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Abstract

The manual implementation of local controllers for autonomous agents in a distributed
and concurrent setting is an ambitious and error-prone task. Synthesis algorithms, how-
ever, allow for the automatic generation of such controllers, given a formal specification
of the system’s goal. P/T Petri games are a multi-player game model for the synthesis
problem in distributed systems. The model represents causal memory of the players,
which are tokens on a P/T Petri net and divided into two teams: the controllable system
and the uncontrollable environment. For one environment player and a bounded number
of system players, the problem of solving Petri games can be reduced to that of solving
two-player games. This is achieved by constructing a corresponding two-player game for
a given Petri game.

In this thesis we consider high-level Petri games, which provide concise representations
of P/T Petri games. We show how symmetries, derived from a high-level representation,
can be exploited to significantly reduce the state space in the corresponding two-player
game. We present a solving algorithm for a subclass of high-level Petri games with one
environment player and a bounded number of system players with a reachability or safety
objective. The core of the algorithm is the construction of a symbolic two-player game
whose states are symmetry-equivalence classes of the two-player game that corresponds
to the represented P/T Petri game. We additionally present a second construction of
this symbolic two-player game by defining unique, canonical representations of its states.

Strategies in a P/T Petri game are defined as prefixes of its unfolding. Unfoldings
provide a well-known partial-order semantics of P/T Petri nets that can be applied to
various model checking or verification problems. For high-level Petri nets, the so-called
symbolic unfolding generalizes this concept. A complete finite prefix of the unfolding of
a P/T Petri net contains all information to verify, e.g., reachability of markings.

In this thesis we define complete finite prefixes of the symbolic unfolding of high-
level Petri nets. For a class of safe high-level Petri nets, we generalize the well-known
algorithm by Esparza, Römer and Vogler for constructing small complete finite prefixes.
Additionally, we identify a more general class of nets with infinitely many reachable
markings, for which an approach with an adapted cut-off criterion extends the complete
prefix methodology, in the sense that the original algorithm cannot be applied to the
P/T net represented by a high-level net. Finally, we give an outlook on how to define
symbolic strategies for high-level Petri games in the the symbolic unfolding.
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Zusammenfassung

Die manuelle Implementierung lokaler Controller für autonome Agenten in einem verteil-
ten und parallelen System ist eine ambitionierte und fehleranfällige Aufgabe. Synthese-
algorithmen ermöglichen die automatische Generierung solcher Controller, basierend auf
einer formalen Spezifikation des Ziels des Systems. P/T-Petri-Spiele sind ein Mehrspieler-
Spiel-Modell für das Synthese-Problem in verteilten Systemen. Das Modell repräsentiert
die kausale Erinnerung der Spieler, welche Tokens auf einem P/T-Petri-Netz sind und in
zwei Teams unterteilt sind: das kontrollierbare System und die unkontrollierbare Umge-
bung. Für einen Umgebungsspieler und eine begrenzte Anzahl von Systemspieler kann
das Lösen von Petri-Spielen auf das Lösen von Zwei-Spieler-Spielen reduziert werden.
Dies wird durch die Konstruktion eines entsprechenden Zwei-Spieler-Spiels für ein gege-
benes Petri-Spiel erreicht.

In dieser Arbeit befassen wir uns mit höheren Petri-Spielen, welche prägnante Re-
präsentationen von P/T-Petri-Spielen ermöglichen. Wir zeigen, wie Symmetrien, die
aus einer solchen Repräsentation abgeleitet werden, genutzt werden können, um den
Zustandsraum im entsprechenden Zwei-Spieler-Spiel signifikant zu reduzieren. Wir prä-
sentieren einen Lösungsalgorithmus für eine Unterklasse von höheren Petri-Spielen mit
einem Umgebungsspieler und einer begrenzten Anzahl von Systemspielern mit einem
Erreichbarkeits- oder Sicherheitsziel. Der Kern des Algorithmus besteht in der Kon-
struktion eines symbolischen Zwei-Spieler-Spiels, dessen Zustände Symmetrieäquivalenz-
klassen des Zwei-Spieler-Spiels sind, das dem repräsentierten P/T-Petri-Spiel entspricht.
Zusätzlich präsentieren wir eine zweite Konstruktion dieses symbolischen Zwei-Spieler-
Spiels durch die Definition eindeutiger, kanonischer Darstellungen seiner Zustände.

Strategien in einem P/T-Petri-Spiel werden als Präfixe seiner Entfaltung definiert.
Entfaltungen bieten eine wohlbekannte Partielle-Ordnungs-Semantik von P/T-Petri-Net-
zen, die auf verschiedene Model-Checking- oder Verifikationsprobleme angewendet wer-
den kann. Für höhere Petri-Netze verallgemeinert die sogenannte symbolische Entfaltung
dieses Konzept. Ein vollständiges endliches Präfix der Entfaltung eines P/T-Petri-Netzes
enthält alle Informationen zur Überprüfung von beispielsweise der Erreichbarkeit von
Markierungen.

In dieser Arbeit definieren wir vollständige endliche Präfixe der symbolischen Entfal-
tung von höheren Petri-Netzen. Für eine Klasse sicherer höherer Petri-Netze verallgemei-
nern wir den bekannten Algorithmus von Esparza, Römer und Vogler zur Konstruktion
kleiner vollständiger endlicher Präfixe. Zusätzlich identifizieren wir eine allgemeinere
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Klasse von Netzen mit unendlich vielen erreichbaren Markierungen, für die ein Ansatz
mit einem angepassten Abbruchkriterium die Methodik des vollständigen Präfixes er-
weitert, da der ursprüngliche Algorithmus nicht auf das P/T-Netz angewendet werden
kann, welches durch ein höheres Netz repräsentiert wird. Letztlich geben wir einen Aus-
blick darauf, wie man symbolische Strategien für höhere Petri-Spiele in der symbolischen
Entfaltung definieren kann.
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Chapter 1

Introduction

Contents
1.1 Synthesis of Distributed Systems via Petri Games . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Due to constant electronic and digital expansion, our society has become increasingly
dependent on computer systems, such that they are no longer only specialized tools,
but integral parts of our daily lives. From the integration of technology into electronic
banking or the reliance on networked computers in flight control systems, reliability of
these systems is paramount. While a malfunctioning self-service banking terminal may
be a minor inconvenience, a fault in critical systems, such as a plane’s navigation or
communication systems, can have severe consequences [BK08].

The evolution of computer systems has led to the creation of complex, decentral-
ized distributed systems composed of numerous interconnected computers [TS07]. This
decentralization, while improving efficiency, comes at a cost: though an entire system
may appear as one unit, the local controllers in a network often act autonomously on
incomplete information to avoid constant communication. In particular, the challenges
of implementing local controllers and facilitating mutual communication in asynchronous
distributed systems, where components progress at individual rates, have become appar-
ent, especially in manufacturing contexts [Mis12; MH08].

The increasing size and complexity of these systems create a major challenge for hu-
mans in implementing robust controllers accurately. Synthesis [Chu57; Chu62] addresses
this challenge by automating the generation of controllers. This process involves mod-
eling all potential system actions and behaviors from the system’s environment, and a
specification outlining the system’s overarching goal. The derived controllers ensure re-
silience against all modeled environment behavior. For single-process models, synthesis
approaches have found success in nontrivial applications (e.g., [BGJ+07], [KFP09]). In
this case, we talk about monolithic synthesis.

1



Chapter 1. Introduction

However, as mentioned above, more and more systems today are decentralized. Here,
the monolithic approach is not applicable. In this setting the task of synthesis of dis-
tributed systems [PR90; MT01; KV01] is to automatically construct a set of implemen-
tations, each for a specific system component. These implementations must collectively
satisfy the given specification of the distributed system. An important aspect is deter-
mining at which states and to what extent information exchange between the individual
processes can lead to the achievement of their goals [Fin16].

This thesis makes contributions to exploring the synthesis of distributed systems by
employing state-space reduction techniques derived from model checking, which is the
assessment of whether a given implementation adheres to a specified property. The
techniques involved encompass the utilization of symmetries and abstraction, focusing
particularly on systems characterized by substantial symmetric behavior.

1.1 Synthesis of Distributed Systems via Petri Games

Petri games constitute a model-based and game-based approach for the synthesis of
distributed systems. We start by providing explanations for the terms model-based and
game-based:

In a model-based approach, we work with mathematically precise and unambigu-
ous descriptions of the system’s behavior and the correctness requirements [BK08]. The
effectiveness of a synthesis algorithm depends on the quality of the model and the formal-
ization of the system. This problem is common in the world of model checking [BK08],
where creating appropriate inputs is a significant and non-trivial task [Roz16]. However,
this thesis does not deal with the details of modeling techniques, but focuses on the
models themselves.

In the context of game-based synthesis [BL69], the synthesis problem is tradition-
ally conceptualized as an infinite game on a finite graph with two players. One player,
embodying the system, aims to fulfill the given specification, while the other player, rep-
resenting the environment, tries to induce a violation. The states of the game correspond
to the vertices of the graph which are uniquely assigned to either the environment or the
system. In a game state, the player associated with the corresponding vertex selects the
next vertex, respecting the graph’s edges. This decision is made with complete knowl-
edge of the graph structure and all preceding moves. In the realm of reactive systems,
such games typically continue infinitely. As a result, these games are infinite in terms
of moves but finite in terms of the state space, i.e., the graph in which they unfold. A
strategy devised for the system player to ensure victory in the game against all possible
behaviors of the environment constitutes an implementation that is assured to meet the
specified requirements [Fin16; BCJ18].

In this thesis, the central model-based and game-based approach for the synthesis
of distributed systems is constituted by Petri games. In the Petri games framework,
the foundational model are (P/T) Petri nets [Rei13]. In a Petri net, the actions of
a system are represented through entities known as transitions. These transitions are
interconnected, establishing relationships among actions. The connection is facilitated
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1.1. Synthesis of Distributed Systems via Petri Games

by introducing conditions, represented by places, which are linked to transitions through
directed edges, creating a directed, bipartite graph.

Each place has the capacity to hold tokens, serving as a formalization of the condi-
tional nature of places. For an action to be executed, a specific number of tokens must be
present on each place connected to the transition via an ingoing edge. During execution,
the transition consumes these tokens from the places and deposits a token on every place
linked to it by an outgoing edge. This, in turn, can potentially enable the execution of
other transitions. A state in such a Petri net is called marking, and describes the number
of tokens on each of the distributed places. Consequently, Petri nets offer a robust means
of modeling distributed systems, as the interdependencies or independencies between
actions can be visually represented through a bipartite graph featuring transitions and
places.

Petri games, introduced by Finkbeiner and Olderog [FO14; FO17], extend the Petri
net concept into a game-theoretic formalism. In such a game, tokens within an underlying
Petri net assume the roles of players. The game is played between two teams: the system
players, representing controllable behavior, and the environment players, embodying un-
controllable behavior. To facilitate this, the places in the Petri net are categorized into
system places and environment places, determining a player’s team based on the place
the token occupies. Players situated in separate parts of the net lack information about
each other until they engage in communication, i.e., a joint transition. During such in-
teractions, players share knowledge about their causal history, encompassing the places
and transitions where the player previously resided or contributed to the execution, as
well as their individual histories.

The specification in Petri games is traditionally expressed through a safety condition:
the objective for the system players is to consistently avoid reaching any designated bad
places within the net. In a strategy, players can either permit or prohibit transitions
that are dependent on their involvement. The decisions are (only) based on their causal
history that defines their knowledge and place. Formally, a strategy is defined as a
subprocess of the unfolding, which, in its turn, is an acyclic Petri net encompassing all
potential executions and behaviors of the system as represented by the original Petri net.
The definition of strategies as a subprocesses means that all unwanted behavior is “cut
off” from the unfolding. From such a strategy, the set of implementations for the system
components modeled in the original Petri net can be derived [FO17].

The task of solving a given Petri game involves determining the existence of a win-
ning strategy for the system players, ensuring the given specification. In the affirmative
scenario, the goal is to compute this strategy. Thus, this problem effectively models
the synthesis problem for distributed systems. In this thesis, we primarily focus on an
approach presented in [FO14; FO17; Gie22]: a given Petri game is reduced to an infinite
game over a finite graph with complete knowledge. In this two-player game, a winning
strategy for the system can be found using common game solving techniques [GTW02].
This strategy can then be translated back to a strategy for the system players in the
Petri game.

High-level representations of Petri games, denoted as high-level Petri games [GO21],
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Chapter 1. Introduction

offer a concise means of describing Petri games. High-level Petri games are based on the
formalism of high-level Petri nets [GL81; Jen96]. These high-level Petri nets allow the
representation of several individual and distinguishable tokens residing on a single place
by introducing the notion of colors. Arcs around transitions are labeled by variables,
which can be instantiated in so-called modes of the transition, specifying the colors
that are moved. In practical applications, the modeling of high-level Petri games often
leads to corresponding P/T Petri games that exhibit a substantial amount of symmetric
behavior. The reason for this is that, in many cases, individual tokens (representing
robots, processes, workpieces) do not necessitate markedly different behaviors to achieve
their objective in the game.

1.2 Contributions

This thesis contributes to the synthesis of distributed systems using Petri games by inves-
tigating the integration of state-space reduction techniques derived from model checking
high-level Petri nets into solving algorithms for high-level Petri games. Two distinct
approaches are explored: first, we investigate the application of the concept of “sym-
metries” to the two-player game used in the Petri game reduction from [FO14; FO17;
Gie22]. Second, an examination of “complete finite prefixes” of the “symbolic unfolding”
of high-level Petri nets is conducted, setting the foundation for forthcoming efforts in
defining and synthesizing symbolic strategies.

Figure 1.1 serves as an overview of these contributions (marked dark gray) in the
context of the existing framework (marked light gray), and its structure will be gradually
explained during this section. We have two types of solid directed edges in this figure:
without and with a hook. Directed edges without a hook can be read as “can be generated
from”, while directed edges with a hook can be read as “can be embedded into”. The
latter appear in the context of unfoldings, displayed on the right-hand side in the figure.
The other relations (dashed and undirected, labeled edges) will be explained later.

The bottom left part illustrates the reduction of Petri games to two-player games
from [FO14; FO17; Gie22] mentioned above: for a given Petri game, a corresponding
two-player game is generated (written as “2-Player game” in the figure). This two-player
game can be solved, and its strategy can then be translated into a Petri game strategy.
This Petri game strategy is a subprocess of the Petri game’s unfolding.

Exploiting Symmetries in Solving Petri Games. The focus of this thesis is on
high-level Petri games, each of which represents a unique P/T Petri game we refer to as
its “expansion” [GO21]. This expansion is obtained by explicitly listing all place-color
combinations, and all transitions-mode combination, i.e., all variable instantiations. In
Fig. 1.1, this is illustrated by a corresponding edge from “High-level Petri game” to “Petri
game”.

We introduce a solving algorithm designed for a specific subclass of high-level Petri
games with a single environment player and a bounded number of system players. This
subclass is defined by three key restrictions. Firstly, we exclusively consider “expansion
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1.2. Contributions

safe” high-level Petri games, ensuring that, in the represented P/T Petri game, each
reachable marking contains at most one token on every place. Secondly, we assume the
single environment player to be “recurrently interfering”, implying its participation in
infinitely many transitions within every infinite transition sequence. Lastly, in align-
ment with [Gie22], we exclude Petri games involving “mixed communication”, denoting
a constraint on the structure of the underlying high-level Petri net.

The novel algorithm [GOW20] leverages the symmetries [Sch00a] inherent in the
system, coming from the high-level representation. At its core, the algorithm combines
the reduction technique employed in the associated class of P/T Petri games, as detailed
in [FO17; Gie22], with the creation of a symbolic reachability graph for High-level Petri
nets, as presented in [CDFH97]. In particular, we introduce the so-called symbolic two-
player game (denoted as “symbolic 2-Player game” in Fig. 1.1). The vertices in this
symbolic two-player game are equivalence classes w.r.t. symmetries of the vertices in
the two-player game presented in [Gie22], corresponding to the High-level Petri game’s
expansion. The correctness of this construction is established through a bisimulation
between these two two-player games (edge labeled by “∼” in Fig. 1.1). Furthermore, we
provide an algorithm to derive a winning positional strategy in the “original” two-player
game from [Gie22] based on a winning positional strategy in the symbolic two-player
game (directed edge between the two strategies in Fig. 1.1).

We validate the state space reduction of our approach using a prototype implemen-
tation on a set of benchmark families introduced in [FGO15; FGHO17; GOW20]. The
experimental results, calculated with a two-hour timeout, demonstrate a state space
reduction of up to three orders of magnitude.

Formally, the vertices in the symbolic two-player game are, as mentioned above,

Petri game 2-Player game Strategy Strategy

High-level
Petri game

Symbolic
2-Player game

Strategy

∼

Symbolic
strategy

Canonical
2-Player game

Strategy

≃ ≃

Unfolding

Symbolic
unfolding

Finite & complete
Prefix

Finite & complete
Prefix

[FO14; FO17; Gie22], Ch.2 & Ch.3 [ERV02], Ch.4

[CJ04], Ch.2 [WCH23], Ch.4Outlook, Ch.5[GO21], Ch.2

[GOW20; GW21], Ch.3

Figure 1.1: Contributions of this thesis (dark gray) in the context of the existing frame-
work of high-level Petri games and symbolic unfoldings (light gray).
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Chapter 1. Introduction

equivalence classes. However, in the construction of the game, we use arbitrary repre-
sentatives of the classes to build the arcs between the vertices. Consequently, during the
construction of the game, after reaching a new vertex, we have to compare it to all other
representatives computed up to that point and test them for equivalence with respect to
symmetry. This process is referred to as answering the orbit problem [CEJS98].

We explore a second approach [GW21a] that employs so-called canonical representa-
tions of the equivalence classes. We use techniques presented in [CDFH91a; CDFH93]
that address a similar problem for markings in the symbolic reachability graph of a
high-level Petri net. The canonical representation of a new vertex can be automatically
calculated. Instead of comparing it to every other vertex in the game for equivalence with
respect to symmetry, which can be expensive, we only have to check for equality. This
is referred to as the constructive orbit problem [CEJS98]. By employing these canoni-
cal representations as vertices, we arrive at a two-player game known as the canonical
two-player game (denoted by “Canonical 2-Player game” in Fig. 1.1). We demonstrate
that this game is isomorphic to the symbolic two-player game, enabling the transfer of
all achieved results (edges labeled by “≃” in Fig. 1.1). Finally, we compare the speed of
construction for these two games on the benchmarks mentioned above, concluding that,
in many cases, the canonical two-player game is faster to construct.

Complete Finite Prefixes of Symbolic Unfoldings. Since strategies in Petri games
are defined as subprocesses of the underlying Petri net’s unfolding, the latter is a crucial
object in this thesis. The notion of subprocesses can be generalized to so-called prefixes
of the unfolding. A complete prefix of a Petri net’s unfolding contains all information to
verify, e.g., reachability of markings. In [McM95], an algorithm for computing complete
finite prefixes is presented. In [ERV02], a total order on states in the unfolding (called
an adequate order) is used to give an improved algorithm calculating comparably small
complete finite prefixes of the unfolding. We call this improved algorithm the “ERV-
algorithm”, after its authors Esparza, Römer, and Vogler. In Fig. 1.1, these prefixes are
indicated right of the unfolding.

At first glance, high-level representations on the one hand and processes (resp. un-
foldings) of P/T Petri nets on the other, seem to be conflicting concepts – one being a
more concise, the other a more detailed description of the net(’s behavior). However, in
[CJ04], symbolic branching processes and unfoldings of high-level Petri nets are defined.
The symbolic unfolding is represented above the unfolding in Fig. 1.1. In [Cha06], it is
argued that in general, there exists no complete finite prefix of the symbolic unfolding
of a high-level Petri net. However, this is only true for high-level Petri nets with in-
finitely many reachable markings such that the number of steps needed to reach them is
unbounded, in which case the same arguments yield an example for P/T Petri nets.

In this thesis, we lift the concepts of complete prefixes and adequate orders to the
level of symbolic unfoldings of high-level Petri nets [WCH23]. We consider the class of
safe high-level Petri nets (i.e., in all reachable markings, every place carries at most one
token) that have finitely many reachable markings. This class generalizes safe P/T Petri
nets, and we obtain a generalized version of the ERV-algorithm creating a complete finite
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1.3. Structure of this Thesis

prefix of the symbolic unfolding of such a given high-level Petri net. Our results are a
generalization of [ERV02] in the sense that if a P/T Petri net is viewed as a high-level
Petri net then the new definitions of adequate orders and completeness of prefixes on
the symbolic level, as well as the algorithm producing them, all coincide with their P/T
counterparts. This part is marked in Fig. 1.1 by the elements in the top right dark gray
area. We evaluate this generalized algorithm through a prototype implementation on
four benchmark families introduced in [WCHP23].

We proceed to identify an even more general class of so-called symbolically compact
high-level Petri nets, where we drop the assumption of finitely many reachable mark-
ings, and instead assume a uniform bound on the number of steps needed to reach any
reachable marking. In such a case, the expansion is possibly not finite, in which case
the original ERV-algorithm from [ERV02] is not applicable. We adapt the generalized
ERV-algorithm by weakening the cut-off criterion to ensure finiteness of the resulting
prefix. To check this cut-off criterion, we have to compare infinite sets of markings.
We overcome this obstacle by symbolically representing these sets, making the cut-off
criterion decidable.

An outlook on Symbolic Strategies. We present a brief preview of the integration
of (complete finite prefixes of) symbolic unfoldings with high-level Petri games. These
findings are currently unpublished and have not undergone peer review. We propose a
definition of symbolic strategies (represented by the node “Symbolic Strategy” in Fig. 1.1)
and provide a glimpse into the potential for synthesizing these strategies. The dashed
lines in the figure indicate our exploration into whether the symbolic strategy can be
formalized as a prefix of the symbolic unfolding, how it corresponds to a P/T Petri game
strategy, and whether the definition aligns with the concept of the symbolic/canonical
two-player game.

I come to the conclusion that symbolic strategies cannot be properly defined by just
a prefix notation. Instead, I propose an alternative definition and then argue that the
symbolic two-player game would have to be significantly modified to be able to generate
symbolic strategies.

1.3 Structure of this Thesis

Following this introduction, Chapter 2 lays the groundwork with formal preliminaries for
Petri nets and Petri games. In Chapter 3, we delve into the symmetry-exploiting solv-
ing algorithm tailored for high-level Petri games. This includes the introduction of the
symbolic two-player game initially without (Sec. 3.2) and subsequently with canonical
representations (Sec. 3.3). Chapter 4 presents the definition and construction of complete
finite prefixes of symbolic unfoldings of high-level Petri nets. Chapter 3 and Chapter 4
are designed to not rely on each other, allowing readers to explore them independently.
Chapter 5 presents the brief outlook into the definition and synthesis of symbolic strate-
gies for high-level Petri games. This organizational structure is visually represented in
Fig. 1.1 by the marking the corresponding areas with Ch.2, Ch.3, Ch.4, and Ch.5.
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Chapter 1. Introduction

1.4 Publications

This thesis is based on the following peer-reviewed publications that I co-authored during
my doctoral studies:

[GOW20] Manuel Gieseking, Ernst-Rüdiger Olderog, and Nick Würdemann. “Solving
high-level Petri games”. In: Acta Informatica 57.3-5 (2020), pp. 591–626.
url: https://doi.org/10.1007/s00236-020-00368-5

[GW21a] Manuel Gieseking and Nick Würdemann. “Canonical Representations for
Direct Generation of Strategies in High-Level Petri Games”. In: Appli-
cation and Theory of Petri Nets and Concurrency - 42nd International
Conference, PETRI NETS 2021, Virtual Event, June 23-25, 2021, Pro-
ceedings. Vol. 12734. Lecture Notes in Computer Science. Springer, 2021,
pp. 95–117. url: https://doi.org/10.1007/978-3-030-76983-3_6

[Wür21] Nick Würdemann. “Exploiting symmetries of high-level Petri games in
distributed synthesis”. In: it Inf. Technol. 63.5-6 (2021), pp. 321–331.
url: https://doi.org/10.1515/itit-2021-0012

[WCH23] Nick Würdemann, Thomas Chatain, and Stefan Haar. “Taking Complete
Finite Prefixes to High Level, Symbolically”. In: Application and Theory
of Petri Nets and Concurrency - 44th International Conference, PETRI
NETS 2023, Lisbon, Portugal, June 25-30, 2023, Proceedings. Vol. 13929.
Lecture Notes in Computer Science. Full version available at https://
inria.hal.science/hal-04029490. Springer, 2023, pp. 123–144. url:
https://doi.org/10.1007/978-3-031-33620-1_7

We were invited to submit an extended version of the last paper, [WCH23], to a special
issue of Fundamenta Informaticae on Petri Nets 2023. This version, which in big parts
is included in the present thesis, is currently under review, but already accessible online:

[WCHP23] Nick Würdemann, Thomas Chatain, Stefan Haar, and Lukas Panneke. Tak-
ing Complete Finite Prefixes To High Level, Symbolically. Submitted to
Fundamenta Informaticae. 2023. arXiv: 2311.11443 [cs.LO]

Parts of this thesis are additionally based on the full version [GW21b] of [GW21a]. The
content of the full version of [WCH23] is included in [WCHP23].

In all of the aforementioned papers, my contributions encompassed the development
and formalization of the theoretical framework, including the provision of proofs. In
[GOW20], the corresponding symbolic two-player game for a given high-level Petri game
is defined, while [GW21a] is concerned with the canonical two-player game. In these
two publications, the novel benchmark families were developed together with Manuel
Gieseking. These benchmark families are not explicitly presented in this thesis. [Wür21]
is an overview article that also gives gives a first outlook on symbolic strategies. [WCH23;
WCHP23] describe the results about finite complete prefixes of the symbolic unfolding. In
[WCHP23], the novel benchmark families were developed together with Lukas Panneke,
and are presented in this thesis.
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1.4. Publications

Two additional peer reviewed publications that I co-authored during my doctoral
studies are not directly related to this thesis:

[ÖW21] Okan Özkan and Nick Würdemann. “Resilience of Well-structured Graph
Transformation Systems”. In: Proceedings Twelfth International Workshop
on Graph Computational Models, GCM@STAF 2021, Online, 22nd June
2021. Vol. 350. EPTCS. 2021, pp. 69–88. url: https://doi.org/10.
4204/EPTCS.350.5

[AHP+22] Giann Karlo Aguirre-Samboní, Stefan Haar, Loïc Paulevé, Stefan Schwoon,
and Nick Würdemann. “Avoid One’s Doom: Finding Cliff-Edge Configura-
tions in Petri Nets”. In: Proceedings of the 13th International Symposium
on Games, Automata, Logics and Formal Verification, GandALF 2022,
Madrid, Spain, September 21-23, 2022. Vol. 370. EPTCS. 2022, pp. 178–
193. url: https://doi.org/10.4204/EPTCS.370.12
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Chapter 2

Preliminaries –
Petri Nets and Petri Games

Contents
2.1 Place/Transition Petri Nets and Unfoldings . . . . . . . . . . . . . . . . . . . . 12
2.2 Place/Transition Petri Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 High-Level Petri Nets and High-Level Petri Games . . . . . . . . . . . . . . . . 23

2.3.1 High-Level Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 High-Level Petri Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Symbolic Branching Processes and the Symbolic Unfolding . . . . . . . 28

In this chapter, we establish a foundational basis for the notation used in this work
and introduce two primary objects: Petri nets [Rei13] and Petri games [FO14; FO17].
We discuss so-called branching processes [Eng91] of Petri nets, and explore their maxi-
mal version, termed unfolding [NPW81]. The unfolding process plays a crucial role in
facilitating the behavior of Petri nets and Petri games.

Following this, we introduce a generalization of Petri nets and Petri games known as
high-level Petri nets [Jen96] and high-level Petri games [GO21], respectively. We conclude
the preliminaries by presenting the corresponding generalized notion of branching process
and unfolding, referred to as symbolic branching and symbolic unfolding [CJ04].

Mathematical Notation and Multi-sets. As a prelude to our Preliminaries, we
briefly establish mathematical notation, and recall a modification of the well-known
mathematical concept of a set. Unlike a conventional set, this modification allows for
multiple instances of each element and is referred to as a multi-set.

We denote the natural numbers by N = {0, 1, 2, . . . }. For a set X, we denote by
P(X) its power set. We write X1 ⊔ X2 for the disjoint union of two sets X1, X2, and
generalize this by writing

⊔n
i=1Xi for the disjoint union of sets X1, . . . , Xn. For a set X,

we denote by idX the identity function given by x 7→ x for all x ∈ X. We omit the index
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Chapter 2. Preliminaries – Petri Nets and Petri Games

and just write id when no confusion arises. For functions f : X → Y and g : X ′ → Y ′

with Y ⊆ X ′, the composition g ◦ f : X → Y ′ (read: “g after f ”) maps each x ∈ X to
g(f(x)). For n ∈ N, (xi)ni=1 denotes the tuple (x1, . . . , xn). Analogously, for numbers
ai ∈ N, i = 1, . . . , n,

((xi,j)
ai
j=1)

n
i=1 := (x1,1, x1,2 . . . , x1,a1 , x2,1, x2,2 . . . , x2,a2 , xn,1, xn,2 . . . , xn,an).

For a set X, we call functions A : X → N multi-sets over X, and denote x ∈ A
iff A(x) ≥ 1. For two multi-sets A,A′ over the same set X, we write A ≤ A′ iff
∀x ∈ X : A(x) ≤ A′(x), and denote by A + A′ and A − A′ the multi-sets over X
given by (A+A′)(x) := A(x) + A′(x) and (A − A′)(x) := max(A(x) − A′(x), 0). We
use the notation {| . . . |} as introduced in [KK03]: elements in a multi-set can be listed
explicitly as in {|x1, x1, x2 |}, which describes the multi-set A with A(x1) = 2, A(x2) = 1,
and A(x) = 0 for all x ∈ X \ {x1, x2}. A multi-set A is called finite iff there are
finitely many x ∈ X such that A(x) > 0. In such a case, {| f(x) | x ∈ A |}, where
f(x) is an object constructed from x ∈ X, denotes the multi-set A′ over f(X) such that
∀y ∈ f(X) : A′(y) =

∑
x∈X∧f(x)=y A(x). For a mapping f : X → Y and a finite multi-

set A over X, we define the multi-set f(A) := {| f(x) | x ∈ A |} over Y . We denote by
|A| := ∑

x∈X A(x) the cardinality of A.

2.1 Place/Transition Petri Nets and Unfoldings

This subsection marks the actual beginning of our preliminaries. Given the thematic
focus of this thesis, there is no better way to start than by defining what a Petri Net is.
This definition is followed by a recap of some fundamental aspects of Petri Nets.

A (P/T) net structure is a tuple N = (P,T,F) with the disjoint sets of places P
and transitions T, and a flow function F : (P × T) ∪ (T × P) → N. Places can hold
so-called tokens: a marking in N is a multi-set M : P → N, that formalizes a state
of N by indicating the number of tokens on each place. A (P/T) Petri net is a tuple
N = (N ,M0) of a net structure equipped with an initial marking M0. A net structure
(resp. Petri net) is called finite if P and T are finite.

F(x, y) = n > 0 means there is an arc of weight n from node x to y describing the
flow of tokens in the net. We write x → y iff F(x, y) > 0, and denote by ≤ and < the
reflexive and irreflexive closure of →. For each transition t ∈ T we define the preset and
postset of t as the multi-sets over P given by pre (t) := {| p | (p, t) ∈ F |}, and analogously
post (t) := {| p | (t, p) ∈ F |}. We assume that no transition has an empty preset. A
transition t ∈ T is enabled in a marking M iff pre (t) ≤ M. If t is enabled then t can fire
in M, leading to a new marking M′ = (M− pre (t))+ post (t). This is denoted by M[t⟩M′.
By that, firing a transition means consuming a certain number of tokens (given by the
arc weight) from the place on the other end of every incoming arc, and placing a certain
number of tokens on the place at the other end of every outgoing arc. Analogously to
transitions, we define for every place p ∈ P its preset pre (p) := {| t | (t, p) ∈ F |} and
postset post (p) := {| t | (p, t) ∈ F |} as mult-sets over T.
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2.1. Place/Transition Petri Nets and Unfoldings

For a marking M, we denote by R(N ,M) the set of all markings in N that can be
reached from M by firing a sequence of transitions. A Petri net N = (N ,M0) is called
k-bounded if ∀M ∈ R(N) ∀p ∈ P : M(p) ≤ k. 1-bounded Petri nets are also called safe.

A net structure N = (P,T,F) is called ordinary iff all arcs between nodes have
a weight of at most 1, i.e., ∀(x, y) ∈ (P × T) ∪ (T × P) : F(x, y) ≤ 1. In an ordi-
nary net structure, two nodes x and y are said to be in conflict, denoted by x♯y, iff
∃p ∈ P∃t1, t2 ∈ T : t1 ̸= t2 ∧ p ∈ pre (t1) ∧ p ∈ pre (t2) ∧ t1 ≤ x ∧ t2 ≤ y. Additionally, we
call x and y causally related iff x ≤ y or y ≤ x. Two nodes are called concurrent , iff they
are neither in conflict, nor causally related. A set X ⊆ P∪T is called concurrent, iff each
two elements in X are concurrent. A concurrent set X ⊆ P of places is called a co-set .

An essential tool in this thesis is the concept of the unfolding of a given Petri net.
The unfolding can be seen as a process of “unwinding” the behavior of the original
net. The foundation of an unfolding lies in a structurally restricted Petri net, referred
to as an occurrence net. In this context, we use the term conditions, denoted by the
symbol B (from the German ‘Bedingungen’), instead of places. Similarly, we refer to
events, denoted by E, instead of transitions. The role of the flow function is now played
by the object denoted by H, and the initial marking is represented as K0, which is now
called the initial cut. The markings reachable from K0 are referred to as cuts.

A Petri net O = (B,E,H,K0) with an ordinary net structure (B,E,H) is called an
occurrence net if:

i) No event is in self conflict, i.e., ∀e ∈ E : ¬(e♯e).
ii) No node is its own causal predecessor, i.e., ∀x ∈ B ∪ E : ¬(x < x).

iii) The relation < is well-founded, i.e., ∀e ∈ E : |{x | x < e}| <∞.

iv) For every b ∈ B, exactly one of the following holds:

a) K0(b) = 1 and pre (b) = ∅.
b) K0(b) = 0 and there exists a unique event e s.t. pre (b) = {e}.

An occurrence net is called a causal net if additionally from every condition there is at
most one outgoing event, i.e., ∀b ∈ B : |post (b)| ≤ 1.

A configuration of an occurrence net is a causally closed set C of events that pairwise
are not in conflict. Events in such a set describe a (possibly infinite) concurrent execution
of the net. For a finite configuration C, the cut cut(C) := (K0\(→C))∪(C→) of C describes
the marking reached in the occurrence net after firing the events in C. Conversely, every
cut K in an occurrence net can be identified with the finite configuration {e ∈ E | ∃b ∈
K : e < b} containing the events that lie “before” K in the occurrence net. For every
event e, we define its cone configuration [e] = {e′ ∈ E | e′ ≤ e}.

Let N = (P,T,F) and N ′ = (P′,T′,F′) be two net structures. A function h : P∪T→
P′ ∪ T′ is called a (Petri net) homomorphism from N to N ′, iff

i) it maps places and transitions in N into the corresponding sets in N ′, i.e.,
∀p ∈ P : h(p) ∈ P′ ∧ ∀t ∈ T : h(t) ∈ T′;
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ii) it maps the pre- and postset of transitions correspondingly, i.e.,
∀t ∈ T : pre ′(h(t)) = h(pre (t)) ∧ post ′(h(t)) = h(post (t)).

For two Petri nets N = (N ,M0) and N′ = (N ′,M′
0) the homomorphisms from N to N′

are the homomorphisms from N to N ′. Such a homomorphism h is called initial iff

iii) it maps the initial marking of N to the initial marking of N′, i.e., h(M0) = M′
0.

A(n initial) branching process β = (O, h) of a Petri net N = (P,T,F,M0) consists of
an occurrence net O = (B,E,H,K0) and a(n initial) homomorphism h : B ∪ E → P ∪ T
that is injective on events with same preset, i.e., ∀e1, e2 ∈ E : (pre (e1) = pre (e2)∧h(e1) =
h(e2))⇒ e1 = e2. If ρ = (O, h) is an initial branching process of N with a causal net O,
then ρ is called a (concurrent) run of N. A run formalizes a single concurrent execution
of the net. For two symbolic branching processes β = (O, h) and β′ = (O′, h′) of a Petri
net, β is a prefix of β′ if there exists an injective initial homomorphism ϕ from O into O′,
such that h′ ◦ϕ = h. In the case of ϕ = id , i.e., O is a subnet of O′, we call β a subprocess
of β′.

In Theorem 23 of [Eng91] it is shown that for any given Petri net N = (P,T,F,M0)
there exists a unique maximal branching process (maximal w.r.t. the prefix relation
and unique up to isomorphism). This branching process is called the unfolding of N,
and denoted by Υ(N) = (BN,EN,HN,KN

0 , π
N), where the contained occurrence net is

called U(N), such that Υ(N) = (U(N), πN). The values of the homomorphism πN are also
called labels of the conditions/events.

This unfolding has the property that for every transition that can occur in the net,
there is a transition in the unfolding with corresponding label, i.e., ∀t ∈ T∀X ⊆ BN :
X co-set ∧ pre (t) = πN(X)⇒ ∃e ∈ EN : πN(e) = t ∧ pre (e) = X.

2.2 Place/Transition Petri Games

We extend a Petri net to a game by interpreting the tokens, present in the places of
the Petri net, as players of the game. To the aim of having different teams of players,
we divide the places into distinct categories. Specifically, we categorize the places as –
controllable – system places and – uncontrollable – environment places, thereby forming
two teams. The team-membership of a player is determined by the category of the place
on which the player resides.

In Petri nets, firing a transition means consuming a certain number of tokens (given
by the arc weight) from the place on the other end of every incoming arc, and placing a
certain number of tokens on the place at the other end of every outgoing arc. Recognizing
the correspondence between tokens and players, this implies that players can be “created”
or “disposed” by transitions. In the context of Petri games, especially when the number
of consumed system and environment players is equal to the corresponding number of
placed players, we often identify the consumed and placed players with each other while
describing how a Petri game models a scenario. By this notion, players can also “switch
teams.”
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A play of the game is a concurrent execution of transitions in the net. During a play,
the knowledge of each player is represented by its causal history, i.e., all visited places
and used transitions to reach the current place. Players enrich this local knowledge when
participating in joint transitions: at such an occasion, the complete knowledge of all
participating players is exchanged. In the terminology of [Sch03], we have a game with
“perfect recall” and “imperfect information”.

Based on their knowledge, players allow or forbid transitions in their postset. A
transition can only fire if every player in its preset allows the execution. The system
players in a Petri game win a play if they satisfy a given objective. In the context of this
thesis, this is either a safety objective, given by a designated set of bad places the system
players must not reach, or a reachability objective, given by a set of target places one of
them has to reach.

Formally, a (P/T) Petri game is a tuple G = (PS,PE,T,F,M0,Obj,P⊛), with a set of
system places PS, a set of environment places PE, and a set of special places P⊛ ⊆ PS. The
set of all places is denoted by P = PS⊔PE, and T,F,M0 are the remaining components of
a Petri net N(G) = (P,T,F,M0), called the underlying net of G. The objective type Obj
belongs to a two-element set Obj ∈ {Safety,Reach}, which, in combination with the set
of special places P⊛, defines the objective for the system players:

In the case Obj = Safety, the aim of the system players is for all of them to avoid
reaching any special place p ∈ P⊛. The special places are in this case called bad places,
and denoted by P♠.

In contrast, if Obj = Reach, the aim of the system players is for at least one of them
to reach a special place p ∈ P⊛. The special places are in this case called target places,
and denoted by P♡.

In order to achieve this safety objective resp. reachability objective, the players often
must cooperate: every player can solely use their locally available information which is
their own causal past, i.e., the places and transitions which have been used to reach the
current place. Cooperation among the players means that information is exchanged with
all players participating at a joint transition.

We consider Petri games with a finite underlying net. We call transitions with a preset
only consisting of system places system transitions and all other transitions environment
transitions. Transitions with a preset only consisting of environment places are called
pure environment transitions. Note that only pure environment transitions are under
control of the environment player, whereas transitions which contain at least one system
place in its preset are under control of the system players.

When visualizing a Petri game, we extend the traditional way of visualizing Petri
nets: we depict the system places PS as gray circles and the environment places PE as
white circles. For special places P⊛, we draw a double border – solid for bad places P♠
in the case Cond = Safety, and dashed for target places P♡ in the case Cond = Reach.
Transitions are depicted as boxes, and the flow function is illustrated by arcs between
transitions and places, with their weight as label. Arcs with weight 0 are omitted com-
pletely, whereas we omit the label on arcs with weight 1.

The following example gives a first impression about the semantics of a Petri game.
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(a) Petri game with reachability objective.
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(b) Petri game with safety objective.

Figure 2.1: First examples of Petri games..

Example 2.1 (P/T Petri game). In Fig. 2.1, two Petri games are shown: one with
a reachability objective (Fig. 2.1a) and one with a safety objective (Fig. 2.1b) for the
system players.

Initially, in the Petri game from Fig. 2.1a, there is only one environment player on
place Env . This means, only the transitions go1 and go2 are activated. Fix an ı̂ ∈ {1, 2}
and say the environment fires go ı̂. Then the environment player moves from place Env
to place Go ı̂. Additionally, a token gets placed on the system place Sys, i.e., a system
player is generated. This system player now has to make an analogous choice, i.e., taking
transition mim1 or mim2 to go to place Mim1 or Mim2, respectively. The goal of the
system player is to mimic the choice of the environment player, since only if it takes the
transition mim ı̂, transition end ı̂ is activated from marking {|Go ı̂,Mim ı̂ |}. Firing it leads
to the marking {|Target |}, i.e., the system player reached the target space and therefore
achieved the reachability objective. The system player can only mimic the environment’s
choice because the latter is in their causal history when they are generated by go1 or
go2. They can therefore use that local knowledge to mimic the choice correctly.

The Petri game from Fig. 2.1b works analogously but with the difference that if
the system player makes the wrong choice and fires transition mim ȷ̂ with ȷ̂ ̸= ı̂, then
it afterwards has no choice other than taking transition bad ı̂, reaching the bad place
and failing the objective. Only with the correct mimic, the net gets into a terminating
marking and no bad place can be reached anymore. �
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The causal dependencies in a Petri game G (and thus, the knowledge of the players)
are represented in its unfolding, which is the unfolding Υ(G) := Υ(N(G)) of the underlying
net N(G). The system-, environment-, and special conditions are marked correspondingly:
Let B be the conditions in Υ(G). Then BS := {b ∈ B | π(b) ∈ PS}, BE := {b ∈ B |
π(b) ∈ PE}, and B⊛ := {b ∈ B | π(b) ∈ P⊛}. A play in G is an initial concurrent run
ρ = (O, h) of the underlying net N of a Petri game G (i.e., all nondeterminism has been
resolved) that is maximal with respect to the prefix relation.

A strategy for the system players in G describes a local controller for each system
player whose operation is based on its currently available information about the whole
system. Such a strategy is obtained from an unfolding by deleting some of the branches
that are under control of the system players. Thus, it is technically a subprocess of the
unfolding. Every condition describes a place in the net with a certain causal history. A
strategy describes for each condition which transitions are available to a player in the
corresponding place. This set of transitions depends on the players knowledge, i.e., the
causal history of the corresponding condition, and is represented by the events in the
strategy having this condition in their preset.

A strategy for the system players in G is a subprocess ξ = (Oξ, πξ) with occurrence net
Oξ = (Bξ,Eξ,Hξ,Kξ

0) of the unfolding Υ = (B,E,H,K0, π) of G satisfying the following
conditions:

a) Justified Refusal: if an event is not in the strategy, then the reason is that a system
player in its preset forbids all occurrences of this transition in the strategy. So to
be more specific, there is no restriction on pure environment decisions, and system
players can allow or forbid only transitions of the original net, based on only their
knowledge:

∀e ∈ E :(pre (e) ⊆ Bξ ∧ e /∈ Eξ)

⇒ (∃b ∈ pre (e) ∩ BS ∀e′ ∈ post (b) : π(e′) = π(e)⇒ e′ /∈ Eξ).

b) The system players must act in a deterministic way, i.e., in no reachable marking
of the strategy two transitions involving the same system player are enabled:

∀K ∈ R(Oξ) ∀b ∈ K ∩ BS ∃≤1e ∈ Eξ : b ∈ pre (e) ∧ K[e⟩.

A strategy is deadlock-free, if it allows the possibility to continue whenever the system
can proceed, i.e., ∀K ∈ R(Oξ) : (∃e ∈ E : K[e⟩)⇒ ∃e′ ∈ Eξ : K[e′⟩.

Figure 2.2 visualizes violations related of to the two strategy conditions and of the
requirement for a strategy to be deadlock-free. We schematically depict occurrence nets
Oa, Ob, Oc from prefixes (Oa, πa), (Ob, πb), (Oc, πc) of an unfolding (U, π). When needed
for illustrating the violation, values of π are written next to the conditions and events.
In the prefix (Oa, πa) we see two instances of each of the places p and q. From every
combination of one instance of p and one of q, an instance of the transition t is fireable.
Consider the most left instance of t. Since it is not part of the alleged strategy, there
must a system place in its preset that refuses all instances of t. However, both places in

17



Chapter 2. Preliminaries – Petri Nets and Petri Games

pp q q

t t t t
U

Oa

U

Ob

co-set

U

Oc

Figure 2.2: Visualization of three prefixes (Oa, πa), (Ob, πb), (and (Oc, πc)) of an unfolding
(U, π), each violating one of the conditions satisfied by a (deadlock-free) strategy.

its preset allow another instance of t, meaning that both only allow certain instances of t,
depending on knowledge they do not have. Thus, it violates justified refusal condition a).
The prefix (Ob, πb) contains two concurrent transitions sharing a system place in their
preset, violating the determinism condition b). Finally, the occurrence net Oc is finite,
cutting off all possible continuations in the unfolding. This results in a deadlock which
means that the prefix (Oc, πc) is not deadlock-free.

A play ρ conforms to a strategy ξ if ρ it is a prefix of ξ. The system players win ρ
with conditions Bρ depending on Cond:

• If Cond = Safety then the system players win ρ if it contains no instance of a bad
place, i.e., Bρ

♠ = ∅.
• If Cond = Reach then the system players win ρ if it contains an instance of a target

place, i.e., Bρ
♡ ̸= ∅.

In the case of Cond = Safety, a strategy ξ is called winning if it is deadlock-free and
all plays that conform to ξ are won by the system players. The latter is equivalent to
Bξ
♠ = ∅. Since we consider a safety objective, the system players would win with a non

deadlock-free strategy by just doing nothing. In the case of Cond = Reach, we drop this
assumption of deadlock-freedom and call a strategy ξ winning if all plays that conform
to ξ are won by the system players.

Example 2.2 (Strategy in a P/T Petri Game). Fig. 2.3 shows the already informally
described winning strategy (solid elements) for the Petri game presented in Fig. 2.1 as a
prefix of the Petri games unfoldings (solid + dashed/grayed out elements). The names
of conditions and events correspond to their labels (the homomorphism’s values, i.e.,
places and transitions in the original net). If there is more than one instance of a place
or transition in the unfolding, superscripts are added to the names of the respective
conditions/events.

Consider the winning strategy in Fig. 2.3a. A strategy must not restrict any pure
environment transition. Consequently, both events go1 and go2 are in the strategy.
However, compared to the original net, they do not place a token on the same place Sys,
but there is an output condition Sys i for each of them. This corresponds to the knowledge
of the system player placed on Sys in the original net: it can now make its choice which
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go1

Go1

go2
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Target1
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Mim2
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end2
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(a) Winning strategy for the system players
with reachability objective in the Petri game
from Fig. 2.1a.

Env

go1

Go1

go2

Go2

Sys1

mim1
1

Mim1
1

mim1
2

Mim1
2

bad1

Bad1

Sys2

mim2
1

Mim2
1

mim2
2

Mim2
2

bad2

Bad2

(b) Winning strategy for the system players
with safety objective in the Petri game from
Fig. 2.1b.

Figure 2.3: Winning strategies (solid) for the system players in the Petri games from
Fig. 2.1, represented as prefixes in the respective unfolding (solid and dashed/grayed
out).

events to allow depending on the causal history, i.e., for i = 1, 2 the system player on Sys i

only allows event mimi
i and cuts off event mimi

j with j ̸= i from the strategy. Therefore,
every play reaches either the cut {|Mim1

1,Go1 |} or the cut {|Mim2
2,Go2 |}, from where the

events end i, i = 1, 2 ensure that either the condition Target1 or the condition Target2 is
in every play of the game conforming to the strategy, making it a winning strategy.

The winning strategy in Fig. 2.3b for the Petri game with safety objective for the
system players again is built analogously. Just as the strategy in (a) it ensures every play
to finally reach either the cut {|Mim1

1,Go1 |} or the cut {|Mim2
2,Go2 |}, from which no

event can be fired, thus terminating the net’s execution and achieving the safety objective
for the system players since they can never reach a bad place. �

Running Example: Communicating Copycats. We now extend the example of a
Petri game with reachability objective for the system players from Fig. 2.1a and provide
it with a twist to build our first running example, called “Communicating Copycats”.

The result is shown in Fig. 2.4. At first glance, the upper part seems like two copies
of the game from Fig. 2.1a: we initially have two environment players on places EnvB
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EnvB

goB1

GoB1

goB2

GoB2

SysA

mimA1

MimA1

mimA2

MimA2

EnvA

goA1

GoA1

goA2

GoA2

SysB

mimB1

MimB1

mimB2

MimB2

com

endA1B1 endA1B2 endA2B1 endA2B2

Target

Figure 2.4: Petri game “Communicating Copycats” with communication between the
system players needed in a winning strategy.

and EnvA, who both have the choice of taking transition goB1 or goB2 (resp. goA1 or
goA2). Firing such a transition creates a system player that can again mimic what the
environment did. However, the twist is that now the system player on place SysA (on
the left), generated by the firing of goB1 or goB2, has to mimic the choice made by
the environment player initially residing on place EnvA (on the right), and the other
way around for the system player placed on the place SysB. However, directly after the
system player gets placed on SysA, the only information it has is which one of the two
transitions goB1 or goB2 was fired.

To get the information about which of the two transitions goA1 or goA2 was fired,
the system player on place SysA must “communicate” with the system player on place
SysB. This can be achieved by taking the joint transition com, which does not change the
marking. However, by firing com, the whole causal history of both participating players
gets shared between them. Thus, after one firing of this transition, the two system players
can correctly mimic the respective environment player’s choice. Finally, one of the four
end transitions can be taken. Say the environment player on EnvA takes transition goAı̂

and the environment player on EnvB takes transition goBȷ̂. Then the transition endAı̂Bȷ̂

leading to the target place Target gets enabled if and only if the system player on SysA
mimics the environment player from EnvA by taking mimAı̂ and the system player on
SysB mimics the environment player from EnvB by taking mimBȷ̂. Transition endAı̂Bȷ̂

can then fire from the marking {|GoAı̂,GoBȷ̂,MimAı̂,MimBȷ̂ |}.
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To improve readability, the arcs to and from all end transitions except endA1B2 are
grayed out. For endA1B2, the colors of the arcs emphasize that the transition is enabled
when the system player on SysA mimics the choice of the environment player on EnvA to
take transition goA1 by taking transition mimA1, and the system player on SysB mimics
the choice of the environment player on EnvB to take transition goB2 by taking mimB2.

A winning strategy for the example Communicating Copycats is shown in Fig 2.5,
again as a prefix of the whole unfolding. The parts of the unfolding not belonging to
the strategy are dashed/grayed out. Again, the labels of the conditions/events are given
by their names, which are the names of places/transitions in the original net, and with
a superscript added when there is more than one occurrence of a node. To improve
readability, each condition GoXi with X ∈ {A,B}, i ∈ {1, 2} is drawn multiple times. All
conditions with the same name are identified with each other; for all X ∈ {A,B}, i ∈ {1, 2}
there is only one condition GoXi in the unfolding. Additionally, we abbreviate mimAi

by ai and MimAi by Ai, with i = 1, 2, and analogously for B. Finally, for the system
players, we chose the superscript of the conditions names such that it also indicates a
players knowledge: for example, the system player on Sys2A knows that the environment
player from EnvB took transition goB2, while a system player on Sys12A knows in addition
that the environment player from EnvA took transition goA1.

Just as in the simpler example in Fig. 2.3a, the initial pure environment events
must all be contained in the strategy. Generated by a goYi event, the system player on
condition Sys iX with X ̸= Y could, in a strategy, allow one of the two events mimi

Xj

(abbreviated by xji), but not both, since this would violate determinism of the strategy.
However, since the system player does not know which one of the two events goX1 or
goX2 has fired, and therefore which event in the future of xji leading to a target condition
would finally be enabled, it cannot make a deterministic choice that guarantees reaching
a target place.

To resolve the situation described above, every system player on a condition Sys iX
allows only all instances of com to fire. Although this may seem nondeterministic at
first sight, this is allowed in a strategy since the nondeterminism is resolved by the
environment’s choices; no two instances of com in the unfolding are enabled in the same
cut. After the firing of the event comij , the system players on Sys ijA and Sys ijB can then
deterministically allow the correct events mimij

Ai and mimij
Bj , whose firing leads to the

cut {|Mimij
Ai,Mimij

Bj ,GoAi,GoBj |}. From there, the event end ′′
AiBj can fire, making the

respective play winning by reaching the target condition Target ij ′′.
Note that the unfolding is infinite and that the future of firing more than one instance

of com is not shown here. This also means that there are infinitely many winning
strategies for the system players, since they could take the transition com arbitrarily
often before making the correct choice. However, after one firing, they have all the
knowledge they need to make that choice.
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Figure 2.5: A winning strategy (solid) for the system players in running example “com-
municating copycats” from Fig. 2.4 as a prefix of the Petri games unfolding (solid and
grayed out).
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2.3 High-Level Petri Nets and High-Level Petri Games

In this subsection, we introduce a generalization of Petri nets and Petri games known
as high-level Petri nets and high-level Petri games, respectively. We will begin by pre-
senting high-level Petri nets and recalling their definitions and formalism. This serves
as a foundation for subsequently presenting the definition of high-level Petri games as
introduced in [GO21].

The generalization of Petri nets also leads to a generalization of the concepts of
branching processes, and unfoldings. The generalizations are called symbolic branching
and symbolic unfolding, respectively. We conclude this subsection with this general-
ization. Specifically, we recall its definition from [CJ04], where symbolic unfoldings for
high-level Petri nets are introduced.

2.3.1 High-Level Petri Nets

High-level Petri nets generalize Place/Transition Petri nets in the sense that they allow
places to hold tokens of different values, called colors. Arcs between nodes are labeled
with variables, and a mode of a transition assigns colors to all variables “around it”,
describing which colors are moved from/to which places. Every transition has a guard
restricting the possible modes. We structure of defining high-level Petri nets is analogous
to the P/T Petri nets definition.

A (high-level) net structure is a tuple N = (Col ,Var , P, T, F, g) with the following
components. Col and Var are the sets of colors and variables, and P and T are sets of
places and transitions such that the four sets are pairwise disjoint. The flow function
is given by F : (P × Var × T ) ∪ (T × Var × P ) → N. Let Var(t) = {v ∈ Var | ∃p ∈
P : (p, v, t) ∈ F ∨ (t, v, p) ∈ F}. The function g maps each t ∈ T to a predicate g(t)
on Var(t), called the guard of t. By this, g(t) can contain other (bounded) variables,
but all free variables in g(t) must appear on arcs to or from t. A marking in N is a
multi-set M : P × Col → N, describing how often each color c ∈ Col currently resides
on each place p ∈ P . A high-level Petri net N = (N ,M0) is a net structure N together
with a nonempty set M0 of initial markings, where we assume ∀M0,M

′
0 ∈ M0 : {| p |

(p, c) ∈ M0 |} = {| p | (p, c) ∈ M ′
0 |}, i.e., in all initial markings, the same places are

marked with the same number of colors. We often assume the two sets Col of colors and
Var of variables to be given. In this case, we denote a high-level net structure (resp.
high-level Petri net) by N = (P, T, F, g) (resp. N = (P, T, F, g,M0)).

For two nodes x, y ∈ P ∪ T , we write x → y, iff there exists a variable v such
that (x, v, y) ∈ F . The reflexive and irreflexive transitive closures of → are denoted
respectively by ≤ and <. For a transition t ∈ T , we denote by pre (t) := {| (p, v) |
(p, v, t) ∈ F |} and post (t) := {| (p, v) | (t, v, p) ∈ F |} the preset and postset of t. A mode
of t is a mapping σ : Var(t)→ Col such that g(t) evaluates to true under the substitution
given by σ, denoted by g(t)[σ] ≡ true. We then denote pre (t, σ) := {| (p, σ(v)) | (p, v) ∈
pre (t) |} and post (t, σ) := {| (p, σ(v)) | (p, v) ∈ post (t) |}. The set of modes of t is denoted
by Σ(t). Note that such a “binding” of variables to colors is always only local, when firing
the respective transition. t can fire in a mode σ from a marking M if M ≥ pre (t, σ),
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denoted by M [t, σ⟩. This firing leads to a new marking M ′ = (M−pre (t, σ))+post (t, σ),
which is denoted by M [t, σ⟩M ′.

We collect in the set R(N ,M) the markings reachable by firing a sequence of tran-
sitions in N from any marking in a set of markings M. We say N resp. N is finite if
P , T and F are finite. A high-level Petri net N = (Col ,Var , P, T, F, g,M0) is called
safe if in every reachable marking, on every place there is at most one color, formally
∀M ∈ R(N)∀p ∈ P :

∑
c∈Col M(p, c) ≤ 1. In this thesis, we in particular aim to ana-

lyze the behavior of high-level Petri nets. To avoid any issues concerning undecidability
regarding the firing relation, we assume that guards are expressed in a decidable logic,
with Col as its domain of discourse.

Let N = (P, T, F, g) and N ′ = (P ′, T ′, F ′, g′) be two net structures with the same
sets of colors and variables. A function h : P ∪ T → P ′ ∪ T ′ is called a (high-level Petri
net) homomorphism, if:

i) it maps places and transitions in N into the corresponding sets in N ′, i.e.,
h(P ) ⊆ P ′ and h(T ) ⊆ T ′;

ii) it is “compatible” with the guard, preset, and postset, of transitions, i.e.,
for all t ∈ T we have g(t) = g′(h(t)) and pre (h(t)) = {| (h(p), v) | (p, v) ∈ pre (t) |}
and post (h(t)) = {| (h(p), v) | (p, v) ∈ post (t) |}.

For N = (N ,M0) and N ′ = (N ′,M′
0), the homomorphisms between N and N ′ are

the homomorphisms between N and N ′. Such a homomorphism h is called initial if
additionally

iii) {{| (h(p), c) | (p, c) ∈M0 |} | M0 ∈M0} =M′
0.

High-level Petri nets generalize Place/Transition Petri nets: Every P/T Petri net
(P,T,F,M0) can be interpreted as a high-level Petri net ({•}, {v•},P,T,F•, true, {M•

0})
with F•(x, v•, y) := F(x, y). In a marking, every place holds a number of tokens •, which
is the only value ever assigned to the variable v• on every arc (since • is the only color).
The initial marking is given by M•

0(p, •) := M0(p) for all p ∈ P, and the guard of every
transition is true.

Conversely, we can expand a given high-level Petri net to a P/T Petri net with the
same behavior. Often (and particularly in all examples in this thesis) we consider high-
level Petri nets with only one initial marking, i.e., M0 is a singleton. Such a high-level
Petri net is then also denoted by N = (Col ,Var , P, T, F, g,M0) with the initial marking
M0. We now first define the expansion of high-level Petri nets with one initial marking,
and explain how to adapt this definition for multiple initial markings at the end of this
section. The expansion1 of N is defined as the P/T Petri net Exp(N) = (P,T,F,M0)
with

• P := {p.c | p ∈ P, c ∈ Col},
1What we call here “expansion” is often referred to as the “unfolding” of a high-level Petri net, e.g.,

in [KLP06; LHY12]. Due to the obvious clash of notion with the later defined (symbolic) unfolding of
high-level Petri nets, we use the term “expansion”, as, e.g., in [CJ04].
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• T := {t.σ | t ∈ T, σ ∈ Σ(t)},
• F(p.c, t.σ) := pre (t, σ)(p, c) and F(t.σ, p.c) := post (t, σ)(p, c) for p.c ∈ P, t.σ ∈ T,

• M0 := {| p.c | (p, c) ∈M0 |}.

Every marking M in Exp(N) corresponds to a marking M in N , with M(p, c) = M(p.c). A
transition t ∈ T can fire in mode σ ∈ Σ(t) from M iff t.σ ∈ T can fire from M. The thereby
reached markings then also correspond to each other, i.e., if ∀p.c ∈ P : M′(p.c) = M ′(p, c)
then M [t, σ⟩M ′ ⇔ M[t.σ⟩M′. Thus, we say that N and Exp(N) have the same behavior.
If N is finite then the expansion Exp(N) is finite iff Col is finite. We call N a high-level
representation of Exp(N).

A high-level Petri net N is called expansion safe if the place/transition Petri net
Exp(N) is safe. This is the case if and only if in no reachable marking in N , there is a
place that holds the same color twice. Every safe high-level Petri net therefore is also
expansion safe. If N is expansion safe then we can w.l.o.g. write all reachable markings,
as well as pre- and postsets of transitions as sets rather than multi-sets. Transitions with
two copies of the same (p, v) in their pre- or postset could never fire.

In the case of two or more initial markings in the setM0, we implicitly assume there
to be a special initial transition ⊥ that fires only once to initialize the net with any initial
marking M ∈ M0. We then add, for every M ∈ M0, a transition ⊥M to T, and define
F(⊥M , p.c) := M(p, c) for p.c ∈ P. To ensure that the transition only fires once, we add
a place p⊥ to P, and define F(p⊥,⊥M ) := 1 for all M ∈M0. Finally, we define the initial
marking of Exp(N) to be M0 := {| p⊥ |}.

2.3.2 High-Level Petri Games

Having described high-level Petri nets, we now move on to high-level Petri games. Pa-
rameterized expansion safe high-level Petri games were introduced in [GO21]. We only
make implicit use of the parameters, in the sense that we may describe a high-level Petri
net with the help of parameters, e.g., for the definition of its color set, but after that
always consider the parameters to be fixed. We recall a slightly adapted version of the
definition of high-level Petri games.

A high-level Petri game is a tuple G = (Col ,Var , PS, PE, T, F, g,M0,Obj, P⊛) such
that N(G) := (Col ,Var , P, T, F, g,M0) with P := PS ⊔ PE is a high-level Petri net, and
P⊛ ⊆ PS. This net is called the underlying high-level Petri net of G. As in the low-level
case, the places are divided into environment places PE and system places PS, and the
special places P⊛ which, together with Obj ∈ {Safety,Reach} give the objective for the
system players in the game. Dependent on Obj, we call P⊛ the set of bad places or target
places, and denote it by P♠ or P♡, respectively.

Just as for nets, we sometimes assume Col and Var to be given, and omit them in
a tuple describing a high-level Petri game. Let now Col and Var be given. A given
high-level Petri game G = (PS, PE, T, F, g,M0,Cond, P⊛) can be expanded to a P/T
Petri game Exp(G) = (PS,PE,T,F,M0,Cond,P⊛), called the expansion of G, where
the underlying net of Exp(G) is given by the expanded underlyng net of G, i.e., for
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P := PS ⊔ PE we have (P,T,F,M0) = Exp(N(G)). The classification of places as a
system-, environment-, or special place then depends on the respective high-level place,
i.e., ∀p.c ∈ P : p.c ∈ Px ⇔ p ∈ Px for every x ∈ {S,E,⊛}.

As for high-level Petri nets, we often consider high-level Petri nets with one initial
marking M0. In this case, we denote a high-level Petri game by G = (Col ,Var , PS, PE, T,
F, g,M0,Cond, P⊛).

Illustrating High-level Petri games. While illustrating high-level Petri nets resp.
-games (such as, e.g., in Fig. 2.6) we adopt from P/T Petri nets resp. -games the depiction
of places as circles and transitions as squares, as well as the colors and border coding for
the distinction between system places, environment places, and special places. Guards
are written next to the respective transitions, and elements (p, v, t), (t, v, p) ∈ F are illus-
trated as directed arcs with label v. To improve readability, several “tricks” are applied:

• We may write multiple variables on one arc to represent multiple arcs.

• The absence of a guard means that it always evaluates to true.

• In all our examples, we consider the color 0 to be special, by using it like a “neutral
token” (as the token • in P/T Petri nets). We assume an unlabeled arc to be
implicitly labeled by a variable v0 (that is not used anywhere else), and the guard
of the respective transition to additionally contain the proposition v0 = 0.

• We further can label arcs with explicit colors c ∈ Col . Analogously to the situation
described above this is shorthand for an arc labeled with a new variable vc and the
respective transition’s guard containing the proposition vc = c.

• Finally, we sometimes label the arcs with tuples of variables (x1, . . . , xn) with
x1, . . . , xn ∈ Var although the set Col does not explicitly contain such tuples.
In this case we implicitly extend Col to also contain tuples of colors, and view
the tuple-labeled arc as shorthand for an arc labeled by a new variable x⃗ that
is implicitly added to Var , and the respective transition having the proposition
x⃗ = (x1, . . . , xn) in its guard. �

We now proceed with our running example.

Example 2.3 (High-level “Communicating Copycats”). We fix m = 2 in this
example. In Fig. 2.6, we see two high-level Petri games representing the running example
“Communicating Copycats” (modulo renaming of nodes in the expansion). The high-level
Petri game in Fig. 2.6a is a safe high-level representation of the Petri game in Fig 2.4.
The representation in Fig. 2.6b is not safe, since in the initial merking, there are two
colors on the same place. It is, however, expansion safe, meaning its expansion is a safe
P/T Petri game.

The high-level Petri game in Fig. 2.6a with Col = {0, 1, 2} has the initial marking
{| (EnvA, 0), (EnvB, 0) |}, which is illustrated by the tokens with color 0 on the respective
places, and corresponds to the initial marking {|EnvA,EnvB |} in the P/T Petri net in
Fig 2.4. The environment player on EnvB has the choice in which mode it wants to fire
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(a) Safe high-level Petri game with Col = {0, 1, . . . ,m}
and Var = {x, y}.

