a workbench – in Fuggetta’s terms it may be
best classified as a single tool, even though it has “sub-tools”. This thesis is aimed at
creating a toolchain-building support framework – existing reengineering andmigration
toolchains represent the intended result of such a framework, except they were build

68

5.3. Software Evolution Workbenches

“manually”. Their objective is not tool integration at all, which is why they are not
considered any further in this chapter.
Since software evolution workbenches focus on reverse engineering, their tools are

often interactive, to allow users to extract, browse, and visualize data, and derive knowl-
edge and higher-level abstractions. They therefore usually follow the integration based
on integrated models pattern (Section 4.3.3): there is no concept of process integration,
and consequently they lack support for task coordination (requirements Data Flow and
Control Flow). In the toolchain-building process, this is preceded by task identification.
This also refers to process integration. Still, workbenches can be considered providing
at least foundational support to finding appropriate techniques to apply (Task Discov-
ery requirement), since they offer presentation integration instead, i.e. users can find
what they are looking for, e.g. by browsing through the categories and menu entries
of an integrated menu bar. However, there is no support for further describing task
properties in line with the Task Description requirement, as this presupposes process
description capacities.
Workbenches concentrate first and foremost on providing data- and presentation-

integrated tools for use, as opposed to providing the means to build toolchains, sepa-
rating toolchain specification and integration (Separation of Concerns requirement) is
not among their objectives. As a result, task instantiation (particularly the Tool Discov-
ery requirement is not supported by workbenches, either. Extensibility is not a central
concern, and so corresponding support for tool developers is mostly lacking, as well
(requirements Tool Description, Tool Interoperability, Uniform Interfaces and Reusa-
bility). Finally, due to non-existent process integration, there is also no automatic tool
coordination (Automatic Coordination requirement).
The following are considered examples of software evolution workbenches. Not all

of these examples may classify themselves as such due to different definitions and termi-
nology. Here, they are reported on using a consistent meaning of the term workbench,
as defined by Fuggetta [1993] (Section 4.3.5), and contrasted with environment.
• Rigi [Kienle and Müller, 2008] is a reverse engineering workbench with a repo-
sitory-style architecture, with the repository decoupling fact extractors that fill
it, from analyzers and visualizers that inspect and present it to the user. In this
regard, the Rigi system can be extended by tools that output or read its exchange
file format, i.e. basic interoperability means are established, but are on a rather
low level, and cover only the data integration dimension. In addition, Rigi offers
customization and extension means in the form of the custom Rigi Command
Language (RCL), which can be used to script analyses.

• Bauhaus [Raza, Vogel, and Plödereder, 2006] is a reverse engineering workbench
developed at the Universities of Stuttgart and Bremen, partly based on Rigi (a
modified version is used as graphical user interface for several visualizations,
[Koschke, 2000, p. 317]). It provides a variety of program analyses like control and
data flow analysis, deadlock and race condition detection, dead code analysis, ar-

69

5. Existing Approaches

chitecture reconstruction, feature and protocol analysis, static and dynamic trace
analysis, code clone detection, and metric calculation. These techniques are im-
plemented on top of either of two program representations provided by Bauhaus,
the InterMediate Language (IML), and Resource Flow Graphs (RFG). The former
supports a fine-grained program representation on the level of abstract syntax
trees / graphs, while the latter is a more high-level, language-independent model
[Czeranski et al., 2000], like the middle metamodels described in Section 5.2.
Their design has also been an influence on the Dagstuhl Middle Metamodel
[Lethbridge, Tichelaar, and Ploedereder, 2004]. While Bauhaus, programmed
mostly in Ada, has been implemented with extensibility in mind, its central aim
is to readily support reverse engineering activities, not to serve as a platform for
toolchain-building.

• Dali [Kazman and Carrière, 1999] is a workbench for architecture reconstruction,
with a graphical user interface also based on Rigi. It highlights extensibility, and
provides repository-style data integration facilities, which individual tools can
interoperate with either programmatically, or indirectly through a data exchange
file format. Being based on a relational database enables Dali to utilize plain
SQL to express architectural patterns for analysis and manipulation. The Dali
workbench has a narrow scope, which focusses on architectural analyses. Its
means for extensibility are mostly limited to data integration.

• CIA, the C Information Abstraction System [Chen, Nishimoto, and Ramamoorthy,
1990], is a workbench for analyzing properties of C code, including subsystem
decomposition, topologically sorted function call relations (“program layering”),
dead code detection, and coupling information.

• SWAGKit [Holt, Godfrey, and Malton, 2003; SWAG Tools 2020] is a reverse en-
gineering toolkit1 focussed on architectural analysis and visualization. SWAGKit
is based on a pipes-and-filters architecture and consists of several small, individ-
ual tools for parsing C/C++ programs, combining the resulting graphs, identify a
hierarchical subsystem structure, and aggregate information to arrive at a coarse-
grained, architecture-level representation. On top of SWAGKit, more high-level
tools have been implemented, including Beagle [Godfrey and Zou, 2005] and
Kenyon [Bevan et al., 2005] for software history analysis. SWAGKit is structured
as a pipeline, with its tools and filters adhering to the UNIX philosophy [Pike
and Kernighan, 1984], making it very flexible and extensible. At the same time,
this makes integration means fairly low-level, i.e. pipelines are integrated using

1SWAGKit classifies itself as toolkit, and given its very loosely coupled tools, this is in conformance
with Fuggetta’s definitions (see Section 4.3.5). However, toolkits are, according to Fuggetta, a kind of en-
vironment, not workbenches. Workbenches and environments are distinguished by scope, while toolkits
are defined by a low degree of coupling. Since these are orthogonal concerns, it seems natural that there
could also be toolkits with a narrow, workbench-like scope, which is why SWAGKit is listed here, and
not in Section 5.4.

70

5.3. Software Evolution Workbenches

filters written in scripting languages. In terms of the integration levels defined by
Brown and McDermid [1992] (Section 4.3.2), this would classify as carrier level
integration, the lowest of their five levels representing the degree of sophistica-
tion regarding tool integration means.

• g4re [Kraft, 2007] (GCC and Generic GXL Graphs for Reverse Engineering) is a
C++ reverse engineering workbench consisting of several, individual tools, using
a pipe-and-filter architecture similar to SWAGKit. They are loosely coupled into
a toolchain based on the GXL exchange file format (see Section 5.1), i.e. relying
on data integration, only. The g4re workbench does not seem to provide any
further means to automate concrete reverse engineering processes, or integrating
the individual tools required by them [Kraft, 2007, pp. 53ff]. Tools seem to be
either invoked manually, or chained by ad-hoc means, e.g. UNIX pipes.

• SHriMP [Storey, Best, andMichand, 2001] (Simple Hierarchical Multi-Perspective
tool) is a reverse engineering workbench focused on providing different views
and interactive visualizations for Java program navigation and comprehension.
It is implemented in Java itself, and uses JavaBeans technology to realize a
component-based architecture, providing data and control integration. While
this makes the workbench extensible, new functionality has to be specifically
written for the SHriMP system, whereas there do not seem to be any particular
means provided to integrate existing, external tools.

• GUPRO [Ebert et al., 2002] (Generic Understanding of Programs) is an integrated
workbench for reverse engineering. It has a repository architecture and follows
the extract-abstract-viewmetaphor for its data processing. Programs are extracted
into a graph-based representation, graph queries are used to yield higher-level ab-
stractions, which can be viewed as tables, or in a source code browser. While
the use of the graph query language GReQL makes GUPRO a very generic work-
bench [Kullbach and Winter, 1999], its interoperability means are limited to file
exchange based on GXL.

• Columbus [Ferenc et al., 2002] is a plugin-based (component-based) reverse en-
gineering workbench. It provides an infrastructure for fact extraction tools, and
comes with a C/C++ extractor and a corresponding linker plugin, as well as sev-
eral exporter plugins. All further analysis steps are therefore external, i.e. of
the extract-abstract-view process mentioned above, Columbus focusses on the
extract part, only. Plugins must be written using Columbus’ plugin API, and are
meant to either parse (and link) source code into a common data model such
as the provided C/C++ metamodel, or export data from such an internal repre-
sentation to a format readable by external tools (e.g. for visualization or further
analysis steps). This means that interoperability relies on providing adapters and
transformers, and exchange file formats (data integration).

71

5. Existing Approaches

• ConQAT [Deißenböck et al., 2010, 2008] (ContinuousQuality Assessment Toolkit2)
is a software quality analysis workbench, which provides facilities metric calcu-
lation, software architecture conformance analysis, code clone detection, and
visualization. It is built on top of the Eclipse rich-client platform, and therefore
provides presentation integration. In addition, existing and user-definable anal-
yses are based on a pipes-and-filters architecture, and the workbench provides
the means to graphically define data-flow-driven chains of individual filters. Con-
QAT is itself the basis for TeamScale [Heinemann, Hummel, and Steidl, 2014],
which aims at providing real-time software quality feedback.

Put in context of the objectives of this thesis, Workbenches could serve as target plat-
forms for the higher levels of integration and toolchain-building support being aimed
at, e.g. implementation-agnostic process definition and enactment. ConQAT is a kind
of “outlier” with respect to its classification as workbench, because of its support for
specifying custom data flows (Data Flow requirement), which is unique among all other
workbenches presented. With this feature, it is also a candidate to be classified as a
workflow-based integration framework (Section 5.8) In general, however, the constric-
tion of workbenches to only a part of the whole software evolution field is in conflict
with the Comprehensiveness requirement, making environments a potentially more
suitable choice.

5.4 Software Evolution Environments

Fuggetta [1993] distinguishes environments from workbenches by their support of
the whole software engineering lifecycle. In this chapter, software engineering is
swapped out for the domain of software evolution. By definition, software evolution
environments satisfy the Comprehensiveness requirement by covering the whole do-
main. Some products are hard to classify within this framework though, because no
single solution can reasonably provide means to support every imaginable software
evolution activity, at least not up front. Therefore, solutions that emphasize extensi-
bility and the provision of an integration framework over concrete software evolution
functionality are also considered environments here. This is very much in agreement
with Fuggetta’s classification, as there is a sub-category, integrated frameworks, dedi-
cated to those kinds of solutions.
Based on these criteria, examples of software evolution environments include the

following:

2ConQAT classifies itself as a toolkit. Using the classification scheme of Fuggetta (Section 4.3.5), it
would rather fall into the workbench category. Even though, internally, ConQAT follows a flexible pipes-
and-filters architecture, its filters have to be written for its specific ecosystem (as opposed to tools running
directly on top of the operating system). Conversely, ConQAT provides more sophisticated means for
integration than toolkits, which rely on operating system means (e.g. UNIX pipes) and low-level scripting
facilities.

72

5.4. Software Evolution Environments

• Moose [Ducasse, Gîrba, and Nierstrasz, 2005] is an “agile reengineering envi-
ronment” build around the FAMIX metamodel family (see Section 5.2). Its func-
tionality is heavily focused on reverse engineering, which implies classifying it
as software evolution workbench rather than environment. However, it also in-
cludes a refactoring engine [Ducasse, Lanza, and Tichelaar, 2000], which extends
its scope from only analyzing systems, to also modifying them based on the find-
ings. Furthermore, an emphasis is put on being extensible, and Moose provides
data interoperability through its central, FAMIX-based repository, as well as im-
port and export facilities for common exchange file formats. Its tool integration
framework offers an API for tools to register and discover each other, i.e. pro-
grammatic control integration. Previous versions of Moose were implemented
in VisualWorks Smalltalk [Ducasse, Gîrba, and Nierstrasz, 2005], but for the lat-
est versions, the system was migrated to Pharo [Black et al., 2018; Moose 2020]
(another Smalltalk dialect and environment). Tools written explicitly for the en-
vironment may also benefit from a degree of presentation integration. Software-
naut [Lungu, Lanza, and Nierstrasz, 2014], an architecture recovery workbench,
is built on top of (an older version of) Moose.

• Orion-RE [Alvaro et al., 2003] is a software evolution environment, mainly aimed
at migrating legacy software systems towards a component-based architecture
and object-oriented programming languages. For this, individual tools, as well
as an XMI-based repository, are integrated using a software bus middleware based
on Java remote method invocation and CORBA. This provides the basis for data
and control integration. Alvaro et al. present a process model to guide software
evolution projects, but also explicitly point out that the lack of a workflow engine
is a limitation of Orion-RE, i.e. there is no support for process integration.

• MoDisco [Bruneliere et al., 2010b] is a software evolution environment heavily
based onmodel-driven techniques, ObjectManagement Group’sMDA and ADM
(Architecture-Driven Modernization) standards, and their implementation in the
Eclipse ecosystem, i.e. centered around EMF (Eclipse Modeling Framework; see
Section 8.7, Steinberg et al. [2008]). MoDisco is programmatically extensible
through its plugin architecture. It also has a very rudimentary “workflow” com-
ponent [Bruneliere et al., 2014], which allows to chain model transformations,
but does not seem to provide any means to specify more complex data and con-
trol flow schemes.

• DMS Software Reengineering Toolkit [Baxter, Pidgeon, and Mehlich, 2004] is a
commercial software evolution environment developed by Semantic Designs. Its
main focus is on program transformation, i.e. supporting legacy system reengi-
neering and migration, but it also program analysis and comprehension tools, e.g.
for control and data flow analysis [DMS Software Reengineering Toolkit 2020].
A particular feature of this environment is its strong focus on enabling concur-
rency, using the proprietary PARLANSE language to specify partial ordering of

73

5. Existing Approaches

software evolution process steps, so they can be parallelized as much as possi-
ble for optimal run-time performance. The DMS Software Reengineering Toolkit
is very generic so it can be tailored to each customer’s particular requirements.
Otherwise, it does not seem to be geared much towards interoperability, owed
to the fact that it is a commercial product.

In terms of the requirements elicited in Chapter 3, these environments’ perfor-
mances are varying. In particular, the DMS Software Reengineering Toolkit is left aside
in the following, as it is not meant to be used as an integration platform, at least not by
third parties.
In general, none of the environments make a strong separation between toolchain

specification and integration / implementation (Separation of Concerns requirement),
partly because toolchain-building support is rudimentary, at best. Many of the other
requirements depend on this, which is why these environments cannot satisfy require-
ments Task Discovery, Task Description and Tool Discovery, either. As integrated en-
vironments, they do provide foundational data and control integration means, but sup-
port for users specifying data and control flow (process integration / task coordination,
requirements Data Flow and Control Flow) is really only present in MoDisco, which
has a very simple workflow concept. As a consequence, workflow automation (Auto-
matic Coordination requirement) is also only supported by MoDisco, and again, only
in a very basic way. All environments build on component-based platforms, or at least
offer well-structured APIs and interfaces. They therefore inherit the properties of CBSE
technology, in general, with respect to
• basic means for tool specification (Tool Description requirement),

• the creation of interoperable tools with standardized interfaces, at least within the
environment (requirements Tool Interoperability and Uniform Interfaces), and

• reusability of transformers (Reusability requirement), even though this concept is
not usually made distinct from adapters.

Essentially, software evolution environments are therefore rated the same as compo-
nent-based technology, in general (see Section 6.5). They do not constitute ready-made
toolchain-building frameworks by themselves, but they may provide suitable target plat-
forms on which to build the support framework envisioned by this thesis. Individual so-
lutions may fare slightly differently from this generalized view. For a particular project,
choosing a certain software evolution environment instead of a general-purpose com-
ponent framework may be beneficial, if many of the software evolution tasks that need
to be performed can be supported by tools already integrated into the environment. In
the more general case that requires to integrate very diverse tools, a software evolu-
tion environment could hinder rather than help due to technical constraints imposed
by it. Modern component frameworks may offer platform independence, distributed
computing3, and bindings to various programming languages and technologies.

3Even if a software evolution environment is platform-independent, it may still require that all tools

74

5.5. Component-based, Service-Oriented, and Model-Driven Integration

5.5 Component-based, Service-Oriented, and Model-Driven
Integration

This section clusters integration approaches whose primary features are derived from
component-based, service-oriented, and / or model-driven principles and techniques.
There are many such approaches, showing that these software engineering paradigms
have proven themselves as well-suited foundations for tool and systems integration.
The following list describes examples of such integration approaches from different

domains: only some are explicitly aimed at software evolution tool integration, while
others are geared towards tool integration in general, or at evenmore general integration
of arbitrary software systems. Also, not all of these approaches are also paired with
a concrete implementation in the form of an integration framework or platform, and
rather describe methodologies.

• Toolbus [Bergstra and Klint, 1998; Jong and Klint, 2003] is a component-based,
message-oriented middleware. It distinguishes three layers: On the bottom, com-
putation is taken care of by tools (components). On the top, coordination is
taken care of by the bus, providing process integration by running scripts in a
special process description language called TScript. In between, representation
of data exchanged between individual tools and the bus is done in a common
exchange format called ATerms. Toolbus has been used to integrate the tools of
the ASF+SDF Meta-Environment [Brand et al., 2001], another example of a soft-
ware evolution environment geared mainly towards program transformation (in
that regard it is similar to the DMS Software Reengineering Toolkit).

• OASIS [Jin and Cordy, 2003, 2005a,b; Jin, Cordy, and Dean, 2003], the Onto-
logical Adaptive Service-Sharing Integration System, is an integration approach
that has been applied in the reverse engineering domain. It uses adapters with in-
and out-filters (transformers in the terminology introduced in Chapter 3) to map
between the internal data formats of individual tools, using a domain ontology
as common data model. OASIS also has a service concept that is separate from
the tool providing it (a tool can provide multiple services – the opposite does
not seem to be true, though). Using the adapters, services can be invoked on
one tool, but operate on the data of another, given that this other tool supports
all the concepts necessary to execute the service. This information is part of the
ontology. OASIS focusses strongly on enabling data integration. In this regard,
in can be considered complementary to the objectives of this thesis.

• Winter and Ebert [2005a,b] propose “Using Metamodels in Service Interoperabil-
ity”. The approach is based on component-based and service-oriented principles,
and strongly separates abstract services and concrete, implementing components

run on top of it, impeding integration if different tools need to run on different operating systems, for
example.

75

5. Existing Approaches

(Separation of Concerns requirement). However, at its core it actually builds on
model-driven techniques, and aims at data integration. It uses domain-specific
reference metamodels, and model transformations that map from the individual
components’ metamodels into such a reference model. There are many similari-
ties to the OASIS methodology. An important difference is that Winter and Ebert
propose to have one reference metamodel per service (although services that op-
erate in the same domain may well be sharing a reference metamodel), while
in OASIS, there is a single domain ontology for the whole integration solution
(compare the integration patterns by Karsai, Lang, and Neema [2005] presented
in Section 4.3.3).

• Bézivin et al. [2005] propose a model-driven approach for data integration using
the ATLAS Model Management Architecture (AMMA), which is based in the EMF
technical space (see Section 8.7). Similar to Winter and Ebert [2005b], a refer-
ence metamodel called the “logical pivot” is constructed. The individual tools’
metamodels are mapped into this using the ATLAS transformation language (ATL).
Like all approaches that focus on data integration only, there is no real overlap
with the objectives of this thesis; rather, both can be used complementary. To
integrate meta-tools (tools that can be parameterized with a metamodel, such as
many program transformation workbenches and environments, or “metaCASE”
tools like MetaEdit+; see Chapter 8), Bruneliere et al. [2010a] lift model-driven
data integration to the meta-metamodel level.

• Within the SENSORIA project [Wirsing and Hölzl, 2011], concepts for model-
driven generation of integrated software systems from higher-level descriptions
like BPEL-based orchestrations [Gönczy, Hegedüs, and Varró, 2011] have been
developed. Such an approach can support the automatic derivation of tool-
chains (Automatic Coordination requirement) from process-oriented descriptions
(requirements Data Flow and Control Flow). SENSORIA was a very large Eu-
ropean research project focused on service-oriented development and software
systems integration methodologies and techniques, with many more outcomes
than just this one. However, it was neither focused on software evolution, nor
was tool integration or toolchain-building among its concerns. Its relation to this
thesis is therefore not as an alternative, but as a rich source of advanced methods
of service-orientation.

• MOFLON [Amelunxen et al., 2008] is a metamodeling framework compliant with
OMG’s Meta Object Facility. It is able to generate repositories from metamodels
and triple graph grammars (TGG), a formalism that can be used for bi-directional
model transformation (see Section 8.7). This has been used for data integration of
tools: for each tool’s metamodel, a repository is generated. Adapters have to be
created manually, to synchronize between the tools’ internal data and their gen-
erated repositories. Furthermore, a TGG must be constructed to establish map-
pings between tool pairs, for which MOFLON will generate another repository.

76

5.5. Component-based, Service-Oriented, and Model-Driven Integration

Because of the standardized interfaces of the generated repositories, a generic in-
tegrator component can then facilitate data exchange between the tools, utilizing
the operational rules within the TGG-generated repository.

• ModelBus [Hein, Ritter, and Wagner, 2009] is a model-driven service bus frame-
work for the integration of diverse, distributed software engineering tools. At
its center is a model repository which allows to address models using URLs, so
that individual tools need only exchange references instead of the actual data.
The repository is equipped with versioning and merging facilities, to handle
concurrent, distributed processes accessing and manipulating its data. Besides
model-driven data integration, ModelBus builds on service-oriented techniques
and standards like web services, BPMN, and BPEL, and includes frameworks im-
plementing those standards, like an orchestration engine, to also provide control
and process integration [ModelBus 2017]. It is a quite comprehensive middle-
ware, and goes far beyond the objectives of this thesis in many regards. How-
ever, it does not provide the abstraction from technical concerns demanded by
the Separation of Concerns requirement, and therefore cannot support task iden-
tification (requirements Task Discovery and Task Description) and instantiation
(requirements Tool Discovery, Tool Description and Tool Interoperability) of the
toolchain-building process as envisioned in this work (see Section 3.1). It has
been applied, for example, in the field of embedded, safety-critical applications
development, complemented with a commonmeta-model for the domain [Baum-
gart, 2010], and used as basis of a reference technology platform [Armengaud et
al., 2011; Baumgart et al., 2012].

The approaches subsumed in this section are too diverse to generalize their overall
performance in terms of the requirements for a toolchain-building support framework.
Most of them have objectives that are quite different from what this thesis is trying to ac-
complish, making comparisons even more difficult. The reason these approaches have
been included, in many cases, is their support for individual requirements. Others pro-
vide practical evidence of the expedience of particular design decisions or technology
choices. Most approaches actually focus on data integration, only. Since they are often
classified simply as integration or interoperability approaches, it is important to notice
that these approaches are not alternatives, but are actually orthogonal to the objectives
of this thesis.
In general, all the integration frameworks presented in the last sections are pre-

integrated solutions, rather than approaches that aid the integration process itself. In
this regard, they do not address the central objective of this thesis, at all. Their number
does further emphasize the general need for integration, though. Being pre-integrated,
workbenches and environments cannot be tailored to fully support and automate spe-
cific processes, and are therefore always only applicable to a limited number of prob-
lems. Furthermore, if the processes being supported are evolving, these approaches
lack the flexibility to be adapted, accordingly.

77

5. Existing Approaches

There are two service-oriented approaches, SOFAS [Ghezzi, 2012] and TIL [Biehl,
2013], which have objectives similar to those of this thesis. Therefore, they are dis-
cussed in more detail in Section 5.6 and Section 5.7, respectively.

5.6 SOFAS: Software Analysis as a Service

Software Analysis as a Service (SOFAS) is an approach developed by Giacomo Ghezzi,
described in his dissertation [Ghezzi, 2012] (a cumulative dissertation, i.e. a collection
of publications by Ghezzi, framed by an introduction and a conclusion). The first
paper on the topic was published in 2008, and the thesis was completed in 2012. The
objectives are described as follows:

“ [SOFAS is aimed at providing a] distributed and collaborative software anal-
ysis platform to enable seamless interoperability of software analysis tools
across platform, geographical and organizational boundaries.

[Ghezzi, 2012, p. 2]

”Therefore, there is some overlap with this thesis in both application area and objec-
tives: SOFAS targets software analysis, i.e. the reverse engineering phase of software
evolution. This thesis is aimed at covering the whole field of software evolution, which
extends beyond reverse engineering, software analysis and visualization, to software
restructuring, refactoring, and transformation, to also be able to directly support reengi-
neering, migration, and continuous maintenance and development.
Both approaches are aimed at tool integration. SOFAS provides this for a sub-field

of software evolution. In terms of data integration, it goes beyond the objectives of
this thesis, by also providing an ontology for data standardization. In contrast, this
thesis deliberately excludes this integration aspect to be filled by a complementing
approach or technology – in fact, SOFAS’ software evolution ontology “SEON” could
fill this gap. Others have been mentioned, e.g. in Section 5.2 and Section 5.4. This
thesis strives to provide holistic support for the toolchain-building process, putting an
emphasis on reusability and flexibility. A major cornerstone in achieving this is the a
clear separation of task and process specification concepts on the one hand, and their
technical imlementation on the other (Separation of Concerns requirement). This is
viewed as a distinguishing quality not present in SOFAS.
Another commonality is that both approaches are service-oriented; Chapter 9 will

describe in detail how service-oriented principles are applied in the approach proposed
by this thesis, SENSEI. SOFAS provides SCoLa (“SOFAS composition language”), a work-
flow language based on BPEL, which is able to reference SOFAS’ RESTful web services,
and be executed by an interpreter. Several design decisions were made in favor of
“simplicity and ease of use over expressiveness and feature richness” Ghezzi and Gall,
2013 (e.g. simplifying BPEL, and opting for WADL instead of WSDL for service descrip-
tion). SENSEI’s service orchestration language is completely technology-agnostic, which

78

5.6. SOFAS: Software Analysis as a Service

keeps it simple, as well, but also provides maximum flexibility. SENSEI orchestrations
can be either interpreted, or used as input for a code generator. The former approach is
realized by SNOrcInS (“SENSEI Orchestration Interpreter Service”) [Küpker, 2015]. The
latter approach, described in detail in Chapter 14, is implemented by SCAffolder, a
model-driven code generator targeting Service Component Architecture (SCA) [2015],
which is what the name alludes to. Both SOFAS and SENSEI offer basic control and data
flow support, and a graphical orchestration designer.
One of SOFAS focuses is supporting empirical research, i.e. to reduce the effort re-

quired to setup the tooling for experiments (particularly in the area of mining software
repositories), and make them easier to repeat for verification. SENSEI can be used to this
end, as well. It was conceived to support activities comprising the whole field of soft-
ware evolution, targeting industrial migration and reengineering projects, and research
projects with industry relevance and participation. The “distributed” and “collabora-
tive” aspects, as well as the ability to span “geographical” and “organizational” bound-
aries, are present in both aspects, too (SENSEI’s abilities in this regard are exemplified
in the Q-MIG case study, described in Chapter 15).

5.6.1 Comparison

SOFAS fully supports task identification through its searchable service catalog (Task Dis-
covery requirement), task coordination (requirements Data Flow and Control Flow),
uniform interfaces (Uniform Interfaces requirement), and the automatic execution of
defined workflows (Automatic Coordination requirement). Certain technical details
are hidden from normal users, by offering a simplified view of services through the
user interface. There is also the ability to specify “abstract services”. But in general,
services are described in a technical manner, i.e. the separation of specification and
integration is not as clear and rigorous as desired in this thesis (Separation of Concerns
requirement). The application domain of SOFAS is limited to software analysis (Com-
prehensiveness requirement). Due to the tight coupling of toolchain specification and
integration, there is little need for specifying required service properties (Task Descrip-
tion requirement), since users implicitly select an implementation when they select
a concrete service. For the same reasons, automatic task instantiation (requirements
Tool Discovery and Tool Description) is not supported, either, and there is no mention
of any specific means to assist the implementation of new tools, or the inclusion of
existing ones (Tool Interoperability requirement). SOFAS uses an ontology as common
data model, and all its analysis services have been specifically built to support it. Due
to this, SOFAS has no concept of data transformers (Reusability requirement).
The following lists a number of additional properties of both SOFAS, and SENSEI,

the approach proposed in this thesis. SENSEI is described in detail in the chapters of
Part IV. However, detailed knowledge of SENSEI should not be necessary to follow and
comprehend these statements.

79

5. Existing Approaches

• For SOFAS, RESTful web service technology has been chosen, as opposed to
SOAP-based web services, to provide simpler, standardized service interfaces.
SENSEI similarly strives for simple and uniform interfaces, but goes one step further
by completely decoupling conceptual services from their technical implementa-
tions. SENSEI services are similar to the view of SOFAS software analysis services
that is exposed to users. However, how they are implemented, including which
technology is used to describe their technical interfaces, is interchangeable in
SENSEI, while it is fixed in SOFAS (using WADL [Hadley, 2009]).

• In both SOFAS and SENSEI, services are atomic insofar as they do not possess
operations. SOFAS makes some additional assumptions about all its software
analysis services, namely that each offers REST resources, on which certain HTTP
methods must be available. These have a general semantic that is the same for
all software analysis services. SENSEI makes no such assumptions, as it needs to
be applicable to software evolution techniques of any kind, not just analyses.

• All data used, exchanged, and produced by SOFAS software analysis services
must conform to the SEON ontology. SENSEI does not provide an ontology, or
other form of a common data model. Service parameters are typed, but these
data structures are merely names describing the kind of data, but come with
no restriction regarding its structure, technical representation, or transmission
protocol. In SOFAS, service input data must be either strings or files; SENSEI
makes no such restrictions. A particular stipulation regarding the signature of all
services in SOFAS is that they must be queryable using SPARQL.

• In SOFAS, data produced by one service and consumed by another must con-
form to the same SEON types. This allows for workflow validation, using custom
annotations in the WADL-based service descriptions. The SOFAS orchestration
editor can furthermore suggest services from its catalog which fit to a service that
is already part of an orchestration. A similar feature is possible in SENSEI due
to the conceptual data structures defined in its service catalog. How the data is
technically represented is specific to concrete service implementations in SENSEI,
and these representations do not necessarily have to match up. If two services
are supposed to exchange data, and no pair of corresponding implementations
can be found that are compatible in this regard, SENSEI’s composition finder will
try to automatically insert one or more data transformers instead.

• SOFAS invokes analysis services asynchronously, and then uses polling to check
whether an analysis has finished execution; these technical details are taken care
of automatically, and are hidden from normal users. In SENSEI, synchronous ser-
vice invocation is assumed, as well. Concrete implementations are free to use ac-
tual synchronous calls, or simulate a synchronous behavior using asynchronous
calls, and polling or callbacks to retrieve results. Just as in SOFAS, SENSEI users
are not usually exposed to such implementation details.

80

5.6. SOFAS: Software Analysis as a Service

• Both SOFAS and SENSEI have a service catalog. Since the former makes no strong
separation between services and their implementations, its service catalog also
takes on a role similar to SENSEI’s separate component registry. The service cata-
log in SOFAS is structured by a taxonomy, while that of SENSEI is not. However,
a method to discover, describe, and classify software evolution services to fill the
SENSEI catalog and derive an adequate taxonomy is sketched by Jelschen [2013].

• In SOFAS, all services must either be data gatherers, basic software evolution
analyses, or composite software evolution analyses. SENSEI, being more general,
makes no such assumptions about its services.

• The orchestration languages of both approaches are similar in expressiveness;
both feature structured control flow elements, and both do not have exception
handling. The language of SOFAS is called SCoLa, and has control links, which
allow to specify a partial order on services. Together with the flow construct for
parallel execution, this enables slightly more flexible synchronization than in SEN-
SEI, which only has the structured control flow concept for concurrency. SCoLa
is based directly on a simplified version of BPEL, while SENSEI is, once again,
technology-agnostic in this regard. A unique feature of SENSEI are its capabilities,
a simple means to declaratively specify required service properties, which can
be utilized to express complex processes in a very clear and concise manner.

• SCoLa allows to define abstract analysis services and workflows, to use as tem-
plates. In SENSEI, all services can be considered abstract; the mapping to concrete
implementations is done automatically. SENSEI provides means to declaratively
specify required capabilities of individual services within an orchestration, to in-
fluence this mapping, and have it select components that meet the requirements.

• SOFAS features a set of service management tools that take care of cross-cutting
concerns like logging and monitoring during workflow execution. Due to SEN-
SEI’s complete decoupling of service orchestrations from their technical realiza-
tion, such features are easy to realize within the approach, too. SCAffolder, for
example, automatically generates logging statements into the code it produces.
A possible extension would be to enable users to declaratively request certain
properties using SENSEI’s existing capability language (see Section 18.3.1).

• SOFAS is meant to be extendedwith new services mainly by the research group in
which it was conceived, and remains to bemaintained. Users can use the existing
services to design software analysis workflows, but are not expected to integrate
new services themselves. This is in stark contrast to SENSEI, which is explicitly
aimed at facilitating the integration of arbitrary tools, existing or newly developed.
Therefore, SENSEI does not include a predefined set of services or components,
although several have been modeled and implemented, respectively, to apply the
SENSEI approach in different application domains.

81

5. Existing Approaches

5.6.2 Summary

SOFAS and SENSEI are both service- and process-oriented approaches for tool integra-
tion in the field of software evolution, and share many similar features. The scope of
SOFAS is narrower, focussing on software analysis. Its concepts are also fused more
strongly to certain technologies, such as WADL-based, RESTful web services. SENSEI
has a broader scope and is therefore more generic, and potentially more flexible. For
example, SENSEI can be mapped to many different target platforms and middleware
technologies, to support the integration of arbitrary software evolution tools, and to be
tailored towards different requirements, like runtime performance, or distributed exe-
cution. SENSEI orchestrations can either be interpreted, or used to generate executable
toolchain code; implementations exists for both approaches.
This increased flexibility might entail a higher initial adoption overhead. For pure

software analysis projects, SOFASmay be the more pragmatic toolchain-building frame-
work choice, particularly if most or all the required services are already available.
Projects that span outside of the confines of software analysis can only be fully sup-
ported by SENSEI.
The separation of abstract services from implementing components is unique to

SENSEI, and enables features like automatic matching of services to components. This
is further supported by service capabilities, a powerful tool for declarative specification
of required functionality, facilitating concise expression of otherwise complex software
evolution processes.
SOFAS is complemented by a common data model in the form of the SEON on-

tology. SENSEI does not have a comparable feature, relying instead on transformers to
translate between tool-specific data formats. Again, this makes SENSEI potentially more
flexible, but when starting out from scratch, the overhead of creating the required trans-
formers may be greater, while in the long-term, their reusability will pay off. It is also
possible to combine SENSEI with SEON, i.e. use the ontology for the data integration of
software analysis tools, and use direct transformers for everything else. One could also
opt to combine the complete SOFAS framework with SENSEI, e.g. by making SOFAS
analyses available as SENSEI services.

5.7 TIL: Tool Integration Language

In his dissertation, Biehl [2013] describes TIL, the Tool Integration Language, and the
toolchain-building methodology and support framework build around it. The work is
structured as a short monograph, with a set of nine published papers appended. For
many of the details, the monographic part refers to one of these papers. The papers
appeared between the years of 2010 and 2012.
TIL aims at classic forward engineering tool integration, and to the field of em-

bedded systems development, in particular. Due to this, it has been recognized as a

82

5.7. TIL: Tool Integration Language

related work only after its completion, as papers on TIL have been published mainly
in outlets of the embedded systems community, while SENSEI publications have mostly
targeted the software evolution community. Similarities between the two approaches
have therefore been developed independently. As will be described in the following,
the parallels are mostly found with respect to technical issues and design decisions,
while there are considerable differences with regard to each approaches’ objectives,
and accordingly, their respective conceptual frameworks.
TIL is a language for designing high-level models of toolchains. A graphical editor,

the TIL workbench, was implemented to support this activity. Based on TIL models,
integrated toolchains are derived through model-driven code generation, targeting a
Service Component Architecture framework (FraSCAti) as its component model and
runtime. So far, these are all aspects that are very similar to SENSEI. Going through the
requirements of this thesis will uncover the differences.

5.7.1 Comparison

TIL provides a reasonable level of abstraction from implementation details, but there
is a one-to-one relation between actual tools, and their representation in TIL, i.e. the
separation is not as strong as demanded by the Separation of Concerns requirement.
As mentioned before, TIL is not targeted at software evolution tool integration (Com-
prehensiveness requirement), and its reliance on standards like OSLC would make its
application in this domain quite laborious, at best.
There does not seem to be support for task identification (requirements Task Dis-

covery and Task Description). The service discovery process described by Biehl, Gu,
and Loiret [2012] instead refers to the extraction of TIL tool adapter metamodels and
interfaces from an existing OSLC-based specification.
TIL supports data flow specification (Data Flow requirement) using the DataChan-

nel and TraceChannel concepts. Support for control flow specification (Control Flow
requirement) is weaker, or at least less obvious, because TIL is aimed at automating
more interactive use cases, which is why the language is inherently reactive (event-
based). Its ControlChannel concept is more akin to transitions in finite state machines
(and it can have guard conditions). The Sequencer allows to model daisy-chained in-
vocations of tools and data or trace channels, but there are not further control flow
structures, e.g. no loops.
Due to the lack of a sufficiently clear separation between specification and integra-

tion, there is no support for task instantiation in terms of matching tasks to tools (Tool
Discovery requirement), and specifying provided properties of tools (Tool Description
requirement). In fact, TIL models are much more technical than SENSEI orchestrations,
and do not actually describe processes. TIL’s most elementary language concept is that
of a ToolAdapter, which has no direct correspondence to a task or step in a process.
However, support for aiding developers in creating ToolAdapter implementations

83

5. Existing Approaches

(Tool Interoperability requirement) is quite strong, offering stub generation like SENSEI
does. TIL goes beyond that, though, and can even provide full adapter code generation
for certain cases [Biehl, Gu, and Loiret, 2012], as well as facilities to automatically de-
rive prototypical data transformations [Biehl, Hong, and Loiret, 2012]. The uniformity
of adapter interfaces (Uniform Interfaces requirement) is ensured through this code
generation approach, as well, and by having them conform to SCA and OSLC stan-
dards. The infrastructure of TIL does not seem to provide any particular means for
the reusability of once-produced transformers (Reusability requirement); being able to
partially generate them makes this less of a concern in TIL.
Finally, automatic tool coordination (Automatic Coordination requirement) is fully

supported by TIL, and its approach to achieving this is probably the greatest similarity
to SENSEI, as both rely on model-driven transformations and code generation for an
SCA framework for this. Still, there is also a fundamental difference here, rooted in the
distinct nature of TIL and SENSEI’s orchestration language: TIL assumes a scenario in
which embedded systems developers use different interactive design tools. For exam-
ple, a developer may work in one tool for a while, then save his changes. This may
trigger some action automated by a TIL toolchain, e.g. transforming and transmitting
the modified data to another tool. In contrast, SENSEI is aimed at fully automating the
processes that have been modeled as service orchestrations, without user interaction.
The following list enumerates several further similarities and distinctions between

the two approaches:
• Biehl [2013, p. 6] distinguishes four stakeholder roles: users of tools and users
of toolchains, as well as creators of tools and creators of toolchains. SENSEI also
distinguishes several roles: domain experts use tools and toolchains, but are also
the ones modeling processes in need of tool support. Executable toolchains are
derived from that description, i.e. toolchain creation is automated. Tool creation
is the responsibility of tool developers. In addition, SENSEI introduces catalog
maintainers as curators of service catalogs, responsible for creating standardized,
abstract description of software evolution tasks in the form of services.

• Both TIL and SENSEI are model-driven, and its central concepts are described in
a metamodel. As suggested by the name, TIL focuses on the tool integration
language, which corresponds to SENSEI’s service orchestrations. In addition, the
SENSEI metamodel features the service catalog, component registry, and capabil-
ities layers. TIL does not have comparable concepts.

• The design of the tool integration language, and SENSEI’s orchestration language
differs considerably. With TIL, tools (“ToolAdapters”) are integrated directly,
while SENSEI uses services, which are mapped to implementing components in
a separate (automated) step. TIL is more technical, while SENSEI’s service or-
chestrations serve as an abstraction layer, hiding technical detail. TIL’s execution
semantics are event-based, and have been mapped to finite state machines [Biehl,
2012], while SENSEI’s orchestration language is process-oriented like a flowchart

84

5.7. TIL: Tool Integration Language

(but with structured control flow akin to Nassi-Shneiderman diagrams [Nassi
and Shneiderman, 1973]). TIL has features for user interactivity, which are not
currently present in SENSEI. Conversely, SENSEI has a more fully-featured set of
control flow structures, including loops, conditional branching, and concurrency,
whereas TIL only has the ability to chain multiple steps in a sequence.

• Both approaches feature an editor to model processes, the TIL Workbench, and
the SENSEI editor (see Chapter 13), respectively. Both are based on the Eclipse
Rich Client Platform. In SENSEI, this is actually a set of three integrated editors,
to model not only service orchestrations, but also the services themselves, con-
tained in a service catalog, and components, contained in a component registry.

• TIL models are independent of any particular implementation technology, just
as SENSEI models are. Both approaches have a code generator (SENSEI’s is called
SCAffolder, and is described in Chapter 14), and for both the Service Component
Architecture (SCA) was chosen as concrete target platform. TIL also generates
artifacts for OSLC compliance [Open Services for Lifecycle Collaboration 2020],
while SENSEI’s SCAffolder does not support it. As an alternative to being used for
code generation, SENSEI models can also be interpreted [Küpker, 2015].

• TIL’s tool adapters are split into two parts: the external part represents the inter-
face needed to access the integrated tool in a uniform way, and can be generated
automatically. The internal part represents the adapter logic that maps between
this interoperability interface and the tool’s own interface, and has to be imple-
mentedmanually. This is very similar to SENSEI: SCAffolder also implements a stub
generator, which produces the technical interface descriptions, SCA artifacts, and
other code stubs, required for interoperability, from a SENSEI model containing
the service descriptions the given tool is implementing. The rest of the adapter
logic has to be created manually. For a few kinds of interface technologies, TIL
includes templates that allow it to generate both parts of the adapter, completely.

• In TIL, tool adapters need to be associated with a metamodel of the data used
by the adapted tool. For OSLC-compliant tools, the metamodel may be discov-
ered, automatically [Biehl, Gu, and Loiret, 2012]. Data channels connecting
tools similarly need to be associated with a transformation, supplied in one of
several supported model transformation languages. In certain cases, a heuristic
approach can be used to automatically generate a prototypical model transforma-
tion based on the source and target metamodels [Biehl, Hong, and Loiret, 2012],
reducing manual effort. SENSEI’s abstraction level in this regard is higher: on the
service and orchestration levels, no assumptions are made about data structur-
ing or technical representations. SENSEI’s tooling is able to insert transformers
automatically, if necessary, during toolchain generation. Transformers have to
be implemented manually, but no assumptions or stipulations are being made
regarding their implementation technology, offering greater flexibility.

85

5. Existing Approaches

5.7.2 Summary

TIL and SENSEI are toolchain-building frameworks with several technical similarities,
such as a high-level language for toolchain or process specification, used as the basis
to automatically generate an executable, fully integrated solution. Both use model-
driven techniques to achieve this, and both feature an implementation that targets SCA
as component framework. On closer inspection, however, major differences regarding
objectives, target domain, and corresponding design decisions become apparent. The
most obvious difference is TIL’s focus on integrating forward engineering tools, particu-
larly in the field of embedded and safety-critical systems. Its dependence on OSLC may
constitute an impediment to its application for building software evolution toolchains.
Conversely, SENSEI has been kept very generic, and shown to be applicable to domains
other than software evolution (see Chapter 16).

Comparing the tool integration language with SENSEI’s orchestration language re-
veals further differences, as both have been designed for markedly disparate use cases.
TIL is event-based, and has a dedicated concept to represent toolchain users in its mod-
els, who can trigger, e.g. tool executions and data transformation and transmission, as
well as receive notifications. The approach is therefore more appropriate for usage sce-
narios with user interaction, and the integration of interactive tools, e.g. requirements
management and software design (UML) tools. Ongoing research addresses the exten-
sion of SENSEI to support the modeling of interactive systems, which is briefly described
in Section 16.4.2, but otherwise, this is beyond the scope of this thesis.

Conversely, SENSEI is meant mainly for the full automation of (software evolution)
processes. Therefore, it features a process-oriented orchestration language with a full
set of control flow structures, such as loops, conditional branches, and concurrency,
neither of which are present in TIL.

Furthermore, TIL seems to be aimed at integrating rather large tools or tool suites
used in software development. SENSEI services will usually be of finer granularity, al-
though in the end, this is up to catalog maintainers designing the services. The sep-
aration between abstract services and implementing components is much stronger in
SENSEI: in TIL, there is a one-to-one relation between the tool adapters used in its models
and concrete tools to be integrated. In SENSEI, this is fully decoupled, i.e. a component
(wrapping around a tool) may implement arbitrarily many services, and a service may
be implemented by arbitrarily many components.

With TIL, several approaches have been developed that are beyond the scope of
this thesis, e.g. the heuristic-based generation of transformations for data integration.
Conversely, the strong separation of services and components, the capability concept
for declaratively specifying required service properties, and the ability to automatically
match such service instances to appropriate components, are examples of features that
are unique to SENSEI.

86

5.8. Workflow-based Integration

5.8 Workflow-based Integration

Most of the integration approaches discussed so far address data integration. Software
evolution workbenches and environments may also offer control, platform, and pre-
sentation integration to varying degrees. The component-based, service-oriented, and
model-driven approaches usually address either data or control integration. However,
process integration is offered by only a few solutions, and in most cases the support is
rudimentary. Among the workbenches, ConQAT provides means to specify data-driven
chains of individual processors. With its concept of orchestration, service orientation
offers techniques and frameworks for process automation, with ModelBus being an
example of a middleware incorporating an orchestration engine for this purpose.
The fields of workflow management and (business) process automation (see also

Section 7.5) fit into this gap, although they are not necessarily concerned with inte-
gration. Workflow management systems may, for example, only serve to automate
the communication, notification, and exchange of information between different par-
ticipants of a process, while the actual tasks are still performed manually by (human)
actors. This allows to monitor progress, and ensure adherence to processes established
in a business for (e.g. quality assurance). Processes may also be partly or fully auto-
mated, if tasks can be executed by appropriate software applications. Only at this point
it becomes an automation, and a software integration matter.
A particular variant of frameworks for process modeling and automation are sci-

entific workflow systems, aimed at automating the steps of data- and computationally
intensive, scientific analysis processes, such as in bioinformatics (genomics), compu-
tational chemistry, or data mining in general. Because many of these applications
require immense computational power, or the processing of very large data sets, scien-
tific workflow systems also provide facilities for executing processes massively parallel,
and may be tailored towards grid computing or computer cluster environments.
Since techniques and frameworks in other domains (business process automation,

service orchestration) have already been covered in this chapter, and before that in
Section 7.5, this section focusses mainly, but not exclusively, on scientific workflow
system. Not all workflow systems that are mainly advertised as “scientific” are neces-
sarily restricted to those domains. The following list provides some examples:

• Apache Taverna [Hull et al., 2006; Wolstencroft et al., 2013] allows to model
and execute workflows of REST- and SOAP-based web services, as well as local
scripts, and mainly caters to the needs of bioinformatics. Workflows are modeled
in terms of data flow, only (Data Flow requirement); control flow cannot be spec-
ified (Control Flow requirement), and instead follows the data flow, implicitly.
Execution can occur locally, distributed over a network, or within grid and cloud
computing environments. Wolstencroft et al. [2013] note the need to discover
suitable (web) services to support tasks, and potentially replace one (unreliable
or otherwise inadequate) implementation for another. For this, they point to on-

87

5. Existing Approaches

line registers like the BioCatalogue [Bhagat et al., 2010] of web services for life
sciences. However, finding, replacing, and integrating services will still require
a lot of manual effort, since service interfaces do not seem to be standardized.
That means, two web services may conceptually offer the same functionality, but
their service descriptions can differ, as they are not separated from their technical
interface descriptions (Separation of Concerns requirement).

• TraceLab [Keenan et al., 2012] is intended to support the design and execution
of processes modeling requirements traceability experiments. It is based on Mi-
crosoft .Net technology, which makes it dependent on the Windows platform.
Also, components for the platform have to be written in a .Net-compatible lan-
guage. Even though Keenan et al. state that “component[s] can be written using
almost any memory-managed language”, their meaning becomes more evident
later, when it is explained that Java components must utilize the Java / .Net bridge
IKVM [Frijters, 2014] to be used with TraceLab. Control flow is visually specified
in the form of a precedence graph, meaning the execution of multiple compo-
nents can, by default, occur concurrently, if all their predecessors have com-
pleted execution. Data exchange uses a blackboard architecture [Buschmann et
al., 1996, p. 71]: components in a workflow are configured to write to, and read
from, a central, shared “workspace”.

• Bio-jETI [Margaria, Kubczak, and Steffen, 2008] is a service-oriented integration
and orchestration platform for bioinformatics. It is based on jABC [Lamprecht,
Margaria, and Steffen, 2014; Lamprecht, Steffen, and Margaria, 2016; Margaria
et al., 2006], which provides the service modeling and orchestration capabilities,
and jETI [Margaria, Nagel, and Steffen, 2005], a tool integration framework that
helps build wrappers around file-based command line tools, fits them with uni-
form interfaces (Uniform Interfaces requirement), and makes them available for
remote invocation. Bio-jETI features foundations for separating specification and
implementation in the form of the SIB concept (service independent building
block)4. Yet, this does not seem to be used to specify and automatically match
specific task needs to adequate tool provisions (requirements Task Description,
Tool Discovery and Tool Description).It further provides constraint-guarded and
constraint-driven workflow design [Lamprecht, 2013, pp. 40ff]. Using model-
checking techniques, it allows to synthesize complete and correct workflows to
be (semi-)automatically synthesized from “loose” (incomplete) workflow specifi-
cations (e.g. with necessary intermediate steps missing). Such techniques may
also be applicable to automatically match tasks to tools (Tool Discovery require-
ment). The SIB browser and the TaxonomyEditor plugin help find appropriate
blocks for tasks (Task Discovery requirement), and the SIBCreator provides sup-
port for integrating tools into the framework (Tool Interoperability requirement).

4This terminology stems from intelligent telecommunication networks, where jABC originates from
[Lamprecht, Steffen, and Margaria, 2016; Margaria et al., 2006; Margaria, Kubczak, and Steffen, 2008].

88

5.9. Conceptual Works

In general, workflow systems mainly support task coordination (requirements Data
Flow and Control Flow) automatic execution (Automatic Coordination requirement).
Most scientific workflow systems are actually limited to expressing data flow, and so
support the Data Flow requirement, but not the Control Flow requirement. This more
simplistic model of processes, in which control flow implicitly follows data flow, has
lower expressive power, i.e. certain forms of (more complex) processes cannot be
realized within the corresponding frameworks, at all [Lamprecht, 2013, pp. 177ff].
Support for all other requirements varies, but mostly these tools are simply nei-

ther tailored towards tool integration, nor software evolution. An exception is Bio-jETI,
which has a comprehensive feature list that satisfies many requirements of this thesis,
but is still geared towards slightly different objectives, and a different application do-
main. Lamprecht, Steffen, and Margaria [2016] identify two shortcomings themselves,
namely insufficient user assistance in finding the right SIBs (Task Discovery require-
ment), and an unintuitive approach to data flow specification (Data Flow requirement).

5.9 Conceptual Works

This section describes previous works that have made contributions on a more con-
ceptual level than the concrete integration approaches presented so far. Still, they
are aimed at providing integration solutions, rather than merely establishing classifica-
tion schemes, which is why they appear here rather than in Chapter 4. The Software
Bookshelf [Finnigan et al., 1997], described in Section 5.9.1, is a seminal work describ-
ing a reference architecture for integrating software evolution tools into workbenches.
Section 5.9.2 provides a short description of the Reference Model for Frameworks of
Software Engineering Environments [Martin, 1993], and is acknowledged here mainly
for its early use of a high-level service concept that is also a core aspect of SENSEI. Sec-
tion 5.9.3 summarizes toolchain-building requirements and lessons learned presented
by Kienle [2006], and compares them with the objectives, requirements, and general
direction taken by this thesis.

5.9.1 Software Bookshelf

The Software Bookshelf [Finnigan et al., 1997] can be described as a conceptual and
high-level architectural reference framework for building a reverse engineering work-
bench. A bookshelf is used as a metaphor for a well-organized repository and single
point of truth for information on a (legacy) software system. Finnigan et al. introduce
three main stakeholders they name builder, librarian, and patron to analyze require-
ments for a software bookshelf. The builder creates the infrastructure and the actual
tools that make up the bookshelf. The librarian fills the bookshelf with information by
using the integrated reverse engineering tools. The patron uses the bookshelf to browse
information.

89

5. Existing Approaches

The reference architecture identifies three basic building blocks, namely a reposi-
tory, tools such as parsers and other reverse engineering and software analysis tools,
and a user interface. All three are connected via network. A prototype build was
based on web technology (of that time, i.e. the mid-nineties). Quite remarkably, the
description of how the HTTP protocol and its request methods (GET, POST, etc.) is
reminiscent of what would nowadays be called a REST architecture [Fielding and Tay-
lor, 2002]. Other technology choices did not age as well, e.g. using CGI (Common
Gateway Interface) to invoke tools. CGI is rarely used today due to its limited scala-
bility. However, while Finnigan et al. do acknowledge scalability issues themselves,
a software bookshelf workbench would not have the performance requirements many
modern web applications have (e.g. the number of simultaneous users to be expected
is clearly limited).
Although Finnigan et al. mention reengineering and migration, such projects are

only supported insofar as patrons can use the bookshelf to gain knowledge about the
original system; actually performing reengineering and migration activities are out of
the scope of the bookshelf. In this regard, the bookshelf is best classified as a work-
bench (Section 4.3.5). The tools building block of the bookshelf can also be considered
separately, if they are integrated by loosely-coupled means. In the terms of Fuggetta
[1993], the result could be considered a toolkit (though still with the scope of a work-
bench, as only reverse engineering, not all software evolution activities, are covered).
This thesis has introduced the roles of tool developers and domain experts in Chap-

ter 3, and will further expand on that in Chapter 9. These roles do not quite align:
tool developers build the tools, but not the infrastructure, like the bookshelf’s builders.
Modeling processes is not really covered by the bookshelf; builders are responsible
to integrate tools, while this thesis aims at supporting domain experts to model their
processes, which are then turned into appropriate, integrated toolchains automatically
(Automatic Coordination requirement). The distinction between librarians and patrons
is not made in this thesis – both roles’ responsibilities fall to domain experts.
The Software Bookshelf is implemented by the Portable Bookshelf (PBS). This sys-

tem seems to have become obsolete by now, though; according to Kraft [2007, p. 22],
it has evolved into SWAGKit (see Section 5.3).

5.9.2 Reference Model for Frameworks of Software Engineering Environ-
ments

The Reference Model for Frameworks of Software Engineering Environments [Martin,
1993] defines and organizes a comprehensive list of commonly required or useful
framework services. A framework, in this context, is defined as the infrastructure part
of a software engineering environment, i.e. interoperability means as opposed to the
tools built upon them, which provide the central functionalities of environments to
support concrete software engineering activities.

90

5.9. Conceptual Works

The reference model provides a very detailed scheme for comparison of environ-
ments, but it does not put forward a tool integration approach itself. In fact, it could
have been used to classify and compare the existing approaches described in this chap-
ter, but this was considered overkill, due to the reference model’s comprehensiveness,
and the fact that it is aimed at software engineering in general, not at software evolution
environments.
The reference model is described as a conceptual framework. Remarkably, its use

of the term “service” is, in many regards, closer to the service concept used in this thesis
than most of the definitions put forward in SOA literature a decade later (see Chapter 7).
The distinction between conceptual services and their realizations in concrete tool is
made even clearer in the related Reference Model for Project Support Environments
[Brown et al., 1993], which is briefly discussed in Section 4.1.1.

5.9.3 Component-based Tool-Building Lessons

In his dissertation, Kienle [2006] performed an extensive literature study on reverse
engineering, to elicit tool-building requirements from it. Using these requirements,
Kienle evaluated five component-based tools. Finally, a set of ten lessons learned were
distilled from the case studies (a summary is provided by Kienle [2007]). The overall
study differs from the requirements described in Chapter 3 in terms of aim, scope, and
extent:

• Kienle’s study looked at building individual tools, while this thesis is aimed at
toolchain-building.

• Kienle focuses on reverse engineering, while this thesis considers the whole do-
main of software evolution.

• Kienle’s requirements analysis is much more extensive, as its results were a major
deliverable of his work, while this thesis aims at creating a toolchain-building
support framework, which is why requirements elicitation is less broad and more
focused towards this specific objective.

Still, there is significant overlap to warrant a comparison of his findings with the
assumptions, requirements, and conclusions drawn so far in this thesis. The five most
important requirements for reverse engineering tools according to Kienle [2006] are
scalability, interoperability, customizability, usability, and adoptability.

Tool- and Toolchain-Building Requirements

Scalability is a concern because of the large size of many legacy systems. Performance
optimization on the toolchain level can occur in terms of data integration (e.g. incre-
mental updates) and control integration (e.g. concurrency). While this thesis is not
aimed at providing ready-made solutions to address scalability concerns, the approach

91

5. Existing Approaches

has to make provisions that ensure it can be combined with techniques appropriate for
project-specific scalability needs.
Interoperability is a requirement that is perfectly in line with the requirements

elicited in Chapter 3, particularly the Tool Interoperability requirement.
Customizability demands tools be adaptable to different usage scenarios. This the-

sis recognizes this need, but takes a different view. Maybe themost important factors for
enabling customizability and flexibility is the separation of abstract software evolution
tasks, and their support and implementation by concrete tools (Separation of Concerns
requirement). This allows to model custom needs and specific tool provisions (require-
ments Task Description and Tool Description), and break down large tools into the
individual tasks they support, yielding smaller elementary units for easier composition
and reuse.
Usability concerns are outside of the scope of this thesis. Its importance, both

for individual tools and integrated toolchains as a whole is not questioned, though.
Usability of integrated solutions is mostly affected by presentation integration. To some
extent, this can be addressed by choosing software evolution environments as target
platforms to build upon, which provide means for presentation integration. This has
the drawback that tools need to be specifically designed for the chosen platform and
technology. An approach towards more flexible ways to provide well-integrated user
interfaces is described in Section 16.4.2.
Adoptability, when applied to the toolchain-building support framework to be con-

structed, is mainly affected by the ease of integration with existing tools. This is re-
flected by the Tool Interoperability requirement, demanding specific support for tool
developers when adapting their tools to conform to the approaches’ provisions. The
adoption barrier can be lowered further by choosing appropriate framework technology
equipped with aids that allow easy and light-weight interfacing.

Lessons Learned

Kienle has distilled the experiences from his case studies in a set of ten lessons
learned, not all of which can be transferred from tool- to toolchain-building. There-
fore, Lessons 1 and 2 (concerning scalability, which has been discussed regarding
toolchains in Section 5.9.3) are omitted here.
With Lesson 3, Kienle [2006, p. 244] observes that “[p]resentation integration is

only feasible if the host components support the same wiring standard”, i.e. for tools
build for different, incompatible platforms presentation integration cannot be achieved,
or only with disproportionate effort. This thesis aims at enabling the integration of
vastly diverse tools, but it does not cover presentation integration. The experience
expressed by this lesson may be taken as an indicator that there is need for further,
dedicated research (see Section 16.4.2 for a brief outline of what this might entail), as
presentation integration is clearly desirable.

92

5.10. Summary

Lesson 4 states that file-based interoperability can be an effective approach [Kienle,
2006, pp. 244-245]. The observation is limited to the integration of extractors and
visualizers, though. In general, many authors consider file-based data integration to
be cumbersome, e.g. Sim [2000] (see also Section 1.1 and Section 4.3.2), as it hinders
experimentation and iterative processes. However, Kienle also continues to say that
simple file-based data integration should be chosen because the means for higher-level
(control) integration means are inadequate or immature. This is an aspect this thesis
wishes to address and improve upon.
Lesson 5, 6, and 7 deal with customizability, specifically the benefits of scriptable

“host” tools, impediments caused by lack of tool customizability, and the value of ex-
isting customizations as learning examples, respectively. As previously discussed in
Section 5.9.3, this thesis is aimed at making the toolchain as a whole as flexible and
customizable as possible, and tries to make as few assumptions about the nature of
individual tools as possible for universal applicability. When integrating many differ-
ent tools, this allows to specify the toolchain in a single, bespoke language, instead of
having to deal with various, tool-specific scripting languages.
Lesson 8 describes using a tool familiar to users as host for integration (by customiz-

ing and extending it) as beneficial for usability. Clearly, there is a tradeoff, though,
between the usability gain, and the restraints imposed by using a particular software
evolution tool, workbench, or environment as target platform. Striving to support the
integration of arbitrary tools, this thesis values universal applicability over usability.
Finally, Lessons 9 and 10 deal with adoptability, particularly the need for quickly

observable benefits of using a tool, and the need to factor in practical experience and
feedback from domain experts. The former is definitely an issue to look out for when
applied to a toolchain-building support framework built on separation of concerns (Sep-
aration of Concerns requirement), which can give the impression of having to do more
work than before, even if it is actually the same amount of effort performed in a more
structured manner (which in turn will save effort in the long run). The same goes for
reusability (Objective 2, Section 1.2), which also implies investing more effort up front,
to considerably reduce it over time. Since most domain experts can also be expected to
be experienced software engineers, it is reasonable to assume that they will recognize
the long-term benefits. Also, the objectives and requirements of this thesis have, to a
large degree, been derived from the Q-MIG project, which had toolchain-building at
its center, and involved an industry partner, so this work is well-grounded in practice.

5.10 Summary

Table 5.1 provides an overview of the support offered by the existing approaches dis-
cussed in this chapter, with regard to the requirements of this thesis. Because of the
diversity of the approaches presented in Section 5.5, they are instead represented by
the underlying paradigms they are based on: component-based, service-oriented, and

93

5. Existing Approaches

Ex
ch
an
ge

Fi
le
Fo
rm
at
s

C
om
m
on

D
at
a
M
od
el
s

W
or
kb
en
ch
es

En
vi
ro
nm
en
ts

C
BS
E

SO
SE

M
D
SE

SO
FA
S

TI
L

W
or
kf
lo
w

Sy
st
em
s

Bi
o-
jE
TI

Separation of Concerns

Comprehensiveness

Task Discovery

Task Description

Data Flow

Control Flow

Tool Discovery

Tool Description

Tool Interoperability

Uniform Interfaces

Reusability

Automatic Coordination

Table 5.1: Scope and extent of support of the related work described in this chapter
for the requirements defined in Chapter 3. An empty circle means no support and no
influence on the requirement: . Foundational support: . Substantial support: .
Full support: .

model-driven software engineering (abbreviated CBSE, SOSE, and MDSE, respectively).
Each of these will be evaluated in detail in Part III. Bio-jETI is listed separately from the
other workflow systems, as Section 5.8 has shown that it is substantially closer to the
requirements of this thesis than other scientific workflow systems.
As is clearly evident from the table, no existing approach comes close to satisfying

all the requirements of this thesis. Due to its focus on presentation and control integra-
tion, many approaches that focus on data integration are almost completely orthogonal.
For example, SENSEI can be complemented by the use of exchange file formats and
common data models.
Workbenches are integrated solutions, rather than solutions for integration, whereas

software evolution environments offer support similar to using a general-purpose com-
ponent framework, and may be suitable as target platforms. Their advantage is that
they are made specifically for software evolution. This is usually reflected (only) by a
set of available, pre-integrated software evolution tools. Their disadvantage is that they

94

5.10. Summary

are less flexible. They were not built with the same objectives as this thesis in mind,
and impose restrictions (e.g. usage of a common data model, a certain operating sys-
tem platform, or programming language) that would impede the realization of those
requirements that they do not fully satisfy on their own. In particular, the integration
of arbitrary, existing tools can be better facilitated with state-of-the-art, general-purpose
component and service frameworks.
In fact, service orientation, which builds on component technology and incorpo-

rates its principles, offers the greatest degree of support for the given requirements. In
addition to the structure-giving features of components, this is facilitated by its promo-
tion of loose coupling, and the incorporation of workflow (or business process) automa-
tion technology in the form of orchestration languages and engines. A prerequisite is
to adopt a high-level, implementation-agnostic view of the service concept, and not
dilute it with low-level, technical concerns. Model-driven technology is an important
complement to the service-oriented aspects, providing the necessary language-building
and automation features. This is why these three software engineering paradigms are
reviewed comprehensively in the following chapters, to form the foundation of the
SENSEI approach.
Workflow systems are not generally thought of as a tool integration technology.

While their support for the requirements of this thesis is low, it naturally peaks in those
areas most directly concerned with process integration. Most “traditional” tool inte-
gration approaches ignore this dimension, although some exceptions have been men-
tioned. Bio-jETI goes far beyond what most other scientific workflow systems have to
offer. While it is specifically aimed at the bioinformatics domain, its individual con-
stituents (e.g., jETI and jABC) are viable candidates to serve as foundation to realize the
objectives of this thesis. Still, more general-purpose frameworks have been deemed to
be more amenable to be shaped for the full satisfaction of all requirements.
Both SOFAS and TIL are powerful tool integration, toolchain-building, and automa-

tion frameworks. Superficially, they may appear to be quite similar to this thesis, but
closer analysis and comparison has shown that they are actually aimed at different ob-
jectives. SOFAS is a solution specifically focused on software analysis, with a strong
focus on data integration, but less on the integration of existing tools. TIL addresses
toolchain-building for embedded systems development tools, mainly, and is aimed at
more interactive usage scenarios, as opposed to process-oriented automation.
In comparison, what seems to be the most unique feature of this thesis is the obser-

vation that a clear and strict separation of a conceptual layer for toolchain specification,
and a technical layer for toolchain integration can offer substantial opportunities for
supporting and automating the toolchain-building process. It enables simplified speci-
fication and automation of the mapping process between the two layers, from what is
functionally needed to how it is technically provided. These aspects are expressed the
strongest through requirements Separation of Concerns, Task Description, Tool Dis-
covery and Tool Description, demanding degree of changeability and flexibility that
cannot be achieved by any of the other of the approaches presented here.

95

PART III

Key Technologies
The previous chapters have elicited requirements for SENSEI, elaborating the objec-

tives of this thesis (Chapter 3), reviewed the field of tool integration by providing an
overview of its different aspects and placing this work within the presented classifica-
tion frameworks (Chapter 4), and comprehensively surveyed existing tool integration
approaches and other related work for comparison and delimitation (Chapter 5). This
has distilled the unique characteristics and novelty of the approach: a focus on process
integration that fills a void and complements existing approaches that are mostly aimed
at data integration, with separate, tailored support for the two central stakeholders of
toolchain building – domain experts and tool developers.

SENSEI strives to yield flexible toolchains built and integrated automatically from
reusable parts to increase overall productivity. Therefore, it must be built on founda-
tions that provide strong means for abstraction, encapsulation, expressiveness, and
automation. The review of existing approaches has highlighted three engineering
paradigms as the best candidates to draw from and built SENSEI upon: service-oriented,
component-based, andmodel-driven software engineering. Their underlying concepts
will be presented and evaluated for their possible contributions towards the require-
ments of SENSEI in Chapter 7, Chapter 6, and Chapter 8, respectively – components
being introduced before services because the latter build upon the former.
As a preview to the detailed description of SENSEI in Part IV, Figure III.1 sketches

its vision, and the role each of the key technologies presented here are meant to play:
On the left, services will be used to abstract from concrete tools and implementation
details, and represent tasks and techniques in the language of domain experts. On the
right, components encapsulate tools, so tool developers can equip them with uniform
interfaces for interoperability. In the center, models and transformations bridge these
separated concerns by providing the means to express both sides’ artifacts in with the
necessary formality to automatically map processes expressed in terms of services onto
an appropriate composition of components that implements the desired toolchain.

Toolchain Implementation:
Components

Toolchain Specification:
Services

Toolchain Integration:
Models & Transformations

Domain
Experts

Tool
Developers

Figure III.1: The key ingredients of SENSEI.

97

CHAPTER 6
Component-Based Software

Engineering

Component-based software engineering (CBSE) arose as a software development para-
digm in the ‘90s [Szyperski, 1997], though its roots arguably lie in the software crisis
of the late 1960s, together with software engineering as a discipline itself [McIlroy,
1968]. At this time, software systems had grown so large and complex that it became
increasingly harder to maintain and continue to develop them. Tomanage the complex-
ity, Doug McIlroy advocated “Mass-produced Software Components”1, i.e. producing
software by assembling it from reusable sub-components. This divide-and-conquer ap-
proach lowers the size and complexity of individual components, as well as the com-
plexity at the assembly level, by hiding the internals of individual components through
encapsulation.
Means to structure software systems on more fine-grained levels were developed

and adopted in the 1970s and 1980s, e.g. structured programming [Dahl, Dijkstra, and
Hoare, 1972] and object orientation [Dahl, 2004; Kay, 1993]. Introducing “Software-
ICs” (as in integrated circuit), Ledbetter and Cox [1985] use the term “component”,
but the concepts were arguably closer to the level of objects. In the early 1990s,
the first component-based technology was developed, among them IBM’s System Ob-
ject Model (SOM) [Conner et al., 1992], Microsoft’s Component Object Model (COM)
[Kindel, 1997], and Object Management Group’s Common Object Request Broker Ar-
chitecture [CORBA 2020]. Especially the latter originally focused more on communi-
cation between parts of distributed systems than componentization, and the standard
was only amended with a proper component model in 2002. Java got JavaBeans in

1McIlroy also notes the fallacy of the analogy tomass production, a process which is trivial for software,
if taken literally.

99

6. Component-Based Software Engineering

1997 [Hamilton, 1997] and Enterprise JavaBeans [2019] in 1998. In more recent com-
ponent technology, terms and (to a lesser extent) concepts from service-orientation
have seeped in, as in the Open Services Gateway Initiative [OSGi 2020] and Service
Component Architecture (SCA) [Edwards and Chapman, 2016]. This is discussed in
Chapter 7.
In academia, component-based software engineering began to form as a research

area in its own right in the 1990s: For example, the Workshop on Component Ori-
ented Programming (WCOP) was founded in 1996, the International Symposium on
Component Based Software Engineering began (also as a workshop) in 1998, and first
comprehensive books appeared around the millennium, e.g. Crnkovic and Larsson
[2002], Heineman and Councill [2001], and Szyperski [1997].
This chapter provides an overview of component-based software engineering con-

cepts. In the context of this thesis, components are a key factor towards its reusability
objective (Section 1.2), and are mainly reviewed for their potential to contribute to the
fulfillment of the following requirements in particular:

Tool Interoperability. The support framework must aid tool developers in creating in-
teroperable tools.

Uniform Interfaces. The support framework must impose standardized, uniform inter-
faces on tools.

Reusability. The support framework must promote reusability of data transformers.

The outline is as follows: Section 6.1 gives a broad overview of the terminology,
key concepts, and their interrelations. The subsequent chapters will then describe
those concepts in more detail: Section 6.2 defines components and their properties in
general, Section 6.3 introduces component models, and Section 6.4 discusses concrete
component frameworks that each implement and conform to a specific component
model. Section 6.5 provides a summary of the provisions and utility of component-
based software engineering in the context of SENSEI.

6.1 Overview

Figure 6.1 depicts a model of the concepts of component-based software engineering
and their interrelationships as UML class diagram. The concepts represented by classes
in the figure will be explained in the following.
The left-hand side, representing the central concept of components, their con-

stituents, and their assembly from atomic components into composite components is
described in Section 6.2. However, the term service will admittedly remain a bit vague
for now, as a closer examination of the concept will only be made in Chapter 7. For

100

6.2. Components

Figure 6.1: Core concepts of component-based software engineering.

now, it shall be sufficient to understand that software components have a purpose, and
as such provide some functionality (and may also require some additional functionality
to achieve a more complex goal): services represent such required or provided units
of functionality.
Another concept explicitly depicted in Figure 6.1, because it is essential to the idea

of components, is the interface. Interfaces define how the functionality represented
by services is being provided, how it can be accessed, what information has to be
provided, and what kind of information will be returned as a result of its invocation.
They can be on a conceptual (implementation-agnostic) level, or on a technical level.
Interfaces do not include the implementation itself, though, following the general soft-
ware engineering principle of separation of interface and implementation [Bourque and
Fairley, 2014, p.2-3].
On the right-hand side of Figure 6.1, the component model and the component

framework are depicted. The former defines standards on how to describe and use
components, while the latter implements such standards and provides a platform for
components to run on. They will be defined in Section 6.3 and Section 6.4, respec-
tively.

6.2 Components

There is no perfect consensus on what exactly a component is: many different defini-
tions can be found in the literature, each emphasizing different aspects. For this thesis,
a clear and binding definition will be derived, after reviewing existing definitions put
forward by experts of the field.

101

6. Component-Based Software Engineering

A frequently cited definition of software components is by Szyperski [1997, p. 34]:

“ A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third parties.”To paraphrase, components are assembled to form an application, or more generally, a

component-based software system. To be of use for other components, the functional-
ity offered to the outside world is specified via interfaces, along with the specification
of how to invoke it. Components are only used through these interfaces – otherwise,
they appear as black boxes. It is via these interfaces that a component offers services.
Context dependencies refer to the environment the component needs to be deployed
to, i.e. for and with which technology it has been built. On the one hand, the def-
inition does not allow for the declaration of dependencies on other components, as
this would violate the requirement for independent deployability. This requirement is
softened in modern component frameworks like OSGi [2020], where components ex-
plicitly declare dependencies on other components. On the other hand, as Szyperski
[1997, p. 3] writes, “Components are for composition”: along these lines, dependen-
cies can be interpreted as sub-components. Therefore, Figure 6.1 depicts a composite
pattern made out of components in general, which can either be atomic components,
or composite components. The latter are assembled of more basic components using
bindings [Crnkovic et al., 2011], which wire consumed services to services provided
by other components with matching interfaces.
Booch, Rumbaugh, and Jacobson [1999, p. 459] define components – in the context

of UML – as follows:

“ A component is a physical and replaceable part of a system that conforms
to and provides the realization of a set of interfaces. ”Here, components are physical entities as opposed to conceptual – they manifest in

concrete, usable, binary form. One component may be swapped for another and de-
ployed in its place, as long as it conforms to the same interfaces.
Heineman and Councill [2001, p. 7] emphasize the component model:

“ A software component is a software element that conforms to a compo-
nent model and can be independently deployed and composed without
modification according to a composition standard. ”The introduction of the concept of a component model, which “defines specific in-

teraction and composition standards” [Heineman and Councill, 2001, p. 7], allows to
formalize the definition of a component: if it conforms to the component model, it is
a component. This concept is useful to argue in terms of basic interoperability of com-
ponents, and allows to distinguish standard specifications and their implementations
(component frameworks; see Section 6.3 and Section 6.4).
In this thesis, a component is defined by its properties. The three definitions cited

before all contribute different aspects. There are, of course, many more definitions

102

6.2. Components

in the literature. The ones selected here were chosen to provide coverage over all
aspects deemed important in the context of this thesis. For the sake of completeness,
the definition of the IEEE should be mentioned [Bourque and Fairley, 2014, p.2-10]. It
is more or less in line with both Szyperski and Booch, Rumbaugh, and Jacobson, but
does not mention the concept of a component model. The definition that will be used
for the remainder of this thesis, summed up from the cited literature, is as follows:

Definition 6.1: Software Component

A software component is a software system that exhibits the following properties:
1. It is a self-contained black box, i.e. it is packaged together with all dependen-
cies or sub-components, and is not modified for use or deployment.

2. It offers all its functionalities – its services – only via well-defined interfaces,
and is therefore replaceablewith any other components that provide the same
set of interfaces.

3. It is described in terms of and conforms to a component model.

This definition drops the requirement for binary delivery, as this seems ambiguous
and unnecessary. Defining a component as a software system should be sufficient, and
also takes care of the physical aspect: components actually implement the functionality
offered via its interfaces. That is what sets them apart from services, which in this thesis
are conceptual entities providing only specifications, and not their realization. This
distinction is further elaborated on in Chapter 7. Being a black box, components may
consume external services, as long as their resolution and use is completely transparent
(invisible) to outside observers.
Furthermore, the definition only calls for provided interfaces, and omits required

interfaces. The latter would be conceptually redundant with having explicit dependen-
cies, which are also equated with sub-components.
The notion of executability, which some authors use (e.g. Sommerville [2011,

pp. 452], and also Szyperski [1997, p. 4]), is explicitly avoided here, though. This,
too, can be an ambiguous term: for example, a component depends on a component
framework as execution environment, so it is usually not executable on its own. Also,
executability might be misunderstood to be executable and directly usable by a (hu-
man) user. The interfaces a component provides do not have to be user interfaces,
though (e.g. command line interfaces or graphical user interfaces); rather, they are
usually application programmer interfaces. A component that provides functionality
through interfaces implies an ability to be executable in some form, so an additional
requirement is not necessary.
Lastly, a component is required to conform to a specific standard that provides

concrete rules on how to (technically) describe components. This is the component
model, which will be defined next.

103

6. Component-Based Software Engineering

6.3 Component Model

Weinreich and Sametinger [2001, p. 37] provide a detailed overview of the elements
of component models. They offer the following definition:

“ A component model defines a set of standards for component implementation,
naming, interoperability, customization, composition, evolution, and deploy-
ment. A component model also defines standards for an associated compo-
nent model implementation, the dedicated set of executable software entities
required to support the execution of components that conform to the model. ”Component models provide a standardization of both components and the environ-

ment into which they can be deployed and will be executed in. Such an environment
is called a component framework in this thesis; Weinreich and Sametinger, in the above
definition, refer to component model implementations, meaning the same thing.
Crnkovic et al. [2011] develop a very comprehensive classification framework for

component models. They offer the following definition:

“ A component model defines standards for (i) properties that individual com-
ponents must satisfy, and (ii) methods for composing components. ”This is a fairly concise definition, but it does not explicitly refer to component frame-

works, subsuming their role in the somewhat vague “methods for composing compo-
nents”. For this thesis, a definition is used that avoids the breakdown into several
covered aspects [Weinreich and Sametinger, 2001], which is not needed for further
discussion, while explicitly highlighting the relationship to component frameworks:

Definition 6.2: Component Model

Component Models provide rigorous standards to govern
1. component description and implementation,
2. component composition and interaction, as well as
3. component framework construction and operation.

The standardization offered by component models enables components (and their
developers) to safely make certain assumptions about the environment in which they
will be executed in, and vice versa allows component frameworks (which are imple-
mentations of such execution environments) to access and interact with components
deployed to them in a uniform manner. Component models dictate how components
need to be described, how they will be accessed (i.e. how and when data and mes-
sages will be exchanged), as well as what kind of services conforming component
frameworks have to provide, how they have to be provided, and how components
are composed into applications or more complex, composite components. In short,
component models ensure basic interoperability of components conforming to it.

104

6.4. Component Framework

Without standardization through componentmodels, components could not achieve
much. They would, in principle, be reusable, but not exchangeable: one component
could not be swapped for another offering the same services, because they would be
technically incompatible. For the same reason, they would also not be composable.
This can be likened to (national) standards for power plugs and sockets: they ensure

a general compatibility of electric household appliances with the electrical wiring of
private homes. Without it, one would have to adapt each new desk lamp, refrigerator,
or hair dryer to the house installation on a much more basic level, e.g. connecting
individual wires, adding transformers to adapt to differences in expected voltage or
amperage, etc. – instead of just plugging it in.
The analogy also highlights another aspect: when traveling to a country with a dif-

ferent standard, adapters are needed to be able to use, for example, the phone charger
that was brought along, but which was built for a market with different socket outlets.
Software components are only compatible within the confines of a component frame-
work that adheres to the standards put forward by the used component model.
Prominent component models are (or have been) COM: Component Object Model

Technologies [2018], the CORBA Component Model (CCM) 4.0 [2006], Enterprise Ja-
vaBeans [2019] by Oracle (formerly Sun Microsystems), OSGi [2020], and the Service
Component Architecture (SCA) [2015], which was first developed at IBM, then tran-
sitioned into the industry consortium OSOA, and later to OASIS. These component
models, along with several component frameworks implementing them, were the sub-
ject of a two-staged comparison study to find a suitable infrastructure basis for software
evolution tool integration, performed by Ringe [2013]2. This has led to the selection of
SCA for the SENSEI demonstrator SCAffolder (Section 14.2.3). Although SENSEI does not
rely on any SCA-specific features that are not also provided by other component mod-
els, the inclusion of service-oriented principles can provide higher flexibility in terms
of platform and technology independence. An alternative to SCAffolder was provided
by Küpker [2015], which usesWSO2 [2020] as target platform (see Section 14.5).

6.4 Component Framework

Having introduced components and component models, the definition of component
frameworks is straight-forward:

Definition 6.3: Component Framework

Component frameworks provide an execution environment that manages compo-
nents and their interactions, in accordance with a component model.

2Microsoft COM was excluded very early on due to its tight coupling with the Microsoft Windows
platform, and a requirement for platform independence in software evolution tool integration.

105

6. Component-Based Software Engineering

In the literature, they are also referred to as component model implementations [Heine-
man and Councill, 2001]. Crnkovic et al. [2011] seem to use component framework
and component execution platform (or just platform) interchangeably.
The distinction between component models and conforming frameworks means

that, in a perfect world, components conforming to a certain component model can be
deployed into any component framework also conforming to the selfsame component
model, independent of the vendor of the framework. Slight deviations of framework
vendors from the component model standard, or component developers’ (possibly inad-
vertent) reliance on non-standardized, vendor-specific framework features may impede
this in practice. In case of SCA, the whole attempt at standardization has been blocked
for unclear, possibly corporate-political reasons (judging from the publicly accessible
Mailing List Archives of the SCA-Bindings Technical Committee [2013]), leaving the
status of SCA as an industry standard in abeyance (see also Section 14.2.3).
There are several alternative component frameworks for each of the above-men-

tioned component models, e.g. the Oracle-sponsored GlassFish Server [2020] and
Red Hat JBoss Developer [2020] for Enterprise JavaBeans, Eclipse Equinox [2020] and
Apache Felix [2020] for OSGi, and Apache Tuscany [2016] and Fabric3 [2016] for SCA.
Ringe [2013] suggested Tuscany as the most suitable framework to use as basis for

the SENSEI prototype SCAffolder (Chapter 14), based, among other criteria, on the facts
that it is a well-established open source project with comparatively good documenta-
tion. Being the basis of the SCA implementation included in IBM’s WebSphere also
secured tool support (SCA modeling tools are available, for example, for Rational Soft-
ware Architect). The comparatively young framework SwitchYard [2020] was released
after the study by Ringe. Although based on SCA, it does not claim standard confor-
mance, and is not really advertised as SCA-compatible.

6.5 Summary

As was sketched at the beginning of Part III, components are meant to support tool
developers in SENSEI: they are expressed in technical terms and wrap around concrete
tool implementations. Figure 6.2 refines the right-hand side of Figure III.1 (page 97) to
sketch how component-based software engineering concepts fit into the overall archi-
tecture of SENSEI: Component models establish standards that enable a basic level of
interoperability, as users of a conforming component framework can rely on all com-
ponents describing their interface and offering their services in the same, well-defined
manner (Uniform Interfaces requirement). From the perspective of tool developers, this
provides the foundation for supporting the creation of interoperable tools, adapters, and
transformers during the toolchain-building process (Tool Interoperability and Reusabil-
ity requirements; see also Section 3.2.4 and Section 3.2.5).
In the terminology introduced in this chapter, the actual integration of tools into

a toolchain becomes a composition of components. The necessary glue logic respon-

106

6.5. Summary

Toolchain Specification:
Services

Toolchain Integration:
Models & Transformations

Domain
Experts

Tool
Developers

Composer Component

Component Model

conforms to

Component

Component

Toolchain

Figure 6.2: Components contributing to SENSEI.

sible for transporting data between components and managing control flow, is itself
encapsulated as component, referred to as composer. Its inner workings will become
substantially simpler by being able to treat all tools in a uniform manner. This is an
important prerequisite for automating the integration step of the toolchain-building pro-
cess, i.e. auto-generating the composer.
Having a component framework as common platform for all components (tools) to

be integrated allows to automate the deployment, as well. This is useful for software
evolution toolchains, which, due to confidentiality concerns regarding the data being
processed (the legacy software systems being modernized), will usually be self-hosted.
In this case, tool developers deliver components as their products. In other domains it
may be more acceptable to integrate functionality hosted by external parties, shifting
the role of tool developers to that of a service provider. Such a software-as-a-service
model (see e.g. Mell and Grance [2011]) relaxes the requirements for uniformity: only
the interfaces and modes of communications have to conform to a common standard,
while the implementation behind those interfaces would not be restricted to a particular
platform defined by a component model. With respect to achieving reusability, in par-
ticular that of adapters and transformers, a fully component-based approach would still
be expedient, though. SENSEI has been applied in both scenarios – they are described
in detail in Chapter 15 and Chapter 16, respectively.
While the term “service” appears as part of some component models, its seman-

tics in this context are still technical in nature and close to the implementation. This
is appropriate for tool developers, but for domain experts, SENSEI intends to offer ab-
stractions that are implementation- and technology-agnostic, able to capture the tasks
and techniques of any particular application domain. The next chapter will review
service-oriented software engineering for potential candidates to fill this role.

107

CHAPTER 7
Service-Oriented Software

Engineering

Service orientation, and in particular service-oriented architecture (SOA), can be traced
back to the middle to late 1990s. The first mentioning of the term “service-oriented ar-
chitecture” is usually attributed to Gartner Group’s Schulte and Natis [1996] (Josuttis
[2007, p. 7] provides some details). Service orientation, and SOA in particular, has
been motivated by business needs of corporations, and so has always incorporated
this “business layer” above the purely technical concerns and concepts, to “bridge the
business-IT gap” [Josuttis, 2007, p. 2]. The same cannot be said for component-based
software engineering discussed in Chapter 6, which is more clearly rooted in engineer-
ing, as opposed to management.
SOA went through a massive hype in the 2000s (cf. Gartner Hype Cycle [2015]),

which blurred the definition and concepts of SOA, and was also closely associated with
a hype of web service technology [Vaughan-Nichols, 2002]. Disillusionment followed
– Manes [2009] pronounced SOA dead. As a response to the perceived complexity
and over-standardization of the web services technology stack, RESTful web services
have gained momentum [Richardson and Ruby, 2008]. On a more conceptual level,
the notion of microservices has emerged, which may be considered a successor, or a
concrete approach to executing SOA [Lewis and Fowler, 2014].
The concepts of service orientation, and service-oriented architecture, are mainly

aimed at building and integrating large enterprise applications, or even applications
that span multiple corporations. Among its goals is the ability to reuse functionality that
previously may have been developed redundantly, side-by-side in different divisions of
a company. Furthermore, it should yield applications build for adaptability in the face
of changing and expanding business requirements.

109

7. Service-Oriented Software Engineering

Service orientation has, to some degree, evolved from the component-based para-
digm. Where reusability is one of the main motivations for component-based software
engineering, for service-orientation it is flexibility. At its core lies the idea to abstract
from concrete implementations, platforms, and technologies, and describe what units
of functionality are doing, but not how they are doing it. These “units of functionality”
are referred to as services. The abstraction facilitates reuse, which is already covered
by components, but beyond that, services can be assembled into loosely coupled ap-
plications without referring to how and where they are implemented. The binding
to concrete implementations can happen dynamically, possibly at runtime. This, in
theory, yields scalable, distributed applications able to evolve easier and faster than
monolithic applications, or applications build from more tightly-coupled components.
The way services are assembled as opposed to components is a key difference be-

tween the two paradigms, noted e.g. by Sommerville [2011, p. 455]: in a component-
based application, its components are internal, i.e. part of the application itself,
whereas in service orientation, services are referred to but remain external.
In SENSEI, services and service-oriented principles take on the most prominent part

of the overall approach, and are the key to achieving Objective 1 – increasing toolchain
flexibility to retain agility within projects. Adopting services in SENSEI is a prerequisite
for almost all requirements elicited in Chapter 3. The following requirements are most
directly supported by service-orientation:

Separation of Concerns. The support framework must establish a clear separation be-
tween toolchain specification and toolchain integration.

Task Discovery. The support framework must aid domain experts in finding existing
techniques relevant to a given task.

Task Description. The support framework must provide domain experts with a means
to describe required properties of tasks in a standardized way.

Data Flow. The support framework must aid domain experts in specifying the data
flow between tasks.

Control Flow. The support framework must aid domain experts in specifying the con-
trol flow between tasks.

7.1 Overview

Figure 7.1 shows the core concepts of service-orientation, and their interrelations,
which are explained in the remainder of this section. The central term is, of course,
the service, which provides its functionality through an interface that defines how it is
accessed, technically (signature), as well as what it is meant to do (the functional and

110

7.1. Overview

Figure 7.1: Core concepts of service-oriented software engineering.

non-functional properties of its semantics). A definition for services in these terms will
be derived in Section 7.2. This will be further discussed in Section 7.3, which sum-
marizes desirable service properties to be taken into account when designing services,
particularly non-functional properties that define the quality of service at runtime, and
classification schemes that can help with determining appropriate service granularity.

Section 7.4 introduces service-oriented architecture (SOA), an architecture pattern
dealing mainly with service consumers dynamically discovering services using a ser-
vice registry filled by service providers. SOA initially popularized service-orientation,
but is now often considered obsolete [Manes, 2009]. It is discussed to provide context,
and learn from mistakes made during its rise and fall. Also, the concept of service
orchestration, which does have great relevance for this work (particularly in terms of re-
quirementsData Flow and Control Flow), is closely linked with SOA, and is introduced
in Section 7.5.

111

7. Service-Oriented Software Engineering

7.2 Services

The term service has already been used in previous chapters (in fact, it appears in the
title of this thesis); Section 6.1 introduced a preliminary and minimal working defini-
tion: services are units of functionality. In the context of enterprise software systems,
the service abstraction is used to describe functionality needed as part of business pro-
cesses to be automated by appropriate software support. It is meant to provide high
degrees of flexibility to account for shifting business requirements, and interoperability
to integrate processes across departments and organizations.
Component-based and service-oriented software engineering have many common-

alities [Breivold and Larsson, 2007], so it is of particular interest to differentiate the cen-
tral building blocks of these paradigms, components and services, respectively. Both
can be considered black-box abstractions, whose functionality is described in terms of,
and accessed exclusively through, explicit interfaces. A relationship has already been
established in Section 6.1, and is depicted in Figure 6.1: components provide and con-
sume services. Some important aspects to further distinguish services and components
include the following:
• Services specify functionality [MacKenzie et al., 2006, p. 12], components im-
plement functionality.

• Services remain external to systems that use them, components become internal
parts of systems they are composed into [Sommerville, 2011, p. 455].

• Services are modeled with respect to business functionality, components are also
structured by considering technical aspects [Vogel et al., 2011, pp. 206-207].

In literature on service orientation, this distinction is rarely made so clearly, how-
ever. In particular, many authors define services in terms of software programs or as
special kind of components [Melzer and Eberhard, 2010, pp. 14-15, Erl, 2007, p. 39,
Josuttis, 2007, p. 300]. In this thesis, this view is expressly rejected: identifying services
with the implementation of functionality, rather than their specification, or consider-
ing services to comprise both specification and implementation, is confusing at best.
Blurring the boundaries between services and components unnecessarily imposes tech-
nical restrictions and prematurely curtails the solution space. In the process, much of
the intended flexibility may be lost.
In contrast, MacKenzie et al. [2006, p. 12] leave the implementation completely

open, going so far as to expressly allowing manual realization (i.e. being carried out
by humans instead of software) of the defined functionality. A high-level of abstraction
with services that are completely technology-agnostic enable (vendor-)diversity, i.e. a
highly heterogeneous application or tool landscape is hidden behind the interfaces of
services. This is a key prerequisite for interoperability, flexibility, and agility.
Definitions of the term service vary widely, and are hard to reconcile. Instead of re-

viewing literature definitions individually, common aspects [Josuttis, 2007, pp.25-34, Erl,
2005, p. 40ff] are listed in the following, and then summarized into a coherent definition.
The functionality to be provided by a service is described completely in terms of

an interface. The interface is described in terms of syntax by its signature. The se-
112

7.2. Services

mantics define what the service is supposed to do [Josuttis, 2007, p. 28; Melzer and
Eberhard, 2010, p. 15]. Service semantics can be further subdivided into functional
properties and non-functional properties. Josuttis refers to service interfaces defining
both signature and semantics as well-defined.
Melzer and Eberhard require the interfaces (or service descriptions) to be machine-

readable. A related requirement is the property of being self-descriptive [Vogel et al.,
2011, pp. 206-207]. This is aimed at making services discoverable: services are adver-
tised in central repositories for late binding over a network. Network transparency is
another common attribute of services, though few authors (among them Melzer and
Eberhard) mention it explicitly. Arguably, it is a technical feature that needs to be re-
alized by software implementing services, rather than a property of the services them-
selves. The fact that services are implementation-agnostic ensures that they can be
mapped onto technologies that realize network transparency, if it is needed.
Interfaces are sometimes described as enabling access to the capabilities of services;

this term is avoided here, for now, as it has a very particular meaning in the context of
SENSEI (see Chapter 9). Josuttis views services as consisting of one or more operations,
that provide different parts of the service’s functionality and are invoked by service
consumers, i.e. they correspond to functions or methods. This is not adopted in this
thesis: an additional means of hierarchical decomposition is considered unnecessary,
as services can already be aggregated by means of orchestrations (see Figure 7.1 and
Section 7.5). A means of grouping units of functionality, which would then be repre-
sented by operations, degrading services to be mere containers, may be counteractive
to the goals of service-orientation. It seems to encourage mixing behavior and state (as
in object-orientation), and designing stateful services with conversational interfaces,
which are more complex to specify, implement, and use (but see Marino and Rowley
[2009, pp. 109ff] for an opposing view).
Another common ideal is that services should be abstractions of business or do-

main functionality, only, as opposed to functions needed to support the overall system
on a technical level [Josuttis, 2007, p. 26]. On the one hand, keeping to this code can
be viewed as an instance of separation of concerns, and simplifies arranging complex
behavior from basic services, exclusively using the language of the domain. In prac-
tice, “helper services”, e.g. for data manipulation, may often creep in, leading to a
mix of domain and technical aspects on the same level of abstraction. On the other
hand, since the building blocks of both the application domain as well as of technical
issues are units of functionality, modeling both as services arguably serves consistency:
introducing a separate concept for technical functionality also adds a degree of com-
plexity. Ideally, all technical aspects should be hidden behind the interfaces of services
representing domain functionality.
Finally, services should strive to be stateless and idempotent. The former means

that an invocation of a service’s functionality will yield the same result every time,
i.e. the result only depends on the explicitly provided input data. The latter, related

113

7. Service-Oriented Software Engineering

concept demands that invoking a service’s functionality multiple times with the same
input data has the same effect as only invoking it once. Statelessness makes using
services more predictable, and their semantics are simpler to express and understand.
Also, implementations are considered more scalable as they do not have to keep track
of state and therefore have a smaller memory footprint. Idempotence simplifies inter-
service communication: if implementations must use a potentially unreliable means
of communication, invocation messages can safely be repeated in case the original
message is suspected to have been lost. In practice, these requirements for services
are usually substantially relaxed. The reliance on the state of an external database, for
example, is not considered to be part of the service state [Josuttis, 2007, pp. 191ff; Erl,
2007, pp. 325ff].
In summary, the following definition is adopted for the remainder of this thesis:

Definition 7.1: Service

A service specifies a unit of domain functionality, described in terms of an interface
on a conceptual, technology- and implementation-independent level. Service in-
terfaces consist of 1) a signature, which defines an abstract usage syntax, i.e. input
and output parameters, 2) a semantic description that relates input and resulting
output data, and expresses what the service is supposed to do (functional prop-
erties), and optionally operating ranges for the quality of service (non-functional
properties).

Due to the prescribed, abstract nature of services according to this definition, as-
pects like information hiding, network transparency and loose coupling are considered
emergent properties, and are therefore not mentioned, explicitly.

7.3 Service Design

Some desirable service properties have already been mentioned in Section 7.2, e.g.
statelessness. Providing more comprehensive guidelines on how to design services
properly, i.e. in a way that maximizes their intended benefits such as increased flex-
ibility through loose coupling, is out of the scope of this thesis. Still, service design
is a necessary task in any service-oriented approach, and so this section briefly sums
up some common service properties to strive for. However, there is probably not a
single right way to model services, and on a very general level, the trend has swung
from advocating large and coarse-grained services in the context of SOA, to small, fine-
grained microservices [Lewis and Fowler, 2014; Newman, 2015]. Two means to aid
service design are reviewed in this section: desirable properties derived from practical
experience, and service classification schemes that help describe services by narrowing
down their scope and relate them to similar ones.

114

7.3. Service Design

Josuttis [2007, pp.25-34] discusses a quite comprehensive set of concepts and prop-
erties surrounding the service term, comprising service signature, well-defined inter-
faces, pre- and postconditions, and quality-of-service (QoS) and service-level agree-
ment (SLA) capability (jointly also referred to as service description or service contract
by other authors), self-containedness, granularity, reusability, discoverability, stateless-
ness, idempotency, composability, technicality, vendor-diversity, interoperability, and
web service implementation.
Erl [2005] also covers most of these terms, with the exception of idempotency

(many of these aspects are found under “common characteristics of […] SOA” [Erl, 2005,
p. 40ff], as opposed to properties of services). Erl [2007] postulates eight core “princi-
ples of service orientation”, namely contracts, reusability, autonomy (mostly synony-
mous with self-containedness), statelessness, discoverability, composability, as well as
coupling and abstraction. The latter two properties are not covered by Josuttis. All
these properties are interrelated, as well; Erl [2005, pp. 311-321] provides a detailed
discussion of how they affect each other.
Three of these properties are summarized in the following, while other aspects will

be discussed elsewhere (or have already been covered): Composability, the ability to
combine several “smaller” services into a single, new service to provide a more com-
plex functionality, is discussed in detail in Section 7.5. Service discoverability, service
contracts, and other concepts related to service-oriented architecture are described in
Section 7.4, which also touches on issues of technology fixation, e.g. implementation
using Web Services [Booth et al., 2004]. Technicality refers to supporting infrastruc-
ture services, that do not provide a functionality of the application domain, and will
be picked up later on, when discussing service classification.

Abstraction in Support of Diversity and Interoperability. A key prerequisite for most
other service properties is that no assumptions should be made about how ser-
vices are implemented; they only define what they are providing in terms of
functionality. This enables (vendor-)diversity, i.e. a highly heterogeneous appli-
cation or tool landscape (cmp. Section 7.4) is hidden behind the interfaces of
services, which in turn facilitates interoperability, flexibility, and agility.

Self-Containedness. This property advocates that services should be in full control of
the functionality they are providing (also compare service autonomy demanded
by Erl [2005, pp. 303-307]). Considering that services are merely the specifi-
cation, this seems mostly a concern for their implementations, however, it also
implies that service semantics should not be described in terms of other services,
to minimize the impact of service changes. Another implication is that service
interfaces should be narrow and simple: Josuttis [2007, p. 29] warns of complex
data types used in interface descriptions, which may lead to service interdepen-
dencies, negatively affect universality and reusability, and might indicate poorly
chosen service granularity.

115

7. Service-Oriented Software Engineering

Furthermore, Josuttis [2007, p. 38-39] also cautions against attempting to fully
harmonize the data model of a business or domain: there are to many differ-
ent concerns of different stakeholders to reconcile, leading to bad compromises,
and extremely complex yet incomplete models, and the dependence on com-
mon data models impedes independent evolution. Several examples of intricate
issues from industrial practice, that may arise when attempting such tight data
integration, are found in Schmidt, Otto, and Österle [2010].

Granularity and Reusability. The question of granularity is on what level to stop de-
composing services into smaller sub-services. Reusability can be assumed to in-
crease, the more fine-grained the services are, although there is probably a lower
bound, at which service functionality becomes so trivial that the overhead of as-
sembling services exceeds reuse benefits. Many small services also incur a higher
communication overhead than a few larger ones, which might be expensive, es-
pecially in a highly distributed environment, while coarse-grained services may
exchange large data sets, of which only a fraction might be really required in
certain scenarios [Josuttis, 2007, p. 164].

The choice of the right granularity depends on the context and the kind of func-
tionality the service or process step is representing. Therefore, there are classification
schemes for services (called service models by Erl, 2005), to help organize services for
different uses on different granularity levels.
A common, hierarchical classification, distilled by Josuttis [2007, pp. 61-73], and

apparently based on Krafzig, Banke, and Slama [2005, pp. 69ff] (which has additional
classes and slightly differs regarding terminology) and Erl [2005], is depicted as class
diagram in Figure 7.2. A hierarchy of three levels is introduced, with basic services at
the bottom, composed services above that, and process services at the top. With each
service type, a “style” of SOA (see Section 7.4) is established, as well: Fundamental
SOA, Federated SOA, and Process-Enabled SOA.
Basic services provide an elemental (business) functionality and are atomic, i.e.

they should not, or cannot reasonably be decomposed into more primitive sub-services.
Their classification, however, is broken down further into data services, which act as
abstractions from databases and provide the ability to read and write data, and logic
services, which perform computations and implement elementary business rules.

