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Abstract

Binaural hearing, or the bene�t from listening with two ears, contributes to spatial

hearing and therefore helps to determine the position of a heard sound as well as to

perceptually segregate competing sound sources. It therefore facilitates navigation,

orientation, and communication in challenging acoustic situations. More than 5% of

the world's population � and the trend is increasing � require rehabilitation for their

hearing loss in order to enjoy equal opportunities in society. A central component

is the treatment with hearing aids. In addition, participants with normal hearing

or mild hearing loss use smart headphones with similar functionality in situations

where sound localization is required, such as road tra�c. Therefore, there is great

demand to enable users of hearing technology to bene�t from binaural hearing. This

requires a good understanding of binaural hearing. Such is manifested in models

that re�ect binaural perception and thus reproduce the essential characteristics. If

such models are also computationally e�cient, they can also be incorporated into

hearing algorithms to adapt the processing strategy based on the sound quality pre-

dicted by the model. However, for decades, models of binaural hearing have been

established that fall short in these requirements. Speci�cally, models have assumed

(1) axonal delays of several milliseconds in the brainstem to encode interaural time

di�erences, whereas mammalian physiology suggests shorter delays encoding inter-

aural phase di�erences, and (2) a lower spectral and temporal resolution in binaural

hearing than in monaural hearing, whereas more recent results suggest that both

monaural and binaural hearing access the resolution provided by basilar membrane

�ltering. This thesis aims to overcome these contradictions by providing models
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Abstract

that are consistent with behavioral physiological characteristics and at the same

time computationally simple enough to be incorporated into hearing algorithms.

Therefore, this thesis (1) supports and uses the complex correlation coe�cient to be

an e�cient and comprehensive description of mammalian binaural processing, (2) it

shows that interference across frequency and time can explain the apparently lower

binaural resolution, and (3) provides a simple, real-time applicable and at the same

time powerful model for sound quality assessment. The models provided in this

thesis can contribute to a better understanding of binaural hearing and therefore to

a better assessment of the sound quality of hearing algorithms.
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Zusammenfassung

Binaurales Hören, oder das Pro�tieren vom Hören mit zwei Ohren, trägt maÿgeblich

zum räumlichen Hören bei, und damit sowohl zur Bestimmung der Einfallsrichtung

von Schall, als auch zur perzeptiven Trennung von gleichzeitigen Schallereignis-

sen. Dies erleichtert die Navigation, Orientierung und Kommunikation in kom-

plexen akustischen Umgebungen. Über 5% der Weltbevölkerung � Tendenz steigend

� benötigen Rehabitilationsmaÿnahmen für ihren Hörverlust, um gesellschaftliche

Chancengleichheit zu erlangen. Die zentrale Rolle spielt dabei die Versorgung mit

Hörgeräten. Zusätzlich werden Kopfhörer mit ähnlichem Funktionsumfang von Nor-

malhörenden und leicht Schwerhörenden häu�g in Situationen genutzt, in denen

Auÿengeräusche lokalisiert werden müssen, wie beispielsweise im Straÿenverkehr.

Daher besteht ein hoher Bedarf, binaurales Hören auch bei Verwendung von Hörsys-

temen zu ermöglichen. Dies erfordert ein tiefgreifendes Verständnis des binauralen

Hörens. Um dieses Verständnis zu festigen und zu quanti�zieren, werden Mod-

elle benötigt, welche die e�ektive binaurale Verarbeitung im Gehirn nachbilden und

die Kerneigenschaften der Wahrnehmung reproduzieren können. Modelle die zu-

gleich rechene�zient sind, können auch in Hörsysteme integriert werden, um die

Verarbeitungsstrategie auf Basis der vom Modell geschätzten Klangqualität anzu-

passen. Allerdings erfüllen die traditionellen Modelle des binauralen Hörens diese

Anforderungen nicht im nötigen Maÿe. Konkret wurde bisher angenommen, dass

zur Bestimmung des Zeitunterschieds zwischen dem Schalleinfall am linkem und

rechtem Ohr im Hirnstamm Laufzeitunterschiede von mehreren Millisekunden aus-

gewertet werden. Jedoch ist bei Säugetieren deutlich wahrscheinlicher, dass Neu-
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Zusammenfassung

rone im Hirnstamm auf die Auswertung von Phasendi�erenzen zwischen den Ohren

abgestimmt sind, was eine Auswertung lediglich kurzer Laufzeitdi�erenzen bedeutet.

Auÿerdem wurde angenommen, dass die Frequenz- und Zeitau�ösung beim binau-

ralen Hören geringer ist als beim monauralen Hören. Neuere Studien zeigen jedoch,

dass beim monauralen und binauralen Hören jeweils die volle Au�ösung, die die

Basilarmembran zulässt, zur Verfügung steht. Ziel dieser Arbeit ist, die genan-

nten Widersprüche zu überwinden. Hierfür werden Modelle entwickelt, die sowohl

mit Erkenntnissen aus der Psychoakustik als auch aus der Physiologie konform,

gleichzeitig aber so schlicht aufgebaut sind, dass sie in Hörsysteme integriert wer-

den können. Dies wird erzielt indem (1) der komplexe Kreuzkorrelationskoe�zient

als e�ziente und schlüssige Beschreibung der binauralen Wahrnehmung und Verar-

beitung bei Säugetieren etabliert wird, (2) indem gezeigt wird, dass Interferenzen

über Frequenz und Zeit die vermeintlich niedrigere binaurale Au�ösung erklären

können, und (3) indem ein schlichtes, echtzeitfähiges und zugleich robustes Modell

zur Schätzung von Klangqualität entwickelt wird. Die hier vorgestellten Modelle

tragen dadurch zu einem besseren Verständnis der binauralen Wahrnehmung und

in der Folge zu einer verbesserten Ermittlung von Klangqualität bei.
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CHAPTER 1

Introduction

1.1 Hearing and Society

Unaddressed hearing loss can degrade communication, hinder childrens' speech and

language development and a�ect mental health (World Health Organization, 2021).

Next to social isolation, lonliness and stigma (World Health Organization, 2023),

also education and employment can be a�ected, entailing a negative impact on

individual opportunities, society, and economy (World Health Organization, 2023;

Davis and Ho�man, 2019). As of 2023, more than 430 million people in the world,

corresponding to more than 5% of the world population, need rehabilitation for

their hearing disability. World Health Organization predicts this number to increase

to over 700 million people by 2050 (World Health Organization, 2023), associated

with the growth of global population and the increasing life expectancy (Olusanya

et al., 2014; Davis and Ho�man, 2019). Hearing loss is the third leading cause of

years lived with disability (YLD). For people older than 70 years it is even the

leading cause of YLD (Wilson and Tucci, 2021). McCormack and Fortnum (2013)

state hearing aids as �the primary clinical management intervention for people with

hearing loss�. Hearing aids have the potential to contribute signi�cantly to manage

that �immense global health concern�` (Wilson and Tucci, 2021). As one example,
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1 Introduction

people with hearing loss have been associated with an increased risk of all-cause

dementia (Jiang et al., 2023; Gri�ths et al., 2020), which is a top-ten cause of

death worldwide (World Health Organization, 2020). Among those using hearing

aids, no increased risk has been found (Jiang et al., 2023). Furthermore, hearing

rehabilitation using hearing aids has been shown to have a positive impact on quality

of life [e.g., Lot� et al. (2009), Brodie et al. (2018), Ferguson et al. (2017)].

However, despite these bene�ts, the majority of people with hearing loss do not

have hearing aids or do not use them (McCormack and Fortnum, 2013). Various

reasons have been identi�ed: Besides psycho-social factors, poor sound quality and

lack of comfort, in combination with limited bene�t, play major roles (McCormack

and Fortnum, 2013; Abrams and Kihm, 2015; Vaisberg et al., 2021; Bennett et al.,

2018). Also, inequalities in access and a�ordability of hearing devices contribute to

an unmet need of hearing healthcare as high as 67. . .86% (Committee on Accessible

and A�ordable Hearing Health Care for Adults et al., 2016)1. At the same time,

improvements in digital hearing technology have been achieved. These include al-

gorithms for noise reduction, beamforming and binaural interaction. Features like

wireless connectivity and introduction of arti�cial intelligence further improved us-

ability and functionality (You et al., 2020; Seol and Moon, 2022). Devices sold

directly to the consumer like over-the-counter hearing aids, smart headphones and

hearables address users with mild to moderate hearing loss (Seol and Moon, 2022).

This complements prescription hearing aids that address those with moderate to

severe hearing loss. With 20% of the world population having mild-to-complete loss

in the better hearing ear, which makes hearing loss an �invisible disability� (Wilson

and Tucci, 2021), there is a large group of people that could potentially bene�t from

low-barrier, consumer-friendly hearing technology.

In order to improve hearing technology, research relies on models of auditory per-

ception. Models are involved because they

1The research presented in this thesis mainly aims to improve hearing restoration by providing
knowledge and algorithms. However, it is important to mention another crucial factor of
managing the global burden of hearing loss: Approximately 90% of people with moderate to
profound hearing impairment live in low- to middle income countries (Davis and Ho�man,
2019), where infections as well as noise exposure are more prominent causes of hearing loss
(World Health Organization, 2023). Therefore, a crucial challenge is prevention of hearing
loss. This includes support for hearing healthcare in countries with low- to middle income.
With the United Nations' sustainable development goals (United Nations, 2015), the World
Health Assembly's resolution on the prevention of deafness and hearing loss (World Health
Organization, 2017) and the Convention on the Rights of Persons with Disabilities, a policy
framework for global action has been installed (Davis and Ho�man, 2019).

2



1.2 Binaural Hearing

1. manifest and quantify researchers' understanding of hearing,

2. are the basis of the signal processing that operates in hearing technology, as a

hearing aid aims to compeensate for the hearing loss by performing a function

similar to that of intact hearing,

3. can speed up development by providing outcome predictions such as instru-

mental sound quality assessments to monitor distortions arising from signal

processing, as hearing aids are useless if distortions exceed the bene�t,

4. can contribute to accurate diagnostics.

This thesis directly addresses the aspects (1) to (3) with aspect (4) supported by the

proposed models and insights. It incorporates a novel concept of binaural modeling

� the complex correlation coe�cient γ. It was developed with my contribution and

is described in chapter 2. γ is used in all three models proposed in this thesis, which

includes:

two contributions to the understanding of hearing: The same conceptual idea on the

role of interference processes in binaural perception, described in section 2.2,

is applied in the frequency domain and in the time domain in order to unify

previously contracting models of binaural hearing. Both are standalone peer-

reviewed publications that are shortly outlined in section 1.3 and reprinted in

the chapters 3 and 4.

one contribution to model-based sound quality assessment: The γ-based model pre-

sented in chapter 3 is extended to a combined monaural and binaural measure

for audio quality assessment (eMoBi-Q). Combining perceptual validity, per-

formance and computational e�ciency it is suited for evaluation and real-time

control of algorithms in hearing technology. Section 1.4 shortly outlines the

submitted manuscript which is reprinted in chapter 5.

1.2 Binaural Hearing

In the following, binaural hearing is introduced, as it is the sub�eld of hearing

research addressed in this thesis. Subsequently, the sections 1.3 and 1.4 give an

overview of the binaural research conducted.
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1 Introduction

Binaural hearing describes the ability to evaluate the di�erences in a sound arriving

at the two ears. It allows listeners to determine the horizontal position of the

sound. Spatial hearing relies on binaural cues and spectral cues arising from the

geometry of the outer hear, head, and torso. Together, spatial hearing enables to

turn the head towards an object without a-priori knowledge of their direction and

without any further cues (Masterton et al., 1969). Therefore, (spatial) hearing is

bene�cial for orientation and identifying hazards (Brown, 1994; Grothe and Pecka,

2014). The auditory image analysis (�what is the source of the sound?�) is thereby

complemented by the auditory location anaylsis (�Where is the source of the sound?�)

(Brown, 1994). Combined with vision, a detailed analysis of the surrounding has

developed under evolutionary selective pressure (Brown, 1994; He�ner, 1997).

In addition, binaural hearing helps segregating competing sound sources (Shinn-

Cunningham, 2005), allowing listeners to focus on a sound source of interest in the

presence of distracting sources (Shinn-Cunningham et al., 2017). A target sound

is better detected in the presence of a masking sound when the two sounds di�er

in their interaural parameters, known as binaural unmasking [BU, Hirsh (1948);

Culling and Lavandier (2021)]. This contributes signi�cantly to spatial release from

masking (Dieudonné and Francart, 2019; Culling and Lavandier, 2021), i.e. im-

proved speech intelligibility as a consequence of spatial sepearation of target speaker

and masking noise, where monaural and binaural unmasking e�ects are combined

(Dieudonné and Francart, 2019; Bronkhorst and Plomp, 1988). Additionally, in

noisy, reverberant listening conditions, binaural listening reduces listening e�ort

compared to monaural listening (Rennies and Kidd, 2018). As everyday situations

involve conversations in noisy, often reverberant environments, as well as tra�c,

binaural hearing facilitates communication and safe navigation.

Therefore it is desirable that hearing aid algorithms, mainly aiming to restore speech

intelligibility, preserve and provide binaural cues (Marquardt et al., 2015; Derleth

et al., 2021). Designing and evaluating hearing technology, such as hearing aids or

wireless headphones with a hear-through mode, requires a good understanding of

hearing, especially binaural hearing.

4
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1.3 Insights through models: Interference across frequency and time

unravels binaural modeling

Models that replicate important aspects of human hearing are important to manifest

a good understanding of hearing. For models about binaural perception, there have

been contradictions between the assumptions underlying traditional models and

more recent physiologic and behavioral insights. In both the spectral and temporal

domain, experimental results have been interpreted to indicate that binaural hearing

operates on larger analysis windows than monaural hearing. In both domains, this

has been in con�ict with other experimental results that suggest the same analysis

windows operating in binaural and monaural hearing. This thesis suggests one

unifying concept and applies it to unify the contradictions in both domains. The

concept is based on interference across frequency and time and is introduced in

section 2.2. Chapter 3 and chapter 4 show how this interference can unify the

con�icts between binaural analysis windows in the spectral and temporal domain,

respectively.

1.4 Applying models: Assessing sound quality of hearing and

reproduction technology

As mentioned above, improvements in the sound quality of hearing instruments are

desirable to increase the use, bene�t, acceptance and comfort of these instruments.

Models of auditory perception can be used to assess sound quality by replacing time-

consuming listening tests. In addition, developers can use model features to monitor

the perceptual consequences of their algorithms. A computationally e�cient model

can also control hearing aid algorithms in real time by providing a running estimate

on perception of signal-processing induced distortions.

While several instrumental measures of monaural audio quality are available, bin-

aural and combined monaural and binaural measures are less well established. For

the purpose of real-time algorithm control, computational e�ciency is an additional

requirement for such models. A contribution to this is presented in chapter 5. The

physiologically plausible and perceptually validated binaural model, which was also

the basis for the chapters 3 and 4, is extended to assess combined monaural and

5
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binaural audio quality. While its prediction accuracy can compete with previous,

more complex models, the proposed model is mathematically simple and e�cient.

This makes it suitable for time-critical applications.

6
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CHAPTER 2

The model concepts

In the following, section 2.1 describes the foundation underlying this work. Sec-

tion 2.2 introduces the interference concept applied in the chapters 3 and 4.

2.1 Concepts underlying this thesis

2.1.1 Binaural unmasking enabled by �uctuations in interaural phase

A tone presented with opposite phase to one ear compared to the other ear (i.e.

antiphasic) can be detected in diotic noise (i.e. identically presented to both ears)

at an about 15 dB lower signal-to-noise ratio (SNR) than a diotic tone. This e�ect

is known as binaural unmasking (BU), the resulting shift in detection threshold

is called binaural masking level di�erence (BMLD). A tone that has a constant

interaural phase di�erence (IPD) of π added to a diotic noise causes �uctuations

in the IPD of the mixed signal. This arises from he mixture of the amplitude

�uctuations of the noise and the IPD of the tone (see Fig. 2.1). The strength of

interaural �uctuations re�ects the dissimilarity of left and right signals and that

dissimilarity is re�ected in a low coherence. While a diotic signal is perceived as a

compact auditory event between the ears when listened to via headphones, an IPD
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Figure 2.1: Basic interaural conditions and their IPD. Columns show a diotic noise,
gammatone-�ltered with a center frequency of 500Hz, the same noise with an
added antiphasic tone at SNR = -35 dB, and the same noise with an ITD of
0.4ms. The rows show the waveforms, their instantaneous IPD, and the IPD
histograms. It is visible that introducing an antiphasic tone or an ITD to an
otherwise diotic noise causes IPD �uctuations.

causes a frequency-dependent lateralization, i.e. a shift towards one of the ears.

Therefore, if the IPD and thus the laterality of a signal is changing rapidly over

time, the perceptual consequence is a widening of the perceived auditory event, i.e.

a less compact within-the-head representation. The laterality cue and the widening

cue in combination enable binaural unmasking.

2.1.2 The delay-line model

The delay-line model as �rst postulated by Je�ress (1948) is one of the longest-

standing models in sensory neuroscience (Encke and Dietz, 2022). For decades, it

has been the basis for e�ectively describing binaural processing and especially for

successfully explaining binaural unmasking (Durlach, 1963; Colburn, 1973, 1977). It

assumes an array of neurons in the brainstem tuned to external delays in the range

of a few milliseconds, i.e. ITDs, realized through axonal internal delays.

Besides a direct encoding of the stimulus ITD, this implies that a change in interaural

correlation, caused by the addition of a tone to a noise, is equally well detectable

for the whole range of noise ITDs. This can be seen as an internal compensation of
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the ITD, based on the idea that there are neurons having their maximum sensitivity

at that speci�c ITD. This ITD-dependence of detectability has been characterized

involving a function p(τ) re�ecting the reduced compensation potency at higher

internal delays τ (Colburn, 1973; Stern and Colburn, 1978). This is visualized in

Fig. 2.3, left panel.

2.1.3 Filter bandwidth dictates binaural unmasking

With the bandpass �lter bandwidth of ERB = 79Hz at 500Hz center frequency

(Patterson, 1976; Glasberg and Moore, 1990) which has been con�rmed to well ex-

plain BU in delayed noise (Dietz et al., 2021), the corresponding noise coherence

already dictates the maximum achievable binaural unmasking (Langford and Jef-

fress, 1964; Rabiner et al., 1966; Dietz et al., 2021). This is because the noise

coherence is determined by the spectrum, which is a general property of waves.

Speci�cally, it is proportional to the inverse Fourier transform of the noise power

spectral density, known as Wiener-Khinchin theorem (Wiener, 1930; Khintchine,

1934). Therefore, tone detection thresholds as both a function of noise ITD [left

panel of Fig. 2.2, Langford and Je�ress (1964)] and of noise correlation [right panel

of Fig. 2.2, Robinson and Je�ress (1963)] correspond well to the coherence of the

noise after gammatone �ltering with ERB = 79Hz. The consequence of the stimulus

coherence resulting from basilar membrane �ltering already determining detection

thresholds is that there is no need and no room for a delay compensation plus its

potency reduction p(τ). This is quantitatively modeled and discussed in Chapter 3.

Therefore, all models presented in this thesis involve conventional peripheral �lter

bandwidths corresponding to Glasberg and Moore (1990).

2.1.4 The two-channel code

While axonal delays with a length as assumed by the delay-line concept have been

found in barn owls (Carr and Konishi, 1988), such has not been found in mammals.

Instead, it has been shown that the maximum �ring rates of mammalian neurons

in the medial superior olive (MSO) are limited to half the corresponding period,

i.e. π (Marquardt and Mcalpine, 2007), and clustered around π/4 (McAlpine et al.,

2001). Therefore, from a physiologic standpoint, it is more reasonable to assume

that binaural encoding is based on the relationship in activity of binaural nerons
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Figure 2.2: Illustration of the correspondence between noise coherence and BMLD; left
panel: BMLD for Sπ detection as a function of masker ITD (black circles
connected by black line), redrawn from Langford and Je�ress (1964); right
panel: BMLD for Sπ detection as a function of noise interaural correlation,
redrawn from Robinson and Je�ress (1963) (gray line). The horizontal dard
gray line with circles illustrates the correspondence between the BMLD for a
noise ITD of 4ms and for a noise interaural correlation of 0.75.

between left and right hemispheres. This supports a rate-code instead of a delay

line model (Encke and Dietz, 2022). However, in the past, two-channel models have

not achieved the predictive power of delay-line models (Encke and Hemmert, 2018;

Bouse et al., 2019).

2.1.5 Mathematically e�cient approximation: The complex correlation coe�cient γ

Two orthogonal dimensions for e�ective binaural modeling

Based on previous models that evaluate IPD statistics (Goupell and Hartmann,

2006; Dietz et al., 2008, 2021), Encke and Dietz (2022) presented a mathematically

e�cient, simpli�ed formulation of the two-channel code. It interprets the best IPDs

clustered around ±π
4
as two correlation coe�cients with π

2
phase o�set. An impor-

tant novelty of this approach is the orthogonality assumption, whereas the delay-line

concept relies on the dependence of correlation units, re�ected in weighting func-

tions like centrality and straightness (Trahiotis and Stern, 1989). The orthogonality

allows expressing the two coe�cients as a complex number, termed the complex

correlation coe�cient γ, with the real and imaginary part representing the corre-
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lation coe�cients in left and right hemispheres, respectively. Figure 2.3 illustrates

the correspondence between the correlation function and the two orthogonal corre-

lation coe�cients. The complex formulation allows interpretation as a vector with

the magnitude |γ| representing coherence and the argument arg{γ} representing

the phase angle between the two signals, i.e., the mean IPD (see Fig. 2.4). The γ

model, �rst published by Encke and Dietz (2022), achieved a good predictive power

for binaural detection. It directly interprets the Fisher-z (i.e. atanh) transformed

di�erence of γ between the reference and the test signals as the ability of the models

to discriminate between the two signals.

