
Preface

Even in the more than 30-year-old science fiction movie ”startrack” the
main actors communicated with the board computer via natural speech
- a fiction which has not yet been realized even after decades of intensive
research in automatic speech recognition. An essential hurdle on the
way to a natural-speech, acoustical man-machine communication is the
lack of a suitable representation of speech for the computer. In other
words: How should the speech signal be represented in the computer in
such a way that the resulting patterns can be interpreted in a correct
way? Another, related problem refers to the high susceptibility of
automatic speech recognition systems towards interfering noise: Most
automatic speech recognition systems operate very well in quiet, but
completely fail as soon as little additional noise is added. What can be
done to suppress non-speech background noise?

For these both fundamental problems in automatic speech recog-
nition, Jürgen Tchorz has shown in this thesis the perhaps decisive
solution: Why is the computer not able to understand and process
speech in a way similar to our ear? Using this question as a starting
point, he uses a pre-processing method for speech which is closely
linked to a model of the ”effective” auditory signal processing that
was developed primarily in the Graduate School ”Psychoakustik” in
Oldenburg. With this auditory-based representation of speech Jürgen
Tchorz can achieve a higher robustness of speech recognizers against
interfering noise than with conventional systems. In addition, on the
basis of new insights into modulation processing in our ear he has
developed an astonishingly efficient noise suppression system which is
able to separate speech from non-speech background noise. This noise-
suppression procedure promises not only applications in man-machine
communication, but rather it can be applied to telecommunications
(noise suppression during telephone conversations) and to hearing-aid
technology. The current work by Jürgen Tchorz therefore shows an
innovative, new approach in automatic speech recognition, since the
previous approaches known from the literature are more based on the
physical properties of speech rather than the properties of our ear.
Thus, this thesis is in line with early work of Manfred R. Schroeder



(the ”scientific grandfather” of this thesis, since the author of this
preface did his Ph.D. under his supervision) who first introduced linear
predictive coding into speech coding and used principles of the ear to
”hide” the residual quantization noise from the listener’s ear by putting
it into those spectral regions that are masked by the coded speech. This
technology is nowadays used in each hand-held (cellular) mobile phone.
Hopefully, the results of the current thesis will be implemented into
each (mobile) computer in the future as well!

Jürgen Tchorz is the 20th Ph.D. candidate from the current author’s
group in Göttingen and (since 1993) in Oldenburg. In fact, he is the first
graduate student from Oldenburg who worked on speech research and
used the strong auditory-research-based background of the group only
as a motivation, not as a ”toolbox”. In his unconventional, but always
intriguing and efficient way he even helped to start up a whole group of
speech researchers in Oldenburg and carried his knowledge into teaching
of physics students, since he was the first Ph.D. student from our group
to be awarded a faculty position for ”support of scientific newcomers”.
Without knowing him in person, you cannot really assess, how much fun
it was to work with him and to discover all his different superb talents
(with creating public relations materials for the faculty of all kinds
being just a little part of it), even though at first sight he always looks
as if he has just woke up. Given this background (as well as the vast
application possibilities for his work) it is not at all astonishing that
shortly after completion of his Ph.D. several international companies in
hearing-aid and speech business have been competing to recruit him as
a staff member. If you want to find out why this is the case, there is a
very simple way to do: Just read this thesis!

Birger Kollmeier, October 2000
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Chapter 1

General Introduction

Computational speech processing has undergone a rapid development
during recent years. Automatic speech recognition (ASR), for example,
found its way out of the research laboratories into a wide range of
practical applications, such as dictation, dialog systems for inquiries,
or voice-driven banking. Computational speech processing is also
employed in the field of human communication in a fast growing number
of applications, such as mobile telephony, voice-over-IP, or in digital
hearing instruments. In almost all of the applications listed above,
however, background noise is a major problem. Hearing-impaired
persons, for example, often complain that through the hearing aid noise
becomes quite annoying which makes it exhausting or even impossible
to understand a talker. Hence, they often prefer not to wear the hearing
aid or to avoid noisy situations. The recognition rates of ASR systems,
to give another example, typically drop significantly even in moderate
background noise, which can make the usefulness of the whole system
questionable. The current thesis is concerned with solutions for these
problems by mimicking properties of the human auditory system to
suppress unwanted noise and to increase the robustness of automatic
speech recognizers.
Several approaches have been suggested to suppress disturbing back-
ground noise and to enhance speech recognition with hearing aids or
to increase the robustness in ASR systems. Existing noise suppression
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2 CHAPTER 1. GENERAL INTRODUCTION

schemes can be grouped into two main categories. Directive algorithms
perform the separation between the target and the noise signal by
spatial filtering. A target signal (e.g. from the front direction) is passed
through, and signals from other directions are suppressed. This can be
realized by using directive microphones or microphone arrays (Soede
et al., 1993). In prototype hearing instruments, binaural algorithms
exploit phase and level differences or correlations between the two sides
of the head for spatial filtering (Wittkop et al., 1997). Monaural noise
suppression algorithms, in contrast, try to separate speech from noise
when only one microphone is available, i.e. without spatial information.
A monaural noise suppression approach which is widely used bases
on Spectral Subtraction (Boll, 1979). The noise spectrum (which is
measured and updated in speech pauses) is subtracted from the signal
spectrum. After reconstruction, ideally, the signal is cleaned from noise.
In ASR systems, higher robustness against noise can be achieved by
single- or multi-channel noise suppression as described above, by model
compensation (Siohan et al., 1999), or by more noise-robust front ends,
which are designed to extract vectors from the waveform that reflect
distinctive features from speech but which are relatively insensitive
against noise.
Despite the progress in noise suppression and more robust ASR,
however, there is no speech recognition system available to-date with
recognition performance even close to human speech intelligibility in
noise. Most algorithms which are designed to reduce the impact of
background noise in human communication or in ASR systems are
“technical” approaches which do not or only little consider properties
and characteristic features of auditory sound processing, even though
the human auditory system can be regarded as a very robust “speech
processor”. We can detect and classify different sound sources, concen-
trate on one of them (e.g., a certain talker), and “fade out” the other
sources from our focus, which allows us to understand speech even
in very poor acoustical situations. These impressive skills are made
possible by the interplay between the auditory “feature extraction”,
which detects, analyzes and sorts a range of different acoustic cues
in the waveform, and the higher stages of the auditory system which
perform their cognitive tasks basing on these cues.
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While comparatively little is known on the complex processing in the
higher stages, more insight has been gained on the details of the auditory
periphery and the representation of signals in auditory stages behind
the periphery, for example the analysis of amplitude modulations, or
the mechanisms of spectral and temporal masking. These properties
can already be observed in the first stages of the auditory system.

The current thesis therefore is concerned with the application of
certain properties of the auditory system to computational speech
processing. The goal is to reduce disturbing effects of background noise,
with the underlying assumption that the biological model is better
suited for the solution of the above described problems, compared
to entirely “technical” approaches. A blind imitation of biological
mechanisms, however, is not likely to yield an effective solution to the
respective problem (most air planes have two wings and a tail unit,
but they do not flap wings). Thus, it is important to determine and
model the most effective and essential properties and characteristics of
auditory processing.
Two major problems of computational speech processing are tackled in
this thesis, namely the detection and suppression of noise in monaural
input signals, and the extraction of noise-robust features in ASR sys-
tems. For noise detection and suppression, spectro-temporal patterns
are generated from the waveform which reflect the representation of
amplitude modulations in higher stages of the auditory system, and
which allow for a distinction between speech and noise portions. For
noise-robust ASR feature extraction, an effective psychoacoustical
model of the auditory periphery is applied and investigated. Both
algorithms are combined to further enhance the robustness in automatic
speech recognition.

The thesis is structured as follows. In Chapter 2, an algorithm
is presented which automatically detects the local acoustical situa-
tion in terms of the signal-to-noise ratio (SNR). The algorithm is
motivated by psychoacoustical findings and neurophysiological exper-
iments on the representation of amplitude modulations in the infe-
rior colliculus and auditory cortex of mammals (Langner et al., 1997;
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Langner and Schreiner, 1988). These experiments revealed that, similar
to center frequencies, modulation frequencies are analyzed and organized
in “periodotopical” gradients, which were found to be almost orthogonal
to the tonotopical gradients which respect to different center frequen-
cies. Kollmeier and Koch (1994) applied these findings in the field of
speech processing by introducing two-dimensional maps, so-called Am-
plitude Modulation Spectrograms (AMS), which contain information on
both spectral and temporal characteristics of the input signal and which
were applied in a binaural noise suppression scheme. In Chapter 2, AMS
patterns and their contribution to reliable SNR prediction are studied
in detail. In Chapter 3, the SNR prediction scheme is extended to fre-
quency sub-bands and applied to noise suppression based on the SNR
estimates. The local SNR is directly estimated in a range of frequency
channels even if speech and noise are present at the same time, i.e., no ex-
plicit detection of speech pauses and no assumptions on noise stationarity
during speech activity are necessary. The effects of “across-frequency”
processing for SNR estimation are examined, and the results are com-
pared with sub-band SNR estimation based on voice activity detection.
Noise suppression is performed by attenuating different frequency chan-
nels according to their SNR in a following processing step. The quality of
the novel noise suppression algorithm, compared to unprocessed speech,
is evaluated with a range of objective speech quality measures.
In Chapter 4, the application of a model of the auditory periphery
as front end for ASR is presented. The model which reflects both
spectral and temporal properties of the auditory periphery was orig-
inally developed by Dau and others to predict human performance
in typical psychoacoustical masking experiments (Dau et al., 1996a;
1996b). The model provides feature vectors which are considered as an
“internal representation” of sound. The auditory-based features serve
as input for a HMM recognizer for digit recognition in noise, and the
results are compared with the performance obtained with conventional
mel-cepstral features. The different processing stages of the auditory
model and their contribution to robust speech recognition are studied in
detail, especially the role of adaptive amplitude compression and sup-
pression of amplitude modulations outside the range of modulations orig-
inating from articulatory movements.
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In Chapter 5, the noise suppression scheme which was developed in
Chapter 3 is evaluated in ASR experiments. It is combined with the
auditory front end to investigate whether it allows for further enhance-
ment of robust digit recognition. The results are compared with Spectral
Subtraction as a standard noise suppression approach.
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Chapter 2

Estimation of the
signal-to-noise ratio with
amplitude modulation
spectrograms 1

Abstract

An algorithm is proposed which automatically estimates the local signal-
to-noise ratio (SNR) between speech and noise. The feature extraction
stage of the algorithm is motivated by neurophysiological findings on
amplitude modulation processing in higher stages of the auditory sys-
tem in mammals. It analyzes information on both center frequencies
and amplitude modulations of the input signal. This information is rep-
resented in two-dimensional patterns, so-called Amplitude Modulation
Spectrograms (AMS). A neural network is trained on a large number
of AMS patterns generated from mixtures of speech and noise. After

1A modified version of this Chapter has been submitted to Speech Communication:
Tchorz and Kollmeier (2000) “Estimation of the signal-to-noise ratio with amplitude
modulation spectrograms”.
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8 CHAPTER 2. BROAD BAND SNR ESTIMATION

training, the network supplies estimates of the local SNR when AMS
patterns from “unknown” sound sources are presented. Classification
experiments show a relatively accurate estimation of the present SNR
in independent 32 ms analysis frames. Harmonicity appears to be the
most important cue for analysis frames to be classified as “speech-like”,
but the spectro-temporal representation of sound in AMS patterns also
allows for a reliable discrimination between unvoiced speech and noise.

2.1 Introduction

The automatic classification of the acoustical situation in terms of
speech/non speech detection or signal-to-noise ratio (SNR) estimation
is an important issue for various signal processing applications. In
the field of mobile communication, accurate voice activity detection
(VAD) is essential for silence compression. Digital processing in modern
hearing instruments allows the implementation of a wide range of sound
processing schemes which adapt on the present sound source. Finally,
noise suppression for e.g. automatic speech recognition requires a fast
and reliable estimate of the local noise level or signal-to-noise ratio
(SNR). Typically, SNR estimation is realized by updating a measure
of the background noise in speech pauses, which are detected by a
VAD. For VAD-based SNR estimation, stationarity of the noise has
to be assumed while speech is active. Furthermore, portions detected
as speech pauses must not contain voice to allow for correct noise
measurement, but at the same time all actual speech pauses should
be detected for a fast update of the noise measurement. In reality,
unfortunately, the combination of these two requirements is not often
met. A range of different VAD algorithms are described in the literature
which use different sets of feature parameters that are extracted from
the waveform, and different types of classification paradigms which
compute a speech/non-speech decision. The VAD standardized by the
European Telecommunications Standards Institute (ETSI) for the Full
Rate GSM codec (ETSI, 1996) is basically an energy detector. The
applied threshold is constantly adapted in speech pauses, where pitch
detection is used to prevent voiced speech portions from being classified
as speech pauses. In a VAD standardized by the International Telecom-
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munication Union (ITU, 1996), information on energy, zero-crossing
rate, and spectral distortions is utilized for VAD, and thresholds are
defined for classification.
Some direct SNR estimation schemes were developed which do not
require explicit speech pause detection. An iterative approach described
by Hirsch and Ehrlicher (1995) bases on the statistical analysis of a
segment of the magnitude spectral envelope. Histograms of past values
are build taking into account values below a dynamically updated
threshold. The noise level is estimated as the smoothed maximum
of this distribution. Being based on relative energy levels, however,
the algorithm cannot distinguish between rising noise energy and the
presence of speech. Furthermore, an accurate estimation of the noise
energy requires analysis frames which include speech pauses or closures,
typically more than 0.5 s. Thus, the noise estimate is rather “sluggish”
and cannot follow rapid changes. Martin (1993) proposed a spectral
analysis method which also requires a long segment of the input signal
(about 0.6 s). The algorithm is based on the observation that a noise
power estimate can be obtained by using minimum values of a smoothed
power estimate. This approach implies that the estimate is biased when
no speech is present. Dupont and Ris (1999) proposed a method which
requires shorter analysis frames (about 0.3 s) by taking advantage of
the fact that the spectral energy in valleys between the harmonics is
close to the noise floor. A lower energy envelope follower is used for
noise estimation. They quantitatively compared their SNR estimation
approach with others, including (Hirsch and Ehrlicher, 1995) and a
VAD-based scheme in different types of noise. In most situations, the
VAD-based SNR estimator yielded the best results.
A fast SNR estimation scheme based on higher order statistics was
introduced by Nemer et al. (1988). It analyses the kurtosis of noisy
speech and uses a sinusoidal model for speech and a Gaussian assump-
tion for noise. The authors report a fast and accurate estimation of the
local SNR when these assumptions are met, which is the case for most
mobile communication situations.

While technical VAD algorithms often fail to robustly detect speech
pauses (especially in situations with low SNR), humans can easily de-
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tect and classify different sound sources, and separate between speech
and noise without problems. This is made possible by the interplay be-
tween the internal representation of sounds in the auditory system, and
the higher processing stages in the brain which perform classification,
recognition, and understanding basing on this internal representation.
It is still unclear which are the most important features and cues within
the acoustical waveform that allow for such impressive skills. Besides
the well-known analysis and tonotopical representation of different cen-
ter frequencies in the auditory system (e.g., on the basilar membrane),
the analysis of amplitude modulations is assumed to provide further im-
portant information for human speech processing. Low modulation fre-
quencies, for example, are known to play an important role for speech in-
telligibility. Drullman et al. (1994) found that modulation frequencies up
to 8 Hz are the most important ones in for speech intelligibility. Shannon
et al. (1993) conducted an impressive study on the importance of tempo-
ral amplitude modulations for speech intelligibility and observed nearly
perfect speech recognition under conditions of highly reduced spectral
information.
However, there is a difference between understanding speech and detect-
ing speech. In a noisy canteen environment, for example, we can classify
a very short prominent segment of speech as “human speaking” (and
not, for example, “dog barking”, or “cup being smashed”), even if we do
not understand the meaning. In this case, low modulation frequencies
in speech which are important for speech intelligibility probably play a
minor role only. Thus, it is important to notice the difference between
speech detection (or, in a wider sense, detection of acoustical objects),
and speech intelligibility. Higher modulation frequencies which repre-
sent pitch information or harmonicity are likely to be more important
for speech detection and sound classification.
During recent years, more insight has been gained about the cod-
ing of amplitude modulations in the auditory system. In psychoa-
coustical experiments, the auditory system’s frequency selectivity for
amplitude modulations were specified (Bacon and Grantham, 1989;
Houtgast, 1989). Dau et al. (1997a; 1997b) showed that a separation of
envelope fluctuations into different modulation frequency bands (“mod-
ulation filterbank”) provides an adequate prediction of various psychoa-
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coustical experiments. Ewert and Dau (1999) measured the shape of the
“critical bands” in the envelope-frequency domain, or modulation filters,
for target-modulation frequencies between 4 and 256 Hz with a noise car-
rier ranging from 1 to 4 kHz. Their results show that for low modulation
frequencies the shapes of the modulation filters are reasonably symmet-
ric on the logarithmic envelope-frequency scale, with almost constant
quality factor (i.e., they become wider with increasing modulation fre-
quency and have a more or less “form-invariant” modulation-filter shape
on a logarithmic envelope-frequency scale). At higher test-modulation
frequencies, the pattern broadens and becomes slightly asymmetric.
In neurophysiological experiments, Langner and Schreiner (1988), among
others, found neurons in the inferior colliculus and auditory cortex of
mammals which were tuned to certain modulation frequencies. The “pe-
riodotopical” organization of these neurons with respect to different best
modulation frequencies was found to be almost orthogonal to the tono-
topical organization of neurons with respect to center frequencies. Thus,
a two-dimensional ”feature set” represents both spectral and temporal
properties of the acoustic signal. Recently, Langner et al. (1997) ob-
served periodotopical gradients in the human auditory cortex by means
of magnetoenzephalography (MEG). As stimuli, they used pure tones
between 50 Hz and 1.6 kHz, and harmonic sounds which were composed
of harmonics of 50-400 Hz and thus eclicted a pitch corresponding to
these fundamental frequencies. All harmonic sounds had an upper cut-
off frequency of 5 kHz, and the lower cut-off frequency was either 400 Hz
or 800 Hz. Thus, both frequency range and pitch of their stimuli were
in the range which is important and characteristic for human speech.
Kollmeier and Koch (1994) applied these psychoacoustical and neuro-
physiological findings in the field of digital signal processing and intro-
duced two-dimensional patterns, so-called Amplitude Modulation Spec-
trograms (AMS) which contain information on both center frequencies
and modulation frequencies for a binaural noise suppression scheme.
They reported a small but stable improvement in terms of speech in-
telligibility, compared to unprocessed speech. Recently, similar kinds of
feature patterns were applied to vowel segregation (Yang et al., 1999),
speech enhancement (Strube and Wilmers, 1999), and sound signal clas-
sification (Tchorz and Kollmeier, 1999a).
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The SNR estimation algorithm which is outlined in this paper is also
based on AMS patterns. In contrast to common VAD algorithms, it
does not provide a binary speech/non-speech decision, but also covers
the range in-between speech and noise by directly predicting the local
SNR of the signal at every instant. In contrast to most other direct SNR
estimation schemes, the proposed algorithm does not require relatively
long segments of the input signal which should contain speech pauses
or closures, but estimates the SNR from short analysis frames (typically
32 ms). Thus, the algorithm can almost instantaneously follow rapid
changes in the acoustical situation.
The remainder of this paper is structured as follows. In Section 2.2, the
algorithm and its processing steps are outlined. In Section 2.3, the SNR
prediction experiments and their results are described. In Section 2.4,
a comparison between the proposed SNR estimation algorithm with a
VAD-based estimator is given. The question which of the extracted
features contribute most to reliable SNR prediction is dealt with in Sec-
tion 2.5. Section 2.6 examines the possibilities to enhance the accuracy
of SNR prediction by extending the period of time which is considered
to provide an estimate of the SNR. A discussion can be found in Section
2.7.