Composed services are assembled from basic services, as well as other composed
services to realizemore complex tasks. A special kind of composed services are adapter
services, which wrap around existing services to achieve a degree of interface compat-
ibility, e.g. to accommodate for functionality offered by legacy systems. Composed
services are further characterized as being short-running and stateless – workflows with
these properties are referred to as micro flows (see also Hentrich and Zdun [2009] and
Manolescu [2000]).
Long-running, interruptible business processes, in contrast, are considered macro

flows, and are modeled as process services. Because these processes may run for a

116

7.3. Service Design

Figure 7.2: Hierarchical service classification represented as class diagram, based on
the description given by Josuttis [2007, pp. 61-73].

long duration, may be paused, and may involve human interaction, they are usually
stateful, to allow for their suspension and continuation at a later time. This distinction
between micro and macro flows makes sense for enterprise applications, but is less
pronounced when applied to software evolution toolchains, which are often expected
to run tasks in batches.
Another example of a classification scheme is one by Cohen [2007], which distin-

guishes services according to their mode of use (also see Jelschen [2013]). Also worth
mentioning, although targeting components rather than services, are the four major,
generic software categories, referred to as software blood types, of theQuasar method-
ology (“quality software architecture”) introduced by Siedersleben [2004, pp. 74ff]. To
a degree, these principles can be applied to services just as well:

Blood type 0 refers to very common, globally available utility functionality,
Blood type T represents technical application-independent infrastructure,
Blood type A subsumes application-specific business logic, and
Blood type R transforms data from one representation to another.

Mixing these blood types is possible, but discouraged. In particular, mixing as-
pects of A and T in a single unit of functionality (service) is problematic, as it makes
them more complex and thus less maintainable, and reduces reusability, as it binds
the application-specific functionality to purely technical aspects. The blood types are
ordered from generic (Type 0) to specific (Type R), and interfacing services should only
expose concepts of the more generic type to each other. The R Blood Type, a sepa-
rate category for transformers, is another reason why Quasar’s software blood types

117

7. Service-Oriented Software Engineering

are considered here, since the Reusability requirement explicitly identifies the need
for reusable data transformers. Siedersleben emphasizes this requirement: if the nec-
essary translations needed to get two services to communicate was handled internally
by one of them, it would be “polluted” with external concepts from the other service,
impeding reuse.

7.4 Service-Oriented Architecture

An overview over service orientation cannot be complete without mentioning SOA.
SOA was befallen by a babylonian confusion regarding its terminology and concepts
in the wake of a massive hype during the early 2000s. Many readers will therefore
have preconceptions and will make implicit assumptions that would potentially lead
to confusion in the remainder of this thesis, so it is imperative to discuss the different
facets and incarnations of SOA, and contrast them with the view towards service orien-
tation adopted here. In many cases, the SOA hype could not live up to expectations,
but while SOA has been declared “dead” [Fowler, 2005b; Manes, 2009], the underly-
ing principles are considered sound. It is rather that they seem to have been widely
misunderstood or ignored, and upstaged by tool vendors and consultants, who were
trying to sell SOA-branded infrastructure and expertise, respectively [Newman, 2015,
p. 8].
Josuttis [2007, p. 11], who offers one of the better treatises of the topic, states that

there are too many different definitions. These definitions usually do not provide suf-
ficiently clear conditions to decide whether a given architecture is service-oriented or
not. In fact, there is not even consensus about whether SOA actually is an architecture
– according to Josuttis [2007, p. 12] it rather is a paradigm, not a concrete architecture.
It seems like it could have been intended to be a reference architecture (in the sense
of Winter [2000, pp. 106, 110]), and there are standards establishing SOA as such
[ISO/IEC 18384, 2016; Laskey et al., 2012; MacKenzie et al., 2006]. The following is
the definition Josuttis [2007, p. 24] arrives at:

“ SOA is an architectural paradigm for dealing with business processes dis-
tributed over a large landscape of existing and new heterogeneous systems
that are under the control of different owners. ”This establishes a certain scenario in which SOA can, should, or must be employed,

but does nothing to exclude alternative approaches. For example, CORBA [CORBA
2020] was meant to fill this need in the nineties (and failed, according, for example, to
Henning [2006], and Sommerville [2011, p. 482]). It seems to fit this definition, yet it
is probably not an instance of SOA, at all, as Josuttis [2007, p. 23] explicitly delimitates
SOA and CORBA, saying they are “exact opposites”.
A definition offered by Erl [2005, p. 54] names some properties against which an

architecture could be tested to see if it is indeed a SOA. However, it does not name any
constituents of a SOA – it is more a description of a problem to be solved, than of a

118

7.4. Service-Oriented Architecture

concrete solution. Another issue is that it directly contradicts Josuttis [2007, p. 22], by
defining SOA in terms of a specific technology stack, namely web services, instead of
being technology-neutral.
Blending SOA with a particular implementation technology, especially web ser-

vices, is common. Zimmermann, Tomlinson, and Peuser [2005, p. 161], who focus on
web services exclusively, simply define a SOA to be:

“ […] any product and project architecture conforming to theW3CWSA base
architecture […]. ”Here, W3C WSA refers to the Web Service Architecture standard [Booth et al.,

2004]. It mentions some aspects that focus more on individual services than the overall
architecture, such as technology-independent specification (“logical view”), “descrip-
tion orientation”, and coarse granularity. These aspects are discussed in Section 7.2.
The concepts relating more directly to the architecture describe it as message-oriented,
network-oriented, and platform-neutral.
The asynchronous passing of messages is meant to provide the desired low de-

gree of coupling, as opposed to synchronous, remote procedure calls [Menascé, 2005].
However, Richardson and Ruby [2008, p. 19] assert that many web service-/SOAP-
based systems are in essence using remote procedure calls, wrapped in messages.
The infrastructure required for message-oriented information exchange is called

message-oriented middleware. More concretely, the necessary facilities are often pro-
vided by an enterprise service bus (ESB), which is sometimes referred to as an archi-
tecture, and sometimes considered a piece of software – there are lots of products
advertised as ESB, but no universal notion of what such a framework needs to provide
seems to exist. Josuttis [2007, p. 18] views an ESB as a fundamental ingredient, and
therefore a required part of a SOA.

Network orientation is actually a bit redundant, since the definition also establishes
distribution as a key property of SOA-based systems. Platform neutrality is an important
aspect – Josuttis [2007, p. 14] highlights heterogeneity as a main driver for SOA.
All of these aspects have relevance for SENSEI: it strives for loose coupling to achieve

its flexibility objective. However, low coupling can be achieved through means other
than message passing, especially if the process to be automated is known and made
explicit, so that it can be enacted by a central controller. The potential need for dis-
tribution was identified in the Q-MIG project (Section 2.3.3). The same is true for
the need for platform neutrality, though the heterogeneity of software evolution tools
was pointed out even earlier as a fundamental reason for the integration challenges
(Section 1.1), and it is reflected, for example in the Comprehensiveness requirement.
Another view of SOA is of particular interest with respect to SENSEI’s requirements

for discovering available tasks and tools (Task Discovery and Tool Discovery require-
ments), and mapping tools to tasks (Tool Description requirement): this “classical” defi-
nition is in terms of the SOA triangle [Marx Gómez, 2019; Melzer and Eberhard, 2010],
sometimes also referred to as the publish-find-bind-execute interaction pattern (or some-

119

7. Service-Oriented Software Engineering

Service Consumer Service Provider

Service Registry

Find
Publish

Bind, Execute

Figure 7.3: The SOA triangle, depicting the publish-find-bind-execute interaction pat-
tern.

thing similar, e.g., see Ran [2003] and Zhu [2005]). A depiction is shown in Figure 7.3;
the terms and their interrelations are also integrated in Figure 7.1.

Service providers publish the services they offer in a (possibly public) service reg-
istry. Service consumers can then search the registry for services, to find one suitable
for a given task. Only then will the service consumer bind to the chosen service of
a provider, using a specific communication technology, e.g. SOAP over HTTP in the
case of web services. The service can then finally be executed, which entails sending
and receiving messages via the established binding.
It seems that this kind of definition has quietly fallen “out of style”, probably because

this pattern was seldom followed [Michlmayr et al., 2007], and the standard associated
with the service registry, UDDI (Universal Description, Discovery, and Integration),
was never widely adopted [Sommerville, 2011, p. 510], partly due to its complexity
[Richardson and Ruby, 2008, p. 309].
Still, service discovery remains an important factor for service-orientation, and for

SOA in particular, as it is a key ingredient in facilitating loose coupling between services,
thus yielding highly flexible system architectures. Melzer and Eberhard [2010, pp. 16-
17] likens service registries to a kind of “yellow pages” for services, and highlights
the need for service classification (discussed in Section 7.3) to be able to easily find
services. Erl [2007, p. 40] refers to them as service inventories, and stresses their role
as a “independently standardized and governed collection of complementary services”.
These are two complementary aspects: service standardization is desired so services
are reusable and their implementations are interchangeable, while the role as a registry
is more of a lookup table to find concrete providers and implementations of particular
services. This is why in SENSEI, there are two separate concepts for this: the service
catalog and the component registry (see Part IV).
Service discovery as described by Marx Gómez [2019] is illustrated in Figure 7.4.

It further elaborates the discovery process as follows: A service consumer (“Software
Element A”) specifies requirements which are sought to be fulfilled by a service, while
service providers (“Software Element B”) specify the capabilities they offer through
services. Matching requirements and capabilities filters out those services and service

120

7.4. Service-Oriented Architecture

Network

Software
Element A

Software
Element B
Software

Element B
Software

Element B
Requirements
(Specification)

Capabilities
(Specification)

places provides?
≤

Lo
os

e
Co

up
lin

g
in

 S
O

A

uses after selection

Figure 7.4: Service discovery and loose coupling in an SOA. This figure is a faithful
reproduction and translation of the one presented by Marx Gómez [2019].

providers, which satisfy all requirements (at least).
As indicated in Figure 7.1, the two parties then enter into a service contract, which,

amongst others, specifies service-level agreements (SLA). These regulate the required
quality of service (QoS), i.e. specific, minimal conditions for non-functional service
properties such as reliability, availability, security, etc. In this thesis, quality of service
is therefore not considered a part of the service description, as it is negotiated and
determined on a per-customer basis.
Discovery mechanisms like this have seldom been realized in actual SOA imple-

mentations, leading to tightly coupled, inflexible systems in practice [Michlmayr et al.,
2007]. Erl [2007, p. 367] stresses the importance of service discovery, yet admits that
its inclusion “represents an early incarnation of SOA that has long been surpassed”.
Usually now, discovery is carried out by humans at design time [Erl, 2007, p. 371],
which relinquishes dynamic binding and tightens coupling, moving this form of service-
orientation close to what can already be achieved with component-based approaches.
This means that for SENSEI, which needs such a functionality (Tool Discovery require-
ment), there is no off-the-shelf solution offered in the SOA context.
Summing up, the following definition is adopted, relying on the understanding of

services established in Definition 7.1:

Definition 7.2: Service-Oriented Architecture

A service-oriented architecture (SOA) describes a distributed software system in
terms of coarse-grained services, which are coordinated externally, and which com-
municate indirectly via messages over a network.
In classical SOA, services are published by their providers in service registries,
which service consumers can browse and choose from, potentially using late (run-
time, dynamic) binding to maximize flexibility.

121

7. Service-Oriented Software Engineering

By 2009, the hype around SOA had passed. It had caused such a significant level
of confusion [Erl, 2005, p. 2] that it had lost much of its popularity. While there were
some success stories of implementing SOA, for example at Amazon [Gray, 2006], many
companies failed in that attempt. In an empirical study, Kokko, Antikainen, and Systä
[2009] report non-technical challenges as the main impediments for SOA adoption,
namely resistance to changes by the workforce and lack of (business process) modeling
experience. Another frustration was with the web services technology stack that was
perceived to be overly complex [Sommerville, 2011, p. 483]. As a reaction, RESTful
web services [Richardson and Ruby, 2008] were taken up as an alternative, which has
its critics, as well [Nurkiewicz, 2015].
More recently, microservices have been proposed [Lewis and Fowler, 2014], some-

times considered to be a successor of, or alternative to, SOA. Among other issues,
Newman [2015, p. 8] criticizes the lack of guidelines regarding service size, granular-
ity, and how and where to split existing system functionality into services appropriately.
Microservices focus on system decomposition and a significantly reduced service size,
sometimes citing the UNIX philosophy as an inspiration or analogy, which strives to
create small, reusable tools which do exactly one thing well (also compare the single
responsibility principle by Martin [2003, p. 95]).
Manes [2009], in an “obituary” to SOA, describes how it has not been able to deliver

on its promised benefits for most organizations that tried to implement it. While SOA
as a word is declared “dead”, the underlying concepts of service-orientation are still
considered valid. One reason given for the failure or misunderstanding of SOA is the
focus having been on technologies like web services, RESTful services, and enterprise
services busses, as opposed to the basic, architectural principles. Fowler [2005b] came
to a similar conclusion four years earlier:

“ [SOA is] beyond saving – so the concrete ideas that do have some substance
need to get an independent life. ”In Section 7.6, these underlying ideas, together with lessons to be learned from the

perceived failure of SOA, will be summarized, to base SENSEI on sound concepts, and
not repeat previous mistakes.

7.5 Service Orchestration

In the context of the toolchain-building support framework to be created, service ori-
entation is considered as one cornerstone, mainly due to its attributed ability to deliver
the desired, high degree of flexibility. In particular, means to coordinate tools into a
toolchain in terms of data and control flow (requirements Data Flow and Control Flow,
respectively) are wanted, which allow for easy and fast adaptation. In service-oriented
software engineering, arranging individual services in such a way to jointly achieve a
more complex goal, is called orchestration. As with the whole field, the terminology
is not used consistently by different authors and practitioners.

122

7.5. Service Orchestration

This section gives an overview of service orchestration and related concepts, and
establishes a coherent definition. First, origins, closely related terms, and influences
are reviewed, e.g. workflow technology, business process automation, and enterprise
application integration (Section 7.5.1). Then, orchestration is defined in contrast to the
closely related concept of service choreography (Section 7.5.2).

7.5.1 Origins

Service orientation originates from the contact points of business concerns and IT. An
influence of the former is thinking in (business) processes. Workflow management
systems appeared in the 1990s [Hofstede et al., 2010, p. 23] to monitor and partly or
fully automate the execution of business processes.

Distinctions made between the terms process and workflow vary widely, and often
they are used more or less synonymous. Historically, workflow management systems
became business process management systems in the 2000s [Hofstede et al., 2010,
p. 23], so the terminology shifted towards “process”. Hofstede et al. [2010, p. 3] ba-
sically equates business process automation with workflow management. In works
focused on technical aspects, as opposed to business concerns, a common distinction
is that the process is the more abstract representation, while a workflow is a technical
realization of a process, i.e. can be automatically executed; this view is also in line
with theworkflowmanagement coalition reference model [Hollingsworth, 1995]. That
original standard does not seem to be of great relevance anymore in modern business
process automation [Hofstede et al., 2010, p. 7]. A comprehensive discussion of the
two terms is provided by Draheim [2010, pp. 75ff]. To highlight either the abstract or
technical nature, the terms process and workflow, respectively, are used in this way for
this thesis. If the distinction is secondary, the term process will be favored, though.

Orchestration is another term that can be considered mostly synonymous with ei-
ther workflow or process, but is used only in the context of services. The term is some-
times also used to refer to the practice of defining processes or workflows of services,
and as a general design principle to integrate existing services and business processes
(e.g., see Erl [2005, pp. 200-201]). When used to mean a specific kind of process, the
distinguishing elements of orchestrations are:

• The basic abstractions are services, as opposed to more generic concepts like
tasks or activities.

• An orchestration represents a service itself [Erl, 2005, p. 201] – orchestrations and
services form a composite pattern, with the former being the composites, and the
latter the leafs.

123

7. Service-Oriented Software Engineering

In short, an orchestration can be defined as a service-oriented process:

Definition 7.3: Service Orchestration

A service orchestration is a process specification in which individual steps are
identified with services. Orchestrations define
• the sequence of service processing, including conditional branching, loops,
and concurrency (control flow), and

• the data exchanged between services, as well as consumed and produced by
the orchestration as a whole (data flow),

in a manner that can be enacted by a central controller. An orchestration is a
service, with the described behavior defining its semantics, and the consumed and
produced data defining its signature.

In enterprise application integration, orchestration is considered as one integration
pattern amongst many: Hohpe and Woolf [2004, pp. 312ff] refer to it as process man-
ager. It is characterized by introducing a central controlling unit that executes work-
flows, invokes services, and routes data as needed.
On a technical level, several standards for orchestration languages have been de-

veloped. The most widespread one is the XML-based Business Process Execution Lan-
guage (WS-BPEL 2.0, or simply BPEL), standardized through OASIS [Jordan et al., 2007].
It relies on WSDL service definitions to refer to services being orchestrated. BPEL has
execution semantics that allows its instances to be interpreted by orchestration engines,
but it lacks a graphical notation. OMG’s Business Process Model and Notation (BPMN)
Version 2.0 [2011] is just the opposite in this regard. The two standards can thus be used
complementary, for example using a mapping from BPMN language features to corre-
sponding ones in BPEL, which is part of the OMG standard. UML activity diagrams are
another option to depict orchestrations. Although BPMN possesses language concepts
specifically aimed at business process modeling, in terms of general expressiveness, the
languages are quite similar, as shown by Russell et al. [2006] and Wohed et al. [2006],
evaluating the languages against their well-established set of workflow patterns [Aalst
et al., 2003]. These are also the authors of Yet Another Workflow Language (YAWL;
Hofstede et al. [2010]).
Integrating services using orchestrations can deliver an increase in flexibility (Objec-

tive 1), as processes governing toolchains are defined and maintained in a single place,
as opposed to being distributed among all the tools being used (Erl [2005, p. 205];
Hohpe and Woolf [2004, p. 312]). The central logic also facilitates abstraction from
tools and their technical interoperability issues to services.
The centrality of orchestrations can become a drawback in terms of scalability [Jo-

suttis, 2007, p. 96], representing a possible single point of failure [Hohpe and Woolf,
2004, p. 320]. An alternative or complementary approach to which service orches-

124

7.5. Service Orchestration

tration is often contrasted is service choreography. Recent reinterpretations of service
orientation likemicroservices [Newman, 2015], favor such a decentralized, and usually
event-based approach.

7.5.2 Orchestration and Choreography

As always, use of terminology varies: Zimmermann, Tomlinson, and Peuser [2005,
p. 392] make no distinction between orchestrations, choreographies, aggregations, and
compositions of services. Both Zimmermann, Tomlinson, and Peuser [2005, p. 184]
and Bieberstein et al. [2008, pp. 96-97] use the term “choreography” with respect to
BPEL, while Josuttis [2007, p. 97] posits BPEL as “a pure orchestration language”. The
latter is the much more common notion, though there exist approaches to extend BPEL
with concepts to also describe service choreographies [Decker et al., 2007].
The concept of service choreographies is usually introduced in contrast to service

orchestrations. For example, Josuttis [2007, p. 295] offers the following definition:

“ A way of aggregating services to business processes. In contrast to orches-
tration, choreography does not compose services to a new service that has
central control over the whole process. Instead, it defines rules and poli-
cies that enable different services to collaborate to form a business process.
Each service involved in the process sees and contributes only a part of it. ”Erl [2005, pp. 208ff] presents a similar view. Both authors also map orchestrations

and choreographies to different use cases: the former is used in the context of single
businesses to define and automate its processes, the latter is used to align the processes
of multiple corporations (or align processes after corporate mergers). Hollingsworth
[2004] refers to this as internal and external process behavior specification, respectively.
In this view, orchestrations reside on a lower level than choreographies, which define
interaction points and patterns between (pre-existing) orchestrations.
In practice, classical SOA has favored the orchestration-style definition of processes,

as it is well-understood, and there is widespread support for it, mainly based on the
BPEL standard. The same is not true for choreographies [Kopp and Leymann, 2008],
although there are standardized languages, as well, most notably the Web Services
Choreography Description Language (WS-CDL; Kavantzas et al. [2005]). According
to Decker, Kopp, and Barros [2008], choreographies are not actually executed, but
provide a means for standardization across corporate borders, and impose constraints
on services and orchestrations that participate in them.
A slightly different perspective towards service choreography sometimes arises in

the context of event-driven SOA, a variant which highlights publish-subscribe-based in-
teraction patterns to minimize coupling [Levina and Stantchev, 2009; Michelson, 2006].
Although asynchronous messaging is part of many SOA definitions (cmp. Section 7.4),
in practice it has often been implemented using remote procedure calls [Richardson
and Ruby, 2008, p. 19]. In an event-driven architecture, processes may “arise” rather

125

7. Service-Oriented Software Engineering

than being explicitly defined. As in service choreography, there is no need for cen-
tral control. In a “classical” approach, services are ignorant of the context in which
they are used (which is important for reusability). Instead, in an event-driven approach,
services must know which events they should react to, but remain agnostic of how
other services react to their actions (events raised). The event-driven approach can be
considered one way to realize choreographies [Josuttis, 2007, p. 97, pp. 137ff].
Microservices are very much rooted in this reactive, event-driven approach. New-

man [2015, pp. 43ff], however, presents orchestration and choreography not as com-
plementary, but competing, clearly preferring technologically light-weight, event-based
service choreographies. Orchestrated systems are critized for being resistant to change,
because of a tendency of devolving into a single, massive orchestration service contain-
ing the major part of the application logic (and breaking modularity), calling extremly
primitive, low-level data manipulation services.
It can be argued that this view on microservices promotes evolution of individual,

application-specific, context-aware services very well. This seems appropriate for the
development and evolution of software systems, e.g. within a company, with most
of the services implemented in-house. With software evolution toolchains, individual
services are assumed to be more static (representing standardized, reusable tools). In-
stead, the toolchain as a whole must be very flexible, i.e. it should be easy to adapt the
process. This is hard when there is no central process definition; rather, the services
themselves would have to be adapted. For reusable, “off-the-shelf” services this might
not even be possible.

7.6 Summary

Service orientation has been reviewed in this chapter due to SENSEI’s need to address
domain experts on an appropriate level of abstraction. In Figure 7.5 (refining Figure III.1,
page 97), this corresponds to the left-hand side, where domain experts use SENSEI to
specify toolchains. While the understanding of what a service is differs substantially in
literature, the definition adopted in this thesis (Definition 7.1) is well-suited for describ-
ing functionality in a domain-centric, technology-agnostic manner, while also provid-
ing a level of rigor and structure needed to facilitate automatic processing.
Two central requirements that SENSEI aims to satisfy with service-oriented means

are Task Discovery and Task Description. As indicated in Figure 7.5, SENSEI introduces
a service catalog, that establishes a service description template to formalizes what
constitutes a SENSEI service, and that can be filled and browsed by domain experts
to create and find services needed for toolchain specification. The service properties
presented in Section 7.2 provide the foundation for this. When creating new services,
domain experts can look to service design principles as described in Section 7.3 for
guidance, while for finding services, the briefly sketched service classification schemes
can help organize the catalog.

126

7.6. Summary

Toolchain Implementation:
Components

Toolchain Integration:
Models & Transformations

Domain
Experts

Tool
Developers

Service Catalog

Service Orchestration

Component RegistryCa
pa

bi
lit

ie
s

SENSEI Meta-Model

conforms to

Figure 7.5: Services contributing to SENSEI.

Another pair of requirements considered is for service coordination, namely to
model Data Flow and Control Flow. Service orchestration addresses both of these
aspects, and goes well with SENSEI’s process-centric approach. In contrast to service
choreography, orchestrations explicitly manifest the processes, prioritizing flexibility
to change processes over changing individual services. Section 7.5 named a couple
of existing orchestration languages, none of which were chosen for SENSEI in the end,
though, opting instead to create a custom language. Reasons for this design decision
are given in Chapter 11, one of which is that SENSEI contains some unique features that
would have been cumbersome to incorporate in an existing language.

Service-oriented Architecture envisioned a scheme to dynamically find and bind
to services listed in a service registry. This registry addresses a different purpose than
SENSEI’s service catalog, more in line with the Tool Discovery requirement. SENSEI
features a component registry, which is basically a lookup table to find components
for a given service, and is filled by tool developers. Despite this, it is depicted on
the left-hand side of Figure 7.5, because it is on the abstraction level of services (only
containing references to components, not components themselves), and is part of the
overall model used to derive toolchain implementations from. It is grayed out to signify
that this concept is less directly derived from service orientation.

Regarding service discovery, the concepts and technologies that sprang from SOA,
apart from the general idea, were not adopted by SENSEI, as they have largely failed
in practice (see Section 7.4). SENSEI introduces service capabilities, meant to control
service granularity and enable precise matching between services and implementing
components. They represent a kind of connective tissue for its overall architecture and
therefore appear in different forms in different places throughout SENSEI – the details
of which will be explained in Part IV. Figure 7.5 indicates this role by depicting capa-
bilities crosswise. They are grayed out, as they are unique to SENSEI, and not directly
derived from service orientation. One takeaway from SOA is, however, that the service
discovery mechanisms (UDDI in particular) were considered too complex. Capabili-
ties expose a simple mechanic to both domain experts and tool developers, to support
modeling required service specifics and provided component facilities, respectively.

127

7. Service-Oriented Software Engineering

In SENSEI, services complement components to jointly satisfy the Separation of Con-
cerns requirement. This leaves a gap between the two that needs to be bridged to auto-
matically derive component-based toolchain implementations from service-oriented
toolchain specifications. To this end, specifications need to be machine-readable,
which is why Figure 7.5 depicts that the service-oriented artifacts on the left-hand side
of the diagram collectively conform to the SENSEI metamodel. The following chapter
will review model-driven software engineering as a foundation for this essential link to
complete the SENSEI architecture.

128

CHAPTER 8
Model-Driven Software Engineering

A long-standing issue in software engineering is the detachment of documentation and
realization of software systems. Documentation is needed both when initially devel-
oping software systems, for conception, design, planning, and specification, as well
as during the remaining life time of systems, to facilitate maintenance and evolution
activities. Developed separately, which incurs double effort, while only the work on
the actual system creates an immediate benefit, documentation is often left unsynchro-
nized with the software systems its supposed to describe, rendering it useless.
The core idea of model-driven software engineering is to make the models of soft-

ware systems the central artifact of software development and evolution, rather than
the code implementing the systems. Furthermore, to avoid the redundancies involved
in manually implementing in code what has already been modeled, model-driven ap-
proaches strive to generate low level artifacts from higher-level models by means of
model transformations, as far as possible. This leads to the four main benefits of model-
driven software engineering according to Kleppe, Warmer, and Bast [2003, pp. 9ff]:
besides the productivity boost, models become a single point of truth, and are auto-
matically kept up-to-date with the code they document (as it is generated from them).
Keeping models clean of technical and platform-specific details, by moving them into
transformations, model-driven software engineering can also facilitate portability (tar-
geting different platforms using appropriate transformations), and, by additionally gen-
erating adapters as needed, interoperability.
The intention behind model-driven software engineering is often compared to ear-

lier efforts to raise the abstraction level of computer programming, e.g. with the advent
of the first compilers, and programming languages above the assembler level. Atkin-
son and Kühne [2003] say this allowed to program more in terms of what the machine
should do, rather then explicitly instructing it how to do it. And this is true to a degree,
as high-level language constructs like loops and subroutine calls leave some room for

129

8. Model-Driven Software Engineering

the compiler to decide how these will be realized in concrete machine code. How-
ever, modern programming languages common today, e.g. Java, which is certainly not
considered “close to the metal”, are conceptually still very much established in the
technical realm of the underlying hardware and software systems.
The “grand vision” of model-driven software engineering is to raise the abstraction

level from the solution into the problem domain. This would complement the small
step of abstraction compilers and high-level programming languages achieved with a
giant leap over the semantic gap in software engineering.
For SENSEI, model-driven software engineering is expected to provide support for

the separation of problem domain and implementation, and for automatic tool integra-
tion into toolchains:

Separation of Concerns. The support framework must establish a clear separation be-
tween toolchain specification and toolchain integration.

Automatic Coordination. The support framework must provide automatic tool coordi-
nation and toolchain execution in conformance with its specification.

Furthermore, model-driven software engineering facilitates the creation of domain-
specific languages, which should provide foundational support for all requirements
concerned with enabling domain experts or tool developers to express their concerns
or needs in a way that is close to their domain and realm of knowledge:

Task Description. The support framework must provide domain experts with a means
to describe required properties of tasks in a standardized way.

Data Flow. The support framework must aid domain experts in specifying the data
flow between tasks.

Control Flow. The support framework must aid domain experts in specifying the con-
trol flow between tasks.

Tool Description. The support framework must aid tool developers in specifying
which tasks their tools can support.

The outline of this chapter is detailed in Section 8.1, giving an overview of the core
concepts of model-driven software engineering that will be introduced in the subse-
quent sections. A summary is given in Section 8.8.

130

8.1. Overview

Figure 8.1: Core concepts of model-driven software engineering.

8.1 Overview

Figure 8.1 provides an overview over the core terms and concepts to be introduced in
this chapter. At its core is the model. A definition of the term, and a model’s relation-
ship with the system it is representing, is given in Section 8.2. A very central concept
is represented in Figure 8.1 only as a self-association on the model class: metamodels
define languages to be used to express models in, and are described in Section 8.3.

With these concepts and terms introduced, Section 8.4 proceeds with presenting
the principles and practices of model-driven development. In particular, the manifesta-
tion standardized by the Object Management Group, model-driven architecture, is in-
troduced, characterized by a development process starting with platform-independent
models, which are refined to platform-specific models, and then to code. A key part
of that are model transformations (Section 8.5), to produce new models from existing
ones. Another important sub-field of model-driven engineering is the design of domain-
specific languages (Section 8.6), to enable the expression of (machine-processable)
models using the specialist terminology of a particular domain. Finally, Section 8.7
introduces the concept of technical spaces, which group compatible implementation
standards and development tools that are needed to actually practice model-driven
development.

131

8. Model-Driven Software Engineering

8.2 Models

As opposed to other fields of study reviewed in this thesis, the terminology in general
seems to be more established and less fuzzy. A characterization of the definition of a
model widely accepted in software modeling and model-driven software engineering,
is given by Stachowiak [1973, pp. 131-133]1 in terms of three basic properties: repre-
sentation, reduction, and pragmatism2.
Representation. A model is always related to something in the real world, the system

under study.

Reduction. It provides an incomplete description of it, possibly focussing only on select
aspects, and leaving out details, e.g. by means of abstraction.

Pragmatism A model always serves a purpose for a certain time or occasion, and ad-
dresses certain stakeholders.

While this is certainly a simplified account of the original definition, it defines the
concept of a model quite well. This particular rendition also introduces the term system,
which Stachowiak avoids3 due to his broader context.
Since an in-depth discussion of what a system is would be inexpedient, as well,

leading away from the actual topic of the chapter, a common definition is adopted
from systems theory without detailed discussion.

Definition 8.1: System

Skyttner [2005, p. 58] summarizes several definitions found in the literature as
follows:

“ [A system is] an organized whole in which parts are related together,
which generates emergent properties and has some purpose. ”

An observation is that models are also systems (conceptual or abstract systems in terms
of Skyttner [2005, pp. 61f]). The opposite is not true though, as systems have a purpose
(pragmatism), but need not represent and reduce another system.
The initial, informal notion to think of a system as “something in the real world”

is thus not entirely consistent, but serves as a guideline when to use the term system,
and when to use model. In the context of (model-driven) software engineering, the
real-world systems often are software, but may, for example, also refer to businesses or
software evolution processes.

1This is a work in philosophy, mathematical logic, and cybernetics. It predates model-driven software
engineering, and probably any common practice of software modeling for that matter, by several decades.

2This is rather freely translated from the original german “Abbildungsmerkmal”, “Verkürzungsmerk-
mal”, and “Pragmatisches Merkmal”, respectively.

3Also pointed out by Hesse and Mayr [2008]; the more generic term “original” is used instead.

132

8.3. Metamodels

Definition 8.2: Model

A model represents a part of a real system, reduced to serve a particular purpose.

There are two further additions to the definition of the term model. The first, owed
to Kleppe, Warmer, and Bast [2003, p. 16], is that it is always expressed in a language.
The second is that a (well-defined) model always conforms to a metamodel. The con-
cepts of both languages and metamodels will be explored in Section 8.3, to extend the
definition of “model” appropriately.
Models can be classified according to a number of criteria:

• Models are either descriptive, i.e. they have been derived from a system under
study (SUS), or they are prescriptive, which means a system under development
(SUD) is meant to be derived from them [Aßmann, Zschaler, and Wagner, 2006;
Seidewitz, 2003]. According to Hesse and Mayr [2008], models can also exhibit
both properties, i.e. be derived from an original system to then be used to derive
a new system from it, which is reflected in Figure 8.1.

• Models are either static or dynamic: Static models contain only time-invariant
aspects of the original system, constraining its structure, or describe a single state
of a system frozen in time. They are expressed in terms of a system’s elements and
their interrelationships. Dynamic models describe rules for the behavior of their
associated systems, either viewed in terms of the processes that can take place,
or how the system changes states as reaction to external or internal stimuli.

• Models describe aspects of systems either as tokens or as types [Hesse and Mayr,
2008; Kühne, 2006; Peirce, 1906]: Token models match each element within the
covered area of the corresponding system with a corresponding model element
(token). Type models abstract from a system by grouping its elements (instances)
according to certain characteristics and thereby establish a common model ele-
ment for all of them (types).

A kind of model fundamental to model-driven software engineering are prescriptive
static type models, a category which gives rise to the concepts of metamodels and
metamodeling.

8.3 Metamodels

As expressed in Figure 8.1, a model is always expressed in a language. In the context
of software engineering, the languages used should follow well-defined rules, so that
the models are universally understood in the same way. To be useful in model-driven
software engineering, models must be expressed in machine-processable languages.

133

8. Model-Driven Software Engineering

Definition 8.3: Language

Awell-defined language, i.e. one that can be interpreted algorithmically, is defined
by [Kleppe, Warmer, and Bast, 2003, p. 16; Kelly and Tolvanen, 2008, p. 68]:
• its abstract syntax (the concepts of the language, and their interrelationships),

• its concrete syntax (the symbols used to depict these concepts to form expres-
sions in the language), and

• its semantics (the meaning conveyed by the language’s concepts and expres-
sions).

For model-driven techniques, the abstract syntax is of principal importance (the
importance of concrete syntax and semantics of languages is discussed, for example,
by Kleppe [2009]). The abstract syntax of textual languages (e.g. programming lan-
guages like Java) can be formalized by grammars. Such grammars can themselves be
considered type models. For example, a grammar of the Java programming language
would be a model of all programs expressed in Java. Generalized to also include visual
models and modeling languages, this gives rise to the concept of metamodels.
A metamodel is still just a model, not an entirely new concept, as reflected by Fig-

ure 8.1, where the term only appears as a role label. Metamodels provide the abstract
syntax of languages used to express models. Figure 8.1 shows that a language is de-
fined by a model, which makes it a metamodel by definition. Models expressed in this
language are said to conform to this metamodel.

Definition 8.4: Metamodel

A metamodel is a static prescriptive type model used to define the abstract syntax
of a language.

When considering a metamodel as “just another model”, it must follow that it too
conforms to a metamodel – depending on the point of view, also referred to as meta-
metamodel. Followed through, this would lead to an infinite sequence of models and
their meta-(meta-meta-…)models. In practice, it can be capped at four levels as follows
(cmp. Figure 8.2):
M0 This is the bottom layer, where systems of the real world are situated.
M1 At this layer, models are formed describing the systems below.
M2 The metamodels at this layer define the languages used to express models at the

layer below.
M3 Meta-metamodels in turn define languages to express metamodels in. Meta-

metamodels can be made to conform to themselves, which is why no further
levels are needed.

134

8.3. Metamodels

M₀ Reality

M₁ Models

M₂ Metamodels

M₃ Meta–Metamodels

Figure 8.2: The basic, four-layered framework of MOF, depicted as object diagram
conforming to the model shown in Figure 8.1.

This four level structure of meta-modeling is standardized as part ofMOF, theMeta
Object Facility [2013], which constitutes a M3 meta-metamodel, and thus a metamod-
eling framework, which in turn is the basis for OMG’s model-driven architecture (see
Section 8.4). Figure 8.2 depicts these four levels as object diagram – a model which
conforms to the (meta-)model that was used to introduce the basic terminology, the
class diagram shown in Figure 8.1. Because it is a model of MOF, the figure is highly
self-referential: at the M0 level, there is the system Real-World MOF. Above that, a
model of the MOF 4 Layers Architecture; this element in the figure therefore refers to
the model depicted in the figure as a whole! The language used in this figure is that
of UML object diagrams. This language is defined on level M2 in the UML Superstruc-
ture4. Finally, at the meta-meta-level M3, there is MOF.
It is a peculiarity of MOF that all modeling levels are expressed in the same lan-

guage, UML. Moreover, this language is not really defined at the highest level, but
rather at M2. MOF is expressed in a subset of UML (basically, class diagrams), at least
this is how the standards set it up – possibly a historical remnant due to the fact that
the original UML actually came before MOF was standardized. An equivalent view
would be to assume that MOF defines the required UML subset, which is then used to
redefine itself as part of UML.
The strict four-layered design of MOF is not without critics, as it can pose problems

when using a metamodel to create a model, which itself should contain concepts that
need to be instantiated. As a metamodel user, one can only operate within the M1 level,
leading to the seemingly paradoxical situation (e.g., see Stahl et al. [2006, pp. 116f]) of

4As of UML 2.5, the distinction between infrastructure and superstructure was dropped.

135

8. Model-Driven Software Engineering

model elements conforming to more than one (meta-)class. Atkinson and Kühne [2003]
propose to distinguish between linguistic metamodeling, which dictates the modeling
languages, and ontological metamodeling, an orthogonal metamodeling dimension to
describe class-instance relationships within the same linguistic layer. This establishes
awareness of the underlying issues, but does not solve them – the strict metamodel-
ing hierarchy established through MOF constitutes real modeling limitations [Atkinson
and Kühne, 2001]. Further solution approaches are presented by Goldstein and Storey
[1994], Gonzalez-Perez andHenderson-Sellers [2008], Laarman and Kurtev [2010], and
Neumayr, Grün, and Schrefl [2009].
In the context of model-driven development, models defined by means of meta-

modeling are a fundamental prerequisite, so they can be processed automatically.
Specifically, it facilitates transformations between models conforming to different meta-
models, by expressing transformation rules in terms of the concepts defined by the
metamodels. The concept of metamodeling is further discussed in the following sec-
tion, with regard to their place in the model-driven software development process.

8.4 Model-Driven Development

There are several terms all beginning with “model-driven”, all coming with their own
abbreviation. While some authors use them interchangeably, Brambilla, Cabot, and
Wimmer [2012, p. 9] offer the following distinction:
MDE Model-driven (software) engineering is an umbrella term for model-driven tech-

niques applied to different areas of software engineering, for example model-
driven software migration (e.g., see Wagner [2014, p. 47]).

MDD Model-driven (software) development is a subset of MDE, focused on supporting
and partly automating the forward engineering path of development activities.

MDA Model-driven architecture is a particular flavor of MDD. Based on UML, it is
a standardization effort by the [Model Driven Architecture 2020], and is some-
times cited to have a narrower set of objectives than general MDD, focusing in
particular on interoperability and portability [Stahl et al., 2006, pp. 4, 14].

Collectively, they are referred to as MD*. Brambilla, Cabot, and Wimmer include
another surrounding shell in this taxonomy, called model-based engineering, which
they describe as weaker than model-driven approaches: in model-based engineering,
the model is an important artifact, but not necessarily the central one. More impor-
tantly, models may not be subject to automatic processing. Stahl et al. [2006, p. 3]
agree, but Pastor and Molina [2007, p. 41] seem to argue the opposite. In their view, a
model-driven process is characterized by a phase of modeling, followed by a phase of
(manual) implementation, possibly based on code skeletons generated from the mod-
els, whereas in their model-based approach, the system is fully specified in problem
domain terminology, in what they call a conceptual schema, which is used to gener-

136

8.4. Model-Driven Development

PIM PSM Code

PIM MM PSM MM Code MM

M2M M2T

M2M MM M2T MM

transform transform

from to from to

co
nf
or
m
s

to

co
nf
or
m
s

to

co
nf
or
m
s

to

co
nf
or
m
s

to

co
nf
or
m
s

to

Figure 8.3: The basic model-driven development process.

ate resulting software systems without a need for further manual work. It gets even
more confusing if neighboring disciplines are considered, e.g. the embedded systems
community talks of model-based design [Karsai et al., 2003], which seems to mostly
correspond to the above definition of MDE. Therefore, in this thesis, the term “model-
based” is avoided.
Although this section describes MDD, the terminology used is that of OMG-

standardized MDA, which has caught on in the field as a whole [Stahl et al., 2006,
p. 11]. Figure 8.3 depicts the three main artifacts of MDD at the bottom (similar figures
can be found in Kleppe, Warmer, and Bast [2003, pp. 8, 26] and Zeppenfeld and
Wolters [2005, p. 64]): the platform-independent model (PIM), the platform-specific
model (PSM), and code, sometimes referred to as implementation-specific model (ISM).

PIM The platform-independent model describes a system in generic terms, i.e. with-
out referring to a particular platform like hardware, operating systems, virtual
machines, programming languages, middleware, libraries, or any other imple-
mentation techniques. Since in MDA (as opposed to MDD in general), the PIM
is expected to be expressed in terms of UML, there may be a bias towards object-
orientation. This can be avoided by using specialized languages (see domain-
specific modeling in Section 8.6), which UML enables to create through stereo-
types and profiles.

PSM The platform-specific model is ideally derived fully automatically from the PIM,
by mapping its generic concepts to concrete ones from a selected platforms. As
indicated above, there can be a whole stack of platforms. PSMs can therefore also
be refined iteratively, by mapping different aspects to different selected platform
technologies [Stahl et al., 2006, p. 16f].

Code The final PSM is expected to be on an abstraction level very close to the actual
implementation, so that code can be generated in a straight-forward manner. In
ideal MDD, the code represents the complete software system as specified in the
PIM, without need for further manual programming work.

137

8. Model-Driven Software Engineering

Relating these artifacts to SENSEI, it seeks to establish a platform-independent me-
tamodel for the specification of toolchains, expressed in the languages of services. A
component framework serves as target platform, thereby dictating the platform-specific
and codemetamodels. What is needed, both by SENSEI, as well as in general, is a means
to encode the mapping of platform-independent concepts to platform-specific ones, so
it can happen automatically.
MDD uses transformations for this purpose, in particular model-to-model (M2M)

transformations. A transformation can be thought of as a special program, though more
generally, it is also a model, expressed in a transformation language (a more detailed
definition will be given in Section 8.5). Of course, transformations have to be written
by someone, first. The benefit of this approach is derived from the fact that it is writ-
ten independently of any particular PIM, so it only has to be written once, and then
its mapping rules can be reused to map arbitrary other PIMs to the same platform(s).
This is where metamodeling becomes essential: to be able to specify such mapping
rules in transformations, the concepts, and their interrelations, of both the platform-
independent as well as the platform-specific domain have to be known. Those are
formalized in their metamodels – again, this has to be done only once, to then specify
arbitrary many systems as conforming models. If an existing language and metamodel
is used, such as the UML, this step is not needed at all.
The transformation from PSM to code happens in much the same way. Only now,

the language of the target model will be text-based, which makes a difference at a
technical level, i.e. different kind of transformation strategies, languages, and tools will
be used. This transformation step is thus called model-to-text (M2T).
A fourth artifact is sometimes introduced [Zeppenfeld and Wolters, 2005, p. 63],

representing an abstraction level above the PIM: the computation-independent model
(CIM). TheObject Management Group equates this with a domainmodel [Siegel, 2014],
i.e. a descriptive model of the problem domain, while also implying that the term as
such is obsolete. The automatic derivation of software systems starting from this high
level of abstraction therefore does not seem to be among the ambitions of MDA any-
more, if it ever was; Guttman and Parodi [2006, pp. 54, 68] report on practical issues
and lack of MDA tool support for CIM-to-PIM transformation. After briefly introducing
them, Zeppenfeld and Wolters [2005, p. 63] dismiss CIMs as inconsequential. Kleppe,
Warmer, and Bast [2003, p. 19] even argue that it is impossible to derive PIMs from
CIMs automatically, as it involves deciding which parts of a business (modeled in the
CIM) should be supported by the software system to be developed. In contrast, Stahl
et al. [2006, p. 16] define PIMs as “domain-related specifications”. Approaches in the
realm of MDE less close to MDA, like domain-specific modeling as defined by Kelly
and Tolvanen [2008, pp. 47-49], and the OO-method by Pastor and Molina [2007,
p. 8], clearly aspire to bridge the semantic gap between problem domain and solution
domain. This thesis adopts the view that PIMs are part of the problem domain, aligning
them with the service-oriented specification side of SENSEI.

138

8.5. Transformations

8.5 Transformations

Transformations are a key ingredient in model-driven development, used to map PIMs
to PSMs and PSMs to code. The term has already been used, but has not been formally
introduced. Therefore, a common definition from literature is adopted:

Definition 8.5: Model Transformation

Kleppe, Warmer, and Bast [2003, pp. 23ff] distinguish between transformation,
transformation rule, transformation definition, and transformation tool as follows:
• Transformation refers to the act of producing one model out of another.

• Transformation rules specify how individual elements of the original model
affect the generation of elements and aspects of the resulting model.

• Transformation definitions are aggregations of transformation rules to fully
specify the transformation process of models conforming to the source me-
tamodel into models conforming to the target metamodel. As such, transfor-
mations can also be understood in terms of (mathematical) functions [Mens
and Van Gorp, 2006].

• Transformation tools take a model to be transformed, and a compatible trans-
formation definition, to then execute the transformation process and output
the resulting new model.

Previously, when referring to transformations, what was usually meant (according to
these definitions), were transformation definitions. This distinction is usually obvious
from the context, so that “transformation” will continued to be used. Another impor-
tant concept is that of transformation language (which Kleppe, Warmer, and Bast [2003,
p. 95] consequently term “transformation definition language”), used to express trans-
formations in. Considering that transformations are models, transformation languages
are implied by the concepts already introduced, i.e. every model needs a metamodel,
which also constitutes a language to express the model in (see Figure 8.1).
To get a better understanding of transformations, and to be able to distinguish and

decide between different transformation approaches, they can be categorized in various
ways. For a comprehensive overview, the reader is referred to Czarnecki and Helsen
[2003, 2006], who offer a detailed taxonomy based on feature models. In the context
of this thesis, a relevant distinction is intomodel-to-model (M2M) andmodel-to-code or
model-to-text5 (M2T) transformations. This might seem artificial, since in model-driven
engineering, code should be considered to be “just another model” (as expressed in

5Czarnecki and Helsen [2003] note that “model-to-text” is the more appropriate term, yet still they
adopt the latter terminology.

139

8. Model-Driven Software Engineering

Figure 8.1). In fact, transforming from PSM to code, only for a compiler to parse that
code into an abstract syntax tree (which is a PSM again), seems particularly wasteful.
However, taking this indirection allows to remain using existing compilers [Czarnecki
and Helsen, 2003]. Technically, M2T transformations are usually untyped on the target
model side, as there is no target metamodel to refer to and check against.
Mens and Van Gorp [2006] also provide a taxonomy of model transformations,

which is broader in scope, but less detailed than those by Czarnecki and Helsen.
A plethora of model transformation tools exist, some of which will be mentioned

in Section 8.7. Czarnecki and Helsen [2006] compares existing tools within their fea-
ture model-based classification framework. A recent, comprehensive overview and
comparison of transformation tools is given by Jakumeit et al. [2014].

8.6 Domain-Specific Languages andModeling

Domain-specific languages (DSLs) and domain-specific modeling (DSM) are fields that
predate the standardization efforts towards MDA, and have initially not been a part of
the agenda [Jouault, Bézivin, and Barbero, 2009]. According to the recently updated,
official documentation of the Object Management Group [Siegel, 2014], they still are
not. In the research communities, and under the more general MDE moniker, however,
a shift towards domain-specific techniques, and a convergence of the fields can be
observed [Kurtev et al., 2006; Jouault, Bézivin, and Barbero, 2009; Kelly and Tolvanen,
2008, pp. 6ff; see also Cook, 2004]. Early work on domain-specific languages was
performed by Bentley [1986], referring to them as little languages. A comprehensive
overview over the research field at the turn of the millennium (and thus predating MDA)
is provided by Deursen, Klint, and Visser [2000].
Domain-specific languages address the previously raised question regarding the

abstraction level of the high-level models in a model-driven engineering setting, i.e.
the PIMs (or possibly CIMs). As the name suggests, DSM focuses on the problem
domain [Czarnecki, 2004; Deursen, Klint, and Visser, 2000], whereas “official” MDA
seems to endorse a view that sees PIMs on a high abstraction level, but described in
technical, solution space terminology, using the various sub-languages of UML.

Definition 8.6: Domain-Specific Language

“ [A] domain-specific language (DSL) is a programming language or ex-
ecutable specification language that offers, through appropriate nota-
tions and abstractions, expressive power focused on, and usually re-
stricted to, a particular problem domain. ”Deursen, Klint, and Visser [2000]

140

8.6. Domain-Specific Languages and Modeling

The key difference between DSLs and general-purpose modeling or programming
languages (GPL) is their scope: a GPL like, for example, Java, can be used to describe
and realize basically any arbitrary kind of application, but it has to be done in the
technical terms of classes, methods, variables, loops, and so on. DSLs, in contrast,
are intentionally designed with a (often significantly) narrowed scope, e.g. to describe
order processing for a stock market system [Ghosh, 2010], query databases (SQL), or
describe hyperlinked documents (HTML).

While these languages are not as widely applicable as GPLs, they allow to model
aspects of the problem domain in its inherent terms and concepts: users of a DSL will
ideally “perceive themselves as working directly with domain concepts” [Sprinkle et al.,
2009]. Of course, a mapping onto concepts of the solution domain has still to occur,
but with DSLs this can be factored out into transformations, i.e. it is done once, and
then automated and reused in any further development projects in the same domain.
In industrial practice, MDE seems to be adopted mostly for such narrow, specialized ap-
plication areas, using tailor-made DSLs, as opposed to building complete applications
in a model-driven approach [Whittle, Hutchinson, and Rouncefield, 2014].

In SENSEI, individual domain-specific languages may address the needs of its differ-
ent user roles and their tasks in the toolchain-building process, corresponding to the
requirements for Task Description and Data Flow, as well as for Control Flow and Tool
Description specification.

Domain-specific languages can be created in a variety of ways. In the MDA frame-
work, DSLs can be defined by means of UML profiles, which extends UML with
domain-specific concepts by mapping them onto existing, generic ones. This can be
contrasted with using special tools and environments for DSL engineering [Abouzahra
et al., 2005], referred to as language workbenches [Erdweg et al., 2013; Fowler, 2005a].
Fowler [2010] further distinguishes between internal and external DSLs: internal DSLs
are created inside of a host GPL. Many modern programming languages offer some
form of meta-programming to describe a new language within a language. Ghosh
[2010, pp. 128ff], for example, uses Ruby, Groovy, Clojure, and Scala to build internal
DSLs. External DSLs are created, for example, using classical parser generators, or the
aforementioned language workbenches.

Czarnecki [2004] discusses DSLs in the context of generative software product-line
engineering (called “system-family engineering” here; see also Clements and Northrop
[2002]), which aims tomanage variability in the feature sets of software product families
by explicitly modeling those features (in terms of appropriate DSLs), to then configure
and generate different software systems from those descriptions. MD* is delimitated
from generative software development by emphasizing the focus on system families of
the latter. The mapping from problem to solution space is highlighted as key concept
of generative software development, and likened to the transformations of PIMs into
PSMs in MDA.

141

8. Model-Driven Software Engineering

Expressing variability can be of interest with respect to SENSEI’s requirements for
Tool Discovery and Tool Description. These demand support for the description of
required properties to properly support a task, and of provided properties of individual
tools, respectively. Though the domain is very different, properties of (generic) software
evolution techniques and tools can be likened to features of software product lines, i.e.
the underlying mechanics are, to a certain extent, similar. A DSL to express variability
in product lines is constituted by feature diagrams, which are part of feature-oriented
domain analysis (FODA, Kang et al. [1990] and Kang, Lee, and Donohoe [2002]).

8.7 Technical Spaces

Model-driven engineering depends on proper development tool support for modeling,
meta-modeling and language design, as well as to define and execute transformations.
There are a variety of tools and solutions to choose from, but to interoperate, all tools
should be chosen from the same technical space. The concept of technical spaces has
been introduced by Kurtev, Bézivin, and Aksit [2002]6, to compare MDE with similar
technical frameworks, such as XML and relational databases, and discuss common
concepts on a generic, abstract level.

Definition 8.7: Technical Space

Kurtev, Bézivin, and Aksit [2002] state:

“ [a technical] space is a working context with a set of associated con-
cepts, body of knowledge, tools, required skills, and possibilities. ”Bézivin and Kurtev [2006] add:

“ A technical space is a model management framework accompanied by
a set of tools that operate on the models definable within the framework. ”Furthermore, technical spaces are characterized by exhibiting a three-level arrange-

ment of meta-metamodel, metamodels, and models [Bézivin, 2006]. Generically,
all three levels can be considered and described in terms of graphs.

The determining factor for the scope and boundaries of technical spaces are its meta-
metamodels. A technical space of programming languages can be defined by means
of EBNF [Bézivin, 2006; Klint, Lämmel, and Verhoef, 2005], which resides on the M3
level, i.e. constitutes meta-metamodel. For XML, it would be the schema-schema that
is part of the XML Schema standard [Thompson et al., 2004], defining its language in
its own terms (as a M3 level model, it conforms to itself).

6Here, they are referred to as technological spaces, but later publications change this, e.g. Bézivin
[2006] and Bézivin and Kurtev [2006]

142

8.7. Technical Spaces

While SENSEI is a conceptual framework that can be implemented in any technical
space, for its toolchain generator SCAffolder a design decision had to be made, which
will be discussed in Section 14.2.1. Examples of technical spaces include:
• The OMG technical space based on MOF.

• The closely related, but separate [Bézivin and Kurtev, 2006] Eclipse Modeling
Framework (EMF) technical space [Steinberg et al., 2008], based on a MOF-
subset called Ecore. This is probably also the most widely used technical space.

• The Microsoft DSL Tools technical space [Microsoft, 2016], which supports the
software factories approach [Greenfield and Short, 2004].

• The TGraph technical space, based on strong theoretical foundations and contin-
uous research [Ebert, 1987, 2008].

The EMF technical space provides a plethora of tools, including, for example, the
Graphical Editing Framework (GEF; Graphical Editing Framework [2020]), the Graph-
ical Modeling Framework (GMF; Graphical Modeling Framework [2020]), Graphiti
[Graphiti 2020], EuGENia [Kolovos et al., 2010], and Sirius [Sirius 2020], all graphi-
cal DSL tools, Xtext [Eysholdt and Behrens, 2010] for textual DSL creation, as well as
the transformation languages ATL (Atlas Transformation Language, Jouault et al. [2006]),
VIATRA, and eMOFLON [Hildebrandt et al., 2013]. The TGraph technical space, im-
plemented in JGraLab, has a bridge into the EMF technical space. With grUML, a
MOF-subset, it is possible to author TGraph metamodels using standard UML tools.
JGraLab provides a Java TGraph API and code generation facilities, as well as support
for model querying and transformation using GReQL and GReTL (the Graph Repository
Query/Transformation Languages), respectively.
Several other tools exist that do not belong in any of the technical spaces mentioned

so far, yet their comparatively smaller user community, lower visibility, and sometimes
more limited scope means that they do not really span a technical space of their own,
in conformance with Definition 8.7. To support a holistic model-driven development
process, tooling is required for modeling, meta-modeling, and language engineering
(unless a general-purpose modeling language such as UML is to be used), as well as
for the creation and execution of transformations. With tools that provide only partial
support, and are not part of a larger technical space, interoperability issues are to be
expected.
Noteworthy tools includeMetaEdit+ [Kelly, Lyytinen, and Rossi, 1996], theGeneric

Modeling Environment [Ledeczi et al., 2001] for the creation of graphical DSLs, and
for the creation of textual DSLs there are, for example, JetBrains MPS [Pech, Shatalin,
and Völter, 2013], Spoofax [Kats and Visser, 2010], and Rascal [Klint, Storm, and Vinju,
2011], the latter the successor of the ASF+SDF Meta Environment [Brand et al., 2001].
Most of these tools do not support the whole model-driven development process,

providing only language engineering facilities, but no transformations. Apart from the
transformation languages already mentioned, there are several more that do not fall in

143

8. Model-Driven Software Engineering

SENSEI Platform-
Independent Meta-Model

conforms to

Toolchain Generator (SCAffolder)

Composition
Finder

Composition
Generator

Stub
Generator

Component-Based Platform-
Specific Meta-Model

conforms to

Service-Oriented
Platform-Independent

Models

Component-Based
Platform-Specific Models

and Derived Code Artifacts

Figure 8.4: Model-driven concepts contributing to SENSEI.

any of the technical spaces presented here, for example DMS [Baxter, Pidgeon, and
Mehlich, 2004], StrategoXT [Visser, 2004], and TXL [Cordy, 2004]. Again, these tools
are originally aimed at software evolution, but can be used in model-driven and gener-
ative software development, as well [Czarnecki, 2004].
Overviews and comparisons of these and further tools are provided by Amyot,

Farah, and Roy [2006], Czarnecki [2004], de Sousa Saraiva and Rodrigues da Silva
[2008], Erdweg et al. [2013], and Jakumeit et al. [2014].

8.8 Summary

After having investigated service-oriented and component-based principles as the basis
for specifying and realizing integrated toolchains, respectively, model-driven software
engineering was reviewed to fill the gap between the two. Figure 8.4 once again recalls
Figure III.1 (page 97), and refines it to express SENSEI’s main building blocks in model-
driven terminology, and locate the application of model-driven techniques in SENSEI.
In terms of the model-driven development process (Section 8.4), service-oriented

specifications of SENSEI become platform-independent models, and component-based
implementations become platform-specific models. Bridging the two are model trans-
formations (Section 8.5). The model-driven frame ensures both a clear delimitation
as demanded by the Separation of Concerns requirement, as well as satisfying the Au-
tomatic Coordination requirement by facilitating the mapping from toolchain specifi-
cations into concrete implementations, and automatically generating all the necessary
artifacts.

SENSEI supports both domain experts and tool developers by providing two kinds of
operations: the Composition Finder produces integrated toolchains from correspond-
ing specifications. The Stub Generator allows tool developers to take descriptions of
services to be implemented in a new tool (or to adapt an existing one to SENSEI), and cre-
ate the necessary boilerplate code. Both are prototypically implemented by SCAffolder,

144

8.8. Summary

as a phase of model-to-model transformations followed by a model-to-text transforma-
tion phase, and relying on the TGraph technical space (Section 8.7).
One aspect of toolchain implementation is not directly covered by model-driven

technology, namely the need to automatically map services to appropriate components
(Tool Discovery requirement). Partly, this can be solved statically, but SENSEI offers
domain experts more control over particular properties needed of services during spec-
ification, while also shielding them from implementation details, so that they do not
have to figure out which concrete components work well with each other, have the
necessary adapters and transformers, etc. To automatically find a set of components
that satisfies all such constraints for a given toolchain specification, SENSEI provides the
Composition Finder (shown grayed out in Figure 8.4), which pre-processes specifica-
tions and augments them with information about which concrete component to use for
each service. This process is described in Chapter 12.
In addition to its role of linking toolchain specification to implementation, model-

driven software engineering provides technical underpinnings on both sides, as the
model transformations require them to be described in terms of appropriate metamod-
els. On the specification side, modeling plays a particular important role in defining
the languages (Section 8.6) to express services and their orchestrations in terms suitable
for domain experts. In that regard, model-driven software engineering also supports
the requirements for Task Description, Data Flow, Control Flow, and Tool Description.

145

PART IV

Solution
So far, this thesis has introduced the challenges of toolchain-building and integra-

tion, and has defined the core objectives of the work (Part I). These were then re-
fined, and delineated against existing approaches, painting a comprehensive picture
of the problem domain and clearly placing SENSEI within it (Part II). Next, guided by
a first high-level vision of what the approach should look like, software engineering
paradigms were reviewed for design principles and concepts to serve as the technolog-
ical foundations of SENSEI (Part III). Now, all the pieces are available and ready to be
put together to present the solution that has been developed for this thesis.

SENSEI is a conceptual framework for Software EvolutioN SErvices Integration. It
stands on the pillars of component-based, service-oriented, and model-driven software
engineering techniques, with the separation of specification and implementation as
central guiding principle. The following chapters describe all aspects of SENSEI in detail,
covering all its conceptual layers, as well as the design and implementation of tools to
support and partly automate the toolchain-building process.
Chapter 9 gives a brief, high-level overview of SENSEI, introducing its basic concepts

and principles, and describing how it is used to support the toolchain-building process.
SENSEI is built around a central metamodel, which is divided into three layers: Chap-

ter 10 describes the service catalog, used to define functional building blocks of soft-
ware evolution tasks and activities. Chapter 11 describes how these building blocks
are combined to describe processes in the form of service orchestrations. Chapter 12
introduces the component registry, which provides a bridge between toolchain speci-
fication and implementation, and describes how this bridge can be traversed by tools
to automatically generate integrated toolchains.
In addition, the SENSEI approach towards toolchain-building is supported by two

kinds of tools, for each of which an implementation was created. First, the integrated
SENSEI Editors are presented in Chapter 13, used to create SENSEI models, i.e. assist
domain experts and tool developers in modeling toolchain behavior and registering
tools for use within the SENSEI framework, respectively. Then, there are tools which
process such models to automatically derive fully integrated toolchains; one such tool
is SCAffolder, which is described in Chapter 14, along with additional, related and
alternative tools. Using these tools, SENSEI has been successfully applied in practice,
as will be described in Part V.

CHAPTER 9
SENSEI at a Glance

SENSEI provides a reference model for software evolution toolchain-building support
frameworks. It is designed to increase the flexibility of toolchains, the reusability of
its parts and integrating logic, and therefore also yields increased productivity in soft-
ware evolution projects, as per the objectives of this thesis (see Section 1.2). Thus,
implementations of SENSEI are intended for use by domain experts, to assist them in
performing some steps of the toolchain-building process (Section 3.1), and relieve them
of having to perform other steps, altogether, by automating them.
The requirements elicited in Chapter 3 are met by SENSEI using approaches and tech-

niques from component-based (Chapter 6), service-oriented (Chapter 7), and model-
driven software engineering (Chapter 8), combined with novel concepts. These key
technologies that SENSEI is based on have been introduced in the previous chapters
guided by a rudimentary, high-level sketch of the target architecture, and the contribu-
tions of each software engineering paradigm have been identified and placed within
this picture. This chapter takes all the individual parts and presents a consolidated,
broad overview of the central concepts of SENSEI from different angles: Section 9.1 pro-
vides a high-level view of the overall architecture, Section 9.2 introduces the SENSEI
metamodel, Section 9.3 summarizes SENSEI’s concept of capabilities, and Section 9.4
recalls the toolchain-building process and maps its steps to the responsible roles and
SENSEI’s supporting tools. A summary is provided by Section 9.5.
All these aspects will be described further and in more detail in the subsequent

chapters, providing closer examinations of SENSEI’s service catalog (Chapter 10), its
orchestrations (Chapter 11), and its process of mapping between services and compo-
nents (Chapter 12). Note that SENSEI does not constitute a software framework itself; it
can rather be considered to provide “blueprints” in terms of a reference architecture
that largely, and intentionally, leaves mappings to particular technical spaces or imple-
mentation technologies open. Practicability is demonstrated by concrete realizations of

149

9. SENSEI at a Glance

Composer Component

Service Catalog

Service Orchestration

Component RegistryCa
pa

bi
lit

ie
s

SENSEI Meta-Model

conforms to

Toolchain Generator (SCAffolder)

Composition
Finder

Composition
Generator

Stub
Generator

Platform Meta-Model (SCA)

conforms to

Component

Component

Toolchain

Figure 9.1: The basic SENSEI architecture.

SENSEI’s core concepts. These implementations are presented in Chapter 13 (integrated
editors for toolchain specification) and Chapter 14 (toolchain generator SCAffolder, and
Composition Finder), respectively.

9.1 The SENSEI Architecture

Figure 9.1 shows a view of the SENSEI architecture that combines the parts that have
been introduced throughout Part III. The following can be thought of as a summary
of Section 6.5, Section 7.6, and Section 8.8, and provides a brief overview of all the
essential parts that form the overall approach. The aim of this section is mainly to
introduce or recall terminology and concepts – to give a high-level, static view of SENSEI.
Complementing this is a dynamic view presented in Section 9.4, that demonstrates how
SENSEI is actually used. In-depth details are provided in the subsequent chapters, each
focusing on individual parts of SENSEI.
As previously depicted in Figure 7.5 (page 127), the left-hand side of Figure 9.1

contains the service-oriented aspects. These are also the main artifacts that are created
by users of SENSEI: The service catalog holds software evolution services to choose
from. Service orchestrations are created by domain experts using the catalog. The
component registry is filled by tool developers with information about components
and their services – again, using the catalog as a reference. While the service standard-
ization facilitated by the catalog enforces a basic level of consistency, using capabilities
on all levels allows for concise, yet detailed service descriptions (in the catalog), and
automated matching of services with required capabilities (in orchestrations) to imple-
menting components with provided capabilities (in the registry). Capabilities form an
orthogonal, supportive mechanism, but have no meaning on their own. Conversely,
the three horizontal layers each constitute an artifact that needs to be created – using
appropriate editing tools like the SENSEI editor. Their structure, i.e. the abstract syntax

150

9.1. The SENSEI Architecture

of their description languages, is defined in the SENSEI metamodel, an overview of
which will be given in Section 9.2.
The center of Figure 9.1 is occupied by the model-driven toolchain generator, re-

calling Figure 8.4 (page 144). This is the automation machinery that takes a service
catalog, and a service orchestration and component registry based on it, as input, and
outputs a composer: a fully auto-generated piece of software that implements the be-
havior specified by the orchestration by coordinating components that implement the
orchestrated services. SENSEI, as a conceptual framework, does not dictate any particu-
lar technology for the implementation of the toolchain generator (SCAffolder represents
one possible instance), but rather demandswhat functionality it must offer. It is decom-
posed into three functional subsections, referred to as processors1: The Composition
Finder andComposition Generatormust resolve orchestrated services to implementing
components, and map the modeled data and control flows onto corresponding code
for a particular platform, respectively. These are supportive of the toolchain-building
process as performed by domain experts, while the Stub Generator helps tool devel-
opers to create service-implementing components by generating boilerplate code and
adapter interfaces.
Generated composers only contain the data routing and coordination logic nec-

essary to actualize the process defined by the service orchestration it was derived
from. They reference components, as depicted on the right-hand side of Figure 9.1,
and first introduced in Figure 6.2 (page 107). Components implement orchestrated
services to perform the actual computations. Their component model, and the com-
ponent framework they are running on, is determined by, and bound to, a concrete
toolchain generator implementation. The whole target platform must be described
formally in a platform metamodel as a prerequisite for utilizing model-driven trans-
formations. SCAffolder targets the service component architecture (SCA), and defines
a corresponding target metamodel. Other implementations might choose techniques
that do not make the target metamodel explicit. In fact, instead of a toolchain generator,
an interpreter able to execute orchestrations directly might provide the same function-
ality. This alternative approach is briefly discussed in Section 14.5; otherwise, SENSEI
assumes a model-driven, generative approach is used.
The most explicit support of the toolchain-building process is provided by SENSEI’s

editors (Chapter 13) and the toolchain generator (Chapter 14), as these are actual assis-
tive software tools. To differentiate them from software evolution tools used as parts
of toolchains, they are referred to as meta-tools, indicating the fact that they are tools
used in the creation of tools and toolchains.
Before getting into actually using SENSEI and its meta-tools to build toolchains in

Section 9.4, two aspects of the SENSEI architecture are given the spotlight, first: Sec-
tion 9.2 zooms into the left-hand side of Figure 9.1 to provide an overall view of the

1The functionality could also be expressed in terms of a service orchestration, but such a self-
referential notion might lead to confusion at this juncture.

151

9. SENSEI at a Glance

SENSEI metamodel; the subsequent chapters will fill in more details into its respective
layers. Section 9.3 summarizes the need for capabilities, and describes the different
roles they play within SENSEI.

9.2 The SENSEI Metamodel

To leverage model-driven techniques, the main user-created artifacts of SENSEI are repre-
sented by models conforming to metamodels. A centerpiece of SENSEI is its integrated
metamodel, whose main concepts are illustrated in simplified form in Figure 9.2, con-
sisting of three main layers, each corresponding to one of SENSEI’s central artifacts.
Integrating these three layers are capabilities – these will be described in Section 9.3.
The top layer of the metamodel corresponds to the service catalog, defining the

structure of its contents. The central concept is the service, which has a name and a
description, as well as arbitrarily many input and output parameters. Apart from ser-
vices, the catalog contains a type hierarchy of data structures, to which the services’
parameters refer. Standardization of data structures is not a part of SENSEI, so the me-
tamodel serves only to establish different types and specializations by unique names.
Restrictions can be used to model relationships between capabilities and data struc-
tures, which allows to determine what specific kind of component implementing a
service should be used for a given type of data at runtime. These mechanisms, as well
as the detailed structure of the service catalog will be explained in Chapter 10.
The middle layer of the metamodel corresponds to service orchestrations, and al-

lows domain experts to design processes in terms of services and their data and control
flow interoperation. The central concept of this part of the SENSEI metamodel is the
service instance: whereas the catalog contains service “blueprints”, its instances rep-
resent concrete usages or invocations in particular scenarios, with certain capabilities
selected. A service instance conforms to a service from the catalog. The service’s pa-
rameters dictate their instance’s ports, which can be connected by data flows. Control
flow is dictated by the order in which service instances appear in an orchestration (the
metamodel’s corresponding association is ordered). Special kinds of orchestrations
(subclasses of ServiceContainer) exist to represent conditional branching, concurrency,
and loops, but are omitted from Figure 9.2 for clarity. The full details of this layer are
presented in Chapter 11.
The bottom layer of the metamodel corresponds to component registries, and al-

lows tool developers to register their tools with SENSEI, and describe their functionality.
The central concept here is the component – its instances represent actual components
available to SENSEI and contain meta-information about them, such as their name and
location (e.g. a path in the local file system, a URL, or something similar – the con-
crete contents are implementation-specific). The component registry further requires
data definitions to be specified for each parameter of each implemented service, to
map the conceptual data structures defined in the service catalog to concrete technical

152

9.2. The SENSEI Metamodel

Fi
gu
re
9.
2:
Ex
ce
rp
to
fS

EN
SE
I’s
in
te
gr
at
ed
m
et
am
od
el
,d
ep
ic
tin
g
its
la
ye
rs
an
d
th
ei
rc
or
e
co
nc
ep
ts
.

153

9. SENSEI at a Glance

realizations. To indicate what services are offered by components, they are associ-
ated with one or more service instances. They do not directly refer to catalog services,
because components generally do not implement a service’s whole spectrum of possi-
ble functionality, but provide a subset of it. Service instances, along with capabilities,
provide the necessary mechanism to narrow this down. Reusing the service instance
concept that is also present on the service orchestration layer does not mean, however,
that these layers overlap. Orchestrated service instances are always distinct from those
used in the component registry – there can be instances that are equal in terms of their
properties, but no single service instance is ever shared between the two layers. Find-
ing matches between the two is one of the tasks of the composition finder. Details
regarding the component registry and the process of service-component-matching will
be given in Chapter 12.
The orthogonal layer depicted at the left-hand side of Figure 9.2 corresponds to

capabilities, which are the topic of the following section. In terms of the metamodel,
capabilities do not represent a separate artifact, but rather a connective fabric integrat-
ing its layers. Capability classes and capabilities are defined on the service catalog layer
for associated services, to model variation points. They are referred to from within ca-
pability tuples used on both the service orchestration and the component registry layer,
to refine the nature of required and provided services, respectively.

9.3 Service Capabilities

There are opposing requirements in SENSEI regarding the granularity of service descrip-
tion detail, as the higher service level demands more abstraction, while on the lower
component level much more specificity and technical detail is needed2.
The service catalog demands more general services to facilitate standardization,

e.g. specify a calculate metrics service, not calculate McCabe metric on Java code.
Such fine-grained descriptions would lead to a catalog cluttered with only marginally
differing services, making it hard to identify the right services for a given task. In or-
chestrations, the high abstraction level hides interoperability issues.
In contrast, service orchestrations do need to be specific about the functionality

required, e.g. here it is necessary after all to declare McCabe as the actual metric
to be evaluated, and Java as the data to evaluate it on. Purely technical properties
of particular implementations, e.g. that the input Java AST needs to be encoded in
a specific XML format, should still remain hidden, though. In a component registry,
both functional and technical properties need to be described rigorously, to enable
automatic toolchain generation by matching up provided with required functionality,
and be able to coordinate tools and accommodate for non-compatible data formats.

2This exposition is a slightly revised excerpt of a short, earlier publication [Jelschen andWinter, 2014].

154

9.3. Service Capabilities

Service Orchestration

Component Composition

Capability

coordinated in ▶

integrated in ▶

▼ implemented by implemented by ▼

 defines
◣required

declares
possible◢

defines ◥
provided

◤matches
req./prov.

Figure 9.3: Capabilities as a central, integrating concept in SENSEI.

To bridge between these different abstraction levels, a means for synchronization
is needed to map from services to components, and orchestrations to component com-
positions, representing an executable toolchain.

SENSEI introduces a simple model to explicitly represent the capabilities of services,
supporting

• concise, generic service descriptions,

• implementation-agnostic, yet functionally precise orchestrations, and

• functionally and technically rigorous component descriptions and service map-
pings.

This allows SENSEI to keep service catalogs uncluttered, hide interoperability issues
in orchestrations, and have sufficient technical detail on components to automatically
compose them into toolchains.
Service capabilities play a central role in SENSEI, and are considered a distinguish-

ing feature of the approach. Figure 9.3 depicts central concepts of SENSEI and their
relationships with capabilities.
On the level of services, capabilities are introduced as a mechanism to keep them

generic and only declare possible capabilities as variation points. This will be de-
scribed in more detail in Chapter 10.
Services are selected and coordinated in an orchestration to model processes in

need of tool support. Here, capabilities are used to instantiate generic services by
declaring required capabilities specifically. Chapter 11 will provide insight into – and
examples of – how this works.

Components implement the functionality defined by services. Capabilities allow
to precisely define provided capabilities, which, in contrast to orchestrations, contain

155

9. SENSEI at a Glance

2. Implementation

2.2 Tool Integration

1. Specification

1.1 Service
Identification

1.2 Service
Orchestration

0. Goal
Determination

2.1 Service-
Component

Matching

2.2.1 Adapter
Creation

2.2.2 Transfor-
mer Creation

2.2.3 Composer
Creation

Figure 9.4: The toolchain-building process with SENSEI.

additional technical information regarding concrete data types. To finally create in-
tegrated toolchains as compositions of components, capabilities are leveraged to con-
strain component mapping to only match components which can provide the function-
ality required by orchestrated services. They are further used to constrain component
composition to only select compatible components or add data transformers for ser-
vices requiring direct interoperability. This will be elaborated in Chapter 12.

9.4 Building a Toolchain with SENSEI

To elicit requirements for SENSEI, Section 3.1 established the toolchain-building process
– a sequence of activities aimed at creating integrated toolchains from individual tools
that automatically perform a specified procedure. The purpose of SENSEI is to support
and partly automate this process. This section aims at giving an overview of how SENSEI
is used, by recalling the toolchain-building process and going through its steps, again
– but this time with SENSEI as the sought toolchain-building support framework.
The toolchain-building process with its phases and steps is depicted in Figure 9.4,

which corresponds to Figure 3.1 (page 27), except for the renaming of some steps
to reflect the use of SENSEI. In particular, the word task was replaced by the word
service, task coordination was renamed service orchestration, task instantiation be-
came service-component matching, and coordination logic creation corresponds to
composer creation. The changes are highlighted in italics.

SENSEI clearly assigns the different phases and steps to different roles, and supports
them with two major meta-tools: the SENSEI editor and the toolchain generator. This is
depicted in the use case diagram in Figure 9.5: it depicts all the steps of the toolchain-
building process, assigned to the actors who perform them, and the meta-tools and their
parts (as established in Section 9.1) which provide support. There are two additional
activities in SENSEI, service definition and component registration, and the additional
role of catalog maintainers.

156

9.4. Building a Toolchain with SENSEI

SENSEI

Catalog Maintainer

Domain Expert
Tool Developer

Editor Toolchain Generator

Service Catalog View

Service Orchestration View

Component Registry View

Stub Generator

1.1 Service
Identification

Service
Definition

1.2 Service
Orchestration

Composition Finder

Composition Generator

2.1 Service-
Component

Matching

2.2.1 Adapter
Creation

2.2.3 Composer
Creation

Component
Registration

2.2.2 Transformer
Creation

Figure 9.5: Toolchain-building process steps depicted as use cases and mapped to
SENSEI’s meta-tools (Meier, 2014b, p. 8 has a similar, but simpler diagram).

The job of catalog maintainers is to define services, i.e. initially fill, and then up-
date the service catalog whenever necessary. Initially, this represents an overhead that
comes with using SENSEI. When starting from scratch, without a service catalog, the
need to define one is a real, additional effort on top of all other steps. Whether using
SENSEI is economically sensible for a given project therefore comes down to whether
this overhead can be offset by the productivity gains expected from using its overall
environment and meta-tools. At the opposite end of the scale is the case of having a
comprehensive catalog services readily available. A premise of SENSEI is that the over-
head, besides being set off by automating other steps in the process, quickly becomes
smaller as it is being used over time and in more projects, because the previously de-
fined services can be reused, and only very problem-specific ones need to be added.

Service Discovery and Description

To fill the service catalog, either a top-down or a bottom-up approach can be used.
The former approach identifies services from relevant publications and diverse soft-
ware evolution projects, to create a catalog of generic, standardized services. Ser-
vices can be picked from the catalog instead of being created for the project. A
top-down process for service discovery and description, based on mining publi-
cation databases and clustering techniques, is sketched briefly by Jelschen [2013],

157

9. SENSEI at a Glance

Measure Base
Metrics

Parse Extract Structure Calculate Metrics
Map Metrics to

Structure

Load Metric
Load Software

System
Evaluate Metric

Figure 9.6: Decomposition of an activity to calculate base metrics.

Service Discovery and Description (cont.)

along with classification schemes and a corresponding description metamodel to
complement the SENSEI metamodel described in this thesis.
Lacking a comprehensively filled catalog, services can be created bottom-up

instead, only for a project’s required functionalities, giving full control over service
design, but potentially leading to project-specific services with lower reuse value.
Still, this approach can be used to fill a catalog incrementally, and refine and gen-
eralize its services in the process.
Relevant to either approach is the issue of service granularity: when to stop

breaking down an activity into sub-steps to discover service candidates. One heuris-
tic is to keep in mind that services need to be independent and self-sufficient.
Figure 9.6 depicts a possible subdivision tree for the ongoing example of base

metric calculation (Section 2.2): to calculate metrics, they, and the software systems
under study, have to be loaded into memory. But this leads to an activity, evaluate
metric, that cannot be executed independent of the other two.
Now consider that components implementing these services are strictly de-

coupled from each other by SENSEI – they might even be hosted on different ma-
chines distributed over a network. SENSEI will take care of data transport, and may
(de-)serialize or transform it on the way. Data loading as a separate service is thus
useless, and evaluate metric lacks self-sufficiency, because when provided with
input data by SENSEI, any implementing component has to load that data itself.
Decomposition trees like the one shown in Figure 9.6 are a useful aid for service

identification and orchestration, with atomic service candidates appearing on its
leaves and potential orchestrations – which are also (compound) services – as root
and inner nodes. Further examples are given in Chapter 15.

158

9.4. Building a Toolchain with SENSEI

Ideally, the tasks of tool developers are also decoupled from the toolchain-building
process: SENSEI supports them through its stub generator, so they can equip their tools
with adapters, directly, and provide transformers up-front, as well. While SENSEI itself
does not dictate any particular target platform, conforming implementations do have to
decide for a (component) framework that establishes the necessary interoperability stan-
dards and enable generic tool adapters. To make them available to SENSEI-integrated
toolchains, tool developers register their tools in the component registry, which repre-
sents another step that is added by SENSEI. This is a trivial task, though, and does not
represent any meaningful overhead.

With these steps out of the way, domain experts are basically left with the steps of
the specification phase, only: service identification is supported by the service catalog
view of the SENSEI editor, and service orchestration by its orchestration view. Figure 9.5
also shows the remaining steps assigned to domain experts, but this is only to indicate
that they trigger them – the actual work is fully automated: the composition finder of
the toolchain generator performs service-component matching, which is followed by
composer creation performed by the composition generator, resulting in a complete,
executable, fully-integrated toolchain.

All participants in the toolchain-building process use the SENSEI editor, each fo-
cusing on another view. As a preview to Chapter 13, and to give a more tangible
impression of what such a meta-tool can look like, Figure 9.7 shows a screenshot of
the implementation built as part of this thesis. In the center, the orchestration view is
visible, showing an orchestration that models the base metric calculation example first
introduced in Section 2.2. The visual orchestration language, meaning both its abstract
syntax defined by the corresponding layer of the SENSEImetamodel, as well as the con-
crete syntax created for the editor, will be described in Chapter 11. Without explaining
the details, one can make out the four service instances shown as boxes with an encir-
cled S-symbol in the top-left corner, connected by data flows (green) and control flow
sequences (grey), and embedded in control structures (here, a concurrency and a map
block are used).

While orchestrations are modeled graphically in this implementation, the service
catalog and component registry views are each made up of a tree view (visible at the
left-hand side), paired with the properties view (visible at the bottom). Here, the Q-
MIG service catalog3 has been opened, showing its data structure hierarchy, and its
services, with the Parse service node expanded to reveal its parameters and capabilities.
The component registry at the bottom left is basically a list of component entries, each
of which contains one or more service instances with capabilities.

3The catalog contents are reduced to those used in the example orchestration. In the course of ap-
plying SENSEI to the Q-MIG project, a much more comprehensive catalog was built up, which will be
described in Chapter 15.

159

9. SENSEI at a Glance

Figure
9.7:

Screenshotofthe
SEN

SEIeditor,show
ing
a
m
odelofthe

base
m
etric

calculation
exam

ple.

160

9.5. Summary

9.5 Summary

This chapter gave an overview of the basic structure of SENSEI. Its design decisions can
be traced back to the objectives of this thesis, the refining requirements elicited through
analysis of the toolchain-building process, and lessons learned from previous work and
related approaches. Its principles are founded in well-established tenets of software
engineering in general, and the component-based, service-oriented, and model-driven
paradigms in particular. They are summarized as follows:

Definition 9.1: Principles of SENSEI

Abstraction. SENSEI establishes clear separation of concerns, particularly between
specification and implementation, and defines correspondingly disjoint roles
and responsibilities.

Organization. SENSEI demands specifications to be explicitly modeled in accor-
dance with its layered metamodel, enforcing separation of concerns and def-
inite, uniform structures.

Correlation. SENSEI introduces capabilities to bridge the gap between specification
and implementation, and allow declarative specification of requirements and
provisions.

Automation. SENSEI leverages separation of concerns to isolate mechanical tasks,
machine-readable specification models and definite target structures to syn-
thesize integrated solutions, and capabilities to automatically select appropri-
ate implementations.

The SENSEI principles provide a very general distillation of its guiding philosophy.
In fact, while they address the three major objectives of increased flexibility, reusabil-
ity, and productivity, they do not actually refer to toolchain integration. SENSEI is a
toolchain-building framework, but its underlying principles are more universal, and
can serve as the foundation to create frameworks to solve similar problems. A concrete
example is modeling and integrating interactive applications – this is out of scope for
SENSEI, but a SENSEI-inspired approach to address this challenge has been developed
in the context of the NEMo project, and will be briefly described in Section 16.4.2.
The following three chapters are dedicated to describing the three main layers of the

SENSEI metamodel: the service catalog (Chapter 10), orchestrations (Chapter 11), and
the component registry which enables automatic matchmaking between services and
components (Chapter 12). Capabilities play a different role on each level, which will
be explained in each of the corresponding chapters. After this exhaustive description of
the SENSEI as a conceptual framework, Chapter 13 and Chapter 14 introduce the tools
supporting the approach, SCAffolder and the SENSEI Editors, respectively.

161

CHAPTER 10
Service Catalog

Standardized service specifications are a prerequisite for both using them in orches-
trations, and for implementing them as components: both domain experts requiring
services when designing orchestrations and tool developers providing the correspond-
ing functionality in the form of components have to agree on what makes individual
services, e.g. what a Parse service is expected to do, including its interface on a con-
ceptual level. Without this, services cannot be matched to implementing components
automatically, or at all: manual matching would require to adapt to the discrepancies
between assumptions made by domain experts and tool developers, essentially break-
ing down the separation between services and components. The service catalog is
therefore an indispensable part of the core principles of SENSEI.
The structure of the service catalog is defined by the SENSEI metamodel. This chap-

ter introduces the modeling concepts used to represent services, starting in Section 10.1
with their most basic constituents that define their conceptual interfaces, and the data
they consume and produce.
With regards to the fundamental structure of the catalog, an issue that arises is about

service granularity. For example, a Parse service would be too generic for both domain
experts and tool developers to precisely specify their needs and tool provisions, respec-
tively. Domain experts may need a service to Parse Java, or even more specifically, a
service to Parse Java Version 5 trough 8. However, a “flat” catalog of very fine-grained
service definitions will quickly become disorderly and unmanageable.

SENSEI introduces capabilities as a means to control service granularity and model
variants (Section 10.2). While ostensibly a very simple feature, capabilities are at the
center of SENSEI’s automatic service-component-matching. They permeate all three
main layers of the metamodel, providing a measure of integration, and a means for
concise, declarative specification of required or provided functionality. Service restric-
tions (Section 10.3) build on capabilities, defining how particular variants narrow the

163

10. Service Catalog

service’s interface. Restrictions can be leveraged when executing orchestrations, to se-
lect appropriate components for a given service, based on the kind of input data present
at runtime. The details of this will be explored in the upcoming chapters.
Through its structure, the service catalog establishes a description template that

determines what properties SENSEI services possess, and how they are defined and
documented. Furthermore, Chapter 13 presents integrated editors, that allow to fill
SENSEImodels, including the definition of services for the catalog. A separate question
arising is, which services a catalog for a particular domain (such as software evolution)
should contain, and how catalog maintainers should go about finding these services.
Recalling their brief introduction in Section 9.4, two approaches can be distin-

guished: Either, a comprehensive catalog is standardized up-front, and in a top-down
manner, for the whole company, industry, or domain. Or, services are defined in a
more pragmatic, needs-based, bottom-up approach, during the course of a concrete
project. While the top-down approach (depending on the actual scope) may require
considerable amounts of time, effort, and resources, the bottom-up approach may yield
services that are too confined to a particular application area, and thus lack reusability
value (compare Kokko, Antikainen, and Systä [2009]).
This thesis is focused on the core principles of SENSEI and provisioning a working

toolchain-building framework that confers the desired properties of increased flexibil-
ity, reusability, and productivity (recall Section 1.2). Therefore, these questions are not
elaborated in greater detail here. For practically applying SENSEI (Part V), the bottom-up
approach for service catalog creation has been used. However, a process for discov-
ering software evolution services and describing them in a top-down fashion, based
on text-mining relevant academic literature, has been developed and experimented
with [Jelschen, 2013].

10.1 Services and Data Structures

Figure 10.1 depicts an excerpt of the SENSEI metamodel, showing the core concepts of
the service catalog. Some concepts that are relevant only for the catalog’s organiza-
tion and service discovery, such as service classification means, are omitted here. The
core concepts considered here provide the basic service description template, and are
directly used by service orchestrations and component registries, as well as SENSEI’s pro-
cessors. The concept of capabilities and the related capability classes and restrictions
will be explained in Section 10.2.
Unsurprisingly, the central concept of the service catalog is the service. A SEN-

SEI service serves as an abstraction of some functionality, in line with the most basic
definition of the term as “unit of functionality” (Section 7.2), but without referring to
implementation aspects in any way, as opposed to some of the definitions used in SOA
literature (see Chapter 7). Instead, mappings to available implementations are main-
tained separately in component registries, which will be introduced in Chapter 12.

164

10.1. Services and Data Structures

Figure 10.1: A view of the central service catalog concepts defined in the SENSEI meta-
model.

For identification, a service bears a name. The description contains a non-formal
specification of the semantics of a service, i.e. what functionality it represents. Since
it is non-formal, it cannot be leveraged technically, and is only intended to aid domain
experts in finding appropriate services.
A formal description of service semantics was considered inexpedient with respect

to SENSEI’s objectives: it would make service specification an extremely complex task,
requiring proficiency in some formal specification language, which is a highly spe-
cialized skill. SENSEI tries to leverage existing skills of tool developers, instead, who
are assumed to be proficient in one or more programming languages, and are not ex-
perts in formal specification. A complete, formal specification of a service would, in
theory, allow the fully automatic derivation of an implementation, but it would in all
likelihood also incur at least the same amount of effort required for a conventional
implementation. The service model of SENSEI could be extended by means to allow
partial specification in terms of formal requirements or constraints which would enable
formal verification; this might be an interesting extension, but is simply out of scope
with respect to the objectives of this thesis.

165

10. Service Catalog

Since it is a unit of functionality, a service can also be thought of as a function. A
function is defined in terms of its inputs and outputs, and how it relates those. Accord-
ingly, to be able to perform anything of interest, services require inputs and outputs.
Both are represented as parameters: services can have an arbitrary number of input and
output parameters. Their name indicates the role the data provided on the parameter
takes in the context of the corresponding service. SENSEI provides a rudimentary mech-
anism to represent collections of data items. The flag indicates that the data passed
through a parameter needs to be interpreted as some kind of iterable collection (data
series, stream, list, set, etc.).
Each parameter represents a different kind of data element fed to the service for

processing, or returned by it as a result. The “kind of data” is described by DataStruc-
tures. In SENSEI, a data structure is identified by its name only. There are no means to
actually describe the structure that data entities are expected to conform to. Analogous
to services, a data structure only identifies what kind of data needs to be represented,
but leaves the question of how to represent it open to implementations (see Chapter 12).

A Note on Terminology: Data Structures and Types

The terms data structure and data type seem to be used somewhat interchangeably;
different authors may use the same term but with different meaning, and often the
terms are used without explicit definition. For example, Wirth [1986, pp. 18, 157]
seems to be using the term “data structure” to refer to a kind of type (as in arrays,
linked lists, etc.), as well as to refer to an instance of a type (concrete data elements
conforming to a specification expressed as data type).
In SENSEI, a distinction is needed between an abstract concept of exchanged

data on the service level, and concrete data format specifications on the component
implementation level. Note that abstract data type also is an already established
term that focuses on the operations defined on an underlying data abstraction [Dale
and Walker, 1996]. Therefore, SENSEI introduces its own definitions of both data
structures and data types; the latter will be given in Chapter 12. In short, data
structures are a technology-agnostic, service-level concept, whereas data types ex-
ist exclusively on the level of components and map data structures onto concrete
technical implementations.

Still, standardized descriptions of data structures could be included on the ser-
vice catalog level, e.g. in terms of implementation-agnostic metamodels or ontologies.
While this may simplify data integration, a comprehensive standardization of data for-
mats is an extensive and complex undertaking. Its feasibility is questionable when con-
sidering the scope of SENSEI, which aims at broad applicability. Existing approaches
usually target narrower domains, like SOFAS (Section 5.6), which incorporates a data
ontology, but is restricted to software analysis. This issue has come up earlier in this

166

10.1. Services and Data Structures

thesis, e.g. Karsai, Lang, and Neema [2005] discuss it in the context of their inte-
gration patterns (see Section 4.3.3. The problem can also be likened to the creation
of business-wide data models, briefly mentioned (and discouraged) in the context of
service-orientation (Section 7.3), indicating that such a comprehensive, integrated data
model would be hard to maintain and extend, and possibly lead to tight coupling.
The DataStructure class of the SENSEImetamodel can be thought of as an extension

point for data integration approaches. On its own, SENSEI offers only its transformer
concept; without a common data model, the number of transformers required to estab-
lish data interoperability between n different data formats is n2. Except for use cases
with very diverse and highly interconnected services, in the long term, transformer
reusability makes this a pragmatic and viable solution.
Data structures may be part of a specialization and generalization hierarchy (in

terms of subtyping, not inheritance; data structures are pure entities without an at-
tached definition of behavior). The specialization relation establishes a partial order
on data structures (reflexive, transitive, and anti-symmetric), i.e. the hierarchy is really a
directed, acyclic graph. A substructure is a subset of all its superstructures. A parameter
with a particular data structure as type can therefore handle data entities conforming to
either this data structure, or to any of its substructures. A data structure can be marked
abstract to indicate that it is meant as a superstructure only. It has no direct instances,
i.e. any data entities conforming to it, also conform to a subtype (implying that an ab-
stract data structure should have at least one substructure defined). The data structure
hierarchy plays an important part in deducing service interoperability on the data in-
tegration level, and is linked to service capabilities. The discussion on these issues is
continued in Section 10.2 and Section 10.3.

10.1.1 Example Services

Back in Section 2.2, the base metric calculation process of the Q-MIG project was in-
troduced. Its four basic steps can be translated directly into corresponding services:
Parse, ExtractStructure, CalculateMetric, and MapResultsToStructure. They are shown
in Figure 10.2 using a uniform, tabular description template, which lists name, a non-
formal descriptive text, as well as input and output parameters. Parameters are listed
with their associated data structure type. Also, an asterisk in square brackets following
the parameter name is used to indicate that it is multi-valued (in terms of the SENSEIme-
tamodel: the parameter’s collection attribute is set to true). This notation of multiplicity
and type is borrowed from UML class diagrams. One of the services, CalculateMetric,
is also depicted as object diagram in Figure 10.3. This just serves as an example of how
a service description conforms to the SENSEI metamodel – the object diagram notation
shows this relation more immediate than the tables.
Notice that this is merely a list of service descriptions – an excerpt of a larger service

catalog – and not an orchestration of services. Orchestrations instantiate services from

167

10. Service Catalog

Se
rv
ic
e

Name Parse
Description Parses code files and returns an abstract syntax tree / graph

(AST/ASG) representation.
Input source code : SourceCode
Output outAST : AbstractSyntaxTree

Se
rv
ic
e

Name ExtractStructure
Description Extracts a basic, hierarchical decomposition of a software system’s

AST.
Input ast : AbstractSyntaxTree
Output structure : SoftwareStructure

Se
rv
ic
e

Name CalculateMetric
Description Evaluates the specified metric over a software system’s abstract

syntax tree and returns the result.
Input metric : Metric

ast : AbstractSyntaxTree
Output result : MetricResult

Se
rv
ic
e

Name MapResultsToStructure
Description Takes a hierarchical decomposition of a software system, as well as

a series of metric values calculated on the same system, and
combines the two by annotating the structural elements with their
corresponding metric values.

Input results [*] : MetricResult
structure : SoftwareStructure
metric [*] : Metric

Output mappedResults : MeasuredSoftwareStructure

Figure 10.2: Simplified service descriptions for the Q-MIG base metric calculation
example (more details will be provided in Section 10.2 and Section 10.3).

168

10.1. Services and Data Structures

v222 DataStructure
isAbstract = true
name = "AbstractSyntaxTree"

v232 DataStructure
isAbstract = false
name = "MetricGReQLQuery"

v233 DataStructure
isAbstract = false
name = "MetricResult"

v291 Service
description = "Evaluates the specified metric over a software system's abstract syntax tree and returns the result."
name = "CalculateMetric"

v292 Parameter
collection = false
name = "result"

e636 : ContainsOutput

v359 Parameter
collection = false
name = "metric"

e640 : ContainsInput

v360 Parameter
collection = false
name = "ast"

e641 : ContainsInput

e642 : LinksToType e706 : LinksToType e707 : LinksToType

Figure 10.3: The service CalculateMetric depicted as object diagram-like graph, an
instance of the SENSEI metamodel.

the catalog and establish relations between those service instances in terms of control
and data flow. The mechanics of how this is done in SENSEI are described in Chapter 11.
Both Parse and ExtractStructure are fairly self-explanatory (though the reader might

want to go back to Section 2.2 to recall the intended functionality of the process and
its individual steps). Both take one input and return a single result. The associated data
structures of their parameters also indicate that they can be chained.

CalculateMetric takes two inputs: the software system to be analyzed, and the met-
ric to be calculated. It could be argued that the type of the ast parameter should be
relaxed, as software systems may also be represented by their source code, or their
binaries. This would give tools more freedom to choose a format appropriate for their
implementation, and allow for more flexibility and better reuse by combining the ser-
vice with transformers as needed. To keep this first example a little simpler, the input
parameter’s data structure has been chosen to match the output parameter of the Parse
service. Conversely, the data structure of parameter metric is completely abstract (also
simply named Metric). Recall that, on the level of services, data structures are merely
symbolic names, for which implementing components may choose a concrete repre-
sentation: The typeMetric implies what the data fed to the service at the corresponding
parameter should represent, but not how. Different implementations may require a sim-
ple, symbolic name to look up the corresponding metric internally, a file path or URL
pointing to an external specification to load a metric from, or even have the parameter
carry the metric algorithm itself (e.g. as expression in an appropriate query language).
The output data structure, MetricResult, is similarly abstract.
Finally, there isMapResultsToStructure, a service specifically designed to combine

169

10. Service Catalog

v218 DataStructure

isAbstract = true
name = "SourceCode"

v219 DataStructure

isAbstract = false
name = "JavaSourceCode"

e544 : LinksToSubStructure

v220 DataStructure

isAbstract = false
name = "COBOLSourceCode"

e545 : LinksToSubStructure

v221 DataStructure

isAbstract = false
name = "ScalaSourceCode"

e546 : LinksToSubStructure

v222 DataStructure

isAbstract = true
name = "AbstractSyntaxTree"

v223 DataStructure

isAbstract = false
name = "Java_AST"

e553 : LinksToSubStructure

v224 DataStructure

isAbstract = false
name = "COBOL_AST"

e554 : LinksToSubStructure

v225 DataStructure

isAbstract = false
name = "Scala_AST"

e555 : LinksToSubStructure

v233 DataStructure

isAbstract = false
name = "MetricResult"

v234 DataStructure

isAbstract = false
name = "SoftwareStructure"

v235 DataStructure

isAbstract = false
name = "MeasuredSoftwareStructure"

e574 : LinksToSubStructure

Figure 10.4: Data structures for the Q-MIG base metric calculation example.

the results of ExtractStructure and CalculateMetric. It takes collections of metrics and
corresponding calculation results, as well as a software system structure to write the re-
sults to. While Parse, CalculateMetric, and to some extent ExtractStructure, are reusable
for multiple purposes (the latter e.g. in software architecture reconstruction), poten-
tially with off-the-shelf tools available, MapResultsToStructure is more clearly derived
directly from the Q-MIG project’s specific needs. This is indicative of two different
kinds of services. It is part of SENSEI’s philosophy – and natural in a service-oriented
approach – to encapsulate any project-specific logic that cannot adequately be con-
structed by orchestrating existing services in a custom service. Apart from presumably
having comparatively low reuse value, it still is “yet another service”, conceptually no
different from any other services. Given that the need for such project-specific func-
tionality is generally unavoidable, i.e. domain experts in this case will have to double
as tool developers, this is a clean and consistent approach. Also, in case at some point
additional use cases for such services should emerge after all, they are readily available
(along with their implementing components).
Also worth noting is thatMeasuredSoftwareStructure is modeled as a sub-structure

of SoftwareStructure. All data structures used in this example are depicted in Fig-
ure 10.4 in object diagram notation, including sub-structure relationships. Sub-structures
are still purely symbolic, however, the relationship implies that data conforming to
a sub-structure can be passed to or from parameters typed with their super-structures.
Figure 10.4 also includes several exemplary sub-structures of SourceCode and Abstract-

170

10.2. Service Capabilities
Se
rv
ic
e

Name CalculateMetric
Description Evaluates the specified metric over a software system’s abstract

syntax tree and returns the result.
Input metric : MetricGReQLQuery

ast : AbstractSyntaxTree
Output result : MetricResult
Capability
Classes

SupportedMetrics = {McCabe, SLOC, CloneLines, …}
SupportedProgrammingLanguage = {COBOL, Java, …}

Figure 10.5: The CalculateMetric service again, now with capability classes.

SyntaxTree for representing software systems of particular programming languages. So
far, the service descriptions do not make use of them, but will be refined in Section 10.3.
Together with capabilities, sub-structure types are utilized by SENSEI’s processors to find
the most appropriate components to match particular service instances.

10.2 Service Capabilities

Services are characterized by their input and output parameters, and by what their gen-
eral function is, i.e. what they do. Returning to the running example, it makes sense
to have a service for metric calculation, as it represents a commonly required software
evolution functionality. While such an abstract description is beneficial for finding re-
quired services in the catalog, to use them in concrete orchestrations, the functionality
needed has to be specified more precisely. To find suitable, implementing compo-
nents (automatically), it must be known, e.g. which metrics will have to be calculated,
and on what kinds of software systems. There are hundreds of software metrics and
programming languages, but actual metric calculation tools will usually only support a
fraction of those. Cluttering the catalog with descriptions of fine-grained, specific ser-
vices representing all possible combinations of supported programming languages and
metrics for analysis would completely defeat its purpose of easing service discovery.
Therefore, service descriptions in SENSEI are kept generic. Each service in the cat-

alog may define arbitrary many capability classes. As introduced in Chapter 9, capa-
bilities are a central concept in SENSEI, running through all levels of its metamodel,
and serving different purposes on each of them. In the catalog, they are a means of
organizing it, enabling concise descriptions of coarse-grained, generic services.
Capability classes are used to declare the dimensions of variability that can exist

– like supported metrics and programming languages. Figure 10.5 shows the service
description of the CalculateMetric service again, this time also including capability
classes. Each capability class defines a set of possible values – the actual capabilities.