The delay-line and γ are equivalent in evaluating the interaural correlation coe�cient

ρ, i.e. the correlation at zero internal delay. However, the delay-line model adds an

array of further correlation coe�cients at a range of internal delays, adjusted by the

mentioned p(τ) function, while the γ model adds a second, orthogonal dimension,

i.e. the correlation coe�cient associated with the second hemisphere.

The models presented throughout this theses build on the γ model because of the

physiologic association and plausibility combined with mathematical e�ciency and

clarity.

Two orthogonal dimensions in other research �elds

Another motivation to uptake γ is that adding a second or more orthogonal dimen-

sions has historically led to more consistent and powerful models in various other

�elds of research. These include descriptions of waves and other phenomena. Some

examples are:

Optics Interference and di�raction of waves are described in two orthogonal dimen-

sions, expressed as complex numbers, as well as the polarization of light.

Social Sciences Nowaday's political landscapes have been argued to be more appro-

priately described involving two orthogonal dimensions, namely a liberitarian-

authoritarian position and the conventional left-right economic position (Jack-

son and Jolly, 2021; Wagner et al., 2023; Jolly et al., 2022; Hooghe et al., 2002).

Representing these two orthogonal dimensions as a complex number allows en-

coding of, e.g., the political direction of a society: When averaging a number

of unit vectors, re�ecting individual positions, the angle of the resulting vec-
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Figure 2.3: Illustration of the relationship of interaural correlation ρ and coherence γ. Left
panel: Correlation functions for two orthogonal correlator units ρleft(τ) and
ρright(τ) associated with left and right hemispheres, as a function of the inter-
nal delay (or lag) τ , again for a noise with ITD = 2.8ms, gammatone-�ltered
at 500Hz with ERB = 79Hz. The complex correlation coe�cient γ is given by
interpreting ρleft(τ) and ρright(τ) as real part and imaginary part of a complex
correlation coe�cient (ρ(τ = 0)). The real part ℜ{γ} is equal to the correlation
coe�cient ρ(τ = 0) and can be interpreted as the correlation coe�cient encoded
in one of the hemispheres, while the imaginary part ℑ{γ} then represents the
correlation coe�cient encoded in the other hemisphere, phase shifted by 90° =
π
2
. The magnitude |γ| � the envelope � represents the coherence or phase pre-

dictability of the two underlying signals for a given ITD. A traditional delay-line
based model would assume to evaluate the whole visible part of the correlation
function and would adjust a function p(τ) to mimick the potency of the as-
sumed delay compensation and, in case of a wider assumed �lter, the temporal
coherence decay. Right panel: γ plotted as a function of the noise ITD. The
coherence for the noise ITD of 2.8ms is now represented by the magnitude of γ
at that ITD. The vector representation of γ is shown in Fig. 2.4.

tor re�ects the resulting societal political direction. The magnitude can be

interpreted as the coherence of the individual political positions.

2.2 Interference concept suggested in this thesis

As outlined in chapter 1, in both the spectral and the temporal domain, apparently

larger analysis windows have been assumed in binaural compared to monaural hear-

ing. However, in both domains there is also evidence for analysis windows being

similarly small in binaural and monaural hearing. The starting point for this thesis

is the following hypothesis: While a high-resolution system, i.e. smaller involved

analysis windows, can potentially be unable to access its full resolution under certain

conditions, the reverse is not possible. Therefore, the proposed concept is that the
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ℜ{γ};
wave / component 1;
economic position

ℑ{γ};
wave / component 2;

liberitarian-authoritarian

|γ|

arg{γ}

Figure 2.4: Exemplary complex space to illustrate how two-dimensional models are rep-
resented in the complex plane. The vector represents γ corresponding to the
condition shown in Figs. 2.1 and 2.3. Examples from other research �elds are:
In optics, two waves or two light components are described using two orthogonal
dimensions (green axis labels). As another example, two orthogonal dimensions
have also been suggested to re�ect the political landscape (red axis labels). The
resulting vector represents the resulting two-dimensional description.

same, small analysis windows operate in binaural and monaural hearing. However,

o�-signal regions can interfere with signal detection and thus lead to the impression

of an overall larger analysis window. The concept that interference can explain the

apparently larger binaural analysis windows is inspired by crosstalk in electronics

and adjacent-channel interference in radio systems. It is hypothesized that spectral

or temporal o�-signal changes in the interaural representation of a sound cannot

always be ignored and thus a�ect the hearing sensation. This is based on previous

observations in audition that have been associated with interference: For monau-

ral hearing, detection of amplitude modulations have been described to depend

on amplitude modulations at other frequencies. This has been termed modulation

detection interference (Yost and Sheft, 1989; Bacon and Konrad, 1993; Mendoza

et al., 1995; Bernstein and Trahiotis, 1995; Oxenham and Dau, 2001). For binaural

hearing, detection of changes in ITD or ILD have been shown to be impaired by a

spectrally remote interferer with di�ering ITD/ILD, referred to as binaural inter-
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ference. Both e�ects have been associated with both simultaneous and sequential

perceptual grouping of the two sensations to one or two distinct streams (Oxenham

and Dau, 2001; Best et al., 2007). As perceptual grouping and streaming does not

necessarily involve attention (Sussman et al., 2007), this thesis models interference

as a bottom-up process without involving top-down processing.

Speci�cally, the two cases where interference accounts for the apparent contradic-

tions in binaural analysis windows are:

Spectral domain (chapter 3, Eurich et al. 2022) Detecting a pure tone in broadband

masking noise varies with the frequency dependence of interaural coherence.

The impaired detection for modulated masker coherence patterns is consistent

with the assumption of larger binaural than monaural �lter bandwidth. How-

ever, the non-impaired detection for frequency-independent masker coherence

suggests that the same �lter bandwidth determines binaural and monaural

detection. Applying the proposed concept means to assume the generally ac-

cepted basilar membrane �lter bandwidth plus a detrimental interference of

lower coherence from o�-signal bands. This work also resulted in a wave-form

processing model which is published in the auditory modeling toolbox (AMT)

version 1.4 (Majdak et al., 2022).

Temporal domain (chapter 4, Eurich and Dietz 2023) Depending on interaural statis-

tics in temporal surrounding of a target, its detection can be impaired. Ana-

loguous to the spectral domain, this has been interpreted as longer temporal

analysis window (�binaural sluggishness�). Other results can only be explained

with the temporal resolution limited only by basilar membrane �ltering, as is

generally accepted for monaural hearing. Applying the proposed concept again

means to assume a temporal resolution as resulting from basilar membrane �l-

tering plus detrimental interference of interaural statistics across time, i.e.

sluggish re-organization in case of rapid changes in interaural statistics.
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Lower interaural coherence in o�-signal bands impairs binaural detection
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3.1 Abstract

3.1 Abstract

Di�erences in interaural phase con�guration between a target and a masker can lead

to substantial binaural unmasking. This e�ect is decreased for masking noises with

an interaural time di�erence (ITD). Adding a second noise with an opposing ITD in

most cases further reduces binaural unmasking. Thus far, modeling of these detec-

tion thresholds required both a mechanism for internal ITD compensation and an

increased �lter bandwidth. An alternative explanation for the reduction is that un-

masking is impaired by the lower interaural coherence in o�-frequency regions caused

by the second masker (Marquardt and McAlpine, 2009, JASA pp. EL177 - EL182).

Based on this hypothesis, the current work proposes a quantitative multi-channel

model using monaurally derived peripheral �lter bandwidths and an across-channel

incoherence interference mechanism. This mechanism di�ers from wider �lters since

it has no e�ect when the masker coherence is constant across frequency bands.

Combined with a monaural energy discrimination pathway, the model predicts the

di�erences between a single delayed noise and two opposingly delayed noises as well

as four other data sets. It helps resolve the inconsistency that simulating some data

requires wide �lters while others require narrow �lters.

3.2 Introduction

The detection of a pure tone in noise is facilitated by di�erences in the interaural

phase between tone and noise (Hirsh, 1948). The improvement in the detection

threshold compared to the diotic case is referred to as the binaural masking level

di�erence (BMLD). The maximum BMLD is observed when detecting an antiphasic

pure tone target (Sπ) in an in-phase noise masker (N0). Adding an interaural time

di�erence (ITD) to the masker has been observed to reduce the BMLD (Langford

and Je�ress, 1964). A particularly simple case is when the noise and the target tone

have exactly opposite interaural phase di�erences. In this case, detection thresh-

olds increase gradually and monotonically with increasing noise ITD (Rabiner et al.,

1966). The increase can be simulated accurately by exploiting changes in the cross-

correlation coe�cient of left and right signal after using a �lter with an equivalent

rectangular bandwidth (ERB) of 60 to 85Hz at a center frequency of 500Hz (Ra-

biner et al., 1966; Dietz et al., 2021). This bandwidth range resembles the estab-

lished estimate of the human peripheral �lter bandwidth obtained from monaural
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3 Lower interaural coherence in o�-signal bands impairs binaural detection

psychoacoustic experiments at this frequency which is 79Hz (Glasberg and Moore,

1990) and referred to as standard �lter bandwidth in the following.

Another explanation uses an array of di�erent internal delays, known as delay lines

(van der Heijden and Trahiotis, 1999; Stern and Colburn, 1978; Bernstein and Trahi-

otis, 2018, 2020). Je�ress (1948) suggested that the binaural system has the ability

to compensate for the external ITD. The compensation accuracy or e�ciency has

been assumed to decrease with masker ITD in order to model the decreasing BMLD

(Stern and Colburn, 1978; van der Heijden and Trahiotis, 1999; Bernstein and Trahi-

otis, 2017).

van der Heijden and Trahiotis (1999) generated a new stimulus which they termed

�double-delayed noise� (diamonds in Fig. 3.1(E)) by adding two noises, one with a

positive and one with a negative ITD. We refer to this as opposingly delayed noises

(ODN). They found detection thresholds in ODN to be substantially higher than in

�regular� delayed noise termed �single-delayed noise�, SDN. Since internal delays can

only compensate for the ITD of one noise, ODN limits the usefulness of the putative

delay lines. Thus, van der Heijden and Trahiotis (1999) attributed the additional

unmasking in SDN, compared to ODN, to the delay lines. Irrespective of the use

of internal delays, however, a large part of the threshold di�erences between the

two stimuli is caused by the interaural coherence oscillating as a function of ITD

in ODN while monotonically decreasing in SDN (see the coherence (|γ| pattern in

Fig. 3.1(C)). More relevant for the role of internal delays are those ITDs that are

the multiples of half the period. There, the coherence is the same in SDN and ODN

but thresholds di�er. For S0 detection at 500Hz this is the case at ITD = 1ms and

3ms, for Sπ detection at ITD = 2ms and 4ms. So far, only the model of van der

Heijden and Trahiotis (1999), which is based on delay lines, has precisely accounted

for both SDN and ODN detection thresholds. The SDN-ODN detection threshold

di�erence is therefore used as psychoacoustic evidence for several millisecond long

delay lines (Stern et al., 2019). The di�erence was in fact used to derive the length

and potency of the delay line system (van der Heijden and Trahiotis, 1999).

However, two problems exist with establishing the psychoacoustically derived delay

line length or internal delay distribution function. First, measured delays in bin-

aural neurons of mammals are short compared to the respective period duration

(McAlpine et al., 2001; Joris et al., 2006; see also Leibold and Grothe, 2015 for

review) and thus too short to ful�l the lengths requirements of delay line models
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3.2 Introduction

(Thompson et al., 2006; Marquardt and McAlpine, 2009; Stern et al., 2019).

Second, if the delay-line models use their internal delays to account for SDN thresh-

olds while correlation coe�cient-based models (Rabiner et al., 1966; Encke and Di-

etz, 2022) are equally precise for SDN without delay lines, the two model types must

di�er in some other manner, such as �lter bandwidth. van der Heijden and Trahiotis

(1999) used ODN thresholds to determine the �lter bandwidth. They could best �t

their ODN thresholds with �lters of various shapes and an ERB of 130 to 180Hz

at 500Hz center frequency. This is expectedly larger than what models without

delay lines, such as Encke and Dietz (2022), required for SDN. The two versions

cannot both be correct. Thus, either the SDN-threshold-based �lter bandwidth is

confounded by not considering delay lines or the ODN-based �lter bandwidth �t by

van der Heijden and Trahiotis (1999) is confounded by something else. For the lat-

ter, Marquardt and McAlpine (2009) o�ered a possible explanation. They identi�ed

the interaural coherence to be lower in certain o�-frequency regions in ODN but

not in SDN. They argued that the higher detection thresholds in ODN could also

originate from some detrimental o�-frequency impact related to the low coherence

rather than from a wider �lter bandwidth per se (upward arrow in Fig. 3.1(E)). If

this is true, both SDN and ODN thresholds can potentially be predicted using the

same standard �lter bandwidth. Figure 3.1, panels (A), (B), and (D), show that

the cross-power spectral density is constant across frequency in SDN but spectrally

modulated in ODN (see Appendix for derivation).

Leaving aside the �rst physiologic argument, there are two options to account for the

SDN-ODN di�erence, (1) wider �lters combined with delay lines (downward arrow

in Fig. 3.1(E)) or (2) �lters with standard peripheral bandwidths and a detrimental

o�-frequency impact (upward arrow in Fig. 3.1(E)). However, recent data of SDN

thresholds measured for di�erent noise bandwidths can only be accurately simulated

with �lters falling into the standard peripheral bandwidth category (Bernstein and

Trahiotis, 2020; Dietz et al., 2021), causing a logical impasse for the wider-�lters

assumption even within the psychoacoustic domain and for SDN alone.

The aim of this study is thus to develop a model according to option (2) that ac-

counts for SDN and ODN thresholds at the same time, using a standard �lter band-

width and � consequently � without several millisecond long delay lines. Rather, we

suggest an across-frequency incoherence interference mechanism which is inspired

by binaural interference (Bernstein and Trahiotis, 1995) and modulation detection
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3 Lower interaural coherence in o�-signal bands impairs binaural detection

interference (Yost and Sheft, 1989; Oxenham and Dau, 2001). With a low coher-

ence qualitatively re�ecting strong IPD �uctuations1, this can be thought of as an

interference of IPD �uctuations across frequency channels. With this mechanism,

the same �hardware� causes di�erent detection thresholds for maskers with the same

on-frequency coherence but with a lower interaural coherence in o�-frequency chan-

nels. The here developed incoherence interference will be described in Section 3.3

and used to predict critical binaural detection data in Section 3.4.

Besides the discussion concerning delay lines in humans and other mammals, the

width of �lters has caused an unresolved contradiction in the binaural literature that

�lters need to be narrow to account for some and broad to account for other data (see

Verhey and van de Par, 2020 for a review). Generally speaking, detection thresholds

in spectrally simpler maskers can be simulated using a standard peripheral �lter

bandwidth (Breebaart et al., 2001b), whereas more complex maskers appear to be

processed by wider �lters or alternative across-frequency processes (Kolarik and

Culling, 2010). We therefore evaluated our model with data from �ve di�erent

studies in three groups:

1. van der Heijden and Trahiotis (1999) combined all key aspects required to

revisit Marquardt and McAlpine's hypothesis: (a) The SDN thresholds are

planned to be determined by the decay of |γ| with a 79Hz-wide Gammatone

�lter. (b) The ODN thresholds supposedly will, despite the same 79Hz on-

frequency �lter, be elevated by the across-channel incoherence interference.

2. Marquardt and McAlpine (2009) not only presented the above-mentioned hy-

pothesis but also experimental data with a novel type of stimuli. There, SDN

and ODN maskers are spectrally surrounded by bands that each have a di�er-

ent, constant IPD. Certain �anking-band IPDs do while others do not cause

interaural incoherence at the transitions. Their reported di�erences impose a

challenge for single-channel models that use a constant �lter bandwidth.

3. Sondhi and Guttman (1966), Holube et al. (1998) and Kolarik and Culling

(2010) reported detection thresholds of an Sπ tone centered in an in-phase
1In contrast to measures of IPD �uctuations, such as the variance of the instantaneous IPD
(Dietz et al., 2021), both the interaural coherence |γ| and the interaural cross-correlation
function inherently weight the instantaneous IPD with the amplitudes. This is instrumental
to quantitatively account for the masking of di�erent noises with di�erent statistics, such as
low-noise noise or multiplicative noise. We therefore expect the present model to also account
for detection thresholds obtained with such maskers.
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Figure 3.1: (A) Cross-correlogram of delayed noise (SDN) with ITD = 2ms. White and
black areas represent maxima and minima of the cross-correlation functions, re-
spectively. The white box highlights the 500Hz frequency channel while the gray
box highlights a channel centered at 625Hz. (B) Interaural cross-correlogram
as in (A) but for opposingly delayed noises (ODN). (C) Interaural coherence
|γ| as a function of noise ITD for SDN (blue lines) and ODN (gray lines) for two
underlying �lter bandwidhts. (D) Continuous lines: Normalized cross-power
spectral density (CPSD) at ITD = 2ms as a function of frequency, C(ω), as
derived in Eq. 3.11 et seq.; Bars: Interaural coherence |γ| of the signals after
peripheral Gammatone �ltering. (E) Thresholds of Sπ detection in SDN and
ODN as a function of ITD from van der Heijden and Trahiotis (1999). The
dashed lines symbolize the coherence-decline-induced threshold increase deter-
mined by a �lter bandwidth of ERB = 79Hz (lower line) and ERB = 130Hz
(upper line). As denoted by the arrows, the data can be explained in two ways:
(1: dotted downward arrow) The ODN thresholds are determined by the cross-
correlation function at 500 Hz and a bandwidth ≥ 130Hz. A delay line causes
the lower SDN thresholds. (2: solid upward arrow) The SDN thresholds are
determined by the ITD-dependent coherence as derived from an ERB of 79Hz.
O�-frequency incoherence in ODN causes higher ODN thresholds.
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3 Lower interaural coherence in o�-signal bands impairs binaural detection

noise that is spectrally surrounded by antiphasic noise. These simulations

are included for an additional discussion about the proposed standard-�lter-

plus-o�-frequency-impact concept, since larger binaural than peripheral band-

widths have previously been derived based on such data.

3.3 Description of the Model

Figure 3.2 shows the processing stages of the proposed model. It is designed as

a numerical multi-channel model through all stages, but these were here realized

and tailored to predict binaural-detection data with a 500Hz pure-tone target. The

model builds on the analytical single-channel model approach of Encke and Dietz

(2022). It furthermore includes an across-frequency incoherence interference mech-

anism. It consists of a multi-channel binaural processing pathway and a monaural

pathway in order to account both for conditions that provide interaural or only

energetic cues. In both pathways, multiple tokens of the processed representation

of the condition-speci�c masker only are compared to the representation of signal

plus masker. This comparison has been suggested to mimic a subject's strategy

of comparing a stimulus to a learned reference template (Breebaart et al., 2001a;

Bernstein and Trahiotis, 2017). Based on these comparisons, both pathways deliver

a sensitivity index (d′). An optimal combination of the pathways' estimates gives

the overall d′ estimate of the model (Green, 1966; Biberger and Ewert, 2017).

3.3.1 Peripheral Processing

The left and right input signals were processed with a fourth-order Gammatone

�lterbank that represents basilar-membrane bandpass �ltering. The �lterbank im-

plementation by Hohmann (2002) was employed with a spacing of �ve �lters per

ERB in the range of 67Hz to 1000Hz. The grid was de�ned by centering one �lter

at 500Hz. This �lter had an ERB of 79Hz (Glasberg and Moore, 1990) and was

indexed with k = 0.

To focus on the impact of the spectral masker properties discussed above, the present

implementation did not include any other peripheral processing such as low-pass

�ltering, power-law compression or half-wave recti�cation. Only Gaussian noise was

used as masker and only 500-Hz tones as targets.
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Figure 3.2: Processing stages of the proposed model. See main text for details.

3.3.2 Binaural Pathway

The correlation coe�cient γ(τ = 0) = γ was derived from the analytical (i.e.

complex-valued) left and right signals l(t) and r(t) in the frequency channel k,

provided by the Gammatone �lterbank:

γk =
lk(t)∗rk(t)√
|lk(t)|2|rk(t)|2

(3.1)

where • denotes the mean over the duration of the signal. This results in one complex
correlation coe�cient per frequency channel, averaged over the whole stimulus du-
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3 Lower interaural coherence in o�-signal bands impairs binaural detection

ration. The complex-valued correlation coe�cient was used because it conveniently

combines information about both the mean IPD as arg{γ} and about the interaural

coherence |γ|. While the Introduction mentioned a mismatch between mammalian

physiology and delay line models, it should be noted that the seemingly abstract use

of complex-valued correlation is identical to two real-valued correlations with a 90°

phase o�set. Such two orthogonal correlators exist in the form of the average left-

and right hemispheric binaural neuron in mammals (McAlpine et al., 2001; Joris

et al., 2006). The physiologic relation of γ is explained in more detail in Encke and

Dietz (2022).

As pointed out in the Introduction, the novelty of the present model is the incoher-

ence interference across frequency channels. The term incoherence interference was

chosen to describe the purely detrimental nature of the interaction. Only channels

with lower coherence a�ect their neighborhood, but not the other way around. This

process is implemented as a restricted across-channel weighted average of the coher-

ence |γ|k: The |γ|k are limited such that they can no more exceed the on-frequency

|γ|, thus referred to as |γ|k,lim.

|γ|w =

m∑
−m

w(k)|γ|k,lim (3.2)

w(k) symbolizes a function that weights the contribution of a channel k to the

resulting |γ|w. The employed weighting function has an exponential decay described
by

w(k) = e−|k|/(bσw). (3.3)

σw represents the decay parameter, normalized by the number of �lters per ERB, b.

