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Zusammenfassung

In dieser Dissertation werden verallgemeinerte, semi-klassische Operatoren geometrisch durch
Blow-ups aufgelöst und anschließend Quasimoden auf den aufgelösten Räumen konstru-
iert. Das Ziel ist dabei die bekannten Methoden zur Konstruktion von WKB-Approximation
𝑢 = 𝑒𝑖𝜑/ℎ𝐴 von Lösungen der Schrödinger-Gleichung (−ℎ2𝜕2

𝑥 + 𝑉)𝑢 = 0, für 𝑉 ∈ C∞(R),
auf eine größere Klasse von Operatoren 𝑃 = 𝑃(𝑥, ℎ, 𝜕𝑥) zu verallgemeinern. Das zentrale
Hilfsmittel ist dabei das neu eingeführte Newton Polygon P(Λ(𝑃)) eines semi-klassischen
Operators 𝑃, welches genutzt wird um qualitative und quantitative Aussagen über die Existenz
von Quasimoden vorherzusagen. Darüber hinaus betrachten wir Operatoren, dessen Lösungen
der induzierten Eikonalgleichungen Multiplizitätssprünge aufweisen. Diese werden algorith-
misch durch die Anwendung verketteter, quasihomogener Blow-ups aufgelöst, in dem Sinne,
dass wir hinreichend reguläre Quasimoden von WKB-Art für den Operator 𝛽∗𝑃 auf dem
aufgelösten Raum 𝛽 : 𝑀 → R × R+ konstruieren können.

Short Summary

In this thesis we resolve generalized semi-classical operators geometrically by means of
blow-up and construct quasimodes on the resolved spaces. The goal is to generalize the
well-known methods for constructing WKB approximations 𝑢 = 𝑒𝑖𝜑/ℎ𝐴 for solutions of the
Schrödinger equation (−ℎ2𝜕2

𝑥 + 𝑉)𝑢 = 0, for 𝑉 ∈ C∞(R), to a wider class of operators
𝑃 = 𝑃(𝑥, ℎ, 𝜕𝑥). The central tool is the newly introduced Newton polygon P(Λ(𝑃)) of a
semi-classical operator 𝑃, which is used to predict qualitative and quantitative statements
about the existence of quasimodes. Moreover, we consider operators whose solutions of their
induced eikonal equation have jumps of multiplicity. These are algorithmically resolved by
chaining quasihomogeneous blow-ups, in the sense that we can construct sufficiently regular
WKB-type quasimodes for the operator 𝛽∗𝑃 on the resolved space 𝛽 : 𝑀 → R × R+.
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1 Introduction

Motivation

Semi-classical operators were first introduced in the early 20th century and have been a central
object of research in mathematics and physics ever since. In general, these are differential
operators 𝑃 = 𝑃(𝑥, ℎ, 𝜕𝑥) whose coefficients may depend on a small, non-negative parameter
ℎ ≥ 0. Especially for the most famous object, the (time independent) Schrödinger operator
on R with negative potential 𝑉 ∈ C∞(R)

−ℎ2𝜕2
𝑥 +𝑉

acting on smooth functions, there is great coverage about its properties in the literature. The
singular leading coefficient −ℎ2 complicates the computation of families of solutions 𝑣ℎ of its
corresponding equation (−ℎ2𝜕2

𝑥 +𝑉)𝑣ℎ = 0 as ℎ → 0. Thus, a natural first step to address this
problem is the construction of approximate solutions 𝑢ℎ, so called quasimodes. These satisfy(

−ℎ2𝜕2
𝑥 +𝑉

)
𝑢ℎ = O(ℎ∞) ,

where the right hand side means that
(
−ℎ2𝜕2

𝑥 +𝑉
)
𝑢ℎ = 𝑓ℎ is not necessarily zero for ℎ > 0,

but vanishes faster than any polynomial in ℎ in a suitable norm on any compact subset 𝐾 ⊂ R,
as ℎ → 0.

Such a quasimode can be obtained by stating an ansatz and validating that particular
functions of this form can satisfy the remainder condition afterwards. The most important
ansatz, i.e. an initial guess for 𝑢ℎ, is given by the so-called WKB-approximation for 𝑥 ∈ R,

𝑢ℎ (𝑥) = 𝑒𝑖𝜑 (𝑥 )/ℎ𝐴ℎ (𝑥) ,

stating that potential quasimodes are given by a wave function, with an oscillatory behavior of
𝜑(𝑥)/ℎ for all 𝑥 ∈ R as ℎ → 0 and an amplitude in form of a power series 𝐴ℎ (𝑥) =

∑
𝑘 𝑎𝑘 (𝑥)ℎ𝑘

in ℎ. It is named after Gregor Wentzel, Hendrik Anthony Kramers and Léon Brillouin, who have
proposed this ansatz in the early 20th century independently, see [Bri26],[Kra26],[Wen26]. It
can be derived as an educated guess after simplifying the potential 𝑉 to a point where one is
able to solve the Schrödinger equation explicitly. Plugging this ansatz into the equation and
expanding the remainder of this WKB-ansatz in powers of ℎ(

−ℎ2𝜕2
𝑥 +𝑉

)
𝑒𝑖𝜑/ℎ𝐴ℎ = 𝑒

𝑖𝜑/ℎ
[(
(𝜑′)2 +𝑉

)
𝑎0 + O(ℎ)

]

1



1 Introduction

yields a leading order term ((𝜑′)2 + 𝑉)𝑎0 that vanishes if either 𝑎0 ≡ 0 or 𝜑′ =
√
−𝑉 holds.

This immediately yields that the phase 𝜑 is given by

𝜑(𝑥) =
∫ 𝑥

𝑥0

√︁
−𝑉 (𝑡)𝑑𝑡

for any choice of 𝑥0 ∈ R, which is smooth if 𝑉 is non-zero. Further computations show that
all functions 𝑎𝑘 in the expansion of 𝐴ℎ have to solve a recurrent first order equation

(−2𝜑′𝜕𝑥 − 𝜑′′) 𝑎𝑘 = 𝑎′′𝑘−1 (1.1)

for 𝑘 ∈ N0, where 𝑎−1 ≔ 0, to improve the remainder estimate of
(
−ℎ2𝜕2

𝑥 +𝑉
)
𝑒𝑖𝜑/ℎ𝐴ℎ = 𝑓ℎ.

One can immediately see that depending on the choice of potential 𝑉 ∈ C∞(R) this ansatz
can cause problems, resulting in non-smooth solutions 𝜑 and 𝑎𝑘 . In particular, if 𝑉 vanishes
at the point 𝑥 = 0 then 𝜑 =

∫ √
−𝑉 is not smooth at 𝑥 = 0. Even worse, the leading coefficient

−2𝜑′ of the recursive equation is non-smooth and vanishes at 𝑥 = 0, resulting in a non-elliptic
differential equation. The homogeneous equation for 𝑎0 can be rephrased to(

𝑥𝜕𝑥 −
𝑥𝜑′′(𝑥)
2𝜑′(𝑥)

)
𝑎0 = 0

whose solution 𝑎0 is non-smooth at 𝑥 = 0 in general. The structure of the inhomogeneous
equation is the same as in (1.1) with the second derivative of the previous solution as inho-
mogeneity. Thus, this recurrent equation will lead to an increasingly singular behavior of 𝑎𝑘
at 𝑥 = 0 as 𝑘 → ∞.

In this case, there are two different kinds of singularities of the Schrödinger operator
simultaneously: the vanishing leading coefficient of −ℎ2𝜕2

𝑥 as ℎ → 0 and the vanishing
potential 𝑉 in the point 𝑥 = 0. Viewing (𝑥, ℎ) as combined coordinates on the half space
H = R × R+, these singularities with their very different impacts overlap at (𝑥, ℎ) = (0, 0),
resulting in WKB-type approximations with non-uniform remainder estimates at 𝑥 = 0. The
most important way to resolve these overlapping singularities in this thesis is given by the
quasihomogeneous blow-up of (0, 0) in the half space 𝛽 : [H, (0, 0)]𝑟 → H with parameter
𝑟 ∈ Q+. The blow-up removes the origin (0, 0) and adds the end point of each curve
𝛾(𝑐) ≔ {ℎ𝑟 = 𝑐𝑥} with respect to 𝑐 ∈ R to the space, where R ≔ R ∪ {±∞}. For the
Schrödinger operator this corresponds to the introduction of singular coordinates (𝜏, ℎ) with
𝜏 = 𝑥/ℎ2/3, i.e. 𝑟 = 2/3. For 𝑉 (𝑥) = 𝑐𝑥 the pullback of the Schrödinger operator in these
coordinates yields the Airy operator

𝛽∗
(
−ℎ2𝜕2

𝑥 +𝑉
)
= −ℎ2(𝛽∗𝜕𝑥)2 + (𝛽∗𝑉) (𝜏ℎ2/3) = −ℎ2/3(−𝜕2

𝜏 + 𝑐𝜏)

on the front face {(𝜏, 0) : 𝜏 ∈ R}. This is a significant improvement since it is a product
of the vanishing coefficient ℎ and an elliptic operator −𝜕2

𝜏 + 𝑐𝜏 for all 𝜏 ∈ R, eliminating
both singularities. Simultaneously, we can construct a WKB-approximation on both 𝑥 > 0
and 𝑥 < 0. Matching these WKB-approximations with the Airy function on the front face

2



can be done using a separate set of coordinates induced by the blow-up. This is performed
explicitly in the popular method of matched asymptotic expansion. Another more geometric
method of equal value is described in [Gri17] and [Sob18] and will be the foundation of
this thesis. It uses a family of principal symbols along the boundary faces of the blown-up
space to construct global polyhomogeneous functions whose leading terms are solutions of the
recursive differential equations. This systematic approach also works for more complicated
blown-up spaces.

As one can easily verify, these methods are not limited to the Schrödinger operator. Ana-
lyzing generalizations of this operator with coefficients ℎ𝛼 for 𝛼 > 0 and differentiation order
𝑘 ∈ N,

−ℎ𝛼𝜕𝑘𝑥 +𝑉 ,

one is able to construct quasimodes with minimal changes to the standard WKB-ansatz. For
a vanishing potential 𝑉 , one can find a suitable quasihomogeneous blow-up, allowing for the
same procedure as with the Schrödinger operator with linear potential and the Airy functions.
Thus, the central question of this thesis is whether one can give a uniform approach, including
blow-ups, to determine a full set of independent quasimodes for a general class of operators.

Results

The main result of this thesis, Theorem 5.2.18, states that we can eliminate all relevant
singularities of generalized semi-classical operators by a finite number of blow-ups of the
underlying space. Thereafter, Theorem 5.3.22 constructs quasimodes for generalized semi-
classical operators on these blown-up spaces. Thus, Theorem 5.2.18 resolves a generalized
semi-classical operator in the sense that we are able to construct an associated basis of
quasimodes on the corresponding space.

The class of generalized semi-classical operators we are interested in contains operators

𝑚∑︁
𝑘=0

𝐴𝑘 (𝑥, ℎ)𝜕𝑘𝑥 =
∑︁
(𝑘,𝛼)

𝑎 (𝑘,𝛼) (𝑥)ℎ𝛼𝜕𝑘𝑥

on intervals 𝐼 ⊂ R whose coefficients 𝐴𝑘 are smooth in 𝑥 and polyhomogeneous in ℎ. More
precisely, we consider operators whose coefficients 𝐴𝑘 are asymptotically equal to formal
power series in ℎ with arbitrary, real powers. In a simplified version without blow-ups,
omitting technicalities, the results of this thesis with their constructive proofs are of the form
as follows.

Theorem. Let 𝑃 =
∑𝑚
𝑘=0 𝐴𝑘 (𝑥, ℎ)𝜕𝑘𝑥 be a generalized semi-classical operator on 𝐼 ⊂ R. Then

there are phase functions 𝜑 𝑗 , numbers 𝛿 𝑗 ≥ 0 and amplitudes 𝐵 𝑗 , for 𝑗 = 1, . . . , 𝑚, such that
the functions

𝑢 𝑗 = 𝑒
𝜑 𝑗/ℎ𝛿 𝑗 𝐵 𝑗

3



1 Introduction

are independent quasimodes of 𝑃, i.e. for each 𝑗 = 1, . . . , 𝑚 we have(
𝑒−𝜑 𝑗/ℎ

𝛿 𝑗

𝑃𝑒𝜑 𝑗/ℎ
𝛿 𝑗

)
𝐵 𝑗 = O(ℎ∞) .

The functions 𝑢 𝑗 are called generalized WKB-quasimodes, due to the power 𝛿 𝑗 of ℎ in the
denominator of the phase. The quasimodes we construct should at least be polyhomogeneous
or if they are a product of an exponential term and an amplitude, then both the phase function
and the amplitude should be polyhomogeneous on 𝐼. Thus, there are three central questions
which we discuss in the main part of this thesis:

(i) What are sufficient conditions on the coefficients of the operator so that a generalized
WKB-ansatz yields quasimodes with smooth phase functions and amplitudes? (Chap-
ter 3)

(ii) What are sufficient conditions on the coefficients of the operator so that a generalized
WKB-ansatz yields quasimodes with polyhomogeneous phase functions and ampli-
tudes? (Chapter 4)

(iii) Can the remaining generalized semi-classical operators be regularized by a finite chain
of blow-ups, in the sense that they allow for exponential-polyhomogeneous quasimodes?
(Chapter 5)

Each of these questions will be addressed in a separate chapter in the given order and can be
answered completely in Theorems 3.3.9, 4.3.3 and 5.3.22. The first two theorems are simple
versions of Theorem 5.3.22 due to the higher levels of regularity. All theorems yield clear
conditions for the types of regularity and a blow-up algorithm to desingularize the rest. In
particular, this covers parameter-dependent families of ordinary differential equations such as
the Bessel equation.

Apart from answering these questions, the methods presented in the following chapters
have more positive features. Based on the combinatorial data given a priori by the operator,
these algorithms can predict the correct type of generalized WKB-ansatz and the complete
chain of blow-ups required to regularize it. This data only includes the powers of ℎ and 𝜕𝑥
in the asymptotic expansion of the semi-classical operator for the prediction of the adequate
WKB-type. To determine the chain of blow-ups, it only requires the vanishing orders of
the coefficients 𝑎 (𝑘,𝛼) in the relevant points as additional data. The algorithmic approach
generates an explicit and iterative blow-up scheme, which will be encoded in an oriented
blow-up graph.

Coming from the general theory of irregular singular ordinary differential equations, this
thesis is a generalization towards constructing quasimodes for perturbed linear ordinary differ-
ential equations. The evaluation of combinatorial data and the geometric resolution algorithm
results in a reduction of the complexity of the initial problem. The construction of a set
of independent solutions can thus be reduced to a family of first order b-elliptic differential
equations and in rare cases to irregular singular ordinary differential equations.

4



We want to emphasize that it is beyond the scope of this thesis to determine explicit solutions
of the equations induced by the semi-classical operators or to show that the constructed
quasimodes are close to these. Although explicit solutions arise in individual cases for very
special operators, these are rather generic coincidences. Thus, this thesis is located in the
early level of asymptotic solvability of generalized semi-classical equations analogous to the
works of Wentzel, Kramers and Brillouin (see [Wen26],[Kra26],[Bri26]), which themselves
were starting points for the development of the theory of semi-classical operators.

Regular Operators

In Chapter 3 we will investigate generalized semi-classical operators with sufficient regularity
properties. The goal is to answer the first question (i) about the existence of suitable adjustments
to the WKB-ansatz in a more general setting based on data given by the operator itself. In
the end we will have a systematic approach to construct quasimodes for any generalized semi-
classical operator matching the classical approach for the Schrödinger operator. Additionally,
we are able to determine the relevant types of WKB-ansatz and the regularity of the quasimode
for each operator based on combinatorial data.

The essential object to reduce an operator to its combinatorial data is the so called set of
exponents Λ ⊂ N×R. It consists of pairs of exponents (𝑘, 𝛼) ∈ Λ for which the corresponding
coefficient 𝑎 (𝑘,𝛼) in the asymptotic expansion of the operator∑︁

(𝑘,𝛼) ∈Λ
𝑎 (𝑘,𝛼)ℎ

𝛼𝜕𝑘𝑥

does not vanish everywhere. The chapter starts with an exploration of different examples
for which we can compute some quasimodes directly. These examples include a generalized
WKB-ansatz

𝑒𝜑/ℎ
𝛿

𝐴ℎ

with arbitrary powers 𝛿 > 0 of the denominator of general and complex valued phases to
construct corresponding quasimodes. One of the early, important discoveries is that multiple
WKB-type functions with different values of 𝛿 > 0 are needed to construct sufficiently many
quasimodes.

This generalized type of WKB-ansatz can be formalized to a family of symbol maps Σ𝛿 ,
depending on the power 𝛿 > 0. It can be obtained directly from the classical symbol 𝑝 of any
generalized semi-classical operator 𝑃 = 𝑝(𝑥, ℎ, 𝜕𝑥). Applying this operator to a generalized
WKB-ansatz yields a conjugated operator acting on the amplitude 𝐴ℎ

𝑃𝑒𝜑/ℎ
𝛿

𝐴ℎ = 𝑒
𝜑/ℎ𝛿 · 𝑝

(
𝑥, ℎ, 𝜕𝑥 +

𝜑′

ℎ𝛿

)
𝐴ℎ .

5



1 Introduction

Introducing two independent, non-commutating variables b and Z , the 𝛿-symbol Σ𝛿 (𝑃) of an
operator 𝑃 = 𝑝(𝑥, ℎ, 𝜕𝑥),

Σ𝛿 (𝑃) = 𝑝
(
𝑥, ℎ, b + Z

ℎ𝛿

)
,

is an element in the quotient algebra C∞(R)⟨b, Z⟩/I, where I ≔ [[b, Z], Z]. It is designed
to mirror the conjugation of 𝑃 with a generalized WKB-ansatz with 𝑒𝜑/ℎ

𝛿 . The lack of
commutativity of b and Z reflects the lack of commutativity of the vector field 𝜕𝑥 with
non-constant functions [

𝜕𝑥 , 𝑒
𝜑/ℎ𝛿

]
= 𝑒𝜑/ℎ

𝛿 · 𝜑
′

ℎ𝛿
.

Since Z appears in the 𝛿-symbol with an additional factor ℎ−𝛿 for 𝛿 > 0, the leading part
𝐸𝛿 (𝑃) as ℎ → 0 of the 𝛿-symbol

Σ𝛿 (𝑃) (𝑥, ℎ, b, Z) ∼ ℎ𝑙𝛿𝐸𝛿 (𝑃) (𝑥, Z) + 𝑜(ℎ𝑙𝛿 )

is independent of b and is called 𝛿-principal symbol. Thus by construction, the 𝛿-principal
symbol 𝐸𝛿 (𝑃) is a polynomial in Z with smooth coefficients in 𝑥. It replaces the semi-
classical principal symbol for the Schrödinger operator and can be used to state families of
eikonal equations

𝐸𝛿 (𝑃) (·, 𝜑′) = 0

for generalized semi-classical operators.