Env

B A

go

{X,Y} = {A,B},
1 ≤ x ≤ m

Go

Sys

mim
1 ≤ x ≤ m

Mim

X

(X, x)

Y

X

(X, x)

com

A,B

A,B

end

Target

(A, x),
(B, y)

(A, x),
(B, y)

(b) Expansion safe high-level Petri game
with Col = {A,B, 1, . . . ,m} and Var =
{X,Y, x, y}.

Figure 2.6: Two high-level representations of the (underlying net of the) “Communicating
Copycats” running example from Fig 2.4.

goB, namely either {y ← 1} or {y ← 2}. The assignment {y ← 0} is not a mode of goB,
since the guard “y > 0” evaluates to false under this variable assignment. Independently
of the environment’s choice, the transition places a token of color 0 on the system place
SysA. This system player knows in which mode goB fired, and therefore which color,
1 or 2, has been placed on the place GoB. The symmetric case is true for the system
player that is placed on SysB; It knows which color x ∈ {1, 2} was placed on GoA. For
the system players to be able to reach the target place Target by firing transition end ,
we see that there must be the same colors on MimA and GoA, and on MimB and GoB,
respectively. This means that the transition mimA must fire in the same mode as goA
did, and analogously for mimB and goB. For the system players on SysA and SysB to be
able to allow the correct mode deterministically, the two must, as in the P/T case, take
the joint transition com.

We continue our discussion of the running example by considering next the high-level
Petri game in Fig. 2.6b (still for the fixed m = 2). It also is a high-level representation
of the “Communicating Copycats” example. We immediately see that the net is not safe
since initially, the environment players of color A and B are both residing on the place
Env . From this initial marking, only transition go is fireable: In a mode σ of go, the color
σ(X) ∈ {A,B} is taken from Env , and the tuple (σ(X), σ(x)) ∈ {A,B}× {1, 2} is placed
on Go. This represents the four initially activated transitions goA1, goA2, goB1, goB2 in
the Petri game in Fig. 2.4. Note that go can fire twice and thus represents the choices of
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the two environment players. In the process of firing go, additionally a system player with
color σ(Y) is placed on Sys. The guard of go ensures that if σ(X) = A then σ(Y) = B
and if σ(X) = B then σ(Y) = A. This means that no two copies of the same color ever
reside on Sys. Again, the goal of the two system players with colors A and B placed
on Sys is to copy the choice of the environment player with the same color. They do
this via transition mim. However, each system player placed on Sys by go only knows
the choice made by the environment player with the respective other color. The system
players can exchange their knowledge via the shared transition com. After firing it once,
they both know the choice made by the environment player of their color, which they
can then deterministically copy via transition mim. The transition end leading to the
target place Target again only is activated when both system players correctly copied the
respective environment player. We see that in every reachable marking, on every place
there is at most one copy of each of the two colors A and B – either as an individual
color or inside a tuple. Thus, the underlying high-level Petri net is expansion safe. �

The unfolding of the high-level Petri game G is defined as the unfolding of Exp(G).
Consequently, a (winning) strategy for the system players in G is defined as a (winning)
strategy for the system players in Exp(G).

Summarizing, a high-level Petri game G (with fixed parameters) is a succinct rep-
resention of a P/T Petri game Exp(G), with the semantic of markings and firing of
transitions being generalized versions from Exp(G), from which also the notions of un-
foldings, strategies, and plays are borrowed.

2.3.3 Symbolic Branching Processes and the Symbolic Unfolding

We have reached the final topic of the preliminaries, where we explore the generalizations
of branching processes and their associated maximal versions, unfoldings, to high-level
Petri nets. These generalizations are referred to as symbolic branching process and
symbolic unfolding [CJ04]. We start off by recalling the definition of symbolic branching
processes and symbolic unfoldings from [CJ04].

A high-level net structure N = (Col ,Var , P, T, F, g) is called ordinary iff there is
at most one arc connecting any two nodes in N , i.e., ∀(x, y) ∈ (P × T ) ∪ (T × P ) :∑

v∈Var F (x, v, y) ≤ 1. For such an ordinary net structure, analogously to the low-
level case, we say two nodes x, y ∈ P ∪ T are in structural conflict, denoted by x♯y, iff
∃p ∈ P ∃t, t′ ∈ T : t ̸= t′ ∧ p→ t ∧ p→ t′ ∧ t ≤ x ∧ t′ ≤ y.

A high-level occurrence net is a high-level Petri net O = (Col ,Var , B,E,H, g,K0)
with an ordinary net structure (Col ,Var , B,E,H, g), where B is a set of conditions
(places), E is a set of events (transitions), H is a flow relation, and K0 is the set of initial
cuts (reachable markings), such that the four properties below are satisfied.

The properties i) – iii) are exactly the same as in the P/T case and concern solely
the net structure. Property iv) generalizes the corresponding requirement of low-level
occurrence nets to the current situation, in which, just as in the low-level case every
condition has at most one event in its preset, and that those conditions having an empty
preset constitute the initial cut. Case iv.a) describes the conditions that initially hold
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a color, at the “top” of the net. Case iv.b) describes the conditions “deeper” in the net,
which initially do not hold a color.

The properties that a high-level occurrence net must satisfy are:

i) No event is in structural self-conflict, i.e., ∀e ∈ E : ¬(e♯e).
ii) No node is its own causal predecessor, i.e., ∀x ∈ B ∪ E : ¬(x < x).

iii) The flow relation is well-founded, i.e., ∀x ∈ B ∪ E : |{y | y ≤ x}| <∞.

iv) For every b ∈ B, exactly one of the following holds:

a) ∀K0 ∈ K0 :
∑

c∈Col K0(b, c) = 1 and {e | e→ b} = ∅.
In this case we denote pre (b) := (⊥, vb).

b) ∀K0 ∈ K0 :
∑

c∈Col K0(b, c) = 0 and there exists a unique pair (e, v) called
pre (b) s.t. (e, v, b) ∈ H, and for this pair we have H(e, v, b) = 1.

In a crucial notation for what follows in Chapter 4, we define in case iv.a) e(b) := ⊥,
and v(b) := vb, and in case iv.b) we identify the event e by e(b) and the variable v
by v(b). By this notation, we can say that whenever a condition b holds a color c, then
it got placed there by firing e(b) in a mode binding v(b) to the color c.

We denote by B0 := {b ∈ B | ∃K0 ∈ K0 ∃c ∈ Col : (b, c) ∈ K0} the conditions from
iv.b) occupied in all initial cuts. ⊥ can be seen as a “special event” that fires only once
to initialize the net, and produces the initial cuts K0 ∈ K0 by assigning values to the
variables vb on “special arcs” (⊥, vb, b) towards the conditions b ∈ B0. With the notation
for pre (b) introduced in iv.a) and iv.b) we have ∀b ∈ B : pre (b) = (e(b),v(b)).

In a high-level occurrence net, we define for every event e the predicates loc-pred(e)
and pred(e). The predicate pred(e) is satisfiable iff e is not dead, i.e., there are cuts
K0, . . . ,Kn with K0 ∈ K0 and events e1, . . . , en, s.t. K0[e1⟩ . . . [en⟩Kn[e⟩. This predicate
is obtained by building a conjunction over all so-called local predicates of events e′ with
e′ ≤ e, and the predicate of the special event ⊥.

The local predicate of e is, in its turn, a conjunction of two predicates expressing that
(i) the guard of the event e is satisfied, and (ii) that for every (b, v) ∈ pre (e), the value
of the variable v coincides with the color that the event e(b) placed in b. To realize this,
the variables v ∈ Var(e) are instantiated by the index e, so that ve describes the value
assigned to v by a mode of e. Having the definition of e(b) and v(b) from above in mind,
for a condition b, we abbreviate ve(b) := v(b)e(b). Formally, we have

loc-pred(e) := g(e)[v ← ve]v∈Var(e) ∧
∧

(b,v)∈pre (e)
ve = ve(b)

pred(e) := pred(⊥) ∧
∧

e′≤e

loc-pred(e′),

where pred(⊥) := loc-pred(⊥) := ∨
K0∈K0

∧
(b,c)∈K0

(vb⊥ = c) symbolically represents the
set of initial cuts.

Since the notion of predicates is crucial for understanding symbolic unfoldings of
high-level Petri nets, we demonstrate them on a generic example.
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Example 2.4 (Predicates). Consider the generic example for a high-level occurrence
net in Fig. 2.7. Next to this occurrence net, we progressively construct the local predicate
of the contained event ẽ.

e1 e2

b1 b2 b3

ẽ y > x

b̃
...
. . .

...

. .
...

.
. .
...

.

w w y

x y z

x

Figure 2.7: A generic high-
level occurrence net.

e(b1) = e1, v(b1) = w ⇒ ve(b1) = we1 , pre (b1) = (e1, w).
e(b2) = e2, v(b2) = w ⇒ ve(b2) = we2 , pre (b2) = (e2, w).
e(b3) = e2, v(b3) = y ⇒ ve(b3) = ye2 , pre (b3) = (e2, y).

g(ẽ) = (y > x).
pre (ẽ) = {(b1, x), (b2, y), (b3, z)}.

loc-pred(ẽ) = (yẽ > xẽ)

∧ (xẽ = we1) ∧ (yẽ = we2) ∧ (zẽ = ye2).

pred(ẽ) = loc-pred(ẽ) ∧ loc-pred(e1) ∧ loc-pred(e2) ∧ . . . .
�

A symbolic (initial) branching process of a high-level Petri net N is a pair β = (O, h)
with an occurrence net O = (Col ,Var , B,E,H, g,K0) in which pred(e) is satisfiable for
all e ∈ E, and with a(n initial) homomorphism h : O → N that is injective on events
with the same preset, i.e., ∀e, e′ ∈ E : (pre (e) = pre (e′) ∧ h(e) = h(e′))⇒ e = e′.

For two symbolic branching processes β = (O, h) and β′ = (O′, h′) of the same high-
level Petri net, β is a prefix of β′ if there exists an injective initial homomorphism ϕ
from O into O′, such that h′ ◦ ϕ = h. In [CJ04] it is shown that for any given high-level
Petri net N there exists a unique maximal symbolic initial branching process (maximal
w.r.t. the prefix relation and unique up to isomorphism). This branching process is called
the symbolic unfolding, and denoted by Υ (N) = (BN , EN , HN , gN ,KN

0 , πN ), where the
high-level occurrence net (BN , EN , HN , gN ,KN

0 ) in Υ (N) is again denoted by U(N),
such that Υ (N) = (U(N), πN ).

We proceed by illustrating the various concepts about branching processes recalled
above through a continuation of our running example.

Example 2.5 (Symbolic unfolding). Figure 2.8 shows the symbolic unfolding of the
(underlying high-level Petri net of the) high-level Petri game Communicating Copycats
from Fig. 2.6a. The names of events and conditions correspond to their label, and are
distinguishable by superscripts if there is more than one occurrence of a node. Instead
of its guard, next to every event the corresponding local predicate is indicated, where
we again omit the parts about the “special variables” v0 which can only be bound to the
value 0, to improve readability. We depict the special event ⊥ at the top of the net,
and write its predicate pred(⊥) below it. Firing ⊥ once generates the initial cut of the
symbolic unfolding, placing a 0 on both EnvB and EnvA, which enables the events goB
and goA.

It follows from Fig. 2.6a that the initially enabled events goB and goA have the
respective local predicates ygoB

> 0 and xgoA
> 0, respectively, which are indexed versions

of the guards of the represented transitions. Here, we omitted for loc-pred(goB) the part
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⊥vEnvB vEnvA

v
EnvA
⊥ = 0

v
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⊥ = 0

Figure 2.8: (A prefix of) the symbolic unfolding of the high-level version of our running
example Communicating Copycats from Fig. 2.6a.

v0goB
= vEnvB

⊥ . Together with pred(⊥) = (vEnvB
⊥ = 0 ∧ vEnvA

⊥ = 0), this would yield the
predicate

pred(goB) = loc-pred(goB) ∧ pred(⊥)
= (ygoB

> 0 ∧ v0goB
= vEnvB

⊥ ) ∧ (vEnvB
⊥ = 0 ∧ vEnvA

⊥ = 0),

and analogously for goA. After firing goB (or goA), the respective system player of color 0
on Sys ′A (or Sys ′B) can directly make a choice of taking the event mim ′

A (or mim ′
B) in a

mode assigning a value > 0 to x (or y). These two events represent the eight events aij ,
bij with i, j ∈ {1, 2} in the (P/T) unfolding in Fig 2.5. We see that in contrast to the
P/T unfolding, the output places of events are shared between all modes of an event.

The local predicate of end ′ contains four equalities, one “vend ′ = ve(b)” for each
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(b, v) ∈ pre (end ′). For example, we have (Mim ′
A, x) ∈ pre (end ′), with e(Mim ′

A) = mim ′
A

and v(Mim ′
A) = x. This results in the equality “xend ′ = xmim ′

A
” contained in the local

predicate of end ′. The predicate of the event end ′ is the conjunction of its own local
predicate combined with all local predicates loc-pred(e) with e < end ′. This predicate
implies

xgoA
> 0 ∧ xmim ′

A
= xgoA

∧ xgoB
> 0 ∧ xmim ′

B
= xgoB

,

and this means that the event end ′ can only fire if mim ′
A fired in the same mode as goA,

and mim ′
B fired in the same mode as goB. We therefore directly see that “the system

players must copy the choice of the respective environment players to reach the target
place” in the Petri game.

If, instead of mim ′
A and mim ′

B, the event com ′ is fired, the tokens are afterwards
placed on two new copies of SysA and SysB, as in the low-level case. However, these
two conditions now represent eight conditions in the P/T unfolding: The unique (purely
structural) causal history of a node in the P/T unfolding is represented in the symbolic
unfolding by the structural history together with all variable assignments needed to reach
that node. As in the P/T case, we only display the prefix of the unfolding where at most
two instances of com fired. �

As we see in the definition of high-level occurrence nets, the notion of causality and
structural conflict are the same as in the low-level case. However, a set of events in an
occurrence net can also be in what we call color conflict, meaning that the conjunction of
their predicates is not satisfiable. In a symbolic branching process, this means that the
constraints on the values of the firing modes, coming from the guards of the transitions,
prevent joint occurrence of all events from such a set in any one run of the net:

The nodes in a set X ⊆ E ∪ B are said to be in color conflict if
∧

e∈X∩E pred(e) ∧∧
b∈X∩B pred(e(b)) is not satisfiable. The nodes of X are concurrent if they are not in

color conflict, and for each x, x′ ∈ X, neither x < x′ , nor x′ < x, nor x♯x′ holds. A set
of concurrent conditions is called a co-set.

Note that while a set of nodes is defined to be in structural conflict if and only if
two nodes in it are in structural conflict, the same does not hold for color conflict: it is
possible to have a set {x1, x2, x3} of nodes that is in color conflict, but for which every
subset of cardinality 2 is not in color conflict.

Example 2.6 (Color conflict). In Fig. 2.9a, a high-level Petri net with initial marking
{| (p0, 0) |} is depicted. The only enabled transition is t0, placing in every mode σ =
{y ← 0, x ← σ(x)}, the same color σ(x) ∈ Z = {. . . ,−2,−1, 0, 1, 2, . . . } on each of the
three places p1, p2, p3. This color may be taken from the places by a respective transition
from each of these places; The three transition t1, t2, t3, however, each have a guard:
g(t1) = (x ≤ 0), g(t2) = (x ̸= 0), and g(t3) = (x ≥ 0). Depending on the mode σ in
which t0 fired, always two of the three transitions are fireable: if σ(x) = 0 then t1 and t3
can both fire (in mode {x← σ(x)}), if σ(x) < 0 then t1 and t2 can fire, and if σ(x) > 0
then t2 and t3 can fire.

Since the high-level Petri net in Fig. 2.9a is a high-level occurrence net, it is struc-
turally equal to its own symbolic unfolding in Fig. 2.9b. Again, instead of guards
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(a) A high-level Petri net with Col = Z and
Var = {x}.
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(b) The symbolic unfolding of the net in (a),
with the events {e1, e2, e3} in color conflict.

Figure 2.9: Illustration and example of nodes in color conflict.

of the events, the local predicates are written next to each event. To improve read-
ability, we abbreviated for e0 the associated local predicate ye0 = vb0⊥ together with
pred(⊥) = (vb0⊥ = 0) to ye0 = 0. The set {b1, b2, b3} is a co-set, since the conditions are
neither in conflict, nor causally related, and

∧
b∈{b1,b2,b3} pred(e(b)), which is equivalent to

ye0 = 0, is satisfiable, i.e., the conditions are not in color conflict. Consequently, the set
{e1, e2, e3} is also not in structural conflict, and the events are not causally related. How-
ever, we now have a color conflict between these three events, since

∧
e∈{e1,e2,e3} pred(e)

implies xe0 ≤ 0 ∧ xe0 ̸= 0 ∧ xe0 ≥ 0, which obviously is not satisfiable. However, each of
the sets {ei, ej} with i, j ∈ {1, 2, 3}, i ̸= j is not in color conflict. This makes each of the
sets {b′i, b′j} a co-set, while {b′1, b′2, b′3} is not a co-set. �

Having employed the notions of conflict, we end this chapter with one the most
important definitions when dealing with unfoldings, namely configurations.

Definition 2.7 (Configuration [CJ04]). A (symbolic) configuration is a set of high-
level events that is free of structural conflict and color conflict, and causally closed. The
configurations in a symbolic branching process β are collected in the set C(β). �

For a configuration C, we define by cut(C) := (B0 ∪ (C →)) \ (→ C) the cut of C,
describing the high-level conditions that are occupied after any concurrent execution
of C. Note that cut(C) is a co-set, and that ∅ is a configuration with cut(∅) = B0.

33





Chapter 3
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In [FO17], Finkbeiner and Olderog reduce the problem of solving a low-level Petri
game G with a single environment player and a bounded number of system players with
a safety objective to the problem of solving a two-player game G(G) over a finite graph.
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They show that Player 0 has a winning strategy in G(G) if and only if the system players
have a winning strategy in G. In [Gie22], Gieseking generalizes this concept to Petri
games with different objectives for the system players.

In practical scenarios, when high-level Petri games are used for modeling, the corre-
sponding expansions (low-level Petri games) often exhibit a significant amount of sym-
metric behavior. This is primarily because individual players (tokens), such as robots,
processes, or workpieces, do not necessarily need to exhibit distinct behaviors to achieve
success in the game.

In this chapter, we introduce a solving algorithm tailored for a specific subclass of
high-level Petri games that we call proper. These games feature a single environment
player and a bounded number of system players. The novel algorithm takes advantage
of the inherent symmetries within the system. The defined subclass is characterized by
three key restrictions. Firstly, we focus on expansion safe high-level Petri games, where
markings can be expressed as sets rather than multisets of individual colored tokens
(cp. Sec. 2.3.1). Secondly, we consider Petri games where the single environment player
is recurrently interfering, implying that in every infinite sequence of transitions, there
are infinitely many environment transitions. Finally, we assume that there is no mixed
communication in the net, meaning that a system player cannot communicate with on
the one hand only the environment and on the other hand other system players in the
same state.

The algorithm’s core concept combines the reduction technique employed in the re-
lated class of P/T Petri games, as detailed in [FO17; Gie22], with the creation of a reduced
reachability graph for High-level Petri nets as presented in [CDFH97]. We introduce, for a
given high-level Petri game G the symbolic two-player game G(G), which is a two-player
game over a finite graph with complete information. In this two-player game, Player 0
has a winning strategy if and only if in G the system players have a winning strategy.
The vertices of G(G) are equivalence classes with respect to symmetries of the vertices
of the two-player game G(G) presented in [Gie22] of the represented low-level Petri game
G = Exp(G). The correctness of this construction is established through a bisimulation
between these two two-player games. Additionally, we present an algorithm to derive a
winning positional strategy in G(G) based on the winning positional strategy in G(G).

Formally, the vertices in the symbolic two-player game G(G) are, as mentioned above,
equivalence classes of the vertices in the two-player game G(G), where G = Exp(G). In
the construction of G(G), we use arbitrary representatives of the classes, from which
we then build the arcs between the nodes. This has the consequence that during the
construction of the game, after reaching a new node, we have to compare it to all other
representatives computed up to that point and test them for equivalence with respect to
symmetry.

We therefore investigate employing so-called canonical representations of the equiv-
alence classes instead. We use techniques presented in [CDFH91a; CDFH93], where the
authors address a same problem for markings in the so-called symbolic reachability graph
of a high-level Petri net. With these, the canonical representation of a new node can be
automatically calculated, and instead of comparing it to every other node in the game
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for equivalence with respect to symmetry, which can be expensive, we only have to check
for equality. Employing these canonical representations as nodes, we arrive at a two-
player game that we call the canonical two-player game and denote it by Ĝ(G). We show
that this game is isomorphic to G(G), which means that we can transfer all results from
the symbolic two-player game to the canonical two-player game. Finally, we compare
the speed of construction for these two games, with the result that in most cases, the
canonical two-player game is faster to construct.
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Figure 3.1: An exemplary sequence of events in the running example “Signal Sending
Satellites”.

Running Example: Signal Sending Satellites. We introduce our second running
example, called Signal Sending Satellites – an abstract model of a base station sending
a message to one of three satellites (called Satellite 1, 2, 3). This satellite has to forward
the message to the other two, which have to receive the signal. Before modeling this
scenario as a high-level Petri game, we go through an exemplary sequence of events that
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is schematically illustrated in Fig. 3.1.
Initially, in Fig. 3.1a, the base station selects one of three satellites to send a message

to. The number of each satellite is indicated on its “wings” (its solar panels). In this
example, Satellite 1 is chosen and the transmission begins, as shown in Fig. 3.1b. At this
point, none of the satellites knows about the transmission, as indicated by the question
marks in the figure. In Fig. 3.1c, Satellite 1 detects the transmission (indicated by the
exclamation mark) and identifies itself as the recipient of the message. Satellite 1 then
shares this information with the other two satellites, as shown in Fig. 3.1d. After all
satellites have been informed, as illustrated in Fig. 3.1e, Satellite 1 proceeds to forward
the message, while the other two satellites receive it from Satellite 1 (as depicted in
Fig. 3.1f). Once the transmission is complete, we return to the initial state in Fig. 3.1a,
ready for the base station to select a different satellite to transmit to. The goal of the
satellites is to ensure that, regardless of which satellite the base station chooses, the
message must always be forwarded to the other two satellites.

We model this abstract scenario as a high-level Petri game with safety-objective for
the system players shown in Fig. 3.2. Before we go into detail, we explain the ideas of
the model. The base station serves as the environment, and the system components (the
three satellites) have to react correctly under all possible behavior of the environment.
In this case, the environment’s behavior is to select one of the three satellites that must
forward a message. Each satellite on the other hand must eventually choose between
two modes of operation: “Forwarding mode”, and “Receiving mode” during which they
specify the satellite from which they wish to receive a message. Ideally, each satellite
makes this choice informed about a currently ongoing transmission. To that goal, when
a satellite is chosen by the environment, it can learn this information and inform the
other satellites about it.

However, each satellite also has the option to make a direct decision without getting
informed about a possible transmission. Similarly, when a satellite learns that it must
forward a message, it has the option to make the decision without informing the other
two satellites. It is crucial that the selected satellite shares this information, so that each
satellite can forward or receive the message correctly. If this is achieved, the transmission
can be completed and the base station can choose a new satellite for the next transmission.

The illustration in Fig. 3.2, employs again the readability improving “tricks” described
in Sec. 2.3.2, with a “special color” 0, and multiple variables or tuples of variables on
arcs. The set of colors is given by Col = {0,1,2,3}, where 1,2,3 represent the three
satellites.

Initially, the environment player of color 0 resides on the place Env and the three
satellites, acting as system players, reside on the system place Init . Two transitions are
activated in that marking: via select , the environment selects one of the satellites by
assigning to x a value x̃ ∈ {1,2,3}. Transition uninf places a satellite on the place Ch,
from where it then can proceed into the Forward mode via fwd or the Receiving mode
via rec. The transition uninf therefore represents the satellite’s possibility to make the
choice of a mode uninformed of a possible transmission.

However, after the environment selected the satellite and placed x̃ on place Tr (rep-
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Figure 3.2: The running example “Signal Sending Satellites” with Col = {0,1,2,3} and
Var = {x, y, z}

resenting a transmission to Satellite x̃), the respective satellite can learn about the trans-
mission by taking transition tr in mode {x← x̃}. Afterwards, from place Inf , it now has
two possibilities, both leading to x̃ being placed on Ch: it either takes transition noinf ,
not informing the other satellites, or transition inf . Here, the other two satellites are
taken from Init , and all three are placed on Ch.

If inf fired, all three satellites now have the firing of select in their past, and therefore
know the value x̃. They can thus make an informed choice whether to go into Forwarding
mode (fwd), or Receiving mode (rec) specifying the satellite from which they wish to
receive a message. When acting correctly, Satellite x̃ takes fwd to place Fwd , representing
that it is in Forwarding mode, and the other two satellites y1 and y2 take transition rec
in the modes {y ← yi, x← x̃}, i = 1, 2. This places the tuples (y1, x̃) and (y2, x̃) on Rec,
representing that the two satellites are in Receiving mode, wishing to receive a message
from Satellite x̃.

Finally, transition end can fire in mode {x← x̃, y ← y1, z ← y2}, restoring the initial
marking and allowing the environment to again select one of the satellites. Notice that
the marking {| (Tr , x̃), (Fwd , x̃), (Fwd , (y1, x̃)), (Fwd , (y2, x̃)) |} from where end can fire
could also have been reached if the system players coincidentally made the right choice
without getting informed. However, since in a strategy they have to make their choice
deterministically and dependent only on their respective knowledge, this would mean
the choice is independent of the environment’s selection. So if the environment chose an-
other satellite then the net would arrive at a marking {| (Tr , y1), (Fwd , x̃), (Fwd , (y1, x̃)),
(Fwd , (y2, x̃)) |} or {| (Tr , y2), (Fwd , x̃), (Fwd , (y1, x̃)), (Fwd , (y2, x̃)) |}. From there, the
transition end could not fire, and the system players would have to take transition bad1

or bad2, respectively, reaching the bad place Bad and loosing the play.

Note. Since a color x̃ on Tr represents the base station (environment) transmitting a
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message to Satellite x̃, it would be more intuitive for Tr to be an environment place.
We model Tr as a system place so that the Petri game satisfies a property later called
“having no mixed communication”. This means that there is no system place that has
pure system transitions as well as environment transitions in its postset. This restriction
of Petri games has been introduced in [Gie22] to ensure correctness of the presented
solving algorithms. Since in this chapter we build on these algorithms, we also assume
the considered Petri games to have no mixed communication (cp. 3.1.2). In this example
it makes no difference whether Tr is a system place or environment place. In general,
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Figure 3.3: The P/T expansion of the high-level game Signal Sending Satellites from
Fig. 3.2.
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it is often possible to remodel a given Petri game to satisfy “no mixed communication”
with minor adaptations (e.g., adding some places or transitions) while maintaining the
general semantics of the Petri game. For further details, we refer the reader to [Gie22].

For the sake of completeness, we present in Fig. 3.3 the expansion of the running
example Signal Sending Satellites. We abbreviate the modes of transitions by the assigned
values, e.g., tr .{x ← 1} is abbreviated by tr .1, and inf .{x ← 1, y ← 3, z ← 2} by
inf .[1,3,2]. A special case are the instances of rec, where we abbreviate the mode
“non-alphabetically”, e.g., rec.{y ← 2, x ← 3} is abbreviated by rec.[2,3], since firing
this transition places a token on Rec.(2,3). The high-level transitions inf and end
each have the same preset and postset for the two modes {x ← x̃, y ← ỹ, z ← z̃} and
{x ← x̃, y ← z̃, z ← ỹ}. We therefore have three pairs of low-level transitions with the
same preset and postset. We draw one transition for each pair and label it by both names.
Finally, for the instances of end , we only imply the postsets by the dashed arrows: every
instance of end places one token on the environment place Env .0 and one token on every
system place Init .x̃. To ensure readability, we restricted the transitions and places that
can eventually fire resp. appear in any reachable marking.

3.1 Central Concepts

In the running example Signal Sending Satellites from Fig. 3.1 and Fig. 3.2, we observe
that in all three possible cases of “satellite selection” by the environment, the situations
are completely symmetric to each other. The concept of symmetry is discussed in detail
in Sec. 3.1.1. In the solving algorithm for P/T Petri games in [FO14; FO17; Gie22],
a two-player game on a graph is constructed from a given Petri game. Section 3.1.3
presents a simplified version of this two-player game for a restricted class of Petri games
introduced in Sec. 3.1.2. These two concepts are combined in the later sections 3.2
and 3.3, by applying symmetries from a high-level Petri game to the vertices in the
constructed two-player game.

3.1.1 Symmetries on High-Level Petri Nets

As mentioned above, the possible behavior of all satellites in the Signal Sending Satellites
example is completely symmetric: Each satellite has the same set of actions available to it,
including interactions with the environment and other satellites. Therefore, the specific
satellite selected by the environment does not matter. The selected satellite should inform
the other two and switch to Forwarding mode, while the other two should switch to
Receiving mode, following the informally described strategy. This subsection formalizes
the concept of symmetries in high-level Petri nets, which serves as the foundation for the
results presented in this chapter.

A symmetry s in a high-level Petri net N = (Col ,Var , P, T, F, g,M0) is a permutation
on the set of colors Col . Let S(N) be the set of all symmetries on N . Since permutations
are bijective, together with the function composition ◦ the symmetries form a group
(S(N), ◦) with 1S(N) = idCol .
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From the definition, we only get that symmetries map colors to colors. We now
naturally lift this to different elements. A symmetry s can be applied to a mode σ
of a transition by the function composition; s(σ) := s ◦ σ. When applied to a set
A ⊆ P × Col of place-color combinations (as, e.g., a marking or transition’s preset),
a symmetry acts only in the second coordinate, i.e., s(A) := {(p, s(c)) | (p, c) ∈ A}.
Analogously, for a set A of transition-mode combinations (t, σ) with σ ∈ Σ(t) we define
s(A) := {(t, s(σ)) | (t, σ) ∈ A}. For a guard g(t) of a transition t, we denote by s(g(t))
the predicate where every variable x is replaced by the term s(x).

The purpose of symmetries is to express an equivalence of situations, so that we only
have to consider one representative of each equivalence class when analyzing a high-level
Petri net’s behavior. However, the definition above is to general for this aim since it does
not consider the syntax and semantics of the net. We now do exactly this and thereby
restrict the symmetries to the ones that ensure that from “symmetric” situations we get
equivalent possible behavior.

Definition 3.1 (Admissible symmetries). Let N = (Col ,Var , P, T, F, g,M0) be a
high-level Petri net. The set of admissible symmetries is the biggest subset S ⊆ S(N)
such that (S, ◦) is a subgroup of (S(N), ◦) satisfying ∀s ∈ S :

• s(M0) =M0,

• ∀t ∈ T : s(g(t)) ≡ g(t), and ∀σ ∈ Σ(t)

(i) s(pre (t, σ)) = pre (t, s(σ)), and
(ii) s(post (t, σ)) = post (t, s(σ)).

We denote this set S by S(N). �
The first condition means that the set of initial markings is invariant under the appli-

cation of symmetries. In the special caseM0 = {M0} of exactly one initial marking M0,
this implies s(M0) = M0 for all symmetries s ∈ S(N). The second condition ensures that
the symmetries are “compatible” with the firing of transitions: if a transition t, fireable in
mode σ, takes the color c from a place p (i.e., (p, c) ∈ pre (t, σ)), then it should be fireable
in mode s(σ) and, when fired, take color s(c) from place p (i.e., (p, s(c)) ∈ pre (t.s(σ))).
The same applies to the postset of t. Hence, admissible symmetries on a high-level Petri
net are those symmetries which are compatible with the net’s semantics.

For a high-level Petri game G, we adopt the notion of (admissible) symmetries from
its underlying high-level Petri net N(G), i.e., S(G) := S(N(G)).

The following lemma formalizes the compatibility of admissible symmetries with the
firing relation.

Lemma 3.2 ([CDFH97], Property 2.1). Let N be a high-level Petri net with tran-
sitions T and admissible symmetries S = S(N). These symmetries are compatible with
transition firing, i.e., for markings M,M ′ in N , we have ∀t ∈ T ∀σ ∈ Σ(t) ∀s ∈ S :

M [t, σ⟩M ′ ⇔ s(M)[t, s(σ)⟩s(M ′).
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Example 3.3 (Symmetries in Signal Sending Satellites). In the running exam-
ple G from Fig. 3.2, we wrote the set of colors as Col = {0,1,2,3}, which would mean
that the group of admissible symmetries is a subgroup of Sym({0,1,2,3}), the group
of all permutations on {0,1,2,3}. However, we make use of an abbreviation by tuples
on arcs, meaning that we implicitly extend the colors to contain tuples (as described
in Sec. 2.3.2). This means the set of all symmetries is actually given by the set of all
permutations on {0,1,2,3} ∪ ({0,1,2,3} × {0,1,2,3}). We now explicitly treat this
“extended” notion. We thereby see that here the abbreviation is consistent with the con-
cept of symmetries by showing that the group of admissible symmetries can in fact be
identified with a subgroup of Sym({0,1,2,3}).

Let s be an admissible symmetry. We immediately see from the initial marking
M0 = {(Env ,0), (Init ,1), (Init ,2), (Init ,3)} that, since s(M0) = M0, it must hold that
s(0) = 0 and that s maps {1,2,3} into {1,2,3}. Since s is bijective, this implies that s
maps {0,1,2,3} × {0,1,2,3} into {0,1,2,3} × {0,1,2,3}.

However, it must also hold condition (i) from Definition 3.1. In particular, this means
for the transition bad2 that ∀x̃, ỹ ∈ {0,1,2,3} :

{(Rec, s((ỹ, x̃)))} = s(pre (bad2, {x← x̃, y ← ỹ})) (i)
= pre (bad2, s({x← x̃, y ← ỹ}))

= pre (bad2, {x← s(x̃), y ← s(ỹ)}) = {(Rec, (s(ỹ), s(x̃)))}.

Therefore, we have that ∀x̃, ỹ ∈ {0,1,2,3} : s((ỹ, x̃)) = (s(ỹ), s(x̃)), which means that
the values of s on {0,1,2,3}×{0,1,2,3} are given by its values on {0,1,2,3}. Together
with the fixed element 0 (and after checking that no other transition restricts admissibility
any further) we conclude that the set S of admissible symmetries can be identified by
the permutation group Sym({1,2,3}) = S3 of permutations on {1,2,3}.

Going back to the informal description, this makes perfect sense, since the satellites
(colors 1,2,3) have symmetric behavior, and the base station (color 0) has a special role
that is not symmetric to the satellites.

We now verify that the firing of transitions is compatible with the admissible sym-
metries, as stated in Lemma 3.2. Consider the case where the environment selected
Satellite 2 via transition select in mode {x ← 2}, and the satellite in its turn got in-
formed by that selection via transition tr in mode {x ← 2}. This leads to the mark-
ing M = {(Tr ,2), (Init ,1), (Inf ,2), (Init ,3)}. Consider now the admissible symmetry s
given by s(1) = 2, s(2) = 3, and s(3) = 1. Then it is s(M) = {(Tr ,3), (Init ,1), (Init ,2),
(Inf ,3)}. From the marking M , we can fire, e.g., inf in mode σ = {x ← 2, y ← 1,
z ← 3}:

M [inf , σ⟩M ′ with M ′ = {(Tr ,2), (Ch,1), (Ch,2), (Ch,3)}.
With s(σ) = {x ← 3, y ← 2, z ← 1} and s(M ′) = {(Tr ,3), (Ch,1), (Ch,2), (Ch,3)} we
verify s(M)[inf , s(σ)⟩s(M ′). �

Note that we have now discussed the application of symmetries to colors and modes.
Considering the expansion Exp(G) = (P,T,F,M0) of a high-level Petri game G, this
corresponds to applying symmetries to (low-level) places and conditions. To see this,
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let s ∈ S(G). For every place p = p.c ∈ P, we define s(p) := p.s(c). Analogously,
for every transition t = t.σ ∈ T, we define s(t) := t.s(σ). With this definition, we get
∀s ∈ S(G) : s(M0) = M0, and ∀s ∈ S(G) : M[t⟩M′ ⇔ s(M)[s(t)⟩s(M′).

3.1.2 Proper High-Level Petri Games

Although in the definition of high-level Petri nets we permit only a single variable on
every arc, and assume guards to be decidable, we still allow for complicated behavior. We
could for example deal with uncountable color sets, or nets with unbounded concurrent
behavior caused by an unbounded number of colors in reachable markings. Since we want
to solve Petri games with an underlying high-level Petri net structure, it is reasonable to
exclude behavior from which we know that we cannot handle it.

To that aim we introduce a class of high-level Petri games called G, which are consid-
ered “proper”. In later sections, we will apply the concept of symmetries to the two-player
games used in the solving algorithm from [FO17; Gie22] for this class. We now explain
the motivation and benefits for each of the four assumptions that define proper high-level
Petri games. After the definition, we give in Fig 3.4 four Petri games, each violating (at
least) one of these assumptions, and proceed by showing that the running example Signal
Sending Satellites from Fig. 3.2 is a proper high-level Petri game.

The algorithm for solving k-bounded P/T Petri games with a safety objective, as
introduced in [FO17], is generalized and extended in [Gie22] to incorporate different ob-
jectives for the system players. However, [Gie22] only considers 1-bounded (i.e., safe)
Petri games. In this chapter, we also restrict ourselves to safe Petri games, which simpli-
fies the technical definitions in subsequent sections. Moreover, this allows us to represent
markings, presets, and postset (as well as the later introduced decision sets), as sets in-
stead of multi-sets. Recall that safe Petri nets correspond to expansion safe high-level
Petri nets (cp. p. 25).

A decision taken by the strategy in a place p depends on the causal past of p, which
may be arbitrarily large. Similar to model checking approaches based on net unfold-
ings [EH08], we use cuts (maximal subsets of pairwise concurrent places in the unfolding)
as unique representatives of the causal past. Cuts are directly related to the concept of
configurations – causally closed sets of events without conflicts: The markings generated
by configurations in the unfolding are exactly all cuts. The standard notion of cuts,
however, collects places with possibly different knowledge of the individual players about
the causal past.

The paper [FO17] introduced a new kind of cut, called maximal cuts, abbreviated
mcut. For an environment place p, an mcut is a cut including p such that for all places q
in that cut either (1) the system players have maximally progressed at q, in the sense
that any further system transition would require an additional environment transition
starting from place p, or (2) the future starting at q does not depend on the environment.
Mcuts are especially interesting for strategies in Petri games with a single environment
player. For Petri games with one environment player, every maximally progressed sys-
tem player of an mcut (case (1)) can be considered to be equally informed about the
environment: the next transition either directly involves the environment player or at
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least contains the current environment place in its causal past.
This fact is exploited in [FO17; Gie22] to create a two-player game with complete

information which is used to solve Petri games. Since we want to apply symmetries to
these solving algorithms, we therefore consider Petri games with at most one environment
player. For simplicity, we additionally restrict ourselves to Petri games where alterna-
tive (2) in mcuts does not arise. In the terminology of [FO17], we do not consider type-2
places here. In other words, we require that the system players cannot proceed infinitely
without the environment. We call such an environment recurrently interfering :

Definition 3.4 (Recurrently interfering environment). We say a P/T Petri game
G = (PS,PE,T,F,M0,Obj,P⊛) has a recurrently interfering environment if in every infi-
nite firing sequence M0 [t1⟩M1 [t2⟩ . . . in G, it is pre (ti)∩PE ̸= ∅ for infinitely many i ∈ N.
Analogously, we say a high-level Petri game G = (Col ,Var , PS, PE, T, F, g,M0,Obj, P⊛)
has a recurrently interfering environment if in every infinite firing sequence M0 [t1, σ1⟩
M1 [t2, σ2⟩ . . . in G, it is pre (ti, σi) ∩ (PE × Col) ̸= ∅ for infinitely many i ∈ N. �

Thus, G has a recurrently interfering environment if and only if Exp(G) has a recur-
rently interfering environment. Assuming the environment to be recurrently interfering
simplifies the formal definitions of elements used in the solving algorithm for Petri games,
namely decision sets and the two-player game, and eliminates the need to introduce an
additional pre-processing algorithm similar to the one presented in [FO17] or a round-
robin component used in the algorithm in [Gie22]. Both of these handle the cases where
the system players can proceed infinitely without interacting with the environment.

Finally, in accordance with [Gie22], we limit our attention to Petri games that adhere
to the principle of “no mixed communication”. Specifically, this means that the structure
of the game (resp. its underlying net) ensures that system players never have the possi-
bility to provide both a communication involving the environment or one involving only
other system players.

Definition 3.5 (Mixed communication [Gie22]). We say a P/T Petri game G =
(PS,PE,T,F,M0,Obj,P⊛) has mixed communication if

∃p ∈ P∃t1, t2 ∈ post (p) : pre (t1) ∩ PE ̸= ∅ ∧ pre (t2) ⊆ PS.

Analogously, a high-level Petri game G = (Col ,Var , PS, PE, T, F, g,M0,Obj, P⊛) has
mixed communication if

∃p ∈ P ∃t1, t2 ∈ p→ : pre (t1) ∩ (PE ×Var) ̸= ∅ ∧ pre (t2) ⊆ (PS ×Var). �

As for recurrently interfering environments, a high-level Petri game G by definition
has mixed communication if and only if Exp(G) has mixed communication. With the
definitions above we can now define the class proper Petri games, for which we generalize
and build upon the solving algorithms from [FO17; Gie22] in this chapter.
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Definition 3.6 (Proper (high-level) Petri games). The class G consists of all finite
high-level Petri games G = (Col ,Var , PS, PE, T, F, g,M0,Obj, P⊛) such that |Col | < ∞
and

• G is expansion safe, i.e., ∀M ∈ R(N(G))∀p ∈ P ∀c ∈ Col : M(p, c) ≤ 1,

• G has only one environment, i.e., ∀M ∈ R(N(G)) :
∑

(p,c)∈PE×Col M(p, c) ≤ 1,

• G has a recurrently interfering environment (cp. Definition 3.4),

• G has no mixed communication (cp. Definition 3.5).

We call the elements of G proper high-level Petri games. We denote by Exp(G) the class
of P/T Petri games G such that G = Exp(G) for some G ∈ G. These P/T Petri games are
safe, have only one recurrently interfering environment, and no mixed communication,
and we call them proper (P/T) Petri games. �

Notice that by definition, all proper high-level Petri games have a single initial mark-
ing M0 instead of a set of initial markings (cp. p. 26).

Figure 3.4 shows four high-level Petri games, each violating one property of proper
high-level Petri games. For all games, we assume Col = {0, 1, 2}. We again use 0
as a special number, and assume that every unlabeled edge is labeled implicitly by a
variable v0, with the guard of the corresponding transition implicitly containing the
clause v0 = 0. We do not give the specification (i.e., the objective of the system players)
of the Petri games and only describe the respective violation, which always depends
purely on the underlying structure.

p0

x ̸= y t

q1 q2
z

x
y
x

G1 p10 p2

t1 t2

q0

G2 p10

q1 q2
t1

t2

t3

t4

p20G3 p10 p20

t1 t2

p30

q1 q2

G4

Figure 3.4: Four examples of high-level Petri games, each violating one property of proper
high-level Petri games.

The high-level Petri game G1 is not expansion safe: when t fires, the colors assigned
to x and z are placed on q1, and the colors assigned to x and y are placed on q2. The
guard of t ensures that two different colors are placed on q2. However, when firing t, e.g.,
in mode {x← 1, y ← 2, z ← 1} the color 1 gets placed q1 twice, resulting in the marking
{| (q1, 1), (q1, 1), (q2, 2) |}.

G2 (while being expansion safe) has more than one environment player: firing t2
results in the marking {| (p1, 0), (p2, 0) |}, with p1, p2 ∈ PE.

The high-level Petri game G3 is expansion safe and has only one environment player,
but this environment player is not recurrently interfering: The infinite firing sequence

M0 ={| (p1, 0), (p2, 0) |} [t1, {v0 ← 0}⟩ {| (q1, 0), (p2, 0) |} [t2, {v0 ← 0}⟩
{| (p1, 0), (p2, 0) |} [t1, {v0 ← 0}⟩ {| (q1, 0), (p2, 0) |} [t2, {v0 ← 0}⟩ . . .
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cycling the color 0 through the places p1 and q1, contains no transition with environment
places in its preset.

Finally, G4 has mixed communication, as transition t1 only has system places in its
preset and transition t2 has both system places and environment places in its preset, and
both share the system place p2 in their preset.

After seeing examples for non-proper games, we now examine why the running ex-
ample Signal Sending Satellites is a proper high-level game.

Example 3.7 (Proper high-level Petri game). The running example Signal Sending
Satellites from Fig. 3.2 is a proper high-level Petri game:

• Transition end is the only one that places the color 0 on the Env place, which can
only fire when there is a color on Tr . This means that there cannot be two copies
of 0 on place Env .

• On every other place, there can be at most one copy of each satellite, either as
an individual color or as the first component in a tuple. This follows from the
structure of the high-level Petri net and the fact that transition end resets the
initial marking. Thus, the example is expansion safe.

• Furthermore, these arguments imply that there is only one environment, which is
recurrently interfering because every execution either ends or requires an instance
of sel to fire infinitely often.

• As discussed in the note on p. 39, the example has no mixed communication. �

3.1.3 Solving Place/Transition Petri Games

As already discussed above, in [FO14; FO17], it is shown that there is a winning strategy
for the system players in a k-bounded P/T Petri game G with one environment player
and a safety objective for the system players if and only if there is a winning strategy for
Player 0 in a two-player game G(G) over a finite graph. The proof rests on a link between
so-called mcuts (“maximal” cuts where every enabled event involves an environment
player) in the strategy of the Petri game G and corresponding environment-dependent
decision sets (vertices) in the two-player game G(G).

In [Gie22], Gieseking consolidates this work, and extends it for safe (i.e., 1-bounded)
P/T Petri games without mixed communication to different objectives for the system
players, namely: safety, reachability, Büchi, co-Büchi, and parity. Furthermore, each
of these objectives is subdivided into an existential and a universal version, meaning
that either one or all system players have to satisfy the objective. To express these
objectives, the notion of information flow is introduced. In the terminology of [Gie22],
the Petri games in [FO14; FO17] have a universal safety objective. The objectives of
Petri games considered in this work (cp. Sec. 2.2) correspond to universal safety and
existential reachability. To model these objectives, the notion of information flow is not
needed.
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The proper Petri games G ∈ Exp(G) considered here are a specific instance of the
Petri games studied in [FO17; Gie22]. The assumption of a recurrently interfering envi-
ronment, and the restriction to the objectives universal safety and existential reachability,
allow us to simplify the definition of G(G) from [Gie22]: due to the assumption of a re-
currently interfering environment. we can omit the round-robin component from [Gie22]
for handling “type-2 behavior” (infinite progress of the system without interaction with
the environment), and a preprocess with the same purpose from [FO17].

Additionally, we directly integrate the automaton handling the different system ob-
jectives from [Gie22] into the two-player game. This is possible since we only consider
universal safety and existential reachability, and realized by defining the winning condi-
tion in the two-player game G(G) depending on the system players’ objective in the Petri
game G.

We now start by briefly recalling the basics for two-player games with a safety or
reachability condition for Player 0. We proceed by defining decision sets of a given
Petri game G, and the relations between decision sets. These are then used to define
the vertices and edges in (a simpler version of) the two-player game G(G) from [FO17;
Gie22]. We conclude this section with a theorem stating there is a strategy for the system
players in G if and only if there is a strategy for the Player 0 in G(G).

Preliminaries for two-player games. A two-player game G = (V0,V1, v0,E,Win)
consists of the disjunct finite sets of 0-vertices V0 and 1-vertices V1 (and the set of all
vertices is V = V0 ⊔ V1), the initial vertex v0 ∈ V, the edge relation E ⊆ V × V, and
winning set Win of plays in G. A play in G is a possibly infinite sequence v = v0v1v2 · · ·
of states with (vj , vj+1) ∈ E for all j ∈ N. We assume that every vertex has an outgoing
edge, i.e., ∀v ∈ V : vE ̸= ∅. The game is played between two players, namely Player 0
and Player 1, with the respective set of i-vertices belonging to Player i. A strategy for
Player i in G is a function f : V∗Vi → V which maps each sequence of states ending in
a state of Player i to some successor state, satisfying (v, f(wv)) ∈ E for all w ∈ V∗ and
v ∈ Vi. Such a strategy is called positional, iff f(wv) = f(v) for all w ∈ V∗ and v ∈ Vi.
Player 0 wins a play v iff v ∈Win. Otherwise, Player 1 wins v. A play v conforms to a
strategy f for Player i iff for all prefixes wvv′ ∈ V∗ViV of v the play satisfies f(wv) = v′.
A strategy f for Player i is winning iff every play which conforms to f is won by Player i.

For the solving algorithms for Petri games we are especially interested in so-called
two-player safety games and two-player reachability games games, which are two-player
games where the winning set is given by Win = Safety(F) (resp. Win = Reach(F))
for sets of special vertices F ⊆ V (also called bad vertices resp. target vertices). A
play v = v0v1v2 · · · in such a two-player safety (resp. reachability) game is an element
of Win = Safety(F) (resp. Win = Reach(F)) if and only if ∀i ∈ N : vi /∈ F (resp.
∃i ∈ N : vi ∈ F).

From game theory we know that in a two-player safety/reachability game G, Player 0
has a winning strategy iff Player 0 has a positional winning strategy. Deciding the
question whether Player 0 has a winning strategy and, if possible, generating a winning
positional strategy, can be achieved in linear time in the number of edges in the game
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(cp., e.g., [Maz01]). This process is called solving the two-player game. �
Remark. In the context of this thesis, we represent runs in a given Petri game by plays in
a corresponding two-player game. In this two-player game, the vertices represent states
in the Petri game, and the edge relation partly is build from firing transitions. From a
possible winning strategy for Player 0 we can then construct a winning strategy for the
system players in the Petri game. For that, we need to know the transitions whose firings
are simulated in the two-player game strategy. To access this information directly, we
use a labeled edge relation E ⊆ V× Λ×V for a set Λ of labels. For example, in the case
of P/T Petri games, this set is given by Λ = T ∪ {†}, with a special symbol † that gets
explained later. Having a labeled edge relation does not change any of the results above,
and we can ignore the labels when we do not need them. In these cases we can write
(v, v′) ∈ E, omitting an edge’s label.

The solving algorithm for Petri games presented in [FO17; Gie22] executes the fol-
lowing (abstract) steps for a given P/T Petri game G:

• Construct a corresponding two-player game G(G).

• Solve the two-player game G(G);

– If Player 0 has no winning strategy in G(G), then the system players have no
winning strategy in G.

– If Player 0 has a winning strategy f in G(G), then construct a corresponding
winning strategy ξ(f) for the system players in G.

We give a simplified definition of G(G) for the class of proper P/T Petri games G =
(PS,PE,T,F,M0,Obj,P⊛) ∈ Exp(G). These Petri games are safe, have a single recur-
rently interfering environment, and no mixed communication. For the remainder of this
section, let G be such a proper P/T Petri game.

The key idea of the reduction to a two-player game is to delay the environment’s
moves until no system player can proceed any further. By this, we ensure that all
system players get informed of the environment’s moves during their next move and all
system player’s commitments, which should be made independently are made before the
environment’s possible choice. This allows for applying solving algorithms for games with
complete information to G(G).

In G(G), plays in G are simulated through a sequence of decision sets, i.e., enriched
markings of G. In a decision set, each player (token) is equipped with a commitment
set, i.e., a set of transitions which are currently selected by the player to be allowed to
fire, or it is equipped with the special symbol †. In the case of a †-symbol, a system
player has yet to select a commitment set of transitions.1 No environment player is ever
equipped with a †-symbol. Instead, their commitment set always is their whole postset.
This represents the unrestricted, nondeterministic choices of the environment.

1In [FO14; FO17; Gie22], instead of †, the symbol ⊤ is used. We use † to avoid confusion with the
set of transitions T.
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Definition 3.8 (Decision set). A decision set in G is a set D ⊆ P × (P(T) ∪ {†}) of
pairs (p, †) or (p, T ), where T ∈ P(T) is called a commitment set, s.t.

• in a commitment set only transitions of the respective place’s postset occur, i.e.,
(p, T ) ∈ D ∧ T ⊆ T⇒ ∀t ∈ T : t ∈ post (p), and

• a player on an environment place is always equipped with its whole postset as its
commitment set, i.e., (p, T ) ∈ D ∧ p ∈ PE ⇒ T = post (p).

We denote the set of all decision sets by D(G), and define, for every decision set D ∈ D(G)
its corresponding marking M(D) := {p | ∃T ∈ (P(T) ∪ {†}) : (p, T ) ∈ D}. �

A transition t ∈ T is enabled in a decision set D if pre (t) ⊆ M(D). The transition t is
chosen in D if ∀(p, T ) ∈ D : p ∈ pre (t) ⇒ t ∈ T holds. We call the transition t fireable
in D, denoted by D[t⟩, if t is enabled and chosen in D. This means that the transition t
not only needs to be enabled in the corresponding marking, but also that all players in
the transition’s preset must allow t in their commitment set. The decision set D′ obtained
after firing t, denoted by D[t⟩D′, is given by

D′ = {(p, T ) | (p, T ) ∈ D ∧ p /∈ pre (t)} (the players unaffected by t stay)
∪ {(p, †) | p ∈ post (t) ∩ PS} (†-symbol for sys. players placed by t)
∪ {(p, post (p)) | p ∈ post (t) ∩ PE} (whole postset for env. players placed by t)

This means that the corresponding markings preserve the firing relation, i.e., D[t⟩D′ ⇒
M(D)[t⟩M(D′), and only the moved system players are allowed to (and must) decide on
a new commitment set. The moved environment players are equipped with their whole
postset as commitment set.

If a decision set D contains a †-symbol, i.e., ∃(p, †) ∈ D, denoted by D[†⟩, the corre-
sponding system players have to decide on a new commitment set before any other move
is allowed in the two-player game. Such a decision is denoted by D[†⟩D′ where D′ is a
decision set such that

D′ = {(p, T ) | (p, T ) ∈ D ∧ T ̸= †} ∪ {(p, d(p)) | (p, †) ∈ D}

for a function d : {p | (p, †) ∈ D} → P (T). We call this relation †-resolution. The
definition means that the †-resolution of a decision set D yields one successor decision
set for every possible combination of replacing each † in D with a respective commitment
set T ⊆ T. Each possibility is realized by a function d that sets a commitment set for
every place in D that is equipped with a †-symbol.

Example 3.9 (Relations between Decision sets). Figure 3.5 shows three decision
sets D0, D1, and D2 in the proper Petri game Signal Sending Satellites from Fig. 3.3, here
called G. The decision set D0 will later constitute the initial vertex in the two-player
game G(G). It is constructed from the initial marking {Env .0, Init .1, Init .2, Init .3}. The
commitment set of the environment player on Env .0 is its entire postset, while the system
players are equipped with a †-symbol, meaning they have yet to decide for a commitment
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(Env.0, {sel.1, sel.2, sel.3})
(Init.1, †)
(Init.2, †)
(Init.3, †) D0

(Env.0, {sel.1, sel.2, sel.3})
(Init.1, {tr.1, inf.[2,1,3], inf.[3,1,2]})
(Init.2, {tr.2, inf.[1,2,3], inf.[3,1,2]})
(Init.3, {tr.3, inf.[1,2,3], inf.[2,1,3]})

D1 (Tr.2, †)
(Init.1, {tr.1, inf.[2,1,3], inf.[3,1,2]})
(Init.2, {tr.2, inf.[1,2,3], inf.[3,1,2]})
(Init.3, {tr.3, inf.[1,2,3], inf.[2,1,3]})

D2

† sel.2

Figure 3.5: A sequence of two relations between three decision sets in the running example
Signal Sending Satellites.

set. The different borders (rounded/sharp) indicate whether a vertex in the game G(G)
belongs to Player 0 or Player 1. We will discuss this further down the line, and it is
currently irrelevant.

Since D0 contains a †-symbol, we can (and later must) resolve it, i.e., there is a
relation D0[†⟩D′ for every D′ where the †-symbol of each system player is replaced by
a subset of its postset. In particular, there is a relation D0[†⟩D1. In D1, every system
player on place Init .x̃ allows transition tr .x̃, as well as the two transitions inf .[x, ỹ, z̃]
with x̃ = ỹ or x̃ = z̃, and ỹ < z̃.

However, none of the instances of tr or inf can fire from D1. In fact, the only
transitions fireable from D1, namely sel .1, sel .2, and sel .3, are already fireable from D0.
Firing sel .2 from D1 leads to the decision set D2 (relation D1[sel .2⟩D2). The tokens
are moved corresponding to firing the transition from the decision set’s marking, which
in this case means that the token on Env .0 is consumed, and a token is placed on the
place Tr .2. Since this is a system place, the player gets equipped with a †-symbol.
This means D2[†⟩. In the two-player game G(G), the next step then has to be another
†-resolution. �

In the two-player game G(G) for a Petri game G that we want to define, the edges
are built from relations between decision set, depending on the source decision set’s
properties. To that aim we now define the possible properties a decision set D ∈ D(G)
can have:

• D is environment-dependent iff ¬D[†⟩, and ∃p ∈ PE ∩ M(D) ∀t ∈ T : D[t⟩ ⇒ p ∈
pre (t). This means all next moves of the system players are fixed (there is no
†-symbol in D) and each of these moves is only possible after a progress of the
environment.

• D contains a bad place resp. target place iff M(D) ∩ P♠ ̸= ∅ resp. M(D) ∩ P♡ ̸= ∅.
• D is a deadlock iff ∀t ∈ T : ¬D[t⟩ but ∃t ∈ T : M(D)[t⟩. This means the cor-

responding marking enables a transition, but no enabled transition is chosen in
D.

• D is terminating iff ¬M(D)[t⟩ holds for all transitions t ∈ T,

• D is nondeterministic iff ∃t1, t2 ∈ T : t1 ̸= t2 ∧ PS ∩ pre (t1) ∩ pre (t2) ̸= ∅ ∧ D[t1⟩ ∧
D[t2⟩. This means there are two separate transitions that share a system place in
their presets and are both fireable in D.

These properties are demonstrated in Example 3.11, after the definition of the two-player
game G(G).
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We now have the components to define, for a proper Petri game G, the corresponding
two-player game G(G). The decision sets of G form the vertices. The edges in G(G) are
defined from relations between the decision sets, i.e., †-resolution or firing of transitions.
Paths through the graphs simulate runs in G. Which relations between two decision sets
are considered for the edges depends on the properties of the source decision set. By this,
it is ensured that the environments moves in a simulated run in G are delayed until the
system cannot proceed anymore on its own. Note that an mcut in a Petri game strategy
corresponds to an environment-dependent decision set: each system player gets informed
of the environment’s progress in its next move. The winning condition for Player 0 in
G(G) depends on the objective of system players in G.

Definition 3.10 (Two-player game G(G)). Let G = (PS,PE,T,F,M0,Obj,P⊛) ∈
Exp(G) be a proper P/T Petri game. The components of the two-player game over a
finite graph G(G) = (V0,V1, v0,E,Win) are defined as follows:

• The 0-vertices V0 ⊆ D(G) are all decision sets that are not environment-dependent.

• The 1-vertices V1 := D(G) \ V0 are all environment-dependent decision sets in G.

• The initial vertex D0 := {(p, †) | p ∈ M0 ∩ PS} ∪ {(p, post (p)) | p ∈ M0 ∩ PE} is
the decision set containing all places of the initial marking s.t. the system players
still have to decide for a commitment set.

• The labeled edge relation E ⊆ V× (T ∪ {†})× V is defined as follows:

If D is a deadlock, is terminating, or is nondeterministic, there is only a †-labeled
self-loop originating from D. Otherwise, we consider three disjunct cases for edges
originating in D:

Case D ∈ V1; i.e., all players have decided for a commitment set, but cannot
proceed without the environment. Then for all t ∈ T, (D, t,D′) ∈ E iff D[t⟩D′.

Case D ∈ V0 and D[†⟩; i.e., at least one system player has yet to decide for a
commitment set. Then (D, †,D′) ∈ E iff D[†⟩D′.

Case D ∈ V0 and ¬D[†⟩; i.e., all system players made their decisions and can
proceed without the environment. Then for all t ∈ T with pre (t) ∩ PE = ∅,
(D, t,D′) ∈ E iff D[t⟩D′. The condition for pre (t) ensures that only edges for
system transitions are considered.

• Win depending on Obj and P⊛ as follows:

– if Obj = Safety then Win := Safety(F), where F contains all decision sets that
are a deadlock, nondeterministic, or contain a bad place,

– if Obj = Reach then Win := Reach(F), where F contains all decision sets that
contain a target place.

We denote V := V0 ⊔ V1 = D(G). �
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Figure 3.6: Part of the two-player game for the running example Signal Sending Satellites.

Example 3.11 (Two-player game for Signal Sending Satellites). Consider the
running example Signal Sending Satellites from Fig. 3.3. Denote this Petri game by G.
Fig. 3.6 shows part of the two-player game G(G).

The initial decision set in G(G) is D0. It is constructed from the initial marking
{Env .0, Init .1, Init .2, Init .3}. The commitment set of the environment player on Env .0
is its entire postset, while the system players are equipped with a †-symbol, meaning they
have to decide for a commitment set in the next step. We abbreviate select .{x← x̃} by
sel .x̃ for every x̃ ∈ {1,2,3}, and analogously for all other transitions. Since D0 contains
a †-symbol, it belongs to V0. In figures, this is illustrated by rounded corners of a vertex,
whereas decision sets belonging to V1 have sharp corners. The system now has several
options to resolve the †-symbol, from which we investigate two in particular – the ones
leading to D1 and D′

1.
In D1, every system player on a place Init .x̃ decided to allow transitions where it

gains information: either from a player on Tr .x̃ (via tr .x̃), or from another system player
of color x (transitions inf .{x ← x, y ← ỹ, z ← z̃} with ỹ = x̃ or z̃ = x̃, abbreviated by
inf .[x, ỹ, z̃]). To avoid nondeterminism, the system players do not allow all instances of
inf satisfying the constraints above. We go more into detail on that in Example 3.13.

Since D1 contains no †-symbol, and every fireable transition (i.e., all instances of sel)
has an environment place in its preset, D1 belongs to V1. We thus have an edge to every
decision set reached after firing one of these transitions. For example, the decision set D2

is reached from D1 by firing sel .2. Correspondingly, a system player is placed on Tr .2,
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and equipped with a †-symbol. This †-symbol has to be resolved in the next step.
Consider now the †-resolution leading from D0 to D′

1. Here, the system player on
Init .1 decided to allow only transition uninf .1, while the system players on Init .2 and
Init .3 disallowed all transitions in their postset to fire, which is represented by an empty
commitment set. Since now uninf .1 is fireable and has no environment places in its
preset, D′

1 belongs to V0, and its only outgoing edge corresponds to firing uninf .1,
leading to D′

2.
In D′

2, the system player moved to place Ch.1 now again has to decide for a com-
mitment set in the next step. If it decides to allow no transition in its postset to fire
(†-resolution to D′

3), no transitions except the instances of sel can fire. Consider the
firing of sel .3 leading to D′

4. If the system player placed on Tr .3 decides to only allow
{tr .3} then we see in D′

5 that tr .3 is enabled, i.e., M(D′
5)[tr .3⟩, but not chosen (and

therefore not fireable) since the player on Init .3 forbids the transition. This means D′
5 is

a deadlock, and only hast an outgoing self-loop labeled with †. This vertex therefore is
bad w.r.t. the safety condition, which we illustrate by a double border.

If from D′
2 the system player on Ch.1 decides to allow both transitions rec.{y ← 1,

x← 2} and fwd .1, which leads to D′′
3, both these transitions can fire and have the same

system place in their preset. This makes D′′
3 nondeterministic (also a bad vertex), which

means the only outgoing edge is a self-loop.
The parts “after” the decision sets D′′

1 and D′′′
1 each are completely symmetric to the

part after D1 that was just partly discussed. They represent the cases where the system
player on Init .2 resp. Init .3 decides to allow the corresponding instance of uninf , while
the other two system players decide to allow no transitions.

Signal Sending Satellites is a Petri game with safety objective, which means in the
two-player game we have Win = Safety(F), where F contains all decision sets in V
that are a deadlock, nondeterministic, or contain a bad place. We already marked the
decision sets D′

5 and D′′
3 by double borders, meaning they are in the set of bad vertices F.

Every decision set D where M(D) contains a place Bad .x̃ would also be marked as a bad
vertex. �

In [FO17] and [Gie22], more complex versions of the two-player game are presented,
which cater for k-bounded Petri games and different system objectives, respectively.
Additionally, both consider the possibility of so-called type-2 behavior, where the system
can proceed infinitely without the environment. By assuming the Petri games to be safe
and eliminating type-2 behavior, we can, for Petri games G with a safety or reachability
objective, simplify G(G) to its core idea: delaying the environment’s moves until the
system cannot proceed without it. This idea allows us to assume complete information
for the system players.

Compared to [FO17; Gie22], we therefore presented a simplified version of G(G) for
the class of proper Petri games G ∈ Exp(G). Thus, to state the following theorem, we
have to show that the simplification of G(G) is corresponding to this class.

Theorem 3.12 ([FO17; Gie22]). In a proper Petri game G ∈ Exp(G), the system
players have a winning strategy if and only if Player 0 has a winning strategy in G(G).
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For the sake of completeness, the rather lengthy proof of this theorem is provided
in Appendix 3.A. The proof is primarily adapted from [Gie22] but modified to fit our
definition of the two-player game.

In the proof of the respective analogue of Theorem 3.12 in [FO17; Gie22], it is demon-
strated how to construct a winning strategy ξ for the system players in G based on a
winning strategy f for Player 0 in G(G). The detailed algorithm is not provided here,
but it is part of the proof of Theorem 3.12 in Appendix 3.A. The main idea is to attach
an event with label t to the Petri game strategy ξ under construction whenever there is
an edge (D, t,D′) taken in the two-player game strategy f . We informally show this on
an example:

Example 3.13 (Strategy translation). Consider the running example Signal Sending
Satellites from Fig. 3.3. Denote this Petri game by G. In Fig. 3.7, we see on the left side
a part of the winning strategy for Player 0 in the two-player game G(G), depicted as a
tree. The algorithm now traverses the strategy tree in breadth first order. Depending on
the edges taken, the strategy for the system players in G is built by successively attaching
new events and conditions, starting with the initial cut of the unfolding.