The double-exponential decay shape was chosen by empirical trials. While the exact

shape of the window was not crucial, we did not obtain more precise simulations

with other shapes.

For a masker coherence close to zero or at the practically irrelevant case of a positive

signal-to-noise ratio (SNR), adding a target with an IPD of π relative to the masker

can swap the mean IPD from the masker to that of the target. In special cases,

the masker alone and masker plus target can have the same coherence but di�er in

their mean IPD and thus in their correlation. Hence, the interaural coherence |γ| is
not su�cient as a decision variable. Instead, γ, including both coherence and the
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mean IPD, is required. Therefore, the original mean IPD is now reintroduced to the

coherence after the limitation and interference stage, so that the model can operate

on the complex correlation coe�cient as suggested by Encke and Dietz (2022).

γw = |γ|wearg{γ0} (3.4)

Unity-limited measures such as coherence or correlation can be Fisher z (i.e. atanh)

transformed for the purpose of variance normalization (McNemar, 1969; Just and

Bamler, 1994), as often applied in psychophysics (e.g., Lüddemann et al., 2007;

Bernstein and Trahiotis, 2017). As in Encke and Dietz (2022), γw is multiplied by a

model parameter ρ̂ < 1 to avoid an in�nite sensitivity to deviations from a coherence

of unity. This is equivalent to adding uncorrelated noise to the two input signals.

The decision variable of the binaural pathway is thus

ζ = z[ρ̂γw] (3.5)

where z[•] is the Fisher z-transform applied to the modulus of γw while leaving the

argument unchanged.

In the signal detection stage, the d′ is obtained based on the di�erence between the

ensemble averages of the representations of the target signal plus noise, ζN+S , and

the representations of the noise alone, ζN :

d′b =
|ζN+S − ζN |

σb
(3.6)

The internal noise σb de�nes the sensitivity of the binaural model pathway (Dietz

et al., 2021).

3.3.3 Monaural Pathway

For the monaural pathway, the power P of the on-frequency �lter channel was

evaluated. It is half the squared mean of the envelope across the whole signal

duration (Biberger and Ewert, 2016). The envelope is the modulus of the complex-

valued �lter output:

P =
|u0(t)|2

2
. (3.7)
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3 Lower interaural coherence in o�-signal bands impairs binaural detection

In the stimuli employed in this study, the power is identical in the left and right

channels, thus it is su�cient to evaluate only one side.

For a signal-induced power change∆P = PN+S−PN , the processing accuracy is lim-

ited by a level-dependent internal noise with a Gaussian distribution of amplitudes

and a standard deviation of σm. Thus, the sensitivity of the monaural pathway is

equivalent to

d′m =
∆P/Pavg

σm
, (3.8)

where Pavg represents the average power between PN+S and PN .

3.3.4 Detector

The sensitivity indices of the binaural, d′b, and monaural pathway, d′m, were com-

bined assuming two independent information channels (Green, 1966; Biberger and

Ewert, 2016),

d′b+m =
√

d′2b + d′2m. (3.9)

The d′ that corresponds to the experiment-speci�c detection thresholds was obtained

via table-lookup (Numerical evaluation in Hacker and Ratcli�, 1979). This depends

on the number of intervals as well as the speci�c staircase procedure used in the

simulated experiments. For each condition, the model was evaluated for a range

of target levels. This delivered the psychometric function. The predicted detection

threshold was obtained from a straight line �tted to the logarithmic d′. The model

parameters were manually adjusted in order to optimize the prediction accuracy.

The resulting parameter values are given in Table 3.1.

3.4 Predictions of Binaural-Detection Datasets

In all experiments, a 500Hz Sπ or S0 tone was to be detected in a broadband

Gaussian noise masker. Figures 3.3, 3.4, and 3.5 show the experimental data denoted

by symbols, the predictions of the proposed model including incoherence interference

(continuous lines), as well as excluding incoherence interference (as dotted lines).

Three types of binaural-detection experiments were simulated, as described in detail

in the following subsections. Table 4.1 summarizes the parameter values used to

simulate the experimental conditions. It further lists the non-adjusted coe�cient of

determination (R2, interpretable as the proportion of variance in the data explained
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by the model) and the root-mean-square error (RMSE) of the simulations both with

and without the proposed incoherence interference.

Experiment Signal Variable ρ̂ σb σw σm
with without

R2 RMSE / dB R2 RMSE / dB

van der Heijden and Trahiotis (1999)
π

ITD
0.91 0.20 0.50 0.40 0.94 0.85 0.78 1.45

0 0.86 0.17 0.65 0.40 0.87 0.86 0.57 1.38
Marquardt and McAlpine (2009) 0 BW 0.89 0.24 0.65 0.40 0.96 0.37 -0.62 1.97

Kolarik and Culling (2010) 0 BW 0.91 0.20 0.50 0.40 0.97 0.67 0.42 3.07

Table 3.1: Summary of the simulated experiments and predictions. Columns 1 - 3 : Simu-
lated experiment, IPD of the used target signal, independent variable. Columns
4 - 7 : Used model parameters: ρ̂ < 1: Maximum coherence (internal noise); σb:
Standard deviation of the internal noise to determine the absolute performance
of the binaural pathway; σw: Slope parameter of the double-exponential across-
channel interaction window (normalized by the number of �lters per ERB); σm:
Standard deviation of the level-dependent internal noise to determine the accuity
of the monaural pathway; Columns 8 - 11 : Accuracy of the predictions with and
without incoherence interference: Coe�cient of determination (R2); root-mean-
square errors (RMSE) of the predictions.

3.4.1 van der Heijden & Trahiotis 1999

In this arguably most central experiment, detection thresholds of an S0 target tone

(Fig. 3.3, upper panel) as well as of an Sπ tone (Fig. 3.3, lower panel) were measured

as a function of the interaural masker ITD in steps of 0.125ms. The bandwidth of

the masker was 900Hz. As outlined in the Introduction, the ODN consisted of two

superimposed noises with opposite ITD. The experiment performed by van der Heij-

den and Trahiotis (1999) employed a four-interval, two-alternative forced choice task

(4I-2AFC, �rst and fourth intervals always contained only the masker and served as

queuing intervals). Their adaptive 2-down 1-up stair case procedure estimated the

70.7% correct-response threshold. This is equivalent to a d′ of 0.78 at threshold.

Thus, as described in Section 3.3.4 the model determined the threshold in the form

of the signal level producing this d′. The continuous lines in Fig. 3.3 show the simula-

tions of the presented model, including the across-channel incoherence interference.

From visual inspection, the simulations captured all e�ects from the experimental

thresholds and the critical threshold di�erences between SDN and ODN at all ITDs

under both conditions. Speci�cally, the critical threshold di�erences of 3.5 dB at

an ITD = 1ms in the S0 condition and 4 dB at an ITD = 2ms in the Sπ condi-

tion are precisely accounted for. This good correspondence is also re�ected in the
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Figure 3.3: Experimental data from van der Heijden and Trahiotis (1999) (symbols). The
continuous lines show the predictions of the presented model including the
across-channel incoherence interference. The dashed lines show predictions for
ODN excluding interference (single-channel version), equivalent to Encke and
Dietz (2022). Upper panel: Detection thresholds with S0 target; lower panel:
Sπ target.

around 90% explained variance under both conditions and RMS errors of less than

1 dB. The dashed lines show simulations excluding the across-channel incoherence

interference (single-channel model, cf. Encke and Dietz, 2022) but all other model

parameters unchanged. This shows that a large amount of the threshold di�erences

is already explained by di�erences in the on-frequency coherence. As mentioned in

the Introduction: In much the same way as ODN coherence oscillates as a function

of analysis frequency (Fig. 3.1(D)), it also �uctuates as a function of the masker

ITD (Fig. 3.1(C)). Particularly at ITD = 0.5ms, ODN is incoherent in the 500-Hz

band, whereas SDN is almost fully coherent. This, and not the across-frequency

process, causes the di�erence in the simulated thresholds at this ITD. The across-

frequency process only comes into play at those ITDs where the coherence at 500Hz

(on-frequency) is nearly identical in SDN and ODN (upper panel: ITD = 1ms and

3ms; lower panel: ITD = 2ms and 4ms).
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3.4.2 Marquardt & McAlpine 2009
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Figure 3.4: Experimental data from Marquardt and McAlpine (2009, symbols) and model
predictions (lines). Detection thresholds are given as function of the inner-band
bandwidth. The inner band contains delayed noise (triangles) or opposingly
delayed noises (diamonds and bullets) with a �xed ITD = 1ms while the �anking
bands have a constant IPD of +π/2 (upward triangle and diamond) and −π/2,
or vice versa (downward triangle and bullet). Continuous and dashed lines again
show predictions with and without across-frequency incoherence interference,
respectively.

The masker of this experiment contained SDN and ODN centered at the frequency

of the S0 target tone with a constant ITD in the inner band. The inner band was

spectrally surrounded by bands that each had a constant IPD of π/2 and −π/2, or

vice versa. Thresholds are given as a function of the inner-band bandwidth. The

resulting phase transitions between inner and �anking bands have been hypothesized

to impair the detection if they cause a frequency region of low interaural coherence.

The lower and upper frequency limits of the composite stimuli are 50Hz and 950Hz,

respectively. The two-interval-two-alternative-forced choice task with a 3-down 1-

up procedure that was used estimated the thresholds to be 79.4% correct. This

corresponds to d′ = 1.14 at the threshold predicted by the model. In Fig. 3.4,

detection thresholds of the S0 tone are shown as a function of the bandwidth of

the inner band. Again, the model predicted all critical characteristics of the data.

These include the 3 dB di�erence between SDN and ODN at the full inner-band

bandwidth (same as ITD = 1ms in the S0 condition in van der Heijden and Trahiotis,

1999), the elevated SDN thresholds in the [-π/2, SDN, +π/2] compared to the

[+π/2, SDN, -π/2] condition and the 3 dB BMLD where the inner-band bandwidth is

zero. Without the incoherence interference, the predictions cannot be distinguished
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between the di�erent conditions of the experiment. They deviate more from the

mean than the data, resulting in a negative R2.

3.4.3 Experiments on the operating bandwidth in binaural detection

Several studies investigated the operating bandwidth in binaural detection using

maskers that contain two �anking bands which di�er in their interaural con�gura-

tion from the inner band (Sondhi and Guttman, 1966; Holube et al., 1998; Kolarik

and Culling, 2010). The masking noise is diotic (N0) in the inner band and antipha-

sic (Nπ) in the �anking bands. Detection thresholds of an Sπ target tone were again

measured as a function of the inner-band bandwidth. Results are expressed as the

di�erence between thresholds in the �anked condition and the threshold without

an inner band, i.e. NπSπ. In Fig. 3.5, the circles mark the threshold di�erences

reported by Kolarik and Culling (2010, centered condition), which represent aver-

ages across their three participants. The triangles show individual thresholds of the

two participants in the study by Holube et al. (1998, rectangular condition). The

gray diamonds show the data from Sondhi and Guttman (1966). Our model pre-

dictions were oriented on the 2-down 1-up 2I-2AFC paradigm employed in Kolarik

and Culling (2010), equivalent to d′ = 0.78 at threshold. The black continuous line

shows the model predictions with the same parameter settings (see Table 3.1) as

used to predict the Sπ detection thresholds in van der Heijden and Trahiotis (1999)

(see our predictions in Fig. 3.3(B)). The dotted black line shows model predictions

without the across-channel incoherence interference, so that detection was purely

determined by the ERB = 79Hz Gammatone �lter centered at 500Hz. Despite the

large deviations between and within experiments, the model predictions involving

the incoherence interference captured the shape of the decreasing thresholds with

increasing inner-band bandwidth.

3.5 Discussion

In this study, those binaural detection thresholds that previously have underpinned

the psychoacoustic necessity of several millisecond long delay-lines were simulated

involving across-frequency incoherence interference and monaurally derived periph-

eral �lter bandwidths.

As long as the masker coherence is fairly constant across frequency bands, experi-
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Figure 3.5: Symbols denote data from binaural detection experiments with the con�gura-
tion Nπ0πSπ as a function of the inner-band (N0) bandwidth; continuous and
dotted line: Model prediction with and without across-incoherence incoherence
interference, respectively.

ments on binaural detection can be explained purely on the basis of the coherence |γ|
de�ned by a 79Hz wide Gammatone �lter at fc = 500Hz (Rabiner et al., 1966; Encke

and Dietz, 2022). This includes fully coherent broadband noise maskers (Hirsh, 1948;

van de Par and Kohlrausch, 1999), mixtures of correlated and uncorrelated noise

(Robinson and Je�ress, 1963; Pollack and Trittipoe, 1959; Bernstein and Trahiotis,

2014), and experiments where the interaural coherence of the masker is reduced by

an ITD (Langford and Je�ress, 1964; Rabiner et al., 1966; Bernstein and Trahiotis,

2020). However, the on-frequency coherence does not account for thresholds ob-

tained with maskers where these properties change substantially across �lter bands.

Speci�cally, the single-channel model version as proposed in Encke and Dietz (2022)

is neither able to predict all of the threshold di�erences between SDN and ODN nor

experiments like Marquardt and McAlpine (2009) and Kolarik and Culling (2010)

that involve IPD transitions in the masker spectrum (see dashed lines in Figs. 3.3,

3.4, 3.5, as well as the corresponding R2 and RMSE given in Table 3.1).

Marquardt and McAlpine (2009) hypothesized across-channel processing in the bin-

aural system to explain the reduced binaural bene�t under such conditions. Here,

we extended the analytical model by Encke and Dietz (2022) to a multi-channel nu-

merical signal-processing model with incoherence interference. The proposed model

di�ers from approaches assuming wider binaural �lters (e.g. van der Heijden and

Trahiotis, 1999; Kolarik and Culling, 2010), as, for example, wider �lters reduce the

interaural coherence of SDN, whereas incoherence interference does not reduce it.

For stimuli with spectrally constant coherence and masker-target phase relations,
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like SDN and all conditions simulated by Encke and Dietz (2022), the incoherence

interference has no e�ect and the model operates on the standard �lter bandwidths

of its peripheral �lterbank. Modeling an interference process, our approach also dif-

fers from the symbolic model suggested by Marquardt and McAlpine (2009), which

sums interaural cues after binaural interaction. Their implementation is also dif-

ferent from wider �lters but still causes a stronger damping of binaural sensitivity

with increasing masker ITD, which is not seen in the data.

The proposed concept of a detrimental incoherence interference is comparable to

modulation detection interference, as shown and discussed by, e.g., Yost and Sheft

(1989) and Oxenham and Dau (2001). Similar to the proposed across-channel in-

coherence interference, this is modeled by modulation patterns interacting across

channels, while energetic spectral masking properties are spectrally limited by pe-

ripheral �lters (Piechowiak et al., 2007; Dau et al., 2013). Furthermore, a similar

process is thought to underlie binaural interference as observed by, e.g., Bernstein

and Trahiotis (1995); Best et al. (2007); McFadden and Pasanen (1976).

The dataset of van der Heijden and Trahiotis (1999) contains both SDN and ODN

and is therefore the critical challenge for binaural detection models2. Both van der

Heijden and Trahiotis' and our model simulate the data very accurately. Therefore,

the discussion focuses on consequences and plausibility of the two di�erent concepts.

The bandwidth of the signals immediately prior to binaural interaction dictates the

temporal coherence and thus the decline of BMLD with increasing noise ITD in the

2The most comprehensive simulation of dichotic tone in noise detection thresholds using a cross-
correlation-based model is by Bernstein and Trahiotis (2017). It is not expected to simulate
the ODN detection thresholds of van der Heijden and Trahiotis (1999) with a good accuracy,
because an ERB of at least 130Hz is necessary. Other ODN stimuli, used experimentally
by Bernstein and Trahiotis (2015), were included in the model test battery by Bernstein and
Trahiotis (2017). Those ODN stimuli, however, di�ered in several ways from the former. First,
the target frequency is 250Hz, compared to 500Hz in van der Heijden and Trahiotis (1999)
and in all other studies here simulated. Second, instead of �xing the target tone to S0 or Sπ ,
the target is delayed by the same amount as one of the two noises, i.e. (N0)±ITD(Sπ)ITD.
Such an approach is useful for SDN, as it ensures a constant π di�erence between the IPDs of
the noise and of the tone. For ODN, however, the IPD of the second noise relative to the tone
is o�set from π by 2×ITD. This type of stimulus therefore causes an even more complex ITD-
dependence of threshold, which o�ers no advantage over the ODN from van der Heijden and
Trahiotis (1999) for �lter estimation. With both de�nitions, corresponding SDN and ODN
stimuli can be generated only if the ITD is an integer or a half-integer multiple of the target
period (i.e. ITD = n/2f , n ∈ N). In Bernstein and Trahiotis (2015), Fig. 1, Panel a), these
are the two data points at ITD = 2 and 4ms. SDN and ODN thresholds are, however, very
similar at those points. Third, the masker bandwidth is 50Hz. For such a masker bandwidth
smaller than the peripheral �lter width, neither van der Heijden and Trahiotis (1999) nor our
model would predict a considerable threshold di�erence between SDN and ODN at an ITD
of 2 and 4ms, since there are no o�-frequency regions of considerably lower coherence.
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absence of internal ITD compensation (Langford and Je�ress, 1964; Rabiner et al.,

1966; van der Heijden and Trahiotis, 1999; Dietz et al., 2021). To date, two of the

arguably most comprehensive datasets of dichotic tone-in-noise detection, van der

Heijden and Trahiotis (1999) and Bernstein and Trahiotis (2020), have self-reported

mutually exclusive requirements for the �lter bandwidth (ERB = 130. . .180Hz vs.

ERB ≤ 100Hz at 500Hz).

A variety of studies aim to estimate the bandwidth at the binaural input stage by

means of dichotic tone-in-noise detection, but no consistent picture emerges. There

is, for example, a di�erence in estimated bandwidth between band-widening and

notched-noise BMLD data, and between stimuli with di�erent �anking bands (e.g.,

Kolarik and Culling, 2010). Particularly this stimulus-type dependence of the �ap-

parent bandwidth�` challenges the assumption that all stimuli are processed by the

same �lters. To us, the most reasonable �unifying� explanation is that �lter prop-

erties arise from the basilar membrane and also the binaural system can make full

use of this spectral resolution. The observation that there is less spectral resolu-

tion in some cases is then best explained by an across-frequency process for certain

stimulus features � but in contrast to wider �lters it is not a�ecting all features.

The proposed incoherence interference may be this missing across-frequency pro-

cess. At least it appears to reduce or even eliminate inconsistencies in estimating

the bandwidth from various binaural detection experiments.

Another mechanism which has been proposed in the context of bandwidth esti-

mation is an optimal combination of target detectability across frequency channels.

Masking patterns in dichotic band-widening experiments have a knee-point at larger

bandwidths than their diotic counterparts (van de Par and Kohlrausch, 1999; Bour-

bon and Je�ress, 1965). van de Par and Kohlrausch (1999) hypothesized that in

narrowband maskers, the similar SNR across frequency channels can be exploited

to reduce masking. A model which includes such a mechanism (Breebaart et al.,

2001b) accounts for the band-widening masking pattern using standard �lter band-

widths (i.e. bandwidths as proposed by Glasberg and Moore, 1990). It also correctly

predicts that the knee-point is only shifted to a higher bandwidth if the masker is

fully or almost fully correlated (van der Heijden and Trahiotis, 1998).

Most recent binaural models, such as Bernstein and Trahiotis (2017) and Encke and

Dietz (2022) already assume a bandwidth as narrow as the peripheral bandwidth.

This is also in line with direct measurements of the bandwidth in ITD-sensitive
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inferior colliculus neurons in cats by Mc Laughlin et al. (2008). For delayed noise,

as used by van der Heijden and Trahiotis (1999), they found that damping of the

cross-correlation function corresponds to the peripheral bandwidth at the respective

center frequency.

With the present implementation, the binaural pathway parameters (ρ̂, σb, σw) had

to be adjusted slightly between conditions with Sπ targets and conditions with S0

targets (see Table 3.1). This is due to the binaural system's sensitivity depending

on the baseline IPD (Hirsh, 1948). An angular compression of the decision vari-

able space {ζ} at large IPDs is a possible model extension. Delay-line models can

account for this dependence with a corresponding p(τ) function which de�nes the

sensitivity of the model as a function of its internal delay. However, they then incor-

rectly predict better unmasking with NITDS0 compared to NπS0 when ITD = T/2

(Breebaart et al., 1999). Simulating the data of Marquardt and McAlpine (2009)

required slightly di�erent parameter values because their listeners obtained di�erent

thresholds compared to van der Heijden and Trahiotis (1999) for identical stimuli.

This may be due to the di�erent number of presented intervals. Identical model

parameters were used for the Sπ conditions of van der Heijden and Trahiotis (1999)

and Kolarik and Culling (2010).