The 𝛿-principal symbol will be trivial for most values of 𝛿 > 0, resulting in a monomial in
Z ,

𝐸𝛿 (𝑃) (·, Z) = 𝑎 · Z 𝑘 ,

for some 𝑘 ∈ N and 𝑎 ∈ C∞(R). This implies that for most values of 𝛿 > 0 the solutions of
their corresponding eikonal equation are given by 𝜑 ≡ 𝑐, for some 𝑐 ∈ C. They are trivial in
the sense that their exponential terms commute with the operator

𝑃𝑒𝑐/ℎ
𝛿

𝐴ℎ = 𝑒
𝑐/ℎ𝛿 · 𝑝

(
𝑥, ℎ, 𝜕𝑥 +

𝑐′

ℎ𝛿

)
𝐴ℎ = 𝑒

𝑐/ℎ𝛿𝑃𝐴ℎ ,

and thus have no impact in the construction of quasimodes. To understand for which 𝛿 > 0
this does not happen, note that for each summand in 𝐸𝛿 (𝑃) there has to be a corresponding
pair of exponents _ = (𝑘, 𝛼) ∈ Λ. More specifically, these pairs of exponents have to be on
a line with slope 𝛿 and there must not be points underneath that line. Thus, the search for
non-trivial values 𝛿 > 0 for the principal symbol can be reduced to the existence of edges L
with slope 𝛿 in the lower boundary of the Newton polygon P(Λ) of the set of exponents Λ.
Deviating from the literature, the Newton polygon P(Λ) is defined to be the convex hull of
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Figure 1.1: Newton polygon P(Λ) of a two dimensional set Λ. The red boundary is the lower
boundary 𝜕-P(Λ).

the union of all second quadrant quarter spaces attached to each point _ ∈ Λ (see Figure 1.1).
In particular, the 𝛿-principal symbol with respect to the slope 𝛿(L) > 0 of any edge can be
phrased as

𝐸𝛿 (L) (𝑃) (·, Z) =
∑︁

_∈L∩Λ
_=(𝑘,𝛼)

𝑎_Z
𝑘 ,

allowing us to reduce the analysis of the eikonal equations to a computation of simple,
combinatorial objects. If we require the coefficients of 𝐸𝛿 (L) (𝑃) corresponding to the end
points of L to not vanish anywhere, we obtain non-zero solutions Z (𝑥) of 𝐸𝛿 (L) (𝑃) (𝑥, Z (𝑥)),
for 𝑥 ∈ 𝐼. Their number, counting multiplicities, corresponds to the horizontal width of the
edge.

This notion of Newton polygon also generates a horizontal edge of non-negative width.
Expanding the semi-classical operator 𝑃 = ℎ𝑙0𝑇0 + 𝑜

(
ℎ𝑙0

)
, its leading operator 𝑇0 can be

associated to the points in the horizontal edge L0 ⊂ 𝜕P(Λ), yielding

𝑇0 =
∑︁

_∈L0∩Λ
_=(𝑘,𝛼)

𝑎_𝜕
𝑘
𝑥 .

One can use this operator 𝑇0 in the same way one can use a more general operator 𝑇𝛿 in the
case of 𝛿 > 0 as we will describe briefly.

By further expanding 𝑝(𝑥, ℎ, 𝜕𝑥 + 𝜑′/ℎ𝛿) to the power of ℎ𝑙𝛿+𝛿 there is always a first order
differential operator

𝑇𝛿 =
∑︁

_∈L∩Λ
_=(𝑘,𝛼)

𝑎_𝑘 (𝜑′)𝑘−1
(
𝜕𝑥 +

𝑘 − 1
2

𝜑′′

𝜑′

)
,

which will be referred to as induced transport operator. It is the lowest power of ℎ allowing
for the presence of a differential operator of degree higher than 0. The induced transport
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operator coincides with (−2𝜑′𝜕𝑥 − 𝜑′′) when applied to the Schrödinger operator and induces
the recurrent first order differential equation

𝑇𝛿𝑎𝑘 = 𝑓𝑘 ,

required to determine the functions 𝑎𝑘 in the expansion of the amplitude 𝐴ℎ in the generalized
WKB-ansatz. Due to the correspondence of the eikonal polynomial and the induced transport
operator to edges L in the Newton polygon and their associated coefficient functions 𝑎_, with
_ ∈ L ∩ Λ, we are able to state requirements for the existence of quasimodes with smooth
amplitudes in 𝑥 based on these particular coefficients. The leading coefficient of the induced
transport operator

(𝜕Z 𝐸𝛿 (𝑃)) (·, 𝜑′)

vanishes at a point 𝑥0 ∈ R if 𝜑′(𝑥0) is not a simple solution of 𝐸𝛿 (𝑃) in 𝑥0. Simplicity is
sufficient in many cases to construct a quasimode with smooth amplitude. To construct a
maximal set of independent quasimodes, whose number matches the order of the operator
𝑃, one additionally has to require that both coefficients associated to the endpoints of L are
nowhere vanishing. This property is called 𝛿-regularity and yields non-vanishing solutions
𝜑′ in the desirable amount. It is necessary for the regularity of phase functions of adjacent
edges and hence amplitudes, which we will discuss in detail in Section 3.3. The absence of
𝛿-regularity yields families of phase functions that are either unbounded or vanishing in the
non-𝛿-regular point 𝑥0 and will be the focus of Chapters 4 and 5.

In a small share of cases, the second lowest term in the expansion of 𝑝(𝑥, ℎ, 𝜕𝑥 + 𝜑′/ℎ𝛿)
is not given by 𝑇𝛿 but by some multiplication operator. This happens if there are points in
Λ \ L which are geometrically not separated far enough from L itself. These artifacts can be
handled easily by an extension of the phase function to a full phase function

Φ =
𝜑

ℎ𝛿
+

𝑁∑︁
𝑙=1

𝜓𝑙

ℎ𝛾𝑙
,

for 0 < 𝛾𝑙 < 𝛿 and some 𝜓𝑙 ∈ C∞(R), which can be computed explicitly. Conjugating the
semi-classical operator 𝑃 with 𝑒Φ then leads to a leading operator

𝑇 = 𝑇𝛿 +𝑉 ,

for some multiplication operator 𝑉 . The ellipticity of 𝑇 is determined by the ellipticity of 𝑇𝛿 .
It results in the first theorem of this thesis, Theorem 3.3.9.

Theorem. Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 ×R be a set of exponents and 𝑃 ∈ Diff Λ(𝐼). Let
L ⊂ 𝜕-P(Λ) with slope 𝛿 > 0. Let 𝜑 ∈ C∞(𝐼) be a simple solution of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0 on 𝐼
with 𝜑′ . 0. Let 𝑇 = 𝑇𝛿 +𝑉 be as above.
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Then there is a full phase function Φ = 𝜑/ℎ𝛿 + 𝑜
(
ℎ−𝛿

)
corresponding to 𝜑′, such that

𝑒−Φ𝑃𝑒Φ = ℎ𝑙𝛿+𝛿𝑇 + 𝑜
(
ℎ𝑙𝛿+𝛿

)
.

Moreover, there is a quasimode 𝑢 = 𝑒Φ(ℎ)𝐴, with 𝐴 ≔
∑∞
𝑘=0 𝑎𝑘ℎ

𝛽𝑘 , where 𝑎𝑘 ∈ C∞(𝐼) and
𝑎0 ∈ ker𝑇 with 𝑎0 . 0, such that (

𝑒−Φ𝑃𝑒Φ
)
𝐴 = O(ℎ∞) .

If 𝑃 is 𝛿-separated, then Φ(ℎ) = 𝜑/ℎ𝛿 . Additionally, if 𝑃 is strongly 𝛿-separated, then
𝑇 = 𝑇𝛿,𝜑 .

In particular, this theorem says that if a solution 𝜑′ of an eikonal equation 𝐸𝛿 (𝑃) (·, 𝜑′) = 0
is simple, then we can extend it to a finite sum of phase functions Φ and obtain a smooth
amplitude 𝐴, such that 𝑒Φ𝐴 is a quasimode associated to 𝜑′. In addition, if all non-trivial
solutions of all eikonal polynomials 𝐸𝛿 (𝑃) (𝑥, Z) in a single point 𝑥 ∈ R are simple and non-
zero, then we can construct a maximal set of independent quasimodes in a neighborhood of 𝑥.
Their number matches the order of 𝑃.

In a final discussion in Subsection 3.3.3 we are briefly extending the scope of this chapter
by allowing operators with non-simple solutions 𝜑 of one of their corresponding eikonal
equations. Allowing for solutions with constant multiplicities higher than one results in
𝑇𝛿 ≡ 0. However, for every degree of multiplicity 𝜌 ∈ N there is a natural, elliptic transport
operator𝑇𝛿,𝜑′ ,𝜌 with deg𝑇𝛿,𝜑′ ,𝜌 = 𝜌. Using this induced transport operator, we can reproduce
the results about regularity of the quasimode for these generalized semi-classical operator with
some technical adjustments.

Resolved Operators

In Chapter 4 our focus shifts towards generalized semi-classical operators lacking 𝛿-regularity.
These are operators having an edge L with positive slope 𝛿 = 𝛿(L) in their associated Newton
polygon P(Λ) whose coefficients 𝑎_ and 𝑎` corresponding to the endpoints of the edge are
vanishing at a point 0 ∈ R. It turns out that certain non-𝛿-regular operators still admit WKB-
type quasimodes with polyhomogeneous phase functions and amplitudes on the half line R+,
assuming all zeros are in 𝑥 = 0. In this chapter we analyze when this is the case.

Relaxing regularity on generalized semi-classical operators can lead to a broad variety of
phenomena. The most famous example of such an operator is the Schrödinger operator with
linear potential

−ℎ2𝜕2
𝑥 + 𝑥 .
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The behavior of the differential of the phase function 𝜑′(𝑥) ∼ 𝑥1/2 as 𝑥 → 0 will result in a
non-polyhomogeneous amplitude. Another variation of the Schrödinger operator

−ℎ2𝑥4𝜕2
𝑥 + 1

is more singular at first glance. The associated eikonal equation −(𝑥2𝜑′)2 + 1 = 0 is solved by
the functions 𝜑±(𝑥) = ±1/𝑥 + 𝑐, for any 𝑐 ∈ C, leading to a recurrent equation(

−2𝑥2𝜕𝑥 + 𝑥
)
𝑎𝑘 = 𝑥

4𝑎′′𝑘−1 ,

whose solutions 𝑎𝑘 , 𝑘 ∈ N, improve their behavior towards 𝑥 = 0 in every iteration. In
particular, the quasimode 𝑒𝜑±/ℎ

∑
𝑎𝑘ℎ

𝛽𝑘 is polyhomogeneous onR2
+, whereas the Schrödinger

operator with linear potential requires a blow-up for the polyhomogeneity of its quasimodes.

The essential difference between these two and all other examples in Section 4.1 is the
distribution of weight in 𝑥, where 𝑥𝑙𝜕𝑘𝑥 has weight 𝑙 − 𝑘 . The central criteria to classify
whether a non-regular operator admits an exponential-polyhomogeneous quasimode on R2

+
is the ordering and minimality in growth weight along the lower boundary of the Newton
polygon. This will lead to the notion of essential points _ ∈ Λ in Chapter 4, which can be
contained in the interior of the Newton polygon. Whenever an edge L is spanned by two
essential points it will be called L-resolved in 𝑥0 = 0, which leads to the construction of
polyhomogeneous phase functions and amplitudes.

This extension of combinatorial data including weights can be captured by means of a set
of exponents in the following way. For 0 ∈ R+ we associate the localized set of exponents Λ0.
It expands points _ = (𝑘, 𝛼) ∈ Λ to triples

(𝑘, 𝛼, 𝜔) ∈ Λ0

with weights𝜔 = 𝑙− 𝑘 arising from powers 𝑙 of 𝑥 in the Taylor series of 𝑎_ with non-vanishing
coefficients. We introduce the new notion of a Newton polyhedron P(Λ0) which we use to
determine whether certain WKB-type quasimodes are of exponential-polyhomogeneous type.
Projecting this localized set of exponents to its first and third entries (𝑘, 𝜔) ∈ 𝜋𝑘,𝜔 (Λ0), the
essential points of Λ are exactly those corresponding to the points on the lower boundary
of P(𝜋𝑘,𝜔 (Λ0)). In particular, an operator is L-resolved, i.e. L is spanned by two essential
points, if and only if there is an edge in 𝜕P(Λ0) whose projection onto P(Λ) and P(𝜋𝑘,𝜔 (Λ0))
is an edge in their respective lower boundary. Thus, one can characterize non-regular, but
resolved operators in terms of of an object L0 ⊂ 𝜕-P(Λ0) in the combinatorial geometry of
the data given by the semi-classical operator.

We also need to extend these results to the following question. Given a semi-classical
operator

𝑚∑︁
𝑘=0

𝐴𝑘 (𝑥, 𝑦)𝑉 𝑘
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with vector field 𝑉 = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 , we want to specify sufficient conditions for 𝐴𝑘 such that
the phase functions and amplitudes of a WKB-type quasimode are polyhomogeneous on the
quarter space R2

+ up to the corner {𝑥 = 𝑦 = 0}. These types of operators arise naturally after
blowing up the point (0, 0) ∈ R2

+, since the pullback of a vector field with vanishing coefficient

𝛽∗(𝑥𝜕𝑥) = 𝑥𝜕𝑥 − 𝑦𝜕𝑦

is of that form.
In particular, we need to check under which condition quasimodes constructed locally

at both boundary faces admit a joint exponential-polyhomogeneous extension to the whole
manifold. This means that we need to find pairs of solutions of eikonal equations at adjacent
boundary faces, such that the fractions 𝜑1/ℎ𝛿1 and 𝜑2/ℎ𝛿2 are polyhomogeneous at the corner
and match.

Analogously to the first case where 𝑉 = 𝑥𝜕𝑥 , we can compute the three-dimensional set
of exponents at {𝑥 = 𝑦 = 0} with respect to the powers of 𝑥, 𝑦 and 𝑉 in the expansion of∑𝑚
𝑘=0 𝐴𝑘 (𝑥, 𝑦)𝑉 𝑘 . Interestingly, the same condition as in the horizontal case is sufficient. The

existence of an edge in the lower boundary of the Newton polyhedron of the corner point
𝑥0 = 0 yields exponential-polyhomogeneous quasimodes. Having such a three-dimensional
edge lets us relate the eikonal equation of one projected edge to the eikonal equation of the
other projected edge with coefficients coinciding asymptotically at the corner. This asymptotic
matching at the corner is an essential part of the resolution process in Chapter 5 and is proven
in Proposition 4.3.4.

Resolving General Operators

In Chapter 5 we are investigating general non-𝛿-regular operators, which are not L-resolved
in the sense explained above. In general, the core problem of these non-regular operators is
the existence of multiple solutions 𝜑′

𝑗
of the eikonal equation

𝐸𝛿 (L) (𝑃) (·, 𝜑′) = 0

that vanish at a point 𝑥0 ∈ 𝐼. This leads to a jump of multiplicity of 𝜑′
𝑗
(𝑥0) in the eikonal

polynomial, resulting in a non-elliptic transport operator in 𝑥0. Since the semi-classical
operator is non-regular, the coefficients 𝑎_ corresponding to the relevant edge L vanish at
the same point 𝑥0. While jumps in multiplicity of solutions 𝜑′

𝑗
of 𝛿-regular operators can be

resolved by a single blow-up, non-regular operators require multiple blow-ups to resolve them.
In the beginning of Chapter 4 we have already shown how to resolve some examples of

unresolved operators by the successive use of quasihomogeneous blow-ups 𝛽𝑡 : 𝑀 → H. To
do this algorithmically, we have to address this problem with a systematic approach. Suppose
we have done some blow-ups, resulting in a manifold with corners 𝑀 and total blow-down
map 𝛽 : 𝑀 → H. Since dim𝑀 = 2 it has only 0- and 1-dimensional faces. The former are
called corners, the latter are simply called arcs of 𝑀 . We also use coordinates near each face

11
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Figure 1.2: Set of exponents with induced action by the blow-up indicated by the dashed blue
arrows. A collision is triggered when the second left point hits the lower boundary
𝜕-P(Λ) or the second right point hits the dotted line.

pulled back from the coordinates (𝑥, ℎ) on H in a certain manner. Thus, we can associate
two dimensional sets of exponents Λ𝐻 to each face 𝐻 and three dimensional, localized sets
of exponents Λ𝑝 to each point of 𝜕𝑀 . In particular, this allows us to compute the vanishing
orders of the coefficients at each point 𝑝 for each face 𝐻. We can determine whether the
operator 𝛽∗𝑃 is 𝛿-regular in Λ𝐻 or resolved in a non-regular point 𝑝 ∈ 𝐻.

The central observation in the beginning of Chapter 5 is the effect of a blow-up on the
powers of the coefficients

𝛽∗𝑡

(
ℎ𝛼𝑥𝜔 (𝑥𝜕𝑥)𝑘

)
= ℎ𝛼+𝑡𝜔𝜏𝜔 (𝜏𝜕𝜏)𝑘

with corresponding quasi-projective coordinates 𝜏 = 𝑥/ℎ𝑡 and ℎ. This shows how the Newton
polygons and polyhedra on the front face of the blown up space are related to the original ones.
Thus, we can analyze the effects of blow-ups on a purely combinatorial level again. A very
important early result is that if an operator is L-resolved in a point on a boundary face, its
pullback will be 𝛽∗𝑡L-resolved for all blow-ups of this point, where 𝛽∗𝑡L is the edge spanned
by the transformed endpoints. On the other hand, edges in the lower boundary for which the
operator is non-regular and not resolved in a certain point will behave significantly different.
These edges will be altered drastically by pairs of exponents outside of the edge with relatively
lower associated vanishing order (see Figure 1.2). We think of 𝑡 as time, which we increase
continuously. For 𝑡 > 0 big enough such a pair of exponents will either:

(i) break the edge into two edges if the pair is centered between the end points of the edge,

(ii) absorb the edge into a bigger edge if the pair is outside of the vertical strip above the
edge,

(iii) or it will collide with one of the boundary points.

The values 𝑡 where these phenomena occur are called collision times and will be very important
for the resolution algorithm. Until that time, including the collision time itself, the edge and
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its successor are in the lower boundary of their respective set of exponents, thus there is a
three-dimensional edge in the boundary of the Newton polyhedron associated with the corner
of the adjacent boundary faces. Only up to the collision times can we apply the result of the
previous chapter about the existence of matching solutions of eikonal equations. The general
idea for a resolution algorithm is then given by choosing an edge, blowing up unresolved
points in boundary faces with respect to the collision time associated to the edge and repeat
that process on the new boundary face with respect to the successors of the edge if there are
still unresolved points remaining.

Since all processes can be described and relevant quantities can be measured combina-
torially, we are able to state a resolution algorithm solely based on combinatorial data of
semi-classical operators. Given an edge of the Newton polygon, a solution of its associated
eikonal equation and an unresolved point, it should provide a blow-up diagram, in which all
unresolved points are blown up successively. In order to do so, we have to determine these
points, which are mainly roots of polynomials and compute the collision times with respect to
the successor in each of these points to obtain a blow-up as intermediate step of the iteration.
This diagram will be displayed in the form of a graph G, more precisely a directed tree,
encoding the complete blow-up scheme. The vertices of this tree are tuples

(𝑌, 𝐻,L𝐻 , Z𝐻) ∈ G

consisting of the partially blown-up space 𝑌 at this state, a boundary hypersurface 𝐻 ⊂ 𝜕𝑌 ,
and a successor (L𝐻 , Z𝐻), where L𝐻 is the edge succeeding the initially chosen edge and Z𝐻
is a solution of the eikonal equation induced by L𝐻 that matches the solution Z of the previous
vertex.

The main theorem of this thesis, Theorem 5.2.18, states that the resulting resolution tree is
finite for each semi-classical operator. In particular, this means that the resolution algorithm
terminates.