2.2 Classification Algorithm

The general idea of the classification algorithm described in this
paper is to transform the incoming waveform into a series of neu-
rophysiologically-motivated AMS patterns (Amplitude Modulation
Spectrograms) which are assumed to carry sufficient information for
speech/noise detection and SNR estimation. An artificial neural
network is trained on a large number of AMS patterns which are
generated from mixtures of speech and noise under defined conditions.
After training, the response of the network when presenting AMS pat-
tern from “unknown” sound samples serves as estimate of the local SNR.
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Figure 2.1: Signal processing steps for AMS pattern generation

2.2.1 Signal Processing

Figure 2.1 shows the processing steps which are performed to generate
AMS patterns.

First, the input signal which was digitized with 16 kHz sampling
rate is long-term level adjusted, i.e., changes in the overall level are com-
pensated for, whereas short-term level differences (e.g., those between
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Figure 2.2: Level normal-
ization scheme: Original
input signal (top panel),
level normalization func-
tion (middle), and nor-
malized signal (bottom).

successive phonemes) are maintained to serve as additional cues for clas-
sification. This level adjustment is realized by dividing the input signal
by its low pass filtered root-mean-square (rms) function which was calcu-
lated from 32 ms frames, with an overlap of 16 ms. The cut-off frequency
of the low pass filter is 2 Hz. One example for long-term level adjustment
is shown in Fig. 2.2. The input signal (top panel) is a concatenation of
two identical sentences, the first sentence having a much smaller ampli-
tude than the second one. The second panel shows the corresponding
level normalization function. For normalization, the input signal is di-
vided by this function. To avoid divisions by zero, the normalization
function is limited by a lower threshold. The bottom panel shows the
normalized signal. The overall level is equal for both sentences, but the
local level fluctuates due to the amplitude variations between syllables
and words. A short peak occurs at the onset of the second sentence in
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the bottom panel, which is due to the normalization process. At the on-
set of the second sentence, the nominator is large, but the denominator
is still quite small, until it adapts after a few ms.
In a following processing step, the level-adjusted signal is subdivided
into overlapping segments of 4.0 ms duration with a progression of 0.25
ms for each new segment. Each segment is multiplied with a Hanning
window and padded with zeros to obtain a frame of 128 samples which
is transformed with a FFT into a complex spectrum, with a spectral
resolution of 125 Hz. The resulting 64 complex samples are consid-
ered as a function of time, i.e., as a band pass filtered complex time
signal. Their respective envelopes are extracted by squaring. This en-
velope signal is again segmented into overlapping segments of 128 sam-
ples (32ms) with an overlap of 64 samples. Each segment is multiplied
with a Hanning window and padded with zeros to obtain a frame of
256 samples. A further FFT is computed and supplies a modulation
spectrum in each frequency channel, with a modulation frequency reso-
lution of 15.6 Hz. By an appropriate summation of neighbouring FFT
bins the frequency axis is transformed to a Bark scale with 15 channels,
with center frequencies from 100-7300 Hz. The modulation frequency
spectrum is scaled logarithmically by appropriate summation, which is
motivated by psychoacoustical findings on the shape of auditory modu-
lation filters (Ewert and Dau, 1999). The modulation frequency range
from 0-2000 Hz is restricted to the range between 50-400 Hz and has
a resolution of 15 channels. Thus, the fundamental frequency of typi-
cal voiced speech is represented in the modulation spectrum. The cho-
sen range corresponds to the fundamental frequencies which were used
by Langner et al. in their neurophysiological experiments on amplitude
modulation representation in the human auditory cortex (Langner et al.,
1997). Informal experiments showed that higher modulation frequencies
do not contribute additional information for the task of speech/noise de-
tection. Very low modulation frequencies from articulatory movements,
which are characteristic for speech and which play an important role
for speech intelligibility are also not taken into account, as they are not
properly resolved due to the short analysis windows. Furthermore, the
goal of the presented algorithm is not in the field of speech intelligibility
or automatic speech recognition, but rather on speech / noise detection
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Figure 2.3: AMS patterns generated from a voiced speech segment (left),
and from speech simulating noise (right). Each AMS pattern represents
a 32 ms portion of the input signal. Bright and dark areas indicate high
and low energies, respectively.

and SNR estimation in short analysis frames. The AMS representation
is restricted to a 15 times 15 pattern to keep the amount of training data
which is necessary to train a fully connected perceptron manageable, as
this amount increases with the number of neurons in each layer.
In a last processing step, the amplitude range is log-compressed. Exam-
ples for AMS patterns can be seen in Fig. 2.3. Bright and dark areas
indicate high and low energies, respectively.

The left AMS pattern was generated from a voiced speech portion,
uttered by a male speaker. The periodicity at the fundamental fre-
quency (approx. 110 Hz) is represented in each center frequency band,
as well as the first and second harmonics. Due to the short length
of the analysis frame (32 ms), the modulation frequency resolution
is limited, and the peaks indicating the fundamental frequency are
relatively broad. The right AMS pattern was generated from speech
simulating noise (CCITT, 1964), i.e. noise with the same spectrum
as the long-term spectrum of speech. The typical spectral tilt can be
seen, which is due to less energy in higher frequency channels, but no
structure across modulation frequencies such as harmonic peaks, and no
similarities between modulation spectra in different frequency channels,
as in the upper panel.
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2.2.2 Neural Network Classification

A feed-forward neural network was used for the classification task (Zell
et al., 1995; SNNS, 1995). It consists of an input layer with 225 neurons
(15 times 15, the resolution of AMS patterns, which are directly fed into
the network), a hidden layer with 40 neurons, and an output layer with
just one output neuron. The network was trained with 100 cycles using
the Backpropagation-Momentum algorithm (Rumelhart et al., 1986).

For training, a set of AMS patterns generated from noisy speech is
presented to the network. The signal-to-noise ratio within each 32 ms
AMS analysis frame is measured prior to adding speech and noise follow-
ing the equation SNR[dB] = 10 log(S2/N2), where S and N are the rms
values of the speech and the noise signal in the respective analysis frame.
The mixtures of speech and noise were generated artificially to allow for
SNR control. Typical noisy speech effects such as Lombard speech are
thus not taken into account. The local SNR which is measured within
the analysis frame of an AMS pattern determines the target activity for
the output neuron during training. A high AMS pattern SNR results in
a target output neuron activity close to one, a low SNR in a target activ-
ity close to zero. The local SNR values which are considered range from
-10 dB to 20 dB. This range is linearly transformed to output neuron
activities from 0.05 to 0.95. The transformation function between the
measured SNR and the target activity is plotted in Fig. 2.4. After train-
ing, the output neuron activity which occurs when presenting an AMS
pattern generated from an “unknown” sound source is transformed us-
ing the function plotted in Fig. 2.4 and supplies an estimate of the local
SNR.

Thus, the algorithm provides an estimation of the SNR in indepen-
dent 32 ms frames. The SNR is directly predicted even if speech and
noise are present at the same time, which is in contrast to “indirect”
SNR estimation, where the accurate detection of speech pauses is neces-
sary for noise energy measurement, and stationarity of noise is assumed
during speech activity.
Currently, the SNR estimation algorithm is implemented on a SGI O2
R5000 (200MHz) workstation and requires about 8-fold real time for
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Figure 2.4: The trans-
formation function which
maps the local SNR onto
output neuron target ac-
tivity.

processing.

2.3 SNR estimation experiments

2.3.1 Setup

In the training phase, the neural network “learns” the characteristics of
AMS patterns in different SNRs. During training, the whole range of
possible SNRs should be covered with a sufficient number of represen-
tations. In total, 72 min of noisy speech with an overall SNR of 5 dB
were transformed into 270000 AMS patterns, which were then presented
to the network for training. The speech samples were taken from the
“PhonDat” database (Kohler et al., 1994) and contained 2110 German
sentences from 190 male and 210 female talkers. The speech data con-
tained only short segments of silence between the sentences. 41 types
of natural noise were taken for training from various data bases. The
network was trained with 100 cycles. For testing, a 36-min mixture
of speech (200 speakers, PhonDat) and 54 noise types with an overall
SNR of 5 dB was taken. The talkers and noise types for testing were
not included in the training data. The local SNRs of the mixtures of
speech and noise exhibited strong fluctuations. Histograms of the rela-
tive frequencies of the local SNRs of the training and the test material
are plotted in Fig. 2.5.

The distributions of both data sets are very similar and have their
maximum frequency at about 5 dB SNR.
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Figure 2.5: Histograms of the relative frequencies of the local SNRs of
the mixtures of speech and noise for training and testing.

2.3.2 Results

An example of SNR estimation with the classification algorithm after
it has been trained is illustrated in Fig. 2.6. It shows the actual local
SNR as measured prior to adding speech and noise (solid), and the esti-
mated SNR (dotted) for speech in non-stationary printing machine noise,
which was part of the test set. It can be seen that the estimated SNR
corresponds well with the actual SNR (except in very low SNRs) and fol-
lows it almost instantaneously. The above described example provides a
qualitative impression of the performance of the classification algorithm.
A quantitative measurement of the estimation accuracy is obtained by
computing the mean deviation D between the actual SNR ai and the
estimated SNR ei over N processed AMS patterns (with index i):

D =
1
N

N∑
i=1

|ei − ai| (2.1)

The mean SNR deviations D measured in the experiments are shown
in Tab. 2.1 (first row). For the test set (as described in Section 2.3.1),
the mean deviation between the actual SNR and the estimated SNR
was 5.2 dB. When estimating the SNR of the training material, the
algorithm achieved a mean deviation of 4.1 dB. Thus, the network failed
to perfectly reproduce the training data, but it generalizes to “unknown”
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Figure 2.6: Example for SNR prediction for speech in non-stationary
printing machine noise. The solid line shows the actual SNR as measured
prior to adding speech and noise, the dotted line shows the estimated
SNR provided by the classification algorithm.

test set train set
original algorithm 5.2 4.1
no level information 5.8 4.4
only spectral information 7.6 6.1
only modulation information 6.6 6.3
modulation + spectral information 5.8 4.8
16 ms analysis frames 5.8 4.5
64 ms analysis frames 5.3 4.3
128 ms analysis frames 4.6 3.3

Table 2.1: SNR prediction accuracy in terms of dB mean deviation (2.1)
obtained with the classification algorithm and its modifications (Sec-
tion 2.5).

sound sources, as the degradation of the performance for the test data
is limited.

In Fig. 2.7, the SNR estimation accuracy as a function of the mea-
sured SNR for the test set is plotted. The solid line shows the absolute
deviation from the measured SNR. For low input SNRs, the performance
in general is worse than for high input SNRs. The dotted line shows the
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Figure 2.7: The solid line
shows the absolute esti-
mation error (mean devia-
tion) as a function of the
measured input SNR for
the test set. The dotted
line shows the bias of the
SNR estimation depend-
ing on the input SNR. Low
input SNRs in average are
over-estimated, high input
SNRs under-estimated.

bias of the SNR estimation depending on the input SNR, i.e., there are
no absolute values computed in (2.1). For low input SNRs, there is a bias
towards over-estimation of the SNR (ei −ai is positive). Close to -10 dB
SNR, almost all estimation errors are from over-estimation of the SNR.
For high input SNRs, in contrast, the algorithm tends to under-estimate
the SNR. The SNR range below -5 dB causes the highest estimation
errors. In such low short-term SNRs speech is almost entirely masked
by noise, and a difference between -5 and -10 dB in isolated frames is
hardly audible, as informal listening experiments showed. If the SNR
range below -5 dB is excluded from the evaluation, the overall mean de-
viation for the test set is 4.5 dB, compared to 5.2 dB including the very
low SNRs.

2.4 Comparison with VAD-based SNR es-
timation

The performance of a voice-activity-detection (VAD) - based SNR esti-
mation was compared to the SNR estimation approach outlined in this
paper. For voice activity detection, a VAD standardized by ITU was
used (ITU, 1996) that utilizes information on energy, zero-crossing rate,
and spectral distortions. The noise energy estimate is updated in de-
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tected speech pauses and low-pass filtered with a first-order FIR filter
to avoid fast fluctuations of the estimate. The time constant of the
low-pass filter was set to a value of 60 ms which was optimized for this
experiment. The VAD-based instantaneous SNR was computed in 10 ms
analysis frames:

SNR[dB] = 10 log(
R2

N2
− 1), (2.2)

where R is the rms of the signal plus noise in the analysis frame, and
N is the present noise rms estimate. The mean deviation between the
VAD-based estimate of the instantaneous SNR and the measured SNR
was 5.4 dB on the test data described in Sec. 2.3.1. Thus, its accuracy is
comparable to the AMS-based approach proposed in this paper (5.2 dB).
The reliability of the VAD-based estimator of course strongly depends on
the stationarity of the background noise. In constant noise, there is no
advantage of the AMS-based approach to be expected. Fast fluctuations
of the noise energy while speech is active, in contrast, can be followed
by the AMS algorithm, but not by the VAD-based estimator. This
is illustrated in Fig. 2.8 and 2.9. In Fig. 2.8, the input signal was a
mixture between speech and stationary white noise, which are plotted
separately on top. The VAD-based SNR estimator allows for almost
perfect SNR prediction in this situation, which can be seen from the first
panel. There is only very little difference between the measured (solid)
and the estimated SNR (dotted). The AMS-based SNR estimator, in
contrast, tends to over- and underestimate the SNR in very low and very
high measured SNRs, respectively (second panel). In Fig. 2.9, the input
signal was a mixture between speech and non-stationary construction site
noise. In this situation, the VAD-based SNR estimator fails to update
the noise measure. Thus, the noise burst which starts at t = 0.6 s leads
to a large overestimation of the SNR, as the additional energy is regarded
as “speech”. The same holds for the smaller noise peaks at the end of the
signal. Here, the AMS-based SNR estimator better tracks the acoustical
situation as it is not dependent on explicit speech pause detection.



2.5. WHICH FEATURES ARE IMPORTANT? 23

-10
-5
0
5

10
15
20

0 0.5 1 1.5 2 2.5 3 3.5 4

S
N

R
 [d

B
]

Time [s]

-10
-5
0
5

10
15
20

0 0.5 1 1.5 2 2.5 3 3.5 4

S
N

R
 [d

B
]

Time [s]

Figure 2.8: Comparison between VAD-based and AMS-based SNR es-
timation with a mixture of speech and stationary white noise (plotted
separately on top). The solid and the dotted line show the measured
and the estimated SNR, respectively. The VAD-based approach (first
panel) yields almost perfect SNR estimation. The AMS-based estimator
(second panel) tends to over- and underestimate the SNR in very low
and very high measured SNRs, respectively.

2.5 Which features are important?

The algorithm based on AMS pattern recognition presented here was
shown in the previous sections to provide a relatively accurate SNR
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Figure 2.9: Comparison between VAD-based and AMS-based SNR es-
timation with a mixture of speech and non-stationary construction site
noise (same notation as Fig. 2.8). Here, the VAD-based approach (first
panel) cannot properly update the noise measure, in contrast to the the
AMS-based estimator (second panel).

prediction for short analysis frames of unknown sound signals. This
Section analyzes the features of the neurophysiologically-motivated AMS
patterns that contribute most to successful classification of sounds and
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reliable SNR estimation.

2.5.1 Modifications of AMS signal processing

There are three major dimensions of information encoded in AMS pat-
terns: a) center frequency information, b) modulation frequency infor-
mation, and c) local level information. SNR prediction experiments were
carried out in which at a time one of these sources of information was
eliminated in order to study its contribution to accurate SNR prediction.

2.5.1.1 Eliminating level information

The algorithm presented here performs an overall level compensation
in the first signal processing step, i.e., the overall level is normalized,
but local level differences of the input signal (e.g., between neighbouring
phonemes) are maintained. As a consequence, AMS patterns generated
from soft consonants, for example, exhibit smaller amplitudes than those
computed from high-energy vowels. This energy information encoded in
the AMS patterns might play a certain role for SNR prediction.
The elimination of level information was quantitatively explored in the
following way: Instead of preserving local energy fluctuations as in the
original algorithm described in Section 2.2.1, the energy of each 32 ms
frame of the input signal (which is later transformed to an AMS pattern)
was normalized to the same RMS value prior to AMS pattern generation.
A SNR prediction experiment using this modified algorithm was per-
formed with the same experimental setup as described in Section 2.3.1.
The achieved SNR prediction accuracy in terms of mean SNR devia-
tion (2.1) can be seen in Tab. 2.1 (second row). Without explicit level
information, the mean deviation for the test set increased from 5.2 dB
to 5.8 dB, which means a small degradation in prediction performance.
The classification of the training data also was only slightly affected by
the modification. Thus, implicit level information encoded in AMS pat-
terns only provides a limited benefit for accurate SNR prediction since
omitting this dimension of information has not a large impact.
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2.5.1.2 Eliminating modulation information

In AMS patterns, modulation frequencies between about 50 and 400 Hz
in different center frequency channels are encoded by the modulation
spectra which are computed for each channel. Harmonicity in voiced
speech, for example, is represented on the modulation axis by peaks at
the fundamental frequency and its harmonics, which leads to character-
istic AMS patterns for voiced speech. This dimension of information was
removed in order to assess the importance of modulation information for
SNR prediction. For this experiment, the long-term level normalized in-
put signal was segmented into overlapping segments of 32 ms duration
with a progression of 16 ms for each new frame. Each segment was mul-
tiplied with a Hanning window and transformed into its spectrum with
a FFT. By appropriate summation of neighbouring FFT bins, the fre-
quency axis was scaled logarithmically with a resolution of 15 channels
with center frequencies ranging from 100-7300 Hz. The amplitude was
log-compressed. These operations are similar to summing up the energy
across all modulation frequencies for a given frequency channel in the
two-dimensional representation given in Fig. 2.3 and hence converting it
to a one-dimensional representation. Thus, the frequency resolution and
level normalization of these new feature vectors is the same as in the
original AMS patterns, but additional amplitude modulation informa-
tion is missing. The neural network as described in Section 2.2.2 (with
only 15 input neurons instead of 225) was trained and tested with the
data described in Section 2.3.1. The SNR prediction accuracy obtained
without modulation frequency information is given in Tab. 2.1 (3rd row).
The estimation accuracy for the test set degraded from 5.2 dB to 7.6 dB.
The mean deviation for training data classification increased from 4.1 dB
to 6.1 dB. Thus, explicit analysis and representation of amplitude mod-
ulations appears to be a helpful dimension of information for accurate
SNR prediction.