The initial decision set in G(G) (and therefore contained in the strategy) is D0. It is
given by the initial marking {Env .0, Init .1, Init .2, Init .3}. The commitment set of the
environment player on Env .0 is its entire postset, while the system players are equipped
with a †-symbol, meaning they have to decide for a commitment set in the next step.
We abbreviate select .{x ← x̃} by sel .x̃ for every x̃ ∈ {1,2,3}, and analogously for all
other transitions.

From the initial decision set, we start constructing the strategy in G with the initial
cut corresponding to the marking M(D). This correspondence is highlighted in gray. We
say this cut is associated to the decision set D0 in the strategy in G(G).

D0 belongs to V0 since it contains a †-symbol. This means there is exactly one
successor of D0 in the strategy tree, which corresponds to replacing the †-symbol with
commitment sets. As we have already described, no satellite should make an uninformed
choice between Forwarding mode and Receiving mode. This means that a system player
on a place Init .x̃ should not allow the transition uninf .x̃ to fire. Instead, the player
should allow to be informed that itself must forward a transmission (via transition tr .x̃),
and to be informed by another satellite x that it should receive a message. This is done
via a transition inf .{x ← x, y ← ỹ, z ← z̃} (abbreviated by inf .[x, ỹ, z̃]) with ỹ = x̃ or
z̃ = x̃.

For every x, there are two instances of inf that satisfy the conditions above. For
example, a system player on place Init .1 can be informed that Satellite 2 must forward
a message by inf .[2,1,3] and by inf .[2,3,1]. However, due to the needed determinism,
reaching a decision set where both these transitions are allowed would result in the
system to lose. This is prevented by each system player on place Init .x̃ allowing only the
transitions inf .[x, ỹ, z̃] with ỹ = x̃ or z̃ = x̃, and ỹ < z̃. Fixing these commitment sets is
done in the †-resolution leading to D1.

During a †-resolution, the reached decision set is associated the same cut as the
source decision set. This means D1 has the same associated cut as D0. Since D1 contains
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(Env.0, {sel.1, sel.2, sel.3})
(Init.1, †)
(Init.2, †)
(Init.3, †)

D0

(Env.0, {sel.1, sel.2, sel.3})
(Init.1, {tr.1, inf.[2,1,3], inf.[3,1,2]})
(Init.2, {tr.2, inf.[1,2,3], inf.[3,1,2]})
(Init.3, {tr.3, inf.[1,2,3], inf.[2,1,3]})

D1

(Tr.1, †)
(Init.1, {tr.1, inf.[2,1,3], inf.[3,1,2]})
(Init.2, {tr.2, inf.[1,2,3], inf.[3,1,2]})
(Init.3, {tr.3, inf.[1,2,3], inf.[2,1,3]})

D′
2

(Tr.3, †)
(Init.1, {tr.1, inf.[2,1,3], inf.[3,1,2]})
(Init.2, {tr.2, inf.[1,2,3], inf.[3,1,2]})
(Init.3, {tr.3, inf.[1,2,3], inf.[2,1,3]})

D′′
2

(Tr.2, †)
(Init.1, {tr.1, inf.[2,1,3], inf.[3,1,2]})
(Init.2, {tr.2, inf.[1,2,3], inf.[3,1,2]})
(Init.3, {tr.3, inf.[1,2,3], inf.[2,1,3]})

D2

(Tr.2, {tr.2})
(Init.1, {tr.1, inf.[2,1,3], inf.[3,1,2]})
(Init.2, {tr.2, inf.[1,2,3], inf.[3,1,2]})
(Init.3, {tr.3, inf.[1,2,3], inf.[2,1,3]})

D2

(Tr.2, †)
(Init.1, {tr.1, inf.[2,1,3], inf.[3,1,2]})
(Inf.2, †)
(Init.3, {tr.3, inf.[1,2,3], inf.[2,1,3]})

D3

(Tr.2, {end.[2,1,3], end.[2,3,1]})
(Init.1, {tr.1, inf.[2,1,3], inf.[3,1,2]})
(Inf.2, {inf.[2,1,3]})
(Init.3, {tr.3, inf.[1,2,3], inf.[2,1,3]})

D4

(Tr.2, {end.[2,1,3], end.[2,3,1]})
(Ch.1, †)
(Ch.2, †)
(Ch.3, †)

D5

Init .1 Init .2 Init .3Env .0

sel .1

sel .2

sel .3

Tr .1 Tr .2 Tr .3

tr .1 tr .2 tr .3

Tr .1 Tr .2 Tr .3Inf .1 Inf .2 Inf .3

inf .[2,1,3]

Ch.1 Ch.2 Ch.3

†

sel.1

sel.3 sel.2tr.1

tr.3

†

tr.2

†

inf.[2,1,3]

†

Figure 3.7: Translating a strategy in G(G) to a strategy in G.
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no †-symbol, and all fireable transitions (sel .1, sel .2, sel .3) have the environment place
Env .0 in their preset, we have D1 ∈ V1. This means all possible successors in G(G) must
also be in the strategy. The successors D2, D′

2, and D′′
2, are each reached by firing a

transition sel .x̃.
When taking an edge corresponding to firing a transition in the strategy tree, the

algorithm attaches an event with the respective label to the Petri game strategy under
construction. From the cut associated to the source decision set, the conditions that have
the transitions preset as labels are collected. These form the preset of the newly added
event. Additionally, new conditions with the transitions postset as label are added to
the strategy, and form the events postset. In our example, this means that when taking
an edge corresponding to firing sel .x̃, an event with label sel .x̃ is added to the strategy,
with the preset given by the condition with label Env .0, and the postset consisting of a
newly created condition with label Tr .x̃. This is also highlighted in gray.

The decision set reached by taking the edge is then associated to the cut that is
reached by firing the newly added event from the cut associated to the source decision
set. For example, the cut of conditions with labels {Tr .2, Init .1, Init .2, Init .3} (the upper
condition with label Tr .2) is associated to D2.

The algorithm now further traverses the strategy tree in breadth first order. We
consider only the future of D2. The two cases of D′

2 and D′′
2 are symmetric, and indicated

by the dotted parts of the two strategies. D2 again is a decision set of Player 1, since the
only fireable transition is tr .2. After tr .2, the system player on Inf .2 in D3 must again
decide for a commitment set and chooses {inf .[2,1,3]} in the †-resolution leading to D4.
From there, the transition inf .[2,1,3] is the only fireable transition. The cut associated
to the decision set D5 (reached by this firing) is again highlighted in gray.

This part is enough to give the idea how the algorithm translates a strategy for
Player 0 in G(G) to a strategy for the system players in G, so we end the example
here. �

3.2 The Symbolic Two-Player Game

In this section we show how to solve proper high-level Petri games G (i.e., high-level Petri
games that are expansion safe, have a single recurrently interfering environment player,
and no mixed communication, cp. Sec. 3.1.2) while exploiting the symmetries of the
system. The key idea of the approach is to combine the two concepts established above:
we apply symmetries in the net N(G) (cp. Sec. 3.1.1) to the vertices in the two-player
game G(Exp(G)) which serves for solving a proper P/T Petri game (cp. Sec. 3.1.3). The
used techniques are borrowed from the construction of a “symbolic reachability graph”
for high-level Petri Nets (for example presented in [CDFH97]) with a significantly smaller
state space than the original reachability graph.

Correspondingly, our approach arrives at a significantly smaller two-player game,
called the symbolic two-player game G(G). The vertices in G(G) are equivalence classes
with respect to the symmetries of the high-level Petri game. The elements of these
equivalence classes are the vertices of the two-player game G(Exp(G)) that the high-
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level Petri game’s expansion can be reduced to. In particular, we show that the two
two-player games are bisimilar.

Given a proper high-level Petri game G ∈ G , the solving algorithm proceeds in four
steps:

1. The corresponding symbolic two-player game G(G) (Def. 3.26 on p. 68) is created
with similar techniques as for the two-player game G(G) described in Sec. 3.1.3 for
a low-level Petri game G. Moreover, the states of G(G) are equivalence classes of
the states in G(Exp(G)) with respect to the system’s symmetries.

2. Since G(G) is a two-player game with complete information, standard game solving
algorithms are applied to gain a positional winning strategy f in G(G).

3. Resolving the symmetries of f yields a winning strategy f in G(Exp(G)).

4. Applying the techniques from [FO17; Gie22] (demonstrated in Sec. 3.1.3) to f yields
a winning strategy ξ in Exp(G).

Since strategies in a high-level Petri game are defined as strategies in its expansion, these
four steps yield the strategy ξ for the system players in G. An overview of this algorithm
and the interplay of the individual components is presented in Fig. 3.8. It can be seen
as a zoomed in version of the left part of Fig. 1.1. In the top part of the figure the steps
involving high-level elements are depicted, whereas the bottom part shows the solving
of P/T Petri games from Sec. 3.1.3. The individual steps of the algorithm are marked
bold. The edges between the top and the bottom layer show the relation of the high-level
and the P/T elements. Note that step 3 and step 4 could be combined to obtain the
Petri game strategy f directly from the symbolic two-player game strategy f . However,
introducing step 3 and showing its correctness yields, together with [FO17; Gie22], the
same result and simplifies the presentation.

High-level/
symbolic

Low-level

Petri game two-player game
two-player game

strategy
Petri game
strategy

G

G = Exp(G)

G(G)

G(G)

f

f ξ

ex
p
an

d

reduce solve

re
p
re
se
n
t

b
is
im

il
ar

build solve

ge
n
er
at
e

build

Figure 3.8: The correlation of the games and strategies in the process of solving high-level
and P/T Petri games.

Step 1 is the crucial part of the algorithm and this section serves for its elaboration.
The definition of G(G) is split into three parts. Firstly, we define how to apply symmetries
on the states of G(Exp(G)) to obtain equivalence classes serving as states of G(G).
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Secondly, we examine the relations between the classes to reduce the number of edges
induced by G(Exp(G)). The result serves as edges of G(G). Finally, we define the two-
player game G(G) and show the correctness of our approach by defining a bisimulation
between G(Exp(G)) and G(G), and generally proving that two bisimilar two-player games
coincide regarding the existence of a winning strategy for Player 0.

In [CDFH97], Chiola et al. construct a symbolic reachability graph for high-level Petri
nets. In this graph the nodes are equivalence classes of markings with respect to sym-
metries, and instead of the ordinary firing relation between the markings, the symbolic
firing relation is used. The following section introduces equivalence classes of decision
sets with respect to symmetries and lifts results of [CDFH97] about markings to decision
sets. The equivalence classes form the vertices of the symbolic two-player game G(G).

3.2.1 Symbolic Decision Sets

We define the application of symmetries (cp. Def. 3.1) to decision sets (cp. Def. 3.8).
Furthermore, we establish that the properties of these decision sets remain invariant
under the application of symmetries. This means all decision sets in an equivalence class
with respect to the admissible symmetries have the same properties. These equivalence
classes are called symbolic decision sets, and will later be the vertices of the symbolic
two-player game we aim to construct.

Recall that for a high-level Petri game G, the (admissible) symmetries are defined
to be the (admissible) symmetries of N(G). In the following, let S always be the set of
admissible symmetries of the currently considered high-level game.

Due to the special syntax of Exp(G) for a high-level Petri game G, and since both
games have analogous semantics, we define the decision sets of G as the decision sets
of Exp(G), i.e., D(G) := D(Exp(G)). For a decision set D ∈ D(G) and any symmetry
s ∈ S we define the application of a symmetry to a decision set by

s(D) := {(p.s(c), s(T )) | (p.c, T ) ∈ D},

with s(T ) := {t.s(σ) | t.σ ∈ T } if T ⊆ T, and s(†) := †. This means if a player of
color c on place p allows transition t in mode σ in the decision set D (i.e., (p.c, T ) ∈ D
and t.σ ∈ T ), then after the application of the symmetry s, the player of color s(c) on
place p allows transition t in mode s(σ) (i.e., (p.s(c), s(T )) ∈ s(D) and t.s(σ) ∈ s(T )).

From the definition of admissible symmetries (Def. 3.1) we can easily derive

∀s ∈ S : t.σ ∈ pre (p.c) ⇔ t.s(σ) ∈ pre (p.s(c)).

This, together with the definition of decision sets (Def. 3.8), implies that admissible
symmetries map D(G) into D(G). Since symmetries operate on the first coordinate of a
decision set exactly as on markings, we obtain ∀D ∈ D(G) : s(M(D)) = M(s(D)).

As a first property we consider the interplay of symmetries and the relations between
decision sets.

Lemma 3.14 (Relations under symmetries). The admissible symmetries are com-
patible with the firing of a transition t ∈ T in mode σ ∈ Σ(t) in a decision set. The
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same is true for the resolution of a †-symbol in a decision set. Formally: let D,D′ be two
decision sets. Then

(i) ∀t ∈ T ∀σ ∈ Σ(t) ∀s ∈ S : D[t.σ⟩D′ ⇔ s(D)[t.s(σ)⟩s(D′).

(ii) ∀s ∈ S : D[†⟩D′ ⇔ s(D)[†⟩s(D′).

Proof. Let t ∈ T , σ ∈ Σ(t), and s ∈ S.
Assume D[t.σ⟩D′. We first check that t.s(σ) is fireable at s(D). D[t.σ⟩ is equivalent

to pre (t.σ) ⊆ {p.c | (p.c, T ) ∈ D ∧ t.σ ∈ T }. Since s is admissible, we have

pre (t.s(σ)) = s(pre (t.σ)) ⊆ s({p.c | (p.c, T ) ∈ D ∧ t.σ ∈ T })
= {p.s(c) | (p.c, T ) ∈ D ∧ t.σ ∈ T }
= {p.c | (p.c, T ) ∈ s(D) ∧ t.s(σ) ∈ T },

therefore s(D)[t.s(σ)⟩. Additionally, we have

s(D′) ={(p.c, T ) | (p.c, T ) ∈ s(D) ∧ p.c /∈ pre (t.s(σ))}
∪ {(p.c, †) | p.c ∈ post (t.s(σ)) ∩ PG

S }
∪ {(e.d, post (e.d)) | e.d ∈ post (t.s(σ)) ∩ PG

E},

which is precisely the decision set computed after firing t.s(σ) in s(D) according to
Sec. 3.1.3, which shows s(D)[t.s(σ)⟩s(D′).

Conversely, assume s(D)[t.s(σ)⟩s(D′). Showing D[t.σ⟩D′ works exactly as above with
s−1 applied instead of s.

Finally, showing D[†⟩D′ ⇔ s(D)[†⟩s(D′) works analogously, completing the proof.

Two decision sets D and D′ are equivalent (w.r.t. S) iff there is a symmetry s ∈ S such
that s(D) = D′ holds. This leads to the set of equivalence classes D(G)/S of the decision
sets. For a decision set D ∈ D(G), we denote its equivalence class in D(G)/S by [D].
These equivalence classes are called symbolic decision sets. For every such symbolic
decision set [D], we define D ∈ [D] as an arbitrarily chosen, but fixed representative.
We often identify each equivalence class with its representative. For every a decision
set D, we fix with sD a symmetry that maps D to its corresponding representative, i.e.,
sD(D) = D ∈ [D].

Example 3.15 (Symbolic decision sets in Signal Sending Satellites). Consider
the running example Signal Sending Satellites from Fig. 3.2. Recall that the admissible
symmetries in this Petri game are given by S3 = Sym({1,2,3}), which are the following
six permutations (written in “Cauchy’s two-line notation”, mapping the elements in the
top row to the respective elements in the bottom row):

s1 = id{1,2,3} =
(
1 2 3
1 2 3

)
, s2 =

(
1 2 3
2 3 1

)
, s3 =

(
1 2 3
3 1 2

)
,

s4 =

(
1 2 3
1 3 2

)
, s5 =

(
1 2 3
3 2 1

)
, s6 =

(
1 2 3
2 1 3

)
.
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(Tr.1, {end.[1,2,3], end.[1,3,2]})
(Ch.1, †)
(Ch.2, †)
(Ch.3, †)

(Tr.2, {end.[2,1,3], end.[2,3,1]})
(Ch.1, †)
(Ch.2, †)
(Ch.3, †)

(Tr.3, {end.[3,1,2], end.[3,2,1]})
(Ch.1, †)
(Ch.2, †)
(Ch.3, †)

(Tr.1, {end.[1,2,3], end.[1,3,2]})
(Ch.1, {fwd.[1]})
(Ch.2, {rec.[2,1]})
(Ch.3, {rec.[3,1]})

(Tr.2, {end.[2,1,3], end.[2,3,1]})
(Ch.1, {rec.[1,2]})
(Ch.2, {fwd.[2]})
(Ch.3, {rec.[3,2]})

(Tr.3, {end.[3,1,2], end.[3,2,1]})
(Ch.1, {rec.[1,3]})
(Ch.2, {rec.[2,3]})
(Ch.3, {fwd.[3]})

(Tr.1, {end.[1,2,3], end.[1,3,2]})
(Ch.1, {fwd.[1]})
(Rec.(2,1), †)
(Ch.3, {rec.[3,1]})

(Tr.1, {end.[1,2,3], end.[1,3,2]})
(Ch.1, {fwd.[1]})
(Ch.2, {rec.[2,1]})
(Rec.(3,1), †)

(Tr.2, {end.[2,1,3], end.[2,3,1]})
(Rec.(1,2), †)
(Ch.2, {fwd.[2]})
(Ch.3, {rec.[3,2]})

(Tr.2, {end.[2,1,3], end.[2,3,1]})
(Ch.1, {rec.[1,2]})
(Ch.2, {fwd.[2]})
(Rec.(3,2), †)

(Tr.3, {end.[3,1,2], end.[3,2,1]})
(Rec.(1,3), †)
(Ch.2, {rec.[2,3]})
(Ch.3, {fwd.[3]})

(Tr.3, {end.[3,1,2], end.[3,2,1]})
(Ch.1, {rec.[1,3]})
(Rec.(2,3), †)
(Ch.3, {fwd.[3]})

† † †

D0
1 D0

2 D0
3

D1
1 D1

2 D1
3

D2
1 D2

2 D2
3

D3
1 D3

2 D3
3

† † † † † †

rec.[2,1] rec.[3,1] rec.[1,2] rec.[3,2] rec.[1,3] rec.[2,3]

fwd.[1] fwd.[2] fwd.[3]

s4

s4

s4

s4

s2

s2

s2

s2

inf.[1,2,3] inf.[1,3,2] inf.[2,1,3] inf.[2,3,1] inf.[3,1,2] inf.[3,2,1]s4 s2

Figure 3.9: Symmetries on decision sets.

Figure 3.9 shows part of the two-player game corresponding to the Petri game. At the
top, we see the three decision sets D0

1, D0
2 and D0

3. Each of them represents a state
in the Petri game where a color x ∈ {1,2,3} resides on the place Tr , meaning that
the Base Station is transmitting a message to Satellite x. In its commitment set are
the two instances of transition end that consume x from Tr . We abbreviate the modes
{x ← x̃, y ← ỹ, z ← z̃} of end by [x̃, ỹ, z̃], and analogously for the other transitions. In
the case of rec we abbreviate the mode {y ← ỹ, x ← x̃} by [ỹ, x̃] (“non-alphabetically”)
since its firing places (ỹ, x̃) on Rec. The three colors 1, 2 and 3 reside on the place Ch,
each equipped with a †-symbol instead of a commitment set, meaning that they have to
decide for a commitment step by resolving the †-symbol.

Since all three satellites are equipped with a †-symbol, and †-symbols have to be
resolved in G(G) before any transition can be fired, we know that all three colors have
been placed on Ch in the previous step by firing an instance of inf , indicated by the
incoming edges. Notice that D0

2 is D6 from Fig. 3.7. D0
1 and D0

3 can be reached on paths
from D′

2 and D′′
2 in Fig. 3.7, respectively. These paths are symmetric to the path from

D2 to D6

From the previous discussions of symmetries, we directly notice that the three situ-
ations represented by D0

1,D
0
2,D

0
3 are symmetric. We see for example that s2(D

0
1) = D0

2.
Since s4 only switches 2 and 3, and they “occur symmetrically” in D0

1, we get s4(D0
1) = D0

1.
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In fact, D0
1, D0

2 and D0
3 are in the same symbolic decision set, which is illustrated by the

dashed (gray) rectangle.
At the second level we see the three decision sets D1

1, D1
2 and D1

3, each resulting from
resolving the †-symbol correspondingly to the informally described winning strategy for
the system players: the color x on Ch to decides for the commitment set {fwd .[x]},
meaning that the satellite which the environment transmits a message to wants to go
into Forwarding mode in its next step. The other two satellites want to go into Receiving
mode in their next step, represented by the commitment sets containing the respective
instance of rec. The decision sets reached by other †-resolutions (i.e., where the system
players chose different commitment sets) are omitted in the figure.

In the relations of the top and middle layer we can verify Lemma 3.14, property (ii):
We have D0

1[†⟩D0
2. We see that s2(D0

1) = D0
2 and s2(D

1
1) = D1

2, and, in fact, D0
2[†⟩D1

2. The
same property can be seen for s4, since we again have s4(D

1
1) = D1

1. Again, the three
decision sets D1

1, D1
2 and D1

3 are in the same equivalence class.
Finally, at the bottom, we see an equivalence class containing six decision sets. This

is the maximal cardinality a symbolic decision set can have, due to the number of sym-
metries. Each of the decision sets Dj

i , i = 1, 2, 3, j = 2, 3 is reached from D1
i by firing an

instance of rec.
Since all of those instances are symmetric, this is an illustration of Lemma 3.14,

property (i): An example for that is D1
1[rec.[3,1]⟩D3

1 which, together with s2(D
1
1) = D1

2,
s2([3,1]) = [1,2], and s2(D

3
1) = D2

2, yields D1
2[rec.[1,2]⟩D2

2. We also see that, although
s4(D

1
1) = D1

1, the two instances rec.[2,1] and rec.[3,1] = rec.s4([2,1]) lead to different
decision sets D2

1 and D3
1. These, however, are symmetric with s4(D

2
1) = D3

1.
The three instances of fwd , fireable from the decision sets in the second equivalence

class, are also symmetric, and lead to symmetric decision sets. This part is omitted in
the figure. �
Lemma 3.16 (Decision set properties under symmetries). Let G be a high-level
Petri game with admissible symmetries S. Let additionally D ∈ D(G) and s ∈ S. Then
D is environment-dependent, contains a special place, is a deadlock, is terminating or is
nondeterministic if and only if s(D) has the same property.

Proof. Let G = (PS, PE, T, F, g,M0,Obj, P⊛) and Exp(G) = (PS,PE,T,F,Obj,P⊛). For
each property, we only show that if D has it, then so does s(D). Applying s−1 then gives
the other direction.

Let D be environment dependent. By definition, this means ¬D[†⟩ and ∃p̃.c̃ ∈ PE ∩
M(D)∀t.σ ∈ T : D[t.σ⟩ ⇒ p̃.c̃ ∈ pre (t.σ). Aiming a contradiction, assume s(D)[†⟩. Then
∃(p.c, †) ∈ s(D), implying (p.s−1(c), †) ∈ D, which contradicts ¬D[†⟩. Therefore, we
have ¬s(D)[†⟩. Additionally, we have p̃.s(c̃) ∈ PE ∩M(s(D)), and for all t.σ ∈ T, from
s(D)[t.σ⟩ follows by Lemma 3.14 that D[t.s−1(σ)⟩. Since D is environment dependent,
this implies p̃.c̃ ∈ pre (t.s−1(σ)), which, in its turn means p̃.s(c̃) ∈ pre (t.σ). Thus, s(D)
is environment dependent.

Let D contain a special place. By definition, this means ∃p.c ∈ M(D) : (p, c) ∈
P⊛×Col . This implies p.s(c) ∈ M(s(D)) and (p, s(c)) ∈ P⊛×Col , and thus, s(D) contains
a special place.
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Let D be a deadlock. By definition, this means ∀t.σ ∈ T : ¬D[t.σ⟩ but ∃t̃.σ̃ ∈
T : M(D)[t̃.σ̃⟩. Let t.σ ∈ T. Assuming s(D)[t.σ⟩ implies D[t.s−1(σ)⟩ and therefore
contradicts that D is a deadlock. Thus, ∀t.σ ∈ T : ¬s(D)[t.σ⟩. From M(D)[t̃.σ̃⟩ we get
with Lemma 3.2 and s(M(D)) = M(s(D)) that M(s(D))[t̃.s(σ̃)⟩, making s(D) a deadlock.

Let D be terminating. By definition, this means ∀t.σ ∈ T : ¬M(D)[t.σ⟩. Aiming a
contradiction, assume ∃t.σ ∈ T : M(s(D))[t.σ⟩. Lemma 3.2 and s(M(D)) = M(s(D)) then
give that M(D)[t.s−1(σ)⟩, contradicting that D is terminating. Thus, s(D) is terminating.

Let D be nondeterministic. By definition, this means ∃t1.σ1, t2.σ2 ∈ T :
• t1.σ1 ̸= t2.σ2,

• ∃(p̃, c̃) ∈ (PS × Col) ∩ pre (t1, σ1) ∩ pre (t2, σ2),

• D[t1.σ1⟩ ∧ D[t2.σ2⟩.
We have that t1.s(σ1), t2.s(σ2) ∈ T. Since s is bijective, it is t1.s(σ1) ̸= t2.s(σ2). We have
that (p̃, s(c̃)) ∈ PS×Col , (p̃, s(c̃)) ∈ pre (t1, s(σ1)), and (p̃, s(c̃)) ∈ pre (t2, s(σ2)). Finally,
by Lemma 3.14, we have s(D)[t1.s(σ1)⟩ ∧ s(D)[t2.s(σ2)⟩, making s(D) nondeterministic.

Lemma 3.16 therefore yields the uniform satisfaction of these properties throughout
the complete equivalence class:

Corollary 3.17. Let D be a decision set. Then D has one of the properties listed in
Lemma 3.16 if and only if all D′ ∈ [D] (and in particular D) have the same property.

Having this corollary in mind, we say a symbolic decision set has the same properties
(is environment-dependent, contains a bad/target place, is terminating, is a deadlock, or
is nondeterministic) as all its elements, and in particular its representative.

The (representatives of) equivalence classes D of the decision sets D ∈ V of the
two-player game G(Exp(G)) form the vertices of the symbolic two-player game G(G)
constructed in Sec. 3.2.3. This is precisely the concept of the symbolic reachability graph
introduced in [CDFH97], where the nodes are symbolic markings M instead of ordinary
markings M as in the reachability graph.

Usually, the relation on equivalence classes is given by all connections between the
individual elements of the corresponding classes. Lemma 3.14 shows that for equivalence
classes of decision sets, we only have to consider connections where the source is a rep-
resentative of the class. In the next section we reduce this relation even further, by only
considering equivalence classes of firings, local to the source decision set.

3.2.2 Symbolic Relations Between Symbolic Decision Sets

In this section we define equivalence classes of transition firings to define the edge re-
lation of the symbolic two-player game G(G). This relation is often smaller than the
relation containing an edge for every possible transition firing or †-resolution between
the corresponding equivalence classes of decision sets. Again, results of [CDFH97] are
lifted from markings to decision sets.
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From Lemma 3.14 we see that, if an admissible symmetry s ∈ S leaves a decision
set D invariant, then a transition t is fireable in mode σ ∈ Σ(t) at D if and only if t is
fireable in mode s(σ). These symmetries form a group (called the isotropy group of D)
and their application leads to equivalence classes of modes which are locally belonging
to the decision set. Instead of considering all modes in which a transition is fireable from
a decision set, it suffices to consider representatives of these equivalence classes. As a
result, the size of the firing relation between equivalence classes of decision sets decreases.
This reduced firing relation, called the symbolic firing relation, is the first part of the
edge relation of the symbolic two-player game G(G).

However, considering a representative of a symbolic decision set, after firing a transi-
tion in a representative of an equivalence class of modes, the decision set obtained after
the firing does not have to be a representative of its symbolic decision set itself. Since
the symbolic firing relation will be defined between representatives of symbolic decision
sets, this fact must be taken into account when defining the relation.

In addition to the firing relation there is the relation of †-resolution between decision
sets. Thus, we also define the symbolic †-resolution between (representatives of) symbolic
decision sets. This relation forms the second part of the edge relation of G(G).

Let G ∈ G, and D ∈ D(G) be a decision set. The so-called isotropy group SD :=
{s ∈ S | s(D) = D} of D is the group of all admissible symmetries that preserve D. For
a transition t ∈ T , we denote by Σ(t)D := Σ(t)/SD the set containing the equivalence
classes of all modes of t, with respect to the isotropy group SD. The individual modes
in one class affect D in symmetric ways. For each class in Σ(t)D we arbitrarily choose
a representative mode σ, and define αD as the function mapping each σ ∈ Σ(t) to its
representative αD(σ).

By this definition, and analogously to [CDFH97], we immediately get the following
property. It implies that, in a decision set D, a transition can fire in mode σ if and only
if it can fire in its representative αD(σ).

Property 3.18. For every representative σ of a class in Σ(t)D, for every mode σ belong-
ing to the equivalence class of σ, there is a symmetry s ∈ SD such that s(σ) = αD(σ) = σ.

Example 3.19. Figure 3.10 shows again the decision sets (and the relations between
them) from the left and middle part in Fig. 3.9. Assume that D0

1, D1
2, and D3

1 are the
representatives of their respective equivalence class, marked by the thick borders. The
thick edges between the representatives will be explained in Example 3.21.

Recall the symmetries in G from Example 3.15 where s1 = id{1,2,3} and s5 = {1 7→ 3,
2 7→ 2,3 7→ 1}. We see that s5(D

1
2) = D1

2. This means s5 ∈ SD1
2
. In fact, we have

SD1
2
= {s1, s5} (i.e., the set of symmetries that fix 2). We see that s5([1,2]) = [3,2],

which means the two modes are in the same equivalence class in Σ(rec)D1
2
. Assume now

[3,2] to be the arbitrary, but fixed, representative of this equivalence class (marked by
the thick border). By definition, αD1

2
then maps [1,2] to the representative [3,2], and

fixes [3,2].
By the above discussion, we have verified Property 3.18 for σ = [1,2], which belongs

to the equivalence class of the representative σ = [3,2] = αD1
2
([1,2]) in Σ(rec)D1

2
; as we
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(Tr.1, {end.[1,2,3], end.[1,3,2]})
(Ch.1, †)
(Ch.2, †)
(Ch.3, †)

(Tr.2, {end.[2,1,3], end.[2,3,1]})
(Ch.1, †)
(Ch.2, †)
(Ch.3, †)

(Tr.1, {end.[1,2,3], end.[1,3,2]})
(Ch.1, {fwd.[1]})
(Ch.2, {rec.[2,1]})
(Ch.3, {rec.[3,1]})

(Tr.2, {end.[2,1,3], end.[2,3,1]})
(Ch.1, {rec.[1,2]})
(Ch.2, {fwd.[2]})
(Ch.3, {rec.[3,2]})

(Tr.1, {end.[1,2,3], end.[1,3,2]})
(Ch.1, {fwd.[1]})
(Rec.(2,1), †)
(Ch.3, {rec.[3,1]})

(Tr.1, {end.[1,2,3], end.[1,3,2]})
(Ch.1, {fwd.[1]})
(Ch.2, {rec.[2,1]})
(Rec.(3,1), †)

(Tr.2, {end.[2,1,3], end.[2,3,1]})
(Rec.(1,2), †)
(Ch.2, {fwd.[2]})
(Ch.3, {rec.[3,2]})

(Tr.2, {end.[2,1,3], end.[2,3,1]})
(Ch.1, {rec.[1,2]})
(Ch.2, {fwd.[2]})
(Rec.(3,2), †)

† †

D0
1 D0

2

D1
1 D1

2

D2
1 D2

2

D3
1 D3

2

rec.[2,1] rec.[3,1] rec.[1,2] rec.[3,2]

s5 ∈ SD1
2

s5

s5

s2 = sD0
2

s6 = sD1
1

s6
αD1

2

†

rec.[3,2]

[D0
1]

[D1
1]

[D2
1]

Figure 3.10: Symbolic relations between symbolic decision sets.

have seen, it is s5([1,2]) = [3,2]. �
Since for every symbolic decision set D = [D] there is exactly one representative D,

we often identify the two with each other. For example, the symbolic relations between
symbolic decision sets are now defined between their representatives. For the symbolic
firing, instead of firing a transition in all modes, we only consider the representatives of
equivalence classes of modes, local to the symbolic decision set. The symbolic decision
set obtained after the symbolic firing is corresponding to the decision set obtained after
the ordinary firing of the transition in the representative mode. To define the symbolic
†-resolution between symbolic decision sets, we cannot use representatives of the symbol
†. Instead, when symbolically resolving a †-symbol in a symbolic decision set, we declare
the possible targets as the representatives of possible targets of an ordinary †-resolution.

Definition 3.20 (Symbolic Relations between Symbolic Decision Sets). We say
a transition t can fire symbolically from the symbolic decision set D in mode αD(σ)
representing σ in Σ(t)D, denoted by D[[t.αD(σ)⟩⟩, iff D[t.αD(σ)⟩. The symbolic decision
set D′ obtained after the symbolic firing is determined as follows:

D[[t.αD(σ)⟩⟩D′ ⇔ ∃D′′ ∈ [D′ ] : D[t.αD(σ)⟩D′′.
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We say a † can be symbolically resolved in a symbolic decision set D, denoted by D[[†⟩⟩,
iff D[†⟩. The possible symbolic decision sets obtained after the symbolic †-resolution are
the representatives of the decision sets D′′ satisfying D[†⟩D′′:

D[[†⟩⟩D′ ⇔ ∃D′′ ∈ [D′ ] : D[†⟩D′′. �

By definition, we directly have D[[t.αD(σ)⟩⟩ ⇒ ∃1D′ : D[[t.αD(σ)⟩⟩D′. In the following
properties we compare the ordinary firing relation and the ordinary †-resolution with
their symbolic counterparts.

Example 3.21 (Symbolic relations between symbolic decision sets). Consider
again the decision sets in Fig. 3.10. The decision set D0

1 is the representative of its
equivalence class [D0

1]. The relation D0
1[†⟩D1

1, gives the symbolic relation D0
1[[†⟩⟩D1

1, where
D1
1 is the representative of [D1

1]. Since we assumed D1
1 = D1

2, this means D0
1[[†⟩⟩D1

2. This
is illustrated by the thick edge from D0

1 to D1
2

Consider now the fact that D1
2[rec.[1,2]⟩ and D1

2[rec.[3,2]⟩. We have αD1
2
([1,2]) =

αD1
2
([3,2]) = [3,2], which implies D1

2[[rec.[3,2]⟩⟩ but not D1
2[[rec.[1,2]⟩⟩ since [1,2] is

not the representative of its equivalence class in Σ(rec)D1
2
. The symbolic decision set

obtained after symbolically firing rec.[3,2] is then given by D3
1 since D1

2[rec.[3,2]⟩D3
2 and

(by assumption) D3
2 = D3

1. All in all this leads to the symbolic relation D1
2[[rec.[3,2]⟩⟩D3

1,
also illustrated by a thick edge in Fig. 3.10. �

The following two properties discuss how the symbolic relations between symbolic
decision sets represent the ordinary relations between ordinary decision sets. First, it is
proved that every ordinary relation is represented by a symbolic one:

Property 3.22. Each ordinary transition firing is represented by a unique symbolic
transition firing, and each ordinary †-resolution is represented by a symbolic †-resolution:

i) D[t.σ⟩D′ ⇒ D[[t.σ⟩⟩D′, where σ = αD(sD(σ)).

ii) D[†⟩D′ ⇒ D[[†⟩⟩D′.

Proof. Property i) can be shown with the help of Lemma 3.14, analogously to the proof
of the corresponding Property 5.1 (for markings instead of decision sets) in [CDFH97]:

Let D[t.σ⟩D′. Then Lemma 3.14 gives D[t.sD(σ)⟩sD(D′). Let σ = αD(sD(σ)) be the
representative of sD(σ) in D. From Property 3.18 we get ∃s ∈ SD : s(sD(c)) = αD(sD(σ)).
Since s preserves D, applying s to our relation yields D[t.σ⟩s(sD(D′)). As s(sD(D′)) = D′,
we finally obtain D[[t.σ⟩⟩D′.

The proof of ii) works similarly, albeit easier, without the use of Property 3.18: Let
D[†⟩D′. Lemma 3.14 gives D[†⟩sD(D′). Since sD(D′) = D′, we obtain D[[†⟩⟩D′.

Example 3.23. Consider the relation D1
1[rec.[2,1]⟩D2

1 from Fig. 3.10, and recall s6 =

{1 7→ 2,2 7→ 1,3 7→ 3} from Example 3.15. Since s6(D1
1) = D1

2 = D1
1 we can set sD1

1
= s6.

We have s6([2,1]) = [1,2], and, as discussed in Example 3.19, αD1
2
([1,2]) = [3,2]. Thus,
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we have α
D1

1
(sD1

1
([2,1])) = [3,2]. Together with D2

1 = D3
1, Property 3.22 i) yields the

symbolic relation D1
2[[rec.[3,2]⟩⟩D3

1 that we discussed in Example 3.21.
Analogously, by Property 3.22 ii), D0

2[†⟩D1
2 implies D0

1[[†⟩⟩D1
2, since D0

2 = D0
1 and

D1
2 = D1

2. �
The following Property 3.24 describes the reverse direction of Property 3.22, i.e., it

is concerned with the set of ordinary relations represented by each symbolic relation:

Property 3.24. Each symbolic firing represents a set of ordinary firings, in which all
source decision sets belong to the equivalence class of the symbolic source decision set of
the symbolic firing. The same holds for the resolution of †. Formally:

i) D[[t.σ⟩⟩D′ ⇒ (∀D1 ∈ [D ] ∀σ′ ∈ Σ(t) : αD(sD1(σ
′)) = σ ⇒ ∃D2 ∈ [D′ ] : D1[t.σ

′⟩D2.)

ii) D[[†⟩⟩D′ ⇒ ∀D1 ∈ [D ] ∃D2 ∈ [D′ ] : D1[†⟩D2.

Proof. Again, i) can be shown analogously to the proof of the corresponding Property 5.2
in [CDFH97] for markings:

Let D[[t.σ⟩⟩D′ and D1 ∈ [D]. By definition, D[[t.σ⟩⟩D′ implies there exists a D′′ such
that D[t.σ⟩D′′ and D′′ = D′. Let σ′ such that αD(sD1(σ

′)) = σ, and denote σ′′ = sD1(σ
′).

As σ is the representative of σ′′ in Σ(t)D, there exists by Prop. 3.18 a s ∈ SD such
that s(σ′′) = σ. Since SD is a group, we have s−1 ∈ SD, and applying Lemma 3.14,
we obtain s−1(D)[t.s−1(σ)⟩s−1(D′′). This can be written as D[t.σ′′⟩s−1(D′′). For all
D1 ∈ D we can apply s−1

D1
to this firing and obtain D1[t.s

−1
D1

(σ′′)⟩s−1
D1

(s−1(D′′)) . As

s−1
D1

(s−1(D′′)) = D′′ = D′, we finally obtain D1[t.σ
′⟩D2, where D2 = s−1

D1
(s−1(D′′)).

The proof of ii) is again simpler: D[[†⟩⟩D′ means there is a D′′ such that D[†⟩D′′ and
D′′ = D′. By applying s−1

D1
to this relation, Lemma 3.14 gives D1[†⟩s−1

D1
(D′′), and since

s−1
D1

(D′′) = D′, we obtain D1[†⟩D2 for D2 = s−1
D1

(D′′).

Example 3.25. We can go “backwards” through Example 3.23: We start with the sym-
bolic relation D1

2[[rec.[3,2]⟩⟩D3
1, and choose D1 = D1

1 ∈ [D1
2] and the mode σ′ = [2,1] ∈

Σ(rec). Since [2,1] satisfies α
D1

1
(sD1

1
([2,1])) = [3,2], we get by Property 3.24 i) that

∃D2 ∈ [D3
1] : D

1
1[rec.[2,1]⟩D2. This is satisfied by D2 = D2

1 ∈ [D3
1]. �

Property 3.24 describes the ordinary relations represented by symbolic relations where
the source decision set belongs to the respective symbolic decision set. In [CDFH97], it
is additionally shown that, in the case of markings, an ordinary firing can be extracted
from every symbolic firing such that the destination marking belongs to the class of the
destination symbolic marking. This statement can also be translated to the symbolic
relations between decision sets, and proven analogously. We do not need this property to
show our results and therefore omit it here, and refer the interested reader to [CDFH97].

3.2.3 Construction of the Symbolic Two-Player Game

In this section we use the results from the preceding sections to define, for a high-level
Petri game G, the symbolic two-player game G(G). In the subsequent sections we show
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that Player 0 has a winning strategy in G(G) if and only if there is a winning strategy for
Player 0 in the low-level two-player game G(Exp(G)). This is proved by introducing a
bisimulation on the two-player games. Recall the class G of proper high-level Petri games
from Definition 3.6. For the rest of this section, we fix a proper high-level Petri game
G = (PS, PE, T, F, g,M0,Obj, P⊛) ∈ G. Let G = Exp(G) = (PS,PE,T,F,M0,Obj,P⊛)
be the expansion, and S the admissible symmetries of G.

Recall that the vertices of G(Exp(G)) are decision sets and an edge between two
decision sets D and D′ only exists if D[t.σ⟩D′ or D[†⟩D′ holds. We analogously define
the symbolic two-player game G(G) by considering the symbolic counterparts. This
means the vertices of G(G) are symbolic decision sets, and each (labeled) edge between
two symbolic decision sets D and D′ comes from a symbolic relation D[[t.σ⟩⟩D′ or D[[†⟩⟩D′.
Remember that we identify a symbolic decision [D] (i.e., an equivalence class with respect
to S) by its representative D when no confusion arises.

Definition 3.26 (Symbolic two-player game). The symbolic two-player game over
a finite graph G(G) = (V0,V1, v0,E,Win) is has the following components:

• The 0-vertices V0 ⊆ D(G)/S are all symbolic decision sets that are not environ-
ment-dependent.

• The 1-vertices V1 := (D(G)/S) \ V0 are all environment-dependent symbolic deci-
sion sets in G.

• The initial vertex is D0, where

D0 := {(p.c, †) | p.c ∈ M0 ∩ PS} ∪ {(e.d, post (e.d)) | e.d ∈ M0 ∩ PE}.

• the labeled edge relation E ⊆ V× (T ∪ {†})×V is defined as follows: If D contains
a bad place, is a deadlock, is terminating, or is nondeterministic, there is only a
†-labeled self-loop originating from D. Otherwise, consider three disjunct cases for
edges originating in D:

Case D ∈ V1; i.e., all players have decided for a commitment set, but cannot proceed
without the environment. Then for all t ∈ T and σ ∈ Σ(t)D, (D, t.σ,D′) ∈ E iff
D[[t.σ⟩⟩D′.

Case D ∈ V0 and D[[†⟩⟩; i.e., at least one system player has yet to decide for a
commitment set. Then (D, †,D′) ∈ E iff D[[†⟩⟩D′.

Case D ∈ V0 and ¬D[[†⟩⟩; i.e., all system players made their decisions and can
proceed without the environment. Then for all t ∈ T and σ ∈ Σ(t)D with pre (t.σ)∩
PE = ∅, (D, t.σ,D′) ∈ E iff D[[t.σ⟩⟩D′.

• Win depending on Obj and P⊛ as follows:

– if Obj := Safety then Win = Safety(F), where F contains all symbolic decision
sets that are a deadlock, nondeterministic, or contain a bad place,

– if Obj := Reach then Win = Reach(F), where F contains all symbolic decision
sets that contain a target place. �

68



3.2. The Symbolic Two-Player Game

Analogously to the low-level case, we denote V := V0 ⊔ V1. Note that, since the
initial marking M0 is symmetric (i.e., ∀s ∈ S(G) : s(M0) = M0), D0 = D0 holds.

† †

† † ††

† †

(Env.0, {sel.1, sel.2, sel.3})
(Init.1, †)
(Init.2, †)
(Init.3, †)

[D0]

(Env.0, {sel.1, sel.2, sel.3})
(Init.1, {tr.1, inf.[2,1,3], inf.[3,1,2]})
(Init.2, {tr.2, inf.[1,2,3], inf.[3,1,2]})
(Init.3, {tr.3, inf.[1,2,3], inf.[2,1,3]})

[D1]

(Tr.2, †)
(Init.1, {tr.1, inf.[2,1,3], inf.[3,1,2]})
(Init.2, {tr.2, inf.[1,2,3], inf.[3,1,2]})
(Init.3, {tr.3, inf.[1,2,3], inf.[2,1,3]})

[D2]

(Env.0, {sel.1, sel.2, sel.3})
(Init.1, {uninf.1})
(Init.2, {})
(Init.3, {})

[D′
1] (Env.0, {sel.1, sel.2, sel.3})

(Ch.1, †)
(Init.2, {})
(Init.3, {})

[D′
2]

(Env.0, {sel.1, sel.2, sel.3})
(Ch.1, {})
(Init.2, {})
(Init.3, {})

[D′
3] (Env.0, {sel.1, sel.2, sel.3})

(Ch.1, {rec.[1,2], fwd.1})
(Init.2, {})
(Init.3, {})

[D′′
3 ]

(Tr.3, †)
(Ch.1, {})
(Init.2, {})
(Init.3, {})

[D′
4] (Tr.3, {tr.3})

(Ch.1, {})
(Init.2, {})
(Init.3, {})

[D′
5]

†

†

sel.2

uninf.1

†
†

sel.3 †

†

†

Figure 3.11: Part of the symbolic two-player game for the running example Signal Sending
Satellites

Example 3.27 (Symbolic two-player game). Figure 3.11 shows a part of the sym-
bolic two-player game for the running example Signal Sending Satellites. It corresponds
to the part of the two-player game from Fig. 3.6 on p. 53, in the sense that every com-
ponent shown in Fig. 3.6 is represented.

To emphasize that we consider the symbolic two-player game, the symbolic decision
sets are labeled by the equivalence classes’ names. However, instead of showing all
instances of every class or depicting it abstractly, we show for each class the respective
representative. As in Fig. 3.10, we draw these with thick borders, and draw thick edges
between them to illustrate the symbolic relations between them.

Compared to Fig. 3.6, we see that the three edges from D1, labeled by sel .1, sel .2,
sel .3 are represented by one edge from [D1]. This edge corresponds to a symbolic relation
D1[[sel .2⟩⟩D2, where D1 and D2 are chosen to be the representatives of their respective
equivalence class, and sel .2 is the representative of its equivalence class {sel .1, sel .2,
sel .3} in Σ(sel)D1 .

Analogously, the symbolic decision set [D′
1] represents D′′

1 and D′′′
1 with representa-

tive D′
1, which also means that the corresponding branches in Fig. 3.6 are now represented

by the symbolic relations in the future of D′
1 in Fig. 3.11. �

3.2.4 Bisimulations between Two-Player Games

We now make a short excursus and generally define a bisimulations on two-player games.
We proceed to show that two bisimilar two-player games coincide on the existence of a
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winning strategy for Player 0. In the subsequent Section 3.2.5, the instantiation of this
result for the two-player game G(ExpG) and the symbolic two-player game G(G) yields
the correctness of the solving algorithm for high-level Petri games G ∈ G.

Let G = (V0,V1, v0,E,Win) be a two-player game with vertices V := V0 ⊔ V1 and
Win = Safety(F) or Win = Reach(F) for a set F ⊆ V of special vertices. Then we
can view G as a state-labeled transition system TS (G) := (V,E, λ, v0) with the set of
states V, the transition relation E, the initial state v0 as defined in G, and a labeling
function λ : V → P ({s, f}) with propositions {s, f}, defined by ∀v ∈ V : (s ∈ λ(v) :⇔
v ∈ V0) ∧ (f ∈ λ(v) :⇔ v ∈ F).

A bisimulation between two state-labeled transition systems TS 1 = (S1,→1, λ1, x0)
and TS 2 = (S2,→2, λ2, y0) is a relation R ⊆ S1 × S2 such that for all (x, y) ∈ R

• λ1(x) = λ2(y),

• ∃x ∈ S1 : x→1 x
′ ⇒ ∃y′ ∈ S2 : y →2 y

′ ∧ (x′, y′) ∈ R, and

• ∃y′ ∈ S2 : y →2 y
′ ⇒ ∃x′ ∈ S1 : x→1 x

′ ∧ (x′, y′) ∈ R

holds. Two states x ∈ S1 and y ∈ S2 are called bisimilar, denoted by x ∼ y, iff there is a
bisimulation R between TS 1 and TS 2 satisfying (x, y) ∈ R. The transition systems TS 1

and TS 2 are called bisimilar, denoted by TS 1 ∼ TS 2, iff x0 ∼ y0.

Definition 3.28 (Bisimulation between two-player games). Two two-player games
G = (V0,V1, v0,E,Cond(F)) and G′ = (V′

0,V′
1, v

′
0,E′,Cond(F′)) with the same winning

condition Cond ∈ {Reach,Safety} are bisimilar, denoted by G ∼ G′, iff the corresponding
transition systems are bisimilar, i.e., TS (G) ∼ TS (G′). The bisimulations between
TS (G) and TS (G′) are referred to as bisimulations between G and G′ �

In particular, this means that for any such bisimulation R and every two vertices
v ∈ V and v′ ∈ V′ with (v, v′) ∈ R their classification as 0-vertices, 1-vertices or special
vertices coincides, i.e., v ∈ V0 ⇔ v′ ∈ V′

0 and v ∈ F⇔ v′ ∈ F′ holds.

Lemma 3.29. Let G = (V0,V1, v0,E,Cond(F)) and G′ = (V′
0,V′

1, v
′
0,E′,Cond(F′)) be

two bisimilar two-player games. Then Player 0 has a winning strategy in G if and only
if Player 0 has a winning strategy in G′.

Proof. For inductively defining a strategy on sequences of length n in a two-player game,
it suffices to only define it on paths that are consistent with the so far defined strategy.
All other sequences are mapped to an arbitrary successor.

Let R ⊆ V × V′ be a bisimulation between G and G′ and f a winning strategy for
Player 0 in G. We construct a winning strategy f ′ for Player 0 in G′ from f . We define f ′

inductively on paths of length n through the arena. For that we, also inductively, define
a helper mapping h, that maps paths of length n+1 in G′ that are consistent with f ′ to
corresponding paths in G.

The construction will ensure that, for all n,

• h is defined for all paths of length n+ 1 consistent with f ′ such that the image is
consistent with f ,
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• the states are pairwise bisimilar, i.e., if h(v′0 · · · v′n) = v0 · · · vn then (vj , v
′
j) ∈ R for

all 0 ≤ j ≤ n,

• f ′ is defined for all consistent paths of length n that end in a state of V ′
0 .

(IB) Consider the case n = 0. The only path of length n + 1 = 1 in G′ is v′0. Define
h(v′0) := v0, and f ′ maps the empty path to v0.
(IH) Assume now, for an arbitrary n, that f ′ is defined for all consistent paths of length n
and h is defined for all paths of length n+ 1 consistent with f ′.
(IS) Consider a path v′0 · · · v′n of length n + 1 in G′ that is consistent with f ′. Let
v0 · · · vn = h(v′0 · · · v′n).
Case v′n ∈ V′

0. We define f ′(v′0 · · · v′n) as follows: since (vn, v
′
n) ∈ R, we have that

vn ∈ V0. Let now vn+1 = f(v0 · · · vn). This implies (vn, vn+1) ∈ E and therefore, since
R is a bisimulation, there is a v′n+1 ∈ V′ such that (v′n, v

′
n+1) ∈ E′ and (vn+1, v

′
n+1) ∈ R.

We define f ′(v′0 · · · v′n) := v′n+1 and h(v′0 · · · v′nv′n+1) := v0 · · · vnvn+1.
Case v′n ∈ V′

1. We define, for every v′ ∈ V′ with (v′n, v
′) ∈ E′, h(v′0 · · · v′nv′) = v0 · · · vnv

for an arbitrary v such that (vn, v) ∈ E and (v, v′) ∈ R.
Let v′ = v′0v

′
1v

′
2 · · · be a play in G′ that is consistent with f ′. By defining vj as the

last element in h(v′0 · · · v′j) for every j ≥ 0, we obtain a play v = v0v1v2 · · · in G that is
consistent with f . Therefore, Player 0 wins v in G, and since vj ∈ F iff v′j ∈ F′ for all j,
Player 0 wins v′ in G′.

Since the inverse relation R−1 = {(v′, v) | (v, v′) ∈ R} is a bisimulation between G′

and G, the converse direction follows analogously.

Note that we have not shown how to create a positional strategy in G′ from a po-
sitional strategy in G. I suspect that this is not possible without further analysis of
the strategies since the given bisimulation between G and G′ could be a many-to-one
relation. With this, we can have multiple possibilities for defining positional strategies
in G′. This is illustrated in the following example.

v0

v1 v3

v2 v4

v′0

v′1

v′2

G G′

Figure 3.12: Two bisimilar two-player games G and G′, with a positional strategy for
Player 0 in G.

Consider the two reachbility games G and G′ from Fig. 3.12 and a bisimulation
R = {(v0, v′0), (v1, v′1), (v3, v′1), (v2, v′2), (v4, v′2)} relating the vertices respecting their layer
position. Let the round vertices belong to Player 0. A positional winning strategy f in G
is depicted as red, thick edges. Constructing a positional winning strategy f ′ in G′,
requires to define f ′(v′1). Hence, we have to decide whether f ′(v′1) = v′1 (considering v1)
or f ′(v′1) = v′2 (considering v3) should hold. The problem here is that R relates v1 and
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v3 to the same vertex (v′1), whereas the successors f(v1) and f(v3) are related by R to
different vertices (v′1 and v′2).

We expect that we can always generate another positional winning strategy f̂ in G
which is compatible with the bisimulation (here f̂(v1) = v2 and f̂(v3) = v4), and there-
with easily construct a positional winning strategy for G′. However, this would probably
be as complicated as the proof of Lemma 3.29, so I will not explore this possibility here.
Remark. Notice that we have not talked about possibly labeled edge relations in bisimilar
two-player games. Concerning bisimulations, we completely ignore the labels on edges in
such a case. This in particular means that labels do not play any role in the second and
third condition of bisimulations.

In the next section we show that the symbolic two-player game G(G) is bisimilar
to the two-player game G(G), where G = Exp(G). In this case, however, we have a
one-to-many relation between G(G) and G(G). This allows us to translate a positional
winning strategy in G(G) to a positional winning strategy in G(G), as we demonstrate
in Construction 3.35.

3.2.5 Soundness of the Symbolic Two-Player Game

In this section we apply the theory from Sec. 3.2.4 to the two-player games G(G) from
Sec. 3.1.3 and G(G) from Sec. 3.2.3. We again assume a given high-level Petri game
G ∈ G, and denote its extension by G = Exp(G) = (PS,PE,T,F,M0,Obj,P⊛) ∈ Exp(G).
To show that the two-player games G(G) and G(G) are bisimilar, we first compare the
edge relation in the two. As we have seen, the edges are built from properties of and the
relations between (symbolic) decision sets. Thus, Corollary 3.17, and the Properties 3.22
and 3.24, will be the main arguments in comparing the games’ structures.

First we show that the edge relations of the two underlying graphs of G(G) and
G(G) correspond to each other (Lemma 3.30). Second we prove that the set of reach-
able symbolic decision sets in G(G) is exactly the set of representatives of decision sets
reachable in G(G) (Lemma 3.31). Let in this section G(G) = (V0,V1, v0,E,Win) and
G(G) = (V0,V1, v0,E,Win).

Lemma 3.30. For every edge in G(G) there is a “corresponding” edge in G(G), and vice
versa, meaning:

(1) (D, τ,D′) ∈ E ⇒ (D, τ ,D′) ∈ E, where

• if τ = t.σ then τ = t.σ, where σ = αD(sD(σ)), and
• if τ = † then τ = †.

(2) (D, τ ,D′) ∈ E ⇒ ∀D1 ∈ [D ] ∃D2 ∈ [D′ ] ∃τ : (D1, τ,D2) ∈ E, where

• if τ = t.σ then τ = t.σ′ for a σ′ satisfying αD(sD1(σ
′)) = σ, and

• if τ = † then τ = †.
Proof. By Corollary 3.17, a decision set D contains a bad place, is a deadlock, is termi-
nating, or nondeterministic, if and only if D has the same property. In this case there is
only a †-labeled self-loop originating from D as well as from D.
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Now consider the cases in which D resp. D has none of these properties. We prove
(1) and (2) in (1) and (2), respectively.

(1) Let (D, τ,D′) ∈ E. We consider the three cases from the construction of the edge
relation E in Def. 3.10.

Case D ∈ V1: Then D ∈ V1 by Corollary 3.17. Since D ∈ V1 and D is not
a deadlock, ∃t.σ ∈ T : τ = t.σ ∧ D[t.σ⟩D′. Property 3.22 implies D[[t.σ⟩⟩D′ for
σ = αD(sD(σ)), and then by definition (D, t.σ,D′) ∈ E.

Case D ∈ V0 and D[†⟩: Then D ∈ V0 by Corollary 3.17, and by definition D[[†⟩⟩.
Since D[†⟩, we have τ = † and D[†⟩D′. Property 3.22 implies D[[†⟩⟩D′, and then by
definition (D, †,D′) ∈ E.

Case D ∈ V0 and ¬D[†⟩: Works the same as the case D ∈ V1, only that we also
use the simple fact that pre (t.σ) ∩ PE = ∅ ⇒ pre (t.σ) ∩ PE = ∅.

(2) This works analogously to (1), but considering the three cases in the edge relation E
(Def 3.26), and using Property 3.24 instead of Property 3.22. We demonstrate this
only for the first case:

Let (D, τ ,D′) ∈ E and D ∈ V1. Corollary 3.17 gives us D ∈ V1. Since D ∈ V1, and
D is not a deadlock, ∃t.σ ∈ T : τ = t.σ∧D[[t.σ⟩⟩D′. Let now D1 ∈ [D]. Property 3.24
implies that there is a σ′ with σ = αD(sD(σ)) and a D2 ∈ [D′] s.t. D1[t.σ

′⟩D2, which
by definition implies (D1, t.σ

′,D2) ∈ E.

By definition of V and V, we have that the symbolic decision sets in V = D(G)/S are
the equivalence classes of decision sets in V = D(G) = D(G). We often implicitly restrict
the sets of vertices V (resp. V) in G(G) (resp. G(G)) the ones reachable from D0 (which
is equal to D0). This does not have any consequences for a game’s semantics, since plays
are defined to start in in the initial vertex. We now prove that, with the restriction to
reachable vertices, V still contains exactly the equivalence classes of V. For that, let
R(G(G)) and R(G(G)) be the reachable vertices in G(G) and G(G), respectively.

Lemma 3.31. The representatives of decision sets in R(G(G)) are exactly the symbolic
decision sets in R(G(G)), i.e., {D | D ∈ R(G(G))} = {D | D ∈ R(G(G))}.

Proof. We start with {D | D ∈ R(G(G))} ⊆ {D | D ∈ R(G(G))}. For all D ∈ R(G(G))
there are D1, . . . ,Dk ∈ V and τ0, . . . , τk ∈ TG ∪ {†} such that

(Di, τi,Di+1) ∈ E for all i = 0, . . . , k, with Dk+1 = D.

We prove D ∈ R(G(G)) by induction over the length of shortest path from D0 to a decision
set D ∈ R(G(G)): If the shortest path is empty we have D = D0, and D0 ∈ R(G). The
induction step follows by Lemma 3.30 (1).
To show {D | D ∈ R(G)} ⊆ {D | D ∈ R(G(G))}, we proceed analogously, with the
induction step following by Lemma 3.30 (2).

Lemma 3.32. There is a bisimulation between G(G) and G(G).
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Proof. Note that in this lemma and proof we explicitly use the notation of equivalence
classes instead of their representatives for elements in V, so that no confusion arises.
By definition of G = Exp(G) we have that the system players in G have the same
kind of objective (safety resp. reachability) as in G. Thus, also by definition, the two-
player games G(G) and G(G) have the same winning condition (Cond = Safety resp.
Cond = Reach) and thus satisfy the basic requirement for a bisimulation.

Let now R = {(D, [D]) | D ∈ V}. This relation is defined on V × V by Lemma 3.31,
from D ∈ V it follows D ∈ V, and we have (D0, [D0]) ∈ R. We show that R is a
bisimulation.

Let (D, [D]) ∈ R and (D,D′) ∈ E for a D ∈ V. We have to prove that there is a [D2]
such that ([D], [D2]) ∈ E and (D′, [D2]) ∈ R. The obvious candidate for [D2] is [D2] = [D′],
since (D′, [D′]) ∈ R by definition. From (D,D′) ∈ E follows ∃τ ∈ TG∪{†} : (D, τ,D′) ∈ E.
Then, by Lemma 3.30 (1), we have (D, τ ,D′) ∈ E. This, again by definition, gives
([D], [D′]) ∈ E.

We can prove (D, [D]) ∈ R ∧ ([D], [D′]) ∈ E⇒ ∃D2 ∈ V : (D2, [D
′]) ∈ R ∧ (D,D2) ∈ E

analogously, by using Lemma 3.30 (2).
Since, by Lemma 3.31 and Corollary 3.17, D ∈ V0 ⇔ [D] ∈ V0 and D ∈ F⇔ [D] ∈ F,

we finally have that R is a bisimulation between G and G.

Lemma 3.29 together with Lemma 3.32 finally yields the conformity of the symbolic
high-level game G(G) and the corresponding low-level game G(G) regarding the existence
of a winning strategy:

Corollary 3.33. Player 0 has a winning strategy in G(G) if and only if Player 0 has a
winning strategy in G(G).

Since the definition of a winning strategy in a high-level Petri game G is defined as
a winning strategy in the corresponding low-level Petri game Exp(G) (cp. Sec. 2.3.2),
Cor. 3.33 yields the main result of this section: Theorem 3.34 states that the construction
of the symbolic two-player game is sound in the sense that solving the symbolic two-player
game answers the question whether there exists a winning strategy for the system players
in a given proper high-level Petri game.

Theorem 3.34. Let G ∈ G be a proper high-level Petri game. Then the system play-
ers have a winning strategy in G if and only if Player 0 has a winning strategy in the
corresponding symbolic two-player game G(G).

We construct a winning strategy for the system players in G, i.e., a winning strategy
for the system players in the corresponding low-level Petri game G = Exp(G), from
the positional winning strategy f for Player 0 in G(G) in two steps. First, we create
a positional winning strategy f for Player 0 in G(G) from f , which is possible as given
by Lemma 3.29. Second, we apply the algorithm presented in [FO17; Gie22] to f , i.e.,
traversing f in breadth-first order while adding the corresponding places and transition of
the decision sets, to create a winning strategy for the system players in G. This algorithm
was demonstrated in Example 3.13 and can also be found in Appendix 3.A. Note that
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this last step would take infinitely long for infinite Petri game strategies such that a
practical algorithm has to provide a finite representation of the strategy, as demonstrated
in [FO17]. The procedure that we just described corresponds to taking the thick edges
in Fig. 3.8.

In Fig. 3.8, consider now the edge “generate” from a strategy f in the symbolic two
player game G(G) to a f in the two-player game G(G). The construction of a winning
strategy in the proof of Lemma 3.29 yields a nonpositional strategy f : V∗V0 → V in
G(G) for a such strategy f . For the introduced solving algorithm of high-level Petri games
we are interested in positional winning strategies. The following construction serves for
the creation of a positional strategy f : V0 → V in the two-player game G(G) from a
positional strategy f : V0 → V in the symbolic two-player game G(G). This is possible
since our introduced bisimulation is a many-to-one relation.

Construction 3.35. Let R−1 = {(D,D) | D ∈ V} be the inverse of the bisimulation
R on G(G) and G(G). This bisimulation is a one-to-many relation with domain G(G)
and co-domain G(G). Let f : V0 → V be a positional winning strategy for Player 0 in
G(G) and D ∈ V0. Then D ∈ V0 and f(D) is defined. Let D′ := f(D). This implies
(D,D′) ∈ E, and since (D,D) ∈ R−1, we have

∃D1 ∈ V : (D,D1) ∈ E ∧ (D′,D1) ∈ R−1 (i.e., D1 = D′).

We define f(D) := D1. Hence, f is positional. The strategy f is also winning: Let
ρ = D0D1 · · · ∈ (V)ω be a play of G that is consistent with f . Then ρ := D0D1 · · · ∈ (V)ω
is a play of G(G), that by definition is consistent with f . Therefore, ρ is winning in G(G).
This, as in the proof of Lemma 3.29, implies that ρ is winning in G(G). �

3.2.6 Experimental Results

This section briefly presents a prototype implementation for generating the symbolic
two-player game G(G) for a given proper high-level Petri game G. The primary work
on this implementation was conducted by Manuel Gieseking in the context of [GOW20],
and this section only serves as a showcase for the applicability of the presented concepts.
The implementation comprises three algorithms to create the reduced, symbolic state
space and compared their runtimes with the complete state space creation of G(G) in
Adam [FGO15; Gie20], where G = Exp(G). The results of these benchmarks are shown
in Table 3.1. All algorithms are integrated into the Adam framework, allowing for
leveraging its data structures and functionalities for Petri nets and Petri games.

Adam employs Binary Decision Diagrams (BDDs) to determine the existence of a
strategy and to compute a strategy when it exists. In the original algorithm, the ex-
plicit state space is never generated, which means the concrete size of G(G) cannot be
directly obtained. To facilitate a proper comparison between the sizes of the generated
state spaces (G(G) versus G(G)), Adam is extended with a fixed-point algorithm. This
algorithm calculates a BDD for the reachable states of the two-player game G(G) and
then counts the number of solutions to obtain the number of states of G(G) as a reference
value. The Reference-Approach takes the low-level version G of a high-level Petri game G
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as input. The results and the computational resources used for calculating the reduced
state space are presented in columns three and four of Table 3.1.

