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Abstract

Wake steering by intentional yaw misalignment has been demonstrated in numerical,
wind tunnel and field experiments to increase the total power production of wind
farms. The industry is, however, still hesitant to adopt this strategy due to
large uncertainties associated with it. A better understanding of how atmospheric
conditions affect wake steering is deemed essential for its deployment on a larger
scale. This work demonstrates the role interpretable data-driven approaches can
play in achieving this objective.
The first part of this work focuses on a more accurate representation of the turbine
wake in engineering models, which are typically used to define yaw misalignment
set points used by yaw controllers in wake steering experiments. An interpretable
data-driven wake model is developed, which uses a set of only linear equations to
estimate wake characteristics from inflow and turbine variables. Besides standard
parameters such as wind speed deficit and wake center position, this model is also
able to reproduce the curled wake shape associated with wake steering.
This newly proposed data-driven model is compared to a selection of commonly used
analytical wake models in their ability to estimate the characteristics of a single
wake. First trained on a subset of large eddy simulation data and later on lidar
measurements from an onshore field campaign, the models are evaluated on their
performance on unseen testing data. In both experiments, the data-driven model
consistently outperforms its analytical counterparts when estimating the available
power of a virtual downstream turbine. Especially when the turbine is misaligned,
hence when wake steering is applied, or when the atmospheric boundary layer is
stably stratified, hence when wake steering is most effective, the data-driven model
exhibits a higher accuracy. In particular, not only the wind speed deficit, but also
the wake position and shape are better reproduced. Moreover, the data-driven
model allows for a flexible choice of input parameters, and allows for the direct use
of disturbed measurement (i.e. SCADA data) at minimum loss of accuracy.
The second part of this work focuses on situations detrimental for wake steering.
Using an engineering model based on the data-driven wake model described above,
rapid wind direction changes are identified as conditions harmful to the successful
application of wake steering. Feeding preview wind direction information to the
yaw controller of the upstream turbine is shown to increase the power production
of a turbine pair. The optimum preview time is demonstrated to be independent
of the wind direction change rate. A large eddy simulation study confirms that
these harmful conditions can be mitigated using preview wind direction information,
demonstrating that power losses are converted into power gains, and existing power
gains are further increased.
Acknowledging that these results cannot directly be generalized to scenarios outside
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of the studied conditions, this work demonstrates that wake steering applications
can benefit from exploiting data-driven methods. Moreover, this work illustrates
that this can be achieved with simple, interpretable methods.
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Zusammenfassung

Sowohl numerische Untersuchungen als auch Windkanal- und Feldexperimente
haben gezeigt, dass sich durch bewusstes Schrägstellen von Windenergieanlagen
zum Wind deren Nachläufe ablenken lassen und sich die Gesamtleistung eines
Windparks dadurch erhöhen lässt. Die Industrie ist jedoch derzeit noch
zurückhaltend in der Anwendung dieser Strategie, da diese auch von großen
Unsicherheiten behaftet ist. Daher ist ein besseres Verständnis darüber, wie
sich atmosphärische Umgebungsbedingungen auf die Nachlaufsteuerung auswirken
für die großskalige Anwendung von großer Relevanz. In dieser Arbeit wird die
Rolle von interpretierbaren, datengetriebenen Ansätzen zum Erreichen dieses Ziels
demonstriert.
Der erste Teil dieser Arbeit widmet sich einer genaueren Repräsentation
von Nachläufen in Industriemodellen, die typischerweise zur Bestimmung von
Sollwerten für die Gierregelung verwendet und dann wiederum in Experimenten
zur Nachlauflenkung eingesetzt werden. Dazu wird ein interpretierbares,
datengetriebenes Nachlaufmodell aus einem Satz von einfachen linearen Gleichungen
entwickelt, um die Nachlaufcharakteristiken basierend auf Einströmgrößen und
Turbinengrößen abzuschätzen. Neben der Bestimmung von Standardparametern,
wie dem Windgeschwindigkeitsdefizit und der Position des Nachlaufzentrums, eignet
sich dieses Modell auch dafür die durch die Nachlaufregelung verursachte, gebogene
Form des Nachlaufs zu reproduzieren.
Die Ergebnisse des hier entwickelten, datengetriebenen Modells werden mit den
Ergebnissen von üblicherweise verwendeten, analytischen Nachlaufmodellen für
einzelne Nachläufe verglichen. Die Modelle werden evaluiert, in dem sie erst
basierend auf einer Teilmenge eines Datensatzes aus Large-Eddy-Simulationsdaten
und später auf Lidar-Messungen aus einer Feldkampagne trainiert und anschließend
gegen ein unverwendeten Testdatensatz validiert werden. In beiden Experimenten
schneidet das datengetriebene Modell durchweg besser bei der Abschätzung der
verfügbaren Leistung einer virtuellen stromabwärts gelegenen Turbine als die
getesteten analytischen Modelle ab. Insbesondere wenn die Turbinen gegiert
sind und somit der Nachlauf abgelenkt wird, oder wenn die Schichtung in der
atmosphärischen Grenzschicht stabil ist und die Ablenkungsstrategie am effektivsten
ist, zeigt das datengetriebene Modell eine höhere Genauigkeit. Explizit wird nicht
nur das Windgeschwindigkeitsdefizit, sondern auch die Nachlaufposition und -form
besser reproduziert. Darüber hinaus erlaubt das datengetriebene Modell eine flexible
Wahl von Eingabeparametern und sogar die direkte Nutzung von beeinflussten
Daten (z.B. SCADA-Daten), bei minimalem Verlust an Genauigkeit.
Der zweite Teil dieser Arbeit beschäftigt sich mit Situationen, welche problematisch
für das Anwenden der Nachlaufablenkung sein können. Durch Verwendung
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eines auf dem hier entwickelten, datengetriebenen Nachlaufmodell basierenden
Industriemodell wird aufgezeigt, dass schnelle Änderungen der Windrichtung eine
erfolgreiche Anwendung der Nachlaufsteuerung erschweren. Es hat sich gezeigt,
dass es durch Einspeisung von Windrichtungsinformationen in den Regler einer
stromaufwärts gelegenen Turbine, bevor diese von der Windenergieanlage selber
erfahren werden, zu einer Steigerung der Leistungserzeugung eines Turbinenpaares
kommt. Es wird aufgezeigt, dass die optimale Vorschauzeit unabhängig
von der Windrichtungsänderungsrate ist. Eine Large-Eddy-Simulations-Studie
bestätigt, dass die Verwendung einer Vorhersage der Windrichtung den für die
Nachlaufablenkung schädlichen Bedingungen entgegenwirken kann. Ertragsverluste
werden in -gewinne überführt und bereits bestehende Ertragsgewinne werden weiter
erhöht.
Zwar ist eine Generalisierung der Ergebnisse auf Szenarien außerhalb der in
der Arbeit betrachteten Bedingungen nicht unmittelbar möglich. Dennoch zeigt
diese Arbeit, dass Anwendungen der Nachlaufablenkung durch das Ausnutzen von
datengetriebenen Methoden profitieren können. Darüber hinaus illustriert diese
Arbeit, dass ein solcher Nutzen bereits mit einfachen, interpretierbaren Methoden
erreicht werden kann.
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Chapter 1

Introduction

1.1 Climate change

In the 1700s mankind discovered that fossil fuels could be used to power machinery,
starting an age of economic prosperity in the form of the industrial revolution
(Lucas Jr., 2004). The use of heavy machinery in factories and the invention of
the steam engine are some of the most classical examples. The second industrial
revolution, about a century later, brought steel production that allowed a quick
expansion of the rail network (Agarwal and Agarwal, 2017). It also brought
electrification, greatly increasing the productivity of factories by shifting from
steam to electric powered machinery, which further increased the economic growth
(Devine Jr., 1983). The development of the electricity grid, first initiated by the
Edison Electric Illuminating Company of New York (Hargadon and Douglas, 2001),
paved the way for household electrification.
Although current generations still benefit from the technological progress made
during these revolutions, it also initiated the biggest threat to life on earth to date:
climate change. As early as the late 1800s, scientists (Phillips, 1882; Arrhenius,
1896) have been warning that burning fossil fuels, specifically the emission of carbon
dioxide that goes with it, affects the earth’s climate. In the following decades, some
scientists would try to raise attention for this threat (e.g., Callendar, 1938; Plass,
1956), but governments and the general public were just not interested. In a 1965
report produced by the US government’s President’s Science Advisory Committee
(Revelle et al., 1965), CO2 emissions were finally recognized as a potential hazard.
Coauthor of this report was Prof. Keeling, who established the CO2 monitoring site
at the Mauna Loa Observatory, Hawaii, producing what is now known as the ’Keeling
Curve’ (Harris, 2010). After this report, an uptake in scientific and news articles
related to climate change could be observed (Harrison, 1982). The growing interest
eventually led to the formation of the Intergovernmental Panel on Climate Change
(IPCC) in 1988, who bundle relevant literature on climate change in assessment
reports (IPCC, 2022). The first big step towards policies mitigating the effects
of climate change came during the 1992 United Nations Framework Convention
on Climate Change that led to the Kyoto protocol, in which states committed to
reduce greenhouse gas emissions. The Paris Agreement followed in 2015, with the
agreement to keep the global temperature rise below 2 ◦C, and was signed by 193
parties (United Nations, 2022).
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(a) (b)

Figure 1.1: Global energy consumption per source (a). Global renewable energy mix (b). Data
from BP (2022) via Our World in Data (Ritchie et al., 2022).

1.2 Renewable energy

The reduction of energy consumption and the transition from conventional to
renewable sources of energy are considered two key aspects to meet the Paris
Agreement. Although these objectives were established several decades before
and countries have formally committed to these goals, information on energy
consumption developments sketches a more pessimistic story. Figure 1.1a shows that
the total energy demand has increased by 70 % in the last three decades, with no
signs of slowing down. The vast majority of energy is still provided by conventional
sources (coal, gas and oil), with renewable sources only satisfying 12.6 % of the
total energy demand. Figure 1.1b indicates what source make up the renewable
energy mix, illustrating that historically hydropower was the dominant source. In
recent years, wind and solar have gained momentum, now taking up 37 % of the
total energy gained from renewable energy resources, or 4.6 % of the total energy
demand.
Although almost all countries have signed the Paris Agreement, the difference in
realization of climate goals differs enormously, as clearly illustrated in Figure 1.2.
European countries appear to be the most committed, typically showing a small
reduction of energy consumption over the last 30 years and the largest percentages
of wind and solar in the energy mix. On the other side of the spectrum are
countries in Asia and the Middle East, with energy consumption increases of several
hundred percents. Asian countries typically have a relatively high installed capacity
of renewables, whereas countries in the Middle East rely mainly on conventional
sources. It should be noted here that the effect of outsourcing, mainly by European
and North American countries, has not been included in these numbers. Allocating
the energy needed to produce and transport goods to the countries in which they
are eventually used, would alter this figure drastically.
One of the biggest climate policies currently in place is the EU green deal, initiated
in December 2019 and updated several times since. With the green deal, Europe
aims to reduce greenhouse gas emissions by 55 % by 2030 (compared to 1990 levels),
followed by being the first climate-neutral continent by 2050 (European Commission,
2021). Developments in many fields are targeted, including mobility, biodiversity
and clean energy, totaling to an investment of AC1 trillion until 2030 (European
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Figure 1.2: Increase of energy consumption (2021 vs 1991) and percentage of wind and solar in
energy mix for selection of countries, grouped by continent / region. Black cross indicates the
global average. Data from BP (2022) via Our World in Data (Ritchie et al., 2022).

Figure 1.3: Projected 2050 scenarios of energy consumption in the EU. Source: European
Commission (2020b).

Commission, 2020a). Since energy production and use accounted for more than
75 % of the emissions (European Commission, 2021), the energy transition is one of
the main pillars for successfully reaching these climate goals.
Various scenarios of the targeted energy mix in 2050 are illustrated in Fig. 1.3. All
scenarios assume an approximately equal contribution of solar and wind, where their
installed capacity should make up at least 75 % of the power demand. The 2020
Offshore wind and ocean energy strategy had already set the concrete goal of an
installed offshore capacity of 300 GW in 2050 (European Commission, 2020c). The
REPowerEU plan (European Commission, 2022), a resultant of the EU’s desire to
be independent of Russian gas after their invasion of Ukraine, mentions 600 GW of
solar photovoltaic newly installed by 2030. REPowerEU states that a total of AC300
billion will be invested to reach the goal of 45 % of renewables in the energy mix by
2030.
The US government launched the Federal Sustainability Plan in late 2021, aiming
to reach net-zero emission by 2050 from all federal operations (The White House,
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2021a). Although a strong sign, this plan does not extend to the private sector. The
White House (2021b) announced the goal to install 30 GW of offshore wind by 2030,
and 110 GW by 2050. The Department Of Energy (2021) outlines the potential of
solar energy, with an estimated capacity of 550 GW in 2030 and 1600 GW in 2050.
One large difference with the EU is that the US mainly relies on private investments
to build new solar and wind farms.

1.3 Atmospheric variability

One of the most challenging aspect of power generation from wind and solar
sources is their dependency on the weather. Whereas conventional forms of energy
production can be tuned to match the region’s demand at any given time, wind
and solar are subject to the variability of the atmospheric boundary layer. Focusing
on wind energy in the rest of this thesis, power output fluctuations are heavily
correlated to variations of the wind speed. This exists on a range of spatial and
temporal scales.
The location of the wind farm has a huge impact on its Annual Energy Production
(AEP). The earth’s surface exerts a friction force on the atmospheric flow, effectively
slowing down the wind close to the surface. The magnitude of this friction depends
on the surface roughness, which is smaller offshore and larger where the terrain is
rough (e.g. forest). The effect of terrain can clearly be seen by looking at the wind
speed climatology (long term averages), such as Figure 1.4. Far offshore the mean
wind speed is highest, whereas the wind speed decreases rapidly over land. Also
the effect of topography is clearly visible: the local differences in the Alps are huge,
indicating mountain tops and valleys, whereas the average wind speed in northern
Italy is very low due to blockage.
Meteorological conditions affect the wind farm’s power yield on a range of temporal
scales. On the largest scale there is intra-annual variability, such as the effect climate
change is expected to have on the wind energy resource. Zha et al. (2021) modeled
that global warming causes the near-surface wind speed in the Northern Hemisphere
to decrease, but that it increases in the Southern Hemisphere. Pryor and Barthelmie
(2010); Pryor et al. (2012) reported on an increased occurrence of extreme wind.
Tobin et al. (2016) modeled that the effect on the AEP on a global scale is small, but
locally can be affected by up to 15 %. Besides climate change, the El Niño-Southern
Oscillation, a change in wind direction over the Pacific Ocean that brings drastic
changes in temperature and rainfall in Asia and the Americas, is also thought to
affect the wind resource. Watts et al. (2016) modeled that the wind speed in Chile
is reduced by several percent during El Niño events. On the contrary, Mohammadi
and Goudarzi (2018) report on an increased probability of higher wind speeds in
California during El Niño events based on 50 years of data.
Seasonality is typically better understood and well researched, but its impact differs
greatly with location. The monsoon winds are a common phenomenon around
the equator, bringing in a change in dominant wind direction between seasons.
Abolude et al. (2017) report on large seasonal differences between regions in Asia
depending on the wind direction. The region around India and Bangladesh sees a
four-fold increase in power availability in summer months compared to the rest of
the year due to a strong wind coming from the Indian Ocean. The South Chinese sea
experiences this maximum during winter months due to wind from the North East.
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Figure 1.4: 30-year mean wind speed at 100 m above surface over Europe, calculated from the
New European Wind Atlas (NEWA). Source: Fraunhofer IWES (2019).

Both can be explained by the wind coming from the open sea, rather than from
land, corresponding to Fig. 1.4. Also at higher latitudes seasonal differences can be
observed. Nyenah et al. (2022) report on a capacity factor 2.5 times as high in winter
as in summer in North East Germany. The U.S. Energy Information Administration
(2015) shows large seasonal differences in the US alone, with wind capacity peaking
in summer on the west coast, but in winter in the rest of the country.
On a shorter time scale, the occurrence of mesoscale weather systems impact the
power generation. High pressure systems are often associated with calm weather
and low wind speeds. These systems can sustain for several days, resulting in low
generated power. On the contrary, low pressure systems are typically associated
with stormy weather and higher wind speeds, resulting in a high power generation.
Besides, these cyclones also have far-stretching weather fronts surrounding them,
typically associated with rapid changes in wind direction and speed, called wind
ramps (Lacerda et al., 2017). Especially when the wind speeds are close to the
cut-out limit, these ramp events can be critical to forecast to ensure grid stability
(Valldecabres et al., 2020).

1.4 Turbine wake

By extracting energy from the atmospheric flow, wind turbines leave a downstream
region of decreased wind speed and increased turbulence (Lissaman, 1979). This
region is typically named the turbine wake, and results in power losses and increased
loads of a downstream turbine. Wake effects are estimated to lead to wind farm
power losses of up to 50-60 % for certain wind directions (e.g., Nilsson et al., 2014;
Grassi et al., 2014). Its effective AEP is highly dependent on wind farm layout and
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turbine spacing, as illustrated in van der Laan et al. (2022). In their study, AEP
losses of about 10 % were estimated for an 8x8 wind farm with a turbine spacing of
8 rotor diameters, which increased to almost 25 % when the spacing was halved.
The characteristics of the wake are dependent on many variables. The wake deficit
(wind speed difference compared to the undisturbed inflow) depends on the turbine
characteristics. The thrust force the turbine exerts on the flow has the largest
impact as it determines how much energy is extracted. Each turbine type has its
own characteristic CT-curve describing the optimum thrust force coefficient as a
function of wind speed. The CT is decreased by sub-optimal blade pitch angles
or tip speed ratio (Kim et al., 2018) and a misalignment of the turbine with the
incoming wind direction (Bartl et al., 2018a). Next to wind speed, there are other
atmospheric variables that affect the wake’s characteristics. As a higher turbulence
intensity results in enhanced mixing, it is directly linked to wake recovery and
wake expansion (Bastankhah and Porté-Agel, 2014; Niayifar and Porté-Agel, 2016).
Vertical wind shear, the difference in wind speed between two heights due to friction
at the surface, affects the transport of momentum. Due to the rotation of the wake,
lower momentum parcels closer to the surface are transported upwards and vice
versa. This increases mixing and results in a small wake displacement (Fleming
et al., 2014a; Gebraad et al., 2016). The difference in wind direction between two
heights following the Ekman spiral, named vertical wind veer, affects the shape of
the wake. In the Northern Hemisphere, the top half of the wake is deflected to
the right, whereas the bottom half is deflected to the left, creating an elliptic wake
shape as demonstrated in Abkar et al. (2018). Lastly, atmospheric stability is often
considered in wake studies. It is driven by a temperature difference between the
surface and air layers, resulting in either the generation of turbulence (convective
or unstable boundary layer) or destruction of turbulence (stable boundary layer).
Both divert the wind speed profile from a pure logarithmic function as typically
assumed. The effects of stability on the wake characteristics are mainly indirect, as
it influences both the turbulence intensity and shear (Gryning et al., 2007; Abkar
and Porté-Agel, 2015).

1.5 Wind farm control

In standard operation of a wind farm, each turbine aims to maximize its own power
generation, called greedy control. Due to the negative effects turbine wakes have
on downstream turbines (Sect. 1.4), the idea of wind farm control has received
an increasing amount of attention in recent years, as illustrated by increase in the
number of publications in Fig. 1.5. The fundamental idea of this control strategy
is to maximize the power generation of the wind farm as a whole, rather than on
an individual turbine level. Typically, the upstream turbine is deliberately operated
sub-optimally, causing a power loss but also a reduced wake deficit that reaches
a downstream turbine. The weaker wake will benefit the downstream turbine and
result in an increased power generation. When performed successfully, the combined
power of the two turbines will be larger than for the greedy control strategy.
Relying on the nonlinear relation of wind speed and power, Axial Induction Control
(AIC) reduces the turbine’s axial induction factor by increasing the blade pitch angle.
This results in a derating of the turbine (Steinbuch et al., 1988) and consequently a
weaker wake. The effectiveness of AIC is under debate, with some studies showing
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Figure 1.5: Number of publications mentioning the keywords ”Turbine” and ”Wind Farm Control”
(black), ”Axial Induction Control” (red) and ”Wake Steering” (blue) in the title or abstract.
Source: Digital Science (2018-)

promising results (e.g., Corten and Schaak, 2003; Vali et al., 2016), while others find
no or negligible benefits (e.g., Annoni et al., 2016; van der Hoek et al., 2019).
Another wind farm control strategy, named wake steering, intentionally misaligns
the turbine with the mean wind direction. This introduces a lateral component
of the thrust force, which deflects the wake off of its normal trajectory (Dahlberg
and Medici, 2003; Wagenaar et al., 2012). Wake steering is commonly accepted as
a promising wind farm control strategy, as is evident from the fast growing list
of publications (Fig. 1.5). The overview in Kheirabadi and Nagamune (2019)
illustrates that the vast majority of studies finds a power gain when using wake
steering.
Other, less well explored wind farm control strategies worth mentioning are turbine
repositioning (Fleming et al., 2015) and wake steering via nacelle tilt or via individual
blade pitch control (Fleming et al., 2014a).
The scope of this thesis is limited to wind farm control by wake steering. A few
noteworthy studies are discussed next. For a turbine pair in steady state conditions,
Fleming et al. (2015) illustrated a power gain of 4.6 % using a high-fidelity simulation
tool, which was increased to 12.5 % in Fleming et al. (2018) for a larger wind farm.
In the first wind tunnel study, Adaramola and Krogstad (2011) found a gain of
12 % for a turbine pair in steady state conditions. For the implementation of
wake steering in the free field, where conditions are more dynamic, set points of
optimal yaw misalignment angles need to be defined for a range of atmospheric
conditions. For this reason, low-fidelity wake models, or engineering models, have
been developed. These wake models are often simplified flow models that heavily
rely on assumptions to make them several orders of magnitude more computationally
efficient than high-fidelity flow models. Wake models are employed to find the
optimum yaw misalignment angle under a range of atmospheric conditions, such
as various wind speeds and wind directions. Typically, a lookup-table (LUT) is
generated, containing the target yaw angle for each combination of inflow variables.
This LUT will then be used by the turbine’s yaw controller to implement wake
steering. Using this approach, Fleming et al. (2017b) first demonstrated a power
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gain of up to 12 % achieved with wake steering in a commercial wind farm, paving
the way for many field experiments in the years following.
Currently, the main reasons for the lack of adaptation of wake steering by the
industry are the large uncertainties and lack of validation (van Wingerden et al.,
2020; Boccolini et al., 2021). As illustrated by the overview in Kheirabadi and
Nagamune (2019), the expected gains from wake steering varies enormously between
studies. Additionally, there have been reports on erroneous steering, observing power
losses compared to greedy control, which is destructive for the faith in this strategy
by the industry. A better understanding of the impact of atmospheric conditions on
the characteristics of the wake, as discussed in Sect. 1.4, and a good reproduction
of these effects in wake models is deemed paramount for the industrial adoption of
wake steering.

1.6 Data-driven solutions

More data supporting the benefit of wake steering need to be gathered to convince
the industry. These data will be used to demonstrate power gains achievable with
wake steering, as well as to validate and further develop models of all fidelities. This
section highlights developments that are believed to facilitate this in the coming
years.
Nowadays, society is going through the fourth industrial revolution, characterized
by rapid technological developments, such as robotics (e.g., autonomous vehicles),
gene editing, and advancements in computing technologies (Schwab, 2016). The
latter can affect the wind energy industry in many ways. Moore’s law (Moore, 1965,
1975) postulates that the number of transistors on microchips doubles every two
years, resulting in faster and more affordable computers. Furthermore, quantum
computing holds high expectations, possibly benefiting the wind energy community
in the future. These advancements allow more users to work with numerical
models and to further develop more complex and more computational expensive
models, like large-eddy simulations (LES). This all contributes to enhancing our
fundamental understanding of the atmospheric and wind farm flow physics, which
was identified as one of the grand challenges in wind energy science (Veers et al.,
2019). Specifically, this can then also be used to deepen our understanding of how
atmospheric conditions affect wake steering.
Beside the increase in computational power, the emergence of the Internet of Things
(IoT) technology offers new opportunities. IoT refers to the communication of
sensors over the internet and is associated with cloud computing and big data.
Typical examples are smart home appliances and health monitoring devices (Rose,
2015). Karad and Thakur (2021) argued that IoT is approaching the field of wind
energy and that it will be especially beneficial in turbine monitoring and control,
maintenance, and prediction systems. Wind farm control, specifically wake steering,
can benefit from IoT by enabling the use of data from more sensors than the
anemometer and vane installed on the nacelle roof. Using more (undisturbed) data
can be used to reduce the measurement error (Sinner et al., 2020; van der Hoek
et al., 2021), provide preview information (Rott et al., 2020; Theuer et al., 2020),
or give feedback in a closed-loop setup (Howland et al., 2020, 2022).
Lastly, flow modeling is being transformed by the rapid development of artificial
intelligence or machine learning (Brunton et al., 2020). Whereas analytical and
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statistical models have been the norm for the last decades, wind farm flow modeling
is shifting towards data-driven methods (Zehtabiyan-Rezaie et al., 2022). Machine
learning methods can, for instance, provide a feasible alternative for low-fidelity wake
models, which as discussed in Sect. 1.4 are normally heavily simplified to ensure low
computational costs. Although data-driven models can be expensive to train, their
execution time is comparable to that of low-fidelity models. Some studies (e.g.,
Ti et al., 2020; Asmuth and Korb, 2022) have already shown the high accuracy
of data-driven wake models using Neural Networks. Drawback of these models
are their complexity and low degree of interpretability (black box). Furthermore,
these models have a high need for data, but with the ongoing developments in
computational power and IoT, this last argument might soon become obsolete.
Many industries are adopting these new technological opportunities and the wind
energy industry seems to be following. It is fitting that solving climate change issues
induced by the first industrial revolution could be facilitated by developments of the
fourth industrial revolution.

1.7 Objective and research questions

Based on the current state of wake steering research and emerging computing
technologies, the main objective of this thesis is defined as follows:

Demonstrate the benefit of interpretable data-driven approaches
for wake steering applications

The keyword ”interpretable” here refers to the desire to be explainable or
understandable. The first part of this thesis is tasked with the design of a wake
model that is purely data-driven and retains a high degree of interpretability. In
the second part of this thesis, this wake model is applied to study how the wake
steering concept can be further improved. Each of the following research questions
is answered in the subsequent chapters:

1. How can characteristics of a steady state wake be described with a set of
quantifiable parameters?

2. How can these wake parameters be estimated from inflow and turbine variables?

3. What variables and how much data need to be obtained in the field to estimate
these wake parameters?

4. What conditions are detrimental for wake steering and can these be mitigated
by using preview wind direction information?

1.8 Structure of the thesis

This section describes the structure of the thesis according the flow chart in Fig.
1.6. Chapter 1 has placed this work in the wider context of climate change and
energy transition, and has provided a general understanding of wake effects and
how they can be mitigated with the wake steering control strategy. It ended on a
short description of emerging computing technologies and how wake steering can
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Figure 1.6: Structure of the thesis. ”Ch” is short for Chapter, ”RQ” is short for Research Question.

benefit from them, resulting in the thesis objectives and related research questions.
Chapter 2 provides background information of the methods used in this thesis.
This consists of fundamentals of the main numerical model and measurement device
used to obtain data. Additionally, a notion on used Machine Learning methods is
included.
In Chapter 3, representing the conference paper Sengers et al. (2020), the first step
towards data-drive wake modeling is made by developing a method to describe the
wake characteristics as a set of quantifiable parameters. Small additions to the
method presented in this Chapter are mentioned in Sect. 4.3.1. The wake behind a
single turbine in a neutral and stable boundary layer is simulated in LES. The wake
characteristics of turbines with and without intentional misalignment are described
using the new method. This method is then compared to conventional wake tracking
methods and its results are used to discuss the wake behavior as function of stability
and yaw angle.
In Chapter 4, representing the journal paper Sengers et al. (2022), the interpretable
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data-driven wake model is designed. Making use of only linear equations, the wake
model estimates wake characteristics from standard inflow (e.g., shear, veer, TI) and
turbine (e.g., yaw angle, thrust force coefficient) variables. Turbine wakes in eight
conditions, representing different atmospheric stabilities, and several yaw angles
are simulated in LES. The wake model is trained on a subset of the data and its
performance is tested on the remainder.
In Chapter 5, representing the journal paper Sengers et al. (2023b), the wake model
is applied to field data. Information on the wake is provided by a nacelle-mounted
long-range lidar, while inflow data is collected by sensors mounted on a met mast and
the nacelle. Many variables are collected during this extensive campaign, allowing
for an analysis of the wake model’s accuracy as function of the variables used as input
parameters. This includes a setup in which only standard measurements (SCADA
data) is used.
In Chapter 6, representing the submitted journal paper Sengers et al. (2023a), a
theoretical study of the effectiveness of wake steering for different wind direction time
series is performed. A simple engineering model based on the previously developed
wake model analyses many time series, after which a few interesting ones are
reproduced in LES. It is hypothesized that scenarios problematic for wake steering
can be mitigated by the use of preview wind direction information. Investigating
whether this is true makes up the main objective of this chapter.
Lastly, Chapter 7 summarizes the main findings, draws conclusions from them, and
provides recommendations for future research.
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Chapter 2

Methods

This chapter describes the main methods used in this thesis. First, in Sect. 2.1
the large-eddy simulation model PALM, which played a large role in this work, is
described. This includes a general description of the governing principles, as well as
aspects specific to this work. Section 2.2 then briefly introduces Machine Learning,
including a more detailed description of the algorithms used here. Lastly, Sect. 2.3
briefly discusses lidar devices used for wind applications, as well as a summary of
how these deviced were used in this work.

2.1 Large-eddy simulations

Within computational fluid dynamics (CFD), three branches of models are typically
distinguished. The highest fidelity comprises of Direct Numerical Simulations
(DNS), which run at a grid size of a few millimeters to directly solve the governing
equations and explicitly solve all turbulence. These simulations are currently still
restricted to low Reynolds number flows due to their huge computational demand.
Large-eddy simulations (LES) provide a more computationally feasible method by
only explicitly resolving the largest turbulence scales and parameterizing the smaller

(a) (b) (c)

Figure 2.1: Example of flow field of a turbulent jet modeled with RANS (a), LES (b) and DNS
(c). Reused from Rodriguez (2019).
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scales. Lastly, Reynolds Averaged Navier-Stokes (RANS) models only solve the
mean state and parameterize all turbulence. They are therefore heavily reliant on
the quality of the turbulence model. An example comparing RANS, LES and DNS
is displayed in Fig. 2.1, clearly illustrating that a higher degree of details is modeled
when more turbulence is explicitly resolved.
In this thesis, the PArallelized Large-eddy simulation Model (PALM; (Maronga
et al., 2020)) is used to model the flow field around a wind turbine. The PALM
code is optimized for massive parallel computing and has been used in atmospheric
and oceanic boundary layer studies. Its governing equations and most relevant
settings are discussed in the following sections.

2.1.1 Governing Equations

The atmospheric flow can be described by a set of prognostic equations. Most
relevant for this thesis are the equations for conservation of mass (Eq. 2.1) and
momentum (Eq. 2.2) (Stull, 1988):

∂ρ

∂t
+

∂(ujρ)

∂xj

= 0 (2.1)

∂ui

∂t︸︷︷︸
Rate of change

+ uj
∂ui

∂xj︸ ︷︷ ︸
Advection

= −δi3g︸ ︷︷ ︸
Gravity

− 2ϵijkΩjuk︸ ︷︷ ︸
Coriolis

− 1

ρ

∂p

∂xi︸ ︷︷ ︸
Pressure gradient

+
1

ρ

∂τij
∂xj︸ ︷︷ ︸

Viscous

(2.2)

in which ρ is the air density, ui the wind components, g the acceleration due to
gravity, Ωj the angular velocity of the earth’s rotation, p the atmospheric pressure
and τij is the stress tensor. x indicates a spatial dimension, and δi3 and ϵijk the
Kronecker-Delta and Levi-Civita symbol, respectively.
PALM solves the volume-averaged form of these equations following Schumann
(1975), which can be derived by making the following assumptions and
manipulations:

• Pressure consists of a mean and perturbations: p = p + p∗. Here, p∗
represents the resolved perturbations (π∗) minus the perturbations handled
by the subgrid-scale model (2

3
ρe):

−1

ρ

∂p

∂xi

= −1

ρ

∂p

∂xi

− 1

ρ

∂π∗

∂xi

+
∂ 2

3
e

∂xi

with e = 1
2
u

′
iu

′
i the subgrid-scale turbulent kinetic energy.