Theorem. Let 𝑃 ∈ DiffΛ(R) be a semi-classical operator, 𝑃 =
∑𝑚
𝑘=0 𝐴𝑘 (𝑥, ℎ)𝜕𝑘𝑥 , such that

the leading coefficient 𝐴𝑚 analytic in 𝑥. Let L ⊂ 𝜕-P(Λ(𝑃)), 𝐼 ⊂ R be sufficiently small and
Z be a solution of 𝐸𝛿 (𝑃) (·, Z) = 0 on 𝐼.

Then the resolution tree G with respect to (H, 𝜕H,L, Z) is finite.

The proof of this statement is completely combinatorial and combines elementary methods.
Firstly, one shows that splitting and merging of edges can only happen finitely many times.
Secondly, collisions of pairs of exponents from the interior with endpoints of the relevant edge
result in the scattering of zeros along the new blown up boundary face. Since the degree of
these polynomial coefficients associated to the pairs _ ∈ Λ𝐻 on a boundary face 𝐻 cannot
increase after the application of blow-ups, the total degree of all zeros is bounded and will be
constant along the branches of G after finitely many blow-ups. Each of the singularities in
these branches can be resolved directly.

We want to emphasize that this algorithm does not only provide the complete scheme of
blow-ups required. The resolution graph G stores vertices (𝑌, 𝐻,L𝐻 , Z𝐻) containing possibly
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multiple edges and solutions of eikonal equations. Therefore, it determines a family of phase
functions at each boundary face which is required to construct a quasimode based on initial
data L and Z on H. As an additional step to the algorithm, it will also resolve crossings
of solutions of the eikonal equation, which are undesirable and can be resolved by a single
blow-up.

In the end, all that remains to be done is the construction of amplitudes locally at each
boundary hypersurface, which admit a joint extension to the interior of the resolved space.
This is a bookkeeping problem, since most transport operators at each boundary hypersurface
are first order b-differential operators and thus already provide polyhomogeneous solutions in
general. This process can be iterated, allowing for a successive improvement on the vanishing
order of the remainder at each boundary face, respectively. Theorem 5.3.22 summarizes this
process, stating that for each semi-classical operator and pair of initial data (L, Z) there is an
exponential-polyhomogeneous quasimode on the resolution space. In particular, this theorem
proves that the resolution process described in Algorithm 1 resolves the generalized semi-
classical operator. As a direct consequence, we can show that for a semi classical operator 𝑃
with deg 𝑃 = 𝑚 there are up to 𝑚 possibly trivial resolution spaces, resulting in a set of 𝑚
independent quasimodes for 𝑃.

Related Literature

Literature in semi-classical theory often starts with examples related to Schrödinger operators
(see Example 3.1.3) and generalizes certain aspects of these operators, aiming for different
results. [BM72], [Was85], [Was87] and [Fed93] look into differential operators with holo-
morphic coefficients in both 𝑥 and ℎ, but also analyze turning points, the connection problem,
perturbed systems and non-linear equations. Some take a more detailed look into special gen-
eralizations: the Schrödinger operator with magnetic fields in [Hel80] in multiple dimensions
or the analysis of asymptotic behavior of solutions of certain fourth order ordinary differential
equations with similarities to the Schrödinger operator in [LR60].

Other functional analytic treatments work with semi-classical Fourier integral or pseudo
differential operators, related to compactly supported or Schwartz kernels depending on ℎ > 0,
with a much wider scope in [Zwo12] or [GS90]. The book of Kato [Kat95] is also related to
this thesis, but uses a functional analytic approach to analyze eigenvalues and eigenvectors of
operators on Hilbert spaces with analytic perturbations.

Newer developments related to asymptotic solutions of semi-classical operators introduce
the concept of exact WKB solutions, using the so called Borel-Laplace transformation to
obtain solutions for a class of semi-classical operators that are analytic in 𝑥 and of Gevrey type
in ℎ. These can be found in [Nik23] and [Vor99]. Other work analyzing operators of Gevrey
type in ℎ are [MS00] and [Sib00].

A different direction can be found in the generalization of Schrödinger operators to fiber
bundles in [Lam14], [LT17], [Teu03] or [LR13]. They construct and analyze quasimodes also
in terms of eigenvalue crossings in an operator theoretic way. Crossings of these eigenvalue
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sections lead to singular behavior of the quasimodes and can be resolved with the methods
described in Chapter 5.

The works of [Gri17], [KS22] and [Sob18] are very strongly related to this thesis. They
attempt to construct quasimodes for the Schrödinger operator, including a geometric resolution
in form of a blow-up for a minimum of the potential𝑉 in [Gri17] and turning points in the other
two works. In addition, [KS22] can show closeness of WKB quasimodes to explicit solutions,
using a dynamical systems approach. This thesis is an extension of [Sob18] which was
based on the approach in [Gri17] to construct quasimodes by performing blow-ups and using
model operators at each boundary hypersurface. The extension of local solutions at boundary
hypersurfaces to a single function on the blown-up space is closely related to the methods of
matched asymptotic expansion and multiple scales described in [Hol13] and [BO99].
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2 Preliminaries

2.1 Singular Geometry

Singular spaces occur naturally in the setting of perturbed objects. A family of functions ( 𝑓ℎ)ℎ
on R depending on a parameter ℎ ≥ 0 can also be rephrased as a function 𝑓 depending on both
𝑥 and ℎ, i.e. 𝑓 (𝑥, ℎ) ≔ 𝑓ℎ (𝑥). Thus, 𝑓 is a function defined on R × R+, which is not a regular
manifold. The definitions and statements presented in this section, but also further topics, can
be found in [Mel96]. The notion of manifold with corners in this section is less general than
the one presented in [Joy12].

2.1.1 Manifolds with Corners

Singular manifolds are topological spaces which can, analogously to manifolds, be represented
locally over so called model spaces. These are intersections of finitely many half spaces with
boundary.

Definition 2.1.1 (Model space). Let 𝑛, 𝑘 ∈ N0 with 0 ≤ 𝑘 ≤ 𝑛. We define

R𝑛𝑘 ≔ {𝑥 ∈ R𝑛 : 𝑥𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑘}

to be the model space with corners of codimension 𝑘 . This set is naturally equipped with the
relative topology induced by the standard topology of R𝑛. For each 𝑙 ∈ N0 we can define a
space of 𝑙-differentiable functions on R𝑛

𝑘
by taking all differentiable functions in the interior

of R𝑛
𝑘

whose differentials are uniformly bounded on each compact set of R𝑛
𝑘
, i.e.

C𝑙
(
R𝑛𝑘

)
≔

 𝑓 ∈ C𝑙
(
R𝑛𝑘

◦) : sup
|𝛼 | ≤𝑙

𝑥∈𝐾∩R𝑛
𝑘
◦

| 𝐷𝛼 𝑓 (𝑥) |< ∞, for all 𝐾 ⋐ R𝑛𝑘

 . (2.1)

Functions are called smooth, if they are 𝑙-differentiable for all 𝑙 ∈ N. We denote the codimen-
sion

codim(𝑥) ≔ | {𝑖 ≤ 𝑘 : 𝑥𝑖 = 0} | (2.2)

of 𝑥 ∈ R𝑛
𝑘

in the model space. Let 𝑘1, 𝑘2 ∈ N0, Ω1, Ω2 ⊂ R𝑛
𝑘𝑖

be open sets. A map

𝐹 : Ω1 −→ Ω2

17



2 Preliminaries

is called diffeomorphism, if 𝐹 is a homeomorphism and if the components of 𝐹 and 𝐹−1 are
smooth functions (in the sense of (2.1)).

Remark 2.1.2. We also allow 𝑘 = 0 in Definition 2.1.1. Since there is no 𝑖 ∈ N such that
1 ≤ 𝑖 ≤ 0 it follows that R𝑛0 = R𝑛.

Having a notion of smoothness one can define smooth coordinates from topological to
model spaces (see Figure 2.1).

Definition 2.1.3 (Coordinates). Let 𝑀 be a Hausdorff topolocigal space, let 𝐼 be a countable
set and 𝑖 ∈ 𝐼, let Ω,Ω𝑖 ⊂ 𝑀 and Ω′,Ω′

𝑖
⊂ R𝑛

𝑘
and let 𝜑 : Ω → Ω′ and 𝜑𝑖 : Ω𝑖 → Ω′

𝑖
be maps.

(i) The components of 𝜑 are called coordinates at a corner if 𝜑 is a homeomorphism. We
then call (Ω, 𝜑) a coordinate system.

(ii) Assume (Ω𝑖 , 𝜑𝑖), (Ω𝑖 , 𝜑 𝑗) are coordinate systems for 𝑖, 𝑗 ∈ 𝐼. They are called (smoothly)
compatible if 𝜑𝑖 ◦ 𝜑−1

𝑗
: 𝜑 𝑗 (Ω𝑖 ∩Ω 𝑗) → 𝜑𝑖 (Ω𝑖 ∩Ω 𝑗) is a diffeomorphism .

(iii) A set 𝐴 = {(Ω𝑖 , 𝜑𝑖)}𝑖∈𝐼 of smooth compatible coordinate systems is called a smooth
atlas if the corresponding Ω𝑖 cover 𝑀 .

One can naturally lift the notion of manifolds to the non-regular case with this notion of
coordinates. Note that manifolds with corners will have strong properties concerning their
boundary faces.

Definition 2.1.4 (t-Manifold). Let 𝑀 be a paracompact, topological Hausdorffspace, let
𝐴 = {(Ω𝑖 , 𝜑𝑖)}𝑖∈𝐼 be a smooth atlas with coordinates 𝜑 𝑗 : Ω 𝑗 → R𝑛

𝑘 𝑗
, Ω 𝑗 ⊂ 𝑀 and let

𝑘 ≔ max{𝑘 𝑗} 𝑗 .
The pair (𝑀, 𝐴) is called a t-manifold of dimension 𝑛 and codimension 𝑘 . For any 𝑝 ∈ 𝑀

we set

codim(𝑝) ≔ codim(𝜑 𝑗 (𝑝)) . (2.3)

Remark 2.1.5. We will omit the atlas and will only refer to the topological space 𝑀 in the
context of t-manifolds and manifolds with corners after Definition 2.1.11 throughout the thesis.

Definition 2.1.6 (Boundary hypersurface). Let 𝑀 be a t-manifold. For any 𝑚 ∈ N0 we denote

𝜕𝑚𝑀 ≔ codim−1 (𝑚)

and call the closure of an arbitrary connected component of 𝜕1𝑀 boundary hypersurface.

Definition 2.1.7. Let 𝑀 be a 2-dimensional manifold with corners and 𝐻 ⊂ 𝜕1(𝑀) be a
boundary hypersurface. Then we call 𝐻 an arc of 𝑀 .

Remark 2.1.8. Calling hypersurfaces of 2-dimensional manifolds with corners arcs will unravel
some possible misunderstandings when analyzing the boundary of polygons associated to
boundary hypersurfaces in the following chapters.
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2.1 Singular Geometry

R2
+ H

𝑀

𝜑−1
𝜓−1

Figure 2.1: A manifold with corners 𝑀 with local coordinate patches at the boundary.

Remark 2.1.9. Note that 𝜕𝑚𝑀 ⊂ 𝜕𝑀 is a subset of the boundary of 𝑀 and not a collection of
boundary hypersurfaces.

We are interested in a type of t-manifold for which the boundary hypersurfaces behave well.
Namely, these are submanifolds that are everywhere locally of product type and will be called
p-submanifolds.

Definition 2.1.10 (p-Submanifolds). Let (𝑀, 𝐴) be a t-manifold of dimension 𝑛 and codimen-
sion 𝑘 .

We call 𝑆 ⊂ 𝑀 an embedded submanifold of dimension 𝑛′, if the image of 𝑆 is a invertible
linear transformation of a model space, i.e.

for all 𝑝 ∈ 𝑆 there are (Ω, 𝜑) ∈ 𝐴, 𝑘 ′ ∈ N0, 𝐺 ∈ 𝐺𝐿 (𝑛,R) :

𝜑 : 𝑆 ∩Ω → 𝐺 ·
(
R𝑛

′

𝑘′ × {0}
)
∩Ω′ ,

in a neighborhood Ω′ ⊂ R𝑛 of 0.
Additionally, we call 𝑆 p-submanifold if there is an 𝑙 ∈ N and a set 𝐿 = {𝑥 ∈ R𝑛

𝑘
: 𝑥𝑙+1 =

. . . = 𝑥𝑘 = . . . = 𝑥𝑛 = 0}, such that

𝜑 (𝑆 ∩Ω) = 𝐿 ∩ 𝜑 (Ω) (2.4)

everywhere locally.

We can directly define manifolds with corners.

Definition 2.1.11 (Manifold with corners). A manifold with corners is a t-manifold 𝑀 such
that each boundary hypersurface 𝐻 ⊂ 𝜕1𝑀 is a p-submanifold.

Requiring boundary hypersurfaces to be p-submanifolds ensures that there are global tubular
neighborhoods of each boundary hypersurface. This is the case when there exist boundary
defining functions, as shown in the following Lemma 2.1.12.

Lemma 2.1.12 (Boundary defining function). Let𝑀 be a manifold with corners and𝐻 ⊂ 𝜕1𝑀

be a boundary hypersurface.
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2 Preliminaries

Then there exists a boundary defining function 𝜌 ∈ C∞(𝑀) for 𝐻, i.e.

𝜌 ≥ 0, 𝐻 = {𝜌 = 0} .

Remark 2.1.13. Every coordinate system at 𝑝 ∈ 𝐻 can be chosen such that 𝜌 is the first
coordinate of the corresponding map.

2.1.2 Blow-Ups

A tool we will use frequently to resolve functions on a manifold with corners which are
smooth in the interior but not polyhomogeneous on the whole manifold is the blow-up of
submanifolds. Using it we can replace the critical submanifold by its inward pointing normal
sphere, unraveling ambiguities of these functions and thus effectively extending the spaces of
smooth and polyhomogeneous functions.

Example 2.1.14. Let 𝑥 ∈ R+ and 𝑓ℎ (𝑥) ≔ ℎ/(𝑥 + ℎ). Evaluated at 𝑥 = 0 this is a constant
family of numbers ( 𝑓ℎ (0))ℎ = (1)ℎ, for ℎ > 0, whereas 𝑓0(𝑥) = 0, for all 𝑥 ≥ 0. Thus, there
is an ambiguity of the value of 𝑓 (𝑥, ℎ) ≔ 𝑓ℎ (𝑥) at (0, 0) ∈ R2

+, where the function is not
naturally defined.

Approaching 0 ∈ R2
+ on a fixed ray other than {𝑥 = 0} or {ℎ = 0} yields a similar

result. For 𝑐 > 0 the value of 𝑓 along the ray 𝑅𝑐 ≔ {𝑥 = 𝑐ℎ} is constant and given by
𝑓 (𝑐ℎ, ℎ) = ℎ/((𝑐 + 1)ℎ) = 1/(𝑐 + 1). Excluding 0 ∈ R2

+ and adding a separate endpoint for
each ray then yields a manifold with corners, which resolves the ambiguity of 𝑓 and results in
smoothness of the function on the manifold.

We will only introduce the notions of blow-ups and quasihomogeneous blow-ups in the
context of two-dimensional manifolds in this thesis.

Definition 2.1.15 (Blow-up). The blow-up of 0 ∈ R2
+ is defined by the blown-up space[

R2
+, 0

]
≔ R+ × S+

and the blow-down map 𝛽

𝛽 :
[
R2
+, 0

]
→ R2

+ (2.5)

(𝑟, 𝜔) ↦→ 𝑟 · 𝜔,

where S+ ≔ S ∩ R2
+ is the quarter of the circle S ≔ {(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 = 1} in the first

quadrant. The set

ff ≔ 𝛽−1(0) ,

is called front face of the blown-up space
[
R2
+, 0

]
.

Remark 2.1.16. The set
[
R2
+, 0

]
generated by the blow-up 𝛽 :

[
R2
+, 0

]
→ R2

+ is a manifold
with corners. This will be shown in more generality in Lemma 2.1.20

20



2.1 Singular Geometry

𝛽

Figure 2.2: The blow-up of 0 in H. The rays indicate how linear spaces through 0 get lifted.

Remark 2.1.17. Analogously, one can blow up the half spaceH ≔ R×R+ (see Figure 2.2). The
blown-up space is given by [H, 0] ≔ R+ ×S+, where S+ ≔ S∩H is the upper half circle. This
procedure is not limited to the half space; interior points can be considered, too, generating
a blown-up space [R2, 0] ≔ R+ × S. The blow-down map is same as in Definition 2.1.15 in
both cases. We will only consider blow-ups of boundary points throughout this thesis.

Remark 2.1.18. Blowing up 0 in a model space R2
+ results in a new boundary hypersurface

ff = 𝛽−1(0), which is equipped with more structure than general hypersurfaces of manifolds
with corners. Let 𝑇+

0 R
2
+ be the inward pointing cone of the tangent space at 0 ∈ R2

+. By
construction the front face

ff =
𝑇+

0 R
2
+ \ {0}⧸R>0

,

is a projective space. Thus, for any choice of coordinates (𝑥, 𝑦) on R2
+ around 0 there are

induced projective coordinates

[ ≔
𝑦

𝑥
and b ≔

𝑥

𝑦
,

forming coordinate systems (𝑥, [) and (b, 𝑦) in neighborhoods of each boundary point of ff
in [R2

+, 0] (see Figure 2.3). Choosing other coordinates (�̃�, �̃�) = (𝑥 · 𝑎(𝑥, 𝑦), 𝑦 · 𝑏(𝑥, 𝑦)),
𝑎(0, 0), 𝑏(0, 0) ≠ 0 then induce similar projective coordinates along ff given by

[̃ ≔
�̃�

�̃�
= [ · 𝑏(𝑥, 𝑥[)

𝑎(𝑥, 𝑥[) |𝑥=0

= [ · 𝑏(0, 0)
𝑎(0, 0) and b̃ = b · 𝑎(0, 0)

𝑏(0, 0) .

Thus, there is an invariant notion of polynomials on arcs since the definition is independent
of the choice of coordinates with the transformation of coefficients described above.

These induced projective coordinates also determine a choice of trivialization of (certain)
open neighborhoods of arcs in 𝛽 : 𝑌 → 𝑋 yielding a non-coordinate invariant but accurate
description of minimal index sets of polyhomogeneous functions in these neighborhoods.

One often needs multiple blow-ups to resolve a function. In certain cases this can be reduced
to a single, quasihomogeneous blow-up, where we replace a single point with, for instance,
the endpoints of a family of parabolas (see Figure 2.4). Having this refined notion of blow-ups
will be very useful in the resolution of singular operators in Chapter 5.

Definition 2.1.19 (Quasihomogeneous blow-up, [Beh21]). Let ^ℎ, ^𝑥 ∈ N, let 𝑟 : R2
+ → R+

be defined by 𝑟 (𝑥, ℎ) ≔ (𝑥^ℎ + ℎ^𝑥 )1/(^ℎ^𝑥 ) and denote the unit sphere deformed by 𝑟 with
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lf

ff

rf

ℎ

𝑥ff = 𝑥
ℎ

[ = ℎ
𝑥

𝑟 = 𝑥

Figure 2.3: Local induced projective coordinates on [R2
+, 0] at each corner of the front face ff.

S1
𝑟 ≔ {(𝜔, [) ∈ R2

+ : 𝑟 (𝜔, [) = 1}. The quasihomogeneous blow-up of (0, 0) ∈ R2
+ with

respect to 𝑡 ≔ ^𝑥/^ℎ is defined by the set[
R2
+, 0

]
^𝑥 ,^ℎ

≔ R+ × S1
𝑟

and the blow-down map 𝛽

𝛽 : R+ × S1
𝑟 −→ R2

+

(𝑅, (𝜔, [)) ↦→ (𝑅^𝑥𝜔, 𝑅^ℎ[) .