To generate the reduced state space, Symmetric Nets [CDFH91a] (cp. Sec. 3.3.1)
are utilized as the underlying structure for the high-level Petri game. Symmetric nets
are a subclass of high-level Petri nets with equivalent expressive power but offer the
advantage of allowing easy and automatic creation of the system’s symmetries from the
specification.

The following three algorithms are all based on the algorithm for a symbolic reacha-
bility tree originally presented in [HJJJ86]:

HL-Approach: This approach explicitly calculates the symbolic state space from the
high-level Petri game G.

LL-Approach: This approach first expands the high-level Petri game G into the corre-
sponding low-level Petri game G = Exp(G) and then uses this to explicitly calculate
the symbolic state space of G(G). During this calculation, G is still exploited to
obtain the symmetries of the system.

BDD-Approach: This approach uses, as in the Reference-Approach of Adam, BDDs
to symbolically calculate the number of vertices of the symbolic two-player game.
For this purpose, the high-level Petri game is also first transformed into the corre-
sponding low-level one and then the high-level structure is used for the automatic
generation of the system’s symmetries.

Note that neither a winning strategy is calculated nor its existence is determined. Instead,
for a high-level Petri game, three different approaches to compute the reduced state space,
which corresponds to determining the number of vertices in the high-level two-player
game G(G) are employed. These approaches leverage the symmetries of the high-level
Petri game, as described in Sec. 3.2.3. Additionally, the adapted algorithm of Adam
is used to compare the sizes of these reduced state spaces to the size of the previously
existing low-level two-player game G(Exp(G)). The runtime of any synthesis algorithm
is significantly influenced by the size of the state space it needs to explore. Therefore,
this comparison provides an initial indication of the potential of our new method.

The algorithms were evaluated on a set of five scalable benchmark families, which
encompass applications in robotic control, workflow management, and other distributed
domains. For each benchmark, Table 3.1 presents the elapsed CPU time (time in seconds)
for calculating the size of the state space |V| and the size of the reduced state space |V|
using each approach. If a calculation exceeds two hours, it is indicated as a timeout (TO).
For each benchmark, the time of the fastest among the new approaches is highlighted in
bold. The experiments were conducted on an Intel i7-2700K CPU with 3.50 GHz and
32GB RAM. The benchmark families describe the following scenarios:

Package Delivery (PD): In this scenario, we have n drones tasked with delivering m
packages. The packages are assigned to the drones. However, due to the hostile
environment, an arbitrary drone may crash during the delivery process. When a
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Table 3.1: Experimental results of the benchmark families regarding the sizes of G(G)
and G(G) and their calculation time (in seconds) for the three different approaches for
G(G) and the reference approach for G(G).

2-Player Game G(G) Symbolic Two-Player Game G(G)
HL-Appr. LL-Appr. BDD-Appr.

Ben. Par. time |V| |V| time time time

PD 1/1 0.23 30 30 0.4 0.21 0.22
1/2 0.3 262 138 1.02 0.46 0.33
1/3 0.42 1988 420 3.99 1.7 1.18
1/4 0.72 14010 1017 10.28 5.32 457.84
1/5 1.09 94824 2122 46.08 11.25 TO
1/6 3.82 6.266e5 4004 280 50.54 -
1/7 29.24 4.079e6 6907 2629.75 530.01 -
1/8 202.99 2.629e7 11115 TO 7367.82 -
1/9 1815.35 1.683e8 - - TO -
. . . . . . . . . . . . . . . . . . . . .
4/1 0.7 11473 695 6.86 4.64 13.04
4/2 453.42 1.848e7 3.733e5 6224.85 2165.59 TO
4/3 TO - - TO TO -
5/1 1.45 65713 1177 13.4 12.02 TO
5/2 TO - - TO TO -

AS 2 0.45 7445 3780 9.89 4.82 1.22
3 1.36 5.802e7 - TO TO TO

CM 2/1 0.28 157 80 0.39 0.27 0.23
2/2 0.36 2617 685 2.16 1.06 0.51
2/3 0.67 42657 4048 11.72 6.95 4.64
2/4 1.41 6.794e5 18067 61.06 21.37 606.3
2/5 3.6 1.061e7 67675 722.66 306.49 TO
2/6 36.25 1.634e8 2.081e5 TO 6722.21 -
2/7 1061.76 2.488e9 - - TO -
. . . . . . . . . . . . . . . . . . . . .
4/1 0.39 2965 240 1.52 1.42 0.7
4/2 0.81 4.553e5 11215 69.4 23.61 30.38
4/3 2.51 6.973e7 3.824e5 TO 2716.89 TO
4/4 28.91 1.175e10 - - TO -

DW 1 0.27 58 58 0.45 0.3 0.26
. . . . . . . . . . . . . . . . . . . . .
6 1.05 7.557e5 1.201e5 582.44 128.22 TO
7 1.41 4.055e6 5.199e5 3832.36 1097.74 -
8 2.38 2.097e7 - TO TO -

DWs 1 0.24 52 52 0.38 0.22 0.22
. . . . . . . . . . . . . . . . . . . . .
4 0.69 3.703e5 92647 131.01 46.17 TO
5 1.42 5.638e6 1.125e6 3063.2 1793.82 -
6 1.87 8.293e7 - TO TO -
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drone crashes, other drones can get notified and can decide whether to recover the
package or not. The ultimate goal of the system is to successfully deliver all the
packages despite the potential crashes. Parameters: n drones / m packages.

Alarm System (AS): In this scenario, we have n geographically distributed locations,
each of which is protected by an alarm system. The environment includes a burglar
who can intrude into any of the locations. The alarm systems have the capability to
communicate with each other about burglaries. The system’s objective is twofold:
to ensure that no alarm system is triggered without an actual intrusion, and that all
alarm systems correctly indicate the location of the intrusion in case of a burglary.
Parameters: n alarm systems.

Concurrent Machines (CM): In this scenario, we have n machines tasked with pro-
cessing m orders. The orders can be processed concurrently, but each machine is
limited to handling only one order. The hostile environment chooses one machine
to be defective. Despite this challenge, the system’s goal is to ensure that all orders
are processed successfully in the end. Parameters: n machines / m orders.

Document Workflow (DW) and (DWs): In this scenario, there are n clerks respon-
sible for either endorsing or rejecting a document. The document is passed in a
circular manner among the clerks, and the environment decides which clerk receives
the document first. The objective is to achieve a unanimous decision among all
clerks. In the simplified variant DWs, the specific goal is for all clerks to endorse
the document. Parameters: n clerks.

The package delivery benchmark family is originally described in [GOW20]. The alarm
system benchmark family was first introduced in [FGHO17], and its high-level version
was presented in [GO21]. The benchmark families CM, DW, and DWs were initially
introduced in [FGO15] at the P/T level. The high-level version for CM was later pre-
sented in [GO21], and the high-level versions for DW and DWs were first defined for the
benchmarks presented in [GOW20].

The figures demonstrate a substantial decrease in the size of the system’s state space.
The new benchmark PD, with parameters 1/8, shows the most significant reduction:
from 26,299,378 states for the standard state space to 11,115 states for the reduced one.
This amounts to a reduction factor of approximately 2,366. As for the DW and DWs
benchmark family, the reduction is relatively smaller. This is due to the circular passing
of the document, which limits the permissible symmetries to rotations, resulting in less
potential for significant reductions.

The reduction in the state space does come with a trade-off. The computation time
of the new algorithms for the reduced state space (the last three columns) is generally
noticeably higher compared to the reference algorithm for the standard state space (col-
umn three). One reason is the equivalence check is performed each time before adding
a new vertex, which adds to the computational overhead. However, one can argue that
these figures are not directly comparable because Adam utilizes optimized symbolic al-
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gorithms that typically outperform explicit algorithms, such as those used in the HL-
and the LL-Approach, especially for large state spaces.

The primary reason for the low performance of the BDD-Approach on larger models
is that the current algorithm requires checking, for each newly created state, whether an
equivalent state already exists. Unfortunately, the existing framework did not allow to
directly encode this check into a Boolean function for representing the transition relation
of the two-player game. As a result, in this prototype implementation of a symbolic
algorithm that exploits the symmetries of the system, the equivalence check is performed
explicitly. This means that in every round of the fixed point calculation, each explicit
state of the Binary Decision Diagram (BDD) representing the successors of this round is
calculated. These costly solving steps of the BDDs hinder the efficient use of a symbolic
algorithm. As a consequence, the BDD-Approach exhibits lower performance on larger
models.

In general, the LL-Approach outperforms the HL-Approach. This can be attributed
to the structure of the decision sets. In the HL-Approach, a decision set of the high-level
two-player game consists of concrete instances of the places and transitions from the
high-level net. Consequently, the HL-Approach recalculates these instances each time a
high-level transition is requested. Although an improvement can be made by buffering
this data, it nearly leads to the LL-Approach in terms of efficiency.

Overall, these results indicate a significant advancement towards a faster practical
solving of Petri games, as a smaller state space considerably reduces the runtime of
the synthesis algorithms. Standard algorithms used for solving two-player games with
complete information are polynomial in the number of edges of the game and can be
applied to the symbolic two-player game G(G). The remaining steps for solving high-level
Petri games, namely, resolving the symmetries of the two-player strategy and creating
the Petri game strategy, are linear in the number of edges of the strategy and quadratic
in the number of admissible symmetries. Considering that the presented algorithms are
still in a prototype stage, these results are highly promising and encouraging for further
research and development.

3.3 Small, Canonical Representations in the Symbolic Two-
Player Game

Before we go into the content of this section, we begin with a remark concerning termi-
nology.

Remark. In the previous section, we discussed the concept of (arbitrary) representatives.
This section, however, focuses on what we refer to as (dynamic) representations. Al-
though both terms share the common objective of representing an equivalence class of
decision sets, they achieve this goal through different approaches. Therefore, we fre-
quently draw comparisons between the two concepts. The aim of this remark is to
highlight this subtle but crucial difference in terminology.

The idea of the symbolic two-player game discussed in the preceding sections is to
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reduce the state space’s size by exploiting symmetries. To achieve this, we consider only
one representative from each equivalence class induced by a Petri game’s symmetries.
This can be done either by checking whether a newly generated state is equivalent to any
already generated one or by transforming each newly generated state into an equivalent,
canonical representation.

These two approaches solve the so-called Orbit Problem and Constructive Orbit Prob-
lem [CEJS98], respectively. The Orbit Problem asks, for two given states, if the two are
symmetric. The Constructive Orbit Problem asks, given a state, for a canonical repre-
sentation that is equal for all symmetric states. Solving the Constructive Orbit Problem
also solves the Orbit Problem, since two states are symmetric if and only if they have
the same canonical representation.

In the preceding section, we explored the former approach. The vertices of the sym-
bolic two-player game are symbolic decision sets. During the game’s construction, an
arbitrary representative D is chosen for each of these equivalence classes. Usually, the
first member of an equivalence class that is added to the game is declared the represen-
tative of that class. Consequently, when encountering a new vertex D′, we must apply
every admissible symmetry s ∈ S to verify whether a representative D′ = s(D′) already
exists in the game, or if D′ belongs to a new symbolic decision set. We therefore solved
the Orbit Problem.

Our focus now shifts to the second approach, wherein we introduce the concept of
dynamic representations for symbolic decision sets. Once the dynamic representations
are defined, we show how to select a canonical dynamic representation for each symbolic
decision set. This selected representation is referred to as the canonical representation.
These canonical representations will be employed in place of arbitrary representatives
of symbolic decision sets during the construction of the symbolic two-player game. By
defining such a canonical representation for every symbolic decision set we solve the
Constructive Orbit Problem.

We employ techniques presented in [CDFH91a; CDFH93], where the authors address
the constructive orbit problem for markings in the symbolic reachability graph of a high-
level Petri net. The considered nets are given in a formalism known as symmetric nets.
One major advantage of this formalism is that the symmetries of a net can be directly
inferred from its specification, avoiding the necessity of further behavioral analysis. Ad-
ditionally, it allows for the definition of small dynamic representations of markings, and
facilitates the construction of a canonical representation by considering only a subset of
the net’s symmetries.

Thus, in this section, we consider high-level Petri games G with an underlying sym-
metric net. We extend the findings of [CDFH91a; CDFH93] from markings to decision
sets, demonstrating that the notion of canonical representations is consistent with the
symbolic two-player game. Consequently, we are able to construct a canonical two-player
game Ĝ(G) that is isomorphic to the symbolic two-player game G(G), but with canonical
representations of symbolic decision sets serving as vertices. Fig. 1.1, illustrates the role
of G(G) in the frame work of the symbolic two-player game G(G).
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3.3.1 Symmetric Nets and Symmetric Petri Games

In this section, we revisit the definition of the symmetric net formalism as presented in
[CDFH91a; CDFH93], and draw comparisons with the high-level formalism introduced
in Sec. 2.3.1. Before this comparison, we offer a brief excursus to present another high-
level Petri net formalism frequently referenced in the literature, such as [Jen96]. This
particular formalism can be regarded as an intermediary step between Sec. 2.3.1 and
symmetric nets. Its presentation, however, is solely aimed at enhancing the reader’s
comprehension of the symmetric net formalism, as all three formalisms have the same
expressive power.

Excursus: Place Types and Arc Expressions in High-level Petri Nets. Our
definitions in Sec. 2.3.1 of high-level Petri nets are based on [CJ04]. By choosing this
formalism, we were able to adopt the notion of symbolic unfoldings, introduced also
in [CJ04]. However, a more common definition of high-level Petri nets can be found,
e.g., in [Jen96] (Definition 2.5). There, each place has a type, describing which kind
of data (colors) the place can hold. Every arc is labeled by an expression, possibly
containing variables. These expressions evaluate to multi-sets over the connected place’s
type, describing which tokens are placed on or taken from the place when firing the
transition in a mode. The modes, as before, assign values to the variables, now inside
the expressions.

In our definition, we have a single set of colors that can potentially be placed on
every place. Simulating the type of a place involves using a corresponding guard on each
transition connected to it. Additionally, we permit only a single variable on each arc.
To simulate expressions, including (multi-)sets on arcs, there are two approaches. The
first approach is to introduce multiple arcs, with each arc representing one element of
a set. However, this method may not always work when the set’s size depends on the
evaluation of the expression. The more reliable approach to simulate an expression is
to expand the set of (original) colors to include its subsets (and possibly multi-sets) and
then add the expression to the transition’s guard. Therefore, introducing expressions on
arcs does not grant us any additional expressive power, but it allows us to potentially
model scenarios in a more comprehensive manner.

We demonstrate this on our running example: Figure 3.13 shows the Signal Sending
Satellites example from Fig. 3.2 with typed places and arc expressions. The type of each
place is indicated next to its name. For example, the place Init and the place Inf now
have the type Sats = {1,2,3}. The place Env has the type {0}, since this is the only
color that will ever by placed there. We denote these color classes by C1 and C2. The
rationale behind this (re)naming is to later characterize this high-level Petri net as a
symmetric net, and will be further expounded in Example 3.37. Having the possibility
to label arcs with expressions makes the role of some transitions more clear. Compared
to Fig. 3.2 showing the same example in the formalism of Sec. 2.3.1, we have three
transitions with changes on arcs or guards:
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Init ,Sats

tr Inf ,Sats
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end
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x

x

(y, x)

y

C1 = {0}, C2 = Sats = {1,2,3}

Figure 3.13: The running example Signal Sending Satellites as a high-level Petri game
with place types and arc expressions.

• The arc from Init to inf is labeled by Sats \ {x} instead of y, z. This says the
satellite assigned to x (from place Inf ) informs all other satellites by firing inf .
This firing places all satellites on Ch, denoted by the arc expression Sats on the
corresponding edge.

• The guard of rec does not contain the predicate “x ̸= 0”. This is not needed, since
the type Sats × Sats of place Rec ensures that x (contained in the tuple (y, x))
must be in Sats and therefore not 0.

• The arc from Rec to end is labeled by (Sats\{x})×{x}. This again means all other
satellites are in Receiving mode, expecting a message from the satellite assigned
to x in Forwarding mode (from place Fwd).

We see that this formalism enables a more comprehensive expression of net behavior.
However, the simpler formalism with single variables on arcs introduced in Sec. 2.3.1
considerably simplifies the definition of symbolic unfoldings for high-level Petri nets.
This advantage proves beneficial in subsequent chapters. �

High-level representations of a given P/T Petri net are often created by implicitly
exploiting symmetric/equivalent behavior of components in the original net. This process
is also referred to as folding the P/T Petri net (cf. e.g. [Jen96]). Conversely, in some
high-level nets, symmetries can be read directly from the given specification. A class of
nets which allow this are the so called symmetric nets2 introduced in [CDFH91a]. The

2Symmetric Nets were formerly known as Well-Formed Nets (WNs). The renaming was part of the
ISO standardization [HKPT06].
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authors use this formalism to define small canonical representations of equivalence classes
of markings in the symbolic reachability graph of a high-level net.

The aim of this Section 3.3 is to extend these results to symbolic decision sets. Thus,
we introduce symmetric nets as the high-level Petri net formalism in this section. Choos-
ing symmetric nets as a model does not lead to a loss of generality, and the presented
methods work for any high-level Petri net, since symmetric nets have the same model-
ing power as general high-level Petri nets (cp. Prop. 3.38). Before we give the formal
definition of symmetric nets in Def. 3.36, we explain the main ideas of the formalism.

• Place types from basic color classes. Symmetric nets are high-level Petri nets
with place types and arc expressions as described above. A main concept now is
the definition of (finite) basic color classes C1, . . . ,Cn.
The type ty(p) (here called the “color domain” C (p)) of each place p is then built
from these basic color classes as a Cartesian product. Formally, we have, for every
place p that C (p) = C

J(p,1)
1 ×· · ·×C

J(p,n)
n for natural numbers J(p, 1), . . . , J(p, n) ∈

N, where C x
i denotes the x-fold Cartesian product of Ci. Every color in the type

of p is a tuple of the form c = ((cji )
J(p,i)
j=1 )ni=1 with cji ∈ Ci for every i, j.

• Color domains for transitions. Analogously, there is a color domain C (t) =

C
J(t,1)
1 × · · · × C

J(t,n)
n for every transition t. Compared to the definition of high-

level Petri nets from Sec. 2.3.1, each entry in a tuple in C (t) corresponds to the
value assigned to one of the variables around t. This means the color domain of a
transition describes all possible assignments of colors to variables. The firing modes
(i.e., the valuations for which the transition’s guard evaluates to true) are a subset
of t’s color domain, i.e., Σ(t) ⊆ C (t). A typical firing mode is σ = ((σj

i )
J(t,i)
j=1 )ni=1

with σj
i ∈ Ci for every i, j.

• Restricted syntax of arc expressions. Arc expressions and transition guards
are constrained to adhere to a structured form known as “standard functions” and
“standard predicates”. An arc expression can, for example, describe the j-th in-
stance of a color from Ci in a firing mode σ. This is denoted by Xj

i and refers to
the entry σj

i . The restricted syntax ensures that all colors in a basic color class are
“treated equally”. This comes with a benefit explained in the succeeding item.

• Symmetries without analysis. One of the main advantages of symmetric nets is
that their symmetries can be read directly from the given specification. The ideas
of symmetries in symmetric nets is to handle each basic color class independently.
A symmetry is a tuple s = (s1, . . . , sn), such that every si is a permutation on the
basic color class Ci. Thus, the definition of basic color classes directly yields the
nets symmetries.

The restricted syntax of guards and arc expressions, treating every basic color
equally, now ensures that the firing of transitions is compatible with the applica-
tion of symmetries. In this, the concept of symmetric nets differs from the approach
in Sec. 3.1.1, where, for a given high-level net, the set of symmetries has to be calcu-
lated by analyzing which permutations are compatible with the firing of transitions.
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In symmetric nets, no analysis of the net’s behavior is necessary, since the syntax
of colors and arc expressions guarantees this compatibility.

Before proceeding with the definition of symmetric nets, we give some more details
about basic color classes. A basic color class Ci may be ordered, i.e., equipped with
a successor function suc that orbits through the class, satisfying ∀c ∈ Ci : suc

|Ci|(c) =
c∧∀1 ≤ k < |Ci| : suck(c) ̸= c, where suck describes the k-fold successive execution of suc.
Additionally, each basic color class Ci is possibly partitioned into static subclasses Ci,q,
such that Ci =

⊔ni
q=1 Ci,q for a natural number ni. The partition of basic color classes

into static subclasses serves the purpose of precisely identifying which colors from the
type of a place behave symmetrically to each other.

The structured form of arc expressions and guards guarantees that elements within
the same static subclass exhibit symmetric behavior. For a detailed explanation of these
structured forms, including the formal definition, refer to part at the end of this section,
that starts on p. 91.

Definition 3.36 (Symmetric net). A symmetric net N = (C , P, T, J, F, g,M0) has
the following components:

• C is the family of finite basic color classes, C = {C1, . . . ,Cn}, with Ci ∩ Cj = ∅.
We use the shorthand I := {1, . . . , n}. Each Ci is possibly partitioned into static
subclasses, i.e., there is a fixed ni > 0 and fixed Ci,1, . . . ,Ci,ni s.t. Ci =

⊔ni
q=1 Ci,q.

For some u ∈ {0, . . . , n}, the first u color classes C1, . . . ,Cu are unordered, the
remaining classes Cu+1, . . . ,Cn are ordered, i.e., equipped with a successor func-
tion suc orbiting through the class as explained above.

• P T denote the disjunct sets of places and transitions.

• J : (P ∪ T )× I → N is the color domain function. By J , every node r is equipped
with a so-called color domain

C (r) := C
J(r,1)
1 × · · · × C J(r,n)

n .3

For every r ∈ P ∪ T , the value J(r, i) describes “how often Ci appears in r’s color
domain”.

In terms of the excursus above, the color domain of a place in a symmetric net
would be its type. For a place p, a typical element in C (p) is c = ((cji )

J(p,i)
j=1 )ni=1 with

cji ∈ Ci for every i, j. Analogously, for a transition t, a typical element in C (t) is
σ = ((σj

i )
J(t,i)
j=1 )ni=1 with σj

i ∈ Ci for every i, j.

• F is the flow function that indicates which colors c ∈ C (p) are taken from resp.
placed on p when firing t in a color σ ∈ C (t).

3In these Cartesian products, we set C 0
i = {ε}, s.t. we “ignore” basic color classes Ci with J(r, i) = 0

(since A× {ε} ∼= A).
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For all p ∈ P and t ∈ T , the functions

F (p, t), F (t, p) ∈ (C (t)→ (C (p)→ N))

are standard functions (cp. p. 91ff).

• g equips every transition t ∈ T with a guard g(t) : C (t) → {true, false} that is a
standard predicate (cp. below). It indicates whether t can fire in a color σ ∈ C (t).
By default we will assume for every t ∈ T that ∀σ ∈ C (t) : g(t)(σ) = true.

For a transition t ∈ T , the colors σ in C (t) for which g(t)(σ) = true are (analogously
to Sec. 2.3.1) called the modes of t, and are denoted by Σ(t).

• M0 is the initial marking.

A marking is a function M that for every place p ∈ P describes how often which
color lies on p. For Col =

⋃
p∈P C (p), a marking M is a multi-set over P ×Col (as

in Sec. 2.3.1), that additionally satisfies (p, c) ∈M ⇒ c ∈ C (p). �
The semantics of a symmetric net N is defined analogously to Sec. 2.3.1, but the

notions of preset and postset are adapted to the syntax of F in symmetric nets: by
denoting, for a mode σ ∈ Σ(t) of a transition t, the sets pre (t, σ) := {| (p, c) | c ∈
F (p, t)(σ) |} and post (t, σ) := {| (p, c) | c ∈ F (t, p)(σ) |}, we have arrived at the syntax
from Sec. 2.3.1: we have M [t, σ⟩ iff pre (t, σ) ≤ M , and M [t, σ⟩M ′ iff M ′ = (M −
pre (t, σ)) + post (t, σ).

At this point, we do not provide any further details about the structured forms of
arc expressions and guards, i.e., about the syntax of standard functions and standard
predicates. A brief overview about the possibilities in this syntax is shifted to the end
of this Section 3.3.1, starting from p. 91, followed by the somewhat cumbersome formal
definitions of standard forms starting from p. 94. Instead, we show the running example
of Signal Sending Satellites in the formalism of symmetric nets.

Example 3.37. The (underlying net of the) running example Signal Sending Satellites
from Fig. 3.13 can be transformed into a symmetric net with the same basic structure,
same place types, and equivalent arc labeling. The result of this transformation is shown
in Fig. 3.14. Note that the caption reads “. . . as a symmetric Petri game”. Symmetric
Petri games (explained later in this section) are to symmetric nets what high-level Petri
games are to high-level nets in the formalism of Sec. 2.3.1 and Sec. 2.3.2. For now, we
ignore the different colors and borders of places.

We notice the following differences when comparing the high-level net with places
types in Fig. 3.13 to the symmetric net in Fig. 3.14:

• The denotation of C2 as Sats is omitted.

• Next to every transition t, a (Cartesian product of) basic subclass(es) is written,
denoting the color domain C (t).

• The arc expressions and guards are different. In particular, they do not contain
the variables x and y.
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Figure 3.14: The running example Signal Sending Satellites as a symmetric Petri game.

We now go into detail about the second and third point, and in particular explain the
functions S1, S2, X,X1

2 , X
2
2 .

We begin with the transition that appears to have undergone the most complex
changes, namely, transition rec. Next to rec, the color domain C (rec) = C2 × C2 is
denoted. This means a color σ ∈ C (rec) is of the form σ = (σ1

2, σ
2
2), with σ1

2, σ
2
2 ∈ C2.

We see that in the guard of and the arc expressions around rec, the terms X1
2 and X1

2

appear, replacing the variables x and y. While this at first glance seams like just a
renaming of variables (and in this case can be interpreted like this), the nature of these
terms is a bit more complicated.

X1
2 and X2

2 are actually functions, and refer to σ1
2 and σ2

2, respectively. Consider
the arc expression on the arc from Ch to rec, namely X2

2 . This formally is a function
X2

2 : C (rec) → (C (Ch) → N). When rec fires in a mode (σ1
2, σ

2
2) ∈ C (rec), then for all

colors c ∈ C (Ch) = C2, the value X2
2 (σ)(c) is the number of copies of c that are taken

from Ch. The function X2
2 is given by

X2
2 (σ)(c) =

{
1 , c = σ2

2

0 , else.

Thus, when firing rec in a mode σ = (σ1
2, σ

2
2), the color σ2

2 is taken from Ch.
Consider now the arc from rec to Rec, labeled by (X2

2 , X
1
2 ). Again, this expression

is formally a function (X2
2 , X

1
2 ) : C (rec) → (C (Rec) → N), describing that when rec is

fired in mode σ = (σ1
2, σ

2
2), then for every c = (c12, c

2
2) ∈ C (Rec) = C2 × C2, the number

of copies of c that is placed on Rec is described by (X2
2 , X

1
2 )(σ)(c). In case of such a
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tuple, the value of (X2
2 , X

1
2 )(σ)(c) is given by the following product:

(X2
2 , X

1
2 )(σ)(c

1
2, c

2
2) = X2

2 (σ)(c
1
2) ·X2

2 (σ)(c
1
2) =

{
1 , c12 = σ2

2 ∧ c22 = σ1
2

0 , else.

This means, when firing rec in mode (σ1
2, σ

2
2) then the color (σ2

2, σ
1
2) is placed on Rec.

The guard of rec is a function (X2
2 ̸= X1

2 ) : C (rec) → {true, false} with (X2
2 ̸=

X1
2 )(σ) = (σ2

2 ̸= σ1
2), since X1

2 and X2
2 refer to σ1

2 and σ2
2, respectively.

Next, consider transition inf with C (inf ) = C2. At the arc expressions around inf ,
we see two new terms: X and S2. When we have only a single basic color class C (t) = Ci

as the color domain of a transition t (in this case C (inf ) = C2), then every mode σ of
t is a basic color σ = σ1

i (in this case σ = σ1
2). In such a case, X is an abbreviation for

the function X1
i . Thus, the X on the arc from Inf to inf abbreviates the function X1

2 ,
meaning that when inf fires in mode σ = σ1

2 then σ1
2 is taken from place Inf .

On the arc from inf to Ch we have a function S2 : C (inf )→ (C (Ch)→ N). Such a
function is given by ∀σ ∈ C (inf )∀c ∈ C2 : S2(σ)(c) = 1. This means when inf fires in
mode σ = σ1

2 then (independently of σ) the whole class C2 is placed on Ch.
Finally, on the arc from Init to inf there is a sum (or in this case, a difference) of

the just described functions S2 and X. Such a sum (or difference) of functions is defined
as usual, in this case (for σ = σ1

2 and c = c12 ∈ C (Init) = C2)

(S2 −X)(σ1
2)(c

1
2) = S2(σ

1
2)(c

1
2)−X(σ1

2)(c
1
2) =

{
1 , c12 ̸= σ1

2

0 , c12 = σ1
2.

All in all this means when inf fires, a satellite is taken from Inf , all other satellites are
taken from Init , and all satellites are placed on Ch.

Having explained the details of the arc expressions around rec an inf , we can now
understand all other arc expressions used in the net. We only consider one more arc
expression in detail, namely the one on the arc from Rec to end , reading (S2 − X,X).
Combining the concept of sums and tuples from above, we have for σ = σ1

2 ∈ C (end)
and (c12, c

2
2) ∈ C (Rec) = C2 × C2 that

(S2 −X,X)(σ1
2)(c

1
2, c

2
2) = (S2 −X)(σ1

2)(c
1
2) ·X(σ1

2)(c
2
2) =

{
1 , c12 ̸= σ1

2 ∧ c22 = σ1
2

0 , else,

meaning that end can only fire if all other satellites are in Receiving mode, expecting a
message from the one in Forwarding mode.

Being used to the denotation of arc expressions, the graphical representation is nearly
as easily readable as the one in Fig. 3.13 that is not written in the symmetric net for-
malism. This makes writing a high-level net as a symmetric net is only slightly more
cumbersome than allowing arbitrary arc expressions. �

When modeling this example as a symmetric Petri game, we make two observations.
Firstly, an alternative approach would involve defining a single basic color class C1 =
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{0,1,2,3} with two static subclasses C1,1 = {0} and C1,2 = {1,2,3}. In this scenario,
every place would be of type C1 or C1 × C1. Consequently, we would need to add
the predicate “X1

1 ∈ C1,2” to the guard of rec to ensure that no satellite goes into the
Receiving mode while waiting for a message from the base station. considering that all
places can hold either only ever (tuples of) satellites or only ever the color 0, we opted
to allocate these respective sets to individual base classes C1 and C2.

Secondly, note that the concept of basic color classes and the possibility of having
tuples as colors is not a novel idea within this thesis. In Sec.2.3.2, we provided a list
of readability-improving “tricks” when illustrating high-level Petri games. One of these
tricks involved labeling arcs with tuples of variables, implicitly extending the color set
Col to also contain tuples of colors. This was applied in Fig. 3.2, where we denoted the
color set of Signal Sending Satellites as Col = {0,1,2,3} and allowed tuples of these
colors to be placed on or taken from the place Rec. This corresponds directly to having,
in the case of the symmetric Petri game in Fig. 3.14, the type C (Rec) = C2 × C2.

The following proposition shows that this formalism is not restricting the expressive
power of high-level nets with place types and arbitrary arc expressions.

Proposition 3.38 ([CDFH91b], Proposition 2.1). Any high-level Petri net can be
transformed into a symmetric net with the same basic structure, same place types, and
equivalent arc labeling.

The proof of this result can be accomplished through a straightforward encoding by
introducing basic color classes with a singleton static subclass for every color present
in the given high-level net. However, as we will observe later, this approach yields a
symmetric net in which the only symmetry that can be read from the specification is the
identity. Nonetheless, it is often feasible to construct a non-trivial symmetric net that
preserves most of the symmetries present in the original net. We will revisit this concept
in Example 3.40.

As we have seen for high-level Petri nets, a symmetric net N can be expanded into
a P/T Petri net Exp(N) := (P,T,F,M0) with places P := {p.c | p ∈ P, c ∈ C (p)},
transitions T := {t.σ | t ∈ T, σ ∈ Σ(t)}, the flow F defined by ∀p.c ∈ P ∀t.σ ∈ T :
F(p.c, t.σ) := F (p, t)(σ)(c) ∧ F(t.σ, p.c) := F (t, p)(σ)(c), and initial marking M0 defined
by ∀p.c ∈ P : M0(p.c) := M0(p)(c). As before, the two nets then have the same semantics:
the number of tokens on a place p.c in a marking in Exp(N) indicates the number of
colors c on place p in the corresponding marking in N . Firing a transition t.σ in Exp(N)
corresponds to firing transition t in mode σ in N . When translating a high-level Petri
net into a symmetric net, this expansion definition coincides with the one for high-level
Petri nets from Sec. 2.3.1.

Symmetries in Symmetric Nets and Symmetric Petri Games

We now come to one of the main advantages of having a structured form of guards and
arc expressions: in Sec. 3.1.1, we gave a definition of admissible symmetries involving
the semantics of the net. This means, to get the set S(N) for a given high-level net N ,
an analysis of the guards and flow in N is necessary (as we did in Example 3.3). While
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it is more cumbersome to define a high-level net in the formalism of symmetric nets,
one payoff is that no analysis is needed to get the net’s symmetries: the structured
form of guards and arc expressions ensures that all elements in the same basic subclass
are treated equally. We therefore know that all symmetries that only permute elements
inside their respective basic subclass are compatible with the semantics of the net, and
are therefore admissible symmetries.

Definition 3.39 (Symmetries of symmetric net, [CDFH91a]). The symmetries
SN in a symmetric net N are all tuples s = (s1, . . . , sn) such that each si is a permutation
on Ci satisfying ∀q = 1, . . . , ni : si(Ci,q) = Ci,q, i.e., it respects the partition into static
subclasses. In case of an ordered basic class Ci with i > u we additionally require si to
be a rotation w.r.t. the successor function. �

Without loss of generality, we assume that for ordered basic color classes, i.e., Ci

with i > u, each static subclass contains is a set of subsequent elements, formally,
∀1 ≤ q ≤ ni ∃c ∈ Ci,q : Ci,q = {suck(c) | 0 ≤ k < |Ci,q|}. Under this assumption, if
Ci is ordered and divided into two or more static subclasses then the only possibility for
si is the identity idCi

.4 A symmetry s can be applied to an element c ∈ Ci of a basic
color class by s(c) := si(c). The application to tuples, e.g., colors on places or transition
modes, is defined by the application in each entry.

In a symmetric net, we can without loss of generality assume that the initial mark-
ing M0 is symmetric, meaning that ∀s ∈ SN : s(M0) = M0. Achieving this can be done
by either further partitioning the basic color classes with respect to the colors present in
the initial marking or by introducing an additional place and transition, initializing the
net with its initial marking or any symmetric marking. Note that the second procedure
introduces additional (albeit symmetric to the original) behavior in the net.

It is shown in [CDFH91a] that for the symmetries defined above, the structured form
of arc expressions and guards in symmetric nets ensures ∀s ∈ SN ∀t ∈ T ∀p ∈ P ∀σ ∈
C (t)∀c ∈ C (p) :

• g(t)(σ) = true ⇔ g(t)(s(σ)) = true,

• F (p, t)(σ)(c) = F (p, t)(s(σ))(s(c)) ∧ F (t, p)(σ)(c) = F (t, p)(s(σ))(s(c)).

These equations imply that symmetries are compatible with the firing relation, i.e.,

∀s ∈ SN : M [t, σ⟩M ′ ⇔ s(M)[t, s(σ)⟩s(M ′),

where, as before, the marking s(M) is given by s(M)(p, s(c)) = M(p, c). The set SN ,
together with the function composition ◦, forms a group with identity (idCi

)ni=1.
This means that, when we transform a high-level net N into an equivalent symmetric

net N ′ in the sense of Proposition 3.38, then the (SN ′ , ◦) is (isomorphic to) a subgroup
of the admissible symmetries (S(N), ◦). As already mentioned after Proposition 3.38, we
can often give a transformation that preserves these symmetries, i.e., SN ′ ≡ S(N).

4In [CDFH91a], this result is stated without the assumption explicitly being made. My guess is that
this assumption is made there implicitly, since for ordered classes that violate the assumption there can
be more than one possible symmetry.
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Example 3.40 (Symmetries in Signal Sending Satellites). We inspect the sym-
metries SN in the symmetric Petri net N , Signal Sending Satellites, from Fig. 3.14. We
have the two unordered basic color classes C1 = {0} and C2 = {1,2,3}. Both basic
color classes are not partitioned into subclasses, i.e., C1 = C1,1 and C2 = C2,1. Thus, by
Def. 3.39 the set SN contains all tuples s = (s1, s2) where s1 is a permutation on {0}
(i.e., s1 = id{0}), and s2 is a permutation on {1,2,3}. This means that SN is isomorphic
to Sym({1,2,3}) = S3. This is exactly the set S(G) that we deduced in Example 3.3 by
analyzing the (equivalent high-level) net’s behavior. �

Symmetric Petri Games

The definition of symmetric Petri games proceeds analogously to Sec. 2.3.2: in a sym-
metric Petri game G = (C , PS, PE, T, J, F, g,M0,Obj, P⊛) the places P of an underlying
symmetric net N(G) = (C , P, T, J, F, g,M0), are divided into system places PS and en-
vironment places PE. The set P⊛ ⊆ PS indicates the special places used to define the
objective for the system players together with Obj ∈ {Safety,Reach}. All achieved con-
cepts for high-level Petri games from Sec. 2.3.2 can be directly adopted in the case of
symmetric Petri games. This is captured in the following corollary, which is a direct
consequence of Proposition 3.38.

Corollary 3.41. Any high-level Petri game can be transformed into a symmetric Petri
game with the same basic structure, and equivalent arc labeling and behavior.

Taking the different colors and borders into consideration, Fig. 3.14 shows a sym-
metric Petri game whose underlying net we discussed in detail above. It is the result of
transforming the high-level Petri game from Fig. 3.13 into a symmetric Petri game.

The definitions of mixed communication and recurrently interfering environment from
Sec. 3.1.2 can be directly adopted for symmetric Petri games. Thus, we define the class
of proper symmetric Petri games exactly as in Def. 3.6. By this, whenever a proper high-
level Petri game is transformed into a symmetric Petri game in the sense of Cor. 3.41,
the result is a proper symmetric Petri game.

As before, we say the symmetries SG in a symmetric Petri game G are the symme-
tries SN(G) in the underlying symmetric net. We have discussed above that it is often
possible to translate a high-level Petri net N into a symmetric Petri net N ′ such that
S(N) ≡ SN ′ . Consequently, this is also the case for high-level Petri games. In particular,
for the benchmark tests from [GOW20] presented in Sec. 3.3.5, we transformed high-
level Petri games introduced in [GO21] into symmetric Petri games. In this process, no
symmetries from the original nets were lost. From now on, we assume that the symbolic
two-player game was built w.r.t. the subgroup SG of all admissible symmetries S(G). As
all the constructions solely rely on the fact that S(N) is a group, this substitution has
no impact on the theoretical results of of Sec. 3.2.
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Summary: Symmetric Nets

We summarize the content of this section. Symmetric nets are a formalism for describing
high-level Petri nets with place types and arc expressions. The main concepts are

– giving types of places as a Cartesian product of fixed basic color classes, and
– restricting the syntax of arc expressions and guards to certain standard forms.

The basic color classes are partitioned into static subclasses, and the standard forms
ensure that all objects in the same static subclass are handled equally. We have the
following results for symmetric nets:

• Symmetric nets have the same expressive power as the high-level formalism from
Sec. 2.3.1.

• The admissible symmetries of a symmetric net can be directly read from its speci-
fication, without further analysis of the net’s behavior.

• The definition of (proper) symmetric Petri games with an underlying symmetric
net proceeds exactly as in Sec. 2.3.2.

• The results of Sec. 3.2 still hold when considering high-level Petri games given in
the symmetric net formalism.

For the rest of Section 3.3 we assume high-level Petri games to be given in the symmetric
net formalism.

The content and discourse in this section have established a reasonable understand-
ing of the concept of symmetric nets. The remainder of Section 3.3.1 is dedicated the
details of their restricted syntax of arc expressions and transition guards that we already
informally dealt with when transforming Signal Sending Satellites into a symmetric net.
We first give an overview of the possibilities allowed by the so-called Standard Functions
and Standard Predicates, and then, for the sake of completeness, formally define the
syntax and semantic.

Standard Functions and Standard Predicates: Overview

We will now provide a brief overview of the possibilities for describing guards and arc
expressions as standard predicates and standard functions, with a more elucidating ex-
ample presented in Example 3.42. For the sake of completeness, we provide the formal
and somewhat intricate definitions of these structured forms at the end of this section,
beginning on p. 94. In essence, the permissible guards and expressions ensure equal (resp.
symmetric) behavior of colors within the same basic color class.

A typical mode σ ∈ Σ(t) of a transition t with Σ(t) ⊆ C (t) = C
J(t,1)
1 × · · · × C

J(t,n)
n

is a tuple

σ =
(
(σj

i )
J(t,i)
j=1

)n
i=1

= (σ1
1, . . . , σ

J(t,1)
1 , σ1

2, . . . , σ
J(t,2)
2 , . . . . . . , σ1

n, . . . , σ
J(t,n)
n ), where σj

i ∈ Ci.
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In the arc expressions around and the guard of t, the term Xj
i refers to the j-th instan-

tiation of Ci in such a mode, i.e., to σj
i .

For guards, we have the three forms of basic predicates Xj
i = Xk

i , Xj
i = suc(Xk

i ) (for
i > u, i.e., if Ci is ordered), and Xj

i ∈ Ci,q. All Boolean combinations with the operators
∨,∧,¬ yield the so-called standard predicates on C (t) allowed as guards. They evaluate
to true under a color σ if the respective entries σj

i , σ
k
i satisfy the predicate. In this case,

σ is called a mode of t.
The arc expressions allowed on an arc connecting t to a place p, called standard func-

tions, are finite sums of guarded functions [gC (t)]f , with gC (t) being a standard predicate
over C (t) and f being a basic function f : C (t) → (C (p) → N). The guarded function
assigns evaluates to f if gC (t)(σ) = true, and to the zero function, otherwise. Basic
functions in their turn are given by tuples of functions

f =
(
(f j

i )
J(p,i)
j=1

)n
i=1

= (f1
1 , . . . , f

J(p,1)
1 , f1

2 , . . . , f
J(p,2)
2 , . . . . . . , f1

n, . . . , f
J(p,n)
n ),

where finally every f j
i : C (t)→ [Ci → N] is a sum of functions of the following type:

• a synchronization resp. diffusion of all objects in a static subclass (independently
of σ), i.e., a function α.Si,q s.t. for ci ∈ Ci it evaluates to α.Si,q(σ)(ci) = α if
ci ∈ Ci,q, and α.Si,q(σ)(ci) = 0, else,

• selecting of one object that behaves independent of the other objects of the class,
i.e., a function β.Xk

i s.t. for ci ∈ Ci it evaluates to β.Xk
i (σ)(ci) = β if ci = σk

i , and
β.Xk

i (σ)(ci) = 0, else,

• the successor function, only applicable to ordered classes with i > u, i.e., a function
γ. suc(Xk

i ) s.t. for ci ∈ Ci it evaluates to γ. suc(Xk
i )(σ)(c) = γ if ci = suc(σk

i ), and
γ. suc(Xk

i )(σ)(c) = 0, else.
The application of f(σ) to a color c =

(
(cji )

J(p,i)
j=1

)n
i=1
∈ C (p) is then given by f(σ)(c) =

∏n
i=1

∏J(p,i)
j=1 f j

i (σ)(c
j
i ) An illustration of these concepts will be presented shortly in the

following example. There, we show the translation of certain common arc expressions
into the syntax of symmetric nets.

Example 3.42 (Transforming high-level nets into symmetric nets). In Fig. 3.15
we see on the left a high-level Petri net with type places (written above the respective
place) and arcs labeled with expressions, as described in the excursus above. On the
right we see a symmetric Petri net equivalent behavior.

We have one transition t and five connected places p1, . . . , p5. Whether a place is
in the preset or postset of t does not matter for transforming the high-level net into
a symmetric net. In the high-level net, we see that the types of places are build from
C1 = {c1,1, . . . , c1,6} and C2 = {c2,1, . . . , c2,4}. On C2 we additionally have a successor
function suc cycling through the set, i.e., suc(c2,j) = c2,j′ where j′ = (j mod 4) + 1.
We see that not all elements in C1 behave the same: the guard of t allows z only to
be in {c1,4, c1,5, c1,6}, while the expression on the edge from p3 says that, when t fires
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t

x, y ∈ C2

z ∈ {c1,4, c1,5, c1,6}

C1

p1

C2

p5

p2

C1 × C2

p3

C1 × C1

p4

C2 × C2 (C2 \ {x})× {y}

(z, suc(x))

{z} × {c1,1, c1,2, c1,3}

z

C2 \ {x, y}

C1 = {c1,1, c1,2, c1,3, c1,4, c1,5, c1,6}
C2 = {c2,1, c2,2, c2,3, c2,4}, succ. fct. ⊕

t

X1 ∈ C1,2

C (t) = C1 × C2 × C2

p1

C1

p5

C2

p2

C1 × C2

C1 × C1

p3

C2 × C2

p4
(S2 −X1

2 , X
2
2 )

(X1, suc(X1
2 ))

(X1, S1,1)

X1

(X1
2 = X2

2 ) · (S2 −X1
2 )

+(X1
2 ̸= X2

2 ) · (S2 −X1
2 −X2

2 )

C1 = {c1,1, c1,2, c1,3︸ ︷︷ ︸
C1,1

, c1,4, c1,5, c1,6︸ ︷︷ ︸
C1,2

} = C1,1 ⊔ C1,2

C2 = {c2,1, c2,2, c2,3, c2,4} = C2,1, h = 1

Figure 3.15: A high-level Petri net and a symmetric net with the same behavior.

in mode σ, the three tuples (σ(z), c1,1), (σ(z), c1,2), (σ(z), c1,3) are taken from p3. By
partitioning C1 into the respective static subclasses C1,1 and C1,2, we ensure that every
color in the same static subclass behaves equally (or symmetrically). Since C1 is not
ordered but C2 is, we have u = 1.

Three variables, x, y, z, occur in the arc expressions around t. From the types of
places, we see that x, y ∈ C2 and z ∈ C1 holds for every mode of t. Correspondingly, in
the symmetric net, the color domain of t is given by C (t) = C1 × C2 × C2. A color σ =
(σ1

1, σ
1
2, σ

2
2) ∈ C1×C2×C2 represents the variable assignment {z ← σ1

1, x← σ1
2, y ← σ2

2}
in the high-level net on the left. Thus, in the firing of t, the class C1 is instantiated once,
and C2 is instantiated twice.

In the arc expressions and guard, the term Xj
i refers to the j-th instantiation of a

variable from Ci in a mode of t, i.e., to σj
i . For color classes Ci that are only instantiated

once (in this case C1) X1
i is short for Xi (in this case we abbreviate X1

1 by X1). We now
see how we transformed the guard in the high-level net to the guard in the symmetric
net. The term X1 refers to σ1

1 in a color σ = (σ1
1, σ

1
2, σ

2
2) ∈ C (t) representing the

assignment {z ← σ1
1, x ← σ1

2, y ← σ2
2} in the high-level net, and we have the static

subclass C1,2 = {c1,4, c1,5, c1,6}. We can say that in this transformation into a symmetric
net, X1 takes the role of z, and X1

2 , X
2
2 take the role of x, y, respectively. The predicate

“z ∈ {c1,4, c1,5, c1,6}” is therefore replaced by “X1 ∈ C1,2”. The predicate “x, y ∈ C2” is
ensured since X1

2 and X2
2 always refer to instantiations of C2.

Next, we will sequentially elaborate on the transformation of labels on the edges.
Analogously to the guard of t, in the edge from p1 we have replaced the expression z
by X1.
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On the left, indicated by the label on the respective edge, a tuple containing the value
assigned to z and the successor of the value assigned to x is placed on p2. We see that the
techniques from before also work in tuples, and we get an edge labeled by (X1, suc(X

1
2 )).

The successor function suc in the second coordinate refers to the respective successor
function in C2.

The edge from p3 is the first to contain a set of three tuples. In the symmetric net,
however, we only have one tuple. In the first coordinate, this tuple contains X1 for which
we have replaced z now several times. In the second coordinate, we have the term S1,1.
Such a term Si,q means that for every element of the respective static subclass Ci,q one
respective tuple is moved, in this case C1,1, which is exactly what happens in the high-
level net on the left.

The edge from t to p4 is labeled by (C2 \ {x})× {y}. This means that, when firing t
in mode σ, all tuples (c2,i, σ(y)) except (σ(x), σ(y)) are placed on p4. In the symmetric
net, where X1

2 represents σ(x) and X2
2 represents σ(y), this is realized by a tuple with

a difference of functions in the first coordinate. We abbreviate
∑ni

q=1 Siq by Si, and
since C2 is not further partitioned, i.e., C2 = C2,1 we have S2,1 = S2. Such a difference,
however, must never indicate that a negative number of colors is placed on or taken from
an edge. This is ensured here, since the value represented by X1

2 is always in C2.
Finally, the expression “C2 \ {x, y}” is replaced by a much more complex expression

on the right. If we would naively put S2 − X1
2 − X1

2 in the symmetric net, then this
would in the case of a mode σ = (σ1

1, σ
1
2, σ

2
2) ∈ Σ(t) with σ1

2 = σ2
2 take “−1 instance” of

the respective color from p5. This is prohibited by the syntax of standard functions (cp.
below for the formal definition). Thus, we have to make the corresponding distinction
of cases by using a sum of guarded functions. For every mode σ, exactly one of the two
guards (X1

2 = X2
2 ) and (X1

2 ̸= X2
2 ) is true, and the corresponding function after the

guard takes the correct colors from p5. �
We close this section by providing the interested reader with the formal definition of

the standard forms for guards and arc expressions used in symmetric nets.

Standard Functions and Standard Predicates: Formal Definition

In the definition of symmetric nets, the terms “standard functions” and “standard predi-
cates” are used. The following definitions are taken directly from [CDFH91a].

Predicates. The guard g(t) : C (t)→ {true, false} of a transition t indicates in which
modes

σ = ((σj
i )

J(t,i)
j=1 )ni=1 ∈ C (t) = C

J(t,1)
1 × · · · × C J(t,n)

n

the transition t can fire. We only allow guards of a structured form, called standard
predicates. The allowed predicates are

• “the j-th instantiation of Ci in σ is equal to the k-th instantiation of Ci”, denoted
by Xj

i = Xk
i ,

(Xj
i = Xk

i )(σ) = (σi,j = σi,k)
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• “the j-th instantiation of Ci in σ is the successor of the k-th instantiation of Ci”
(for i > u), denoted by Xj

i = suc(Xk
i ),

(Xj
i = suc(Xk

i ))(σ) = (σi,j = suc(σi,k))

• ‘the j-th instantiation of Ci in σ is in the static subclass Ci,q ”, denoted by Xj
i ∈ Ci,q,

(Xj
i ∈ Ci,q)(σ) = (σi,j ∈ Ci,q)

and all the Boolean combinations with the operators ∧, ∨, and ¬.

Color functions. The definition of color functions consists of three successive steps.
First, basic functions are introduced. Equipping basic functions with a guard yields
guarded functions. A sum of guarded functions is then called a standard function.

For p ∈ P and t ∈ T , the flow function is given by F (p, t), F (t, p) : C (t)→ [C (p)→
N]. This demonstrates that for every mode of the transition t, a multi-set of colors is taken
from, resp. placed on, the place p. We now interpret these functions as F (p, t), F (t, p) :
C (p)× C (t)→ N.

Basic functions. The basic functions are a subset of these functions, denoted by
FC (p),C (t) ⊂ (C (p) × C (t) → N). The basic functions FC (p),C (t) are defined inductively
over the size of C (p).

Case C (p = {ε}). This means ∀i : J(p, i) = 0. The interpretation is that the color
domain of p is {•}. These functions are then equivalent to valuated arcs in an ordinary
Petri net.

F{ε},C (t) = {δ : {ε} × C (t)→ N | ∃δ ∈ N∀σ ∈ C (t) : δ(ε, σ) = δ}

Case C (p = Ci). This means there is a i such that J(p, i) = 1 and for all i′ ̸= i,
J(p, i′) = 0. We define three basic color functions, where the third one only applies to
ordered color classes Ci with i > u.

• The synchronization resp. diffusion of all objects in a static subclass.

∀σ ∈ C (t) ∀q ≤ mi ∀α ≥ 0 : α.Si,q : Ci × C (t)→ N,

α.Si,q(ci, σ) =

{
α , if ci ∈ Ci,q

0 , else.

• The selection of one object that behaves independent of the other objects of the
class.

∀σ ∈ C (t) ∀k ≤ ti ∀β ≥ 0 : β.Xk
i : Ci × C (t)→ N,

β.Xk
i (ci, σ) =

{
β , if vi,k = ci

0 , else.
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• The successor function, only applicable to ordered classes. Let i > u.

∀σ ∈ C (t) ∀k ≤ ti ∀γ ≥ 0 : γ. suc(Xk
i ) : Ci × C (t)→ N,

γ. suc(Xk
i )(ci, σ) =

{
γ , if suc(σi,k) = ci

0 , else.

We can now define the basic functions FCi,C (t). In this set, the functions above are
combined. The individual coefficients can be negative, provided that no negative number
of objects is selected in each static subclass. The conditions are not necessary but
sufficient, and can easily be checked. If i ≤ u then

FCi,C (t) =
{ ni∑

q=1

αi,q.Si,q +

ti∑

k=1

βi,k.X
k
i

∣∣∣ ∀q ≤ ni ∀K ⊂ {1, . . . , ti} : αi,q +
∑

k∈K
βi,k ≥ 0

}
.

If i > u then

FCi,C (t) =
{ ni∑

q=1

αi,q.Si,q +

ti∑

k=1

(βi,k.X
k
i + γi,k. suc(X

k
i ))

∣∣∣ ∀q ≤ ni ∀K ⊂ {1, . . . , ti} :

αi,q +
∑

k∈K
min(βi,k, γi,k) ≥ 0

}
.

Case C (p ̸= {ε}). This case involves and generalizes the case C (p) = Ci. In the
generalized case, the functions f ∈ FC (p),C (t) are tuples of functions in FCi,C (t), i.e.,
FC (p),C (t) =

{
((f j

i )
J(p,i)
j=1 )ni=1

}
and for f = ((f j

i )
J(p,i)
j=1 )ni=1, the application to (c, σ) is

f(c, σ) =
∏n

i=1

∏J(p,i)
j=1 f j

i (c
j
i , σ).

Guarded functions are basic functions equipped with guards, i.e., they are of the
form
F : C (p) × C (t) → N, F = [gC (t)]f , where gC (t) is a standard predicate on C (t),
and f ∈ FC (p),C (t) is a basic function. It is F (c, σ) = f(c, σ) if gC (t)(d) = true, and
F (c, σ) = 0, otherwise.

Standard functions are finite sums of guarded functions. They constitute, for a place
p and transition t, the functions F (p, t), F (t, p), i.e., F (p, t), F (t, p) =

∑
ℓ Fℓ, where

Fℓ : C (p)× C (t)→ N are guarded functions.

3.3.2 Constructing Canonical Representations

In this section we introduce dynamic representations of symbolic decision sets. We again
want to draw the reader’s attention to the subtle but crucial name difference between
(arbitrary) representatives vs. (dynamic) representations that we discussed in the remark
on p. 79. Canonical dynamic representations will replace the arbitrary representatives
in the symbolic two-player game. Later, we transfer relations between and properties of
(symbolic) decision sets to the established canonical representations. Dynamic represen-
tations can be smaller than the representatives, in the sense that, in addition to taking
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into account the symmetry between different states in the Petri game, they also exploit
symmetry inside each state.

Consulting our running example Signal Sending Satellites again, we now give the idea
of dynamic representations vs arbitrary representatives. The idea of the representatives
from the Sec. 3.2 is to say

“Only consider the case where the environment chooses Satellite 1, which goes
into Forwarding Mode. In this case, both Satellite 2 and Satellite 3 will go
into Receiving Mode, expecting a message from Satellite 1. The other two
cases (where the environment chooses Satellite 2 or Satellite 3) are symmetric
to this case.”

Dynamic representations, on the other hand, abstract from explicit colors. In their
language, the above would read

“There are two groups of satellites. The first group contains one satellite,
the second group contains two satellites. The satellite in the first group
constitutes the one chosen by the environment, and it goes into Forwarding
Mode. The satellites in the second group go into Receiving Mode, expecting
a message from the satellite in the first group. The explicit scenarios are the
instantiations of this abstraction.”

In the approach of dynamic representations, the two satellites not chosen by the envi-
ronment are put into the same group since they behave completely symmetrically.

The term “groups” used above describes what we later term dynamic subclasses.
They are the result of a dynamic partition of the basic colors in the given symmetric
Petri game. The dynamic subclasses then replace explicit colors in a so-called dynamic
decision set. A dynamic partition together with a dynamic decision set yields a dynamic
representation. The instantiations of the dynamic decision set, each given by a valid
assignment of explicit colors to dynamic subclasses, are then precisely the decision sets
contained in the represented symbolic decision set.

In general, there is more than one dynamic representation of a given symbolic decision
set. The goal is to find one that is “canonical”. This is achieved by defining two criteria
such a canonical representation must satisfy. Namely, it must be minimal w.r.t. the
number of dynamic subclasses, and ordered in a certain way. We show how to construct
a unique minimal and ordered dynamic representation, and prove that there is exactly
one such dynamic representation for every symbolic decision set. This will then be the
canonical representation. As mentioned before, these canonical representations will later
replace the arbitrary representatives of symbolic decision sets as vertices in the symbolic
two-player game.

Dynamic Representations

As explained above, a dynamic representation R of a symbolic decision set D consists of
a dynamic partition P and a dynamic decision set D . The dynamic partition describes
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Figure 3.16: An overview of the components constituting a dynamic representation, and
their relation to the (elements of the) represented symbolic decision set.

dynamic subclasses Zj
i , that are used in the dynamic decision set in place of colors

c ∈ Ci. When the dynamic subclasses are assigned to explicit colors by a so-called
valid assignment η, this describes an instance of the dynamic decision set. Each valid
assignment describes an element D in the represented symbolic decision set D. An
overview is pictured in Fig. 3.16.

We define dynamic representations by first giving the definitions of dynamic parti-
tion and valid assignments. Both these concepts are illustrated on a generic example.
When we finally get to the definition of dynamic representations, we consult again our
running example Signal Sending Satellites. We now start with the definition of dynamic
partitions.

A dynamic partition consists of three elements. A function m that describes how
many dynamic subclasses Zj

i there are for each basic color class Ci. These dynamic sub-
classes each represent a fixed number of basic colors from a single dynamic subclass Ci,q.
This is formalized by a function stat (describing that a dynamic subclass Zj

i represents
colors from Ci,q with q = stat(Zj

i )) and a function card (describing the number card(Zj
i )

of colors that each Zj
i represents). The formal definition follows now.

Definition 3.43 (Dynamic partition). Let C be a family of basic color classes as in
Def. 3.36. A dynamic partition of C is a tuple P = (m, stat, card) with the following
components:

• m : I → N+ is a function describing for every color class Ci the number m(i) (which
will also be denoted mi) of dynamic subclasses in Ci.

The set of dynamic subclasses in Ci is denoted Zi = {Zj
i | 1 ≤ j ≤ m(i)}. We
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additionally introduce the notation Z = {Zi | i ∈ I}, analogously to the structure
of C and Ci in symmetric nets.

• stat :
(⋃

i∈I Zi

)
→ N+ is a function mapping every Zj

i to an index q = stat(Zj
i )

of a static subclass Ci,q.

We denote Zi,q = {Zj
i | stat(Z

j
i ) = q} such that, analogously to static color classes

from Def. 3.36, we have Zi =
⊔ni

q=1 Zi,q.

• card :
(⋃

i∈I Zi

)
→ N+ describes the cardinality of the dynamic subclasses.

Together, these components must satisfy

∀i ∈ I ∀1 ≤ q ≤ ni :
∑

1≤j≤mi,

stat(Zj
i )=q

card(Zj
i ) = |Ci,q|. �

The last condition describes that for every Ci,q, the dynamic subclasses represent
exactly |Ci,q| colors from this static subclass. We will see this ensures that every valid
assignment (cp. Def. 3.44 below) of dynamic subclasses to colors induces a partition of
every Ci.

We illustrate the concept of dynamic partitions, i.e., the role of m, stat and card, in
a generic example, shown in Fig. 3.17. The figure can be seen as “zooming in” on the left
part of Fig. 3.16. For the moment, disregard the yellow arrows depicted in the figure.
At the bottom level, we see two basic color classes C1 (not divided into static subclasses,
i.e., C1 = C1,1) and C2 (divided into the three static subclasses C2,1,C2,2,C2,3). The dots
• are arbitrary colors belonging to the respective static subclass.

· · · · · ·· · · · · · · · · · · ·· · · · · ·• • • • • • • •
C1,1 C2,1 C2,2 C2,3

C1 = C1,1 C2 = C2,1 ⊔ C2,2 ⊔ C2,3

Z1,1 Z2,1 Z2,2 Z2,3

Z1 = Z1,1 Z2 = Z2,1 ⊔Z2,2 ⊔Z2,3

Z

C

η

Z1
1 Z2

1 Z1
2 Z2

2 Z3
2 Z4

2 Z5
2 Z6

2

η1 η2 η2 η2

Figure 3.17: A schematic depiction of a dynamic partition of basic color classes and a
valid assignment for a generic example.

Assume now m(1) = 2, m(2) = 6, This leads to the dynamic subclasses Z =
{{Z1

1 ,Z2
1}, {Z1

2 ,Z2
2 ,Z3

2 ,Z4
2 ,Z5

2 ,Z6
2}}, depicted at the top level. Since we have C1 = C1,1,

it must trivially be stat(Z1
1 ) = stat(Z2

1 ) = 1. Additionally assume stat(Z1
2 ) = stat(Z2

2 ) =
1, stat(Z3

2 ) = stat(Z4
2 ) = stat(Z5

2 ) = 2, and stat(Z6
2 ) = 3. Every dynamic subclass Zj

i is
depicted above the respective static subclass Ci,q with q = stat(Zj

i ).
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The visual size of a dynamic subclass Zj
i represents the value card(Zj

i ). Analogously,
the visual size of a static subclasses Ci,q represents |Ci,q|. In the figure, these sizes
illustrate the equation ∀i ∈ I ∀1 ≤ q ≤ mi :

∑
stat(Zj

i )=q
card(Zj

i ) = |Ci,q|, emphasized
by the vertical dashed lines.

Next, we proceed with the definition of valid assignments within a dynamic partition,
which relate colors in the basic color classes and dynamic subclasses.

Definition 3.44 (Valid assignment). Given a dynamic partition P = (m, card, stat)
of a family of basic color classes C as in Def. 3.43, a valid assignment of dynamic sub-
classes to basic colors is a tuple η = (ηi)

n
i=1 of functions ηi : Ci → Zi satisfying for

all Zj
i :

• η−1
i (Zj

i ) ⊆ Ci,q, where q = stat(Zj
i ), i.e., the colors mapped to Zj

i are from Ci,q,

• |η−1
i (Zj

i )| = card(Zj
i ), i.e., the correct number of colors is mapped to Zj

i ,

• if i > u then ∃c ∈ η−1
i (Zj

i,q) :

ηi(suc(c)) = Zsuc(j)
i ∧ ∀c′ ∈ η−1

i (Zj
i ) : c

′ ̸= c⇒ ηi(suc(c
′)) = Zj

i ,

where, for a dynamic subclass Zj
i , we define suc(j) = (j mod mi) + 1. �

The third condition formalizes that in an ordered (i > u) basic color class Ci, two
successive colors are either assigned to the same dynamic subclass, or to successive dy-
namic subclasses, i.e., successive colors are grouped in the assignment. The existentially
quantified c is the “last” element assigned to a dynamic subclass Zj

i , before switching to
the next dynamic subclass Zsuc(j)

i .
We continue our illustration for a generic example from Fig. 3.17. Between the two

levels, we see a schematic depiction of a valid assignment mapping colors in Ci,q to
dynamic subclasses Zj

i . The first condition is visualized by seeing that every color in Ci,q

is assigned to a Zj
i with stat(Zj

i ) = q, i.e., to a dynamic subclass depicted above the static
subclass. For the second condition, recall that the visual size of a dynamic subclass Zj

i

corresponds to the value card(Zj
i ). This is visually depicted by a correspondence between

the visual size of each dynamic subclass and the number of incoming arrows, which in
turn represent the colors assigned to that dynamic subclass.

For simplicity, we assume that both color classes C1 and C2 are unordered, i.e., in the
terms of Def. 3.36, we have u = 2. In this case, the third condition is irrelevant. However,
for i = 1, the illustration suggests that the third condition was satisfied if Ci was ordered
with suc orbiting from left to right through Ci, and mapping the rightmost color to the
leftmost color. As a result, we observe that when starting from the rightmost color, all
subsequent elements are assigned to Z1

1 , until ηi switches to assigning all subsequent
elements to Z2

1 , ultimately reaching the rightmost color again.
By definition, a valid assignment only maps individual colors c ∈ Ci from basic

subclasses to dynamic subclasses. However, color domains of places and transitions
contain tuples of such colors, which are then used for example in decision sets. Since
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dynamic subclasses will replace the explicit colors, we now naturally lift the definition of
valid assignments to map tuples of colors to tuples of dynamic subclasses.

Let G = (C , PS, PE, T, J, F, g,M0,Obj, P⊛) be a symmetric Petri game, P a dynamic
partition of C , and η = (ηi)

n
i=1 a valid assignment mapping colors to dynamic subclasses.

Let p ∈ P and c =
(
(cji )

J(p,i)
j=1

)n
i=1
∈ C (p). Then we can apply η to c component-wise,

i.e.,
η(c) :=

((
ηi(c

j
i )
)J(p,i)
j=1

)n

i=1
.

Analogously, for a transition t and a color σ =
(
(σj

i )
J(t,i)
j=1

)n
i=1
∈ C (t) we get

η(σ) :=
((

ηi(σ
j
i )
)J(t,i)
j=1

)n

i=1
.

The definition of symmetries in a symmetric net (Def. 3.39) and the definition of valid
assignments above are “compatible” with each other, so that one can easily derive the
following property.