• Boussinesq approximation: Density fluctuations are only considered in the
buoyancy term. For all other terms, the density is presumed constant (ρ0).
Using the hydrostatic law dp = −ρ0gdz and using term −δi3g from Eq. 2.2
gives:

−g − 1

ρ

∂p

∂z
= −g + g

ρ0
ρ

= g

(
ρ0 − ρ

ρ

)
Assuming an ideal gas in hydrostatic equilibrium p = ρRθ, density and
(potential) temperature are inversely related, hence:

g

(
ρ0 − ρ

ρ

)
= g

(
θ − θ0
θ0

)
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which in terms of volume averaging can be rewritten as:

g

(
θ − θ0
θ0

)
= g

θ − ⟨θ⟩
⟨θ⟩

where θ indicates a box average and ⟨θ⟩ a domain average.

• Geostrophic equilibrium: the pressure gradient force is balanced by the Coriolis
force:

− 1

ρ0

∂p

∂x
= −f3vg

− 1

ρ0

∂p

∂y
= f3ug

where f3 = 2ωsinϕ is the Coriolis parameter with ω = 2π/86400s and ϕ the
latitude. Together with the Boussinesq approximation, the mean of the pressure
term can finally be rewritten as:

−δi3g −
1

ρ0

∂p

∂xi

= ϵi3jf3ug,j + δi3g
θ − ⟨θ⟩
⟨θ⟩

• The Coriolis term can be rewritten as

−2ϵijkΩjuk = −ϵij3fjuk

where fj is the Coriolis parameter.

• Reynolds decomposition of the advection term reads:

uj
∂ui

∂xj

=
∂uiuj

∂xj

=
∂ui uj

∂xj

+
∂ui

′u
′
j

∂xj

• Molecular friction can be neglected as its effect is small compared to other
forces. The stress tensor is therefore negligible:

1

ρ

∂τij
∂xj

≈ 0

With these assumptions and manipulations, Eq. 2.1 and 2.2 can be rewritten as:

∂uj

∂xj

= 0 (2.3)

∂ui

∂t
= −∂ui uj

∂xj

+ δi3g
θ − ⟨θ⟩
⟨θ⟩

− ϵij3fjuk + ϵi3jf3ug,j −
1

ρ0

∂π∗
∂xi

− ∂

∂xj

(
u

′
iu

′
j −

2

3
eδij

)
(2.4)

which is the form of these equations as used in Maronga et al. (2020).
A time integration of the prognostic variables is done by a third-order Runge-Kutta
scheme. It calculates the solution in three intermediate steps, resulting in a higher
accuracy. Williamson (1980) proposed a fifth-order scheme to calculate the advection
term, which uses this time scheme. Wicker and Skamarock (2002) found that this
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combination is a good trade-off between accuracy and simplicity.
A pressure solver using a Poisson equation is used to ensure a divergence-free flow.
During time integration, the perturbation pressure term − 1

ρ0
∂π∗
∂xi

is excluded from

Eq. 2.4, yielding local velocities (divergence) that need to be compensated for by
adjusting the pressure term. In this thesis, this compensation term is found using
an iterative multigrid scheme, effectively smoothing out any local disturbances over
a larger volume.

A subgrid-scale model is needed to provide turbulent closure, as the terms u
′
iu

′
i and

u
′
iu

′
j cannot explicitly be resolved. In this thesis, the default 1.5-order turbulent

closure parameterization is used, which was developed by Deardorff (1980) and
modified by Moeng and Wyngaard (1988) and Saiki et al. (2000). The covariance
term, representing the energy transported by subgrid-scale eddies, is assumed to
relate the local gradients of their mean quantities, formulated as follows:

u
′
iu

′
j −

2

3
eδij = −Km

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.5)

in which Km is the eddy-transfer coefficient of momentum. Analogous formulations
can be derived for temperature, moisture and other scalar variables. The value
for Km is parameterized as a function of the height of the point that is being
calculated, the grid spacing, stratification (atmospheric stability) and the subgrid-
scale turbulent kinetic energy calculated with its prognostic equation.

2.1.2 Boundary conditions

Surface
The Monin-Obukhov similarity theory (MOST) is applied between the surface and
the first grid level. It assumes that in this layer the horizontally-averaged fluxes are
constant, but in PALM it is assumed that MOST can also be applied locally. In
the surface layer, the vertical gradient of the mean horizontal wind speed (uhor =√
u2 + v2) can be described by

∂uhor

∂z
=

u∗

κz
Φ
( z

L

)
(2.6)

in which u∗ is the friction velocity, κ = 0.41 the Von Kármán constant and Φ the
similarity function for momentum. This term is a function of the stability parameter
Obukhov length L and is empirically determined using the Businger-Dyer relations:

Φ =

{
1 + 5 z

L
for z

L
≥ 0

(1− 16 z
L
)−

1
4 for z

L
< 0

(2.7)

In PALM, the friction velocity u∗ is computed with the following equation:

u∗ =
[
(u′w

′
0)

2 + (v′w
′
0)

2
] 1

4
(2.8)

in which u′w
′
0 and v′w

′
0 indicate the surface momentum fluxes. u∗ is calculated

considering a layer between z0 and 0.5∆z, the latter indicating the height halfway
between the surface and the lower grid cell. Using Eq. 2.8 in Eq. 2.6 finally derives
expressions for the momentum fluxes as function of the wind speed gradients and
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Obukhov length. The derivation described here has focused on the momentum flux,
but analogous derivation can be made for temperature and humidity. Lastly, in a
neutral boundary layer the potential temperature of the surface is the same as that at
the lowest grid level (Neumann boundary condition). Non-neutral boundary layers
can be simulated by either prescribing a surface heat flux or a surface temperature
change rate (Dirichlet boundary condition).

Lateral
LES typically uses cyclic boundary conditions in both lateral and longitudinal
direction, which means that the flow that leaves the domain gets reintroduced on
the other side. However, this would result in simulating an infinite row of turbines
rather than just a single turbine or turbine pair. PALM has the option to use non-
cyclic boundary conditions in one direction. To avoid very large model domains
that would be needed for the flow to become turbulent, a turbulence recycling
method (Lund et al., 1998; Kataoka and Mizuno, 2002) can be used, visualized
in Fig. 2.2a. A precursor simulation of a smaller, empty (no turbines) domain
with cyclic boundary conditions is performed, in which random perturbations are
added to an initially laminar flow to generate a flow field with realistic turbulent
features. When a stationary state is reached, information on average and turbulent
quantities is saved to be used in a subsequent main run containing turbines. The
boundary conditions of this main run is cyclic in crosswise direction, but non-cyclic
in streamwise direction. The flow field is initialized with the information from the
prerun. Afterwards, mean profiles obtained in the precursor run are described at
the inlet (dirichlet boundary condition), while turbulent fluctuations are taken from
a recycling plane some distance downstream and added to the mean profiles at
the inlet. A Sommerfeld radiation equation is solved at the outlet to ensure that
disturbances reaching the outlet do not affect the flow upstream. It considers a
theoretical flow field at an infinite distance and uses that solution at the outlet,
ensuring that only ”outgoing” waves pass through the outlet (Schot, 1992).
Lastly, very long turbulent structures (superstructures) are typically not fully
captured as this would result in large domain lengths and consequently expensive
simulations. In smaller domains, these structures persist due to a lack of space to
break up, resulting in ’streaks’ of high or low velocities. To prevent this, PALM
uses the shifted boundary conditions approach proposed by Munters et al. (2016a),
which shifts the plane in crosswise direction before reintroducing it in the domain.
Although originally developed for cyclic boundary conditions, PALM also allows
this for non-cyclic boundary conditions with turbulence recycling.

2.1.3 Wind direction change

In Chapter 6, dynamic wind direction changes are simulated in PALM. This can
be done by nesting LES into a mesoscale model, such as the Weather Research and
Forecasting (WRF) model (e.g., Udina et al., 2020), but this affects the turbulent
characteristics of the LES since WRF resolves structures on a larger scale (Mirocha
et al., 2013). As an alternative, Munters et al. (2016b) proposed a method to rotate
the domain, mimicking wind direction changes. Although promising, this method is
computationally expensive due to MPI communication.
This thesis adopts the method proposed by Stieren et al. (2021), which treats the
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(a)

(b)

Figure 2.2: Illustrative sketches of domains in the simulation chain. (a) Precursor run with cyclic
boundary conditions to generate turbulence and subsequent main run with one turbine using the
turbulence recycling method. Figure inspired by IMUK (2022). (b) Same precursor run with one
wind direction, subsequent theta run to change the wind direction and save planes to use as inflow
in a main run with two turbines to simulate a wind direction change propagating through the
domain.

domain as a non-inertial rotating reference frame. Dynamic wind direction changes
are included by adding an artificial Coriolis term Fθ to the momentum equations of
Eq. 2.4. This term reads:

Fθ = −θ(t)ujϵij3 (2.9)

in which θ(t) is the wind direction change rate as function of time in radians per
second. One should be aware that a rotation in the meteorological frame is in
opposite direction of the mathematical frame. This artificial forcing is applied to
every cell in the domain. In addition, the driving geostrophic wind is rotated with
the same rate. The centrifugal and Euler force are neglected in this engineering
approach. Although physical not fully correct, Stieren et al. (2021) demonstrated
that the observed wind direction compares well with the forced signal.
This method has two disadvantages for the wind turbine modeling. First, cyclic
boundary conditions are needed. As discussed in the previous section, this is
undesirable for wind farm modeling. Second, the whole wind field rotates in the same
direction at the same time, which means that a wake is artificially deflected before
reaching the positions of a downstream turbine. To circumvent these issues, in this
thesis a second precursor run (called a theta run) is performed, see the simulation
chain depicted in Fig. 2.2b. It is a continuation of the initial precursor run, hence
an empty domain without turbines, in which the desired wind direction change is
performed. At one position in the domain, the quantities are saved and subsequently
used as at the inlet of the main run with non-cyclic boundary conditions. Note
that with this methodology, no turbulence recycling method is performed as the
full inflow conditions are provided by the theta run. This ensures that the wind
direction change propagates through the domain.

17



(a) (b) (c) (d)

Figure 2.3: Illustrative sketches of four wind turbine models: (a) Actuator Disc Model, (b)
Actuator Disc Model with Rotation, (c) Actuator Line Model and (d) Actuator Sector Model.
Red arrows indicate thrust, blue arrows torque.

Besides large memory costs, the main disadvantage of this method is that it
introduces an unwanted vertical velocity. Obeying Eq. 2.3, the non-zero mean
gradient ∂u/∂x introduced by the wind direction change propagating through
the domain needs to be compensated. As the boundary conditions are cyclic in
lateral direction, it cannot be compensated by ∂v/∂y and therefore needs to be
compensated by ∂w/∂z. Line-averaged velocities of w = |0.2| m s−1 have been
observed, which over time alter the vertical profiles of wind speed and direction.
Although undesirable, the profiles are not deemed to become non-physical. For this
reason, it is argued that this issue has a negligible effect on the results presented in
Chapter 6.

2.1.4 Wind turbine model

To include the impact a wind turbine has on the flow, models of a range of fidelities
can be used. The simplest way would be to increase the surface roughness, as is for
instance done in Barrie and Kirk-Davidoff (2010). While this might give reasonable
results in mesoscale models, it does not give an accurate representation in microscale
models. Four turbine models are discussed in the following.

Actuator Disc Model
Modeling the rotor as a porous disc, named an Actuator Disc Model (ADM, Fig.
2.3a) has been adopted in many studies (e.g., Calaf et al., 2010; Steinfeld et al., 2010)
because of its simplicity. It has not been used in this thesis, but is described here
to provide background information. In this model, a thrust force (FT) is calculated:

FT =
1

2
ρ0CTAU

2 (2.10)

in which ρ0 is the air density, CT the turbine’s thrust coefficient, determined from
its CT-curve, A is the rotor area and U the undisturbed wind speed. FT is uniformly
applied to the whole rotor area, adding a sink term to the momentum equation of
Eq. 2.4. While it reproduces the most relevant characteristics of the far wake quite
well (Witha et al., 2014), it fails to represent the more complex dynamics of the
near wake.

Actuator Disc Model with Rotation
To overcome these issues, an Actuator Disc Model with Rotation (ADMR, Fig. 2.3b)
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has been developed. The model used here is based on the description of Wu and
Porté-Agel (2011). The rotor area is no longer considered as one plane, but divided
up into smaller segments. Rather than a thrust force, for each segment a lift (FL)
and drag (FD) force is calculated:

FL =
1

2
ρ0U

2
relCL

NBc

2πr
(2.11)

FD =
1

2
ρ0U

2
relCD

NBc

2πr
(2.12)

where Urel is the relative wind speed calculated from the wind speed components
of the local flow field and the blade velocity, CL and CD the segment’s lift and drag
coefficients, NB the number of blades, c the chord length and r the distance between
the segment and rotor center. Afterwards, these forces are projected onto axial and
tangential planes and smeared on PALM’s grid using a polynomial function that
approaches a Gaussian kernel. By calculating the lift and drag forces, in addition
to thrust a torque is added to the flow.
Witha et al. (2014) has shown that the details of the near wake can be better
captured with ADMR. The implemented model has also provided good results in
studies by Dörenkämper et al. (2015) and Vollmer et al. (2016) and is therefore used
in the majority of the simulation performed in this thesis.

Actuator Line Model
A higher fidelity representation of a wind turbine rotor than ADMR is a Actuator
Line Model (ALM, Fig. 2.3c), in which the turbine blades represented by rotating
lines. As in ADMR, the blades are divided in segments for which lift and drag
forces are calculated and smeared onto the flow field. Contrary to ADMR, these
forces are only calculated at the positions of the turbine blades, represented by lines
(Churchfield et al., 2017). Due to its high fidelity, ALM is typically considered to be
the most accurate turbine models. This benefit is most visible in simulations with
a high spatial resolution and dynamic areas such as the near wake. Additionally,
due to the detailed computation of forces on the turbine blades, it can be used to
study fatigue loads. The main disadvantage of ALM is that a blade must not pass
through more than one grid cell per simulation time step, resulting in simulations
with a very high temporal resolution and consequently high computational costs.

Actuator Sector Model
To overcome this issue, an Actuator Sector Model (ASM, Fig. 2.3d) can be used.
In the implementation developed by Krüger et al. (2022), PALM is coupled with
the aeroelastic code FAST containing the turbine model. While FAST still uses
the ALM model and runs with a very fine time step, the flow field is updated less
frequently. After each PALM time step, the wind field is frozen and sent to FAST,
which performs calculations at a smaller time step until it catches up. The forces of
the line in the center of the simulated sector and then smeared onto the flow field.
This methodology allows PALM to retain its coarser temporal resolution while still
retaining the higher accuracy of an ALM. The ASM is used in Chapter 5 to reproduce
the wake observed in free-field measurements as accurately as possible.
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(a) (b)

(c)

Figure 2.4: (a) Visualization of relations within Artificial Inteligence. Reused from Miraftabzadeh
et al. (2019). (b) Visualization of the classes within Machine learning. Reused from Kim and
Tagkopoulos (2019). (c) Scikit-learn cheat sheet. Reused from scikit-learn (2022)

2.2 Machine learning models

Machine learning (ML) algorithms can be considered one of the emerging
computational technologies, as discussed in Chapter 1. It comprises of methods
designed to make predictions and are employed when conventional methods
(statistical or analytical approaches) fall short. Machine learning is considered part
of artificial intelligence (AI), as can be seen in Fig. 2.4a. Examples of AI that are not
ML are chatbots or smart appliances. Part of ML is deep learning, which comprises
of neural networks with multiple processing layers able to extract abstract relations
from the data. These models are typically very complex, impossible to interpret
(black box models) and have a high data need. Although neural networks have
shown to be successful in wind energy applications (Marugán et al., 2018), for most
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problems they are more complex than necessary or need more data than can feasibly
be acquired and ML methods are more attractive. ML methods can be split up in
three classes, see Fig. 2.4b.
Supervised learning remains closest to conventional statistics. By providing training
data containing both inputs and their related outputs, the ML algorithm aims
to find relations that it later can use to predict the output variables when only
inputs are known. When the data is numerical, regression models such as the well
established Ordinary Least Squares method can be used to for instance estimate the
relation between temperature and ice cream sold. For categorical data, classification
algorithms can be used to for instance determine the likelihood of an email being
spam.
With unsupervised learning, the algorithm is tasked to find a structure in its input
data. It can be used to cluster data together, each cluster containing data points that
are more similar to each other than to data in other clusters. This can for instance
be used to group customers together to develop tailored marketing strategies for
each cluster. Another application of unsupervised learning is dimension reduction,
such as the widely used Proper Orthogonal Decomposition (POD) method. Related
variables can be grouped together, reducing the number of dimensions and therefore
increasing the interpretability of the data.
Lastly, in reinforced learning the algorithm learns by doing and receiving feedback.
The algorithm aims to maximize its rewards, which are awarded based on the
decisions made, for instance when playing chess against an opponent.
Many ML algorithms have been developed making it difficult to decide on a
method when first being presented with a problem. The python package scikit-learn
(Pedregosa et al., 2011) provides many ML algorithms, as well as a flow-chart to
help the user’s decision making, see Fig. 2.4c. It contains an incomplete overview
of the supervised and unsupervised algorithms available in the package. Two ML
algorithms are used in this thesis: a variation of the Lasso regression algorithm and
the MeanShift clustering algorithm. Both were selected using this flow chart and
will be described in the following.

2.2.1 Multi-task lasso algorithm

The multi-task lasso algorithm is used in Chapter 4 to estimate wake parameters
(e.g. wake center displacement) from a set of input variables (e.g. shear,
thrust coefficient). Its technical details are discussed here. The original lasso
implementation from Tibshirani (1996) seeks to find the coefficients B based on the
following cost function:

argmin
B

∑
n

(yn −
∑
p

xnpBp)
2 + λ

∑
p

|Bp|, (2.13)

in which y represents the output, x the input, n is the sample size and p the input
parameter. It uses the regularization parameter λ, leading to sparse coefficients for
the coefficient vector B⃗. The multi-task setting from Obozinski et al. (2006) extends
the lasso regression to estimate d (in this thesis the distance downstream) outputs
simultaneously, penalizing the blocks of coefficients over the tasks. The loss function

21



(a) (b)

Figure 2.5: Non-zero elements (black) of B for the output variable for the original lasso (a) and
multi-task lasso (b).

is therefore extended and finds the coefficient matrix B based on

argmin
B

∑
d

∑
n

(ynd −
∑
p

xnpBpd)
2 + λ

∑
p

√∑
d

(Bpd)2. (2.14)

In contrast to Eq. (2.13), the multi-task lasso implementation penalizes not only
the single coefficients, but also the blocks of coefficients over all tasks represented
by the Euclidean norm. Note that if d = 1, Eq. (2.14) reduces to the standard lasso
estimate of Eq. (2.13).
An exemplary result is illustrated in Fig. 2.5. Whereas the original lasso model
selects a new set of variables for each distance, the multi-task lasso always takes the
same set. This makes physically more sense and leads to fewer variables in total,
therefore reducing the risk of overfitting. The model is optimized using the cyclical
descent algorithm implemented in Pedregosa et al. (2011).

2.2.2 Mean shift clustering algorithm

The mean shift clustering algorithm is used in Chapter 5 in the procedure to filter
data from the nacelle-mounted lidar. Hard targets are typically characterized by
low LOS and high CNR values, making it relatively easy to filter out. However,
occasionally a large part of the scanned points was characterized with these features
and the distinction between good and bad data was not immediately clear. The
mean shift clustering algorithm was used to identify clusters containing good or bad
data, after which clusters were either kept or disregarded. The technical details of
the algorithm are discussed here.
The mean shift clustering algorithm (Fukunaga and Hostetler, 1975) is an iterative
method that determines a center of mass (the mean, xi) for all point in a region of
interest:

m(xi) =

∑
xj∈N(xi)

K(xj − xi)xj∑
xj∈N(xi)

K(xj − xi)
(2.15)

in which N(xi) are the samples in the region of interest and K(xj − xi) a Gaussian
kernel of the distance to the current estimate. The center of this region is then
shifted to the location of the center of mass:

xt+1
i = m(xt

i) (2.16)
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(a)

(b)

Figure 2.6: (a) Schematic illustrating of the fundamental principle behind the Mean Shift clustering
algorithm. Reused from Sok and Adams (2010). (b) Results from the Mean Shift clustering
algorithm on three exemplary data set. Adapted from You et al. (2022).

and this procedure is repeated until convergence takes place (Fig. 2.6a). Instead of
setting the number of clusters, as in for instance K-means clustering, in the mean
shift algorithm the size of the region of interest (called bandwidth) needs to be
determined manually. After identifying the number of clusters and their centroids,
each data point is allocated to a cluster based on its Euclidean distance to the
centroid. Figure 2.6b demonstrates the outcome of Mean Shift clustering on three
exemplary data sets, illustrating that it performs well when there are no underlying
structures present in the data set.

2.3 Lidar

Besides in situ measurements like cup anemometers and wind vanes, remote sensing
devices can be used to measure the atmospheric flow. The industry mainly uses
remote sensing technologies for wind resource assessments in the planning stage, and
wind turbine performance (power curve) testing after installation. The application of
remote sensing devices in research is wider spread and includes for instance sampling
the inflow for loads and (preview) control studies, or to investigate the atmospheric
flow in complex terrain (Clifton et al., 2018). Additionally, remote sensing can be
used to sample the turbine wake in for instance wake steering experiments (e.g.,
Fleming et al., 2017a; Bromm et al., 2018).
Two devices are available for these purposes: radars (radio detection and ranging)
and lidars (light detection and ranging). Radars emit radio waves which are reflected
by humid particles, whereas lidars emit laser beams which are reflected by aerosols.
While radars have a larger measurement range than lidars (around 30 km and 10
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Figure 2.7: Example of backscattered frequency distribution illustrating a doppler shift. Reused
from Werner (2005).

km, respectively), their practicality is limited due to their size and costs (Würth
et al., 2019).
Focusing on lidars, the emitted laser beam has a certain frequency. When being
reflected by an aerosol, this frequency will slightly be altered because of the velocity
of this particle. The backscattered frequencies captured by the device will show a
shifted distribution, called a Doppler shift, as illustrated in Fig. 2.7. This shift can
subsequently be used to determine the line-of-sight (LOS) velocity (Werner, 2005).
One can distinguish continuous wave and pulsed lidar (Peña et al., 2013).
Continuous wave lidars emit one wave signal with a very high temporal frequency.
These lidars can only sample one distance at the time and due to their optical
properties the measurement range is limited to about 150 m. They are therefore
used to obtain measurements with a high spatial and temporal resolution in the
short-range. Pulsed lidar, on the other hand, emit a sequence of short pulses to
sample the flow field at a range of distances simultaneously. The LOS can be
determined for each distance considering the time difference between emission of
the pulse and retrieval of the backscatter. The measurement range is limited by the
carrier-to-noise ratio (CNR) decreasing with distance. The spatial and temporal
resolution of pulsed lidars is much lower than for continuous wave lidars, and the
scanning trajectories are typically much simpler.
In this work, a lidar is used to sample the wake of a turbine during a wake steering
field experiment in Chapter 5. The targeted distance is about 600 m downstream
of the turbine, hence a long-range pulsed lidar was used.

2.3.1 Measurement trajectories

The scanner head of a pulsed lidar can rotate around either the vertical or horizontal
axis, but not around both simultaneously. This limits the complexity of its scanning
strategies to simple trajectories. A plan position indicator (PPI) scan follows
a trajectory with a constant elevation (vertical) angle and a changing azimuth
(horizontal) angle. On the contrary, a range height indicator (RHI) scan follows
a trajectory with a constant azimuth angle and a changing elevation angle. A
schematic example of these scans can be found in Fig. 2.8a. As explained in
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(a) (b)

Figure 2.8: Sketches of pulsed lidar scanning trajectories. (a) PPI (blue) and RHI (purple) scans.
Reused from Beck and Kühn (2019). (b) VAD scan. Adapted from Sathe and Mann (2013).

the previous section, the measurement obtained with these scans consist of only
line-of-sight velocities. Assuming a homogeneous inflow, the azimuth and elevation
angles can be used to approximate the horizontal wind speed from the line-of-sight
velocities, using the following equation:

LOS = u cos(ϕlidar) cos(θlidar) (2.17)

in which ϕlidar is the elevation angle and θlidar the azimuth angle. Here it is assumed
that ϕlidar = 0◦ is a perfectly horizontal scan and θlidar = 0◦ a perfect alignment with
the mean wind direction. These scanning trajectories are not suited to obtain wind
direction measurements.
When a pulsed lidar is used to obtain vertical profiles of the wind speed and direction,
a velocity-azimuth display (VAD) is used. The lidar, typically situated at the
surface, is performing a conical scan at one elevation angle, as illustrated in Fig.
2.8b. To determine the wind speed components and subsequently the horizontal
wind speed and direction, the LOS measurements can be fitted with the following
sinusoid:

LOS = u cos(θlidar) sin(
π

2
− ϕlidar) + v sin(θlidar) sin(

π

2
− ϕlidar) + w cos(

π

2
− ϕlidar)

(2.18)
in which θlidar = 0◦ indicates north. The wind speed components can subsequently
be used to obtain horizontal wind speed and direction estimates, which represent a
spatial average over the area covered by the cone.

2.3.2 Lidar Simulator

To determine an appropriate scanning strategy for a study’s objectives, it is desirable
to investigate the impact of the scanning trajectories on the measurement error
before deployment of the lidar. This can be done numerically by using large-eddy
simulation data as input to a code emulating the lidar’s characteristics. Using
volumetric PALM results, the LIdar SCanner SIMulator (LiXim, Trabucchi (2019))
is employed in this thesis to obtain synthetic lidar data. The lidar’s hardware
characteristics can be modified to match the device available for deployment, which
makes the simulator suited for studies with either continuous wave (Kidambi Sekar
et al., 2022) or pulsed lidars (van Dooren et al., 2016; Ortensi et al., 2022).
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Figure 2.9: LiXim trajectory with five PPI scans. Red markers indicate measurement points,
black solid lines the path, starting at the lower right position. The blue shaded area illustrates the
turbine wake.

LiXim obtains the line-of-sight velocity by temporally and spatially interpolating
the LES data for the probe volume of a predefined measurement point. Rather than
estimating just one value, the probe volume is divided in segments for which a LOS
value is calculated. Weighted with a normal distribution, an average LOS for the
probe volume will be obtained.
The desired scanning trajectory can be emulated in LiXim. An example with five
consecutive PPI scans as later used in Chapter 5 is displayed in Fig. 2.9.

26



Chapter 3

A new method to characterize the
curled wake shape under yaw
misalignment

The content of this chapter is identical to the following conference proceedings:
Sengers, B. A. M., Steinfeld, G., Heinemann, D., and Kühn, M.: A new
method to characterize the curled wake shape under yaw misalignment, Journal
of Physics: Conference Series, 1618, 062050, https://doi.org/10.1088/1742-
6596/1618/6/062050, 2020.
©Author(s) 2020. This work is distributed under the Creative Commons
Attribution 3.0 License. Reprinted with permission.

Abstract Wake Redirection Control due to intentional yaw misalignment is a
promising method to enhance power yield at wind farm level. A turbine misaligned
with the inflow wind produces a curled wake shape, which is currently not accounted
for in wake tracking algorithms. This study proposes a new 2D wake description
specifically designed to account for the non-elliptic shape of the redirected wake. The
performance of this new method is evaluated by employing a large-eddy simulation
model at different atmospheric stratifications. A comparison with traditionally used
approaches indicates an improvement in describing wake shape and center position,
and consequently a significantly higher accuracy in the power estimation of a virtual
downstream turbine. A brief outlook suggests that this wake tracking algorithm
is suited to study the effect of the most influential atmospheric and operational
parameters on wake propagation under yaw misalignment and the development of
a physically based empirical wake parameterization.
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3.1 Introduction

As the wind energy industry is maturing, awareness of the negative effects of turbine
wakes on power production in wind farms is increasing. Lately, focus is shifting
from optimal control of individual turbines to optimization on a farm level. Wake
Redirection Control (WRC) by intentional yaw misalignment (Dahlberg and Medici,
2003; Wagenaar et al., 2012) is currently regarded as one of the most promising
methods to enhance power yield at a farm level. By misaligning the turbine with
the incoming flow, a crosswise thrust force component is introduced, redirecting the
wake away from a downstream turbine. In recent years, the potential of WRC has
been demonstrated by numerical simulations (Gebraad et al., 2015; Vollmer et al.,
2016; Fleming et al., 2018; Mart́ınez-Tossas et al., 2019; Hulsman et al., 2020), wind
tunnel experiments (Dahlberg and Medici, 2003; Campagnolo et al., 2016; Wang
et al., 2016) and free-field measurements (Fleming et al., 2017b; Bromm et al., 2018;
Fleming et al., 2019; Howland et al., 2019) with reported power yield increases of
up to 15% depending on studied inflow conditions, used yaw controller and turbine
spacing. Additionally, Howland et al. (2019); Gebraad et al. (2017) reported a
potential increase in Annual Energy Production (AEP) on farm level.
The magnitude of the crosswise thrust force component introduced by yaw
misalignment is not uniform over the rotor area, but varies in the vertical with
a maximum near hub height. As first reported by Howland et al. (2016), this results
in asymmetric curling of the wake to a kidney-like shape. This has implications for
determining the wake position downstream of the turbine, as assuming a self-similar
Gaussian distribution of the wake deficit is inaccurate. This in turn affects the
quality of power and load assessments.
In turbine wake studies, including those applying WRC by intentional yaw
misalignment, it is common practice to consider the wake center trajectory to be
representative for the propagation of the wake downstream of the turbine. However,
there is no consensus in the literature how to define this wake center. The location
of the maximum wind speed deficit and the Center of Mass (CoM) are two of the
simplest, yet most frequently used methods in this respect. Both are, however,
sensitive to turbulence, which might be undesirable when studying steady state
situations. In Vollmer et al. (2016), the wake center is determined using three
methods: (1) by fitting a simple one-dimensional Gaussian at hub height, (2) by
fitting a more convoluted two-dimensional bivariate Gaussian to the wind field and
(3) by determining the location of the minimal potential available power of a virtual
downstream turbine. Methods 2 and 3 are currently considered state-of-the-art
methods to identify the wake center. They found dissimilarities between the three
methods, especially under large turbine yaw angles, as none of the methods is able
to accurately account for the curled wake shape.
To contribute to the growing interest in WRC by intentional yaw misalignment, this
study proposes a new method to identify frequently studied wake characteristics,
specifically designed to account for the non-elliptic shape of the redirected wake.
Next to a new definition for the wake center, metrics to determine wake area and
curliness are proposed. The performance of the proposed method is evaluated in
comparison with traditional methods, in its ability to describe the location of the
wake center and the wake as a whole. Potential applications include studying the
dependency of wake characteristics on atmospheric and operational parameters and
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the development of a physically based empirical wake parameterization or wake
meandering model.

3.2 Methodology

An overview of the LES model PALM and the simulation set-up is described in
the following section, followed by an overview of traditional and the proposed wake
tracking algorithms.

3.2.1 Large-eddy simulations

General
The performance of the discussed methods is evaluated by employing the
PArallelized Large-eddy simulation Model (PALM, Maronga et al. (2020)),
which uses a non-hydrostatic incompressible Boussinesq approximation of the
Navier-Stokes equations on a regularly spaced grid using right-handed Cartesian
coordinates. Information exchange between the surface and the lowest grid cell is
achieved by applying the Monin-Obukhov Similarity Theory. In this study, model
revision 3455 with default numerical schemes is used. All simulations have a spatial
resolution of ∆ = 5 m in the boundary layer, while the vertical resolution above the
boundary layer height increases with 6% per cell to save computational resources.
The Coriolis parameter corresponds to 55◦N and the surface roughness is constant
at z0 = 0.1 m, representing low crops. The simulation chain includes a precursor
without and a main simulation with one turbine.