As in the homogeneous case of Definition 2.1.15 there are induced quasi-projective coordi-
nates on

[
R2
+, 0

]
^𝑥 ,^ℎ

based on the choice of coordinates on R2
+.

Lemma 2.1.20 (Properties of the quasihomogeneous blow-up). Let 𝛽 :
[
R2
+, 0

]
^𝑥 ,^ℎ

→ R2
+ be

a quasihomogeneous blow-up. Let 𝑡 ≔ ^𝑥/^ℎ.
Then the following holds

(i)
[
R2
+, 0

]
^𝑥 ,^ℎ

is a manifold with corners.

(ii) The maps 𝛽∗
(
𝑥/ℎ𝑡 , ℎ1/^ℎ

)
and 𝛽∗

(
𝑥1/^𝑥 , ℎ/𝑥 (𝑡−1 )

)
form compatible coordinate systems.

Proof. (i) Since we can describe S1
𝑟 ⊂ R2

1 at (0, 1) as a graph, i.e.

S1
𝑟 ∩𝑈 = {(𝑔(ℎ), ℎ) : ℎ ∈ [0, Y)} ,

it is a p-submanifold of R2
1. Therefore

[
R2

1, 0
]
^𝑥 ,^ℎ

is a product of manifolds with
corners.

(ii) By definition of 𝛽 we have 𝛽∗𝑥 = 𝑟 ^𝑥𝜔 and therefore

𝛽∗𝑥1/^𝑥 = 𝑟 · 𝜔1/^𝑥 = 𝑟 · (1 − [^𝑥 )1/(^𝑥 ^ℎ ) .
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𝛽

Figure 2.4: Quasihomogeneous blow-up of 0 in H with corresponding curves being resolved
on [H, 0]^𝑥 ,^ℎ .

So 𝛽∗𝑥1/^𝑥 is smooth in terms of (𝑟, [) for [ < 1 and vanishes to first order at A. Thus,
it is a defining function at A. Analogously, the pullback

𝛽∗(ℎ/𝑥 (𝑡−1 ) ) = 𝑟 ^ℎ[/(𝑟 ^ℎ𝜔𝑡 ) = [/(1 − [^𝑥 )1/(^𝑥 ^ℎ )

is smooth and boundary defining for O and [ < 1. Moving on, we have 𝛽∗ℎ1/^ℎ =

𝑟[1/^ℎ = 𝑟 (1 − 𝜔^ℎ )1/(^ℎ^𝑥 ) and 𝛽∗(𝑥/ℎ𝑡 ) = 𝜔/[ (𝑡−1 ) = 𝜔/((1 − 𝜔^ℎ )1/^ℎ ).
□

Remark 2.1.21. One can also blow-up points and certain submanifolds in manifolds (with
corners), which we will not discuss in detail since we do all necessary computations in local
coordinates. To emphasize that certain blow-ups are iterated, we will call these concatenations
chains of blow-ups. We refer to [Beh21], [Gri01], [KM15] and [Mel96] for the introduction
of blow-ups on manifolds.

In Chapter 5 we will perform blow-ups of points (𝑝𝑘)𝑘∈N in the boundary which are nested
sequentially on each newly generated front face, i.e. 𝑝𝑘+1 ∈ 𝛽−1

(𝑘 ) (𝑝𝑘). Since there can be
multiple of these nested sequences in parallel we need to show that blowing up points in
different sequences is independent of the order of blow-ups. The following theorem shows a
standard result of commutativity of quasihomogeneous blow-ups in the case of transversally
intersecting p-manifolds.

Theorem 2.1.22 (Commutativity of Blow-Ups, [Beh21]). Let 𝑋 be a manifold with corners
and 𝑌, 𝑍 ⊂ 𝑋 be two p-submanifolds that intersect transversally, i.e. for each 𝑝 ∈ 𝑌 ∩ 𝑍 we
have 𝑇𝑝𝑌 + 𝑇𝑝𝑍 = 𝑇𝑝𝑋 .

Then any quasihomogeneous structures Π𝑌 ,Π𝑍 of 𝑌 and 𝑍 , respectively, intersect each
other cleanly and their iterated blow-ups in any order are diffeomorphic to each other[

[𝑋, 𝑍]Π𝑍 , 𝑌
]
Π𝑌
�

[
[𝑋,𝑌 ]Π𝑌 , 𝑍

]
Π𝑍

.

A direct consequence of Theorem 2.1.22 is given by the following corollary about the
commutativity of nested blow-ups.

Corollary 2.1.23 (Nested Sequences). Let 𝑋 be a manifold with boundary, 𝑝 𝑗 ∈ 𝜕𝑋 , 𝑗 = 1, 2,
𝑝1 ≠ 𝑝2, and let 𝛽𝑝 𝑗 : [𝑋, {𝑝 𝑗}] → 𝑋 be their associated blow-ups. Let 𝑞 ∈ 𝛽−1(𝑝1) and
𝛽𝑞 : [[𝑋, {𝑝1}], 𝑞] → [𝑋, {𝑝1}].
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𝑋

[𝑋, 𝑝1]

[𝑋, 𝑝2]

[[𝑋, 𝑝1], 𝑞]

𝑍𝑌

𝛽𝑝1

𝛽𝑝2

𝛽𝑞

𝛽𝑌1

𝛽𝑌2 𝛽𝑍,𝑝2

𝛽𝑍,𝑞

𝛽𝑍

Figure 2.5: Blow-up diagram of two nested sequences with intermediate space 𝑌 .

Then there are spaces 𝑌, 𝑍 , there are blow-down maps 𝛽𝑍2 : 𝑍 → [𝑋, {𝑝2}], 𝛽𝑌 : 𝑍 → 𝑌 ,
𝛽𝑞 : 𝑍 → [[𝑋, {𝑝1}], 𝑞] and 𝛽𝑌𝑗 : 𝑌 → [𝑋, {𝑝 𝑗}], 𝑗 = 1, 2, such that the corresponding
diagram in Figure 2.5 commutes.

Proof. By Theorem 2.1.22 𝛽𝑝 𝑗 : [𝑋, {𝑝 𝑗}] → 𝑋 commute in the sense that [[𝑋, 𝑝1], 𝑝2] �
[[𝑋, 𝑝2], 𝑝1]. We denote 𝑌 ≔ [[𝑋, 𝑝1], 𝑝2] and 𝛽𝑌𝑗 : 𝑌 → [𝑋, {𝑝 𝑗}]. Since 𝑞, 𝛽∗𝑝2

are transversally intersecting their respective blow-ups 𝛽𝑞 : [[𝑋, {𝑝1}], 𝑞] → [𝑋, {𝑝1}] and
𝛽𝑌2 : 𝑌 → [𝑋, {𝑝2}] commute. We call their common blown-up space 𝑍 ≔ [𝑌, 𝑞] with
corresponding blow-down maps 𝛽𝑌 : 𝑍 → 𝑌 and 𝛽𝑞 : 𝑍 → [[𝑋, {𝑝1}], 𝑞]. Finally, the
consecutive blow-down map 𝛽𝑍2 ≔ 𝛽𝑌2 ◦ 𝛽𝑌 : 𝑍 → [𝑋, 𝑝2] completes the diagram. □

Remark 2.1.24. The statement of Corollary 2.1.23 remains valid if one performs quasihomo-
geneous instead of homogeneous blow-ups.

Remark 2.1.25. Let 𝑀 be a manifold with corners and 𝑝 ∈ 𝜕𝑀 . Due to construction in
Definition 2.1.19 the blown-up spaces [𝑀, 𝑝] 𝑝,𝑞 and [𝑀, 𝑝]𝑘𝑝,𝑘𝑞 have different smooth
structures, for all 𝑘 > 1. We will only be interested in polyhomogeneity and less in the index
sets themselves, since they are depending on the choice of smooth structure on [𝑀, 𝑝] 𝑝,𝑞.
Thus, we will refer to quasihomogeneous blow-ups only with respect to the quotient of weights
𝑡 ∈ Q>0, i.e.

𝛽 : [𝑀, 𝑝]𝑡 → 𝑀 ,

by choosing the unique reduced fraction.

Remark 2.1.26. There is a more general notion of blow-ups than the ones presented in Sec-
tion 2.1. Kottke and Melrose introduce the concept of Generalized Blow-Up in [KM15],
where they construct blown-up spaces by gluing the interiors of different model spaces along
one boundary face of each in opposing orientation. Since this approach directly corresponds
to the introduction of quasi-projective coordinates, one can get a quick access to understand
quasihomogeneous blow-ups of model spaces.
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2.2 Singular Analysis

2.2 Singular Analysis

Singular analysis is a broad term that is used by many different fields in various contexts.
Here we are primarily interested in asymptotic analysis and its correspondence to singular
geometry in order to resolve these. Therefore we will cover asymptotic series and the notion
of polyhomogeneous and oscillating functions on manifolds with corners as well as some basic
results, in particular asymptotic solutions of ordinary differential equations.

We will frequently use the𝑂-notation for asymptotic statements, usually as 𝑥 → 0 or ℎ → 0.
Recall that for 𝛼 ∈ R and a function 𝑓 : (0,∞) → C we say that 𝑓 = O(ℎ𝛼), if

lim sup
ℎ→0

|ℎ−𝛼 𝑓 (ℎ) | < ∞ ,

and that 𝑓 = 𝑜 (ℎ𝛼), (little 𝑜), if

lim
ℎ→0

|ℎ−𝛼 𝑓 (ℎ) | = 0 .

2.2.1 Asymptotic Summation

We start this section with the notion of asymptotic power series. Asymptotic solutions of
semi-classical equations in Chapter 3 will be of this type.

Definition 2.2.1 (Asymptotic Expansion). Let (𝑉, ∥ · ∥) be a normed vector space over a field
K and 𝑓 : (0,∞) → 𝑉 . Let (𝛼𝑘)𝑘 ⊂ R be increasing and unbounded. For each 𝑘 ∈ N let
𝑣𝑘 ∈ 𝑉 .

(i) We say that 𝑓 is asymptotically equal to the asymptotic series
∑∞
𝑘=0 𝑣𝑘ℎ

𝛼𝑘 as ℎ → 0, if
for all 𝑚 ∈ N0 we have that 𝑓 (ℎ) − 𝑚−1∑︁

𝑘=0
𝑣𝑘ℎ

𝛼𝑘

 = O(ℎ𝛼𝑚) ,

as ℎ → 0. In this case we write

𝑓 (ℎ) ∼
∞∑︁
𝑘=0

𝑎𝑘ℎ
𝛼𝑘 as ℎ → 0 .

(ii) If 𝑓 (ℎ) ∼ ∑∞
𝑘=0 𝑣𝑘ℎ

𝛼𝑘 as ℎ → 0, then we call 𝑣0 the leading term of 𝑓 (ℎ).

(iii) We denote the space of asymptotic series by 𝑉ℎ.

Remark 2.2.2. One can define an equivalence relation on functions 𝑓 , 𝑔 : (0,∞) → 𝑉 by
saying that 𝑓 (ℎ) ∼ 𝑔(ℎ) if and only if 𝑓 (ℎ) − 𝑔(ℎ) ∼ 0.

Multiplication with scalars _ ∈ K is defined by multiplying each summand of the series.
Two series can be added by expanding each series so that they both include all appearing
powers of ℎ and adding every pair of summands with mutual power of ℎ afterwards. This way,

25



2 Preliminaries

𝑉ℎ is a K-vector space, if 𝑉 is a K-vector space. The most common space will be given by the
asymptotic space of smooth functions over intervals 𝐼 ⊂ R

C∞
ℎ (𝐼) =

{ ∞∑︁
𝑘=0

𝑢𝑘ℎ
𝛼𝑘 : 𝑢𝑘 ∈ C∞(𝐼) and 𝛼𝑘 ↗ ∞

}
.

In the case of smooth functions we will need a relaxed version of asymptotic equality.

Definition 2.2.3. Let 𝐼 ⊂ R be an interval, 𝑢 : (0,∞) → C∞(𝐼) be a family of smooth
functions and

∑∞
𝑗=0 𝑢 𝑗ℎ

𝛼𝑗 ∈ C∞
ℎ
(𝐼). We say that 𝑢 is asymptotically equal to

∑∞
𝑗=0 𝑢 𝑗ℎ

𝛼𝑗

locally everywhere, if for all compact sets 𝐾 ⊂ 𝐼 we have that

𝑢(ℎ) |𝐾 ∼
∞∑︁
𝑗=0
𝑢 𝑗 |𝐾 ℎ

𝛼𝑗 .

The notion of asymptotic expansion also directly applies to functions 𝑓 ∈ C∞(R), which
can have all sorts of asymptotic behavior as 𝑥 → ±∞. A special class asymptotic power series
associated to smooth functions on an interval 𝐼 are the so called Puiseux series.

Definition 2.2.4 (Puiseux series). Let 𝑐𝑘 ∈ C, let 𝑛 ∈ N and 𝑘0 ∈ Z. The asymptotic series

∞∑︁
𝑘=𝑘0

𝑐𝑘𝑥
𝑘/𝑛 ,

is called a Puiseux series at 𝑥 = 0.

One can define Puiseux series to measure asymptotic behavior of smooth functions 𝑓 in any
point 𝑥0 by a simple shift to (𝑥 − 𝑥0)𝑘/𝑛. To describe the asymptotic behavior at 𝑥0 = ±∞ one
needs to either allow asymptotic series of the form

∑𝑘0
𝑘=−∞ 𝑐𝑘𝑥

𝑘/𝑛 or, equivalently, introduce
a inverted coordinate 𝑟 ≔ 𝑥−1 and express it as a Puiseux series in terms of 𝑟 .

We can use the notion of asymptotic series to define a notion of approximate solutions of
asymptotic linear maps.

Definition 2.2.5 (Quasimodes). Let (𝑉, ∥ · ∥) be a normed space and ℎ > 0. Let 𝐿 (ℎ) be a
family of endomorphisms of 𝑉 and let 𝑣 ∈ 𝑉ℎ be an asymptotic series. Let 𝑠 ∈ R.

We say that 𝑣 is a quasimode or approximate solution of order 𝑠 for the equation 𝐿 (ℎ)𝑢 = 0,
if

∥𝐿 (ℎ)𝑣∥ = O(ℎ𝑠) .

We say that 𝑣 is a quasimode for the equation 𝐿 (ℎ)𝑢 = 0, if it is a quasimode of order 𝑟 for all
𝑟 ∈ R.

In the context of differential operators one cannot directly extend the notion of quasimodes
from asymptotic series (or more general polyhomogeneous functions) to functions with ex-
ponential behavior depending on ℎ > 0. Let 𝜑 ∈ C∞(R) be positive, then for a family of
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differential operators 𝑃(ℎ) we have that

𝑃(ℎ)𝑒±𝜑/ℎ = O
(
ℎ±∞

)
.

This asymptotic behavior on the right hand side is determined completely by the behavior
exponential function reproducing itself after differentiation. Having a product of such an
exponential function 𝑒𝜑/ℎ and an asymptotic series 𝐴, one can measure the behavior of the
resulting asymptotic series after applying 𝑃(ℎ). Thus, one can say that 𝑒𝜑/ℎ𝐴 is a quasimode
for 𝑃(ℎ) if (

𝑒−𝜑/ℎ𝑃(ℎ)𝑒𝜑/ℎ
)
𝐴 = O (ℎ∞) ,

i.e. the amplitude 𝐴 is a quasimode of the conjugated operator. This concept of quasimodes
naturally extends to polyhomogeneous and asymptotically exponential functions.

2.2.2 Polyhomogeneous and Exponential Functions

Next we introduce the notion of polyhomogeneous functions, which allows for a thorough
bookkeeping of the powers in its asymptotic expansion. We will require these asymptotic
expansions to be stable under the application of b-operators as in (2.6). As a byproduct of
polyhomogeneous functions we can present a notion of functions with asymptotic exponential
behavior.

This subsection starts with the introduction of index sets, accounting for the powers of non
vanishing coefficients in the asymptotic expansion of polyhomogeneous functions. These will
play a central role in the construction of quasimodes in Chapters 3 and 4 and the resolution of
operators in Chapter 5.

Definition 2.2.6 (Index Set). A set 𝐼 ⊂ C × N0 is called index set, if it satisfies the following
properties:

(i) For all 𝑠 ∈ R the set 𝐼≤𝑠 ≔ {(𝑧, 𝑘) ∈ 𝐼 : Re(𝑧) ≤ 𝑠} is finite.

(ii) If (𝑧, 𝑘) ∈ 𝐼, 0 ≤ 𝑙 ≤ 𝑘 , then (𝑧, 𝑙) ∈ 𝐼 .

Additionally, if we have

(iii) if (𝑧, 𝑘) ∈ 𝐼, then (𝑧 + 1, 𝑘) ∈ 𝐼 ,

then 𝐼 is called a C∞−index set.

Usually we will encounter log-free index sets with real exponents, i.e. 𝐼 ⊂ R × {0}. Since
these are totally ordered by ≤, we introduce a notion to indicate the absence of the lowest
entries of 𝐼.

Definition 2.2.7. Let 𝐼 ⊂ R × {0} be an index set, 𝑛 ∈ N0 and 𝛼𝑘 ∈ N for each 𝑘 ∈ N0, such
that 𝐼 = {(𝛼𝑘 , 0) : 𝑘 ∈ N0}. Then we denote

𝐼𝑛 ≔ {(𝛼𝑘 , 0) : 𝑛 ≤ 𝑘} .
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Alternatively, we will refer to 𝐼0 also as 𝐼+. Since 𝐼 is discrete, we have that
⋂
𝑛 𝐼𝑛 = ∅.

Definition 2.2.8 (Index-Family). Let 𝑀 be a manifold with corners. An index family is an
assignment I from the set of boundary hypersurfaces to the C∞-index sets.

The notion of Definition 2.2.7 lifts directly to index families I = (𝐼 (𝐻))𝐻⊂𝜕𝑀 , by setting
I𝑛 ≔ (𝐼 (𝐻)𝑛)𝐻⊂𝜕𝑀 . With the notion of index sets we can refine the concept of asymptotic
series and define polyhomogeneous functions on the half space.

Definition 2.2.9 (Polyhomogeneous Functions on R𝑛1 ). Let 𝑢 : int
(
R𝑛1

)
→ C be a smooth

function and 𝐼 be an index set. The function 𝑢 is called polyhomogeneous with respect to 𝐼 at
𝜕R𝑛1 , if there are 𝑎𝑧,𝑘 ∈ C∞ (

R𝑛−1) for each (𝑧, 𝑘) ∈ 𝐼, such that for all 𝑗 ∈ N0, 𝛼 ∈ N𝑛−1
0 and

𝑠 ∈ R

(𝑥𝜕𝑥) 𝑗
(
𝜕𝑦

)𝛼 ©«𝑢(𝑥, 𝑦) −
∑︁

(𝑧,𝑘 ) ∈𝐼
𝑎𝑧,𝑘 (𝑦)𝑥𝑧 log𝑘 𝑥ª®¬ = O (𝑥𝑠) . (2.6)

holds. Having this, we write

𝑢(𝑥, 𝑦) ∼
∑︁

(𝑧,𝑘 ) ∈𝐼
𝑎𝑧,𝑘 (𝑦)𝑥𝑧 log𝑘 𝑥 (2.7)

and denote the space of polohomogeneous functions as

A 𝐼
(
R𝑛1

)
≔

{
𝑢 ∈ C∞ (

int
(
R𝑛1

) )
is polyhomogeneous on R𝑛1 with respect to 𝐼

}
. (2.8)

The notion of b-operators appears throughout Chapter 4 in order to characterize b-ellipticity
of transport operators. Apart from that, we can also use b-operators to define polyhomogeneous
functions on model spaces with codimension 2, where one needs to be able to partially develop
the asymptotic series along each boundary hypersurface.

