# Carl von Ossietzky 

## Universität Oldenburg

# Lytic bacteriophages of the Roseobacter group 

Lytische Bakteriophagen der Roseobacter Gruppe

## Dissertation

Zur Erlangung des akademischen Grades und Titels eines Doktors der Naturwissenschaften - Dr. rer. nat. -
der Fakultät für Mathematik und Naturwissenschaften der Carl-von-Ossietzky Universität Oldenburg

Vorgelegt von

## Vera Bischoff

Geboren am 13. Oktober 1991 in Georgsmarienhütte Oldenburg, Oktober 2023


Die vorliegende Dissertation wurde in der Zeit von Januar 2018 bis Oktober 2023 an der Carl von Ossietzky Universität Oldenburg am Institut für Chemie und Biologie des Meeres (ICBM) in der Arbeitsgruppe Biologie geologischer Prozesse angefertigt.

Die Arbeit wurde von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Sonderforschungsbereiches „Roseobacter" (SFB TRR 51) gefördert.

Erstgutachter: Prof. Dr. Meinhard Simon (ICBM)
Zweitgutachterin: Assoc. Prof. Dr. Karin Holmfeldt (LNU)
Betreuerin: Dr. Cristina Moraru (ICBM)

Disputationsdatum: 11.12.2023

## Summary

Viruses are the most abundant biological entities in the ocean. Bacteriophages, or phages, are viruses that infect bacteria and quite often outnumber their hosts by an order of magnitude. Replicating via infection and lysis of bacteria, phages have an immense impact on bacterial cell abundances and community structures. In addition, phages influence their hosts' metabolism and evolution through the expression of auxiliary metabolic genes and horizontal gene transfer. Therefore, and because of the release of bacterial cell debris upon viral lysis, phages are major players in global ocean biogeochemical cycles.

Members of the family Roseobacteraceae, operationally also termed "the Roseobacter group", are important heterotrophic bacteria in the marine environment, being most abundant in coastal waters and during algal blooms. They have been found worldwide in diverse aquatic habitats and great advances have been made in the recent years in uncovering their enormous genomic and metabolic diversity. In contrast, comparably little information has been gained so far about the phages infecting these bacteria, the so-called roseophages. Until now, phages have been isolated for only twelve out of more than 130 Roseobacteraceae genera.

The overall objective of this dissertation was to investigate the roseophage diversity in the North Sea by means of isolation, cultivation and whole genome sequencing. Seawater samples taken from the southern North Sea during spring and summer as well as from a mesocosm experiment with an artificially induced algal bloom served for phage isolation using two approaches: enrichment cultures and direct plating of seawater concentrated via tangential flow filtration. More than one hundred new roseophages infecting the ecologically relevant genera Sulfitobacter, Lentibacter, and Octadecabacter have been isolated and genome sequenced, revealing an impressive diversity on several levels.

In the first study presented in this dissertation, two dsDNA phages infecting Lentibacter sp. SH36 were isolated from enrichment cultures. Using database mining, we found related phages infecting the genera Sulfitobacter and Celeribacter and we showed that these cobaviruses are distributed worldwide in marine environments. We assigned these viruses to the new family Zobellviridae in the class Caudoviricetes, which was officially accepted by the International Committee on Taxonomy of Viruses (ICTV). Further on, a large-scale isolation campaign with direct plating yielded 128 new roseophage isolates with unique dsDNA genomes. These were grouped into twelve genus-level genomic clusters. Whole genome-based
classification of 28 representative phages assigned them to eight families in the class Caudoviricetes, comprising four already existing and four here newly proposed families. These new roseophages are diverse in terms of genome size, morphology and lifestyle, as predicted by the presence of lysogeny-related genes. The majority of the new isolates belonged to one large group of highly similar, potentially species-level related Sulfitobacter phages. Host range determination against their original isolation host strains revealed a complex infectivity network. Initial steps have been made to investigate closer the dynamics between these sulfiviruses and their hosts. Genome analysis of the phages as well as of thirty whole-genome sequenced host strains revealed a high degree of microdiversity on both sides. Finally, a small ssDNA phage infecting Sulfitobacter sp. SH24-1b was isolated, also from North Sea water. A preliminary characterization revealed its allocation to the Microviridae family. We found prophages related to this phage in the genomes of various taxa within the phyla Proteobacteria and Bacteroidetes, indicating that this type of prophages is widespread.

Overall, the phages isolated in this dissertation enrich the known diversity of roseophages in the North Sea and worldwide. With only a few host genera, an enormous diversity of roseophages was isolated, suggesting how versatile and complex the interaction with their hosts, the roseobacters, and their impact on marine ecosystems must be.

## Zusammenfassung

Viren sind die am häufigsten vorkommenden biologischen Einheiten im Meer. Solche Viren, die Bakterien infizieren, werden Bakteriophagen, oder auch kurz Phagen genannt. Ihre Zahl ist im Meer zehnmal höher als die ihrer Wirte, der Bakterien. Da sich Phagen durch Infektion und die anschließende Lyse von Bakterien vermehren, haben sie einen immensen Einfluss auf die Häufigkeit bestimmter Bakterienzellen und die Struktur bakterieller Gemeinschaften. Durch die Freisetzung von Zellmaterial bei der viralen Lyse sind sie wichtige Akteure in den globalen biogeochemischen Kreisläufen der Ozeane. Außerdem beeinflussen Phagen den Stoffwechsel und die Evolution ihrer Wirte durch die Expression zusätzlicher Stoffwechsel-Gene und durch horizontalen Gentransfer.

Die Mitglieder der Familie Roseobacteraceae, die auch als "Roseobacter-Gruppe" bezeichnet wird, sind wichtige heterotrophe Bakterien im Meer. Sie sind besonders zahlreich in Küstengewässern vertreten sowie während Algenblüten und kommen weltweit in den verschiedensten aquatischen Lebensräumen vor. In den letzten Jahren wurden große Fortschritte bei der Erforschung ihrer enormen genomischen und metabolischen Diversität erzielt. Vergleichsweise wenig ist hingegen bisher bekannt über die Phagen, die diese Bakterien infizieren, die sogenannten Roseophagen. Bislang wurden nur für zwölf von mehr als 130 Roseobacteraceae-Gattungen Phagen isoliert.

Das übergeordnete Ziel dieser Dissertation war die Untersuchung der RoseophagenVielfalt in der Nordsee mittels deren Isolierung, Kultivierung und Genom-Sequenzierung. Meerwasserproben aus der südlichen Nordsee sowie von einem Mesokosmen-Experiment mit einer künstlich induzierten Algenblüte dienten zur Phagen-Isolierung. Dabei wurden zwei verschiedene Ansätze angewendet: Anreicherungskulturen und die direkte Ausplattierung von mittels Tangentialflussfiltration aufkonzentriertem Meerwasser. Auf diese Weise wurden mehr als einhundert neue Roseophagen isoliert, die die ökologisch relevanten Gattungen Sulfitobacter, Lentibacter und Octadecabacter infizieren. Die Sequenzierung ihrer Genome offenbarte eine beeindruckende Vielfalt in mehrfacher Hinsicht.

In der ersten Studie, die in dieser Dissertation vorgestellt wird, wurden zwei dsDNAPhagen aus Anreicherungskulturen mit Lentibacter sp. SH36 isoliert. Durch eine Datenbankrecherche identifizierten wir verwandte Phagen, die die Gattungen Sulfitobacter und Celeribacter infizieren, und konnten zeigen, dass diese Cobaviren weltweit in marinen Lebensräumen verbreitet sind. Wir ordneten sie einer neuen Familie innerhalb der Klasse

Caudoviricetes zu, der Familie Zobellviridae, die vom International Committee on Taxonomy of Viruses (ICTV) offiziell anerkannt wurde. Des Weiteren wurden im Rahmen einer groß angelegten Isolierungskampagne mittels direkter Ausplattierung 128 neue dsDNA Roseophagen-Isolate gewonnen. Diese konnten in zwölf verschiedene Gattungen eingruppiert werden. Eine genombasierte Klassifizierung von 28 stellvertretenden Phagen ordnete diese acht verschiedenen Familien der Klasse Caudoviricetes zu, darunter vier bereits bekannte und vier neue Familien. Die neuen Roseophagen unterscheiden sich in Genomgröße, Morphologie und Vermehrungszyklus, wie das Vorhandensein lysogener Gene vermuten lässt. Die Mehrheit der neuen Isolate gehörte zu einer großen Gruppe sehr ähnlicher Sulfitobacter-Phagen, die möglicherweise als eine Art angesehen werden kann. Die Bestimmung des Wirtsspektrums in Bezug auf die ursprünglichen Isolierungswirtsstämme ergab ein komplexes Bild mit stark variierenden Wirtsspektren. Erste Schritte wurden unternommen, um die Dynamik zwischen diesen Sulfiviren und ihren Wirten näher zu untersuchen. Die Analyse der Phagen-Genome sowie der Genome von dreißig sequenzierten Wirtsstämmen zeigte ein hohes $\mathrm{Maß}$ an Mikrodiversität auf beiden Seiten. Das abschließende Kapitel dieser Dissertation beschreibt die Isolierung eines kleinen ssDNA-Phagen aus der Nordsee, der Sulfitobacter sp. SH24-1b infiziert. Eine vorläufige Charakterisierung ergab seine Zugehörigkeit zur Familie der Microviridae. Zudem identifizierten wir verwandte Prophagen in den Genomen verschiedenster Taxa innerhalb der Phyla Proteobacteria und Bacteroidetes, was darauf hinweist, dass diese Art von Prophagen weit verbreitet ist.

Insgesamt bereichern die in dieser Dissertation isolierten Phagen die bekannte Vielfalt der Roseophagen in der Nordsee und weltweit. Mit nur wenigen Wirtsgattungen wurde eine enorme Diversität an Roseophagen isoliert. Dies verdeutlicht, wie vielseitig und komplex die Interaktionen mit ihren Wirten, der Roseobacter-Gruppe, und damit ihr Einfluss auf marine Ökosysteme sein müssen.

## Publication record

Peer-reviewed publications
Bischoff, Vera; Bunk, Boyke; Meier-Kolthoff, Jan P.; Spröer, Cathrin; Poehlein, Anja; Dogs, Marco et al. (2019): Cobaviruses - a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems. In: ISME J 13 (6), S. 1404-1421. DOI: 10.1038/s41396-019-0362-7. (Included in this dissertation, see chapter 2)

Zucker, Falk; Bischoff, Vera; Olo Ndela, Eric; Heyerhoff, Benedikt; Poehlein, Anja; Freese, Heike M. et al. (2022): New Microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of single-stranded DNA phages infecting marine and terrestrial Alphaproteobacteria. In: Virus evolution 8 (2), Artikel veac070. DOI: 10.1093/ve/veac070. (Shared first-authorship; partly included in this dissertation, see chapter 6)

Book chapters
Bischoff, Vera; Zucker, Falk; Moraru, Cristina (2021): Marine Bacteriophages. In: Dennis Bamford and Mark A. Zuckerman (Hg.): Encyclopedia of virology. Fourth edition. Amsterdam: Academic Press, S. 322-341.

## Phage taxonomic proposals

Bischoff, Vera; Adriaenssens, Evelien M.; Kropinski, Andrew M.; Duhaime, Melissa B.; Moraru, Cristina (2020): ICTV-proposal 2020.187B, Zobellviridae. Create one new family (Zobellviridae) including one new subfamily (Cobavirinae), seven new genera and 12 new species (Caudovirales). (Included in this dissertation, see chapter 3)

## Contributions to national and international conferences

Bischoff, Vera; Bunk, Boyke; Meier-Kolthoff, Jan P.; Spröer, Cathrin; Poehlein, Anja; Dogs, Marco et al. (2018): Cobaviruses - a phage group infecting marine Rhodobacteraceae is found in highly productive marine regions. Talk, Annual Conference of the Association for General and Applied Microbiology (VAAM), Wolfsburg.

Bischoff, Vera; Bunk, Boyke; Meier-Kolthoff, Jan P.; Spröer, Cathrin; Poehlein, Anja; Dogs, Marco et al. (2018): Cobaviruses - a phage group infecting marine Rhodobacteraceae is found in highly productive marine regions. Poster, EMBO Workshop Viruses of Microbes, Wrocław, Poland.

Bischoff, Vera; Heyerhoff, Benedikt; Poehlein, Anja; Zucker, Falk; Alejandre-Colomo, Carlota; Heins, Anneke; Pradella, Silke; Daniel, Rolf; Simon, Meinhard; Moraru, Cristina (2019): Large scale isolation of bacteriophages infecting marine Rhodobacteraceae. Poster, Marine Microbiota, Oldenburg.

Bischoff, Vera; Heyerhoff, Benedikt; Poehlein, Anja; Zucker, Falk; Alejandre-Colomo, Carlota; Heins, Anneke; Pradella, Silke; Daniel, Rolf; Simon, Meinhard; Moraru, Cristina (2019): Large scale isolation of bacteriophages infecting marine Rhodobacteraceae. Poster, Symposium of Aquatic Microbial Ecology (SAME), Potsdam.

## List of abbreviations

| Abi | Abortive infection |
| :--- | :--- |
| AMG | Auxiliary metabolic gene |
| ANI | Average nucleotide identity |
| ASW | Artifical saltwater |
| BC | Baltimore Classes |
| BLAST | Basic Local Alignment Search Tool |
| Bp | Base pairs |
| BSA | Bovine serum albumin |
| BSC | Biological Species Concept |
| CRISPR/Cas | Clustered regularly interspaced short palindromic repeats / cascade |
| CsCl | Cesium chloride |
| dDDH | Digital DNA-DNA hybridization |
| DJR-MCP | Double-jelly-role major capsid protein |
| DMSP | Dimethylsulfoniopropionate |
| DOC | Dissolved organic carbon |
| DOM | Dissolved organic matter |
| dsDNA | Double-stranded DNA |
| DSMZ | Deutsche Sammlung für Mikroorganismen und Zellkulturen |
| dsRNA | Double-stranded RNA |
| DTR | Direct terminal repeat |
| EDTA | Ethylenediaminetetraacetic acid |
| ENA | European Nucleotide Archive |
| FISH | Fluorescence in situ hybridization |
| HAB | Harmful algal bloom |
| HGT | Max-Platide-based intergenomic identity |
| HK97-MCP | Horizontal gene transfer |
| ICBM | HK97-like major capsid protein |
| ICTV | Institute of Chemistry and Biology of the Marine Environment, |
| IMEDEA | Oldenburg, Germany |
| IPP | International Committee on Taxonomy of Viruses |
| ITS | Mediterranean Institute for Advanced Studies, Esporles, Spain |
| IVP | Intact/active prophage |
| kb | Internal transcribed spacer |
| LPSN | Internal virion proteins |
| MB | Kilobases |
| ML phylogeny | Maximum likelihood phylogeny |
| MPI | NBII |


| NC | Negative control |
| :--- | :--- |
| NCBI | National Center for Biotechnology Information |
| OD $_{600}$ | Optical density at 600 nm |
| OMV | Outer membrane vesicles |
| ORF | Open reading frame |
| pAgo | Prokaryotic argonaute |
| PC | Positive control (chapter 2+3), protein cluster (chapter 4+5) |
| PCR | Polymerase chain reaction |
| PEG | Polyethylene glycol |
| PFGE | Pulsed-field gel electrophoresis |
| PHROGS | Prokaryotic Virus Remote Homologous Groups |
| PSCs | Protein super clusters |
| pVOGs | Prokaryotic Virus Orthologous Groups |
| RAPD | Randomly amplified polymorphic DNA |
| RBP | Receptor binding protein |
| Rcf | Relative centrifugal field |
| RM | Restriction-modification |
| RNR | Ribonucleotide reductase |
| rpm | Rounds per minute |
| rRNA | Ribosomal RNA |
| SAR endolysin | Signal anchor release endolysin |
| SM buffer | Sodium chloride Magnesium sulphate buffer |
| ssDNA | Single-stranded DNA |
| ssRNA | Single-stranded RNA |
| TEM | Transmission electron microscopy |
| VGCs | Viral genome clusters |
| VHG | Virus hallmark gene |
| VLP | Virus-like particle |
| VOGs | Virus Orthologous Groups |
|  |  |

## List of figures


#### Abstract

Fig. 1: Cartoon illustrating the ways in which phages influence the composition of marine bacterial communities2


Fig. 2: Major morphological groups of bacteriophages ..... 3
Fig. 3: Taxonomy of the class Caudoviricetes, which contains all tailed phages. ..... 5
Fig. 4: The lytic and lysogenic life cycle of bacteriophages. ..... 7
Fig. 5: Viral DNA structure inside the virion before infection, circularization, and packaging mechanism of different phages with different DNA packaging strategies. ..... 11
Fig. 6: a. Enrichment of phages specific for Lentibacter sp. SH36 from North Sea water ..... 37
Fig. 7: Phylogenetic positioning of the Lentibacter sp. SH36 viruses and their relatives within the Podoviridae. ..... 41
Fig. 8: Genome map of cultured and environmental cobaviruses. ..... 46
Fig. 9: Phylogenetic analysis of the spanin (a), glutaredoxin (b) and ribonucleotide reductase (c-e) genes from cobaviruses ..... 48
Fig. 10: Global distribution of cobaviruses ..... 51
Fig. 11: Whole genome phylogenetic tree depicting the new Zobellviridae family ..... 64
Fig. 12: Phylogenetic positioning of the terminase proteins belonging to the phages in theZobellviridae family.65
Fig. 13: Nucleotide based, intergenomic similarities between the members of the here newly proposed Zobellviridae family ..... 66
Fig. 14: Transmission electron micrograph of molybdenum stained, cell debris bound Lentibacter virus vB_LenP_ICBM1 and uranyl acetate stained, free Lentibacter virus vB_LenP_ICBM2 ..... 67
Fig. 15: Transmission electron micrograph of Pseudoalteromonas phage HP1 ..... 67
Fig. 16: Workflow of phage isolation ..... 70
Fig. 17: Scheme of the streak assay for phage purification. ..... 76
Fig. 18: Map of the german bight showing sampling sites for the isolation of bacterial strains (red) and phages (blue) ..... 91
Fig. 19: Neighbor-joining tree based on 16 S rRNA gene sequence similarity showing thephylogenetic affiliation of the bacterial strains used for phage isolation in this study ............ 92
Fig. 20: Gel electrophoresis of RAPD-PCR products for 13 phage isolates. ..... 93
Fig. 21: Nucleotide-based intergenomic identities of 94 unique and complete roseophage genomes, calculated with VIRIDIC. ..... 103
Fig. 22: Whole-genome based proteomic tree of 965 dsDNA phages ..... 107
Fig. 23: Origins of the new phage isolates from different North Sea water samples ..... 112
Fig. 24: Section of the whole-genome based proteomic tree showing the Autographiviridae family. ..... 115
Fig. 25: Nucleotide-based intergenomic identities of phages in clusters $A$ and $B$ of the Autographiviridae family (VGC_4), calculated with VIRIDIC ..... 119
Fig. 26: PC-based intergenomic similarities of phages in clusters $A$ and $B$ of the Autographiviridae family (VGC_4), calculated with VirClust ..... 120
Fig. 27: Genome map of members of the Autographiviridae family ..... 121
Fig. 28: Section of the whole-genome based proteomic tree showing VGC_9 ..... 125
Fig. 29: Nucleotide-based intergenomic identities of phages in the Casjensviridae family (VGC_9), calculated with VIRIDIC ..... 129
Fig. 30: PC-based intergenomic similarities of phages in the Casjensviridae family (VGC_9), calculated with VirClust ..... 130
Fig. 31: Genome map Octadecabacter phage ICBM156, member of VGC_9 ..... 130
Fig. 32: Section of the whole-genome based proteomic tree showing VGC_11 ..... 135
Fig. 33: Nucleotide-based intergenomic identities of phages in VGC_11, calculated with VIRIDIC ..... 139
Fig. 34: PC-based intergenomic similarities of phages in VGC_11, calculated with VirClust140
Fig. 35: Genome map of Sulfitobacter phages ICBM129 and ICBM153 ..... 141
Fig. 36: Section of the whole-genome based proteomic tree showing VGC_25 ..... 148
Fig. 37: Internal clustering of VGC_25 ..... 150
Fig. 38: Genome maps of VGC_25 ..... 151
Fig. 39: Section of the whole-genome based proteomic tree showing VGC_19 ..... 160
Fig. 40: Nucleotide-based intergenomic identities of the phages in VGC_19 calculated with VIRIDIC ..... 163
Fig. 41: PC-based intergenomic similarities of the phages in VGC_19, calculated with VirClust ..... 164
Fig. 42: Genome maps of VGC_19. ..... 165
Fig. 43: Section of the whole-genome based proteomic tree showing VGC_6 ..... 172
Fig. 44: Nucleotide-based intergenomic identities of the phages in VGC_6, calculated with VIRIDIC ..... 176
Fig. 45: PC-based intergenomic similarities of the phages in VGC_6, calculated with VirClust 177
Fig. 46: Genome map of Sulfitobacter phages ICBM111, ICBM117, ICBM118, ICBM130 and ICBM55, members of the "Viktorvirus" genus ..... 178
Fig. 47: Section of the whole-genome based proteomic tree showing the Zobellviridae family.181
Fig. 48: Nucleotide-based intergenomic identities of the phages in the Zobellviridae family, calculated with VIRIDIC. ..... 185
Fig. 49: PC-based intergenomic similarities of the phages in the Zobellviridae family, calculated with VirClust ..... 186
Fig. 50: Genome map of the Lentibacter phages belonging to the Zobellviridae family ..... 186
Fig. 51: Host range determination. ..... 198
Fig. 52: Neighbor-joining tree based on the 16 S rRNA gene and ITS region of 46 sulfivirus host strains ..... 200
Fig. 53: Neighbor-joining tree based on the 16S rRNA gene of 46 sulfivirus host strains ..... 201
Fig. 54: Hierachical clustering tree based on whole genome distances of 30 Sulfitobacter host strains plus 17 related strains. ..... 202
Fig. 55: TEM image of uranyl-acetate stained virions of Sulfitobacter phages ICBM16 and ICBM18 ..... 204
Fig. 56: Nucleotide-based intergenomic identities within the "Sulfivirus" genus, as calculated with VIRIDIC. ..... 209
Fig. 57: Whole genome-based phylogeny of the 89 sulfiviruses and reference genomes ..... 210
Fig. 58: Hierarchical clustering of the sulfivirus genomes when using relaxed parameters for protein clusterings. ..... 213
Fig. 59: Genome map of Sulfitobacter phage ICBM128 ..... 214
Fig. 60: Hierarchical clustering of the sulfivirus genomes when the intergenomic distances were calculated using protein clusters containing identical proteins ..... 220
Fig. 61: Reconstructed phylogenetic tree of sulfiviral core regions and sites of recombination and polymorphism detected with ClonalFrameML. ..... 221
Fig. 62: Distribution of number of infected hosts among sulfiviruses. ..... 222
Fig. 63: Host ranges of 89 sulfiviruses tested against their original isolation hosts ( 60 strains).224
Fig. 64: Host ranges clustered by ClonalFrameML phylogenetic tree ..... 224

Fig. 65: Host ranges of 89 sulfiviruses tested against their original isolation hosts ( 60 strains), clustered based on isolation hosts. 225 Fig. 66: Susceptibility of Sulfitobacter strains to sulfivirus infection clustered based on the
presence/absence of plasmid clusters................................................................................. 231 Fig. 67: Nucleotide-based intergenomic identity of the active prophages predicted in the genomes of 30 Sulfitobacter strains and representatives of sulfiviruses, calculated with VIRIDIC. 232

Fig. 68: (A) ICBM5 morphology determined by TEM of uranyl-acetate-stained virions. (B) Agarose gel shows enzymatic digestion of ICBM5 ssDNA phage....................................... 243
Fig. 69: 16S rRNA phylogenetic analysis of the (pro)-phage hosts. .................................... 252

## List of tables

Table 1: Abundance of cobaviruses in the S1 and S2 phage enrichments. ..... 40
Table 2: Environmental cobaviruses, retrieval from databases ..... 40
Table 3: Seasonal occurrence of cobaviruses in different locations. ..... 52
Table 4: Parameters used by VICTOR to calculate a whole genome tree based on amino acid sequences and to demarcate taxa. ..... 63
Table 5: Newly proposed taxonomy of the Zobellviridae family. ..... 68
Table 6: Bacterial strains used for phage isolation in this study ..... 72
Table 7: Primers used for $16 \mathrm{~S}-23 \mathrm{~s}$ rRNA fragment amplification and sequencing ..... 73
Table 8: Seawater sources for phage isolation. ..... 75
Table 9: Previously described dsDNA roseophages collected from literature for whole- genome based classification ..... 85
Table 10: Pairing of the phage water samples with the bacterial hosts during the phage isolation procedures ..... 90
Table 11: Counts of phage isolates, sequenced and final unique phage genomes ..... 95
Table 12: Sizes of complete phage genomes comparing PFGE and sequencing ..... 95
Table 13: Total unique phages isolated and genome sequenced in this study ..... 98
Table 14: Clustering of 94 unique and complete roseophage genomes into genera and species clusters ..... 103
Table 15: PhageTerm results of genome end determination for the representative ICBM phages ..... 108
Table 16: Overview of the newly described and classified ICBM phages ..... 109
Table 17: Phages of cluster A and B in the Autographiviridae family ..... 116
Table 18: Gene annotations of Lentibacter phage ICBM157 ..... 121
Table 19: Core proteins of the newly proposed subfamily "Incetivirinae" in the family Autographiviridae. ..... 123
Table 20: Phages of VGC_9 ..... 126
Table 21: Gene annotations of Octadecabacter phage ICBM156. ..... 131
Table 22: Phages of VGC_11 ..... 136
Table 23: tRNAs found in the genome of Sulfitobacter phage ICBM153 ..... 140
Table 24: Gene annotations of Sulfitobacter phage ICBM129 ..... 141
Table 25: Core proteins of the newly proposed subfamily "Maresulfivirinae" in the family Mesyanzhinoviridae. ..... 144
Table 26: Phages of VGC_25 ..... 149
Table 27: tRNAs found in the genomes of "Sulfivirus" phages ..... 151
Table 28: Gene annotations of Lentibacter phage ICBM16 ..... 151
Table 29: Gene annotations of Lentibacter phage ICBM7 ..... 154
Table 30: Core proteins of the newly proposed families "Hayaniviridae" and "Schlingloffviridae" ..... 156
Table 31: Phages of VGC_19 ..... 161
Table 32: Gene annotations of Lentibacter phage ICBM121 ..... 165
Table 33: Gene annotations of Lentibacter phage ICBM165 ..... 167
Table 34: Gene annotations of Lentibacter phage ICBM8 ..... 168
Table 35: Core proteins of the newly proposed family "Diferiteviridae", ..... 169
Table 36: Phages of VGC_6 ..... 173
Table 37: Gene annotations of Sulfitobacter phage ICBM55. ..... 178
Table 38: Core proteins of the newly proposed family "Woolleyviridae" ..... 179
Table 39: Phages of the Zobellviridae family. ..... 182
Table 40: Gene annotations of Lentibacter phage ICBM6. ..... 187
Table 41: Core proteins of the subfamily Cobavirinae in the family Zobellviridae. ..... 188
Table 42: Phages of the "Sulfivirus" genus ..... 205
Table 43: Core proteins of the "Sulfivirus" genus ..... 211
Table 44: Non-core protein clusters of the "Sulfivirus" genus ..... 212
Table 45: tRNAs predicted in the genomes of the "Sulfivirus" genus ..... 217
Table 46: Gene annotations of Lentibacter phage ICBM128. ..... 218
Table 47: Genome characteristics of 30 sulfivirus host strains ..... 228
Table 48: Plasmids of 30 sulfivirus host strains. ..... 229
Table 49: Intact prophages predicted in the plasmids and chromosomes of 30 sulfiviruses strains. ..... 230
Table 50: List of Rhodobacteraceae strains used for the host range assay ..... 244
Table 51: Bacterial strains containing predicted ICBM5-like regions ..... 246

## Table of contents

Summary ..... V
Zusammenfassung ..... VII
Publication record ..... IX
List of abbreviations ..... XI
List of figures ..... XIII
List of tables ..... XVII
Table of contents ..... XIX

1. Introduction ..... 1
1.1. Importance of (marine) bacteriophages ..... 1
1.2. Classification of bacteriophages ..... 2
1.2.1. Traditional classification of bacteriophages ..... 2
1.2.2. The megataxonomy of viruses ..... 4
1.3. Lifestyles of bacteriophages ..... 6
1.3.1. Lytic life cycle ..... 6
1.3.2. Lysogenic life cycle ..... 8
1.3.3. Pseudolysogeny and chronic infections ..... 8
1.3.4. DNA packaging strategies ..... 9
1.4. Phage-host interactions ..... 12
1.4.1. Host range of bacteriophages ..... 12
1.4.2. The arms-race between phages and bacteria ..... 14
1.5. Phages infecting marine Roseobacteraceae ..... 16
1.6. How to investigate phage diversity ..... 21
1.7. Aims and outline of this dissertation ..... 22
2. Cobaviruses - a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems ..... 25
2.1. Chapter summary ..... 26
2.2. Materials and methods ..... 27
2.2.1. Cultivation media ..... 27
2.2.2. Phage enrichments and isolation of ICBM1 and ICBM2 phages ..... 27
2.2.3. Preparation of phage ICBM1 and ICBM2 glycerol stocks ..... 29
2.2.4. ICBM1 and ICBM2 phage high titer lysates ..... 29
2.2.5. Transmission electron microscopy ..... 29
2.2.6. Isolation and purification of phage DNA for sequencing ..... 30
2.2.7. Genome sequencing and assembly ..... 32
2.2.8. Retrieval of phage genomes related to ICBM1 and ICBM2 ..... 33
2.2.9. Genome-based phylogeny and classification ..... 34
2.2.10. Genome annotation and protein clustering. ..... 34
2.2.11. Phylogenetic analyses of single proteins ..... 35
2.2.12. Phylogenetic analysis of the host rRNA ..... 35
2.2.13. Biogeographic distribution of cobaviruses and read mapping ..... 35
2.3. Results and discussion ..... 36
2.3.1. Isolation and host range of two Lentibacter sp. SH36 viruses ..... 36
2.3.2. Sequencing the phage isolates and enrichments ..... 37
2.3.3. Retrieval of similar phage genomes and phylogenetic positioning ..... 38
2.3.4. Genomic organization ..... 42
2.3.5. Cobaviral hosts ..... 47
2.3.6. Environmental distribution of the cobaviruses ..... 49
2.3.7. Protists as habitat for the cobaviral hosts ..... 52
2.3.8. Conclusions ..... 54
3. Taxonomic proposal of the Zobellviridae family ..... 55
3.1. Short description ..... 56
3.2. Abstract ..... 56
3.3. Text of proposal ..... 56
3.3.1. Zobellviridae family ..... 58
3.3.2. Cobavirinae subfamily ..... 59
3.3.2.1. Genus Siovirus ..... 59
3.3.2.2. Veravirus genus ..... 60
3.3.2.3. Genomic organization of cobaviruses ..... 61
3.3.3. Other genera in the Zobellviridae family ..... 61
3.3.3.1. Melvirus genus ..... 61
3.3.3.2. Paundecimvirus genus ..... 62
3.3.3.3. Citrovirus genus ..... 62
3.3.3.4. Salinovirus genus ..... 62
3.3.3.5. Vipivirus genus ..... 63
3.3.3.6. Icepovirus genus ..... 63
3.4. Supporting evidence ..... 63
4. Isolation and classification of novel dsDNA roseophages ..... 69
4.1. Chapter summary ..... 69
4.2. Materials and methods ..... 71
4.2.1. Cultivation media ..... 71
4.2.2. Origin and cultivation of host strains ..... 71
4.2.3. $\quad 16 \mathrm{~S}$ sequencing and phylogenetic analysis of host strains ..... 72
4.2.4. Water samples for phage isolation ..... 73
4.2.5. Isolation of phages from direct plating and their further characterization ..... 75
4.2.5.1. Direct phage isolation by plaque assay ..... 75
4.2.5.2. Preparation of fresh lysates and glycerol stocks ..... 76
4.2.5.3. PFGE for phage genome size determination/prediction ..... 77
4.2.5.4. Phage DNA extraction ..... 78
4.2.5.5. Screening for unique phages with RAPD-PCR ..... 79
4.2.6. Isolation of phages from enrichments ..... 79
4.2.7. Phage genome sequencing, assembly and genome end determination ..... 82
4.2.8. Clustering at species and genus level - VIRIDIC analysis ..... 82
4.2.9. Retrieval of related phage genomes and of other roseophages from sequence databases ..... 82
4.2.10. VirClust analysis - hierarchical clustering and genome annotation ..... 83
4.3. Results ..... 90
4.3.1. $\quad$ Strains from three Roseobacteraceae genera served for the isolation of 277 phages ..... 90
4.3.2. Quick screening for unique phages by RAPD-PCR ..... 93
4.3.3. Genome sequencing and assembling of selected phage isolates ..... 94
4.3.4. The new roseophage isolates belong to 12 genus-level genomic clusters ..... 102
4.3.5. Taxonomic classification and genomic characterization of selected new phage isolates ..... 105
4.3.5.1. First roseophage isolates to cluster within the Autographiviridae family ..... 113
4.3.5.2. A novel roseophage infecting Octadecabacter falls within the Casjensviridae family ..... 123
4.3.5.3. Two new Sulfitobacter infecting roseophages form a new subfamily within the Mesyanzhinoviridae family ..... 133
4.3.5.4. "Hayaniviridae" and "Schlingloffviridae" - two new families of lytic roseophages ..... 145
4.3.5.5. The "Diferiteviridae" - a new family of lytic and potentially temperate roseophages infecting Lentibacter and Sulfitobacter ..... 157
4.3.5.6. The "Woolleyviridae" - a new family of potentially temperate roseophage infecting Sulfitobacter ..... 170
4.3.5.7. The Zobellviridae family is extended by a new roseophage species ..... 180
4.4. Discussion ..... 188
4.4.1. Thresholds for phage taxonomic classification ..... 189
4.4.2. Diversity of the discovered phage families ..... 190
4.4.3. Genetic particularities of the new roseophages ..... 190
4.4.4. Conclusions ..... 191
5. Microdiversity of the sulfiviruses and their hosts (preliminary results) ..... 193
5.1. Chapter summary ..... 193
5.2. Materials and methods ..... 194
5.2.1. $16 \mathrm{~S} / \mathrm{ITS}$ phylogenetic analysis of sulfivirus host strains ..... 194
5.2.2. Whole genome sequencing of sulfivirus host strains ..... 194
5.2.3. Phylogenomic analysis of the sulfivirus host strains ..... 195
5.2.4. Initial comparative analysis of host genomes ..... 195
5.2.5. Phage genomic analysis ..... 196
5.2.5.1. Clustering of sulfivirus genomes on species and genus level ..... 196
5.2.5.2. Protein-based hierarchical clustering of the sulfivirus genomes and gene annotations using VirClust ..... 196
5.2.5.3. Detection of recombination events ..... 197
5.2.6. Host range determination ..... 197
5.2.7. TEM of sulfiviruses ICBM16 and ICBM18 ..... 198
5.3. Results and discussion ..... 199
5.3.1. A micro-diverse bacterial collection served for isolation of Sulfivirus phages ..... 199
5.3.2. 89 phage isolates of one genus ..... 203
5.3.2.1. Composition of sulfiviral genomes ..... 214
5.3.3. Sulfivirus genomes are strongly influenced by recombination ..... 221
5.3.4. Sulfiviruses display wide range of host specificity ..... 222
5.3.5. Genome analysis of 30 sulfivirus host strains ..... 225
5.3.6. Conclusions ..... 232
6. Isolation and preliminary characterization of ICBM5, a ssDNA phage infecting Sulfitobacter sp. SH24-1b ..... 235
6.1. Chapter summary. ..... 235
6.2. Materials and Methods ..... 236
6.2.1. Cultivation media ..... 236
6.2.2. Isolation of phage ICBM5 ..... 236
6.2.3. Host range of phage ICBM5 ..... 237
6.2.4. Purification of phage ICBM5 via CsCl gradient ultracentrifugation ..... 237
6.2.5. Transmission electron microscopy of phage ICBM5 ..... 238
6.2.6. Testing the ssDNA nature of the ICBM5 phage genome ..... 238
6.2.7. Sequencing of the ICBM5 phage genome via Illumina sequencing ..... 239
6.2.8. Assembly and annotation of the ICBM5 phage genome ..... 240
6.2.9. Detection of ICBM5-like regions in bacterial genomes ..... 240
6.2.10. Phylogenetic analysis of all host 16 S rRNA genes and species assignment for Sulfitobacter dubius SH24-1b ..... 240
6.3. Results and discussion ..... 241
7. General discussion and outlook ..... 253
7.1. The complex and eternally evolving field of phage classification and taxonomy ..... 254
7.2. The role of roseophages in the marine environment, more specifically during algal blooms ..... 256
7.3. Methodological considerations ..... 260
7.4. Outlook ..... 262
Appendix ..... 265
a) Supplementary tables ..... 265
b) Supplementary figures ..... 280
c) Supplementary text ..... 307
d) List of supplementary files ..... 310
Bibliography ..... 313
Acknowledgements ..... 355
Erklärung ..... 357

## 1. Introduction

### 1.1. Importance of (marine) bacteriophages

Viruses that infect bacteria are termed "bacteriophages" (or short "phages"). In marine systems, phages are the most abundant biological entities. They usually outnumber their bacterial hosts by an order of magnitude, with abundances of about $10^{7}$ virus-like particles per milliliter (Cochlan et al. 1993; Suttle 2005). However, they are not only present in marine habitats. Phages have been found in all types of ecosystems, ranging from deserts (Fancello et al. 2013) to Antarctic lakes (Potter et al. 2018), from the human gut (Gantzer et al. 2002) to wastewater (Göller et al. 2021). They show an extreme morphological and genomic diversity. Their size ranges from very small, as for example single-stranded DNA (ssDNA) phage phiX174 (Microviridae) with a capsid diameter of 26 nm and a genome of 5.386 kilobases (kb) (McKenna et al. 1992), to very large, for example "jumbo phages", with capsid sizes above 200 nm and genomes larger than 200 kb (Malone et al. 2020). A virus is not considered a living organism, because it requires the metabolism and DNA replication machinery of its host to produce its own progeny. Isolation of phages in the laboratory is dependent on cultivation of the respective host bacterium. Since many bacteria are difficult to cultivate under laboratory conditions, the majority of phages remains uncultivated and detailed knowledge about their lifestyle and interactions with hosts is limited to phages infecting comparably few bacterial taxa.

Not only are bacteriophages abundant in the marine environment, they also play a major role in ecosystem functioning. They shape microbial communities simply by lysing their host, but also by altering the host's metabolism, for example through expression of auxiliary metabolic genes (AMGs), and by maintaining microbial genetic diversity through horizontal gene transfer (HGT) (Fig. 1) (Fuhrman 1999; Suttle 2005; Brum et al. 2015). Furthermore, phages are major drivers of marine biogeochemical cycles, because the killing of their bacterial hosts and the subsequent release of nutrients creates a short cut in the flow of carbon, which is known as the viral shunt (Wilhelm and Suttle 1999; Suttle 2005, 2007). Therefore, it is fundamental for a profound understanding of the ocean's ecosystem to investigate the diversity of marine bacteriophages and their interaction with the bacterial hosts.


Fig. 1: Cartoon illustrating the ways in which phages influence the composition of marine bacterial communities: by cell lysis, host metabolism manipulation and gene exchange. Figure from Breitbart (2012).

For human health, phages can have both negative and positive effects. For example, some bacteria that are usually harmless for humans can be turned into virulent pathogens by certain temperate phages (Waldor and Mekalanos 1996). At the same time, phages are part of our immune system as they reduce bacterial colonization of mucosal surfaces (Barr et al. 2013). Since its discovery in the 1920's, the therapeutic potential of phages has been mainly utilized in Eastern Europe. However, due to the urge to fight antibiotic-resistant pathogens, phage therapy has been (re-)discovered in the last decades also in the Western hemisphere (Kutter et al. 2010; Vandamme and Mortelmans 2019). Phage-based control of bacterial contamination and (phyto-)pathogens is already applied in aquaculture (Culot et al. 2019; Ramos-Vivas et al. 2021), agriculture and food production (Goodridge and Bisha 2011; Torres-Acosta et al. 2019; Kazantseva et al. 2021). This way, phages and the exploitation of their antimicrobial action will most likely have an increasing impact on human health, nutrition, and economy in the future.

### 1.2. Classification of bacteriophages

### 1.2.1. Traditional classification of bacteriophages

The first attempts to classify bacteriophages were based on their morphological differences observed by transmission electron microscopy. In 1967, Bradley described six groups of bacteriophages taking their basic morphology and also the type of nucleic acid into account. These categories were adopted by the International Committee on Viral Taxonomy (ICTV) and served as a basis for the description of the first phage families (Fenner 1976; Calendar and Abedon 2006). The majority of phages harbors the nucleic acid in a capsid. The capsid consists of several copies of the major capsid protein and its form can vary, often being icosahedral,
sometimes prolate or even helical (Bradley 1967). In rare cases, the icosahedral capsid is coated with a lipid layer (Lundström et al. 1979).

Three of Bradley's morphotypes have a tail structure attached to an icosahedral capsid and are equipped with linear double-stranded DNA (dsDNA) genomes. They were grouped in the now disbanded order Caudovirales (Ackermann 1998). The tail is either long, rigid and with a contractile sheath (myoviruses), or long, flexible, and non-contractile (siphoviruses), or short and non-contractile (podoviruses) (Fig. 2). At the tail tip there are fibers, which are important for attachment to the host (Nobrega et al. 2018). Phages of the fourth group have small icosahedral capsids with small, circular ssDNA genomes (Microviridae). Inoviridae also have small ssDNA genomes, but have a very different shape, with long, filamentous virions. The sixth group turned into the now abolished Leviviridae family, consisting of phages with small, icosahedral capsids and ssRNA genomes (Bradley 1967; Calendar and Abedon 2006).


Fig. 2: Major morphological groups of bacteriophages (simplified scheme).
Later on and in parallel to phage classification based on morphology, Baltimore (1971) classified viruses in general into six (later seven) Baltimore Classes (BC), based on nucleic acid type and replication strategies: dsDNA (I), ssDNA (II), dsRNA (III), positive-sense ssRNA (IV), negative-sense ssRNA (V), positive-sense ssRNA with reverse transcription (VI), and ssDNA with reverse transcription (VII). For decades, the Baltimore Classes and the six morphotypes have been the basis for phage taxonomy. With the development of highthroughput sequencing techniques and bioinformatic tools, viral genomic information became accessible for a molecular-based classification and large-scale viral metagenomes and phage isolation campaigns revealed the true diversity of phages.

### 1.2.2. The megataxonomy of viruses

The majority of cultivated phages are tailed, with dsDNA genomes. Therefore, it has been believed for a long time that this phage type is prevailing in nature (Ackermann 2007; Dion et al. 2020). Recently, improved methodologies showed that non-tailed phages are more abundant than previously thought, and in some environments they can even be dominant (Brum et al. 2013). Moreover, new viruses are continuously being detected by viral metagenomics, viruses showing no genomic homology to known reference phages (Paez-Espino et al. 2016; Gregory et al. 2019; Benler and Koonin 2021). As a result, it became obvious that morphological features and nucleic acid type are not sufficient for a comprehensive classification of this vast viral diversity. Furthermore, the traditional classification system does not sufficiently reflect evolutionary relationships and thus lacks taxonomic relevance (Koonin et al. 2020a). In recent years, major efforts have been put into rethinking the classification of viruses. In 2020, Koonin and collegues proposed the "Megataxonomy of the Virus World", based on which a new global organization with a hierarchical taxonomy of viruses has been developed and officially accepted by the ICTV (Koonin et al. 2020a).

Unlike Bacteria and Archaea, viruses do not have a single common ancestor and are thus missing a universal marker gene comparable to the 16 S rRNA gene, which has been traditionally used to investigate the phylogenetic relationships between cellular microbes (Krupovic and Koonin 2017; Numberger et al. 2019). This lack of a marker gene makes viral taxonomy much more difficult and a different approach needs to be taken to create the new megataxonomy, which is a combination of single/multiple gene phylogenetic methods and gene-sharing networks (Koonin et al. 2020a). For a bipartite gene-genome network approach, homologous viral proteins are first grouped into protein clusters, and then the viral genomes are grouped based on their shared protein clusters. Bipartite networks have two classes of nodes, one class representing the viral genome clusters, and the other the protein clusters connected to the viral genomes (Iranzo et al. 2016). During this analysis, the core proteins of certain phage groups are determined, which in turn can be used for phylogenetic tree building for the respective phage group. Despite the lack of a single universal gene for all viral genomes, with this approach it was possible to detect viral hallmark genes (VHGs), genes that are present in many different viral groups and can be used to differentiate them (Koonin et al. 2006).

These VHGs have been used for the new definition of six viral realms: Adnaviria, Duplodnaviria, Monodnaviria, Riboviria, Ribozyviria and Varidnaviria (Koonin et al. 2020a; Koonin et al. 2022). Two of these realms currently correspond to two distinct groups of dsDNA
viruses, which differ in the structure of their major capsid protein. The realm Varidnaviria comprises those dsDNA viruses with a double-jelly-role major capsid protein (DJR-MCP), the realm Duplodnaviria those with a HK97-like major capsid protein (HK97-MCP) (Koonin et al. 2020a). Within each realm, viruses are organized in eight major hierarchical ranks (kingdom, phylum, class, order, family, genus and species) and seven sub-ranks, inspired by the Linnaean taxonomy (Koonin et al. 2020a; Gorbalenya et al. 2020). The order Caudovirales and the morphology-based families Siphoviridae, Myoviridae and Podoviridae were dissolved, as they turned out not to be monophyletic (Turner et al. 2021). Instead, the class Caudoviricetes within the realm Duplodnaviria (Fig. 3) was created, comprising all tailed phages. The classification of the phages into genome-based, monophyletic families is currently in progress. The terms "siphoviral", "myoviral", and "podoviral" are still valid to describe the respective morphology. Within the class Caudoviricetes, there are currently four orders (Crassvirales, Kirjokansivirales, Methanobavirales and Thumleimavirales), and several families and subfamilies, many of them not yet assigned to any order (Walker et al. 2022).


Fig. 3: Taxonomy of the class Caudoviricetes, which contains all tailed phages.
While the six viral realms have been defined based on VHGs, the lower ranks (genus and species) should be defined based on intergenomic sequence identity, which can be calculated with tools like VIRIDIC (Moraru et al. 2020). According to ICTV recommendations, viruses of the same species should have a sequence identity higher than $95 \%$, and for the genus level higher than $70 \%$ (Turner et al. 2021; Moraru 2023). For the definition of intermediate ranks such as family and order, whole-proteome based clustering and comparison of protein family profiles should be used (Turner et al. 2021; Simmonds et al. 2023). For this kind of whole-
proteome based phage classification, several tools have been developed, such as ViPTree (Nishimura et al. 2017b), VICTOR (Meier-Kolthoff and Göker 2017), GRAViTy (Aiewsakun and Simmonds 2018) and vConTACT (Bolduc et al. 2017a). One of the most recently developed tools is VirClust (Moraru 2023). This is the main tool used for virus classification in this dissertation, because it performs a hierarchical classification of viruses based on their shared protein clusters (PCs). VirClust also provides protein annotation and core protein identification (Moraru 2023).

### 1.3. Lifestyles of bacteriophages

To produce progeny, a phage needs a bacterial host cell to replicate its DNA and synthesize new virus particles. Viruses use multiple infection strategies and phage lifestyles to achieve this, which have been investigated to varying degrees. Best known so far are the canonical lifestyles "lytic" and "lysogenic", which at the same time represent the opposing extremes. While in the lytic lifestyle, infection immediately leads to the production of phage progeny and lysis of the host cell, in the lysogenic life cycle the viral nucleic acid is integrated into the host genome and is automatically replicated during cell division until the lytic production cycle is eventually induced (Fig. 4). More recently, additional intermediate strategies like "pseudolysogeny" and "chronic infection" were detected and by now, phage infection instead of being seen as a matter of distinct categories, rather seems to be a continuum of different strategies (Chevallereau et al. 2021).

### 1.3.1. Lytic life cycle

Irrespective of the type of infection cycle, it always starts with recognition and attachment of the virion to the host cell, followed by injection of the viral genomic material into the host cytoplasm (Fig. 4). In the lytic life cycle, reproduction of the virus is immediately started by reprogramming the host metabolism to replicate the phage genome and produce new phage particles (Weinbauer 2004). In the second phase, packaging of the new viral genomes into the capsids takes place, and this can be achieved by a number of different mechanisms (see section 1.3.4.). Finally, upon lysis of the host cell, the virion progeny is released. The time from adsorption to cell lysis is termed "latent period" (Weinbauer 2004). Its duration varies dramatically between different phage-host systems and depends on the bacterial host growth rate (Weinbauer 2004; Middelboe 2000). The same is true for the burst size, the number of new
virions released per cell, which is reduced under unfavorable growth conditions (Kokjohn and Sayler 1991).


Fig. 4: The lytic and lysogenic life cycle of bacteriophages. Both cycles start with the attachment to the host cell and insertion of the viral genome. In the lytic cycle, the phage genome is immediately replicated, and capsid and tail proteins are produced. Virions are assembled and the phage genome is packaged. Finally, the host cell is lysed, and progeny phages are released into the environment. In the lysogenic cycle, the phage genome integrates into the host chromosome and becomes a prophage. During the latent period (dormant state), no phage progeny is produced. The prophage is replicated together with the host chromosome via cell division, until an external trigger leads to induction of the lysogenic cycle. The figure has been modified from Feiner et al. (2015).

Phage-mediated cell lysis is a carefully regulated process, with the mechanisms being diverse amongst different kinds of phages. For dsDNA phages of Gram-negative bacteria, the lysis pathway comprises three steps corresponding to the three parts of the bacterial cell wall (Young 2014). For the first step, two different systems are known: (i) Holins (phage-encoded proteins) accumulate within the cytoplasmic membrane and form micron-scale holes in the inner membrane. These holes allow endolysins to pass the membrane and degrade the peptidoglycan in the periplasm. (ii) Pinholins form small channels, which leads to depolarization of the membrane. This causes the activation of "signal anchor release" (SAR) endolysins that degrade the peptidoglycan (Cahill and Young 2019). The degradation of peptidoglycan is regarded as the second step of the lysis pathway. Finally, in the third step of lysis, the outer membrane is disrupted by spanins, proteins that form a bridge connecting outer and inner membrane. This can either be achieved by a two-component spanin complex or by a single protein that spans the periplasm (Young 2014; Cahill and Young 2019).

### 1.3.2. Lysogenic life cycle

Temperate phages undergo the lysogenic life cycle, in which the viral DNA enters a dormant state after injection into the host cytoplasm. Throughout this dormant state, the viral genome exists either as part of the host chromosome, or as an extrachromosomal element (Fig. 4) (Feiner et al. 2015). During this state, the viral genome is referred to as "prophage" and is replicated together with the host chromosome and thereby vertically transmitted between host generations. In this dormant or "latent" state, no production of new viral particles and no cell lysis takes place (Feiner et al. 2015). The bacteria carrying the prophage are called "lysogens" (Abedon 2022). The integration of the phage genome is often mediated by virus-encoded DNA integrases and either takes place at a specific attachment sites in the host genome, as for example in the case of Escherichia coli phage $\lambda$, or at random positions (e.g., phage Mu) (Bukhari and Zipser 1972; Shimada et al. 1972; Feiner et al. 2015). During the latent state, production of new virions is prevented by repression of viral lytic genes until entering of the lytic life cycle is induced (Bednarz et al. 2014; Feiner et al. 2015). This "switch" can be spontaneous or induced by phage regulatory genes or external triggers of the bacterial DNA damage stress response (e.g., temperature change, nutrient change or oxidative stress) (Howard-Varona et al. 2017). The expression of viral lytic genes then leads to DNA replication, assembly of phage particles, packaging and ultimately lysis of the host cell (Feiner et al. 2015).

### 1.3.3. Pseudolysogeny and chronic infections

Another, yet less understood life cycle with a latent state is "pseudolysogeny" or "carrier state life cycle". In contrast to lysogeny, the viral genome is not integrated into the host genome but asymmetrically transferred to one cell of the daughter generation. It remains in the host cytoplasm as an episome (or preprophage) (Miller and Day 2008; Feiner et al. 2015). This life strategy mostly occurs under nutrient limited conditions. This way, long-term coexistence of phage and host is ensured until conditions are better and the phage enters either the lytic or the lysogenic pathway (Miller and Ripp 2002).

The feature of performing chronic infections is not limited to, but typical for members of the Inoviridae family, which are filamentous ssDNA phages (Zeng et al. 2021). They follow a productive chronic pathway, in which they manipulate the host cellular mechanisms to replicate their viral genome and produce new phage particles that are continuously released from the cell by extrusion without lysing it (Chevallereau et al. 2021; Mäntynen et al. 2021).

### 1.3.4. DNA packaging strategies

In the course of the infection cycle, after new viral capsids have been produced, the genome of a tailed phage needs to be packed as a linear DNA molecule into the new capsid. This can be performed by various packaging techniques involving different types of physical genome ends (Merrill et al. 2016). Determining the physical genome start and end is crucial for proper arrangement of viral genomes and thereby ensuring an easy comparison of multiple genomes. Instead of laborious wet lab techniques, it is possible to use software-based methods operating on raw sequencing data to predict the genome ends and DNA packaging strategy (Merrill et al. 2016; Garneau et al. 2017).

Upon infection of a new host cell, the linear phage DNA is injected and circularized inside the cytoplasm (for most phages). There are different mechanisms of circularization, depending on the packaging strategy and the genome termini (Casjens and Gilcrease 2009; Merrill et al. 2016). If homologous recombination is used for circularization, identical sequence regions are necessary at both ends of the genome. This can be achieved through various ways, one of them being exact direct terminal repeats (DTRs), which can be short or long (Merrill et al. 2016). After circularization, there is one copy of the DTR in the genome, which is then multiplied by rolling circle replication resulting in linear concatemers with one copy of the DTR between each concatemer (Fig. 5). During packaging, the terminase cuts after the DTR and the DTRs are duplicated so that each capsid gets a molecule of exactly one genome-length with identical repeats at both ends. An example for this packaging strategy is Escherichia coli phage T7 (Merrill et al. 2016; Garneau et al. 2017).

Another type of genome termini are cohesive ends with either 3' overhangs (e.g., Escherichia coli phage HK97) or 5’ overhangs (e.g., Escherichia coli phage Lambda) (Merrill et al. 2016). For circularization, the complementary overhangs or "sticky ends" are ligated (Fig. 5). Through rolling circle replication concatemers of the genome are created, separated by a specific $\cos$ site, which upon packaging is recognized by the terminase and used as packaging start and cutting spot. With the terminase cutting precisely at the $\cos$ site, it is ensured that each viral capsid contains a molecule of exactly one genome-length (Merrill et al. 2016).

In contrast to the above-described packaging strategies that use strictly defined genome ends, phages using headful packaging have terminal repeats that vary amongst progeny virions (Fig. 5) (Merrill et al. 2016). The genome is again circularized by homologous recombination and linear concatemers are created by rolling circle replication. For packaging, the terminase
recognizes a specific pac site for the first cut. However, the following cuts are made when the respective capsid is full (headful packaging), so after slightly more than one genome length. This leads to repeated sequences at each end, which are different for each virion. The chromosomes in the progeny virions are circularly permuted (Merrill et al. 2016). An example for this packaging strategy is Escherichia coli phage P1 (Garneau et al. 2017). There are also phages using headful packaging without any specific packaging (pac) site, which thus have random termini on both genome ends and are circularly permuted as well, such as Escherichia coli phage T4 (Garneau et al. 2017).

Apart from these four categories of packaging and genome termini, there are further strategies known, which do not involve repeated sequence regions and thus cannot be easily identified by analysis of raw sequencing data (Merrill et al. 2016). Escherichia coli phage Mu for example integrates into the host chromosome and before it is packaged, the phage genome is cut out of the host chromosome and thereby extended by segments of host DNA at both ends. These ends differ amongst progeny virions depending on the former position of the respective phage genome within the host chromosome (Bukhari and Taylor 1975; Merrill et al. 2016). Bacillus phage phi29 on the other hand has a protein that is covalently bound to each genome end and initiates DNA replication (Ortĭn et al. 1971; Merrill et al. 2016).


Fig. 5: Viral DNA structure inside the virion before infection, circularization, and packaging mechanism of different phages with different DNA packaging strategies. I Exact direct terminal repeats (DTR). I-A Before infection, phage DNA inside the virion has identical sequences at both ends. All virions have the same end sequences. I-B Formation of a circular DNA molecule by homologous recombination. I-C A linear concatemer is formed by rolling circle replication. During DNA packaging, the DTR sequences are duplicated. Each virion gets the same repeats at both ends. II Cohesive ends. II-A The linear genome can have 3' or 5' overhangs. II-B Sticky ends are ligated after infection. II-C Rolling circle replication creates a linear concatemer. 3' or 5' overhangs are formed with the terminase cutting directly at the $\cos$ site. Into each virion, exactly one genome length is packaged. III Headful packaging. III-A The viral genome prior to infection has similar sequences at both ends, varying between virions. III-B By homologous recombination a circular DNA molecule of exactly one genome length is generated containing one pac site. III-C Rolling circle replication creates a linear concatemer. The terminase starts packaging at the pac site and cuts after slightly more than one genome length. This way, a repeated sequence at both ends is created and the position of the pac site differs between each virion. The figure has been modified from (Merrill et al. 2016).

### 1.4. Phage-host interactions

### 1.4.1. Host range of bacteriophages

All the above-mentioned effects that bacteriophages have on microbial communities and on their evolution, on biogeochemical cycles and on human health are critically dependent on how and with which hosts they interact. Thus, the host range, i.e. the taxonomic diversity of hosts a specific bacteriophage can infect, is one of the crucial traits to investigate (de Jonge et al. 2019). To discuss and compare the host ranges of different phages, first one needs to define what a successful infection is and what a broad or a narrow host range is. Just as for viral taxonomy, the fact that the discovery of the true viral diversity has only just begun, makes a clear delineation of "broad" and "narrow" difficult. Furthermore, possibilities to determine the host range experimentally and computationally are limited. Host range determination in the laboratory is restricted by the collection of bacterial strains tested and by the requirement to detect a successful infection. In addition, phages can have high mutation rates and the host range can evolve rapidly (Meyer et al. 2016). Furthermore, with one point mutation being sufficient to change the host range of a phage, alterations become reversible and repeatable (Le et al. 2013; de Jonge et al. 2019).

What defines successful infection? De Jonge et al. (2019) specified it as completion of the viral life cycle. For strictly lytic phages, this corresponds to the lysis of the host cell and the release of viral progeny, which is comparably easy to detect. On solid medium (double-layer agar), cell lysis becomes visible by clearing zones in the bacterial lawn (plaques), in liquid cultures by a drop in optical density (OD), decrease of bacterial cell numbers and increase of phage particles. The latter can be measured also with flow cytometry or fluorescence in situ hybridization (FISH) combined with epifluorescence microscopy, for example. For host range tests, most often agar-overlay techniques like spot assay or plaque assay are used (Holmfeldt et al. 2007; Synnott et al. 2009; Zhan et al. 2016; Li et al. 2016a; Sonnenschein et al. 2017).

In their review, de Jonge et al. (2019) defined that phages being capable to complete their life cycle in only one host are narrow-host-range phages. If a phage can complete its life cycle in multiple hosts that are taxonomically distinct, even different strains of the same species, they refer to it as broad-host-range phage. A distinction can be made between two cases. Either the individual phage particle can infect multiple hosts (phenotypical mechanisms), or the individual particle can only infect one host, but the phage "quasispecies" is able to infect multiple hosts (genotypical mechanisms). The latter phenomenon is called "host switching" (de Jonge et al.
2019). Despite this categorization, host range can rather be seen as a continuum, especially at the population level.

As described in section 1.3, phage infection involves different phases. To be capable to infect a broad range of hosts, phages need to have the required adaptations in all stages of their life cycle (de Jonge et al. 2019). The first (and most obviously host range-relevant) level is host recognition, involving surface-adhesion mechanisms. The binding of the phage to the host receptor is mediated by the phage receptor-binding protein (RBP), which for tailed phages is located at the tip of the tail or at the baseplate (Tremblay et al. 2006; Legrand et al. 2016; Klumpp et al. 2023). One phage particle can have multiple RBPs (polyvalent), or the quasispecies can consist of individual particles with only one RBP (monovalent), but host switching is enabled through targeted genetic diversification of the RBP. It could also be that a phage particle has multiple RBPs, but only one is expressed under certain conditions (Chow and Bukhari 1976; Liu et al. 2002; de Jonge et al. 2019). After cell entry, the challenges for the phage continue. To replicate its own genome, the phage needs to adapt to the host's replication machinery, for example in terms of codon usage, and to withstand the host's defense mechanisms (see the following chapter). The integration of temperate phages into the host's chromosome is often mediated by integrases. With those being highly specific, it requires a host chromosome with the corresponding integration target site (Smith et al. 2010; de Jonge et al. 2019). Also for the final step, the lysis of the host cell, the equipment of the phage (e.g., endolysins, holins) needs to be compatible with the host's cell wall and defense mechanisms (reviewed in de Jonge et al. 2019).

Phages with very different host ranges have been described so far, from highly specific ones infecting only one strain, to broad-host-range phages infecting several genera (Holmfeldt et al. 2007; Born et al. 2011; Ahern et al. 2014). However, most isolated and model phages have a rather narrow host range and so do most of the described roseophages (Zhan and Chen 2019a). In contrast, isolation of new broad-host-range phages like the non-tailed Autolykiviridae (Kauffman et al. 2018) shows that broad-host-range phages might be more abundant than previously assumed (Roux et al. 2016; Paez-Espino et al. 2016). This contradiction could partly be explained by the interplay of host range and infection efficiency. For some broad-host-range phages, it has been shown that their ability to infect many hosts comes along with a decrease in virulence (Keen 2014; Ford et al. 2014; Kauffman et al. 2018). Since isolation techniques require a certain level of virulence, e.g., to obtain a visible plaque for picking, there is a bias in favor of phages that have a high infection efficiency on the specific
host and thus likely a narrow host range. The same bias is of course also to be taken into account when evaluating host range assays. What holds true for culture-dependent experiments in general, applies here in particular: the determined results only reflect the host range under these exact conditions (e.g., host abundance, host diversity, temperature, time). Hyman and Abedon (2010) suggested to always specify the experimental technique when talking about host range results and call it for example a "plaquing" host range or "spotting" host range.

### 1.4.2. The arms-race between phages and bacteria

As indicated in the previous chapter, for successful infection phages need to overcome a number of obstacles in each stage of their life cycle. Bacteria exhibit a plethora of defense mechanisms to prevent infection and/or killing, acting on the different viral infection stages. These together form the "immune-system" of bacteria (Bernheim and Sorek 2020; Millman et al. 2022). Likewise, phages have developed an arsenal of counteracting anti-defense systems. The armsrace between phages and bacteria leads to a huge and rapidly-evolving variety of defense and anti-defense systems (Hampton et al. 2020). In bacterial genomes, defense genes are often located on genomic islands (defense islands) (Makarova et al. 2011). Hussain et al. (2021) investigated a large collection of closely related Vibrio strains and their phages (Nahant collection) and found phage susceptibility of the bacteria to be mediated by large mobile genetic elements, which are highly diverse, exchanged at great evolutionary speed and make up the majority of the flexible genome. The authors argue that being localized on mobile genetic elements, defense genes can be exchanged rapidly between clonal strains. This paves the way for a high diversity of coexisting defense systems at population level, lowering prey concentration and increasing the chance of species survival. At the same time, the core genome and the encoded physiological and metabolic adaptations are independent from phage defense and can be maintained on population level even upon phage predation. In addition, it makes sense that defense genes are on mobile genetic elements, because they also imply a fitness-cost for the host (Koonin et al. 2020b).

## Bacterial defense systems

Already the very first step of infection, the adsorption of the phage, can be prevented by the host by multiple means, such as receptor mutations, phase variation or receptors being masked by exopolysaccharide capsules (reviewed in Hampton et al. 2020). In addition, bacteria can use outer membrane vesicles (OMVs) with receptors on the surface to entice phages away (ReyesRobles et al. 2018). After cell entry, major types of known defense systems can be roughly classified in three categories (reviewed in Labrie et al. 2010; Bernheim and Sorek 2020; Tal
and Sorek 2022). The first category comprises systems based on the degradation of viral nucleic acids and include restriction-modification (RM) systems and some CRISPR-Cas systems. Most commonly, a specific sequence is methylated on adenine or cytosine bases in the bacterial genome. Upon infection, the respective un-methylated sequence in the phage genome is recognized and cleaved (Oliveira et al. 2014; Mruk and Kobayashi 2014). Other modifications are known, also systems in which the viral DNA is modified (Bair and Black 2007; Wang et al. 2007; Thiaville et al. 2016). Further DNA degrading strategies include the CRISPR-Cas systems working with adaptive immune memory (Hille et al. 2018; Cady et al. 2012), as well as prokaryotic argonautes (pAgo) (Lisitskaya et al. 2018). The second category comprises abortive infection (Abi) systems, which recognize a phage infection and sacrifice the infected cell to prevent formation of phage progeny and thereby protect the community. Various mechanisms are known, including signaling systems, retron systems and toxin-antitoxin systems. Also type III CRISPR-Cas systems and many others lead to cell death or growth inhibition (Lopatina et al. 2020; Millman et al. 2020). In a third category, phage DNA and RNA synthesis can be inhibited via chemical defense involving different molecules such as prokaryotic viperins or anthracyclines (Bernheim et al. 2021; Hardy et al. 2023). Additionally, defensive enzymes (e.g., dGTPases) can cause nucleotide depletion and this way hinder viral genome replication (Tal et al. 2022). Apart from the systems described above, a large number of new systems with yet unknown mechanisms has been discovered. Since defense systems are often co-located in defense islands, analysis of the genomic surrounding of known defense genes has led to the discovery of new systems (Doron et al. 2018; Gao et al. 2020; Rousset et al. 2022; Millman et al. 2022). Still, most probably there are many more to explore, not to mention the fact that they are constantly evolving.

One bacterial genome encodes multiple defense systems (also several of the same kind) to evade infection of different types of phages. Possessing several lines of defense counteracts the fact that phages can become resistant. However, due to the fitness burden implied, a single bacterial strain cannot encode all the defense systems that may ever be needed (Bernheim and Sorek 2020). Thus, similar to the principle of "host switching" described by de Jonge et al. (2019) and in accordance with the considerations of Hussain et al. (2021) and Koonin et al. (2020b) mentioned above, Bernheim and Sorek (2020) suggested to see the available defense systems in a population of bacteria as a shared pool and proposed the "pan-immune system model".

This shared pool is maintained and expanded by prophages (and plamids). They can encode additional defense systems to prevent the lysogen from being infected by related phages, a phenomenon called "superinfection exclusion" (Taylor et al. 2019). The genomic regions of prophages containing these non-essential transcribed genes are termed "morons". They can also harbor other fitness factors for the host, such as antibiotic resistance, increased early biofilm formation or additional metabolic functions (Wang et al. 2010; Taylor et al. 2019). In general, this alteration of the host's phenotype is described as "lysogenic conversion" (Little 2005).

## Phage anti-defense strategies

As mentioned above, phages have a battery of anti-defense systems to counteract the bacterial immune system (reviewed in Hampton et al. 2020). Apart from improved adsorption by multiple and modified RBPs, there are multiple ways how phages evade the bacterial defense systems after cell entry. To escape RM systems, phage DNA can become methylated itself either by methyltransferases of its own or by manipulation of the respective host enzymes (Murphy et al. 2013). In addition, the target sequence of RM or CRISPR-Cas systems can be removed or modified (Pleška and Guet 2017; Vlot et al. 2018). Furthermore, phages can use anti-defense proteins, which act against restriction endonucleases after being either expressed early after infection or injected into the cell together with the DNA (Atanasiu et al. 2002; Piya et al. 2017). Anti-CRISPR (Acr) proteins inactivating CRISPR-Cas systems have also been discovered (Bondy-Denomy et al. 2013). To evade from toxin-antitoxin systems, phages can have several antitoxins encoded themselves or they produce other proteins interfering with the host's toxin production or antitoxin degradation (reviewed in Hampton et al. 2020). In correspondence with the multiple defense systems encoded by the host, phages need to have multiple counter-defense systems. Thus, Bernheim and Sorek (2020) predict that among phage proteins with so far unknown function, more, yet unknown anti-defense genes will be identified in the future.

### 1.5. Phages infecting marine Roseobacteraceae

"Roseobacter group" or "roseobacters" is an informal term that has been used for a long time to describe a subgroup of the Rhodobacteraceae family comprising mainly marine members. Just recently, the classification has changed and the roseobacter group has been moved into its own family, the Roseobacteraceae fam. nov., because the members are clearly distinct from other Rhodobacteraceae on genomic, phylogenetic and phenotypic level (Liang et al. 2021). In
this dissertation, both classifications will be used. In the main parts of the thesis, the new classification as Roseobacteraceae will be applied, while in the chapters corresponding to already published work, the group is still referred to as part of the Rhodobacteraceae. Roseobacters represent a predominant lineage of heterotrophic bacteria in the marine environment (Simon et al. 2017) and have been found in diverse marine habitats, in the pelagic, in sediments and surface-associated, ranging from coastal regions to the deep-sea (Giebel et al. 2011; Kanukollu et al. 2016; Tang et al. 2016). They are most abundant in coastal areas, from temperate to polar regions, especially during phytoplankton blooms (Selje et al. 2004; Lamy et al. 2009; Lenk et al. 2012). Roseobacters have a high metabolic diversity and are capable to metabolize a large variety of organic compounds, perform anoxygenic photosynthesis and produce different secondary metabolites (Buchan et al. 2005; Newton et al. 2010; Simon et al. 2017). They have been shown to be phytoplankton-associates, utilizing algal exudates such as dimethylsulfoniopropionate (DMSP) and potentially engaging in both mutualistic and pathogenic interactions with the algae (Buchan et al. 2014; Amin et al. 2015). Accordingly, roseobacters typically increase in abundance during phytoplankton blooms, where they dominate the active bacterial community (Buchan et al. 2014; Wemheuer et al. 2015; Teeling et al. 2016; Bakenhus et al. 2017).

Although the roseobacters are such a diverse group comprising more than 130 genera (LPSN List of Prokaryotic names, Parte et al. (2020), accessed 15.06.2023), roseophages (phages that infect roseobacters) have been isolated from only twelve genera (Celeribacter, Dinoroseobacter, Loktanella, Paracoccus, Pelagibaca, Rhodobacter, Rhodovulum, Roseobacter, Roseovarius, Ruegeria, Sulfitobacter and Thiobacimonas). Nevertheless, the described roseophages show a remarkable genomic diversity and in recent years, scientific interest and the description of roseophage isolates have increased impressively. Roseophage isolates originate mainly from marine, coastal environments. However, for several of them searches in metagenomics databases have revealed that they are cosmopolitan. They occur mostly in coastal areas, but also in the open ocean, the deep sea and freshwater environments (Chan et al. 2014; Zhan et al. 2016; Qin et al. 2022). Moreover, the exact habitats from which roseophages have been isolated are divers and can have extreme conditions, ranging from Antarctic sea ice to tidal flat sediments, shallow-sea hydrothermal systems and soda lakes (van Zyl et al. 2016; Lin et al. 2016; Luhtanen et al. 2018; Hwang et al. 2020). When Zhan and Chen reviewed our knowledge about roseophages in 2019, 32 roseophages had been described. Until 2010, it had been only four (Zhan and Chen 2019a). Now (in 2023) the number of described roseophage isolates has increased to over 90 , not including this work. The majority of them
have a dsDNA genome and a podo- or siphoviral morphology, with a high morphological variety in terms of capsid size and tail length (Zhan and Chen 2019a).

The SIO1 phage infecting Roseobacter sp. SIO67 was the first described roseophage and the first sequenced marine phage (Rohwer et al. 2000). Highly similar phages ( $>96 \%$ nucleotide identity) were isolated twelve years later from the same geographic area, providing evidence that marine viruses can exist as discrete populations over long periods of time (Angly et al. 2009). The SIO1 phage is a podovirus and is distantly related to the T7 phage (Rohwer et al. 2000), but has no RNA polymerase. A close relative of SIO1 is the roseophage P12053L infecting Celeribacter marinus IMCC12053 (Kang et al. 2012; Hardies et al. 2016). More than a third of the described roseopodoviruses belong to the N4-like group, named after Escherichia coli phage N4. The first roseophages of this kind were identified as phage DSS3_P2 infecting Ruegeria pomeroyi DSS-3 and phage EE36_P1 infecting Sulfitobacter sp. EE-36 (Zhao et al. 2009). In the last decade, 13 more N4-like roseophages have been isolated from the host genera Ruegeria (phages vB_RpoP-V12, V13, V14, V17, V21), Sulfitobacter (phage фCB2047-B), Roseovarius (phage RLP1), Roseobacter (phages RPP1, RD-1410W1-01, RD-1410Ws-07), and Dinoroseobacter (phages vB_DshP-R1, vB_DshP-R2C and DS-1410Ws-06) (Zhan and Chen 2019a; Ankrah et al. 2014a; Chan et al. 2014; Ji et al. 2015; Cai et al. 2015; Li et al. 2016a). The N4-like roseophages show genome sizes similar to E. coli phage N 4 ( 73 to 75 kb ) and they all possess the N4-like characteristic large virion-encapsidated RNA polymerase gene (vRNAP). Based on genomic approaches and with the new viral megataxonomy at hand, the N4-like phage group was recently transformed into the new family Schitoviridae (Wittmann et al. 2020). "HMO-2011-type phages" describes a podoviral group that was first detected by metagenomics studies to be highly abundant in the ocean and named after their first cultivated representative Puniceispirillum phage HMO-2011, infecting SAR116 strain IMCC1322 (Kang et al. 2013). Nine roseopodophages infecting Roseobacter RCA strains (phages CRP-1, CRP-2 and CRP-3) and Roseobacter sp. strains (CRP-207, CRP-212, CRP-235, CRP-345, CRP-603 and CRP-738) belong to this group (Zhang et al. 2019a; Qin et al. 2022). A characteristic feature of these viruses is a unique domain architecture of the DNA polymerase gene. Furthermore, they have the potential for a lysogenic life cycle, as they possess an integrase gene (Zhang et al. 2019a). Six more Roseobacter RCA podophages have been described (phages CRP-4, CRP5, CRP-6, CRP-7, CRP-9 and CRP-13), clustering into four separate groups based on genomic comparison (Zhang et al. 2019a; Zhai et al. 2021). Moreover, one of the first phage isolates from Antarctic sea ice is a roseophage. The podovirus Antarctic DB virus 2 (OANV2) was isolated infecting Octadecabacter sp. IceBac430 (Luhtanen et al. 2018). Apart from (strictly)
lytic roseopodoviruses, three temperate ones have been described. All of them infect members of the Sulfitobacter genus (phages $\phi$ CB2047-A, $\phi$ CB2047-C and NYA-2014a) (Ankrah et al. 2014b).

Roseosiphoviruses are even more diverse. Chi-like roseosiphophages (related to phages of the Chivirus genus) infect Ruegeria pomeroyi DSS-3 (phages DSS3 ${ }^{2} 1$, vB_RpoS-V7, V11, V16 and V18) (Zhan et al. 2018; Zhan and Chen 2019a). Phage pCB2051-A, infecting Loktanella sp. CB2051, had earlier been described as Chi-like as well. It was recently classified in its own genus Broinstvirus in the Casjensviridae family (Tolstoy et al. 2021). Being closely related to CbK-like phages (which infect Caulobacter crescentus, a freshwater bacterium), phages DSS3 $\phi 8$ and vB_RpoS-V10 infecting Ruegeria pomeroyi DSS-3 and phage MD18 infecting Phaeobacter inhibens are the roseophages with the largest genomes (about 146 kb ) described so far (Zhan et al. 2016; Zhan and Chen 2019a; Urtecho et al. 2020). Phages of the Xiamenvirus genus infect Roseobacter denitrificans OCh114 (phages RDJL $\phi 1$ and RDJL $\phi 2$ ) and Ruegeria sp. AU67, a bacterial sponge symbiont (phage Tedan) (Zhang and Jiao 2009; Huang et al. 2011; Liang et al. 2016; Baum et al. 2021). Paracoccus phage Shpa, isolated from the sediment of a soda lake in the East African Rift valley, infects Paracoccus sp. HS3 (van Zyl et al. 2016). Another lytic Paracoccus siphophage (vB_RmaS-R3) was isolated from the South China Sea (Xu et al. 2015). In addition, a second Octadecabacter phage isolated from the Antarctic sea ice, Antarctic DB virus 1 (OANV1), showed a siphoviral morphology (Luhtanen et al. 2018). More recently, 26 new phage isolates infecting Rhodobacter capsulatus have been described, which all have dsDNA genomes and a siphoviral morphology (Bollivar et al. 2016; Rapala et al. 2021). Based on genomic comparisons, these phages form six clusters, separate from other known phages. Two of these clusters have been described as the genera Cronusvirus and Titanvirus (Rapala et al. 2021). Siphophage vB_Dsh-R4C was isolated infecting Dinoroseobacter shibae DFL12 and was shown to be distantly related to the phages of the Cronusvirus genus (Cai et al. 2019). Phage vB_DshS-R5C also infects Dinoroseobacter shibae DFL12, but so far clusters alone amongst the described roseophages (Yang et al. 2017; Zhan and Chen 2019a). It was recently assigned to its own genus Nanhaivirus (Kropinski et al. 2018). Roseosiphophages DSS3_VP1 and DSS3_PM1 have been isolated infecting Ruegeria pomeroyi DSS-3. They represent their own family Naomiviridae (Rihtman et al. 2021). Their DNA has an unusual substitution of deoxythymidine by deoxyuridine. As this substitution makes them unavailable for common methods of library preparation for metagenome sequencing, an underestimation of their abundance is suspected (Rihtman et al. 2021). Amongst the described roseosiphoviruses, the majority is strictly lytic. Only a few of them possess
integrase genes indicating lysogenic potential. Exceptions are the prophages of Rhodobacter capsulatus (phages RcapMu and RC1), Thiobacimonas profunda JLT2016 (phage vB_ThpSP1) and Pelagibaca abyssi JLT2014 (phage vB PeaS-P1) as well as Rhodovulum sp. P5 (phage vB_RhkS_P1), which are capable of transposition. These siphoviruses belong to the "Mu-like head phage group" as they share homologous head element sequences (Fogg et al. 2011; Lin et al. 2016; Tang et al. 2017; Rapala et al. 2021). Furthermore, Decewicz et al. (2019) described five temperate phages induced from different Paracoccus strains, one of them being the first isolated roseomyovirus (phage vB_PyeM_Pyei1). The others have a siphoviral morphology (phages vB_PbeS_Pben1, vB_PkoS_Pkon1, vB_PsuS_Psul1 and vB_PthS_Pthi1). In silico search of publicly available Paracoccus genomes has let to identification of 53 more prophages, revealing a large diversity of Paracoccus (pro)-phages, distinct from other known phages (Decewicz et al. 2019).

Finally, only two roseophage isolates have ssDNA genomes. The two unclassified Microviridae phages vB_RpoMi-Mini and vB_RpoMi-V15 have been isolated from Ruegeria pomeroyi DSS-3 and have the smallest genomes ( 4.2 kb ) amongst known ssDNA phages (Zhan and Chen 2019b, 2019a).

In this dissertation, strains of three distinct Roseobacteraceae genera have been used as hosts for phage isolation. They will shortly be introduced in the following. Among the roseobacters, Lentibacter is a genus relevant in coastal and estuarine waters, where its relative abundance can be up to $30 \%$ of the bacterial community (Wallace et al. 2018), and has been repeatedly isolated from algal blooms in different geographical locations (Li et al. 2012; Hahnke et al. 2013). So far, the Lentibacter genus is rather small, with only one described species (Lentibacter algarum) and few unclassified strains listed in the NCBI taxonomy browser at the time of writing (22.03.2023). Prior to the work described in this dissertation, no phage infecting the Lentibacter genus had been described. Members of the Sulfitobacter genus are often algae-associated (Ivanova et al. 2004; Fukui et al. 2015; Wang et al. 2021). It was shown to be amongst the most abundant genera on the surface of Fucus spiralis and is thought to promote algal growth by provision of vitamin B12 and siderophores (Dogs et al. 2017). In addition, Sulfitobacter strains associated with the dinoflagellate Alexandrium minutum are also known to promote growth of the dinoflagellate (Yang et al. 2021). At the same time, sulfitobacters display algicidal effects during harmful algal blooms (Zhang et al. 2020b). The genus Sulfitobacter is large, with 27 species and a large number of unclassified strains at the time of writing (NCBI taxonomy browser, 18.01.2023). Except this work, currently six

Sulfitobacter phages have been isolated from three strains, comprising two N4-like podoviruses (phages EE36_P1 and $\phi$ CB2047-B), one lytic siphovirus (phage GT1) and three temperate siphoviruses (phages $\phi$ CB2047-A, $\phi$ CB2047-C and NYA-2014a), as mentioned above (Zhao et al. 2009; Ankrah et al. 2014a, 2014b; Hwang et al. 2020). Octadecabacter is a diverse genus as well, currently comprising eight species and several unclassified strains (NCBI taxonomy browser, 18.01.2023). The first representatives Octadecabacter arcticus and Octadecabacter antarcticus have been isolated from the sea ice of the Arctic and Antarctic, respectively (Gosink et al. 1997). Others were found free-living in seawater or associated to marine red algae (Billerbeck et al. 2015; Park et al. 2016; Jin et al. 2023). Furthermore, members of the Octadecabacter genus were shown to dominate the subcuticular bacterial community of brittle star A. squamata (Morrow et al. 2018). At the moment of writing, only two Octadecabacter infecting viruses have been described in literature, so far both described as unclassified members of the class Caudoviricetes. These are Octadecabacter Antarctic BD virus 1 (siphovirus) and Octadecabacter Antarctic BD virus 2 (podovirus), isolated from Antarctic sea ice (Luhtanen et al. 2018; Demina et al. 2021).

### 1.6. How to investigate phage diversity

There are two categories of methods to study phage diversity: (i) culture-dependent methods, which are based on isolation of phages in pure cultures and (ii) culture-independent methods, which are working directly on environmental samples, for example sequencing of phage genomes or marker genes. Both types of methods have their advantages. Having pure cultures at hand allows an in-depth analysis of specific phage-host systems, e.g., the determination of the host range of the specific phage, the burst size, and the temporal course of the infection cycle. The virion morphology can be visualized by electron microscopy. Culture-independent methods on the other hand investigate only on the molecular level, but allow for a much higher throughput and are less biased by laboratory conditions. Quantification of virus numbers by flow cytometry or epifluorescence microscopy can help to understand the viral impact on bacterial communities (Brussaard 2004; Heinrichs et al. 2020). Viral diversity in environmental samples can be captured relatively easy by metagenome sequencing (Gregory et al. 2019) and single phage genomes can be obtained directly from the environmental sample without isolation (Breitbart et al. 2002). Nevertheless, in such approaches, one very fundamental piece of information about the phage is missing and challenging to predict - the corresponding host (Roux et al. 2018; Roux et al. 2021). Bioinformatic prediction of the potential host of
uncultivated phages can be attempted with programs like HostPhinder (Villarroel et al. 2016), using BLAST searches against databases and sequence composition analyses. The predictions, however, are dependent on database knowledge and thus severely restricted by the fact that bacterial diversity is unevenly represented in those (Coclet and Roux 2021). Furthermore, Dion et al. (2020) suggested that, despite the advantages of metagenomics for the investigation of viral communities, phage populations with high microdiversity could be overlooked, as closely related genomes cannot be differentiated. Even though new approaches as single-virus genomics and viral tagging metagenomics have been developed (Deng et al. 2014; MartinezHernandez et al. 2017), the authors point out, that for a comprehensive picture of phage communities, culture-independent methods need to be combined with phage isolations and culture work (Dion et al. 2020).

### 1.7. Aims and outline of this dissertation

Despite the progress made in recent years in the isolation and description of new roseophages, the vast majority of phages infecting roseobacters still needs to be discovered. To date, phages for only twelve roseobacter genera have been described in literature, in sharp contrast with the more than 130 roseobacter genera. Therefore, the major goal of this thesis was to uncover further roseophage diversity. As outlined above, isolation and cultivation of phages is a valuable tool, as it lays the foundation for in-depth analysis of the phage's life style and interaction with its host(s). Thus, it was chosen as the main approach for discovery of new roseophage diversity in this dissertation. The focus was placed on three environmentally relevant roseobacter genera: Lentibacter, Sulfitobacter and Octadecabacter.

This dissertation is written in a monographic style. Nevertheless, its chapters reflect the division into four projects, which are or will be published independently:

Chapter 2 focuses on the isolation of two novel roseophage species infecting Lentibacter sp . SH36, and the delineation of a new viral group, the "cobaviruses". The phylogenetic classification, genomic organization and host range of these viruses were investigated, as well as their biogeographical distribution. This work was published in the The ISME journal (Bischoff et al. 2019). Chapter 3 contains the further taxonomic classification of the two roseophages and the description of the Zobellviridae family, published as an ICTV-accepted taxonomic proposal (Bischoff et al. 2020).

Chapter 4 describes a large-scale roseophage isolation campaign that resulted in the isolation and genome sequencing of 128 new dsDNA roseophages, infecting mainly Sulfitobacter, but also Lentibacter and Octadecabacter strains. The chapter focuses on the classification of the new phages into seven viral genome clusters and describes their genomic organization and characteristics. The corresponding publication to this chapter is in preparation.

Chapter 5 is dedicated to a subgroup of the above-mentioned new roseophages, the sulfiviruses. This is a collection of highly similar phages infecting a group of almost identical Sulfitobacter host strains. Phage-host interactions were investigated using host range assays and the results are further discussed in the light of phage and host genomic microdiversity.

At last, in chapter 6, a short excursion into the ssDNA bacteriophage world is undertaken, describing the isolation and the characterization of Sulfitobacter phage ICBM5, to which I contributed with the laboratory work of determining morphology, host range and host phylogeny. This work served as basis for a larger study that has been published in Virus Evolution (Zucker, Bischoff et al. 2022).

## 2. Cobaviruses - a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems

This chapter corresponds to an article published in The ISME journal in 2019 (without the introduction). Thus, the described and proposed viral taxonomy, also the spelling of viral taxa (e.g., in italics or with quotation marks), corresponds to the classification at that time, which is now partially invalid. Subsequent changes in the taxonomy of the described viruses are further discussed in chapter 3 of this dissertation.

## Authors of the publication:

Vera Bischoff ${ }^{1}$, Boyke Bunk ${ }^{2}$, Jan P. Meier-Kolthoff ${ }^{2}$, Cathrin Spröer ${ }^{2}$, Anja Poehlein ${ }^{3}$, Marco Dogs ${ }^{1}$, Mary Nguyen ${ }^{4}$, Jörn Petersen ${ }^{2}$, Rolf Daniel ${ }^{3}$, Jörg Overmann ${ }^{2}$, Markus Göker ${ }^{2}$, Meinhard Simon ${ }^{1}$, Thorsten Brinkhoff ${ }^{1}$, Cristina Moraru ${ }^{1}$<br>${ }^{1}$ Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9 -11, D26111 Oldenburg, Germany<br>${ }^{2}$ Leibniz-Institut DSMZ——eutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, D-38124 Braunschweig, Germany<br>${ }^{3}$ Georg-August-University Göttingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology \& Göttingen Genomics Laboratory, Grisebachstr. 8, D-37077 Göttingen, Germany<br>${ }^{4}$ Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, NSW 2052, Australia

Reference: ISME J 13 (6), P. 1404-1421. DOI: 10.1038/s41396-019-0362-7.

## Author contributions:

CM designed the research, contributed to data analysis and drafted the manuscript. VB performed the laboratory phage work, contributed to data analysis and to manuscript drafting. MN and VB isolated ICBM2 phage. BB, CS and JO conducted PacBio sequencing, assembly, annotation and DTR recognition. AP and RD conducted Illumina sequencing and assembly. JMK and MG performed the VICTOR analysis. MD and TB calculated the 16 S rRNA trees. JP contributed to the host range tests. TB and MS advised through the course of research and contributed to data interpretation. All authors contributed to manuscript finalization.

### 2.1. Chapter summary

Bacteriophages are widely considered to influence bacterial communities, however most phages are still unknown or not studied well enough to understand their ecological roles. We have isolated two phages infecting Lentibacter sp. SH36, affiliated with the marine Roseobacter group, and retrieved similar phage genomes from publicly available metagenomics databases. Phylogenetic analysis placed the new phages within the Cobavirus group, in the here newly proposed genus Siovirus and subfamily Riovirinae of the Podoviridae. Gene composition and presence of direct terminal repeats in cultivated cobaviruses point toward a genome replication and packaging strategy similar to the T7 phage. Investigation of the genomes suggests that viral lysis of the cell proceeds via the canonical holin-endolysin pathway. Cobaviral hosts include members of the genera Lentibacter, Sulfitobacter and Celeribacter of the Roseobacter group within the family Rhodobacteraceae (Alphaproteobacteria). Screening more than 5,000 marine metagenomes, we found cobaviruses worldwide from temperate to tropical waters, in the euphotic zone, mainly in bays and estuaries, but also in the open ocean. The presence of cobaviruses in protist metagenomes as well as the phylogenetic neighborhood of cobaviruses in glutaredoxin and ribonucleotide reductase trees suggest that cobaviruses could infect bacteria associated with phototrophic or grazing protists. With this study, we expand the understanding of the phylogeny, classification, genomic organization, biogeography and ecology of this phage group infecting marine Rhodobacteraceae.

### 2.2. Materials and methods

### 2.2.1. Cultivation media

Liquid cultures of the bacterial host, Lentibacter sp. SH36, were grown in artificial saltwater medium ( 1 x ASW) ( $24.32 \mathrm{~g} / \mathrm{NaCl}, 10 \mathrm{~g} / \mathrm{MgCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}, 1.5 \mathrm{~g} / \mathrm{l} \mathrm{CaCl} 2 \times 2 \mathrm{H}_{2} \mathrm{O}, 0.66 \mathrm{~g} / \mathrm{l} \mathrm{KCl}$, $4 \mathrm{~g} / \mathrm{l} \mathrm{Na} 2 \mathrm{SO}_{4}, 2.38 \mathrm{~g} / \mathrm{l}$ HEPES, $0.6 \mathrm{~g} / \mathrm{l}$ peptone, $0.3 \mathrm{~g} / \mathrm{l}$ yeast extract, $84 \mathrm{mM} \mathrm{KBr}, 40 \mathrm{mM}$ $\mathrm{H}_{3} \mathrm{BO}_{3}, 15 \mathrm{mM} \mathrm{SrCl} 2,40 \mathrm{mM} \mathrm{NH} 44,4 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}, 7 \mathrm{mM} \mathrm{NaF}, \mathrm{pH} 7.5$ ), which was autoclaved and completed before use with $1 \mathrm{ml} / 1$ of sterile filtered multi vitamin solution (after (Balch et al. 1979) ), $0.25 \mathrm{ml} / \mathrm{l}$ of sterile filtered trace element solution A ( $1.5 \mathrm{~g} \mathrm{FeCl} 2 \mathrm{~K}_{2} \mathrm{H}_{2} \mathrm{O}$ in $10 \mathrm{ml} 25 \% \mathrm{HCl}$ and 250 ml MilliQ water) and $0.1 \mathrm{ml} / 1$ of autoclaved trace element solution B ( $19 \mathrm{mg} / \mathrm{l} \mathrm{CoCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{mg} / \mathrm{l} \mathrm{MnCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}, 7 \mathrm{mg} / \mathrm{l} \mathrm{ZnCl}_{2}, 3.6 \mathrm{mg} / \mathrm{l} \mathrm{Na}_{2} \mathrm{MoO}_{4} \times 2 \mathrm{H}_{2} \mathrm{O}$, $2.4 \mathrm{mg} / / \mathrm{NiCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}, 0.6 \mathrm{mg} / l \mathrm{H}_{3} \mathrm{BO}_{3}, 0.2 \mathrm{mg} / \mathrm{l} \mathrm{CuCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}$ ). The solid medium used for plaque assays was Marine Broth (MB). This media had the following recipe. $5.0 \mathrm{~g} / \mathrm{l}$ peptone, $1.0 \mathrm{~g} / \mathrm{l}$ yeast extract, $0.1 \mathrm{~g} / \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{FeO}_{7}, 12.6 \mathrm{~g} / \mathrm{l} \mathrm{MgCl}_{2} \mathrm{x}^{6} \mathrm{H}_{2} \mathrm{O}, 3.24 \mathrm{~g} / \mathrm{l} \mathrm{Na} 2 \mathrm{SO}_{4}, 19.45 \mathrm{~g} / \mathrm{l} \mathrm{NaCl}$, $2.38 \mathrm{~g} / \mathrm{l} \mathrm{CaCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}, 0.55 \mathrm{~g} / 1 \mathrm{KCl}, 0.16 \mathrm{~g} / \mathrm{NaHCO} \mathrm{N}_{3}, 0.01 \mathrm{~g} / \mathrm{l} \mathrm{Na}{ }_{2} \mathrm{HPO}_{4} \times 2 \mathrm{H}_{2} \mathrm{O}, 0.008 \mathrm{~g} / \mathrm{l} \mathrm{KBr}$, $0.034 \mathrm{~g} / \mathrm{SrCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}, 0.022 \mathrm{~g} / \mathrm{H}_{3} \mathrm{BO}_{3}, 0.007 \mathrm{~g} / \mathrm{l} \mathrm{Na}_{2} \mathrm{SiO}_{3} \times 3 \mathrm{H}_{2} \mathrm{O}, 0.0024 \mathrm{~g} / \mathrm{l} \mathrm{NaF}, 0.0016 \mathrm{~g} / \mathrm{l}$ $\mathrm{NH}_{4} \mathrm{NO}_{3}$. To prepare MB agar plates, the medium was supplemented with $18 \mathrm{~g} / \mathrm{l}$ Bacto Agar (BD Biosciences) prior to autoclavation.

### 2.2.2. Phage enrichments and isolation of ICBM1 and ICBM2 phages

Surface seawater was collected from multiple stations (53.978 8.059; 53.937 7.806; 53.896 7.535; $53.8407 .255 ; 53.7936 .997$ ) in the southern North Sea, during a phytoplankton bloom in March 2015, on board of the cruise ship RV Heincke. Further, the seawater from each station was filtered on board through $0.7 \mu \mathrm{~m}$ filters, 47 mm in diameter (GTTP filters, Millipore). To prevent clogging, the filters were exchanged every 2 liters. The seawater from all stations was pooled, transported to the laboratory and stored at $4{ }^{\circ} \mathrm{C}$ in the dark.

Two phage enrichments (S1 and S2), each of 100 ml , were set up by mixing 90 ml of freshly filtered (Nalgene rapid-flow, $0.2 \mu \mathrm{~m}$, PES membrane, Thermo-Scientific) seawater with 10 ml of 10 x ASW (see chapter 2.2.1.) and 2.1 ml of exponentially growing host culture Lentibacter sp. SH36 (final $\mathrm{OD}_{600}=0.006$ ). Two controls were prepared in parallel. The first, a positive control (PC) for host growth, consisted of 100 ml 1x ASW and 2.1 ml of exponentially growing host culture (final $\mathrm{OD}_{600}=0.006$ ). The second, a negative control (NC) for growth of seawater bacteria contaminants, which might have passed through the $0.2 \mu \mathrm{~m}$
filter, consisted of 90 ml freshly filtered $(0.2 \mu \mathrm{~m})$ seawater and 10 ml 10 x ASW. Bacterial growth was monitored by measuring the optical density at 600 nm (Beckmann DU520, USA). The cultures were incubated at $20^{\circ} \mathrm{C}$ and 100 rpm overnight, until the enrichment cultures showed signs of cell lysis. Lysis was indicated by decreasing optical density at $600 \mathrm{~nm}\left(\mathrm{OD}_{600}\right)$ in S1 and S2 cultures compared to the positive control and by the presence of cell debris in S1 and S2. Bacterial cells and their debris were removed from the phage enrichments by a centrifugation step ( $15 \mathrm{~min}, 4000 \mathrm{xg}, 20^{\circ} \mathrm{C}$ ), followed by $0.2 \mu \mathrm{~m}$ filtration (Rotilabo-syringe filters, Carl Roth) of the supernatant. The cell free phage lysates from the S1 and S2 enrichments were used to isolate the ICBM1 and ICBM2 phages, respectively, by plaque assays and single plaque picking.

To obtain single plaques, serial dilutions $\left(10^{0}, 10^{-1}\right.$, etc.) were prepared from the phage fractions by mixing with ASW base (see chapter 2.2.1.). $100 \mu 1$ of phage dilution were mixed with $280 \mu 1$ of exponentially growing host culture $\left(\mathrm{OD}_{600}=0.2-0.3\right)$ and incubated for 15 min on ice. Afterwards, the mixture was transferred to 3 ml MB-soft agar ( $0.6 \%$ low melting point Biozym Plaque GeneticPure agarose, Biozym, kept warm at $37^{\circ} \mathrm{C}$ ), mixed by brief vortexing and poured onto the bottom MB agar layer ( $1.8 \%$ agar). After drying of the top layer, the plates were incubated for three days at $20^{\circ} \mathrm{C}$. For isolation, when phage plaques were observed as clearing zones within the grown bacterial lawn, they were picked with sterile Pasteur pipettes and incubated overnight in $500 \mu \mathrm{ASW}$ base at $4^{\circ} \mathrm{C}$. After subsequent centrifugation ( 10 min , $10000 \mathrm{xg}, 4^{\circ} \mathrm{C}$ ), the supernatant was used for a next round of plaque assays. This procedure of plaque assay, picking of plaques and re-plating was repeated three times to ensure purity of the newly isolated phages. The ICBM1 and ICBM2 phages were stored either as phage lysate at $+4^{\circ} \mathrm{C}$ or as glycerol stock of free phages or infected cells at $-80^{\circ} \mathrm{C}$ (for details, see chapter 2.2.3.).

To determine the host range, 94 strains (Table S1) covering the phylogenetic diversity of Rhodobacteraceae were challenged with ICBM1 and ICBM2 phages, at three different temperatures ( 15,20 , and $28^{\circ} \mathrm{C}$ ), using first the spot assay technique and then the plaque assay technique for confirmation of positive results. For the spot assay, serial dilutions ( $10^{0}, 10^{-1}$, etc.) were prepared from the phage fractions by mixing with ASW base. $280 \mu \mathrm{l}$ of exponentially growing host culture $\left(\mathrm{OD}_{600}=0.2-0.3\right)$ were mixed with 3 ml MB -soft agar (kept warm at $37^{\circ} \mathrm{C}$ ) and poured onto the bottom MB agar layer. After drying of the top layer, $10 \mu \mathrm{l}$ of each phage fraction dilution were pipetted on top as droplets. The plates were incubated at $20^{\circ} \mathrm{C}$ and regularly checked for plaque formation.

### 2.2.3. Preparation of phage ICBM1 and ICBM2 glycerol stocks

In two Erlenmeyer flasks, 20 ml 1 x ASW medium (see chapter 2.2.1.) was inoculated with an exponentially growing Lentibacter sp. SH36 culture (final $\mathrm{OD}_{600}=0.006$ ). One culture was infected with $300 \mu 1$ of the phage ICBM1 lysate, the other was not infected and regarded as control. Both cultures were incubated at $20^{\circ} \mathrm{C}$ and 100 rpm overnight, until bacterial lysis in the infected culture was indicated by low $\mathrm{OD}_{600}$ (compared with the control culture) and disrupted cell particles. The phage fraction was obtained by removing cells and debris by centrifugation ( $15 \mathrm{~min}, 4000 \mathrm{xg}, 20^{\circ} \mathrm{C}$ ), followed by $0.22 \mu \mathrm{~m}$ filtration of the supernatant. The phage fraction was stored at $+4^{\circ} \mathrm{C}$. For long term storage, two types of glycerol stocks were prepared: i) stock of free phage particles (1 part phage fraction and 1 part MB media with $50 \%$ glycerol) and ii) stock of infected host cells (1 part infected cells - $375 \mu$ l phage fraction added to $375 \mu \mathrm{l}$ host culture, 15 min on ice for absorption - and 1 part MB media with $50 \%$ glycerol).

### 2.2.4. ICBM1 and ICBM2 phage high titer lysates

To obtain a high amount of ICBM1 and ICBM2 phage biomass for transmission electron microscopy (TEM) and genome sequencing, two subsequent infection cultures of Lentibacter sp. SH36 with phage ICBM1 or ICBM2 were performed. For the first round of infection, 1x ASW was inoculated with exponentially growing Lentibacter sp. SH36 to a final OD ${ }_{600}$ of 0.006 and with phage ICBM1 or ICBM2 stock. After an overnight incubation at $20^{\circ} \mathrm{C}$ and shaking at 100 rpm , lysis was observed, indicated by a decrease in the $\mathrm{OD}_{600}$ (in comparison with the control, non-infected culture) and cellular debris. The remaining cells and cell debris were removed by centrifugation ( $15 \mathrm{~min}, 4000 \mathrm{xg}, 20^{\circ} \mathrm{C}$ ) and $0.22 \mu \mathrm{~m}$ filtration. For the second round of infection, a highly concentrated phage-host mixture was obtained by pelleting an exponentially growing culture of Lentibacter sp. SH36 and re-suspending the cell pellet in the phage fraction from the first infection culture. After the phage-host mixture was incubated on ice for 15 min to facilitate phage absorption, an equal volume of 2 x ASW was added to it and the infection culture incubated overnight at $20^{\circ} \mathrm{C}$ and 100 rpm . After lysis, the phage fraction was obtained by centrifugation ( $15 \mathrm{~min}, 4000 \mathrm{xg}, 20^{\circ} \mathrm{C}$ ) and $0.22 \mu \mathrm{~m}$ filtration to remove remaining cells and cell debris.

### 2.2.5. Transmission electron microscopy

ICBM1 and ICBM2 phage lysates were further concentrated for TEM by polyethylene glycol (PEG) precipitation and purified by cesium chloride gradient ultracentrifugation. 150 ml phage fraction resulting from two subsequent infections (see above) were incubated for 2 h at $4^{\circ} \mathrm{C}$
with PEG (final concentration $10 \%$ ) and NaCl (final concentration 0.6 mM ). After centrifugation for 2 h at 7197 xg and $4^{\circ} \mathrm{C}$, the supernatant was discarded and the pellet resuspended in $500 \mu 1$ SM buffer ( $100 \mathrm{mM} \mathrm{NaCl}, 8 \mathrm{mM} \mathrm{MgSO} 4,50 \mathrm{mM}$ Tris- HCl pH 7.4 ) in total. For resuspension of the phages, 30 min incubation at $4{ }^{\circ} \mathrm{C}$ followed. PEG was removed by mixing with an equal volume of $100 \%$ chloroform, shaking for 5 min and incubation on ice for 5 min . After centrifugation ( $10 \mathrm{~min}, 3000 \mathrm{xg}, 4^{\circ} \mathrm{C}$ ), the upper layer was collected.

For purification by ultracentrifugation, a density gradient was set up in UltraClear ${ }^{\text {TM }}$ centrifuge tubes from cesium chloride solutions with different densities (from bottom up): 1.5 ml of $1.65 \mathrm{~g} / \mathrm{ml}, 2 \mathrm{ml}$ of $1.5 \mathrm{~g} / \mathrm{ml}, 2 \mathrm{ml}$ of $1.4 \mathrm{~g} / \mathrm{ml}, 1 \mathrm{ml}$ of $1.2 \mathrm{~g} / \mathrm{ml}$. The PEG concentrated phage fraction was transferred on top. Ultracentrifugation was run for 4 h at $20^{\circ} \mathrm{C}$ and 25000 rpm (Beckman, SW 41 Ti ). Afterwards, the visible band corresponding to the phages was collected with syringe and needle through the sidewall of the ultracentrifuge tube ( $\sim 500 \mu \mathrm{l}$ ). Removal of cesium chloride was done by dialysis with Slide-A-Lyzer® G2 Dialysis Cassettes 10 K MWCO (ThermoScientific) against ASW base for 21 h with buffer exchange after 3 h and 18 h.

Two staining procedures were performed for each phage prior to transmission electron microscopy (TEM): (1) ammonium molybdate staining and (2) uranyl acetate staining. $30 \mu \mathrm{l}$ of phage ICBM1 or ICBM2 concentrate were pipetted on top of a carbon coated grid (Formvar 162, 200 mesh) and phages were allowed to absorb for 3 min , followed by staining with $30 \mu$ uranylacetate ( $2 \%$ ) or ammonium molybdate ( $2 \%$ ) for 45 sec and gentle removal of the liquid with filter paper. After air drying for 15 min , the grids were visualized with the transmission electron microscope Zeiss EM902A. Images were documented with the Proscan High Speed SSCCD camera and analyzed using the software ImageSP viewer (Version 1.2.5.16). Phages negatively stained by uranyl acetate were used for capsid size measurements.

### 2.2.6. Isolation and purification of phage DNA for sequencing

## Phage isolates - extraction of DNA from virions

Phage DNA was extracted from cell free phage lysates obtained by infecting Lentibacter sp. SH36 with ICBM1 or ICBM2. Phages were concentrated from the phage lysates by precipitation with polyethylene glycol. For this purpose, $4 \times 25 \mathrm{ml}$ phage lysate prepared as above (with one exception: to avoid phage loss, cells and debris were removed only by centrifugation, and not by filtration) were mixed with $50 \%$ PEG (final concentration $10 \%$ ) and 5 M sodium chloride (final concentration 0.6 M ) and incubated for 2 h at $4^{\circ} \mathrm{C}$. After
centrifugation $\left(2 \mathrm{~h}, 7197 \mathrm{xg}, 10^{\circ} \mathrm{C}\right)$ the phage pellets were resuspended in $500 \mu \mathrm{l}$ SM buffer $(100 \mathrm{mM} \mathrm{NaCl}, 8 \mathrm{mM} \mathrm{MgSO} 4,50 \mathrm{mM}$ Tris- HCl pH 7.4 ) each.

Extracellular DNA was removed by incubating the phage concentrates with 0.04 units $/ \mu \mathrm{l}$ of Turbo DNase (Invitrogen, Ambion) for 30 min at $37^{\circ} \mathrm{C}$, followed by enzyme inactivation by incubating for 10 min at $75^{\circ} \mathrm{C}$ with 15 mM EDTA. Further, the phage DNA was extracted using the ChargeSwitch gDNA Mini Bacteria Kit (ThermoFisher Scientific), according to the instructions manual, including the with the RNase digestion, but with the exception of no lysosyme in the first step. The DNA was finally eluted in 1 ml elution buffer. The concentration and quality of the obtained DNA was checked fluorometrically with Qubit 2.0 and the Qubit® dsDNA HS Assay, spectrophotometrically with Nanodrop 2000 spectrophotometer and visually by regular gel electrophoresis ( $0.7 \%$ agarose gel, 50 V , SYBR Gold staining).

## Phage enrichments - extraction of DNA from the intracellular phage fraction

To extract the intracellular phage fraction from the phage enrichment, when lysis was observed, the cells from the enrichments and the positive control were retrieved by centrifugation ( $15 \mathrm{~min}, 4000 \mathrm{x} \mathrm{g}, 20^{\circ} \mathrm{C}$ ). The cell pellets were embedded in agarose plugs by mixing with SeaKem Gold Agarose for PFGE, Lonza Rockland Inc. (final concentration 0.8\%), distributing the mixture into $100 \mu \mathrm{l}$ molds and allowing it to solidify for 30 min at $4^{\circ} \mathrm{C}$. Plugs were collected in a 50 ml Falcon tube and incubated overnight at $50^{\circ} \mathrm{C}$ in 2 ml ESP buffer ( $1 \%$ N-laurylsarcosine, $1 \mathrm{mg} / \mathrm{ml}$ proteinase K, 0.5 M EDTA pH 9.0). Afterwards, the ESP was discarded, the plugs were washed three times with TE buffer ( 10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,2 \mathrm{mM}$ EDTA pH 9.0) and stored in TE buffer at $4^{\circ} \mathrm{C}$ until further use. The DNA from the agarose plugs was separated during agarose gel electrophoresis ( $1 \%$ SeaPlaque GTG Agarose, Lonza Rockland Inc., TAE buffer - 40 mM Tris-acetate, 1 mM EDTA, pH 8.3 , migration 2 h at 60 V ). Afterwards, the gel was cut into two halves. One half was stained with Ethidium bromide bath $(1 \mu \mathrm{~g} / \mathrm{ml}, 30 \mathrm{~min})$ and documented with BioDocAnalyze system (Biometra). The distance from the loading pocket to the phage DNA band was measured and used to localize the phage DNA band in the unstained half and to cut it out from the gel. The agarose pieces were stored overnight in TE buffer ( 10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,5 \mathrm{mM}$ EDTA pH 9.0 ), followed by agarose digestion with 1 unit of $\beta$-agarase (New England Biolabs Inc.), according to the manufacturer's protocol. Undigested agarose was removed by centrifugation for 10 min at 20000 x g . The obtained supernatants were concentrated to $100 \mu 1$ each using 100 kDa Amicon Ultra centrifugal filters ( 0.5 ml volume, Merck Millipore) and then stored at $-20^{\circ} \mathrm{C}$. Afterwards, an additional purification step was performed using the ChargeSwitch gDNA Mini Bacteria Kit (ThermoFisher Scientific) for DNA extraction. This was done according to the kit manual
(including the RNase digestion, but without lysozyme) and the DNA was finally eluted in $100 \mu l$ elution buffer. Concentration and quality of the obtained DNA were checked with Qubit 2.0 fluorometer, Nanodrop 2000 spectrophotometer and by regular gel electrophoresis ( $0.7 \%$ agarose gel, 50 V , Ethidium bromide staining).