2.5.1.3 Eliminating spectral information

The third main dimension of information in AMS patterns besides level
and modulation frequencies is the encoding of the signal spectrum (as
in Fig. 2.3, where the typical spectral tilt of speech simulating noise can
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be seen). This dimension of information was removed by modifying the
original signal processing as follows: The long-term level normalized in-
put signal was filtered using a 4th order band pass filter with cut-off
frequencies of 100 and 7300 Hz in order to exploit the same overall fre-
quency range of the signal as in the original algorithm. The envelope
of the filtered signal was extracted by squaring and was segmented into
32 ms frames with a 16 ms shift. Subsequently it was Hanning-windowed
and transformed into its modulation spectrum with a FFT. The modula-
tion frequency axis was scaled logarithmically yielding a resolution of 15
channels with best modulation frequencies ranging from 50-400 Hz, and
the amplitude was log-compressed. This operation is similar to summing
up the energy across all frequency bands in the two-dimensional repre-
sentation given in Fig. 2.3 and hence converting it into a one-dimensional
representation of modulation frequencies. Thus, the amplitude modu-
lation frequency resolution and level normalization of these new feature
vectors are equal as in the original AMS patterns, but in this case, spec-
tral information is missing. Again, a neural network was trained and
tested on these reduced features, as described in Section 2.3.1. The re-
sults are shown in Tab. 2.1 (4th row). The classification accuracy for
the test set degraded from 5.2 dB to 6.6 dB, and for the training data
from 4.1 dB to 6.3 dB, respectively. Thus, the estimation of the local
SNR from modulation cues only is more accurate than with spectral cues
only, but still less reliable than with the joint representation as in the
original algorithm.

2.5.1.4 Combination of spectral only and temporal only infor-
mation

SNR estimation based on spectral or temporal cues alone yields a de-
crease in estimation accuracy in comparison to full AMS patterns. The
“one-dimensional” patterns described in Sec. 2.5.1.2 and 2.5.1.3 were
combined in a further experiment yielding patterns with both spectral
only and temporal only information, but with only 30 dimensions instead
of 225 dimensions as in the full AMS pattern, which reduces the com-
putational load and storage requirements. The mean deviation in SNR
estimation accuracy based on these reduced spectro-temporal features is
given in Tab. 2.1 (5th row). Compared to the full joint representation,
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the mean deviation increases from 5.2 dB to 5.8 dB for the test data
and from 4.1 dB to 4.8 dB for the training data, respectively. Thus, the
performance of the combined patterns is better than with spectral or
temporal cues only, but still worse than with the full joint representa-
tion.

2.5.2 Artificial input signals

2.5.2.1 How important is harmonicity?

Harmonicity of sounds is well represented in AMS patterns, which can
be seen in the two examples given in Fig. 2.3. For voiced speech, the
fundamental frequency and its first two harmonics can easily be seen, in
contrast to the pattern generated from (non-harmonic) speech simulat-
ing noise. Harmonicity is an important feature of voiced speech, and the
question arises whether harmonicity is an important cue for SNR estima-
tion based on AMS patterns. To determine the influence of harmonicity
on the output neuron activity of the neural network (which serves as
estimate for the SNR), artificial input signals with varying degrees of
harmonicity were generated. The signals were composed of a fundamen-
tal frequency of 150 Hz and its harmonics up to 8 kHz, with all harmonics
having the same amplitude. The frequencies of the harmonics were indi-
vidually randomly shifted following the equation fshift = f+rand[−x..x],
where f is the frequency of the respective harmonic, and x is a frequency
between 0 and 150 Hz. For x = 0, the resulting signal is a tone com-
plex with frequencies 150 Hz, 300 Hz, 450 Hz, etc. With increasing x
harmonicity gets lost and the resulting sound becomes a random compo-
sition of sine waves. The output neuron activity for these artificial input
signals as a function of x is plotted in Fig. 2.10. With increasing x and
loss of harmonicity, the output neuron activity decreases until it reaches
values which would indicate clear dominance of noise.

2.5.2.2 Variation of the fundamental frequency

The above described experiment demonstrated that harmonicity with
a fundamental frequency typical for human speech is an important cue
for an input signal to be classified as “speech-like”. The influence of
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Figure 2.10: Output neu-
ron activity for an artifi-
cial harmonic sound with
increasing random shift x
of the harmonic frequen-
cies.

the fundamental frequency of harmonic sounds on the output neuron
activity was determined in a further experiment, where a synthetically
generated vowel (“a”) with varying fundamental frequency served as in-
put signal for the neural network. The resulting output neuron activity
as a function of the fundamental frequency is plotted in Fig. 2.11. It
can be seen that the maximum output neuron activities occurs at funda-
mental frequencies typical for human speech, but only slightly degrades
for fundamental frequencies above this range. Note that the output
neuron activity for a synthetic vowel with a fundamental frequency of
150 Hz is higher than for a tone complex with same fundamental fre-
quency (Fig. 2.10), which indicates that harmonicity is not the only cue
which is utilized for classification. In contrast to the tone complex, the
synthetic vowel is also characterized by a speech-like formant structure
and a spectral tilt.

2.5.2.3 The influence of additive noise

The impact of additive noise on the output neuron activity was evaluated
in a further experiment. A synthetic vowel with fundamental frequency
150 Hz was distorted with additive speech simulating noise at different
SNRs. The resulting output neuron activity as a function of the SNR
is plotted in Fig. 2.12. Below -5 dB, the algorithm does not detect
differences in the SNR. Above -5 dB, the activity increases monotonically
with the SNR in a sigmoid-like curve. This corresponds well with the
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Figure 2.12: Output
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synthetic vowel distorted
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function of the SNR.

results from Sec. 2.3.2, where it was shown that the algorithm tends to
over- and underestimate very low and very high SNRs, respectively.

2.5.3 Does the algorithm only track voiced speech?

The preceeding experiments revealed that harmonicity is an important
cue for a signal to be classified as “speech”. If harmonicity was the only
cue, however, the computationally expensive effort for AMS signal pro-
cessing and pattern recognition would not be necessary, as harmonicity
can be tracked much easier. Furthermore, the algorithm could not detect
unvoiced speech which does not exhibit harmonicity. Thus, the perfor-
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mance of the algorithm in voiced and unvoiced speech was evaluated in
an additional experiment. The average output neuron activity was mea-
sured depending on the present phoneme. In total, 1350 phonetically la-
belled sentences from the PhonDat database spoken by 45 speakers were
processed (without adding noise) and classified by the network. The av-
erage output neuron activities for the most frequent phonemes are plot-
ted in Fig. 2.13. For voiced phonemes, values around 0.9 are measured,
whereas for unvoiced phonemes the average activity is between about
0.6 and 0.7. This is still well above the average activity for non-speech
input, which was 0.25 for the noise data from the test set described in
Sec. 2.3.1. These results indicate that harmonicity in voiced speech is
probably the most important cue for classification and SNR estimation,
but even without harmonicity, the spectral and temporal characteristics
of speech and noise can be discriminated by the pattern recognizer from
the joint representation in AMS patterns. Fig. 2.13 demonstrates that
the proposed algorithm could be used as a binary speech/noise detector
when an appropriate output neuron activity threshold is chosen.

2.5.4 Varying the analysis frame

The length of the analysis frame for AMS patterns is determined by the
window length of the FFT which computes the modulation spectrum
in each frequency channel, which was 32 ms for the above described
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experiments. The influence of the frame length was determined in a
further experiment. The analysis window was set to 16, 64 and 128 ms
by variation of the FFT length. For all window sizes, logarithmically
scaled modulation frequency bands were computed by averaging across
neighbouring FFT-bins. The resolution of the modulation spectrum in
each frequency band was kept constant using 15 bands ranging from 50-
400 Hz, as in the original algorithm. Hence the AMS patterns for the
different window sizes did not differ in the number of pixels evaluated by
the neural net. Instead, they only differed with respect to the amount
of input data that entered each AMS pattern. Neural networks were
trained on the modified AMS patterns and the local SNR of the data
was estimated. The mean deviations between the estimated and the
measured SNR for the different analysis frames are shown in Tab. 2.1
(row 6-8). There is only a small difference in performance between the
original algorithm (32 ms) and 64 ms analysis frames, whereas 16 ms
and 128 ms frames reduced and enhanced the accuracy, respectively.

2.6 Low pass filtering of SNR trajectories

In the SNR prediction experiments described in the preceding sections,
a SNR estimation was computed for each AMS pattern independently.
The estimation based on the short-term analysis of single 32 ms frames
of the input signal, without taking its temporal context into account.
This allows for relatively fast SNR prediction, and the algorithm is able
to quickly follow rapid changes of the sound situation. This has to be
paid for by a limited SNR prediction accuracy, as the information avail-
able in isolated 32 ms frames is probably in principle not sufficient for
very high estimation precision. Some possible applications of the algo-
rithm, however, may not require a very fast update of the local SNR.
In these cases it is possible to enhance the prediction accuracy of the
algorithm by low pass filtering the time trajectory of successive SNR es-
timates. (A typical time trajectory of successive SNR estimates is shown
in Fig. 2.6). By low pass filtering, “outliers” and prediction errors are
smoothed. Figure 2.14 illustrates the gain in estimation accuracy by
low pass filtering the time trajectories of the actual and the estimated
SNR as a function of the filter’s cutoff frequency, which varied from
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Figure 2.14: Effect of low pass filtering the time trajectories of the actual
and the estimated SNRs for the test set. The mean deviation (solid line)
decreases with decreasing cutoff frequency, as “outliers” are smoothed.
The dotted line shows the mean deviation excluding the frames with a
local SNR below -5 dB.

10 Hz down to 0.01 Hz. It can be seen how the mean deviation be-
tween the measured and the estimated SNR decreases with decreasing
cutoff frequency, as short-term prediction errors are smoothed. On the
other hand, of course, the sluggishness of the system increases, as the
SNR prediction output does not instantaneously follow a new acoustical
situation. Low pass filtering with 1 Hz, for example, lowers the mean
deviation for the test set from 5.2 dB to 3.1 dB, but adaptation to a new
acoustical situations takes a few hundred milliseconds then. The dotted
line shows the mean deviation excluding the frames with a local SNR
below -5 dB, where speech is almost entirely masked by noise and where
the highest estimation errors occur (see Fig. 2.7).

2.7 Discussion

The main findings of this study can be summarized as follows:

• Neurophysiologically and psychoacoustically motivated Amplitude
Modulation Spectrograms (AMS), in combination with artificial
neural networks for pattern recognition, allow for automatic SNR
estimation in a range of different acoustic situations.
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• Three main dimensions of information are encoded in AMS pat-
terns: information on center frequency, amplitude modulations,
and local level fluctuations. All three dimensions contribute to the
reliability of the classification algorithm.

• Harmonicity appears to be the most important cue for analysis
frames to be classified as “speech-like”, but the spectro-temporal
representation of sound in AMS patterns also allows for reliable
discrimination between unvoiced speech and noise.

• SNR estimation works for independent 32 ms analysis frames, but
estimation accuracy can be enhanced by temporal smoothing of
SNR estimates or enlarging the analysis frame.

In contrast to VAD algorithms which often focus on analyzing the
spectrum of the signal, the sound classification approach presented
in this paper explicitly utilizes temporal information by analyzing
amplitude modulations between 50 Hz and 400 Hz. Providing this
additional information in AMS patterns was found useful for automatic
SNR estimation, as shown in Section 2.5.1.2. In the field of noise
classification, similar findings were reported by Kates (1995). His
results showed that envelope fluctuation features did add a significant
amount of information to the noise classification.
In fact, the experiments from Section 2.5.1.3 indicate that signal
classification and SNR prediction is possible to some extend without
spectral information but only from the modulation spectrum.
The range of modulation frequencies which is considered in the pre-
sented approach is well above the modulation frequencies which are
typical and characteristic for speech, namely those around 4 Hz. These
slow modulations play an important role for speech intelligibility, but
speech/noise classification basing on slow modulations requires long
analysis frames (Ostendorf et al., 1998) and cannot instantaneously
detect a sudden change in the acoustical situation. Nevertheless, in
applications such as hearing instruments, a slow adaptation rather than
a fast one can be sufficient or even desired, as sudden changes of sound
processing may irritate or annoy the user.
The experiments in Sec. 2.5 were intended to improve the insight into
the mechanisms which are involved in the proposed SNR estimation
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process (e.g., how important is harmonicity and its fundamental fre-
quency? What is the impact of systematic variation of the noise level?
How reliable is the detection of voiced speech vs. unvoiced speech?).
These experiments revealed that harmonicity is the most important
cue for speech detection, but harmonicity alone is not sufficient for
accurate SNR estimation (Sec. 2.5.1.3), and not the only cue for speech
detection (as unvoiced speech leads to much higher output neuron
activities, compared to noise, Sec. 2.5.3). Thus, the spectro-temporal
joint representation in AMS patterns cannot be replaced by a simple
pitch detector (which would require less computational effort).
Our experiments demonstrate that amplitude modulation analysis
which tries to mimic auditory modulation processing in a simple
way is helpful for technical sound signal classification. However,
the question whether auditory modulation analysis contributes to
human sound detection and classification remains untouched by these
experiments. It is still unclear which features of the acoustical wave-
form are considered by humans to perform auditory tasks such as
signal classification, detection, and separation of different acoustical
objects. In the field of Auditory Scene Analysis (Bregman, 1993;
Unoki and Akagi, 1999), a couple of cues are proposed which allow
for these skills, like common onset and offset, gradualness of change,
harmonicity, and changes occurring in the acoustic event. However, the
aim of this work was not to explore a wide range of possible helpful and
important cues, but to concentrate on the contribution of amplitude
modulation processing which was motivated by neurophysiological
findings in the mammalian auditory system.
One potential advantage of the SNR estimation approach presented in
this paper is its general structure which is not restricted to speech/noise
detection and SNR prediction. No assumptions about specific charac-
teristics of speech or noise are “hard wired” in the signal processing
stage. It was simply assumed that speech and noise “look different” in
the AMS pattern representation. Classification itself then is a matter
of pattern recognition, which requires a sufficient amount of adequate
training data. The application to other tasks in the field of sound
classification and detection would not require a complete re-design of
the algorithm, but just different training data and targets. On the other
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hand, this potential advantage of the algorithm is at the same time one
of its major disadvantages. There is no a priori knowledge about how
to tell speech from noise implemented in the algorithm. The neural
network learns the differences from a large amount of training data,
but does hardly allow for direct and clear insight about its structure
and dependencies. This might be unsatisfying from the scientific point
of view, as it only allows for an indirect analysis of the features and
their importance (as described in Section 2.5). However, we have to
keep in mind that learning is also essential for all human cognitive
skills such as understanding speech or recognizing a cat behind a tree
from only its tail. Our biological “hardware” for analyzing physical
information is fully developed within the first few months of life,
but a successful exploitation of these streams of information for all
the individual tasks that follow requires complex and (life-)long learning.

Further work will concentrate on extending the algorithm to sub-
band estimation of the local SNR in different frequency channels. Re-
liable sub-band SNR prediction would allow for attenuation of noisy
channels and thus enhancing the overall SNR of the signal. First experi-
ments on predicting the SNR in 15 different frequency channels revealed
promising results (Tchorz and Kollmeier, 1999c). Possible gains of such
a noise suppression algorithm in terms of speech intelligibility, speech
quality, and ease of listening will be investigated in further studies.
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Chapter 3

Noise suppression based
on amplitude modulation
analysis

Abstract

This paper describes a monaural noise suppression algorithm. It bases on
the estimation of the signal-to-noise ratio (SNR) in different frequency
channels. For SNR estimation, the input signal is transformed into
neurophysiologically-motivated spectro-temporal input features. These
patterns are called Amplitude Modulation Spectrograms (AMS), as they
contain information of both center frequencies and modulation frequen-
cies within each 32 ms-analysis frame. The different representations of
speech and noise in AMS patterns are detected by a neural network,
which estimates the present SNR in each frequency channel. Quantita-
tive experiments show a reliable estimation of the SNR for most types
of background noise. “Across-frequency” processing enhances the SNR
prediction accuracy, compared to independent SNR estimation in each
frequency channel. For noise suppression, the frequency bands are at-
tenuated according to the estimated present SNR using a Wiener filter

37
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approach. Objective speech quality measures and informal listening tests
indicate a benefit from AMS-based noise suppression, compared to un-
processed noisy speech.

3.1 Introduction

The suppression of noise is an important issue in a wide range of speech
processing applications. In the field of automatic speech recognition,
for example, background noise is a major problem which typically
causes severe degradation of the recognition performance. In hearing
instruments, noise suppression is desired to enhance speech intelligibility
and speech quality in adverse environments. The same holds for mobile
communication, such as hands-free telephony in cars.
Existing noise suppression approaches can be grouped into two main
categories. Directive algorithms perform the separation between the
target and the noise signal by spatial filtering. A target signal (e.g. from
the front direction) is passed through, and signals from other directions
are suppressed. This can be realized by using directive microphones
or microphone arrays (Soede et al., 1993). In prototype hearing
instruments, binaural algorithms exploit phase and level differences or
correlations between the two sides of the head for spatial filtering (Wit-
tkop et al., 1997).
Monaural noise suppression algorithms, in contrast, try to separate
speech from noise when only one microphone is available, i.e. without
spatial information. A monaural noise suppression approach which is
widely used bases on Spectral Subtraction (Boll, 1979). The noise spec-
trum (which is measured and updated in speech pauses) is subtracted
from the signal spectrum. After reconstruction, ideally, the signal is
cleaned from noise. In practice, two major problems occur. First, if the
speech pause detector classifies speech portions as “noise”, the noise
spectrum is wrongly updated which leads to distortions of the speech
signal after spectral subtraction. Second, the noise spectrum is assumed
to be stationary while speech is present. Frame-to-frame fluctuations of
the noise lead to typical artifacts, known as “musical tones”. Several
methods have been proposed the reduce musical tones (Cappé, 1994;
Linhard and Haulick, 1999; Seok and Bae, 1997).
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The noise suppression algorithm presented in this paper does not
require explicit detection of speech pauses, and no assumptions on
noise stationarity are made while speech is active. It directly esti-
mates the present SNR in different frequency channels with speech and
noise being active at the same time. For SNR estimation, the input
signal is transformed into neurophysiologically-motivated feature pat-
terns. These patterns are called Amplitude Modulation Spectrograms
(AMS), see (Kollmeier and Koch, 1994), as they contain information on
both center frequencies and modulation frequencies within each analysis
frame. It is shown that speech is represented in a characteristic way in
AMS patterns, which is different from the representation of most types of
noise. The differences in the respective representations can be exploited
by neural network pattern recognition.
In Section 3.2 of this paper, the SNR estimation approach based on
AMS patterns is described, and quantitative estimation results are pre-
sented. The influence of across-frequency processing for SNR estimation
and a comparison with SNR estimation based on voice activity detection
are outlined in Section 3.3 and 3.4, respectively. The noise suppression
stage with informal listening results and objective quality measures is
described in Section 3.5

3.2 SNR estimation

This Section outlines the processing steps which are applied to estimate
the local SNR of noisy speech in different frequency channels. The SNR
estimation process consists of two main parts: i) the feature extrac-
tion stage, where the incoming waveform is transformed into spectro-
temporal feature patterns, and ii) a pattern recognition stage, where
a neural network classifies the input features and estimates the SNR.
A block diagram of the noise suppression algorithm including the SNR
estimation stage is given in Fig. 3.1.
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Figure 3.1: Processing stages of AMS-based noise suppression.