Definition 2.2.10 (b-Differential Operator). Let 𝑛 ≥ 2. We denote coordinates on the model
space R𝑛2 = R2

+ × R𝑛−2 by (𝑥, 𝑦). Let 𝛼 ∈ N2
0, 𝛽 ∈ N𝑛−2

0 and 𝑏𝛼,𝛽 ∈ C∞ (
R𝑛2

)
. A differential

operator 𝑃 ∈ Diff
(
R𝑛2

)
(acting on smooth functions) is called b-differential operator if it is a

finite sum of the form

𝑃 =
∑︁

𝛼∈N2
0,𝛽∈N

𝑛−2
0

𝑏𝛼,𝛽 (𝑥, 𝑦) (𝑥𝜕𝑥)𝛼 𝜕𝛽𝑦 ,

using multi-index notation. We denote the space of b-differential operators as

Diff∗
𝑏

(
R𝑛2

)
≔

{
𝑃 ∈ Diff

(
R𝑛2

)
: P is a b-differential operator

}
.

Given 𝑠, 𝑡 ∈ R we define the conormal spaces

A (𝑠,𝑡 ) (
R𝑛2

)
≔

{
𝑢 ∈ C∞ (

int
(
R𝑛2

) )
: 𝑃𝑢 = O

(
𝑥𝑠1𝑥

𝑡
2
)

for all 𝑃 ∈ Diff∗
𝑏

(
R𝑛2

)}
.

28
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Definition 2.2.11 (Polyhomogeneous Functions on R𝑛2 ). Let 𝑢 : int
(
R𝑛2

)
→ C be a smooth

function and (𝐼1, 𝐼2) be an index family assigned to the boundary hypersurfaces of R𝑛
𝑘
. 𝑢 is

called polyhomogeneous on R𝑛
𝑘

with respect to (𝐼1, 𝐼2) if there are 𝑁 ∈ R and functions

𝑎
(1)
𝜔,𝑙

∈ A 𝐼1
(
R𝑛−1

1

)
, 𝑎

(2)
𝜔,𝑙

∈ A 𝐼2
(
R𝑛−1

1

)
, (𝜔, 𝑙) ∈ 𝐼𝑖 ,

such that for all 𝑠 ∈ R we have

𝑢(𝑥, 𝑦) =
∑︁

(𝑧,𝑘 ) ∈𝐼1

𝑎
(1)
𝑧,𝑘

(𝑥2, 𝑦)𝑥𝑧1 log𝑘 𝑥1 + 𝑟 (1)𝑠

𝑢(𝑥, 𝑦) =
∑︁

(𝑧,𝑘 ) ∈𝐼2

𝑎
(2)
𝑧,𝑘

(𝑥1, 𝑦)𝑥𝑧2 log𝑘 𝑥2 + 𝑟 (2)𝑠 ,
(2.9)

where 𝑟 (1)𝑠 ∈ A (𝑠,−𝑁 ) (
R𝑛2

)
and 𝑟 (2)𝑠 ∈ A (−𝑁,𝑠) (

R𝑛2
)
.

Using local charts one can lift the notion of polyhomogeneity to general manifolds with
corners.

Definition 2.2.12 (Polyhomogeneous Functions on Manifolds with Corners). Let 𝑀 be a
manifold with corners (of codimension 2 or less), 𝐻 ⊂ 𝜕1(𝑀) be a boundary hypersurface
and I a C∞ index family. A smooth function 𝑢 : int (𝑀) → C is called polyhomogeneous on
𝑀 with respect to I, if 𝑢 is polyhomogeneous with respect to any boundary chart, i.e.

𝜙 : 𝑈 → 𝑉 : 𝜙∗𝑢 ∈ AI′ (𝑈) , (2.10)

where we define I′ (𝜙−1 (𝑉 ∩ 𝐻)
)
≔ I (𝐻) and

AI′ (𝑈) ≔
{
𝑢 ∈ C∞ (

𝑈 ∩ int
(
R𝑛2

) )
: 𝑝𝑢 ∈ AI′ (R𝑛2 ) for all 𝑝 ∈ C∞

0 (𝑈)
}
.

We will denote the space of polyhomogeneous functions with respect to arbitrary index families
on 𝑀 by A(𝑀).

As a byproduct we can define oscillating functions using the notion of polyhomogeneous
functions.

Definition 2.2.13 (Exponential-Polyhomogeneous Functions). Let 𝑀 be a manifold with
corners and 𝐻 𝑗 ⊂ 𝜕𝑀 be the boundary hypersurfaces of 𝑀 , for 𝑗 ≤ 𝑟 , 𝑟 ∈ N. Let 𝑁 ∈ N,
𝑛 ≤ 𝑁 and 𝐼 (𝐻 𝑗 , 𝑛) ⊂ C×N0 be a family of index sets. Let ℎ : 𝑀 → R+ be a global boundary
defining function. Let Γ ⊂ ⋃

𝑗 𝑇
∗
C
𝐻◦
𝑗

be a union of projectible, non-intersecting submanifolds
over each 𝐻 𝑗 , 𝑗 = 1, . . . , 𝑟 . Let 𝑐 : Γ → N0 be locally constant.

The set EA 𝐼 (𝑀; Γ) is called space of exponential-polyhomogeneous functions on 𝑀 , Γ
and 𝐼. It consists of elements

𝑢 =

𝑁∑︁
𝑛=1

𝑒Φ𝑛𝐴𝑛 ∈ C∞(𝑀◦) ,
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where 𝐴𝑛 ∈ AI(𝑛) (𝑀) and Φ𝑛 ∈ A(𝑀), such that for all Φ𝑛 and 𝐻 ∈ M1(𝑀) there is a
𝛿 ∈ R>0 and a function 𝜑𝑛,𝐻, 𝛿 with

Φ𝑛 =
𝜑𝑛,𝐻, 𝛿

ℎ𝛿
+ 𝑐(Γ𝑛,𝐻, 𝛿)

log(ℎ)
ℎ𝛿

+ O(ℎ−𝛿) at 𝐻◦ ,

where Γ𝑛,𝐻, 𝛿 ⊂ Γ ∩ 𝑇∗
C
𝐻◦
𝑗
, for Γ𝑛,𝐻, 𝛿 ≔ graph(𝑑𝜑𝑛,𝐻, 𝛿).

Remark 2.2.14. We will omit the function 𝑐 in the notion of exponential-polyhomogeneous
functions and refer to it as EAI (𝑀; Γ) throughout this thesis, since it can be derived from Γ

itself.

A small but important statement is the existence of primitives of one dimensional, oscillating
functions having the same type of oscillation.

Lemma 2.2.15. Let 𝑓 ∈ C∞((0,∞)), 𝑝 be a Puiseux series and 𝐴 ∈ A(R+) such that
𝑓 (𝑥) ∼ 𝑒𝑝 (𝑥 )𝐴(𝑥) as 𝑥 → +∞.

Then there is a 𝐵 ∈ A(R+) and a primitive 𝐹 of 𝑓 such that

𝐹 (𝑥) ∼ 𝑒𝑝 (𝑥 )𝐵(𝑥) ,

as 𝑥 → +∞.

Proof. There are two cases depending on the lowest power 𝑁/𝑟 of 𝑝(𝑥) =
∑∞
𝑘=𝑁 𝑎𝑘𝑥

𝑘/𝑟 ,
𝑟 ∈ N, 𝑁 ∈ Z.

In the case of 𝑁 > 0, applying partial integration yields∫
𝑒𝑝𝐴 =

∫
𝑝′𝑒𝑝

𝐴

𝑝′
= 𝑒𝑝

𝐴

𝑝′
−

∫
𝑒𝑝

(
𝐴

𝑝′

) ′
︸︷︷︸

=O(𝑥−𝑁/𝑟 ·𝐴)

.

On the other hand, in the case of 𝑁 < 0 we have∫
𝑒𝑝𝐴 = 𝑒𝑝𝐴 −

∫
𝑒𝑝

(
𝑝′ · 𝐴

) ′︸    ︷︷    ︸
=O(𝑥−𝑁/𝑟 ·𝐴)

,

where 𝐴′ = 𝐴. Iterating this argument and using de L’Hôpital we conclude that

𝑒−𝑝
∫

𝑒𝑝𝐴 ∼ 𝐴/𝑝′ + (𝐴/𝑝′)′/𝑝′ + . . . + O(𝑥−∞)

in the first case and 𝑒−𝑝
∫
𝑒𝑝𝐴 ∼ 𝐴 + (𝐴𝑝′)′ + . . . + O(𝑥−∞) in the second case. □

2.2.3 Borel lemma

A standard result called Borel lemma says that for every asymptotic power series in 𝑡 with
smooth coefficients on 𝐾 ⊂ R𝑛 there is a small neighborhood 𝐼 of 𝑡 = 0 and a smooth function
𝑓 on 𝐾 × 𝐼 being asymptotically equal to that power series.
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Lemma 2.2.16 (Classical Borel lemma, [Hör03]). For 𝑗 = 0, 1, . . . let 𝑓 𝑗 ∈ C∞
0 (𝐾) where 𝐾

is a compact subset of R𝑛, and let 𝐼 be a compact neighborhood of 0 in R. Then one can find
𝑓 ∈ C∞

0 (𝐾 × 𝐼) such that

𝜕 𝑗 𝑓

𝜕𝑡 𝑗
(𝑥, 0) = 𝑓 𝑗 (𝑥), 𝑗 = 0, 1, . . . .

Remark 2.2.17. Note that this statement is phrased without using the Taylor series directly
but by evaluating its coefficients at 𝑡 = 0. It remains valid for asymptotic power series with
non-integer powers, yielding polyhomogeneous functions 𝑓 as a result.

There is an immediate extension to the case of manifolds with corners, which we will
illustrate for our case in two dimensions.

Lemma 2.2.18 (Borel lemma). Let R2
+, let 𝑐 ∈ C, 𝛾1, 𝛾2 ∈ R and 𝑓 , 𝑔 ∈ A(R+) with index

sets 𝐸 𝑓 , 𝐸𝑔 ⊂ R × {0}, respectively, such that 𝑓 (𝑥) 𝑥→0∼ 𝑐 · 𝑥𝛾1 + 𝑜(𝑦𝛾2) and 𝑔(𝑦) 𝑦→0∼
𝑐 · 𝑦𝛾2 + 𝑜(𝑦𝛾2). Then there is a function ℎ ∈ A(R2

+) with index family E = (𝐸𝑔, 𝐸 𝑓 ), such
that ℎ(·, 𝑦) 𝑦→0∼ 𝑓 · 𝑦𝛾2 + 𝑜(𝑦−𝛾2) and ℎ(𝑥, ·) 𝑥→0∼ 𝑔 · 𝑥𝛾1 + 𝑜(𝑥−𝛾1).

Proof. Let �̃� be an extension of 𝑓 · ∑𝛾∈𝐸𝑔 𝑦
𝛾 to R2

+ by the classical Borel lemma, �̃�𝑦 be

defined by �̃� (𝑥, ·) 𝑥→0∼ �̃�𝑦 · 𝑥𝛾1 + 𝑜(𝑥𝛾1) and �̃� be an extension of (𝑔 − �̃�𝑦) ·
∑
𝛾∈𝐸 𝑓 𝑥

𝛾 . Define
ℎ ≔ �̃� + �̃�. Then the leading part of ℎ at {𝑦 = 0}

ℎ(·, 𝑦) 𝑦→0∼ 𝑓 · (𝑦𝛾2 + 𝑜(𝑦𝛾2)) + (𝑐 · 𝑦𝛾2 − 𝑐 · 𝑦𝛾2 + 𝑜 (𝑦𝛾2)) · �̃�𝑥 = 𝑓 · 𝑦𝛾2 + 𝑜(𝑦𝛾2) ,

coincides with 𝑓 , while the leading part of ℎ at {𝑥 = 0}

ℎ(𝑥, ·) 𝑥→0∼ �̃�𝑦 · 𝑥𝛾1 + 𝑜(𝑥𝛾1) +
(
𝑔 − �̃�𝑦

)
𝑥𝛾1 + 𝑜(𝑥𝛾1) = 𝑔 · 𝑥𝛾1 + 𝑜(𝑥𝛾1) ,

coincides with 𝑔. □

2.2.4 Singular Ordinary Differential Equations

The following theorem plays a central role in the construction of quasimodes in Chap-
ters 4 and 5. It gives a relation between asymptotic and exact solutions of an ordinary
differential equation which we will use to match quasimodes at the corners of the blown-up
half space.

Theorem 2.2.19 (Existence of Solutions, [Was87]). Let 𝑚 ∈ N, 𝑎𝑘 ∈ C∞(R+), 𝑘 ≤ 𝑚, be
nowhere vanishing on (0,∞) and analytic in 0.

Then for each asymptotic solution 𝑢(𝑥) ∼ 𝑒𝑝 (𝑥 )𝐴(𝑥), as 𝑥 → 0, where 𝑝(𝑥) is a Puiseux
series and 𝐴 is polyhomogeneous, of the ordinary differential equation

𝑚∑︁
𝑘=0

𝑎𝑘𝑦
(𝑘 ) = 0 , (2.11)
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there is a solution 𝑦 with 𝑦(𝑥) ∼ 𝑢(𝑥), as 𝑥 → 0. Moreover if {𝑢1, . . . , 𝑢𝑛} is a set of
independent, asymptotic solutions then the set of corresponding solutions {𝑦1, . . . , 𝑦𝑛} is
linear independent.

Remark 2.2.20. Proposition 2.3.6 shows how to construct asymptotic solutions of Equa-
tion 2.11 by the use of a tool called Newton polygon, which will be introduced in Subsec-
tion 2.3.2

As a direct consequence of Theorem 2.2.19 we can show the existence of an inhomogeneous
solution of (2.11), whose asymptotic behavior matches that of the imhomogeneity.

Corollary 2.2.21. Let 𝑚 ∈ N, 𝑎𝑘 ∈ C∞(R+), 𝑘 ≤ 𝑚, be analytic in 0. Let 𝑞 be a Puiseux
series, 𝐵 ∈ A(R+) and 𝑓 ∈ C∞((0,∞)) with 𝑓 (𝑥) ∼ 𝑒𝑞 (𝑥 )𝐵(𝑥), as 𝑥 → 0.

Then there is a solution 𝑢 of

𝑚∑︁
𝑘=0

𝑎𝑘𝑦
(𝑘 ) = 𝑓 ,

with 𝑢(𝑥) ∼ 𝑒𝑞 (𝑥 )𝐵(𝑥), as 𝑥 → 0, for some 𝐵 ∈ A(R+).

Proof. By Theorem 2.2.19 there are solutions 𝑢1, . . . , 𝑢𝑚 of the equation
∑𝑚
𝑘=0 𝑎𝑘𝑦

(𝑘 ) = 0,
with 𝑢 𝑗 ∼ 𝑒𝑝𝑘 𝐴𝑘 , for some Puiseux series 𝑝𝑘 and 𝐴𝑘 ∈ A(R+). Using Cramer’s rule it holds
that 𝑦𝑝 ≔

∑𝑚
𝑘=1 𝑐𝑘 · 𝑢𝑘 is a solution of

∑𝑚
𝑘=0 𝑎𝑘𝑦

(𝑘 ) = 𝑓 , where

𝑐𝑘 ≔

∫
𝑊𝑘 (𝑢1, . . . , 𝑢𝑚)
𝑊 (𝑢1, . . . , 𝑢𝑚)

,

𝑊 is the Wronskian of its entries and 𝑊𝑘 is the Wronskian with the 𝑘-th column replaced by
𝐹 ≔ (0, . . . , 0, 𝑓 )𝑇 . Thus, we have

𝑊𝑘 (𝑢1, . . . , 𝑢𝑚)
𝑊 (𝑢1, . . . , 𝑢𝑚)

∼ 𝑒𝑞−𝑝𝑘𝐵𝑘 ,

for all 𝑘 ≤ 𝑚 and for some 𝐵𝑘 ∈ A(R+). By Lemma 2.2.15 we have 𝑐𝑘 ∼ 𝑒𝑞−𝑝𝑘𝐵𝑘 for some
𝐵 ∈ A(R+). Thus, we can conclude that

𝑦𝑝 =

𝑚∑︁
𝑘=1

𝑐𝑘 · 𝑢𝑘 ∼
𝑚∑︁
𝑘=1

𝑒𝑞−𝑝𝑘𝐵𝑘𝑒
𝑝𝑘 𝐴𝑘 = 𝑒

𝑞

𝑚∑︁
𝑘=1

𝐴𝑘𝐵𝑘 ,

completing the proof. □

2.3 Elementary Perturbation Theory

This section contains two elementary objects in the field of perturbation theory which will
play an essential role in the construction of quasimodes in Chapters 3 - 5. We extract the
computation of commutators with respect to concatenations involving the exponential function
and 𝑛-th powers of vector fields from Chapter 3. These are needed to determine the relevant
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parts of semi-classical operators when constructing quasimodes. Related to these computations
throughout this thesis is the concept of Newton polygons, which we will introduce directly
after. It is used in different contexts to compute asymptotic solutions of the corresponding
equation. Extending this concept to semi-classically perturbed differential operators is the
basis of this thesis.

2.3.1 Faà di Bruno’s formula

We begin with some basic computations involving Faà di Bruno’s formula. For this we will
introduce the faculty of 𝑚 ∈ N𝑛0 , 𝑚 = (𝑚1, . . . , 𝑚𝑛), given by 𝑚! ≔ 𝑚1! · · · · · 𝑚𝑛! .

Lemma 2.3.1 (Faà di Bruno’s formula). Let 𝑛 ∈ N and 𝑓 , 𝑔 ∈ C∞(R). Then the 𝑛-th derivative
of 𝑓 ◦ 𝑔 is given by

𝜕𝑛𝑥 ( 𝑓 ◦ 𝑔) =
∑︁
𝑚∈𝑀𝑛

𝑛!
𝑚!

(
𝑓 (𝑚1+...+𝑚𝑛 ) ◦ 𝑔

) 𝑛∏
𝑘=1

(
𝑔 (𝑘 )

𝑘!

)𝑚𝑘
, (2.12)

where the summation on the right side is over the set

𝑀𝑛 ≔

{
(𝑚1, . . . , 𝑚𝑛) ∈ N𝑛0 :

𝑛∑︁
𝑘=0

𝑘 · 𝑚𝑘 = 𝑛
}
. (2.13)

Faà di Bruno’s formula (2.12) plays an important role in the construction of quasimodes
with exponential behavior. Applying it to 𝑓 = exp and 𝑔 = 𝜑/ℎ𝛿 yields

𝜕𝑛𝑥 𝑒
𝜑/ℎ𝛿 =

∑︁
𝑚∈𝑀𝑛

𝑛!
𝑚!
𝑒𝜑/ℎ

𝛿
𝑛∏
𝑘=1

(
𝜑 (𝑘 )

ℎ𝛿𝑘!