3.6 Conclusion

Interaural incoherence interference enables the presented binaural model to simu-

late detection thresholds both for maskers with a spectrally constant and with a

spectrally modulated coherence. Employing auditory �lters with monaurally esti-

mated bandwidth Glasberg and Moore (1990), it predicts the reduced unmasking in

opposingly-delayed noises (van der Heijden and Trahiotis, 1999) compared to regu-

lar delayed noise. The concept can help to resolve the inconsistency that binaural

models require �lter bandwidths as estimated monaurally for most data sets (Bern-

stein and Trahiotis, 2017, 2020), but at least 1.6 times wider �lters for broadband

opposingly delayed noises van der Heijden and Trahiotis (1999) and other spectrally

complex maskers Verhey and van de Par (2020). The main consequence of using

a standard �lter bandwidth is that the decline of the binaural bene�t with masker

ITD can be simulated without internal ITD compensation, as �rst suggested by

Langford and Je�ress (1964).
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3.8 Appendix

3.8.1 Derivation of cross-power spectral density in opposingly-delayed noise

In ODN, two two-channel signals u(t) = [u(t) u(t + ITD)] and z(t) = [z(t) z(t −
ITD)] with opposite ITDs, ITD and -ITD, are summed. The cross-power spectral

density (CPSD) functions are

SUU (ω) = 0.5eiITDω,

SZZ(ω) = 0.5e−iITDω.
(3.10)

The power spectral density is 0.5 1/Hz each, so that the ODN has the same energy

as the SDN. Summation of the time signals is equivalent to a summation of their

CPSD functions, which leads to

SUZ = SUU (ω) + SZZ(ω) = cos(ωITD). (3.11)

This resulting cosine pattern is determined by the sum of the CPSDs' phases adding

up or canceling each other at di�erent frequencies. This normalized CPSD C(ω)

represents the coherent energy of the signals as a function of frequency (Gardner,

1992),

C(ω) =
|SUZ(ω)|√

SUU (ω)SZZ(ω)
= | cos(ωITD)|. (3.12)

If |γ(τ)| is based on an ensemble average, then C(ω) = F{|γ(τ)|}, with F{•} the

fourier transform. As a continuous function of ω it gives a coherence for any fre-

quency ω representing an in�nitesimally small bandwidth, illustrated as continuous

lines in Fig. 3.1(D). The coherence for peripherally �ltered, i.e. �nite-bandwidth

signals is an average of the frequencies' normalized CPSDs C(ω). The coherence

decreases with increasing ITD and increasing bandwidth, as illustrated by the bars
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in Fig. 3.1(D). Two superimposed noises with ITD = ±2ms are in phase at 500Hz.

At 625Hz, however, they have IPDs of π/2 and −π/2, respectively. The coherence

between left and right signals at 625Hz is therefore zero.
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CHAPTER 4

Fast binaural processing but sluggish masker representation
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4.1 Abstract

4.1 Abstract

Perceptual organization of complex acoustic scenes requires fast binaural processing

for accurate localization or lateralization based on short single-source-dominated

glimpses. This sensitivity also manifests in the ability to detect rapid oscillating

interaural time and phase di�erences as well as interaural correlation. However,

binaural processing has also been termed �sluggish� based on experiments that re-

quire binaural detection in a masker with an additional binaural cue change in

temporal proximity. The present study shows that the temporal integration win-

dows obtained from data on binaural sluggishness cannot account for the detection

of rapid binaural oscillations. A model with fast IPD encoding but a slower process

of updating the internal representation of the masker IPD statistics accounted fo

both, experiments of the �fast� and the �sluggish�` categories.

4.2 Introduction

The extraordinary precision of encoding interaural phase di�erence (IPD) allows for

binaural unmasking and low-frequency sound localization. Psychophysical charac-

terization of binaural unmasking and sound localization, however, led to di�erent

interpretations concerning the processing speed of the binaural system. On the

one hand, subjects are able to lateralize and detect a change in ITD as brief as

3 - 6ms (Reed et al., 2016). Also, detection thresholds of broadband binaural beat

or �Phasewarp� stimuli, (Siveke et al., 2008) or of oscillating interaural correlation

(�Oscor� stimulus, Grantham, 1982; Grantham and Wightman, 1979; Gatehouse

and Akeroyd, 2006; Siveke et al., 2008) embedded in uncorrelated noise have been

measured up to beat- or oscillation frequencies of 1024Hz and 128Hz, respectively

(Siveke et al., 2008). All these are indicators of very fast binaural processing. Mod-

eling suggested that the temporal resolution is primarily limited only by the band-

width of the auditory �lters (Dietz et al., 2008), i.e. their ring time. On the other

hand, many tone-in-noise detection experiments have led to the interpretation of a

�sluggish�` binaural system. For example, Kollmeier and Gilkey (1990) found ele-

vated detection thresholds for an antiphasic tone (Sπ) in temporal proximity of an

inversion of the masker's IPD. When the masker changed from antiphasic Nπ, which

gives no binaural bene�t, to N0, thresholds drop only gradually as the target tone

burst is moved away from the transition moment. For a full binaural unmasking over
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4 Fast binaural processing but sluggish masker representation recon�guration

100ms separation is required, much more than in monaural forward masking exper-

iments. The data were well �tted by a double-sided exponential integration window

with equivalent rectangular durations (ERD) in the range 33.2 ≤ ERD ≤ 83.2ms.

When replacing the IPD inversion by a diotic 15 dB masker attenuation, integration

times of only 11.9 ≤ ERD ≤ 26.0ms were �tted. Binaural sluggishness was also

supported by Grantham and Wightman (1979). They used the above-mentioned

oscillating interaural correlation �Oscor� noise as a masker and presented a short

interaurally out of phase (Sπ) tone pip coinciding with a moment where the instan-

taneous masker correlation is either 1 or -1, i.e. where the masker brie�y resembled

N0 or Nπ, respectively. The binaural masking level di�erence (BMLD) disappared

already at a modulation frequency of 4Hz. Grantham and Wightman (1979) ex-

plained the e�ect by assuming di�erent monaural and binaural temporal analysis

windows with binaural integration times of 44 ≤ ERD ≤ 140ms. However, averag-

ing interaural cues over such a long time window is likely to con�ict with the �fast�

studies mentioned above. To our knowledge there is no model that can account

for both classes of experimental data without signi�cantly changing the integration

time constant.

We hypothesize interaural di�erences to be encoded with a high temporal resolution

primarily limited by peripheral �lter ring times. Furthermore, we follow the hypoth-

esis of Yost (1985), who suggested that binaural unmasking relies on an estimate

of the masker parameters. We hypothesize that if a task requires re-estimation of

masker parameters, this higher-stage operation is the cause of the sluggish behav-

ior. The two possible cases can be exempli�ed with the Oscor stimulus: As the

oscillation frequency increases, the changes in perceived masker width move closer

in time to the target tone, interfering with detection by reducing the contrast in

perceived width between target and masker. This means the widening cue induced

by the antiphasic target tone is disrupted by the widening and narrowing induced

by the correlation oscillations of the masker. The instantaneous correlation of the

masker at the moment the target is added cannot be exploited by human listeners

(Grantham and Wightman, 1979). In contrast, if the task is to detect the pres-

ence of the oscillating correlation in a static masker, the estimation process is not

needed. In this case, the auditory system can exploit the few millisecond short mo-

ments of high correlation (Siveke et al., 2008). The rapid sensory encoding of IPD

allows these rapid modulations to be perceived as a �uttering or intra-head rotation
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pattern (Witton et al., 2000), which is the primary cue for such a task.

In this work we �rst show that the temporal integration windows obtained from

data on binaural detection close in time to a masker IPD change (sluggish category)

cannot account for the detection of rapid correlation oscillations. We then suggest a

model with fast IPD encoding but a slow reformation of the internal representation

of the masker. To simulate reduced sensitivity in temporal proximity to masker IPD

changes, the model compares the stimulus internal representation to a template. As

this template, a low-pass �ltered internal representation of the masker is used. The

low pass resembles the sluggish reorganization of the internal masker representa-

tion. Without changes to the model or its temporal parameters, it can account for

both, data that requires fast and data that previously required sluggish binaural

processing.

4.3 Simulations

4.3.1 Temporal integration does not account for oscillating correlation detection

We exemplarily tested whether the integration windows derived from studies that

fall into the sluggish category can still be compatible with detection of rapid oscilla-

tions of interaural correlation (Siveke et al., 2008). The integrations times �tted by

Kollmeier and Gilkey (1990) (33.2 ≤ ERD ≤ 83.2ms) are similar to Holube et al.

(1998) in their comparable step condition (40 ≤ ERD ≤ 69ms). Replacing the

masker correlation step with a cosine correlation oscillation, as in the cosine condi-

tion of Holube et al. (1998) and the similar experiment of Grantham and Wightman

(1979), resulted in longer windows of 91 ≤ ERD ≤ 122ms and 44 ≤ ERD ≤ 140ms,

respectively.

The peak-to-peak interaural correlation of an unmasked, gammatone-�ltered Oscor

stimulus can be reduced by temporal integration at the output of the binaural

interaction. We compared the peak-to-peak correlation after temporal integration

to the just-noticeable di�erence (JND) from zero correlation which is 0.3 (Boehnke

et al., 2002). We used an oscillation frequency of 64Hz being the highest of the

modulation frequencies measured by Siveke et al. (2008) that can be preserved by a

gammatone �lter centered at 500Hz. If the peak-to-peak modulation of interaural

correlation of the �ltered Oscor stimulus exceeds the JND of 0.3, we expect that

the corresponding time constant allows for the detection of oscillating correlation as
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4 Fast binaural processing but sluggish masker representation recon�guration

reported by Siveke et al. (2008).

Fig. 4.1(A) shows the interaural correlation resulting from gammatone-�ltering

and temporal integration using a double-sided exponential integration window with

ERDs in the range reported in the literature. While the correlation modulation in

the stimulus oscillates between -1.0 and +1.0, it is already reduced to the range

[−0.5 0.5] by gammatone �ltering. Fig. 4.1(B) shows that any applied temporal

integration with ERD > 10ms reduced the peak-to-peak correlation below the esti-

mated JND (dotted line). Integration windows of, e.g., ERD = 30ms (i.e. τ = 15ms

for a double-sided exponential window) are already below the lower boundary of all

models that fall into the sluggish category but at the same time they are far too

large to preserve any perceivable correlation from the Oscor. For comparison: The

double-sided exponential window used in the comprehensive and widely used model

of Breebaart et al. (2001) had an ERD of 60ms. Thus, we conclude that detection

of rapid correlation modulation cannot be explained by the integration time con-

stants that have been widely attributed to binaural detection and we cannot �nd

any �compromise integration window� satisfying both categories.

4.3.2 A Model for Both Fast and Sluggish Processing

Having observed that temporal integration of interaural correlation alone cannot ex-

plain results on detecting rapid modulations and at the same time sluggishness, we

developed a model with the goal to account for the aforementioned categories at the

same time. It was designed to reproduce listeners' behavior expected from the stim-

ulus as processed according to our hypothesis: Interaural di�erences are available for

detection with the temporal resolution only limited by basilar-membrane process-

ing, at least at frequencies below about 1000Hz. Binaural sluggishness accordingly

appears if a change in masker IPD statistics, entailing reformation of its internal

representation, interferes with target-in-masker detection. In this model, the inter-

nal representation includes the instantaneous interaural correlation, coherence, and

phase.

Peripheral Processing

The left and right input signals were processed with a fourth-order gammatone

�lter. This represents basilar-membrane bandpass �ltering. The �lterbank imple-

52



4.3 Simulations

100 150 200 250 300 350 400
time / ms

-0.5

0

0.5

;
(t
)

Siveke et al 2008: Oscor

0 20 40 60 80 100
ERD / ms

0

0.3

0.6

0.9

p
ea
k
-t
o-
p
ea
k
;
(t
)

0 10 30 100

ERD / ms

(A)

(B)

Figure 4.1: (A) Oscor stimulus where the interaural correlation is modulated with 64Hz
after gammatone �ltering and temporal integration using a double-sided expo-
nential window with di�erent ERDs. (B) Resulting peak-to-peak correlation
for the Oscor stimulus as shown in (A). The dashed lines at ±0.15 in (A) and
+0.3 in (B) denote the assumed JND to detect the modulation.

mentation by Hohmann (2002) was used. The tone-in-noise experiments that we

exemplarily chose for the present single-channel simulations (Kollmeier and Gilkey,

1990; Grantham and Wightman, 1979; Buss and Hall III, 2011) determined the

used �lter center frequency to be 500Hz. The �lter bandwidth (ERB = 79Hz) or

its corresponding ring time (ERD = 6.3ms) limits the speed with which interaural

cues can change, also the experiments by Siveke et al. (2008) are simulated only

at 500Hz, to keep a fair comparison that is not in�uenced by employing higher

frequency channels and thus �lters with a shorter ring time.

Binaural Processing

The instantaneous complex correlation coe�cient γ(t) serves as the internal repre-

sentation. It was derived from the analytical (i.e. complex-valued) left and right

53



4 Fast binaural processing but sluggish masker representation recon�guration

signals l(t) and r(t) provided by the gammatone �lter:

γ(t) =<
l∗(t)r(t)√
|l(t)|2|r(t)|2

>, (4.1)

where •∗ denotes the complex conjugate and < • > the average over an ensemble of

stimulus tokens1. γ(t) was used because it conveniently combines information about

the instantaneous interaural correlation ρ(t) = ℜ{γ(t)}, instantaneous coherence

|γ(t)| and instantaneous IPD arg{γ(t)} (Encke and Dietz, 2022). The resulting

binaural display represents the information available to the detector.

The hypothesis of a gradual reformation of the masker internal representation re-

sulted from the observation that binaural detection is impaired in presence of an

interaurally modulated masker but not for detection of a modulated target. We

modeled the gradual reformation of the internal representation of the masker by

employing a parallel path in which γ(t) of a masker-alone version of the stimulus

involved low-pass �ltering. A double-sided exponential window with a time constant

of τ = 30ms for each lobe was used. The ERD was thus 2τ = 2 × 30ms= 60ms,

oriented on the window �ts by Kollmeier and Gilkey (1990) and on the ERD =

60ms used in the model of Breebaart et al. (2001).

γM, lp(t) =< lp[(
l∗(t)r(t)√
|l(t)|2|r(t)|2

] >, (4.2)

Subsequent to the reformation-mimicking low-pass �ltering, the average over an

ensemble of 200 stimulus tokens was used in Eq. 4.1 and Eq. 4.2. This describes the

expected behavior of a group of listeners after many repetitions of the experiment.

As the results of Kollmeier and Gilkey (1990) reveal comparable binaural forward

and backward masking e�ects, a zero-phase forward-reverse �lter was used. The

internal representation of the masker γM, lp(t) is then contrasted with the internal

representation of the complete stimulus γ(t), i.e. masker plus target without low-

pass �ltering. The real parts of γ(t) and γM, lp(t), i.e. interaural correlation, are

plotted in Fig. 4.2. For stimuli with changing masker correlation, such as Kollmeier

and Gilkey (1990), the di�erence between template and target is therefore reduced

1For consistent processing in the two internal representations used in the model, the average over
an ensemble of stimulus tokens was taken for numerator and denominator together instead of,
as used in Encke and Dietz (2022), separately. This is irrelevant for the present simulations
as it only negotiates di�erences between the left and right signals' amplitudes.
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Figure 4.2: Real part (i.e. interaural correlation ρ(t)) of the stimulus internal representation
γ(t) and of the masker internal representation γM, lp(t), as used in the present
model. Arrows symbolize the maximum possible binaural cue. (A) stimulus as
used in Kollmeier and Gilkey (1990) with 80ms delay time between the masker
changing from Nπ to N0 and the Sπ target; SNR = -16 dB. (B) Oscor stimulus
as used in Siveke et al. (2008), Oscillation frequency 64Hz, SNR = 4dB.

in temporal proximity to the masker correlation change, reducing the detection cue.

An oscillating correlation or Phasewarp (Siveke et al., 2008), however, is preserved

as the required temporal precision is still available to the detector from the un�ltered

target γ(t). The low-pass �ltering prior to the ensemble averaging in the internal

representation of the masker represents the hypothesis that a comparatively slow

adaptation to a change in the γ(t) statistics of the masker impairs detection. This

means, the binaural feature allows both detection of an oscillating pattern and

detection of a change in perceived width with the same backend.

As in Encke and Dietz (2022) and Eurich et al. (2022), the unity-limited interaural

representations γ(t) and γM,lp(t) are Fisher z (i.e. inverse hyperbolic tangent) trans-

formed for the purpose of variance normalization (McNemar, 1969; Just and Bamler,

1994), as often applied in psychophysics (e.g., Lüddemann et al., 2007; Bernstein

and Trahiotis, 2017). γ(t) and γM,lp(t) are multiplied by a model parameter ρ̂ < 1

(Encke and Dietz, 2022; Eurich et al., 2022) to avoid an in�nite sensitivity to devi-
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4 Fast binaural processing but sluggish masker representation recon�guration

ations from a coherence of unity. This is equivalent to adding uncorrelated noise to

the two input signals. The inner representation of the binaural pathway is thus:

ζ(t) = z[ρ̂γ(t)]; (4.3)

ζM,lp(t) = z[ρ̂γM,lp(t)]; (4.4)

where z[•] is the Fisher z-transform applied to the modulus of γ(t) while leaving

the argument unchanged.

The model extracts the instantaneous absolute di�erence between the internal rep-

resentations of the stimulus and that of the masker:

b(t) = |ζ(t)− ζM,lp(t)|. (4.5)

As the model was required to detect ongoing temporal patterns, a sequence of inde-

pendent observations was extracted, based on the multiple-looks principle (Viemeis-

ter and Wake�eld, 1989). These observations are combined in an optimal manner:

bopt =

√∑
t

b(t)2. (4.6)

The model parameter σbin represents the standard deviation of an internal noise with

a Gaussian distribution of amplitudes. It adjusts the sensitivity of the binaural path

in order to model the sensitivity index d′bin of discriminating between the noise alone

(N) interval and the signal plus noise (S +N) interval:

d′bin =
bopt, S+N − boptN

σbin
. (4.7)

The optimal combination in a multiple-looks manner (equation 4.6) enables the

model to inherently code higher sensitivity for longer detection cues.

Monaural Processing

In order to simulate experiments that compare binaural and monaural processing

speed, we also designed a simple monaural path. It is sensitive to changes in stimulus

instantaneous envelope power P (t). The envelope is the modulus of the complex-

valued �lter output. For the stimuli employed in this study, it is su�cient to evaluate
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only one side. Similar to the binaural path, the temporal resolution of P (t) is only

limited by the ring time of the gammatone �lter (ERD = 6.3ms). The model

considers the di�erence in ensemble-average envelope power between the signal-

plus-noise and noise-alone intervals:

∆P (t) =< PN+S(t) > − < PN (t) > (4.8)

As in the binaural pathway, the instantaneous power di�erences ∆P (t) are treated

as independent observations and thus combined in an optimal manner:

∆P opt =

√∑
t

[
∆P (t)

< PN (t) >
]2 (4.9)

The processing accuracy is limited by a level-dependent internal noise with a Gaus-

sian distribution of amplitudes and a standard deviation of σmon (Eurich et al.,

2022):

d′mon =
∆Popt

σmon
. (4.10)

4.3.3 Quantitative Predictions of Detection Thresholds

We used the described model paths to estimate detection thresholds across di�erent

experiments. The sensitivity indices d′ of monaural and binaural path are there-

fore combined to the overall sensitivity index, assuming independent information

channels (Green and Swets, 1966):

d′bin+mon =
√

d′2bin + d′2mon (4.11)

The d′ that corresponds to the experiment-speci�c detection thresholds was obtained

via table-lookup [numerical evaluation in (Hacker and Ratcli�, 1979)]. This depends

on the number of intervals as well as the speci�c staircase procedure used in the

simulated experiments. As in Eurich et al. (2022), for each condition the model

was evaluated for a range of target levels. This provided the psychometric function.

The predicted detection threshold was obtained from a linear �t to the logarithmic

d′. The model parameters σbin and σmon were manually adjusted to optimize the

prediction accuracy. The resulting parameter values are given in Table 4.1. The

aim was to see whether a single detector with a single time constant can at the
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Figure 4.3: Flowchart of the model as used to quantitatively predict binaural detection
thresholds. Dashed arrows symbolize that the sensitivity indices d′ are obtained
by comparing signal-plus-noise with noise-alone.

same time account for di�erent paradigms supporting fast and sluggish processing,

rather than to maximize precision concerning a certain paradigm. The following

experiments were chosen as a representative selection concerning evidence for fast

and sluggish binaural processing. All experiments can be simulated based on the

output of a single bandpass �lter centered at 500Hz. This ensures that IPDs in

the temporal �ne structure are the dominant cue for detection and allows for a

good comparison. Figure 4.4 shows experimental thresholds and predictions with

continuous lines denoting predictions for conditions with partly di�erent IPDs of

masker and target tone, dotted lines conditions where masker and tone always have

the same IPD.

Due to the good agreement between simulations and the critical trends in the data,

the experiments are described together with the predictions.
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Experiment category Target ρ̂ σbin σmon ERD / ms

Kollmeier and Gilkey (1990) sluggish Sπ 0.9 12 500 60
Grantham and Wightman (1979) sluggish Sπ 0.9 20 350 60

Siveke et al. (2008) fast Oscor, Phasewarp 0.9 22 200 60
Dietz et al. (2008) fast Phasewarp 0.9 22 200 60

Buss and Hall III (2011) fast S0, Sπ 0.9 20 200 60

Table 4.1: Summary of the simulated experiments and predictions. Columns 1 - 3 : Sim-
ulated experiment, rough category of binaural processing speed concluded by
the authors, target signal. Columns 4 - 7 : Used model parameters: ρ̂ < 1:
Maximum coherence (internal noise); σbin: Standard deviation of the internal
noise to determine the absolute performance of the binaural path; σmon: Stan-
dard deviation of the level-dependent internal noise to determine the acuity of
the monaural pathway; equivalent rectangular duration of the temporal window
used for the template.