Precursor simulations
Precursor simulations generate realistic turbulent inflow conditions by adding
random perturbations to an initially laminar flow. Two inflow conditions
representing a Neutral Boundary Layer (NBL) and a Stable Boundary Layer (SBL),
respectively, are generated, both having approximately the same mean wind speed
and direction at hub height to allow for a fair comparison of the downstream wind
field. A Convective Boundary Layer is omitted in this study, as WRC is found not
to be beneficial under this condition (Vollmer et al., 2016). The simulations use
cyclic horizontal boundary conditions and the total simulation time is determined
empirically until convergence to a stationary state occurs. The NBL does not

Table 3.1: Summary of simulation parameters for precursor and main simulations. The length
(t) and size (Lx, Ly, Lz) of the precursor simulations (normalized by the rotor diameter (D =
126 m)) is determined empirically until convergence to a stationary state occurs. The size of the
domain of the main simulations is extended only in streamwise direction. The geostrophic wind
(ug, vg) is constant in precursor and corresponding main simulations.

t Lx Ly Lz ug vg
[h] [D] [D] [D] [m/s] [m/s]

Precursor NBL 28 40.6 20.3 6.3 10.115 -3.969
SBL 20 11.4 7.6 3.8 9.500 -5.170

Main NBL 1 61.0 20.3 6.3 10.115 -3.969
SBL 1 30.5 7.6 3.8 9.500 -5.170
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Table 3.2: Summary of the most relevant inflow parameters, given as mean and standard deviation
over the three main simulations. Results consist of rotor effective wind speed (Ueff ), turbulence
intensity at hub height (TIh), wind shear (α) and veer (δα) over the rotor area and the Obukhov
Length (L).

Ueff TIh α δα L
[m/s] [%] [-] [◦] [m]

NBL 8.28±0.05 10.30±0.17 0.166±0.002 2.03±0.27 ∞
SBL 8.11±0.02 5.68±0.01 0.322±0.001 9.61±0.04 145.0±0.2

prescribe a thermal forcing at the surface, while the SBL simulation specifies a
constant cooling rate of ∂Θ/∂t = 0.25 K/h, following Beare and Macvean (2004). A
cooling rate was described rather than a negative surface heat flux, as recommended
by Basu et al. (2008). The details of the precursor simulations are summarized in
Table 3.1.

Main simulations
The main simulations subsequently use the information generated in the precursor
simulations by utilizing a turbulence recycle method, which adds a turbulent signal
to a fixed mean inflow, as upstream boundary conditions. The downstream boundary
condition ensures an undisturbed outflow by utilizing a radiation boundary
condition. Table 3.1 summarizes the used simulation parameters. Total simulation
time includes 20 minutes of spin-up time and a subsequent 60 minutes used for
analysis. The size of the domain is only extended in streamwise direction and the
recycle area has the same size as the precursor domain. One turbine is simulated,
located in the center of the domain in crossstream direction and 6 rotor diameters
downstream of the recycling area in streamwise direction. A 5MW NREL turbine,
with a hub height of 90 m and a rotor diameter D of 126 m (Jonkman et al., 2009),
is simulated with an Actuator Disc Model with Rotation (ADMR) (Dörenkämper
et al., 2015). Turbine yaw angles (ϕ) of -30◦, 0◦, and 30◦ are simulated for both inflow
conditions, resulting in six simulations in total. A positive yaw angle is here defined
as a clockwise rotation of the turbine, looking from above. Main simulations will
hereafter be referred to as an abbreviation of its stability and yaw angle, e.g. NBL00;
SBL30. The most relevant inflow parameters are displayed in Table 3.2, showing
comparable wind speed for all simulations and dissimilar atmospheric conditions
related to a Neutral and Stable Boundary Layer. The small spread of the parameters
between the three simulations in the same boundary layer, indicated by the standard
deviation, can be neglected.
For the downstream wind field, the following will solely study the wake deficit, simply
defined as Udef = Uwake−U∞, where U∞ represents the undisturbed inflow and Uwake

the observed wind speed in the wake. To this end, frozen turbulence is assumed,
meaning the advection velocity is assumed constant in streamwise direction. To
reduce the impact of small-scale turbulence, the analyzed wind fields comprise of
60-minute averages.
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3.2.2 Wake tracking algorithms

Traditional methods
As a reference, this study adopts the three wake center definitions used in Vollmer
et al. (2016). Two of these utilize the principle that a wake deficit can be described by
a Gaussian distribution. The simple one-dimensional Gaussian (f1D) only considers
a horizontal slice of the wind field at hub height, whereas the bivariate Gaussian
(f2D) assumes an elliptically shaped wake, thereby including information in two
dimensions. Both identify the wake center as the location of the curve’s minimum,
found with a least squares fitting procedure. Additionally, the 95% confidence
interval (1.96σ) can be used as a measure for the wake width, as proposed in
Doubrawa et al. (2016). The pragmatic Available Power method (fAP ) defines the
wake center as the location of the minimal available power produced by a virtual
turbine, making it dependent on the defined rotor area. This approach does not
provide a metric for the wake width, but could be combined with other definitions
such as 99% of the incoming wind speed as proposed in Bastankhah and Porté-Agel
(2016). This concept is however very sensitive to turbulence and will therefore not
be considered in this study.

Multiple 1D Gaussian method
The proposed method also applies the fundamental idea of describing a wake with a
Gaussian distribution. It seeks to combine the strengths of f1D (simple and robust)
and f2D (two dimensional). The Multiple 1D Gaussian (fM1D) method fits a simple
one-dimensional Gaussian distribution in crosswise direction at every vertical level
where information is available, essentially identifying a center, width and magnitude
at each altitude. This is illustrated in Figure 3.1 for hub height and upper tip
height. To avoid including turbulent cells in the wake, a limit is introduced where
the minimum of every fit needs to be larger than the deficit of the wake edge (1.96σ)
at hub height. This is particularly relevant when the wake deficit is small (e.g. far
downstream and at higher altitudes).
The black crosses in Figure 3.2a illustrate the wake center positions as identified
by the set of one-dimensional Gaussian distributions fitted in crosswise direction.
By fitting another one-dimensional Gaussian through the magnitudes of this set of
distributions (Figure 3.2b), one obtains the vertical position of the wake center.

(a) (b) (c)

Figure 3.1: (a) Exemplary figure (SBL30, 5 rotor diameters downstream) illustrating the concept
of the fM1D method, where the thick black lines illustrate two horizontal cross-sections. (b) and
(c) demonstrate the fitting procedure at these two heights.
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(a) (b) (c)

Figure 3.2: Exemplary figures (SBL30, 5 rotor diameters downstream) demonstrating (a) the
positions of the wake center line, (b) the determination of the vertical wake center position based
on the magnitudes of the wake center line and (c) the definition of wake curl a [-] and tilt arctan b
[◦] based on wake center line. Information from the set of crosswise fitted Gaussian distributions
is indicated with black crosses and red lines illustrate the fitted relation.

The center positions of this set of distributions can in turn be used to express the
curliness and tilt of the wake (Figure 3.2c). A simple second-degree polynomial
(y = az2 + bz + c) is fitted to these positions between lower and upper tip height,
where a represents the curliness and arctan b the tilt of the wake. Comparing the
dashed gray lines in Figures 3.2b and c, one can see that the maximum deficit and
maximum curl do not necessarily occur at the same altitude. The wake area can
simply be deduced from the 95% confidence intervals of the set of one-dimensional
Gaussian distributions.

3.3 Results and discussion

This section will first present an evaluation of the proposed method, followed by a
short overview of its future applications.

3.3.1 Evaluation of the proposed Multiple 1D Gaussian method

Figure 3.3a presents the vertical cross-section of the wake deficit five rotor diameters
downstream of a simulated turbine in SBL00. Distances are normalized by the rotor
diameter and centered around the turbine’s hub. The wake is elliptically shaped
and stretched in crosswise direction due to strong wind veer in the SBL (Table
3.2). This strong veer also introduces a small wake deflection even in the absence
of yaw misalignment. All four methods identify the wake center at very similar
positions, where f1D by definition excludes any vertical movement. A simplified
wind field can be reconstructed from the Gaussian-based methods, using information
from the fitted distributions. For this purpose, f1D uses the same distribution in
horizontal and vertical direction, describing a circular wake. These reconstructed
wind fields are shown in Figures 3.3b-d. The circular shape described by f1D severely
underestimates the maximum wake deficit. Both f2D and fM1D are able to capture
the elliptical shape, where the former describes the wake as a perfect ellipse and the
latter allows slight deviations and therefore includes more detail. f2D identifies the
wake center as the location with the maximum deficit, which is not necessarily true
for fM1D. Although not designed for an elliptically shaped wake, fM1D presents the
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(a) (b)

(c) (d)

Figure 3.3: Vertical cross-section (looking downstream) of the SBL00 LES wake deficit wind field
5 rotor diameters downstream of the simulated turbine and the wake center positions identified by
all methods (a). Reconstructed wind fields based on f1D (b), f2D (c) and fM1D (d).

(a) (b)

(c) (d)

Figure 3.4: Same as Figure 3.3, but for SBL30.
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most accurate description of the wind field.
Figure 3.4 presents these results for a redirected wake (SBL30). Figure 3.4a shows
that the f2D and fAP methods identify a wake center on the inner side of the
curled wake, identifying practically no crosswise displacement. This is due to
these methods’ assumptions of a circularly or elliptically shaped wake, which is not
satisfied in this example. The f1D method better captures the lateral displacement,
but excludes any vertical movement. The fM1D method does not have this limitation
and locates the wake center closest to the location of the maximum deficit. The
reconstructed wind fields in Figures 3.4b-d clearly show that the curled shape is only
captured in fM1D, demonstrating a superiority of the proposed method. Interesting
to note is that f1D largely underestimates the total wake area, since it does not
account for any vertical expansion.
The LES and reconstructed wind fields can be used to estimate the available power
of a virtual turbine located downstream of the wake-producing turbine in mean wind
direction. The available power is estimated by the cubed rotor effective wind speed.
Figure 3.5 presents the percentage error of the available power computed with the
reconstructed wind field relative to when computed with the LES wind field. The
boxes include all six simulations described in Section 3.2.1. One observes that all
methods perform better in the far wake, since there the wake deficit can be more
accurately described by a Gaussian distribution. By contrast, the near wake region
shows a high momentum zone in the central part of the near wake, introduced by a
low thrust force around the turbine’s hub. Further, f2D holds more accurate results
than f1D, but fM1D consistently outperforms both methods. Especially in the far
wake (x/D ≥ 4), only fM1D has no systematic bias and it has the smallest spread of
all methods. This also indicates that fM1D is competitive in estimating the available
power, the main strength of the fAP method. This result stresses the improvement
of fM1D over the other methods.

Figure 3.5: Percentage Error of available power of a downstream turbine computed with a wind field
based on f1D (black), f2D (blue), fM1D (red) relative to when computed with the LES wind field
(calculated with (Pfxx − PLES)/PLES ∗ 100%). The boxplots include all six simulations described
in Section 3.2.1.
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Figure 3.6 shows the horizontal wake center trajectories for the NBL (a) and SBL
(b) at three yaw angles as determined by the four discussed methods. A 0◦ yaw angle
results in no lateral displacement in the NBL and a small displacement in the SBL, as
already observed in Figure 3.3. The differences between the four methods are rather
small. There are more noticeable differences between the methods when there is
a yaw misalignment. f2D and fAP typically show the smallest lateral deflection,
whereas fM1D is very comparable to f1D and generally finds the largest lateral
deflection. The wake displacement is asymmetric, which is due to wind veer and
therefore best visible in the SBL. This corresponds to the findings of Fleming et al.
(2015), who reported on more effective wake deflection under negative yaw angles
compared to positive ones. It should be noted that the deviating trajectory of f2D
in SBL-30 is due to the detachment of the downstream wake in two separate cells
as mentioned in Vollmer et al. (2016), which is currently not accounted for in any
of the wake center definitions.
Figure 3.6c-d shows the vertical wake center trajectories in the NBL (c) and SBL
(d). It should be noted that the vertical displacement is about an order of magnitude
smaller than the horizontal displacement. By definition, f1D excludes any vertical
displacement. An initial vertical displacement in the near wake is observed for all
simulations. Interestingly, the wake center moves back to hub height in the far wake
for non-yawed turbines, but not in the case of yaw misalignment. This suggests that

(a) (b)

(c) (d)

Figure 3.6: Wake center trajectories for NBL (a,c) and SBL (b,d) representing horizontal (a,b)
and vertical (c,d) deflection for yaw angles of 0 (black), 30 (blue) and -30 (red) degrees.
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Figure 3.7: Evolution of the wake curliness downstream of the turbine for two stratifications and
three yaw angles.

yaw misalignment unintentionally also results in a slight vertical deflection. For
this reason, to accurately describe the characteristics of the redirected wake, one
should take the vertical displacement into account. In general, fM1D is most similar
to f2D, which is currently the standard to study vertical wake center displacement.
These results demonstrate that fM1D indeed combines the strengths of f1D (best in
horizontal) and f2D (best in vertical).

3.3.2 Future applications

A potential application of the newly proposed wake tracking algorithm is to study
the wake curliness as determined by the method described in Section 3.2.2. Figure
3.7 shows that a non-yawed turbine does not produce a curled wake and therefore
has a curliness parameter around zero. The misaligned turbines indicate that the
curl is mainly generated in the near wake and remains relatively constant further
downstream. Exception to this is SBL-30, showing an ever increasing curliness
parameter. This is again due to the detachment of the wake in two separate
cells, which is currently not accounted for. These preliminary results suggest that
atmospheric conditions affect the wake curliness as the curl parameter is larger in a
SBL than in a NBL, for instance due to less mixing.
Figure 3.8 shows a first result of the development of a physically based empirical wake
deflection parameterization. The black line indicates the wake center trajectory as
determined directly from the LES using fM1D, while the red line indicates a predicted
trajectory based on simple inflow and operational parameters (shear, veer, torque
and yaw angle) by employing a simple Ordinary Least Squares fitting model. The
testing data set merely encompasses SBL30, whereas the training data set includes
five different inflow conditions (not SBL) combined with five yaw angles. These
preliminary results suggest that it is possible to determine the wake trajectory of a
redirected wake solely based on atmospheric and operational parameters.
In the future, this work will be elaborated on by including vertical wake center
displacement and wake shape parameters, as well as the magnitude and distribution
of the wake deficit. Additionally, the aspired wake parameterization should be
applicable to a wide range of locations and atmospheric conditions, and will be
validated with field measurements.
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Figure 3.8: Preliminary result showing the potential of the development of a physically based
empirical wake deflection parameterization. Contours indicate the SBL30 LES wind field at hub
height, the black line indicate the wake center trajectory and the red line the wake center trajectory
predicted with a simple statistical model.

3.4 Conclusions

This study proposes a new 2D wake description specifically designed to
account for shape deformations introduced by intentional yaw misalignment.
This parameterized wake tracking algorithm describes frequently studied wake
characteristics, such as the wake shape and center position.
Utilizing a large-eddy simulation model at different atmospheric stratifications, a
comparison with traditionally used approaches demonstrates a significantly more
accurate wake description of the newly proposed method. This does not only include
a better estimation of the wake center position, but also a better description of the
shape of the redirected wake by introducing a curliness parameter. Consequently,
it provides a significantly higher accuracy in the power estimation of a virtual
downstream turbine compared to traditional approaches.
A drawback of the newly proposed method is its sensitivity to turbulence, especially
when the wake deficit is small (e.g. far downstream and at higher altitudes).
A brief outlook suggests that this wake tracking algorithm is suited to study the
effect of the most influential atmospheric and operational parameters on wake
propagation under yaw misalignment and the development of a physically based
empirical wake parameterization.
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Chapter 4

A physically interpretable
data-driven surrogate model for
wake steering

The content of this chapter is identical to the following journal article:
Sengers, B. A. M., Zech, M., Jacobs, P., Steinfeld, G., and Kühn, M.: A physically
interpretable data-driven surrogate model for wake steering, Wind Energy Science,
7, 1455-1470, https://doi.org/10.5194/wes-7-1455-2022, 2022.
©Author(s) 2022. This work is distributed under the Creative Commons
Attribution 4.0 License. Reprinted with permission.

Abstract Wake steering models for control purposes are typically based on
analytical wake descriptions tuned to match experimental or numerical data. This
study explores whether a data-driven surrogate model with a high degree of physical
interpretation can accurately describe the redirected wake. A linear model trained
with large-eddy simulation data estimates wake parameters such as deficit, center
location and curliness from measurable inflow and turbine variables. These wake
parameters are then used to generate vertical cross-sections of the wake at desired
downstream locations. In a validation considering eight boundary layers ranging
from neutral to stable conditions, the far wake’s trajectory, curl and available
power are accurately estimated. A significant improvement in accuracy is shown
in a benchmark study against two analytical wake models, especially under derated
operating conditions and stable atmospheric stratifications. Even though the results
are not directly generalizable to all atmospheric conditions, locations or turbine
types, the outcome of this study is encouraging.
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4.1 Introduction

Wind turbine wakes cause considerable power losses and increased loads at
downstream machines. Control strategies to mitigate these negative effects are
gaining support in the wind energy community. In particular wake steering, or
wake redirection through intentional yaw misalignment (Dahlberg and Medici,
2003; Wagenaar et al., 2012), is regarded as a promising control strategy. A
yaw misalignment introduces a lateral thrust force component, which redirects the
downstream wake and generates two counter-rotating vortices around upper- and
lower-tip height that curl the wake into a kidney shape (Howland et al., 2016).
Numerical simulations (e.g., Gebraad et al., 2016; Fleming et al., 2018; Hulsman
et al., 2020), wind tunnel experiments (e.g., Campagnolo et al., 2016; Bartl et al.,
2018b; Bastankhah and Porté-Agel, 2019) and free-field campaigns (e.g., Fleming
et al., 2017b, 2019, 2020; Bromm et al., 2018) have demonstrated the potential of an
increased wind farm power production when utilizing the wake steering concept. The
efficacy of wake steering is strongly dependent on turbine operation and atmospheric
inflow characteristics, such as the turbine thrust coefficient (Jimenez et al., 2010),
atmospheric stability (Vollmer et al., 2016), wind shear (Schottler et al., 2017) and
turbulence intensity (Bastankhah and Porté-Agel, 2016).
Wake steering controllers regulating the turbine yaw angle are often based on
simple wake models that can describe the downstream wake under different inflow
conditions. These models, such as those available in the FLORIS framework (NREL,
2020), are typically based on a simplified analytical description of the momentum
conservation equations for stationary inflow conditions. When combined with a
dynamic controller, wind direction variability can be included (Rott et al., 2018;
Simley et al., 2020). The performance of these wake steering controllers, and
therefore the accuracy of the underlying wake models, is essential for a successful
application of wake steering as a control strategy in a real wind farm.
Frequently used in recent years is the wake model based on Gaussian self-similarity
(Bastankhah and Porté-Agel, 2014, 2016; Abkar and Porté-Agel, 2015; Niayifar and
Porté-Agel, 2016). Combining wake deficit and wake deflection models, the Gaussian
(GAUS) model uses turbulence intensity as an atmospheric inflow parameter. It was
validated against field measurements in Annoni et al. (2018) and used as a controller
in a field campaign in Fleming et al. (2019). A disadvantage of this model is the
negligence of the counter-rotating vortices generated with yaw misalignment and
consequently the absence of wake curling. In addition, it does not account for the
initial wake deflection caused by the torque-induced wake rotation in sheared inflow
(Zahle and Sørensen, 2008). The curl model (Mart́ınez-Tossas et al., 2019) accounts
for these phenomena by explicitly including vortices in a model based on linearized
Reynolds-averaged Navier–Stokes equations. Having a strong physical basis, it is
able to include a wide range of atmospheric conditions and allows flexibility in
the wake shape generation. A disadvantage is the high computational expense
compared to GAUS. For this reason, King et al. (2021) proposed to include the vortex
description of the curl model into GAUS in the Gaussian-Curl Hybrid (GCH) model.
This incorporates the initial wake deflection and even secondary wake steering, the
deflection of the wake of a downstream turbine by the vortices generated by the
yawed upstream turbine (Fleming et al., 2018), but not the curling of the wake
itself. In addition, the model includes a wake recovery term representing added
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entrainment by the vortices generated due to yaw misalignment. Fleming et al.
(2020) showed promising results when using GCH as controller input in a free-field
campaign.
These analytical models contain parameters that can be tuned to match numerical
or experimental data. In addition, data can be used to formulate parameterized
error terms (Schreiber et al., 2020). However, completely data-driven wake models
remain rare, and those that exist generally use complex machine learning models
with a low interpretability (e.g., Göçmen and Giebel, 2018; Ti et al., 2020). This
is remarkable since simple data-driven models are proven to be able to describe
complex physical phenomena (Brunton et al., 2016) and are already widely used
for prediction purposes, including wind power (Stathopoulos et al., 2013; Messner
and Pinson, 2019) and power curve predictions (Marčiukaitis et al., 2017). Although
analytical models are presumably more robust, especially when the data set is small,
the maximum achievable accuracy is also limited as it is not feasible to develop one
model for all scenarios. An analytical model will not be able to capture features for
which equations were not in place; hence constant updates to the model code are
necessary (e.g., Abkar et al., 2018; Bastankhah et al., 2022). With the community
demanding that wake models include increasingly more complex features (e.g., the
wake curl), data-driven models become interesting as they can directly capture these
features when enough data are available.
The objective of this study is to explore the potential of a Data-driven wAke steeRing
surrogaTe model (DART) that retains a high degree of physical interpretation. It
is investigated whether the curled wake can accurately be described by a set of
measurable inflow and turbine variables, and how the use of these variables can be
optimized in an interpretable model. Next, the potential of this surrogate model
is systematically assessed by evaluating its performance with large-eddy simulation
(LES) results for a reference wind speed under a range of atmospheric conditions
and subsequently benchmarking it against two analytical wake models (GAUS and
GCH). Lastly, the surrogate model’s generalizability to all atmospheric conditions,
locations and turbine types is discussed.

4.2 Large-eddy simulations

In this study data are generated with revision 3475 of the PArallelized Large-eddy
simulation Model (PALM; Maronga et al., 2020), which uses a non-hydrostatic
incompressible Boussinesq approximation of the Navier–Stokes equations and the
Monin–Obukhov similarity theory to describe surface fluxes. In the boundary layer,
the grid on a right-handed Cartesian coordinate system is regularly spaced with
∆ = 5m, while above the boundary layer height the vertical grid size increases with
6% per cell to save computational costs. The Coriolis parameter corresponds to
that at 55◦ N. Default numerical schemes are used, the main ones being a third-
order Runge–Kutta scheme for time integration, a fifth-order Wicker–Skamarock
advection scheme for the momentum equations, Deardorff’s 1.5-order turbulence
closure parameterization for subgrid-scale turbulence and an iterative multigrid
scheme for the horizontal boundary conditions. The simulation chain consists of
a precursor simulation to generate realistic inflow conditions and a subsequent main
simulation that contains one turbine.
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Table 4.1: Summary of simulation parameters and classification into neutral (NBL), near-neutral
(NNBL), weakly stable (WSBL) and stable (SBL) boundary layers. The size (Lx,p, Ly, Lz) of
the domains is normalized by the rotor diameter (D = 126m). All parameters are identical in
precursor and main simulations, except for the domain size, which is extended in the streamwise
direction (Lx,m); tp is the simulated time of the precursor run, ug and vg the geostrophic wind,
∂θ∂t−1 the heating rate, H the sensible heat flux, and z0 the surface roughness length.

tp Lx,p Lx,m Ly Lz ug vg ∂θ ∂t−1 H z0
[h] [D] [D] [D] [D] [m s−1] [m s−1] [K h−1] [Km s−1] [m]

BL1 NBL 28 40.6 61.0 20.3 14.0 10.115 −3.969 – – 0.1
BL2 NBL 28 40.6 61.0 20.3 14.0 10.595 −5.572 – – 0.5
BL3 WSBL 25 27.9 50.0 14.0 8.4 9.952 −5.115 −0.125 – 0.1
BL4 WSBL 45 27.9 50.0 14.0 8.4 10.607 −6.447 −0.125 – 0.5
BL5 SBL 20 11.4 30.5 7.6 4.6 9.500 −5.170 −0.250 – 0.1
BL6 SBL 20 11.4 30.5 7.6 4.6 10.565 −6.585 −0.250 – 0.5
BL7 NBL 40 40.6 61.0 20.3 14.0 9.609 −3.193 – – 0.03
BL8 NNBL 40 40.6 61.0 20.3 14.0 9.831 −3.488 – −0.001 0.1

4.2.1 Precursor simulations

Inflow conditions with realistic turbulent features are generated from an initially
laminar flow by adding random perturbations in a precursor simulation with cyclic
horizontal boundary conditions. To study the potential of DART under different
inflow conditions, eight boundary layers (BLs) ranging from a neutral to a strongly
stable BL are used as reference inflow conditions, all having approximately the same
wind direction and wind speed at hub height. As reported by Vollmer et al. (2016),
wake steering is ineffective in a convective boundary layer, which is therefore not
considered in this study. Due to the large computational expense it was not possible
to increase the number of simulations. Although these eight BLs do not capture the
great variability in the free field, it is considered sufficient to provide a proof of
concept for data-driven models.
The total domain size and simulation time vary between the BLs, are determined
empirically until convergence to a stationary state occurs and are dependent on the
size of the largest eddies that explicitly need to be resolved. The details of the
precursor simulations are summarized in Table 4.1.
BL1 and BL2 portray neutral conditions with roughness lengths representing low
crops (z0 =0.1m) and parkland (z0 =0.5m), which are typical landscapes found in
northern Germany. Following Basu et al. (2008), constant cooling rates at the surface
are prescribed to generate stable BLs, where BL3 and BL4 represent weakly stable
(∂θ ∂t−1 = −0.125Kh−1) and BL5 and BL6 strongly stable conditions (∂θ∂t−1 =
−0.25Kh−1; following Beare and Macvean, 2004). Two additional (near-)neutral
BLs are generated, one representing grassland (z0 =0.03m) and one having a very
small negative sensible heat flux (H =−0.001Km s−1), which is in the acceptable
range defined in Basu et al. (2008).
Stationary inflow conditions are taken at 2.5 rotor diameters (D) upstream of the
turbines simulated in the main simulations (Sect. 4.2.2) and averaged over a line of
size 2D in the crosswise direction and a period of 60min. These inflow conditions
are assumed to be undisturbed, hence far enough from the turbine that induction
does not play a role. Typical inflow parameters are displayed in Fig. 4.1, indicating
that the wind speed is comparable for all simulations but that the atmospheric
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Figure 4.1: Summary of inflow parameters (60min averages), given as mean (dots) and standard
deviation (whiskers) over the 15 main simulations performed in each BL (5 yaw angles times 3 pitch
angles). Considered are wind speed (uh) and turbulence intensity at hub height (TI), wind shear
(α) and veer (δα) over the rotor area, and the Obukhov stability parameter (zL−1) at z =2.5m.
Equations for these variables can be found in Table 4.3.

conditions vary. A more stable boundary layer, indicated by a larger Obukhov
stability parameter (zL−1), typically has a higher shear (α) and veer (∂α) and
lower turbulence intensity (TI). The spread of the parameters between the main
simulations (see Sect. 4.2.2) in the same boundary layer, indicated by the standard
deviation as whiskers in Fig. 4.1, is small enough to be neglected.

4.2.2 Main simulations

After generating stationary inflow conditions with a precursor, simulations with
one turbine are performed. Information on turbulence characteristics from the
precursor simulation is fed to the main simulation by adding a turbulent signal
to a fixed mean inflow (turbulence recycling method) far upstream of the turbine.
A radiation boundary condition ensures undisturbed outflow downstream of the
simulated turbine. The size of the recycling area is equal to the domain size of the
precursor simulation, and the domain size of the main simulation is only extended
in streamwise direction by placing a turbine at x =6D downstream of the recycling
area. Wake data until x =10D are used for analysis, but the domain is extended
to x =13 D to eliminate blockage effects. The total simulation time is 80min: the
first 20min are considered spin-up time, and the last 60min are used for analysis.
The simulated turbine is an actuator disc model with rotation (ADMR) representing
a 5MW NREL turbine, having a hub height of 90m and a rotor diameter D of 126m
(Jonkman et al., 2009), as implemented in Dörenkämper et al. (2015). Turbine yaw
angles (ϕ) of −30, −15, 0, 15 and 30◦ are simulated, where a positive yaw angle is
defined here as a clockwise rotation of the turbine when looking from above. Pitch
angles (β) of 0, 2.5 and 5◦ are simulated to study the effect of the thrust force on
downstream wake characteristics. This adds up to a total of 120 main simulations
with one turbine, i.e., 15 turbine settings (5 yaw angles times 3 pitch angles) for
each of the 8 inflow conditions. The effect of ϕ and β on the thrust coefficient CT

is illustrated in Fig. 4.2, illustrating that the effect of the turbine yaw angle of the
thrust coefficient is approximately symmetric around zero.
It should be noted that smaller step sizes for yaw and pitch angles would be preferred
as these step sizes could be too coarse when utilizing a regression-based model
(Sect. 4.3.3). This can lead to deviating estimates when interpolating to values
far away from these set points (e.g., for ϕ =7.5◦). Increasing the step size would,
however, lead to more simulations, which was computationally not feasible and not
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Figure 4.2: Overview of the effect of yaw angle ϕ and pitch angle β on thrust coefficient CT.
Whiskers indicate the standard deviation between all eight BLs.

deemed necessary to show proof of concept.
The wake is described using the normalized wake deficit, defined as und = uwake−u∞

u∞,h
,

where uwake represents the observed wind speed in the wake, u∞ the undisturbed
inflow 2.5D upstream at the same height and u∞,h the undisturbed inflow at hub
height. It is assumed that the advection velocity is constant in streamwise direction
(assumption of frozen turbulence) and that the wake behaves as a passive tracer in
the ambient wind (Larsen et al., 2008).

4.3 Development of the Data-driven wAke steeRing
surrogaTe model

This section describes the development of the Data-driven wAke steeRing surrogaTe
model (DART). It should be noted that many different kinds of data-driven models
exist. For the purpose of this exploratory study, the focus was to develop a simple
regression model that performs well on small data sets without the risk of overfitting.
Figure 4.3 displays a flowchart of the training and execution (including testing)
procedure. The respective sections in which each step is explained are indicated
in parentheses. DART is trained with the LES data representing reference inflow
conditions (BLs) described in Sect. 4.2. From the wake data, key wake steering
variables are deducted by executing the multiple 1D Gaussian method explained in
Sect. 4.3.1. Additionally, input variables are extracted at 2.5D upstream, and several
operations are performed (Sect. 4.3.2) to determine the final input parameters. A
multi-task lasso regression (Sect. 4.3.3) is subsequently performed to generate a
coefficient matrix.
This matrix can be used in the execution (testing) of the model to estimate the key
wake steering parameters for new inflow conditions. The same operations as in the
training procedure are done on the input variables to obtain the input parameters,
after which the linear model (Sect. 4.3.3) is solved to estimate the key wake steering
parameters. A reversed version of the multiple 1D Gaussian model can then be
executed (Sect. 4.3.4) to obtain gridded wake data. During model development, this
wake estimation can be compared to the original LES data. One can experiment with
different input variables and operations to determine what set of input parameters
gives the most accurate solution (Sect. 4.3.5). This last step has not been included
in Fig. 4.3 to reduce clutter.
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Figure 4.3: Flowchart describing the training (a) and execution (b) procedure of DART. The
section in which the process is described is indicated in parentheses. The coefficient matrix
generated in (a) is used in (b).