171

10. Service Catalog

For the sake of brevity, only a few examples are shown in Figure 10.5. When instanti-
ating a service, either to use it in an orchestration, or to register a component, a subset
of the available capabilities are chosen to specify required and provided capabilities,
respectively. The exact mechanisms for this are detailed in Chapter 11 and Chapter 12.

Capabilities Defined by Components

Capability classes and their capabilities are part of service descriptions and the
service catalog, as it makes sense to standardize them: using them for specifying
service requirements and matching them to component provisions only works if all
domain experts and tool developers have the same capabilities available to them,
and a common understanding of their individual meaning. On the contrary, it
might be hard or even impossible to foresee all potentially useful capabilities. For
example, a particular parser might only support a few specific dialects of COBOL –
and this might be sufficient for an orchestration for a particular software evolution
scenario. While not manifested in the SENSEI metamodel, implementations of SEN-
SEI processors and editors may choose to dynamically load capabilities declared by
components through the registry and make them available to domain experts, even
if they are not part of the corresponding, standardized catalog services. This could
also be used by tool vendors to expose proprietary features as provided capabilities
though, and relying on them would lead to vendor lock-in.
The prototype implementations of the SENSEI processors (SCAffolder, Chapter 14)

and editors (Chapter 13) currently do not support such a feature, but the metamodel
does not preclude it. When defining services needs-based, for a specific software
evolution project (bottom-up), as opposed to using an already available catalog
of standardized services (top-down), this does not become an issue, anyways, as
capabilities can be added immediately when the need arises.

10.2.1 Capability Modeling Pragmatics

Capability classes are the main tool of SENSEI to control service granularity. Picking up
on the sidebar discussion on service discovery and description given in Section 9.4,
there are no hard rules on what is allowed, or what makes “proper” capability classes.
However, a few rules of thumb can be given, based on the experience of practically
applying SENSEI (see Part V):
One question that arises is how many capability classes should be modeled. Con-

sider why CalculateMetric (Figure 10.5) has two classes. It seems straight-forward, be-
cause the two aspects being modeled – metrics and programming languages – are
clearly distinct. But, if a metric like, for example, average methods per class is added,
this view is arguably upset, because such a metric has only meaning for object-oriented

172

10.2. Service Capabilities

languages which have the concepts of both methods and classes. COBOL has neither,
so the combination of that metric with this programming language makes no sense.
In and of itself this does not pose a problem for SENSEI; it merely means that there

are combinations of capabilities which in all likelihood no actual component will ever
support. However, if the capability classes produce many meaningless capability com-
binations, it might become hard for service catalog users to discern those from the
useful ones. There may also be services for which the choice of most, if not all, capa-
bilities of one class depend on the choice of another class. In such cases, it might be
better to collapse them into a single capability class, instead, with capabilities defined
by the cartesian product of the original classes (omitting the useless combinations). If
this was done for CalculateMetric, the resulting, single capability class would contain
capabilities like SLOC_Java and SLOC_COBOL.
Another aspect to consider during capability class design is the level of abstraction

of the overall service. For example, the semantics of CalculateMetric could also be
covered by a much more generic CalculateFunction, with appropriately generalized
capability classes, parameters, and associated data structures.
This has upsides and downsides, e.g. it might lead to the identification of addi-

tional tools that can be applied to a given problem, but it can also make it hard to find
appropriate services for particular problems when browsing the catalog. Avoiding such
over-abstraction is a matter of applying domain knowledge and common sense: in the
most extreme case, every service can be viewed as a function that maps an input into
output. In fact, this is basically the definition of what a service is, but this abstraction
level is obviously useless to solve specific problems in a given domain. Also note that
it is perfectly valid to model the specific as well as the generic service, giving tool
developers the option to support one or the other, or even both.

10.2.2 Capability Semantics

Like data structures, capabilities are purely symbolic, and merely represent certain as-
pects of services with an agreed upon meaning. For example, the capability COBOL
of class SupportedProgrammingLanguages, defined for the CalculateMetric service, im-
plies that an implementing component declaring its provision is actually able to calcu-
late metrics on software systems written in COBOL. These semantics should be made
clear in the service description – the examples shown in Figure 10.2 and Figure 10.5
only feature one-liner descriptions for the sake of brevity. When using the service cat-
alog as a means for standardization, these descriptions would have to be much more
detailed and precise to serve as design contracts.
Since these semantics are only specified in prose in SENSEI, such contracts cannot

be technically enforced. Formal specifications were considered far too extensive and
expensive to be of value, and thus were dismissed when designing SENSEI. A com-
prehensive formal specification of a service would probably amount to a (declarative)

173

10. Service Catalog

implementation in terms of required effort and resulting complexity. In most practical
cases, this should not pose a problem, as components “lying” about their capabilities
can simply be removed and replaced, if such a case should ever occur. For (potentially
expensive) commercial tools, compliance test suites might be defined, though often
claimed conformance to already existing industry standards will take on this role. In
any case, such issues are not within the scope of SENSEI.

SENSEI does feature a concept to define a certain kind of semantics, after all, to
establish relationships between parameters and their associated data structure types,
and capabilities. They are referred to as restrictions and are mainly utilized by SEN-
SEI’s Composition Finder to match orchestrated services to components in a way that
observes data compatibility.

10.3 Service Restrictions

With capability classes and capabilities, it is now possible to characterize the required
or provided functionality of service instances more precisely, based on generic cata-
log services. The data structures associated with the parameters of these services are
usually, and intentionally, very abstract (see Section 10.1.1). Using CalculateMetric as
example once more, if only Java is picked as capability from the SupportedProgram-
mingLanguage class, than this has implications for the kind of data it can accept. Such
a service instance would not be able to accept COBOL abstract syntax trees, or any-
thing other than Java ASTs, on the ast parameter, for example. This is important when
chaining up services: if the input for the ast parameter is provided by a Parse service in-
stance, then it must output Java ASTs, not arbitrary ones. While this may seem obvious
and could be achieved by careful orchestration, SENSEI’s automation features can assist,
and make more sensible matches of components to services, if these interdependencies
between capabilities and parameter data structures are formally specified.
The automation tooling becomes even more useful in cases where multiple capabil-

ities are specified, as is the case in the base metric calculation example, which needs to
support both COBOL and Java. Obviously, this cannot happen at the same time1, but
one at a time. Then the relationship between capabilities and data structures of param-
eters can be utilized in reverse: at runtime, the actual input data is introspected for its
specific data structure type, and the appropriate components are invoked (either a Java
or a COBOL parser, for example) based on which provides the associated capability
(more on this in Chapter 11).

1Of course, COBOL and Java metric calculation can be performed concurrently, by invoking the
corresponding toolchain once for each case, and running them in parallel. An input software system
cannot be both programmed purely in Java and in COBOL, though, and that is what is meant here. It also
does not mean that mixed-language systems cannot be handled – if appropriate tools exist, a capability
like COBOLJava can be defined, so there is no limitation of SENSEI here.

174

10.3. Service Restrictions

SENSEI therefore provides restrictions of parameter types to sub-structures of their
associated data structures, based on chosen capabilities. As shown in Figure 10.1,
arbitrarily many restrictions can be defined for a capability in the SENSEI metamodel.
A restriction only relates to a parameter and a data structure. The data structure must
be a sub-structure of the data structure that is the type of the parameter the restriction
links to2. A restriction can be written and understood as a logical implication:

select(Java) ð typeOf(ast)� Java_AST

This can be read as “The capability Java needs to be selected when the type of
the data at parameter ast is Java_AST”. The symbol � (as opposed to an equality sign)
indicates assignment compatibility, i.e. the type of the data at parameter ast must
conform to the Java_AST data structure, or a substructure. Furthermore, two functions
are informally introduced for the notation used in this example. The selection of a
capability refers to a running toolchain. The controlling composer component needs to
choose between capabilities, as it may need to invoke different components for different
capabilities. The select operator therefore checks whether the specified capability has
in fact been selected in this manner. The operator typeOf is also to be interpreted at
toolchain runtime, and returns the data structure corresponding to the type of the actual
data available at the specified parameter. The same restriction is shown in context of
the associated service, CalculateMetric, as object diagram in Figure 10.6.
The “runtime semantics” are also the reason why the implication may seem re-

versed, as restrictions have been introduced from the perspective of catalogmaintainers,
earlier: if a capability is chosen, then a parameter is restricted to a particular sub-type
of its base data structure. However, the selection expressed by the select operator does
not refer to domain experts defining required capabilities during orchestration design.
Rather, toolchain composers auto-generated by SENSEI select at runtime from those ca-
pabilities defined in the orchestration. The actual data available at parameters cannot
be influenced by composers – it represents the basic facts available to it to deduce the
capabilities that were implicitly requested by piping in that data.
With the example given, the question may arise whether capabilities and the abil-

ity to define subtypes of data structures essentially amounts to the same thing. The
concept of restrictions is only needed if these two concepts are separate, and since
the relation between the capability Java and the data structure Java_AST seems to be
straight-forward and one-to-one, why not dispense with capabilities and restrictions
altogether, and just use sub-structures directly? SENSEI has capabilities, because this
question implicitly assumes that services are fully determined by their input and out-
put parameters and their associated data structures.

2This kind of constraint cannot be modelled in UML alone, and is therefore not visible in Figure 10.1.
It has to be expressed separately, e.g. using OCL [Object Constraint Language 2014].

175

10. Service Catalog

v291 Service
description = "Evaluates the specified metric over a software system's abstract syntax tree and returns the result."
name = "CalculateMetric"

v348 CapabilityClass

name = "SupportedProgrammingLanguage"

e641 : ContainsCapabilityClasses

v362 Parameter
collection = false
name = "ast"

e644 : ContainsInput
v351Capability

name = "Java"

e701 : ContainsCapabilities

v222 DataStructure
isAbstract = true
name = "AbstractSyntaxTree"

e714 : LinksToType

v223 DataStructure
isAbstract = false
name = "Java_AST"

e553 : LinksToSubStructure

v352Restriction

e704 : ContainsCapabilityRestriction

e705 : LinksToRestrictedParameter

e561 : LinksToRestrictedTo

Figure 10.6: Example of a restriction as graph-based instance of the SENSEI metamodel.

176

10.4. Summary

Consider the ExtractStructure service: it could be fitted with a capability class mod-
eling the supported depth and granularity of the extracted structure. In Java terms,
capabilities could indicate the ability to extract structures down to class, method, or
even statement level, for example. This would, intuitively, neither have an impact on
the input nor on the output parameter. Still, it could actually be modeled only with
subtypes of the output parameter’s data structure, by defining a separate data structure
for each granularity level. Since data structures in SENSEI are purely symbolic, they
could even be mapped to the same technical data type representation in implementing
components (Chapter 15 presents examples of this). Nonetheless, such data structures
seem artificial, and defining capabilities like this is cumbersome.
Capabilities can also be used to represent non-functional properties of services.

For instance, different traversal strategies could be modeled for the CalculateMetric
service as capabilities. Many software evolution services, like clustering for architecture
reconstruction (see Jelschen et al. [2013]) or clone detection, can be implemented using
fundamentally different algorithms, where somemight be more appropriate than others
for a given task. Modeling this purely through parameters seems even more contrived,
as changing such a non-functional capability would not only not change the types of
the parameters, depending on the nature of the “strategy”, the actual data returned
would also be exactly the same (maybe delivered faster or slower).
Finally, use cases for capabilities can be considered which do not map to data

structures at all, but would also require an extension of SENSEI. These are discussed
briefly in Section 18.3. The utility of capabilities and restrictions will be examined
further in the following chapters:
• Chapter 11 will show how to use capabilities to define required service proper-
ties declaratively and concisely, partly as an alternative to manually model more
complex control flow logic.

• Chapter 12 will briefly explain how tool developers can use capabilities to regis-
ter components, and provide an in-depth description of how restrictions can be
leveraged to find the best combination of components for a given orchestration.

• Chapter 14 will present the automated toolchain generation as implemented in
SCAffolder, and how succinct capability specifications are turned into consider-
ably more complex, fully auto-generated control logic.

10.4 Summary

This chapter introduced the structure of the service catalog of SENSEI, as defined by the
top level of its metamodel. As such, it provides the basis for both domain experts and
tool developers to choose services from for designing toolchains as service orchestra-
tions and map services to implementing components, respectively.
A distinguishing feature of SENSEI are its service capabilities. In the service cata-

log, they serve to provide a means of control over the granularity of services, allowing

177

10. Service Catalog

to define generic services and model different dimensions of variability as capability
classes. Chapter 11 will describe how domain experts make use of this feature to spec-
ify required capabilities within orchestrations, while Chapter 12 will show how tool
developers do the same to map components with provided capabilities to services.
The service catalog also provides foundations for automatically matching orches-

trated services to suitable components, using capabilities in conjunction with restric-
tions. These mechanisms can be used both during toolchain generation, as well as
at toolchain runtime, to route between different components implementing the same
service (but with different capabilities) based on actual input data. This, too, will be
explained in detail in Chapter 12.

178

CHAPTER 11
Service Orchestration

SENSEI aims to enable domain experts to specify toolchains independent from the actual
tools, and the integration issues that would arise on a technical level. Services, defined
in the service catalog, provide the basis for that. These services then need to be com-
bined in a manner that forms the desired processes: arranging them in a meaningful
running order and determining how input and output data is passed between them.
The means to do this in SENSEI is by creating service orchestrations. This chapter de-
scribes the metamodel concepts used to represent orchestrations, and the graphical
language based on them, to be used by domain experts to model orchestrations.
Even though there are already a plethora of workflow, process, and orchestration

languages (e.g. BPEL, BPMN, YAWL, UML activity diagrams – see Section 5.8 and Sec-
tion 7.5), creating a new one dedicated specifically to the purposes of SENSEI, has had
several advantages: it allowed to directly use, and freely design, the orchestration layer
of the SENSEI metamodel, instead of having to either compromise on it, or transform
between it and the metamodel of a preexisting language. Specifically, this approach
allowed for the seamless integration of capability specification into the language.
Otherwise, the language constructs could be kept minimal: only concepts specifi-

cally necessary for a meaningful evaluation of the overall approach have been included,
especially in terms of control flow constructs. The structured control flow approach has
been taken partly because of ease of implementation, but it also holds the benefit of
being easily extended with additional control flow constructs. The strong separation
between services and components, and the code generation approach allow for further
extensions with minimal or no changes to the language at all, by implementing config-
urable, advanced semantics of existing language concepts as part of SENSEI processors.
Conversely, BPEL, which in the early stages of this thesis had been investigated to

be used as orchestration language, is tied closely to web services, which expose very
technical interfaces, thereby opposing a key requirement of SENSEI. In general, existing

179

11. Service Orchestration

 requiredCapability

 requiredCapabilities

Figure 11.1: A view of the central service orchestration concepts defined in the SENSEI
metamodel.

orchestration languages usually come with certain dependencies, use very particular
language concepts, and make assumptions that are unsuitable for, or hard to align with,
the concepts of SENSEI. In particular, the specification of required capabilities would
have necessitated extending the chosen language.
An overview over the central concepts for service orchestration in the SENSEI meta-

model is depicted in Figure 11.1. The top row of classes are actually concepts from the
service catalog (cmp. Figure 10.1) that are being referenced from orchestrations. The
service orchestration concepts can be divided into four areas, by which they will be
described in more detail, in the following:
Service Instances Besides the class Service Orchestration, which provides a context

for orchestrations and acts as container for its constituents, the base element for
orchestration modeling is the Service Instance, representing concrete uses of cat-
alog services to which they conform (Section 11.1).

Required Capabilities Instantiating a service mainly entails selecting the required ca-
pabilities, which are modeled as Capability Tuples (Section 11.2).

Data Flow Service instances possess Input and Output Ports, in accordance with the
parameters defined by their corresponding catalog services. Ports can be con-
nected by Flows to model data exchange (Section 11.3).

Control Flow SENSEI employs a fully structured control flow model, with concepts
for conditional branching, looping, and concurrency. The corresponding meta-
classes are mostly based on Service Container, but have been omitted from Fig-
ure 11.1 for better clarity. They will be presented in detail with a separate view
of the SENSEI metamodel (see Figure 11.6 in Section 11.4).

180

11.1. Service Instances

Figure 11.2: An instance of the Calculate Metric service as defined in Section 10.1.1
(without capabilities).

11.1 Service Instances

The title of this chapter is “Service Orchestration”, but actually, “service instance orch-
stration” would be more precise. It is not the services described in the catalog them-
selves that get orchestrated. The catalog contains service definitions that act as tem-
plates, made generic by capabilities. Service instances conform to these services, but
are representing a particular usage in an orchestration, with only a specific subset of
the available capabilities indicated as required, and data and control flow relations to
other service instances in the same orchestration. Obviously, the same service can be
used in arbitrarily many orchestrations, but these instances are distinct - they do not
share the same required capabilities or interrelations.

SENSEI service orchestrations are meant to be modeled graphically. Therefore, a
graphical, concrete syntax is needed. An example instance of the Calculate Metric
service is depicted in Figure 11.2. Service instances are represented by rounded rect-
angles. It is horizontally separated into two compartments, the upper one carrying the
name of the corresponding service as label, preceded by an icon indicating the type of
service instance. An encircled “S” is shown for standard service instances (other kinds
of services will be introduced in Section 11.4). For each port of the service instance, a
solid box is drawn on the border of the shape. Ports are labelled with the name of the
corresponding service parameter, written next to the box. In this thesis, data flows and
ports are always depicted in green.
Service instances, as represented by the class of that name, are the leafs of a compos-

ite pattern rooted in the class Abstract Service Instance. Nesting is done using Service
Containers. In particular, Service Orchestrations are service containers, and thus ser-
vice instances. This means that orchestrations can be used as service instances in other
orchestrations to model even more complex processes. There is one caveat, though:
service orchestrations being service instances means there needs to be a corresponding
service in the catalog – but if there were such a service readily available, there would be
no need to model an orchestration from more primitive service instances. For service
orchestrations, the association is therefore interpreted inversely: orchestrations induce
corresponding services. These services may then be included in the catalog.

181

11. Service Orchestration

Service instances conform to exactly one service, represented by an association in the
SENSEI metamodel. This relation is further constrained, though:

• Required capabilities must refer to capabilities contained in capability classes of
the instance’s service.

• For each input (output) parameter of the service, the instance must contain an
input (output) port referring to that parameter. A service instance may not define
additional ports.

A comprehensive set of constraints to complement the SENSEImetamodel has been
gathered and formalized as OCL expressions by Meier [2014b, pp. 63ff], including
the ones defining the conformance relation between service instances and services,
which are only given in prose, here. Both constraints can be supported and enforced
by proper tooling, as implemented in the SENSEI editor (Chapter 13). Ports can, in
fact, be generated completely automatically. The main task of domain experts when
instantiating services for use in orchestrations is therefore the specification of required
capabilities.

11.2 Required Capabilities

A major aspect of orchestration in SENSEI, that sets it apart from other approaches, is
the ability to partly specify it declaratively, using capabilities. Instantiation of generic
services from the catalog for concrete usage in orchestrations is mainly done by specify-
ing required capabilities. The service catalog specifies which capabilities are available
for any given service: Each service has one or more capability classes, each with a set
of actual capabilities (Details are given in Section 10.2).
To specify required capabilities for service instances, at least one capability from

each capability class of the corresponding service has to be chosen. If multiple capabil-
ities are required from more than one class, the semantics of the selection may become
ambiguous. Consider the example service Calculate Metric again. It has two capability
classes (go back to Figure 10.5 for details): Supported Metrics and Supported Program-
ming Languages. Lets assume the software evolution project in need of toolchain sup-
port requires the McCabe and SLOC metrics to be calculated, and both COBOL and
Java need to be supported. The selection of these capabilities would express that. But,
maybe SLOC is actually only needed for Java, while the McCabe metric should indeed
be calculated for both Java and COBOL. This would lead to the same set of capabilities,
even though implementing components might be chosen which support the latter, but
not the former case.
To resolve this ambiguity, SENSEI introduces Capability Tuples to group selected

capabilities. For a service with n capability classes, an n-tuple, which contains exactly
one capability chosen from each of the classes, forms such a capability tuple. Returning
to the example, the capability tuples necessary to specify that the Calculate Metric

182

11.2. Required Capabilities

Figure 11.3: An instance of the Calculate Metric service as defined in Section 10.1.1,
with capabilities.

service instance must be able to calculate the McCabe metric on both COBOL and
Java, and SLOC on Java only, are as follows:(

Java
McCabe

)
,

(
COBOL
McCabe

)
,

(
Java
SLOC

)
.

Each of these capability tuples represents a minimal functional unit, i.e. the service
instance of Calculate Metric requires these three specific manifestations of the generic
service to be supported. At runtime, a single invocation of the service instance’s func-
tionality (implemented in a component) will be required to support exactly one of these
capability tuples. Which one depends on the actual type of the data available at the
service instance’s ports, and the restrictions (see Section 10.3) defined for the service.
A service instance with capability tuples is depicted graphically as in Figure 11.3.

The tuples are listed in the lower compartment of the service instance shape, enclosed
in square brackets, with the capabilities separated by commas. The SENSEI meta-tools
interpreting this, or generating code from it, are responsible for expanding this into a
case distinction. Figure 11.4 illustrates this, but intentionally does not use SENSEI syntax,
because in SENSEI this is modeled much more concisely – the single service instance
with capability tuples shown in Figure 11.3 is all that is needed1.
So in essence, a service instance with n capability tuples can be separated into n

minimal service instances with one capability tuple each. This is an important obser-
vation for service-component matching (Chapter 12), as matches need only be found
for each of these minimal service instances, so that several components can be picked
to satisfy the requirements of a single service instance. Conversely, minimal service
instances are atomic, i.e. they cannot be realized by multiple components working in
concert.
The guard expressions on the control flow branches in Figure 11.4 are partly derived

from restrictions defined in the service catalog (Section 10.3). Where there are no re-
strictions, the fallback is to ask the components implementing the service instances

1SENSEI does allow to model control flow branching explicitly, though, too (see Section 11.4).

183

11. Service Orchestration

a b c

[typeOf(ast) ◁ Java_AST ∧ canHandle(a, metric)] [typeOf(ast) ◁ Java_AST ∧ canHandle(c, metric)]

[typeOf(ast) ◁ COBOL_AST ∧
 canHandle(c, metric)]

Figure 11.4: The semantics of specifying multiple capability tuples (Figure 11.3) corre-
sponds to a control flow branch.

whether they can handle the data at their ports. SENSEI therefore requires components
to provide appropriate facilities to do so; how this is done, technically, is an imple-
mentation detail of SENSEI processors. Here, this is indicated by the predicate symbol
canHandle. Also, the service instances have been adorned with letters a, b, and c to
reference them. Again, all of this happens “under the hood” – domain experts do not
have to worry about any of this, as they only have to declare their required capabilities
to express this.

The example shows one way by which SENSEI, and its capability concept in partic-
ular, help achieve the overall objectives of this thesis: increasing flexibility, reusability,
and productivity (Section 1.2). The branching pattern depicted in Figure 11.4 does
not have to be modeled by domain experts, because the necessary work is performed
by catalog maintainers (service definitions with capabilities and restrictions) and tool
developers (uniform components with runtime self-description and introspection abil-
ities), who only do this work once, enabling reuse. This shift in responsibilities takes
much of the integration modeling and implementation off the shoulders of domain
experts, reducing the required effort and thus opening up opportunities to increase
productivity. Just by comparing Figure 11.3 and Figure 11.4, which do not even show
the implementation details hidden behind both modeling alternatives, and by extrapo-
lating from there, it is possible to imagine the relative conciseness and simplicity that
SENSEI orchestrations can achieve. This makes makes them easier to understand and to
be adapted more flexibly.

184

11.3. Data Flow

11.3 Data Flow

The data integration solution of SENSEI is designed to be simple and extensible, as the
focus of the approach is on process integration (see Chapter 4). No common data
formats or data models are dictated by the approach. Rather, technical data incompat-
ibilities remain invisible on the service level. At the component level, tool developers
can freely decide how to model and represent their input and output data. Mismatches
must be resolved by transformers – corresponding services are inserted automatically
into orchestrations at toolchain generation time, as necessary.
The specification of data flow is kept simple and straightforward, as well, with a

focus on extensibility. Input and Output Ports represent service parameters on ser-
vice instances. Ports are connected by Flows (see Figure 11.1), each piping the data
provided at an output port into an input port. The main constraint is that the data
structure returned from a service instance at an output port, must be assignment com-
patible (see Section 10.3) with the data structure expected at the input port targeted by
a connecting flow. These conceptual port types are defined in the service catalog, i.e.
through the data structures associated to the corresponding service parameters. Techni-
cal incompatibilities do not arise at the orchestration level: Concrete implementation
types are defined by components and are only taken into consideration when the ser-
vice instances are matched to components during toolchain generation. The matching
process, described in more detail in Chapter 12, will try to avoid conflicts due to in-
compatible data formats, and will automatically insert transformers, if necessary and
possible. Only if no solution of mapping the service instances to components and
available transformers can be found, new transformers have to be created.
The semantics of data flows are as follows: after a service instance finishes exe-

cution, the data it returned on its output ports is copied to all input ports connected
via flows. A single output port can be connected to multiple input ports, which will
result in a copy of the data provided to each of them. The opposite is also possible,
i.e. an input port being fed by multiple output ports. The data at the input port will
simply be overwritten every time a service instance with output ports connected to it
finishes execution. An output port may even feed an input port of the same service
instance, which can be useful if the control flow contains loops. Multiple output ports
of the same service instance connected to a single input port will lead to unspecified
behavior, though, and is therefore prohibited.
Data flow semantics are strictly separate from control flow semantics in SENSEI, too.

As opposed to UML activity diagrams, for example, where an action is invoked as soon
as there are tokens available on all its incoming edges, irrespective of whether these
are control or data flows, here data flow does not determine control flow. Service
instance invocation is not triggered by the availability of input data, and control flow
must therefore be designed to ensure that all required data is in fact available when
service instances get invoked.

185

11. Service Orchestration

Figure 11.5: Service instances to model the Q-MIG base metric calculation example,
with ports connected by data flows.

Figure 11.5 continues the Q-MIG base metric calculation, and shows the required
service instances with ports connected by data flows. Ports and data flows are always
drawn in green color, to clearly distinguish data flow from control flow arrows, which
appear in gray. Control flow is not present here, yet – it will be added in Section 11.4.
This will also require a slight modification to the data flow, because CalculateMetric
service instance needs to be executed once for every metric in the list of metrics that
is input into the orchestration. In Figure 11.5, the metrics list flows directly into the
CalculateMetric service instance, which actually expects a single metric, only.
Orchestrations, being service instances themselves, also possess input and output

ports. By default, all input ports of contained service instances without any incoming
flows become input ports of the orchestration, and all output ports of contained service
instances without any outgoing flows become output ports of the orchestration. If this
is not the desired behavior, ports can be specified explicitly, represented by squares
larger than the boxes drawn on service instances to depict their ports. This is useful,
for example, if several service instances should be fed the same data, as is the case
with the metric input ports of the Calculate Metric and Map Results To Structure ser-
vice instances. Another use case would be if the output of a service instance is used
internally, first (e.g. in a loop), and only the result of the final execution should also
become the result of the orchestration returned at its own output port.
To specify how the data of service orchestration ports should be conveyed to and

from ports of its service instances, data delegations are used2. These are different from
data flows, because they either connect an external input port to an internal input port
(downwards delegation), or an internal output port to an external output port (upwards

2Delegations are somewhat similar to the concept of promotions in the service component architec-
ture (SCA) standard (see Laws et al. [2011, p. 98]). However, promotions apply to whole services there.
Also, SCA is about assembling components rather than services, with a much more technical service
notion than that of SENSEI.

186

11.4. Control Flow

delegation). Conversely, data flows are always on the same nesting level, and always
connect an output port to an input port. Delegation relations are not depicted in the
metamodel view in Figure 11.1, but are instead included in Figure 11.6 of Section 11.4,
as they are only needed to bridge nested service instances, and nesting is the central
modeling concept for specifying structured control flow.

11.4 Control Flow

Control flow in SENSEI is fully structured, i.e. as in structured programming [Dahl,
Dijkstra, and Hoare, 1972]. This design decision is mainly a pragmatic one: it can be
(meta-)modeled very elegantly and it is easy to implement. Structured control flow is
modeled by nesting, which corresponds to a composite pattern on the metamodeling
level. Such a structure is already established, anyways, with service instances nestable
in service orchestrations. This also makes this approach very easily extensible bymeans
of subclassing.
The control flow constructs currently provided by the SENSEI metamodel are de-

picted in Figure 11.6, along with advanced data flow means, that are described in
more detail in the following. The complete orchestration for base metric calculation,
depicted in Figure 11.7, serves as example.

Service Container serves as base class for the control flow classes. Only conditional
branches, represented by Alternative Service Instances, constitute a special case, and
are derived from Abstract Service Instance directly. Since base metric calculation does
not require this construct, a separate example is given in Figure 11.8.
Plain Service Orchestrations represent sequences, the semantics being that all con-

tained service instances get invoked, one after the other. The order of service invoca-
tion is determined by the serviceInstances association end on the association between
ServiceContainer and AbstractServiceInstance, which is why it is explicitly annotated
with the ordered modifier. In concrete syntax, sequences of service instances are indi-
cated by connecting them with gray arrows. In Figure 11.7, the top-level orchestration
contains three service instances in sequence: the Parse service instance is followed
by a concurrent control flow block, which is followed by the MapResultsToStructure
service instance.

Concurrent Service Instances allow for the specification of independent subpro-
cesses. All nested service instances or orchestrations get invoked, in no particular or-
der, and are potentially executed in parallel. Concurrent service instances are depicted
as blocks with an encircled plus sign and the word concurrent at the top. The body is
horizontally separated into lanes, each of which contain sub-orchestrations that are to
be executed concurrently. An example of a concurrent service instance with two lanes
can be seen in the center of Figure 11.7.

187

11. Service Orchestration

Figure
11.6:

A
view

ofservice
orchestration

concepts
forstructured

controlflow
defined

in
the

SEN
SEIm

etam
odel.

188

11.4. Control Flow

Figure 11.7: The complete SENSEI orchestration for the base metric calculation example,
containing control flow sequences, concurrency, and a loop.

ForEachServiceInstances represent loops. They expect exactly one nested service
instance or orchestration3, which get invoked repeatedly. If set to true, the parallel
attribute indicates that the loop iterations may be executed concurrently. ForEachSer-
viceInstances possess two ports: the Expansion Port, a special kind of input port, de-
termines the number of repititions. The data passed in is expected to be a collection,
i.e. if there is an output port providing the data via a flow, its corresponding service
parameter must have the collection attribute set to true (see Section 10.1). The collec-
tion will be iterated, and for each element, the nested service instance or orchestration
will be invoked once. Furthermore, the current element can be passed into an input
parameter of the nested service instance or orchestration. Conversely, an output port
of the nested service instance or orchestration can be used to gather results from each
execution, which will be gathered into a collection that is available at the Coalescence
Port of the ForEachServiceInstance after it has finished execution.
The concrete syntax of ForEachServiceInstances uses a block labelled map (refer-

ring to the common collection operation available in many functional programming
languages) at the top, and a circle with a stack of boxes at both sides, symbolizing
the input and output collections. The expansion and coalescence ports are labelled
expand and coalesce, respectively. Figure 11.7 has a ForEachServiceInstance with an
embedded CalculateMetric service instance: it effectively maps the provided metrics
onto a a corresponding list of metric results.

Alternative Service Instances represent branches in the control flow. There can be
arbitrary many Alternatives, from which exactly one is chosen for execution at runtime.

3The corresponding association is excluded from Figure 11.6 for greater clarity.

189

11. Service Orchestration

Figure 11.8: Example of a three-way conditional control flow branch modeled using
SENSEI’s structured Alternative construct. This is logically equivalent with the single
service instance shown in Figure 11.3, as well as with the activity diagram-like syntax
in Figure 11.4.

Each has a guard expression used to decide which branch to take. Guard expressions
need to be mutually exclusive, otherwise the resulting behavior is unspecified.
Figure 11.8 shows the concrete syntax used to represent Alternative Service In-

stances and Alternatives. The example is the same as in Figure 11.4, which used an
activity diagram-like syntax. As stated before, the exact same orchestration semantics
can be expressed by just a single instance of the CalculateMetric service with all three
capability tuples, as shown in Figure 11.3.
In its current version, SENSEI does not actually specify a concrete language for

expressing guards. Control flow constructs for conditional branches have not been
needed in any of the evaluation scenarios, even though they may seem to be the most
straightforward ones. The reason is that common control flow branches can be ex-
pressed concisely, declaratively (and thus implicitly) through the use of required capa-
bilities, as shown by the given example. Alternative Service Instances have therefore
mainly been added for the sake of completeness.

190

11.5. Summary

A guard language would be easy to come up with, though: it needs to support basic
logical operators, and a set of predicates that answer basic questions regarding the data
at input and output ports, and the general state of the orchestration being executed.
Inspection of data properties should only be allowed for basic types like booleans,
integers, or strings, or for superficial metadata of complex types, like data type or size.
Complex data queries should instead be encapsulated in dedicated services, returning
a simple type (e.g. boolean), which only then is used in guard expressions.
The complete base metric calculation example, modeled as SENSEI orchestration

and depicted in Figure 11.7, does not require explicit conditional branches either (it
uses a loop, though). It shows sequential control flow represented by gray arrows. In
the center, a Concurrent Service Instance allows the calculation of individual metrics
to run in parallel with structure extraction. For reasons of reusability, the CalculateMe-
tric service has been tailored to only calculate a single metric each time it is invoked.
Therefore, it is wrapped in a ForEachServiceInstance, which iterates a list of metrics
and invokes the nested service instance for each one. The resulting metric values get
aggregated in a collection, again.
The example, stemming from the Q-MIG research project, was originally intro-

duced in Section 2.2. An abstract representation as UML activity diagram is given
in Figure 2.1. The comparison shows the direct resemblance of the two diagrams. In
particular, the SENSEI orchestration is not significantly more complex: data ports and
some auxiliary data flows have been added, the metric calculation step has been nested
in a loop, because of the way the corresponding service is designed, and required capa-
bilities substantiate what scenarios the corresponding toolchain will have to support.

11.5 Summary

The orchestration language of SENSEI allows domain experts to model their processes as
orchestrations of services instantiated from the catalog. Service instances are intercon-
nected by control and data flows in an intuitive, graphical notation that is completely
free of any technical aspects. The semantics of orchestrations is expressed through the
domain-specific terminology of the services, as established in the catalog. Furthermore,
required capabilities provide domain experts with a simple yet concise way of express-
ing the needs of particular processes. Required capabilities contribute to the clarity of
orchestrations due to their declarative nature, and their ability to substantially simplify
control flow, that would otherwise have to be modeled explicitly. Domain experts
only have to state their intents by declaring required capabilities, and leaving the rest
to SENSEI to automatically generate the required conditions, control flow branches, and
mappings of service instances to appropriate components.
The aim of the SENSEI orchestration language was to demonstrate the overall feasi-

bility and advantages of SENSEI, and it has been fleshed out to the extent necessary to
do just that. Its generic nature and independence of any particular technologies, leaves

191

11. Service Orchestration

room for extensions on both the conceptual level that may further amplify its general
usefulness, as well as for implementations to make different design decisions to fit the
needs of different use cases.
One aspect that lends itself to extensions is the capability model. As presented here,

it is intended to model functional requirements, and assumes that particular function-
alities are either absolutely required, or not required at all – there is no middle ground.
For software evolution toolchains, this is a sensible assumption, as its activity usually
requires exact results. In some scenarios though, it might not matter whether the Cal-
culate Metric service can calculate the number of code lines (SLOC) or the number of
statements – for example when trying to gain a rough impression of a software system’s
size. In these cases, the capability requirements could be relaxed accordingly, to be sat-
isfied by components supporting SLOC or number of statements calculation. In some
application domains, a graceful degradation of service quality might be preferable over
not being able to provide a service at all.
Capabilities may also be extended from services to orchestrations: as mentioned be-

fore, service orchestrations are said to induce services, but do not support capabilities.
One possible approach to change this would be to “lift” the capability classes from all
the services instantiated in the orchestration, and make them capability classes of the
induced service. Instantiating such a service again would then allow to specify capa-
bility tuples that would be passed through to the corresponding service instances. The
induced service would be a true abstraction of the original service orchestration, essen-
tially representing all orchestrations with instances of the same services, and connected
by data and control flow as originally specified, but with all possible combinations of
capability tuples.
A closer look reveals several open questions with such an approach: the lifting

of capability classes from services is not completely trivial. Combining all classes in
the induced service would lead to combined tuples to specify required capabilities, as
well, which would have to be mapped unambiguously, and without loss of modeling
power, to individual service instances of the orchestration. Issues would probably arise,
for example, if the same service was instantiated more than once in an orchestration
(which is otherwise perfectly fine within SENSEI). Thus, more research is needed to
develop a proper solution for such an extension.
Another area for extensions is data flow: since SENSEI focuses on process integration,

its data integration means have intentionally been left reduced to the essentials. Just as
the simplistic data structure model of the service catalog can be extended to provide
more sophisticated data integration means, e.g. common data models or ontologies,
the data flow model on the service orchestration level can also be easily extended to
include more sophisticated means. SENSEI processors (Section 9.1) may support to be
configured for smart data flows, for example to store and retrieve data to and from a
central repository instead of passing it around directly. Even more sophisticated mea-
sures could include smart caching, and automatic model differencing to only transmit

192

11.5. Summary

deltas (like the ones proposed by Kuryazov [2014] and Kuryazov and Winter [2014])
on repeatedly executed data flows. Mechanisms like this should be possible without
necessitating a change to the SENSEI metamodel. In this regard, the minimalistic ap-
proach of SENSEI towards data flow specification, and the genericness of its service
orchestration language in general, as well as clear separation of concerns, enable these
potentially powerful code generation and automation facilities.
Other alternatives for data flow semantics have been considered, such as that of

YAWL [Hofstede et al., 2010]. There, all data is passed around in a predefined (but
extensible) XML format. Data is stored in variables defined on the net level, which
can get passed to and from variables of task instances (variables roughly correspond to
ports in SENSEI, nets to orchestrations, and task instances to service instances). What
data gets passed on exactly is specified through XPath expressions, providing a very
powerful means to manipulate (e.g. filter, transform) data. A similar approach could
be envisioned for the software evolution domain, using GXL [Winter, Kullbach, and
Riediger, 2002] as common data format, or TGraphs with GReQL [Ebert, Riediger, and
Winter, 2008] for query expressions. However, this also introduces a comparatively
high degree of complexity, that, following the overall SENSEI design, should not be
visible on the service level, rather to be implemented as a component. While the YAWL
approach may be better at facilitating ad hoc data manipulation, its XPath expressions
used for data manipulation are bound to particular nets, and thus not available for reuse,
in contrast to SENSEI.
In general, SENSEI does not offer any sophisticated, out-of-the-box means for data

routing and manipulation. Another way to think about these aspects is in the sense
of enterprise integration patterns, especially message routing patterns like splitters and
aggregators [Hohpe and Woolf, 2004, pp. 259ff]. In SENSEI, such functionalities have
to be expressed as services, explicitly, and must then be implemented as components.
As has been said before, this is actually desirable as it promotes reuse. Additionally, it
facilitates simplicity, as it does not necessitate the introduction of special concepts for
these purposes, embracing the “everything is a service” spirit, instead.
In fact, SENSEI transformers work exactly this way (so it could be argued that there is

some support, after all). Just like they are intended to be collected into libraries of stan-
dardized services and corresponding, reusable components, a SENSEI library to support
routing patterns could easily be created. Those patterns that can be realized in a generic
fashion (i.e. independent of concrete data formats used by different components, as
opposed to transformers), would form a static library that does not grow over time, but
rather contains a small, fixed set of generally useful data routing components. Middle-
ware implementing enterprise integration patterns already exist, for example Apache
Camel [Apache Camel 2020], so it should be easy to define the patterns in terms of
SENSEI services, and create corresponding components that simply wrap around the
preexisting middleware implementations.

193

CHAPTER 12
Service-Component Matching

The key design aspect of SENSEI is the strict separation of services and components (re-
call the overview given in Chapter 9). The abstraction from implementation details and
technical interoperability issues allows domain experts to model processes in clearer,
simpler language that is close to the problem domain. Of the objectives described in
Section 1.2, this mainly facilitates flexibility, by making it substantially easier to modify
and evolve orchestrations, and thereby toolchains. On the other side of the separation
line, the structure imposed by SENSEI on components implementing services promotes
encapsulation, a prerequisite for, and major driving force of, reusability.
The separation of these aspects and their associated stakeholders and concerns can

also be assumed to contribute to an increase in overall productivity. But just keeping
service and components apart is an incomplete solution. Within the clear confines of
the structure established by SENSEI on both ends, there also needs to be a bridge that
allows to establish links between services and implementing components. This is the
purpose of the component registry, which stores these implementation relationships.
Capabilities are once more an indispensable means to make them sufficiently specific.
Notice that the component registry does not contain the actual components in terms

of their source code or binary artifact, but rather references them, and houses metadata.
How and where the actual artifacts are stored is implementation-specific – SCAffolder
uses Maven coordinates [Apache Maven 2020], and relies on corresponding artifact
repositories to retrieve artifacts on demand.
It therefore exists firmly on the conceptual side of SENSEI, and makes up the lower

layer of its metamodel. On the modeling level, however, concrete instances of compo-
nent registries may contain target platform-specific information. Also, a single compo-
nent registry must not contain components designed for different target platforms, as
this would preclude their integrated use in toolchains1.

1The interpreter implementation SNOrcInS does not have this restriction, see Section 14.5.

195

12. Service-Component Matching

Component Service Capability Tuple

JavaFE Parse [Java]
COBOLFE Parse [COBOL]
JavaMetricCalculator ExtractStructure [NoChoice]

CalculateMetric [SLOC, Java, File]
[SLOC, Java, JavaClass]
[SLOC, Java, JavaMethod]
[SLOC, Java, JavaPackage]

MapResultsToStructure [NoChoice]

Figure 12.1: An example of the service-component mapping table of a component
registry for the base metric calculation example.

The information stored in the component registry is used to automate a large part
of the toolchain implementation phase of the toolchain-building process (Section 3.1).
It is the main artifact for tool developers aiming to either create new tools as SENSEI
components, or adapt existing tools. Measures are taken to keep the required overhead
minimal, so that the extra effort does not become an impediment for adopting SENSEI.
This chapter introduces the metamodel concepts that define the component reg-

istry (Section 12.1). As the title indicates, the main focus is on the process of service-
component matching, which is not as trivial as just looking up entries in the component
registry; several constraints regarding capabilities, restrictions, and data compatibility
have to be taken into account. Therefore, Section 12.2 provides a high-level picture of
the process of finding compositions, i.e. sets of components that can be integrated into
toolchains in accordance with given orchestrations.
Solutions to the composition finding problem are prerequisites to generating tool-

chains for service orchestrations. The actual code generation constitutes a separate,
downstream step in the overall process, though. Both finding compositions, and gen-
erating corresponding code to constitute toolchains, is realized by SENSEI’s processors
(as introduced in Section 9.1). Their prototypical implementations are the subject of
Chapter 14.

12.1 Component Registry

In a first approximation, the component registry can be thought of as a table, with a col-
umn for components, and another for services – an example is depicted in Figure 12.1.
Each row in this table establishes a relation: the referenced component implements
the named service. This information is expected to be provided by tool developers.
Whether they want to create new components, or adapt existing tools to be SENSEI-

196

12.1. Component Registry

Figure 12.2: A view of the central component registry concepts defined in the SENSEI
metamodel.

compatible, they have to look up services that represent the functionality that is (going
to be) provided by their tools, using the catalog. This is a many-to-many relationship,
i.e. a component can implement more than one service, and a service may be imple-
mented by arbitrary many components.
Due to the abstract nature of service definitions in the catalog, components will

usually not be able to implement every possible instance of a service. Just like domain
experts select their required capabilities, and thereby instantiate services for use in
orchestrations, tool developers also specify service instanceswith provided capabilities
implemented by their components, to clearly define the extent of their functionality.
In the example, the JavaFE and COBOLFE components each implement a Parse ser-

vice instance, but with different capabilities representing the programming languages
they understand. Conversely, the Java Metric Calculator implements three service in-
stances, with support for several capability tuples.
The metamodel excerpt in Figure 12.2 shows the central concepts to represent com-

ponent registries, as well as concepts from the service catalog being referenced. Service
instances and capability tuples are also already known from the service orchestration
layer of the SENSEI metamodel (see Figure 11.1). However, entries in a component reg-
istry do not reference existing service instances from orchestrations. Rather, compo-
nent registries use the samemechanism of service instantiation as service orchestrations
do, but for a different purpose. While service instances and capability tuples contained
in orchestrations on the on hand, and in component registries on the other hand, may
be correlated, such relations are never persisted so that orchestrations and registries
remain independent artifacts. This is important because orchestrations are evolved by

197

12. Service-Component Matching

domain experts, while component registries are maintained by tool developers – es-
tablishing persistent links would violate separation of concerns, and require to update
elements outside of the area of responsibility of either stakeholder group to preserve
consistency. Correlating service instances of orchestrations to service instances de-
clared by components in registries is a dynamic process: that of finding compositions,
which will be detailed in Section 12.2.
Besides the class ComponentRegistry (which merely acts as a container), there are

three concepts specific to this layer in the metamodel:

Components are, unsurprisingly, the main concept for registries, and serve as anchors
for its entries.

Artifacts describe metadata related to binaries manifesting the referenced compo-
nents.

DataDefinitions map the abstract data structures defined in the service catalog to con-
crete, technical means chosen to represent the data appropriately.

Each will be described in more detail in the following.

12.1.1 Components

Components represent entries in the component registry. As stated before, registries
only reference the actual implementations in terms of executables or other artifacts,
and merely contain metadata about them. Components are identified by a name. The
content of the location attribute is target platform-specific – that means that the SENSEI
processor implementations determine its exact syntax and semantics. It is meant to
carry some kind of pointer to a component’s physical representation, like a file system
reference or URI. Artifacts can be used for the same purpose and offer more structure.
The main purpose of components is to establish links to one or more services, to

express an implementation relationship. These links are not direct: similar to orchestra-
tions, services are instantiated. Therefore, components are associated to one or more
AbstractServiceInstances, or rather to basic ServiceInstances. These, in turn, are asso-
ciated with capability tuples, and by extension with capabilities, as already established
in Chapter 11.
The instantiation of services follows the same syntactical rules, but are given differ-

ent semantics in the context of components: here, they define provided capabilities.
This can be illustrated using the Q-MIG base metric calculation example again.

In the project, two parsers provided by industry partner pro et con were utilized: a
COBOL parser and a Java parser, referred to as COBOLFE and JavaFE, respectively (FE
abbreviates “Frontend”). Each parser was wrapped as an individual SENSEI component.
Another pair of tools that were used are the COBOL Metric Calculator and Java Met-
ric Calculator. The former was provided by pro et con, as well, while the latter was
developed from scratch for the project.

198

12.1. Component Registry

id = "JavaMetricCalculator"
groupId = "de.unioldenburg.ses.qmig"
version = "0.1"
type = "jar"
classifier = ""

Figure 12.3: Artifact information of the Java Metric Calculator component.

12.1.2 Artifacts

Artifacts represent binaries2 manifesting components, i.e. shared library files like Jars
or DLLs. Artifacts allow SENSEI processors to automate dependency management and
deployment. While the location attribute of Components is meant to straight-forwardly
point to an artifact, e.g. a disk or network location, the information stored in Arti-
facts is declarative, tailored towards incorporating a package and dependency manager.
SCAffolder downloads component artifacts and links them into a single toolchain appli-
cation, whereas SNOrcInS (Section 14.5) interprets the location field as URLs pointing
to REST endpoints of pre-deployed components.
Even though the SENSEImetamodel aims to be platform-independent, the attributes

supported by Artifacts are taken straight from Apache Maven [2020]. This is because
the format is very versatile, and has been adopted by several other build tools and
repository managers. It allows to refer to an artifact mainly by its id (name), groupId
(namespace), and version. In addition, a type (e.g. “jar”, “dll”, “zip”, etc.) and a
classifier (arbitrary additional information, e.g. to distinguish jar files containing bi-
naries from those bundling JavaDoc documentation) may be specified. The artifact
information stored in the component registry for the Java Metric Calculator is given in
Figure 12.3 as an example.
As already indicated, SENSEI processors are rather free in their use of this informa-

tion, and might not provide dependency management and deployment, at all. For ex-
ample, SENSEI services may also be mapped to implementations offered “in the cloud”,
following the Software as a Service model [Mell and Grance, 2011]. In this case, only
the generated composer would have to be self-hosted, while all dependencies would
be off-site. Artifact information would then not be necessary, and the location attribute
of Components could be used to point to cloud services3, e.g. a URL to a WSDL file.
Since there are these two separate mechanisms to point to the concrete compo-

2If the target platform uses a non-compiled language, the files referred to might not actually be binary
in nature, although even then, the code files are usually packaged in a single archive file, like egg packages
in Python, for example.

3Due to the fact that “service” as a term is heavily overloaded with different meanings and interpre-
tations (cmp. Section 7.2), discussing SENSEI in the context of cloud computing may become confusing.
Here, cloud service refers to the internet-accessible interface of a component, which is different from a
SENSEI service. In particular, the distinction between SENSEI services and components remains intact

199

12. Service-Component Matching

nent, SENSEI processors may even combine the two approaches, mixing components
hosted in the cloud with those available for download from an artifact repository, to be
deployed to a suitable runtime environment. Of course, the deployment could target
local infrastructure, or utilize a lower-level cloud model, again (either Infrastructure as
a Service or Platform as a Service).

12.1.3 Data Definitions

Since the service catalog (intentionally) only provides a very abstract means to describe
data structures, in addition to mapping services to components, tool developers have to
map input and output parameter types defined in the catalog to concrete mechanisms
to accept and provide data on a technical level. For this, Data Definitions are used.
Data definitions do not only have to be specified for each input and output param-

eter4, but for each possible combination of provided capability tuple with each param-
eter. This allows for different implementations of data handling for different capability
tuples without having to register different components.
A data definition has four attributes:

Format The concrete syntax and formalism used to describe the data. For example,
file formats like XML or JSON, or relational database tables.

Model The concepts and their interrelations being represented, i.e. the abstract syntax.
A metamodel or data model, consistent with definitions given in Section 8.3, and
the static parts of the definition given by Brodie [1984], respectively.

Representation The in-memory data type. This is highly implementation-specific, e.g.
SENSEI processors generating Java interfaces and code might require the class or
primitive type. Data in XML format can be represented in many different ways,
for example as plain string, with a file object, as JAXB object network, or DOM
tree.

Protocol The protocol used to provide, transport, and access the data, for example
through the local file system, over HTTP, FTP, or SOAP, or using aODBC database
connection.

The distinction provides a high degree of freedom when choosing how to imple-
ment data handling. The documentation of RedHat’s SwitchYard framework served
as an inspiration for the distinction between data format and representation [Red Hat,
2015, p. 130], and was the source of this terminology. Transformers in SwitchYard op-
erate on these two aspects of handling data. However, they lack the concepts of model
and protocol that data definitions in SENSEI possess. SENSEI transformers are used when-
ever there is a mismatch on one or more data definition levels between components

4Services instantiated in the component registry do not require and therefore do not possess ports,
which is why the parameters of corresponding services are referenced directly.

200

12.2. Finding Compositions

that are expected to exchange data (which is determined by there being a data flow
between the corresponding service instances in an orchestration).

SENSEI processors (Section 9.1) may only require a subset of these informations.
Standard mechanisms for data formats, representations, and protocols may be imposed
on tool developers. For example, a particular implementation may require that all data
is expressed in the Graph Exchange Language GXL [Holt, Winter, and Schürr, 2000]
(format), read from and written to corresponding text files on the local hard disk, or
made available on an FTP server, e.g. in a distributed setting (protocol), passed into
components as JAXB objects, or Service Data Objects [Resende and Feng, 2007] (rep-
resentation). A plethora of technologies already exists, each covering one or more of
these aspects of handling data. SENSEI makes no stipulations in this regard, so imple-
mentations may choose freely which to utilize, prescribe for use by components, or
leave open for transformers to handle in case of a mismatch.
In addition, a fixedmapping of catalog-defined data structures to standard data mod-

els may be used, using SEON (Software Evolution ONtologies, Würsch et al. [2012]),
for example. These data integration issues were left out of the scope of SENSEI, inten-
tionally, and it was designed in a way that allows it to be complemented with existing
solutions in this domain. As has been stated before, SENSEI nevertheless will work fine
without a fully harmonized data model standard or ontology for the whole field of
software evolution, employing reusable transformers instead. Adopting a standardized
data model may lead to tight coupling and obstruct evolution of individual components
[Josuttis, 2007, p. 38-39].
The data definition mapping allows for a high degree of freedom for SENSEI proces-

sor implementations: On one end of the spectrum, they may choose to provide the
full range of flexibility to tool developers, by making no fixed assumptions on any of
the dimensions of data definitions. This will incur a higher amount of effort required,
though in the long term, reusability of components, and transformers in particular, is
expected to counterbalance this, at least partly. On the other end of the spectrum, all
aspects may be prescribed with standardized means and models, saving effort and dis-
pensing with data definitions entirely, but also considerably constricting component
development and evolution.

12.2 Finding Compositions

The component registry completes the SENSEImetamodel: while only a service catalog
is prerequisite to creating service orchestrations, complementing it with a component
registry allows to generate integrated software evolution toolchains using SENSEI proces-
sors. The process can be broken down into twomain stages: first, finding compositions,
and then generating composer code. This section is about the former, i.e. the process
of matching all service instances of an orchestration to suitable components, consider-

201

12. Service-Component Matching

ing all constraints arising from required capabilities, restrictions, data flow connections,
and data structures.
Generating composer code is bound to the execution semantics of orchestrations,

which have already been described in Chapter 11. An implementation of a composition
generator is described in Chapter 14. An overview of the service-component matching
semantics that are the basis for implementing composition finders will be given in the
following sections. Finding compositions can be broken down further into three steps,
as done by Meier [2014a, p. 7]:
1. Checking orchestration consistency – whether the provided orchestration sat-
isfies certain prerequisite conditions, such as being free of contradictions that
would make it impossible to execute under any circumstances (Section 12.3), e.g.
when data flows connect ports typed with irreconcilable data structures.

2. Checking component availability – whether there are components in the registry
for all the service instances in the orchestration, considering all required capabil-
ities (Section 12.3.1).

3. Checking component compatibility – whether the components implementing
the service instances in the orchestration implement ports connected by data
flows with compatible formats and technologies (going beyond conceptual data
structures and comparing actual implementation data types mapped to them by
concrete components), and if not, whether data transformers can be inserted into
the data flows to convert the data appropriately (Section 12.3.2).

Notice that the first steps analyzes orchestrations, only, the second step relates an or-
chestrated service instances and required capabilities to registered components and
provided capabilities, and the third step operates on data definitions of components,
i.e. on the registry level, only. The steps do not represent a defined order; the overall
problem can be expressed declaratively. For example, if implemented in Prolog, as
described by Meier [2014a], its backtracking algorithm will work through these steps,
but potentially return to previous decision points in the solution space if it runs into an
impasse.
If all checks are positive – and performed constructively – a composition results as a

by-product (essentially a counterexample to the negation of the original constraint solv-
ing problem), and the composition generator takes over. The three steps are explained
in the following.

12.3 Orchestration Consistency

The goal of the consistency check is to ascertain whether an orchestration is executable.
This depends on data flows connecting ports, the compatibility of the associated data
structures, taking into account all possible combinations of capability tuples on all
service instances, and the restrictions, which in turn have an effect on data structures.

202

12.3. Orchestration Consistency

Base Metric Calculation

Parse

CalculateMetric

ExtractStructure

MapResultsToStructure

[Java] [COBOL]

[Java, SLOC] [COBOL, SLOC]

[Java]

[Java] [COBOL]

[COBOL]

Figure 12.4: The base metric calculation example represented as a network of service
instances with their capability tuples.

Orchestration consistency is also part of the semantics of service orchestrations,
which were described in Chapter 11. However, consistency properties were only ad-
dressed briefly, implicitly, or not at all. This is because they become truly relevant in
the context of service-component-matching, and are therefore discussed here.
The consistency check particularly relies on required capabilities specified on or-

chestrated service instances, data flows, and restrictions. Consider Figure 12.4: it de-
picts the service instances used in the orchestration for the base metric calculation
example in a simplified manner. For every service instance and every capability tuple
defined for it, a circle has been drawn. Because different capability tuples of the same
service instance may be mapped to different components, a decision has to be made
at runtime regarding the appropriate capability tuple, each time a service instance is to
be invoked. The lines represent those decisions (not data or control flow).
Having an intuitive understanding of the capability tuples’ semantics, it seems clear

that only two ways through this network are sensible, the ones leading straight down:
one represents the analysis of Java code, the other the analysis of COBOL code. Paths
alternating between the two sides would make no sense, because, for example, a metric
calculator for COBOL requires COBOL as input, and will not work if it is fed by a Java
parser.
The objective of the consistency check is to come to this conclusion automatically,

yet an automated mechanism does not have the intuitive insight described here. And
while the matching capability names are no accident, formally, it must still be assumed
to be purely coincidental: capabilities and capability classes are defined for each ser-
vice individually, and may have completely different meanings. Data structures asso-
ciated with the input and output ports of services are different, as their scope is the
complete service catalog, i.e. if an output port type is AST, then any connected input
ports must also be of that type, or a super-type.
Of course, the more capability tuples and service instances an orchestration con-

tains, the more decision points there are. The declarative specification of required
capabilities allows orchestrations to hide this complexity. In fact, even Figure 12.4 is

203

12. Service-Component Matching

[Java] [COBOL]

[Java, SLOC]

[Java]

[Java] [COBOL]

[COBOL]

[Java] [COBOL]

[COBOL, SLOC][Java, SLOC] [COBOL, SLOC]

[Java]

[Java] [COBOL]

[COBOL]

[Java] [COBOL]

[Java]

[Java] [COBOL]

[COBOL]

[Java] [COBOL]

[Java]

[Java] [COBOL]

[COBOL]

[Java] [COBOL]

Base Metric Calculation

Parse

CalculateMetric

ExtractStructure

MapResultsToStructure

Figure 12.5: The complete decision tree, representing all possible orchestration trails
through the base metric calculation example.

deceivingly compact. Expanding all possible decision points and their combinations
leads to the concept of orchestration trails: paths through the network, determined by
the decisions taken at every node. Depicting all possible orchestration trails results in
decisions trees like the one depicted in Figure 12.5.
Using the concept of orchestration trails, consistency can be described more ac-

curately: given input data at runtime, it should always be possible to determine the
appropriate orchestration trail to take. If there is exactly one for all combinations of in-
put kinds, the orchestration is strongly consistent. In practice, however, orchestrations
may be designed in a way that not all combinations of input kinds actually make sense.
Therefore, it is sufficient to have at least one input kind combination that has a valid
orchestration trail; such orchestrations are weakly consistent. If no orchestration trails
can be taken, ever, then the orchestration is said to be invalid. A special case arises if
there are combinations of input kinds for which there are multiple orchestration trails,
i.e. the orchestration is underdetermined. This might be due to insufficient informa-
tion in the service catalog (missing restrictions), or there might be cases where, for
certain data port allocations, two or more capability tuples become interchangeable.
The former case represents modeling errors on the part of catalog maintainers, while
the latter case may not be an error at all. However, it introduces non-determinism, i.e.
the choice made at runtime is implementation-specific (and may be random).
Checking consistency therefore boils down to testing all possible combinations of

input data kinds of an orchestration, each leading to a selection of capabilities, which
may restrict the data types of some ports, which may select capabilities of service in-
stances connected by data flows – and so on. The following concepts are used to
further describe the composition finding process for implementation by SENSEI proces-
sors like the CompositionFinder [Meier, 2014a], that perform these consistency checks
automatically:
Restriction Consistency. Service restrictions (Section 10.3) are defined in the service

catalog, and define relationships between the data structure types accepted on

204

12.3. Orchestration Consistency

Base Metric Calculation

Parse

CalculateMetric

ExtractStructure

MapResultsToStructure

[Java] [COBOL]

[Java, SLOC]

[Java]

[Java] [COBOL]

[COBOL]

[Java] [COBOL]

[COBOL, SLOC][Java, SLOC] [COBOL, SLOC]

[Java]

[Java] [COBOL]

[COBOL]

[Java] [COBOL]

[Java]

[Java] [COBOL]

[COBOL]

[Java] [COBOL]

[Java]

[Java] [COBOL]

[COBOL]

[Java] [COBOL]

Figure 12.6: The decision tree of Figure 12.5, with paths whose ports are not assignment
compatible crossed out, leaving only two valid orchestration trails.

service parameters and the capabilities the service defines. Inherently inconsis-
tent restrictions on a service, i.e. containing contradictions are considered an
error on the part of catalog maintainers.

Assignment Compatibility. This property actually has been introduced before, but
with a “preliminary” definition. In the formal model, it is derived with mathe-
matical rigor to reason about data structure compatibility, and hence the compat-
ibility of data ports connected by flows, taking capabilities and restrictions into
account.

Activation. This property captures the idea of capability tuples “triggering” associated
restrictions, and provide a means to obtain restricted data structures of service
parameters, given particular capability tuples.

Simple Orchestration Finding valid compositions is mainly constrained by relations
between data structures, capabilities, restrictions, and data flows, while control
flow can be ignored (assuming some limiting conditions). Simple orchestrations
are basically orchestrations stripped of their explicit control flow constructs.

Orchestration trail At runtime, a single capability tuple has to be selected from each
service instance in an orchestration. This induces a decision tree; each path from
root to one of the leafs is called an orchestration trail, representing a possible
combination of capabilities invoked at runtime.

As an illustration of what this process achieves, consider Figure 12.6: it depicts the
decision tree shown earlier again, but with those paths, where the choice of capability
tuples would lead to assignment incompatibilities on some data flow-connected ports.
In this example, the kind of input data (either Java or COBOL source code), which
is associated to capabilities via restrictions, allows to unambiguously choose exactly
one capability tuple for each service instance, i.e. an orchestration trail, as elaborated
earlier.

205

12. Service-Component Matching

Having established orchestration consistency, the next steps are to check for compo-
nent availability (Section 12.3.1), and then component compatibility (Section 12.3.2).

12.3.1 Component Availability

In terms of the SENSEI metamodel layers, the first step in finding compositions was
constrained to service catalogs and service orchestrations. Orchestration consistency
is a necessary precondition, but it does not establish any actual links between orches-
trated service instances and service-implementing components. The second step of the
process, component availability checking, does just that.
For this, the component registry layer of the metamodel has to be taken into ac-

count. In the end, this step yields amatching function that assigns concrete candidates
for components to be used for each orchestrated service instance, based on the registry,
and required and provided capabilities. In addition, superfluous capability tuples are
filtered out: Theoretically, an orchestration could require capability tuples that are not
part of any valid, executable orchestration trail. For example, the base metric calcula-
tion orchestration requires parsing capabilities for Java and COBOL. It would be possi-
ble to further require that the CalculateMetric service be able to also work on another
programming language, e.g. Scala. Since Scala cannot be parsed, this capability to
calculate metrics on Scala will never be reached, and therefore, no component needs
to be mapped to it.
Through the matching function, concrete sets of components are given that provide

all the capabilities required by an orchestration. However, this does not necessarily
yield a valid composition: Orchestrations define data flows, along which the compo-
nents matched to service instances and their capability tuples will need to exchange
data. While orchestration consistency established that connected service ports are
compatible on a conceptual level, introducing components and their data definitions
requires to ensure compatibility on a technical level. To return to the base metric cal-
culation example used before, a Java parser component is always expected to produce
a Java AST, and a Java metric calculator needs to be able to consume it, by definition
(in the service catalog), but the former might actually produce an XML file, whereas
the latter expects a particular binary format. Selecting a candidate component for each
service instance in such a way that this technical compatibility holds is done in the last
step of the composition finding process.

12.3.2 Component Compatibility

The components selected for a composition need to be compatible in terms of the data
formats they use to represent the data they need to exchange as specified by data flows
connecting ports of the corresponding orchestration’s service instances. Given a set of
candidate components, even if data formats on connected ports are not directly com-
patible, it may still be possible to form a working composition out of the components,

206

12.4. Summary

because SENSEI has transformers. If there are transformer services defined – and cor-
responding components are available – that can translate one service’s output format
into the required input format of another, data compatibility is satisfied. It is even pos-
sible to chain multiple transformers to achieve the desired effect, and the formal SENSEI
model accounts for this.
A transformer service is simply a service with exactly one input parameter and

exactly one output parameter, with the additional requirement that the input parameter
must be of a subtype of (or of the same type as) the output parameter. This relation
must be maintained under restrictions. The rationale is that transformers should not
make any changes on the level of the data’s semantics. The data structure cannot really
be changed, except by widening the type (i.e. omitting details from the output which
were contained in the input).
Technically, the substructure relationship between input and output parameter is

a prerequisite to insert transformer service instances into data flows of orchestrations.
In the formal SENSEI model, transformer injections are introduced, which modify an
orchestration (preserving full assignment compatibility) by

1. removing an existing data flow between two ports,

2. adding a transformer service instance, and

3. adding two new data flows to reconnect the severed link via the transformer.

Using transformer injection, orchestrations that cannot be implemented directly,
because no directly compatible components are available, can be extended to yield
a functionally equivalent orchestration. Therefore, a composition found for the new
orchestration, i.e. one that also contains a match for the injected transformer, also
satisfies the specification represented by the original orchestration.
If all three steps succeed, i.e. all constraints can be satisfied, then there is a com-

position of components available in the registry, that can be used to implement the
given orchestration. Using constructive proof techniques, this process will also name
the necessary components that together form such a composition, in the form of “wit-
nesses” to the solution found. This is exactly what has been implemented in Prolog by
[Meier, 2014a] in her CompositionFinder.

12.4 Summary

This chapter described the lowest level of the SENSEI metamodel, the component reg-
istry. Arguably, this is the simplest of the three layers, and can basically be described
as a table that lists components together with the services they implement. However,
together with SENSEI’s capabilities, it forms the basis for a very powerful mechanism
which allows to automatically map service instances in an orchestration to implement-
ing components. As has also been explained in this chapter, this is not as trivial as

207

12. Service-Component Matching

looking up components in the table that is the registry, because the way an orchestra-
tion is modeled, particularly in terms of required capabilities and data flows, constitutes
a considerable amount of constraints that have to be satisfied in order for an overall
composition of components to be properly executable.
Being able to automate this step is an important cornerstone of SENSEI, as it ensures

that the process of specifying toolchains in terms of services remains free of implemen-
tation issues. Without this, domain experts would be forced to descent into the more
low-level, technical world of components, would need to consider individual data for-
mats, and pick transformers to manually arrive at a valid composition, impeding the
ability to make changes quickly, and without knowledge of implementation technolo-
gies used by tools or for integration.
Instead, the SENSEI approach allows to keep service level implementation-agnostic,

and facilitates the provision of working, integrated toolchains implementing the spec-
ified functionality by the press of a button. The feasibility of this approach to auto-
matically match service orchestrations with component compositions has been shown
by Meier [2014a] in her thesis, supervised by this author. Her Prolog-based Composi-
tionFinder has been successfully applied to find compositions for SENSEI models, and
it integrates itself as an additional processor (Section 9.1) in the overall architecture.
While the toolchain-generating processor SCAffolder (Chapter 14) initially relied on a
simplified, internal composition-finding algorithm, the alternative interpreter solution
SNOrcInS (Section 14.5) fully relies on the CompositionFinder.

208

CHAPTER 13
The SENSEI Editor

SENSEI is built around its metamodel (Section 9.2), which defines the structure and in-
terrelationships between its three main artifacts: service catalogs (Chapter 10), service
orchestrations (Chapter 11), and component registries (Chapter 12). Service catalogs are
filled by catalog maintainers, who model services and potential capabilities relevant to
a given domain. Domain experts then choose services along with required capabilities
from such a catalog, and coordinate these service instances into orchestrations, which
represent the processes to be automated by integrated toolchains. Tool developers fill
component registries, also referring to services from a catalog, to establish which of
their tools, wrapped as SENSEI components, implement which services, and provide
which capabilities. These three kinds of artifacts together form SENSEI models.
The SENSEI metamodel also serves as the data model for storing these artifacts, but

only its abstract syntax (see Section 8.3). To actually be able to create and modify
SENSEI artifacts, a concrete syntax is needed to depict them, and, more importantly, an
appropriate editor that enables its users to view and manipulate SENSEI models. In line
with the objectives of this thesis (Section 1.2), particularly to increase productivity, such
an editor needs to exhibit a reasonable level of usability. Very small SENSEImodels can
be created with little tool support, e.g. using a programming interface, or a simple text
editor. This approach was used during early testing and prototyping of SCAffolder and
the CompositionFinder (Chapter 14), but it quickly becomes infeasible for anything but
the most trivial models. More to the point, this would be completely inappropriate
for domain experts, who are generally neither proficient nor comfortable with such
low-level, technical interfaces.
At the same time, domain experts are expected to model orchestrations, which, on

the metamodel-level, are the most complex of the three artifacts. This emphasizes the
need for a clear and self-explanatory concrete syntax. A graphical language is highly
desirable, because SENSEI orchestrations have potentially complex control flow and

209

13. The SENSEI Editor

SENSEI

Catalog Maintainer

Domain Expert

Tool Developer

Editor

Service Catalog View

Service Orchestration View

Component Registry View

1.1 Service
Identification

Service
Definition

1.2 Service
Orchestration

Component
Registration

Figure 13.1: Use cases addressed by the SENSEI editor.

separate data flow. A textual notation requires to serialize all contained information
in some form, making important relationships much less apparent, whereas a visual
representation provides a natural immediacy. In fact, Chapter 11 already established a
graphical concrete syntax for service orchestrations.
An editor for SENSEI models needs to address the concerns of three different user

roles – catalog maintainers, domain experts, and tool developers, and the correspond-
ing artifacts they are interested in modeling. So actually, SENSEI requires three editors,
one for editing service catalogs, one for orchestrations, and one for component reg-
istries. Having to use different editors could be a productivity impediment, though,
if there are users who take on more than one role in a project, e.g. domain experts
who occasionally also act as catalog maintainers to add definitions for highly project-
specific services, or technically versed domain experts who also take on responsibilities
of tool developers by creating project-specific tools, or wrapping existing ones in SENSEI-
compatible components. In small projects, in particular, this would be a very common

210

13.1. Technology Evaluation

case. Also, domain experts need to browse service catalogs during the service iden-
tification step of the toolchain-building process (see Section 3.1). Therefore, another
way to address the individual user roles is a single, integrated editor that offers separate
views for each of the artifacts, between which it is easier to switch. Figure 13.1 depicts
the roles of SENSEI and their corresponding use cases for the SENSEI editor and its views
(recalling Figure 9.5 on page 157; the numbered use cases refer to the corresponding
toolchain-building process steps).
In summary, proper editor support is viewed as a necessary prerequisite for apply-

ing and evaluating SENSEI, and an essential part of the overall approach, in general. The
metamodel-centric nature of SENSEI facilitates the use of model-driven approaches to
building editors, which are able to automatically generate the basic infrastructure for
such applications. This has the potential to significantly reduce the manual implemen-
tation effort required, and therefore supports rapid prototyping. The editor developed
as part of this thesis is meant to 1) contribute to the evidence of SENSEI’s practicability,
and 2) enable its application to non-trivial, practical use cases.
In the following, this chapter will motivate fundamental design decisions by com-

paring different approaches and available model-driven techniques for building an ap-
propriate editor in Section 13.1. Next, Section 13.2 describes the SENSEI editor imple-
mentation. An example of how the integrated editors are used in practice is given in
Section 13.3, before concluding the chapter with a summary in Section 13.4.

13.1 Technology Evaluation

Based on the requirements for a SENSEI editor described before, and a pilot study per-
formed by Meier [2014b], it was decided to use Eclipse Sirius [Sirius 2020] as the basis
for its development. This section briefly describes the core concepts of Sirius, and then
discusses alternatives, and why they were considered less suitable.

13.1.1 Eclipse Sirius

Sirius allows the creation of visual DSLs and corresponding editor support in a declar-
ative manner, based on an existing EMF [Steinberg et al., 2008] metamodel. While the
SENSEImetamodel had been defined in the TGraph technical space ([Ebert and Franzke,
1995]; also see Definition 8.7), both EMF and TGraph metamodels can be specified us-
ing MOF-subsets (Ecore and grUML, respectively), and there is a bridge between EMF
and TGraphs implemented in JGraLab [Heckelmann, 2010].
A comprehensive documentation of Sirius can be found online [Sirius Specifier

Manual 2020]. The core concepts are as follows: Editors are specified declaratively,
by modeling viewpoints, representations, and tools for manipulation. References to

211

13. The SENSEI Editor

concepts in the underlying metamodel are established by OCL/Acceleo1 [Acceleo
2020] expressions. The definition of one or more editors is contained in specification
projects, which contain specification models. Specification models are viewed and
edited through a tree view; a screenshot of the specification model defining the SENSEI
editor opened in Sirius is shown in Figure 13.3(a) – it will be further explained in Sec-
tion 13.2. Note that the screenshots in Figure 13.3 are not depicting the SENSEI editor
itself, but the “meta-editor” of Sirius: It may be described as an editor to edit editors, a
notion that can lead to some confusion.
The top-level elements in a Sirius specification model are viewpoints. They allow

to define different views onto the same underlying metamodel, and therefore satisfy a
major requirement for the SENSEI editor. Viewpoints contain representations, which
are used to specify what model elements should be visualized, and how. Representa-
tions contain mappings that select elements from the model being edited, and define
how they should be visualized in the editor. Styles allow to specify fonts, labeling
texts, icons, colors, etc. to be associated with the representation of a particular model
element. Tools are used to specify user actions to manipulate the model, e.g. a con-
text menu entry to create new elements, or edit or delete existing ones. Validations are
used to define model consistency constraints, and messages that are reported to users if
they are violated. Java extensions register functionality implemented in Java to be used
in Acceleo expressions. This can be used to do computations on the model which are
too complex to be adequately expressed in OCL/Acceleo alone.

13.1.2 Alternative LanguageWorkbenches

Sirius can be considered a language workbench (Fowler [2005a]; also see Section 8.6),
a class of tools that help author DSLs and corresponding editor support. The nature of
the SENSEI metamodel, the fact that it is pre-existing, and the desire to use a graphical
language for specifying orchestrations, precludes some language workbenches from
being used from the outset. E.g., language workbenches aimed at textual DSLs, such
as Xtext [Xtext - Language Engineering for Everyone! 2020], are not applicable. Also,
frameworks which can use the MOF-based SENSEI metamodel more or less directly
are to be preferred. This mostly excludes internal DSLs, i.e. languages that use a
general-purpose programming language as host to utilize existing tool support. A sim-
ilar approach that remains are UML profiles, as the host language is a graphical one,
and UML lives in the technical space of MOF.
Meier [2014b, p. 26] follows Kühne and Wetzel [2006] in distinguishing these ap-

proaches as heavyweight (creating DSLs from scratch), and lightweight (extending an
existing language, particularly using UML profiles). For evaluating the lightweight
route, IBM Rational Software Architect and its UML profile-building facilities were

1Acceleo is an implementation of the OMGMOFM2T standard [MOFM2T 1.0 2008], which contains
an OCL dialect.

212

13.1. Technology Evaluation

chosen. Tools considered for the heavyweight approach included MetaEdit+ [Kelly,
Lyytinen, and Rossi, 1996; MetaCase, 2020],Microsoft DSL Tools [Microsoft, 2016], Jet-
Brains Meta Programming System (MPS) [Pech, Shatalin, and Völter, 2013], and Eclipse
EMF andGMF [Graphical Modeling Framework 2020; Steinberg et al., 2008], choosing
the latter.
Using both approaches and their corresponding tools, the same, very small and

simplistic graphical editor was realized [Meier, 2014b, pp. 28-36]. The results were
then compared according to the following criteria:
• quality and extent of the tools’ documentation,

• customizability of the editors to SENSEI-specific needs,

• visual adequacy of the concrete graphical syntax,

• complexity and effort required for the example’s realization, and

• licensing issues that may limit the way the respective tools can be used.
Except for complexity and effort, using EMF/GMFwas deemed themore appropriate

choice regarding these criteria. The limited ability of creating editors that are truly
tailored to the specific needs of SENSEIwith UML profiles was found to be unsatisfactory,
and to outweigh the higher implementation effort necessary for a GMF-based solution.
The study concluded with a successful prototype implementation of the editor, but

also found that the EMF/GMF approach made it hard to extend [Meier, 2014b, p. 122].
GMF also exhibits rather poor, convoluted usability [Kolovos et al., 2010, 2009; Wien-
ands and Golm, 2009]. In a comparison of five different, model-driven frameworks
for tool / editor-building [Kouhen et al., 2012], GMF was attested the highest level of
customizability, but was found to require by far the highest effort, and its user interface
scored low in visual coherence.
Another tool that was seriously considered as the basis for the SENSEI editor was

MetaEdit+. In the study by Kouhen et al., it was found to have a remarkable lead in
terms of productivity over its competition. MetaEdit+ was found to be a very powerful
alternative, with a solid, well thought out foundation at the meta-metamodel level.
However, because of this, it also represents a technical space that is markedly distinct
from MOF-based solutions. Its adoption would have required the development of a
bridge between MetaEdit+ and the TGraph technical space, so that the JGraLab-based
SCAffolder would be able to use SENSEI models produced with editors created with
MetaEdit+. Because of this, MetaEdit+ was ultimately not chosen.
The usability and productivity issues associated with GMF have spawned new

frameworks in the MOF technical space, aimed at simplifying the editor-building task.
These include Graphiti and Sirius [Graphiti 2020; Sirius 2020]. The former builds on
the more low-level Eclipse Graphical Editing Framework (GEF), the latter directly on
GMF. At the time of the study by Meier [2014b], Eclipse Sirius had only recently been
open-sourced, and had not yet gained enough visibility, which is why it was missed
and was not made part of the evaluation. Of the two, Sirius was chosen over Graphiti,

213

13. The SENSEI Editor

Figure 13.2: Elements added to the SENSEI metamodel to make it Ecore-compatible.

based on experience reports and comparisons [Strittmatter et al., 2016; Vujović, Mak-
simović, and Perišić, 2014], and because it seemed more approachable.

13.2 SENSEI Editor Implementation

Since the Sirius framework is rooted in the EMF technical space (Section 8.7), some
additions had to be made on the metamodel-level, to account for some limitations of
Ecore. This is briefly sketched in Section 13.2.1, before Section 13.2.2 describes how
the SENSEI editor was implemented using Sirius.

13.2.1 Metamodel Extensions

To keep using the existing SENSEI metamodel as a single point of truth and basis for
both SCAffolder and associated meta-tools, as well as the SENSEI editor, it was slightly
extended to make it Ecore-compatible. The additions to the model are shown in Fig-
ure 13.2. Because Ecore only supports tree-like models, its metamodels must define
a root. This role is played by the newly added SDMRoot metaclass. Furthermore, all
model elements besides instances of SDMRoot must be contained in other model el-
ements because of the tree structure. This is modeled using composition associations.
For several model elements, such containment relations are semantically natural and
were therefore already present in the SENSEI metamodel. For other elements, this was
not necessary, at least not explicitly. For Ecore compatibility, explicit containment re-
lationships had to be added in these cases: three composition associations connect
SENSEI’s “top-level” concepts to the root metaclass, and four additional relationships
were required to associate further metaclasses with their containers. This is essentially
adding redundant information to SENSEI models.
The SENSEI metamodel (in XMI format), extended in this fashion, remains to be

used as the source for the JGraLab generated API. The Ecore metamodel is not derived
from the XMI representation directly, but rather from the TGraph schema produced by

214

13.2. SENSEI Editor Implementation

(a) Sirius specification editor. (b) Service instance creation tool.

Figure 13.3: Screenshots of Eclipse Sirius, and the viewpoint specification project that
defines the SENSEI editor.

JGraLab. This ensures that SENSEI models in Ecore format (instances of the Ecore meta-
model produced this way) can be converted into TGraphs conforming to this schema.
The converter itself also had to be adapted. As pointed out by Meier [2014b, pp. 88-
90], the Ecore-to-TGraph bridge that is part of JGraLab only allows to transform a model
together with its metamodel in either direction. However, this is mostly an issue of an
unfortunate interface design. A modified version of the Ecore-to-TGraph converter, that
allows to provide a pre-existing metamodel (TGraph schema), and only run the trans-
formation on the model level, has been developed. SDMTGraph, a Java class library
containing an API generated from the SENSEI metamodel using JGraLab, also provides
the ECoreIO class as facade to this converter, which in turn is used by SCAffolder to
load SENSEI models in Ecore format. The generation of the Ecore metamodel can be
triggered using the xmi2tg Maven plugin: with the property ecore set to true, it will
output an Ecore metamodel file in addition to the TGraph Java API. The build process
of the SDMTGraph Maven project is set up to do just that.
The resulting Ecore metamodel is the basis of an EMF project. Similar to JGraLab,

EMF generates Java code that provides an API to work with instances of the metamodel.
The EMF project and the code it generates are the foundation for the SENSEI editor.

13.2.2 Implementation with Sirius

This section describes how the SENSEI editor was modeled with Sirius, using the con-
cepts given in Section 13.1.1. This is meant to convey the general idea of its inner

215

13. The SENSEI Editor

workings, and not as a full reference of the SENSEI editor implementation. The features
of the SENSEI editor are described in Section 13.3 from a user’s point of view, instead.
The Sirius specification model defining the SENSEI editor is contained in a specifi-

cation project. A screenshot of the model, opened in Sirius, is shown in Figure 13.3(a).
For the SENSEI editor, four viewpoints are defined. Three of these correspond to the
main layers of the SENSEI metamodel (service catalog, service orchestration, and com-
ponent registry), and therefore also to the views presented initially in Section 9.4, ad-
dressing the different tasks of catalog maintainers, domain experts, and tool developers.
For practical reasons, there is an additional overview viewpoint, used, for example, to
create or delete orchestrations. This is not possible in the orchestration view, because
it is bound to a single service orchestration. The need for such an additional editor was
already recognized by Meier [2014b, pp.84-85, 108–109]; the first prototype included
the similar orchestration list editor.
Each viewpoint has a single representation definition: service orchestrations are

represented graphically, specified by the service orchestration diagram representation.
Each of the other viewpoints contain a tree-based representation. As an example of
how the metamodel elements are mapped to graphical elements in the editor, in Fig-
ure 13.3(a), the service catalog tree representation is expanded to reveal its two top-level
mappings that are used to group all data structures and services, respectively. Nested
within the latter are three more nodes: the first, also labelled “Services”, contains style
definitions, e.g. font, a labeling text, an icon, colors, etc. The second element is an-
other mapping, which contains an OCL candidate expression that selects all services
in a given catalog: self.services->sortedBy(name) (self refers to an in-
stance of ServiceCatalog). At runtime, this creates a node in the tree view for each
service returned by that expression. The last element defines a tool to create new ser-
vices in the model.
There are also several Java extension nodes, such as sensei.PowerSet. They register

functionality implemented in Java to be used in Acceleo expressions. For example, the
class PowerSet contains methods that return all possible capability tuples for a given
service instance (excluding the ones already defined on it, if that is desired). They are
used to present the user with a selection dialog when creating new capability tuples in
an orchestration, or for a registered component.
Figure 13.3(b) shows a subtree of the specification model that defines the tool for

creating service instances in the orchestration view. The child nodes at the top repre-
sent variables that provide context, e.g. the variable container refers to the parent
model element – it could be the orchestration being edited itself, but also a control
flow construct nested within it. The Select Model Element Variable has the effect of
presenting a dialog to the user when using the tool, which allows him to select a service
from the catalog that should be instantiated in the orchestration.
The Begin node is used to define what changes to the model should be made in re-

sponse to the user having selected and used this tool, using model operations. Change
Context essentially decides to what element the self keyword will refer to in all ex-

216

13.3. Using the SENSEI Editor

Figure 13.4: Screenshot of the integrated SENSEI editor views with a model of the base
metric calculation example being opened. The service catalog view is on the left, and
the graphical orchestration view is seen in the center.

pressions of elements nested below. The Create Instance node adds a new ServiceIn-
stance object to the model. Its nested Set operation assigns a reference to its service
attribute (to the service specified by the user). Then, there are two For loops. They
iterate over the service’s input and output parameters, respectively, and create corre-
sponding ports for the service instance. This way, the user does not have to create them
manually, and by not allowing to manually modify ports, at all, the model is ensured
to always remain consistent in this regard.
While these are just a few examples, the overall SENSEI editor is implemented along

these principles, and, save for a few snippets of Java code, fully defined using the
declarative model of Sirius. The following section describes the resulting editor, and
how to use it.

13.3 Using the SENSEI Editor

Sirius produces editors that can be deployed as Eclipse plugins, or as standalone,
Eclipse-based applications. A screenshot of the SENSEI editor is shown in Figure 13.4.
On the left, the service catalog view is open and shows the contents of the Q-MIG
Catalog (Chapter 15) contained in the currently opened SENSEI model. The window in
the center is the orchestration view, showing the Calculate All Metrics orchestration.
Part of this view is the tool palette on the right. At the bottom is the properties window,
which shows attributes and their values of elements selected in the editor window
currently possessing the focus. In this screenshot, the component registry view is not
open, but it will be shown later in this section. All the basic features of the underlying

217

13. The SENSEI Editor

Eclipse rich client platform are available, so for example, all these windows can be
rearranged, docked to a side, hidden in a tray, or maximized.
Using the base metric calculation as a running example (see Section 2.2), the use

of the SENSEI editor is explained in the following. Section 13.3.1 begins with describing
how to create and configure a modeling project, needed as a basis for all tasks of the
SENSEI-supported toolchain-building process. Then, the functions of each of the main
views are explained, starting with the service catalog view (Section 13.3.2), followed
by the orchestration view (Section 13.3.3), and concluding with the component registry
view (Section 13.3.4).

13.3.1 Creating SENSEI Modeling Projects

As an Eclipse-based application, the SENSEI editor has the same concepts of workspace
and projects as the well-known IDE has. So, to get started, a modeling project must be
created. If this project type is not directly available in the menu (File → New), selecting
Other will open a dialog with all available project types to choose from. The modeling
project is in the Sirius folder. The newly created project contains only a single file
called representations.aird.
Next, a SENSEI model should be created in the project. The corresponding wizard

is found in the SENSEI folder and called SDM Model2. It will create a new file in the
project. Its corresponding node in the model explorer can be expanded to reveal that it
already contains an SDM Root element, which in turn has a single component registry
and a service catalog.
By default, the viewpoints defined in Sirius for SENSEImodels are all disabled. They

can be toggled in the project’s context menu by clicking on Viewpoints Selection. Users
can focus on the task associated with their roles – catalog maintainers, domain experts,
or tool developers – by selecting only the appropriate viewpoint. It is also possible
to activate multiple or all viewpoints at once, to view and edit all aspects of a SENSEI
model. The selected viewpoints are shown as child nodes of the representations.aird
file. New representations, e.g. orchestration diagrams, will appear here.
To start filling the model, representations are needed. Once the viewpoints are ac-

tivated, the associated representations become available in the project’s context menu
under Create Representation. The wizard will ask to first select a representation, such
as a service catalog tree, and then associate this with a model element, such as a Ser-
viceCatalog instance.
Note that representations can only be created for already existing model elements.

Since the initial model does not contain an orchestration, no corresponding diagram
can be created, either. To create orchestrations, an overview tree representation should

2This is derived from the commonly used file extension, sdm, which used to stand for Service De-
scription Model. The models are now simply referred to as SENSEI models, but the abbreviation of the
earlier moniker stuck.

218

13.3. Using the SENSEI Editor

Figure 13.5: Creating and editing data structures.

be created for the SDM Root element. The overview editor makes the Create Service
Orchestration action available to the user from the context menu of the model’s service
catalog. Once the service orchestration has been created in the model, a diagram
representation can be created in a second step.

13.3.2 Defining Services

When starting with an empty SENSEI model, the service catalog has to be filled first,
as orchestrations and the component registry depend on it. This is the job of catalog
maintainers, and supported by the service catalog view.
The tree editor for an empty service catalog shows only two nodes: Data Structures

and Services. They do not correspond to any model elements themselves, but serve to
organize the contents of the catalog. The tree editor can be used to create and delete
elements through context menu actions. To update attribute values, a model element
is selected in the tree, which can then be edited in the properties window. The name
of most element types can alternatively be edited directly in the tree editor by double-
clicking it.
The left-hand side of Figure 13.5 shows a screenshot of a service catalog opened

in the editor. The contents of the catalog were created for the base metric calculation
example. At the top, the data structures are shown. They appear nested in the editor
according to their sub-structure relation. In this catalog, there is a single, top-level data
structure – called Data Structure. This is not necessary, in general, but it can be useful
to have a single, top-level type that all others derive from (like Object in Java).
Figure 13.5 illustrates a sequence of actions: New data structures are created by

219

13. The SENSEI Editor

Figure 13.6: Creating and editing services.

right-clicking on either the Data Structures node, or on an existing data structure ele-
ment, to create a sub-structure of it (center). In the example, a new sub-structure of
Source Code is created, to represent COBOL code. The new data structure will appear
immediately in the tree view, and its name can be edited (top-right). Further attributes
can be viewed and modified in the properties window (bottom-right)3.
The sub-structure relationship is created automatically, as a result of invoking the

context menu action on an existing data structure. Note that representation in the
tree editor does not restrict the ability of data structures to have more than one super-
structure, as is explicitly allowed by the SENSEI metamodel. A data structure with mul-
tiple super-structures will appear multiple times in the tree view. Each visual represen-
tation refers to the same, single model element though, as can be tested by renaming
it through one node, and witnessing all other nodes representing the element instantly
change, as well. Changes in one view are also immediately reflected in all other views:
for example, if the COBOLSourceCode data structure where set to be abstract in the
properties view, the catalog tree view would refresh to show the data structure node’s
name in italics to indicate this.
Creating new services follows basically the same mechanics. Examples are shown

in Figure 13.6, with the properties view for services on the top-right, and the one for
parameters on the bottom-right. The service only has two text properties, its name
and a description. Parameters also have a boolean attribute collection, which is edited
using a check box, and a reference to its type, which can be set by clicking on the “…”-

3Starting with Sirius 4.0, an alternative to the standard properties view is provided [Sirius Specifier
Manual 2020]. The SENSEI editor was originally developed prior to the release of Version 4.0, but can
still take advantage of the new features, at least with default settings. Examples of the Sirius-generated
property views are shown, e.g. in Figure 13.6

220

13.3. Using the SENSEI Editor

(a) Creating orchestrations and associated diagrams.

(b) Creating service instances in orchestrations.

Figure 13.7: Creating orchestrations and service instances.

button. This opens a dialog that allows the user to choose an existing data structure
from the catalog.

In the same manner, capability classes and their capabilities are created. Restric-
tions are created and shown as child elements of capabilities, and must be bound to a
parameter (belonging to the same service) that is being restricted, and a data structure
(that is a sub-structure of the parameter’s type), using the properties view. With this, all
concepts specified by the service catalog layer of the SENSEI metamodel are covered.

13.3.3 Modeling Orchestrations

With a service catalog in place, domain experts can start creating orchestrations, re-
lying on the service catalog view to look up services, and, primarily, on the service
orchestration view. Creating and editing orchestrations is significantly different from
working with both the service catalog and the component registry, because of its graph-
ical notation and associated diagram editor. The service orchestration view uses the
syntax introduced in Chapter 11.

221

13. The SENSEI Editor

A new orchestration is created from the (very simple) overview editor, an example
of which is depicted in the center of Figure 13.7(a). The context menu of the service
catalog node provides the user action to create orchestrations, which will appear as
child nodes of the catalog in the overview editor. For orchestrations, a representation
has to be created first. This is not necessary for either the service catalog or the compo-
nent registry, since newly created SENSEImodels always contain exactly one instance of
each, and this cannot be changed. In contrast, a SENSEImodel can contain an arbitrary
number of orchestrations.
Representations of orchestrations are called service orchestration diagrams. They

are created in the context of orchestrations (top-right of Figure 13.7(a)), and can then
be opened from there (bottom-right). The diagram stores layout information, which the
editor keeps separate from the SENSEI model, i.e. they do not get persisted to the SDM
file, but to the representations.aird file of the modeling project. As shown in the figure,
there can be more than one representation for the same orchestration. In the example,
there are two different layouts, a wide and a compact one, as indicated by the names
of the diagrams.
Opening the diagram of a newly created orchestration will show the orchestration

view window with an empty canvas, and a palette of tools that can be used to create
service instances and control flow constructs. For better clarity, data flow concepts
are kept on a separate layer of the editor, which is disabled, initially. This also hides
several tools in the palette associated with data flow. In the following, the creation of
service instances and capability tuples is described first. Then, modeling control flow
is explained, and finally data flow will be covered.

Service Instances

The palette drawer of the orchestration view is shown on the left of Figure 13.7(b).
Selecting the Create Service Instance tool, and then clicking into the canvas, will open
a dialog to choose a service from the catalog. When the user confirms his choice, a
new service instance is created in the model, appearing as a rounded box in the editor,
with a separate name compartment at the top. It shows the service symbol (an encircled
“S”), followed by the name of the service this instance refers to.
A newly created service instance is not associated with any capability tuples. To

add one, the corresponding tool from the palette can be used, first clicking the tool,
and then the service instance to which a required capability tuple should be added.
Alternatively, the orchestration view will show a balloon icon above service instances,
when hovering the cursor over them. This makes the same tool accessible directly in
context of a service instance; an example is shown in Figure 13.8 on the left.
When creating a capability tuple using either of these twoways, a dialog will appear

next, showing all possible capability tuples for the service instance, except for those
already present on it. In this example, a capability tuple is created on an instance of
CalculateMetric. This service defines two capability classes: SupportedMetrics and

222

13.3. Using the SENSEI Editor

Figure 13.8: Creating required capability tuples.

SupportedProgrammingLanguages (see Figure 13.6). The classes have fifty-four and
two capabilities, respectively, which results in a total of one hundred eight possible
capability tuples. The list presented to the user is sorted alphabetically, and can very
easily be filtered by entering parts of a capability name, for example, or using simple
wildcards (as shown in the center of Figure 13.8). The required capability tuples should
therefore be easy to find and select. Furthermore, the editor allows the user to select
multiple tuples in the dialog, so that all required capability tuples can potentially be
added at once, without the need to repeatedly select the tool and choose from the
dialog’s list.
Required capability tuples are shown in the box that represents the associated ser-

vice instance, one below the other. The size of service instance boxes can be adjusted
as necessary, to fit all capability tuples. If the box is too small, a scroll bar will become
visible, which can be used to browse through the list of all required capability tuples
present on the service instance. Capability tuples can be removed by selecting them
and either hitting the Delete key on the keyboard, clicking on Delete from Model in
the toolbar at the top of the editor, or by opening the context menu and selecting Edit
→Delete from Model. This is actually the same for nearly all model elements repre-
sented in the orchestration view, including service instances.

Control Flow

As soon as a second service instance is created in an orchestration, gray control flow
edges are created automatically to put them in sequence. Multiple service instances
in the same container are always in a defined order – the orchestration view does not
allow service instances not connected into a control flow sequence. Control flow edges
are therefore not added manually, but can only be rearranged. Existing edges can be

223

13. The SENSEI Editor

Figure 13.9: Rearranging the sequence of control flow.

Figure 13.10: Creating control flow constructs and nesting service instances within
them.

reconnected, by grabbing either the start or end of a control flow edge, and dropping it
on another service instance. This moves the service instance that stayed connected to
the edge to become the new direct predecessor (or successor) of the service instance
the edge’ head (or tail) was dropped on.
Another way is to draw control flow edges to rearrange service instance in the

control flow sequence. This is depicted in Figure 13.9: First, the corresponding tool is
selected from the palette. Then, a line is drawn from the service instance that should
become the new direct predecessor, to the service instance that should be moved to
right after the former. In the example, the CalculateMetric service instance is moved,
so that Parse will become its new predecessor in the control flow sequence.
Since control flow in SENSEI orchestrations is structured, branching and splitting

the control flow is achieved by nesting service instances within control flow constructs.
The three constructs, map, concurrent, and alternative, each have a tool in the palette
associated with it. Figure 13.10 shows an example of creating a map construct. Once
created, they appear in the orchestration view canvas as rounded rectangles, similar to
service instances, but each featuring a different symbol, and the name of the construct
instead of the service name at the top.

224

13.3. Using the SENSEI Editor

Figure 13.11: Enabling the data flow layer.

The body of control flow constructs represents a sub-orchestration. Service in-
stances can be created within them, just like creating them within the orchestration
directly. Existing service instances (or other control flow constructs) can be dragged
and dropped into the bodies of constructs. The bodies of concurrent and alternative
control flow construct is split into two lanes4. Each lane of an alternative control flow
construct shows its guard in the top-left corner, which can currently only be edited
through the properties view.

Data Flow

So far, data flow aspects, in particular the ports of service instances, have been ignored.
This is not an oversight: the SENSEI orchestration view is built so that data flow exists
on a separate layer, so that ports and data flow edges can be hidden from view. This
is useful because even small orchestrations can quickly become confusing with lots of
data flows criss-crossing all over it. A large part of the functionality and coordination
of service instances modeled by an orchestration can be understood without the data
flow aspects, so for better clarity, it makes sense to only enable the data flow layer when
it is actually needed.
Figure 13.11 shows the toolbar of the orchestration view on the top. It has several

controls, e.g. to apply an auto-layout algorithm, or to zoom in or out. The availability of
individual controls on the toolbar is context dependent – the figure shows the default
state, when nothing is selected. Clicking the layers control opens up a menu to enable
or disable specific layers. Activating the data flow layer lets all the data flow concepts
appear in the orchestration, and makes additional tools available in the palette.

4The number of lanes is currently fixed in the editors, even though the SENSEI metamodel allows arbi-
trary many lanes. However, by nesting the control flow constructs, the same semantics can be expressed.

225

13. The SENSEI Editor

Figure 13.12: Orchestration view with the data flow layer activated, showing an orches-
tration with ports and data flows added.

As shown in Figure 13.11, all the service instances already possess ports correspond-
ing to the parameters of their respective services. They are depicted as small green
rectangles on the border of service instances, with a label next to it, containing the
name of the corresponding service parameter. Ports do not have to, and in fact cannot
be created manually. When creating service instances, its ports are created along with
it automatically.
To connect ports to each other, the Create Data Flow tool from the palette is used.

The data flow is created by simply selecting the tool, and then first clicking an output
port as source, followed by an input port that should receive the data produced at the
source. The new data flow edge will be shown as a green arrow connecting the selected
ports. Bendpoints can be added by clicking and dragging the arrow, to route them
however desired, e.g. to improve overall readability and clarity of the orchestration
diagram5.
There are several special kinds of data flow edges. The expansion and coalescence

port of map control flow constructs require to be connected to ports of service instances
nested within them by such special edges. To create them, the CreateExpandToEdge
and CreateCoalesceToEdge tools are used. The resulting kinds of edges are drawn as
green arrows with a dotted line, to distinguish them from normal control flows. This
is to highlight that they, in fact, behave differently, as they either break up the input
collection of data elements and carry each to their destination one by one, or carry
individual data elements into a collection, filling the target rather then overwriting it in
each step.
Another kind of data flows are delegations. They are used in conjunction with input

and output ports of the orchestration itself. The latter can be created manually, using
the Create Input Port and Create Output Port tools, respectively. Orchestration ports

5The data flow edges in the examples are drawn to approach their source and sink ports at an angle.
This is to avoid overlapping with the port labels, which currently cannot be moved freely, but are always
aligned centered on one of the sides of the square that represents the port.

226

13.3. Using the SENSEI Editor

are represented by green rectangles, larger in size than the ports of service instances.
They can be positioned freely on the orchestration diagram canvas. To connect them
to ports of service instances contained in the orchestration, the CreateDelegation tool
is used. The difference here is that delegations connect either an orchestration input
port to an input port of a service instance, or an output port of a service instance to
an output port of the orchestration, whereas normal data flow edges always connect
an output port to an input port. Delegations are drawn exactly the same as normal
data flows, since apart from this difference, their semantics (copying the whole data
element from the source to the sink) is exactly the same.
A screenshot of the orchestration view as an example of a simple orchestration with

data flows added is shown in Figure 13.12. This is not yet the complete orchestration to
model the base metric calculation, which was shown previously in Figure 13.4. How-
ever, all major functions of the orchestration view have been introduced, so that this
intermediate result can now be extended to the full orchestration model by using the
editing tools and controls described in this section.