)𝑚𝑘
,

which can be ordered in powers of ℎ. Its lowest order term

𝜕𝑛𝑥 𝑒
𝜑/ℎ𝛿 = ℎ−𝑛𝛿𝑒𝜑/ℎ

𝛿 𝑛!
(𝑛, 0, . . . , 0)! (𝜑

′)𝑛 = ℎ−𝑛𝛿𝑒𝜑/ℎ𝛿 · (𝜑′)𝑛 + O
(
ℎ−(𝑛−1) 𝛿

)
(2.14)

is the single term corresponding to (𝑛, 0, . . . , 0) ∈ 𝑀𝑛. Conjugating the 𝑛-th power of 𝜕𝑥 by
exp(𝜑/ℎ𝛿) and subtracting ℎ−𝑛𝛿 (𝜑′)𝑛 then yields an expansion

ℎ−(𝑛−1) 𝛿
[
𝑛(𝜑′)𝑛−1

(
𝜕𝑥 +

𝑛 − 1
2

𝜑′′

𝜑′

)]
+ O

(
ℎ−(𝑛−2) 𝛿

)
, (2.15)

which is a direct consequence of (2.12) due to (𝑛 − 2, 1, 0, . . . , 0) ∈ 𝑀𝑛 and the Leibniz
rule. Essentially, the summation condition of the set 𝑀𝑛 in (2.13) and in particular its
weights associated to the entries of the tuple (𝑚1, . . . , 𝑚𝑛) reduces the amount of terms of
𝑒−𝜑/ℎ

𝛿

𝜕𝑛𝑥 𝑒
𝜑/ℎ𝛿 with low powers of ℎ. Another important observation is given by the fact, that

the conjugated operator

𝑒−𝜑/ℎ
𝛿

𝜕𝑛𝑥 𝑒
𝜑/ℎ𝛿 =

𝑛∑︁
𝑘=0

ℎ−(𝑛−𝑘 ) 𝛿𝑃𝑘
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only admits for terms with powers (𝑛 − 𝑘)𝛿, 𝑘 ∈ {0, . . . , 𝑛}, with associated differential
operators 𝑃𝑘 of complementary degree deg 𝑃𝑘 = 𝑘 , of which we have determined the first two
in (2.14) and (2.15).

2.3.2 Newton Polygon

The Newton polygon is a tool first described by Isaac Newton (see [New60]) to approximate
curves 𝛾 in R2 parametrized over 𝑥 that asymptotically solve the equation 𝑓 (𝑥, 𝛾(𝑥)) = 0 at
𝑥 = 0 for polynomials 𝑓 ∈ R[𝑋,𝑌 ]. By taking pairs of the powers (𝑘, 𝑙) ∈ R2 of 𝑋 and 𝑌 in
each summand of 𝑓 , its associated Newton polygon is the convex hull of the union over all first
quadrant quarter spaces attached to any of these points (𝑘, 𝑙). Its edges of finite length help
detect leading orders in 𝑥 of asymptotic solutions 𝛾. As one can easily show, these leading
orders are given by the negative slope of the edge and the multiplicity of the first order solution
by the horizontal width of the edge.

Obtaining a first order approximation is very valuable since improvement of these can often
be achieved by a general scheme applying to any given approximation. Proposition 3.1.7 in
the beginning of Chapter 3 is one of these schemes that will be used frequently in this thesis.
Arriving at that scheme in order to construct quasimodes is the central task of the first chapter,
in particular Section 3.2.

We present our notion of Newton polygon (compare Figure 2.6) which we will use exten-
sively. In the upcoming definition the set conv(𝐴) is the convex hull of 𝐴 ⊂ N0 × R ⊂ R2 in
the Euclidean space.

Definition 2.3.2 (Newton Polygon). Let Λ ⊂ N0 × R be discrete and bounded from below in
its second argument.

(i) We call

P(Λ) ≔ conv({(𝑥, 𝑦) ∈ R2 : there exists (𝑘, 𝛼) ∈ Λ with 𝑥 ≤ 𝑘 ∧ 𝑦 ≥ 𝛼})

the Newton polygon with respect to Λ.

(ii) Let _ = (𝑘_, 𝛼_), ` = (𝑘`, 𝛼`) ∈ 𝜕P(Λ). A line L := _` is called lower edge of P(Λ)
if 𝑘_ ≠ 𝑘`. The union of all lower edges is denoted by

𝜕-P(Λ)

and is called lower boundary of P(Λ).

(iii) Let L := _` ⊂ 𝜕-P(Λ) be a lower edge, for _ = (𝑘_, 𝛼_), ` = (𝑘`, 𝛼`) ∈ Λ. We denote
the horizontal width of L by

|L| ≔ |𝑘_ − 𝑘` | ,
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ℎ𝛼

𝜕𝑘𝑥
0 1 2 3 4

0

1

2

3

4

Figure 2.6: Newton polygon P(Λ) of a two dimensional set Λ. The red boundary is the lower
boundary 𝜕-P(Λ).

and its slope by

𝛿(L) ≔
|𝛼_ − 𝛼` |
|𝑘_ − 𝑘` |

.

Remark 2.3.3. Definition 2.3.2 is slightly different than the usual definition of Newton polygons
as in [Kol07] or [Zie95]. More commonly, one says that, given a finite set of points Λ, the
Newton polygon associated to Λ is its convex hull, i.e. P(Λ) ≔ conv(Λ). Thus, the classical
Newton polygon is a subset of the object we defined as Newton polygon. However, all edges
with positive slopes coincide for both types of definitions. In our notion of Newton polygon
all edges with non-positive slope in the lower boundary will be shifted to the horizontal edge
from the 𝑦-axis to the base point of the edge with the lowest positive point. This will make
statements regarding non-positive edges throughout Chapters 3-5 easier and more natural in
this context.

Remark 2.3.4. Note that we explicitly allow the existence of multiple edges with identical
slope. Whenever there is an edge L ≔ _` ⊂ 𝜕-P(Λ) with a point 𝜏 ∈ L ∩ Λ, such that
𝜏 ≠ _, ` , the segments _𝜏 and 𝜏` are edges in 𝜕-P(Λ), too. However, we exclude lower edges
with zero width.

Remark 2.3.5. Geometrically, the Newton polygon is the convex hull of the union of shifted
second-quadrant quarter spaces attached to any point in the set Λ. Note that one classically
takes the first quadrant in the construction.

Using the Newton polygon we can prove Proposition 2.3.6, which lets us compute and
quantify types of asymptotic solutions of ordinary differential equations. Theorem 2.2.19 then
guarantees the existence of explicit solutions having the same asymptotic expansions as these
constructed asymptotic solutions.

Proposition 2.3.6. Let 𝑚 ∈ N, 𝑎𝑘 ∈ C𝜔 (R+), 𝑘 = 1, . . . , 𝑚, and
∑𝑚
𝑘=0 𝑎𝑘 (𝑥) (𝑥𝜕𝑥)𝑘𝑦 = 0

be the corresponding ordinary b-differential equation with analytic coefficients. Let Λ ≔

{(𝑘, 𝑙) : 𝑙 = ord0(𝑎𝑘)} be the set of zero orders of 𝑎𝑘 at 𝑥 = 0 and P(Λ) be the associated
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Newton polygon. Then for every edge L ⊂ 𝜕-P(Λ) there are asymptotic solutions 𝑢𝑘,L of∑𝑚
𝑗=0 𝑎 𝑗 (𝑥) (𝑥𝜕𝑥) 𝑗 𝑦 = 0 at 𝑥 = 0, for 𝑘 = 1, . . . , |L|, with

𝑢𝑘,L (𝑥) ∼ 𝑒𝜑𝑘,L (𝑥 )𝐴𝑘,L (𝑥) ,

for some polyhomogeneous functions 𝐴𝑘,L , where 𝜑𝑘,L (𝑥) = 𝑐𝑘 log(𝑥), if 𝛿 = 0, and where
𝜑𝑘,L (𝑥) = 𝑐𝑘/𝑥 𝛿 , if 𝛿 ≠ 0, where 𝛿 is the slope of L, 𝑐𝑘 ∈ C are the solutions of∑︁

( 𝑗 ,𝑙) ∈Λ∩L
𝛼 𝑗𝑐

𝑗 = 0 ,

where 𝑎 𝑗 (𝑥) = 𝛼 𝑗𝑥ord0 (𝑎 𝑗 ) + 𝑜(𝑥ord0 (𝑎 𝑗 ) ).

Proof. We only prove the special case where ord0(𝑎𝑘) = 𝑘𝛿 + 𝑙𝛿 , for some 𝛿 > 0 and 𝑙𝛿 ∈ R,
and where all solutions 𝑐𝑘 of

∑
( 𝑗 ,𝑙) ∈Λ∩L 𝛼 𝑗𝑐

𝑗 = 0 are simple. In that case we can write

𝑃 =

𝑚∑︁
𝑗=0
𝑎 𝑗 (𝑥) (𝑥𝜕𝑥) 𝑗 =

𝑚∑︁
𝑗=0

𝑏 𝑗 (𝑥)𝑥 𝑗 𝛿+𝑙𝛿 (𝑥𝜕𝑥) 𝑗 ,

with 𝛼 𝑗 = 𝑏 𝑗 (0) ≠ 0. Choosing the ansatz 𝑢 = 𝑒𝜑𝐴 for an asymptotic solution, the expansion
of 𝑃𝑢 yields

𝑒𝜑𝑥𝑙𝛿
𝑚∑︁
𝑗=0

(
𝑏 𝑗 · 𝑥 𝑗 𝛿 (𝑥𝜑′) 𝑗 +

[
𝑏 𝑗 · 𝑥 𝑗 𝛿 𝑗 (𝑥𝜑′) 𝑗−1((𝑥𝜕𝑥) +

𝑗 − 1
2

𝑥𝜑′′

𝜑′
)
]
+ . . .

)
𝐴 ,

where the lowest order terms with respect to 𝑥, as 𝑥 → 0, are amongst 𝑥 𝑗 𝛿 (𝑥𝜑′) 𝑗 , if 𝜑(𝑥) ∼ 𝑥−𝛾

with 𝛾 > 0, and 𝑏0, if 𝛾 ≤ 0. Only the first has a chance to eliminate the lowest order remainder
term, if 𝛾 = 𝛿, where we have

𝑏 𝑗 · 𝑥 𝑗 𝛿 (𝑥𝜑′) 𝑗︸            ︷︷            ︸
∼𝑥0

+
[
𝑏 𝑗 · 𝑥 𝑗 𝛿 𝑗 (𝑥𝜑′) 𝑗−1((𝑥𝜕𝑥) +

𝑗 − 1
2

𝑥𝜑′′

𝜑′
)
]

︸                                                ︷︷                                                ︸
∼𝑥 𝛿

+ O(𝑥2𝛿) ,

for each 𝑗 = 0, . . . , 𝑚. Thus, 𝜑 has to solve

𝑚∑︁
𝑗=0

𝑏 𝑗 · (𝑥 𝛿+1𝜑′) 𝑗 = 0 ,

or equivalently 𝑥 𝛿+1𝜑′ = −Z𝑘 , for a solution Z𝑘 of
∑𝑚
𝑗=0 𝑏 𝑗 · Z 𝑗 = 0. Since 𝑏 𝑗 (0) ≠ 0, we have

that Z𝑘 (0) = 𝑐𝑘 ≠ 0, for all 𝑘 = 1, . . . , 𝑚, and hence

𝜑(𝑥) ∼ −𝑐𝑘
𝛿
𝑥−𝛿 .
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Thus, 𝑃𝑢 reduces asymptotically to

𝑒𝜑𝑥𝑙𝛿
©«𝑥 𝛿

𝑚∑︁
𝑗=0

[
𝑏 𝑗 (0)𝑘𝑐 𝑗−1

𝑗

]
·
(
𝑥𝜕𝑥 −

𝑗 − 1
2

𝛿

)
+ O(𝑥2𝛿)ª®¬ 𝐴(𝑥) ,

which allows for an asymptotic solution of 𝐴 as 𝑥 → 0, since

𝑇 ≔

𝑚∑︁
𝑗=0

𝑏 𝑗 (0) · ((𝑥𝜕𝑥) − 𝛿( 𝑗 − 1)/2)

is b-elliptic by assuming that 𝑐𝑘 is a simple root. □

Remark 2.3.7. The proof of the special case includes all analytical details that appear in the
proof of the general case. The additional complication there lies within the combinatorial data
Λ. The full proof is similar to the proof of Theorem 3.3.11, where we show how to deal with
multiple edges L ⊂ 𝜕-P(Λ) and non-separated lower boundaries, resulting in higher order
terms of the phase function. These are not fully determined by L itself.

Note that for 𝛿 = 0 this is an elliptic b-operator. Thus, 𝑒𝜑 (𝑥 ) ∼ 𝑥𝑐𝑘 as 𝑥 → 0, which is
absorbed by the polyhomogeneous amplitude 𝐴.

2.4 Semi-Classical Analysis

In this last section of Chapter 2 we are going to present semi-classical perturbations of
differential operators. This will include the Schrödinger operator and standard methods of
constructing asymptotic solutions, i.e. quasimodes, in the semi-classical limit as ℎ → 0. Most
prominent throughout this thesis will be the method known as WKB-method, presented in
Subsection 2.4.1. The section ends with an outline about turning points in Subsection 2.4.2,
where some of the problems of singular operators in Chapter 5 are presented briefly using the
WKB-method.

2.4.1 WKB-Method

A standard method of constructing quasimodes of the time independent Schrödinger operator

𝑃 ≔ −ℎ2𝜕2
𝑥 +𝑉 , (2.16)

for some potential 𝑉 ∈ C∞(𝐼), 𝐼 ⊂ R, is the so called WKB-method. It is named af-
ter Gregor Wentzel, Hendrik Anthony Kramers and Léon Brillouin, who discovered this
method of approximation simultaneously but independently in the early twentieth century (see
[Wen26],[Kra26],[Bri26]). It is a standard subject in undergrad physics courses (see [Nol03]),
which also comes to use in the construction of semi-classical Fourier integral operators (see
[Zwo12]). The WKB-method is an ansatz based procedure that can be easily motivated by the

37



2 Preliminaries

special case of constant potentials 𝑉 ≡ 𝑐2, 𝑐 ∈ C \ {0}. In that particular case, the solutions of

−ℎ2𝑦′′ + 𝑐2𝑦 = 0 ,

are given by 𝑦±(𝑥) ≔ 𝑒±𝑐𝑥/ℎ𝑎, for any 𝑎 ∈ C, i.e. simple, exponential functions with constant
phases and amplitudes. Increasing the absolute value of 𝑐 leads to a faster oscillation or
stronger (real) exponential growth or decay.

The ansatz

This gives reason to assume that in the case of non-constant, nowhere vanishing potentials 𝑉
a solution 𝑦 might be of similar shape

𝑦±(𝑥, ℎ) = 𝑒𝜑± (𝑥 )/ℎ𝐴±(𝑥, ℎ) ,

with non-constant phase functions 𝜑± and amplitudes 𝐴±, which is the first part of the ansatz
of the WKB-method. In the context of this thesis phase functions are complex valued in
general. We will refer to them as phase functions even if they are real valued. Applying this
to (2.16) then yields(

−ℎ2𝜕2
𝑥 +𝑉

)
𝑒𝜑/ℎ𝐴 = −ℎ2𝑒𝜑/ℎ

((
𝜑′

ℎ

)2
𝐴 + 𝜑

′′

ℎ
𝐴 + 2

𝜑′

ℎ
𝐴′ + 𝐴′′

)
+ 𝑒𝜑/ℎ𝑉𝐴 ,

which we will not be able to solve in general. Thus, as a second part of the ansatz we reduce
the scope of finding solutions of (2.16) to finding quasimodes of the Schrödinger equation.
These quasimodes 𝑢 = 𝑒𝜑 (𝑥 )/ℎ𝐴(𝑥, ℎ) then should satisfy(

𝑒−𝜑 (𝑥 )/ℎ (−ℎ2𝜕2
𝑥 +𝑉)𝑒𝜑 (𝑥 )/ℎ

)
𝐴(𝑥, ℎ) = O(ℎ∞) ,

i.e. the remainder 𝑓 (𝑥, ℎ) ≔ 𝑒−𝜑 (𝑥 )/ℎ
(
−ℎ2𝜕2

𝑥 +𝑉
)
𝑢(𝑥, ℎ) vanishes faster than any polynomial

in ℎ as ℎ → 0, uniformly on any compact interval𝐾 ⊂ R. By reducing the scope to quasimodes
the WKB method reduces the ansatz to finding an asymptotic power series in powers of ℎ

𝐴(𝑥, ℎ) ∼
∞∑︁
𝑘=0

𝑎𝑘 (𝑥)ℎ𝑘 .

Applying this asymptotic ansatz to (2.16) then yields(
−ℎ2𝜕2

𝑥 +𝑉
)
𝑒𝜑/ℎ𝐴 ∼ 𝑒𝜑/ℎ

∞∑︁
𝑘=0

(
−ℎ𝑘+2

((
𝜑′

ℎ

)2
𝑎𝑘 +

𝜑′′

ℎ
𝑎𝑘 + 2

𝜑′

ℎ
𝑎′𝑘 + 𝑎

′′
𝑘

)
+𝑉𝑎𝑘ℎ𝑘

)
.

The goal is to choose 𝜑, 𝑎𝑘 successively, such that the remainder

𝑓 (𝑥, ℎ) ∼ 𝑒𝜑/ℎ
∞∑︁
𝑘=0

(
−ℎ𝑘+2

((
𝜑′

ℎ

)2
𝑎𝑘 +

𝜑′′

ℎ
𝑎𝑘 + 2

𝜑′

ℎ
𝑎′𝑘 + 𝑎

′′
𝑘

)
+𝑉𝑎𝑘ℎ𝑘

)
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vanishes faster than ℎ𝑘 , as 𝑘 → ∞. Thus, we sort the asymptotic expansion of 𝑓 by powers of
ℎ and check whether the implicit equations of its coefficients admit solutions. For the lowest
two powers the expansion

𝑓 (𝑥, ℎ) ∼ ℎ0
(
−(𝜑′)2 +𝑉

)
𝑎0 + ℎ1

(
−(2𝜑′𝜕𝑥 + 𝜑′′)𝑎0 + (−(𝜑′)2 +𝑉)𝑎1

)
+ O(ℎ2) , (2.17)

yields two first order differential equations.

Eikonal Equation

In order to achieve 𝑓 (𝑥, ℎ) = O(ℎ) its lowest order coefficient in the expansion of (2.17) must
vanish. We can directly exclude setting 𝑎0 ≡ 0 since this would result in the same problem
recurring for (−(𝜑′)2 +𝑉)𝑎1 = 0 in the coefficient of ℎ1. Thus, the only option is to choose 𝜑
solving the so called eikonal equation

−(𝜑′)2 +𝑉 = 0 . (2.18)

In the case of the Schrödinger operator its solutions are of the form

𝜑±,𝑥0 (𝑥) ≔ ±
∫ 𝑥

𝑥0

√︁
𝑉 (𝑡)𝑑𝑡 , (2.19)

for any given choice of base point 𝑥0 ∈ R. Note that its solution 𝜑 is smooth since the potential
𝑉 is vanishing nowhere. Choosing any such solution we can proceed with the cancellation of
the higher order terms of the remainder.

Transport Equations

It is important to notice that 𝜑 itself does not appear in the asymptotic expansion of 𝑓 (𝑥, ℎ) but
𝜑′. Thus, it is independent of the choice of base point 𝑥0 ∈ R in (2.19) and does only depend
on the choice of root of the algebraic equation in (2.18). Choosing the solution 𝜑 ≔ 𝜑+,0 for
the rest of this subsection, the lowest order term of the remainder of 𝑓 (𝑥, ℎ)

𝑓 (𝑥, ℎ) ∼ ℎ1 (−(2𝜑′𝜕𝑥 + 𝜑′′)𝑎0) + O(ℎ2) ,

vanishes if and only if 𝑎0 is the solution of the first order linear differential equation

−
(
2
√
𝑉𝜕𝑥 +

√
𝑉
′)
𝑎0 = 0 .