Property 3.45. Let G be a symmetric Petri game with the family C = {C1, . . . ,Cn}
of basic color classes. Let P be a dynamic partition of C and let η = (ηi)

n
i=1 be a valid

assignment. Then the set of all valid assignments is given by

{(ηi ◦ si)ni=1 | s = (si)
n
i=1 ∈ SG}.

The idea of dynamic partitions is to represent a set of partitions of the basic colors,
instantiated by all valid assignments. In an instantiation of a dynamic representation of a
decision set, all colors mapped to the same dynamic subclass behave equally. In contrast
to regular decision sets, dynamic decision sets feature tuples of dynamic subclasses instead
of tuples of explicit colors. In decision sets, these tuples are elements of the color domain
associated with a place or transition. We now define the symbolic color domains of nodes.

The symbolic color domain w.r.t. a dynamic partition is of a node r ∈ P ∪ T is
Z (r) := Z

J(r,1)
1 × · · · ×Z

J(r,n)
n . Analogously to the case of basic color classes, we call

the symbolic color domain of a place p its symbolic type, and denote it by t̂y(p). We will
explore the notion of symbolic modes of transitions later.

With this definition in mind, we can now make the next step towards the definition of
dynamic decision sets and thereby dynamic representations. Remember that a decision
set D ∈ D(G) is a set D ⊆ P× (P(T) ∪ {†}), where we have P = {p.c | P ∈ P, c ∈ C (p)}
and T = {t.σ | t ∈ T, σ ∈ Σ(t)} with Σ(t) ⊆ C (t), i.e., T ⊆ {t.σ | t ∈ T, σ ∈ C (t)}
(cp. Def. 3.8). We now lift the notion of P and T to the symbolic level of dynamic
subclasses. For that, we denote

P = {p.ĉ | p ∈ P, ĉ ∈ Z (p)} and T = {t.σ̂ | t ∈ T, σ̂ ∈ Z (t)}.

Note that, unlike for t.σ ∈ T, we do permit for t.σ̂ ∈ T that σ̂ is any element from Z (t).
For t.σ ∈ T, we required σ ∈ C (t) to satisfy g(t)(σ) = true, i.e., to be a mode σ ∈ Σ(t).
However, this distinction will not pose an issue within the definition of representations
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for symbolic decision sets. This is due to a requirement that every “instantiation” of
the representation must constitute a decision set. This requirement ensures that only
modes of t are represented. Given these sets, representations will contain what we term
a dynamic decision set D ⊆ P × (P(T ) ∪ †), such that P and T replace P and T as
compared to the aforementioned recalled decision sets.

Before we come to the formal definition of dynamic representations, we now already
give an example to provide the reader with some intuition.

Example 3.46 (Dynamic representation). Consider the running example Signal
Sending Satellites as the symmetric Petri game from Fig. 3.14, with basic color classes
C1 = C1,1 = {0} and C2 = C2,1 = {1,2,3}. Assume a scenario where the satellite chosen
by the environment informed the other two, and all satellites went into the correct mode.
This describes one of the three (symmetric) scenarios where either Satellite 1, 2, or 3 has
been chosen. The chosen satellite is in Forward Mode, and the other two satellites are in
Receiving Mode. Assuming additionally (now at the level of P/T Petri game semantics)
that all satellites allow the corresponding end transition to fire, this corresponds to the
three decision sets D′,D′′,D′′′ at the bottom of Fig. 3.18. These decision sets, since they
are symmetric, are in the same symbolic decision set D = [D′], i.e., the same equivalence
class.

(Tr.1, {end.1})
(Fwd.1, {end.1})
(Rec.(2,1), {end.1})
(Rec.(3,1), {end.1})

(Tr.2, {end.2})
(Rec.(1,2), {end.2})
(Fwd.2, {end.2})
(Rec.(3,2), {end.2})

(Tr.3, {end.3})
(Rec.(1,3), {end.3})
(Rec.(2,3), {end.3})
(Fwd.3, {end.3})

D′ D′′ D′′′

D = [D′]

(Tr.Z1
2 , {end.Z1

2})
(Fwd.Z1

2 , {end.Z1
2})

(Rec.(Z2
2 ,Z1

2 ), {end.Z1
2})

η′′−1

η′′

1 7→ Z2
2 ,

2 7→ Z1
2 ,

3 7→ Z2
2

η′−1

η′

1 7→ Z1
2 ,

2 7→ Z2
2 ,

3 7→ Z2
2 η′′′−1

η′′′

1 7→ Z2
2 ,

2 7→ Z2
2 ,

3 7→ Z1
2

D

m(2) = 2,
card(Z1

2 ) = 1, card(Z2
2 ) = 2

R

Figure 3.18: A dynamic representations of a symbolic decision set.

We see that in all three decision sets, the two satellites in Receiving Mode occur
“in the same contexts”. In D′ for example, both 2 and 3 occur exactly at the position
of ▽ in a tuple (Rec.(▽,1), {end .1}). We now describe a dynamic representation where
a dynamic subclass Z1

2 with card(Z1
2 ) = 1 represents the satellite in Forward Mode, and

Z2
2 with card(Z2

2 ) = 2 represents the two satellites in Receiving Mode.
This means we need two dynamic subclasses for the basic color class C2 of satellites,

thus m(2) = 2 in a corresponding dynamic partition. We therefore have Z2 = Z2,1 =
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{Z1
2 ,Z2

2}. Since for the basic color class C1 = C1,1 we have |C1| = 1, every dynamic
partition has to satisfy m(1) = 1 (so that Z1 = Z1,1 = {Z1

1}) and card(Z1
1 ) = 1.

Both basic color classes in this example are not partitioned into static subclasses
(C1 = C1,1 and C2 = C2,1). Thus, we trivially have for all Zj

i that stat(Zj
i ) = 1.

With the intention that Z1
2 should represent the satellite in Forwarding Mode and

Z2
2 should represent the two satellites in Receiving Mode, we set card(Z1

2 ) = 1 and
card(Z2

2 ) = 2. The dynamic partition therefore satisfies card(Z1
2 )+card(Z2

2 ) = 3 = |C2,1|,
as required in Def. 3.47.

The concept of a dynamic representation involves the introduction of a dynamic
decision set denoted as D , wherein the distinct colors within decision sets are substituted
with the dynamic subclasses derived from the specified dynamic partition. Each decision
set D contained within the represented symbolic decision set D can be mapped to the
dynamic decision set D through an appropriate valid assignment η.

In the illustration, the dynamic decision set D is presented at the top of Fig 3.18. This
figure can be seen as “zooming in” on the right part of Fig. 3.16 for this scenario. Com-
pared to each decision set at the lower level, the corresponding satellite in Forwarding
Mode is substituted with Z1

2 . Instead of having two tuples for the two satellites in Re-
ceiving Mode, the dynamic decision set D contains a single tuple (Rec.(Z2

2 ,Z1
2 ), end .Z1

2 ).
Above the dynamic decision set, the associated dynamic partition discussed earlier is
indicated. Note that we haven’t explicitly shown the trivial elements m(1) = 1 and
card(Z1

1 ) = 1, and the values stat(Zj
i ) = 1.

The presented valid assignments η′, η′′, and η′′′ respectively map the three decision
sets D′, D′′, and D′′′ to D . It is important to observe that D contains three tuples, while
all the represented decision sets contains four tuples. This difference arises because each
valid assignment η(ℓ) maps the two tuples in D(ℓ) containing satellites in Receiving Mode
to the same tuple (containing Z2

2 ) in D . Additionally, note that every valid assignment
trivially maps 0 to Z1

1 , which therefore is not explicitly indicated in the figure. �
We come back to this example after the following formal definition of dynamic rep-

resentations. For a better understanding, we suggest keeping Fig. 3.16 in mind while
reading the definition.

Definition 3.47 (Dynamic representation). A dynamic representation of a symbolic
decision set D in a symmetric Petri game G = (C , PS, PE, T, J, F, g,M0,Obj, P⊛) is a
tuple R = (P,D) with the following components:

• P = (m, card, stat) is a dynamic partition of C .

• D ⊆ P × (P(T ) ∪ {†}) is the dynamic decision set, satisfying that D contains
exactly the decision sets D such that there is a valid assignment η satisfying that

– for a tuple (p.c, †) with c ∈ C (p) we have

(p.c, †) ∈ D ⇔ (p.η(c), †) ∈ D ,

– and for a commitment set T ∈ P(T) of place p.c we have

(p.c, T ) ∈ D ⇔ ∃T̂ ∈ P(T ) : (p.η(c), T̂ ) ∈ D ∧ T = {t.σ | t.η(σ) ∈ T̂ }.
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We denote such a decision set D by η−1(D). �
We explain the above conditions on the dynamic decision set. The first case of tuples

with a †-symbol is the easier one: a tuple (p.ĉ, †) ∈ D represents that for every valid
assignment η, all tuples (p.c, †) with η(c) = ĉ are in the corresponding decision set D
that is an element of the represented symbolic decision set D. Understanding that, the
second case, handling commitment sets, is not much harder. It means a tuple (p.ĉ, T̂ ) ∈ D
represents that all tuples (p.c, T ) with η(c) = ĉ are in D, where T in its turn contains all
t.σ with t.η(σ) ∈ T̂ .

Note that these conditions differ from a condition like “D ∈ D ⇔ ∃η : η(D) = D”,
where η would be applied to D by applying it to every component. While this relation
between D and D is true for every decision set D ∈ D (i.e., the direction “⇒” holds), not
every D in this relation is represented by R (i.e., the direction “⇐” does not hold). The
reason for this is that valid assignments are not necessarily bijections.

We explore this on the example from Fig. 3.18. We already described that each η(ℓ)

maps D(ℓ) to D. In each of these mappings, two tuples are mapped to D . However,
this does not imply that the decision sets are in the represented symbolic decision set.
They are in the represented symbolic decision set because they satisfy the conditions
from above. We exemplarily examine the case of η′ and D′ = (η′)−1(D). For the first two
entries in D we get, since Z1

2 is only assigned to the color 1, that (Tr .1, {end .1}) and
(Fwd .1, {end .1}) are in (η′)−1(D). The dynamic subclass Z2

2 , however, is assigned to
two colors by η′, namely 2 and 3. This means that from (Rec.(Z2

2 ,Z1
2 ), {end .Z1

2}) ∈ D
follows (Rec.(2,1), {end .1}) ∈ (η′)−1(D) and (Rec.(3,1), {end .1}) ∈ (η′)−1(D).

A negative example, i.e., a decision set that is not represented by R, is

D− = {(Tr .1, {end .1})
(Fwd .1, {end .1})
(Rec.(2,1), {end .1})}.

Although we also have η′(D−) = D , this decision set does not satisfy the conditions
from Def. 3.47, since (Rec.(3,1), {end .1}) is not contained in D−.

We will see that in general, there are often several dynamic representations of a
symbolic decision set. We start by stating that for every symbolic decision set, there is
at least one dynamic representation.

Lemma 3.48. Every symbolic decision set has a dynamic representation.

Proof. For every symbolic decision set there is a “trivial” encoding as a representation
that we now demonstrate. Let P = (m, stat, card) be the dynamic partition of basic
color classes such that for every i ∈ I, we have m(i) = |Ci|, and for every 1 ≤ j ≤ m(i)

we have card(Zj
i ) = 1. This means Zi = {Z1

i , . . . ,Z
|Ci|
i }, and every valid assignment

partitions the basic color classes Ci into singletons – each color is represented by another
dynamic subclass. For the values of stat, we first rename the basic colors such that we
have Ci = {c1i , . . . , c

|Ci|
i } for every basic color class Ci. In the case of an ordered class Ci
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(i.e. i > u), we additionally assure that c
suc(j)
i = suc(cji ) for every 1 ≤ j ≤ |Ci|. We then

set stat(Zj
i ) = q ⇔ cji ∈ Ci,q.

Let D = [D] be a symbolic decision set and D an arbitrary representative. We build
D from D as follows. The dynamic decision set D then is the result from replacing
every appearing color cji in D by the dynamic subclass Zj

i . We therefore have D ⊆
P × (P(T ) ∪ {†}).

We obviously have for η = (ηi)i∈I with ηi = {cji 7→ Zj
i | 1 ≤ j ≤ |Ci|} that

D = η−1(D). Using now Prop. 3.45, we get that all decision sets of the form η̃−1(D),
where η̃ is valid assignment, are symmetric to D, since there is a symmetry s such that
η̃ = η ◦ s. On the other hand, all decision sets symmetric to D can be reached by such
an inverse of an assignment. Therefore, the representation R = (P,D) represents the
symbolic decision set D = [D].

We call the dynamic partition as in the proof above trivial. A representation with
the trivial partition is also called trivial. We present such a trivial representation for the
symbolic decision set from Fig. 3.18.

(Tr.1, {end.1})
(Fwd.1, {end.1})
(Rec.(2,1), {end.1})
(Rec.(3,1), {end.1})

(Tr.2, {end.2})
(Rec.(1,2), {end.2})
(Fwd.2, {end.2})
(Rec.(3,2), {end.2})

(Tr.3, {end.3})
(Rec.(1,3), {end.3})
(Rec.(2,3), {end.3})
(Fwd.3, {end.3})

D′ D′′ D′′′

D = [D′]

(Tr.Z1
2 , {end.Z1

2})
(Fwd.Z1

2 , {end.Z1
2})

(Rec.(Z2
2 ,Z1

2 ), {end.Z1
2})

(Rec.(Z3
2 ,Z1

2 ), {end.Z1
2})

η′′−1
= s′ ◦ η′−1

η′′

1 7→ Z2
2 ,

2 7→ Z1
2 ,

3 7→ Z3
2

η′−1
η′

1 7→ Z1
2 ,

2 7→ Z2
2 ,

3 7→ Z3
2

η′′′−1
η′′′

1 7→ Z2
2 ,

2 7→ Z3
2 ,

3 7→ Z1
2

D

m(2) = 3,
card(Z1

2 ) = 1, card(Z2
2 ) = 1, card(Z3

2 ) = 1

s′

R ′

Figure 3.19: A trivial dynamic representations of the symbolic decision set from Fig. 3.18.

Consider again the symbolic decision set D from Fig. 3.18. The result of constructing
a trivial dynamic representation (as described in the proof above) of D is shown in
Fig. 3.19. We assumed D′ = D′, and built D by replacing each of the colors 1,2,3 in D
by a dynamic subclass Z1

2 ,Z2
2 ,Z3

2 , respectively. Every Zj
2 has cardinality 1. An occurring

color 0 would have been replaced by Z1
1 . As in Fig. 3.18, we omitted the trivial elements

m(1) = 1 and card(Z1
1 ) = 1, and ∀i, j : stat(Zj

i ) = 1 in the figure.
The valid assignment η′ maps D′ to D and, since η′ is bijective, we get D′ = (η′)−1(D).

Consider now the symmetry s′ = {1 7→ 2,2 7→ 1,3 7→ 3} ∈ SG (where G is the symmetric
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Petri game from Fig. 3.14), mapping D′ to D′′. We see that η′′ = η′ ◦ (s′)−1. In general,
we have for all η, and s that s(η−1(D)) = (η ◦ s−1)−1(D).

We have now observed two distinct dynamic representations of the same symbolic
decision set D. In a general, there might exist numerous dynamic representations for the
same symbolic decision set. The central objective of this section, as implied by its title,
is to identify a representation that achieves both uniqueness and a certain “minimality”.
This representation, once determined, will be referred to as the canonical representation.
We move forward by formalizing the concept of minimality and describing the process
for constructing a minimal dynamic representation for a given symbolic decision set.

Minimality

When we compare the two dynamic representations from Fig. 3.18 and Fig. 3.19, we
see that the non-trivial one from Fig. 3.18 is “smaller” in the sense that it uses less dy-
namic subclasses. So the first step towards a canonical representation will be to find
one that has a minimal number of dynamic subclasses. Later we will see that minimal
representations are unique up to a permutation (i.e., renaming) of the dynamic sub-
classes. Constructing a minimal representation is achieved by merging subclasses from
non-minimal representations. This is now informally explained on the running example.

In the trivial representation from Fig. 3.19, the two dynamic subclasses Z2
2 and Z3

2

appear “in the same context” in D . Both of them occur exactly at the position of ▽
in a tuple (Rec.(▽,Z1

2 ), {end .Z1
2}). We will see in Lemma 3.53 that this means the

two dynamic subclasses can be “merged”, or rather be replaced by a dynamic subclass of
cardinality 2 (since card(Z2

2 )+card(Z3
2 ) = 1+1 = 2). Doing this yields the representation

from Fig. 3.18. Since there no two dynamic subclasses appear in the same context, this
representation will be called “minimal”.

We begin with the definition of merging two dynamic subclasses.

Definition 3.49 (Merging dynamic subclasses.). Let R = (P,D) be a dynamic
representation of a symbolic decision set with such that the dynamic partition defines two
dynamic subclasses Zj

ı̂ ,Zk
ı̂ with j ̸= k. Then the dynamic representation R[Zj

ı̂⋏Zk
ı̂ ] =

(P∗,D∗) results from replacing every occurrence of Zj
ı̂ and Zk

ı̂ by a new dynamic subclass
Z∗
ı̂ with card∗(Z∗

ı̂ ) = card(Zj
ı̂ ) + card(Zk

ı̂ ) and stat∗(Z∗
ı̂ ) = stat(Zj

ı̂ ). �

Notice that in the description of R[Zj
ı̂⋏Zk

ı̂ ] and in particular P∗ = (m∗, stat∗, card∗)
we do not use the notation from Definition 3.47. When we have from P the symbolic color
classes Z = {Z1, . . . ,Zı̂−1,Zı̂,Zı̂+1, . . . ,Zn}, then we have from P∗ the symbolic color
classes Z ∗ = {Z1, . . . ,Zı̂−1,Z

∗
ı̂ ,Zı̂+1, . . . ,Zn}, with Z ∗

ı̂ = (Zı̂ \ {Zj
ı̂ ,Zk

ı̂ }) ∪ {Z∗
ı̂ }.

The values of m∗, stat∗, card∗ not specified in the lemma then are the same as of m,
stat, card, but with m∗(̂ı) = m(̂ı)− 1, since two dynamic subclasses have been replaced
by one. Regarding the successor function suc on the superscripts of dynamic subclasses
in the case ı̂ > u, ∗ takes the place of j and suc skips over k.

We already informally discussed the following example above.
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Example 3.50. Consider the trivial representation from Fig. 3.19. When merging the
dynamic subclasses Z2

2 and Z3
2 , we arrive at the dynamic representation from Fig. 3.18.

Here, we renamed the new dynamic subclass Z∗
2 to Z2

2 , to adhere to the notation in
Definition 3.47. �

The next step is to define a criterion on the subclasses that we merge, guaranteeing
that the new dynamic representation, resulting from the merging, represents the same
symbolic decision set. A crucial part of such a criterion is the notion of context of a
dynamic subclass:

Definition 3.51 (Context con). Let R = (P,D) be a representation of a symbolic
decision set. The context conR(Zj

i ) of a dynamic subclass Zj
i is defined as the set of tuples

in D where exactly one appearance of Zj
i is replaced by an “place holder symbol” ▽. �

We consider again our running example.

Example 3.52. For the representation R = (P,D) from Fig. 3.19, this definition yields

conR(Z1
1 ) = { } (3.1)

conR(Z1
2 ) = { (Tr .▽, {end .Z1

2}), (Tr .Z1
2 , {end .▽}),

(Fwd .▽, {end .Z1
2}), (Fwd .Z1

2 , {end .▽}),
(Rec.(Z2

2 ,▽), {end .Z1
2}), (Rec.(Z2

2 ,Z1
2 ), {end .▽})

(Rec.(Z3
2 ,▽), {end .Z1

2}), (Rec.(Z3
2 ,Z1

2 ), {end .▽}) }

(3.2)

conR(Z2
2 ) = { (Rec.(▽,Z1

2 ), {end .Z1
2}) } (3.3)

conR(Z3
2 ) = { (Rec.(▽,Z1

2 ), {end .Z1
2}) }. (3.4)

Since Z1
1 does not appear in any tuple in D , we get in (3.1) that conR(Z1

1 ) is empty.
The context conR(Z1

2 ) in (3.2) is the biggest set in this example. The reason for this is
that D contains four elements, and Z1

2 occurs twice in each of these. This yields eight
occurrences of Z1

2 in D and therefore eight elements in conR(Z1
2 ). Finally, in (3.3) and

(3.4), the only occurrence of Z2
2 resp. Z3

2 in D has been replaced by ▽, yielding the same
context for the two dynamic subclasses. �

The following Lemma states that two dynamic subclasses with the same context (as
Z2
2 and Z3

2 above) can be merged in a representation, while preserving the represented
symbolic decision set.

Lemma 3.53. Let R = (P,D) be a representation containing two dynamic subclasses
Zj
ı̂ ,Zk

ı̂ , j ̸= k, satisfying

conR(Zj
ı̂ ) = conR(Zk

ı̂ ) ∧ stat(Zj
ı̂ ) = stat(Zk

ı̂ ) ∧ (̂ı ≤ u∨ (̂ı > u∧ k = suc(j))). (3.5)

Then R and R[Zj
ı̂⋏Zk

ı̂ ] represent the same symbolic decision set.
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Before we give the proof, we inspect and explain the condition (3.5), and view the
lemma in the context of Fig. 3.19 and Fig. 3.18. The purpose of condition (3.5) is to state
that two respective dynamic subclasses can be merged without changing the represented
symbolic decision set. We now see how this is ensured. The first part of the conjunction
deals with the just defined context of the two dynamic subclasses under consideration.
When the two are replaced by the new dynamic subclass, the latter has to take the role
of both. In particular, it must be ensured that, when in the original representation there
is more than one occurrence of these subclasses in the same tuple in the dynamic decision
set, then it must contain a tuple with every possible combination of the subclasses.

Consider the following two (generic) examples of representations:

(p.(Z1
1 ,Z2

1 ), †)
(p.(Z2

1 ,Z1
1 ), †)

D1

stat(Z1
1 ) = stat(Z2

1 ) (p.(Z1
1 ,Z2

1 ), †)
(p.(Z2

1 ,Z1
1 ), †)

(p.(Z1
1 ,Z1

1 ), †)
(p.(Z2

1 ,Z2
1 ), †)

D2

stat(Z1
1 ) = stat(Z2

1 )

R1

R2

.

While one could naively think that in R1 the two dynamic subclasses Z1
1 and Z2

1 can be
merged since that appear “symmetrically” in D1, this is not the case since we have

conR1(Z1
1 ) = {(p.(▽,Z2

1 ), †), (p.(Z2
1 ,▽, †))}

̸= {(p.(▽,Z1
1 ), †), (p.(Z1

1 ,▽, †))} = conR1(Z2
1 ).

For the second representation R2, however, we have

conR2(Z1
1 ) = {(p.(▽,Z1

1 ), †), (p.(Z1
1 ,▽, †)), (p.(▽,Z2

1 ), †), (p.(Z2
1 ,▽, †))} = conR2(Z2

1 ).

This means in R2, the dynamic subclasses Z1
1 and Z2

1 satisfy (3.5). Merging the two
subclasses (i.e., replacing them by a dynamic subclass Z∗

1 ) would result in a dynamic
decision set D∗ = {(p.(Z∗

1 ,Z∗
1 ), †)}. The result would be the same if we merged the two

subclasses from R1, where we are not allowed to do that. This negative example is in a
similar spirit as the one on p. 104, where we explained that the decision set D− is not
represented by the dynamic representation in Fig. 3.18.

The second part of the conjunction (3.5) states that the two dynamic subclasses
represent colors from the same static subclass Cı̂,q with q = stat(Zj

ı̂ ) = stat(Zk
ı̂ ). This is

necessary since every dynamic subclass represents colors from only one static subclass, so
merging the two should result in a dynamic subclass also representing colors from Cı̂,q.
The third part of the conjunction ensures that, in the case of an ordered basic color
class Ci, we deal with two successive dynamic subclasses. This is important since for
valid assignments, to every dynamic subclass, a set of successive colors is assigned.

Before we prove Lemma 3.53, we consider again the running example from Fig. 3.19.
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Example 3.54. As we have already seen in (3.3) and (3.4), we have conR(Z2
2 ) =

conR(Z3
2 ). Since we have stat(Z2

2 ) = stat(Z3
2 ) = 1, and C2 is unordered (i.e., 2 ≤ 2 = u),

condition (3.5) is satisfied for these two subclasses and they can be merged. The result of
this is the representation from Fig. 3.18 (after renaming the new subclass Z∗

2 to Z2
2 ). �

Having now established some intuition about condition the (3.5), we finally give the
proof of Lemma 3.53.

Proof of Lemma 3.53. Let D be the symbolic decision set represented by R and D ∈ D.
Then there is a valid assignment η = (ηi)

n
i=1 with ηi : Ci → Zi such that D = η−1(D).

From (3.5) it follows that the family of functions η∗ = (η∗i )
n
i=1 with η′i : Ci → Z ∗

i , given
by

η∗i =

{
ηi , i ̸= ı̂

{Zj
ı̂ 7→ Z∗

ı̂ ,Zk
ı̂ 7→ Z∗

ı̂ } ◦ ηi , i = ı̂

is a valid assignment, and we have (η′)−1(D ′) = D. Thus, we have that D is in the
symbolic decision set represented by R∗. The other direction works analogously.

A dynamic representation is called minimal if no two dynamic subclasses in it can
be merged:

Definition 3.55 (Minimal representation). A representation R is called minimal if
it does not contain any two dynamic subclasses Zj

ı̂ ,Zk
ı̂ , j ̸= k, satisfying (3.5). �

Given a dynamic representation, it is algorithmically simple to construct a mini-
mal representation of the same symbolic decision set by iteratively merging all pairs of
dynamic subclasses satisfying (3.5). Still, minimality is not enough to obtain a unique
canonical representation, since we can permute the indices j of the dynamic subclasses Zj

i .
Permutations on the dynamic subclasses are defined analogously to symmetries on

basic color classes. This fits into the concept of dynamic subclasses replacing the colors.

Definition 3.56 (Permutations on dynamic partitions). For a given a dynamic
partition P, a permutation of the dynamic subclasses is a tuple ŝ = (ŝ1, . . . , ŝn) of
permutations ŝi on Zi = {Zj

i | 1 ≤ j ≤ m(i)} s.t. ∀i, q : ŝi(Zi,q) = Zi,q (i.e., ∀j :

stat(ŝ(Zj
i )) = stat(Zj

i )). In the case of an ordered class Ci we again only consider
rotations ŝi w.r.t. suc. We denote the set of all these permutations by ŜP , where we omit
the subscript when no confusion arises. �

A permutation ŝ ∈ ŜP can be applied to the whole partition P = (m, stat, card),
yielding the dynamic partition ŝ(P) = (m, stat, card ◦ŝ). This means that the number
of dynamic subclasses of a color class does not change. By definition, the function
stat is invariant under permutations. The only part that is different in P and ŝ(P) is
the cardinality function, since in ŝ(P) a dynamic subclass Zj

i now has the cardinality
of ŝ−1(Zj

i ) in P.
Since in the trivial dynamic partition of a family of basic color classes we have ∀Zj

i :

card(Zj
i ) = 1, we directly get the following property:
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Property 3.57. For the trivial dynamic partition P, we have ∀ŝ ∈ ŜP : ŝ(P) = P.
The permutations ŜP are isomorphic to the symmetries SG of the symmetric Petri game
under consideration.

A permutation ŝ ∈ ŜP can be applied to a representation R = (P,D), yielding the
dynamic representation ŝ(R) := (ŝ(P), ŝ(D)), where ŝ(D) is the result of replacing every
occurrence of Zj

i in D by ŝi(Zj
i ).

Example 3.58. Consider again the minimal representation from Fig. 3.18. In Fig. 3.20,
we see the result of a permutation ŝ (switching Z1

2 and Z2
2 ) applied to this representation.

We see that m remains unaffected. Since the values of stat are trivial, they are again not
depicted, but they also coincide. The cardinalities, however, are switched, as well as the
occurences in D . �

(Tr.Z1
2 , {end.Z1

2})
(Fwd.Z1

2 , {end.Z1
2})

(Rec.(Z2
2 ,Z1

2 ), {end.Z1
2})

D

m(2) = 2,
card(Z1

2 ) = 1, card(Z2
2 ) = 2

R

(Tr.Z2
2 , {end.Z2

2})
(Fwd.Z2

2 , {end.Z2
2})

(Rec.(Z1
2 ,Z2

2 ), {end.Z2
2})

ŝ(D)

m(2) = 2,
card(Z1

2 ) = 2, card(Z2
2 ) = 1

ŝ(R)
ŝ = {Z1

2 7→ Z2
2 ,Z2

2 7→ Z1
2}

Figure 3.20: The application of a permutation ŝ ∈ ŜP to the dynamic representation
R = (P,D) from Fig. 3.18.

All trivial representations of the same symbolic decision set have the same (trivial)
dynamic partition. Compared to the explicit decision sets in the represented equivalence
class, each dynamic subclass represents exactly one color. Since all elements in a symbolic
decision set are symmetric, we get from Property 3.57 the following corollary:

Corollary 3.59. For any two trivial representations R = (P,D) and R′ = (P,D ′) of
the same symbolic decision set, there is a permutation ŝ ∈ ŜP such that ŝ(R) = R′.

We now prove that minimal representations are unique up to permutation of the
dynamic subclasses. This result is obtained using the observation that every minimal
representation (as in Fig 3.18) can be reached from a trivial representation, i.e., containing
only dynamic subclasses of cardinality 1 (as in Fig 3.19), by merging dynamic subclasses
satisfying (3.5).

Lemma 3.60. The minimal representations of a symbolic decision set are unique up to
permutations of the dynamic subclasses.

Proof. First, we observe that the minimal representation reached by merging dynamic
subclasses is unique. Assume a dynamic representation R such that there are Zj

ı̂ ,Zk
ı̂ ,Zℓ

ı̂

with j ̸= k, k ̸= ℓ and j ̸= ℓ, such that Zj
ı̂ and Zk

ı̂ satisfy (3.5), and Zk
ı̂ and Zℓ

ı̂ satisfy
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(3.5) as well. Then in the dynamic representation R∗ = R[Zj
ı̂⋏Zk

ı̂ ] where Zj
ı̂ and Zk

ı̂

are replaced by Z∗
ı̂ as in Lemma 3.53, the new dynamic subclass Z∗

ı̂ and Zℓ
ı̂ satisfy (3.5).

This holds since conR∗(Z∗
ı̂ ) = conR(Zk

ı̂ )[Z
j
ı̂ ← Z∗

ı̂ ,Zk
ı̂ ← Z∗

ı̂ ] = conR(Zℓ
ı̂ )[Z

j
ı̂ ← Z∗

ı̂ ,
Zk
ı̂ ← Z∗

ı̂ ] = conR∗(Zℓ
ı̂ ). The dynamic subclasses Z∗

ı̂ and Zℓ
ı̂ can therefore be merged

again. This result shows that the order in which we merge dynamic subclasses does not
matter: given a dynamic representation, the minimal representation reached by merging
dynamic subclasses is unique.

Second, we observe that the existence of a permutation between two dynamic rep-
resentations is preserved by merging dynamic subclasses. Let R = (P,D) and R′ =
(P ′,D ′) be two dynamic representations such that there exists a permutation ŝ =
(ŝi)

n
i=1 ∈ ŜP with ŝ(R) = R′. If there are Zj

ı̂ and Zk
ı̂ satisfying (3.5) in R. Then

ŝı̂(Zj
ı̂ ) and ŝı̂(Zk

ı̂ ) satisfy (3.5) in R′. Let R∗ = (P∗,D∗) (resp. R′∗ = (P ′∗,D ′∗)) be the
two dynamic representations resulting from replacing Zj

ı̂ and Zk
ı̂ by Z∗

ı̂ (resp. replacing
ŝı̂(Zj

ı̂ ) and ŝı̂(Zk
ı̂ ) by Z ′∗

ı̂ ) as in Lemma 3.53. Then ŝ∗ = (ŝ∗i )
n
i=1 given by

ŝ∗i =

{
ŝi , i ̸= ı̂

(ŝi|Zi\{Zj
ı̂ ,Zk

ı̂ }
) ∪ {Z∗

ı̂ 7→ Z ′∗
ı̂ } , i = ı̂

is a permutation ŝ∗ ∈ ŜP∗ and ŝ∗(R∗) = R′∗.
From these two observations follows the statement of Lemma 3.60: Let Rmin and

R′
min be two minimal representations. Then there are two trivial representations Rtriv

and R′
triv such that Rmin (resp. R′

min) is the result of iteratively merging all pairs of
dynamic subclasses (resp. R′

triv ) satisfying (3.5), starting from Rtriv . By Cor. 3.59,
there is a permutation between Rtriv and R′

triv . This means, by the second observation,
that after every merge of two subclasses in the process of reaching Rmin from Rtriv ,
there is a permutation from the current representation to one that can be reached by
merging subclasses starting from R′

triv . Thus, there is also a permutation between the
Rmin and the respective representation R̃′ reached from R′

triv . This representation must
be minimal since else Rmin would not be minimal. By the first observation, R̃′ must
therefore be equal to R′

min , which concludes the proof.

Ordering

We finally get to the concept of ordered representations. This, together with minimality,
will lead to canonical representations. We have seen above that

• it is easy to calculate a minimal representation of a given symbolic decision set,

• the minimal representations of a given symbolic decision set are unique up to a
permutation of the dynamic subclasses.

Furthermore, from the definition of minimality it directly follows that applying a permu-
tation to a minimal representation yields another minimal representation. This means,
for each minimal representation R = (P,D), the set of all minimal representations is
given by {ŝ(R) | ŝ ∈ ŜP}.
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The goal of this Section 3.3.2 is to define for every symbolic decision set one canonical
representation. Considering the set of of minimal representations will turn out to be the
first step in this direction. In the following, we define what it means for a representation
to be ordered. We then proceed and prove that for every symbolic decision set there is
exactly one minimal and ordered representation. This representation then constitutes
the canonical representation of this symbolic decision set.

For a given representation R = (P,D), the question whether it is ordered is answered
by an order on the set {ŝ(R) | ŝ ∈ ŜP}. This order, in its turn uses a special presentation
of the dynamic decision sets ŝ(D) as matrices mat(ŝ(D)). To define, for a given dynamic
representation, the matrix presentation of its dynamic decision set is therefore the first
step to define what it means for a dynamic representation to be ordered.

The rows of the matrix mat(D) correspond to a set Z [pmax], such that, for every
place p in the symmetric Petri game under consideration, the symbolic color domain
Z (p) can be embedded into Z [pmax]. On the other hand, every element in Z [pmax]
can be projected to an element in Z (p) by a function projp : Z [pmax] → Z (p). The
formal definition proceeds as follows:

Given a dynamic partition P, let Z [pmax] := Z
pmax(1)
1 × · · · × Z

pmax(n)
n , where

∀1 ≤ i ≤ n : pmax(i) := max{J(p, i) | p ∈ P}. By this definition, we have that for all
places p, the symbolic color domain Z (p) = Z

J(p,1)
1 × · · · × Z

J(p,n)
n can be embedded

into Z [pmax]. For every place p ∈ P , let projp : Z [pmax] → Z (p) be the projection
from Z [pmax] to the symbolic color class of p, given by

projp(Z(1)
1 , . . . ,Z(pmax(1))

1 , . . . ,Z(1)
n , . . . ,Z(pmax(n))

n )

:= (Z(1)
1 , . . . ,Z(J(p,1))

1 , . . . ,Z(1)
n , . . . ,Z(J(p,n))

n ).

Analogously, the columns of the matrix correspond to Z [tmax] := Z
tmax(1)
1 × · · · ×

Z
tmax(n)
n , where tmax(i) := max{J(t, i) | t ∈ T}. For every transition t, the symbolic

color domain Z (t) = Z
J(t,1)
1 × · · · × Z

J(t,n)
n can be embedded into Z [tmax], and for

every transition t ∈ T , let projt : Z [tmax] → Z (t) be the projection from Z [tmax] to
the symbolic color class of t.

Example 3.61. Consider again the running example Signal Sending Satellites from
Fig. 3.14, and the dynamic partition from the dynamic representation from Fig. 3.18,
with Z1 = {Z1

1} and Z2 = {Z1
2 ,Z2

2}.
The maximal number of occurrences of C1 in the type of a place in Fig. 3.14 is 1, at

place Env with J(Env , 1) = 1. We therefore have pmax(1) = 1 All other places p have
C (p) = C2, except for Rec with C (Rec) = C2 × C2, meaning J(Rec, 2) = 2. This leads
to pmax(2) = 2. We therefore have Z [pmax] = Z1 ×Z2 ×Z2.

Consider now the place Fwd with C (Fwd) = C2 and therefore Z (Fwd) = Z2. For
the tuple Z = (Z1

1 ,Z2
2 ,Z1

2 ) ∈ Z [pmax] we have projFwd (Z) = (Z2
2 ), since Z2

2 is the
first appearance of a dynamic subclass from Z2 in Z. However, for place Rec with
C (Rec) = C2 × C2 and therefore Z (Rec) = Z2 ×Z2, we have projRec(Z) = (Z2

2 ,Z1
2 )

For the transitions, we have that C1 appears in no color domain, i.e., we have for
all transitions t that J(t, 1) = 0, leading to tmax(1) = 0. For C2 we have, however,
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tmax(2) = J(rec, 2) = 2. This leads to tmax(2) = 2 and Z [tmax] = Z2 ×Z2 Consider
the transition end with C (end) = C2, leading to C (end) = Z2, and the tuple Z ′ =
(Z1

2 ,Z1
2 ). Then projend (Z ′) = (Z1

2 ). �
The elements in Z [pmax] resp. Z [tmax] are tuples of dynamic subclasses Zj

i . We
therefore have a natural order over these sets, induced by the superscripts j. For a given
dynamic representation R = (P,D), the matrix mat(R) encodes the dynamic decision
set D . The rows of mat(R) correspond to the elements in Z [pmax], and the rows to the
elements in Z [tmax], with the natural induced by the superscripts.

The elements in mat(R) are lists of tuples in P × (T ∪ {†, ∅}). We have the lexico-
graphic order on P × (T ∪{†, ∅}), given by the names of places and transitions, assuming
† < ∅ < t for all t ∈ T . Thus, we know what it means for such a list to be lexico-
graphically ordered. With these discussions in mind we finally arrive at the definition of
mat(R).

Definition 3.62 (Representation matrix mat). Let R = (P,D) be a dynamic rep-
resentation. Then mat(R) is a 2-dimensional matrix, where the rows correspond to
Z [pmax] and the columns to Z [tmax]. Let Z ∈ Z [pmax] and Z ′ ∈ Z [tmax]. Then
the entry of mat(R) at position (Z,Z ′) is the repetition free, lexicographically ordered
list with elements in P × (T ∪ {†, ∅}), given by

(p, †) ∈ mat(R)(Z,Z ′) ⇔ (p.projp(Z), †) ∈ D

(p, ∅) ∈ mat(R)(Z,Z ′) ⇔ (p.projp(Z), ∅) ∈ D

(p, t) ∈ mat(R)(Z,Z ′) ⇔ ∃T̂ ⊆ T : (p.projp(Z), T̂ ) ∈ D ∧ t.projt(Z ′) ∈ T̂ �

We illustrate this definition by continuing the examples from above.

Example 3.63. We consider again the representation R from Fig. 3.18. Recall that the
dynamic decision set of this representation is given by

(Tr.Z1
2 , {end.Z1

2})
(Fwd.Z1

2 , {end.Z1
2})

(Rec.(Z2
2 ,Z1

2 ), {end.Z1
2})

D

,

with Z1 = {Z1
1} and Z2 = {Z1

2 ,Z2
2}. We have already discussed in Example 3.61 that

Z [pmax] = Z1 × Z2 × Z2 and Z [tmax] = Z2 × Z2. In the matrix mat(R), we see
the rows and columns corresponding to Z [pmax] and Z [tmax], respectively. They are
ordered by the natural order on the superscripts of dynamic subclasses. From Def. 3.62
the matrix mat(R) is given by




(Z1
2 ,Z1

2 ) (Z1
2 ,Z2

2 ) (Z2
2 ,Z1

2 ) (Z2
2 ,Z2

2 )

(Z1
1 ,Z1

2 ,Z1
2 ) [(Fwd , end), (Tr , end)] [(Fwd , end), (Tr , end)] [ ] [ ]

(Z1
1 ,Z1

2 ,Z2
2 ) [(Fwd , end), (Tr , end)] [(Fwd , end), (Tr , end)] [ ] [ ]

(Z1
1 ,Z2

2 ,Z1
2 ) [(Rec, end)] [(Rec, end)] [ ] [ ]

(Z1
1 ,Z2

2 ,Z2
2 ) [ ] [ ] [ ] [ ]




.
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We exemplarily discuss two entries in this matrix in detail. Consider the first en-
try, highlighted green, at position

(
(Z1

1 ,Z1
2 ,Z1

2 ), (Z1
2 ,Z1

2 )
)
. We have seen in Exam-

ple 3.61 that projFwd (Z1
1 ,Z1

2 ,Z1
2 ) = Z1

2 and projend (Z1
2 ,Z1

2 ) = Z1
2 . Since we have that

end .Z1
2 ∈ {end .Z1

2} and (Fwd .Z1
2 , {end .Z1

2}) ∈ D , we get that (Fwd , end) is an entry
in the list at the green position

(
(Z1

1 ,Z1
2 ,Z1

2 ), (Z1
2 ,Z1

2 )
)
. With the same arguments,

we get that (Tr , end) is an element in the list at this position. The list at position(
(Z1

1 ,Z1
2 ,Z1

2 ), (Z1
2 ,Z1

2 )
)

is then given by [(Fwd , end), (Tr , end)]. The order inside the
list results from the fact that Fwd is lexicographically smaller than Tr .

Consider now the entry at position
(
(Z1

1 ,Z2
2 ,Z1

2 ), (Z1
2 ,Z2

2 )
)
, highlighted red. In Ex-

ample 3.61, we discussed projRec(Z1
1 ,Z2

2 ,Z1
2 ) = (Z2

2 ,Z1
2 ), and we have projend (Z1

2 ,Z2
2 ) =

Z1
2 . As for the green entry, we have (Rec.(Z2

2 ,Z1
2 ), {end .Z1

2}) ∈ D , implying that
(Rec, end) is in the list at position

(
(Z1

1 ,Z2
2 ,Z1

2 ), (Z1
2 ,Z2

2 )
)
. This is the only place tran-

sition combination for which this is true, leading to the red highlighted list containing a
single element. �

Notice that one entry in the dynamic decision set can lead to multiple appearances
in the matrix representation. This is caused by the projection of multiple elements in
Z [pmax] resp. Z [tmax] to the same element in Z (p) resp. Z (t) for a place p resp.
transition t. When, for example, for a transition t, two tuples Z,Z ′ ∈ Z [tmax] are
mapped to the same tuple in Z (t), then every entry (p, t) in a list in column Z appears
at the same place in column Z ′. An instance of that can be seen in the third row with
the entry (Rec, end) in column (Z1

2 ,Z1
2 ) as well as in column (Z1

2 ,Z2
2 ). Here, we have

projend (Z1
2 ,Z1

2 ) = projend (Z1
2 ,Z2

2 ).
Recall that the motivation of defining this matrix mat(R) for a given representation R

was to define an order on {ŝ(R) | ŝ ∈ Ŝ}. When applying a permutation ŝ to R,
the new corresponding matrix mat(ŝ(R)) can be calculated easily from the mat(R):
in mat(ŝ(R)), the list in position (Z,Z ′) is the list from position (ŝ−1(Z), ŝ−1(Z ′)) in
mat(R). In other words, the matrix mat(ŝ(R)) can be build from mat(R) by traversing
mat(R) and writing the list at position (Z,Z ′) into mat(ŝ(R)) at position (ŝ(Z), ŝ(Z ′)).
We demonstrate this on the example from above.

Example 3.64. Consider again Example 3.58, where we applied the permutation ŝ =
{Z1

2 7→ Z2
2 ,Z2

2 7→ Z1
2} to the representation R, as we illustrated in Fig. 3.20. The matrix

mat(R) is shown in Example 3.63 above. Traversing this matrix, and writing the list at
every position (Z,Z ′) into mat(ŝ(R)) at position (ŝ(Z), ŝ(Z ′)) arrives at the following
matrix mat(ŝ(R)):




(Z1
2 ,Z1

2 ) (Z1
2 ,Z2

2 ) (Z2
2 ,Z1

2 ) (Z2
2 ,Z2

2 )

(Z1
1 ,Z1

2 ,Z1
2 ) [ ] [ ] [ ] [ ]

(Z1
1 ,Z1

2 ,Z2
2 ) [ ] [ ] [(Rec, end)] [(Rec, end)]

(Z1
1 ,Z2

2 ,Z1
2 ) [ ] [ ] [(Fwd , end), (Tr , end)] [(Fwd , end), (Tr , end)]

(Z1
1 ,Z2

2 ,Z2
2 ) [ ] [ ] [(Fwd , end), (Tr , end)] [(Fwd , end), (Tr , end)]




.

We see, for example, that the green entry from position
(
(Z1

1 ,Z1
2 ,Z1

2 ), (Z1
2 ,Z1

2 )
)

in
mat(R) is now at position

(
(Z1

1 ,Z2
2 ,Z2

2 ), (Z2
2 ,Z2

2 )
)
, and the red entry from position
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(
(Z1

1 ,Z2
2 ,Z1

2 ), (Z1
2 ,Z2

2 )
)

in mat(R) can be found at position
(
(Z1

1 ,Z1
2 ,Z2

2 ), (Z2
2 ,Z1

2 )
)

in
mat(ŝ(R)). �

With this, we can finally define what it means for a representation to be ordered. The
goal is to find a unique representation of a given symbolic decision set. By considering
only minimal representations, Lemma 3.60 gives uniqueness up to permutations ŝ of the
dynamic subclasses. We now use the matrix mat(R) of a representation R = (P,D) to
determine a unique element in {ŝ(R) | ŝ ∈ ŜP}, i.e., the set of all minimal represen-
tations. This element is found by defining an order <mat on {ŝ(R) | ŝ ∈ ŜP}, which
then will lead to a total order <R on {ŝ(R) | ŝ ∈ ŜP}. With this total order we can
find for every symbolic decision set a unique minimal representation, which will be called
canonical.

Order <mat. We compare, for a representation R, all matrices of representations re-
sulting from applying a permutation ŝ to R. The comparison is made with respect to the
lexicographic order. Here, we assume for two lists of different length that the longer list
is bigger. Two lists of the same length are compared entry-wise. For two representations
R1,R2 ∈ {ŝ(R) | ŝ ∈ ŜP}, we say R1 <mat R2 if mat(R1) is lexicographically smaller
than mat(R2).

Order <card. Let R1,R2 ∈ {ŝ(R) | ŝ ∈ ŜP}. Then for R1 = (m1, stat1, card1,D1)
and R2 = (m2, stat2, card2,D2), there is an ŝ ∈ ŜP1 such that ŝ(R1) = R2, and we know
by the remark after Definition 3.56 that m1 = m2 and stat1 = stat2. The only difference
in P1 = (m1, stat1, card1) and P2 = (m2, stat2, card2) is in the cardinality function. We
can now compare P1 and P2 w.r.t. the cardinality by iterating through all Zj

i and look
for the first difference. If the first difference is in Z ȷ̂

ı̂ , and card1(Z ȷ̂
ı̂ ) < card2(ŝ(Z ȷ̂

ı̂ ))), we
say R1 <card R2. Formally, R1 <card R2 iff

∃ı̂ ∈ I : (∀i < ı̂ ∀1 ≤ j ≤ m(i) : card1(Zj
i ) = card2(ŝ(Zj

i ))

∧ ∃1 ≤ ȷ̂ ≤ m(̂ı) : (∀1 ≤ j ≤ ȷ̂ : card1(Zj
ı̂ ) = card2(ŝ(Zj

ı̂ )))

∧ card1(Z ȷ̂
ı̂ ) < card2(ŝ(Z ȷ̂

ı̂ ))).

Order <R . Let R1,R2 ∈ {ŝ(R) | ŝ ∈ ŜP}. We say R1 <R R2 if

R1 >mat R2

∨ (mat(R1) = mat(R2) ∧R1 >card R2)

At first glance unintuitively, we thus have R1 <R R2 if R1 >mat R2. The reason for
this is that we want to call a representation ordered iff it is minimal w.r.t. <R . The term
R1 >mat R2 means that the dynamic subclasses Zj

i with a smaller superscript j have
bigger lists in the matrix. This, in its turn, describes that these subclasses appear more
often in the dynamic decision set. When the matrices of two minimal representations are
equal, the one smaller w.r.t. <R is the one in which the dynamic subclasses with smaller
superscript have a bigger cardinality.

By this, we have defined for every representation R = (P,D), an order <R on the
set {ŝ(R) | ŝ ∈ ŜP}.
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Definition 3.65 (Ordered representation). A representation R = (P,D) is called
ordered if R is minimal w.r.t. <R in the set {ŝ(R) | ŝ ∈ ŜP}. �
Example 3.66. In our running example R = (P,D) from Fig. 3.18, we have Ŝ = {id , ŝ}
with id = {Z1

2 7→ Z1
2 ,Z2

2 7→ Z2
2} and ŝ = {Z1

2 7→ Z2
2 ,Z2

2 7→ Z1
2}. We saw the matrix

mat(R) = mat(id(R)) in Example 3.63, and the matrix mat(ŝ(R)) in Example 3.64. We
directly see that mat(R) is bigger, since the first entry is lexicographically bigger (the
empty list is the smallest element). This means the representation R from Fig. 3.18 is a
minimal and ordered representation of the represented symbolic decision set. We will see
in a moment that such a representation is unique for every symbolic decision set, making
it canonical. �

We have defined what it means for a dynamic representation to be minimal and to be
ordered. To the aim of showing that this leads to canonical representations of symbolic
decision sets, we formulate the following lemma, making a statement of two ordered
dynamic decision sets that can be reached from each other by a permutation.

Lemma 3.67. Let R1 = (P1,D1) and R2 = (P2,D2) be two ordered representations of
the same symbolic decision set, and ŝ ∈ P1 be a permutation such that R2 = ŝ(R1).
Then D1 = D2.

Proof. Since R1 is ordered, ŝ cannot transform mat(R1) into a (lexicographically) big-
ger matrix. Aiming a contradiction, assume that ŝ transforms mat(R1) into a smaller
matrix mat(ŝ(R)). Since mat(ŝ(R1)) = mat(R2), this would mean that ŝ−1 transforms
mat(R2) into a bigger matrix, implying that R2 is not ordered. Contradiction. There-
fore, mat(R1) = mat(ŝ(R1)) = mat(R2). Since mat(Ri) is just a presentation of Di, we
follow D1 = D2.

Now we are equipped with all tools to prove that there is exactly one minimal and
ordered representation for each symbolic decision set. We call this representation the
canonical (dynamic) representation.

Theorem 3.68. For every symbolic decision set there is exactly one minimal and ordered
dynamic representation.

Proof. Let R1 = (P1,D1) and R2 = (P2,D2) be two minimal and ordered representations
of the same symbolic decision set. Lemma 3.60 gives us that there is a permutation ŝ ∈
ŜP1 such that R2 = ŝ(R1). Then we have by Lemma 3.67 that D1 = D2. We therefore
have mat(D1) = mat(D2). Assume now P1 ̸= P2. Then w.l.o.g. P1 <card P2, meaning
R1 <R1 R2, implying that R1 is not ordered. Contradiction. We therefore have P1 = P2
and thereby R1 = R2.

Definition 3.69 (Canonical representation). The canonical representation of a sym-
bolic decision set is its unique ordered and minimal dynamic representation. �

We can algorithmically order a minimal representation by calculating all symmetric
representations and finding the one with the lexicographically biggest matrix. If there
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is more than one such representations then we compare the cardinality functions in the
dynamic partition.

Let now a symbolic decision set D be given. We then can construct a minimal
representation R = (P,D) of D (by first constructing a trivial representation and then
merging subclasses until it is not possible anymore) in O(1) time. We can then order
this minimal representation in O(|ŜP |) time, since we must find the smallest (w.r.t. <R)
of |ŜP | many matrices. Since we have for all partitions P that |ŜP | ≤ |SG| for the given
high-level Petri game G, we conclude that we get the following Corollary.

Corollary 3.70. For a given symbolic decision set, we can construct the canonical rep-
resentation in O(|SG|).

We therefore have a fixed cost for generating canonical representations. However, due
to minimality of the constructed representation R = (P,D), we often have |ŜP | ≤ |SG|
since there are less dynamic subclasses than colors. We later go more into detail with
comparing the cost of building the symbolic two-player game with arbitrary representa-
tives vs. canonical representations.

3.3.3 Relations between Canonical Representations

In the preceding section, we presented the process of constructing the canonical rep-
resentation for a given symbolic decision set. These canonical representations are set
to substitute the explicit symbolic decision sets as vertices in the symbolic two-player
game. However, the edges in the symbolic two-player game are defined based on relations
between symbolic decision sets. Consequently, in this section we define corresponding
relations between the canonical representations in order to accurately define the so-called
canonical two-player game, with canonical representations as vertices.

In [CDFH91a; CDFH93], the authors define the symbolic firing of transitions between
canonical representations of equivalence classes of markings. This leads to a symbolic
reachability graph with canonical representations as vertices. In [GW21a], we lifted
these results to decision sets, defining symbolic transition firing and symbolic †-resolution
between canonical representations of symbolic decision sets. With this, we defined the
canonical two-player game.

The concept revolves around adapting the guards and arc expressions surrounding a
transition to handle dynamic subclasses rather than individual colors. Additionally, for
each transition, a set of “symbolic modes” is defined. In this context, a mode encompasses
not only a tuple of dynamic subclasses but also accounts for distinct instances of the same
dynamic subclass. To fire a transition in a symbolic mode, a canonical representation
must first be “split” into a finer representation, depending on the mode. Following this,
a firing takes place, after which the new canonical representation is constructed.

However, this approach to defining symbolic relations presents two drawbacks con-
cerning this thesis. Firstly, the definitions involve a substantial amount of notation.
While this on its own is not a significant drawback, they also lack a novel concept. In
essence, the outcome aligns with the symbolic relations detailed in Sec. 3.2.2. Therefore,
we choose an alternative method for defining the symbolic relations instead of the one
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in [CDFH91a] and [GW21a]. We revert to the definitions of relations between (arbitrary
representatives) of symbolic decision sets from Def. 3.20. This ensures that we maintain
the focus on the core concept of this section, namely, the definition and construction of
canonical representations. Introducing new notation, without a corresponding increase
in clarity regarding the used concepts, is thus avoided.

Recall that in Def. 3.20, we defined the relations D[[t.αD(σ)⟩⟩D′ and D[[†⟩⟩D′ between
the (arbitrary) representatives D and D′ of symbolic decision sets [D] and [D′]. The defini-
tion resulted from the ordinary relations D[t.αD(σ)⟩D′ and D[†⟩D′ of transition firing and
†-resolution. The idea for relations between canonical representations R and R′ is to de-
fine a canonical representatives D(R). Then, the ordinary relations D(R)[t.αD(R)(σ)⟩D′

and D(R)[†⟩D′ of transition firing and †-resolution will imply the symbolic relations
R[[t.αD(R)(σ)⟩⟩R′ and R[[†⟩⟩R′, just as for symbolic decision sets.

Thus, before we define the symbolic relations, we have to define for a canonical
representation R = (P,D) of a symbolic decision set D, the canonical representative
D(R) ∈ D. The decision set D(R) is obtained by defining a canonical valid assignment ηR

which defines D(R) = η−1
R (D). This assignment in turn is obtained by traversing, for a

fixed order of the colors, both the set of colors and dynamic subclasses simultaneously.
Before we formally define this procedure, we demonstrate it on our running example
Signal Sending Satellites.

Example 3.71 (Canonical Representative). We consider again the example from
Fig. 3.18, with the symbolic decision set D containing the three elements D′,D′′,D′′′, and
its representation R. They are depicted again in Fig. 3.21.

(Tr.1, {end.1})
(Fwd.1, {end.1})
(Rec.(2,1), {end.1})
(Rec.(3,1), {end.1})

(Tr.2, {end.2})
(Rec.(1,2), {end.2})
(Fwd.2, {end.2})
(Rec.(3,2), {end.2})

(Tr.3, {end.3})
(Rec.(1,3), {end.3})
(Rec.(2,3), {end.3})
(Fwd.3, {end.3})

D′ = η−1
R (D) = D(R) D′′ D′′′

(Tr.Z1
2 , {end.Z1

2})
(Fwd.Z1

2 , {end.Z1
2})

(Rec.(Z2
2 ,Z1

2 ), {end.Z1
2})

η−1
R

ηR

1 7→ Z1
2 ,

2 7→ Z2
2 ,

3 7→ Z2
2

D

m(2) = 2,
card(Z1

2 ) = 1, card(Z2
2 ) = 2

D

R

Figure 3.21: The canonical valid assignment and the canonical representative of a canon-
ical representation.

Recall that the partition describes two dynamic subclasses Z1
2 and Z2

2 , respectively
representing card(Z1

2 ) = 1 and card(Z2
2 ) = 2 colors from C2 = {1,2,3}, such that

Z2 = {Z1
2 ,Z2

2}. Since C1 = {0} contains only one color, we trivially have Z1 = {Z1
1}

with card(Z1
1 ) in every representation.
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We now construct the canonical valid assignment ηR = (η1, η2), where ηi : Ci → Zi.
The idea of the canonical valid assignment is to define, for the symmetric Petri game
in question, a fixed order on the colors of each basic color class. We then iterate, for
every i, over Ci and Zi in parallel, mapping the first card(Z1

i ) colors in Ci to Z1
i , the

next card(Z2
i ) colors in Ci to Z2

i , and so on.
We trivially have η1 = [0 7→ Z1

1 ], so we demonstrate this procedure on η2. We have
an obvious order on C2, namely 1,2,3. Iterating over this list, η2 now maps the first
card(Z1

2 ) = 1 colors (i.e., 1) to Z1
2 , and the next card(Z2

2 ) = 2 colors (i.e., 2 and 3) to
Z2
2 . We therefore have η2 = [1 7→ Z1

2 ,2 7→ Z2
2 ,3 7→ Z2

2 ]. With ηR = (η1, η2) we finally
get D(R) = η−1

R (D) = D′, as indicated in the figure. �
In our running example, we have a relatively simple scenario with two basic color

classes that are neither ordered nor partitioned into static subclasses. The formal def-
inition of a canonical valid assignment and canonical representative of course has to
consider these possibilities for a basic color class Ci. Formalizing the intuitive idea of
fixing an order of the basic colors and iteratively assigning them to dynamic subclasses
with increasing superscript, thus involves some more notation:

Definition 3.72 (Canonical valid assignment). We define, for a given symmetric
Petri game G with basic color classes C1, . . . ,Cn, and a canonical representation R =
(P,D) of a symbolic decision set in G, with P describing the symbolic color classes
Zi = {Zj

i | 1 ≤ j ≤ m(i)}, for every i the assignment ηi : Ci → Zi from ηR := (ηi)
n
i=1.

We distinguish between three cases of the structure of Ci. In each case, we fix a renaming
of the colors in Ci for the game, independently of the representation.

• If Ci is unordered (i.e., i ≤ u), and possibly partitioned into static subclasses (i.e.,
Ci =

⊔ni
q=1 Ci,q) then we rename the colors such that for all q we have Ci,q = {cji,q |

1 ≤ j ≤ |Ci,q|}. For each Zi,q, we now denote its elements Zi,q = {Zj
i,q | 1 ≤ j ≤

|Zi,q|}, where j increases with the superscripts of their original names above. ηi is
then defined to map the first card(Z1

i,q) colors in Ci,q to Z1
i,q, the next card(Z2

i,q)

colors in Ci,q to Z2
i,q, and so on.

• If Ci is ordered (i.e., i > u), and not partitioned into static subclasses (i.e., Ci =
Ci,1) then we rename the colors such that we have Ci = {cji | 1 ≤ j ≤ |Ci|}, where
we assure that suc(cji ) = c

suc(j)
i , where suc(j) = (j mod |Ci|)+1 ηi is then defined

to map the first card(Z1
i ) colors in Ci to Z1

i , the next card(Z2
i ) colors in Ci to Z2

i ,
and so on.

• If Ci is ordered (i.e., i > u), and partitioned into static subclasses (i.e., Ci =⊔ni
q=1 Ci,q) then we rename the colors as in the second case. Since a valid assignment

must be “compatible” with suc (cp. Def. 3.44) there are only |Ci| possibilities for a
corresponding mapping ηi : Ci → Zi. All these are instances of η̃i ◦ sk, with η̃i the
mapping from the second case, s = {cji 7→ c

suc(j)
i | 1 ≤ j ≤ |Ci|}, and 0 ≤ k ≤ |Ci|.

We define ηi to be the instance with the minimal k such that for all 1 ≤ j ≤ |Ci|
we have cji ∈ Ci,q with q = stat(ηi(c

j
i )). �
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With this formal definition following a simple idea for a canonical valid assignment ηR ,
we can now easily define the canonical representative D(R) of a representation R:

Definition 3.73 (Canonical representative). Let R = (P,D) be a canonical rep-
resentation of a symbolic decision set D. Then D(R) = η−1

R (D) ∈ D is the canonical
representative of R. �

We have already discussed an example for this in Example 3.71 above. We can
now define the symbolic relations R[[t.αD(R)(σ)⟩⟩R′ and R[[†⟩⟩R′ based on the relations
D(R)[t.αD(R)(σ)⟩D′ and D(R)[†⟩D′ just as in Def. 3.20.

Recall from Sec. 3.2.2 that the so-called isotropy group SD = {s ∈ S | s(D) = D} of a
decision set D is the group of all admissible symmetries that preserve D. For a transition
t ∈ T , we denoted by Σ(t)D = Σ(t)/SD the set containing the equivalence classes of all
modes of t, with respect to the isotropy group SD. For each class in Σ(t)D we arbitrarily
chose a representative mode σ, and defined αD as the function mapping each σ ∈ Σ(t)
to its representative αD(σ).

Definition 3.74 (Symbolic relations between canonical representations). We
say a transition t can fire symbolically from a canonical representation R in mode
αD(R)(σ) representing σ in Σ(t)D(R), denoted by R[[t.αD(R)(σ)⟩⟩, iff D(R)[t.αD(R)(σ)⟩.
The canonical representation R′ obtained after the symbolic firing is determined as fol-
lows:

R[[t.αD(R)(σ)⟩⟩R′ ⇔ ∃D′ ∈ [D(R′)] : D(R)[t.αD(R)(σ)⟩D′.

We say a † can be symbolically resolved in a canonical representation R, denoted by
R[[†⟩⟩, iff D(R)[†⟩. The canonical representations R′ sets obtained after the symbolic
†-resolution are canonical representations of the decision sets D′ satisfying D(R)[†⟩D′:

R[[†⟩⟩R′ ⇔ ∃D′′ ∈ [D(R′)] : D(R)[†⟩D′′. �

Before we demonstrate the symbolic relations on an example, we illustrate them in
Fig. 3.22. In the top left, we see a canonical representation R with dynamic partition P

Dynamic Partition
P

Basic Color Classes
C1, . . . ,Cn

Dynamic Decision Set
D

Canonical Representative
D(R)

Canonical Representation R = (P,D)

Canonical
Valid Assignment

ηR

η−1
R

Decision set
D′

Firing t.αD(R)(σ),

or †-resolution · · ·
Symbolic Decision Set [D′]

Canonical Representation

R′ = (P ′,D ′)

co
n
st
ru
ct

Symbolic Relation

Figure 3.22: Illustration of symbolic relations between canonical representations.
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and dynamic decision set D . From the dynamic partition we get the canonical valid
assignment ηR mapping colors in the basic color classes to dynamic subclasses, as de-
scribed in Def. 3.72. This leads to the canonical representative D(R) of R, defined by
D(R) = η−1

R (D) (cp. Def. 3.73). From there, we fire a transition instance t.αD(R)(σ) or
resolve a †, arriving at a decision set D′. We then construct the canonical representa-
tion R′ of the corresponding symbolic decision set [D′], as described in Sec. 3.3.2. This
yields a symbolic relation between the canonical representations R and R′.

We now consider again the running example Signal Sending Satellites and demon-
strate the symbolic relations.

(Tr.Z1
2 , {end.Z1

2})
(Fwd.Z1

2 , {end.Z1
2})

(Rec.(Z2
2 ,Z1

2 ), {end.Z1
2})

(Tr.1, {end.1})
(Fwd.1, {end.1})
(Rec.(2,1), {end.1})
(Rec.(3,1), {end.1})

D(R)

η−1
R

ηR

1 7→ Z1
2 ,

2 7→ Z2
2 ,

3 7→ Z2
2

D

m(2) = 2,
card(Z1

2 ) = 1, card(Z2
2 ) = 2

R

(Env.0, {sel.1, sel.2, sel.3})
(Init.1, †)
(Init.2, †)
(Init.3, †)

D′

end.1

(Env.Z1
1 , {sel.Z1

2})
(Init.Z1

2 , †)
D ′

m(2) = 1,
card(Z1

2 ) = 3

R ′ constru
ct

end.1

(Env.0, {sel.1, sel.2, sel.3})
(Init.1, †)
(Init.2, †)
(Init.3, †)

D(R′)

η−1
R′

ηR

1 7→ Z1
2 ,

2 7→ Z1
2 ,

3 7→ Z1
2

(Env.0, {sel.1, sel.2, sel.3})
(Init.1, {tr.1})
(Init.2, {tr.2})
(Init.3, {tr.3})

D′′

†

(Env.Z1
1 , {sel.Z1

2 , sel.Z2
2 , sel.Z3

2})
(Init.Z1

2 , {tr.Z1
2})

(Init.Z2
2 , {tr.Z2

2})
(Init.Z3

2 , {tr.Z3
2})

D ′′
m(2) = 3,
∀i : card(Zi

2) = 1

R ′′

cons
truc

t

†

Figure 3.23: The symbolic relations from Fig. 3.10 between the corresponding canonical
representations.