3.2.1 Feature extraction

For SNR estimation, the input waveform is transformed into so-called
Amplitude Modulation Spectrograms (AMS), see (Kollmeier and
Koch, 1994). These patterns are motivated from neurophysiological
findings on amplitude modulation processing in higher stages of
the auditory system in mammals. Langner and Schreiner (1988),
among others, found neurons in the inferior colliculus and auditory
cortex of mammals which were tuned to certain modulation fre-
quencies. The “peridotopical” organization of these neurons with
respect to different best modulation frequencies was found to be
almost orthogonal to the tonotopical organization of neurons with
respect to center frequencies. Thus, a two-dimensional ”feature set”
represents both spectral and temporal properties of the acoustical
signal. More recently, Langner et al. (1997) observed periodotopical
gradients in the human auditory cortex by means of magnetoen-
zephalography (MEG). Psychoacoustical evidence for a modulation
analysis in each frequency band is provided by Dau et al. (1997a;
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1997b)
In the field of digital signal processing, Kollmeier and Koch (1994)
applied these findings in a binaural noise suppression scheme and
introduced two-dimensional AMS patterns, which contain information
on both center frequencies and modulation frequencies. Using this
algorithm, they reported a small but stable improvement in terms of
speech intelligibility, compared to unprocessed speech. Recently, similar
kinds of feature patterns were applied to vowel segregation (Yang
et al., 1999) and speech enhancement (Strube and Wilmers, 1999),
The application of AMS patterns on broad-band SNR estimation is
described in (Tchorz and Kollmeier, 2000) (Chapter 2 of this thesis).
For AMS pattern generation, the input signal is long-term level ad-
justed, i.e., changes in the overall level are compensated for, whereas
short-term level differences (e.g., those between successive phonemes)
are maintained to serve as additional cues for classification. This level
adjustment is realized by dividing the input signal by its 2 Hz-low-pass
filtered RMS function (which was calculated from 32 ms frames, with
an overlap of 16 ms). In a following processing step, the level-adjusted
signal is subdivided into overlapping segments of 4.0 ms duration with a
progression of 0.25 ms for each new segment. Each segment is multiplied
with a Hanning window and padded with zeros to obtain a frame of 128
samples which is transformed with a FFT into a complex spectrum. The
resulting 64 complex samples are considered as a function of time, i.e.,
as band pass filtered complex time signal. Their respective envelopes
are extracted by squaring. This envelope signal is again segmented
into overlapping segments of 128 samples (32ms) with an overlap of
64 samples. A further FFT is computed and supplies a modulation
spectrum in each frequency channel. By an appropriate summation of
neighboring FFT bins both axes are scaled logarithmically with a reso-
lution of 15 channels for center frequency (100-7300 Hz) and 15 channels
for modulation frequency (50-400 Hz). In a last processing step, the
amplitude range is log-compressed. Examples for AMS patterns can be
seen in Fig. 3.2. Bright and dark areas indicate high and low energies,
respectively. The left AMS pattern was generated from a voiced speech
portion, uttered by a male speaker. The periodicity at the fundamental
frequency (approx. 110 Hz) is represented in each center frequency
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Figure 3.2: AMS patterns generated from a voiced speech segment (left),
and from CCITT speech simulating noise (right). Each AMS pattern
represents a 32 ms portion of the input signal. Bright and dark areas
indicate high and low energies, respectively.

band, as well as the first and second harmonics at about 220 and 330 Hz,
respectively. Due to the short length of the analysis frame (32 ms),
the modulation frequency resolution is limited. Thus, the peaks indi-
cating e.g. the fundamental frequency are relatively broad. The right
AMS pattern was generated from speech simulating noise. The typical
spectral tilt can be seen, but no structure across modulation frequencies.

3.2.2 Neural network classification

Amplitude Modulation Spectrograms are complex patterns which are
assumed to carry important information to discriminate between speech
and noise. The classification and SNR estimation task is considered as a
pattern recognition problem (speech and noise obviously “look different”
in the AMS representation in most cases). Artificial neural networks are
widely used in a range of different pattern recognition tasks (Bishop,
1995). For SNR estimation based on AMS patterns, a standard feed-
forward neural network is applied (SNNS, described in (Zell, 1994)). It
consists of an input layer with 225 neurons (15 times 15, the resolution
of AMS patterns, which are directly fed into the network), a hidden
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Figure 3.3: Transforma-
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layer with 160 neurons, and an output layer with 15 output neurons.
The three layers are fully connected. Each output neuron represents
one frequency channel. The activities of the output neurons indicate the
respective SNR in the present analysis frame. For training of the neural
network, mixtures of speech and noise were generated artificially to allow
for SNR control. The narrow-band SNRs in 15 frequency channels (which
were measured prior to adding speech and noise) are measured for each
32 ms AMS analysis frame of the training material. The measured SNR
values are transformed to output neuron activities which serve as target
activities for the output neurons during training. A high SNR results
in a target output neuron activity close to one, a low SNR in a target
activity close to zero, following the transformation function plotted in
Fig. 3.3.

SNRs between -10 and 20 dB are linearly transformed to activities
between 0.05 and 0.95. SNRs below -10 dB and above 20 dB are assigned
to activities of 0.05 and 0.95, respectively. In the training phase, the
neural network “learns” the characteristics of AMS patterns in different
SNRs. The network is trained using the backpropagation-momentum
algorithm (Rumelhart et al., 1986). After training, AMS patterns
generated from untrained sound material are presented to the network.
The 15 output neuron activities that occur for each pattern are linearly
re-transformed using the function shown in Fig. 3.3 and serve as SNR
estimates for the respective frequency channels in the present analysis
frame.
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3.2.3 Speech material

For training of the neural network, a mixture of speech and noise with a
total length of 72 min was processed and transformed into 270.000 AMS
patterns. The long-term, broad-band SNR between speech and noise for
the training data was 2.5 dB, but the local SNR in 32 ms analysis frames
exhibited strong fluctuations (e.g., in speech pauses). The speech ma-
terial for training was taken from the Phondat database (Kohler et al.,
1994) and contained 2110 German sentences from 190 male and 210 fe-
male talkers. 41 types of natural noise were taken for training from
various data bases. For testing, a 36-min mixture of speech (200 speak-
ers, Phondat) and 54 noise types was taken. The talkers and noise types
for testing were not included in the training data. The network was
trained with 100 cycles.

3.2.4 Results

An example for the estimation of narrow-band SNRs of noisy speech is
illustrated in Fig. 3.4.

The input signal was a mixture of speech uttered by a male talker
and power drill noise. The panels show the measured SNR (solid) and
the estimated SNR (dotted) as a function of time in 7 out of 15 frequency
channels. In the high-frequency bands (top), the SNR is relatively poor
(due to the power drill noise, which is dominant in high frequencies). In
general, the estimated SNR correlates with the measured SNR, but there
are several prediction errors visible, especially in the high-frequency re-
gion. In low-frequency bands, there is a good correspondence between
the measured and the estimated SNR.
A quantitative measure of the estimation accuracy is obtained by com-
puting the mean deviation D between the actual SNR ai and the esti-
mated SNR ei over N processed AMS patterns (with index i):

D =
1
N

N∑
i=1

|ai − ei| (3.1)

The mean estimation deviation D was calculated for all AMS analysis
frames generated from the test data described in Section 3.2.3, for all
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Figure 3.4: Example for narrow-band SNR estimation. Plotted are the
measured (solid) and the estimated (dotted) SNRs as function of time
for 7 out of 15 frequency channels.
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15 frequency channels independently. The results are plotted in Fig. 3.5
(solid line). It can be seen that the estimation accuracy in the low-
and mid frequency channels is better compared to the high frequency
region (which also is the case for the example plotted in Fig. 3.4).
The average deviation between measured SNR and estimated SNR
across all frequency channels is 5.4 dB. As expected, the estimation
accuracy for the training data (dotted line) is better in all frequency
channels. The difference between both data sets is not large, though,
except for the highest frequency bands. This means that the network
is not over-trained and generalizes to untrained test data to some
extend. A histogram of the differences ai − ei between measured and
estimated SNRs for the test data in one exemplary frequency channel
(fc = 1.1 kHz) is plotted in Fig. 3.6. The maximum frequency is at
about -1.3 dB, i.e. there is a slight estimation bias in this particular
frequency channel towards worse SNRs than the actual ones. This bias
varies from channel to channel, and there is no systematic error across
all channels.
For some possible applications of the algorithm, a fast SNR estimation

for independent 32ms-frames might not be necessary. Here, temporal
smoothing of the estimates can enhance the accuracy of the prediction;
“outliers” and short-term errors are attenuated. The dotted curves in
Fig. 3.7 show the effect of low pass filtering the temporal trajectories
of SNR measures and estimates prior to calculating the mean deviation
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with a first-order low-pass filter. The mean deviation decreases with
increasing time constant of the filter, but, of course, the ”sluggishness”
of the algorithm increases.

In AMS patterns, modulation frequencies between 50 and 400 Hz in
different center frequency channels are encoded by the modulation spec-
tra which are computed for each channel. Harmonicity in voiced speech,
for example, is represented on the modulation axis by peaks at the funda-
mental frequency and its harmonics, which leads to characteristic AMS
patterns for voiced speech. In a study on AMS-based broad-band SNR
estimation (Tchorz and Kollmeier, 2000) (Chapter 2 of this thesis) which
investigated the most important cues that are necessary for reliable SNR
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estimation it was shown that harmonicity appears to be the most im-
portant cue for analysis frames to be classified as “speech-like”, but the
spectro-temporal representation of sound in AMS patterns also allows for
reliable discrimination between unvoiced speech and noise, which would
not be possible with a pitch detector.

3.3 Across-channel processing

In the presented algorithm, the signal-to-noise ratio estimation of a sin-
gle frequency channel does not depend on information from this channel
alone. The neural network which is used for classification is fully con-
nected. Thus, information from the whole AMS pattern influences a
single channel estimation to some extend. An example for this across-
channel processing is illustrated in Fig. 3.8. The first panel shows the
measured SNR in 15 frequency channels for a mixture of speech and
CCITT speech simulating noise (CCITT, 1964) with an overall SNR of
15 dB. Bright and dark areas indicate high and low local SNRs, respec-
tively. In the second panel, the estimated local SNRs basing on the AMS
processing as described above is shown. Both the speaker and the noise
type were not included in the training data. There is a good correspon-
dence between the measured and the estimated SNRs across time and
frequency channels. Nevertheless, obvious errors and deviations can be
seen in the higher frequency channels, where in average the SNR is under-
estimated. The third panel shows the measured SNRs for the same input
signal as in the above panels (speech + CCITT noise), but disturbed in
addition with a sinusoid centered at 2.5 kHz. The sinusoid is represented
by the vertical black bar across time. In this frequency region, speech is
almost entirely masked by the sinusoid. The corresponding SNR estima-
tion of this input signal is plotted in the forth panel. Two remarkable
effects occur in this situation. First, the masking effect of the sinusoid in
the respective frequency region is not recognized at all by the algorithm.
Instated, it is simply “ignored”. Obviously, the estimation of the SNR
in this region is steered by neighboring frequency channels which were
not disturbed by the sinusoid. Noise suppression basing on this SNR
estimation would attenuate the CCITT noise, but not the sinusoid. The
second effect is that the presence of the sinusoid has some impact on



3.3. ACROSS-CHANNEL PROCESSING 49

−10

0

10

20

F
re

q
. 
C

h
a

n
n

e
l Sub band SNR, measured

0 0.5 1 1.5

5

10

15

−10

0

10

20

F
re

q
. 

C
h

a
n

n
e

l

Sub band SNR, estimated

0 0.5 1 1.5

5

10

15

−10

0

10

20

F
re

q
. 
C

h
a

n
n

e
l Sub band SNR, measured

0 0.5 1 1.5

5

10

15

−10

0

10

20

Time [s]

F
re

q
. 
C

h
a

n
n

e
l Sub band SNR, estimated

0 0.5 1 1.5

5

10

15

Figure 3.8: “Across frequency” processing in AMS-based SNR estima-
tion. The first two panels show the measured and the estimated sub-band
SNR for noisy speech. In the last two panels, the noisy speech was addi-
tionally distorted with a sinusoid, which can be seen from the measured
SNR (3rd panel), but not from the estimated SNR (4th panel).
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the SNR estimation for all other frequency channels, as there are small
differences to the second panel, where the speech was only disturbed by
CCITT noise. The inability of the algorithm to recognize and classify a
sinusoid can be explained by the choice of the training data. All noises
that were used for training were natural noises which occur in typical
every-day environments. CCITT noise is not “natural”, but its spectral
and temporal properties are well represented in the training data. For
the sinusoid, in contrast, there was nothing even similar contained in the
training data, neither in the noise set, nor in the speech set. Thus, the
neural network classification is somewhat “blind” for such an input sig-
nal. This illustrates the necessity of carefully choosing the training data
according to the desired application, and to cover the range of potential
input signals, if possible.
To quantitatively determine the influence of across-channel processing
of the algorithm due to the full connection of the neural network, a
modified, “isolated channel” classification scheme was implemented and
tested. It does not use one single network for SNR estimation in all
frequency channels, but 15 different networks which are trained on in-
formation from one single frequency channel and which estimate the
SNR in this channel after training. Each neural network consists of an
input layer with 15 neurons (the modulation spectrum of one frequency
channel, i.e., one AMS pattern row), a hidden layer with 40 neurons, and
an output layer with just one neuron. The target activity of the output
neuron during training corresponds to the measured SNR in this chan-
nel. After training, the output neuron activity determines the estimated
SNR in the particular frequency channel. Except from splitting up the
network into 15 independent networks, the setup of the SNR predic-
tion experiments is the same as described in Section 3.2. The resulting
SNR prediction accuracy on the test data in terms of mean estimation
deviation as a function of the frequency channel is plotted in Fig. 3.9
(solid curve). Compared to the original algorithm with one fully con-
nected network (dotted curve), the mean deviation increased by 2–4 dB
in all frequency channels. Nevertheless, these results indicate that it is
possible to determine the SNR in a single frequency to some extend by
just analyzing the modulations in that channel, as these results show.
An increased accuracy, however, is made possible by across-channel pro-
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Figure 3.9: SNR estima-
tion accuracy on the test
data with no network con-
nections across frequency
(solid), and with fully con-
nected network (dotted).

cessing, i.e. by exploiting information in neighboring frequency channels
(provided the characteristics of the test data are covered by the training
data).

3.4 Comparison with VAD-based SNR es-
timation

In common single-channel noise suppression algorithms, the noise spec-
trum estimate is updated in speech pauses using some voice activity
detection (VAD). This allows for re-estimation of the clean speech sig-
nal from noisy speech under the assumption that the noise is sufficiently
stationary during speech activity. Thus, an estimate of the SNR is pro-
vided for each analysis frame, in each frequency channel. The accuracy
of a VAD-based SNR estimation was compared to the SNR estimation
approach outlined in this paper. For voice activity detection, a VAD
standardized by ITU-T was used (ITU, 1996). It utilizes information
on energy, zero-crossing rate, and spectral distortions for voice activity
detection. For this experiment, the FFT spectrum of the input signal
was computed using 8 ms analysis frames and a shift of 4 ms. The noise
spectrum estimate was updated in frames which were classified as speech
pauses by the VAD. The “instantaneous SNR”, as described in (Ephräım
and Malah, 1984) was calculated for each spectral component.

SNR[inst] = 10 log(γk − 1), (3.2)



52 CHAPTER 3. AMS-BASED NOISE SUPPRESSION

with

γk =
|Rk(l)|2
λd(k)

, (3.3)

where Rk(l) is the modulus of the signal plus noise resultant spectral
component k, and λd(k) = E{|Dk|2} the variance of the kth spectral
component of the noise. γk is interpreted as the a posteriori SNR.
The instantaneous SNR typically fluctuates very fast, as the local noise
energy in a certain frame can be quite different from the average noise
spectrum estimate. These fluctuations cause the well-known “musical
noise” which degrades the quality of speech enhanced by Spectral
Subtraction (Boll, 1979). Several methods have been proposed to
reduce musical noise. An approach which is widely used was introduced
by Ephräım and Malah (1984). In this approach, the gain function is
determined by both the instantaneous SNR and the so-called a priori
SNR, which is a weighted sum of the present instantaneous SNR and
the recursively computed a posteriori SNR in the processed previous
frame.
In our experiment, both the instantaneous SNR and the a priori
SNR were calculated from the input signal, following Ephräım and
Malah (1984). To allow for direct comparisons with the AMS-based
SNR estimation approach described in this paper, the time resolution of
the instantaneous and a priori SNR estimates were reduced by taking
the mean of eight successive frames, yielding 32 ms analysis frames with
a shift of 16 ms, as in the AMS approach. By appropriate summation
of neighboring FFT bins, a frequency resolution identical to the AMS
approach was provided. The test material described in Section 3.2.3
was processed and the instantaneous and a priori SNR values were
compared to the “true” SNR which was measured prior to mixing speech
and noise. The achieved mean deviations in each frequency channel
is plotted in Fig. 3.10 (left). When comparing the two VAD-based
approaches, it can be seen that the a priori SNR provides a more
reliable estimate of the present SNR than the instantaneous SNR. The
accuracy of the AMS-based, direct SNR estimation approach, however,
appears to be more accurate than the two VAD-based measures,
especially in the mid-frequency region. In the lower frequency bands,
the accuracy is comparable. The importance of a proper and reliable
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Figure 3.10: Comparison between AMS-based (solid) and VAD-based
(dotted) SNR estimation in 15 frequency channels. The left panel shows
the results with a VAD standardized by ITU-T, on the right panel a
“perfect” VAD was used.

speech pause detection for the VAD-based approach is illustrated in the
right panel. Here, the ITU-T VAD was replaced by a “perfect” VAD
(the speech pauses were detected from the clean speech input with an
energy criterion). Thus, there were no speech pauses missed and hence
the noise estimate could be updated as often as possible. In addition,
no speech portions were mistakenly classified as noise and distorted
the noise measure. With perfect information on speech pauses, the
VAD-based SNR estimation accuracy for the tested data was higher
than with the direct AMS-based approach, especially in the lowest and
highest frequency bands.