4.3.1 Defining key wake steering parameters

A data-driven model will not be able to produce a full multidimensional flow field
but rather estimate parameters describing the wake at desired downstream positions.
Since curled wakes are considered, key wake steering parameters in this study are
retrieved with the multiple 1D Gaussian method (Sengers et al., 2020). In the
example below, the wake of a turbine with a +30◦ yaw angle in BL1 at x =5D is
considered (Fig. 4.4a). This method fits a simple 1D Gaussian at every vertical level
(k = 1 . . . K) where information is available to obtain a set of local normalized wake
center deficits (A = A1 . . . AK), wake center positions (µ = µ1 . . . µK) and wake
widths (σ = σ1 . . . σK). Subsequently, another Gaussian can be fitted through the
local wake center deficits in the vertical (Fig. 4.4b) to find the overall normalized
wake center deficit (Az) and vertical position with respect to hub height (µz), as
well as the vertical extension of the wake (σz). The local wake center position and
width at vertical level k that corresponds to µz are subsequently considered to be
lateral wake center position (µy) relative to the turbine location and wake width
(σy). Next, by fitting a second-order polynomial through the local wake center
positions between upper- and lower-tip height (Fig. 4.4c), one obtains a measure
for the curl (coefficient of quadratic term) and tilt (coefficient of linear term) of the
wake. An expression for the wake width as a function of height is found by repeating
this step for the local wake widths (Fig. 4.4d) to obtain coefficients sa and sb. After
this procedure, the wake can be described by the set of dimensionless parameters
displayed in Table 4.2.
Note that this method cannot accurately capture the splitting of the wake in
two separate cells, which might occur under strong veer as discussed in Vollmer
et al. (2016). Such cases will result in inaccurate values for the key wake steering
parameters and should be filtered out before applying the regression model described
in Sect. 4.3.3.
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Figure 4.4: Exemplary figures (BL1, ϕ =+30◦, x =5D) illustrating the key wake steering
parameters. (a) Normalized wake deficit cross-section (contour) of original LES data. (b) The
local normalized wake center deficits A, (c) local wake center positions µ, and (d) local wake
widths σ. Black crosses indicate LES, solid red lines the relation fitted in according to the
multiple 1D Gaussian method (Sect. 4.3.1) and dashed red lines the assumed continuation in the
reversed multiple 1D Gaussian composition method (Sect. 4.3.4). (e) Cross-section (contour) of
the normalized wake deficit after applying the reversed multiple 1D Gaussian composition method.

Table 4.2: Defined dimensionless key wake steering parameters. The normalized wake deficit is
computed as described in Sect. 4.2.2. All length parameters are nondimensionalized by the rotor
diameter D.

Scalar parameter Symbol
Amplitude of the normalized wake deficit Az

Lateral wake center displacement µy

Vertical wake center displacement µz

Width of the wake center height σy

Vertical extent σz

Curl curl
Tilt tilt
Quadratic wake width parameter sa
Linear wake width parameter sb

4.3.2 Input parameters

A regression model (Sect. 4.3.3) is used to estimate the key wake steering parameters
in Table 4.2. A set of measurable inflow and turbine variables are used as input
parameters, which are made dimensionless to make the model more universally
applicable, at least within the variability found between the simulations in this
study. This set of parameters is presented in Table 4.3.
Although these input parameters might all have their own isolated effect on the
wake propagation, they are heavily correlated in LES as shown in Fig. 4.5. One
can identify several highly correlated input clusters, representing (1) yaw (ϕ),
(2) atmospheric inflow (δα, α, zL−1, TI) and (3) turbine variables (CT, CQ,
TSR). Note that wind speed is not included since it is approximately constant
in all simulations and correlated with both inflow and turbine parameters. A
high correlation between variables indicates that they contain much of the same
information. Providing the same information to a model multiple times is futile
as it will not improve the accuracy. For this reason, it is hypothesized that
reasonable accuracy can be achieved with the regression model as long as one
variable from each input cluster is included. This would reduce the number of
model parameters and would give the user freedom to choose parameters based on
preference and availability. However, since the input variables are not perfectly
correlated, the information they contain is slightly different, and including both

45



Table 4.3: Set of dimensionless input parameters: dir is the wind direction [◦], z is the height above
the surface [m], uh and σuh

are the mean and standard deviation of the wind speed at hub height
[m s−1], ueff is rotor effective wind speed [m s−1], T is thrust [N], Q is torque [Nm], and ω is rotor
speed [rad s−1]. Subscript ut indicates upper-tip and lt lower-tip height.

Variable Symbol Calculated
Turbine yaw angle ϕ ϕ
Veer δα dirut − dirlt
Shear α lnuut

ult
/ ln zut

zlt
Obukhov stability parameter zL−1 2.5/L
Turbulence intensity TI σuh

/uh

Thrust coefficient CT T/(0.5 ρ u2
effπ(D/2)2)

Torque coefficient CQ Q/(0.5 ρ π u2
eff (D/2)3)

Tip speed ratio TSR ω(D/2)/uh

variables can increase the model’s accuracy. For this reason, two versions of the
surrogate model having a different number of variables are experimented with;
see Sect. 4.3.5. Although a high correlation between input variables is usually
undesirable in regression problems due to multicollinearity, Sect. 4.3.3 explains that
this is not an issue due to the regression model used in this study.
This regression model is linear, so to include nonlinear relations the input variables
can be transformed using reciprocal (f(x) = x−1), exponential (f(x) = ex),
logarithmic (f(x) = ln(x)) or square root (f(x) =

√
x)) transformations. All

these transformations have been tested in the procedure described in Sect. 4.3.5.
In addition to the transformed variables, second-order polynomial and interaction
terms are added, as well as an intercept (unity), extending the set of input
parameters.

Figure 4.5: Correlation matrix of the dimensionless input parameters in LES. Colors indicate a
positive (red) or negative (blue) correlation.
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4.3.3 Regression model

Since the LES data set has a relatively small sample size, a linear model is chosen as
they perform well on small sample sizes, reduce the risk of overfitting compared to
more complex machine learning models and are highly interpretable (Hastie et al.,
2009).
The regression is formulated as a linear model in matrix form

Y
(n×d)

= X
(n×p)

× B
(p×d)

, (4.1)

which estimates the output variable Y based on the design matrix X and coefficient
matrix B. Matrix dimensions indicated in Eq. (4.1) represent the sample size n,
number of downstream distances d and number of input parameters p. Note that p
contains the transformed variables and their second-order and interaction terms as
well as intercepts. Since these parameters are highly correlated and not all relevant,
the coefficients are determined based on a lasso regression method as introduced by
Tibshirani (1996). This guarantees a shrinkage of the number of variables through a
regularization parameter found by cross-validation. Relevant input parameters are
isolated from irrelevant parameters by multiplying the latter with a coefficient of
zero, effectively eliminating them from Eq. (4.1). Multicollinearity is therefore not
an issue in lasso, contrary to ordinary least squares, as typically only one parameter
is chosen from a set of highly correlated input parameters. This reduces the number
of input parameters, increasing the interpretability of the model. Additionally, it
is desired that the same set of input parameters is used to estimate the output
variable at all downstream distances. This is guaranteed in the multi-task lasso
method introduced by Obozinski et al. (2006), which is implemented in the multi-
task lasso algorithm from the scikit-learn Python library (Pedregosa et al., 2011).
See Sect. 2.2.1 for further explanation.
Whereas fitting the regression coefficients is more complex than ordinary least
squares fitting, the estimations of the key wake steering variables in the testing
or execution phase are generated through simple matrix multiplication as shown in
Eq. (4.1). The algorithm is therefore highly interpretable, easy to implement and
computational inexpensive.

4.3.4 Wake composition: reversed multiple 1D Gaussian

The coefficient matrix B can be used to estimate the key wake steering parameters in
Table 4.2 from inflow variables. This information is used to compose a vertical cross-
section of the wake deficit using the reverse of the multiple 1D Gaussian method
described in Sect. 4.3.1. The amplitude of the normalized wake deficit Â at each
height (k =1 . . . K) can be computed by simply filling out the Gaussian function
using Az, µz, σz. Similarly, local wake center positions µ̂ and local wake widths
σ̂ can be found by filling out a second-order polynomial. Additional assumptions
outside of the rotor area are that the curl continues (dashed red line in Fig. 4.4c),
and the wake width can be described by an ellipse between lower tip and surface and
between upper tip and wake top (dashed red line in Fig. 4.4d). Finally, a simple 1D

Gaussian can be filled out at every vertical level using the information from Â, µ̂, σ̂,
resulting in a two-dimensional grid filled with und values (Fig. 4.4e). Comparing
this composed wake to the original LES in Fig. 4.4a, one can see that this simple
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Figure 4.6: Accuracy of the wake composition procedure expressed as a percentage error in available
power of a virtual downstream turbine. At each downstream distance, data from all 120 simulations
are considered. The subplot in the top right zooms in to 4D≤ x ≤ 10D. Axis labels correspond
to those of the main plot.

description still contains much of the original information. The shape of the wake is
conserved, as well as the displacement of the wake center. The maximum deficit of
the composed wake center appears to be slightly larger than in LES. Additionally,
in the composition the maximum wake deficit is always in the center (definition of
a Gaussian), which is not necessarily true in LES or reality.

4.3.4.1 Wake composition validation

The procedure described in Sect. 4.3.4 is repeated for all 120 simulations, and 1D
≤ x ≤ 10D at everyD. The metric used here to evaluate the accuracy of this method
is the percentage error in available power in the rotor area of the composed wake
relative to when computed with the original LES wind field (PE [%] = (Pcomp −
PLES)/PLES · 100). A few things can be noted by studying the results shown in
Fig. 4.6. The composition shows a large systematic positive bias in the near wake
(x ≤ 3D). This is due to the so-called double-bell shape of the near wake, with
a speed-up region around hub height. When attempting to fit this with a simple
1D Gaussian, the deficit in the rotor area is underestimated, resulting in a positive
percentage error. For this reason, the near wake is excluded from analysis in the
remainder of this work. Further downstream (x ≥ 8D) a small negative systematic
bias can be identified, which is due to the “top-hat” shape of the wake deficit as
a result of temporal averaging. This is not captured by a Gaussian function and
will on average result in an overestimation of the wake deficit amplitude. The large
(negative) outliers typically indicate cases where the wake does not have a Gaussian
shape, such as the separation in two cells under strong veer. The median error in
the region 4D≤ x ≤ 10D is, however, smaller than 1%.

4.3.5 Feature selection

Numerous combinations of input parameters are possible. This includes choosing
from the variables presented in Table 4.3, as well as which of the five transformations
proposed in Sect. 4.3.2 to use. In order to find the most accurate solution, all
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combinations are tested. The combination that provides the minimum absolute
percentage error in available power over all training data, i.e., all considered
simulations and downstream distances (4D≤ x ≤ 10D), is sought. When using
all eight variables presented in Table 4.3, denoted DART-8, only the variable
transformations need to be decided. The number of possible combinations is
proportional to the number of transformations to the power of the number of
variables. All five transformations are tested on all variables except for ϕ, for which
the logarithmic and square root transformations have been omitted because negative
values occur. This results in a total of 31 · 57 = 234 375 possible combinations. Not
only is using all variables computationally expensive, as is discussed in Sect. 4.4.1,
operationally it is also unlikely that all variables are routinely obtained due to
high costs. As hypothesized in Sect. 4.3.2, using one variable from each input
cluster is already expected to produce accurate results. To test this, a version
of DART with only three variables, denoted DART-3, is considered. Allowing each
variable to be chosen and transformed, the total number of possible combinations
is a multiplication of the possible combinations of each input cluster. In total,
(1 · 3) · (4 · 5) · (3 · 5) = 900 possible combinations are tested to find the optimal
set of input parameters. It should be noted that other feature selection procedures
could be considered to reduce the computational expense needed for training, but
enhancing the training procedure was considered outside of the scope of the current
work.

4.3.6 Benchmark models

DART is benchmarked against the Gaussian (GAUS) and the Gaussian-Curl Hybrid
(GCH) models present in version 2.2.2 of the FLORIS framework (NREL, 2020).
Although secondary steering is not studied here, the GCH is still included because of
its incorporation of initial wake deflection and the added wake recovery term. Both
models share the same tuning parameters for the far-wake onset (αfloris, βfloris) and
wake recovery rate (ka,floris, kb,floris). Analogous to the training of DART discussed in
Sect. 4.3.5, the values of the tuning parameters are determined by minimizing the
APE of available power over all considered simulations and downstream distances
(4D≤ x ≤ 10D). Information on inflow (e.g., uh, TI) is taken from the LES data.
The models are trained independently of each other and will therefore have different
values for the tuning parameters.
The data used for the tuning include simulations with yaw and pitch angles.
FLORIS adjusts the thrust coefficient numerically for yaw angles, but not for pitch
angles. For this reason, the thrust coefficient lookup table was adjusted by the ratio
CT,pitch/CT,nopitch found in LES (Fig. 4.2).

4.4 Results

4.4.1 Performance on training data

This section displays the performance of the Data-driven wAke steeRing surrogaTe
model (DART) and the benchmark models when using all 120 simulations for
training or tuning. In Sect. 4.4.2 and 4.4.3 a validation of the model with testing
data is shown.
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Figure 4.7: Performance of all models on training data displayed as percentage error in available
power. In black GAUS, in blue GCH, in green DART-8 and in red DART-3. The boxes on the
far right (labeled 4–10) include all simulations and all distances. The shaded areas indicate a
significant improvement (green), insignificant difference (yellow) or significant decline (red) in the
accuracy of DART compared to the benchmark models.

Following the feature selection procedure as described in Sect. 4.3.5, the
optimal combination of input parameters of DART-8 was found to be
the set (ϕ, δα, α−1, ln(zL−1),TI−1, C−1

T ,
√

CQ,TSR
−1) and for DART-3

(ϕ, δα−1, ln(CT)). Figure 4.7 compares the performance of these versions to
that of the benchmark models as a function of downstream distance. The shaded
areas indicate a significant improvement (green), insignificant difference (yellow)
or significant decline (red) in the DART accuracy compared to the best-performing
benchmark model. Statistical significance is determined using an independent Welch
t test on the absolute percentage error with a probability value< 0.05. This test
assumes a normal distribution but can deal with unequal variances between data
sets. From Fig. 4.7 it is clear that both DART-8 and DART-3 consistently provide
significantly more accurate results than GAUS and GCH. Most striking is the
variability in the benchmark models that is an order of magnitude larger than that of
DART. The reason for this is systematically evaluated in Sect. 4.4.2 and 4.4.3. The
systematic error, indicated by the median, is however very similar for all models.
Comparing the two benchmark models, it is clear that GCH consistently estimates
a higher power than GAUS due to the added wake recovery term. The accuracy of
DART-8 is higher than that of DART-3, especially closer to the turbine. This is
attributed to the stronger wake deficit closer to the turbine as the wake center deficit
Az exhibits a larger range of possible values closer to the turbine. For instance in the
training data at x =4D, the range is −0.6≤ Az ≤−0.21, whereas at x =10D the
range is −0.27≤ Az ≤−0.09. Estimations with the same relative error therefore
bear a larger absolute error closer to the turbine. Having access to more information,
DART-8 consistently has a smaller relative error when estimating Az than DART-3,
which has a larger effect on the available power estimates closer to the turbine.
The order of magnitude of computational costs needed to train the models on a
single node is displayed in Table 4.4. Computational expenses needed to generate
the LES database are not considered. The benchmark models tune their parameters
in approximately 7.5 h (GAUS) and 8.25 h (GCH). DART’s training procedure is
split up in different stages. The column “Iteration” refers to the regression fitting to
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Table 4.4: Model training (DART) or tuning (GAUS and GCH) time using all 120 simulations and
seven (4D≤ x ≤ 10D) downstream distances. Iteration times are expressed as the mean over the
first 100 iterations. DART’s total is a simple multiplication of iteration and combinations.

Iteration Combinations Total
[s] [–] [h]

GAUS – – 7.5
GCH – – 8.25
DART-8 148 234 375 9635
DART-3 45 900 11.25

obtain the coefficient matrix B (Sect. 4.3.3) and the calculation of the absolute
percentage error in available power at 4D≤ x ≤ 10D (Sect. 4.3.5). This can
be carried out in seconds, in which fewer variables result in faster fitting. The
column “Combinations” indicates the number of possible combinations that need
to be tested (Sect. 4.3.5). The total training time is then simply the number of
combinations to be tested times the execution time of one iteration. Because of
its large number of possible combinations, DART-8’s total training time would
be over a year on a single node, which is not operationally feasible. To generate
the results in Fig. 4.7, the training process was heavily parallelized. With 900
possible combinations DART-3 can be trained in approximately 11.25 h, which is
only slightly more than the benchmark models. As mentioned in Sect. 4.3.5, the
training procedure could be enhanced, but this was considered outside of the scope of
the current work. Even though Fig. 4.7 shows a small accuracy gain of DART-8 over
DART-3, the computational costs to train DART-8 are much larger, and measuring
all these variables in the free field is impractical. For these reasons, it is decided to
only consider DART-3 in the remainder of this study.

4.4.2 Performance on testing data

A simple leave-one-out cross-validation technique is used to discuss the performance
of DART compared to the benchmark models. The models are trained or tuned with
seven out of the eight BLs (Fig. 4.1) and tested on the remaining one, representing
a new inflow condition. Eight evaluations can therefore be performed, i.e., each
BL being tested once. Note that for each evaluation a set of optimal parameters
and transformations are determined, which can differ from DART-3 in Fig. 4.7.
Similarly, GAUS and GCH are tuned again, resulting in new values for their tuning
parameters. Since the models show similar behavior in relation to the downstream
distance as discussed in Sect. 4.4.1, here only the collective result over 4D≤ x ≤ 10D
is discussed.
Figure 4.8 presents the results of this validation procedure. For all BLs, DART-
3 shows a significant improvement over GAUS and GCH. The systematic biases
(indicated by the medians) are similar for all models on the order of a few percent,
but the variability is greatly reduced in DART-3. The main reason for this is that
the benchmark models do not include a pitch angle parameter β. Although the
CT tables in the models are corrected in this study, the tunable parameters do not
account for this. To clarify, LES finds a decreasing wake size (in both horizontal
and vertical extent) with increasing β. This is accurately captured by DART-3,
but GAUS and GCH produce a wake of similar size independent of β or CT. The
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Figure 4.8: Performance of GAUS (black), GCH (blue) and DART-3 (red) using a leave-one-out
cross-validation technique. Performance is displayed as a percentage error in available power. Each
box includes data from 15 main simulations and 4D≤ x ≤ 10D. The shaded areas again indicate a
significant improvement (green), insignificant difference (yellow) or significant decline (red) in the
accuracy of DART-3 compared to the benchmark models.

inclusion of this effect is a notable improvement of DART that is important for
control strategies such as axial induction control (e.g., Corten and Schaak, 2003;
van der Hoek et al., 2019).
Furthermore, BL5 contains the worst results for all models. Figure 4.1 indicates
that this is an extreme case as it has the highest Obukhov stability parameter and
veer along with the lowest turbulence intensity. This is problematic for the models
since it is an inflow condition unlike anything it was trained for. This indicates a
limited generalizability of all models, and caution is needed when applying them
under conditions that differ greatly from those used for training. This is further
discussed in Sect. 4.5.1.

4.4.3 Operation without derating

For a fair comparison between DART-3 and the benchmark models, this section
only considers simulations representing operation without derating the turbine
(β =0◦). The training (selection of parameters for DART-3) and tuning (tuning
parameters of GAUS and GCH) have been repeated, and the results of the leave-
one-out cross-validation technique are displayed in Fig. 4.9. The variability in
the benchmark models in (near-)neutral conditions (BL 1, 2, 7 and 8) decreases
considerably, but DART-3 still produces significantly more accurate results. In
(weakly) stable boundary layers (BLs 3 to 6) GAUS and GCH still show a
large variability and occasionally a large systematic bias, which is not true for
DART-3. These results suggest that DART-3 outperforms the benchmark models,
especially under stable stratifications, those conditions where wake steering is
deemed most effective. Furthermore, the model performance is assessed for partial-
wake operation. Figure 4.10 compares the models when the downstream turbine is
moved 0.5D to the left (from the upstream observer’s point of view). Generally,
the variability is greatly reduced since the deficit is smaller. The benchmark models
display a systematic negative bias in all BLs, which is not true for DART-3. Only in
BL8 does DART-3 not show a significant improvement over the benchmark models,
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Figure 4.9: Same as Fig. 4.8, but only for cases with β =0◦, i.e., without derating the turbine.

Figure 4.10: Same as Fig. 4.9, but for partial-wake operation, i.e., with a virtual downstream
turbine moved 0.5D to the left.

but no satisfying explanation has been found as to why exactly this BL displays this
behavior.
A case study is displayed in Fig. 4.11a that presents the LES wake in a weakly
stable boundary layer (BL3) for a turbine with ϕ =+30◦. The wake has a clearly
defined curl and a wake center left of the hub. The DART-3 wind field in Fig, 4.11b
shows that the wake shape and center position are well presented. The GAUS
model (Fig. 4.11c), however, produces a circular wake shape and a larger wake
deflection to the left. The percentage errors indicated in the top of the figure
show that DART-3 has a high accuracy for both virtual turbines, but GAUS has
large biases due to the misplacement of the wake center. Under stable conditions
the wind veer is relatively high, adding a crosswise force pointing towards to right
above hub height. This force effectively opposes the lateral thrust force component
introduced by yaw misalignment pointing to the left, reducing the deflection of
the wake. The opposite is true for negative yaw angles, where wake deflection is
enhanced by veer. This asymmetry has already been pointed out in Fleming et al.
(2015), Vollmer et al. (2016) and Sengers et al. (2020). This effect is implicitly
included in DART-3, but not in the benchmark models. Figure 4.11d illustrates
that these models show an ever further deflecting wake, whereas DART-3 settles
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Figure 4.11: Case study of a turbine in a weakly stable boundary layer (BL3, ϕ = +30◦, β = 0◦).
Cross-section of normalized wake deficit (contours) of the LES (a), DART-3 (b) and GAUS (c)
at x =6D downstream. (d) Wake center trajectory at 4D≤ x ≤ 10D.

at a smaller lateral displacement close to LES. This explains not only the negative
bias of the benchmark models in Fig. 4.10, but also their larger spread observed in
Fig. 4.9. This result strengthens the previous indication that DART-3 is superior
under stable stratifications.

4.5 Discussion

4.5.1 Generalizability

Although the results presented in Sect. 4.4 are encouraging and are believed to
show proof of concept, they are not directly generalizable. A data-driven surrogate
model is sensitive to the data used for training, and encountering situations that
vary greatly from those used for training can result in large errors. This includes
very dissimilar atmospheric conditions, as already illustrated by the strongly stable
BL5 in Fig. 4.8, but extends to other locations (e.g., topography, wind farm
layout) and turbine types. Generating a numerical database with more atmospheric
conditions, tailored to each location and turbine type, is not possible due to the
high computational expense of these high-fidelity models. This limits a large-
scale implementation of data-driven surrogate models trained with numerical data.
Potentially, field measurements could be used, either in isolation or in combination
with numerical data. Wake data could possibly be obtained from long-range lidars
(Brugger et al., 2020) or strain measurements from the turbine’s blades (Bottasso
et al., 2018). Exploration of these possibilities is deemed an important task for
future research.
In this exploratory study, the development of DART was limited to the far wake and
a two-turbine setup. If desired, further development of the model is needed to include
the near wake, which can for instance be done by including the super-Gaussian
description (e.g., Shapiro et al., 2019; Blondel and Cathelain, 2020). An extension
to wind farm level could be achieved by for instance applying the superposition
principle as done in GAUS and GCH, although the accuracy of DART under
disturbed inflow needs attention.

4.5.2 Interpretability

As mentioned in Sect. 4.1, analytical models such as GAUS and GCH are presumed
to be more robust than purely data-driven models. However, when properly
trained, the accuracy of DART is expected to be significantly higher than that
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Figure 4.12: Regression coefficients of DART-3 estimating µy at x =6D using scaled input
parameters. Since all input parameters are dimensionless, the corresponding coefficients are also
dimensionless. Variable y0 indicates the intercept or systematic offset.

of analytical models as it is specifically tailored to certain scenarios. This can easily
be understood by looking at the number of fitted or tuned parameters. Since DART
includes second-order polynomial and interaction terms, adding more input variables
exponentially increases the size of coefficient matrix B (Eq. 4.1). This means that
for DART-3, having only 3 input variables, B contains 10 coefficients, but with 8
input variables DART-8’s B already contains 45 coefficients. When comparing this
to the four tuning parameters of the benchmark models, one can understand why
the latter are more robust but also are expected to have a lower maximum achievable
accuracy.
To demonstrate DART’s interpretability, Fig. 4.12 illustrates DART-3’s fitted
regression coefficients for all 10 input parameters for µy at x =6D. Since the order
of magnitude of the input parameters can vary greatly, for this example the input
parameters were scaled between −1 and 1 before regression fitting. Consequently,
the fitted coefficients indicate how important each input parameter is in estimating
the output variable. For the lateral wake center displacement it can easily be
seen that ϕ is the dominant parameter, which intuitively makes sense. Other
important parameters are the interaction term ϕ · ln(CT) (turbine variable cluster),
y0 (intercept), δα−1 and δα−2 (atmospheric inflow cluster), while other parameters
only slightly affect the wake center displacement.
Alternative to the interpretable lasso model, more complex black-box models
(e.g., neural networks) could be considered as they are expected to have a higher
accuracy when abundant data are available. Simpler models are, however, always
preferred because they are less prone to overfitting, which is especially true for small
sample sizes as used in this study. In addition, a model’s interpretability typically
diminishes with increasing complexity.

4.5.3 Speed test

A simple evaluation of computational costs has been carried out to ensure that
DART is sufficiently computationally efficient. The speed test comprises producing
cross-sections downstream of the turbine and therefore excludes the computational
resources needed to generate the LES data and to train or tune the models. This
test was executed on a laptop running Ubuntu 20.04.1 with eight 1.80GHz Intel
i7-8550U CPU’s and 8GB RAM, having a minimum number of processes running in
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Table 4.5: Model run time [ms] when simulating seven (4D≤ x ≤ 10D) and one (x =6D)
downstream distances expressed as mean ± standard deviation over 40 iterations.

x [D] 4–10 6
GAUS 58± 2 19± 1
GCH 88± 2 32± 1
DART-3 81± 4 13± 3

the background. All files containing relevant information, such as inflow variables,
were stored locally at the same location. Run times are given as an average and
standard deviation over 40 iterations, representing all simulations with β = 0◦, such
that no adjustment of the benchmark’s thrust coefficient lookup table is needed.
Table 4.5 shows that when producing results for the whole region considered in this
study (4D≤ x ≤ 10D), the run time of DART is comparable to GCH and slightly
higher than GAUS. When simulating only one downstream distance, for instance
exactly where a turbine is located, DART performs similarly to GAUS. These results
suggest that DART is quick enough to be used for controlling purposes.

4.6 Conclusions

This study explores the potential of a Data-driven wAke steeRing surrogaTe model
(DART) that retains a high degree of physical interpretation. After training with
large-eddy simulation data, a model consisting of only linear equations is able to
accurately describe the far wake in terms of trajectory, curl and available power. As
input parameters, it uses measurable inflow and turbine variables that are commonly
studied in the literature. The highest accuracy is obtained when including all
available input variables, but the model’s training time becomes very large. When
using only three measurable input variables, the surrogate model displays a slight
accuracy loss, but the training time is greatly reduced. In a benchmark against the
Gaussian and Gaussian-Curl Hybrid models, the data-driven model with three input
variables typically shows a significantly higher accuracy. In particular it performs
better under derated operating conditions and stable atmospheric stratifications
since it implicitly includes the effect of turbine derating on wake size, as well as the
effect of veer on the wake center position. These results are not directly generalizable
to all atmospheric conditions, other locations or new turbine types, which presents
a challenge for a large-scale implementation of data-driven surrogate models. The
results shown in this study are, however, believed to show proof of concept for
physically interpretable data-driven surrogate models for wake steering purposes.
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Chapter 5

Validation of an interpretable
data-driven wake model using
lidar measurements from a field
wake steering experiment

The content of this chapter is identical to the following journal article:
Sengers, B. A. M., Steinfeld, G., Hulsman, P., and Kühn, M.: Validation of an
interpretable data-driven wake model using lidar measurements from a field wake
steering experiment, Wind Energy Science, 8, 747-770, https://doi.org/10.5194/wes-
8-747-2023, 2023.
©Author(s) 2023. This work is distributed under the Creative Commons
Attribution 4.0 License. Reprinted with permission.

Abstract Data-driven wake models have recently shown a high accuracy in
reproducing wake characteristics from numerical data sets. This study used
wake measurements from a lidar-equipped commercial wind turbine and inflow
measurements from a nearby meteorological mast to validate an interpretable data-
driven surrogate wake model. The trained data-driven model was then compared to
a state-of-the-art analytical wake model. A multi-plane lidar measurement strategy
captured the occurrence of the wake curl during yaw misalignment, which had not
yet conclusively been observed in the field. The comparison between the wake models
showed that the available power estimations of a virtual turbine situated four rotor
diameters downstream were significantly more accurate with the data-driven model
than with the analytical model. The mean absolute percentage error was reduced
by 19% to 36%, depending on the input variables used. Especially under turbine
yaw misalignment and high vertical shear, the data-driven model performed better.
Further analysis suggested that the accuracy of the data-driven model is hardly
affected when using only supervisory control and data acquisition (SCADA) data as
input. Although the results are only obtained for a single turbine type, downstream
distance and range of yaw misalignments, the outcome of this study is believed to
demonstrate the potential of data-driven wake models.
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5.1 Introduction

With the wind energy industry maturing, more focus is being put on maximizing the
power yield of existing assets. This involves moving away from the traditional, and
currently still standard, greedy control of individual turbines to an optimization on
the wind farm level. In recent years, especially the wake steering concept has received
considerable attention in the literature; in this concept the turbine is intentionally
misaligned with the inflow wind, introducing a lateral component of the thrust force
that deflects the wake away from a downstream turbine. Many aspects of this
strategy have been studied over the years, including the underlying physics (e.g.,
Howland et al., 2016; Bastankhah and Porté-Agel, 2016) and its characteristics under
different atmospheric conditions (e.g., Vollmer et al., 2016; Schottler et al., 2017).
Additionally, the implementation of this concept in the field with so-called yaw
controllers has received attention. Such controllers typically include a representation
of the wake in the form of engineering wake models used to solve the optimization
problem, as well as the design of the yaw controller itself (e.g., wind direction
robustness – Rott et al., 2018; Simley et al., 2020; hysteresis – Kanev, 2020; and
open- versus closed-loop – Doekemeijer et al., 2020; Howland et al., 2020).
Although a large body of knowledge about the wake steering concept has been
obtained, the industry appears to be hesitant to adapt due to the large uncertainties
and lack of validation (van Wingerden et al., 2020; Boccolini et al., 2021). One
limitation is the number of field experiments carried out. Due to the considerable
expense and inaccessibility of test turbines, most research groups revert to high-
fidelity simulations or wind tunnel experiments. Although they provide a higher
degree of reproducibility and more flexibility in choosing the studied scenarios,
these experiments take place in controlled environments and do not fully represent
the complexity of the field. Wake models and yaw controllers are consequently
developed based on data from idealized conditions. Their accuracy in field situations
is questionable due to limited validation, slowing down the adoption by industry.
This uncertainty is amplified by findings that the application of wake steering can
lead to power losses under certain conditions (e.g., Fleming et al., 2020; Doekemeijer
et al., 2021).
Several field campaigns have been conducted in recent years to study wake steering
control. In their pioneering work, Wagenaar et al. (2012) used a scaled wind farm to
demonstrate the concept. Using rear-facing nacelle-mounted lidars, asymmetries in
wake deflection depending on the sign of the yaw angle were observed for the near
wake (Trujillo et al., 2016) and far wake (Bromm et al., 2018). This asymmetry
is also found using numerical tools (e.g., Fleming et al., 2015) and attributed to
shear-induced initial wake deflection (Gebraad et al., 2016) or the Coriolis force
(Archer and Vasel-Be-Hagh, 2019). One prominent aspect associated with wake
steering is the development of the wake curl as observed in numerical and wind
tunnel experiments (e.g., Howland et al., 2016; Vollmer et al., 2016; Hulsman et al.,
2022b). Fleming et al. (2017a) included a short notion that a curled shape could
be observed in the field, while Brugger et al. (2020) did not find a curled wake in
their field experiment. They argued that the effect of wind veer was too large for
the counter-rotating vortices to generate a curled wake, with wind veer reported to
tilt the wake in one direction (Herges et al., 2017; Brugger et al., 2019).
Using fixed yaw misalignment angles, Howland et al. (2019) found statistically
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significant gains of up to 47% for low wind speeds and a certain wind direction
in a small wind farm consisting of six turbines. Ahmad et al. (2019) reported that
wake steering is mainly beneficial in partial wake situations. Fleming et al. (2021)
found an asymmetry of the downstream turbine power generation, where gains from
correct steering (wake steered away from turbine) are larger than the losses from
erroneous steering (wake steered into turbine). They attributed this effect to the
added wake recovery induced by the counter-rotating vortices that also generate the
wake curl.
Additionally, several controller test studies have been carried out in which instead
of a fixed yaw angle, an optimal yaw angle is employed based on the inflow
conditions. This optimal yaw angle is determined with low-fidelity wake models
which generate discretized lookup tables (LUTs). In a series of papers from the
National Renewable Energy Laboratory (NREL), different versions of the FLOw
Redirection and Induction in Steady State (FLORIS; NREL, 2022) framework have
been used to generate these LUTs. In a field campaign at an offshore wind farm
with a turbine spacing of seven to eight rotor diameters, Fleming et al. (2017b)
reported a 10% power gain for certain wind directions. Fleming et al. (2019, 2020)
showed results of a field test with closely spaced turbines with two different versions
of FLORIS, both resulting in a power gain for most conditions but clear power losses
for some wind directions. Lastly, Doekemeijer et al. (2021) found large power gains
of up to 35% for one wind direction sector with a two-turbine setup in complex
terrain, but also here large losses were found for other wind directions.
These studies are pivotal in demonstrating the potential of wake steering but also
indicate that there is a large variability in its demonstrated effectiveness. Next
to atmospheric inflow conditions, this can be attributed to turbine type, turbine
spacing and terrain. Additionally, the choice of yaw controller and accuracy of the
wake model used to develop the LUTs are believed to have an effect.
After the pioneering wake deficit models of Jensen (1983) and Ainslie (1988),
Jimenez et al. (2010) first came up with a wake deflection model under yaw
misalignment. Nowadays, most analytical wake models are based on the Gaussian
model (Bastankhah and Porté-Agel, 2014, 2016; Niayifar and Porté-Agel, 2016).
Combined with the curl wake model (Mart́ınez-Tossas et al., 2019), the Gaussian–
curl hybrid (GCH) model (King et al., 2021) prescribes the effect of counter-rotating
vortices generated by turbine yaw misalignment, such as yaw-induced wake recovery,
asymmetric deflection and secondary steering. Lastly, Bastankhah et al. (2022)
presented an analytical way to describe the development of the wake curl with
downstream distance, and Bay et al. (2023) tackled “deep array” effects, in which
many wakes interact deep inside a large wind farm, with the cumulative-curl model.
In addition to these analytical models, data-driven wake (surrogate) models have
received some attention in recent years. Most use complex neural networks (e.g., Ti
et al., 2020; Renganathan et al., 2022; Purohit et al., 2022; Asmuth and Korb, 2022)
and have shown highly accurate results. However, these models need lots of training
data and have an extremely low interpretability (black-box models). In an attempt
to overcome this, Sengers et al. (2022) presented an interpretable Data-driven wAke
steeRing surrogaTe model (DART). Using only linear equations, DART uses inflow
and turbine variables to estimate wake parameters such as deficit, center location
and curl. It has a reduced number of parameters and is therefore highly interpretable
and needs fewer training data. In a comparison using large-eddy simulation (LES)
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results, Sengers et al. (2022) demonstrated that DART outperformed the Gaussian
and GCH models, especially under stable atmospheric conditions.
As mentioned before, studies validating wake models with field measurements are
rare, especially when yaw misalignments are included, resulting in uncertainties
about their accuracy. Moreover, comparisons between analytical and data-driven
models in their abilities to reproduce the characteristics of wakes observed in the field
are done sporadically. However, validations with measurements and comparisons
between models are necessary to assess their performance and provide direction for
future work.
The objective of this paper is to use nacelle-based lidar measurements of the wake
of a commercial turbine to validate the DART model and compare its accuracy
with that of the GCH model. To achieve the objective, this study comprises three
components: (1) to design a scanning strategy able to capture wake characteristics
such as deficit, center position and curl to accurately reconstruct a vertical cross-
section of the wake; (2) to assess the performance of the wake models by their
ability to estimate the available power of a virtual downstream turbine observed by
the lidar; and (3) to investigate DART’s performance as a function of data set size
and input variables, including an analysis of whether the model could operate on
supervisory control and data acquisition (SCADA) data alone.