This equation is called homogeneous transport equation and its solutions are given by 𝑐 · 4√
𝑉 ,

for any 𝑐 ∈ C. Interestingly, all higher order terms in the expansion of the remainder, after
choosing 𝑎0(𝑥) ≔ 4

√︁
𝑉 (𝑥),

𝑓 (𝑥, ℎ) ∼
∞∑︁
𝑘=2

ℎ𝑘
(
−(2𝜑′𝜕𝑥 + 𝜑′′)𝑎𝑘−1 − 𝑎′′𝑘−2

)
,
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are of the same shape. Thus, all higher order equations are iterations of the transport equation

−
(
2
√
𝑉𝜕𝑥 +

√
𝑉
′)
𝑎𝑘 = 𝑎

′′
𝑘−1 ,

with inhomogeneities depending only on the previously determined solution of the iteration.
Denote 𝑇𝜑′ ≔ −(2𝜑′𝜕𝑥 + 𝜑′′) and 𝑅 ≔ −𝜕2

𝑥 . Then the recurrent system of inhomogeneous
equations

𝑇𝜑′𝑎𝑘 = −𝑅𝑎𝑘−1

is called transport system. Since 𝜑′ =
√
𝑉 vanishes nowhere, 𝑇𝜑′ is an elliptic first order

differential operator and thus all solutions 𝑎𝑘 of the transport system are smooth on R.
Applying the classical Borel lemma 2.2.16 to the asymptotic series

∑∞
𝑘0
𝑎𝑘 · ℎ𝑘 we obtain a

function 𝐴 ∈ C∞(R × R>0) with 𝐴(·, ℎ) ∼ ∑∞
𝑘0
𝑎𝑘 · ℎ𝑘 , such that(

𝑒−𝜑/ℎ (−ℎ2𝜕2
𝑥 +𝑉)𝑒𝜑/ℎ

)
𝐴 = O(ℎ∞) ,

completing the WKB-method with a generated quasimode 𝑢 = 𝑒𝜑/ℎ𝐴.

Remark 2.4.1. Allowing for higher order perturbations of 𝑉 with respect to ℎ can be im-
plemented easily using this approach and would only result in multiple remainder operators
𝑅1, . . . , 𝑅𝑚 recurring alternately.

2.4.2 Turning Points & Regimes

After demonstrating how the WKB-method can be used to construct quasimodes an immediate
question is whether this method also works if the potential𝑉 vanishes at certain isolated points.

Airy Equation

The simplest example of this kind is the Schrödinger operator with linear potential

−ℎ2𝑦′′ + 𝑥𝑦 = 0 . (2.20)

We can explicitly solve this equation by substituting b ≔ 𝑥ℎ−2/3, which then yields

ℎ2/3 (−�̃�′′ + b �̃�) = 0 ,

the Airy equation in the coordinate b independently of ℎ. A system of fundamental solu-
tions is given by the first and second Airy function 𝑦1(𝑥, ℎ) ≔ Ai(𝑥/ℎ2/3) = Ai(b) and
𝑦2(𝑥, ℎ) ≔ Bi(𝑥/ℎ2/3) = Bi(b), which oscillate as b → −∞ and have real exponential be-
havior as b → ∞ with Ai decaying exponentially (see [Olv97]). These different types of
exponential behavior in (𝑥, ℎ) are challenging at 𝑥 = 0. For any positive ℎ we observe that
𝑢 𝑗 (𝑥, ℎ) is oscillating, as 𝑥 → −∞. Conversely, the same holds for any fixed 𝑥 < 0 as ℎ → 0.
But for 𝑥 = 0 both 𝑢 𝑗 (0, ℎ), 𝑗 = 1, 2, are constant as ℎ → 0.
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Linear Vanishing Potentials

This problem is recurrent for Schrödinger operators with more general, vanishing potentials

𝑃 ≔ −ℎ2𝜕2
𝑥 + 𝑥𝑉 ,

for 𝑉 ∈ C∞(R), where 𝑉 > 0 and 𝑐 ≔ 𝑉 (0). Since we cannot compute the solutions of
the corresponding homogeneous equation 𝑃𝑦 = 0 in general the WKB-method can be an
approach to construct quasimodes of this equation. For 𝐼+ ≔ {𝑥 > 0} and 𝐼− ≔ {𝑥 < 0} this
was already covered in Subsection 2.4.1. For 𝐼 ≔ 𝐼− the phase functions

𝜑±,𝑥0 (𝑥) ≔ ±
∫ 𝑥

𝑥0

√︁
𝑡𝑉 (𝑡)𝑑𝑡 ,

are differentiable but not smooth at 𝑥 = 0. In particular, its differential

𝜑′+(𝑥) =
√︁
𝑥𝑉 (𝑥) ,

is only continuous in 𝑥 = 0 and vanishes 𝜑′+(𝑥) ∼ 𝑐
√
𝑥 as 𝑥 → 0. Thus, the associated

transport operator of the differential of 𝜑 ≔ 𝜑+,0

𝑇𝜑′ ≔ −
(
2
√︁
𝑥𝑉 (𝑥)𝜕𝑥 +

√︁
𝑥𝑉 (𝑥)

′)
= −2

√︁
𝑉 (𝑥)𝑥−1/2

(
𝑥𝜕𝑥 −

1
4
(𝑉 (𝑥))−1

)
,

is a b-differential operator. Its kernel is spanned by 𝑎0 ∈ A(𝐼) with 𝑎0(𝑥) ∼ 𝑥1/(4𝑐) , since
𝑐 = 𝑉 (0) > 0. Thus, the recurrent inhomogeneous transport equation

𝑇𝜑′𝑎1 = −𝜕2
𝑥𝑎0 ,

results in a chain of deteriorating behavior of 𝑎𝑘 (𝑥) ∼ 𝑥𝑐𝑘 with 𝑐𝑘 ≔ 1/(4𝑐) −3𝑘/2, if 𝑐𝑘 ≠ 0,
and 𝑎𝑘 (𝑥) ∼ log(𝑥), if 𝑐𝑘 = 0, as 𝑥 → 0.

Assuming 𝑐𝑘 = 1/(4𝑐) − 3𝑘/2 ≠ 0 for all 𝑘 ∈ N0, the asymptotic series

∞∑︁
𝑘=0

𝑎𝑘 (𝑥)ℎ𝑘 ∼ 𝑥1/(4𝑐)
∞∑︁
𝑘=0

𝛼𝑘𝑥
−3/2𝑘ℎ𝑘 , (2.21)

for some 𝛼𝑘 ∈ R, does not allow for an extension to 𝑥 = 0. In particular, the amplitude is not
polyhomogeneous, if restricted to the quarter space R2

+.

On the other hand, changing coordinates again to b ≔ ℎ−2/3𝑥, results in

𝑃 = ℎ2/3
(
−𝜕2

b +𝑉 (0)b
)
+ O(ℎ4/3) ,

a regular perturbation of the Airy operator in ℎ > 0 (see [Kat95]). Thus, in a small area
around {𝑥 = 0} the solution behaves essentially as the Airy functions in regards to the leading
order in ℎ.
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Matched Asymptotic Expansions

Constructing WKB-approximation for both outer regimes {𝑥 > 0} and {𝑥 < 0} on one hand
and solving the Airy equation “at” {𝑥 = 0} leaves us with three regimes with significantly
different and independent approximative solutions. A popular method to relate these is the so
called method of matched asymptotic expansion. Briefly, it says that b = 𝑥/ℎ2/3 is a rescaled
variable on an infinitisimally small regime {𝑥 = 0}, the so called transition or boundary layer.
Its limit points b → ±∞ correspond to the (two) limit points 𝑥 → 0± of either side, allowing
us to relate both outer regimes. By solving the Airy equation at the transition layer one
obtains information about the asymptotic behavior at the boundary this layer. Writing these
asymptotic expansions in classical coordinates 𝑥 (and ℎ), it suggests a choice of lowest power
of ℎ in (2.21) by the vanishing order of 𝐴𝑖 as b → ±∞ and a choice of 𝛼0 by its coefficient.

Matched asymptotic expansions is a general method that can be applied for a wide class of
perturbed differential equations where the approximations of the homogeneous solutions are
not uniform. Detailed descriptions of this and other related methods can be found in [Hol13],
[KC96] and [Nol03].

Blow-ups and Model Operators

A relatively new approach to construct uniform approximations of homogeneous solutions
of the Schrödinger operator with linear potentials as in (2.20) uses techniques from singular
geometry such as blow-ups to distinguish between different regimes. As described in [Gri17]
and [Sob18] including the semi-classical parameter ℎ ≥ 0 into the geometry of the problem
has some significant conceptual advantages. The family of solutions 𝑢ℎ (𝑥) = 𝐴𝑖(𝑥/ℎ2/3) of
(2.20) is a function on the joint space H = R × R+,

𝑢(𝑥, ℎ) ≔ 𝑢ℎ (𝑥, ℎ) ,

where it is constant along the curves
{
𝑥 = 𝑐ℎ2/3}. The introduction of the rescaled variable

b = 𝑥/ℎ2/3 corresponds to a change of coordinates from (𝑥, ℎ) to (b, ℎ), outside of {ℎ = 0}.
Thus, the behavior in the transition layer, i.e. in {𝑥 = 0}, as ℎ → 0, corresponds to the
behavior of limℎ→0 𝑢(b, ℎ) = 𝑢(b, 𝑟), for any 𝑟 > 0, since 𝑢 is constant along the curves
{b = 𝑐}, 𝑐 ∈ R. The ambiguity of (b, 0) corresponding to the origin in H for all b ∈ R can be
resolved by the introduction of a quasihomogeneous blow-up

𝛽 : [H, 0]2/3 → H ,

where (b, 0) correspond to different points on the front face 𝛽−1(0) for different b ∈ R. The
transformed operator ℎ2/3(−𝜕2

b
+ b) + O(ℎ) is nothing but the asymptotic expansion of the

pullback of 𝑃 = −ℎ2𝜕2
𝑥 + 𝑥 via 𝛽 at the front face. The WKB-approximations on the other

hand are asymptotic solutions at either the left and right face, which are the lift of the outer
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regimes to the blown-up half space. Interestingly, the asymptotic power series

𝑥1/(4𝑐)
∞∑︁
𝑘=0

𝛼𝑘𝑥
−3/2𝑘ℎ𝑘 = 𝑟1/(2𝑐)

∞∑︁
𝑘=0

𝛼𝑘[
𝑘 ,

is polyhomogeneous at {𝑟 = 0} with respect to the induced coordinates [ = ℎ/𝑥3/2 and 𝑟 =
√
𝑥

at the corner of front and right face. The matching in the method of matched asymptotic
expansion then corresponds to the choice of solutions at either face for which there exists an
extension from the boundary faces to the interior of [H, 0]2/3 by the Borel lemma.
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In this chapter we lay out the basic principles in the analysis of semi-classical operators. After
giving a definition of generalized semi-classical operators on an interval 𝐼, which is the main
object of this thesis, our focus in the beginning is on operators with non-vanishing leading
coefficients. As it will turn out, these operators can be reduced to regular transport systems,
i.e. families of recurrent differential equations with corresponding elliptic transport operators,
by the choice of an appropriate WKB-ansatz.

The summands in the expansion of a generalized semi-classical operator 𝑃 = 𝑃(ℎ) can be
ordered both in powers of ℎ, for ℎ > 0, and order of differentiation. This allows for a Newton
polygon analysis of the operator in these two variables in Section 3.2. Similar to the classical
application of Newton polygons for algebraic curves in the plane, one is able to relate the
edges of the polygon P(Λ) to polynomials 𝐸𝛿 (𝑃) (𝑥, Z) with smooth coefficients, which is the
key finding of this chapter. For 𝑥 ∈ 𝐼 these polynomials can be used to express appropriate
eikonal equations

𝐸𝛿 (𝑃) (𝑥, 𝜑′(𝑥)) = 0 ,

linking combinatorial data to a suitable, generalized WKB-ansatz 𝑢 = 𝑒𝜑/ℎ
𝛿

𝐴 for each edge
of the polygon with slope 𝛿.

The chapter ends with a discussion about the range of applicability of this Newton polygon
analysis. In particular, it will display sufficient requirements for the solvability of eikonal
equations and their induced transport system with smooth solutions. Eventually, we are able
to prove a regular version of the main theorem, Theorem 3.3.9 in Section 3.3.1. Additionally
assuming 𝛿-separation of 𝑃 as in Definition 3.3.3, we can state the theorem in a simpler
version.

Theorem. Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 × R be a set of exponents and 𝑃 ∈ Diff Λ(𝐼).
Let L ⊂ 𝜕-P(Λ) with slope 𝛿 > 0. Let 𝜑 ∈ C∞(𝐼) be a simple, non-trivial solution of
𝐸𝛿 (𝑃) (·, 𝜑′) = 0 on 𝐼. Assume that 𝑃 is 𝛿-separated. Let 𝑇 be the leading operator in the
expansion of 𝑒−𝜑/ℎ𝛿𝑃𝑒𝜑/ℎ𝛿 as ℎ → 0.

Then there is a quasimode 𝑢 = 𝑒𝜑/ℎ
𝛿

𝐴, with 𝐴 ≔
∑∞
𝑘=0 𝑎𝑘ℎ

𝛽𝑘 , where 𝑎𝑘 ∈ C∞(𝐼) and
𝑎0 ∈ ker𝑇 with 𝑎0 . 0, such that

𝑒−𝜑/ℎ
𝛿

𝑃𝑒𝜑/ℎ
𝛿

𝐴 = O(ℎ∞) .

With minor adjustments in Theorem 3.3.11 one can show that there is a basis of independent
quasimodes for semi-classical operators, if it satisfies a condition called 𝛿-regularity.
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3.1 Generalized Semi-Classical Operators

In this section we introduce the central objects of this thesis, the so called generalized semi-
classical operators and their associated sets of exponents. The latter one will allow us to
reduce the analysis of perturbed differential operators to combinatorial problems in parts. This
section will be exploratory and driven by examples, emphasizing some of the basic problems of
quasimode construction. Noteworthily, in Subsection 3.1.2 we will present Proposition 3.1.7
about the existence of quasimodes of so called regular perturbations. It takes an essential role
in the construction of quasimodes in Theorem 3.3.9. Finally, we will introduce a generalized
WKB-ansatz for the ad-hoc construction of quasimodes with exponential behavior of some
generalized semi-classical operators.

3.1.1 Generalized Semi-Classical Operators

Definition & Remarks

Definition 3.1.1 (Generalized Semi-Classical Operators). Let 𝐼 ⊂ R be an interval and
Λ ⊂ N0 × R be a discrete set, which is bounded in its first argument and bounded from
below in its second argument. For each _ = (𝑘, 𝛼) ∈ Λ let 𝑎_ ∈ C∞(𝐼) be not identically zero
on 𝐼 and have only finite order zeros.

The formal operator sum defined by

𝑃 ≔
∑︁
_∈Λ

_=(𝑘,𝛼)

𝑎_ℎ
𝛼𝜕𝑘𝑥 , (3.1)

is called a generalized semi-classical operator with respect to Λ. The set Λ = Λ(𝑃) is called
set of exponents of 𝑃. The space of generalized semi-classical operators with respect to Λ on
𝐼 is defined by

Diff Λ(𝐼) ≔


∑︁

_=(𝑘,𝛼)
_∈Λ′

𝑎_ℎ
𝛼𝜕𝑘𝑥 : Λ′ ⊂ Λ, and 𝑎_ ∈ C∞(𝐼), for each _ ∈ Λ′

 . (3.2)

Remark 3.1.2. Since we require coefficient functions of 𝑃 =
∑
_ 𝑎_ℎ

𝛼𝜕𝑘𝑥 to be non-identically
zero, the sum of two generalized semi-classical operators 𝑃,𝑄 with Λ(𝑃) = Λ(𝑄) = Λ can
possibly have smaller sets of exponents Λ(𝑃 + 𝑄) ⊂ Λ. In particular, if 𝑄 = −𝑃 then
Λ(𝑃 +𝑄) = ∅. Thus, Diff Λ(𝐼) in (3.2) is the smallest vector space containing all operators 𝑃
with Λ(𝑃) = Λ.

Note that this class of operators with smooth coefficients having finite order zeros is larger
than the classes of semi-classical operators often considered in the literature.

The quasimodes we will construct in this section are not functions of (𝑥, ℎ) on the combined
space 𝐼 × R+ but rather asymptotic series with respect to the parameter ℎ. Thus, the most
natural class of operators is given by asymptotic series of classical operators with respect to
ℎ itself. One can think of these as asymptotic expansions of

∑𝑛
𝑘=0 𝐴𝑘 (𝑥, ℎ)𝜕𝑘𝑥 , 𝑛 ∈ N0, as
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ℎ𝛼

𝜕𝑘𝑥
0 1 2 3

0

1

2

3

Figure 3.1: The set of exponentsΛ = Λ(𝑃) = {(0, 1), (0, 2), (1, 0), (1, 2), (2, 1), (2, 3), (3, 3)}
of the operator 𝑃 in Example 3.1.4.

ℎ → 0, where each 𝐴𝑘 is smooth in its first and polyhomogeneous in its second argument.
Thus, these are naturally contained in this setting. In particular, standard semi-classical
operators are generalized semi-classical operators with sets of exponents bounded from below
by ΔR2

+
= {(𝑥, 𝑥) : 𝑥 ≥ 0}.

Examples

Example 3.1.3. The very first example of a generalized semi-classical operator on an interval
𝐼 ⊂ R is given by the Schrödinger operator

𝑃 ≔ −ℎ2𝜕2
𝑥 +𝑉 ,

with a potential 𝑉 ∈ C∞(𝐼) as in Subsection 2.4.1. We can directly compute its associated set
of exponents Λ = Λ(𝑃) = {(0, 0), (2, 2)}. Since its set of exponents Λ ⊂ ΔR2

+
is contained in

the diagonal of R2
+, 𝑃 is a semi-classical operator.

We have already analyzed the Schrödinger operator in Section 2.4, whose quasimodes’
behavior is heavily dependent on the sign of the potential 𝑉 . The classical WKB-ansatz
𝑢 = 𝑒𝑖𝜑/ℎ𝐴 of quasimodes with oscillatory-polyhomogeneous behavior, where 𝜑 ∈ C∞(𝐼)
and 𝐴 ∈ A(𝐼 × R+), relies on the fact that Λ ⊂ ΔR2

+
. As a consequence, the lowest order term

with respect to ℎ of

𝑃𝑒𝑖𝜑/ℎ𝐴 = 𝑒𝑖𝜑/ℎ
(
(𝜑′)2 +𝑉 + O(ℎ)

)
𝐴 (3.3)

vanish if and only if the eikonal equation

(𝜑′)2 +𝑉 = 0

is satisfied. Allowing for more points _ ∈ Λ contained in or even outside of the diagonal ΔR2
+

increases the difficulty of constructing quasimodes significantly.
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Example 3.1.4. Let 𝐼 ⊂ R be an interval and define

𝑃 ≔ ℎ3𝑥3𝜕3
𝑥 + (ℎ𝑥 + ℎ3𝑥2)𝜕2

𝑥 + (1 + ℎ2)𝜕𝑥 + ℎ(1 + ℎ𝑥) .

The operator 𝑃 is a generalized semi-classical operator and its associated set of exponents is
given by Λ = Λ(𝑃) = {(0, 1), (0, 2), (1, 0), (1, 2), (2, 1), (2, 3), (3, 3)} (see Figure 3.1). In
particular, 𝑃 is not a semi-classical operator since (1, 2), (2, 1) ∈ Λ are not contained in ΔR2

+
.