### 2.2.7. Genome sequencing and assembly

The ICBM1 phage and the S2 enrichment were sequenced using both Illumina (paired-end technology $2 \times 300 \mathrm{bp}$ ) and PacBio technologies. The ICBM2 phage and the S1 enrichment were sequenced only by Illumina. The Illumina and the PacBio assemblies were performed separately and they resulted in identical phage genomes (Table S2). Error free assembly of the PacBio samples was possible due to the high coverage obtained ( $>4000 \mathrm{x}$ ). The phage genomes are available in the NCBI GenBank database under the following accession numbers: MF431617 (ICBM1), MF431616 (ICBM2) and MF431615 (ICBM3, assembled from the S2 phage enrichment).

## Illumina genome sequencing

The extracted DNA from the ICBM1 and ICBM2 phages and the phage enrichments was used to generate Illumina NexteraXT shotgun paired-end sequencing libraries, which were sequenced with a MiSeq instrument and the MiSeq reagent kit version 3, as recommended by the manufacturer (Illumina, San Diego, CA, USA). For quality-filtering, Trimmomatic version 0.35 (Bolger et al. 2014) or Bbduk from the BBTools package (BBTools; https://jgi.doe.gov/data-and-tools/bbtools/) were used. The assembly was performed with the SPAdes genome assembler software version 3.9.0 (Bankevich et al. 2012) and the read coverage of the whole assembly determined with QualiMap version 2.1 (García-Alcalde et al. 2012). In addition, the read mapping of enrichments reads on individual phage genomes was done BBMap from BBTools package.

## PacBio library preparation, sequencing and assembly

SMRTbell template library was prepared according to the instructions from Pacific Biosciences, Menlo Park, CA, USA, following the Procedure \& Checklist Greater than 10 kb Template Preparation and Sequencing. Briefly, for preparation of 10kb libraries $\sim 4 \mu \mathrm{~g}$ of each phage DNA was sheared using a Covaris S220, Woburn, MA, USA according to the manufacturer's instructions. DNA was end-repaired and ligated overnight to barcoded SMRTbell adapters applying components from the DNA/Polymerase Binding Kit P6 from Pacific Biosciences (Menlo Park, CA, USA). Reactions were carried out according to the
instructions of the manufacturer. One part VB-1 SMRTbell template was combined with 2.5 parts Ex53-3 SMRTbell template. BluePippin Size-Selection to greater than 4 kb was performed according to the manufacturer's instructions (Sage Science, Beverly, MA, USA). Conditions for annealing of sequencing primers and binding of polymerase to purified SMRTbell template were assessed with the Calculator in RS Remote, PacificBiosciences, Menlo Park, CA, USA. SMRT sequencing was carried out on the PacBio RSII (PacificBiosciences, Menlo Park, CA, USA) taking one 240-minutes movie for one SMRT cell. Long read genome assemblies of all three phages have been performed using the HGAP4 Whitelisting protocol (https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP-Whitelisting-Tutorial) within SMRTPipe 2.3.0 applying a genome size of 100 kb and a minimum subread length of 1 kb after demultiplexing using the RS_Subreads. 1 protocol contained within SMRT Portal 2.3.0.

### 2.2.8. Retrieval of phage genomes related to ICBM1 and ICBM2

The following datasets were queried for sequences related to ICBM1 and ICBM2: (i) the Tara Ocean Viromes (Brum et al. 2015), (ii) the Earth Virome (Paez-Espino et al. 2016), (iii) the Global Ocean Virome (Roux et al. 2016), (iv) the IMG/VR (Paez-Espino et al. 2017) and (v) the Environmental Viral Genomes (Nishimura et al. 2017a). The Tara Oceans Viromes (assembled DNA contigs and predicted proteins) and Global Ocean Virome datasets were downloaded from the iVirus (Bolduc et al. (2017b), http://ivirus.us/) using the CyVerse platform and its Discovery Environment (Merchant et al. (2016), https://de.cyverse.org/de/). The Earth Virome dataset (assembled DNA contigs) was downloaded from http://portal.nersc.gov/dna/microbial/prokpubs/EarthVirome_DP/. The downloaded datasets were imported in Geneious 9.1.5, transformed in BLAST databases and queried by megaBLAST (e-value $1 \mathrm{e}-5$ ), using the ICBM1 and ICBM2 genomes and by BLASTp (e-value $1 \mathrm{e}-5$ ) using the portal and terminase proteins of the ICBM1, ICBM2, SIO1 (only the terminase protein was used) and P12053L phages. The IMG-VR viral sequence database was queried by BLASTn (e-value 1e-5) webservice offered at https://img.jgi.doe.gov/cgi-bin/vr/main.cgi, using the ICBM1 and ICBM2 genomes. The proteins retrieved by Blastp were added to the databases of terminase or portal proteins from known phages, followed by multiple alignment with Muscle and calculation of phylogenetic trees with FastTree v 2.1.5 (Price et al. 2010). Further, the proteins in the vicinity of ICBM1, ICBM2, SIO1 and P12053L were selected, and their corresponding contigs retrieved. These contigs were pooled with all those retrieved by
nucleotide Blast. All contigs smaller than 34 kbps ( $\sim 85 \%$ of the ICBM1 genome length) were considered incomplete and removed.

### 2.2.9. Genome-based phylogeny and classification

To reconstruct the whole genome-based phage phylogenetic tree, a set of genomes comprising all podoviral genomes recognized by the International Committee of Taxonomy of Viruses (ICTV) was supplemented with the cobavirus-related genomes retrieved from the different public sequence datasets (see above). For consistency, open reading frames (ORFs) for the complete set of genomes were detected using MetaGeneAnnotator (Noguchi et al. 2008), which was implemented in the VirSorter program (Roux et al. 2015). Using the Virus Classification and Tree Building Online Resource (VICTOR (Meier-Kolthoff and Göker 2017), available at https://victor.dsmz.de), all pairwise phage comparisons of the amino acid sequences were conducted via the underlying Genome-BLAST Distance Phylogeny (GBDP) method (MeierKolthoff et al. 2013) under settings recommended for prokaryotic viruses (Meier-Kolthoff and Göker 2017). The resulting intergenomic distances (including 100 replicates each) were used to infer a balanced minimum evolution tree with branch support via FASTME including SPR postprocessing (Lefort et al. 2015) for each of the formulas d 0 , d 4 , and d 6 . The trees were rooted at the midpoint (Farris 1972) and visualized with iTOL (Letunic and Bork 2016). Taxon boundaries at the species, genus, subfamily and family level were estimated with the OPTSIL program (Göker et al. 2009) using the recommended clustering thresholds (Meier-Kolthoff et al. 2013) and an F value (fraction of links required for cluster fusion) of 0.5 (Meier-Kolthoff et al. 2014).

### 2.2.10. Genome annotation and protein clustering

All phage genomes compared in this study, including the already published ones, were reannotated using the same procedure to eliminate differences resulted from different annotation pipelines. Initially, ORFs were detected using MetaGeneAnnotator (Noguchi et al. 2008) implemented in VirSorter (Roux et al. 2015). Proteins were then annotated by comparing them with several databases and manually deciding the final annotations. The NR database (http://ncbi.nlm.nih.gov/) was queried using Protein-Protein BLAST 2.6.0+, the InterPro database v66.0 (Finn et al. 2017) was queried using Inter-ProScan 5.27-66.0 tool (Jones et al. 2014), and the prokaryotic viruses orthologous groups database (Grazziotin et al. 2017) was queried using hmmscan command from HMMER 3.1b2 package (Eddy 2011). The proteins were clustered by first performing an all against all BlastP, with an e-value threshold of $1 \mathrm{e}-5$
and a bitscore threshold of 50, and the results were inputted into the mcl program, with the parameters "-I 2 --abc". The online tool tRNAscan-SE v. 2.0 (Lowe and Chan (2016), http://lowelab.ucsc.edu/tRNAscan-SE/index.html) was used for tRNA prediction. Rhoindependent terminators were predicted with ARNold http://rna.igmors.upsud.fr/toolbox/arnold/index.php. Only the terminators with deltaG higher than 10.5 were considered. Details of genome features, protein clusters and DNA sequences for all cobaviruses identified are listed in SI file S2-2 and S2-3. The comparative genome map was generated using the genoPlotR package (Guy et al. 2010) from the R programming environment (https://www.rproject.org/).

### 2.2.11. Phylogenetic analyses of single proteins

Phylogenetic trees were constructed for the terminase protein, to gain insights about the genome ends. Phylogenetic analysis of spanin, glutaredoxin and cobalamin dependent ribonucleotide reductase (RNR) proteins was conducted to find insights about the hosts of the environmental cobaviruses and their habitat. Proteins were aligned with Muscle, and then phylogenetic trees were constructed using the FastTree v 2.1.5 program (Price et al. 2010) integrated as a plugin in Geneious v 9.1.5 (Kearse et al. (2012), http://www.geneious.com), using default parameters. Phylogenetic trees were visualized using FigTree v1.4.3. (Rambaut (2006), available at http://tree.bio.ed.ac.uk/software/figtree/).

### 2.2.12. Phylogenetic analysis of the host rRNA

The 16 S rRNA gene phylogenetic tree was constructed using the ARB software package (Ludwig et al. (2004), www.arb-home.de/ version arb-6.0.2). Sequences of the type material ( $>1,300 \mathrm{bp}$ ) were used for the backbone-tree using the neighbor joining method with 1500 replicates. Shorter sequences used in this study were added afterwards by parsimony interactive without using a filter.

### 2.2.13. Biogeographic distribution of cobaviruses and read mapping

## Metagenomic data sets, download and preprocessing

The unassembled datasets used for read mapping were downloaded from the European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena). A complete list of datasets used is given in SI file S2-4. The Tara Ocean survey datasets have been cleaned before their deposition at ENA (Alberti et al. 2017), and thus, we used them as such for read mapping. We cleaned the remaining datasets using BBDuk from the BBTools package (BBTools
(https://jgi.doe.gov/data-and-tools/bbtools/), as follows: (i) reads corresponding to the Enterobacteria phage phiX174 were filtered out; (ii) sequences of Illumina adapters and primers as provided in the BBTools package were removed ( $\mathrm{ktrim}=\mathrm{rk}=21 \mathrm{rcomp}=\mathrm{t}$ mink $=11$ hdist = 1 tpe tbo); (iii) low quality (quality value lower than 20) nucleotides from both read ends were removed and reads with low average quality ( $<20$ ) or short length ( $<30$ bases) were also removed ( q trim $=\mathrm{rl}$ trimq $=20 \mathrm{ftm}=5 \mathrm{maq}=20 \mathrm{minlen}=30$ ). Quality control of the cleaned samples was performed on a subset of random samples, using FastaQC. The metadata associated with the metagenomes were retrieved from the NCBI site, BioSamples databases. In specific cases, if metadata were missing, we received them by direct contact with the principle investigators for the respective projects.

## Read mapping

BBMap from the BBTools package was used to map the reads from the unassembled datasets to the cobaviral genomes. The output was sent to Samtools View and then to Samtools Sort to produce a sorted bam file. A phage was considered to be present in a particular sample when at least $75 \%$ of its genome was covered by reads with at least $90 \%$ identity, as previously determined (Roux et al. 2017). The relative abundance of a phage genome in a sample was calculated by the following formula: "number of bases at $\geq 90 \%$ identity aligning to the genome / genome size in bases / library size in gigabases (Gb)". All code used for read mapping and data analysis are available in SI files S2-7a-d.

### 2.3. Results and discussion

### 2.3.1. Isolation and host range of two Lentibacter sp. SH36 viruses

Two strictly lytic bacteriophages, Lentibacter virus vB_Len-P_ICBM1 (ICBM1) and Lentibacter virus vB_LenP_ICBM2 (ICBM2) were isolated to pure cultures from phage enrichments S1 and S2, respectively (Fig. 6a). The phage source in the enrichments was surface seawater collected during a March 2015 algal bloom in the southern North Sea. The host was Lentibacter sp. SH36, which was isolated from a seawater sample taken on 12 May 2007 in the southern North Sea during a phytoplankton bloom (Hahnke et al. 2013). ICBM1 and ICBM2 phages negatively stained with uranyl acetate had isometric capsids with hexagonal crosssections of $58.7 \pm 3.7 \mathrm{~nm}$ (sample size $=100$ phages) and $59.2 \pm 2.8 \mathrm{~nm}$ (sample size $=100$ phages), respectively, and short tails (Fig. 6b). Assessment on 94 Rhodobacteraceae strains
(Table S1) showed that ICBM1 and ICBM2 have a narrow host range, infecting only Lentibacter sp. SH36.


Fig. 6: a. Enrichment of phages specific for Lentibacter sp . SH36 from North Sea water. The experimental setup consists of: (i) Phage enrichments (blue lines) - logarithmic phase cells added to nutrient amended, $0.2 \mu \mathrm{~m}$ filtered seawater, (ii) Positive control for cell growth (green line) - logarithmic phase cells added to artificial seawater and (iii) Negative control (orange line) - only nutrient amended, $0.2 \mu \mathrm{~m}$ filtered seawater, no cells added. In the S 1 and S 2 enrichments the decrease in OD at 18 h is most likely due to phage cell lysis. No growth was detected in the negative control. b. Transmission electron micrograph of molybdenum stained, cell debris bound Lentibacter virus vB_LenP_ICBM1 and uranyl acetate stained, free Lentibacter virus vB_LenP_ICBM2. Scale bar: 100 nm . c. Agarose gel electrophoresis of cellular DNA from i) Lentibacter sp. SH36 phage infected cells, S 2 enrichment (lane 1, blue arrow) and ii) not infected cells, positive control for cell growth (lane 2, green arrow). Blue circle: intracellular phage DNA. Lane 3: 1 kbp Plus DNA Ladder.

### 2.3.2. Sequencing the phage isolates and enrichments

To gain insights into the diversity of the phage enrichments, we sequenced both the purified phages (ICBM1 and ICBM2) and the intracellular phage fraction of the enrichments (Fig. 6c, Table S2). From the S2 enrichment two complete phage genomes were assembled, that of ICBM2 and of a third phage. The latter had $99.6 \%$ sequence similarity at nucleotide level with ICBM1 (under VICTOR formula d0 see SI file S2-6) and was named Lentibacter virus vB_LenP_ICBM3 (ICBM3). Both ICBM1 and ICBM3 have been assembled twice, once from Illumina and once from PacBio reads, with identical results (Table S2). Therefore, differences between them were real and not due to sequencing errors. According to the VICTOR (MeierKolthoff and Göker 2017) results, ICBM1 and ICBM3 formed a species cluster, whereas ICBM2 represented a distinct species (see section below and Fig. 7).

From the S1 enrichment we retrieved an ICBM3-like genome ( $99.9 \%$ identical with ICBM3, differences potentially due to sequencing errors, see Fig. S1 and S2). Read mapping with a cutoff of $100 \%$ read identity showed that both ICBM1 and ICBM3 were present in S1 (Table 1, Fig. S2). The presence of both ICBM1 and ICBM3 phages in the S1 enrichment is strengthened by the isolation of ICBM1 from this enrichment and it indicates microdiversity.

Microdiversity in phage enrichments have been previously reported (Villamor et al. 2018) and it potentially reflects the situation in the original seawater.

Using a $95 \%$ read identity cutoff for mapping, all reads in the enrichments recruited either to the ICBM1/ICBM3 or to the ICBM2 genomes (Table 1). This indicates that, without considering microdiversity, most likely no other phage was present and our isolation efforts retrieved the complete phage diversity in the enrichments at the species level.

### 2.3.3. Retrieval of similar phage genomes and phylogenetic positioning

Cultivated and environmental phage genomes similar to ICBM1 and ICBM2 were found in public sequence data sets. The related cultivated phages were P12053L infecting Celeribacter marinus IMCC12053, SIO1 infecting Roseobacter sp. SIO67 and four other SIO1 related strains, infecting Roseobacter sp. SIO67 and Roseobacter sp. GAI-101 (Angly et al. 2009). The last four phages had incomplete genomes, with several regions of uncertainty (long N stretches). Therefore, they were included in the phylogenetic analysis as draft genomes, but excluded from further genomic analysis. From the environmental genomes, only those bigger than 35 kbp were considered for further analysis. One of these circularized due to terminal redundancies, indicating genome completeness - EnvX ( 40752 bp ), and five of them were incomplete, but close in size to the complete genomes and contiguous - Env9 (41607 bp), EnvY (36003 bp), EnvZ (35824 bp), Env8 (38447 bp) and Env14 (35006 bp). EnvX, EnvY, EnvZ, Env8 and Env9 were retrieved from IMG/VR /Earth Virome datasets. Env14 was retrieved from the GOV dataset (see Table 2).

The VICTOR method (Meier-Kolthoff and Göker 2017) for phage phylogeny and classification was used because it is universal and allows for an informed decision on the evolutionary relationships between prokaryotic viruses. The method was thoroughly optimized against a large reference dataset of genome-sequenced taxa recognized by the International Committee on Taxonomy of Viruses (ICTV) and showed a high agreement with the classification, particularly at the species and genus level.

The genome-based VICTOR (Meier-Kolthoff and Göker 2017) phylogeny combined with taxon boundaries prediction based on OPTISIL (Göker et al. 2009) showed that the Lentibacter sp. SH36 phages (ICBM1, ICBM2 and ICBM3), together with SIO1, P12053L and some of the environmental genomes formed a highly supported genus level clade (Fig. 7). This proposed genus was tentatively named here as Siovirus (from the SIO1 phage) (Fig. 7). Most of the sioviruses had a class II, cobalamin dependent RNR and were placed within one cluster,
which we called the Cobavirus (cobalamin-dependent) group. Two of the environmental sioviruses had a class I RNR and formed a separate clade. RNRs are used to convert host ribonucleotides in deoxyribonucleotides necessary for phage replication. Because the RNR class is predictive of the phage habitat (Sakowski et al. 2014) and class II RNRs point toward an association with phototrophic protists, we focused further on the Cobavirus group, which included all cultivated and part of the environmental sioviruses (Fig. 7).

In agreement with previous findings for the SIO1 and P12053L phages (Hardies et al. 2016), the cobaviruses clustered within the RIO-1 subgroup (Fig. 7). The OPTISIL based taxon boundaries reported by VICTOR (Meier-Kolthoff and Göker 2017) suggested that the RIO-1 subgroup forms a maximally supported group, which we propose to define as a new subfamily in the Podoviridae, and tentatively named here Riovirinae (from the RIO-1 phage).

We have excluded the ICBM3 phage from further analysis, due to its high similarity with ICBM1 (Fig. 7 and S6) and the phages SIO1_2001, OS, MB, SBRSIO67, because their genomes contained several regions of sequence uncertainty (long stretches of Ns ).
Table 1: Abundance of cobaviruses in the S1 and S2 phage enrichments. *Abundance expressed in \% from total bases.

| Enrichments |  | ICBM1 |  |  |  | ICBM2 |  |  |  | ICBM3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 95\% read identity |  | 100\% read identity |  | 95\% read identity |  | 100\% read identity |  | 95\% read identity |  | 100\% read identity |  |
| Name | Mbps | \% genome covered | Abundance* | \% genome covered | Abundance |
| S1 | 232.2 | 100.0 | 95.3 | 100.0 | 54.1 | 5.3 | n.d. | 0.0 | 0.0 | 100.0 | 97.5 | 100.0 | 66.7 |
| S2 | 472.6 | 100.0 | 56.2 | 96.8 | 26.9 | 100.0 | 39.7 | 100.0 | 28.1 | 100.0 | 58.9 | 100.0 | 41.4 |


| Genome | Datasets | (meta)genome accession in IMG/VR / GOV datasets | Contig name in IMG/VR / GOV datasets. | NCBI BioProject | NCBI BioSample | NCBI Run | Coordinates | Location |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EnvX | IMG/VR | 3300003263 | $\begin{aligned} & \text { JGI26117J46588_1000 } \\ & 006 \end{aligned}$ | PRJNA366974 | SAMN06267889 | SRR5268549 | 36.25 N 122.2099 W | Monterey Bay |
| EnvY | IMG/VR | 3300003264 | JGI26119J46589_1000 020 | PRJNA366976 | SAMN06267891 | SRR5268667 | 36.25 N 122.2099 W | Monterey Bay |
| EnvZ | IMG/VR | 3300006637 | Ga0075461_10000015 | PRJNA375611 | SAMN06343913 | SRR5600317 | 39.283 N 75.3633 W | Delaware Bay |
| Env8 | IMG/VR | 3300000117 | $\begin{aligned} & \text { DelMOWin2010_c1000 } \\ & 0155 \end{aligned}$ | PRJNA336873 | SAMN05518585 | missing | $\begin{aligned} & 39.0042816 \mathrm{~N} \\ & 77.1012173 \mathrm{~W} \end{aligned}$ | Delaware Coast |
| Env9 | IMG/VR | 3300002483 | $\begin{aligned} & \text { JGI25132J35274_1000 } \\ & 025 \end{aligned}$ | PRJNA366059 | SAMN06268330 | SRR5251700 | 18.9200 N 104.8900 W | Pacific Coast of Mexico |
| Env14 | GOV | 124_MIX | $\begin{aligned} & \text { Tp1_124_DCM_0_0d2 } \\ & \hline \end{aligned}$ | PRJEB4419 | TARA_R100000700 | ERR599367 | $\begin{aligned} & -9.0714 \mathrm{~N} \\ & -140.5973 \mathrm{E} \\ & \hline \end{aligned}$ | Marquesas <br> Islands |



Fig. 7: Phylogenetic positioning of the Lentibacter sp. SH36 viruses and their relatives within the Podoviridae. The whole-genome-based phylogeny was inferred using the Genome-BLAST Distance Phylogeny method implemented in the VICTOR web service, using the amino acid data. Internal branch labels represent pseudo bootstrap support values if larger than $50 \%$. The proposed subfamily Riovirinae, the proposed genus Siovirus and the Cobavirus group (sioviruses with cobalamindependent RNR) are annotated at the right-hand side. Further information regarding the affiliation of phages to ICTV taxa and OPTSIL clusters as well as $\mathrm{G}+\mathrm{C}$ content and genome sizes is described within the figure legend (circled numbers). "Viruses annotated as "Unassigned" in legend "Genus (ICTV)" have been assigned to both an ICTV species and family but not to a genus level, whereas "NA" refers to viruses which have not been recognized as a taxon by the ICTV. The affiliation of one or more viruses to a distinct species, genus, subfamily or family cluster is indicated by a specific symbol of same shape and color.

### 2.3.4. Genomic organization

## Genome termini

Within the proposed subfamily Riovirinae, the genome ends of the VpV262 and RIO-1 phages have been characterized and consist of direct terminal repeats (DTRs) (Hardies et al. 2003; Hardies et al. 2013). The SIO1 phage was reported to have inverted repeats (Rohwer et al. 2000), and no information was available for P12053L. We used coverage information and read structure from genome sequencing to determine the termini of the ICBM1, ICBM2 and ICBM3 phages. With Illumina 194 sequencing, a sharp drop in coverage was noticed for ICBM1 and ICBM2 genomes, which could indicate linear, non-circularly permuted genomes, with cohesive ends (Merrill et al. 2016), (Fig. S3). On the other hand, for both genomes, we noticed a region of low coverage and high G+C content (Fig. S3). The low coverage could be due to the library preparation with the NexteraXT kit, which is known to have low performance at the genome ends (Illumina 2015). Furthermore, the high G+C content could contribute to the drop in coverage (Aird et al. 2011). To elucidate the genome ends, we turned to PacBio single molecule real time (SMRT) sequencing, because native DNA is used and thus, no PCR bias is observed. Furthermore, much longer read lengths can be retrieved, which facilitates assembly, especially important for mixed samples, for example the phage enrichments. Thus, the artificial redundancies produced by the assembler at the end of the three phage contigs were larger, having a size of $\sim 5 \mathrm{~kb}$, which is equal to the mean subread length achieved with our PacBio sequencing approach (Fig. S4). In all three phage genomes, short DTRs of $159-173 \mathrm{bp}$ were easily recognized as spikes in coverage (Fig. S4a). To delineate the final genome structure of the three phages, artificial redundancies were removed and the phage genome was adjusted to their direct terminal repeats (Fig. S4c). The exact genome start and stop positions were derived from long read mappings by a detailed inspection of the respective regions in Integrative Genome Viewer (Robinson et al. 2011) (Fig. S5). The sharp drop in coverage in the Illumina assemblies corresponded to a GC rich region of the DTRs (Fig. S3), and thus, explained the apparent discrepancy between the Illumina and PacBio read coverage data.

We further investigated the ends of the other cobaviral genomes. The ends of SIO1 were originally determined after whole genome sequencing through a combination of shotgun cloning and Sanger technology. Inverted repeats ( 251 to 637 bases) detected at the ends were presumed to be involved in replication (Rohwer et al. 2000). Our own analysis indicated that the ends were most likely placed incorrectly, probably due to low read coverage. Several facts supported our conclusion. First, in phylogenetic trees for the terminase gene, the phages ICBM1, ICBM3 and SIO1 grouped closely (Fig. S7), indicating that they likely have similar
genome packaging strategies (Merrill et al. 2016). Second, re-sequencing of the SIO1 genome did not retrieve the complete region of the inverted repeats (Angly et al. 2009). This was initially attributed to difficulties in PCR amplification of the repeats. On the other hand, the lack of retrieval can also suggest misassembly of the original genome sequence in this region. Third, from the three inverted repeats, none were placed at the exact ends of the genome and two of the inversions were located at the same end (Fig. S8). Inverted terminal repeats at the genome ends are found in viruses which replicate by a protein-primed mechanism, where they are positioned at the exact ends of the genomes (Escarmis et al. 1985; Savilahti and Bamford 1993). Hence, it is unlikely that the three inverted repeats of the SIO1 phage have a role in replication. Fourth, in its original order the SIO1 genome shows an ORF free region exactly in between two gene modules (Fig. S8), a region which shares high sequence similarity ( $\sim 80 \%$ identity) with the DTRs from ICBM1 and ICBM3 phages (Fig. S9). An inspection of podovirus genomes from public databases revealed that related phages can have DTRs with a nucleotide identity within the 70-100\% range (Table S5). Therefore, we used the DTRs from ICBM1 to find the genome termini and rearrange the gene order accordingly, not only for the SIO1 phage, but also for the P12053L and environmental cobaviruses. A search with the ICBM1 DTR in the SIO1 genome revealed the presence of a similar region ( $80 \%$ nucleotide identity) at position 8716-8891. Based on this approach, base 8716 from the original SIO1 genome became base 1 in the reordered genome, with the left side being concatenated at the end of the right side, and the ICBM1 phage DTR homologous region being added also at the right end (Fig. S5). Similar regions were found in all four SIO1-related phages isolated by Angly et al. (2009), having 90\% to $99 \%$ nucleotide identity with the SIO1 DTR. Likewise, a search with the ICBM1 DTR in the P12053L genome found a similar region (~94\% identity) at position 244-415. Therefore, the genome was rearranged in a similar way to SIO1, with base 244 becoming base 1. No gene rearrangement was necessary in this case. The DTR sequence was determined by homology to ICBM1 DTR and added at the right end of the genome, as well. For two of the environmental genomes (EnvX and Env9) we determined the genome start by finding regions with high identity with the left region of the ICBM2 DTR (>70\% over 49 nt, see Fig. S9). However, the complete sequence of the DTRs could not be established, because of the low similarity over the remaining alignment ( $\sim 50 \%$ identity). Env9 was not circular, but because we established the start at position 3404, we plotted the position 1-3403 at the end of the genome in figure 8. The remaining environmental genomes showed no regions of similarity with the ICBM1 or ICBM2 phage DTRs, presumably due to their incompleteness. The phylogenetic positioning both in the

GBPD and terminase trees strongly support the presence of DTRs at the genome termini for all the environmental genomes.

Our results show that the cultivated cobaviruses have DTRs. The presence of DTRs indicate that cultivated cobaviruses, similar to the T7 phage, most likely use long concatemeric DNA molecules as intermediates in replication and packaging, concatemers formed by the annealing of $3^{\prime}$ single strands resulted at the DTR level during replication (Serwer 2005; Kulczyk and Richardson 2016). The $5^{\prime}$ ends of all cobaviral DTRs have a conserved, G+C rich region (Fig. S9), underlining a potentially more important role of this region in genome circularization or replication, for example as enzyme binding site. The phylogenetic positioning in the GBDP-based VICTOR tree (Fig. 7) as well as in the terminase tree (Fig. S7) suggests that the environmental cobaviruses also have DTRs and thus potentially the same DNA replication strategy.

## Gene composition and modular organization

ICBM1 and ICBM2 phages had linear genomes of $\sim 40 \mathrm{~kb}$, a G + C content of $\sim 47 \%$ (Table S3) and 58 and 55 ORFs, respectively. More than half of the ORFs coded for hypothetical proteins. No tRNAs were found. The genes were organized in two genomic arms, with opposite transcriptional directions and separated by a bidirectional, rhoindependent transcriptional terminator (Fig. 8, Table S4). We found protein-encoding genes for replication and nucleotide metabolism on the left arm: two nucleases, a DNA polymerase, a dual primase/helicase, a cobalamin dependent RNR, a glutaredoxin, a ThyX thymidylate synthase (ThyX), a guanosine 3', 5'-bispyrophosphate (ppGpp) hydrolase (MazG) and a P-loop containing nucleoside triphosphate hydrolase (PhoH) (Leduc et al. 2004; Clokie and Mann 2006; Gross et al. 2006; Dwivedi et al. 2013; Sengupta and Holmgren 2014; Smet et al. 2016). On the right genomic arm, we found genes for lysis and virion structure and morphology. Both phages had spanins, which were easy to recognize due to their specific architecture. At the N terminus the spanins had a lipoprotein domain for binding to the outer membrane. At the C terminus they had a transmembrane domain for binding to the inner membrane (Summer et al. 2007a). For endolysins, ICBM1 had a lysozyme-like protein and ICBM2 had an N-acetylmuramoyl-Lalanine amidase. The lysis genes were followed by genes for the internal virion proteins (IVP) B and D, a Gcn5-related N-acetyltransferase (GNAT), the tubular proteins A and B, a major capsid protein, a scaffolding protein, a portal protein, a large terminase subunit, two tail fibers and three tail assembly chaperone proteins (see Fig. 8). With the exception of the endolysins, all other genes have been previously annotated in SIO1 or P12053L phages (Rohwer et al. 2000; Summer et al. 2007a; Angly et al. 2009; Kang et al. 2012; Hardies et al. 2016). A previous
study (Hurwitz et al. 2013) annotated the gene for the pc40 protein from SIO1 as a long-chain fatty acid transporter (FadL) and thus listed it as AMG. However, our BlastP and InterProScan searches identified pc40 as a Gcn5-related N -acetyltransferases (GNAT). Based on the GNAT domain, pc 40 could correspond to gp 13 from T 7 , which is also positioned next to the internal virion proteins and has been suggested to play a role in virion morphogenesis (Kemp et al. 2005).

Within the Cobavirus group, the genetic composition and synteny was mostly conserved (see Fig. 8). All genomes were organized in two arms, with genes for replication and nucleotide metabolism on the left and lysis and virion structure and morphogenesis on the right. This genomic organization was not previously reported for the SIO1 and P12053L phages, but it became evident once the genomes were rearranged according to the DTR positions (see section above). Furthermore, it appears in other members of the proposed Riovirinae subfamily, although the contained modules can vary (Seed et al. 2011; Hardies et al. 2013). Most cobaviruses had a bidirectional, rho-independent transcriptional terminator in between the two genomic arms, indicating a likely transcriptional separation (see Fig. 8). This type of terminator was shown to be functional in vitro for the Pf-WMP3 phage (Liu et al. 2017).

Most of the genes with a functional annotation in ICBM1 and ICBM2 phage were also found in all other cobaviruses, with the exception of glutaredoxin, ThyX and PhoH, which were not found in some of the environmental cobaviruses (see Fig. 8). The endolysins were found in all cobaviruses, with the exception of EnvX and EnvY. They were free of membrane anchoring domains, indicating that cell lysis most likely proceeds via the canonical holin-endolysin pathway (Young 2013; Young 2014). The endolysins were diverse both in sequence and enzymatic function, encoding either lysozyme-like domains, or N -acetylmuramoyl-L-alanine amidase or peptidase domains. The spanin was found in all cultured cobaviruses, and only in two of the environmental genomes, Env9 and Env8. In the vicinity of the spanin and endolysins genes we found several genes encoding one or two transmembrane domains, representing potential holins and antiholins (see Fig. 8).

In agreement with cobavirus phylogenetic positioning and virion morphology revealed by TEM (Fig. 6b), the genes present in the virion structure and morphogenesis module most likely indicated a podoviral, T7-like virion structure (Hu et al. 2013; Cuervo et al. 2013; Guo et al. 2014). A conserved genetic composition and synteny characterized the genomic region between the lysis module and the terminase gene (Fig. 8). The genomic region between the terminase and the $3^{\prime}$ end of the genome was variable both in gene count and composition and it
encoded the proteins required for tail fibers, fiber connectors or tail assembly proteins. Most proteins were unique to a single phage or shared by a few. Some proteins (pc53, pc56, pc311) were similar to tail fibers or fiber connectors from myoviruses or siphoviruses, as noticed for other phages in the RIO-1 subgroup (Hardies et al. 2016). For example, pc53 resembled the short tail fiber protein from the T4 phage, a myovirus (Leiman et al. 2010). The pc56 protein was similar with the L -shaped tail fiber protein from the T 5 phage and the T5-like siphoviruses DT57C and DT571/2 (Golomidova et al. 2016). Therefore, the tail fibers of the cobaviruses likely depart from the simplicity of T7-like fibers, which are formed from a single protein (gp17) directly connected to the tubular protein A.


Fig. 8: Genome map of cultured and environmental cobaviruses. The genomes are centered in the bidirectional rho-independent terminator. With the exception of EnvX and Env9, all other environmental genomes are incomplete, with sequence information missing at the two ends of the genomes (the host interaction and tail fibers modules). Blue numbers indicate protein clusters with functional annotation.

### 2.3.5. Cobaviral hosts

The Cobavirus group contained both cultivated phages, with known hosts, and environmental phages, with unknown hosts. To have an up to date phylogeny of the hosts of cultivated cobaviruses, we built a 16 S rRNA gene-based tree (Fig. S10). Our results showed that Roseobacter sp. SI067 belongs to the Lentibacter genus (>99\% nucleotide identity with the type species) and Roseobacter sp. GAI-101 to the Sulfitobacter genus (>98\% nucleotide identity). Therefore, hosts of cultivated cobaviruses comprise members of the Lentibacter, Sulfitobacter and Celeribacter genera, within the Rhodobacteraceae family.

Furthermore, we searched for clues linking the environmental cobaviruses to potential hosts. A search in the CRISPR spacer database from IMG/VR returned no results, and no tRNAs where found within the cobavirus genomes. We found, however, three lines of evidence that point to environmental cobaviruses infecting members of the Rhodobacteraceae family. First, cobaviruses clustered into one genus, with nine out of 15 representatives known to infect Rhodobacteraceae members. According to Meier-Kolthoff and Göker (Meier-Kolthoff and Göker 2017), phage genera usually infect hosts within the same family. Second, all cobaviruses had a cobalamin-dependent RNR gene, encoding an enzyme used to reroute host resources toward phage replication. These phages need to infect bacteria able to synthesize cobalamin, and this ability is widespread within marine Rhodobacteraceae (Sañudo-Wilhelmy et al. 2014). Genes involved in vitamin B12 synthesis are present in the two publicly available genomes from the cobaviral hosts. Additionally, in phylogenetic trees the RNRs from environmental cobaviruses clustered closely with ICBM2 (Fig. 9), whose host is Lentibacter sp. SH36. Third, all cultivated and two environmental cobaviruses (Env8 and Env9) had a spanin gene characteristic for roseophages. BLAST searches in the NR database from NCBI with the cobaviral spanins returned hits only from roseophages or members of Rhodobacteraceae, with the exception of one E. coli phage hit, which had very low similarity (Fig. 9a). This is not surprising, considering that spanins have little sequence homology to each other and Summer et al. (Summer et al. 2007a) found no homolog for the SIO1 spanin. Using prophage prediction (PHASTER, Arndt et al. (2016)), we determined that the spanins from Rhodobacteraceae genomes were present in putative prophage regions (Table S6). Therefore, phages infecting Rhodobacteraceae have similar spanins, another evidence that Env8 and Env9 most likely infect Rhodobacteraceae.


Fig. 9: Phylogenetic analysis of the spanin (a), glutaredoxin (b) and ribonucleotide reductase (c-e) genes from cobaviruses. The evolutionary history was inferred using the approximately-maximumlikelihood method implemented in FastTree 2.1.5. The node labels represent Fast Tree support values. The tree is drawn to scale, with branch lengths measured in number of amino acid substitutions per site. Association of the bacteria to eukaryotic organisms is indicated by stars. Location of the spanin, glutaredoxin or RNR genes in prophage regions, predicted with PHASTER (Arndt et al. 2016), is indicated by arrows and further detailed in the appendix (Tables S6, S11 and S12).

### 2.3.6. Environmental distribution of the cobaviruses

Cobaviruses have been isolated from three distinct coastal locations in the Northern Hemisphere: SIO1 from the American coast of the Pacific Ocean (Scripps Pier, California) (Rohwer et al. 2000; Angly et al. 2009), P12053L from the Yellow Sea, South Korea (Kang et al. 2012) and ICBM1 and ICBM2 from the North Sea, Germany (this study). Sequences related to the SIO1 and P12053L phages were previously reported in predominantly coastal viromes from the North Pacific USA coast (Scripps Pier, British Columbia), the Gulf of Mexico, the Arctic Ocean, the North Atlantic (Chesapeake Bay and Sargasso Sea) and the Yellow Sea (Goseong Bay) (Breitbart et al. 2002; Bench et al. 2007; Angly et al. 2009; Hwang et al. 2016; Hwang et al. 2017). To further assess the environmental distribution, we queried for the presence of cobaviruses in more than 5,000 publicly available marine metagenomes, by mapping unassembled reads to cobaviral genomes. The queried metagenomes covered a wide range of marine environments, from coastal to open oceans, and from water column, to benthic, sediment and animal associated samples. All metagenomes from the Tara Ocean Expeditions (Alberti et al. 2017) were included in the dataset, as well as the viromes from Malaspina expeditions (Duarte 2015), along other marine datasets available in ENA in November 2017 (see SI file S2-4 for a complete list of all datasets used). We found cobaviruses in bonafide viromes and in metagenomes from cellular fractions, mostly in the prokaryotic range, but also in the small protist range (Fig. 10 and SI file S2-5). The presence of cobaviruses in cellular fractions could be explained by i) active infections at the time of sample collection, or ii) free phage particles retained on the large pore size filters by unspecific binding to the filter membrane or cell debris. A third explanation, the integration of cobaviruses in bacterial genomes as prophages, is unlikely, because, firstly, no cobaviral genes with functional annotations indicated a temperate life style. Secondly, although in phylogenetic trees using spanin cobaviruses were placed close to prophage regions from roseobacter genomes (Fig. 9a, Table S6), in whole genome trees cobaviruses were distant from these prophages (Fig. S11).

Cobaviruses were detected in the euphotic water column, mainly close to coastal areas but also in the open ocean of the Pacific, Atlantic and Indian Oceans, as well as in the North Sea, theMediterranean, the Adriatic, the Red Sea, the Arabian Sea, the Yellow Sea, the Salish Sea and in several estuaries (see Fig. 10a for an overview and SI file S2-5 for the list of coordinates). These waters span temperate to tropical regions. Hot spots for cobaviruses were in bays or estuaries, with several cobaviruses being detected in these locations, for example the Goseong Bay, Delaware Estuary and Chesapeake Bay (Fig. 10b, Table 3). This is consistent with a 16 S rRNA based survey, which retrieved known cobaviral hosts mainly from coastal

## Cobaviruses

areas (Fig. S12, Tables S4-10). Generally, abundance of cobaviruses was low. However, it increased markedly in the Port of Los Angeles samples (Fig. 10b, SI file S2-5), where roseophage SIO1, its related phages, and their respective host have been isolated (Angly et al. 2009).

Specific cobavirus strains are cosmopolitan, as revealed by the finding of specific genomes across distant geographical locations. For example, the ICBM1 and ICBM2 phages have been isolated from the North Sea, but similar phages have been found by read mapping in metagenomes from the Australian Coast (ICBM1), and from the Goseong Bay, Yellow Sea and the Port of Los Angeles (ICBM2, Fig. 10). Similarly, environmental cobaviruses have been found by read mapping not only in the metagenomes from which they were originally assembled (Fig. 10a, Table 2), but also in many other locations (Fig. 10b). The biogeographic distribution of the cobaviruses could be explained by passive transport by oceanic currents and local selection by environmental factors shaping host communities, as proposed for marine viruses by Brum et al. (2015). In addition, considering that many positive locations for cobaviruses are also harbor areas, ship ballast water could contribute to virus transport across the oceans, in line with the findings by Kim et al. (2016).

A few of the metagenomes positive for cobaviruses were part of sampling time series, allowing us to catch a glimpse of the cobaviral seasonality (see Table 3). In the North Sea, in metagenomic samples focused on spring/early summer algal blooms (Teeling et al. 2016), EnvZ and Env9 were present in successive years, mostly post-bloom, but also before and during the blooms. In Goseong Bay (Hwang et al. 2017) and Delaware Estuary, cobaviruses where present in early spring, late summer, fall and winter. This suggests that cobaviruses persist throughout the years in coastal environments.

## Cobaviruses



Fig. 10: Global distribution of cobaviruses (a) and their abundance (average contig coverage per Gb metagenome) in metagenomics samples from marine environments (b). a (i) main map - each location were cobaviruses were found by read mapping in this study is labeled with a number, from 1 to 68; (ii) inset upper right corner - locations of all metagenomes searched in this study. Locations superimposed on an ocean chlorophyll concentration map (Aqua MODIS mission, 2010 annual composite, https://oceancolor. gsfc.nasa.gov/cgi/l3 - NASA Goddard Space Flight Center, Ocean Biology Processing Group, 2014).

Table 3: Seasonal occurrence of cobaviruses in different locations. *n.d. = not determined.

| Location |  | Phage | Year | Date (day.month) | Bloom situation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Helgoland |  | EnvZ | 2010 | 11.05 | post bloom post bloom in between blooms post bloom post bloom post bloom post bloom pre bloom n.d.* |
|  |  |  |  | 18.05 |  |
|  |  |  | 2011 | 28.04 |  |
|  |  |  | 2012 | 05.04 |  |
|  |  |  |  | 24.05 |  |
|  |  |  |  | 31.05 |  |
|  |  |  |  | 07.06 |  |
|  |  | Env9 | 2012 | 08.03 |  |
|  |  |  | 2014 | 20.06 |  |
| Goseong Bay |  | SIO1 | 2014 | 10.03 | n.d. |
|  |  |  |  | 06.12 | n.d. |
|  |  | VB2 | 2014 | 10.03 | n.d. |
|  |  | EnvX | 2014 | 10.03 | n.d. |
|  |  |  |  | 06.12 | n.d. |
|  |  | EnvY | 2014 | 10.03 | n.d. |
|  |  |  |  | 06.12 | n.d. |
|  |  | EnvZ | 2014 | 10.03 | n.d. |
|  |  |  |  | 06.12 | n.d. |
|  |  | Env9 | 2014 | 10.03 | n.d. |
|  |  |  |  | 08.09 | n.d. |
|  |  |  |  | 20.09 | n.d. |
|  |  |  |  | 06.12 | n.d. |
|  |  | Env14 | 2014 | 10.03 | n.d. |
| Delaware Estuary |  | EnvZ | $2015$ | $11.04$ | n.d. |
|  | station 37 | EnvZ | 2015 | 13.04 | n.d. |
|  |  | Env8 |  |  |  |
|  | station 38 | EnvX | 2015 | 11.04 | n.d. |
|  |  | EnvY |  |  |  |
|  |  | EnvZ |  |  |  |
|  |  | Env9 |  |  |  |
|  | station 39 | EnvX | 2015 | 15.04 | n.d. |
|  |  | EnvY |  |  |  |
|  |  | EnvZ |  |  |  |
|  |  | Env9 |  |  |  |
|  | station 40 | EnvZ | 2015 | 17.08 | n.d. |
| Chesapeake Bay | station 33 | EnvZ | 2014 | 01.11 | n.d. |
|  |  |  |  | 03.11 | n.d. |
|  |  | Env9 | 2014 |  | n.d. |
|  |  |  |  | spring | n.d. |
|  |  |  |  | $03.11$ | n.d. |
|  | station 34 <br> station 35 |  | 2014 | 30.08 | n.d. |
|  |  | EnvZ | 2014 | 22.03 | n.d. |
|  |  |  |  | 02.11 | n.d. |
|  |  |  |  | 03.11 | n.d. |
|  |  | Env9 | 2014 | 22.03 | n.d. |
|  |  |  |  | 03.11 | n.d. |

### 2.3.7. Protists as habitat for the cobaviral hosts

We used the search for cobaviruses in microbial metagenomes (see section above), as well as glutaredoxin and RNR trees, to find indications regarding the habitat of the cobaviral hosts. Cobavirus genomes were present in several metagenomes from the protist size fractions (Fig. 10b, SI file S2-5), suggesting that cobaviruses infect protist-associated bacteria. Most often cobaviruses were present in the $0.8-5 \mu \mathrm{~m}$ fraction, which could arguably be contaminated with free-living bacteria, but also in the $>3 \mu \mathrm{~m}$ fraction (SI file S2-5), which makes it more likely that the bacterial cells present there were attached to or consumed by
protists. The small protist size fraction is dominated by Alveolata, including dinoflagellates, followed by Rhizaria and Stramenopila (Vargas et al. 2015), thus consisting of phagotrophic, parasitic and phototrophic species. Previous research (Sakowski et al. 2014) proposed that class II RNR-containing phages are infecting vitamin B12-producing bacteria associated with phototrophic protists. This was based on the phylogenetic positioning of phage class II RNRs, including that of SIO1, next to chloroviruses (viruses of the single cell green alga Chlorella) and microalgae, and on the cobalamin requirement by the RNR. Other studies showed that marine Rhodobacteraceae can be associated with protists (Green et al. 2010; Guannel et al. 2011; Fiebig et al. 2013; Chen et al. 2014), including close relatives of the cobaviral hosts (Tables S7 and S8).

In our own analysis, the phylogenetic neighborhood of the cobaviral glutaredoxin and RNR (Fig. 9) points toward a relationship of the cobaviral hosts not only with phototrophic protists, but also with phagotrophic/mixotrophic protists, as detailed further. Interactions with phagotrophs/mixotrophs, especially amoeba, but also paramecium and dinoflagellates, are a recurring theme in the RNR and glutaredoxin trees (Fig. 9). For example, several organisms found in the vicinity of cobaviruses in both glutaredoxin and RNR trees are resistant to amoeba (Pagnier et al. 2008; Delafont et al. 2013; Pagnier et al. 2015; Paquet and Charette 2016) and, most significantly, the Chlamydiae are well known endosymbionts or lytic parasites of amoebae (Taylor-Brown et al. 2015). Even the chloroviruses point towards amoeba or paramecium interactions, because they infect only Chlorella strains that form endosymbioses with amoebae or paramecium (Hoshina et al. 2010; Quispe et al. 2017). Amoebae themselves have a functional cobalamin-dependent RNR (Crona et al. 2013) (Fig. 9a) and therefore, they need partners such as the cobaviral hosts, able to synthesize vitamin B12. Many dinoflagellates are mixotrophic or heterotrophic, being able to ingest diverse prey, including bacteria (Jeong et al. 2010), and their dependence on external sources of vitamin B12 has been documented previously (Tang et al. 2010; Wagner-Döbler et al. 2010; Cruz-López and Maske 2016). Taking all this into consideration, we propose that at least some of the cobaviral hosts are frequently interacting with phagotrophic/mixotrophic protists, beyond just being grazed upon. It is possible that the cobaviral hosts, associated or not with phototrophic algae, have developed mechanisms to escape digestion in food vacuoles of predatory protists, in a similar way to amoebae-resistant bacteria (Pagnier et al. 2008; Schmitz-Esser et al. 2008; Bertelli and Greub 2012; Pagnier et al. 2015; Schulz et al. 2015; Paquet and Charette 2016).

In their interactions with phototrophic and mixotrophic protists, marine Rhodobacteraceae form both mutualistic and pathogenic relationships, the latter resulting in
protist lysis (Wang et al. 2014; Segev et al. 2016). Therefore, by exerting control on their host populations, cobaviruses could have roles in biogeochemical cycling that go beyond the release of bacterial cellular components. They could indirectly affect both marine phytoplankton growth, and thus carbon fixation, and its lysis, and thus release of the fixed organic matter in the environment. Future studies are necessary to understand the roles that cobaviruses play in the environment and their impact on roseobacter populations.

### 2.3.8. Conclusions

This study significantly extends our knowledge of phages infecting organisms of the Roseobacter group, a key player in the cycling of organic matter in marine ecosystems. Using an approach that combines phage isolation with database mining for environmental phage genomes we have delineated the new Cobavirus group. Our biogeography survey included marine metagenomes from the viral, prokaryotic and protist fractions and is to date one of the largest surveys applied for a specific phage group. Cobaviruses impact Roseobacter populations at a global scale, from temperate to tropical marine waters, especially in coastal areas, and thus could have an influence on the biogeochemical cycling in these environments.

## 3. Taxonomic proposal of the Zobellviridae family

When the study described in the previous chapter 2 was published in The ISME journal in 2019, the newly proposed viral taxa needed to be submitted to the International Committee on Taxonomy of Viruses (ICTV) to be officially recognized. Meanwhile, the ICTV had announced that the families Podoviridae, Siphoviridae and Myoviridae would soon be dissolved, because they had been shown to be polyphyletic (Adriaenssens et al. 2021). Thus, the subfamily "Riovirinae", described in the ISME publication and chapter 2 of this thesis, was officially recognized as the new family Zobellviridae in the order Caudovirales (which was later dissolved as well). The following chapter corresponds to the taxonomic proposal of the Zobellviridae family (Bischoff et al. 2020). Again, the spelling of viral taxa (e.g., in italics or with quotation marks), corresponds to the classification at the time of publishing and might now be partially invalid. For a tabular overview of the newly proposed taxonomy, see Table 5, submitted with the proposal.

## Authors of the proposal:

Vera Bischoff ${ }^{1}$, Evelien M. Adriaenssens ${ }^{2}$, Andrew M. Kropinski ${ }^{3}$, Melissa Duhaime ${ }^{4}$, Cristina Moraru ${ }^{1}$
${ }^{1}$ Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Germany
${ }^{2}$ Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
${ }^{3}$ University of Guelph, Canada
${ }^{4}$ Department of Ecology and Evolutionary Biology, University of Michigan, USA

Publicly available at: https://ictv.global/ictv/proposals/2020.187B.R.Zobellviridae.zip.

List of the ICTV Study Group(s) that have seen this proposal: Bacterial and Archaeal Viruses Subcommittee Caudovirales Study Group

### 3.1. Short description

One (1) new family (Zobellviridae) including one (1) new subfamily (Cobavirinae), eight (8) new genera (Siovirus, Veravirus, Melvirus, Paundecimvirus, Citrovirus, Salinovirus, Vipivirus, and Icepovirus) and nine (9) new species will be created in the order Caudovirales.

### 3.2. Abstract

We propose here a new family of the order Caudovirales, called Zobellviridae. As members of Zobellviridae we propose one new subfamily, called Cobavirinae, several new genera and several species, most of which are new. We propose that the Cobavirinae subfamily comprises the genera Siovirus and Veravirus. The genus Siovirus comprises the species Lentibacter virus ICBM1, Celeribacter virus P12053L and Roseobacter virus SIO1. The genus Veravirus has only one species, Lentibacter virus ICBM2. The other genera we propose to belong to Zobellviridae, but do not assign to any subfamily are: i) Melvirus, with two species, Pseudoalteromonas virus HP1 and Pseudoalteromonas virus RIO1, ii) Paundecimvirus, with the species Pseudomonas virus PA11, iii) Citrovirus, with the species Citrobacter virus CVT22, iv) Salinovirus, with the species Salinivibrio virus CW02, v) Vipivirus, with the species Vibrio virus VpV262, and vi) Icepovirus, with the species Vibrio virus ICP2. From the above species, all are newly proposed here, with the exception of Roseobacter virus SIO1 and Vibrio virus VpV262. All species have cultured representatives.

### 3.3. Text of proposal

This taxonomic proposal is based on phylogenetic calculations performed by Bischoff et al. (2019) and additional calculations of the intergenomic similarities at nucleotide level. Shortly, the isolation of two new phages, Lentibacter virus vB LenP ICBM1 (ICBM1) and Lentibacter virus vB LenP ICBM2 (ICBM2), and the enrichment of a third, Lentibacter virus vB LenP ICBM3 (ICBM3), all infecting Lentibacter sp . SH36, has led to the recruitment of related phages from publicly available databases. Then, two type of phylogenetic trees were constructed: i) a whole genome phylogenetic tree, based on protein sequences (see Fig. 11) and ii) a single protein tree, based on the terminase protein (see Fig. 12).

For genome-based phylogenetic analysis, Bischoff et al. (2019) have built a dataset containing all ICTV-recognized genomes of podoviruses, ICBM1 and ICBM2 phages and their relatives retrieved by similarity searches in publicly available sequence databases. Pairwise phage comparisons of the amino acid sequences were performed with the Virus Classification and Tree Building Online Resource (VICTOR) (Meier-Kolthoff and Göker 2017) using the Genome-BLAST Distance Phylogeny (GBDP) (Meier-Kolthoff et al. 2013) method with settings recommended for prokaryotic viruses (Meier-Kolthoff and Göker 2017). Intergenomic distances were calculated with 100 replicates each. A balanced minimum evolution tree with branch support was constructed using FASTME including SPR postprocessing (Lefort et al. 2015) for the d6 formula. The trees were rooted at the midpoint (Farris 1972) and visualized with iTOL (Letunic and Bork 2016).

Taxon boundaries at the species, genus, subfamily and family level were estimated with the OPTSIL program (Göker et al. 2009) using the recommended clustering thresholds (MeierKolthoff and Göker 2017) and an F value (fraction of links required for cluster fusion) of 0.5 (Meier-Kolthoff et al. 2014). The distance thresholds used by VICTOR (Meier-Kolthoff and Göker 2017) for species, genus and subfamily demarcation can be found in Table 4 of this proposal. These thresholds have been shown to yield the highest agreement with the ICTV 2014 classification regarding the investigated taxonomic ranks (Meier-Kolthoff and Göker 2017). The respective thresholds for the analysis of amino acid datasets at the species, genus and subfamily level are $0.118980,0.749680$ and 0.888940 , respectively. These distance thresholds were applied to matrices of accurate intergenomic distances calculated using the Genome BLAST Distance Phylogeny (GBDP) approach (Meier-Kolthoff et al. 2013) under settings optimized for the comparison of phage genomes (Meier-Kolthoff and Göker 2017).

In addition, for this proposal we used VIRIDIC (viridic.icbm.de, Moraru et al. (2020)) to calculate nucleotide based intergenomic similarities (Fig. 13). VIRIDIC first calculated all possible pairwise alignments based on BLASTN. For one genome pair, the number of identical nucleotide matches reported by BLASTN were summed up for all aligned genomic regions. In the case of overlapping alignments, the overlapping parts were removed from one of the aligned regions, such that, at the end, the different genome regions were represented only once in the alignments. The intergenomic similarity were then calculated based on a formula previously proposed by Meier-Kolthoff and Göker (2017).

## Taxonomic proposal

$$
\operatorname{sim} A B=((i d A B+i d B A) * 100) /(l A+l B),
$$

where

$$
\begin{aligned}
& \text { idAB = identical bases when genome } A \text { is aligned to genome } B \\
& \begin{array}{c}
\text { idBA }=\text { identical bases when genome } B \text { is aligned to genome } A \\
\qquad l A=\text { length genome } A \\
l B=\text { length genome } B
\end{array} \\
& \text { sim } A B=\text { intergenomic similarity between genomes } A \text { and } B
\end{aligned}
$$

### 3.3.1. Zobellviridae family

In the whole genome tree (Fig. 11) prepared in Bischoff et al. (2019), ICBM1, ICBM2 and ICBM3 phages were placed in a maximally supported clade together with the RIO-1 phage and several other phages, in agreement with previous findings (Hardies et al. 2016). This clade is referred here as the RIO clade. Phages in the Autographiviridae family (formerly Autographivirinae subfamily) were placed in a closely related clade, of similar ranking to RIO clade. A third clade of similar rank was formed by the two Phormidium phages (see Fig. 11). VICTOR based taxon boundaries (see Table 4 for criteria used for taxonomic delineation) suggested that each of the three clades form subfamilies on their own (see Fig. 11). Therefore, Bischoff et al. (2019) suggested to give the RIO clade the rank of subfamily and to name it Riovirinae, a subfamily of the family Podoviridae. However, meanwhile the Caudovirales taxonomy is being reshaped, the family Podoviridae will be dissolved in time and the Autographivirinae subfamily has been upgraded to a family. Taking these changes in consideration, we propose here to declare the RIO clade as a new family within the order Caudovirales, and to name it Zobellviridae (from Claude Zobell, the first to isolate marine phages).

In the Zobellviridae, we propose i) one new subfamily, the Cobavirinae, made of two new genera, Siovirus and Veravirus, and ii) six new genera, Icepovirus, Vipivirus, Salinovirus, Citrovirus, Paundecimvirus and Melvirus, not affiliated yet to any subfamily. The intergenomic similarities used to delimitate the above genera are found in figure 13. The phylogenetic tree based on the Terminase protein (found in all phages from Zobellviridae) confirms the phylogenetic assignments based on the whole genome tree (see Fig. 12).

### 3.3.2. Cobavirinae subfamily

In the whole genome tree, ICBM1, ICBM2 and ICBM3 formed a highly supported clade together with Roseobacter virus SIO1 and its relatives, Celeribacter phage P12053L and several environmental phage genomes. This clade is referred here as the old SIO clade (see Fig. 11). VICTOR based taxonomic thresholds suggested this clade represents a genus. Therefore, Bischoff et al. (2019) suggested to call this clade the Siovirus genus. Within the old SIO clade, all phages with the exception of two environmental genomes (Env 3300001749 JGI24025J20009 10000213 and Env TARA ERS488813 N000141) had a cobalamin dependent ribonucleotide reductase and formed a highly supported clade. Bischoff et al. (2019) suggested to call this clade the "Cobavirus Group", part of the Siovirus genus. In the light of current changes in ICTV classification rules, we propose to classify the "Cobavirus group" as a subfamily, named Cobavirinae (from the presence of cobalamin dependent ribonucleotide reductase in the phage genomes). Because their genomes are incomplete, the two environmental genomes which were part of the SIO clade, but not of the Cobavirus group, are not considered here. The Siovirus genus (the old SIO clade), as defined by Bischoff et al. (2019) is further disregarded.

Based on the $70 \%$ nucleotide similarity threshold currently recommended by ICTV for the determination of phage genus borders, we propose three genera within the Cobavirinae subfamily (see Fig. 13 for intergenomic similarity values): i) Siovirus (not to be mistaken with the old Siovirus genus defined by Bischoff et al. (2019), which corresponds to the whole SIO clade), with the species Lentibacter virus ICBM1, Celeribacter phage P12053L and Roseobacter virus SIO1, and ii) Veravirus, with the species Lentibacter virus ICBM2. With the exception of Lentibacter virus ICBM1, all other species are represented by single strains. Lentibacter virus ICBM1 contains two strains, ICBM1 and ICBM3, having an intergenomic similarity at nucleotide level of $98.67 \%$ (see Fig. 13). ICBM2 is the sole representative of the Lentibacter virus ICBM2 species. An additional phylogenetic analysis, based on the terminase protein, supports the conclusions from the whole genome phylogeny (see Fig. 12).

### 3.3.2.1. Genus Siovirus

Genus Siovirus consists of three species: Lentibacter virus ICBM1, Celeribacter phage P12053L and Roseobacter virus SIO1. The genus name derives from Roseobacter phage SIO1, the first phage described from this genus and the first sequence marine bacteriophage. As type species we propose Lentibacter virus ICBM1, because its representatives are actively
maintained in the laboratory of Cristina Moraru and hopefully will be deposited at the DMSZ culture collection.

## Lentibacter virus ICBM1 species

Two phages belong to the Lentibacter virus ICBM1 species: Lentibacter virus vB LenP ICBM1 (ICBM1) and Lentibacter virus vB LenP ICBM3 (ICBM3). They were enriched from southern North Sea water, collected during an algal bloom (Bischoff et al. 2019). ICBM1 was further purified to a single isolate. ICBM3 is known only as a phage genome from the enrichment. Transmission electron microscopy revealed that ICBM1 phage had an isometric capsid with hexagonal cross-sections of $58.7 \pm 3.7$ and a short tail (sample size $=100$ phages each; negative staining with uranyl acetate) (Fig. 14). The host range of ICBM1 was determined on 94 Rhodobacteraceae strains. ICBM1 infected only Lentibacter sp. SH36, the original isolation host. ICBM1 has a genome size of 40.163 kb and a G+C content of $47.0 \%$ (GenBank Accession MF431617). ICBM3 was obtained by sequencing of the phage enrichment. ICBM3 has a genome size of 40.498 kb and a G+C content of $47.30 \%$ (GenBank accession MF431615). Both phages have direct terminal repeats (DTRs) as genome termini.

## Roseobacter virus SIO1 species

Roseobacter virus SIO1 is currently described in ICTV as an unclassified Podoviridae species. Here we proposed to move it into the new subfamily Cobavirinae, Siovirus genus. Bischoff et al. (2019) have determined the genome ends as DTRs, and reordered the genome accordingly. Other SIO1 related phages (SIO 2001, OS, MB, SBRSIO67) have incomplete genomes and therefore are not included in this proposal.

## Celeribacter phage P12053L species

The phage belonging to Celeribacter phage P12053L species was previously described (Kang et al. 2012). It has a dsDNA genome (GenBank accession JQ809650) of 35.889 kb length, with a G+C content of 46.1 (Kang et al. 2012) and DTRs as genome termini (Bischoff et al. 2019). It was isolated from the Yellow Sea in South Korea with the original host Celeribacter marinus IMCC12053 (Kang et al. 2012; Yang et al. 2016).

### 3.3.2.2. Veravirus genus

Veravirus genus consists of one species, which is also the type species, namely Lentibacter virus ICBM2. The name of the genus comes from the researcher who isolated the Lentibacter virus vB LenP ICBM2 (ICBM2).

## Lentibacter virus ICBM2 species

One phage belongs to the Lentibacter virus ICBM2 species: Lentibacter virus vB LenP ICBM2. It was isolated from southern North Sea water collected during an algal bloom (Bischoff et al. 2019). Transmission electron microscopy revealed that ICBM2 phage had an isometric capsid with hexagonal cross-sections of $59.2 \pm 2.8$ and a short tail (sample size $=100$ phages each; negative staining with uranyl acetate) (Fig. 14). The host range of ICBM2 was determined on 94 Rhodobacteraceae strains. ICBM2 infected only Lentibacter sp. SH36, the original isolation host. ICBM2 has a genome size of 40.907 kb and a $\mathrm{G}+\mathrm{C}$ content of $47.8 \%$ (GenBank Accession MF431616). As genome termini, ICBM2 has DTRs.

### 3.3.2.3. Genomic organization of cobaviruses

The phages of the proposed subfamily Cobavirinae have a conserved genomic organization. All have DTRs as genomic ends (Bischoff et al. 2019). This suggests that cobaviruses might use a packaging strategy similar to the T7 phage. The genes are organized in two genomic arms with opposite transcriptional directions, separated by a bidirectional, rho-independent transcriptional regulator. On the left genomic arm, genes for replication and nucleotide metabolism are encoded, while the right arm encodes genes for lysis and virion structure and morphology (Bischoff et al. 2019).

### 3.3.3. Other genera in the Zobellviridae family

### 3.3.3.1. Melvirus genus

Melvirus genus consists of two species, Pseudoalteromonas virus HP1 and Pseudoalteromonas virus RIO1 (see Fig. 13 for the intergenomic similarities used to delimitate this genus). As type species we propose the Pseudoalteromonas virus HP1, because it is actively maintained in the laboratory of Melissa Duhaime. The genus name comes from the researcher who has characterized it.

## Pseudoalteromonas virus HP1 species

The Pseudoalteromonas virus HP1 species has one phage - Pseudoalteromonas phage HP1. This phage, infecting two closely related strains of Pseudoalteromonas sp. (strain H-100 and strain 13-15) was isolated from seawater samples from the North Sea, near Helgoland, Germany (Duhaime et al. 2017). It has a genome of 45.035 kb in size and a G+C content of 44.67 (GenBank accession KF302037.1). It has a podoviral morphology with an icosahedral capsid and a short tail (Fig. 15) (Duhaime et al. 2017). Its host range is narrow among strains tested, infecting two out of seven strains of Pseudoalteromonas sp.

## Pseudoalteromonas virus RIO1 species

The Pseudoalteromonas virus RIO1 species has one phage - Pseudoalteromonas phage RIO-1. This phage was isolated from seawater samples from the East Sea, South Korea, together with its host Pseudoalteromonas marina CL-E25 (Hardies et al. 2013). The phage infects only its original host (Hardies et al. 2013). It has an icosahedral head of 51 nm and a short tail. Its genome is 43.882 kb large, with $39.6 \% \mathrm{G}+\mathrm{C}$ content and direct terminal repeats (Hardies et al. 2013) (GenBank accession KC751414).

### 3.3.3.2. Paundecimvirus genus

Paundecimvirus genus has only one species, which is also the type species, namely Pseudomonas virus PA11. The genus name comes from the phage name.

## Pseudomonas virus PA11 species

Pseudomonas virus PAll species comprises the PA11 phage. This phage infects Pseudomonas aeruginosa and has a genome size of 49.639 kb , with $44.8 \% \mathrm{G}+\mathrm{C}$ content (GenBank accession DQ163915) (Kwan et al. 2006).

### 3.3.3.3. Citrovirus genus

Citrovirus genus has one species, which is also the type species, namely Citrobacter virus CVT22. The genus name comes from the phage host name.

## Citrobacter virus CVT22 species

Citrobacter virus CVT22 species comprises the Citrobacter phage CVT22. This phage infects Citrobacter sp. strain TM1552. Together with its host it was isolated from the gut of the Formosan subterranean termite Coptotermes formosanus (Tikhe et al. 2015). It has a podoviral morphology and a circular permuted genome of 47.636 kb size and $41.6 \% \mathrm{G}+\mathrm{C}$ content (GenBank accession KP774835) (Tikhe et al. 2015).

### 3.3.3.4. Salinovirus genus

Salinovirus genus has a single species, which is also the type species, namely Salinivibrio virus CW02. The genus name comes from the phage host name.

## Salinivibrio virus CW02 species

Salinivibrio virus CW02 species consists of the Salinivibrio phage CW02. This phage infects the Salinivibrio costicola-like bacterium SA50 ( $99 \% 16 \mathrm{~S}$ rRNA sequence identity with S. costicola subsp. costicola strain ATCC 33508) and it was, like its host, isolated from the

Great Salt Lake, USA (Shen et al. 2012). CW02 has an icosahedral capsid of $\sim 60 \mathrm{~nm}$ in diameter and a short tail. The genome of phage CW02 is 40.547 kb in size with $47.67 \% \mathrm{G}+\mathrm{C}$ content and has no terminal repeats (GenBank accession JQ446452) (Shen et al. 2012).

### 3.3.3.5. Vipivirus genus

Vipivirus genus has only one species, which is also the type species, namely Vibrio virus VpV262. The genus name comes from the phage name.

## Vibrio virus VpV262 species

The Vibrio virus VpV262 species includes the phage Vibrio phage VpV262, and it is currently described in ICTV as unclassified Podoviridae. We propose here to move this species to the Zobellviridae family, Vipivirus genus.

### 3.3.3.6. Icepovirus genus

Icepovirus genus has one species, which is also the type species, namely Vibrio virus $I C P 2$. The genus name comes from the phage name.

## Vibrio virus ICP2 species

Vibrio virus ICP2 species consists of Vibrio phage ICP2. This phage infects different Vibrio cholerae strains. It was isolated from stool-samples of cholera patients in Bangladesh, with the original host $V$. cholerae O 1 El Tor. It can also infect $V$. cholera O 139 strain M010. It has a genome of 49.675 kb and $42.7 \% \mathrm{G}+\mathrm{C}$ content (GenBank accession HQ641345) (Seed et al. 2011). ICP2 has an icosahedral capsid of 60 nm in diameter and a short tail ( 13 nm long, 8 nm wide) (Seed et al. 2011).

### 3.4. Supporting evidence

Table 4: Parameters used by VICTOR to calculate a whole genome tree based on amino acid sequences and to demarcate taxa.

| Parameter | Value |
| :--- | :--- |
| Word length | 3 |
| E-value filter | 0.1 |
| Algorithm | Greedy-with-trimming |
| Formula | d 6 |
| Distance threshold, species | 0.118980 |
| Distance threshold, genus | 0.749680 |
| Distance threshold, subfamily | 0.888940 |

## Taxonomic proposal



Fig. 11: Whole genome phylogenetic tree depicting the new Zobellviridae family. The whole-genome-based phylogeny was inferred using the Genome-BLAST Distance Phylogeny method implemented in the VICTOR web service, using the amino acid data. Internal branch labels represent pseudo bootstrap support values if larger than $50 \%$. The proposed family Zobellviridae and the proposed subfamily Cobavirinae are annotated with colored rectangles. Further information regarding the current affiliation of phages to ICTV taxa and OPTSIL clusters, as well as G+C content and genome sizes is described within the figure legend (circled numbers). "Viruses annotated as "Unassigned" in legend "Genus (ICTV)" have been assigned to both an ICTV species and family but not to a genus level, whereas "NA" refers to viruses which have not been recognized as a taxa by the ICTV." The affiliation of one or more viruses to a distinct species, genus, subfamily or family cluster is indicated by a specific symbol of same shape and color. Adapted from Bischoff et al. (2019). Used under CC BY (http://creativecommons.org/licenses/by/4.0/).

Taxonomic proposal


Fig. 12: Phylogenetic positioning of the terminase proteins belonging to the phages in the Zobellviridae family. The terminase protein phylogeny was inferred using the approximately-maximum-likelihood method implemented in FastTree 2.1.5 in Geneious. The node labels represent Fast Tree support values. The tree is drawn to scale, with branch lengths measured in number of substitutions per site. The tree is unrooted. The affiliation of viruses to the proposed Cobavirinae subfamily or the proposed Zobellviridae family is indicated in green and orange colour, respectively.

## Taxonomic proposal



Fig. 13: Nucleotide based, intergenomic similarities between the members of the here newly proposed Zobellviridae family. The intergenomic similarities were calculated using the VIRIDIC webservice (viridic.icbm.de), using the formula $\operatorname{sim} A B=((i d A B+i d B A) * 100) /(1 A+1 B)$, where $i d A B=$ identical bases when genome $A$ is aligned to genome $B$, idBA = identical bases when genome $B$ is aligned to genome $A, 1 A=$ length genome $A, 1 B=$ length genome $B$, $\operatorname{sim} A B=$ intergenomic similarity between genomes $A$ and $B$.

## Taxonomic proposal



Fig. 14: Transmission electron micrograph of molybdenum stained, cell debris bound Lentibacter virus vB_LenP_ICBM1 and uranyl acetate stained, free Lentibacter virus vB_LenP_ICBM2. Scale bar: 50 nm . From Bischoff et al. (2019). Used under CC BY (http://creativecommons.org/licenses/by/4.0/) No changes made.


Fig. 15: Transmission electron micrograph of Pseudoalteromonas phage HP1 (N. Solonenko). Scale bar: 100 nm .
Table 5: Newly proposed taxonomy of the Zobellviridae family. All proposed families belong to the order Caudovirales, in the class Caudoviricetes, in the phylum Uroviricota, in the kingdom of Heunggongvirae, in the realm of Duplodnoviria. Newly proposed taxonomy is marked in red. *CG $=$ complete genome

| PROPOSED TAXONOMY |  |  |  |  |  |  |  |  | PROPOSED CHANGE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Family | Subfamily | Genus | Species | Type species? (1/0) | Exemplar <br> GenBank <br> Accession <br> Number | Exemplar virus name | Genome coverage | Genome composition | Change | Rank |
| Zobellviridae |  |  |  |  |  |  |  |  | Create new | family |
| Zobellviridae | Cobavirinae |  |  |  |  |  |  |  | Create new | subfamily |
| Zobellviridae | Cobavirinae | Siovirus |  |  |  |  |  |  | Create new | genus |
| Zobellviridae | Cobavirinae | Siovirus | Lentibacter virus ICBM1 | 1 | MF431617 | Lentibacter phage vB_LenP_ICBM1 | CG* | dsDNA | Create new; assign as type species | species |
| Zobellviridae | Cobavirinae | Siovirus | Roseobacter virus SIOI | 0 | AF189021 | Roseobacter phage SIO1 | CG | dsDNA | Move | species |
| Zobellviridae | Cobavirinae | Siovirus | Celeribacter virus P12053L | 0 | JQ809650 | Celeribacter phage P12053L | CG | dsDNA | Create new | species |
| Zobellviridae | Cobavirinae | Veravirus |  |  |  |  |  |  | Create new | genus |
| Zobellviridae | Cobavirinae | Veravirus | Lentibacter virus ICBM2 | 1 | MF431616 | Lentibacter phage vB_LenP_ICBM2 | CG | dsDNA | Create new; assign as type species | species |
| Zobellviridae |  | Icepovirus |  |  |  |  |  |  | Create new | genus |
| Zobellviridae |  | Icepovirus | Vibrio virus ICP2 | 1 | HQ641345 | Vibrio phage ICP2 | CG | dsDNA | Create new; assign as type species | species |
| Zobellviridae |  | Vipivirus |  |  |  |  |  |  | Create new | genus |
| Zobellviridae |  | Vipivirus | Vibrio virus VpV262 | 1 | AY095314.2 | Vibrio phage VpV262 | CG | dsDNA | Move | species |
| Zobellviridae |  | Salinovirus |  |  |  |  |  |  | Create new | genus |
| Zobellviridae |  | Salinovirus | Salinivibrio virus CW02 | 1 | JQ446452 | Salinivibrio phage CW02 | CG | dsDNA | Create new; assign as type species | species |
| Zobellviridae |  | Citrovirus |  |  |  |  |  |  | Create new | genus |
| Zobellviridae |  | Citrovirus | Citrobacter virus CVT22 | 1 | KP774835 | Citrobacter phage CVT22 | CG | dsDNA | Create new; assign as type species | species |
| Zobellviridae |  | Paundecimvirus |  |  |  |  |  |  | Create new | genus |
| Zobellviridae |  | Paundecimvirus | Pseudomonas virus PAll | 1 | DQ163915 | Pseudomonas phage PA11 | CG | dsDNA | Create new; assign as type species | species |
| Zobellviridae |  | Melvirus |  |  |  |  |  |  | Create new | genus |
| Zobellviridae |  | Melvirus | Pseudoalteromonas virus RIO1 | 0 | KC751414 | Pseudoalteromonas phage RIO-1 | CG | dsDNA | Create new | species |
| Zobellviridae |  | Melvirus | Pseudoalteromonas virus HP1 | 1 | KF302037.1 | Pseudoalteromonas phage HP1 | CG | dsDNA | Create new; assign as type species | species |

## 4. Isolation and classification of novel dsDNA roseophages

### 4.1. Chapter summary

In a large isolation campaign, more than 350 bacterial strains from the Roseobacter Group were used as potential hosts and seven different seawater samples from the North Sea were used as virus source. With two different methods, using either direct plating of concentrated seawater or enrichment cultures, 277 phage isolates were obtained (Fig. 16). After screening for unique phages by randomly amplified polymorphic DNA (RAPD) - PCR and genome size estimation using pulsed-field gel electrophoresis (PFGE), sequencing yielded 128 unique dsDNA roseophage genomes. They belong to twelve different genera. We investigated genome characteristics of 28 representative phages and classified them within the context of the current ICTV scheme as well as previously reported roseophages. The new roseophages infect Sulfitobacter, Lentibacter and Octadecabacter strains and belong to eight different families, four already ICTV-recognized and four newly proposed.

The following chapter describes unpublished data. However, much of the experimental data and analysis make part of a manuscript in the final stages of preparation.

## Contributions to this work:

Cristina Moraru designed the research and contributed to data analysis (genome assembly, annotation, and taxonomic classification) and manuscript writing. I performed much of the laboratory work and wrote this chapter, with great help from Benedikt Heyerhoff (sampling and preparation of seawater samples, phage isolation, DNA extraction, and RAPD-PCR), Aaron Woolley (purification of bacterial strains and phages), Mary Nguyen (phage isolation), Anne Bögeholz (phage DNA extraction and RAPD-PCR) and Andrea Schlingloff (host 16S rRNA gene and ITS sequencing). PFGE was conducted in the laboratory of our collaborator Silke Pradella at the DSMZ (Deutsche Sammlung für Mikroorganismen und Zellkulturen) in Braunschweig. Sequencing of the phage genomes was performed by our collaborators Anja Poehlein and Mechthild Bömeke at the Göttingen Genomics Laboratory. Carlota AlejandreColomo and Anneke Heins from the Max-Planck-Institute for Marine Microbiology (MPI) in Bremen provided the bacterial host strains.


Fig. 16: Workflow of phage isolation by direct plating (left) or enrichment cultures (right) and subsequent genome sequencing and classification (Image created with BioRender.com).

### 4.2. Materials and methods

### 4.2.1. Cultivation media

For phage isolation and subsequent cultivation, host strains were grown either in artificial saltwater medium (ASW) or MB50 medium. ASW was prepared using the following recipe. $24.32 \mathrm{~g} / \mathrm{l} \mathrm{NaCl}, 10 \mathrm{~g} / \mathrm{l} \mathrm{MgCl} \mathrm{M}_{2} \times \mathrm{H}_{2} \mathrm{O}, 1.5 \mathrm{~g} / \mathrm{l} \mathrm{CaCl} 2_{2} \times 2 \mathrm{H}_{2} \mathrm{O}, 0.66 \mathrm{~g} / \mathrm{l} \mathrm{KCl}, 4 \mathrm{~g} / \mathrm{l} \mathrm{Na} 2 \mathrm{SO}_{4}, 2.38 \mathrm{~g} / \mathrm{l}$ HEPES, $0.6 \mathrm{~g} / \mathrm{l}$ peptone, $0.3 \mathrm{~g} / 1$ yeast extract, $84 \mathrm{mM} \mathrm{KBr}, 40 \mathrm{mM} \mathrm{H}_{3} \mathrm{BO}_{3}, 15 \mathrm{mM} \mathrm{SrCl}{ }_{2}$, $40 \mathrm{mM} \mathrm{NH} 44 \mathrm{Cl}, 4 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}, 7 \mathrm{mM} \mathrm{NaF}$. After adjustment to pH 7.5 , the solution was autoclaved and completed before use with $1 \mathrm{ml} / \mathrm{l}$ of sterile filtered multi vitamin solution (after (Balch et al. 1979) ), $0.25 \mathrm{ml} / \mathrm{l}$ of sterile filtered trace element solution $\mathrm{A}\left(1.5 \mathrm{~g} \mathrm{FeCl} 2 \mathrm{X}_{4} \mathrm{H}_{2} \mathrm{O}\right.$ in $10 \mathrm{ml} 25 \% \mathrm{HCl}$ and 250 ml MilliQ water) and $0.1 \mathrm{ml} / 1$ of autoclaved trace element solution B ( $19 \mathrm{mg} / \mathrm{l} \mathrm{CoCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{mg} / \mathrm{l} \mathrm{MnCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}, 7 \mathrm{mg} / \mathrm{l} \mathrm{ZnCl}_{2}, 3.6 \mathrm{mg} / \mathrm{l} \mathrm{Na}_{2} \mathrm{MoO}_{4} \times 2 \mathrm{H}_{2} \mathrm{O}$, $\left.2.4 \mathrm{mg} / \mathrm{l} \mathrm{NiCl}{ }_{2} \times 6 \mathrm{H}_{2} \mathrm{O}, 0.6 \mathrm{mg} / \mathrm{l} \mathrm{H}_{3} \mathrm{BO}_{3}, 0.2 \mathrm{mg} / \mathrm{l} \mathrm{CuCl}_{2} \times 2 \mathrm{H}_{2} \mathrm{O}\right) .10 \mathrm{x}$ ASW medium contained a ten-fold higher amount of yeast extract, peptone and vitamins, respectively. ASWbase medium was prepared without any of the three ingredients.

To prepare MB50 medium, ready-to-use Marine broth medium (MB) Difco ${ }^{\mathrm{TM}}$ (BD Biosciences) ( $5 \mathrm{~g} / \mathrm{l}$ peptone, $1 \mathrm{~g} / \mathrm{l}$ yeast extract, $0.10 \mathrm{~g} / \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{FeO}_{7}, 19.45 \mathrm{~g} / \mathrm{l} \mathrm{NaCl}, 5.90 \mathrm{~g} / \mathrm{l}$ $\mathrm{MgCl}_{2}, 3.24 \mathrm{~g} / \mathrm{l} \mathrm{Na}_{2} \mathrm{SO}_{4}, 1.80 \mathrm{~g} / \mathrm{l} \mathrm{CaCl}_{2}, 0.55 \mathrm{~g} / \mathrm{KCl}, 0.16 \mathrm{~g} / \mathrm{l} \mathrm{NaHCO} 3,0.08 \mathrm{~g} / \mathrm{KBr}, 0.034 \mathrm{~g} / \mathrm{l}$ $\mathrm{SrCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}, 0.022 \mathrm{~g} / \mathrm{l} \mathrm{H}_{3} \mathrm{BO}_{3}, 0.004 \mathrm{~g} / \mathrm{l} \mathrm{Na} 2 \mathrm{SiO}_{3} \times 3 \mathrm{H}_{2} \mathrm{O}, 0.0024 \mathrm{~g} / \mathrm{l} \mathrm{NaF}, 0.0016 \mathrm{~g} / \mathrm{l} \mathrm{NH}_{4} \mathrm{NO}_{3}$, $0.008 \mathrm{~g} / \mathrm{l}_{2} \mathrm{HPO}_{4}$, prepared according to the manufacturer's instructions) was diluted in a $1: 1$ ratio with ASWbase before autoclavation. For MB50 agar plates, $18 \mathrm{~g} / \mathrm{l}$ Bacto Agar (BD Biosciences) were added to liquid MB50 medium before autoclaving. For MB50-soft agar, $6 \mathrm{~g} / \mathrm{l}$ low melting point Biozym Plaque GeneticPure agarose (Biozym) were added to MB50 medium before autoclaving in 250 ml glass bottles. Prior to usage, the MB50-soft agar was melted in a boiling water bath and cooled down to $37^{\circ} \mathrm{C} .1 \mathrm{ml} / 1$ sterile filtered multi vitamin solution (after Balch et al. (1979)) was added.

### 4.2.2. Origin and cultivation of host strains

The bacterial hosts used for phage isolation have been all isolated from the North Sea, but in different years and locations and were provided by various collaborators (Table 6). Lentibacter sp. SH36 and Sulfitobacter sp. SH24-1b (host of phage ICBM5 described in chapter 6) were isolated from a seawater sample from the southern North Sea ( $54^{\circ} 42^{\prime} \mathrm{N}, 06^{\circ} 48^{\prime} \mathrm{E} ; 36 \mathrm{~m}$ depth) taken in May 2007 during a phytoplankton bloom (Hahnke et al. 2013). Strain MPI-62 was
isolated from seawater collected during the spring phytoplankton bloom from 2017 at Helgoland roads time series station ( $54^{\circ} 11^{\prime} 03^{\prime \prime N}$, $7^{\circ} 54^{\prime} 00^{\prime \prime E}$ ). Strain MM282 was isolated from a seawater sample taken at high tide at the shore of Harlesiel ( $53^{\circ} 42^{\prime} 39^{\prime \prime} \mathrm{N} 7^{\circ} 48^{\prime} 28^{\prime \prime} \mathrm{E}$ ) in October 2017. Both strains were provided by Anneke Heins (MPI, Bremen). For more details on the isolation procedure of these two bacterial strains, see appendix.

A large culture collection of 388 strains from the Roseobacter group was provided by Carlota Alejandre-Colomo (MPI, Bremen and IMEDEA, Esporles, Spain) to be used in the phage isolation campaign (see SI file S4-1). The strains had been isolated by direct plating from North Sea surface water samples taken in spring 2016 also at Helgoland roads time series station ( $54^{\circ} 11^{\prime} 17.88^{\prime \prime} \mathrm{N}, 7^{\circ} 54^{\prime} 0^{\prime \prime} \mathrm{E}$ ) and had been preliminarily assigned to the genus Sulfitobacter by a combination of 16 S rRNA analysis and whole cell matrix-assisted laser desorption ionization time offlight mass spectrometry (WC MALDI-TOF MS) (Alejandre-Colomo et al. 2020).

Experiments with Sulfitobacter sp. SH24-1b were performed with full MB medium. All other strains were cultivated in MB50 medium and general growth conditions were $20^{\circ} \mathrm{C}$ and 100 rpm .

Table 6: Bacterial strains used for phage isolation in this study. *Host of phage ICBM5 described in chapter 6. ** Numbering is from 1 to 388 , see SI file S4-1.

| Bacterial strains | Isolated from | Isolated by / <br> Reference | Strain label |
| :---: | :---: | :---: | :---: |
| Lentibacter sp. SH36 | $\begin{aligned} & \text { Southern North Sea, } 54^{\circ} 42^{\prime} \mathrm{N} \text {, } \\ & 06^{\circ} 48^{\prime} \mathrm{E} \end{aligned}$ | (Hahnke et al. 2013) | SH36 |
| MPI-62 | Helgoland Roads, $54^{\circ} 11^{\prime} 17.88^{\prime \prime} \mathrm{N}$, 7054'0"E | Anneke Heins | MPI-62 |
| MM282 | Harlesiel, $53^{\circ} 42^{\prime} 39^{\prime \prime} \mathrm{N} 7^{\circ} 48^{\prime} 28^{\prime \prime} \mathrm{E}$ | Anneke Heins | MM282 |
| Sulfitobacter sp . SH24-1b* | Southern North Sea, $54^{\circ} 42^{\prime} \mathrm{N}$, $06^{\circ} 48^{\prime} \mathrm{E}$ | (Hahnke et al. 2013) | SH24-1b |
| Roseobacter Group strains labeled with M\# ** | Helgoland Roads, $54^{\circ} 11^{\prime} 17.88^{\prime \prime} \mathrm{N}$, $7^{\circ} 54^{\prime} 0 " \mathrm{E}$ | (Alejandre-Colomo et al. 2020). | M \# |

### 4.2.3. $16 S$ sequencing and phylogenetic analysis of host strains

The 16 S rRNA gene of all bacterial hosts was sequenced to determine their phylogenetic affiliation. A larger DNA fragment comprising the 16 S rRNA gene and the internal transcribed spacer (ITS) was amplified and sequenced, because this was needed for a more detailed analysis of the sulfivirus host strains (see chapter 5.3.1.). For each strain, $50 \mu 1$ of densely grown liquid
culture were centrifuged for 10 min at 12000 xg . The cell pellet was resuspended in $30 \mu \mathrm{l}$ nuclease free water, frozen at $-20^{\circ} \mathrm{C}$ and thawed by 10 min ultrasonic treatment in order to open the cells. $1 \mu 1$ was used to amplify for polymerase chain reaction (PCR) to amplify the 16 S rRNA gene and the ITS region. The reaction was performed with $250 \mu \mathrm{M}$ of each deoxynucleotide triphosphate ( dNTP ), $0.8 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 1.2 \mathrm{mg} / \mathrm{ml}$ bovine serum albumin (BSA), 10 pmol primer 27F binding to the 16S rRNA gene (Table 7), 10 pmol primer 189R binding to the 23S rRNA gene (Table 7), 0.4 U Phusion High-Fidelity DNA Polymerase (Fisher Scientific, $2 \mathrm{U} / \mu \mathrm{l}$ ) and $5 \mu \mathrm{I}$ x reaction buffer containing 1.5 mM MgCl 2 . The cycling protocol was as follows. After the initial denaturation step with 5 min at $95^{\circ} \mathrm{C}, 32$ cycles of 1 min at $95^{\circ} \mathrm{C}$, 1 min at $42^{\circ} \mathrm{C}$ and 2 min at $72^{\circ} \mathrm{C}$ were performed. At the transition between denaturation and elongation, temperature was lowered by $1.2{ }^{\circ} \mathrm{C}$ per second. A final elongation step of 10 min at $72^{\circ} \mathrm{C}$ was performed. Successful amplification was tested by agarose-gel electrophoresis and ethidium bromide staining. PCR products were purified using the pegGold Cycle-Pure Kit (S-line) (PEGLAB Biotechnology) following the instruction manual. Sequencing was performed by GATC Services Eurofins Genomics Germany GmbH (Ebersberg, Germany) with six different primers (Table 7). Contig assembly was done with the DNA Baser software (www.dnabaser.com, version 5.15.0.0BT). Phylogenetic analysis of the 16 S rRNA gene was performed with the ARB software package (Ludwig et al. 2004), using the reference data set SSU Ref NR 138.1. A neighbor-joining tree was calculated with Jukes-Cantor correction, 1000 bootstrap replicates and the termini filter. Members of the genus Psychrobacter served as an outgroup.

Table 7: Primers used for 16S-23s rRNA fragment amplification and sequencing.

| Primer | Sequence 5, -> 3' | Reference |
| :--- | :--- | :--- |
| 189R | TACTTAGATGTTTCAGTTC | (Hunt et al. 2006) |
| 27F | AGA GTT TGA TCM TGG CTC AG | (Suzuki and Giovannoni 1996) |
| 341F | CCT ACG GGA GGC AGC AG | modified from Herlemann et al. (2011) |
| 907F | AAA CTC AAA KGA ATT GAC GG | aodified from Muyzer et al. (1995) |
| GM4F | AAG TCG TAA CAA GGT A | adapted from Muyzer et al. (1995) |
| GM4R | TAC CTT GTT ACG ACT T | Muyzer et al. (1995) |

### 4.2.4. Water samples for phage isolation

Viruses were isolated from seven different seawater samples originating either from mesocosm experiments (samples P1, P2, and P4) or directly from the seawater column (samples NHS, HE504-33, HE396-6, and HE440-S) (see Table 8). Water samples P1, P2 and P4 were taken from three replicate mesocosms in an experiment mimicking a phytoplankton spring bloom
(Mori et al. 2021; Dlugosch et al. 2023). In each of the mesocosms 6001 artificial seawater had been inoculated with water from the southern coastal North Sea and incubated at natural light and temperature conditions for six weeks. The inoculum had been sampled on board of the research vessel Heincke on March $10^{\text {th }} 2018\left(54^{\circ} 04^{\prime} 33.0^{\prime \prime N} 7^{\circ} 37^{\prime} 37.2^{\prime \prime} \mathrm{E}\right)$ at 4.2 m below sea surface and was filtered through $100 \mu \mathrm{~m}$ before inoculation (Table 8). Samples for phage isolation were taken at the very end of the experiment, after the emergence and collapse of a phytoplankton bloom had been observed. From each of the replicates (P1, P2 and P4) eight liters were sampled, immediately filtered serially through $8 \mu \mathrm{~m}, 5 \mu \mathrm{~m}$ and $0.22 \mu \mathrm{~m}$ polycarbonate filters (Whatman Nuclepore 47 mm , Sigma-Aldrich, USA) and stored at $4{ }^{\circ} \mathrm{C}$. Seawater sample NHS originated from the shore in Neuharlingersiel at the coast of the southern North Sea ( $53^{\circ} 42^{\prime} 12.7^{\prime \prime} \mathrm{N} 7^{\circ} 42^{\prime} 15.0^{\prime \prime} \mathrm{E}$ ) (Table 8). Ten liters were sampled in July 2018 during high tide, filtered through $0.8 \mu \mathrm{~m}$ polycarbonate filters and stored at $4^{\circ} \mathrm{C}$ for a few days. Sample HE504-33 was collected on board of the research vessel Heincke in the southern North Sea ( $53^{\circ} 53^{\prime} 44.5^{\prime \prime N} 7^{\circ} 32^{\prime} 05.6^{\prime \prime} \mathrm{E}$ ) during a phyloplankton bloom on March $9^{\text {th }} 2018$ (Table 8). Six liters of seawater were sampled, filtered directly through $0.8 \mu \mathrm{~m}$ polycarbonate filters and stored at $4^{\circ} \mathrm{C}$.

Prior to phage isolation, water samples P1, P2, P4, NHS and HE504-33 were again filtered through $0.22 \mu \mathrm{~m}$ bottle top filters (Nalgene Rapid-Flow, PES membrane, ThermoFisher Scientific). Five liters were concentrated to approximately 50 ml by crossflow filtration (Vivaflow® 200, PES membrane, 30 kDa MWCO, Sartorius). The obtained virus concentrate was stored at $4{ }^{\circ} \mathrm{C}$ (for maximum 3 weeks).

Sample HE440-S was the same as used for the isolation of the cobaviruses, i.e. multiple samples from the southern North Sea, taken during a phytoplankton bloom in March 2015 on board of the cruise ship RV Heincke and pooled together (see chapter 2.2.2.). Sample HE396-6 was also taken on board of the cruise ship RV Heincke in the southern North Sea, but in March 2013 (Table 8). It was filtered on board through $0.7 \mu \mathrm{~m}$ filters (GTTP filters, 47 mm in diameter, Millipore), transported to the laboratory and stored at $4{ }^{\circ} \mathrm{C}$ in the dark. Both water samples, HE396-6 and HE440-S were filtered again through $0.2 \mu \mathrm{~m}$ (Nalgene rapid-flow, $0.2 \mu \mathrm{~m}$, PES membrane, Thermo-Scientific) before they were used for phage isolation by enrichment cultures.

Table 8: Seawater sources for phage isolation.

| Label | From | Coordinates / References | Processing |
| :---: | :---: | :---: | :---: |
| HE396-6 | southern North-Sea, March 2013 | $54^{\circ} 20^{\prime} 04.2^{\prime \prime} \mathrm{N} 7^{\circ} 06^{\prime} 58.8^{\prime \prime} \mathrm{E}$ | $0.7 \mu \mathrm{~m} \rightarrow 0.2 \mu \mathrm{~m}$ filtration |
| HE440-S | southern North Sea, March 2015, pooled multiple stations | $53^{\circ} 58^{\prime} 40.8^{\prime \prime} \mathrm{N} 8^{\circ} 03^{\prime} 32.4^{\prime \prime} \mathrm{E}$, $53^{\circ} 56^{\prime} 13.2^{\prime \prime} \mathrm{N} 7^{\circ} 48^{\prime} 21.6^{\prime \prime} \mathrm{E}$, $53^{\circ} 53^{\prime} 45.6^{\prime \prime} \mathrm{N} 7^{\circ} 32^{\prime} 06.0^{\prime \prime} \mathrm{E}$, $53^{\circ} 50^{\prime} 24.0^{\prime \prime} \mathrm{N} 7^{\circ} 15^{\prime} 18.0^{\prime \prime} \mathrm{E}$, 53047'34.8"N 659'49.2"E (Bischoff et al. 2019) |  |
| HE504-33 | southern North Sea, March 2018 | $53^{\circ} 53{ }^{\prime} 44.5{ }^{\prime \prime N} 7^{\circ} 32^{\prime} 05.6 " \mathrm{E}$ | $0.8 \mu \mathrm{~m} \rightarrow 0.2 \mu \mathrm{~m}$ filtration $\rightarrow 100 \mathrm{x}$ concentration of the phage fraction |
| P1 P2 P4 | mesocosms inoculated with water from the southern North Sea, March 2018 | $\begin{aligned} & 54^{\circ} 04^{\prime} 33.0^{\prime N} 7^{\circ} 37^{\prime} 37.2^{\prime \prime} \mathrm{E} \\ & \text { (Mori et al. 2021) } \end{aligned}$ | $8 \mu \mathrm{~m} \rightarrow 5 \mu \mathrm{~m} \rightarrow 0.2 \mu \mathrm{~m}$ <br> filtration $\rightarrow 100 \mathrm{x}$ <br> concentration of the phage fraction |
| NHS | North Sea shore, July 2018 | $53^{\circ} 42^{\prime} 12.7{ }^{\prime \prime N} 7^{\circ} 42^{\prime} 15.0{ }^{\prime \prime} \mathrm{E}$ | $0.8 \mu \mathrm{~m} \rightarrow 0.2 \mu \mathrm{~m}$ filtration $\rightarrow 100 \mathrm{x}$ concentration of the phage fraction |

### 4.2.5. Isolation of phages from direct plating and their further characterization

### 4.2.5.1. Direct phage isolation by plaque assay

In the large-scale isolation campaign, phages were isolated by plaque assay and single plaque picking, using methods described before (Kauffman and Polz 2018). Bacterial host strains were challenged with the virus concentrates from the different seawater samples. A volume of $280 \mu \mathrm{l}$ of exponentially growing host culture (optical density at $\left.600 \mathrm{~nm}\left(\mathrm{OD}_{600}\right)=0.2-0.3\right)$ were pipetted into the middle of a MB50 agar plate ( $1.8 \%$ agar). The virus concentrate ( $100 \mu \mathrm{l}$ ) and 3 ml of MB50-soft agar ( $0.6 \%$ low melting point Biozym Plaque GeneticPure agarose, Biozym, kept warm at $37^{\circ} \mathrm{C}$ ) were pipetted into the middle of the virus-host droplet. The plate was gently shaken to mix and spread the soft agar layer evenly. After drying of the top layer, plates were incubated at $20^{\circ} \mathrm{C}$ for $3-5$ days.

Upon observation of phage plaques, phages were purified by single plaque picking and streak assay. An agar plate was prepared with a top layer of 3 ml MB50-soft agar containing $280 \mu \mathrm{l}$ of exponentially growing host culture $\left(\mathrm{OD}_{600}=0.2-0.3\right)$. While the top layer was still liquid, a single phage plaque from the original plate was picked with a sterile pipette tip and
transferred to the still molten top layer of the new plate by streaking through the soft agar in a diluting manner in order to obtain single plaques (Fig. 17). The plate was again incubated for two days at $20^{\circ} \mathrm{C}$ and the single plaque picking and streak assay was repeated three times for phage purification.


Fig. 17: Scheme of the streak assay for phage purification. Between steps 1, 2 and 3 a new sterile pipette tip was taken. (Image created with Biorender.com).

### 4.2.5.2. Preparation of fresh lysates and glycerol stocks

Fresh, cell-free phage lysates for subsequent experiments or for glycerol stock preparation were obtained either from a liquid infection culture (method A) or from agar plates with confluent plaques (method B).

Method A: Phage infection cultures were prepared by inoculation of 6 ml MB50\% medium with an exponentially growing host culture to an $\mathrm{OD}_{600}$ of 0.006 and infection with one single phage plaque picked directly from an agar plate. In parallel, a control culture was set up for every host, containing only the medium and the host inoculum with an $\mathrm{OD}_{600}$ of 0.006 without phage. After incubation overnight at $20^{\circ} \mathrm{C}$ and 100 rpm bacterial lysis was indicated by disrupted cell particles and low $\mathrm{OD}_{600}$ (as in comparison with the control culture). The phage lysate was harvested by centrifugation ( $15 \mathrm{~min}, 4000 \mathrm{xg}, 4^{\circ} \mathrm{C}$ ) and $0.22 \mu \mathrm{~m}$ filtration (ROTILABO® syringe filters, CME membrane, CarlRoth®) of the supernatant. Phage lysates were stored at $+4^{\circ} \mathrm{C}$.

Method B: For each phage isolate a single purified plaque was picked, resuspended in $500 \mu \mathrm{l}$ ASWbase and incubated overnight at $4{ }^{\circ} \mathrm{C}$. In order to obtain plates with confluent plaques, serial dilutions $\left(10^{0}, 10^{-1}, 10^{-3}\right)$ of the resuspended plaque were prepared by mixing
with ASW base. $100 \mu$ l of phage dilution were pipetted in the middle of an MB50\% agar plate (1.8\% agar). An aliquot of exponentially growing host culture was added (final $\mathrm{OD}_{600}$ in $3 \mathrm{ml}=0.0233$ ). 3 ml of MB50\%-soft agar ( $0.6 \%$ low melting Biozym Plaque GeneticPure agarose, Biozym, kept warm at $40^{\circ} \mathrm{C}$ ) were pipetted into the middle of the phage/host droplet and the plate was shaken for mixing and even distribution of the soft agar layer. Plates were incubated for $1-2$ days at $20^{\circ} \mathrm{C}$. If confluent plaques were observed, 5 ml of SM buffer ( $100 \mathrm{mM} \mathrm{NaCl}, 8 \mathrm{mM} \mathrm{MgSO} 4,50 \mathrm{mM}$ Tris-HCl pH 7.4 ) were applied on top of the soft agar. After incubation for 1 h at $4^{\circ} \mathrm{C}$ the buffer was collected with a syringe and filtered $0.22 \mu \mathrm{~m}$ (ROTILABO® syringe filters, CME membrane, CarlRoth ${ }^{\circledR}$ ). The obtained phage lysate was stored at $4{ }^{\circ} \mathrm{C}$.

For long term storage two types of glycerol stocks were prepared: i) stock of free phage particles (1 part phage lysate and 1 part MB50\% media with $50 \%$ glycerol) and ii) stock of infected host cells ( 1 part infected cells - $400 \mu \mathrm{l}$ phage fraction added to $400 \mu \mathrm{l}$ host culture, 15 min on ice for absorption - and 1 part MB50\% media with $50 \%$ glycerol). Glycerol stocks were stored at $-80^{\circ} \mathrm{C}$.

### 4.2.5.3. PFGE for phage genome size determination/prediction

To estimate the size of the phage genomes, phages were embedded in agarose plugs and submitted to a pulsed-field gel electrophoresis (PFGE), which is able to separate large DNA fragments. For removal of extracellular DNA and RNA, a 2 ml aliquot of phage lysate (obtained from agar plates with confluent plaques, see chapter 4.2.5.2, method B) was incubated with $1 \mu \mathrm{l}$ of TurboDNase ( $2 \mathrm{U} / \mu \mathrm{l}$; Invitrogen, Ambion) and $1 \mu \mathrm{l}$ of RNase Cocktail Enzyme Mix ( $500 \mathrm{U} / \mathrm{ml}$ RNase A, 20,000 U/ml RNase T1; Invitrogen) for 30 min at $37^{\circ} \mathrm{C}$. Enzymes were inactivated by incubation for 10 min at $75^{\circ} \mathrm{C}$ with 15 mM EDTA. $500 \mu \mathrm{l}$ of the DNase/RNase treated lysate were used for agarose plug preparation. The aliquot was pre-heated to $37^{\circ} \mathrm{C}$ and mixed with $170 \mu$ l of melted $3.2 \%$ SeaKem® Gold Agarose for PFGE (Lonza). The mixture was then quickly distributed in $100 \mu \mathrm{l}$ molds (CHEF Disposable Plug Molds, Bio-Rad Laboratories) and allowed to solidify at $4^{\circ} \mathrm{C}$ for at least 30 min . Afterwards, the plugs were removed from the molds and all plugs of one phage were collected in the same tube with 1.8 ml ESP buffer ( $10 \mathrm{mg} / \mathrm{ml} \mathrm{N}$-Laurylsarcosine sodium salt (Sigma) in 0.5 M EDTA pH 9.0) containing $1 \mathrm{mg} / \mathrm{ml}$ proteinase K (CarlRoth). After incubation overnight at $50^{\circ} \mathrm{C}$, the agarose plugs were washed three times in TE buffer ( 10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.0,2 \mathrm{mM}$ EDTA pH 9.0 ) with intermediate incubation at room temperature for 15 min and finally stored in TE buffer at $4^{\circ} \mathrm{C}$. PFGE was performed in collaboration with Dr. Silke Pradella (DSMZ, Braunschweig).

For each phage isolate, half an agarose plug was loaded on a $1 \%$ agarose gel (PFCA agarose in TBE buffer ( 45 mM Tris, 45 mM boric acid, 0.1 mM EDTA) ). Electrophoresis was run on a CHEF-DR II System (Bio-Rad Laboratories), for 17 h at $14^{\circ} \mathrm{C}$ buffer temperature with $120^{\circ}$ angle, $1-6 \mathrm{~s}$ interval and $6 \mathrm{~V} / \mathrm{cm}$. DNA bands were visualized by SYBRgreen staining overnight. Low Range PFG Marker and Mid Range PFG Marker (New England Biolabs) were used as molecular size markers and served as calibration standards for size measurements.

### 4.2.5.4. Phage DNA extraction

For DNA extraction, a cell-free phage lysate was prepared from a plate with confluent plaques as described above. In contrast, DNA of the Lentibacter phages ICBM4, ICBM6 and ICBM7 was isolated from a liquid infection culture (see chapter 4.2.5.2.). To remove extracellular DNA and RNA, a 2 ml aliquot of the phage lysate was incubated with $1 \mu \mathrm{l}$ of TurboDNase ( $2 \mathrm{U} / \mu \mathrm{l}$; Invitrogen, Ambion) and $1 \mu \mathrm{l}$ of RNase Cocktail Enzyme Mix ( $500 \mathrm{U} / \mathrm{ml}$ RNase A, $20,000 \mathrm{U} / \mathrm{ml}$ RNase T 1 ; Invitrogen) for 30 min at $37^{\circ} \mathrm{C}$. Enzymes were inactivated by incubation for 10 min at $75^{\circ} \mathrm{C}$. To remove the viral protein capsid, a treatment with Proteinase K followed. A premix solution was prepared by mixing $100 \mu$ EDTA ( $0.5 \mathrm{M}, \mathrm{pH} 8$ ) with $5 \mu \mathrm{l}$ proteinase K solution ( 20 mg proteinase K , CarlRoth®, dissolved in 1 ml nuclease free water) and preheated at $50^{\circ} \mathrm{C}$ for at least 30 min . The premix solution was added to the phage lysate and incubated overnight at $50^{\circ} \mathrm{C}$. With phages infecting Sulfitobacter sp . SW_H+_2_149 this procedure was performed with slightly different enzymes and concentrations. Free DNA and RNA were digested with DNase 1 (Ambion, $0.004 \mathrm{U} / \mu \mathrm{l}$ ) and RNase 1 (Ambion, $0.1 \mathrm{U} / \mu \mathrm{l})$ and the viral capsid was disrupted with Proteinase $\mathrm{K}(0.05 \mathrm{U} / \mathrm{ml})$ and SDS ( $0.5 \%$ ).

Viral DNA was extracted from the DNase, RNase and proteinase K treated lysate by mixing 1 ml of lysate with 1 ml of Wizard® PCR Preps DNA Purification Resin (Promega). A Wizard® Minicolumn was attached to a 5 ml disposable syringe with the plunger removed. The lysate/resin mixture was filled into the syringe and pushed through the minicolumn into a waste collection vessel. In the same way, 2 ml of $80 \%$ isopropanol were pushed through to wash the resin. Afterwards, the minicolumn was removed from the syringe and attached to sterile 1.5 ml centrifuge tube. After centrifugation ( 2 min at 10000 xg ) the minicolumn was placed on a new sterile 1.5 ml centrifuge tube, filled with $100 \mu 180^{\circ} \mathrm{C}$ nuclease free water or TE buffer ( 10 mM Tris-HCl $\mathrm{pH} 8.0,2 \mathrm{mM}$ EDTA pH 9.0 ) and vortexed gently for ten seconds. After one minute incubation at room temperature it was centrifuged again for 30 seconds at 10000 xg to elute the DNA. The extracted DNA was concentrated to approximately $20 \mu \mathrm{l}$ using 30 kDa Amicon

Ultra centrifugal filters ( 0.5 ml volume, Merck Millipore) and finally stored at $-20^{\circ} \mathrm{C}$. DNA concentration was determined with the Qubit 2.0 fluorometer and the Qubit® dsDNA HS Assay.

### 4.2.5.5. Screening for unique phages with RAPD-PCR

To prevent from multiple sequencing of the same phage, a randomly amplified polymorphic DNA (RAPD) PCR was performed on all phage isolates aiming at identification of unique phages. RAPD PCR was either done with extracted phage DNA (for P4 and NHS phages) or on concentrated phage lysates (for P1 and P2 phages). Concentration of P1 and P2 phages was done by polyethylene glycol (PEG) precipitation. 1.6 ml of phage lysate (obtained from liquid infection culture, see chapter 4.2.5.2, method A) were incubated for 2 h (to overnight) at $4{ }^{\circ} \mathrm{C}$ with PEG (final concentration $5 \%$ ) and NaCl (final concentration 0.1 M ). After centrifugation ( 1 h at 7197 xg and $4^{\circ} \mathrm{C}$ ) the supernatant was discarded and the pellet resuspended in $30 \mu \mathrm{l}$ nuclease free water (Invitrogen). For resuspension of the phages, the pellet was incubated 1-2 h at $4{ }^{\circ} \mathrm{C}$ with occasional gentle vortexing. Phage concentrates were stored at $-20^{\circ} \mathrm{C}$. For removal of extracellular DNA and RNA, phage concentrates were incubated with $1 \mu 1$ of TurboDNase ( $2 \mathrm{U} / \mu \mathrm{l}$; Invitrogen, Ambion) and $1 \mu \mathrm{l}$ of RNase Cocktail Enzyme Mix ( $500 \mathrm{U} / \mathrm{ml}$ RNase A, $20,000 \mathrm{U} / \mathrm{ml}$ RNase T1; Invitrogen) for 30 min at $37^{\circ} \mathrm{C}$. Enzyme inactivation was performed by incubation for 10 min at $75^{\circ} \mathrm{C}$ with 15 mM EDTA.