5.2 Measurement campaign

This section introduces the field experiment carried out within this study.
Section 5.2.1 describes the measurement site and general setup. Section 5.2.2
describes the yaw control experiment. Section 5.2.3 through 5.2.7 then discuss the
devices, their measurement strategies and data processing. Especially in Sect. 5.2.3
more details are provided, including results from a preliminary study to determine
the scanning strategy of the nacelle lidar, since the measurements from this device
are essential for this study. Lastly, Sect. 5.2.8 describes how the data from all devices
are used to select 10min averaged cases considered in the rest of the study.

5.2.1 Measurement site

Measurements were carried out in the period of February through April 2021 as a
part of a yaw control field campaign at a slightly hilly onshore site in northeastern
Germany located approximately 13.5 km from the Baltic Sea; see also Hulsman
et al. (2022a). The layout of the site, including the positioning of the measurement
equipment, is shown in Fig. 5.1. The nacelle of turbine T1 was equipped with a
downstream-facing Leosphere WindCube 200S (serial no. WLS200S-024) pulsed
lidar (Sect. 5.2.3). T1 was a commercial 3.5MW eno126 turbine with a hub height
of 117m and a rotor diameter D of 126m. The nacelle was further equipped with
a Thies Clima wind vane and cup anemometer (Sect. 5.2.6), as well as a Trimble
SPS three-antenna GNSS (hereafter called GPS) to measure orientation, tilt and
roll (Sect. 5.2.7). A second pulsed lidar of the same type (serial no. WLS200S-023)
was installed west of the turbine to measure inflow profiles (Sect. 5.2.4). North of
this turbine, a meteorological mast (MM; Sect. 5.2.5) was erected and equipped with
Thies Clima cup anemometers and wind vanes.
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Figure 5.1: Layout of the measurement site with the local topography, relative to mean sea level,
indicated in the background. Black markers indicate turbines, where T1 is equipped with the
nacelle lidar. White markers indicate the meteorological mast (MM) and ground-based lidar
(VAD). Shaded areas indicate the wind direction sector with ϕt > 0◦ (red) and ϕt < 0◦

(yellow) and where wake measurements are assumed to be disturbed by the downstream turbines
(grey). The thick solid black line indicates the measured locations used for analysis. (Source for
topographic map including color bar: topographic-map.com, 2022.)

Lastly, Fig. 5.1 shows that a small 6m high hill 5D upstream of T1 and a larger
27m high hill 8D downstream of T1 were exactly in the wind direction sector that
was not used due to the presence of the downstream turbines (see Sect. 5.2.2). Two
villages with low buildings were located about 1 km from T1, directly upstream for
wind directions around δ = 265◦ and δ = 320◦ mainly outside of the studied wind
direction sectors. The dominant vegetation in the area is of an agricultural nature,
with patches of trees and bushes between the fields. These trees could affect the
measurements for δ ≈ 350◦, as noted in Hulsman et al. (2022a) using data from the
same site. This influence was accepted, as omitting this sector would result in large
data losses.

5.2.2 Yaw control experiment

As these measurements were part of a larger field campaign, only the wind
direction sector δ = [268◦, 360◦] ∪ [0◦, 20◦] could be used for experiments for
this study. Unfortunately, in this sector two smaller turbines (T3 and T4) were
located downstream of the lidar-equipped turbine. For the objectives of this study,
measurements at 4D downstream were targeted. This was to avoid the near wake,
as the two investigated wake models fail to represent the non-Gaussian shape of
the wake deficit, and to ensure that the wake curl had developed. The wind speed
reduction due to the induction zone of T3 at 4.8D (hub height of 103m and a
diameter of 93m) was estimated to be on the order of 2% (estimated with the
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vortex sheet theory – Medici et al., 2011) at the targeted distance of 4D. Although
not ideal, no alternative was possible due to the restrictions of the measurement
site, and it was decided to neglect the effects of this induction zone.
Part of the wind direction sector could not be used due to the positioning of T4
at 3.2D downstream. To make sure that the wake was not steered into T4, in
the sector δ = [268◦, 316◦] the turbine toggled between target yaw misalignment
angles of ϕt = 0◦ (duration of 30min) and ϕt = +15◦ (duration of 60min, clockwise
rotation looking from above), steering the wake to the left. Correspondingly, in the
sector δ = [316◦, 360◦] ∪ [0◦, 20◦] the turbine toggled between ϕt = 0◦ (30min) and
ϕt = −15◦ (60min, counterclockwise rotation looking from above), steering the wake
to the right. The downside of this approach was that directly comparing positive
and negative yaw angles under similar atmospheric conditions was not possible.
Additionally, more data were collected in the first sector as this wind direction was
more dominant.
Fixed yaw offsets were applied as this involved minimal changes to the yaw controller.
Besides, a distribution of yaw misalignments was expected to be obtained due to
the imperfect tracking of the wind direction by the yaw controller.

5.2.3 Nacelle lidar

This subsection describes the measurements performed with the nacelle-mounted
lidar. Section 5.2.3.1 describes the design of the scanning strategy, including results
of a numerical evaluation to determine what trajectory should be implemented in
the field. Section 5.2.3.2 describes the processing, including filtering, of these data.

5.2.3.1 Design scanning strategy

A pulsed lidar can be mounted onto the nacelle to sample to turbine’s wake. When
operated with a single plan position indicator (PPI) scan with an elevation angle
of ϕPPI = 0◦, the line-of-sight velocities on a horizontal plane at hub height are
obtained. Although quick, this trajectory only provides data at one height in the
wake. Attempts have been made to capture information in the vertical plane, such
as in Beck and Kühn (2019), who proposed a scanning pattern of alternating PPI
and range height indicator (RHI) scans to obtain information in both dimensions.
However, wake shape deformations due to wind veer (tilted) or yaw misalignment
(curled) cannot be captured with this scanning strategy. Brugger et al. (2019, 2020)
used nine PPI scans at different elevation angles, allowing the description of non-
circular wake shapes in a vertical plane.
In this paper, their strategy was adopted and evaluated numerically to gain insights
into how the number of PPI scans and their angular speed (following Carbajo Fuertes
and Porté-Agel, 2018) affect the ability to capture the characteristics of 10min
averaged wake. This exercise used large-eddy simulation (LES) results, allowing for
a systematic uncertainty analysis of the proposed scanning patterns.
The Parallelized Large-Eddy Simulation Model (PALM; Maronga et al., 2020)
coupled with the aeroelastic code FAST (Jonkman and Buhl Jr., 2005; Krüger et al.,
2022) representing the NREL 5MW turbine (Jonkman et al., 2009) provides the
numerical wind fields. Precursor simulations generated realistic inflow conditions,
after which the main simulations with one turbine were performed. The aeroelastic
code for the turbine installed in the field, as used in Sect. 5.4.1, was not yet available
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Figure 5.2: Results of the virtual lidar tests. Bars indicate the mean and whiskers the standard
deviation of the absolute percentage error (APE) of available power Pav over six simulations. The
number of PPI scans is indicated on the x axis. “all” indicates the use of all numerical data, hence
the error introduced by the composition method. The opaqueness represents the lidar’s angular
speed ωlidar.

during the planning stage of this campaign. Both turbine T1 and the NREL 5MW
turbine have the same rotor diameter (126m) but differ in hub height (117 vs. 90m)
and aeroelastic properties. It was, however, assumed that at 4D the characteristics
of the wakes produced by these turbines are sufficiently similar.
A single turbine with yaw angles of ϕ = {−15, 0, 15◦} in a neutral (TI=10.3%, α =
0.17; see the Appendix for definitions of abbreviations and symbols used throughout)
and a stable (TI=5.7% and α =0.32) boundary layer with a hub height wind
speed Uh ≈ 8m s−1 was simulated. The simulation length was 25min, of which
the first 15min was omitted as spin-up and the remaining 10min was used for
analysis. Synthetic lidar data targeting 4D downstream were subsequently generated
by employing the lidar simulator LiXim (Trabucchi, 2019) with an accumulation
time of 0.1 s and an opening angle of 70◦. Temporal averages were taken for all
points in the scanning cycle. The wake composition method, later described in
Sect. 5.3.1, was used to reconstruct vertical cross-sections of the wake, from which
the available power Pav could be determined. This estimate is compared to the
reference (subscript ref) 10min averaged LES data. Used as a metric is the absolute
percentage error (APE) over the six (two boundary layers times three yaw angles)
simulations calculated with Eq. (5.1):

APE[%] =

∣∣∣∣Pav − Pav,ref

Pav,ref

∣∣∣∣ · 100, (5.1)

in which Pav = P/CP = 0.5ρAUeq with ρ the air density (assumed to be constant),
A the rotor area and Ueq the rotor-equivalent wind speed. The bar “all” on the far
left in Fig. 5.2 indicates the reconstruction of the wake based on the original LES
data, hence the error introduced by the composition method. Further, one, three,
five, seven and nine PPI scans were tested, where the middle scans always targeted
hub height and the outermost scans upper and lower tip height at 4D. Trajectories
with an even number of PPI scans were not tested, as this would remove the scan
at hub height that was needed for another study. Additionally, it is desirable to
measure the largest wake deficit, which is expected to develop around hub height.
Figure 5.2 shows that five PPI scans typically hold the highest accuracy. Using
fewer PPI scans results in inaccurate estimations of the wake deficit distribution
in the vertical, while using more PPI scans results in long cycles and consequently
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Figure 5.3: Examples of multiple PPI scan filtering in LOS–CNR diagrams in which black
markers indicate original data and red markers data kept after filtering. (a) A textbook case
with few outliers that indicate hard targets and (b) a more problematic case in which there are
many corrupted measurements. Here yellow markers indicate a second cluster from which all
measurements were omitted. Black crosses indicate the two cluster centers.

fewer measurements per observation point. The angular speed ωlidar seems to have
little effect, except for when seven PPI scans are used. This is attributed to chance,
as too few cases are studied for the statistics to converge. Generating more LES
results with a wider range of atmospheric conditions and turbine yaw angles was not
possible due to computational restrictions. While these results are not statistically
significant and it can therefore not be claimed that an “optimal” scanning strategy
has been found, this exercise allows for making an informed decision.
It was decided to implement the trajectory showing the lowest error, hence consisting
of five PPI scans with ωlidar = 14◦ s−1. The elevation angles of these scans were
ϕPPI = {−7.0, −3.5, 0.0, 3.5, 7.0◦}, and the accumulation time used was 0.1 s. With
an opening angle of 70◦, the duration of one PPI scan is 5 s. Changing elevation
angles takes 1.3 s, and resetting to the start of the cycle takes 3.5 s, adding to 34 s
to complete one full cycle. The range gate length was set to 25m, corresponding to
a pulse duration of 100 ns. Range gates were defined between 50 and 1340m with
5m spacing. However, in the processing phase only data up to 820m were used to
avoid the influence of the ground in the PPI scan with the lowest elevation angle.

5.2.3.2 Data processing

Since the performed PPI scans were quite fast with a relatively coarse resolution, all
PPI scans with the same elevation angle in a 10min window (see Sect. 5.2.8) were
grouped together to get a better estimate of the measurement distribution.
Simple filtering based on the carrier-to-noise ratio (CNR) and line-of-sight
velocity (LOS) was performed, where only realistic data with CNR< 0 dB and
0m s−1<LOS< 20m s−1 were kept. On the remainder, a Gaussian filter was used,
retaining only measurements within 3 standard deviations of the median CNR and
LOS (99% confidence interval). This removed outliers due to hard targets, as
illustrated in Fig. 5.3a.
However, some PPI scans exhibited a LOS–CNR diagram as illustrated in Fig. 5.3b,
containing many measurements with high CNR and low LOS values. To filter out
these erroneous measurements, a mean shift clustering algorithm (Fukunaga and
Hostetler, 1975) was employed, as was for instance used in Wang et al. (2022) as
part of data cleaning for power curve tuning. The algorithm identified clusters in
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the LOS–CNR space and allocated all measurements to any of the clusters based on
the Euclidean distance to the cluster center. Clusters were then either considered
or eliminated based on whether the location of their center was physically feasible.
In the example in Fig. 5.3b, the yellow cluster was omitted, since many points
outside the main cluster with high CNR and low LOS values indicate erroneous
measurements. Lastly, the Gaussian filter based on the 99% confidence interval was
repeated, as removing one cluster drastically affected the outcome of this filter.
After filtering, all PPI scans were interpolated to a standard grid with a resolution
of 1.4◦ (corresponding to the original resolution) to account for the slightly different
azimuth angles between scans as a result of the lidar’s inability to measure the exact
same location each time. Next, the PPI scans were temporally averaged as long as
not more than two data points within a 10min window were missing. When more
than 25% of the measurements were filtered out, as is the case with Fig. 5.3b, the
averaged PPI scan was removed from the 10min window, resulting in fewer than
five PPI scans. If fewer than four averaged PPI scans remained after filtering, the
case was eliminated.
Lastly, the PPI scans’ azimuth and elevation angles were corrected with the nacelle’s
10min averaged tilt angle and misalignment (see Sect. 5.2.7). The horizontal wind
speed was subsequently computed by correcting the LOS with these azimuth and
elevation angles.

5.2.4 Ground-based lidar (VAD)

As shown in Fig. 5.1, the ground-based lidar was situated 1.85D upstream of the
lidar-equipped turbine for δ = 281◦ to measure profiles of wind speed and direction.
The ground-based lidar performs continuous velocity–azimuth display (VAD) scans
at an elevation angle of ϕVAD = 75◦ with an accumulation time of 0.5 s and an
angular speed of 30◦ s−1. Also for this lidar, the range gate length was set to 25m,
corresponding to a pulse duration of 100 ns. Range gates were defined between 50
and 840m with 5m spacing.
Filtering was done based on the 2D histogram method introduced by Beck and
Kühn (2017), which assumes a normal distribution of LOS and CNR values. The
measured data points were binned by their LOS and CNR values, and the number
of data points in each bin were counted. Bins having a count below 10% of the bin
with the highest count were omitted.
Next, the azimuth angle (θVAD) was corrected by means of a hard-target analysis,
such that θVAD = 0◦ faces north. To obtain the wind speed components (u, v, w)
and consequently the horizontal wind speed and direction, the measurements of each
range gate were fitted with the following sinusoid:

LOS = u cos(θVAD) sin(
π

2
− ϕVAD) + v sin(θVAD) sin(

π

2
− ϕVAD) + w cos(

π

2
− ϕVAD)

(5.2)
Lastly, only when at least 75% of the data points remained after filtering and
the fitted sinusoid achieved a correlation coefficient of at least 0.8 (determined
empirically), the wind speed components of a vertical level were retained.
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5.2.5 Met mast

A meteorological (met) mast was positioned 2.7D upstream of T1 at δ = 350◦

(Fig. 5.1). This mast was equipped with cup anemometers at 116.3m (hub height,
Uh) and 54.2m (lower tip height, Ult) to measure wind speed and shear. Wind
vanes were located at 112.2m (approximately hub height, δh) and 54.5m (lower
tip height, δlt). The highest cup anemometer was located on the top of the met
mast for undisturbed flow from all directions, whereas the other cup anemometer
and wind vanes had orientations of 315 and 135◦, respectively. A flow distortion
due to the tower structure affecting the measurements occurs for wind directions
between approximately 310 and 320◦, which is not considered in this study (see
Sect. 5.2.1). The wind directions analyzed here are assumed to be undisturbed.
The cup anemometers and vanes had an accuracy of 0.2m s−1 and 1.5◦, respectively.
All sensors operated at a sampling frequency of 50Hz.

5.2.6 Wind turbine operational data

SCADA data were collected at the turbine at a frequency of 50Hz. These data
contain measurements from the nacelle’s wind vane δS and cup anemometer US, as
well as power P , rotor speed ω and turbine status, the latter indicating whether the
turbine was operating normally. A standard nacelle transfer function was used by
the operator to correct wind speed measurements for the influence of the rotor.

5.2.7 GPS

All above-mentioned systems were equipped with a Global Positioning System
(GPS) sensor used for time synchronization. Additionally, the nacelle of T1 was
equipped with a three-antenna global navigation satellite system (GNSS) to measure
orientation, roll and tilt. This system was operated at a sampling frequency of 10Hz,
and its measurements have a root mean square error of less than 0.1◦. This results
in a spatial error of less than 1m at 4D downstream.
Orientation measurements, averaged to 10min values to smooth out high-frequency
vibrations, were used to compute the yaw misalignment ϕ of the turbine relative to
the wind direction δh measured at the met mast. These measurements were then
used to correct the PPI scans’ azimuth angles. Likewise, 10min averaged nacelle tilt
angles were used to correct the PPI scans’ elevation angles, but the scans were not
corrected for roll as it was expected to only have a small influence on the results.

5.2.8 Selection of data for model evaluation

The measurements were averaged over 10min as is commonly done in the wind
energy industry. Case selection was done using the following steps:

1. Within a 10min window, no yaw maneuver should take place. A preselection
of cases was therefore done purely based on GPS data. A case was considered
when the orientation did not change for at least 12min, of which the first 2min
was not considered for analysis because the wake needed time to reach 4D
downstream. In the case that the orientation did not change for more than
22min, the first 2min was omitted and the remainder was split into two 10min
windows as far apart as possible.
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2. The 10min averaged Uh needed to be between cut-in and rated wind speed.
δh needed to be in the defined sector (Sect. 5.2.1) and approximately normally
distributed. This eliminated situations where there is a clear trend in the wind
direction signal.

3. The inflow measured at the met mast should reasonably compare to the
measurements at the turbine’s nacelle. The met mast measurements were
temporally corrected to match the nacelle signal using Taylor’s hypothesis of
frozen turbulence. Next, the two signals were compared, where the 10min
averaged wind speed |Uh − US| < 1m s−1 and direction |δh − δS| < 5◦.

4. The profiles from the VAD lidar were used to check whether the wind speed
profiles were approximately logarithmic, as the effect of low-level jets on the
downstream wake characteristics is currently not captured by the wake models
and considered out of the scope of this study.

5. If all checks were passed, all completed cycles within the defined 10min window
were averaged as described in Sect. 5.2.3. After averaging, the PPI scans were
interpolated to a vertical plane at 4D downstream of the turbine. The wake
deficit (Udef) was calculated by subtracting the wake measurements with the
inflow profile obtained from the met mast measurements and normalized by
dividing by the hub height wind speed Uh.

6. Lastly, the 10min averaged cases were evaluated by the multiple 1D Gaussian
method (see Sect. 5.3.1). Since the opening angle of the PPI scans is 70◦,
it can be expected that wakes from other turbines are also visible in the
measurements. To prevent using an incorrect wake, the scans are sliced around
the expected location of the considered wake. Boundaries of these slices are
determined by the maximum wind speeds between the scan’s center, corrected
for yaw misalignment, and 150m left and right of this center. Furthermore, the
correlation coefficient (R) of the Gaussian fit with the wake deficit observations
needed to be higher than 0.85 (empirically determined) to be considered,
removing cases that do not fulfill the model assumptions of a Gaussian wake
deficit.

This selection procedure resulted in 382 individual 10min averaged cases to be used
for analysis. Figure 5.4 displays the distribution of measured yaw angles during the
campaign. Most measurements were done without yaw misalignment, since during
a part of the campaign the implemented controller had issues and turbine control
reverted back to standard operation. The difference between the number of positive
and negative yaw angles is due to a more dominant wind direction in the sector
containing positive yaw angles.
The solid vertical lines indicate the median yaw angles per target angle. For greedy
control, the median shows a small bias of ϕ = −0.94◦, suggesting a calibration error
of the nacelle’s wind vane. For a target angle ϕt = +15◦, the median achieved
ϕ = +11.14◦, whereas for ϕt = −15◦, ϕ = −13.19◦ is achieved. These angles are
smaller than the targeted angles, which is due to the wind vane error under yaw
misalignment (Kragh and Fleming, 2012; Simley et al., 2021a). Figure 5.5 displays
an overview of the inflow conditions measured during these 382 cases. The shear α
with a mean of 0.3 is slightly larger than expected, and the veer δα is smaller than
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Figure 5.4: Data availability of the 10min averaged cases as a function of achieved yaw angle (ϕ).
Colors indicate the targeted ϕt = −15◦ (yellow), ϕt = 0◦ (blue) and ϕt = +15◦ (red). Solid vertical
lines and accompanying text mark the median of the achieved yaw angles.

Figure 5.5: Distribution of 10min averaged inflow variables measured at the met mast for all 382
cases: hub height wind speed (Uh), turbulence intensity (TI), shear (α) and veer (δα).

expected, showing a high occurrence of negative values. Regardless, all variables
show a range of values that are physically reasonable.

5.3 Methods

This section introduces the modeling aspects of this study. First, Sect. 5.3.1
summarizes the multiple 1D Gaussian method used to obtain quantifiable wake
characteristics. Section 5.3.2 discusses what information is used as a reference, and
Sect. 5.3.3 describes the splitting of the data set into training and testing subsets.
Then, Sect. 5.3.4 introduces the data-driven model and Sect. 5.3.5 briefly introduces
the analytical model used in this study.

5.3.1 Multiple 1D Gaussian method

The multiple 1D Gaussian method (Sengers et al., 2020) is utilized to obtain
quantifiable wake characteristics, listed in Table 5.1. This method fits a 1D Gaussian
through the wake deficit data normalized by the wind speed at hub height (Udef/Uh)
in the horizontal plane for every height level, in the current study obtained from
five consecutive PPI scans. This results in a set of local wake deficits (amplitude),
center positions (location) and widths (standard deviation) for each height. By
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Table 5.1: Dimensionless variables describing the wake characteristics obtained with the multiple
1D Gaussian method. Reused from Sengers et al. (2022) with permission.

Scalar parameter Symbol
Amplitude normalized wake deficit Az

Lateral wake center displacement µy

Vertical wake center displacement µz

Width wake center height σy

Vertical extent σz

Curl curl
Tilt tilt
Quadratic wake width parameter sa
Linear wake width parameter sb

fitting another 1D Gaussian through the set of local deficits in the vertical, the
vertical deficit profile can be determined. The position of the maximum deficit in
this profile is then considered the vertical position of the wake center. The horizontal
position of the wake center is determined by interpolating the set of local center
positions to this height. A second-order polynomial is fit through the set of local
wake center positions to find the wake curl and tilt. The same method is applied
for the wake widths to find their profile as a function of height.
The reverse of this method, hereafter called the composition method, can be used
to obtain a vertical cross-section of the wake from a set of wake characteristics. For
more details on the multiple 1D Gaussian method and the composition method, the
reader is referred to Sengers et al. (2020, 2022).

5.3.2 Reference power

The wind speed measured by the nacelle lidar is used to obtain the available
power at 4D downstream. Since the spatial resolution is relatively coarse and the
two outermost PPI scans target the tip heights, the 10min averaged wind speeds
are interpolated using a cubic spline function to a resolution of ∆ = 5m. This
inherently fills gaps when data are not available. The spatially interpolated data
are consequently used to determine a rotor-equivalent wind speed (Ueq) and an
available power Pav,ref used as a reference in the remainder of this study.

5.3.3 Training and testing data

The data set is split into a training part (80% of total size) and a testing part
(remaining 20%). This has been done in a stratified random manner, meaning the
data set was first split up into three subsets according to their target yaw angle
ϕt = {−15, 0, 15◦}, after which from each subset 20% of data were randomly
selected to be testing data. This way, it is ensured that both testing and training
data contain cases with a yaw misalignment.
To not base the results on only a single testing data set, this random splitting of
the data set (resampling) has been repeated 96 times (hereafter: resamples). The
choice of 96 resamples is pragmatic, as it was convenient for parallel computing
(multiple of 24 nodes per core). Error statistics appear to be normally distributed,
which was not the case with 24, 48 or 72 resamples. Although more resamples are
desirable (e.g., bootstrapping is typically done over several thousands), this was not
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possible due to computational limitations as the training of the models can be quite
expensive as discussed in Sect. 5.3.4.4 and 5.3.5.

5.3.4 Data-driven wAke steeRing surrogaTe model (DART)

This subsection introduces DART, starting with a summary from previous work in
Sect. 5.3.4.1 and changes made to the model since this work in Sect. 5.3.4.2. This
is followed by information on the input variables (Sect. 5.3.4.3). Lastly, the feature
selection of the three versions of the model considered in this study is discussed in
Sect. 5.3.4.4.

5.3.4.1 Model description

DART was introduced in an LES study by Sengers et al. (2022). It estimates
wake characteristics (Table 5.1) obtained from the multiple 1D Gaussian method
(Sect. 5.3.1) with a linear regression model from standard input parameters (e.g.,

yaw misalignment, shear, thrust coefficient). These wake characteristics (Y⃗ ) are
estimated from input parameters (X) using a simple linear model:

Y⃗
(n)

= X
(n×p)

× B⃗
(p)
, (5.3)

in which B⃗ denotes the model coefficients. The matrix dimensions are indicated by
the sample size n and the number of input parameters p, containing the input
variables, their second-order and interaction terms, and intercepts. The model
coefficients are fitted with the lasso method (Tibshirani, 1996), using the following
cost function:

argmin
B

∑
n

(yn −
∑
p

xnpB⃗p)
2 + λ

∑
p

|B⃗p|. (5.4)

This method remains close to ordinary least squares but adds a regularization
parameter λ to its cost function, effectively penalizing adding more parameters.
This ensures shrinkage of the input parameters and eliminates the issue of
multicollinearity as only one of the highly correlated input parameters is chosen.
The notations presented here deviate slightly from those in Sengers et al. (2022),
as in the current study only one distance downstream is considered, simplifying the
equations.
To include nonlinear relations between input parameters and wake characteristics,
the original variables can be transformed with, e.g., a square root or exponential
transformation. In the training stage (Sect. 5.3.4.4), it is determined what set of
input variables and transformations yields the most accurate results.
Lastly, the estimated wake characteristics are used in a composition method
(Sect. 5.3.1) to generate a vertical cross-section of the wake deficit and wind field.
For a more detailed description of DART, the reader is referred to Sengers et al.
(2022).

5.3.4.2 Modifications to the model

A few changes have been made to DART since its first description in Sengers
et al. (2022). Most notably, the feature selection procedure has been changed.
Before estimating the wake characteristics with a linear model, inflow variables
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(e.g., ϕ, α, ω) undergo transformations. In addition to the non-transformed variable,
the square root, exponent, natural logarithm and reciprocal transformation are
considered for all input variables, resulting in five options for each variable and
many possible sets of input parameters (e.g., ϕ, α−1, ln(ω)). In Sengers et al.
(2022), all these possibilities were tested, the available power of a virtual turbine
was estimated and compared to the original data, and the set of input parameters
that had the smallest error was chosen. This selection procedure not only was
very computationally expensive but also does not necessarily give the most accurate
solution for all wake characteristics. Hypothetically, the wake center position could
be best explained by the non-transformed yaw angle, whereas the wake curl could
be best explained by the exponent of the yaw angle. In the current work, the
determination of the best set of transformations is tested for each wake steering
variable individually. The best transformation is then chosen as the one that has
the smallest mean absolute error in the training data. This not only allows for more
accurate estimates but also speeds up the training process.
Secondly, square root and natural logarithm transformations do not allow for
negative input values. A sign function is used to include these values rather than
omitting them, as was done in the previous work.
Lastly, in the testing phase, extrapolation is prevented by using the maximum (or
minimum) value found in the training data when an input variables exceeds this
range. Although this does not allow DART to give accurate estimations in new
situations, it eliminates erroneous estimates due to extrapolation.

5.3.4.3 Input variables

As argued in Sengers et al. (2022), highly correlated input variables are
interchangeable as they provide similar information. However, as long as they are
not perfectly correlated, including all variables can lead to a higher accuracy as
some new information is added. Due to the use of the lasso regression method,
multicollinearity is not an issue.
Because of DART’s flexibility, training with different sets of input variables is
possible, allowing for an analysis of the model’s accuracy as a function of chosen
input variables. An overview of the available input variables is displayed in a
correlation matrix (using the Pearson correlation coefficient) in Fig. 5.6. Other
variables such as the wind direction variability and TI at lower tip height could
have been included but were omitted for brevity. As opposed to what was seen in
LES in Sengers et al. (2022), the inflow variables δα, α and TI are weakly correlated
in this field experiment. Secondly, ω and P are highly correlated with Uh.

5.3.4.4 Feature selection

In this study, multiple versions of the DART model were considered, each having
a different set of input variables. Adding more input variables might increase the
accuracy but will increase the training time of the model significantly. In Sengers
et al. (2022) it was hypothesized that DART can achieve reasonable accuracy as
long as each of the following clusters is represented: yaw (ϕ), atmospheric inflow
(δα, α, TI) and turbine (ω, P , Uh). Due to its high correlation with the turbine
variables, Uh is here considered a turbine variable rather than an inflow variable.
Following this logic, the first version of DART uses three input variables.
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Figure 5.6: Correlation matrix of available input variables. In addition to the inflow variables
shown in Fig. 5.5, yaw misalignment ϕ, rotor speed ω and power P are considered input variables.