However, the VAD-based SNR estimation allows for estimation in
narrow and independent frequency bins, and for short analysis frames.
The AMS-based approach, in contrast, is restricted in both time and
frequency resolution: Modulation analysis down to 50 Hz modulation
frequency requires analysis frames of at least about 20 ms. In addition,
increased center frequency resolution and hence SNR estimation in much
more than 15 channels (as in the present AMS implementation) would
require considerably higher costs in terms of necessary training data,
processing time, and memory usage.
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3.5 Noise suppression

Sub-band SNR estimates allow for noise suppression by attenuating
frequency channels according to their local SNR. The gain function
which is applied is given by:

gk =
(

SNRk

SNRk + 1

)x

, (3.4)

where k denotes the frequency channel, SNR the signal-to-noise ratio
on a linear scale, and x is an exponent which controls the strength of
the attenuation. Note that for x = 1 the gain function is equivalent to
a Wiener filter. The gain functions for the SNR range between -10 dB
and 20 dB with three different exponents x are plotted in Fig. 3.11. The
maximum attenuation with x = 1 is restricted to -12 dB, whereas choos-
ing x = 2 allows for a maximum attenuation of -25 dB.
Noise suppression based on AMS-derived SNR estimations was per-

formed in the frequency domain (see Fig. 3.1). The input signal is seg-
mented into overlapping frames with a window length of 32 ms, and a
shift of 16 ms is applied, i.e., each window corresponds to one AMS anal-
ysis frame. The FFT is computed in every window. The magnitude in
each frequency bin is multiplied with the corresponding gain computed
from the AMS-based SNR estimation. The gain in frequency bins which
are not covered by the center frequencies from the SNR estimation is lin-
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early interpolated from neighboring estimation frequencies. The phase
of the noisy speech is extracted and applied to the attenuated magni-
tude spectrum. An inverse FFT is computed, and the enhanced speech
is obtained by overlapping and adding.
A parameter of the proposed noise suppression approach is the cut-off
frequency of the low pass filter which temporally smoothes subsequent
SNR estimates (see Section 3.2.4). With filtering, prediction errors and
thus incorrect attenuation are smoothed, but the adaptation to new
acoustical situations gets slower. Another parameter is the attenuation
exponent x. Values of 2 and higher result in a strong attenuation of
the noise, but may also degrade the speech. Low values lead to only
moderate suppression of the noise (with a clearly audible noise floor).

3.5.1 Informal listening results

A range of different samples of noisy speech were subject to informal
listening tests. In general, a good quality of speech is maintained, and
the background noise is clearly suppressed. There are no annoying
“musical-noise”-like artifacts audible. The choice of the attenuation
exponent x has only little impact on the quality of clean speech,
which was well preserved for all speakers that were tested. With
decreasing SNR, however, there is a tradeoff between the amount of
noise suppression and distortions of the speech. A typical distortion of
speech in poor signal-to-noise ratios is an unnatural spectral “coloring”,
rather than rough distortions.
Without temporal low-pass filtering of successive AMS-based SNR
estimates, an independent adaptation to new acoustical situations is
provided every 16 ms. Thus, estimation errors in single frames can cause
unwanted fluctuations in the processed signal. Low-pass filtering of
successive AMS-based SNR estimates with a cut-off frequency of about
2-4 Hz smoothes these fluctuations but still allows for quick adaptation
to the present acoustical situation. With longer time constants for
filtering, the noise slowly fades out in speech pauses. When speech
commences, it takes some time until the gain increases again1.

1Demonstrations for the proposed noise suppression scheme can be downloaded
from
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3.5.2 Objective speech quality evaluations

Besides the subjective validation of noise suppression algorithms by lis-
teners, there is a range of objective measures available to evaluate the
quality of such algorithms. An overview of objective speech quality mea-
sures can be found in (Quackenbush et al., 1988). Three different ob-
jective measures were applied to noisy speech which was processed by
the presented AMS-based noise suppression, namely the Log-Likelihood
Ratio (LLR), the Log-Area Ratio (LAR), and a psychoacoustically-
motivated speech quality measure. The first two methods (LLR and
LAR) rely on mathematically based distance measures between the orig-
inal and the degraded (noisy) speech signal, whereas the latter approach
bases on PEMO, a model of the auditory periphery, which transforms the
incoming waveform into an “internal representation” of the sound. The
auditory model was originally developed to predict human performance
in typical psychoacoustical masking experiments (Dau et al., 1996a), but
it was also applied in the field of speech processing, such as speech intel-
ligibility prediction (Holube and Kollmeier, 1996) and feature extraction
for automatic speech recognition (Tchorz and Kollmeier, 1999b) (Chap-
ter 3 of this thesis). The application of PEMO to speech quality predic-
tion is described by Hansen and Kollmeier (1997).
For the objective evaluation of the AMS-based noise suppression, speech
uttered by different speakers was mixed with six different types of noise2.
Noise was added with different SNRs ranging from -5 dB to 15 dB to
explore dependencies on the overall SNR. The noisy speech was pro-
cessed using an attenuation exponent x = 1, and no low pass filtering
of SNR estimates. After noise suppression, the respective distances be-
tween clean and noisy speech, and between clean and processed noisy
speech were computed as a function of the overall SNR. For LLR and
LAR, the mean using the first 95% of all frames was calculated as overall
performance measure, because a mean quality measure over all frames
is typically biased by a few frames in the tails of the quality measure
distribution (Hansen and Pellom, 1998). For these two measures, higher
speech quality is indicated by a smaller distance to the clean speech. For

http://medi.uni-oldenburg.de/members/juergen/ams.html
2canteen babble, factory noise, white Gaussian noise, inside car, inside truck,

traffic noise in town
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PEMO, the overall correlation coefficient between the internal represen-
tations of clean speech and (processed) noisy speech served as quality
measure. Thus, a higher correlation coefficient indicates better speech
quality. The results of the objective measures averaged across noise con-
ditions are plotted in Fig. 3.12. LLR and PEMO indicate a constant
benefit of AMS noise suppression, independent of the overall SNR. In
particular, these two measures do not detect degradation of processed
speech in high SNRs. The LAR measure indicates a small benefit in
poor SNRs, but a slight degradation of quality in high SNRs. The ob-
jective measures across all six tested types of noise has been averaged in
Fig. 3.12, although the quality measures considerably varied between dif-
ferent noises. The largest benefit from processing was measured in white
Gaussian noise, with all three measures. No benefit from processing was
measured in babble noise. LLR and PEMO detected almost no differ-
ences between processed and unprocessed speech in this situation, and
LAR indicated a decent degradation of speech quality due to processing.
By informal listening, such a degradation could not be confirmed. How-
ever, the AMS-based noise suppression has only little effect in canteen
noise, as lots of noise portions are classified as speech. From this, the
results from the objective quality measures are not in contradiction to
the informal listening results.

3.6 Discussion

The main findings of this study can be summarized as follows:

• Neurophysiologically-motivated Amplitude Modulation Spectro-
grams (AMS), in combination with artificial neural networks for
pattern recognition, allow for automatic estimation of the present
SNR in narrow frequency bands, even if both speech and noise are
present at the same time

• SNR estimation is possible from modulation cues only, but
estimation accuracy benefits from across channel processing
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• Monaural noise suppression from AMS-derived SNR estimates
preserves the speech quality in SNRs which are not too poor and
attenuates noise without musical noise-like artifacts.

Neurophysiological experiments on temporal processing clearly indicate
that the analysis and representation of amplitude modulations play a
central role in our auditory system. Technical sound signal processing,
on the other hand, is commonly dominated by the the analysis of spectral
information, rather than modulation information. Spectral analysis in
speech processing has a a long history back to the invention of the spec-
trograph (Koenig et al., 1946), and one is easily tended to take the im-
portance of the frequency spectrum for granted. It was not before recent
years that speech processing research focused on the analysis of modu-
lation frequencies, especially in the field of noise reduction (Kollmeier
and Koch, 1994; Strube and Wilmers, 1999) and automatic speech
recognition (Hermansky and Morgan, 1994; Kingsbury et al., 1998;
Tchorz and Kollmeier, 1999b). In speech recognition, band pass filtering
of low modulation frequencies of about 4 Hz attenuates the disturbing
influence from background noise, which typically has a different modu-
lation spectrum compared to speech. Low modulation frequencies also
play an important role for speech intelligibility. Drullman et al. (1994)
found that modulation frequencies up to 8 Hz are the most important
ones in for speech intelligibility. Shannon et al. (1993) conducted an
impressive study on the importance of temporal amplitude modulations
for speech intelligibility and observed nearly perfect speech recognition
under conditions of highly reduced spectral information.
However, it is important to notice the difference between speech intelli-
gibility and speech detection (or, in a wider sense, detection of acoustical
objects). Higher modulation frequencies which represent pitch informa-
tion or harmonicity are likely to be more important for speech detection
and sound classification. In a study on AMS-based broad-band SNR es-
timation (Tchorz and Kollmeier, 2000) (Chapter 2 of this thesis) it was
shown that harmonicity appears to be the most important cue for anal-
ysis frames to be classified as “speech-like”, but the spectro-temporal
representation of sound in AMS patterns also allows for reliable discrim-
ination between unvoiced speech and noise. Thus, the joint represen-
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tation in AMS patterns cannot be replaced by a simple pitch detector
(which would require less computational effort).
Amplitude Modulation Spectrograms for SNR estimation described in
this paper do not allow for analysis of very low modulation frequencies,
as the analysis windows have to be kept short for fast noise suppres-
sion. However, AMS processing can be regarded as a more general way
of signal representation. The time constants and analysis frames are
variable, and sub-band SNR prediction (in combination with a pattern
recognizer) should be regarded as an example for a practical application
of spectro-temporal feature extraction. The distinction between speech
and noise is made possible by the choice of the training data, and no spe-
cific assumptions on speech or noise are “hard wired” in the algorithm.
Thus, other applications such as classification of musical instruments or
detection and suppression of certain types of noise are thinkable (but are
not implemented to date).
A disadvantage of the proposed noise suppression scheme is the lim-
ited frequency resolution, as the SNR is estimated in only 15 channels.
Hence, the suppression of noise types with sharp spectral peaks is not
as efficient as in Spectral Subtraction or related algorithms. A smoother
gain function across frequency, on the other hand, reduces annoying ef-
fects in the processed signal.
The objective speech quality measures indicate a benefit from AMS-
based noise suppression. However, this finding is of limited evidence
until the results are linked with subjective listening tests and the corre-
lation between objective measures and subjective scores are determined.
Thus, future work will include a more detailed evaluation of the pro-
posed noise suppression algorithm with listening tests in normal-hearing
and hearing-impaired persons, and comparisons with other monaural
noise suppression algorithms such as Spectral Subtraction and the ap-
proach proposed by Ephräım and Malah. Listening tests should not be
restricted to speech intelligibility measurements in typically very poor
signal-to-noise ratios. In addition, more “subjective” dimensions like
ease of listening and overall sound quality should be covered, which are
of great practical importance in SNR ranges where speech intelligibility
is well above 50%.
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Chapter 4

A model of auditory
perception as front end
for automatic speech
recognition 1

Abstract

A front end for automatic speech recognizers is proposed and evaluated
which is based on a quantitative model of the “effective” peripheral
auditory processing. The model simulates both spectral and temporal
properties of sound processing in the auditory system which were found
in psychoacoustical and physiological experiments. The robustness of
the auditory-based representation of speech was evaluated in speaker-
independent, isolated word recognition experiments in different types
of additive noise. The results show a higher robustness of the auditory
front end in noise, compared to common mel-scale cepstral feature
extraction. In a second set of experiments, different processing stages

1A slightly modified version of this Chapter appeared in J. Acoust. Soc.
Am. (Tchorz and Kollmeier, 1999b).

63
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of the auditory front end were modified to study their contribution to
robust speech signal representation in detail. The adaptive compression
stage which enhances temporal changes of the input signal appeared
to be the most important processing stage towards robust speech
representation in noise. Low pass filtering of the fast fluctuating
envelope in each frequency band further reduces the influence of noise
in the auditory-based representation of speech.

4.1 Introduction

Front ends for automatic speech recognition (ASR) systems are designed
to transform the incoming speech signal into a representation which
serves as input for later pattern recognition stages. The representation
should extract and highlight important features from the speech signal
which are relatively independent from speaker variability and channel
conditions. It should suppress irrelevant redundancies contained in the
speech waveform, thus reducing the data rate at subsequent processing
stages of the recognition system. In addition, the representation of
speech should be influenced as little as possible by both additive
background noise and convolutive distortions (e.g., a change of the
transmission channel) to allow for robust recognition in realistic envi-
ronments outside the laboratory. Unfortunately, the desired robustness
against noise is far away from being realized in present speech recogni-
tion systems. Even slightly disturbed speech often leads to a distinct
decrease in the performance of ASR systems and makes the usefulness
of the recognition system questionable.

The human auditory system, on the other hand, performs speech
processing which is very robust against noise and allows us to under-
stand speech even under poor conditions. Human speech recognition
and understanding is made possible by the interplay between the au-
ditory periphery, which transforms the incoming sound signal into its
“internal representation”, and the higher auditory processing stages in
the brain, which performs the recognition task based on the internal
representation (see Kollmeier (1990) for a review). While comparatively
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little is known about the neural mechanisms of the central auditory pro-
cessing stages in the brain, much more is known about the peripheral
auditory processing stages. (Here we use the term periphery to char-
acterize the first stages of auditory processing including filtering of the
basilar membrane, half-wave rectification of the hair cells and encoding
of hair cell movement into auditory nerve firing). The knowledge about
these mechanisms is primarily based on physiological measurements and
psychoacoustical experiments on frequency selectivity, loudness percep-
tion, short term adaptation, temporal masking, and other topics.
Despite the progress in understanding auditory processing mechanisms,
only few aspects of sound processing in the auditory periphery are
modeled and simulated in common front ends for ASR systems. One
example is that most current front ends perform auditory frequency
filtering proportional to a perceptually-based frequency scale rather
than a linear scale, which in general improves recognition robustness in
noise (Jankowski et al., 1995). Another example is the use of the loga-
rithm of certain speech features that approximate the nonlinear dynamic
compression in the auditory system which allows us to cover the huge
dynamical range between hearing threshold and uncomfortable loudness
level.
Ideally, the automatic speech recognizer should operate as a pattern rec-
ognizer on the same input pattern that is available to the central audi-
tory system after preprocessing in the peripheral auditory system, as the
central auditory system can be regarded as a very powerful recognizer
which bases on and makes use of the peripheral representation of sounds.
This peripheral representation contains all information that is needed for
robust speech recognition. In reality, of course, a technical pattern recog-
nizer works different than our brain does, and it is questionable whether
the technical recognizer can exploit auditory-like features for more ro-
bust recognition. Thus, the interactions between feature characteristics
and recognizer properties have to be considered carefully. In addition,
it is not clear which parts and details of peripheral auditory processing
contribute to robust speech recognition (and thus might be worth to be
simulated in a technical front end), and which parts are important for
other skills of the auditory system (and thus would “whiten” the features
with information that is not needed). A more detailed discussion on the
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simulation of auditory processing in ASR is given by Hermansky (1998).
Having the above mentioned restrictions in mind, an auditory-motivated
representation of speech would include certain properties of auditory
processing that have been characterized by physiological and psychoa-
coustical experiments and have not yet been incorporated in common
ASR systems. One example of these properties is short term adap-
tation. With short term adaptation, we denote the combination of
two effects: (i) Given a constant stimulus, the auditory nerve re-
sponse decreases monotonically with increasing stimulus duration, i.e.,
it adapts and asymptotically approaches a steady-state rate (Kiang
et al., 1965). (ii) After stimulus offset, a period of recovery in auditory
nerve activity with a firing rate below spontaneous emission in quiet
and reduced response to a new stimulus can be observed (Smith, 1979;
Delgutte and Kiang, 1984). Another example is the processing of am-
plitude modulations in the auditory system. During recent years, more
insight has been gained about the coding of amplitude modulations in
the auditory system and their contribution to pitch representation and
speech perception. Langner and Schreiner (1988), for example, found
neurons in the inferior colliculus of the cat that were tuned to cer-
tain modulation frequencies. Furthermore, a tonotopical organization of
units with respect to their modulation tuning was found that appeared
to be perpendicular to the tonotopical encoding of the carrier frequen-
cies (Langner, 1992). An enhancement of speech intelligibility could
be achieved when these properties were exploited (Kollmeier and Koch,
1994). The importance of temporal amplitude modulations for speech
perception was demonstrated by Shannon et al. (1993). They observed
nearly perfect speech recognition under conditions of greatly reduced
spectral information. Their results indicate that amplitude modulations
below 50 Hz in particular are important for speech perception.
Several researchers have proposed algorithms to model different psy-
choacoustical aspects or physiological processing stages of the auditory
periphery. Only few of these models were tested in speech recognition
systems, though. Ghitza (1988) introduced a model of temporal dis-
charge patterns of auditory-nerve fibers (Ensemble Interval Histogram -
EIH) as feature extraction for automatic speech recognition. In recog-
nition experiments with the TIMIT database, EIH feature extraction
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showed little robustness improvement when compared to common mel-
scale cepstral coefficient front ends (Sandhu and Ghitza, 1995).
Seneff (1988) proposed a bank of filters model of auditory perception
which simulates the transformation of basilar membrane motion into
auditory nerve firing patterns. In a subsequent processing stage, a physi-
ologically motivated “generalized synchrony detector” measures to which
extend a frequency channels firing rate is periodic with the characteristic
period 1/fc of that certain frequency channel. Jankowski et al. (1995)
evaluated the robustness of Seneffs and Ghitzas auditory front ends in
additive and convolutive noise and compared them with a mel frequency
filter bank (MFB) based cepstral front end as control feature extraction.
In speaker-dependent, isolated word recognition experiments, almost no
difference could be observed between the auditory models and the con-
trol front end when speech was degraded by convolutive distortions (e.g.,
by telephone filtering). In additive noise, the auditory-based front ends
appeared to be slightly superior to the control front end. This small
advantage had to be paid for with much higher computational effort
compared to MFB cepstra. The authors emphasized the necessity of
choosing an appropriate control front end when evaluating the robust-
ness of auditory-based front ends. In their experiments, MBF cepstra
significantly outperformed LPC-based cepstra used in other investiga-
tions which indicated a decent benefit from using auditory preprocessing
in noisy environment.
Strope and Alwan (1997) presented a computationally efficient model of
dynamic perception which augments common mel frequency cepstrum
front ends. An additive logarithmic adaptation stage simulates short-
term adaptation. The model’s parameters were fitted to predict psy-
choacoustical forward masking experiments. A subsequent peak isola-
tion mechanism is intended to further enhancing the dynamic spectral
cues. First evaluations in speaker-independent, isolated digit recognition
experiments in static additive noise yielded better results compared to
common front ends.
An earlier approach to simulate short-term adaptation and to implement
it in an ASR front end was presented by Cohen (1989). He combined
critical band filtering with loudness scaling and a reservoir-type adap-
tation equation for simulating the hair cell action (Schroeder and Hall,
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1974), which relates stimulus intensity to auditory-nerve firing rate. He
reported lower error rates and reduced computational costs in large-
vocabulary, connected word recognition experiments when compared to
a standard bank of filters front end. Noise immunity was not addressed
in his experiments.
In recent years, growing attention is paid to low frequency amplitude
modulations. RASTA processing of speech (Hermansky and Morgan,
1994) filters the time trajectories of speech. The RASTA filter passes
amplitude modulation components between about 1 and 12 Hz in a rel-
atively flat pass band and with rather steep slopes. Ideally, by appro-
priate feature transformation, the disturbing components in the input
signal should combine linearly with the components that origin from
speech, so that these components can be separated by RASTA filter-
ing. The log-RASTA approach uses static logarithmic compression prior
to modulation filtering. It is primarily intended to remove convolutive
distortions (e.g., due to changes in the transmission channel), as these
distortions are additive in the log-domain. The adaptive J-RASTA ap-
proach is intended to suppress the influence of additive noise. Here,
the compression prior to modulation filtering depends on an estimation
of the present noise energy, which is measured in speech-free intervals.
When applied as front end for ASR systems, considerable increase of
robustness compared to standard front ends could be observed (see, e.g.,
Kasper et al. (1997)).
The outline of this paper is to describe the application of a psychoacous-
tically - motivated model of auditory perception to automatic speech
recognition. A set of experiments in different types of noise evaluates
the robustness of the auditory feature extraction compared to a standard
front end. A subsequent analysis of single auditory model processing
steps is intended to explore their contribution to robust recognition and
to answer the question whether the parameters of the psychoacoustical
model are optimal for the new task of ASR feature extraction.