Kollmeier & Gilkey, 1990

A 20-ms 500Hz Sπ tone is to be detected in a 750-ms noise masker whose interaural

correlation changes from 1 to -1, or vice versa, after 375ms. This means the tone

interaural correlation (-1) di�ers from the masker interaural correlation only when

appearing in either the �rst or the second half of the masker. Tone detection thresh-

olds were reported as a function of the delay time of the tone relative to the moment

of masker correlation change. The 0 dB point corresponds to each subject's and the

model's detection thresholds for a reference NπSπ condition with a static masker,

respectively. Experimental thresholds and simulations are shown in Fig. 4.4 (A).

Thresholds are highest when the Sπ tone is presented during the Nπ segment and

are gradually getting lower as the tone is moved to the N0 part of the masker.

Quantitatively, however, considerable di�erence are apparent across subjects. The

predictions are generally within the range of the data. In another condition, instead

of providing an interaural cue, one half of the masker was attenuated by 15 dB. The

fact that thresholds were elevated up to about 120ms into the N0 part but now only

about 20ms into the attenuated part has in the past been interpreted as a longer

binaural than monaural temporal analysis window or sluggish binaural processing.

This considerably steeper threshold decrease is clearly reproduced by the model.

Subjects sometimes performed worse in the conditions with the IPD or SNR transi-

tions in the masker, albeit up to 200ms apart, than in the NπSπ reference condition

with a static masker, as indicated by thresholds above 0 dB. The model, however,

predicts the same thresholds in both cases, as expected. The fact that thresholds
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4 Fast binaural processing but sluggish masker representation recon�guration

rise shortly before the masker level transition in Fig. 4.4 (A), lower left panel, is so-

called backward masking. Because the present model does not include the cortical

e�ects associated with backward masking (Zwicker and Fastl, 1999), thresholds do

not increase for tones appearing before the masker level increase. This leads to a

slight o�set between the data and the predictions, while the slope is reproduced,

being much steeper than in the conditions with a masker IPD switch.

Grantham & Wightman, 1979

Fig. 4.4 (B) shows data and simulations for a second example on binaural sluggish-

ness. As pointed out in the introduction, the interaural correlation of the masker

oscillates between -1 and +1 (Oscor). The target tone � a gated 17-ms 500-Hz Sπ

tone pip � was presented either at moments when the interaural correlation was 1

or -1. If the Sπ tone coincides with the correlated, i.e. momentarily N0-like masker,

binaural unmasking is only evident at the very slowest oscillation frequencies of

0.5 or 1Hz. At 4Hz there is already virtually no binaural bene�t anymore, which

has been interpreted as evidence for binaural sluggishness. All features in the data

are captured by the model. Predictions are within the range of between-subject

deviations.

Siveke et al., 2008

In this study, rapidly oscillating interaural cues serve as target, providing evidence

for fast binaural processing, with experimental results and simulations plotted in

Fig. 4.4 (D). Wideband noise was generated that had fast changing interaural cues.

Two types of interaural cue changes were employed: (1) Oscillating interaural cor-

relation between -1 and +1 (Oscor); (2) a binaural beat, i.e. a linearly increasing

and phase-wrapping IPD (Phasewarp). Both types of interaurally modulated noise

could be detected in interaurally uncorrelated noise up to modulation frequencies

of 128Hz and 1024Hz in case of the Phasewarp. The oscillation- or beat-rate limit

is thus more than one order of magnitude higher than in the above-mentioned data

by Grantham and Wightman (1979) where the Oscor is employed as a masker. Our

model replicates at the same time sluggish behavior [Oscor as masker, Grantham and

Wightman (1979)] and non-sluggish behavior [Oscor/Phasewarp as target, Siveke

et al. (2008)]. The sensitivity decline to detect very rapidly oscillating correlation
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or phase (64 Hz) is due to the auditory �lter bandwidth. The interaurally correlated

frequency components are separated by the modulation frequency. Thus, the corre-

sponding left-right �lter pairs see increasingly uncorrelated components. Increasing

the center frequency of our analysis �lter will allow detecting even higher phasewarp

frequencies, as reported by Siveke et al. (2008). However, the modulation frequen-

cies encoded by the 500Hz �lter (i.e. up to 64Hz) are su�cient in order to account

for the category of fast binaural processing, as opposite to sluggish processing. The

fact that Dietz et al. (2008) obtained similar thresholds for a phase-warp band-

limitied to 0. . . 550Hz, we assume that for this type of sensitivity always arises from

within-channel cues, rendering the simplistic single-channel model su�cient for this

task and most comparable to the other tasks.

Buss & Hall, 2011

In contrast to Kollmeier and Gilkey (1990), the tone-in-noise detection data by

Buss and Hall III (2011) suggest comparably fast binaural and monaural processing

[Fig. 4.4 (C)]. The di�erence is that now the masker is attenuated for various dura-

tions but, in contrast to Kollmeier and Gilkey (1990) and Grantham and Wightman

(1979), there is no change in the interaural con�guration. N0S0 and N0Sπ thresh-

olds are presented for a 20ms long, ramped 500Hz tone in wideband noise as a

function of the duration of the 20 dB masker attenuation. The tone was either cen-

tered in or 20ms shifted from the center of the attenuated part. The decreases

in thresholds towards higher signal/masker intervals are considerably steeper than

in the conditions in Kollmeier and Gilkey (1990) involving the masker-IPD transi-

tion. Furthermore, in contrast to Kollmeier and Gilkey (1990), thresholds decrease

equally steep for both diotic and dichotic conditions. The model replicates these

two core features of this experiment. However, predictions show a somewhat harder

knee-point in thresholds than the data. This e�ect is associated with neural rate

adaptation which was not employed in the present model in order to focus on the

temporal processing hypothesis.

4.4 Discussion

Binaural processing has been shown to be similarly fast as monaural processing

in detection of interaural cue modulations (Siveke et al., 2008; Dietz et al., 2008),
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Figure 4.4: Simulation results for four exemplary data sets on sluggish and fast binaural
processing. Symbols denote the original experimental thresholds with �lled
symbols for the conditions on binaural detection and open symbols for those
on monaural detection. Continuous lines denote model predictions for binaural,
dotted lines for monaural detection conditions. See main text for experimental
details.

tone-in-noise detection (Buss and Hall III, 2011; Bischof et al., 2023), ITD and ILD

detection (Akeroyd and Bernstein, 2001), and alternating-ITD lateralization (Reed

et al., 2016) tasks. On the other hand, it has been characterized �sluggish� in other

detection (Grantham and Wightman, 1979; Kollmeier and Gilkey, 1990; Kolarik and

Culling, 2009; Culling and Summer�eld, 1998; Holube et al., 1998), ITD discrimina-

tion (Kolarik and Culling, 2009), and speech intelligibility (Hauth and Brand, 2018;

Culling and Mansell, 2013) tasks. We con�rm previous statements that di�erent

tasks involve di�erent aspects of binaural temporal processing (Akeroyd and Bern-

stein, 2001) � there is no compromise integration time accounting for both categories
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at the same time. With this result being very clear, such a compromise integration

window is also not expected from other window shapes, such as a combination of

a strongly weighted shorter and less weighted longer window as used by Bernstein

et al. (2001). Instead, we accounted for a set of experiments from both categories

with a model that compares an interval's internal representation to a low-pass �l-

tered internal representation of the masker. This is a simplistic implementation

of our hypothesis: Binaural sluggishness appears when detecting a static target in

an interaurally modulated masker but not when detecting a modulated target in a

static masker. This is a result of a slow reformation of the masker internal represen-

tation, or, in other words, an adaptation of the interaural masker pro�le estimate

(Yost, 1985).

Such reformation takes e�ect in experiments as performed by Kollmeier and Gilkey

(1990). There, the masker IPD is inverted (correlation is changed from -1 to 1),

causing a change in its perceived spatiality (i.e. width). This interferes with the

target cue which is also a change in perceived spatiality, because the Sπ target

causes IPD �uctuations when added to a diotic masker. Similarly, when adding an

Sπ target at the positive peak of a masker correlation oscillation (Grantham and

Wightman, 1979), the continuously changing perceived masker spatiality interferes

with target-induced widening. Hauth and Brand (2018) measured speech reception

thresholds for spoken sentences in the presence of a masking noise with modulated

IPD. Binaural unmasking was found to decay for modulation frequencies up to

4Hz, similar to the above-mentioned tone-in-noise experiment by Grantham and

Wightman (1979). We hypothesize the same across-time interference of the masker

spatiality to limit binaural unmasking of speech in the presence of an interaurally

modulated masker.

In contrast, to detect the correlation modulation as a target in uncorrelated noise

(Siveke et al., 2008), the perceived �uttering is su�cient. Thus, fast modulations

in correlation can be detected while the accompanying width changes of an addi-

tional tone cannot (Witton et al., 2000; Singh and Bharadwaj, 2021). In Buss and

Hall III (2011) no sluggishness was observed although the dichotic condition requires

interaural cue detection. Their masker, however, contained only an attenuation, no

phase or correlation change and therefore no change in masker IPD statistics. The

presented model preserves fast temporal �uctuations because temporal integration

only a�ects the IPD template of the internal representation of the masker. Thus
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the model accounts for all mentioned stimulus categories.

Temporal-analysis-window lengths �tted to experimental results indicating sluggish-

ness (e.g., Kollmeier and Gilkey, 1990; Holube et al., 1998; Grantham and Wight-

man, 1979) extend over a wide range, both across studies but also across subjects

within a study. This indicates that binaural sluggishness is not a �xed, inevitable

phenomenon determined by the statistics of the interaural cues or by a hard-wired

temporal integration but rather a consequence of an individual's decoding or in-

terpretation of the encoded cues. According to Yasin and Henning (2012) such is

consistent with McFadden (1966), Robinson and Trahiotis (1972) and Yost (1985),

reasoning that the binaural system detects a target best when having an accurate

estimate of the �masker pro�le�`. We add that this depends on the masker IPD

statistics, i.e. on γM, lp(t), but not on its power pro�le. Therefore, our model based

on IPD statistics alone appears to account for both sluggish as well as fast binaural

processing data.

Simulating the four di�erent paradigms with the same model supports our hypoth-

esis that binaural processing speed, similar to monaural processing speed, is only

limited by peripheral processing. Apparent sluggishness results from higher-level

analysis of masker IPD statistics. In perceptual terms, this means that sluggishness

occurs whenever a task requires the listener to adapt to a change in perceived width

in order to be receptive to the target. According to Singh and Bharadwaj (2021),

this is no longer possible for modulations above about 10Hz. They further pointed

out that monaural and binaural modulation share the same transitions to a �utter

for modulation frequencies above about 7 to 10Hz. This corresponds to periods of

100 to 143ms which matches well with the duration of threshold convergence ob-

served by, e.g., Kollmeier and Gilkey (1990). As Ross et al. (2014) concluded from

neuromagnetic responses to binaural beats that perception of moving sounds are

limited by the cortical rate of object formation, and as modulations below about

7Hz have been classi�ed as crucial for object binding (Shinn-Cunningham et al.,

2017), we associate the origin of binaural sluggishness with object formation.

However, similar to the detection of Oscor or Phasewarp, the lateralization of a noise

burst with an ITD alternating rapidly with diotic noise segments (Reed et al., 2016)

does not result in a sluggish integration of IPD, because the two interleaved streams

form spatially distinct objects. Instead of, as previous models, slowly averaging

instantateous IPD on the sensory level, the proposed concept allows to collect bin-
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aural information on fast sensory data and puts any slow adaptation on the already

separated objects, as suggested by Yabe et al. (2001). The concept is in line with

typical duration dependence phenomena as characterized by Hafter et al. (1979),

Hafter and Dye (1983), Houtgast and Plomp (1968), and Stecker (2014) including

the knee point in N0Sπ thresholds as a function of signal duration at about 200ms

(Wilson and Fugleberg, 1987). It further agrees with the threshold decay measured

by Kolarik and Culling (2009) for discriminating between two correlated or uncor-

related noise intervals, both containing a delayed noise of di�erent length, di�ering

only in the sign of the ITD. For short probe bursts, higher thresholds were observed

compared to a condition where one interval contained only diotic noise and thus

di�ered in coherence. The additional coherence cue is thought to cause the di�er-

ence in thresholds. However, the similar timescales involved in object formation and

integration suggest that both mechanisms contribute to the stable perception of an

auditory object. In future works, the proposed model can be extended by subsequent

temporal integration to account for saturating sensitivity at longer signals.

The proposed model captured the supposedly contradictory characteristics of the

data, although di�erent tasks that led to di�erent conclusions on the binaural pro-

cessing speed were simulated with the same model using the same temporal pro-

cessing parameters. Only the internal-noise parameters σbin and σmon were changed

between di�erent tasks. The double-sided exponential window with its �xed ERD

of 2τ = 60ms is similar to the ERDs obtained by Boehnke et al. (2002) for de-

tecting dynamic changes in interaural correlation and those obtained by Kollmeier

and Gilkey (1990), each by assuming temporal integration of interaural correla-

tion. Although Grantham and Wightman (1979) �tted substantially larger ERDs

than Kollmeier and Gilkey (1990), their data are also well explained by the present

model and 2τ = 60ms. Simulations include the relationship of conditions on binau-

ral and monaural detection, which di�er in the �sluggishness data� [Fig. 4.4 (A) and

(B)] but not in the �fast processing data� (Fig. 4.4(C) and (D)). Although the model

captures the key characteristics of the data, some details are not accurately repro-

duced, as addressed in section 4.3. These are mainly attributed to the fact that this

model was designed as simple as possible to focus on simulating the hypothesized

origin of binaural sluggishness.
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4.5 Conclusions

Psychoacoustic data sets that previously required very di�erent binaural processing

speeds can now be successfully simulated with the same model and without chang-

ing the temporal model parameters. Di�erent e�ective processing speeds for the

di�erent tasks are facilitated by fast interaural cue encoding but a slow adaptation

process to a change in the IPD statistics of the masker. Sluggishness kicks in when

simulating detection in a masker with changing IPD statistics while for everything

else the model is currently very fast. In our preceding study we demonstrated how

a signal- and task-driven across-frequency interference of IPD statistics can resolve

an apparent contradiction about the required �lter bandwidth (Eurich et al., 2022).

The present study is an analogous strategy in the time domain to resolve an equally

long-lasting apparent contradiction about the processing speed of the binaural sys-

tem: It is very fast and very sluggish at the same time.
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CHAPTER 5

A Computationally E�cient Model for Combined Assessment of Monaural

and Binaural Audio Quality
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5.1 Abstract

Audio quality is an important aspect of hearing aids, hearables, and sound repro-

duction systems as the signal processing of such devices might alter the spectral

composition or interaural di�erences of the original sound, and thus might degrade

the perceived audio quality. Consequently, an audio quality model applicable to

such devices requires to account for monaural and binaural aspects of audio quality.

Flessner et al. (2019, IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27(7),

1112�1125) successfully predicted overall audio quality by combining a monaural

and a binaural audio quality model, which is computationally expensive and thus

limits the scope of application. In order to cover also time-critical applications, such

as real-time control of algorithms in hearing technology, we present a computation-

ally e�cient audio quality model for overall quality predictions. The suggested

model was evaluated with six databases including music and speech signals pro-

cessed by loudspeakers and algorithms typically applied in modern hearing devices

(e.g., acoustic transparency, feedback cancellation or binaural beamforming). The

presented model achieved a high prediction performance, indicated by the mean

Pearson correlation of 0.9 similar to the more complex model of Fleÿner et al., while

its calculation time is substantially lower by a factor of 70.

5.2 Introduction

Audio quality is an important aspect of many signal processing applications ranging

from hearing devices to sound reproduction systems. For the evaluation of the

perceived audio quality of algorithms or devices, listening tests are considered as

the �gold standard�. These tests can be carried out as reference-free tests [e.g., ITU-

T Rec. P. 800 1996], where listeners rate the audio quality of a processed speech

or audio signal without any given unprocessed reference signal or as reference-based

tests [e.g., (Munson and Gardner, 2005; Series, 2014)], comparing processed and

unprocessed (reference) signals. Such listening test are typically time consuming,

expensive and often require expert listeners to gain reliable quality judgements.

To overcome these disadvantages, several instrumental audio quality measures have

been developed (e.g., Moore and Tan (2004); Harlander et al. (2014); Biberger et al.

(2018); Fleÿner et al. (2019)). In addition to evaluating signal processing algorithms,

instrumental quality measures can also be applied to control algorithms, provided
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5.2 Introduction

they are computationally e�cient.

One relevant �eld of application are wireless and smart headphones, in the following

denoted as hearables. These devices have become increasingly popular because, in

addition to their traditional use for listening to music and streaming audio, they of-

fer signal processing features typically used in hearing aids to restore ambient sound

for (hearing-impaired) listeners (Temme, 2019). The signal processing typically in-

volved, such as noise suppression, beamforming, hear-through processing, nonlinear

ampli�cation, or attenuation, potentially alters the spectral composition or inter-

aural di�erences of the original sound. This might be perceived by the listeners

as spectral or spatial distortions, degrading the audio quality of signals. Hereby,

hear-through processing aims at a natural (ideally acoustically transparent) rep-

resentation of the external acoustical environment without perceivable distortions,

similar to the sound impression with an open ear (without inserted device). This

enables perceptually authentic conversations as well as awareness of the acoustic

scene, both important in real life but also for augmented, mixed and virtual reality

applications (Gupta et al., 2020). Because the human auditory system is limited

in its ability to resolve monaural (spectral and temporal) and binaural di�erences,

such as interaural level and time di�erences (ILDs and ITDs), an authentic hear-

through processing does not require the exact reproduction of the open-ear signal

at the eardrum. A previous study (Biberger et al., 2021) has shown that much of

the distortion associated with the hear-through mode in hearables and smart head-

phones can be attributed to monaural, spectral coloration cues. However, degraded

binaural cues, play a signi�cant role in standard hearing device algorithms, such

as binaural noise reduction and beamforming (Derleth et al., 2021; Göÿling et al.,

2021; Marquardt et al., 2015; Doclo et al., 2010). Given that binaural cues o�er

substantial advantages for speech intelligibility in realistic, complex acoustic condi-

tions (Bronkhorst and Plomp, 1988, 1992; Bronkhorst, 2000; Hawley et al., 2004),

for sound localization (Blauert, 1996; Grothe et al., 2010) as well as for listening

e�ort (Rennies and Kidd, 2018), changes in (monaural) spectral coloration alone

may not be a su�cient predictor for overall audio quality in such cases.

In the past, several monaural instrumental measures for the assessment of speech

and audio quality have been developed (Harlander et al., 2014; Huber and Kollmeier,

2006; Biberger et al., 2018; Kates and Arehart, 2010, 2014, 2016; Beerends et al.,

2013; Rix et al., 2001; Moore and Tan, 2004; Moore et al., 2004), often designed
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5 A Computationally E�cient Model for Combined Assessment of Monaural and Binaural Audio Quality

for di�erent speci�c applications, such as quality predictions for audio and speech

codecs, hearing-aid signal processing, or loudspeaker and headphone distortions. In

comparison to those monaural measures, only a few instrumental measures that

capture binaural audio quality aspects have been developed (Flessner et al., 2017;

Schäfer et al., 2013; Seo et al., 2013; Takanen et al., 2014; Manocha et al., 2022),

while such aspects are expected to be important in hearing devices (Marquardt

et al., 2015; Göÿling et al., 2021; Thiemann et al., 2016; Youse�an et al., 2014; Ro-

hdenburg et al., 2007; Doclo et al., 2010; Derleth et al., 2021) and (multi-channel)

loudspeaker-based sound �eld reproduction (Toole, 1985; Gabrielsson and Lind-

ström, 1985; Rumsey et al., 2005). In a study by Rumsey and colleagues 2005,

spatial �delity accounted for approximately 30% of the basic audio quality rating

of degraded multichannel audio signals. Therefore they suggested to include spa-

tial quality aspects in future perceptual models of sound quality. In the context of

hearing aid processing, several recently suggested algorithms for noise reduction or

de-reverberation were designed not only to improve speech intelligibility, but also to

preserve binaural cues. Algorithms presented in Marquardt et al. (2015); Göÿling

et al. (2021) aimed at �nding an optimal trade-o� between noise reduction perfor-

mance and the preservation of the interaural coherence for di�use noise �elds in

order to maintain the spatial impression of the acoustical scene. The binaural de-

reverberation algorithm presented in Jeub et al. (2010) was designed to suppress

reverberation while maintaining binaural cues. Their listening test showed that for

the objective assessment of such binaural-cue-preserving algorithms, instrumental

quality measures require to account for spatial quality aspects, indicating whether

the algorithm alters the spatial perception of the original sound.

One publicly available binaural instrumental audio quality measure is the binau-

ral auditory model for audio quality [BAM-Q, Flessner et al. (2017)], an intrusive

measure that is based on a perceptually motivated direction of arrival estimation

model (Dietz et al., 2011). It estimates spatial audio quality based on di�erences

between the test and the reference signal in ILD, ITD, and an interaural coherence

measure called interaural vector strength. In order to predict overall audio quality

for signals impaired by monaural, binaural, or combined monaural and binaural

distortions, Fleÿner et al. (2019) suggested the instrumental audio quality measure

MoBi-Q. Their model combines the outputs of the binaural BAM-Q and the monau-

ral Generalized Power Spectrum Model for quality [GPSMq Biberger et al. (2018)].
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5.3 Model Description

Their results were best described by the overall audio quality being determined by

the lower quality aspect, i.e. either monaural or binaural quality. It represents an

audio quality extension of the psychoacoustic and speech intelligibility model GPSM

(Biberger and Ewert, 2016, 2017, 2022). The combined model has been shown to

account for the distortions occuring in hearables (Biberger et al., 2021).