The PCR mixture for RAPD PCR consisted of nuclease free water (Invitrogen), reaction buffer (supplied with Taq DNA polymerase), 0.16 mM of each deoxynucleoside triphosphate (Invitrogen), 2.5 U of Taq DNA polymerase (recombinant, Thermo Scientific), $4 \mu \mathrm{M}$ RAPD primer OPA-9 ( $5^{\prime}$ 'ggg taa cgc c-3'; stock concentration $100 \mathrm{pmol} / \mu$, Winget and Wommack (2008)) and $1 \mu$ l phage DNA or concentrated lysate. The PCR was run with 10 min at $94{ }^{\circ} \mathrm{C}$ for initial denaturation, 30 cycles of 30 s of denaturation at $94^{\circ} \mathrm{C}, 3 \mathrm{~min}$ of annealing at $35^{\circ} \mathrm{C}$, and 1 min of extension at $72{ }^{\circ} \mathrm{C}$, followed by 10 min at $72^{\circ} \mathrm{C}$. For visualization of the PCR products agarose gel electrophoresis was performed ( $1.8 \%, 1.5 \mathrm{~h}, 80 \mathrm{~V}$, ethidium bromide staining). A 1 kb Plus DNA ladder (Invitrogen) was used as molecular size marker. Banding patterns of all phages were compared manually based on absence or presence of bands. Phages with a pattern different from all the others were regarded as unique.

### 4.2.6. Isolation of phages from enrichments

Separate from the large-scale direct phage isolation campaign described above, Lentibacter phages ICBM4, ICBM6 and ICBM7 were isolated from enrichment cultures containing the host
bacterium Lentibacter sp . SH36 and North Sea water samples. Phages ICBM4 and ICBM7 were isolated from the same water sample as the cobaviruses (HE440-S), phage ICBM6 was isolated from sample HE396-6 (see chapter 4.2.4, Table 8). The enrichment procedure was similar to the one used for the isolation of the cobaviruses. The cultures were set up by mixing 1 part medium (ASW10x or MB10x, containing ten times the amount of peptone and yeast extract in comparison with ASW1x or MB) with 9 parts freshly filtered (Nalgene rapid-flow, $0.2 \mu \mathrm{~m}$, PES membrane, Thermo-Scientific) seawater (HE440-S or HE396-6, respectively). After addition of exponentially growing cultures of Lentibacter sp. SH36 (in ASW1x medium) to a final $\mathrm{OD}_{600}$ of 0.006, enrichment cultures were incubated overnight (ICBM4) or for $3-7$ days (ICBM6 and ICBM7) at $20^{\circ} \mathrm{C}$ and 100 rpm . Two control cultures were incubated in parallel: A positive control containing ASWbase instead of seawater sample in order to monitor host growth and a negative control containing medium and seawater, but no host inoculum to check growth of bacterial contaminants in the seawater. Bacterial growth was monitored by optical density measurement at 600 nm (Beckmann DU520, USA). When lysis was indicated by the presence of cell debris and decreasing OD in the enrichment cultures compared to the positive control culture, the enriched phage fraction was obtained by centrifugation ( 15 min at 4000 x g ) and $0.22 \mu \mathrm{~m}$ filtration ( $0.22 \mu \mathrm{~m}$, ROTILABO® syringe filters, CarlRoth) and stored at $4{ }^{\circ} \mathrm{C}$ or as glycerol stocks containing host bacteria and phages (see chapter 4.2.5.2.).

Later, phage fractions were revived for isolation of single viruses by infecting 5 ml of exponentially growing culture of Lentibacter sp. SH36 $\left(\mathrm{OD}_{600}=0.1\right.$, in MB medium) with $100 \mu$ l of the enrichment glycerol stock or $4^{\circ} \mathrm{C}$ - stock, respectively. After incubation overnight at $20^{\circ} \mathrm{C}$ and 100 rpm , the fresh phage lysate was harvested by centrifugation ( 10 min , $10000 \mathrm{xg}, 10^{\circ} \mathrm{C}$ ) and $0.22 \mu \mathrm{~m}$ filtration (syringe filter, Merck Millipore) of the supernatant. Phages were isolated by plaque assay and single plaque picking, using $100 \mu \mathrm{l}$ of dilutions ( $10^{0}$, $10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}$ ) of the fresh phage lysate for the initial plaque assay on MB agar plates. The procedure of single plaque picking was a bit different than described above. A single plaque was picked and dissolved in 1 ml ASWbase overnight at $4^{\circ} \mathrm{C}$. Dilutions were prepared in ASWbase and plated again in another plaque assay obtaining again single plaques to be picked. This step was repeated at least three times in order to obtain pure plaques.

Genomic DNA of Lentibacter phages ICBM4, ICBM6 and ICBM7 was extracted after enrichment of phage particles by two subsequent liquid infections as well as polyethylene glycol (PEG) precipitation. A pre-infection culture was set up by mixing 30 ml ASW1x medium with $500 \mu \mathrm{l}$ of phage glycerol stock and an inoculum of exponentially growing culture of Lentibacter SH 36 (final $\mathrm{OD}_{600}=0.006$ ). A positive control culture was also prepared containing
only medium and the host inoculum. After incubation overnight at $20^{\circ} \mathrm{C}$ and 100 rpm , lysis was indicated in the infection culture by cell debris and a decreased $\mathrm{OD}_{600}$ compared to the positive control. The fresh phage lysate was harvested by centrifugation ( $15 \mathrm{~min}, 4000 \mathrm{x} \mathrm{g}$ ) and $0.22 \mu \mathrm{~m}$ filtration (ROTILABO® syringe filters, CarlRoth). The first large scale infection culture was set up containing 60 ml ASW1x medium, 1 ml fresh phage lysate and the inoculum from an exponentially growing culture of Lentibacter SH 36 (final $\mathrm{OD}_{600}=0.006$ ). Two positive control cultures were prepared as well containing only medium and host inoculum. After incubation overnight at $20^{\circ} \mathrm{C}$ and 100 rpm , lysis was indicated in the infection culture and the phage lysate was harvested by centrifugation ( $30 \mathrm{~min}, 4000 \mathrm{xg}, 4^{\circ} \mathrm{C}$ ) and capture of the supernatant. A bacterial cell pellet was prepared by centrifugation of control culture I ( 30 min , $4000 \mathrm{xg}, 20^{\circ} \mathrm{C}$ ) and resuspended in 50 ml of the phage lysate. The mixture was incubated for 15 min on ice and then transferred to an Erlenmeyer flask. After addition of 50 ml ASW2x medium (containing two times the amount of peptone and yeast extract as compared to ASW1x medium), the thereby obtained second large scale infection culture was incubated overnight at $20^{\circ} \mathrm{C}$ and 100 rpm . A positive control culture was prepared by mixing 50 ml of control culture II with 50 ml ASW2x medium and incubated as well. When cell lysis was indicated in the infection culture, the phage lysate was obtained again by centrifugation ( $30 \mathrm{~min}, 7000 \mathrm{xg}$, $4^{\circ} \mathrm{C}$ ). For further concentration of the phage particles, precipitation with polyethylene glycol (PEG 8000, Molecular Biology Grade, Promega) was performed. $4 \times 25 \mathrm{ml}$ phage lysate were mixed with $50 \%$ PEG (final concentration $10 \%$ ) and 5 M sodium chloride (final concentration 0.6 M ). After incubation for 2 g at $4^{\circ} \mathrm{C}$ and subsequent centrifugation ( $2 \mathrm{~h}, 7197 \mathrm{xg}, 10^{\circ} \mathrm{C}$ ), the phage pellets were resuspended in SM buffer, pooling them all together in $500 \mu 1$. Extracellular DNA was removed by DNase treatment. The phage concentrate was incubated with $0.04 \mathrm{U} / \mu \mathrm{l}$ Turbo DNase ( $2 \mathrm{U} / \mu \mathrm{l}$, Invitrogen, Ambion) for 30 min at $37^{\circ} \mathrm{C}$. Afterwards, the enzyme was inactivated by incubation for 10 min at $75^{\circ} \mathrm{C}$ with 15 mM EDTA. The phage DNA was extracted with the ChargeSwitch gDNA Mini Bacteria Kit (ThermoFisher Scientific) following the manufacturer's instructions. RNase digestion was included in the first step of the protocol, but no lysozyme treatment. In the end, DNA was eluted in 1 ml elution buffer. The extracted DNA was further purified and concentrated to $100 \mu 1$ using 30 kDa Amicon Ultra centrifugal filters ( 0.5 ml volume, Merck Millipore) and stored at $-20^{\circ} \mathrm{C}$. DNA concentration was determined with the Qubit 2.0 fluorometer and the Qubit ${ }^{\circledR}$ dsDNA HS Assay.

### 4.2.7. Phage genome sequencing, assembly and genome end determination

Genome sequencing was performed by our collaborators Anja Poehlein and Mechthild Bömeke at the Göttingen Genomics Laboratory (University of Göttingen), using the Illumina technology and the library preparation protocol for dsDNA. They provided us with the raw sequencing reads. The Illumina raw reads were cleaned with BBDuk in two steps. In the first step, the adaptors were removed, using the following parameters for BBDuk: "ktrim=r $\mathrm{k}=21$ mink=8 tbo tpe $\mathrm{ftm}=5 \mathrm{rcomp}=t$ ordered $\mathrm{t}=8^{\prime \prime}$. In the second step, contaminating reads from phiX174 as well as low quality ends were removed, using the following parameters for BBDuk: " $\mathrm{k}=21 \mathrm{rcomp}=\mathrm{t}$ hdist $=1$ qtrim $=r l$ trimq $=20$, maq $=20$ minlen $=30$ ordered $t=8 "$. The quality of the cleaning was assessed using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The cleaned reads were normalized with BBNorm, with the parameters "target=100 min=5". BBDuk and BBNorm are part of the BBTools package (https://jgi.doe.gov/data-andtools/bbtools/). Afterwards, the normalized reads were assembled with the SPAdes genome assembler software v3.13.0 (Bankevich et al. 2012), with the parameters "-t 8 -k $21,33,55,77,99,127$--sc -careful". The resulted contigs were manually checked with Bandage 0.8.1. The genomes with circular contigs were linearized at export from Bandage (Wick et al. 2015). Further, PhageTerm 1.0.11 (Garneau et al. 2017) was used to determine the genome ends and to reorder the genome sequence accordingly.

### 4.2.8. Clustering at species and genus level - VIRIDIC analysis

All complete phage genomes from the new isolates were submitted to VIRIDIC (Moraru et al. 2020), for the calculation of pairwise intergenomic identities based on nucleic-acids. VIRIDIC was used with default parameters, that is "-wordsize 7 -reward 2 -penalty -3 -gapopen 5 gapextend 2" for BLASTn and the "complete" agglomeration method. This procedure was repeated after removal of duplicate genomes (i.e. $100 \%$ nucleotide-based intergenomic identity). Species-level and genus-level genome clusters were calculated by cutting the tree at the $95 \%$ and $70 \%$ identity threshold, respectively.

### 4.2.9. Retrieval of related phage genomes and of other roseophages from sequence databases

Virus Relative Finder web-app (manuscript in prep., Cristina Moraru) was used to find phage genomes related to our roseophage isolates. In a first step, VirRel Finder predicted proteins for each roseophage isolate using MetaGeneAnnotator (Noguchi et al. 2008), and further translated them using the seqinr R package (Charif and Lobry 2007) and the translation code 11. The
proteins from all roseophages were then used to search using BLASTP a database of all viral genomes downloaded from GenBank in November 2022 (https://ftp.ncbi.nlm.nih.gov/genomes/genbank/viral/). From all search results, the protein hits further considered were only those with their bitscore $>30$ and coverage $>70$. In the last step, VirRel Finder selected only those viral genomes that had at least 5\% of the proteins similar with those of one of the new roseophage isolates, and a genome length ranging between $50 \%$ and $150 \%$ the length of its related roseophage isolate. At this point, more than 9000 phage genomes were obtained. After removal of the genomes labeled with "uncultured", the remaining genomes were clustered at the genus level using an identity threshold of $70 \%$ with VIRIDIC. To further reduce the dataset, from each genus cluster only one representative was kept.

This dataset was merged with 28 representatives of our newly isolated phages. Furthermore, the genomes of eleven viruses infecting Sulfitobacter sp. SW_H+_2_149 (phages Ebeline 1-11) were provided by Nina Bartlau (MPI, Bremen, Germany) and were incorporated into this dataset. They had been isolated from a North Sea water sample (station of "Kabeltonne" ( $54^{\circ} 11$ ' $17.88^{\prime \prime} \mathrm{N}, 7^{\circ} 54^{\prime} 0 " \mathrm{E}$ ) at the channel of Helgoland) using enrichment cultures. Additionally, previously published roseophages were added to the dataset (see Table 9) resulting in a collection of 1327 genomes.

The genomes in this dataset were then hierarchically clustered with VirClust (Moraru 2023), using the following parameters: i) code 11 for protein translation; ii) protein clustering based on BLASTp using the $\log$ e-values, and matches were kept if bitscore $>=30$, coverage $>=70$, evalue $<0.00001$, identity $>=0 \%$; ii) the complete aglomeration method for genome clustering. Further, the genome tree was split into clusters using a 0.995 distance threshold, and only those genome clusters that contained roseophages (either the new isolates, or previously isolated ones) were kept. At this point, we checked the ICTV-sanctioned taxonomic classification of the phages in this dataset, and, where necessary, we supplemented the dataset with further phage genomes from the detected viral families. This was done to ensure a uniform representation of the respective phage families, and resulted in a final dataset of 965 phage genomes, named here Roseo_DB (see SI file S4-7).

### 4.2.10. VirClust analysis - hierarchical clustering and genome annotation

To enable the classification of the new roseophage isolates, the genomes in Roseo_DB were hierarchically clustered using VirClust (Moraru 2023), as follows. In a first step, the genetic code 11 was used for protein translation, and then proteins were clustered based on BLASTp (log e-value clustering, matches kept if bitscore $>=30$, coverage $>=70$, evalue $<0.00001$,
identity $>=0 \%$ ). Then, the viral genomes were hierarchically clustered with the complete agglomeration method. The tree was then split into viral genome clusters (VGCs) matching most of the ICTV-recognized phage families in the dataset using a distance threshold of 0.995. The tree was further visualized and annotated in iTOL (Letunic and Bork 2021).

And lastly, we annotated the predicted proteins and tRNAs from the genomes of all new roseophage isolates. First, we used VirClust to search for protein homologoues in the following databases: the prokaryotic Virus Orthologous Groups (pVOGs) (Grazziotin et al. 2017) database, the Virus Orthologous Group database (VOGDB, https://vogdb.csb.univie.ac.at, (Kiening et al. 2019)) database, the Prokaryotic Virus Remote Homologous Groups (PHROGS) database (Terzian et al. 2021), and the InterPro database (Finn et al. 2017). Then, the results were manually evaluated and consolidated, to assign a product and a functional category to each protein. And finally, to annotate the tRNAs we used the online tool tRNAscan-SE v. 2.0 (http://lowelab.ucsc.edu/tRNAscan-SE/index.html, Lowe and Chan (2016)). Genome maps of the new roseophage isolates were generated using the genoPlotR (Guy et al. 2010) from the R programming environment (https://www.rproject.org/). Furthermore, VirClust (Moraru 2023) was used to determine the core proteins of all members of a VGC or of smaller phage groups such as potential families using the same parameters as above (log e-value clustering, matches kept if bitscore $\rangle=30$, coverage $\rangle=70$, evalue $\langle 0.00001$, identity $\rangle=0 \%$ ).

Isolation and classification of roseophages
Table 9: Previously described dsDNA roseophages collected from literature for whole-genome based classification. N.d. = not described

| Phage short name | Accession \# | Genome length [bp] | Host | Morphology | Previous classification | Reference for previous classification | Reference for phage isolation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| vBDshP-R2C | KJ803031 | 74806 | Dinoroseobacter shibae DFL12 | podoviral | Caudoviricetes, | Adriaenssens et al. | Cai et al. (2015) |
| vBDshP-R1 | KJ621082 | 75028 | Dinoroseobacter shibae DFL12 |  | Schitoviridae, | (2020) | Ji et al. (2015) |
| DS-1410Ws-06 | KU885988 | 76466 | Dinoroseobacter shibae DFL12 |  | Rhodovirinae, | Adriaenssens et al. | Li et al. (2016a) |
| RD-1410W1-01 | KU885989 | 72674 | Roseobacter denitrificans OCh114 |  | various genera | (2021) |  |
| RD-1410Ws-07 | KU885990 | 76298 | Roseobacter denitrificans OCh114 |  |  |  |  |
| RPP1 | FR719956 | 74704 | Roseovarius nubinhibens |  |  |  | Chan et al. (2014) |
| RLP1 | FR682616 | 74583 | Roseovarius sp. 217 |  |  |  |  |
| ФCB2047-B | HQ317387 | 74485 | Sulfitobacter sp. 2047 |  |  |  | Ankrah et al. (2014a) |
| EE36_P1 | FJ591094 | 73325 | Sulfitobacter sp. EE-36 |  |  |  | Zhao et al. (2009) |
| DSS3_P2 | FJ591093 | 74611 | Ruegeria pomeroyi DSS-3 |  |  |  |  |
| vB_RpoP-V12 | MH015250 | 74675 | Ruegeria pomeroyi DSS-3 |  |  |  | Zhan and Chen (2019a) |
| vB_RpoP-V13 | MH015256 | 74830 | Ruegeria pomeroyi DSS-3 |  |  |  |  |
| vB_RpoP-V14 | MH015257 | 74792 | Ruegeria pomeroyi DSS-3 |  |  |  |  |
| vB_RpoP-V17 | MH015259 | 74665 | Ruegeria pomeroyi DSS-3 |  |  |  |  |
| vB_RpoP-V21 | MH015253 | 74665 | Ruegeria pomeroyi DSS-3 |  |  |  |  |
| ФCB2047-A | HQ332142 | 40929 | Sulfitobacter sp. 2047 | n.d. | Caudovirales, | Zhan and Chen | Ankrah et al. (2014b) |
| ФCB2047-C | HQ317384 | 40931 | Sulfitobacter sp. 2047 |  | Podoviridae, cluster 3 | (2019a) |  |
| P12053L | JQ809650 | 38889 | Celeribacter sp. strain IMCC12053 | n.d. | Caudoviricetes, | Bischoff et al. (2020) | Kang et al. (2012) |
| SIO1 | AF189021 | 39898 | Roseobacter sp. SIO67 | podoviral | Zobellviridae, |  | Rohwer et al. (2000) |
| vB_LenP_ICBM1 | MF431617 | 40163 | Lentibacter sp. SH36 |  | Cobavirinae, |  | Bischoff et al. (2019) |
| vB_LenP_ICBM3 | MF431615 | 40497 | Lentibacter sp. SH36 |  | Siovirus |  |  |
| vB_LenP_ICBM2 | MF431616 | 40907 | Lentibacter sp. SH36 | podoviral | Caudoviricetes, Zobellviridae, | Bischoff et al. (2020) | Bischoff et al. (2019) |

Isolation and classification of roseophages

|  |  |  |  |  | Cobavirinae, <br> Veravirus |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CRP-4 | MK613346 | 40768 | Roseobacter RCA strain FZCC0023 | podoviral | Cobavirus-like | Zhang et al. (2019a) | Zhang et al. (2019a) |
| CRP-5 | MK613347 | 39600 | Roseobacter RCA strain FZCC0040 |  | (Caudovirales, <br> Podoviridae) |  |  |
| CRP-6 | MK613348 | 44927 | Roseobacter RCA strain FZCC0042 |  | CRP-6-type <br> (Caudovirales, <br> Podoviridae) |  |  |
| CRP-7 | MK613349 | 58106 | Roseobacter RCA strain FZCC0042 |  | CRP-7-type |  |  |
| CRP-13 | MW514247 | 55022 | Roseobacter RCA strain FZCC0023 | podoviral | HMO-2011-type | Zhai et al. (2021) | Zhai et al. (2021) |
| CRP-9 | MW514246 | 56157 | Roseobacter RCA strain FZCC0023 |  |  |  |  |
| CRP-1 | MK613343 | 54045 | Roseobacter RCA strain FZCC0023 | podoviral | HMO-2011-like, | Qin et al. (2022) | Zhang et al. (2019a) |
| CRP-2 | MK613344 | 54148 | Roseobacter RCA strain FZCC0023 |  | genus-level |  |  |
| CRP-345 | MZ892990 | 54718 | Roseobacter sp. FZCC0042 | n.d. | cluster I |  | Qin et al. (2022) |
| CRP-603 | MZ892991 | 54551 | Roseobacter sp. FZCC0012 |  | (Caudovirales, |  |  |
| CRP-207 | MZ892987 | 54895 | Roseobacter sp. FZCC0040 |  | Podoviridae) |  |  |
| CRP-3 | MK613345 | 52963 | Roseobacter RCA strain FZCC0040 | podoviral | HMO-2011-like, | Qin et al. (2022) | Zhang et al. (2019a) |
| CRP-212 | MZ892988 | 54748 | Roseobacter sp. FZCC0040 | n.d. | genus-level |  | Qin et al. (2022) |
| CRP-235 | MZ892989 | 52729 | Roseobacter sp. FZCC0040 |  | cluster III |  |  |
| CRP-738 | MZ892992 | 53826 | Roseobacter sp. FZCC0089 |  | (Caudovirales, <br> Podoviridae) |  |  |
| Antarctic DB virus 2 | MW805364 | 39241 | Octadecabacter sp. IceBac 430 | podoviral | Caudoviricetes | Demina et al. (2021) | Luhtanen et al. (2018) |
| RDJL_phi1 | HM151342 | 62668 | Roseobacter denitrificans OCh114 | siphoviral | Caudoviricetes, | Kropinski et al. | Zhang and Jiao (2009) |
| RDJL_phi2 | KT266805 | 63513 | Roseobacter denitrificans OCh114 |  | Xiamenvirus |  | Liang et al. (2016) |
| vB_RpoS-V10 | MH015255 | 147480 | Ruegeria pomeroyi DSS-3 | siphoviral | Cbk-like | Zhan and Chen | Zhan and Chen (2019a) |
| DSS3_P8 | KT870145 | 146135 | Ruegeria pomeroyi DSS-3 |  | (Siphoviridae, |  | Zhan et al. (2016) |
| MD18 | MT270409 | 149262 | Phaeobacter inhibens |  |  | Urtecho et al. (2020) | (Urtecho et al. 2020) |
| DSS3_P1 | KM581061 | 59601 | Ruegeria pomeroyi DSS-3 | siphoviral |  | Zhan and Chen (2019a) | Zhan et al. (2018) |

Isolation and classification of roseophages

| vB_RpoS-V11 | MH015254 | 59549 | Ruegeria pomeroyi DSS-3 |  | Chi-like <br> (Siphoviridae, <br> cluster 3) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| vB_RpoS-V16 | MH015258 | 61382 | Ruegeria pomeroyi DSS-3 |  |  |  |  |
| vB_RpoS-V18 | MH015252 | 59111 | Ruegeria pomeroyi DSS-3 |  |  |  |  |
| vB_RpoS-V7 | MH015249 | 59573 | Ruegeria pomeroyi DSS-3 |  |  |  |  |
| pCB2051-A | HQ632859 | 56958 | Loktanella sp. CB2051 | n.d. | Caudoviricetes, <br> Casjensviridae, <br> Broinstvirus | Tolstoy et al. (2021) | Unpublished (GenBank 2013) |
| vBDshS-R5C | KY606587 | 77874 | Dinoroseobacter shibae DFL12 | siphoviral | Caudoviricetes, <br> Nanhaivirus | Kropinski et al. <br> (2018), Turner et al. <br> (2020) | Yang et al. (2017) |
| Tedan | MT764845 | 75087 | Ruegeria sp. AU67 | siphoviral | Xiamenvirus (Siphoviridae) | Baum et al. (2021) | Baum et al. (2021) |
| RcCronus | KR935217 | 35985 | Rhodobacter capsulatus YW1 C6 | siphoviral | Caudoviricetes, <br> Cronusvirus | Delesalle et al. <br> (2016b) | Bollivar et al. (2016) |
| RcRhea | KR935216 | 36065 | Rhodobacter capsulatus YW1 |  | Cronusvirus-like | Rapala et al. (2021) |  |
| RcSaxon | KT253150 | 36081 | Rhodobacter capsulatus YW1 |  | genus-level <br> cluster RcA <br> (Caudovirales, <br> Siphoviridae) |  |  |
| RcSpartan | KR935215 | 44194 | Rhodobacter capsulatus YW1 | siphoviral | Caudoviricetes, | Delesalle et al. |  |
| RcTitan | KR935213 | 44496 | Rhodobacter capsulatus YW1 |  | Titanvirus | (2016a), Adriaenssens et al. (2021) |  |
| RcThunderbird | MW677526 | 43941 | Rhodobacter capsulatus YW1 |  | Titanvirus-like | Rapala et al. (2021) | Rapala et al. (2021) |
| RcHartney | MW677514 | 43528 | Rhodobacter capsulatus YW1 |  | genus-level <br> cluster RcB <br> (Caudovirales, <br> Siphoviridae) |  |  |
| RcOceanus | MW677520 | 37609 | Rhodobacter capsulatus YW1 | siphoviral |  |  |  |

## Isolation and classification of roseophages

| RcBaka | MW677509 | 41643 | Rhodobacter capsulatus YW1 |  | RcC (genus- |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RcDormio | MW677510 | 41640 | Rhodobacter capsulatus YW1 |  | level cluster in |  |  |
| RcFrancesLouise | MW677512 | 42073 | Rhodobacter capsulatus YW1 |  | Caudovirales, |  |  |
| RcHotPocket | MW677515 | 41765 | Rhodobacter capsulatus YW1 |  | Siphoviridae) |  |  |
| RcKemmy | MW677517 | 41345 | Rhodobacter capsulatus YW1 |  |  |  |  |
| RcGingersnap | MW677513 | 68225 | Rhodobacter capsulatus YW1 | siphoviral | RcD (genus- |  |  |
| RcIroh | MW677516 | 68475 | Rhodobacter capsulatus YW1 |  | level cluster in |  |  |
| RcMcDreamy | MW677518 | 68244 | Rhodobacter capsulatus YW1 |  | Caudovirales, |  |  |
| RcMrWorf | MW677519 | 67929 | Rhodobacter capsulatus YW1 |  | Siphoviridae) |  |  |
| RcPutin | MW677522 | 67605 | Rhodobacter capsulatus YW1 |  |  |  |  |
| RcPescado | MW677521 | 67494 | Rhodobacter capsulatus YW1 |  |  |  |  |
| RcRios | MW677523 | 68774 | Rhodobacter capsulatus YW1 |  |  |  |  |
| RcSalem | MW677524 | 67718 | Rhodobacter capsulatus YW1 |  |  |  |  |
| RcWaterboi | MW677528 | 38301 | Rhodobacter capsulatus YW1 | siphoviral | RcE (genus-level |  |  |
| RcapMu | JN190960 | 39283 | Rhodobacter capsulatus SB1003 |  | cluster in <br> Caudovirales, <br> Siphoviridae) |  | Fogg et al. (2011) |
| vB_PmaS-R3 | KP162168 | 42093 | Paracoccus marcusii JL-65 | siphoviral | Caudovirales, <br> Siphoviridae | Xu et al. (2015) | Xu et al. (2015) |
| vB_PthS_Pthi1 | MK291444 | 39547 | Paracoccus thiocyanatus JCM 20756 | siphoviral | Caudovirales, Siphoviridae | Decewicz et al. (2019) | Decewicz et al. (2019) |
| Shpa | KR072689 | 38261 | Paracoccus sp. HS3 | siphoviral | Caudoviricetes, <br> Vhulanivirus | van Zyl et al. (2016) | van Zyl et al. (2016) |
| vB_PsuS_Psul1 | MK291443 | 37901 | Paracoccus sulfuroxidans JCM 14013 | siphoviral | Caudovirales, Siphoviridae | Decewicz et al. (2019) | Decewicz et al. (2019) |
| vB_PbeS_Pben1 | MK291441 | 39879 | Paracoccus bengalensis DSM 17099 |  |  |  |  |
| vB_ThpS-P1 | KT381864 | 39591 | Thiobacimonas profunda JLT2016 | siphoviral | Caudovirales, | Tang et al. (2017) | Tang et al. (2017) |
| vB_PeaS-P1 | KT381865 | 38868 | Pelagibaca abyssi JLT2014 |  | Siphoviridae |  |  |

Isolation and classification of roseophages
$\left.\begin{array}{lllllllll}\hline \text { vBDshS-R4C } & \text { MK882925 } & 36291 & \text { Dinoroseobacter shibae DFL12 } & \text { siphoviral } & \begin{array}{l}\text { Caudovirales, } \\ \text { Siphoviridae }\end{array} & \text { Cai et al. (2019) } & \text { Cai et al. (2019) } & \\ \hline \text { DSS3_VP1 } & \text { MN602266 } & 75087 & \text { Ruegeria pomeroyi DSS-3 } & \text { siphoviral } & \begin{array}{l}\text { Caudoviricetes, } \\ \text { Naomiviridae, }\end{array} & \text { Rihtman et al. (2021) } & \text { Rihtman et al. (2021) } \\ \text { Noahvirus, } \\ \text { Noahvirus arc }\end{array}\right]$

### 4.3. Results

### 4.3.1. Strains from three Roseobacteraceae genera served for the isolation of 277 phages

In this study, strains of different genera within the Roseobacteraceae family were used as bait bacteria for phage isolation (Table 10). In the large-scale isolation experiment, phages were isolated by direct plating. A collection of 388 Roseobacter Group strains (M\#), which were until then not further classified, and two Lentibacter strains were challenged with four different water samples (P1, P2, P4, and NHS). In addition, the same two Lentibacter strains and one Octadecabacter strain were used for direct phage isolation from seawater sample HE504-33. Furthermore, enrichment cultures containing Lentibacter sp. SH36 and different water samples (HE396-6 and HE440-S) were used for phage isolation. All potential host strains originated from different sampling sites in the southern North Sea, either directly at the East Frisian coast, in the open sea or at the channel of Helgoland, and provided by different collaborators (see Fig. 18 and chapter 4.2.2.).

Table 10: Pairing of the phage water samples with the bacterial hosts during the phage isolation procedures.

| Phage water source | Hosts | Isolation procedure |
| :--- | :--- | :--- |
| HE396-6 HE440-S | Lentibacter sp. SH36 | enrichment |
| HE504-33 | Lentibacter sp. SH36, |  |
|  | MPI-62, <br> MM282 |  |
| P1, P2, P4, NHS | Lentibacter sp. SH36, <br> MPI-62, |  |



Fig. 18: Map of the german bight showing sampling sites for the isolation of bacterial strains (red) and phages (blue). $\mathrm{SH}=$ origin of Lentibacter sp. SH36 (Hahnke et al. 2013), Helgoland $=$ channel of Helgoland (time series station), $\mathrm{P}=$ origin of mesocosm inoculum (Mori et al. 2021), 33 = origin of sample HE504-33, $6=$ origin of sample HE396-6, S1-5 $=$ origins of pooled samples HE504-S, NHS = Neuharlingersiel, HS = Harlesiel.

A total of 277 phage isolates were obtained (Table 11). Three of them were isolated from enrichment cultures, while the majority originated from direct plating. They have been named as follows: the isolation host genus name, followed by "phage", followed by "ICBM" (from the Institute of Chemistry and Biology of the Marine Environment) and a number (see Table 13). The last part (ICBM\#) also served as a short name, and it will be used throughout the text.

The majority of phage isolates in this study (115 unique phage genomes) originated from infection of 64 strains from the Roseobacter Group collection M\#, which had been isolated from Helgoland Roads (Fig. 18). Almost all of these strains formed a cohesive cluster based on 16S rRNA gene sequence similarity with their closest relative being Sulfitobacter marinus (Fig. 19). Only strain M315, host of phage ICBM153, clustered differently within the Sulfitobacter genus. The tree also includes Sulfitobacter sp. SH24-1b, which is the host strain of "Ascunsovirus oldenburgi" ICBM5, a novel ssDNA microvirus, which is described in chapter 6. This strain was most closely related to Sulfitobacter dubius and was isolated from the same sampling site as Lentibacter sp. SH36 (Hahnke et al. 2013).

Lentibacter sp. SH36, host of the above-described cobaviruses, was again successfully used for phage isolation from enrichment cultures (phages ICBM4, ICBM6, ICBM7) as well as from direct plating (phages ICBM8, ICBM161-ICBM166). Another strain of this genus, Lentibacter sp. MPI-62, isolated from the channel of Helgoland (North Sea) in 2017, was used for direct phage isolation and was infected by four phages (phages ICBM157-ICBM160). Octadecabacter sp. MM282 was isolated in 2017 at the North Sea coast in Harlesiel, Germany, and was successfully used for direct isolation of phage ICBM156. In conclusion, phages have been isolated from three different genera, which are Lentibacter, Sulfitobacter and Octadecabacter.


Fig. 19: Neighbor-joining tree based on 16 S rRNA gene sequence similarity showing the phylogenetic affiliation of the bacterial strains used for phage isolation in this study (in bold). The tree was calculated with Jukes-Cantor correction and the termini filter. Bootstrap values were derived from 1000 replicates. The bar represents 0.10 substitutions per nucleotide position. Four strains of the genus Psychrobacter (Gammaproteobacteria) (FJ039851, AJ309940, JN411455, and U46139) served as outgroup. Genbank accession numbers are given in parentheses. T type strain of species. Strains M71 and M172 are missing from the tree. However, pairwise sequence comparison revealed that the partial 16 S rRNA gene as well as the internal transcribed spacer (ITS) were $99.9 \%$ identical to Sulfitobacter sp. M290, which belongs to the cluster of 59 Sulfitobacter strains (see chapter 5.3.1, Fig. S15)

### 4.3.2. Quick screening for unique phages by RAPD-PCR

For the large number of phage isolates, a screening method was needed in order to prevent from expensive genome sequencing of duplicate phages. For this purpose, a randomly amplified polymorphic DNA (RAPD) PCR with subsequent gel electrophoresis was performed, which allowed for differentiation of banding patterns and a quick typing of the isolates. Phage isolates originating from the same host strain often had identical banding patterns and were thus regarded as duplicates (Fig. 20 and S13, SI file S4-2). Only one representative, for example phage ICBM76, was chosen to be genome sequenced. However, in other cases phages from the same host strain had different banding patterns and were both genome sequenced (e.g., phages ICBM71 and ICBM104).


Fig. 20: Gel electrophoresis of RAPD-PCR products for 13 phage isolates. Phages with identical band patterns are colored accordingly. For each unique pattern, one isolate was chosen to be genome sequenced (green arrows). Marker 1kb Plus DNA ladder (Invitrogen ${ }^{\mathrm{TM}}$ ).

Out of 261 phage isolates that had been isolated by direct plating and submitted to RAPDPCR, 138 showed unique banding patterns and were chosen to be genome sequenced (Table 11, SI file S4-3). From 242 phages that had been isolated from the Sulfitobacter sp. M\# strains, more than half had unique patterns ( 127 phages). Six phages had been isolated from Lentibacter sp. MPI-62 by direct plating, three from seawater sample P1 and three from sample P2, respectively. From each water sample, two isolates showed the same banding pattern,
respectively. Thus, in the end four phages from Lentibacter sp. MPI-62 were selected for sequencing. Out of the 12 phages isolated from Lentibacter sp . SH36 by direct plating, six were selected for sequencing, including two phages from each seawater sample (P1, P2, and HE504-33), respectively. Phage ICBM156 isolated from Octadecabacter sp. MM282 also showed a banding pattern different from all other isolates and was chosen for genome sequencing.

### 4.3.3. Genome sequencing and assembling of selected phage isolates

Apart from the 145 phage isolates that were chosen for genome sequencing based on their unique RAPD-PCR banding patterns, 23 additional phages were genome sequenced. They included phages ICBM4, ICBM6 and ICBM7 isolated from enrichment cultures with Lentibacter sp . SH36 as well as phage ICBM8, isolated by direct plating with the same host and seawater sample HE504-33. The remaining additional phages were isolated by direct plating from different Sulfitobacter sp . M\# strains.

Out of the 161 phages sequenced, a total number of 143 phage genomes were successfully assembled (Table 11), 130 of them infecting Sulfitobacter strains, twelve infecting Lentibacter strains and one phage infecting Octadecabacter sp. MM282. From the Sulfitobacter phage gen omes, 36 could only be assembled partially (Table 11). For the remaining 94 Sulfitobacter pha ges, the Octadecabacter phage and all Lentibacter phages, the obtained genome contigs were c ircularly closed as observed upon the quality check using Bandage (Wick et al. 2015) and ther efore could be considered complete. PhageTerm (Garneau et al. 2017) was used to predict the genome ends and to cut the circular genomes into linear contigs accordingly. Furthermor $e$, the genome sequence was reordered in a way that genes of the DNA replication module wer e encoded first and the morphology genes were located towards the genome end. We used this genome arrangement as a convention in order to simplify genome comparisons, still having in mind that the chosen genome termini and directions were artificial. Especially for circularly p ermuted phage genomes, genome ends cannot be universally determined,
because they differ from virion to virion (see introduction chapter 1.3.4.).
The 107 complete genomes ranged in size from 33.35 to 80.76 kb (Table 12). A comparison of the sequenced genome lengths to those predicted through the PFGE measurements (perfomed only for 56 phages), showed differences of less than 4 kb (Table 12). Only in two cases (Sulfitobacter phages ICBM76 and ICBM94), the genome size measured by

PFGE was more than 5 kb smaller than the actual genome size. Therefore, PFGE proved to be a decent tool for genome size estimation. All phage genomes obtained were of dsDNA nature, as indicated by the fact that they had been amenable to RAPD-PCR and to genome sequencing using a library preparation protocol for dsDNA genomes.

Table 11: Counts of phage isolates, sequenced and final unique phage genomes. *additional phages were sequenced, that had not been analyzed with RAPD-PCR $* *$ nucleotide-based intergenomic identity $<100 \%$.

|  | All phages | Sulfitobacter phages | Octadecabacter phages | Lentibacter phages |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Total | From direct plating | From enrichment |
| Total phage isolates | 277 | 254 | 1 | 22 | 19 | 3 |
| Isolates used for RAPD-PCR | 261 | 242 | 1 | 18 | 18 | - |
| Isolates chosen after RAPD-PCR | 138 | 127 | 1 | 10 | 10 | - |
| Isolates sent for sequencing* | 161 | 146 | 1 | 14 | 11 | 3 |
| Assembled genomes | 143 | 130 | 1 | 12 | 9 | 3 |
| - complete | 107 | 94 | 1 | 12 | 9 | 3 |
| - partial | 36 | 36 | - | - | - | - |
| Unique genomes** | 128 | 115 | 1 | 12 | 9 | 3 |
| - complete | 94 | 81 | 1 | 12 | 9 | 3 |
| - partial | 34 | 34 | - | - | - | - |

Table 12: Sizes of complete phage genomes comparing PFGE and sequencing. Size differences $>5 \mathrm{~kb}$ are marked in red. $* \mathrm{n} . \mathrm{d}$. $=$ not determined.

|  | Genome size [bp] |  |  | Genome size [bp] |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phage name |  |  |  | Phage name |  | 或 |  |
| Lentibacter phage ICBM4 | 43.101 | n.d. | - | Sulfitobacter phage ICBM95 | 54.142 | 50.54 | -3.60 |
| Lentibacter phage ICBM6 | 40.273 | n.d. | - | Sulfitobacter phage ICBM97 | 51.373 | 51.56 | 0.19 |
| Lentibacter phage ICBM7 | 45.55 | n.d. | - | Sulfitobacter phage ICBM99 | 52.071 | 51.56 | -0.51 |
| Lentibacter phage ICBM8 | 38.666 | n.d. | - | Sulfitobacter phage ICBM100 | 54.118 | 54.63 | 0.51 |
| Sulfitobacter phage ICBM12 | 54.842 | 55.65 | 0.80 | Sulfitobacter phage ICBM101 | 53.772 | 53.60 | -0.17 |
| Sulfitobacter phage ICBM13 | 53.694 | 54.63 | 0.93 | Sulfitobacter phage ICBM102 | 50.475 | 48.50 | -1.98 |
| Sulfitobacter phage ICBM16 | 53.115 | 52.58 | -0.53 | Sulfitobacter phage ICBM103 | 50.611 | 50.38 | -0.23 |
| Sulfitobacter phage ICBM18 | 52.071 | 51.56 | -0.51 | Sulfitobacter phage ICBM105 | 51.379 | 49.52 | -1.86 |
| Sulfitobacter phage ICBM21 | 52.607 | 52.58 | -0.02 | Sulfitobacter phage ICBM107 | 52.423 | n.d. | - |
| Sulfitobacter phage ICBM22 | 54.842 | 54.63 | -0.22 | Sulfitobacter phage ICBM109 | 51.998 | n.d. | - |

Isolation and classification of roseophages

| Sulfitobacter phage ICBM23 | 53.772 | 55.65 | 1.87 |
| :---: | :---: | :---: | :---: |
| Sulfitobacter phage ICBM24 | 53.772 | 52.58 | -1.19 |
| Sulfitobacter phage ICBM25 | 55.591 | 58.71 | 3.12 |
| Sulfitobacter phage ICBM38 | 51.389 | 53.21 | 1.82 |
| Sulfitobacter phage ICBM39 | 53.256 | 49.44 | -3.81 |
| Sulfitobacter phage ICBM40 | 53.772 | 50.38 | -3.39 |
| Sulfitobacter phage ICBM41 | 53.787 | 50.38 | -3.40 |
| Sulfitobacter phage ICBM42 | 54.434 | 51.33 | -3.11 |
| Sulfitobacter phage ICBM43 | 54.119 | 52.27 | -1.85 |
| Sulfitobacter phage ICBM45 | 53.766 | 52.27 | -1.50 |
| Sulfitobacter phage ICBM47 | 52.388 | 52.27 | -0.12 |
| Sulfitobacter phage ICBM48 | 53.624 | 53.21 | -0.41 |
| Sulfitobacter phage ICBM49 | 54.336 | 54.15 | -0.18 |
| Sulfitobacter phage ICBM50 | 52.071 | 51.33 | -0.74 |
| Sulfitobacter phage ICBM51 | 55.142 | 55.36 | 0.22 |
| Sulfitobacter phage ICBM52 | 54.694 | 55.36 | 0.67 |
| Sulfitobacter phage ICBM53 | 53.465 | 51.66 | -1.80 |
| Sulfitobacter phage ICBM54 | 53.931 | 52.72 | -1.21 |
| Sulfitobacter phage ICBM55 | 34.08 | n.d. | - |
| Sulfitobacter phage ICBM57 | 54.46 | 54.83 | 0.37 |
| Sulfitobacter phage ICBM58 | 54.373 | 53.77 | -0.60 |
| Sulfitobacter phage ICBM59 | 54.967 | 54.83 | -0.14 |
| Sulfitobacter phage ICBM60 | 53.548 | 53.77 | 0.22 |
| Sulfitobacter phage ICBM61 | 52.642 | 52.72 | 0.08 |
| Sulfitobacter phage ICBM62 | 50.122 | 48.50 | -1.62 |
| Sulfitobacter phage ICBM64 | 54.336 | 53.77 | -0.56 |
| Sulfitobacter phage ICBM65 | 54.288 | 53.77 | -0.52 |
| Sulfitobacter phage ICBM67 | 51.759 | n.d. | - |
| Sulfitobacter phage ICBM68 | 52.277 | 52.72 | 0.44 |
| Sulfitobacter phage ICBM69 | 51.379 | 51.66 | 0.28 |
| Sulfitobacter phage ICBM70 | 53.694 | 54.83 | 1.13 |
| Sulfitobacter phage ICBM76 | 50.122 | 35.70 | -14.42 |
| Sulfitobacter phage ICBM77 | 50.195 | 47.48 | -2.72 |
| Sulfitobacter phage ICBM78 | 53.429 | 51.56 | -1.87 |
| Sulfitobacter phage ICBM79 | 53.781 | 51.56 | $-2.22$ |
| Sulfitobacter phage ICBM82 | 53.759 | 51.56 | $-2.20$ |
| Sulfitobacter phage ICBM86 | 52.921 | 49.52 | -3.40 |
| Sulfitobacter phage ICBM87 | 53.362 | 50.54 | -2.82 |
| Sulfitobacter phage ICBM88 | 53.044 | 49.52 | -3.52 |


| Sulfitobacter phage ICBM110 | 55.587 | n.d. |  |
| :---: | :---: | :---: | :---: |
| Sulfitobacter phage ICBM111 | 33.588 | n.d. | - |
| Sulfitobacter phage ICBM113 | 52.367 | n.d. | - |
| Sulfitobacter phage ICBM117 | 34.081 | n.d. | - |
| Sulfitobacter phage ICBM118 | 34.114 | n.d. | - |
| Sulfitobacter phage ICBM119 | 53.787 | n.d. | - |
| Sulfitobacter phage ICBM121 | 36.856 | n.d. | - |
| Sulfitobacter phage ICBM122 | 36.856 | n.d. | - |
| Sulfitobacter phage ICBM123 | 33.588 | n.d. | - |
| Sulfitobacter phage ICBM124 | 54.296 | n.d. | - |
| Sulfitobacter phage ICBM125 | 34.08 | n.d. | - |
| Sulfitobacter phage ICBM126 | 53.881 | n.d. | - |
| Sulfitobacter phage ICBM127 | 52.781 | n.d. | - |
| Sulfitobacter phage ICBM128 | 54.612 | n.d. | - |
| Sulfitobacter phage ICBM129 | 70.738 | n.d. | - |
| Sulfitobacter phage ICBM130 | 33.346 | n.d. | - |
| Sulfitobacter phage ICBM131 | 52.646 | n.d. | - |
| Sulfitobacter phage ICBM133 | 54.967 | n.d. | - |
| Sulfitobacter phage ICBM134 | 54.461 | n.d. | - |
| Sulfitobacter phage ICBM137 | 53.554 | n.d. | - |
| Sulfitobacter phage ICBM138 | 52.782 | n.d. | - |
| Sulfitobacter phage ICBM139 | 53.722 | n.d. | - |
| Sulfitobacter phage ICBM143 | 52.012 | n.d. | - |
| Sulfitobacter phage ICBM144 | 50.195 | n.d. | - |
| Sulfitobacter phage ICBM145 | 53.772 | n.d. | - |
| Sulfitobacter phage ICBM146 | 52.265 | n.d. | - |
| Sulfitobacter phage ICBM147 | 51.69 | n.d. | - |
| Sulfitobacter phage ICBM148 | 52.071 | n.d. | - |
| Sulfitobacter phage ICBM150 | 51.373 | n.d. | - |
| Sulfitobacter phage ICBM151 | 53.772 | n.d. | - |
| Sulfitobacter phage ICBM152 | 53.772 | n.d. | - |
| Sulfitobacter phage ICBM153 | 80.756 | n.d. | - |
| Sulfitobacter phage ICBM154 | 52.265 | n.d. | - |
| Sulfitobacter phage ICBM155 | 52.071 | n.d. | - |
| Octadecabacter phage ICBM156 | 60.762 | n.d. | - |
| Lentibacter phage ICBM157 | 42.72 | n.d. | - |
| Lentibacter phage ICBM158 | 42.906 | n.d. | - |
| Lentibacter phage ICBM159 | 42.936 | n.d. | - |
| Lentibacter phage ICBM160 | 43.138 | n.d. | - |

Isolation and classification of roseophages

| Sulfitobacter phage ICBM89 | 53.957 | 50.54 | -3.42 | Lentibacter phage ICBM163 | 37.2 | n.d. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sulfitobacter phage ICBM90 | 51.373 | 47.48 | -3.89 | Lentibacter phage ICBM164 | 43.051 | n.d. |
| Sulfitobacter phage ICBM91 | 51.389 | 48.50 | -2.89 | Lentibacter phage ICBM165 | 37.385 | n.d. |
| Sulfitobacter phage ICBM93 | 53.694 | 50.54 | -3.15 | Lentibacter phage ICBM166 | 44.947 | n.d. |
| Sulfitobacter phage ICBM94 | 54.72 | 43.70 | -11.02 |  |  |  |

Table 13: Total unique phages isolated and genome sequenced in this study. *different North Sea water samples, from the shore (NHS), a mesocosm experiment (P1, P2 and P4), and from the open sea (HE504-33, HE396-6 and HE440-S)

| Isolation host | Phage name (full) | Phage name (short) | Isolation source* | Isolation procedure | Genome status | Genome size [kb] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lentibacter sp. SH36 | Lentibacter phage ICBM4 | ICBM4 | HE440-S | Enrichment | complete | 43.101 |
| Lentibacter sp. SH36 | Lentibacter phage ICBM6 | ICBM6 | HE396-6 | Enrichment | complete | 40.273 |
| Lentibacter sp. SH36 | Lentibacter phage ICBM7 | ICBM7 | HE440-S | Enrichment | complete | 45.55 |
| Lentibacter sp. SH36 | Lentibacter phage ICBM8 | ICBM8 | HE504-33 | Direct plating | complete | 38.666 |
| Sulfitobacter sp. M43 | Sulfitobacter phage ICBM9 | ICBM9 | NHS | Direct plating | partial | 52.743 |
| Sulfitobacter sp. M43 | Sulfitobacter phage ICBM10 | ICBM10 | NHS | Direct plating | partial | 51.641 |
| Sulfitobacter sp. M43 | Sulfitobacter phage ICBM11 | ICBM11 | NHS | Direct plating | partial | 53.354 |
| Sulfitobacter sp. M45 | Sulfitobacter phage ICBM12 | ICBM12 | P2 | Direct plating | complete | 54.842 |
| Sulfitobacter sp. M45 | Sulfitobacter phage ICBM13 | ICBM13 | P2 | Direct plating | complete | 53.694 |
| Sulfitobacter sp. M47 | Sulfitobacter phage ICBM15 | ICBM15 | P2 | Direct plating | partial | 51.401 |
| Sulfitobacter sp. M53 | Sulfitobacter phage ICBM16 | ICBM16 | P1 | Direct plating | complete | 53.115 |
| Sulfitobacter sp. M53 | Sulfitobacter phage ICBM17 | ICBM17 | P2 | Direct plating | partial | 50.382 |
| Sulfitobacter sp. M53 | Sulfitobacter phage ICBM18 | ICBM18 | P2 | Direct plating | complete | 52.071 |
| Sulfitobacter sp. M53 | Sulfitobacter phage ICBM19 | ICBM19 | NHS | Direct plating | partial | 32.449 |
| Sulfitobacter sp. M53 | Sulfitobacter phage ICBM21 | ICBM21 | NHS | Direct plating | complete | 52.607 |
| Sulfitobacter sp. M54 | Sulfitobacter phage ICBM22 | ICBM22 | P2 | Direct plating | complete | 54.842 |
| Sulfitobacter sp. M55 | Sulfitobacter phage ICBM23 | ICBM23 | P2 | Direct plating | complete | 53.772 |
| Sulfitobacter sp. M55 | Sulfitobacter phage ICBM24 | ICBM24 | NHS | Direct plating | complete | 53.772 |
| Sulfitobacter sp. M63 | Sulfitobacter phage ICBM25 | ICBM25 | NHS | Direct plating | complete | 55.591 |
| Sulfitobacter sp. M66 | Sulfitobacter phage ICBM26 | ICBM26 | P2 | Direct plating | partial | 51.329 |
| Sulfitobacter sp. M66 | Sulfitobacter phage ICBM27 | ICBM27 | P2 | Direct plating | partial | 53.89 |
| Sulfitobacter sp. M66 | Sulfitobacter phage ICBM28 | ICBM28 | P2 | Direct plating | partial | 50.382 |
| Sulfitobacter sp. M66 | Sulfitobacter phage ICBM29 | ICBM29 | P2 | Direct plating | partial | 53.899 |
| Sulfitobacter sp. M66 | Sulfitobacter phage ICBM31 | ICBM31 | NHS | Direct plating | partial | 26.874 |
| Sulfitobacter sp. M66 | Sulfitobacter phage ICBM32 | ICBM32 | NHS | Direct plating | partial | 49.909 |
| Sulfitobacter sp. M67 | Sulfitobacter phage ICBM33 | ICBM33 | P2 | Direct plating | partial | 50.382 |
| Sulfitobacter sp. M67 | Sulfitobacter phage ICBM34 | ICBM34 | P2 | Direct plating | partial | 50.383 |
| Sulfitobacter sp. M67 | Sulfitobacter phage ICBM35 | ICBM35 | NHS | Direct plating | partial | 52.693 |
| Sulfitobacter sp. M67 | Sulfitobacter phage ICBM36 | ICBM36 | NHS | Direct plating | partial | 50.678 |


| Sulfitobacter sp. M68 | Sulfitobacter phage ICBM38 | ICBM38 | P4 | Direct plating | complete | 51.389 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sulfitobacter sp. M69 | Sulfitobacter phage ICBM39 | ICBM39 | NHS | Direct plating | complete | 53.256 |
| Sulfitobacter sp. M71 | Sulfitobacter phage ICBM40 | ICBM40 | P2 | Direct plating | complete | 53.772 |
| Sulfitobacter sp. M72 | Sulfitobacter phage ICBM41 | ICBM41 | NHS | Direct plating | complete | 53.787 |
| Sulfitobacter sp. M81 | Sulfitobacter phage ICBM42 | ICBM42 | NHS | Direct plating | complete | 54.434 |
| Sulfitobacter sp. M83 | Sulfitobacter phage ICBM43 | ICBM43 | P2 | Direct plating | complete | 54.119 |
| Sulfitobacter sp. M85 | Sulfitobacter phage ICBM45 | ICBM45 | P4 | Direct plating | complete | 53.766 |
| Sulfitobacter sp. M86 | Sulfitobacter phage ICBM46 | ICBM46 | NHS | Direct plating | partial | 45.405 |
| Sulfitobacter sp. M86 | Sulfitobacter phage ICBM47 | ICBM47 | P4 | Direct plating | complete | 52.388 |
| Sulfitobacter sp. M86 | Sulfitobacter phage ICBM48 | ICBM48 | P4 | Direct plating | complete | 53.624 |
| Sulfitobacter sp. M90 | Sulfitobacter phage ICBM49 | ICBM49 | P2 | Direct plating | complete | 54.336 |
| Sulfitobacter sp. M92 | Sulfitobacter phage ICBM51 | ICBM51 | P2 | Direct plating | complete | 55.142 |
| Sulfitobacter sp. M92 | Sulfitobacter phage ICBM52 | ICBM52 | P4 | Direct plating | complete | 54.694 |
| Sulfitobacter sp. M105 | Sulfitobacter phage ICBM53 | ICBM53 | P2 | Direct plating | complete | 53.465 |
| Sulfitobacter sp. M105 | Sulfitobacter phage ICBM54 | ICBM54 | NHS | Direct plating | complete | 53.931 |
| Sulfitobacter sp. M157 | Sulfitobacter phage ICBM55 | ICBM55 | P2 | Direct plating | complete | 34.08 |
| Sulfitobacter sp. M157 | Sulfitobacter phage ICBM56 | ICBM56 | NHS | Direct plating | partial | 54.001 |
| Sulfitobacter sp. M165 | Sulfitobacter phage ICBM57 | ICBM57 | P2 | Direct plating | complete | 54.46 |
| Sulfitobacter sp. M165 | Sulfitobacter phage ICBM58 | ICBM58 | P2 | Direct plating | complete | 54.373 |
| Sulfitobacter sp. M165 | Sulfitobacter phage ICBM59 | ICBM59 | NHS | Direct plating | complete | 54.967 |
| Sulfitobacter sp. M170 | Sulfitobacter phage ICBM60 | ICBM60 | NHS | Direct plating | complete | 53.548 |
| Sulfitobacter sp. M170 | Sulfitobacter phage ICBM61 | ICBM61 | NHS | Direct plating | complete | 52.642 |
| Sulfitobacter sp. M171 | Sulfitobacter phage ICBM62 | ICBM62 | P2 | Direct plating | complete | 50.122 |
| Sulfitobacter sp. M173 | Sulfitobacter phage ICBM63 | ICBM63 | NHS | Direct plating | partial | 53.474 |
| Sulfitobacter sp. M176 | Sulfitobacter phage ICBM65 | ICBM65 | NHS | Direct plating | complete | 54.288 |
| Sulfitobacter sp. M180 | Sulfitobacter phage ICBM67 | ICBM67 | NHS | Direct plating | complete | 51.759 |
| Sulfitobacter sp. M180 | Sulfitobacter phage ICBM68 | ICBM68 | NHS | Direct plating | complete | 52.277 |
| Sulfitobacter sp. M183 | Sulfitobacter phage ICBM69 | ICBM69 | P2 | Direct plating | complete | 51.379 |
| Sulfitobacter sp. M186 | Sulfitobacter phage ICBM70 | ICBM70 | P2 | Direct plating | complete | 53.694 |
| Sulfitobacter sp. M187 | Sulfitobacter phage ICBM71 | ICBM71 | P2 | Direct plating | partial | 52.603 |
| Sulfitobacter sp. M191 | Sulfitobacter phage ICBM72 | ICBM72 | P2 | Direct plating | partial | 51.034 |
| Sulfitobacter sp. M192 | Sulfitobacter phage ICBM73 | ICBM73 | NHS | Direct plating | partial | 52.973 |
| Sulfitobacter sp. M192 | Sulfitobacter phage ICBM74 | ICBM74 | NHS | Direct plating | partial | 54.605 |


| Sulfitobacter sp. M196 | Sulfitobacter phage ICBM76 | ICBM76 | P2 | Direct plating | complete | 50.122 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sulfitobacter sp. M196 | Sulfitobacter phage ICBM77 | ICBM77 | NHS | Direct plating | complete | 50.195 |
| Sulfitobacter sp. M197 | Sulfitobacter phage ICBM78 | ICBM78 | NHS | Direct plating | complete | 53.429 |
| Sulfitobacter sp. M197 | Sulfitobacter phage ICBM79 | ICBM79 | NHS | Direct plating | complete | 53.781 |
| Sulfitobacter sp. M199 | Sulfitobacter phage ICBM80 | ICBM80 | NHS | Direct plating | partial | 52.003 |
| Sulfitobacter sp. M200 | Sulfitobacter phage ICBM81 | ICBM81 | NHS | Direct plating | partial | 53.792 |
| Sulfitobacter sp. M200 | Sulfitobacter phage ICBM82 | ICBM82 | NHS | Direct plating | complete | 53.759 |
| Sulfitobacter sp. M201 | Sulfitobacter phage ICBM83 | ICBM83 | NHS | Direct plating | partial | 51.497 |
| Sulfitobacter sp. M201 | Sulfitobacter phage ICBM84 | ICBM84 | NHS | Direct plating | partial | 52.69 |
| Sulfitobacter sp. M207 | Sulfitobacter phage ICBM86 | ICBM86 | NHS | Direct plating | complete | 52.921 |
| Sulfitobacter sp. M207 | Sulfitobacter phage ICBM87 | ICBM87 | NHS | Direct plating | complete | 53.362 |
| Sulfitobacter sp. M207 | Sulfitobacter phage ICBM88 | ICBM 88 | NHS | Direct plating | complete | 53.044 |
| Sulfitobacter sp. M244 | Sulfitobacter phage ICBM89 | ICBM89 | P2 | Direct plating | complete | 53.957 |
| Sulfitobacter sp. M260 | Sulfitobacter phage ICBM90 | ICBM90 | P2 | Direct plating | complete | 51.373 |
| Sulfitobacter sp. M260 | Sulfitobacter phage ICBM91 | ICBM91 | P4 | Direct plating | complete | 51.389 |
| Sulfitobacter sp. M261 | Sulfitobacter phage ICBM92 | ICBM92 | P2 | Direct plating | partial | 52.169 |
| Sulfitobacter sp. M271 | Sulfitobacter phage ICBM94 | ICBM94 | P2 | Direct plating | complete | 54.72 |
| Sulfitobacter sp. M283 | Sulfitobacter phage ICBM95 | ICBM95 | P2 | Direct plating | complete | 54.142 |
| Sulfitobacter sp. M300 | Sulfitobacter phage ICBM99 | ICBM99 | P2 | Direct plating | complete | 52.071 |
| Sulfitobacter sp. M303 | Sulfitobacter phage ICBM100 | ICBM100 | P2 | Direct plating | complete | 54.118 |
| Sulfitobacter sp. M68 | Sulfitobacter phage ICBM102 | ICBM102 | P2 | Direct plating | complete | 50.475 |
| Sulfitobacter sp. M86 | Sulfitobacter phage ICBM103 | ICBM103 | P2 | Direct plating | complete | 50.611 |
| Sulfitobacter sp. M187 | Sulfitobacter phage ICBM104 | ICBM104 | P2 | Direct plating | partial | 52.169 |
| Sulfitobacter sp. M276 | Sulfitobacter phage ICBM105 | ICBM105 | P2 | Direct plating | complete | 51.379 |
| Sulfitobacter sp. M47 | Sulfitobacter phage ICBM106 | ICBM106 | P2 | Direct plating | partial | 51.972 |
| Sulfitobacter sp. M53 | Sulfitobacter phage ICBM107 | ICBM107 | P2 | Direct plating | complete | 52.423 |
| Sulfitobacter sp. M55 | Sulfitobacter phage ICBM109 | ICBM109 | NHS | Direct plating | complete | 51.998 |
| Sulfitobacter sp. M63 | Sulfitobacter phage ICBM110 | ICBM110 | NHS | Direct plating | complete | 55.587 |
| Sulfitobacter sp. M63 | Sulfitobacter phage ICBM111 | ICBM111 | P2 | Direct plating | complete | 33.588 |
| Sulfitobacter sp. M68 | Sulfitobacter phage ICBM113 | ICBM113 | P4 | Direct plating | complete | 52.367 |
| Sulfitobacter sp. M69 | Sulfitobacter phage ICBM114 | ICBM114 | P4 | Direct plating | partial | 52.636 |
| Sulfitobacter sp. M70 | Sulfitobacter phage ICBM117 | ICBM117 | P2 | Direct plating | complete | 34.081 |
| Sulfitobacter sp. M70 | Sulfitobacter phage ICBM118 | ICBM118 | P2 | Direct plating | complete | 34.114 |


| Sulfitobacter sp. M72 | Sulfitobacter phage ICBM119 | ICBM119 | NHS | Direct plating | complete | 53.787 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sulfitobacter sp. M72 | Sulfitobacter phage ICBM120 | ICBM120 | P4 | Direct plating | partial | 53.159 |
| Sulfitobacter sp. M73 | Sulfitobacter phage ICBM121 | ICBM121 | P2 | Direct plating | complete | 36.856 |
| Sulfitobacter sp. M73 | Sulfitobacter phage ICBM122 | ICBM122 | P2 | Direct plating | complete | 36.856 |
| Sulfitobacter sp. M85 | Sulfitobacter phage ICBM124 | ICBM124 | P4 | Direct plating | complete | 54.296 |
| Sulfitobacter sp. M86 | Sulfitobacter phage ICBM126 | ICBM126 | NHS | Direct plating | complete | 53.881 |
| Sulfitobacter sp. M86 | Sulfitobacter phage ICBM127 | ICBM127 | NHS | Direct plating | complete | 52.781 |
| Sulfitobacter sp. M91 | Sulfitobacter phage ICBM128 | ICBM128 | NHS | Direct plating | complete | 54.612 |
| Sulfitobacter sp. M92 | Sulfitobacter phage ICBM129 | ICBM129 | NHS | Direct plating | complete | 70.738 |
| Sulfitobacter sp. M92 | Sulfitobacter phage ICBM130 | ICBM130 | NHS | Direct plating | complete | 33.346 |
| Sulfitobacter sp. M105 | Sulfitobacter phage ICBM131 | ICBM131 | NHS | Direct plating | complete | 52.646 |
| Sulfitobacter sp. M165 | Sulfitobacter phage ICBM133 | ICBM133 | NHS | Direct plating | complete | 54.967 |
| Sulfitobacter sp. M170 | Sulfitobacter phage ICBM134 | ICBM134 | NHS | Direct plating | complete | 54.461 |
| Sulfitobacter sp. M172 | Sulfitobacter phage ICBM135 | ICBM135 | NHS | Direct plating | partial | 51.877 |
| Sulfitobacter sp. M176 | Sulfitobacter phage ICBM137 | ICBM137 | NHS | Direct plating | complete | 53.554 |
| Sulfitobacter sp. M180 | Sulfitobacter phage ICBM138 | ICBM138 | NHS | Direct plating | complete | 52.782 |
| Sulfitobacter sp. M186 | Sulfitobacter phage ICBM139 | ICBM139 | NHS | Direct plating | complete | 53.722 |
| Sulfitobacter sp. M194 | Sulfitobacter phage ICBM142 | ICBM142 | NHS | Direct plating | partial | 52.186 |
| Sulfitobacter sp. M196 | Sulfitobacter phage ICBM143 | ICBM143 | NHS | Direct plating | complete | 52.012 |
| Sulfitobacter sp. M197 | Sulfitobacter phage ICBM145 | ICBM145 | P2 | Direct plating | complete | 53.772 |
| Sulfitobacter sp. M242 | Sulfitobacter phage ICBM146 | ICBM146 | P2 | Direct plating | complete | 52.265 |
| Sulfitobacter sp. M260 | Sulfitobacter phage ICBM147 | ICBM147 | P2 | Direct plating | complete | 51.69 |
| Sulfitobacter sp. M315 | Sulfitobacter phage ICBM153 | ICBM153 | P2 | Direct plating | complete | 80.756 |
| Sulfitobacter sp. M351 | Sulfitobacter phage ICBM154 | ICBM154 | P2 | Direct plating | complete | 52.265 |
| Octadecabacter sp. MM282 | Octadecabacter phage ICBM156 | ICBM156 | 33 | Direct plating | complete | 60.762 |
| Lentibacter sp. MPI-62 | Lentibacter phage ICBM157 | ICBM157 | P1 | Direct plating | complete | 42.72 |
| Lentibacter sp. MPI-62 | Lentibacter phage ICBM158 | ICBM158 | P1 | Direct plating | complete | 42.906 |
| Lentibacter sp. MPI-62 | Lentibacter phage ICBM159 | ICBM159 | P2 | Direct plating | complete | 42.936 |
| Lentibacter sp. MPI-62 | Lentibacter phage ICBM160 | ICBM160 | P2 | Direct plating | complete | 43.138 |
| Lentibacter sp. SH36 | Lentibacter phage ICBM163 | ICBM163 | P2 | Direct plating | complete | 37.2 |
| Lentibacter sp. SH36 | Lentibacter phage ICBM164 | ICBM164 | P2 | Direct plating | complete | 43.051 |
| Lentibacter sp. SH36 | Lentibacter phage ICBM165 | ICBM165 | HE504-33 | Direct plating | complete | 37.385 |
| Lentibacter sp. SH36 | Lentibacter phage ICBM166 | ICBM166 | HE504-33 | Direct plating | complete | 44.947 |

### 4.3.4. The new roseophage isolates belong to 12 genus-level genomic clusters

Calculation of the nucleotide-based intergenomic identities between the 143 assembled phage genomes using VIRIDIC (Moraru et al. 2020) (SI files S4-4 and S4-5) revealed that 15 sequences were $100 \%$ identical to others (all Sulfitobacter phages; 13 complete, two partial). T hese duplicate phages were removed from the dataset, leaving behind 128 unique novel $r$ oseophage genomes (Table 11). From 146 Sulfitobacter phage isolates, 130 were successfull y genome sequenced (resulting in either complete or partial genomes) and 115 of these geno mes turned out to be unique (Table 11). Therefore, one can assume that most duplicate phage i solates had been sorted out successfully. RAPD-PCR proved to be an appropriate method for q uick typing of closely related phages circumventing laborious DNA purification and sequencin g, as it was described before (Comeau et al. 2004; Gutiérrez et al. 2011).

Out of the 128 unique phage genomes, 94 were complete and used for further classification. Clustering based on nucleotide-based intergenomic identity (NBII) using VIRIDIC (Moraru et al. 2020) grouped them into 14 genus-level and 49 species-level clusters, based on the thresholds recommended by ICTV for species (95\%) and for genera (70\%) (Fig. 21, Table 14). The great majority of the Sulfitobacter phage genomes ( 72 phages) fell into a large cluster comprising the genus-level clusters 9, 10 and 11 (Fig. 21). Within this large cluster, most of the nucleotide-based intergenomic identities are higher the than the genus threshold of $70 \%$, with very few being as low as $68.4 \%$. Thus, we merged genus-level clusters 9,10 and 11 into one genus cluster (labeled 9-11). The members of this genus cluster were provisionally named here "sulfiviruses". In this chapter, we will characterize only six sulfiviruses (ICBM13, ICBM16, ICBM21, ICBM23, ICBM25, and ICBM47). A separate chapter of this thesis has been dedicated to the sulfiviruses, in which also the rest of them is further characterized (see chapter 5). The remaining 22 viruses (nine Sulfitobacter phages, the twelve Lentibacter phages and the Octadecabacter phage) were divided into eleven genus-level and 16 species-level clusters (Fig. 21, Table 14). Phages isolated from different host genera clustered together, respectively. Only genus cluster 2 contained two Sulfitobacter phages (ICBM121 and ICBM122) and one Lentibacter phage (ICBM163). All of these phages were selected for further taxonomic and genomic analysis, while from the sulfivirus cluster only representatives were chosen, as mentioned above (Table 14).


Fig. 21: Nucleotide-based intergenomic identities of 94 unique and complete roseophage genomes, calculated with VIRIDIC. Genus-level clusters suggested by VIRIDIC are indicated by red rectangles and labeled on the right side. (Figure available with higher resolution as SI file S4-6).

Table 14: Clustering of 94 unique and complete roseophage genomes into genera and species clusters. Phages chosen for further taxonomic and genomic analysis are written in bold.

| Genus <br> cluster | Species <br> cluster | Newly proposed binomial name | Phage genomes | Host genus |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | „Annekevirus eins" | ICBM157, ICBM158, ICBM164 | Lentibacter |
|  | 2 | "Annekevirus zwei" | ICBM159 | Lentibacter |
|  | 3 | „Annekevirus drei" | ICBM160 | Lentibacter |
|  | 4 | „Benvirus unu" | ICBM163 | Lentibacter |
|  | 22 | „Benvirus doi" | ICBM121, ICBM122 | Sulfitobacter |
| 3 | 5 | „Martinvirus patru" | ICBM166 | Lentibacter |
| 4 | 6 | „Falkvirus eni" |  | Lentibacter |

Isolation and classification of roseophages

|  | 9 | „Falkvirus tva" | ICBM7 | Lentibacter |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 7 | „Heinckevirus cuatro" | ICBM4 | Lentibacter |
| 6 | 8 | „Siovirus sase" | ICBM6 | Lentibacter |
| 7 | 10 | „Maryvirus opt" | ICBM8 | Lentibacter |
| 8 | 11 | „Octadecavirus uma" | ICBM156 | Octadecabacter |
|  | 12 |  | ICBM43, ICBM100 | Sulfitobacter |
|  | 16 |  | ICBM78, ICBM109 | Sulfitobacter |
|  | 17 | „Sulfivirus twee" | ICBM25, ICBM52, ICBM110 | Sulfitobacter |
|  | 33 | „Sulfivirus een" | ICBM23, ICBM24, ICBM40, ICBM79, ICBM145 | Sulfitobacter |
|  | 39 |  | ICBM42, ICBM51 | Sulfitobacter |
|  | 49 |  | ICBM94 | Sulfitobacter |
|  | 13 |  | ICBM38, ICBM69, ICBM91, ICBM102, ICBM105, ICBM113 | Sulfitobacter |
|  | 14 | „Sulfivirus drie" | ICBM47, ICBM103 | Sulfitobacter |
|  | 20 |  | ICBM41, ICBM119 | Sulfitobacter |
|  | 25 |  | ICBM127 | Sulfitobacter |
|  | 31 |  | ICBM139 | Sulfitobacter |
|  | 32 |  | ICBM62, ICBM76, ICBM77, ICBM143 | Sulfitobacter |
|  | 35 |  | ICBM147 | Sulfitobacter |
|  | 37 |  | ICBM18, ICBM99 | Sulfitobacter |
|  | 44 |  | ICBM86 | Sulfitobacter |
|  | 46 |  | ICBM88 | Sulfitobacter |
| 9-11 | 48 |  | ICBM90 | Sulfitobacter |
|  | 15 | „Sulfivirus zes" | ICBM21, ICBM107 | Sulfitobacter |
|  | 21 | „Sulfivirus vif" | ICBM12, ICBM13, ICBM22, ICBM49, ICBM57, ICBM58, ICBM59, ICBM65, ICBM70, ICBM95, ICBM133, ICBM134 | Sulfitobacter |
|  | 23 |  | ICBM124 | Sulfitobacter |
|  | 24 |  | ICBM126 | Sulfitobacter |
|  | 26 |  | ICBM128 | Sulfitobacter |
|  | 28 | „Sulfivirus vier" | ICBM16, ICBM54, ICBM131 | Sulfitobacter |
|  | 29 |  | ICBM137 | Sulfitobacter |
|  | 30 |  | ICBM68, ICBM138 | Sulfitobacter |
|  | 34 |  | ICBM146, ICBM154 | Sulfitobacter |
|  | 38 |  | ICBM39, ICBM82 | Sulfitobacter |
|  | 40 |  | ICBM45, ICBM48 | Sulfitobacter |
|  | 41 |  | ICBM53, ICBM60 | Sulfitobacter |
|  | 42 |  | ICBM61 | Sulfitobacter |
|  | 43 |  | ICBM67 | Sulfitobacter |
|  | 45 |  | ICBM87 | Sulfitobacter |
|  | 47 |  | ICBM89 | Sulfitobacter |
| 12 | 18 | „Viktorvirus dva" | ICBM111, ICBM130 | Sulfitobacter |
|  | 19 | „Viktorvirus adin" | ICBM55, ICBM117, ICBM118 | Sulfitobacter |
| 13 | 27 | „Carlotavirus una" | ICBM129 | Sulfitobacter |
| 14 | 36 | „Annevirus trei" | ICBM153 | Sulfitobacter |

### 4.3.5. Taxonomic classification and genomic characterization of selected new phage isolates

Phage classification is a fast evolving discipline, which has undergone many recent changes, and its exact rules are still being considered by the scientific community. Further on, we aimed to place the new isolated roseophages into the taxonomic context of their related phages and all other roseophages from previous studies.

For this whole-genome-based classification approach, in a first step phage genomes related to the new roseophage isolates were collected from the GenBank database using a BLASTP search. Only cultivated phages and only one phage from each genus were kept. Out of the new roseophage isolates, 28 were selected representing all of the detected clusters (Table 14). In addition, the genomes of eleven phages infecting Sulfitobacter sp. SW_H+_2_149 (phages Ebeline 1-11) were included into this project, provided by Nina Bartlau and Rudolf Amman (MPI, Bremen). The query dataset was completed by almost all publicly available genomes of dsDNA roseophages that were described in literature at the time of data collection (August 2022, 94 genomes). A first hierarchical clustering using VirClust (Moraru 2023) enabled the reduction of the dataset to those viral genome clusters (VGCs) that contained roseophages. An alignment with the ICTV-recognized taxonomy at that time was made in order to be able to use the classification of existing families as a guide for the following subdivision into VGCs.

The complete dataset comprising 965 phage genomes was further analysed with VirClust, for the purpose of taxonomic classification and protein annotation (Moraru 2023). Initially, proteins were predicted and grouped into protein clusters (PCs) based on their sequence similarity (BLASTP-based). The presence/absence of PCs in the viral genomes was used to determine pairwise intergenomic distances, which were further used for the calculation of a genome tree (Fig. 22, for a more detailed view see Fig. S14, and SI files S4-8 and S4-9). This tree was further split into viral genome clusters (VGC) of the family-level, using a threshold at which most of the ICTV-recognized families were in one VGC.

The roseophages (previous and from this study) were spread all over the tree. Partly, they clustered within already existing and ICTV-recognized viral families. The novel roseophages fell into eight VGCs. Four of these clusters contained already recognized families: Mesyanzhinoviridae (VGC_11), Casjensviridae (VGC_9), Zobellviridae (VGC_8) and Autographiviridae (VGC_4). The eleven Ebeline phages infecting Sulfitobacter sp.

SW_H+_2_149 clustered closely together in a separate VGC. They are not described in more detail here, as they were not part of our isolation campaign.

In the following subchapters of this thesis, the new roseophages clustering in each of the VGCs will be described in terms of their genomic compositions and characteristics as well as their newly proposed taxonomic classification. Predicted genome termini and DNA replication strategies (Table 15) will be discussed as well as the predicted morphologies and the lifestyle suspected based on gene annotations. Detailed genome content is only shown from representative phages. The complete gene annotations of all ICBM phages can be found in SI file S4-10. Table 16 provides an overview of the newly described and classified phages, summarizing their most important features and the proposed taxonomic classification. A breakdown of the isolation sites of the new roseophages within the assigned families is given in figure 23. In all families that comprise more than one of the new roseophages, these isolates originate from different water samples. In general, most phages were obtained from water samples NHS and P2 (Fig. 23).

To assign the new roseophages to species, genera and (sub-) families, the following tools and thresholds were used. In accordance to the recently compiled guidelines for virus taxonomy (Simmonds et al. 2023), which suggest that genetic relationships of very similar genomes and assignment of the lower rank taxa genus and species should be based on nucleotide or amino acid sequence alignments, we consulted the nucleotide-based pairwise intergenomic identity (NBII) calculated with VIRIDIC (Moraru et al. 2020) for the classification of the new phages on genus and species level. The ICTV-recommended thresholds of $70 \%$ for the genus level and $95 \%$ for the species level were applied. Simmonds et al. (2023) further suggested determining relationships at the intermediate ranks of family, order and class using protein profile comparisons. In this study, we delineated new potential phage families based on the protein cluster (PC)-based intergenomic similarity calculated with VirClust (Moraru 2023). A threshold of $30 \%$ was used, meaning that phages within a family must share more than $30 \%$ PC-based intergenomic similarity. New families were only proposed outside already existing families, i.e. if no phages of an ICTV-recognized family were found in the same VGC as our novel roseophages. When the new roseophages clustered together with an existing family, but within a subgroup with PC-based intergenomic similarities higher than $30 \%$, a new subfamily was proposed.


Fig. 22: Whole-genome based proteomic tree of 965 dsDNA phages. Names of cultivated roseophages are marked in green (previous) and blue (this study). Color-strips indicate affiliation to ICTV-recognized families and subfamilies, respectively. Genome lengths are displayed as bar chart. Colored branches indicate viral genome clusters (VGCs). (Figure available with higher resolution as SI file S4-8).
Table 15: PhageTerm results of genome end determination for the representative ICBM phages.

| VGC | Phage | Ends | Left | pvalue_left | Right | pvalue_right | Permuted | Orientation | Class | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | Sulfitobacter phage ICBM21 | Redundant | 32674 | 1.7E-79 | 33001 | $1.55 \mathrm{E}-115$ | No | NA | DTR (short) | T7 |
| 25 | Sulfitobacter phage ICBM13 | Redundant | 11460 | 1.45E-86 | 11788 | 6.81E-145 | No | NA | DTR (short) | T7 |
| 25 | Sulfitobacter phage ICBM16 | Redundant | 14465 | 1.6E-103 | 14792 | 1.97E-123 | No | NA | DTR (short) | T7 |
| 25 | Sulfitobacter phage ICBM47 | Redundant | 36702 | 1.21E-82 | 37007 | 5.13E-68 | No | NA | DTR (short) | T7 |
| 25 | Sulfitobacter phage ICBM23 | Redundant | 35965 | $2.39 \mathrm{E}-22$ | 36294 | 6.67E-68 | No | NA | DTR (short) | T7 |
| 25 | Sulfitobacter phage ICBM25 | Redundant | 18266 | $2.44 \mathrm{E}-103$ | 18593 | 1.79E-64 | No | NA | DTR (short) | T7 |
| 25 | Lentibacter phage ICBM7 | Redundant | 32113 | 8.29E-116 | 32221 | $9.81 \mathrm{E}-85$ | No | NA | DTR (short) | T7 |
| 25 | Lentibacter phage ICBM166 | Redundant | 40649 | $2.12 \mathrm{E}-23$ | 40757 | $1.18 \mathrm{E}-10$ | No | NA | DTR (short) | T7 |
| 19 | Lentibacter phage ICBM165 | Redundant | 36112 | 4.24E-56 | 36418 | $1.61 \mathrm{E}-43$ | No | NA | DTR (short) | T7 |
| 19 | Lentibacter phage ICBM8 | Redundant | 34120 | 3.15E-38 | 34440 | 7.6E-59 | No | NA | DTR (short) | T7 |
| 19 | Lentibacter phage ICBM163 | Redundant | 27248 | $1.13 \mathrm{E}-52$ | 27568 | $3.89 \mathrm{E}-10$ | No | NA | DTR (short) | T7 |
| 19 | Sulfitobacter phage ICBM121 | Redundant | 18537 | 4.99E-55 | Distributed |  | Yes | Forward | Headful (pac) | P1 |
| 19 | Sulfitobacter phage ICBM122 | Redundant | 24435 | 3.34E-57 | Distributed |  | Yes | Forward | Headful (pac) | P1 |
| 9 | Octadecabacter phage ICBM156 | Redundant | Random |  | Random |  | Yes |  | unknown |  |
| 11 | Sulfitobacter phage ICBM129 | Redundant | Random |  | Random |  | Yes |  | unknown |  |
| 11 | Sulfitobacter phage ICBM153 | Redundant | Random |  | Random |  | Yes |  | unknown |  |
| 6 | Sulfitobacter phage ICBM118 | Redundant | 20479 | $9.14 \mathrm{E}-15$ | Distributed |  | Yes | Forward | Headful (pac) | P1 |
| 6 | Sulfitobacter phageICBM117 | Redundant | Distributed |  | 4295 | $1.05 \mathrm{E}-24$ | Yes | Reverse | Headful (pac) | P1 |
| 6 | Sulfitobacter phageICBM55 | Redundant | Random |  | Random |  | Yes |  | unknown |  |
| 6 | Sulfitobacter phageICBM111 | Redundant | 22348 | $1.73 \mathrm{E}-11$ | Distributed |  | Yes | Forward | Headful (pac) | P1 |
| 6 | Sulfitobacter phageICBM130 | Redundant | Distributed |  | 28208 | 0.000000102 | Yes | Reverse | Headful (pac) | P1 |
| 8 | Lentibacter phage ICBM6 | Redundant | 369 | 2.18E-71 | 538 | $1.58 \mathrm{E}-58$ | No | NA | DTR (short) | T7 |
| 4 | Lentibacter phage ICBM4 | Redundant | Distributed |  | 2744 | $1.69 \mathrm{E}-10$ | Yes | Reverse | Headful (pac) | P1 |
| 4 | Lentibacter phage ICBM160 | Redundant | 32449 | 9.44E-42 | 32726 | 5.01E-43 | No | NA | DTR (short) | T7 |
| 4 | Lentibacter phage ICBM164 | Redundant | 18408 | $2.04 \mathrm{E}-08$ | 18685 | 5.78E-38 | No | NA | DTR (short) | T7 |
| 4 | Lentibacter phage ICBM159 | Redundant | 17128 | 6.17E-94 | 17405 | 1.04E-50 | No | NA | DTR (short) | T7 |
| 4 | Lentibacter phage ICBM158 | Redundant | 16342 | $9.74 \mathrm{E}-38$ | 16620 | $2.06 \mathrm{E}-13$ | No | NA | DTR (short) | T7 |
| 4 | Lentibacter phage ICBM157 | Redundant | 7417 | 5.65E-21 | 7695 | $6.11 \mathrm{E}-35$ | No | NA | DTR (short) | T7 |

Table 16: Overview of the newly described and classified ICBM phages. *predicted by Virfam. **predicted by PhageTerm. ***Lysogenic potential indicated by possession of genes of category integration/excision or lytic/lysogenic decision. $\mathrm{RM}=$ restriction-modification system. $\mathrm{Abi}=$ abortive infection system.

| Viral <br> genome <br> cluster | Phage | Isolation host | Isolation source | Updated (newly proposed + existing) taxonomic classification |  |  |  |  | $\begin{aligned} & \text { g } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Family | Subfamily | Genus | Species |  |  |  |  |  | - |  |
| VGC_4 | ICBM4 | Lentibacter sp. SH36 | HE440-S | Autographiviridae | „Incetivirin ae" | „Heinckevirus" | „cuatro" | $\begin{aligned} & 42720- \\ & 43138 \end{aligned}$ | $\begin{aligned} & 47.7- \\ & 47.9 \end{aligned}$ | podoviral | Headful (pac) (circularly permuted genome), P1-type rolling circle |  |  | Regulators of |
|  | ICBM157 | Lentibacter sp. <br> MPI-62 | P1 |  |  | „Annekevirus" |  |  |  |  |  | yes | - | chromosome condensation |
|  | ICBM158 |  |  |  |  |  | „eins" |  |  |  | DTR (short), |  |  | (RCC1) |
|  | ICBM164 | Lentibacter sp . SH36 | P2 |  |  |  |  |  |  |  | T7-type bidirectional |  |  |  |
|  | ICBM159 | Lentibacter sp. |  |  |  |  | „zwei" |  |  |  |  |  |  |  |
|  | ICBM160 | MPI-62 |  |  |  |  | „drei" |  |  |  |  |  |  |  |
| VGC_9 | ICBM156 | Octadecabacter <br> sp. MM282 | $\begin{aligned} & \hline \text { HE504- } \\ & 33 \end{aligned}$ | Casjensviridae |  | „Octadecavirus" | „uma" | 60762 | 61.7 | siphoviral | unknown | yes | - |  |
| VGC_11 | ICBM129 | Sulfitobacter sp. M92 | NHS | Mesyanzhinoviridae | „Maresulfi- <br> virinae" | „Carlotavirus" | „una" | $\begin{aligned} & 70738- \\ & 80756 \end{aligned}$ | $\begin{aligned} & 57.7- \\ & 61.5 \end{aligned}$ | siphoviral | unknown | yes | - | Que <br> biosynthesis <br> genes (anti <br> restriction) |
|  | ICBM153 | Sulfitobacter sp. <br> M315 | P2 |  |  | „Annevirus" | „trei" |  |  |  |  |  | 7 |  |
|  | vB_DshS_ <br> R5C | Dinoroseobacte <br> $r$ shibae <br> DFL12T |  |  |  | Nanhaivirus | D5C |  |  |  |  |  |  |  |



Isolation and classification of roseophages

| VGC_6 | ICBM55 | Sulfitobacter sp. <br> M157 | P2 | „Woolleyviridae" |  | „Viktorvirus" | ,adin" | $\begin{aligned} & 33346- \\ & 34114 \end{aligned}$ | $\begin{aligned} & 60.5- \\ & 60.7 \end{aligned}$ | siphoviral | unknown | yes | - | Methylase |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ICBM117 | Sulfitobacter sp. |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ICBM118 | M70 |  |  |  |  |  |  |  |  | (circularly |  |  |  |
|  | ICBM111 | Sulfitobacter sp. <br> M63 |  |  |  |  | „dva" |  |  |  | permuted <br> genome), |  |  |  |
|  | ICBM130 | Sulfitobacter sp. <br> M92 | NHS |  |  |  |  |  |  |  | P1-type rolling circle |  |  |  |
| VGC_8 | ICBM6 | Lentibacter sp. <br> SH36 | HE396-6 | Zobellviridae | Cobavirina <br> $e$ | Siovirus | „sase" | 40273 | 46.3 | podoviral | DTR (short), T7-type bidirectional | no | - | Methylase (anti RM) |



Fig. 23: Origins of the new phage isolates from different North Sea water samples, from the shore (NHS, July 2018), a mesocosm experiment (P1, P2 and P4, March 2018), and from the open sea (HE504-33 (2018), HE396-6 (2013) and HE440S (2015)). Pie chart on the top shows origins of all unique phage isolates. Below, origins of the new ICBM phages within each newly proposed or existing family are shown. Total numbers of phage isolates are written in parentheses.

### 4.3.5.1. First roseophage isolates to cluster within the Autographiviridae family

In the whole-genome based proteomic tree, one of the largest VGCs containing roseophages corresponded to the Autographiviridae family (Fig. 24, SI files S4-9 and S4-11). Most of the previously characterized Autographiviridae from this VGC_4 infect bacteria from Cyanophyceae, Gammaproteobacteria, Betaproteobacteria, Desulfovibrionia, and Alphaproteobacteria (Hyphomicrobiales, Pelagibacterales, Hyphomicrobiales, Caulobacterales). Viruses in this VGC with known morphology are podoviruses (Table 17).

The new roseophage isolates grouping into Autographiviridae formed a separate cluster, with a maximum PC-based intergenomic similarity with other Autographiviridae of $18 \%$ (Fig. 26). Within this roseophage cluster, the minimum PC-based intergenomic similarity was of $78 \%$ (Fig. 26). Therefore, we propose here that this cluster forms a new subfamily within the Autographiviridae, which we tentatively named here "Incetivirinae", from the Romanian word "incet" meaning "slow", in accordance to the derivation of the host genus name Lentibacter from the latin word "lentus" meaning "slow". We expect that this subfamily will form a family on its own, once the Autographiviridae classification will be overhauled.

The six novel roseophages within this family were phages ICBM157, ICBM158, ICBM159, and ICBM160 infecting Lentibacter sp. MPI-62 and phages ICBM164 and ICBM4 infecting Lentibacter sp. SH36 (Table 17). They have been isolated from three different water samples (HE440-S, P2 and P1). According to their nucleotide-based intergenomic identity, they formed two new genera. While phage ICBM4 formed its own genus, the other five viruses showed high intergenomic identity to each other and clustered into three species within one genus (Fig. 25). We tentatively named these two genera "Heinckevirus" (ICBM4), from the research vessel Heincke, and "Annekevirus" (ICBM157, ICBM158, ICBM159, ICBM160, and ICBM164), after Anneke Heins (MPI, Bremen), who provided the host strain Lentibacter sp. MPI-62.

The new roseophages had genomes of 42.7-43.1 kb in size, 47.7-47.9\% G+C content and 45-49 predicted ORFs. Functional annotation was possible for 27 of these ORFs. Phages of the "Annekevirus" genus all had short DTRs of 278-279 bp at the genome ends, identicating a T7-type DNA packaging technique (Table 15). In contrast, the PhageTerm results for Lentibacter phage ICBM4 were not as conclusive. A circularly permuted genome and a headful packaging strategy were suggested. However, the typical coverage pattern was missing (Garneau et al. 2017). The six phages showed an identical genome architecture and all but one annotated genes were found in all genomes (Fig. 27, SI file S4-10). Genes were arranged in
subsequent functional modules (Fig. 27, Table 18). In the DNA replication module, nine genes could be annotated: a ssDNA binding protein (PC_123), a RusA-like Holliday junction resolvase (PC_124), a bifunctional DNA primase/helicase (PC_88), a HNH endonuclease (PC_126), a DNA polymerase I (PC_89), an endo/exo-ribonuclease (PC_127), a ribonucleotide reductase (PC_91) and a thymidylate synthase ThyX (PC_1). In addition, a DNA directed RNA-polymerase was encoded (PC_122), which is a hallmark of the Autographiviriae family. The second half of the genome harboured genes for virion morphology. Those responsible for capsid structure and packaging included a capsid assembly and scaffolding protein (PC_132), two internal virion proteins (PC_138 and PC_136), the major capsid protein (PC_133) and the terminase large subunit (PC_145). Furthermore, a head-tail connecting protein (PC_131), a tail fiber protein (PC_139), tail tubular protein A (PC_134) and tail tubular protein B (PC_135) were annotated. Three lysis genes coded for an endolysin (PC_95), a holin (PC_142) and a protein with a lysozyme-domain (PC_202) (Fig. 27, Table 18). The latter gene (PC_202) was missing in the genome of phage ICBM4. In addition, a nucleotide pyrophosphohydrolase (PC_128) and an acetyl transferase (GNAT) (PC_111) have been annotated. Two genes annotated as "regulator of chromosome condensation (RCC1)" (PC_140 and PC_141) were found in the genomes. Such proteins have been frequently described in eukaryotes, regulating DNA condensation (Ohtsubo et al. 1989). So far, they have been found only in the two related Jumbo phages, Chronobacter phage vB_CsaM_GAP32 and Escherichia coli virus phAPEC6 (Abbasifar et al. 2014; Wagemans et al. 2020). In neither of the genomes were any tRNAs predicted.

The detection of DTRs and the annotation of a T7-type DNA polymerase I suggested that the new roseophages use a T7-like bidirectional replication and DNA packaging technique (Tables 15 and 18). Furthermore, Virfam prediction and gene annotation (absence of major tail protein, tail completion protein and sheath), indicated a podoviral morphology with a short tail (Tables 17 and 18). A Lambda repressor-like gene was annotated in the genomes. In bacteriophage Lambda, this protein regulates viral gene expression as part of the lytic/lysogenic decision (Maniatis and Ptashne 1973). Together with the annotation of an integrase gene, this indicated the potential for a lysogenic lifestyle of these phages (Table 18). The phages of the "Incetivirinae" subfamily shared 37 core proteins, comprising 26 out of 27 annotated proteins and 11 hypothetical proteins (Table 19).


Fig. 24: Section of the whole-genome based proteomic tree showing the Autographiviridae family. Names of cultivated roseophages are marked in green (previous) and blue (this study). Color-strips indicate affiliation to ICTV-recognized families and subfamilies, respectively. Genome lengths are displayed as bar chart. Branches of the Studiervirinae subfamily are marked in red.
Table 17: Phages of cluster A and B in the Autographiviridae family. Roseophages are marked in blue. $\mathrm{Bp}=$ base pairs. n.a. = not available. *Morphology predicted by Virfam.

| 易 | Phage | Host | Genome size [bp] | GC content [\%] | Accession | Previous classification (reference) | ICTV or newly proposed taxonomy |  |  | Morphology | Isolation source | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Family | Genus | Species |  |  |  |
| A | Lentibacter phage ICBM4 | $\begin{aligned} & \text { Lentibacter sp. } \\ & \text { SH36 } \end{aligned}$ | 43101 | 47.80 | this study |  | Autographiviridae, „Incetivirinae" | „Heinckevirus" | „cuatro" | podoviral* | seawater (HE440-S) | this study |
|  | Lentibacter phage ICBM160 | Lentibacter sp. MPI-62 | 43138 | 47.70 | this study |  |  | „Annekevirus" | „drei" | podoviral* | seawater (P2) | this study |
|  | Lentibacter phage ICBM164 | $\begin{aligned} & \hline \text { Lentibacter } \mathrm{sp} \text {. } \\ & \text { SH36 } \end{aligned}$ | 43051 | 47.90 | this study |  |  |  | „eins" | podoviral* | seawater (P2) | this study |
|  | Lentibacter phage ICBM159 | Lentibacter sp . MPI-62 | 42936 | 47.80 | this study |  |  |  | „zwei" | podoviral* | seawater (P2) | this study |
|  | Lentibacter phage ICBM158 | Lentibacter sp. MPI-62 | 42906 | 47.80 | this study |  |  |  | „eins" | podoviral* | seawater (P1) | this study |
|  | Lentibacter phage ICBM157 | Lentibacter sp. MPI-62 | 42720 | 47.80 | this study |  |  |  |  | podoviral* | seawater (P1) | this study |
| B | Teseptimavirus S2B | Caulobacter vibrioides CB15 | 45682 | 66.80 | MN857473 |  |  |  |  | podoviral | freshwater river | Ely et al. (2022) |
|  | Podoviridae sp. isolate ctgrD200 | n.a. | 45384 | 65.30 | MW202733 |  |  |  |  |  | freshwater | unpublished |
|  | Rhizobium phage RHph I20 | Rhizobium sp. <br> N324 | 41785 | 60.10 | MN988539 |  |  |  |  |  | agricultural lands | unpublished |
|  | Mesorhizobium phagevB MloP Lo5R7ANS | Mesorhizobium <br> loti R7ANS | 45718 | 61.10 | KM199771 |  | Autographiviridae | Pairvirus |  |  | n.a. | unpublished |
|  | Rhizobium phage Pasto | Bradyrhizobium japonicum | 42407 | 58.60 | MT708545 |  |  |  |  | podoviral | rhizosphere, agriculture | Manuel et al. (2021) |
|  | Rhizobium phage RHEph21 | Rhizobium gallicum sv. phaseoli R72 | 40454 | 58.60 | MW980070 |  |  |  |  |  | rhizosphere, agriculture | unpublished |
|  | Rhizobium phage RHEph01 | Rhizobium etli Brasil5 | 43444 | 59.20 | JX483873 |  | Autographiviridae | Paadamvirus |  | podoviral | rhizosphere, agriculture | Santamaría et <br> al. (2014) |
|  | Desulfovibrio phage ProddE | Desulfovibrio desulfuricans strain Edelweis | 42637 | 51.40 | MZ666938 |  |  |  |  |  | freshwater river <br> sediment | Boeckman et <br> al. (2022) |
|  | Bordetella phage vB BbrP BB8 | Bordetella bronchiseptica | 41593 | 58.80 | MK984681 |  |  |  |  | podoviral | wastewater | Szymczak et <br> al. (2020) |
|  | Ralstonia phage P PSG $11$ | Ralstonia solanacearum | 40313 | 58.80 | MN270889 |  |  |  |  |  | freshwater river | Wei et al. (2017) |



|  | Pelagibacter phage HTVC109P | Candidatus <br> Pelagibacter sp. <br> HTCC7211 | 41323 | 35.50 | MH598805 | HTVC019P- <br> related <br> podoviridae <br> (Zhao et al. <br> 2018) | seawater | Zhao et al. (2018) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pelagibacter phage HTVC201P | Candidatus <br> Pelagibacter sp. <br> FZCC0015 | 41415 | 33.10 | MH598802 |  | seawater |  |
| B | Pelagibacter phage HTVC022P | Candidatus <br> Pelagibacter <br> ubique <br> HTCC1062 | 42010 | 34.20 | MH598798 |  | seawater |  |
|  | Pelagibacter phage HTVC121P | Candidatus <br> Pelagibacter sp. <br> HTCC7211 | 42600 | 33.50 | MH598803 |  | seawater |  |
|  | Pelagibacter phage HTVC021P | Candidatus <br> Pelagibacter ubique <br> HTCC1062 | 42809 | 33.60 | MH579717 |  | seawater |  |



Fig. 25: Nucleotide-based intergenomic identities of phages in clusters A and B of the Autographiviridae family (VGC_4), calculated with VIRIDIC. Members of the newly proposed genera "Heinkevirus" and "Annekevirus" and the newly proposed subfamily "Incetivirinae" are annotated with boxes and colored labels. (The VIRIDIC heatmap and cluster table for the complete VGC_4 can be found in SI files S4-11 and S4-12).


Fig. 26: PC-based intergenomic similarities of phages in clusters A and B of the Autographiviridae family (VGC_4), calculated with VirClust (log e-value clustering, matches kept if bitscore $>=30$, coverage $>=70$, evalue $\langle 0.00001$, identity $>=0 \%$ ). Members of the newly proposed genera "Heinkevirus" and "Annekevirus" and the newly proposed subfamily "Incetivirinae" are annotated with boxes and colored labels.


Fig. 27: Genome map of members of the Autographiviridae family. A Members of the "Annekevirus" genus (Lentibacter phages ICBM157, ICBM158, ICBM159, ICBM160 and ICBM164). B Lentibacter phage ICBM4 (genus "Heinckevirus").

Table 18: Gene annotations of Lentibacter phage ICBM157. Strand 1: forward orientation. Strand -1: reverse orientation. Hp $=$ hypothetical protein. *Core proteins of phages in the "Incetiviridae" family.

| Gene ID | Gene <br> start | Gene <br> end | Gene <br> length <br> [bp] | Stran <br> d | PC ID | Protein function |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Isolation and classification of roseophages

| gene_15 | 8498 | 10099 | 1602 | 1 | $88^{*}$ | DNA primase/helicase* | DNA, RNA and nucleotide <br> metabolism |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| gene_16 | 10099 | 10467 | 369 | 1 | $126^{*}$ | HNH endonuclease* | DNA, RNA and nucleotide <br> metabolism |
| gene_17 | 10526 | 12100 | 1575 | 1 | $89^{*}$ | DNA polymerase I $^{*}$ | DNA, RNA and nucleotide <br> metabolism |
| gene_18 | 12109 | 13116 | 1008 | 1 | $127^{*}$ | endo/exo-ribonuclease* | DNA, RNA and nucleotide <br> metabolism |
| gene_19 | 13142 | 13492 | 351 | 1 | $128^{*}$ | nucleotide | pyrophosphohydrolase* |

Table 19: Core proteins of the newly proposed subfamily "Incetivirinae" in the family Autographiviridae. *maximum number of predicted ORFs divided by number of core proteins.

| predicted ORFs\# | core <br> proteins <br> \# | Annotated <br> core <br> proteins \# | Annotated core proteins (sorted by functional category) | Percentage core proteins / total ORFs* |
| :---: | :---: | :---: | :---: | :---: |
| 45-49 | 37 | 26 | DNA, RNA and nucleotide metabolism: DNA directed RNApolymerase, (PC_122), ssDNA binding protein (PC_123), RusAlike Holliday junction resolvase (PC_124), DNA primase/helicase (PC_88), HNH endonuclease (PC_126), DNA polymerase I (PC_89), endo/exo-ribonuclease (PC_127), ribonucleotide reductase (PC_91), thymidylate synthase ThyX (PC_1), Regulator of chromosome condensation, RCC1 (PC_140 and PC_141), <br> Head and packaging: capsid assembly and scaffolding protein (PC_132), major capsid protein (PC_133), internal virion protein (PC_136 and PC_138), terminase large subunit (PC_145), <br> Connector: head-tail connecting protein (PC_131), <br> Tail: tail tubular protein A (PC_134), tail tubular protein B (PC_135), tail fiber protein (PC_139), <br> Lysis: endolysin (L-alanyl-D-glutamate peptidase) (PC_95), holin (PC_142) <br> Lytic/lysogenic regulation: Lambda repressor-like protein (PC_120), <br> Integration and excision: Integrase (PC_121), <br> Other: nucleotide pyrophosphohydrolase (PC_128), acetyl transferase (GNAT) (PC_111) | 75.51\% |

### 4.3.5.2. A novel roseophage infecting Octadecabacter falls within the Casjensviridae family

In the whole-genome based proteomic tree, the new roseophage ICBM156 clustered in a VGC together with phages of the ICTV-recognized Casjensviridae family (VGC_9) (Fig. 28). The previously characterized Casjensviridae in this VGC infect bacteria from Gammaproteobacteria, Betaproteobacteria, Cyanophyceae and Alphaproteobacteria (Loktanella). The have been isolated from diverse habitats, such as seawater, freshwater lakes, sewage, soil and agricultural samples. All viruses with confirmed morphology are siphoviruses (Table 20).

Phage ICBM156 distantly grouped into a separate cluster, together with other marine (roseo-) phages (Fig. 28, Table 20). It comprised eight Rhodobacter phages, five Ruegeria phages, Loktanella phage pCB2051_A, Synechococcus virus S_ESS1, Rhizobium phage RHph_X2_30 and our phage ICBM156. The only previously assigned Casjensviridae were Loktanella phage pCB2051_A and Synechococcus virus S_ESS1. These two phages shared more than $30 \%$ PC-based intergenomic similarity with phage ICBM156 (Fig. 30), but phage pCB2051_A clustered further apart in the proteomic tree (Fig. 28). Nevertheless, ICBM156, S_ESS1 and pCB2051_A could potentially belong to one subfamily. Phage ICBM156 was
isolated from seawater sample HE504-33, infecting Octadecabacter sp. MM282. With the maximum nucleotide-based intergenomic identity to other phages accounting for $29.3 \%$, Octadecabacter phage ICBM156 formed its own genus (Fig. 29). We tentatively named it here the "Octadecavirus" genus. We propose here Octadecabacter phage ICBM156 as member of the Casjensviridae family, in the new "Octadecavirus" genus. However, the PC-based intergenomic similarities (Fig. 30) indicate that this family might be split into smaller families in future classification procedures.

Octadecabacter phage ICBM156 had a genome of $\sim 60.8 \mathrm{~kb}$ and a G+C content of $61.7 \%$. It encoded 76 ORFs, 34 of which could be annotated. Genome termini detection using PhageTerm (Garneau et al. 2017) revealed that the genome of Octadecabacter phage ICBM156 had random ends (Table 15). The genome was organized in different modules, with the "DNA, RNA and nucleotide metabolism" module being split by the chosen genome ends (Fig. 31). The genes of this module comprised two DNA helicases (PC_629 and PC_687), a DNA polymerase (PC_626), a DNA topoisomerase (PC_669), an exonuclease (PC_691), a ribonucleotide reductase (PC_355), a dihydrofolate reductase (PC_664), a ssDNA binding protein (PC_624), a thymidylate synthase ThyX (PC_1) and a tRNA endonuclease (PC_628) (Table 21). "Head and packaging" genes included the capsid decoration protein (PC_635), the capsid maturation protease (PC_634), the major capsid protein (PC_636), the portal protein (PC_633) and the terminase small and large subunit (PC_630 and PC_631). Three "connectors" were encoded in the genome: head-tail adaptor protein Ad1 (PC_632), neck protein Ne1 (PC_639) and tail completion protein Tc1 (PC_640). Moreover, five tail proteins (PC_641, PC_642, PC_643, PC_644, PC_648 and PC_649), two tail assembly proteins (PC_353 and PC_645), two tail assembly chaperons (PC_646 and PC_647) and the tail length tape measure protein (PC_644) were annotated. One lysis gene, an endolysin was found (PC_354). In addition, the genome encoded a cysteine dioxygenase (PC_662) and a protease (PC_650). No tRNAs could be predicted. No genome replication and packaging strategy could be predicted by PhageTerm (Table 15). Furthermore, the annotated DNA polymerase was of no specific type. Virfam predicted a siphoviral morphology for ICBM156, which was also reflected by the annotation of the tail tape measure protein and the absence of a tail sheath (Tables 20 and 21). The possession of a gene coding for a Lambda repressor-like protein indicated that phage ICBM156 might have a lysogenic potential.


Fig. 28: Section of the whole-genome based proteomic tree showing VGC_9. Names of cultivated roseophages are marked in green (previous) and blue (this study). Color-strips indicate affiliation to ICTV-recognized families and subfamilies, respectively. Genome lengths are displayed as bar chart.