4.2 Signal Processing

The intention of the quantitative model of auditory processing is to
transform an incoming sound waveform into its “internal” representa-
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Figure 4.1: Processing stages of the auditory model.

tion. Rather than trying to model each physiological detail of auditory
processing, the approach is to focus on the “effective” signal processing
in the auditory system which uses as little physiological assumptions and
physical parameters as necessary, but to predict as many psychoacous-
tical aspects and effects as possible.

The model was originally developed for describing human perfor-
mance in typical psychoacoustical spectral and temporal masking exper-
iments, e.g., predicting the thresholds in backward, simultaneous, and
forward-masking experiments (Dau et al., 1996a; 1996b). The parame-
ters of the model were chosen to fit these experiments. Gap detection and
modulation detection experiments were simulated with a combination of
the model with a subsequent modulation filterbank (Dau et al., 1997a;
1997b). In the field of speech processing, the auditory model was applied
to objective speech quality measurement (Hansen and Kollmeier, 1997;
2000), speech intelligibility prediction in noise (Wesselkamp, 1994) and
in hearing impaired listeners (Holube and Kollmeier, 1996).

4.2.1 Processing steps

A block diagram of the auditory model and its processing stages is shown
in Fig. 4.1.

The first processing step of the auditory model is a preemphasis
of the input signal with a first order differentiation. This flattens the
typical spectral tilt of speech signals and reflects the transfer function
of the outer ear (Djupesland and Zwislocki, 1972). The preemphasis
was introduced for feature extraction in speech recognition systems and
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was not used in previous applications of the auditory model. In the
next processing stage, the preemphasized signal is filtered by a gam-
matone filterbank (Patterson et al., 1987) using 19 frequency chan-
nels equally spaced on the ERB scale with center frequencies ranging
from 300-4000 Hz. The impulse responses of the gammatone filterbank
are similar to the impulse responses of the auditory system found in
physiological measurements (Boer and Kruidenier, 1990). The imple-
mented gammatone filterbank is linear. It does not consider nonlinear
effects such as level-dependent upward spread of masking and combina-
tion tones. After gammatone filtering, each frequency channel is half
wave-rectified and first order low pass filtered with a cutoff frequency
of 1000 Hz for envelope extraction. Information about the fine struc-
ture of the signal at high frequencies gets lost; this reflects the limiting
phase-locking for auditory nerve fibers above 1000 Hz. At this stage of
processing, each frequency channel contains information about the am-
plitude magnitude of the input signal within the channel. Amplitude
compression is performed in a following processing step. In contrast to
conventional bank of filters front ends, the amplitude compression of the
auditory model is not static (e.g., logarithmic) but adaptive, which is
realized by an adaptation circuit consisting of five consecutive nonlin-
ear adaptation loops (Püschel, 1988). Each of these loops consists of a
divider and a RC-low pass filter with time constants τ1 = 5 ms, τ2 =
50 ms, τ3 = 129 ms, τ4 = 253 ms, and τ5 = 500 ms (Dau et al., 1996a;
1997a). For each adaptation loop, the input signal is divided by the
output signal of the low pass filter. Thus, a stationary input signal X
is transformed to an output signal Y =

√
X. The output of five con-

secutive adaptation loops is then Y = 32
√

X, which approximates the
logarithm of the input signal. Fluctuations of the input signal that are
very fast compared to the time constants of the adaptation loops, on the
other hand, are transformed linearly because of time delayed denomina-
tor changes. Due to this transformation characteristic, changes in the
input signal like onsets and offsets are emphasized, whereas steady-state
portions are compressed. Thus, the adaptation loops can be regarded
as an inherent memory of the system. Given an input signal, the out-
put signal of the auditory model at time t does not only depend on the
properties of the input signal within a narrow time frame around t, but
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also on the characteristics of the input signal during a preceding time
interval of about 200 ms. Due to the inherent memory of the auditory
model, the dynamical structure of the input signal is taken into account
over a relatively long period of time. Short term adaptation including
enhancement of changes and temporal integration is simulated and al-
lows a quantitative prediction of important temporal effects in auditory
perception, such as backward- and forward masking (Dau et al., 1996b).
The last processing step of the auditory model is a first order low pass
filter with a cutoff frequency of 8 Hz. The filter was introduced by Dau
et al. (1996b) to optimize predictions of psychoacoustical masking ex-
periments. It attenuates fast envelope fluctuations of the signal in each
frequency channel.
The output of the auditory preprocessing is downsampled to a rate of
100 feature vectors per second to serve as input for the subsequent recog-
nition device. The auditory model is implemented in C-code. Processing
takes about one-third real time on a current standard personal computer.

4.2.2 Modulation filtering of the auditory model

Suppression of very slow envelope fluctuations by the adaptation loops
and attenuation of fast fluctuations by the low pass filter results in a
band pass characteristic of the amplitude modulation transfer function
of the auditory model. We measured the modulation transfer function
using a constant carrier (i.e., a sinusoid at 1 kHz) which was sinusoidal
amplitude modulated at different modulation frequencies with a modu-
lation depth of 20%. The attenuation of the modulated signal in the cor-
responding frequency channel after processing with the auditory model
was measured for each modulation frequency. The resulting amplitude
modulation transfer function is plotted in Fig. 4.2 (solid curve)2.

The maximum amplitude modulation transmission of the model can
be found at modulation frequencies around 6 Hz. There is a strong at-
tenuation of modulation frequencies below 2 Hz due to the steady-state
compression of the adaptation loops. In the high frequency part, the

2Note that due to the nonlinearity of the adaptation loops the effective modulation
transfer function (MTF) obtained from the model depends strongly on the modulation
spectrum of the input signal. Hence, the characteristic plotted in Fig. 4.2 is only an
approximation of the MTF that may be obtained with speech signals.
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Figure 4.3: Broadband
modulation spectrum of a
speech sample.

transfer function declines with approximately 3 dB/octave.
A broadband modulation spectrum of speech is shown in Fig. 4.3. It was
generated from 380 s of speech from 140 different American speakers from
the TIMIT database (70 male, 70 female). The envelope was extracted
from the waveform using half-wave rectification and low pass filtering
using a 2nd-order Butterworth filter with a cutoff-frequency of 100 Hz.
The peak around 3 Hz in the modulation spectrum is a characteristic
feature of speech which origins from the average syllable rate (Houtgast
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and Steeneken, 1985). It can be seen that the modulation transfer func-
tion of the auditory model resembles, but does not exactly fit the average
modulation spectrum of speech in terms of most prominent modulation
frequency and decline towards higher modulation frequencies.

4.2.3 Examples of sound and speech processing

As a first example, the response of the auditory preprocessing when
stimulated with a pure tone is demonstrated. Figure 4.4 (first panel,
left) shows the envelope of the stimulus (a 1000 Hz-tone with a duration
of 500 ms).

In the second panel (left), the output of the corresponding frequency
channel after processing is shown. The figure illustrates the simulation
of short term adaptation, including initial linear response at signal onset,
transition to steady-state compression, “undershoot” after signal offset
due to discharged adaptation loops, and recovery time. An example of
speech processing is shown in Fig. 4.5. The waveforms of an undisturbed
word and that of the same word disturbed by additive speech simulating
noise at 10 dB SNR are plotted on top. Their corresponding represen-
tations after processing with the auditory front end can be seen in the
two panels in the second row. Peaks in the internal representations are
indicated by bright spots, low feature values by dark areas. The two
panels in the third row show one single frequency channel (with center
frequency fc=780 Hz) after processing for a more detailed study. The
relatively stationary noise preceding and following the speech signal is
suppressed due to the steady-state compression performed by the adap-
tation loops. The onsets and offsets of the speech signal are enhanced
in both quiet and in noise. Due to the adaptive amplitude compression
which emphasizes changes and suppresses constant portions, speech en-
coding of the model can be described as sparse and distinct.
To visualize the difference between adaptive compression and static com-
pression, the two panels at the bottom of Fig. 4.5 show the representation
for the same input signals and the same frequency channel with the adap-
tive compression stage replaced by a static log-compression. Here, the
most prominent parts of the speech representation are maintained, but
the “floor” of the representation during non-speech portions is shifted
due to the background noise.
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Figure 4.4: Simulation of short term adaptation in the auditory model.
First panel (left): Envelope of the input stimulus, a 1000 Hz 500-ms
tone pulse. Second panel (left): response of the auditory model in the
frequency channel corresponding to the stimulus with initial linear re-
sponse, transition to steady-state compression, and period of recovery
after stimulus offset. Other panels: responses of modifications M2-M5
of the auditory model on the stimulus. See section 4.4.1 (Note that the
scaling of the Y-axis is different for each figure).
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Figure 4.5: An example for speech processing performed by the auditory
model. On top, the waveforms of an utterance of the German word “wieder-
holen” from a female speaker in quiet (left) and in speech simulating noise at
10 dB SNR (right) are shown. In the second row, the corresponding “internal”
representations after preprocessing are visualized. High and low amplitudes
are indicated by bright and dark areas, respectively. In the third row, the out-
put of one single frequency channel (center frequency cf = 780 Hz) is shown.
It can be seen how onsets and offsets are contrasted by the adaptive com-
pression stage. The relatively stationary background noise is compressed and
causes only minor fluctuations in the representation. The last two pictures, in
contrast, show the respective representations for the same input signals and
the same frequency channel when the adaptive compression stage was replaced
by a static log-compression. Here, the post prominent parts of the speech rep-
resentation are well maintained, but the “floor” of the representation during
non-speech portions is shifted due to the background noise.
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4.3 Recognition Experiments

A number of speaker-independent, isolated digit recognition experiments
in different types of additive noise were performed to evaluate the ro-
bustness of the auditory-based representation of speech quantitatively.

4.3.1 Experimental setup

The speech material for training of the word models and scoring was
taken from the ZIFKOM database of Deutsche Telekom AG. Each
German digit was spoken once by 200 different speakers (100 males,
100 females). The recording sessions took place in soundproof booths
or quiet offices. The speech material was sampled at 16 kHz.
To cover a certain range of possible additive distortions of speech
in actual ASR systems, three different types of noise were added to
the speech material at different signal-to-noise ratios before feature
extraction: white noise (WN), speech-simulating noise (SN), which
was generated from a random superposition of words spoken by a
male speaker, and background noise recorded on a construction site
(CS). The first two noise types (WN and SN) are stationary, i.e., their
spectral shape and energy do not change over time. The last noise (CS)
exhibits fluctuations in both spectral shape and energy. To prepare the
additive distortions, the RMS value of each word utterance including
short pauses before and after the utterance was calculated separately.
The background noises were scaled and added to the utterances with
signal-to-noise ratios of 20, 15, 10, and 5 dB.
For training and testing, we used a standard continuous-density HMM
recognizer with 5 Gaussian mixtures per state, diagonal covariance
matrices and 6 emitting states per word model. The word models
were trained with features from 100 undisturbed utterances of each
digit. Features for testing were calculated from another 100 utter-
ances of each digit which were distorted by additive noise before
preprocessing. As control front end we used mel frequency cepstral
coefficients (MFCC) (Davis and Mermelstein, 1980), which are widely
used in common ASR systems. The coefficients were calculated from
Hamming-windowed, preemphasized 32ms segments of the input signal
with a frame period of 10ms. In our experiments, each mel cepstrum
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feature vector contained 26 features (12 coefficients, log energy, and the
respective first temporal derivatives as additional delta-features).

4.3.2 Results

The speaker-independent digit recognition rates in clean speech and in
additive noise obtained with the auditory preprocessing and the control
front end are shown in Fig. 4.6.

The recognition rates in per cent are plotted as a function of the
signal-to-noise ratio in dB. The three panels show the results for white
noise, speech simulating noise, and construction site noise, respectively.
In undisturbed speech, the control front end yields a higher recognition
rate (98.8%) than the auditory-based front end (97.1%). In additive
noise, however, the auditory features are more robust than those of the
control front end. Even in only slightly disturbed speech (20 dB SNR),
the recognition rates obtained with the auditory model are significantly
higher in all tested types of noise. The largest difference between the
two front ends occur in white noise, where the error rate is decreased by
a factor of 3, approximately. In construction site noise, small additive
distortions lead to severely decreased recognition rates with the control
front end, whereas the auditory model allows more robust recognition.
In speech simulating noise, the difference in performance between the
two front ends is smaller, but still distinct.

4.4 Recognition experiments with modifi-
cations of the auditory model

The preceding section showed that the auditory front end allows promis-
ing recognition rates in different types of noise. Two questions arise
at this point: Firstly, how do the different signal processing stages of
the auditory model contribute to robust recognition? Secondly, are the
parameters of the model, which were previously determined to fit psy-
choacoustical experiments, optimal for the new task in the field of speech
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processing? To answer these questions, we performed a number of recog-
nition experiments with modifications of the auditory model.

4.4.1 Modifications

There are two processing steps which dominate the representation of
speech performed by the auditory model compared to standard bank of
filters front ends. Firstly, the nonlinear adaptation loops realize effects
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of short term adaptation on the incoming signal. Steady-state portions
are suppressed, whereas fast fluctuations are transformed without atten-
uation. Secondly, the 8 Hz low pass filter smoothes the fast fluctuating
envelope and leads to a band pass modulation transfer function. These
two processing steps were altered in different ways to analyze their re-
spective contribution to robust representation of speech. In total, seven
modified versions (M1-M7) of the auditory front end were implemented
and tested.
In modifications M1-M4, the adaptive amplitude compression stage of
the model was changed. To determine whether adaptive compression
contributes to robust recognition at all, the five adaptation loops were
replaced by static logarithmic compression (M1). Dynamic temporal
properties of speech such as onsets and offsets are then no longer empha-
sized in the resulting feature vectors (see the bottom panels of Fig. 4.5).
In modification M2, the number of adaptation loops was increased from
five to eight. The time constants τ1 . . . τ8 were linearly equispaced be-
tween 5 ms and 500 ms. Thus, temporal contrasts in the input signal
are further enhanced in the representation. On the other hand, the am-
plitude X of a steady-state portion is compressed to 256

√
X, i.e., there is

almost no contribution of constant signal portions left in the represen-
tation.
For modification M3, the number of adaptation loops was decreased from
5 to 2, i.e., onsets and offsets are only moderately emphasized. Steady-
state portions are compressed to 4

√
x, the time constants are τ1 = 5 ms,

and τ2 = 500 ms.
In modification M4, the number of adaptation loops was five, as in the
original model. Their time constants were increased and set to τ1 =
50 ms, τ2 = 300 ms, τ3 = 700 ms, τ4 = 1100 ms, and τ5 = 1600 ms. This
leads to a slower transition to steady-state compression. Only rather
long steady-state portions are fully compressed to 32

√
x, the attenuation

of faster modulation frequencies is weaker than in the original model.
Shorter time constants as in the original model were chosen in modifi-
cation M5. They were set to τ1 = 2 ms, τ2 = 20 ms, τ3 = 50 ms, τ4 =
100 ms, and τ5 = 200 ms. In this case, the transition to full steady-state
compression is faster, and the peaks in the representation indicating on-
sets and offsets are narrower.
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M1 logarithmic compression
M2 8 adaptation loops
M3 2 adaptation loops
M4 loops with longer time constants
M5 loops with shorter time constants
M6 no modulation low pass filtering
M7 enhanced modulation low pass filtering

Table 4.1: Modifications of the auditory model at a glance.

The different compression schemes of the modified auditory front ends
M2-M5 are illustrated in Fig. 4.4, where their respective tone pulse re-
sponses are shown.
The modified versions M6 and M7 concern the 8 Hz low pass filter at
the end of the auditory preprocessing. In modification M6, the filter was
simply left out. This leads to a high pass amplitude modulation trans-
fer function. High modulation frequencies are no longer attenuated, low
modulation frequencies are damped by the steady-state compression of
the adaptation loops. In M7, the 8 Hz low pass filter was replaced by
a second-order low pass with a cutoff frequency of 4 Hz. Fast envelope
fluctuations are almost fully compressed.
The modulation transfer functions of the two modified auditory front
ends M6 and M7, compared to the original preprocessing, are shown in
Fig. 4.2. Without low pass filtering of the envelope (M6), the modula-
tion transfer function has a high pass characteristic due to the adaptive
compression stage of the model. With the original 8 Hz 1st-order low
pass filter, the decline in the high-frequency part is not 6dB/octave,
as one could expect, but less, because the filter has to compensate for
the increase in the transfer function towards high modulation frequen-
cies without filtering. With increased low pass filtering of the envelope
(M7), the decline in the modulation transfer function approximates the
average modulation spectrum of speech in the low modulation frequency
part (see Fig. 4.3). The modifications of the auditory model at a glance
are listed in Table 4.1.