So far, computational e�ciency of binaural quality models was not speci�cally con-

sidered. For example, MoBi-Q combines the outputs of the independent GPSMq

and BAM-Q each including their own peripheral �ltering stage, introducing compu-

tational redundancies. Therefore, potential for simpli�cation and computation time

reduction can be expected from unifying the monaural and binaural paths of the

models. Particularly after it has been shown that peripheral �ltering in the inner

ear limits the bandwidth of both monaural and binaural processing bands in the

same way (Mc Laughlin et al., 2014; Dietz et al., 2021; Eurich et al., 2022).

Moreover, mammalian encoding of ITDs is best described as a two-hemisphere code

(Grothe et al., 2010; McAlpine et al., 2001). Therefore, the complex correlation

coe�cient γ is a su�cient but compact formulation of the two-hemisphere code,

re�ecting coherence as the magnitude and IPD as the argument. It combines physi-

ological plausibility with high predictive power in behavioral data and mathematical

e�ciency (Encke and Dietz, 2022; Eurich et al., 2022).

Therefore, this study aims to provide a simpli�ed and thus computationally more

e�cient version of MoBi-Q, consisting of the linear path of GPSMq combined with

γ and ILDs as binaural features, mimicking the perception of binaural cues. At the

same time, it will be explored whether γ is suited to assess binaural audio quality.

5.3 Model Description

The architecture of the suggested quality measure allows to simultaneously analyze

the binaural and monaural features in real time on a uni�ed time scale, providing

a frame-by-frame estimate of the binaural and monaural contributions to overall

quality.

The relative contribution and perceptual range of the binaural features, γ and ILD,

were �rst calibrated using a database of subjective quality ratings of the hear-

through mode of hearables (Schepker et al., 2020), following Biberger et al. (2021),

since the model is aimed at applications in modern hearing and headphone technol-

75



5 A Computationally E�cient Model for Combined Assessment of Monaural and Binaural Audio Quality

ogy. The model was then evaluated with six databases covering a broad range of

monaural, binaural, and combined distortions. These databases include audio qual-

ity ratings on the acoustical transparency of binaural noise reduction algorithms,

binaural magni�cation and adaptive feedback cancellation in hearing devices, loud-

speaker distortions, and the acoustical transparency of hearing device prototypes.

Finally, the performance of the proposed instrumental quality measure was com-

pared to the more complex binaural quality measure BAM-Q and combined quality

measure MoBi-Q.

Figure 5.1 shows the block diagram of the suggested e�cient model for combined

assessment of monaural and binaural audio quality (eMoBi-Q). The model requires

processed (distorted) test and unprocessed reference signals with either one-channel

(monaural) or two-channel audio signals (binaural) as input. In the following, the

model frontend with joint preprocessing stages and the calculation of monaural and

binaural features is explained, followed by the description of the backend where

monaural and binaural features are combined to the �nal audio quality measure.

5.3.1 Front End

Preprocessing

Basilar membrane �ltering of the left and right input signals was modeled by a linear

fourth order gammatone �lterbank (Patterson et al., 1987; Holdsworth et al., 1988),

as implemented by Hohmann (2002). This results in 29 band-pass �ltered signals

with center frequencies between 315Hz and 12.5 kHz that have equivalent rectangu-

lar bandwidths (ERB) according to (Glasberg and Moore, 1990). Processing stages

in the monaural and binaural path process the bandpass signals in consecutive time

frames of 400ms. The time-frequency signal elements of the left and right ear signals

are denoted as l(n, p) and r(n, p) for a time frame n and a frequency band p. A

�rst-order lowpass �lter with a 150Hz cuto� frequency was applied to the envelope

to model the limited sensitivity to envelope �uctuations (Kohlrausch et al., 2000).

The lowpass-�ltered envelope a�ected the monaural spectral coloration feature, the

ILD feature and the γ feature for frequency bands above 1300Hz. However, no

lowpass �ltering was applied to the temporal �ne-structure processing realised by

the γ feature in frequency bands centred below 1300Hz.

76



5.3 Model Description

Monaural spectral coloration and loudness feature

The monaural feature was calculated by adopting the power spectrum path of the

GPSMq (Biberger et al., 2018). In case of two-channel (binaural) input signals,

left and right channels were concatenated. The Hilbert envelope, calculated for

each of the complex-valued gammatone �lterbank outputs, was �ltered by a �rst-

order lowpass �lter with a 150Hz cut-o� frequency to account for the decrease of

modulation sensitivity with increasing modulation frequency. The local DC power

was extracted from the lowpass �ltered envelope signals. It is half the squared mean

of the envelope E across the time frame n of a frequency band p:

P (n, p) =
E(n, p)

2

2
(5.1)

Elements with a local DC power below the hearing threshold in quiet (iso, 2005)

were set to that threshold.

As in (Biberger et al., 2018), local power increments SNRincr were computed as1

SNR(n, p)incr =
Ptest(n, p)− Pref(n, p)

Pref(n, p)
(5.2)

and local power decrements SNRdecr as

SNR(n, p)decr =
Pref(n, p)− Ptest(n, p)

Ptest(n, p)
. (5.3)

An upper limit of 13 dB was applied to each time-frequency element of SNR(n, p)incr

and SNR(n, p)decr, resulting in a dynamic range of 26 dB in total. Then SNR(n, p)incr

and SNR(n, p)decr are averaged across time segments resulting in SNR(p)incr and

SNR(p)decr.

Binaural features

Two binaural features were extracted for each gammatone-�ltered signal:

1Since the spectral coloration feature was adopted from GPSMq, the term signal-to-noise ratio
(SNR) was also used as historically established in, for example, the underlying GPSM, which
predicts psychoacoustic masking and speech intelligibility (Biberger and Ewert, 2016). How-
ever, in the context of audio quality, �signal� and �noise� refer to �processed by device under
test� and �unprocessed reference�, respectively. Thus, a high SNR means a high local power
increment or decrement, which, although unintuitive, means strong distortion.
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Complex correlation coe�cient γ The complex-valued correlation coe�cient was

used because it conveniently combines information about both the interaural co-

herence |γ|, re�ecting the perceptual compactness of a sound, and about the mean

IPD as arg{γ}, re�ecting laterality. It is a mathematical formulation of the two-

hemisphere channel code underlying neural encoding of interaural di�erences in

mammals (Grothe et al., 2010; McAlpine et al., 2001), capturing temporal �uctua-

tions in interaural phase. This feature and its assumption on �lter bandwidth has

been psychoacoustically validated by Encke and Dietz (2022), Eurich et al. (2022),

Eurich and Dietz (2023) and Dietz et al. (2021).

The gammatone �lterbank implementation (Hohmann, 2002) provides complex-

valued outputs signals l(n, p) and r(n, p), utilized for computing the complex corre-

lation coe�cient γ:

γ(n, p) =
l(n, p)∗r(n, p)√
|l(n, p)|2|r(n, p)|2

(5.4)

where • denotes the mean over the duration of the time frame. For frequency bands

with center frequencies below 1300Hz, γ operates on the temporal �ne structure of

the bandpass signals, while above of 1300Hz it operates on their Hilbert envelopes.

This mimics the sensitivity to IPDs in the temporal �ne structure at low frequencies

as encoded by the human medial superior olive (MSO) in combination with the

sensitivity to IPDs in the envelope at higher frequencies as encoded by the lateral

superior olive (LSO) (Remme et al., 2014; Klug and Dietz, 2022). As in Eurich et al.

(2022); Eurich and Dietz (2023), Fisher's z transform was applied to the coherence

(i.e. |γ|) to normalize the variance and to account for the increasing sensitivity to

changes in coherence towards unity. To avoid in�nite sensitivity, γ was multiplied

by 0.9 (Eurich et al., 2022; Eurich and Dietz, 2023).

Interaural level di�erences Interaural level di�erences (ILDs) were extracted as the

logarithmic power ratio between left and right signals:

ILD(n, p) = 10 log(
Pl(n, p)

Pr(n, p)
) (5.5)

The model's sensitivity to binaural distortions was obtained as the di�erence be-
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tween the frontend outputs of reference and test signals, denoted as d′:

d′γ(n, p) = |γref(n, p)− γtest(n, p)| (5.6)

d′ILD(n, p) = |ILDref(n, p)− ILDtest(n, p)| (5.7)

An upper limit of 10 dB [calibrated to the hear-through-mode database (Schepker

et al., 2020)] was applied to d′ILD(n, p) [cf. BAM-Q, Flessner et al. (2017)], to mimick

the perceptual saturation of laterality and to avoid disproportionately large ILDs at

moments of very low one-sided DC power.

5.3.2 Backend

γ(n, p) α×ILD(n, p)

gammatone filterbank

Input L

gammatone filterbank

Input R

P (n, p)

hearing threshold
√

d′2γ + d′2ILD

1− d′mon,norm 1− d′bin,norm

lower quality selector

α = 1/13

d′bind′mon

Figure 5.1: Block diagram of the proposed model. In both the monaural (local DC power
P (n, p) and binaural (γ(p, n), ILD(p, n)) paths, the frequency channels p are
combined in an optimal manner. The n consecutive 400ms time frames are
combined in an optimal manner for the binaural features and averaged for the
spectral coloration feature. Gray lines denote envelope-lowpass �ltering of the
audio signals, dashed lines denote that the discriminability d′ was obtained from
comparing a test signal with a reference signal.

79



5 A Computationally E�cient Model for Combined Assessment of Monaural and Binaural Audio Quality

For d′γ(n, p) and d′ILD(n, p), information was optimally combined across time frames

n and frequency bands p, i.e. assuming a linear, independent combination:

d′ =

√∑
n

∑
p

d′(n, p)2. (5.8)

The weighted optimal combination of the two binaural features' sensitivity indices

gives the output of the binaural model path:

d′bin =
√

d′2γ + αd′2ILD (5.9)

where the relative weight α = 1/13 of the ILD feature was calibrated using the

database on the hear-through mode of hearables (Schepker et al., 2020).

Adopted from Biberger et al. (2018), the monaural increment and decrement SNRs,

SNR(p)incr and SNR(p)decr, were combined by taking the mean for each auditory

�lter, resulting in SNR(p)mon. These monaural SNRs were then optimally combined

across frequency bands providing the single-valued SNRmon to which a logarithmic

transformation was applied with lower and upper bounds as resulting from the 26 dB

dynamic range (Biberger et al., 2018):

d′mon, lim = min(max(10 log(SNRmon) + 10, 0), 26). (5.10)

The dynamic range of the binaural d′′ is limited by a lower bound of zero and an

upper bound of 23, calibrated to the hear-through-mode database (Schepker et al.,

2020). The perceptual range of both model paths was normalized to d′norm ∈ [0; 1]:

While the sensitivity indices of the model, d′, represent the perceptual distance

between reference and test signals, the predicted audio quality was obtained as

1− d′norm.
2 This allows to adopt the linear monaural frontend from Biberger et al.

(2018) and combine it with the new binaural frontend without further calibration.

In psychoacoustic detection tasks, monaural and binaural cues are usually best

described by an optimal combination (Encke and Dietz, 2022). However, Fleÿner

2The Weber law suggests that a logarithmic d′ axis is more likely to re�ect perception than a
linear axis (Heil and Friedrich, 2023). This would suggest associating log(1/d′) with audio
quality rather than 1− d′. However, a backend based on log(1/d′) did not give better results
and requires a modi�cation of the dmon,lim adopted from (Biberger et al., 2018). Therefore,
in this work, a linear association of d′ with audio quality is used, which provides simplicity
paired with performance. For future backends involving, e.g., a neural network, a logarithmic
association of d′ and audio quality may be preferred.
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5.4 Databases

et al. (2019) concluded from the combination functions tested for MoBi-Q that

the overall audio quality is dominated by the lower quality aspect. For eMoBi-Q,

selecting the lower quality component, i.e. monaural or binaural, also yielded the

better results than an optimal combination (not shown). Therefore, in order to

provide a simple but well performing combination, the lower quality component was

selected as the overall quality rating. However, the features provided in this model

can also be used with other backends (see section 5.6.3). This combined version

of the model was used to predict the subjective ratings of the seven databases

described below. Additionally, the performance of the monaural and binaural paths

in isolation was compared to previous models, which is discussed in section 5.6.1.

5.4 Databases

The hear-through mode database database of Schepker et al. (2020) was used for

calibration of the relative weight of the binaural features, i.e. γ and ILDs, as well up-

per bound of ILD cues and the upper bound of the binaural path, cf. Biberger et al.

(2021). Six further databases covering a broad variety of monaural, binaural and

combined monaural and binaural distortions as they typically occur in loudspeakers

and hearing technology were used to evaluate the �calibrated" model.

The hear-through mode database, used for calibration, was taken from the study of

Schepker et al. 2020 (Schepker et al., 2020). The database consists of 120 speech

(female, male) and music (jazz, piano) items, sampled at 48 kHz. The study aimed

to assess the audio quality of various hearables, including six commercial devices and

three research devices, in the hear-through mode. To achieve this, recordings were

made using a dummy head equipped with the hearables in a laboratory environment

with moderate room reverberation (T60 ≈ 0.45 s) to assess the devices in realistic

but controlled acoustic conditions. Four audio signals were recorded for three play-

back directions (azimuths of 0°, 90°, 225°) with loudspeakers placed at a distance

of approximately 2m from the dummy head and adjusted in height to be at ear

level with the dummy head. The dummy head's open-ear recordings served as the

reference signals, ensuring that the sound transmission to the eardrum through the

hearable devices matched the acoustic transparency of the open ear reference. The

occluded ear was used as anchor signal. The subjective evaluation of the hearables

was conducted with 17 NH participants by employing a MUSHRA-like framework.
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The following six databases were used for model evaluation. The subjective qual-

ity ratings for all these databases were measured in headphone experiments with

participants who had normal hearing (NH) in sound-isolated booths.

5.4.1 Binaural Distortions

The database by Flessner et al. (2017) has 114 items, consisting of speech, music,

and pink noise signals with a duration of 10 s. The reference signals were diotic

and thus perceived in the middle of the head as a narrow spatial image. The test

signals were manipulated in ILDs and ITDs to change the perceived apparent source

width, listening envelopment and the direction of arrival of the sound source. The

listeners rated the perceived di�erence between a reference and various test signals

on a numerical rating scale ranging from 100 (�no di�erence�) to 0 (�very strong

di�erence�) by using a procedure similar to the MUSHRA (Multiple Stimulus with

Hidden Reference and Anchor) method.

The binaural magni�cation database, including 8 items, sampled at 44.1 kHz, was

taken from Flessner et al. (2017) and comprises binaural hearing aid algorithms

(Kollmeier and Peissig, 1990), that magni�es binaural ILD- and ITD-cues to improve

the spatial separation between sound sources. The algorithm was applied to one

speaker in a conversation scenario who talks with another (unprocessed) speaker.

Such processing shifts the perceived location of the processed speaker, while the

spatial position of the other talker does not change. In the unprocessed reference

signal both speakers were perceived in front of the receiver. Di�erent degrees of

magni�cations were tested and 10 NH listeners rated the overall di�erence between

the reference and the test signals by using a procedure similar to MUSHRA.

The database of Göÿling et al. (2021) contains 32 speech items, sampled at 16 kHz,

and a duration of about 7 s. In their study, Göÿling et al. measured the perfor-

mance of six noise reduction algorithms based on the binaural minimum-variance-

distortionless-response (MVDR) beamformer, that compromise between noise re-

duction performance and preservation of the interaural coherence for di�use noise

�elds. A MVDR beamformer with optimal processing strategy (MVDR-OPT) that

reduces the signal-to-noise ratio between the speech and noise component but per-

fectly preserves the interaural coherence of the di�use noise component was used

as the reference signal. The anchor signal was obtained by averaging the left and

the right output signals of the MVDR-OPT algorithm, resulting in a monaural
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5.4 Databases

signal. Consequences of such algorithms on the perceived audio quality were as-

sessed for anechoic and echoic (cafeteria) room conditions. Eleven NH listeners

rated the perceived audio quality between the test and the reference signals by

using a MUSHRA-like procedure.

5.4.2 Monaural Distortions

The loudspeaker database, taken from Biberger et al. (2018), consists of 336 items

(sampled at 44.1 kHz), based on the ratings of 10 well-trained NH listeners (�expert

listeners�) for the perceived overall sound quality di�erence between a high-quality

three-way reference loudspeaker and 59 low-to-mid quality three-way and two-way

test speaker systems playing 15 music excerpts (20-30 s). All loudspeakers were dig-

itally equalized in order to evaluate quality di�erences between test loudspeakers

with digitally compensated frequency response and a high-quality three-way refer-

ence loudspeaker. The played-back music signals were recorded by a dummy head

(Neutric Cortex MK2). The perceived sound quality di�erences between reference

and test signals were rated by using a quasi-continuous rating scale ranging from 0

(imperceptible di�erences) to 4 (signi�cant di�erences).

The adaptive feedback cancelation (AFC) database was taken from the study of

Nordholm et al. (2018). It consists of 60 diotic items, based on speech and music

material, sampled at 16 kHz. All signals were recorded using a microphone placed

in the right ear of a dummy head in an anechoic chamber for two di�erent sound

source positions (azimuths of 0° and 90°), resulting in four audio signals (2x speech

and 2x music). Nordholm et al. examined four AFC algorithms using four signals

and three signal segments (initial and re-convergence phase, steady-state phase).

Signals processed with an ideal feedback cancelation algorithm (with perfect a-

priori knowledge about the feedback path) served as reference signals, while signals

processed without feedback cancellation served as anchor signals. Subjective quality

ratings from 15 NH subjects were obtained using the Multiple Stimulus with Hidden

Reference and Anchor method (MUSHRA; ITU-R BS.1534-1, 2003).

5.4.3 Combined Distortions

The acoustic transparency database, taken from the study of Schepker et al. (2019),

encompasses 140 speech and music items, sampled at 48 kHz. The study aimed
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to evaluate the audio quality of a real-time hearing device prototype designed for

achieving acoustically transparent sound reproduction by applying feedback suppres-

sion using a null-steering beamformer and individualized equalization of the sound

pressure at the eardrum. The evaluation was conducted under various recording

room conditions, including three di�erent reverberation times (T60 ≈ 0.35 s, 0.45 s,

1.4 s) and three incoming signal directions (azimuths of 0◦, 90◦, 225◦). For the

recording process, a dummy head equipped with the hearing devices was utilized.

The open-ear recordings from the dummy head served as the reference signals to

establish acoustical transparency. A total of 15 NH listeners were involved in the

study, and they employed a MUSHRA-like procedure to rate the perceived overall

sound quality of each stimulus relative to the reference signal (open-ear).

5.5 Results

Distortion Type Study Database rPearson rrank

binaural
Fleÿner et al. 2017 Arti�cial distortions 0.85 (0.85) 0.85 (0.85)
Fleÿner et al. 2017 Magni�cation hearing aid algorithm 0.96 (0.96) 0.95 (0.95)
Göÿling et al. 2020 MVDR-based algorithms 0.89 (0.98) 0.80 (0.95)

monaural
Biberger et al. 2018 Loudspeakers 0.86 (0.91) 0.90 (0.87)
Nordholm et al. 2018 Adaptive feedback cancelation 0.99 (0.99) 0.98 (0.98)

combined
Schepker et al. 2019 Acoustically transparent hearing device 0.86 0.85
Schepker et al. 2020 Calibration: Hear-through mode 0.90 0.90

Table 5.1: Results: Performance in terms of Pearson linear correlation coe�cients rPearson
and Spearman rank correlation coe�cients rrank between subjective and objec-
tive ratings for the seven databases predicted by the proposed combined monau-
ral and binaural model eMoBi-Q. Results obtained with the binaural model path
in isolation (for the databases on binaural distortions) or monaural model path
in isolation (for the databases on monaural distortions) are given in parantheses.

Prediction performance is characterized by two performance measures: Accuracy

is quanti�ed by the Pearson linear correlation coe�cient rPearson, monotonicity by

the Spearman rank coe�cient rrank. Results are summarized in Table 5.1. There,

rPearson and rrank for each database are given as predicted by the combined monau-

ral and binaural quality model (eMoBi-Q). Additionally, scores in parantheses de-

note the performance obtained by the binaural features in isolation (for binaural

distortion databases) or the spectral coloration feature in isolation (for monaural

distortion databases).

Figure 5.2 shows subjective quality scores and objective scores for eMoBi-Q for the
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Figure 5.2: Subjective and objective quality scores for the databases on binaural distor-
tions. Black circles denote conditions determined by the monaural path, i.e.,
spectral coloration based measure, being lower than the binaural distortion mea-
sure, blue diamonds denote those determined by a lower binaural measure. Left
panel: Database by Fleÿner et al. 2017 on arti�cial distortions in ITDs, ILDs
and HRTFs; middle panel: Binaural magni�cation database by Fleÿner et al.
2017; right panel: database on noise reduction algorithms based on the binau-
ral minimum-variance-distortionless-response (MVDR) beamformer by(Göÿling
et al., 2021).

binaural distortions in three databases (Flessner et al., 2017; Göÿling et al., 2021).

In the Figs. 5.2 - 5.4, subjective and objective, i.e., instrumentally assessed quality

scores are given on the abscissa and on the ordinate, respectively. Black circles

and blue diamonds denote predictions determined by lower spectral and binaural

features, respectively. Table 5.1 lists the rPearson and rrank coe�cients between sub-

jective and objective scores as obtained for eMobi-Q.