Example 3.75. Consider once more the canonical representation R = (P,D) from
Fig. 3.21. This representation is illustrated in the top left of Fig. 3.23. We have demon-
strated the construction of the canonical valid assignment ηR and the canonical repre-
sentation D(R) = η−1

R (D) in Example 3.71. From this decision set, only the transition
end .1 can fire. Doing so leads to the decision set D′ depicted below D(R). Left of this
decision set is the canonical representation R′ of the corresponding symbolic decision
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set [D′]. This can be built as described in Sec. 3.3.2. This implies, according to Def. 3.74,
that there exists a symbolic relation R[[end .1⟩⟩R′, represented as the blue edge from R
to R′ in Fig. 3.23.

As the symbolic decision set represented by R′ only contains one element, namely D′,
in this special case we trivially have D(R′) = D′. From D′, we can resolve a †, arriving at
D′′. The canonical representation of the symbolic decision set [D′′] is R′′. This leads, once
again by Def. 3.74 and analogously to the above, to a relation R′[[†⟩⟩R′′, also depicted as
a blue edge in Fig. 3.23. �

We just formulated symbolic relations for canonical representations, aligning closely
with those defined for symbolic decision sets (cp. Def. 3.20). Consequently, the follow-
ing lemma, relating the two concepts to each other, arises as a natural consequence.
It states that for every symbolic relation between canonical representations there is a
corresponding symbolic relation between symbolic decision sets, and vice versa.

Lemma 3.76. Let D and D′ be the arbitrary representatives and R and R′ be the canon-
ical representations of the two symbolic decision sets [D] and [D′], respectively. Then the
symbolic relations correspond to each other as follows:

1. D[[t.αD(σ)⟩⟩D′ ⇒ ∃s ∈ SG : R[[t.αD(R)(s(σ))⟩⟩R′ and D[[†⟩⟩D′ ⇒ R[[†⟩⟩R′.

2. R[[t.αD(R)(σ)⟩⟩R′ ⇒ ∃s ∈ SG : D[[t.αD(s(σ))⟩⟩D′ and R[[†⟩⟩R′ ⇒ D[[†⟩⟩D′.

Proof. 1. Let D[[t.αD(σ)⟩⟩D′. Then, by Def. 3.20, ∃D′′ ∈ [D′] : D[t.αD(σ)⟩D′′. By
Prop. 3.18, there is a sD ∈ SD such that sD(σ) = αD(σ). Additionally, since
D(R) ∈ [D], there is a sD(R) ∈ SG such that sD(R)(D) = D(R). Applying sD(R)

to the ordinary firing relation above yields by Lemma 3.14 that ∃sD(R)(D
′′) ∈

[D′] : D(R)[t.sD(R)(sD(σ))⟩sD(R)(D
′′). Finally, again by Prop. 3.18, there is a

s′D(R) ∈ SD(R) such that s′D(R)(sD(R)(sD(σ))) = αD(R)(sD(R)(sD(σ))). Let now
D′′′ = s′D(R)(sD(R)(D

′′)) and s = sD(R) ◦ sD. Then we have D′′′ ∈ [D(R′)] since
D′′′ ∈ [D′′] = [D′] = [D(R′)], and therewith

∃D′′′ ∈ [D(R′)] : D(R)[t.αD(R)(s(σ))⟩D′′′.

This, by Def. 3.74, implies R[[t.αD(R)(s(σ))⟩⟩R′.

The case of †-resolution works analogously, albeit easier since there are no transition
modes involved.

2. Works analogously to 1.

With this we close the subsection on symbolic relations between canonical represen-
tations. In the following subsection, we will use these relations to define the symbolic
two-player game with canonical representations as vertices.
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3.3.4 The Canonical Two-Player Game

The goal is to use canonical representations instead of individual decision sets or (arbi-
trary representatives of) symbolic decision sets as vertices in a two-player game. The
edges (R,R′) in this game are built from relations R[[t.αD(R)(σ)⟩⟩R′ and R[[†⟩⟩R′, de-
pending on the properties of R. For example, if R describes nondeterministic situations
in the Petri game, then the edges from R are built in such a way that Player 0 (repre-
senting the system) cannot win the game from there. This means before we get to the
definition of the canonical two-player game, we must define the relevant properties of
canonical representations.

Recall that the important properties (cp. p. 51) a decision set can have are:

• being environment-dependent,

• containing a bad place resp. target place,

• being a deadlock,

• being terminating,

• being nondeterministic.

In Lemma 3.16 and Cor. 3.17 we showed that all decision sets in one equivalence class
share the same properties. Thus, we defined a symbolic decision set to have one of the
above properties iff its individual members (and in particular its arbitrary representative)
have the respective property. We now analogously define these properties for canonical
representations based on the properties of its canonical representative.

Definition 3.77 (Properties of canonical representation). Let R be a canonical
representation of a symbolic decision set. We then say R is environment-dependent,
containing a bad place resp. target place, a deadlock, terminating, or nondeterministic if
and only if D(R) has the respective property. �

From this definition and the preceding recap of properties of symbolic decision sets
we immediately get the following corollary.

Corollary 3.78. Every symbolic decision set shares its properties with its canonical
representation.

In this Section 3.3, we accomplished the following so far:

1. We established definitions for canonical representations of symbolic decision sets.

2. We proceeded to formulate symbolic relations between these representations.

3. We have just defined the properties that a representation can possess.

With these components in place, we are now equipped to define the canonical two-
player game for a given proper symmetric Petri game.

The rationale behind introducing canonical representations is to serve as the vertices
within this canonical two-player game. Similar to the symbolic two-player game defined
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in Section 3.2.3, the edges in the canonical two-player game are constructed based on
the relations between the canonical representations, contingent on the properties of the
source representation.

Now that we have established these concepts, we can proceed to define, for a given
proper symmetric Petri game G, the canonical two-player game Ĝ(G). Let a proper
symmetric Petri game G = (C , PS, PE, T, J, F, g,M0,Obj, P⊛) with expansion Exp(G) =
(PS,PE,T,F,M0,Cond,P⊛) be given. The definition of Ĝ(G) is a direct adaptation of
Definition 3.26 (for G(G)) to the framework of canonical representations:

Definition 3.79 (Canonical two-player game). The canonical two-player game over
a finite graph Ĝ(G) = (V̂0, V̂1, v̂0, Ê, Ŵin) is has the following components:

• The 0-vertices V̂0 are all canonical representations of symbolic decision sets in G
that are not environment-dependent.

• The 1-vertices V̂1 are all canonical representations of symbolic decision sets in G
that are environment-dependent.

• The initial vertex is canonical representation R0, such that

D(R0) := D0 = {(p.c, †) | p.c ∈ M0 ∩ PS} ∪ {(e.d, post (e.d)) | e.d ∈ M0 ∩ PE}.

• the labeled edge relation Ê ⊆ V̂× (T∪ {†})× V̂ is defined as follows: If R contains
a bad place, is a deadlock, is terminating, or is nondeterministic, there is only a
†-labeled self-loop originating from R. Otherwise, consider three disjunct cases for
edges originating in R:

Case R ∈ V̂1; i.e., all players have decided for a commitment set, but can-
not proceed without the environment. Then for all t ∈ T and σ ∈ Σ(t)D(R),
(R, t.σ,R′) ∈ Ê iff R[[t.σ⟩⟩R′.

Case R ∈ V̂0 and R[[†⟩⟩; i.e., at least one system player has yet to decide for a
commitment set. Then (R, †,R′) ∈ Ê iff R[[†⟩⟩R′.

Case R ∈ V̂0 and ¬D[[†⟩⟩; i.e., all system players made their decisions and can
proceed without the environment. Then for all t ∈ T and σ ∈ Σ(t)D(R) with
pre (t.σ) ∩ PE = ∅, (R, t.σ,R′) ∈ Ê iff R[[t.σ⟩⟩R′.

• Ŵin depending on Obj and P⊛ as follows:

– if Obj = Safety then Ŵin := Safety(F̂), where F̂ contains all canonical repre-
sentations that are a deadlock, nondeterministic, or contain a bad place,

– if Obj = Reach then Ŵin := Reach(F̂), where F̂ contains all canonical repre-
sentations that contain a target place. �

The following lemma formalizes that G(G) and Ĝ(G) are indeed “the same” by stating
that they are isomorphic. We say two two-player games are isomorphic iff there is a
bijective bisimulation between them.
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Lemma 3.80. Let G be a proper high-level Petri game with an underlying symmetric
net. Then G(G) and Ĝ(G) are isomorphic.

Proof. We prove that the relation R = {([D(R)],R) | R ∈ V̂} is a bijective bisimulation
between G(G) and Ĝ(G). Since all symbolic decision sets have exactly one canonical
representation (Thm. 3.68), and all canonical representations by definition represent
exactly one symbolic decision set, this relation is a bijection. We have by definition
(v0, v̂0) ∈ R. From the definition of the symbolic and the canonical two-player game we
get that they have the same objective Obj, and Cor. 3.78 implies that [D(R)] ∈ V1 ⇔
R ∈ V̂1 and [D(R)] ∈ F⇔ R ∈ F̂. Finally, Cor. 3.78 together with Lemma 3.76 implies
that ([D(R)],R) ∈ R ∧ ([D(R)], [D′]) ∈ E ⇒ ∃R′ : (R,R′) ∈ Ê ∧ ([D′],R′) ∈ R and
([D(R)],R) ∈ R ∧ (R,R′) ∈ Ê ⇒ ([D(R)], [D(R′)]) ∈ E ∧ (D′(R′),R′) ∈ R, yielding
that R is a bisimulation, which complets the proof.

From this lemma, together with Lemma 3.29 and Theorem 3.34 we finally get the
soundness of the canonical two-player game.

Theorem 3.81. Given a proper high-level Petri game G with an underlying symmetric
net, there is a winning strategy for the system players in the P/T Petri game Exp(G) if
and only if there is a winning strategy for Player 0 in Ĝ(G).

We compare the two two-player game G(G) and Ĝ(G). The size of Ĝ(G) is the same
as of G(G) (exponential in the size of G). This means, using Ĝ(G), the question whether
a winning strategy in G = Exp(G) exists can still be answered in single exponential
time [FO17].

We now compare the construction of G(G) and Ĝ(G). In G(G) we must, for a newly
reached vertex D′, test if it is equivalent to another, already existing, representative
(solving the orbit problem). This means we check for all symmetries s ∈ S whether s(D′)
is already a vertex in the game. In the best case, if we directly find the vertex, this is
1 comparison. In the worst case, at step i with currently |Vi| vertices, we must make
O(|SG| · |Vi|) comparisons (when no symmetric vertex is in the game so far).

In the approach using canonical representations in Ĝ(G), to solve the constructive
orbit problem, we must calculate the canonical representation of the reached symbolic de-
cision set after each step. In Cor. 3.70 we stated that this can be accomplished in O(|SG|)
time, with maximally |SG| comparisons. We must then check whether the canonical rep-
resentation is already a vertex in the game. This is at least 1 comparison in the best
case vs. |Vi| in the i-th step in the worst case.

Using |SG| to denote the number of comparisons required to construct the canonical
representation of a reached symbolic decision set, we can establish the following rela-
tions between best and worst-case scenarios for arbitrary representative versus canonical
representations in the i-th step:

Best Case
Arbitrary Representations

1

Best Case
Canonical Representations

|SG|+ 1

Worst Case
Canonical Representations

|SG|+ |Vi|

Worst Case
Arbitrary Representations

|SG| · |Vi|
< < <
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Nevertheless, it is important to note that the number of comparisons, |SG|, serves as an
upper bound in the cases of canonical representations. In practical terms, once a mini-
mal representation R = (P,D) of a reached symbolic decision set has been constructed
in O(1) time, the actual number of comparisons needed to obtain a canonical represen-
tation is |SP |. It always holds that |SP | ≤ |SG|. The case |SP | = |SG|, only occurs
when the partition P is trivial. However, this circumstance is highly contingent on the
specific characteristics of both the underlying symmetric net and the symbolic decision
set currently under consideration.

3.3.5 Experimental Results

In this section we briefly investigate the impact of using canonical representations for
solving the realizability problem of distributed systems modeled with proper high-level
Petri games G. The primary work on the implementation and experiments was conducted
by Manuel Gieseking in the context of [GW21a].

The prototype discussed in Sec. 3.2.6 was extended and the algorithms presented
above were implemented to obtain the same state space reduction by using canonical
representations in Ĝ(G). Furthermore, a solving algorithm to exploit the reduced state
space for the realizability problem (i.e., the question whether a winning strategy for
the system players exists) of high-level Petri games was implemented. As a reference, an
explicit approach which does not exploit any symmetries of the system was implemented.
The algorithms are applied to the benchmark families presented in Sec. 3.2.6 and a new
benchmark family Client/Server introduced in [GW21a]. The Client/Server benchmark
family is similar to the Signal Sending Satellites example, as there are n computers that
all must connect to the same computer chosen by the environment.

The complete results are contained in the corresponding artifact [GW21c]. An extract
of the results for three of these benchmark families (CS being Client/Server, and DW,
CM as in Sec. 3.2.6) are given in Table 3.2. We compare of the run times of the two
approach using either canonical representations (Ĝ(G)) or checking equivalence (G(G))
solving the realizability problem (✓/✗) for the 3 benchmark families. We additionally
list the number of states |V| = |V̂| and number of symmetries |SG|. A gray number of
states |V| for the explicit reference approach indicates a timeout. Results are obtained
on an AMD Ryzen™ 7 3700X CPU, 4.4 GHz, 64 GB RAM and a timeout (TO) of 30
minutes. The run times are in seconds.

We can see that for those benchmark families the extra effort of computing the canon-
ical representations is worthwhile for most instances compared to the cost of checking
the membership of a decision set in an equivalence class. This is not the case for all
benchmark families.

In Fig. 3.24 instances of all benchmark families according to their number of sym-
metries and states are plotted. The comparison of the performance improvement of the
canonical and the membership approach is conducted with respect to the number of states
and symmetries of the input problem for the benchmark families Package Delivery (PD),
Alarm System (AS), CM, DW, DWs, CS. Labels are the parameters of the benchmark.
A blue (solid) marker indicates a performance increase when using canonical representa-
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Table 3.2: Comparison of the run times of the two approaches using canonical represen-
tations or checking equivalence.

CS |V| |= |V| = |V̂| |SG| G(G) Ĝ(G)

1 21 ✓ 21 1 .38 .36
2 639 ✓ 326 2 .63 .64
3 45042 ✓ 7738 6 5.20 6.05
4 7.225e6 ✓ 3.100e5 24 151.62 148.08
5 3.154e9 - - 120 TO TO

DW |V| |= |V| = |V̂| |SG| G(G) Ĝ(G)

1 57 ✓ 57 1 .40 .39
2 457 ✓ 241 2 .67 .62

· · · · · · · · · · · ·
7 4.055e6 ✓ 5.793e5 7 100.67 75.24
8 2.097e7 ✓ 2.621e6 8 986.77 671.04
9 1.053e8 - - 9 TO TO

CM |V| |= |V| = |V̂| |SG| G(G) Ĝ(G)

2/1 155 ✓ 79 2 .49 .52
2/2 2883 ✗ 760 4 1.07 1.08
2/3 58501 ✗ 5548 12 4.38 5.94
2/4 1.437e6 ✗ 33250 48 15.12 14.40
2/5 3.419e7 ✗ 1.701e5 240 296.05 185.81
2/6 8.376e8 - - 1440 TO TO
3/1 702 ✓ 147 6 .71 .58
3/2 45071 ✓ 4048 12 4.46 4.99
3/3 3.431e6 ✗ 91817 36 89.35 49.90
3/4 2.622e8 - - 144 TO TO
4/1 2917 ✓ 239 24 1.24 1.42
4/2 6.587e5 ✓ 16012 48 25.42 14.09
4/3 1.546e8 - - 144 TO TO

tions, while a striped marker indicates a performance decrease. The color of the marker
shows the percentaged in- or decrease in performance when using canonical represen-
tations while solving high-level Petri games. Blue (solid) indicates a performance gain
when using the canonical approach. This shows that the benchmarks in general benefit
from the canonical approach for an increasing number of states (the right blue (solid)
area). However, the DWs benchmark (a simplified version of DW ) exhibits the opposite
behavior. This is most likely explained by the very simple structure, which favors a quick
member check.

Additionally, I must note here that it is highly probable that the full advantage of
the canonical representations approach may not be apparent, as in the implementation
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Figure 3.24: Comparing the percentage performance gain of the canonical and the equiv-
alence check approach.

“ordered representatives” we generated. This corresponds to the procedure of considering
only trivial representations and ordering them according to the order <R defined in
Sec. 3.3.2. This means, in particular, that the discussion at the end of Sec. 3.3.4 is not
applicable, as we are always considering the entire set of symmetries. Therefore, these
results merely provide an indication of the potential benefits of canonical representations.
This needs to be further investigated in subsequent experiments.

The algorithms are integrated in AdamSYNT [FGO15; FGHO17; Gie20], open
source, and available online5. Additionally, an artifact with the current version running
in a virtual machine for reproducing and checking all experimental data with provided
scripts [GW21c] was created.

3.4 Related Work

An active research area is Petri net synthesis [BBD15; BD15; DT22]. Two-player games
are studied under the name Petri net supervisory control [BBD15; ABP23], inspired by
the work of Ramadge and Wonham on discrete event systems [RW87]. A significant body
of work on synthesis and control based on Petri nets is in this area (cf. [Giu92; ZWD95;
RSB03; BDLV05]), also for structured Petri nets like modules of signal nets [DHJ+04].

5https://github.com/adamtool/highlevel, Accessed: 28 November 2023
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However, these approaches solve the single-process synthesis problem, as opposed to the
multi-process synthesis problem for concurrent systems considered in this paper.

The most prominent model for distributed synthesis is that of Pnueli and Ros-
ner [PR90]. In their setting, the restricted access to the full system is modeled with pro-
cesses communicating via single-writer single-reader shared variables with synchronous
concurrency. Thus, each process is only partially informed of the system’s state, since
the received information is limited by the input variables of the process. After a series of
isolated decidability results, notably for pipelines [PR90] and rings [KV01], information
forks [FS05] were indentified as the necessary and sufficient criterion for undecidability.
For architectures without information forks, the synthesis problem can be solved by an
automata-theoretic construction that iteratively eliminates processes from the architec-
ture (in the order of growing informedness). The complexity, however, is nonelementary
in the number of processes.

Zielonka’s asynchronous automata [Zie87; Zie95] have been proposed as an alternative
setting for distributed synthesis [GLZ04; GGMW13; MTY05; MW14]. In [Gim22], un-
decidability of the synthesis problem for six or more processes is shown. There are
various decidability results for restricted cases, e.g., concerning the dependencies of
actions [GLZ04] or the synchronization behavior [MTY05]. Decidability, albeit again
with nonelementary complexity, has also been obtained for acyclic communication struc-
tures [GGMW13; MW14].

Petri games based on P/T Petri nets were introduced in [FO14; FO17]. They exploit
concurrency and causality in defining a notion of informedness for the players. In [FO17]
it is shown that the problem whether the system players have a winning strategy for a
safety objective, is undecidable for unbounded Petri games. However, for Petri games
with one environment player and a bounded number of system players the problem is
exptime-complete. The winning strategy can be obtained in single-exponential time by
a reduction to a two-player graph game. In [Gie22] this result is generalized to different
local winning conditions for the system players, such as reachability and Büchi condi-
tions. In [Hec21; FGHO22], decidability of Petri games with global winning conditions
is shown. In [FG17] it was shown that also for one system player and a bounded number
of environment players the synthesis problem is also exptime-complete.

A formal connection between games on asynchronous automata and Petri games is
established in [BFH19]. In [Han23], the undecidability result for asynchronous automata
from [Gim22] is translated to Petri games with six players, and decidability for Petri
games with a global safety condition and up to four players is shown. In [HO22], a decid-
ability result for Petri games with a synchronization condition is presented. In [Fin15] a
bounded synthesis approach was introduced. It sets a bound for the size of the strategy
and constitutes a semi-decision procedure, optimized in finding small implementations.
Parameterized high-level Petri games have been introduced in [GO21] with the aim of
defining benchmark families of P/T Petri games.

For practical applications, high-level Petri nets in the form of Coloured Petri Nets
(CPN) have been introduced [GL81; Jen96; Rei13]. In CPNs, individual data values
are represented by coloured tokens to describe concurrent systems succinctly. Boolean
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conditions on these tokens appear as guards of transitions, and expressions define which
of these tokens are moved when a transition fires. In general, multisets of coloured tokens
may appear as markings. In [Jen96], a translation from CPNs back into normal P/T Petri
nets, here called expansion, is defined.

There is a significant body of work regarding symmetries. For high-level Petri nets
the notion of equivalent markings and the idea of exploiting symmetries was originally in-
troduced in [HJJJ84; HJJJ86]. The symbolic two-player game is inspired by the symbolic
reachability graph for high-level nets from [CDFH97], and the calculation of canonical
representatives [CDFH91a] from [CDFH93]. For obtaining the symmetries of the system
efficiently, several approaches on different subclasses of high-level Petri nets had been
introduced, e.g., in [DH89; CDFH91a; CDFH93; Lin91; Sch95]. There are also several
for efficiency improvements for systems with different degrees of symmetrical behavior
[HITZ95; BHI04; BC04]. In [CDFH97] the idea of using equivalent transitions in addition
to the equivalent marking for the creation of the symbolic reachability graph is lifted to
CPNs. For low-level Petri nets the reduction ideas are introduced in [Sta91]. From then
on lots of work has been done following that direction, e.g., [Sch00a; Sch00b; Wol15]. Us-
ing symmetries for the alleviation of state-explosion problems are also common in model
checking [CEJS98; CJEF96; CFJ93]. The complications that arise when using BDDs for
the symmetric state space evaluation in this context is elaborated in [CJEF96].

3.A Appendix: Correctness of the Low-Level Reduction

We prove Theorem 3.12. The structure of this proof is taken directly from [Gie22], but
adapted to proper P/T Petri games. Restricting ourselves to this subclass of Petri games
allowed us to significantly simplify the definition of the corresponding two-player game,
which also facilitates proving correctness of this reduction.

Before we start with the proof, we briefly introduce the notion of strategy trees for
two-player games. Given a strategy f : V∗V0 → V for Player 0 in a two-player game
G = (V0,V1,E, v0,Win), we can inductively build the (infinite) corresponding strategy
tree Tf = (T,ET, l, r), as a special case of directed, acyclic graphs: T is the set of vertices,
ET ⊆ T × T is the set of directed edges, l : T → V is the labeling function, and r is the
root of Tf . We start with l(r) = v0.

Then, in breadth-first order, we go through and and extend the tree. Let vT be the
currently considered vertex. If l(vT) ∈ V1, then we add, for every v′ with (l(vT), v

′) ∈ E,
a corresponding vertex v′T with l(v′T) = v to T, and extend ET by (vT, v

′
T). If l(vT) ∈ V0,

then let rv1T · · · vnTvT be the unique path from r to vT in Tf . We add a single vertex v′T
with l(v′T) = f(l(r)l(v1T) · · · l(vnT)l(vT)) to T, and extend ET by (vT, v

′
T).

Construction 3.82 (From two-player game strategy to Petri game strategy).
Let f be a winning strategy for Player 0 in the two-player game G(G) corresponding to a
proper Petri game G ∈ Exp(G). Let Tf = (T,ET, l, r) be the strategy tree corresponding
to f .

By traversing Tf in breadth-first order, we step-wise create an occurrence net Oξ =

(Bξ,Eξ,Hξ,Kξ
0), an initial homomorphism πξ from Oξ to N(G), and a function k : T →
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R(Oξ) associating tree vertices to cuts. This will yield a winning strategy ξ = (Oξ, πξ)
for the system players in G.

(IA) For the root r ∈ T we create a new condition b ∈ Bξ in Oξ for each p ∈ M(l(r)) ⊆ P.
Every condition is mapped by πξ to the respective place. The thereby created cut
is Kξ

0 and we set k(r) = Kξ
0.

(IS) Consider an edge (vT, τ, v
′
T) ∈ ET with l(vT) = D and l(v′T) = D′ for which we

already considered the vertex vT.

If Obj = Safety and M(l(vT)) contains a target place, then we do not add anything
to the strategy, and stop considering the future of the vertex vT ∈ Tf . Else, we
proceed as follows:

Case τ = †. Nothing is added to Oξ and the cut is copied, i.e., k(vT) = k(v′T).

Case τ ∈ T . We add to Oξ a fresh event e with πξ(e) = τ . The preset of e then is
in the cut associated to vT, i.e., pre (e) = k(vT)∩ {b ∈ Bξ | πξ ∈ pre (τ)}. For each
place p ∈ post (τ), we add a corresponding condition b with πξ(b) = p to Oξ. The
set of these conditions constitute the postset of e. By this construction we directly
get πξ(pre (e)) = pre (πξ(e)) and πξ(post (e)) = post (πξ(e)). Finally, we associate
to v′T the cut k(v′T) = (k(v′T) \ pre (e)) ∪ post (e). �

Lemma 3.83 (Correctness of Construction 3.82). Let G ∈ Exp(G). For a given
winning strategy f for Player 0 in G(G), Construction 3.82 yields a winning strategy
ξ = (Oξ, πξ) for the system players in G.

Proof. Let the Petri game be given by G = (PS,PE,T,F,M0,Obj,P⊛), and G(G) =
(V0,V1,E, v0,Win) the corresponding two-player game. Let f : V∗V0 be a winning
strategy for Player 0 in G and Tf the corresponding strategy tree. We show that ξ =
(Oξ, πξ) resulting from Construction 3.82 is a winning strategy for the system players
in G.
Subprocess: Firstly, we demonstrate that ξ is a subprocess of an unfolding U = (O, π)
of N = N(G). The net Oξ is an occurrence net, which can be easily seen from the
construction.
π
ξ obviously only maps conditions into places and events into transitions, and by con-

struction πξ(Kξ
0) = {πξ(b) | b ∈ Kξ

0} = {πξ(b) | πξ(b) ∈ M(l(r))} = M(D0) = M0. Since,
as already noted in Construction 3.82, we have for all e ∈ Eξ that πξ(pre (e)) = pre (πξ(e))
and πξ(post (e)) = post (πξ(e)), all that is left to show that πξ is an initial homomorphism,
is that πξ is injective on events with the same preset. Aiming a contradiction, assume
there are e1, e2 ∈ Eξ with e1 ̸= e2 and πξ(e1) = πξ(e2) and pre (e1) = pre (e2). Then,
these events can only be generated by different branches of the strategy tree Tf because
whenever in a step (IS) a new event e is added to Oξ, the next vertex is associated to the
cut reached by firing e, with fresh conditions in e’s postset. Hence, pre (e1) = pre (e2) can
only be satisfied for events in different branches. But we cannot have two different events
mapping to the same transition (πξ(e1) = πξ(e2)) in different branches while preserving
the preset due to the scheduling of system transitions.
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This means that ξ is a branching process of N. Thus, the strategy is a subprocess of
an unfolding U = (O, π) (a maximal branching process of N)
Justified refusal: Let U = (O, π) = (B,E,H,K0, π

ξ) be the unfolding of N. To show
that the system players only refuse to play transitions of the unfolding which are not
violating the game play, i.e., they do not disallow pure environment transitions and do
not allow an instance of a transition for which they already refused another instance in
the same situation (condition), we have to show that

∀e ∈ E :(pre (e) ⊆ Bξ ∧ e /∈ Eξ)

⇒ (∃b ∈ pre (e) ∩ BS ∀e′ ∈ post (b) : π(e′) = π(e)⇒ e′ /∈ Eξ).

Let e ∈ E with pre (e) ⊆ Bξ and e /∈ Eξ. From e ∈ E follows that there is a sequence of
transitions with M0[t0, . . . , tn⟩M with M[π(e)⟩. Due to Construction 3.82 we know that
pre (e) ⊆ Bξ yields that all b ∈ pre (e) have been added via the construction. We consider
two cases: (i) there is no vertex vT ∈ T with pre (e) ⊆ k(vT), and (ii) there is such a
vertex.

(i) All conditions in pre (e) have been created. Since e ∈ E, all conditions must have been
created in a single branch in Tξ, since else they would be in conflict. However, since
there is no vertex still having all conditions in the associated cut, there must be an event
in the strategy that is generated in the same branch and which takes tokens of pre (e)
before all conditions b ∈ pre (e) are created in the construction. Let e⋆ ∈ Eξ be such an
event such that the edge (v⋆T, π(e), v

′
T) ∈ ET by which e⋆ is added to Oξ is minimal in Tf .

Let K⋆ = k(v⋆T) be the cut associated to v⋆T. We have pre (e)∩ pre (e⋆) ̸= ∅. We denote
the set of conditions in the preset of e created before firing e⋆ with Xpre = pre (e)∩K⋆

and the ones which are later created by Xpost = pre (e)\K⋆. We know Xpost ̸= ∅ because
otherwise pre (e) ⊆ k(v⋆T). All conditions in Xpre ∪ pre (e⋆) are pairwise concurrent due
to pre (e⋆) ⊆ K⋆. Also, all conditions in Xpost ∪pre (e⋆) are concurrent: otherwise, there
would be a condition in b ∈ Xpost that is either causally related to or in conflict with a
condition in b ∈ pre (e⋆). The case b < b⋆ contradicts that the edge generating e was
minimal. The case b⋆ < b means that e is causally depending on e, which together
with pre (e) ∩ pre (e⋆) ̸= ∅ contradicts e ∈ E. Finally, b⋆#b would imply that e⋆ is
generated from a different branch in Tf .

Targeting a contradiction, assume ∃bE ∈ pre (e⋆) ∩ BE. Then, all system tokens must
have been maximally progressed and are directly or indirectly depending on e⋆. Hence,
all conditions in Xpost are dependent on e⋆, but pre (e) ∩ pre (e⋆) ̸= ∅, thus e cannot
be fireable and e /∈ E. Contradiction. Therefore, pre (e⋆) ⊆ BS, and since we have a
proper Petri game and thereby no mixed communication, we have pre (e) ⊆ BS.

Targeting a contradiction, assume the negation of the conclusion in the Justified Re-
fusal property, i.e., assume ∀b ∈ pre (e) ∩ BS ∃e′ ∈ post (b) : π(e′) = π(e) ∧ e′ ∈ Eξ.
Since pre (e) ⊆ BS every condition in pre (e), and especially every condition in Xpost

has such an event e′ in its postset. Consider now such a condition b ∈ Xpost with an
event e ∈ post (b) satisfying the above conjunction.
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Assume now additionally e′ ̸= e. Due to the injectivity property of π, we know pre (e′) ̸=
pre (e). Since |pre (e′)| = |pre (e)| there must be a condition b′ ∈ pre (e) \ pre (e′). The
condition b′ cannot be in on Xpost because then b′ and b would be concurrent, and
b′ ∈ pre (e′). Thus, b′ ∈ Xpre an in particular b′ ∈ K⋆. The condition b′ can also not
be in X⋆ because then again b′ and b would be concurrent and therefore b′ ∈ pre (e′).
So we now have b′ ∈ (K⋆ ∩ pre (e)) \ pre (e⋆). This means b′ is already existing in the
cut K⋆ and not stolen by e⋆. So either it is still in the cut where the last condition of
Xpost is created and thus b and b′ are concurrent and b′ ∈ pre (e′). Otherwise, there
must be another (minimal w.r.t. generation by Tf ) event e⋆2 taking b′ before all tokens
of pre (e) are generated. This can only be done finitely often, due to the eventually
creation of pre (e). Contradiction.
Thus, e′ ̸= e yields the final contradiction, because e /∈ Eξ.

(ii) Let vT ∈ T such that pre (e) ⊆ k(vT). Let l(vT) = D and therefore pre (π(e)) ⊆ M(D).

Case pre (e) ⊆ Bξ
E. If D contains a target place (in the case Obj = Reach) then the

construction stops when considering vT. Thus, the possibly added conditions when
reaching vT have no events to their postset and can therefore not violate the Justified
Refusal property. Therefore, there must be another vertex before vT such that its
associated cut already contains the preset of e. Consider this vertex instead.
If D contains no target place (in the case Obj = Reach), but is either nondeterministic,
a deadlock, or contains a bad place (in the case Obj = Safety), then the strategy
f cannot be winning. Thus, there must be a successor reached from D by firing a
transition or resolving a †-symbol.
If D ∈ V1, then all successors of D must be in f . Since D[π(e)⟩D′, for some D′, we have
a corresponding edge in Tf , and e is eventually added to the strategy.
If D ∈ V0 then there exists exactly one edge from vT in Tf which corresponds to firing
a transitions with only system places in its preset, or resolving a †-symbol. Neither
of these relations moves tokens environment places. Since we consider proper Petri
games we have a recurrently interfering environment. Thus, we cannot fire infinitely
many transitions involving only system players, and will eventually arrive at a vertex
v′T with l(v′T) ∈ V1 and pre (e) ⊆ k(v′T).

Case ∃b ∈ pre (e) ∩ Bξ
S. Remember that we have e /∈ Eξ and pre (e) ⊆ Bξ. We now

have b ∈ pre (e), and consider an event e′ ∈ post (b) such that π(e′) = π(e). We show
that e′ /∈ Eξ. Construction 3.82 we see that e /∈ Eξ implies that for none of the vertices
v′T ∈ T with pre (e) ⊆ k(v′T) there is an outgoing edge (v′T, π(e), v

′′
T) ∈ ET. We consider

the two cases that (a) π(e) is not chosen in D and (b) π(e) is chosen in D.

(a) Since π(e) is not chosen in D, there exists one condition b′ ∈ pre (e) ∩ Bξ
S with

(π(b′), T ) ∈ D and π(e) /∈ T . As long as the token in b′ is not moved, no new
commitment set can be chosen. Therefore, π(b′) forbids all instances of π(e), and
thus, e′ /∈ Eξ.

(b) This means D[π(e)⟩ but the transition is never fired. Thus, either there is an
infinite path in ξ that starts in l(vT) and is not taking any tokens of the preset of

133



Chapter 3. Exploiting Symmetries in High-Level Petri Games

π(e), or there is an event e⋆ taking a token from pre (e). In the former case π(e) is
enabled in every state v′T ∈ T of the infinite path and pre (e) ⊆ k(v′T) because no
token of the preset is taken. Hence, e′ /∈ Eξ because b ∈ pre (e) ∩ pre (e′). In the
letter case e⋆ ̸= e′ because there cannot be two instances of the same transition
π(e) enabled in the same cut of an unfolding of a safe Petri net. If e⋆ takes the
token of b, we have e′ /∈ Eξ. Otherwise, e⋆ takes a token residing in another
condition b̃ ̸= b with b̃ ∈ pre (e). If b̃ ∈ Bξ

S then D is nondeterministic and f is
not winning. Contradiction If b̃ ∈ Bξ

E, then this tree vertex would correspond to
a 1-vertex in G(G), and all postset edges would be considered in f . With that,
we would have e ∈ Eξ. Contradiction.

Determinism: Targeting a contradiction, assume that the constructed strategy ξ is
nonderterminic, i.e., there exists a condition b ∈ Bξ

S a cut K ∈ R(Oξ) with b ∈ K such
that there are two events e1, e2 ∈ Eξ with e1 ̸= e2 and b ∈ pre (e1)∩pre (e2) such that K[e1⟩
and K[e2⟩. Due to Construction 3.82, this means there are two vertices vT1, vT2 ∈ T with
pre (e1) ⊆ k(vT1) and pre (e2) ⊆ k(vT2), and edges (vT1, π(e1), vT′1), (vT2, π(e2), vT′2) ∈ ET,
because e1 and e2 have been added to the strategy. Let l(vT1) = D1 and l(vT2) = D2.
We consider the two cases of one of the two edges lying before the other in Tf and the
two edges being in different branches of Tf .

Case W.l.o.g. (vT1, π(e1), vT′1) lies before (vT2, π(e2), vT
′
2) in Tf . Since e1 fired first and

b ∈ pre (e1), the token on b is removed and can never be put back because ξ is a branching
process. Thus, e2 cannot fire in any future of vT′1. Thus, e2 /∈ Eξ. Contradiction.
The case “(vT2, π(e2), vT′2) lies before (vT1, π(e1), vT

′
1) in Tf ” works analogously.

Case (vT1, π(e1), vT
′
1) and(vT2, π(e2), vT′2) are in different branches in Tf . Then it must

be vT1 ̸= vT2 since else we have D1 = D2 and therewith D1[π(D1)⟩ and D1[π(D2)⟩ which
would make D1 nondeterministic and f would not be winning. Notice that D1 would be
nondeterministic since π(D1) ̸= π(D2), because no two instances of the same transition
can ever be enabled at the same cut in the unfolding of a safe Petri net. Let vTE be the last
common predecessor of vT1 and vT2 with l(vTE) ∈ V1. Let e′1, e

′
2E

ξ be the environment
events that leave vTE and lead to vT1 and vT2, respectively. Both these events move an
environment token bE ∈ Bξ

E ∩ pre (e′1) ∩ pre (e′2). Due to the scheduling in G(G), e1 and
e2 causally depend on e′1 and e′2, respectively. Additionally, since vT1 ̸= vT2, we have
e′1 ̸= e1 and e′2 ̸= e2 and therefore e′1 < e1 and e′2 < e2. This in particular means that
e1#e2. But two events that are in conflict can never be enabled in the same cut unless
they are the source of the conflict. Since e1 and e2 are not the source of the conflict
(e′1 < e1 and e′2 < e2 and e′1#e′2) this leads to a contradiction.

Winning: We show that the constructed strategy ξ is winning. This depends on the
objective for the system players in G.

Case Obj = Safety. The system players in G have a safety objective with bad places
P♠ ⊆ PS. We call ξ if it is deadlock-avoiding, and no run in ξ ever reaches a bad condition
b ∈ Bξ

♠. A bad condition is only added to ξ when in Tf a vertex vT with M(l(vT))∩P♠ ̸= ∅
is reached. However, this means l(vT) contains a bad place and therefore f cannot be
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winning. Since f is assumed to be winning, we know that Bξ
♠ = ∅, and therefore no run

in ξ can ever contain a bad condition.
For showing that ξ is deadlock-avoiding we have to show that for every cut, if there

is an event enabled in the unfolding, there must also be an event enabled in the strategy.
Let K ∈ R(Oξ) and e ∈ E with K[e⟩. We have to show that there is an event eξ ∈ Eξ such
that K[eξ⟩. Since all conditions in K have been created in Construction 3.82, there either
is a vertex vT ∈ T with k(vT) = K or there must be an event e⋆ that takes a token from
a condition b ∈ K before all conditions in K are generated in the scheduling induced by
Tf . Since K is a cut, all contained conditions must be generated in one branch of the
strategy tree, and e⋆ must also be generated from that branch. This means in the latter
case we have pre (e⋆) ⊆ K, because all conditions of K are still created and K is a cut,
which means the creation of the conditions cannot be causally dependent on e⋆. Thus,
eξ = e⋆ satisfies the conditions above. Consider now the former case. In the two-player
game G(G) each vertex has a successor and so has every vertex in the strategy tree Tf .
Let (vT, τ, v′T) ∈ ET be the existing edge in Tf and (D, τ,D′) ∈ E the corresponding edge
in G(G).
Consider τ = †. If D = D′ then we know that D is either terminating (which would mean
there is no event enabled in the unfolding, contradicting the assumption K[e⟩), or D is a
deadlock or contains a bad place or is nondeterministic, contradicting that ξ is winning.
If D ̸= D′ then this corresponds to a † revolution, and we have k(vT) = k(v′T). Since D′

cannot contain a †-symbol, we then consider v′T instead of vT.
Consider τ = t ∈ T. Then in the construction, a corresponding event e⋆ with π(e⋆) = t
and pre (e⋆) is added to the strategy, satisfying the above conditions.

Case Obj = Reach. The system players in G have a reachability objective with target
places P♡ ⊆ PS. We have to show that every run in the constructed strategy ξ contains a
target transition Bξ

♡. We gather what we showed so far: Firstly, Construction 3.82 yields,
for a given winning strategy tree Tf a strategy ξ for the system players in G. Consider
now a part of the strategy tree between two vertices vT, v

′
T such that l(vT), l(vT) ∈ V1,

i.e., between two vertices representing environment dependent vertices in G(G). Then
between these two vertices, the tree does not branch. Correspondingly, in the generated
strategy ξ, the cuts k(vT) and k(v′T) are mcuts. In a strategy, there are no conflicts be-
tween two mcuts (Justified Refusal). Correspondingly, since every mcut in ξ is generated,
and for every mcut K there is a corresponding vertex vTE with k(vTE) = K, this means
that for every part of ξ between two mcuts K1 and K2 there is exactly one corresponding
part of a branch in Tf beginning with a vertex vT

1
E s.t. k(vT1E) = K1 and ending with a

vertex vT
2
E s.t. k(vT2E) = K2.

Let now ρ be a run in ξ. Since we have a recurrently interfering environment, we know
that there ρ is built from parts between environment-dependent cuts. Considering now
the corresponding branch (play) in Tf guarantees that a vertex containing a target place
is reached. Thus, there is a target condition in ρ.

Construction 3.84 (From Petri game strategy to two-player game strategy).
Let G ∈ Exp(G) be a proper Petri game and let ξ = (Oξ, πξ) with occurrence net
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Oξ = (Bξ,Eξ,Hξ,Kξ
0) be a winning strategy for the system players in G. Let further

G(G) = (V0,V1, v0,E,Win) be the to G corresponding two-player game.
From ξ we define a function f : V∗V0 → V, that will turn out to be a winning strategy

for Player 0 in G(G). Given a word v = v1 · · · vnv ∈ V∗V0, we define the successor f(v)
as follows:
If v is not a prefix of a play in G(G), then we choose an arbitrary successor vertex
according to E.
Otherwise, let D = v.
If D is a deadlock, is terminating, or is nondeterministic, by definition there is only a
†-labeled self-loop originating from D. We therefore set f(v) = D.
Otherwise, let fs(v) be the sequence of transitions that the edges between vertex in v
are labeled with. It is easy to show that fs(v) is a fireable transition sequence in G,
and therefore, there is a corresponding, fireable event sequence (a configuration C) in G’s
unfolding.
If this configurations is not contained in the strategy ξ, then we choose an arbitrary
successor vertex according to E.
Otherwise, let K = cut(C) be the corresponding cut. Then for all places p ∈ M(D) there
is a condition pξ ∈ K such that π(pξ) = p. If there exists a (p, †) ∈ D, then we define
f(v) = D′ such that (D, †,D′) ∈ E and for all (p, †) ∈ D there is a (p, T ′) ∈ D′ such that
T ′ = {πξ(e) | e ∈ Eξ ∧ pξ ∈ pre (e)}.
Otherwise, we chose one of the events e ∈ Eξ with pre (e) ⊆ Bξ

S and K[e⟩. We define
f(v) = D′, such that (D, πξ(e),D′) ∈ E. �
Lemma 3.85 (Correctness of Construction 3.84). Let G ∈ Exp(G). For a given
winning strategy ξ = (Oξ, πξ) for the system players in G, Construction 3.84 yields a
winning strategy f for Player 0 in G(G).

Proof. Let G = (PS,PE,T,F,M0,Obj,P⊛) and G(G) = (V0,V1, v0,E,Win). The func-
tion f is a strategy because it defines successors for V0 vertices and in all cases the
definition either fits into the edges E, or an arbitrary successor is chosen.

We show that f is winning. Let v = v0v1 · · · be a play in G(G). The sequence
fs(v) indeed corresponds to an initial firing sequence in G because all edges either keep
the marking, or the successor marking corresponds to the firing relation. Thus, each
vi corresponds to a cut Ki in the unfolding of G. Even more, due to the construction
choosing successors according to the firing of an event e ∈ Eξ, each Ki is a cut in the
strategy ξ. Since ξ is deterministic and all plays conforming to f choose every possible
commitment set according to the events contained Eξ, no vertex can be a nondeterministic
decision set.

Case Obj = Safety. Then Win = Safety(F), where F contains all decision sets that are
a deadlock, nondeterministic, or contain a bad place. We have established above that no
vi is a nondeterministic decision set. Since ξ is winning, the play in ξ corresponding to
fs(v) contains no bad condition. Thus, no Ki contains bad condition, and thereby no vi
contains a bad place. Analogously, no Ki is a deadlock, and therefore, no v is a deadlock.
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Case Obj = Reach. Then Win = Reach(F), where F contains all decision sets that
contain a target place. Since ξ is winning, the play in ξ corresponding to fs(v) contains
at least one target condition. This target condition must be at least in at least one cut Ki,
meaning that vi contains a target place. This means v is won by Player 0.
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Chapter 4. Finite and Complete Prefixes of Symbolic Unfoldings

Since strategies in a Petri game are defined as subprocesses of the Petri game’s un-
folding, the latter takes a crucial role when investigating Petri games. Specifically, as
each subprocess constitutes a prefix of the unfolding, we will now explore prefixes in
more detail. In particular, we will investigate the notion of complete finite prefixes of
the symbolic unfolding of a high-level Petri net. Understanding prefixes of the symbolic
unfolding lays groundwork for the definition of symbolic strategies for high-level Petri
games in Chapter 5.

A complete prefix of a P/T Petri net’s unfolding contains all information to verify,
e.g., reachability of markings. In [McM95], McMillan presents an algorithm to compute
a complete finite prefix of the unfolding of a given P/T Petri net. In a well-known
paper [ERV02], Esparza, Römer, and Vogler improve this algorithm by defining and
exploiting a total order on the set of configurations in the unfolding. We call the improved
algorithm the “ERV-algorithm”. It leads to a comparably small complete finite prefix of
the unfolding.

In this chapter, we lift the concepts of complete prefixes and adequate orders to
the level of symbolic unfoldings of high-level Petri nets. We consider the class of safe
high-level Petri nets that have decidable guards and finitely many reachable markings.
This class generalizes safe P/T Petri nets, and we obtain a generalized version of the
ERV-algorithm creating a complete finite prefix of the symbolic unfolding of such a given
high-level Petri net. Our results are a generalization of [ERV02] in the sense that if
a P/T Petri net is viewed as a high-level Petri net (as discussed on p. 24), the new
definitions of adequate orders and completeness of prefixes on the symbolic level, as well
as the algorithm producing them, all coincide with their P/T counterparts.

We then proceed to identify an even more general class of so-called symbolically
compact high-level Petri nets, where we drop the assumption of finitely many reachable
markings, and instead assume the existence of a bound on the number of steps needed
to reach all reachable markings. In such a case, the expansion is possibly not finite,
and the original ERV-algorithm from [ERV02] therefore not applicable. We adapt the
generalized ERV-algorithm by weakening the cut-off criterion to ensure finiteness of the
resulting prefix. In this cut-off criterion we have to compare infinite sets of markings.
We overcome this obstacle by symbolically representing these sets, using decidability
of the guards to decide cut-offs. Finally, we present four new benchmark families for
which we report on the results of applying a prototype implementation of the generalized
ERV-algorithm.

We now present the running example for this chapter.

Running Example: Three Times Termination. Let Col = {0, . . . ,m} for a fixed
m, and Var = {x, y, z, w} be the given sets of colors and variables. Figure 4.1 shows the
running example N for this chapter, called Three Times Termination. The set of initial
markings is the singleton M0 = {M0} with M0 = {| (a, 0), (b, 0) |}, which is depicted in
the net.
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4.1. Finite Complete Prefixes in the P/T Case

a 0 b0

α x > 0 βx > 0

c d
t

y = 3 · x

ε
z, w > 0

x x

x y

x y

z w

Figure 4.1: The running example N , called “Three Times Termination” with Col =
{0, . . . ,m} for a fixed m, and Var = {x, y, z, w}.

From M0, both α and β can fire. α takes the color 0 from place a and places a
color k ∈ {1, . . . ,m} on place c when firing in mode {x ← k}. Analogously, β takes
the 0 from b and places a k on place d. The mode {x ← 0} is for both transitions
excluded by their respective guard. When both α and β fire, the net arrives at a marking
{| (c, k), (d, ℓ) |} with 0 < k, ℓ ≤ m. From there, ε can fire arbitrarily often, always
replacing the colors k, ℓ currently residing on c, d by any colors k′, ℓ′ with 0 < k′, ℓ′ ≤ m
by firing in mode {x ← k, y ← ℓ, z ← k′, w ← ℓ′}. From every marking {| (c, k), (d, ℓ) |}
satisfying ℓ = 3 · k, transition t can fire in mode {x← k, y ← ℓ}, ending the execution of
the net.

4.1 Finite Complete Prefixes in the P/T Case

This chapter serves as a concise overview of the results from [ERV02] for safe safe P/T
Petri nets. We present the central concepts of complete prefixes and adequate orders.

For that, we briefly recall the notation from Sec. 2.1, with P/T Petri nets N =
(P,T,F,M0): an initial branching process β = (O, h) of N consists of an occurrence net
O = (B,E,H,K0) and an initial homomorphism h : B ∪ E → P ∪ T that is injective on
events with same preset, i.e., ∀e1, e2 ∈ E : (pre (e1) = pre (e2)∧ h(e1) = h(e2))⇒ e1 = e2.
Configurations C in β are causally closed sets of event that are not in conflict. The cut
of C is given by cut(C) = (K0 \ (→C)) ∪ (C→) and describes the conditions occupied
with tokens after firing C. We now define by mark(C) := h(cut(C)) the marking in N
represented by cut(C).

The definitions in this section, namely Def. 4.1, Def. 4.2, and Def. 4.3, are directly
taken from [ERV02].

Definition 4.1 (Complete branching process (P/T) [ERV02]). A branching pro-
cess β of a P/T Petri net N is complete iff for every reachable marking M in N there is a
configuration C in β such that
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Chapter 4. Finite and Complete Prefixes of Symbolic Unfoldings

• mark(C) = M (i.e., M is represented in β), and

• for every transition t enabled by M there exists a configuration C ∪ {e} such that
e /∈ C and e is labeled by t. �

Recall (also from Sec. 2.1) that the maximal (w.r.t. the prefix relation) initial branch-
ing process of N is the unfolding Υ(N) = (U(N), πN), with the occurrence net U(N) =
(BN,EN,HN,KN

0 ).
For a finite configuration C of a branching process β = (O, h) we denote by ⇑C the

branching process (O′, h′), where O′ is the unique subnet of O whose set of nodes is
{x | x /∈ C ∪→ C ∧ ∀y ∈ C : ¬(x♯y)}, and h′ is the restriction of h to the net of O′. The
branching process ⇑C is called the future of C. If for two configurations C1 and C2 we
have mark(C1) = mark(C2) then ⇑C1 and ⇑C2 are isomorphic, and we denote the by I21
the isomorphism from ⇑C1 to ⇑C2.

Given a configuration C and a set Q of events if C∪Q is a configuration and C∪Q = ∅
then we denote C ∪ Q by C ⊕ Q. In this case we call C ⊕ Q an extension of C, and Q a
suffix of C.

Definition 4.2 (Adequate order (P/T) [ERV02]). A partial order ≺ on the config-
urations of the unfolding of a P/T Petri net is an adequate order iff

• ≺ is well-founded,

• C1 ⊂ C2 implies C1 ≺ C2, and

• ≺ is preserved by finite extensions; if C1 ≺ C2 and mark(C1) = mark(C2) then the
isomorphism I21 from above satisfies C1 ⊕ Q ≺ C2 ⊕ I21 (Q) for all finite extensions
C1 ⊕ Q of C1. �

In [ERV02], three such adequate orders are presented. In particular, the authors
present a total adequate order. This order uses the so-called Foata normal form of
configurations.

Equipped with the definition of adequate orders, we get to the definition of cut-off
events in a branching process.

Definition 4.3 (Cut-off event (P/T) [ERV02]). Let ≺ be an adequate order on
the configurations of the unfolding of a Petri net. Let β be a prefix of the unfolding
containing an event e. The event e is called a cut-off event (w.r.t. ≺) iff β contains an
event e′ s.t.

• mark([e]) = mark([e′]), and

• [e′] ≺ [e]. �
Using this notion of cut-off events, Esparza et al. present in [ERV02] an algorithm

for the generation of a finite complete prefix of the unfolding. The algorithm iteratively
extends the prefix under construction by events e (called possible extensions) such that
[e] is minimal w.r.t. a given adequate order ≺ on the configurations of the unfolding.
After adding an event (and its output conditions), it is checked whether it is a cut-off
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4.1. Finite Complete Prefixes in the P/T Case

event. Events that structurally depend on cut-off events are not added to the prefix.
When there are no more possible extensions, the algorithm terminates.

We call this algorithm the ERV-algorithm, named after its authors Esparza, Römer,
and Vogler. In [ERV02], they show that when the adequate order ≺ used in the ERV-
algorithm is total, then the resulting prefix has at most n non cut-off events, where n
is the number of reachable markings in the considered Petri net. Since there is such a
total adequate order (using the Foata normal form, cp. above), they thereby show how
to generate a comparably small finite complete prefix of a Petri net’s unfolding.

We do not present the algorithm here, in particular because the later presented al-
gorithm, Alg. 1, is a generalization of the ERV-algorithm. Instead, we demonstrate the
idea of the algorithm for the expansion of our running example:

Example 4.4. We show the result applying the the ERV-algorithm to N = Exp(N),
where N is the running example Three Times Termination from Fig. 4.1 for a fixed
m ∈ N. The places and transitions in the P/T net N (restricted to reachable places and
fireable transitions) are then given by

P ={a.0, b.0} ∪ {c.k, d.k | 1 ≤ k ≤ m}, and
T ={α.{x← k}, β.{x← k} | 1 ≤ k ≤ m}
∪ {t.{x← k, y ← ℓ} | ℓ = 3 · k, 1 ≤ ℓ ≤ m}
∪ {ε.{x← k, y ← ℓ, z ← k′, w ← ℓ′} | 1 ≤ k, ℓ, k′, ℓ′ ≤ m},

respectively. The expansion therefore consists of 2 + 2m places and 2m + ⌊m3 ⌋ + m4

transitions.
The finite complete prefix of Υ(N), generated by the ERV-algorithm, is depicted

in Fig. 4.2. The events and conditions are named after their label, with an additional
superscript. We abbreviate the modes {x ← k} of α and β by k, the modes {x ← k,
y ← ℓ} of t by (k, ℓ), and the modes {x← k, y ← ℓ, z ← k′, w ← ℓ′} of ε by (k, ℓ, k′, ℓ′).
Cut-off events and their output conditions are shaded blue, and the blue line indicates
the complete finite prefix resulting from the original ERV-algorithm.

The ERV-algorithm initially generates the conditions a.0′ and b.0′ representing the
initial marking {| a.0, b.0 |}. The set of possible extensions is given by 2m events with
labels α.k and β.k, where 1 ≤ k ≤ m. The order in which events are added to the
prefix depends on the used adequate order ≺ on the configurations. For this example,
we assume the order to generate the events in Fig. 4.2 layer wise, from top to bottom,
and inside each layer from left to right.

Thus, the first event that is added is α.10, together with the condition c.10, represent-
ing α.1’s postset {| c.1 |}. For this event we have the cone configuration [α.10] = {α.10}
and mark([α.10]) = {| c.1, b.0 |}. Since we have not seen this marking before, α.1′ is not a
cut-off event. Analogously, none of the other events α.k′ and β.k′ are cut-off events.

After adding any event of β.ℓ0 and the output condition d.ℓ0 (due to the assumed
order, all α instances then are already part of the prefix) m3 instances of ε are added to the
possible extensions; the events ε.(k, ℓ, k′, ℓ′) for all combinations of k, k′, ℓ′. Additionally,
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Figure 4.2: The finite complete prefix of the unfolding of the expanded running example
“Three Times Termination” from Fig. 4.1, generated by the ERV-algorithm from [ERV02]

if there exists a condition c.k0 such that 3 · k = ℓ then the event t.(k, ℓ)0 is added to the
possible extensions.

We assume that first the t instances are added to the prefix. For the first one of these
events (t.(1, 3)0) we get [t.(1, 3)0] = {α.10, β.30, t.(1, 3)0} with mark([t.(1, 3)0]) = ∅.
We have not seen the empty marking before, so t.(1, 3)0 is not a cut-off event. For all
other k, ℓ, however, we have [t.(k, ℓ)0] = {α.k0, β.ℓ0.ℓ0, t.(k, ℓ)0} and mark([t.(k, ℓ)0]) =
∅ = mark([t.(1, 3)0]). Since we assumed [t.(1, 3)0] ≺ [t.(k, ℓ)0], for all other k, ℓ, the
corresponding events t.(k, ℓ)0 are cut-off events.

For the events ε.(1, 1, k′, ℓ′)′ we have mark([ε.(1, 1, k′, ℓ′)′]) = {| c.k′, d.ℓ′ |}. Although
these markings are already represented in the so far constructed prefix by the configura-
tion {α.k′, β.ℓ′}, they are not represented by cone configurations [e′], i.e., there does not
exist any e′ such that mark([e′]) = {α.k′, β.ℓ′}. This means these first m2 events are not
cut-off events.

For all following ε.(k, ℓ, k′, ℓ′)′ (with k > 1 or ℓ > 1), however, mark([ε.(k, ℓ, k′, ℓ′)′]) =
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{| c.k′, d.ℓ′ |} = mark([ε.(1, 1, k′, ℓ′)′]), meaning we have seen the represented marking
before, making all of these events cut-off events.

After the non cut-off events, however, we have to repeat the part from above for
the ERV-algorithm to terminate. All of the then added events are cut-off events. All
in all the complete finite prefix contains 6m4 + 4m + 2⌊m3 ⌋ + 2 nodes for every fixed m
determining the color class Col = {0, 1, . . . ,m}. �

4.2 Generalizing Finite and Complete Prefixes

We combine ideas from [ERV02] (computing small finite and complete prefixes of un-
foldings) with results from [CJ04] (symbolic unfoldings of high-level Petri nets) to define
and construct complete finite prefixes of symbolic unfoldings of high-level Petri nets. We
generalize the concepts and the ERV-algorithm from [ERV02] for safe P/T Petri nets to
a class of safe high-level Petri nets, and compare this generalization to the original. We
will see that for P/T nets interpreted as high-level nets, all generalized concepts (i.e.,
complete prefixes, adequate orders, cut-off events), and, as a consequence, the result of
the generalized ERV-algorithm, all coincide with their P/T counterparts.

We frequently draw comparisons between the presented generalizations and the cor-
responding concepts and findings outlined in [ERV02], which are concisely presented in
Sec. 4.1 above. For more comprehensive information, we direct the reader to the original
article.

4.2.1 Properties of the Symbolic Unfolding.

Before we present the generalization of complete finite prefixes, we state three analogues
of well-known properties of the unfolding of P/T Petri nets for the symbolic unfolding of
high-level nets. These properties are:

(i) The cuts in the symbolic unfolding represent precisely the reachable markings in
the high-level Petri net.

(ii) For every transition that can occur in the high-level Petri net, there is an event in
the symbolic unfolding with corresponding label (and vice versa).

(iii) For any configuration, the part of the symbolic unfolding that “lies after” that
configuration is the symbolic unfolding of the original high-level net structure with
the initial markings being the ones represented by the configurations cut.

The properties are stated in Prop. 4.6, Prop. 4.7, and Prop. 4.8, respectively.
We recall notation for high-level Petri nets and symbolic unfoldings from Sec. 2.3.1

and Sec. 2.3.3: (symbolic) configurations are defined as sets of high-level events that are
free of structural conflict and color conflict, and causally closed, and the configurations
in a symbolic branching process β are collected in the set C(β). For a configuration C, we
denoted by cut(C) = (B0 ∪ (C →)) \ (→ C) the high-level conditions that are occupied
after any concurrent execution of C. We established that cut(C) is a co-set, and that ∅
is a configuration with cut(∅) = B0.
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Let e ∈ E be a high-level event. We define the so-called cone configuration [e] :=
{e′ ∈ E | e′ ≤ e}. Additionally, we define the sets Vare := {ve | v ∈ Var(e)} and
Var⊥ := {vb⊥ | b ∈ B0} of indexed variables, and for a set E′ ⊆ E ∪ {⊥} we denote
VarE′ :=

⋃
e∈E′ Vare. Note that, for every event e, pred(e) (defined in Sec. 2.3) is a

predicate over the variables Var [e]∪{⊥}. Recall that pred(e) evaluates to true under an
assignment θ : Var [e]∪{⊥} → Col iff the events in [e] can all fire in a single execution of
the net in the modes represented by θ.

Let β = (O, h) be a symbolic branching process with O = (B,E,H, g,K0). To express
the three properties, we introduce the notion of instantiations of configurations C ∈ C(β),
choosing a mode for every event in C without creating color conflicts. This is realized by
assigning to each variable ve ∈ VarC∪{⊥} a value in Col , such that all predicates pred(e)
with e ∈ C evaluate to true. For each e ∈ C, the assignment of values to the indexed
variables in Vare corresponds to a mode of e.

Definition 4.5 (Instantiation of Symbolic Configuration). For a given symbolic
configuration C ∈ C(β), an instantiation of C is a function θ : VarC∪{⊥} → Col , such
that ∀e ∈ C ∪ {⊥} : pred(e)[θ] ≡ true, i.e., it satisfies predicate of every event in the
configuration. The set of instantiations of C is denoted by Θ(C). �

Note that it follows directly from the definition, that every symbolic configuration C
has an instantiation θ. We introduce some useful notations. We denote by

cut(C, θ) := {(b, c) | b ∈ cut(C) ∧ θ(ve(b)) = c} ⊆ B × Col

the cut of an “instantiated configuration”, and by

mark(C, θ) := {| (h(b), c) | (b, c) ∈ cut(C, θ) |}

its marking. We collect both of these in

Cuts(C) := {cut(C, θ) | θ ∈ Θ(C)}

and
Marks(C) := {mark(C, θ) | θ ∈ Θ(C)}.

Note that in this notation, for the empty configuration ∅ we have Cuts(∅) = K0 and
Marks(∅) =M0.

We now show in Prop. 4.6 and Prop 4.7 the properties (i) and (ii) described above.

Proposition 4.6. Let N be a high-level Petri net and Υ its symbolic unfolding. Then
R(N) = {mark(C, θ) | C ∈ C(Υ ), θ ∈ Θ(C)} (=

⋃
C∈C(Υ )Marks(C)).

Proof. The proof is an easy induction over the number n of transitions/events needed to
reach a respective marking/cut. The induction anchor n = 0 is proved by using that π
is an initial homomorphism which gives M0 = {{| (π(b), c) | (b, c) ∈ K0 |} | K0 ∈ K0} =
{{| (π(b), c) | (b, c) ∈ K |} | K ∈ Cuts(∅)} = {mark(∅.θ) | θ ∈ Θ(∅)}. The induction
step is realized by Prop. 4.7.
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Proposition 4.7. The symbolic unfolding Υ = (U, π) with events E of a high-level Petri
net N = (P, T, F, g,M0) satisfies ∀C ∈ C(Υ ) ∀θ ∈ Θ(C) ∀t ∈ T ∀σ ∈ Σ(t) :

mark(C, θ)[t, σ⟩ ⇔ ∃e ∈ E : π(e) = t ∧ cut(C, θ)[e, σ⟩.

Proof. Let U = (B,E,H, g,K0), and let C ∈ C(Υ ), θ ∈ Θ(C), t ∈ T, σ ∈ Σ(t).
Let mark(C, θ)[t, σ⟩, which means

pre (t, σ) ≤ mark(C, θ) = {| (π(b), θ(ve(b))) | (b, θ(ve(b))) ∈ cut(C, θ) |},

Let B′ ⊆ cut(C) be a set of conditions s.t.

pre (t, σ) = {| (π(b), θ(ve(b))) | b ∈ B′ |}.

Aiming a contradiction, assume there is no e ∈ E s.t. π(e) = t and cut(C, θ)[e, σ⟩: we
extend Υ by such an event. We add to E an event ẽ with π(ẽ) = t and g(ẽ) = g(t).
Choose for every b ∈ B′ a variable vb ∈ Var s.t.

{| (π(b), vb) | b ∈ B′ |} = {| (p, v) | (p, v) ∈ pre (t) |} (= pre (t)).

We define pre (ẽ) = {| (b, vb) | b ∈ B′ |}. Then we have {| (π(b), v) | (b, v) ∈ pre (ẽ) |} =
pre (t) = pre (π(ẽ)). For every (p, v) ∈ post (t), we then add post (t)(p, v) conditions b
with π(b) = p to B and add (ẽ, v, b) to H. We thus get post (π(ẽ)) = {| (π(b), v) | (b, v) ∈
post (ẽ) |}. We now created a symbolic branching process bigger than Υ , contradicting
that Υ is the symbolic unfolding.

Conversely, assume ∃e ∈ E : π(e) = t ∧ cut(C, θ)[e, σ⟩. Then pre (e, σ) ≤ cut(C, θ),
and therefore, pre (t) = {| (π(b), v) | (b, v) ∈ pre (e) |} ≤ {| (π(b), v) | (b, v) ∈ cut(C, θ) |} =
mark(C, θ), meaning mark(C, θ)[t, σ⟩.

Given a finite configuration C of a symbolic branching process β = (O, h), we define
⇑C as the pair (O′, h′), where O′ is the unique subnet of O whose set of nodes is {x ∈
B ∪ E | x /∈ (C∪ → C) ∧ ∀y ∈ C : ¬(y♯x) ∧ (C ∪ {x} is not in color conflict)} with
the set Cuts(C) of initial cuts, and h′ is the restriction of h to the nodes of O′. The
branching process ⇑C is referred to as the future of C.

Proposition 4.8 formalizes property (iii) from above.

Proposition 4.8. If β is a symbolic branching process of (N ,M0) and C is a config-
uration of β, then ⇑C is a branching process of (N ,Marks(C)). Moreover, if β is the
unfolding of (N ,M0), then ⇑C is the unfolding of (N ,Marks(C)).

Proof. Let ⇑C = (O′, h′) with O′ = (B′, E′, F ′, g′,Cuts(C)). To show that O′ is an
occurrence net, we have to show i – iv from the definition on p. 28. i – iii are purely
structural properties and follow from the fact that O is an occurrence net. iv is satisfied
since ∀b ∈ cut(C) ∀K ∈ Cuts(C) :

∑
c∈Col K(b, c) = 1 and ∀b ∈ B′ \ cut(C) ∀K ∈

Cuts(C) :
∑

c∈Col K(b, c) = 0. h′ is a homomorphism that is injective on events with the
same preset since h is, and that h′ is initial follows by Prop. 4.6 and Prop. 4.7.

When β is the symbolic unfolding of (N ,M0), then the maximality of ⇑C follows
from the maximality of β, making ⇑C the symbolic unfolding of (N ,Marks(C)).
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4.2.2 Complete Prefixes

We lift the definition of completeness to the level of symbolic unfoldings. Together with
Prop. 4.6 and Prop. 4.7, this can be seen as a direct translation from the low-level case
described in Def. 4.1.