13.3.4 Registering Components

The component registry view is conceptually similar to the service catalog view, both
being based on a tree view editor. This is what tool developers use to describe their
tools in terms of SENSEI components, and establish links to implemented services
(which can be browsed using the service catalog view). Figure 13.13(a) depicts the
component registry view on the left. Under the root node, components and artifacts
contained in the registry are displayed. Both types of elements can be created using
the context menu of the root node (shown in the center of the figure), and selecting
the Create Component and Create Artifact action, respectively. Their attributes can
be viewed and edited using the properties view (right side of the figure). Components
can be associated with the artifact in which they are contained. This relationship can
also be viewed and edited from the opposite end, as the properties view of artifacts
contains an editable list of contained components.
Once a component is created, it can be registered to implement services. This is

done via the Implement Service action in its context menu, which leads to a selection
dialog to choose from the services available in the service catalog – this is the same
dialog used in the orchestration view when creating service instances there (see Fig-
ure 13.7(b)). A node representing an instance of the selected service is created as a
result, as a child of the component.
The next step is to specify provided capabilities. This is done via the service in-

stance’s context menu action Create Provided Capabilities. An example is shown in
Figure 13.13(b). The dialog that opens is, once again, a familiar one: it is the same as
the one used in the orchestration view when specifying required capabilities on ser-
vice instances in an orchestration (see Figure 13.8). Selected capability tuples will be

227

13. The SENSEI Editor

(a) Creating components and artifacts.

(b) Creating provided capabilities.

Figure 13.13: Creating artifacts, components, and provided capabilities of implemented
services.

228

13.4. Summary

Figure 13.14: Properties of data definitions.

created as children of the current service instance node. In addition, all necessary data
definitions are created automatically, as well: one for each parameter of the instanti-
ated service will appear below each capability tuple node. Their attributes are edited
as usual, using the properties view, which are also available as tabs when the corre-
sponding capability tuple is selected in the component registry view. An example of
this property view is shown in Figure 13.14.

13.4 Summary

This chapter gave an overview of the implementation and usage of the SENSEI editor.
By providing three separate but integrated editors, each corresponding to one of the
layers of the SENSEImetamodel, the tasks and concerns of catalog maintainers, domain
experts, and tool developers are addressed individually, while still resulting in a single
model that can be further processed, e.g. by the CompositionFinder, SCAffolder, and
SNOrcInS.
Sirius has been found to be a more than adequate framework solution for building

the editors. Creating the editor required far less effort than building the original editor
prototype, even though it had a more limited feature set. It has also proved to be
easily extendable, even in case of changes in the underlying SENSEI metamodel. Much
more problematic than adjusting the editors in such cases were existing SENSEI models
becoming incompatible – a problem which cannot fully be avoided.
There are some small limitations, like concurrent and alternative control flow con-

structs being fixed to two sub-orchestrations in the orchestration view, but this does
not impact the expressiveness of the orchestration language available through the ed-
itor. There are also certainly several usability issues; one example is the rearranging

229

13. The SENSEI Editor

of control flow in the orchestration view, which can at times feel counter-intuitive and
thus require a bit of trial and error to achieve the desired result. Just like SCAffolder, this
is a research prototype, and thus product-level maturity cannot be expected, and was
not the objective.
The SENSEI editor has been used extensively to create models for the evaluation

scenarios which will be presented in Part V, and have proven their value. Also, they
have successfully been used by Küpker [2015] during the course of his thesis.

230

CHAPTER 14
SCAffolder: A SENSEI Toolchain

Generator

The toolchain-building process that SENSEI aims to support is separated into two phases:
specification and implementation (recall Figure 9.4 on page 156). The SENSEI editor
supports all three SENSEI roles – catalog maintainers, domain experts, and tool devel-
opers – in the creation of SENSEImodels, which corresponds to the specification phase.
SENSEI structures the overall process with the aim of cleanly separating specification
and implementation. To this end, it introduces the service catalog and component reg-
istry, and corresponding tasks of service definition and component registration, which
would otherwise be performed only implicitly, and jumbled in with implementation
steps. This separation facilitates the automation of the implementation phase.
At the interface of specification and implementation are SENSEI models. They are

the output of the SENSEI editor, and form the input of SCAffolder, an implementation
of a SENSEI toolchain generator (see Section 9.1), named both for the target platform
Service Component Architecture (SCA) [2015], as well as for the fact that it scaffolds
the structures necessary to support the overall toolchain.
Figure 14.1 depicts the use cases covered by SCAffolder (recall Figure 9.5 on

page 157, and Figure 13.1 on page 210). The first step of the implementation phase is
service-component matching, i.e. finding appropriate components for all the service
instances in a given orchestration. Since domain experts specify required capabilities
for the service instances in their orchestrations, and tool developers define provided
capabilities in the component registry that is part of SENSEI models, all information
is already present in machine-readable form for this step to be fully automated by the
composition finder of SCAffolder. The result is an orchestration augmented with adapter
and transformer service instances, and a mapping of each contained service instance
to an implementing component called a component composition.

231

14. SCAffolder: A SENSEI Toolchain Generator

SENSEI

Domain Expert

Tool Developer

Toolchain Generator

Stub Generator

Composition Finder

Composition Generator

2.1 Service-
Component

Matching

2.2.3 Composer
Creation

2.2.1 Adapter
Creation

2.2.2 Transformer
Creation

Figure 14.1: Use cases addressed by SCAffolder.

The next two steps of the implementation phase are adapter creation and trans-
former creation. While these are still manual tasks to be performed by tool developers,
SENSEI requires both adapters and transformers to be encapsulated as components, facil-
itating reuse and encouraging their development up-front, decoupled from the actual
toolchain-building. Thereby, they become part of the collection of components en-
tered into the registry, available to fill in gaps between otherwise incompatible tools.
The stub generator of SCAffolder supports tool developers in creating adapters and trans-
formers by generating boilerplate code.
With these preparations, the composer creation step of integrating the individual

components according to the given service orchestration can also be fully automated.
The composition generator of SCAffolder takes SENSEImodels, containing a service cata-
log, orchestrations, and a component registry, including adapter and transformer com-
ponents, as well as concrete component compositions as input and outputs fully inte-
grated, executable toolchains, by creating composers through code generation.

232

14.1. Specification

The remainder of this chapter is organized as follows: first, Section 14.1 provides
a high-level overview by describing the processes to be supported by SENSEI toolchain
generators on an implementation-agnostic level. Section 14.2 motivates design deci-
sions and briefly introduces technologies used for SCAffolder. An overview of its imple-
mentation is given in Section 14.3. Section 14.4 shows how SCAffolder is used along an
example. In Section 14.5, runtime interpretation of SENSEI models as an alternative to
code generation is discussed, and a corresponding implementation created by Küpker
[2015], SNOrcInS, is briefly described. A summary is given in Section 14.6.

14.1 Specification

There are four use cases in Figure 14.1, owed to their origin in the toolchain-building
process (Section 3.1), but there really only need to be two processes to cover them
all: adapter creation and transformer creation both yield SENSEI components, which
are meant to serve different purposes, but follow the exact same structural rules. Both
use cases are therefore supported by the same process of stub generation. Service-
component matching is a necessary prerequisite to composer creation, but the former
is not usually performed without subsequently performing the latter, which is why the
two are combined into a single process, which in the following will be referred to as
toolchain generation.
Figure 14.2 depicts the processes that SCAffolder needs to implement to support the

use cases of both domain experts and tool developers – modeled in terms of SENSEI
orchestrations. Figure 14.2(a) is a high-level view of the toolchain generation process.
It shows an orchestration of two service instances: Find Composition and Generate
Toolchain Artifacts, which correspond to service-component matching and composer
creation, respectively. Find Composition consumes SENSEI models, and outputs them
again, supplemented with mappings between orchestrated service instances and com-
ponents contained in the model’s registry. Generate Toolchain Artifacts also takes a
SENSEI model as input – in this orchestration, the one that has been augmented with
a service-component mapping. The output is a set of artifacts, which together form an
executable application that is the toolchain.This service has another input for the de-
sired use case, which here will always be fed the same value of “toolchain generation”;
the need for this input parameter will become apparent in a moment.
Figure 14.2(b) is an orchestration to Generate Toolchain Artifacts, which both corre-

sponds to stub generation, as well as to composer creation, as it is a drill-down into the
second service instantiated in that orchestration. This means that, on a fundamental
level, the only difference between the two applications of SCAffolder – generating stubs
and generating composers (i.e. toolchains) – is the preprocessing of SENSEI models as
performed by the Find Composition service. Otherwise, the basic process is actually
the same, and is configured at runtime for either of the two use cases, which is why
the corresponding input parameter appears in the Figure 14.2(a).

233

14. SCAffolder: A SENSEI Toolchain Generator

(a)
Service

orchestration
fortoolchain

generation.

(b)
Service

orchestration
forSC

A
artifactgeneration

(used
forboth

stubs
and

toolchains).

Figure
14.2:

SEN
SEIservice

orchestrations
specifying

SC
A
ffolder.

234

14.2. Technology Evaluation

The Generate Toolchain Artifacts orchestration works as follows: first, the SENSEI
model input is processed by an instance of the Canonicalize SENSEI Model service.
It ensures certain wellformedness properties and augments the model, if necessary –
this does not change its semantics, but simplifies subsequent model transformations
by making otherwise necessary case distinctions redundant. Next, Filter SENSEI Model
strips the SENSEImodel of anything not necessary for the given use case, which is passed
in as a parameter and is either “toolchain generation” or “stub generation”. For example,
orchestrations are completely ignored, and thus filtered out, for stub generation.
After these prerequisite steps, the actual model transformation begins with Trans-

form M2M. As opposed to the previous services, this one is highly generic. It is refined
by requiring the capability of transforming SENSEI models to SCA models, represented
by a corresponding capability tuple.
Concurrent to this series of service invocations is Configure Generation Target.

Once again, the use case parameter is used to activate one of two capabilities for either
ToolchainGeneration or ToolStubGeneration. The service produces a list of artifacts
(files) to be generated into the final output.
Together with the SCA model produced by the Transform M2M instance, this arti-

fact list is consumed by Transform M2T, another generic service, to generate code and
configuration files needed to form either SCA applications (toolchains) or components.
Finally, Configure Build Process does some post-processing to the generated code, par-
ticularly the build script, to add the components required by the generated toolchain
(read from the composition contained within the SENSEI model) as dependencies for
automatic resolution by the build tool. For now, SCAffolder supports integration with
Apache Maven [2020] for this purpose. Because SCAffolder can be integrated into ex-
isting projects, the build script may have to be amended rather then generated from
scratch, which is why this has been modeled as a service separate from the model-to-
text transformation.

14.2 Technology Evaluation

Summing up the previous section, SCAffolder’s processes for stub and toolchain gener-
ation rely on generic services representing model-to-model transformations followed
by model-to-text transformations for the heavy lifting, with some simple, custom pre-
and post-processing steps to complement them. The generic services can therefore be
implemented with existing tools of model-driven development.
This section briefly introduces the concrete technologies that have been chosen to

realize SCAffolder in, namely the TGraph technical space and its GReTL transformation
language for model-to-model transformation, as well as Velocity for the model-to-text
step. Another design decision that has been made concerns the use of the Service
Component Architecture (SCA) standard as target platform. A high-level overview of
SCA concepts relevant to this thesis is given in Section 14.2.3.

235

14. SCAffolder: A SENSEI Toolchain Generator

14.2.1 Model-to-Model Transformations with TGraphs

The TGraph technical space has been briefly introduced in Section 8.7: TGraphs are
based on solid graph theory foundations, and represent a specific class of graphs that
are typed, directed, attributed, and ordered [Ebert and Franzke, 1995]. TGraph schemas
can be modeled using UML class diagrams in the grUML dialect [Ebert, Riediger, and
Winter, 2008], enabling their use in model-driven development. In this manner, a Java
API was generated from the SENSEI metamodel, and is provided as class library called
SDMTGraph1.
In contrast to other technical spaces, such as the widely-used EMF, edges in TGraphs

are first-class elements, as opposed to reference links between vertices. This makes nav-
igating and querying graphs easier, and enables, for example, following edges against
their direction, and querying for edges, directly. Furthermore, metamodeling in EMF’s
EMOF can be restrictive, as it enforces a tree-like structure on models. Relations cross-
ing this tree structure are represented as reference links, rather than first-class edges,
which can make navigating and querying ECore models cumbersome at times. There-
fore, the TGraph technical space was chosen over EMF, which does not have such
restrictions.
TGraphs can be modeled, represented, and manipulated using the Java library

JGraLab. Similar to EMF, JGraLab can take a metamodel and generate corresponding
Java interfaces and classes from it to form an API. There is also a bridge implemented in
JGraLab, from TGraphs into the EMF technical space2, which enables the use of models
created with the EMF-based SENSEI editor.
JGralab also implements GReQL (Graph Repository Query Language, Kamp [1998]

and Marchewka [2006]) and GReTL (Graph Repository Transformation Language, Ebert
and Horn [2012]), the latter relying heavily on the former to express its mappings. A
GReTL program consists of transformation rules to create vertices, edges, and attributes
in the target model. It does so by relying on GReQL queries into the source model: for
each source model element returned by a transformation rule’s query, a corresponding
target model element is created.
Rather than going any deeper on how these model transformations work at this

point, concrete examples will be given and thoroughly explained in Section 14.3. For
a comprehensive overview of GReTL, including the basics of TGraphs and GReQL, the
reader is referred to Ebert and Horn [2012].

14.2.2 Model-to-Text Transformations with Velocity

The TGraph technical space does not prescribe any particular tool or language for
model-to-text transformations. Therefore, the template engine Apache Velocity [2020]

1SDM stands for service description model, meaning the SENSEI metamodel.
2The aforementioned tree structure has to be forced onto TGraph metamodels to have this work,

though.

236

14.2. Technology Evaluation

was chosen due to its maturity, its documentation, requiring very few dependencies,
its low complexity, and its ease of use.
Template engines are a convenient approach at code generation: Instead of writing

all the necessary code to an initially empty file, templates are used, which contain the
static, “boilerplate” code, as well as placeholders and embedded directives that get
processed during generation, and replaced with code fragments derived dynamically
from an input model.
The Velocity Template Language (VTL) uses directives beginning with a # sign, e.g.

to loop over elements from the source model, or to invoke macros. During code gen-
eration, the directives are evaluated and replaced with their result. To reference the
source model from which code is to be generated, Velocity allows to access variables
which have been stored in its context, using their names prefixed with a $ sign. The
values of these variables can be arbitrary Java objects, and Velocity allows invoking
their methods, too, using regular dot notation.
Again, instead of giving more in-depth details here, concrete examples are deferred

to Section 14.3. The template syntax is actually pretty straight-forward, but a compre-
hensive reference is available as part of the official documentation.

14.2.3 Target Platform Service Component Architecture

In support of the requirements for Tool Interoperability, Uniform Interfaces, and Reus-
ability, component-based technology (Chapter 6) is employed on the integration and
implementation-side of the SENSEI approach. While SENSEI as a conceptual framework
does not dictate any particular target platform – a framework and runtime environment
with an underlying component model – when it comes to implementing a concrete
toolchain generator, a decision has to be made as to which one(s) to support.
For SCAffolder, a comprehensive comparison study was performed by Ringe [2013],

analyzing the requirements to derive assessment criteria, and then evaluating different
component models, including SCA [Chapman et al., 2011], OSGi [2020], EJB [Enter-
prise JavaBeans 2019], CORBA Component Model (CCM) 4.0 [2006], and COM: Com-
ponent Object Model Technologies [2018], though the latter was dismissed early on,
as platform independence was a knock-out criterion, and COM is Microsoft Windows-
specific. For all others, at least two conforming frameworks were considered. The SCA
framework Apache Tuscany [2016] scored the best ratings overall, set apart by its ability
to incorporate existing software built with diverse technologies and for different plat-
forms. Furthermore, the SCA standard incorporates service-oriented principles most
directly. The option of mapping to an existing orchestration language such as BPEL,
although formally supported by SCA, has not been pursued, though, as Ringe [2013,
pp. 73ff], as well as further case studies [Crone, 2013; Meier, 2012; Tihonov, 2013],
revealed that the available frameworks and associated tooling in this regard was too
immature.

237

14. SCAffolder: A SENSEI Toolchain Generator

Figure 14.3: The central concepts of SCA (excerpt from SCAffolder’s target metamodel).

The Service Component Architecture (SCA) is a component-based and service-
oriented technology and standardization effort, born out of several vendors agreeing to
combine their efforts towards a common conceptual solution. These vendors included
IBM, BEA, Sun Microsystems (now Oracle), and SAP [Marino and Rowley, 2009, p. 7].
The joint venture was created in the fall of 2005, and named Open SOA Collaboration
(OSOA). After developing an initial version of SCA, work was transferred to OASIS in
2007, which created a dedicated member section and six technical committees focused
on different aspects of SCA, for continued development and formal standardization.

The Fate of SCA

In April 2016, activities of the SCA technical committees had ceased and they were
officially closed, without any final standard documents having been produced (all
the latest specification drafts remaining publicly available, though). Preceding this
was a vote of the SCA Bindings Technical Committee in June 2013 – about half a
year after Ringe completed his comparative study – to approve the latest version of
its specification as an official standard [Mailing List Archives of the SCA-Bindings
Technical Committee 2013]. The approval failed, to the surprise and upset of sev-
eral committee members, due to Oracle’s representatives blocking it. Members of
Metaform Systems, Siemens, and Tibco criticized this quite strongly on the commit-
tee’s public mailing list. Nevertheless, this move seems to have been the beginning
of the end of SCA as an official OASIS standard.
As a result, the Apache Tuscany project has been retired [Yandell, 2016] due to

lack of development and maintenance activity. Likewise, IBM announced the dep-
recation of SCA support in products such as Rational Software Architect Designer

238

14.2. Technology Evaluation

The Fate of SCA (cont.)

[IBM, 2016]. And sometime in 2018, the webpage of Fabric3 [2016] disappeared,
as well. SwitchYard [2020] had been under development since at least 2011, but
Version 1.0 was only released in August 2013 (therefore, it was not included in the
comparison by Ringe [2013]). It is clearly based on SCA, though this fact is not used
to advertise the product. It remains available, but no new releases have appeared
since August, 2016.
The conceptual framework that is SENSEI is not affected by the failure of the

standardization efforts; SCAffolder, however, does generate SCA-conforming tool
stubs and toolchains. While they were intended to be run on the now discontin-
ued Apache Tuscany implementation, SCAffolder-generated applications have also
successfully been deployed to other runtimes with no, or only minor, manual ad-
justments. Tuscany remains available, as well, but without support or maintenance
from the original contributors at the Apache Software Foundation. As an alternative
to SCAffolder, there is SNOrcInS, which does not rely on SCA.

Figure 14.3 depicts the central concepts of the assembly model, which is essen-
tially the component model (Definition 6.2, page 104) of SCA. In fact, this is a partial
rendering of the target metamodel created for SCAffolder (the complete metamodel is
explained later, and is depicted in Figure 14.6). SCA defines the XML-based Service
Component Definition Language (SCDL) to describe assembly models, which can also
be represented graphically.
SCA components are either atomic, or they have other components nested within

them; the latter kind are called composites. The commonalities of both are represented
in Figure 14.3 by the metaclass AbstractComponent (which is not a concept of the SCA
assembly model standard). Components and composites refer to their implementation,
which can be of different types, e.g. Java classes or BPEL processes.
Composites and components declare properties, services and references. Com-

posites may also declare wires, which bind references to services. Both services and
references are specified by their associated interfaces. Again, SCA allows for different
ways to define them, but the most common ones are Java interfaces orWSDL interfaces.
An example is shown in Figure 14.4, using SCA’s graphical rendering of SCDL. This

model describes a simple toolchain for metric calculation in the Q-MIG project (see
Chapter 2) as SCAffolder is expected to generate (see Chapter 15 for the full application
of SENSEI to Q-MIG). There are four composites, drawn as rounded rectangles, each con-
taining one component. The Composer component of CalculateAllMetrics exposes a
single SCA service, indicated by the chevron-like shape on the left, which is used to in-
voke the toolchain, and declares five references (chevrons on the right). The composer
uses these references to invoke the required functionality on the SCA composites and
components that make up the toolchain. To this end, the references are connected by

239

14. SCAffolder: A SENSEI Toolchain Generator

CalculateAllMetrics

JavaParser

COBOLParser

MetricCalculator

Composer
JavaParser

COBOLParser

MetricCalculator

Figure 14.4: An SCA assembly model example using the graphical SCDL notation.

wires (solid lines) to compatible SCA services exposed by the other composites. The
dashed lines represent promotions of SCA services exposed by an SCA component to
the surrounding composite.
Individual SCDL files always represent a composite. Therefore, all components are

wrapped in one, to each be described in separate files and be bundled up with com-
ponent implementations into SCA contributions (usually just zip files). The wiring is
defined by CalculateAllMetrics, referencing wire targets by name. They get resolved
at runtime, if all necessary contributions are present. The graphical notation has no
syntax to depict links between SCA components and their implementations, and SCA
services and their interfaces. With Java, SCDL files simply contain corresponding en-
tries referring to Java classes and interfaces, respectively, by their fully-qualified names.
There is, of course, a lot more to SCA, but for now this brief introduction should

suffice as a basis for the remainder of this chapter. When additional aspects come
up at later points, they will be explained there. A deeper dive into SCA is offered by
Marino and Rowley [2009] and Laws et al. [2011], the former presenting a slightly more
implementation-agnostic picture, while the latter focuses on Apache Tuscany.

14.3 SCAffolder Implementation

The basic breakdown of SCAffolder into components is depicted in Figure 14.5, using
the SCA notation as just introduced, with additional labels for SCA services, and a
box at the bottom of components to indicate the implementation technology (Java).
The overall composition corresponds to the specification given in Section 14.1 as fol-

240

14.3. SCAffolder Implementation

GenerateSCAArtifactsComposite

GenerateSCAArtifactsAdapter

GenerateToolchainArtifacts
Java

GenerateSCAArtifactsComposer

ExecuteToolchain

Java

CompositionFinderComposite

CompositionFinder

FindComposition
Java

SCAffolderComposite

SCAffolderComposer

ExecuteToolchain

Java

SCAffolderCoreComposite

ToolMojo

ConfigureGenerationTarget [ToolStubGeneration]
Java

ToolchainMojo

ConfigureGenerationTarget [ToolchainGeneration]

Java

SCACodeGenerator

TransformM2T [SCA]
Java

ConfigureBuildProcess [Maven]

SCATransformation

CanonicalizeSENSEIModel

Java

TransformM2M [SENSEI, SCA]

ModelFilter

Java

FilterSENSEIModel [ToolchainGeneration]

FilterSENSEIModel [ToolStubGeneration]

Figure 14.5: Basic components of SCAffolder.

lows: SCAffolderComposer implements the toolchain generation orchestration (Fig-
ure 14.2(a)), by simply invoking first the FindComposition SCA service on the Com-
positionFinderComposite, followed by the GenerateToolchainArtifacts SCA service of
GenerateSCAArtifactsComposite. The latter is itself an implementation of the orches-
tration to generate toolchain artifacts (Figure 14.2(b)), with an adapter to fit the generic
ExecuteToolchain SCA service interface to the expected one. GenerateSCAArtifacts-
Composer contains the actual coordination logic conforming to the orchestration.

The actual service logic is implemented by components contained in SCAffolder-
CoreComposite: depicted at the top are ToolMojo and ToolchainMojo, which imple-
ment the configuration services that take care of some pre- and post-processing. Notice
that both components implement ConfigureGenerationTarget, but each providing a dif-
ferent capability. The “mojo” qualifier is due to SCAffolder’s integration with the Maven

241

14. SCAffolder: A SENSEI Toolchain Generator

build system and refers to “Maven plain Old Java Objects”. By tapping into the Maven
API, SCAffolder can be plugged into the build process of new or existing projects to
generate toolchain code (more on that in Section 14.4).
The most complex work is done by SCATransformation, which implements Trans-

formM2M, the model-to-model transformation from SENSEI to SCA. The comparatively
trivial CanonicalizeSENSEIModel is also implemented by this component. The model-
to-text stage is performed by SCACodeGenerator, which implements TransformM2T.
ModelFilter implements the remaining FilterSENSEIModel service, for both of the ca-
pabilities required by the orchestration.
The implementations of the post- and pre-processing steps are quite straight-forward:

For ConfigureBuildProcess, ToolchainMojo taps into the Maven Plugin API to add de-
pendencies that contain the components used by the generated composer, so that the
build process can fully assemble the toolchain.
For CanonicalizeSENSEIModel, SCATransformation augments the SENSEImodel us-

ing the JGraLab API. It gives control flow elements, e.g. for-each-blocks, conformance
relations to artificially introduced catalog services. The reason is found in a fundamen-
tal limitation of metamodeling infrastructures like MOF, as described in Section 8.3.
The SENSEI editor relies on control flow elements being instances of AbstractSer-

viceInstance defined in the SENSEI metamodel – this is the linguistic modeling dimen-
sion. Ontologically, service instances must also conform to catalog services. However,
control flow elements are an integral part of SENSEI itself, and thus are not based on
user-defined services. The SENSEI editor does not create services for them, either, as
they would appear in the catalog and confuse users. Instead, they are added here so
subsequent model-to-model transformations can rely on their presence, which simpli-
fies many transformation rules.
Both ToolMojo and ToolchainMojo simply return a list of files to be generated for

ConfigureGenerationTarget – which files those are will be explained together with the
description of the code generation implementation.
This leaves three large parts of the implementation to be explored in more detail

in the following: Section 14.3.1 gives an overview of the CompositionFinder, Sec-
tion 14.3.2 provides insights into the implementation of SCATransformation, includ-
ing a view of the full platform-specific target metamodel that has been created for this
purpose, and Section 14.3.3 describes the final code generation step.

14.3.1 Composition Finder Component

Finding valid mappings between orchestrated service instances and implementing com-
ponents is a non-trivial task. Solving this problem “on the side” as part of the model-to-
model transformation is hard, as SENSEI’s capability model, data compatibility require-
ments, and the ability to have transformers and adapters automatically dropped into

242

14.3. SCAffolder Implementation

orchestrations as needed, can lead to very complex sets of constraints. Transformation
languages are simply not an appropriate choice for this kind of job.

Composition finding is, in essence, a constraint satisfaction problem, as defined,
for example, by Tsang [1993, p. 1, pp. 5ff]. Constraint satisfaction is a broad field that
offers diverse solution techniques and algorithms, and has developed a range of differ-
ent technologies to apply to this class of problems. For her bachelor’s thesis, Meier
[2014a] surveyed different approaches and frameworks, and chose Prolog as an appro-
priate language for encoding SENSEI’s composition finding problem. She subsequently
designed and implemented a CompositionFinder, which solves this problem.

Meier [2014a] evaluated five Prolog implementations, and two Object Constraint
Language solvers, and chose SWI Prolog [Wielemaker, 2020]. The CompositionFinder
wraps the Prolog-based finding algorithm in a Java application. It generates Prolog fact
bases from SENSEI models before invoking the Prolog program.

The composition finding algorithm is quite complex; it is described in great detail by
Meier [2014a, pp. 63-85]. Conceptually, it follows the phases described in Section 12.2.
Among the features this implementation offers is the ability to insert transformers into
data flows that connect incompatible ports. This is done both on the orchestration level,
by inserting appropriate transformer service instances, and on the composer level, by
mapping these service instances to implementing transformer components.

The CompositionFinder even considers the case in which incompatible ports of
orchestrated services are connected by data flows. In terms of the formal SENSEImodel
developed in Chapter 12, they are not assignment compatible (Section 12.3). Strong
assignment compatibility (which takes restrictions into account, as well) has since been
considered a prerequisite for valid orchestrations. This is because transformers can only
be inserted automatically to remedy syntactical differences in the data being exchanged.
Neither the semantics of the services, nor the intention of an orchestration’s modeler
are at the disposal of automated composition finding. Allowing orchestrations with
incompatible data flow connections would lead the CompositionFinder to insert some
transformer, or even a chain of transformers, that ensures syntactic compatibility by
some arbitrarymeans. A trivial, non-sensical transformer would simply discard its input,
and output some constant data that conforms to the expected data format.

The CompositionFinder itself is not faulty, it simply cannot be expected to produce
correct results if its input is faulty, or semantically incomplete. The work by Meier
also drove the formalization of the SENSEI metamodel, and the introduction of con-
cepts like assignment compatibility, activation, and orchestration trails (Section 12.3),
to define service-component matching semantics more rigorously. When passing in
SENSEI models with orchestrations that are valid with respect to these definitions, the
CompositionFinder will not have to try to remedy incompatible data flow connections,
and will return correct results.

243

14. SCAffolder: A SENSEI Toolchain Generator

14.3.2 SCA Transformation Component

The core of SCAffolder is arguably its model-to-model transformation, implemented en-
tirely in GReTL, with a total of well over 250 transformation rules. Those rules fill
a model conforming to the target metamodel, which has been created for SCAffolder.
A part of it – the SCA assembly model part – has already been introduced in Sec-
tion 14.2.3.
SCA supports different (programming) languages and technologies for implement-

ing its components, and specifying interfaces. For SCAffolder, Java was selected to fill
both roles. To support the generation of arbitrary Java code, however, the target meta-
model would have had to be extended to represent the whole language specification.
Constructing such a complex metamodel was deemed infeasible in the course of this
thesis, in particular because it would have done little to further its research objectives.
Representing Java down to its most basic language features would also have significantly
increased the number of required transformation rules. Therefore, a more pragmatic
approach was chosen:
Figure 14.6 depicts the complete target metamodel3. The upper part corresponds

to the SCA assembly model. Below this are concepts that model Java classes and inter-
faces, their methods, parameters, and types, as well as annotations. Finer granularity
levels, i.e. statements and expressions, are not modeled in detail, though. Instead,
this level is abstracted by several compound statement meta-classes (e.g. InvokeAnd-
Return), that represent small sets of code snippets needed to generate composer logic.
The rest is left to the model-to-text transformation stage.
The following gives a basic, high-level overview over the mappings that SCAffolder

defines between source and target model. The metamodel in Figure 14.6 serves as
reference for this, but will not be explained in detail, here. For an in-depth description
of how conforming target models are created during transformation, see Appendix B.

• SENSEI orchestrations become composers: they consist of an SCA component,
wrapped in a composite, defining an SCA service with an associated Java in-
terface ExecuteToolchain. The SCA component is realized by a Java class, that
implements the SCA service interface, and is additionally labelled with SCA’s
@Service annotation. The interface defines a single method, execute, with a sig-
nature based on the input and output ports of the orchestration4. The method’s
body contains statements that implement the orchestration’s data and control
flow.

• As an alternative to the generic ExecuteToolchain interface, interfaces are also cre-
ated for each orchestration trail (see Section 12.3). These are also implemented

3Some elements of SCA that had been shown previously in Figure 14.3, like the Property concept,
are omitted here, since SCAffolder does not use these.

4Since there can only be one return value in Java, SCAffolder will generate a compound type as a
wrapper, if there are multiple output ports defined.

244

14.3. SCAffolder Implementation

Figure 14.6: The complete target metamodel (PSM) of SCAffolder.
245

14. SCAffolder: A SENSEI Toolchain Generator

by the Composer class, and allow to invoke a particular trail, specifically, whereas
the execute method will try to dynamically determine which capability tuples to
activate based on the runtime data.

• SENSEI service instances in orchestrations become SCA references. More specifi-
cally, for each capability tuple of an orchestrated service instance a SCA reference
is created. For the Composer Java class, fields corresponding to these references
are generated and annotated with @Reference.

• SENSEI components become SCA components, wrapped in composites, and as-
sociated with a Java class for implementation.

• Service instances implemented by components become SCA services, exposed
by corresponding SCA components, and promoted to surrounding composites.

• Capability tuples provided by an implemented service instance become Java in-
terfaces with a single method in it.

• Input ports defined on implemented services instances become parameters of the
method defined in the corresponding Java interface.

• Output ports defined on implemented services instances become the return pa-
rameter of the method defined in the corresponding Java interface. Since there
can only be one return value in Java, SCAffolder will generate a compound type
as a wrapper, if there are multiple output ports defined.

• Restrictions on an implemented service become additional methods in the cor-
responding Java interface. These methods take a single argument, and return a
boolean – tool developers implement these methods to indicate whether their
tool can handle the provided data, and composers call them to decide which
component to use for a particular service invocation.

• SENSEI compositions, i.e. the mapping between orchestrated service instances
with required capability tuples and service instances implemented by compo-
nents with provided capability tuples, become SCA wires. They connect each
SCA reference to an appropriate SCA service provided by the SCA component
which corresponds to the SENSEI component named by the composition.

This is not a complete list, as a lot of miscellaneous elements in the target model
need to be created. For example, the association of Java class fields, method parame-
ters, and local variables with type information, and the generation of these types from
SENSEI’s data structures and data types, has been omitted. Similarly, the mapping of
orchestrations to Java statements is not covered in detail, but will become clearer with
examples given in Section 14.3.3. Amore comprehensive documentation of the model-
to-model mappings implemented by SCAffolder is provided in Appendix B.
Figure 14.7 provides an impression of how the actual implementation code looks

like. It shows the GReTL transformation rules that create SCA composite instances for
each SENSEI component in the source model – this is why all semantic expressions

246

14.3. SCAffolder Implementation

1 new CreateVertices(context, Composite.VC,
2 "from c : V{Component} "
3 + "reportSet c,'Composite' "
4 + "end").execute();
5 new SetAttributes(context, attr("Composite.name"),
6 "from c : V{Component} "
7 + "reportMap tup(c,'Composite') -> c.name "
8 + "end").execute();
9 new SetAttributes(context, attr("Composite.targetNamespace"),
10 "from c : V{Component} "
11 + "reportMap tup(c,'Composite') ->

'http://se.uni-oldenburg.de/ses/' "ãÑ

12 + "end").execute();
13 new SetAttributes(context, attr("Composite.scaImplementationType"),
14 "from c : V{Component} "
15 + "reportMap tup(c,'Composite') -> 'composite' "
16 + "end").execute();
17 new SetAttributes(context, attr("Composite.scaName"),
18 "from c : V{Component} "
19 + "reportMap tup(c,'Composite') -> c.name "
20 + "end").execute();
21 new SetAttributes(context, attr("Composite.location"),
22 "from c : V{Component} "
23 + "reportMap tup(c,'Composite') -> c.name "
24 + "end").execute();
25 new SetAttributes(context, attr("Composite.locationAttribute"),
26 "from c : V{Component} "
27 + "reportMap tup(c,'Composite') -> 'name' "
28 + "end").execute();

Figure 14.7: Transformation operations creating composite instances in the target
model, and setting attribute values, for each source model Component instance.

(GReQL queries) range over the set of all SENSEI components (V{Component}). The
first rule creates vertices, while all the others then set their attribute values. Their seman-
tic expressions return a mapping from archetypes corresponding to (previously created)
target model elements, to values that should be assigned to one of its attributes. These
values can be derived from the source model, or be constants. E.g. in Line 8, each
Composite instance’s name is assigned the name of the corresponding Component in-
stance in the source model. Line 13 is an example of a constant value; it gets assigned
to the targetNamespace attributes of all Composite instances.

14.3.3 SCA Code Generator Component

When the model-to-model transformation is done, the Velocity-based SCA code gener-
ator component takes the produced platform-specific model and uses it to create the

247

14. SCAffolder: A SENSEI Toolchain Generator

Tool Stubsrc

m
ain

<CO
M
PO

N
EN

T_N
A
M
E>

<IN
TERFA

CE_N
A
M
E>.java

target

generated-sources

sensei

<PKG
>

<SU
B-PKG

>

<…
>

Transform

M
2T

interface

<VT>

Platform
-Specific M

odel

generateInterface

JavaInterface [*]

pom
.xm

l

Toolchainsrc

m
ain

<O
RCH

ESTRATIO
N
_N

A
M
E>

<IN
TERFA

CE_N
A
M
E>.java

<PKG
>

<SU
B-PKG

>

<…
>

generateInterface

JavaInterface [*]

pom
.xm

l

java

<CLA
SS_N

A
M
E>.java

<PKG
>

<SU
B-PKG

>

<…
>

class

<VT>

generateIm
plem

entationClasses

JavaClass [*]

target

generated-sources

sensei

<CLA
SS_N

A
M
E>.java

<PKG
>

<SU
B-PKG

>

<…
>

generateCom
poserClass

JavaClass [*]

resources<CO
M
PO

SITE_N
A
M
E>.com

posite

M
ETA

-IN
Fsca-contribution.xm

l

com
posite

<VT>

contribution

<VT>

generateCom
posite

Com
posite [*]

generateContribution

Com
posite [1]

w
ebapp

w
eb.com

posite

W
EB-IN

Fsca-contribution.xm
l

generateW
ebCom

posite

Com
posite [1]

generateCom
poserContribution

Com
posite [1]

Figure
14.8:

O
verview

ofthe
files

and
directory

structure
generated

by
SC

A
ffolderfortoolstubs

(left)and
toolchains

(right).

248

14.3. SCAffolder Implementation

actual configuration and code files. It relies on JGraLab to work with the model that
was output by the SCA Transformation component. It exposes the corresponding API
to the Velocity templates, so the model can be accessed by template directives.
The code generator takes a second input provided by the Configure Generation Tar-

get service instance, or more precisely, one of its two implementing SCA components,
ToolMojo or ToolchainMojo. Both produce a list of files to be generated, so the code
generator knows which Velocity templates to process, and where to save the results.
An overview of the generated files and directory structure is provided by Figure 14.8,

showing tool stubs on the left, and toolchains on the right. The box in the center shows
the four main Velocity template files used for code generation. The outgoing arrows are
labeled with the generate… methods used, and the type of elements that provide the
information to be merged with the template. An asterisk in square brackets indicates
the generation of multiple files (one per model element), while a one indicates a single
file being generated.
Directory structures and generated artifacts are similar for both tool stubs and tool-

chains. One difference is that generated Java classes go into the regular source file tree
for tool stubs, while they go into the target folder for toolchains (which is deleted dur-
ing Maven’s clean phase). This is because stub classes are meant as a starting point for
adapter implementation, to be finished manually, whereas toolchain classes contain
the fully auto-generated composer logic. Not meant to be altered manually, it can be
considered disposable, in the sense that the code can be regenerated at any time.
The generatemethods being used configure the code generation process as follows:

generateInterface selects all instances of JavaInterface from the platform-specific model
to generate a Java file for each of them, based on the interface template file. The
target directory is “target/generated-sources/sensei”, followed by a path derived
from the element’s package attribute, in accordance with Java conventions.

generateComposite selects all instances ofComposite from the platform specific model
to generate a SCDL file (“.composite”) for each of them in the “src/main/resources”
directory, using the composite template file.

generateImplementationClasses selects all instances of JavaClass, except for those rep-
resenting composers, since this is a method used during tool stub generation. The
class template is used, the target is the Maven project’s Java source directory (usu-
ally “src/main/java”), followed by a path derived from the Java package.

generateContribution selects a single Composite instance (the first one contained in
the model) to generate a “sca-contribution.xml” file into the “src/main/resources/-
META-INF” directory, based on the contribution template. This file declares the
SCA contribution’s deployable composites.

generateComposerClass selects only those instances of JavaClass that represent com-
posers, to generate their implementation into Java files. The class template is

249

14. SCAffolder: A SENSEI Toolchain Generator

52 {
53 ## Check i f t h e r e a re any s t a t emen t s : i f not , i t s a s tub method .
54 ## Otherwise , i t s a composer method , f o r which a map f o r g l oba l v a r i a b l e s
55 ## i s c rea ted , and the method ' s paramete r s a re added to i t .
56 # i f ($method . g e t _ s t a t emen t () . i t e r a t o r () . hasNext ()) ##
57 f i n a l Map<S t r i n g , Object> data = new ConcurrentHashMap<>() ;
58 / / Co l l e c t i o n s . synchronizedMap (new HashMap<>()) ;
59 #foreach ($parameter in $method . ge t_spec () . ge t_paramete r ()) ##
60 da ta . put (”#varName ($parameter) ” , $parameter . get_name ()) ;
61 #end##
62 #blockBody ($method $method) ##
63 r e t u r n (# typeName ($method . ge t_spec () . g e t _ r e t u r n () . ge t_ type ()))

da ta . ge t (”#varName ($method . ge t_ spec () . g e t _ r e t u r n ()) ”) ;
64 }
65 #e l se##
66 #blockBody ($method $method) ##
67 }
68
69 #end##

Figure 14.9: Excerpt from the class template, showing the code responsible for gener-
ating Java code inside of composer method bodies.

used and the target directory is “target/generated-sources/sensei”, followed by a
path derived from the Java package.

generateWebComposite selects a single Composite instance named “Composer” to
generate a “web.composite” SCDL file into “src/main/webapp/WEB-INF”, using
the composite template. The path and file name are SCA conventions for web
application server deployment. Composers can, but do not have to be deployed
to such runtime environments.

generateComposerContribution selects a single Composite instance with the name
“Composer”, stored in the Velocity context as “composite”, to generate a “sca-
contribution.xml” file into “src/main/webapp/WEB-INF”, based on the contribu-
tion template.

The four main templates are contribution, composite, class, and interface (Fig-
ure 14.8). Each is used to generate files of the eponymous type. Velocity offers means
to modularize templates, including the ability to define callablemacros, to incorporate
Velocity code from other files, as well as to copy code snippets stored in separate files
verbatim into the output document. Both means are utilized by the SCA code generator
component to reuse common functionality, and include repeated, static code patterns.
The contribution template is very simple, with only four lines of code. The com-

posite template has 51 lines of code, and is still rather straight-forward, and the same is
true for the interface template (27 lines). By far the most complex template is thus class,

250

14.3. SCAffolder Implementation

221 final Collection<java.lang.Object> coalesce_336 = new
java.util.ArrayList<>();ãÑ

222 for (Object current_metric__342
223 : (Collection<java.lang.Object>) data.get("metrics__327"))
224 {
225 data.put("metric__342", current_metric__342);
226 Map<Integer, Number> collect_336 = calculatemetricfilejavasloc.
227 calculatemetricSLOCJavaFile((String) data.get(
228 "metric__342"), (byte[]) data.get("outAST__330"));
229 setResult(data, "collect_336", collect_336);
230 add(coalesce_336, (Object) data.get("collect_336"));
231 }

Figure 14.10: An excerpt from composer code generated by SCAffolder for the base
metric calculation orchestration (shown in Figure 11.7 on page 189; the example was
first introduced in Section 2.2). The creation of tracing (extra logging) statements has
been turned off for better clarity.

both in terms of its size (81 lines of code, plus the external macro definitions and code
snippets, each of which amount to a combined 236 and 30 lines of code, respectively),
as well as regarding the intricacy of its template logic.
The template is too large to list it in full. Its most interesting part is arguably the one

dealing with generating the statements for composer method bodies. This part is shown
in Figure 14.9. It first checks whether there are any statements – the $method variable
is defined outside of this code snippet, in a surrounding for block. Its values are taken
from the JavaClass instance’s ContainsMethodDefinition adjacencies contained in the
platform-specific model. If the method body is not empty, a Java statement is written
into the output file for each of its arguments, storing their values in the global hash
table. Then, the #blockBodymacro is invoked, which controls the generation of further,
potentially nested blocks, and statements. Lastly, a return statement is generated. If
there are no statements in the method, only the #blockBody macro is called.
An example of the code that can result from this template is provided in Figure 14.10.

It is a short excerpt from the complete composer class generated by SCAffolder from a
SENSEImodel containing the orchestration used for the base metric calculation example.
One thing that may stand out are the identifiers, which all have a number appended
to them. These parameter names are created this way in the model-to-model transfor-
mation stage to avoid any naming collisions. The numbers appended to the parameter
names are the IDs of the corresponding vertices, which are guaranteed to be unique
throughout the graph, i.e. the SENSEI model used as input to SCAffolder.
Lines 226 through 229 are generated for the single service instance nested in the

map operator in the orchestration, and the InvokeAndReturnStatement instance gen-
erated for it by the SCA transformation component in the target model. The macro
outputs a method call statement on the field holding the SCA reference corresponding

251

14. SCAffolder: A SENSEI Toolchain Generator

1 <build>
2 <finalName>JavaParser</finalName>
3 <plugins>
4 <plugin>
5 <version>1.0-SNAPSHOT</version>
6 <groupId>de.unioldenburg.ses</groupId>
7 <artifactId>scaffolder-maven-plugin</artifactId>
8 <executions>
9 <execution>
10 <id>sensei</id>
11 <configuration>
12 <model>metrics.orchestration.sdm</model>
13 </configuration>
14 <goals>
15 <goal>generate-toolstub</goal>
16 </goals>
17 </execution>
18 </executions>
19 </plugin>
20 <!-- ... -->
21 </plugins>
22 <!-- ... -->
23 </build>
24 <!-- ... -->

Figure 14.11: Excerpt from a Maven POM file, showing the configuration settings to
generate tool stubs as part of the build process.

to the service that needs to be invoked. The result returned by the method is then stored
in the global hash map.

14.4 Using SCAffolder

SCAffolder integrates with Maven by exposing its functionality as Maven plugin,
which can easily be inserted into the build process of new or existing projects. This
way, building the overall project will automatically invoke SCAffolder, which generates
code that is subsequently compiled, packaged, and deployed.
Figure 14.11 shows a snippet from a Maven build configuration, called a Project

Object Model (pom.xml) file. It embeds SCAffolder in the project’s overall build process
and is configured to generate a tool stub for a component implementation.
First, Maven’s existing finalName tag (Line 2) is used to specify the component for

which to generate stub files. Alternatively, a dedicated component tag in the config-
uration section can be provided. A component with the corresponding name has to
exist in the SENSEI model’s component registry. When configuring SCAffolder for tool-
chain generation, the value of the finalName tag has to refer to an orchestration in

252

14.4. Using SCAffolder

1 mvn archetype:generate -DinteractiveMode=false \
2 -DarchetypeGroupId=de.unioldenburg.ses.maven \
3

-DarchetypeArtifactId=sensei-component-archetype \ãÑ

4 -DgroupId=de.unioldenburg.ses \
5 -DartifactId=JavaParser \
6 -DcomponentName=JavaParser \
7 -Dsensei-model-file=metrics.orchestration.sdm

Figure 14.12: Creating a SENSEI component project with preconfigured SCAffolder sup-
port using Maven and the supplied archetype from the command line.

the SENSEI model for which to create a composer implementation. Again, a dedicated
configuration tag orchestration can be used to specify this as well.
In the plugins section, SCAffolder is included, and configured within its executions

section. The most important setting is the path to the SENSEI model file (Line 12). An-
other mandatory setting is the selection of a goal, either generate-toolstub or generate-
toolchain, implemented by the Maven “Mojos” of SCAffolder, ToolMojo and Toolchain-
Mojo. An optional configuration tag is remotable, which is set to true by default. If set
to false, generated Java interface will not be annotated as remotable, meaning only in-
vocations of the corresponding SCA service from within the same runtime environment
will be allowed. For toolchain generation, the boolean standalone tag can be given. It
is disabled by default; if set to true, the packaging type is changed from war (Java web
archive) to standard jar, and SCA configuration files will be generated into different tar-
get directories. While the default behavior allows to deploy generated composer into
application servers with SCA support, the standalone setting is more appropriate if the
toolchain is run locally only, with an embedded SCA runtime (Section 15.7 gives an
example of how to launch composers in such an environment).
Like all Maven plugins, SCAffolder’s execution can be explicitly bound to a specific

build lifecycle phase. By default, both its goals will execute during the generate-sources
phase, a pre-compile phase, ensuring that the automatically created code and configu-
ration files will be considered during compilation and packaging.
When starting out from scratch, a complete pom.xml file, and the project direc-

tory structure has to be created. To avoid having to do this manually, Maven offers a
large collection of archetypes. They are used to intialize a project with a preconfig-
ured pom.xml file, create the necessary directories, and potentially code and further
configuration files, depending on the project (arche-)type.
Along with SCAffolder, two Maven archetypes have been defined for this thesis, to

initialize either a component project with tool stub generation support, or a toolchain
project with support for auto-generating a composer implementation. They can be used
through Maven’s standard archetype:generate goal from the command line – an exam-
ple is shown in Figure 14.12. This will create a new directory JavaParser, and within

253

14. SCAffolder: A SENSEI Toolchain Generator

Figure 14.13: The New Project wizard of the NetBeans IDE being used to create a
tool adapter project, based on a custom Maven archetype. Its Maven build file will be
preconfigured to generate stubs of required files, such as Java interfaces and an SCA
composite file, as part of the regular build process.

that, a fully preconfigured pom.xml file, as well as the directories src/main/java/de/u-
nioldenburg/ses and src/main/resources. Invoking Maven in that directory again, e.g.
with the compile or install goal, will cause SCAffolder to generate all the necessary
boilerplate code to implement the JavaParser component, exposing all the services it
declares in the provided SENSEI model file.

The archetype is only needed once to initialize a project. Still, the command line
interface can be a bit bulky. Modern Java IDEs that have good support for Maven,
like NetBeans, offer an alternative, by including the option to create archetype-based
projects through its standard New Project wizard. This allows to simply search or
browse for the desired archetype, and then enter the basic project information (corre-
sponding to the last four parameters in Figure 14.12). Figure 14.13 shows a screenshot
of the NetBeans wizard, being used to create the exact same JavaParser component
project as before, but in an arguably more convenient way.

254

14.5. The SENSEIModel Interpreter SNOrcInS

(a) High-level service orchestration for toolchain execution.

(b) Service orchestration to generate and run toolchains.

Figure 14.14: SENSEI service orchestrations for executing toolchains.

For a component, this is the starting point for tool developers to fill the generated
method stubs with the appropriate logic, either adapting an existing tool, or creating a
completely new one. The Maven project created by the archetype can be extended in
virtually any way desired, e.g. by adding additional files and folders, or extending and
modifying the pom.xml file. Even the SCA artifacts can be extended, as long as the
auto-generated parts remain intact. Depending on the chosen execution environment,
it may suffice to install the project into the (local) Maven repository to make it available
for generated SENSEI toolchains to use. Alternatively, an SCA-enabled application server
can be used, e.g. Apache Tomcat with Tuscany SCA running inside.

Generated toolchains are basically ready to go after initializing the project through
the archetype, and running the build up to the packaging phase. This produces a jar
file (alternatively, war or zip files are also possible) that can be referenced in other
projects, to use the composer’s exposed API to invoke the toolchain. In addition, the
composer exposes an SCA service itself, so it integrates well into larger, SCA-based
service-oriented applications. The generated toolchain can also be complemented with
a manually created user interface, e.g. if the composer is to be deployed to a web
application server, a web UI can be created within the same project, using any arbitrary
technology available in the Java world for this. Examples of using these facilities in
practice are provided in Chapter 15.

255

14. SCAffolder: A SENSEI Toolchain Generator

14.5 The SENSEIModel Interpreter SNOrcInS

An alternative to creating toolchains through code generation is to directly interpret
SENSEI models. Such an interpreter was implemented by Küpker [2015] for his master’s
thesis and called SNOrcInS5. Before briefly describing its design and implementation,
the specification of SCAffolder is revisited to illustrate how the two SENSEI processors
relate to each other.
In Figure 14.2, the ability of SCAffolder to generate toolchains was specified. Fig-

ure 14.14 builds on this, but additionally considers that toolchains are executed after
they are generated. In Figure 14.14, a new service Run SENSEI Toolchain is instantiated.
Figure 14.14 drills down into this service, modeling it as the sequence of Generate
Toolchain Artifacts (which in turn is further specified by the orchestration shown in
Figure 14.2(b)), followed by Invoke Toolchain.
In this picture, both SCAffolder and SNOrcInS can be considered alternative imple-

mentations of the Run SENSEI Toolchain service: In SCAffolder, this is broken down
further by the aforementioned orchestrations, whereas SNOrcInS can be considered a
component that implements it directly. Therefore, on a functional level, the two are the
same. There are use cases in which either code generation or runtime interpretation
may be the better approach, depending on non-functional requirements, like runtime
performance, ease of integration with existing technology stacks and deployment envi-
ronments, or the ability for dynamic toolchain modification.
SNOrcInS does not target SCA, but the WSO2 middleware platform [WSO2 2020],

which was used in the context of the NEMo research project (see Chapter 16). Like
SCAffolder, it is implemented in Java, and relies on JGraLab and GReQL, as well as
the API generated from the SENSEI metamodel. Its central classes, along with their
most important methods, are shown in Figure 14.15. SNOrcInS also reuses the existing
CompositionFinder implementation by Meier [2014a].
The main entry point to SNOrcInS is the orchestrate method of class SNOrcInS.

From here, the sub-graph representing a specified orchestration contained in the input
SENSEImodel is traversed recursively, following the visitor pattern [Gamma et al., 1995,
pp. 331ff].
The semantics of control flow constructs are implemented in Java; for example, Fig-

ure 14.16 shows the code used to handle conditional branches (AlternativeServiceIn-
stance) in SENSEI orchestrations. To retrieve elements from the SENSEImodel, SNOrcInS
uses GReQL queries extensively, each of which are embedded into Java classes. Here,
an instance of AlternativeQuery is used to retrieve the list of Alternative elements with
incidences to the currently handled AlternativeServiceInstance instance (Line 303).
These alternatives are iterated over, retrieving and evaluating the guard expression for
each of them (Lines 307 through 310). The first alternative with a guard that evaluates

5SENSEI Orchestration Interpreter Service.

256

14.5. The SENSEIModel Interpreter SNOrcInS

Figure 14.15: The central classes of SNOrcInS, and some of its dependencies into the
SDMTGraph API. Based on [Küpker, 2015, p. 35]

.
300 @Override
301 public void visit(AlternativeServiceInstance e) {
302 // Get all alternatives
303 List<Alternative> alternatives = (new

AlternativeQuery()).query(e.getId(), datagraph);ãÑ

304 log(e, "Searching for contained alternatives...");
305 // Evaluate the first guard that passes to true and orchestrate

instances contained withinãÑ

306 GuardEvaluator evaluator = new GuardEvaluator();
307 for (Alternative a : alternatives) {
308 String guard = a.get_guard();
309 log(e, "Evaluating guard '" + guard + "' from Alternative#" +

a.getId() + "...");ãÑ

310 if (evaluator.eval(guard)) {
311 log(e, "Guard evaluated to true. Executing control flow

within alternative...");ãÑ

312 indentationLevel++;
313 a.accept(this);
314 indentationLevel--;
315 return;
316 }
317 }
318 }

Figure 14.16: The visit method implemented in class SDMOrchestrationInterpreterVi-
sitor of SNOrcInS for handling AlternativeServiceInstance elements. Implemented by
Küpker [2015].

257

14. SCAffolder: A SENSEI Toolchain Generator

260 // Get and invoke component
261 Set<Component> componentCandidates = componentMap.get(e);
262 IOData componentResult = null;
263 for (Component component : componentCandidates) {
264 log(e, "Assessing " + component.get_name() + " for possible

invocation");ãÑ

265 ComponentWrapper wrapper =
wrapperFactory.createWrapper(component);ãÑ

266 if (wrapper.canHandle(componentInput)) {
267 log(e, "Invoking component '" + component.get_name() + "' at "

+ component.get_location() + "...");ãÑ

268 componentResult = wrapper.invoke(e, componentInput);
269 log(e, "Invocation of '" + component.get_name() + "'

complete!");ãÑ

270 } else {
271 log(e, "Component " + component.get_name() + " cannot handle

given input");ãÑ

272 }
273 }
274 if (componentResult == null) {
275 throw new NoInvokableComponentRuntimeException("Could not find a

component for ServiceInstance#"ãÑ

276 + e.getId()
277 + " which can handle the current input on the data flow:"
278 + componentInput);
279 }

Figure 14.17: The visit method implemented in class SDMOrchestrationInterpreterVisi-
tor of SNOrcInS for handling atomic ServiceInstance elements. Implemented by Küpker
[2015].

to true is visited again (Line 313), i.e. it and all its potential children of this subtree are
handled recursively by dedicated visit methods.
The leafs in the traversed orchestration tree are ServiceInstance elements, which

need to be invoked on implementing components. The code that selects appropriate
components and invokes services on them is shown in Figure 14.17. SNOrcInS relies
on a mapping of service instances to components, provided by the CompositionFinder
and stored in the componentMap field (Line 261). All candidates are then iterated over,
and the first one that is able to handle the provided input data is used to invoke the
service (Lines 263 through 273).
SNOrcInS has adopted the tool adapter concept from SENSEI and SCAffolder, but due

to its different target platform, and the dynamic nature of the interpretation approach,
the interface that components have to implement is different. All SNOrcInS-compatible
components implement the same, generic interface ComponentWrapper. Because of
this generic nature, the signature of its invoke method requires a ServiceInstance as
argument to identify which service instance exactly is to be executed. It further takes

258

14.6. Summary

and consumes IOData instances to represent all actual input and output parameters.
There is another method, canHandle, enabling SNOrcInS to ask available compo-

nents to inspect the input data passed in, and report whether it thinks it can handle it
before the actual service is invoked. This concept is borrowed from SCAffolder, which
realizes a similar pattern. However, SCAffolder takes capabilities and restrictions into
account, whereas SNOrcInS currently does not.
The generic component wrappers of SNOrcInS offer an additional degree of free-

dom over the tool adapters required by SCAffolder, as they do not actually require a fixed
commitment to a single target platform. Whereas SCAffolder relies on SCA to bind and
connect to components, SNOrcInS moves this logic into the component wrappers. This
enables the use of component registries containing components hosted on different tar-
get platforms, and mixing them while executing a single orchestration. In particular,
it should be easy to implement a SNOrcInS component wrapper that binds to existing
components using SCA and SCAffolder conventions.
This higher flexibility comes, to some degree, at the expense of component uni-

formity (cmp. the Uniform Interfaces requirement), as there is no single component
model to which all components adhere. SNOrcInS can therefore make less assump-
tions about, and has less direct control over, components. Also, component wrappers
are potentially more complex, as there is no unified middleware providing utility func-
tions like SCA does for SCAffolder. Of course, a middleware like SCA or WSO2 can still
be adopted by convention, either for all, or only some of the components in a SENSEI
component registry.

14.6 Summary

SCAffolder provides all the functionality of the SENSEI processors to find compositions,
and generate stubs and compositions (toolchains). It therefore serves as a proof of
concept, and as the basis for applying the overall approach in practice.
As a research prototype, the objective was not to achieve product maturity, but

rather to proof general feasibility, and to gain further insights into the SENSEI approach
in general, and the design of processors like SCAffolder in particular. The most promi-
nent example of an improvement made after an early implementation iteration is the
separation of the CompositionFinder as a separate component. With SNOrcInS, a com-
pletely different design was successfully demonstrated to be able to take the same role
as SCAffolder within the conceptual framework that is SENSEI, showing the versatility
and universality of the approach. Both alternatives are based on the same principles
that are the foundation of SENSEI; particularly, both are model-driven: while SNOrcInS
does not follow the “classical” MDA structure (see Section 8.4) as much as SCAffolder
does, the interpreter does rely on rigid models and metamodels, and is very literally
driven by SENSEI models.

259

14. SCAffolder: A SENSEI Toolchain Generator

SCAffolder has been used to apply and evaluate SENSEI in practice for building the
Q-MIG toolchain. SNOrcInS served the same purpose in the context of the NEMo
project. Those applications will be described in Chapter 15 and Chapter 16, respec-
tively. However, a first application was already shown in this chapter: the specification
of SCAffolder in Figure 14.2 in terms of SENSEI service orchestrations is actually an appli-
cation of SENSEI to itself. Of course, there is a bootstrapping issue, as initially there was
no SENSEI processor to generate the toolchain corresponding to the modeled orches-
trations, so SCAffolder was first implemented and integrated “by hand”. As shown in
Figure 14.5, SCAffolder can be broken down into SCA services and components. In fact,
SCAffolder is now able to basically generate itself, by feeding it the orchestrations that
specify it, together with a component registry containing the individual, corresponding
components.

260

PART V

Evaluation
Part IV explained the SENSEI approach in depth, and its use has been illustrated using

small examples. Furthermore, Chapter 14 presented a concrete realization of SENSEI’s
concepts in the form of the implementation SCAffolder, proving general feasibility. As
mentioned in Section 14.6, SCAffolder, in an instance of “eating one’s own dog food”,
has been designed as a SENSEI toolchain itself, and thus represents a first full-blown
demonstration of the applicability and usefulness of the approach.
The following two chapters each present a different application scenario, for which

SENSEI was utilized to create appropriate support through integrated toolchains, show-
ing its scope of applicability in different domains:

The Q-MIG project was previously introduced (see Chapter 2), and an example
from it is running through this whole thesis (Section 2.2). This case study describes the
application of SENSEI to the project, by going through all steps of the toolchain-building
process. It demonstrates the advantages of using SENSEI compared to the original, man-
ually built tool support, as well as its ability to scale to industrial applications.

The NEMo project is aimed at improving mobility of citizens living in rural areas,
by developing a mobility platform that offers its users innovative, potentially inter- and
multi-modal mobility services. This case study presents the results of applying SENSEI
to design business processes to be supported by the mobility platform, and to automat-
ically integrate its components, accordingly. It shows that the principles of SENSEI can
be applied to software development in general, and highlights the flexibility conferred
by employing the approach.
Using these applications of SENSEI, the approach is validated against the objectives

defined in Chapter 1. Sound arguments are given regarding the practical improvements
SENSEI provides compared to “manual” tool integration efforts. More precisely, the
following validation goals provide the guiding research questions for the case studies:
• Feasibility: Can the approach be technically realized?
• Applicability: Can the approach be practically applied in the intended domain,
and on an industrial scale, while conferring its desired benefits?

• Generalizability: Can the approach be practically applied beyond its intended
domain, to confer its desired benefits in a more general scope?

• Utility: Does the approach confer the desired benefits expressed by its objectives
of flexibility, reusability, and productivity?

These goals will be revisited in Chapter 17, and discussed in the context of the two case
studies. Finally, Chapter 18 will reflect on the contributions of this thesis, summarize
the benefits and possible future of SENSEI in research and practice.

CHAPTER 15
The Q-MIG Toolchain

The Q-MIG project was introduced in Chapter 2 as an example of a software evolution
project in need of tool and toolchain-building support. During the course of the project,
the tool support was originally built “manually”. This chapter describes the process of
building toolchains for Q-MIG using SENSEI, and compares the process and its outcome
to the original process and toolchain to demonstrate the feasibility of the approach, and
provide evidence for its benefits in accordancewith the objectives of this thesis as stated
in Section 1.2.
The aim of this chapter is to give a clear impression of how SENSEI has been applied

to the Q-MIG project, rather than to provide a fully exhaustive description of all the
models and code artifacts created during this case study. Therefore, only examples of
modeled services and orchestrations, implementations, automatically generated code,
as well as resulting toolchain deployments and execution results will be presented.
Nonetheless, a comprehensive service catalog and a component registry, as well as all
the orchestrations omitted here, are available for reference in Appendix A.1.
The outline follows the toolchain-building process originally established in Sec-

tion 3.1, and mapped to the terminology of SENSEI in Section 9.4 (see Figure 9.4,
page 156). A prerequisite step in that process is goal determination. Section 15.1
briefly recaps the Q-MIG project goals as originally introduced in Chapter 2, to then
provide a more concrete overview of all the activities that required (integrated) tool
support.
Then, the main steps of the toolchain-building process (recall Figure 9.4, page 156)

applied to Q-MIG are described, starting with service identification (Section 15.2), and
followed by service orchestration (Section 15.3), service-component matching (Sec-
tion 15.4), adapter creation (Section 15.5), transformer creation (Section 15.6), and
composer creation (Section 15.7). Results are summarized in Section 15.8.

263

15. The Q-MIG Toolchain

1. parse,
migrate,
measure

Q-MIG Data
Repository

Java
Sources

COBOL
Sources

Java AST

COBOL AST

parse Java

parse COBOL

transform
COBOL to
Java AST

measure COBOL
base metrics

measure Java
base metrics

2. consolidate
data

3. calculate composite and
aggregate metrics

7. browse,
query,

visualize

6 .train prediction model
& predict quality

4. add
traceability

links

remote (pro et con GmbH) local (University of Oldenburg)

generate
Java

5. rate quality
characteristics

Figure 15.1: Activities in the Q-MIG project in need of integrated tool support.

15.1 Goal Determination

To briefly summarize Chapter 2, Q-MIGwas a research project jointly conducted by the
Software Engineering Group of the Carl von Ossietzky University, and industry partner
pro et con GmbH. The main research interest of the Software Engineering Group was
to complement the migration toolchain of pro et con with a quality control center to
measure, compare, and predict the inner quality of software systems before and after
migration.
Several tool integration challenges were observed during the project, including the

lack of interoperability of existing software evolution tools, the need for interoperabil-
ity and reusability even in ad-hoc, custom tooling, the essential significance of fully
automated toolchains without gaps, and the technical complexities of tool integration
upstaging the project’s actual objectives. Q-MIG has thus been a central motivation
for the creation of SENSEI.
Figure 15.1 depicts the central activities (in bold italics) of the Q-MIG project that

required automation, arranged around the Q-MIG repository, containing structural de-
scriptions of software systems undergoing migration and quality analysis, as well as
associated quality measurements. The left-hand side (grey area) represents activities
performed off-site by pro et con, providing the basic data for all subsequent quality
analyses. The activities performed by the Software Engineering Group (right-hand side)

264

15.1. Goal Determination

during the project have been broken down into six further major areas, seen on the
right-hand side of the figure. The activities are as follows:
1. Parse, migrate, measure. This activity is the main source for the data in the repos-
itory, taking COBOL and Java software systems, parses them, and then calculates
base metrics for them.

2. Consolidate data. This activity subsumes all steps dealing with unexpected data
inconsistencies.

3. Calculate composite and aggregate metrics. This activity uses base metrics pro-
vided by Activity 1. to derive composite metrics, which combine different types
of measurements to form new ones, and aggregate metrics, which combine the
same type of measurements on lower-level software system elements (e.g. Java
methods) to form measurements for higher-level elements (e.g. Java classes).

4. Add traceability links. This activity establishes traceability links between corre-
sponding elements of legacy COBOL and migrated Java software systems, a pre-
requisite for comparative analyses of quality and different migration strategies.

5. Rate quality characteristics. This activity collects ratings for quality characteristics
like modularity, reusability, etc., from human experts to have a baseline for, and
establish correlations with, measured quality metrics.

6. Train prediction model & predict quality. This activity applies machine learning
techniques to train predictionmodels, which are then used to extrapolate from the
correlations found in the data, and applying them to new systems and migration
strategies.

7. Browse, query, visualize. This activity contains all steps taken to make the raw
data available to interested stakeholders in the form of HTML reports and visual-
izations like trend charts, scatter plots, bar and line charts.

It is important to note that the tooling to support these activities was developed
incrementally during the project. In particular, data consolidation, machine learning
techniques for quality prediction, and report generation and visualizations have been
adapted and extended continuously. The in-house developed tools for base metric cal-
culations – first and foremost, the Java metric calculator – also saw several releases.
However, its development had to be stabilized and frozen at some point due to the
lack of integrated tool support: every fundamental change to the tooling would have
necessitated repeating all the activities, incurring unbearable manual effort. This un-
derscores, once more, the objective of SENSEI to provide flexible toolchains amenable
to change (Section 1.2).
The degree of process integration of the original tooling varies across these activi-

ties: data consolidation, for example, consists of several steps that are integrated tightly.
This makes this activity highly automated and easy to perform, but it negatively affects
evolvability. The tooling for data consolidation probably saw the most unforeseen

265

15. The Q-MIG Toolchain

change requests, as issues with the delivered data were uncovered little by little, and
thus became quite complex, and harder to extend every time. Other activities, such as
quality prediction, provide little to no process integration, mainly due to lack of time.
Performing machine learning experiments on the available data therefore remained
rather cumbersome, and the extent of quality prediction activities was far more limited
than originally planned, again, due to the large amount of time it took to create the tool
support, overall.
Thus, the goals of applying SENSEI are:
1. To automate the individual activities of Q-MIG, as described above, to the fullest
extent possible, and compare the original solution with the SENSEI-approach.

2. To automate commonly performed processes across these activities, and across
the boundary between local and remote systems as distributed toolchain.

In the following, all major steps of the SENSEI toolchain-building process (Sec-
tion 9.4) are described, starting with service identification in Section 15.2. Examples
are given for each of the Q-MIG-specific goals of applying SENSEI named above. They
will focus on data consolidation and metric calculation, i.e. activities 1., 2., and 3..
Select examples of the produced SENSEI artifacts, such as service descriptions, orches-
trations, component registry entries, and generated toolchains, are also presented. As
a reference, an overview of all of these artifacts is provided in Appendix A.1.

15.2 Service Identification

Since the application to Q-MIG was the first major use of SENSEI, there was no ready-to-
use catalog to pick services from, so a new catalog had to be created first, i.e. services
had to be identified and modeled from scratch. For this case study, the pragmatic
bottom-up approach for service identification, introduced in Section 9.4, was used.
As described there, each of the major Q-MIG activities was broken down into sub-
activities, hierarchically, to identify service candidates. Then, services are described in
conformance with the SENSEI metamodel to constitute a service catalog for Q-MIG.
This section will give examples for service identification from three of the activities

introduced in Section 15.1:
parse, migrate, measure shows a “classical” software evolution activity, much more

complex than the base metric calculation example used throughout this thesis;

consolidate data shows SENSEI applied to model tooling around a central repository;

calculate composite and aggregate metrics shows the power of capabilities by mod-
eling the activity as a single, versatile service.

Together, these examples should be sufficient to get a good impression of how ser-
vices were identified and modeled for the Q-MIG project. The same activities will
be used to continue the examples during the subsequent step of service orchestration

266

15.2. Service Identification

Migrate COBOL to
Java

Analyze COBOL
system

Define Target
Architecture

Pre-Transform
Transform COBOL

to Java AST
Generate Java

Parse COBOL
Generate Java

Code
Format Java Code

Enrich COBOL
AST

Detect Code
Smells

Refactor COBOL
AST

Parse Embedded
SQL

Extract SQL Parse SQL
Analyze Data

Flow

Reengineer

Figure 15.2: Activity decomposition of the COBOL-to-Java migration.

(Section 15.3). The interested reader may find services identified from, and described
for, the remaining activities in Appendix A.

15.2.1 Services to Parse, Migrate, Measure

The left-hand side of Figure 15.1 shows multiple possible paths, starting from either
a COBOL or a Java software system as main input, and producing either base metric
measurements, or a Java software system. Two of these paths correspond to the base
metric calculation example used throughout this thesis: starting from either a Java or a
COBOL software system, which is parsed and metrics are calculated for it. For Q-MIG,
the CalculateMetric service gained one more capability class, SupportedGranularity-
Level, to evaluate metrics at different levels in a hierarchically decomposed software
system (e.g. on class or package level in case of Java; see Section A.1.1 for all defined
capabilities). Otherwise, the services remain as introduced back in Section 10.1.1.
This section will therefore focus on the common software evolution activity that is

language migration, in this case from COBOL to Java. Even though this part was exclu-
sively performed by project partner pro et con, and the integrated tooling was already
in place, it is instructional to see how this process can be modeled and automated using
SENSEI, instead.
Figure 15.2 shows a decomposition tree for this activity. Besides understanding

the project-specific goals of the activity, deriving such a breakdown requires domain
knowledge. In Q-MIG, employees of the industry partner pro et con provided the
necessary software migration expertise, complementing the scientific insight of the
Software Engineering Group. A first-level breakdown identifies four phases:

Analyze COBOL system prepares a model of the legacy system for further pro-
cessing. It consists of parsing COBOL, enriching the COBOL AST by analyzing data
flow, and parsing embedded SQL, by first extracting SQL and then parsing SQL. Even
though the data flow analysis was the only kind of semantic enrichment performed in
Q-MIG, knowing that this is a common type of post-parsing activity in software evolu-

267

15. The Q-MIG Toolchain

tion projects (which turn an AST into an abstract semantic graph, ASG, compare e.g.
Ferenc et al. [2001] and Lin, Holt, and Malton [2003]) led to the inclusion of another
intermediate level in the decomposition tree.

Pre-Transform applies semantic-preserving changes to make the system more ame-
nable to being transformed. It consists of defining the target architecture, and reengi-
neering, which is further broken down into detect code smells and refactor COBOL AST.
In Q-MIG, the target architecture was influenced in terms of the desired Java package
structure that should result from the migration [Becker and Kaiser, 2014]. Reengineer-
ing tasks necessary before migration include, for example, removing GOTO statements
as much as possible to ease migration to Java, and make the resulting program more
structured [Becker and Kaiser, 2016].

Transform COBOL to Java AST performs the actual programming language trans-
lation. It is not broken down any further. While it is arguably the most central and
computationally complex step in the overall migration process, it is considered atomic
from a service modeling viewpoint.

Generate Java creates source code from the generated Java model (AST). It consists
of generating Java code that is compilable, and then (optionally) format the Java code
for better readability.
The activity breakdown provides the SENSEI service candidates, primarily by look-

ing at the tree’s leafs. The structure of the tree can be used to guide the hierarchical or-
ganization of (sub-)orchestrations. Inner nodes also become services, because service
orchestrations are (composite) service instances, and therefore conform to a service.
To get from service candidates to services proper, they are modeled according to

the SENSEI metamodel, i.e. input and output parameters and their types have to be
identified. In addition, variation points can be identified and modeled as capability
classes to abstract from project-specific needs and derive more generic services with
wider applicability.
Figure 15.3 gives three examples of SENSEI services identified from the activity de-

composition. Their parameters should be mostly self-explanatory, as are the data struc-
tures created for them, which in SENSEI are nothing more than names to be mapped
to concrete, technical data types by components (see Section 10.1, page 164, and Sec-
tion 12.1.3, page 200).
More interesting are the capability classes (compare Section 10.2.1): ExtractEmbed-

dedCode has two of them, one for the host language, and one for the embedded lan-
guage, so that they may vary rather independently. In particular, implementations may
be conceived that are able to identify embedded code (assumed to remain unparsed
in host ASTs, stored in string-typed fields of its nodes) for arbitrary host languages. The
opposite can also be considered, i.e. an extractor that identifies different kinds of em-
bedded code in a particular host language based on certain host language statements.

FormatCode has a single capability class for the coding style, but none for the pro-
gramming language, as the the two are co-dependent: the Code Conventions for the

268

15.2. Service Identification
Se
rv
ic
e

Name ExtractEmbeddedCode
Description Extracts unparsed, embedded source code fragments from a host

language AST.
Input ast : AbstractSyntaxTree
Output code : SourceCode
Capability
Classes

HostLanguage = {COBOL} EmbeddedLanguage = {SQL}

Se
rv
ic
e

Name FormatCode
Description Takes source code in a particular programming language and

formats it according to the specified coding style.
Input style : CodingStyle

source : SourceCode
Output formattedSource : SourceCode
Capability
Classes

CodingStyle = {JavaOracle}

Se
rv
ic
e

Name TransformProgrammingLanguage
Description Transforms a software system in one programming language into a

semantically equivalent software system in another programming
language.

Input source : AbstractSyntaxTree
Output result : AbstractSyntaxTree
Capability
Classes

LanguageTransformations = {COBOLtoJava}

Figure 15.3: Three of the services modeled for Q-MIG’s migration activity.

Java Programming Language [1999] are – obviously – only applicable to the Java pro-
gramming language. This avoids nonsensical combinations (capability tuples) and is
sufficient for this case study. This is a pragmatic judgement call, because there are cod-
ing styles that apply to a whole family of languages (e.g. indentation styles like Allman)
– if this was to be supported as well, a different service modeling approach could have
been considered.

Linked to the design of capability classes is the level of abstraction of services, in
general. For example, the task of transforming ASTs from one programming language
into another could be fulfilled by a highly generic model-to-model transformation ser-
vice. Again, these decisions come with a certain margin of discretion – for Q-MIG,
the more specific TransformProgrammingLanguage service seemed clearer and more
appropriate.

269

15. The Q-MIG Toolchain

Consolidate Data

Add Common
Root

Remove Duplicate
Software Systems

Add Default
Names

Resolve
Ambiguous IDs

Add Average
Values

Remove Duplicate
Measurements

Infer Missing
Ratings

Average Out
Duplicate Ratings

Import Data Integrate Data
Obfuscate
Identifiers

Sanitize
Measurements

Sanitize Quality
Ratings

Figure 15.4: Activity decomposition of Q-MIG’s data consolidation.

15.2.2 Data Consolidation Services

Migrating COBOL systems to Java, and measuring metrics on both legacy and resulting
systems yields the data on inner software quality stored in the Q-MIG repository. Due
to the sensitive, confidential nature of the source code being analyzed, these steps were
performed by a team of industry partner pro et con at their offices. To ensure that the
received data was complete and consistent, a data model was rigidly specified early
on, and distributed and discussed among all project members. Still, some misconcep-
tions about the process of migrating and measuring employed by pro et con, and the
requirements of University of Oldenburg’s Software Engineering Group regarding the
data only became apparent late in the project, when a lot of data had already been
generated and exchanged.
For example, the industry-scale COBOL systems used as examples each consisted

of multiple programs. These were analyzed individually, which led to a disconnect in
the data, the repeated analysis of copy books shared by the programs, missing names
in entries representing COBOL divisions, and some non-unique identifiers.
As opposed to parsing, migration, and measurement, this activity and its individual

tasks are highly specific to the Q-MIG project. Therefore, there are little to no opportu-
nities for mapping them to more general, common software evolution tasks. Originally,
the tool support was implemented in a couple of Java classes as the issues occurred.
By the end of the project, this had led to several highly complex methods which were
invoked during data import into the repository, to perform all the necessary steps on
the data to make it consistent. A breakdown of the activity is shown in Figure 15.4,
derived from the original code and its documentation.

Import data merges a new set of data with the data already present.
Integrate Data performs a series of steps on a given data set to ensure consistency.

It consists of the following: Aggregating the structural descriptions of multiple COBOL
programs belonging to a single, overall software system by adding a common root node
to the hierarchical structure. Removing duplicate software system entries each repre-
senting the same copy book. Adding default names for divisions, if missing, based on
the division type (identification, data, environment, or procedure). Resolving ambigu-
ous IDs by adding contextual information to the ID strings during data integration.

270

15.2. Service Identification
Se
rv
ic
e

Name QMIGImportData
Description Merges all the provided data model instances into the specified,

existing repository.
Input repository : QMIGDataModel

importData [*] : QMIGDataModel
Output updatedRepo : QMIGDataModel
Capability
Classes

–

Se
rv
ic
e

Name QMIGInferMissingRatings
Description Tries to infer missing rating values by exploiting certain

redundancies in the hierarchical subsystem structure, and by using
the average of subsystem ratings, if the parent system’s rating value
is missing.

Input repository : QMIGDataModel
Output updatedRepo : QMIGDataModel
Capability
Classes

–

Figure 15.5: Two of the services modeled for Q-MIG’s data consolidation activity.

Obfuscate Identifiers replaces all names of software systems and subsystems (files,
programs, COBOL divisions and sections, etc.) with generic names that eliminate any
chance of positively identifying the analyzed systems, or their owners. This was a
confidentiality requirement to protect the interests of the clients of pro et con.

Sanitize Measurements removes inconsistencies in stored metric values. It consists
of adding average values for missing metric values of software systems that can be
reasonably recovered from corresponding metric values stored for its subsystems, and
removing duplicate measurements occurring due to overlap of software systems that
were analyzed separately.

Sanitize Quality Ratings removes inconsistencies in values of quality characteristics
rated by experts. It consists of the following: Inferring missing ratings by assuming
an average of all rated subsystems for parent systems, and by leveraging data model
redundancies – there can be elements in the subsystem hierarchy essentially referring to
the same artifact, e.g. a COBOL program and the source file that contains the program.
And averaging out duplicate ratings, if the same expert had given multiple different
ratings for the same software system and quality characteristic.
All leafs of the decomposition tree have been modeled as SENSEI services. The

full listing can be found in Appendix A (each service has been given the name prefix
“QMIG” to group them together in the catalog). An example is shown in Figure 15.5.

271

15. The Q-MIG Toolchain

Many of the services share the basic structure of the InferMissingRatings service, hav-
ing one input parameter to accept the repository in its current form, and one output
parameter to return it in its modified state. Because of the project-specific nature of
these services, they do not require capability classes to model variation points.
As depicted in Section 15.1, most Q-MIG activities are arranged around a central

data repository. At first sight, the repository-centric architecture might seem like a bad
fit for SENSEI, as it has explicit data flows, and, more importantly, its services are sup-
posed to be stateless. The question arises whether this breaks fundamental principles
of SENSEI, and with what consequences. Data consolidation is particularly well-suited
as an example in this matter, as not only the activity as a whole, but all the individ-
ual services are actually modeled to take the repository as input, and they output an
updated repository.
This service design is already part of the answer: by making the repository an

explicit part of each service’s signature, they remain formally stateless, i.e. their output
only depends on their input, and not some internal state. SENSEI is very flexible in
terms of the underlying data architectures it can be applied to. However, it should also
be noted that more complex issues not needed in the context in Q-MIG, like ensuring
transactionality across the execution of a service or orchestration, cannot be guaranteed
using SENSEI alone. This discussion will be taken up again in Section 15.8.

15.2.3 Composite and Aggregate Metric Services

Base metric calculation works on the software systems under study, directly, to measure
its properties. In addition, further metrics can be derived from these basic ones: either,
a software system’s value for a metric is inferred from the same metrics’ existing values
of its subsystems (aggregated metric), or a metric value is calculated based on the values
of other metrics of the same software system (composite metric).
Even though this is also a technically a calculation of metrics, it is both syntactically

and semantically different from the Calculate Metric service that is used for base metric
calculation (see Section 10.2, particularly Figure 10.5, page 171). The latter analyzes
ASTs of software systems to derive metric values. Composite and aggregate metric cal-
culations work on the Q-MIG repository, i.e. the input data is markedly different. There
is also no analysis of the input. Instead, the base metrics stored in the repository are
appropriately assigned to variables present in the calculation rules for composite and
aggregate metrics, to then execute these calculation rules. Because of this differences,
it seemed more sensible to model a separate service, as opposed to reusing the existing
one, and extending it with appropriate capabilities and input / output data structures.
The calculation of composite metrics and aggregate metrics is, however, very sim-

ilar, which is why they are modeled by a single service to Calculate Derived Metric
(this is also why there is no decomposition tree for this activity). The service is shown
in Figure 15.6. Its signature is similar to that of Calculate Metric. The capability class

272

15.2. Service Identification
Se
rv
ic
e

Name CalculateDerivedMetric
Description Derives values for the specified composite or aggregate metric for

all software systems and their subsystems found in the repository
that miss the value, if the necessary base metric data is present.

Input repository : QMIGDataModel
metric : Metric

Output updatedRepo : QMIGDataModel
Capability
Classes

SupportedMetrics = {ModularityRating, ReusabilityRating, Ana-
lysabilityRating, ChangeabilityRating, ModificationStabilityRating,
TestabilityRating, ComplexityRating, PortabilityRating, ELOC, Mc-
Cabe, HalsteadVocab, HalsteadSize, HalsteadVolume, Halstead-
Difficulty, HalsteadEfforts, HalsteadErrors, HalsteadTestingTime,
CommentsPercentage, ClonesPercentage, AverageLCOM, Average-
ComplexityPerUnit, AverageUnitSize, AverageNumberSubclasses,
AttributeHidingFactor, MethodHidingFactor, AverageMethodsPer-
Class, SLOC, NumberEmptyLines, NumberLinesWithOnlyBrackets,
NumberCommentLines, NumberDecisions, NumberDistinctOpera-
tors, NumberDistinctOperands, NumberOperatorInstances, Num-
berOperandInstances, NumberGotos, CloneLines, LCOM, Number-
Classes, NumberSubclasses, NumberAttributes, NumberHiddenAt-
tributes, NumberMethods, NumberHiddenMethods, ITD, Switch-
esFromGotos, UnconvertibleGotos, ConditionalOperators, CBO,
SLOCWithoutSQL, ELOCWithoutSQL, NumberAttributesAccessed,
SumDistinctAttributesAccessed, NumberSQLLines}

Figure 15.6: Calculate Derived Metric service modeled for Q-MIG’s composite and
aggregate metric calculation activity.

SupportedMetrics also models the distinction between composite and aggregate metric
calculation, since each metric is either one or the other.
Even though the long list of capabilities representing all the metrics required in

SENSEImight seem a bit unwieldy, compared to a single service per metric it is actually
quite compact. More importantly though are the benefits in terms of flexibility afforded
by the capability model: it allows domain experts to concisely specify which metrics
are actually needed in a given orchestration, without having to model the potentially
extensive control flow structures for deciding when to use which service – SENSEI will
do this for them. Conversely, tool developers specify which metrics their tools support,
which enables SENSEI to mix and match components that together satisfy the given
requirements – again with no need for manual intervention.

273

15. The Q-MIG Toolchain

Because the calculation is not based on the analysis of a software system, a capa-
bility class to model programming languages, which is present on Calculate Metric, is
not needed here. For the same reason, the capability class for supported granularity
levels is omitted: Even though these levels are still present in the Q-MIG data model,
they are uniform, i.e. the actual granularity level does not change the manner of metric
calculation.

15.3 Service Orchestration

Having filled the service catalog, orchestrations modeling the project activities to be
automated can be created. With SENSEI, it is easy to create, modify, and extend or-
chestrations. This means there does not have to be a single toolchain that supports
everything. Rather, orchestrations can be created on demand, and can be evolved as
the project progresses. The following orchestrations must therefore be considered se-
lected examples and “snapshots” at a certain point in time. Had SENSEI been used in
Q-MIG from the outset, the orchestrations would have evolved incrementally, just as
the actual, “manually” crafted tool support did. The orchestrations created for this case
study cover the tool support that had been developed by the end of the project, but go
beyond it in terms of integration and automation, as will be shown in the following.
In the following, orchestrations are presented for the parse, migrate, and measure

(Section 15.3.1) and the consolidate data activities (Section 15.3.2), continuing from
the previous section. In addition, an example of an orchestration spanning multiple ac-
tivities is shown to demonstrate the high degree of automation fostered by SENSEI. This
orchestration activities to parse, migrate, measure, consolidate date, calculate com-
posite and aggregate metrics, add traceability links, and browse, query, visualize, to
produce amigration quality comparison report from a COBOL software system. Further
orchestrations can be found in Appendix A.1.2.

15.3.1 Orchestrations to Parse, Migrate, andMeasure

Figure 15.7 shows an orchestration to calculate base metrics – similar to the base met-
ric calculation example used throughout the thesis, with two differences: There is an
additional capability class SupportedGranularityLevel in service CalculateMetric, as
mentioned in Section 15.2.1, and the Parse service is omitted from this orchestration.
This makes it more reusable, as it can now be used to calculate base metrics on an AST
generated by parsing source code, but also on ASTs produced by a language migration,
for example. The new orchestration induces the service QMIGCalculateBaseMetrics,
which can be instantiated in other orchestrations, to hierarchically model more and
more complex processes without sacrificing clarity and consiceness.
Another simple orchestration to be used as a building block is depicted in Fig-

ure 15.8. It models the reengineering sub-activity identified in the decomposition tree

274

15.3. Service Orchestration

Figure 15.7: Q-MIG base metric calculation orchestration, without parsing (QMIGCal-
culateBaseMetrics).

Figure 15.8: Q-MIG reengineering orchestration (QMIGReengineer).

shown earlier in Figure 15.2. The service induced by it is stored as QMIGReengineer
in the service catalog.
The orchestration has only two service instances, one of DetectCodeSmells, and

one of Refactor. The outer map loop iterates over all types of code smells provided
as input. For each type, the provided software system is searched for instances of that
code smell. The resulting list of code smells is iterated over by the nested map, and
each one is removed by applying an appropriate refactoring.
Note that the coalesce ports are not utilized in this orchestration. This is because the

changes are applied consecutively on the same software system. To do this, the output
of the Refactor service instance is looped back to its input. SENSEI’s data flow semantics
make this work, as outgoing data flow edges are processed after each execution of the
corresponding service instance, by copying the output data to the flow’s destination,
potentially overwriting any data that was previously stored at that port.

275

15. The Q-MIG Toolchain

Figure
15.9:

O
rchestration

covering
parsing,m

igration,and
quality

m
easurem

entofC
O
BO
L
and

m
igrated

Java
system

s.

276

15.3. Service Orchestration

These two orchestrations are reused in Figure 15.9, a much larger orchestration that
covers the complete parse, migrate, measure activity of Q-MIG. As such, it certainly
comes close to the upper size limit, both in terms of what can be fit on a screen (or
page), as well as what can still be considered clear enough to be easily comprehensible.
The orchestration could easily have been broken down further into sub-orchestrations,
though. However, the goal here was to provide an example of a markedly more com-
plex orchestration than has been shown up until now. Just like all SENSEI artifacts in
this chapter, it was created with the SENSEI editor (Chapter 13), demonstrating its ability
to handle large orchestrations, as well.
The orchestration models an activity that starts with parsing the source code of a

COBOL software system. The resulting AST is passed on to three processes: the top
half of the figure models the pre-migration analysis followed by the actual migration to
Java. In the bottom half, the AST is analyzed for embedded SQL code, which is then
parsed, and concurrently, the base metrics are calculated. This is an instance of the
QMIGCalculateBaseMetrics, modeled previously as orchestration (Figure 15.7).
The pre-migration steps start with an instance of data flow analysis, which enriches

the AST with semantic information. The resulting ASG is further decorated with a
mapping of its element to a target Java system structure. Also in preparation for migra-
tion, the legacy system is cleaned up by applying reengineering, e.g. removing GOTO
statements to ease migration to Java. Then, the actual COBOL-to-Java migration is per-
formed. Following this, the resulting Java AST is passed to two concurrent processes:
the one on the top generates code and then formats it, yielding source code of a Java
software system as the final migration result. On the AST produced by the migration,
base metrics are calculated, as well, reusing the QMIGCalculateBaseMetrics again.
This orchestration fully integrates and automates multiple sub-activities. It therefore

has quite a lot of inputs (seven) and outputs (four). One minor shortcoming of the
current SENSEI tooling is that there is no convenient way to specify constant values for
input ports (also pointed out by Küpker [2015, p. 65]). This would be useful, e.g. for the
javaCodeFormat input port. Then again, it is not much effort to provide that constant
value, and having an input port exposed allows for potentially more flexible reuse.

15.3.2 Orchestrations to Consolidate Data

The data consolidation tasks are orchestrated by simply chaining them one after the
other. For this activity, the orchestrations have been broken down exactly according
to the corresponding decomposition tree (Figure 15.4): all leaf nodes had been identi-
fied as services in Section 15.2.2. Now, the root and the inner nodes are modeled as
orchestrations.
Starting at the top this time, Figure 15.10 shows the high-level orchestration of the

complete activity. First, the quality data sets are imported into an existing repository (or
a new repository, if the corresponding port is left open). This orchestration assumes that

277

15. The Q-MIG Toolchain

Figure 15.10: Q-MIG orchestration consolidate data (QMIGConsolidateData).

Figure 15.11: Q-MIG orchestration to integrate data (QMIGIntegrateData).

Figure 15.12: Q-MIG orchestration to sanitize measurements (QMIGSanitizeMeasure-
ments).

all the quality data sets being imported are actually sub-programs belonging to a single
software system. In the next step, the data is therefore integrated into a single entry. The
data is then obfuscated according to the project’s confidentiality requirements. Lastly,
both the measured metric values and the quality ratings are sanitized.
The data integration step is further subdivided: the service instantiated in the top-

level orchestration is induced by another orchestration, one level down in the activity
decomposition shown in Figure 15.11. The service instances correspond to the services
identified previously (refer to Section 15.2.2 for an explanation of what they do).
The two service instances of QMIGSanitizeMeasurements and QMIGSanitizeRa-

278

15.3. Service Orchestration

Figure 15.13: Q-MIG orchestration to sanitize ratings (QMIGSanitizeRatings).

tings, respectively, also correspond to a sub-orchestration, each. The former is depicted
in Figure 15.12. The latter is shown in Figure 15.13.
The whole activity can be “flattened”, by inserting the sub-orchstrations in place

of their corresponding service instances in the main orchestration, which would yield
one very long chain of service instances. The logical sub-division makes for less clutter,
but it also serves to perform sub-activities independently.
For example, the data sanitation tools evolved later in the project, when the Q-MIG

repository had already been filled with a lot of metric measurement data. This data
might need to be sanitized, but the data import and integration activities do not have
to be repeated (in fact, that could lead to duplications in the data, and subsequent
erroneous analysis results).
It is also easy to change the top-level orchestration, or recombine the service in-

stances and sub-orchestrations to form new orchestrations, e.g. to leave out some ac-
tivities that are not always necessary. Finally, the clear separation into individual tasks
that each handle a single problem with the data, that is facilitated by the service model,
also greatly simplifies evolving the activity as the project progresses. For example, if the
root cause for the presence of ambiguous IDs were to be fixed in the “upstream” tooling,
the corresponding service instance can simply be removed from the orchestration.

15.3.3 Orchestrations to Generate a Quality Comparison Report

Several main activities have not yet been covered with orchestrations: the calculation of
derived metrics and the addition of traceability links each only led to a single service
being identified – they are either used on their own (which makes for rather trivial
orchestrations), or as part of orchestrations that span multiple activities. The rating of
quality characteristics is supported by an interactive tool. There is no place or need for
automation by a SENSEI toolchain here. Finally, browsing, querying, and visualizing
the quality data are actually three related activities, each of which corresponds to a
single service with similar usage patterns as the services for derived metric calculation
and traceability. The service descriptions that have not been introduced in Section 15.2
can be found in Appendix A.1.1.

279

15. The Q-MIG Toolchain

Figure 15.14: Q-MIG orchestration to parse, migrate, and measure multiple software
(sub-)systems (QMIGParseMigrateMeasureMultiple).

To demonstrate performing these activities with SENSEI-based tool support, an or-
chestration that spans multiple activities is presented in the following. It represents an
actual use case of the Q-MIG project: the quality analysis of both an original COBOL
system (consisting of multiple programs) and the migrated Java system, resulting in a
browsable quality comparison report that lists measured and derived metric values of
corresponding COBOL and Java subsystems side by side.
Another activity-spanning orchestration was modeled, to perform quality analyses

of COBOL systems, with subsequent prediction of expected metric values were it to
be migrated to Java, and visualization of the results as bar charts or scatter plots. This
orchestration is included in Appendix A.1.2.
For the former use case, a “helper” orchestration has been modeled, first. Fig-

ure 15.14 shows an orchestration to parse multiple COBOL programs (belonging to the
same, overall software system), measure base metrics for each one, migrate them, and
measure base metrics on each resulting Java (sub-)system, as well. In essence, this is
justQMIGParseMigrateMeasure (Figure 15.9) embedded in a loop. However, there are
multiple inputs and outputs, and the current orchestration language constructs neither
provide an elegant way to iterate multiple collections in sync, nor to collect multiple,
individual results into separate lists.
To solve this without extending SENSEI, four helper services have been modeled:

Pair combines two data items, and Split pulls such pairs apart again. Zip and Unzip
do the same for collections, i.e. create a single collection of pairs from to individual
collections, and extract the original collections from a single collection of pairs, respec-
tively.
As is obvious from looking at Figure 15.14, this leads to a very high degree of clutter

in an orchestration that should otherwise be fairly straightforward. More powerful con-
structs for specifying data flow could fix this, for example having a map loop construct

280

15.3. Service Orchestration

with arbitrary many expand and coalesce ports. However, the orchestration language
of SENSEI has been kept deliberately small, as its design was not a central objective of
this thesis. Therefore, the helper services are necessary for what must be considered a
makeshift solution.
Conversely, it should also be pointed out that it actually is possible to model and use

the described orchestration with SENSEI. The helper services can be modeled quickly,
and their implementation is straight-forward. Creating this functionality within the
framework of SENSEI, instead of extending it in a more invasive manner, blends in
seamlessly and naturally, following the “everything is a service” paradigm. A more
concise way to specify such semantics would be highly desirable, but from a purely
technical point of view, such extensions would be merely syntactic sugar – its absence
has no fundamental impact on the soundness of SENSEI’s foundations.
The orchestration induces the service QMIGParseMigrateMeasureMultiple, which

is instantiated in the orchestration shown in Figure 15.15. This service instance is exe-
cuted first, producing multiple COBOL and Java measurements. The SQL ASTs and the
generated Java code is not used any further, here. The orchestration could be extended,
either directly or by creating another orchestration that wraps around this one, to ana-
lyze SQL, as well, for example. Alternatively, a variant of QMIGParseMigrateMeasure
could be used that skips SQL parsing and Java code generation, to avoid wasting re-
sources on these when they are not actually necessary. For the sake of simplicity, the
existing, previously introduced orchestrations were used as is.
Both the sets of COBOL and Java quality measurements are passed into instances

of QMIGConsolidateData, which integrates each of them under a single root element.
This is done sequentially, so the later service instance can work on the modified repos-
itory data produced by the earlier invocation. Although the respective changes should
be completely disjoint, this avoids any chance for concurrent modification and poten-
tial conflicts.
Next, an instance of QMIGAddTraceLinks inserts traceability information that al-

lows navigating between COBOL and corresponding Java systems and subsystems, and
associated measurements. Following this, derived metrics are calculated: the seman-
tics of this service specify that it always traverses the complete repository, calculating
and inserting metric values wherever they are missing.
The last step produces a human-readable quality comparison report, incorporating

all quality information available for the pair of COBOL and Java system. Since the ser-
viceQMIGGenerateReport expects a list of measured software systems, another helper
service is needed: Concat takes two elements or collections of the same, arbitrary
type, and joins them into a single collection. In this case, since QMIGGenerateReport
is project-specific anyways, its signature could also have been modified to better fit this
use case. Another alternative would have been to create an additional service with ba-
sically the same semantics, but a different interface (implementing components would
be able to provide both variants).

281

15. The Q-MIG Toolchain

Figure
15.15:

O
rchestration

to
generate-quality-com

parison-report.

282

15.4. Service-Component Matching

Figure 15.16: Screenshot of a component registry view in the SENSEI editor.

15.4 Service-Component Matching

This next phase in the toolchain-building process is about searching for appropriate
tools to realize the tasks that have been identified and coordinated in the previous
steps (Section 9.4). Using SENSEI, the process of finding implementations for services
is partly automated, as described in Chapter 12. The remaining manual part, carried
out by tool developers, is filling a component registry with the necessary information
for service-component match-making.
In Q-MIG, a lot of project-specific services were identified, for which correspond-

ing components were created specially for the project. While the ratio between usable
standard components and necessary custom-built components may vary, the expecta-
tion is that most projects will require at least some individual logic.
A list of all the service-to-component mappings from the registry created for this

case study is available in Appendix A.1.3. This list omits data definitions, as they would
bloat it considerably with information that is required for technical reasons, but would
provide little additional insight to the reader. Here, examples of the registry entries for
two components are given to illustrate how this is modeled using the SENSEI editor.

283

15. The Q-MIG Toolchain

Figure 15.17: Screenshot of the SENSEI editor’s properties view, showing data defini-
tions.

Figure 15.16 shows a screenshot of the SENSEI editor’s component registry view. It
shows the DataImprover component, which implements all services identified for the
data consolidation activity. For these project-specific services, capabilities play a sub-
ordinate role. Therefore, all of the data definitions (see Section 12.1.3) for them are
associated with a provided capability tuple consisting of the single capability Default
from the capability class of the same name. SCAffolder only requires the format field,
using it to bind SENSEI’s conceptual data structures to concrete Java types. Two exam-
ples can be seen in Figure 15.17: these data definitions bind the parameters root and
repository of the QMIGAddCommonRoot service to types defined by the Java classes
AbstractSoftwareSystem and DataModel, respectively. The classes have to be referred
to by their fully qualified name.

Another example, which makes use of the capability mechanism, is shown in Fig-
ure 15.18. Almost the complete base metric calculation was implemented within two
custom tools in Q-MIG, the Java Metric Calculator and the COBOL Metric Calculator,
the latter being realized by the project’s industry partner pro et con. The only excep-
tion was for the CloneLines metric, for which the existing code clone detection tool
DuDe [Wettel and Marinescu, 2005] was reused. In the original Q-MIG implementa-
tion, it was actually embedded within the Java Metric Calculator. For this case study,
to achieve better reusability and flexibility, it was factored out again as a separate com-
ponent, as is visible in the screenshot of the component registry view. Using provided
capabilities, this component will only be taken into consideration for calculating clone
lines on a directory-level, for either COBOL or Java systems.

284

15.5. Adapter Creation

Figure 15.18: DuDe [Wettel and Marinescu, 2005] registered as component to provide
the CalculateMetric service for the CloneLines metric.

15.5 Adapter Creation

Adapter creation falls to tool developers in SENSEI. For any given service that is being
used, and that requires appropriate components implementing them, several cases can
be distinguished:

1. There are one or more SENSEI-compatible components readily available. This is
the best-case scenario: the tool developers have already taken care of adapting
their component to SENSEI, and have added corresponding entries in the compo-
nent registry. Such components will automatically be discovered, and there is
no additional work to be done, i.e. the adapter creation step can be skipped.

2. There are one or more existing tools readily available, which have not been de-
signed for SENSEI, however. In this case, an adapter component has to be created,
which provides the interface required by the particular SENSEI processor. In the
Q-MIG case study, SCAffolder is used, which supports adapter creation by generat-
ing the necessary boilerplate code from component registry entries. The required
effort to implement such adapters is highly dependent on the tools to be adapted,
and the interfaces they offer.

3. There are no tools available at all, or those that are available offer no interfaces
that can be adapted to serve as SENSEI component (at least not with reasonable
effort). In this case, the component as a whole has to be developed from scratch,
not just an adapter.