Isolation and classification of roseophages
Table 20: Phages of VGC_9. Roseophages are marked in blue. $\mathrm{Bp}=$ base pairs. N.a. = not available. *Morphology predicted by Virfam.

| Phage | Host | Genome size [bp] | GC content [\%] | Accession | Previous classification (reference) | ICTV or newly proposed taxonomy |  |  | Morphology | Isolation source | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Family | Genus | Species |  |  |  |
| Octadecabacter phage ICBM156 | $\begin{aligned} & \text { Octadecabacter sp. } \\ & \text { MM282 } \\ & \hline \end{aligned}$ | 60762 | 61.70\% | this study |  |  | „Octadecavirus" | „uma" | siphoviral* | $\begin{aligned} & \hline \text { Seawater } \\ & \text { (HE504-33) } \end{aligned}$ | this study |
| Synechococcus virus S_ESS1 | Synechococcus sp. | 60362 | 60.90\% | KY249644 |  | Casjensviridae | Sessunavirus |  | siphoviral | coastal seawater | Han et al. (2017) |
| Ruegeria phage vB_RpoS_V16 | Ruegeria pomeroyi DSS-3 | 61382 | 63.60\% | MH015258 | Chi-like (Siphoviridae, cluster 3) (Zhan and Chen 2019a) |  |  |  | siphoviral | coastal seawater | Zhan et al. <br> (2018) |
| Ruegeria phage vB_RpoS_V11 | Ruegeria pomeroyi DSS-3 | 59549 | 64.00\% | MH015254 |  |  |  |  | siphoviral | coastal seawater |  |
| Ruegeria phage vB_RpoS_V7 | Ruegeria pomeroyi DSS-3 | 59573 | 64.10\% | MH015249 |  |  |  |  | siphoviral | coastal seawater |  |
| Ruegeria phage vB_RpoS_V18 | Ruegeria pomeroyi DSS-3 | 59111 | 64.00\% | MH015252 |  |  |  |  | siphoviral | coastal seawater |  |
| Ruegeria phage DSS3_P1 | Ruegeria pomeroyi DSS-3 | 59601 | 64.10\% | KM581061 |  |  |  |  | siphoviral | coastal seawater |  |
| Rhizobium phage RHph_X2_30 | Sinorhizobium americanum X2_30 | 69699 | 57.00\% | MW980061 |  |  |  |  |  | agricultural lands | unpublished |
| Loktanella phage pCB2051_A | Loktanella sp. CB2051 | 56958 | 55.00\% | HQ632859 | Caudoviricetes, Casjensviridae, Broinstvirus (Tolstoy et al. 2021) | Casjensviridae | Broinstvirus |  | siphoviral | seawater | unpublished |
| Rhodobacter phage RcMrWorf | Rhodobacter capsulatus YW1 | 67929 | 60.10\% | MW677519 | RcD (Rapala et al. 2021) |  |  |  | siphoviral | freshwater | Rapala et al.(2021) |
| Rhodobacter phage RcSalem | Rhodobacter capsulatus YW1 | 67718 | 60.00\% | MW677524 |  |  |  |  | siphoviral | treated <br> sewage water |  |
| Rhodobacter phage RcMcDreamy | Rhodobacter capsulatus YW1 | 68244 | 60.00\% | MW677518 |  |  |  |  | siphoviral | freshwater |  |
| Rhodobacter phage RcGingersnap | Rhodobacter capsulatus YW1 | 68225 | 60.20\% | MW677513 |  |  |  |  | siphoviral | freshwater |  |
| Rhodobacter phage RcRios | Rhodobacter capsulatus YW1 | 68774 | 60.30\% | MW677523 |  |  |  |  | siphoviral | treated sewage water |  |
| Rhodobacter phage RcPescado | Rhodobacter capsulatus YW1 | 67494 | 60.40\% | MW677521 |  |  |  |  | siphoviral | freshwater |  |
| Rhodobacter phage RcPutin | Rhodobacter capsulatus YW1 | 67605 | 60.30\% | MW677522 |  |  |  |  | siphoviral | freshwater |  |
| Rhodobacter phage RcIroh | Rhodobacter capsulatus YW1 | 68475 | 60.20\% | MW677516 |  |  |  |  | siphoviral | freshwater |  |
| Achromobacter phage vB_AchrS_ AchV4 | Achromobacter sp. | 59489 | 62.80\% | MW269554 |  | Casjensviridae | Gediminasvirus |  | siphoviral | garden grapes | Kaliniene et al. (2021) |


| Marinobacter phage PS6 | Marinobacter sp. | 58226 | 51.90\% | MF959998 |  |  |  | n.a. | unpublished |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Klebsiella phage YMC16_01 N133_KPN_BP | Klebsiella pneumoniae YMC16/01/N133 | 58387 | 58.90\% | MF476925 | Casjensviridae | Seodaemunguvi rus | siphoviral | n.a. | unpublished |
| Bacteriophage Phobos | Pseudomonas syringae | 56734 | 63.30\% | MN478374 | Casjensviridae | Phobosvirus | siphoviral | freshwater | Amarillas et al. (2020) |
| Pseudomonas phage PspYZU01 | Pseudomonas sp. | 58279 | 63.10\% | KY971609 |  |  | siphoviral | sewage | unpublished |
| Stenotrophomonas phage Suzuki | Stenotrophomonas maltophilia | 56042 | 62.60\% | MZ326855 |  |  | siphoviral | freshwater | Sullivan et <br> al. (2022) |
| Phage Sano | Xylella fastidiosa | 56147 | 62.40\% | KF626665 | Casjensviridae | Sanovirus | siphoviral | sewage | Ahern et al. (2014) |
| Xanthomonas phage Seregon | Xanthomonas campestris | 55527 | 63.20\% | ON189048 |  |  | siphoviral | n.a. | Erdrich et al. (2022) |
| Phage Salvo | Xylella fastidiosa | 55601 | 63.00\% | KF626668 | Casjensviridae | Salvovirus | siphoviral | sewage | $\begin{aligned} & \text { Ahern et al. } \\ & \text { (2014) } \end{aligned}$ |
| Achromobacter phage AXY1 | Achromobacter xylosoxidans | 61950 | 60.30\% | OK041469 |  |  |  | n.a. | unpublished |
| Achromobacter phage phiAxp_2 | Achromobacter xylosoxidans | 62220 | 60.10\% | KT321316 | Casjensviridae | Fengtaivirus | siphoviral | hospital sewage | $\begin{aligned} & \hline \text { Li et al. } \\ & \text { (2016b) } \end{aligned}$ |
| Xanthomonas phage FoX4 | Xanthomonas campestris | 60418 | 61.80\% | MT161385 |  | Foxquatrovirus | siphoviral | soil | unpublished |
| Burkholderia phage AH2 | Burkholderia сепосерасіа C6433 | 58065 | 61.30\% | JN564907 | Casjensviridae | Ahduovirus | siphoviral | soil, <br> rhizosphere | Lynch et al. (2012) |
| Burkholderia cepacia phage BcepNazgul | Burkholderia серасіа | 57455 | 60.60\% | AY357582 | Casjensviridae | Nazgulvirus | siphoviral | soil | unpublished |
| Aeromonas phage BUCT552 | Aeromonas hydrophila | 59685 | 60.00\% | MW978786 |  |  | siphoviral | sewage | Chen et al. (2022) |
| Aeromonas phage vB_AhyS_A18P4 | Aeromonas hydrophila A18 | 60975 | 62.00\% | MN317029 | Casjensviridae | Sharonstreetvir us | siphoviral | n.a. | unpublished |
| Aeromonas phage Lah_7 | Aeromonas hydrophila | 61426 | 62.20\% | MK838113 |  |  | siphoviral | wastewater | Kabwe et al. (2020) |
| Pseudomonas phage vB_Pae_SS2019XI | Pseudomonas aeruginosa | 57567 | 60.10\% | MN536026 | Casjensviridae | Maxdohrnvirus |  | wastewater | unpublished |
| Klebsiella phage Seifer | Klebsiella pneumoniae | 58197 | 56.10\% | MH817999 | Casjensviridae | Yonseivirus | siphoviral | wastewater | Salazar et al. (2019) |
| Klebsiella phage KPN_N137 | Klebsiella pneumoniae YMC15/11/N137 | 59100 | 56.30\% | MF415410 |  |  | siphoviral | n.a. | unpublished |
| Pectobacterium phage MA12 | Pectobacterium carotovorum | 58573 | 54.50\% | MN692199 | Casjensviridae | Newforgelanevi rus | siphoviral | agricultural wastewater | Zaczek- <br> Moczydłows <br> ka et al. <br> (2020) |
| Pectobacterium phage MA11 | Pectobacterium carotovorum | 55830 | 54.50\% | MN518139 |  |  | siphoviral | agricultural wastewater |  |
| Serratia phage JS26 | $\begin{aligned} & \text { Serratia sp. ATCC } \\ & 39006 \end{aligned}$ | 63971 | 57.00\% | MN505213 | Casjensviridae | Dunedinvirus | siphoviral | n.a. | unpublished |
| Erwinia phage pEp_SNUABM_08 | Erwinia pyrifoliae | 62716 | 57.20\% | MN184886 | Casjensviridae | Gwanakrovirus | siphoviral | soil | $\begin{aligned} & \text { Kim et al. } \\ & \text { (2021) } \end{aligned}$ |

 | Providencia phage |  |  |  |
| :--- | :--- | :--- | :--- | :--- | Kokobel1

Chi-like
Casjensviridae Kokobelvirus 2022) Lavrentievaviru

| unpublished |
| :--- |
| Jiang et al. |
| $(2022)$ | Shahin et al.


$(2022)$ | unpublished |
| :--- |
| unpublished |
| $\begin{array}{l}\text { Kazaks et al. } \\ (2012)\end{array}$ |
| unpublished |
| unpublished |
| $\begin{array}{l}\text { Rodwell et } \\ \text { al. (2021) }\end{array}$ |
| $\begin{array}{l}\text { Cobbley et } \\ \text { al. (2022) }\end{array}$ |
| $\begin{array}{l}\text { Choi et al. } \\ \text { (2017) }\end{array}$ | wastewater

sewage
sewage agricultural
wastewater sewage sewage effluent
worm farm

effluent | seawater |
| :--- |
| sewage |
| sewage |
| sewage |
| poultry | processing

plant phoviral

| Providencia phage Kokobel1 | Providencia stuartii | 59837 | 48.90\% | MW145139 |  | Casjensviridae | Kokobelvirus |  | sewage | unpublished |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Proteus phage vB_PmiS_DoubleBarrel | Proteus mirabiliis | 59089 | 46.80\% | OK500000 | Chi-like (Cobbley et al. 2022) |  |  |  | sewage | Cobbley et <br> al. (2022) |
| Escherichia phage E21 | Escherichia coli | 58536 | 46.90\% | MN604053 |  | Casjensviridae | Lavrentievaviru $s$ |  | agricultural wastewater | unpublished |
| Cronobacter phage JC01 | Cronobacter sakazakii | 61736 | 58.50\% | MT330372 |  | Casjensviridae | Jacunavirus | siphoviral | sewage | $\begin{aligned} & \text { Jiang et al. } \\ & (2022) \end{aligned}$ |
| Salmonella phage SAP012 | Salmonella sp. | 59618 | 54.10\% | LC553736 |  | Casjensviridae | Zhonglingvirus |  | sewage | Shahin et al. (2022) |
| Providencia phage vB_PreS_PatoteraRojo | Providencia rettgeri B0142 | 60728 | 49.40\% | MT675126 |  |  |  |  | worm farm effluent | unpublished |
| Providencia phage vB_PreS_PibeRecoleta | Providencia rettgeri B0142 | 60727 | 49.30\% | MT675124 |  | Casjensviridae | Redjacvirus |  | worm farm effluent | unpublished |
| Enterobacter phage Enc34 | Enterobacter cancerogenus | 60496 | 51.10\% | JQ340774 |  | Casjensviridae | Enchivirus | siphoviral | n.a. | Kazaks et al. (2012) |
| Serratia phage KpYy_1_41 | Klebsiella pneumoniae | 54417 | 56.90\% | MN871450 |  | Casjensviridae | Chivirus | siphoviral | seawater | unpublished |
| Enterobacter phage KNP7 | Enterobacter sp . | 58058 | 56.50\% | KX452700 |  | Casjensviridae | Chivirus |  | sewage | unpublished |
| Salmonella phage vB_SenS_ER24 | Salmonella enterica | 60438 | 56.60\% | MW355479 |  | Casjensviridae | Chivirus | siphoviral | sewage | Rodwell et <br> al. (2021) |
| Klebsiella phage vB_KaeS_Phraden | Klebsiella aerogenes | 59052 | 56.60\% | OL606627 | Chi-like (Cobbley et al. 2022) |  |  |  | sewage | Cobbley et <br> al. (2022) |
| Salmonella phage KFS_SE1 | Salmonella enterica | 59715 | 56.70\% | MG280946 |  | Casjensviridae | Chivirus | siphoviral | poultry processing plant | Choi et al. (2017) |



Fig. 29: Nucleotide-based intergenomic identities of phages in the Casjensviridae family (VGC_9), calculated with VIRIDIC. Octadecabacter phage ICBM156 is marked in blue. Two phages that potentially form a subfamily with phage ICBM156 are marked with dashed-lined green boxes.


Fig. 30: PC-based intergenomic similarities of phages in the Casjensviridae family (VGC_9), calculated with VirClust (log evalue clustering, matches kept if bitscore $>=30$, coverage $>=70$, evalue $<0.00001$, identity $>=0 \%$ ). Octadecabacter phage ICBM156 is marked in blue. Two phages that potentially form a subfamily with phage ICBM156 are marked with dashedlined green boxes.


Fig. 31: Genome map Octadecabacter phage ICBM156, member of VGC_9.

Table 21: Gene annotations of Octadecabacter phage ICBM156. Strand 1: forward orientation. Strand -1: reverse orientation. $\mathrm{Hp}=$ hypothetical protein.

| Gene <br> ID | Gene start | Gene end | Gene length [bp] | Strand | $\begin{aligned} & \text { PC } \\ & \text { ID } \end{aligned}$ | Protein function | Category |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_1 | 1 | 559 | 559 | 1 | 624 | ssDNA binding protein | DNA, RNA and nucleotide metabolism |
| gene_2 | 630 | 929 | 300 | 1 | 625 | hp | unknown |
| gene_3 | 931 | 3039 | 2109 | 1 | 626 | DNA polymerase | DNA, RNA and nucleotide metabolism |
| gene_4 | 3044 | 3367 | 324 | 1 | 627 | hp | unknown |
| gene_5 | 3348 | 3668 | 321 | 1 | 628 | tRNA endonuclease | DNA, RNA and nucleotide metabolism |
| gene_6 | 3665 | 5167 | 1503 | 1 | 629 | DNA helicase | DNA, RNA and nucleotide metabolism |
| gene_7 | 5164 | 5847 | 684 | 1 | 630 | terminase small subunit | head and packaging |
| gene_8 | 5822 | 7981 | 2160 | 1 | 631 | terminase large subunit | head and packaging |
| gene_9 | 7981 | 8214 | 234 | 1 | 632 | head-tail adaptor Ad1 | connector |
| gene_10 | 8215 | 9906 | 1692 | 1 | 633 | portal protein | head and packaging |
| gene_11 | 9875 | 11260 | 1386 | 1 | 634 | capsid maturation protease | head and packaging |
| gene_12 | 11305 | 11736 | 432 | 1 | 635 | capsid decoration protein | head and packaging |
| gene_13 | 11781 | 12848 | 1068 | 1 | 636 | major capsid protein | head and packaging |
| gene_14 | 12938 | 13309 | 372 | 1 | 637 | hp | unknown |
| gene_15 | 13367 | 13705 | 339 | 1 | 638 | hp | unknown |
| gene_16 | 13720 | 14319 | 600 | 1 | 639 | neck protein Ne 1 | connector |
| gene_17 | 14321 | 14875 | 555 | 1 | 640 | tail completion Tc1 | connector |
| gene_18 | 14902 | 15684 | 783 | 1 | 641 | tail protein | tail |
| gene_19 | 15704 | 16168 | 465 | 1 | 642 | tail protein | tail |
| gene_20 | 16219 | 16398 | 180 | 1 | 643 | tail protein | tail |
| gene_21 | 16408 | 21417 | 5010 | 1 | 644 | tail length tape measure protein | tail |
| gene_22 | 21421 | 23211 | 1791 | 1 | 645 | tail assembly protein | tail |
| gene_23 | 23208 | 24056 | 849 | 1 | 353 | tail assembly protein | tail |
| gene_24 | 24070 | 24303 | 234 | 1 | 646 | tail assembly chaperone | tail |
| gene_25 | 24300 | 24530 | 231 | 1 | 647 | tail assembly chaperone | tail |
| gene_26 | 24514 | 27531 | 3018 | 1 | 648 | tail protein | tail |
| gene_27 | 27535 | 30198 | 2664 | 1 | 649 | tail protein | tail |
| gene_28 | 30195 | 32723 | 2529 | 1 | 650 | protease | other |
| gene_29 | 32738 | 33688 | 951 | 1 | 437 | hp | unknown |
| gene_30 | 33699 | 34853 | 1155 | 1 | 354 | endolysin ( N acetylmuramidase) | lysis |
| gene_31 | 34840 | 35175 | 336 | 1 | 651 | hp | unknown |
| gene_32 | 35090 | 35377 | 288 | 1 | 652 | hp | unknown |
| gene_33 | 35378 | 35659 | 282 | 1 | 653 | hp | unknown |
| gene_34 | 35704 | 36171 | 468 | 1 | 654 | hp | unknown |
| gene_35 | 36174 | 36962 | 789 | -1 | 352 | DNA methylase N-4/N-6 | anti-host defense |
| gene_36 | 36959 | 37114 | 156 | -1 | 655 | hp | unknown |
| gene_37 | 37107 | 37295 | 189 | -1 | 656 | hp | unknown |
| gene_38 | 37292 | 37507 | 216 | -1 | 657 | hp | unknown |
| gene_39 | 37504 | 37773 | 270 | -1 | 658 | hp | unknown |
| gene_40 | 37805 | 38107 | 303 | -1 | 659 | hp | unknown |
| gene_41 | 38107 | 38763 | 657 | -1 | 660 | hp | unknown |
| gene_42 | 38764 | 39189 | 426 | -1 | 661 | hp | unknown |
| gene_43 | 39173 | 39751 | 579 | -1 | 662 | cystein dioxygenase | other |


| gene_44 | 39850 | 40170 | 321 | -1 | 663 | hp |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| gene_45 | 40182 | 40604 | 423 | -1 | 664 | dihydrofolate reductase |

### 4.3.5.3. Two new Sulfitobacter infecting roseophages form a new subfamily within the Mesyanz,hinoviridae family

Two new roseophages grouped into a VGC with the family Mesyanzhinoviridae (Fig. 32). The VGC_11 comprised 46 phages, which had been isolated from diverse aquatic (seawater, freshwater) and terrestrial (sewage, soil) habitats (Table 22). The previously described phages of the Mesyanzhinoviridae infect Gammaproteobacteria (Pseudomonadales and Xanthomonadales) and Betaproteobacteria (Burkholderiales). Those family members with a confirmed morphology are siphoviruses (Table 22).

The new roseophage isolates grouping into the Mesaynzhinoviridae formed a separate cluster together with Dinoroseobacter phage vB_DshS_R5C, a lytic siphovirus that had been isolated from seawater infecting Dinoroseobacter shibae DFL12 ${ }^{\text {T }}$ (Yang et al. 2017). The cluster showed a maximum PC-based intergenomic similarity with other Mesyanzhinoviridae of $12.0 \%$ (Fig. 34). Within this cluster, the minimum PC-based intergenomic similarity accounted for $49.3 \%$ (Fig. 34). Thus, we propose that this cluster represents a new subfamily of the Mesyanzhinoviridae, which we provisionally named here "Maresulfivirinae", from the romanian word "mare" for "large", as the family comprised largest Sulfitobacter phage genomes described so far. We expect that it will become a family on its own, when the Mesyanzhinoviridae family is divided into smaller families by future classification procedures. Four other roseophages clustered into this VGC (Ruegeria phage Tedan, Rhodobacter phage RcSimone_Hastad and Roseobacter phages RDJL_Phi_1 and RDJL_Phi_2). However, they belonged to a different subcluster than the "Maresulfivirinae" (Fig. 32).

The two new roseophages in this family were ICBM129 and ICBM153 infecting Sulfitobacter strains M92 and M315, respectively. They originated from seawater samples NHS and P2, respectively (Table 22). According to their nucleotide-based intergenomic identity (NBII $=47.6 \%$ ), both form a genus of their own (Fig. 33). We provisionally termed these genera here "Carlotavirus" (ICBM129) and "Annevirus" (ICBM153).

The Sulfitobacter phages ICBM129 and ICBM153 had large genomes of $70.7-80.8 \mathrm{~kb}$, 57.7-57.8\% G+C content and 98-116 predicted ORFs. From these genes, 45-47 could be functionally annotated. For both viruses, phageTerm analysis determined random genome ends (Table 15). This was reflected by the fact that with the chosen termini, the functional gene module "DNA, RNA and nucleotide metabolism" was being split in the depicted genome map (Fig. 35). This module comprised genes coding for the following proteins: a DNA polymerase I (PC_510), another DNA/RNA polymerase (PC_710, only in ICBM129), a DNA polymerase
processivity factor (PC_453), a DNA polymerase exonuclease subunit (PC_454), a clamp loader of the DNA polymerase (PC_508), an exonuclease (PC_502), a thymidylate synthase ThyX (PC_470), a DNA primase (PC_465), a 5'-3' deoxyribonucleotidase (PC_463) and a cobalamin-dependent ribonucleotide reductase (PC_355) (Table 24). In addition, five DNA helicases were found (PC_456, PC_504, PC_464, PC_469, and PC_501). "Head and packaging" proteins comprised a capsid morphogenesis protein (PC_490), capsid scaffolding protein (PC_489), major capsid protein (PC_488), portal protein (PC_492), two structural proteins (PC_477 and PC_478) and the terminase large subunit (PC_82). Further morphogenesis genes were the neck protein Ne1 (PC_483), the tail completion protein Tc1 (PC_482), two tail proteins (PC_475 and PC_481), a tail assembly chaperone (PC_480), two tail assembly proteins (PC_353 and PC_476) and the tail length tape measure protein (PC_479). In addition, the connectors head closure protein Hc 1 (PC_484) and head-tail adaptor protein Ad1 (PC_485) were annotated. Two lysis genes were encoded in the genomes: a spanin (PC_472) and an endolysin (PC_354). Furthermore, a GTP cyclohydrolase (PC_459), a DNA transfer protein (PC_486), a dATP/dGTP pyrophosphohydrolase (PC_455) were encoded in both genomes. The genome of phage ICBM129 additionally contained a hemolysin gene (PC_702). The genome of phage ICBM153 possessed an additional peptide chain release factor (PC_760), a dCMP deaminase (PC_782) and a PhoH-like phosphate starvation-inducible protein (PC_113) (SI file S4-10). Moreover, genes coding for queuosine (Que) biosynthesis proteins were present in the genomes of Sulfitobacter phages ICBM129 and ICBM153 (Table 24). Que is a hypermodified guanosine analogue in tRNAs (Asp, Asn, His, or Tyr) that leads to improved translation efficiency (El Yacoubi et al. 2012). Que or preQ ${ }_{0}$ (precursor 7-cyano-7-deazaguanine) biosynthesis genes have been detected in phages and viral metagenomes before (Sabri et al. 2011; Holmfeldt et al. 2013; Kulikov et al. 2014), also in the genome of Dinoroseobacter phage vB_DshS_R5C (Yang et al. 2017). Recently, it was shown that they serve for the insertion of 7-deazaguanine derivatives into phage DNA, which is then protected against host restriction enzymes (Hutinet et al. 2017; Hutinet et al. 2019). All four required Que biosynthesis genes queCDEF (QueC-like queuosine biosynthesis gene, QueDlike 6-pyruvoyl-tetrahydropterin synthase, QueE-like radical SAM domain and QueF-like queuosine biosynthesis gene) as well as a GTP cyclohydrolase and a queuine tRNAribosyltransferase could be found in the genomes of Sulfitobacter phages ICBM129 and ICBM153. While in the genome of Sulfitobacter phage ICBM129 no tRNAs could be predicted, in the genome of Sulfitobacter phage ICBM153, seven tRNAs of seven different types were found (Table 23).

PhageTerm could not predict any replication and packaging strategy for these two phages (Table 15). The presence of a T7-like DNA polymerase I could point towards a T7-like bidirectional replication and DNA packaging technique. Gene annotations resembled the predicted siphoviral morphology, as tail completion protein Tc 1 and tail length tape measure protein, but no tail sheath were annotated (Tables 22 and 24). Both genomes contained a Lambda-repressor like gene, indicating a lysogenic potential of the phages. The "Maresulfivirinae" phages shared 52 core proteins, with 36 of them being annotated (Table 25). The core proteins included the five queuosine biosynthesis proteins involved in anti-host defense.


Fig. 32: Section of the whole-genome based proteomic tree showing VGC_11. Names of cultivated roseophages are marked in green (previous) and blue (this study). Color-strips indicate affiliation to ICTV-recognized families and subfamilies, respectively. Genome lengths are displayed as bar chart.

Isolation and classification of roseophages
Table 22: Phages of VGC_11. Roseophages are marked in blue. $\mathrm{Bp}=$ base pairs. N.a. = not available. *Morphology predicted by Virfam.

| Phage | Host | Genome size [bp] | GC content [\%] | Accession | Previous classification (reference) | ICTV or newly proposed taxonomy |  |  | Morphology | Isolation source | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Family/Subfamily | Genus | Species |  |  |  |
| Dinoroseobacter phage vB_DshS_R5C | Dinoroseobacter shibae DFL12T | 77874 | 61.50\% | KY606587 | Caudoviricetes, Nanhaivirus (Kropinski et al. 2018; Turner et al. 2020) | Mesyanzhinoviridae, <br> "Maresulfivirinae" | Nanhaivirus | D5C | siphoviral | seawater | Yang et al. (2017) |
| Sulfitobacter phage ICBM153 | Sulfitobacter sp . M315 | 80756 | 57.70\% | this study |  |  | "Annevirus" | "trei" | siphoviral* | Seawater (P2) | this study |
| Sulfitobacter phage ICBM129 | $\begin{aligned} & \text { Sulfitobacter } \mathrm{sp} \text {. } \\ & \text { M92 } \end{aligned}$ | 70738 | 57.80\% | this study |  |  | "Carlotavirus" | "una" | siphoviral* | $\begin{aligned} & \text { Seawater } \\ & \text { (NHS) } \\ & \hline \end{aligned}$ | this study |
| Podoviridae sp. isolate ct3Et533 | n.a. | 41714 | 45.10\% | MW202510 |  |  |  |  |  | freshwater river | unpublished |
| Caudovirales sp. ctOwN3 | n.a. | 59743 | 43.80\% | MN582058 |  |  |  |  |  | freshwater river | unpublished |
| Pelagibacter phage HTVC023P | Candidatus Pelagibacter sp. HTCC1062 | 60878 | 35.00\% | MN698239 |  |  |  |  | podoviral | seawater | Zhang et al. <br> (2021) |
| Phage 023Pt_psg01 | n.a. | 59769 | 36.30\% | MW574966 |  |  |  |  |  | seawater | unpublished |
| Pelagibacter phage HTVC027P | Candidatus Pelagibacter sp. HTCC1062 | 57595 | 34.80\% | MN698241 | HTVC023Ptype (Zhang et al. 2021) |  |  |  | podoviral | seawater | Zhang et al. (2021) |
| Stenotrophomonas phage BUCT555 | Stenotrophomonas maltophilia 1207 | 39440 | 61.40\% | MW291508 |  |  |  |  | podoviral | hospital sewage | Han et al. (2021) |
| Podoviridae sp. ctpVR23 | n.a. | 37417 | 49.40\% | MN582112 |  |  |  |  |  | freshwater river | unpublished |
| Vibrio phage 23E28.1 | Vibrio crassostreae | 40729 | 49.90\% | MW824387 |  |  |  |  |  | seawater | unpublished |
| Vibrio phage JSF9 | Vibrio cholerae | 40007 | 50.60\% | KY883656 |  |  |  |  |  | freshwater river | $\begin{aligned} & \text { Naser et al. } \\ & (2017) \\ & \hline \end{aligned}$ |
| Ruegeria phage Tedan | Ruegeria sp. AU67 | 64084 | 54.40\% | MT764845 | Xiamenvirus (Baum et al. 2021) |  | Xiamenvirus |  | siphoviral | sponge | Baum et al. (2021) |
| Rhodobacter phage RcSimone-Håstad | Rhodobacter capsulatus SB 1003 | 63102 | 60.70\% | MW677525 | Caudovirales, Siphoviridae (Rapala et al. 2021) |  |  |  | siphoviral | freshwater river | Rapala et al. (2021) |
| Roseobacter phage RDJL_Phi_2 | Roseobacter denitrificans OCh114 | 63513 | 57.30\% | KT266805 | Caudoviricetes, <br> Xiamenvirus <br> (Kropinski et al |  |  |  | siphoviral | seawater | Liang et al. (2016) |
| Roseobacter phage RDJL_Phi_1 | Roseobacter denitrificans OCh114 | 62668 | 57.90\% | HM151342 | 2016 <br> al. 2020) |  | Xiamenvirus |  | siphoviral | seawater | Zhang and <br> Jiao (2009) |

Isolation and classification of roseophages

| Achromobacter phage vB_Ade_ART | Achromobacter denitrificans PR1 | 95343 | 55.00\% | MH746817 |  |  |  | wastewater | unpublished |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Achromobacter phage JWX | Achromobacter xylosoxidans | 49714 | 55.40\% | KP202969 |  | Steinhofvirus | siphoviral | sewage | Dreiseikelma nn et al. (2017) |
| Achromobacter phage vB_AxyS_19_32_Axy14 | Achromobacter xylosoxidans I2BC | 46703 | 55.00\% | MK962633 |  |  | siphoviral | sewage | Essoh et al. (2020) |
| Achromobacter phage 83_24 | Achromobacter xylosoxidans | 48216 | 54.90\% | KP202970 |  | Steinhofvirus | siphoviral | sewage | Dreiseikelma nn et al. (2017) |
| Siphoviridae sp. isolate ctIqW946 | n.a. | 56278 | 59.00\% | MW202657 |  |  |  | freshwater river | unpublished |
| Alphaproteobacteria phage PhiJL001 | n.a. | 63649 | 62.10\% | AY576273 | Mesyanzhinovviridae | Keylargovirus | siphoviral | seawater, sponge associated | Lohr et al. (2005) |
| Pseudomonas phage AIIMS_Plu_RaNi | Pseudomonas luteola | 46647 | 64.50\% | MZ926748 |  |  | siphoviral | sewage | $\begin{aligned} & \text { Rathor et al. } \\ & (2022) \end{aligned}$ |
| Pseudomonas phage ZC01 | Pseudomonas aeruginosa | 57061 | 63.50\% | KU356689 |  |  | siphoviral | composting | Amgarten et al. (2017) |
| Pseudomonas phage PaMx11 | Pseudomonas aeruginosa | 59878 | 64.50\% | JQ067087 | Bradleyvirinae | Abidjanvirus | siphoviral | freshwater | SepúlvedaRobles et al. (2012) |
| Stenotrophomonas phage Sonora | Stenotrophomonas maltophilia | 63825 | 63.00\% | MZ326860 |  |  | siphoviral | soil | Teve et al. (2022) |
| Bordetella phage CN 2 | Bordetella bronchiseptica ATCC 10580 | 62030 | 64.10\% | KY000219 | Mesyanzhinovviridae/ |  | siphoviral | canal | Petrovic et al. |
| Bordetella phage MW2 | Bordetella bronchiseptica ATCC 10580 | 60160 | 64.10\% | KY000218 | Rabinowitzvirinae |  | siphoviral | wastewater | (2017) |
| $\begin{aligned} & \text { Pseudomonas virus } \\ & \text { PaSz_6 } \\ & \hline \end{aligned}$ | Pseudomonas aeruginosa PAO1 | 54656 | 64.70\% | MN871482 |  |  |  | Seawater | unpublished |
| Sphaerotilus phage SN1 | Sphaerotilus natans | 61858 | 64.40\% | ON165687 |  |  |  | wastewater | Gunathilake et al. (2022) |
| Pseudomonas phage LKO4 | Pseudomonas aeruginosa | 61818 | 64.40\% | KC758116 | Mesyanzhinovviridae/ Rabinowitzvirinae | Yuavirus |  | n.a. | unpublished |
| Brevundimonas phage vB_BsubS_Delta | Brevundimonas subvibrioides ATCC 15264 | 87225 | 62.50\% | MN862068 |  |  | siphoviral | pond water | Mascolo et <br> al. (2022) |
| Pseudomonas phage Epa19 | Pseudomonas sp. | 32090 | 61.40\% | MT118296 |  |  |  | n.a. | unpublished |
| Pseudomonas phage Epa5 | Pseudomonas sp. | 64096 | 62.20\% | MT108725 | Mesyanzhinovviridae/ <br> Bradleyvirinae | Epaquintavirus |  | sewage | Farlow et al. (2020) |
| Janthinobacterium phage vB_JliM_Donnerlittchen | Janthinobacterium lividum EIF1 | 58220 | 67.80\% | ON529854 |  |  |  | sewage | unpublished |
| Xanthomonas phage Mallos | Xanthomonas translucens | 59242 | 61.80\% | ON189047 |  |  | siphoviral | sewage | Erdrich et al. (2022) |

Isolation and classification of roseophages

| Pseudomonas phage PaMx74 | Pseudomonas aeruginosa | 58637 | 68.40\% | JQ067093 |  |  | siphoviral | sewage | SepúlvedaRobles et al. (2012) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pseudomonas phage AAT_1 | Pseudomonas aeruginosa PA14 | 57599 | 65.90\% | KU204984 |  |  |  | fetal bovine serum | AndradeDomínguez and Kolter (2016) |
| Pseudomonas phage PaMx28 | Pseudomonas aeruginosa | 55108 | 66.50\% | JQ067089 |  |  | siphoviral | sewage | SepúlvedaRobles et al. (2012) |
| Stenotrophomonas phage A1432 | Stenotrophomonas maltophilia YCR3A-1 | 61660 | 61.90\% | ON005621 |  |  |  | n.a. | unpublished |
| Xanthomonas phage Elanor | Xanthomonas translucens | 62341 | 64.50\% | ON189045 |  |  | siphoviral | soil | Erdrich et al. (2022) |
| Xanthomonas phage Xoo_sp2 | Xanthomonas oryzae pv. oryzae | 60497 | 66.50\% | KX241618 | Mesyanzhinovviridae/ Bradleyvirinae | Xooduovirus | siphoviral | soil | Dong et al. (2018) |
| Stenotrophomonas phage vB_Sm_QDWS359 | Stenotrophomonas maltophilia SM102 | 61862 | 67.50\% | ON331942 |  |  |  | n.a. | unpublished |
| Stenotrophomonas phage DLP4 | Stenotrophomonas maltophilia D1585 | 63945 | 65.10\% | MG018224 | Mesyanzhinovviridae/ <br> Bradleyvirinae | Bosavirus | siphoviral | soil | Peters et al. (2019) |
| Stenotrophomonas phage vB_SmaS_AXL_1 | Stenotrophomonas maltophilia D1585 | 63962 | 67.30\% | OL674541 |  |  | siphoviral | soil | McCutcheon et al. (2022) |
| Xanthomonas phage FMYAK_P1 | Xanthomonas sp. | 64088 | 67.80\% | OK275492 |  |  |  | freshwater | unpublished |



Fig. 33: Nucleotide-based intergenomic identities of phages in VGC_11, calculated with VIRIDIC. Members of the newly proposed genera "Carlotavirus" and "Annevirus", the existing genus Nanhaivirus, and the newly proposed subfamily "Maresulfivirinae" of the family Mesyanzhinoviridae are annotated with a blue box and colored labels.


Fig. 34: PC-based intergenomic similarities of phages in VGC_11, calculated with VirClust (log e-value clustering, matches kept if bitscore $>=30$, coverage $>=70$, evalue $<0.00001$, identity $>=0 \%$ ). Members of the newly proposed subfamily "Maresulfivirinae" of the family Mesyanzhinoviridae are annotated with a blue box.

Table 23: tRNAs found in the genome of Sulfitobacter phage ICBM153.

| Phage | tRNA_\# | tRNA_Begin | tRNA_End | tRNA_Type |
| :--- | :--- | :--- | :--- | :--- |
| Sulfitobacter phage ICBM153 | 1 | 51850 | 51776 | Gln |
| Sulfitobacter phage ICBM153 | 2 | 51518 | 51441 | Thr |
| Sulfitobacter phage ICBM153 | 3 | 51222 | 51149 | Gly |
| Sulfitobacter phage ICBM153 | 4 | 50993 | 50915 | Glu |
| Sulfitobacter phage ICBM153 | 5 | 50798 | 50723 | Asn |
| Sulfitobacter phage ICBM153 | 6 | 50717 | 50641 | Met |
| Sulfitobacter phage ICBM153 | 7 | 50386 | 50311 | Phe |



Fig. 35: Genome map of Sulfitobacter phages ICBM129 and ICBM153.

Table 24: Gene annotations of Sulfitobacter phage ICBM129. Strand 1: forward orientation. Strand -1: reverse orientation. $\mathrm{Hp}=$ hypothetical protein. *Core protein of the phages in the "Maresulfivirinae".

| Gene ID | Gene <br> start | Gene end | Gene length [bp] | Stra <br> nd | PC ID | Protein function | Category |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_1 | 1 | 159 | 159 | -1 | 451 | QueE-like radical SAM domain | Anti-host defense |
| gene_2 | 159 | 545 | 387 | -1 | 452* | hp* | unknown |
| gene_3 | 557 | 1519 | 963 | -1 | 453* | DNA polymerase processivity factor* | DNA, RNA and nucleotide metabolism |
| gene_4 | 1524 | 2174 | 651 | -1 | 454* | DNA polymerase exonuclease subunit* | DNA, RNA and nucleotide metabolism |
| gene_5 | 2167 | 2604 | 438 | -1 | 455* | dATP/dGTP pyrophosphohydrolase* | other |
| gene_6 | 2597 | 3808 | 1212 | -1 | 456* | Dda-like helicase* | DNA, RNA and nucleotide metabolism |
| gene_7 | 3808 | 3930 | 123 | -1 | 697 | hp | unknown |
| gene_8 | 3930 | 5231 | 1302 | -1 | 457* | queuine tRNAribosyltransferase* | Anti-host defense |
| gene_9 | 5231 | 5425 | 195 | -1 | 698 | hp | unknown |
| gene_10 | 5506 | 6030 | 525 | -1 | 458* | QueF-like queuosine biosynthesis gene* | Anti-host defense |
| gene_11 | 6090 | 6650 | 561 | -1 | 459* | GTP cyclohydrolase* | other |
| gene_12 | 6659 | 7495 | 837 | -1 | 460* | QueC-like queuosine biosynthesis* | Anti-host defense |
| gene_13 | 7626 | 8252 | 627 | -1 | 461* | hp* | unknown |
| gene_14 | 8275 | 8445 | 171 | -1 | 699 | hp | unknown |
| gene_15 | 8531 | 8980 | 450 | -1 | 462* | QueD-like 6-pyruvoyltetrahydropterin synthase* | Anti-host defense |
| gene_16 | 8982 | 9563 | 582 | -1 | 463* | $5^{\prime}-3^{\prime}$ <br> deoxyribonucleotidase* | DNA, RNA and nucleotide metabolism |
| gene_17 | 9560 | 11080 | 1521 | -1 | 464* | DNA helicase* | DNA, RNA and nucleotide metabolism |
| gene_18 | 11067 | 12785 | 1719 | -1 | 465* | DNA primase* | DNA, RNA and nucleotide metabolism |
| gene_19 | 12860 | 13741 | 882 | -1 | 466* | hp* | unknown |
| gene_20 | 13769 | 14311 | 543 | -1 | 467* | $\mathrm{hp} *$ | unknown |
| gene_21 | 14313 | 14657 | 345 | -1 | 468* | $\mathrm{hp} *$ | unknown |
| gene_22 | 14693 | 16462 | 1770 | -1 | 469* | DNA helicase* | DNA, RNA and nucleotide metabolism |
| gene_23 | 16462 | 17319 | 858 | -1 | 470* | thymidylate synthase ThyX* | DNA, RNA and nucleotide metabolism |
| gene_24 | 17724 | 17918 | 195 | 1 | 471* | Lambda repressor-like* | lytic/lysogenic regulation |
| gene_25 | 17905 | 18213 | 309 | -1 | 472* | Spanin* | lysis |

Isolation and classification of roseophages

| gene_26 | 18107 | 18466 | 360 | -1 | 473* | hp* | unknown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_27 | 18463 | 19158 | 696 | -1 | 700 | hp | unknown |
| gene_28 | 19155 | 19577 | 423 | -1 | 474 | hp | unknown |
| gene_29 | 19577 | 22165 | 2589 | -1 | 475 | tail protein | tail |
| gene_30 | 22162 | 22971 | 810 | -1 | 353 | tail assembly protein | tail |
| gene_31 | 22972 | 24672 | 1701 | -1 | 476 | tail assembly protein | tail |
| gene_32 | 24672 | 25736 | 1065 | -1 | 477 | structural protein | head and packaging |
| gene_33 | 25738 | 27243 | 1506 | -1 | 478 | structural protein | head and packaging |
| gene_34 | 27243 | 30203 | 2961 | -1 | 479* | tail length tape measure protein* | tail |
| gene_35 | 30561 | 30986 | 426 | -1 | 480* | tail assembly chaperone* | tail |
| gene_36 | 31112 | 32311 | 1200 | -1 | 481* | tail protein* | tail |
| gene_37 | 32330 | 32737 | 408 | -1 | 482* | tail completion Tc1* | tail |
| gene_38 | 32734 | 33144 | 411 | -1 | 483* | neck protein $\mathrm{Ne} 1^{*}$ | tail |
| gene_39 | 33137 | 33511 | 375 | -1 | 484* | head closure Hc1* | connector |
| gene_40 | 33508 | 33990 | 483 | -1 | 485* | head-tail adaptor Ad1* | connector |
| gene_41 | 34083 | 35741 | 1659 | -1 | 486* | DNA transfer protein* | other |
| gene_42 | 35810 | 36343 | 534 | -1 | 701 | hp | unknown |
| gene_43 | 36330 | 36599 | 270 | -1 | 702 | hemolysin | other |
| gene_44 | 36671 | 36922 | 252 | -1 | 487* | hp* | unknown |
| gene_45 | 36998 | 38218 | 1221 | -1 | 488* | major capsid protein* | head and packaging |
| gene_46 | 38296 | 39075 | 780 | -1 | 489* | capsid scaffolding protein* | head and packaging |
| gene_47 | 39302 | 39802 | 501 | 1 | 703 | hp | unknown |
| gene_48 | 40085 | 41047 | 963 | -1 | 354 | endolysin ( N acetylmuramidase) | lysis |
| gene_49 | 41087 | 42199 | 1113 | -1 | 490* | capsid morphogenesis protein* | head and packaging |
| gene_50 | 42471 | 44324 | 1854 | -1 | 355* | ribonucleotide reductase* | DNA, RNA and nucleotide metabolism |
| gene_51 | 44526 | 45350 | 825 | 1 | 491* | hp* | unknown |
| gene_52 | 45386 | 46906 | 1521 | -1 | 492* | portal protein* | head and packaging |
| gene_53 | 46906 | 47049 | 144 | -1 | 704 | hp | unknown |
| gene_54 | 47188 | 47427 | 240 | 1 | 493 | hp | unknown |
| gene_55 | 47496 | 47756 | 261 | 1 | 705 | hp | unknown |
| gene_56 | 47756 | 47992 | 237 | 1 | 494 | hp | unknown |
| gene_57 | 47989 | 48138 | 150 | 1 | 706 | hp | unknown |
| gene_58 | 48149 | 48412 | 264 | 1 | 707 | hp | unknown |
| gene_59 | 48409 | 48951 | 543 | 1 | 495 | hp | unknown |
| gene_60 | 48948 | 49172 | 225 | 1 | 708 | hp | unknown |
| gene_61 | 49224 | 49448 | 225 | 1 | 709 | hp | unknown |
| gene_62 | 49445 | 50056 | 612 | 1 | 710 | DNA/RNA pol | DNA, RNA and nucleotide metabolism |
| gene_63 | 50053 | 50388 | 336 | 1 | 711 | hp | unknown |
| gene_64 | 50385 | 51080 | 696 | 1 | 712 | hp | unknown |
| gene_65 | 51133 | 51318 | 186 | -1 | 713 | hp | unknown |
| gene_66 | 51374 | 51580 | 207 | -1 | 714 | hp | unknown |
| gene_67 | 51671 | 53143 | 1473 | -1 | 82* | terminase large subunit* | head and packaging |
| gene_68 | 53258 | 53488 | 231 | 1 | 715 | hp | unknown |
| gene_69 | 53571 | 53894 | 324 | -1 | 496* | hp* | unknown |
| gene_70 | 53887 | 54141 | 255 | -1 | 716* | hp* | unknown |
| gene_71 | 54138 | 54578 | 441 | -1 | 497* | hp* | unknown |
| gene_72 | 55306 | 55443 | 138 | -1 | 717 | hp | unknown |

## Isolation and classification of roseophages

| gene_73 | 55443 | 55568 | 126 | -1 | 498 | hp |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| gene_74 | 55658 | 56497 | 840 | -1 | 718 | hp |
| gene_75 | 56548 | 56907 | 360 | -1 | 499 | hp |
| gene_76 | 56904 | 57176 | 273 | -1 | 719 | hp |
| gene_77 | 57119 | 57280 | 162 | -1 | 720 | hp |
| gene_78 | 57277 | 57918 | 642 | -1 | 721 | hp |
| gene_79 | 57918 | 58181 | 264 | -1 | 722 | hp |
| gene_80 | 58165 | 59283 | 1119 | -1 | 500 | hpn |
| gene_81 | 59286 | 59507 | 222 | -1 | 723 | hp |
| gene_82 | 59553 | 59732 | 180 | -1 | 724 | hp |
| gene_83 | 59862 | 60317 | 456 | -1 | $501^{*}$ | DNA helicase* |
| gene_84 | 60299 | 60838 | 540 | -1 | 725 | hp |
| gene_85 | 60835 | 61413 | 579 | -1 | $502^{*}$ | Exonuclease* |
| gene_86 | 61410 | 62093 | 684 | -1 | $503^{*}$ | hp* |
| gene_87 | 62109 | 62282 | 174 | -1 | 726 | hp |
| gene_88 | 62282 | 62632 | 351 | -1 | 727 | hp |
| gene_89 | 62632 | 64287 | 1656 | -1 | $504^{*}$ | DNA helicase |
| gene_90 | 64348 | 64572 | 225 | -1 | 728 | hp |
| gene_91 | 64572 | 65456 | 885 | -1 | 729 | hp |
| gene_92 | 65479 | 65970 | 492 | -1 | $505^{*}$ | hp* |

Table 25: Core proteins of the newly proposed subfamily "Maresulfivirinae" in the family Mesyanzhinoviridae. *maximum number of predicted ORFs divided by number of core proteins.

| predicted ORFs\# | core <br> proteins <br> \# | Annotated <br> core <br> proteins \# | Annotated core proteins (sorted by functional category) | Percentage core proteins / total ORFs* |
| :---: | :---: | :---: | :---: | :---: |
| 98-116 | 52 | 36 | DNA, RNA and nucleotide metabolism: DNA polymerase (PC_510), DNA polymerase processivity factor (PC_453), DNA polymerase exonuclease subunit (PC_454), clamp loader of DNA polymerase (PC_508), exonuclease (PC_502), Dda-like helicase (PC_456), 5'-3' deoxyribonucleotidase (PC_463), DNA helicases (PC_464, PC_501 and PC_504), DNA primase (PC_465), DNA helicase (PC_469), thymidylate synthase ThyX (PC_470), and ribonucleotide reductase (PC_355) <br> Head and packaging: major capsid protein (PC_488), capsid scaffolding protein (PC_489), capsid morphogenesis protein (PC_490), portal protein (PC_492), terminase large subunit (PC_82) <br> Connector: head closure protein Hc1 (PC_484) and the head-tail adaptor Ad1 (PC_485) <br> Tail: tail length tape measure protein (PC_479), tail assembly chaperone (PC_480), tail protein (PC_481), tail completion Tc1 (PC_482), neck protein Ne1 (PC_483) <br> Lysis: spanin (PC_472) <br> Lytic/lysogenic regulation: Lambda repressor-like protein (PC_471), <br> Anti-host defense: queuine tRNA-ribosyltransferase (PC_457), QueF-like queuosine biosynthesis gene (PC_458), QueC-like queuosine biosynthesis (PC_460), QueD-like 6-pyruvoyltetrahydropterin synthase (PC_462), QueE-like radical SAM domain (PC_511) <br> Other: dATP/dGTP pyrophosphohydrolase (PC_455), GTP cyclohydrolase (PC_459), DNA transfer protein (PC_486) | 44.83\% |

### 4.3.5.4. "Hayaniviridae" and "Schlingloffviridae" - two new families of lytic roseophages

One viral genome cluster consisted only of roseophages (VGC_25). It comprised eight of our new isolates and Roseophage CRP-6 (Zhang et al. 2019b) (Fig. 36). Caulobacter phage Sansa (KT001913.1) distantly clustered within this VGC, too. However, it was earlier classified as member of the Casjensviridae family and both, the intergenomic identities calculated with VIRIDIC (Moraru et al. 2020) (Fig. 37a) and the hierarchical clustering based on shared protein content determined with VirClust (Moraru 2023) (SI file S4-13), suggested a misclustering due to long branch attraction. The phage was not included in the further classification.

The phages in this VGC formed two distinct subclusters, sharing less than 20\% PC-based intergenomic similarity with each other (Fig. 36 and 37b). Within the two clusters, the minimum PC-based intergenomic similarity was 74.1 and $75.0 \%$, respectively. Therefore, we suggest referring to them as two potential phage families, which we named here "Hayaniviridae" family and "Schlingloffviridae" family.

The "Hayaniviridae" family contained six phages (ICBM21, ICBM13, ICBM16, ICBM47, ICBM23 and ICBM25) infecting closely related Sulfitobacter strains (Table 26). They were representatives of the large "sulfivirus" cluster, which will be analyzed in more detail in chapter 5. The six phages have been isolated from four different water samples (P1, P2, P4 and NHS) (Table 26). Based on their nucleotide-based intergenomic identities (NBII), all six phages formed one genus (Fig. 37a). We provisionally termed this genus here "Sulfivirus" genus. Each of the phages represented its own species ( $70.3 \% \leq$ NBII $\leq 86.3 \%$ ) (Fig. 37a). Members of the "Schlingloffviridae" family comprised two phages infecting Lentibacter sp. SH36 (ICBM7 and ICBM166) as well as Roseophage CRP-6 (Zhang et al. 2019b) (Table 26). Both Lentibacter phages have been isolated from North Sea water samples, but from different years (HE440-S, HE504-33). Phage CRP-6 has been isolated from the subtropical Pingtan coast in China, infecting Roseobacter strain FZCC0042, which belongs to the RCA cluster (Table 26). All three phages belonged to one genus, based on their nucleotidebased intergenomic identity ( $\mathrm{NBII} \geq 76.8$ ) (Fig. 37a). We provisionally called this genus here "Falkvirus" genus. Each of the phages represented its own species ( $76.8 \% \leq$ NBII $\leq 88.4 \%$ ).

## Genome composition of the "Hayaniviridae" family

Phages of the "Hayaniviridae" family had genome lengths of $52.4-55.6 \mathrm{~kb}$ and a G+C content of 44.6-45.0, with 86-93 predicted ORFs (Table 26). Out of these genes, 28-30 could be annotated (Table 28). PhageTerm analysis indicated the presence of short direct
terminal repeats (DTRs) of 306 to 330 bp at the genome ends (Table 15). The genomes had a modular architecture with two major arms, the left arm encoding genes on the forward strand, the right arm on the reverse strand. In addition, there were a few genes (5-10) on the reverse strand at the very beginning of the genome, which could only be annotated as hypothetical (Fig. 38). The DNA replication and nucleotide metabolism module located on the left genomic arm comprised a DNA primase/helicase (PC_200 or PC_306), a DNA polymerase I (PC_94), a thymidylate synthase ThyX (PC_1), an exonuclease (PC_90) and a cobalamin-dependent ribonucleotide reductase (PC_300, PC_5223 or PC_525) (Table 28). Phages ICBM13, ICBM23, ICBM25 and ICBM47 had a second DNA polymerase (PC_375 or PC_731) encoded and in the genome of ICBM25, an RNA ligase (PC_805) and a polynucleotide kinase (PC_806) were additionally annotated. The genomes had varying numbers of HNH endonucleases endoded in their genomes, which differed also in their positions (Fig. 38, SI file S4-10). On the right genomic arm, there were the morphology and the lysis module encoded. An endolysin (PC_3) was encoded close to the center of the genome. The structural genes comprised the major capsid protein (PC_104), the portal protein (PC_105), a capsid maturation protease (PC_196) and another capsid protein (PC_151) as well as the terminase large subunit (PC_82) (Table 28). Furthermore, the head closure protein Hc1 (PC_101), tail completion protein Tc1 (PC_100), a tail fiber protein (PC_2), a minor tail protein (PC_99), a tail length tape measure protein (PC_310 or PC_522) were annotated. Another protein in the tail module was annotated either as a concanavalin A-like lectin/glucanase (PC_368 in ICBM13, ICBM16, and ICBM23), as hydrolase/lipase (PC_359 in ICBM25) or as tail fiber protein (PC_790 in ICBM21). In addition, a heat-shock protein DnaJ (PC_168), a metallo-phosphoesterase (PC_96) and a nucleotide pyrophosphohydrolase (PC_181) were found (Table 28). Different numbers of DNA methylases were encoded in the genomes, which are likely involved in strategies to circumvent host defense. Searching the genomes of Sulfitobacter phages ICBM21 and ICBM47 with tRNAscan-SE (Lowe and Chan 2016), one asparagine - tRNA was predicted, respectively (Table 27). No tRNAs were found in the other phage genomes of this family.

The presence of DTRs at the genome ends and a T7-like polymerase A indicated that the phages of the "Hayaniviridae" family use a T7-like bidirectional genome replication and packaging strategy (Tables 15 and 28). A siphoviral morphology with an icosahedral capsid and a long, non-contractile tail was predicted by Virfam. It was also resembled by the gene annotations (tail length tape measure protein and tail completion protein Tc1 present, no tail sheath) (Table 28). The fact that no lysogeny-related proteins have been annotated suggests that these phages are strictly lytic. The phages of the "Hayaniviridae" family shared 63 core
proteins, including 20 with an annotated function that belonged to all functional categories (Table 30).

## Genome composition of the "Schlingloffviridae" family

The two Lentibacter phages of the "Schlingloffviridae" family (ICBM7 and ICBM166) had genome lengths of $44.9-45.6 \mathrm{~kb}$ and a G+C content of $47.1-47.4 \%$ with $72-73$ predicted ORFs (Table 26). In both genomes, 31 of the genes could be annotated (Table 29). Short DTRs (109 bp) were predicted at the genome ends (Table 15). The genomes were organized in two arms (Fig. 38). On the left arm (forward strand), mainly genes of the DNA, RNA and nucleotide metabolism were annotated, comprising a thymidylate synthase (PC_1), an RNA polymerase sigma factor (PC_398), a DNA primase/helicase (PC_200), a DNA polymerase I (PC_94), an exonuclease (PC_90), an endonuclease (PC_148), a ribonucleotide reductase (PC_5) and a glutaredoxin (PC_150) (Table 29). The right arm of the genomes (reverse strand) encoded the structural module containing the portal protein (PC_105), the major capsid protein (PC_104), a capsid scaffolding protein (PC_414) and the terminase large subunit (PC_82) as well as two connectors (tail completion Tc1 (PC_100), head closure Hc1 (PC_101)). In addition, three tail proteins (PC_410, PC_411, and PC_423)), two tail fiber proteins (PC_408 and PC_422)), a tail length tape measure protein (PC_412), and a minor tail protein (PC_99) were annotated (Table 29). Two endolysin-encoding genes were present in both genomes (PC_95 and PC_146). In addition, genes coding for a bifunctional heptose 7-phosphate kinase / heptose 1-phosphate adenyltransferase (PC_389), a transcriptional regulator (Trp repressor; PC_334), a metallophosphoesterase (PC_96), as well as a MazG-like pyrophosphatase (PC_149) and PhoH-like phosphate starvation-inducible protein (PC_113) were encoded. The genomes of Lentibacter phages ICBM7 and ICBM166 contained two proteins involved in anti-host defense: a SaV-like protein (PC_397), which is involved in the sensitivity to the host abortive infection mechanism AbiV (Haaber et al. 2009), and a S-adenosyl-L-methionine-dependent methyltransferase (PC_402), which can serve for protection against restriction-modification systems (Murphy et al. 2013) (Table 29). In addition, an AMG was found coding for a 2OG-Fe(II) oxygenase (PC_419). In cyanophages, this enzyme is thought to affect the nitrogen metabolism of the host during infection (Sullivan et al. 2010; Wang et al. 2022). No tRNAs were predicted in these phage genomes.

As phage ICBM7 and ICBM166 possessed DTRs at the genome termini and encoded a T7-like DNA polymerase I, a T7-like bidirectional genome replication and packaging technique can be suspected (Tables 15, 28, and 29). For Phage CRP-6, genome ends and packaging strategy are not described (Zhang et al. 2019b). The annotation of a tail length tape measure
protein and the tail completion protein Tc 1 and the absence of a tail sheath matched the prediction of a siphoviral morphology by Virfam (Lopes et al. 2014) (Tables 28 and 29). Phage CRP-6 was described as having a podoviral morphology with an icosahedral capsid and a short tail (Zhang et al. 2019b). This would mean there were two different tail morphologies within one genus. Virfam analysis of the CRP-6 genome could now specify a gene that the authors annotated as" hypothetical protein" as the tail completion protein Tc 1 , which indicates that phage CRP-6 actually also has a long tail morphology. A siphoviral structure was predicted (Table 26). The podoviral morphology observed by transmission electron microscopy could potentially be due to loss of the phage tails in the course of sample preparation. As no lysogenyrelated proteins have been annotated in these genomes, a strictly lytic lifestyle of the phages can be suspected. The phages of the "Schlingloffviridae" family shared 54 core proteins, including 31 with an annotated function (Table 30).


Fig. 36: Section of the whole-genome based proteomic tree showing VGC_25. Names of cultivated roseophages are marked in green (previous) and blue (this study). Genome lengths are displayed as bar chart.

Isolation and classification of roseophages
Table 26: Phages of VGC_25. *Morphology predicted by Virfam.

| Phage | Host | Genome <br> size [bp] | GC <br> content <br> [\%] | Previous classification (reference) | ICTV or newly proposed taxonomy |  |  | Morphology | Isolation source | Reference / <br> Accession |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Family | Genus | Species |  |  |  |
| Sulfitobacter phage ICBM21 | Sulfitobacter sp. <br> M53 | 52,607 | 44.6 |  | "Hayaniviridae" | "Sulfivirus" | "zes" | siphoviral* | Seawater (NHS) | This study |
| Sulfitobacter phage ICBM13 | Sulfitobacter sp. <br> M45 | 53,694 | 44.8 |  |  |  | "vif" | siphoviral* | Seawater (P2) | This study |
| Sulfitobacter phage ICBM16 | Sulfitobacter sp. <br> M53 | 53,115 | 45.0 |  |  |  | "vier" | siphoviral* | Seawater (P1) | This study |
| Sulfitobacter phage ICBM47 | Sulfitobacter sp. <br> M86 | 52,388 | 44.8 |  |  |  | "drie" | siphoviral* | Seawater (P4) | This study |
| Sulfitobacter phage ICBM23 | Sulfitobacter sp. <br> M55 | 53,772 | 44.9 |  |  |  | "een" | siphoviral* | Seawater (P2) | This study |
| Sulfitobacter phage ICBM25 | Sulfitobacter sp. <br> M63 | 55,591 | 45.0 |  |  |  | "twee" | siphoviral* | Seawater (NHS) | This study |
| Lentibacter phage ICBM7 | Lentibacter sp. SH36 | 45,550 | 47.1 |  |  |  | "tva" | siphoviral* | Seawater (HE440-S) | This study |
| Lentibacter phage ICBM166 | Lentibacter sp. SH36 | 44,947 | 47.4 |  | "Schlingloffviridae" | "Falkvirus" | "eni" | siphoviral* | Seawater (HE504-33) | This study |
| Roseobacter phage CRP-6 | Roseobacter strain FZCC0042 | 44,927 | 47.0 | CRP-6-type (Zhang <br> et al. 2019a) |  |  |  | siphoviral* <br> (podoviral) | Seawater (Pingtan coast, Taiwan Strait) | Zhang et al. <br> (2019a), <br> MK613348 |



Fig. 37: Internal clustering of VGC_25. A Nucleotide-based intergenomic identities calculated with VIRIDIC. B PC-based intergenomic similarities calculated with VirClust (log e-value clustering, matches kept if bitscore $>=30$, coverage $>=70$, evalue $\langle 0.00001$, identity $>=0 \%$ ). The newly proposed families "Hayaniviridae" and "Schlingloffviridae" are annotated with colored boxes.

Table 27: tRNAs found in the genomes of "Sulfivirus" phages.

| Phage | tRNA_\# | tRNA_Begin | tRNA_End | tRNA_Type |
| :--- | :--- | :--- | :--- | :--- |
| Sulfitobacter phage ICBM21 | 1 | 50164 | 50088 | Asn |
| Sulfitobacter phage ICBM47 | 1 | 50941 | 50865 | Asn |



Fig. 38: Genome maps of VGC_25. A Phages of the "Hayaniviridae" family. B Phages of the "Schlingloffviridae" family.

Table 28: Gene annotations of Lentibacter phage ICBM16. Strand 1: forward orientation. Strand -1: reverse orientation. Hp = hypothetical protein. *Core proteins of phages in the "Hayaniviridae" family.

| Gene ID | Gene start | Gene end | Gene length [bp] | Stra <br> nd | PC ID | Protein function | Category |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_1 | 595 | 810 | 216 | -1 | 515 | hp | unknown |
| gene_2 | 810 | 1028 | 219 | -1 | 156* | $\mathrm{hp} *$ | unknown |

Isolation and classification of roseophages

| gene_3 | 1025 | 1357 | 333 | -1 | 157* | hp* | unknown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_4 | 1381 | 1641 | 261 | -1 | 158* | $\mathrm{hp*}$ | unknown |
| gene_5 | 1641 | 1823 | 183 | -1 | 364 | hp | unknown |
| gene_6 | 1839 | 2501 | 663 | -1 | 257 | hp | unknown |
| gene_7 | 2533 | 2703 | 171 | -1 | 159* | hp* | unknown |
| gene_8 | 2746 | 2970 | 225 | -1 | 370 | hp | unknown |
| gene_9 | 3553 | 4104 | 552 | 1 | 155* | HNH endonuclease* | DNA, RNA and nucleotide metabolism |
| gene_10 | 4190 | 4474 | 285 | 1 | 371 | hp | unknown |
| gene_11 | 4565 | 4780 | 216 | 1 | 516 | hp | unknown |
| gene_12 | 4822 | 5016 | 195 | 1 | 160* | hp* | unknown |
| gene_13 | 5019 | 5204 | 186 | 1 | 161* | $\mathrm{hp*}$ | unknown |
| gene_14 | 5194 | 5475 | 282 | 1 | 162* | hp * | unknown |
| gene_15 | 5477 | 5872 | 396 | 1 | 163* | hp* | unknown |
| gene_16 | 5933 | 6379 | 447 | 1 | 164* | $\mathrm{hp*}$ | unknown |
| gene_17 | 6376 | 6705 | 330 | 1 | 165* | hp * | unknown |
| gene_18 | 6702 | 6953 | 252 | 1 | 166* | hp * | unknown |
| gene_19 | 6968 | 7459 | 492 | 1 | 512 | hp | unknown |
| gene_20 | 7526 | 8083 | 558 | 1 | 167* | $\mathrm{hp*}$ | unknown |
| gene_21 | 8444 | 8785 | 342 | 1 | 517 | hp | unknown |
| gene_22 | 8782 | 9141 | 360 | 1 | 258 | hp | unknown |
| gene_23 | 9138 | 9857 | 720 | 1 | 351 | DNA methylase N-4/N-6 | anti-host defense |
| gene_24 | 9854 | 10438 | 585 | 1 | 305 | HNH endonuclease | DNA, RNA and nucleotide metabolism |
| gene_25 | 10435 | 12105 | 1671 | 1 | 200 | DNA primase/helicase | DNA, RNA and nucleotide metabolism |
| gene_26 | 12105 | 12431 | 327 | 1 | 168* | heat-shock protein DnaJ* | unknown |
| gene_27 | 12443 | 12640 | 198 | 1 | 518 | hp | unknown |
| gene_28 | 12640 | 12813 | 174 | 1 | 519 | hp | unknown |
| gene_29 | 12825 | 13070 | 246 | 1 | 372 | hp | unknown |
| gene_30 | 13054 | 13209 | 156 | 1 | 259 | hp | unknown |
| gene_31 | 13206 | 15095 | 1890 | 1 | 94* | DNA polymerase $\mathrm{I}^{*}$ | DNA, RNA and nucleotide metabolism |
| gene_32 | 15079 | 15834 | 756 | 1 | 260 | C-5 cytosine methyltransferase | anti-host defense |
| gene_33 | 15949 | 16122 | 174 | 1 | 169* | $\mathrm{hp*}$ | unknown |
| gene_34 | 16137 | 16472 | 336 | 1 | 170* | hp * | unknown |
| gene_35 | 16509 | 17072 | 564 | 1 | 147* | hp * | unknown |
| gene_36 | 17072 | 17311 | 240 | 1 | 171* | hp* | unknown |
| gene_37 | 17304 | 17522 | 219 | 1 | 172* | $\mathrm{hp*}$ | unknown |
| gene_38 | 17519 | 17677 | 159 | 1 | 173* | hp * | unknown |
| gene_39 | 17677 | 17880 | 204 | 1 | 174* | hp* | unknown |
| gene_40 | 17996 | 18835 | 840 | 1 | 1* | thymidylate synthase ThyX* | DNA, RNA and nucleotide metabolism |
| gene_41 | 18832 | 18975 | 144 | 1 | 308 | hp | unknown |
| gene_42 | 18972 | 19703 | 732 | 1 | 90* | Exonuclease* | DNA, RNA and nucleotide metabolism |
| gene_43 | 19700 | 20071 | 372 | 1 | 175* | HNH endonuclease* | DNA, RNA and nucleotide metabolism |
| gene_44 | 20132 | 20449 | 318 | 1 | 176* | $\mathrm{hp*}$ | unknown |
| gene_45 | 20446 | 20721 | 276 | 1 | 177* | hp* | unknown |
| gene_46 | 20711 | 20911 | 201 | 1 | 178* | $\mathrm{hp*}$ | unknown |
| gene_47 | 20918 | 21316 | 399 | 1 | 179* | HNH endonuclease* | DNA, RNA and nucleotide metabolism |

Isolation and classification of roseophages

| gene_48 | 21316 | 22083 | 768 | 1 | $96^{*}$ | metallo-phosphoesterase* | other |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| gene_49 | 22080 | 22742 | 663 | 1 | $180^{*}$ | DNA methyltransferase* | anti-host defense |
| gene_50 | 23062 | 23439 | 378 | 1 | $181^{*}$ | nucleotide | pyrophosphohydrolase* | other

## Isolation and classification of roseophages

Table 29: Gene annotations of Lentibacter phage ICBM7. Gene annotations for Lentibacter phage ICBM166 are almost identical, there is just one hypothetical gene less prior to the phosphate kinase. Strand 1: forward orientation. Strand -1 : reverse orientation. $\mathrm{Hp}=$ hypothetical protein. *Core proteins of phages in the "Schlingloffviridae" family.

| Gene <br> ID | Gene <br> start | Gene <br> end | Gene <br> length <br> [bp] | Stra <br> nd | PC ID | Protein function | Category |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| gene_1 | 254 | 394 | 141 | -1 | 385 | hp | unknown |
| gene_2 | 399 | 611 | 213 | -1 | 386 | hp | unknown |
| gene_3 | 608 | 790 | 183 | -1 | 570 | hp | unknown |
| gene_4 | 1116 | 1793 | 678 | -1 | 571 | hp | unknown |
| gene_5 | 1793 | 2011 | 219 | -1 | 387 | hp | unknown |
| gene_6 | 2270 | 2440 | 171 | 1 | 388 | hp | unknown |
| gene_7 | 2533 | 2742 | 210 | 1 | 572 | hp | unknown |
| gene_8 | 2799 | 3194 | 396 | 1 | $389^{*}$ | bifunctional heptose 7- |  |
| phosphate kinase/heptose 1- | other |  |  |  |  |  |  |
| gene_9 | 3184 | 3324 | 141 | 1 | $390^{*}$ | hp** |  |
| gene_10 | 3308 | 3631 | 324 | 1 | $391^{*}$ | hp* | hndenyltransferase* |

Isolation and classification of roseophages

| gene_39 | 18247 | 18951 | 705 | 1 | $113^{*}$ | PhoH-like phosphate | starvation-inducible protein* |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | other $\quad$ unknown $\quad$ unknown

Table 30: Core proteins of the newly proposed families "Hayaniviridae" and "Schlingloffviridae". *maximum number of predicted ORFs divided by number of core proteins.

| Proposed family | predicted ORFs\# | core proteins \# | Annotated core proteins \# | Annotated core proteins (sorted by functional category) | Percentage core proteins / total ORFs* |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 86-93 | 63 | 20 | DNA, RNA and nucleotide metabolism: HNH endonuclease (PC_155), DNA polymerase I (PC_94), thymidylate synthase ThyX (PC_1), Exonuclease (PC_90), HNH endonuclease (PC_175), HNH endonuclease (PC_179), <br> Head and packaging: major capsid protein (PC_104), capsid protein (PC_151), capsid maturation protease (PC_196), portal protein (PC_105), terminase large subunit (PC_82) <br> Connector: head closure Hc1 (PC_101), tail completion Tc1 (PC_100), <br> Tail: tail fiber protein (PC_2), minor tail protein (PC_99), <br> Lysis: endolysin (lysozyme-peptidase) (PC_3), <br> Anti-host defense: DNA methyltransferase (PC_180), <br> Other: heat-shock protein DnaJ (PC_168), metallophosphoesterase (PC_96), pyrophosphohydrolase (PC_181) | 67.74\% |
|  | 69-73 | 54 | 31 | DNA, RNA and nucleotide metabolism: thymidylate synthase ThyX (PC_1), RNA polymerase sigma factor (PC_398), DNA primase/helicase (PC_200), DNA polymerase I (PC_94), Exonuclease (PC_90), Endonuclease (PC_148), ribonucleotide reductase (PC_5), Glutaredoxin (PC_150), <br> Head and packaging: major capsid protein (PC_104), capsid scaffolding protein (PC_414), portal protein (PC_105), terminase large subunit (PC_82), <br> Connector: tail completion Tc1 (PC_100), head closure Hc1 (PC_101), <br> Tail: tail fiber protein (PC_408), tail protein (PC_410), tail protein (PC_411), tail length tape measure protein (PC_412), minor tail protein (PC_99), tail fiber protein (PC_422), tail protein (PC_423), <br> Lysis: endolysin (cell wall hydrolase) (PC_146), endolysin (L-alanyl-D-glutamate peptidase) (PC_95), <br> Anti-host defense: S-adenosyl-L-methioninedependent methyltransferase (PC_402), <br> Transcriptional regulation: Trp repressor (PC_334), Moron, AMG and host takeover: 2OG-Fe(II) oxygenase (PC_419), <br> Other: bifunctional heptose 7-phosphate kinase/heptose 1-phosphate adenyltransferase (PC_389), metallo-phosphoesterase (PC_96), MazG-like pyrophosphatase (PC_149), PhoH-like phosphate starvation-inducible protein (PC_113), | 73.97\% |

### 4.3.5.5. The "Diferiteviridae" - a new family of lytic and potentially temperate roseophages infecting Lentibacter and Sulfitobacter

Five of the new roseophages clustered into one VGC together with known roseophages infecting the genera Sulfitobacter (phiGT1, NYA 2014a, pCB2047-A, pCB2047-C), Octadecabacter (Antarctic DB virus 2) and Roseobacter (CRP 7) (Ankrah et al. 2014b; Luhtanen et al. 2018; Zhang et al. 2019a; Hwang et al. 2020). In addition, a number of Vibrio and Pseudomonas phages belonged to this VGC_19, which comprised 34 phages in total (Fig. 39, Table 31). The members originated from marine, freshwater and terrestrial habitats such as soil and sewage. Those phages with confirmed morphology information had a podoviral shape (Table 31).

The new roseophages formed a separate cluster within this VGC_19 (Fig. 39). The maximum PC-based intergenomic similarity with other phages in this VGC was $17.9 \%$ (Fig. 41). Within their cluster, the minimum PC-based intergenomic similarity was $30.9 \%$ (with one exception of $20.4 \%$ between two phages). Additionally taking into consideration that ICBM8 had similar ecological features predicted as the phage ICBM165, i.e. the fact that the phages infected the same host strain, had the same podoviral morphology and the same DNA packaging strategy predicted, phage ICBM8 was also included into this family. Thus, we propose here that the five new roseophages form a new family, which we tentatively named here "Diferiteviridae", from the Romanian word "diferite" meaning "diverse", because the members infected different host genera.

The five new roseophages in this family were ICBM8, ICBM163 and ICBM165 infecting Lentibacter sp. SH36 and phages ICBM121 and ICBM122 infecting Sulfitobacter sp. M73 (Table 31). Based on their nucleotide-based intergenomic identity (NBII) they clustered into three genera (Fig. 40). Lentibacter phage ICBM163 belonged to one genus together with Sulfitobacter phages ICBM121 and ICBM122 (NBII $\geq 75.2$ ), which we provisionally called here "Benvirus". The Sulfitobacter phages were almost identical to each other and belonged to one species. They have been isolated from the same water sample (P2) and with the same isolation host Sulfitobacter sp. M73 (Table 31). Phage ICBM163 infecting Lentibacter sp. SH36 was isolated from the same water sample (P2). The other two Lentibacter viruses ICBM8 and ICBM165 belonged to two separate genera, which we tentatively named "Martinvirus" (ICBM165) and "Maryvirus" (ICBM8) (Fig. 40). They had the same isolation host, Lentibacter sp. SH36, but originated from a different water sample (HE504-33) (Table 31).

The new roseophages had genomes of 36.9-38.7 kb in size, 55.9-57.3 \% G+C content and 54-57 predicted ORFs. Out of these genes, 22-28 could be functionally annotated. Determination of the genome termini with PhageTerm (Garneau et al. 2017), showed that Lentibacter phages ICBM8 and ICBM165 had short, T7-type direct terminal repeats (DTRs) (Table 15). Also for Lentibacter phage ICBM163, DTRs were predicted, even though they were less supported. For the two Sulfitobacter phages ICBM121 and ICBM122, although being so closely related to phage ICBM163, circularly permuted genomes were predicted. The genome termini were chosen in correspondence to ICBM163 to facilitate genome comparisons.

The genome composition within this family was less conserved, thus the annotated DNA replication, lysis and morphology genes are described separately for each of the three genera. In the genomes of the "Benvirus" genus (ICBM121, ICBM122, and ICBM163), genes were arranged in three modules in terms of transcriptional direction (Fig. 42). Functional categories were not that clearly separated. However, genes for DNA, RNA and nucleotide metabolism rather grouped in the first half of the genome and morphology genes grouped in the second half of the genome. DNA replication genes comprised a DNA primase/helicase (PC_316), a nuclease, a DNA repair exonuclease (PC_323), a HNH endonuclease (only in ICBM121 and ICBM122) and a Holliday junction resolvase (Table 32). No DNA polymerase could be annotated. The structural genes comprised the portal protein (PC_209), a capsid protein (PC_278), a capsid scaffolding protein (PC_208), two virion structural proteins (PC_212 and PC_213), a tail protein (PC_381 or PC_447), a tail fiber protein (PC_448, only in ICBM121 and ICBM122) and a phage tail assembly chaperone (PC_281 or PC_328). The major capsid protein was encoded twice (PC_207 and PC_325). Furthermore, the terminase large and small subunits could be annotated (PC_214 and PC_280). Five lysis genes were annotated: two spanins (PC_271 and PC_272), an amidase (PC_273) and two endolysins (PC_146 and PC_326).

For Lentibacter phage ICBM165, the genomic organization looked a bit different (Fig. 42). The majority of the genes were encoded on the reverse strand, thus the genome was not as clearly separated into modules. Still, the overall order of the genes was similar to the genomes of the "Benvirus" genus. Genes of the functional category "DNA, RNA and nucleotide metabolism" comprised a DNA primase/helicase (PC_537), an exonuclease (PC_539), a Holliday junction resolvase (PC_267) and a tRNA endonuclease (PC_543) (Table 33). Also in this genome, no DNA polymerase could be annotated. The structural and lysis genes were more similar to the "Benvirus" phages. Morphology genes comprised the major capsid protein (PC_207), the capsid scaffolding protein (PC_208), the portal protein (PC_209), a capsid
protein (PC_278), two virion structural proteins (PC_212 and PC_213), and the terminase small and large subunit (PC_535 and PC_214). Further, one tail protein (PC_381) and three phage tail assembly chaperones (PC_281, PC_328, and PC_548). Four lysis genes were annotated: an amidase (PC_273), two spanins (PC_271 and 272) and an endolysin (PC_556).

In corresponce with the lower PC-based intergenomic similarity, the genomic content of Lentibacter phage ICBM8 differed the most from the other genomes in this family. The genes were organized in two genomic arms with opposing transcriptional directions (Fig. 42). The DNA replication module on the left genomic arm contained a DNA helicase (PC_580), a nuclease (PC_578), a Sak4-like ssDNA annealing protein (PC_6), a ssDNA binding protein (PC_577), and a tRNA endonuclease (PC_581) (Table 34). Furthermore, a bifunctional DNA primase/polymerase (PC_574) was found. The "head and packaging" genes comprised the capsid scaffolding protein (PC_208), the major capsid protein (PC_207), the portal protein (PC_209), two virion structural proteins (PC_212 and PC_213) the terminase large and small subunit (PC_214 and PC_280). Moreover, a tail collar-fiber protein (PC_596), one tail protein (PC_599) and one tail assembly chaperone (PC_597) were annotated. Four lysis genes were spread over the genome, including a spanin (PC_588) and three endolysin (PC_146, PC_589 and PC_594).

In all genomes of the "Diferiteviridae" family, a DNA injection protein (PC_210) and a phosphofructokinase (PC_204) were found. DNA methylases were encoded in some of the genomes (two in ICBM121, ICBM122 and ICBM163, and one in ICBM8), which can be part of the viral anti-host defense protection (Fig. 42). Furthermore, a phosphoadenosine phosphosulfate (PAPS) reductase was annotated in the "Benvirus" genomes (Table 32), which has been found in other phages (Summer et al. 2006) and could function as an AMG giving advantage to the host under sulfur limited conditions (Summer et al. 2007b). No tRNAs were predicted in these genomes.

The genome replication strategy of the phages in this family was not easily determined. No characteristic DNA polymerase was annotated in either of the genomes. PhageTerm provided varying predictions for the members of this family (Table 15). While the detection of DTRs in the genomes of phage ICBM8, ICBM163 and ICBM165 indicated a T7-like bidirectional genome replication and packaging, the genomes of phages ICBM121 and ICBM122 seemed to be circularly permuted using P1-type rolling circle replication and the headful (pac) DNA packaging strategy. However, the latter prediction was less supported (Table 15). Considering that ICBM121, ICBM122 and ICBM165 belonged to the same genus
and should thus have similar packaging strategies, the phageTerm results should be interpreted with caution. According to Virfam prediction and the gene annotation (absence of major tail protein, tail completion protein and sheath), the phages in the "Diferiteviridae" family had a podoviral morphology with a short tail (Table 31). The genomes of the "Benvirus" genus (ICBM121, ICBM122, and ICBM163) had a gene encoded annotated as "excisionase and transcriptional regulator" (PC_317). In phage ICBM163, a lambda repressor-like protein (PC_528) could be annotated next to the excisionase. In phage ICBM8, only the lambda repressor-like protein was found (PC_575). Therefore, these phages could have lysogenic potential. The five phages of this family shared 12 core proteins (Table 35). Eight of them had an annotated function, with most of them being morphology proteins.


Fig. 39: Section of the whole-genome based proteomic tree showing VGC_19. Names of cultivated roseophages are marked in green (previous) and blue (this study). Genome lengths are displayed as bar chart.
Table 31: Phages of VGC_19. Roseophages are marked in blue. $\mathrm{Bp}=$ base pairs. N.a. = not available. *Morphology predicted by Virfam.

| Phage | Host | Genome size [bp] | $\begin{aligned} & \hline \text { GC } \\ & \text { content } \\ & {[\%]} \end{aligned}$ | Accession | Previous classification (reference) | ICTV or newly proposed taxonomy |  |  | Morphology | Isolation source | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Family | Genus | Species |  |  |  |
| EBPR podovirus 2 | n.a. | 40628 | 63.9 | JF412295 | podoviridae |  |  |  |  | bioreactor | Skennerton et al. (2011) |
| Sulfitobacter phage phiGT1 | $\begin{aligned} & \text { Sulfitobacter sp. } \\ & \text { HGT1 } \\ & \hline \end{aligned}$ | 40019 | 56.4 | MT584811 | unclassified |  |  |  | podoviral | coastal sediment | Hwang et al. (2020) |
| Sulfitobacter phage NYA 2014a | $\begin{aligned} & \text { Sulfitobacter sp. } \\ & 2047 \end{aligned}$ | 42092 | 58.5 | KM233261 | unclassified |  |  |  | podoviral | n.a. | unpublished |
| Sulfitobacter phage pCB2047_A | Sulfitobacter sp. <br> 2047 | 40929 | 58.8 | HQ332142 | Podoviridae, cluster 3 <br> (Zhan and <br> Chen 2019a) |  |  |  | podoviral | algal bloom mesocosm (seawater) | Ankrah et al. (2014b) |
| Sulfitobacter phage pCB2047_C | $\begin{aligned} & \text { Sulfitobacter sp. } \\ & 2047 \end{aligned}$ | 40931 | 59 | HQ317384 |  |  |  |  | podoviral | algal bloom mesocosm (seawater) |  |
| Roseobacter phage CRP7 | Roseobacter RCA <br> FZCC0042 | 58106 | 40.3 | MK613349 | $\begin{aligned} & \text { CRP-7-type } \\ & \text { (Zhang et al. } \\ & \text { 2019a) } \end{aligned}$ |  |  |  | podoviral | seawater | Zhang et al. <br> (2019a) |
| Podoviridae sp. isolate ctfne034 | n.a. | 41762 | 45 | MW202484 |  |  |  |  |  | freshwater river | unpublished |
| Vibrio phage 1.262.O. 10N.286.51.A9 | Vibrio breoganii | 47635 | 39.1 | MG592626 |  |  |  |  | podoviral | seawater | unpublished |
| Vibrio phage Phriendly | Vibrio natriegens ATCC 14048 | 50218 | 41.4 | MN062185 |  |  |  |  | podoviral | seawater | $\begin{aligned} & \text { Clark et al. } \\ & (2019) \\ & \hline \end{aligned}$ |
| Vibrio phage VP506 | $\begin{aligned} & \text { Vibrio } \\ & \text { parahaemolyticus } \\ & \text { VP506 } \end{aligned}$ | 50577 | 41.6 | MW451248 |  |  |  |  |  | n.a. | unpublished |
| Vibrio phage VPp1 | Vibrio parahaemolyticus VP 17802 | 50431 | 41.3 | KJ936628 |  |  |  |  |  | n.a. | Li et al. (2018) |
| Pseudomonas phage Bjorn | Pseudomonas sp. CT12 | 45936 | 53.1 | MG775259 |  |  | Bjornv |  |  | plant compost | unpublished |
| Pseudomonas phage PaLz 1_45 | Pseudomonas aeruginosa PAO1 | 43890 | 52.1 | MN871476 |  |  |  |  |  | seawater | unpublished |
| Pseudomonas phage vB_PaS_HSN4 | Pseudomonas aeruginosa | 44534 | 53.5 | LC648443 |  |  |  |  |  | n.a. | unpublished |
| Pseudomonas phage UFV P2 | Pseudomonas fluorescens | 45517 | 51.5 | JX863101 |  |  | Vicosa |  |  | wastewater | Eller et al. (2013) |
| Pseudomonas phage BroderSalsa | Pseudomonas sp. ERG2 | 45307 | 51.9 | OL412002 |  |  |  |  |  | wastewater | unpublished |
| Pseudomonas phage SCYZ1 | Pseudomonas fluorescens | 47475 | 52.7 | MH518298 |  |  |  |  | podoviral | soil | unpublished |
| Pseudomonas phage tf | Pseudomonas putida PpG1 | 46271 | 53.2 | HE611333 |  |  | Krylov |  |  | n.a. | Glukhov et al. (2012) |


| Methylophilales phage Venkman EXVC282S | Methylophilales bacterium H5P1 | 38624 | 34.4 | MT375522 |  |  |  |  | podoviral | seawater | Buchholz et al. (2021) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Podoviridae sp. ct2cs2 | n.a. | 41219 | 35.7 | MN582059 |  |  |  |  |  | freshwater river | unpublished |
| Myoviridae sp. isolate ctnlZ23 | n.a. | 33284 | 48.9 | MW202710 |  |  |  |  |  | freshwater river | unpublished |
| Bacteriophage sp. isolate ctTH923 | n.a. | 34712 | 46.9 | MW202544 |  |  |  |  |  | freshwater river | unpublished |
| Myoviridae sp. isolate ct2t2046 | n.a. | 34712 | 46.9 | MW202462 |  |  |  |  |  | freshwater river | unpublished |
| Ochrobactrum phage vB_OspP_OH | Ochrobactrum sp . POC9 | 41227 | 55.2 | MT028492 |  |  | Wolominvirus |  | podoviral | sewage | Decewicz et al. (2020) |
| Myoviridae sp. isolate ctyzp037 | n.a. | 39701 | 51.3 | MW202711 |  |  |  |  |  | freshwater river | unpublished |
| Myoviridae sp. isolate ctjtQ328 | n.a. | 36472 | 55.8 | MW202879 |  |  |  |  |  | freshwater river | unpublished |
| Myoviridae sp. isolate ctvy9321 | n.a. | 38949 | 57.5 | MW202496 |  |  |  |  |  | freshwater river | unpublished |
| Sinorhizobium phage phiM5 | Sinorhizobium meliloti | 44005 | 61 | MF074189 |  |  |  |  | podoviral | induced prophage | Johnson et al. (2017) |
| Octadecabacter Antarctic DB virus 2 | Octadecabacter sp. IceBac 430 | 39241 | 53.3 | MW805364 | Caudoviricete $s$ (Demina et al. 2021) |  |  |  | podoviral | antarctic sea ice | Luhtanen et al. (2018) |
| Lentibacter phage ICBM8 | Lentibacter sp. SH36 | 38666 | 55.9 | This study |  | "Diferiteviridae" | "Maryvirus" | "opt" | podoviral* | Seawater (HE504-33) | this study |
| Lentibacter phage ICBM165 | Lentibacter sp. SH36 | 37385 | 57.3 | This study |  |  | "Martinvirus" | "patru" | podoviral* | $\begin{aligned} & \hline \text { Seawater } \\ & \text { (HE504-33) } \end{aligned}$ | this study |
| Lentibacter phage ICBM163 | Lentibacter sp . SH36 | 37200 | 57 | This study |  |  | "Benvirus" | "unu" | podoviral* | $\begin{aligned} & \text { Seawater } \\ & (\mathrm{P} 2) \end{aligned}$ | this study |
| Sulfitobacter phage ICBM122 | Sulfitobacter sp. M73 | 36856 | 57.1 | This study |  |  |  | "doi" | podoviral* | Seawater (P2) | this study |
| Sulfitobacter phage ICBM121 | Sulfitobacter sp . M73 | 36856 | 57.1 | This study |  |  |  |  | podoviral* | Seawater (P2) | this study |



Fig. 40: Nucleotide-based intergenomic identities of the phages in VGC_19 calculated with VIRIDIC. Members of the newly proposed genera "Martinvirus", "Maryvirus" and "Benvirus" and the new proposed "Diferiteviridae" family are annotated with boxes and colored labels.


Fig. 41: PC-based intergenomic similarities of the phages in VGC_19, calculated with VirClust (log e-value clustering, matches kept if bitscore $>=30$, coverage $>=70$, evalue $<0.00001$, identity $>=0 \%$ ). Members of the newly proposed "Diferiteviridae" family are annotated with a blue box.


Fig. 42: Genome maps of VGC_19. A Lentibacter phage ICBM8. B Lentibacter phage ICBM165. C Phages of the "Benvirus" genus (Lentibacter phage ICBM163 and Sulfitobacter phages ICBM121 and ICBM122).

Table 32: Gene annotations of Lentibacter phage ICBM121. Strand 1: forward orientation. Strand -1: reverse orientation. Hp $=$ hypothetical protein. *Core proteins of phages of the "Diferiteviridae" family.

| Gene ID | Gene start | Gene end | Gene length [bp] | Stra <br> nd | PC ID | Protein function | Category |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_1 | 47 | 238 | 192 | -1 | 315 | hp | unknown |
| gene_2 | 338 | 595 | 258 | -1 | 204* | Phosphofructokinase* | other |
| gene_3 | 592 | 1215 | 624 | -1 | 266 | hp | unknown |
| gene_4 | 1502 | 3625 | 2124 | -1 | 316 | DNA primase/helicase | DNA, RNA and nucleotide metabolism |
| gene_5 | 3622 | 4179 | 558 | -1 | 442 | DNA (citosine) methyltransferase | anti-host defense |
| gene_6 | 4188 | 4655 | 468 | -1 | 443 | DNA methyltransferase | anti-host defense |
| gene_7 | 4827 | 5042 | 216 | -1 | 317 | excisionase and transcriptional regulator | integration and excision |
| gene_8 | 5166 | 5783 | 618 | -1 | 318 | hp | unknown |
| gene_9 | 5828 | 6580 | 753 | -1 | 319 | nuclease | DNA, RNA and nucleotide metabolism |
| gene_10 | 6577 | 6867 | 291 | -1 | 320 | hp | unknown |
| gene_11 | 6882 | 7106 | 225 | -1 | 321 | hp | unknown |
| gene_12 | 7106 | 7573 | 468 | -1 | 267 | Holliday junction resolvase | DNA, RNA and nucleotide metabolism |
| gene_13 | 7573 | 7740 | 168 | -1 | 268 | hp | unknown |
| gene_14 | 7869 | 8189 | 321 | 1 | 444 | hp | unknown |
| gene_15 | 8237 | 8470 | 234 | 1 | 331 | hp | unknown |
| gene_16 | 8494 | 9015 | 522 | 1 | 269 | hp | unknown |

Isolation and classification of roseophages

| gene_17 | 9012 | 9134 | 123 | 1 | 270 | hp | unknown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_18 | 9131 | 9868 | 738 | 1 | 322 | phosphoadenosine phosphosulfate <br> (PAPS)reductase | moron, auxiliary metabolic gene and host takeover |
| gene_19 | 9865 | 10323 | 459 | 1 | 146 | endolysin (cell wall hydrolase) | lysis |
| gene_20 | 10320 | 10508 | 189 | 1 | 205* | hp* | unknown |
| gene_21 | 10505 | 10729 | 225 | 1 | 445 | hp | unknown |
| gene_22 | 10726 | 10875 | 150 | 1 | 112 | hp | unknown |
| gene_23 | 10868 | 11251 | 384 | 1 | 4 | hp | unknown |
| gene_24 | 11251 | 11502 | 252 | 1 | 92 | hp | unknown |
| gene_25 | 11495 | 11713 | 219 | 1 | 446 | hp | unknown |
| gene_26 | 11713 | 12324 | 612 | 1 | 206* | hp* | unknown |
| gene_27 | 12308 | 13405 | 1098 | -1 | 323 | DNA repair exonuclease | DNA, RNA and nucleotide metabolism |
| gene_28 | 13402 | 13608 | 207 | -1 | 271 | Spanin | lysis |
| gene_29 | 13532 | 13786 | 255 | -1 | 272 | Spanin | lysis |
| gene_30 | 13765 | 14436 | 672 | -1 | 273 | Amidase | lysis |
| gene_31 | 14436 | 14912 | 477 | -1 | 332 | hp | unknown |
| gene_32 | 15058 | 15336 | 279 | -1 | 274 | hp | unknown |
| gene_33 | 15336 | 15644 | 309 | -1 | 275 | hp | unknown |
| gene_34 | 15619 | 15840 | 222 | -1 | 324 | hp | unknown |
| gene_35 | 15895 | 16851 | 957 | -1 | 207* | major capsid protein* | head and packaging |
| gene_36 | 16873 | 17853 | 981 | -1 | 208* | capsid scaffolding protein* | head and packaging |
| gene_37 | 17858 | 18100 | 243 | -1 | 276 | hp | unknown |
| gene_38 | 18097 | 20274 | 2178 | -1 | 209* | portal protein* | head and packaging |
| gene_39 | 20285 | 21913 | 1629 | -1 | 325 | major capsid protein | head and packaging |
| gene_40 | 21916 | 23475 | 1560 | -1 | 326 | endolysin (D-alanyl-Dalanine carboxypeptidase) | lysis |
| gene_41 | 23475 | 24449 | 975 | -1 | 210* | DNA injection protein* | other |
| gene_42 | 24451 | 25386 | 936 | -1 | 327 | hp | unknown |
| gene_43 | 25386 | 25748 | 363 | -1 | 277* | hp* | unknown |
| gene_44 | 25741 | 26397 | 657 | -1 | 211* | hp* | unknown |
| gene_45 | 26394 | 27869 | 1476 | -1 | 212* | virion structural protein* | head and packaging |
| gene_46 | 27893 | 28723 | 831 | -1 | 447 | tail protein | tail |
| gene_47 | 28768 | 29358 | 591 | -1 | 333 | hp | unknown |
| gene_48 | 29400 | 29798 | 399 | -1 | 281 | Phage tail assembly chaperone | tail |
| gene_49 | 29800 | 30768 | 969 | -1 | 448 | tail fiber protein | tail |
| gene_50 | 30772 | 31152 | 381 | -1 | 278 | capsid protein | head and packaging |
| gene_51 | 31152 | 31772 | 621 | -1 | 213* | virion structural protein* | head and packaging |
| gene_52 | 31763 | 32272 | 510 | -1 | 449 | HNH endonuclease | DNA, RNA and nucleotide metabolism |
| gene_53 | 32272 | 33672 | 1401 | -1 | 450 | hp | unknown |
| gene_54 | 33778 | 34386 | 609 | -1 | 330 | hp | unknown |
| gene_55 | 34386 | 35780 | 1395 | -1 | 214* | terminase large subunit* | head and packaging |
| gene_56 | 35777 | 35989 | 213 | -1 | 279 | hp | unknown |
| gene_57 | 35982 | 36476 | 495 | -1 | 280 | terminase small subunit | head and packaging |

## Isolation and classification of roseophages

Table 33: Gene annotations of Lentibacter phage ICBM165. Strand 1: forward orientation. Strand -1 : reverse orientation. Hp = hypothetical protein. *Core proteins of phages of the "Diferiteviridae" family.

| Gene <br> ID | Gene start | Gene end | Gene length [bp] | Stra nd | PC ID | Protein function | Category |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_1 | 345 | 806 | 462 | -1 | 535 | terminase small subunit | head and packaging |
| gene_2 | 806 | 1087 | 282 | -1 | 204* | Phosphofructokinase* | other |
| gene_3 | 1090 | 1707 | 618 | -1 | 266 | hp | unknown |
| gene_4 | 1932 | 2360 | 429 | -1 | 536 | hp | unknown |
| gene_5 | 2357 | 4552 | 2196 | -1 | 537 | DNA primase/helicase | DNA, RNA and nucleotide metabolism |
| gene_6 | 4613 | 5206 | 594 | -1 | 538 | hp | unknown |
| gene_7 | 5242 | 6033 | 792 | -1 | 539 | exonuclease | DNA, RNA and nucleotide metabolism |
| gene_8 | 6030 | 6500 | 471 | -1 | 267 | Holliday junction resolvase | DNA, RNA and nucleotide metabolism |
| gene_9 | 6500 | 6661 | 162 | -1 | 268 | hp | unknown |
| gene_10 | 6796 | 7158 | 363 | 1 | 540 | hp | unknown |
| gene_11 | 7204 | 7407 | 204 | 1 | 541 | hp | unknown |
| gene_12 | 7456 | 7728 | 273 | 1 | 542 | hp | unknown |
| gene_13 | 7728 | 7961 | 234 | 1 | 331 | hp | unknown |
| gene_14 | 7985 | 8506 | 522 | 1 | 269 | hp | unknown |
| gene_15 | 8503 | 8625 | 123 | 1 | 270 | hp | unknown |
| gene_16 | 8702 | 8893 | 192 | 1 | 205* | hp* | unknown |
| gene_17 | 8890 | 9171 | 282 | 1 | 92 | hp | unknown |
| gene_18 | 9164 | 9382 | 219 | 1 | 92 | hp | unknown |
| gene_19 | 9384 | 9980 | 597 | 1 | 206* | hp* | unknown |
| gene_20 | 10011 | 10379 | 369 | -1 | 543 | tRNA endonuclease | DNA, RNA and nucleotide metabolism |
| gene_21 | 10407 | 10592 | 186 | -1 | 271 | Spanin | lysis |
| gene_22 | 10540 | 10782 | 243 | -1 | 272 | Spanin | lysis |
| gene_23 | 10782 | 11438 | 657 | -1 | 273 | Amidase | lysis |
| gene_24 | 11438 | 11914 | 477 | -1 | 332 | hp | unknown |
| gene_25 | 12060 | 12338 | 279 | -1 | 274 | hp | unknown |
| gene_26 | 12423 | 12605 | 183 | 1 | 544 | hp | unknown |
| gene_27 | 12602 | 14242 | 1641 | -1 | 545 | hp | unknown |
| gene_28 | 14242 | 15429 | 1188 | -1 | 546 | hp | unknown |
| gene_29 | 15431 | 16510 | 1080 | -1 | 210* | DNA injection protein* | other |
| gene_30 | 16510 | 16956 | 447 | -1 | 547* | hp* | unknown |
| gene_31 | 16949 | 17605 | 657 | -1 | 211* | hp* | unknown |
| gene_32 | 17602 | 19074 | 1473 | -1 | 212* | virion structural protein* | head and packaging |
| gene_33 | 19086 | 19976 | 891 | -1 | 380 | hp | unknown |
| gene_34 | 19976 | 20470 | 495 | -1 | 381 | tail protein | tail |
| gene_35 | 20515 | 21045 | 531 | -1 | 333 | hp | unknown |
| gene_36 | 21087 | 21503 | 417 | -1 | 328 | Phage tail assembly chaperone | tail |
| gene_37 | 21503 | 22684 | 1182 | -1 | 383 | hp | unknown |
| gene_38 | 22660 | 23061 | 402 | -1 | 281 | Phage tail assembly chaperone | tail |
| gene_39 | 23061 | 23525 | 465 | -1 | 384 | hp | unknown |
| gene_40 | 23522 | 23815 | 294 | -1 | 548 | Phage tail assembly chaperone | tail |
| gene_41 | 23815 | 24336 | 522 | -1 | 549 | hp | unknown |
| gene_42 | 24338 | 24928 | 591 | -1 | 550 | hp | unknown |

Isolation and classification of roseophages

| gene_43 | 24932 | 25312 | 381 | -1 | 278 | capsid protein | head and packaging |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| gene_44 | 25312 | 25932 | 621 | -1 | $213^{*}$ | virion structural protein* | head and packaging |
| gene_45 | 26333 | 26716 | 384 | -1 | 551 | hp | unknown |
| gene_46 | 26716 | 27984 | 1269 | -1 | 329 | hp | unknown |
| gene_47 | 28103 | 28447 | 345 | -1 | 552 | hp | unknown |
| gene_48 | 28450 | 29406 | 957 | -1 | $207^{*}$ | major capsid protein* | head and packaging |
| gene_49 | 29418 | 30437 | 1020 | -1 | $208^{*}$ | capsid scaffolding protein* | head and packaging |
| gene_50 | 30459 | 30713 | 255 | -1 | 553 | hp | unknown |
| gene_51 | 30694 | 32829 | 2136 | -1 | $209^{*}$ | portal protein* | head and packaging |
| gene_52 | 32898 | 33053 | 156 | 1 | 554 | hp | unknown |
| gene_53 | 33050 | 34879 | 1830 | -1 | 555 | hp | unknown |
| gene_54 | 34879 | 35436 | 558 | -1 | 556 | endolysin | lysis |
| gene_55 | 35595 | 37016 | 1422 | -1 | $214^{*}$ | terminase large subunit* | head and packaging |

Table 34: Gene annotations of Lentibacter phage ICBM8. Strand 1: forward orientation. Strand -1: reverse orientation. Hp = hypothetical protein. *Proteins shared between ICBM8 and the phages of the "Diferiteviridae" family.

| Gene <br> ID | Gene <br> start | Gene <br> end | Gene <br> length <br> [bp] | Stra <br> nd | PC ID | Protein function |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Isolation and classification of roseophages

| gene_28 | 17309 | 17497 | 189 | -1 | 592 | hp | unknown |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| gene_29 | 17559 | 18533 | 975 | -1 | $207^{*}$ | major capsid protein* | head and packaging |
| gene_30 | 18547 | 19527 | 981 | -1 | $208^{*}$ | capsid scaffolding protein* | head and packaging |
| gene_31 | 19532 | 19774 | 243 | -1 | 276 | hp | unknown |
| gene_32 | 19771 | 21948 | 2178 | -1 | $209^{*}$ | portal protein* | head and packaging |
| gene_33 | 21959 | 23920 | 1962 | -1 | 593 | hp | unknown |
| gene_34 | 23922 | 25424 | 1503 | -1 | 594 | endolysin (lysozyme) | lysis |
| gene_35 | 25424 | 26515 | 1092 | -1 | $210^{*}$ | DNA injection protein* | other |
| gene_36 | 26517 | 27050 | 534 | -1 | 595 | hp | unknown |
| gene_37 | 27050 | 27412 | 363 | -1 | $277^{*}$ | hp* | unknown |
| gene_38 | 27405 | 28061 | 657 | -1 | $211^{*}$ | hp* | unknown |
| gene_39 | 28058 | 29533 | 1476 | -1 | $212^{*}$ | virion structural protein* | head and packaging |
| gene_40 | 29537 | 30355 | 819 | -1 | 596 | tail collar fiber protein | connector |
| gene_41 | 30482 | 30847 | 366 | -1 | 597 | tail assembly chaperone | tail |
| gene_42 | 30840 | 31424 | 585 | -1 | 598 | hp | unknown |
| gene_43 | 31435 | 32019 | 585 | -1 | 599 | tail protein | tail |
| gene_44 | 32036 | 32803 | 768 | 1 | 600 | hp | unknown |
| gene_45 | 32871 | 33476 | 606 | -1 | $213^{*}$ | virion structural protein* | head and packaging |
| gene_46 | 33477 | 34655 | 1179 | -1 | 329 | hp | unknown |
| gene_47 | 34655 | 36052 | 1398 | -1 | $214^{*}$ | terminase large subunit* | head and packaging |
| gene_48 | 36046 | 36258 | 213 | -1 | 279 | hp | unknown |
| gene_49 | 36251 | 36469 | 219 | -1 | 601 | hp | unknown |
| gene_50 | 36453 | 37175 | 723 | -1 | 351 | DNA methylase N-4/N-6 | anti-host defense |
| gene_51 | 37168 | 37662 | 495 | -1 | 280 | terminase small subunit | head and packaging |
| gene_52 | 37675 | 37956 | 282 | -1 | 602 | hp | unknown |
| gene_53 | 37946 | 38257 | 312 | -1 | 603 | hp | unknown |
| gene_54 | 38486 | 38666 | 181 | -1 | 604 | hp |  |
|  |  |  |  |  |  | unknn |  |

Table 35: Core proteins of the newly proposed family "Diferiteviridae". *maximum number of predicted ORFs divided by number of core proteins.
$\left.\begin{array}{llll}\hline \begin{array}{ll}\text { predicted } \\ \text { ORFs\# }\end{array} & \begin{array}{l}\text { core } \\ \text { proteins } \\ \#\end{array} & \begin{array}{l}\text { Annotated } \\ \text { core } \\ \text { proteins \# }\end{array} & \text { Annotated core proteins (sorted by functional category) }\end{array} \begin{array}{l}\text { Percentage } \\ \text { core } \\ \text { proteins / } \\ \text { total } \\ \text { ORFs* }\end{array}\right]$

### 4.3.5.6. The "Woolleyviridae" - a new family of potentially temperate roseophage infecting Sulfitobacter

Five new roseophages formed a separate cluster within a VGC containing 58 viruses, many of them being temperate phages (Fig. 43, Table 36). The described viruses in this VGC_6 mainly infect Gammaproteobacteria and Alphaproteobacteria (Rhodobacterales, Hyphomicrobiales and Caulobacterales), with many of the hosts being human pathogens. Accordingly, the majority of the viruses was isolated from terrestrial, anthropogenic environments such as sewage, clinics, dairy products or agricultural lands, but there were also members originating from freshwater rivers, a salt mine and even antarctic soil. All described phages of this VGC apart from one (Marinobacter phage AS1) were reported with a siphoviral morphology (Table 36).

The new roseophages grouping in this VGC formed a separate cluster, with a maximum PC-based intergenomic similarity to other phages of $22.5 \%$ (Fig. 45). Within the cluster, the minium PC-based intergenomic similarity accounted for $87.1 \%$. Therefore, we propose that this cluster forms a new family, which we tentatively named here "Woolleyviridae". Three other roseophages clustered into this VGC: Paracoccus phage Shpa, Rhodobacter phage RcapNL and Paracoccus phage vB_PthS_Pthi. They grouped in a larger cluster with our novel roseophages, but outside the "Woolleyviridae" family (Fig. 43 and 45).

The five novel roseophages in the "Woolleyviridae" family were ICBM55, ICBM111, ICBM117, ICBM118 and ICBM130 (Table 36). Apart from phage ICBM130 (from seawater sample NHS), they all originated from the same seawater sample (P2). They infected the four closely related Sulfitobacter strains M63, M70, M92 and M157 (Table 36). According to their nucleotide-based intergenomic identity, all five phages belonged to the same genus (NBII $\geq$ 88.0), forming two species (Fig. 44). We provisionally named this genus here "Viktorvirus".

The genomes of the "Woolleyviridae" phages were of 33.4-34.1 kb in size, with 60.5-60.7\% GC content and 41-45 predicted ORFs (Table 36). Out of these ORFs, 22 could be functionally annotated. PhageTerm predicted circularly permuted genomes with random termini at both genomes ends (ICBM55) or with one defined end (other phages) (Table 15). The genomic architecture was highly conserved amongst the members of this family and the genes that could be annotated were almost identical (Fig. 46, Table 37). The genes were arranged in functional modules. The "DNA, RNA and nucleotide metabolism" module comprised a ssDNA binding protein (PC_235) and two DNA primases (PC_224 and PC_227). No DNA polymerase was annotated. "Head and packaging" genes included the capsid
maturation protease (PC_253), the major capsid protein (PC_252), the portal protein (PC_254) and the terminase small and large subunit (PC_211 and PC_255). Further morphogenesis genes comprised the head-tail adaptor Ad1 (PC_250), the head-tail adaptor (PC_249), the neck protein Ne1 (PC_248), the tail completion protein Tc1 (PC_247), a major tail protein (PC_246), and the tail length tape measure protein (PC_243) (Table 37). One large gene in the morphology module was either annotated as a tail fiber protein (PC_304 in ICBM55, ICBM117, and ICBM118) or as an esterase/lipase (PC_359 in ICBM111 and ICBM130) (Fig. 46). Two lysis genes were encoded in the genomes: a spanin (PC_236) and an endolysin (PC_239). In addition, the genomes contained a deoxyribonucleoside 5' monophosphate phosphatase (PC_225) and a transcriptional regulator (PC_228). Phages ICBM55, ICBM117 and ICBM118 encoded a DNA methylase in their genomes, which can be part of the resistance against restriction-modification systems. No tRNAs could be predicted in the genomes of these phages.

Genome end determination with PhageTerm indicated that these phages use a headful (pac) packaging strategy and are circularly permuted (Table 15). Only for Sulfitobacter phage ICBM55, no packaging type could be assigned. However, it had random termini at both ends and was circularly permuted. Thus, it might use the headful packaging without a specific pac site (see chapter 1.3.4.). A siphoviral morphology was predicted by Virfam and reflected by the annotation of the major tail protein and the tail completion protein Tc1 (Table 37). A Lambda repressor like protein and an integrase were annotated in all genomes of the "Woolleyviridae" family, which indicates that these phages are capable to follow the lysogenic pathway. The phages of the "Woolleyviridae" family shared 37 core proteins, with 20 of them being functionally annotated (Table 38).


Fig. 43: Section of the whole-genome based proteomic tree showing VGC_6. Names of cultivated roseophages are marked in green (previous) and blue (this study). Color-strips indicate affiliation to ICTV-recognized families and subfamilies, respectively. Genome lengths are displayed as bar chart.

Isolation and classification of roseophages
Table 36: Phages of VGC_6. Roseophages are marked in blue. $\mathrm{Bp}=$ base pairs. N.a. $=$ not available. *Morphology predicted by Virfam.

| Phage | Host | Genome <br> size $[$ bp $]$ | GC <br> content <br> $[\%]$ | Accession | Previous <br> classification | ICTV or newly proposed taxonomy | (amily/Subfamily | Genus |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Sulfitobacter phage ICBM111 | Sulfitobacter sp. M63 | 33588 | 60.70\% | this study |  |  |  | siphoviral * | Seawater (P2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sulfitobacter phage ICBM118 | Sulfitobacter sp. M70 | 34114 | 60.50\% | this study |  |  |  | siphoviral * | Seawater (P2) |  |
| Sulfitobacter phage ICBM55 | Sulfitobacter sp. M157 | 34080 | 60.50\% | this study |  |  | "adin" | siphoviral * | Seawater (P2) |  |
| Sulfitobacter phage ICBM117 | Sulfitobacter sp. M70 | 34081 | 60.50\% | this study |  |  |  | siphoviral * | Seawater (P2) |  |
| Moraxella phage Mcat9 | Moraxella catarrhalis | 36406 | 43.90\% | KR093633 | siphoviridae |  |  |  | prophage, clininal strain | Ariff et al.(2015) |
| Moraxella phage Mcat7 | Moraxella catarrhalis | 42027 | 43.60\% | KR093631 |  |  |  |  |  |  |
| Moraxella phage Mcat4 | Moraxella catarrhalis | 42819 | 43.20\% | KR093628 |  |  |  |  |  |  |
| Moraxella phage Mcat14 | Moraxella catarrhalis | 17422 | 43.40\% | KR093638 |  |  |  |  |  |  |
| Psychrobacter phage Psymv2 | Psychrobacter sp. <br> MV2 | 35725 | 44.50\% | JF270478 |  |  |  | siphoviral | antarctic soil | Meiring et al. (2012) |
| Moraxella phage Mcat23 | Moraxella catarrhalis | 34758 | 42.60\% | KR093647 | siphoviridae |  |  |  | prophage, clininal strain | Ariff et al.(2015) |
| Moraxella phage Mcat17 | Moraxella catarrhalis | 60303 | 42.50\% | KR093641 |  |  |  |  |  |  |
| Moraxella phage Mcat28 | Moraxella catarrhalis | 54840 | 42.20\% | KR093652 |  |  |  |  |  |  |
| Moraxella phage Mcat24 | Moraxella catarrhalis | 39290 | 42.80\% | KR093648 |  |  |  |  |  |  |
| Moraxella phage Mcat12 | Moraxella catarrhalis | 26845 | 43.60\% | KR093636 |  |  |  |  |  |  |
| Moraxella phage Mcat20 | Moraxella catarrhalis | 23629 | 42.70\% | KR093644 |  |  |  |  |  |  |
| Moraxella phage Mcat13 | Moraxella catarrhalis | 34664 | 42.80\% | KR093637 |  |  |  |  |  |  |
| Moraxella phage Mcat15 | Moraxella catarrhalis | 46083 | 42.70\% | KR093639 |  |  |  |  |  |  |
| Moraxella phage Mcat19 | Moraxella catarrhalis | 36471 | 42.40\% | KR093643 |  |  |  |  |  |  |
| Moraxella phage Mcat18 | Moraxella catarrhalis | 51889 | 42.20\% | KR093642 |  |  |  |  |  |  |
| Pseudomonas phage PARCL1pr | Pseudomonas sp. <br> PARCI1 | 39565 | 63.00\% | MZ496292 |  |  |  |  | prophage, marine sponge | Oliveira et al. (2022) |
| Burkholderia phage KS9 | Burkholderia pyrrocinia LMG 21824 | 39896 | 60.70\% | FJ982340 |  |  |  | siphoviral | prophage | Seed and Dennis <br> (2005) |
| Burkholderia phage phiBt_TXDOH | Burkholderia pseudomallei BP82 | 56453 | 60.30\% | OK095358 |  |  |  |  | prophage | unpublished |
| Burkholderia phage phi644_2 | Burkholderia pseudomallei | 48674 | 60.40\% | CP000625 |  | Stanholtvirus |  |  | n.a. | unpublished |
| Burkholderia phage phiE125 | Burkholderia sp. | 53373 | 61.20\% | AF447491 |  |  |  | siphoviral | prophage | Woods et al. (2002) |
| Pseudomonas phage vB_Pae_CF54a | Pseudomonas aeruginosa | 41186 | 61.20\% | MK510967 |  |  |  |  | Prophage, lung of cystic | Tariq et al. (2019) |

Isolation and classification of roseophages

|  |  |  |  |  |  |  |  | fibrosis patients |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pseudomonas phage VW_6S | Pseudomonas <br> fluorescens W-6 | 37917 | 56.90\% | MF975720 |  |  |  | freshwater river | unpublished |
| Providencia phage PSTRCR_117lys | n.a. | 41059 | 49.40\% | MW358929 |  |  |  | sewage | unpublished |
| Morganella phage IME1369_02 | Morganella morganii IME1369 | 39387 | 50.00\% | KY653119 |  |  |  | prophage | unpublished |
| Enterobacteria phage mEp235 | Escherichia coli | 37595 | 50.00\% | JQ182731 |  | Nochtlivirus |  | n.a. | unpublished |
| Escherichia phage HK022 | Escherichia coli | 40751 | 49.50\% | AF069308 |  | Shamshuipovirus | siphoviral | Prophage, sewage | Juhala et al. (2000), <br> Dhillon et al. (1980b) |
| Enterobacteria phage mEpX2 | Escherichia coli | 38759 | 50.10\% | JQ182726 |  |  |  | n.a. | unpublished |
| Enterobacteria phage HK140 | Escherichia coli | 40710 | 49.90\% | JQ086370 |  | Yautsimvirus |  | n.a. | unpublished |
| Enterobacteria phage mEpX1 | Escherichia coli | 41567 | 49.30\% | JQ182727 |  | Cuauhtlivirus |  | n.a. | unpublished |
| Escherichia phage ECP1 | Escherichia coli MG1655 | 40469 | 51.00\% | KY979108 |  | Wongtaivirus |  | Prophage, chicken feces | unpublished |
| Enterobacteria phage HK446 | Escherichia coli | 39026 | 50.10\% | JQ086372 | Hendrixvirinae | Kwaitsingvirus |  | n.a. | unpublished |
| Enterobacteria phage HK106 | Escherichia coli | 41468 | 49.30\% | JQ086369 |  | Wanchaivirus |  | Prophage, sewage | Dhillon et al. (1980b) |
| Escherichia phage HK97 | Escherichia coli | 39732 | 49.80\% | AF069529 |  | Byrnievirus | siphoviral | Prophage, pig dung | Juhala et al (2000), <br> Dhillon et al. (1980a) |
| Enterobacteria phage HK633 | Escherichia coli | 41528 | 49.70\% | JQ086377 |  | Saikungvirus |  | n.a. | unpublished |
| Enterobacteria phage HK542 | Escherichia coli | 38964 | 50.90\% | JQ086373 |  | Wongtaivirus |  | Prophage, sewage | $\begin{aligned} & \text { Dhillon et al. } \\ & \text { (1980b) } \end{aligned}$ |
| Escherichia phage HK75 | Escherichia coli K-12 | 36661 | 50.20\% | HM173637 |  | Saikungvirus |  | Prophage, mammal feces | Dhillon et al. (1976) |



Fig. 44: Nucleotide-based intergenomic identities of the phages in VGC_6, calculated with VIRIDIC. Members of the newly proposed "Viktorvirus" genus and "Woolleyviridae" family are annotated with a blue box. Intergenomic identity of Sulfitobacter phages ICBM117 and ICBM55 is $99.997 \%$, rounded up to $100 \%$ in the heatmap.