Definition 4.9 (Complete symbolic branching process). Let β = (O, h) be a
symbolic branching process of a high-level Petri net N , with events E′. Then β is called
complete iff for every reachable marking M in N there exists C ∈ C(β) and θ ∈ Θ(C)
s.t.

i) M = mark(C, θ), and

ii) ∀t ∈ T ∀σ ∈ Σ(t) : M [t, σ⟩ ⇒ ∃e ∈ E′ : h(e) = t ∧ cut(C, θ)[e, σ⟩. �
We now define the class NF of high-level Petri nets for which we generalize the

construction of finite and complete prefixes of the unfolding of safe P/T Petri nets
from [ERV02]. We discuss the properties defining this class, and describe how it gener-
alizes safe P/T nets.

Definition 4.10 (Class NF). The class NF contains all finite high-level Petri nets
N = (P, T, F, g,M0) satisfying the following three properties:

(1) The net is safe, i.e., in every reachable marking there lies at most 1 color on every
place (formally; ∀M ∈ R(N) ∀p ∈ P :

∑
c∈Col M(p, c) ≤ 1).

(2) Guards are written in a decidable theory with the set Col as its domain of discourse.

(3) The net has f initely many reachable markings (formally; |R(N)| <∞). �
We require the safety property (1) for two reasons; on the one hand, to avoid adding

to the already heavy notation. On the other hand, while we think that a generalization
to bounded high-level Petri nets is possible, it comes with all the difficulties known from
going from safe to k-bounded in the P/T case in [ERV02], plus the problems arising from
the expressive power of the high-level formalism. Note that, under the safety condition,
we can w.l.o.g. assume N to be ordinary (i.e., ∀x, y ∈ P ∪ T :

∑
v∈Var F (x, v, y) ≤ 1),

since transitions violating this property could never fire. The finiteness of N additionally
implies that we can assume Var to be finite.

While property (2) seems very strong, the goal is an algorithm that generates a
complete finite prefix of the symbolic unfolding of a given high-level Petri net. The
definition of the symbolic unfolding requires the predicate of every event added to the
prefix to be satisfiable, and the predicates are build from the guards in the given net.
Thus, satisfiability checks in the generation of the prefix seem for now inevitable. An
example for such a theory is Presburger arithmetic [Pre30], which is a first-order theory
of the natural numbers with addition. The guards in the example from Figure 4.1 are
expressible in Presburger arithmetic.

We need property (3) to ensure that the generalized version of the cut-off crite-
rion from [ERV02] yields a finite prefix constructed in the generalized ERV-Algorithm.
|R(N)| < ∞ can be ensured by having a finite set Col of colors, i.e., |Col | < ∞. In
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Sec. 4.4, we identify a class of high-level Petri nets with infinitely many reachable mark-
ings for which the algorithm is sufficient when adapting the cut-off criterion.

Under these three assumptions we generalize the finite safe P/T Petri nets considered
in [ERV02]: every such P/T net can be seen as a high-level Petri net with Col = {•} and
all guards being true, and thus satisfying the three properties above. Replacing the safety
property (1) by a respective “k-bounded property” would result in a generalization of k-
bounded P/T nets. In Sec. 4.3, we compare the result of the generalized ERV-algorithm,
Alg. 1, applied to a high-level net to the result of the original ERV-algorithm from
[ERV02] applied to the high-level net’s expansion.

For the rest of the section, let N = (P, T, F, g,M0) ∈ NF with symbolic unfolding
Υ = (U, π) = (B,E,H, g,K0, π).

Since we consider safe high-level Petri nets, we can relate two cuts of configurations
that represent the same set of places in the following way:

Definition 4.11. Let C1, C2 ∈ C(Υ ) with π(cut(C1)) = π(cut(C2)). Then there is a
unique bijection ϕ : cut(C1)→ cut(C2) preserving π. We call this mapping ϕC2

C1
. �

4.2.3 Generalizing Adequate Orders and Cut-Off Events

We lift the concept of adequate orders on the configurations of an occurrence net to the
level of symbolic unfoldings. A main property of adequate orders is the preservation by
finite extensions, which in the high-level case are defined as for P/T-nets (cp. Sec. 4.1):

For a (high-level) configuration C, if C ∪ Q is a configuration and C ∩ Q = ∅ then
we denote C ∪ Q by C⊕Q. We say that C⊕Q is an extension of C, and that Q is
a suffix of C. Obviously, for a configuration C ′, if C ⊊ C ′ then there is a nonempty
suffix Q of C such that C⊕Q = C ′. For a configuration C⊕Q, denote by O(C|Q) =
(cut(C) ∪→Q ∪Q→, Q,H ′,Cuts(C)) the occurrence net around Q from cut(C), where
H ′ is the restriction of H to the nodes of O(C|Q). Note that for every finite configuration
C with an extension C⊕Q, we have that Q is a configuration of ⇑C.

For better readability, we introduce for a marking M the following notation:

CJMKQ :⇔ ∃θ ∈ Θ(C⊕Q) : mark(C, θ|VarC∪{⊥}) = M. (4.1)

Thus, CJMKQ means that we can fire the events in C⊕Q in modes (formalized by the
instantiation θ) such that after firing only the events in C we arrive at a cut represent-
ing M .

In [ERV02], the authors infer from the low-level version of Prop. 4.8 that if the cuts of
two low-level configurations represent the same marking in the low-level net, then their
futures are isomorphic. A respective (unique) isomorphism I21 (cp. Sec. 4.1) maps the
suffixes of one configuration to the suffixes of the other.

This holds also in the high-level case: if two cuts represent the same set of markings
(Marks(C1) = Marks(C2)) then there exists an isomorphism I21 between the two futures
C1 and C2. This isomorphism maps suffixes of C1 to suffixes of C2.

The following Prop. 4.12 is a “weak” version of this argument. It is “weaker” in the
sense that we do not assume that two high-level configurations represent the same set of
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markings. We only assume that there is a marking represented by both configurations
(M ∈ Marks(C1) ∩Marks(C2)) from which we can fire a fixed suffix Q of C1 (notation
C1JMKQ from (4.1)). Weakening the assumption leads not to an isomorphism between
the two futures but only a monomorphism φ2

1,Q, which in addition is dependent on the
suffix Q under consideration.

Proposition 4.12. Let C1 and C2 be two finite configurations in Υ , and let Q be a suffix
of C1. If there is a marking M ∈ Marks(C1) ∩Marks(C2) s.t. C1JMKQ, then there is
a unique monomorphism φ2

1,Q : O(C1|Q) → ⇑C2 that satisfies φ2
1,Q(cut(C1)) = cut(C2)

and preserves the labeling π.
For this monomorphism we have that φ2

1,Q(Q) is a suffix of C2.

Notation. For functions f : X → Y and f ′ : X ′ → Y with X ∩ X ′ = ∅ we define
f ⊔ f ′ : X ⊔X ′ → Y by mapping x to f(x) if x ∈ X and to f ′(x) if x ∈ X ′.

Proof. By induction over the size k = |Q| of the suffix Q.
Base case k = 0. This means Q = ∅. Then O(C1|Q) = (cut(C1), ∅, ∅,Cuts(C1)).

Since M ∈ Marks(C1) ∩ Marks(C2), we know that π(cut(C1)) = π(cut(C2)). Since
we only consider safe nets, φ2

1,Q is uniquely realized by ϕC2
C1

: cut(C1) → cut(C2) from
Def. 4.11.

Induction step. Let k > 0. Let θ ∈ Θ(C1⊕Q) s.t. mark(C1, θ|VarC1∪{⊥}) = M . Let
e ∈ Min(Q). Then for σ = [v ← θ(ve)]v∈Var(e) we have M [π(e), σ⟩. Thus, by Prop. 4.7,
∃e′ ∈ E : π(e′) = π(e) ∧ C2⊕{e′} ∈ C(Υ ). This means →e′ ⊆ (B0 ∪ (C2→)) \ (→C2);
else, C2⊕{e′} would not be a configuration. Thus, e′ is an event in ⇑C2. Since π(e) =
π(e′), we get by definition of homomorphisms that {(π(b), v) | (b, v) ∈ post (e)} =
{(π(b), v) | (b, v) ∈ post (e′)}. The net N is safe, therefore we can define the bijection
ϕ1 : (e→)→ (e′→) by ϕ1(b) = b′ ⇔ π(b) = π(b′). We now define φ1 : O(C1|{e})→ ⇑C2

by φ1 = ϕC2
C1
⊔{e 7→ e′}⊔ϕ1, which is a homomorphism satisfying the claimed conditions.

Let now C ′
1 = C1 ∪ {e}, C ′

2 = C2 ∪ {φ1(e)} and Q′ = Q \ {e}. We then have for
M ′ given by M [π(e), σ⟩M ′ that C ′

1JM
′KQ′, M ′ ∈ Marks(C ′

1)∩Marks(C ′
2), and |Q′| < k.

Thus, by the induction hypothesis, we get that there is a unique monomorphism φ2 :
O(C ′

1|Q′) → ⇑C ′
2 satisfying the conditions above. Since φ1 and φ2 coincide on cut(C ′

1),
we can now define φ2

1,Q by “gluing together” φ1 and φ2 at cut(C ′
1).

This proves the claim for finite extensions. For an infinite extension, every node also
contained in a finite extension. Due to uniqueness of the homomorphisms, we can define
the φ2

1,Q in the case of an infinite Q as the union of all homomorphisms of smaller finite
extensions.

Equipped with Prop. 4.12, we now lift the concept of adequate order to the level of
symbolic branching processes. Compared to Def. 4.2, the monomorphism φ2

1,Q defined
above replaces the isomorphism I21 between ⇑C1 and ⇑C2 for two low-level configurations
C1,C2 representing the same marking.

Definition 4.13 (Adequate order, high-level). A partial order ≺ on the finite con-
figurations of the symbolic unfolding of a set of high-level Petri net is an adequate order
if:
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i) ≺ is well-founded,

ii) C1 ⊂ C2 implies C1 ≺ C2, and

iii) ≺ is preserved by finite extensions in the following way: if C1, C2 are two finite
configurations, and C1⊕Q is a finite extension of C1 such that there is a marking
M ∈ Marks(C1) ∩ Marks(C2) satisfying C1JMKQ, then the monomorphism φ2

1,Q

from above satisfies C1 ≺ C2 ⇒ C1⊕Q ≺ C2⊕φ2
1,Q(Q). �

In the case of a P/T net interpreted as a high-level net, we have |Marks(C)| = 1 for
every configuration C, and therefore, Def. 4.13 coincides with its P/T version Def. 4.2.

We could alternatively generalize the P/T case by replacing ‘∃M ∈ Marks(C1) ∩
Marks(C2) s.t. C1JMKQ’ by ‘Marks(C1) = Marks(C2)’. Then there exists, as in the
P/T case, the isomorphism I21 between ⇑C1 and ⇑C2, which we could use to define
preservation by finite extension. However, in the upcoming generalization of the ERV-
algorithm from [ERV02], the generalized cut-off criterion exploits property iii) of adequate
orders. Using ‘Marks(C1) = Marks(C2)’ would produce an exponential blowup of the
generated prefix’s size. This is circumvented by using ‘∃M ∈ Marks(C1)∩Marks(C2) s.t.
C1JMKQ’, which however leads to obtaining merely a monomorphism φ2

1,Q that depends
on the considered suffix Q, instead of an isomorphism between the futures. We now show
that this monomorphism sufficient.

The proof that the generalized ERV-algorithm is complete will be structurally analo-
gous to the respective proof in [ERV02]. It uses that, under the conditions of Def. 4.13 iii),
we also have C2 ≺ C1 ⇒ C2⊕φ2

1,Q(Q) ≺ C1⊕Q. This result would directly be obtained if
φ2
1,Q was an isomorphism, as I21 is. However, a monomorphism is an isomorphism when

its codomain is restricted to its range. This idea is used in the proof of the following
proposition, which states that φ2

1,Q indeed satisfies the above property.

Proposition 4.14. Let ≺ be an adequate order. Under the conditions of Def. 4.13 iii)
the monomorphism φ2

1,Q also satisfies C2 ≺ C1 ⇒ C2⊕φ2
1,Q(Q) ≺ C1⊕Q.

Proof. Let Q′ = φ2
1,Q(Q). We first show that φ1

2,Q′(Q′) = Q.
Let φ1 : O(C1|Q) → φ2

1,Q(O(C1|Q)) be the isomorphism that acts on O(C1|Q) as
φ2
1,Q does, and let φ2 : O(C2|Q′) → φ1

2,Q′(O(C2|Q′)) be the isomorphism that acts on
O(C2|Q′) as φ1

2,Q′ does. Since φ−1
1 : φ2

1,Q(O(C1|Q)) → O(C1|Q) and O(C1|Q) ⊂ ⇑C1,
and φ−1

1 (φ2
1,Q(Q)) = Q is a suffix of C1, we get by Prop. 4.12 that φ−1

1 = φ2, which
means φ1

2,Q′(Q′) = Q.
Assume now C2 ≺ C1. From the proof of Prop. 4.12 we see that C2JMKφ2

1,Q(Q).
Thus, we get by the definition of adequate order and the result above that C2⊕φ2

1,Q(Q) ≺
C1⊕φ1

2,φ2
1,Q(Q)

(φ2
1,Q(Q)) = C1⊕Q

In [ERV02], three adequate orders on the configurations of the low-level unfolding
are discussed. In particular, the authors present a total adequate order that uses the
Foata normal form of configurations. Using such a total order in the algorithm limits
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the size of the resulting finite and complete prefix; It contains at most |R(N)| non cut-
off events. All three adequate orders presented in [ERV02] can be directly lifted to the
configurations of the symbolic unfolding by exchanging every low-level term by its high-
level counterpart. The lifted order using the Foata normal form is still a total order. We
include these discussions in Appendix 4.A.1.

We now define cut-off events in a symbolic unfolding. In the low-level case Def. 4.3, e is
a cut-off event iff there is another event e′ satisfying [e′] ≺ [e] and mark([e]) = mark([e′]),
which ensures that the future of e needs not be considered further. In the high-level case,
we generalize these conditions to high-level events e. However, we do not require the
existence of one other high-level event e′ with [e′] ≺ [e] and Marks([e]) = Marks([e′]).
While this would still be a valid cut-off criterion and would lead to finite and complete
prefixes, the upper bound on the size of such a prefix would be exponential in the number
of markings in the original net, since we must argue on the power set of N ’s reachable
markings.

Instead, we check whether Marks([e]) is contained in the union of all Marks([e′]) with
[e′] ≺ [e]. This criterion expresses that we have already seen every marking in Marks([e])
in the prefix β under construction, and therefore need not consider the future of e any
further. By this, we obtain the same upper bounds on the size of the produced prefix as
in [ERV02], as discussed later.

Definition 4.15 (Cut-off event, high-level). Let ≺ be an adequate order on the
configurations of the symbolic unfolding of a high-level Petri net. Let β be a prefix of
the symbolic unfolding containing a high-level event e. The high-level event e is a cut-off
event in β (w.r.t. ≺) if Marks([e]) ⊆ ⋃

[e′]≺[e]Marks([e′]). �
When interpreting P/T nets as high-level nets, this definition corresponds to the cut-

off events defined in Def. 4.3, since then |Marks([e])| = 1 for all events e, and a singleton
is contained in a union of other singletons iff its element is equal to one of the other’s.

4.2.4 The Generalized ERV-Algorithm

We present the algorithm for constructing a finite and complete prefix of the symbolic
unfolding of a given high-level Petri net. It is a generalization of the ERV-algorithm
from [ERV02], and is structurally equal (and therefore looks very similar). However, the
algorithm is contingent upon the previous section’s work of generalizing adequate orders
and cut-off events, which ultimately enables us to adopt this structure.

A crucial concept of the ERV-algorithm is the notion of “possible extensions”, i.e.,
the set of individual events that extend a given prefix of the unfolding. In Def. 4.16,
we lift this concept to the high-level formalism. We do so by isolating the procedure of
adding high-level events in the algorithm from [CJ04] which generates the whole symbolic
unfolding of a given high-level Petri net (but does not terminate if the symbolic unfolding
is infinite).

We define the data structures similarly to [ERV02]. There, an event is given by a
tuple e = (t,B′) with h(e) = t ∈ T and pre (e) = B′ ⊆ B, and a condition given by a tuple
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b = (p, e) with h(b) = p ∈ P and pre (b) = {e} ⊆ E. The finite and complete prefix is a
set of such events and transitions.

In the high-level case, we need more information inside the tuples. A high-level
event is given by a tuple e = (t,X, pred) described by h(e) = t, pre (e) = X ⊆ B ×
Var , and pred(e) = pred . Analogously, a high-level condition is given by a tuple b =
(p, (e, v), pred), where h(b) = p, pre (b) = (e, v) ∈ (E × Var) ∪ ({⊥} × {vb | b ∈ B0}),
and pred(e(b)) = pred .

Definition 4.16 (Possible extensions). Let β = (O, h) be a branching process of
a high-level Petri net N . The possible extensions PE (β) are the set of tuples e =
(t,X, pred) where t is a transition of N , and X ⊆ B ×Var satisfying

• {b | (b, v) ∈ X} is a co-set, and pre (t) = {(h(b), v) | (b, v) ∈ X},
• pred = loc-pred ∧

(∧
(b,v)∈X pred(e(b))

)
is satisfiable,

where loc-pred = g(t)[v ← ve]v∈Var(t) ∧
(∧

(b,v)∈X ve = ve(b)
)
,

• β does not contain (t,X, pred). �
Since this is the isolated procedure of adding high-level events in the algorithm from

[CJ04] which generates the complete symbolic unfolding of a given high-level Petri net,
we know that the set PE (β) precisely contains the events that can be added to the prefix.

The notion of co-set in high-level occurrence nets is achieved by the direct translation
from low-level occurrence nets plus the “color conflict freedom”. Thus, possible extensions
in a prefix β can be found by searching first for sets of conditions that are not in structural
conflict as in the low-level case, and then checking whether these sets are in color conflict.

Alg. 1 is a generalization of the ERV-Algorithm in [ERV02] for complete finite prefixes
of the low-level unfolding. The structure is taken from there, with the only difference
being the special event ⊥. The algorithm takes as input a high-level Petri net N ∈ NF

and assumes a given adequate order ≺.

Example 4.17. Consider the running example Three Times Termination from Fig-
ure 4.1. Alg. 1 produces the complete finite prefix marked by the blue lines in Fig. 4.3.
Cut-off events are again shaded blue. We demonstrate this in detail:

Starting with the initial conditions a′ and b′, the possible extensions are α′ and β′.
assuming [α′] ≺ [β′], we first add α′ together with a condition c′ corresponding to the
output place c of α, and then analogously add β′ and the condition d′.

For α′ we have Marks([α′]) = {{| (c, k), (b, 0) |} | k ∈ {1, . . . ,m}} and analogously, for
β′ we have Marks([β′]) = {{| (a, 0), (d, k) |} | k ∈ {1, . . . ,m}}. Since we have not seen
these markings before, neither α′ nor β′ are cut-off events. Thus, we have the possible
extensions t′ and ε′. For t′ we have Marks([t′]) = {{| |}}, since no tokens are in the net
after firing t. However, we have not seen the empty marking {| |} before, so formally, t′

is not a cut-off event.
For ε′ we have Marks([ε′]) = {{| (c, k), (d, ℓ) |} | k, ℓ ∈ {1, . . . ,m}}. Corresponding

cuts can be reached in the prefix constructed so far by concurrently firing α′ and β′.
However, no marking {| (c, k), (d, ℓ) |} is represented by a cone configuration [e′] before
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Algorithm 1: Generalization of the ERV-Algorithm from [ERV02] for complete
finite prefixes.

Data: High-level Petri net N = (P, T, F, g,M0) ∈ NF.
Result: A complete finite prefix Fin of the symbolic unfolding of N .
Fin := {⊥};
pred(⊥) := ∨

M0∈M0

∧
(p,c)∈M0

v
bp
⊥ = c;

foreach p ∈ P0 do
Create a fresh condition bp := (p, (⊥, vbp), pred(⊥));
Fin := Fin ∪ {bp};

pe := PE (Fin);
cut-off := ∅;
while pe ̸= ∅ do

Pick e = (t,X, pred) from pe such that [e] is minimal w.r.t. ≺;
if [e] ∩ cut-off = ∅ then

Fin := Fin ∪ {e};
foreach (p, v) ∈ post (t) do

Create a fresh condition b := (p, (e, v), pred);
Fin := Fin ∪ {b};

pe := PE (Fin);
if e is a cut-off event of Fin then

cut-off := cut-off ∪{e};
else

pe := pe \ {e}

[ε′], and thus ε′ does not satisfy Marks([ε′]) ⊆ ⋃
[e′]≺[ε]Marks([e′]). This means ε′ is not

a cut-off event and we have to proceed with the possible extensions t′′ and ε′′.
Since Marks([t′′]) = {{| |}} = Marks([t′]) with [t′] ≺ [t′′], have that t′′ is a cut-off event.

This, however, has no impact on the prefix since we cannot continue after t′′ anyway.
For ε′′ we have Marks([ε′′]) = {{| (c, k), (d, ℓ) |} | k, ℓ ∈ {1, . . . ,m}} = Marks([ε′]) with
[ε′] ≺ [ε′′]. This makes ε′′ also a cut-off event. We therefore have no more possible
extensions, and the algorithm terminates. In the figure, this is indicated by the blue
lines.

Note that in this special case, for both cut-off events (e = ε′′ or e = t′′), we had
that there was an event e′ with [e′] ≺ [e] and Marks([e]) = Marks([e′]). The definition of
cut-off event from Def. 4.15 is more general. �

We now prove correctness of Alg. 1 analogously to [ERV02], by stating two proposi-
tions – one each to show that the output of the algorithm, i.e., the prefix Fin, is finite
and complete, respectively. The proof structure is also as in [ERV02], but adapted to
the setting of high-level Petri nets and symbolic unfoldings.
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a′ b′

⊥

α′ xα′ > 0 β′xβ′ > 0

c′ d′

t′

xt′ = xα′ ∧ yt′ = xβ′ ∧ yt′ = 3 · xt′

ε′

xε′ = xα′ ∧ yε′ = xβ′

∧zε′ , wε′ > 0

c′′ d′′

t′′

xt′′ = zε′ ∧ yt′′ = wε′ ∧ yt′′ = 3 · xt′′

ε′′
xε′′ = zε′ ∧ yε′′ = wε′

∧zε′′ , wε′′ > 0

c′′′ d′′′

t′′′

ε′′′

x y

x y

. . .

...

x x

x y

x y

x y

x y

z w

z w

Figure 4.3: The symbolic unfolding Υ (N) of the net N in Fig. 4.1

Proposition 4.18. Fin is finite.

Given an event e, define the depth of e as the length of the longest chain of events
e1 < e2 < · · · < e; the depth of e is denoted by d(e).

Proof. As in [ERV02], we prove the following results (1) – (3):

(1) For every event e of Fin, d(e) ≤ |R(N)|+ 1,

(2) For every event e of Fin, the sets pre (e) and post (e) are finite, and

(3) For every k ≥ 0, Fin contains only finitely many events e such that d(e) ≤ k.

This works exactly as in [ERV02], with minor adaptations to the generalization of cut-offs
in the symbolic unfolding in (1):

(1) Let n = |R(N)|. Every chain of events e1 < e2 < · · · < en < en+1 in the unfolding
contains an event ei, i > 1, s.t. Marks([ei]) ⊆

⋃i−1
j=1Marks([ej ]), since, if every

Marks([ej ]), j = 1, . . . , n, contains a marking not contained in
⋃j−1

k=1Marks([ek]),
then finally

⋃n
j=1Marks([ej ]) contains all n markings. This makes en+1 a cut-off

event.
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(2) By the construction in the algorithm we see that there is a bijection between post (e)
and post (h(e)), and similarly for pre (e) and pre (h(e)). The result then follows from
the finiteness of N .

(3) By complete induction on k. The base case, k = 0, is trivial. Let Ek be the set
of events of depth at most k. We prove that if Ek is finite then Ek+1 is finite. By
(2) and the induction hypothesis, post (Ek) is finite. Since {b | ∃v ∈ Var : (b, v) ∈
pre (Ek+1)} ⊆ {b | ∃v ∈ Var : (b, v) ∈ post (Ek)}, we get by property iv in the
definition of occurrence nets that Ek+1 is finite.

Proposition 4.19. Fin is complete.

The proof of this proposition also has the same general structure as the respective
proof in [ERV02]. However here we use the generalizations of adequate order, possible
extensions, and the cut-off criterion to symbolic branching processes.

Proof. We first show that for every reachable marking in N there exists a configuration
in Υ satisfying a) from the definition of complete prefixes, and then show that one of
these configurations (a minimal one) also satisfies b).

(1) Let M be an arbitrary reachable marking in N . Then by Prop. 4.6, we have that
there is a C1 ∈ C(Υ ) s.t. M ∈ Marks(C1). Let θ1 ∈ Θ(C1) s.t. M = mark(C1.θ1).
If C is not a configuration in Fin, then it contains a cut-off event e1, and so C1 =
[e1]⊕Q for some set Q of events. Let M1 = mark([e1].θ1|Var [e1]∪{⊥}) ∈ Marks([e1]).
By the definition of cut-off event, there exists an event e2 with [e2] ≺ [e1] and M1 ∈
Marks([e2]). Since we have C1JM1KQ, we get by Prop. 4.12 that the monomorphism
φ1 := φ

[e2]
[e1],Q

: O([e1]|Q) → ⇑[e2] exists and that φ1(Q) is a suffix of [e2]. By
Prop. 4.14 we know

C2 := [e2]⊕φ1(Q) ≺ [e1]⊕Q = C1.

Let θ′2 ∈ Θ([e2]) s.t. M1 = mark([e2], θ
′
2). Define now θ2 ∈ Θ(C2) by θ2 = θ′2 ⊔ θ′′2 ,

where θ′′2 : Varφ1(Q) → Col is given by θ′′2(vφ1(e)) = θ1(ve). By this construction
we get M = mark(C2, θ2) ∈ Marks(C2).

If C2 is not a configuration of Fin, then we can iterate the procedure and find a
configuration C3 such that C3 ≺ C2 and M ∈ Marks(C3). The procedure cannot
be iterated infinitely often because ≺ is well-founded. Therefore, it terminates in
a configuration of Fin.

(2) Let now C be a minimal configuration w.r.t. ≺ s.t. M ∈ Marks(C), and let t ∈ T ,
σ ∈ Σ(t) s.t. M [t, σ⟩. If C contains some cut-off event, then we can apply the
arguments of a) to conclude that Fin contains a configuration C ′ ≺ C such that
M ∈ Marks(C ′). This contradicts the minimality of C. So C contains no cut-off
events. Let θ ∈ Θ(C) s.t. M = mark(C, θ). Since pre (t.σ) ⊆ M , we have that
there is a co-set Bt,σ ⊆ cut(C) s.t. pre (t, σ) = {(h(b), θ(ve(b))) | b ∈ Bt,σ}. Let
now X := {(b, v) | b ∈ Bt,σ, (h(b), v) ∈ pre (t)}. We then have ∀(b, v) ∈ X : σ(v) =
θ(ve(b)).
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We now show that

pred := g(t)[v ← ve]v∈Var(e) ∧
( ∧

(b,v)∈X
ve = ve(b)

)
∧

∧

(b,v)∈X
pred(e(b))

is satisfiable. Let θ′ := θ ⊔ (σ ◦ {ve 7→ v | v ∈ Var(e)}). Then

• g(t)[v ← ve]v∈Var(e)[θ′] ≡ g(t)[σ] ≡ true, and
•
(∧

(b,v)∈X ve = ve(b)
)
[θ′] ≡

(∧
(b,v)∈X σ(v) = θ(ve(b))

)
≡ true, and

•
∧

(b,v)∈X pred(e(b))[θ′] ≡ ∧
(b,v)∈X pred(e(b))[θ] ≡ true, since θ ∈ Θ(C).

Thus, pred [θ′] ≡ true. Therefore, e = (t,X, pred) is a possible extension and added
in the execution of the algorithm. Then we directly have e /∈ C, h(e) = t, and
with the same arguments as in a), we get C ∪ {e} ∈ C(Fin) and θ ⊔ (σ ◦ {ve 7→
v | v ∈ Var(e)}) ∈ Θ(C ∪ {e}), which means cut(C, θ)[e, σ⟩. Since we chose θ
independently of t and σ, this concludes the proof.

Notice that by this construction, as described in [ERV02], we get that if ≺ is a total
order, then Fin contains at most |R(N)| non cut-off events. As mentioned in Sec. 4.2.3,
the total adequate order presented in [ERV02] can be lifted to the configurations in the
symbolic unfolding, where it again is total (cp. Appendix 4.A.1). Thus, we generalized
the possibility to construct such a small complete finite prefix by application of Alg. 1
with ≺ being a total adequate order.

4.3 High-Level versus P/T Expansion

In this section we state in Lemma 4.21 that the expansion of a finite complete prefix of
the unfolding of a high-level Petri net is a finite and complete prefix of the unfolding of
the expanded high-level Petri net. This means the generalization of complete prefixes is
“canonical”, and compatible with the established low-level concepts. We then compare
for our running example the results of

• applying the generalized ERV-algorithm Alg. 1 to obtain a complete finite prefix
of the symbolic unfolding of a given high-level Petri net, and

• first expanding a given high-level Petri net and then applying the ERV-algorithm
from [ERV02] for a complete finite prefix of the (P/T) unfolding.

Recall the notation for P/T Petri nets, branching processes, and unfoldings from
Sec. 2.1, as well as expansions from Sec. 2.3.1. With this, we can define for a high-level
occurrence net O the P/T occurrence net ExpO(O) := U(Exp(O)), i.e., the occurrence
net from the unfolding Υ(Exp(O)), which is given by (U(Exp(O)), πExp(O)). We abbre-
viate πExp(O) by πO. The operator ExpO therefore maps high-level occurrence nets to
occurrence nets (cf. [CF10]). Let now β = (O, h) be a symbolic branching process of N .
Then we can define the expanded symbolic branching process ExpO(β) := (ExpO(O), h)

of Exp(N) with the homomorphism h : ExpO(O) → Exp(N), defined by h(e) = t.σ
df⇔
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π
O(e) = e.σ ∧ h(e) = t and h(b) = p.c

df⇔ πO(b) = b.c ∧ h(b) = p for events e resp.
conditions b in ExpO(O). The following diagram serves as an overview:

N O β (O, h)

Exp(O) ⇝

Exp(N) ExpO(O) U(Exp(O)) ExpO(β) (ExpO(O), h)

Exp

h

Exp

ExpO ExpO

=

h

πO

= =

The following result is shown in [CF10]. It states that, for a high-level Petri net N ,
the unfolding of N ’s expansion is isomorphic to the expanded symbolic unfolding of N .

Lemma 4.20 ([CF10], Sec. 4.1). Υ(Exp(N)) ≃ ExpO(Υ (N)).

With this result, we state the following:

Lemma 4.21. Let N be a high-level Petri net and β be a prefix of Υ (N). Then β is
finite and complete if and only if ExpO(β) is a finite and complete prefix of Υ(Exp(N)).

The proof uses the results from Prop. 4.6 and Prop. 4.7, since the definition of com-
pleteness on the symbolic level is a direct translation from its P/T analogue.

Proof. Let β = (O, h) be finite and complete. From Lemma 4.20 we already know that
ExpO(O) ⊆ U(Exp(N)). Since ExpO(β) is a branching process of Exp(N), we see that is
a prefix of the unfolding of Exp(N). Also, ExpO(β) is obviously finite since O is a finite
high-level occurrence net.

We now prove that ExpO(β) = (ExpO(O), h) is complete. Let M be a reachable
marking in Exp(N). Then the high-level marking M defined by M(p, c) = M(p.c) is
reachable in N . Thus, since β is complete, there is a configuration C ∈ C(β) and an
instantiation θ ∈ Θ(C) satisfying a) and b) from Def. 4.9. This means there is a firing
sequence K0[e1, σ1⟩K1 . . . [en, σn⟩Kn with {e1, . . . , en} = C, σi = θ ◦ [v 7→ vei ]v∈Var(ei),
and Kn = cut(C, θ) (meaning M = mark(C, θ) = {| (h(b), c) | (b, c) ∈ Kn |}). Then, in
Exp(O), the marking {| b.c | (b, c) ∈ Kn |} is reachable from the initial marking {| b.c |
(b, c) ∈ K0 |} by the firing sequence (e1.σ1, . . . , en.σn). Thus, there is a configuration
C = {e1, . . . , en} in U(Exp(O)) = ExpO(O) with ∀i : πO(ei) = ei.σi. Then, by the
definition of h, we get markh(C) := {| h(b) | b ∈ cut(C) |} = {|h(b).c | (b, c) ∈ Kn |} = M.

Let now t.σ ∈ T s.t. M[t.σ⟩. Then M [t, σ⟩. Since C, θ satisfy property b) from
Def. 4.9, we know that ∃e ∈ E s.t. e /∈ C, h(e) = t, and C, θ[e, σ⟩. This means, in
Exp(β), we have {| b.c | (b, c) ∈ Kn |}[e.σ⟩. Thus, there exists an e in U(Exp(β)) such
that C[e.σ⟩ and πO(e) = e.σ, which again means that h(e) = h(e).σ = t.σ. This proves
that C and θ satisfy a) and b) from Def. 4.1, and therefore that ExpO(β) is complete.

The other direction works analogously.
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We can now compare the two complete finite prefixes resulting from the original ERV-
algorithm from [ERV02] applied to Exp(N) and the generalized ERV-algorithm Alg. 1
applied to N ∈ NF. From the definition of the generalized cut-off criterion we get that
both these prefixes have the same depth. However, due to the high-level representation,
the breadth of the symbolic prefix can be substantially smaller. This is the case for our
running example Three Times Termination:

Example 4.22. Consider again N ∈ NF from Figure 4.1 with Col = {0, 1, . . . ,m} for
a fixed m > 0. The complete finite prefix contains 6m4 +4m+2⌊m3 ⌋+2 nodes for every
fixed m in the color class Col = {0, 1, . . . ,m}. The complete finite prefix of the symbolic
unfolding Υ (N) that is shown in Figure 4.3, on the other hand has the same number of
nodes for every m.

As we stated above, both prefixes have the same depth. However, it is noteworthy
that, would we expand the symbolic prefix then it would be bigger than the P/T prefix.
The reason is that some cut-off events in the P/T prefix correspond to non cut-off events
in the symbolic prefix. �

Generalizing this example to a family of nets gives the following proposition:

Proposition 4.23. For every n ∈ N, there is a family (Nn
m)m∈N>0 of high-level nets

Nn
m ∈ NF such that every Nn

m has the set of colors Col = {0, . . . ,m}, and the family
satisfies that

• the complete finite prefix of Υ (Nn
m) obtained by Alg. 1 has the same number of nodes

for every m,

• the number of nodes in the low-level prefix of Υ(Exp(Nn
m)) obtained by the original

ERV-algorithm is greater than mn.

In particular, the benchmark family Fork And Join, which will be presented in
Sec. 4.6.2 satisfies this property.

4.4 Handling Infinitely Many Reachable Markings

When applying the generalized ERV-algorithm, Alg. 1, to high-level Petri nets with in-
finitely many reachable markings (therefore violating (3) from the definition of NF), the
proof for finiteness of the resulting prefix does not hold anymore: the proof of Prop. 4.18,
step (1), is a generalization of the proof of the respective claim in [ERV02]. This proof, in
its turn, uses the pigeonhole principle: the argument is that we cannot have |R(N)|+ 1
consecutive events s.t. their cone configurations each generate a marking in the net not
seen before, and we thus have a cut-off event. When we deal with infinitely many mark-
ings, this argument cannot be made.

In this section, we introduce a class NSC of safe high-level nets, called symbolically
compact, that have possibly infinitely many reachable markings (and therefore an infinite
expansion), generalizing the class NF. We then proceed to make adaptions to Alg. 1
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(specifically, to the used cut-off criterion), so that it generates a finite and complete
prefix of the symbolic unfolding for any N ∈ NSC.

The following Lemma precisely describes the finite high-level Petri nets for which a
finite and complete prefix of the symbolic unfolding exists. They are characterized by
having a bound on the number of steps needed to arrive at every reachable marking. For
the proof we argue that in the case of such a bound, the symbolic unfolding up to depth
n+ 1 is a finite and complete prefix, and that in the absence of such a bound no depth
of a prefix suffices for it to be complete.

Lemma 4.24. For a finite high-level Petri net N = (N ,M0) there exists a finite and
complete prefix of Υ (N) if and only if there exists a bound n ∈ N such that every marking
in R(N) is reachable from a marking in M0 by firing at most n transitions.

Proof. From Prop. 4.6 and Prop. 4.7 we see that for a finite high-level Petri net with
such a bound n, the prefix of the symbolic unfolding containing exactly the events e
with d(e) ≤ n+ 1 is complete. Finiteness of this prefix follows from the finiteness of the
original net and the definition of homomorphism.

Assume now that no such bound exists, and, for the purpose of contradiction, assume
that there is a finite and complete prefix β of Υ (N). Denote ñ = max{|C| | C ∈ C(β)} <
∞. Then there exists a marking M ∈ R(N) for which we have to fire at least ñ + 1
transitions to reach it. Again from Prop. 4.6 and Prop. 4.7 it follows that a configuration
C with M ∈ Marks(C) must contain at least ñ + 1 events, contradicting that β is
complete.

4.4.1 Symbolically Compact High-Level Petri Nets

We use the result of Lemma 4.24 to define the class NSC of high-level nets for which
we adapt the algorithm for constructing finite and complete prefixes of the symbolic
unfolding.

Definition 4.25 (Class NSC). A finite high-level Petri net N is called symbolically
compact if it satisfies (1) and (2) from Def. 4.10, and
(3*) There is a bound n ∈ N on the number of transition firings needed to reach all

markings in R(N).
We denote the class containing all symbolically compact high-level Petri nets by NSC. �

Note that in the case of a (finite, safe) P/T net, property (3*) is equivalent to (3)
(i.e., |R(N)| <∞). However, this is not true for all high-level nets N : while |R(N)| <∞
still implies (3*) (meaning NF ⊆ NSC), the reverse implication does not hold, as
our running example from Figure 4.1 demonstrates when we change the set of col-
ors to Col = N: it still satisfies (1) and (2), with R(N) = {{| (a, 0), (b, 0) |}, {| |}} ∪
{{| (c, k), (b, 0) |}, {| (a, 0), (d, k) |}, {| (c, k), (d, ℓ) |} | k, ℓ ∈ N+}. So we have infinitely many
markings that can all be reached by firing at most two transitions, meaning the net sat-
isfies (3*) and is therefore symbolically compact. The symbolic unfolding in this case
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is the same as for Col = {0, . . . ,m}, except that the color class is also replaced. The
complete finite prefix from Fig. 4.3 is also complete in this case.

Lemma 4.24 implies that the class NSC of symbolically compact nets contains exactly
all high-level Petri nets satisfying (1) and (2) for which a finite and complete prefix of the
symbolic unfolding exists (independently of the number of reachable markings). Since
the reachable markings of a high-level Petri net and its expansion correspond to each
other, this observation leads to an interesting subclass NSC\NF of symbolically compact
high-level Petri nets that have infinitely many reachable markings. For every net N in
this subclass

• there exists a finite and complete prefix of Υ (N), but

• there does not exist a finite and complete prefix of Υ (Exp(N)).

In particular, the original ERV-algorithm cannot be applied to Exp(N), since this ex-
pansion is an infinite net.

An example for such a net is our running example from Figure 4.3 when we replace
the color class Col = {0, 1, . . . ,m} by Col = N, as described above. Much simpler is the
following net, also with Col = N:

p 0 t

x

y
(4.2)

Obviously, every reachable marking {| (p, n) |} with n ∈ N can be reached by firing t one
time in mode {x← 0, y ← n}, so the net is symbolically compact. The expansion of this
net however is infinite, and the original ERV-algorithm does not terminate when applied
to it.

4.4.2 Insufficiency of the Cut-off Criterion for NSC

Naturally, the question arises whether the generalized ERV-Algorithm, Alg. 1, also yields
a finite and complete prefix of a symbolically compact input net. For many examples
(like the simple one in (4.2) above) this is the case. However, there are symbolically
compact high-level Petri nets for which Alg. 1 does not terminate.

The criterion for nontermination of Alg. 1 is that in the symbolic unfolding Υ of the
net, there is an infinite sequence of cone configurations [e1], [e2], . . . with [e1] ≺ [e2] ≺ . . .
such that

• ∀i ∈ N>0 : {e1, . . . , ei} ∈ C(Υ ), i.e., (e1, e2, . . . ) is a fireable sequence in the symbolic
unfolding Υ , and

• ∀i ∈ N>0 : Marks([ei]) ̸⊆
⋃

[e′]≺[ei]
Marks([e′]), i.e., no event ei is a cut-off event.

Note that in the second condition, the e′ in the union are abitrary events in the unfolding,
and not restricted to the sequence (e1, e2, . . . ). We give an example for a net satisfying
this criterion:
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a 0

α

β

b ε d

γ

δ

c0

1p

t

y z

y y + 1

(a) A symbolically compact net with Col = N.
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⊥
1

ε1

...
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...

...
...

ε2

...
...

...
...

...
...

...

(b) A prefix of the symbolic unfolding of the net in (a).

Figure 4.4: A symbolically compact net in (a) where Alg. 1, trying to build a complete
finite prefix of the symbolic unfolding shown in (b), does not terminate.

Example 4.26 (Non-termination of Alg. 1 for a symbolically compact net).
Consider the high-level Petri net in Figure 4.4a. The set of colors is given by Col = N.
Initially there is a token 0 in each of the places a and c. The token on a can cycle between
a and b by transitions α and β. Analogously, the other token can cycle between c and
d by γ and δ. Additionally, in the initial marking, there is a color 1 on place p. This
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number can be increased by 1 by firing t. Thus, every number n can be placed on p by
n− 1 firings of t. When, however, the two cycling tokens of color 0 are on places b and
d, an arbitrary number n can be placed directly on p by firing ε. The net therefore is
symbolically compact.

Examine now the unfolding in Figure 4.4b. Cut-off events and their output conditions
are again shaded blue. For a cleaner presentation we do not write the local predicate next
to each event. For the event ε′ we have Marks([ε′]) = {{| (b, 0), (d, 0), (p, n) |} | n ∈ N}.
This means, by firing no event, only β′′, only δ′′, or both β′′ and δ′′ from the corresponding
cut, we can represent every reachable marking in the net.

The sequence [t1], [t2], . . . of cone configurations, with the corresponding events shad-
ed orange, now satisfies the criterion from above: The condition ∀i : cut([ti])[ti+1⟩ is
obviously satisfied. The sequence of events corresponds to firing t infinitely often, always
increasing the number on p by 1. The cones [ti] are the only cone configurations where
the cuts represent a markings with no tokens on the two places b and d. For all other
cones in the unfolding, there is a 0 on b and/or a 0 on d. Thus, no event ti is a cut-off
event. This means if Alg. 1 is applied to the net in Figure 4.4a it does not terminate,
building a prefix containing every ti with i ∈ N+. �

4.4.3 The Finite Prefix Algorithm for Symbolically Compact Nets

As previously discussed, the argument that states the existence of one event in a chain of
|R(N)|+1 consecutive events, such that every marking represented by its cone configura-
tion is contained in the union of all markings represented by previous cone configurations,
cannot be applied in the case of an infinite number of reachable markings. Consequently,
Alg. 1 may not terminate when applied to a net in NSC \NF. However, condition (3*)
guarantees that every marking reached by a cone configuration [e] with depth > n can
be reached by a configuration C containing no more than n events.

For the algorithm to terminate, we need to adjust the cut-off criterion since we do
not know whether C is also a cone configuration, as demanded in Def. 4.15. Therefore,
we define cut-off* events, that generalize cut-off events. They only require that every
marking in Marks([e]) has been observed in a set Marks(C) for any configuration C ≺ [e],
rather than just considering cone configurations.

Definition 4.27 (Cut-off* event). Under the assumptions of Def. 4.15, the high-level
event e is a cut-off* event (w.r.t. ≺) if Marks([e]) ⊆ ⋃

C≺[e]Marks(C). �
We additionally assume that the used adequate order satisfies |C1| < |C2| ⇒ C1 ≺ C2,

so that every event with depth > n will be a cut-off event. Since all adequate orders
discussed in [ERV02] satisfy this this property (cp. Appendix 4.A.1), this is a reasonable
requirement. This adaption and assumption now lead to:

Theorem 4.28. Assume a given adequate order ≺ to satisfy |C1| < |C2| ⇒ C1 ≺ C2.
When replacing in Alg. 1 the term “cut-off event” by “cut-off* event”, it terminates for
any input net N ∈ NSC, and generates a complete finite prefix of Υ (N).
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Proof. The properties of symbolic unfoldings that we stated in Sec. 4.2.1 are independent
on the class of high-level nets. Def. 4.11 only uses that the considered net is safe, and so
do Prop. 4.12 and Prop. 4.14. We therefore only have to check that the correctness proof
for the algorithm still holds. In the proof of Prop. 4.18 (Fin is finite), the steps (2) and
(3) are independent of the used cut-off criterion. In step (1), however, it is shown that
the depth of events never exceeds |R(N)|+1. This is not applicable when |R(N)| =∞,
as argued above. Instead we show:
(1*) For every event e of Fin, d(e) ≤ n + 1, where n is the bound on the number of

transitions needed to reach all markings in R(N).
In the proof of Prop. 4.19, the cut-off criterion is used to show (by an infinite descent
approach), for any marking M ∈ R(N) the existence of a minimal configuration C ∈ Fin
with M ∈ Marks(C). Due to the similarity of cut-off and cut-off*, this proof can easily
be adapted to work as before:

Assume that at some point during the algorithm, we reach a state (B′, E′, H ′, g′,K′
0)

of the prefix under construction, such that there occurs a chain of events e1 < e2 < · · · <
en+1. We prove that en+1 must be a cut-off* event. Let M ∈ Marks([en+1]). Then, by
definition of NSC, M can be reached by firing at most n transitions. Accordingly, from
Prop. 4.7, we get that there is a configuration C ∈ Υ containing at most n events such
that M ∈ Marks(C). As in the proof of Prop. 4.19, we can now follow that there is a
configuration C̃ ∈ C(Υ ) such that M ∈ Marks(C̃) and C̃ ≺ C, that contains no cut-off
event and is therefore in Fin. Since |C| ≤ n < n + 1 ≤ |[en+1]|, we follow C̃ ≺ [en+1].
So we have that ∀M ∈ Marks([en+1])∃C̃ ≺ [en+1], which means that en+1 is a cut-off*
event. This proves that Fin is finite.

It remains to show termination. In the case of nets in NF, every object is finite, which,
together with Prop. 4.18, leads to termination of the algorithm. For nets in NSC \NF,
however, there is at least one event e in Fin s.t. |Marks([e])| = ∞. Thus, we have to
show that we can check the cut-off* criterion in finite time. This follows from Cor. 4.33
in the next section, which is dedicated to symbolically representing markings generated
by configurations.

4.4.4 Feasibility of Symbolically Compact Nets and Cut-Off*

To check the cut-off* criterion of an event added to a prefix of the unfolding, we have to
compare the set of markings represented by the cut of the event’s cone configuration to
all markings represented by cuts of smaller configurations. This means that we possibly
have to store the whole state space.

This realization gives rise to two questions. Firstly, how do we manage the storage
of an infinite number of markings? This query is addressed in Sec. 4.5, where we demon-
strate how to symbolically represent the markings represented by a configuration’s cut
and how to check the cut-off* criterion within finite time. The prototype implementation
outlined in Sec. 4.6.1 utilizes these methods for the NF-case.

The second question that arises asks how the complete finite prefix resulting from
the generalized ERV-algorithm with the cut-off* criterion relates to a reachability graph
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– both in terms of size and computation time. However, as symbolically compact nets
possibly have an infinite expansion, the reachability graph can be infinitely broad. Thus,
at present this method provides a more viable solution compared to calculating the
infinite reachability graph. However, we give an outlook on how a (finite) symbolic
reachability tree of a symbolically compact net could possibly be constructed.

Outlook: Symbolic Reachability Trees of Symbolically Compact Nets. The
idea of a symbolic reachability tree has been realized for algebraic Petri nets in [Sch95]
by Karsten Wolf. However, in contrast to this work, we think that for the class of
symbolically compact nets we can build a symbolic reachability tree that is complete.

The idea is to gradually extend for every subset P ′ of places a formula RP ′ that
symbolically describes all reachable markings that we have seen so far and have colors
on exactly all places in P ′. Initially, all formulae are false, except for RP0 , where P0 are
the initially marked places. RP0 symbolically represents the set of initial markings.

The symbolic reachability tree is then constructed by starting with a root n0 labeled
with κn0 = RP0 representing the set of initial markings. For every transition t, we can
determine whether t can fire in any mode from any marking represented by fn0 by a
satisfiability check. If t can fire, we add a new vertex n′, and label it with a formula κ′

that symbolically represents all markings reached from firing t in any mode from any
marking in M0. In all these markings, there are colors on the same set of places P ′.
If κ′ ⇒ RP ′ then we end this branch since this means we have seen every marking
represented by κ′ before. We then extend RP ′ to RP ′ ∨ κ′.

By repeating this procedure in breadth-first-order, we build a tree that symbolically
represents all reachable markings. This tree should correspond to the complete finite
prefix of the symbolic unfolding of the net to which you added a shared resource (in form
of a new place) that every transition consumes and recreates. We give here only the
idea, and not a formal definition. In future work we want to further investigate on such
a tree. We can then compare the complete finite prefix of the symbolic unfolding to the
symbolic reachability tree.

4.5 Checking Cut-offs Symbolically

We show how to symbolically check whether a high-level event e is a cut-off* event in finite
time. By definition, this means checking whether Marks([e]) ⊆ ⋃

C≺[e]Marks(C). How-
ever, since the cut of a configuration can represent infinitely many markings, when apply-
ing the adapted algorithm we cannot simply store the set Marks(C) for every C ∈ C(Fin).
Instead, we now define constraints that symbolically describe the markings represented
by a configuration’s cut. Checking the inclusion above then reduces to checking an im-
plication of these constraints. Since we consider high-level Petri nets with guards written
in a decidable theory, such implications can be checked in finite time.

At the end we see that this method can be easily adapted to symbolically check
whether, in a prefix of the symbolic unfolding of a net N ∈ NF, an event e is a cut-off
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event in the sense of Def. 4.15. This method is also used in the implementation described
in Sec. 4.6.1.

For the rest of this section, let N = (P, T, F, g,M0) ∈ NSC with symbolic unfolding
Υ (N) = (U, π) = (B,E,H, g,K0, π).

We first define for every condition b a new predicate pred⊙(b) by

pred⊙(b) := pred(e(b)) ∧ (π(b) = ve(b)).

This predicate now has (in an abuse of notation) an extra variable, called π(b). The
remaining variables in pred(e(b)) are Var [e(b)]∪{⊥}. As we know, pred(e(b)) evaluates to
true under an assignment θ : Var [e(b)]∪{⊥} → Col if and only if a concurrent execution
of [e(b)] with the assigned modes is possible (i.e., under every instantiation of [e(b)]). In
such an execution, θ(ve(b)) ∈ Col is placed on b. Due to the equality in the second part
of pred⊙(b), the predicate pred⊙(b) therefore can only be true if π(b) is assigned a color
that can be placed on b.

We now define for a co-set B′ ⊆ B of high-level conditions the constraint on B′

as an expression with free variables π(B′) = {π(b) | b ∈ B′} describing which color
combinations can lie on the places represented by the high-level conditions. We build
the conjunction over all predicates pred⊙(b) for b ∈ B′ and quantify over all appearing
variables ve.

For that we use the following notation: for a set X = {x1, . . . , xn} of arbitrary
variables, and a predicate P such that X is a subset of the variables in P , we abbreviate
∃x1, . . . , xn : P by ∃[X] : P .

The constraint on B′ is defined by

κ(B′) = ∃
[ ⋃

b∈B′
Var [e(b)]∪{⊥}

]
:
∧

b∈B′
pred⊙(b), (4.3)

With this notation that we just introduce, we quantify in (4.3) over all free variables in∧
b∈B′ pred⊙(b) except for the variables in π(B′).

We denote by Ξ(B′) the set of variable assignments ϑ : π(B′) → Col that satisfy
κ(B′)[ϑ] ≡ true.

Example 4.29. Consider the symbolic unfolding of the running example Three Times
Termination from Fig. 4.3. We described in Sec. 4.4.1 that for Col = N, the running
example from Fig. 4.1 is symbolically compact, and the symbolic unfolding does not
change (apart from the color class).

For condition a′ we have

pred⊙(a′) = pred(e(a′)) ∧ (π(a′) = ve(a
′))

= pred(⊥) ∧ (a = va
′

⊥ )

= (va
′

⊥ = 0) ∧ (vb
′

⊥ = 0) ∧ (a = va
′

⊥ ).
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For condition c′ we have

pred⊙(c′) = pred(e(a′)) ∧ (π(c′) = ve(c
′))

= pred(β) ∧ (c = xβ)

= pred(⊥) ∧ loc-pred(β′) ∧ (c = xβ′)

= (va
′

⊥ = 0) ∧ (vb
′

⊥ = 0) ∧ (v0β′ = vb
′

⊥) ∧ (v0β′ = 0) ∧ (xβ′ > 0) ∧ (c = xβ′).

Since {a′, c′} is a co-set, κ({a′, c′}) is defined and given by

κ({a′, c′}) = ∃
[ ⋃

b∈{a′,c′}
Var [e(b)]∪{⊥}

]
:

∧

b∈{a′,c′}
pred⊙(b)

= ∃va′⊥ ∃vb
′

⊥ ∃v0β′ ∃xβ′ :

(va
′

⊥ = 0) ∧ (vb
′

⊥ = 0) ∧ (a = va
′

⊥ ) ∧
(va

′
⊥ = 0) ∧ (vb

′
⊥ = 0) ∧ (v0β′ = vb

′
⊥) ∧ (v0β′ = 0) ∧ (xβ′ > 0) ∧ (c = xβ′).

This can be simplified such that

κ({a′, c′}) ≡ ∃va′⊥ ∃xβ′ : (va
′

⊥ = 0) ∧ (xβ′ > 0) ∧ (a = va
′

⊥ ) ∧ (c = xβ′),

and even further to
κ({a′, c′}) ≡ (a = 0) ∧ (c > 0).

We see that, as described above, the free variables in κ({a′, c′}) are {a, c} = {π(a′), π(c′)}.
The set Ξ({a, c}) contains all variable assignments ϑ : {a, c} → N+ satisfying (ϑ(a) =
0) ∧ (ϑ(c) > 0). �

For a configuration C, we have that B′ = cut(C) is a co-set, and π(B′) = π(cut(C))
describes the set of places occupied in every marking in Marks(C). Note that in this case,
we have

⋃
b∈cut(C)Var [e(b)] = VarC , i.e., the bounded variables in κ(cut(C)) are exactly

the variables appearing in predicates in C. For every instantiation θ of C we define
a variable assignment ϑθ : π(cut(C)) → Col by setting ∀π(b) ∈ π(cut(C)) : ϑθ(b) =
θ(ve(b)). Instantiations of a configuration and the constraint on its cut are related as
follows.

Lemma 4.30. Let C ∈ C(Υ (N)). Then Ξ(cut(C)) = {ϑθ | θ ∈ Θ(C)}.
Proof. The proof follows by construction of pred⊙ and ϑθ: Let ϑ ∈ Ξ(cut(C)). Then
true ≡ κ(cut(C))[ϑ]. Thus, there exists θ : VarC∪{⊥} → Col s.t.

( ∧

b∈cut(C)

pred⊙(b)
)
[ϑ][θ] ≡ true

and therefore
( ∧

b∈cut(C)

pred(e(b))[θ]
)
∧

( ∧

b∈cut(C)

ϑ(π(b)) = θ(ve(b))
)
≡ true. (4.4)
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From the inductive definition of pred then follows that ∀e ∈ C ∪ {⊥} : pred(e)[θ] ≡ true.
Thus, θ is an instantiation of C, and ϑθ = ϑ, as shown by the posterior conjunction in
(4.4).

Let on the other hand θ ∈ Θ(cut(C)). Then directly, by the definition of pred⊙(b)
and ϑθ, we get

(∧
b∈cut(C) pred

⊙(b)
)
[ϑθ][θ] ≡ true and by the definition of κ(cut(C)) that

κ(cut(C))[ϑθ] ≡ true, i.e., ϑθ ∈ Ξ(cut(C)).

From the definition of Cuts(C) and Marks(C) we get:

Corollary 4.31. Let C ∈ C(Υ (N)). Then Cuts(C) = {{(b, ϑ(π(b))) | b ∈ cut(C)} |
ϑ ∈ Ξ(cut(C))} and Marks(C) = {{| (π(b), ϑ(π(b))) | b ∈ cut(C) |} | ϑ ∈ Ξ(cut(C))}.
Example 4.29 (continued). For the configuration [β′] = {β} we have cut([β′]) =
{a′, c′}. Since a′ is initially occupied by a color 0, and β′ can only place a color greater
than 0 on c′, we get Cuts({β′}) = {{(a′, 0), (c′, k)} | k > 0}. And indeed we see that

{{(b, ϑ(π(b))) | b ∈ {a′, c′}} | ϑ ∈ Ξ({a′, c′})}
= {{(a′, ϑ(a)), (c′, ϑ(c))} | ϑ ∈ Ξ({a′, c′})}
= {{(a′, 0), (c′, k)} | k > 0} = Cuts([β′]).

From this we can also directly verify

Marks([β′]) = {{| (a, 0), (c, k) |} | k > 0}
= {{| (π(b), ϑ(π(b))) | b ∈ cut(β′) |} | ϑ ∈ Ξ(cut([β]))}.

Thus, the constraint κ(cut([β])) ≡ (a = 0) ∧ (c > 0) calculated above indeed precisely
described the markings represented by the cut of [β]. �

We now show how to check whether an event is a cut-off* event via the constraints
defined above. For that, we first look at general configurations in Theorem 4.32, and
then explicitly apply this result to cone configurations [e] in Cor. 4.33.

Theorem 4.32. Let C,C1, . . . , Cn be finite configurations in the symbolic unfolding of a
safe high-level Petri net s.t. ∀1 ≤ i ≤ n : π(cut(C)) = π(cut(Ci)). Then

Marks(C) ⊆
n⋃

i=1

Marks(Ci) if and only if κ(cut(C))⇒
n∨

i=1

κ(cut(Ci)).

Proof. Assume Marks(C) ⊆ ⋃n
i=1Marks(Ci) and let ϑ ∈ Ξ(cut(C)). We have that

Mϑ := {(π(b), ϑ(π(b))) | b ∈ cut(C)} ∈ Marks(C) by Cor. 4.31. Thus, ∃1 ≤ i ≤ n :
Mϑ ∈ Marks(Ci). This, again by Cor. 4.31, means ∃ϑi ∈ Ξ(cut(Ci)) :

Mϑ = {(π(b′), ϑi(π(b
′))) | b′ ∈ cut(Ci)}

This shows that ϑ = ϑi. Thus, κ(cut(Ci))[ϑ] ≡ true, which proves the implication.
Assume on the other hand κ(cut(C))⇒ ∨n

i=1 κ(cut(Ci)). Let M ∈ Marks(C). Then
∃ϑ ∈ Ξ(cut(C)) : M = {(π(b), ϑ(π(b))) | b ∈ cut(C)}. Thus, ∃1 ≤ i ≤ n : κ(cut(Ci))[ϑ]
≡ true. Let ϑi = ϑ. Then ϑi ∈ Ξ(cut(Ci)), and M = {(π(b′), ϑi(π(b

′))) | b′ ∈ cut(Ci)} ∈
Marks(Ci), which completes the proof.
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The following Corollary now gives us a characterization of cut-off* events in a symbolic
branching process. It follows from Theorem 4.32 together with the facts that Marks(C1)∩
Marks(C2) ̸= ∅ ⇒ π(cut(C1)) = π(cut(C2)), and that ≺[e] is finite.

Corollary 4.33. Let β = (O, h) be a symbolic branching process and e an event in β.
Then e is a cut-off* event in β if and only if

κ(cut([e]))⇒
∨

C≺[e]
h(cut(C))=h(cut([e]))

κ(cut(C)).

Example 4.34. Consider again the symbolic unfolding of the running example Three
Times Termination from Fig. 4.3 for Col = N. For the event ε′ we have π(cut([ε′])) =
{c, d}. We have only one configuration C satisfying C ≺ [ε′] and π(cut(C)) = {c, d},
namely C = {α′, β′}. Since κ(cut([ε′])) ≡ (c > 0) ∧ (d > 0) ≡ κ(cut(C)) we have
in particular κ(cut([ε′])) ⇒ κ(cut(C)), making ε′ a cut-off* event. This means ε′ is a
cut-off* event but no cut-off event. �

We showed how to decide for any event e added to a prefix of the unfolding whether
it is a cut-off* event, namely, by checking the above implication in Cor. 4.33. Note that
we can also check whether e is a cut-off event (w.r.t. Def. 4.15) by the implication in
Cor. 4.33 when we replace all occurrences of “C” by “[e′]”. This strategy of symbolically
checking cut-offs was in particular used in the implementation ColorUnfolder [Pan],
as described in the next section.

4.6 Implementation and Experimental Results

This section, we delve into the implementation details of the generalized ERV-algorithm
and discuss the results of our experiments. We give a concise overview of the technical de-
cisions made during implementation and provide an evaluation of its performance across
four benchmark families. We identify a property called “mode-determinism” that offers
an indicator for whether (a complete finite prefix of) the symbolic unfolding is expected
to be faster to construct than (a complete finite prefix of) the low-level unfolding. The
primary work on the implementation (described in Sec. 4.6.1) and experiments (described
in Sec. 4.6.4) was conducted by Lukas Panneke as part of his master thesis [Pan23].

4.6.1 Implementation Specifics

Other tools designed for generating (prefixes of) P/T Petri net unfoldings include Mole
[Sch], Cunf [Rod; RS13], and Punf [Kho]. However, as these tools are specifically
optimized for their intended purpose and do not cater to high-level Petri nets, the new
algorithms were not integrated into any of these frameworks. Furthermore, we refrain
from conducting a speed comparison between our implementation and the aforementioned
tools. The objective of Section 4.6 is to provide a comparison between two approaches:
calculating a respective complete finite prefix of the low-level or the symbolic unfolding.
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The prototype implementation is called ColorUnfolder [Pan] and written in the
Java programming language. It serves a dual purpose as an implementation of the
low-level approach as a base for comparisons, and the novel symbolic approach. It can
calculate a finite complete prefix of the low-level unfolding for a given high-level Petri net,
combining the concepts from [ERV02] (complete finite prefixes) and [KK03] (generating
the low-level unfolding without expansion). Additionally, it is capable of computing a
complete finite prefix of the net’s symbolic unfolding, utilizing a modified version of Alg. 1.
Since the goal was to compare the low-level with the high-level case, the considered nets
were restricted to the class NF to guarantee that the low-level unfolding exists.

Both, the generalized (Alg. 1) and the original ([ERV02]) ERV-algorithm create pos-
sible extensions that are structurally dependent cut-off events, whereas in the implemen-
tation a cut-off event never triggers the calculation of possible extension. With the same
idea, conditions in the postset of cut-off events are never considered for finding co-sets.
This leaves the finite complete prefix unmodified, as it only eliminates unnecessary work.

More importantly, the tool operates on a modified unfolding since an implementation
using the predicates defined here turned out to be very slow. It rewrites the predicates in
the unfolding and modifies arc labels to drastically reduce the number of variables. After
a finite complete prefix of the modified unfolding is found, the result is transformed
into the expected result with barely any overhead. The underlying idea is to reuse
the same variable in the unfolding for as long as the tokens represented by it in firing
modes have the same color. For example, in the unfolding presented in Figure 2.9b,
ColorUnfolder replaces the four variables by a single variable. For more details,
cf. [Pan23].

This optimization yields a significant speed up. However, when working on the sym-
bolic unfolding, in the experiments still more than 99 percent of the time is spent eval-
uating the satisfiability of predicates to identify cut-off events using Cor. 4.33, and to
detect when to discard event candidates because of a color conflict. For this task, the
cvc5 SMT solver [BBB+22] was chosen. It performed best in the relevant category
(non-linear arithmetic with equality and quantifiers) of the Satisfiability Modulo Theo-
ries Competition (SMT-COMP 2023)1.

4.6.2 Benchmark Families

In this section, we present the four benchmark families on which the calculation of (resp.
verification on) the symbolic unfolding was tested and compared to the calculation of
(resp. verification on) the low-level unfolding. These benchmark were developed together
with Lukas Panneke in the context of his master thesis [Pan23] and are introduced in
[WCHP23].

Fork And Join

The simplest of our benchmark families is called Fork And Join. In the initial marking,
a token resides on place p0. A transition t takes this token from p and places an arbi-

1https://smt-comp.github.io/2023/results/equality-nonlineararith-single-query

170

https://smt-comp.github.io/2023/results/equality-nonlineararith-single-query


4.6. Implementation and Experimental Results

trary color on each of its output places. A transition ε then takes these colors from all
places, ending the nets execution. We have two parameters: the first parameter, m ∈ N,
determines the set of colors Col = {0, . . . ,m}. The second parameter, n ∈ N, determines
the number of output places of t. Fig. 4.5 shows Fork And Join for n = 2 in (a) and for
n = 4 in (b).

p 0

t

p1 p2

ε

x1 x2

x1 x2

Col = {0, . . . ,m}

(a) n = 2.

p 0

t

p1 p4p2 p3

ε

x1 x2 x3
x4

x1
x2 x3 x4

Col = {0, . . . ,m}

(b) n = 4.

Figure 4.5: Fork And Join for n = 2 in (a) and n = 4 in (b).

The symbolic unfolding of a Fork And Join has n+3 nodes as it is structurally equal
to the net itself. The low-level unfolding of the expansion has (n+2)(m+1)n +1 nodes
(since t is fireable in (m+1)n modes). The P/T unfolding is presented in Appendix 4.A.2.

The Water Pouring Puzzle

This benchmark family generalizes the following logic puzzle (cf., e.g., [AP76]):

“You have an infinite supply of water and two buckets. One holds 5 liters,
the other holds 3 liters. Measure exactly 4 liters of water in one bucket.”