For the calibration database eMoBi-Q achieved rPearson = 0.9 and rrank = 0.9.

eMoBi-Q performed well the for the arti�cial binaural distortions in the database

by Fleÿner et al. (rPearson = 0.85, rrank = 0.85) and gave accurate predictions

for the magni�cation hearing aid algorithm, indicated by rPearson = 0.96 and rrank

0.95, as well as for the MVDR-based algorithms (rPearson = 0.89, rrank = 0.8).

Table 5.1 shows that for these databases prediction performance increases when only

the binaural path of eMoBi-Q is used.

In Figure 5.3 eMoBi-Q scores are plotted over subjective quality scores for the

monaural distortions in the loudspeaker and adaptive feedback cancelation databases.

For both databases eMoBi-Q provided good quality predictions for the loudspeaker

database (rPearson = 0.86, rrank = 0.88) and very accurate predictions for the adap-

tive feedback cancelation database (rPearson = 0.99, rrank = 0.98) for the loudspeaker
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Figure 5.3: Subjective and
objective quality
assessments for the
databases on monau-
ral distortions. Top
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database; Bottom
panel: adaptive feed-
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Figure 5.4: Subjective and objective quality assessments
for the databases on combined monaural and
binaural distortions. Top panel: Acous-
tic transparency database; Bottom panel:
database on the quality of the hear-through
mode of hearables, used for calibration of
the binaural path.

and adaptive feedback cancellation databases, respectively. The prediction perfor-

mance of eMoBi-Q for combined monaural and binaural distortions are shown in

Figure 5.4. Next to the hear-through-mode database used for calibration of the

binaural path, eMoBi-Q also replicated the ratings on the acoustic transparency of

hearing aid prototypes (Schepker et al., 2019) very well (rPearson = 0.86, rrank =

0.85).

Without further optimization and parameter adjustment procedures, the presented

combined model eMoBi-Q achieved average rPearson and rrank coe�cients between

subjective ratings and objective model ratings of 0.9 and 0.89, respectively, for seven

databases.
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5.6 Discussion

The presented e�cient model for combined assessment of monaural and binaural

audio quality (eMoBi-Q) was shown to predict a range of monaural, binaural and

combined distortions well. The involved features are the complex correlation coef-

�cient γ which incorporates interaural coherence (|γ|) characterizing compactness

and the IPD (arg {γ}), ILD representing laterality, and DC power. With the model

structure being transparent and simple, developers can incorporate the features into

their analyses according to their own requirements.

5.6.1 Comparison to other instrumental quality measures

An instrumental quality measure intended to predict overall audio quality requires

to capture aspects that degrade monaural and binaural audio quality. To assess the

power of the auditory cues analyzed in eMoBi-Q, the prediction performance of the

isolated monaural and binaural path of eMoBi-Q are in the following compared to

existing monaural and binaural instrumental quality measures. Besides an adequate

representation of monaural and binaural cues, the combination of such cues is also

important to gain reasonable overall quality outcomes. Therefore, eMoBi-Q is ad-

ditionally compared to an existing instrumental measure for overall audio quality.

Binaural measures

One goal in this study was to assess whether the simplistic and computationally

e�cient binaural auditory model of Eurich et al. (2022) is suitable to predict binau-

ral audio quality. For that reason, the prediction performance of the binaural path

of eMoBi-Q was compared to that of the established binaural audio quality model

BAM-Q (Flessner et al., 2017) for the three binaural databases in this study. As

shown in Fig. 5.5 for the databases for binaural magni�cation and MVDR beam-

formers, the binaural path of eMoBi-Q has a prediction performance comparable

to BAM-Q, which is also indicated by similar rPearson and rrank above 0.9 for both

models. However, for the database of Flessner et al. (2017), the prediction perfor-

mance of the binaural path of eMoBi-Q (rPearson = 0.85, rrank = 0.85) is lower than

that of BAM-Q (rPearson = 0.93, rrank = 0.93). Given that BAM-Q has been trained

on the Fleÿner database, it is not surprising that BAM-Q outperforms eMoBi-Q for

87



5 A Computationally E�cient Model for Combined Assessment of Monaural and Binaural Audio Quality

subjective rating

ob
je
ct
iv
e
ra
ti
n
g 0

20

40

60

80

100

0 50 100

Fle:ner et al. 2017

rPearson = 0.85

rrank = 0.85
0

20

40

60

80

100

0 50 100

binaural path of eMoBi-Q

Bin. Magni-cation

rPearson = 0.96

rrank = 0.95
0

20

40

60

80

100

0 50 100

GBo:ling et al. 2020

rPearson = 0.98

rrank = 0.95

0

20

40

60

80

100

0 50 100

Fle:ner et al. 2017

rPearson = 0.93

rrank = 0.93
0

20

40

60

80

100

0 50 100

BAMQ

Bin. Magni-cation

rPearson = 0.91

rrank = 0.95
0

20

40

60

80

100

0 50 100

GBo:ling et al. 2020

rPearson = 0.98

rrank = 0.99

Figure 5.5: Performance comparison of the binaural path of the present eMoBi-Q in isola-
tion (left column) with the established binaural quality model BAM-Q (right
column). The used databases on binaural distortions are the data from exper-
iment 1 in Fleÿner et al. 2017, the binaural magni�cation database and the
database of binaural cue preservation in B-MVDR beamformers from Göÿling
et al. 2020.

that database. The features extracted by BAM-Q � ITD, ILD and interaural vector

strength (IVS) � are related to the features of eMoBi-Q, γ and ILD. The backend

of BAM-Q, however, involves the �multivariate adaptive regression splines� [MARS,

Friedman (1991); Jekabsons (2011)] consisting of forward and backward passes to

�t the relative importance of the three features to the data, as well as further com-

putations to obtain the quality ratings. In the present binaural model, however,

1− d′norm is directly used as binaural quality rating. The proposed model can serve

as a basis for potentially more elaborate backends to further optimize prediction

accuracy. However, when the relative contribution of the ILD feature is increased

to α = 1/8, performance of the binaural path of eMoBi-Q for the Fleÿner database

becomes closer to BAM-Q (rPearson = 0.88, rrank = 0.89). In a nutshell, the simi-

lar overall performance of the two models highlights the strength of the simplistic

binaural path of eMoBi-Q and the suitability of the complex correlation coe�cient

γ for binaural quality assessment. Therefore, the binaural path of eMoBi-Q could

also provide a useful binaural extension for other monaural audio quality models.
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Monaural measures

The subjective quality ratings in the databases on loudspeakers and adaptive feed-

back cancellation were well replicated by the current eMoBi-Q model as indicated

by rPearson values of 0.86 and 0.98, respectively. eMoBi-Q and the isolated monau-

ral path of eMoBi-Q achieved the same prediction performance for the database

on adaptive feedback cancelation (compare results without and with parenthesis

in Table 5.1), while for the (dichotic) loudspeaker database, eMoBi-Q performed

slightly worse then the isolated monaural path of eMoBi-Q. This is due to the

cue redundancy in the monaural and binaural features (see below). Speci�cally,

interaural coherence cues (i.e. |γ|) are present as loudspeaker database compares

recordings in rooms. The studies of Biberger et al. 2018; 2021 demonstrated that

for the loudspeaker and adaptive feedback cancellation databases, accurate predic-

tions of the perceptual e�ects of spectral distortions are important. Therefore, the

naturalness model (Moore and Tan, 2004), HASQIv2 (Kates and Arehart, 2014),

and GPSMq (Biberger et al., 2018) each explicitly accounting for spectral di�er-

ences between reference and test signals, were used as monaural comparison mod-

els. For the loudspeaker database and the adaptive feedback cancelation database,

eMoBi-Q performs similar to the naturalness model, HASQIv2 and GPSMq (loud-

speaker database: rPearson values of 0.85, 0.8, and 0.9; adaptive feedback cancelation

database: rPearson = 0.95 for all three comparison models).

Combined measures

Evaluating the binaural and the monaural path of eMoBi-Q in isolation has shown

that binaural and monaural cues in hearing devices and loudspeakers are generally

well predicted. This gives developers the choice of using the paths in isolation or in

combination.

Biberger et al. (2021) tested the combination of GPSMq and BAM-Q (Flessner

et al., 2017) with the acoustic transparency database (Schepker et al., 2019) (see

section 5.4.3). While GPSMq alone performed well (rPearson = 0.87; rrank = 0.86),

performance was slightly reduced when it was combined with BAM-Q in MoBi-Q

(rPearson = 0.83; rrank = 0.80). This is not the case for eMoBi-Q, which performed

equally well as GPSMq (rPearson = 0.88; rrank = 0.87)

An even more signi�cant detrimental impact of BAM-Q combined with GPSMq
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was observed for the hear-through mode database (Schepker et al., 2020) (MoBi-

Q: rPearson = 0.79; rrank = 0.81; GPSMq: rPearson = 0.92; rrank = 0.91). Given

that eMoBi-Q was calibrated on the hear-through mode database (Schepker et al.,

2020) it seems plausible that it achieved a better performance (rPearson = 0.90;

rrank = 0.90) than MoBi-Q without any a-priori knowledge about that database.

The reduced prediction performance of the combined model compared to the monau-

ral or binaural path in isolation can be explained by binaural distortions also being

re�ected in spectral distortions. Because ILDs are extracted as the logarithmic

power ratio between the left and right bandpass signals, interaural di�erences in

DC power are detected by both the ILD and the DC-power feature of eMoBi-Q.

Furthermore, as discussed by Fleÿner et al. (2019) and Biberger et al. (2021), the

way of combining monaural and binaural paths has a major impact on the over-

all predicted quality and carries the risk of obtaining a large number of degrees

of freedom, over�tting, and signi�cant degradation of prediction performance. For

this reason and for the sake of simplicity, for eMoBi-Q, no speci�c weighting of the

monaural or binaural paths was used.

As one result of Fleÿner et al. (2019) was that the lower quality component deter-

mines the overall quality, this was applied to eMoBi-Q. The result is a lean combined

monaural and binaural instrumental quality measure with less degrees of freedom

and which at the same time achieves a slightly higher performance than the more

complex MoBi-Q on combined distortions considered in this study.

5.6.2 Computational e�ciency

The goal was to provide a computationally e�cient audio quality assessment model

that can serve as both a real-time hearing device control and a development tool.

For a 1 s two-channel audio signal, the model's signal processing takes about 257ms

For comparison: The current (unoptimized) implementation MoBi-Q (Fleÿner et al.,

2019), needs 17 s.3 One obvious redundancy in MoBi-Q are two separate peripheral

�lter stages for the binaural and monaural model, and thus eMoBi-Q uses a single,

common �lterbank. Because of the low computational complexity of the monaural

and binaural feature calculation in eMoBi-Q, the peripheral �lterbank requires 48%

of the run time, and the subsequent envelope lowpass �ltering for a further 23%,

3The models were run in MATLAB on an Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz ma-
chine, using a single thread.
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Figure 5.6: Performance of the presented eMoBi-Q in terms of prediction monotonicity
(rrank) for the seven considered databases for di�erent spacings of the fre-
quency bands. While the lower- and uppermost center frequencies are kept
constant, the distance between center frequencies is increased. A lower number
of frequency bands reduces computational load. Results given in Figs. 2 to 5
use 1 �lter per ERB.

meaning that approximately 71% of the total run time is spent in this initial stage.

Reducing the number of frequency bands can therefore further reduce the compu-

tational load. To explore this potential, the model was evaluated with a reduced

number of frequency bands. The lowest and highest center frequencies were kept

constant at 315Hz and 12500Hz respectively, while the density of the frequency

bands in between was reduced from 1 �lter per ERB (default) to 0.8, 0.5 and, as an

extreme case, 0.2 �lters per ERB. With the �lter bandwidth unadjusted, this led

to a reduction in �lter overlap and, in extreme cases, to the neglect of frequency

ranges between the �lters. With 0.5 �lters per ERB, the run time was reduced

from 257ms to 121ms which means the run time is approximately proportional to

the number of frequency bands. The resulting performance in terms of their rrank

between subjective data and model predictions is shown in Fig. 5.6. Depending on

the individual database, low to moderate performance losses were observed for 0.8

and 0.5 �lters per ERB. Only for the database Göÿling et al. (2021), a more signi�-

cant loss was observed at 0.5 �lters per ERB. For the extreme case of 0.2 �lters per

ERB, however, substantial performance losses were observed for three of the seven

databases (binaural calibration, binaural magni�cation and loudspeaker database).

We hypothesize that, based on the used set of seven databases, distortions that

occur in one frequency band are likely to also occur in at least one neighboring

91



5 A Computationally E�cient Model for Combined Assessment of Monaural and Binaural Audio Quality

frequency band. Thus, even if the sensitivity of the model is not constant over the

entire frequency range (it is constant for the standard density of one �lter per ERB,

where transfer functions cross at their 3-dB-down points), a large part of the distor-

tions that determine the subjective ratings are captured. Compensating the lower

density of frequency bands with larger �lter bandwidths led to more substantial per-

formance losses (not shown). The more signi�cant loss for the database by Göÿling

et al. on binaural cue preservation in MVDR beamformers, however, shows that

binaural audio quality in such applications relies on cues that are not necessarily

represented in adjacent frequency regions. We conclude that for some time-critical

applications, such as real-time evaluation, it may be useful to use the model with a

reduced number of frequency bands. However, in order to maintain generalizability

to di�erent stimuli with di�erent bandwidths, it is recommended that the center

frequencies of the remaining �lters cover a wide range, such as 315. . . 12500Hz.

5.6.3 Limitations and reasonable model extensions

Besides the shown range of distortion types that are well captured by the presented

model, there are also distortion types the model is not expected to be accounted

for: The presented model does not include a feature to capture nonlinear distortions,

which makes the model unsuitable to evaluate the audio quality of, e.g., audio codecs.

Furthermore, distortions such as spectral subtraction, introducing musical tones, are

not exptected to be accurately detected by the current version of the model without

modulation �lters.

The frame length of 400ms was chosen as the focus was on detecting realistic binau-

ral distortions (Flessner et al., 2017; Fleÿner et al., 2019; Biberger et al., 2021) and

computational e�ciency. Fast dynamic binaural distortions, such as phasewarp (i.e.

a binaural beat created by an interaural spectrum shift) are, however, not detected.

A future version could possibly include �ne-structure-based feature extraction as

used in Eurich and Dietz (2023), which would increase sensitivity to such mostly

arti�cial distortions at the cost of higher computational load.

To address the redundancy of monaural and binaural cues, which partially results

in performance degradation when the monaural DC power path is added to the

binaural path and vice versa, a uni�ed monaural and binaural path could be de-

veloped for a future version. Alternatively, ILDs and ITDs could be canceled out

in the DC power path, as in MoBi-Q. Also, a sophisticated procedure to �t the
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relative weighting of the model features could potentially slightly improve perfor-

mance. In the study of Qiao et al. (2022), a simple neural network was trained to

map the monaural and binaural features of MoBi-Q for timbral, spatial, and overall

quality. For their test databases, containing signals processed by binaural rendering

algorithms and ambisonics reproduction, such mapping provided more accurate pre-

dictions than the original feature combination suggested in MoBi-Q. Thus, replacing

the straightforward combination of monaural and binaural features in eMoBi-Q by

a carefully trained neural network might also improve the prediction performance.

However, the focus of this model was on e�ciency, simplicity, and, considering the

few degrees of freedom, generalizability.

5.7 Conclusion

A computationally e�cient and lean instrumental measure for combined monaural

and binaural audio quality assessment was presented. While a number of monaural

instrumental quality measures has been established in the past, tools for assessing

binaural aspects of audio quality are limited, although spatial cue preservation is im-

portant for, e.g., binaural hearing aids and sound-�eld reproduction. The presented

model is a simpli�ed version of MoBi-Q, providing a lean structure and a new, com-

pact binaural path. The predictive power of the presented model was shown to be

comparable with more computationally complex quality models for seven databases

involving a range of monaural, binaural and combined distortions. Due to the simple

structure, the resulting computational e�ciency, and the uni�ed analysis timescales

of the monaural and binaural paths, the model is suitable for a range of applications.

It has the potential for real-time control of algorithms in, e.g., hearing aids, but can

also be used as an analysis tool for developers to monitor perceptually relevant dis-

tortions. The model will be publicly available from the University of Oldenburg and

will be part of the Auditory Modeling Toolbox (Majdak et al., 2022).
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CHAPTER 6

General discussion and conclusion

Three models of e�ective binaural processing have been presented, each of them

based on the complex correlation coe�cient γ. Two of them are basic research

and have addressed apparent contradictions on the analysis window size in binaural

compared to monaural hearing (chapters 3 and 4). The third model transferred γ

to the engineering �eld (chapter 5) by incorporating γ into a computationally ef-

�cient measure of monaural and binaural audio quality, targeted at developers of

algorithms in hearing technology (termed eMoBi-Q). In the following, the scienti�c

contributions are evaluated on a higher level. First, the proposed concept of in-

terference across frequency and time will be contextualized (section 6.1), then the

insights gained from the use of γ are considered (section 6.2). Finally, the impact

of the presented �ndings are summarized and implications for future research are

suggested (sections 6.3 and 6.4).

6.1 Spectral and temporal interference of IPD statistics

Some experimental results suggested larger binaural than monaural �lter band-

widths (van der Heijden and Trahiotis, 1999; Holube et al., 1998; Kolarik and

Culling, 2010) or time windows (Kollmeier and Gilkey, 1990; Grantham and Wight-
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6 General discussion and conclusion

man, 1979; Holube et al., 1998). However, other results can be best or even only

explained assuming that binaural hearing exploits the full spectral (Bernstein and

Trahiotis, 2020b; Dietz et al., 2021; Langford and Je�ress, 1964; Rabiner et al.,

1966) and temporal (Siveke et al., 2008; Dietz et al., 2008) resolution provided by

the basilar membrane �lters [as estimated by Glasberg and Moore (1990)]. Assum-

ing interference mechanisms as introduced in section 2.2 instead of overall larger

analysis windows solved two long-lasting conceptual contradictions of binaural re-

search.

The models presented in the chapters 3 and 4 each account for both, the results

suggesting a generally lower resolution and those suggesting access to the full res-

olution provided by the basilar membrane. The working hypothesis of this thesis

was that the binaural system has the same high resolution as the monaural sys-

tem. That means there is no hard-wired convergence or averaging in the spectral

or temporal encoding of sound. This is based on the considerations that a higher-

resolution system might potentially be unable able to access the full resolution in

certain cases. However, a low-resolution system cannot provide high resolution in

certain cases. Our hypothesis is in line with the ability to detect auditory events that

require the full frequency selectivity and temporal resolution provided by the basilar

membrane. However, under certain circumstances, this resolution cannot be fully

accessed. Such hypothesized reductions in resolution are associated with auditory

processing beyond peripheral encoding. Auditory events are perceptually organized

and interpreted (Bregman, 1990). They are compared and perceived in context with

previous or ongoing events as well as with expectation (Sutojo et al., 2020). Based

on the similarity of extracted attributes, summarized as Gestalt rules (Wertheimer,

1923), auditory objects are formed. They group and separate sound components

across both frequency and time (Middlebrooks and Simon, 2017). E�ciency is in-

creased by predictive coding and updating (Francis and Wonham, 1976; Majdak

et al., 2020). The more abstract a perceptual representation of a sound event, the

larger the corresponding analysis window (Bizley and Cohen, 2013; Simon, 2017;

Elhilali, 2017): While auditory periphery provides a high frequency selectivity and

temporal resolution, more central stages form more holistic representations (see

Fig. 6.1).

Thus, the properties of all auditory pathway stages have an impact on whether a

sound is perceived. Therefore it is unsurprising that the detectability of a certain
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Figure 6.1: Schematic illustration of the discussed discrepancy between general principles of
neurosensory processing (left column) and the larger analysis windows reported
in binaural literature (right column).

sound attribute depends on the spectral and temporal context. Adding a pure tone

to a noise that di�ers in its IPD statistics leads to a modi�cation of the resulting in-

teraural parameters in a given frequency band or at a given time. However, if similar

changes in IPD statistics occur in spectral or temporal proximity, it is reasonable

to assume that tone detection will be a�ected. Although top-down attentional pro-

cesses play a major role in shaping auditory perception (Shinn-Cunningham et al.,

2017), the proposed models (Eurich et al., 2022; Eurich and Dietz, 2023) account

for the apparently larger binaural than monaural analysis windows only involving

bottom-up processes. In the spectral domain, incoherence interference from o�-

signal bands was introduced. In the temporal domain, across-time interference was

implemented as a �sluggish� reformation of reference IPD statistics. The presented

e�ective, phenomenological models did not implement a clear neurophysiologic or

neurocognitive mechanism causing the spectral and temporal interference. Instead,

the origins are associated with auditory object formation. In the spectral domain,

the superposition of two opposingly delayed noises produces frequency regions with

di�erent interaural correlation. This can be perceived as di�erent objects, distin-

guished by their spectra. Additionally, two opposingly lateralized noise components
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6 General discussion and conclusion

can be perceived. In case of a single delayed noise, however, only one lateralized noise

component is perceived, constant in correlation across frequency. It is hypothesized

that detection of the widening cue (i.e. a less compact within-the-head representa-

tion, see section 2.1) induced by the tone is impaired by the more complex internal

representation (which means a model of the interaural statistics, see chapter 4) of

the masker, involving more auditory objects. Similar e�ects have been described

as binaural interference (Bernstein and Trahiotis, 1995) and modulation detection

interference (Yost and Sheft, 1989; Bacon and Konrad, 1993; Mendoza et al., 1995;

Oxenham and Dau, 2001). In the temporal domain, the changing masker IPD statis-

tics are hypothesized to entail reformation of the masker auditory object which tone

detection relies on. That means the perceptual distance between the internal repre-

sentations of target and masker converges in a �sluggish� way. However, it is possible

that the proposed interference mechanisms rather result from processes prior to or

interacting with object formation, however, beyond the binaural brainstem.