Figure 5.7: Performance of DART-3 on the training data. The set of input variables is {ϕ, α, P}.
(a) Histogram of PE of Pav for one resample. Fitted normal distributions are indicated with
solid lines, and MPE and MAPE are given in the top right. Histograms of MPEs (b) and
MAPEs (c) over all 96 resamples.

DART-3
To determine the most accurate solution using only three variables, all possible
sets of input variables and their respective transformations (Sect. 5.3.4.2) are tested
during the training stage and their accuracy to reproduce the training data set is
investigated. By means of an example, Fig. 5.7a displays the error distribution
of one resample. The error metric used here is the percentage error (PE) of Pav

(calculated analogously to Eq. 5.1 but without absolute values) at 4D downstream.
From these values, a mean percentage error (MPE) and mean absolute percentage
error (MAPE) can be computed, as indicated in the top right of the figure.
Repeating this for all 96 resamples, one can obtain a histogram of MPEs and MAPEs
as displayed in Fig. 5.7b and c. Finally, the mean over 96 MPEs (MPE) and MAPEs
(MAPE) can be calculated; see top right of the figures. The MPE = −2.19%
illustrates a negative systematic bias, meaning DART underestimates Pav.
To determine the most accurate set of input variables, MAPE is considered. The
results for all considered combinations of input variables are displayed in Table 5.2,
showing that the set {ϕ, α, P} provides the most accurate result (lowest MAPE)
and is therefore used in the remainder of the study, denoted as DART-3. The
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Table 5.2: Overview of all possible combinations of input variables in DART-3 and their respective
MAPE values. Boldface indicates the combination resulting in the lowest error.

Variable 1 Variable 2 Variable 3 MAPE [%]
ϕ δα ω 18.24
ϕ δα P 16.70
ϕ δα Uh 17.17
ϕ α ω 15.11
ϕ α P 14.53
ϕ α Uh 15.08
ϕ TI ω 15.66
ϕ TI P 14.77
ϕ TI Uh 14.81

training time for each set of input variables with DART-3 is on the order of 10min;
hence the total computation time to determine the best set of input variables is
approximately 1.5 h.

DART-4
Because the training of DART-3 is fast, an additional variable can be included to
improve the accuracy of the model. The first three variables are chosen similarly
to DART-3 (one from each cluster), while the fourth variable can be any input
variable not yet selected. Repeating the analysis of computing a MAPE for each
resample and consequently a MAPE for each set of input variables, generating a
table corresponding to Table 5.2 (not shown here for brevity), reveals that {ϕ, α,
P , Uh} is the most accurate combination with MAPE = 12.69%, hereafter called
DART-4. Its training time for each combination is approximately 1 h; hence with
18 possible sets of input variables, the total computation time needed for training
is 18 h.

DART-7
Lastly, all available variables are used as input in DART-7, demonstrating the
maximum achievable accuracy of the data-driven model during this experiment.
DART-7’s accuracy on the training data was indeed the highest with MAPE =
10.31%. The computation time needed to train DART-7 is approximately 1 month
if not parallelized.

5.3.5 Analytical wake model

The state-of-the-art GCH model (King et al., 2021) as available in version 3.0rc4 of
the FLORIS framework (NREL, 2022) acts as a reference model in this study. The
GCH model incorporates the spanwise and vertical velocity components (Mart́ınez-
Tossas et al., 2019) due to the present vortices into the Gaussian wake model
(Bastankhah and Porté-Agel, 2014, 2016; Niayifar and Porté-Agel, 2016).
Since presently only the wake at a distance of 4D behind the upstream turbine
is studied, the GCH model could have benefited from including a near-wake model
(e.g., Blondel and Cathelain, 2020), but this coupling was not available in this version
of FLORIS. The CT curve of the eno126 turbine is obtained from the Bladed model
for which the aerodynamic properties of the turbine were provided by the operator
and is used in these calculations.
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Inflow information is taken from the 10min averaged met mast data. The model
tuning parameters (αGCH; βGCH for the far-wake onset; and ka,GCH, kb,GCH for the
wake growth rate) are determined by minimizing the MAPE of available power over
the training data, analogously to the training of DART described in Sect. 5.3.4.4.
The tuning takes about 3 h, and the model has an error of MAPE = 18.13%.

5.4 Results

This section presents the results of this study. Section 5.4.1 describes the
characteristics of the wake observed in the field, after which in Sect. 5.4.2 the
performance of the wake models in reproducing these wake characteristics is
discussed.

5.4.1 Observed wake characteristics

In Sect. 5.4.1.1 an assessment of the characteristics of the observed wake listed in
Table 5.1 is performed, which is deemed a necessary first step before investigating
the accuracy of wake models. The observed wake characteristics are linked to the
inflow variables to examine whether the measurements are physically feasible. In
Sect. 5.4.1.2, two wake characteristics that are deemed important for wake steering
are further investigated.

5.4.1.1 Correlation with inflow variables

The multiple 1D Gaussian method (Sect. 5.3.1) is used to describe the wake in
quantifiable characteristics. Figure 5.8 displays how the nine wake characteristics
correlate with the input variables.
The wake center deficit normalized with the hub height wind speed, denoted Az, is
highly correlated with shear α and turbulence intensity TI and shows a moderate
correlation with veer δα, corresponding to the correlations found in previous studies
(e.g., Bastankhah and Porté-Agel, 2016; Schottler et al., 2017). Az has a weak
correlation with the hub height wind speed Uh as it has already been used to
normalize the deficit.
The lateral wake center displacement µy has a relatively high correlation with the
yaw misalignment ϕ, confirming that the wake is deflected when the turbine is
operated with a yaw misalignment. Moderate correlations with α and δα are found,
corresponding to previous findings (e.g., Fleming et al., 2015; Sengers et al., 2022)
that found that wake deflection is affected by atmospheric conditions. The vertical
wake center displacement µz, a relatively unexplored wake characteristic, appears to
be positively correlated with α. It is hypothesized that this is due to a larger wind
speed gradient at lower tip height, increasing the mixing compared to that at upper
tip height, effectively moving the wake center upwards. Further analysis (results
not shown here) suggests that the vertical wake center displacement, and with that
its correlation with input variables, is independent of wind direction. This excludes
the influence of topography on these results.
The curl only correlates with ϕ, whereas the wake tilt is highly correlated with δα,
corresponding to Abkar et al. (2018). Lastly, variables related to wake size (σy, σz,
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Figure 5.8: Correlation matrix of the input variables and wake characteristics. Az is the amplitude
of the wake deficit normalized by Uh, µy and µz the lateral and vertical wake center displacement,
“curl” and “tilt” the wake curl and tilt, σy and σz the width and height of the wake, and sa and
sb the quadratic and linear wake width parameter.

sa, sb) have very weak correlations with the input variables, which could be due to
the spatial resolution of the lidar PPI scans.

5.4.1.2 Lateral wake center displacement and wake curl

Two wake characteristics, µy and curl, are investigated as a function of ϕ as these are
deemed important for wake steering. Figure 5.9a demonstrates that |µy| typically
increases with |ϕ|; hence the wake deflection is larger for larger yaw misalignment
angles, although there is a lot of scatter in the field measurements as also indicated
by the correlation coefficient R. Three clusters can be identified, corresponding to
the distribution of yaw angles shown in Fig. 5.4.
To check whether µy’s order of magnitude is reasonable, field measurements are
compared with LES results. Differently than in Sect. 5.2.3, the turbine simulated
here represents turbine T1 in the field, for which the aerodynamic properties were
provided by the operator in the Bladed model and translated into FAST. Because
of computational restrictions, only three yaw settings {−15, 0, 15◦} with each of the
four inflow conditions were simulated, which will represent only a small part of the
full range of conditions observed in the field. The simulations have Uh ≈ 8m s−1, and
the inflow variables are 0.11 < α < 0.26; 1.1◦ < δα < 2.6◦ and 6.0% < TI < 8.4%.
The LES results show an initial deflection for ϕ = 0◦ (Gebraad et al., 2016), which
is not clearly observed in the field. Otherwise, the observed magnitude of deflection
is comparable between LES and the field.
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Figure 5.9: Scatterplot of (a) µy and (b) curl as a function of yaw angle ϕ. Red markers indicate
field measurements, and blue triangles indicate LES data. Fitted linear functions are indicated
with lines. The quality of these fits is indicated by the correlation coefficient R, corresponding to
Fig. 5.8. White plus signs indicate the case studied in Fig. 5.10.

Figure 5.10: Exemplary case illustrating the wake curl generated by a misaligned turbine (ϕ =
12.8◦, Uh = 9.4m s−1, α = 0.33, δα = −0.8◦, TI = 10.4%). (a) The wake deficit of the 10min
averaged lidar data of 17 consecutive PPI scans (colors) and local wake center positions (black plus
signs) with corresponding fitted polynomial (dashed black line) indicating the wake curl. (b) The
wake reconstructed by utilizing the composition method. The color bar applies to both figures.

Figure 5.9b displays curl as a function of ϕ. Similarly to µy, the field measurements
have a larger spread than the LES results, expressed by the lower quality of the
linear fit (correlation coefficient R). However, the fitted lines are similar, indicating
that the wake curl does indeed occur in the field, something that until now had not
conclusively been shown in the literature.
One case is selected (indicated with a white plus sign in Fig. 5.9) to illustrate
what a wake with curl ≈ 0.5 looks like. Figure 5.10a presents the observed deficit
measurements (Udef) normalized by Uh, in which the wake’s curl is indicated by
the dashed black line. The curl is indeed relatively small and could be missed
when operating the long-range lidar with a different scanning strategy. Figure 5.10b
represents a reconstructed wake using the composition method (Sect. 5.3.1), which
clearly shows that the wake center has moved to the left and up.
Even though the curling observed in this study is relatively small, Fig. 5.9b
does confirm that the wake curls as expected from numerical and wind tunnel
experiments. Field experiments are often restricted to yaw misalignments smaller
than 20◦, whereas numerical and wind tunnel studies allow for larger misalignments.
As suggested in Brugger et al. (2020), this is the reason for the lack of observations
of fully curled (or kidney-shaped) wakes in the field.
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Figure 5.11: Like Fig. 5.7 but for the testing data for GCH (black/grey), DART-3 (red), DART-4
(blue) and DART-7 (yellow). Histogram (a) for one resample and (b) for MPEs and (c) for
MAPEs of all 96 resamples. Fitted normal distributions are indicated with lines, and statistics are
given in the top right.

5.4.2 Performance of wake models

This subsection presents the performance of the DART and GCH wake models
in reproducing the wake characteristics observed in the field. Section 5.4.2.1
presents how well the models can reproduce the available power measured by the
lidar. Following this general result, Sect. 5.4.2.2 zooms in on how well the models
perform under different conditions and Sect. 5.4.2.3 displays how well the models can
reproduce a selection of wake characteristics. Section 5.4.2.4 discusses how sensitive
the models are to the number of training data. Lastly, Sect. 5.4.2.5 evaluates how
well DART performs when only using SCADA data as input.

5.4.2.1 Comparison of DART and GCH

This subsection discusses the performance of DART and GCH in a comparison with
the wake observed in the field. The models were trained (DART, Sect. 5.3.4.4) or
tuned (GCH, Sect. 5.3.5) on 80% of the data and are now tested on the remaining
20% of the data. Figure 5.11a displays the model accuracy on one resample,
using the percentage error (PE) of available power (Pav) as a performance metric,
analogously to Fig. 5.7. All models seem to have negative bias (MPE< 0%),
indicating that the rotor-equivalent wind speed Ueq is overestimated. DART’s bias
reduces with an increasing number of input variables, as is evident from the smaller
error in DART-7 compared to DART-3 and DART-4. DART-7’s bias is comparable
to that of GCH. GCH’s spread is however larger than DART’s, resulting in a larger
MAPE despite having a lower MPE.
When repeating this for all 96 resamples, a distribution of MPE and MAPE
values can be found (Fig. 5.11b–c). Also here DART shows a small negative bias
(MPE < 0%), hence underestimating Ueq. GCH has a small positive bias, therefore
overestimating Ueq, and a much wider distribution.
The distribution of MAPE values indicates that with just three input variables,
DART-3 is able to outperform GCH, showing a reduction in MAPE of 19%.
Moreover, both its MPE and MAPE are very similar to those of the training
data (Fig. 5.7), indicating that the model is able to generalize well to unseen
or independent data. Adding more variables further improves DART’s accuracy,
reducing MAPE with 28% and 36% for DART-4 and DART-7 compared to GCH.
Moreover, the fitted normal distributions of MAPE for GCH and DART-4 or DART-
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Figure 5.12: Performance of GCH (grey), DART-4 (blue) and DART-7 (yellow) as a function of
ϕ (a–c) and α (d–f). Histogram of data availability per bin (a, d) and corresponding MPE (b,
e) and MAPE (c, f) per bin.

7 hardly overlap, indicating that DART significantly outperforms GCH when trained
with at least four variables.
These results show the potential of a data-driven model: more of the variability in
wakes observed in the field can be explained by using only four input parameters in
a data-driven model than with an industry-standard analytical model.

5.4.2.2 Model accuracy under different conditions

To gain a better understanding of these results, under what conditions the models’
performances differ considerably is investigated. DART-3 is here omitted for brevity.
First, the models’ errors are investigated in relation to the yaw angle ϕ. Figure 5.12a
displays a histogram of data availability per ϕ bin of 5◦ over all 96 resamples, while
Fig. 5.12b and c show the MPE and MAPE of Pav per bin. The GCH model has
MPE> 0% for ϕ < −7.5◦ and MPE< 0% for 2.5◦ < ϕ < 7.5◦. This is likely due
to low data availability. DART demonstrates a more uniform trend over all yaw
angles. When looking at MAPE (Fig. 5.12c), it can be seen that especially under
yawed conditions (both positive and negative), DART seems to outperform GCH.
It is hypothesized that this is due to a more accurate estimation of the wake center
position in DART.
Figure 5.12d–f display a similar analysis as a function of shear α. GCH shows an
almost linear trend as a function of α, with MPE< 0% for small α and MPE> 0%
for large α. This indicates that the modeled wake recovery is too slow under low
shear and too fast under high shear inflow, which could be due to the turbulence
model not explicitly including α as an input parameter. In contrast, DART explicitly
uses α to estimate wake characteristics. It therefore produces more uniform results
and outperforms GCH, especially when α > 0.4 (see Fig. 5.12c). Over the whole
range of ϕ and α, DART-7 is marginally more accurate than DART-4.
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Figure 5.13: Accuracy of GCH (a–c), DART-4 (d–f) and DART-7 (g–i) in estimating wake
characteristics Az (a, d, f), µy (b, e, h) and curl (c, f, i). The models’ estimates are given
on the x axis and the observations on the y axis. Solid lines indicate linear orthogonal distance
regression fits and dashed lines the identity lines.

5.4.2.3 Estimating wake characteristics

Finally, the accuracy of GCH and DART in estimating the wake characteristics Az,
µy and curl is investigated. The left column of Fig. 5.13 displays the observed Az as a

function of the model-estimated Âz. As clearly indicated by the fitted line, the GCH
model overestimates small deficits and underestimates large deficits. This could be
resolved by giving more weight to outliers when tuning the parameters, although that
could lead to the undesirable decrease in accuracy in frequently occurring conditions.
The fitted line to the DART-4 results appears to be closer to the unity line, while for
DART-7 an even better agreement is found. Additionally, the mean absolute error
(MAE) and Pearson correlation coefficient (R) displayed in the top left indicate a
more accurate modeling of Az using DART.
The center column displays a similar analysis for µy. The fitted lines imply a higher
accuracy for GCH than for DART, while the statistical metrics suggest the opposite.
GCH’s estimates for µy seem to be clustered, which is not true for DART or the
measurements. As noted in Sengers et al. (2022), the effect of inflow conditions
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Figure 5.14: MPE (a) and MAPE (b) as a function of training data set size. Markers indicate
the means (MPE and MAPE), lines indicate the median and shaded areas indicate the standard
deviation, corresponding to the fitted normal distributions in Fig. 5.11.

(e.g., α) on the wake deflection is not well described in GCH. Consequently, the
wake deflection is only a function of the yaw angle and the observed clusters can
directly be related to the distribution of yaw misalignment angles shown in Fig. 5.4.
Additionally, while in Fig. 5.13e and h transparent markers can be observed, the
markers in Fig. 5.13b appear to be opaque. Here, many transparent markers
overlay each other, indicating that GCH estimates the same wake center location
in all resamples and that these estimates are not affected by the model’s tuning
parameters.
Lastly, the right column displays the results for curl. GCH does not model any
curl, whereas DART is able to capture some of the observed variability. DART-7
performs better than DART-4 as more variables that are (weakly) correlated with
curl (see Fig. 5.8) are considered. Although the variability found in the field is not
fully captured by either model, it is clear that the wake curl is better reproduced by
DART than by GCH.

5.4.2.4 Dependency of performance on data set size

An important aspect of data-driven models is understanding how the number of
training data affects the model’s accuracy. This is especially relevant as one of the
most commonly named drawbacks of data-driven models is their high need for data.
This subsection studies the sensitivity of the accuracy of DART-4 to the number of
training data. DART-7 is not considered due to its long training time. Additionally,
GCH is included in the analysis as it contains tuning parameters which could benefit
from being tuned to a larger data set. All models are trained with a part of the full
data set, ranging from 10% to 80%, and tested on the remaining 20%, analogously
to the procedure described in Sect. 5.3.3. Regardless of the number of training data,
the testing data are always 20% of the original data set and consist of the same
cases for fair comparison. When using, e.g., 40% of the data for training and 20%
for testing, the remaining 40% are not used at all.
Figure 5.14 displays the accuracy of the models as a function of the size of the
training data set. The metrics used for this analysis are again the distribution
of MPE and MAPE values of the 96 resamples, corresponding to the normal
distributions shown in Fig. 5.11. Figure 5.14a again reveals that DART-4 has a
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negative bias (MPE< 0%), which is present regardless of the number of training
data, whereas GCH typically has a small positive bias (MPE> 0%). The uncertainty
bands, representing 1 standard deviation indicated by the shaded area, are larger
for GCH than for DART-4, while for both models the uncertainty is reduced when
trained with more data.
Figure 5.14b displays the distribution of MAPE values of the 96 resamples as a
function of the data set size. GCH and DART-4 have a similar accuracy when
few data are available, but DART-4 already outperforms GCH when as little as
20% of the data set (≈ 75 cases or 13 h) is used for training. Note that this
does not indicate 13 h of consecutive measurements but rather 75 cases covering
a range of meteorological conditions representative of the variability experienced by
the turbine. Additionally, the accuracy of DART-4 seems to continue to improve
when adding more data, albeit at a slower rate, whereas GCH hardly shows any
improvement with higher data availability.

5.4.2.5 Performance with SCADA data as input

In this subsection, DART-4 is trained using only data routinely available to the
operator (SCADA data) as input variables, called DART-4S. However, it still uses
the measurements from the nacelle-mounted lidar to obtain the wake characteristics.
Input variables includes power P , rotor speed ω, wind speed US and turbulence
intensity TIS estimated from the cup anemometer and yaw misalignment ϕS

extracted from the wind vane. As discussed, according to Fig. 5.4, this signal
contains a systematic bias (Fleming et al., 2021) and is disturbed by the turbine
yaw misalignment (Kragh and Fleming, 2012; Simley et al., 2021a), resulting in
misalignments being overestimated by the nacelle vane. No correction was applied
here, as data-driven models can compensate for any systematic biases. A similar
reasoning can be applied to the use of TIS: although turbulence intensity estimates
from a nacelle cup anemometer are affected by the rotor (e.g., Barthelmie et al.,
2007), biases can be handled by data-driven models and are therefore acceptable.
Additionally, data-driven models are better able to deal with noise than analytical
models, which assume that the inflow information is undisturbed or need error terms
inserted in the model equations (Schreiber et al., 2020).
The main issue of only using SCADA data is that there is no reliable estimate for the
vertical wind speed profile. In this study, the shear α measured at the met mast is
estimated from TIS using the fitted linear relation: α̂ = 0.625− 0.023 TIS. Because
α and TIS are quite weakly correlated (R = −0.47), this simple approach introduces
uncertainty. However, developing a more sophisticated solution was deemed out
of the scope of this work and this approach is deemed sufficient for the current
purpose. An alternative approach could be to use strain measurements from the
turbine’s blades to estimate shear, as demonstrated in Bertelè et al. (2017, 2021),
although this would also involve additional sensors.
Figure 5.15 displays the results of DART-4S, using {ϕS,TIS, US, P} as input, in
a comparison with GCH and DART-4, both trained with met mast data. The
accuracy of DART-4S is very similar to DART-4, showing a larger negative MPE
but an almost identical MAPE. This indicates that using an arguably lower quality
data set hardly affects the accuracy of the wake estimates. It is hypothesized that
this is because the SCADA data better capture the atmospheric conditions at the
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Figure 5.15: Same as Fig. 5.11b–c but with DART-4S (light blue).

turbine, whereas met mast data are subject to heterogeneity between met mast
and turbine. This would counter the lower quality of the data, leading to only a
slight decrease in the model accuracy. Interestingly, DART-4S is significantly more
accurate than GCH, even though the latter needs undisturbed measurements as
input.

5.5 Discussion

Section 5.5.1 discusses the measurement campaign and its accuracy. In Sect. 5.5.2
the limitations of the data-driven model are reviewed. Finally, Sect. 5.5.3 focuses
on the implication of this study’s results for future work.

5.5.1 Campaign

This subsection discusses some key takeaways for future campaigns (Sect. 5.5.1.1)
and an uncertainty analysis considering measurement errors (Sect. 5.5.1.2).

5.5.1.1 Lessons learned

Several considerations regarding the experimental campaign are noteworthy. First,
the nacelle-mounted lidar’s scanning strategy was based on Brugger et al. (2019,
2020) and evaluated systematically using large-eddy simulation results and a
lidar simulator. However, during this analysis, data losses were not considered.
Subsequently, in the field data occasionally all information at one height was filtered
out, leaving only information at four heights for the analysis (Sect. 5.2.3), which
could lead to interpolation errors. A more robust approach would have been to
perform seven instead of five consecutive PPI scans, although the accuracy of the
wake reconstruction method is slightly lower (see Fig. 5.2). Lastly, in this study
only one distance of 4D was targeted, but for other purposes it could be desirable
to target multiple positions at once. This would likely require more PPI scans with
a larger range of elevation angles, as used in Brugger et al. (2020). Large elevation
angles are needed to capture the wake close to the turbine, whereas small elevation
angles capture the wake further downstream.
Further, no systematic hard-target analysis was performed with the nacelle-based
lidar. The horizontal offset relative to the turbine’s center axis could be estimated
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from a set of coarser PPI scans, but no vertical offset could be estimated. Although
this is not expected to have a large influence on the results presented here, as
is also discussed in Sect. 5.5.1.2, it is recommended to always carry out a hard-
target analysis in future measurement campaigns to reduce the uncertainty in the
measurements.

5.5.1.2 Measurement uncertainty

Although the measurement data after filtering have been considered the “ground
truth” in this study, a few aspects affecting the data quality should be considered.
Homogeneity of the background flow is assumed, as well as a vertical wind profile
that can be described with the power law, which is not always satisfied. This
refers specifically to the trees in the wind direction sector around δ = 350◦ that are
assumed not to affect met mast data, as mentioned in Sect. 5.2.1. Besides, turbines
T3 (induction zone) and T4 (wake) are assumed to not affect the wake, although this
cannot be ruled out entirely. Lastly, the lidar measurements are inherently subject
to probe volume averaging, and a different filtering method than the one described
in Sect. 5.2.3 will retain other information and therefore result in slightly different
wake characteristics.
Additional analyses were carried out to investigate the effect of measurement
uncertainty in the results presented in Sect. 5.4, specifically those in Fig. 5.11. An
overview of these tests is displayed in Table 5.3. First, the influence of the missing
hard-target analysis (Sect. 5.5.1.1) is investigated. In the original measurements, an
upward vertical displacement of the wake center of 0.15D was observed, averaged
over all 382 cases. Although displacements of this magnitude have been observed in
numerical simulations (Sengers et al., 2020), it is here assumed that this is purely
the consequence of an installation error of the lidar. Such a displacement at 4D
downstream would come from a downward angle of tan−1(0.15/4) = −2.18◦. In
test 1, the elevation angles of all lidar scans were adjusted with this value, resulting
in an average vertical wake center displacement of zero. Since vertical wake center
displacements have been observed in other studies (e.g., Bastankhah and Porté-Agel,
2016; Sengers et al., 2020), the previous test was not deemed completely realistic.
Additional tests (2 and 3) with half the correction value, as well as a positive
correction value, were carried out. The next set of tests varies the wind speed
and direction measured at the met mast. As noted in Sect. 5.2.5, the accuracy of
the anemometer is 0.2m s−1 and the accuracy of the vane is 1.5◦. These values are
used in tests 4–7, varying the measurements at hub height (subscript h) and lower
tip height (lt) in opposite directions, investigating the maximum influence of these
uncertainties. Note that this affects the shear and veer as well.
In all tests, DART-4 (DART-3, DART-7 and DART-4S omitted for brevity) and
GCH are trained on the adjusted data for all 96 resembles. Their accuracy on the
testing data is evaluated using MPE and MAPE and shown in Fig. 5.16. Compared
to the original (Test 0) of Fig. 5.11, Test 1 shows a slightly poorer performance of
DART-4 (larger MPE and MAPE). It is hypothesized that this is due to the fact that
now the five PPI scans do not fully target the rotor area anymore, resulting in less
relevant information about the wake to estimate the available power. GCH, on the
other hand, seems to perform better (smaller MPE and MAPE) than the original.
Since no vertical displacement is estimated with GCH, these new data more closely
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Table 5.3: Overview of all tests carried out for the uncertainty analysis.

Test Description
0 Original; Fig. 11
1 ϕPPI − 2.18◦

2 ϕPPI − 1.09◦

3 ϕPPI + 1.09◦

4 Uh + 0.2m s−1 and Ult − 0.2m s−1

5 Uh − 0.2m s−1 and Ult + 0.2m s−1

6 δh + 1.5◦ and δlt − 1.5◦

7 δh − 1.5◦ and δlt + 1.5◦

Figure 5.16: Results of the tests of Table 5.3. MPE and MAPE of Test 0 correspond to the values
found in Fig. 5.11.

resemble the model’s assumptions. Tests 2 and 3 confirm this, as GCH’s MAPE
increases with the magnitude of the vertical wake center displacement.
Tests 4 and 5 illustrate that both models perform better when the shear is decreased
(Test 5) compared to when the shear is increased (Test 4), which relates to the fact
that more uniform conditions are easier to reproduce. Lastly, GCH performs worse
in Test 6 and better in Test 7 compared to the original, but no satisfying explanation
was found.
In general, these tests demonstrate that the more closely a data set resembles the
model assumptions, the better the model performs. DART-4 typically shows a
higher MPE and a lower MAPE compared to GCH, which is similar to the results
presented in Sect. 5.4. This uncertainty analysis is believed to demonstrate that the
results presented in this study are robust and not very sensitive to measurement
uncertainty.

5.5.2 Data-driven model

DART’s quantitative results presented in this study are not fully generalizable.
The fitted coefficients in Eq. (5.3) are only valid for the scenario considered in
this study, and it is unknown how the model’s accuracy transfers to different
scenarios, such as other turbine types and downstream distances. Besides, while the
range of achieved yaw misalignments is typical of field experiments nowadays (e.g.,
Fleming et al., 2020, 2021; Doekemeijer et al., 2021), future campaigns could see
larger misalignments such as those currently considered in numerical studies (e.g.,
Howland et al., 2016; Mart́ınez-Tossas et al., 2019; Bastankhah et al., 2022). Further
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lidar measurements would be needed in new scenarios to guarantee accurate model
estimates, and although it needs relatively few data for retraining in new situations
(Sect. 5.4.2.4), this limits the potential for application of data-driven models in wake
steering control.
To overcome this, future work should attempt to generalize the model’s coefficients.
Alternatively, model equations using coefficients determined with previous numerical
or experimental data could still be used at new locations to generate a first estimate
of the wake characteristics. Assuming that the wake position and shape are
sufficiently accurately modeled, coefficients for the wake deficit could be retrained
using SCADA data by deducing a rotor-equivalent wind speed.
Lastly, other data-driven models could be used. Currently, to the best of our
knowledge DART is the only data-driven wake model available that does not make
use of complex black-box models such as neural networks. Although it would be
interesting to compare different data-driven models, more complex models typically
need more data. For instance, Asmuth and Korb (2022) proposed a neural network
and showed they need at least 800 cases to train the model for non-yawed cases
only. Although their results are extremely promising, extending this to include
wake steering would likely require a substantially longer measurement campaign.

5.5.3 Implications for future work

As noted in the Introduction, the industry appears to be hesitant to adopt the
wake steering strategy due to large uncertainties. To overcome this, yaw controllers
need to become more sophisticated, for instance by using closed-loop controllers
(Doekemeijer et al., 2020; Howland et al., 2020) or using preview information (Simley
et al., 2021b). On the other hand, the low-fidelity wake models that are utilized
to determine the yaw misalignment set points used by the yaw controller need to
become more accurate.
This study contributes to the latter by showing that both DART and GCH perform
well on average (small systematic bias) but that DART can capture a higher degree
of variability observed in the field. Besides more accurate estimations of the wake
deficit, which historically has been the main focus of wake models, this extends to
other wake characteristics like wake curl and wake center location. The latter is
especially important for wake steering, as erroneous steering can steer the wake into
a downstream turbine.
Since DART shows a higher accuracy than GCH in estimating wake characteristics,
it can be hypothesized that when using DART to determine yaw misalignment set
points used by the yaw controller, the wake steering strategy can be applied more
successfully. This can consist of achieving higher power gains when wake steering is
performed successfully or reducing power losses due to erroneous steering. However,
an extensive campaign would be needed to investigate this, which was considered
out of the scope of the current work.
On a more general level, this study shows that data-driven models are a viable
alternative to analytical models. Whereas data-driven models have often been
criticized for their complex nature, this study has demonstrated that accurate
estimations can also be obtained with a very simple linear model.
While the current model focuses on estimated wind speed and consequently power,
a similar methodology could be developed to estimate turbulence and consequently
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turbine loads. Alternatively, it would be interesting to combine analytical and
data-driven models in hybrid models. Such models could initially benefit from
the robustness of analytical models but exploit the higher accuracy of data-driven
models when more data become available.

5.6 Conclusions

This study uses nacelle-based lidar measurements of the wake of a commercial
turbine with a fixed intentional yaw misalignment. Performing a trajectory of five
consecutive plan position indicator (PPI) scans with different elevation angles, a
vertical wake cross-section at four rotor diameters downstream is reconstructed.
Utilizing the multiple 1D Gaussian method, wake characteristics are obtained.
The lateral wake center displacement and wake curl observed in the field compare
well with large-eddy simulation results. The results from the lidar measurements
demonstrate the occurrence of the wake curl in the field, which had not conclusively
been shown in the literature before. This is due to small curling observed for yaw
misalignments below 20◦, which could be missed when using a different scanning
trajectory.
The field measurements are subsequently used to train and validate the DART model
and compare the accuracy of the trained data-driven model to the accuracy of the
GCH model. When estimating the observed wake characteristics with both wake
models, it is demonstrated that DART systematically outperforms GCH. Depending
on the number of input variables used for DART, the error is reduced by between
19% and 36% compared to GCH. The metric used here is the mean absolute
percentage error of the available power of a virtual downstream turbine, averaged
over 96 resampled testing data sets. Especially when the turbine is misaligned or
high vertical shear is observed, DART outperforms GCH. Besides, DART requires
a relatively small number of training data (about 75 cases at specific set points) to
outperform GCH. Further analysis suggests that DART’s accuracy is hardly affected
when only considering SCADA data as input in comparison to using undisturbed
measurements from a met mast.
DART shows a high accuracy in the current study, targeting a downstream distance
of four rotor diameters and using a range of yaw misalignments commonly used
in field experiments. However, these results cannot directly be generalized and
further lidar measurements are needed to retrain DART for new scenarios, limiting
its applicability. Regardless, this study’s results are believed to demonstrate the
potential of data-driven wake models and the role they can play in the further
deployment of wake steering control strategies.
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Chapter 6

Increased power gains from wake
steering control using preview
wind direction information

The content of this chapter is identical to the following journal article:
Sengers, B. A. M., Rott, A., Simley, E., Sinner, M., Steinfeld, G., and Kühn, M.:
Increased power gains from wake steering control using preview wind direction
information, Wind Energy Science, 8, 1693–1710, https://doi.org/10.5194/wes-8-
1693-2023, 2023.
©Author(s) 2023. This work is distributed under the Creative Commons
Attribution 4.0 License. Reprinted with permission.