In our generalization we have two parameters. The first parameter is a finite list n =
[n1, . . . , nk] of natural numbers. Each entry ni represents an available bucket i holding
ni liters. The second parameter, m ∈ N is the amount of water that should be measured.
Fig. 4.6 shows the high-level Petri net corresponding to the parameters n = [3, 5] and
m = 4, corresponding to the puzzle above. Independently of the parameters, we have
Col = N. The current fill level of each bucket i is represented by a place bucket-i, with an
initial color 0, and two attached transitions fill -i and empty-i, that, when fired, replace
the color on bucket-i by ni or 0, respectively. Additionally, for each pair of buckets i, j,
there are two transitions i-transfer -j and j-transfer -i that transfer as much water as
possible from one bucket to the other without overflowing it. When at least one bucket
contains m liters, the transition goal can fire. We include a prefix the symbolic unfolding
of the net from Fig. 4.6 in Appendix 4.A.2.
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i1 i2

0bucket-1 0 bucket-2

1-transfer -2

(o2 ≤ 3 ∧ o1 = 0 ∧ o2 = i1 + i2)
∨(o2 = 3 ∧ o1 = i1− (3− i2))

2-transfer -1
(o1 ≤ 5 ∧ o2 = 0 ∧ o1 = i2 + i1)
∨(o1 = 5 ∧ o2 = i2− (5− i1))

fill -1

o = 5

fill -2

o = 3

empty-1

o = 0

empty-2

o = 0

i o

io

i o

io

i1

o1

i2

o2

i1

o1

i2

o2

Col = N

goal

i1 = 4 ∨ i2 = 4

Figure 4.6: The Water Pouring Puzzle with 2 buckets, where one can hold 5 liters and
the other can hold 3 liters.

Hobbits And Orcs

The Hobbits And Orcs problem2 is another logic puzzle (in particular one of many “river
crossing problems”, cf., e.g., [JPRA77; PS89]):

“Three Hobbits and three Orcs must cross a river using a boat which can carry
at most two passengers. For both river banks, if there are Hobbits present
on the bank, they cannot be outnumbered by Orcs (if they were, the Orcs
would attack the Hobbits). The boat cannot cross the river by itself with no
one on board.”

We generalize this problem by introducing two parameters. The first parameter, m ∈ N
is the number of both Hobbits and Orcs. We always have equally many of the two
parties. The second parameter, n ∈ N is the number of passengers the boat can carry.
We additionally assume that also on the boat, if there are Hobbits present, they cannot
be outnumbered by Orcs.

Figure 4.7a shows an illustration of the original puzzle presented above, with three
of both, Hobbits and Orcs, and a boat fitting two passengers. Figure 4.7b shows the
corresponding high-level Petri net. The colors are given by Col = N×N, where a tuples
describes the number of Hobbits and Orcs at a location – the left bank, the boat, or the
right bank. We start with three Hobbits and three Orcs on the left bank, indicated by
the tuple (3, 3) on the place bank -ℓ. The four center places describe the current state of
the boat, being either empty and docked on a bank, or loaded and on the river. Initially,

2The problem is also known as “Missionaries and Cannibals”, and is a variation of the “Jealous
Husbands” problem.
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(a) An illustration of the “Hobbits And Orcs” problem.3

(3, 3)

bank -ℓ

(0, 0) docked-ℓ

load-ℓ

h′ + x = h
o′ + y = o

h′ > 0 ⇒ h′ ≥ o′

x > 0 ⇒ x ≥ y
1 ≤ x+ y ≤ 2

unload-ℓ
h′ = h+ x
o′ = o+ y

h′ > 0 ⇒ h′ ≥ o′

crossing

returning

(h, o)

(h′, o′)

(0, 0)

(x, y)

(h′, o′)

(h, o)

(0, 0)

(x, y)

docked -r

load-r
h′ + x = h
o′ + y = o

h′ > 0 ⇒ h′ ≥ o′

x > 0 ⇒ x ≥ y
1 ≤ x+ y ≤ 2

unload-r

h′ = h+ x
o′ = o+ y

h′ > 0 ⇒ h′ ≥ o′

(0, 0)

bank -r

(h, o)

(h′, o′)

(0, 0)

(x, y)

(h′, o′)

(h, o)

(0, 0)

(x, y)

Col = N× N

goal

(3, 3)

(b) The problem modeled as a high-level Petri net.

Figure 4.7: The Hobbits And Orcs problem with 3 Hobbits, 3 Orcs, and a boat fitting 2
passengers.

there is a tuple (0, 0) on docked -ℓ, indicating an empty boat the left bank. Via the
transitions load and unload left and right, the boat can be loaded or unloaded, with the
guards ensuring all the conditions from the riddle regarding the number of Hobbits and
Orcs on both banks and on the boat. When all creatures are on the right bank, the
transition goal can fire, ending the net’s execution.

3The "Boat" icon used in Figure 4.7a is by DinosoftLabs from Noun Project, https://
thenounproject.com/dinosoftlab/.
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Mastermind

The last benchmark family models a generalization of the classic code-breaking game
Mastermind developed in the early Seventies and completely solved in 1993 [Knu77;
KL93]. The game is played between two players. The code maker secretly chooses an
ordered, four digit color code, with six available colors. The code breaker then guesses the
code. The code maker evaluates the guess by a number of red pins indicating how many
colors in the guess are in the correct position, and a number of white pins indicating how
many colors in the guess appear at a different position in the code. Using this knowledge,
the code breaker makes the next guess, with up to twelve attempts.

In our generalization we have three parameters. The first parameter, m ∈ N, describes
the number of available colors. The second parameter, n ∈ N, describes the length of
the code. The third parameter, k ∈ N, describes the number of guesses the code breaker
can make. To simplify the net, we restricted the allowed codes to not contain any color
twice.

code-maker 0

pick -code
∀i : ci ∈ {1, . . . , 6}
∀i, j : i ̸= j ⇒ ci ̸= cj

code-1 code-4code-2 code-3

c1 c2 c1 c2

tuple

code

guess-1 guess-2 guess-3 guess-4

guess∀i : ci ∈ {1, . . . , 6}
∀i, j : i ̸= j ⇒ gi ̸= gj

code-breaker 0

g1 g2 g3 g4

evaluate
r =

∑4
i=1 ci == gi

w =
∑4

i=1

∑4
j=1,j ̸=i ci == gj

g1
g2 g3

g4

(c1, c2, c3, c4) (c1, c2, c3, c4)

c1
c2 c3

c4

(c1, c2, c3, c4)

result retry

r ̸= 4
y < 12

1

attempt
(r, w) (r, w)

y

y + 1

Col = N

Figure 4.8: The Mastermind game with a code of length 4, 6 possible colors, and 12
attempts.
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Fig. 4.8 shows the high-level Petri net with m = 6 available colors, a code of length
n = 4, and k = 12 possible attempts, i.e., the scenario described above. The code maker
places one color on each of the four places code-i by firing pick -code. Transition tuple puts
these colors into a tuple on place code. The purpose of this (for the model unimportant)
transition is to make the symbolic unfolding, presented in Appendix 4.A.2, resemble an
actual game board of Mastermind. The code breaker, analogously to the code maker,
concurrently guesses a code via transition guess. Transition evaluate compares this guess
to the code and places the result, i.e., the corresponding number of red and white pins,
on result . From there, the code breaker either wins if the guessed code was correct, or
resets with transition retry , provided that he has another attempt left.

4.6.3 Mode-Deterministic High-Level Petri Nets

In the experiments presented in the next section we identified an important indicator
for whether using the symbolic approach for a finite complete prefix presented in this
chapter is expected to be faster than to calculate a complete finite prefix of the low-level
unfolding, combining the concepts of [ERV02] and [KK03].

The identified net property is that in every reachable marking of N , every transition
can fire in at most one mode. We call a high-level Petri net with this property mode-
deterministic, formally:

Definition 4.35. A high-level Petri net N with transitions T is called mode-determin-
istic iff

∀M ∈ R(N)∀t ∈ T ∃≤1σ ∈ Σ(t) : M [t, σ⟩. �
In the case of a mode-deterministic net N , the skeleton of N ’s symbolic unfolding

(essentially, the core structure of the high-level occurrence net, devoid of arc labels and
guards, and interpreted as a P/T Petri net) is equivalent in structure to the low-level
unfolding of N ’s expansion. This implies that the high-level abstraction does not offer
any computational advantage in the unfolding process. To the best of my knowledge,
this property has not been studied elsewhere.

We borrow terminology from “regular” determinism and say that a high-level Petri
net is mode-nondeterministic if it does not satisfy the above property, and implicitly
describe by a high or low “degree” of mode-nondeterminism if there are many or few
transition-mode combinations making the net mode-nondeterministic.

An illustrative example of a family of mode-deterministic nets is the benchmark
family Water Pouring Puzzle introduced in Sec. 4.6.2. Although this property may not
be immediately apparent, it is true that in every state of the system, all transitions can
fire in at most one mode. Specifically, transitions fill -i and fill -i replace the color on
bucket-i with a predetermined one. Every transition i -transfer -j emulates the transfer
of all water from bucket i that can fit into bucket j.

A condition that guarantees N to be a mode-deterministic net is as follows: “For
any conceivable assignment of colors to variables on input arcs, there exists at most
one possible mode that completes this assignment to all variables.” The nets in the
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Water Pouring Puzzle family fulfill this criterion, since all output variables (o) are either
predetermined or derived from the input variables (i).

An example for nets that have a high degree of mode-nondeterministism is the bench-
mark family Fork And Join from Sec. 4.6.2. There are only two transitions in the net,
but from the initial marking, t can fire in every of its mn modes. This structural pattern
of Fork And Join can also be observed in the Mastermind benchmark family (Sec. 4.6.2),
making these nets also mode-nondeterministic.

The Hobbits and Orcs family (Sec. 4.6.2), on the other hand, falls in between and
is highly contingent on the parameters involved. When there are only two seats on the
boat, there are merely five “potential modes” of load -ℓ from the initial marking (reflecting
the possible ways to occupy one or both seats with two types of creatures). However, in
the scenario where there are n seats on the boat, along with m Hobbits and Orcs, and
m > n, the total number of possibilities is

∑n
i=1 i + 1 = 1

2n(n + 3). It’s worth noting
that approximately half of these possibilities would result in more orcs than hobbits on
the boat, rendering them non-modes. Hence, given the condition m > n, the “degree”
of mode-determinism remains unaffected by an increase in m, but solely varies with the
parameter n.

In the subsequent section, we empirically validate the hypothesis that the degree
of mode-nondeterminism is proportional to the benefit gained from employing symbolic
unfolding compared to low-level unfolding.

4.6.4 Experiments and Results

We now present the experimental results of applying ColorUnfolder to the four
benchmark families described above. These experiments were set up by Lukas Panneke
as part of his master thesis [Pan23]. He then supplied the results in the form of Fig. 4.9,
Table 4.1, Fig. 4.10, and Table 4.2. These results are also presented in [WCHP23].

ColorUnfolder can check the reachability of a (set of) marking(s) by adding a
respective transition to the net. It then executes Alg. 1 but stops when an instance of
this transition is added to the prefix under construction, which means that the respective
(set of) marking(s) is/are reachable. When the algorithm terminates without such an
instance, the completeness of the prefix implies that the marking is not reachable.

For the nets from the Fork And Join benchmark family, the complete unfolding (being
its own smallest finite and complete prefix) is calculated. For the benchmark families
Water Pouring Puzzle and Hobbits And Orcs, the reachability of the goal state of the
riddle is checked. This is done by adding the respective goal transition that is depicted
in each of the two figures Fig. 4.6 and Fig. 4.7. This transition is not part of the input
net. Finally, for nets in the Mastermind benchmark family, reachability of a marking
with the result of n − 1 red pins and 1 white pin is checked. Such a marking is never
reachable, so always the complete (but finite) unfolding is calculated.

The tasks described above are executed twice, once using the symbolic unfolding
and once using the low-level unfolding as described in Sec. 4.6.1. The experiments are
calculated on an otherwise idle system with an Intel i7-6700K CPU at 4.0 GHz and
16 GB RAM.

176



4.6. Implementation and Experimental Results

Fork & Join. The results for Fork & Join are shown in Fig. 4.9.
In Fig. 4.9a, the elapsed time for calculating the low-level unfolding for the instance

with n places (x-axis) and m colors (y-axis) is indicated by the heatmap intensity of
the respective cell. Empty cells exceeded a 5-minute timeout. We see that the low-level
approach is only viable if at least one parameter is very small. It takes exponentially
more time with a growing color class and with growing number of places.

Since the symbolic approach outperforms the low-level approach by a wide margin,
it is presented in its own figure, Fig. 4.9b. For all the cases from Fig. 4.9a, the symbolic
approach takes around 200 ms to complete the symbolic unfolding. This is independent
of the color class {0, . . . ,m}. This corresponds to the fact that the structure of the
symbolic unfolding of Fork & Join is, for a fixed number of places n, independent of
the color class Col = {0, . . . ,m}. This even does not change for Col = N. Since cvc5
(the tool used for checking satisfiability, cp. Sec. 4.6.1) can handle such infinite color
domains, Col = N is fixed, and Fig. 4.9b shows the elapsed time (y-axis) for calculating
the symbolic unfolding of the Fork & Join instance with n places (x-axis). This approach
is very fast (but not linear in the number of places).

The symbolic approach is faster for all choices of the parameters. Only for the smallest
choices are both approaches equally fast within the margin of error. This behavior was
expected since the Petri nets are highly mode-nondeterministic, as explained above, and
the low-level unfolding is much broader than the symbolic unfolding.
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Figure 4.9: Time needed to calculate unfolding (a) and symbolic unfolding (b) of Fork
& Join.

Water Pouring Puzzle. For the Water Pouring Puzzle we cannot get interesting
results by varying one parameter while holing the others fixed, because the complexity
of the solution is highly volatile and dependent on the combination of all parameters.
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Since the nets are mode-deterministic, the low-level and symbolic unfolding, as well as
their prefixes, are isomorphic.

Table 4.1: Results of the Water Pouring Puzzle benchmark.

buckets n target m solvable |B| |E| time low-level time symbolic
3, 5 4 yes, 6 steps 90 75 95ms 1.2 s

15, 17 10 yes, 18 steps 258 195 220ms 36 s
57, 73 51 yes, 92 steps 1294 935 1.7 s > 1 h
9, 12 4 no 106 74 130ms 1.8 s
10, 16 5 no 190 134 140ms 11 s
8, 14, 17 2 yes, 4 steps 411 642 300ms 26 s
14, 26, 27 14 yes, 15 steps 21635 15279 7.7 s > 1 h
12, 15, 18 10 no 2391 1442 550ms 20min
12, 21, 27 8 no 4029 2444 1.0 s 88min

Table 4.1 presents the results for this benchmark. The original puzzle with n = [3, 5]
and m = 4 is included in the first line. Additionally, eight parameter sets were randomly
selected yielding four scenarios involving 2 buckets and four scenarios involving 3 buckets.

For each scenario it is indicated whether the puzzle is solvable, and in the positive
case, how many steps a minimal solution has. The times to check the reachability of
a goal state (fireability of the goal transition, cp. above) of the low-level and symbolic
approach are compared. The faster approach is highlighted with bold font. Additionally,
the number of conditions (|B|) and events (|E|) of the generated prefix is indicated. Each
of these two numbers coincides between the two approaches.

When the parameters are picked at random the low-level approach generally is much
faster. However,examples in which the symbolic approach outspeeds the low-level ap-
proach can be constructed. In these cases we have a large color domain but can reach
the goal quite quickly, e.g., with two buckets of capacity 106 and 106 + 1, and a target
of m = 1.

Hobbits And Orcs. For the Hobbits And Orcs benchmark the capacity n of the boat
is fixed in Figures 4.10a, 4.10b, 4.10c, and the number of each Hobbits and Orcs, m, is
plotted on the x-axis. The time needed by the low-level approach and by the symbolic
approach is indicated in blue and in orange, respectively, with a timeout of 3 minutes.

The low-level approach performs better when the boat capacity is smaller. For n =
2, the symbolic approach gets a timeout at m = 13 while the low-level approach can
calculate the prefix up to m = 33. We expected this behavior, because a smaller the
boat capacity yields a higher degree of mode-determinism in the net. With the capacity
n also the degree of mode-nondeterminism increases. For n ≥ 6 the symbolic approach
is faster for all population sizes. Independent of the boat size n, both approaches take
exponentially more time with growing population size.
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Figure 4.10: Results for Hobbits And Orcs problem for a fixed boat capacity n in (a),
(b), (c), and population with m of each Hobbits and Orcs on the x-axis. The orange line
shows the time needed by the symbolic approach and the blue line shows the low-level
approach.

Table 4.2: Results of the Mastermind benchmark.

Low-level Symbolic
k n m time |B| |E| time |B| |E|
12 4 6 > 2min - - 1min 149 36
1 3 3 86ms 219 48 62ms 14 3
1 3 5 1.8 s 18363 3720 54ms 14 3
1 3 6 18 s 72723 14640 61ms 14 3
1 3 7 > 2min - - 54ms 14 3
1 3 1000 > 2min - - 53ms 14 3
1 4 4 1 s 3651 624 60ms 17 3
1 4 5 > 2min - - 67ms 17 3
1 5 1000 > 2min - - 77ms 20 3
1 28 1000 > 2min - - 1 s 89 3
2 3 3 215ms 1719 438 206ms 24 6
2 3 4 3.3 s 110115 27672 120ms 24 6
2 3 5 111 s 1726443 432060 124ms 24 6
2 3 6 > 2min - - 119ms 24 6
2 3 1000 > 2min - - 127ms 29 6
2 4 4 5.5 s 137235 27672 1.3 s 29 6
2 4 5 > 2min - - 116ms 29 6
2 4 1000 > 2min - - 162ms 29 6
2 10 1000 > 2min - - 1 s 59 6
3 4 4 > 2min - - 35 s 41 9
4 3 3 2.6 s 46719 12138 803ms 44 12
5 3 3 39 s 234219 60888 1.3 s 54 15
6 3 3 > 2min - - 1.8 s 64 18
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Mastermind. Some results for the Mastermind benchmark are presented in Table 4.2.
The time needed by the low-level and symbolic approach to generate the unfolding is
compared, with a timeout of two minutes. The table also shows the number of nodes
(conditions |B| resp. |B|, and events |E| resp. |E|) in the unfolding. In each row the faster
time is highlighted in bold font.

The first line shows the original problem with k = 12 attempts, a code length of
n = 4, and m = 6 colors. We observe that in the low-level approach, time and size grow
exponentially with respect to the number m of colors, whereas the high-level approach
remains constant. When the parameter n controlling the length of the code is increased,
both approaches grow exponentially in time. Interestingly the high-level approach only
grows linear in size (number of nodes). This is due to the size of the guard of the evaluate
transition increasing exponentially (n choose 2).

Overall, the symbolic approach is the clear winner of the Mastermind benchmark. The
low-level approach can only barely compete for the smallest instances of the problem.

We also observe that, in comparison to other parameters, the performance of the
high-level approach drops when n = m. There currently is no obvious explanation for
this. This could be a quirk of the SMT solvers, or alternatively, the formulas may be
inherently more challenging to solve in this particular case. The low-level approach is
not impacted negatively by this case, but still much slower than the symbolic approach,
as seen in lines with parameters (1, 3, 3), (1, 4, 4), (2, 3, 3), (2, 4, 4), and in the last four
lines.

4.7 Related Work

Unfoldings of P/T Petri nets are first introduced by Nielsen et al. in [NPW81]. Engelfriet
generalizes this concept in [Eng91] by introducing the notion of branching processes, and
shows that the unfolding of a net is its maximal branching process. A comprehensive
overview of unfoldings is given in [EH08]. In [McM95], McMillan presents an algorithm
to compute a complete finite prefix of the unfolding of a given P/T Petri net. The
ERV-algorithm, leading to comparably small complete finite prefixes of the unfolding, is
presented in [ERV02]. This algorithm is generalized in [KKV03], where canonical prefixes
of unfoldings are introduced.

In [KK03], Khomenko and Koutny describe how to construct the unfolding of the
expansion of a high-level Petri net (given in the formalism of “M-nets” [BFF+95]) without
first expanding it. In [EHP+02], Ehrig et al. define processes of high-level Petri nets.
This work is continued in [EHGP08] for results about composition, equivalence and
independence of high-level net processes. In [CJ04], Chatain and Jard define symbolic
branching processes and unfoldings of high-level Petri nets. The work on the latter is
built upon in [CF10] by Chatain and Fabre, where they consider so-called “puzzle nets”.
Based on the construction of a symbolic unfolding, in [CJ06; Cha06], complete finite
prefixes of safe time Petri nets are constructed.

Unfoldings of unbounded P/T Petri nets (i.e., with infinitely many markings) have
been investigated in [AIN00; DJN04], and in [HST07] concurrent well-structured transi-
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tion systems with infinite state space are unfolded.

4.A Appendix

4.A.1 Examples of Adequate Orders

We show that the adequate order used in [McM95], as well as the orders ≺E and ≺F

treated in [ERV02], when lifted to the symbolic unfolding, are still adequate orders.
In particular we show that ≺F is a total adequate order on the symbolic unfolding,
limiting the size of the later constructed finite prefix. The definition of these orders
does not change, so we take most of the following notation and formulations directly
from [ERV02].

The orders ≺M and ≺E. The order ≺M used in [McM95] is defined by C1 ≺M C2 :⇔
|C1| < |C2|. It is trivial to see that ≺M satisfies i) and ii) from Def. 4.13. Since φ2

1,Q is
a injective, we have |φ2

1,Q(Q)| = |Q|, which yields iii).
For a high-level Petri net N , let ≪ be an arbitrary total order on the transitions

of N . Given a set E′ of events in the unfolding of N , let p(E′) be that sequence of
transitions which is ordered according to ≪, and contains each transition t as often as
there are events in E′ with label t. We say p(E1)≪ p(E2) if p(E1) is lexicographically
smaller than p(E2) with respect to the order ≪.

The order ≺E is then defined as follows: let C1, C2 be two configurations of the
symbolic unfoldings of a high-level Petri net. C1 ≺E C2 holds if either |C1| < |C2|, or
|C1| = |C2| and p(C1)≪ p(C2). The proof that ≺E is an adequate order works exactly
as in [ERV02]:

It is easy to show that ≺E is a well-founded partial order implied by inclusion. We
now show that ≺E is preserved by finite extensions. As already mentioned above, |Q| =
|φ2

1,Q(Q)|. Additionally, we have p(Q) = p(φ2
1,Q(Q)), since φ2

1,Q preserves the labeling
of events.

Assume C1 ≺E C2. If |C1| < |C2|, then |C1⊕Q| < |C2⊕φ2
1,Q(Q)|. If |C1| = |C2| and

p(C1)≪ p(C2), then |C1⊕Q| = |C2⊕φ2
1,Q(Q)| and, by the properties of the lexicographic

order, p(C1⊕Q)≪ p(C2⊕φ2
1,Q(Q)).

The Total Adequate Order ≺F . The Foata normal form FC of a configuration C
is obtained by starting with FC empty, and iteratively deleting the set Min(C) from C
and appending it to FC , until C is empty.

Given two configurations C1, C2, we can compare their Foata normal forms FC 1 =
C11 . . . C1n1 and FC 2 = C21 . . . C2n2 with respect to the order ≪ by saying FC 1 ≪ FC 2

if there exists i ≤ i ≤ n1 such that p(C1j) = p(C2j) for every 1 ≤ j < i, and p(C1i) ≪
p(C2i).

Definition 4.36 (Order ≺F ). let C1 and C2 be two configurations of the symbolic
unfolding of a high-level Petri net. C1 ≺F C2 holds if
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• |C1| < |C2|, or

• |C1| = |C2| and p(C1)≪ p(C2), or

• p(C1) = p(C2) and FC 1 ≪ FC 2.

�
We prove that ≺F is a total adequate order. In the proof, (a) – (c) are taken directly

from [ERV02], with small adaptations due to the high-level formalism. While the ideas
from (d) also come directly from [ERV02], we have work with the monomorphism φ2

1,Q

instead of the isomorphism I21 , and the new definition of adequate order. This is where
the only deviation from [ERV02] happens.

Let β = (O, h) be the symbolic unfolding of N = (N ,M0).

(a) ≺F is a well-founded partial order.

This follows immediately from the fact that ≺E is a well-founded partial order as
is the lexicographic order on transition sequences of some fixed length.

(b) C1 ⊂ C2 implies C1 ≺F C2.

This is obvious, since C1 ⊂ C2 implies |C1| < |C2|.
(c) ≺F is total.

Assume that C1 and C2 are two incomparable configurations under ≺F , i.e., |C1| =
|C2|, p(C1) = p(C2), and p(FC 1) = p(FC 2). We prove C1 = C2 by induction on
the common size k = |C1| = |C2|.
The base case k = 0 gives C1 = C2 = ∅, so assume k > 0.

We first prove Min(C1) = Min(C2). Aiming a contradiction, assume w.l.o.g. that
e1 ∈ Min(C1) \Min(C2). Since p(Min(C1)) = p(Min(C2)), Min(C2) contains an
event e2 s.t. h(e1) = h(e2). Since →Min(C1) and →Min(C2) are subsets of B0,
and all conditions of B0 carry different labels, we have →e1 = →e2, and thus,
pre (e1) = pre (e2). This contradicts the definition of symbolic branching processes.

Since Min(C1) = Min(C2), both C1 \Min(C1) and C2 \Min(C1) are configurations
of the branching process ⇑Min(C1) of (N ,Marks(Min(C1))), and they are incom-
parable under ≺F by construction. Since the common size of C1 \ Min(C1) and
C2 \Min(C1) is strictly smaller than k, we can apply the induction hypothesis and
conclude C1 = C2.

(d) ≺F is preserved by finite extensions.

Take two finite configurations C1 and C2, let Q be a finite suffix of C1, and let
M ∈ Marks(C1) ∩Marks(C2) such that C1JMKQ. We have to show that C1 ≺ C2

implies C1⊕Q ≺ C2⊕φ2
1,Q(Q).

First, notice that we can assume Q = {e}: For e ∈ Min(Q) we have from
C1JMKQ that ∃θ ∈ Θ(C1⊕Q) : mark(C1.θ|VarC1∪{⊥}) = M . Thus, for M ′ s.t.
M [h(e).σ⟩M ′ with σ = θ ◦ [v 7→ ve]v∈Var(e), we have that M ′ ∈ Marks(C1⊕{e}) ∩
Marks(C2⊕{φ2

1,Q(e)}) and (C1⊕{e})JM ′K(Q \ {e}).
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Second, the cases |C1| < |C2| and C1 ≺E C2 in (i), (and the respective cases |C2| <
|C1| and C2 ≺E C1 in (ii)) are easy (shown above). Hence, assume |C1| = |C2| and
p(C1) = p(C2).

Third, we show that under these two assumptions e is a minimal event of C ′
1 :=

C1 ∪ {e} if and only if φ2
1,Q(e) is a minimal event of C ′

2 := C2 ∪ {φ2
1,Q(e)}. Let

e be minimal in C ′
1, i.e., the transition h(e) can be fired in a mode in one initial

marking. Let p ∈ →h(e); then no condition in →C ∪ C→ is labeled p, since these
conditions would be concurrent to the p-labeled condition in →e, contradicting
that (N ,M0) is safe. Thus, C1 contains no event e′ with p ∈ →h(e′), and the
same holds for C2, since p(C1) = p(C2). Therefore, the conditions in cut(C2) with
label in→h(e) are minimal conditions of β, and φ2

1,Q(e) = e is minimal in C ′
2. The

reverse implication holds analogously, since about C1 and C2 we have only used
the hypothesis p(C1) = p(C2).

With this knowledge, we now show the implication. Assume C1 ≺F C2. We show
C ′
1 ≺F C ′

2.

If Min(C1) ≺E Min(C2), then we now see Min(C ′
1) ≺E Min(C ′

2), hence p(FC ′
1)≪

p(FC ′
2) and so we are done. If p(Min(C1)) = p(Min(C2)) and e ∈ Min(C ′

1), then

C ′
1 \Min(C ′

1) = C1 \Min(C1) ≺F C2 \Min(C2) = C ′
2 \Min(C ′

2),

hence C ′
1 ≺F C ′

2. Finally, if p(Min(C1)) = p(Min(C2)) and e /∈ Min(C ′
1), we again

argue that Min(C1) = Min(C2) and that, hence, C \Min(C1) and C2\Min(C1) are
configurations of the branching process ⇑Min(C1) of (N ,Marks(Min(C1))). With
an inductive argument we get C ′

1 \Min(C ′
1) ≺F C ′

2 \Min(C ′
2) and are also done in

this case.

4.A.2 More Symbolic and Low-Level Unfoldings

In this appendix we present unfoldings omitted in the main body of the paper.

Low-level Unfolding of Fork And Join. Since the symbolic unfolding of any Fork
And Join is structurally equal to the net itself we do not display it here. Fig. 4.11 shows
the low-level unfolding with (n+ 2)(m+ 1)n + 1 nodes for a Fork And Join.

Symbolic Unfolding of Water Pouring Puzzle. Figure 4.12 shows the complete
finite prefix of the symbolic unfolding of the Water Pouring Puzzle from Fig. 4.6 with
n = [5, 3] and m = 4, calculated by our implementation ColorUnfolder [Pan] of
the generalized ERV-algorithm, Alg. 1. The figure is automatically produced from the
output of ColorUnfolder. Cut-off events are marked by a red border. Additionally
marked by a red border are the events representing the added goal transition that checks
the target states. Since the net is mode-deterministic, the symbolic unfolding’s skeleton
coincides with the low-level unfolding. Thus, the skeleton of the complete finite prefix in
Figure 4.12 coincides with the complete finite prefix of the low-level unfolding generated
by the original ERV-algorithm from [ERV02].
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Figure 4.11: The symbolic unfolding of a Fork And Join, depending on the parameters
m and n.

Low-Level Unfolding of Mastermind. Figure 4.13 shows a prefix of the symbolic
unfolding of the Mastermind net from Fig. 4.8 with 6 available colors, a code of length
4, and 12 possible attempts. Combinatorial arguments give that the low-level unfolding
has more than 1037 nodes, so we do not present it here.
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Figure 4.12: A prefix of the symbolic unfolding of the Water Pouring Puzzle for n = [3, 5]
and m = 4, produced by ColorUnfolder.
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Figure 4.13: A prefix of the symbolic unfolding of the Mastermind net from Fig. 4.8.
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In this thesis, we have now investigated

• a reduction of proper high-level Petri games to a symbolic two-player game in
Chapter 3, and

• complete finite prefixes of the symbolic unfolding of safe high-level Petri nets in
Chapter 4.

However, a direct connection between the two concepts is still missing. In this chapter
we give a brief outlook on how to combine (complete finite prefixes of) symbolic unfold-
ings with high-level Petri games. We start with a proposal for a definition of symbolic
strategies and then give a glimpse into the possibilities of synthesizing such strategies.
The work in this chapter is unpublished.

The envisioned benefit of symbolic strategies over low-level counterparts is the abil-
ity to abstractly describe the correct behavior of system players in a high-level Petri
game. Notably, we aspire to articulate the significance of individual events in a system
player’s causal history for its decisions regarding the permission or prohibition of specific
transitions, respectively their modes.
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Chapter 5. Outlook: Symbolic Strategies for High-Level Petri Games

5.1 Defining Symbolic Strategies

In Sec. 2.2, Petri game strategies are defined as subprocesses of the unfolding satisfying
certain conditions. We show that a direct translation into the symbolic setting, i.e.,
trying to define symbolic strategies as subprocesses (prefixes) of the symbolic unfolding,
does not yield the desired result. We instead give an alternative, equivalent definition of
low-level strategies that can be lifted to the level of symbolic unfoldings more easily.

We define the symbolic unfolding of a high-level Petri game G as the unfolding
Υ (N(G)) of the game’s underlying high-level Petri net and, as in the P/T case, denote
by BS, BE, B⊛ the system-, environment-, and special conditions.

5.1.1 Insufficiency of Prefixes

Recall that in Sec. 2.2 strategies of P/T Petri games are defined as subprocesses (and
thus, prefixes) of the (low-level) unfolding. So a first idea is to define symbolic strategies
as prefixes of the symbolic unfolding. However, additionally to being a subprocess of the
unfolding, a low-level strategy must satisfy certain properties, namely determinism and
justified refusal. In case of a Petri game with safety objective, a winning strategy must
additionally be deadlock-free. These properties, however, are hard to achieve with the
definition of prefixes of the symbolic unfolding from Sec. 2.3.1. In particular, prefixes of
the symbolic unfolding inherently often do not satisfy the determinism property of Petri
game strategies.

We investigate this on the example Communicating Copycats from Fig. 2.6a. We
call this game G and continue to use it as a running example for this section. The
symbolic unfolding Υ (G) of Communicating Copycats is presented in Fig. 2.8. Recall
that for this example a(n informally described) winning strategy for the system players
is to communicate once after being generated and, equipped with the gained knowledge,
choose the correct values for x resp. y in the firing of mimA resp. mimB that enable the
firing of end . For m = 2 (determining Col = {0, 1, 2}) the winning low-level strategy of
the game’s expansion (the P/T Petri game Exp(G) in Fig. 2.4) is presented in Fig. 2.5.

The minimal prefix ξ = (Oξ, πξ) of the symbolic unfolding that contains this strategy
is presented in Fig. 5.1. “Contained” is meant in the sense that the strategy from Fig. 5.1
is a prefix of the expanded branching process ExpO(ξ) (cp. Sec. 4.3), and “minimal” is
meant w.r.t. the prefix relation. This prefix ξ however, is not deterministic: recall the
determinism condition b) in the P/T case from p. 17:

∀K ∈ R(Oξ) ∀b ∈ K ∩ BS ∃≤1e ∈ Eξ : b ∈ pre (e) ∧ K[e⟩.

When we translate translate this into the language of symbolic unfoldings using Prop. 4.6
and Prop. 4.7, we arrive at

∀K ∈ R(Oξ) ∀(b, c) ∈ K ∩ (BS ×Col) ∃≤1(e, σ) :

{
e ∈ Eξ ∧ σ ∈ Σ(e) ∧
(b, c) ∈ pre (e, σ) ∧K[e, σ⟩

. (5.1)
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com ′′

...
...

⊥vEnvB vEnvA

vEnvA = 0
vEnvB = 0

Figure 5.1: A minimal prefix ξ of the symbolic unfolding “containing” the winning strat-
egy from Fig. 2.5.

The prefix ξ from Fig. 5.1 does not satisfy this property: it is violated by every cut K
containing a (Sys ′′A, 0) or (Sys ′′B, 0). For such cuts K we have

K[mim ′′
A, {x← 1}⟩∧K[mim ′′

A, {x← 2}⟩, resp. K[mim ′′
B, {y ← 1}⟩∧K[mim ′′

B, {y ← 2}⟩.

An example for such a cut is {(Sys ′′A, 0), (Sys ′′B, 0), (GoA, 1), (GoB, 2)}, which is reached
by the firing sequence ((goB, {y ← 2})(goA, {x← 1})(com ′, {}))

The arguments above are analogous to saying that ξ cannot be a strategy because
ExpO(ξ) is not deterministic and therefore not a (low-level) Petri game strategy. ExpO(ξ)
contains all instances of both mim ′′

A and mim ′′
B. In a prefix of the symbolic unfolding

we cannot express that the “allowed” modes of mim ′′
A depend on the mode in which goA

fired, and analogously for mim ′′
B and goB.
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Chapter 5. Outlook: Symbolic Strategies for High-Level Petri Games

5.1.2 A Different View at Low-Level Strategies

Before we get to a proposal of how high-level strategies can be defined, we look at an
alternative but equivalent definition of low-level Petri game strategies. The idea behind
Petri game strategies is that every system player, depending on its causal history and
place, allows a set of transitions in the net that depend on the player’s participation,
i.e., transitions with the respective place in their preset. The conditions in the unfolding
precisely represent all place-history combinations. Thus, in the low-level case, Petri game
strategies can concisely be defined as subprocesses of the unfolding.

An alternative formal definition of low-level Petri game strategies would be a func-
tion ζ mapping every condition b ∈ B in the unfolding to a set ζ(b) ⊆ {t ∈ T | π(b) ∈
pre (t)} of transitions that the player with the corresponding causal history allows. For
environment conditions b ∈ BE, we would always have ζ(b) = {t ∈ T | π(b) ∈ pre (t)},
representing that a strategy for the system players cannot restrict the environments be-
havior. By such a definition, “justified refusal”, i.e., the requirement that players only
allow or forbid transitions in the net, and only depending on their history, would directly
be satisfied. For any co-set B′ in the unfolding (and in particular, cuts), we can then
define the set of allowed transitions by ζ(B′) =

⋂
b∈B′ ζ(b). For determinism, we would

need that in no cut of the unfolding, there are two fireable events that share a system
condition from the cut in their preset and their labels are both allowed, formally

∀K ∈ R(U) ∀b ∈ K ∩ BS ∃≤1e ∈ E : K[e⟩ ∧ b ∈ pre (e) ∧ π(e) ∈ ζ(K). (5.2)

To facilitate referencing this alternative definition, we call such functions strategy
functions:

Definition 5.1 (Petri Game Strategy Function). Let G be a P/T Petri game with
transitions T and unfolding Υ(G) = (U, π) having the conditions B events E. A strategy
function in G is a function ζ : B→ P(T) satisfying

• ∀b ∈ BS : ζ(b) ⊆ {t ∈ T | π(b) ∈ pre (t)},
• ∀b ∈ BE : ζ(b) = {t ∈ T | π(b) ∈ pre (t)}, and

• Condition (5.2). �
Example 5.2. We show how the strategy ξ from Fig. 2.5 (defined as a subprocess) would
be defined as a strategy function ζ on BS, where BS are the system conditions in the
unfolding. In Fig. 2.5 we see that the “first layer” of system conditions, i.e., Sys1A, Sys2A,
Sys1B, and Sys2B, all only participate in instances of the transition com. As a function,
this would read as

ζ(Sys1A) = ζ(Sys2A) = ζ(Sys1B) = ζ(Sys2B) = {com}.

The output conditions of the com events are Sys ijX with X ∈ {A,B} and i, j ∈ {1, 2}.
Recall that in this example we chose the names of conditions such that their superscripts
indicate the players knowledge (cp. p. 21): the condition Sys ijX represents that the player
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5.1. Defining Symbolic Strategies

on place SysX knows that Environment A fired goAi and Environment B fired goBj . To
reach the target place, the player on SysA must mimic Environment A and the player on
SysB must mimic Environment B. Thus, as a function ζ, the strategy reads as

∀i, j ∈ {1, 2} : ζ(Sys ijA) = {mimAi} ∧ ζ(Sys ijB) = {mimBj}.

For all other system conditions b in the unfolding we can define ζ(b) = ∅, since they are
never reached when only events representing allowed transitions are fired. �

Definition 5.1 is equivalent to the definition of Petri game strategies from Sec. 2.2 in
the sense that

• Petri game strategies in the form of subprocesses can be transformed into strategy
functions by a mapping subprocess2function,

• strategy functions can be transformed into Petri game strategies in the form of
subprocesses by a mapping function2subprocess, and

• for all Petri game strategies ξ in the form of a subprocess we have

function2subprocess(subprocess2function(ξ)) = ξ,

and for all strategy functions ζ we have

subprocess2function(function2subprocess(ζ)) = ζ

on the conditions that can be reached by firing only events representing allowed
transitions.

The formal proof is not given in this outlook chapter and left to the reader. The
mapping subprocess2function was implicitly presented in Example 5.2. The map-
ping function2subprocess can be defined such that it iteratively constructs a subpro-
cess. It starts with K0, and repeatedly adds all possible events e = (t,X) such that
∀b ∈ X : t ∈ ζ(b), and corresponding output conditions.

5.1.3 Proposing a Definition of Symbolic Strategies

We now use a similar intuition to define symbolic strategies, by lifting Def. 5.1 to the
formalism of symbolic unfoldings.

A high-level condition b represents a system player on place π(b) knowing that all
events in [e(b)] fired, and also in which mode they fired. This means the system players
knows for all events e ∈ [e(b)], for all variables v ∈ Var(e), what value v was assigned
by the mode in which e fired. Additionally, the system player knows the initial marking.
This corresponds to knowing the mode in which the special event ⊥ fired. We can
therefore say the knowledge of the system player corresponds exactly to knowing the
values of Var [e(b)]∪{⊥} = {ve | e ∈ [e(b)] ∪ {⊥}, v ∈ Var(e)}.

We now discuss how a system player on b can allow or forbid transitions in different
modes. It can describe in which modes it allows transitions t that take a color from π(b)
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Chapter 5. Outlook: Symbolic Strategies for High-Level Petri Games

to fire. The idea is now that, for every condition b in the unfolding, the system player
gives constraints on the set Var(t) of variables for every transition t with π(b) → t,
depending on its knowledge, i.e., thevalues of Var [e(b)]∪{⊥}.

This is expressed via a predicate ζ(b)t over all those variables Var [e(b)]∪{⊥}∪Var(t) for
every such transition t. If this predicate is unsatisfiable then this corresponds to no mode
being enabled ever for this transition. Similarly, if the predicate ζ(b)t is equivalent to true
then the condition allows all modes of this transition, independently of its knowledge.
The remaining case is that the predicate ζ(b)t is true for some but not all assignments of
colors to the variables from Var [e(b)]∪{⊥} ∪ Var(t). In this case the predicate explicitly
relates the allowed modes of transitions to the values of variables in the condition’s
causal history. The predicate can also be seen as a function that maps every variable
assignment on Var [e(b)]∪{⊥} (i.e., every possible history) to a set of variable assignments
on Var(t) (i.e., the allowed modes of t) such that the predicate evaluates to true under
the corresponding combinations of variable assignments.

When interpreting P/T Petri nets as high-level nets, the alternate definition of low-
level strategies from Sec. 5.1.2 corresponds to the predicate ζ(b)t of a transition t being
true if t is in the set of allowed transitions, and false if t is not in the set of allowed
transitions for a given condition b.

Definition 5.3 (Symbolic Petri Game Strategy). Let G be a high-level Petri game
with transitions T with unfolding Υ = (U, π) that has the system conditions B and events
E. A symbolic strategy for the system players in G is a function ζ mapping each b ∈ B to
a family of predicates ζ(b) = {ζ(b)t | π(b)→ t} such that every ζ(b)t is a predicate over
the variables Var [e(b)]∪{⊥} ∪ Var(t), satisfying ∀b ∈ BE ∀t ∈ T : π(b)→ t⇒ ζ(b)t = true
and

∀C ∈ C(Υ ) ∀θ ∈ Θ(C)∀b ∈ BS ∃≤1(e, σ) :

{
e ∈ E ∧ σ ∈ Σ(e) ∧ cut(C, θ)[e, σ⟩ ∧ b→ e

∧ ζ(b)π(e)[θ][σ] ≡ true.
�

The condition at the end describes determinism of the strategy: the quantified C and
θ describe all reachable cuts together with all possible histories of variable assignments
(analogous to K from (5.2)). As in (5.2), the quantified b describes all system conditions,
and (e, σ) are the event-mode combinations. The formula describes that no two such
fireable event-mode combinations that share a system condition in their preset are both
allowed in the same cut with the same history. Since modes are either allowed or forbidden
for every fixed history, Justified Refusal is trivially satisfied.

We demonstrate for our running example Communicating Copycats a symbolic strat-
egy corresponding to the low-level strategy from Fig. 2.5:

Example 5.4. Consider again the symbolic unfolding (already presented in Fig. 2.8 and
recalled as base for Fig. 5.1) of the high-level Petri game Communicating Copycats from
Fig. 2.6a. By Def. 5.3, a symbolic strategy for the system players in this high-level Petri
game equips every condition in the symbolic unfolding with a family of predicates. Fig-
ure 5.2 illustrates the symbolic strategy describing the procedure of “first communicate,
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5.1. Defining Symbolic Strategies

then mimic the environment” that was informally described on p. 20 and formally pre-
sented for the low-level case in Fig. 2.5. For every system condition b ∈ BS, the family of
predicates ζ(b) = {ζ(b)t | π(b)→ t} is denoted in red next to the condition in the form
of listing “t : ζ(b)t” for the t such that π(b)→ t.
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com : true
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Mim ′
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y
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⊥vEnvB vEnvA

vEnvA = 0
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Figure 5.2: An illustration of a symbolic strategy corresponding to the low-level strategy
in Fig. 2.5.

Consider condition Sys ′A. The predicates of the strategy are ζ(Sys ′A)com = true and
ζ(Sys ′A)mimA = false. By the above discussion this means that a system player on this
condition, independently of the history, allows transition com to fire in all modes of com
(in this case, the only mode), and forbids transition mimA to fire in any of its modes.
Analogously, a system player on condition Sys ′B allows com to fire but forbids mimB to
fire in any mode.

The events in the unfolding which are π-labeled by com, mimA or mimB and involve
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Sys ′A or Sys ′B are com ′, mim ′
A, and mim ′

B. Since Sys ′A resp. Sys ′B forbid mimA resp.
mimB to fire in any mode, the events mim ′

A and mim ′
B may never fire in the described

strategy. we gray out these events in the figure, as well as every node causally dependent
on them.

The event com, however, can fire, and after this we arrive at the conditions Sys ′′A
and Sys ′′B. Independent of the history (i.e., the values of y and x in the modes of
firing goA and goB), the two conditions forbid com to fire by ζ(Sys ′′A)com = false and
ζ(Sys ′′B)com = false. We again gray out the event com ′′ and all nodes that are structurally
dependent on it.

Now comes the crucial part of the strategy: it is ζ(Sys ′′A)mimA = (x = xgoA
). This

means that a system player on Sys ′′A allows mimA to fire only in the modes where x is
assigned the same value that the mode of goA assigned to x. This corresponds to “mimic
the environment”, and is not expressible by a only prefix of the symbolic unfolding.
Analogously, a system player on Sys ′′B allows mimB to fire only in the modes where y is
assigned the same value that the mode of goB assigned to y.

The corresponding events are mim ′′
A and mim ′′

B with respective output conditions
Mim ′′

A and Mim ′′
B. Players on these conditions allow end to fire in any mode. The

only corresponding event is end ′′ with output condition Target ′′. The set {t ∈ T |
π(Target ′′)→ t} is empty, so we trivially have ζ(Target ′′) = {} and therefore list nothing
next to the condition.

By deleting from the symbolic unfolding the branches that are dependent on events
which are (independently of the variables) forbidden, we can depict the strategy as a
structure that could be described as a “refined prefix” of the symbolic unfolding, as seen
in Fig. 5.2. We now demonstrate exemplarily for two configurations C why this strategy
is deterministic, i.e., satisfying the formula from Def. 5.3.

The first example is the configuration C = {goB, goA}. Consider the instantia-
tion θ = {ygoB

← 1, xgoA
← 2} ∈ Θ(C). The corresponding cut is cut(C, θ) =

{(GoB, 1), (GoA, 2), (Sys
′
A, 0), (Sys

′
B, 0)}. The event-mode combinations (e, σ) that can

fire from this cut are

(com ′, {}), (mim ′
A, {x← 1}), (mim ′

A, {x← 2}), (mim ′
B, {y ← 1}), (mim ′

B, {y ← 2}).

Consider now the system condition b = Sys ′A. We verify that at most one of the event-
mode combinations (e, σ) from above satisfies Sys ′A → e and ζ(b)π(e)[θ][σ] ≡ true. We
have Sys ′A → com ′ and Sys ′A → mim ′

A.

• For (e, σ) = (com ′, {}) we have ζ(Sys ′A)π(e)[θ][σ] = ζ(Sys ′A)com [θ][σ] ≡ true[θ][σ] ≡
true.

• For (e, σ) = (mim ′
A, {x ← 1}) we have ζ(Sys ′A)π(e)[θ][σ] = ζ(Sys ′A)mimA [θ][σ] ≡

false[θ][σ] ≡ false.

• For (e, σ) = (mim ′
A, {x ← 2}) we have ζ(Sys ′A)π(e)[θ][σ] = ζ(Sys ′A)mimA [θ][σ] ≡

false[θ][σ] ≡ false.

So only (e, σ) = (com, {}) satisfies Sys ′A → e and ζ(Sys ′B)π(e)[θ][σ] ≡ true. Analogously,
(e, σ) = (com, {}) is also the only event-mode combination satisfying Sys ′B → e and

194



5.2. A Glimpse into Synthesis of Symbolic Strategies

ζ(Sys ′B)π(e)[θ][σ] ≡ true. These arguments hold independently of θ. Thus, we showed
that ζ satisfies the determinism condition from Def. 5.3 for the fixed C = {goB, goA}.

The second example is the configuration C = {goB, goA, com ′}. Consider again the
instantiation θ = {ygoB

← 1, xgoA
← 2} ∈ Θ(C). The corresponding cut is cut(C, θ) =

{(GoB, 1), (GoA, 2), (Sys
′′
A, 0), (Sys

′′
B, 0)}. The event-mode combinations (e, σ) that can

fire from this cut are

(com ′′, {}), (mim ′′
A, {x← 1}), (mim ′′

A, {x← 2}), (mim ′′
B, {y ← 1}), (mim ′′

B, {y ← 2}).
Consider now the system condition b = Sys ′′A. We verify that at most one of the event-
mode combinations (e, σ) from above satisfies Sys ′′A → e and ζ(Sys ′′A)π(e)[θ][σ] ≡ true.
We have Sys ′′A → com ′′ and Sys ′A → mim ′′

A.

• For (e, σ) = (com ′′, {}) we have ζ(Sys ′′A)π(e)[θ][σ] = ζ(Sys ′A)com [θ][σ] ≡ false[θ][σ]
≡ false.

• For (e, σ) = (mim ′′
A, {x← 1}) we have

ζ(Sys ′′A)π(e)[θ][σ] = ζ(Sys ′′A)mimA [θ][σ]

≡ (x = xgoA
)[ygoB

← 1, xgoA
← 2][x← 1]

≡ (1 = 2)

≡ false.

• For (e, σ) = (mim ′′
A, {x← 2}) we have

ζ(Sys ′′A)π(e)[θ][σ] = ζ(Sys ′′A)mimA [θ][σ]

≡ (x = xgoA
)[ygoB

← 1, xgoA
← 2][x← 2]

≡ (2 = 2)

≡ true.

So only (e, σ) = (mim ′′
A, {x ← 2}) satisfies Sys ′′A → e and ζ(Sys ′′A)π(e)[θ][σ] ≡ true.

Analogously, only (e, σ) = (mim ′′
B, {y ← 1}) satisfies Sys ′′B → e and ζ(Sys ′′B)π(e)[θ][σ] ≡

true. For all other instantiations θ ∈ Θ(C), the arguments are analogous. Thus,
we showed that ζ satisfies the determinism condition from Def. 5.3 for the fixed C =
{goB, goA, com ′}. �

5.2 A Glimpse into Synthesis of Symbolic Strategies

After providing a definition of symbolic strategies for high-level Petri games, naturally
the question arises whether we can transfer the results of synthesizing strategies of P/T
Petri games to the symbolic level. In this section, we initiate a preliminary discussion
on the generalization of two established synthesis approaches. The first approach is the
one presented in [FO17; Gie22], where the Petri game is reduced to a two-player game.
The second approach, presented in [Fin15], is called bounded synthesis and searches for
finite representations of possibly infinite strategy in a progressively increased prefix of
the unfolding.
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Synthesis via reduction to a two-player game. In Sec. 3.1.3, we recalled the
approach from [FO17; Gie22] of reducing a (in our case, proper) Petri game to a two-
player game on a finite graph. In Sec. 3.2 we reduced the size of this two-player game
by considering equivalence classes of nodes with respect to symmetries in the net. The
resulting two-player game was called the symbolic two-player game.

I now first briefly discuss the question whether the reduction w.r.t. symmetries is
compatible with the notion of symbolic unfolding, i.e., whether strategies in the sym-
bolic two-player game can be translated into symbolic strategies. I will elaborate on
my perspective on why I think that, even if this was possible, a symmetry-based ap-
proach is suboptimal. While this concepts shares a similar foundational idea to symbolic
unfoldings, they differ in its execution.

Following this discussion, I will briefly explain my viewpoint on why, in general, the
approach for the two-player game presented in [FO17; Gie22] would have to undergo a
major revision to generate symbolic strategies.

One reason why I think that a symmetry-based approach is suboptimal is that the
reduction by symmetries, is often not as strong as the one in the symbolic unfolding.
In some instances, there might be no reduction at all. This means one possibly has to
consider multiple vertices in the symbolic two-player game that all correspond to the
same cut in the symbolic unfolding. Every time the same condition is encoutered, the
strategy function would have to be modified to include the setting of each corresponding
vertex.

Another reason for incompatibility of the two approaches is that the (low-level) strate-
gies generated by the approach with the symbolic two-player game are always “symmetric”
in the sense that, in any two states that are symmetric to each other, the decisions of
the system players in one state are symmetric to the decisions in the other state. Sym-
bolic strategies as defined above, however, can encode different/asymmetric behavior in
symmetric situations. This means losing a property from the low-level case described in
App. 3.A: for a given P/T Petri game G, we can represent any strategy for the system
players in G by a strategy for player 0 in the two-player game G(G). In case of a high-level
Petri game G, however, “asymmetric” symbolic strategies for the system players cannot
be represented by strategies for Player 0 in the symbolic two-player game G(G).

The second reason can be extended into an argument convincing me that the ap-
proach presented in [FO17; Gie22] for the two-player game reduction of P/T Petri games
cannot be generalized without significant modifications to high-level Petri games. In the
proposed definition of symbolic strategies, the set of modes of a transition that a player
on a system condition allows (encoded by the predicate) can explicitly depend on all
values of variables around events in the condition’s past.

In the low-level two-player game on the other hand, each vertex in the two-player
game corresponds to an enriched marking in the P/T Petri game. One could think of
constructing a two-player game where vertices represent enriched “symbolic markings”.
However, not in the sense of symmetries, as it involves variables replacing colors on
places and in modes of transitions. Just like, in the (low-level) two-player game, we do
not remember the whole causal history but only the occupied places, one would now not
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remember all used variables but only represent the values of variables on arcs to the
occupied places.

Such an approach would naturally lead to equivalence classes. While resembling the
concept of dynamic decision sets from Sec. 3.3, it differs by having a distinct variable on
each place and being independent of symmetries. The symmetries in Sec. 3.3, however,
ensured compatibility of equivalence classes with the firing relation. Without relying
on symmetries, maintaining this compatibility necessitates storing information about
relations between variables. The specifics of what must be stored depend on the logic
used for expressing guards, but it would probably lead to an increase of the size of the
two-player game that is exponential in the number of variables. Additionally, a way must
be found to build the predicates constituting the symbolic strategy only on the variables
the corresponding condition knows.

This brief exploration indicates a significant modification of the two-player game ap-
proach is needed even with preliminary considerations. However, it presents an intriguing
avenue for future research.

Bounded Synthesis. Finally, I briefly consider the potential of bounded synthesis for
the aforementioned symbolic strategies in high-level Petri games. For low-level Petri
games with a safety objective, a bounded synthesis approach has been introduced in
[Fin15]. This approach involves seeking winning strategies for system players within a
prefix of the Petri game’s unfolding, progressively increasing two bounds that restrict
the width and depth of the prefix. It is noteworthy that, in these prefixes, the search for
infinite strategies is conducted, leading to certain arcs being implicitly looped back into
the prefix.

The result of the search then is a finite representation of a possibly infinite strategy.
By considering prefixes of the symbolic unfolding, these methodologies may potentially
extend to high-level Petri games. Techniques [CHJ+14; AHP+22], where a progressively
growing complete prefix of the unfolding of a P/T Petri net is employed, may prove
valuable in this context. However, since in the proposed definition, symbolic strategies
are families of predicates over variables in the unfolding, verifying the existence of a
strategy essentially involves synthesizing functions [KMPS10; FG19]. In general, this
problem is undecidable [FW21]. Nevertheless, under certain constraints on the structure
of the considered high-level Petri games and the logic of guards, there might be feasible
scenarios.
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Chapter 6

Conclusions

We introduced a symmetry-exploiting solving algorithm for a subclass of expansion safe
high-level Petri games with a single recurrently interfering source of external information.
The main part of the algorithm is a reduction of the high-level Petri game to a two-player
game which vertices consist of enriched equivalence classes of the Petri game’s behavior.
The key idea of the reduction is borrowed from the reduction of a P/T Petri game with
a single external source of information to a two-player game presented in [FO17; Gie22].
We proved the correctness of the new reduction by defining a bisimulation between the
new game and the game obtained by converting the high-level Petri game to a P/T
Petri game and applying the reduction of [FO17; Gie22]. Experimental results show that
utilizing the symmetries of the system enabled us to reduce the state space needed for
resolving the synthesis problem in the presented benchmark families by up to three orders
of magnitude. Next, we presented the definition and computation of unique, canonical
representations for the equivalence classes forming the vertices in the symbolic two-player
game. Although there is an associated fixed cost for computing these representations,
the worst-case scenario is an improvement compared to the absence of canonical repre-
sentations. Experiments show that employing the canonical representations as vertices
in the symbolic two-player game results in a performance gain for larger state space to
number of symmetries ratio.

We introduced the notion of complete finite prefixes of symbolic unfoldings of high-
level Petri nets. We identified a class of safe high-level Petri nets generalizing safe P/T
Petri nets, for which we generalized a well-known algorithm by Esparza, Römer, Vogler
to compute such a finite and complete prefix. This constitutes a consolidation and
generalization of the concepts of [ERV02; Cha06; CF10; CJ04]. While the resulting
symbolic prefix has the same depth as a finite and complete prefix of the unfolding of
the represented P/T Petri net, it can be significantly smaller due to less branching.
In the case of infinitely many reachable markings (where the original algorithm is not
applicable) we identified the class of so-called symbolically compact nets for which an
adapted version of the generalized algorithm can be applied. For that, we showed how
to check an adapted cut-off criterion by symbolically describing sets of markings. An
implementation of the generalized algorithm, which was tested against four benchmark
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families, confirmed that a high degree of mode-nondeterminism in a high-level Petri net
favors the symbolic approach, surpassing the performance of the low-level approach.

Future Work. Several improvements regarding symmetries in high-level Petri nets
exist in the literature. For example, the papers [HITZ95; BHI04; BC04; BC05; Cap05]
introduce efficiency improvements for systems with a mixture of symmetric and asymmet-
ric behaviors, or, in [TDM03] the symmetries of entirely symmetric models are deduced
from the system itself, i.e., the color classes of a symmetric net can be partitioned au-
tomatically. It seems interesting to investigate to what extent distributed synthesis via
high-level Petri games could profit from these results. Additionally, applying symme-
tries to decidability procedures for Petri games with other restrictions on the number of
players or net structure [FG17; HO22] or other objectives for the system players [Hec21;
FGHO22; Han23] could potentially yield significant state-space reductions in these cases.

Another intriguing goal is the construction of a symbolic reachability tree for sym-
bolically compact nets, and a comparison with the complete finite prefix, as outlined in
Sec. 4.4.4.

Moreover, it seems feasible to extend the definition and computation of complete finite
prefixes of the symbolic unfolding to k-bounded high-level Petri nets. This extension can
probably leverage the generalizations proposed in [ERV02] for k-bounded P/T Petri nets.

Ultimately, achieving the synthesis of symbolic strategies for high-level Petri games,
emerges as a crucial component to finalize the comprehensive framework of high-level
Petri games. An outlook on this topic was given in Chapter 5. In particular, the results
for finite complete prefixes could be employed in a bounded synthesis approach, with
techniques similar to [Fin15] or [CHJ+14; AHP+22], with a stepwise increasing bound
on the size of the symbolic unfolding.
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†
-resolution, 50

symbolic, 65, 120
-symbol, 49

adequate order, 140
high-level, 148

arc, 12
weight, 12

basic
color class, 84
function, 95

bisimulation
transition systems, 70
two-player games, 70

bounded
k-bounded, 13

branching process, 14
complete, 139
initial, 14
symbolic, 30

complete, 146
expanded, 155
initial, 30

canonical
representation, 116
representative, 120
two-player game, 124
valid assignment, 119

causal net, 13
causally related, 13
class NF, 146
class NSC, 158
co-set, 13, 32

color
conflict, 32
domain, 84

function, 84
symbolic, 101

colors, 23
commitment set, 50
complete

branching process, 139
symbolic, 146

composition of functions, 12
concurrent, 13, 32

concurrent run, 14
condition, 13, 28

environment, 17, 186
special, 17, 186
system, 17, 186

configuration, 13, 33
cone, 13, 143
cut of conf., 13
future, 140
marking, 139
symbolic

cut of symb. conf., 33
future, 145
instantiation, 144

conflict, 13
color conflict, 32
structural, 28

constraint, 164
contains

bad place, 51, 63, 123
target place, 51, 63, 123

context, 107
cut, 13, 28
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initial, 13, 28
of configuration, 13
of instantiated conf., 144
of symb. conf., 33

cut-off
event, 140

high-level, 150
cut-off* event, 161

deadlock, 51, 63, 123
-free, 17

decision set, 50
dynamic, 103
symbolic, 60

depth, 153
deterministic, 17
disjoint union, 11
dynamic

decision set, 103
partition, 98

trivial, 105
representation, 103

canonical, 116
minimal, 109
ordered, 116
trivial, 105

subclass, 98
cardinality, 99

edge relation, 48
labeled, 49

environment
-dependent, 51, 63, 123

equivalent w.r.t. symmetry, 60
event, 13, 28
expansion, 24, 25, 88

of symb. branching proc., 155
safe, 25

extension, 140, 147
possible, 151

finite
high-level Petri net, 24

flow function, 12, 23, 84

folding, 82
future, 140, 145

guard, 23, 85
guarded function, 96

high-level Petri net, 23
homomorphism, 13, 24

initial, 14, 24

identity function, 11
instantiation of configuration, 144
isomorphic two player games, 124
isotropy group, 64

justified refusal, 17

label, 14
labeled edge relation, 49

marking, 12, 23, 85
initial, 12, 23

symmetric, 89
of decision set, 50

matrix, 113
merging dynamic subclasses, 106
minimal representation, 109
mixed communication, 45
mode, 23

-determinism, 173
multi-set, 12

net structure, 12, 23
ordinary, 13, 28

nondeterministic, 51, 63, 123

objective, 15, 25
reachability, 15
safety, 15
type, 15

occurrence net, 13
high-level, 28

orbit problem, 80
constructive, 80

ordered
color class, 84
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representation, 116

permutation, 109
Petri game, 15

high-level, 25
parameterized, 25
proper, 46

proper, 46
symmetric, 90

Petri net, 12
finite, 12
high-level, 23
underlying, 15

high-level, 25
place, 12, 23

bad, 15, 25
environment, 15, 25
special, 15, 25
system, 15, 25
target, 15, 25
type, 81

play
in a Petri game, 17

conforming to strategy, 18
won by the system players, 18

in a two-player game, 48
conforming to a strategy, 48
won by Player 0, 48

possible extensions, 151
postset, 12, 23
predicate, 29, 164

local, 29
prefix, 14, 30
preset, 12, 23

reachability objective, 15
recurrently interfering environment, 45
representation

dynamic, 103
high-level representation, 25
matrix, 113

representative, 60
canonical, 120

safe, 13, 24
expansion safe, 25

safety objective, 15
standard

forms, 94
functions, 96
predicates, 94

static subclass, 84
strategy

in a high-level Petri game, 28
symbolic, 190
winning, 28

in a Petri game, 17
function, 188
winning, 18

in a two-player game, 48
positional, 48
winning, 48

tree, 130
subnet, 14
subprocess, 14
successor function, 84
suffix, 140, 147
symbolic
†-resolution

between canon. representations, 120
between symbolic decision sets, 65

branching process, 30
complete, 146
expanded, 155

configuration, 33
decision set, 60

representative, 60
relations

between canon. representations, 120
between symbolic decision sets, 65

transition firing
between canon. representations, 120
between symbolic decision sets, 65

two-player game, 68
unfolding, 30

symbolically compact, 158
symmetric

219



Index

net, 84
Petri game, 90

proper, 90
symmetry, 41

admissible, 42
equivalence, 60
of symmetric net, 89

terminating, 51, 63, 123
token, 12
transition, 12, 23

chosen, 50
enabled, 12, 50
environment, 15

pure, 15
fire, 12, 23, 50

symbolic, 65, 120
fireable, 50
mode, 23
system, 15, 70

trivial
dynamic partition, 105
dynamic representation, 105

two-player game, 48
canonical, 124
corresponding to Petri game, 52
reachability game, 48
safety game, 48
solving, 49
symbolic, 68

type, 81
symbolic, 101

type-2 behavior, 48

unfolding
of a high-level Petri game, 28
of a P/T Petri game, 17
of a P/T Petri net, 14
symbolic, 30

valid assignment, 100
canonical, 119

variable assignment, 164
variables, 23

indexed, 144
tuples of variables, 26

vertex, 48
0-, 48
1-, 48
bad, 48
initial, 48
special, 48
target, 48

winning
set, 48
strategy

in a two-player game, 48
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Symbol Overview

Petri Nets & Petri games

P/T Petri net N = (N ,M0) = (P,T,F,M0) 12

P/T occurrence net O = (B,E,H,K0) 13

Branching process β = (O, h) 14

Unfolding Υ(N) = (U(N), πN) 14

P/T Petri game G = (PS,PE,T,F,M0,Obj,P⊛), ⊛ ∈ {♠,♡} 15

Strategy ξ = (Oξ, πξ) 17

High-level Petri net N = (N ,M0) = (Col ,Var , P, T, F, g,M0) 23

Symmetric net N = (C , P, T, J, F, g,M0) 84

Modes of transition σ ∈ Σ(t) (in symmetric nets) 23 (85)

High-level Petri game G = (Col ,Var , PS, PE, T, F, g,M0,Cond, P⊛) 23

Symbolic strategy ζ, ζ(b) = {ζt | π(b)→ t} 192

High-level occurrence net O = (Col ,Var , B,E,H, g,K0) 28

Symbolic branching process β = (O, h) 30

Symbolic unfolding Υ (N) = (U(N), πN ) 30

Petri net homomorphism h high-level: h 13, 24

Symmetries s ∈ S(N), S(G), s : Col → Col 42

in symmetric nets s = (s1, . . . , sn) ∈ SN , SG 89

Two-Player games
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