Fig. 45: PC-based intergenomic similarities of the phages in VGC_6, calculated with VirClust (log e-value clustering, matches kept if bitscore $>=30$, coverage $>=70$, evalue $<0.00001$, identity $>=0 \%$ ). Members of the newly proposed "Viktorvirus" genus and "Woolleyviridae" family are annotated with a blue box.


Fig. 46: Genome map of Sulfitobacter phages ICBM111, ICBM117, ICBM118, ICBM130 and ICBM55, members of the "Viktorvirus" genus.

Table 37: Gene annotations of Sulfitobacter phage ICBM55. Strand 1: forward orientation. Strand -1: reverse orientation. $\mathrm{Hp}=$ hypothetical protein. *Core protein of the phages in "Woolleyviridae" family.

| Gene ID | Gene <br> start | Gene end | Gene <br> length <br> [bp] | Stra <br> nd | PC ID | Protein function | Category |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_1 | 69 | 434 | 366 | -1 | 221* | terminase small subunit* | head and packaging |
| gene_2 | 557 | 1282 | 726 | -1 | 222* | hp* | unknown |
| gene_3 | 1923 | 2192 | 270 | -1 | 441 | hp | unknown |
| gene_4 | 2189 | 2617 | 429 | -1 | 223* | hp* | unknown |
| gene_5 | 3870 | 5684 | 1815 | -1 | 224* | DNA primase* | DNA, RNA and nucleotide metabolism |
| gene_6 | 5710 | 6258 | 549 | -1 | 225* | deoxyribonucleoside 5' monophosphate phosphatase* | other |
| gene_7 | 6255 | 6443 | 189 | -1 | 226* | hp* | unknown |
| gene_8 | 6448 | 7563 | 1116 | -1 | 227* | DNA primase* | DNA, RNA and nucleotide metabolism |
| gene_9 | 7553 | 7963 | 411 | -1 | 228* | transcription regulator* | transcriptional regulation |
| gene_10 | 7960 | 8190 | 231 | -1 | 229* | hp* | unknown |
| gene_11 | 8187 | 8390 | 204 | -1 | 230* | $\mathrm{hp*}$ | unknown |
| gene_12 | 8383 | 8664 | 282 | -1 | 231* | hp* | unknown |
| gene_13 | 8868 | 9206 | 339 | 1 | 232* | Lambda repressor-like* | lytic/lysogenic regulation |
| gene_14 | 9191 | 9358 | 168 | -1 | 363 | hp | unknown |
| gene_15 | 9647 | 9892 | 246 | 1 | 233* | hp* | unknown |
| gene_16 | 10137 | 11159 | 1023 | 1 | 234* | Integrase* | integration and excision |
| gene_17 | 11339 | 11521 | 183 | 1 | 301 | hp | unknown |
| gene_18 | 11518 | 11997 | 480 | 1 | 360 | hp | unknown |
| gene_19 | 12084 | 12323 | 240 | -1 | 361 | hp | unknown |
| gene_20 | 12390 | 13079 | 690 | -1 | 362 | DNA methylase (N-4/N-6 adenine) | anti-host defense |
| gene_21 | 13604 | 14083 | 480 | -1 | 235* | ssDNA binding protein* | DNA, RNA and nucleotide metabolism |

Isolation and classification of roseophages

| gene_22 | 14097 | 14300 | 204 | -1 | 236* | Spanin* | lysis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_23 | 14278 | 14601 | 324 | -1 | 237* | hp* | unknown |
| gene_24 | 14630 | 14908 | 279 | -1 | 238* | hp* | unknown |
| gene_25 | 14941 | 15738 | 798 | -1 | 239* | endolysin (lysozyme)* | lysis |
| gene_26 | 15803 | 16378 | 576 | -1 | 240* | hp* | unknown |
| gene_27 | 16731 | 17192 | 462 | -1 | 117* | hp* | unknown |
| gene_28 | 17478 | 20333 | 2856 | -1 | 304 | tail fiber protein | tail |
| gene_29 | 20335 | 20604 | 270 | -1 | 303* | hp* | unknown |
| gene_30 | 20595 | 21368 | 774 | -1 | 241 | hp | unknown |
| gene_31 | 21392 | 22291 | 900 | -1 | 242* | hp* | unknown |
| gene_32 | 22288 | 25443 | 3156 | -1 | 243* | tail length tape measure protein* | tail |
| gene_33 | 25456 | 25692 | 237 | -1 | 244* | hp* | unknown |
| gene_34 | 25782 | 26144 | 363 | -1 | 245* | hp* | unknown |
| gene_35 | 26141 | 26584 | 444 | -1 | 246* | major tail protein* | tail |
| gene_36 | 26596 | 26979 | 384 | -1 | 247* | tail completion Tc1* | connector |
| gene_37 | 26984 | 27433 | 450 | -1 | 248* | neck protein $\mathrm{Ne} 1^{*}$ | connector |
| gene_38 | 27430 | 27780 | 351 | -1 | 249* | head-tail adaptor* | connector |
| gene_39 | 27780 | 28070 | 291 | -1 | 250* | head-tail adaptor Ad1* | connector |
| gene_40 | 28067 | 28405 | 339 | -1 | 251* | hp* | unknown |
| gene_41 | 28480 | 29784 | 1305 | -1 | 252* | major capsid protein* | head and packaging |
| gene_42 | 29781 | 30635 | 855 | -1 | 253* | capsid maturation protease* | head and packaging |
| gene_43 | 30649 | 31863 | 1215 | -1 | 254* | portal protein* | head and packaging |
| gene_44 | 31860 | 33584 | 1725 | -1 | 255* | terminase large subunit* | head and packaging |
| gene_45 | 33581 | 34080 | 500 | -1 | 256* | hp* | unknown |

Table 38: Core proteins of the newly proposed family "Woolleyviridae". *maximum number of predicted ORFs divided by number of core proteins.
$\left.\begin{array}{llll}\hline \begin{array}{lll}\text { predicted } \\ \text { ORFs\# }\end{array} & \begin{array}{l}\text { core } \\ \text { proteins } \\ \#\end{array} & \begin{array}{l}\text { Annotated } \\ \text { core } \\ \text { proteins \# }\end{array} & \text { Annotated core proteins (sorted by functional category) }\end{array} \begin{array}{l}\text { Percentage } \\ \text { core } \\ \text { proteins / } \\ \text { total } \\ \text { ORFs* }\end{array}\right]$

### 4.3.5.7. The Zobellviridae family is extended by a new roseophage species

One of the new roseophage isolates clustered into a VGC corresponding to the previously characterized Zobellviridae family (VGC_8) (Fig. 47). The isolation of the cobaviruses (Lentibacter phages ICBM1, ICBM2, and ICBM3) and the creation of the family Zobellviridae have been described in chapters 2 and 3. Meanwhile, the order Caudovirales has been abolished and the Zobellviridae now belongs to the newly created class Caudoviricetes (Adriaenssens et al. 2021). Moreover, the binomial naming format for bacteriophages has been introduced, which also changed the species designations for the Zobellviridae members (Table 39) (Turner et al. 2020). The described members of the Zobellviridae infect Alphaproteobacteria (Lentibacter, Roseobacter, and Celeribacter) and Gammaproteobacteria (Table 39). They originate from diverse habitats, ranging from seawater to rhizosphere soil, saline lakes and hospital associated samples. For all described members, a podoviral morphology was attested.

The novel roseophage isolate grouped into the Cobavirinae subfamily, which had a maximum PC-based intergenomic similarity with other viruses in the family of $16.0 \%$ (Fig. 49). Within the subfamily, the minimum PC-based intergenomic similarity was $33.0 \%$. Therefore, it could become a family of its own, once future classification procedure split the Zobellviridae into several families. The new roseophage within the Cobavirinae was phage ICBM6, which was isolated from seawater sample HE396-6 infecting Lentibacter sp. SH36. Sharing 82.3-82.8\% nucleotide-based intergenomic identity with the Lentibacter phages vB_LenP_ICBM1 and vB_LenP_ICBM 3, it formed a new species within the Siovirus genus (Fig. 48 and 49).

Similar to the already described genomes of the Cobavirinae subfamily (see chapter 2), Lentibacter phage ICBM6 had a linear genome of 40.3 kb , a G+C content of $46.3 \%$ and 55 predicted ORFs, out of which 21 could be annotated. PhageTerm determined short direct terminal repeats (DTRs) of 170 bp at both ends of the genome (Table 15). The genomic organization and annotated gene content was almost identical to that of Lentibacter phage ICBM1 (Fig. 50, Table 40). The genome was organized in two arms, with the left arm encoding genes involved in replication and nucleotide metabolism and the right arm encoding lysis and morphogenesis genes (compare chapter 2.3.4.). The "DNA, RNA and nucleotide metabolism" genes comprised a DNA polymerase I (PC_89), a DNA primase/helicase (PC_88), an endonuclease (PC_148), a glutaredoxin (PC_150), a nuclease (PC_345), a cobalamindependent ribonucleotide reductase (PC_91) and a thymidylate synthase ThyX (PC_1) (Table 40). Morphogenesis genes included an internal virion protein D (PC_288), the major
capsid protein (PC_294), the terminase large subunit (PC_298), the head-tail adaptor protein (PC_297), a phage tail assembly chaperone (PC_382), a tail appendage protein (PC_290), a tail protein (PC_292) and a tail fiber protein (PC_569). Two lysis genes were encoded in the genome: a lysozyme (PC_348) and a spanin (PC_287). In addition, an acetyl transferase (GNAT) (PC_313), a MazG-like pyrophosphatase (PC_149) and a PhoH-like phosphate starvation-inducible protein (PC_113) were found. The only difference to the genome of phage ICBM1 was the absence of two additional tail genes (a second phage tail assembly chaperone and a second tail fiber protein). A methyltransferase (PC_336) was encoded in the genome, which can serve for the protection against restriction-modification systems. No tRNAs could be predicted in the genome of phage ICBM6.

In accordance with the other cobaviruses, phage ICBM6 had DTRs and a T7-like DNA polymerase I (Tables 15 and 40). This indicated the use of a T7-like bidirectional replication and DNA packaging strategy. Moreover, a podoviral morphology was predicted for phage ICBM6, reflected by the annotation of the head-tail adaptor protein and the absence of a tail completion protein, a major tail protein or a tail sheath (Table 40). As no lysogeny-related genes were annotated in the genome, a strictly lytic lifestyle can be assumed. The members of the Cobavirinae subfamily including the novel phage ICBM6 shared 17 core proteins, with 10 having an annotated function (Table 41).


Fig. 47: Section of the whole-genome based proteomic tree showing the Zobellviridae family. Names of cultivated roseophages are marked in green (previous) and blue (this study). Color-strips indicate affiliation to ICTV-recognized families and subfamilies, respectively. Genome lengths are displayed as bar chart.

Isolation and classification of roseophages
Table 39: Phages of the Zobellviridae family. Roseophages are marked in blue. $\mathrm{Bp}=$ base pairs. N.a. $=$ not available. *Morphology predicted by Virfam.


Isolation and classification of roseophages

| Pseudomonas phage GP100 | Pseudomonas protegens CHA0 | 50547 | 50.90\% | LT986460 | Podoviridae (Vacheron et al. 2018) |  |  |  |  | rhizosphere soil | Vacheron et <br> al. (2018) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pseudomonas phage TC6 | Pseudomonas aeruginosa PA1 | 49796 | 45.10\% | MG676466 | "Pa11virus" <br> (Tang et al. <br> 2018) |  |  |  | podoviral | sewage of Southwest Hospital <br> (Chongqing, China) | Tang et al. <br> (2018) |
| Bacteriophage PA11 | n.a. | 49639 | 44.80\% | DQ163915 | "Pal 1virus" <br> (Tang et al. <br> 2018) | Zobellviridae | Paundecim <br> virus |  |  | n.a. | Kwan et al. <br> (2006) |
| Podoviridae sp. <br> Isolate ctOsX528 | n.a. | 45102 | 36.80\% | MW202697 |  |  |  |  |  | freshwater river | unpublished |
| UNVERIFIED <br> Pseudoalteromonas phage HP1 | Pseudoalteromonas sp. str. H100 | 45035 | 44.70\% | KF302037 |  | Zobellviridae | Melvirus |  | podoviral | North Sea | Duhaime et <br> al. (2017) |
| Vibrio phage VP41s3 | Vibrio parahaemolyticus | 37751 | 40.90\% | MZ073369 |  |  |  |  |  | supermarket <br> seafood, China, <br> Wuhan | unpublished |
| Vibrio phage <br> ICP2_2013_A_Haiti | Vibrio cholerae | 50440 | 42.80\% | KM224879 |  |  |  |  |  | Haitian cholera patient stool samples | Seed et al. (2014) |
| Vibrio phage ICP2 | Vibrio cholerae | 49675 | 42.70\% | HQ641345 |  | Zobellviridae | Icepovirus |  | podoviral | cholera patient stool samples, Bangladesh | Seed et al. (2011) |
| Lentibacter virus vB_LenP_ICBM2 | Lentibacter sp. SH36 | 40907 | 47.80\% | MF431616 | (Bischoff et <br> al. 2020; <br> Adriaenssens <br> et al. 2021) | Zobellviridae/ <br> Cobavirinae | Veravirus | septentrion <br> alis | podoviral | seawater | Bischoff et <br> al. (2019) |
| Roseobacter phage CRP 5 | Roseobacter RCA strain FZCC0040 | 39600 | 45.60\% | MK613347 | Cobavirus- <br> like (Zhang et |  |  |  | podoviral | seawater | Zhang et al. |
| Roseobacter phage CRP 4 | Roseobacter RCA strain FZCC0023 | 40768 | 45.20\% | MK613346 |  |  |  |  | podoviral | seawater | (2019a) |
| Roseophage SIO1 | Roseobacter sp. SIO67 | 40072 | 46.20\% | AF189021 | (Bischoff et <br> al. 2020; | Zobellviridae/ Cobavirinae | Siovirus | americense | podoviral | seawater | Rohwer et al. <br> (2000) |


| Celeribacter phage P12053L | Celeribacter sp. strain IMCC12053 | 39061 | 46.10\% | JQ809650 | Adriaenssens et al. 2021) |  |  | coreense |  | seawater | Kang et al. (2012) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lentibacter phage ICBM6 | Lentibacter sp. SH36 | 40273 | 46.30\% | this study |  | Zobellviridae/ <br> Cobavirinae | Siovirus | "sase" | podoviral | Seawater (HE396-6) | this study |
| Lentibacter virus vB_LenP_ICBM3 | Lentibacter sp. SH36 | 40497 | 47.30\% | MF431615 | (Bischoff et <br> al. 2020; | Zobellviridae/ |  |  | podoviral | seawater | Bischoff et |
| Lentibacter virus vB_LenP_ICBM1 | Lentibacter sp. SH36 | 40163 | 47.00\% | MF431617 | Adriaenssens et al. 2021) | Cobavirinae |  |  | podoviral | seawater | al. (2019) |



Fig. 48: Nucleotide-based intergenomic identities of the phages in the Zobellviridae family, calculated with VIRIDIC. Members of the subfamily Cobavirinae and the genera Siovirus and Veravirus are annotated with boxes and colored labels.


Fig. 49: PC-based intergenomic similarities of the phages in the Zobellviridae family, calculated with VirClust (log e-value clustering, matches kept if bitscore $>=30$, coverage $>=70$, evalue $<0.00001$, identity $>=0 \%$ ). Members of the subfamily Cobavirinae and the genera Siovirus and Veravirus are annotated with boxes and colored labels.


Fig. 50: Genome map of the Lentibacter phages belonging to the Zobellviridae family. A Cobaviruses ICBM1, ICBM3 and the new phage ICBM6. B Cobavirus ICBM2.

## Isolation and classification of roseophages

Table 40: Gene annotations of Lentibacter phage ICBM6. Strand 1: forward orientation. Strand -1 : reverse orientation. $\mathrm{Hp}=$ hypothetical protein. *Core proteins of the phages in the Cobavirinae subfamily.

| Gene | Gene | Gene | Gene <br> length <br> [bp] | Stra <br> nd | PC ID | Protein function | Category |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ID | start | end |  | unknown |  |  |  |
| gene_1 | 722 | 961 | 240 | 1 | 566 | hp | unknown |
| gene_2 | 1028 | 1282 | 255 | 1 | 335 | hp | und |
| gene_3 | 1350 | 1733 | 384 | 1 | 336 | dependent | methyltransferase |


| gene_43 | 27861 | 28610 | 750 | -1 | $292^{*}$ | tail protein* | tail |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| gene_44 | 28612 | 29184 | 573 | -1 | $293^{*}$ | hp* | unknown |
| gene_45 | 29300 | 30241 | 942 | -1 | $294^{*}$ | major capsid protein* | head and packaging |
| gene_46 | 30254 | 31021 | 768 | -1 | $295^{*}$ | hp* | unknown |
| gene_47 | 31024 | 31266 | 243 | -1 | $296^{*}$ | hp* | unknown |
| gene_48 | 31263 | 33056 | 1794 | -1 | 297 | head-tail adaptor | connector |
| gene_49 | 33118 | 34662 | 1545 | -1 | $298^{*}$ | terminase large subunit* | head and packaging |
| gene_50 | 34662 | 35075 | 414 | -1 | 382 | Phage tail assembly | tail |
| gene_51 | 35085 | 36647 | 1563 | -1 | 427 | hp | unknown |
| gene_52 | 36681 | 36983 | 303 | -1 | 568 | hp | unknown |
| gene_53 | 36988 | 39357 | 2370 | -1 | 569 | tail fiber protein | tail |
| gene_54 | 39359 | 39850 | 492 | -1 | $299^{*}$ | hp* | unknown |
| gene_55 | 39889 | 40014 | 126 | 1 | 350 | hp | unknown |

Table 41: Core proteins of the subfamily Cobavirinae in the family Zobellviridae. *maximum number of predicted ORFs divided by number of core proteins.

| predicted <br> ORFs\# | core <br> proteins <br> $\#$ | Annotated <br> core <br> proteins \# | Annotated core proteins (sorted by functional category) | Percentage <br> core <br> proteins / <br> total <br> ORFs* |
| :--- | :--- | :--- | :--- | :--- |

### 4.4. Discussion

When we started the large-scale isolation campaign, only four described roseophage isolates had been recovered from the southern North Sea, the above described cobaviruses (ICBM1, ICBM2, and ICBM3) and Roseobacter phage CRP-235 (Qin et al. 2022). With this study, we were able to increase the knowledge on the diversity of dsDNA roseophages in this habitat significantly. We obtained more than a hundred new lytic roseophages, which we then classified taxonomically and genome characterized. We sequenced a total of 128 unique dsDNA roseophage genomes, belonging to twelve different genera. From these, 28 representative genomes were further investigated and could be assigned to eight families. Four of them represent existing, ICTV-recognized families: Autographiviridae (six phages), Casjensviridae (one phage), Mesyanzhinoviridae (two phages) and Zobellviridae (one phage). The remaining four families are here newly proposed: "Hayaniviridae" (six phages), "Schlingloffviridae" (two phages), "Diferiteviridae" (five phages), and "Woolleyviridae" (five phages) (Table 16). Furthermore, we propose here two new subfamilies: the "Incetivirinae" subfamily within the

Autographiviridae family, and the "Maresulfivirinae" within the Mesyanzhinoviridae family. The novel roseophages infect hosts of the genera Sulfitobacter, Lentibacter and Octadecabacter. They have dsDNA genomes ranging in size from 33.3 kb (Sulfitobacter phage ICBM130, "Woolleyviridae") to 80.8 kb (Sulfitobacter phage ICBM153, Mesyanzhinoviridae). About two thirds of the genomically analysed new roseophages show evidence of a lysogenic lifestyle.

### 4.4.1. Thresholds for phage taxonomic classification

In our phage classification approach, we performed a hierarchical clustering of the viral genomes based on the intergenomic distances of their shared protein content (proteins were clustered with $70 \%$ coverage and $100 \%$ identity). Subsequently, we split this proteomic tree into viral genome clusters (VGCs) using a distance threshold that fit best the existing ICTV families ( $99.5 \%$ distance). However, looking at the individual VGCs, we observed a high genomic diversity, underlined by the absence or a low number of core protein clusters or, in some cases, by the presense of different virion morphologies in the same VGC (e.g., siphoviruses and podoviruses in VGC_11, see chapter 4.3.5.3.). In our opinion, viral families should cluster viruses that share a strong core of protein clusters (especially belonging to the virion structure and morphogenesis module), have a similar morphology, DNA-replication and life-style. These criteria are in line with the new recommendations for viral classification (Simmonds et al. 2023). Within our data set, mostly viral groups smaller than the complete VGCs showed such common characteristics that they can be classified as families. Accordingly, we used a threshold of $30 \%$ PC-based intergenomic similarities to delineate new phage families (or subfamilies in the case of subclusters within already ICTV recognized families). Furthermore, virion morphology, genome replication strategy and host taxonomy further strengthened our classification approach. The predicted morphologies of the new ICBM phages were consistent within each family, being either of podoviral type (Autographiviridae, Zobellviridae and "Diferiteviridae") or siphoviral type ("Hayaniviridae", "Schlingloffviridae", Casjensviridae, Mesyanzhinoviridae and "Woolleyviridae") (Table 16). The predicted mode of genome replication was not as uniform within each family, but overall was limited to two types, either T7-type bidirectional replication and direct terminal repeats (DTRs), or P1-type rolling circle replication and headful (pac) packaging with circularly permuted genomes (Table 16). As a future task, phylogenetic analysis of viral hallmark genes, e.g., major capsid protein, which was detected in the core proteome of all families, should be performed in order to confirm the proposed family affiliation and intra-family taxonomy. For the classification into levels higher
than family rank, our PC-based tree is not sufficient. To determine order-level ranks, VirClust could be used again to calculate a hierarchical clustering of the viral genomes based on protein super clusters (PSCs) (Moraru 2023). For viral classification into higher ranks such as phyla, phylogenetic analysis of highly conserved hallmark genes and protein structure comparisons should be applied (Simmonds et al. 2023).

### 4.4.2. Diversity of the discovered phage families

Using the direct-plating approach for phage isolation, and partly also the enrichment approach, we were able to capture a high roseophage diversity. Although they are all dsDNA phages, and were all isolated using only three host genera from Roseobacteraceae, the taxonomic classification revealed quite diverse family compositions. Here, we provide a small window into the true roseophage diversity in the North Sea and the ecology behind. The phage families with more than one new roseophage comprise isolates from two to four different water samples, indicating the different degrees of diversity of the families as well as their relevance at different locations and years in the North Sea. Some families include phages infecting closely related hosts ("Hayaniviridae", "Woolleyviridae", infecting Sulfitobacter), while other families include viruses infecting two different host genera (e.g., "Diferiteviridae", infecting Sulfitobacter and Lentibacter). It would be an exacting task in the future to test the capability of all these phages to infect different genera on the one hand, and highly similar strains of the same species on the other hand. Furthermore, the proposed phage (sub-) families display different degrees of conservation regarding protein content. The number of core proteins ranges from eight ("Diferiteviridae") to 31 on family level ("Schlingloffviridae"), and 36 on subfamily level ("Maresulfivirinae"). In accordance with the prerequisite of having a similar DNA replication and virion morphology to be a family, the majority of the core proteins in all families are involved in those critical functions belonging to the functional categories of "head and packaging" and "DNA replication". In all families, the major capsid protein and the terminase large subunit belong to the annotated core proteins. Furthermore, the portal protein, the capsid scaffolding protein as well as the DNA polymerase, DNA primase/helicase and the thyX thymidylate synthase are core proteins in many families.

### 4.4.3. Genetic particularities of the new roseophages

The newly described roseophages possess varying interesting features as indicated by different auxiliary metabolic genes (AMGs) and genes involved in anti host-defense mechanisms encoded in their genomes. In most families, methylases are encoded, which are
well known as part of the viral response to the host defensive restriction-modification systems (Murphy et al. 2013). Additionally, the genomes of the "Schlingloffviridae" family encode a SaV -like protein, which is involved in the recognition of abortive infection systems (Haaber et al. 2009). Members of the "Maresulfivirinae" subfamily have the genes for queuosine biosynthesis encoded in their genomes, which was shown more recently to serve for protection of the viral DNA against bacterial restriction enzymes (Hutinet et al. 2019) (Table 16). Another interesting gene was found in the genomes of the "Benvirus" genus of the "Diferiteviridae" family. The phosphoadenosine phosphosulfate (PAPS) reductase can function as an AMG which benefits the host in low-sulfur conditions (Summer et al. 2006). Furthermore, the new roseophage isolates in the Autographiviridae family possess genes for the regulation of host chromosome condensation (RCC1). These regulators are common in eukaroytic genomes, but have so far only been described in two other phages (Abbasifar et al. 2014; Wagemans et al. 2020).

Strinkingly, we found no DNA polymerases in the phage genomes from the "Diferiteviridae" and "Woolleyviridae". We can only hypothesize that these phages use their host's DNA polymerase for replication, as it has been shown for example for Bacillus subtilis phage SPP1 (Seco et al. 2013). However, it is theoretically also possible that they possess a polymerase gene that is so different from all known genes that it could not be annotated. Cai et al. (2023) recently detected a completely new clade of cyanopodophages without a DNA polymerase encoded in their genomes and showed that they are very abundant in surface oceans worldwide.

Phages are known to have their own set of tRNAs to enhance translation efficiency during infection and thus facilitate phage production (Enav et al. 2012). Accordingly, Holmfeldt et al. (2013) detected a correlation of the amount of phage encoded tRNAs in Cellulophaga phages and the number of infected host strains. Sulfitobacter phages ICBM129 and ICBM153 belong to the same newly proposed subfamily "Maresulfivirinae", but possess different numbers of tRNA genes (none and seven, respectively). It would be an interesting task for future research to determine their host range in order to test if this correlation holds true here as well.

### 4.4.4. Conclusions

Once more, we could significantly extend the knowledge of dsDNA roseophages by isolation, genome sequencing, and taxonomic classification of phages infecting three Roseobacteraceae genera. Taxonomic assignment of the new viruses to eight different families, including four
completely new ones, indicates again the vast diversity of marine phages still awaiting to be uncovered. The obtained collection of genome-sequenced phage isolates provides a wide range of opportunities for further research, both at genomic and cultivation level.

## 5. Microdiversity of the sulfiviruses and their hosts (preliminary results)

### 5.1. Chapter summary

Many of the new dsDNA roseophage isolates obtained in the isolation campaign described in the previous chapter grouped into a large genus-level cluster - the "Sulfivirus" genus - infecting closely related Sulfitobacter strains. From the complete genus, only six representatives were considered for further classification in the previous chapter, and they were placed in the newly proposed family "Hayaniviridae". Having this large collection of phages from one single genus at hand, together with the collection of highly related, but different host strains, it was a great opportunity to investigate the genomic microdiversity of both phages and hosts. Furthermore, the influence of this microdiversity on phage-host interactions, more precisely the host range, could be examined.

The results described in this chapter represent a preliminary work. Thus, there is no separate subchapter for discussion. Instead, initial discussion approaches are presented together with the results.

## Contributions to this work:

Cristina Moraru designed the research and contributed to data analysis. I performed most of the laboratory work and the data analysis and wrote this chapter. We had great help in the laboratory work by Andrea Schlingloff (16S rRNA gene and ITS sequencing), Aaron Woolley and Martin Sackmann (phage purification and host range assay) and Ismail Hayani (TEM). Whole genome sequencing of the bacterial strains was performed by our collaborators Anja Poehlein and Mechthild Bömeke at the Göttingen Genomics Laboratory. Anne Kupczok (Wageningen University and Research, NL) helped us with the investigation of recombination events in the viral genomes.

### 5.2. Materials and methods

### 5.2.1. 16S / ITS phylogenetic analysis of sulfivirus host strains

Sequencing of the 16 S rRNA gene and the internal transcribed spacer (ITS) region of the bacterial hosts are described in chapter 4.2.3. The phylogenetic tree based on the 16S rRNA gene showed, that all sulfivirus host strains were identical or almost identical at the 16S rRNA level (chapter 4.3.1). Thus, we performed further phylogenetic analysis including the ITS region. Sequence alignment and tree calculation were performed using Geneious Prime ${ }^{\circledR}$ (version 2021.2.2). The neighbor-joining tree was calculated with Jukes-Cantor correction and 1000 bootstrap replicates. The closest relative of the host strains was retrieved by a BLASTN (Camacho et al. 2009) search against the nucleotide collection ( $\mathrm{nr} / \mathrm{nt}$ ) and included into the phylogenetic tree.

In addition, phylogenetic analysis based only on the 16 S rRNA gene was performed with the ARB software package (Ludwig et al. 2004). Using the reference data set SSU Ref NR 138.1, a neighbor-joining tree was calculated with Jukes-Cantor correction, 1000 bootstrap replicates and the termini filter. Members of the genus Psychrobacter served as an outgroup.

### 5.2.2. Whole genome sequencing of sulfivirus host strains

Thirty representative host strains were cultivated in liquid MB50 medium for $1-2$ days at $20^{\circ} \mathrm{C}$ and 100 rpm . DNA extraction for the two sequencing techniques Illumina and Nanopore was performed using different protocols. For Illumina sequencing it was performed in our laboratory as described further. From a culture with an $\mathrm{OD}_{600}$ higher than $0.5,500 \mu \mathrm{l}$ were transferred to a PCR clean reaction tube and centrifuged for 15 min at 4000 xg and $20^{\circ} \mathrm{C}$. The supernatant was discarded and the pellet resuspended in $100 \mu 1$ of the ChargeSwitch gDNA Mini Bacteria Kit (ThermoFisher Scientific). The genomic DNA was extracted following the instruction manual of the kit with the incubation step for cell lysis performed for 1 h at $80^{\circ} \mathrm{C}$. DNA concentrations were determined using the Qubit 2.0 fluorometer and the Qubit dsDNA HS Assay kit (ThermoFisher Scientific). Extracted DNA was stored at $4{ }^{\circ} \mathrm{C}$. For Nanopore sequencing, frozen cell pellets were sent to our collaborators for DNA extraction and sequencing. For the preparation of these cell pellets $2 \times 35 \mathrm{ml}$ culture were grown to an $\mathrm{OD}_{600}$ higher than 0.5 . Culture vessels were cooled on ice. After centrifugation for 15 min at 4000 xg and $4{ }^{\circ} \mathrm{C}$, the supernatant was removed leaving about 2 ml of culture medium for pellet resuspension. The resuspended cells were split into $500-1000 \mu \mathrm{l}$ aliquots in smaller reaction tubes and
centrifuged again for 15 min at 4000 xg and $4^{\circ} \mathrm{C}$. The supernatant was removed and centrifugation repeated with the same parameters. Finally, the pellet was frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$. Further sample preparation, i.e. DNA extraction, was performed by our collaborators Anja Poehlein and Mechthild Bömeke at the Göttingen Genomics Laboratory (University of Göttingen). Whole genome sequencing by Illumina and Nanopore technologies was carried out by our collaborators in Göttingen, who provided us with the readily assembled and annotated genomes.

### 5.2.3. Phylogenomic analysis of the sulfivirus host strains

The most closely related strains were retrieved by running 20 of the host genomes in the Type strain Genome Server (TYGS) (Meier-Kolthoff and Göker 2019). The genomes of the 17 related strains in the output tree were downloaded from the NCBI Nucleotide database and together with all 30 sulfivirus host genomes were submitted to the Genome-to-Genome Distance Calculator 3.0 (GGDC) (Meier-Kolthoff et al. 2021), running each genome against all other genomes in a separate project, respectively. The GGDC output for all genomes was combined in a d6 intergenomic distance matrix and a hierarchical clustering tree was calculated using the hclust package in the R programming environment ( R Core Team (2020), https://www.r-project.org/).

### 5.2.4. Initial comparative analysis of host genomes

First, the plasmids of all 30 strains were clustered with VirClust (Moraru 2023), using BLASTp for protein clustering (bitscore threshold of 100, coverage threshold of 80, evalue threshold of 0.0001 , clustering based on $\log$ evalues), the complete agglomeration method for plasmid clustering and a 0.7 clustering distance for tree splitting. After the plasmids were assigned to different clusters, the Sulfitobacter strains were clustered based on absence/presence of these plasmid clusters (distance matrix computation method "binary", agglomeration method "ward.D2") and the result was visualized as a heatmap including the infection patterns of the sulviruses using the R programming environment ( R Core Team (2020), https://www.rproject.org/).

A search for prophages in the chromosomes and plasmids was performed using Prophage Hunter (Song et al. 2019) and PHASTER (Arndt et al. 2016). Genomes of the detected active prophages were compared determining their nucleotide-based intergenomic sequence identity using VIRIDIC with default settings (Moraru et al. 2020).

### 5.2.5. Phage genomic analysis

### 5.2.5.1. Clustering of sulfivirus genomes on species and genus level

Nucleotide-based intergenomic identities of all sulfivirus pairs was calculated with VIRIDIC (Moraru et al. 2020), using the default options ("-word_size 7 -reward 2 -penalty -3 -gapopen 5 -gapextend 2"). A whole genome-based phylogenetic tree was created by pairwise comparisons of the nucleotide sequences using the Virus Classification and Tree Building Online Resource (VICTOR, available at https://victor.dsmz.de), and the underlying GenomeBLAST Distance Phylogeny (GBDP) method under settings recommended for prokaryotic viruses (Meier-Kolthoff et al. 2013; Meier-Kolthoff and Göker 2017). Taxon boundaries at the species, genus and family level were estimated with the OPTSIL program (Göker et al. 2009; Meier-Kolthoff et al. 2013) and the clustering thresholds suggested by Meier-Kolthoff et al. (2013).

### 5.2.5.2. Protein-based hierarchical clustering of the sulfivirus genomes and gene annotations using VirClust

A hierarchical clustering of all sulfivirus genomes was performed with VirClust (Moraru 2023) with the following parameters: BLASTp for the creation of protein clusters (clustering based on log evalues, thresholds for matches being removed: evalue $>0.00001$, bitscore $<50$, coverage $<0$, identity $<0 \%$ ), the "complete" agglomeration method for genome tree calculations and a distance of 0.9 to split the genomes into clusters. Functional annotations of predicted genes and their proteins was performed with VirClust, by searching against the databases InterPro (Finn et al. 2017), Prokaryotic Virus Orthologous Groups (pVOGs, Grazziotin et al. (2017)) and Virus Orthologous Groups (VOGDB, https://vogdb.org/help). A final, consensus annotation was then assigned manually. Core proteins were determined for each viral genome cluster (VGC), also using VirClust. Genome maps were generated using the genoPloR package (Guy et al. 2010) from the R programming environment (https://www.rproject.org/). tRNAs were identified with the online tool tRNAscan-SE v. 2.0 (http://lowelab.ucsc.edu/tRNAscan-SE/index.html) using the option "bacterial" as sequence source (Lowe and Chan 2016). Further, a second VirClust analysis was performed with settings able to capture fine differences between proteins, to enable investigation of the sulfivirus microdiversity. In a first step, proteins were clustered only if they were identical (thresholds used for filtering the BLASTp hits: evalue >0.00001, bitscore <50, coverage $<100$, identity $<100 \%$ ). Then, intergenomic distances were calculated based on these protein clusters, and used further for hierarchical clustering of the sulfivirus genomes (the "complete" agglomeration method for tree building, and an 0.9 distance for tree spitting).

### 5.2.5.3. Detection of recombination events

The ProgressiveMauve alignment (Darling et al. 2010) implemented in Geneious Prime ${ }^{\circledR}$ (version 2021.2.2) was used with default options to create a whole genome alignment of all sulfiviruses. After extraction of collinear blocks, gap removal and concatenation, an alignment of the core regions was obtained with MAFFT (Katoh and Standley 2013). Maximum likelihood (ML) phylogenies were estimated using IQ-TREE (v1.6.12) (Nguyen et al. 2015) and based on them, recombination events were identified with ClonalFrameML (v1.12) (Didelot and Wilson 2015). Apart from the visual display of recombination and mutation sites in the genomes, the results from ClonalFrameML were used to calculate the relative effect of recombination to mutation $(\mathrm{r} / \mathrm{m})$.

### 5.2.6. Host range determination

Cross-infectivity of each sulfivirus was tested against 59 original Sulfitobacter host strains by spot assay and streak assay. For initial screening, a spot assay was performed in which dilutions $10^{0}, 10^{-3}$ and $10^{-5}$ of a fresh viral lysate were spotted on an agar plate with a soft agar layer containing the respective bacterial strain. Dilutions of the viral lysate (prepared from a liquid infection culture as described in chapter 4.2.5.2) were created by mixing with ASWbase medium. An aliquot of exponentially growing host culture (final $\mathrm{OD}_{600}$ in $3 \mathrm{ml}=0.0233$ ) was pipetted in the middle of an MB50\% agar plate ( $1.8 \%$ agar) and 3 ml of MB50\%-soft agar ( $0.6 \%$ low melting Biozym Plaque GeneticPure agarose, Biozym, kept warm at $40^{\circ} \mathrm{C}$ ) were added into the middle of the culture droplet. The plate was shaken for mixing and even distribution of the soft agar layer. After solidification of the soft agar layer, $10 \mu \mathrm{l}$ droplets of the phage dilutions were pipetted on top. Plates were incubated for up to one week at $20^{\circ} \mathrm{C}$ and regularly checked for plaque formation.

To confirm the results, all sulfiviruses were again tested against all Sulfitobacter host strains in a streak assay, an adaptation of the method described by Kauffman and Polz (2018). Here, a droplet of undiluted phage lysate was also spotted on the soft agar layer containing the bacterial strain. Immediately afterwards, while the soft agar was still liquid, a dilution streaking was performed (Fig. 51a). For this, a sterile toothpick was swiped through the phage droplet and the soft agar creating three parallel streaks. The plate was turned a bit counterclockwise and a fresh toothpick was taken to make another three streaks crossing the end of the previous streaks. The plate was turned again and a final toothpick was taken to make one serpentine streak starting at the end of the secondary streaks. This way, single virus plaques could be observed in case of successful infection and a false positive result due to spontaneous cell lysis
could be excluded. Plates were incubated at $20^{\circ} \mathrm{C}$ and checked or plaque formation after three days (Fig. 51b).

For those phage-host combinations that gave contradictory results in the spot assay and streak assay, another round of streak assay was conducted. Clustering of the sulfiviruses according to their infectivity patterns (distance matrix computation method "binary", agglomeration method "ward.D2") and heatmap visualization was performed using the R programming environment (R Core Team (2020), https://www.r-project.org/). Likewise, further heatmaps with the phages clustered by isolation hosts or based on the core regionphylogenetic tree were prepared.


Fig. 51: Host range determination. (A) Scheme of the streak assay for host range determination. Steps 1 and 2 were performed with the pipette tip, for steps 3 and 4 a fresh sterile tooth pick was taken, respectively. (B) Examples for plates positive for infection and with single plaques visible. (Image created with Biorender.com).

### 5.2.7. TEM of sulfiviruses ICBM16 and ICBM18

In order to determine the morphology of the sulfiviruses, fresh lysates of two representatives (phages ICBM16 and ICBM18) were concentrated by polyethylene glycol (PEG) precipitation and examined under the transmission electron microscope (TEM). The phage lysates were prepared from two subsequent infection cultures, similar to the method used for the high titer lysates of the cobaviruses (see chapter 2.2.4). The first culture was set up inoculating 100 ml MB medium with Sulfitobacter sp. M53 to a final $\mathrm{OD}_{600}$ of 0.06 and 1 ml of the respective phage stock. In parallel, two cultures without phage were incubated, one as preculture, one as control. After incubation for 12 h at $20^{\circ} \mathrm{C}$ and 100 rpm , lysis was indicated by cell debris and a decrease in $\mathrm{OD}_{600}$ as compared to the non-infected cultures. The phage fraction was harvested by centrifugation ( 15 min at $5752 \mathrm{rcf}, 20^{\circ} \mathrm{C}$ ) and keeping the supernatant. The preculture was also centrifuged, the supernatant discarded and the pellet resuspended in 100 ml 2 x MB , to which the phage fraction was added. This way, a highly concentrated phage-host mixture was established for the second infection round. The new infection culture and a control (the control culture from the first round of infection diluted with 100 ml 2 x MB ) were incubated for 10 h at
$20^{\circ} \mathrm{C}$ and 100 rpm . The $\mathrm{OD}_{600}$ of the cultures was monitored hourly. When a decrease of the $\mathrm{OD}_{600}$ in the infection culture below 0.25 was observed, the phage lysate was harvested by centrifugation ( $15 \mathrm{~min}, 5752 \mathrm{rcf}, 20^{\circ} \mathrm{C}$ ) and stored at $4^{\circ} \mathrm{C}$. For concentration by PEG precipitation, the phage lysates were incubated for 12 h at $4^{\circ} \mathrm{C}$ with PEG (final concentration $10 \%$ ) and NaCl (final concentration 0.06 M ). The supernatant was discarded after centrifugation for 2 h at 7197 xg and $4^{\circ} \mathrm{C}$ and the pellet resuspended in $500 \mu \mathrm{l}$ SM buffer, pooling all pellets of the same phage.

For transmission electron microscopy, $30 \mu \mathrm{l}$ of the phage lysate were placed on the sterile side of a piece of Parafilm® and a carbon coated grid (Formvar 162, 200 mesh) was placed on top with the shiny side facing the droplet. After 3 min of absorption, the grid was transferred to a droplet of $30 \mu 12 \%$ uranyl acetate solution for 20 s . Immediately afterwards, the grid was picked up and the remaining liquid was carefully removed using filter paper, leaving a thin film behind. After air drying for 15 min , the grids were examined with the transmission electron microscope Zeiss EM902A. Images were documented with the Proscan High Speed SSCCD camera and analyzed using the software ImageSP viewer (Version 1.2.10.36, SYSPROG). Phages negatively stained were used for size measurements.

### 5.3. Results and discussion

### 5.3.1. A micro-diverse bacterial collection served for isolation of Sulfivirus phages

The closely related sulfiviruses analyzed in this project have been isolated from 48 Sulfitobacter host strains. Analysis of the 16 S rRNA gene and the 16S-23S rRNA internal transcribed spacer (ITS) region revealed that most of the host strains had an identical 16S rRNA gene, and even an identical IST (Fig. 52, SI File S5-1), indicating that they belong to the same species. In the 16 S rRNA gene based phylogenetic analysis (Fig. 53) these strains formed a highly supported clade together with Sulfitobacter marinus DSM 23422 (99.31-99.42 \% sequence identity, see SI File S5-2), suggesting that they belonged to a new species within the genus Sulfitobacter. Furthermore, whole genome analysis of a selection of 30 host strains confirmed this (Fig. 54). The very low intergenomic distances (max 0.0885, see SI file S5-3) showed that these host strains were highly related and belonged to the same microdiverse species level population.

## Sulfiviruses



Fig. 52: Neighbor-joining tree based on the 16 S rRNA gene and ITS region of 46 sulfivirus host strains plus their closest relative Sulfitobacter marinus DSM23422. Strains M71 and M172 are missing from the tree, but their sequences were $99.9 \%$ identical to that of strain M290 (see Fig. S15). *additional host strains of phages that were either not successfully sequenced or turned out to be duplicates.


Fig. 53: Neighbor-joining tree based on the 16S rRNA gene of 46 sulfivirus host strains and other Sulfitobacter strains, plus reference genomes. Psychrobacter strains served as outgroup. Strains M71 and M172 are missing from the tree, but their 16S rRNA gene sequences were $99.9 \%$ identical to that of strain M290 (see Fig. S15). *additional host strains of phages that were either not successfully sequenced or turned out to be duplicates.


Fig. 54: Hierachical clustering tree based on whole genome distances of 30 Sulfitobacter host strains plus 17 related strains.

### 5.3.2. 89 phage isolates of one genus

As mentioned before, the 89 phages ( 72 complete +17 partial genomes) isolated from the above-described host strains were highly similar. Sharing more than $68.4 \%$ nucleotide-based intergenomic identity, they belonged to a single phage genus, provisionally called the "Sulfivirus" genus (Fig. 56). Within this genus, the phages could be provionally assigned to 48 species clusters (Table 42, note: the cluster IDs are different from those assigned in chapter 4.3.4.). The sulfiviruses were isolated by direct plating from four different seawater samples, either directly from the shore (NHS) or from the mesocosm experiment (P1, P2, and P4). Examination of two sulfiviruses with transmission electron microscopy (TEM) revealed a siphoviral morphology with a long, non-contractile tail (Fig. 55). Sulfitobacter phage ICBM16 had a capsid size of $63 \pm 3 \mathrm{~nm}$ and a tail of $141 \pm 8 \mathrm{~nm}$ in length ( 46 virions measured). Sulfitobacter phage ICBM18 had a capsid size of $63 \pm 4 \mathrm{~nm}$ and a tail of $142 \pm 7 \mathrm{~nm}$ in length (50 virions measured). The siphoviral morphology was also reflected by gene annotations (see chapter 5.3.2.1.). Whole genome-based classification of six representatives with VirClust (Moraru 2023) and analysis of shared protein clusters showed that they clustered together with three other roseophages (Lentibacter phages ICBM7 and ICBM166 and Roseobacter phage CRP-6), but constituted their own phage family (see chapter 4.3.5.4). In addition, the whole genome-based phylogeny obtained with the VICTOR web service (Meier-Kolthoff and Göker 2017) and the taxon boundaries estimated with OPTSIL (Göker et al. 2009) assigned all phages to one genus and one family (Fig. 57).

The size of complete sulfivirus genomes ranged from $50.122-55.591 \mathrm{~kb}$ and the $\mathrm{G}+\mathrm{C}$ content from 44.5-45.0\% (Table 42). In these genomes, 80 to 95 ORFs were predicted (see SI file S5-4). The genomes of 17 sulfiviruses could be sequenced only partially, but they were almost complete having genome sizes of $45.405-54.605 \mathrm{~kb}$. Genome ends had short direct terminal repeats (DTRs) of 306-361 bp, indicating a T7-like DNA packaging strategy (see Table S13). With protein clustering using relaxed thresholds (evalue $>0.00001$, bitscore $<50$, coverage $<0$, identity $<0 \%$ ), more than two thirds ( 65 ) of all protein clusters (PCs) were present in all sulfivirus genomes (Fig. 58). Out of these core genes, 25 could be annotated. They represented almost all functional categories, including "DNA, RNA and nucleotide metabolism", to "lysis", "head and packaging", "tail", "connector", "anti-host defense" and "other" (Table 43). By comparison, in chapter 4.3.5.4, only 63 core PCs were determined for the six sulfiviruses in the "Hayaniviridae" family. The discrepancy lies in the different protein clustering parameters used between the two chapters, with the parameters used in chapter 4.3.5.4 being more stringent and grouping proteins that are more similar. Likewise, some

## Sulfiviruses

functional annotations differed between the two chapters, reflecting the fact that the different databases queried for protein annotation sometimes return slightly different results and even with manual review, it can be difficult to find the most accurate consensus annotation. However, most of these differences did not affect the overall functional category of the respective protein (Table 43).


Fig. 55: TEM image of uranyl-acetate stained virions of Sulfitobacter phages ICBM16 and ICBM18.
Table 42: Phages of the "Sulfivirus" genus. *host strain was genome sequenced. **species level clusters derived from nucleotide-based intergenomic identities calculated with VIRIDIC, IDs differ from those assigned in chapter 4.3.4. *** different North Sea water samples, from the shore (NHS), a mesocosm experiment (P1, P2 and P4), and from the open sea (HE504-33, HE396-6 and HE440-S).

| Isolation host | Phage name (full) | Phage name (short) | Species cluster ID** | Species assignment in chapter 4.3.4. | Isolation source*** | Isolation procedure | Genome status | Genome size [kb] | $\begin{gathered} \text { GC content } \\ {[\%]} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sulfitobacter sp. M43 | Sulfitobacter phage ICBM9 | ICBM9 | 46 |  | NHS | Direct plating | partial | 52.743 | 44.80\% |
| Sulfitobacter sp. M43 | Sulfitobacter phage ICBM10 | ICBM10 | 1 |  | NHS | Direct plating | partial | 51.641 | 44.80\% |
| Sulfitobacter sp. M45* | Sulfitobacter phage ICBM12 | ICBM12 | 9 | 21, "vif" | P2 | Direct plating | complete | 54.842 | 44.80\% |
| Sulfitobacter sp. M45* | Sulfitobacter phage ICBM13 | ICBM13 | 9 | 21, "vif" | P2 | Direct plating | complete | 53.694 | 44.80\% |
| Sulfitobacter sp. M47* | Sulfitobacter phage ICBM15 | ICBM15 | 24 |  | P2 | Direct plating | partial | 51.401 | 44.70\% |
| Sulfitobacter sp. M53* | Sulfitobacter phage ICBM16 | ICBM16 | 15 | 28, "vier" | P1 | Direct plating | complete | 53.115 | 45.00\% |
| Sulfitobacter sp. M53* | Sulfitobacter phage ICBM17 | ICBM17 | 25 |  | P2 | Direct plating | partial | 50.382 | 44.70\% |
| Sulfitobacter sp. M53* | Sulfitobacter phage ICBM18 | ICBM18 | 26 | 37 | P2 | Direct plating | complete | 52.071 | 44.80\% |
| Sulfitobacter sp. M53* | Sulfitobacter phage ICBM21 | ICBM21 | 5 | 15, "zes" | NHS | Direct plating | complete | 52.607 | 44.60\% |
| Sulfitobacter sp. M54* | Sulfitobacter phage ICBM22 | ICBM22 | 9 | 21, "vif" | P2 | Direct plating | complete | 54.842 | 44.80\% |
| Sulfitobacter sp. M55* | Sulfitobacter phage ICBM23 | ICBM23 | 21 | 33, "een" | P2 | Direct plating | complete | 53.772 | 44.90\% |
| Sulfitobacter sp. M55* | Sulfitobacter phage ICBM24 | ICBM24 | 21 | 33 , "een" | NHS | Direct plating | complete | 53.772 | 44.90\% |
| Sulfitobacter sp. M63* | Sulfitobacter phage ICBM25 | ICBM25 | 7 | 17, "twee" | NHS | Direct plating | complete | 55.591 | 45.00\% |
| Sulfitobacter sp. M66* | Sulfitobacter phage ICBM26 | ICBM26 | 27 |  | P2 | Direct plating | partial | 51.329 | 44.70\% |
| Sulfitobacter sp. M66* | Sulfitobacter phage ICBM32 | ICBM32 | 25 |  | NHS | Direct plating | partial | 49.909 | 44.60\% |
| Sulfitobacter sp. M68 | Sulfitobacter phage ICBM38 | ICBM38 | 3 | 13 | P4 | Direct plating | complete | 51.389 | 44.90\% |
| Sulfitobacter sp. M69* | Sulfitobacter phage ICBM39 | ICBM39 | 28 | 38 | NHS | Direct plating | complete | 53.256 | 44.60\% |
| Sulfitobacter sp. M71 | Sulfitobacter phage ICBM40 | ICBM40 | 21 | 33, "een" | P2 | Direct plating | complete | 53.772 | 44.90\% |
| Sulfitobacter sp. M72* | Sulfitobacter phage ICBM41 | ICBM41 | 8 | 20 | NHS | Direct plating | complete | 53.787 | 44.80\% |
| Sulfitobacter sp. M81* | Sulfitobacter phage ICBM42 | ICBM42 | 29 | 39 | NHS | Direct plating | complete | 54.434 | 45.00\% |
| Sulfitobacter sp. M83* | Sulfitobacter phage ICBM43 | ICBM43 | 2 | 12 | P2 | Direct plating | complete | 54.119 | 44.70\% |
| Sulfitobacter sp. M85 | Sulfitobacter phage ICBM45 | ICBM45 | 30 | 40 | P4 | Direct plating | complete | 53.766 | 44.60\% |


| Sulfitobacter sp. M86 | Sulfitobacter phage ICBM46 | ICBM46 | 31 |  | NHS | Direct plating | partial | 45.405 | 44.10\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sulfitobacter sp. M86 | Sulfitobacter phage ICBM47 | ICBM47 | 4 | 14, "drie" | P4 | Direct plating | complete | 52.388 | 44.80\% |
| Sulfitobacter sp . M86 | Sulfitobacter phage ICBM48 | ICBM48 | 30 | 40 | P4 | Direct plating | complete | 53.624 | 44.60\% |
| Sulfitobacter sp. M90* | Sulfitobacter phage ICBM49 | ICBM49 | 9 | 21, "vif" | P2 | Direct plating | complete | 54.336 | 44.80\% |
| Sulfitobacter sp . M92 | Sulfitobacter phage ICBM51 | ICBM51 | 29 | 39 | P2 | Direct plating | complete | 55.142 | 44.90\% |
| Sulfitobacter sp. M92 | Sulfitobacter phage ICBM52 | ICBM52 | 7 | 17, "twee" | P4 | Direct plating | complete | 54.694 | 44.90\% |
| Sulfitobacter sp. M105 | Sulfitobacter phage ICBM53 | ICBM53 | 32 | 41 | P2 | Direct plating | complete | 53.465 | 45.00\% |
| Sulfitobacter sp. M105 | Sulfitobacter phage ICBM54 | ICBM54 | 15 | 28, "vier" | NHS | Direct plating | complete | 53.931 | 45.00\% |
| Sulfitobacter sp. M157 | Sulfitobacter phage ICBM56 | ICBM56 | 33 |  | NHS | Direct plating | partial | 54.001 | 44.70\% |
| Sulfitobacter sp. M165 | Sulfitobacter phage ICBM57 | ICBM57 | 9 | 21, "vif" | P2 | Direct plating | complete | 54.46 | 44.80\% |
| Sulfitobacter sp. M165 | Sulfitobacter phage ICBM58 | ICBM58 | 9 | 21, "vif" | P2 | Direct plating | complete | 54.373 | 44.90\% |
| Sulfitobacter sp. M165 | Sulfitobacter phage ICBM59 | ICBM59 | 9 | 21, "vif" | NHS | Direct plating | complete | 54.967 | 44.80\% |
| Sulfitobacter sp. M170 | Sulfitobacter phage ICBM60 | ICBM60 | 32 | 41 | NHS | Direct plating | complete | 53.548 | 45.00\% |
| Sulfitobacter sp. M170 | Sulfitobacter phage ICBM61 | ICBM61 | 34 | 42 | NHS | Direct plating | complete | 52.642 | 44.70\% |
| Sulfitobacter sp . M171* | Sulfitobacter phage ICBM62 | ICBM62 | 20 | 32 | P2 | Direct plating | complete | 50.122 | 44.90\% |
| Sulfitobacter sp . M173* | Sulfitobacter phage ICBM63 | ICBM63 | 35 |  | NHS | Direct plating | partial | 53.474 | 44.90\% |
| Sulfitobacter sp . M176* | Sulfitobacter phage ICBM65 | ICBM65 | 9 | 21, "vif" | NHS | Direct plating | complete | 54.288 | 44.80\% |
| Sulfitobacter sp. M180 | Sulfitobacter phage ICBM67 | ICBM67 | 36 | 43 | NHS | Direct plating | complete | 51.759 | 44.60\% |
| Sulfitobacter sp. M180 | Sulfitobacter phage ICBM68 | ICBM68 | 18 | 30 | NHS | Direct plating | complete | 52.277 | 44.70\% |
| Sulfitobacter sp . M183* | Sulfitobacter phage ICBM69 | ICBM69 | 3 | 13 | P2 | Direct plating | complete | 51.379 | 44.90\% |
| Sulfitobacter sp. M186 | Sulfitobacter phage ICBM70 | ICBM70 | 9 | 21, "vif" | P2 | Direct plating | complete | 53.694 | 44.80\% |
| Sulfitobacter sp . M187* | Sulfitobacter phage ICBM71 | ICBM71 | 35 |  | P2 | Direct plating | partial | 52.603 | 45.00\% |
| Sulfitobacter sp . M191* | Sulfitobacter phage ICBM72 | ICBM72 | 37 |  | P2 | Direct plating | partial | 51.034 | 44.80\% |
| Sulfitobacter sp. M192 | Sulfitobacter phage ICBM74 | ICBM74 | 38 |  | NHS | Direct plating | partial | 54.605 | 44.80\% |
| Sulfitobacter sp. M196 | Sulfitobacter phage ICBM76 | ICBM76 | 20 | 32 | P2 | Direct plating | complete | 50.122 | 44.90\% |
| Sulfitobacter sp. M196 | Sulfitobacter phage ICBM77 | ICBM77 | 20 | 32 | NHS | Direct plating | complete | 50.195 | 44.90\% |


| Sulfitobacter sp. M197 | Sulfitobacter phage ICBM78 | ICBM78 | 6 | 16 | NHS | Direct plating | complete | 53.429 | 44.90\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sulfitobacter sp. M197 | Sulfitobacter phage ICBM79 | ICBM79 | 21 | 33, "een" | NHS | Direct plating | complete | 53.781 | 44.90\% |
| Sulfitobacter sp. M199* | Sulfitobacter phage ICBM80 | ICBM80 | 39 |  | NHS | Direct plating | partial | 52.003 | 44.70\% |
| Sulfitobacter sp. M200 | Sulfitobacter phage ICBM82 | ICBM82 | 28 | 38 | NHS | Direct plating | complete | 53.759 | 44.60\% |
| Sulfitobacter sp. M201 | Sulfitobacter phage ICBM83 | ICBM83 | 40 |  | NHS | Direct plating | partial | 51.497 | 44.60\% |
| Sulfitobacter sp. M201 | Sulfitobacter phage ICBM84 | ICBM84 | 41 |  | NHS | Direct plating | partial | 52.69 | 44.70\% |
| Sulfitobacter sp. M207 | Sulfitobacter phage ICBM86 | ICBM86 | 42 | 44 | NHS | Direct plating | complete | 52.921 | 44.70\% |
| Sulfitobacter sp. M207 | Sulfitobacter phage ICBM87 | ICBM87 | 43 | 45 | NHS | Direct plating | complete | 53.362 | 44.50\% |
| Sulfitobacter sp. M207 | Sulfitobacter phage ICBM88 | ICBM88 | 44 | 46 | NHS | Direct plating | complete | 53.044 | 44.70\% |
| Sulfitobacter sp. M244 | Sulfitobacter phage ICBM89 | ICBM89 | 45 | 47 | P2 | Direct plating | complete | 53.957 | 44.90\% |
| Sulfitobacter sp. M260 | Sulfitobacter phage ICBM90 | ICBM90 | 47 | 48 | P2 | Direct plating | complete | 51.373 | 44.70\% |
| Sulfitobacter sp. M260 | Sulfitobacter phage ICBM91 | ICBM91 | 3 | 13 | P4 | Direct plating | complete | 51.389 | 44.90\% |
| Sulfitobacter sp. M271* | Sulfitobacter phage ICBM94 | ICBM94 | 48 | 49 | P2 | Direct plating | complete | 54.72 | 44.70\% |
| Sulfitobacter sp. M283* | Sulfitobacter phage ICBM95 | ICBM95 | 9 | 21, "vif" | P2 | Direct plating | complete | 54.142 | 44.90\% |
| Sulfitobacter sp. M300* | Sulfitobacter phage ICBM99 | ICBM99 | 26 | 37 | P2 | Direct plating | complete | 52.071 | 44.80\% |
| Sulfitobacter sp. M303 | Sulfitobacter phage ICBM100 | ICBM100 | 2 | 12 | P2 | Direct plating | complete | 54.118 | 44.70\% |
| Sulfitobacter sp. M68 | Sulfitobacter phage ICBM102 | ICBM102 | 3 | 13 | P2 | Direct plating | complete | 50.475 | 44.90\% |
| Sulfitobacter sp. M86 | Sulfitobacter phage ICBM103 | ICBM103 | 4 | 14, "drie" | P2 | Direct plating | complete | 50.611 | 44.90\% |
| Sulfitobacter sp. M276 | Sulfitobacter phage ICBM105 | ICBM105 | 3 | 13 | P2 | Direct plating | complete | 51.379 | 44.90\% |
| Sulfitobacter sp. M53* | Sulfitobacter phage ICBM107 | ICBM107 | 5 | 15, "zes" | P2 | Direct plating | complete | 52.423 | 44.70\% |
| Sulfitobacter sp. M55* | Sulfitobacter phage ICBM109 | ICBM109 | 6 | 16 | NHS | Direct plating | complete | 51.998 | 45.00\% |
| Sulfitobacter sp. M63* | Sulfitobacter phage ICBM110 | ICBM110 | 7 | 17, "twee" | NHS | Direct plating | complete | 55.587 | 45.00\% |
| Sulfitobacter sp. M68 | Sulfitobacter phage ICBM113 | ICBM113 | 3 | 13 | P4 | Direct plating | complete | 52.367 | 44.90\% |
| Sulfitobacter sp. M72* | Sulfitobacter phage ICBM119 | ICBM119 | 8 | 20 | NHS | Direct plating | complete | 53.787 | 44.80\% |
| Sulfitobacter sp. M72* | Sulfitobacter phage ICBM120 | ICBM120 | 10 |  | P4 | Direct plating | partial | 53.159 | 44.60\% |
| Sulfitobacter sp. M85 | Sulfitobacter phage ICBM124 | ICBM124 | 11 | 23 | P4 | Direct plating | complete | 54.296 | 44.80\% |


| Sulfitobacter sp. M86 | Sulfitobacter phage ICBM126 | ICBM126 | 12 | 24 | NHS | Direct plating | complete | 53.881 | $44.80 \%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sulfitobacter sp. M86 | Sulfitobacter phage ICBM127 | ICBM127 | 13 | 25 | NHS | Direct plating | complete | 52.781 | $44.90 \%$ |
| Sulfitobacter sp. M91* | Sulfitobacter phage ICBM128 | ICBM128 | 14 | 26 | NHS | Direct plating | complete | 54.612 | $44.70 \%$ |
| Sulfitobacter sp. M105 | Sulfitobacter phage ICBM131 | ICBM131 | 15 | 28 , "vier" | NHS | Direct plating | complete | 52.646 | $45.00 \%$ |
| Sulfitobacter sp. M165 | Sulfitobacter phage ICBM133 | ICBM133 | 9 | 21, "vif" | NHS | Direct plating | complete | 54.967 | $44.80 \%$ |
| Sulfitobacter sp. M170 | Sulfitobacter phage ICBM134 | ICBM134 | 9 | 21, "vif" | NHS | Direct plating | complete | 54.461 | $44.80 \%$ |
| Sulfitobacter sp. M172 | Sulfitobacter phage ICBM135 | ICBM135 | 16 |  | NHS | Direct plating | partial | 51.877 | $45.00 \%$ |
| Sulfitobacter sp. M176* | Sulfitobacter phage ICBM137 | ICBM137 | 17 | 29 | NHS | Direct plating | complete | 53.554 | $44.80 \%$ |
| Sulfitobacter sp. M180 | Sulfitobacter phage ICBM138 | ICBM138 | 18 | 30 | NHS | Direct plating | complete | 52.782 | $44.80 \%$ |
| Sulfitobacter sp. M186 | Sulfitobacter phage ICBM139 | ICBM139 | 19 | 31 | NHS | Direct plating | complete | 53.722 | $44.70 \%$ |
| Sulfitobacter sp. M196 | Sulfitobacter phage ICBM143 | ICBM143 | 20 | 32 | NHS | Direct plating | complete | 52.012 | $44.70 \%$ |
| Sulfitobacter sp. M197 | Sulfitobacter phage ICBM145 | ICBM145 | 21 | $33, " e e n "$ | P2 | Direct plating | complete | 53.772 | $44.90 \%$ |
| Sulfitobacter sp. M242* | Sulfitobacter phage ICBM146 | ICBM146 | 22 | 34 | P2 | Direct plating | complete | 52.265 | $44.60 \%$ |
| Sulfitobacter sp. M260 | Sulfitobacter phage ICBM147 | ICBM147 | 23 | 35 | P2 | Direct plating | complete | 51.69 | $44.80 \% ~$ |
| Sulfitobacter sp. M351* | Sulfitobacter phage ICBM154 | ICBM154 | 22 | 34 | P2 | Direct plating | complete | 52.265 | $44.60 \% ~$ |



Fig. 56: Nucleotide-based intergenomic identities within the "Sulfivirus" genus, as calculated with VIRIDIC. Identies higher than $99.9 \%$ are rounded up to $100 \%$.


Fig. 57: Whole genome-based phylogeny of the 89 sulfiviruses and reference genomes, as obtained with the Genome-BLAST Distance Phylogeny method implemented in the VICTOR web service (nucleic acid data). Phages ICBM96 and ICBM149 turned out to be contaminated and were later removed from the collection. OPTSIL clustering into family ( F ), genus (G) and species (S) is included in the label after the phage ID.

## Sulfiviruses

Table 43: Core proteins of the "Sulfivirus" genus.

| Category | PC ID | Protein function | PC ID in chapter 4.3.5.4. | Alternative functional annotation in chapter 4.3.5.4. |
| :---: | :---: | :---: | :---: | :---: |
| DNA, RNA and nucleotide metabolism | 1 | DNA polymerase | 94 |  |
|  | 19 | Exonuclease | 90 |  |
|  | 18 | Thymidylate synthase ThyX | 1 |  |
|  | 2 | HNH-endonuclease | 305 |  |
|  | 10 | Primase/helicase | 200 |  |
|  | 28 | Ribonucleotide reductase | 300 |  |
|  | 9 | RNA polymerase sigma factor | 167 | Hypothetical protein |
|  | 63 | Endonuclease | 179 | HNH-endonuclease |
| Lysis | 40 | Lysozyme | 3 | Endolysin (lysozymepeptidase) |
| Head and packaging | 60 | Capsid decoration protein | 151 | Capsid protein |
|  | 61 | Capsid maturation protease | 196 |  |
|  | 59 | Major capsid protein | 104 |  |
|  | 62 | Portal protein | 105 |  |
|  | 54 | Terminase large subunit | 82 |  |
|  | 20 | Terminase small subunit | 175 | HNH endonuclease |
| Tail | 53 | Baseplate protein | 368 | Concanavalin A-like lectins/glucanases |
|  | 47 | Major tail tube protein | 99 | Minor tail protein |
|  | 42 | Putative tail fiber adhesion protein | 2 | Tail fiber protein |
|  | 44 | Tail tape measure protein | 310 |  |
| Connector | 50 | Putative head-tail joining protein / tail attachment protein | 101 | Head closure Hc1 |
|  | 48 | Putative tail terminator protein | 100 | Tail completion Tc1 |
| Anti-host defense | 25 | DNA adenine methylase | 180 |  |
| Other | 24 26 | Metallo-phosphoesterase phosphoribosyl-ATP pyrophosphohydrolase MazG | 96 181 | Nucleotide <br> pyrophosphohydrolase |
| Unknown | $\begin{aligned} & 57,3,4,5, \\ & 6,7,58,8, \end{aligned}$ | Hypothetical protein | $\begin{aligned} & 158,160,161,162,163, \\ & 164,165,166,168,152, \end{aligned}$ |  |

## Sulfiviruses

| $11,43,66$, | $259,169,170,147,171$, |
| :---: | :---: |
| $67,12,13$, | $172,173,174,176,177$, |
| $14,15,16$, | $178,182,183,184,185$, |
| $17,21,22$, | $186,187,188,189,190$, |
| $23,27,29$, | $191,192,193,194,97$, |
| $30,31,32$, | $98,195,102,103,106$, |
| $33,34,35$, | 197 |
| $36,37,38$, |  |
| $39,41,45$, |  |
| $46,49,51$, |  |
| $52,55,56$ |  |

Table 44: Non-core protein clusters of the "Sulfivirus" genus.

| PC ID | Category | Protein function | Number of sulfivirus genomes containing the PC |
| :---: | :---: | :---: | :---: |
| 86 | anti-host defense | DNA_adenine_methylase | 40 |
| 92 |  | DNA_adenine_methylase | 31 |
| 80 |  | DNA_cytosine_methylase | 50 |
| 119 |  | putative_anti-restriction_nuclease | 8 |
| 91 | DNA, RNA and nucleotide metabolism | HNH_endonuclease | 33 |
| 130 |  | HNH_endonuclease | 6 |
| 138 |  | HNH_endonuclease | 4 |
| 65 |  | HNH_homing_endonuclease | 86 |
| 110 |  | Polynucleotide_kinase_/_phosphatase | 11 |
| 90 |  | putative_HNH_endonuclease | 34 |
| 89 |  | ribonucleotide_reductase_cobalamin_dep endent | 34 |
| 109 |  | RNA_ligase | 11 |
| 73 |  | tRNA_pseudouridine_synthase_D | 70 |
| 153 | moron, auxiliary metabolic gene and host takeover | Phosphoadenosine_phosphosulfate_reduct ase | 2 |
| 82 |  | putative tail fiber | 49 |
| 116 | tail | putative_tail_protein | 8 |
| 105 |  | tail_fiber_assembly_protein | 18 |
| 111 | unknown | GLTT_repeat_(6_copies) | 11 |



Fig. 58: Hierarchical clustering of the sulfivirus genomes when using relaxed parameters for protein clusterings. Clustering based on $\log$ evalues. Thresholds for matches being removed: evalue $>0.00001$, bitscore $<50$, coverage $<0$, percentage identity $<0$. Clustering distance of 0.9 . Affiliation of protein clusters to functional categories is marked by different colors.

### 5.3.2.1. Composition of sulfiviral genomes

As shortly described already in chapter 4.3.5.4, the genomic architecture of the sulfiviruses comprised two arms, with genes organized in functional modules and encoded in forward direction on the left arm and in reverse direction on the right arm (Fig. 59). Apart from the two arms, 5-11 genes annotated as "hypothetical" were encoded in reverse direction at the very beginning of the genome. The genome of Sulfitobacter phage ICBM128 was the one with the most ORFs predicted among the complete genomes. Its architecture is shown in figure 59 and Table 46, as a representative of the "Sulfivirus" genus. For the genome maps and gene annotations of all complete sulfivirus genomes, see figure S16 in the appendix and SI files S54 and S5-5.


Fig. 59: Genome map of Sulfitobacter phage ICBM128. *core gene.
On the left arm of the genome, genes of the functional category "DNA, RNA and nucleotide metabolism" were encoded (Table 46, Fig. 59). In this module, the protein-encoding genes with functional annotations were: an HNH-endonuclease (PC_2), an RNA polymerase sigma factor (PC_9), a bifunctional primase/helicase gene (PC_10), an RNA ligase gene (PC_109), a polynucleotide kinase/phosphatase gene (PC_110), the DNA polymerase gene (PC_1), a thymidylate synthase ThyX gene (PC_18), an exonuclease gene (PC_19), a ribonucleotide reductase gene (PC_28) and finally another HNH-endonuclease gene (PC_91). The polynucleotide kinase/phosphatase gene and the RNA ligase gene were only present in (the same) eleven sulfivirus genomes. In addition, the three core genes coding for the terminase small subunit (PC_20) (category "head and packaging"), a metallo-phosphoesterase (PC_24) and a phosphoribosyl-ATP pyrophosphohydrolase MazG (PC_26, category "other") were located on the left genomic arm. Furthermore, DNA methylases were encoded on this arm, with their number (1-3) and position varying between sulfiviruses (PC_25, PC_86 = DNA adenine methylase, PC_80 = DNA cytosine methylase). In some genomes, another DNA adenine
methylase gene was encoded in reverse direction at the very end of the genome (PC_92). Methylases can serve for protection against restriction-modification systems. Thus, they were assigned to the functional category "anti-host defense". Seven sulfiviruses (species 3 and 11) additionally had a putative anti-restriction nuclease encoded at the very end of the left arm, in the middle of the genome (PC_119). In general, the sulfivirus genomes differed in the number and position of genes annotated as encoding "hypothetical proteins". In contrast, the structure of the morphology module on the right arm was more conserved, also regarding the hypothetical proteins. The module started with the gene coding for the terminase large subunit (PC_54, functional category "head and packaging"), followed by the baseplate protein (PC_53) and a putative tail fiber (PC_82). The tail fiber gene was annotated only in about half of the genomes. Subsequently, the other genes of the "head and packaging" category were clustered together, coding for the portal protein (PC_62), the capsid maturation protease (PC_61), the capsid decoration protein (PC_60) and the major capsid protein (PC_59). They were followed by two genes coding for the "connectors", the tail terminator protein (PC_48) and the head-tail joining protein (PC_50). The genes coding for the tail components were again grouped together, i.e. the major tail tube protein (PC_47), the tail tape measure protein (PC_44), a putative tail fiber adhesion protein (PC_42) and a tail fiber assembly protein (PC_105). In 15 of the complete genomes, another tail fiber assembly protein (PC_105) was annotated. At the end of the right arm, towards the middle of the genome, a lysozyme encoding gene was detected (PC_40).

As mentioned above, the majority of protein clusters (PCs) was present in all sulfivirus genomes, resembling the core proteome. Out of 94 PCs that were non-core proteins, 20 could be functionally annotated (Table 44). Most of them belonged to the categories "anti-host defense", "DNA, RNA and nucleotide metabolism" and "tail", indicating that major differences between the sulfivirus genomes were related to the adaptation to different host strains. While the different DNA methylases and the anti-restriction nuclease act against bacterial defense on DNA level, varying tail fiber proteins could serve for the attachment to differential hosts. Among the non-core PCs of the category "DNA, RNA and nucleotide metabolism" there were five PCs annotated as HNH homing endonucleases. Homing endonucleases are mobile elements that recognize DNA sequences lacking their gene at a specific site, cleave it and insert themselves into it by gene conversion (Belfort 2005; Stoddard 2011). HNH endonucleases were first known for the mediation of intron and intein mobility, in a process called "homing" (Dujon 1989). However, "intron-less homing" has been observed between phage genomes, in which freestanding endonucleases are transferred, with co-conversion of parts of the flanking DNA (Belle et al. 2002; Liu et al. 2003). Often, HNH endonucleases are present as insertions in other
genes, especially frequently in DNA polymerases and RNR genes (Novikova et al. 2016; Bellas et al. 2020). The sulfivirus genomes differed in number ( $1-6$ ) and position of these HNH homing endonucleases (PC_2, PC_65, PC_90, PC_91, PC_130, and PC_138). Some of them had an HNH module inserted in the primase/helicase gene (PC_10). Furthermore, the ribonucleotide reductase (RNR) was either encoded by one large gene (PC_28) or split in two shorter genes (PC_28 and PC_89), interrupted by a putative HNH endonuclease. Kala et al. (2014) discovered that in E. coli phage HK97, an HNH protein is associated to the large terminase protein and plays an essential role in capsid morphogenesis. They found the colocation of HNH and terminase genes to be widespread among long-tailed phages and suggested that the terminase-associated HNH proteins represent a distinct subfamily. Also in many of the sulfivirus genomes, there were HNH endonuclease genes (PC_130, PC_138, and PC_65) encoded in close proximity to the terminase large subunit gene (PC_54).

The nature of the DNA polymerase gene (PC_1) also varied between sulfivirus genomes. Some had one large gene with both domains, while others had the DNA polymerase domain and the exonuclease domain divided into two genes. In some genomes, there was a third DNA polymerase gene, separated from the others by a methylase gene. Two sulfiviruses (ICBM32 and ICBM63, both with partial genomes) possessed a phosphoadenosine phosphosulfate (PAPS) reductase. As mentioned also in chaper 4.3.5.5 about the "Diferiteviridae" family, this enzyme has been found in phages before and could potentially promote host growth under sulfur limited conditions (Summer et al. 2006; Summer et al. 2007b).

Almost half of the sulfivirus genomes had a tRNA gene (Table 45). The tRNA encoded for asparagine, cysteine or arginine, and was located at the very end of the genome, directly upstream of the hypothetical protein PC_55 and the terminase large subunit (PC_54). Almost all genomes possessing a tRNA gene also encoded the gene coding for a tRNA pseudouridine synthase D (PC_73), located next to the lysis gene in the middle of the genome. As mentioned earlier in chapter 4.3.6, phage tRNAs can enhance translation efficiency and progeny production. For some phages, a correlation between the number of tRNAs encoded in the viral genome and the number of infected host strains has been reported (Holmfeldt et al. 2013). However, Holmfeldt et al. (2013) compared the host ranges of phages with 16 and 24 tRNAs encoded with those having one or none tRNAs. When comparing sulfiviruses with one tRNA and those without a tRNA, no pattern in host range size could be observed (Fig. 63 in chapter 5.3.4.). Xu et al. (2018) hypothesized that (cyano-) phages with high numbers of tRNA genes were prevailing in nutrient-rich environments, whereas in oligotrophic habitats phages had less
tRNA genes. At least for our sulfiviruses and roseophage isolates, which originate from algal bloom samples, this hypothesis does not apply.

Hierarchical clustering of the genomes based on individual proteins instead of protein clusters (using VirClust, identity and coverage thresholds $=100 \%$ ) revealed that if smaller differences such as point mutations are considered, the sulfivirus genomes were highly diverse (Fig. 60). They displayed a high degree of microdiversity. In order to investigate how this microdiversity could evolve, the next analytical step was to look for traces of recombination between the phage genomes.

Table 45: tRNAs predicted in the genomes of the "Sulfivirus" genus.

| Sequence name | tRNA start | tRNA end | tRNA type |
| :---: | :---: | :---: | :---: |
| ICBM9 | 5330 | 5406 | Asn |
| ICBM10 | 46368 | 46292 | Asn |
| ICBM12 | 52784 | 52710 | Cys |
| ICBM18 | 50530 | 50454 | Asn |
| ICBM21 | 50164 | 50088 | Asn |
| ICBM22 | 52784 | 52710 | Cys |
| ICBM38 | 49008 | 48932 | Asn |
| ICBM41 | 52293 | 52217 | Asn |
| ICBM45 | 51357 | 51281 | Asn |
| ICBM47 | 50941 | 50865 | Asn |
| ICBM48 | 51207 | 51131 | Asn |
| ICBM49 | 52276 | 52202 | Cys |
| ICBM53 | 51822 | 51748 | Cys |
| ICBM56 | 8044 | 8120 | Asn |
| ICBM61 | 51137 | 51061 | Asn |
| ICBM62 | 47775 | 47699 | Asn |
| ICBM63 | 48539 | 48463 | Asn |
| ICBM69 | 48997 | 48921 | Asn |
| ICBM71 | 47664 | 47588 | Asn |
| ICBM76 | 47775 | 47699 | Asn |
| ICBM77 | 47852 | 47776 | Asn |
| ICBM82 | 27027 | 27103 | Arg |
| ICBM86 | 51372 | 51296 | Asn |
| ICBM88 | 51543 | 51467 | Asn |
| ICBM89 | 52342 | 52268 | Cys |
| ICBM90 | 49029 | 48953 | Asn |
| ICBM91 | 49008 | 48932 | Asn |
| ICBM99 | 50530 | 50454 | Asn |
| ICBM102 | 49005 | 48929 | Asn |
| ICBM103 | 49146 | 49070 | Asn |
| ICBM105 | 48997 | 48921 | Asn |
|  |  |  |  |

## Sulfiviruses

| ICBM113 | 49986 | 49910 | Asn |
| :--- | :--- | :--- | :--- |
| ICBM119 | 52293 | 52217 | Asn |
| ICBM120 | 48226 | 48150 | Asn |
| ICBM124 | 51913 | 51837 | Asn |
| ICBM126 | 52433 | 52357 | Asn |
| ICBM127 | 51333 | 51257 | Asn |
| ICBM128 | 52259 | 52183 | Asn |
| ICBM137 | 51921 | 51847 | Cys |
| ICBM143 | 49659 | 49583 | Asn |

Table 46: Gene annotations of Lentibacter phage ICBM128. Strand 1: forward orientation. Strand -1 : reverse orientation. Hp $=$ hypothetical protein. *Core proteins of sulfiviruses. (Note: PC-IDs are different from those in chapter 4.3.5.4.).

| Gene ID | Gene start | Gene end | Gene length [bp] | Strand | PC ID | Protein function | Category |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_1 | 533 | 754 | 222 | -1 | 70 | hp | unknown |
| gene_2 | 751 | 1110 | 360 | -1 | 71 | hp | unknown |
| gene_3 | 1107 | 1367 | 261 | -1 | 57* | hp* | unknown |
| gene_4 | 1367 | 1549 | 183 | -1 | 79 | hp | unknown |
| gene_5 | 1565 | 2227 | 663 | -1 | 68 | hp | unknown |
| gene_6 | 2259 | 2429 | 171 | -1 | 64 | hp | unknown |
| gene_7 | 3204 | 3755 | 552 | 1 | 2* | HNH-endonuclease* | DNA, RNA and nucleotide metabolism |
| gene_8 | 3830 | 4114 | 285 | 1 | 84 | hp | unknown |
| gene_9 | 4262 | 4456 | 195 | 1 | 3* | hp* | unknown |
| gene_10 | 4459 | 4644 | 186 | 1 | 4* | hp* | unknown |
| gene_11 | 4634 | 4915 | 282 | 1 | 5* | hp* | unknown |
| gene_12 | 4917 | 5312 | 396 | 1 | 6* | hp* | unknown |
| gene_13 | 5373 | 5819 | 447 | 1 | 7* | hp* | unknown |
| gene_14 | 5816 | 6112 | 297 | 1 | 58* | hp* | unknown |
| gene_15 | 6109 | 6360 | 252 | 1 | 8* | hp* | unknown |
| gene_16 | 6375 | 6866 | 492 | 1 | 100 | hp | unknown |
| gene_17 | 6933 | 7490 | 558 | 1 | 9* | RNA polymerase sigma factor* | DNA, RNA and nucleotide metabolism |
| gene_18 | 7851 | 8192 | 342 | 1 | 94 | hp | unknown |
| gene_19 | 8189 | 8548 | 360 | 1 | 74 | hp | unknown |
| gene_20 | 8545 | 8742 | 198 | 1 | 83 | hp | unknown |
| gene_21 | 8739 | 10409 | 1671 | 1 | 10* | Primase/helicase* | DNA, RNA and nucleotide metabolism |
| gene_22 | 10409 | 11302 | 894 | 1 | 109 | RNA ligase | DNA, RNA and nucleotide metabolism |
| gene_23 | 11303 | 12166 | 864 | 1 | 110 | Polynucleotide kinase / phosphatase | DNA, RNA and nucleotide metabolism |
| gene_24 | 12167 | 12355 | 189 | 1 | 136 | hp | unknown |
| gene_25 | 12352 | 12786 | 435 | 1 | 11* | hp* | unknown |
| gene_26 | 12779 | 13381 | 603 | 1 | 72 | hp | unknown |
| gene_27 | 13365 | 13544 | 180 | 1 | 69 | hp | unknown |
| gene_28 | 13541 | 13696 | 156 | 1 | 66* | hp* | unknown |
| gene_29 | 13693 | 15582 | 1890 | 1 | 1* | DNA polymerase* | DNA, RNA and nucleotide metabolism |
| gene_30 | 15703 | 15876 | 174 | 1 | 67* | hp* | unknown |

## Sulfiviruses

| gene_31 | 15891 | 16205 | 315 | 1 | 12* | hp* | unknown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_32 | 16263 | 16826 | 564 | 1 | 13* | $\mathrm{hp} *$ | unknown |
| gene_33 | 16826 | 17065 | 240 | 1 | 14* | hp * | unknown |
| gene_34 | 17058 | 17276 | 219 | 1 | 15* | hp* | unknown |
| gene_35 | 17273 | 17431 | 159 | 1 | 16* | hp* | unknown |
| gene_36 | 17431 | 17634 | 204 | 1 | 17* | $\mathrm{hp} *$ | unknown |
| gene_37 | 17750 | 18589 | 840 | 1 | 18* | Thymidylate synthase ThyX* | DNA, RNA and nucleotide metabolism |
| gene_38 | 18586 | 18729 | 144 | 1 | 75 | hp | unknown |
| gene_39 | 18726 | 19457 | 732 | 1 | 19* | Exonuclease* | DNA, RNA and nucleotide metabolism |
| gene_40 | 19439 | 19627 | 189 | 1 | 87 | hp | unknown |
| gene_41 | 19611 | 19985 | 375 | 1 | 20* | Terminase, small subunit* | head and packaging |
| gene_42 | 20047 | 20364 | 318 | 1 | 21* | hp* | unknown |
| gene_43 | 20361 | 20636 | 276 | 1 | 22* | hp* | unknown |
| gene_44 | 20626 | 20826 | 201 | 1 | 23* | hp* | unknown |
| gene_45 | 20833 | 21231 | 399 | 1 | 63* | Endonuclease* | DNA, RNA and nucleotide metabolism |
| gene_46 | 21231 | 21998 | 768 | 1 | 24* | Metallophosphoesterase* | other |
| gene_47 | 21995 | 22660 | 666 | 1 | 25* | DNA adenine methylase* | anti-host defense |
| gene_48 | 22660 | 22815 | 156 | 1 | 142 | hp | unknown |
| gene_49 | 22808 | 23344 | 537 | 1 | 143 | Pentapeptide repeats | unknown |
| gene_50 | 23419 | 23616 | 198 | 1 | 144 | hp | unknown |
| gene_51 | 23679 | 23867 | 189 | 1 | 145 | hp | unknown |
| gene_52 | 23864 | 24250 | 387 | 1 | 26* | phosphoribosyl-ATP <br> pyrophosphohydrolase <br> MazG* | other |
| gene_53 | 24247 | 24534 | 288 | 1 | 27* | hp* | unknown |
| gene_54 | 24560 | 26263 | 1704 | 1 | 28* | Ribonucleotide reductase* | DNA, RNA and nucleotide metabolism |
| gene_55 | 26447 | 26905 | 459 | 1 | 91 | HNH-endonuclease | DNA, RNA and nucleotide metabolism |
| gene_56 | 26946 | 27548 | 603 | 1 | 29* | hp* | unknown |
| gene_57 | 27545 | 27814 | 270 | 1 | 30* | hp * | unknown |
| gene_58 | 27817 | 28047 | 231 | 1 | 31* | hp* | unknown |
| gene_59 | 28071 | 28373 | 303 | 1 | 32* | hp* | unknown |
| gene_60 | 28370 | 28834 | 465 | 1 | 33* | $\mathrm{hp} *$ | unknown |
| gene_61 | 28973 | 29176 | 204 | -1 | 34* | hp* | unknown |
| gene_62 | 29139 | 29378 | 240 | -1 | 35* | hp* | unknown |
| gene_63 | 29375 | 29584 | 210 | -1 | 36* | hp* | unknown |
| gene_64 | 29544 | 30017 | 474 | -1 | 37* | hp* | unknown |
| gene_65 | 30017 | 30211 | 195 | -1 | 38* | hp* | unknown |
| gene_66 | 30590 | 30892 | 303 | -1 | 39* | hp* | unknown |
| gene_67 | 30885 | 31430 | 546 | -1 | 40* | Lysozyme* | lysis |
| gene_68 | 31427 | 31708 | 282 | -1 | 73 | tRNA pseudouridine synthase D | DNA, RNA and nucleotide metabolism |
| gene_69 | 31705 | 32100 | 396 | -1 | 105 | Tail fiber assembly protein | tail |
| gene_70 | 32093 | 32596 | 504 | -1 | 41* | hp* | unknown |
| gene_71 | 32618 | 34417 | 1800 | -1 | 42* | Putative tail fiber adhesion protein* | tail |
| gene_72 | 34410 | 35201 | 792 | -1 | 43* | hp* | unknown |
| gene_73 | 35223 | 37718 | 2496 | -1 | 44* | Tail tape measure protein* | tail |

## Sulfiviruses

| gene_74 | 37730 | 37996 | 267 | -1 | 45* | hp* | unknown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gene_75 | 38092 | 38466 | 375 | -1 | 46* | hp* | unknown |
| gene_76 | 38538 | 38717 | 180 | -1 | 96 | hp | unknown |
| gene_77 | 38828 | 39751 | 924 | -1 | 47* | Major tail tube protein* | tail |
| gene_78 | 39776 | 40183 | 408 | -1 | 48* | Putative tail terminator protein* | connector |
| gene_79 | 40180 | 40569 | 390 | -1 | 49* | hp* | unknown |
| gene_80 | 40600 | 40959 | 360 | -1 | 50* | Putative head-tail joining protein / tail attachment protein* | connector |
| gene_81 | 40959 | 41408 | 450 | -1 | 51* | hp* | unknown |
| gene_82 | 41428 | 41880 | 453 | -1 | 52* | hp* | unknown |
| gene_83 | 41946 | 42914 | 969 | -1 | 59* | Major capsid protein* | head and packaging |
| gene_84 | 42929 | 43309 | 381 | -1 | 60* | Capsid decoration protein* | head and packaging |
| gene_85 | 43317 | 44732 | 1416 | -1 | 61* | Capsid maturation protease* | head and packaging |
| gene_86 | 44732 | 45277 | 546 | -1 | 77 | hp | unknown |
| gene_87 | 45280 | 46716 | 1437 | -1 | 62* | Portal protein* | head and packaging |
| gene_88 | 46753 | 47265 | 513 | -1 | 81 | hp | unknown |
| gene_89 | 47262 | 47558 | 297 | -1 | 82 | Putative tail fiber | tail |
| gene_90 | 47561 | 50221 | 2661 | -1 | 53* | Baseplate protein* | tail |
| gene_91 | 50237 | 51658 | 1422 | -1 | 54* | Terminase, large subunit* | head and packaging |
| gene_92 | 51750 | 52160 | 411 | -1 | 55* | hp* | unknown |
| gene_93 | 52798 | 53502 | 705 | -1 | 92 | DNA adenine methylase | anti-host defense |
| gene_94 | 53499 | 53795 | 297 | -1 | 93 | hp | unknown |
| gene_95 | 53792 | 53980 | 189 | -1 | 56* | hp* | unknown |



Fig. 60: Hierarchical clustering of the sulfivirus genomes when the intergenomic distances were calculated using protein clusters containing identical proteins (evalue $>0.00001$, bitscore $<50$, coverage $<100$, identity $<100 \%$ ).

### 5.3.3. Sulfivirus genomes are strongly influenced by recombination

We further investigated the genomic microdiversity of the sulfiviruses, aiming to test the hypothesis that sulfivirus microdiversity is influenced by horizontal gene transfer processes such as recombination. For this purpose, the core regions of the genomes were aligned and used to calculate a maximum likelihood phylogenetic tree. Recombination and mutation sites were determined using ClonalFrameML (Didelot and Wilson 2015) and the phylogeny was reconstructed accounting for recombination (Fig. 61). Overall, many recombination sites were detected in the sulfivirus genomes, having an average length of 55 bp . A higher frequency of recombination was spotted in the region between position 60000 and 70000. It will be a future task to determine which genes are encoded in this region. For this, the positions on the strand of concatenated core genes would need to be translated in actual positions on the genome. The fact that there were overlapping recombination sites, i.e. recombination determined at the same position in different genomes, indicated that there was recombination happening between the sulfivirus genomes. The relative effect of recombination to mutation was equal to $\mathrm{r} / \mathrm{m}=15.84$, suggesting that recombination as a horizontal process contributed more to sulfiviral genome diversification than mutations, so vertically received nucleotide differences. In a follow-up project of this study, that is not included in this dissertation, Ismail Hayani showed in his master thesis that two sulfiviruses (ICBM16 and ICBM18) co-infect their original host and are present at the same time in the same cell. Future experiments should bring proof of intergenomic recombination between sulfivirus strains.


Fig. 61: Reconstructed phylogenetic tree of sulfiviral core regions and sites of recombination and polymorphism detected with ClonalFrameML. The tree reflects the true phylogeny, only branch lengths differ from the original maximum likelihood tree, as they account for recombination. For each branch of the tree and any position in the respective genome, recombination is
marked in blue. Polymorphic sites are marked either in white (no homoplasy) or in yellow to red (increasing levels of homoplasy).

### 5.3.4. Sulfiviruses display wide range of host specificity

The host range of the sulfiviruses was determined by testing all 89 phages against 60 Sulfitobacter host strains, which represented the original isolation hosts of the sulfiviruses. The host range tests were performed using the streak assay method and the results were confirmed by triplicates. The sulfiviruses displayed a wide range of host specificity, with numbers of infected host strains between 2 and 25. Many sulfiviruses infected 6 to 10 strains (Fig. 62 and 63). Clustering of the sulfiviruses based on the infection pattern revealed that phages of the same species had a rather similar host range (Fig. 63). The members of all species clusters created with VIRIDIC (Moraru et al. 2020) clustered together in the heatmap, when infectivity patterns were used as clustering criterium. The only exception was species 9 , with one phage clustering slightly apart. However, also for this phage the majority of the infected hosts overlapped with those of the other species members. Still, infectivity patterns varied even within sulfivirus species. Only in four cases did two phages have the exact same host range, respectively. They had very high intergenomic sequence identities: ICBM69 and ICBM91 (99.7\%), ICBM62 and ICBM77 (99.4\%), ICBM146 and ICBM154 (99.998\%), and ICBM43 and ICBM100 (99.998\%).


Fig. 62: Distribution of number of infected hosts among sulfiviruses.
Reordering the phage columns in the heatmap according to the core region-based phylogenetic tree obtained with ClonalFrameML resulted in an even better clustering of the infectivity patterns (Fig. 64). This new heatmap showed that the host range patterns depend on phylogenomic proximity: strains belonging to the same species have similar infectivity patterns, and closely related species share more hosts than further related species. This illustrates that the intra-species microdiversity of the sulfiviruses influences the host range (Fig. 64). In figure 65, several metadata, including the isolation hosts and sources, i.e. the seawater samples, of the
sulfiviruses are displayed on top. Phages with the same isolation host had similar host ranges, even if they did not belong to the same species (Fig. 65). This indicates that the genomic identity of the original isolation host also plays a role for the infectivity of the virus on other strains. However, the isolation host was also the strain the respective phage was cultivated with during preparation for the host range assay. Thus, phages with the same isolation and cultivation host strain could have been adapted to this strain at the moment of testing, creating a bias and leading to similar host range results. No clear correlation between isolation source and host range could be detected. For example, all three phages isolated from strain M105 had a similar host range, even though they belonged to different species and originated from different water sources (P2 and NHS). The isolation host seemed to be more relevant for the host range than the seawater sample. However, this could again be an indication, that the determined host range was influenced by the cultiviation conditions and may not reflect the true situation in the environment. After all, although infection was tested in triplicates and with the method producing single plaques, the results still need to be treated with caution, having in mind the bias of cultivation conditions, adaptation to the cultivation host and possibly undetected infections of low efficiency.

If we refer to the definition of de Jonge et al. (2019) (see introductory chapter 1.4.1.), the sulfiviruses can be described as broad-host-range phages, in the sense that together, as a specieslevel population they are able to infect multiple host strains of the same species. Of course, there are other opinions, defining "broad host range" by infection of different species or even genera. Since bacteria of different higher-level taxa were not included in the host range assay, it remains to be investigated whether the sulfiviruses are able to infect bacteria of different species or genera.

Evaluating the results from the perspective of the host strains revealed that their susceptibility to the sulfiviruses also differed greatly (Fig. 63). Some strains were only infected by three sulfiviruses, while Sulfitobacter sp. M283 was even infected by 63 sulfiviruses. Moreover, strains with identical ITS sequence were very differently infected by the sulfiviruses. To search for potential reasons, 30 of these strains were chosen for whole genome sequencing. They were selected in such a way that they had very different infection patterns and numbers of infecting viruses (Fig. 63 and 66).


Fig. 63: Host ranges of 89 sulfiviruses tested against their original isolation hosts ( 60 strains). Positive infection is indicated by green squares. Dendrograms visualize clustering of phages and bacteria based on infection pattern. Assignment of phages to species (VIRIDIC) is displayed on top by colors and numbers. Sum of infected strains for each is phage is displayed on top. On the left, black and white squares indicated whether the bacterial strain was whole genome sequenced. Clustering of the host strains into groups based on ITS sequence similarity is represented by colors. *phage genome encoding a tRNA gene.


Fig. 64: Host ranges clustered by ClonalFrameML phylogenetic tree. 72 sulfiviruses (with complete genomes) tested against their original isolation hosts ( 60 strains). Positive infection is indicated by green squares. Dendrogram visualizes clustering of bacteria based on infection pattern. Assignment of phages to species (VIRIDIC) is displayed on top by colors and numbers. On the left, black and white squares indicated whether the bacterial strain was whole genome sequenced. Clustering of the host strains into groups based on ITS sequence similarity is represented by colors.


Fig. 65: Host ranges of 89 sulfiviruses tested against their original isolation hosts ( 60 strains), clustered based on isolation hosts. Positive infection is indicated by green squares. Assignment of phages to species (VIRIDIC), isolation source and isolation host strain are displayed on top. Dendrogram visualizes clustering of bacteria based on infection pattern. On the left, black and white squares indicated whether the bacterial strain was whole genome sequenced. Clustering of the host strains into groups based on ITS sequence similarity is represented by colors.

### 5.3.5. Genome analysis of $\mathbf{3 0}$ sulfivirus host strains

As mentioned before, thirty sulfivirus host strains were chosen for whole-genome sequencing. Genome sizes ranged from 3.85 to 4.41 Mb , with 3721 to 4293 predicted ORFs (Table 47, gen ome sequences will be available in the NCBI database). The chromosomes were 3.55 to 3.95 Mb in size, with $58.1-58.3 \% \mathrm{G}+\mathrm{C}$ content. The strains possessed up to six extrachrom osomal elements (plasmids) of different sizes ranging from 5,342 bp to $338,691 \mathrm{bp}$. The plasm ids could be grouped into 16 clusters based on shared protein content (Table 48 and SI file S56). One plasmid with a size of 94 kb (cluster 3) was present in all strains. In order to determine if there was a connection between plasmid distribution and susceptibility to sulfivirus infection , strains were clustered based on the presence and absence of the plasmid groups (Fig. 66). No clear trend could be observed. Perhaps the plasmid clusters were too broad and a more det ailed distinction would reveal correlations. In addition, the heatmap in figure 66 shoul d be recalculated using the phage clustering from the reconstructed phylogenetic tree that con siders recombination, as it showed a better correlation of host range and viral species.

Prophage prediction on the plasmids led to the discovery of seven intact/active prophages (IPP) in the plasmids of cluster 1 (Sulfitobacter sp. M55, M83, M300 and M355), cluster 5 (Sulfitobacter sp. M72 and M91), and cluster 9 (Sulfitobacter sp. M191) (Table 49). The
prophages had sequence lengths ranging from 10.7 kb to 26.1 kb and encoded 13 to 32 proteins. In addition, several questionable prophage sequences were detected, also in other plasmids (SI files S5-7a-c). Three of the seven detected active prophages were $100 \%$ identical to each other (IPP1, IPP3, and IPP7), IPP2 and IPP4 shared $84.1 \%$ nucleotide-based intergenomic identity (Fig. 67). Another seven prophages were predicted in the chromosomes of some Sulfitobacter strains, with sequence lengths of 31.0-65.1 kb encoding 38-57 proteins. Two prophages were $100 \%$ identical to another one, respectively (IPP11 and IPP12, IPP10 and IPP13). Altogether, they were more similar to each other than the prophages in the plasmids, with intergenomic identity higher than $16.9 \%$ (Fig. 67). IPP9 and IPP14 clustered together with $74.7 \%$ nucleotidebased intergenomic identity, IPP8 was also similar with more than $50 \%$. In addition, IPP5 encoded in the plasmid of strain M191 was somewhat similar to these prophages ( $\geq 38.1 \%$ ). Interestingly, none of the predicted intact prophages showed any sequence similarity to the lytic sulfivirus isolates (Fig. 67).

In figure 66, the chromosomes and plasmids containing active prophages are marked with a phage symbol. The prophages were grouped based on their intergenomic identity and are displayed accordingly in different colors. For different host strains, divergent correlations were observed between the presence of prophages or plasmids and their susceptibility to sulfivirus infection. Sulfitobacter strains M271 and M69 carried highly similar prophages on their chromosomes (IPP9 and IPP14) and had plasmids of the same clusters. However, they were only partially infected by the same sulfiviruses. In contrast, strains M55 and M355 carried the exact same two prophages on their chromosome (IPP11 and IPP12) and on their cluster 1 plasmids (IPP1 and IPP7) and had highly similar infection pattern. Also strain 83 carrying the exact same prophage on the cluster 1 plasmid (IPP3) was infected by similar, but less sulfiviruses. In comparison to those three, strain M90 that had the same plasmid clusters but did not carry the prophage, was infected by many more sulfiviruses. This could indicate that the prophage on the cluster 1 plasmid might be somehow involved in the defense of strains M55, M355 and M83 against the respective sulfiviruses. However, strain M63 also had the same plasmid clusters and no prophage on the cluster 1 plasmid, but was susceptible to even less sulfiviruses. This could in turn be connected to the other prophage encoded in its chromosome (IPP13). However, the exact same prophage was present in the chromosome of strain M300 (IPP10), which was again infected by more sulfiviruses than strain M63, although it carried another prophage (IPP6) on one of its plasmids. Finally, it is noteworthy, that the strain infected by the most phages had no intact prophage. Of course, all these correlations are purely speculative. However, their contradictions make it quite clear that the mere presence or
absence of similar plasmids and prophages in the bacterial genomes is obviously not sufficient to explain the different infection patterns. On the one hand side, this analysis should be repeated in a more structured way and include the non-active prophages. This might reveal more profound patterns and correlations. On the other hand, the (intact) prophages might be too different from the lytic sulfivirus isolates to have an influence on their ability to infect. Even though not much is known about the exact mechanisms of superinfection immunity mediated by prophages and a large variety of mechanisms can be assumed, most studies so far have demonstrated this phenomenon between closely related phages (Bondy-Denomy et al. 2016; Mavrich and Hatfull 2019).

A more detailed analysis of the host genomes on gene and protein level is surely necessary. It might provide an explanation for the differential sulfivirus infections, especially if certain anti-phage defense systems can be found in strains infected or not infected by the same sulfiviruses. The (potential) presence of anti-defense systems in the viral genomes should be taken into consideration as well. Finally, the activity of specific defense and anti-defense genes could be investigated in infection experiments accompanied with transcriptomic analysis.