In the original run of Q-MIG, a very large degree of the tooling was created specif-
ically for the project (Case 3.). A major reason for not using more existing tools was

285

15. The Q-MIG Toolchain

their lack of interoperability, e.g. inconvenient interfaces and too little customizabil-
ity. At the time of the case study, this custom tooling has been implemented, i.e. the
tools are available, but since SENSEI had not been available during Q-MIG, they do not
feature the necessary adapters, yet (Case 2.). Obviously, since this case study was the
first application of SENSEI on a larger scale, there were no SENSEI-ready components
available (Case 1.).
Because of most tools being custom, in-house developments, their source code was

available for this case study. On the one hand, this arguably simplified adapter creation,
as it allowed to directly modify particularly unwieldy component interfaces. On the
other hand, there were also cases in which the custom-build tool support was also the
reason for more adapter creation effort, as some tools had not been build with individ-
ual reusability in mind. For example, the Java Metric Calculator implementation fuses
generic, reusable functionality (corresponding to the CalculateMetric service) with very
project-specific code, which made it harder to cut out component interfaces.
In the following, three examples for Q-MIG SENSEI adapters are given:
1. The Java Frontend adapter binds to the command-line interface of its tool.

2. The DuDe adapter uses an (undocumented) Java API.

3. The Java Metric Calculator adapter is built directly into the original code.

15.5.1 Java Frontend Adapter

The Java Frontend by pro et con provides the ParseJava service. It was available as a
Microsoft Windows executable, only; without access to source code, and no exposed
API, its command-line interface was adapted.
SCA can be extended with custom component implementation types, which can

be used to support different programming languages, but also specific frameworks –
Tuscany SCA, for example, supports Spring and BPEL out of the box [Laws et al., 2011,
pp. 175ff]. In a similar manner, an implementation type for common styles of command-
line interfaces could be created. For the Java Frontend adapter, the more direct route
of using Java’s Process API to invoke the tool was taken.
Figure 15.19 shows code snippets from an internal method of the adapter imple-

mentation. The complete adapter code is 229 lines long; the corresponding Java class
implements the SCAffolder-generated interface ParseJava.
The first excerpt shown here (Lines 58 to 65) iterates over the source file names that

were provided as input, and writes them to a “name file”. This file is then passed to
the Java Frontend instead of passing all file names individually (which can overwhelm
the Microsoft Windows console). The command to be invoked, along with all param-
eters to be passed, is built in the second code snippet (Lines 78 to 82). The name file
previously written to disk is passed as an argument in Line 81. The third code snippet
(Lines 88 to 101) sets up the working directory, sets output streams to redirect to files,
and then starts the process. When the process returns without abnormal interruption,

286

15.5. Adapter Creation

58 nameFileWriter = new OutputStreamWriter(
59 new FileOutputStream(NAME_FILE));
60 for (File localJavaFile : localJavaFiles)
61 {
62 nameFileWriter.write(localJavaFile.getAbsolutePath());
63 nameFileWriter.write("\n");
64 }
65 nameFileWriter.flush();

[…]
78 ProcessBuilder javaFEProcessBuilder = new ProcessBuilder(javaFEPath,
79 CLASS_PATH_PARAMETER, classPathString.toString(),
80 CONFIG_FILE_PARAMETER, configFile,
81 NAME_FILE_PARAMETER, NAME_FILE.getAbsolutePath(),
82 OUT_FILE_PARAMETER, OUT_FILE.getAbsolutePath());

[…]
88 javaFEProcessBuilder.directory(WORKING_DIRECTORY);
89 javaFEProcessBuilder.redirectError(new File(ERROR_OUT_FILE));
90 javaFEProcessBuilder.redirectOutput(new File(STD_OUT_FILE));
91 Process javaFEProcess = javaFEProcessBuilder.start();
92 try
93 {
94 javaFEProcess.waitFor();
95 return actualOutFile;
96 }
97 catch (InterruptedException ex)
98 {
99 Logger.getLogger(JavaParser.class.getName()).
100 log(Level.SEVERE, null, ex);
101 }

Figure 15.19: Excerpts from the Java Frontend’s adapter implementation.

the file it wrote to disk, containing an XML representation of the abstract syntax tree
is returned. As this is an internal method, this does not transfer control back to the
component’s invoker, directly. The result file’s contents are read into memory, first,
which are then transferred back as the component’s response.

15.5.2 DuDe Adapter

The Java Frontend was only executed manually during the Q-MIG project’s original
run, and was not actually integrated into the rest of the toolchain. The clone detec-
tor DuDe, however, was integrated with the custom Java Metric Calculator tool, so
an adapter connecting the tools’ respective interfaces to each other had been created,
already. The core of the necessary adapter logic is shown in Figure 15.20.
To perform the clone detection process, DuDe provides the Processor class, an

instance of which is created and set up in Lines 70 to 73. The API requires to start the

287

15. The Q-MIG Toolchain

68 public long evaluate(Entity[] dudeEntitites)
69 {
70 Processor dudeProcessor = new Processor(dudeEntitites,
71 null, new LevenshteinMatchingStrategy(THRESHOLD));
72 dudeProcessor.setParams(DUDE_PARAMS);
73 dudeProcessor.setName("Dude Clone Detector (Levenshtein

Matching)");ãÑ

76 synchronized (dudeProcessor)
77 {
80 dudeProcessor.start();
83 try
84 {
87 dudeProcessor.wait();
90 }
91 catch (InterruptedException ex)
92 {
93 LOG.log(Level.SEVERE, "DuDe processor was interrupted

("ãÑ

94 + System.identityHashCode(dudeProcessor) +
")", ex);ãÑ

95 }
96 }
97 //getMatrixLinesLength apparently returns the "relevant lines

of code"ãÑ

98 //see class lrg.dude.gui.GUI, method "showStatisticsAction".
99 long duplicateLines =

dudeProcessor.getNumberOfDuplicatedLines();ãÑ

100 return duplicateLines;
101 }

Figure 15.20: Excerpt from the DuDe adapter implementation (lines with fine-level
logging omitted).

processor in its own thread (Line 80). Since this is not really desired here, the adapter
simply waits for the processor to finish (Line 87). Provided that no exceptions occurred,
the number of clone lines can then be retrieved from the processor instance.
In this code snippet, the input data – the software system under study – is repre-

sented by the dudeEntities parameter, and the output is a long number. This does not
correspond to the types expected by the Java Metric Calculator, into which DuDe had
been embedded for Q-MIG using this code. There is further glue code transforming be-
tween these different representations of data before and after invoking the tool, which
has been omitted here. That is because, in accordance with the principles of SENSEI,
this code constitutes transformers, not adapters. The transformer code, and the neces-
sary refactorings to the original implementation which had it fused to the adapter, will
be discussed in Section 15.6.

288

15.5. Adapter Creation

350 @Override public DataModel calculateAll() throws GraphIOException,
351 FileNotFoundException, JAXBException {
352 MetricCalculationResult result = new

MetricCalculationResultImpl();ãÑ

353 for (GranularityLevel level : GranularityLevel.values()) {
354 Set<Metric<SoftwareSystem>> metrics =

registry.getMetrics(level);ãÑ

355 for (Metric m : metrics) {
356 if (system.isLanguage(ProgrammingLanguage.JAVA)
357 && m.isEvaluableOver(ProgrammingLanguage.JAVA)) {
358 String metricName = m.getName();
359 Map<Integer, Number> metricResultMap =

m.evaluate(system);ãÑ

360 result.addMetricResults(metricName, metricResultMap);
361 } else {
362 LOG.log(Level.INFO,"Metric "+m.getName()+" will not be

"+ãÑ

363 "evaluated because the system does not have
the "ãÑ

364 + "correct Programming Language");
365 }
366 }
367 }
368 DataModel dm = structureBuilder.build((SoamigGraph)

system.getTGraph());ãÑ

369 return baseValueRecorder.writeResults(dm, result);
370 }

Figure 15.21: Central method of the original Java Metric Calculator.

15.5.3 JavaMetric Calculator Adapter

Like DuDe, the Java Metric Calculator is itself implemented in Java. Being a custom
tool developed specifically for Q-MIG, the source code was readily available. There-
fore, the corresponding SENSEI adapters were implemented as more immediate and
natural extensions of the existing tool.
The original metric calculator tool only has a command-line interface with the fol-

lowing signature:
java -jar MetricCalculator-0.5.3.jar -e [--log <logLevel>] -s
<SourcePath> -t <TargetPath> [-r <systemID> <setupID>]ãÑ

Without going into details, it should be noticed that this interface offers no control
over which metrics to calculate, or on which granularity levels. That is because the Java
Metric Calculator always calculates all themetrics it implements. The “heart” of the tool
is the calculateAll method shown in Figure 15.21. With SENSEI, this method, including
the logic of some of the methods it invokes, is basically replaced by an orchestration,
or more precisely, the Composer code that is generated based on it.

289

15. The Q-MIG Toolchain

170 @Override
171 public Map<Integer, Number> calculatemetricSLOCJavaJavaClass(String

metric,ãÑ

172 byte[] ast)
173 {
174 LOG.info("Calculating SLOC of Java classes.");
175 return calculateMetric(metric, ast, JAVA, CLASS);
176 }

[…]
242 private Map<Integer, Number> calculateMetric(String metric,
243 byte[] ast, ProgrammingLanguage lang, GranularityLevel level)
244 {
245 LOG.info("Calculating metric.");
246 try
247 {
248 SoftwareSystem sys = deserializeAST(ast);
249 MetricRegistry registry = registry();
250 LOG.info("Metric registry initialized");
251 Metric execMetric = registry.getMetric(metric, lang, level);
252 Map<Integer, Number> result = Collections.emptyMap();
253 if (execMetric != null)
254 {
255 LOG.info("Retrieved metric from registry");
256 result = execMetric.evaluate(sys);
257 LOG.info("Evaluated metric on specified system");
258 }
259 else
260 {
261 LOG.severe("Metric not found! (name='"+metric+"',

language='"+lang+"', level='"+level+"')");ãÑ

262 }
263 return result;
264 }
265 catch (IOException | XMLStreamException | ClassNotFoundException

| GraphIOException ex)ãÑ

266 {
267 throw new IllegalStateException(
268 "metric registry could not be initialized.", ex);
269 }
270 }

Figure 15.22: Excerpts from the Java Metric Calculator’s adapter implementation.

The tool also directly outputs a complete Q-MIG data model instance, which was
perfectly adequate for this project, but further entangles otherwise reusable parts (the
calculation of a single metric on a specific part of a software system under study) with
project-specific ones. So in essence, this implementation realized the complete base
metric calculation (without parsing, see Figure 15.7) monolithically.

290

15.6. Transformer Creation

The new adapters shown in Figure 15.22 expose SENSEI and SCAffolder-compatible
interfaces which makes its basic functionality available more directly, and independent
from a single, project-specific use case. The interfaces auto-generated by SCAffolder de-
fine a separate method for each provided capability tuple declared in the component
registry. These methods (Lines 170 to 176 show an example) all delegate to a sin-
gle method calculateMetric (Lines 242 to 270), which initializes the required objects
(Lines 248 to 252), deserializes the input data (Line 248)1, and then invokes the actual
metric evaluation (Line 256). The Java Metric Calculator also implements the Extract-
Structure and MapResultsToStructure services; appropriate SENSEI adapters exposing
their functionality for use with SCAffolder are implemented within the same class.

15.6 Transformer Creation

As most of the tools used for the Q-MIG project were custom-build, there is a limited
number of required transformers: the tools that were built from scratch are all well-
aligned to each other, and use compatible data formats. Some examples of transformers
include the following:
• A transformer to turn the XML-based exchange format to represent COBOL and
Java abstract syntax trees, as output by the parsers of pro et con, into the TGraph-
based format used by the Metric Calculator.

• A transformer to turn an abstract syntax tree representation – either the XML- or
the TGraph-based format – into the format expected by the DuDe clone detector.

• A transformer to turn the TGraph-based format of the Q-MIG data model into the
XML exchange file format defined within the project, and another transformer to
do the reverse.

Even though they had not been fully integrated into fully-automated toolchains, the
original tool implementations already contain all the necessary code for these trans-
formers. However, some refactorings were needed to properly cut the transformer
functionality out.
One common issue was that the invocation of transformations happened nested

inside of the methods implementing the functionalities. For example, the first step
in the original code to calculate the CloneLines metric using DuDe was to transform
the Metric Calculator’s own software system representation to the format expected by
DuDe. Fusing adapter and transformer logic in this manner impedes reuse, as now the
input data has to be provided in one data format, only to be immediately transformed
again. If the available input data is already in a DuDe-compatible format, it will have
to be pointlessly transformed back and forth.
Another, related problemwas concerning the interfaces defined to access data trans-

formation logic. In most cases, the transformer code was held in their own classes (even
1Deserialization is not to be factored out into transformers, as will be explained in Section 15.6.

291

15. The Q-MIG Toolchain

1 package de.unioldenburg.ses.components;
2

3 import de.unioldenburg.qmig.datamodel.DataModel;
4 import de.unioldenburg.qmig.datamodel.xml2tgraph.TGWriterImpl;
5 import de.unioldenburg.qmig.exchange.RootType;
6

7 public class QMIGExchange2DataModelTGraphTransformer implements
8 transformDataDefinitionQMIGExchange2DataModelTGraph
9 {
10 @Override
11 public DataModel transformdatadefinitionQMIGExchange2DataModelTGraph(
12 RootType input)
13 {
14 return new TGWriterImpl().xml2tg(input);
15 }
16

17 @Override
18 public boolean is_input(RootType input)
19 {
20 return input != null;
21 }
22 }

Figure 15.23: Simple transformer implementation, relying on existing functionality
from the Q-MIG tooling.

though they were coupled too closely with other classes, as stated above). But their
interfaces often only defined methods that were convenient for one particular use case,
but did not expose the “raw” data types to transform to and from. For example, the
transformation logic to turn Q-MIG data models from XML into TGraphs was hidden
behind convenience methods, taking the input data as File objects, or lists of them (to
import multiple files at once), as well as further control parameters to trigger additional
steps to be taken prior or after the actual data transformation. While these methods
represent reasonable use cases of the Metric Calculator as a whole, and simplified the
high-level logic close to the user interface, they buried the pure transformer code.
Issues like this are not at all inherent in object-oriented code. In fact, these problems

arguably correspond to code smells and violate well-known principles and practices of
object-oriented design, such as the single responsibility principle [Martin, 2003, p. 95].
However, issues like this are also probably quite common, in general. The contribution
of SENSEI here is a stronger enforcement of such principles to facilitate reusability.
Figure 15.23 shows the implementation of the transformer taking data in the Q-MIG

exchange file format and turning it into corresponding TGraph representations. As can
be seen, the transformer, like all transformers that were created for Q-MIG, is fairly
simple, as it is only a very thin wrapper that delegates to pre-existing code to perform
the actual transformation. Since all transformers look basically like this, only this one

292

15.7. Composer Creation

example is given. The logic behind these wrappers is not considered, either, as it has
nothing to with using SENSEI, and would not yield any additional insights.
The transformer’s input and output parameters have been bound to the Java types

RootType and DataModel, respectively. The former represents the root of an in-
memory representation of an XML file. The data conforms to the model defined in
an XML schema, from which Java classes (like RootType) have been generated using
JAXB. The DataModel type, along with further dependent classes, represent a TGraph.
These classes have similarly been generated, based on a TGraph schema defined using
grUML [Ebert, Riediger, and Winter, 2008]. The actual transformation is delegated to
an instance of class TGWriterImpl, which is part of the existing Q-MIG tooling, but was
modified to provide the xml2tg method, using an extract method refactoring.
Note that loading input data into memory, or deserializing it into objects should not

be factored out into transformers. Transformers are special kinds of components, and
SENSEI components never interact directly, but exclusively via a composer component.
Depending on the target platform, SENSEI processor implementation, and deployment
type, input and output data will have to be serialized and deserialized when being
transferred from component to composer, and then back to a different component. In
a distributed deployment, a transformer might even be residing on a different, physical
host than the component that will eventually receive the transformed data. Therefore,
a transformer that actually only loads or deserializes data, which it then has to imme-
diately serialize again to return its results to a composer is completely pointless.

15.7 Composer Creation

The creation of the coordination logic, insertion of appropriate data transformers, and
wiring up inter-component dependencies, is all done (almost) fully automatic in this
last step. At this point, components have been registered (Section 15.4), and adapters
created (Section 15.5), for all services defined (Section 15.2) and instantiated in or-
chestrations (Section 15.3). Now, for each of these orchestrations, composers can be
generated by SCAffolder.
For simple, non-distributed, standalone toolchains, the only manual step required is

the provision of user interfaces. A simple command-line interface can be implemented
in only a few lines of code – SCAffolder does not yet support generating this, though it
should be fairly straight-forward to add such a feature. In Q-MIG, several user interfaces
already existed, both command-line interfaces such as that of the Java Metric Calculator,
as well as graphical user interfaces, such as the Q-MIG GUI, which provides access
to most of the individual Q-MIG tools. The latter does little to automate common
processes, leaving it to the user to manually specify data produced by one tool as input
of another, and invoke tools in the right order.
For this case study, the original functionality behind existing user interfaces was

simply swapped for corresponding functionality provided by generated composers.

293

15. The Q-MIG Toolchain

1 NodeFactory factory = NodeFactory.newInstance();
2 Node composerNode = factory.createNode();
3 composerNode.start();
4 result = composerNode.getService(ExecuteToolchain.class,

"Composer/ExecuteToolchain")ãÑ

5 .execute(consolidatedDataModel, individualDataModels);

Figure 15.24: Code to initialize a Tuscany SCA node and invoke the SCA service ex-
posed by the generated ConsolidateData composer.

By doing so, some screen masks corresponding to intermediate steps became obso-
lete. Using Apache Tuscany SCA as standalone SCA runtime, invoking an SCA service
exposed by a generated composer only requires a few lines of code, as seen in Fig-
ure 15.24. A single node2 is instantiated and started in Lines 1 through 3. In such
a setup, SCAffolder takes care of also generating all the necessary dependency infor-
mation (through Maven), so that Apache Tuscany will be able to load all components,
resolve SCA service references, and wire them up appropriately. In Line 4, the SCA
service representing the entry point for a generated composer, which always provide
an ExecuteToolchain interface, is retrieved, and subsequently invoked. This example
is of the composer generated from the ConsolidateData orchestration (see Figure 15.10
on page 278). The method’s arguments correspond to that orchestration’s input param-
eters: a reference to a data model repository acting as target of the operation, and a
collection of individual data models to be integrated and cleaned up.
The implementation and usage of SCAffolder has already been covered in Chap-

ter 14. Since the basic structure of generated composers is generally the same, a sin-
gle example, based on the data consolidation activity, is used for illustration in Sec-
tion 15.7.1. This toolchain was setup to run locally in a standalone environment. In
Section 15.7.2, the parse, migrate, measure activity (specifically the original base met-
ric calculation scenario) is used as an example of a more complex deployment, with
individual tools hosted on different platforms and network nodes in a distributed com-
puting environment.

15.7.1 Integrated Tool Support for Data Consolidation

The complete SCA composition defining the toolchain corresponding to this activity is
shown in Figure 15.25. It contains four composers, generated from the four orchestra-
tions presented in Section 15.3.2, and the DataImprover composite component, which
provides all the “atomic” data consolidation services introduced in Section 15.2.2. The

2Tuscany’s node concept is more meaningful in distributed domains, where multiple nodes can exist,
each representing an instance of an SCA runtime, that together form the overall SCA domain. For details,
see e.g. Laws et al. [2011, pp. 309ff].

294

15.7. Composer Creation
D
at
aI
m
pr
ov

er
Co

m
po

si
te

Q
M
IG
Im

po
rt
D
at
aD

ef
au

lt
Im

pl

Ja
va

Q
M
IG
O
bf
us
ca
te
Id
en

ti
fie

rs
D
ef
au

lt
Im

pl

Ja
va

Q
M
IG
A
dd

D
ef
au

lt
N
am

es
D
ef
au

lt
Im

pl

Ja
va

Q
M
IG
Re

so
lv
eA

m
bi
gu

ou
sI
D
sD

ef
au

lt
Im

pl

Ja
va

Q
M
IG
Re

m
ov

eD
up

lic
at
eM

ea
su
re
m
en

ts
D
ef
au

lt
Im

pl

Ja
va

Q
M
IG
A
dd

Co
m
m
on

Ro
ot
D
ef
au

lt
Im

pl

Ja
va

Q
M
IG
Re

m
ov

eD
up

lic
at
eS

of
tw

ar
eS

ys
te
m
sD

ef
au

lt
Im

pl

Ja
va

Q
M
IG
A
dd

A
ve

ra
ge

Va
lu
es
D
ef
au

lt
Im

pl

Ja
va

Q
M
IG
In
fe
rM

is
si
ng

Ra
ti
ng

sD
ef
au

lt
Im

pl

Ja
va

Q
M
IG
A
ve

ra
ge

O
ut
D
up

lic
at
eR

at
in
gs
D
ef
au

lt
Im

pl

Ja
va

Sa
ni
ti
ze
Ra

ti
ng

sC
om

po
si
te

Sa
ni
ti
ze
Ra

ti
ng

sA
da

pt
er

Ja
va

Sa
ni
ti
ze
Ra

ti
ng

sC
om

po
se
r

Ja
va

Sa
ni
ti
ze
M
ea

su
re
m
en

ts
Co

m
po

si
te

Sa
ni
ti
ze
M
ea

su
re
m
en

ts
A
da

pt
er

Ja
va

Sa
ni
ti
ze
M
ea

su
re
m
en

ts
Co

m
po

se
r

Ja
va

In
te
gr
at
eD

at
aC

om
po

si
te

In
te
gr
at
eD

at
aA

da
pt
er

Ja
va

In
te
gr
at
eD

at
aC

om
po

se
r

Ja
va

Co
ns
ol
id
at
eD

at
aC

om
po

si
te

Co
ns
ol
id
at
eD

at
aC

om
po

se
r

Ja
va

Fi
gu
re
15
.2
5:
O
ve
ra
ll
SC
A
co
m
po
si
tio
n,
co
ns
is
tin
g
of
fo
ur
ge
ne
ra
te
d
co
m
po
se
rs
,
an
d
a
si
ng
le
co
m
po
ne
nt
pr
ov
id
in
g
al
l

se
rv
ic
es
.

295

15. The Q-MIG Toolchain

9 @Service({QMIGSanitizeRatingsDefault.class})
10 public class SanitizeRatingsAdapter implements

QMIGSanitizeRatingsDefaultãÑ

11 {
12 @Reference
13 private ExecuteToolchain generatedComposer;
14

15 @Override
16 public de.unioldenburg.qmig.datamodel.DataModel

qmigsanitizeratingsDefault(ãÑ

17 de.unioldenburg.qmig.datamodel.DataModel qmigRepo__2691) {
18 return (DataModel) generatedComposer.execute(qmigRepo__2691);
19 }
20

21 private static final Logger LOG = Logger.getLogger(
22 SanitizeRatingsComposer.class.getName());
23

24 @Override
25 public boolean is_qmigRepo(DataModel qmigRepo) {
26 return qmigRepo != null;
27 }
28 }

Figure 15.26: The adapter for the QMIGSanitizeRatings component. Only the high-
lighted lines were added manually.

single SCA component that is normally generated by SCAffolder has been broken up into
individual SCA components, each providing only a single service, for greater clarity.

In addition, the three SCA composites on the intermediate level all define both a
composer component, and an adapter component. Each composite also corresponds to
a separate Maven project. The mid-level projects are QMIGIntegrateData, QMIGSan-
itizeMeasurements, and QMIGSanitizeRatings, each of which include SCAffolder in
their build setup to generate a composer and a stub for an adapter. The latter produces
a proper SENSEI adapter stub for exposing the service induced by the respective orches-
trations. SCAffolder cannot yet provide this fully automatically. Instead, it generates
generic SCA service interfaces for all components. To use generated composers as SEN-
SEI components, this small, additional step has to be performed manually for now. For
the SanitizeRatingsAdapter, shown in Figure 15.26, the code that has to be added to
the generated stub for this only takes up four lines (the ones highlighted). Of course,
more sophisticated checks of the input (here, only a simple null check is performed in
Line 26) may be required in some cases. In addition, a single line also has to be added
to the generated SCA composite file to declare and wire the reference to the actual
composer.

296

15.7. Composer Creation

Fabric3 Linux Node

Fabric3 Windows Node

JavaParserComposite

JavaParser

Java

CalculateAllMetricsComposite

COBOLParserComposite

COBOLParser

Java

CalculateAllMetricsClientComposite

Client

Web

MetricCalculatorComposite

MetricCalculator

Java

StructureBuilder

Java

BaseValueRecorder

Java

SoamigXml2TGraphTransformer

Java

DataModelTGraph2QMIGExchangeTransformer

Java

QMIGExchange2DataModelTGraphTransformer

Java

CalculateAllMetricsComposer

Java

Figure 15.27: Overall SCA composition, distributed over two Fabric3 nodes.

15.7.2 Integrated Distributed Cross-Platform Tool Support

As the goal here was to demonstrate toolchain deployment to a cross-plattform, dis-
tributed computing environment, the original base metric calculation process was cho-
sen as a suitable, minimal example. The orchestration (see Figure 11.7 on page 189)
uses four service instances: Parse, CalculateMetric, ExtractStructure, and MapResults-
ToStructure (defined in Section 10.1.1). The generated composer relies on three compo-
nents to provide these services: the COBOL Frontend and the Java Frontend by pro et
con provide the two different parsing capabilities, while all other services are provided

297

15. The Q-MIG Toolchain

Figure 15.28: A primitive web interface for the base metric calculation toolchain.

by a single component, the Java Metric Calculator3.
Figure 15.27 shows the resulting SCA composition, corresponding to this orches-

tration, and the components required to provide the services’ functionalities. A very
simple web client, depicted in the top-right, has been added manually. As always, the
composer component (shown below it), is fully auto-generated. It has six SCA refer-
ences, which are wired to SCA services provided by MetricCalculator, COBOLParser,
and JavaParser.

MetricCalculatorComposite provides the most services. SCAffolder generates a sin-
gle SCA component providing all the services registered in the SENSEI model. The
initial, auto-generated boilerplate code was manually altered, and the provided SCA
services were split onto six SCA components, as shown in the figure4.
The MetricCalculator SCA component provides four SCA services, corresponding

to a single SENSEI service (CalculateMetric), and four provided capabilities. The or-

3Despite the name, this tool also provides capabilities to calculate some metrics on COBOL code,
namely those that are mostly programming language-independent, e.g. SLOC. For this particular setting,
the required capabilities were reduced to a set that could be handled by the Java Metric Calculator alone,
to keep the example simple.

4Alternatively, individual components could have been created in the SENSEI registry. SCAffolder
would directly generate separate SCA components from such a model, but they would also each be en-
cased in their own composite and Maven project.

298

15.7. Composer Creation

chestration from which this composer was generated was simplified to declare only a
single required capability on this service (representing the ability to calculate the SLOC
metric), which is why only one SCA service is actually wired up.

StructureBuilder and BaseValueRecorder provide the ExtractStructure and Map-
ResultsToStructure services, respectively. In addition, there are three transformers:
SoamigXml2TGraphTransformer outputs TGraph-based representations of Java and
COBOL ASTs from XML representations that pro et con’s parsers produce (and that
was originally defined during the SOAMIG project [Fuhr et al., 2012], hence the
name). DataModelTGraph2QMIGExchangeTransformer and QMIGExchange2Data-
ModelTGraphTransformer convert between a TGraph-based and an XML-based repre-
sentation of the Q-MIG data model. Due to how the data definitions were chosen for
the component adapters, they were not required here (refer back to Section 15.6 for
details on the transformers used for the Q-MIG application).
The components were deployed to a distributed environment consisting of two

nodes: one machine running Microsoft Windows Server 2008 R2 hosted the two pars-
ing frontends, whereas the Metric Calculator, as well as the Composer ran on Ubuntu
GNU/Linux 16.04. Instead of Apache Tuscany SCA, Fabric3, Version 2.5.3, was used as
the target framework, after failing to create a working, distributed setup with the former.
Since code generated by SCAffolder only uses standard SCA features, it was possible to
deploy all components without having to change anything. For convenience however,
SCAffolder was slightly extended to better support different packaging standards and
deployment procedures, by having individual Maven profiles generated5.
For this setup, both machines were on the same network to allow for node discovery

via IP multicasting over UDP. Fabric3 uses JGroups [2020] for cluster creation and
communication between nodes, which can also be configured for use in a wide area
network setting, e.g. using TCP and a static list of initial nodes. Since such aspects are
well outside of the scope of this thesis, the simpler variant was chosen.
Figure 15.28 shows a screenshot of the web client that was created manually. As

can be seen, it allows to enter a list of code files to be parsed, and a list of metrics to
be evaluated over the software system represented by said code files. The web form is
defined in a few lines of HTML, backed by a similarly simple Java servlet to handle the
HTTP POST request that gets sent when a user clicks on the execute button. The client is
seamlessly integrated into the overall SCA composition using the web implementation
type (see Marino and Rowley [2009, pp. 311ff] or Laws et al. [2011, pp. 232ff]). This
makes the servlet into an SCA component, able to reference the generated composer
and invoke the SCA service it exposes to run the toolchain.

5Later extensions to SCAffolder, such as more sophisticated SCA namespace handling, have revealed
some issues with Fabric3: it failed to resolve namespace imports and exports across node boundaries.
Also, the evolution of Fabric3 itself has made SCAffolder-generated artifacts incompatible, as the framework
has, as of Version 3.0.0, seemingly broken away from standard conformance, probably due to the failure
of the OASIS standardization efforts (see Section 14.2.3)

299

15. The Q-MIG Toolchain

234 if (data.get("source_code__33") instanceof String[] && parsecobol.
235 is_source_code((String[]) data.get("source_code__33")))
236 {
237 LOG.info("[0] InvokeAndReturnImpl (390)");
238 byte[] outAST__32 = parsecobol.parseCOBOL((java.lang.String[])

data.ãÑ

239 get("source_code__33"));
240 LOG.info("result data saved as 'outAST__32'");
241 setResult(data, "outAST__32", outAST__32);
242 }
243 else if (data.get("source_code__33") instanceof String[] &&

parsejava.ãÑ

244 is_source_code((String[]) data.get("source_code__33")))
245 {
246 LOG.info("[1] InvokeAndReturnImpl (394)");
247 byte[] outAST__32 = parsejava.parseJava((java.lang.String[])

data.ãÑ

248 get("source_code__33"));
249 LOG.info("result data saved as 'outAST__32'");
250 setResult(data, "outAST__32", outAST__32);
251 }

Figure 15.29: Excerpt from the generated composer code, deciding which parser com-
ponent to invoke.

The composer, in this example, was running on the same node as the client. After
initialization, the first thing it does is checking which parser component to use. The
corresponding, generated code is shown in Figure 15.29. It first checks to see if the
COBOL parser can handle the input data, by asking it whether it thinks the data repre-
sents source code according to its own definition (i.e. COBOL code).
As an example, the input visible in the screenshot of Figure 15.28, representing

files of a small Java software system, and the name of a single metric to be calculated,
SLOC, was run through the toolchain. To illustrate the sequence of events and in-
teractions between the nodes, fine-grained logging has been incorporated in all tool
adapters / components. As shown in the composer code excerpt, SCAffolder also gener-
ates logging statements, although the messages are somewhat abstract, owed to the fact
that SCAffolder has no knowledge of the concrete significance of its generated coordina-
tion logic. Therefore, it reports on the kind of statements that are getting executed, with
(arbitrary, but unique) numerical IDs to trace each log message back to the originating
line of code.
The log messages output by either node while executing a run through the com-

plete toolchain, using the above-mentioned example input, are shown in Figure 15.30
and Figure 15.31. The former shows the Linux host’s log, hosting the web client, the
composer, and the metric calculator, while the latter shows the Windows host’s log on
which the parsers resided.

300

15.7. Composer Creation

1 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: [1] CopyStatementImpl (521)
2 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: [2] CopyStatementImpl (522)
3 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: [3] CopyStatementImpl (523)
4 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: [4] SwitchInvokeAndReturnImpl (532)
5 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: [1] InvokeAndReturnImpl (394)
6 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: result data saved as 'outAST__32'
7 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: [3] ConcurrentStatementImpl (529)
8 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: starting to execute concurrent

block (530).ãÑ
9 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: [1] ForEachStatementImpl (524)
10 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: [1] SwitchInvokeAndReturnImpl (535)
11 INFO de.unioldenburg.ses.components.MetricCalculator.calculatemetricSLOCJavaFile: Calculating

SLOC of Java files.ãÑ
12 INFO de.unioldenburg.ses.components.MetricCalculator.calculateMetric: Calculating metric.
13 INFO de.unioldenburg.ses.components.QMIGAdapter.deserializeAST: Abstract syntax graph (SOAMIG)

de-serialization.ãÑ
14 INFO de.unioldenburg.ses.components.QMIGAdapter.deserializeAST: de-serialization successful.
15 INFO de.unioldenburg.ses.components.QMIGAdapter.registry: Initializing metric registry.
16 INFO de.unioldenburg.qmig.metricregistry.MetricRegistryImpl.loadMetricsFromServiceLoader: Loading

metric servicesãÑ
17 INFO de.unioldenburg.ses.components.QMIGAdapter.registry: Registry initialized with the following

metrics:ãÑ
18 INFO de.unioldenburg.ses.components.QMIGAdapter.registry: CloneLines [PROJECT]

[…]
28 INFO de.unioldenburg.ses.components.QMIGAdapter.registry: SLOC [FILE]

[…]
59 INFO de.unioldenburg.ses.components.QMIGAdapter.registry: NumberOperandInstances [METHOD]
60 INFO de.unioldenburg.ses.components.MetricCalculator.calculateMetric: Metric registry initialized
61 INFO de.unioldenburg.ses.components.MetricCalculator.calculateMetric: Retrieved metric from

registryãÑ
62 INFO de.unioldenburg.ses.components.MetricCalculator.calculateMetric: Evaluated metric on

specified systemãÑ
63 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: result data saved as 'collect_36'
64 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: finished executing concurrent block

(530).ãÑ
65 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: counting down latch (530).
66 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: starting to execute concurrent

block (531).ãÑ
67 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: [1] SwitchInvokeAndReturnImpl (534)
68 INFO de.unioldenburg.ses.components.StructureBuilderAdapter.extractstructureNoChoice: Extracting

data model structure from abstract syntax graph.ãÑ
69 INFO de.unioldenburg.ses.components.QMIGAdapter.deserializeAST: Abstract syntax graph (SOAMIG)

de-serialization.ãÑ
70 INFO de.unioldenburg.ses.components.QMIGAdapter.deserializeAST: de-serialization successful.
71 INFO de.unioldenburg.ses.components.QMIGAdapter.serializeTGraph: TGraph serialization.
72 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: result data saved as

'structure__47'ãÑ
73 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: finished executing concurrent block

(531).ãÑ
74 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: counting down latch (531).
75 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: [2] SwitchInvokeAndReturnImpl (533)
76 INFO de.unioldenburg.ses.components.BaseValueRecorderAdapter.mapresultstostructureNoChoice:

Writing metric values into data model structure.ãÑ
77 INFO de.unioldenburg.ses.components.QMIGAdapter.deserializeTGraph: TGraph de-serialization.
78 INFO de.unioldenburg.ses.components.QMIGAdapter.serializeTGraph: TGraph serialization.
79 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: result data saved as

'mappedResults__51'ãÑ
80 INFO de.unioldenburg.ses.calculateallmetrics.Composer.execute: [2] CopyStatementImpl (520)

Figure 15.30: Log messages emitted by the Linux node while running an example
through the toolchain.

301

15. The Q-MIG Toolchain

1 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.COBOLParser is_source_code
2 INFO: Checking whether the input data is COBOL source code...
3 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.COBOLParser is_source_code
4 INFO: Unknown file extension: C:\Users\janj\Downloads\Employee\Employee.jar
5 COBOL Frontend cannot handle this input.
6 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.JavaParser is_source_code
7 INFO: Invoked is_source_code
8 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.JavaParser parseJava
9 INFO: invoked 'parseJava'
10 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.JavaParser parseJava
11 INFO: #source code files: 7
12 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.JavaParser parseJava
13 INFO: Processing file C:\Users\janj\Downloads\Employee\Employee.jar
14 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.JavaParser parseJava
15 INFO: Recognized file extension: jar
16 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.JavaParser parseJava
17 INFO: ... adding to class path.

[…]
48 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.JavaParser parseJava
49 INFO: Processing file

C:\Users\janj\Downloads\Employee\test\proetcon\cobol\rts\demo\employee\Showemp.javaãÑ
50 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.JavaParser parseJava
51 INFO: Recognized file extension: java
52 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.JavaParser parseJava
53 INFO: ... adding to source files.
54 Mai 22, 2017 7:52:04 PM de.unioldenburg.ses.components.JavaParser parseJava
55 INFO: Parsing...
56 Mai 22, 2017 7:52:13 PM de.unioldenburg.ses.components.JavaParser parseJava
57 INFO: Done (success).
58 Mai 22, 2017 7:52:13 PM de.unioldenburg.ses.components.JavaParser parseJava
59 INFO: Reading result file for byte stream serialization...
60 Mai 22, 2017 7:52:13 PM de.unioldenburg.ses.components.JavaParser parseJava
61 INFO: Success (10 MB).

Figure 15.31: Log messages emitted by the Windows node while running an example
through the toolchain.

On the Linux machine, Lines 4 through 7 correspond to the code snippet shown
in Figure 15.29. All of the log messages shown from the Windows node were emitted
as a result of executing these composer lines, which, for this concrete example input
data, remotely invokes three methods on the parser components.
First, the COBOL parser’s is_source_codemethod is called, which checks the input

data and rejects it based on the file names’ extensions (Lines 1 through 5). Next, the
same method is invoked on the Java parser component – it does not feature detailed
logging (Lines 6 and 7), but based on the following steps one can conclude that it
deemed the input data valid, since the composer proceeds to call the actual service
method parseJava (Lines 8 and 9).
The Java parser adapter will then sort through all the input files to separate source

files and binaries (Java class and jar files representing dependencies of the software
system to be parsed)6. This process corresponds to the log messages of Lines 10

6The SENSEI service Parse only has a single parameter for source code, as it must abstract from technical
details and different interfaces of concrete implementations. But the Java Frontend by pro et con requires
a second input parameter, so the adapter needs to account for this.

302

15.7. Composer Creation

Figure 15.32: Output of the web client after running a simple Java software system
through the toolchain.

through 53, most of which have been omitted here, as they are all of the same kind.
Finally, the adapter invokes the actual parser, and then serializes its output for send-

ing it back to the composer across the network (Lines 54 through 61). This returns
control back to the composer (Line 6 in Figure 15.30), and also concludes all the com-
munications between the two nodes, as all the components required for subsequent
service invocations are deployed on the same node as the composer. The remaining
steps can be traced by the log messages emitted on the Linux machine:
After parsing is completed, two concurrent blocks of execution are started (Lines 7

through 65, and Lines 66 through 74 – to avoid confusion stemming from concurrent
execution, the log messages have been ordered into two sequential blocks like this for
this listing).
The first block loops through the metrics to be calculated (Line 9; here, only the

single SLOC metric will be calculated), and invokes the CalculateMetric service pro-
vided by the metric calculator component (Line 10). Lines 10 through 60 stem from
this component’s initialization, i.e. loading the provided AST, and all available metric
calculation rules. Most lines regarding the initialization of the internal metric registry
have been omitted – the metric calculator loads a total of 42 metrics, even though only

303

15. The Q-MIG Toolchain

a single, specific one is being requested each time. This is a remnant of the original
implementation that simply has not been changed for the application of SENSEI to Q-
MIG (see Section 15.5.3). The actual retrieval of the requested metric from the registry,
and its subsequent evaluation over the provided software system is logged in Lines 61
through 63.
In the second block, the hierarchical decomposition structure of the software system

is extracted from the provided AST. This is recorded in Lines 67 through 72. Finally,
the calculated metric values are associated to their corresponding nodes in the system
hierarchy, e.g. the files, classes, or methods on which the metrics were evaluated
(Lines 75 through 78). The composer receives this result, and copies its reference into
the result variable to be returned to the invoking client.
The client simply displays the TGraph representation of the Q-MIG data model it

receives, shown in Figure 15.32, which contains the hierarchical representation of the
analyzed software system, with the calculated metric values embedded. While TGraph
files are plain text-based, they are not really meant to be read and comprehended by
humans, directly. Instead of having a client operate this toolchain alone, it would be
more sensible to pass its results through subsequent analysis and visualization steps, as
modeled by the orchestrations presented in Section 15.3. Therefore, this output only
serves as proof of a functioning toolchain distributed over a network of nodes using
different operating systems.

15.8 Results

The main objective of this case study was to demonstrate that SENSEI scales well beyond
the toy examples shown earlier throughout the thesis by applying it to a real-world
research and software modernization project. In particular, two goals were defined in
Section 15.1:

1. Automation of activities and comparison with original tooling.

2. Cross-activity, cross-platform, and cross-network node automation.

Regarding the first goal, SENSEI was successfully used to replace the integration
logic of the original toolchain, while reusing the individual tools. Some of the original
unit tests were run against SENSEI-based toolchains without any regressions, indicat-
ing functional equivalency. The original toolchain implementations also served as test
oracles, as several Q-MIG activities were repeated using both the original and the SEN-
SEI-based tooling, yielding the same results.
While no exact runtime comparisons were performed, no significant loss of perfor-

mance was noticed, either. There can certainly be an overhead due to more indirec-
tions and the initialization of utilized frameworks (e.g. SCA middleware), but this is
dominated, by far, by the execution time of the individual tools for all but the simplest,
smallest sets of data, and so is of no real consequence.

304

15.8. Results

The much more decisive factor is the time to develop toolchains. Again, there is
an initial overhead for defining services and registering components. Once a core set
of services and their implementations is available, the SENSEI-based tooling is arguably
easier to modify and extend. This case study produced some quite complex orchestra-
tions, some of which have been shown in the previous sections. They are, however,
far more concise, and thus easier to comprehend and modify, than the corresponding
integration code of the original toolchain written in Java. As part of the NEMo case
study (Chapter 16), further vivid evidence for the flexibility of SENSEI will be presented.
Regarding the second goal, cross-activity integration is no special feat for SENSEI,

but a natural fit for its service integration capacities. It was demonstrated, e.g. bymodel-
ing complex orchestrations like the ones presented in Section 15.3.3, and by generating
corresponding, fully-functional integrated tooling using SCAffolder. However, applying
SENSEI for modeling highly complex processes spanning multiple Q-MIG activities has
highlighted the need for decomposing orchestrations hierarchically. SENSEI’s metamo-
del supports this in essentially two different ways:
1. orchestrations induce services: their input and output parameters determine
service parameters, and their data and control flow defines the intended se-
mantics. The induced services can then be instantiated in other orchestrations
(or even within the same orchestrations to model recursive processes). Com-
posers generated by SCAffolder can be registered as components implementing
the orchestration-induced services. Deriving capability classes and capabilities
from orchestrations (by analyzing orchestration trails, see Section 12.3) is not yet
supported, and requires further research, but was not needed during this case
study, either.

2. orchestrations are nested directly. The SENSEI metamodel supports this quite
naturally, but so far, the editors only use this to allow modeling structured control
flow. It should be possible to extend both the editors to allow direct nesting of
orchestrations, as well as SCAffolder, e.g. by having it preprocess SENSEI models
and simply flatten orchestrations with nested sub-structures. To an interpreter like
SNOrcInS, nested orchestrations would come even more natural.

The latter approach works on the level of orchestrations, only, while the former spans all
three basic levels of SENSEI (service catalog, orchestrations, and component registry).
This can pose a problem, because changes to an orchestration may induce changes
to corresponding services, which in turn may affect other orchestrations, as well as
components providing these services.
The tool support for either approach can be further improved, e.g. to alleviate

the potential downsides of the first approach, and to provide direct support for the
second one. Feasibility in general was shown by this case study, though. It used the
first method, only requiring some manual effort to implement proxy components as
frontends for generated composers, so they would properly expose the appropriate
SENSEI services.

305

15. The Q-MIG Toolchain

Cross-platform and cross-network automation has been shown in this case study
using fully integrated tool support for the parse, migrate, measure activity. During the
original run of the Q-MIG project, the lack of automation of this activity presented one
of the biggest challenges, and was a source of several issues, that took weeks to sort out.
The individual tools were not properly integrated because of a divide in both platform
and deployment site: the tools of industry partner pro et con were Microsoft Windows-
based, while the Software Engineering Group’s infrastructure consisted largely of ma-
chines running UNIX derivates. Because of confidential input data in form of COBOL
programs to be analyzed, the first steps of the analysis, up to the base metric calculation,
had to be performed on the partner’s site. Integrating the tooling across both platform
and network boundaries manually was considered far too complex, particularly given
the project’s short duration of only fifteen months.
This case study has demonstrated that SENSEI models can be mapped to heteroge-

nous, distributed hard- and software infrastructure completely transparently, i.e. with-
out the need to modify the models at all. The actual mapping is done by a SENSEI
processor, in this case SCAffolder, which utilizes SCA features to invoke components
on different platforms and machines across the network. Of course, such a deployment
could just as well have been put in place manually. In fact, the actual deployment of
individual tools, as well as launching and connecting individual network nodes, is not
directly supported by SENSEI or SCAffolder. The benefits of using SENSEI here are
1. the facilities for distributed, cross-platform toolchain integration have to be real-
ized only once, as opposed to once for every toolchain, and

2. the fact that SENSEI models, in particular the orchestrations, can be used and
modified regardless of these concerns, retaining complete flexibility through full
platform- and location-transparency.

306

CHAPTER 16
The NEMoMobility Platform

Software Evolution Services and the SENSEI approach have originally been conceived to
support the modeling and integration of toolchains in the context of software evolution
projects. The application domain is expressed in the Comprehensiveness requirement
(defined in Chapter 3), which demands universal applicability to support arbitrary soft-
ware evolution techniques. This has guided the design of SENSEI to be generic.
Due to its generality, SENSEI is actually not restricted to being used in the contexts

of toolchain-building and software evolution. At its core, it is an approach for service-
oriented modeling of processes, and subsequent, automatic mapping to implementing
software components, and generation (or interpretation) of the integrating coordination
logic. Therefore, SENSEI can also be used, for example, to model business logic of
arbitrary software applications, conveying the same benefits of improved reusability,
flexibility, and overall productivity during software development and evolution.
This chapter is aimed at providing evidence for this hypothesis, by describing the

results of a successful application of SENSEI for the creation of a “regular” software
application, the NEMo1 Mobility Platform. The NEMo project is aimed at improving
sustainable mobility in rural areas, and will be further described in Section 16.1. Its
innovative nature, and a need for extendability and sustainability (longevity) demand a
highly flexible software architecture that does not erode in the face of frequent changes.
The principles of SENSEI (Definition 9.1, page 161) support exactly that. Section 16.2
describes how the approach can be utilized in NEMo, and gives examples of SENSEI
having already been applied in this project, successfully. Section 16.3 provides further
evidence of the flexibility gained by using SENSEI, by describing different flexibility

1NEMo stands for “Nachhaltige Erfüllung vonMobilitätsbedürfnissen im ländlichen Raum”, meaning
“Sustainable Fulfillment of Mobility Needs in Rural Areas”. The project is funded by the Ministry for
Science and Culture of Lower Saxony, Germany, and the Volkswagen Foundation (VolkswagenStiftung)
through the “Niedersächsisches Vorab” grant programme (grant number VWZN3122).

307

16. The NEMo Mobility Platform

scenarios. A summary is provided in Section 16.4, highlighting and delimitating the
application scope of SENSEI in normal software application development, and sketching
a concept for transferring the principles of the approach to modeling interactive, user-
centric application behavior.

16.1 The NEMo Project

More than 60% of the total population of Germany live in rural areas [Statistisches Bun-
desamt, 2015, p. 29], yet medical facilities, shopping centers, cultural and recreational
offerings, as well as job, training, and educational opportunities are primarily found in
urban centers. This is giving rise to diverse mobility needs, which are not, or not suffi-
ciently, addressed by public transport offers, especially since, in general, local public
transport coverage of rural areas has been declining.
The interdisciplinary research project NEMo aims at the sustainable fulfillment

of mobility needs in rural areas, and opts for a holistic view, considering social, de-
mographic, accessibility, legal, economic, and ecological conditions and objectives.
NEMo wants to facilitate the provision of novel mobility services based, for example,
on social self-organization, and develop business models that increase utilization of
private transport, while reducing the overall number of vehicles on the streets. Infor-
mation technology is viewed as key enabler to support these objectives by means of
software systems implementing a mobility platform that is accessible through various
devices and media (web, mobile, automated hotlines, ticket kiosks, etc.) and addresses
communication, announcement, notification, reservation, and compensation require-
ments regarding mobility needs and services of both providers and consumers. A cross
section of this functionality is planned to be realized in prototypical manner as a major
outcome of the overall project.
Like any software system, the NEMo mobility platform will need to evolve to keep

upwith new ormodified requirements, e.g. changing legal regulations, or new business
models for the provision of mobility services. Unless specific counter-measures are
taken, continuously adapting the mobility platform to support unanticipated use cases,
for which it was not originally designed for, will lead to an ever more complex and less
maintainable software system [Lehman, 1996].
Due to the innovative nature of the NEMo project, a flexible software architecture

is of particular importance, to allow for experimentation, and simple and fast integra-
tion of new features to test and support research hypotheses and results, respectively.
Independent of the scientific context, the application domain of novel rural mobility
service provision also stresses the need for highly flexible software support: the NEMo
mobility platform should be able to support all kinds of mobility needs and scenarios,
modes of transportation, and business models. It should facilitate the recombination
of existing mobility services to provide enhanced services, as well as completely new,
unanticipated usage scenarios, and the development of corresponding business models.

308

16.1. The NEMo Project

Besides the technical implementation issues that may arise due to a required software
change, the semantic gap between the process-oriented business view of use cases to
be realized on the one hand, and mostly object-oriented software architecture views on
the other hand, remains a major challenge of software engineering, in general [Combe-
male et al., 2016; Schmidt, 2006].
Finally, with the overall goal of NEMo being sustainability, it is only appropriate to

strive for it in terms of software design. A rigid, monolithical software system would
lead to high maintenance costs, and ultimately to its phaseout, closedown [Rajlich
and Bennett, 2000], and forced replacement. To be sustainable, the NEMo mobility
platform must make architectural provisions for flexibility, evolvability, and longevity.
This aligns neatly with the objectives of SENSEI (Chapter 1), which led to the decision
to try to employ it beyond its original field of application. In NEMo, SENSEI is used
to model the business logic of its mobility platform in terms of services and service
orchestrations, to achieve the same flexibility, reusability, and productivity gains that
the approach confers for software evolution toolchain building.
NEMo builds on the outcomes from previous projects, ICT Services and ICT Plat-

form, which were carried out in the context of the Electric Mobility Showcase pro-
gram [ICT Services 2016; Wagner vom Berg, 2015]. The ICT infrastructure created in
this context serves as the basis for the NEMo project. A major use case, that is expected
to play an important role in NEMo is inter-modal route planning. In the following, this
use case is presented as an example of the kind of ICT support that is needed in NEMo
(Section 16.1.1). The way this has been realized in the preceding projects is then con-
trasted with the aspired functional extensions, and particularly the new architectural
foundations to facilitate them, to be realized in NEMo (Section 16.1.2).

16.1.1 Inter-Modal Routing

TheNEMomobility platform is expected to serve both service providers and consumers,
i.e. businesses or people seeking to either offer or make use of mobility services, which
is transporting people or goods from one place to another. One exemplary use case
for the platform is to find routes: given a point of origin and a destination, it should
provide possible routes. Combining different modes of transport, e.g. walking, riding
a bike, take a bus or a train, driving a private car, or joining a car pool, makes this
inter-modal routing.
The activity diagram depicted in Figure 16.1 shows a possible breakdown of this use

case into process steps. A client wishing to travel inter-modally sets off the process by
requesting a route to his destination. The mobility platform first tries to find reasonable
stopovers to possibly change the mode of transport. Then, available mobility services,
providing transportation by different traveling means, are searched for to instantiate the
individual sub-routes. The results are integrated into complete traveling itineraries, and
returned to the user, who chooses from them. One special case is considered: if the

309

16. The NEMo Mobility Platform

Figure 16.1: Exemplary mobility business process to get inter-modal route directions.

selected route utilizes a car pool, its driver – as provider of a mobility service another
user of the mobility platform – must be informed. Of course, this is an extremely
simplified and incomplete example, but it conveys the general idea.

16.1.2 Challenges

The existing infrastructure and functionality from the ICT Platform and ICT Services
projects is already able to support the use case of inter-modal routing to a large extent.
The ICT Platform project developed an eponymous software system providing an in-
frastructure to host software components based on WSO2 [2020], and a market place
to showcase and acquire the software services they provide. On top of this platform,
the ICT Services project build another software system to combine its basic software
services, and offer value-added services in support of designated business processes.
Due to the different focus of these projects (electric mobility), it is not tailored

specifically towards rural mobility needs. Other improvements are being considered,
e.g. providing inter-modal routes that allow joining a car pool at a convenient point
along its planned route, instead of having to travel to and from its points of origin and
destination, respectively, as it is currently implemented.
In addition, the current infrastructure has not been designed with a particular focus

on flexibility and evolvability. The business processes underlying use cases, such as for
inter-modal routing, are “hard-wired” into the ICT Services’ software system, and the
system is therefore hard to adapt and extend. This is not a good fit for NEMo, given
its sustainability objective, and the need for the mobility platform to sustain, facilitate,
and mirror the project’s progress, innovative nature, and evolving requirements. In
summary, the goals for the NEMo mobility platform are therefore as follows:

310

16.2. Application

Figure 16.2: Inter-modal routing service catalog and orchestration in the SENSEI editor.

1. Enhance, extend, and modify the existing functionality based on the research
findings within the NEMo project, to support, for example, community-driven,
self-organized mobility, novel business models, and legal constraints.

2. Facilitate these, and future changes, by providing an architectural framework that
incorporates the existing functionality, but highlights flexibility, adaptability, and
long-term sustainability.

While the exact nature of the first challenge will only be known once the project has
progressed further, the solution proposed to tackle the second challenge is adopting
SENSEI to build the mobility platform.

16.2 Application

Using SENSEI for modeling and integrating general software applications encompasses
basically the same steps that also make up the toolchain-building process (Section 3.1).
Tool integration now becomes application integration, but other than this purely termi-
nological change, everything stays the same.
Figure 16.2 shows a screenshot of the SENSEI editor, with a model of the inter-modal

routing example opened. The steps of the corresponding business process (Figure 16.1)
are mapped to three services: Find Stops decomposes a routing request into requests
for sub-routes, Find Routes provides traveling information (e.g. itineraries or driving in-
structions) for a single route, and Combine Routes fuses these together into integrated
informations for the whole trip. For the Find Route service, capabilities are used to
model a variability in terms of supported transport modes, with capabilities being car,

311

16. The NEMo Mobility Platform

train, bus, etc. Another capability class represents supported optimization goals (short-
est or fastest route, cheapest connection, lowest CO2 footprint, etc.).
For NEMo, the comprehensive, heavy-weight middleware WSO2 had been desig-

nated from the outset as the target infrastructure to build the mobility platform on, since
this had been used for the Electric Mobility Showcase projects. SCAffolder could have
been modified or extended to support WSO2 in addition to SCA, or the WSO2 applica-
tion server could have been configured to host an SCA runtime environment. Instead,
it was decided to develop a new SENSEI processor from scratch, to take this opportunity
and investigate an interpreter approach to contrast with SCAffolder’s generator approach.
An outcome of these efforts is the SENSEI interpreter SNOrcInS, which was realized by
Küpker [2015]. SNOrcInS has been briefly described in Section 14.5.
Küpker also applied SENSEIwith the newly-created interpreter to different variants of

a scenario from the NEMo project: for the basic variant, a simple route planning process
for using public busses was modeled. The corresponding orchestration is depicted in
Figure 16.3. Using the desired origin and destination locations as input, first, the bus
stations closest to either one are retrieved (NearestStationFinder). Then, three partial
routes are calculated (RouteFinder):
1. walking directions from the origin to the bus station closest to it,
2. bus connections from that station to the one closest to the destination, and
3. walking directions from there to the final destination.

To complete the process, these three routes are combined into a single, inter-modal
route (RouteConcatenator).
This simple bus planning orchestration was then slightly modified to optimize its re-

sults in terms of travel time [Küpker, 2015, pp. 59ff]: the first variant of the orchestration
might produce less than optimal solutions in this regard, because the nearest stations
might not offer the best connections. Additional walking time incurred by having to
get to or from stations further away from the origin or destination location may well be
offset by far better bus connections. A revised orchestration, taking this observation
into account, is shown in Figure 16.4. Instances of NearestStationsFinder (notice the
extra “s”) are now used to retrieve not just the single closest bus station to a particu-
lar location, but a set containing a number of stations (that number being determined
by input port count). Using two nested map constructs, routes are calculated for all
combinations of bus stations. All resulting routes are passed into an instance of a new
service, RouteSelector, which simply chooses a single element based on a metric deter-
mined by a capability: here, the TIME capability requires an implementation to select
the element with the shortest overall travel time.
Modifying and extending the original scenario to get to the optimized one took

about half a day, according to Küpker [2015]. This included the specification of the
new service, RouteSelector, the implementation of a corresponding component, as
well as the modification of NearestStationFinder into NearestStationsFinder, and the
adaptation of the implementing component. The latter could also have been designed

312

16.2. Application

Figure 16.3: Bus planning orchestration, taken from Küpker [2015, p. 72].

313

16. The NEMo Mobility Platform

Figure 16.4: Optimized bus planning orchestration, taken from Küpker [2015, p. 73].

314

16.3. Flexibility Scenarios

that way from the start, as setting the input port count to 1 yields the behavior of the
simpler variant. This was intentionally not done, to avoid the impression of an overly
contrived example.
Still, with a little foresight and properly generic services, this modification effort can

be avoided. The same would be true if there was already a reasonably comprehensive
service catalog available, either due to up-front, top-down specification, or because
SENSEI has been used for some time, resulting in a catalog filled from the bottom up,
with incrementally refined services (see Section 9.4 for a discussion of top-down and
bottom-up service discovery and description). Subtracting these overheads, which in
SENSEI should only occur once due to reusability, changes like this can be realized in
under an hour.
In total, only five services had to be defined for these (admittedly simple) examples.

An overview is given in Figure 16.5, essentially showing the complete service catalog
for this application of SENSEI. It should be pointed out that the RouteConcatenator is
modeled somewhat awkwardly, being limited to combining exactly three partial routes.
This was done in order to keep the examples simple. A slightly more elegant alternative
would be to use two subsequent instances of a service appending on route to another.
Besides defining the required services and modeling the orchestrations, implement-

ing components, using Google’s Places and Directions APIs [Google Maps Directions
API 2020; Google Places API 2020] and targeting the WSO2 platform, have also been
created. Using SNOrcInS, the bus planner orchestrations have successfully been used
to calculate various routes for the city of Oldenburg, also confirming that the optimized
variant often provides routes with lower overall travel times.

16.3 Flexibility Scenarios

The central aim of using SENSEI in the NEMo project is to gain flexibility, to easily
integrate software support for new and innovative mobility services into the mobility
platform. The bus planner example provided in Section 16.2 already gave an impres-
sion of how SENSEI can support evolving a software system quickly and easily, without
compromising the overall architecture (which is dictated by SENSEI, and, in this case,
SNOrcInS). In the following, further examples from the NEMo application of SENSEI are
given, to evince the flexibility qualities of the approach.
Figure 16.6 shows a very simple orchestration that will serve as base case for the

following scenarios. It uses only a single service, FindRoute, to realize basic route
planning functionality. The service catalog defines FindRoute to require two inputs,
the desired mode of transportation, and the trip request, which encodes starting point,
destination, time of departure or arrival, and potentially further traveling constraints.
The service’s output contains the traveling information, e.g. a list of driving directions.
The orchestration nests the service instance within a map control flow construct. As

315

16. The NEMo Mobility Platform

Se
rv
ic
e

Name NearestStationsFinder
Description Finds the nearest stations for a transportation mode as specified by

capabilities
Input location : Location

count : Integer
Output stations [*] : Station
Capability
Classes

TransportationMode = {BUS}

Se
rv
ic
e

Name RouteConcatenator
Description Concatenates 3 routes to one route

Input route1 : Itinerary
route2 : Itinerary
route3 : Itinerary

Output concatenatedRoute : Itinerary
Capability
Classes

Default = {DEFAULT}

Se
rv
ic
e

Name NearestStationFinder
Description Finds the station with the minimal distance to a location

Input location : Location
Output station : Station
Capability
Classes

TransportMode = {BUS}

Se
rv
ic
e

Name RouteFinder
Description Finds a route between two locations using a specific transport

mode
Input origin : Location

destination : Location
Output route : Itinerary
Capability
Classes

TransportMode = {BUS, WALK}

Se
rv
ic
e

Name RouteSelector
Description

Input routes [*] : Itinerary
Output bestRoute : Itinerary
Capability
Classes

QualityCriteria = {TIME}

Figure 16.5: Services modeled by Küpker [2015] for use in NEMo.
316

16.3. Flexibility Scenarios

Figure 16.6: Simplistic SENSEI service orchestration for basic route planning.

a result, this orchestration calculates a route for each of the specified transport mode,
and returns them as collection of suggested routes.

FindRoute has two capability classes: an optimization goal (to find the route that
is fastest, shortest, cheapest, etc.), and a transport mode (car, bus, walking, etc.). As
shown in Figure 16.6, the FindRoute instance used in the orchestration is required to
support finding fastest routes for private cars and public busses.
Three basic flexibility mechanics can be identified in SENSEI:

1. Adding or modifying required capabilities.
2. Extending or modifying existing orchestrations, or re-orchestrating existing ser-
vices.

3. Mapping orchestrated services to different components, or partitioning function-
ality in components in different ways.

For each of these mechanics, an example scenario is given in the following to pro-
vide details of their respective workings.

16.3.1 Adding Capabilities

The NEMo project aims at supporting mobility in rural areas in a sustainable, envi-
ronmental-friendly manner. Mobility services advertised on the mobility platform may
include “classic” public transport offers (busses, trains, etc.), more recent ones, like car
pooling, car sharing, electric bike rental stations, as well as completely new mobility
services based on innovative business models or being completely community-driven
and non-profit. All of them would benefit if the platform’s (inter-modal) route planning
functionality would also provide shortest routes, instead of fastest routes (as modeled
in Figure 16.6), assuming the former are generally more ecological than the latter due
to lower carbon emissions.
Figure 16.7 shows an orchestration that has been extended to support such a use

case. The only difference to Figure 16.6 are additional required capabilities, which de-
mand that for private cars, shortest routes will also be provided. The shortest capability
can, of course, be combined with capabilities for other transport modes in the same
manner.

317

16. The NEMo Mobility Platform

Figure 16.7: Basic route planning with an additional required capability.

In the optimal case, this minimal change is all that is required to add this function-
ality. SENSEI will automatically integrate additional components as needed. In simple
cases, as with this example, it is not unlikely that the originally used implementation
might also already support this additional functionality. Recall that SENSEI does not de-
pend on a single component to provide all the required capabilities, but is able to map
a single service instance to multiple components (see Section 11.2 and Chapter 12).
In the same manner, support for additional transport modes can be added. What

kind of features can be added or modified like this depends on how services are mod-
eled, i.e. what capability classes they define. Of course, this flexibility mechanism
assumes that the actual functionality is already available, implemented in registered
components, so that SENSEI will be able to integrate them into the modified software
solution. Even if such components are missing and have to be implemented, another
benefit of using SENSEI is that the standardization provided through the service catalog
facilitates reuse: Once a service is implemented in a component, it becomes available
for future usage in different contexts. In the long run, the set of components will grow,
reducing the need for manual implementation and the effort involved. This makes this
scenario more viable over time.

16.3.2 Extending Orchestrations

An important consideration in NEMo is the combination of multiple mobility services
to provide comprehensive, needs-based mobility options. The basic route planning
example is insufficient for this: instead, the ability to provide inter-modal routing is
needed, meaning the combination of multiple modes of transportation within a single
route [Jelschen et al., 2016].
A straight-forward way to evolve the SENSEI-integrated software system that provides

the route planning functionality is to extend the existing orchestration with additional
service instances. Figure 16.8 shows an orchestration for inter-model route planning. It
corresponds to the orchestration shown in the SENSEI editor screenshot in Figure 16.2,
with those elements highlighted that were added to the basic orchestration shown in
Figure 16.6. At its core, it still contains basic route planning, but has two additional
service instances, and uses another map control flow construct.

318

16.3. Flexibility Scenarios

Figure 16.8: Inter-modal route planning orchestration.

The first step is now performed by an instance of the FindStops service, which takes
the trip request and tries to partition it by determining reasonable places to switch trans-
port mode, e.g. bus stops and train stations. This results in a set of sub-requests, with
the discovered stops as new points of origin or destinations. The outer map construct
iterates these, so that the FindRoute instance will now be invoked once for each pairing
of sub-request and transport mode, yielding multiple, partial routes. The last step is to
stitch these partial routes together again, so that they satisfy the original travel request,
which is done by CombineRoutes.
In the best case, service definitions and corresponding components implementing

them already exist. If not, using SENSEI incurs an initial overhead from having to ex-
plicitly model services, and adapt components to the framework. As with the first
flexibility mechanism, this is thought to be compensated for during long-term use, due
to a growing number of services and components, and hence reusability.
The high abstraction level of orchestrations simplifies the task of defining and evolv-

ing the desired processes. Orchestration designers do not have to address different in-
terface or binding technologies, disparate data formats, and technical incompatibilities
between components of different vendors or providers. SENSEI shifts the burden of pro-
viding interface adapter and data transformation logic from software integrators to com-
ponent developers, and imposes a structure that promotes its reusability, as opposed
to fusing it to individual components. The fact that integration logic is either auto-
generated and thus “discardable”, or provided at runtime by an interpreter, prevents
SENSEI-based software systems from becoming entangled in hard-wired dependencies.

16.3.3 Changing Component Mappings

To realize the functionality modeled in orchestrations, SENSEImaps the instantiated ser-
vices to components providing them. There is an n-to-m relationship between services
and components: a single service can be realized by a combination of multiple com-
ponents implementing different capabilities, and the opposite is also possible, with a
single component providing multiple, different services.

319

16. The NEMo Mobility Platform

Figure 16.9: Composition of combined components, and a monolithic component,
both implementing the PlanIntermodalRoute service.

SENSEI makes no assumptions in this regard, i.e. invoking services on components
always assumes that they have no knowledge of the overall process they are contribut-
ing to, and that they cannot and will not communicate directly with other components.
All information goes through a central hub, the composer, as can be seen in the top
half of Figure 16.9. This component diagram shows a component composition that
realizes inter-modal route planning, as specified by the orchestration in Figure 16.8.
The FindStops service is mapped to the component StopFinder, and CombineRoutes is
mapped to RouteCombiner. FindRoute is associated to two components: PublicTrans-
portRouteFinder provides the capability for bus and train routes, while PrivateTrans-
portRouteFinder provides routes for driving a private car and walking.
The whole composition of composer and service-providing components provides

the PlanIntermodalRoute service, which is also induced by the corresponding orches-
tration. This service can be instantiated in other orchestrations, forming a hierarchy of
services and orchestrations.
This architecture of completely isolating individual components is essential to deliv-

ering SENSEI’s stated goal of a sustained, high level of flexibility and reusability. Allow-
ing direct communication between components and inter-dependencies would quickly
undermine this objective. However, these benefits are traded in for a potential curtail-
ment of other attributes, e.g. run-time performance. While a smart composer, and the
overall SENSEI infrastructure, could certainly try to put optimizations in place, for exam-
ple to reduce the data traffic through caching, in general, there will be an overhead.
It is also a matter of finding the right level of granularity for services: more fine-

grained services may be more reusable, but more coarse-grained ones may allow for
more internal cohesion, and optimizations that would otherwise incur a steep perfor-
mance penalty because of the higher communication overhead.

320

16.4. Results

Because orchestrations are also service instances (PlanIntermodalRoute in the ex-
ample), they can also be mapped as a whole to a single, monolithic component, as
suggested in the bottom half of Figure 16.9. Such a component could, for example, re-
alize a more complex route finding algorithm that requires its constituents to be more
closely attuned to each other and share large amounts of data. For instance, it could
perform multiple passes to incrementally find the best inter-modal route, which might
not scale well using a loosely coupled architecture, because of a large communication
overhead.
Like the individual service-providing components above, such a monolithic compo-

nent is viewed by SENSEI as a black box, only having to adhere to the interface defined
by the service, while the exact manner of implementation is left unconstrained. Specif-
ically, a monolithic component does not have to follow the process prescribed by an
orchestration. With this mechanism, SENSEI allows to trade performance and scalability
against flexibility and reusability. The latter only has to be sacrificed for select parts
of an overall software system, for which performance is critical. Also, such monolithic
implementations fit into SENSEI seamlessly, being treated like any other component,
just providing a more coarse-grained service.

16.4 Results

This chapter summarized the results of applying SENSEI outside of its originally intended
application domain, namely for modeling and integrating the business logic of the
NEMo mobility platform. As of this writing, the NEMo project, and the efforts to build
a fully-fledged, highly flexible and sustainable mobility platform using SENSEI, are still
ongoing. Progress so far has confirmed general feasibility of the approach, and first
experiments indicate that it will be able to confer the desired benefits of increased flex-
ibility, reusability, and productivity, for information system development and evolution,
just as it does in the field of building and evolving software evolution toolchains. Flex-
ibility in particular was demonstrated, using examples from NEMo to describe three
distinct degrees of flexibility.
It should not go unmentioned, though, that SENSEI’s scope applies only to the busi-

ness logic layer of software systems, i.e. the middle layer in a classic three-tier architec-
ture, which can be reasonably described in terms of processes. Above it, there is the
presentation layer, which provides the interface to users, and is interactive and event-
driven by nature. While services that provide user interfaces can be defined in SENSEI,
this is awkward at best, as the approach provides no concepts to model user interaction.
Below the business logic layer is the data layer, concerned with persistent state. Access
to this layer is encapsulated within components, and thus remains hidden from SENSEI,
as well. While no conceptual issues have arisen during the NEMo project as of yet,
persistence inevitably introduces statefulness, which needs to be carefully considered
in the context of SENSEI’s services that usually assume statelessness.

321

16. The NEMo Mobility Platform

To conclude this chapter, Section 16.4.1 presents some technical observationsmade
during the NEMo experiments, that may guide further improvements of the overall
approach. Section 16.4.2 very briefly sketches ongoing research activities to transfer
the principles of SENSEI to the presentation layer, and derive a complementary solution
that integrates with SENSEI at the boundary of these two layers, and confers similar
benefits for modeling flexible, integrated user interfaces from reusable parts.

16.4.1 Technical Observations

Within the context of NEMo, the interpreter solution provided by SNOrcInS has proven
itself viable, as its dynamic nature provides even more flexibility. This comes in handy
when relying on heavy-weight middleware like WSO2, where regenerating, recom-
piling, and redeploying can be quite disruptive, and slow down development cycles,
whereas the interpreter accepts new or changed orchestrations at runtime, with the ef-
fects becoming visible immediately. Conversely, it was found that implementing data
transmission from and to components can be more challenging in an interpreter. A
generator can make composers created from orchestrations aware of the kind of data
that needs to be passed around. An interpreter must be designed to be completely
agnostic of the types of data, only acting as “dumb router” between the components,
because only they will be able to understand the data being passed in and out.
This issue became more pronounced when SNOrcInS was extended for the NEMo

project to be completely location-transparent, which necessitated a lot of data serializa-
tion and deserialization for network transmission. While certainly not an unsolvable
problem, common approaches using high-level frameworks, e.g. for REST-style service
communication, might not be the best choice. The interpreter might also be easier to
realize in a dynamically-typed programming language – SNOrcInS is written in Java,
which is a statically, strongly-typed language.
Another observation made during the experiments with SENSEI in the context of

NEMo is that aggregating individual data items, or unwinding collections of data items,
can be awkward outside of map-constructs. Reasons for this include the simplistic
overwrite-semantics of data flows and ports, and the fact that data flows do not trig-
ger behavior (only control flow does), as well as the inherent statelessness of services.
While there is no inherent limitation in terms of expressive power, orchestrations may
require a large number of service instances to model such data-handling behavior, con-
voluting the orchestration.
Since it is not a fundamental limitation, it could be addressed by “syntactic sugar-

ing” of the orchestration language, e.g. having the ability to annotate ports to express
the intent to aggregate (rather than overwrite) data there, thus yielding a significantly
more concise syntax. This can either be done by extending the metamodel, or by only
extending the tooling (SENSEI editor). In either case, such a solution has the advantage
that orchestrations can be “de-sugared”, i.e. refactoring into a canonical form that only

322

16.4. Results

uses the basic language constructs. This way, existing SENSEI processors do not have
to be able to understand the extended syntax, and will not have to be modified.
In general, for self-contained software applications, the data integration challenges

play a lesser role than for software evolution toolchains, assuming most of the business
logic is developed from scratch. While such information systems usually use a lot of
third-party software libraries and middleware frameworks, these mostly provide basic
infrastructure, or support cross-cutting concerns. In these cases, the business logic is
designed with a common data model from the ground up. In inter-application inte-
gration, or when relying more heavily on pre-built components providing the required
services, these aspects become relevant, again, and SENSEI can adapt to either case
through its transformer concept.
On relying on off-the-shelf components, SENSEI can be used to factor out common,

generic functionality, by defining correspondingly abstract services and utilizing capa-
bilities to make them configurable for particular applications. This maximizes reuse
and reduces the amount of business logic that is actually application-specific and has
to be purpose-built from scratch.

16.4.2 InteractionModeling

On the conceptual level, a distinct observation is that SENSEI cannot sensibly be used
to model interactive application, or at least not those parts that are interactive, i.e.
user interfaces. This is not so much a limitation as it is out of the scope of the ap-
proach, by definition, since SENSEI was simply not designed to provide a solution for
this. In the domain of software evolution toolchains, particularly those meant to au-
tomate complex software migration or reengineering processes, interactivity is not a
major concern. However, there are more interactive activities in software evolution,
too, e.g. for program comprehension or incremental refactorings that require constant
user intervention.
These considerations have led to first research activities into designing and devel-

oping an approach complementary to SENSEI, founded its core principles (Section 9.5),
but aimed at modeling and integrating interactive applications. The core idea is to
replace the process-oriented orchestration language in SENSEI with an interaction mod-
eling language based on state machines, which are suitable to describe systems that
(only) react with a change of state to outside stimuli such as user-triggered events.
Using state machines to describe interaction models for user interfaces is not a

new idea, at all. More recently, the IFML standard was published, describing the In-
teraction Flow Modeling Language in terms of a UML profile [IFML: The Interaction
Flow Modeling Language 2017]. However, to the best knowledge of this author, no
approach exists so far that uses such a state machine-based language in conjunction
with the strict separation of specification and implementation that is a defining quality
of SENSEI, or has concepts similar to SENSEI’s service catalog, component registry, and

323

16. The NEMo Mobility Platform

SENSEI Interactive Application Modeling

Figure 16.10: Core concepts of the SENSEI metamodel shown side-by-side with a possi-
ble, corresponding metamodel for interactive application modeling.

capabilities for automatic matchmaking. An important first step has been made with a
feasibility study performed by Schlömer [2017]. Bischopink et al. [2018] have build on
these foundations to create the interactive application modeling framework DORI.
Figure 16.10 shows the central concepts from the SENSEImetamodel on the left. On

the right, they are paired with analogous concepts of what could become the metamo-
del of a framework to support modeling and integrating interactive applications. The
core concepts all have “mirror” images:

• Specification in SENSEI is done in terms of services, representing functional units.
On the same layer, interactive applications have viewpoints, which define what
can be displayed, what inputs can be accepted, and what actions users can take.

• In place of service instances, interactive applications have views to represent
concrete instances of viewpoints that can be used in interaction models.

• Instead of components, there are now widgets. While the former implement
the functionality defined by a service, the latter provide concrete user interface
implementations corresponding to a viewpoint, e.g. a web form, a part of a
command line interface, or a window or dialog box of a desktop application.

Data is handled pretty much the same on both sides, although parameters play
different, in a way, reversed roles for viewpoints than they do for services: inputs to
viewpoints are displayed, or output, to users. Outputs of viewpoints are what users
have input into form fields, for example. Otherwise, data flows between concrete
views work much the same as between service instances in SENSEI.
The major difference is, however, that interaction models do not have control flow

(which exists in SENSEI, but was omitted from the metamodel excerpt shown in Fig-
ure 16.10), but instead feature transitions. In an interaction model, the views take on

324

16.4. Results

RouteSelection

maxWalkingDistance

destination

origin routeID

confirmRoute

goBack

openOptions

TripEntry

destination

origin

calcRoute

Transition
calcRoute

Effects:
InterModalRouting

Session

Pipe

Pipe

Figure 16.11: An excerpt of a small interaction model; adapted from [Schlömer, 2017,
pp. 62, 65].

the roles of states in a state machine. A change of state is triggered by the occurrence of
events, and governed by transitions. Therefore, in addition to parameters, viewpoints
also define what actions users can take. If users take such an action, the associated
event may trigger transitions from the current view to another. And, most importantly,
transitions may have effects, meaning they may invoke application behaviors of the
underlying business logic, and potentially display any data produced on the next view.
These effects that transitions may have provide the link between interaction models
and SENSEI orchestrations, which may be used to model those application behaviors.
For the sake of simplicity, guards, which allow a transition to execute only if a

certain condition holds, have been omitted here. Also, on amore general note, whether
and how capabilities fit into this whole new picture has not yet been looked into, but
will be the subject of further research in the context of the NEMo project.
The terminology for these concepts is still somewhat in flux, e.g. Schlömer uses

the term widget for what was here described as viewpoint (analogous to services in
SENSEI), while the widgets introduced here are referred to as WidgetImpl (analogous
to components in SENSEI). The terms as they are introduced here have been revised to
avoid such awkward names. Some inspiration has been taken from the IFML standard
[IFML: The Interaction Flow Modeling Language 2017] and a user interface taxonomy
introduced by Chignell [1990], though there might still be room for improvement. The
challenge here is to try to stick to terminology already established in the field of user
interface design, as long as the terms’ common definitions are appropriate, while also
avoiding terms that are similar or identical to those already used in SENSEI, unless they
truly describe the exact same concept.
Schlömer [2017] has designed an initial metamodel for this SENSEI-like approach

for modeling interactive applications, and implemented a prototype of an interaction
model interpreter. He then applied the approach tomodel and integrate a user interface,
once again using NEMo as application example. A small part of the corresponding in-
teraction model is depicted in Figure 16.11: two views and a transition between them

325

16. The NEMo Mobility Platform

(a) Screenshot of a widget implementing TripEntry; taken from [Schlömer, 2017, p. 63].

(b) Screenshot of a widget implementing RouteSelection; taken from [Schlömer, 2017, p. 64].

Figure 16.12: Example widgets corresponding to the interaction model of Figure 16.11.

are shown. The graphical modeling syntax shown here has been come up with by
Schlömer for presentation purposes (meanwhile, Bischopink et al. [2018] have devel-
oped a graphical editor with a revised modeling language for their DORI framework).
Views are depicted as white boxes, ports are shown as circles on their borders, and the
events users can generate by performing actions (like clicking a button) appear at the
bottom. Transitions appear as boxes with the names of the events that trigger them in
italics at the top. In this design, transitions encapsulate data flows (called pipes), and
there is a session concept to store and retrieve data that might not be needed in a direct
successor view, but may appear on a different view, should the user later decide to
navigate there.
The views contained in this example allow users to enter the origin and destination

of a planned trip (TripEntry), and, after confirming the entry (generating the calcRoute
event), to select one of the displayed routes (confirmRoute), make changes to the pre-
viously made entries (goBack; corresponding reverse transition not shown), or set ad-
ditional parameters like the maximum distance one is willing to walk (openOptions).
Widgets corresponding to these views might look like the ones shown in Figure 16.12(a)
and Figure 16.12(b), respectively. These have been implemented as web-based user in-
terfaces by Schlömer as part of his feasibility study.

326

16.4. Results

Building on these foundations, a one-year student project group [Bischopink et al.,
2018] has developed a more complete metamodel (e.g. considering nested or con-
current views), a correspondingly revised, graphical interaction model language, an
interaction model editor, and fully-featured model-driven tooling to execute interac-
tive applications. These results are used in NEMo, together with SENSEI, to build its
mobility platform [Kuryazov, Winter, and Sandau, 2019].
The ultimate goal of these and follow-up research activities is to complement SEN-

SEI in such a way that a comprehensive framework is provided, spanning all layers of
three-tier systems, to support building, integrating, and evolving highly flexible soft-
ware applications from reusable parts.

327

CHAPTER 17
Achievement of Objectives

In the introduction to Part V, four evaluation goals have been defined, repeated here
for convenience:
• Feasibility: Can the approach be technically realized?
• Applicability: Can the approach be practically applied in the intended domain,
and on an industrial scale, while conferring its desired benefits?

• Generalizability: Can the approach be practically applied beyond its intended
domain, to confer its desired benefits in a more general scope?

• Utility: Does the approach confer the desired benefits expressed by its objectives
of flexibility, reusability, and productivity?

The case studies presented in Chapter 15 and Chapter 16 were designed to answer the
associated questions. Attainment of the first three goals will be discussed briefly in the
following. The utility goal is aimed at assessing whether the three key objectives of this
thesis are satisfied by SENSEI, and to what extent: increasing flexibility, reusability, and
productivity. Due to their significance for the overall thesis, each objective is dedicated
a separate sub-section (Section 17.1, Section 17.2, an Section 17.3, respectively).

Feasibility had already largely been demonstrated in Part IV, through the fully-
realized SENSEI metamodel, and by implementing the approaches’ meta-tools SCAffol-
der, SNOrcInS, and the Composition Finder, as well as the SENSEI editor. Both the
base metric calculation toy example used throughout this thesis, as well as the self-
application of SENSEI to SCAffolder, showed the feasibility of actually using the SENSEI
method and its associated tools in the intended manner. The detailed descriptions of
applying SENSEI in the Q-MIG and NEMo projects further substantiate this.

Applicability refers to SENSEI’s relevance for real-world use cases, and its ability to
scale to real projects. Both case studies have illustrated this, though the Q-MIG appli-
cation was more specifically aimed at demonstrating industry scalability. To this end,

329

17. Achievement of Objectives

Chapter 15 explicitly details going through the full toolchain-building process with SEN-
SEI support. It presents several complex processes that were successfully modeled in
terms of SENSEI services and orchestrations, described the adapters and transformers
that had to be implemented, and showed fully-functional, integrated toolchains gener-
ated by SCAffolder.

Generalizability expands on applicability by requiring an application domain that
is outside the originally targeted field of software evolution. Also, since the Q-MIG
project was a major motivation for this thesis, it could be argued that evaluating the
approach only against that same use case poses a threat to validity in that it leaves the
possibility of SENSEI working only for this one project for some reason. The NEMo
application eliminates that case, by using SENSEI to model business logic of its mobil-
ity platform, essentially demonstrating that it can effectively be used for application
integration, in general. The self-application to SCAffolder is another example of this.

Utility goes further, as it requires a demonstration not only of whether SENSEI can
in fact be realized and used, but also of whether doing so confers the advantages this
thesis set out to achieve: increased flexibility, reusability, and productivity.

17.1 Flexibility

In the context of this thesis, flexibility of integrated solutions produced by SENSEI refers
to effort required to perform changes to them – the less effort is required, the more
flexible they are considered. This concept of flexibility is borrowed from Eden and
Mens [2006], who try to quantify flexibility in terms of evolution complexity given
in big O notation. This idea will be used in the following to analyze the flexibility
scenarios presented as part of the NEMo case study (Section 16.3), and compare the
evolution complexity of a change to a SENSEI-based integration solution to a manually
integrated one. It must be noted that idealized assumptions are made for the SENSEI
case, i.e. all necessary services, components, adapters, and transformers are already
available for a given change in an orchestration. The implications of these assumptions
will be discussed afterwards.
The first scenario presented was adding capabilities (Section 16.3.1, page 317). This

is a very simple change in SENSEI, and under the assumptions made, is inO(n), where n
is the number of capability tuples to be added. The concept of capabilities is not present
when not using SENSEI, but it corresponds to adding support for another “feature” to the
overall toolchain. In the best case, one of the tools already integrated supports the new
feature. It will potentially require changes to the integration logic, so the new feature
can be used, and will be, given appropriate input data. In most cases, this means that
the change is arguably easier when using SENSEI, because it automatically generates
the integration code. The evolution complexity class is the same though.
However, in many cases requiring a new capability tuple will also require a new

tool supporting it to be integrated (the number of tools backing a single service instance

330

17.1. Flexibility

is bound by its declared capability tuples, so every capability tuple potentially intro-
duces a separate tool). This requires much more additional integration logic, but more
importantly, it also requires additional adapter and transformers (which may not be
neatly separated as they would be when using SENSEI). This is critical, because it leads
to a significantly worse evolution complexity of O(m ¨ n), where m is the number of
tools in the toolchain the new tool needs to be integrated with. Viewed through the
corresponding SENSEI orchestration, the number of tools would be found by tracing
the data flows connected to the service instance with the added capability tuple. The
sum of all capability tuples declared for the service instances found this way provides
the upper bound the number of tools the new tool will need to be integrated with.
This means that very concise-looking SENSEI orchestrations with only a few service
instances, and each with a few capability tuples declared, translates to a potentially
massive integration effort.
The next flexibility scenario is extending orchestrations (Section 16.3.2). It intro-

duces two changes, adding service instances to an orchestration, and adding control
flow structures. The latter requires to adapt the integration logic – a manual program-
ming task when not relying on SENSEI, which is arguably more laborious than making
the corresponding changes to the orchestration. But, there is no fundamental differ-
ence in terms of the evolution complexity, which is O(n), with n being the number of
control flow structures.
Similar to the first flexibility scenario, adding service instances is once again more

complex without SENSEI, because they have to be integrated with m other service in-
stances. While SENSEI automates this, the glue code has to be manually rewritten,
which leads to an evolution complexity of O(m ¨ n).
The last flexibility scenario is changing component mappings (Section 16.3.3). This

corresponds to taking an integrated tool out of a toolchain and putting another one in
its place. With SENSEI this is straight-forward, because the adapters of its components
are standardized by corresponding catalog services. Without the approach, adapters,
transformers, and integrative glue code cannot, in general, be assumed to be cleanly
separated, so the whole integration logic has to be adapted or recreated. Once again,
the evolution complexity is O(m ¨ n), as the required effort depends on the number of
tools m that connect to those tools being swapped out.

SENSEI achieves its flexibility by means of abstraction, enforcing clean separation
of concerns, and automation enabled by these definite structures. Manual integration
has, in general, lots of accidental complexity, which SENSEI eliminates. In theory, very
disciplined manual integration can achieve the same, but that would require to set
up the same or similar rules as SENSEI does, which essentially amounts to an ad-hoc
reinvention of the approach, and adhering to its principles without any tool support. In
any real-world software project, this would be virtually impossible to sustain.
It must also be noted that there are limitations to the flexibility of SENSEI. For once,

flexibility increases are potentially traded with a decrease in toolchain runtime perfor-

331

17. Achievement of Objectives

mance – this can be controlled, though, as discussed in Section 16.3.3. Also, consid-
ering changes to service catalogs reveals high evolution complexity: changing service
definitions is only easy as long as there are no orchestrations using them, and no com-
ponents implementing them. Otherwise, the change will require to adapt all affected
orchestrations and components, as well, leading to prohibitively high effort and corre-
spondingly low flexibility in this regard. However, SENSEI services should almost never
have to change: many changes are due to the evolution of underlying implementation
technologies, and do not influence the functional level. Functional change requests
can be addressed by adding capabilities to existing capability classes, or adding com-
pletely new service definitions, which incurs no increased costs. A remaining issue
would be cluttering of the catalog in use cases which sees services evolve frequently,
leading to many similar services. One simple way to address this would be a versioning
mechanism for services, which SENSEI currently does not include.
To conclude the discussion, the initial assumptions must be considered, as they

seem to have shifted the odds unfairly in favor of SENSEI. If the assumptions are lifted,
all scenarios must account for having to definemissing services, register needed compo-
nents, and implement necessary adapters and transformers. Having to amend service
catalogs and component registries is a real overhead imposed by SENSEI, but it is a fairly
low one compared to the effort required to implement adapters, transformers, and in-
tegration logic, and thus should be easily offset by more substantial productivity gains
conferred by SENSEI, such as never having to manually write or adapt integration logic.
Having to create adapters to make existing tools usable within SENSEI, or implement

additional transformers to make tools interoperable, is much more expensive. How-
ever, this is not a downside of SENSEI, at all, as the same adapter or transformer logic
would have to be implemented without the approach, as well. The difference in that
case would be that such adapters and transformers would not be inherently reusable:
SENSEI may, in the worst case incur the same integration costs, i.e. devolve into the
same evolution complexity class, as manual integration, but it is never worse. Because
SENSEI ensures reusability, these costs can be expected to diminish over time, as will
be explored in the following section.

17.2 Reusability

Manual tool integration is a repetitive task, especially for continuously evolving tool-
chains. As discussed in the previous section, adding a tool, or swapping one out for
another, can impact large portions of the integration code, so it will need to be adapted
frequently, and some parts will repeatedly have to be scrapped and replaced com-
pletely. To avoid this, this thesis aimed at increasing the reusability of the integrated
tools and all the interconnecting glue code.
As with flexibility, the underlying principles allowing SENSEI to achieve this reusabil-

ity include clean separation of specification and implementation, and establishing clear

332

17.2. Reusability

Integration Logic

(indiscriminate blend of adapter,
transformer and coordination logic)

Adapter A

Tool A

A-to-B Transformer

Tr. Logic

Adapter B

Tool B

Composer

Co
or

di
na

ti
on

 L
og

ic

B-to-C Transformer

Tr. Logic

Adapter C

Tool C

Tool B

Tool C

Tool A

naive, manual integration SENSEI-based integration

Figure 17.1: Comparison of manual integration with SENSEI.

boundaries traversed only across well-defined interfaces. As a basis for discussion, Fig-
ure 17.1 shows an abstract side-by-side depiction of what a manual integration of three
arbitrary tools looks like compared to a corresponding SENSEI-generated toolchain.
The manual integration picture is a worst-case scenario, in which the whole glue

code bleeds together with adapters and transformers, and no obvious cutting lines can
bemade out. If the integrated solutionwas static, this would be an unfair representation,
but since this thesis aims at supporting evolving toolchains, any structures that might
have been established at the outset are, without a framework keeping them up, likely
to erode away in accordance with Lehman’s laws [Lehman, 1980].
Toolchains generated using SENSEI enforce clear boundaries: the service catalog

standardizes interfaces, which a tool like SCAffolder consistently maps onto a particu-
lar target framework. All manually written code must be encapsulated in components
and is hidden behind such interfaces, so nothing can bleed through, ensuring loose
coupling. The high-level abstractions provided by the SENSEImetamodel and accessed
through its editor shield users from technical aspects. This, and the advantage of code
generation gained from adhering to SENSEI, strongly incentivize against forcibly break-
ing the established structures by manual “hacks”. More importantly, since such struc-
tural violations in the manual integration case are usually done unintentional, SENSEI
makes the boundaries clearly visible.

333

17. Achievement of Objectives

Through these measures, adapters and transformers in SENSEI are fully reusable.
Regarding adapters, another important difference may be noted: in Figure 17.1, there
is one more adapter for the SENSEI integration than for the manual integration, because
in the latter case, there is not necessarily a central hub corresponding to a composer
in SENSEI. Instead, adapters connect tools to each other directly. This requires one
adapter per connection, instead of one adapter per tool. While for simple, sequential
toolchains this is marginally better – n ´ 1 adapters against n adapters in SENSEI – for
arbitrarily interconnected toolchains, the manual case requires n2 adapters in the worst
case, whereas SENSEI remains at n. This is not as significant as it seems, as the worst
case can be assumed to be rather unrealistic. The real advantage of SENSEI are reusable
adapters: when a tool is added or swapped out, the manual integration will most likely
require changes to its adapter; it may even have to be replaced entirely. Similarly, when
a tool that was previously integrated in a toolchain is to be used in another toolchain, a
new adapter has to be created. In contrast, SENSEI adapters must only be created once,
and can always be fully reused.
Transformers are different than adapters, as SENSEI requires just as many as are

needed in a manual integration. But since they are treated as regular components, they
never get blended in with the coordination logic, and are inherently reusable, as well.
As the number of registered transformers increases with the time of using SENSEI, the
more likely it becomes that changes to an evolving toolchain can benefit from reusing
existing ones, and it will be integrated automatically and transparent to the user.
What remains is the coordination logic that glues toolchains together. Isolating

adapters and transformers from it makes this remaining code fully determined by tool-
chain specifications, i.e. SENSEI service orchestrations. Changes that require program-
ming in manually integrated toolchains are instead made much easier on this higher
level, only. The coordination logic is generated from this. Instead of reusable, it is fully
disposable, i.e. it can be recreated at will with minimal effort, so no need for reuse
ever arises.

17.3 Productivity

Overall, a toolchain-building framework is required to increase productivity, i.e. to
reach the same results using less effort. SENSEI achieves this in several manners: First,
the increased flexibility of the tool support conferred by SENSEI also boosts productivity.
More flexible toolchains require less effort to be adapted, and as a result, development
cycles become shorter, and projects become more agile. Second, increased reusability
saves the effort of having to recreate parts of the integration logic on each change. And
third, those parts of the integration logic that are not reusable, are generated fully auto-
matically by SENSEI, reducing the corresponding manual effort considerably, by allow-
ing domain experts to focus on the essential complexities of their processes, modeled

334

17.4. Summary

as orchestrations, and eliminating the accidental complexities caused by the underlying
technology.
These productivity gains refer to creating and evolving toolchains more efficiently.

When using SENSEI to integrate the business logic of a software application that is the
actual product being developed within the overall project, such as was the case in
the NEMo case study, this is the predominant advantage. If SENSEI is instead applied
to create integrated toolchains that support the project, but are not among its main
outcome, like in the Q-MIG case study, further advantages can be identified: not only
do the improvements free resources that can be spent on the actual project objectives,
supported by the SENSEI-integrated toolchains – a more efficient toolchain-building
process also means that processes can be automated that would otherwise have been
performed manually due to prohibitively high integration costs. In Q-MIG, the greatest
loss of productivity is thought to have been due to the measurement process having
a manual gap, which resulted in numerous miscommunications regarding how the
process should have been performed, as well as mistakes being made while manually
performing it.

17.4 Summary

Supported by implementations of SENSEI’s meta-tools (recall Section 9.1), including the
SENSEI editor, SCAffolder, SNOrcInS, and a composition finder, the application of the
approach in the context of the Q-MIG and NEMo projects has demonstrated compre-
hensively the achievement of the objectives of this thesis. This chapter has provided
further discussion of the increased flexibility, reusability, and productivity conferred by
SENSEI. The reason why the approach is able to provide these benefits can be attributed
to its underlying core principles, described concisely back in Section 9.5. These prin-
ciples represent a significant contribution of this thesis beyond its original objectives,
as they can be, and already have been (see Section 16.4.2), used as guidance to derive
frameworks constructed analogous to SENSEI that confer similar advantages in areas
other than toolchain integration.

335

CHAPTER 18
Conclusion

Software integration has become an increasingly important topic for software engineer-
ing. In the field of software evolution, the integration challenge is manifested as a
need to create automated, flexible toolchains from the large body of existing, but non-
interoperable tools. In general, software systems are beingmodularized tomanage their
increasing size and complexity, necessitating their integration. Decomposing mono-
lithic systems into individual building blocks is also motivated by a constant need to
evolve them, to account for changing requirements and fast-paced technological ad-
vancements. At the same time, new trends like the internet of things and industry 4.0
imply highly heterogenous, distributed software-intensive systems of unprecedented
scale.
To address the need for integrating software systems from reusable parts in a flexible

manner, this thesis has presented the SENSEI approach. Providing a framework and
method for the creation of toolchains, and more generally, integrated software solutions
implementing specified processes, it has been build on comprehensively researched
foundations, and has been evaluated by extensive practical application.
Concluding this thesis, this chapter summarizes its major contributions (Section 18.1),

describes limitations (Section 18.2), and provides an outlook towards future research
and applications (Section 18.3).

18.1 Contributions

The central contribution of this thesis is SENSEI, a conceptual framework and method
for building flexible, integrated toolchains from reusable tools. The approach separates
concerns and identifies corresponding roles and responsibilities, to yield an integration
method that provides the toolchain-building process with a clear, perspicuous structure.

337

18. Conclusion

The conceptual framework of SENSEI is formalized in terms of its layered integrated
metamodel. It is the basis for the model-driven aspects of SENSEI, facilitating the de-
scription, storage, and exchange of SENSEI, and their processing by conforming tools.
From the metamodel, implementations of SENSEI can be derived. Defined in MOF,

the metamodel is compatible with most tools on the market like model-driven code
generators, model transformation languages, and language workbenches. This enables
the creation of further research prototypes, as well as product-mature SENSEI tool suites
viable for commercial use. As authoritative basis, the metamodel also ensures that, on
a fundamental level, these tools will all be compatible with each other.
In addition, a dedicated orchestration language has been created, incorporating

SENSEI concepts such as capabilities, service instantiation, and the strict separation of
data and control flow, which existing languages cannot provide.
Another distinguishing feature of SENSEI that provides several unique advantages of

the approach is its capability model: capabilities aid service modeling and selection,
simplify orchestrations and component registration by providing a concise, declarative
means for specification, and enable to automatically map services to implementing
components, and generating potentially complex integration logic.
The method followed in this thesis has put an emphasis on laying strong founda-

tions for the design of SENSEI to ensure upfront that it addresses the most relevant issues
within the overall challenge of toolchain integration, and utilizes the most appropriate
means to achieve its objectives. To this end, this thesis has introduced and subsequently
analyzed the toolchain-building process, and performed a comprehensive literature re-
view of the field of tool integration in general, as well as concrete, existing integration
approaches. These works are considered a contribution in their own right, representing
a differentiated view of tool integration that may help to place, compare, and assess
different integration approaches, and guide future developments and reveal further re-
search opportunities.
Similarly, the integrated view of component-based, service-oriented, and model-

driven software engineering paradigms not only lays the groundwork for SENSEI, but
also provides a consistent terminology, demarcates the different application areas, and
may serve as a comparison framework for existing approaches, as well as as a blueprint
to derive new ones. While SENSEI relies on widely accepted doctrines of both the
component-based and the model-driven paradigms, the service concept adopted by
this thesis has a more precise meaning than is generally found in the literature (relying
more on ideas that predate SOA), and plays a very well-defined role in the overall
framework. The complementary and synergistic nature of these three paradigms shows
in their combination in SENSEI, which further elaborates the identified, basic concepts,
and adds the capability model.
In fact, the most basic tenets underlying the presented approach have been con-

densed into the core principles of SENSEI (Definition 9.1). These can serve as guidelines
for creating similar frameworks for the development and integration of software systems

338

18.2. Limitations

that impart the same benefits as SENSEI does, i.e. more flexible solutions, assembled
from parts that are easier to reuse, with reduced overall effort. The approach for in-
teractive application modeling described in Section 16.4.2 was derived in this manner
from these core principles of SENSEI.
The feasibility of the SENSEI approach has been demonstrated through concrete

implementations of an editor, a composition finder, and two distinct tools, SCAffolder
and SNOrcInS, to generate toolchains from SENSEI specifications and to interpret them
at runtime, respectively. This already demonstrates the technology independence and
overall versatility of the approach.
Besides providing a platform to jump-start SENSEI adoption efforts, these tools have

enabled the application of SENSEI in two very different fields: to specify and integrate
a software evolution toolchain in the Q-MIG project, and to model the business pro-
cesses of the NEMo mobility platform, and automatically integrate corresponding com-
ponents, as well. The former study has focused on comprehensively demonstrating
soundness and scalability of the SENSEImethod, while the latter showed generality and
achievement of the intended improvement, particularly flexibility. Both applications
utilize different tools and have different target platforms, proving its technology inde-
pendence. As a further display of broad applicability, a third use case was provided by
modeling the process of coordination logic creation in terms of SENSEI orchestrations,
essentially applying the approach to itself, and, after bootstrapping, allowing SCAffolder
to generate its own integration code.
The research results presented in this thesis have also been shared with the sci-

entific community through publications and presentations at conferences and work-
shops. This spans from first ideas [Jelschen and Winter, 2011] and application scenar-
ios [Jelschen and Winter, 2012], over individual topics such as service discovery and
description [Jelschen, 2013], the metamodel [Jelschen et al., 2013], and capabilities
[Jelschen and Winter, 2014], to the overall approach [Jelschen, 2014a, 2015] and its
applications in software evolution [Jelschen, Meier, and Winter, 2015] and application
development [Akyol et al., 2017; Jelschen et al., 2016]. Ongoing research without the
author’s direct involvement [Hebig et al., 2018; Kuryazov, Winter, and Sandau, 2019]
has continued to rely on SENSEI, as well.