Speaker-independent, isolated-digit recognition experiments for clean
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speech and in additive noise were performed with all modifications. The
setup of the experiments was the same as described in Sec. 4.3.1

4.4.2 Results

The recognition rates obtained with modifications M1-M7 of the
auditory model are plotted in Fig. 4.7. Replacing the adaptation
loops by static logarithmic compression (M1) yields satisfactory results
in clean speech, but the recognition rate drops very fast even if the
signal-to-noise ratio is as high as 20 dB SNR. This indicates that
adaptive compression of the envelope in each frequency channel plays
an essential role for robust speech recognition with the auditory model.
Changing the parameters of the adaptation loops appears to be disad-
vantageous in most situations. Taking eight adaptation loops instead of
five (M2) and thus suppressing steady-state information almost always
leads to increased error rates, especially in low signal-to-noise ratios.
With only two adaptation loops (M3), performance in moderate noise
is worse compared to the original model. In low signal-to-noise ratios,
however, higher recognition rates can be observed in speech simulating
noise and construction site noise. The effect of taking longer or shorter
time constants for the low pass filters within the adaptation loops (M4
and M5, respectively) is limited. Longer time constants lead to slightly
increased error rates in most situations, whereas shorter time constants
yield similar results compared to the original model, except for the case
of white noise, where the performance of the original model is a bit
better in low signal-to-noise ratios.
In summary, the original parameters of the adaptive compression stage,
which were optimized for predicting psychoacoustical experiments
appear to be well suited for application in ASR systems. They seem
to represent a broad optimum in terms of robust representation of
speech in noise, and no distinct improvement of performance in all
signal-to-noise ratios could be found when modifying them. The results
indicate that there has to be some adaptive compression at all to
improve robustness in noise, as can be seen from the performance of
M1. Without adaptive compression, recognition rates are satisfactory
in clean speech, but drop quite fast in noise.
Low pass filtering of the envelope after compression in each frequency
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Figure 4.7: Recognition
rates in % in different
types of additive noise
as function of signal-to-
noise ratio in dB obtained
with the original auditory
model and with its modifi-
cations M1-M7 (see text).



4.5. DISCUSSION 83

channel also plays an important role for robust representation of
speech, as the recognition rates obtained for modifications M6 and
M7 of the auditory front end show. Without filtering (M6), only
poor recognition rates in noise are yielded. Stronger attenuation
of fast amplitude modulations (M7), on the other hand, leads to
decent improvement of robustness in construction site noise and
speech simulating noise. In clean speech, however, M7 results in a
slightly degraded recognition rate (96.7%), compared to the original
processing (97.1%). In contrast to the adaptive compression stage, the
psychoacoustically-motivated low pass filter parameter at the end of the
auditory preprocessing seems not to be optimal for speech processing. In
our experiments, stronger attenuation of higher modulation frequencies
(which better reflects the modulation spectrum of speech) enhanced
robustness of speech recognition in noise, i.e., ASR performance benefits
from variation of the original psychacoustically-motivated low pass filter.

4.5 Discussion

The main findings in this study can be summarized as follows:
(1) The presented auditory-based ASR front end allows more robust spe-
aker-independent digit recognition compared to standard feature extrac-
tion in additive noise, even when the parameters of the psychoacousti-
cally-motivated model were not refitted for the new task in the field of
speech processing.
(2) An important processing step of the auditory model for robust rep-
resentation of speech in additive noise is the adaptive compression stage,
which encodes the dynamic evolution of the input signal and allows sim-
ulation of temporal aspects of processing found in the auditory system.
(3) Modulation band pass filtering centered at low modulation frequen-
cies plays an important role for robust speech representation. Changing
the original psychoacoustical filter parameters to better reflect the aver-
age modulation spectrum of speech further enhances the robustness of
isolated digit recognition in noise.
Encoding the dynamic evolution of the input signal as realized by the au-
ditory model emphasizes changes in the input signal relative to constant



84 CHAPTER 4. AUDITORY FRONT END FOR ASR

portions. The signal representation of the auditory model is character-
ized by sparse and distinct peaks. These peaks are well maintained in
additive noise and seem to serve as quite robust cues for the recognizer.
A study on the interplay between auditory-based features and a recur-
rent neural network as recognizer supports this suggestion (Tchorz et al.,
1997). It was shown that the sparse and distinct peaks contain sufficient
information for robust recognition with neural networks. Even if 80% of
all feature values (i.e., those which did not exceed a certain threshold)
were set to zero, a digit recognition rate of more than 90% was reached
on these strongly reduced features.
Thus, the experiments presented here demonstrate that the considera-
tion of short-term adaptation as in the auditory model might be fruitful
for reducing the influence of additive noise in future ASR front ends.
Findings from other researchers support this hypothesis (Strope and Al-
wan, 1997).
In human speech perception, analysis of low modulation frequencies
plays an important role. In a study on the intelligibility of temporally-
smeared speech, Drullman et al. (1994) found that modulation frequen-
cies below 8 Hz are the most important ones for speech intelligibility.
Components between 8 Hz and 16 Hz were found useful, too, whereas
rates above 16 Hz are not required for speech intelligibility.
The 8 Hz low pass filter at the end of the auditory model preprocessing,
which leads to a band pass modulation transfer function of the model,
was introduced by Dau (1996b) to optimize predictions of psychoacous-
tical masking experiments. When applied as ASR front end, the band
pass characteristic attenuates non-speech sources in disturbed speech.
Further reduction of the filter’s cut-off frequency allows for higher digit
recognition rates in noise (which might be explained by the better cor-
respondence with the average modulation spectrum of speech), but also
slightly degraded the performance in clean speech.
Kanedera et al. (1997) measured the effects of band pass filtering of the
time trajectories of spectral envelopes on speech recognition. Their re-
sults showed that most of the useful linguistic information for ASR is
in modulation frequency components in the range from 1 Hz to 16 Hz,
with the dominant component around 4 Hz. In noisy environment, the
range below 2 Hz and above 16 Hz sometimes degraded the recognition
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accuracy.
In isolated word recognition, there seems to be a tradeoff concerning the
modulation frequencies above about 4 Hz. In clean speech, they carry
useful information which can be exploited by the recognizer and thus
should be passed through. In noise, however, the restriction to the most
prominent modulation frequencies of speech helps to enhance robustness.
In the field of sub-word unit recognition (e.g., phonemes), however,
strong attenuation of higher modulation frequencies might lead to prob-
lems even in clean speech. Transitions between short segments are
blurred by low pass filtering of the envelope. The feature representa-
tion of a single phoneme strongly depends on its temporal context then,
and might make it difficult to train and recognize sub-word units.
The auditory model described in this paper exhibits similar features
as RASTA processing of speech (Hermansky and Morgan, 1994) with
respect to representation of temporal properties of the incoming signal.
Both techniques perform some kind of envelope bandpass filtering around
4 Hz and hence take roughly 200 ms of “signal history” into account
for feature calculation. This is in clear contrast to common short-term
acoustic features, which represent independent 10-20 ms frames. Tempo-
ral processing in the auditory model is essential to quantitatively predict
psychoacoustical masking experiments. While the auditory model used
here was primarily developed to model a variety of temporal psychoa-
coustical effects, RASTA was also shown to model certain aspects of
forward masking experiments (Hermansky and Pavel, 1998).
Kasper et al. (1997) compared the robustness of ASR systems with four
different types of feature vectors, namely cepstral coefficients, features
from the auditory model as described in this paper, and log-RASTA and
J-RASTA coefficients (Hermansky and Morgan, 1994) in isolated-digit
recognition experiments. In a first set of experiments, a HMM recognizer
was used. The poorest recognition rates in noise (either additive noise or
convolutive distortions of the test material) were measured with cepstral
coefficients. Log-RASTA processing performed slightly better than the
auditory model front end. Adaptive J-RASTA processing allowed for
the highest recognition rates in almost all conditions. In a second set of
experiments, a locally recurrent neural network was used as recognizer
instead of the HMM recognizer (Kasper et al., 1997). This lead to a
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further decrease in robustness with cepstral coefficients as features. The
results for RASTA processing were almost not affected by the different
recognizer. The recognition rates rates for auditory model features, how-
ever, significantly increased with the neural network recognizer and were
comparable to those obtained with adaptive J-RASTA processing (with-
out requiring explicit speech-free portions for noise power estimation,
as J-RASTA). Obviously, the neural network better exploits the charac-
teristics of the auditory model features for robust recognition than the
HMM recognizer does.
In a recent study, Kasper and Reininger (1999) further investigated these
recognizer dependencies. They transformed the original feature vectors
of the auditory model into their cepstra prior to HMM training and test-
ing. With these modified features, the authors reported much improved
recognition rates in both additive noise and convolutive distortions, com-
pared to the original features. These results demonstrate that the origi-
nal auditory model features are only partly suited for a HMM recognition
framework with diagonal covariance matrices, as the feature values are
partly correlated across frequency channels. For optimal performance in
actual recognition systems, a careful adjustment between the front end
and the recognizer is necessary. This point holds for most non-standard
approaches to feature extraction and was discussed for different types of
front ends by Bourlard et al. (1996).

4.6 Conclusion

The psychoacoustically-motivated auditory model which was originally
developed to describe human performance in typical psychoacoustical
spectral and temporal masking experiments yields promising results
when applied as front end to ASR systems, especially in noisy envi-
ronment. In the model, an appropriate temporal processing in each
frequency channel of the auditory model plays an important role for ro-
bust representation of speech.
To further evaluate the potential of the auditory model in speech recog-
nition systems, experiments with large word vocabulary as well as recog-
nition experiments basing on sub-word units are necessary.
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Chapter 5

Noise suppression based
on neurophysiologically-
motivated SNR
estimation for robust
speech recognition 1

Abstract

A novel noise suppression scheme is evaluated which is based on a neu-
rophysiologically-motivated estimation of the local signal-to-noise ratio
(SNR) in different frequency channels. For SNR-estimation, the input
signal is transformed into so-called Amplitude Modulation Spectrograms
(AMS), which represent both spectral and temporal characteristics of the
respective analysis frame, and which imitate the representation of mod-

1This Chapter is an extended version of a paper which has been presented at the
conference on Neural Information Processing Systems (NIPS) 2000: Tchorz, Klein-
schmidt, and Kollmeier (2000) “Noise suppression based on neurophysiologically-
motivated SNR estimation for robust speech recognition”.
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ulation frequencies in higher stages of the mammalian auditory system.
A neural network is used to analyze AMS patterns generated from noisy
speech and provides estimates of the local SNR. Noise suppression is
achieved by attenuating frequency channels according to their SNR. The
noise suppression algorithm is evaluated in speaker-independent digit
recognition experiments and compared to noise suppression by Spectral
Subtraction.
The results show that AMS-based noise suppression significantly im-
proves digit recognition in noise, in comparison with unprocessed data
and with Spectral Subtraction using noise measures based on voice activ-
ity detection. In stationary noise, perfect speech pause detection (which
is not available in real systems) allows for a reliable estimation of the
noise floor. In non-stationary noise, however, the AMS pattern-based
signal classification and noise suppression is advantageous, as noise esti-
mation which is restricted to speech pauses and which cannot be updated
while speech is active was shown to even degrade the recognition rates.

5.1 Introduction

One of the major problems in automatic speech recognition (ASR) sys-
tems is their unsatisfactory robustness in noise, which severely degrades
their usefulness in many practical applications. Several proposals have
been made to increase the robustness of ASR systems, e.g. by model
compensation or more noise-robust feature extraction (Hermansky and
Morgan, 1994; Tchorz and Kollmeier, 1999b). Another method to over-
come the lack of robustness of ASR systems is to suppress the back-
ground noise before feature extraction. Classical approaches for single-
channel noise suppression are Spectral Subtraction (Boll, 1979) and re-
lated schemes, e.g. (Ephräım and Malah, 1984), where the noise spec-
trum is usually estimated in detected speech pauses and subtracted from
the signal. In these approaches, stationarity of the noise has to be as-
sumed while speech is active. Furthermore, portions detected as speech
pauses must not contain any speech in order to allow for correct noise
measurement. At the same time all actual speech pauses should be de-
tected for a fast update of the noise measurement. In reality, however,
these partially conflicting requirements are often not met.
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In order to overcome these problems, the noise suppression algorithm
outlined in this work directly estimates the local SNR in a range of
frequency channels even if speech and noise are present at the same
time, i.e., no explicit detection of speech pauses and no assumptions
on noise stationarity during speech activity are necessary. For SNR es-
timation, the input signal is transformed into spectro-temporal input
features, which are neurophysiologically-motivated: experiments on am-
plitude modulation processing in higher stages of the auditory system
in mammals show that modulations are represented in “periodotopical”
gradients, which are almost orthogonal to the tonotopical organization
of center frequencies (Langner et al., 1997). Thus, both spectral and
temporal information are represented in two-dimensional maps. These
findings were applied to signal processing in a binaural noise suppression
system (Kollmeier and Koch, 1994) with the introduction of so-called
Amplitude Modulation Spectrograms (AMS), which contain information
of both center frequencies and modulation frequencies. In the present
study, the different representations of speech and noise in AMS patterns
are detected by a neural network, which estimates the local SNR in each
frequency channel. For noise suppression, the frequency bands are atten-
uated according to the estimated local SNR in the respective frequency
channel.
The proposed noise suppression scheme is evaluated in isolated-digit
recognition experiments. As recognizer, a combination of an auditory-
based front end (Tchorz and Kollmeier, 1999b) (Chapter 4 of this thesis)
and a locally-recurrent neural network (Kasper et al., 1995) is used.
In earlier studies, this combination was found to allow for more ro-
bust isolated-digit recognition rates, compared to a standard recognizer
with mel-cepstral features and HMM modeling (Kasper et al., 1997;
Kleinschmidt et al., 2000). Thus, the recognition experiments in
this study are conducted with this particular combination to evaluate
whether a further increase of robustness can be achieved with additional
noise suppression.
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Figure 5.1: Processing stages of AMS-based noise suppression.

5.2 The recognition system

5.2.1 Noise suppression

Figure 5.1 shows the processing steps which are performed for noise sup-
pression. To generate AMS patterns which are used for SNR estimation,
the input signal (16 kHz sampling rate) is short-term level adjusted, i.e.,
each 32 ms segment which is later transformed into an AMS pattern is
scaled to the same root-mean-square value. The level-adjusted signal
is then subdivided into overlapping segments of 4.0 ms duration with a
progression of 0.25 ms for each new segment. Each segment is multiplied
by a Hanning window and padded with zeros to obtain a frame of 128
samples which is transformed with a FFT into a complex spectrum, with
a spectral resolution of 125 Hz. The resulting 64 complex samples are
considered as a function of time, i.e., as a band pass filtered complex
time signal. Their respective envelopes are extracted by squaring. This
envelope signal is again segmented into overlapping segments of 128 sam-
ples (32ms) with an overlap of 64 samples. Each segment is multiplied
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with a Hanning window and padded with zeros to obtain a frame of 256
samples. A further FFT is computed and supplies a modulation spec-
trum in each frequency channel, with a modulation frequency resolution
of 15.6 Hz. By an appropriate summation of neighbouring FFT bins, the
frequency axis is transformed to a Bark scale with 15 channels, with cen-
ter frequencies from 100-7300 Hz. The modulation frequency spectrum
is scaled logarithmically by appropriate summation, which is motivated
by psychoacoustical findings on the shape of auditory modulation filters
(Ewert and Dau, 1999).
The modulation frequency spectrum is restricted to the range between
50-400 Hz and has a resolution of 15 channels. Thus, the fundamen-
tal frequency of typical voiced speech is represented in the modulation
spectrum. The chosen range corresponds to the fundamental frequencies
which were used by Langner et al. in their neurophysiological experi-
ments on amplitude modulation representation in the human auditory
cortex (Langner et al., 1997). Informal experiments showed that higher
modulation frequencies do not contribute additional information for SNR
estimation. Very low modulation frequencies from articulatory move-
ments (which are characteristic for speech and which play an important
role for speech intelligibility) are also not taken into account, as they
are not properly resolved due to the short analysis windows. In a last
processing step, the amplitude range is log-compressed.
The AMS representation is restricted to a 15 times 15 pattern to limit
the amount of training data which is necessary to train the fully con-
nected perceptron. This is important since this amount increases with
the number of neurons in each layer. Examples for AMS patterns can
be seen in Fig. 5.2. The AMS pattern on the left side was generated
from a voiced speech portion. The periodicity at the fundamental fre-
quency (approx. 110 Hz) is represented in each center frequency band.
The AMS pattern on the right side was generated from speech simulat-
ing noise. The typical spectral tilt can be seen, but no structure across
modulation frequencies.
For classifying AMS patterns and estimating the narrow-band SNR of

each AMS pattern, a feed-forward neural network is implemented. The
net consists of 225 input neurons (15*15, the AMS resolution of cen-
ter frequencies and modulation frequencies, respectively), a hidden layer
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Figure 5.2: AMS patterns generated from a voiced speech segment (left),
and from speech simulating noise (right). Each AMS pattern represents
a 32 ms portion of the input signal. Bright and dark areas indicate high
and low energies, respectively.

with 160 neurons, and an output layer with 15 neurons. The activity
of each output neuron indicates the SNR in one of the 15 center fre-
quency channels. For training, the narrow-band SNRs in 15 channels
are measured for each AMS analysis frame of the training material prior
to adding speech and noise. The neural network was trained with AMS
patterns generated from 72 min of noisy speech from 400 talkers and
41 natural noise types. The measured SNR values are transformed to
output neuron activities which serve as target activities during training
(SNRs between -10 and 20 dB are linearly transformed to activities be-
tween 0.05 and 0.95. SNRs below -10 dB and above 30 dB are assigned
to activities of 0.05 and 0.95, respectively). After training, AMS pat-
terns generated from ”unknown” sound material are presented to the
network. The 15 output neuron activities that appear for each pattern
serve as SNR estimates for the respective frequency channels. In a de-
tailed study on AMS-based broad-band SNR estimation (Tchorz and
Kollmeier, 2000) (Chapter 2 of this thesis) it was shown that harmonic-
ity which is well represented in AMS patterns is the most important cue
for the neural network to distinguish between speech and noise. How-
ever, harmonicity is not the only cue, as the algorithm allows for reliable
discrimination between unvoiced speech and noise.
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Sub-band SNR estimates are utilized for noise suppression by attenuat-
ing frequency channels according to their local SNR. The gain function
which was applied is given by

gk = (SNRk/(SNRk + 1))x, (5.1)

where k denotes the frequency band, SNR the signal-to-noise ratio
on a linear scale, and x is an exponent which controls the strength of
the attenuation. Note that for x=1 this is equivalent to a Wiener filter.
Noise suppression based on AMS-derived SNR estimation is performed
in the frequency domain. The input signal is segmented into overlapping
frames with a window length of 32 ms, and a shift of 16 ms is applied,
i.e., each window corresponds to one AMS analysis frame. The FFT
is computed in every window. The magnitude in each frequency bin is
multiplied by the corresponding gain computed from the AMS-based
SNR estimation. The gain in frequency bins which are not covered by
the center frequencies from the SNR estimation is linearly interpolated
from neighboring estimation frequencies. The phase of the input
signal is remained unchanged and applied to the attenuated magnitude
spectrum. An inverse FFT is computed, and the enhanced speech is
obtained by overlapping and adding.
A visualization for the proposed noise suppression is given in Fig. 5.3.
It can be seen that the background noise is not completely attenuated,
but a small noise floor is left.