Table 47: Genome characteristics of 30 sulfivirus host strains.

| Genome | Sequencing <br> ID | Complete <br> genome <br> length <br> [bp] | No. of ORFs | Chromosome size [bp] | Chromosome G+C content [\%] | No. of plasmids |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { Sulfitobacter sp. M45 }}$ | CRMO_n_1 | 4,131,342 | 4,036 | 3,682,501 | 58.3 | 3 |
| Sulfitobacter sp. M47 | CRMO_n_2 | 4,046,630 | 3,884 | 3,643,977 | 58.1 | 3 |
| Sulfitobacter sp. M53 | CRMO_n_3 | 4,099,107 | 3,945 | 3,620,052 | 58.2 | 3 |
| Sulfitobacter sp. M54 | CRMO_n_4 | 4,185,969 | 4,043 | 3,635,973 | 58.2 | 4 |
| Sulfitobacter sp. M55 | CRMO_n_5 | 4,128,924 | 4,023 | 3,608,282 | 58.2 | 3 |
| Sulfitobacter sp. M63 | CRMO_n_6 | 4,179,797 | 4,084 | 3,748,437 | 58.2 | 3 |
| Sulfitobacter sp. M66 | CRMO_n_7 | 3,995,181 | 3,876 | 3,617,848 | 58.1 | 4 |
| Sulfitobacter sp. M69 | CRMO_n_8 | 4,049,375 | 3,949 | 3,767,683 | 58.2 | 2 |
| Sulfitobacter sp. M72 | CRMO_n_9 | 4,307,537 | 4,172 | 3,722,005 | 58.2 | 6 |
| Sulfitobacter sp. M81 | CRMO_n_10 | 4,410,327 | 4,293 | 3,949,596 | 58.3 | 4 |
| Sulfitobacter sp. M83 | CRMO_n_11 | 4,167,213 | 4,036 | 3,548,707 | 58.2 | 4 |
| Sulfitobacter sp. M90 | CRMO_n_12 | 4,008,238 | 3,894 | 3,634,983 | 58.2 | 3 |
| Sulfitobacter sp. M91 | CRMO_n_13 | 4,037,163 | 3,928 | 3,643,305 | 58.2 | 4 |
| Sulfitobacter sp. M171 | CRMO_n_14 | 4,154,620 | 4,002 | 3,553,525 | 58.2 | 6 |
| Sulfitobacter sp. M173 | CRMO_n_15 | 3,845,438 | 3,721 | 3,656,377 | 58.1 | 2 |
| Sulfitobacter sp. M176 | CRMO_n_16 | 4,082,011 | 3,959 | 3,598,080 | 58.1 | 4 |
| Sulfitobacter sp. M183 | CRMO_n_17 | 4,096,768 | 3,990 | 3,554,444 | 58.2 | 5 |
| Sulfitobacter sp. M187 | CRMO_n_18 | 4,149,573 | 3,988 | 3,654,650 | 58.1 | 4 |
| Sulfitobacter sp. M191 | CRMO_n_19 | 4,305,228 | 4,158 | 3,658,606 | 58.1 | 5 |
| Sulfitobacter sp. M199 | CRMO_n_20 | 4,252,012 | 4,115 | 3,626,458 | 58.1 | 4 |
| Sulfitobacter sp. M206 | CRMO_n_21 | 4,091,340 | 3,951 | 3,611,016 | 58.2 | 4 |
| Sulfitobacter sp. M242 | CRMO_n_22 | 4,059,199 | 3,895 | 3,590,381 | 58.2 | 3 |
| Sulfitobacter sp. M265 | CRMO_n_23 | 4,204,571 | 4,114 | 3,602,912 | 58.2 | 5 |
| Sulfitobacter sp. M271 | CRMO_n_24 | 4,026,887 | 3,901 | 3,757,359 | 58.2 | 2 |
| Sulfitobacter sp. M283 | CRMO_n_25 | 3,893,771 | 3,742 | 3,629,652 | 58.2 | 3 |
| Sulfitobacter sp. M290 | CRMO_n_26 | 4,152,470 | 3,997 | 3,673,615 | 58.2 | 4 |
| Sulfitobacter sp. M300 | CRMO_n_27 | 4,235,078 | 4,090 | 3,616,378 | 58.2 | 5 |
| Sulfitobacter sp. M351 | CRMO_n_28 | 4,053,755 | 3,888 | 3,587,296 | 58.1 | 3 |
| Sulfitobacter sp. M355 | CRMO_n_29 | 4,141,755 | 4,036 | 3,621,113 | 58.2 | 3 |
| Sulfitobacter sp. M356 | CRMO_n_30 | 4,078,751 | 3,930 | 3,623,626 | 58.2 | 3 |

Table 48: Plasmids of 30 sulfivirus host strains.

| Genome | Sequencing ID | Plasmid size [bp] (contig ID CRMO_n_x_...) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Plasmid cluster 1 | Plasmid cluster 2 | Plasmid cluster 3 | Plasmid cluster 4 | Further clusters |
| Sulfitobacter sp. M45 | CRMO_n_1 | 259,780 (2) | 95,055 (3) | 94,006 (4) |  |  |
| Sulfitobacter sp. M47 | CRMO_n_2 |  |  | 94,006 (4) | 98,013 (3) | 210,634 (2) (cluster 8) |
| Sulfitobacter sp. M53 | CRMO_n_3 |  |  | 94,006 (4) | 98,013 (3) | 287,036 (2) (cluster 8) |
| Sulfitobacter sp. M54 | CRMO_n_4 | 262,922 (2) | 95,055 (4) | 94,006 (5) | 98,013 (3) |  |
| Sulfitobacter sp. M55 | CRMO_n_5 | 331,581* (2) | 95,055 (3) | 94,006 (4) |  |  |
| Sulfitobacter sp. M63 | CRMO_n_6 | 242,299 (2) | 95,055 (3) | 94,006 (4) |  |  |
| Sulfitobacter sp. M66 | CRMO_n_7 |  |  | 94,006 (3) |  | 274,503 (2) (cluster 8), 7,624 (4) (cluster 11), 5,342 (5) (cluster 12) |
| Sulfitobacter sp. M69 | CRMO_n_8 | 187,686 (2) |  | 94,006 (3) |  |  |
| Sulfitobacter sp. M72 | CRMO_n_9 | 262,922 (2) | 95,055 (4) | 94,006 (5) | 98,013 (3) | 12,627* (7) (cluster 5), 22,909 (6) (cluster 16) |
| Sulfitobacter sp. M81 | CRMO_n_10 | 173,820 (2) | 94,892 (4) | 94,006 (5) | 98,013 (3) |  |
| Sulfitobacter sp. M83 | CRMO_n_11 | 331,432* (2) | 95,055 (4) | 94,006 (5) | 98,013 (3) |  |
| Sulfitobacter sp. M90 | CRMO_n_12 | 184,400 (2) | 94,849 (3) | 94,006 (4) |  |  |
| Sulfitobacter sp. M91 | CRMO_n_13 | 192,172 (2) | 95,055 (3) | 94,006 (4) |  | 12,625* (5) (cluster 5) |
| Sulfitobacter sp. M171 | CRMO_n_14 | 279,354 (2) | 81,358 (5) | 94,006 (4) | 98,013 (3) | 24,674 (6) (cluster 6), 23,690 (7) (cluster 7) |
| Sulfitobacter sp. M173 | CRMO_n_15 |  | 95,055 (2) | 94,006 (3) |  |  |
| Sulfitobacter sp. M176 | CRMO_n_16 | 114,433 (3) |  | 94,006 (5) | 98,013 (4) | 177,478 (2) (cluster 8) |
| Sulfitobacter sp. M183 | CRMO_n_17 | 279,586 (2) | 80,823 (4) | 94,006 (3) |  | 12,137 (6) (cluster 5), 75,772 (5) (cluster 9) |
| Sulfitobacter sp. M187 | CRMO_n_18 | 207,849 (2) | 95,055 (4) | 94,006 (5) | 98,013 (3) |  |
| Sulfitobacter sp. M191 | CRMO_n_19 | 207,849 (2) | 95,055 (5) | 94,006 (6) | 98,013 (4) | 151,699* (3) (cluster 9) |
| Sulfitobacter sp. M199 | CRMO_n_20 | 338,691 (2) | 94,844 (4) | 94,006 (5) | 98,013 (3) |  |
| Sulfitobacter sp. M206 | CRMO_n_21 | 193,456 (2) | 94,849 (4) | 94,006 (5) | 98,013 (3) |  |
| Sulfitobacter sp. M242 | CRMO_n_22 | 276,799 (2) |  | 94,006 (4) | 98,013 (3) |  |


| Sulfitobacter sp. M265 | CRMO_n_23 | 267,941 (2) | $95,044(3)$ | $94,006(4)$ |  | 73,928 (5) (cluster 10), 70,740 (6) (cluster 10) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sulfitobacter sp. M271 | CRMO_n_24 | $175,522(2)$ |  | $94,006(3)$ |  |  |
| Sulfitobacter sp. M283 | CRMO_n_25 |  | $72,100(4)$ | $94,006(3)$ | $98,013(2)$ |  |
| Sulfitobacter sp. M290 | CRMO_n_26 | $208,836(2)$ | $78,000(5)$ | $94,006(4)$ | $98,013(3)$ |  |
| Sulfitobacter sp. M300 | CRMO_n_27 | $318,999^{*}(2)$ | $95,055(4)$ | $94,006(5)$ | $98,013(3)$ | $12,627(6)(c l u s t e r ~ 5)$ |
| Sulfitobacter sp. M351 | CRMO_n_28 |  |  | $94,006(4)$ | $98,013(3)$ | $274,440(2)(c l u s t e r ~ 8)$ |
| Sulfitobacter sp. M355 | CRMO_n_29 | $331,581^{*}(2)$ | $95,055(3)$ | $94,006(4)$ |  |  |
| Sulfitobacter sp. M356 | CRMO_n_30 |  |  | $94,006(4)$ | $98,013(3)$ | $263,106(2)(c l u s t e r ~ 8)$ |

Table 49: Intact prophages predicted in the plasmids and chromosomes of 30 sulfiviruses strains. For the complete results, see SI tables S5-7a-c.

| Intact <br> prophage ID | Prophage <br> Candidate | Genome | Plasmid ID | Plasmid <br> cluster | Start | End | Length | Prediction tool | Score | Gene <br> number |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| IPP1 | Canditate_217 | Sulfitobacter sp. M55 | CRMOn5_2 | 1 | 32945 | 47756 | 14812 | Prophage Hunter | 0.88 | 20 |
| IPP2 | Candidate_32 | Sulfitobacter sp. M72 | CRMOn9_7 | 5 | 1484 | 12563 | 11080 | Prophage Hunter | 0.89 | 16 |
| IPP3 | Candidate_9 | Sulfitobacter sp. M83 | CRMOn11_2 | 1 | 32922 | 47733 | 14812 | Prophage Hunter | 0.88 | 20 |
| IPP4 | Candidate_1 | Sulfitobacter sp. M91 | CRMOn13_5 | 5 | 1233 | 11940 | 10708 | Prophage Hunter | 0.98 | 15 |
| IPP5 | Candidate_85 | Sulfitobacter sp. M191 | CRMOn19_3 | 9 | 107522 | 133622 | 26101 | Prophage Hunter | 0.86 | 32 |
| IPP6 | Candidate_158 | Sulfitobacter sp. M300 | CRMOn27_2 | 1 | 130011 | 142349 | 12339 | Prophage Hunter | 0.86 | 13 |
| IPP7 | Candidate_173 | Sulfitobacter sp. M355 | CRMOn29_2 | 1 | 32945 | 47756 | 14812 | Prophage Hunter | 0.88 | 20 |
| IPP8 |  | Sulfitobacter sp. M81 | CRMOn10_1 |  | 1527086 | 1558073 | 30987 | PHASTER | 150 | 44 |
| IPP9 |  | Sulfitobacter sp. M271 | CRMOn24_1 |  | 1973673 | 2031566 | 57893 | PHASTER | 100 | 57 |
| IPP10 |  | Sulfitobacter sp. M300 | CRMOn27_1 |  | 1888633 | 1922128 | 33495 | PHASTER | 100 | 38 |
| IPP11 |  | Sulfitobacter sp. M355 | CRMOn29_1 |  | 418393 | 469993 | 51600 | PHASTER | 120 | 44 |
| IPP12 |  | Sulfitobacter sp. M55 | CRMOn5_1 |  | 3429471 | 3481072 | 51601 | PHASTER | 120 | 44 |
| IPP13 |  | Sulfitobacter sp. M63 | CRMOn6_1 |  | 519531 | 553026 | 33495 | PHASTER | 100 | 38 |
| IPP14 |  | Sulfitobacter sp. M69 | CRMOn8_1 |  | 436949 | 502080 | 65131 | PHASTER |  |  |



Fig. 66: Susceptibility of Sulfitobacter strains to sulfivirus infection clustered based on the presence/absence of plasmid clusters. Only plasmid clusters 1-10 are displayed. Presence of a plasmid cluster is indicated in blue. Plasmids and chromosomes carrying an active prophage are marked with circles. Identical prophages are indicated by the same color. Positive infection is indicated by green squares. Dendrograms visualize clustering of phages (based on host range) and bacteria (based on plasmid presence). Assignment of phages to species (VIRIDIC) is displayed on top by colors and numbers.


Fig. 67: Nucleotide-based intergenomic identity of the active prophages predicted in the genomes of 30 Sulfitobacter strains and representatives of sulfiviruses, calculated with VIRIDIC.

### 5.3.6. Conclusions

The large-scale roseophage isolation campaign provided us with the collection of 89 closely related dsDNA phages that have a siphoviral shape and occur in the same habitat, the North Sea. They belong to 48 species within one single genus, the "Sulfivirus" genus. By phylogenetic analysis of the 16 S rRNA gene and the ITS region, we could show that their isolation hosts are 48 different Sulfitobacter strains of a microdiverse species-level population in the North Sea. Testing the host range of the sulfiviruses revealed a complex infection network between these phage and host collections comprising very different sizes of host range on the phage side and different degrees of susceptibility on the side of the bacterial strains. This prompted us to have a closer look at the genomic differences between the phages and hosts.

By analysing the flexible gene content (non-core proteins) in the genomes of both, phages and hosts, by detecting indications of recombination in the phage genomes and by investigating plasmid and prophage occurrences in the host genomes, we gained first impressions on how horizontal gene transfer nurtures diversity in this phage-host community. We illustrated a fascinating microdiversity, which is created on both sides, through the interplay and eternal competition between bacteriophages and their hosts. The next future research task will be to investigate in more detail the genomic dispositions that underlie this arms race by searching for defense systems in the bacterial genomes and counterdefense genes in the viral genomes, eventually detecting new, so far unknown ones.

# 6. Isolation and preliminary characterization of ICBM5, a ssDNA phage infecting Sulfitobacter sp. SH24-1b 

### 6.1. Chapter summary

A new member of the Microviridae family, phage ICBM5, was isolated from a North Sea water sample infecting Sulfitobacter dubius SH24-1b. The ssDNA phage has a small, icosahedral capsid of $28.68 \pm 1.95 \mathrm{~nm}$ in diameter and no tail. It shows a narrow host range infecting only two strains of the species Sulfitobacter dubius. We used proteins from ICBM5 as query and detected 65 ICBM5-related prophages and episomes in publicly available bacterial genomes. Most bacteria carrying ICBM5-like phages belong to the phyla Proteobacteria and Bacteroidetes, with many of them being members of the order Rhodobacterales. The isolation and preliminary characterization of this new phage is described in the following chapter. It was the starting point of a study in which we investigated in more detail the lifestyle of phage ICBM5 and the taxonomic classification and biogeographical distribution of ICBM5-like phages. The discovery of phage ICBM5 is an example that there is a diversity of ssDNA phages yet to be revealed.

Corresponding / subsequent publication:
Zucker, Falk; Bischoff, Vera; Olo Ndela, Eric; Heyerhoff, Benedikt; Poehlein, Anja; Freese, Heike M.; Roux, Simon; Simon, Meinhard; Enault, Francois; Moraru, Cristina (2022): New Microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of singlestranded DNA phages infecting marine and terrestrial Alphaproteobacteria. In: Virus evolution 8 (2). DOI: 10.1093/ve/veac070.

Falk Zucker and I are both first authors of this publication. In this dissertation, only the isolation and preliminary characterization of phage ICBM5 are included, because they mostly correspond to my contribution to this study. I performed the transmission electron microscopy (TEM) and the host range assays for phage ICBM5 and I calculated the 16 S tree of the host strains. In addition, I contributed to manuscript writing.

### 6.2. Materials and Methods

### 6.2.1. Cultivation media

Marine broth (MB) was used for the liquid cultures and agar plates needed for plaque and spot assays. It had the following recipe: $5.0 \mathrm{~g} / \mathrm{l}$ peptone, $1.0 \mathrm{~g} / \mathrm{l}$ yeast extract, $0.1 \mathrm{~g} / \mathrm{l} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{FeO}_{7}$, $12.6 \mathrm{~g} / \mathrm{l} \mathrm{MgCl} 2_{2} \times \mathrm{H}_{2} \mathrm{O}, 3.24 \mathrm{~g} / \mathrm{l} \mathrm{Na}_{2} \mathrm{SO}_{4}, 19.45 \mathrm{~g} / \mathrm{l} \mathrm{NaCl}, 2.38 \mathrm{~g} / \mathrm{l} \mathrm{CaCl} 2 \times 2 \mathrm{H}_{2} \mathrm{O}, 0.55 \mathrm{~g} / \mathrm{KCl}$, $0.16 \mathrm{~g} / \mathrm{l} \mathrm{NaHCO} 3,0.01 \mathrm{~g} / \mathrm{l} \mathrm{Na} 2 \mathrm{HPO}_{4} \times 2 \mathrm{H}_{2} \mathrm{O}, 0.08 \mathrm{~g} / \mathrm{l} \mathrm{KBr}, 0.034 \mathrm{~g} / \mathrm{l} \mathrm{SrCl} 2 \times 6 \mathrm{H}_{2} \mathrm{O}, 0.022 \mathrm{~g} / \mathrm{l}$ $\mathrm{H}_{3} \mathrm{BO}_{3}, \quad 0.004 \mathrm{~g} / 1 \quad \mathrm{Na}_{2} \mathrm{SiO}_{3} \times 3 \mathrm{H}_{2} \mathrm{O}, \quad 0.0024 \mathrm{~g} / \mathrm{l} \mathrm{NaF}$, and $0.0016 \mathrm{~g} / \mathrm{l} \mathrm{NH}_{4} \mathrm{NO}_{3}$. After autoclavation, the media was completed by addition of $1 \mathrm{ml} / \mathrm{l}$ of a multivitamin solution (Balch et al. 1979). Furthermore, artificial saltwater (ASW) base medium was used for plaque assays and purification after cesium chloride gradient centrifugation. It had the following recipe: $24.32 \mathrm{~g} / \mathrm{l} \mathrm{NaCl}, 10 \mathrm{~g} / \mathrm{l} \mathrm{MgCl} 2 \times 6 \mathrm{H}_{2} \mathrm{O}, 1.5 \mathrm{~g} / \mathrm{l} \mathrm{CaCl} 2_{2} \times 6 \mathrm{H}_{2} \mathrm{O}, 0.66 \mathrm{~g} / \mathrm{l} \mathrm{KCl}, 4 \mathrm{~g} / \mathrm{l} \mathrm{Na} 2 \mathrm{SO}_{4}, 2.38 \mathrm{~g} / \mathrm{l}$ (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), $1 \mathrm{ml} \mathrm{KBr}(0.84 \mathrm{M}), 1 \mathrm{ml}$ $\mathrm{H}_{3} \mathrm{BO}_{3}(0.4 \mathrm{M}), 1 \mathrm{ml} \mathrm{SrCl} 2(0.15 \mathrm{M}), 1 \mathrm{ml} \mathrm{NH} 4 \mathrm{Cl}(0.4 \mathrm{M}), 1 \mathrm{ml} \mathrm{KH}_{2} \mathrm{PO}_{4}(0.04 \mathrm{M})$, and 1 ml $\mathrm{NaF}(0.07 \mathrm{M})$.

### 6.2.2. Isolation of phage ICBM5

Phage ICBM5 was isolated from the coastal North Sea using a phage enrichment procedure, followed by plaque picking and purification. For this purpose, surface seawater was collected in June 2015 from the shoreline near Neuharlingersiel ( $53^{\circ} 42^{\prime} 09.8^{\prime \prime N} 7^{\circ} 41^{\prime} 58.9^{\prime \prime} \mathrm{E}$ ) during high tide, transported to the lab on ice, and then filtered through a $0.2-\mu \mathrm{m}$ filter (Rotilabo-syringe filters, Carl Roth). A phage enrichment was set up by mixing nine parts of freshly filtered seawater with one part of 10 x MB and adding an inoculum of exponentially growing Sulfitobacter dubius SH24-1b (Hahnke et al. 2013). After overnight incubation at $20^{\circ} \mathrm{C}$ and 100 rpm , cells and debris were removed from the enrichment by centrifugation ( 15 min , $4000 \mathrm{x} \mathrm{g}, 20^{\circ} \mathrm{C}$ ) and $0.2-\mu \mathrm{m}$ filtration of the supernatant. To test for the presence of phages, 20 $\mu l$ of filtrate were spotted on a lawn of S. dubius SH24-1b. The clearing zone was then collected, passed through a $0.2-\mu \mathrm{m}$ filter to remove cells, and used further in plaque assays, to obtain single plaques. For this purpose, serial dilutions $\left(10^{0}, 10^{-1}\right.$, etc.) were prepared from the phage fractions by mixing with MB medium. Further, $100 \mu 1$ of phage dilution were mixed with $280 \mu \mathrm{l}$ of exponentially growing host culture $\left(\mathrm{OD}_{600}=0.2-0.3\right)$ and incubated for 15 min on ice. The mixture was transferred to 3 ml MB-soft agar ( $0.6 \%$ low melting point Biozym Plaque GeneticPure agarose, Biozym, kept warm at $37^{\circ} \mathrm{C}$ ), mixed by brief vortexing, and poured onto the bottom MB agar layer ( $1.8 \%$ agar). After drying, the plates were incubated at $20^{\circ} \mathrm{C}$. Phage
plaques were picked and incubated overnight in $500 \mu \mathrm{l}$ ASW base at $4^{\circ} \mathrm{C}$. After centrifugation ( $10 \mathrm{~min}, 10,000 \mathrm{xg}, 4^{\circ} \mathrm{C}$ ), the supernatant was used for the next round of plaque assays. The procedure of plaque assay, picking of plaques, and re-plating was repeated three times to ensure the purity of the newly isolated phages. Finally, one plaque was picked and used to infect a liquid culture of $S$. dubius $\mathrm{SH} 24-1 \mathrm{~b}$. After overnight incubation at $20^{\circ} \mathrm{C}$ and 100 rpm , the phage lysate was obtained by removing cells and debris by centrifugation ( $15 \mathrm{~min}, 4000 \mathrm{xg}$, and $4^{\circ} \mathrm{C}$ ) and $0.2-\mu \mathrm{m}$ filtration. The phage lysate was stored at $4^{\circ} \mathrm{C}$. For long-term storage, two types of glycerol stocks were prepared: (i) stock of free phage particles (one part phage fraction and one part MB media with $50 \%$ glycerol) and (ii) stock of infected host cells (one part infected cells - $375 \mu \mathrm{l}$ phage fraction added to $375 \mu \mathrm{l}$ host culture, 15 min on ice for absorption - and one part MB media with 50\% glycerol).

### 6.2.3. Host range of phage ICBM5

To determine the host range of ICBM5, ninety-four different strains covering the phylogenetic diversity of Rhodobacteraceae (Table 50) were challenged with the purified ICBM5 phage by spot assay. For the spot assay, $280 \mu \mathrm{l}$ of exponentially growing host culture $\left(\mathrm{OD}_{600}=0.2-0.3\right)$ were mixed with 3 ml MB -soft agar and poured onto the bottom MB agar layer ( $1.8 \%$ agar). After drying the top layer, $15 \mu \mathrm{l}$ of phage fraction, obtained from a liquid infection as described above, were spotted in triplicates onto the top layer. For each strain, three plates were prepared and incubated at $15^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$, or $28^{\circ} \mathrm{C}$. For those hosts showing clearing zones, infection by ICBM5 was further confirmed by plaque assays.

### 6.2.4. Purification of phage ICBM5 via CsCl gradient ultracentrifugation

To generate a high volume of lysate, we prepared sixty doublelayer agar plates with confluent ICBM5 lysis. After plaque formation, 5 ml of Sodium chloride Magnesium sulphate (SM) buffer ( $100 \mathrm{mM} \mathrm{NaCl}, 8 \mathrm{mM} \mathrm{MgSO} 4$, and 50 mM Tris- HCl pH 7.4 ) were added to each plate, followed by incubation at $4^{\circ} \mathrm{C}$ for 6 h . The phage-containing buffer was then collected and centrifuged for 15 min at $4,000 \mathrm{xg}$ and $4^{\circ} \mathrm{C}$, to remove cells and cell debris. Then, phages were precipitated by adding polyethylene glycol (PEG) (Promega) (final concentration $10 \%$ ) and NaCl (final concentration 0.6 mM ) and incubating at $4^{\circ} \mathrm{C}$ for 2 h . After centrifuging for 2 h at 7197 x g and $4^{\circ} \mathrm{C}$, the phage pellet was resuspended in $500 \mu \mathrm{LM}$ buffer ( $100 \mathrm{mM} \mathrm{NaCl}, 8 \mathrm{mM}$ $\mathrm{MgSO} 4,50 \mathrm{mM}$ Tris- HCl pH 7.4 ), followed by 30 min incubation at $4^{\circ} \mathrm{C}$. Further phage concentration and purification were done by cesium chloride ( CsCl ) gradient ultracentrifugation. A density gradient was set up by layering from bottom up: 1.5 ml of
$1.65 \mathrm{~g} / \mathrm{ml} \mathrm{CsCl}, 2 \mathrm{ml}$ of $1.5 \mathrm{~g} / \mathrm{ml} \mathrm{CsCl}, 2 \mathrm{ml}$ of $1.4 \mathrm{~g} / \mathrm{ml} \mathrm{CsCl}$, and 1 ml of $1.2 \mathrm{~g} / \mathrm{ml} \mathrm{CsCl}$. The PEG concentrated phage fraction was added on top, followed by ultracentrifugation for 4 h at $20^{\circ} \mathrm{C}$ and $25,000 \mathrm{rpm}$ (Beckman, SW 41 Ti ). Afterwards, the visible band corresponding to the phages was collected with a syringe and needle through the sidewall of the ultracentrifuge tube ( $\sim 500 \mu \mathrm{l}$ ). Removal of CsCl was done by dialysis in Slide-A-Lyzer G2 Dialysis Cassettes 10K MWCO (Thermo Fisher Scientific) against ASW base, for a total of 21 h , with buffer exchange after 3 h and 18 h . The selected phage fraction was tested for lysis by spot assay.

### 6.2.5. Transmission electron microscopy of phage ICBM5

To prepare for TEM, $30 \mu \mathrm{l}$ of CsCl-purified ICBM5 stock were pipetted on top of a carboncoated grid (Formvar 162, 200 mesh) and phages were allowed to absorb for 3 min. This was followed by staining with $30 \mu \mathrm{l} 2 \%$ uranyl acetate for 45 s and gentle removal of the liquid with filter paper. After air-drying for 15 min , the grids were visualized with the transmission electron microscope Zeiss EM902A. Images were documented with the Proscan High-Speed Slow Scan Charge Coupled Device (SSCCD) camera and analyzed using the software ImageSP viewer (Version 1.2.5.16). Negatively stained phages were used for capsid size measurements.

### 6.2.6. Testing the ssDNA nature of the ICBM5 phage genome

Phage genomic DNA was extracted from a CsCl-concentrated phage stock by mixing with the same amount of phenol:chloroform:isoamyl (Roth) solution and then gently inverting and centrifuging for 15 min , at $12,000 \mathrm{xg}$ and $4^{\circ} \mathrm{C}$. The aqueous phase was then mixed with an equal amount of ice-cold absolute ethanol (Th.Geyer) and the DNA was precipitated at $-80^{\circ} \mathrm{C}$ for 30 min . The DNA was pelleted by centrifugation ( $20 \mathrm{~min}, 12,000 \mathrm{xg}$ and $4^{\circ} \mathrm{C}$ ) and resuspended in nuclease-free water (Thermo Fisher Scientific). Afterwards, the DNA was purified with the NucAway spin column kit (Thermo Fisher Scientific) and quantified using the Nanodrop 2000 spectrophotometer.

To determine the genomic architecture of ICBM5, the phage DNA was exposed to four different enzymes: S1 nuclease (Thermo Fisher Scientific), TURBO DNase (Thermo Fisher Scientific), Exonuclease VII (New England Biolabs), and Hind III (New England Biolabs). Exonuclease VII and S1 strictly target ssDNA, while TURBO DNase digests both ssDNA and dsDNA. Hind III targets only dsDNA. For each enzyme, a $50-\mu 1$ reaction was set up, by adding $1 \mu 1$ of enzyme, $1 \mu \mathrm{~g}$ of extracted phage DNA, corresponding reaction buffers, and water. The four reactions were incubated for 30 min at $37^{\circ} \mathrm{C}$, followed by 10 min at $95^{\circ} \mathrm{C}$, for enzyme inactivation. For visualization of the digestion products, $2 \mu$ of digested DNA were mixed with
$5 \mu \mathrm{l}$ loading buffer (BlueJuice Gel Loading Buffer, Thermo Fisher Scientific) and loaded on a $0.9 \%$ agarose gel. The gel was run for 30 min at 80 V and pre-stained with SYBR Gold (Thermo Fisher Scientific). The gel was analyzed with the FAS Digi Gel Documentation System (NIPPON Genetics Europe) and evaluated using the BioDocAnalyze software (Biometra GmbH).

### 6.2.7. Sequencing of the ICBM5 phage genome via Illumina sequencing

The phage lysate from plates with confluent plaques was first concentrated using $15-\mathrm{ml}$ Amicon ultracentrifugal filter columns (Merck Millipore), then $0.2 \mu \mathrm{~m}$ filtered to remove bacteria and cell debris, and finally purified on an OptiPrep density gradient (Sigma Aldrich). The gradient was set up by layering OptiPrep solutions in a concentration range from $10 \%$ to $50 \%$, with an incremental step of $5 \%$. After allowing the gradient to settle for 2 h at room temperature, 1 ml of phage solution was added, followed by ultracentrifugation for 12 h , at $40,000 \mathrm{xg}$ and $20^{\circ} \mathrm{C}$ (Beckman, SW 41 Ti ). The gradient was divided into 1-ml fractions, which were then tested for the presence of phages by spot assays. The fraction with the highest concentration of ICBM5 was then washed and concentrated using $0.5-\mathrm{ml}$ Amicon columns, during which the OptiPrep was replaced by SM buffer. Extracellular DNA was removed by incubating the phage concentrate with 0.043 units $/ \mu$ l of TURBO DNase (Thermo Fisher Scientific) for 30 min at $37^{\circ} \mathrm{C}$, followed by enzyme inactivation for 10 min at $75^{\circ} \mathrm{C}$ with 15 mM ethylenediaminetetraacetic acid (EDTA). Further, the phage DNA was extracted using the ChargeSwitch gDNA Mini Bacteria Kit (Thermo Fisher Scientific), according to the instructions manual, but without using lysozyme in the first step. The ICBM5 ssDNA genome was converted to dsDNA by using the REPLI-g Mini kit (Qiagen), following the manufacturer's instructions. Throughout these procedures, the concentration and quality of the DNA were checked fluorometrically with Qubit 2.0 and the Qubit dsDNA HS Assay, spectrophotometrically with Nanodrop 2000 spectrophotometer, and visually by regular gel electrophoresis ( $0.7 \%$ agarose gel, 50 V , SYBR Gold staining).

An Illumina shotgun library was prepared using the Nextera XT DNA Sample Preparation Kit (Illumina). To assess the quality and size of the library, the samples were run on an Agilent Bioanalyzer 2100 using an Agilent High Sensitivity DNA Kit as recommended by the manufacturer (Agilent Technologies). Library DNA concentration was determined using the Qubit dsDNA HS Assay Kit as recommended by the manufacturer (Life Technologies GmbH). Sequencing was performed on a MiSeq system with the reagent kit v3 with 600 cycles (Illumina) as recommended by the manufacturer, resulting in 785.119 paired-end reads.

### 6.2.8. Assembly and annotation of the ICBM5 phage genome

The Illumina raw reads were cleaned with BBDuk in two steps. In the first step, the adaptors were removed, using the following parameters for BBDuk: "ktrim=r $\mathrm{k}=21 \mathrm{mink}=8$ tbo tpe $\mathrm{ftm}=5 \mathrm{rcomp}=\mathrm{t}$ ordered $\mathrm{t}=8$ ". In the second step, any contaminating reads (from the host or from phiX174), as well as low-quality ends, were removed, using the following parameters for BBDuk: " $\mathrm{k}=31$ rcomp=t hdist=1 qtrim=rl trimq=20, maq=20 minlen=30 ordered $\mathrm{t}=8$ ". Afterward, the cleaned reads were assembled with Tadpole (parameters " $\mathrm{k}=50 \mathrm{t}=8$ "). Both BBDuk and Tadpole are part of the BBTools package (https://jgi.doe.gov/data-andtools/bbtools/). After assembly, direct terminal repeats were detected at the end of the contig, indicating that the contig can be circularized and that the genome is complete. For further analyses, the genome was linearized and one of the repeats was removed. Open reading frames (ORFs) were predicted using the MetaGeneAnnotator (Noguchi, Taniguchi, and Itoh 2008) implemented in VirClust (Moraru 2023). A first ORF annotation was done by using Domain Enhanced Lookup Time Accelerated Basic Local Alignment Search Tool (DELTA-BLAST) to search for homologous proteins in the nonredundant (NR) database (http://ncbi.nlm.nih.gov/). The ICBM5 phage genome is available in the NCBI GenBank database under the following accession number: OM782324. The sequences of the complete genome and the encoded proteins can also be found in the appendix.

### 6.2.9. Detection of ICBM5-like regions in bacterial genomes

Proteins from phage ICBM5 were used to query the NR database from NCBI, using DELTABLAST, with two iterations. Proteins detected as similar were downloaded in GenBank format, imported into Geneious v 9.1 .5 (http://www.geneious.com, Kearse et al. (2012)), and identified as part of a viral or bacterial genome based on their organism name and taxonomy. Bacterial strains having hits with at least two different ICBM5 phage proteins were considered to potentially harbor ICBM5-like prophages and were selected for further analysis.

### 6.2.10. Phylogenetic analysis of all host $16 S$ rRNA genes and species assignment for Sulfitobacter dubius SH24-1b

A neighbor-joining tree of the 16S ribosomal RNA (rRNA) gene sequences from all phage hosts for which we could find the 16 S rRNA gene (Table 51) in this study was constructed with the ARB software package (Ludwig et al. 2004). Tree calculation was performed using the reference dataset SSU Ref NR 111, with Jukes-Cantor correction, termini filter, and 1,000 bootstrap replicates. Members of the genus Acidobacterium served as an outgroup. For species
assignment of $S$. dubius $\mathrm{SH} 24-1 \mathrm{~b}$, the average nucleotide identity (ANI) value between SH24-1b and the S. dubius type strain DSM 16472T was calculated with FastANI (Jain et al. 2018) and the digital DNA-DNA hybridization (dDDH) value was calculated with the genome-to-genome distance calculator (GGDC) (applying Formula 2) (Meier-Kolthoff et al. 2022).

### 6.3. Results and discussion

Phage ICBM5 was isolated from surface seawater, which was collected directly from the coast of the North Sea (53.702722 N, 7.699695 E) in June 2015. It infected Sulfitobacter dubius SH24-1b, which had been isolated from a seawater sample taken during a phytoplankton bloom on 12 May 2007 in the southern North Sea ( 54.7 N, 6.8 E) (Hahnke et al. 2013). Comparison of its 16 S rRNA gene sequence revealed a $99.8 \%$ sequence identity with Sulfitobacter dubius type strain DSM 16472T. Showing a dDDH value of $70 \%$ and an ANI value of $96.9 \%$ with the type strain, strain SH24-1b could be assigned to the species S. dubius. The host range of phage ICBM5 was determined testing almost 100 bacterial strains of the Rhodobacteraceae family. Positive infection was only detected on the original host S. dubius SH24-1b and S. dubius DSM 16472 T , revealing a narrow host range of phage ICBM5 (Table 50). Observation of uranyl-acetate-stained samples of phage ICBM5 with TEM revealed a morphology with an icosahedral capsid of $28.68 \pm 1.95 \mathrm{~nm}$ in diameter and no tail ( 100 phages measured and three measurements per phage) (Fig. 68a). The infection of S. dubius $\mathrm{SH} 24-1 \mathrm{~b}$ produced turbid plaques. Enzymatic digestion of the viral DNA showed that ICBM5 has an ssDNA genome (Fig. 68b). The sequenced genome was $5,581 \mathrm{bp}$ in size and circularly closed, harboring six protein-coding genes (Fig. 68c). Out of these genes, four could be functionally annotated as a pilot protein, the major capsid protein (MCP), a lysis protein, and a replication initiation protein (Rep). Only the replication protein could be annotated using BLASTp and was highly similar to proteins from previously known Microviridae. The remaining three proteins were more distanly related to Microviridae proteins, as the annotation was only possible using DELTA-BLAST, a remote homology tool. Phage ICBM5 can be assigned as a new member of the Microviridae family, as it has the corresponding genome characteristics, virion morphology and core genes. Nevertheless, as the major capsid protein, which is highly consevered among known microviruses and thus used for phylogenetic analysis, was only found with a remote homology tool, phage ICBM5 seemed to be rather distantly related to known Microviridae.

To investigate how widespread ICBM5-like phages are, we used ICBM5 proteins to search for potential prophages in prokaryotic genomes from the NCBI NR database. Most of
the 72 detected ICBM5-like genomic regions were located on bacterial chromosomes. However, some were found on large plasmids and some were present as small separate contigs, which could be episomes and indicate a carrier-state lifestyle. The majority of the ICBM5-like genomic regions occurred in bacteria from Alphaproteobacteria (53.5\%), Bacteroidia (29.5\%) and Gammaproteobacteria (5.6\%). Further host genomes belonged to the classes Bacilli, Clostridia, Erysipelotrichia, Negativicutes, Cyanophycea, and Flavobacteriia (Fig. 69). Among the Alphaproteobacteria, the orders Hyphomicrobiales and Rhodobacterales were represented, the latter comprising Sulfitobacter dubius SH24-1b and other members of the Rhodobacteraceae family. From the detected Microviridae-like regions, seven had been described earlier (Krupovic and Forterre 2011; Quaiser et al. 2015; Zheng et al. 2018). The strains with potential prophages originated from diverse habitats, ranging from marine and freshwater samples to animal-, plant- and human- associated samples (Table 51).

The presence of ICBM5-like prophages in so many different host taxa from such a variety of habitats indicated a diversity and importance of these microviruses that provided the impetus for a more comprehensive taxonomic analysis of ICBM5-related phages. Furthermore, the turbid plaques of phage ICBM5 on S. dubius SH24-1b suggested a lysogenic potential, which was supposed to be investigated more closely by means of one-step growth curves and directgeneFISH (fluorescence-in-vito-hybridisation). The results of these investigations and the delineating of two new Microviridae-subfamilies can be read in the corresponding publication.

## Phage ICBM5



Fig. 68: (A) ICBM5 morphology determined by TEM of uranyl-acetate-stained virions. (B) Agarose gel shows enzymatic digestion of ICBM5 ssDNA phage. The DNA was digested by TURBO DNase, Exo VII, and S1 nuclease, but was not affected by treating it via restriction enzyme Hind III, which only targets dsDNA, or the exclusion of nucleases (usage of only buffer). The 1 kb plus ladder was used to track the DNA migration. However, it was not used to infer the size of the ICBM5 genome, because the ladder comprises from linear dsDNA molecules, in contrast to the ICBM5 genome, which comprises a circular, ssDNA molecule. (C) Genome map of ICBM5. In dark gray-identified proteins, with labels on top of each gene. In light gray-hypothetical proteins.

## Phage ICBM5

Table 50: List of Rhodobacteraceae strains used for the host range assay. Strains infected by phage ICBM5 are written in bold.

| Name | Strain designation | Strain | Infected (- no, + yes) |
| :---: | :---: | :---: | :---: |
| Aliiroseovarius crassostreae | CV919-312, CVSP | DSM 16950T | - |
| Aliiroseovarius halocynthiae | MA1-10 | DSM 27840T | - |
| Antarctobacter heliothermus | EL-219 | DSM 11445T | - |
| Celeribacter baekdonensis | L-6 | DSM 27375T | - |
| Celeribacter halophila | ZXM137 | DSM 26270T | - |
| Celeribacter indicus | P73 | DSM 27257T | - |
| Celeribacter marinus | IMCC12053 | DSM 100036T | - |
| Celeribacter neptunius | H 14 | DSM 26471T | - |
| Cognatishimia maritimus | GSW-M6 | DSM 28223T | - |
| Cognatiyoonia koreensis | GA2-M3 | DSM 17925T | - |
| Dinoroseobacter shibae | DFL 12 | DSM 16493T | - |
| Hwanghaeicola aestuarii | Y26 | DSM 22009T | - |
| Jannaschia donghaensis | DSW-17 | DSM 102233T | - |
| Jannaschia helgolandensis | Hel10 | DSM 14858T | - |
| Jannaschia pohangensis | H1-M8 | DSM 19073T | - |
| Jannaschia rubra | 4SM3 | DSM 16279T | - |
| Leisingera aquimarina | R-26159 | DSM 24565T | - |
| Leisingera caerulea | 13 | DSM 24564 T | - |
| Leisingera daeponensis | TF-218 | DSM 23529T | - |
| Leisingera methylohalidivorans | MB2 | DSM 14336T | - |
| Limimaricola cinnabarinus | LL-001 | DSM 29954T | - |
| Limimaricola hongkongensis | UST950701-009P | DSM 17492T | - |
| Limimaricola pyoseonensis | JJM85 | DSM 21424 T | - |
| Litoreibacter albidus | KMM 3851 | DSM 26922 T | - |
| Litoreibacter arenae | GA2-M15 | DSM 19593T | - |
| Litoreibacter janthinus | KMM 3842 | DSM 26921 T | - |
| Loktanella fryxellensis | R-7670 | DSM 16213T | - |
| Loktanella salsilacus | R-8904 | DSM 16199T | - |
| Maribius pelagius | B5-6 | DSM 26893T | - |
| Maribius salinus | CL-SP27 | DSM 26892 T | - |
| Marinovum algicola | FF3 | DSM 10251T | - |
| Marinovum algicola | DG898 | DSM 27768 | - |
| Maritimibacter alkaliphilus | HTCC2654 | DSM 100037T | - |
| Oceanicola granulosus | HTCC2516 | DSM 15982T | - |
| Octadecabacter temperatus | SB1 | DSM 26878T | - |
| Pacificibacter marinus | HDW-9 | DSM 25228T | - |
| Palleronia marisminoris | B33 | DSM 26347T | - |
| Phaeobacter gallaeciensis | BS 107 | DSM 26640T | - |
| Phaeobacter inhibens |  | DSM 17395 | - |
| Phaeobacter inhibens | T5 | DSM 16374T | - |
| Phaeobacter inhibens | 2.10 | DSM 24588 | - |
| Phaeobacter italicus | R11 | DSM 26436T | - |
| Ponticoccus litoralis | CL-GR66 | DSM 18986T | - |
| Pseudooceanicola batsensis | HTCC2597 | DSM 15984T | - |
| Pseudooceanicola nanhaiensis | SS011B1-20 | DSM 18065T | - |
| Pseudophaeobacter arcticus | 20188 | DSM 23566T | - |
| Pseudoruegeria lutimaris | HD-43 | DSM 25294T | - |
| Roseibacterium elongatum | Och 323 | DSM 19469T | - |
| Roseivivax isoporae | sw2 | DSM 22223T | - |
| Roseobacter denitrificans | Och 114 | DSM 7001T | - |
| Roseobacter litoralis | Och 149 | DSM 6996T | - |
| Roseovarius indicus | B108 | DSM 26383T | - |
| Roseovarius lutimaris | 112 | DSM 28463T | - |
| Roseovarius mucosus | DFL-24 | DSM 17069T | - |
| Roseovarius nubinhibens | ISM | DSM 15170T | - |
| Ruegeria atlantica | 1480 | DSM 5823T | - |
| Ruegeria conchae | TW15 | DSM 29317T | - |
| Ruegeria marina | ZH17 | DSM 24837T | - |
| Ruegeria pomeroyi | DSS-3 | DSM 15171T | - |
| Sagittula stellata | EE-37 | DSM 11524T | - |
| Salinihabitans flavidus | ISL-46 | DSM 27842T | - |
| Salipiger bermudensis | HTCC2601 | DSM 26914T | - |
| Salipiger aestuarii | AD8 | DSM 22011T | - |
| Salipiger marinus | CK-I3-6 | DSM 26424T | - |

Phage ICBM5

| Salipiger mucosus | A3 | DSM 16094T | - |
| :--- | :--- | :--- | :--- |
| Salipiger pacificus | DX5-10 | DSM 26894T | - |
| Sedimentitalea nanhaiensis | NH52F | DSM 24252T | - |
| Sediminimonas qiaohouensis | YIM B024 | DSM 21189T | - |
| Shimia aestuarii | JC2049 | DSM 15283T | - |
| Shimia haliotis | WM35 | DSM 28453T | - |
| Shimia marina | CL-TA03 | DSM 26895T | - |
| Sulfitobacter delicatus | KMM 3584 | DSM 16477T | - |
| Sulfitobacter dubius | KMM 3554 | DSM 16472T | + |
| Sulfitobacter indolifex | HEL-45 | DSM 14862T | - |
| Sulfitobacter litoralis | Iso 3 | DSM 17584T | - |
| Sulfitobacter marinus | SW-265 | DSM 23422T | - |
| Sulfitobacter mediterraneus | CH-B427 | DSM 12244T | - |
| Sulfitobacter noctilucae | NB-68 | DSM 100978T | - |
| Sulfitobacter noctilucicola | NB-77 | DSM 101015T | - |
| Sulfitobacter pseudonitzschiae | H3 | DSM 26824T | - |
| Sulfitobacter sp. | EE-36 | DSM 11700 | - |
| Sulfitobacter dubius | SH24-1b |  | - |
| Thalassobius taeanensis | G4 | DSM 22007T | - |
| Thalassococcus halodurans | UST050418-052 | DSM 26915T | - |
| Thioclava dalianensis | DLFJ1-1 | DSM 29618T | - |
| Thioclava pacifica | TL 2 | DSM 10166T | - |
| Tranquillimonas alkanivorans | A34 | DSM 19547T | - |
| Tranquillimonas rosea | BH87090 | DSM 23042T | - |
| Tritonibacter multivorans | MD5 | DSM 26470T | - |
| Tropicibacter naphthalenivorans | C02 | DSM 19561T | - |
| Tropicimonas isoalkanivorans | B51 | HY34 | DSM 19548T |
| Wenxinia marina | DSM 24838T | - |  |
| Yoonia tamlensis | DSM 26879T | - |  |
| Yoonia vestfoldensis | RSW-35 |  | - |

Phage ICBM5
Table 51: Bacterial strains containing predicted ICBM5-like regions. *no 16 S rRNA gene sequence available. ND = not determined.

| Lysogenic strain / Host | Host accession | DNA type | Prophage size (bps) | Contig size (bps) |  |  |  | Sequencing contaminants | Host lineage | Host habitat / isolation site | Reference host habitat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acinetobacter lwoffii strain SU1904 | $\begin{aligned} & \text { NZ_JAC } \\ & \text { WEU0100 } \\ & 00076 \end{aligned}$ | contig | 5.673 | 5.673 |  | + |  |  | Bacteria/ Proteobacterial Gammaproteobacteria/ Pseudomonadales/ Moraxellaceae/ Acinetobacter/ Acinetobacter calcoaceticus/baumannii complex | clinical isolate | Hayashi et al. (2021) |
| Agrobacterium larrymoorei strain CFBP5477 | $\begin{aligned} & \text { NZ_SWK } \\ & \text { E0100001 } \\ & 5 \end{aligned}$ | ND | 6.301 | 657.589 | + |  |  |  | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Hyphomicrobiales/ Rhizobiaceae/ Rhizobium/Agrobacterium group/Agrobacterium | tumours growing on pruned branches of Ficus benjamina | Bouzar and Jones (2001) |
| Agrobacterium tumefaciens strain 1D1108* | $\begin{aligned} & \text { NZ_CP03 } \\ & 2923 \end{aligned}$ | plasmid | 5.86 | 502.274 | + |  |  |  | Bacteria/ Proteobacteria/ Alphaproteobacterial Hyphomicrobiales/ Rhizobiaceael <br> Rhizobium/Agrobacterium group/Agrobacterium | rhizosphere | Conn (1942) |
| Alistipes onderdonkii WAL 8169 = DSM 19147 | $\begin{aligned} & \text { NZ_KB89 } \\ & 4552 \end{aligned}$ | ND | 5.793 | 100.104 | + |  |  |  | Bacteria/ Bacteroidetes/ Bacteroidial Bacteroidales/ Rikenellaceae/ Alistipes | human specimens | Song et al. (2006) |
| Alistipes sp. isolate P1-1 | $\begin{aligned} & \text { SCPE0100 } \\ & 0001 \end{aligned}$ | ND | 5.699 | 3.006.009 | + |  |  |  | Bacteria/ Bacteroidetes/ Bacteroidial Bacteroidales/ Rikenellaceae/ Alistipes | human specimens | Song et al. (2006) |
| Aphanizomenon flos aquae WA102 3645 | $\begin{aligned} & \text { LJOW010 } \\ & 00239 \end{aligned}$ | contig | 4.055 |  |  | + |  |  | Bacteria/ Cyanobacteria/ Nostocales/ Aphanizomenonaceae/ Aphanizomenon/ | freshwater | NCBI entry |
| Bacillus altitudinis strain DSM 26896 | $\begin{aligned} & \text { NZ_JXAI0 } \\ & 1000008 \end{aligned}$ | whole genome shotgun sequence | 13.312 | 156.97 |  |  | + |  | Bacteria/ Firmicutes/ Bacilli/ Bacillales/ Bacillaceael Bacillus | gut of marine fish | Esakkiraj et <br> al. (2012) |
| Bacillus sp. X1 strain DE0237 <br> NODE_39 | $\begin{aligned} & \text { NZ_VECT } \\ & 01000039 \end{aligned}$ | whole genome shotgun sequence | 7.309 | 33.618 |  |  | + |  | Bacteria/ Firmicutes/ Bacilli/ Bacillales/ Bacillaceael Bacillus | environmental sample | Zhang et al. (2020a) |
| Bacillus thuringiensis serovar thuringiensis | $\begin{aligned} & \text { NZ_CM00 } \\ & 0748 \end{aligned}$ | circular chromosome | 11.378 | 6.323.123 |  |  | + |  | Bacteria/ Firmicutes/ Bacilli/ Bacillales/ Bacillaceae/ Bacillus/ Bacillus cereus group | moth larvae, animal tissue | Ibrahim et al. (2010) |
| Bacillus wiedmannii strain FSL J3-0113 | $\begin{aligned} & \text { NZ_LXFN } \\ & 01000004 \end{aligned}$ | whole genome shotgun sequence | 9.571 | 109.662 |  |  | + |  | Bacteria/ Firmicutes/ Bacilli/ Bacillales/ Bacillaceae/ Bacillus/ Bacillus cereus group | raw milk | NCBI entry |
| Bacteroides caccae strain 2789STDY5834946 | $\begin{aligned} & \text { NZ_CZBL } \\ & 01000008 \end{aligned}$ | ND | 5.571 | 221.42 | + |  |  |  | Bacteria/ Bacteroidetes/ Bacteroidia/ Bacteroidales/ Bacteroidaceae/ Bacteroides | human feces | NCBI entry |
| Bacteroides caccae strain AF465GN | $\begin{aligned} & \text { QRNA010 } \\ & 00095 \end{aligned}$ | ND | 5.37 | 19.734 | + |  |  |  | Bacteria/ Bacteroidetes/ Bacteroidial Bacteroidales/ Bacteroidaceae/ Bacteroides | human feces | NCBI entry |
| Bacteroides eggerthii DSM 20697* | $\begin{aligned} & \text { NZ_DS99 } \\ & 5510 \end{aligned}$ | ND | 6.195 | 19.345 | + |  |  |  | Bacteria/ Bacteroidetes/ Bacteroidial Bacteroidales/ Bacteroidaceae/ Bacteroides | human feces | NCBI entry |



Phage ICBM5


| Neorhizobium sp. T17_20 | NZ_PVBG 01000001 | ND | 6.427 | 571.6 | + | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Hyphomicrobiales/Rhizobiaceae/ <br> Rhizobium/Agrobacterium group/Neorhizobium | terrestrial, soil | NCBI entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nioella nitratireducens strain SSW136 | NZ_MNB W0100001 4 | ND | 5.734 | 95.12 | + | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Rhodobacterales/ Rhodobacteraceae/ Nioella | surface sediment of the Jiulong River transered into estuary water | Liu et al. (2017) |
| Nitrospira sp. isolate RSF5 | $\begin{aligned} & \text { SWDO010 } \\ & 00020 \end{aligned}$ | whole genome <br> shotgun <br> sequence | 6.25 | 96.14 | + | Bacteria/ Nitrospirae/ Nitrospirales/ Nitrospiraceae/ Nitrospiral | rapid sand filter | NCBI entry |
| Novosphingobium tardaugens NBRC 16725, New name: Caenibius tardaugens | $\begin{aligned} & \text { NZ_BASZ } \\ & 01000013 \end{aligned}$ | ND | 4.443 | 102.866 | + | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Hyphomicrobiales/ Hyphomicrobiaceae/ Novosphingobium | marine | Zheng et al. <br> (2018) |
| Oceanicola sp. S124 | $\begin{aligned} & \text { NZ_AFP } \\ & \text { M0100015 } \\ & 6 \end{aligned}$ | ND | 9115 | 38.215 | + | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Rhodobacterales/ Rhodobacteraceae/ Oceanicola. | marine | Kwon et al. (2012) |
| Oscillibacter sp. PC13 | NZ_FOXE 01000003 | ND | 5.417 | 177.285 | + | Bacteria/ Firmicutes/ Clostridia/ Clostridiales/ Oscillospiraceae/ Oscillibacter | isolated from sheep rumen | Seshadri et al. (2018) |
| Paenibacillus odorifer strain DSM 15391* | $\begin{aligned} & \text { NZ_CP00 } \\ & 9428 \end{aligned}$ | circular chromosome | 8.259 | 6.812 .473 | + | Bacteria/ Firmicutes/ Bacilli/ Bacillales/ Paenibacillaceae/ Paenibacillus | soil from wheat roots | Berge et al. (2002) |
| Parabacteroides distasonis str. 3999B T(B) 6* | NZ_JNHQ 01000100 | ND | 4.626 | 85.604 | + | Bacteria/ Bacteroidetes/ Bacteroidia/ Bacteroidales/ Tannerellaceae/ Parabacteroides | human feces | Sakamoto and Benno (2006) |
| Parabacteroides sp. AF3910AC* | $\begin{aligned} & \text { NZ_QTLP } \\ & 01000027 \end{aligned}$ | ND | 4.583 | 76.059 | + | Bacteria/ Bacteroidetes/ Bacteroidia/ Bacteroidales/ Tannerellaceae/ Parabacteroides | human feces | NCBI entry |
| Parabacteroides sp. AM27-42 | NZ_QTNL 01000010 | ND | 4.983 | 114.974 | + | Bacteria/ Bacteroidetes/ Bacteroidia/ Bacteroidales/ Tannerellaceae/ Parabacteroides | human feces | NCBI entry |
| Paracoccus alkenifer strain DSM 11593 | $\begin{aligned} & \text { NZ_FNX } \\ & \text { G0100000 } \\ & 2 \end{aligned}$ | ND | 8.198 | 871.604 | + | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Rhodobacterales/ Rhodobacteraceae/ Paracoccus. | biofilter for waste gas treatment | Lipski et al. <br> (1998) |
| Phaeobacter inhibens strain DOK1-1 | $\begin{aligned} & \text { NZ_CP01 } \\ & 9307 \end{aligned}$ | circular chromosome | 5.922 | 3.718 .082 | + | Bacterial Proteobacterial Alphaproteobacterial Rhodobacterales/ Rhodobacteraceae/ Phaeobacter. | marine, seawater | NCBI entry |
| Phascolarctobacterium faecium DSM 14760 | NZ_QLTS | ND | 4.517 | 796.791 | + | Bacterial Firmicutes/ Negativicutes/ <br> Acidaminococcales/ Acidaminococcaceae/ <br> Phascolarctobacterium | faeces of koala | Del Dot et al. (1993) |
| Prevotella bergensis DSM 17361* | $\begin{aligned} & \text { NZ_GG70 } \\ & 4781 \end{aligned}$ | whole genome <br> shotgun <br> sequence | 5.337 | 1.108.685 | + | Bacteria/ Bacteroidetes/ Bacteroidia/ Bacteroidales/ Prevotellaceae/ Prevotella | human skin | Downes et al. (2006) |
| Prevotella buccalis ATCC 35310 | NZ ADE G0100001 6 | ND | 4.975 | 88.363 | + | Bacteria/ Bacteroidetes/ Bacteroidia/ Bacteroidales/ Prevotellaceae/ Prevotella | human vaginal cavity | NCBI entry |
| Prevotella salivae F0493 contig0002 | NZ_AWG W0100001 1 | contig | 6.888 | 6.888 |  | Bacteria/ Bacteroidetes/ Bacteroidia/ Bacteroidales/ Prevotellaceae/ Prevotella | human oral cavity | Sakamoto et <br> al. (2004) |
| Prevotella sp. CAG:1185* | HF992559 | whole genome <br> shotgun <br> sequence | 6.349 | 34.922 | + | Bacteria/ Bacteroidetes/ Bacteroidia/ Bacteroidales/ Prevotellaceae/ Prevotella | human gut | NCBI entry |


| Ralstonia solanacearum strain UW179 | $\begin{aligned} & \text { NZ_CDLZ } \\ & 01000001 \end{aligned}$ | whole genome shotgun sequence | 6.503 | 5.426.414 |  | Bacteria/ Proteobacteria/ Betaproteobacteria/ Burkholderiales/ Burkholderiaceae/ Ralstonia | plant associated | DSMZ entry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rhizobium pusense strain CCGM10 | $\begin{aligned} & \text { NZ_KV87 } \\ & 8023 \end{aligned}$ | ND | 8.944 | 486.269 | + | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Hyphomicrobiales/Rhizobiaceae/ Rhizobium/Agrobacterium group/Rhizobium | terrestrial, root nodules, (Phaseolus vulgaris) | Aguilar et al. (2016) |
| Rhizobium sp. BG4 plasmid pRPC1 | CP044126 | circular plasmid | 6.609 | 1.609 .137 | + | Bacteria/ Proteobacteria/ Alphaproteobacterial Hyphomicrobiales/ Rhizobiaceael Rhizobium/Agrobacterium group/Rhizobium | root nodules <br> (Prosopis cineraria) | NCBI entry |
| Rhizobium sp. MHM7A <br> NODE_12* | NZ VCH T0100001 2 | whole genome shotgun sequence | 6.733 | 221.567 | + | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Hyphomicrobiales/ Rhizobiaceae/ Rhizobium/Agrobacterium group/Rhizobium | pea root nodules (Pisum sativum) | NCBI entry |
| Rhizobium sp. Root564 | $\begin{aligned} & \text { NZ_LMG } \\ & \text { N0100001 } \\ & 1 \end{aligned}$ | ND | 10.526 | 1.029 .951 | + | Bacteria/ Proteobacteria/ Alphaproteobacterial Hyphomicrobiales/ Rhizobiaceae/ Rhizobium/Agrobacterium group/Rhizobium | terrestrial, root nodules, <br> (Arabidopsis thaliana) | Bai et al. (2015) |
| Rhizobium sp. Root651 | $\begin{aligned} & \text { NZ_LMH } \\ & \text { B00100000 } \\ & 5 \end{aligned}$ | circular plasmid | 8.427 | 167.271 | + | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Hyphomicrobiales/Rhizobiaceae/ Rhizobium/Agrobacterium group/Rhizobium | terrestrial, root nodules, <br> (Arabidopsis thaliana) | Bai et al. (2015) |
| Rhizobium sp. UR51a | $\begin{aligned} & \text { NZ_JYFU } \\ & 01000029 \end{aligned}$ | whole genome shotgun sequence | 5.942 | 277.936 | + | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Hyphomicrobiales/ Rhizobiaceae/ Rhizobium/Agrobacterium group/Rhizobium | terrestrial, root nodules (Oryza sativa) | Souza et al. (2015) |
| Rhizobium sp. YS-1r | NZ_JPYQ 01000001 | ND | 8.57 | 657.089 | + | Bacterial Proteobacteria/ Alphaproteobacterial Hyphomicrobiales/ Rhizobiaceae/ Rhizobium/Agrobacterium group/Rhizobium | terrestrial, decaying wood from thermal pond | Jackson et al. (2017) |
| Rhizobium straminoryzae strain SM12 | NZ_VJM G0100000 8 | whole genome <br> shotgun <br> sequence | 7.361 | 175.733 | + | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Hyphomicrobiales/ Rhizobiaceae/ Rhizobium/Agrobacterium group/Rhizobium | plant associated Rhizosphere (Oryza sativa) | NCBI entry |
| Rhodobacter capsulatus R121 | NZ_AYQ C0100001 9 | ND | 6.611 | 418.689 | + | Bacteria/ Proteobacteria/ Alphaproteobacterial Rhodobacterales/ Rhodobacteraceae/ Rhodobacter. | pond water | Ding et al. (2014) |
| Rhodobacter capsulatus YW2 | $\begin{aligned} & \text { NZ_AYPZ } \\ & 01000002 \end{aligned}$ | ND | 6.427 | 316.953 | + | Bacteria/ Proteobacteria/ Alphaproteobacterial Rhodobacterales/ Rhodobacteraceae/ Rhodobacter. | terrestrial, forest | Weaver et al. (1975) |
| Rhodobacter sp. SW2 | $\begin{aligned} & \text { NZ_ACY } \\ & \text { Y0100000 } \\ & 5 \end{aligned}$ | ND | 9.745 | 188.067 | + | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Rhodobacterales/ Rhodobacteraceae/ Rhodobacter. | terrestrial, freshwater mud samples | Ehrenreich and Widdel (1994) |
| Rhodovulum sp. MB263 | $\begin{aligned} & \text { NZ_CP02 } \\ & 0384 \end{aligned}$ | circular <br> chromosome | 6.583 | 3.860 .570 | + | Bacteria/ Proteobacteria/ Alphaproteobacterial Rhodobacterales/ Rhodobacteraceae/ Rhodovulum. | marine, coastal mud flat | Hiraishi and Ueda (1995) |
| Rhodovulum sulfidophilum strain DSM 2351 | $\begin{aligned} & \text { NZ_AP01 } \\ & 4801 \end{aligned}$ | circular plasmid | 6.209 | 111.306 | + | Bacterial Proteobacteria/ Alphaproteobacterial Rhodobacterales/ Rhodobacteraceae/ Rhodovulum. | marine, mud from intertidal flats | Hansen and Veldkamp (1973) |
| Roseovarius sp. GCL-8 | NZ_QITQ 01000003 | ND | 6.624 | 282.961 | + | Bacteria/ Proteobacteria/ Alphaproteobacterial Rhodobacterales/ Rhodobacteraceae/ Roseovarius | sand | NCBI entry |


| Ruegeria mobilis S1942, New name: Tritonibacter mobilis | $\begin{aligned} & \text { NZ_JXYG } \\ & 01000006 \end{aligned}$ | ND | 5.802 | 603.96 | + |  | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Rhodobacterales/ Rhodobacteraceae/ Ruegeria. | marine, seawater, sediment and copepod | (Sonnenschei n et al. 2017) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ruegeria sp. THAF57 | $\begin{aligned} & \text { NZ_CAIW } \\ & \text { NQ010000 } \\ & 009 \end{aligned}$ | whole genome <br> shotgun <br> sequence | 13.152 | 210.182 | + |  | Bacteria/ Proteobacteria/ Alphaproteobacteria/ Rhodobacterales/ Rhodobacteraceae/ Ruegeria. | marine | NCBI entry |
| Stenotrophomonas maltophilia strain AS012690 | $\begin{aligned} & \text { NZ_VLGL } \\ & 01000002 \end{aligned}$ | whole genome shotgun sequence | 11.045 | 130.645 |  | + | Bacteria/ Proteobacteria/ <br> Gammaproteobacteria/ Xanthomonadales/ Xanthomonadaceae/ Stenotrophomonas/ Stenotrophomonas maltophilia group | human specimens | NCBI entry |
| Stenotrophomonas rhizophila strain JC1 | CP050062 | circular chromosome | 6.961 | 4.268 .161 |  | + | Bacteria/ Proteobacteria/ <br> Gammaproteobacteria/ Xanthomonadales/ <br> Xanthomonadaceae/ Stenotrophomonas | rhizosphere of potato and rape | $\begin{aligned} & \text { Wolf et al. } \\ & \text { (2002) } \end{aligned}$ |
| Xanthomonas citri strain LE3-1 | $\begin{aligned} & \text { NZ_LN64 } \\ & 7176 \end{aligned}$ | whole genome shotgun sequence | 6.748 | 5.045.425 |  | + | Bacteria/ Proteobacterial <br> Gammaproteobacteria/ Xanthomonadales/ <br> Xanthomonadaceae/ Xanthomonas | plant associated (C. aurantifolia) | NCBI entry |



Fig. 69: 16S rRNA phylogenetic analysis of the (pro)-phage hosts. Neighbor-joining tree based on the 16S rRNA gene sequence similarity showing the position of S. dubius $\mathrm{SH} 24-1 \mathrm{~b}$ and other bacterial hosts for Microviridae-like (pro)-phages. Bootstrap values are derived from 1,000 replicates. GenBank accession numbers are given as prefixes, followed by species and strain names. The bar represents ten substitutions per nucleotide position. The stars encode the following: * hosts of predicted prophages, integrated into chromosomes or plasmids; ** hosts of isolated phages; ${ }^{* * *}$ hosts of predicted episomes, represented by short contigs.

## 7. General discussion and outlook

More and more studies are uncovering the importance of phages and phage-host interactions for marine ecosystems. At the same time, a tremendous phage diversity is revealed by metagenomic studies (Mizuno et al. 2013; Gregory et al. 2019; Vila-Nistal et al. 2023). In these times of high-troughput sequencing, phage isolation studies are not so frequent, not in the least because of their much lower throughput and their dependence on host culturability. However, to fully understand the interactions between phages and hosts, and thus their true significance for biogeochemical cycles and bacterial evolution, isolation of specific phage-host systems their further characterization is necessary.

In this dissertation, our knowledge of phages infecting marine Roseobacteraceae, which are key players in the cycling of organic matter in marine ecosystems, was significantly extended. By combining phage isolation with database mining for environmental phage genomes, the cobaviruses were uncovered. This led to the delineation and later on, official acceptance by ICTV, of the first family of marine, tailed dsDNA viruses - the Zobellviridae, member of the Caudoviricetes class. Our biogeography survey showed that cobaviruses influence roseobacter populations at a global scale, from temperate to tropical marine waters, especially in coastal areas, and thus potentially influence the biogeochemical cycling in these environments (Chapter $2 \& 3$ ). Furthermore, the large-scale phage isolation campaign using direct plating yielded 128 genome-sequenced dsDNA phages. These belonged to twelve new genera and infected hosts of the genera Sulfitobacter, Lentibacter and Octadecabacter. Using hierarchical clustering of protein-clusters based intergenomic distances, we were able to classify these phages into four newly proposed viral families ("Hayaniviridae", "Schlingloffviridae", "Diferiteviridae", and "Woolleyviridae"), and four existing viral families (Autographiviridae, Casjensviridae, Mesyanzhinoviridae, and Zobellviridae), all in the Caudoviricetes class (Chapter 4). Apart from the genomic and taxonomic diversity revealed, this new collection provides many new phage-host systems for future detailed investigations. A start has been made with the preliminary analysis of the new sulfivirus group, a large genus of 89 phages infecting closely related Sulfitobacter strains, which pointed the spotlights on the arms race between phages and host bacteria and the genomic microdiversity arising on both sides (Chapter 5). Finally, while the focus of this dissertation was on dsDNA roseophages, the isolation and initial characterization of Sulfitobacter phage ICBM5 reminds that the
aforementioned enormous diversity of roseophages is complemented by a most likely great variety of ssDNA roseophages (Chapter 6).

### 7.1. The complex and eternally evolving field of phage classification and taxonomy

Any kind of system trying to classify biological entities is human made and inherently limited by our understanding of the diversity of the entities to be classified and the forces driving that diversity. Thus, quite often, increasing knowledge about the diversity will result in modifications of the classification system. In the case of phage taxonomic classification, new findings have led to substantial transformations in the recent years. Instead of the traditional Baltimore Classification, Koonin et al. (2020a) introduced the new "Megataxonomy of Viruses", which is based on evolutionary relationships. In this megataxonomy, viruses are grouped into six realms and within those, they are organized in 15 hierarchical ranks inspired by the Linnaean taxonomy.

These changes in virus classification over the past few years are also reflected in the different chapters of this dissertation. For example, the taxonomy of the cobaviruses changed between the initial publication of the study in February 2019 (Chapter 2) and the taxonomic proposal ratified by the ICTV in March 2021 (Chapter 3), due to the dissolution of the order Caudovirales and of the families Siphoviridae, Myoviridae, and Podoviridae, which previously contained all tailed dsDNA phages (Adriaenssens et al. 2021). In the new megataxonomy, the tailed dsDNA phages are classified in the Duplodnaviria realm and the Caudoviricetes class. Accordingly, the cobaviruses are currently classified in the Zobellviridae family within the Caudoviricetes order. While for the assignment of lower ranks based on intergenomic sequence identities, clear threshold recommendations (species $\geq 95 \%$, genus $\geq 70 \%$ ) have been compiled (Turner et al. 2021; Moraru 2023), the delineation of intermediate ranks suchs as family and order is not as standardized yet. However, it is suggested to use whole-proteome based clustering methods for this and to compare protein family profiles (Simmonds et al. 2023). The classification approach used later on in this dissertation (Chapter 4), using PC-based intergenomic similarities for family delineation, suggested that also the Zobellviridae family could be split into several families in the future, thus again changing the cobavirus taxonomy.

The ongoing changes in virus classification were a challenge for this dissertation. At the same time, they illustrate how exciting and at the cutting edge of virus research these projects
are. Finally, during our classification efforts, we actively took part in shaping phage classification criteria. Our studies revealed roseophage diversity at different levels (families, genera, and species) and proposed changes in some parts the current classification. On the one hand side, the proteomic tree-based classification of the new roseophage isolates (Chapter 4) layed the emphasis on family delineation and suggests that most likely existing phage families such as the aforementioned Zobellviridae and the Autographiviridae could be transformed into higher level taxa in the future. On the other hand side, the isolation of a large number of phages from a single genus, the sulfiviruses, placed the focus on virus classification at the genus, species and strain level (chapter 5). The revealed genomic microdiversity of the sulfiviruses, the cross-infection of their isolation host strains, and the co-infection of the same host cell by two sulfiviruses (not included in this dissertation) supports the re-thinking of the viral species definition.

Defining a species as members of populations that actually or potentially interbreed in nature, suggests that this group of phages, which co-occur in time and space and genetically exchange via recombination, could be regarded to as several strains of one species. This is in line with Bobay and Ochman (2018), who showed that the Biological Species Concept (BSC) could be applied for a viral species delineation based on the rate of gene exchange within populations. Instead of using rigid thresholds for phage species classification (e.g. 95\%), we should consider using thresholds that define viral species as groups of individuals with higher recombination rates among them, even if it means using flexible thresholds for different virus groups. In the case of the sulfiviruses, which have a minimum of $69 \%$ intergenomic identity, and show increased recombination rates, this approach would challenge the $95 \%$ threshold used by the ICTV for species definition.

Also in other cases, our studies reflect the necessity and challenge for virus classification to include genomic information as well as aspects of lifestyle and ecology. For example, Lentibacter phage ICBM8 was included into the "Diferiteviridae" family, despite a PC-based intergenomic similarity below the $30 \%$ threshold. This decision was made based on congruent features with the family member Lentibacter phage ICBM165. Both phages have the same isolation host, the same predicted podoviral morphology and the same predicted DNA packaging strategy. Furthermore, they occur in the same habitat, as they both have been isolated from seawater sample HE504-33 (see chapter 4.3.5.5.). This example illustrates that classification thresholds especially at higher and intermediate levels sometimes need to be flexible in order to create ecologically meaningful taxa. Even though taxonomic classification is based on genetic information, especially for the fast evolving phages with their genomes
being highly influenced by horizontal gene transfer, their lifestyle and interactions might be more informative with regard to their recombinatory actitivies and allow flexible thresholding of the taxons.

### 7.2. The role of roseophages in the marine environment, more specifically during algal blooms

Viruses are the most abundant biological entities in the oceans. In surface waters, phages outnumber their hosts by an order of magnitude, with 20-40\% of bacteria being lysed every day (Suttle 1994; Suttle 2007; Breitbart et al. 2018). They influence bacterioplankton dynamics and play an essential role in global carbon and nutrient cycling. Through viral lysis, bacterial community compositions are shifted as dominant members are lysed and thus decrease in numbers, as described by the "killing-the-winner" model (Thingstad 2000). At the same time, viral lysis leads to the release and recycling of carbon and intracellular nutrients instead of the unilateral biomass transfer to higher trophic levels. This phenomenon is termed "viral shunt" (Wilhelm and Suttle 1999). In contrast to the viral shunt, it was recently shown that phytoplankton can also graze on viruses, thereby redirecting biomass to higher trophic levels (DeLong et al. 2023). Furthermore, viral lysis and aggregation of the resulting cell debris can lead to carbon export to the deep ocean, known as the "viral shuttle" (Weinbauer 2004; Sullivan et al. 2017; Nissimov et al. 2018). Situations with increased carbon turnover, in which these interrelations can be well studied, are phytoplankton blooms.

Phytoplankton blooms are seasonal events mainly happening in coastal regions, in which microscopic algae accumulate in the photic zone, forming clouds sometimes being visible even from space (Kutser 2009; Dai et al. 2023). The breakdown of these blooms as a consequence of grazing, viral infection and limited nutrient availability releases large amounts of dissolved organic matter (DOM), which is consumed by heterotrophic bacteria (Biddanda and Benner 1997; Pinhassi et al. 2004; Thornton 2014; Buchan et al. 2014). The bacteria are subsequently infected by viruses, with lytic infections significantly contributing to the collapse of the bacterial bloom and the release of nutrients (Kuhlisch et al. 2021; Biggs et al. 2021). Algal blooms can be dangerous for marine life and also humans, with toxins produced by some algal species accumulating in so-called "harmful algal blooms" (HABs) and being transferred into the food web (Anderson 2009; Richlen et al. 2010). Globally, algal bloom frequency and extension have increased over the last two decades, even though on a regional scale trends are
more heterogeneous due to different climate developments and anthropogenic influences (Gobler 2020; Dai et al. 2023).

The waters around Helgoland Roads in the North Sea are characterized by phytoplankton blooms occurring annually during spring and summer (Gerdts et al. 2004; Wiltshire et al. 2010). Frequently, they have been a site for isolation of heterotrophic bacteria, including from the Roseobacter group, as well as of bacteriophages (Moebus and Nattkemper 1981; Wichels et al. 1998; Eilers et al. 2000b; Eilers et al. 2000a; Hahnke et al. 2013; Hahnke et al. 2015; AlejandreColomo et al. 2020; Heins et al. 2021; Heins and Harder 2022). Members of the Roseobacteraceae family are omnipresent in marine ecosystems inhabiting various ecological niches. They are present in pelagic waters, but also in sediment samples and attached to surfaces (Brinkhoff et al. 2008; Kanukollu et al. 2016; Simon et al. 2017). Often, they are associated to algae, which is why they are especially abundant during phytoplankton blooms (Eilers et al. 2001; Buchan et al. 2005; Lamy et al. 2009; Teeling et al. 2016).

The "Roseobacter group strains M\#" used for our large-scale phage isolation campaign (chapter 4) were isolated from surface water samples taken at the Helgoland Roads time series station during the spring phytoplankton bloom in 2016 (Alejandre-Colomo et al. 2020). Alejandre-Colomo et al. (2020) isolated strains of the genus Sulfitobacter throughout the bloom, i.e. from early-bloom, bloom and post-bloom samples, indicating that these bacteria are generalists coping with all stages of the bloom and the related ecological conditions (AlejandreColomo et al. 2020). Also Lentibacter sp. SH36, host of the cobaviruses described in chapter 2 and several more phage isolates described in chapter 4, as well as Sulfitobacter sp . SH24-1b, host of the ssDNA phage ICBM5, were isolated from a phytoplankton spring bloom in the southern North Sea (Hahnke et al. 2013). Having isolated seven roseobacter strains with different physiological features from the same habitat, Hahnke et al. (2013) hypothesized that this metabolic versatility is what enables the Roseobacter group to occupy different ecological niches and to cope with changes in the supply of substrates during a phytoplankton bloom. Three of the host strains that were used for phage isolation in this dissertation were isolated from particle fractions: Sulfitobacter sp. SH24-1b (Hahnke et al. 2013), Lentibacter sp. MPI-62 (Helgoland, spring phytoplankton bloom 2017, Heins et al. (2021)) and Octadecabacter sp. MM282 (shore of Harlesiel, October 2017). This again highlights the inhabitation of different ecological niches by members of the Roseobacter group and shows that we have covered this habitat diversity in our phage isolation studies.

With phage abundance and activity increasing during phytoplankton blooms (Wiltshire et al. 2010; Bartlau et al. 2021), seawater samples taken at these times are ideal for phage isolation, as it has been shown before. Bartlau et al. (2021) isolated 44 new phages infecting Flavobacteriia, another important group of heterotrophic bacteria, from seawater samples taken at the Helgoland Roads time series station during the phytoplankton spring bloom in 2018. By use of direct plating for isolation and then read mapping against cellular metagenomes, they could prove active replication of these phages during the bloom. Furthermore, some of the phages could be re-isolated in the following years, supporting their hypothesis that these phages are permanently present in this environment and potentially modulate the flavobacterial population in the North Sea (Bartlau et al. 2021). Two of the environmental cobaviruses described in chapter 2 of this dissertation were detected in spring bloom metagenomes from the Helgoland Roads time series station (see chapter 2.3.6.). The fact that they were found in metagenomes of two successive years indicates that they are of long-term significance at this location as well. To search the metagenomes from Helgoland Roads also for the other new roseophages described in this dissertation would definitely be an interesting task for future research, especially as their isolation hosts originate from there.

Also in this current dissertation, the water samples used for phage isolation came from an algal bloom situation, a mesocosm experiment with an artificially induced algal bloom. In order to investigate the dynamics of phage-host interactions during a phytoplankton bloom in the North Sea, a large-scale mesocosm experiment was performed by an interdisciplinary team from the University of Oldenburg (Mori et al. 2021; Kerimoglu et al. 2022; Sutorius et al. 2022; Dlugosch et al. 2023). Multiple indoor 600 -liter vessels, so-called planktotrons, were prepared with near-natural conditions and inoculated with North Sea water samples from which grazers had been removed by filtration. Over 38 days, the bacterial and viral composition as well as several other parameters were monitored during and after the artificially induced phytoplankton bloom (Mori et al. 2021). A biphasic phytoplankton bloom was observed, first dominated by diatoms (Thalassiosira spp., Skeletonema marinoi, and Pseudonitzschia sp.), and then by the haptophyte Phaeocystis globosa. The parallel mesocosms showed overall similar developments.

Heyerhoff et al. (in prep.) analyzed the virus-bacteria dynamics in the mesocosms by bacterial and viral metagenomic analyses and could show that in succession of the phytoplankton bloom, heterotrophic bacteria increased in abundance, dominated by members of the Flavobacterales, until being infected and lysed by viruses reflecting "killing-the-winner" dynamics. This way, phage infection contributed to the collapse of the bacterial bloom and at
the same time maintained bacterial diversity and stabilized the community composition, which was measureable as an increased Shannon diversity index (Heyerhoff et al. in prep.). Furthermore, an increase in dissolved organic carbon (DOC) concentration during the viral lysis phase could be observed, illustrating the impact of viral lysis on the organic carbon pool known as the viral shunt.

Members of the Roseobacteraceae family were not as dominant in the mesocosms (Heyerhoff et al. in prep.). Likewise, host prediction for metagenome-derived viral clusters based on CRISPR spacers revealed dominance of viruses infecting Flavobacterales while roseophages were not as abundant. Heyerhoff et al. (in prep.) found the numbers of virus-like particles to be very stable over the course of the experiment once they had increased in consequence of the bacterial bloom. The host affiliation of the viral contigs however showed succession patterns similar to those of the bacterial hosts. Thus, with the Roseobacteraceae increasing in relative abundance after the first diatom bloom and until the end of the monitoring, it could be that with a time delay also the roseophage increased in abundance, which was no longer recorded. Water samples for our phage isolation were taken a few days after the monitoring had ended. We could speculate that at that time point roseophage relative abundance was maybe higher.

As reviewed by (Silveira et al. 2021), viral infection strategies are dependent on host densities. At low host densities, lysogeny is thought to be dominating in order to persist over times of low nutrient availability (Coutinho et al. 2017; Silveira et al. 2021). However, also at high host densities, lysogeny is prevailing in order to prevent superinfection. The latter is described by the "piggyback-the-winner" hypothesis (Knowles et al. 2016; Silveira et al. 2021). On the contrary, at intermediate cell densities the lytic life cycle is expected to be predominant, with viruses lysing the most abundant and fastest-growing hosts according to the "killing-thewinner" hypothesis (Thingstad 2000). Our phage isolates were shown to infect their isolation hosts lytically, so they are potentially involved in the bacterial bloom collapse. For some of them, genetic analysis revealed a lysogenic potential, so they can also be part of the "piggyback-the-winner" dynamics.

In order to investigate the temporal occurrences of our new roseophages in the mesocosms, it would be a task for future research to perform read mapping of the planktotron metaviromes from different time points against our phage genomes. This would also give an insight into the question whether the isolated roseophage diversity was already present in the sea water inoculum or if it was created by the infection dynamics during the phytoplankton
bloom. Moreover, the 16S rRNA gene sequences of our isolation host strains should be searched in the amplicon metagenomes to find out at which time points of the bloom they occurred.

The identity or family affiliation of the roseophages isolated from the different planktotrons did not reveal any distinct patterns and did thus not allow any conclusions regarding the viral community compositions in the mesocosms (see chapter 4.3.5.). The differential yields of phage isolates between P1 (3) and P2 (54) could be explained by the fact that the number of virus-like particles (VLPs) in P1 was generally lower throughout the mesocosm experiment than in P2 (Heyerhoff et al. in prep.). Phages of the Autographiviridae family and the "Hayaniviridae" family originated from several planktotrons, which suggests that they are quite stable representatives during such a phytoplankton bloom and replicate actively also at lower total virus numbers. For the sulfiviruses of the "Hayaniviridae" family, this hypothesis is further supported by the fact that also the host ranges did not show any patterns regarding isolation sources (see chapter 5.3.4.).

### 7.3. Methodological considerations

In this dissertation, we isolated a remarkable diversity of roseophages. Using comparatively few host species, very different phages were obtained, even though they represent of course only a part of the diversity in the ocean, since we focused on lytic, dsDNA phages. For the same host strain, phages of different families, potentially even orders were isolated (e.g., phages ICBM4 and ICBM7 both infecting Lentibacter sp. SH36). We achieved this by using two different phage isolation techniques. The cobaviruses described in chapters 2 and 3 and some more Lentibacter phages described in chapter 4 were isolated using enrichment cultures. A drawback of this technique is that more virulent phages might outcompete others during cultivation, which results in a low number of phage isolates that not necessarily represent the most important phages in nature. To circumvent the bias of enrichment cultures, we used direct plating in the large-scale isolation campaign described in chapter 4 . After concentration of viral particles in the pre-filtered seawater by cross-flow filtration, we plated an aliquot of this viral concentrate together with a small volume of exponentially growing host culture. Having a higher number of different phages in the concentrate and being able to detect individual phages as separate single plaques in the bacterial lawn, we hoped to catch a variety of phages that reflects more the true diversity in the seawater sample than an enrichment culture. This proved successful through the isolation of the microdiverse sulfivirus strains. Isolation of so many different sulfivirus strains might not have been possible in enrichment cultures, since the more
virulent strains would have prevailed. A disadvantage of the direct plating approach could be that there still is a physical enrichment of the phage particles by cross-flow filtration. This might not affect so much the diversity of the isolated phages, but it was previously shown to reduce the overall phage yield due to high shearing forces (Alonso et al. 2000; Castro-Mejía et al. 2015). At the same time, the direct plating approach allows a much higher throughput than enrichment cultures. This way, we achieved our goal and isolated phages with two levels of diversity. On the one hand side, phages of eight different families were isolated. On the other hand side, the large collection of highly similar, microdiverse sulfivirus strains was obtained.

Both isolation methods, direct plating and enrichment culture, were successful. For Lentibacter sp. SH36, eight phages belonging to four families were obtained, three of them from enrichment cultures and five from direct isolation. Furthermore, it is noteworthy that the two approaches gave different phages for the same host strain, indicating that different laboratory conditions and techniques can be favorable for different phages and thus a combination of both and maybe even other approaches can be useful. Nevertheless, there are limitations of both applied phage isolation techniques, which are not easily to be bypassed. In general, the incubation time of the enrichment, but also of the plaque assay could influence the phage yield. Slow growing phages might be lost if the incubation time is too short, but too long incubation could lead to contamination or takeover by few dominating viruses. This dilemma illustrates that laboratory conditions cannot easily mimic the natural situation, which is why the assessment of viral diversity by metagenomic analyses is very valuable and needs to go hand in hand with cultivation studies.

Another limitation of our phage isolation approaches is that we used pre-filtered seawater and thus only free phage particles were part of the viral concentrate while those attached to bacteria and algae were lost. This not only excludes phages of host bacteria that live in true association with algae. Also free phages are known to randomly attach to particles such as algal aggregates (Mari et al. 2007; Riemann and Grossart 2008; Bettarel et al. 2016). The fact that also bacteria and intracellular phage particles were filtered out prior to concentration, means that only those phages could be isolated, that were actively replicating and thus present in high numbers as free particles in the seawater sample. These considerations remind that the infection efficiency of phages on certain hosts most likely influence the chance of being isolated. Even if the direct plating approach is not as prone to the takeover of the most dominant and fastest replicating phage as an enrichment culture, still the infection efficiency must be high enough to produce visible plaques on the plate.

This requirement is also very important to be kept in mind when interpreting the results of host range assays. Host ranges tested with spot assays tend to be overestimated (Holmfeldt et al. 2007; Hyman and Abedon 2010). Thus, we applied a method adapted from the "Molten Streaking for Singles" technique described by Kauffman and Polz (2018) to determine the host range of the sulfiviruses. Successful infection of the respective host is indicated by single plaques, therefore false positive results due to spontaneous lysis of the bacteria can be excluded. The determined host range can be described as "plaquing host range" (Hyman and Abedon 2010). Nevertheless, this method does not consider varying infection efficiencies. Prerequisite for an infection to be recognized is the formation of a visible plaque within the given time frame, which in turn requires a certain level of infectivity. Thus, infections of low infectivity are not being detected and the "plaquing host range" might not reflect the complete scope of host strains. This limitation should not be underestimated when trying to elucidate the links between co-infection, gene exchange and the emergence of viral microdiversity. Kauffman et al. (2021) evaluated host range and recombination within a large dataset of Vibrio phages and detected that recombination is common even between phages without overlaps in the determined host range. They hypothesized that phages infect many strains without killing them, still enabling co-infection and recombination. This underlines again, how important it is to identify the determined host range as "plaquing" or "killing".

### 7.4. Outlook

The aim of this thesis was to isolate and characterize new phages infecting marine Roseobacteraceae and this way to shed more light on their diversity in the North Sea. This aim was fulfilled by the isolation and taxonomic classification of 113 new roseophages infecting strains from three roseobacter genera. With the creation of such a large roseophage collection, this dissertation offers many opportunities for further research. Through taxonomic classification and initial genome analyses, a fascinating diversity has been revealed that is just waiting to be explored in more detail.

The potential ecological relevance of the cobaviruses was already uncovered by examination of their biogeographical distribution using read mapping against marine metagenomes (chapter 2 and 3). A search in more than 5,000 metagenomes revealed that they occur worldwide in many marine habitats, which indicates their participation in shaping Roseobacteraceae communities all around the globe. In regards to the new roseophage isolates (chapter 4 and 5), their taxonomic classification into families together with other phages that
have been isolated from very diverse habitats, from soil to sea- and freshwater to anthropogenic environments (see chapter 4.3.5.), suggests that they could also be found worldwide in metagenomes. Furthermore, our new roseophage isolates were obtained from seawater samples from different years (2013, 2015, and 2018) and seasons (March and July 2018), illustrating that we captured part of the roseophage diversity in the North Sea at different times and spaces and indicating that these phages are of environmental relevance over a longer time period. This especially holds true for the two Lentibacter phages in the "Schlingloffviridae" family, which were isolated in different years.

Nevertheless, the environmental relevance of the new roseophages should be assessed more specifically in the future. This could be done by read mapping against metagenomes providing different types of information: (i) metagenomes from the planktotron mesocosm experiment have a background of fine scale metadata from a phytoplankton bloom (Mori et al. 2021; Dlugosch et al. 2023), (ii) metagenomes from time series stations such as Helgoland Roads reflect phytoplankton blooms in the natural environment and are available from several years and seasons (Teeling et al. 2012; Teeling et al. 2016; Chafee et al. 2018; Krüger et al. 2019), and (iii) metagenomes from different locations and habitats around the world can provide knowledge about their spatial distribution. If available, both viral and bacterial metagenomes should be investigated. Lytic phages can be captured in cellular metagenomes due to ongoing infections during the time point of sampling or because free virus particles were caught because of unspecific binding during filtration, as it was likely the case for the cobaviruses. However, several of the new roseophage isolates showed indications for lysogenic potential and thus could be found being present as prophages. In addition, metagenome searches could gain information about the habitat and lifestyle of the Roseobacteraceae host strains. As the cobaviruses were often found in metagenomes from protist size fractions, we hypothesized that their host bacteria could be protist-associated. This was supported by the fact that the cobaviruses possessed a class II cobalamin-dependent RNR gene, which was earlier hypothesized as an indication for infection of vitamin B12-producing bacteria living in association with phototrophic protists (Sakowski et al. 2014). Since cobalamin-dependent RNR genes were also present in some of the other new roseophages (Mesyanzhinoviridae and "Hayaniviridae", chapter 4.3.5) and since the host genera Sulfitobacter and Octadecabacter are known to associate with algae (Guannel et al. 2011; Dogs et al. 2017; Yang et al. 2021; Jin et al. 2023), the new roseophage genomes will likely be found in metagenomes from algal size fractions, as well.

Furthermore, the lifestyle of the new roseophages should be examined. On the one hand, their life cycle when infecting the respective isolation host strain should be described by means of one-step growth curves (temporal succession, burst size, etc.). On the other hand, their ability to infect other strains should be tested. Both can be done in culture but also in situ using the phageFISH technique (Allers et al. 2013; Barrero-Canosa and Moraru 2019). For the cobaviruses, the host range was already determined, however only using a collection of type strains from different Roseobacteraceae genera. It would be interesting to test their ability to infect more closely related strains. In contrast, the sulfiviruses were only tested for their infectivity against the highly similar, species-level related sulfivirus host strains. A future task could be to determine whether they can infect strains of different species and genera.

With the sulfivirus project being presented in this dissertation in the form of preliminary results (chapter 5), the main goal for the near future is to learn more about the relationship between this intriguing group of phages and their hosts, and how their interactions generate microdiversity on both sides. A start has been made by Ismail Hayani, who could show in his master thesis that sulfiviruses ICBM16 and ICBM18 co-infect their isolation host Sulfitobacter sp. M53. A future task will be to prove that this co-infection leads to recombination events between the viral genomes and thereby contributes to horizontal gene transfer and microdiversity. Furthermore, the infection cycle of the sulfiviruses should not only be analyzed in single infection cultures, but also in co-culture with multiple phages and maybe even multiple host strains. Following the infection dynamics by phageFISH and transcriptomics could give valuable information about potential competition between sulfiviruses, co-infection or superinfection exclusion, potential prophage induction and regulation of defense systems on both sides, phages and hosts.

## Appendix

## a) Supplementary tables

Table S 1: List of Rhodobacteraceae strains used for the host range assay.

| Name | Strain designation | Strain | Infected (- no, + yes) |
| :---: | :---: | :---: | :---: |
| Antarctobacter heliothermus | EL-219 | DSM 11445 | - |
| Celeribacter baekdonensis | L-6 | DSM 27375 | - |
| Celeribacter indicus | P73 | DSM 27257 | - |
| Celeribacter marinus | IMCC12053 | DSM 100036 | - |
| Celeribacter neptunius | H 14 | DSM 26471 | - |
| Citreicella aestuarii | AD8 | DSM 22011 | - |
| Citreicella marina | CK-I3-6 | DSM 26424 | - |
| Dinoroseobacter shibae | 5 Plasmids | DSM 16493 | - |
| Huaishuia halophila | ZXM137 | DSM 26270 | - |
| Hwanghaeicola aestuarii | Y26 | DSM 22009 | - |
| Jannaschia donghaensis | DSW-17 | DSM 102233 | - |
| Jannaschia helgolandensis | Hel10 | DSM 14858 | - |
| Jannaschia pohangensis | H1-M8 | DSM 19073 | - |
| Jannaschia rubra | 4SM3 | DSM 16279 | - |
| Leisingera aquimarina | R-26159 | DSM 24565 | - |
| Leisingera caerulea | 13 | DSM 24564 | - |
| Leisingera daeponensis | TF-218 | DSM 23529 | - |
| Leisingera methylohalidivorans | MB2 | DSM 14336 | - |
| Lentibacter sp. | SH36 |  | + |
| Litoreibacter albidus | KMM 3851 | DSM 26922 | - |
| Litoreibacter arenae | GA2-M15 | DSM 19593 | - |
| Litoreibacter janthinus | KMM 3842 | DSM 26921 | - |
| Litorimicrobium taeanense | G4 | DSM 22007 | - |
| Loktanella cinnabarina | LL-001 | DSM 29954 | - |
| Loktanella fryxellensis | R-7670 | DSM 16213 | - |
| Loktanella hongkongensis | UST950701-009P | DSM 17492 | - |
| Loktanella koreensis | GA2-M3 | DSM 17925 | - |
| Loktanella pyoseonensis | JJM85 | DSM 21424 | - |
| Loktanella salsilacus | R-8904 | DSM 16199 | - |
| Loktanella tamlensis | SSW-35 | DSM 26879 | - |
| Loktanella vestfoldensis | R-9477 | DSM 16212 | - |
| Maribius pelagius | B5-6 | DSM 26893 | - |
| Maribius salinus | CL-SP27 | DSM 26892 | - |
| Marinovum algicola | FF3 | DSM 10251 | - |
| Marinovum algicola | DG898 | DSM 27768 | - |
| Maritimibacter alkaliphilus | HTCC2654 | DSM 100037 | - |
| Nautella italica | R11 | DSM 26436 | - |
| Oceanibulbus indolifex | HEL-45 | DSM 14862 | - |
| Oceanicola batsensis | HTCC2597 | DSM 15984 | - |
| Oceanicola granulosus | HTCC2516 | DSM 15982 | - |
| Oceanicola nanhaiensis | SS011B1-20 | DSM 18065 | - |
| Octadecabacter temperatus | SB1 | DSM 26878 | - |
| Palleronia marisminoris | B33 | DSM 26347 | - |
| Pelagibaca bermudensis | HTCC2601 | DSM 26914 | - |
| Phaeobacter gallaeciensis | BS 107 | DSM 26640 | - |
| Phaeobacter inhibens |  | DSM 17395 | - |
| Phaeobacter inhibens | T5 | DSM 16374 | - |
| Phaeobacter inhibens | 2.10 | DSM 24588 | - |
| Ponticoccus litoralis | CL-GR66 | DSM 18986 | - |
| Pseudophaeobacter arcticus | 20188 | DSM 23566 | - |
| Pseudoruegeria lutimaris | HD-43 | DSM 25294 | - |
| Roseibacterium elongatum | Och 323 | DSM 16469 | - |
| Roseivivax isoporae | sw2 | DSM 22223 | - |

## Appendix

| Roseivivax roseus | BH87090 | DSM 23042 | - |
| :---: | :---: | :---: | :---: |
| Roseobacter denitrificans | Och 114 | DSM 7001 | - |
| Roseobacter litoralis | Och 149 | DSM 6996 | - |
| Roseovarius crassostreae | CV919-312, CVSP | DSM 16950 | - |
| Roseovarius halocynthiae | MA1-10 | DSM 27840 | - |
| Roseovarius indicus | B108 | DSM 26383 | - |
| Roseovarius lutimaris | 112 | DSM 28463 | - |
| Roseovarius marinus | HDW-9 | DSM 25228 | - |
| Roseovarius mucosus | DFL-24 | DSM 17069 | - |
| Roseovarius nubinhibens | ISM | DSM 15170 | - |
| Ruegeria atlantica | 1480 | DSM 5823 | - |
| Ruegeria conchae | TW15 | DSM 29317 | - |
| Ruegeria marina | ZH17 | DSM 24837 | - |
| Ruegeria pomeroyi | DSS-3 | DSM 15171 | - |
| Sagittula stellata | EE-37 | DSM 11524 | - |
| Salinihabitans flavidus | ISL-46 | DSM 27842 | - |
| Salipiger mucosus | A3 | DSM 16094 | - |
| Sedimentitalea nanhaiensis | NH52F | DSM 24252 | - |
| Sediminimonas qiaohouensis | YIM B024 | DSM 21189 | - |
| Shimia haliotis | WM35 | DSM 28453 | - |
| Shimia marina | CL-TA03 | DSM 26895 | - |
| Sulfitobacter delicatus | KMM 3584 | DSM 16477 | - |
| Sulfitobacter dubius | KMM 3554 | DSM 16472 | - |
| Sulfitobacter litoralis | Iso 3 | DSM 17584 | - |
| Sulfitobacter marinus | SW-265 | DSM 23422 | - |
| Sulfitobacter mediterraneus | CH-B427 | DSM 12244 | - |
| Sulfitobacter noctilucae | NB-68 | DSM 100978 | - |
| Sulfitobacter noctilucicola | NB-77 | DSM 101015 | - |
| Sulfitobacter pseudonitzschiae | H3 | DSM 26824 | - |
| Sulfitobacter sp. | EE-36 | DSM 11700 | - |
| Thalassobius aestuarii | JC2049 | DSM 15283 | - |
| Thalassobius maritimus | GSW-M6 | DSM 28223 | - |
| Thalassococcus halodurans | UST050418-052 | DSM 26915 | - |
| Thioclava dalianensis | DLFJ1-1 | DSM 29618 | - |
| Thioclava pacifica | TL 2 | DSM 10166 | - |
| Tranquillimonas alkanivorans | A34 | DSM 19547 | - |
| Tropicibacter multivorans | MD5 | DSM 26470 | - |
| Tropicibacter naphthalenivorans | C02 | DSM 19561 | - |
| Tropicimonas isoalkanivorans | B51 | DSM 19548 | - |
| Wenxinia marina | HY34 | DSM 24838 | - |
| Yangia pacifica | DX5-10 | DSM 26894 | - |

Table S 2: Sequencing and assembling phage genomes from isolates and enrichments.

|  | Phage isolates - sequenced by |  | Enrichments - sequenced by |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Illumina | PacBio | Illumina (S1 and S2) | PacBio (S2 only) |
| ICBM1 | yes | yes | not assembled | not assembled |
| ICBM2 | yes | no | assembled in S2 | assembled in S2 |
| ICBM3 | n.a. | n.a. | assembled in S1, S2 | assembled in S2 |

## Appendix

Table S 3: Cobaviral genomes - \% GC and length (bases).

| Name | G+C <br> content | Sequence Length (bases) |
| :--- | :--- | :--- |
| vB_LenP_ICBM1 | $47.00 \%$ | 40163 |
| vB_LenP_ICBM2 | $47.80 \%$ | 40907 |
| vB_LenP_ICBM3 | $47.30 \%$ | 40498 |
| SIO1 | $46.20 \%$ | 40072 |
| P12053L | $46.10 \%$ | 39061 |
| EnvX | $40.20 \%$ | 40752 |
| EnvY | $40.10 \%$ | 36003 |
| EnvZ | $44.80 \%$ | 35824 |
| Env8 | $39.80 \%$ | 38447 |
| Env9 | $40.30 \%$ | 41607 |
| Env14 | $40.30 \%$ | 35066 |

Table S 4: Bi-directional rho-independent transcriptional terminators in the genomes of the Cobavirus group (blue - stems, red - loops).

| Name | Terminat or name | Position | Sequence | Strand | Delta G |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ICBM1 | t1 | 15927-15979 | CAAATAAGTAAAGCCCCCAAGGAGAAATCCAA GGGGGCTaTTTCTTTGTGTAT | - | -13.84 |
| ICBM1 | t2 | 15930-15981 | CACAAAGAAATAGCCCCCTTGGATTTCTCCTTG GGGGCTTTACTTATTTGGA | + | -13.64 |
| ICBM3 | t1 | 15916-15968 | CAAATAAGTAAAGCCCCCAAGGAGAAATCCAA GGGGGCTaTTTCTTTATGTAT | - | -13.84 |
| ICBM3 | t2 | 15919-15970 | CATAAAGAAATAGCCCCCTTGGATTTCTCCTTG GGGGCTTTACTTATTTGGA | $+$ | -13.64 |
| ICBM2 | t1 | 14733-14782 | AACACAAAGAAGCCCCCAAGGAGAAATCCAA GGGGGCTTTTGCTTGTCTA | - | -12.64 |
| ICBM2 | t2 | 14735-14784 | GACAAGCAAAAGCCCCCTTGGATTTCTCCTTGG GGGCTTCTTTGTGTTTA | $+$ | -13.14 |
| P12053L | t1 | 17261-17316 | TAAACACAAAGAAGCCCCCAAGGATTTTACTC CAAGGGGGCTTTTGCTTGTTCATC | - | -14.09 |
| P12053L | t2 | 17265-17316 | AACAAGCAAAAGCCCCCTTGGAGTAAAATCCT TGGGGGCTTCTTTGTGTTTA | $+$ | -12.99 |
| SIO1 | t1 | 15149-15204 | TAAACACAAAGAAGCCCCCAAGGATTAATCTC CAAGGGGGCTTTTGTTTGTCTATA | - | -14.09 |
| SIO1 | t2 | 15153-15204 | GACAAACAAAAGCCCCCTTGGAGATTAATCCT TGGGGGCTTCTTTGTGTTTA | $+$ | -12.99 |
| EnvX | t1 | 12131-12185 | GAAATAAAGAAGAAGCCCCAAGGAGAAATCC TGAGGGGCTTTTTTATTACTCTTG | - | 12.06 |
| EnvX | t2 | 12134-12187 | GAGTAATAAAAAAGCCCCTCAGGATTTCTCCTT GGGGCTTcTTCTTTATTTCTT | + | -11.26 |
| EnvY | t1 | 12048-12102 | GAAATAAAGAAGAAGCCCCAAGGAGAAATCC TGAGGGGCTTTTTTATTACTCTTG | - | -12.06 |
| EnvY | t2 | 12051-12104 | GAGTAATAAAAAAGCCCCTCAGGATTTCTCCTT GGGGCTTcTTCTTTATTTCTT | + | -11.26 |
| Env8 | t1 | 11722-11764 | AGAAAAAGTAAGGGAGCCTAAGTAGCTCCCcT TTTTTATACCT | - | -10.60 |
| Env8 | t2 | 11724-11765 | GTATAAAAAAGGGGAGCTACTTAGGCTCCCTT <br> ACTTTTTCTT | $+$ | -12.70 |
| Env9 | t1 | 18115-18164 | AAATAAAATAAACCCCCTTGGATTTCTCCTTGG GGGTTTTTTCTTACTTG | - | -10.44 |
| Env9 | t2 | 18115-18169 | CAAGTAAGAAAAAACCCCCAAGGAGAAATCC AAGGGGGTTTaTTTTATTTCTTTT | + | -12.34 |
| Env14 | t1 | 12255-12297 | TAAAAGAAGAAGGGAGCCTAAGTAGCTCCCcT TTTTTTTATGC | - | -10.60 |
| Env14 | t2 | 12257-12298 | ATAAAAAAAAGGGGAGCTACTTAGGCTCCCTT CTTCTTTTAA | $+$ | -12.70 |

## Appendix

Table S 5: DTRs from related phages.

| Group | phages | DTRs <br> length | DTRs nucleotide identity (excluding gaps) | DTRs - alignment |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Acinetobacter phage phiAB1 | 410 | $87 \%$ | Identity <br> 1. NC_028675_DTR <br> 2. NC_031086_DTR |  |
|  | Acinetobacter phage phiAB6 | 421 |  |  | 41,117 41,314 41,526 <br> 1 200 42 |
| 2 | Yersinia phage Berlin | 227 | 95\% |  |  |
|  | Yersinia phage Yepphi | 222 |  | $\begin{aligned} & \text { Identity } \\ & \text { [ 1.NC_008694_DTR } \\ & {[\text { 2.NC_023715_DTR }} \end{aligned}$ |    <br> 38,338 38,437 38,564 <br>  90 227 <br>    <br>    <br>    <br>    <br>    |
| 3 | Pseudomonad phage gh-1 | 217 | 92\% | Identity | 1 |
|  | Pseudomonas phage phiPSA2 | 216 |  | 1. NC_004665_DTR <br> 2. NC_024362_DTR | 37,143 37,242 <br> 1 99 <br>  37,359 |
| 4 | Yersinia phage phiA1122 | 148 | 80\% | Identity <br> 1. NC_004777_DTR <br> 2. NC_011045_DTR | (2) |
|  | Enterobacteria phage 13a | 170 |  |  |  |
| 5 | Citrobacter phage SH5 | 191 | 100\% | Identity |  |
|  | Citrobacter phage SH4 | 191 |  | 1. KU687351.1_DTR <br> 2. NC_031018_DTR |  50 100 191 <br>  1 1  <br>  39,084 39,133 39,183 |
| 6 | Klebsiella phage K11 | 180 | 83\% | Identity |  |
|  | Klebsiella phage vB_KpnP_KpV289 | 179 |  | 1. NC_011043_DTR <br> 2. NC_028977_DTR |  |
| 7 | Enterobacteria phage K30 | 393 | 80\% | Identity <br> 1. NC_015719_DTR <br> 2. NC_028800_DTR |  |
|  | Klebsiella phage K5 | 392 |  |  | M- |
| 8 | Enterobacteria phage BA14 | 194 | 83\%-93\% | Identity <br> 1. NC 011040_DTR <br> 2. NC-011534_DTR <br> [ 3. NC_022744_DTR | - H\| |
|  | Kluyvera phage Kvp1 | 194 |  |  | R - I I I |
|  | Erwinia phage FE44 | 193 |  |  | $\begin{array}{lllllll} R & \\|\\| I & 1 & - & \\| I I & 111 & 1 \\ R & & 1 & -1 & 1 & 11 \\| & -1 \end{array}$ |
| 9 | Pseudomonas phage PT5 | 413 | 98\%-100\% | Identity <br> 1. EU056923 DTR <br> 2. NC_005045_DTR <br> 3. NC_011107_DT... |  |
|  | Pseudomonas phage phiKMV | 414 |  |  |  |
|  | Pseudomonas phage PT2 | 488 |  |  |  |
| 10 | Klebsiella phage KP34 | 216 | 71\%-87\% | Identity <br> 1. NC 013649 DTR <br> 2. NC 028670 DTR <br> 3. NC 031025_DTR <br> 4. NC_031246_DTR |  |
|  | Klebsiella phage vB_KpnP_KpV41 | 214 |  |  |  |
|  | Klebsiella phage vB_KpnP_KpV475 | 243 |  |  |  |
|  | Klebsiella phage vB_KpnP_KpV71 | 246 |  |  |  |
| 11 | Enterobacteria phage EcoDS1 | 178 | 84\%-93\% |  |  |

## Appendix

|  | Citrobacter phage CR44b | $\begin{aligned} & 183 \\ & \hline 184 \end{aligned}$ |  | Identity <br> 1. NC_011042_DTR <br> 2. NC 023576_DTR <br> 3. NC 031123 DTR <br> 4. NC_031943_DT... |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  | Citrobacter phage SH3 |  |  |  |  |  |
|  | Escherichia phage vB_EcoP_GA2A | 165 |  |  |  |  |
| 12 | Pseudomonas phage <br> LUZ24 | 165 | 88\%-99\% | Identity <br> 1. NC_010325_DTR <br> 2. NC 022971 DTR <br> 3. NC-023583_DT... <br> 4. NC_026599_DTR <br> 5. NC_028933_DTR |  |  |
|  | Pseudomonas phage phiIBB-PAA2 | 183 |  |  |  |  |
|  | Pseudomonas phage TL | 207 |  |  |  |  |
|  | Pseudomonas phage vB_PaeP_C210_Ab22 | 184 |  |  |  |  |
|  | Pseudomonas phage PhiCHU | 185 |  |  |  |  |
| 13 | Enterobacteria phage T7M | 230 | 83\%-100\% | Identity 1. JX421753 - T7M... <br> 2. NC 001271 DTR 3. NC_003298_DTR <br> 4. NC-010807_DTR <br> 5. NC_025451_DTR 6. NC 031066-DTR 7. $\mathrm{NC}_{-} 031092$-DTR |  |  |
|  | Yersinia phage phiYeO3-12 | 232 |  |  |  |  |
|  | Enterobacteria phage T3 | 231 |  |  |  |  |
|  | Salmonella phage phiSG-JL2 | 230 |  |  |  |  |
|  | Yersinia phage vB_YenP_AP5 | 235 |  |  |  |  |
|  | Citrobacter phage SH1 | 231 |  |  |  |  |
|  | Citrobacter phage SH2 | 243 |  |  |  |  |

Table S 6: Prophage predictions using Phaster for the contigs containing the spanin genes

| Organism | Contig accession | Predicted prophage position | Prophage score | Spanin position | Spanin accession | Spanin associated to prophage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thalassobius gelatinovorus strain DSM 5887 | NZ_FOFW01000006 | 189621-213252 | intact | 208342.. 208716 | WP_058264408.1 | yes |
| Salinihabitans flavidus strain DSM 27842 | FODS01000069 | none, too short contig |  | 1323.1676 | SEP27667 | unknown |
| Ruegeria mobilis strain DSM 23403 | NZ_FNNK01000005 | 157938-194421 | intact | 178515..178898 | WP_065332003 | yes |
| Ruegeria mobilis strain M41-2.2 | NZ_LNWW01000004 | 700765-722736 | incomplete | $721841 . .722224$ | WP_065329472 | yes |
| Silicibacter sp. TM1040 | NC_008044.1 | 1376648-1397748 | intact | 1396955.. 1397338 | WP_011538643 | yes |
| Rhodovulum sp. MB263 | NZ_CP020384 | 862737-879872 | incomplete | 865553..865897 | WP_080615430 | yes |
| Rhodovulum sulfidophilum strain AB26 | MSYQ01000001 | many, not associated with the spanin |  | 1904888.. 1905244 | OLS44559.1 | no |
| Phaeobacter sp. P97 | NZ_CP016364 | 1925407-1946347 | incomplete | 1945236..1945619 | WP_072504847 | yes |
| Phaeobacter inhibens strain S4Sm | NZ_LOHU01000025 | 4300-27092 | questionable | 5028..5411 | WP_061047696 | yes |
| Phaeobacter sp. S26 | NZ_JSWK01000008 | 125831-162508 | questionable | 140888.. 141271 | WP_040172280 | yes |
| Phaeobacter inhibens DSM 16374 | NZ_KI421498 | 1832819-1867875 | intact | 1854039..1854422 | WP_027247877 | yes |
| Phaeobacter inhibens DSM 17395 | NC_018290.1 | 1905561-1926725 | intact | 1925596..1925973 | WP_014880219 | yes |
| Leisingera sp. ANG-M7 | NZ_JWLI01000008.1 | 60402-97630 | intact | 77885..78262 | WP_052272404 | yes |

Table S 7: Environmental distribution of Celeribacter marinus IMCC 12053, based on the 16S rRNA blast hits in the NR Blast databases from NCBI, with minimum $99.0 \%$ identity.

| Blast hit Accession | Isolation source | Country | coordinates | \% nucleotide Identity | Alignment length | evalue |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AJ391195.1 | Adriatic Sea |  |  | 100 | 1338 | 0 |
| AJ391196.1 | Adriatic Sea |  |  | 100 | 1360 | 0 |
| CP012023.1 | coastal surface seawater of the Yellow Sea | South Korea |  | 100 | 1471 | 0 |
| AM990783.1 | sea water North Western Mediterranean Sea | France | 42.29 N 3.08 E | 99.858 | 1407 | 0 |
| AY697903.1 | seawater | Antarctica |  | 100 | 1410 | 0 |
| NR_133717.1 | seawater, Yellow Sea | South Korea |  | 99.853 | 1359 | 0 |
| HM140667.1 | toxigenic diatom Pseudo-nitzschia, Puget Sound | WA (Main Basin) |  | 99.29 | 1409 | 0 |
| GU061042.1 | Yellow Sea intertidal beach | Korea |  | 99.283 | 1394 | 0 |
| GU061048.1 | Yellow Sea intertidal beach | Korea |  | 99.211 | 1394 | 0 |
| HM140672.1 | Puget Sound | WA (Main Basin) |  | 99.219 | 1409 | 0 |
| HM140674.1 | Puget Sound | WA (Main Basin) |  | 99.148 | 1409 | 0 |

Table S 8: Environmental distribution of Lentibacter sp. SH36, based on the 16S rRNA blast hits in the NR Blast databases from NCBI, with minimum $99.0 \%$ identity.