18.2 Limitations

As demonstrated in the previous chapters, the SENSEI approach satisfies its objectives of
providing a toolchain-building support framework for increased flexibility, reusability,
and productivity. Its design has been tailored towards these goals, and while SENSEI
has also been shown to be very versatile, there are aspects of tool integration that are
therefore out of its scope.
For one, SENSEI is specifically aimed at process integration, as this aspect had been

identified as both the most relevant to the problem of toolchain-building, as well as one
that is not covered by most existing approaches. Many previous works have focused on

339

18. Conclusion

data integration, instead. SENSEI offers data integration, as well, but on a comparatively
basic level, only, excluding, for example, a common exchange format or data model.
This makes it very flexible on the one hand, but also means that some manual effort
has to be spent on data integration. This is softened by SENSEI’s reusable transformers,
reducing the required effort over time, as more transformers become readily available.
In addition, the data flow concept has been kept very generic and extensible, so that it
can be complemented with existing data integration frameworks.
The focus on process integration also excludes interactivity. This is not an issue

when creating software evolution toolchains, which are specifically aimed at elimi-
nating the need for human intervention by automating as much of the migration or
reengineering processes as possible. In general application development, this means
that the use of SENSEI is constrained to the central business logic, i.e. the middle tier
in a classical three-tiered architecture, sandwiched by the presentation and data tiers.
It should also be mentioned that the benefits imparted by the use of SENSEI are not

completely free. For example, its flexibility is, to some degree, a tradeoff against run-
time performance, as it assumes all components to be completely decoupled, prevent-
ing performance optimizations that might be possible in more cohesive applications.
For use cases in which the flexibility provided by SENSEI is desirable, yet individual
parts in the overall process need to be optimized for performance, it is always possible
to achieve that by choosing more coarse-grained services and making the optimizations
on the level of implementing components.

SENSEI requires explicit service descriptions, component registration, and orchestra-
tion modeling, which presents an overhead not present in ad hoc tool integration. The
application of the framework have shown that the benefits of flexibility and reusability
quickly offset this. Small toolchains that are neither expected to need to evolve after
their initial integration, nor contain parts that might be reusable in the future, will ob-
viously not benefit from SENSEI, as this describes a use case diametrically opposed to
the objectives of this thesis. As most software in use today is under constant pressure
to evolve, it is also a very rare one.
An aspect of SENSEI that can actually be expensive to change are service definitions,

as it would potentially impact all existing uses in orchestrations and implementations
in components. This puts a lot of pressure on catalog maintainers to get services right
the first time. While not observed as a problem during the case studies that applied
SENSEI, this might become more of an issue in very large, long running projects.

18.3 Outlook

SENSEI is a framework for tool integration aimed at industrial application, but as the
result of extensive scientific research as presented in this thesis, it also represents a
launching platform for further studies. Coming to a close, this section highlights op-
portunities for future research, and sums up the continued relevance of the presented
approach in the context of current software engineering industry trends.

340

18.3. Outlook

18.3.1 Future Research

To start with, an aspect worth investigating is how to endow domain experts with more
control over non-functional properties of the integrated solutions provided by SENSEI,
for example to alleviate the need to trade off performance against flexibility. SENSEI
already provides a foundation to address this without sacrificing the strong separation
of specification and implementation: the capability model enables domain experts
to declaratively specify requirements imposed on service-implementing components.
They could be extended to also allow the declaration of non-functional, technical, and
potentially orchestration-spanning requirements.
This would be somewhat comparable to aspect-oriented programming, in that it

could address cross-cutting concerns, which the tooling of SENSEI would automatically
weave into integrated solutions; a prime example of such concerns is logging to trace
the progress of running toolchains. Further examples include technical capabilities
that require the SENSEI-produced, integrated toolchain to provide caching strategies
as one possible means for performance optimization, enable running toolchains to
be paused and resumed at a later time, require certain data integration strategies like
storing and retrieving all exchanged data to and from a central repository, or impose
transactionality, enforce service properties such as idempotency, or have orchestrations
mapped to an event-based architecture in which components are signaling each other
(closer in style to service choreographies).
Another avenue of future research could explore ways to further improve the struc-

ture of the service catalog. SENSEI assumes that service definitions are highly stable,
which is reasonable for most projects. However, for very large, long-running projects,
and more generally, for very large service catalogs used in many projects (e.g. curated
catalogs made available publicly), the need to evolve service descriptions, as well, may
arise. One very straight-forward extension would be to enable versioning of services,
immediately enabling their evolution without impacting existing uses. SENSEI facilitates
such studies with its established metamodel, providing a solid foundation.
Related to these issues are questions regarding the improvement of managing very

large orchestrations. In particular, the relationship of orchestrations with (induced)
services, to simplify the decomposition of orchestrations into sub-orchestrations. This
could result in metamodel extensions, but this might not be necessary, as SENSEI is
already capable of handling nested orchestrations. Probably, an enhanced editor would
be able to provide sufficient syntactic sugar to improve usability in these regards, while
still mapping its models to the unchanged structures of the SENSEI metamodel.
In the NEMo project, the introduction of quality of service (QoS) attributes within

the SENSEI framework has been considered [Jelschen et al., 2016]. This is an important
issue when applying SENSEI in application development and integration, particularly
for service-oriented and cloud-deployed applications. In this field, it is common to es-
tablish bounds for quality criteria that individual services need to provide, such as its
availability for example, in service-level agreements (SLA; see Section 7.4). These qual-

341

18. Conclusion

ity properties are measured, especially for services provided by a third party, where
the SLA is part of a legal contract, and falling below the agreed QoS may incur corre-
sponding penalties.
With its capability model, SENSEI provides a powerful basis that could be extended

to cover QoS attributes. QoS capabilities would allow to automatically find compo-
nents for services with specific quality requirements, e.g. in terms of correctness, per-
formance, and responsiveness. Besides the ability to express required and provided
quality of service, a capability mechanism extended in this manner could be further
exploited by generating composers that automatically measure QoS and check compli-
ance to the corresponding SLA. If evaluated at runtime (by an interpreter like SNOrcInS),
it could also enable highly context-sensitive applications, whose orchestrated services
are mapped to different components, dynamically, based on the quality needs and
provisions at that moment.
Another observation from NEMo was the need to complement SENSEI-integrated

application code with interactive user interfaces. This has already led to research and
the successful development of a framework for the modeling, integration, and gener-
ation of user interfaces and interactive applications, called DORI [Bischopink et al.,
2018; Schlömer, 2017], which transfers the underlying principles of SENSEI and mir-
rors its basic concepts. Due to its analogous architecture, DORI can be considered
a sibling of SENSEI, but it also integrates with SENSEI: users interacting with elements
of DORI-provided user interfaces can trigger actions that lead to the execution of SEN-
SEI-integrated toolchains, whose results may in turn lead to a state change in the user
interface.
To return to the previously used three-tiered view of applications, this addresses

SENSEI’s confinement to the middle tier, with DORI already covering the top-level pre-
sentation tier. This leaves the bottom data tier – exploring whether the SENSEI princi-
ples can be applied here is a task for future research. This would be a major stepping
stone towards a software development framework, based on the concepts presented
by this thesis, that covers all layers of software applications. The core principles of
SENSEI provide the necessary guidance and foundations for the development of such a
comprehensive framework.

18.3.2 Practical Relevance

In terms of software development methodology, industry has long been striving for less
rigid and more agile process models. Due to its conferred flexibility, using SENSEI to
specify software functionality and automate integration can help keeping turn-around
cycles short, so that changing requirements can quickly be accounted for.
With regards to the architecture of application landscapes, microservices are be-

coming the predominant paradigm being pursued. Here, using SENSEI can be a huge
advantage: service catalogs and component registries are natural starting places for es-

342

18.3. Outlook

tablishing central, company-wide reference repositories of all available microservices,
and SENSEI orchestrations provide a way to model business processes and build up
value-added services from more basic ones, resulting in potentially much more flexi-
ble applications and a corresponding competitive edge.
Microservices should not be directly equated with SENSEI services, as the former

usually refers to both the conceptual service, its technical interface (often REST), and
its implementation (the component). In terms of central properties, the two concepts
do make a good match, as both demand well-defined boundaries based on functional,
rather than technical considerations, and are ideally modeled stateless. The separation
of service and component, and the abstraction from deployment concerns naturally
enable the need for independent deployment of microservice implementations, and,
of course, facilitate automatic integration.
Another opportunity for applying SENSEI is the modeling and integration of hetero-

geneous, distributed, software-intensive cyber-physical systems [Harrison, Vera, and
Ahmad, 2016]. Systems like that are emerging with trends like the internet of Things
(IoT) and industry 4.0. Due to their inherent complexity, their specification, develop-
ment, and integration is expected to hugely benefit from the abstraction layer provided
by SENSEI.
Model-driven techniques, in general, are considered a crucial ingredient in these

fields [Artikov, Kuryazov, and Winter, 2019]. Smart Modeling [2020], a joint project of
the University of Oldenburg and the Tashkent University of Information Technologies,
with support from industry partners, is currently underway to investigate novel model-
driven approaches to meet the challenges posed by cyber-physical systems. SENSEI is
among those approaches as a framework for model-driven systems and services inte-
gration, to address the need for flexibility, raised especially by dynamic, fast-evolving
IoT applications.
Lastly, it can be noted that legacy software systems remain to be a huge challenge

for many corporations. Market pressure drives them to modernize their application
landscapes, e.g. by adopting the aforementioned technologies such as microservices,
streamline their development processes by trying to embrace agile methods and imple-
ment DevOps practices like continuous integration, delivery, and deployment, as well
as transitioning at least partly into the cloud. The existing legacy applications have
to somehow be taken along on these journeys, so software evolution and migration
projects remain an important reality of the IT industry.
The original motivation for SENSEI to be applied for toolchain integration in the field

of software evolution is therefore as relevant as ever. Adopting SENSEI in a software evo-
lution project will help to ensure cost-effectiveness, by reducing the effort required to
automate modernization processes as much as possible. Its flexible toolchains built
from reusable components enable projects to remain agile in the face of rapidly chang-
ing requirements, conditions, and technologies.

343

Appendices

APPENDIX A
SENSEI Models

In the following, the full contents of the SENSEI models created for the Q-MIG project
and the NEMo project are documented. This is provided as a source of reference; the
application of SENSEI to these projects is described in Chapter 15 and Chapter 16 with
detailed explanations. The outline for this chapter is given by the following table of
contents:
A.1 The Q-MIG SENSEI Model . 347

A.1.1 The Q-MIG Service Catalog 348
A.1.2 Q-MIG Orchestrations . 364
A.1.3 The Q-MIG Component Registry 371

A.2 The NEMo SENSEI Model . 372
A.2.1 The NEMo Service Catalog . 372
A.2.2 NEMo Orchestrations . 375
A.2.3 The NEMo Component Registry 378

A.1 The Q-MIG SENSEIModel

Section A.1.1 lists the contents of the Q-MIG service catalog: Figure A.1 depicts all
data structures as class diagram. In the following, all the services of the catalog are
listed in alphabetical order. Section A.1.2 lists the orchestrations modeled for Q-MIG.
Section A.1.3 lists the contents of the component registry.

347

A. SENSEI Models

A.1.1 The Q-MIG Service Catalog

DataStructure

SourceCode

AbstractSyntaxTree

Query

MetricResult

SoftwareStructure

SemanticInfoType

StructureMapping

CodeSmellType

CodeSmellDescription

RefactoringType

CodingStyle

QMIGDataModelNodeRef

Database

QMIGQueryTemplate

Observation

PredictionModel

Number

QualityCriterion

MigrationSetup

VisualizationKind

Visualization

QMIGQualityReport

Pair

JavaSourceCode

COBOLSourceCode

SQLSourceCode

Java_AST

COBOL_AST

SQL_AST

AbstractSemanticGraph

GReQLQuery

SQLQuery

SPARQLQuery

MeasuredSoftwareStructure

QMIGDataModel

LinearRegressionModel

NeuralNetwork

Metric

QualityCharacteristic

BarChart

ScatterPlot

Java_ASG

COBOL_ASG

Figure A.1: Q-MIG data structures.

348

A.1. The Q-MIG SENSEIModel

Name AnalyzeDataFlow
Description Takes an abstract syntax tree of a software system and enriches it

with data flow relations.
Input ast : AbstractSyntaxTree

type : SemanticInfoType
Output asg : AbstractSemanticGraph
Capability
Classes

ProgrammingLanguage = {COBOL}

Name CalculateAllMetrics
Description
Input metrics

sourceCode
Output mappedResults
Capability
Classes

Default = {Default}

Name CalculateDerivedMetric
Description Derives values for the specified composite or aggregate metric for

all software systems and their subsystems found in the repository
that miss the value, if the necessary base metric data is present.

Input repository : QMIGDataModel
metric : Metric

Output updatedRepo : QMIGDataModel

349

A. SENSEI Models

Capability
Classes

SupportedMetrics = {ModularityRating, ReusabilityRating,
AnalysabilityRating, ChangeabilityRating,
ModificationStabilityRating, TestabilityRating, ComplexityRating,
PortabilityRating, ELOC, McCabe, HalsteadVocab, HalsteadSize,
HalsteadVolume, HalsteadDifficulty, HalsteadEfforts,
HalsteadErrors, HalsteadTestingTime, CommentsPercentage,
ClonesPercentage, AverageLCOM, AverageComplexityPerUnit,
AverageUnitSize, AverageNumberSubclasses, AttributeHidingFactor,
MethodHidingFactor, AverageMethodsPerClass, SLOC,
NumberEmptyLines, NumberLinesWithOnlyBrackets,
NumberCommentLines, NumberDecisions,
NumberDistinctOperators, NumberDistinctOperands,
NumberOperatorInstances, NumberOperandInstances,
NumberGotos, CloneLines, LCOM, NumberClasses,
NumberSubclasses, NumberAttributes, NumberHiddenAttributes,
NumberMethods, NumberHiddenMethods, ITD,
SwitchesFromGotos, UnconvertibleGotos, ConditionalOperators,
CBO, SLOCWithoutSQL, ELOCWithoutSQL,
NumberAttributesAccessed, SumDistinctAttributesAccessed,
NumberSQLLines}

Name CalculateMetric
Description Evaluates the specified metric over a software system’s abstract

syntax tree and returns the result.
Input metric : Metric

ast : AbstractSyntaxTree
Output result : MetricResult

350

A.1. The Q-MIG SENSEIModel

Capability
Classes

SupportedMetrics = {ModularityRating, ReusabilityRating,
AnalysabilityRating, ChangeabilityRating,
ModificationStabilityRating, TestabilityRating, ComplexityRating,
PortabilityRating, ELOC, McCabe, HalsteadVocab, HalsteadSize,
HalsteadVolume, HalsteadDifficulty, HalsteadEfforts,
HalsteadErrors, HalsteadTestingTime, CommentsPercentage,
ClonesPercentage, AverageLCOM, AverageComplexityPerUnit,
AverageUnitSize, AverageNumberSubclasses, AttributeHidingFactor,
MethodHidingFactor, AverageMethodsPerClass, SLOC,
NumberEmptyLines, NumberLinesWithOnlyBrackets,
NumberCommentLines, NumberDecisions,
NumberDistinctOperators, NumberDistinctOperands,
NumberOperatorInstances, NumberOperandInstances,
NumberGotos, CloneLines, LCOM, NumberClasses,
NumberSubclasses, NumberAttributes, NumberHiddenAttributes,
NumberMethods, NumberHiddenMethods, ITD,
SwitchesFromGotos, UnconvertibleGotos, ConditionalOperators,
CBO, SLOCWithoutSQL, ELOCWithoutSQL,
NumberAttributesAccessed, SumDistinctAttributesAccessed,
NumberSQLLines} SupportedProgrammingLanguage = {COBOL,
Java}
SupportedGranularityLevel = {COBOLSection, COBOLDivision,
File, JavaPackage, Directory, JavaClass, JavaMethod}

Name Concat
Description Takes two ordered collections of arbitrary length (including length

of zero or one), and returns a single ordered collection, containing
all elements of the front collection in their original order, followed
by all elements of the rear collection in their original order.

Input front [*] : DataStructure
rear [*] : DataStructure

Output concatenated [*] : DataStructure
Capability
Classes

Default = {Default}

Name DefineTargetArchitecture
Description Takes a source system and a mapping of structural source system

elements to target system elements, and enriches the source
system’s AST with information to guide a later migration.

351

A. SENSEI Models

Input sourceSystem : AbstractSyntaxTree
targetMapping : StructureMapping

Output modifiedSystem : AbstractSemanticGraph
Capability
Classes

Default = {Default}

Name DetectCodeSmell
Description Searches the provided software system for the presence of code

smells of the given type, and returns a set of all found instances of
that code smell.

Input type : CodeSmellType
ast : AbstractSyntaxTree

Output codeSmells : CodeSmellDescription
Capability
Classes

CodeSmellType = {BadGOTO} ProgrammingLanguage =
{COBOL}

Name ExtractEmbeddedCode
Description Extracts unparsed, embedded source code fragments from a host

language AST.
Input ast : AbstractSyntaxTree
Output code : SourceCode
Capability
Classes

HostLanguage = {COBOL} EmbeddedLanguage = {SQL}

Name ExtractStructure
Description Extracts a basic, hierarchical decomposition of a software system’s

AST.
Input ast : AbstractSyntaxTree
Output structure : SoftwareStructure
Capability
Classes

NoChoice = {NoChoice}

Name FormatCode
Description Takes source code in a particular programming language and

formats it according to the specified coding style.
Input style : CodingStyle

352

A.1. The Q-MIG SENSEIModel

source : SourceCode
Output formattedSource : SourceCode
Capability
Classes

CodingStyle = {JavaOracle}

Name GenerateCode
Description Takes an AST representation of a software system and generates the

corresponding source code files.
Input ast : AbstractSyntaxTree
Output code : SourceCode
Capability
Classes

ProgrammingLanguage = {Java}

Name LearnSupervised
Description Takes a training set of observations (predictors / independent

variables, paired with the corresponding desired outcome /
dependent variable) and fits a prediction model to this data.

Input trainingSet [*] : Observation
Output model : PredictionModel
Capability
Classes

supervisedLearningTechnique = {LinearRegression,
NeuralNetworkBackPropagation}

Name MapResultsToStructure
Description Takes a hierarchical decomposition of a software system, as well as

a series of metric values calculated on the same system, and
combines the two by annotating the structural elements with their
corresponding metric values.

Input results [*] : MetricResult
structure : SoftwareStructure
metric [*] : Metric

Output mappedResults : MeasuredSoftwareStructure
Capability
Classes

NoChoice = {NoChoice}

Name Pair

353

A. SENSEI Models

Description Pairs two arbitrary data structures together. A pair can also be used
in place of a collection (of exactly two elements).

Input left : DataStructure
right : DataStructure

Output pair : Pair
Capability
Classes

Default = {Default}

Name Parse
Description Parses code files and returns an abstract syntax tree / graph

(AST/ASG) representation.
Input source code : SourceCode
Output outAST : AbstractSyntaxTree
Capability
Classes

Programming Language = {COBOL, Java, SQL}

Name Predict
Description Takes a set of predictors / independent variables, and returns the

expected outcome / dependent variable according to the provided
prediction model.

Input model : PredictionModel
predictors [*] : Number

Output prediction : Number
Capability
Classes

modelType = {LinearRegression, NeuralNetwork}

Name QMIGAddAverageValues
Description For metrics that allow this, fills missing metric values of a software

system with the average of values measured on its subsystems.
Input repository : QMIGDataModel
Output updatedRepo : QMIGDataModel
Capability
Classes

Default = {Default}

Name QMIGAddCommonRoot

354

A.1. The Q-MIG SENSEIModel

Description Adds a new software system node to the repository, and adds all
specified, existing subsystems as its children.

Input repository : QMIGDataModel
subsystems [*] : QMIGDataModelNodeRef

Output updatedRepo : QMIGDataModel
root : QMIGDataModelNodeRef

Capability
Classes

Default = {Default}

Name QMIGAddDefaultNames
Description Where possible, fills missing name attributes of software systems

with sensible default values.
Input repository : QMIGDataModel
Output updatedRepo : QMIGDataModel
Capability
Classes

Default = {Default}

Name QMIGAddTraceLinks
Description Adds trace links between the source and target software systems,

and all their respective subsystems, assuming source has been
migrated to target using the provided migration setup (containing
necessary information about the migration process, mapping rules,
etc.). If no target system reference is provided, it is created along
with the trace links, in accordance with the migration setup.

Input repository : QMIGDataModel
sourceSystem : QMIGDataModelNodeRef
targetSystem : QMIGDataModelNodeRef
setup : MigrationSetup

Output updatedRepo : QMIGDataModel
targetSystem : QMIGDataModelNodeRef

Capability
Classes

Default = {Default}

Name QMIGAverageOutDuplicateRatings
Description Removes duplicate ratings for a software system by the same expert,

and replaces them with the average of the provided rating values.
Input repository : QMIGDataModel

355

A. SENSEI Models

Output updatedRepo : QMIGDataModel
Capability
Classes

Default = {Default}

Name QMIGCalculateBaseMetrics
Description
Input metrics [*] : Metric

ast : AbstractSyntaxTree
Output mappedResults : MeasuredSoftwareStructure
Capability
Classes

Default = {Default}

Name QMIGConsolidateData
Description
Input qmigRepo : QMIGDataModel

qualityDataSets [*] : QMIGDataModel
Output consolidatedRepo : QMIGDataModel

integratedSystem : QMIGDataModelNodeRef
Capability
Classes

Default = {Default}

Name QMIGExtractData
Description
Input queryTemplate : QMIGQueryTemplate

independentCriteria [*] : QualityCriterion
systems [*] : QMIGDataModelNodeRef
qmigRepo : QMIGDataModel
dependentCriterion : QualityCriterion

Output result : DataStructure
Capability
Classes

Default = {Default}

Name QMIGGenerateReport
Description Generates a quality report that presents the data associated with the

specified software systems contained within the repository in an
easily browsable, human-readable format.

356

A.1. The Q-MIG SENSEIModel

Input repository : QMIGDataModel
systems : QMIGDataModelNodeRef

Output report : QMIGQualityReport
Capability
Classes

Default = {Default}

Name QMIGImportData
Description Merges all the provided data model instances into the specified,

existing repository.
Input repository : QMIGDataModel

importData [*] : QMIGDataModel
Output updatedRepo : QMIGDataModel

importedEntries [*] : QMIGDataModelNodeRef
Capability
Classes

Default = {Default}

Name QMIGInferMissingRatings
Description Tries to infer missing rating values by exploiting certain

redundancies in the hierarchical subsystem structure, and by using
the average of subsystem ratings, if the parent system’s rating value
is missing.

Input repository : QMIGDataModel
Output updatedRepo : QMIGDataModel
Capability
Classes

Default = {Default}

Name QMIGIntegrateData
Description
Input qmigRepo : QMIGDataModel

subsystemQualityEntries [*] : QMIGDataModelNodeRef
Output integratedRepo : QMIGDataModel

rootSystem : QMIGDataModelNodeRef
Capability
Classes

Default = {Default}

Name QMIGObfuscateIdentifiers

357

A. SENSEI Models

Description Replaces all software (sub-)system names with arbitrarily chosen
identifiers.

Input repository : QMIGDataModel
Output updatedRepo : QMIGDataModel
Capability
Classes

Default = {Default}

Name QMIGParseMigrateMeasure
Description
Input COBOLSource : COBOLSourceCode

typesOfSemanticInfo : SemanticInfoType
targetStructure : StructureMapping
reengTypes [*] : CodeSmellType
COBOLMetrics [*] : Metric
javaCodeFormat : CodingStyle
JavaMetrics [*] : Metric

Output sqlAST : SQL_AST
COBOLQuality : MeasuredSoftwareStructure
JavaQuality : MeasuredSoftwareStructure
javaSource : JavaSourceCode

Capability
Classes

Default = {Default}

Name QMIGParseMigrateMeasureMultiple
Description
Input COBOLPrograms [*] : COBOLSourceCode

targetStructures [*] : StructureMapping
typesOfSemanticInfo : SemanticInfoType
reengTypes [*] : CodeSmellType
COBOLMetrics [*] : Metric
javaMetrics [*] : Metric
javaCodeFormat : CodingStyle

Output sqlASTs [*] : SQL_AST
javaSources [*] : JavaSourceCode
javaMeasurements [*] : MeasuredSoftwareStructure
COBOLMeasurements [*] : MeasuredSoftwareStructure

Capability
Classes

Default = {Default}

358

A.1. The Q-MIG SENSEIModel

Name QMIGPersistPrediction
Description
Input repository : QMIGDataModel

system : QMIGDataModelNodeRef
criteria [*] : QualityCriterion
values [*] : Number

Output updatedRepo : QMIGDataModel
Capability
Classes

Default = {Default}

Name QMIGPrepareQuery
Description Builds a query expression based on the provided template, by

inserting constraints based on the specified software systems and
quality criteria to be taken into consideration.

Input queryTemplate : QMIGQueryTemplate
independentCriteria [*] : QualityCriterion
systems [*] : QMIGDataModelNodeRef
dependentCriterion : QualityCriterion

Output query : GReQLQuery
Capability
Classes

Default = {Default}

Name QMIGReengineer
Description
Input softwareSystem : AbstractSyntaxTree

codeSmellTypes [*] : CodeSmellType
Output reengineeredSystem : AbstractSyntaxTree
Capability
Classes

Default = {Default}

Name QMIGRemoveDuplicateMeasurements
Description Eliminates measurement entry clones, leaving only one entry for a

single software system node.
Input repository : QMIGDataModel
Output updatedRepo : QMIGDataModel

359

A. SENSEI Models

Capability
Classes

Default = {Default}

Name QMIGRemoveDuplicateSoftwareSystems
Description Merges sets of clones representing the same subsystem into a single

entry.
Input repository : QMIGDataModel
Output updatedRepo : QMIGDataModel
Capability
Classes

Default = {Default}

Name QMIGResolveAmbiguousIDs
Description Adds contextual information to ID strings to remove ambiguity and

ensure repository-wide uniqueness of all software system IDs.
Input repository : QMIGDataModel
Output updatedRepo : QMIGDataModel
Capability
Classes

Default = {Default}

Name QMIGSanitizeMeasurements
Description
Input qmigRepo : QMIGDataModel
Output sanitizedMeasurementsRepo : QMIGDataModel
Capability
Classes

Default = {Default}

Name QMIGSanitizeRatings
Description
Input qmigRepo : QMIGDataModel
Output sanitizedRatingsRepo : QMIGDataModel
Capability
Classes

Default = {Default}

Name QMIGTrainAndPredict
Description

360

A.1. The Q-MIG SENSEIModel

Input criteriaToPredict
trainingTemplate
testTemplate
independentCriteria
testSystems
trainingSystems
qmigRepo
predictedSystem

Output repoWithPrediction
Capability
Classes

Default = {Default}

Name QMIGTrainPredictionModel
Description
Input queryTemplate : QMIGQueryTemplate

systems [*] : QMIGDataModelNodeRef
independentCriteria [*] : QualityCriterion
qmigRepo : QMIGDataModel
dependentCriterion : QualityCriterion

Output model : PredictionModel
Capability
Classes

Default = {Default}

Name Query
Description Queries the specified data repository of arbitrary kind using the

provided query expression, and returns the result.
Input repository : Database

query : Query
Output result : DataStructure
Capability
Classes

QueryLanguage = {GReQL}

Name Refactor
Description Removes the provided code smell instance from the input software

system, and replaces it with semantically equivalent logic.
Input codeSmell : CodeSmellDescription

softwareSystem : AbstractSyntaxTree

361

A. SENSEI Models

Output refactoredSystem : AbstractSyntaxTree
Capability
Classes

Refactoring = {EliminateGOTO} ProgrammingLanguage =
{COBOL}

Name Split
Description
Input pair : Pair
Output left : DataStructure

right : DataStructure
Capability
Classes

Default = {Default}

Name Transform
Description Performs a semantic transformation of data. Note: This is a special

service used by the CompositionFinder and must not be modified!
Input input : DataStructure
Output output : DataStructure
Capability
Classes

Transformations = {Identity}

Name TransformProgrammingLanguage
Description Transforms a software system in one programming language into a

semantically equivalent software system in another programming
language.

Input source : AbstractSyntaxTree
Output result : AbstractSyntaxTree
Capability
Classes

LanguageTransformations = {COBOLtoJava}

Name Unzip
Description
Input zippedCollection [*]
Output left [*] : DataStructure

right [*] : DataStructure
Capability
Classes

Default = {Default}

362

A.1. The Q-MIG SENSEIModel

Name Visualize
Description Transforms the provided data into a visual representation of the

specified kind.
Input data : DataStructure

kind : VisualizationKind
Output result : Visualization
Capability
Classes

SupportedVisualizations = {BarChart, ScatterPlot}

Name Zip
Description Takes two arbitrary, ordered collections
Input left [*] : DataStructure

right [*] : DataStructure
Output zippedCollection [*] : Pair
Capability
Classes

Default = {Default}

Name transformDataDefinition
Description Transforms the format, model, or representation of the provided

data. Note: This is a special service used by the CompositionFinder
and must not be modified!

Input input : DataStructure
Output output : DataStructure
Capability
Classes

Transformations = {Identity, QMIGSoftwareSystem2DuDeEntity,
DuDeCloneLines2QMIGMetricResult, SoamigXml2TGraph,
QMIGExchange2DataModelTGraph,
DataModelTGraph2QMIGExchange}

363

A. SENSEI Models

A.1.2 Q-MIG Orchestrations

Figure A.2: Q-MIG base metric calculation orchestration, without parsing.

Figure A.3: Q-MIG reengineering orchestration.

364

A.1. The Q-MIG SENSEIModel

Fi
gu
re
A
.4
:O
rc
he
st
ra
tio
n
co
ve
rin
g
pa
rs
in
g,
m
ig
ra
tio
n,
an
d
qu
al
ity
m
ea
su
re
m
en
to
fb
ot
h
C
O
BO
L
an
d
m
ig
ra
te
d
Ja
va
sy
st
em
s.

365

A. SENSEI Models

Figure A.5: Q-MIG orchestration to consolidate data.

Figure A.6: Q-MIG orchestration to integrate data.

Figure A.7: Q-MIG orchestration to sanitize measurements.

Figure A.8: Q-MIG orchestration to sanitize ratings.

366

A.1. The Q-MIG SENSEIModel

Figure A.9: Q-MIG orchestration to extract data.

Figure A.10: Q-MIG orchestration to train prediction models.

367

A. SENSEI Models

Figure A.11: Q-MIG orchestration to train and predict.

Figure A.12: Q-MIG orchestration to parse, migrate, and measure multiple software
(sub-)systems.

368

A.1. The Q-MIG SENSEIModel

Fi
gu
re
A
.1
3:
O
rc
he
st
ra
tio
n
to
ge
ne
ra
te
-q
ua
lit
y-
co
m
pa
ris
on
-re
po
rt
.

369

A. SENSEI Models

Figure
A
.14:

O
rchestration

to
predict-before-m

igration.

370

A.1. The Q-MIG SENSEIModel

A.1.3 The Q-MIG Component Registry

This table covers the components used by the toolchains presented in Section 15.7.

Component Service Capability Tuple

COBOLParser Parse [COBOL]
DataImprover QMIGAddAverageValues [Default]

QMIGAddCommonRoot [Default]
QMIGAddDefaultNames [Default]
QMIGAverageOutDuplicateRat-
ings

[Default]

QMIGImportData [Default]
QMIGInferMissingRatings [Default]
QMIGObfuscateIdentifiers [Default]
QMIGRemoveDuplicateMeasure-
ments

[Default]

QMIGRemoveDuplicateSoftware-
Systems

[Default]

QMIGResolveAmbiguousIDs [Default]
DuDe CalculateMetric [CloneLines, COBOL, Directory]

[CloneLines, Java, Directory]
transformDataDefinition [QMIGSoftwareSystem2DuDeEntity]

[DuDeCloneLines2QMIGMetricResult]
IdentityTransform-
Component

Transform [Identity]

transformDataDefinition [Identity]
IntegrateDataCom-
poser

QMIGIntegrateData [Default]

JavaParser Parse [Java]
MetricCalculator ExtractStructure [NoChoice]

CalculateMetric [SLOC, Java, File]
[SLOC, Java, JavaClass]
[SLOC, Java, JavaMethod]
[SLOC, Java, JavaPackage]

MapResultsToStructure [NoChoice]
transformDataDefinition [DataModelTGraph2QMIGExchange]

[QMIGExchange2DataModelTGraph]
[SoamigXml2TGraph]

SanitizeMeasure-
mentsComposer

QMIGSanitizeMeasurements [Default]

SanitizeRatings-
Composer

QMIGSanitizeRatings [Default]

371

A. SENSEI Models

A.2 The NEMo SENSEIModel

Section A.2.1 lists the contents of the NEMo service catalog: Figure A.15 depicts all
data structures as class diagram. In the following, all the services of the catalog are
listed in alphabetical order. Section A.2.2 lists the orchestrations modeled for NEMo.
Section A.2.3 lists the contents of the component registry.

A.2.1 The NEMo Service Catalog

Itinerary

Trip BusTrip

FastBusTrip

LowCarbonTrip

TransportMode

String

Location Station

GeoCoordinate

Number Integer

Date

Time

Boolean

Departure

Figure A.15: NEMo data structures.

372

A.2. The NEMo SENSEIModel

Name CombineRoutes
Description
Input travelSections [*] : Itinerary
Output interModalTravelInfo : Itinerary
Capability
Classes

Default = {Default}

Name FindRoute
Description
Input request : Trip

mode : TransportMode
Output travelInfo : Itinerary
Capability
Classes

Transport Mode = {car, train, bus, carpool, bike, walking}
Optimization Goal = {fastest, shortest, cheapest, lowestCO2}

Name FindStops
Description
Input request : Trip
Output sections [*] : Trip
Capability
Classes

Default = {Default}

Name NearestStationFinder
Description Finds the station with the minimal distance to a location
Input location : Location
Output station : Station
Capability
Classes

TransportMode = {BUS}

373

A. SENSEI Models

Name NearestStationsFinder
Description Finds the nearest stations for a transportation mode as specified by

capabilities
Input location : Location
Output stations [*] : Station
Capability
Classes

TransportationMode = {BUS}

Name RouteConcatenator
Description Concatenates 3 routes to one route
Input route1 : Itinerary

route2 : Itinerary
route3 : Itinerary

Output concatenatedRoute : Itinerary
Capability
Classes

Default = {DEFAULT}

Name RouteFinder
Description Finds a route between two locations using a specific transport mode

Input origin : Location
destination : Location

Output route : Itinerary
Capability
Classes

TransportMode = {BUS, WALK}

Name RouteSelector
Description
Input routes [*] : Itinerary
Output bestRoute : Itinerary
Capability
Classes

QualityCriteria = {TIME}

374

A.2. The NEMo SENSEIModel

A.2.2 NEMoOrchestrations

Fi
gu
re
A
.1
6:
In
te
r-m
od
al
ro
ut
in
g
or
ch
es
tra
tio
n.

375

A. SENSEI Models

Figure A.17: Bus planning orchestration, taken from Küpker [2015, p. 72].

376

A.2. The NEMo SENSEIModel

Figure A.18: Optimized bus planning orchestration, taken from Küpker [2015, p. 73].

377

A. SENSEI Models

A.2.3 The NEMo Component Registry

This table covers the components used by the toolchains presented in Section 16.3.
Information on the components mapped to services used for the bus planning case
study are documented by Küpker [2015].

Component Service Capability Tuple

InterModalRouter CombineRoutes [Default]
FindRoute [bus, fastest]

[bus, lowestCO2]
[carpool, shortest]
[walking, shortest]

FindStops [Default]
IKTSPublicRouter FindRoute [bus, fastest]

[train, fastest]
RouteCalculator FindRoute [car, fastest]

378

APPENDIX B
SCAffolder Model-to-Model
Transformation Reference

Section 14.3 has presented the SENSEI toolchain generator SCAffolder, including a
brief overview of the model-to-model transformation stage. This appendix provides
a more comprehensive documentation of the implementation. The transformations
are grouped as follows:
Section B.1 defines basic utility functions used by other transformation rules. Sec-

tion B.2 introduces a legacy feature of SCAffolder, a minimal implementation of service-
component-matching, which has been superseded by the separate Composition Finder,
but remains available, and is included for the sake of completeness. Section B.3 sub-
sumes transformations mainly required for tool stub generation. Section B.4 specifies
how SENSEI services are mapped onto SCA services, and corresponding Java interfaces
and method signatures. Section B.5 describes how Java types are generated based on
data definitions. Section B.6 presents transformations generating the framework for
composers. Section B.7 complements this with how orchestration control and data
flows are mapped onto Java statements to implement them.

B.1 Utility Functions

To simplify the transformation process, SCAffolder defines several helper and utility func-
tions. The Helpers class contains thirteen variables and twenty-five helper functions,
expressed using standard GReTL means. There are some limitations to these means,
though: when evaluating the semantic expression of a GReTL operation, the variables
it uses a determined by performing a simple text search for each of the previously reg-

379

B. SCAffolder Model-to-Model Transformation Reference

1 Def.registerQuery(context,"providedCapabilityVector",
2 new String[]
3 {
4 "implementationsMap", "cvEquals"
5 },
6 "using requiredCapabilityVector:\n "
7 + " (\n "
8 + " implementationsMap[requiredCapabilityVector] \n "
9 + " --> &{AbstractServiceInstance @ thisVertex "
10 + " --> &{Service} <--&{AbstractServiceInstance}"
11 + " --> requiredCapabilityVector } "
12 + " --> &{CapabilityVector \n "
13 + " @

cvEquals[tup(requiredCapabilityVector,thisVertex)]}\n "ãÑ

14 + ")[0]");

Figure B.1: A GReQL function that, given a required capability tuple of a service in-
stance, returns the corresponding provided capability tuple of the component chosen
to implement the service instance. It is registered using a custom mechanism to cir-
cumvent GReTL’s limitations.

istered variables. The GReQL query is then prefixed with a using statement, so that
those variables can be passed into it.
However, the GReTL implementation does not account for variables used in helper

functions, meaning variables cannot be used within helper functions. One solution
would be to only use helper functions instead of variables, as the former get registered
in the global GReQL function library. This would be extremely detrimental to perfor-
mance, though, as functions get re-evaluated every time they are invoked – GReTL
variables are used in SCAffolder to store the results of some expensive calculations.
Therefore, an extension has been implemented in class Def, which allows to reg-

ister functions that use GReTL variables. An example of its use is provided in Fig-
ure B.11 (a total of six functions are defined using this mechanism in SCAffolder). The
extra variables have to be explicitly named in a separate parameter. Def then uses
the GreqlQueryExtraVars class, which extends JGraLab’s GreqlQuery class, to repre-
sent the query. The specialized class first “tricks” the GReQL parser by appending a
dummy definition for the seemingly missing variables. When the query is evaluated,
the original query is prefixed with a using statement so that they will be passed in. The
actual variables are copied from the GReTL context to the query’s environment, which
the GReQL evaluator will use to assign the correct values.
Two further extensions have been created to complement GReTL’s and GReQL’s

functionality, respectively: a modified transformation operation to allow the creation

1In the code, capability tuples are sometimes referred to as capability vectors. For all intents and
purposes, these two notions refer to the same concept.

380

B.1. Utility Functions

1 new CreateOrderedEdges(context, ContainsParameter.EC,
2 "from o : topLevelContainer, "
3 + " cvCombination : cvCombinations[o], "
4 + " ip: o (-->{Orchestrates,ContainsAlternative})+

&{AbstractServiceInstance} --> "ãÑ

5 + " &{InputPort @ isEmpty(thisVertex <--
&{Flow,ExpansionPort})} "ãÑ

6 + "report
tup(o,ip,cvCombination,'IComposerContainsParameter'), "ãÑ

7 + " tup(o, cvCombination, 'ComposerSignature'), "
8 + " tup(o, cvCombination, ip, 'IComposerInputParameter')

"ãÑ

9 + "end").execute();

Figure B.2: A GReTL operation for creating edges in a predictable order.

of ordered edges, and a Java-implemented GReQL function that implements themixed-
radix algorithm as defined by Knuth [2011, pp. 281f].
TGraphs are ordered, however, GReTL does not provide a way to generate vertices

and edges in a predefined order. SCAffolder’s target metamodel relies on the ordering of
edge adjacencies in certain cases, though, for example to represent the Java statements
inside a method body. In the source metamodel, a sequence of service instances in an
orchestration is similarly modeled by the order of containment relationships. GReTL’s
standard CreateVertex and CreateEdges operations require the semantic expression to
return its results as sets, only. Therefore, SCAffolder defines and implements an addi-
tional operation, CreateOrderedEdges, which modifies the regular CreateEdges opera-
tion to accept ordered sets as archetypes, and preserve the ordering when generating
their images in the target model. Figure B.2 shows an example of using the operation
to create edges that link Java method signature vertices to the parameters they take as
arguments. Without a predictable order, it would be impossible to correctly match
interfaces to each other, to their implementations, or to invocation statements.
Themixed-radix generation algorithm [Knuth, 2011, pp. 281f] creates all tuples of a

given length n, where each element in the tuple has a potentially different range. More
importantly, the cardinality of their ranges ci may differ, as well. If the cardinalities
were all the same (c), the problem can be mapped to counting to the highest number
representable with n digits in a numeral system to the base of c. E.g., there are 1000
different triples in A3, where A = [0..9] Ă N0, and they can easily be enumerated
starting with (0, 0, 0) and counting up to (9, 9, 9). In numeral systems, the base is also
called radix. Generalizing this concept to let every digit position have a different radix
leads to mixed-radix systems.
As it turns out, this problem occurs in SENSEI in the form of orchestration trails (see

Section 12.3). They are defined in terms of ordered service instance sets: a single trail
is represented as a tuple of length n, where n is the number of service instances. The

381

B. SCAffolder Model-to-Model Transformation Reference

1 setGReQLVariable("cvCombinations", "from o : topLevelContainer "
2 + "reportMap o ->

mixedRadix{CapabilityVector}(atomicServices[o]) "ãÑ

3 + "end");

Figure B.3: Defining a map from orchestrations to their orchestration trails, using the
custom mixedRadix GReQL function.

tuple chooses one capability tuple for each service instance, and since every service
instance defines a varying number of required capability tuples, an orchestration trail
is essentially a mixed-radix number, where the service instances a the digit positions,
their capability tuples are the digits for that position.

SCAffolder needs to distinguish these orchestration trails, to generate code for each
one. The generated composer contains a method for each trail, for example2. Accord-
ingly, Java statements contained in those methods have to be created once for each
trail.
The mixed-radix generation algorithm is implemented in classMixedRadix, extend-

ing the Function class of JGraLab’s GReQL function library. It takes two arguments:
the vertex type of elements to be chosen, and an (ordered) set of vertices, which have
adjacencies to vertices of that type. For each vertex in the set, one “child” element of
the provided type is chosen. The result returned from this method is a set of all possible
combinations of choices.
Directly, the function is invoked only once within SCAffolder, namely to set the

cvCombinations map variable, as shown in Figure B.3. The variable acts as a cache,
to avoid having to redo the computation over and over again (it occurs more than sixty
times in SCAffolder’s transformation operations).

B.2 Transformation-Embedded Composition Finding

A Prolog-based composition finder has been implemented by Meier [2014a] (see Sec-
tion 14.3.1), but SCAffolder also implements are basic and less feature-complete version
of this functionality, realized with GReTL transformations. This is one of the most com-
plex parts of SCAffolder, as the paradigm of model-to-model transformations in general,
and GReTL in particular, is not well-suited for solving constraint satisfaction problems,
and is now considered deprecated.

2These methods assume the choices for all capability tuples are made a priori. There is also a single
execute method being generated, in which the choice of capability tuples – and thereby implementing
components to be invoked – is made dynamically. The transformation operations responsible for its
generation make less use of the mixed-radix function, and could probably be refactored to do without it,
completely.

382

B.2. Transformation-Embedded Composition Finding

1 from cv1 : V{ Capab i l i t yVec t o r } , cv2 : V{ Capab i l i t yVec t o r }
2 with cv1 <> cv2
3 reportMap tup (cv1 , cv2) −> f o r a l l cap1 : cv1 −−> &{Capab i l i t y } @
4 e x i s t s cap2 : cv2 −−> &{Capab i l i t y } @
5 cap1 . name = cap2 . name
6 end

(a) The helper variable cvEquals is filled with a lookup table to check whether two capability tuples are
equal.

1 us ing s I n s t a n c e :
2 from c : theElement (s I n s t a n c e −−> &{Se r v i c e })
3 <−−{ L ink sToSe rv i ce } <−− &{Component}
4 with (c −−> s In s t a n c e) or
5 (f o r a l l reqCV : (s I n s t a n c e −−> &{Capab i l i t yVec t o r }) @
6 e x i s t s provCV : (c −−> &{Ab s t r a c t S e r v i c e I n s t a n c e }
7 −−> &{Capab i l i t yVec t o r }) @
8 cvEqua l s [tup (reqCV , provCV)])
9 r e p o r t S e t c
10 end

(b) Helper function findImplementations finds those components which are either connected by an edge
to the provided service instance, or which provide all the required capabilities.

Figure B.4: The “simple” case of composition finding, with a one-to-one matching of
service instances to components.

Nevertheless, this section will briefly sketch the implementation of SCAffolder, as it
remains one of its features. It also goes to show that it should be easy to use an external
composition finder in place of the embedded one, as the result of both implementa-
tions is basically a mapping of orchestrated service instances and required capability
tuples, to component-implemented service instances and provided capability tuples.
This mapping can simply be swapped out, and the embedded implementation can be
deactivated.
The composition finding mechanism is implemented in a series of GReTL helper

variables and functions that build on each other. The implementation language is there-
fore essentially GReQL. For easier readability, the code snippets shown in the figures
in this section have been stripped of the surrounding GReTL Java API boilerplate.
To find appropriate components for each service instance in an orchestration,

SCAffolder distinguishes two cases: either there is a single component that covers
all required capability tuples, or multiple components must be combined to satisfy all
of them.
Finding components of the former case is implemented in the helper function find-

Implementations, shown in Figure B.4(b). Given a service instance, its query ranges
over all components that implement the service it conforms to (Lines 2 and 3). It then

383

B. SCAffolder Model-to-Model Transformation Reference

1 us ing s I n s t a n c e :
2 l e t implComponents := theElement (s I n s t a n c e −−> &{Se r v i c e })
3 <−−{ L ink sToSe rv i ce } <−− &{Component } ,
4 reqCVectors := s I n s t a n c e −−> &{Capab i l i t yVec t o r } in
5 from reqCVector : reqCVectors
6 r e po r t S e t (
7 from c : implComponents
8 with e x i s t s provCVector : (c −−> &{Ab s t r a c t S e r v i c e I n s t a n c e }
9 −−> &{Capab i l i t yVec t o r }) @
10 cvEqua l s [tup (reqCVector , provCVector)]
11 r epo r t c
12 end
13) [0]
14 end

Figure B.5: GReQL expression implementing the findComposedImplementations
helper function. It finds a set of components which combined provide all the capa-
bility tuples of the given service instance.

filters them by requiring one of two conditions: in the trivial case, there is an edge
between the component and the provided service instance (Line 4). Generally, this will
not be the case for service instances from an orchestration, but SCAffolder nevertheless
supports this.
The second condition checks whether a component provides a capability tuple for

each required one, that contains all the capabilities needed (Lines 5 through 8). It
uses the helper variable cvEquals for this (Figure B.4(a)). This lookup table contains a
boolean for each pair of capability tuples of the model. The name may be somewhat
misleading, because it does not exactly check for what could be considered a canonical
definition for capability tuple equality (both tuples have exactly the same elements).
For example, it allows that the second capability tuple contains additional capabilities.
Also, it does not check whether the capabilities are defined by the same service and
capability class, but relies on their names being equal. However, due to the validity
constraints that SENSEI models must satisfy, these cases do not occur. That means that
for valid, well-formed SENSEI models, cvEquals essentially implements an equality test,
as long as the first capability tuple is a required one, and the second is a provided one.
Finding compositions for the more general case of multiple components providing

the required capabilities of a service instance together is implemented by findCom-
posedImplementations depicted in Figure B.5. It takes a service instance as parameter
(Line 1), and defines two additional variables in a let statement (Lines 2 through 4):
implComponents is a set of all components implementing the same SENSEI service,
without considering capabilities. The reqCVectors variable contains all required capa-
bility tuples of the given service instance. This is also the range of the query (Line 5):
for each required capability tuple, the nested FWR expression (Lines 7 through 14) is

384

B.2. Transformation-Embedded Composition Finding

1 from o : E{ Orche s t r a t e s }
2 with hasType { Ab s t r a c t S e r v i c e I n s t a n c e } (endVer tex (o))
3 r e po r t o
4 end

(a) The helper function orchestratingAtomicServiceInstances.

1 from s i : o r che s t r a t edA t om i c Se r v i c e I n s t a n ce s ()
2 reportMap s i −> f ind Imp lemen ta t i ons (s i)
3 end

(b) The temporary helper variable implTmp.

1 from s i : o r che s t r a t edA t om i c Se r v i c e I n s t a n ce s ()
2 reportMap s i −> (i sEmpty (implTmp [s i]) ?
3 f indComposedImplementat ion (s i) :
4 implTmp [s i])
5 end

(c) The helper variable implementations.

Figure B.6: Helper variables and functions tying the basic composition finding together.

evaluated. It ranges over the implementing components, and filters out those that do
not provide a capability tuple that equals the required one currently inspected. From
the resulting set of candidate components, the first one is chosen (Line 15). In the end,
this yields a set of components guaranteed to contain at least one component for each
required capability tuple providing it.
Since for each required capability tuple, the first component satisfying it is chosen,

the overall selection of components will be arbitrary, i.e. there are no other concerns
being optimized. For example, it might make sense to minimize the number of to-
tal components, which is possible if some components provide more than one of the
required capability tuples. Another important aspect is the compatibility with compo-
nents matched to other service instances, if they need to exchange data. SCAffolder’s
basic implementation does not take such advanced considerations into account. The
CompositionFinder by Meier [2014a] does (see Section 14.3.1), as its constraint logic
programming paradigm is much better suited to express such optimization goals.
The composition finding functionality is tied together by the implementations vari-

able (Figure B.6(c)), whose defining GReQL query relies on two further helpers, the
function orchestratingAtomicServiceInstances, and the temporary variable implTmp
(Figure B.6(a) and Figure B.6(b)). The variable implementations is filled with a map
from orchestrated service instances to the components implementing them. It defaults
to the simple case of one-to-one matching implemented in findImplementations (via
implTmp). If this fails, findComposedImplementations is invoked instead.
There is another version of the implementations helper variable called implementa-

385

B. SCAffolder Model-to-Model Transformation Reference

Figure B.7: Model elements created for each Component instance in the SENSEI model
provided as SCAffolder’s input.

tionsMap. It is essentially identical, except that its lookup table is organized by required
capability tuples, instead of just service instances, which in many cases is more practi-
cal. It is used by the providedCapabilityVector function which was depicted earlier in
Figure B.1. It is an essential element of many transformation operations in SCAffolder,
allowing to navigate from service instances and their required capability tuples to the
corresponding capability tuples provided by implementing components. As a kind of
facade to the embedded composition finding functionality, its implementation could
be changed to rely on the results of an external composition finder, instead. Another op-
tion would be to manifest the mapping to implementing components by adding edges
into the source model. This could be realized as an additional preprocessing step, and
because of how findImplementations is implemented (Figure B.4), no further changes
to the transformation stage would be necessary.
This implementation of composition finding is, of course, fairly limited, especially

when compared to the CompositionFinder presented briefly in Section 14.3.1, which of-
fers a much more complete implementation. A major feature that is not realized within
SCAffolder itself is the automatic inclusion of appropriate transformer components into
data flows.

B.3 Tool Stubs

Technically, all the transformation operations are always executed completely, indepen-
dent of whether SCAffolder was invoked to create tool stubs, or to generate toolchains.

386

B.4. SCA Service Interfaces

The source model is simply filtered in a way that causes operations only relevant for
one of the two use cases to range over an empty set, and so essentially do nothing.
The first set of transformation operations is mainly aimed at the creation of tool

adapter stubs, although some elements are also required during toolchain creation, e.g.
referenced components. Figure B.7 depicts an object diagram visualizing the model
elements created in the target model. In GReTL, a target model element is created per
archetype, i.e. per element an operation’s semantic expression returns.
Often, several target model elements are created based on a single source model

type and its instances. Therefore, the objects shown in Figure B.7 are clustered into
three groups: the five objects and three links to the right of the figure (on yellow back-
ground) are created based on the existance of Component instances. For example, for
each instance of a Component in the SENSEImodel, an instance of metaclass Composite
in the target model is created.
The information represented by the target model elements being created will be

used to generated a SCDL file and a Java class file stub. The Composite and contained
Component instances, as well as each of their associated SCA Service instances, will
mainly go into the former, while the JavaClass, TypeReference, Annotation, and Anno-
tationElement instances fill a skeleton Java class file. The TypeReference instance rep-
resents an import of the SCA service annotation from the standard’s namespace. The
Annotation instance represents one such annotation (@Service).
Since a component can potentially implement more than one service, the annota-

tion may contain multiple AnnotationElements. Instances of this class are created once
for each implemented service and each component (green background). Naturally, the
same holds for containment relations linking annotations to their annotation elements.
The Artifact instances are actually only used during toolchain generation, to add

corresponding dependency declarations into the toolchain’s Maven build file. There
is actually an identical class Artifact in the source model, and there can potentially be
multiple artifacts required for a particular composite (blue background). This informa-
tion is simply copied over from source into target metamodel.

B.4 SCA Service Interfaces

One of the most important aspects of tool stubs are still missing, namely the (SCA) ser-
vice interfaces. However, toolchains require the generation of these interfaces, as well,
as types of their referenced SCA services. For tool stubs, interfaces need to be gener-
ated for each implemented SENSEI service instance, and each of its provided capability
tuples. For toolchains, the necessary interfaces are determined by the service instances
used in orchestrations, and their required capability tuples. Therefore, the operations
to create SCA service instances all distinguish these two cases, explicitly. If the input
model contains one or more orchestrations, interfaces needed for the corresponding
toolchains are generated. SENSEImodels declaring components and their implemented

387

B. SCAffolder Model-to-Model Transformation Reference

Figure B.8: Target model elements created for each ServiceInstance and CapabilityTu-
ple instance in the source model.

services, which are used for tool stub generation, are not expected to contain orches-
trations, and if they do, SCAffolder will filter them out during preprocessing.
Figure B.8 depicts the objects created in the target model to represent interfaces.

For each service instance, and each capability tuple it defines (orange background),
a JavaInterface is instantiated. There will also be a single method Signature in each
such interface, which toolchains will call to invoke the corresponding service, and
components implement. Having a separate interface for each service instance and
each capability tuple allows for greatest flexibility when implementing tool adapters,
as the implementation of different capabilities can be spread over different Java classes,
or grouped together, however tool developers see fit. If all capability tuples of a service
instance where mapped to a single Java interface with multiple methods, a single class
would have to implement all of them. This is what SCAffolder will initially produce,
i.e. all interfaces of the services implemented by a SENSEI component will be linked to
the previously created JavaClass instance (depicted in gray) via a LinksToInterface edge.
This can be freely changed, however – as opposed to the actual Java interface files, the
class file will not be overridden by SCAffolder if it already exists.
By default, SCAffolder also creates Remotable annotations and corresponding im-

port statements for each Java interface, meaning the associated SCA services can be
invoked across Java virtual machine boundaries, in a potentially distributed SCA do-
main. Since this may not be appropriate for all use cases, it can be turned off.
Each method signature declared in a Java interface takes arguments, which are rep-

resented by Parameter instances, and created based on the source model’s InputPort

388

B.5. Types

1 new CreateVertices(context, TypeReference.VC,
2 "from d : union(from d1: V{DataDefinition} reportSet d1.format

end, "ãÑ

3 + " set('byte', 'char', 'short', 'int', 'long',
'float',"ãÑ

4 + " 'double', 'boolean', 'java.lang.String')) "
5 + "reportSet d, 'UniqueTypes' "
6 + "end").execute();

Figure B.9: Example of a transformation operation used in creating unique types.

instances referenced from the corresponding service instance (purple background). Ac-
cordingly, OutputPort instances are used to create Parameter instances for returned
results. In Java, methods only return a single value or reference. SCAffolder generates
a simple compound data type (i.e. a struct-like Java class) in case there are multiple
output ports, and uses it as return type in the signature of corresponding methods.
Another set of method signatures is created and associated with each interface, one

for each ServiceInstance, CapabilityTuple, and Restriction instance, defined on each
of the tuples Capability instances. The objects created in the target model are shown
at the left side of Figure B.8 (blue background). The corresponding transformation
operations are implemented in Java class Introspection.java of SCAffolder.
These method signatures take exactly one argument, and return a boolean. They

provide tool developers with the ability to implement code that checks input data before
the actual service functionality is invoked, and report whether the component will
be able to handle this kind of data. Toolchains generated by SCAffolder use this to
dynamically decide for one of multiple components that implement (different capability
tuples of) a particular service instance.

B.5 Types

SCAffolder next establishes Java types to associate the previously created method param-
eters with, but also to use in variable declarations for the composer implementation
(Section B.7). In SENSEI, the concrete implementation type is not chosen on the service
or service orchestration level. Rather, the abstract data structures of SENSEI services are
bound by tool developers to concrete types using data definitions. It is possible to as-
sign different sets of types for each provided capability tuple of implemented services.
Since each type exists only once, it does not make sense to simply create a TypeRef-

erence instance3 for eachDataDefinition. For commonly used types, such as String, for

3TypeReference is the metaclass that represents Java types in the target metamodel. In the metamodel,
it is derived from the abstract metaclass Type, just like JavaInterface and JavaClass (see Figure 14.6). While
the latter represent the actual type definition, TypeReference is used to point to an imported type defined
elsewhere. This distinction is important, because code files are generated for classes and interfaces, but

389

B. SCAffolder Model-to-Model Transformation Reference

1 us ing provCV , po r t :
2 theElement (
3 i n t e r s e c t i o n (provCV <−− &{Da t aDe f i n i t i on } ,
4 i n t e r s e c t i o n (
5 theElement (provCV <−−^2 &{Component}) −−> &{Da t aDe f i n i t i on } ,
6 po r t −−><−− &{Da t aDe f i n i t i on })))

Figure B.10: A GReQL-based helper function to retrieve DataDefinitions.

example, this would create multiple, identical instances. While this is not necessarily
a problem, it would make matching and comparing types of parameters unnecessary
complicated. Therefore, all types referenced by all the DataDefinition instances in the
source model are compiled into a single set. SCAffolder currently only uses the format
attribute, expecting this to be the fully qualified name of a Java type. The resulting set
of type names is combined (by union) with a set containing the fully qualified names
of all of Java’s primitive types, and String, ensuring that these types can always be used
in transformation operations, independent of the input model. An example transforma-
tion operation that creates the TypeReference vertices is shown in Figure B.9.
In addition, parameters of SENSEI services have a boolean isCollection attribute to

indicate they represent a container (set, stream, array, etc.) whose elements are all
of the kind modeled by the associated DataStructure instance. SCAffolder uses Java’s
Collection interface to implement this. For each type created, a TypeReference instance
for a corresponding collection is created, which links to the “non-collection” type as
its type parameter (see Figure 14.6). This association represents Java’s Generics.
All parameters get associated to a type created like this. The creation of the corre-

sponding LinksToType edges has been omitted from all the object diagrams for greater
clarity. Basically, for each Parameter instance a LinksToType edge is also created.
Because of the decoupled nature of SENSEI’s services and components, it is not that

trivial to determine the correct types. Therefore, there are several variants of a helper
function that retrieves them. Figure B.10 depicts the GReQL implementation of one of
them, returning the type given a provided capability tuple and a port.
The query consists of several nested GReQL functions. Beginning from the inside

(Line 5), allDataDefinition instances of the component that defines the given capability
tuple are retrieved. The query navigates backwards from the capability tuple, following
two edges to a single Component instance. The GReQL function theElement is used
to retrieve that single element from the set that results from the path expression. Then,
all edges leading to DataDefinition instances are followed.
In Line 6, all DataDefinition instances associated to the service parameter corre-

sponding to the given port are retrieved (the Parameter instance is not explicitly men-
tioned in the path expression, but this is the only possibility to arrive at a DataDefini-

not for type references.

390

B.6. Composer Structure

Figure B.11: Model elements created for each orchestration, representing the corre-
sponding composer’s structure.

tion). Because of the indirection via a service parameter, this will potentially include
DataDefinition instances not defined by the same component. Therefore, the intersec-
tion of both sets is constructed (Line 4), leaving only those elements that are associated
with the right component and the given port.
This set still includes DataDefinition instances for different capability tuples. To

retrieve only the one element associated with the given capability tuple, the set is
intersected again with the set of all DataDefinition instances of that tuple (Line 3),
leaving only the element that refers to the right port and the right capability tuple.
Another application of theElement drops the set, and returns its only contained element.

B.6 Composer Structure

For Tool stub generation, the target model is complete after these steps. The remaining
transformation operations are dedicated to creating Composers, i.e. the SCA compo-
nents, with all the required software artifacts, that coordinate the processes defined
by SENSEI orchestrations. The model elements to be created for the basic structure
of composers are mostly the same as for tool stubs, only these are created for each
orchestration, as opposed to components.
An overview is given in Figure B.11. Created are a Composite, a Component, a

JavaClass, an Annotation, and a TypeReference instance, just like for tool stubs. The
creation of an SCA Service, an AnnotationElement, and a JavaInterface is different,
because only one per orchestration is created, just as with the other elements, whereas

391

B. SCAffolder Model-to-Model Transformation Reference

Figure B.12: Model elements created for each orchestration trail, representing Java
methods to invoke a specific trail.

for tool stubs, these instances are created once for every implemented service of the
corresponding component.
The composer exposes a single SCA service, called ExecuteToolchain. The associ-

ated Java interface declares a method (Signature) called execute, which the Java class
implements. Input and output parameters for this method are created based on the
ports defined on the orchestration itself. This method will dynamically choose appro-
priate components for service invocations, based on the kind of data provided as input
at runtime. Because of this generic nature, it cannot make any assumptions regarding
the types of its input and output parameters, which is why all parameters are of type
Object, the super-type of all other types in Java.
A separate set of methods is created per orchestration trail. In each of thesemethods,

a particular orchestration trail is hard-wired. The corresponding model elements that
are created for this are shown in Figure B.12. The methods all have the same number of
input and output parameters, but their types may differ, due to different data definitions
bound to the provided capabilities.
Composers make use of some SCA concepts that tool stubs do not need. The cor-

responding target model elements that are created for this are depicted in Figure B.13.
For each orchestrated service instance and their required capability tuples, an SCA Ref-
erence is created, contained in the composer’s SCA component. Inside the composite,
each of these references is connected to an appropriate SCA service using aWire. The
target model elements representing the SCA services have previously been created by
transformation operations that are active for both tool stub and toolchain generation
(see Figure B.7).
In the Java implementation class, a field for each of the references is needed. They

get represented in the target model by Parameter instances, and carry the @Reference
Annotation. This annotation is defined in the OASIS SCA namespace; the required im-
port is represented by a TypeReference (which is only required once, of course). The

392

B.7. Composer Implementation

Figure B.13: Model elements created for each orchestration, representing the corre-
sponding composer’s structure.

types of the fields that reference SCA services are defined by the service interfaces cre-
ated earlier (Section B.4). For each of them, an import is created, as well, represented
by LinksToImport edges between the composer’s Java implementation class and the
Java service interfaces (recall from Figure 14.6 that JavaInterface extends Type in the
target metamodel).

B.7 Composer Implementation

The last step in the model-to-model transformation stage is to fill the method bodies
of composers with the coordination logic that realizes the processes defined by or-
chestrations in the input SENSEI model. Basically, there are two sets of transformation
operations: One creates the statements for all methods that implement specific orches-
tration trails. The other creates the statements for the more dynamic implementation
in the execute method. Since the latter can be thought of as a more generic extension
of the former, only the creation of statements for the execute method will be discussed
in this section.
The first transformation operations deal with inputs and outputs of the service or-

chestrations themselves. At the beginning of execution, every corresponding composer
will have to accept the inputs, and at the end, the results have to be returned. Therefore,
CopyStatement instances are created for all data delegations in an orchestration, which
connect orchestration input ports with input ports of nested service instances, or the
output ports of nested service instances with output ports of the surrounding orches-
tration. Accordingly, the CopyStatement metaclass represents the value of a source
parameter being assigned to a target parameter. The CopyStatement vertices, and the

393

B. SCAffolder Model-to-Model Transformation Reference

Figure B.14: Model elements created for each orchestration, representing the corre-
sponding composer’s structure.

edges created to interconnect parameters, which have been created by previous trans-
formation instances, are depicted in Figure B.14
Next, there are transformation operations associated with each type of service in-

stance and control flow construct in the orchestration layer of the SENSEI metamodel:
• map operators (ForEachServiceInstance) are transformed into ForEachStatement
instances in the target metamodel, which represent Java for loops.

• concurrencies (ConcurrentServiceInstance) are transformed intoConcurrentState-
ment instances in the target metamodel, to represent threads in Java.

• orchestrations (ServiceOrchestration) are transformed into BlockStatement in-
stances in the target metamodel, representing Java blocks, e.g. the bodies of for
loops, and separate threads.

• service instances (ServiceInstance) are transformed into InvokeAndReturnState-
ment instances, representing the corresponding method invocation on the appro-
priate SCA reference field, and the subsequent assignment of the returned result
to a variable in Java. For the execute method, all statements created for to the
same service instance (but representing different capability tuples) are wrapped
in a SwitchInvokeAndReturn statement, which will be turned into if-then-else
statements that select the right SCA service to invoke dynamically, based on in-
put data introspection.

SCAffolder does not currently support alternatives (conditional branches). Thanks
to SENSEI’s capability mechanism, high-level decisions can often be modeled declara-
tively, as was the case for all the applications SCAffolder has been used in so far (see
Part V). The simplicity and conciseness of this approach is illustrated by the service
instance shown in Figure 11.3 (page 183), when compared with the semantically equiv-
alent service orchestration using an alternative, depicted in Figure 11.8 (page 190).
After having taken care of control flow, SCAffolder creates CopyStatement instances

for all the data flows present in an orchestration. During code generation, this will
be turned into Java code that stores results returned from SCA service invocations in a
central map, using the names of input ports targeted by data flows as keys in the map.

394

B.7. Composer Implementation

Figure B.15: Model elements created for each map (for-each-loop) control flow con-
struct.

Finally, all model elements representing statements are linked to the composer
methods they are contained in, ensuring the right order using the custom Create-
OrderedEdges transformation operation.
The creation of statements for the different control flow constructs is mostly straight-

forward. The most complex transformations are required for the map operator, because
of its additional ports. Therefore, the transformation of this control flow construct serves
as an example.
The elements created in the target model are depicted in Figure B.15. A ForEach-

Statement has two pairs of parameters. On the input side, the collection to iterate
over, and the control variable to represent the current element. On the output side,
the collector, representing a variable to accept the result of a single iteration, and the
collected result, a container to which all individual results are added. Both the input
collection and the collector would not need a new parameter – instead, the transfor-
mation operations could link to existing parameters corresponding to an output port
feeding the for loop, and an output port of a service instance nested in the loop, re-
spectively. However, creating separate parameters here makes it easier later to handle
all ports uniformly when transforming data flows.
As evident from the simplicity of this example, the creation of model elements to

represent statements implementing composer methods leaves more details to be filled
during code generation. This was a conscious decision to keep the Java-part of the target
metamodel simple. This means that the target metamodel cannot represent arbitrary
Java programs, and also that the Velocity templates used for code generation are very
specific to SCAffolder. The template-based approach to code generation makes it easy
to include a lot of boilerplate code that never changes, and only mix in those parts
dynamically that depend on the target metamodel, instead of writing out the whole
code “by hand”.

395

References

For the reader’s convenience, and to address different preferences and reading habits,
the references referred to in this thesis are listed twice in the following: first by order of
first appearance in the text, and second (starting on page 431) sorted by author names,
publication year, and title of the work.

References by Order of First Appearance

Wasserman, Anthony I. [1990]. “Tool Integration in Software Engineering Environ-
ments”. In: Software Engineering Environments. Proceedings of the International
Workshop on Environments. Lecture Notes in Computer Science 467. Ed. by Fred
Long, pp. 137–149 [cit. on pp. x, 32, 39, 41, 44, 45, 48–51].

Brown, Alan W. and John A. McDermid [1992]. “Learning from IPSE’s mistakes”. In:
IEEE Software 9.2, pp. 23–28 [cit. on pp. x, 41, 45, 48, 51–53, 64–66, 71].

Karsai, Gabor, Andras Lang, and Sandeep Neema [2005]. “Design patterns for open
tool integration”. In: Software & System Modeling 4.2, pp. 157–170 [cit. on pp. x,
48, 53–55, 76, 167].

Yang, Yun and Jun Han [1996]. “Classification of and Experimentation on Tool Interfac-
ing in Software Development Environments”. In: Proceedings of the 3rd Asia-Pacific
Software Engineering Conference. IEEE, Los Alamitos, pp. 56–65 [cit. on pp. x, 46,
48, 55–58].

Fuggetta, Alfonso [1993]. “A Classification of CASE Technology”. In: Computer 26.12,
pp. 25–38 [cit. on pp. x, 48, 58–61, 68–70, 72, 90].

Naur, Peter and Brian Randell [1968]. Software Engineering: Report on a Conference
sponsored by the NATO Science Committee. Conference Report. NATO Scientific
Affairs Division, Brussels [cit. on pp. 3, 39].

McIlroy, Malcolm Douglas [1968]. “Mass-Produced Software Components”. In: Soft-
ware Engineering: Report on a Conference sponsored by the NATO Science Com-
mittee. Ed. by Peter Naur and Brian Randell, pp. 138–155 [cit. on pp. 3, 99].

397

References

Dahl, Ole-Johan [2004]. “The Birth of Object Orientation: the Simula Languages”. In:
FromObject-Orientation to Formal Methods. Ed. by Olaf Owe, Stein Krogdahl, and
Tom Lyche. Lecture Notes in Computer Science 2635. Springer, Berlin, Heidelberg,
pp. 15–25 [cit. on pp. 3, 99].

Kay, Alan C. [1993]. “The early history of Smalltalk”. In: ACM SIGPLAN Notices 28.3,
pp. 69–95 [cit. on pp. 3, 99].

Szyperski, Clemens [1997]. Component software: beyond object-oriented program-
ming. ACM Press Books. Addison Wesley, Boston [cit. on pp. 3, 99, 100, 102,
103].

Erl, Thomas [2005]. Service-oriented architecture: concepts, technology, and design.
Prentice Hall, Upper Saddle River [cit. on pp. 3, 112, 115, 116, 118, 122–125].

Manes, Anne Thomas. [2003]. Web Services: A Manager’s Guide. Addison-Wesley,
Boston [cit. on p. 3].

Gorton, Ian, David Thurman, and Judi Thomson [2003]. “Next generation application
integration: challenges and new approaches”. In: Proceedings of the 27th Annual
International Computer Software and Applications Conference. IEEE, Los Alamitos,
pp. 576–581 [cit. on p. 3].

Lehman, Meir M. [1980]. “Programs, life cycles, and laws of software evolution”. In:
Proceedings of the IEEE 68.9, pp. 1060–1076 [cit. on pp. 3, 333].

Lehman, Meir M. [1996]. “Laws of software evolution revisited”. In: Proceedings of
the 5th European Workshop on Software Process Technology. Lecture Notes in
Computer Science 1149. Springer, Berlin, Heidelberg, pp. 108–124 [cit. on pp. 3,
308].

Brodie, Michael L. and Michael Stonebraker [1995]. Migrating Legacy Systems: Gate-
ways, Interfaces & the Incremental Approach. The Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann, San Francisco [cit. on p. 3].

Lientz, Bennet P. and E. Burton Swanson [1980]. Software maintenance management: a
study of the maintenance of computer application software in 487 data processing
organizations. Addison-Wesley, Boston [cit. on p. 3].

Seacord, Robert C., Daniel Plakosh, and Grace A. Lewis [2003]. Modernizing Legacy
Systems: Software Technologies, Engineering Processes, and Business Practices.
Addison-Wesley, Boston [cit. on p. 3].

Broy, Manfred [2018]. “Yesterday, Today, and Tomorrow: 50 Years of Software Engi-
neering”. In: IEEE Software 35.5, pp. 38–43 [cit. on p. 3].

Sanner, Michael F. [1999]. “Python: a programming language for software integration
and development”. In: Journal of molecular graphics & modelling 17.1, pp. 57–61
[cit. on p. 4].

Land, Rikard and Ivica Crnkovic [2004]. “Existing Approaches to Software Integration -
and a Challenge for the Future”. In: Proceedings of the 4th Conference on Software
Engineering Research and Practice in Sweden. Mälardalen University, Västerås.
URL: http://www.es.mdh.se/publications/642-Existing_

398

http://www.es.mdh.se/publications/642-Existing_Approaches_to_Software_Integration___and_a_Challenge_for_the_Future
http://www.es.mdh.se/publications/642-Existing_Approaches_to_Software_Integration___and_a_Challenge_for_the_Future

References by Order of First Appearance

Approaches_to_Software_Integration___and_a_Challenge_
for_the_Future [cit. on p. 4].

Beck, Kent. [2004]. Extreme Programming Explained: Embrace Change. 2nd ed. Addison-
Wesley, Boston [cit. on p. 4].

Schwaber, Ken and Mike Beedle [2002]. Agile software development with Scrum. Pren-
tice Hall, Upper Saddle River [cit. on p. 4].

Boehm, Barry [2002]. “Get ready for agile methods, with care”. In: Computer 35.1,
pp. 64–69 [cit. on p. 4].

Kruchten, Philippe [2010]. “Software Architecture and Agile Software Development—A
Clash of Two Cultures?” In: Proceedings of the 32nd International Conference on
Software Engineering, Volume 2. ACM, New York, p. 497 [cit. on p. 4].

Knodel, Jens andMatthias Naab [2014]. “Mitigating the Risk of Software Change in Prac-
tice”. In: Software Evolution Week — IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE). Ed. by Serge Demeyer,
David Binkley, and Filippo Ricca. IEEE, Antwerp, pp. 2–17 [cit. on pp. 4, 19].

Müller, Hausi A., Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey, Scott R. Tilley,
and Kenny Wong [2000]. “Reverse engineering: a roadmap”. In: Proceedings of the
Conference on the Future of Software Engineering. ACM, New York, pp. 47–60 [cit.
on pp. 4, 5, 8].

Sim, Susan Elliott [2000]. “Next Generation Data Interchange: Tool-to-Tool Application
Program Interface”. In: Proceedings of the 7th Working Conference on Reverse En-
gineering. IEEE, Los Alamitos, pp. 278–280 [cit. on pp. 4, 5, 7, 52, 93].

Jin, Dean and James R. Cordy [2005a]. “Ontology-based software analysis and reengi-
neering tool integration: the OASIS service-sharing methodology”. In: Proceedings
of the 21st International Conference on Software Maintenance. IEEE, Los Alamitos,
pp. 613–616 [cit. on pp. 4, 5, 8, 65, 75].

Ghezzi, Giacomo and Harald C. Gall [2013]. “A framework for semi-automated soft-
ware evolution analysis composition”. In: Automated Software Engineering 20.3,
pp. 463–496 [cit. on pp. 4, 6, 8, 78].

Borchers, Jens [1996]. “Reengineering-Factory — Erfolgsmechanismen großer Reengi-
neering-Maßnahmen”. In: Softwarewartung und Reengineering. Ed. by Franz Lehner.
Information Engineering und IV-Controlling. Deutscher Universitätsverlag, Wies-
baden, pp. 19–29 [cit. on pp. 4, 5, 8].

Bergey, John K., Scott R. Tilley, Steven Woods, Dennis B. Smith, and Nelson W. Wei-
derman [1999]. Why reengineering projects fail. Technical Report. Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh [cit. on p. 5].

Pike, Rob and Brian W. Kernighan [1984]. “The UNIX System: Program Design in the
UNIX Environment”. In: AT&T Bell Laboratories Technical Journal 63.8, pp. 1595–
1605 [cit. on pp. 5, 70].

399

http://www.es.mdh.se/publications/642-Existing_Approaches_to_Software_Integration___and_a_Challenge_for_the_Future
http://www.es.mdh.se/publications/642-Existing_Approaches_to_Software_Integration___and_a_Challenge_for_the_Future
http://www.es.mdh.se/publications/642-Existing_Approaches_to_Software_Integration___and_a_Challenge_for_the_Future

References

Holt, Richard C., Andreas Winter, and Andy Schürr [2000]. “GXL: toward a standard
exchange format”. In: Proceedings of the 7th Working Conference on Reverse En-
gineering. IEEE, Los Alamitos, pp. 162–171 [cit. on pp. 5, 201].

Mens, Tom,MichelWermelinger, SergeDemeyer, Robert Hirschfeld, StéphaneDucasse,
and M Jazayeri [2005]. “Challenges in software evolution”. In: Proceedings of the
8th International Workshop on Principles of Software Evolution. Ed. by Motoshi
Saeki, Gerardo Canfora, and Shuichiro Yamamoto. IEEE, Los Alamitos, pp. 13–22
[cit. on pp. 5, 8].

Sneed, Harry M., Ellen Wolf, and Heidi Heilmann [2010]. Softwaremigration in der
Praxis: Übertragung alter Softwaresysteme in eine moderne Umgebung. Dpunkt,
Heidelberg [cit. on pp. 5, 7].

Rajlich, Václav [2014]. “Software evolution and maintenance”. In: Proceedings of the
Conference on the Future of Software Engineering. ACM, New York, pp. 133–144
[cit. on p. 6].

Newman, Sam [2015]. Building Microservices. O’Reilly, Sebastopol [cit. on pp. 6, 114,
118, 122, 125, 126].

Jamshidi, Pooyan, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan Tilkov
[2018]. “Microservices: The Journey So Far and Challenges Ahead”. In: IEEE Soft-
ware 35.3, pp. 24–35 [cit. on p. 6].

Cerny, Tomas, Michael Jeffry Donahoo, and Michal Trnka [2018]. “Contextual Under-
standing of Microservice Architecture: Current and Future Directions”. In: ACM
SIGAPP Applied Computing Review 17.4, pp. 29–45 [cit. on p. 6].

Atzori, Luigi, Antonio Iera, and Giacomo Morabito [2010]. “The Internet of Things: A
survey”. In: Computer Networks 54.15, pp. 2787–2805 [cit. on p. 6].

Lee, Jay, Behrad Bagheri, and Hung-An Kao [2015]. “A Cyber-Physical Systems archi-
tecture for Industry 4.0-based manufacturing systems”. In: Manufacturing Letters 3,
pp. 18–23 [cit. on p. 6].

Ebert, Christof, Gerd Hoefner, and V. S. Mani [2015]. “What Next? Advances in
Software- Driven Industries”. In: IEEE Software 32.1, pp. 22–28 [cit. on p. 6].

Zimmermann, Olaf [2017]. “Microservices Tenets: Agile Approach to Service Devel-
opment and Deployment”. In: Proceedings of the 10th Advanced Summer School
on Service-Oriented Computing. Computer Science - Research and Development
32.3-4. Springer, Berlin, Heidelberg, pp. 301–310 [cit. on p. 6].

Fuhr, Andreas, Andreas Winter, Uwe Erdmenger, Tassilo Horn, Uwe Kaiser, Volker
Riediger, and Werner Teppe [2012]. “Model-Driven Software Migration - Process
Model, Tool Support and Application”. In: Migrating Legacy Applications: Chal-
lenges in Service Oriented Architecture and Cloud Computing Environments. Ed.
by Anca Daniela Ionita, Martin Litoiu, and Grace Lewis. IGI Global, Hershey,
pp. 153–184 [cit. on pp. 7, 15, 299].

400

References by Order of First Appearance

Grieger, Marvin and Masud Fazal-Baqaie [2015]. “Towards a Framework for the Mod-
ular Construction of Situation-Specific Software Transformation Methods”. In: Soft-
waretechnik-Trends 35.2, pp. 41–42 [cit. on p. 7].

Beck, Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon
Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,
and Dave Thomas [2001].Manifesto for Agile Software Development. URL: http:
//agilemanifesto.org/ [visited on 01/15/2020] [cit. on p. 7].

Eden, Amnon H. and Tom Mens [2006]. “Measuring software flexibility”. In: IEE Pro-
ceedings - Software 153.3, pp. 113–125 [cit. on pp. 7, 330].

ISO/IEC/IEEE 24765 [2017]. Systems and software engineering – Vocabulary. Interna-
tional Standard. International Organization for Standardization, Geneva [cit. on
pp. 8, 44, 47].

ISO/IEC 9126-1 [2001]. Software Engineering – Product Quality – Part 1: Quality
Model. International Standard. International Organisation for Standardization, Ge-
neva [cit. on p. 8].

ISO/IEC 25010 [2011]. Systems and software engineering - Systems and software Qual-
ity Requirements and Evaluation (SQuaRE) - System and software quality models.
International Standard. International Organization for Standardization, Geneva [cit.
on pp. 8, 12].

Jelschen, Jan and Andreas Winter [2011]. “Towards a Catalogue of Software Evolution
Services”. In: Softwaretechnik-Trends 31.2, pp. 36–37 [cit. on pp. 9, 339].

Jelschen, Jan and Andreas Winter [2012]. “A Toolchain for Metrics-based Comparison
of COBOL and Migrated Java Systems”. In: Softwaretechnik-Trends 32.2, pp. 67–68
[cit. on pp. 9, 339].

Jelschen, Jan [2013]. “Discovery and Description of Software Evolution Services”. In:
Softwaretechnik-Trends 33.2, pp. 59–60 [cit. on pp. 9, 81, 117, 157, 164, 339].

Jelschen, Jan, Johannes Meier, Marie-Christin Ostendorp, and Andreas Winter [2013].
“A Description Model for Software Evolution Services”. In: 1er Congreso Nacional
de Ingeniería Informática / Sistemas de Información. RIISIC, Cordoba. URL: http:
//www.conaiisi.unsl.edu.ar/ingles/papers.php [cit. on pp. 9,
26, 177, 339].

Jelschen, Jan and Andreas Winter [2014]. “Modeling Service Capabilities for Software
Evolution Tool Integration”. In: Softwaretechnik-Trends 34.2, pp. 91–92 [cit. on
pp. 9, 154, 339].

Jelschen, Jan [2014a]. “SENSEI: Software Evolution Service Integration”. In: Software
Evolution Week — IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering (CSMR-WCRE). Ed. by Serge Demeyer, David Binkley, and
Filippo Ricca. IEEE, Antwerp, pp. 469–472 [cit. on pp. 9, 339].

Jelschen, Jan [2015]. “Service-Oriented Toolchains for Software Evolution”. In: Proceed-
ings of the 9th International Symposium on the Maintenance and Evolution of

401

http://agilemanifesto.org/
http://agilemanifesto.org/
http://www.conaiisi.unsl.edu.ar/ingles/papers.php
http://www.conaiisi.unsl.edu.ar/ingles/papers.php

References

Service-Oriented and Cloud-Based Environments. Ed. by Andreas Winter, Mike
Smit, and Muhammad Ali Barbar. IEEE, Los Alamitos, pp. 51–58 [cit. on pp. 9,
339].

Jelschen, Jan, Johannes Meier, and Andreas Winter [2015]. “SENSEI Applied: An Auto-
Generated Toolchain for Q-MIG”. In: Softwaretechnik-Trends 35.2, pp. 39–40 [cit.
on pp. 9, 339].

Jelschen, Jan, Christoph Alexander Küpker, Andreas Winter, Alexander Sandau, Ben-
jamin Wagner vom Berg, and Jorge Marx Gómez [2016]. “Towards a Sustainable
Software Architecture for the NEMoMobility Platform”. In: Proceedings of the 30th
International Conference on Environmental Informatics – Stability, Continuity, In-
novation: Current trends and future perspectives based on 30 years of history. Ed.
by Volker Wohlgemuth, Frank Fuchs-Kittowski, and Jochen Wittmann. Berichte aus
der Umweltinformatik. Shaker, Herzogenrath, pp. 41–48 [cit. on pp. 9, 318, 339,
341].

Meier, Johannes, Dilshodbek Kuryazov, Jan Jelschen, and Andreas Winter [2015]. “A
Quality Control Center for Software Migration”. In: Softwaretechnik-Trends 35.2,
pp. 19–20 [cit. on p. 12].

Jelschen, Jan [2014b]. The Q-MIG Data Exchange Format. Project Report. Carl von
Ossietzky University, Oldenburg [cit. on p. 15].

Ebert, Jürgen, Volker Riediger, and Andreas Winter [2008]. “Graph Technology in Re-
verse Engineering: The TGraph Approach.” In: Proceedings of the 10th Workshop
Software Reengineering. Ed. by Rainer Gimnich, Uwe Kaiser, Jochen Quante, and
Andreas Winter. Lecture Notes in Informatics P-126. Gesellschaft für Informatik,
Bonn, pp. 67–81 [cit. on pp. 17, 193, 236, 293].

Boehm, Barry [2006]. “A view of 20th and 21st century software engineering”. In: Pro-
ceedings of the 28th International Conference on Software Engineering. ACM, New
York [cit. on pp. 18, 39–41].

Pandey, Gaurav [2014]. Short Report on Clone Detection Tools. Tech. rep. Carl von
Ossietzky University, Oldenburg [cit. on pp. 18, 32].

Juergens, Elmar, Florian Deißenböck, and Benjamin Hummel [2009]. “CloneDetective
- A workbench for clone detection research”. In: Proceedings of the 31st Interna-
tional Conference on Software Engineering. IEEE, Los Alamitos, pp. 603–606 [cit.
on p. 18].

Kamiya, Toshihiro, Shinji Kusumoto, and Katsuro Inoue [2002]. “CCFinder: a multilin-
guistic token-based code clone detection system for large scale source code”. In:
IEEE Transactions on Software Engineering 28.7, pp. 654–670 [cit. on p. 18].

Wettel, Richard and Radu Marinescu [2005]. “Archeology of code duplication: Recov-
ering duplication chains from small duplication fragments”. In: Proceedings of the
7th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing. IEEE. Los Alamitos, pp. 63–70 [cit. on pp. 18, 284, 285].

402

References by Order of First Appearance

Schmidt, Douglas C. [1999]. “Why Software Reuse has Failed and How toMake it Work
for You”. In: C++ Report 11.1 [cit. on p. 20].

Jelschen, Jan, Marion Gottschalk, Mirco Josefiok, Cosmin Pitu, and Andreas Winter
[2012]. “Towards applying reengineering services to energy-efficient applications”.
In: Proceedings of the 16th European Conference on Software Maintenance and
Reengineering. IEEE, Los Alamitos, pp. 353–358 [cit. on p. 25].

Q-MIG [2015]. Software Engineering Group of Carl von Ossietzky University and pro
et con Innovative Informatikanwendungen GmbH. URL: http://se.uni-
oldenburg.de/Q-MIG [visited on 01/15/2020] [cit. on p. 25].

Bourque, Pierre and Richard E. Fairley, eds. [2014]. Guide to the Software Engineering
Body of Knowledge (Swebok(r)): Version 3.0. IEEE, Los Alamitos [cit. on pp. 31, 101,
103].

Fowler, Martin, Kent Beck, John Brant,WilliamOpdyke, andDon Roberts [1999]. Refac-
toring: improving the design of existing code. Addison-Wesley, Boston [cit. on
p. 31].

Roy, Chanchal K., James R. Cordy, and Rainer Koschke [2009]. “Comparison and Eval-
uation of Code Clone Detection Techniques and Tools: A Qualitative Approach”.
In: Science of Computer Programming 74.7, pp. 470–495 [cit. on p. 31].

CORBA [2020]. Object Management Group. URL: http://www.corba.org/
[visited on 01/15/2020] [cit. on pp. 34, 99, 118].

Booth, David, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris
Ferris, and David Orchard [2004]. Web Services Architecture. URL: https://
www.w3.org/TR/ws-arch/ [visited on 01/15/2020] [cit. on pp. 34, 115, 119].

Fielding, Roy T. and Richard N. Taylor [2002]. “Principled design of the modern Web
architecture”. In: ACM Transactions on Internet Technology 2.2, pp. 115–150 [cit.
on pp. 34, 68, 90].

Parnas, David Lorge [1972]. “On the criteria to be used in decomposing systems into
modules”. In: Communications of the ACM 15.12, pp. 1053–1058 [cit. on p. 36].

Asplund, Fredrik and Martin Törngren [2015]. “The discourse on tool integration be-
yond technology, a literature survey”. In: Journal of Systems and Software 106,
pp. 117–131 [cit. on pp. 39, 49, 52, 64].

Buxton, John N. and Vic Stenning [1980]. Requirements for Ada Programming Support
Environments: ”Stoneman”. Tech. rep. ADA100404. US Department of Defense
[cit. on pp. 39, 40].

Dijkstra, Edsger W. [1968]. “Go To Statement Considered Harmful”. In: Communica-
tions of the ACM 11.3, pp. 147–148 [cit. on p. 39].

Dahl, Ole-Johan, Edsger Wybe Dijkstra, and Charles Antony Richard Hoare [1972].
Structured programming. Academic Press, London [cit. on pp. 39, 99, 187].

Royce, Winston W. [1970]. “Managing the development of large software systems”. In:
WESCON technical papers. Papers presented at the Western Electronic Show and
Convention. Los Angeles. IEEE, Los Alamitos, pp. 328–338 [cit. on p. 39].

403

http://se.uni-oldenburg.de/Q-MIG
http://se.uni-oldenburg.de/Q-MIG
http://www.corba.org/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/

References

Wirth, Niklaus [2008]. “A Brief History of Software Engineering”. In: IEEE Annals of the
History of Computing 30.3, pp. 32–39 [cit. on p. 39].

Endres, Albert [1996]. “A Synopsis of Software Engineering History: The Industrial Per-
spective”. In: Proceedings of the Dagstuhl Seminar 9635 on History of Software
Engineering. Ed. by Andreas Brennecke and Reinhard Keil-Slawik. Dagstuhl Semi-
nar Reports 153. Leibniz-Zentrum für Informatik, Wadern, pp. 20–24 [cit. on pp. 40,
42].

Brown, Alan W. [1988]. “Integrated project support environments”. In: Information &
Management 15.3, pp. 125–134 [cit. on p. 40].

Eclipse Modeling Project [2020]. Eclipse Foundation. URL: https://projects.
eclipse.org/projects/modeling [visited on 01/15/2020] [cit. on p. 40].

Bott, Frank, ed. [1989]. Eclipse, an integrated project support environment. Vol. 14. IEE
Computing Series. Peter Peregrinus, Hitchin [cit. on p. 40].

Dowson, Mark [1987]. “ISTAR—an integrated project support environment”. In: ACM
SIGPLAN Notices 22.1, pp. 27–33 [cit. on p. 40].

Long, Fred and Edwin J. Morris [1993]. An Overview of PCTE: A Basis for a Portable
Common Tool Environment. Tech. rep. CMU/SEI-93-TR-001. Software Engineering
Institute, Pittsburgh [cit. on p. 40].

Parker, Burt [1992]. “Introducing EIA-CDIF: the CASE Data Interchange Format Stan-
dard”. In: Proceedings of the 2nd Symposium on Assessment of Quality Software
Development Tools. IEEE, Los Alamitos, pp. 74–82 [cit. on pp. 40, 65].

XMI (XML Metadata Interchange) [2015]. Object Management Group. URL: http:
//www.omg.org/spec/XMI/ [visited on 01/15/2020] [cit. on pp. 40, 65].

Martin, Roger J. [1993]. Reference Model for Frameworks of Software Engineering En-
vironments. Technical Report / Special Publication ECMA TR/55, NIST SP 500-211,
European Computer Manufacturers Association / National Institute of Standards and
Technology [cit. on pp. 40, 42, 89, 90].

Brown, Alan, David Carney, Patricia Oberndorf, and Marvin Zelkowitz [1993]. Refer-
ence Model for Project Support Environments (Version 2.0). Tech. rep. CMU/SEI-
93-TR-23, NIST SP 500-213. Software Engineering Institute, National Institute of
Standards and Technology [cit. on pp. 40, 41, 43, 58, 91].

Chikofsky, Elliot J. [1988]. “Guest Editor’s Introduction: Software Technology People
Can Really Use”. In: IEEE Software 5.2, pp. 8–10 [cit. on p. 41].

Wicks, Michael N. and Richard G. Dewar [2007]. “A new research agenda for tool in-
tegration”. In: Journal of Systems and Software 80.9, pp. 1569–1585 [cit. on pp. 41,
46].

Sharon, David and Rodney Bell [1995]. “Tools that bind: Creating Integrated Environ-
ments”. In: IEEE Software 12.2, pp. 76–85 [cit. on p. 41].

Schmidt, Douglas C. [2006]. “Guest Editor’s Introduction: Model-Driven Engineering”.
In: Computer 39.2, pp. 25–31 [cit. on pp. 42, 309].

404

https://projects.eclipse.org/projects/modeling
https://projects.eclipse.org/projects/modeling
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/

References by Order of First Appearance

ElShazly, Hassan and Varun Grover [1993]. “A Study on the Evaluation of CASE Tech-
nology”. In: Journal of Information Technology Management IV.1, pp. 15–24 [cit.
on p. 42].

Lending, Diane and Norman L. Chervany [1998]. “The use of CASE tools”. In: Proceed-
ings of the ACM SIGCPR Conference on Computer Personnel Research. Ed. by Fred
Niederman and Ritu Agarwal. ACM, New York, pp. 49–58 [cit. on p. 42].

Ocampo, Camilo, Begoña Albizuri, and Pere Botella [1998]. “Is CASE Technology Still
Alive?” In: Actas de las III Jornadas de Ingeniería del Software. Ed. by José Ambrosio
Toval Álvarez and Joaquín Nicolás Ros. Diego Marín, Murcia, pp. 127–139 [cit. on
p. 42].

Kemerer, Chris F. [1992]. “How the Learning Curve Affects CASE Tool Adoption”. In:
IEEE Software 9.3, pp. 23–28 [cit. on p. 42].

Chau, Patrick Y. K. [1996]. “An empirical investigation on factors affecting the accep-
tance of CASE by systems developers”. In: Information and Management 30.6,
pp. 269–280 [cit. on p. 42].

Kelly, Steven and Juha-Pekka Tolvanen [2008]. Domain-Specific Modeling: Enabling
Full Code Generation. Wiley, Chichester [cit. on pp. 42, 134, 138, 140].

Stahl, Thomas, Markus Völter, Jorn Bettin, Arno Haase, and Simon Helsen [2006].
Model-Driven Software Development: Technology, Engineering, Management. Wi-
ley, Chichester [cit. on pp. 42, 135–138].

Brown, AlanW., Peter H. Feiler, and Kurt C.Wallnau [1992]. “Past and FutureModels of
CASE Integration”. In: Proceedings of the 5th International Workshop on Computer-
Aided Software Engineering. IEEE, Los Alamitos, pp. 36–45 [cit. on pp. 42, 43].

Booch, Grady, James Rumbaugh, and Ivar Jacobson [1999]. The Unified Modeling Lan-
guage User Guide. 5th ed. Object Technology Series. Addison-Wesley, Boston [cit.
on pp. 43, 102, 103].

Kleppe, Anneke, JosWarmer, andWim Bast [2003].MDA Explained: TheModel Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,
Boston [cit. on pp. 43, 129, 133, 134, 137–139].

Gašević, Dragan, Dragan Djurić, and Vladan Devedžić [2006]. Model Driven Archi-
tecture and Ontology Development. Springer, Berlin, Heidelberg [cit. on p. 43].

Terry, B. and D. Logee [1990]. “Terminology for Software Engineering Environment
(SEE) and Computer-Aided Software Engineering (CASE)”. In: ACM SIGSOFT Soft-
ware Engineering Notes 15.2, pp. 83–94 [cit. on p. 45].

Erdmenger, Uwe andDenis Uhlig [2011]. “Ein Translator für die COBOL-Java-Migration”.
In: Softwaretechnik-Trends 31.2 [cit. on pp. 45, 68].

Biehl, Matthias [2013]. “A Modeling Language for the Description and Development of
Tool Chains for Embedded Systems”. Doctoral Thesis. Royal Institute of Technology,
Stockholm [cit. on pp. 45, 64, 78, 82, 84].

Thomas, Ian and Brian A. Nejmeh [1992]. “Definitions of tool integration for environ-
ments”. In: IEEE Software 9.2, pp. 29–35 [cit. on pp. 45–48, 50, 52].

405

References

Brooks, Frederick P. [1987]. “No Silver Bullet: Essence and Accidents of Software Engi-
neering”. In: Computer 20.4, pp. 10–19 [cit. on pp. 46, 56].

Wegner, Peter [1996]. “Interoperability”. In: ACM Computing Surveys 28.1, pp. 285–
287 [cit. on pp. 46, 47].

Morris, Edwin, Linda Levine, Patrick R. Place, Daniel Plakosh, and B. Craig Meyers
[2004]. Systems of Systems Interoperability. Tech. rep. CMU/SEI-2004-TR-004. Soft-
ware Engineering Institute, Pittsburgh [cit. on p. 47].

Tolk, Andreas and James Muguira [2003]. “The Levels of Conceptual Interoperability
Model”. In: Proceedings of the Fall Simulation Interoperability Workshop. Curran
Associates, Red Hook, pp. 53–62 [cit. on p. 47].

Gürdür, Didem, Fredrik Asplund, and Jad El-Khoury [2016]. “Measuring Tool Chain
Interoperability in Cyber-physical Systems”. In: Proceedings of the 11th System of
Systems Engineering Conference. IEEE, Los Alamitos [cit. on p. 47].

Laws, Simon, Mark Combellack, Raymond Feng, Haleh Mahb, and Simon Nash [2011].
Tuscany SCA in Action. Manning, Shelter Island [cit. on pp. 48, 186, 240, 286, 294,
299].

WSO2 [2020]. URL: http://wso2.com [visited on 01/15/2020] [cit. on pp. 48,
105, 256, 310].

Wasserman, Anthony I. [1996]. “Toward a discipline of software engineering”. In: IEEE
Software 13.6, pp. 23–31 [cit. on p. 49].

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal
[1996]. Pattern-Oriented Software Architecture: A System of Patterns. Vol. 1. Wiley,
Chichester [cit. on pp. 53, 88].

Meier, Johannes and Andreas Winter [2016]. “Towards Metamodel Integration Using
Reference Metamodels”. In: Proceedings of the 4th Workshop on View-Based,
Aspect-Oriented and Orthographic Software Modelling. Ed. by Colin Atkinson, Erik
Burger, Thomas Goldschmidt, and Ralf Reussner. Karlsruhe Reports in Informatics
2016.7. Karlsruher Institut für Technologie, pp. 19–22 [cit. on p. 54].

Burger, Erik, Jörg Henss, Martin Küster, Steffen Kruse, and Lucia Happe [2016]. “View-
based model-driven software development with ModelJoin”. In: Software and Sys-
tems Modeling 15.2, pp. 473–496 [cit. on p. 54].

Tunjic, Christian and Colin Atkinson [2015]. “Synchronization of Projective Views
on a Single-Underlying-Model”. In: Proceedings of the 2015 Joint MORSE/VAO
Workshop on Model-Driven Robot Software Engineering and View-based Software-
Engineering. Ed. by Uwe Aßmann, Colin Atkinson, Erik Burger, Thomas Gold-
schmidt, and Ralf Reussner. ACM, New York, pp. 55–58 [cit. on p. 54].

Josuttis, Nicolai M. [2007]. SOA in Practice: The Art of Distributed System Design.
O’Reilly, Sebastopol [cit. on pp. 54, 109, 112–119, 124–126, 201].

Ghezzi, Giacomo [2012]. “SOFAS, Software Analysis as a Service. Improving and Re-
thinking Software Evolution Analysis”. Dissertation. University of Zurich [cit. on
pp. 64, 78].

406

http://wso2.com

References by Order of First Appearance

Holt, Richard C., Andy Schürr, Susan Elliott Sim, and Andreas Winter [2006]. “GXL: A
graph-based standard exchange format for reengineering”. In: Science of Computer
Programming 60.2, pp. 149–170 [cit. on p. 65].

Ducasse, Stéphane, Nicolas Anquetil, Muhammad Usman Bhatti, Andre Cavalcante
Hora, Jannik Laval, and Tudor Gîrba [2011]. MSE and FAMIX 3.0: an Interexchange
Format and Source Code Model Family. Tech. rep. hal-00646884. Hyper Articles
en Ligne, Centre pour la Communication Scientifique Directe, Lyon [cit. on pp. 65,
67].

Nierstrasz, Oscar [2012]. “Agile software assessment with Moose”. In: ACM SIGSOFT
Software Engineering Notes 37.3, pp. 1–5 [cit. on pp. 65, 67].

W3COWLWorkingGroup [2012].OWL2WebOntology LanguageDocumentOverview
(Second Edition). URL: https://www.w3.org/TR/owl2-overview/ [vis-
ited on 01/15/2020] [cit. on p. 65].

Cyganiak, Richard, David Wood, and Markus Lanthaler [2014]. RDF 1.1 Concepts and
Abstract Syntax. URL: https://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225/ [visited on 01/15/2020] [cit. on p. 65].

Open Services for Lifecycle Collaboration [2020]. OSLC Community. URL: http://
open-services.net/ [visited on 01/15/2020] [cit. on pp. 65, 85].

Lethbridge, Timothy C., Sander Tichelaar, and Erhard Ploedereder [2004]. “TheDagstuhl
Middle Metamodel: A Schema For Reverse Engineering”. In: Electronic Notes in
Theoretical Computer Science 94, pp. 7–18 [cit. on pp. 65, 66, 68, 70].