Abstract Yaw controllers typically rely on measurements taken at the wind turbine,
resulting in a slow reaction to wind direction changes and subsequent power losses
due to misalignments. Delayed yaw action is especially problematic in wake steering
operation because it can result in power losses when the yaw misalignment angle
deviates from the intended one due to a changing wind direction. This study explores
the use of preview wind direction information for wake steering control in a two-
turbine setup with a wind speed in the partial load range. For these conditions
and a simple yaw controller, results from an engineering model identify an optimum
preview time of 90 s. These results are validated by forcing wind direction changes in
a large-eddy simulation model. For a set of six simulations with large wind direction
changes, the average power gain from wake steering increases from only 0.44% to
1.32%. For a second set of six simulations with smaller wind direction changes,
the average power gain from wake steering increases from 1.24% to 1.85%. Low-
frequency fluctuations are shown to have a larger impact on the performance of wake
steering and the effectiveness of preview control, in particular, than high-frequency
fluctuations. From these results, it is concluded that the benefit of preview wind
direction control for wake steering is substantial, making it a topic worth pursuing
in future work.
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6.1 Introduction

To support the energy transition, it is important to maximize the value of the
renewable energy portfolio. On the one hand, this includes minimizing the costs of
installation and maintenance; on the other hand, this means maximizing the power
yield. Focusing on wind energy, wind farm control to mitigate wake effects has
received considerable attention in recent years (Meyers et al., 2022). Additionally,
short-term forecasting of the wind speed and direction can be used to adapt the
turbine for approaching changes; hereafter, this is called preview control (PC), as
opposed to traditional standard control (SC) using measurements at the turbine.
PC can be used to reduce the occurrence of suboptimal blade pitch angles and
turbine misalignment, two aspects that result in power losses and increased loads
(Scholbrock et al., 2016). Furthermore, operators can use the forecasts to support
grid stability and reduce curtailment (Bird et al., 2016). Downstream turbines
can use information from turbines further upstream (Rott et al., 2020), or remote
sensing techniques (lidar-assisted control) can be used (e.g., Theuer et al., 2020;
Würth et al., 2019). Many studies have investigated the application of preview wind
speed information in turbine control, a few of which are discussed in the following.
Torque control to improve its aerodynamic efficiency is observed to achieve very
small power gains, but it drastically increases the turbine’s loads (Schlipf et al.,
2011; Wang et al., 2013). However, pitch control significantly reduces the loads with
a minimum change in generated power (Dunne et al., 2011; Bossanyi et al., 2014).
Combinations of the two have shown promising results in terms of both reducing
the loads and increasing the power (Schlipf et al., 2013; Schlipf and Cheng, 2014).
On the contrary, remote sensing techniques to improve the turbine’s yaw control
are relatively rare and are usually only done to help calibrate the nacelle’s wind
vane (e.g., Fleming et al., 2014b; Scholbrock et al., 2015). This is interesting, as
some studies have reported potential power gains from reduced yaw misalignment
when using preview information. Spencer et al. (2011) modeled perfect wind
direction prediction to reduce the yaw misalignment of a single turbine, resulting in
a power gain of 0.5% and a reduction in fatigue loads. Using a weighted average
of wind direction measurements from upstream turbines, Bossanyi (2019) found
a 0.2% power increase and a 24% reduction in yaw travel for a wind farm in a
30min simulation. Similarly, Sinner et al. (2021) averaged wind direction signals of
neighboring turbines to obtain a smoother wind direction signal. They demonstrated
that this results in power gains and yaw travel reductions for both greedy and wake
steering operations, but using preview information did not yield significant results.
In light of the controller lag observed in a wake steering experiment reported in
Fleming et al. (2019), Simley et al. (2021b) employed the FLOw Redirection and
Induction in Steady State (FLORIS) simulation tool (NREL, 2022) to compare
preview control using wind direction information to standard control for a turbine
pair in wake steering operation. Using an optimal preview time of 90 s, their results
demonstrate that the power gain of 5.8% achieved with SC wake steering increases to
8.9% when PC is enabled. However, this analysis uses perfect preview information,
and no improvement was found with realistic measurement accuracy. Howland
et al. (2022) simulated a diurnal cycle with time-varying wind speed, wind direction,
and atmospheric stability in a large-eddy simulation (LES) model. Using a simple
forecasting method based on linear regression of past data, they demonstrated that
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in wake steering operation, PC’s power production is slightly increased compared to
that of SC.
Although it intuitively makes sense that PC turbines anticipating an approaching
wind direction change yield more power than SC turbines, it is a relatively
unexplored topic. PC is expected to be especially beneficial in wake steering
operation because it could limit erroneous wake steering, which is when wake steering
results in power losses compared to greedy control (e.g., Doekemeijer et al., 2021).
The magnitude of potential power gains is unknown, but they should be substantial
to make preview control worth pursuing in future work.
The objective of this paper is to demonstrate the benefit of using preview
wind direction observations for wake steering purposes to further increase power
production. Preview information is obtained from a virtual met mast located
upstream, as developing a more sophisticated wind direction forecasting technique
was considered out of scope. This objective comprises three components: (1) to
develop a simple engineering model to obtain estimates of the expected power gain
and optimal preview time; (2) to validate the findings of the engineering model with
results from large-eddy simulations; and (3) to identify the characteristics of the
wind direction signal that benefit from preview control the most.

6.2 Turbine yaw controller

This section describes the turbine yaw controller used in this study. It covers how the
controller functions in greedy and wake steering operations, as well as how preview
control is handled. The turbine pair simulated in this study consisted of two NREL
5MW turbines with a hub height of 90m and a rotor diameter D = 126m (Jonkman
et al., 2009). While the upstream turbine could operate in greedy or wake steering
control, the downstream turbine always operated in greedy yaw control.

6.2.1 Greedy

The turbine controller used a 60 s moving average of wind direction observations δ
and turbine orientation γ to determine the yaw misalignment angle ϕ of the turbine
with the inflow wind direction:

ϕ = γ − δ. (6.1)

Once |ϕ| exceeded a preset limit of 7.5◦, the turbine corrected its orientation at
0.3◦ s−1, as is standard for the NREL 5MW turbine, until |ϕ| ≤ 0.15◦ was reached.
This check was performed every second, except during and the first minute after a
yaw maneuver, to eliminate measurements disturbed due to the rotating nacelle.

6.2.2 Wake steering

To implement wake steering, existing controllers are typically adapted to include an
intended target yaw misalignment ϕt. In this study, a positive misalignment was
defined as a clockwise rotation of the turbine when looking from above. Because of
the intentional misalignment, an effective yaw angle ϕe was determined:

ϕe = γ − δ − ϕt , (6.2)
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which triggered a yaw maneuver when |ϕe| exceeded 7.5◦. ϕt was determined using a
lookup table (LUT) that contained the power-maximizing yaw misalignment angles
as a function of inflow conditions. The LUT was developed based on the Data-
driven wAke steeRing surrogaTe model (DART) introduced in Sengers et al. (2022).
This wake model uses a set of only linear equations (Y = X×B) to estimate wake
characteristics Y (e.g., deficit, center position) from the input variables X (e.g., yaw
angle, shear exponent, thrust coefficient). The model coefficients B are found by a
regression analysis with reference data. The wake characteristics can consequently
be used to generate a vertical cross-section of the streamwise wind speed component
to estimate the available power at a virtual wind turbine at a downstream position.
Based on the results described in Sengers et al. (2022), the set of (ϕt, δα and CT),
in which δα is the 60 s moving-averaged vertical wind veer over the rotor area, were
used as input variables. The thrust coefficient CT was estimated as a function of ϕt:

CT = CT,ϕ0cos
1.28 (ϕt) , (6.3)

in which CT,ϕ0 is the turbine’s thrust coefficient at ϕ = 0◦. This is analogous to
how the power coefficient is typically corrected for the yaw angle in wake modeling;
see also Eq. (6.5). The exponent 1.28 was determined using LES data from Sengers
et al. (2022). The same LES results were used for training to obtain the model
coefficients B.
Uncertainty is typically included in the form of adding discretized wind direction
variability bins to the LUT (Rott et al., 2018; Simley et al., 2020). Rather than
for the mean wind direction only, the optimal yaw misalignment is computed for
a distribution of wind directions – typically a Gaussian distribution with standard
deviation σδ around a mean δ. This uncertainty parameter σδ is affected by the wind
direction variability as well as the accuracy of the measurement devices, although
the latter is not considered in the current work. This results in a more conservative
controller setting when the uncertainty is high, mitigating erroneous steering but
also resulting in a lower achievable power gain. On average, however, this results in
a higher gain than if a more aggressive controller setting was used. In the current
study, the target yaw angle was therefore determined from the LUT as a function
ϕt

(
δ, δα, σδ

)
. For clarity, however, this notation is omitted in the remainder of the

present work. Referring back to Eq. (6.2), this indicates that not only could a change
in δ cause |ϕe| to exceed 7.5◦ but also that a change in δα or σδ could initiate a yaw
maneuver.
Figure 6.1 illustrates the ϕt suggested by the LUT as a function of δ. Figure 6.1a
shows that with increasing uncertainty (higher σδ), the controller setting becomes
more conservative: for σδ =2◦, the maximum ϕt is 22

◦, whereas, when σδ =10◦, the
controller settings have a maximum of ϕt of 8

◦, corresponding to the logic discussed
before. Figure 6.1b illustrates that the aggressiveness of the controller setting does
not really depend on δα, but the controller switches from positive to negative ϕt

at a different δ. Wind veer inherently deflects the wake due to a crosswise force
pointing toward the right above hub height and to the left below hub height (when
looking downstream). Since the wind speed is higher above hub height, the rotor
equivalent wake deficit is deflected to the right. With increasing veer, this effect
becomes stronger and the wind direction under which a full wake situation occurs
(typically the crossover point in the LUT) moves to the left (a more negative δ).
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Figure 6.1: Target yaw misalignment ϕt as a function of the 60 s averaged wind direction δ for a
changing wind direction standard deviation of σδ with a wind veer δα = 4◦ (a) and for a changing
δα with σδ = 4◦ (b). A turbine spacing of 6D is assumed and δ = 0◦ indicates the wind direction
where the turbine pair is aligned.

6.3 Simulation environment

6.3.1 Engineering model

A simple engineering model is developed to estimate the power gain and optimal
preview time for a given time series of the wind direction. Assuming a constant
wind speed, it computes the power yield of a turbine pair as a function of the wind
direction only.
The instantaneous power is computed with

P = 0.5ρCPπR
2U3

eq , (6.4)

in which ρ is the air density, R is the turbine radius and Ueq is the rotor equivalent
wind speed. CP is the turbine’s power coefficient corrected for the yaw misalignment
ϕ:

CP = CP,ϕ0cos
1.89(ϕ), (6.5)

which is analogous to Eq. (6.3). The exponent 1.89 (referred to as Pp in the literature;
e.g., Howland et al. (2020)) is again based on LES data from Sengers et al. (2022). A
low-pass filter is applied to the wind direction time series using a cutoff frequency of
0.0037 Hz, as proposed in Simley et al. (2020). For each point in the low-pass-filtered
wind direction time series δlp(t), the power generated by the upstream turbine can
be estimated as described in the following:

1. Calculate the yaw misalignment ϕup from the current turbine orientation γ and
the low-pass-filtered wind direction at time t: ϕup = γup − δlp(t).

2. Calculate CP,up according to Eq. (6.5) using ϕup.

3. Calculate Pup using Eq. (6.4) with CP,up and a constant Ueq,up.

To estimate the power of the downstream turbine, a wake model needs to be
employed. In this study, again, DART with ϕ, δα and CT as input variables is used
to make these estimations. A constant veer of δα (see Sect. 6.3.2.1) is assumed.
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4. Calculate ϕdn = γdn − δlp(t−∆T ). Here, δlp(t) is time-shifted by ∆T = x/Uh,
where x is the turbine spacing and Uh is the wind speed at hub height.

5. Calculate CT,up of the upstream turbine with Eq. (6.3) using ϕup.

6. Model wake characteristics with DART, using (ϕup, δα and CT,up) as input
parameters.

7. Move the wake position by ∆y = sin(δlp(t−∆T)) · x, in which δlp(t −∆T ) is
the time-shifted low-pass-filtered wind direction and x is the turbine spacing.

8. Calculate Ueq,dn of the downstream turbine from the modeled wake
characteristics.

9. Estimate CP,ϕ0 from the turbine power curve and subsequently calculate CP,dn

with Eq. (6.5) using ϕdn.

10. Calculate Pdn using Eq. (6.4) with CP,dn and Ueq,dn.

11. Calculate the total power as the sum of Pup and Pdn.

Besides the power calculation, the yaw controller described in Sect. 6.2 is
implemented in the engineering model. It utilizes the original wind direction signal
δ(t), not the low-pass-filtered signal, to compute the 60 s moving average δ and the
corresponding standard deviation σδ of the wind direction. It uses this information
and the wind veer to decide upon the next target yaw misalignment angle ϕt from
the LUT (upstream turbine only) and whether a yaw maneuver should be initiated.
Preview wind direction signals are considered in the engineering model by simply
shifting the wind direction time series provided to the controller forward in time,
resembling a perfect forecast. Preview times (temporal shifts) of between 10 and
300 s in 10 s increments are tested, resulting in an estimated power gain over SC as a
function of preview time. Smooth wind direction time series with a constant change
rate can be fed to the model, but a turbulent signal is added to get more reasonable
results. To get realistic turbulent signals, data are extracted from LES results of a
neutral boundary layer (see Sect. 6.3.2.1) without a wind direction change. Using a
systematic sampling technique with equidistant points, 50 samples are taken from
a domain with a size of approximately 5 km by 2.5 km. These turbulent signals are
added to the smooth time series and fed to the engineering model. This allows not
only the study of the influence of turbulence on the turbine’s behavior but also the
quantification of uncertainty by determining a confidence interval around a mean
value.

6.3.1.1 Example

Figure 6.2a illustrates an example displaying the wind direction signal (gray) and
the orientation of the upstream turbine for four different yaw controllers. The
smooth wind direction change experienced by the turbine is trailed by yaw actuator
movement under traditional greedy SC (black). In its optimization, the engineering
model tests for the preview time at which the highest power gain can be achieved;
the corresponding result is shown in yellow. It is evident that the turbine yaws to
the same new orientation but does so earlier, such that the wind direction reaches
the orientation of the preview-controlled turbine right in between two consecutive
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Figure 6.2: Examples of the engineering model’s results for a wind direction change rate of θ =
80◦ h−1. Gray lines indicate the wind direction of an (a) smooth and (b) turbulent time series.
Black and yellow indicate greedy SC and PC; blue and red indicate wake steering SC and PC,
respectively. A turbine spacing of 6D is assumed, and δ = 0◦ indicates the wind direction in which
the turbine pair is aligned.

actuator movements. This intuitively makes sense, as the optimum solution aims to
limit misalignment. When adding turbulence (Fig. 6.2b), this is still true, although
it is not as clearly visible. When applying the wake steering control (blue (SC) and
red (PC) in Fig. 6.2a), a clear misalignment of the turbine with the wind direction
can be observed. The misalignment increases as the wind direction approaches 0◦

until it crosses over from a positive to a negative misalignment. When turbulence is
introduced (Fig. 6.2b), the controllers become more conservative (smaller intentional
misalignments), which is a direct consequence of the included uncertainty parameter,
as discussed in Sect. 6.2.2.

6.3.2 Large-eddy simulations

This study uses revision 3475 of the PArallelized Large-eddy simulation Model
(PALM, Maronga et al. (2020)). PALM uses a non-hydrostatic incompressible
Boussinesq approximation of the Navier–Stokes equations. The exchange between
the surface and the lowest grid cell in the vertical is handled following Monin–
Obukhov similarity theory. Time integration is done by a third-order Runge–Kutta
scheme, advection of momentum is performed by a fifth-order Wicker–Skamarock
scheme, and subgrid-scale turbulence is modeled by applying Deardorff’s 1.5-order
turbulence closure parameterization. The Coriolis parameter is computed for a
latitude of 55◦N. The grid has a regular spacing of ∆ =5m on a right-handed
Cartesian coordinate system, but to save computational costs, the vertical grid size
increases by 8% per cell above the boundary layer height.
The simulation chain consists of three simulations: first, a precursor simulation to
generate realistic inflow conditions; second, a simulation in which the wind direction
in the domain is changed; and third, a main simulation that contains two turbines.

6.3.2.1 Precursor simulation

In the precursor simulation, a realistic turbulent flow is generated by adding random
perturbations to an initially laminar flow. The chaotic behavior of the modeled
boundary layer generates turbulent structures at a range of scales until a stationary
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state is reached after several hours of simulation time. This study only considers
one atmospheric condition, a conventionally neutral boundary layer with a hub
height (90m) wind speed of 8.3m s−1. The hub height turbulence intensity in this
boundary layer is 10.3%, while the power law wind shear exponent and vertical wind
veer between lower and upper tip height are 0.17 and 2.0◦, respectively. Although
the effect of atmospheric conditions (wind speed, stability) on the effectiveness of
preview control is deemed interesting, investigating this was considered out of the
scope of the current study. A short discussion is included in Sect. 6.5.2.

6.3.2.2 Simulation of wind direction changes

In this study, the wind direction is changed by applying the methodology developed
by Stieren et al. (2021), in which the momentum equations are modified by adding
an artificial Coriolis force Fθ:

Fθ = −θ(t)ujϵij3 , (6.6)

in which θ(t) is the forced wind direction change rate, uj are the wind speed
components, and ϵ is the Levi–Civita symbol. This is an engineering approach in
which the centrifugal and Euler force are neglected. Although not physical, Stieren
et al. (2021) demonstrated that the observed wind direction compares well with the
forced signal. This methodology allows for changing the wind direction at a constant
rate (θ(t) = θ0) as well as more realistic wind direction changes as observed in the
field.
The code employed in Stieren et al. (2021) used a concurrent precursor inflow method
with a fringe region, ensuring undisturbed inflow in the cyclic boundary conditions
that are required for the implementation of this method to change the wind direction.
PALM does not have this feature implemented, so, for this reason, an intermediate
simulation is carried out. An empty domain (no turbines) with cyclic horizontal
boundary conditions is initialized with the turbulent flow generated by the precursor
simulation. A predetermined θ(t) forces the wind direction to change in the whole
model domain simultaneously, and a slice in the yz plane (crosswise and vertical
dimensions) is saved to use as the inflow in the main run. This information comprises
the three wind speed components as well as the potential temperature and the
subgrid-scale kinetic energy.

6.3.2.3 Main simulation

In the main simulation, two NREL 5MW turbines are simulated using an actuator
disk model with rotation (ADMR) similar to Wu and Porté-Agel (2011) as described
in Dörenkämper et al. (2015). The turbine pair has a spacing of 6D and is aligned
for a wind direction of δ = 270◦. In a domain with non-cyclic boundary conditions
in the streamwise direction, the yz plane saved from the simulation discussed in
the previous section is used as the inflow 25D upstream of the first turbine. As
a result, a transient wind direction change propagates through the domain with a
time-varying wind speed (fluctuations around the mean) and direction (fluctuations
around the mean on top of the forced signal) rather than collectively in the whole
domain, as was the case in Stieren et al. (2021). This is important for this study,
as an incoming wind direction change needs to be detected before it reaches the
turbines in order for PC to be beneficial. Additionally, a time delay between the
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Figure 6.3: Examples of wind fields illustrating a wind direction change propagating through the
domain. Wind field (b) is taken 140 s after wind field (a). The background color indicates the
wind speed and the arrows indicate the wind direction. The solid black lines indicate the turbines,
both of which are operating in greedy control without preview information. The yellow markers
indicate the location of the virtual met mast.

upstream turbine and the downstream turbine experiencing a wind direction change
is likely more realistic. Figure 6.3 displays examples of the flow field with the two
turbines that illustrate a wind direction change propagating through the domain.
Besides the wind direction change, large turbulent structures with different wind
speeds can be observed. Additionally, the misalignment of the upstream turbine
indicates the controller lag.
Since the boundary conditions in the streamwise direction are non-cyclic, the
introduced wind direction change results in a gradient of the horizontal wind speed
components in the streamwise direction (∂u/∂x). This needs to be compensated for
in either the crosswise or vertical direction to obey the conservation of mass. Because
of the cyclic boundary conditions in the crosswise direction, this gradient cannot
be compensated for with ∂v/∂y. Therefore, the gradient ∂u/∂x is compensated for
by ∂w/∂z, introducing a vertical velocity that alters the wind speed and direction
profiles over time. Since all experiments with different controllers experienced the
same effect, it is not considered detrimental to the outcome of this study.

Standard control. The input for SC consists of information at the position of two
grid cells (10m) upstream of the turbine. A point in front of the turbine was chosen
to mimic a nacelle wind vane that is not disturbed by the rotor. This allows for a
fairer comparison of the model results, as the preview control wind vane (see below)
is not disturbed by any rotor.

Preview control. PC is implemented in the form of a virtual wind vane at hub height
on a meteorological (met) mast. The virtual met mast is located at a fixed position
upstream of the first turbine for δ = 0◦, the wind direction in which the turbine
pair are aligned. In Sect. 6.4.1, the optimum preview time is estimated with the
engineering model before being converted to a preview distance considering a hub
height wind speed of 8.3m s−1. The position of the vertical met mast is indicated in
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Figure 6.4: Turbine pair power gain ∆P of greedy control (yellow) and wake steering control (red)
with PC relative to greedy SC as a function of preview time for wind direction change rates of
θ = 80◦ h−1 (a) and θ = 160◦ h−1 (b). Lines indicate the mean and shaded areas indicate the
95% confidence interval over 50 turbulent time series.

yellow in Fig. 6.3. Although the relative position of a measurement point upstream
of the rotor changes with wind direction, a fixed position of the virtual vane is
deemed sufficient, as wake steering is limited to |δ| < 20◦ (Sect. 6.2.2). The wind
direction signal is directly passed to the controller assuming Taylor’s hypothesis
of frozen turbulence, meaning that no wind evolution is considered, although it is
deemed important, as pointed out in Laks et al. (2010). As the signal is subject to
advection and heterogeneity, this method does not resemble a perfect forecast.

6.4 Results

6.4.1 Engineering model

6.4.1.1 Theoretical linear wind direction changes

In this section, a wind direction change of 40◦ is simulated with different change
rates θ using the engineering model. Starting from a constant δ = −20◦ for the first
300 s (spin-up, not used for analysis), the direction changes linearly to δ = +20◦,
where it remains for the last 300 s (spin-down, not used for analysis). As described
in Sect. 6.3.1, 50 different seeds of turbulent noise are added on top of this linear
wind direction change to statistically analyze the impact of turbulence. Values for
the wind speed (Uh = 8.30m s−1), wind shear and veer over the rotor area (α = 0.17,
δα = 2◦) and, consequently, the rotor equivalent wind speed (Ueq,up = 8.25m s−1)
are taken from LES (Sect. 6.3.2.1).
Figure 6.4 displays the turbine pair power gain of PC relative to SC as a function
of preview time for two wind direction change rates: θ = 80◦ h−1 (Fig. 6.4a) and
θ = 160◦ h−1 (Fig. 6.4b). First focusing on greedy control, the maximum power
gain from PC is higher for a larger θ, whereas the optimal preview time is smaller.
With a faster wind direction change, the misalignment of the SC turbine is larger,
resulting in higher power losses. As a result, the benefit of PC is greater. When the
turbine yaws too early it also loses power, explaining the decreasing gains for longer
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Figure 6.5: Optimal preview time (a) and corresponding power gain relative to greedy SC (b) as
a function of θ. Yellow indicates greedy PC, blue indicates wake steering SC, and red indicates
wake steering PC. Lines indicate the mean and shaded areas indicate the 95% confidence interval
over 50 turbulent time series.

preview times and the shorter optimal preview time for a larger θ. Although an
optimum is found, PC seems relatively insensitive to the preview time, as indicated
by a relatively flat curve. Lastly, the uncertainty increases with larger preview times,
as illustrated by the 95% confidence interval.
Now, focusing on the wake steering controller, it can be seen that wake steering
with SC (preview time=0 s) is estimated to achieve a power gain of 0.8% (for
θ = 8◦0 h−1), whereas PC with optimum preview time results in a power gain of
1.2%. This difference exceeds the power gain achieved by PC in the greedy control
of 0.2%, which suggests that wake steering can benefit more from PC than greedy
control. This is strengthened by the findings from the θ = 160◦ h−1 case, where wake
steering with SC only achieves a power gain of 0.25%, with the 95% confidence
interval also displaying power losses. PC with the optimum preview time gives a
power gain of 1.3%, again far exceeding the 0.3% gain expected from greedy control.
Figure 6.5 represents the optimal preview time and corresponding power gain as
a function of θ. Focusing first on the optimal preview time for greedy control in
Fig. 6.5a, the mean over the turbulent simulations indicates decreasing optimal
preview times for increasing θ, corresponding to the findings in Fig. 6.4. The
uncertainty decreases with increasing θ, as dynamic changes become more dominant,
preventing the yaw controller from chasing turbulence. As for wake steering, the
optimal preview time seems to be relatively insensitive to θ, showing an almost
constant value between 80 and 100 s. This value likely depends on the updating
frequency of the yaw controller, but it is an interesting finding that would make the
implementation of PC in the field easier.
The maximum achievable power gain with an optimal preview time (Fig. 6.5b)
appears to increase linearly with θ for greedy control. The mean ranges from
0.1% for slow wind direction changes to almost 0.8% for extreme events, while the
uncertainty slightly increases with θ. This is similar to PC in wake steering, which
shows power gains ranging from 1.3% to 1.7%. Steering SC shows power gains very
similar to PC for small θ, but for larger θ the gains rapidly decrease and turn into
losses (erroneous steering). Especially under these fast-changing conditions, wake
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Figure 6.6: Histogram of optimum preview time (a) and corresponding power gain (b) when
using wind direction measurements from a met mast. Lines indicate the median optimum preview
time (a) and corresponding mean power gain (b). Colors correspond to those used in Fig. 6.5.

steering can benefit the most from PC, as it provides consistent power gains.

6.4.1.2 Wind direction time series from met mast measurements

In addition to the linear wind direction changes considered in the previous section,
more realistic wind direction changes are studied here using the engineering
model. Wind vane and anemometer measurements at hub height (116m) from an
experimental campaign are used. This campaign was carried out between February
and April 2021 at a slightly hilly onshore site in northeastern Germany located
approximately 13.5 km from the Baltic Sea. For more details, the reader is referred
to Sengers et al. (2023b). The data are split into 1 h subsets, where again the
first and last 300 s are disregarded as spin-up and spin-down times. Because this
study limits its analysis to wind speeds around 8m s−1, only subsets with an average
wind speed between 6 and 10m s−1 are considered, resulting in a total of 815 subsets.
Other atmospheric characteristics (e.g., turbulence intensity, shear, stability) are not
considered. For each subset, the average wind direction is assumed to coincide with
the alignment of the turbine pair. The turbines are initialized with an orientation
corresponding to the low-pass-filtered signal at the start of the hour. As preview
times larger than 200 s do not seem to be relevant according to Fig. 6.5, the maximum
preview time considered here is 200 s. Figure 6.6 displays the findings of this analysis
in two histograms. The optimum preview time (Fig. 6.6a) for greedy control shows
that the extreme values of 0 and 200 s often occur. These represent cases in which
there was hardly any wind direction change within the hour. In these cases, either
no yawing takes place and PC and SC estimate the same power, displayed here as
a preview time of 0 s, or one yaw maneuver takes place, which is most beneficial
when done as early as possible. Excluding these events, the results show a very
flat distribution of optimal preview times. For wake steering, on the other hand,
an approximately normal distribution with a median of 90 s is found, corresponding
well to the results of Fig. 6.5.
The maximum power gain, displayed in (Fig. 6.6b), indicates that PC under greedy
operation is not very beneficial. With a mean gain of 0.06%, much lower power
gains are expected from realistic wind direction data than from previous tests with
a linear wind direction change. Wake steering with SC shows an approximately
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Figure 6.7: (a) Histogram of met mast data binned in mean of absolute differences (MAD).
(b) Power gain of steering SC relative to greedy SC (blue) and power gain of steering PC relative
to greedy SC (red). Power gains averaged over all 815 cases are noted in the top right corner.

normal distribution of power gains with a mean of 1.62%, whereas PC increases
this to 2.12%, again suggesting that PC is especially beneficial when applying wake
steering.
To investigate under what conditions steering SC and PC are most beneficial, the
power gains are studied as a function of the characteristics of the wind direction
signal. For this, the mean of absolute differences (MAD) is calculated as

MAD =
1

T

T∑
t=2

|δlp,t − δlp,t−1|, (6.7)

which computes the mean of the absolute differences in wind directions of consecutive
time steps. Here, δlp is again the low-pass-filtered time series obtained using a cutoff
frequency of 0.0037Hz. Because the signal is already low-pass filtered, MAD does
not relate to the small-scale turbulence, but rather to larger-scale wind direction
fluctuations. The unit of MAD ◦ s−1, which, for interpretability, is converted to
◦ s−1. The histogram in Fig. 6.7a displays that the majority of the cases represent
steady conditions with only a wind direction change. However, several cases with
large dynamic changes are observed. Figure 6.7b shows in blue the average power
gain of steering SC compared to greedy SC as a function of MAD. The largest
gains are found for small wind direction changes, as this approaches a steady state
for which the controller was developed. However, power losses are found for large
values of MAD. Despite their rare occurrence, these cases undermine confidence in
the wake steering strategy. It is especially under these conditions that PC has a
large added benefit. Steering PC shows a more consistent power gain relative to
greedy SC (red) regardless of the characteristics of the wind direction time series;
hence, a power gain using wake steering seems guaranteed. The difference between
the blue and red bars illustrates that when the signal is relatively steady, PC only
has a small benefit. However, the more the signal fluctuates (increasing MAD), the
larger the benefit of PC, as the yaw controller is now able to anticipate incoming
wind direction changes.

6.4.2 Large-eddy simulations

In this section, LES results are used to validate the findings of the previous section
and, with that, demonstrate the benefit of preview control. For this purpose, wind
direction time series observed in the field are reproduced in LES. First, two examples
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Figure 6.8: Simulated wind direction cases. Raw (gray) and low-pass-filtered (black) signals at
the upstream turbine are shown, as well as the forced (dashed red) signal. (a) Case 1: a slowly
varying wind direction change. (b) Case 2: a fast-varying wind direction change.

are simulated (Sects. 6.4.2.1 and 6.4.2.2), one with a low and one with a high large-
scale wind direction variability. Second, to approach statistical significance, multiple
cases with similar characteristics are simulated. As LES is too expensive to use to
obtain fully statistically significant results, only six seeds are performed, following
the standard used in fatigue load estimation studies. To investigate the sensitivity
of the preview controller performance, changes in both low-frequency (Sect. 6.4.2.3)
and high-frequency fluctuations (Sect. 6.4.2.4) are considered to better understand
the performance of the preview controller.