| Blast hit Accession | Isolation source | Country | coordinates | \% nucleotide Identity | Alignment length | evalue |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AJ391182.1 | Adriatic Sea |  |  | 100 | 1429 | 0 |
| JQ269272.1 | estuary zone of Jiulong River | China |  | 99.508 | 1422 | 0 |
| AF305498.1 | German bight |  |  | 99.502 | 1405 | 0 |
| AY701455.1 | Gymnodinium catenatum from Huon Estuary, | Tasmania (Australia) |  | 99.71 | 1381 | 0 |
| DQ234098.2 | mangrove, Danshui river estuary | Northern Taiwan |  | 99.862 | 1452 | 0 |
| DQ234152.2 | mangrove, Danshui river estuary | Northern Taiwan |  | 99.931 | 1452 | 0 |
| DQ234180.2 | mangrove, Danshui river estuary | Northern Taiwan |  | 99.931 | 1452 | 0 |
| DQ234196.2 | mangrove, Danshui river estuary | Northern Taiwan |  | 99.931 | 1452 | 0 |
| DQ234202.2 | mangrove, Danshui river estuary | Northern Taiwan |  | 99.862 | 1452 | 0 |
| DQ234210.2 | mangrove, Danshui river estuary | Northern Taiwan |  | 99.931 | 1452 | 0 |
| DQ234244.2 | mangrove, Danshui river estuary | Northern Taiwan |  | 99.862 | 1452 | 0 |
| AY145564.1 | marine section of the Weser estuary | Germany |  | 99.778 | 1350 | 0 |
| EU799040.1 | Newport Harbour, RI | USA | 41.486 N 71.351 W | 99.86 | 1428 | 0 |
| EU799044.1 | Newport Harbour, RI | USA | 41.486 N 71.351 W | 99.93 | 1428 | 0 |
| EU799171.1 | Newport Harbour, RI | USA | 41.486 N 71.351 W | 99.72 | 1428 | 0 |
| EU799468.1 | Newport Harbour, RI | USA | 41.486 N 71.351 W | 100 | 1403 | 0 |
| EU799546.1 | Newport Harbour, RI | USA | 41.486 N 71.351 W | 99.79 | 1428 | 0 |
| EU799658.1 | Newport Harbour, RI | USA | 41.486 N 71.351 W | 99.86 | 1428 | 0 |
| EU800046.1 | Newport Harbour, RI | USA | 41.486 N 71.351 W | 99.719 | 1426 | 0 |
| FJ882054.1 | North Sea, 2 m depth |  | 54.420 N 6.480 E | 99.717 | 1415 | 0 |
| FJ154967.1 | ocean water from Bohai Bay | China |  | 99.93 | 1422 | 0 |
| HM057661.1 | ocean water from the Yellow Sea |  |  | 99.93 | 1422 | 0 |
| JQ712107.1 | oil-contaminated seawater |  |  | 100 | 1422 | 0 |
| KJ094194.1 | polluted marine sediments |  |  | 99.848 | 1319 | 0 |
| EF659446.1 | Poole Harbour seawater |  |  | 99.854 | 1371 | 0 |
| HM591431.1 | pretreatment systems for seawater reverse osmosis process | South Korea |  | 99.789 | 1423 | 0 |
| HM591461.1 | pretreatment systems for seawater reverse osmosis process | South Korea |  | 99.93 | 1423 | 0 |
| JF514256.1 | Seawater from coast of Xiaomaidao Island, Qingdao | China |  | 99.79 | 1426 | 0 |
| AM945553.1 | sea water, Adriatic sea | Italy | 44.69 N 12.52 E | 99.774 | 1329 | 0 |
| AM945571.1 | sea water, Adriatic sea | Italy | 44.69 N 12.52 E | 100 | 1269 | 0 |
| AM945577.1 | sea water, Adriatic sea | Italy | 44.69 N 12.52 E | 99.924 | 1315 | 0 |
| AM945578.1 | sea water, Adriatic sea | Italy | 44.69 N 12.52 E | 99.925 | 1325 | 0 |
| AM945580.1 | sea water, Adriatic sea | Italy | 44.69 N 12.52 E | 99.774 | 1330 | 0 |
| AM945584.1 | sea water, Adriatic sea | Italy | 44.69 N 12.52 E | 99.696 | 1317 | 0 |
| AM945585.1 | sea water, Adriatic sea | Italy | 44.69 N 12.52 E | 99.699 | 1328 | 0 |
| EU930869.3 | sea water sample, Gwangyang Bay | South Korea |  | 99.928 | 1385 | 0 |
| AB496659.1 | Seawater, Shizuoka, Shimoda, Oura Bay | Japan |  | 100 | 1361 | 0 |
| FJ425223.1 | seawater |  |  | 99.783 | 1384 | 0 |
| FJ436731.1 | seawater, coast of Qingdao | China | 36.0276 N 120.1846 E | 99.925 | 1328 | 0 |
| JQ195110.1 | seawater; next to dolphin A, San Diego Bay | USA: San Diego, CA |  | 99.844 | 1281 | 0 |
| JQ195194.1 | seawater; next to dolphin A, San Diego Bay | USA: San Diego, CA |  | 99.844 | 1283 | 0 |
| JQ195765.1 | seawater; next to dolphin C, San Diego Bay | USA: San Diego, CA |  | 99.922 | 1281 | 0 |



| JX525417.1 | chlrophyll maxima ( $\sim 30 \mathrm{~m}$ ) water samples filtered on 0.22 micron filter paper; derived from the Southern ocean iron fertilization experiment (LOHAFEX) |  | 48.0329 S 15.7856 W | 99.561 | 1367 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JX525429.1 | chlrophyll maxima ( $\sim 30 \mathrm{~m}$ ) water samples filtered on 0.22 micron filter paper; derived from the Southern ocean iron fertilization experiment (LOHAFEX) |  | 48.0329 S 15.7856 W | 99.707 | 1367 | 0 |
| JX525500.1 | chlrophyll maxima ( $\sim 30 \mathrm{~m}$ ) water samples filtered on 0.22 micron filter paper; derived from the Southern ocean iron fertilization experiment (LOHAFEX) |  | 48.0329 S 15.7856 W | 99.489 | 1370 | 0 |
| JX525579.1 | chlrophyll maxima ( $\sim 30 \mathrm{~m}$ ) water samples filtered on 0.22 micron filter paper; derived from the Southern ocean iron fertilization experiment (LOHAFEX) |  | 48.0329 S 15.7856 W | 99.634 | 1367 | 0 |
| JX527826.1 | chlrophyll maxima ( $\sim 30 \mathrm{~m}$ ) water samples filtered on 0.22 micron filter paper; derived from the Southern ocean iron fertilization experiment (LOHAFEX) |  | 47.9533 S 15.1437 W | 99.488 | 1368 | 0 |
| FN377731.1 | clay-like sticky sediment with cylindrical plants/weeds on surface less than KB3 | Svalbard, Kongsfjord region | 78.59 N 11.56 E | 99.52 | 1459 | 0 |
| KJ939484.1 | continental shelf sediments of Bay of Bengal |  |  | 99.56 | 1364 | 0 |
| NR_043547.1 | East Sea | Korea |  | 99.217 | 1404 | 0 |
| FR684971.1 | marine biome, fjord, coastal water | Norway, Raunefjord | 60.27 N 5.22 E | 99.508 | 1423 | 0 |
| KJ475186.1 | marine sediment, Ross Sea, Antarctica |  | $\begin{aligned} & 76^{\circ} 06^{\prime} 17.10^{\prime \prime} \mathrm{S} / 169^{\circ} 12^{\prime} 45.36^{\prime \prime} \mathrm{E}- \\ & 76^{\circ} 41^{\prime} 03.60^{\prime \prime} \mathrm{S} / 169^{\circ} 11^{\prime} 30.66^{\prime \prime} \mathrm{E} \end{aligned}$ | 99.634 | 1365 | 0 |
| AB733557.1 | Nansei-Shotō Trench off Miyako Island, Okinawa Prefecture, southern Japan |  |  | 99.719 | 1421 | 0 |
| AY573043.1 | Ny-Alesund, Svalbard, Norway | arctic | $79^{\circ} \mathrm{N}, 12^{\circ} \mathrm{E}$ | 99.579 | 1426 | 0 |
| AY697915.1 | seawater | Antarctica |  | 99.37 | 1428 | 0 |
| GQ358930.1 | seawater from Kongsfjorden, Spitsbergen | Norway |  | 99.579 | 1424 | 0 |
| AF007257.2 | seawater, Skidaway River |  |  | 99.929 | 1414 | 0 |
| AY794211.1 | Soil from Ushuaia | Argentina | $54^{\circ} 80^{\prime} \mathrm{S}$ and $68^{\circ} 13^{\prime} \mathrm{W}$ | 99.37 | 1429 | 0 |
| JX310158.1 | Southern Ocean |  | 47-48* South and 15-17* West | 99.04 | 1458 | 0 |
| GU584137.1 | water sample | Antarctica | $47-48^{\circ} \mathrm{S}$ and $15-17^{\circ} \mathrm{W}$ | 99.588 | 1458 | 0 |
| EF471650.1 | whole surface water from Chesapeake Bay |  | 39.13 N 76.33 W | 99.719 | 1423 | 0 |
| AY902203.1 |  |  |  | 99.489 | 1369 | 0 |
| JX529304.1 | 500 m depth water samples filtered on 0.22 micron filter paper; derived from the Southern ocean iron fertilization experiment (LOHAFEX) |  | 47.9533 S 15.1437 W | 99.122 | 1367 | 0 |



| Blast hit Accession | Isolation source | Country | coordinates | \% nucleotide Identity | Alignment length | evalue |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JX864948.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.692 | 325 | 1.92E-166 |
| JX865037.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| JX865038.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| JX865039.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| JX865040.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| JX865041.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| JX865044.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.688 | 320 | $1.16 \mathrm{E}-163$ |
| JX865047.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| JX865055.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| JX865056.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| JX865060.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| JX865061.1 | 5 m depth, the Gulf of Trieste, northernAdriatic Sea, NE Mediterranean |  |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| AB703474.1 | coastal hot spring, Kagoshima, Ibusuki hot spring | Japan |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| AB703500.1 | coastal hot spring, Kagoshima, Ibusuki hot spring | Japan |  | 99.692 | 325 | 1.92E-166 |
| AF007250.1 | coastal seawater, Sapelo Island |  |  | 99.686 | 318 | $1.50 \mathrm{E}-162$ |
| LT549272.1 | corrosion biofilm Boothbay Harbor | USA:Maine | 43.8443 N 69.6409 W | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| LT549313.1 | corrosion biofilm Boothbay Harbor | USA:Maine | 43.8443 N 69.6409 W | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| LT549329.1 | corrosion biofilm Boothbay Harbor | USA:Maine | 43.8443 N 69.6409 W | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| LT549343.1 | corrosion biofilm Boothbay Harbor | USA:Maine | 43.8443 N 69.6409 W | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| DQ234090.2 | Danshui river estuary, mangrove | Northern Taiwan |  | 99.692 | 325 | 1.92E-166 |
| DQ234137.2 | Danshui river estuary, mangrove | Northern Taiwan |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| DQ234157.2 | Danshui river estuary, mangrove | Northern Taiwan |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| DQ234162.2 | Danshui river estuary, mangrove | Northern Taiwan |  | 99.692 | 325 | 1.92E-166 |
| DQ234224.2 | Danshui river estuary, mangrove | Northern Taiwan |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| KC006265.1 | estuary in middle of Jiulong River | China | 24.26 N 117.127 E | 99.69 | 323 | $2.48 \mathrm{E}-165$ |
| KC006295.1 | estuary in middle of Jiulong River | China | 24.26 N 117.129 E | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| KT275136.1 | Gut of Olive Flounder Paralichthys olivaceus |  |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| EF215736.1 | inert artificial surfaces submerged in marine water on Qingdao coast | China |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| AY712068.1 | lon=81.2699W, lat=31.3929N; surface water collected on Jul 18, 2001, Sapelo Island Microbial Observatory Dean Creek Marsh sampling site | USA: Georgia |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| AY937021.1 | marine sediment Nagasaki | Japan: |  | 99.692 | 325 | 1.92E-166 |
| AY941090.1 | marine sediment Nagasaki | Japan: |  | 99.692 | 325 | 1.92E-166 |
| KC462965.1 | nature reserve Kullaberg | Sweden |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |
| KC462968.1 | nature reserve Kullaberg | Sweden |  | 99.692 | 325 | $1.92 \mathrm{E}-166$ |

Appendix


| Organism | Contig accession | Predicted prophage position | Prophage score | RNR position | RNR accession | RNR associated to prophage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aminobacter sp. J41 | NZ_JAGL01000009.1 | 44041-86811 | intact | 72083-74071 | WP_024847845 | yes |
| Inquilinus limosus MP06 | NZ_JANX01000001.1 | 32458-86185 | questionable | 47409.. 49382 | WP_034830439 | yes |
| Azorhizobium caulinodans ORS 571 | NC_009937.1 | 4097072-4138015 | questionable | $4122652 . .4124646$ | WP_012172112 | yes |
| Microvirga flocculans ATCC BAA-817 | NZ_JAEA01000002.1 | 156454-179652 | incomplete | 163007..164998 | WP_027314944 | yes |
| Streptomyces sp. RTd22 | NZ_CP015726.1 | 8923271-8946147 | incomplete | 8923015..8924970 | WP_063728949.1 | yes |
| Streptomyces sp. CB03238 | NZ_NBCN01000010 | 231547-250436 | incomplete | 227661.. 229613 | WP_084899922 | in vicinity |
| Streptomyces sp. NRRL F-4489 | NZ_LLZI01000124 | 13535-24084 | incomplete | 19443.. 21374 | WP_066977110 | yes |
| Streptomyces rimosus subsp. rimosus strain NRRL WC3904 | NZ_JOCQ01000004 | 101674-119267 | incomplete | 111002.. 112933 | WP_050514495 | yes |
| Solirubrobacter sp. URHD0082 | NZ_AUEK01000007 | 344542-357687 | incomplete | 307203.. 309158 | WP_051323998 | in vicinity |
| Labrenzia alexandrii DFL-11 | EQ973124 | 3254-38475 | questionable | 15955.. 18009 | EEE42840 | yes |
| Methylobacterium sp. Leaf361 | NZ_LMPY01000023.1 | 581118-616465 | questionable | 594636..596663 | WP_082557943 | yes |
| Methylobacterium aquaticum plasmid pMaq22A_3p | NZ_AP014707 | 65911-85601 | incomplete | 83571..85601 | WP_060851403 | yes |
| Marinobacter similis strain A3d10 | CP007151.1 | 3645543-3690844 | intact | 3653541.. 3655502 | AHI29708.1 | yes |
| Protochlamydia amoebophila strain EI2 DB44_AM | NZ_JSAN01000012.1 | none |  | 231.. 2243 | WP_039355956 | no |
| Gonium pectorale isolate NIES-2863 | LSYV01000168 | none |  | 31484..37421 | KXZ42284.1 | no |
| Volvox carteri f. nagariensis | NZ_JOCQ01000004.1 | none |  | <195692..>202991 | XP_002955713 | no |
| Criblamydia sequanensis | NZ_CCEJ010000007 | none |  | 134416.. 136428 | WP_041017866 | no |
| Parachlamydia acanthamoebae strain Bn9 | NZ_BAWW01000003 | none |  | 161269.. 163278 | WP_006342605 | no |
| Parachlamydia acanthamoebae strain OEW1 DB43_DW | NZ_JSAM01000017 | none |  | 15051.. 17060 | WP_006342605 | no |
| Parachlamydia acanthamoebae UV7 | NC_015702 | none |  | 895276..897285 | WP_006342605 | no |
| Parachlamydia acanthamoebae str. Hall's coccus | NZ_ACZE01000088 | none |  | 17369.. 19378 | WP_006342605 | no |
| Estrella lausannensis | CWGJ01000019 | none |  | 124560.. 126572 | CRX38802 | no |
| Candidatus Rubidus massiliensis | CCSC01000001 | 1811588-1828589 | incomplete | 1412888.. 1414906 | CDZ80757 | no |
| Waddlia chondrophila | NC_014225 | none |  | 368424.. 370439 | WP_013181434 | no |
| Waddlia chondrophila 2032/99 | FR872643 | none |  | 26560.. 28614 | CCB90950 | no |
| Neochlamydia sp. TUME1 | NZ_JRXI01000032 | none |  | 32033.. 34045 | WP_039383590 | no |
| Neochlamydia sp. S13 | NZ_BASK01001259 | none |  | 36271..38283 | WP_042242257 | no |
| Neochlamydia sp. EPS4 | NZ_JSDQ01000098 | none |  | 4026..6038 | WP_044882767 | no |
| Parachlamydia sp. C2 | NZ_FCNU01000032.1 | none |  | 238258.. 240270 | WP_068471381 | no |
| Candidatus Protochlamydia amoebophila UWE25 | NC_005861 | none |  | 178729.. 180741 | WP_011174661 | no |
| Candidatus Protochlamydia sp. W-9 | NZ_BCPZ01000156.1 | none |  | 50658..52670 | WP_075883166 | no |
| Candidatus Protochlamydia sp. R18 | NZ_BASL01000738 | none |  | 1527.. 3539 | WP_042281843 | no |

Table S 13: PhageTerm results of genome end determination for the sulfivirus genomes.

| Phage ID | Göttingen ID | Genome status | Ends | Left | P-value left | Right | $\mathbf{P}$-value right | Permuted | Orientation | Class | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICBM9 | CRMO_v_4 | partial | Redundant | 2976 | 4.09e-103 | 3304 | 1.19e-100 | No | NA | DTR (short) | T7 |
| ICBM10 | CRMO_v_5 | partial | Redundant | 48386 | 3.60e-77 | 48714 | 7.21e-86 | No | NA | DTR (short) | T7 |
| ICBM12 | CRMO_v_7 | complete | Redundant | 9141 | 4.42e-113 | 9468 | $1.60 \mathrm{e}-80$ | No | NA | DTR (short) | T7 |
| ICBM13 | CRMO_v_8 | complete | Redundant | 11460 | 1.45e-86 | 11788 | 6.81e-145 | No | NA | DTR (short) | T7 |
| ICBM15 | CRMO_v_10 | partial | Redundant | 47666 | 4.23e-66 | 47993 | 5.91e-88 | No | NA | DTR (short) | T7 |
| ICBM16 | CRMO_v_11 | complete | Redundant | 14465 | $1.60 \mathrm{e}-103$ | 14792 | 1.97e-123 | No | NA | DTR (short) | T7 |
| ICBM17 | CRMO_v_12 | partial | Redundant | 1773 | $7.19 \mathrm{e}-120$ | 2100 | 6.30e-98 | No | NA | DTR (short) | T7 |
| ICBM18 | CRMO_v_13 | complete | Redundant | 23206 | 4.11e-123 | 23534 | 3.71e-79 | No | NA | DTR (short) | T7 |
| ICBM21 | CRMO_v_16 | complete | Redundant | 32674 | 1.70e-79 | 33001 | 1.55e-115 | No | NA | DTR (short) | T7 |
| ICBM22 | CRMO_v_17 | complete | Redundant | 17299 | $2.33 \mathrm{e}-114$ | 17626 | 2.03e-100 | No | NA | DTR (short) | T7 |
| ICBM23 | CRMO_v_18 | complete | Redundant | 35965 | 2.39e-22 | 36294 | 6.67e-68 | No | NA | DTR (short) | T7 |
| ICBM24 | CRMO_v_19 | complete | Redundant | 30504 | 4.31e-73 | 30833 | 3.43e-95 | No | NA | DTR (short) | T7 |
| ICBM25 | CRMO_v_20 | complete | Redundant | 18266 | $2.44 \mathrm{e}-103$ | 18593 | 1.79e-64 | No | NA | DTR (short) | T7 |
| ICBM26 | CRMO_v_21 | partial | Redundant | Multiple | 4.44e-41 | Multiple | 1.17e-51 | Yes | NA | - | $\xrightarrow{2}$ |
| ICBM32 | CRMO_v_27 | partial | Redundant | 47760 | 3.78e-83 | 48087 | 6.65e-144 | No | NA | DTR (short) | T7 |
| ICBM38 | CRMO_v_33 | complete | Redundant | 8079 | 1.18e-91 | 8407 | 8.93e-101 | No | NA | DTR (short) | T7 |
| ICBM39 | CRMO_v_34 | complete | Redundant | 49276 | 1.07e-83 | 49582 | 2.33e-91 | No | NA | DTR (short) | T7 |
| ICBM40 | CRMO_v_35 | complete | Redundant | 33751 | 4.32e-64 | 34080 | 3.60e-85 | No | NA | DTR (short) | T7 |
| ICBM41 | CRMO_v_36 | complete | Redundant | 2721 | 1.90e-59 | 3081 | 2.22e-115 | No | NA | DTR (short) | T7 |
| ICBM42 | CRMO_v_37 | complete | Redundant | 38583 | 6.62e-104 | 38911 | 6.42e-75 | No | NA | DTR (short) | T7 |
| ICBM43 | CRMO_v_38 | complete | Redundant | 29385 | 1.30e-51 | 29690 | 3.67e-80 | No | NA | DTR (short) | T7 |
| ICBM45 | CRMO_v_40 | complete | Redundant | 17421 | $7.91 \mathrm{e}-131$ | 17749 | 1.49e-137 | No | NA | DTR (short) | T7 |
| ICBM46 | CRMO_v_41 | partial | Redundant | 4290 | 1.29e-84 | 4618 | 3.28e-136 | No | NA | DTR (short) | T7 |
| ICBM47 | CRMO_v_42 | complete | Redundant | 36702 | 1.21e-82 | 37007 | 5.13e-68 | No | NA | DTR (short) | T7 |
| ICBM48 | CRMO_v_43 | complete | Redundant | 29170 | 1.84e-91 | 29498 | 2.16e-143 | No | NA | DTR (short) | T7 |
| ICBM49 | CRMO_v_44 | complete | Redundant | 2406 | 3.31e-92 | 2733 | 8.23e-134 | No | NA | DTR (short) | T7 |
| ICBM51 | CRMO_v_46 | complete | Redundant | 39028 | 1.52e-95 | 39355 | $3.63 \mathrm{e}-126$ | No | NA | DTR (short) | T7 |
| ICBM52 | CRMO_v_47 | complete | Redundant | 11342 | $3.73 \mathrm{e}-190$ | 11670 | 1.02e-143 | No | NA | DTR (short) | T7 |
| ICBM53 | CRMO_v_48 | complete | Redundant | 7024 | 5.27e-83 | 7351 | 1.65e-120 | No | NA | DTR (short) | T7 |
| ICBM54 | CRMO_v_49 | complete | Redundant | 2055 | 7.37e-141 | 2382 | 5.16e-82 | No | NA | DTR (short) | T7 |


| ICBM56 | CRMO_v_51 | partial | Redundant | 6521 | $5.23 \mathrm{e}-104$ | 6881 | 8.19e-125 | No | NA | DTR (short) | T7 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICBM57 | CRMO_v_52 | complete | Redundant | 1414 | 1.13e-17 | 1741 | 6.12e-35 | No | NA | DTR (short) | T7 |  |
| ICBM58 | CRMO_v_53 | complete | Redundant | 800 | 6.09e-138 | 1127 | $2.69 \mathrm{e}-138$ | No | NA | DTR (short) | T7 |  |
| ICBM59 | CRMO_v_54 | complete | Redundant | 4861 | 1.16e-99 | 5188 | 4.79e-129 | No | NA | DTR (short) | T7 |  |
| ICBM60 | CRMO_v_55 | complete | Redundant | 27841 | $8.90 \mathrm{e}-103$ | 28168 | 1.24e-75 | No | NA | DTR (short) | T7 |  |
| ICBM61 | CRMO_v_56 | complete | Redundant | 24061 | $6.98 \mathrm{e}-83$ | 24421 | 2.71e-144 | No | NA | DTR (short) | T7 |  |
| ICBM62 | CRMO_v_57 | complete | Redundant | 11483 | 6.55e-82 | 11811 | 5.99e-71 | No | NA | DTR (short) | T7 |  |
| ICBM63 | CRMO_v_58 | partial | Redundant | 49683 | 4.10e-79 | 50010 | $4.83 \mathrm{e}-110$ | No | NA | DTR (short) | T7 |  |
| ICBM65 | CRMO_v_60 | complete | Redundant | 34877 | $8.60 \mathrm{e}-76$ | 35204 | 3.27e-88 | No | NA | DTR (short) | T7 |  |
| ICBM67 | CRMO_v_62 | complete | Redundant | 3584 | 3.13e-109 | 3944 | $2.14 \mathrm{e}-133$ | No | NA | DTR (short) | T7 |  |
| ICBM68 | CRMO_v_63 | complete | Redundant | 29637 | 7.43e-104 | 29997 | 2.44e-78 | No | NA | DTR (short) | T7 |  |
| ICBM69 | CRMO_v_64 | complete | Redundant | 29661 | 1.18e-18 | 29989 | 1.38e-33 | No | NA | DTR (short) | T7 |  |
| ICBM70 | CRMO_v_65 | complete | Redundant | 31136 | 1.42e-80 | 31464 | 1.91e-77 | No | NA | DTR (short) | T7 |  |
| ICBM71 | CRMO_v_66 | partial | Redundant | 48799 | 3.06e-133 | 49126 | 2.26e-112 | No | NA | DTR (short) | T7 |  |
| ICBM72 | CRMO_v_67 | partial | Redundant | 48898 | 5.88e-106 | 49258 | 1.14e-136 | No | NA | DTR (short) | T7 |  |
| ICBM74 | CRMO_v_69 | partial | Redundant | 3162 | $1.51 \mathrm{e}-111$ | 3468 | 2.70e-71 | No | NA | DTR (short) | T7 | $\stackrel{\rightharpoonup}{\square}$ |
| ICBM76 | CRMO_v_71 | complete | Redundant | 45273 | 1.83e-106 | 45601 | 2.17e-88 | No | NA | DTR (short) | T7 | \% |
| ICBM77 | CRMO_v_72 | complete | Redundant | 13544 | 3.99e-143 | 13872 | 1.54e-114 | No | NA | DTR (short) | T7 | $\bigcirc$ |
| ICBM78 | CRMO_v_73 | complete | Redundant | 15111 | 3.10e-63 | 15439 | $7.37 \mathrm{e}-28$ | No | NA | DTR (short) | T7 |  |
| ICBM79 | CRMO_v_74 | complete | Redundant | 18431 | $1.87 \mathrm{e}-112$ | 18760 | 4.84e-106 | No | NA | DTR (short) | T7 |  |
| ICBM80 | CRMO_v_75 | partial | Redundant | 49619 | 1.98e-72 | 49946 | 2.37e-115 | No | NA | DTR (short) | T7 |  |
| ICBM82 | CRMO_v_77 | complete | Redundant | 49636 | 6.18e-119 | 49942 | 5.55e-111 | No | NA | DTR (short) | T7 |  |
| ICBM83 | CRMO_v_78 | partial | Redundant | 3791 | 4.92e-116 | 4096 | 2.22e-111 | No | NA | DTR (short) | T7 |  |
| ICBM84 | CRMO_v_79 | partial | Redundant | 47992 | 5.67e-88 | 48297 | 7.74e-78 | No | NA | DTR (short) | T7 |  |
| ICBM86 | CRMO_v_81 | complete | Redundant | 20076 | $1.69 \mathrm{e}-113$ | 20404 | 3.42e-106 | No | NA | DTR (short) | T7 |  |
| ICBM87 | CRMO_v_82 | complete | Redundant | 52519 | 5.78e-99 | 52879 | $7.06 \mathrm{e}-72$ | No | NA | DTR (short) | T7 |  |
| ICBM88 | CRMO_v_83 | complete | Redundant | 49792 | 1.57e-90 | 50152 | 2.03e-102 | No | NA | DTR (short) | T7 |  |
| ICBM89 | CRMO_v_84 | complete | Redundant | 50739 | 5.85e-47 | 51044 | $5.63 \mathrm{e}-103$ | No | NA | DTR (short) | T7 |  |
| ICBM90 | CRMO_v_85 | complete | Redundant | 9775 | 1.64e-100 | 10102 | 9.99e-91 | No | NA | DTR (short) | T7 |  |
| ICBM91 | CRMO_v_86 | complete | Redundant | 33384 | 1.44e-62 | 33712 | $3.51 \mathrm{e}-105$ | No | NA | DTR (short) | T7 |  |
| ICBM94 | CRMO_v_89 | complete | Redundant | 16862 | $9.09 \mathrm{e}-147$ | 17189 | $9.39 \mathrm{e}-80$ | No | NA | DTR (short) | T7 |  |
| ICBM95 | CRMO_v_90 | complete | Redundant | 16608 | 5.94e-105 | 16935 | $2.18 \mathrm{e}-78$ | No | NA | DTR (short) | T7 |  |
| ICBM99 | CRMO_v_94 | complete | Redundant | 19181 | 3.22e-90 | 19509 | 7.50e-79 | No | NA | DTR (short) | T7 |  |


| ICBM100 | CRMO_v_95 | complete | Redundant | 49168 | 7.15e-75 | 49473 | 6.65e-81 | No | NA | DTR (short) | T7 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICBM102 | CRMO_v_97 | complete | Redundant | 1055 | 7.85e-94 | 1383 | 7.90e-38 | No | NA | DTR (short) | T7 |  |
| ICBM103 | CRMO_v_98 | complete | Redundant | 24255 | 3.47e-73 | 24583 | 7.10e-57 | No | NA | DTR (short) | T7 |  |
| ICBM105 | CRMO_v_100 | complete | Redundant | 23140 | 3.10e-112 | 23468 | 4.57e-68 | No | NA | DTR (short) | T7 |  |
| ICBM107 | CRMO_v_102 | complete | Redundant | 14935 | 6.16e-268 | 15263 | 8.45e-71 | No | NA | DTR (short) | T7 |  |
| ICBM109 | CRMO_v_104 | complete | Redundant | 38792 | 2.72e-109 | 39120 | 1.90e-70 | No | NA | DTR (short) | T7 |  |
| ICBM110 | CRMO_v_105 | complete | Redundant | 6757 | $2.53 \mathrm{e}-136$ | 7084 | $2.45 \mathrm{e}-158$ | No | NA | DTR (short) | T7 |  |
| ICBM113 | CRMO_v_108 | complete | Redundant | 40066 | 6.56e-130 | 40394 | 2.62e-92 | No | NA | DTR (short) | T7 |  |
| ICBM119 | CRMO_v_114 | complete | Redundant | 29759 | 2.42e-169 | 30119 | 2.11e-79 | No | NA | DTR (short) | T7 |  |
| ICBM120 | CRMO_v_115 | partial | Redundant | 3432 | $1.44 \mathrm{e}-88$ | 3792 | $4.49 \mathrm{e}-18$ | No | NA | DTR (short) | T7 |  |
| ICBM124 | CRMO_v_119 | complete | Redundant | 38659 | 1.04e-47 | 38987 | 1.93e-85 | No | NA | DTR (short) | T7 |  |
| ICBM126 | CRMO_v_121 | complete | Redundant | 21875 | $7.51 \mathrm{e}-107$ | 22180 | 1.80e-59 | No | NA | DTR (short) | T7 |  |
| ICBM127 | CRMO_v_122 | complete | Redundant | 10022 | 2.31e-158 | 10327 | 2.10e-92 | No | NA | DTR (short) | T7 |  |
| ICBM128 | CRMO_v_123 | complete | Redundant | 32538 | 2.83e-34 | 32866 | 1.79e-57 | No | NA | DTR (short) | T7 |  |
| ICBM131 | CRMO_v_126 | complete | Redundant | 9141 | 3.44e-76 | 9468 | 1.42e-124 | No | NA | DTR (short) | T7 |  |
| ICBM133 | CRMO_v_128 | complete | Redundant | 46867 | $5.21 \mathrm{e}-115$ | 47194 | $8.44 \mathrm{e}-115$ | No | NA | DTR (short) | T7 |  |
| ICBM134 | CRMO_v_129 | complete | Redundant | 33761 | $4.62 \mathrm{e}-125$ | 34088 | $7.68 \mathrm{e}-286$ | No | NA | DTR (short) | T7 | $\stackrel{\rightharpoonup}{0}$ |
| ICBM135 | CRMO_v_130 | partial | Redundant | 2997 | 2.97e-65 | 3325 | $5.13 \mathrm{e}-122$ | No | NA | DTR (short) | T7 | $\stackrel{\rightharpoonup}{x}$ |
| ICBM137 | CRMO_v_132 | complete | Redundant | 50093 | 8.08e-39 | 50421 | 3.16e-55 | No | NA | DTR (short) | T7 |  |
| ICBM138 | CRMO_v_133 | complete | Redundant | 23566 | $5.24 \mathrm{e}-103$ | 23871 | 3.90e-64 | No | NA | DTR (short) | T7 |  |
| ICBM139 | CRMO_v_134 | complete | Redundant | 18415 | $3.04 \mathrm{e}-45$ | 18743 | 5.53e-52 | No | NA | DTR (short) | T7 |  |
| ICBM143 | CRMO_v_138 | complete | Redundant | 11387 | 1.46e-80 | 11715 | $3.05 \mathrm{e}-55$ | No | NA | DTR (short) | T7 |  |
| ICBM145 | CRMO_v_140 | complete | Redundant | 2095 | 4.14e-61 | 2424 | 2.11e-66 | No | NA | DTR (short) | T7 |  |
| ICBM146 | CRMO_v_141 | complete | Redundant | 32999 | 1.30e-60 | 33327 | 3.26e-149 | No | NA | DTR (short) | T7 |  |
| ICBM147 | CRMO_v_142 | complete | Redundant | 50614 | 2.19e-71 | 50942 | 9.35e-64 | No | NA | DTR (short) | T7 |  |
| ICBM154 | CRMO_v_149 | complete | Redundant | 42422 | 1.83e-86 | 42750 | 8.30e-55 | No | NA | DTR (short) | T7 |  |

b) Supplementary figures

Fig. S 1: Pairwise genome comparison between ICBM3 and the ICBM3-like genome assembled from the S1 enrichment. In the alignment field, the differences are marked in black. In the consensus identity field, the presence of mismatches is signaled in orange.
ICBM1 $\qquad$ S1


ICBM1 $\qquad$ S2


ICBM3 $\qquad$ S1

ICBM3 $\qquad$ S2



Fig. S 2: Plots showing the read coverage along the phage genomes for the $S 1$ and $S 2$ phage enrichments. In black-coverage of reads with $100 \%$ identity. In red - coverage of reads with $>95 \%$ identity. The small differences between ICBM3 and the ICBM3-like genome from S1 enrichment could be due to sequencing errors, as the coverage in the variable regions dropped sharply for the genome retrieved from S1, but not for ICBM3 (see Fig. S1).


Fig. S 4: A. Coverage plots (window $=100 \mathrm{bp}$ ) of long read genome assemblies of both phages ICBM1 and ICBM2 contained within enrichment. Distinct coverage spikes of about 100 bp can be observed at position 5 kb (terminal redundancies, red arrows). B. Artificial redundancies at the end of the contigs (shown here as dotplots) are produced by the genome assembler usually at the size of the mean subread length suggesting a circular genome structure. C. Delineation of the final phage genome structure applying the "linearization" process. The artificial redundancy (yellow) is removed and the terminal repeat (red) placed twice at the end of the phage genomes.


Fig. S 5: Distinct start (A) and end positions (B) of a linear phage genome as retrieved from a visualization of a long read genome mapping by IGV.

Fig. S 6: Genome comparison of ICBM1 and ICBM3 phages: (A) showing the location of mismatches and deletions and (B) showing the predicted genes.

## Appendix



Fig. S 7: Phylogenetic analysis of the Terminase large subunit from cobaviruses and other phages with known genome ends and packaging strategies. The evolutionary history was inferred using the approximately-maximum-likelihood method implemented in FastTree 2.1.5. The node labels represent Fast Tree support values. The tree is drawn to scale, with branch lengths measured in number of substitutions per site. The tree is unrooted.


Fig. S 8: Genomic maps of the SIO1 phage, before and after genome end correction. Purple arrows: position of the inverted repeats. Pink arrows: position of DTRs.


Fig. S 9: Multiple alignments of genomic ends from all cobaviruses with complete genome.


Fig. S 10: Neighbour joining tree based on 16S rRNA gene similarity showing the phylogenetic affiliation of bacterial hosts analysed in this study (bold) within the Rhodobacteraceae. Sequences of type material (>1300bp) were used to construct the backbone tree. Only bootstrap values $\geq 50 \%$ (derived from 1500 replicates) are shown. Selected sequences related to Gammaproteobacteria were used as outgroup to define the root of the tree (not shown). GenBank accession numbers are given in parentheses. Scale bar indicates percentage of sequence divergence.

## Appendix



Fig. S 11: Phylogenetic positioning of the cobaviruses (green font) and spanin containing prophages from Rhodobacteraceae (blue font). The whole-genome-based phylogeny was inferred using the Genome-BLAST Distance Phylogeny method implemented in the VICTOR web service, using the amino acid data.

## Appendix



Fig. S 12: Locations in which cobavirus hosts were found based on a 16 S rRNA survey in the NR Blast database and in the Tara Ocean samples.

## Appendix



Fig. S 13: Gel electrophoresis of RAPD-PCR products for all phage isolates. For each unique pattern, one isolate was chosen to be genome sequenced (green arrows). Marker 1kb Plus DNA ladder (Invitrogen ${ }^{\mathrm{TM}}$ ).

## Appendix



Fig. S 14a-i: Whole-genome based proteomic tree of 965 dsDNA phages. The tree is split into several figures, with overlaps. Names of cultivated roseophages are marked in green (previous) and blue (this study). Colorstrips indicate affiliation to ICTV-recognized families and subfamilies, respectively. Genome lengths are displayed as bar chart. Colored branches indicate viral genome clusters (VGCs).


Fig. S 14b


Fig. S 14c


Fig. S 14d


Fig. S 14e


Fig. S 14 f


Fig. S 14g


Fig. S 14h


Fig. S 14i


Fig. S 15: Sequence comparison of the 16 S rRNA gene and the ITS region of strains M290, M71 and M172. Sequences of strains M71 and M172 were mapped against the sequence of M290 using Geneious Prime®.

## Appendix

```
Species 2
*)
Species 3
```



```
    **)
```



```
    *)
```




```
Species 4
```



```
    **)
Species 5
    **)
    *)
Species 6
    *)
    *)
Species 7
```





Fig. S 16a-e: Genome maps of all complete Sulfivirus genomes, ordered by species cluster.

## Appendix

```
Species 8
    *)
    *)
Species 9
```




```
*)
* *-4,
```




```
* */*)
```




```
**)
**)
*)
*)
```

Fig. S 16b

## Appendix



Fig. S 16c

## Appendix



Fig. S 16d

## Appendix



```
Species 32
```





```
Species 36 (%)
```





```
Species 43 (a)
Species 44
```



```
Speces 45 (a)
```



```
Species 48
```




Fig. S 16e

## c) Supplementary text

Isolation of Lentibacter sp. MPI-62 and Octadecabacter sp. MM282 (by Anneke Heins, MPI, Bremen)

Lentibacter sp. MPI-62 was isolated from a seawater sample taken at the Helgoland Roads time series station ( $54^{\circ} 11^{\prime} 03^{\prime} \mathrm{N}, 7^{\circ} 54^{\prime} 00^{\prime} \mathrm{E}$ ) in April 2017. Octadecabacter sp. MM282 was isolated from a seawater sample taken at high tide at the shore of Harlesiel ( $53^{\circ} 42^{\prime} 39^{\prime \prime N} 7^{\circ} 48^{\prime} 28^{\prime \prime E}$ ) in October 2017. In both cases, one liter of seawater was transferred to a sedimentation cone (Imhoff, Brand, Wertheim, Germany). Sedimentation was allowed for 24 h at room temperature, and then the particle fraction was removed with the help of a stopcock at the bottom the cone. The particle fractions were homogenized and then diluted with sterile artificial seawater (following the recipe of Widdel and Bak (2013)). For the isolation of Lentibacter sp. MPI-62, the diluted fraction was plated with a sterile one-way inoculation loop on an MB-agar plate (recipe as described above). For the isolation of Octadecabacter sp. MM282 a Syl-agar plate was used (recipe after Hahnke and Harder (2013)). The plates were incubated for five weeks in the dark at $12{ }^{\circ} \mathrm{C}$. Colonies were picked and transferred to new agar plates for strain purification.

## Genomic information on "Ascunsovirus oldenburgi" ICBM5

>Ascunsovirus_oldenburgi_ICBM5

TTCAGACGAAAGGATGCGCGACGATAAAATTAGCTCTTGCAAACCCCGTCCAAATTCGACTAAGGT CAATTTAGGGAATGGTTCCCGGCGCGGGTTTATCCCGTGGTGCTAACAAAGGAAAAACACATGGCT GATAAAGCAACTTCCCCGACTACCGTCTCTAAAAAAGATCGTGATGATTTTGAGCTTCATGTTCGG CTCTTGAGCCGGGCAGGTTACAAAACTGCCGAAGCTCGGACAATTGCATGGCTGCGCGGCCCTGCT GGGCTGCAAGAAATGCTTGCGGGCGTCAAGGTCGCAAGCTAACATAGGTTGAGCGGTTCGCCGCTC AACATTAACCGCAAAAAAGGAGAGAAATGTGAGTGCATTGAAACACTTTCTTACAAACCGTTTGAC AGTCGTGGTTCTTACCTCGCTGGCAACGGCAGTAGGTACTGCGCTTGCGACGGAGTTTCCGTCCATT TATAGCGCAGTCTGTGCCTAATGTCGGCTATCGCTGGTGCTCTTATCTCAGGTGGCGCAAGCCTCCT AGGTGGTCTGTTCGGGCGTTCTTCTGCTAGCAAGCAGCAAGCCCGACAGAATGAGTACAACAAGCC GATTAACATTCGCAAGCGGGCCGAGGAGGGGGGGTTCAACCCCCTGCTCTGGGCCGGTCAAGGCA ACATCCAAATGCAGCCGGGTCCGTCCGGCATCATGGGTTCCGCTATTGCGAATGCTGGCCTAGCTC TTGCCGATGGCATGAGCGAACAACGCCAGCTCGACCTTGAGCGTACCAAGCTCAAGCAAGATCAA GAGCGTCTCGACGCTCTGATCGAAAAACAGACCATCCGGCCAAAGGTCGGCGGCATTTATGCCGG GTCGCAACAAACGCCTTCTGTAGCGCGCGCTCCCGGTCGCCCGCTTATGAATGGCGCTCCTCAACC CGGCTCTGCGCCGGTCTTTAACCCGCCAACGGAGTACAACCCAATCCCCGATGATGGCCCTCGCCT GCAAACGAAAGTGATGCGTAGCGATGGCATGACCTCGGCGGATCCTGAAAATCCCGCCGAAATGG AGGGCGATTGGTGGACGTGGGCCAGAGAGGGAACTTTCTGGCAAAACAACAACGAAATTCTGCGG CGTAATACGCCGGAGACGTTGCACTACAAGGGTCGCGATGCCTTGTTCCCGAAAATGATTGACGGG GCAAGGAAAGCGCATAAGAAGGCTCAAGAGGACTTCGAGAAAAACCCGCCAAAACGCCGCAAGC TTAAAGGCGTCAACCCTAACCTAAACGACAAGAAATGGTAATGAACATGTCAAAGTATCAACGTC CTACAAACACACGCCGCGAAAGCCGGACCATCGCTGGCCGGTTCCGTGGCGGCAAGTTGGCTCCTG TTATGGCGTCCGCGTTCCGTGAGAGCGAAAGTGCAATCCTTTCGCAACAAGTTACCTATGAACTTG ACCCAATCGCGGGCCGTATGATTACGCCGATCATGGCGGAACTTATCTCTGTATATGTTCCGGTCCA AGCGATCGACGCCCTAAAAAACCCTGAGGAGGCTTATGCCGGTAACACTGAGGTTGTCCGTGACA

AGCTCCTCTCAGGAACGCCGCTGTTCGGCCTCGAAGACGAAAGCGAGATTTCGAAGCGTCTAGGCG TTAACCCTATCTCTGTGGGTGGTGTCAAAAAAGTGAACGAGGCGGCACGCCTTGCGCATAACTGCG CCGTGAACTTCCTACGTCAGCGCAAGTACGTCAACACGGTCAAGCTATTGGCCGATAATATGAACG TAACGCCTGCGCTGATCTCTCAAACGGTTCTCGACCGGCTGAACGCCGTGCTCGATCCTGAGGATC GTGTCAACGGTGCTGTGCAGCTTGACCTTGGGAACGTGCGTATGCCGGTCGAAGGCGTCGGCGTTG AATACAATGCCGTTCCAGTGACTACCCCCGGTTGGAACGATACAGAGAATGACCGTGCTGCTGATC CTCACTATTTCTCGGACCACGCCGCAGGCATTCGCCTTGCGATTGCCTCGGAGAATGGTCGTCCAGC GGTCTACGCTGTTGGCGAGGGTCAAAATGCCGGCGGCATTTCCCTTACTGACTTCTACAACGCCGA ACTGATGGACAGTCTTGTGCGCCAGATGCGGCAGATTGTCGATGATAACCCTGAGTATGGCGAAGA AATGGTCACACGCTGGGCGCATGGTCTTTCTGTTGATAACGGCAAAACTCCTTGGATTTTGCACCA AAGCCAGCAAATGTTCGGCAATCAATTCCGCCGTGCCATGGATGGTGCAAACCTCGATGTTGCTCA ATCCGACATGATGCAAAGCCTTGAATTCACTGTCCCCGTGCCTCCAACGGAATTGGGCGGGGTCGT GATTACCTTTGCATCTGTGAAGCCTGACGAAACACTAGGCTCTCAGCCGCACCCGTTCCTGTCGAC AACATGGGAGGCGACTAACTACGTCTCCGACGAGTTGGCACGCGACCCTGAGGCCGTGACCATGC GTCACCTGAACAGTGACGTTCCTATGGTCGATGAGGACACTCGTGCTCTCTACATCGGTCACAACG GTCTGAAAAAAGCCTACATCTCATATGGCTTTAACCGGCATCTCGACCCTACTACGGTCGAAGCGA AAACTGCCATCTGGCAGCTTGAGGTGCCAATGTCCGTAACGCCTGAAAGCGTTATCTATCCCGAGG ACTTGGACCATTATCCGTTTGCGGATCAGCTTGCAGAGGTCTGCACCTATCAGGTTAGTTCGACCGC TACAGTGCGGACGCCTATGGTCTTCGGTCCGACACCAGTTGAGGAACTGGCCCAGATTGAGACAGA CAACGTCTTCGAAGACGTATAAAAAAAGGGGGGCGGTTATGCCGCCCCTCAATAAACCTTAAAAA ACTGGAAAGATGAAATGCAAGTTAATGATGCAAAACGCTCCGTTCTTCTCGTCGGCCTTAATGGCG GCGAAGTTTCTGTAATCTCCGCAGATGGTGAGATTATCGCGACCGAAGGTGTAACCGCTGGTCGGC ATAAATGCTCCTCTTGGGTGCCATTTATGTCCAATGAGGGCGATGAATTGAGCTTCTCCGGCGATGT GGTCCCAATGGTGCCAAATGGCGGTCGTGTCCGGCCTATGGCCTACGGCCCCGGTCAATTTGAAAG CGGTGCCAATCCCGATTTCGTCGTTACTTCGGCGGATCGGATGGCTCGTGAGCTTGACCATAAAATT AGGGGTCTTGACCAGACCGCTAAAAAAGTTGAGGCCCGTATTGCGCAGTTGAACAATCTAGCAGA ACGCGCTAAAACACCTGTAGAAGTAGCAAAGGAGGAAAAAGTCGATGTTATTGATGATGACGATG TTTCTGACGTTCGTAGCTCTGGCGACGATAGTGACGATACGGGACCTGATTTTGGCGCTGAAAAAG TGGGGGCAGAATGAATGATGCCCCGAAAAAAAGCAATTCGGGTCGCAAACAAAGCTGGCTCCGCG CGTATGCGCGGGGCCTCAAAGGCGGCACCCCGAAAACGCTCTGCGAAAGCCTGCGCCTGTGGTCA ATCCCACAAGAGCAGGCGCAAGACGTGACAAAAAAAACTTACCTCAACGCCGCAGATGGCCCCAT GATCTGGCTCGGTGAGCAGATTGTCAAACGCATGGAAAAGGCGGGTTATCCCTCCCGCATTTTCTG CGGCTATCGTTCCCCAGAACAGCAAGACAAGGAGTTTGCAGAGGGCGACAGCAAGGCTAGGGCCT ATCAAAGCCCACATCAGTTTTATGAAGCGGTAGACATAATTCATAAGACAAAAGCATGGAACGTCT CTCAAGATTATTGGGATACACTCGCCGCAATTGTGCGAGTTGTAGAGCGTGAATATGCTATAGACC TCGTGCATGGTTATGATTGGGGATGGGACAGTGCCCATATTGAGATTGCTTTGTGGCGTCAAGTTCC AAAGCGTCAAATTGGCAAAACTGGCTCTAATTATCCCCCGTCACCTTGGGAACGTGAACAGCGTTT CAAGGAGTTGCTTCCCGCTGTTTATGCGGCGCAACATCGGCCATAGACTTATGGCAATCTATGCAA ACTAACAAGCGGGCGGCCTCTATGCGAGAGCCGCCCGTTTTGCATCCCTGCGGGCCAGTCGGAGAC TGGCCAGCGGCAACTATATTCCGGGCCAAATCTTTTGGACGCGCCTTAGCGCCCCGGATGGCTACG CAGCGTTAAGCTAGTGCCTAACAATGTGTCAGTAAGCTCGTCAACGTAAACCTCTCTCAGAATTGA GGACGGTTTGCGTTGATCCCCCTAGCAGGCCCCCCTTGTTCCTGTATACACTTACTGACACAAAAAA CAGGAGTTAAAGAATATGTGCAGTGATTTAATCCATATCGACGGGCAGCAATTTGCCTGTCGTAAG TGTAATGAGTGCATCACCGCTAGGAAAAATGGTTGGGTTGCTCGTGCGATGGCTGAAAAGGCCGTC ACTGCTGAAACTTTCAGCGTAACCCTAACTTATAATGATGCTACTCAGGAAAGCCGCGATGCGGCA AAGACGTTCGAGTATCGACACGTCAAAAACTGGATTAAGAACCTTAGGCGTCAAATAGAGTACAC CACCGGCCAGACTGGCCTTCTCCGCTACCTTGTAGCGGGTGAGCGCGGTTCCGATAAGGGCCGCTG CCACTGGCATGTAATCTTGTTCTGTAACGCCGATATTTTAACGCTAGGAAAAATGACGCACTGGCC CTCTGGCAAACTTGCTGCCGATAGGGCCGAAATTATAACTACAGGAAAAAGGAAAAAACGTATTA ACTGGTCTCTCTGGCCGTATGGCTTCGTCAGCTTTCAAGAGCCTGACCAGTGGGGCATGGAGTACG CCTTAGCGTATGCCCTCAAAGATCAGTTTAACATTGTCTCCGCTGCCGGTACGGCGCGGGAGGCTC ACGTTTCCCGCACTTCTGCGGGTATGTTCCGCATGTCCAAAAAACCCCCAATCGGTTTCCCCTTTCT TGAGCGCAAGCTCAACGCGCTAGATGCGCGTGGTCAGCTTCCAGTTGACCTAAAAATAAGGGTTCC CGATTACAAAGGGTACTGGTATCCTACGGGAGCTATCCGCGAGTACATGCTCGACCGCTTGCGGAT CAGCAATGAGCTTTACAAAGCTCAGCATGGGCGTAATGCGCCACAATGGACCTCGCTAACGCGAA GCGTTGAGCAAAACGAAAAAGATTGGGAAAGGTTAATCCATGGCACCGAAGCGCAAGAAGAGGA GCAAGTCGAAGACTTCGAGGAGTGGCAACGCTCAATCCTCCTCCGTACAAAAGAAATACGCCAAC

```
AACAGATCGACAGAGACACGCGAAAGCGATGTGGCGGGCTTTCTGCTTGCTCACGATGCCTTAACA GССTCACGCCGCAAGATTTCGACGCGGCGGCGAGATGGGCGGAACGCCAAGCTCGAAAACACGGC GGCTATGACGCCGCCGAAAAACACTACCGCAGCGAAAACCGCTGCAATCCCTATTGTGGCTACAG GGAACTACCAACCCAGAAAAGAGCCTTCAAAAAAGGAGCATGACGACAGGAA
>ICBM5_gene_1
MADKATSPTTVSKKDRDDFELHVRLLSRAGYKTAEARTIAWLRGPAGLQEMLAGVKVAS
>ICBM5_gene_2
MSAIAGALISGGASLLGGLFGRSSASKQQARQNEYNKPINIRKRAEEGGFNPLLWAGQGNIQMQPGPSG IMGSAIANAGLALADGMSEQRQLDLERTKLKQDQERLDALIEKQTIRPKVGGIYAGSQQTPSVARAPGR PLMNGAPQPGSAPVFNPPTEYNPIPDDGPRLQTKVMRSDGMTSADPENPAEMEGDWWTWAREGTFW QNNNEILRRNTPETLHYKGRDALFPKMIDGARKAHKKAQEDFEKNPPKRRKLKGVNPNLNDKKW
```

>ICBM5_gene_3
MVMNMSKYQRPTNTRRESRTIAGRFRGGKLAPVMASAFRESESAILSQQVTYELDPIAGRMITPIMAELI SVYVPVQAIDALKNPEEAYAGNTEVVRDKLLSGTPLFGLEDESEISKRLGVNPISVGGVKKVNEAARLA HNCAVNFLRQRKYVNTVKLLADNMNVTPALISQTVLDRLNAVLDPEDRVNGAVQLDLGNVRMPVEG VGVEYNAVPVTTPGWNDTENDRAADPHYFSDHAAGIRLAIASENGRPAVYAVGEGQNAGGISLTDFY NAELMDSLVRQMRQIVDDNPEYGEEMVTRWAHGLSVDNGKTPWILHQSQQMFGNQFRRAMDGANL DVAQSDMMQSLEFTVPVPPTELGGVVITFASVKPDETLGSQPHPFLSTTWEATNYVSDELARDPEAVTM RHLNSDVPMVDEDTRALYIGHNGLKKAYISYGFNRHLDPTTVEAKTAIWQLEVPMSVTPESVIYPEDLD HYPFADQLAEVCTYQVSSTATVRTPMVFGPTPVEELAQIETDNVFEDV
>ICBM5_gene_4
MQVNDAKRSVLLVGLNGGEVSVISADGEIIATEGVTAGRHKCSSWVPFMSNEGDELSFSGDVVPMVPN GGRVRPMAYGPGQFESGANPDFVVTSADRMARELDHKIRGLDQTAKKVEARIAQLNNLAERAKTPVE VAKEEKVDVIDDDDVSDVRSSGDDSDDTGPDFGAEKVGAE
>ICBM5_gene_5
MNDAPKKSNSGRKQSWLRAYARGLKGGTPKTLCESLRLWSIPQEQAQDVTKKTYLNAADGPMIWLGE QIVKRMEKAGYPSRIFCGYRSPEQQDKEFAEGDSKARAYQSPHQFYEAVDIIHKTKAWNVSQDYWDTL AAIVRVVEREYAIDLVHGYDWGWDSAHIEIALWRQVPKRQIGKTGSNYPPSPWEREQRFKELLPAVYA AQHRP
>ICBM5_gene_6
MCSDLIHIDGQQFACRKCNECITARKNGWVARAMAEKAVTAETFSVTLTYNDATQESRDAAKTFEYR HVKNWIKNLRRQIEYTTGQTGLLRYLVAGERGSDKGRCHWHVILFCNADILTLGKMTHWPSGKLAAD RAEIITTGKRKKRINWSLWPYGFVSFQEPDQWGMEYALAYALKDQFNIVSAAGTAREAHVSRTSAGMF RMSKKPPIGFPFLERKLNALDARGQLPVDLKIRVPDYKGYWYPTGAIREYMLDRLRISNELYKAQHGR NAPQWTSLTRSVEQNEKDWERLIHGTEAQEEEQVEDFEEWQRSILLRTKEIRQQQIDRDTRKRCGGLSA CSRCLNSLTPQDFDAAARWAERQARKHGGYDAAEKHYRSENRCNPYCGYRELPTQKRAFKKGA

## d) List of supplementary files

These files would have been too large to be included into the appendix, thus they can be found as supplementary files published either together with the corresponding paper (SI files S2-x) or in the Zenodo research data repository (SI files S4-x and S5-x):
https://doi.org/10.1038/s41396-019-0362-7

- SI_file_S2-2_Cobaviruses_annots.xlsx
- SI_file_S2-3_Cobaviruses_genomes.txt
- SI_file_S2-4_Metagenomes.xlsx
- SI_file_S2-5_Biogeographical_distribution.xlsx
- SI_file_S2-6_VICTOR_distances.xlsx
- SI_file_S2-7a_code.txt
- SI_file_S2-7b_code.txt
- SI_file_S2-7c_code.txt
- SI_file_S2-7d_code.txt
https://doi.org/10.5281/zenodo. 11221490
- SI_file_S4-1_Host_strains_Alejandre-Colomo.xlsx
- SI_file_S4-2_RAPD_gel_all.emf
- SI_file_S4-3_Isolation_Phages_selected_RAPD-PCR.csv
- SI_file_S4-4_VIRIDIC_heatmap_143assem.pdf
- SI_file_S4-5_VIRIDIC_sim-dist_table_143_assem.tsv
- SI_file_S4-6_Isolation_VIRIDIC_heatmap_94unique_complete.pdf
- SI_file_S4-7_Proteomic_tree_965_input_phages.csv
- SI_file_S4-8_Whole_proteomic_tree_round.pdf
- SI_file_S4-9_Whole_proteomic_tree.pdf
- SI_file_S4-10_Gene_annotations_ICBM_phages.xlsx
- SI_file_S4-11_VGC_4_VIRIDIC_heatmap.pdf
- SI_file_S4-12_VGC_4_VIRIDIC_cluster_table.tsv
- SI_file_S4-13_VirClust_heatmap_VGC25-VGC9.PDF
- SI_file_S5-1_Sulfiviruses_hosts_16S-ITS_tree_identity_matrix.csv
- SI_file_S5-2_Sulfiviruses_hosts_16S_tree_identity_matrix.csv
- SI_file_S5-3_Sulfiviruses_hosts_genomes_distance_table_GGDC.csv
- SI_file_S5-4_Sulfiviruses_genome_annotations.csv
- SI_file_S5-5_Sulfiviruses_complete_genome_maps.pdf
- SI_file_S5-6_Sulfiviruses_hosts_plasmid_clustering_protein_heatmap_0.7_ distance.PDF
- SI_file_S5-7a_Sulfiviruses_hosts_prophages_chromosomes_PHASTER.xlsx
- SI_file_S5-7b_Sulfiviruses_hosts_prophages_plasmids_PHASTER.xlsx
- SI_file_S5-7c_Sulfiviruses_hosts_prophages_plasmids_ProphageHunter.xlsx


## Bibliography

Abbasifar, Reza; Griffiths, Mansel W.; Sabour, Parviz M.; Ackermann, Hans-Wolfgang; Vandersteegen, Katrien; Lavigne, Rob et al. (2014): Supersize me: Cronobacter sakazakii phage GAP32. In Virology 460-461, pp. 138-146. DOI: 10.1016/j.virol.2014.05.003.

Abedon, Stephen T. (2022): Bacteriophages, a Brief Introduction. In Stephen T. Abedon (Ed.): Bacteriophages as Drivers of Evolution. Cham: Springer International Publishing, pp. 3-14.

Ackermann, Hans-W. (1998): Tailed Bacteriophages: The Order Caudovirales. In Karl Maramorosch, Frederick A. Murphy, Aaron J. Shatkin (Eds.): Advances in Virus Research, vol. 51: Academic Press, pp. 135-201.

Ackermann, H-W (2007): 5500 Phages examined in the electron microscope. In Archives of virology 152 (2), pp. 227-243. DOI: 10.1007/s00705-006-0849-1.

Adriaenssens, E; Tolstoy, Igor; Kropinski, Andrew; Moraru, Cristina; Wittman, J. (2020): ICTV Taxonomy Proposal 2020.133B: Create one new subfamily (Rhodovirinae) including seven genera (Caudovirales: Schitoviridae). Available online at https://ictv.global/ictv/proposals/2020.133B.R.Rhodovirinae.zip.

Adriaenssens, E. M.; am Kropinski; Turner, D; Krupovic, M.; Millard, A.; Dutilh, BE, Oksanen, HM et al. (2021): ICTV Taxonomy Proposal 2021.001B: Abolish the order Caudovirales and the families Myoviridae, Siphoviridae and Podoviridae (Caudoviricetes). Available online at https://ictv.global/ictv/proposals/2021.001B.R.abolish_Caudovirales.zip.

Aguilar, Alejandro; Peralta, Humberto; Mora, Yolanda; Díaz, Rafael; Vargas-Lagunas, Carmen; Girard, Lourdes; Mora, Jaime (2016): Genomic Comparison ofAgrobacterium pusenseStrains Isolated from Bean Nodules. In Frontiers in microbiology 7, p. 1720. DOI: 10.3389/fmicb.2016.01720.

Ahern, Stephen J.; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry; Gonzalez, Carlos F. (2014): Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas. In Journal of bacteriology 196 (2), pp. 459-471. DOI: 10.1128/JB.01080-13.

Aiewsakun, Pakorn; Simmonds, Peter (2018): The genomic underpinnings of eukaryotic virus taxonomy: creating a sequence-based framework for family-level virus classification. In Microbiome 6 (1), p. 38. DOI: 10.1186/s40168-018-0422-7.

Aird, Daniel; Ross, Michael G.; Chen, Wei-Sheng; Danielsson, Maxwell; Fennell, Timothy; Russ, Carsten et al. (2011): Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. In Genome biology 12 (2), R18. DOI: 10.1186/gb-2011-12-2-r18.

Alanin, Katrine Wacenius Skov; Olsen, Nikoline S.; Djurhuus, Amaru Miranda; Carstens, Alexander Byth; Nielsen, Tue Kjærgaard; Wagner, Natalia et al. (2022): Three novel Erwinia billingiae phages represent three new genera isolated from organic waste. Available online at https://assets.researchsquare.com/files/rs-2102185/v1/fa01d72d-215c-4e8f-96d9-
d24f3ba11d19.pdf?c=1664906155, checked on 11/11/2022.
Alberti, Adriana; Poulain, Julie; Engelen, Stefan; Labadie, Karine; Romac, Sarah; Ferrera, Isabel et al. (2017): Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. In Scientific data 4, p. 170093. DOI: 10.1038/sdata.2017.93.

Alejandre-Colomo, Carlota; Harder, Jens; Fuchs, Bernhard M.; Rosselló-Móra, Ramon; Amann, Rudolf (2020): High-throughput cultivation of heterotrophic bacteria during a spring phytoplankton bloom in the North Sea. In Systematic and applied microbiology 43 (2), p. 126066. DOI: 10.1016/j.syapm.2020.126066.

Allers, Elke; Moraru, Cristina; Duhaime, Melissa B.; Beneze, Erica; Solonenko, Natalie; BarreroCanosa, Jimena et al. (2013): Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. In Environmental microbiology 15 (8), pp. 2306-2318. DOI: 10.1111/1462-2920.12100.

Alonso, M. Carmen; Rodriguez, Jaime; Borrego, Juan J. (2000): Enumeration and isolation of viral particles from oligotrophic marine environments by tangential flow filtration. In International microbiology : the official journal of the Spanish Society for Microbiology (2), pp. 227-232. Available online at https://core.ac.uk/download/pdf/159084697.pdf, checked on 7/31/2023.

Amarillas, Luis; Estrada-Acosta, Mitzi; León-Chan, Ruben G.; López-Orona, Carlos; Lightbourn, Luis (2020): Complete genome sequence of Phobos: a novel bacteriophage with unusual genomic features that infects Pseudomonas syringae. In Archives of virology. DOI: 10.1007/s00705-020-04618-2.

Amgarten, Deyvid; Martins, Layla Farage; Lombardi, Karen Cristina; Antunes, Luciana Principal; Souza, Ana Paula Silva de; Nicastro, Gianlucca Gonçalves et al. (2017): Three novel Pseudomonas phages isolated from composting provide insights into the evolution and diversity of tailed phages. In BMC Genomics 18 (1), p. 346. DOI: 10.1186/s12864-017-3729-z.

Amin, S. A.; Hmelo, L. R.; van Tol, H. M.; Durham, B. P.; Carlson, L. T.; Heal, K. R. et al. (2015): Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. In Nature 522 (7554), pp. 98-101. DOI: 10.1038/nature 14488.

Anderson, Donald M. (2009): Approaches to monitoring, control and management of harmful algal blooms (HABs). In Ocean \& Coastal Management 52 (7), p. 342. DOI: 10.1016/j.ocecoaman.2009.04.006.

Andrade-Domínguez, Andrés; Kolter, Roberto (2016): Complete Genome Sequence of Pseudomonas aeruginosa Phage AAT-1. In Genome Announc. 4 (4). DOI: 10.1128/genomeA.00165-16.

Angly, Florent; Youle, Merry; Nosrat, Bahador; Srinagesh, Shailaja; Rodriguez-Brito, Beltran; McNairnie, Patrick et al. (2009): Genomic analysis of multiple Roseophage SIO1 strains. In Environmental microbiology 11 (11), pp. 2863-2873. DOI: 10.1111/j.1462-2920.2009.02021.x.

Ankrah, Nana Y. D.; Budinoff, Charles R.; Wilson, William H.; Wilhelm, Steven W.; Buchan, Alison (2014a): Genome sequence of the Sulfitobacter sp. strain 2047-infecting lytic phage \{Phi\}CB2047-B. In Genome announcements 2 (1), e00945-13. DOI: 10.1128/genomeA.00945-13.

Ankrah, Nana Y. D.; Budinoff, Charles R.; Wilson, William H.; Wilhelm, Steven W.; Buchan, Alison (2014b): Genome sequences of two temperate phages, ФCB2047-A and ФCB2047-C, infecting Sulfitobacter sp. Strain 2047. In Genome announcements 2 (3). DOI: 10.1128/genomeA.00108-14.

Aparna, S.; Parvathi, A.; Pradeep Ram, A. S.; Sime-Ngando, T. (2019): Genome analysis of Marinobacter phage AS1 suggests its close interactions with host Marinobacter sp. In Aquat. Microb. Ecol. 83 (2), pp. 119-129. DOI: 10.3354/ame01912.

Ariff, Amir; Wise, Michael J.; Kahler, Charlene M.; Tay, Chin Yen; Peters, Fanny; Perkins, Timothy T.; Chang, Barbara J. (2015): Novel Moraxella catarrhalis prophages display hyperconserved non-
structural genes despite their genomic diversity. In BMC Genomics 16, p. 860. DOI: 10.1186/s12864-015-2104-1.

Arndt, David; Grant, Jason R.; Marcu, Ana; Sajed, Tanvir; Pon, Allison; Liang, Yongjie; Wishart, David S. (2016): PHASTER: a better, faster version of the PHAST phage search tool. In Nucleic acids research 44 (W1), p. 21. DOI: 10.1093/nar/gkw387.

Atanasiu, C.; Su, T-J; Sturrock, S. S.; Dryden, D. T. F. (2002): Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKI restriction/modification enzyme. In Nucl Acids Res 30 (18), pp. 39363944. DOI: 10.1093/nar/gkf518.

Badawy, Shimaa; Pajunen, Maria I.; Haiko, Johanna; Baka, Zakaria A. M.; Abou-Dobara, Mohamed I.; El-Sayed, Ahmed K. A.; Skurnik, Mikael (2020): Identification and Functional Analysis of Temperate Siphoviridae Bacteriophages of Acinetobacter baumannii. In Viruses 12 (6). DOI: 10.3390/v12060604.

Bai, Yang; Müller, Daniel B.; Srinivas, Girish; Garrido-Oter, Ruben; Potthoff, Eva; Rott, Matthias et al. (2015): Functional overlap of the Arabidopsis leaf and root microbiota. In Nature 528 (7582), pp. 364369. DOI: 10.1038/nature 16192.

Bair, Catherine L.; Black, Lindsay W. (2007): A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs. In Journal of molecular biology 366 (3), pp. 768-778. DOI: 10.1016/j.jmb.2006.11.051.

Bakenhus, Insa; Dlugosch, Leon; Billerbeck, Sara; Giebel, Helge-Ansgar; Milke, Felix; Simon, Meinhard (2017): Composition of total and cell-proliferating bacterioplankton community in early summer in the North Sea - Roseobacters are the most active component. In Frontiers in microbiology 8, p. 1771. DOI: 10.3389/fmicb.2017.01771.

Balch, W. E.; Fox, G. E.; Magrum, L. J.; Woese, C. R.; Wolfe, R. S. (1979): Methanogens: reevaluation of a unique biological group. In Microbiological Reviews 43 (2), pp. 260-296.

Baltimore, D. (1971): Expression of animal virus genomes. In Bacteriological Reviews 35 (3), pp. 235241. DOI: 10.1128/br.35.3.235-241.1971.

Bankevich, Anton; Nurk, Sergey; Antipov, Dmitry; Gurevich, Alexey A.; Dvorkin, Mikhail; Kulikov, Alexander S. et al. (2012): SPAdes: a new genome assembly algorithm and its applications to ainglecell sequencing. In Journal of Computational Biology 19 (5), pp. 455-477. DOI: 10.1089/cmb.2012.0021.

Barr, Jeremy J.; Auro, Rita; Furlan, Mike; Whiteson, Katrine L.; Erb, Marcella L.; Pogliano, Joe et al. (2013): Bacteriophage adhering to mucus provide a non-host-derived immunity. In PNAS 110 (26), pp. 10771-10776. DOI: 10.1073/pnas. 1305923110 .

Barrero-Canosa, Jimena; Moraru, Cristina (2019): PhageFISH for monitoring phage infections at single cell level. In Martha R. J. Clokie, Andrew M. Kropinski, Rob Lavigne (Eds.): Bacteriophages. Methods and protocols. Methods in Molecular Biology., IV. New York: Humana Press; Springer (Springer protocols, volume 1898), pp. 1-26.

Bartlau, Nina; Wichels, Antje; Krohne, Georg; Adriaenssens, Evelien M.; Heins, Anneke; Fuchs, Bernhard M. et al. (2021): Highly diverse flavobacterial phages isolated from North Sea spring blooms. In ISME J. DOI: 10.1038/s41396-021-01097-4.

Baum, Lisa; Nguyen, Mary T. H. D.; Jia, Yunke; Biazik, Joanna; Thomas, Torsten (2021): Characterization of a novel roseophage and the morphological and transcriptional response of the sponge
symbiont Ruegeria AU67 to infection. In Environmental microbiology 23 (5), pp. 2532-2549. DOI: 10.1111/1462-2920.15474.

Bednarz, Michael; Halliday, Jennifer A.; Herman, Christophe; Golding, Ido (2014): Revisiting bistability in the lysis/lysogeny circuit of bacteriophage lambda. In PloS one 9 (6), e100876. DOI: 10.1371/journal.pone. 0100876.

Belfort, Marlene (Ed.) (2005): Homing endonucleases and inteins. Berlin, Great Britain: SpringerVerlag (Nucleic Acids and Molecular Biology, vol. 16).

Bellas, Christopher M.; Schroeder, Declan C.; Edwards, Arwyn; Barker, Gary; Anesio, Alexandre M. (2020): Flexible genes establish widespread bacteriophage pan-genomes in cryoconite hole ecosystems. In Nature communications 11 (1), p. 4403. DOI: 10.1038/s41467-020-18236-8.

Belle, Archana; Landthaler, Markus; Shub, David A. (2002): Intronless homing: site-specific endonuclease SegF of bacteriophage T4 mediates localized marker exclusion analogous to homing endonucleases of group I introns. In Genes \& development 16 (3), pp. 351-362. DOI: 10.1101/gad. 960302 .

Bench, Shellie R.; Hanson, Thomas E.; Williamson, Kurt E.; Ghosh, Dhritiman; Radosovich, Mark; Wang, Kui; Wommack, K. Eric (2007): Metagenomic characterization of Chesapeake Bay virioplankton. In Applied and environmental microbiology 73 (23), pp. 7629-7641. DOI: 10.1128/AEM.00938-07.

Benler, Sean; Koonin, Eugene V. (2021): Fishing for phages in metagenomes: what do we catch, what do we miss? In Current opinion in virology 49, pp. 142-150. DOI: 10.1016/j.coviro.2021.05.008.

Berge, Odile; Guinebretière, Marie-Hélène; Achouak, Wafa; Normand, Philippe; Heulin, Thierry (2002): Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. In International journal of systematic and evolutionary microbiology 52 (Pt 2), pp. 607616. DOI: 10.1099/00207713-52-2-607.

Bernheim, Aude; Millman, Adi; Ofir, Gal; Meitav, Gilad; Avraham, Carmel; Shomar, Helena et al. (2021): Prokaryotic viperins produce diverse antiviral molecules. In Nature 589 (7840), pp. 120-124. DOI: 10.1038/s41586-020-2762-2.

Bernheim, Aude; Sorek, Rotem (2020): The pan-immune system of bacteria: antiviral defence as a community resource. In Nat Rev Micro 18 (2), pp. 113-119. DOI: 10.1038/s41579-019-0278-2.

Berrios, Louis; Ely, Bert (2019): The Isolation and Characterization of Kronos, a Novel Caulobacter Rhizosphere Phage that is Similar to Lambdoid Phages. In Curr Microbiol 76 (5), pp. 558-565. DOI: 10.1007/s00284-019-01656-1.

Bertelli, Claire; Greub, Gilbert (2012): Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms. In Frontiers in cellular and infection microbiology 2, p. 110. DOI: 10.3389/fcimb.2012.00110.

Bettarel, Yvan; Motegi, Chiaki; Weinbauer, Markus G.; Mari, Xavier (2016): Colonization and release processes of viruses and prokaryotes on artificial marine macroaggregates. In FEMS Microbiology Letters 363 (1), fnv216. DOI: 10.1093/femsle/fnv216.

Biddanda, Bopaiah; Benner, Ronald (1997): Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. In Limnol. Oceanogr. 42 (3), pp. 506-518. DOI: 10.4319/lo.1997.42.3.0506.

Biggs, Tristan E. G.; Huisman, Jef; Brussaard, Corina P. D. (2021): Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean. In ISME J 15 (12), pp. 3615-3622. DOI: 10.1038/s41396-021-01033-6.

Billerbeck, Sara; Orchard, Julia; Tindall, Brian J.; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Simon, Meinhard (2015): Description of Octadecabacter temperatus sp. nov., isolated from the southern North Sea, emended descriptions of the genus Octadecabacter and its species and reclassification of Octadecabacter jejudonensisPark and Yoon 2014 as Pseudooctadecabacter jejudonensis gen. nov., comb. nov. In International journal of systematic and evolutionary microbiology 65 (Pt 6), pp. 19671974. DOI: 10.1099/ijs.0.000205.

Bischoff, V; Adriaenssens, E M; Kropinski, A M; Duhaime, M; Moraru, C (2020): ICTV-proposal Zobellviridae 2020.187B: Create one new family (Zobellviridae) including one new subfamily (Cobavirinae), seven new genera and 12 new species (Caudovirales). Available online at https://ictv.global/ictv/proposals/2020.187B.R.Zobellviridae.zip.

Bischoff, Vera; Bunk, Boyke; Meier-Kolthoff, Jan P.; Spröer, Cathrin; Poehlein, Anja; Dogs, Marco et al. (2019): Cobaviruses - a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems. In ISME J 13 (6), pp. 1404-1421. DOI: 10.1038/s41396-019-0362-7.

Bleriot, Ines; Trastoy, Rocío; Blasco, Lucia; Fernández-Cuenca, Felipe; Ambroa, Antón; FernándezGarcía, Laura et al. (2020): Genomic analysis of 40 prophages located in the genomes of 16 carbapenemase-producing clinical strains of Klebsiella pneumoniae. In Microbial genomics 6 (5). DOI: 10.1099/mgen.0.000369.

Bobay, Louis-Marie; Ochman, Howard (2018): Biological species in the viral world. In Proceedings of the National Academy of Sciences of the United States of America 115 (23), pp. 6040-6045. DOI: 10.1073/pnas. 1717593115.

Boeckman, Justin; Korn, Abby; Yao, Guichun; Ravindran, Aravind; Gonzalez, Carlos; Gill, Jason (2022): Sheep in wolves' clothing: Temperate T7-like bacteriophages and the origins of the Autographiviridae. In Virology 568, pp. 86-100. DOI: 10.1016/j.virol.2022.01.013.

Bolduc, Benjamin; Jang, Ho Bin; Doulcier, Guilhem; You, Zhi-Qiang; Roux, Simon; Sullivan, Matthew B. (2017a): vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. In PeerJ 5, e3243. DOI: 10.7717/peerj. 3243.

Bolduc, Benjamin; Youens-Clark, Ken; Roux, Simon; Hurwitz, Bonnie L.; Sullivan, Matthew B. (2017b): iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. In The ISME journal 11, 7-14. DOI: 10.1038/ismej.2016.89.

Bolger, Anthony M.; Lohse, Marc; Usadel, Bjoern (2014): Trimmomatic: a flexible trimmer for Illumina sequence data. In Bioinformatics (Oxford, England) 30 (15), pp. 2114-2120. DOI: 10.1093/bioinformatics/btu170.

Bollivar, David W.; Bernardoni, Brooke; Bockman, Matthew R.; Miller, Brenda M.; Russell, Daniel A.; Delesalle, Veronique A. et al. (2016): Complete Genome Sequences of Five Bacteriophages That Infect Rhodobacter capsulatus. In Genome announcements 4 (3). DOI: 10.1128/genomeA.00051-16.

Bondy-Denomy, Joe; Pawluk, April; Maxwell, Karen L.; Davidson, Alan R. (2013): Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. In Nature 493 (7432), pp. 429-432. DOI: 10.1038/nature11723.

Bondy-Denomy, Joseph; Qian, Jason; Westra, Edze R.; Buckling, Angus; Guttman, David S.; Davidson, Alan R.; Maxwell, Karen L. (2016): Prophages mediate defense against phage infection through diverse mechanisms. In ISME J 10 (12), pp. 2854-2866. DOI: 10.1038/ismej.2016.79.

Born, Yannick; Fieseler, Lars; Marazzi, Janine; Lurz, Rudi; Duffy, Brion; Loessner, Martin J. (2011): Novel virulent and broad-host-range Erwinia amylovora bacteriophages reveal a high degree of mosaicism and a relationship to Enterobacteriaceae phages. In Applied and environmental microbiology 77 (17), pp. 5945-5954. DOI: 10.1128/AEM.03022-10.

Bouzar, H.; Jones, J. B. (2001): Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. In International journal of systematic and evolutionary microbiology 51 (Pt 3), pp. 1023-1026. DOI: 10.1099/00207713-51-3-1023.

Bradley, D. E. (1967): Ultrastructure of bacteriophage and bacteriocins. In Bacteriological Reviews 31 (4), pp. 230-314. DOI: 10.1128/br.31.4.230-314.1967.

Breider, Sven; Sehar, Shama; Berger, Martine; Thomas, Torsten; Brinkhoff, Thorsten; Egan, Suhelen (2019): Genome sequence of Epibacterium ulvae strain DSM 24752T, an indigoidine-producing, macroalga-associated member of the marine Roseobacter group. In Environmental Microbiome 14 (1), p. 4. DOI: 10.1186/s40793-019-0343-5.

Breitbart, Mya (2012): Marine viruses: truth or dare. In Annual review of marine science 4, pp. 425448. DOI: 10.1146/annurev-marine-120709-142805.

Breitbart, Mya; Bonnain, Chelsea; Malki, Kema; Sawaya, Natalie A. (2018): Phage puppet masters of the marine microbial realm. In Nature microbiology. DOI: 10.1038/s41564-018-0166-y.

Breitbart, Mya; Salamon, Peter; Andresen, Bjarne; Mahaffy, Joseph M.; Segall, Anca M.; Mead, David et al. (2002): Genomic analysis of uncultured marine viral communities. In Proceedings of the National Academy of Sciences of the United States of America 99 (22), pp.14250-14255. DOI: 10.1073/pnas. 202488399.

Brinkhoff, Thorsten; Giebel, Helge-Ansgar; Simon, Meinhard (2008): Diversity, ecology, and genomics of the Roseobacter clade: a short overview. In Archives of microbiology 189 (6), pp. 531-539. DOI: 10.1007/s00203-008-0353-y.

Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Roux, Simon; Doulcier, Guilhem; Acinas, Silvia G.; Alberti, Adriana et al. (2015): Patterns and ecological drivers of ocean viral communities. In Science 348 (6237), p. 1261498. DOI: 10.1126/science. 1261498.

Brum, Jennifer R.; Schenck, Ryan O.; Sullivan, Matthew B. (2013): Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. In The ISME journal 7 (9), pp. 1738-1751. DOI: 10.1038/ismej.2013.67.

Brussaard, Corina P. D. (2004): Optimization of procedures for counting viruses by flow cytometry. In Applied and environmental microbiology 70 (3), pp. 1506-1513. DOI: 10.1128/AEM.70.3.15061513.2004.

Buchan, Alison; González, José M.; Moran, Mary Ann (2005): Overview of the marine roseobacter lineage. In Applied and environmental microbiology 71 (10), pp. 5665-5677. DOI: 10.1128/AEM.71.10.5665-5677.2005.

Buchan, Alison; LeCleir, Gary R.; Gulvik, Christopher A.; González, José M. (2014): Master recyclers: features and functions of bacteria associated with phytoplankton blooms. In Nature reviews. Microbiology 12 (10), pp. 686-698. DOI: 10.1038/nrmicro3326.

Buchholz, Holger H.; Michelsen, Michelle L.; Bolaños, Luis M.; Browne, Emily; Allen, Michael J.; Temperton, Ben (2021): Efficient dilution-to-extinction isolation of novel virus-host model systems for fastidious heterotrophic bacteria. In The ISME journal 15 (6), pp. 1585-1598. DOI: 10.1038/s41396-020-00872-z.

Bukhari, A. I.; Taylor, A. L. (1975): Influence of insertions on packaging of host sequences covalently linked to bacteriophage Mu DNA. In Proceedings of the National Academy of Sciences of the United States of America 72 (11), pp. 4399-4403. DOI: 10.1073/pnas.72.11.4399.

Bukhari, A. I.; Zipser, D. (1972): Random Insertion of Mu-1 DNA within a Single Gene. In Nature New Biology 236 (69), pp. 240-243. DOI: 10.1038/newbio236240a0.

Cady, Kyle C.; Bondy-Denomy, Joe; Heussler, Gary E.; Davidson, Alan R.; O'Toole, George A. (2012): The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. In Journal of bacteriology 194 (21), pp. 5728-5738. DOI: 10.1128/JB.01184-12.

Cahill, Jesse; Young, Ry (2019): Phage Lysis: Multiple Genes for Multiple Barriers. In Advances in virus research 103, pp. 33-70. DOI: 10.1016/bs.aivir.2018.09.003.

Cai, Lanlan; Chen, Yue; Xiao, Shiwei; Liu, Riyue; He, Maoqiu; Zhang, Rui; Zeng, Qinglu (2023): Abundant and cosmopolitan lineage of cyanopodoviruses lacking a DNA polymerase gene. In ISME J 17 (2), pp. 252-262. DOI: 10.1038/s41396-022-01340-6.

Cai, Lanlan; Ma, Ruijie; Chen, Hong; Yang, Yunlan; Jiao, Nianzhi; Zhang, Rui (2019): A newly isolated roseophage represents a distinct member of Siphoviridae family. In Virology journal 16 (1), p. 128. DOI: 10.1186/s12985-019-1241-6.

Cai, Lanlan; Yang, Yunlan; Jiao, Nianzhi; Zhang, Rui (2015): Complete genome sequence of vB_DshPR2C, a N4-like lytic roseophage. In Marine genomics 22, pp.15-17. DOI: 10.1016/j.margen.2015.03.005.

Calendar, R; Abedon, S T (Eds.) (2006): The Bacteriophages. Second edition: Oxford University Press.
Camacho, Christiam; Coulouris, George; Avagyan, Vahram; Ma, Ning; Papadopoulos, Jason; Bealer, Kevin; Madden, Thomas L. (2009): BLAST+: architecture and applications. In BMC bioinformatics 10, p. 421. DOI: 10.1186/1471-2105-10-421.

Carl, Gaby; Jäckel, Claudia; Grützke, Josephine; Hertwig, Stefan; Grobbel, Mirjam; Malorny, Burkhard et al. (2017): Complete Genome Sequence of the Temperate Klebsiella pneumoniae Phage KPP5665-2. In Genome Announc. 5 (43). DOI: 10.1128/genomeA.01118-17.

Casjens, Sherwood R.; Gilcrease, Eddie B. (2009): Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. In Methods in molecular biology (Clifton, N.J.) 502, pp. 91-111. DOI: 10.1007/978-1-60327-565-1_7.

Castro-Mejía, Josué L.; Muhammed, Musemma K.; Kot, Witold; Neve, Horst; Franz, Charles M. A. P.; Hansen, Lars H. et al. (2015): Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. In Microbiome 3 (1), p. 64. DOI: 10.1186/s40168-015-0131-4.

Chafee, Meghan; Fernàndez-Guerra, Antonio; Buttigieg, Pier Luigi; Gerdts, Gunnar; Eren, A. Murat; Teeling, Hanno; Amann, Rudolf I. (2018): Recurrent patterns of microdiversity in a temperate coastal marine environment. In The ISME journal 12 (1), pp. 237-252. DOI: 10.1038/ismej.2017.165.

Chan, Jacqueline Z-M; Millard, Andrew D.; Mann, Nicholas H.; Schäfer, Hendrik (2014): Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes. In Frontiers in microbiology 5, p. 506. DOI: 10.3389/fmicb.2014.00506.

Charif, D.; Lobry, J. R. (2007): SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo (Eds.): Structural approaches to sequence evolution: Molecules, networks, populations. New York: Springer Verlag (Biological and Medical Physics, Biomedical Engineering), pp. 207-232.

Chassard, Christophe; Delmas, Eve; Lawson, Paul A.; Bernalier-Donadille, Annick (2008): Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. In International journal of systematic and evolutionary microbiology 58 ( Pt 4 ), pp. 1008-1013. DOI: 10.1099/ijs.0.65504-0.

Chen, Rujia; Xu, Xuling; Han, Pengjun; Hu, Yunjia; Qin, Hongbo; Li, Mengzhe et al. (2022): Complete Genome Sequence of Aeromonas hydrophila Bacteriophage BUCT552. In Microbiol Resour Announc 11 (2), e0117221. DOI: 10.1128/mra.01172-21.

Chen, Zhangran; Zhang, Jingyan; Lei, Xueqian; Zhang, Bangzhou; Cai, Guanjing; Zhang, Huajun et al. (2014): Influence of plaque-forming bacterium, Rhodobacteraceae sp. on the growth of Chlorella vulgaris. In Bioresource technology 169, pp. 784-788. DOI: 10.1016/j.biortech.2014.07.021.

Chevallereau, Anne; Pons, Benoît J.; van Houte, Stineke; Westra, Edze R. (2021): Interactions between bacterial and phage communities in natural environments. In Nature reviews. Microbiology. DOI: 10.1038/s41579-021-00602-y.

Choi, In Young; Lee, Ju-Hoon; Kim, Hye-Jin; Park, Mi-Kyung (2017): Isolation and Characterization of a Novel Broad-host-range Bacteriophage Infecting Salmonella enterica subsp. enterica for Biocontrol and Rapid Detection. In Journal of microbiology and biotechnology 27 (12), pp. 2151-2155. DOI: 10.4014/jmb.1711.11017.

Chow, L. T.; Bukhari, A. I. (1976): The invertible DNA segments of coliphages Mu and P1 are identical. In Virology 74 (1), pp. 242-248. DOI: 10.1016/0042-6822(76)90148-3.

Clark, James; Awah, Adey; Moreland, Russell; Liu, Mei; Gill, Jason J.; Ramsey, Jolene (2019): Complete Genome Sequence of Vibrio natriegens Phage Phriendly. In Microbiol Resour Announc 8 (40). DOI: 10.1128/MRA.01096-19.

Clokie, Martha R. J.; Mann, Nicholas H. (2006): Marine cyanophages and light. In Environmental microbiology 8 (12), pp. 2074-2082. DOI: 10.1111/j.1462-2920.2006.01171.x.

Cobbley, Hunter K.; Evans, Seth I.; Brown, Hannah M. F.; Eberhard, Braden; Eberhard, Nathaniel; Kim, Minji et al. (2022): Complete Genome Sequences of Six Chi-Like Bacteriophages That Infect Proteus and Klebsiella. In Microbiol Resour Announc 11 (4), e0121521. DOI: 10.1128/mra.01215-21.

Cochlan, William P.; Wikner, Johan; Steward, Grieg F.; Smith, David C.; Azam, Farroq (1993): Spatial distribution of viruses, bacteria and chlorophyll a in neritic, oceanic and estuarine environments. In Marine ecology progress series (92), pp.77-87. Available online at https://www.intres.com/articles/meps/92/m092p077.pdf, checked on 6/15/2023.

Coclet, Clément; Roux, Simon (2021): Global overview and major challenges of host prediction methods for uncultivated phages. In Current opinion in virology 49, pp. 117-126. DOI: 10.1016/j.coviro.2021.05.003.

Comeau, André M.; Short, Steven; Suttle, Curtis A. (2004): The use of degenerate-primed random amplification of polymorphic DNA (DP-RAPD) for strain-typing and inferring the genetic similarity among closely related viruses. In Journal of virological methods 118 (2), pp. 95-100. DOI: 10.1016/j.jviromet.2004.01.020.

Conn, H. J. (1942): Validity of the Genus Alcaligenes. In Journal of bacteriology 44 (3), pp. 353-360. DOI: 10.1128/jb.44.3.353-360.1942.

Coutinho, Felipe H.; Silveira, Cynthia B.; Gregoracci, Gustavo B.; Thompson, Cristiane C.; Edwards, Robert A.; Brussaard, Corina P. D. et al. (2017): Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. In Nature communications 8, p. 15955. DOI: 10.1038/ncomms15955.

Crona, Mikael; Avesson, Lotta; Sahlin, Margareta; Lundin, Daniel; Hinas, Andrea; Klose, Ralph et al. (2013): A rare combination of ribonucleotide reductases in the social amoeba Dictyostelium discoideum. In The Journal of biological chemistry 288 (12), pp. 8198-8208. DOI: 10.1074/jbc.M112.442434.

Cruz-López, Ricardo; Maske, Helmut (2016): The vitamin B1 and B12 required by the marine dinoflagellate Lingulodinium polyedrum can be provided by its associated bacterial community in culture. In Frontiers in microbiology 7, p. 560. DOI: 10.3389/fmicb.2016.00560.

Cuervo, Ana; Chagoyen, Mónica; Pulido-Cid, Mar; Camacho, Ana; Carrascosa, José L. (2013): Structural characterization of T7 tail machinery reveals a conserved tubular structure among other Podoviridae family members and suggests a common mechanism for DNA delivery. In Bacteriophage 3 (4), e27011. DOI: 10.4161/bact. 27011.

Culot, A.; Grosset, N.; Gautier, M. (2019): Overcoming the challenges of phage therapy for industrial aquaculture: A review. In Aquaculture 513, p. 734423. DOI: 10.1016/j.aquaculture.2019.734423.

Dai, Yanhui; Yang, Shangbo; Zhao, Dan; Hu, Chuanmin; Xu, Wang; Anderson, Donald M. et al. (2023): Coastal phytoplankton blooms expand and intensify in the 21st century. In Nature 615 (7951), pp. 280284. DOI: 10.1038/s41586-023-05760-y.
de Jonge, Patrick A.; Nobrega, Franklin L.; Brouns, Stan J. J.; Dutilh, Bas E. (2019): Molecular and Evolutionary Determinants of Bacteriophage Host Range. In Trends in microbiology 27 (1), pp. 51-63. DOI: 10.1016/j.tim.2018.08.006.

Decewicz, Przemyslaw; Dziewit, Lukasz; Golec, Piotr; Kozlowska, Patrycja; Bartosik, Dariusz; Radlinska, Monika (2019): Characterization of the virome of Paracoccus spp. (Alphaproteobacteria) by combined in silico and in vivo approaches. In Scientific reports 9 (1), p. 7899. DOI: 10.1038/s41598-019-44460-4.

Decewicz, Przemyslaw; Golec, Piotr; Szymczak, Mateusz; Radlinska, Monika; Dziewit, Lukasz (2020): Identification and Characterization of the First Virulent Phages, Including a Novel Jumbo Virus, Infecting Ochrobactrum spp. In International journal of molecular sciences 21 (6). DOI: 10.3390/ijms21062096.

Del Dot, Therese; Osawa, Ro; Stackebrandt, Erko (1993): Phascolarctobacterium faecium gen. nov, spec. nov., a Novel Taxon of the Sporomusa Group of Bacteria. In Systematic and applied microbiology 16 (3), pp. 380-384. DOI: 10.1016/S0723-2020(11)80269-9.

Delafont, Vincent; Brouke, Amélie; Bouchon, Didier; Moulin, Laurent; Héchard, Yann (2013): Microbiome of free-living amoebae isolated from drinking water. In Water Research 47 (19), pp. 69586965. DOI: 10.1016/j.watres.2013.07.047.

Delesalle, Veronique A.; Kuhn, Jens; Kropinski, Andrew; Adriaenssens, E M; Bollivar, David W. (2016a): ICTV Taxonomy Proposal 2016.050a-dB: To create one (1) new genus, Titanvirus, including two (2) new species in the family Siphoviridae. Available online at https://ictv.global/ictv/proposals/2016.050a-dB.A.v1.Titanvirus.pdf.

Delesalle, Veronique A.; Kuhn, Jens; Kropinski, Andrew; Adriaenssens, E M; Bollivar, David W. (2016b): ICTV Taxonomy Proposal 2016.056a-dB: To create one (1) new genus, Cronusvirus, including one (1) new species in the family Siphoviridae. Available online at https://ictv.global/ictv/proposals/2016.056a-dB.A.v1.Cronusvirus.pdf.

DeLong, John P.; van Etten, James L.; Al-Ameeli, Zeina; Agarkova, Irina V.; Dunigan, David D. (2023): The consumption of viruses returns energy to food chains. In PNAS 120 (1), e2215000120. DOI: 10.1073/pnas. 2215000120.

Demina, Tatiana A.; Luhtanen, Anne-Mari; Roux, Simon; Oksanen, Hanna M. (2021): Virus-host interactions and genetic diversity of Antarctic sea ice bacteriophages. DOI: 10.1101/2021.05.28.446129.

Deng, Li; Ignacio-Espinoza, J. Cesar; Gregory, Ann C.; Poulos, Bonnie T.; Weitz, Joshua S.; Hugenholtz, Philip; Sullivan, Matthew B. (2014): Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. In Nature 513 (7517), pp. 242-245. DOI: 10.1038/nature 13459.

Dhillon, E. K.; Dhillon, T. S.; Lai, A. N.; Linn, S. (1980a): Host range, immunity and antigenic properties of lambdoid coliphage HK97. In The Journal of general virology 50 (1), pp. 217-220. DOI: 10.1099/0022-1317-50-1-217.

Dhillon, E. K.; Dhillon, T. S.; Lam, Y. Y.; Tsang, A. H. (1980b): Temperate coliphages: classification and correlation with habitats. In Applied and environmental microbiology 39 (5), pp. 1046-1053. DOI: 10.1128/aem.39.5.1046-1053.1980.

Dhillon, T. S.; Dhillon, E. K.; Chau, H. C.; Li, W. K.; Tsang, A. H. (1976): Studies on bacteriophage distribution: virulent and temperate bacteriophage content of mammalian feces. In Applied and environmental microbiology 32 (1), pp. 68-74. DOI: 10.1128/aem.32.1.68-74.1976.

Didelot, Xavier; Wilson, Daniel J. (2015): ClonalFrameML: efficient inference of recombination in whole bacterial genomes. In PLoS computational biology 11 (2), e1004041. DOI: 10.1371/journal.pcbi. 1004041.

Ding, Hao; Moksa, Michelle M.; Hirst, Martin; Beatty, J. Thomas (2014): Draft Genome Sequences of Six Rhodobacter capsulatus Strains, YW1, YW2, B6, Y262, R121, and DE442. In Genome announcements 2 (1). DOI: 10.1128/genomeA.00050-14.

Dion, Moïra B.; Oechslin, Frank; Moineau, Sylvain (2020): Phage diversity, genomics and phylogeny. In Nat Rev Micro 18 (3), pp. 125-138. DOI: 10.1038/s41579-019-0311-5.

Dlugosch, Leon; Bunse, Carina; Bunk, Boyke; Böttcher, Lea; Tran, Den Quoc; Dittmar, Thorsten et al. (2023): Naturally induced biphasic phytoplankton spring bloom reveals rapid and distinct substrate and bacterial community dynamics. In FEMS microbiology ecology 99 (8). DOI: 10.1093/femsec/fiad078.

Dogs, Marco; Wemheuer, Bernd; Wolter, Laura; Bergen, Nils; Daniel, Rolf; Simon, Meinhard; Brinkhoff, Thorsten (2017): Rhodobacteraceae on the marine brown alga Fucus spiralis are abundant and show physiological adaptation to an epiphytic lifestyle. In Systematic and applied microbiology 40 (6), pp. 370-382. DOI: 10.1016/j.syapm.2017.05.006.

Dong, Zhaoxia; Xing, Shaozhen; Liu, Jin; Tang, Xizhe; Ruan, Lifang; Sun, Ming et al. (2018): Isolation and characterization of a novel phage Xoo-sp2 that infects Xanthomonas oryzae pv. oryzae. In Journal of General Virology 99 (10), pp. 1453-1462. DOI: 10.1099/jgv.0.001133.

Doron, Shany; Melamed, Sarah; Ofir, Gal; Leavitt, Azita; Lopatina, Anna; Keren, Mai et al. (2018): Systematic discovery of antiphage defense systems in the microbial pangenome. In Science (New York, N.Y.) 359 (6379). DOI: 10.1126/science.aar4120.

Downes, Julia; Sutcliffe, Iain C.; Hofstad, Tor; Wade, William G. (2006): Prevotella bergensis sp. nov., isolated from human infections. In International journal of systematic and evolutionary microbiology 56 (Pt 3), pp. 609-612. DOI: 10.1099/ijs.0.63888-0.

Dreiseikelmann, Brigitte; Bunk, Boyke; Spröer, Cathrin; Rohde, Manfred; Nimtz, Manfred; Wittmann, Johannes (2017): Characterization and genome comparisons of three Achromobacter phages of the family Siphoviridae. In Arch Virol 162 (8), pp. 2191-2201. DOI: 10.1007/s00705-017-3347-8.

Duarte, Carlos M. (2015): Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition. In Limnology and Oceanography Bulletin 24 (1), pp. 11-14. DOI: 10.1002/lob.10008.

Duhaime, Melissa B.; Solonenko, Natalie; Roux, Simon; Verberkmoes, Nathan C.; Wichels, Antje; Sullivan, Matthew B. (2017): Comparative omics and trait analyses of marine Pseudoalteromonas phages advance the phage OTU concept. In Frontiers in microbiology 8, p. 1241. DOI: 10.3389/fmicb.2017.01241.

Dujon, B. (1989): Group I introns as mobile genetic elements: facts and mechanistic speculations--a review. In Gene 82 (1), pp. 91-114. DOI: 10.1016/0378-1119(89)90034-6.

Dwivedi, Bhakti; Xue, Bingjie; Lundin, Daniel; Edwards, Robert A.; Breitbart, Mya (2013): A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes. In $B M C$ evolutionary biology 13, p. 33. DOI: 10.1186/1471-2148-13-33.

Eddy, Sean R. (2011): Accelerated Profile HMM Searches. In PLoS computational biology 7 (10), e1002195. DOI: 10.1371/journal.pcbi. 1002195.

Eggerth, A. H.; Gagnon, B. H. (1933): The Bacteroides of Human Feces. In Journal of bacteriology 25 (4), pp. 389-413. DOI: 10.1128/jb.25.4.389-413.1933.

Ehrenreich, A.; Widdel, F. (1994): Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. In Applied and environmental microbiology 60 (12), pp. 4517-4526.

Eilers, H.; Pernthaler, J.; Amann, R. (2000a): Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts. In Applied and environmental microbiology 66 (11), pp. 46344640. DOI: 10.1128/AEM.66.11.4634-4640.2000.

Eilers, H.; Pernthaler, J.; Glöckner, F. O.; Amann, R. (2000b): Culturability and In situ abundance of pelagic bacteria from the North Sea. In Applied and environmental microbiology 66 (7), pp. 3044-3051. DOI: 10.1128/AEM.66.7.3044-3051.2000.

Eilers, H.; Pernthaler, J.; Peplies, J.; Glöckner, F. O.; Gerdts, G.; Amann, R. (2001): Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. In Applied and environmental microbiology 67 (11), pp. 5134-5142. DOI: 10.1128/AEM.67.11.51345142.2001.

El Yacoubi, Basma; Bailly, Marc; Crécy-Lagard, Valérie de (2012): Biosynthesis and function of posttranscriptional modifications of transfer RNAs. In Annual review of genetics 46, pp. 69-95. DOI: 10.1146/annurev-genet-110711-155641.

Eller, Monique R.; Salgado, Rafael L.; Vidigal, Pedro M. P.; Alves, Maura P.; Dias, Roberto S.; Oliveira, Leandro L. de et al. (2013): Complete Genome Sequence of the Pseudomonas fluorescens Bacteriophage UFV-P2. In Genome Announc. 1 (1). DOI: 10.1128/genomeA.00006-12.

Ely, Bert; Berrios, Louis; Thomas, Quill (2022): S2B, a Temperate Bacteriophage That Infects Caulobacter Crescentus Strain CB15. In Curr Microbiol 79 (4), p. 98. DOI: 10.1007/s00284-022-027994.

Enav, Hagay; Béjà, Oded; Mandel-Gutfreund, Yael (2012): Cyanophage tRNAs may have a role in cross-infectivity of oceanic Prochlorococcus and Synechococcus hosts. In ISME J 6 (3), pp. 619-628. DOI: 10.1038/ismej.2011.146.

Engelhardt, Tim; Sahlberg, Monika; Cypionka, Heribert; Engelen, Bert (2011): Induction of prophages from deep-subseafloor bacteria. In Environmental microbiology reports 3 (4), pp. 459-465. DOI: 10.1111/j.1758-2229.2010.00232.x.

Erdrich, Sebastian H.; Sharma, Vikas; Schurr, Ulrich; Arsova, Borjana; Frunzke, Julia (2022): Isolation of Novel Xanthomonas Phages Infecting the Plant Pathogens X. translucens and X. campestris. In Viruses 14 (7). DOI: 10.3390/v14071449.

Esakkiraj, Palanichamy; Usha, Rajamony; Palavesam, Arunachalam; Immanuel, Grasian (2012): Solidstate production of esterase using fish processing wastes by Bacillus altitudinis AP-MSU. In Food and Bioproducts Processing 90 (3), pp. 370-376. DOI: 10.1016/j.fbp.2011.12.008.

Escarmis, Cristina; Garcia, Pedro; Mendez, Enrique; López, Rubens; Salas, Margarita; García, Ernesto (1985): Inverted terminal repeats and terminal proteins of the genomes of pneumococcal phages. In Gene 36 (3), pp. 341-348. DOI: 10.1016/0378-1119(85)90189-1.

Essoh, Christiane; Vernadet, Jean-Philippe; Vergnaud, Gilles; Coulibaly, Adama; Kakou-N'Douba, Adele; N'Guetta, Assavo S-P et al. (2020): Characterization of sixteen Achromobacter xylosoxidans phages from Abidjan, Cote d'Ivoire, isolated on a single clinical strain. In Archives of virology 165 (3), pp. 725-730. DOI: 10.1007/s00705-019-04511-7.

Fancello, Laura; Trape, Sébatien; Robert, Catherine; Boyer, Mickaël; Popgeorgiev, Nikolay; Raoult, Didier; Desnues, Christelle (2013): Viruses in the desert: a metagenomic survey of viral communities in four perennial ponds of the Mauritanian Sahara. In ISME J 7 (2), pp. 359-369. DOI: 10.1038/ismej.2012.101.

Farlow, Jason; Freyberger, Helen R.; He, Yunxiu; Ward, Amanda M.; Rutvisuttinunt, Wiriya; Li, Tao et al. (2020): Complete Genome Sequences of 10 Phages Lytic against Multidrug-Resistant Pseudomonas aeruginosa. In Microbiol Resour Announc 9 (29). DOI: 10.1128/MRA.00503-20.

Farris, James S. (1972): Estimating phylogenetic trees from distance matrices. In The American Naturalist 106 (951), pp. 645-668. DOI: 10.1086/282802.

Feiner, Ron; Argov, Tal; Rabinovich, Lev; Sigal, Nadejda; Borovok, Ilya; Herskovits, Anat A. (2015): A new perspective on lysogeny: prophages as active regulatory switches of bacteria. In Nat Rev Micro 13 (10), pp. 641-650. DOI: $10.1038 /$ nrmicro3527.

Fenner, F. (1976): The Classification and Nomenclature of Viruses. In Journal of General Virology 31 (3), pp. 463-470. DOI: 10.1099/0022-1317-31-3-463.

Fiebig, Anne; Pradella, Silke; Petersen, Jörn; Päuker, Orsola; Michael, Victoria; Lünsdorf, Heinrich et al. (2013): Genome of the R-body producing marine alphaproteobacterium Labrenzia alexandrii type strain (DFL-11(T)). In Standards in genomic sciences 7 (3), pp. 413-426. DOI: 10.4056/sigs. 3456959.

Finn, Robert D.; Attwood, Teresa K.; Babbitt, Patricia C.; Bateman, Alex; Bork, Peer; Bridge, Alan J. et al. (2017): InterPro in 2017-beyond protein family and domain annotations. In Nucleic acids research 45 (D1), D190-D199. DOI: 10.1093/nar/gkw1 107.

Fogg, Paul C. M.; Hynes, Alexander P.; Digby, Elizabeth; Lang, Andrew S.; Beatty, J. Thomas (2011): Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003. In Virology 421 (2), pp. 211-221. DOI: 10.1016/j.virol.2011.09.028.

Ford, Brian E.; Sun, Bruce; Carpino, James; Chapler, Elizabeth S.; Ching, Jane; Choi, Yoon et al. (2014): Frequency and fitness consequences of bacteriophage $\varphi 6$ host range mutations. In PloS one 9 (11), e113078. DOI: 10.1371/journal.pone. 0113078.

Fu, Chaoqun; Zhao, Qin; Li, Zhiying; Wang, Yongxia; Zhang, Shiying; Lai, Yonghong et al. (2017): Complete genome sequence of Halomonas ventosae virulent halovirus QHHSV-1. In Arch Virol 162 (10), pp. 3215-3219. DOI: 10.1007/s00705-017-3415-0.

Fuhrman, J. A. (1999): Marine viruses and their biogeochemical and ecological effects. In Nature 399 (6736), pp. 541-548. DOI: 10.1038/21119.

Fukui, Youhei; Abe, Mahiko; Kobayashi, Masahiro; Satomi, Masataka (2015): Sulfitobacter pacificus sp. nov., isolated from the red alga Pyropia yezoensis. In Antonie van Leeuwenhoek 107 (5), pp. 11551163. DOI: 10.1007/s10482-015-0407-5.

Gantzer, Christophe; Henny, Joseph; Schwartzbrod, Louis (2002): Bacteroides fragilis and Escherichia coli bacteriophages in human faeces. In International journal of hygiene and environmental health 205 (4), pp. 325-328. DOI: 10.1078/1438-4639-00152.

Gao, Linyi; Altae-Tran, Han; Böhning, Francisca; Makarova, Kira S.; Segel, Michael; Schmid-Burgk, Jonathan L. et al. (2020): Diverse enzymatic activities mediate antiviral immunity in prokaryotes. In Science (New York, N.Y.) 369 (6507), pp. 1077-1084. DOI: 10.1126/science.aba0372.

García-Alcalde, Fernando; Okonechnikov, Konstantin; Carbonell, José; Cruz, Luis M.; Götz, Stefan; Tarazona, Sonia et al. (2012): Qualimap: evaluating next-generation sequencing alignment data. In Bioinformatics (Oxford, England) 28 (20), pp. 2678-2679. DOI: 10.1093/bioinformatics/bts503.

Garneau, Julian R.; Depardieu, Florence; Fortier, Louis-Charles; Bikard, David; Monot, Marc (2017): PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. In Scientific reports 7 (1), p. 8292. DOI: 10.1038/s41598-017-079105.

Gerdts, Gunnar; Wichels, Antje; Dpke, Hilke; Klings, Karl-Walter; Gunkel, Wilfried; Schtt, Christian (2004): 40-year long-term study of microbial parameters near Helgoland (German Bight, North Sea): historical view and future perspectives. In Helgol Mar Res 58 (4), pp. 230-242. DOI: 10.1007/s10152-004-0189-z.

Giebel, Helge-Ansgar; Kalhoefer, Daniela; Lemke, Andreas; Thole, Sebastian; Gahl-Janssen, Renate; Simon, Meinhard; Brinkhoff, Thorsten (2011): Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. In The ISME journal 5 (1), pp. 8-19. DOI: 10.1038/ismej.2010.87.

Glukhov, Anatoly S.; Krutilina, Antonina I.; Shlyapnikov, Michael G.; Severinov, Konstantin; Lavysh, Daria; Kochetkov, Vladimir V. et al. (2012): Genomic analysis of Pseudomonas putida phage tf with localized single-strand DNA interruptions. In PloS one 7 (12), e51163. DOI: 10.1371/journal.pone. 0051163 .

Gobler, Christopher J. (2020): Climate Change and Harmful Algal Blooms: Insights and perspective. In Harmful algae 91, p. 101731. DOI: 10.1016/j.hal.2019.101731.

Göker, Markus; García-Blázquez, Gema; Voglmayr, Hermann; Tellería, M. Teresa; Martín, María P. (2009): Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. In PloS one 4 (7), e6319. DOI: 10.1371/journal.pone. 0006319.

Göller, Pauline C.; Elsener, Tabea; Lorgé, Dominic; Radulovic, Natasa; Bernardi, Viona; Naumann, Annika et al. (2021): Multi-species host range of staphylococcal phages isolated from wastewater. In Nat Commun 12 (1), p. 6965. DOI: 10.1038/s41467-021-27037-6.

Golomidova, Alla K.; Kulikov, Eugene E.; Prokhorov, Nikolai S.; Guerrero-Ferreira, Ricardo C.; Knirel, Yuriy A.; Kostryukova, Elena S. et al. (2016): Branched lateral tail fiber organization in T5-like bacteriophages DT57C and DT571/2 is revealed by genetic and functional analysis. In Viruses 8 (1). DOI: 10.3390/v8010026.

Goodridge, Lawrence D.; Bisha, Bledar (2011): Phage-based biocontrol strategies to reduce foodborne pathogens in foods. In Bacteriophage 1 (3), pp. 130-137. DOI: 10.4161/bact.1.3.17629.