Würsch, Michael, Giacomo Ghezzi, Matthias Hert, Gerald Reif, and Harald C. Gall
[2012]. “SEON: a pyramid of ontologies for software evolution and its applications”.
In: Computing 94.11, pp. 857–885 [cit. on pp. 65, 67, 201].

Hesse, Wolfgang and Heinrich C. Mayr [2008]. “Modellierung in der Softwaretechnik:
eine Bestandsaufnahme”. In: Informatik-Spektrum 31.5, pp. 377–393 [cit. on pp. 65,
132, 133].

Tichelaar, Sander, Stéphane Ducasse, and Serge Demeyer [2000]. “FAMIX and XMI”.
In: Proceedings of the 7th Working Conference on Reverse Engineering. IEEE, Los
Alamitos, pp. 296–299 [cit. on p. 67].

SEON - Software Evolution ONtologies [2016]. Software Evolution and Architecture
Lab. URL: http://se-on.org [visited on 01/15/2020] [cit. on p. 67].

Knowledge Discovery Metamodel [2016]. Object Management Group. URL: http:
//www.omg.org/spec/KDM/ [visited on 01/15/2020] [cit. on p. 67].

Meta Object Facility [2013]. Object Management Group. URL: http://www.omg.
org/spec/MOF/2.4.1/ [visited on 01/15/2020] [cit. on pp. 67, 135].

Pérez-Castillo, Ricardo, Ignacio García Rodríguez De Guzmán, and Mario Piattini
[2011]. “Knowledge Discovery Metamodel-ISO/IEC 19506: A standard to modern-
ize legacy systems”. In: Computer Standards & Interfaces 33.6, pp. 519–532 [cit. on
p. 67].

407

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://open-services.net/
http://open-services.net/
http://se-on.org
http://www.omg.org/spec/KDM/
http://www.omg.org/spec/KDM/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/MOF/2.4.1/

References

Electronic Industries Association [1994]. CDIF Integrated Meta-model Foundation Sub-
ject Area. Interim Standard EIA/IS-111. Electronic Industries Association, Arlington
[cit. on p. 67].

Leitner, Andrea, Beate Herbst, and Roland Mathijssen [2016]. “Lessons Learned from
Tool Integration with OSLC”. In: Proceedings of the 22nd International Conference
Information and Software Technologies. Communications in Computer and Infor-
mation Science 639. Springer, Cham, pp. 242–254 [cit. on p. 68].

Kraft, Nicholas A. [2007]. “An Infrastructure to Support Interoperability in Reverse En-
gineering”. PhD thesis. Clemson University [cit. on pp. 68, 71, 90].

Kienle, Holger M. and Hausi A. Müller [2008]. “The Rigi reverse engineering environ-
ment”. In: Proceedings of the 1st International Workshop on Academic Software
Development Tools and Techniques. University of Bern. URL: http://scg.
unibe.ch/download/wasdett/wasdett2008-paper06.pdf [cit. on
p. 69].

Raza, Aoun, Gunther Vogel, and Erhard Plödereder [2006]. “Bauhaus – A Tool Suite
for Program Analysis and Reverse Engineering”. In: Proceedings of the 11th Ada-
Europe International Conference on Reliable Software Technologies. Ed. by Luís
Miguel Pinho and Michael González Harbour. Lecture Notes in Computer Science
4006. Springer, Berlin, Heidelberg, pp. 71–82 [cit. on p. 69].

Koschke, Rainer [2000]. “Atomic Architectural Component Recovery for Program Un-
derstanding and Evolution: Evaluation of Automatic Re-Modularization Techniques
and Their Integration in a Semi-Automatic Method”. Dissertation. University of
Stuttgart [cit. on p. 69].

Czeranski, Jörg, Thomas Eisenbarth, HolgerM. Kienle, Rainer Koschke, Erhard Plödereder,
Daniel Simon, Yan Zhang, Jean-François Girard, and Martin Würthner [2000].
“Data exchange in Bauhaus”. In: Proceedings of the 7th Working Conference on
Reverse Engineering. IEEE, Los Alamitos, pp. 293–295 [cit. on p. 70].

Kazman, Rick and S. Jeromy Carrière [1999]. “Playing detective: Reconstructing soft-
ware architecture from available evidence”. In: Automated Software Engineering
6.2, pp. 107–138 [cit. on p. 70].

Chen, Yih-Farn, Michael Y. Nishimoto, and Chittoor V. Ramamoorthy [1990]. “The
C information abstraction system”. In: IEEE Transactions on Software Engineering
16.3, pp. 325–334 [cit. on p. 70].

Holt, Richard C., Michael W. Godfrey, and Andrew J. Malton [2003]. “The Build / Com-
prehend Pipelines”. In: Proceedings of the Second ASERC Workshop on Software
Architecture. Alberta Software Engineering Research Consortium. URL: https://
plg.uwaterloo.ca/%7B~%7Dmigod/papers/2003/aserc03.pdf
[cit. on p. 70].

SWAG Tools [2020]. SWAG. URL: http://www.swag.uwaterloo.ca/tools.
html [visited on 01/15/2020] [cit. on p. 70].

408

http://scg.unibe.ch/download/wasdett/wasdett2008-paper06.pdf
http://scg.unibe.ch/download/wasdett/wasdett2008-paper06.pdf
https://plg.uwaterloo.ca/%7B~%7Dmigod/papers/2003/aserc03.pdf
https://plg.uwaterloo.ca/%7B~%7Dmigod/papers/2003/aserc03.pdf
http://www.swag.uwaterloo.ca/tools.html
http://www.swag.uwaterloo.ca/tools.html

References by Order of First Appearance

Godfrey, Michael W. and Lijie Zou [2005]. “Using origin analysis to detect merging
and splitting of source code entities”. In: IEEE Transactions on Software Engineering
31.2, pp. 166–181 [cit. on p. 70].

Bevan, Jennifer, E. James Whitehead, Sunghun Kim, and Michael W. Godfrey [2005].
“Facilitating software evolution research with kenyon”. In: Proceedings of the 10th
European software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering. ACM, New York,
pp. 177–186 [cit. on p. 70].

Storey, Margaret-Anne, Casey Best, and Jeff Michand [2001]. “Shrimp views: An inter-
active environment for exploring java programs”. In: Proceedings of the 9th Inter-
national Workshop on Program Comprehension. IEEE, Los Alamitos [cit. on p. 71].

Ebert, Jürgen, Bernt Kullbach, Volker Riediger, and Andreas Winter [2002]. “GUPRO
- Generic understanding of programs: An overview”. In: Proceedings of the 1st In-
ternational Conference on Graph Transformation. Electronic Notes in Theoretical
Computer Science 72.2. Elsevier, Amsterdam, pp. 59–68 [cit. on p. 71].

Kullbach, Bernt and Andreas Winter [1999]. “Querying as an enabling technology in
software reengineering”. In: Proceedings of the 3rd European Conference on Soft-
ware Maintenance and Reengineering. IEEE, Los Alamitos, pp. 42–50 [cit. on p. 71].

Ferenc, Rudolf, Árpád Beszédes,Mikko Tarkiainen, and Tibor Gyimóthy [2002]. “Colum-
bus – Reverse Engineering Tool and Schema for C++”. In: Proceedings of the 18th
International Conference on Software Maintenance. IEEE, Los Alamitos, pp. 172–
181 [cit. on p. 71].

Deißenböck, Florian, Elmar Juergens, BenjaminHummel, StefanWagner, BenediktMas
Parareda, and Markus Pizka [2008]. “Tool Support for Continuous Quality Control”.
In: IEEE Software 25.5, pp. 60–67 [cit. on p. 72].

Deißenböck, Florian, Lars Heinemann, Benjamin Hummel, and Elmar Juergens [2010].
“Flexible architecture conformance assessment with ConQAT”. In: Proceedings
of the 32nd International Conference on Software Engineering. ACM, New York,
pp. 247–250 [cit. on p. 72].

Heinemann, Lars, Benjamin Hummel, and Daniela Steidl [2014]. “Teamscale: software
quality control in real-time”. In: Proceedings of the 36th International Conference
on Software Engineering. ACM, New York, pp. 592–595 [cit. on p. 72].

Ducasse, Stéphane, Tudor Gîrba, and Oscar Nierstrasz [2005]. “Moose: an Agile
Reengineering Environment”. In: ACM SIGSOFT Software Engineering Notes 30.5,
pp. 99–102 [cit. on p. 73].

Ducasse, Stéphane, Michele Lanza, and Sander Tichelaar [2000]. “MOOSE: An Ex-
tensible Language-Independent Environment for Reengineering Object-Oriented
Systems”. In: Proceedings of the 2nd International Symposium on Constructing
Software Engineering Tools. Ed. by Ian Ferguson, Jonathan Gray, and Louise Scott,
pp. 24–30 [cit. on p. 73].

409

References

Moose [2020]. Moose Community. URL: http://www.moosetechnology.
org/ [visited on 01/15/2020] [cit. on p. 73].

Black, Andrew P., Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou,
and Marcus Denker [2018]. Pharo by Example 5. Square Bracket Associates [cit. on
p. 73].

Lungu, Mircea, Michele Lanza, and Oscar Nierstrasz [2014]. “Evolutionary and collab-
orative software architecture recovery with Softwarenaut”. In: Science of Computer
Programming 79, pp. 204–223 [cit. on p. 73].

Alvaro, Alexandre, Daniel Lucrédio, Vinicius Cardoso Garcia, Antonio Francisco do
Prado, Luis Carlos Trevelin, and Eduardo Santana de Almeida [2003]. “Orion-RE:
a component-based software reengineering environment”. In: Proceedings of the
10th Working Conference on Reverse Engineering. IEEE, Los Alamitos, pp. 248–
257 [cit. on p. 73].

Bruneliere, Hugo, Jordi Cabot, Frédéric Jouault, and FrédéricMadiot [2010a]. “MoDisco:
A Generic and Extensible Framework for Model Driven Reverse Engineering”. In:
Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering. ACM, New York, pp. 173–174 [cit. on p. 73].

Steinberg, Dave, Frank Budinsky, Marcelo Paternostro, and Ed Merks [2008]. EMF:
Eclipse Modeling Framework. Ed. by Erich Gamma, Lee Nackman, and John Wie-
gand. The Eclipse Series. Addison-Wesley, Boston [cit. on pp. 73, 143, 211, 213].

Bruneliere, Hugo, Jordi Cabot, Grégoire Dupé, and Frédéric Madiot [2014]. “Modisco:
Amodel driven reverse engineering framework”. In: Information and Software Tech-
nology 56.8, pp. 1012–1032 [cit. on p. 73].

Baxter, Ira D., Christopher Pidgeon, andMichael Mehlich [2004]. “DMS: Program trans-
formations for practical scalable software evolution”. In: Proceedings of the 26th
International Conference on Software Engineering. IEEE, Los Alamitos, pp. 625–
634 [cit. on pp. 73, 144].

DMS Software Reengineering Toolkit [2020]. Semantic Designs. URL: http : / /
www.semdesigns.com/Products/DMS/DMSToolkit.html [visited on
01/15/2020] [cit. on p. 73].

Bergstra, Jan A. and Paul Klint [1998]. “The discrete time ToolBus — A software coor-
dination architecture”. In: Science of Computer Programming 31.2-3, pp. 205–229
[cit. on p. 75].

Jong, Hayco de and Paul Klint [2003]. “ToolBus: The Next Generation”. In: Proceedings
of the 1st International Symposium on Formal Methods for Components and Ob-
jects. Ed. by Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-
Paul de Roever. Lecture Notes in Computer Science 2852. Springer, Berlin, Heidel-
berg, pp. 220–241 [cit. on p. 75].

Brand, Mark G. J. van den, Arie van Deursen, Jan Heering, Heyco A. de Jong, Mer-
ijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier, Jeroen
Scheerder, Jurgen J. Vinju, Eelco Visser, and Joost Visser [2001]. “The ASF+SDF

410

http://www.moosetechnology.org/
http://www.moosetechnology.org/
http://www.semdesigns.com/Products/DMS/DMSToolkit.html
http://www.semdesigns.com/Products/DMS/DMSToolkit.html

References by Order of First Appearance

Meta-environment: A Component-Based Language Development Environment”. In:
Proceedings of the 10th International Conference on Compiler Construction. Ed. by
Reinhard Wilhelm. Lecture Notes in Computer Science 2027. Springer, Berlin, Hei-
delberg, pp. 365–370 [cit. on pp. 75, 143].

Jin, Dean, James R. Cordy, and Thomas R. Dean [2003]. “Transparent reverse engi-
neering tool integration using a conceptual transaction adapter”. In: Proceedings of
the 7th European Conference on Software Maintenance and Reengineering. March.
IEEE, Los Alamitos, pp. 399–408 [cit. on p. 75].

Jin, Dean and James R. Cordy [2003]. “A Service Sharing Approach to Integrating Pro-
gram Comprehension Tools”. In: Proceedings of the Workshop on Tool Integration
in System Development. Ed. by Heiko Dörr and Andy Schürr. Darmstadt Univer-
sity of Technology, pp. 73–78. URL: https://web.archive.org/web/
20070629182619/https://www.es.tu-darmstadt.de/english/
events/tis/ [cit. on p. 75].

Jin, Dean and James R. Cordy [2005b]. “Factbase Filtering Issues in an Ontology-Based
Reverse Engineering Tool Integration System”. In: Electronic Notes in Theoretical
Computer Science 137.3, pp. 65–75 [cit. on p. 75].

Winter, Andreas and Jürgen Ebert [2005a]. “Metamodel-driven Service Interoperabil-
ity”. In: Pre-Proceedings of 13th International Workshop on Software Technology
and Engineering Practice. Ed. by Ying Zou andMassimiliano Di Penta. Queen’s Uni-
versity, Kingston, pp. 167–176. URL: http://post.queensu.ca/%7B~%
7Dzouy/files/preproc-step-2005.pdf%7B%5C#%7Dpage=178
[cit. on p. 75].

Winter, Andreas and Jürgen Ebert [2005b]. “Using metamodels in service interoperabil-
ity”. In: Proceedings of 13th International Workshop on Software Technology and
Engineering Practice. Ed. by Kostas Kontogiannis, Ying Zou, and Massimiliano Di
Penta. IEEE, Los Alamitos, pp. 147–156 [cit. on pp. 75, 76].

Bézivin, Jean, Hugo Bruneliere, Frédéric Jouault, and Ivan Kurtev [2005]. “Model
Engineering Support for Tool Interoperability”. In: Proceedings of the 4th UML
/ MoDELS Workshop in Software Model Engineering. URL: https : / / web .
archive.org/web/20070812181354fw%7B%5C_%7D/http://www.
planetmde.org/wisme- 2005/ModelEngineeringSupportForT
oolInteroperability.pdf [cit. on p. 76].

Bruneliere, Hugo, Jordi Cabot, Cauê Clasen, Frédéric Jouault, and Jean Bézivin [2010b].
“Towards Model Driven Tool Interoperability: Bridging Eclipse and Microsoft Mod-
eling Tools”. In: Proceedings of the 6th European Conference on Modelling Foun-
dations and Applications. Ed. by Thomas Kühne, Bran Selic, Marie-Pierre Gervais,
and François Terrier. Lecture Notes in Computer Science 6138. Springer, Berlin,
Heidelberg, pp. 32–47 [cit. on p. 76].

Wirsing, Martin and Matthias Hölzl, eds. [2011]. Rigorous Software Engineering for
Service-Oriented Systems: Results of the SENSORIA Project on Software Engineer-

411

https://web.archive.org/web/20070629182619/https://www.es.tu-darmstadt.de/english/events/tis/
https://web.archive.org/web/20070629182619/https://www.es.tu-darmstadt.de/english/events/tis/
https://web.archive.org/web/20070629182619/https://www.es.tu-darmstadt.de/english/events/tis/
http://post.queensu.ca/%7B~%7Dzouy/files/preproc-step-2005.pdf%7B%5C#%7Dpage=178
http://post.queensu.ca/%7B~%7Dzouy/files/preproc-step-2005.pdf%7B%5C#%7Dpage=178
https://web.archive.org/web/20070812181354fw%7B%5C_%7D/http://www.planetmde.org/wisme-2005/ModelEngineeringSupportForToolInteroperability.pdf
https://web.archive.org/web/20070812181354fw%7B%5C_%7D/http://www.planetmde.org/wisme-2005/ModelEngineeringSupportForToolInteroperability.pdf
https://web.archive.org/web/20070812181354fw%7B%5C_%7D/http://www.planetmde.org/wisme-2005/ModelEngineeringSupportForToolInteroperability.pdf
https://web.archive.org/web/20070812181354fw%7B%5C_%7D/http://www.planetmde.org/wisme-2005/ModelEngineeringSupportForToolInteroperability.pdf

References

ing for Service-Oriented Computing. Vol. 6582. Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg [cit. on p. 76].

Gönczy, László, Ábel Hegedüs, and Dániel Varró [2011]. “Methodologies for model-
driven development and deployment: an overview”. In: Rigorous Software Engi-
neering for Service-Oriented Systems: Results of the SENSORIA Project on Software
Engineering for Service-Oriented Computing. Ed. by Martin Wirsing and Matthias
Hölzl. Lecture Notes in Computer Science 6582. Springer, Berlin, Heidelberg,
pp. 541–560 [cit. on p. 76].

Amelunxen, Carsten, Felix Klar, Alexander Königs, Tobias Rötschke, and Andy Schürr
[2008]. “Metamodel-based tool integration with MOFLON”. In: Proceedings of the
30th International Conference on Software Engineering. ACM Press, New York,
pp. 807–810 [cit. on p. 76].

Hein, Christian, Tom Ritter, and Michael Wagner [2009]. “Model-Driven Tool Integra-
tion with ModelBus”. In: Proceedings of the 1st International Workshop on Future
Trends of Model-Driven Development. Ed. by Slimane Hammoudi and Luís Ferreira
Pires. INSTICC, Setubal, pp. 35–39 [cit. on p. 77].

ModelBus [2017]. Fraunhofer Institute for Open Communication Systems. URL: http:
//www.modelbus.org/ [visited on 01/15/2020] [cit. on p. 77].

Baumgart, Andreas [2010]. “A common meta-model for the interoperation of tools
with heterogeneous data models”. In: Proceedings of the 3rd Workshop on Model-
Driven Tool & Process Integration. Ed. by Christian Hein, Michael Wagner, Roland
Mader, Andreas Keis, and Eric Armengaud. Fraunhofer, Stuttgart, pp. 31–40 [cit. on
p. 77].

Armengaud, Eric, Markus Zoier, Andreas Baumgart, Matthias Biehl, Dejiu Chen, Ger-
hard Griessnig, Christian Hein, Tom Ritter, and Ramin Tavakoli Kolagari [2011].
“Model-based toolchain for the efficient development of safety-relevant automotive
embedded systems”. In: Proceedings of the SAE World Congress and Exhibition.
SAE International, Warrendale. URL: https://saemobilus.sae.org/
content/2011-01-0056 [cit. on p. 77].

Baumgart, Andreas, Christian Ellen, Stefan Farfeleder, Rainer Koopmann, Markus Oer-
tel, and Philip Rehkop [2012]. “A reference technology platform with common inter-
faces for distributed heterogeneous data”. In: Proceedings of the Embedded World
2012 Exhibition and Conference. WEKA-Fachmedien, Haar [cit. on p. 77].

Küpker, Christoph Alexander [2015]. “Applying the SENSEI Service Orchestration Ap-
proach to WSO2”. Master’s Thesis. Carl von Ossietzky University, Oldenburg [cit.
on pp. 79, 85, 105, 230, 233, 256–258, 277, 312–314, 316, 376–378].

Service Component Architecture (SCA) [2015]. OASIS Open CSA. URL: http://
oasis-opencsa.org/sca [visited on 01/15/2020] [cit. on pp. 79, 105, 231].

Hadley, Marc [2009]. Web Application Description Language. Standard. W3C, Cam-
bridge [cit. on p. 80].

412

http://www.modelbus.org/
http://www.modelbus.org/
https://saemobilus.sae.org/content/2011-01-0056
https://saemobilus.sae.org/content/2011-01-0056
http://oasis-opencsa.org/sca
http://oasis-opencsa.org/sca

References by Order of First Appearance

Biehl, Matthias, Wenqing Gu, and Frédéric Loiret [2012]. “Model-based service discov-
ery and orchestration for OSLC services in tool chains”. In: Proceedings of the 12th
International Conference on Web Engineering. Ed. by Marco Brambilla, Takehiro
Tokuda, and Robert Tolksdorf. Lecture Notes in Computer Science 7387. Springer,
Berlin, Heidelberg, pp. 283–290 [cit. on pp. 83–85].

Biehl, Matthias, Jiarui Hong, and Frederic Loiret [2012]. “Automated Construction of
Data Integration Solutions for Tool Chains”. In: Proceedings of the 7th International
Conference on Software Engineering Advances. IARIA, Wilmington, pp. 102–111
[cit. on pp. 84, 85].

Biehl, Matthias [2012]. Semantic Anchoring of TIL. Technical Report. Royal Institute
of Technology, Stockholm. URL: https://sites.google.com/site/
mattbiehl/research/publications/semantics.pdf [cit. on p. 84].

Nassi, Isaac and Ben Shneiderman [1973]. “Flowchart techniques for structured pro-
gramming”. In: SIGPLAN Notices 8.8, pp. 12–26 [cit. on p. 85].

Hull, Duncan, Katy Wolstencroft, Robert Stevens, Carole Goble, Mathew R Pocock,
Peter Li, and TomOinn [2006]. “Taverna: A tool for building and running workflows
of services”. In: Nucleic Acids Research 34, W729–W732 [cit. on p. 87].

Wolstencroft, Katherine, Robert Haines, Donal Fellows, Alan Williams, David Withers,
Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic, Paul Fisher,
Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex Hardisty, Abraham Nieva de la
Hidalga, Maria P Balcazar Vargas, Shoaib Sufi, and Carole Goble [2013]. “The Tav-
erna workflow suite: designing and executing workflows of Web Services on the
desktop, web or in the cloud.” In: Nucleic acids research 41, W557–W561 [cit. on
p. 87].

Bhagat, Jiten, Franck Tanoh, Eric Nzuobontane, Thomas Laurent, JerzyOrlowski, Marco
Roos, Katy Wolstencroft, Sergejs Aleksejevs, Robert Stevens, Steve Pettifer, Rodrigo
Lopez, and Carole A. Goble [2010]. “BioCatalogue: A universal catalogue of web
services for the life sciences”. In: Nucleic Acids Research 38, W689–W694 [cit. on
p. 88].

Keenan, Ed, Adam Czauderna, Greg Leach, Jane Cleland-Huang, Yonghee Shin, Evan
Moritz, Malcom Gethers, Denys Poshyvanyk, Jonathan Maletic, Jane Huffman
Hayes, Alex Dekhtyar, Daria Manukian, Shervin Hossein, and Derek Hearn [2012].
“TraceLab: An experimental workbench for equipping researchers to innovate, syn-
thesize, and comparatively evaluate traceability solutions”. In: Proceedings of
the 34th International Conference on Software Engineering. IEEE, Los Alamitos,
pp. 1375–1378 [cit. on p. 88].

Frijters, Jeroen [2014]. IKVM.NET Home Page. URL: http://www.ikvm.net/
[visited on 01/15/2020] [cit. on p. 88].

Margaria, Tiziana, Christian Kubczak, and Bernhard Steffen [2008]. “Bio-jETI: a service
integration, design, and provisioning platform for orchestrated bioinformatics pro-
cesses”. In:A SemanticWeb for Bioinformatics: Goals, Tools, Systems, Applications.

413

https://sites.google.com/site/mattbiehl/research/publications/semantics.pdf
https://sites.google.com/site/mattbiehl/research/publications/semantics.pdf
http://www.ikvm.net/

References

Proceedings of the 7th International Workshop on Network Tools and Applications
in Biology. Ed. by Paolo Romano, Michael Schroeder, Nicola Cannata, and Roberto
Marangoni. BMC Bioinformatics 9(Suppl 4).S12. BioMed Central, London [cit. on
p. 88].

Margaria, Tiziana, Christian Kubczak,MarkNjoku, and Bernhard Steffen [2006]. “Model-
based design of distributed collaborative bioinformatics processes in the jABC”. In:
Proceedings of the 11th International Conference on Engineering of Complex Com-
puter Systems. IEEE, Los Alamitos, pp. 169–176 [cit. on p. 88].

Lamprecht, Anna-Lena, Tiziana Margaria, and Bernhard Steffen [2014]. “Modeling and
Execution of ScientificWorkflows with the jABC Framework”. In: Process Design for
Natural Scientists: An Agile Model-Driven Approach. Ed. by Anna-Lena Lamprecht
and Tiziana Margaria. Communications in Computer and Information Science 500.
Springer, Berlin, Heidelberg, pp. 14–29 [cit. on p. 88].

Lamprecht, Anna-Lena, Bernhard Steffen, and TizianaMargaria [2016]. “Scientific work-
flows with the jABC framework: A review after a decade in the field”. In: Interna-
tional Journal on Software Tools for Technology Transfer 18.6, pp. 629–651 [cit. on
pp. 88, 89].

Margaria, Tiziana, Ralf Nagel, and Bernhard Steffen [2005]. “jETI : A Tool for Remote
Tool Integration”. In: Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Nicolas Halbwachs
and Lenore D. Zuck. Lecture Notes in Computer Science 3440. Springer, Berlin,
Heidelberg, pp. 557–562 [cit. on p. 88].

Lamprecht, Anna-Lena [2013]. User-Level Workflow Design: A Bioinformatics Perspec-
tive. Vol. 8311. LNCS Programming and Software Engineering. Springer, Berlin, Hei-
delberg [cit. on pp. 88, 89].

Finnigan, Patrick J., Richard C. Holt, Ivan Kalas, Scott Kerr, Kostas Kontogiannis, Hausi
A. Müller, John Mylopoulos, Stephen G. Perelgut, Martin Stanley, and Kenny Wong
[1997]. “The software bookshelf”. In: IBM Systems Journal 36.4, pp. 564–593 [cit.
on pp. 89, 90].

Kienle, Holger M. [2006]. “Building Reverse Engineering Tools with Software Compo-
nents”. PhD thesis. University of Victoria [cit. on pp. 89, 91–93].

Kienle, Holger M. [2007]. “Building Reverse Engineering Tools with Software Compo-
nents: Ten Lessons Learned”. In: Proceedings of the 14th Working Conference on
Reverse Engineering. IEEE, Los Alamitos, pp. 289–292 [cit. on p. 91].

Ledbetter, Lamar and Brad Cox [1985]. “Software-ICs: A plan for building reusable soft-
ware components”. In: BYTE 10.6, pp. 307–316 [cit. on p. 99].

Conner, Mike, Nurcan Coskun, Scott Danforth, Larry Loucks, Andy Martin, Larry
Raper, and Roger Sessions [1992]. “Developing language neutral class libraries
with the System Object Model (SOM)”. In: Addendum to the proceedings on
Object-oriented programming systems, languages, and applications. ACM, New
York, pp. 191–193 [cit. on p. 99].

414

References by Order of First Appearance

Kindel, Charlie [1997]. “COM:What Makes it Work— black-box encapsulation through
multiple, immutable interfaces”. In: Proceedings of the 1st International Enterprise
Distributed Object Computing Workshop. IEEE, Los Alamitos, pp. 68–77 [cit. on
p. 99].

Hamilton, Graham [1997]. JavaBeans 1.01. Specification. Sun Microsystems, Mountain
View. URL: http://www.oracle.com/technetwork/articles/
javaee/spec-136004.html [cit. on p. 100].

Enterprise JavaBeans [2019]. Oracle Corporation. URL: http://www.oracle.
com/technetwork/java/javaee/ejb/ [visited on 01/15/2020] [cit. on
pp. 100, 105, 237].

OSGi [2020]. OSGi Alliance. URL: https://www.osgi.org [cit. on pp. 100,
102, 105, 237].

Edwards, Mike and Martin Chapman [2016]. Service Component Architecture As-
sembly Technical Committee. URL: https://www.oasis- open.org/
committees/tc_home.php?wg_abbrev=sca-assembly [visited on
01/15/2020] [cit. on p. 100].

Heineman, George T. andWilliam T. Councill, eds. [2001]. Component-based software
engineering: putting the pieces together. Addison-Wesley, Boston [cit. on pp. 100,
102, 106].

Crnkovic, Ivica and Magnus Peter Henrik Larsson, eds. [2002]. Building Reliable
Component-based Software Systems. Artech House, Boston [cit. on p. 100].

Crnkovic, Ivica, Severine Sentilles, Aneta Vulgarakis, andMichel R. V. Chaudron [2011].
“A Classification Framework for Software ComponentModels”. In: IEEE Transactions
on Software Engineering 37.5, pp. 593–615 [cit. on pp. 102, 104, 106].

Sommerville, Ian [2011]. Software Engineering. 9th ed. Addison-Wesley, Boston [cit. on
pp. 103, 110, 112, 118, 120, 122].

Weinreich, Rainer and Johannes Sametinger [2001]. “Component models and compo-
nent services: concepts and principles”. In: Component-based software engineer-
ing: putting the pieces together. Ed. by George T. Heineman and William T. Coun-
cill. Addison-Wesley, Boston, pp. 33–48 [cit. on p. 104].

COM: Component Object Model Technologies [2018]. Microsoft Corporation. URL:
https://docs.microsoft.com/en-us/windows/win32/com/
component-object-model--com--portal [visited on 01/15/2020] [cit.
on pp. 105, 237].

CORBA Component Model (CCM) 4.0 [2006]. Object Management Group. URL:
http://www.omg.org/spec/CCM [visited on 01/15/2020] [cit. on pp. 105,
237].

Ringe, Mathias [2013]. “Vergleich komponentenbasierter Frameworks zur Werkzeug-
integration”. Master’s thesis. Carl von Ossietzky University, Oldenburg [cit. on
pp. 105, 106, 237–239].

415

http://www.oracle.com/technetwork/articles/javaee/spec-136004.html
http://www.oracle.com/technetwork/articles/javaee/spec-136004.html
http://www.oracle.com/technetwork/java/javaee/ejb/
http://www.oracle.com/technetwork/java/javaee/ejb/
https://www.osgi.org
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-assembly
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-assembly
https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
http://www.omg.org/spec/CCM

References

Mailing List Archives of the SCA-Bindings Technical Committee [2013]. OASIS. URL:
https://lists.oasis-open.org/archives/sca-bindings/
201306/maillist.html [visited on 01/15/2020] [cit. on pp. 106, 238].

GlassFish Server [2020]. Oracle. URL:http://www.oracle.com/technetwork/
middleware/glassfish/overview/index.html [visited on 01/15/2020]
[cit. on p. 106].

JBoss Developer [2020]. Red Hat. URL: https://developer.jboss.org
[visited on 01/15/2020] [cit. on p. 106].

Equinox [2020]. Eclipse Foundation. URL: http://www.eclipse.org/equinox/
[visited on 01/15/2020] [cit. on p. 106].

Apache Felix [2020]. Apache Software Foundation. URL: http://felix.apache.
org/ [visited on 01/15/2020] [cit. on p. 106].

Apache Tuscany [2016]. Apache Software Foundation. URL: http://tuscany.
apache.org/ [visited on 01/15/2020] [cit. on pp. 106, 237].

Fabric3 [2016]. Metaform Systems. URL: https://web.archive.org/web/
20180428063719/http://www.fabric3.org:80/ [visited on 01/15/2020]
[cit. on pp. 106, 239].

SwitchYard [2020]. Red Hat. URL: http://switchyard.jboss.org/ [visited
on 2020] [cit. on pp. 106, 239].

Mell, Peter and Timothy Grance [2011]. The NIST definition of cloud computing. Spe-
cial Publication NIST SP 800-145. National Institute of Standards and Technology,
Gaithersburg, MD [cit. on pp. 107, 199].

Schulte, W. Roy and Yefim Natis [1996]. ”Service Oriented” Architectures, Part 1. Re-
search Note SPA-401-068, G0029201. Gartner, Stamford [cit. on p. 109].

Gartner Hype Cycle [2015]. Gartner. URL: http : / / www . gartner . com /
technology/research/methodologies/hype-cycle.jsp [visited
on 01/15/2020] [cit. on p. 109].

Vaughan-Nichols, Steven J. [2002]. “Web services: beyond the hype”. In: Computer
35.2, pp. 18–21 [cit. on p. 109].

Manes, Anne Thomas [2009]. SOA Is Dead; Long Live Services. URL: https://
web . archive . org / web / 20160506053536 / http : / / apsblog .
burtongroup.com/2009/01/soa-is-dead-long-live-services/
comments/page/1/ [visited on 01/15/2020] [cit. on pp. 109, 111, 118, 122].

Richardson, Leonard and Sam Ruby [2008]. RESTful Web Services. O’Reilly, Sebastopol
[cit. on pp. 109, 119, 120, 122, 125].

Lewis, James andMartin Fowler [2014].Microservices. URL:http://martinfowler.
com/articles/microservices.html [visited on 01/15/2020] [cit. on
pp. 109, 114, 122].

Breivold, Hongyu Pei and Magnus Larsson [2007]. “Component-based and service-
oriented software engineering: Key concepts and principles”. In: Proceedings of

416

https://lists.oasis-open.org/archives/sca-bindings/201306/maillist.html
https://lists.oasis-open.org/archives/sca-bindings/201306/maillist.html
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
https://developer.jboss.org
http://www.eclipse.org/equinox/
http://felix.apache.org/
http://felix.apache.org/
http://tuscany.apache.org/
http://tuscany.apache.org/
https://web.archive.org/web/20180428063719/http://www.fabric3.org:80/
https://web.archive.org/web/20180428063719/http://www.fabric3.org:80/
http://switchyard.jboss.org/
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
https://web.archive.org/web/20160506053536/http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services/comments/page/1/
https://web.archive.org/web/20160506053536/http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services/comments/page/1/
https://web.archive.org/web/20160506053536/http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services/comments/page/1/
https://web.archive.org/web/20160506053536/http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services/comments/page/1/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

References by Order of First Appearance

the 33rd EUROMICRO Conference on Software Engineering and Advanced Appli-
cations. IEEE, Los Alamitos, pp. 13–20 [cit. on p. 112].

MacKenzie, C. Matthew, Ken Laskey, Francis McCabe, Peter F. Brown, and Rebekah
Metz [2006]. Reference Model for Service Oriented Architecture 1.0. Standard. OA-
SIS, Burlington [cit. on pp. 112, 118].

Vogel, Oliver, Ingo Arnold, Arif Chughtai, and Timo Kehrer [2011]. Software Architec-
ture: A Comprehensive Framework and Guide for Practitioners. Springer, Berlin,
Heidelberg [cit. on pp. 112, 113].

Melzer, Ingo and Sebastian Eberhard [2010]. Service-orientierte Architekturen mit Web
Services. 4. Edition. Spektrum, Heidelberg [cit. on pp. 112, 113, 119, 120].

Erl, Thomas [2007]. SOA Principles of Service Design. Prentice Hall, Upper Saddle
River [cit. on pp. 112, 114, 115, 120, 121].

Marino, Jim and Michael Rowley [2009]. Understanding SCA (Service Component Ar-
chitecture). Addison Wesley, Boston [cit. on pp. 113, 238, 240, 299].

Schmidt, Alexander, Boris Otto, and Hubert Österle [2010]. “Integrating information
systems: Case studies on current challenges”. In: Electronic Markets 20.2, pp. 161–
174 [cit. on p. 116].

Krafzig, Dirk, Karl Banke, and Dirk Slama [2005]. Enterprise SOA: Service-oriented
Architecture Best Practices. Prentice Hall, Upper Saddle River [cit. on p. 116].

Hentrich, Carsten and Uwe Zdun [2009]. “A pattern language for process execution
and integration design in service-oriented architectures”. In: Transactions on Pat-
tern Languages of Programming I. Ed. by James Noble and Ralph Johnson. Lecture
Notes in Computer Science 5770. Springer, Berlin, Heidelberg, pp. 136–191 [cit.
on p. 116].

Manolescu, Dragos [2000]. “Micro-Workflow: A Workflow Architecture Supporting
Compositional Object-Oriented Software Development”. PhD thesis. University of
Illinois at Urbana-Champaign [cit. on p. 116].

Cohen, Shy [2007]. “Ontology and Taxonomy of Services in a Service-Oriented Ar-
chitecture”. In: The Architecture Journal (Microsoft Online Publication) 11. URL:
https://web.archive.org/web/20110127030807/http://msdn.
microsoft.com/en-us/library/bb491121.aspx [cit. on p. 117].

Siedersleben, Johannes [2004]. Moderne Software-Architektur: Umsichtig planen, ro-
bust bauen mit Quasar. Dpunkt, Heidelberg [cit. on pp. 117, 118].

Fowler, Martin [2005a]. ServiceOrientedAmbiguity. URL:http://martinfowler.
com/bliki/ServiceOrientedAmbiguity.html [visited on 01/15/2020]
[cit. on pp. 118, 122].

Winter, Andreas [2000]. Referenz-Metaschema für visuelle Modellierungssprachen.
Deutscher Universitätsverlag, Wiesbaden [cit. on p. 118].

Laskey, Ken, Peter Brown, Jeff A. Estefan, Francis G. McCabe, and Danny Thornton
[2012]. Reference Architecture for Service Oriented Architecture Version 1.0. Stan-
dard. OASIS, Burlington [cit. on p. 118].

417

https://web.archive.org/web/20110127030807/http://msdn.microsoft.com/en-us/library/bb491121.aspx
https://web.archive.org/web/20110127030807/http://msdn.microsoft.com/en-us/library/bb491121.aspx
http://martinfowler.com/bliki/ServiceOrientedAmbiguity.html
http://martinfowler.com/bliki/ServiceOrientedAmbiguity.html

References

ISO/IEC 18384 [2016]. Information technology – Reference Architecture for Service
Oriented Architecture (SOA RA). International Standard. International Organization
for Standardization, Geneva [cit. on p. 118].

Henning, Michi [2006]. “The Rise and Fall of CORBA”. In: Queue 4.5, pp. 28–34 [cit.
on p. 118].

Zimmermann, Olaf, Mark Tomlinson, and Stefan Peuser [2005]. Perspectives on Web
Services: Applying SOAP, WSDL and UDDI to Real-World Projects. 2nd correc.
Springer, Berlin, Heidelberg [cit. on pp. 119, 125].

Menascé, Daniel A. [2005]. “MOM vs. RPC: Communication Models for Distributed
Applications”. In: IEEE Internet Computing 9.2, pp. 90–93 [cit. on p. 119].

Marx Gómez, Jorge [2019]. “Serviceorientierte Architektur”. In: Enzyklopädie der
Wirtschaftsinformatik – Online-Lexikon. Ed. by Norbert Gronau, Jörg Becker, Na-
talia Kliewer, Jan Marco Leimeister, and Sven Overhage. GITO, Berlin [cit. on
pp. 119–121].

Ran, Shuping [2003]. “A model for web services discovery with QoS”. In: ACM SIGe-
com Exchanges 4.1, pp. 1–10 [cit. on p. 120].

Zhu, Haibin [2005]. “Challenges to Reusable Services”. In: Proceedings of the Interna-
tional Conference on Services Computing, Volume II. IEEE, Los Alamitos, pp. 243–
244 [cit. on p. 120].

Michlmayr, Anton, Florian Rosenberg, Christian Platzer, Martin Treiber, and Schahram
Dustdar [2007]. “Towards recovering the broken SOA triangle”. In: Proceedings of
the 2nd International Workshop on Service Oriented Software Engineering. ACM,
New York, pp. 22–28 [cit. on pp. 120, 121].

Gray, Jim [2006]. “A conversation with Werner Vogels”. In:Queue 4.4. Ed. by Charlene
O’Hanlon, pp. 14–22 [cit. on p. 122].

Kokko, Timo, Jari Antikainen, and Tarja Systä [2009]. “Adopting SOA - Experiences from
nine finnish organizations”. In: Proceedings of the 13th European Conference on
Software Maintenance and Reengineering. IEEE, Los Alamitos, pp. 129–138 [cit. on
pp. 122, 164].

Nurkiewicz, Tomasz [2015]. RESTful Considered Harmful. URL: https://dzone.
com/articles/restful-considered-harmful [visited on 01/15/2020]
[cit. on p. 122].

Martin, Robert C. [2003]. Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall, Upper Saddle River [cit. on pp. 122, 292].

Hofstede, Arthur H. M. ter, Wil M. P. van der Aalst, Michael Adams, and Nick Russell,
eds. [2010]. Modern Business Process Automation: YAWL and Its Support Environ-
ment. Springer, Berlin, Heidelberg [cit. on pp. 123, 124, 193].

Hollingsworth, David [1995]. The Workflow Reference Model. Standard TC00-1003.
Workflow Management Coalition, Winchester [cit. on p. 123].

418

https://dzone.com/articles/restful-considered-harmful
https://dzone.com/articles/restful-considered-harmful

References by Order of First Appearance

Draheim, Dirk [2010]. Business Process Technology: A Unified View on Business Pro-
cesses, Workflows and Enterprise Applications. Springer, Berlin, Heidelberg [cit. on
p. 123].

Hohpe, Gregor and Bobby Woolf [2004]. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, Boston [cit. on
pp. 124, 193].

Jordan, Diane, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary, Charlton Bar-
reto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland, Alejandro Guízar,
Neelakantan Kartha, Canyang Kevin Liu, Rania Khalaf, Dieter König, Mike Marin,
Vinkesh Mehta, Satish Thatte, Danny van der Rijn, Prasad Yendluri, and Alex Yiu
[2007]. Web Services Business Process Execution Language Version 2.0. Standard.
OASIS, Burlington [cit. on p. 124].

Business Process Model and Notation (BPMN) Version 2.0 [2011]. Object Management
Group. URL: http://www.omg.org/spec/BPMN/2.0/PDF/ [visited on
01/15/2020] [cit. on p. 124].

Russell, Nick, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Petia Wohed
[2006]. “On the suitability of UML 2.0 activity diagrams for business process mod-
elling.” In: Proceedings of the 3rd Asia-Pacific Conference on Conceptual Model-
ing. Ed. by Markus Stumptner, Sven Hartmann, and Yasushi Kiyoki. Conferences in
Research and Practice in Information Technology 53, Australian Computer Science
Communications 28.6. Australian Computer Society, Darlinghurst, pp. 95–104 [cit.
on p. 124].

Wohed, Petia, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M. ter Hofstede, and
Nick Russell [2006]. “On the Suitability of BPMN for Business Process Modelling”.
In: Proceedings of the 4th International Conference on Business Process Manage-
ment. Ed. by Schahram Dustdar, José Luiz Fiadeiro, and Amit P. Sheth. Lecture
Notes in Computer Science 4102. Springer, Berlin, Heidelberg, pp. 161–176 [cit.
on p. 124].

Aalst, Wil M. P. van der, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair
P. Barros [2003]. “Workflow Patterns”. In: Distributed and Parallel Databases 14.1,
pp. 5–51 [cit. on p. 124].

Bieberstein, Norbert, Robert G. Laird, Keith Jones, and Tilak Mitra [2008]. Executing
SOA: A Practical Guide for the Service-Oriented Architect. IBM Press, Indianapolis
[cit. on p. 125].

Decker, Gero, Oliver Kopp, Frank Leymann, and Mathias Weske [2007]. “BPEL4Chor:
Extending BPEL for Modeling Choreographies”. In: Proceedings of the 5th Inter-
national Conference on Web Services. IEEE, Los Alamitos, pp. 296–303 [cit. on
p. 125].

Hollingsworth, David [2004]. “TheWorkflow ReferenceModel: 10 Years On”. In:Work-
flow Handbook 2004. Ed. by Layna Fischer. Future Strategies, Lighthouse Point,
pp. 295–312 [cit. on p. 125].

419

http://www.omg.org/spec/BPMN/2.0/PDF/

References

Kopp, Oliver and Frank Leymann [2008]. “Choreography Design Using WS-BPEL”. In:
Bulletin of the Technical Committee on Data Engineering 31.3, pp. 31–34 [cit. on
p. 125].

Kavantzas, Nickolas, David Burdett, Gregory Ritzinger, Tony Fletcher, Yves Lafon, and
Charlton Barreto [2005].Web Services ChoreographyDescription Language Version
1.0. Standard. W3C, Cambridge [cit. on p. 125].

Decker, Gero, Oliver Kopp, and Alistair Barros [2008]. “An Introduction to Service
Choreographies (Servicechoreographien – eine Einführung)”. In: it - Information
Technology 50.2, pp. 122–127 [cit. on p. 125].

Michelson, Branda M. [2006]. Event-Driven Architecture Overview: Event-Driven SOA
Is Just Part of the EDA Story. White paper. Patricia Seybold Group, Boston [cit. on
p. 125].

Levina, Olga and Vladimir Stantchev [2009]. “Realizing Event-Driven SOA”. In: Pro-
ceedings of the 4th International Conference on Internet and Web Applications
and Services. IEEE, Los Alamitos, pp. 37–42 [cit. on p. 125].

Atkinson, Colin and Thomas Kühne [2003]. “Model-driven development: a metamod-
eling foundation”. In: IEEE Software 20.5, pp. 36–41 [cit. on pp. 129, 136].

Stachowiak, Herbert [1973]. Allgemeine Modelltheorie. Springer, Wien [cit. on p. 132].
Skyttner, Lars [2005].General Systems Theory: Problems, Perspectives, Practice. 2nd ed.
World Scientific, Singapore [cit. on p. 132].

Seidewitz, Ed [2003]. “What models mean”. In: IEEE Software 20.5, pp. 26–32 [cit. on
p. 133].

Aßmann, Uwe, Steffen Zschaler, and Gerd Wagner [2006]. “Ontologies, Meta-models,
and the Model-Driven Paradigm”. In:Ontologies for Software Engineering and Soft-
ware Technology. Ed. by Coral Calero, Francisco Ruiz, and Mario Piattini. Springer,
Berlin, Heidelberg, pp. 249–273 [cit. on p. 133].

Peirce, Charles Santiago Sanders [1906]. “Prolegomena to an Apology for Pragmati-
cism”. In: Monist 16.4, pp. 492–546 [cit. on p. 133].

Kühne, Thomas [2006]. “Matters of (Meta-) Modeling”. In: Software & Systems Model-
ing 5.4, pp. 369–385 [cit. on p. 133].

Kleppe, Anneke [2009]. “The Field of Software Language Engineering”. In: Proceedings
of the First International Conference on Software Language Engineering. Ed. by Dra-
gan Gašević, Ralf Lämmel, and Eric Van Wyk. Lecture Notes in Computer Science
5452. Springer, Berlin, Heidelberg, pp. 1–7 [cit. on p. 134].

Atkinson, Colin and Thomas Kühne [2001]. “The essence of multilevel metamodeling”.
In: UML 2001 – The Unified Modeling Language. Modeling Languages, Concepts,
and Tools. Ed. by Martin Gogolla and Cris Kobryn. Lecture Notes in Computer
Science 2185. Springer, Berlin, Heidelberg, pp. 19–33 [cit. on p. 136].

Goldstein, Robert C. and Veda C. Storey [1994]. “Materialization”. In: IEEE Transactions
on Knowledge and Data Engineering 6.5, pp. 835–842 [cit. on p. 136].

420

References by Order of First Appearance

Gonzalez-Perez, Cesar and Brian Henderson-Sellers [2008]. Metamodelling for Soft-
ware Engineering. Wiley, Chichester [cit. on p. 136].

Neumayr, Bernd, Katharina Grün, and Michael Schrefl [2009]. “Multi-level domain
modeling with m-objects and m-relationships”. In: Proceedings of the 6th Asia-
Pacific Conference on Conceptual Modeling. Ed. by Markus Kirchberg and Sebas-
tian Link. Conferences in Research and Practice in Information Technology 96, Aus-
tralian Computer Science Communications 31.6. Australian Computer Society, Dar-
linghurst, pp. 107–116 [cit. on p. 136].

Laarman, Alfons and Ivan Kurtev [2010]. “Ontological metamodeling with explicit in-
stantiation”. In: Proceedings of the 2nd International Conference on Software Lan-
guage Engineering. Ed. by Mark van den Brand, Dragan Gašević, and Jeff Gray.
Lecture Notes in Computer Science 5969. Springer, Berlin, Heidelberg, pp. 174–
183 [cit. on p. 136].

Brambilla, Marco, Jordi Cabot, and Manuel Wimmer [2012]. Model-Driven Software
Engineering in Practice. Morgan & Claypool, Williston [cit. on p. 136].

Wagner, Christian [2014]. Model-Driven Software Migration: A Methodology: Reengi-
neering, Recovery and Modernization of Legacy Systems. Springer Fachmedien,
Wiesbaden [cit. on p. 136].

Model Driven Architecture [2020]. Object Management Group. URL: http://www.
omg.org/mda/ [visited on 01/15/2020] [cit. on p. 136].

Pastor, Óscar and Juan Carlos Molina [2007].Model-Driven Architecture in Practice: A
Software Production Environment Based on Conceptual Modeling. Springer, Berlin,
Heidelberg [cit. on pp. 136, 138].

Karsai, Gabor, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty [2003]. “Model-in-
tegrated development of embedded software”. In: Proceedings of the IEEE 91.1,
pp. 145–164 [cit. on p. 137].

Zeppenfeld, Klaus and Regine Wolters [2005]. Generative Software-Entwicklung mit
der MDA. Spektrum, Heidelberg [cit. on pp. 137, 138].

Siegel, Jon M. [2014]. MDA Guide Rev. 2.0. White paper ORMSC/2014-06-01. Object
Management Group, Needham [cit. on pp. 138, 140].

Guttman, Michael and John Parodi [2006]. Real-Life MDA: Solving Business Problems
with Model Driven Architecture. Morgan Kaufmann, San Francisco [cit. on p. 138].

Mens, Tom and Pieter Van Gorp [2006]. “A Taxonomy of Model Transformation”. In:
Proceedings of the International Workshop on Graph and Model Transformation.
Ed. by Gabor Karsai and Gabriele Taentzer. Electronic Notes in Theoretical Com-
puter Science 152. Elsevier, Amsterdam, pp. 125–142 [cit. on pp. 139, 140].

Czarnecki, Krzysztof and Simon Helsen [2003]. “Classification of model transforma-
tion approaches”. In: Proceedings of the 2nd OOPSLA Workshop on Generative
Techniques in the context of Model Driven Architecture. URL: https://s23m.
com/oopsla2003/czarnecki.pdf [cit. on pp. 139, 140].

421

http://www.omg.org/mda/
http://www.omg.org/mda/
https://s23m.com/oopsla2003/czarnecki.pdf
https://s23m.com/oopsla2003/czarnecki.pdf

References

Czarnecki, Krzysztof and Simon Helsen [2006]. “Feature-based survey of model trans-
formation approaches”. In: IBM Systems Journal 45.3, pp. 621–645 [cit. on pp. 139,
140].

Jakumeit, Edgar, Sebastian Buchwald, Dennis Wagelaar, Li Dan, Ábel Hegedüs, Markus
Herrmannsdörfer, Tassilo Horn, Elina Kalnina, Christian Krause, Kevin Lano,Markus
Lepper, Arend Rensink, Louis Rose, Sebastian Wätzoldt, and Steffen Mazanek
[2014]. “A survey and comparison of transformation tools based on the transfor-
mation tool contest”. In: Science of Computer Programming 85, Part A, pp. 41–99
[cit. on pp. 140, 144].

Jouault, Frédéric, Jean Bézivin, and Mikaël Barbero [2009]. “Towards an advanced
model-driven engineering toolbox”. In: Innovations in Systems and Software En-
gineering 5.1, pp. 5–12 [cit. on p. 140].

Kurtev, Ivan, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez [2006]. “Model-
based DSL frameworks”. In: Proceedings of the 21st Annual Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM, New York,
pp. 602–616 [cit. on p. 140].

Cook, Steve [2004]. “Domain-Specific Modeling and Model Driven Architecture”. In:
The MDA Journal: Model Driven Architecture Straight from the Masters. Meghan
Kiffer, Tampa. Chap. 5 [cit. on p. 140].

Bentley, Jon [1986]. “Programming pearls”. In: Communications of the ACM 29.8,
pp. 711–721 [cit. on p. 140].

Deursen, Arie van, Paul Klint, and Joost Visser [2000]. “Domain-Specific Languages:
An Annotated Bibliography”. In: ACM SIGPLAN Notices 35.6, pp. 26–36 [cit. on
p. 140].

Czarnecki, Krzysztof [2004]. “Overview of generative software development”. In: Inter-
national Workshop on Unconventional Programming Paradigms, Revised Selected
and Invited Papers. Ed. by Jean-Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto,
and Olivier Michel. Lecture Notes in Computer Science 3566. Springer, Berlin,
Heidelberg, pp. 326–341 [cit. on pp. 140, 141, 144].

Ghosh, Debasish [2010]. DSLs in Action. Manning, Shelter Island [cit. on p. 141].
Sprinkle, Jonathan,MarjanMernik, Juha-Pekka Tolvanen, andDiomidis Spinellis [2009].
“What Kinds of Nails Need a Domain-Specific Hammer”. In: IEEE Software 26.4,
pp. 15–18 [cit. on p. 141].

Whittle, Jon, John Hutchinson, and Mark Rouncefield [2014]. “The State of Practice in
Model-Driven Engineering”. In: IEEE Software 31.3, pp. 79–85 [cit. on p. 141].

Abouzahra, Anas, Jean Bézivin, Marcos Didonet Del Fabro, and Frédéric Jouault [2005].
“A practical approach to bridging domain specific languages with UML profiles”.
In: Proceedings of the 4th OOPSLA Workshop on Best Practices for Model Driven
Software Development. URL: https://www.s23m.com/oopsla2005/
bezivin1.pdf [cit. on p. 141].

422

https://www.s23m.com/oopsla2005/bezivin1.pdf
https://www.s23m.com/oopsla2005/bezivin1.pdf

References by Order of First Appearance

Fowler, Martin [2005b]. Language Workbenches: The Killer-App for Domain Spe-
cific Languages? URL: http://www.martinfowler.com/articles/
languageWorkbench.html [visited on 01/15/2020] [cit. on pp. 141, 212].

Erdweg, Sebastian, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi Bosman,
William R. Cook, Albert Gerritsen, AngeloHulshout, Steven Kelly, Alex Loh, Gabriël
D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen Schindler, Kle-
mens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist,
Guido H. Wachsmuth, and Jimi van der Woning [2013]. “The State of the Art in
Language Workbenches: Conclusions from the Language Workbench Challenge”.
In: Proceedings of the 6th International Conference on Software Language Engi-
neering. Ed. by Martin Erwig, Richard F. Paige, and Eric Van Wyk. Lecture Notes in
Computer Science 8225. Springer, Cham, pp. 197–217 [cit. on pp. 141, 144].

Fowler, Martin [2010]. Domain-Specific Languages. Addison-Wesley, Boston [cit. on
p. 141].

Clements, Paul and Linda Northrop [2002]. Software Product Lines: Practices and Pat-
terns. Addison-Wesley, Boston [cit. on p. 141].

Kang, Kyo C., Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson [1990]. Feature-oriented domain analysis (FODA) feasibility study. Tech.
rep. CMU/SEI-90-TR-021. Software Engineering Institute, Pittsburgh [cit. on p. 142].

Kang, Kyo C., Jaejoon Lee, and Patrick Donohoe [2002]. “Feature-oriented product line
engineering”. In: IEEE Software 19.4, pp. 58–65 [cit. on p. 142].

Kurtev, Ivan, Jean Bézivin, and Mehmet Aksit [2002]. Technological Spaces: An Ini-
tial Appraisal. Paper presented at the 4th International Symposium on Distributed
Objects and Applications. University of Twente. URL: https://research.
utwente.nl/en/publications/technological- spaces- an-
initial-appraisal [cit. on p. 142].

Bézivin, Jean and Ivan Kurtev [2006]. Model-based technology integration with the
technical space concept. Tech. rep. hal-00483587. Hyper Articles en Ligne, Centre
pour la Communication Scientifique Directe, Lyon [cit. on pp. 142, 143].

Bézivin, Jean [2006]. “Model driven engineering: an emerging technical space”. In:
Generative and Transformational Techniques in Software Engineering. Ed. by Ralf
Lämmel, João Saraiva, and Joost Visser. Lecture Notes in Computer Science 4143.
Springer, Berlin, Heidelberg, pp. 36–64 [cit. on p. 142].

Klint, Paul, Ralf Lämmel, and Chris Verhoef [2005]. “Toward an engineering discipline
for grammarware”. In: ACM Transactions on Software Engineering and Methodol-
ogy 14.3, pp. 331–380 [cit. on p. 142].

Thompson, Henry S., David Beech, Murray Maloney, and Noah Mendelsohn [2004].
XML Schema Part 1: Structures Second Edition. URL: https://www.w3.org/
TR/xmlschema-1/#normative-schemaSchema [visited on 01/15/2020]
[cit. on p. 142].

423

http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
https://research.utwente.nl/en/publications/technological-spaces-an-initial-appraisal
https://research.utwente.nl/en/publications/technological-spaces-an-initial-appraisal
https://research.utwente.nl/en/publications/technological-spaces-an-initial-appraisal
https://www.w3.org/TR/xmlschema-1/#normative-schemaSchema
https://www.w3.org/TR/xmlschema-1/#normative-schemaSchema

References

Microsoft [2016]. Overview of Domain-Specific Language Tools. URL: https://
msdn.microsoft.com/en-us/library/bb126327.aspx [visited on
01/15/2020] [cit. on pp. 143, 213].

Greenfield, Jack and Keith Short [2004]. Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. Wiley, Chichester [cit. on p. 143].

Ebert, Jürgen [1987]. “A versatile data structure for edge-oriented graph algorithms”. In:
Communications of the ACM 30.6, pp. 513–519 [cit. on p. 143].

Ebert, Jürgen [2008]. “Metamodels Taken Seriously: The TGraph Approach”. In: Pro-
ceedings of the 12th European Conference on Software Maintenance and Reengi-
neering. Ed. by Kostas Kontogiannis, Christos Tjortjis, and Andreas Winter. IEEE,
Los Alamitos, p. 2 [cit. on p. 143].

Graphical Editing Framework [2020]. Eclipse Foundation. URL: https://eclipse.
org/gef/ [visited on 01/15/2020] [cit. on p. 143].

Graphical Modeling Framework [2020]. Eclipse Foundation. URL: http://www.
eclipse.org/modeling/gmp/ [visited on 01/15/2020] [cit. on pp. 143,
213].

Graphiti [2020]. Eclipse Foundation. URL: https://eclipse.org/graphiti/
[visited on 01/15/2020] [cit. on pp. 143, 213].

Kolovos, Dimitrios S., Louis M. Rose, Saad Bin Abid, Richard F. Paige, Fiona A. C.
Polack, and Goetz Botterweck [2010]. “Taming EMF and GMF Using Model Trans-
formation”. In: Proceedings of the 13th International Conference on Model Driven
Engineering Languages and Systems, Part I. Ed. by Dorina C. Petriu, Nicolas Rou-
quette, and Øystein Haugen. Lecture Notes in Computer Science 6394. Springer,
Berlin, Heidelberg, pp. 211–225 [cit. on pp. 143, 213].

Sirius [2020]. Eclipse Foundation. URL: https://eclipse.org/sirius/
index.html [visited on 01/15/2020] [cit. on pp. 143, 211, 213].

Eysholdt, Moritz and Heiko Behrens [2010]. “Xtext: implement your language faster
than the quick and dirty way”. In: Proceedings of the 1st International Conference
on Systems, Programming, Languages, and Applications: Software for Humanity.
ACM, New York, pp. 307–309 [cit. on p. 143].

Jouault, Frédéric, F Allilaire, Jean Bézivin, I Kurtev, and P Valduriez [2006]. “ATL: a
QVT-like transformation language”. In: Proceedings of the 21st Annual Conference
on Object-Oriented Programming, Systems, Languages, and Applications. ACM,
New York, pp. 719–720 [cit. on p. 143].

Hildebrandt, Stephan, Leen Lambers, Holger Giese, Jan Rieke, Joel Greenyer, Wilhelm
Schäfer, Marius Lauder, Anthony Anjorin, and Andy Schürr [2013]. “A survey of
triple graph grammar tools”. In: Proceedings of the 2nd Workshop on Bidirectional
Transformations. Ed. by Perdita Stevens and James F. Terwilliger. Electronic Com-
munications of the EASST 57. European Association of Software Science and Tech-
nology [cit. on p. 143].

424

https://msdn.microsoft.com/en-us/library/bb126327.aspx
https://msdn.microsoft.com/en-us/library/bb126327.aspx
https://eclipse.org/gef/
https://eclipse.org/gef/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
https://eclipse.org/graphiti/
https://eclipse.org/sirius/index.html
https://eclipse.org/sirius/index.html

References by Order of First Appearance

Kelly, Steven, Kalle Lyytinen, and Matti Rossi [1996]. “Metaedit+: A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment”. In: Proceedings of the
8th International Conference on Advanced Information Systems Engineering. Ed.
by Panos Constantopoulos, John Mylopoulos, and Yannis Vassiliou. Lecture Notes
in Computer Science 1080. Springer, Berlin, Heidelberg, pp. 1–21 [cit. on pp. 143,
213].

Ledeczi, Akos, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett, Charles
Thomason, Greg Nordstrom, Jonathan Sprinkle, and Peter Volgyesi [2001]. “The
Generic Modeling Environment”. In: Proceedings of the 2nd Workshop on In-
telligent Signal Processing. IEEE, Los Alamitos. URL: https://www.isis.
vanderbilt.edu/sites/default/files/GME2000Overview.pdf
[cit. on p. 143].

Pech, Vaclav, Alex Shatalin, and Markus Völter [2013]. “JetBrains MPS as a tool for
extending Java”. In: Proceedings of the 10th International Conference on Principles
and Practices of Programming on the Java Platform Virtual Machines, Languages,
and Tools. ACM, New York, pp. 165–168 [cit. on pp. 143, 213].

Kats, Lennart C. L. and Eelco Visser [2010]. “The Spoofax Language Workbench: Rules
for Declarative Specification of Languages and IDEs”. In: Proceedings of the 25th
Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications. ACM, New York, pp. 444–463 [cit. on p. 143].

Klint, Paul, Tijs van der Storm, and Jurgen Vinju [2011]. “{EASY} Meta-programming
with Rascal”. In:Generative and Transformational Techniques in Software Engineer-
ing III - International Summer School. Ed. by João M. Fernandes, Ralf Lämmel, Joost
Visser, and João Saraiva. Lecture Notes in Computer Science 6491. Springer, Berlin,
Heidelberg, pp. 222–289 [cit. on p. 143].

Visser, Eelco [2004]. “Program Transformation with Stratego/XT: Rules, Strategies, Tools,
and Systems in Stratego/XT 0.9”. In: Domain-Specific Program Generation. Ed. by
Christian Lengauer, Don Batory, Charles Consel, and Martin Odersky. Lecture
Notes in Computer Science 3016. Springer, Berlin, Heidelberg, pp. 216–238 [cit.
on p. 144].

Cordy, James R. [2004]. “TXL - A Language for Programming Language Tools and Ap-
plications”. In: Electronic Notes in Theoretical Computer Science 110, pp. 3–31
[cit. on p. 144].

Amyot, Daniel, Hanna Farah, and Jean-François Roy [2006]. “Evaluation of develop-
ment tools for domain-specific modeling languages”. In: Proceedings of the 5th
International Workshop on System Analysis and Modeling: Language Profiles. Ed.
by Reinhard Gotzhein and Rick Reed. Lecture Notes in Computer Science 4320.
Springer, Berlin, Heidelberg, pp. 183–197 [cit. on p. 144].

de Sousa Saraiva, João and Alberto Rodrigues da Silva [2008]. “Evaluation of MDE
Tools from aMetamodeling Perspective”. In: Journal of DatabaseManagement 19.4,
pp. 50–75 [cit. on p. 144].

425

https://www.isis.vanderbilt.edu/sites/default/files/GME2000Overview.pdf
https://www.isis.vanderbilt.edu/sites/default/files/GME2000Overview.pdf

References

Meier, Johannes [2014a]. “Editoren für Service-Orchestrierungen”. Master’s thesis. Carl
von Ossietzky University, Oldenburg [cit. on pp. 157, 182, 211–213, 215, 216].

Wirth, Niklaus [1986]. Algorithms and Data Structures. Prentice Hall, Upper Saddle
River [cit. on p. 166].

Dale, Nell and Henry M. Walker [1996]. Abstract Data Types: Specifications, Im-
plementations, and Applications. D. C. Heath and Company, Lexington [cit. on
p. 166].

Object Constraint Language [2014]. Object Management Group. URL: http://www.
omg.org/spec/OCL/2.4 [visited on 01/15/2020] [cit. on p. 175].

Kuryazov, Dilshodbek [2014]. “Delta Operations Language for Model Difference Rep-
resentation”. In: Informatik 2014: Big Data, Komplexität meistern. Beitragsband
der 44. Jahrestagung der Gesellschaft für Informatik. Ed. by Erhard Plödereder,
Lars Grunske, Eric Schneider, and Dominik Ull. Lecture Notes in Informatics 232.
Gesellschaft für Informatik, Bonn, pp. 2221–2232 [cit. on p. 193].

Kuryazov, Dilshodbek and AndreasWinter [2014]. “Representing Model Differences by
Delta Operations”. In: Proceedings of the 18th International Enterprise Distributed
Object Computing ConferenceWorkshops andDemonstrations. IEEE, Los Alamitos,
pp. 211–220 [cit. on p. 193].

Winter, Andreas, Bernt Kullbach, and Volker Riediger [2002]. “An Overview of the
GXL Graph Exchange Language”. In: Software Visualization. Ed. by Stephan Diehl.
Lecture Notes in Computer Science 2269. Springer, Berlin, Heidelberg, pp. 324–
336 [cit. on p. 193].

Apache Camel [2020]. Apache Software Foundation. URL: http://camel.apache.
org/ [visited on 01/15/2020] [cit. on p. 193].

Apache Maven [2020]. Apache Software Foundation. URL: https : / / maven .
apache.org/ [visited on 01/15/2020] [cit. on pp. 195, 199, 235].

Brodie, Michael L. [1984]. “On the Development of Data Models”. In: On conceptual
modelling. Ed. by Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt.
Topics in Information Systems. Springer, New York. Chap. 2, pp. 19–47 [cit. on
p. 200].

Red Hat [2015]. JBoss Fuse Service Works 6.0 Development Guide Volume 1: Switch-
Yard. Development Guide. RedHat, Raleigh. URL: https://access.redhat.
com/documentation/en-us/red_hat_jboss_fuse_service_
works/6.0/pdf/development_guide_volume_1_switchyard/
Red _ Hat _ JBoss _ Fuse _ Service _ Works - 6 . 0 - Development _
Guide_Volume_1_SwitchYard-en-US.pdf [cit. on p. 200].

Resende, Luciano and Raymond Feng [2007]. “Handling Heterogeneous Data Sources
in a SOA Environment with Service Data Objects (SDO)”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, Volume 1. Ed.
by Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou. ACM, New York, pp. 895–
897 [cit. on p. 201].

426

http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/OCL/2.4
http://camel.apache.org/
http://camel.apache.org/
https://maven.apache.org/
https://maven.apache.org/
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse_service_works/6.0/pdf/development_guide_volume_1_switchyard/Red_Hat_JBoss_Fuse_Service_Works-6.0-Development_Guide_Volume_1_SwitchYard-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse_service_works/6.0/pdf/development_guide_volume_1_switchyard/Red_Hat_JBoss_Fuse_Service_Works-6.0-Development_Guide_Volume_1_SwitchYard-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse_service_works/6.0/pdf/development_guide_volume_1_switchyard/Red_Hat_JBoss_Fuse_Service_Works-6.0-Development_Guide_Volume_1_SwitchYard-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse_service_works/6.0/pdf/development_guide_volume_1_switchyard/Red_Hat_JBoss_Fuse_Service_Works-6.0-Development_Guide_Volume_1_SwitchYard-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse_service_works/6.0/pdf/development_guide_volume_1_switchyard/Red_Hat_JBoss_Fuse_Service_Works-6.0-Development_Guide_Volume_1_SwitchYard-en-US.pdf

References by Order of First Appearance

Meier, Almuth [2014b]. “Ein Composition-Finder für Service-Orchestrierungen”. Bach-
elor’s thesis. Carl von Ossietzky University, Oldenburg [cit. on pp. 202, 204, 207,
208, 243, 256, 382, 385].

Ebert, Jürgen and Angelika Franzke [1995]. “A declarative approach to graph based
modeling”. In: Proceedings of the 20th International Workshop on Graph-Theoretic
Concepts in Computer Science. Ed. by Ernst W. Mayr, Gunther Schmidt, and Gott-
fried Tinhofer. Lecture Notes in Computer Science 903. Springer, Berlin, Heidel-
berg, pp. 38–50 [cit. on pp. 211, 236].

Heckelmann, Kristina [2010]. “Abbildung von Ecore nach grUML”. Bachelor’s Thesis.
University of Koblenz [cit. on p. 211].

Sirius Specifier Manual [2020]. Eclipse Foundation. URL: https://www.eclipse.
org/sirius/doc/specifier/Sirius%20Specifier%20Manual.
html [visited on 01/15/2020] [cit. on pp. 211, 220].

MOFM2T 1.0 [2008]. Object Management Group. URL: http://www.omg.org/
spec/MOFM2T/1.0/ [visited on 01/15/2020] [cit. on p. 212].

Acceleo [2020]. Eclipse Foundation. URL: http://www.eclipse.org/acceleo/
[visited on 01/15/2020] [cit. on p. 212].

Xtext - Language Engineering for Everyone! [2020]. Eclipse Foundation. URL: http:
//www.eclipse.org/Xtext/ [visited on 01/15/2020] [cit. on p. 212].

Kühne, Stefan and Christian Wetzel [2006]. “Metamodellierung am Beispiel der E-
Government-Domäne Meldewesen und Eclipse GMF”. In: Integration betrieblicher
Informationssysteme: Problemanalysen und Lösungsansätze des Model-Driven In-
tegration Engineering. Ed. by Klaus-Peter Fähnrich, Stefan Kühne, Andreas Speck,
and JuliaWagner. Leipziger Beiträge zur Informatik IV. Leipziger Informatik-Verbund,
Leipzig, pp. 59–72 [cit. on p. 212].

MetaCase [2020].MetaCase - Domain-SpecificModelingwithMetaEdit+. URL:http:
//www.metacase.com/ [visited on 01/15/2020] [cit. on p. 213].

Kolovos, Dimitrios S., Louis M. Rose, Richard F. Paige, and Fiona A. C. Polack [2009].
“Raising the level of abstraction in the development of GMF-based graphical model
editors”. In: Proceedings of the 1st Workshop on Modeling in Software Engineering.
IEEE, Los Alamitos, pp. 13–19 [cit. on p. 213].

Wienands, Christoph andMichael Golm [2009]. “Anatomy of a Visual Domain-Specific
Language Project in an Industrial Context”. In: Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems. Ed. by Andy
Schürr and Bran Selic. Lecture Notes in Computer Science 5795. Springer, Berlin,
Heidelberg, pp. 453–467 [cit. on p. 213].

Kouhen, Amine El, Cedric Dumoulin, Sébastien Gerard, and Pierre Boulet [2012]. Eval-
uation of Modeling Tools Adaptation. Tech. rep. hal-00706701. Hyper Articles en
Ligne, Centre pour la Communication Scientifique Directe, Lyon [cit. on p. 213].

427

https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html
https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html
https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.eclipse.org/acceleo/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/
http://www.metacase.com/
http://www.metacase.com/

References

Strittmatter, Misha, Michael Junker, Kiana Rostami, Sebastian Lehrig, Amine Kechaou,
Bo Liu, and Robert Heinrich [2016]. “Extensible Graphical Editors for Palladio”. In:
Softwaretechnik Trends 36.4, pp. 49–51 [cit. on p. 214].

Vujović, Vladimir, Mirjana Maksimović, and Branko Perišić [2014]. “Comparative anal-
ysis of DSM Graphical Editor frameworks: Graphiti vs . Sirius”. In: Proceedings of
the 23rd International Electrotechnical and Computer Science Conference. Ed. by
Baldomir Zajc and Andrej Trost. University of Ljubljana, Ljubljana, pp. 7–10. URL:
https://erk.fe.uni-lj.si/2014/index.html [cit. on p. 214].

Kamp, Manfred [1998]. “Managing a multi-file, multi-language software repository for-
program comprehension tools: a generic approach”. In: Proceedings of the 6th Inter-
national Workshop on Program Comprehension. IEEE, Los Alamitos [cit. on p. 236].

Marchewka, Katrin [2006]. “GReQL 2”. Diploma Thesis. University of Koblenz-Landau
[cit. on p. 236].

Ebert, Jürgen and Tassilo Horn [2012]. “GReTL: an extensible, operational, graph-based
transformation language”. In: Software & Systems Modeling 13.1. Ed. by Jordi Cabot
and Eelco Visser, pp. 301–321 [cit. on p. 236].

Apache Velocity [2020]. Apache Software Foundation. URL: http://velocity.
apache.org/ [visited on 01/15/2020] [cit. on p. 236].

Chapman,Martin, Mike Edwards, Michael Beisiegel, Anish Karmarkar, Sanjay Patil, and
Michael Rowley [2011]. Service Component Architecture Assembly Model Specifi-
cation Version 1.1. Standard. OASIS, Burlington. URL: http://docs.oasis-
open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-
csprd03.html [cit. on p. 237].

Meier, Johannes [2012]. “Eine Fallstudie zur Interoperabilität von Software-Evolutions-
Werkzeugen in SCA”. Bachelor’s thesis. Carl von Ossietzky University, Oldenburg
[cit. on p. 237].

Tihonov, Sergej [2013]. “Servicebasierte Refactorings”. Bachelor’s thesis. Carl von Ossi-
etzky University, Oldenburg [cit. on p. 237].

Crone, Thomas [2013]. “Software-Evolutions-Services zur Berechnung und Visualisie-
rung von Metriken”. Bachelor’s thesis. Carl von Ossietzky University, Oldenburg
[cit. on p. 237].

Yandell, Henri [2016]. Apache Tuscany retired. URL: http://mail-archives.
apache.org/mod_mbox/www-announce/201608.mbox/browser
[visited on 01/15/2020] [cit. on p. 238].

IBM [2016]. Statements of deprecation and general direction: IBM Rational Applica-
tion Developer for WebSphere Software and the IBM Rational Software Architect
Designer program family. URL: http://www- 01.ibm.com/common/
ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/5/897/ENU
S216-245/index.html&lang=en&request_locale=en [visited on
01/19/2017] [cit. on p. 239].

428

https://erk.fe.uni-lj.si/2014/index.html
http://velocity.apache.org/
http://velocity.apache.org/
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csprd03.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csprd03.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csprd03.html
http://mail-archives.apache.org/mod_mbox/www-announce/201608.mbox/browser
http://mail-archives.apache.org/mod_mbox/www-announce/201608.mbox/browser
http://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/5/897/ENUS216-245/index.html&lang=en&request_locale=en
http://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/5/897/ENUS216-245/index.html&lang=en&request_locale=en
http://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/5/897/ENUS216-245/index.html&lang=en&request_locale=en

References by Order of First Appearance

Tsang, Edward. [1993]. Foundations of constraint satisfaction. Academic Press, London
[cit. on p. 243].

Wielemaker, Jan [2020]. SWI-Prolog. URL: http://www.swi-prolog.org/
[visited on 01/15/2020] [cit. on p. 243].

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides [1995]. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley, Boston [cit.
on p. 256].

Lin, Yuan, Richard C. Holt, and Andrew J. Malton [2003]. “Completeness of a fact
extractor”. In: Proceedings of the 10th Working Conference on Reverse Engineering.
IEEE, Los Alamitos, pp. 196–205 [cit. on p. 268].

Ferenc, Rudolf, Susan Elliott Sim, Richard C. Holt, Rainer Koschke, and Tibor Gyimóthy
[2001]. “Towards a standard schema for C/C++”. In: Proceedings of the 8th Work-
ing Conference on Reverse Engineering. IEEE, Los Alamitos, pp. 49–58 [cit. on
p. 268].

Becker, Christian and Uwe Kaiser [2014]. “Applikationswissen in der Sprachkonvertie-
rung am Beispiel des COBOL-Java-Converters CoJaC.” In: Softwaretechnik-Trends
34.2 [cit. on p. 268].

Becker, Christian and Uwe Kaiser [2016]. “Toolbasierte Software-Migration nach Plan”.
In: Softwaretechnik-Trends 36.2 [cit. on p. 268].

Code Conventions for the Java Programming Language [1999]. Oracle. URL: http:
//www.oracle.com/technetwork/java/index-135089.html
[visited on 03/17/2017] [cit. on p. 268].

JGroups [2020]. Red Hat. URL: http : / / www . jgroups . org/ [visited on
01/15/2020] [cit. on p. 299].

Statistisches Bundesamt [2015]. Statistisches Jahrbuch Deutschland 2015. Statistisches
Bundesamt, Wiesbaden [cit. on p. 308].

Combemale, Benoit, Betty H.C. Cheng, Ana Moreira, Jean-Michel Bruel, and Jeff Gray
[2016]. “Modeling for Sustainability”. In: Proceedings of the 8th International Work-
shop on Modeling in Software Engineering. ACM, New York, pp. 62–66 [cit. on
p. 309].

Rajlich, Vaclav and Keith Bennett [2000]. “A Staged Model for the Software Life Cycle”.
In: Computer 33.7, pp. 66–71 [cit. on p. 309].

ICT Services [2016]. URL: http://www.ikts-niedersachsen.de/en [vis-
ited on 01/15/2020] [cit. on p. 309].

Wagner vom Berg, Benjamin [2015]. Konzeption Eines Sustainability Customer Rela-
tionship Managements (SusCRM) Für Anbieter Nachhaltiger Mobilität. Shaker, Her-
zogenrath [cit. on p. 309].

Google Maps Directions API [2020]. Google. URL: https : / / developers .
google.com/maps/documentation/directions/ [visited on 01/15/2020]
[cit. on p. 315].

429

http://www.swi-prolog.org/
http://www.oracle.com/technetwork/java/index-135089.html
http://www.oracle.com/technetwork/java/index-135089.html
http://www.jgroups.org/
http://www.ikts-niedersachsen.de/en
https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/

References

Google Places API [2020]. Google. URL: https://developers.google.com/
places/ [visited on 01/15/2020] [cit. on p. 315].

IFML: The Interaction Flow Modeling Language [2017]. Object Management Group.
URL: http://www.ifml.org/ [visited on 07/28/2017] [cit. on pp. 323, 325].

Schlömer, Timo [2017]. “Modellgetriebene GUI-Erstellung für serviceorientierte An-
wendungen”. Master’s thesis. Carl von Ossietzky University, Oldenburg [cit. on
pp. 324–326, 342].

Bischopink, Christopher, Stephan Bogs, Hauke Fischer, Hannah Meyer, Felix Kempa,
Nancy Kramer, Thomas Sprock, and Lisa Ripke [2018]. Projektgruppe DORI. Project
Report. Carl von Ossietzky University, Oldenburg [cit. on pp. 324, 326, 327, 342].

Chignell, Mark H. [1990]. “A taxonomy of user interface terminology”. In: ACM SIGCHI
Bulletin 21.4, p. 27 [cit. on p. 325].

Kuryazov, Dilshodbek, Andreas Winter, and Alexander Sandau [2019]. “Sustainable
Software Architecture for NEMo Mobility Platform”. In: Smart Cities/Smart Regions
- Technische, wirtschaftliche und gesellschaftliche Innovationen. Konferenzband zu
den 10. BUIS-Tagen. Ed. by Jorge Marx Gómez, Andreas Solsbach, Thomas Klenke,
and Volker Wohlgemuth. Springer Fachmedien, Wiesbaden, pp. 229–239 [cit. on
pp. 327, 339].

Akyol, Ali, Jantje Halberstadt, Kimberly Hebig, Jan Jelschen, Andreas Winter, Alexan-
der Sandau, and Jorge Marx Gómez [2017]. “Flexible Software Support for Mobility
Services”. In: Informatik 2017. Beitragsband der 47. Jahrestagung der Gesellschaft
für Informatik. Ed. byMaximilian Eibl, Martin Gaedke, and CorneliaWinter. Gesellschaft
für Informatik, Bonn [cit. on p. 339].

Hebig, Kimberly, Andreas Winter, Dilshodbek Kuryazov, and Alexander Sandau [2018].
“Development of a catalog describing and classifying mobility services in the NEMo
project”. In: Environmental Informatics: Techniques and Trends – Adjunct Proceed-
ings of the 32nd EnviroInfo conference. Ed. by Hans-Joachim Bungartz, Dieter Kran-
zlmüller, Volker Weinberg, Jens Weismüller, and Volker Wohlgemuth. Berichte aus
der Umweltinformatik. Shaker, Herzogenrath, pp. 287–292 [cit. on p. 339].

Harrison, Robert, Daniel Vera, and Bilal Ahmad [2016]. “Engineering Methods and
Tools for Cyber-Physical Automation Systems”. In: Proceedings of the IEEE 104.5,
pp. 973–985 [cit. on p. 343].

Artikov, Muzaffar, Dilshodbek Kuryazov, and Andreas Winter [2019]. “Towards Model-
driven IoT Maintenance”. In: Softwaretechnik-Trends 39.2, pp. 49–50 [cit. on
p. 343].

Smart Modeling [2020]. Carl von Ossietzky University of Oldenburg and Urgench
branch of Tashkent University of Information Technologies named afterMuhammed
al-Khorazmiy. URL: https://smart-modeling.ubtuit.uz/ [visited on
01/15/2020] [cit. on p. 343].

Knuth, Donald E. [2011]. The Art of Computer Programming, Volume 4A: Combinato-
rial Algorithms, Part 1. Addison-Wesley, Boston [cit. on p. 381].

430

https://developers.google.com/places/
https://developers.google.com/places/
http://www.ifml.org/
https://smart-modeling.ubtuit.uz/

References by Author Name, Year, and Title

References by Author Name, Year, and Title

Aalst, Wil M. P. van der, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair
P. Barros [2003]. “Workflow Patterns”. In: Distributed and Parallel Databases 14.1,
pp. 5–51 [cit. on p. 124].

Abouzahra, Anas, Jean Bézivin, Marcos Didonet Del Fabro, and Frédéric Jouault [2005].
“A practical approach to bridging domain specific languages with UML profiles”.
In: Proceedings of the 4th OOPSLA Workshop on Best Practices for Model Driven
Software Development. URL: https://www.s23m.com/oopsla2005/
bezivin1.pdf [cit. on p. 141].

Acceleo [2020]. Eclipse Foundation. URL: http://www.eclipse.org/acceleo/
[visited on 01/15/2020] [cit. on p. 212].

Akyol, Ali, Jantje Halberstadt, Kimberly Hebig, Jan Jelschen, Andreas Winter, Alexan-
der Sandau, and Jorge Marx Gómez [2017]. “Flexible Software Support for Mobility
Services”. In: Informatik 2017. Beitragsband der 47. Jahrestagung der Gesellschaft
für Informatik. Ed. byMaximilian Eibl, Martin Gaedke, and CorneliaWinter. Gesellschaft
für Informatik, Bonn [cit. on p. 339].

Alvaro, Alexandre, Daniel Lucrédio, Vinicius Cardoso Garcia, Antonio Francisco do
Prado, Luis Carlos Trevelin, and Eduardo Santana de Almeida [2003]. “Orion-RE:
a component-based software reengineering environment”. In: Proceedings of the
10th Working Conference on Reverse Engineering. IEEE, Los Alamitos, pp. 248–
257 [cit. on p. 73].

Amelunxen, Carsten, Felix Klar, Alexander Königs, Tobias Rötschke, and Andy Schürr
[2008]. “Metamodel-based tool integration with MOFLON”. In: Proceedings of the
30th International Conference on Software Engineering. ACM Press, New York,
pp. 807–810 [cit. on p. 76].

Amyot, Daniel, Hanna Farah, and Jean-François Roy [2006]. “Evaluation of develop-
ment tools for domain-specific modeling languages”. In: Proceedings of the 5th
International Workshop on System Analysis and Modeling: Language Profiles. Ed.
by Reinhard Gotzhein and Rick Reed. Lecture Notes in Computer Science 4320.
Springer, Berlin, Heidelberg, pp. 183–197 [cit. on p. 144].

Apache Camel [2020]. Apache Software Foundation. URL: http://camel.apache.
org/ [visited on 01/15/2020] [cit. on p. 193].

Apache Felix [2020]. Apache Software Foundation. URL: http://felix.apache.
org/ [visited on 01/15/2020] [cit. on p. 106].

Apache Maven [2020]. Apache Software Foundation. URL: https : / / maven .
apache.org/ [visited on 01/15/2020] [cit. on pp. 195, 199, 235].

Apache Tuscany [2016]. Apache Software Foundation. URL: http://tuscany.
apache.org/ [visited on 01/15/2020] [cit. on pp. 106, 237].

Apache Velocity [2020]. Apache Software Foundation. URL: http://velocity.
apache.org/ [visited on 01/15/2020] [cit. on p. 236].

431

https://www.s23m.com/oopsla2005/bezivin1.pdf
https://www.s23m.com/oopsla2005/bezivin1.pdf
http://www.eclipse.org/acceleo/
http://camel.apache.org/
http://camel.apache.org/
http://felix.apache.org/
http://felix.apache.org/
https://maven.apache.org/
https://maven.apache.org/
http://tuscany.apache.org/
http://tuscany.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/

References

Armengaud, Eric, Markus Zoier, Andreas Baumgart, Matthias Biehl, Dejiu Chen, Ger-
hard Griessnig, Christian Hein, Tom Ritter, and Ramin Tavakoli Kolagari [2011].
“Model-based toolchain for the efficient development of safety-relevant automotive
embedded systems”. In: Proceedings of the SAE World Congress and Exhibition.
SAE International, Warrendale. URL: https://saemobilus.sae.org/
content/2011-01-0056 [cit. on p. 77].

Artikov, Muzaffar, Dilshodbek Kuryazov, and Andreas Winter [2019]. “Towards Model-
driven IoT Maintenance”. In: Softwaretechnik-Trends 39.2, pp. 49–50 [cit. on
p. 343].

Asplund, Fredrik and Martin Törngren [2015]. “The discourse on tool integration be-
yond technology, a literature survey”. In: Journal of Systems and Software 106,
pp. 117–131 [cit. on pp. 39, 49, 52, 64].

Aßmann, Uwe, Steffen Zschaler, and Gerd Wagner [2006]. “Ontologies, Meta-models,
and the Model-Driven Paradigm”. In:Ontologies for Software Engineering and Soft-
ware Technology. Ed. by Coral Calero, Francisco Ruiz, and Mario Piattini. Springer,
Berlin, Heidelberg, pp. 249–273 [cit. on p. 133].

Atkinson, Colin and Thomas Kühne [2001]. “The essence of multilevel metamodeling”.
In: UML 2001 – The Unified Modeling Language. Modeling Languages, Concepts,
and Tools. Ed. by Martin Gogolla and Cris Kobryn. Lecture Notes in Computer
Science 2185. Springer, Berlin, Heidelberg, pp. 19–33 [cit. on p. 136].

Atkinson, Colin and Thomas Kühne [2003]. “Model-driven development: a metamod-
eling foundation”. In: IEEE Software 20.5, pp. 36–41 [cit. on pp. 129, 136].

Atzori, Luigi, Antonio Iera, and Giacomo Morabito [2010]. “The Internet of Things: A
survey”. In: Computer Networks 54.15, pp. 2787–2805 [cit. on p. 6].

Baumgart, Andreas [2010]. “A common meta-model for the interoperation of tools
with heterogeneous data models”. In: Proceedings of the 3rd Workshop on Model-
Driven Tool & Process Integration. Ed. by Christian Hein, Michael Wagner, Roland
Mader, Andreas Keis, and Eric Armengaud. Fraunhofer, Stuttgart, pp. 31–40 [cit. on
p. 77].

Baumgart, Andreas, Christian Ellen, Stefan Farfeleder, Rainer Koopmann, Markus Oer-
tel, and Philip Rehkop [2012]. “A reference technology platform with common inter-
faces for distributed heterogeneous data”. In: Proceedings of the Embedded World
2012 Exhibition and Conference. WEKA-Fachmedien, Haar [cit. on p. 77].

Baxter, Ira D., Christopher Pidgeon, andMichael Mehlich [2004]. “DMS: Program trans-
formations for practical scalable software evolution”. In: Proceedings of the 26th
International Conference on Software Engineering. IEEE, Los Alamitos, pp. 625–
634 [cit. on pp. 73, 144].

Beck, Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon
Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,

432

https://saemobilus.sae.org/content/2011-01-0056
https://saemobilus.sae.org/content/2011-01-0056

References by Author Name, Year, and Title

and Dave Thomas [2001].Manifesto for Agile Software Development. URL: http:
//agilemanifesto.org/ [visited on 01/15/2020] [cit. on p. 7].

Beck, Kent. [2004]. Extreme Programming Explained: Embrace Change. 2nd ed. Addison-
Wesley, Boston [cit. on p. 4].

Becker, Christian and Uwe Kaiser [2014]. “Applikationswissen in der Sprachkonvertie-
rung am Beispiel des COBOL-Java-Converters CoJaC.” In: Softwaretechnik-Trends
34.2 [cit. on p. 268].

Becker, Christian and Uwe Kaiser [2016]. “Toolbasierte Software-Migration nach Plan”.
In: Softwaretechnik-Trends 36.2 [cit. on p. 268].

Bentley, Jon [1986]. “Programming pearls”. In: Communications of the ACM 29.8,
pp. 711–721 [cit. on p. 140].

Bergey, John K., Scott R. Tilley, Steven Woods, Dennis B. Smith, and Nelson W. Wei-
derman [1999]. Why reengineering projects fail. Technical Report. Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh [cit. on p. 5].

Bergstra, Jan A. and Paul Klint [1998]. “The discrete time ToolBus — A software coor-
dination architecture”. In: Science of Computer Programming 31.2-3, pp. 205–229
[cit. on p. 75].

Bevan, Jennifer, E. James Whitehead, Sunghun Kim, and Michael W. Godfrey [2005].
“Facilitating software evolution research with kenyon”. In: Proceedings of the 10th
European software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering. ACM, New York,
pp. 177–186 [cit. on p. 70].

Bézivin, Jean [2006]. “Model driven engineering: an emerging technical space”. In:
Generative and Transformational Techniques in Software Engineering. Ed. by Ralf
Lämmel, João Saraiva, and Joost Visser. Lecture Notes in Computer Science 4143.
Springer, Berlin, Heidelberg, pp. 36–64 [cit. on p. 142].

Bézivin, Jean, Hugo Bruneliere, Frédéric Jouault, and Ivan Kurtev [2005]. “Model
Engineering Support for Tool Interoperability”. In: Proceedings of the 4th UML
/ MoDELS Workshop in Software Model Engineering. URL: https : / / web .
archive.org/web/20070812181354fw%7B%5C_%7D/http://www.
planetmde.org/wisme- 2005/ModelEngineeringSupportForT
oolInteroperability.pdf [cit. on p. 76].

Bézivin, Jean and Ivan Kurtev [2006]. Model-based technology integration with the
technical space concept. Tech. rep. hal-00483587. Hyper Articles en Ligne, Centre
pour la Communication Scientifique Directe, Lyon [cit. on pp. 142, 143].

Bhagat, Jiten, Franck Tanoh, Eric Nzuobontane, Thomas Laurent, JerzyOrlowski, Marco
Roos, Katy Wolstencroft, Sergejs Aleksejevs, Robert Stevens, Steve Pettifer, Rodrigo
Lopez, and Carole A. Goble [2010]. “BioCatalogue: A universal catalogue of web
services for the life sciences”. In: Nucleic Acids Research 38, W689–W694 [cit. on
p. 88].

433

http://agilemanifesto.org/
http://agilemanifesto.org/
https://web.archive.org/web/20070812181354fw%7B%5C_%7D/http://www.planetmde.org/wisme-2005/ModelEngineeringSupportForToolInteroperability.pdf
https://web.archive.org/web/20070812181354fw%7B%5C_%7D/http://www.planetmde.org/wisme-2005/ModelEngineeringSupportForToolInteroperability.pdf
https://web.archive.org/web/20070812181354fw%7B%5C_%7D/http://www.planetmde.org/wisme-2005/ModelEngineeringSupportForToolInteroperability.pdf
https://web.archive.org/web/20070812181354fw%7B%5C_%7D/http://www.planetmde.org/wisme-2005/ModelEngineeringSupportForToolInteroperability.pdf

References

Bieberstein, Norbert, Robert G. Laird, Keith Jones, and Tilak Mitra [2008]. Executing
SOA: A Practical Guide for the Service-Oriented Architect. IBM Press, Indianapolis
[cit. on p. 125].

Biehl, Matthias [2012]. Semantic Anchoring of TIL. Technical Report. Royal Institute
of Technology, Stockholm. URL: https://sites.google.com/site/
mattbiehl/research/publications/semantics.pdf [cit. on p. 84].

Biehl, Matthias [2013]. “A Modeling Language for the Description and Development of
Tool Chains for Embedded Systems”. Doctoral Thesis. Royal Institute of Technology,
Stockholm [cit. on pp. 45, 64, 78, 82, 84].

Biehl, Matthias, Wenqing Gu, and Frédéric Loiret [2012]. “Model-based service discov-
ery and orchestration for OSLC services in tool chains”. In: Proceedings of the 12th
International Conference on Web Engineering. Ed. by Marco Brambilla, Takehiro
Tokuda, and Robert Tolksdorf. Lecture Notes in Computer Science 7387. Springer,
Berlin, Heidelberg, pp. 283–290 [cit. on pp. 83–85].

Biehl, Matthias, Jiarui Hong, and Frederic Loiret [2012]. “Automated Construction of
Data Integration Solutions for Tool Chains”. In: Proceedings of the 7th International
Conference on Software Engineering Advances. IARIA, Wilmington, pp. 102–111
[cit. on pp. 84, 85].

Bischopink, Christopher, Stephan Bogs, Hauke Fischer, Hannah Meyer, Felix Kempa,
Nancy Kramer, Thomas Sprock, and Lisa Ripke [2018]. Projektgruppe DORI. Project
Report. Carl von Ossietzky University, Oldenburg [cit. on pp. 324, 326, 327, 342].

Black, Andrew P., Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou,
and Marcus Denker [2018]. Pharo by Example 5. Square Bracket Associates [cit. on
p. 73].

Boehm, Barry [2002]. “Get ready for agile methods, with care”. In: Computer 35.1,
pp. 64–69 [cit. on p. 4].

Boehm, Barry [2006]. “A view of 20th and 21st century software engineering”. In: Pro-
ceedings of the 28th International Conference on Software Engineering. ACM, New
York [cit. on pp. 18, 39–41].

Booch, Grady, James Rumbaugh, and Ivar Jacobson [1999]. The Unified Modeling Lan-
guage User Guide. 5th ed. Object Technology Series. Addison-Wesley, Boston [cit.
on pp. 43, 102, 103].

Booth, David, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris
Ferris, and David Orchard [2004]. Web Services Architecture. URL: https://
www.w3.org/TR/ws-arch/ [visited on 01/15/2020] [cit. on pp. 34, 115, 119].

Borchers, Jens [1996]. “Reengineering-Factory — Erfolgsmechanismen großer Reengi-
neering-Maßnahmen”. In: Softwarewartung und Reengineering. Ed. by Franz Lehner.
Information Engineering und IV-Controlling. Deutscher Universitätsverlag, Wies-
baden, pp. 19–29 [cit. on pp. 4, 5, 8].

Bott, Frank, ed. [1989]. Eclipse, an integrated project support environment. Vol. 14. IEE
Computing Series. Peter Peregrinus, Hitchin [cit. on p. 40].

434

https://sites.google.com/site/mattbiehl/research/publications/semantics.pdf
https://sites.google.com/site/mattbiehl/research/publications/semantics.pdf
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/

References by Author Name, Year, and Title

Bourque, Pierre and Richard E. Fairley, eds. [2014]. Guide to the Software Engineering
Body of Knowledge (Swebok(r)): Version 3.0. IEEE, Los Alamitos [cit. on pp. 31, 101,
103].

Brambilla, Marco, Jordi Cabot, and Manuel Wimmer [2012]. Model-Driven Software
Engineering in Practice. Morgan & Claypool, Williston [cit. on p. 136].

Brand, Mark G. J. van den, Arie van Deursen, Jan Heering, Heyco A. de Jong, Mer-
ijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier, Jeroen
Scheerder, Jurgen J. Vinju, Eelco Visser, and Joost Visser [2001]. “The ASF+SDF
Meta-environment: A Component-Based Language Development Environment”. In:
Proceedings of the 10th International Conference on Compiler Construction. Ed. by
Reinhard Wilhelm. Lecture Notes in Computer Science 2027. Springer, Berlin, Hei-
delberg, pp. 365–370 [cit. on pp. 75, 143].

Breivold, Hongyu Pei and Magnus Larsson [2007]. “Component-based and service-
oriented software engineering: Key concepts and principles”. In: Proceedings of
the 33rd EUROMICRO Conference on Software Engineering and Advanced Appli-
cations. IEEE, Los Alamitos, pp. 13–20 [cit. on p. 112].

Brodie, Michael L. [1984]. “On the Development of Data Models”. In: On conceptual
modelling. Ed. by Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt.
Topics in Information Systems. Springer, New York. Chap. 2, pp. 19–47 [cit. on
p. 200].

Brodie, Michael L. and Michael Stonebraker [1995]. Migrating Legacy Systems: Gate-
ways, Interfaces & the Incremental Approach. The Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann, San Francisco [cit. on p. 3].

Brooks, Frederick P. [1987]. “No Silver Bullet: Essence and Accidents of Software Engi-
neering”. In: Computer 20.4, pp. 10–19 [cit. on pp. 46, 56].

Brown, Alan, David Carney, Patricia Oberndorf, and Marvin Zelkowitz [1993]. Refer-
ence Model for Project Support Environments (Version 2.0). Tech. rep. CMU/SEI-
93-TR-23, NIST SP 500-213. Software Engineering Institute, National Institute of
Standards and Technology [cit. on pp. 40, 41, 43, 58, 91].

Brown, Alan W. [1988]. “Integrated project support environments”. In: Information &
Management 15.3, pp. 125–134 [cit. on p. 40].

Brown, AlanW., Peter H. Feiler, and Kurt C.Wallnau [1992]. “Past and FutureModels of
CASE Integration”. In: Proceedings of the 5th International Workshop on Computer-
Aided Software Engineering. IEEE, Los Alamitos, pp. 36–45 [cit. on pp. 42, 43].

Brown, Alan W. and John A. McDermid [1992]. “Learning from IPSE’s mistakes”. In:
IEEE Software 9.2, pp. 23–28 [cit. on pp. x, 41, 45, 48, 51–53, 64–66, 71].

Broy, Manfred [2018]. “Yesterday, Today, and Tomorrow: 50 Years of Software Engi-
neering”. In: IEEE Software 35.5, pp. 38–43 [cit. on p. 3].

Bruneliere, Hugo, Jordi Cabot, Cauê Clasen, Frédéric Jouault, and Jean Bézivin [2010a].
“Towards Model Driven Tool Interoperability: Bridging Eclipse and Microsoft Mod-
eling Tools”. In: Proceedings of the 6th European Conference on Modelling Foun-

435

References

dations and Applications. Ed. by Thomas Kühne, Bran Selic, Marie-Pierre Gervais,
and François Terrier. Lecture Notes in Computer Science 6138. Springer, Berlin,
Heidelberg, pp. 32–47 [cit. on p. 76].

Bruneliere, Hugo, Jordi Cabot, Grégoire Dupé, and Frédéric Madiot [2014]. “Modisco:
Amodel driven reverse engineering framework”. In: Information and Software Tech-
nology 56.8, pp. 1012–1032 [cit. on p. 73].

Bruneliere, Hugo, Jordi Cabot, Frédéric Jouault, and FrédéricMadiot [2010b]. “MoDisco:
A Generic and Extensible Framework for Model Driven Reverse Engineering”. In:
Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering. ACM, New York, pp. 173–174 [cit. on p. 73].

Burger, Erik, Jörg Henss, Martin Küster, Steffen Kruse, and Lucia Happe [2016]. “View-
based model-driven software development with ModelJoin”. In: Software and Sys-
tems Modeling 15.2, pp. 473–496 [cit. on p. 54].

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal
[1996]. Pattern-Oriented Software Architecture: A System of Patterns. Vol. 1. Wiley,
Chichester [cit. on pp. 53, 88].

Business Process Model and Notation (BPMN) Version 2.0 [2011]. Object Management
Group. URL: http://www.omg.org/spec/BPMN/2.0/PDF/ [visited on
01/15/2020] [cit. on p. 124].

Buxton, John N. and Vic Stenning [1980]. Requirements for Ada Programming Support
Environments: ”Stoneman”. Tech. rep. ADA100404. US Department of Defense
[cit. on pp. 39, 40].

Cerny, Tomas, Michael Jeffry Donahoo, and Michal Trnka [2018]. “Contextual Under-
standing of Microservice Architecture: Current and Future Directions”. In: ACM
SIGAPP Applied Computing Review 17.4, pp. 29–45 [cit. on p. 6].

Chapman,Martin, Mike Edwards, Michael Beisiegel, Anish Karmarkar, Sanjay Patil, and
Michael Rowley [2011]. Service Component Architecture Assembly Model Specifi-
cation Version 1.1. Standard. OASIS, Burlington. URL: http://docs.oasis-
open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-
csprd03.html [cit. on p. 237].