5.2.2 Auditory-based ASR feature extraction

The front end which is used in the recognition system is based on a
quantitative model of the “effective” peripheral auditory processing.
The model simulates both spectral and temporal properties of sound
processing in the auditory system which were found in psychoacousti-
cal and physiological experiments. The model was originally developed
for describing human performance in typical psychoacoustical spectral
and temporal masking experiments, e.g., predicting the thresholds in
backward, simultaneous, and forward-masking experiments (Dau et al.,
1996b; 1997a). The main processing stages of the auditory model are
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Figure 5.3: Example for
AMS-based noise suppres-
sion. Top: undisturbed wave-
form of the German digit
sieben. Middle: utterance
disturbed with white Gaus-
sian noise at 5 dB SNR. Bot-
tom: waveform after process-
ing of the disturbed utterance

gammatone filtering, envelope extraction in each frequency channel,
adaptive amplitude compression, and low pass filtering of the envelope
in each band. The adaptive compression stage compresses steady-state
portions of the input signal logarithmically. Changes like onsets or off-
sets, in contrast, are transformed linearly. A detailed description of
the auditory-based front end is given in (Tchorz and Kollmeier, 1999b)
(Chapter 3 of this thesis).

5.2.3 Neural network recognizer

For scoring of the input features, a locally recurrent neural network
(LRNN) is employed with three layers of neurons (150 input, 289 hid-
den, and 10 output neurons). Hidden layer neurons have recurrent con-
nections to their 24 nearest neighbours. The input matrix consists of 5
times the auditory model feature vector with 30 elements, glued together
in order to allow the network to memorize a time sequence of input ma-
trices. The network was trained using the Backpropagation-trough-time
algorithm with 200 iterations (see (Kasper et al., 1995) for a detailed
description of the recognizer).
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5.3 Recognition experiments

5.3.1 Setup

The speech material for training of the word models and scoring was
taken from the ZIFKOM database of Deutsche Telekom AG. Each Ger-
man digit was spoken once by 200 different speakers (100 males, 100
females). The recording sessions took place in soundproof booths or
quiet offices. The speech material was sampled at 16 kHz.
Three different types of noise were added to the speech material at dif-
ferent signal-to-noise ratios before feature extraction: a) white Gaussian
noise, b) speech-simulating noise which is characterized by a long-term
speech spectrum and amplitude modulations which reflect an uncorre-
lated superposition of 6 speakers (ICRA, 1997)2, and c) background noise
recorded in a printing room which strongly fluctuates in both amplitude
and spectral shape. The SNR for the speech in noise samples was ad-
justed by first computing the RMS value of each word utterance includ-
ing short pauses before and after the utterance. Then the background
noises were added to the utterances with signal-to-noise ratios ranging
from 20 to -10 dB. The word models were trained with features from
100 undisturbed and unprocessed utterances of each digit. Features for
testing were calculated from another 100 utterances of each digit which
were distorted by additive noise before preprocessing. The recognition
rates were measured without noise suppression and with noise suppres-
sion as described in Section 5.2.1.
Five different exponents x of the gain function 5.1 were applied, rang-

2The speech simulating noise is generated by splitting the signal into three
bands with cross-over frequencies of 850 Hz and 2500 Hz using very steep filters
(>100 dB/octave). In the next processing step, each of the three bands are processed
according to Schroeder (1968), which means that with a probability of 50% the sign
of each sample of the speech is at random either reversed or kept unaltered. Thus,
each of the modified signals is completely unintelligible and has a flat white spectrum.
Next, the Schroeder processed signals are again filtered with the same three filters as
above and scaled to have the same RMS-value. The three bands are added and filtered
with a male or female speech shaped filter in close accordance with LTASS (Byrne,
1994). In a last processing step, the phase is randomized. The resulting signals have
a long-term spectrum according to LTASS and modulation characteristics like natu-
ral speech. The applied noise consist of an uncorrelated superposition of 6 persons
babble (1f + 1m + 2f(-6 dB) + 2m(-6 dB))
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Figure 5.4: Five different gain functions were applied in the recognition
experiments. The exponent x (Eqn. 5.1) ranges from 1-3.

ing from 1-3. The gain functions which were employed are plotted in
Fig. 5.4.

With small x, the maximum attenuation of noise is limited, but
speech quality in favourable SNRs is best preserved (as the impact of
SNR estimation errors is limited). With high x, in contrast, there is a
strong attenuation of noise, but the speech quality may be degraded due
to estimation errors. It can be seen from Fig. 5.4 that all signal por-
tions are attenuated (even those with an estimated SNR close to 20 dB,
which is the upper limit in the estimation process). Thus, each speech
file was scaled after noise suppression to have the same maximum peak
amplitude as the noisy signal before processing.
For comparison, the recognition rates were measured with noise sup-
pression based on Spectral Subtraction including residual noise reduc-
tion (Boll, 1979) before feature extraction. Two methods for noise es-
timation were applied. In the first method, speech pauses in the noisy
signals were detected using the voice activity detector (VAD) standard-
ized by the International Telecommunication Union (ITU, 1996), which
utilizes information on energy, zero-crossing rate, and spectral distor-
tions for voice activity detection. The noise measure was updated in
speech pauses using a low pass filter with a time constant of 40 ms to
temporally smooth the measure. In the second method, the noise spec-
trum was measured in speech pauses which were detected from the clean
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Figure 5.5: Speaker-independent,
isolated digit recognition rates for
three types of noise as a function
of the SNR without noise suppres-
sion (noalgo) and with AMS-based
noise suppression for different gain
function exponents x ranging from
1.0-3.0.

utterances using an energy criterion (thus, perfect speech pause infor-
mation is provided, which is not available in real applications). This
control condition allows to determine the influence of accurate speech
pause detection on Spectral Subtraction performance when applied in
an ASR system.

5.3.2 Results

The speaker-independent, isolated-digit recognition rates which were ob-
tained with AMS-based noise suppression in three types of background
noise are plotted in Fig. 5.5.

In all types of noise and SNRs (except speech simulating noise in
high SNRs), recognition rates increase with AMS-based noise suppres-
sion, compared to unprocessed data. In white noise, a strong attenuation
of noisy parts (i.e., a high gain function exponent x) is advantageous.
To a smaller extend, this also holds for speech simulating noise, which
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un- AMS-based SpecSub
processed x=1 x=1.5 x=2 x=2.4 x=3 VAD perf

99.5 99.2 98.9 98.7 98.3 98 99.1 99.1

Table 5.1: Recognition rates in % in clean speech for unprocessed data,
after AMS-based noise suppression (with different gain function expo-
nents x), and after Spectral Subtraction (with VAD-based and perfect
speech pause detection).

has a constant spectrum but fluctuates in level. In printing office noise
which fluctuates in both spectrum and level, the situation is reversed.
Here, moderate noise suppression (x=1) yields the highest recognition
rates. In this particular type of noise, the optimal value between the
two conflicting goals “strong attenuation of noise” and “preservation of
speech quality” is close to the latter one.
The recognition rates in clean speech for AMS-based noise suppression
and the two variations of Spectral Subtraction are shown in Tab. 5.1. The
highest recognition rate is obtained with unprocessed speech (99.5% on
the test data). Any processing (either AMS-based or Spectral Subtrac-
tion) introduces artifacts and leads to higher error rates. For AMS-based
processing, the amount of artifacts on clean speech depends on the choice
of the gain function exponent x. With increasing exponent, the amount
of artifacts is increased (but even with x=3, a speaker-independent digit
recognition rate of 98% is obtained).

In Fig. 5.6, the recognition rates for AMS-based noise suppression
(x=1.5) compared to Spectral Subtraction with VAD-based and perfect
speech pause detection are plotted. In all tested noises, noise suppression
with the proposed algorithm yields higher performance in comparison
to Spectral Subtraction with VAD-based noise measurement. Spectral
Subtraction with perfect speech pause detection allows for higher recog-
nition rates than the AMS-based approach in stationary white noise.
Here, the noise measure for Spectral Subtraction is very accurate during
speech activity and allows for effective noise removal. AMS-based noise
suppression estimates the SNR in every analysis frame, and no a pri-
ori information on speech-free segments is provided to the algorithm.
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Figure 5.6: Speaker-independent,
isolated digit recognition rates for
three types of noise as a func-
tion of the SNR without noise
suppression (noalgo), with AMS-
based noise suppression, Spec-
tral Subtraction with VAD-based
noise measurement, and Spectral
Subtraction with perfect speech
pause information.

In speech simulating noise, which fluctuates in level but not in spectral
shape, Spectral Subtraction with perfect speech pause detection works
slightly better than AMS-based noise suppression. In printing room
noise, which fluctuates in both level and spectrum, the AMS-based ap-
proach yields the best results. Here, Spectral Subtraction even degrades
the recognition rates in some SNRs, compared to the unprocessed data.
The noise measure from VAD-based or perfect speech pause detection
cannot be updated while speech is active. Thus, an incorrect spectrum is
subtracted and leads to artifacts and degraded recognition performance.
The large discrepancy in recognition rates between the two versions of
Spectral Subtraction (VAD-based speech pause detection, and perfect
speech pause detection) can be explained by VAD detection errors. Not
all speech pauses were detected by the VAD, and some speech portions
were identified as “noise”, resulting in a wrong noise spectrum being
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subtracted from the signal. These effects are illustrated in Fig. 5.7. The
input signal (second panel) was a mixture of speech (“sechs”, plotted sep-
arately in the first panel) and white Gaussian noise at 10 dB SNR. The
two unvoiced consonants /s/ were in part mistakenly identified as speech
pause by the VAD (indicated by the black bars below the third panel).
Thus, the respective portions were suppressed by the Spectral Subtrac-
tion, and the resulting signal does almost not contain the unvoiced parts,
but mostly the voiced part which was correctly identified as “speech”.
With a perfect speech pause detection (fourth panel), the correct spec-
trum can be subtracted, and the unvoiced parts of the speech signal are
audible. AMS-based SNR estimation is to some extend capable to de-
tect the unvoiced fricatives in white noise, which are partly maintained
in the processed signal (bottom panel). SNR estimation errors are likely
to be locally restricted, as the SNR is predicted continuously. VAD-
based noise measurement errors, in contrast, may persist over relatively
long segments when no correct speech pauses are detected.

5.4 Discussion

The proposed neurophysiologically-motivated noise suppression scheme
was shown to significantly improve digit recognition in noise in compar-
ison with unprocessed data and with Spectral Subtraction using VAD-
based noise measures. A perfect speech pause detection (which is not
available yet in real systems) allows for a reliable estimation of the noise
floor in stationary noise. In non-stationary noise, however, the AMS
pattern-based signal classification and noise suppression is advantageous,
as it does not depend on speech pause detection and no assumption is
necessary about the noise being stationary while speech is active.
Spectral Subtraction as described in (Boll, 1979) produces musical tones,
i.e. fast fluctuating spectral peaks. In an earlier study (Tchorz et al.,
1997), the LRNN recognizer was shown to be relatively insensitive
against fast random fluctuations, compared to a HMM recognizer, and
benefits from this type of noise suppression. Human listeners, in con-
trast, tend to be annoyed by these artifacts. Hence, the assessment
criteria for a noise suppression scheme strongly depend on the desired
application. Parameter settings which are suited for automatic speech
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Figure 5.7: The top panel
shows the waveform of an
utterance of the German
digit sechs, spoken by a
male talker. The first con-
sonant was pronounced
voiceless (as in sex). The
second panel shows the
same utterance, disturbed
with white Gaussian noise
at 10 dB SNR. In the
third panel, the noisy sig-
nal was processed by Spec-
tral Subtraction using a
VAD. The detected speech
pauses are marked by the
bars below. The fourth
panel shows the signal be-
ing processed with Spec-
tral Subtraction using per-
fect pause detection (bars
below). In the bottom
panel, the signal after
AMS-based noise suppres-
sion is plotted.
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recognition are not necessarily appropriate for human listeners. In a
recent study conducted by Kleinschmidt et al. (2000) on the effects of
different types of noise suppression in digit recognition it was shown that,
in general, noise suppression schemes which strongly attenuate noise and
which at the same time produce lots of artifacts performed best.
The neurophysiologically-based noise suppression scheme outlined in this
paper does not produce fast fluctuating, musical noise-like artifacts. In
general, a good quality of speech is maintained. The choice of the at-
tenuation exponent x has only little impact on the quality of speech in
favourable SNRs, which is well preserved. With decreasing SNR, how-
ever, there is a tradeoff between the amount of noise suppression and
distortions of the speech. Large gain function exponents x which are op-
timal for suppression of stationary noise clearly degrade speech quality in
poor SNRs, and cause annoying artifacts. A typical distortion of speech
in poor signal-to-noise ratios is an unnatural spectral “coloring” (rather
than fast fluctuating distortions). For an assessment of these effects, a
further evaluation in human listeners is necessary, not only in terms of
speech intelligibility, but also with respect to subjective speech quality
and listening effort. The current implementation of the noise suppres-
sion algorithm, however, does not allow for an application in e.g. digital
hearing instruments, as the minimum processing delay is 32 ms (the
length of one AMS frame from which the SNR estimate is determined).
Hence, procedures have to be developed and tested which predict the
“real-time” SNR from past estimates, e.g. by utilizing them as a priori
SNR measures, which were employed by Ephräım and Malah (1984) to
reduce annoying musical noise.
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Chapter 6

Summary and conclusion

Background noise is a major problem in a range of speech processing
applications, in both communication between humans and speech inter-
faces to machines. The current thesis is concerned with the application
of certain properties of the auditory system to computational speech
processing, aiming at reducing the disturbing effects of background
noise. Two main problems of computational speech processing are
tackled, namely the detection and suppression of noise in monaural
input signals, and the extraction of noise-robust features for ASR
systems.
The first problem is dealt with in Chapter 2 and 3 of this thesis, where
a noise suppression algorithm based on a novel, neurophysiologically-
motivated SNR estimation is proposed. For SNR estimation, spectro-
temporal patterns (so-called Amplitude Modulation Spectrograms,
AMS) are extracted from the waveform. These patterns contain
information on both center frequencies and modulation frequencies, and
imitate the respective representation of sounds in higher stages of the
auditory system in a simple way. In AMS patterns, differences between
speech and noise are reflected in the spectro-temporal joint represen-
tation, which are exploited by a neural network pattern recognizer to
automatically distinguish between speech and noise. In situations with
speech and noise being present at the same time, a fast estimation of
the local SNR is possible, with the highest accuracy in signal-to-noise
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ratios between -5 and 15 dB.
Experiments on the mechanisms and the most important features for
SNR estimation revealed that harmonicity appears to be the most
important cue for a segment to be classified as “speech”, but not the
only one, as the algorithm is able to reliably separate between unvoiced
speech and noise. For SNR estimation, the full joint representation of
AMS patterns with both spectral and temporal information is necessary
to yield high estimation accuracies, compared to reduced representations
with only spectral or temporal information.
For narrow-band SNR estimation, which is developed in Chapter 3,
across-frequency connections of the neural network play an important
role for reliable performance. This might be explained by the fact that
in many real situations, the evolution of the SNR is not independent
in different frequency bands, but correlates at least with neighbouring
channels.
The most important difference between the proposed algorithm and
common SNR estimation methods is that it directly predicts the local
SNR even if both speech and noise are present at the same time. Com-
mon approaches either have to rely on proper speech pause detection
(with the assumption that the noise is constant while speech is active),
or require relatively long signal segments for e.g. analysis of amplitude
histograms or slow modulation frequencies.
Informal listening experiments revealed that noise suppression based
on the proposed SNR estimation yields a clear suppression of most
noise types, with only little annoying artifacts from degradation of
the speech signal (at least in favourable to moderate SNRs). Musical
noise-like, fast fluctuating artifacts as known from Spectral Subtraction
do not occur. Objective speech quality measures indicate a benefit from
AMS-based noise suppression in most situations.
The problem of additive noise in automatic speech recognition (ASR)
systems is addressed in Chapter 4. One method amongst others to
enhance the performance in unfavourable conditions is to increase the
robustness of the feature extraction stage. A model of the auditory
periphery which was originally developed to predict human performance
in typical psychoacoustical masking experiments was applied as front
end in an ASR system. Compared to a standard mel-cepstral front
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end, it allows for more robust digit recognition in different types of
background noise. The processing stages of the auditory model were
studied in detail, and it was shown that the adaptive compression stage
of the model, which linearly transforms fast changes in the input signal
like onsets or offsets, but compresses steady-state portions is essential
for robust recognition in noise. Combined with the final low pass filter,
a modulation transfer function of the auditory model is achieved which
reflects the average modulation spectrum of speech. Thus, very fast or
very slow modulations, which are not likely to to origin from speech are
attenuated, and noise portions are attenuated.
In Chapter 5, the noise suppression scheme which was developed in
Chapter 2 and 3 of this thesis was evaluated in digit recognition exper-
iments, where noisy speech was enhanced prior to feature extraction
with the auditory model as front end, which was described in Chapter 4.
The results show that a further enhancement of robustness is attained.
In all tested types of noise, higher recognition rates were achieved
with the proposed noise suppression scheme, compared to unprocessed
digits and to digits which were processed by Spectral Subtraction
with voice activity detection (VAD) - based speech pause tracking.
Especially in non-stationary noise, direct estimation of the SNR in
every analysis frame as performed by the proposed algorithm showed
to be advantageous. With VAD-based SNR estimation, speech portions
mistakenly identified as “noise” may lead to wrong noise estimates for a
relatively long period of time and thus produce speech distortions after
Spectral Subtraction.

In conclusion, findings from neurophysiology and psychoacoustics
were successfully applied in two different fields of technical sound signal
processing, namely noise suppression and speech recognition. Finally,
both approaches could be combined in a beneficial way in order to al-
low for an even more noise robust automatic speech recognition system.
These applications can be regarded as further examples for the observa-
tion that it might be very helpful to have a look at nature, and try to
understand how it works. The attempt to imitate the “feature extrac-
tion” of the human auditory system, of course, has to be very low-level
and simplistic, as it is extremely complex and only partly understood yet.
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The cognitive skills behind auditory system feature extraction (which al-
ready allow small children to successfully manage the really impressive
acoustic tasks of daily life), however, are far away from being understood
or even imitated by machines.
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Püschel, D. (1988). Prinzipien der zeitlichen Analyse beim Hören. Doc-
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