Gorbalenya, Alexander E.; Krupovic, Mart; Mushegian, Arcady; Kropinski, Andrew M.; Siddell, Stuart G.; Varsani, Arvind et al. (2020): The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. In Nat Microbiol 5 (5), pp. 668-674. DOI: 10.1038/s41564-020-0709-x.

Gosink, J. J.; Herwig, R. P.; Staley, J. T. (1997): Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., Nonpigmented, Psychrophilic Gas Vacuolate Bacteria from Polar Sea Ice and Water. In Systematic and applied microbiology 20 (3), pp. 356-365. DOI: 10.1016/S0723-2020(97)80003-3.

Grazziotin, Ana Laura; Koonin, Eugene V.; Kristensen, David M. (2017): Prokaryotic virus orthologous groups (pVOGs). A resource for comparative genomics and protein family annotation. In Nucleic acids research 45, D491-D498. DOI: 10.1093/nar/gkw975.

Green, D. H.; Hart, M. C.; Blackburn, S. I.; Bolch, C. J.S. (2010): Bacterial diversity of Gymnodinium catenatum and its relationship to dinoflagellate toxicity. In Aquat. Microb. Ecol. 61 (1), pp. 73-87. DOI: 10.3354/ame01437.

Gregory, Ann C.; Zayed, Ahmed A.; Conceição-Neto, Nádia; Temperton, Ben; Bolduc, Ben; Alberti, Adriana et al. (2019): Marine DNA viral macro- and microdiversity from Pole to Pole. In Cell. DOI: 10.1016/j.cell.2019.03.040.

Gross, Miryam; Marianovsky, Irina; Glaser, Gad (2006): MazG -- a regulator of programmed cell death in Escherichia coli. In Molecular microbiology 59 (2), pp. 590-601. DOI: 10.1111/j.13652958.2005.04956.x.

Guannel, M. L.; Horner-Devine, M. C.; Rocap, G. (2011): Bacterial community composition differs with species and toxigenicity of the diatom Pseudo-nitzschia. In Aquat. Microb. Ecol. 64 (2), pp. 117133. DOI: 10.3354/ame01513.

Gunathilake, K. M. Damitha; Tremblay, Denise M.; Plante, Pier-Luc; Jensen, Ellen C.; Nickerson, Kenneth W.; Moineau, Sylvain (2022): Genome Sequence of SN1, a Bacteriophage That Infects

Sphaerotilus natans and Pseudomonas aeruginosa. In Microbiol Resour Announc 11 (9), e0047822. DOI: 10.1128/mra.00478-22.

Guo, Fei; Liu, Zheng; Fang, Ping-An; Zhang, Qinfen; Wright, Elena T.; Wu, Weimin et al. (2014): Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions. In Proceedings of the National Academy of Sciences of the United States of America 111 (43), E4606-14. DOI: 10.1073/pnas. 1407020111.

Gutiérrez, Diana; Martín-Platero, Antonio M.; Rodríguez, Ana; Martínez-Bueno, Manuel; García, Pilar; Martínez, Beatriz (2011): Typing of bacteriophages by randomly amplified polymorphic DNA (RAPD)PCR to assess genetic diversity. In FEMS Microbiology Letters 322. DOI: 10.1111/j.15746968.2011.02342.x.

Guy, Lionel; Roat Kultima, Jens; Andersson, Siv G. E. (2010): genoPlotR: comparative gene and genome visualization in R. In Bioinformatics 26 (18), pp. 2334-2335. DOI: 10.1093/bioinformatics/btq413.

Haaber, Jakob; Rousseau, Geneviève M.; Hammer, Karin; Moineau, Sylvain (2009): Identification and characterization of the phage gene sav, involved in sensitivity to the lactococcal abortive infection mechanism AbiV. In Appl. Environ. Microbiol. 75 (8), pp. 2484-2494. DOI: 10.1128/AEM.02093-08.

Hahnke, Richard L.; Bennke, Christin M.; Fuchs, Bernhard M.; Mann, Alexander J.; Rhiel, Erhard; Teeling, Hanno et al. (2015): Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the North Sea. In Environmental microbiology 17 (10), pp. 3515-3526. DOI: 10.1111/1462-2920.12479.

Hahnke, Richard L.; Harder, Jens (2013): Phylogenetic diversity of Flavobacteria isolated from the North Sea on solid media. In Systematic and applied microbiology 36 (7), pp. 497-504. DOI: 10.1016/j.syapm.2013.06.006.

Hahnke, Sarah; Brock, Nelson L.; Zell, Claudia; Simon, Meinhard; Dickschat, Jeroen S.; Brinkhoff, Thorsten (2013): Physiological diversity of Roseobacter clade bacteria co-occurring during a phytoplankton bloom in the North Sea. In Systematic and applied microbiology 36 (1), pp. 39-48. DOI: 10.1016/j.syapm.2012.09.004.

Hammerl, Jens A.; Göllner, Cornelia; Al Dahouk, Sascha; Nöckler, Karsten; Reetz, Jochen; Hertwig, Stefan (2016): Analysis of the First Temperate Broad Host Range Brucellaphage (BiPBO1) Isolated from B. inopinata. In Frontiers in microbiology 7, p. 24. DOI: 10.3389/fmicb.2016.00024.

Hampton, Hannah G.; Watson, Bridget N. J.; Fineran, Peter C. (2020): The arms race between bacteria and their phage foes. In Nature 577 (7790), pp. 327-336. DOI: 10.1038/s41586-019-1894-8.

Han, Pengjun; Hu, Yunjia; An, Xiaoping; Song, Lihua; Fan, Huahao; Tong, Yigang (2021): Biochemical and genomic characterization of a novel bacteriophage BUCT555 lysing Stenotrophomonas maltophilia. In Virus research 301, p. 198465. DOI: 10.1016/j.virusres.2021.198465.

Han, Ying; Zhang, Yan; Zhao, Junyi; Cheng, Kai (2017): Cyanosiphovirus S-ESS1 Infecting Marine Synechococcus (Chroococcales) Almost Shows No Genetic Relationship to Known Cyanosiphoviruses. In gab. DOI: 10.5376/gab.2017.08.0002.

Hansen, T. A.; Veldkamp, H. (1973): Rhodopseudomonas sulfidophila, nov. spec., a new species of the purple nonsulfur bacteria. In Archiv fur Mikrobiologie 92 (1), pp. 45-58. DOI: 10.1007/BF00409510.

Hardies, Stephen C.; Comeau, André M.; Serwer, Philip; Suttle, Curtis A. (2003): The complete sequence of marine bacteriophage VpV 262 infecting vibrio parahaemolyticus indicates that an ancestral
component of a T7 viral supergroup is widespread in the marine environment. In Virology 310 (2), pp. 359-371. DOI: 10.1016/S0042-6822(03)00172-7.

Hardies, Stephen C.; Hwang, Yeon J.; Hwang, Chung Y.; Jang, Gwang I.; Cho, Byung C. (2013): Morphology, physiological characteristics, and complete sequence of marine bacteriophage $\phi$ RIO-1 infecting Pseudoalteromonas marina. In Journal of virology 87 (16), pp. 9189-9198. DOI: 10.1128/JVI.01521-13.

Hardies, Stephen C.; Thomas, Julie A.; Black, Lindsay; Weintraub, Susan T.; Hwang, Chung Y.; Cho, Byung C. (2016): Identification of structural and morphogenesis genes of Pseudoalteromonas phage $\varphi$ RIO-1 and placement within the evolutionary history of Podoviridae. In Virology 489, pp. 116-127. DOI: 10.1016/j.virol.2015.12.005.

Hardy, Aël; Kever, Larissa; Frunzke, Julia (2023): Antiphage small molecules produced by bacteria beyond protein-mediated defenses. In Trends in microbiology 31 (1), pp. 92-106. DOI: 10.1016/j.tim.2022.08.001.

Hassan, Yousef I.; Lepp, Dion; Li, Xiu-Zhen; Zhou, Ting (2015): Insights into the Hydrocarbon Tolerance of Two Devosia Isolates, D. chinhatensis Strain IPL18T and D. geojensis Strain BD-c194T, via Whole-Genome Sequence Analysis. In Genome announcements 3 (4). DOI: 10.1128/genomeA.00890-15.

Hayashi, Wataru; Iimura, Masaki; Horiuchi, Kazuki; Arai, Eriko; Natori, Tatsuya; Suzuki, Shin et al. (2021): Occurrence of blaNDM-1 in a Clinical Isolate of Acinetobacter lwoffii in Japan: Comparison of blaNDM-1-Harboring Plasmids between A. lwoffii and A. pittii Originated from a Hospital Sink. In Japanese journal of infectious diseases 74 (3), pp. 252-254. DOI: 10.7883/yoken.JJID.2020.806.

Heinrichs, Mara E.; Tebbe, Dennis A.; Wemheuer, Bernd; Niggemann, Jutta; Engelen, Bert (2020): Impact of Viral Lysis on the Composition of Bacterial Communities and Dissolved Organic Matter in Deep-Sea Sediments. In Viruses 12 (9). DOI: 10.3390/v12090922.

Heins, Anneke; Amann, Rudolf I.; Harder, Jens (2021): Cultivation of particle-associated heterotrophic bacteria during a spring phytoplankton bloom in the North Sea. In Systematic and applied microbiology 44 (5), p. 126232. DOI: 10.1016/j.syapm.2021.126232.

Heins, Anneke; Harder, Jens (2022): Particle-associated bacteria in seawater dominate the colonyforming microbiome on ZoBell marine agar. In FEMS microbiology ecology 99 (1). DOI: 10.1093/femsec/fiac151.

Herlemann, Daniel Pr; Labrenz, Matthias; Jürgens, Klaus; Bertilsson, Stefan; Waniek, Joanna J.; Andersson, Anders F. (2011): Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. In ISME J 5 (10), pp. 1571-1579. DOI: 10.1038/ismej.2011.41.

Heyerhoff, Benedikt; Heinrichs, Mara Elena; Bunse, Carina; Dlugosch, Leon; Böttcher, Lea; Niggemann, Jutta et al. (in prep.): Bacterioplankton-associated viruses respond in switching infection strategies during a spring bloom mesocosm experiment.

Hille, Frank; Richter, Hagen; Wong, Shi Pey; Bratovič, Majda; Ressel, Sarah; Charpentier, Emmanuelle (2018): The Biology of CRISPR-Cas: Backward and Forward. In Cell 172 (6), pp. 1239-1259. DOI: 10.1016/j.cell.2017.11.032.

Hiraishi, A.; Ueda, Y. (1995): Isolation and characterization of Rhodovulum strictum sp. nov. and some other purple nonsulfur bacteria from colored blooms in tidal and seawater pools. In International journal of systematic bacteriology 45 (2), pp. 319-326. DOI: 10.1099/00207713-45-2-319.

Holmfeldt, Karin; Middelboe, Mathias; Nybroe, Ole; Riemann, Lasse (2007): Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. In Applied and environmental microbiology 73 (21), pp. 6730-6739. DOI: 10.1128/AEM.01399-07.

Holmfeldt, Karin; Solonenko, Natalie; Shah, Manesh; Corrier, Kristen; Riemann, Lasse; Verberkmoes, Nathan C.; Sullivan, Matthew B. (2013): Twelve previously unknown phage genera are ubiquitous in global oceans. In Proceedings of the National Academy of Sciences of the United States of America 110 (31), pp. 12798-12803. DOI: 10.1073/pnas. 1305956110.

Hoshina, Ryo; Shimizu, Mayumi; Makino, Yoichi; Haruyama, Yoshihiro; Ueda, Shin-ichiro; Kato, Yutaka et al. (2010): Isolation and characterization of a virus (CvV-BW1) that infects symbiotic algae of Paramecium bursaria in Lake Biwa, Japan. In Virology journal 7, p. 222. DOI: 10.1186/1743-422X-7-222.

Howard-Varona, Cristina; Hargreaves, Katherine R.; Abedon, Stephen T.; Sullivan, Matthew B. (2017): Lysogeny in nature: mechanisms, impact and ecology of temperate phages. In The ISME journal 11 (7), pp. 1511-1520. DOI: 10.1038/ismej.2017.16.

Hu, Bo; Margolin, William; Molineux, Ian J.; Liu, Jun (2013): The bacteriophage T7 virion undergoes extensive structural remodeling during infection. In Science (New York, N.Y.) 339 (6119), pp. 576-579. DOI: $10.1126 /$ science. 1231887.

Huang, Sijun; Zhang, Yongyu; Chen, Feng; Jiao, Nianzhi (2011): Complete genome sequence of a marine roseophage provides evidence into the evolution of gene transfer agents in alphaproteobacteria. In Virology journal 8, p. 124. DOI: 10.1186/1743-422X-8-124.

Hunt, Dana E.; Klepac-Ceraj, Vanja; Acinas, Silvia G.; Gautier, Clement; Bertilsson, Stefan; Polz, Martin F. (2006): Evaluation of 23 S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. In Applied and environmental microbiology 72 (3), pp.2221-2225. DOI: 10.1128/AEM.72.3.2221-2225.2006.

Hurwitz, Bonnie L.; Hallam, Steven J.; Sullivan, Matthew B. (2013): Metabolic reprogramming by viruses in the sunlit and dark ocean. In Genome biology 14 (11), R123. DOI: 10.1186/gb-2013-14-11r123.

Hussain, Fatima Aysha; Dubert, Javier; Elsherbini, Joseph; Murphy, Mikayla; VanInsberghe, David; Arevalo, Philip et al. (2021): Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. In Science (New York, N.Y.) 374 (6566), pp. 488-492. DOI: 10.1126/science.abb1083.

Hutinet, Geoffrey; Kot, Witold; Cui, Liang; Hillebrand, Roman; Balamkundu, Seetharamsingh; Gnanakalai, Shanmugavel et al. (2019): 7-Deazaguanine modifications protect phage DNA from host restriction systems. In Nature communications 10 (1), p. 5442. DOI: 10.1038/s41467-019-13384-y.

Hutinet, Geoffrey; Swarjo, Manal A.; Crécy-Lagard, Valérie de (2017): Deazaguanine derivatives, examples of crosstalk between RNA and DNA modification pathways. In RNA biology 14 (9), pp. 11751184. DOI: 10.1080/15476286.2016.1265200.

Hwang, Chung Y.; Cho, Yirang; Jang, Gwang I.; Cho, Byung C.; Hardies, Stephen C. (2020): Complete Genome Sequence of Sulfitobacter Phage $\phi G T 1$, Isolated from a Tidal Flat. In Microbiol Resour Announc 9 (33). DOI: 10.1128/MRA.00779-20.

Hwang, Jinik; Park, So Yun; Park, Mirye; Lee, Sukchan; Jo, Yeonhwa; Cho, Won Kyong; Lee, TaekKyun (2016): Metagenomic characterization of viral communities in Goseong Bay, Korea. In Ocean Sci. J. 51 (4), pp. 599-612. DOI: 10.1007/s12601-016-0051-7.

Hwang, Jinik; Park, So Yun; Park, Mirye; Lee, Sukchan; Lee, Taek-Kyun (2017): Seasonal dynamics and metagenomic characterization of marine viruses in Goseong Bay, Korea. In PloS one 12 (1), pp. e0169841. DOI: 10.1371/journal.pone. 0169841 .

Hyman, Paul; Abedon, Stephen T. (2010): Chapter 7 - Bacteriophage Host Range and Bacterial Resistance. In : Advances in Applied Microbiology, vol. 70: Academic Press, pp. 217-248. Available online at https://www.sciencedirect.com/science/article/pii/S0065216410700071.

Hynes, Alexander (2014): The Phages and Phage-like Elements of Rhodobacter capsulatus. [doctoral thesis]. Available online at https://research.library.mun.ca/6296/1/Hynes_Alexander_Pierre_2013_112013_PhD.pdf.pdf, checked on 11/17/2022.

Ibrahim, Mohamed A.; Griko, Natalya; Junker, Matthew; Bulla, Lee A. (2010): Bacillus thuringiensis: a genomics and proteomics perspective. In Bioengineered bugs 1 (1), pp.31-50. DOI: 10.4161/bbug.1.1.10519.

Illumina, Inc (2015): Nextera XT Library Prep: Tips and Troubleshooting. Available online at https://support.illumina.com/content/dam/illumina-
support/documents/documentation/chemistry_documentation/samplepreps_nextera/nextera-xt/nextera-xt-troubleshooting-guide.pdf.

Inoue, K.; Sugiyama, K.; Kosako, Y.; Sakazaki, R.; Yamai, S. (2000): Enterobacter cowaniisp. nov., a new species of the family Enterobacteriaceae. In Curr Microbiol 41 (6), pp.417-420. DOI: 10.1007/s002840010160.

Iranzo, Jaime; Krupovic, Mart; Koonin, Eugene V. (2016): The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing. In mBio 7 (4). DOI: 10.1128/mBio.00978-16.

Ivanova, Elena P.; Gorshkova, Nataliya M.; Sawabe, Tomoo; Zhukova, Natalia V.; Hayashi, Karin; Kurilenko, Valerie V. et al. (2004): Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera marina). In International journal of systematic and evolutionary microbiology 54 (Pt 2), pp. 475-480. DOI: 10.1099/ijs.0.02654-0.

Jackson, C. A.; Couger, M. B.; Prabhakaran, M.; Ramachandriya, K. D.; Canaan, P.; Fathepure, B. Z. (2017): Isolation and characterization of Rhizobium sp. strain YS-1r that degrades lignin in plant biomass. In J Appl Microbiol 122 (4), pp. 940-952. DOI: 10.1111/jam. 13401.

Jain, Chirag; Rodriguez, Luis M.; Phillippy, Adam M.; Konstantinos, T.; Aluru, Srinivas (2018): High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.

Jeong, Hae Jin; Du Yoo, Yeong; Kim, Jae Seong; Seong, Kyeong Ah; Kang, Nam Seon; Kim, Tae Hoon (2010): Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. In Ocean Science Journal 45 (2), pp. 65-91. DOI: 10.1007/s12601-010-0007-2.

Ji, Jianda; Zhang, Rui; Jiao, Nianzhi (2015): Complete genome sequence of Roseophage vB_DshP-R1, which infects Dinoroseobacter shibae DFL12. In Stand in Genomic Sci 10, p. 6. DOI: 10.1186/1944-3277-10-6.

Jiang, Jie; Lan, Guanda; Li, Jinghua; Yu, Jun; Huang, Honglan; Sun, Yanbo et al. (2022): Characterization and Genomic Analysis of JC01, a Novel unclassified Bacteriophage Infecting Cronobacter sakazakii. Available online at https://assets.researchsquare.com/files/rs-1876797/v1/e2ef476d-f988-4e69-9f04-82b9202c78e4.pdf?c=1659021933, checked on 11/24/2022.

Jin, Myeong Seo; Kim, Kyung Hyun; Baek, Ju Hye; Kim, Jeong Min; Jeon, Che Ok (2023): Octadecabacter algicola sp. nov. and Octadecabacter dasysiphoniae sp. nov., isolated from a marine red alga and emended description of the genus Octadecabacter. In International journal of systematic and evolutionary microbiology 73 (1). DOI: 10.1099/ijsem.0.005664.

Johnson, Matthew C.; Sena-Velez, Marta; Washburn, Brian K.; Platt, Georgia N.; Lu, Stephen; Brewer, Tess E. et al. (2017): Structure, proteome and genome of Sinorhizobium meliloti phage ФM5: A virus with LUZ24-like morphology and a highly mosaic genome. In Journal of Structural Biology 200 (3), pp. 343-359. DOI: 10.1016/j.jsb.2017.08.005.

Jones, Philip; Binns, David; Chang, Hsin-Yu; Fraser, Matthew; Li, Weizhong; McAnulla, Craig et al. (2014): InterProScan 5: genome-scale protein function classification. In Bioinformatics (Oxford, England) 30 (9), pp. 1236-1240. DOI: 10.1093/bioinformatics/btu031.

Joung, Yochan; Kim, Haneul; Jang, Taeyong; Ahn, Tae-Seok; Joh, Kiseong (2011): Gramella jeungdoensis sp. nov., isolated from a solar saltern in Korea. In J Microbiol. 49 (6), pp. 1022-1026. DOI: 10.1007/s12275-011-1192-0.

Jourda, Cyril; Santini, Sébastien; Rocher, Caroline; Le Bivic, André; Claverie, Jean-Michel (2015): Draft Genome Sequence of an Alphaproteobacterium Associated with the Mediterranean Sponge Oscarella lobularis. In Genome announcements 3 (5). DOI: 10.1128/genomeA.00977-15.

Juhala, R. J.; Ford, M. E.; Duda, R. L.; Youlton, A.; Hatfull, G. F.; Hendrix, R. W. (2000): Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. In Journal of molecular biology 299 (1), pp. 27-51. DOI: 10.1006/jmbi.2000.3729.

Kabwe, Mwila; Brown, Teagan; Speirs, Lachlan; Ku, Heng; Leach, Michael; Chan, Hiu Tat et al. (2020): Novel Bacteriophages Capable of Disrupting Biofilms From Clinical Strains of Aeromonas hydrophila. In Frontiers in microbiology 11, p. 194. DOI: 10.3389/fmicb.2020.00194.

Kala, Smriti; Cumby, Nichole; Sadowski, Paul D.; Hyder, Batool Zafar; Kanelis, Voula; Davidson, Alan R.; Maxwell, Karen L. (2014): HNH proteins are a widespread component of phage DNA packaging machines. In PNAS 111 (16), pp. 6022-6027. DOI: 10.1073/pnas. 1320952111.

Kaliniene, Laura; Noreika, Algirdas; Kaupinis, Algirdas; Valius, Mindaugas; Jurgelaitis, Edvinas; Lazutka, Justas et al. (2021): Analysis of a Novel Bacteriophage vB_AchrS_AchV4 Highlights the Diversity of Achromobacter Viruses. In Viruses 13 (3). DOI: 10.3390/v13030374.

Kang, Ilnam; Jang, Hani; Oh, Hyun-Myung; Cho, Jang-Cheon (2012): Complete genome sequence of Celeribacter bacteriophage P12053L. In Journal of virology 86 (15), pp. 8339-8340. DOI: 10.1128/JVI.01153-12.

Kang, Ilnam; Oh, Hyun-Myung; Kang, Dongmin; Cho, Jang-Cheon (2013): Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans. In Proceedings of the National Academy of Sciences 110. DOI: 10.1073/pnas. 1219930110.

Kanukollu, Saranya; Wemheuer, Bernd; Herber, Janina; Billerbeck, Sara; Lucas, Judith; Daniel, Rolf et al. (2016): Distinct compositions of free-living, particle-associated and benthic communities of the

Roseobacter group in the North Sea. In FEMS microbiology ecology 92 (1). DOI: 10.1093/femsec/fiv145.

Kar, Priyanka; Das, Tridip Kr; Ghosh, Smita; Pradhan, Shrabani; Chakrabarti, Sudipta; Mondal, Keshab Ch; Ghosh, Kuntal (2022): Characterization of a Vibrio-infecting bacteriophage, VPMCC5, and proposal of its incorporation as a new genus in the Zobellviridae family. In Virus research 321, p. 198904. DOI: 10.1016/j.virusres.2022.198904.

Katoh, Kazutaka; Standley, Daron M. (2013): MAFFT multiple sequence alignment software version 7: improvements in performance and usability. In Mol Biol Evol 30 (4), pp. 772-780. DOI: 10.1093/molbev/mst010.

Kauffman, Kathryn M.; Chang, William K.; Brown, Julia M.; Hussain, Fatima A.; Yang, Joy Y.; Polz, Martin F.; Kelly, Libusha (2021): Resolving the structure of phage-bacteria interactions in the context of natural diversity. DOI: 10.1101/2021.06.27.449121.

Kauffman, Kathryn M.; Hussain, Fatima A.; Yang, Joy; Arevalo, Philip; Brown, Julia M.; Chang, William K. et al. (2018): A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. In Nature. DOI: 10.1038/nature25474.

Kauffman, Kathryn M.; Polz, Martin F. (2018): Streamlining standard bacteriophage methods for higher throughput. In MethodsX 5, pp. 159-172. DOI: 10.1016/j.mex.2018.01.007.

Kazaks, Andris; Dislers, Andris; Lipowsky, Gerd; Nikolajeva, Vizma; Tars, Kaspars (2012): Complete genome sequence of the Enterobacter cancerogenus bacteriophage Enc34. In J. Virol. 86 (20), pp. 11403-11404. DOI: 10.1128/JVI.01954-12.

Kazantseva, Olesya A.; Buzikov, Rustam M.; Pilipchuk, Tatsiana A.; Valentovich, Leonid N.; Kazantsev, Andrey N.; Kalamiyets, Emilia I.; Shadrin, Andrey M. (2021): The Bacteriophage Pf-10-A Component of the Biopesticide "Multiphage" Used to Control Agricultural Crop Diseases Caused by Pseudomonas syringae. In Viruses 14 (1). DOI: 10.3390/v14010042.

Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane et al. (2012): Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. In Bioinformatics (Oxford, England) 28 (12), pp. 16471649. DOI: 10.1093/bioinformatics/bts199.

Keen, Eric C. (2014): Tradeoffs in bacteriophage life histories. In Bacteriophage 4 (1), e28365. DOI: 10.4161/bact. 28365.

Kemp, Priscilla; Garcia, L. René; Molineux, Ian J. (2005): Changes in bacteriophage T7 virion structure at the initiation of infection. In Virology 340 (2), pp. 307-317. DOI: 10.1016/j.virol.2005.06.039.

Kerimoglu, Onur; Hintz, Nils H.; Lücken, Leonhard; Blasius, Bernd; Böttcher, Lea; Bunse, Carina et al. (2022): Growth, organic matter release, aggregation and recycling during a diatom bloom: A modelbased analysis of a mesocosm experiment.

Kiening, Michael; Ochsenreiter, Roman; Hellinger, Hans-Jörg; Rattei, Thomas; Hofacker, Ivo; Frishman, Dmitrij (2019): Conserved Secondary Structures in Viral mRNAs. In Viruses 11 (5). DOI: 10.3390/v11050401.

Kim, Sang Guen; Roh, Eunjung; Park, Jungkum; Giri, Sib Sankar; Kwon, Jun; Kim, Sang Wha et al. (2021): The Bacteriophage pEp_SNUABM_08 Is a Novel Singleton Siphovirus with High Host Specificity for Erwinia pyrifoliae. In Viruses 13 (7). DOI: 10.3390/v13071231.

Kim, Yiseul; Aw, Tiong Gim; Rose, Joan B. (2016): Transporting ocean viromes: Invasion of the aquatic biosphere. In PloS one 11 (4), e0152671. DOI: 10.1371/journal.pone. 0152671.

Kloos, W. E.; Schleifer, K. H.; Smith, R. F. (1976): Characterization of Staphylococcus sciuri sp.nov. and Its Subspecies. In International journal of systematic bacteriology 26 (1), pp. 22-37. DOI: 10.1099/00207713-26-1-22.

Klumpp, Jochen; Dunne, Matthew; Loessner, Martin J. (2023): A perfect fit: Bacteriophage receptorbinding proteins for diagnostic and therapeutic applications. In Current opinion in microbiology 71, p. 102240. DOI: 10.1016/j.mib.2022.102240.

Knowles, B.; Silveira, C. B.; Bailey, B. A.; Barott, K.; Cantu, V. A.; Cobián-Güemes, A. G. et al. (2016): Lytic to temperate switching of viral communities. In Nature 531 (7595), pp. 466-470. DOI: 10.1038/nature 17193.

Kokjohn, T. A.; Sayler, G. S. (1991): Attachment and replication of Pseudomonas aeruginosa bacteriophages under conditions simulating aquatic environments. In Journal of general microbiology 137 (3), pp. 661-666. DOI: 10.1099/00221287-137-3-661.

Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart; Varsani, Arvind; Wolf, Yuri I.; Yutin, Natalya et al. (2020a): Global Organization and Proposed Megataxonomy of the Virus World. In Microbiol. Mol. Biol. Rev. 84 (2). DOI: 10.1128/MMBR.00061-19.

Koonin, Eugene V.; Krupovic, Mart; Dolja, Valerian V. (2022): The global virome: How much diversity and how many independent origins? In Environ Microbiol. DOI: 10.1111/1462-2920.16207.

Koonin, Eugene V.; Makarova, Kira S.; Wolf, Yuri I.; Krupovic, Mart (2020b): Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. In Nat Rev Genet 21 (2), pp. 119-131. DOI: 10.1038/s41576-019-0172-9.

Koonin, Eugene V.; Senkevich, Tatiana G.; Dolja, Valerian V. (2006): The ancient Virus World and evolution of cells. In Biology direct 1, p. 29. DOI: 10.1186/1745-6150-1-29.

Kropinski, Andrew; Adriaenssens, E; Tong, Yigang (2018): ICTV Taxnomy Proposal 2018.095B: To create one (1) new genus, Nanhaivirus, containing a single species in the family Siphoviridae. Available online at https://ictv.global/ictv/proposals/2018.095B.A.v1.Nanhaivirus.zip.

Kropinski, Andrew; Kuhn, Jens, H.; Adriaenssens, Evelien, M. (2016): ICTV Taxonomy proposal 2016.040a-dB: To create one (1) new genus, Rdjlvirus, including two (2) new species in the family Siphoviridae. Available online at https://ictv.global/ictv/proposals/2016.040a-dB.A.v3.Rdjlvirus.pdf.

Krüger, Karen; Chafee, Meghan; Ben Francis, T.; Glavina Del Rio, Tijana; Becher, Dörte; Schweder, Thomas et al. (2019): In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. In ISME J 13 (11), pp. 2800-2816. DOI: 10.1038/s41396-019-0476-y.

Krupovic, Mart; Forterre, Patrick (2011): Microviridae goes temperate. Microvirus-related proviruses reside in the genomes of Bacteroidetes. In PloS one 6 (5), pp.e19893. DOI: 10.1371/journal.pone. 0019893 .

Krupovic, Mart; Koonin, Eugene V. (2017): Multiple origins of viral capsid proteins from cellular ancestors. In Proceedings of the National Academy of Sciences of the United States of America 114 (12), E2401-E2410. DOI: 10.1073/pnas. 1621061114.

Kuhlisch, Constanze; Schleyer, Guy; Shahaf, Nir; Vincent, Flora; Schatz, Daniella; Vardi, Assaf (2021): Viral infection of algal blooms leaves a unique metabolic footprint on the dissolved organic matter in the ocean. In Science advances 7 (25). DOI: 10.1126/sciadv.abf4680.

Kulczyk, A. W.; Richardson, C. C. (2016): The Replication System of Bacteriophage T7. In The Enzymes 39, pp. 89-136. DOI: 10.1016/bs.enz.2016.02.001.

Kulikov, Eugene E.; Golomidova, Alla K.; Letarova, Maria A.; Kostryukova, Elena S.; Zelenin, Alexandr S.; Prokhorov, Nikolai S.; Letarov, Andrey V. (2014): Genomic sequencing and biological characteristics of a novel Escherichia coli bacteriophage 9g, a putative representative of a new Siphoviridae genus. In Viruses 6 (12), pp. 5077-5092. DOI: 10.3390/v6125077.

Kutser, Tiit (2009): Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters. In International Journal of Remote Sensing 30 (17), pp. $4401-$ 4425. DOI: 10.1080/01431160802562305.

Kutter, Elizabeth; Vos, Daniel de; Gvasalia, Guram; Alavidze, Zemphira; Gogokhia, Lasha; Kuhl, Sarah; Abedon, Stephen T. (2010): Phage therapy in clinical practice: treatment of human infections. In Current pharmaceutical biotechnology 11 (1), pp. 69-86. DOI: 10.2174/138920110790725401.

Kwan, Tony; Liu, Jing; DuBow, Michael; Gros, Philippe; Pelletier, Jerry (2006): Comparative Genomic Analysis of 18 Pseudomonas aeruginosa Bacteriophages $\dagger$. In Journal of bacteriology 188 (3), pp. $1184-$ 1187. DOI: 10.1128/JB.188.3.1184-1187.2006.

Kwon, Young-Kyung; Kim, Jennifer Jooyoun; Kim, Ji Hyung; Jeon, Seon-Mi; Ye, Bo-Ram; Jang, Jiyi et al. (2012): Draft genome sequence of the xylan-degrading marine bacterium strain S124, representing a novel species of the genus Oceanicola. In Journal of bacteriology 194 (22), p. 6325. DOI: 10.1128/JB.01614-12.

Labrie, Simon J.; Samson, Julie E.; Moineau, Sylvain (2010): Bacteriophage resistance mechanisms. In Nat Rev Micro 8 (5), pp. 317-327. DOI: 10.1038/nrmicro2315.

Lamy, D.; Obernosterer, I.; Laghdass, M.; Artigas, F.; Breton, E.; Grattepanche, J. D. et al. (2009): Temporal changes of major bacterial groups and bacterial heterotrophic activity during a Phaeocystis globosa bloom in the eastern English Channel. In Aquat. Microb. Ecol. 58, pp. 95-107. DOI: 10.3354/ame01359.

Lawson, Paul A.; Citron, Diane M.; Tyrrell, Kerin L.; Finegold, Sydney M. (2016): Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. In Anaerobe 40, pp. 95-99. DOI: 10.1016/j.anaerobe.2016.06.008.

Le, Shuai; He, Xuesong; Tan, Yinling; Huang, Guangtao; Zhang, Lin; Lux, Renate et al. (2013): Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. In PloS one 8 (7), e68562. DOI: 10.1371/journal.pone. 0068562 .

Leduc, D.; Graziani, S.; Meslet-Cladiere, L.; Sodolescu, A.; Liebl, U.; Myllykallio, H. (2004): Two distinct pathways for thymidylate (dTMP) synthesis in (hyper)thermophilic Bacteria and Archaea. In Biochm. Soc. Trans. 32 (2), pp. 231-235. DOI: 10.1042/bst0320231.

Lefort, Vincent; Desper, Richard; Gascuel, Olivier (2015): FastME 2.0: A Comprehensive, accurate, and fast distance-based phylogeny inference program. In Molecular biology and evolution 32 (10), pp. 2798-2800. DOI: $10.1093 / \mathrm{molbev} / \mathrm{msv} 150$.

Legrand, Pierre; Collins, Barry; Blangy, Stéphanie; Murphy, James; Spinelli, Silvia; Gutierrez, Carlos et al. (2016): The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules. In mBio 7 (1), e01781-15. DOI: 10.1128/mBio.01781-15.

Leiman, Petr G.; Arisaka, Fumio; van Raaij, Mark J.; Kostyuchenko, Victor A.; Aksyuk, Anastasia A.; Kanamaru, Shuji; Rossmann, Michael G. (2010): Morphogenesis of the T4 tail and tail fibers. In Virology journal 7, p. 355. DOI: 10.1186/1743-422X-7-355.

Lenk, Sabine; Moraru, Cristina; Hahnke, Sarah; Arnds, Julia; Richter, Michael; Kube, Michael et al. (2012): Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. In The ISME journal 6 (12), pp. 2178-2187. DOI: 10.1038/ismej.2012.66.

Letunic, Ivica; Bork, Peer (2016): Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. In Nucleic acids research 44 (W1), W242-5. DOI: 10.1093/nar/gkw290.

Letunic, Ivica; Bork, Peer (2021): Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. In Nucleic acids research 49 (W1), W293-W296. DOI: 10.1093/nar/gkab301.

Li, Baolian; Zhang, Si; Long, Lijuan; Huang, Sijun (2016a): Characterization and complete genome sequences of three N4-Like Roseobacter phages isolated from the South China Sea. In Current microbiology 73 (3), pp. 409-418. DOI: 10.1007/s00284-016-1071-3.

Li, Erna; Yin, Zhe; Ma, Yanyan; Li, Huan; Lin, Weishi; Wei, Xiao et al. (2016b): Identification and molecular characterization of bacteriophage phiAxp-2 of Achromobacter xylosoxidans. In Scientific reports 6 (1), p. 34300 . DOI: 10.1038/srep 34300.

Li, Mengzhe; Jin, Yanqiu; Lin, Hong; Wang, Jingxue; Jiang, Xiuping (2018): Complete Genome of a Novel Lytic Vibrio parahaemolyticus Phage VPp1 and Characterization of Its Endolysin for Antibacterial Activities. In Journal of food protection 81 (7), pp. 1117-1125. DOI: 10.4315/0362-028X.JFP-17-278.

Li, Zhao; Qu, Zhe; Zhang, Xiuming; Zhang, Xiao-Hua (2012): Lentibacter algarum gen. nov., sp. nov., isolated from coastal water during a massive green algae bloom. In International journal of systematic and evolutionary microbiology 62 (Pt 5), pp. 1042-1047. DOI: 10.1099/ijs.0.029868-0.

Liang, Kevin Y. H.; Orata, Fabini D.; Boucher, Yann F.; Case, Rebecca J. (2021): Roseobacters in a Sea of Poly- and Paraphyly: Whole Genome-Based Taxonomy of the Family Rhodobacteraceae and the Proposal for the Split of the "Roseobacter Clade" Into a Novel Family, Roseobacteraceae fam. nov. In Frontiers in microbiology 12, p. 683109. DOI: 10.3389/fmicb.2021.683109.

Liang, Yantao; Zhang, Yongyu; Zhou, Chao; Chen, Zhenghao; Yang, Suping; Yan, Changzhou; Jiao, Nianzhi (2016): Complete genome sequence of the siphovirus Roseophage RDJLФ 2 infecting Roseobacter denitrificans OCh114. In Marine genomics 25, pp. 17-19. DOI: 10.1016/j.margen.2015.10.009.

Lin, Dan; Tang, Kai; Han, Yu; Li, Chenlan; Chen, Xiaofeng (2016): Genome sequence of an inducible phage in Rhodovulum sp. P5 isolated from the shallow-sea hydrothermal system. In Marine genomics 30, pp. 93-95. DOI: 10.1016/j.margen.2016.10.002.

Lin, Shih-Yao; Hameed, Asif; Hsieh, Yu-Ting; Young, Chiu-Chung (2019): Mesorhizobium composti sp. nov., isolated from compost. In Antonie van Leeuwenhoek 112 (9), pp. 1387-1398. DOI: 10.1007/s10482-019-01270-y.

Lipski, A.; Reichert, K.; Reuter, B.; Spröer, C.; Altendorf, K. (1998): Identification of bacterial isolates from biofilters as Paracoccus alkenifer sp. nov. and Paracoccus solventivorans with emended description of Paracoccus solventivorans. In International journal of systematic bacteriology 48 Pt 2, pp. 529-536. DOI: 10.1099/00207713-48-2-529.

Lisitskaya, Lidiya; Aravin, Alexei A.; Kulbachinskiy, Andrey (2018): DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins. In Nat Commun 9 (1), p. 5165. DOI: 10.1038/s41467-018-07449-7.

Little, J. W. (2005): Lysogeny, Prophage Induction, and Lysogenic Conversion. In Matthew K. Waldor, David I. Friedman, Sankar L. Adhya (Eds.): Phages: Their Role in Bacterial Pathogenesis and Biotechnology. Washington, D.C. Available online at https://onlinelibrary.wiley.com/doi/abs/10.1128/9781555816506.ch3.

Liu, Minghsun; Deora, Rajendar; Doulatov, Sergei R.; Gingery, Mari; Eiserling, Frederick A.; Preston, Andrew et al. (2002): Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. In Science (New York, N.Y.) 295 (5562), pp. 2091-2094. DOI: 10.1126/science. 1067467.

Liu, Qingqing; Belle, Archana; Shub, David A.; Belfort, Marlene; Edgell, David R. (2003): SegG endonuclease promotes marker exclusion and mediates co-conversion from a distant cleavage site. In Journal of molecular biology 334 (1), pp. 13-23. DOI: 10.1016/j.jmb.2003.09.027.

Liu, Yang; Du, Juan; Lai, Qiliang; Dong, Chunming; Shao, Zongze (2017): Nioella sediminis sp. nov., isolated from surface sediment and emended description of the genus Nioella. In International journal of systematic and evolutionary microbiology 67 (5), pp. 1271-1274. DOI: 10.1099/ijsem.0.001798.

Lohr, Jayme E.; Chen, Feng; Hill, Russell T. (2005): Genomic analysis of bacteriophage PhiJL001: insights into its interaction with a sponge-associated alpha-proteobacterium. In Applied and environmental microbiology 71 (3), pp. 1598-1609. DOI: 10.1128/AEM.71.3.1598-1609.2005.

Lopatina, Anna; Tal, Nitzan; Sorek, Rotem (2020): Abortive Infection: Bacterial Suicide as an Antiviral Immune Strategy. In Annual review of virology 7 (1), pp. 371-384. DOI: 10.1146/annurev-virology-011620-040628.

Lopes, Anne; Tavares, Paulo; Petit, Marie-Agnès; Guérois, Raphaël; Zinn-Justin, Sophie (2014): Automated classification of tailed bacteriophages according to their neck organization. In BMC Genomics 15 (1), p. 1027. DOI: 10.1186/1471-2164-15-1027.

Lopez-Diaz, Maria; Bleriot, Ines; Pacios, Olga; Fernandez-Garcia, Laura; Blasco, Lucia; Ambroa, Anton et al. (2022): Molecular characteristics of phages located in Carbapenemase-Producing Escherichia coli clinical isolates: New Phage-Like Plasmids. DOI: 10.1101/2022.06.29.498070.

Lowe, Todd M.; Chan, Patricia P. (2016): tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. In Nucleic acids research 44 (W1), W54-7. DOI: 10.1093/nar/gkw413.

Ludwig, Wolfgang; Strunk, Oliver; Westram, Ralf; Richter, Lothar; Meier, Harald; Yadhukumar et al. (2004): ARB: a software environment for sequence data. In Nucleic acids research 32 (4), pp. 13631371. DOI: 10.1093/nar/gkh293.

Luhtanen, Anne-Mari; Eronen-Rasimus, Eeva; Oksanen, Hanna M.; Tison, Jean-Louis; Delille, Bruno; Dieckmann, Gerhard S. et al. (2018): The first known virus isolates from Antarctic sea ice have complex infection patterns. In FEMS microbiology ecology 94 (4). DOI: 10.1093/femsec/fiy028.

Lundström, K. H.; Bamford, D. H.; Palva, E. T.; Lounatmaa, K. (1979): Lipid-containing bacteriophage PR4: structure and life cycle. In The Journal of general virology 43 (3), pp. 583-592. DOI: 10.1099/0022-1317-43-3-583.

Lynch, Karlene H.; Stothard, Paul; Dennis, Jonathan J. (2012): Comparative analysis of two phenotypically-similar but genomically-distinct Burkholderia cenocepacia-specific bacteriophages. In BMC Genomics 13 (1), p. 223. DOI: 10.1186/1471-2164-13-223.

Makarova, Kira S.; Wolf, Yuri I.; Snir, Sagi; Koonin, Eugene V. (2011): Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. In Journal of bacteriology 193 (21), pp. 6039-6056. DOI: 10.1128/JB.05535-11.

Malone, Lucia M.; Warring, Suzanne L.; Jackson, Simon A.; Warnecke, Carolin; Gardner, Paul P.; Gumy, Laura F.; Fineran, Peter C. (2020): A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. In Nature microbiology 5 (1), pp. 48-55. DOI: 10.1038/s41564-019-0612-5.

Maniatis, T.; Ptashne, M. (1973): Multiple repressor binding at the operators in bacteriophage lambda. In Proceedings of the National Academy of Sciences of the United States of America 70 (5), pp. 15311535. DOI: 10.1073/pnas.70.5.1531.

Mäntynen, Sari; Laanto, Elina; Oksanen, Hanna M.; Poranen, Minna M.; Díaz-Muñoz, Samuel L. (2021): Black box of phage-bacterium interactions: exploring alternative phage infection strategies. In Open biology 11 (9), p. 210188. DOI: 10.1098/rsob. 210188.

Manuel, Nikhil; Rushing, Leika; Ravindran, Aravind; Newkirk, Heather; Burrowes, Ben; Young, Ry; Gonzalez, Carlos (2021): Complete Genome Sequence of Rhizobium japonicum Podophage Pasto. In Microbiol Resour Announc 10 (3). DOI: 10.1128/MRA.01442-20.

Mari, Xavier; Kerros, Marie-Emmanuelle; Weinbauer, Markus G. (2007): Virus attachment to transparent exopolymeric particles along trophic gradients in the southwestern lagoon of New Caledonia. In Applied and environmental microbiology 73 (16), pp. 5245-5252. DOI: 10.1128/AEM.00762-07.

Martinez-Hernandez, Francisco; Fornas, Oscar; Lluesma Gomez, Monica; Bolduc, Benjamin; La Cruz Peña, Maria Jose de; Martínez, Joaquín Martínez et al. (2017): Single-virus genomics reveals hidden cosmopolitan and abundant viruses. In Nature communications 8, p. 15892. DOI: $10.1038 /$ ncomms 15892.

Mascolo, Elia; Adhikari, Satish; Caruso, Steven M.; deCarvalho, Tagide; Folch Salvador, Anna; SerraSagristà, Joan et al. (2022): The transcriptional regulator CtrA controls gene expression in Alphaproteobacteria phages: Evidence for a lytic deferment pathway. In Frontiers in microbiology 13, p. 918015 . DOI: 10.3389/fmicb.2022.918015.

Mavrich, Travis N.; Hatfull, Graham F. (2019): Evolution of Superinfection Immunity in Cluster A Mycobacteriophages. In mBio 10 (3). DOI: 10.1128/mBio.00971-19.

McCutcheon, Jaclyn G.; Lin, Andrea; Dennis, Jonathan J. (2022): Characterization of Stenotrophomonas maltophilia phage AXL1 as a member of the genus Pamexvirus encoding resistance
to trimethoprim-sulfamethoxazole. In Scientific reports 12 (1), p. 10299. DOI: 10.1038/s41598-022-14025-z.

McKenna, R.; Xia, D.; Willingmann, P.; Ilag, L. L.; Krishnaswamy, S.; Rossmann, M. G. et al. (1992): Atomic structure of single-stranded DNA bacteriophage phi X174 and its functional implications. In Nature 355 (6356), pp. 137-143. DOI: 10.1038/355137a0.

Meier-Kolthoff, Jan P.; Auch, Alexander F.; Klenk, Hans-Peter; Göker, Markus (2013): Genome sequence-based species delimitation with confidence intervals and improved distance functions. In $B M C$ bioinformatics 14, p. 60. DOI: 10.1186/1471-2105-14-60.

Meier-Kolthoff, Jan P.; Carbasse, Joaquim Sardà; Peinado-Olarte, Rosa L.; Göker, Markus (2021): TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. In Nucl Acids Res. DOI: 10.1093/nar/gkab902.

Meier-Kolthoff, Jan P.; Carbasse, Joaquim Sardà; Peinado-Olarte, Rosa L.; Göker, Markus (2022): TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. In Nucleic acids research 50 (D1), D801-D807. DOI: 10.1093/nar/gkab902.

Meier-Kolthoff, Jan P.; Göker, Markus (2017): VICTOR: genome-based phylogeny and classification of prokaryotic viruses. In Bioinformatics 33 (21), pp. 3396-3404. DOI: 10.1093/bioinformatics/btx440.

Meier-Kolthoff, Jan P.; Göker, Markus (2019): TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. In Nature communications 10 (1), p. 2182. DOI: 10.1038/s41467-019-10210-3.

Meier-Kolthoff, Jan P.; Hahnke, Richard L.; Petersen, Jörn; Scheuner, Carmen; Michael, Victoria; Fiebig, Anne et al. (2014): Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. In Standards in genomic sciences 9, p. 2. DOI: 10.1186/1944-3277-9-2.

Meiring, Tracy L.; Tuffin, I. Marla; Cary, Craig; Cowan, Don A. (2012): Genome sequence of temperate bacteriophage Psymv2 from Antarctic Dry Valley soil isolate Psychrobacter sp. MV2. In Extremophiles 16 (5), pp. 715-726. DOI: 10.1007/s00792-012-0467-7.

Merchant, Nirav; Lyons, Eric; Goff, Stephen; Vaughn, Matthew; Ware, Doreen; Micklos, David; Antin, Parker (2016): The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences. In PLoS biology 14 (1), e1002342. DOI: 10.1371/journal.pbio. 1002342.

Merrill, Bryan D.; Ward, Andy T.; Grose, Julianne H.; Hope, Sandra (2016): Software-based analysis of bacteriophage genomes, physical ends, and packaging strategies. In BMC genomics 17, p. 679. DOI: 10.1186/s12864-016-3018-2.

Meyer, Justin R.; Dobias, Devin T.; Medina, Sarah J.; Servilio, Lisa; Gupta, Animesh; Lenski, Richard E. (2016): Ecological speciation of bacteriophage lambda in allopatry and sympatry. In Science (New York, N.Y.) 354 (6317), pp. 1301-1304. DOI: 10.1126/science.aai8446.

Middelboe (2000): Bacterial Growth Rate and Marine Virus-Host Dynamics. In Microb Ecol 40 (2), pp. 114-124. DOI: 10.1007/s002480000050.

Miller, Robert V.; Day, Martin J. (2008): Contribution of lysogeny, pseudolysogeny, and starvation to phage ecology. In : Bacteriophage Ecology. $1^{\text {st }}$ ed.: Cambridge University Press, pp. 114-144.

Miller, Robert V.; Ripp, Steven A. (2002): Pseudolysogeny. In : Horizontal gene transfer. 2nd ed. San Diego: Academic Press, pp. 81-91.

Millman, Adi; Bernheim, Aude; Stokar-Avihail, Avigail; Fedorenko, Taya; Voichek, Maya; Leavitt, Azita et al. (2020): Bacterial Retrons Function In Anti-Phage Defense. In Cell 183 (6), 1551-1561.e12. DOI: 10.1016/j.cell.2020.09.065.

Millman, Adi; Melamed, Sarah; Leavitt, Azita; Doron, Shany; Bernheim, Aude; Hör, Jens et al. (2022): An expanding arsenal of immune systems that protect bacteria from phages. DOI: 10.1101/2022.05.11.491447.

Mizuno, Carolina Megumi; Rodriguez-Valera, Francisco; Kimes, Nikole E.; Ghai, Rohit (2013): Expanding the Marine Virosphere Using Metagenomics. In PLoS genetics 9 (12). DOI: 10.1371/journal.pgen. 1003987.

Moebus, K.; Nattkemper, H. (1981): Bacteriophage sensitivity patterns among bacteria isolated from marine waters. In Helgolander Meeresunters 34 (3), pp. 375-385. DOI: 10.1007/BF02074130.

Moraru, Cristina (2023): VirClust-A Tool for Hierarchical Clustering, Core Protein Detection and Annotation of (Prokaryotic) Viruses. In Viruses 15 (4). DOI: 10.3390/v15041007.

Moraru, Cristina; Varsani, Arvind; Kropinski, Andrew M. (2020): VIRIDIC-A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses. In Viruses 12 (11). DOI: $10.3390 / \mathrm{v} 12111268$.

Mori, Corinna; Beck, Melanie; Hintz, Nils H.; Merder, Julian; Bunse, Carina; Dittmar, Thorsten et al. (2021): Biogeochemical thallium cycling during a mesocosm phytoplankton spring bloom: Biotic versus abiotic drivers. In Geochimica et Cosmochimica Acta 313, pp.257-276. DOI: 10.1016/j.gca.2021.08.002.

Morrow, Kathleen M.; Tedford, Abbey Rose; Pankey, M. Sabrina; Lesser, Michael P. (2018): A member of the Roseobacter clade, Octadecabacter sp., is the dominant symbiont in the brittle star Amphipholis squamata. In FEMS microbiology ecology 94 (4). DOI: 10.1093/femsec/fiy030.

Mruk, Iwona; Kobayashi, Ichizo (2014): To be or not to be: regulation of restriction-modification systems and other toxin-antitoxin systems. In Nucl Acids Res 42 (1), pp. 70-86. DOI: 10.1093/nar/gkt711.

Murphy, James; Mahony, Jennifer; Ainsworth, Stuart; Nauta, Arjen; van Sinderen, Douwe (2013): Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. In Applied and environmental microbiology 79 (24), pp. 7547-7555. DOI: 10.1128/AEM.02229-13.

Muyzer, G.; Teske, A.; Wirsen, C. O.; Jannasch, H. W. (1995): Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. In Arch. Microbiol. 164 (3), pp. 165-172. DOI: 10.1007/BF02529967.

Naser, Iftekhar Bin; Hoque, M. Mozammel; Nahid, M. Ausrafuggaman; Tareq, Tokee M.; Rocky, M. Kamruzzaman; Faruque, Shah M. (2017): Analysis of the CRISPR-Cas system in bacteriophages active on epidemic strains of Vibrio cholerae in Bangladesh. In Scientific reports 7 (1), p. 14880. DOI: 10.1038/s41598-017-14839-2.

Newton, Ryan J.; Griffin, Laura E.; Bowles, Kathy M.; Meile, Christof; Gifford, Scott; Givens, Carrie E. et al. (2010): Genome characteristics of a generalist marine bacterial lineage. In The ISME journal 4 (6), pp. 784-798. DOI: 10.1038/ismej.2009.150.

Nguyen, James; Harb, Laith; Moreland, Russell; Liu, Mei; Gill, Jason J.; Ramsey, Jolene (2019): Complete Genome Sequence of Proteus mirabilis Siphophage Saba. In Microbiol Resour Announc 8 (41). DOI: 10.1128/MRA.01094-19.

Nguyen, Lam-Tung; Schmidt, Heiko A.; Haeseler, Arndt von; Minh, Bui Quang (2015): IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. In Mol Biol Evol 32 (1), pp. 268-274. DOI: 10.1093/molbev/msu300.

Nicholson, Ainsley C.; Humrighouse, Ben W.; Graziano, James C.; Emery, Brian; McQuiston, John R. (2016): Draft Genome Sequences of Strains Representing Each of the Elizabethkingia Genomospecies Previously Determined by DNA-DNA Hybridization. In Genome Announc. 4 (2). DOI: 10.1128/genomeA.00045-16.

Nishimura, Yosuke; Watai, Hiroyasu; Honda, Takashi; Mihara, Tomoko; Omae, Kimiho; Roux, Simon et al. (2017a): Environmental viral genomes shed new light on virus-host interactions in the ocean. In mSphere 2 (2). DOI: 10.1128/mSphere.00359-16.

Nishimura, Yosuke; Yoshida, Takashi; Kuronishi, Megumi; Uehara, Hideya; Ogata, Hiroyuki; Goto, Susumu (2017b): ViPTree: the viral proteomic tree server. In Bioinformatics (Oxford, England) 33 (15), pp. 2379-2380. DOI: 10.1093/bioinformatics/btx157.

Nissimov, Jozef I.; Vandzura, Rebecca; Johns, Christopher T.; Natale, Frank; Haramaty, Liti; Bidle, Kay D. (2018): Dynamics of transparent exopolymer particle production and aggregation during viral infection of the coccolithophore, Emiliania huxleyi. In Environ Microbiol 20 (8), pp. 2880-2897. DOI: 10.1111/1462-2920.14261.

Nobrega, Franklin L.; Vlot, Marnix; Jonge, Patrick A. de; Dreesens, Lisa L.; Beaumont, Hubertus J. E.; Lavigne, Rob et al. (2018): Targeting mechanisms of tailed bacteriophages. In Nat Rev Micro 16 (12), pp. 760-773. DOI: 10.1038/s41579-018-0070-8.

Noguchi, Hideki; Taniguchi, Takeaki; Itoh, Takehiko (2008): MetaGeneAnnotator: detecting speciesspecific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. In DNA research: an international journal for rapid publication of reports on genes and genomes 15 (6), pp. 387-396. DOI: 10.1093/dnares/dsn027.

Novikova, Olga; Jayachandran, Pradeepa; Kelley, Danielle S.; Morton, Zachary; Merwin, Samantha; Topilina, Natalya I.; Belfort, Marlene (2016): Intein Clustering Suggests Functional Importance in Different Domains of Life. In Mol Biol Evol 33 (3), pp. 783-799. DOI: 10.1093/molbev/msv271.

Numberger, Daniela; Ganzert, Lars; Zoccarato, Luca; Mühldorfer, Kristin; Sauer, Sascha; Grossart, Hans-Peter; Greenwood, Alex D. (2019): Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing. In Scientific reports 9 (1), p. 9673. DOI: 10.1038/s41598-019-46015-z.

Ohtsubo, M.; Okazaki, H.; Nishimoto, T. (1989): The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. In The Journal of cell biology 109 (4 Pt 1), pp. 1389-1397. DOI: 10.1083/jcb.109.4.1389.

Oliveira, Pedro H.; Touchon, Marie; Rocha, Eduardo P. C. (2014): The interplay of restrictionmodification systems with mobile genetic elements and their prokaryotic hosts. In Nucl Acids Res 42 (16), pp. 10618-10631. DOI: 10.1093/nar/gku734.

Oliveira, Vanessa; Polónia, Ana R. M.; Cleary, Daniel F. R.; Huang, Yusheng M.; Voogd, Nicole J. de; Keller-Costa, Tina et al. (2022): Assessing the genomic composition, putative ecological relevance and
biotechnological potential of plasmids from sponge bacterial symbionts. In Microbiological research 265, p. 127183. DOI: 10.1016/j.micres.2022.127183.

Ortĭn, J.; Viñuela, E.; Salas, M.; Vasquez, C. (1971): DNA-protein complex in circular DNA from phage phi-29. In Nature: New biology 234 (52), pp. 275-277. DOI: 10.1038/newbio234275a0.

Paez-Espino, David; Chen, I-Min A.; Palaniappan, Krishna; Ratner, Anna; Chu, Ken; Szeto, Ernest et al. (2017): IMG/VR. A database of cultured and uncultured DNA Viruses and retroviruses. In Nucleic acids research 45 (D1), pp. D457-D465. DOI: 10.1093/nar/gkw1030.

Paez-Espino, David; Eloe-Fadrosh, Emiley A.; Pavlopoulos, Georgios A.; Thomas, Alex D.; Huntemann, Marcel; Mikhailova, Natalia et al. (2016): Uncovering Earth's virome. In Nature 536 (7617), pp. 425-430. DOI: 10.1038/nature19094.

Pagnier, Isabelle; Raoult, Didier; La Scola, Bernard (2008): Isolation and identification of amoebaresisting bacteria from water in human environment by using an Acanthamoeba polyphaga co-culture procedure. In Environmental microbiology 10 (5), pp. 1135-1144. DOI: 10.1111/j.14622920.2007.01530.x.

Pagnier, Isabelle; Valles, Camille; Raoult, Didier; La Scola, Bernard (2015): Isolation of Vermamoeba vermiformis and associated bacteria in hospital water. In Microbial pathogenesis 80, pp. 14-20. DOI: 10.1016/j.micpath.2015.02.006.

Paquet, Valérie E.; Charette, Steve J. (2016): Amoeba-resisting bacteria found in multilamellar bodies secreted by Dictyostelium discoideum: social amoebae can also package bacteria. In FEMS microbiology ecology 92 (3). DOI: 10.1093/femsec/fiw025.

Park, Sooyeon; Yoon, Sun Young; Jung, Yong-Taek; Yoon, Jung-Hoon (2016): Octadecabacterponticola sp. nov., isolated from seawater. In International journal of systematic and evolutionary microbiology 66 (10), pp. 4179-4184. DOI: 10.1099/ijsem.0.001332.

Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus (2020): List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. In International journal of systematic and evolutionary microbiology 70 (11), pp. 5607-5612. DOI: 10.1099/ijsem.0.004332.

Peters, Danielle L.; McCutcheon, Jaclyn G.; Stothard, Paul; Dennis, Jonathan J. (2019): Novel Stenotrophomonas maltophilia temperate phage DLP4 is capable of lysogenic conversion. In BMC Genomics 20 (1), p. 300. DOI: 10.1186/s12864-019-5674-5.

Petrovic, Aleksandra; Kostanjsek, Rok; Rakhely, Gabor; Knezevic, Petar (2017): The First Siphoviridae Family Bacteriophages Infecting Bordetella bronchiseptica Isolated from Environment. In Microb Ecol 73 (2), pp. 368-377. DOI: 10.1007/s00248-016-0847-0.

Piel, Damien; Bruto, Maxime; Labreuche, Yannick; Blanquart, François; Goudenège, David; BarciaCruz, Rubén et al. (2022): Phage-host coevolution in natural populations. In Nat Microbiol 7 (7), pp. 1075-1086. DOI: 10.1038/s41564-022-01157-1.

Pinhassi, Jarone; Sala, Maria Montserrat; Havskum, Harry; Peters, Francesc; Guadayol, Oscar; Malits, Andrea; Marrasé, Cèlia (2004): Changes in bacterioplankton composition under different phytoplankton regimens. In Applied and environmental microbiology 70 (11), pp. 6753-6766. DOI: 10.1128/AEM.70.11.6753-6766.2004.

Piya, Denish; Vara, Leonardo; Russell, William K.; Young, Ry; Gill, Jason J. (2017): The multicomponent antirestriction system of phage P1 is linked to capsid morphogenesis. In Molecular microbiology 105 (3), pp. 399-412. DOI: 10.1111/mmi. 13705.

Pleška, Maroš; Guet, Călin C. (2017): Effects of mutations in phage restriction sites during escape from restriction-modification. In Biol. Lett. 13 (12), p. 20170646. DOI: 10.1098/rsbl.2017.0646.

Potter, Simon C.; Luciani, Aurélien; Eddy, Sean R.; Park, Youngmi; Lopez, Rodrigo; Finn, Robert D. (2018): HMMER web server: 2018 update. In Nucleic acids research 46 (W1), W200-W204. DOI: 10.1093/nar/gky448.

Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P. (2010): FastTree 2--approximately maximumlikelihood trees for large alignments. In PloS one 5 (3), e9490. DOI: 10.1371/journal.pone. 0009490.

Qin, Fang; Du, Sen; Zhang, Zefeng; Ying, Hanqi; Wu, Ying; Zhao, Guiyuan et al. (2022): Newly identified HMO-2011-type phages reveal genomic diversity and biogeographic distributions of this marine viral group. In The ISME journal. DOI: 10.1038/s41396-021-01183-7.

Quaiser, Achim; Dufresne, Alexis; Ballaud, Flore; Roux, Simon; Zivanovic, Yvan; Colombet, Jonathan et al. (2015): Diversity and comparative genomics of Microviridae in Sphagnum- dominated peatlands. In Frontiers in microbiology 6, p. 375. DOI: 10.3389/fmicb.2015.00375.

Quispe, Cristian F.; Esmael, Ahmed; Sonderman, Olivia; McQuinn, Michelle; Agarkova, Irina; Battah, Mohammed et al. (2017): Characterization of a new chlorovirus type with permissive and nonpermissive features on phylogenetically related algal strains. In Virology 500, pp. 103-113. DOI: 10.1016/j.virol.2016.10.013.

R Core Team (2020): R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available online at https://www.R-project.org/.

Rambaut, A. (2006): FigTree 1.4.3 - a graphical viewer of phylogenetic trees and a program for producing publication-ready figures. Available online at http://tree.bio.ed.ac.uk/software/figtree/.

Ramos-Vivas, José; Superio, Joshua; Galindo-Villegas, Jorge; Acosta, Félix (2021): Phage Therapy as a Focused Management Strategy in Aquaculture. In International journal of molecular sciences 22 (19). DOI: 10.3390/ijms221910436.

Rapala, Jackson; Miller, Brenda; Garcia, Maximiliano; Dolan, Megan; Bockman, Matthew; Hansson, Mats et al. (2021): Genomic diversity of bacteriophages infecting Rhodobacter capsulatus and their relatedness to its gene transfer agent RcGTA. In PloS one 16 (11), e0255262. DOI: 10.1371/journal.pone. 0255262 .

Rathor, Nisha; Sachdeva, Pooja; Chaudhry, Rama (2022): Genome Sequence of Bacteriophage Infecting a Rare Pathogen, Pseudomonas luteola. In Microbiol Resour Announc 11 (2), Article e01113-21, e0111321. DOI: 10.1128/mra.01113-21.

Reyes-Robles, Tamara; Dillard, Rebecca S.; Cairns, Lynne S.; Silva-Valenzuela, Cecilia A.; Housman, Max; Ali, Afsar et al. (2018): Vibrio cholerae Outer Membrane Vesicles Inhibit Bacteriophage Infection. In Journal of bacteriology 200 (15). DOI: 10.1128/JB.00792-17.

Richlen, Mindy L.; Morton, Steve L.; Jamali, Ebrahim A.; Rajan, Anbiah; Anderson, Donald M. (2010): The catastrophic 2008-2009 red tide in the Arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. In Harmful algae 9 (2), pp. 163-172. DOI: 10.1016/j.hal.2009.08.013.

Riemann, Lasse; Grossart, Hans-Peter (2008): Elevated lytic phage production as a consequence of particle colonization by a marine Flavobacterium (Cellulophaga sp.). In Microb Ecol 56 (3), pp. 505512. DOI: 10.1007/s00248-008-9369-8.

Rihtman, Branko; Puxty, Richard J.; Hapeshi, Alexia; Lee, Yan-Jiun; Zhan, Yuanchao; Michniewski, Slawomir et al. (2021): A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution. In Current biology : CB. DOI: 10.1016/j.cub.2021.05.014.

Robinson, James T.; Thorvaldsdóttir, Helga; Winckler, Wendy; Guttman, Mitchell; Lander, Eric S.; Getz, Gad; Mesirov, Jill P. (2011): Integrative genomics viewer. In Nature Biotechnology 29. DOI: 10.1038/nbt. 1754.

Rodwell, Ella V.; Wenner, Nicolas; Pulford, Caisey V.; Cai, Yueyi; Bowers-Barnard, Arthur; Beckett, Alison et al. (2021): Isolation and Characterisation of Bacteriophages with Activity against Invasive Non-Typhoidal Salmonella Causing Bloodstream Infection in Malawi. In Viruses 13 (3). DOI: 10.3390/v13030478.

Rohwer, Forest; Segall, Anca; Steward, Griegx; Seguritan, Victor; Breitbart, Mya; Wolven, Felise; Farooq Azam, Farooqx (2000): The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. In Limnol. Oceanogr. 45 (2), pp. 408-418. DOI: 10.4319/lo.2000.45.2.0408.

Rousset, François; Depardieu, Florence; Miele, Solange; Dowding, Julien; Laval, Anne-Laure; Lieberman, Erica et al. (2022): Phages and their satellites encode hotspots of antiviral systems. In Cell host \& microbe 30 (5), 740-753.e5. DOI: 10.1016/j.chom.2022.02.018.

Roux, Simon; Adriaenssens, Evelien M.; Dutilh, Bas E.; Koonin, Eugene V.; Kropinski, Andrew M.; Krupovic, Mart et al. (2018): Minimum Information about an Uncultivated Virus Genome (MIUViG). In Nature Biotechnology 37. DOI: 10.1038/nbt.4306.

Roux, Simon; Brum, Jennifer R.; Dutilh, Bas E.; Sunagawa, Shinichi; Duhaime, Melissa B.; Loy, Alexander et al. (2016): Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. In Nature 537 (7622), pp. 689-693. DOI: 10.1038/nature 19366.

Roux, Simon; Emerson, Joanne B.; Eloe-Fadrosh, Emiley A.; Sullivan, Matthew B. (2017): Benchmarking viromics. An in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. In PeerJ 5, e3817. DOI: 10.7717/peerj. 3817.

Roux, Simon; Enault, Francois; Hurwitz, Bonnie L.; Sullivan, Matthew B. (2015): VirSorter: mining viral signal from microbial genomic data. In PeerJ 3, pp. e985. DOI: 10.7717/peerj. 985.

Roux, Simon; Páez-Espino, David; Chen, I-Min A.; Palaniappan, Krishna; Ratner, Anna; Chu, Ken et al. (2021): IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. In Nucleic acids research 49 (D1), D764-D775. DOI: 10.1093/nar/gkaa946.

Sabri, Mourad; Häuser, Roman; Ouellette, Marc; Liu, Jing; Dehbi, Mohammed; Moeck, Greg et al. (2011): Genome annotation and intraviral interactome for the Streptococcus pneumoniae virulent phage Dp-1. In Journal of bacteriology 193 (2), pp. 551-562. DOI: 10.1128/JB.01117-10.

Sakamoto, Mitsuo; Benno, Yoshimi (2006): Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. In International journal of systematic and evolutionary microbiology 56 (Pt 7), pp. 1599-1605. DOI: 10.1099/ijs.0.64192-0.

Sakamoto, Mitsuo; Suzuki, Masahito; Huang, Yi; Umeda, Makoto; Ishikawa, Isao; Benno, Yoshimi (2004): Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. In International journal of systematic and evolutionary microbiology 54 (Pt 3), pp. 877-883. DOI: 10.1099/ijs.0.02876-0.

Sakowski, Eric G.; Munsell, Erik V.; Hyatt, Mara; Kress, William; Williamson, Shannon J.; Nasko, Daniel J. et al. (2014): Ribonucleotide reductases reveal novel viral diversity and predict biological and ecological features of unknown marine viruses. In Proceedings of the National Academy of Sciences of the United States of America 111 (44), pp. 15786-15791. DOI: 10.1073/pnas. 1401322111.

Salazar, Adam J.; Lessor, Lauren; O'Leary, Chandler; Gill, Jason; Liu, Mei (2019): Complete Genome Sequence of Klebsiella pneumoniae Siphophage Seifer. In Microbiol Resour Announc 8 (46). DOI: 10.1128/MRA.01289-19.

Santamaría, Rosa Isela; Bustos, Patricia; Sepúlveda-Robles, Omar; Lozano, Luis; Rodríguez, César; Fernández, José Luis et al. (2014): Narrow-host-range bacteriophages that infect Rhizobium etli associate with distinct genomic types. In Applied and environmental microbiology 80 (2), pp. 446-454. DOI: 10.1128/AEM.02256-13.

Sañudo-Wilhelmy, Sergio A.; Gómez-Consarnau, Laura; Suffridge, Christopher; Webb, Eric A. (2014): The role of B vitamins in marine biogeochemistry. In Annual review of marine science 6, pp. 339-367. DOI: 10.1146/annurev-marine-120710-100912.

Savilahti, H.; Bamford, D. H. (1993): Protein-primed DNA replication: role of inverted terminal repeats in the Escherichia coli bacteriophage PRD1 life cycle. In J. Virol. 67 (8), pp. 4696-4703.

Schmitz-Esser, Stephan; Toenshoff, Elena R.; Haider, Susanne; Heinz, Eva; Hoenninger, Verena M.; Wagner, Michael; Horn, Matthias (2008): Diversity of bacterial endosymbionts of environmental acanthamoeba isolates. In Applied and environmental microbiology 74 (18), pp. 5822-5831. DOI: 10.1128/AEM.01093-08.

Schulz, Frederik; Tyml, Tomáš; Pizzetti, Ilaria; Dyková, Iva; Fazi, Stefano; Kostka, Martin; Horn, Matthias (2015): Marine amoebae with cytoplasmic and perinuclear symbionts deeply branching in the Gammaproteobacteria. In Scientific reports 5, p. 13381. DOI: 10.1038/srep13381.

Seco, Elena M.; Zinder, John C.; Manhart, Carol M.; Lo Piano, Ambra; McHenry, Charles S.; Ayora, Silvia (2013): Bacteriophage SPP1 DNA replication strategies promote viral and disable host replication in vitro. In Nucl Acids Res 41 (3), pp. 1711-1721. DOI: 10.1093/nar/gks1290.

Seed, Kimberley D.; Bodi, Kip L.; Kropinski, Andrew M.; Ackermann, Hans-Wolfgang; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew (2011): Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10 -year period in Dhaka, Bangladesh. In mBio 2 (1), e00334-10. DOI: 10.1128/mBio.00334-10.

Seed, Kimberley D.; Dennis, Jonathan J. (2005): Isolation and characterization of bacteriophages of the Burkholderia cepacia complex. In FEMS Microbiology Letters 251 (2), pp. 273-280. DOI: 10.1016/j.femsle.2005.08.011.

Seed, Kimberley D.; Yen, Minmin; Shapiro, B. Jesse; Hilaire, Isabelle J.; Charles, Richelle C.; Teng, Jessica E. et al. (2014): Evolutionary consequences of intra-patient phage predation on microbial populations. In eLife 3, e03497. DOI: 10.7554/eLife. 03497.

Segev, Einat; Wyche, Thomas P.; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera et al. (2016): Dynamic metabolic exchange governs a marine algal-bacterial interaction. In eLife 5. DOI: 10.7554/eLife. 17473.

Selje, Natascha; Simon, Meinhard; Brinkhoff, Thorsten (2004): A newly discovered Roseobacter cluster in temperate and polar oceans. In Nature 427 (6973), pp. 445-448. DOI: 10.1038/nature02272.

Sengupta, Rajib; Holmgren, Arne (2014): Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. In World journal of biological chemistry 5 (1), pp. 68-74. DOI: 10.4331/wjbc.v5.i1.68.

Sepúlveda-Robles, Omar; Kameyama, Luis; Guarneros, Gabriel (2012): High diversity and novel species of Pseudomonas aeruginosa bacteriophages. In Appl. Environ. Microbiol. 78 (12), pp. 45104515. DOI: 10.1128/AEM.00065-12.

Serwer, Philip (2005): T3/T7 DNA Packaging. In Carlos Enrique Catalano (Ed.): Viral genome packaging machines. Genetics, structure, and mechanism. Georgetown, Tex.: Landes Bioscience/Eurekah.com; New York (Molecular Biology Intelligence Unit), pp. 59-79.

Seshadri, Rekha; Leahy, Sinead C.; Attwood, Graeme T.; Teh, Koon Hoong; Lambie, Suzanne C.; Cookson, Adrian L. et al. (2018): Cultivation and sequencing of rumen microbiome members from the Hungate 1000 Collection. In Nat Biotechnol 36 (4), pp. 359-367. DOI: 10.1038/nbt.4110.

Shahin, Khashayar; Soleimani-Delfan, Abbas; Zhang, Lili; Hedayatkhah, Abolghasem; Mansoorianfar, Mojtaba; Bao, Hongduo et al. (2022): Genome Sequence of Salmonella enterica Serovar Typhimurium Phage SAP12. In Microbiol Resour Announc 11 (6), e0108621. DOI: 10.1128/mra.01086-21.

Shen, Peter S.; Domek, Matthew J.; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M.; Hoggan, Ryan et al. (2012): Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup. In Journal of virology 86 (15), pp.7907-7917. DOI: 10.1128/JVI.00407-12.

Shimada, Kazunori; Weisberg, Robert A.; Gottesman, Max E. (1972): Prophage lambda at unusual chromosomal locations. In Journal of molecular biology 63 (3), pp. 483-503. DOI: 10.1016/0022-2836(72)90443-3.

Shkoporov, Andrei N.; Khokhlova, Ekaterina V.; Chaplin, Andrei V.; Kafarskaia, Lyudmila I.; Nikolin, Alexei A.; Polyakov, Vladimir Yu et al. (2013): Coprobacter fastidiosus gen. nov., sp. nov., a novel member of the family Porphyromonadaceae isolated from infant faeces. In International journal of systematic and evolutionary microbiology 63 (Pt 11), pp. 4181-4188. DOI: 10.1099/ijs.0.052126-0.

Silveira, Cynthia B.; Luque, Antoni; Rohwer, Forest (2021): The landscape of lysogeny across microbial community density, diversity and energetics. In Environ Microbiol 23 (8), pp. 4098-4111. DOI: 10.1111/1462-2920.15640.

Simmonds, Peter; Adriaenssens, Evelien M.; Zerbini, F. Murilo; Abrescia, Nicola G. A.; Aiewsakun, Pakorn; Alfenas-Zerbini, Poliane et al. (2023): Four principles to establish a universal virus taxonomy. In PLoS biology 21 (2), e3001922. DOI: 10.1371/journal.pbio.3001922.

Simon, Meinhard; Scheuner, Carmen; Meier-Kolthoff, Jan P.; Brinkhoff, Thorsten; Wagner-Döbler, Irene; Ulbrich, Marcus et al. (2017): Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. In The ISME journal 11 (6), pp. 1483-1499. DOI: 10.1038/ismej.2016.198.

Skennerton, Connor T.; Angly, Florent E.; Breitbart, Mya; Bragg, Lauren; He, Shaomei; McMahon, Katherine D. et al. (2011): Phage encoded H-NS: a potential achilles heel in the bacterial defence system. In PloS one 6 (5), e20095. DOI: 10.1371/journal.pone. 0020095.

Smet, Jeroen De; Zimmermann, Michael; Kogadeeva, Maria; Ceyssens, Pieter-Jan; Vermaelen, Wesley; Blasdel, Bob et al. (2016): High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. In The ISME journal 10 (8), p. 1823. DOI: 10.1038/ismej.2016.3.

Smith, Margaret C. M.; Brown, William R. A.; McEwan, Andrew R.; Rowley, Paul A. (2010): Sitespecific recombination by phiC31 integrase and other large serine recombinases. In Biochm. Soc. Trans. 38 (2), pp. 388-394. DOI: 10.1042/BST0380388.

Song, Wenchen; Sun, Hai-Xi; Zhang, Carolyn; Cheng, Li; Peng, Ye; Deng, Ziqing et al. (2019): Prophage Hunter: an integrative hunting tool for active prophages. In Nucleic acids research 47 (W1), W74-W80. DOI: 10.1093/nar/gkz380.

Song, Yuli; Könönen, Eija; Rautio, Merja; Liu, Chengxu; Bryk, Anne; Eerola, Erkki; Finegold, Sydney M. (2006): Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. In International journal of systematic and evolutionary microbiology 56 ( Pt 8 ), pp. 1985-1990. DOI: 10.1099/ijs.0.64318-0.

Sonnenschein, Eva C.; Nielsen, Kristian F.; D'Alvise, Paul; Porsby, Cisse H.; Melchiorsen, Jette; Heilmann, Jens et al. (2017): Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis. In The ISME journal 11 (2), pp. 569-583. DOI: 10.1038/ismej.2016.111.

Souza, Rocheli de; Sant'Anna, Fernando Hayashi; Ambrosini, Adriana; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fabio Oliveira et al. (2015): Genome of Rhizobium sp. UR51a, Isolated from Rice Cropped in Southern Brazilian Fields. In Genome announcements 3 (2). DOI: 10.1128/genomeA.0024915.

Stepanova, O. A.; Boǐko, A. L.; Shcherbatenko, I. S. (2013): Computational genome analysis of three marine algoviruses. In Mikrobiolohichnyi zhurnal (Kiev, Ukraine : 1993) 75 (5), pp. 76-81.

Stoddard, Barry L. (2011): Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. In Structure (London, England : 1993) 19 (1), pp. 7-15. DOI: 10.1016/j.str.2010.12.003.

Sullivan, Matthew B.; Huang, Katherine H.; Ignacio-Espinoza, Julio C.; Berlin, Aaron M.; Kelly, Libusha; Weigele, Peter R. et al. (2010): Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. In Environmental microbiology 12 (11), pp. 3035-3056. DOI: 10.1111/j.1462-2920.2010.02280.x.

Sullivan, Matthew B.; Weitz, Joshua S.; Wilhelm, Steven (2017): Viral ecology comes of age. In Environmental microbiology reports 9 (1), pp. 33-35. DOI: 10.1111/1758-2229.12504.

Sullivan, Teresa; Manuel, Nikhil; Clark, James; Liu, Mei; Burrowes, Ben (2022): Complete Genome Sequence of Stenotrophomonas maltophilia Siphophage Suzuki. In Microbiol Resour Announc 11 (4), e0013622. DOI: 10.1128/mra.00136-22.

Summer, Elizabeth J.; Berry, Joel; Tran, Tram Anh T.; Niu, Lili; Struck, Douglas K.; Young, Ry (2007a): Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts. In Journal of molecular biology 373 (5), pp. 1098-1112. DOI: 10.1016/j.jmb.2007.08.045.

Summer, Elizabeth J.; Gill, Jason J.; Upton, Chris; Gonzalez, Carlos F.; Young, Ry (2007b): Role of phages in the pathogenesis of Burkholderia, or 'Where are the toxin genes in Burkholderia phages?'. In Current opinion in microbiology 10 (4), pp. 410-417. DOI: 10.1016/j.mib.2007.05.016.

Summer, Elizabeth J.; Gonzalez, Carlos F.; Bomer, Morgan; Carlile, Thomas; Embry, Addie; Kucherka, Amalie M. et al. (2006): Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex. In Journal of bacteriology 188 (1), pp. 255-268. DOI: 10.1128/JB.188.1.255268.2006.

Sutorius, Mara; Mori, Corinna; Greskowiak, Janek; Boettcher, Lea; Bunse, Carina; Dittmar, Thorsten et al. (2022): Rare earth element behaviour in seawater under the influence of organic matter cycling during a phytoplankton spring bloom - A mesocosm study. In Front. Mar. Sci. 9, Article 895723. DOI: 10.3389/fmars.2022.895723.

Suttle, C. A. (1994): The significance of viruses to mortality in aquatic microbial communities. In Microbial Ecology 28 (2), pp. 237-243. DOI: 10.1007/BF00166813.

Suttle, Curtis A. (2005): Viruses in the sea. In Nature 437 (7057), pp. 356-361. DOI: 10.1038/nature04160.

Suttle, Curtis A. (2007): Marine viruses--major players in the global ecosystem. In Nat Rev Micro 5 (10), pp. 801-812. DOI: 10.1038/nrmicro1750.

Suzuki, M. T.; Giovannoni, S. J. (1996): Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. In Applied and environmental microbiology 62 (2), pp. 625-630. DOI: 10.1128/aem.62.2.625-630.1996.

Synnott, Aidan J.; Kuang, Ying; Kurimoto, Miki; Yamamichi, Keiko; Iwano, Hidetomo; Tanji, Yasunori (2009): Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host ranges and potent lytic capabilities. In Appl. Environ. Microbiol. 75 (13), pp. 4483-4490. DOI: 10.1128/AEM.02641-08.

Szymczak, Mateusz; Grygorcewicz, Bartłomiej; Karczewska-Golec, Joanna; Decewicz, Przemysław; Pankowski, Jarosław Adam; Országh-Szturo, Hanna et al. (2020): Characterization of a Unique Bordetella bronchiseptica vB_BbrP_BB8 Bacteriophage and Its Application as an Antibacterial Agent. In International journal of molecular sciences 21 (4). DOI: 10.3390/ijms21041403.

Tal, Nitzan; Millman, Adi; Stokar-Avihail, Avigail; Fedorenko, Taya; Leavitt, Azita; Melamed, Sarah et al. (2022): Bacteria deplete deoxynucleotides to defend against bacteriophage infection. In Nat Microbiol 7 (8), pp. 1200-1209. DOI: 10.1038/s41564-022-01158-0.

Tal, Nitzan; Sorek, Rotem (2022): SnapShot: Bacterial immunity. In Cell 185 (3), 578-578.e1. DOI: 10.1016/j.cell.2021.12.029.

Tang, Chaofei; Deng, Chuanjiang; Zhang, Yi; Xiao, Cong; Wang, Jing; Rao, Xiancai et al. (2018): Characterization and Genomic Analyses of Pseudomonas aeruginosa Podovirus TC6: Establishment of Genus Pa11virus. In Frontiers in microbiology 9, p. 2561. DOI: 10.3389/fmicb.2018.02561.

Tang, Kai; Lin, Dan; Zheng, Qiang; Liu, Keshao; Yang, Yujie; Han, Yu; Jiao, Nianzhi (2017): Genomic, proteomic and bioinformatic analysis of two temperate phages in Roseobacter clade bacteria isolated from the deep-sea water. In BMC genomics 18 (1), p. 485. DOI: 10.1186/s12864-017-3886-0.

Tang, Kai; Yang, Yujie; Lin, Dan; Li, Shuhui; Zhou, Wenchu; Han, Yu et al. (2016): Genomic, physiologic, and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water. In Scientific reports 6 (1), p. 35528. DOI: 10.1038/srep35528.

Tang, Ying Zhong; Koch, Florian; Gobler, Christopher J. (2010): Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. In Proceedings of the National Academy of Sciences of the United States of America 107 (48), pp. 20756-20761. DOI: 10.1073/pnas.1009566107.

Tariq, Mohammad A.; Everest, Francesca L. C.; Cowley, Lauren A.; Wright, Rosanna; Holt, Giles S.; Ingram, Hazel et al. (2019): Temperate Bacteriophages from Chronic Pseudomonas aeruginosa Lung Infections Show Disease-Specific Changes in Host Range and Modulate Antimicrobial Susceptibility. In mSystems 4 (4). DOI: $10.1128 / \mathrm{mSystems} .00191-18$.

Taylor, Véronique L.; Fitzpatrick, Alexa D.; Islam, Zafrin; Maxwell, Karen L. (2019): The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence 103, pp. 1-31. DOI: 10.1016/bs.aivir.2018.08.001.

Taylor-Brown, Alyce; Vaughan, Lloyd; Greub, Gilbert; Timms, Peter; Polkinghorne, Adam (2015): Twenty years of research into Chlamydia-like organisms: a revolution in our understanding of the biology and pathogenicity of members of the phylum Chlamydiae. In Pathogens and disease 73 (1), pp. 1-15. DOI: $10.1093 /$ femspd/ftu009.

Teeling, Hanno; Fuchs, Bernhard M.; Becher, Dörte; Klockow, Christine; Gardebrecht, Antje; Bennke, Christin M. et al. (2012): Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. In Science (New York, N.Y.) 336 (6081), pp. 608-611. DOI: 10.1126/science. 1218344.

Teeling, Hanno; Fuchs, Bernhard M.; Bennke, Christin M.; Krüger, Karen; Chafee, Meghan; Kappelmann, Lennart et al. (2016): Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. In eLife 5, e11888. DOI: 10.7554/eLife. 11888.

Terzian, Paul; Olo Ndela, Eric; Galiez, Clovis; Lossouarn, Julien; Pérez Bucio, Rubén Enrique; Mom, Robin et al. (2021): PHROG: families of prokaryotic virus proteins clustered using remote homology. In NAR genomics and bioinformatics 3 (3), lqab067. DOI: 10.1093/nargab/lqab067.

Teve, Michael; Clark, James; Le, Tram; Burrowes, Ben; Liu, Mei (2022): Complete Genome Sequence of Stenotrophomonas maltophilia Siphophage Sonora. In Microbiol Resour Announc 11 (4), e0016722. DOI: 10.1128/mra.00167-22.

Thiaville, Jennifer J.; Kellner, Stefanie M.; Yuan, Yifeng; Hutinet, Geoffrey; Thiaville, Patrick C.; Jumpathong, Watthanachai et al. (2016): Novel genomic island modifies DNA with 7-deazaguanine derivatives. In PNAS 113 (11), E1452-9. DOI: 10.1073/pnas. 1518570113.

Thingstad, T. Frede (2000): Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. In Limnol. Oceanogr. 45 (6), pp. 1320-1328. DOI: 10.4319/lo.2000.45.6.1320.

Thornton, Daniel C.O. (2014): Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. In European Journal of Phycology 49 (1), pp. 20-46. DOI: 10.1080/09670262.2013.875596.

Tikhe, Chinmay Vijay; Martin, Thomas M.; Gissendanner, Chris R.; Husseneder, Claudia (2015): Complete Genome Sequence of Citrobacter Phage CVT22 Isolated from the Gut of the Formosan Subterranean Termite, Coptotermes formosanus Shiraki. In Genome announcements 3 (4). DOI: 10.1128/genomeA.00408-15.

Tolstoy, I.; Turner, D.; Moraru, C.; Adriaenssens, EM.; am Kropinski (2021): ICTV Taxonomy Proposal 2021.015B: Create one new family (Casjensviridae) including 20 new genera and four existing genera (Caudoviricetes). Available online at https://ictv.global/ictv/proposals/2021.015B.R.Casjensviridae.zip.

Torres-Acosta, Mario A.; Clavijo, Viviana; Vaglio, Christopher; González-Barrios, Andrés F.; VivesFlórez, Martha J.; Rito-Palomares, Marco (2019): Economic evaluation of the development of a phage therapy product for the control of Salmonella in poultry. In Biotechnology progress 35 (5), e2852. DOI: 10.1002/btpr. 2852.

Tremblay, Denise M.; Tegoni, Mariella; Spinelli, Silvia; Campanacci, Valérie; Blangy, Stéphanie; Huyghe, Céline et al. (2006): Receptor-binding protein of Lactococcus lactis phages: identification and characterization of the saccharide receptor-binding site. In Journal of bacteriology 188 (7), pp. 24002410. DOI: 10.1128/JB.188.7.2400-2410.2006.

Turner, D.; Kropinski, Andrew, M.; Adriaenssens Evelien, M. (2020): ICTV Taxonomy proposal 2020.010B: Rename 2,532 bacterial virus species to the binomial format. Available online at https://ictv.global/ictv/proposals/2021.010B.R.Binomial_names.zip.

Turner, Dann; Kropinski, Andrew M.; Adriaenssens, Evelien M. (2021): A Roadmap for Genome-Based Phage Taxonomy. In Viruses 13 (3). DOI: 10.3390/v13030506.

Uchiyama, Jumpei; Rashel, Mohammad; Matsumoto, Tetsuya; Sumiyama, Yoshinobu; Wakiguchi, Hiroshi; Matsuzaki, Shigenobu (2009): Characteristics of a novel Pseudomonas aeruginosa bacteriophage, PAJU2, which is genetically related to bacteriophage D3. In Virus research 139 (1), pp. 131-134. DOI: 10.1016/j.virusres.2008.10.005.

Urtecho, Guillaume; Campbell, Danielle E.; Hershey, David M.; Hussain, Fatima A.; Whitaker, Rachel J.; O'Toole, George A. (2020): Discovering the Molecular Determinants of Phaeobacter inhibens Susceptibility to Phaeobacter Phage MD18. In mSphere 5 (6). DOI: 10.1128/mSphere.00898-20.

Vacheron, Jordan; Kupferschmied, Peter; Resch, Grégory; Keel, Christoph (2018): Genome Sequence of the Pseudomonas protegens Phage $\Phi$ GP100. In Genome Announc. 6 (25). DOI: 10.1128/genomeA.00261-18.
van Zyl, Leonardo Joaquim; Nemavhulani, Shonisani; Cass, James; Cowan, Donald Arthur; Trindade, Marla (2016): Three novel bacteriophages isolated from the East African Rift Valley soda lakes. In Virology journal 13 (1), p. 204. DOI: 10.1186/s12985-016-0656-6.
van Zyl, Lonnie; Adriaenssens, E. M.; Kropinski, Andrew (2018): ICTV Taxonomy Proposal 2018.124B: To create one (1) new genus, Vhulanivirus, containing one species in the family Siphoviridae. Available online at https://ictv.global/ictv/proposals/2018.124B.A.v1.Vhulanivirus.zip.

Vandamme, Erick J.; Mortelmans, Kristien (2019): A century of bacteriophage research and applications: impacts on biotechnology, health, ecology and the economy! In J. Chem. Technol. Biotechnol. 94 (2), pp. 323-342. DOI: 10.1002/jctb.5810.

Vargas, Colomban de; Audic, Stéphane; Henry, Nicolas; Decelle, Johan; Mahé, Frédéric; Logares, Ramiro et al. (2015): Eukaryotic plankton diversity in the sunlit ocean. In Science 348. DOI: 10.1126/science. 1261605 .

Vila-Nistal, Marina; Maestre-Carballa, Lucia; Martinez-Hernández, Francisco; Martinez-Garcia, Manuel (2023): Novel RNA viruses from the Atlantic Ocean: Ecogenomics, biogeography, and total virioplankton mass contribution from surface to the deep ocean. In Environ Microbiol. DOI: 10.1111/1462-2920.16502.

Villamor, Judith; Ramos-Barbero, María Dolores; González-Torres, Pedro; Gabaldón, Toni; RossellóMóra, Ramón; Meseguer, Inmaculada et al. (2018): Characterization of ecologically diverse viruses infecting co-occurring strains of cosmopolitan hyperhalophilic Bacteroidetes. In The ISME journal 12 (2), pp. 424-437. DOI: 10.1038/ismej.2017.175.

Villarroel, Julia; Kleinheinz, Kortine Annina; Jurtz, Vanessa Isabell; Zschach, Henrike; Lund, Ole; Nielsen, Morten; Larsen, Mette Voldby (2016): HostPhinder. A Phage Host Prediction Tool. In Viruses 8 (5). DOI: 10.3390/v8050116.

Vlot, Marnix; Houkes, Joep; Lochs, Silke J. A.; Swarts, Daan C.; Zheng, Peiyuan; Kunne, Tim et al. (2018): Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR-Cas effector complexes. In Nucl Acids Res 46 (2), pp. 873-885. DOI: 10.1093/nar/gkx 1264.

Wagemans, Jeroen; Tsonos, Jessica; Holtappels, Dominique; Fortuna, Kiandro; Hernalsteens, JeanPierre; Greve, Henri de et al. (2020): Structural Analysis of Jumbo Coliphage phAPEC6. In International journal of molecular sciences 21 (9). DOI: 10.3390/ijms21093119.

Wagner-Döbler, Irene; Ballhausen, Britta; Berger, Martine; Brinkhoff, Thorsten; Buchholz, Ina; Bunk, Boyke et al. (2010): The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea. In The ISME journal 4 (1), pp. 61-77. DOI: 10.1038/ismej.2009.94.

Waldor, M. K.; Mekalanos, J. J. (1996): Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin. In Science 272 (5270), pp. 1910-1914. DOI: 10.1126/science.272.5270.1910.

Walker, Peter J.; Siddell, Stuart G.; Lefkowitz, Elliot J.; Mushegian, Arcady R.; Adriaenssens, Evelien M.; Alfenas-Zerbini, Poliane et al. (2022): Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). In Arch Virol 167 (11), pp. 2429-2440. DOI: $10.1007 / \mathrm{s} 00705-022-05516-5$.

Wallace, James C.; Youngblood, Jessica E.; Port, Jesse A.; Cullen, Alison C.; Smith, Marissa N.; Workman, Tomomi; Faustman, Elaine M. (2018): Variability in metagenomic samples from the Puget Sound: Relationship to temporal and anthropogenic impacts. In PloS one 13. DOI: 10.1371/journal.pone. 0192412.

Wang, Chao-Nan; Liu, Yuan; Wang, Jing; Du, Zong-Jun; Wang, Ming-Yi (2021): Sulfitobacter algicola sp. nov., isolated from green algae. In Arch Microbiol 203 (5), pp. 2351-2356. DOI: 10.1007/s00203-021-02213-w.

Wang, Hui; Tomasch, Jürgen; Jarek, Michael; Wagner-Döbler, Irene (2014): A dual-species cocultivation system to study the interactions between Roseobacters and dinoflagellates. In Frontiers in microbiology 5, p. 311. DOI: 10.3389/fmicb.2014.00311.

Wang, Lianrong; Chen, Shi; Xu, Tiegang; Taghizadeh, Koli; Wishnok, John S.; Zhou, Xiufen et al. (2007): Phosphorothioation of DNA in bacteria by dnd genes. In Nat Chem Biol 3 (11), pp. 709-710. DOI: 10.1038/nchembio.2007.39.

Wang, Qiong; Cai, Lanlan; Zhang, Rui; Wei, Shuzhen; Li, Fang; Liu, Yuanfang; Xu, Yongle (2022): A Unique Set of Auxiliary Metabolic Genes Found in an Isolated Cyanophage Sheds New Light on Marine Phage-Host Interactions. In Microbiology spectrum 10 (5), e0236722. DOI: 10.1128/spectrum.0236722.

Wang, Xiaoxue; Kim, Younghoon; Ma, Qun; Hong, Seok Hoon; Pokusaeva, Karina; Sturino, Joseph M.; Wood, Thomas K. (2010): Cryptic prophages help bacteria cope with adverse environments. In Nat Commun 1 (1), p. 147. DOI: 10.1038/ncomms1146.

Weaver, P. F.; Wall, J. D.; Gest, H. (1975): Characterization of Rhodopseudomonas capsulata. In Arch. Microbiol. 105 (3), pp. 207-216. DOI: 10.1007/BF00447139.

Wei, Cuihua; Liu, Junli; Maina, Alice Nyambura; Mwaura, Francis B.; Yu, Junping; Yan, Chenghui et al. (2017): Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. In Virologica Sinica 32 (6), pp. 476-484. DOI: 10.1007/s12250-017-3987-6.

Weinbauer, Markus G. (2004): Ecology of prokaryotic viruses. In FEMS microbiology reviews 28 (2), pp. 127-181. DOI: 10.1016/j.femsre.2003.08.001.

Wemheuer, Bernd; Wemheuer, Franziska; Hollensteiner, Jacqueline; Meyer, Frauke-Dorothee; Voget, Sonja; Daniel, Rolf (2015): The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern North Sea assessed by comparative metagenomic and metatranscriptomic approaches. In Frontiers in microbiology 6, p. 805. DOI: 10.3389/fmicb.2015.00805.

Wichels, A.; Biel, S. S.; Gelderblom, H. R.; Brinkhoff, T.; Muyzer, G.; Schütt, C. (1998): Bacteriophage diversity in the North Sea. In Applied and environmental microbiology 64 (11), pp. 4128-4133. DOI: 10.1128/AEM.64.11.4128-4133.1998.

Wick, Ryan R.; Schultz, Mark B.; Zobel, Justin; Holt, Kathryn E. (2015): Bandage: interactive visualization of de novo genome assemblies. In Bioinformatics (Oxford, England) 31 (20), pp. 3350 3352. DOI: 10.1093/bioinformatics/btv383.

Widdel, Friedrich; Bak, Friedhelm (2013): Gram-Negative Mesophilic Sulfate-Reducing Bacteria. In Albert Balows, Hans G. Trüper, Martin Dworkin, Wim Harder, Karl-Heinz Schleifer (Eds.): The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd ed. New York, NY: Springer, pp. 3352-3378.

Wilhelm, Steven W.; Suttle, Curtis A. (1999): Viruses and Nutrient Cycles in the Sea: Viruses play critical roles in the structure and function of aquatic food webs. In BioScience 49 (10), pp. 781-788. DOI: 10.2307/1313569.

Wiltshire, Karen Helen; Kraberg, Alexandra; Bartsch, Inka; Boersma, Maarten; Franke, Heinz-Dieter; Freund, Jan et al. (2010): Helgoland Roads, North Sea: 45 Years of Change. In Estuaries and Coasts 33 (2), pp. 295-310. DOI: 10.1007/s12237-009-9228-y.

Winget, Danielle M.; Wommack, K. Eric (2008): Randomly amplified polymorphic DNA PCR as a tool for assessment of marine viral richness. In Applied and environmental microbiology 74 (9), pp. 26122618. DOI: 10.1128/AEM.02829-07.

Wittmann, Johannes; Turner, Dann; Millard, Andrew D.; Mahadevan, Padmanabhan; Kropinski, Andrew M.; Adriaenssens, Evelien M. (2020): From Orphan Phage to a Proposed New Family-the Diversity of N4-Like Viruses. In Antibiotics (Basel, Switzerland) 9 (10). DOI: 10.3390/antibiotics9100663.

Wolf, Arite; Fritze, Antje; Hagemann, Martin; Berg, Gabriele (2002): Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. In International journal of systematic and evolutionary microbiology 52 (Pt 6), pp. 1937-1944. DOI: 10.1099/00207713-52-61937.

Woods, Donald E.; Jeddeloh, Jeffrey A.; Fritz, David L.; DeShazer, David (2002): Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. In Journal of bacteriology 184 (14), pp. 4003-4017. DOI: 10.1128/JB.184.14.4003-4017.2002.

Xu, Yongle; Zhang, Rui; Jiao, Nianzhi (2015): Complete genome sequence of Paracoccus marcusii phage vB_PmaS-R3 isolated from the South China Sea. In Standards in genomic sciences 10, p. 94. DOI: 10.1186/s40793-015-0089-7.

Xu, Yongle; Zhang, Rui; Wang, Nannan; Cai, Lanlan; Tong, Yigang; Sun, Qiang et al. (2018): Novel phage-host interactions and evolution as revealed by a cyanomyovirus isolated from an estuarine environment. In Environmental microbiology 20 (8), pp. 2974-2989. DOI: 10.1111/1462-2920.14326.

Yang, Jhung-Ahn; Kang, Ilnam; Moon, Mikyung; Ryu, Uh-Chan; Kwon, Kae Kyoung; Cho, JangCheon; Oh, Hyun-Myung (2016): Complete genome sequence of Celeribacter marinus IMCC12053(T), the host strain of marine bacteriophage P12053L. In Marine genomics 26, pp.5-7. DOI: 10.1016/j.margen.2015.11.012.

Yang, Qiao; Ge, Ya-ming; Iqbal, Nurhezreen Md; Yang, Xi; Zhang, Xiao-ling (2021): Sulfitobacter alexandrii sp. nov., a new microalgae growth-promoting bacterium with exopolysaccharides bioflocculanting potential isolated from marine phycosphere. In Antonie van Leeuwenhoek 114 (7), pp. 1091-1106. DOI: 10.1007/s10482-021-01580-0.

Yang, Ying-Jie; Zhang, Ning; Ji, Shi-Qi; Lan, Xin; Zhang, Kun-di; Shen, Yu-Long et al. (2014): Dysgonomonas macrotermitis sp. nov., isolated from the hindgut of a fungus-growing termite. In International journal of systematic and evolutionary microbiology 64 (Pt 9), pp. 2956-2961. DOI: 10.1099/ijs.0.061739-0.

Yang, Yunlan; Cai, Lanlan; Ma, Ruijie; Xu, Yongle; Tong, Yigang; Huang, Yong et al. (2017): A novel Roseosiphophage isolated from the oligotrophic South China Sea. In Viruses 9 (5). DOI: 10.3390/v9050109.

Young, Ry (2013): Phage lysis: do we have the hole story yet? In Current opinion in microbiology 16 (6), pp. 790-797. DOI: 10.1016/j.mib.2013.08.008.

Young, Ryland (2014): Phage lysis: Three steps, three choices, one outcome. In Journal of Microbiology 52 (3), pp. 243-258. DOI: 10.1007/s12275-014-4087-z.

Zaczek-Moczydłowska, Maja A.; Young, Gillian K.; Trudgett, James; Fleming, Colin C.; Campbell, Katrina; O'Hanlon, Richard (2020): Genomic Characterization, Formulation and Efficacy in Planta of a Siphoviridae and Podoviridae Protection Cocktail against the Bacterial Plant Pathogens Pectobacterium spp. In Viruses 12 (2). DOI: 10.3390/v12020150.

Zeng, Jian; Wang, Yan; Zhang, Ju; Yang, Shixing; Zhang, Wen (2021): Multiple novel filamentous phages detected in the cloacal swab samples of birds using viral metagenomics approach. In Virol J 18 (1), p. 240. DOI: 10.1186/s12985-021-01710-0.

Zhai, Zhiqiang; Zhang, Zefeng; Zhao, Guiyuan; Liu, Xinxin; Qin, Fang; Zhao, Yanlin (2021): Genomic Characterization of Two Novel RCA Phages Reveals New Insights into the Diversity and Evolution of Marine Viruses. In Microbiology spectrum 9 (2), e0123921. DOI: 10.1128/Spectrum.01239-21.

Zhan, Yuanchao; Chen, Feng (2019a): Bacteriophages that infect marine roseobacters: genomics and ecology. In Environmental microbiology 21 (6), pp. 1885-1895. DOI: 10.1111/1462-2920.14504.

Zhan, Yuanchao; Chen, Feng (2019b): The smallest ssDNA phage infecting a marine bacterium. In Environ Microbiol 21 (6), pp. 1916-1928. DOI: 10.1111/1462-2920.14394.

Zhan, Yuanchao; Huang, Sijun; Chen, Feng (2018): Genome Sequences of Five Bacteriophages Infecting the Marine Roseobacter Bacterium Ruegeria pomeroyi DSS-3. In Microbiol Resour Announc 7 (12), p. 910. DOI: 10.1128/MRA.00959-18.

Zhan, Yuanchao; Huang, Sijun; Voget, Sonja; Simon, Meinhard; Chen, Feng (2016): A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents. In Scientific reports 6, p. 30372. DOI: 10.1038/srep30372.

Zhang, Carolyn; Song, Wenchen; Ma, Helena R.; Peng, Xiao; Anderson, Deverick J.; Fowler, Vance G. et al. (2020a): Temporal encoding of bacterial identity and traits in growth dynamics. In PNAS 117 (33), pp. 20202-20210. DOI: 10.1073/pnas. 2008807117.

Zhang, Fuxing; Fan, Yongxiang; Zhang, Danyang; Chen, Shuangshuang; Bai, Xue; Ma, Xiaohong et al. (2020b): Effect and mechanism of the algicidal bacterium Sulfitobacter porphyrae ZFX1 on the mitigation of harmful algal blooms caused by Prorocentrum donghaiense. In Environmental pollution (Barking, Essex : 1987) 263 (Pt A), p. 114475. DOI: 10.1016/j.envpol.2020.114475.

Zhang, Yongyu; Jiao, Nianzhi (2009): Roseophage RDJL Phi1, infecting the aerobic anoxygenic phototrophic bacterium Roseobacter denitrificans OCh114. In Applied and environmental microbiology 75 (6), pp. 1745-1749. DOI: 10.1128/AEM.02131-08.

Zhang, Zefeng; Chen, Feng; Chu, Xiao; Zhang, Hao; Luo, Haiwei; Qin, Fang et al. (2019a): Diverse, abundant and novel viruses infecting "unculturable" but abundant marine bacteria 42. DOI: 10.1101/699256.

Zhang, Zefeng; Chen, Feng; Chu, Xiao; Zhang, Hao; Luo, Haiwei; Qin, Fang et al. (2019b): Diverse, Abundant, and Novel Viruses Infecting the Marine Roseobacter RCA Lineage. In mSystems 4 (6). DOI: 10.1128/mSystems.00494-19.

Zhang, Zefeng; Qin, Fang; Chen, Feng; Chu, Xiao; Luo, Haiwei; Zhang, Rui et al. (2021): Culturing novel and abundant pelagiphages in the ocean. In Environmental microbiology 23 (2), pp. 1145-1161. DOI: 10.1111/1462-2920.15272.

Zhao, Yanlin; Qin, Fang; Zhang, Rui; Giovannoni, Stephen J.; Zhang, Zefeng; Sun, Jing et al. (2018): Pelagiphages in the Podoviridae family integrate into host genomes. In Environmental microbiology. DOI: 10.1111/1462-2920.14487.

Zhao, Yanlin; Temperton, Ben; Thrash, J. Cameron; Schwalbach, Michael S.; Vergin, Kevin L.; Landry, Zachary C. et al. (2013): Abundant SAR11 viruses in the ocean. In Nature 494 (7437), pp. 357-360. DOI: 10.1038/nature11921.

Zhao, Yanlin; Wang, Kui; Jiao, Nianzhi; Chen, Feng (2009): Genome sequences of two novel phages infecting marine roseobacters. In Environmental microbiology 11 (8), pp. 2055-2064. DOI: 10.1111/j.1462-2920.2009.01927.x.

Zheng, Qiang; Chen, Qi; Xu, Yongle; Suttle, Curtis A.; Jiao, Nianzhi (2018): A Virus Infecting Marine Photoheterotrophic Alphaproteobacteria (Citromicrobium spp.) Defines a New Lineage of ssDNA Viruses. In Front. Microbiol. 9, p. 403. DOI: 10.3389/fmicb.2018.01418.

Zucker, Falk; Bischoff, Vera; Olo Ndela, Eric; Heyerhoff, Benedikt; Poehlein, Anja; Freese, Heike M. et al. (2022): New Microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of single-stranded DNA phages infecting marine and terrestrial Alphaproteobacteria. In Virus evolution 8 (2), Article veac070. DOI: $10.1093 / \mathrm{ve} / \mathrm{veac} 070$.

## Acknowledgements

In 2015, during my very first practical course within the Master's program in Microbiology, I joined the group supervised by Dr. Cristina Moraru working on phages - and already I was infected. Since then, I have been on the hunt for new roseophages, starting as a Hiwi, then for my Master's thesis and finally as a PhD student. This journey would not have been as successful and beautiful without the support of many people I want to acknowledge here.

First, I would like to thank Prof. Meinhard Simon for providing me the opportunity to join his working group at the ICBM and the Roseobacter SFB. Thank you for your support throughout the years, for reviewing my thesis and for being my first examiner.

I am deeply grateful to Dr. Cristina Moraru, who has been a constant source of support throughout these years and whose enthusiasm for phage research has been so inspiring to me. Thank you very much for being not only a great supervisor but also a friend!

Furthermore, I would like to thank Prof. Karin Holmfeldt and Dr. Bert Engelen for joining my thesis committee and being part of my examination board as second and third reviewer.

Many thanks are owed to the entire AG Simon and AG Cypionka for cultivating such a warm and welcoming working environment, especially to the "TA-Backbone" of Andrea, Mathias, Birgit, Rolf, and Frank, who were always there with their helping hands and expertise.

I am also immensely grateful to the "ICBM phagers" family including Cristina, Falk, Ismail, Aaron, Ben, and Andrea, as well as Anne, Martin, and Eileen. Working in a team with you has been such a great experience and without your dedicated support, the multitude of phage isolations, DNA extractions and host range tests, involving an insane number of agar plates, would have been impossible. Thank you so much!

Thanks also to Carlota, Anneke, and the Planktotron crew for providing the bacterial host strains and the seawater samples that laid the foundation for so many successful roseophage isolations.

Further, I am very thankful to all my fellow PhD colleagues and friends who made this journey unforgettable. A big thank you to Falk, Mara, and Melissa for proofreading my thesis!

Finally, I would like to thank my family - my parents and my brother, who have made this path possible for me and who have always believed in me. - Vielen Dank für eure Unterstützung!

And to Viktor, who suffered most during the last years, guiding me through the many ups and downs and always taking care of me. - DANKE!

## Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Zusätzlich erkläre ich, dass diese Dissertation weder in ihrer Gesamtheit noch in Teilen einer anderen wissenschaftlichen Hochschule zur Begutachtung in einem Promotionsverfahren vorliegt oder vorgelegen hat. Außerdem versichere ich, dass ich die allgemeinen Prinzipien wissenschaftlicher Arbeit und Veröffentlichung, wie sie in den Leitlinien guter wissenschaftlicher Praxis der Carl von Ossietzky Universität Oldenburg festgelegt sind, befolgt habe.