While the proposed explanations to the apparent �wider binaural �lters� and �bin-

aural sluggishness� follow the same idea, the histories of those assumptions di�er:

There have been simultaneous, opposing statements on the bandwidth determin-

ing binaural detection: from the increase of detection thresholds as a function of

masker ITD, Rabiner et al. (1966) derived the bandwidth underlying binaural detec-

tion to be very similar to the bandwidth underlying monaural detection. Sondhi and

Guttman (1966) derived a larger bandwidth for binaural detection compared to that

known from monaural detection, based on elevated thresholds when the masker IPD

changed in spectral proximity to the target. However, for modeling binaural detec-

tion, either the underlying bandwidth added a degree of freedom [van der Heijden

and Trahiotis (1999) vs. Bernstein and Trahiotis (2020a)], or conditions highlight-

ing the conceptual di�erence [most importantly: impaired detection in opposingly

delayed noises (van der Heijden and Trahiotis, 1999)] did not receive appropriate

attention (Bernstein and Trahiotis, 2015, 2017, 2020a; Breebaart et al., 2001b). Di-

etz et al. (2021) provided further evidence for the conventional critical bandwidth

accounting for binaural detection, Marquardt and McAlpine (2009) and Eurich et al.

(2022, i.e. chapter 3) provided a conceptual and quantitative explanation for the

bandwidth appearing larger in certain conditions.

On the other hand, more �sluggish� binaural than monaural processing has been

accepted since the late 1970s. This �sluggishness� assumption was based on data
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showing elevated thresholds in temporal proximity to changes in masker IPD statis-

tics (Grantham and Wightman, 1978, 1979). Thus, most models have assumed

�xed temporal integration [e.g., Breebaart et al. (2001c); Hauth and Brand (2018)].

Evidence that binaural processing speed is only limited by peripheral �ltering was

presented thirty years later (Siveke et al., 2008; Dietz et al., 2008). Chapter 4 helps

unifying fast and �sluggish� processing and therefore adds to a previously limited

scienti�c debate. Fast binaural processing is also supported by Bischof et al. (2023),

who found that the altered binaural unmasking of speech in the presence of room

re�ections and late reverberation is better explained by 12ms than by 300ms win-

dows.

Notwithstanding the explanation for the sometimes apparently larger binaural than

monaural analysis windows given in chapters 3 and 4, integration in the sense of op-

timal combination is assumed as a subsequent stage. As pointed out and modeled, it

is reasonable to assume (1) an optimal combination of frequency bands, accounting

for o�-frequency exploitation in narrow-band maskers (Hall et al., 1983; van de Par

and Kohlrausch, 1999; Breebaart et al., 2001b), and (2) an optimal combination of

time segments to account for temporal integration and the multiple-looks hypothesis

(Viemeister and Wake�eld, 1989). Both is in line with auditory object formation

operating on integrated spectrotemporal information (Hsieh et al., 2018). This is

accounted for in the presented models by locating the interference mechanism in the

frontend while locating integration in the backend (see Table 6.1) . Although associ-

ated with non-ignorable o�-signal changes on a cortical level, it is thought separate

from even higher-level integration, let alone attention-driven processes (not mod-

eled). In summary, the proposed work has established that detrimental interference

helps to reconcile the requirements of high and low binaural resolution.

6.2 Demonstrating the viability of the two-channel code for e�ective

binaural modeling

6.2.1 The two-channel concept catches on

In addition to establishing the interference concept discussed above, the models

proposed in this thesis also continue the line of arguments regarding the viability of

the two-channel code as an e�ective explanation of MSO processing.

As considered in chapter 2, modeling binaural unmasking was dominated by an
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approach based on the delay-line concept �rst stated by (Je�ress, 1948). The com-

prehensiveness and accuracy remained unmatched for a long time. Breebaart et al.

(2001a) combined the delay-line concept with contralaterial inhibition of the ipsi-

lateral signal, enabling the model also to account for ILD processing. A variety of

binaural psychophysic results could be reproduced (Breebaart et al., 2001b,c). As a

further step to account for more recent insights of mammals' MSO processing, Di-

etz et al. (2008) incorporated the excitatory-inhibitory concept by Breebaart et al.

(2001a) into a framework that extracted IPDs instead of time-delay-compensating

coincidence detection, based on evidence for phase-speci�c rate coding (Brand et al.,

2002; Marquardt and Mcalpine, 2007). As a more appropriate description of MSO

processing in mammals, a hemispheric two-channel code was suggested (Grothe

et al., 2010; McAlpine et al., 2001). In the following, Encke and Dietz (2022)

interpreted the MSO two-channel code as two orthogonal correlation coe�cients

and expressed this as the complex correlation coe�cient γ. Similar to the single-

correlation-coe�cient-based approach by Bernstein and Trahiotis (2017), Encke and

Dietz (2022) accounted for a variety of binaural detection thresholds including their

dependence of masker ITD and correlation. Both models involved a single-ERB

gammatone �lter and two degrees of freedom for the binaural model. As the γ fea-

ture used by Encke and Dietz (2022) additionally encodes the IPD of the stimulus,

the periodically oscillating thresholds as a function of masker ITD was also captured,

which would have required the approach by Bernstein and Trahiotis (2017) to eval-

uate a larger range of the correlation function. As the usage of the IPD is more

likely to re�ect mammals' binaural processing than extracting interaural delays of

several milliseconds, Encke and Dietz (2022) reached a new level of predictive power

paired with physiological plausibility. However, the experimental condition that re-

ally highlights the conceptual di�erences between model concepts that do or do not

involve compensation of large masker delays, is the impaired 500-Hz tone detection

in the presence of two opposingly delayed noises. This condition was previously only

addressed by van der Heijden and Trahiotis (1999) and Marquardt and McAlpine

(2009). Only the delay-line model of van der Heijden and Trahiotis (1999) satisfac-

torily explained the data, thus it was taken as proof of the delay-line concept as an

e�ective binaural model. Since both Bernstein and Trahiotis (2017) and Encke and

Dietz (2022) used only one single-ERB gammatone �lter, neither model could have

reproduced all threshold elevations resulting from adding a masker with an ITD
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opposite to that of the �rst masker. As discussed in chapter 3, at masker ITDs that

correspond to an on-frequency IPD of zero, this leads to a threshold elevation even

though the coherence is only a�ected in o�-signal bands. A �lter bandwidth larger

than the conventional ERB = 79Hz can thus account for the higher threshold. While

a delay-line has no e�ect in opposing delays, it has in the single-delay case. Thus,

it reduces the threshold in case of one delayed masker. Since the latter threshold

is determined by a conventional �lter bandwidth anyway (see section 2.1.3)and the

delay compensation itself is questionable, chapter 3 replaced the larger �lter plus

delay-line by a conventional �lter plus across-frequency incoherence interference, an

evolution of the hypothesis proposed by Marquardt and McAlpine (2009). That is,

two debatable assumptions were removed and one new assumption was introduced.

The plausibility of the new assumption, i.e. applying the interference concept which

is a core concept of this thesis, was discussed in section 6.1. Explaining the ap-

parent delay-line proof without the delay-line, one critical assumption less, and one

arguably more plausible new assumption is proposed as the �nal step in showing

that the two-channel code is the more viable concept for MSO processing than the

delay-line.

6.2.2 The potential of γ as a new workhorse

As introduced in chapter 2, the complex correlation coe�cient γ was introduced to

binaural research by Encke and Dietz (2022) as a mathematically e�cient description

of the physiologally plausible hemispheric two-channel code. It was taken up in all

three models presented in this thesis. Table 6.1 summarizes the architectures of

the presented models: γ was used as a single-channel (chapter 4), single-channel

with o�-signal interference (chapter 3) and multi-channel (chapter 5) feature as well

as with a single-frame (chapter 3), with consecutive frames (chapter 5) and with

instantenous extraction (chapter 4). In case of multi-channel backends, time or

frequency elements were optimally combined, i.e. d′ =
√∑

n d′n
2, mimicking linear

independent time or frequency elements. Furthermore, in chapter 5, for channels

with center frequencies above 1300Hz, γ was computed from the envelope of the

band-pass �ltered signals while channels at lower frequencies used the TFS (roll-o�

frequency: 1300Hz). This re�ects the sensitivity of the MSO and LSO to interaural

disparities in the TFS and the envelope, respectively (Remme et al., 2014; Klug

and Dietz, 2022). The high predictive power across the whole range of use cases,
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6 General discussion and conclusion

stimuli and tasks demonstrates that γ is a viable and well-suited feature for e�ective

binaural models. Its viability was demonstrated by its accurate representation of

binaural psychophysics, as well as its good reproduction of subjective ratings of

binaural audio quality, atypically without any nonlinear back-end decoding.

Eurich et al. (2022) Eurich and Dietz (2023) eMoBi-Q

frontend

frequency
on-signal +

on-signal multiple
interference

time average
instantaneous +

multiple
interference

features

γ γ γ (roll-o� 1300Hz)

DC power DC power DC power

ILD

backend
frequency single single multiple

time single multiple looks multiple

focus
tone detection tone detection

audio quality
spectral context temporal context

Table 6.1: Overview over the three presented models on their architecture concerning spec-
tral and temporal processing as well as the focus. Green: Single analysis window,
i.e. frequency band or time frame; on-signal denotes the frequency band centered
at the tone frequency. orange: multiple analysis windows, i.e. frequency bands
or time frames. red: interference across frequency or time. In multi-channel- or
multi-frame backends, time or frequency elements were combined in an optimal
manner.

However, there are limitations: The formulation of the two-channel code as a com-

plex number entails a circular complex plane as resulting from sinusoidal IPD-rate

functions with best IPDs di�ering by π
2
, e.g., ±π

4
(see chapter 2). This has the

consequence that γ codes a change in IPD irrespective of the reference IPD while

experimental results show a lower sensitivity to IPDs around ±π than around 0

[apparent in the detection thresholds by, e.g., Yost (1974); van der Heijden and

Trahiotis (1999); van de Par and Kohlrausch (1999)]. Furthermore, the assumption

of sinusoidal IPD-rate functions is a simpli�ciation that neglects hair-cell process-

ing, i.e. demodulation through half-wave recti�cation (HWR) and low-pass �lter-

ing. Harmonics added by HWR combined with attenuation of the higher harmonics

through low-pass �ltering results in a frequency-dependent modi�cation of the rate-

IPD functions and thus of the feature space. The precise modeling results based

on a single 500Hz-centered channel in Encke and Dietz (2022) and Eurich et al.
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(2022, chapter 3) have shown that the simpli�cation of only assuming correlator

units at ±π
4
is acceptable for low frequencies. However, by not taking the reference-

dependent IPD sensitivity into account, the threshold di�erence between N0Sπ and

NπS0 was not reproduced but required adjusting the internal noise parameter. The

models presented in this thesis do not involve hair-cell processing anyway. There-

fore, they point out the shortcomings resulting from the lack of hair-cell processing

but circumvent the violation of assumptions underlying γ. Encke and Dietz (2022)

discussed a modi�cation of γ in order to reduce IPD sensitivity at higher reference

IPDs. For a more comprehensive approach, however, an implementation of MSO

encoding based on nonlinear peripheral processing should be considered in future

work.

6.3 Impact of the �ndings

It was discussed above that the new concepts applied and presented in this thesis

provide evidence for new perspectives on binaural processing. Namely, (1) the in-

terference concept with its two applications in the spectral and temporal domains

help unifying apparent conceptual contradictions in binaural research, and (2) the

hemispheric two-channel code is the conceptually more consistent model of MSO

processing than the delay line. However, the quantitative consequences and bene�ts

of the new approaches need to be considered in a nuanced way. In psychoacoustics,

conditions have been designed that clearly point out the di�erent requirements on

binaural analysis windows [spectral: van der Heijden and Trahiotis (1999), Hol-

ube et al. (1998), Dietz et al. (2021), Bernstein and Trahiotis (2020b); temporal:

Grantham and Wightman (1978), Holube et al. (1998), Siveke et al. (2008)]. The

conditions that demonstrate the plausibility of a �lter bandwidth of ERB = 79Hz

(for a 500Hz center frequency) in combination with an additional detrimental impact

are the detection thresholds for Sπ in a single noise versus those in two opposingly de-

layed noises with each ITD = 2ms (And, similarly, S0 detection thresholds at ITD =

1ms). These thresholds di�er by about 4 dB (van der Heijden and Trahiotis, 1999)1.

1As pointed out in section 2.1.3, the �lter bandwidth dictates the maximum binaural unmasking
in delayed noise. For ITDs above 4ms, (Dietz et al., 2021) showed that �lter bandwidths of
ERB ≤ 79Hz best explains the noise-bandwidth dependent masking pattern, based on a
measure of IPD variability, for this usecase comparable to the coherence |γ|. For lower ITDs,
however, the predicted thresholds for ERB = 79Hz and ERB = 130Hz di�ered by only about
1 dB. Thus, mathematical and conceptual consistency sometimes has nuanced quantitative
consequences.
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Although standard errors are larger in the opposingly-delayed case, the di�erence

is clear and could not be reproduced with one single-ERB channel. Therefore, ac-

counting for such clear and decisive psychoacoustic conditions requires models to

provide a unifying concept, such as the proposed across-frequency incoherence in-

terference. In complex sounds like speech and music as well as free-�eld complex

acoustic conditions involving distortions and reverberation, however, interaural dif-

ferences are reduced by the stronger spectrotemporal �uctuations, redundancy and

di�useness (Bronkhorst and Plomp, 1988; Bronkhorst, 2000; Zahorik, 2021). Thus,

the binaural advantage is reduced (Culling et al., 1994; George et al., 2012; Beutel-

mann and Brand, 2006; Biberger and Ewert, 2022). This is hypothesized to limit

the implication of the across-frequency incoherence interference, although decisive

in the �laboratory� tone-in-noise conditions. Consequently, in the eMoBi-Q model,

developed to transfer the psychoacoustically validated γ feature to the application

of audio quality assessment (chapter 5), across-frequency incoherence interference

was not included as it did not improve performance. With the focus being computa-

tional e�ciency, consecutive frames of 400ms were used instead of the instantaneous

feature extraction suggested in chapter 4. This approach is therefore not expected

to account for psychoacoustic results regarding fast binaural processing modeled

in chapter 4, such as phasewarp detection (Siveke et al., 2008) or for sound source

localization based on short glimpses (Dietz et al., 2011). However, sound quality of

speech and music signals, processed by algorithms as typically applied in modern

hearing devices, are well captured by the consecutive 400ms used in eMoBi-Q. This

underlines that the perceptual relevance of the maximum temporal binaural reso-

lution depends on the use case. Longer-term measures account for sound quality

in modern hearing technology as well as tone detection and speech intelligility in

stationary maskers [e.g., Eurich et al. (2022) and Beutelmann and Brand (2006),

respectively]. For detection of rapid �uctuations of speech intelligibility in mod-

ulated maskers, however, exploitation of the full temporal resolution provided by

the basilar membrane is required [e.g., Eurich and Dietz (2023) and Beutelmann

et al. (2010)]. In a nutshell, this thesis provides conceptual �game changers�. At the

same time it demonstrates that the implications for application-oriented model use

in real-world acoustic scenarios are subtle.
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6.4 Implications for future research

As discussed above, the concept of IPD statistics interfering across frequency pro-

vides the missing milestone in favour of the two-channel code to be the more plau-

sible and more consistent binaural model concept than the long dominating delay

line. At the same time, it provided an explanation for the sometimes apparently

larger binaural than monaural �lter bandwidth. Furthermore, applying the concept

of IPD statistics interfering across time provided an explanation to the apparent

contradiction of fast versus �sluggish� binaural processing. The implication for fu-

ture research is that the binaural processing speed can be assumed to be limited

only by basilar-membrane �ltering. Non-ignorable o�-signal IPD statistics should

be considered as a reason in case of discrepant observations. For modeling e�ective

binaural processing, the two-channel concept may be the basis, assuming the same

processing bandwidth and speed for monaural and binaural processing. Depending

on the speci�c use case, interference mechanisms may be bene�cial.

The presented research further suggests that the complex correlation coe�cient γ

as introduced to binaural modeling by Encke and Dietz (2022) is suitable for fur-

ther employment in binaural models and algorithms aiming to describe the e�ective

IPD/ITD encoding. The waveform-based model (Eurich et al., 2022), incorporating

γ, is publicly available through the AMT (Majdak et al., 2022) for free usage and fur-

ther development. Future research could assess the implications of cochlear hearing

loss on binaural hearing when combining γ with a nonlinear model of cochlear pro-

cessing that can be modi�ed to simulate hair cell loss [e.g., the gammawarp �lterbank

(Kates and Prabhu, 2018)]. The combined perceptual validity and computational

e�ciency of γ make it suitable for individual model-based diagnostics [like, e.g.,

Herrmann and Dietz (2021)], frameworks on computational auditory scene analysis

[e.g., aiming at sound source separation (Sutojo et al., 2022; Kong et al., 2020)] and

real-time simulations of hearing-impaired performance [like, e.g., (Grimault et al.,

2016)]. Moreover, backends such as neural networks trained on the outputs of γ, an

LSO-inspired feature and a monaural feature, appear useful in addressing tasks that

require more sophisticated central processing. Machine hearing algorithms with a

focus on computational e�ciency could also bene�t from γ as it provides a measure

that re�ects IPD statistics by calculating only two correlation coe�cients. Also

backends for direction-of-arrival (DOA) estimation of sound sources could be de-
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signed based on γ. However, various successful approaches on DOA estimation are

available [Bayesian inference: Barumerli et al. (2020); geometretic model: Barot

et al. (2023); deep neural network at output of peripheral model: Goli and van

de Par (2023), Hermitian angle spectrum of relative transfer function vectors be-

tween signal and reference: Fejgin and Doclo (2022)]. Addressing the overarching

challenges of competing sources, interference and reverberation is itself a highly

complex research topic (see May et al. 2013 for review), where recent approaches

apply machine-learning based methods (Örnolfsson et al., 2021; Ren et al., 2021;

Wu et al., 2021).

The proposed model for the combined assessment of monaural and binaural audio

quality (eMoBi-Q, chapter 5) can form the basis for real-time control of hearing aid

algorithms. Combining the γ feature with local DC power and ILDs has been shown

to re�ect audio quality to a high degree. Algorithm developers in both science and

engineering can also use the features of eMoBi-Q as a monitoring tool, bene�ting

from their perceptual validity coupled with simplicity.

6.5 Conclusion

A unifying solution has been suggested for the previously contradicting statements

on the spectral and temporal resolution of binaural hearing. For both domains, a

high binaural resolution combined with an interference concept has been shown to

unify apparently contradicting experimental results. At the same time, the physi-

ologically plausible concept of a two-hemispheric-channel code has been shown to

be also the more consistent model than the concept of internal compensation of

interaural delays. This is contributing decisively to the replacement of one of the

oldest and most dominant models of sensory neuroscience. The complex correlation

coe�cient γ has been shown to be a viable and mathematically e�cient measure to

binaural perception. At the same time it re�ects the two-channel code associated

with mammalian binaural processing. To demonstrate its practical applicability, a

model has been presented to instrumentally assess audio quality of hearing algorithm

and loudspeaker processing.
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CHAPTER 7

Glossary

Acronyms and Abbreviations

AFC psychoacoustic context: alternative forced choice

AFC hearing algorithm context: adaptive feedback cancelation

AMT auditory modeling toolbox (Majdak et al., 2022)

BAM-Q binaural audio quality model (Flessner et al., 2017)

BMLD binaural masking level di�erence

CPSD cross-power spectral density

dB decibel

BU binaural unmasking

DC direct current

DOA direction of arrival

ERB equivalent rectangular bandwidth
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ERD equivalent rectangular duration

eMoBi-Q e�cient monaural and binaural quality model (chapter 5)

GPSMq generalized power spectrum model for quality (Biberger et al., 2018)

HI hearing-impaired (listeners)

HRTF head-related transfer function

HWR half-wave recti�cation

ILD interaural level di�erence

ITD interaural time di�erence

IPD interaural phase di�erence

JND just-noticable di�erence

LSO lateral superior olive

LP low-pass

MSO medial superior olive

MoBi-Q monaural and binaural quality model (Fleÿner et al., 2019)

MUSHRA multiple stimulus with hidden reference and anchor

MVDR minimum Variance Distortionless Response (beamformer)

NH normal-hearing (listeners)

ODN opposingly delayed noises

SDN single-delayed noise

SOC superior olivary complex

SNR signal-to-noise ratio

SRM spatial release from masking

TFS temporal �ne structure

YLD years lived with disability
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7 Glossary

Fixed symbols

γ complex correlation coe�cient between two signals (in binaural context

left and right), including

|γ| coherence of the two signals

arg{γ} mean phase di�erence between the two signals, i.e. IPD

N0 two-channel noise, index symbolizes the phase relation between the chan-

nel, i.e. zero degree (diotic noise)

Nπ two-channel noise, phase angle of 180° = π between the channels, i.e.

antiphasic

Sπ two-channel pure tone, phase angle of 180° = π between the channels, i.e.

antiphasic

ρ interaural correlation, i.e. ℜ{γ}

τ time lag of correlation function and internal delay assumed by delay-line

models [e.g., van der Heijden and Trahiotis (1999)]
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