6.4.2.1 Case selection

Figure 6.8 illustrates the two simulated examples, in which the obtained wind
direction signal at the upstream turbine is indicated in gray (raw) and black (low-
pass filtered) and the forced signal (Sect. 6.3.2.2) in red. This forced signal is the
low-pass-filtered wind direction measured at the met mast using the same cutoff
frequency of 0.0037Hz. It should be noted that besides the mean wind speed, no
other meteorological conditions (e.g., shear, veer, stability) are evaluated on how
well they match the simulated boundary layer characteristics.
Comparing the signals reveals that the main characteristics of the forced signal are
reproduced. Differences are due to advection, as the wind direction signal is forced
at the domain inflow boundary 25D upstream of the turbine. Case 1 (Fig. 6.8a)
represents a scenario in which wake steering with standard control is expected to
obtain a large power gain. This case is considered to demonstrate that preview
control is not detrimental to the power gain achieved with wake steering SC. Case 2
(Fig. 6.8b) illustrates an event in which wake steering with standard control is
expected to see a power loss due to rapidly changing conditions, a scenario in which
wake steering is expected to benefit greatly from preview control. A third case, which
is of interest but may be less common, is provided in Appendix A. It represents a
situation with strong fluctuations around δ = 0◦.
The first 600 s of the simulation are used to move from δ =0◦ to the initial δ, the start
of the low-pass-filtered time series. At 600 s, both turbines are turned on and are
given an additional 600 s to spin up while the mean wind direction remains constant.
Corresponding to Sect. 6.4.1, the first 300 s of the field time series are omitted. After
1500 s, the wind direction signal used for analysis enters the domain, but it takes
400 s for this information to flow from the inflow boundary to the upstream turbine.
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Figure 6.9: LES results for Case 1 (a–b) and Case 2 (c–d). The left column shows the wind
direction δ (gray, see Fig. 6.8) and orientations of the upstream turbine γ (colors). The right
column shows the raw (transparent) and low-pass-filtered (opaque) power gain ∆P relative to
greedy SC. The gain averaged over the simulation ∆P is indicated in the legend.

Altogether, the first 1900 s of the simulation are omitted, whereas the following
3000 s are used for analysis. Corresponding to the findings in Sect. 6.4.1.2, the
preview time was chosen as 90 s, equivalent to a preview distance of 750m or 6D
for an average hub height wind speed of 8.3m s−1.

6.4.2.2 Performance of the controllers for selected cases

Figure 6.9 shows the wind direction (δ) and yaw angle (ϕ) of the upstream turbine
(left column) and the corresponding power gain relative to greedy SC (right column).
Since the raw power gain signal (transparent) is rather noisy, the low-pass-filtered
(also using a cutoff frequency of 0.0037Hz) signal is also included and is shown
by opaque lines. In Case 1 (Fig. 6.9a–b), the turbine orientation of greedy SC
illustrates that small-scale turbulence has a large influence on the controller actions,
as is evident from the maneuvers in the direction opposing the large-scale wind
direction change (e.g., at 2800 s). Enabling PC eliminates this behavior, although
this is likely a coincidence rather than an effect of PC. A textbook-like situation can
be seen at around 2500 s, where the PC turbine yaws earlier than the SC turbine,
resulting in a small power gain due to a better orientation. This is directly followed
by a power loss, as the wake reaching the downstream turbine is slightly stronger.
Averaged over the whole simulation, greedy PC achieves a small power gain of
∆P =0.26%. Wake steering results in more yaw maneuvers than greedy control.
For the first half of the simulation, the misalignment is characterized by positive
angles, whereas the second half is characterized by negative angles. The orientation
of the SC and PC turbines deviates from a temporally shifted signal due to the
heterogeneity between the two locations from which information is acquired. Wake
steering with SC results in ∆P =2.44%, which is increased to ∆P =3.07% when
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PC is enabled. This suggests that PC is not detrimental to the power gain achieved
with steering SC and can increase this gain even further.
In Case 2 (Fig. 6.9c–d), wake steering with SC results in a power loss of ∆P =
−0.65%. This is mainly due to two events that produce a significant power loss for
several minutes. Both events are characterized by the upstream turbine yawing
to a certain orientation exactly when the wind direction quickly rotates in the
other direction, resulting in a large misalignment and a corresponding power loss.
Enabling PC converts this power loss into a gain of ∆P =0.88%, mainly achieved
by eliminating these events. This suggests that PC could be used to avoid erroneous
steering. It is noteworthy that in this case, greedy PC actually achieves the largest
power gain (∆P =1.08%). This is partially due to the wind direction being only in
the region where wake steering is deemed useful (|δ| < 20◦) during a small part of
the simulation.

6.4.2.3 Variation of low-frequency fluctuations

As mentioned before, an analysis with six seeds is performed to approach statistical
significance. In this section, the variation of low-frequency fluctuations is considered.
Besides Case 1 from the previous section, five more cases are randomly selected from
all met mast data with a low variability (MAD< 40◦ h−1, Fig. 6.7). Figure 6.10a
displays these results; the six seeds are displayed (Seed 1 indicates Case 1), as are
their means on the far right. The benefit of PC in greedy operation is negligible, as
the power gains of the upstream turbine due to a better alignment do not outweigh
the power losses observed for the downstream turbine due to a stronger wake. It is,
however, expected that greedy PC outperforms greedy SC in scenarios where the
downstream turbine is not heavily waked. Steering SC achieves a power gain of
1.24% on average, which is increased to 1.85% when PC is enabled. The differences
between the seeds are substantial, which can be directly linked to the characteristics
of the wind direction signal. For instance, in Seeds 1 and 6, a partial wake situation
occurs for a substantial part of the simulation. However, the other simulations
display a full wake situation for almost the whole simulation, resulting in lower
power gains. The effectiveness of PC can also be directly linked to the nature of the
wind direction signal, as a very steady, non-changing wind direction will not benefit
from PC. Lastly, these results are subject to small-scale turbulence, as pointed out
in Sect. 6.4.1, as well as the controller design. It is therefore deemed important to
look at the statistics (here, the mean), rather than the individual seeds.
Due to a lower occurrence of cases with a very high variability corresponding to
Case 2, five randomly drawn cases with a MAD> 140◦ h−1 make up the remaining
seeds. Note that the variability between these seeds is larger than between the six
low-variability seeds discussed in Fig. 6.10a. It can be seen that Case 2, indicated
as Seed 1 in Fig. 6.10b, was actually the only time series that resulted in a power
loss for steering SC. On average, the power gain achieved with steering SC is still
relatively small (∆P =0.44%). PC is able to increase this gain to 1.32%, which
is a larger benefit than observed for the low-variability seeds. Also, greedy control
benefits more from PC in cases with a high variability. Large differences between
the seeds can be observed, the most striking being the slight power loss observed
for steering PC relative to steering SC in Seed 6. Like before, this is attributed to
the chaotic nature of the simulations and is expected to be subject to small-scale
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Figure 6.10: Seed analysis of low-frequency fluctuations. Averaged power gains ∆P of six seeds for
slowly varying MAD< 40◦ h−1 (a) and fast-varying MAD > 140◦ h−1 (b) wind direction changes.
The average of all seeds is indicated on the far right.

turbulence and controller design. Nevertheless, these results are believed to make a
convincing case for the use of preview wind direction information, especially in wake
steering operation.

6.4.2.4 Variation of high-frequency fluctuations

As already illustrated in Sect. 6.4.1, high-frequency turbulence has a significant
effect on the power yield and therefore on the benefit of PC. In addition to the seed
analysis performed in Sect. 6.4.2.3 by varying the low-frequency characteristics of the
wind direction signal, a similar analysis is performed by varying the high-frequency
characteristics. Focusing again on Cases 1 and 2, the simulations are forced by the
same low-frequency signal, but both turbines are shifted laterally in the domain in
increments of 2.5D to induce a different high-frequency wind direction component.
Figure 6.11a displays that for Case 1, greedy PC results in a small power gain in four
out of six seeds but losses in the remaining two, resulting in a very small gain when
averaged over all seeds. Steering SC shows ∆P > 2% for all seeds, averaging a
gain of 2.74%. With PC enabled, this increases to 3.26%, with a substantial spread
between the seeds. For instance, PC’s benefit in Seed 4 is negligible, but PC adds
almost a full percentage point of power gain in Seed 6.
Figure 6.11b shows the same analysis for Case 2. Steering SC results in a power
loss in all seeds, with a mean power loss of ∆P = −0.58%. This loss is converted
into a gain of 0.93% when PC is enabled, clearly demonstrating that PC is able
to prevent erroneous yawing. Greedy PC achieves the highest gain, ∆P =0.94%,
corresponding to the results discussed in Sect. 6.4.2.2.
The results from all cases and seeds sketch the clear picture that wake steering
benefits substantially from preview control. Since the differences between seeds in
Fig. 6.10 are larger than those in Fig. 6.11, it is concluded that the magnitude
of this benefit mainly depends on the low-frequency wind direction variability
(Sect. 6.4.2.3). The high-frequency variability (turbulence) plays a secondary role,
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Figure 6.11: Same as Fig. 6.10, but for the seed analysis of high-frequency fluctuations.

as these fluctuations have a smaller effect on the moving average of wind direction
used by the yaw controller to decide when to initiate a yaw maneuver.

6.4.3 Comparison of large-eddy simulation and engineering model
results

In this section, the power gains computed with the engineering model are compared
to those obtained with LES. While acknowledging that models are inherently
imperfect, the LES results are considered the truth here. The wind direction signal
at the turbine of the greedy SC LES run is passed to the engineering model. It
should be noted that in LES, the time series of wind directions at the turbine differ
slightly between the simulations since the turbines do not exert the same thrust force
on the incoming flow due to their different orientations. The analysis is restricted
to the 12 low-frequency varying simulations discussed in Sect. 6.4.2.3.
Figure 6.12a shows that the engineering model has a mean absolute error
MAE=0.49% and a correlation coefficient R = 0.83. The fitted linear relation
indicates that large gains are typically overestimated with the engineering model.
Splitting the data by control strategy (Fig. 6.12b) reveals that this systematic bias
is mainly caused by steering SC. Lastly, splitting the data into low (MAD< 40◦) and
high (MAD> 140◦) variability in Fig. 6.12c illustrates that the engineering model
struggles in the low-variability cases. This is likely due to the relatively long period
of the full wake situation, which emphasizes any inaccuracies of the wake model.
Considering the assumptions made in the engineering model (e.g., a constant wind
speed) and the difference in computational costs (≈ 1500 CPU hours for LES
and ≈ 0.1 CPU hours for the engineering model), the accuracy of the engineering
model is considered acceptable. This gives some credibility to the results discussed
in Sect. 6.4.1. The next steps to improve the engineering model could be to include
the time-varying wind speed and veer, which are currently assumed to be constant.
This would likely result in an increased accuracy at the cost of slowing down the
model. Additionally, as the engineering model is subject to the underlying DART
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Figure 6.12: Comparison of the engineering model and LES in estimating the power gain ∆P . The
Pearson correlation coefficient (R), mean absolute error (MAE) and orthogonal distance regression
fit are indicated. (a) All results, (b) the results split by control strategy and (c) the results split
by variability of the wind direction signal.

wake model, improvements there will likely also result in a more accurate engineering
model.

6.5 Discussion

The results presented in this study demonstrate the benefit of preview wind direction
control. However, the authors are aware that many assumptions were made to show
this proof of concept. These, as well as their implications for future work, are
described in this section.

6.5.1 Comparison to existing literature

The body of existing literature on the topic of preview wind direction control for
wake steering purposes is small. However, some interesting points can be noted
when comparing the current results to those in Simley et al. (2021b). Both studies
use an engineering model with a similar controller logic and consider wind speed.
Interestingly, an identical optimal preview time of 90 s was identified in both works.
Using this optimum preview time and assuming perfect preview measurements,
Simley et al. (2021b) reported a power gain ranging from 5.8% for wake steering
with standard control to 8.9% when preview control was enabled, representing an
increase of 55%. Performing a similar exercise, the current study found an increase
of 31%: from 1.62% for standard to 2.12% for preview wake steering control. These
differences are subject to the different engineering models used, the size of the
data set, the turbine spacing, and assumptions about the average wind direction.
Regardless, both studies show a significant increase in power gain when using perfect
preview information.
Lastly, Simley et al. (2021b) did not find any benefit of preview control in
wake steering operation when feeding realistic wind direction information to the
engineering model. By contrast, in the even more realistic environment of large-
eddy simulations, this study demonstrated a significant power gain when using
imperfect preview information. It should be noted that measurement errors due to
device imperfections are not considered here. Regardless, this is an important result
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that demonstrates that the concept of wake steering using preview wind direction
information is worth pursuing in future work.

6.5.2 Generalizability

This study was restricted to studying a very limited range of conditions. Only
one wind speed in the partial load range was considered, as well as only a single
stratification and turbine layout. For this reason, the results presented in this work
cannot be directly generalized.
Since the wake steering effectiveness is influenced by the atmospheric stratification
(Vollmer et al., 2016; Simley et al., 2022), it is reasonable to assume that the benefit
of preview control is also subject to stability. With similar reasoning, the wind speed
is also expected to impact the benefit of preview control, as it was demonstrated
to affect the effectiveness of wake steering (Simley et al., 2021a). Furthermore,
the preview distance is directly subject to the wind speed, and fluctuations will
add another layer of complexity in the forecasting of the incoming wind direction
changes.
Besides atmospheric conditions, the benefit of preview control is likely also subject to
the yaw controller logic. The controller logic not only affects the timing to initiate
a yaw maneuver but could also have implications for the optimum preview time
identified in this work.
A logical next step for future work would therefore be to assess the effectiveness of
the preview control strategy for a wider range of atmospheric conditions, as well
as its dependence on yaw controller logic. Additionally, simulations containing full
wind farms with different layouts should be carried out to see how the benefit of
preview control changes with scale. This increases the complexity of the problem,
as it is for instance unclear where the preview information for downstream turbines
should be obtained. This is further discussed in Sect. 6.5.4.

6.5.3 Large-eddy simulation considerations

As mentioned in Sect. 6.3.2.3, the use of non-cyclic boundary conditions introduces
a vertical gradient ∂w/∂z, which alters the wind speed and direction profiles over
time. Although this is not considered to affect the outcome of this study as all
controllers experience the same effect, it is deemed important for future work to
quantify the effect of this behavior and possibly use a different simulation setup to
prevent it.
More generally, it should be noted that in LES, the wind direction changes always
propagate through the domain, allowing an incoming change to be detected at the
preview measurement location before it reaches the turbine. In reality, there may
be scenarios when changes occur at the preview measurement and turbine locations
at the same time. This would reduce the benefit of preview wind direction control.

6.5.4 Forecasting wind direction changes

Arguably the most important task is creating a feasible method to forecast the
incoming wind direction. This study assumes the presence of a wind vane on a
met mast 6D upstream of the first turbine, corresponding to an optimal preview
time of 90 s for a wind speed of 8.3m s−1. Not only is it unfeasible to erect met
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masts upstream of each turbine pair, but it is also impossible to adapt the met
mast location to varying wind speeds and directions. More feasible would be to
use SCADA data from surrounding turbines, as explored in Rott et al. (2020). A
disadvantage of this is that it would only provide information further downstream in
the wind farm and not for the first row of turbines, which may be the most crucial
for wake steering. Alternatively, the use of long-range lidars should be explored.
It is difficult to obtain accurate wind direction estimates with lidars, as they only
measure a line-of-sight velocity (LOS). The measured LOS can be affected by both
wind speed and direction changes, as illustrated in Held and Mann (2019) for a
two-beam lidar. When operating the lidar with plan position indicator (PPI) scans,
a sinusoid can possibly be fitted to the LOS measurements, as done in Theuer et al.
(2020). This would, however, result in a relatively low update frequency and spatial
averaging over a large area. Alternatively, multiple (at least two) lidars targeting
the same points upstream can be installed at opposite sides of the wind farm; these
can be used to reconstruct two wind speed components and consequently the wind
direction (van Dooren et al., 2016). Lastly, lidar-based and SCADA-based forecasts
can be combined, as done for wind speed in Theuer et al. (2022).
Regardless of what forecasting method is used, the smoothing of raw signals
can be done with wind field estimation approaches using surrogate models (e.g.,
Doekemeijer et al., 2018; Sinner et al., 2020). The forecasting method’s measurement
error should be quantified, and how this error affects the effectiveness of preview
control should be investigated. As the preview quality of these new methods is likely
lower than that of a virtual met mast, power gains from preview control could be
lower than illustrated in this work. However, given the substantiality of the gains
demonstrated here, preview control using lower-quality wind direction signals still
has the potential to provide significant power gains.

6.5.5 Yaw controller

In this study, a very simple controller was used that bases its yawing decisions on
whether the turbine misalignment exceeds a preset limit of 7.5◦, after which it blindly
yaws to its next orientation. As discussed in Sect. 6.5.2, the yaw controller logic
is expected to affect the effectiveness of preview control. Aggressive controllers are
better able to follow wind direction changes, resulting in higher power production
at the cost of more yaw maneuvers; therefore, the added value of preview control
might be small. Likewise, conservative controllers likely benefit more (i.e., have a
higher power gain compared to SC) from the use of preview information.
However, upon utilizing preview information, more intelligent controllers could
be developed that, for instance, schedule the next maneuver. This could be
used to mitigate frequent yawing, especially switching from positive to negative
misalignments and vice versa, as seen in the extra case shown in Appendix A.
A strong candidate is model predictive control (e.g., Spencer et al., 2011), which
has been well researched for wind turbine blade pitch and generator torque control
but has only recently been considered for yaw control. For instance, Song et al.
(2019) formulated a model predictive controller that uses wind direction preview
and realistic yaw dynamics for the greedy control of a single wind turbine. Model
predictive control for wake steering remains a topic to be explored in future research.
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6.5.6 Effect of preview control on yawing action and loads

As can be seen in Figs. 6.2 and 6.9, the number of yaw maneuvers in wake steering
is much higher than in greedy control, which is well described in the literature (e.g.,
Bossanyi, 2019; Kanev, 2020). However, preview control does not seem to affect the
number of yaw maneuvers, at least not as long as the same yaw controller is used.
A detailed analysis of how preview control affects turbine loads was considered out
of the scope of the current work. The effect of wake steering on loads is complicated
and heavily discussed in the literature (Houck, 2021, and references therein). It can
be hypothesized that preview control reduces the loads on the upstream turbine since
extreme misalignments are avoided (e.g., Fig. 6.9c). Since the wake will be more
successfully steered away from the downstream turbine, the loads on this turbine
are also expected to be lower.

6.6 Conclusions

This study has explored the use of preview wind direction information for wake
steering control. An engineering model based on the Data-driven wAke steeRing
surrogaTe model (DART) used wind direction time series to estimate power yields
with perfect preview information. For this purpose, a turbine pair with a spacing of
six rotor diameters was considered in a turbulent flow with a constant wind speed
in the partial load range. Based on theoretical linear wind direction changes and
later on field measurement data, the results of the engineering model identify an
optimum preview time of 90 s for the considered controller, atmospheric conditions,
and farm characteristics. Preview control results in an overall power gain, with the
highest benefit obtained when the wind direction changes rapidly.
These results were validated by employing a large-eddy simulation model. Wind
direction changes were forced in a neutral boundary layer containing the turbine
pair. Preview information was taken from a virtual wind vane six rotor diameters
upstream of the first turbine, corresponding to the previously determined optimum
preview time of 90 s. A six-seed analysis of 3000 s simulations demonstrated that
under large, low-frequency wind direction changes, wake steering with standard
control results in only small power gains of 0.44% on average and, occasionally, a
power loss due to erroneous steering. In contrast, preview control achieves higher
power gains of 1.32% on average. In a second six-seed analysis with small low-
frequency wind direction changes, wake steering with standard control achieved
an average power gain of 1.24%, which further increased to 1.85% when enabling
preview control. Fluctuations in the low-frequency region were shown to have a
dominant effect on the performance of wake steering, particularly the effectiveness
of preview control. High-frequency fluctuations (turbulence) are less important,
as their impact on the yaw controller decision is smaller. Contrary to Simley
et al. (2021b), who found no benefit of preview control with realistic wind direction
information in wake steering operation, this study has demonstrated a significant
power gain using realistic large-eddy simulation results.
This study has introduced many new research questions, such as how to
feasibly obtain preview information, how the quality of these forecasts affects
the effectiveness, and how to use this information in more intelligent controllers.
However, the results demonstrate that wake steering can benefit considerably from
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preview wind direction control, making it a topic worth pursuing in future work.

A6.1 Case with strong fluctuations around δ = 0◦

Large-eddy simulation (LES) runs forced by an additional wind direction signal were
performed, but these results were excluded from the main text for brevity. However,
the results of this case might be of interest to some readers and have therefore
been included in this appendix. The case represents a situation where δ =0◦ is
crossed several times. The sign of the intentional misalignment switches several
times, resulting in many and large yaw maneuvers, as can be seen in Fig. 6.13a.
Although this case is typically viewed as detrimental for wake steering, here, steering
standard control (SC) still obtains a power gain of ∆P =0.86% (Fig. 6.13b), which
is almost doubled when enabling preview control (PC). Greedy PC actually results
in a power loss (a negative ∆P ), which is likely due to a stronger wake reaching the
downstream turbine as a consequence of a better alignment of the upstream turbine.
Figure 6.14 shows the six-seed analysis with varying high-frequency fluctuations (see
Sect. 6.4.2.4). Greedy PC has, on average, a very small power loss. Steering SC
shows consistent power gains, averaging to ∆P =1.21%, which is increased to 1.83%
when PC is enabled. Moreover, five out of six seeds show a substantial power gain
for PC over SC. These results indicate that wake steering also benefits from preview
wind direction control in this scenario.

Figure 6.13: Same as Fig. 6.9, but for a case where δ =0◦ is crossed several times.

Figure 6.14: Same as Fig. 6.11, but for a case where δ =0◦ is crossed several times.
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Chapter 7

Conclusions and outlook

7.1 Conclusions

Wake steering is a promising wind farm control strategy that has received an
increasing amount of attention in academia and industry in recent years. This
thesis builds on the advancements made in recent years and demonstrates that
emerging technologies from the field of computer science can be exploited for wake
steering purposes. In particular, this thesis shows that interpretable data-driven
approaches can be used to benefit wake steering applications. The characteristics
of the (redirected) wake in a steady state can be more accurately estimated with
a data-driven wake model than with current analytical models, even when only
using routinely available measurements as input data. Furthermore, in scenarios
challenging for wake steering due to rapid wind direction changes, appropriate
preview wind direction information can be used to consistently achieve power gains
compared to greedy control. The results from this thesis are discussed in more
detail following the research questions proposed in Chapter 1.

1. How can characteristics of a steady state wake be described with a set of
quantifiable parameters?

• The strengths of two traditional wake tracking algorithms are combined
in a new Multiple 1D Gaussian method. It includes the simplicity of
the 1D Gaussian method and the ability of the 2D Gaussian method to
obtain information of the wake extension in both the horizontal and vertical.
This method describes traditional characteristics like wake center deficit and
position, but also introduces new parameters describing the wake shape in terms
of curl and tilt.

• These wake parameters can be used to study the effect of inflow conditions
on wake characteristics. For example, it was shown that a wake in a stable
atmosphere deflects more to the right and has a larger curl than a wake in a
neutral boundary layer.

2. How can these wake parameters be estimated from inflow and turbine variables?

• The wake parameters (output parameters) can be estimated from inflow and
turbine variables (input parameters) by employing the Data-driven wAke
steeRing surrogaTe model (DART), which consists of linear equations only.
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The models’ coefficients are obtained using a Lasso regression algorithm which
isolates relevant from irrelevant parameters, effectively shrinking the number
of variables and avoiding multicollinearity.

• Due to its simplicity, DART is highly interpretable, meaning it is clear how
input parameters affect output parameters. An example illustrates that to
estimate the lateral wake center displacement, the most import variable is the
yaw angle, followed by the thrust and wind veer.

• Highly correlated input variables are interchangeable in DART as they provide
much of the same information. However, as long as they are not perfectly
correlated, adding both variables can increase the model’s accuracy, but at the
cost of increased model training time.

• Compared to two analytical wake models in a large-eddy simulation study,
DART provides more accurate estimates of the available power at downstream
locations under all tested conditions, but especially in a stably stratified
atmospheric boundary layer. DART reproduces the wake shape and center
position under the influence of high wind veer more accurately, leading to a
better representation of the wake in stable conditions.

3. What variables and how much data need to be obtained in the field to estimate
these wake parameters?

• Also in a field experiment, DART is demonstrated to outperform an analytical
model. This is mainly due to a decreased spread, as the systematic bias is
comparable. DART demonstrates an error reduction between 19 and 36 %,
depending on the used number of input variables.

• DART is especially more accurate than the analytical model when the upstream
turbine is misaligned or when the wind shear is large. The latter relates to
the higher accuracy in stable conditions as found in the large-eddy simulation
study. This indicates that it outperforms the analytical model particularly
when performing wake steering and in conditions in which wake steering is
deemed most beneficial.

• DART’s accuracy increases with the used number of input variables, as it
has more information available to explain the variability observed in the field.
Increasing the number of input variables both lowers the the systematic bias
and reduces the spread, but increases the model’s training time.

• While analytical models rely on data not affected by the rotor, typically
obtained at a nearby met mast, DART is able to handle disturbed data, such
as routinely available SCADA data. When only considering SCADA data as
input, DART achieves an accuracy very similar to when using undisturbed
met mast data. The systematic bias slightly increases, but the spread remains
identical. This suggests that no met mast is needed to accurately estimate the
wake characteristics after successfully training the model.

• While one of the main drawbacks of data-driven models is their high data need,
DART is shown to be able to outperform the analytical model with limited
training data, in this particular study about 75 cases at specific set points.
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Besides, using more data further increases DART’s accuracy, while the error of
the analytical model remains constant.

4. What conditions are detrimental for wake steering and can these be mitigated by
using preview wind direction information?

• Unexpected wind direction changes lead to larger yaw misalignments than
intended. This results in substantial power losses of the upstream turbine,
which are not compensated for by gains at the downstream turbine. This
erroneous wake steering, referring to a power loss compared to greedy control,
mainly occurs when wind direction changes rapidly.

• An engineering model developed based on DART illustrates that the turbine
controller can use preview wind direction information to eliminate erroneous
wake steering events.

• The engineering model suggests an optimal preview time of 90 s. It appears
to be constant regardless of the variability of the wind direction signal and is
likely only dependent on the yaw controller logic. The corresponding preview
distance is then a function of the wind speed.

• Large-eddy simulations confirm that the use of preview wind direction
information is beneficial when wake steering is applied. Especially when the
wind direction changes rapidly, power losses are converted into power gains or
small power gains are further increased. However, also when the wind direction
changes are slower, preview control further increases the power gain achieved
with wake steering.

• The low-frequency wind direction variability (dynamic changes) are dominant
in explaining the effectiveness of wake steering and the added benefit of preview
control. High-frequency variations (turbulence) play a secondary role, as these
have a smaller effect on decisions made by the yaw controller.

7.2 Outlook

Since the start of the work for this thesis in 2019, data-driven methods have gained
immense popularity in the wind energy research community. Besides a growing
number of papers using data-driven techniques (Zehtabiyan-Rezaie et al., 2022),
conferences now have designated time slots for these kind of studies. Additionally,
even a ”Symposium on data-driven modeling and optimization in fluid mechanics”
was organized in 2022 (Aarhus University, 2022). When writing the manuscript
for Sengers et al. (2022) (Chapter 4) in mid 2020, hardly any references for existing
data-driven wake models could be found, whereas there was an abundance of options
when writing the manuscript for Sengers et al. (2023b) (Chapter 5) in mid 2022.
Most work with data-driven techniques is highly complex and a computer scientist or
machine learning expert might be needed to create and operate such models, which
deteriorates many end-users from adopting these. This thesis has demonstrated that
also simple, interpretable data-driven techniques can be beneficial for wake steering
applications.
Specifically for the DART model developed in this work, further developments
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constitute of a near wake representation, for instance using a super-Gaussian
description, and the ability to simulate more than two turbines. The latter includes
superpositioning the wakes of multiple turbines, but also generating accurate results
for disturbed inflow when a downstream turbine operates in the full or partial wake.
This would likely involve many high-fidelity simulations or an extensive measurement
campaign.
Although this work focused on wind speed and consequently power estimation, a
methodology similar to DART could be developed to predict the turbulent wind
field and consequently estimate turbine loads. The wind tunnel experiments from
Bartl et al. (2018b) illustrate a turbulent ”ring of fire” of which the shape and
amplitude could be quantified and consequently be estimated with for instance the
Lasso algorithm. In fact, Peters et al. (2022) recently attempted to predict loads
using a reduced order model inspired by the work presented in Chapter 4.
More generally, further advancements in the field of machine learning will allow
for the development of more accurate wake models that will outperform DART
as proposed in this work. However, these models will have similar issues with
generalizability as this is an inherent shortcoming of data-driven models, which
limits their application to other locations. Section 5.4.2.4 showed that DART needs
relatively few data representing specific set points to generate accurate results. It is
deemed an important task for future research to define these set points, and possibly
to design a guide describing the campaign setup and measurement matrix needed
to retrain data-driven models at new locations. Alternatively, yet more challenging,
a methodology could be developed to generalize the models’ coefficients, directly
making the model applicable to other sites.
Perhaps utilizing the best of both worlds is to develop a hybrid model that is initially
trained with (high-fidelity) numerical data or measurement data from other sites,
which are gradually replaced by measurements collected at the new site. Alternative
to installing measurement equipment at every new site, it could be assumed that
the wake position and shape are sufficiently accurately described by the old data,
so that only the coefficients related to the wake deficit would need retraining. This
could for instance be done using SCADA data by deducing rotor equivalent wind
speeds.
With the demonstrated benefit of preview wind direction information for wake
steering control, Chapter 6 opened up a wide range of research questions for
future work. This includes developing a feasible methodology to forecast wind
direction changes before they reach the turbine, either utilizing already available
information from other turbines or met mast, or with the deployment of remote
sensing devices such as lidars. Besides, wake steering experiments are currently
pushing the boundaries of standard yaw controllers developed for greedy control.
Various studies have shown that power gains can be achieved when using more
intelligent yaw controllers such as closed-loop controllers (e.g., Doekemeijer et al.,
2020; Howland et al., 2020). It is hypothesized that more intelligent controllers
enhance the benefit of preview information provided by wind direction forecasts as
well.
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Rott, A., Petrović, V., and Kühn, M.: Wind farm flow reconstruction and prediction
from high frequency SCADA Data, Journal of Physics: Conference Series, 1618,
062 067, https://doi.org/10.1088/1742-6596/1618/6/062067, 2020.

Saiki, E. M., Moeng, C.-H., and Sullivan, P. P.: Large-Eddy Simulation Of The
Stably Stratified Planetary Boundary Layer, Boundary-Layer Meteorology, 95,
1–30, https://doi.org/10.1023/A:1002428223156, 2000.

Sathe, A. and Mann, J.: A review of turbulence measurements using ground-based
wind lidars, Atmospheric Measurement Techniques, 6, 3147–3167, https://doi.org/
10.5194/amt-6-3147-2013, 2013.

Schlipf, D. and Cheng, P. W.: Flatness-based feedforward control of wind turbines
using lidar, IFAC Proceedings Volumes, 19, 5820–5825, https://doi.org/10.3182/
20140824-6-ZA-1003.00443, 2014.

Schlipf, D., Kapp, S., Anger, J., Bischoff, O., Hofsäß, M., Rettenmeier, A., and
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power forecast of offshore wind turbines using long-range single-Doppler lidar
measurements, Wind Energy Science, 5, 1449–1468, https://doi.org/10.5194/
wes-5-1449-2020, 2020.

129

https://www.whitehouse.gov/briefing-\room/presidential-actions/2021/12/08/executive-order-on-catalyzing-\clean-energy-industries-and-jobs-through-federal-sustainability/
https://www.whitehouse.gov/briefing-\room/presidential-actions/2021/12/08/executive-order-on-catalyzing-\clean-energy-industries-and-jobs-through-federal-sustainability/
https://www.whitehouse.gov/briefing-\room/presidential-actions/2021/12/08/executive-order-on-catalyzing-\clean-energy-industries-and-jobs-through-federal-sustainability/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/03\/29/fact-sheet-biden-administration-jumpstarts-offshore-wind-energy-\projects-to-create-jobs/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/03\/29/fact-sheet-biden-administration-jumpstarts-offshore-wind-energy-\projects-to-create-jobs/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/03\/29/fact-sheet-biden-administration-jumpstarts-offshore-wind-energy-\projects-to-create-jobs/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/03\/29/fact-sheet-biden-administration-jumpstarts-offshore-wind-energy-\projects-to-create-jobs/


Theuer, F., Rott, A., Schneeman, J., von Bremen, L., and Kühn, M.: Observer-
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Reconstruction of 2D Horizontal Wind Fields of Wind Turbine Wakes Based
on Dual-Doppler Lidar Measurements, Remote Sensing, 8, 809, https://doi.org/
10.3390/rs8100809, 2016.

van Wingerden, J.-W., Fleming, P. A., Göçmen, T., Eguinoa, I., M, D. B., Dykes,
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