Chau, Patrick Y. K. [1996]. “An empirical investigation on factors affecting the accep-
tance of CASE by systems developers”. In: Information and Management 30.6,
pp. 269–280 [cit. on p. 42].

Chen, Yih-Farn, Michael Y. Nishimoto, and Chittoor V. Ramamoorthy [1990]. “The
C information abstraction system”. In: IEEE Transactions on Software Engineering
16.3, pp. 325–334 [cit. on p. 70].

Chignell, Mark H. [1990]. “A taxonomy of user interface terminology”. In: ACM SIGCHI
Bulletin 21.4, p. 27 [cit. on p. 325].

Chikofsky, Elliot J. [1988]. “Guest Editor’s Introduction: Software Technology People
Can Really Use”. In: IEEE Software 5.2, pp. 8–10 [cit. on p. 41].

436

http://www.omg.org/spec/BPMN/2.0/PDF/
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csprd03.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csprd03.html
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec-v1.1-csprd03.html

References by Author Name, Year, and Title

Clements, Paul and Linda Northrop [2002]. Software Product Lines: Practices and Pat-
terns. Addison-Wesley, Boston [cit. on p. 141].

Code Conventions for the Java Programming Language [1999]. Oracle. URL: http:
//www.oracle.com/technetwork/java/index-135089.html
[visited on 03/17/2017] [cit. on p. 268].

Cohen, Shy [2007]. “Ontology and Taxonomy of Services in a Service-Oriented Ar-
chitecture”. In: The Architecture Journal (Microsoft Online Publication) 11. URL:
https://web.archive.org/web/20110127030807/http://msdn.
microsoft.com/en-us/library/bb491121.aspx [cit. on p. 117].

COM: Component Object Model Technologies [2018]. Microsoft Corporation. URL:
https://docs.microsoft.com/en-us/windows/win32/com/
component-object-model--com--portal [visited on 01/15/2020] [cit.
on pp. 105, 237].

Combemale, Benoit, Betty H.C. Cheng, Ana Moreira, Jean-Michel Bruel, and Jeff Gray
[2016]. “Modeling for Sustainability”. In: Proceedings of the 8th International Work-
shop on Modeling in Software Engineering. ACM, New York, pp. 62–66 [cit. on
p. 309].

Conner, Mike, Nurcan Coskun, Scott Danforth, Larry Loucks, Andy Martin, Larry
Raper, and Roger Sessions [1992]. “Developing language neutral class libraries
with the System Object Model (SOM)”. In: Addendum to the proceedings on
Object-oriented programming systems, languages, and applications. ACM, New
York, pp. 191–193 [cit. on p. 99].

Cook, Steve [2004]. “Domain-Specific Modeling and Model Driven Architecture”. In:
The MDA Journal: Model Driven Architecture Straight from the Masters. Meghan
Kiffer, Tampa. Chap. 5 [cit. on p. 140].

CORBA [2020]. Object Management Group. URL: http://www.corba.org/
[visited on 01/15/2020] [cit. on pp. 34, 99, 118].

CORBA Component Model (CCM) 4.0 [2006]. Object Management Group. URL:
http://www.omg.org/spec/CCM [visited on 01/15/2020] [cit. on pp. 105,
237].

Cordy, James R. [2004]. “TXL - A Language for Programming Language Tools and Ap-
plications”. In: Electronic Notes in Theoretical Computer Science 110, pp. 3–31
[cit. on p. 144].

Crnkovic, Ivica and Magnus Peter Henrik Larsson, eds. [2002]. Building Reliable
Component-based Software Systems. Artech House, Boston [cit. on p. 100].

Crnkovic, Ivica, Severine Sentilles, Aneta Vulgarakis, andMichel R. V. Chaudron [2011].
“A Classification Framework for Software ComponentModels”. In: IEEE Transactions
on Software Engineering 37.5, pp. 593–615 [cit. on pp. 102, 104, 106].

Crone, Thomas [2013]. “Software-Evolutions-Services zur Berechnung und Visualisie-
rung von Metriken”. Bachelor’s thesis. Carl von Ossietzky University, Oldenburg
[cit. on p. 237].

437

http://www.oracle.com/technetwork/java/index-135089.html
http://www.oracle.com/technetwork/java/index-135089.html
https://web.archive.org/web/20110127030807/http://msdn.microsoft.com/en-us/library/bb491121.aspx
https://web.archive.org/web/20110127030807/http://msdn.microsoft.com/en-us/library/bb491121.aspx
https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
http://www.corba.org/
http://www.omg.org/spec/CCM

References

Cyganiak, Richard, David Wood, and Markus Lanthaler [2014]. RDF 1.1 Concepts and
Abstract Syntax. URL: https://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225/ [visited on 01/15/2020] [cit. on p. 65].

Czarnecki, Krzysztof [2004]. “Overview of generative software development”. In: Inter-
national Workshop on Unconventional Programming Paradigms, Revised Selected
and Invited Papers. Ed. by Jean-Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto,
and Olivier Michel. Lecture Notes in Computer Science 3566. Springer, Berlin,
Heidelberg, pp. 326–341 [cit. on pp. 140, 141, 144].

Czarnecki, Krzysztof and Simon Helsen [2003]. “Classification of model transforma-
tion approaches”. In: Proceedings of the 2nd OOPSLA Workshop on Generative
Techniques in the context of Model Driven Architecture. URL: https://s23m.
com/oopsla2003/czarnecki.pdf [cit. on pp. 139, 140].

Czarnecki, Krzysztof and Simon Helsen [2006]. “Feature-based survey of model trans-
formation approaches”. In: IBM Systems Journal 45.3, pp. 621–645 [cit. on pp. 139,
140].

Czeranski, Jörg, Thomas Eisenbarth, HolgerM. Kienle, Rainer Koschke, Erhard Plödereder,
Daniel Simon, Yan Zhang, Jean-François Girard, and Martin Würthner [2000].
“Data exchange in Bauhaus”. In: Proceedings of the 7th Working Conference on
Reverse Engineering. IEEE, Los Alamitos, pp. 293–295 [cit. on p. 70].

Dahl, Ole-Johan [2004]. “The Birth of Object Orientation: the Simula Languages”. In:
FromObject-Orientation to Formal Methods. Ed. by Olaf Owe, Stein Krogdahl, and
Tom Lyche. Lecture Notes in Computer Science 2635. Springer, Berlin, Heidelberg,
pp. 15–25 [cit. on pp. 3, 99].

Dahl, Ole-Johan, Edsger Wybe Dijkstra, and Charles Antony Richard Hoare [1972].
Structured programming. Academic Press, London [cit. on pp. 39, 99, 187].

Dale, Nell and Henry M. Walker [1996]. Abstract Data Types: Specifications, Im-
plementations, and Applications. D. C. Heath and Company, Lexington [cit. on
p. 166].

de Sousa Saraiva, João and Alberto Rodrigues da Silva [2008]. “Evaluation of MDE
Tools from aMetamodeling Perspective”. In: Journal of DatabaseManagement 19.4,
pp. 50–75 [cit. on p. 144].

Decker, Gero, Oliver Kopp, and Alistair Barros [2008]. “An Introduction to Service
Choreographies (Servicechoreographien – eine Einführung)”. In: it - Information
Technology 50.2, pp. 122–127 [cit. on p. 125].

Decker, Gero, Oliver Kopp, Frank Leymann, and Mathias Weske [2007]. “BPEL4Chor:
Extending BPEL for Modeling Choreographies”. In: Proceedings of the 5th Inter-
national Conference on Web Services. IEEE, Los Alamitos, pp. 296–303 [cit. on
p. 125].

Deißenböck, Florian, Lars Heinemann, Benjamin Hummel, and Elmar Juergens [2010].
“Flexible architecture conformance assessment with ConQAT”. In: Proceedings

438

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://s23m.com/oopsla2003/czarnecki.pdf
https://s23m.com/oopsla2003/czarnecki.pdf

References by Author Name, Year, and Title

of the 32nd International Conference on Software Engineering. ACM, New York,
pp. 247–250 [cit. on p. 72].

Deißenböck, Florian, Elmar Juergens, BenjaminHummel, StefanWagner, BenediktMas
Parareda, and Markus Pizka [2008]. “Tool Support for Continuous Quality Control”.
In: IEEE Software 25.5, pp. 60–67 [cit. on p. 72].

Deursen, Arie van, Paul Klint, and Joost Visser [2000]. “Domain-Specific Languages:
An Annotated Bibliography”. In: ACM SIGPLAN Notices 35.6, pp. 26–36 [cit. on
p. 140].

Dijkstra, Edsger W. [1968]. “Go To Statement Considered Harmful”. In: Communica-
tions of the ACM 11.3, pp. 147–148 [cit. on p. 39].

DMS Software Reengineering Toolkit [2020]. Semantic Designs. URL: http : / /
www.semdesigns.com/Products/DMS/DMSToolkit.html [visited on
01/15/2020] [cit. on p. 73].

Dowson, Mark [1987]. “ISTAR—an integrated project support environment”. In: ACM
SIGPLAN Notices 22.1, pp. 27–33 [cit. on p. 40].

Draheim, Dirk [2010]. Business Process Technology: A Unified View on Business Pro-
cesses, Workflows and Enterprise Applications. Springer, Berlin, Heidelberg [cit. on
p. 123].

Ducasse, Stéphane, Nicolas Anquetil, Muhammad Usman Bhatti, Andre Cavalcante
Hora, Jannik Laval, and Tudor Gîrba [2011]. MSE and FAMIX 3.0: an Interexchange
Format and Source Code Model Family. Tech. rep. hal-00646884. Hyper Articles
en Ligne, Centre pour la Communication Scientifique Directe, Lyon [cit. on pp. 65,
67].

Ducasse, Stéphane, Tudor Gîrba, and Oscar Nierstrasz [2005]. “Moose: an Agile
Reengineering Environment”. In: ACM SIGSOFT Software Engineering Notes 30.5,
pp. 99–102 [cit. on p. 73].

Ducasse, Stéphane, Michele Lanza, and Sander Tichelaar [2000]. “MOOSE: An Ex-
tensible Language-Independent Environment for Reengineering Object-Oriented
Systems”. In: Proceedings of the 2nd International Symposium on Constructing
Software Engineering Tools. Ed. by Ian Ferguson, Jonathan Gray, and Louise Scott,
pp. 24–30 [cit. on p. 73].

Ebert, Christof, Gerd Hoefner, and V. S. Mani [2015]. “What Next? Advances in
Software- Driven Industries”. In: IEEE Software 32.1, pp. 22–28 [cit. on p. 6].

Ebert, Jürgen [1987]. “A versatile data structure for edge-oriented graph algorithms”. In:
Communications of the ACM 30.6, pp. 513–519 [cit. on p. 143].

Ebert, Jürgen [2008]. “Metamodels Taken Seriously: The TGraph Approach”. In: Pro-
ceedings of the 12th European Conference on Software Maintenance and Reengi-
neering. Ed. by Kostas Kontogiannis, Christos Tjortjis, and Andreas Winter. IEEE,
Los Alamitos, p. 2 [cit. on p. 143].

Ebert, Jürgen and Angelika Franzke [1995]. “A declarative approach to graph based
modeling”. In: Proceedings of the 20th International Workshop on Graph-Theoretic

439

http://www.semdesigns.com/Products/DMS/DMSToolkit.html
http://www.semdesigns.com/Products/DMS/DMSToolkit.html

References

Concepts in Computer Science. Ed. by Ernst W. Mayr, Gunther Schmidt, and Gott-
fried Tinhofer. Lecture Notes in Computer Science 903. Springer, Berlin, Heidel-
berg, pp. 38–50 [cit. on pp. 211, 236].

Ebert, Jürgen and Tassilo Horn [2012]. “GReTL: an extensible, operational, graph-based
transformation language”. In: Software & Systems Modeling 13.1. Ed. by Jordi Cabot
and Eelco Visser, pp. 301–321 [cit. on p. 236].

Ebert, Jürgen, Bernt Kullbach, Volker Riediger, and Andreas Winter [2002]. “GUPRO
- Generic understanding of programs: An overview”. In: Proceedings of the 1st In-
ternational Conference on Graph Transformation. Electronic Notes in Theoretical
Computer Science 72.2. Elsevier, Amsterdam, pp. 59–68 [cit. on p. 71].

Ebert, Jürgen, Volker Riediger, and Andreas Winter [2008]. “Graph Technology in Re-
verse Engineering: The TGraph Approach.” In: Proceedings of the 10th Workshop
Software Reengineering. Ed. by Rainer Gimnich, Uwe Kaiser, Jochen Quante, and
Andreas Winter. Lecture Notes in Informatics P-126. Gesellschaft für Informatik,
Bonn, pp. 67–81 [cit. on pp. 17, 193, 236, 293].

Eclipse Modeling Project [2020]. Eclipse Foundation. URL: https://projects.
eclipse.org/projects/modeling [visited on 01/15/2020] [cit. on p. 40].

Eden, Amnon H. and Tom Mens [2006]. “Measuring software flexibility”. In: IEE Pro-
ceedings - Software 153.3, pp. 113–125 [cit. on pp. 7, 330].

Edwards, Mike and Martin Chapman [2016]. Service Component Architecture As-
sembly Technical Committee. URL: https://www.oasis- open.org/
committees/tc_home.php?wg_abbrev=sca-assembly [visited on
01/15/2020] [cit. on p. 100].

Electronic Industries Association [1994]. CDIF Integrated Meta-model Foundation Sub-
ject Area. Interim Standard EIA/IS-111. Electronic Industries Association, Arlington
[cit. on p. 67].

ElShazly, Hassan and Varun Grover [1993]. “A Study on the Evaluation of CASE Tech-
nology”. In: Journal of Information Technology Management IV.1, pp. 15–24 [cit.
on p. 42].

Endres, Albert [1996]. “A Synopsis of Software Engineering History: The Industrial Per-
spective”. In: Proceedings of the Dagstuhl Seminar 9635 on History of Software
Engineering. Ed. by Andreas Brennecke and Reinhard Keil-Slawik. Dagstuhl Semi-
nar Reports 153. Leibniz-Zentrum für Informatik, Wadern, pp. 20–24 [cit. on pp. 40,
42].

Enterprise JavaBeans [2019]. Oracle Corporation. URL: http://www.oracle.
com/technetwork/java/javaee/ejb/ [visited on 01/15/2020] [cit. on
pp. 100, 105, 237].

Equinox [2020]. Eclipse Foundation. URL: http://www.eclipse.org/equinox/
[visited on 01/15/2020] [cit. on p. 106].

Erdmenger, Uwe andDenis Uhlig [2011]. “Ein Translator für die COBOL-Java-Migration”.
In: Softwaretechnik-Trends 31.2 [cit. on pp. 45, 68].

440

https://projects.eclipse.org/projects/modeling
https://projects.eclipse.org/projects/modeling
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-assembly
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sca-assembly
http://www.oracle.com/technetwork/java/javaee/ejb/
http://www.oracle.com/technetwork/java/javaee/ejb/
http://www.eclipse.org/equinox/

References by Author Name, Year, and Title

Erdweg, Sebastian, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi Bosman,
William R. Cook, Albert Gerritsen, AngeloHulshout, Steven Kelly, Alex Loh, Gabriël
D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen Schindler, Kle-
mens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist,
Guido H. Wachsmuth, and Jimi van der Woning [2013]. “The State of the Art in
Language Workbenches: Conclusions from the Language Workbench Challenge”.
In: Proceedings of the 6th International Conference on Software Language Engi-
neering. Ed. by Martin Erwig, Richard F. Paige, and Eric Van Wyk. Lecture Notes in
Computer Science 8225. Springer, Cham, pp. 197–217 [cit. on pp. 141, 144].

Erl, Thomas [2005]. Service-oriented architecture: concepts, technology, and design.
Prentice Hall, Upper Saddle River [cit. on pp. 3, 112, 115, 116, 118, 122–125].

Erl, Thomas [2007]. SOA Principles of Service Design. Prentice Hall, Upper Saddle
River [cit. on pp. 112, 114, 115, 120, 121].

Eysholdt, Moritz and Heiko Behrens [2010]. “Xtext: implement your language faster
than the quick and dirty way”. In: Proceedings of the 1st International Conference
on Systems, Programming, Languages, and Applications: Software for Humanity.
ACM, New York, pp. 307–309 [cit. on p. 143].

Fabric3 [2016]. Metaform Systems. URL: https://web.archive.org/web/
20180428063719/http://www.fabric3.org:80/ [visited on 01/15/2020]
[cit. on pp. 106, 239].

Ferenc, Rudolf, Árpád Beszédes,Mikko Tarkiainen, and Tibor Gyimóthy [2002]. “Colum-
bus – Reverse Engineering Tool and Schema for C++”. In: Proceedings of the 18th
International Conference on Software Maintenance. IEEE, Los Alamitos, pp. 172–
181 [cit. on p. 71].

Ferenc, Rudolf, Susan Elliott Sim, Richard C. Holt, Rainer Koschke, and Tibor Gyimóthy
[2001]. “Towards a standard schema for C/C++”. In: Proceedings of the 8th Work-
ing Conference on Reverse Engineering. IEEE, Los Alamitos, pp. 49–58 [cit. on
p. 268].

Fielding, Roy T. and Richard N. Taylor [2002]. “Principled design of the modern Web
architecture”. In: ACM Transactions on Internet Technology 2.2, pp. 115–150 [cit.
on pp. 34, 68, 90].

Finnigan, Patrick J., Richard C. Holt, Ivan Kalas, Scott Kerr, Kostas Kontogiannis, Hausi
A. Müller, John Mylopoulos, Stephen G. Perelgut, Martin Stanley, and Kenny Wong
[1997]. “The software bookshelf”. In: IBM Systems Journal 36.4, pp. 564–593 [cit.
on pp. 89, 90].

Fowler, Martin [2005a]. Language Workbenches: The Killer-App for Domain Spe-
cific Languages? URL: http://www.martinfowler.com/articles/
languageWorkbench.html [visited on 01/15/2020] [cit. on pp. 141, 212].

Fowler, Martin [2005b]. ServiceOrientedAmbiguity. URL:http://martinfowler.
com/bliki/ServiceOrientedAmbiguity.html [visited on 01/15/2020]
[cit. on pp. 118, 122].

441

https://web.archive.org/web/20180428063719/http://www.fabric3.org:80/
https://web.archive.org/web/20180428063719/http://www.fabric3.org:80/
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/bliki/ServiceOrientedAmbiguity.html
http://martinfowler.com/bliki/ServiceOrientedAmbiguity.html

References

Fowler, Martin [2010]. Domain-Specific Languages. Addison-Wesley, Boston [cit. on
p. 141].

Fowler, Martin, Kent Beck, John Brant,WilliamOpdyke, andDon Roberts [1999]. Refac-
toring: improving the design of existing code. Addison-Wesley, Boston [cit. on
p. 31].

Frijters, Jeroen [2014]. IKVM.NET Home Page. URL: http://www.ikvm.net/
[visited on 01/15/2020] [cit. on p. 88].

Fuggetta, Alfonso [1993]. “A Classification of CASE Technology”. In: Computer 26.12,
pp. 25–38 [cit. on pp. x, 48, 58–61, 68–70, 72, 90].

Fuhr, Andreas, Andreas Winter, Uwe Erdmenger, Tassilo Horn, Uwe Kaiser, Volker
Riediger, and Werner Teppe [2012]. “Model-Driven Software Migration - Process
Model, Tool Support and Application”. In: Migrating Legacy Applications: Chal-
lenges in Service Oriented Architecture and Cloud Computing Environments. Ed.
by Anca Daniela Ionita, Martin Litoiu, and Grace Lewis. IGI Global, Hershey,
pp. 153–184 [cit. on pp. 7, 15, 299].

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides [1995]. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley, Boston [cit.
on p. 256].

Gartner Hype Cycle [2015]. Gartner. URL: http : / / www . gartner . com /
technology/research/methodologies/hype-cycle.jsp [visited
on 01/15/2020] [cit. on p. 109].

Gašević, Dragan, Dragan Djurić, and Vladan Devedžić [2006]. Model Driven Archi-
tecture and Ontology Development. Springer, Berlin, Heidelberg [cit. on p. 43].

Ghezzi, Giacomo [2012]. “SOFAS, Software Analysis as a Service. Improving and Re-
thinking Software Evolution Analysis”. Dissertation. University of Zurich [cit. on
pp. 64, 78].

Ghezzi, Giacomo and Harald C. Gall [2013]. “A framework for semi-automated soft-
ware evolution analysis composition”. In: Automated Software Engineering 20.3,
pp. 463–496 [cit. on pp. 4, 6, 8, 78].

Ghosh, Debasish [2010]. DSLs in Action. Manning, Shelter Island [cit. on p. 141].
GlassFish Server [2020]. Oracle. URL:http://www.oracle.com/technetwork/

middleware/glassfish/overview/index.html [visited on 01/15/2020]
[cit. on p. 106].

Godfrey, Michael W. and Lijie Zou [2005]. “Using origin analysis to detect merging
and splitting of source code entities”. In: IEEE Transactions on Software Engineering
31.2, pp. 166–181 [cit. on p. 70].

Goldstein, Robert C. and Veda C. Storey [1994]. “Materialization”. In: IEEE Transactions
on Knowledge and Data Engineering 6.5, pp. 835–842 [cit. on p. 136].

Gönczy, László, Ábel Hegedüs, and Dániel Varró [2011]. “Methodologies for model-
driven development and deployment: an overview”. In: Rigorous Software Engi-
neering for Service-Oriented Systems: Results of the SENSORIA Project on Software

442

http://www.ikvm.net/
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html

References by Author Name, Year, and Title

Engineering for Service-Oriented Computing. Ed. by Martin Wirsing and Matthias
Hölzl. Lecture Notes in Computer Science 6582. Springer, Berlin, Heidelberg,
pp. 541–560 [cit. on p. 76].

Gonzalez-Perez, Cesar and Brian Henderson-Sellers [2008]. Metamodelling for Soft-
ware Engineering. Wiley, Chichester [cit. on p. 136].

Google Maps Directions API [2020]. Google. URL: https : / / developers .
google.com/maps/documentation/directions/ [visited on 01/15/2020]
[cit. on p. 315].

Google Places API [2020]. Google. URL: https://developers.google.com/
places/ [visited on 01/15/2020] [cit. on p. 315].

Gorton, Ian, David Thurman, and Judi Thomson [2003]. “Next generation application
integration: challenges and new approaches”. In: Proceedings of the 27th Annual
International Computer Software and Applications Conference. IEEE, Los Alamitos,
pp. 576–581 [cit. on p. 3].

Graphical Editing Framework [2020]. Eclipse Foundation. URL: https://eclipse.
org/gef/ [visited on 01/15/2020] [cit. on p. 143].

Graphical Modeling Framework [2020]. Eclipse Foundation. URL: http://www.
eclipse.org/modeling/gmp/ [visited on 01/15/2020] [cit. on pp. 143,
213].

Graphiti [2020]. Eclipse Foundation. URL: https://eclipse.org/graphiti/
[visited on 01/15/2020] [cit. on pp. 143, 213].

Gray, Jim [2006]. “A conversation with Werner Vogels”. In:Queue 4.4. Ed. by Charlene
O’Hanlon, pp. 14–22 [cit. on p. 122].

Greenfield, Jack and Keith Short [2004]. Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. Wiley, Chichester [cit. on p. 143].

Grieger, Marvin and Masud Fazal-Baqaie [2015]. “Towards a Framework for the Mod-
ular Construction of Situation-Specific Software Transformation Methods”. In: Soft-
waretechnik-Trends 35.2, pp. 41–42 [cit. on p. 7].

Gürdür, Didem, Fredrik Asplund, and Jad El-Khoury [2016]. “Measuring Tool Chain
Interoperability in Cyber-physical Systems”. In: Proceedings of the 11th System of
Systems Engineering Conference. IEEE, Los Alamitos [cit. on p. 47].

Guttman, Michael and John Parodi [2006]. Real-Life MDA: Solving Business Problems
with Model Driven Architecture. Morgan Kaufmann, San Francisco [cit. on p. 138].

Hadley, Marc [2009]. Web Application Description Language. Standard. W3C, Cam-
bridge [cit. on p. 80].

Hamilton, Graham [1997]. JavaBeans 1.01. Specification. Sun Microsystems, Mountain
View. URL: http://www.oracle.com/technetwork/articles/
javaee/spec-136004.html [cit. on p. 100].

Harrison, Robert, Daniel Vera, and Bilal Ahmad [2016]. “Engineering Methods and
Tools for Cyber-Physical Automation Systems”. In: Proceedings of the IEEE 104.5,
pp. 973–985 [cit. on p. 343].

443

https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/
https://developers.google.com/places/
https://developers.google.com/places/
https://eclipse.org/gef/
https://eclipse.org/gef/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
https://eclipse.org/graphiti/
http://www.oracle.com/technetwork/articles/javaee/spec-136004.html
http://www.oracle.com/technetwork/articles/javaee/spec-136004.html

References

Hebig, Kimberly, Andreas Winter, Dilshodbek Kuryazov, and Alexander Sandau [2018].
“Development of a catalog describing and classifying mobility services in the NEMo
project”. In: Environmental Informatics: Techniques and Trends – Adjunct Proceed-
ings of the 32nd EnviroInfo conference. Ed. by Hans-Joachim Bungartz, Dieter Kran-
zlmüller, Volker Weinberg, Jens Weismüller, and Volker Wohlgemuth. Berichte aus
der Umweltinformatik. Shaker, Herzogenrath, pp. 287–292 [cit. on p. 339].

Heckelmann, Kristina [2010]. “Abbildung von Ecore nach grUML”. Bachelor’s Thesis.
University of Koblenz [cit. on p. 211].

Hein, Christian, Tom Ritter, and Michael Wagner [2009]. “Model-Driven Tool Integra-
tion with ModelBus”. In: Proceedings of the 1st International Workshop on Future
Trends of Model-Driven Development. Ed. by Slimane Hammoudi and Luís Ferreira
Pires. INSTICC, Setubal, pp. 35–39 [cit. on p. 77].

Heineman, George T. andWilliam T. Councill, eds. [2001]. Component-based software
engineering: putting the pieces together. Addison-Wesley, Boston [cit. on pp. 100,
102, 106].

Heinemann, Lars, Benjamin Hummel, and Daniela Steidl [2014]. “Teamscale: software
quality control in real-time”. In: Proceedings of the 36th International Conference
on Software Engineering. ACM, New York, pp. 592–595 [cit. on p. 72].

Henning, Michi [2006]. “The Rise and Fall of CORBA”. In: Queue 4.5, pp. 28–34 [cit.
on p. 118].

Hentrich, Carsten and Uwe Zdun [2009]. “A pattern language for process execution
and integration design in service-oriented architectures”. In: Transactions on Pat-
tern Languages of Programming I. Ed. by James Noble and Ralph Johnson. Lecture
Notes in Computer Science 5770. Springer, Berlin, Heidelberg, pp. 136–191 [cit.
on p. 116].

Hesse, Wolfgang and Heinrich C. Mayr [2008]. “Modellierung in der Softwaretechnik:
eine Bestandsaufnahme”. In: Informatik-Spektrum 31.5, pp. 377–393 [cit. on pp. 65,
132, 133].

Hildebrandt, Stephan, Leen Lambers, Holger Giese, Jan Rieke, Joel Greenyer, Wilhelm
Schäfer, Marius Lauder, Anthony Anjorin, and Andy Schürr [2013]. “A survey of
triple graph grammar tools”. In: Proceedings of the 2nd Workshop on Bidirectional
Transformations. Ed. by Perdita Stevens and James F. Terwilliger. Electronic Com-
munications of the EASST 57. European Association of Software Science and Tech-
nology [cit. on p. 143].

Hofstede, Arthur H. M. ter, Wil M. P. van der Aalst, Michael Adams, and Nick Russell,
eds. [2010]. Modern Business Process Automation: YAWL and Its Support Environ-
ment. Springer, Berlin, Heidelberg [cit. on pp. 123, 124, 193].

Hohpe, Gregor and Bobby Woolf [2004]. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, Boston [cit. on
pp. 124, 193].

444

References by Author Name, Year, and Title

Hollingsworth, David [1995]. The Workflow Reference Model. Standard TC00-1003.
Workflow Management Coalition, Winchester [cit. on p. 123].

Hollingsworth, David [2004]. “TheWorkflow ReferenceModel: 10 Years On”. In:Work-
flow Handbook 2004. Ed. by Layna Fischer. Future Strategies, Lighthouse Point,
pp. 295–312 [cit. on p. 125].

Holt, Richard C., Michael W. Godfrey, and Andrew J. Malton [2003]. “The Build / Com-
prehend Pipelines”. In: Proceedings of the Second ASERC Workshop on Software
Architecture. Alberta Software Engineering Research Consortium. URL: https://
plg.uwaterloo.ca/%7B~%7Dmigod/papers/2003/aserc03.pdf
[cit. on p. 70].

Holt, Richard C., Andy Schürr, Susan Elliott Sim, and Andreas Winter [2006]. “GXL: A
graph-based standard exchange format for reengineering”. In: Science of Computer
Programming 60.2, pp. 149–170 [cit. on p. 65].

Holt, Richard C., Andreas Winter, and Andy Schürr [2000]. “GXL: toward a standard
exchange format”. In: Proceedings of the 7th Working Conference on Reverse En-
gineering. IEEE, Los Alamitos, pp. 162–171 [cit. on pp. 5, 201].

Hull, Duncan, Katy Wolstencroft, Robert Stevens, Carole Goble, Mathew R Pocock,
Peter Li, and TomOinn [2006]. “Taverna: A tool for building and running workflows
of services”. In: Nucleic Acids Research 34, W729–W732 [cit. on p. 87].

IBM [2016]. Statements of deprecation and general direction: IBM Rational Applica-
tion Developer for WebSphere Software and the IBM Rational Software Architect
Designer program family. URL: http://www- 01.ibm.com/common/
ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/5/897/ENU
S216-245/index.html&lang=en&request_locale=en [visited on
01/19/2017] [cit. on p. 239].

ICT Services [2016]. URL: http://www.ikts-niedersachsen.de/en [vis-
ited on 01/15/2020] [cit. on p. 309].

IFML: The Interaction Flow Modeling Language [2017]. Object Management Group.
URL: http://www.ifml.org/ [visited on 07/28/2017] [cit. on pp. 323, 325].

ISO/IEC 18384 [2016]. Information technology – Reference Architecture for Service
Oriented Architecture (SOA RA). International Standard. International Organization
for Standardization, Geneva [cit. on p. 118].

ISO/IEC 25010 [2011]. Systems and software engineering - Systems and software Qual-
ity Requirements and Evaluation (SQuaRE) - System and software quality models.
International Standard. International Organization for Standardization, Geneva [cit.
on pp. 8, 12].

ISO/IEC 9126-1 [2001]. Software Engineering – Product Quality – Part 1: Quality
Model. International Standard. International Organisation for Standardization, Ge-
neva [cit. on p. 8].

445

https://plg.uwaterloo.ca/%7B~%7Dmigod/papers/2003/aserc03.pdf
https://plg.uwaterloo.ca/%7B~%7Dmigod/papers/2003/aserc03.pdf
http://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/5/897/ENUS216-245/index.html&lang=en&request_locale=en
http://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/5/897/ENUS216-245/index.html&lang=en&request_locale=en
http://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/5/897/ENUS216-245/index.html&lang=en&request_locale=en
http://www.ikts-niedersachsen.de/en
http://www.ifml.org/

References

ISO/IEC/IEEE 24765 [2017]. Systems and software engineering – Vocabulary. Interna-
tional Standard. International Organization for Standardization, Geneva [cit. on
pp. 8, 44, 47].

Jakumeit, Edgar, Sebastian Buchwald, Dennis Wagelaar, Li Dan, Ábel Hegedüs, Markus
Herrmannsdörfer, Tassilo Horn, Elina Kalnina, Christian Krause, Kevin Lano,Markus
Lepper, Arend Rensink, Louis Rose, Sebastian Wätzoldt, and Steffen Mazanek
[2014]. “A survey and comparison of transformation tools based on the transfor-
mation tool contest”. In: Science of Computer Programming 85, Part A, pp. 41–99
[cit. on pp. 140, 144].

Jamshidi, Pooyan, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan Tilkov
[2018]. “Microservices: The Journey So Far and Challenges Ahead”. In: IEEE Soft-
ware 35.3, pp. 24–35 [cit. on p. 6].

JBoss Developer [2020]. Red Hat. URL: https://developer.jboss.org
[visited on 01/15/2020] [cit. on p. 106].

Jelschen, Jan [2013]. “Discovery and Description of Software Evolution Services”. In:
Softwaretechnik-Trends 33.2, pp. 59–60 [cit. on pp. 9, 81, 117, 157, 164, 339].

Jelschen, Jan [2014a]. “SENSEI: Software Evolution Service Integration”. In: Software
Evolution Week — IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering (CSMR-WCRE). Ed. by Serge Demeyer, David Binkley, and
Filippo Ricca. IEEE, Antwerp, pp. 469–472 [cit. on pp. 9, 339].

Jelschen, Jan [2014b]. The Q-MIG Data Exchange Format. Project Report. Carl von
Ossietzky University, Oldenburg [cit. on p. 15].

Jelschen, Jan [2015]. “Service-Oriented Toolchains for Software Evolution”. In: Proceed-
ings of the 9th International Symposium on the Maintenance and Evolution of
Service-Oriented and Cloud-Based Environments. Ed. by Andreas Winter, Mike
Smit, and Muhammad Ali Barbar. IEEE, Los Alamitos, pp. 51–58 [cit. on pp. 9,
339].

Jelschen, Jan, Marion Gottschalk, Mirco Josefiok, Cosmin Pitu, and Andreas Winter
[2012]. “Towards applying reengineering services to energy-efficient applications”.
In: Proceedings of the 16th European Conference on Software Maintenance and
Reengineering. IEEE, Los Alamitos, pp. 353–358 [cit. on p. 25].

Jelschen, Jan, Christoph Alexander Küpker, Andreas Winter, Alexander Sandau, Ben-
jamin Wagner vom Berg, and Jorge Marx Gómez [2016]. “Towards a Sustainable
Software Architecture for the NEMoMobility Platform”. In: Proceedings of the 30th
International Conference on Environmental Informatics – Stability, Continuity, In-
novation: Current trends and future perspectives based on 30 years of history. Ed.
by Volker Wohlgemuth, Frank Fuchs-Kittowski, and Jochen Wittmann. Berichte aus
der Umweltinformatik. Shaker, Herzogenrath, pp. 41–48 [cit. on pp. 9, 318, 339,
341].

Jelschen, Jan, Johannes Meier, Marie-Christin Ostendorp, and Andreas Winter [2013].
“A Description Model for Software Evolution Services”. In: 1er Congreso Nacional

446

https://developer.jboss.org

References by Author Name, Year, and Title

de Ingeniería Informática / Sistemas de Información. RIISIC, Cordoba. URL: http:
//www.conaiisi.unsl.edu.ar/ingles/papers.php [cit. on pp. 9,
26, 177, 339].

Jelschen, Jan, Johannes Meier, and Andreas Winter [2015]. “SENSEI Applied: An Auto-
Generated Toolchain for Q-MIG”. In: Softwaretechnik-Trends 35.2, pp. 39–40 [cit.
on pp. 9, 339].

Jelschen, Jan and Andreas Winter [2011]. “Towards a Catalogue of Software Evolution
Services”. In: Softwaretechnik-Trends 31.2, pp. 36–37 [cit. on pp. 9, 339].

Jelschen, Jan and Andreas Winter [2012]. “A Toolchain for Metrics-based Comparison
of COBOL and Migrated Java Systems”. In: Softwaretechnik-Trends 32.2, pp. 67–68
[cit. on pp. 9, 339].

Jelschen, Jan and Andreas Winter [2014]. “Modeling Service Capabilities for Software
Evolution Tool Integration”. In: Softwaretechnik-Trends 34.2, pp. 91–92 [cit. on
pp. 9, 154, 339].

JGroups [2020]. Red Hat. URL: http : / / www . jgroups . org/ [visited on
01/15/2020] [cit. on p. 299].

Jin, Dean and James R. Cordy [2003]. “A Service Sharing Approach to Integrating Pro-
gram Comprehension Tools”. In: Proceedings of the Workshop on Tool Integration
in System Development. Ed. by Heiko Dörr and Andy Schürr. Darmstadt Univer-
sity of Technology, pp. 73–78. URL: https://web.archive.org/web/
20070629182619/https://www.es.tu-darmstadt.de/english/
events/tis/ [cit. on p. 75].

Jin, Dean and James R. Cordy [2005a]. “Factbase Filtering Issues in an Ontology-Based
Reverse Engineering Tool Integration System”. In: Electronic Notes in Theoretical
Computer Science 137.3, pp. 65–75 [cit. on p. 75].

Jin, Dean and James R. Cordy [2005b]. “Ontology-based software analysis and reengi-
neering tool integration: the OASIS service-sharing methodology”. In: Proceedings
of the 21st International Conference on Software Maintenance. IEEE, Los Alamitos,
pp. 613–616 [cit. on pp. 4, 5, 8, 65, 75].

Jin, Dean, James R. Cordy, and Thomas R. Dean [2003]. “Transparent reverse engi-
neering tool integration using a conceptual transaction adapter”. In: Proceedings of
the 7th European Conference on Software Maintenance and Reengineering. March.
IEEE, Los Alamitos, pp. 399–408 [cit. on p. 75].

Jong, Hayco de and Paul Klint [2003]. “ToolBus: The Next Generation”. In: Proceedings
of the 1st International Symposium on Formal Methods for Components and Ob-
jects. Ed. by Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-
Paul de Roever. Lecture Notes in Computer Science 2852. Springer, Berlin, Heidel-
berg, pp. 220–241 [cit. on p. 75].

Jordan, Diane, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary, Charlton Bar-
reto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland, Alejandro Guízar,
Neelakantan Kartha, Canyang Kevin Liu, Rania Khalaf, Dieter König, Mike Marin,

447

http://www.conaiisi.unsl.edu.ar/ingles/papers.php
http://www.conaiisi.unsl.edu.ar/ingles/papers.php
http://www.jgroups.org/
https://web.archive.org/web/20070629182619/https://www.es.tu-darmstadt.de/english/events/tis/
https://web.archive.org/web/20070629182619/https://www.es.tu-darmstadt.de/english/events/tis/
https://web.archive.org/web/20070629182619/https://www.es.tu-darmstadt.de/english/events/tis/

References

Vinkesh Mehta, Satish Thatte, Danny van der Rijn, Prasad Yendluri, and Alex Yiu
[2007]. Web Services Business Process Execution Language Version 2.0. Standard.
OASIS, Burlington [cit. on p. 124].

Josuttis, Nicolai M. [2007]. SOA in Practice: The Art of Distributed System Design.
O’Reilly, Sebastopol [cit. on pp. 54, 109, 112–119, 124–126, 201].

Jouault, Frédéric, F Allilaire, Jean Bézivin, I Kurtev, and P Valduriez [2006]. “ATL: a
QVT-like transformation language”. In: Proceedings of the 21st Annual Conference
on Object-Oriented Programming, Systems, Languages, and Applications. ACM,
New York, pp. 719–720 [cit. on p. 143].

Jouault, Frédéric, Jean Bézivin, and Mikaël Barbero [2009]. “Towards an advanced
model-driven engineering toolbox”. In: Innovations in Systems and Software En-
gineering 5.1, pp. 5–12 [cit. on p. 140].

Juergens, Elmar, Florian Deißenböck, and Benjamin Hummel [2009]. “CloneDetective
- A workbench for clone detection research”. In: Proceedings of the 31st Interna-
tional Conference on Software Engineering. IEEE, Los Alamitos, pp. 603–606 [cit.
on p. 18].

Kamiya, Toshihiro, Shinji Kusumoto, and Katsuro Inoue [2002]. “CCFinder: a multilin-
guistic token-based code clone detection system for large scale source code”. In:
IEEE Transactions on Software Engineering 28.7, pp. 654–670 [cit. on p. 18].

Kamp, Manfred [1998]. “Managing a multi-file, multi-language software repository for-
program comprehension tools: a generic approach”. In: Proceedings of the 6th Inter-
national Workshop on Program Comprehension. IEEE, Los Alamitos [cit. on p. 236].

Kang, Kyo C., Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson [1990]. Feature-oriented domain analysis (FODA) feasibility study. Tech.
rep. CMU/SEI-90-TR-021. Software Engineering Institute, Pittsburgh [cit. on p. 142].

Kang, Kyo C., Jaejoon Lee, and Patrick Donohoe [2002]. “Feature-oriented product line
engineering”. In: IEEE Software 19.4, pp. 58–65 [cit. on p. 142].

Karsai, Gabor, Andras Lang, and Sandeep Neema [2005]. “Design patterns for open
tool integration”. In: Software & System Modeling 4.2, pp. 157–170 [cit. on pp. x,
48, 53–55, 76, 167].

Karsai, Gabor, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty [2003]. “Model-in-
tegrated development of embedded software”. In: Proceedings of the IEEE 91.1,
pp. 145–164 [cit. on p. 137].

Kats, Lennart C. L. and Eelco Visser [2010]. “The Spoofax Language Workbench: Rules
for Declarative Specification of Languages and IDEs”. In: Proceedings of the 25th
Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems,
Languages, and Applications. ACM, New York, pp. 444–463 [cit. on p. 143].

Kavantzas, Nickolas, David Burdett, Gregory Ritzinger, Tony Fletcher, Yves Lafon, and
Charlton Barreto [2005].Web Services ChoreographyDescription Language Version
1.0. Standard. W3C, Cambridge [cit. on p. 125].

448

References by Author Name, Year, and Title

Kay, Alan C. [1993]. “The early history of Smalltalk”. In: ACM SIGPLAN Notices 28.3,
pp. 69–95 [cit. on pp. 3, 99].

Kazman, Rick and S. Jeromy Carrière [1999]. “Playing detective: Reconstructing soft-
ware architecture from available evidence”. In: Automated Software Engineering
6.2, pp. 107–138 [cit. on p. 70].

Keenan, Ed, Adam Czauderna, Greg Leach, Jane Cleland-Huang, Yonghee Shin, Evan
Moritz, Malcom Gethers, Denys Poshyvanyk, Jonathan Maletic, Jane Huffman
Hayes, Alex Dekhtyar, Daria Manukian, Shervin Hossein, and Derek Hearn [2012].
“TraceLab: An experimental workbench for equipping researchers to innovate, syn-
thesize, and comparatively evaluate traceability solutions”. In: Proceedings of
the 34th International Conference on Software Engineering. IEEE, Los Alamitos,
pp. 1375–1378 [cit. on p. 88].

Kelly, Steven, Kalle Lyytinen, and Matti Rossi [1996]. “Metaedit+: A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment”. In: Proceedings of the
8th International Conference on Advanced Information Systems Engineering. Ed.
by Panos Constantopoulos, John Mylopoulos, and Yannis Vassiliou. Lecture Notes
in Computer Science 1080. Springer, Berlin, Heidelberg, pp. 1–21 [cit. on pp. 143,
213].

Kelly, Steven and Juha-Pekka Tolvanen [2008]. Domain-Specific Modeling: Enabling
Full Code Generation. Wiley, Chichester [cit. on pp. 42, 134, 138, 140].

Kemerer, Chris F. [1992]. “How the Learning Curve Affects CASE Tool Adoption”. In:
IEEE Software 9.3, pp. 23–28 [cit. on p. 42].

Kienle, Holger M. [2006]. “Building Reverse Engineering Tools with Software Compo-
nents”. PhD thesis. University of Victoria [cit. on pp. 89, 91–93].

Kienle, Holger M. [2007]. “Building Reverse Engineering Tools with Software Compo-
nents: Ten Lessons Learned”. In: Proceedings of the 14th Working Conference on
Reverse Engineering. IEEE, Los Alamitos, pp. 289–292 [cit. on p. 91].

Kienle, Holger M. and Hausi A. Müller [2008]. “The Rigi reverse engineering environ-
ment”. In: Proceedings of the 1st International Workshop on Academic Software
Development Tools and Techniques. University of Bern. URL: http://scg.
unibe.ch/download/wasdett/wasdett2008-paper06.pdf [cit. on
p. 69].

Kindel, Charlie [1997]. “COM:What Makes it Work— black-box encapsulation through
multiple, immutable interfaces”. In: Proceedings of the 1st International Enterprise
Distributed Object Computing Workshop. IEEE, Los Alamitos, pp. 68–77 [cit. on
p. 99].

Kleppe, Anneke [2009]. “The Field of Software Language Engineering”. In: Proceedings
of the First International Conference on Software Language Engineering. Ed. by Dra-
gan Gašević, Ralf Lämmel, and Eric Van Wyk. Lecture Notes in Computer Science
5452. Springer, Berlin, Heidelberg, pp. 1–7 [cit. on p. 134].

449

http://scg.unibe.ch/download/wasdett/wasdett2008-paper06.pdf
http://scg.unibe.ch/download/wasdett/wasdett2008-paper06.pdf

References

Kleppe, Anneke, JosWarmer, andWim Bast [2003].MDA Explained: TheModel Driven
Architecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,
Boston [cit. on pp. 43, 129, 133, 134, 137–139].

Klint, Paul, Ralf Lämmel, and Chris Verhoef [2005]. “Toward an engineering discipline
for grammarware”. In: ACM Transactions on Software Engineering and Methodol-
ogy 14.3, pp. 331–380 [cit. on p. 142].

Klint, Paul, Tijs van der Storm, and Jurgen Vinju [2011]. “{EASY} Meta-programming
with Rascal”. In:Generative and Transformational Techniques in Software Engineer-
ing III - International Summer School. Ed. by João M. Fernandes, Ralf Lämmel, Joost
Visser, and João Saraiva. Lecture Notes in Computer Science 6491. Springer, Berlin,
Heidelberg, pp. 222–289 [cit. on p. 143].

Knodel, Jens andMatthias Naab [2014]. “Mitigating the Risk of Software Change in Prac-
tice”. In: Software Evolution Week — IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE). Ed. by Serge Demeyer,
David Binkley, and Filippo Ricca. IEEE, Antwerp, pp. 2–17 [cit. on pp. 4, 19].

Knowledge Discovery Metamodel [2016]. Object Management Group. URL: http:
//www.omg.org/spec/KDM/ [visited on 01/15/2020] [cit. on p. 67].

Knuth, Donald E. [2011]. The Art of Computer Programming, Volume 4A: Combinato-
rial Algorithms, Part 1. Addison-Wesley, Boston [cit. on p. 381].

Kokko, Timo, Jari Antikainen, and Tarja Systä [2009]. “Adopting SOA - Experiences from
nine finnish organizations”. In: Proceedings of the 13th European Conference on
Software Maintenance and Reengineering. IEEE, Los Alamitos, pp. 129–138 [cit. on
pp. 122, 164].

Kolovos, Dimitrios S., Louis M. Rose, Saad Bin Abid, Richard F. Paige, Fiona A. C.
Polack, and Goetz Botterweck [2010]. “Taming EMF and GMF Using Model Trans-
formation”. In: Proceedings of the 13th International Conference on Model Driven
Engineering Languages and Systems, Part I. Ed. by Dorina C. Petriu, Nicolas Rou-
quette, and Øystein Haugen. Lecture Notes in Computer Science 6394. Springer,
Berlin, Heidelberg, pp. 211–225 [cit. on pp. 143, 213].

Kolovos, Dimitrios S., Louis M. Rose, Richard F. Paige, and Fiona A. C. Polack [2009].
“Raising the level of abstraction in the development of GMF-based graphical model
editors”. In: Proceedings of the 1st Workshop on Modeling in Software Engineering.
IEEE, Los Alamitos, pp. 13–19 [cit. on p. 213].

Kopp, Oliver and Frank Leymann [2008]. “Choreography Design Using WS-BPEL”. In:
Bulletin of the Technical Committee on Data Engineering 31.3, pp. 31–34 [cit. on
p. 125].

Koschke, Rainer [2000]. “Atomic Architectural Component Recovery for Program Un-
derstanding and Evolution: Evaluation of Automatic Re-Modularization Techniques
and Their Integration in a Semi-Automatic Method”. Dissertation. University of
Stuttgart [cit. on p. 69].

450

http://www.omg.org/spec/KDM/
http://www.omg.org/spec/KDM/

References by Author Name, Year, and Title

Kouhen, Amine El, Cedric Dumoulin, Sébastien Gerard, and Pierre Boulet [2012]. Eval-
uation of Modeling Tools Adaptation. Tech. rep. hal-00706701. Hyper Articles en
Ligne, Centre pour la Communication Scientifique Directe, Lyon [cit. on p. 213].

Kraft, Nicholas A. [2007]. “An Infrastructure to Support Interoperability in Reverse En-
gineering”. PhD thesis. Clemson University [cit. on pp. 68, 71, 90].

Krafzig, Dirk, Karl Banke, and Dirk Slama [2005]. Enterprise SOA: Service-oriented
Architecture Best Practices. Prentice Hall, Upper Saddle River [cit. on p. 116].

Kruchten, Philippe [2010]. “Software Architecture and Agile Software Development—A
Clash of Two Cultures?” In: Proceedings of the 32nd International Conference on
Software Engineering, Volume 2. ACM, New York, p. 497 [cit. on p. 4].

Kühne, Stefan and Christian Wetzel [2006]. “Metamodellierung am Beispiel der E-
Government-Domäne Meldewesen und Eclipse GMF”. In: Integration betrieblicher
Informationssysteme: Problemanalysen und Lösungsansätze des Model-Driven In-
tegration Engineering. Ed. by Klaus-Peter Fähnrich, Stefan Kühne, Andreas Speck,
and JuliaWagner. Leipziger Beiträge zur Informatik IV. Leipziger Informatik-Verbund,
Leipzig, pp. 59–72 [cit. on p. 212].

Kühne, Thomas [2006]. “Matters of (Meta-) Modeling”. In: Software & Systems Model-
ing 5.4, pp. 369–385 [cit. on p. 133].

Kullbach, Bernt and Andreas Winter [1999]. “Querying as an enabling technology in
software reengineering”. In: Proceedings of the 3rd European Conference on Soft-
ware Maintenance and Reengineering. IEEE, Los Alamitos, pp. 42–50 [cit. on p. 71].

Küpker, Christoph Alexander [2015]. “Applying the SENSEI Service Orchestration Ap-
proach to WSO2”. Master’s Thesis. Carl von Ossietzky University, Oldenburg [cit.
on pp. 79, 85, 105, 230, 233, 256–258, 277, 312–314, 316, 376–378].

Kurtev, Ivan, Jean Bézivin, and Mehmet Aksit [2002]. Technological Spaces: An Ini-
tial Appraisal. Paper presented at the 4th International Symposium on Distributed
Objects and Applications. University of Twente. URL: https://research.
utwente.nl/en/publications/technological- spaces- an-
initial-appraisal [cit. on p. 142].

Kurtev, Ivan, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez [2006]. “Model-
based DSL frameworks”. In: Proceedings of the 21st Annual Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM, New York,
pp. 602–616 [cit. on p. 140].

Kuryazov, Dilshodbek [2014]. “Delta Operations Language for Model Difference Rep-
resentation”. In: Informatik 2014: Big Data, Komplexität meistern. Beitragsband
der 44. Jahrestagung der Gesellschaft für Informatik. Ed. by Erhard Plödereder,
Lars Grunske, Eric Schneider, and Dominik Ull. Lecture Notes in Informatics 232.
Gesellschaft für Informatik, Bonn, pp. 2221–2232 [cit. on p. 193].

Kuryazov, Dilshodbek and AndreasWinter [2014]. “Representing Model Differences by
Delta Operations”. In: Proceedings of the 18th International Enterprise Distributed

451

https://research.utwente.nl/en/publications/technological-spaces-an-initial-appraisal
https://research.utwente.nl/en/publications/technological-spaces-an-initial-appraisal
https://research.utwente.nl/en/publications/technological-spaces-an-initial-appraisal

References

Object Computing ConferenceWorkshops andDemonstrations. IEEE, Los Alamitos,
pp. 211–220 [cit. on p. 193].

Kuryazov, Dilshodbek, Andreas Winter, and Alexander Sandau [2019]. “Sustainable
Software Architecture for NEMo Mobility Platform”. In: Smart Cities/Smart Regions
- Technische, wirtschaftliche und gesellschaftliche Innovationen. Konferenzband zu
den 10. BUIS-Tagen. Ed. by Jorge Marx Gómez, Andreas Solsbach, Thomas Klenke,
and Volker Wohlgemuth. Springer Fachmedien, Wiesbaden, pp. 229–239 [cit. on
pp. 327, 339].

Laarman, Alfons and Ivan Kurtev [2010]. “Ontological metamodeling with explicit in-
stantiation”. In: Proceedings of the 2nd International Conference on Software Lan-
guage Engineering. Ed. by Mark van den Brand, Dragan Gašević, and Jeff Gray.
Lecture Notes in Computer Science 5969. Springer, Berlin, Heidelberg, pp. 174–
183 [cit. on p. 136].

Lamprecht, Anna-Lena [2013]. User-Level Workflow Design: A Bioinformatics Perspec-
tive. Vol. 8311. LNCS Programming and Software Engineering. Springer, Berlin, Hei-
delberg [cit. on pp. 88, 89].

Lamprecht, Anna-Lena, Tiziana Margaria, and Bernhard Steffen [2014]. “Modeling and
Execution of ScientificWorkflows with the jABC Framework”. In: Process Design for
Natural Scientists: An Agile Model-Driven Approach. Ed. by Anna-Lena Lamprecht
and Tiziana Margaria. Communications in Computer and Information Science 500.
Springer, Berlin, Heidelberg, pp. 14–29 [cit. on p. 88].

Lamprecht, Anna-Lena, Bernhard Steffen, and TizianaMargaria [2016]. “Scientific work-
flows with the jABC framework: A review after a decade in the field”. In: Interna-
tional Journal on Software Tools for Technology Transfer 18.6, pp. 629–651 [cit. on
pp. 88, 89].

Land, Rikard and Ivica Crnkovic [2004]. “Existing Approaches to Software Integration -
and a Challenge for the Future”. In: Proceedings of the 4th Conference on Software
Engineering Research and Practice in Sweden. Mälardalen University, Västerås.
URL: http://www.es.mdh.se/publications/642-Existing_
Approaches_to_Software_Integration___and_a_Challenge_
for_the_Future [cit. on p. 4].

Laskey, Ken, Peter Brown, Jeff A. Estefan, Francis G. McCabe, and Danny Thornton
[2012]. Reference Architecture for Service Oriented Architecture Version 1.0. Stan-
dard. OASIS, Burlington [cit. on p. 118].

Laws, Simon, Mark Combellack, Raymond Feng, Haleh Mahb, and Simon Nash [2011].
Tuscany SCA in Action. Manning, Shelter Island [cit. on pp. 48, 186, 240, 286, 294,
299].

Ledbetter, Lamar and Brad Cox [1985]. “Software-ICs: A plan for building reusable soft-
ware components”. In: BYTE 10.6, pp. 307–316 [cit. on p. 99].

Ledeczi, Akos, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett, Charles
Thomason, Greg Nordstrom, Jonathan Sprinkle, and Peter Volgyesi [2001]. “The

452

http://www.es.mdh.se/publications/642-Existing_Approaches_to_Software_Integration___and_a_Challenge_for_the_Future
http://www.es.mdh.se/publications/642-Existing_Approaches_to_Software_Integration___and_a_Challenge_for_the_Future
http://www.es.mdh.se/publications/642-Existing_Approaches_to_Software_Integration___and_a_Challenge_for_the_Future

References by Author Name, Year, and Title

Generic Modeling Environment”. In: Proceedings of the 2nd Workshop on In-
telligent Signal Processing. IEEE, Los Alamitos. URL: https://www.isis.
vanderbilt.edu/sites/default/files/GME2000Overview.pdf
[cit. on p. 143].

Lee, Jay, Behrad Bagheri, and Hung-An Kao [2015]. “A Cyber-Physical Systems archi-
tecture for Industry 4.0-based manufacturing systems”. In: Manufacturing Letters 3,
pp. 18–23 [cit. on p. 6].

Lehman, Meir M. [1980]. “Programs, life cycles, and laws of software evolution”. In:
Proceedings of the IEEE 68.9, pp. 1060–1076 [cit. on pp. 3, 333].

Lehman, Meir M. [1996]. “Laws of software evolution revisited”. In: Proceedings of
the 5th European Workshop on Software Process Technology. Lecture Notes in
Computer Science 1149. Springer, Berlin, Heidelberg, pp. 108–124 [cit. on pp. 3,
308].

Leitner, Andrea, Beate Herbst, and Roland Mathijssen [2016]. “Lessons Learned from
Tool Integration with OSLC”. In: Proceedings of the 22nd International Conference
Information and Software Technologies. Communications in Computer and Infor-
mation Science 639. Springer, Cham, pp. 242–254 [cit. on p. 68].

Lending, Diane and Norman L. Chervany [1998]. “The use of CASE tools”. In: Proceed-
ings of the ACM SIGCPR Conference on Computer Personnel Research. Ed. by Fred
Niederman and Ritu Agarwal. ACM, New York, pp. 49–58 [cit. on p. 42].

Lethbridge, Timothy C., Sander Tichelaar, and Erhard Ploedereder [2004]. “TheDagstuhl
Middle Metamodel: A Schema For Reverse Engineering”. In: Electronic Notes in
Theoretical Computer Science 94, pp. 7–18 [cit. on pp. 65, 66, 68, 70].

Levina, Olga and Vladimir Stantchev [2009]. “Realizing Event-Driven SOA”. In: Pro-
ceedings of the 4th International Conference on Internet and Web Applications
and Services. IEEE, Los Alamitos, pp. 37–42 [cit. on p. 125].

Lewis, James andMartin Fowler [2014].Microservices. URL:http://martinfowler.
com/articles/microservices.html [visited on 01/15/2020] [cit. on
pp. 109, 114, 122].

Lientz, Bennet P. and E. Burton Swanson [1980]. Software maintenance management: a
study of the maintenance of computer application software in 487 data processing
organizations. Addison-Wesley, Boston [cit. on p. 3].

Lin, Yuan, Richard C. Holt, and Andrew J. Malton [2003]. “Completeness of a fact
extractor”. In: Proceedings of the 10th Working Conference on Reverse Engineering.
IEEE, Los Alamitos, pp. 196–205 [cit. on p. 268].

Long, Fred and Edwin J. Morris [1993]. An Overview of PCTE: A Basis for a Portable
Common Tool Environment. Tech. rep. CMU/SEI-93-TR-001. Software Engineering
Institute, Pittsburgh [cit. on p. 40].

Lungu, Mircea, Michele Lanza, and Oscar Nierstrasz [2014]. “Evolutionary and collab-
orative software architecture recovery with Softwarenaut”. In: Science of Computer
Programming 79, pp. 204–223 [cit. on p. 73].

453

https://www.isis.vanderbilt.edu/sites/default/files/GME2000Overview.pdf
https://www.isis.vanderbilt.edu/sites/default/files/GME2000Overview.pdf
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

References

MacKenzie, C. Matthew, Ken Laskey, Francis McCabe, Peter F. Brown, and Rebekah
Metz [2006]. Reference Model for Service Oriented Architecture 1.0. Standard. OA-
SIS, Burlington [cit. on pp. 112, 118].

Mailing List Archives of the SCA-Bindings Technical Committee [2013]. OASIS. URL:
https://lists.oasis-open.org/archives/sca-bindings/
201306/maillist.html [visited on 01/15/2020] [cit. on pp. 106, 238].

Manes, Anne Thomas [2009]. SOA Is Dead; Long Live Services. URL: https://
web . archive . org / web / 20160506053536 / http : / / apsblog .
burtongroup.com/2009/01/soa-is-dead-long-live-services/
comments/page/1/ [visited on 01/15/2020] [cit. on pp. 109, 111, 118, 122].

Manes, Anne Thomas. [2003]. Web Services: A Manager’s Guide. Addison-Wesley,
Boston [cit. on p. 3].

Manolescu, Dragos [2000]. “Micro-Workflow: A Workflow Architecture Supporting
Compositional Object-Oriented Software Development”. PhD thesis. University of
Illinois at Urbana-Champaign [cit. on p. 116].

Marchewka, Katrin [2006]. “GReQL 2”. Diploma Thesis. University of Koblenz-Landau
[cit. on p. 236].

Margaria, Tiziana, Christian Kubczak,MarkNjoku, and Bernhard Steffen [2006]. “Model-
based design of distributed collaborative bioinformatics processes in the jABC”. In:
Proceedings of the 11th International Conference on Engineering of Complex Com-
puter Systems. IEEE, Los Alamitos, pp. 169–176 [cit. on p. 88].

Margaria, Tiziana, Christian Kubczak, and Bernhard Steffen [2008]. “Bio-jETI: a service
integration, design, and provisioning platform for orchestrated bioinformatics pro-
cesses”. In:A SemanticWeb for Bioinformatics: Goals, Tools, Systems, Applications.
Proceedings of the 7th International Workshop on Network Tools and Applications
in Biology. Ed. by Paolo Romano, Michael Schroeder, Nicola Cannata, and Roberto
Marangoni. BMC Bioinformatics 9(Suppl 4).S12. BioMed Central, London [cit. on
p. 88].

Margaria, Tiziana, Ralf Nagel, and Bernhard Steffen [2005]. “jETI : A Tool for Remote
Tool Integration”. In: Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Nicolas Halbwachs
and Lenore D. Zuck. Lecture Notes in Computer Science 3440. Springer, Berlin,
Heidelberg, pp. 557–562 [cit. on p. 88].

Marino, Jim and Michael Rowley [2009]. Understanding SCA (Service Component Ar-
chitecture). Addison Wesley, Boston [cit. on pp. 113, 238, 240, 299].

Martin, Robert C. [2003]. Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall, Upper Saddle River [cit. on pp. 122, 292].

Martin, Roger J. [1993]. Reference Model for Frameworks of Software Engineering En-
vironments. Technical Report / Special Publication ECMA TR/55, NIST SP 500-211,
European Computer Manufacturers Association / National Institute of Standards and
Technology [cit. on pp. 40, 42, 89, 90].

454

https://lists.oasis-open.org/archives/sca-bindings/201306/maillist.html
https://lists.oasis-open.org/archives/sca-bindings/201306/maillist.html
https://web.archive.org/web/20160506053536/http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services/comments/page/1/
https://web.archive.org/web/20160506053536/http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services/comments/page/1/
https://web.archive.org/web/20160506053536/http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services/comments/page/1/
https://web.archive.org/web/20160506053536/http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services/comments/page/1/

References by Author Name, Year, and Title

Marx Gómez, Jorge [2019]. “Serviceorientierte Architektur”. In: Enzyklopädie der
Wirtschaftsinformatik – Online-Lexikon. Ed. by Norbert Gronau, Jörg Becker, Na-
talia Kliewer, Jan Marco Leimeister, and Sven Overhage. GITO, Berlin [cit. on
pp. 119–121].

McIlroy, Malcolm Douglas [1968]. “Mass-Produced Software Components”. In: Soft-
ware Engineering: Report on a Conference sponsored by the NATO Science Com-
mittee. Ed. by Peter Naur and Brian Randell, pp. 138–155 [cit. on pp. 3, 99].

Meier, Almuth [2014a]. “Ein Composition-Finder für Service-Orchestrierungen”. Bach-
elor’s thesis. Carl von Ossietzky University, Oldenburg [cit. on pp. 202, 204, 207,
208, 243, 256, 382, 385].

Meier, Johannes [2012]. “Eine Fallstudie zur Interoperabilität von Software-Evolutions-
Werkzeugen in SCA”. Bachelor’s thesis. Carl von Ossietzky University, Oldenburg
[cit. on p. 237].

Meier, Johannes [2014b]. “Editoren für Service-Orchestrierungen”. Master’s thesis. Carl
von Ossietzky University, Oldenburg [cit. on pp. 157, 182, 211–213, 215, 216].

Meier, Johannes, Dilshodbek Kuryazov, Jan Jelschen, and Andreas Winter [2015]. “A
Quality Control Center for Software Migration”. In: Softwaretechnik-Trends 35.2,
pp. 19–20 [cit. on p. 12].

Meier, Johannes and Andreas Winter [2016]. “Towards Metamodel Integration Using
Reference Metamodels”. In: Proceedings of the 4th Workshop on View-Based,
Aspect-Oriented and Orthographic Software Modelling. Ed. by Colin Atkinson, Erik
Burger, Thomas Goldschmidt, and Ralf Reussner. Karlsruhe Reports in Informatics
2016.7. Karlsruher Institut für Technologie, pp. 19–22 [cit. on p. 54].

Mell, Peter and Timothy Grance [2011]. The NIST definition of cloud computing. Spe-
cial Publication NIST SP 800-145. National Institute of Standards and Technology,
Gaithersburg, MD [cit. on pp. 107, 199].

Melzer, Ingo and Sebastian Eberhard [2010]. Service-orientierte Architekturen mit Web
Services. 4. Edition. Spektrum, Heidelberg [cit. on pp. 112, 113, 119, 120].

Menascé, Daniel A. [2005]. “MOM vs. RPC: Communication Models for Distributed
Applications”. In: IEEE Internet Computing 9.2, pp. 90–93 [cit. on p. 119].

Mens, Tom and Pieter Van Gorp [2006]. “A Taxonomy of Model Transformation”. In:
Proceedings of the International Workshop on Graph and Model Transformation.
Ed. by Gabor Karsai and Gabriele Taentzer. Electronic Notes in Theoretical Com-
puter Science 152. Elsevier, Amsterdam, pp. 125–142 [cit. on pp. 139, 140].

Mens, Tom,MichelWermelinger, SergeDemeyer, Robert Hirschfeld, StéphaneDucasse,
and M Jazayeri [2005]. “Challenges in software evolution”. In: Proceedings of the
8th International Workshop on Principles of Software Evolution. Ed. by Motoshi
Saeki, Gerardo Canfora, and Shuichiro Yamamoto. IEEE, Los Alamitos, pp. 13–22
[cit. on pp. 5, 8].

Meta Object Facility [2013]. Object Management Group. URL: http://www.omg.
org/spec/MOF/2.4.1/ [visited on 01/15/2020] [cit. on pp. 67, 135].

455

http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/MOF/2.4.1/

References

MetaCase [2020].MetaCase - Domain-SpecificModelingwithMetaEdit+. URL:http:
//www.metacase.com/ [visited on 01/15/2020] [cit. on p. 213].

Michelson, Branda M. [2006]. Event-Driven Architecture Overview: Event-Driven SOA
Is Just Part of the EDA Story. White paper. Patricia Seybold Group, Boston [cit. on
p. 125].

Michlmayr, Anton, Florian Rosenberg, Christian Platzer, Martin Treiber, and Schahram
Dustdar [2007]. “Towards recovering the broken SOA triangle”. In: Proceedings of
the 2nd International Workshop on Service Oriented Software Engineering. ACM,
New York, pp. 22–28 [cit. on pp. 120, 121].

Microsoft [2016]. Overview of Domain-Specific Language Tools. URL: https://
msdn.microsoft.com/en-us/library/bb126327.aspx [visited on
01/15/2020] [cit. on pp. 143, 213].

Model Driven Architecture [2020]. Object Management Group. URL: http://www.
omg.org/mda/ [visited on 01/15/2020] [cit. on p. 136].

ModelBus [2017]. Fraunhofer Institute for Open Communication Systems. URL: http:
//www.modelbus.org/ [visited on 01/15/2020] [cit. on p. 77].

MOFM2T 1.0 [2008]. Object Management Group. URL: http://www.omg.org/
spec/MOFM2T/1.0/ [visited on 01/15/2020] [cit. on p. 212].

Moose [2020]. Moose Community. URL: http://www.moosetechnology.
org/ [visited on 01/15/2020] [cit. on p. 73].

Morris, Edwin, Linda Levine, Patrick R. Place, Daniel Plakosh, and B. Craig Meyers
[2004]. Systems of Systems Interoperability. Tech. rep. CMU/SEI-2004-TR-004. Soft-
ware Engineering Institute, Pittsburgh [cit. on p. 47].

Müller, Hausi A., Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey, Scott R. Tilley,
and Kenny Wong [2000]. “Reverse engineering: a roadmap”. In: Proceedings of the
Conference on the Future of Software Engineering. ACM, New York, pp. 47–60 [cit.
on pp. 4, 5, 8].

Nassi, Isaac and Ben Shneiderman [1973]. “Flowchart techniques for structured pro-
gramming”. In: SIGPLAN Notices 8.8, pp. 12–26 [cit. on p. 85].

Naur, Peter and Brian Randell [1968]. Software Engineering: Report on a Conference
sponsored by the NATO Science Committee. Conference Report. NATO Scientific
Affairs Division, Brussels [cit. on pp. 3, 39].

Neumayr, Bernd, Katharina Grün, and Michael Schrefl [2009]. “Multi-level domain
modeling with m-objects and m-relationships”. In: Proceedings of the 6th Asia-
Pacific Conference on Conceptual Modeling. Ed. by Markus Kirchberg and Sebas-
tian Link. Conferences in Research and Practice in Information Technology 96, Aus-
tralian Computer Science Communications 31.6. Australian Computer Society, Dar-
linghurst, pp. 107–116 [cit. on p. 136].

Newman, Sam [2015]. Building Microservices. O’Reilly, Sebastopol [cit. on pp. 6, 114,
118, 122, 125, 126].

456

http://www.metacase.com/
http://www.metacase.com/
https://msdn.microsoft.com/en-us/library/bb126327.aspx
https://msdn.microsoft.com/en-us/library/bb126327.aspx
http://www.omg.org/mda/
http://www.omg.org/mda/
http://www.modelbus.org/
http://www.modelbus.org/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.moosetechnology.org/
http://www.moosetechnology.org/

References by Author Name, Year, and Title

Nierstrasz, Oscar [2012]. “Agile software assessment with Moose”. In: ACM SIGSOFT
Software Engineering Notes 37.3, pp. 1–5 [cit. on pp. 65, 67].

Nurkiewicz, Tomasz [2015]. RESTful Considered Harmful. URL: https://dzone.
com/articles/restful-considered-harmful [visited on 01/15/2020]
[cit. on p. 122].

Object Constraint Language [2014]. Object Management Group. URL: http://www.
omg.org/spec/OCL/2.4 [visited on 01/15/2020] [cit. on p. 175].

Ocampo, Camilo, Begoña Albizuri, and Pere Botella [1998]. “Is CASE Technology Still
Alive?” In: Actas de las III Jornadas de Ingeniería del Software. Ed. by José Ambrosio
Toval Álvarez and Joaquín Nicolás Ros. Diego Marín, Murcia, pp. 127–139 [cit. on
p. 42].

Open Services for Lifecycle Collaboration [2020]. OSLC Community. URL: http://
open-services.net/ [visited on 01/15/2020] [cit. on pp. 65, 85].

OSGi [2020]. OSGi Alliance. URL: https://www.osgi.org [cit. on pp. 100,
102, 105, 237].

Pandey, Gaurav [2014]. Short Report on Clone Detection Tools. Tech. rep. Carl von
Ossietzky University, Oldenburg [cit. on pp. 18, 32].

Parker, Burt [1992]. “Introducing EIA-CDIF: the CASE Data Interchange Format Stan-
dard”. In: Proceedings of the 2nd Symposium on Assessment of Quality Software
Development Tools. IEEE, Los Alamitos, pp. 74–82 [cit. on pp. 40, 65].

Parnas, David Lorge [1972]. “On the criteria to be used in decomposing systems into
modules”. In: Communications of the ACM 15.12, pp. 1053–1058 [cit. on p. 36].

Pastor, Óscar and Juan Carlos Molina [2007].Model-Driven Architecture in Practice: A
Software Production Environment Based on Conceptual Modeling. Springer, Berlin,
Heidelberg [cit. on pp. 136, 138].

Pech, Vaclav, Alex Shatalin, and Markus Völter [2013]. “JetBrains MPS as a tool for
extending Java”. In: Proceedings of the 10th International Conference on Principles
and Practices of Programming on the Java Platform Virtual Machines, Languages,
and Tools. ACM, New York, pp. 165–168 [cit. on pp. 143, 213].

Peirce, Charles Santiago Sanders [1906]. “Prolegomena to an Apology for Pragmati-
cism”. In: Monist 16.4, pp. 492–546 [cit. on p. 133].

Pérez-Castillo, Ricardo, Ignacio García Rodríguez De Guzmán, and Mario Piattini
[2011]. “Knowledge Discovery Metamodel-ISO/IEC 19506: A standard to modern-
ize legacy systems”. In: Computer Standards & Interfaces 33.6, pp. 519–532 [cit. on
p. 67].

Pike, Rob and Brian W. Kernighan [1984]. “The UNIX System: Program Design in the
UNIX Environment”. In: AT&T Bell Laboratories Technical Journal 63.8, pp. 1595–
1605 [cit. on pp. 5, 70].

Q-MIG [2015]. Software Engineering Group of Carl von Ossietzky University and pro
et con Innovative Informatikanwendungen GmbH. URL: http://se.uni-
oldenburg.de/Q-MIG [visited on 01/15/2020] [cit. on p. 25].

457

https://dzone.com/articles/restful-considered-harmful
https://dzone.com/articles/restful-considered-harmful
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/OCL/2.4
http://open-services.net/
http://open-services.net/
https://www.osgi.org
http://se.uni-oldenburg.de/Q-MIG
http://se.uni-oldenburg.de/Q-MIG

References

Rajlich, Václav [2014]. “Software evolution and maintenance”. In: Proceedings of the
Conference on the Future of Software Engineering. ACM, New York, pp. 133–144
[cit. on p. 6].

Rajlich, Vaclav and Keith Bennett [2000]. “A Staged Model for the Software Life Cycle”.
In: Computer 33.7, pp. 66–71 [cit. on p. 309].

Ran, Shuping [2003]. “A model for web services discovery with QoS”. In: ACM SIGe-
com Exchanges 4.1, pp. 1–10 [cit. on p. 120].

Raza, Aoun, Gunther Vogel, and Erhard Plödereder [2006]. “Bauhaus – A Tool Suite
for Program Analysis and Reverse Engineering”. In: Proceedings of the 11th Ada-
Europe International Conference on Reliable Software Technologies. Ed. by Luís
Miguel Pinho and Michael González Harbour. Lecture Notes in Computer Science
4006. Springer, Berlin, Heidelberg, pp. 71–82 [cit. on p. 69].

Red Hat [2015]. JBoss Fuse Service Works 6.0 Development Guide Volume 1: Switch-
Yard. Development Guide. RedHat, Raleigh. URL: https://access.redhat.
com/documentation/en-us/red_hat_jboss_fuse_service_
works/6.0/pdf/development_guide_volume_1_switchyard/
Red _ Hat _ JBoss _ Fuse _ Service _ Works - 6 . 0 - Development _
Guide_Volume_1_SwitchYard-en-US.pdf [cit. on p. 200].

Resende, Luciano and Raymond Feng [2007]. “Handling Heterogeneous Data Sources
in a SOA Environment with Service Data Objects (SDO)”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, Volume 1. Ed.
by Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou. ACM, New York, pp. 895–
897 [cit. on p. 201].

Richardson, Leonard and Sam Ruby [2008]. RESTful Web Services. O’Reilly, Sebastopol
[cit. on pp. 109, 119, 120, 122, 125].

Ringe, Mathias [2013]. “Vergleich komponentenbasierter Frameworks zur Werkzeug-
integration”. Master’s thesis. Carl von Ossietzky University, Oldenburg [cit. on
pp. 105, 106, 237–239].

Roy, Chanchal K., James R. Cordy, and Rainer Koschke [2009]. “Comparison and Eval-
uation of Code Clone Detection Techniques and Tools: A Qualitative Approach”.
In: Science of Computer Programming 74.7, pp. 470–495 [cit. on p. 31].

Royce, Winston W. [1970]. “Managing the development of large software systems”. In:
WESCON technical papers. Papers presented at the Western Electronic Show and
Convention. Los Angeles. IEEE, Los Alamitos, pp. 328–338 [cit. on p. 39].

Russell, Nick, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Petia Wohed
[2006]. “On the suitability of UML 2.0 activity diagrams for business process mod-
elling.” In: Proceedings of the 3rd Asia-Pacific Conference on Conceptual Model-
ing. Ed. by Markus Stumptner, Sven Hartmann, and Yasushi Kiyoki. Conferences in
Research and Practice in Information Technology 53, Australian Computer Science
Communications 28.6. Australian Computer Society, Darlinghurst, pp. 95–104 [cit.
on p. 124].

458

https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse_service_works/6.0/pdf/development_guide_volume_1_switchyard/Red_Hat_JBoss_Fuse_Service_Works-6.0-Development_Guide_Volume_1_SwitchYard-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse_service_works/6.0/pdf/development_guide_volume_1_switchyard/Red_Hat_JBoss_Fuse_Service_Works-6.0-Development_Guide_Volume_1_SwitchYard-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse_service_works/6.0/pdf/development_guide_volume_1_switchyard/Red_Hat_JBoss_Fuse_Service_Works-6.0-Development_Guide_Volume_1_SwitchYard-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse_service_works/6.0/pdf/development_guide_volume_1_switchyard/Red_Hat_JBoss_Fuse_Service_Works-6.0-Development_Guide_Volume_1_SwitchYard-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse_service_works/6.0/pdf/development_guide_volume_1_switchyard/Red_Hat_JBoss_Fuse_Service_Works-6.0-Development_Guide_Volume_1_SwitchYard-en-US.pdf

References by Author Name, Year, and Title

Sanner, Michael F. [1999]. “Python: a programming language for software integration
and development”. In: Journal of molecular graphics & modelling 17.1, pp. 57–61
[cit. on p. 4].

Schlömer, Timo [2017]. “Modellgetriebene GUI-Erstellung für serviceorientierte An-
wendungen”. Master’s thesis. Carl von Ossietzky University, Oldenburg [cit. on
pp. 324–326, 342].

Schmidt, Alexander, Boris Otto, and Hubert Österle [2010]. “Integrating information
systems: Case studies on current challenges”. In: Electronic Markets 20.2, pp. 161–
174 [cit. on p. 116].

Schmidt, Douglas C. [1999]. “Why Software Reuse has Failed and How toMake it Work
for You”. In: C++ Report 11.1 [cit. on p. 20].

Schmidt, Douglas C. [2006]. “Guest Editor’s Introduction: Model-Driven Engineering”.
In: Computer 39.2, pp. 25–31 [cit. on pp. 42, 309].

Schulte, W. Roy and Yefim Natis [1996]. ”Service Oriented” Architectures, Part 1. Re-
search Note SPA-401-068, G0029201. Gartner, Stamford [cit. on p. 109].

Schwaber, Ken and Mike Beedle [2002]. Agile software development with Scrum. Pren-
tice Hall, Upper Saddle River [cit. on p. 4].

Seacord, Robert C., Daniel Plakosh, and Grace A. Lewis [2003]. Modernizing Legacy
Systems: Software Technologies, Engineering Processes, and Business Practices.
Addison-Wesley, Boston [cit. on p. 3].

Seidewitz, Ed [2003]. “What models mean”. In: IEEE Software 20.5, pp. 26–32 [cit. on
p. 133].

SEON - Software Evolution ONtologies [2016]. Software Evolution and Architecture
Lab. URL: http://se-on.org [visited on 01/15/2020] [cit. on p. 67].

Service Component Architecture (SCA) [2015]. OASIS Open CSA. URL: http://
oasis-opencsa.org/sca [visited on 01/15/2020] [cit. on pp. 79, 105, 231].

Sharon, David and Rodney Bell [1995]. “Tools that bind: Creating Integrated Environ-
ments”. In: IEEE Software 12.2, pp. 76–85 [cit. on p. 41].

Siedersleben, Johannes [2004]. Moderne Software-Architektur: Umsichtig planen, ro-
bust bauen mit Quasar. Dpunkt, Heidelberg [cit. on pp. 117, 118].

Siegel, Jon M. [2014]. MDA Guide Rev. 2.0. White paper ORMSC/2014-06-01. Object
Management Group, Needham [cit. on pp. 138, 140].

Sim, Susan Elliott [2000]. “Next Generation Data Interchange: Tool-to-Tool Application
Program Interface”. In: Proceedings of the 7th Working Conference on Reverse En-
gineering. IEEE, Los Alamitos, pp. 278–280 [cit. on pp. 4, 5, 7, 52, 93].

Sirius [2020]. Eclipse Foundation. URL: https://eclipse.org/sirius/
index.html [visited on 01/15/2020] [cit. on pp. 143, 211, 213].

Sirius Specifier Manual [2020]. Eclipse Foundation. URL: https://www.eclipse.
org/sirius/doc/specifier/Sirius%20Specifier%20Manual.
html [visited on 01/15/2020] [cit. on pp. 211, 220].

459

http://se-on.org
http://oasis-opencsa.org/sca
http://oasis-opencsa.org/sca
https://eclipse.org/sirius/index.html
https://eclipse.org/sirius/index.html
https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html
https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html
https://www.eclipse.org/sirius/doc/specifier/Sirius%20Specifier%20Manual.html

References

Skyttner, Lars [2005].General Systems Theory: Problems, Perspectives, Practice. 2nd ed.
World Scientific, Singapore [cit. on p. 132].

Smart Modeling [2020]. Carl von Ossietzky University of Oldenburg and Urgench
branch of Tashkent University of Information Technologies named afterMuhammed
al-Khorazmiy. URL: https://smart-modeling.ubtuit.uz/ [visited on
01/15/2020] [cit. on p. 343].

Sneed, Harry M., Ellen Wolf, and Heidi Heilmann [2010]. Softwaremigration in der
Praxis: Übertragung alter Softwaresysteme in eine moderne Umgebung. Dpunkt,
Heidelberg [cit. on pp. 5, 7].

Sommerville, Ian [2011]. Software Engineering. 9th ed. Addison-Wesley, Boston [cit. on
pp. 103, 110, 112, 118, 120, 122].

Sprinkle, Jonathan,MarjanMernik, Juha-Pekka Tolvanen, andDiomidis Spinellis [2009].
“What Kinds of Nails Need a Domain-Specific Hammer”. In: IEEE Software 26.4,
pp. 15–18 [cit. on p. 141].

Stachowiak, Herbert [1973]. Allgemeine Modelltheorie. Springer, Wien [cit. on p. 132].
Stahl, Thomas, Markus Völter, Jorn Bettin, Arno Haase, and Simon Helsen [2006].

Model-Driven Software Development: Technology, Engineering, Management. Wi-
ley, Chichester [cit. on pp. 42, 135–138].

Statistisches Bundesamt [2015]. Statistisches Jahrbuch Deutschland 2015. Statistisches
Bundesamt, Wiesbaden [cit. on p. 308].

Steinberg, Dave, Frank Budinsky, Marcelo Paternostro, and Ed Merks [2008]. EMF:
Eclipse Modeling Framework. Ed. by Erich Gamma, Lee Nackman, and John Wie-
gand. The Eclipse Series. Addison-Wesley, Boston [cit. on pp. 73, 143, 211, 213].

Storey, Margaret-Anne, Casey Best, and Jeff Michand [2001]. “Shrimp views: An inter-
active environment for exploring java programs”. In: Proceedings of the 9th Inter-
national Workshop on Program Comprehension. IEEE, Los Alamitos [cit. on p. 71].

Strittmatter, Misha, Michael Junker, Kiana Rostami, Sebastian Lehrig, Amine Kechaou,
Bo Liu, and Robert Heinrich [2016]. “Extensible Graphical Editors for Palladio”. In:
Softwaretechnik Trends 36.4, pp. 49–51 [cit. on p. 214].

SWAG Tools [2020]. SWAG. URL: http://www.swag.uwaterloo.ca/tools.
html [visited on 01/15/2020] [cit. on p. 70].

SwitchYard [2020]. Red Hat. URL: http://switchyard.jboss.org/ [visited
on 2020] [cit. on pp. 106, 239].

Szyperski, Clemens [1997]. Component software: beyond object-oriented program-
ming. ACM Press Books. Addison Wesley, Boston [cit. on pp. 3, 99, 100, 102,
103].

Terry, B. and D. Logee [1990]. “Terminology for Software Engineering Environment
(SEE) and Computer-Aided Software Engineering (CASE)”. In: ACM SIGSOFT Soft-
ware Engineering Notes 15.2, pp. 83–94 [cit. on p. 45].

Thomas, Ian and Brian A. Nejmeh [1992]. “Definitions of tool integration for environ-
ments”. In: IEEE Software 9.2, pp. 29–35 [cit. on pp. 45–48, 50, 52].

460

https://smart-modeling.ubtuit.uz/
http://www.swag.uwaterloo.ca/tools.html
http://www.swag.uwaterloo.ca/tools.html
http://switchyard.jboss.org/

References by Author Name, Year, and Title

Thompson, Henry S., David Beech, Murray Maloney, and Noah Mendelsohn [2004].
XML Schema Part 1: Structures Second Edition. URL: https://www.w3.org/
TR/xmlschema-1/#normative-schemaSchema [visited on 01/15/2020]
[cit. on p. 142].

Tichelaar, Sander, Stéphane Ducasse, and Serge Demeyer [2000]. “FAMIX and XMI”.
In: Proceedings of the 7th Working Conference on Reverse Engineering. IEEE, Los
Alamitos, pp. 296–299 [cit. on p. 67].

Tihonov, Sergej [2013]. “Servicebasierte Refactorings”. Bachelor’s thesis. Carl von Ossi-
etzky University, Oldenburg [cit. on p. 237].

Tolk, Andreas and James Muguira [2003]. “The Levels of Conceptual Interoperability
Model”. In: Proceedings of the Fall Simulation Interoperability Workshop. Curran
Associates, Red Hook, pp. 53–62 [cit. on p. 47].

Tsang, Edward. [1993]. Foundations of constraint satisfaction. Academic Press, London
[cit. on p. 243].

Tunjic, Christian and Colin Atkinson [2015]. “Synchronization of Projective Views
on a Single-Underlying-Model”. In: Proceedings of the 2015 Joint MORSE/VAO
Workshop on Model-Driven Robot Software Engineering and View-based Software-
Engineering. Ed. by Uwe Aßmann, Colin Atkinson, Erik Burger, Thomas Gold-
schmidt, and Ralf Reussner. ACM, New York, pp. 55–58 [cit. on p. 54].

Vaughan-Nichols, Steven J. [2002]. “Web services: beyond the hype”. In: Computer
35.2, pp. 18–21 [cit. on p. 109].

Visser, Eelco [2004]. “Program Transformation with Stratego/XT: Rules, Strategies, Tools,
and Systems in Stratego/XT 0.9”. In: Domain-Specific Program Generation. Ed. by
Christian Lengauer, Don Batory, Charles Consel, and Martin Odersky. Lecture
Notes in Computer Science 3016. Springer, Berlin, Heidelberg, pp. 216–238 [cit.
on p. 144].

Vogel, Oliver, Ingo Arnold, Arif Chughtai, and Timo Kehrer [2011]. Software Architec-
ture: A Comprehensive Framework and Guide for Practitioners. Springer, Berlin,
Heidelberg [cit. on pp. 112, 113].

Vujović, Vladimir, Mirjana Maksimović, and Branko Perišić [2014]. “Comparative anal-
ysis of DSM Graphical Editor frameworks: Graphiti vs . Sirius”. In: Proceedings of
the 23rd International Electrotechnical and Computer Science Conference. Ed. by
Baldomir Zajc and Andrej Trost. University of Ljubljana, Ljubljana, pp. 7–10. URL:
https://erk.fe.uni-lj.si/2014/index.html [cit. on p. 214].

W3COWLWorkingGroup [2012].OWL2WebOntology LanguageDocumentOverview
(Second Edition). URL: https://www.w3.org/TR/owl2-overview/ [vis-
ited on 01/15/2020] [cit. on p. 65].

Wagner, Christian [2014]. Model-Driven Software Migration: A Methodology: Reengi-
neering, Recovery and Modernization of Legacy Systems. Springer Fachmedien,
Wiesbaden [cit. on p. 136].

461

https://www.w3.org/TR/xmlschema-1/#normative-schemaSchema
https://www.w3.org/TR/xmlschema-1/#normative-schemaSchema
https://erk.fe.uni-lj.si/2014/index.html
https://www.w3.org/TR/owl2-overview/

References

Wagner vom Berg, Benjamin [2015]. Konzeption Eines Sustainability Customer Rela-
tionship Managements (SusCRM) Für Anbieter Nachhaltiger Mobilität. Shaker, Her-
zogenrath [cit. on p. 309].

Wasserman, Anthony I. [1990]. “Tool Integration in Software Engineering Environ-
ments”. In: Software Engineering Environments. Proceedings of the International
Workshop on Environments. Lecture Notes in Computer Science 467. Ed. by Fred
Long, pp. 137–149 [cit. on pp. x, 32, 39, 41, 44, 45, 48–51].

Wasserman, Anthony I. [1996]. “Toward a discipline of software engineering”. In: IEEE
Software 13.6, pp. 23–31 [cit. on p. 49].

Wegner, Peter [1996]. “Interoperability”. In: ACM Computing Surveys 28.1, pp. 285–
287 [cit. on pp. 46, 47].

Weinreich, Rainer and Johannes Sametinger [2001]. “Component models and compo-
nent services: concepts and principles”. In: Component-based software engineer-
ing: putting the pieces together. Ed. by George T. Heineman and William T. Coun-
cill. Addison-Wesley, Boston, pp. 33–48 [cit. on p. 104].

Wettel, Richard and Radu Marinescu [2005]. “Archeology of code duplication: Recov-
ering duplication chains from small duplication fragments”. In: Proceedings of the
7th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing. IEEE. Los Alamitos, pp. 63–70 [cit. on pp. 18, 284, 285].

Whittle, Jon, John Hutchinson, and Mark Rouncefield [2014]. “The State of Practice in
Model-Driven Engineering”. In: IEEE Software 31.3, pp. 79–85 [cit. on p. 141].

Wicks, Michael N. and Richard G. Dewar [2007]. “A new research agenda for tool in-
tegration”. In: Journal of Systems and Software 80.9, pp. 1569–1585 [cit. on pp. 41,
46].

Wielemaker, Jan [2020]. SWI-Prolog. URL: http://www.swi-prolog.org/
[visited on 01/15/2020] [cit. on p. 243].

Wienands, Christoph andMichael Golm [2009]. “Anatomy of a Visual Domain-Specific
Language Project in an Industrial Context”. In: Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems. Ed. by Andy
Schürr and Bran Selic. Lecture Notes in Computer Science 5795. Springer, Berlin,
Heidelberg, pp. 453–467 [cit. on p. 213].

Winter, Andreas [2000]. Referenz-Metaschema für visuelle Modellierungssprachen.
Deutscher Universitätsverlag, Wiesbaden [cit. on p. 118].

Winter, Andreas and Jürgen Ebert [2005a]. “Metamodel-driven Service Interoperabil-
ity”. In: Pre-Proceedings of 13th International Workshop on Software Technology
and Engineering Practice. Ed. by Ying Zou andMassimiliano Di Penta. Queen’s Uni-
versity, Kingston, pp. 167–176. URL: http://post.queensu.ca/%7B~%
7Dzouy/files/preproc-step-2005.pdf%7B%5C#%7Dpage=178
[cit. on p. 75].

Winter, Andreas and Jürgen Ebert [2005b]. “Using metamodels in service interoperabil-
ity”. In: Proceedings of 13th International Workshop on Software Technology and

462

http://www.swi-prolog.org/
http://post.queensu.ca/%7B~%7Dzouy/files/preproc-step-2005.pdf%7B%5C#%7Dpage=178
http://post.queensu.ca/%7B~%7Dzouy/files/preproc-step-2005.pdf%7B%5C#%7Dpage=178

References by Author Name, Year, and Title

Engineering Practice. Ed. by Kostas Kontogiannis, Ying Zou, and Massimiliano Di
Penta. IEEE, Los Alamitos, pp. 147–156 [cit. on pp. 75, 76].

Winter, Andreas, Bernt Kullbach, and Volker Riediger [2002]. “An Overview of the
GXL Graph Exchange Language”. In: Software Visualization. Ed. by Stephan Diehl.
Lecture Notes in Computer Science 2269. Springer, Berlin, Heidelberg, pp. 324–
336 [cit. on p. 193].

Wirsing, Martin and Matthias Hölzl, eds. [2011]. Rigorous Software Engineering for
Service-Oriented Systems: Results of the SENSORIA Project on Software Engineer-
ing for Service-Oriented Computing. Vol. 6582. Lecture Notes in Computer Science.
Springer, Berlin, Heidelberg [cit. on p. 76].

Wirth, Niklaus [1986]. Algorithms and Data Structures. Prentice Hall, Upper Saddle
River [cit. on p. 166].

Wirth, Niklaus [2008]. “A Brief History of Software Engineering”. In: IEEE Annals of the
History of Computing 30.3, pp. 32–39 [cit. on p. 39].

Wohed, Petia, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M. ter Hofstede, and
Nick Russell [2006]. “On the Suitability of BPMN for Business Process Modelling”.
In: Proceedings of the 4th International Conference on Business Process Manage-
ment. Ed. by Schahram Dustdar, José Luiz Fiadeiro, and Amit P. Sheth. Lecture
Notes in Computer Science 4102. Springer, Berlin, Heidelberg, pp. 161–176 [cit.
on p. 124].

Wolstencroft, Katherine, Robert Haines, Donal Fellows, Alan Williams, David Withers,
Stuart Owen, Stian Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic, Paul Fisher,
Jiten Bhagat, Khalid Belhajjame, Finn Bacall, Alex Hardisty, Abraham Nieva de la
Hidalga, Maria P Balcazar Vargas, Shoaib Sufi, and Carole Goble [2013]. “The Tav-
erna workflow suite: designing and executing workflows of Web Services on the
desktop, web or in the cloud.” In: Nucleic acids research 41, W557–W561 [cit. on
p. 87].

WSO2 [2020]. URL: http://wso2.com [visited on 01/15/2020] [cit. on pp. 48,
105, 256, 310].

Würsch, Michael, Giacomo Ghezzi, Matthias Hert, Gerald Reif, and Harald C. Gall
[2012]. “SEON: a pyramid of ontologies for software evolution and its applications”.
In: Computing 94.11, pp. 857–885 [cit. on pp. 65, 67, 201].

XMI (XML Metadata Interchange) [2015]. Object Management Group. URL: http:
//www.omg.org/spec/XMI/ [visited on 01/15/2020] [cit. on pp. 40, 65].

Xtext - Language Engineering for Everyone! [2020]. Eclipse Foundation. URL: http:
//www.eclipse.org/Xtext/ [visited on 01/15/2020] [cit. on p. 212].

Yandell, Henri [2016]. Apache Tuscany retired. URL: http://mail-archives.
apache.org/mod_mbox/www-announce/201608.mbox/browser
[visited on 01/15/2020] [cit. on p. 238].

Yang, Yun and Jun Han [1996]. “Classification of and Experimentation on Tool Interfac-
ing in Software Development Environments”. In: Proceedings of the 3rd Asia-Pacific

463

http://wso2.com
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/
http://mail-archives.apache.org/mod_mbox/www-announce/201608.mbox/browser
http://mail-archives.apache.org/mod_mbox/www-announce/201608.mbox/browser

References

Software Engineering Conference. IEEE, Los Alamitos, pp. 56–65 [cit. on pp. x, 46,
48, 55–58].

Zeppenfeld, Klaus and Regine Wolters [2005]. Generative Software-Entwicklung mit
der MDA. Spektrum, Heidelberg [cit. on pp. 137, 138].

Zhu, Haibin [2005]. “Challenges to Reusable Services”. In: Proceedings of the Interna-
tional Conference on Services Computing, Volume II. IEEE, Los Alamitos, pp. 243–
244 [cit. on p. 120].

Zimmermann, Olaf [2017]. “Microservices Tenets: Agile Approach to Service Devel-
opment and Deployment”. In: Proceedings of the 10th Advanced Summer School
on Service-Oriented Computing. Computer Science - Research and Development
32.3-4. Springer, Berlin, Heidelberg, pp. 301–310 [cit. on p. 6].

Zimmermann, Olaf, Mark Tomlinson, and Stefan Peuser [2005]. Perspectives on Web
Services: Applying SOAP, WSDL and UDDI to Real-World Projects. 2nd correc.
Springer, Berlin, Heidelberg [cit. on pp. 119, 125].

464

	Challenges
	Introduction
	Integration Challenges in Software Evolution and Beyond
	Objectives
	Increasing Flexibility
	Increasing Reusability
	Increasing Productivity

	Thesis Outline

	The Q-MIG Project
	Overview
	Example: Base Metric Calculation
	Challenges
	Integrating Existing Tools
	Reusing Custom Tools
	Supporting a Distributed Process
	Supporting Domain Experts

	Conclusion

	Analysis
	Requirements
	The Toolchain-Building Process
	Toolchain Specification
	Toolchain Implementation

	Toolchain-Building Support Framework Requirements
	Task Identification
	Task Coordination
	Task Instantiation
	Adapter Creation
	Transformer Creation
	Coordination Logic Creation

	Summary

	Tool Integration
	A Brief History of Tool Integration
	Integrated Project Support Environments
	Computer-Aided Software Engineering
	Lessons Learned

	Basic Terminology
	Dimensions of Integration
	Integration Types According to Wasserman1990
	Integration Levels According to Brown1992
	Integration Patterns According to Karsai2005
	Integration Effectiveness According to Yang1996
	Integration Infrastructure Classification According to Fuggetta1993

	Summary

	Existing Approaches
	Exchange File Formats
	Common Data Models
	Software Evolution Workbenches
	Software Evolution Environments
	Component-based, Service-Oriented, and Model-Driven Integration
	SOFAS: Software Analysis as a Service
	Comparison
	Summary

	TIL: Tool Integration Language
	Comparison
	Summary

	Workflow-based Integration
	Conceptual Works
	Software Bookshelf
	Reference Model for Frameworks of Software Engineering Environments
	Component-based Tool-Building Lessons

	Summary

	Key Technologies
	Component-Based Software Engineering
	Overview
	Components
	Component Model
	Component Framework
	Summary

	Service-Oriented Software Engineering
	Overview
	Services
	Service Design
	Service-Oriented Architecture
	Service Orchestration
	Origins
	Orchestration and Choreography

	Summary

	Model-Driven Software Engineering
	Overview
	Models
	Metamodels
	Model-Driven Development
	Transformations
	Domain-Specific Languages and Modeling
	Technical Spaces
	Summary

	Solution
	SENSEI at a Glance
	The SENSEI Architecture
	The SENSEI Metamodel
	Service Capabilities
	Building a Toolchain with SENSEI
	Summary

	Service Catalog
	Services and Data Structures
	Example Services

	Service Capabilities
	Capability Modeling Pragmatics
	Capability Semantics

	Service Restrictions
	Summary

	Service Orchestration
	Service Instances
	Required Capabilities
	Data Flow
	Control Flow
	Summary

	Service-Component Matching
	Component Registry
	Components
	Artifacts
	Data Definitions

	Finding Compositions
	Orchestration Consistency
	Component Availability
	Component Compatibility

	Summary

	The SENSEI Editor
	Technology Evaluation
	Eclipse Sirius
	Alternative Language Workbenches

	SENSEI Editor Implementation
	Metamodel Extensions
	Implementation with Sirius

	Using the SENSEI Editor
	Creating SENSEI Modeling Projects
	Defining Services
	Modeling Orchestrations
	Registering Components

	Summary

	SCAffolder: A SENSEI Toolchain Generator
	Specification
	Technology Evaluation
	Model-to-Model Transformations with TGraphs
	Model-to-Text Transformations with Velocity
	Target Platform Service Component Architecture

	SCAffolder Implementation
	Composition Finder Component
	SCA Transformation Component
	SCA Code Generator Component

	Using SCAffolder
	The SENSEI Model Interpreter SNOrcInS
	Summary

	Evaluation
	The Q-MIG Toolchain
	Goal Determination
	Service Identification
	Services to Parse, Migrate, Measure
	Data Consolidation Services
	Composite and Aggregate Metric Services

	Service Orchestration
	Orchestrations to Parse, Migrate, and Measure
	Orchestrations to Consolidate Data
	Orchestrations to Generate a Quality Comparison Report

	Service-Component Matching
	Adapter Creation
	Java Frontend Adapter
	DuDe Adapter
	Java Metric Calculator Adapter

	Transformer Creation
	Composer Creation
	Integrated Tool Support for Data Consolidation
	Integrated Distributed Cross-Platform Tool Support

	Results

	The NEMo Mobility Platform
	The NEMo Project
	Inter-Modal Routing
	Challenges

	Application
	Flexibility Scenarios
	Adding Capabilities
	Extending Orchestrations
	Changing Component Mappings

	Results
	Technical Observations
	Interaction Modeling

	Achievement of Objectives
	Flexibility
	Reusability
	Productivity
	Summary

	Conclusion
	Contributions
	Limitations
	Outlook
	Future Research
	Practical Relevance

	Appendices
	SENSEI Models
	The Q-MIG SENSEI Model
	The Q-MIG Service Catalog
	Q-MIG Orchestrations
	The Q-MIG Component Registry

	The NEMo SENSEI Model
	The NEMo Service Catalog
	NEMo Orchestrations
	The NEMo Component Registry

	SCAffolder Model-to-Model Transformation Reference
	Utility Functions
	Transformation-Embedded Composition Finding
	Tool Stubs
	SCA Service Interfaces
	Types
	Composer Structure
	Composer Implementation

	References
	References by Order of First Appearance
	References by Author Name, Year, and Title