It is not obvious how or even if one is able to construct quasimodes for 𝑃 due to multiple
reasons at once. Since 𝑃 lacks parity between the powers of ℎ and the order of differentiation,
it is unclear if one can reestablish a promising WKB-type ansatz for the construction of
quasimodes. Also many of the coefficients of 𝑃 vanish at {𝑥 = 0} which might impose
additional complications. Having the Schrödinger operator with linear potential in mind, the
question arises whether one is able to find a quasimode on 𝐼 itself or whether one has to resolve
𝐼 × R+ in a suitable sense by the introduction of blow-ups.

3.1.2 Polyhomogeneous Quasimodes

The easiest case of generalized semi-classical operators is given by a regular perturbation.
These are formal sums of differential operators 𝑃 = ℎ𝛼𝑇 + 𝑜(ℎ𝛼), 𝛼 ∈ R, whose lowest order
term𝑇 ∈ Diff(𝐼) with respect to ℎ is elliptic. Taking any element 𝑢0 ∈ ker𝑇 yields a first order
quasimode, i.e. 𝑃𝑢0 = 𝑇𝑢0 + 𝑓 ℎ𝛽 + 𝑜(ℎ𝛽) = 𝑓 ℎ𝛽 + 𝑜(ℎ𝛽). Since 𝑇 is elliptic, one can find a
function 𝑢1 such that 𝑇𝑢1 eliminates the new, highest order remainder 𝑓 of 𝑃𝑢0 = 𝑓 ℎ𝛽 +𝑜(ℎ𝛽)
by extending the quasimode to 𝑢0 + 𝑢1ℎ

𝛽−𝛼. Applying 𝑃 to this yields an expansion

𝑃(𝑢0 + 𝑢1ℎ
𝛽−𝛼) = ℎ𝛼𝑇 (𝑢1ℎ

𝛽−𝛼) + 𝑓 ℎ𝛽 + 𝑜(ℎ𝛽) = ℎ𝛽 (𝑇𝑢1 + 𝑓 ) + 𝑜(ℎ𝛽) .

Thus, 𝑢1 has to satisfy 𝑇𝑢1 = − 𝑓 . The function 𝑢 = 𝑢0 + 𝑢1ℎ
𝛽−𝛼 is a second order quasimode

of 𝑃. The recurrent equations of the form 𝑇𝑢𝑘 = 𝑅𝑢 𝑗 , 𝑗 < 𝑘 , are called inhomogeneous
transport equations.

This subsection’s goal is to prove the essential result that one can construct arbitrarily
good quasimodes 𝑢 for any generalized semi-classical operator 𝑃 = ℎ𝛼𝑇 + 𝑜(ℎ𝛼), 𝛼 ∈ R,
with surjective leading term 𝑇 by iteratively solving transport equations. Since ℎ ≥ 0 is a
parameter commuting with any generalized semi-classical operator 𝑃 = 𝑃(ℎ), multiplying
any quasimode 𝑢 of 𝑃 with a polynomial 𝑝 ∈ C[ℎ] yields a new quasimode 𝑝 · 𝑢 of 𝑃. Thus,
we need to specify a new notion of independent quasimodes.

Definition

Definition 3.1.5 (Independent Quasimodes). Let Γ ⊂ 𝑇∗
C
𝐼 be a union of projectible submani-

folds, I be a family of index sets corresponding to the leaves of Γ and F ⊂ EAI (𝐼 × R+; Γ)
be a subset of the space of exponential-polyhomogeneous functions.

F is called independent, if the following holds:
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(i) For all 𝛿 > 0 and 𝜑′ ∈ C∞(𝐼) the set{
𝑎0 ∈ C∞(𝐼) : 𝑒𝜑/ℎ

𝛿

𝑎 ∈ F with 𝑎 = 𝑎0ℎ
𝛼 + 𝑜(ℎ𝛼)

}
is linearly independent over C∞(𝐼).

(ii) {𝑎0 ∈ C∞(𝐼) : 𝑎 ∈ F with 𝑎 = 𝑎0ℎ
𝛼 + 𝑜(ℎ𝛼)} is linearly independent over C∞(𝐼).

It is important to note that Definition 3.1.5 implicitly says that any two phase functions
𝜑1, 𝜑2 are equivalent, in the sense that {𝑒𝜑1/ℎ𝛿𝑎, 𝑒𝜑2/ℎ𝛿𝑎} is linearly dependent for every
𝛿 > 0, if (𝜑1 − 𝜑2)′ = 0. We will refer to these constant phase functions as trivial.

Remark 3.1.6. The second case contains exponential behavior of the form 𝑒𝜑/ℎ
𝛿 , 𝛿 ≤ 0, which

is not singular as ℎ → 0. Let 𝛿 ≤ 0, 𝜑 ∈ C∞(𝐼) and 𝑎 = 𝑎0ℎ
𝛼 + 𝑜(ℎ𝛼) be polyhomogeneous.

Then 𝑒𝜑/ℎ𝛿𝑎 itself is polyhomogeneous with leading part 𝑎0, since 𝑒𝜑/ℎ𝛿 = 1 + 𝑜(1).

Statements & Remarks

The following proposition is the central tool in the construction of quasimodes of generalized
semi-classical operators. In Section 3.3 we will show that one can reduce the construction of
exponential-polyhomogeneous quasimodes to this proposition with the techniques developed
in Section 3.2.

Proposition 3.1.7. Let 𝑉,𝑊 be vector spaces, 𝐼 ⊂ N be a family of indices and for 𝑘 ∈ 𝐼

let 𝑅𝑘 : 𝑉 → 𝑊 be linear and 𝑃 ≔ 𝑇 + ∑
𝑘∈𝐼 ℎ

𝛼𝑘𝑅𝑘 , where {𝛼𝑘 : 𝑘 ∈ 𝐼} ⊂ R>0 is discrete.
Suppose that 𝑇 is surjective.

Then for each 𝑢0 ∈ ker𝑇 there is a formal sum 𝑢 =
∑
𝑘∈𝐽 𝑢𝑘ℎ

𝛽𝑘 and 𝐽 ⊂ N, with 𝑢𝑘 ∈ 𝑉
for each 𝑘 ∈ 𝐽 and {𝛽𝑘 : 𝑘 ∈ 𝐽} ⊂ R>0 discrete, such that

𝑃𝑢 = O(ℎ∞) .

Proof. Without loss of generality assume that ker𝑇 ≠ {0} and 𝛼𝑘 < 𝛼𝑘+1 for all 𝑘 ∈ 𝐼. Denote
𝑅(ℎ) ≔ 𝑃 − 𝑇 , let 𝑢0 ∈ ker𝑇 \ {0} and 𝛽0 ≔ 0. Then 𝑃𝑢0 = 𝑇𝑢0 + O(ℎ𝛼1) = O(ℎ𝛼1) since
𝑅(ℎ) = O(ℎ𝛼1). Then 𝑅(ℎ)𝑢0 ∈

⊕
𝑘 ℎ

𝛼𝑘𝑊 . Since 𝑇 is surjective there is a 𝑢1 ∈ C∞(R),
𝑢1 ≠ 0, s.t.

𝑇𝑢1 = −𝑅1𝑢0 ,

with 𝛽1 ≔ 𝛼1. Note that 𝑅 − ℎ𝛼1𝑅1 = 𝑜(ℎ𝛽1). Thus, for 𝑢 ≔ 𝑢0 + ℎ𝛽1𝑢1, it follows that

𝑃𝑢 = 𝑇𝑢0 + 𝑅(ℎ)𝑢0 + 𝑇
(
𝑢1ℎ

𝛽1
)
+ 𝑅(ℎ)

(
𝑢1ℎ

𝛽1
)
= 0 + (𝑅(ℎ) − 𝑅1)𝑢0 + ℎ𝛽1𝑅𝑢1 = 𝑜(ℎ𝛽1) .

Proceeding this way, we can inductively construct a quasimode 𝑢 (𝑁 ) =
∑𝑁
𝑘=0 𝑢𝑘ℎ

𝛽𝑘 with
𝑢𝑘 ∈ 𝑊 , such that

𝑃𝑢 (𝑁 ) = O
(
ℎ𝛽𝑁

)
.

49



3 Regular Operators

What remains to be shown is that (𝛽𝑛)𝑛∈N itself is discrete. To prove that, we will use a different
order of solving the inhomogeneous transport equations, possibly risking redundancies. Let
𝑁 ∈ N be arbitrary. We claim that there is an 𝑀 ∈ N such that 𝛽𝑀 ≥ 𝑁 .

Since (𝛼𝑛)𝑛∈𝐼 is discrete there is a 𝑚0 ∈ N such that 𝛼𝑚0 ≤ 𝑁 < 𝛼𝑚0+1, where we define
𝛼𝑛 ≔ +∞, for 𝑛 ∉ 𝐼. Thus, we can split the formal series of operators

𝑃 = 𝑇 +
𝑚0∑︁
𝑘=1

ℎ𝛼𝑘𝑅𝑘 + O(ℎ𝑁 )

into three parts: the transport operator 𝑇 , all terms with powers of ℎ greater than 𝑁 and a
finite sum in between. Thus, applying 𝑃 to 𝑢0 yields at most finitely many remainder terms
𝑓0, 𝑗 ≔ 𝑅 𝑗𝑢0 on the right hand side,

𝑃𝑢0 =

𝑚0∑︁
𝑘=1

𝑓0, 𝑗ℎ
𝛼𝑗 + O(ℎ𝑁 ) ,

with powers of ℎ less that 𝑁 . On the other hand, we have
∑𝑚0
𝑘=1 𝑓0, 𝑗ℎ

𝛼𝑗 = O(ℎ𝛼1), since
𝛼 𝑗 ≥ 𝛼1 > 0. We simultaneously solve all inhomogeneous transport equations corresponding
to 𝑓0, 𝑗 , i.e.

𝑇𝑢1, 𝑗 = 𝑓0, 𝑗 ,

and sort the collection of remainder terms 𝑓1, 𝑗 ≔ 𝑅 𝑗𝑢1, 𝑗 in the expansion

𝑃
©«𝑢0 +

𝑚0∑︁
𝑗=1
𝑢1, 𝑗ℎ

𝛼𝑗ª®¬ = 𝑅(ℎ) ©«
𝑚0∑︁
𝑗=1
𝑢1, 𝑗ℎ

𝛼𝑗ª®¬ =

𝑚1∑︁
𝑗=1

𝑓1, 𝑗ℎ
𝛼1, 𝑗 + O(ℎ𝑁 ) ,

where 𝑚1 ≔ 𝑚2
0. Most importantly, 𝛼1, 𝑗 ≥ 2𝛼1, since 𝑅(ℎ) = O(ℎ𝛼1). Thus, repeating this

process 𝑛 ≔ ⌊𝑁/𝛼1⌋ + 1 times, it follows that

𝑃
©«𝑢0 +

𝑛∑︁
𝑘=1

𝑚0∑︁
𝑗=1
𝑢𝑘, 𝑗ℎ

𝛼𝑘, 𝑗ª®¬ =

𝑚𝑛+1∑︁
𝑗=1

𝑓𝑚𝑛+1, 𝑗ℎ
𝛼𝑛+1, 𝑗 + O(ℎ𝑁 ) = O(ℎ𝑁 ) ,

since 𝛼𝑛+1, 𝑗 ≥ (𝑛 + 1)𝛼1 ≥ 𝑁 , for all 𝑗 = 1, . . . , 𝑚𝑛+1. Ordering 𝑢𝑘, 𝑗 in by their exponents
with respect to ℎ and relabeling 𝛼𝑘, 𝑗 accordingly in successive order by 𝛽𝑘 yields that after
solving at most 𝑀 ≔ 1+∑𝑛

𝑘=1 𝑚𝑘 =
∑𝑛
𝑘=0 𝑚

𝑘
0 inhomogeneous equations in the indicated order,

we have that

𝑃𝑢𝑀 = O
(
ℎ𝑁

)
.

In particular, all further additions to 𝑢𝑀 will be of order 𝑜(ℎ𝛽𝑀 ) and {𝛽𝑘 : 𝑘 ∈ 𝐽} ⊂ R>0 is
discrete. □
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Remark 3.1.8. Due to the alternative order in which we have solved the inhomogeneous
transport equations in the proof of Proposition 3.1.7 the exponents 𝛼𝑘, 𝑗 are in ascending order
in 𝑗 for each fixed 𝑘 , but are unordered along 𝑘 for each fixed 𝑗 . In general it is possible that
𝛼𝑘, 𝑗 = 𝛼𝑙,𝑖 for (𝑘, 𝑗) ≠ (𝑙, 𝑖), which does not violate the proof. This method of counting will
occur repeatedly throughout this thesis.

Corollary 3.1.9. Let 𝐼 ⊂ R be an interval,Λ ⊂ N0×R+ be a set of exponents and 𝑃 ∈ Diff Λ(𝐼),
where 𝑃 = 𝑇 + ∑∞

𝑘=0 ℎ
𝛼𝑘𝑅𝑘 . Assume that 𝑇 is elliptic and denote 𝑑 ≔ deg𝑇 .

Then there are independent quasimodes 𝑢 𝑗 =
∑
𝑘 𝑢 𝑗 ,𝑘ℎ

𝛽 𝑗,𝑘 , 𝑗 = 1, . . . , 𝑑, with 𝑢 𝑗 ,0 ∈ ker𝑇
and 𝑢 𝑗 ,𝑘 ∈ C∞(𝐼).

Proof. Let 𝑇 be elliptic and 𝑑 ≔ deg𝑇 . Then by standard ODE theory it is surjective as an
operator from C∞(𝐼) → C∞(𝐼) and dim ker𝑇 = 𝑑. Let 𝑢 𝑗 ,0, 𝑗 = 1, . . . , 𝑑 be a basis of ker𝑇 .
Then we can apply Proposition 3.1.7 for each 𝑢 𝑗 ,0. □

Definition 3.1.10 (Transport Operator). For a semi-classical operator

𝑃 = 𝑇 +
∞∑︁
𝑘=0

ℎ𝛼𝑘𝑅𝑘 , (3.4)

with 𝛼𝑘 > 0, we call its leading term 𝑇 with respect to ℎ the transport operator associated to
𝑃. Any equation of the form 𝑇𝑢 = 0 or 𝑇𝑢 = −𝑅𝑘 𝑓 , for any given 𝑓 ∈ C∞(𝐼) and 𝑘 ∈ N, is
called (inhomogeneous) transport equation.

Remark 3.1.11. Note that Λ being a set of exponents already implies that (𝛼𝑛)𝑛∈N is strictly
increasing and unbounded. This is due to the discreteness of Λ.

Examples

Example 3.1.12. Revisiting Example 3.1.3 with 𝑃 = −ℎ2𝜕2
𝑥 + 𝑉 , let 𝜑± be the solutions of

(𝜑′)2 +𝑉 = 0. Thus, expanding (3.3) completely yields

𝑒−𝑖𝜑±/ℎ𝑃𝑒𝑖𝜑±/ℎ = ℎ
(
−2𝑖𝜑′±𝜕𝑥 − 𝑖𝜑′′±

)
+ ℎ2

(
−𝜕2

𝑥

)
.

If 𝑉 (𝑥) ≠ 0 for all 𝑥 ∈ 𝐼 then 𝜑′±(𝑥) =
√︁
−𝑉 (𝑥) ≠ 0 for all 𝑥 ∈ 𝐼. In particular, the transport

operator 𝑇 of the conjugated operator exp(−𝑖𝜑/ℎ)𝑃 exp(𝑖𝜑/ℎ), given by

𝑇 ≔ −2𝑖𝜑′±𝜕𝑥 − 𝑖𝜑′′±

is an elliptic first order differential operator. Thus, we can apply Corollary 3.1.9 and obtain
a polyhomogeneous quasimode 𝑢± of ℎ

(
−2𝑖𝜑′±𝜕𝑥 − 𝑖𝜑±”

)
+ ℎ2 (

−𝜕2
𝑥

)
for each phase function

𝜑±. Thus,

{𝑒𝜑±𝑢±}
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is a set of independent quasimodes, since 𝜑+ ≠ 𝜑−. Note that the amount of independent
quasimodes matches the degree of 𝑃.

Remark 3.1.13. The application of Corollary 3.1.9 coincides with the procedure presented in
Subsection 2.4.1, where we displayed how to construct a quasimode by solving the inhomo-
geneous transport equation iteratively.

Example 3.1.14. Let 𝑃 ≔ −ℎ2𝜕2
𝑥 + (𝜕𝑥 −𝑉) on 𝐼 ⊂ R and 𝑉 ∈ C∞(𝐼). The set of exponents

is given by Λ = {(0, 0), (1, 0), (2, 2)} and thus 𝑃 is not a standard but a generalized semi-
classical operator. Even though 𝑃 is similar to the Schrödinger operator, the leading term
𝑇 ≔ 𝜕𝑥 − 1 of 𝑃 with respect to ℎ is elliptic and has degree deg𝑇 = 1. Thus, we can apply
Corollary 3.1.9 and obtain a quasimode 𝑢 with leading term 𝑢0 = exp.

This result is not satisfying in its current state. While we are able to create some polyhomo-
geneous quasimodes if deg𝑇 ≠ 0, the number of quasimodes deg𝑇 obtained this way is lower
than the degree of 𝑃 in general. Determining other potential quasimodes with exponential-
polyhomogeneous behavior as in the standard semi-classical case will be the central task of
the upcoming subsection.

3.1.3 Exponential Behavior

To obtain the missing quasimode in Example 3.1.14 corresponding to the mismatch of deg 𝑃
and deg𝑇 we have to approach generalized semi-classical operators in an adjusted way com-
pared to Section 2.4. In the case of the Schrödinger operator with strictly negative potential
𝑉 ∈ C∞(𝐼), 𝑉 < 0,

𝑃 ≔ −ℎ2𝜕2
𝑥 +𝑉 ,

we applied the WKB-ansatz in Examples 3.1.3 and 3.1.12 to obtain two quasimodes. The most
obvious justification for this ansatz is shown in the case where𝑉 is constant. Then the solutions
of 𝑃𝑢 = 0 can be computed directly and are given by 𝑢± = exp(±

√
𝑉𝑥/ℎ). The WKB-ansatz

extrapolates this in the anticipation that for general potentials𝑉 ∈ C∞(𝐼) solutions 𝑢 of 𝑃𝑢 = 0
are asymptotically of the form 𝑢 = 𝑒𝜑/ℎ𝐴 for some phase function 𝜑 ∈ C∞(𝐼) and amplitude
𝐴 ∈ C∞

ℎ
(𝐼). The generalized WKB-ansatz takes this ansatz and generalizes it, anticipating that

any potential quasimode 𝑢 of 𝑃 can have exponential behavior 𝑢 = 𝑒𝜑/ℎ
𝛿

𝐴, where 𝐴 ∈ C∞
ℎ
(𝐼),

𝜑 ∈ C∞(𝐼) and arbitrary 𝛿 ∈ R.
Since the exponential factor is restored after differentiation we can conjugate 𝑃 = −ℎ2𝜕2

𝑥 +𝑉
with 𝑒𝜑/ℎ𝛿 and obtain

𝑒−𝜑/ℎ
𝛿

𝑃𝑒𝜑/ℎ
𝛿

= −ℎ2

((
𝜕𝑥𝜑

ℎ𝛿

)2
+ 2

(
𝜕𝑥𝜑

ℎ𝛿

)
𝜕𝑥 +

(
𝜕2
𝑥𝜑

ℎ𝛿

)
+ 𝜕2

𝑥

)
+𝑉 . (3.5)

If 𝛿 < 0 then all newly generated summands are relatively small compared to −ℎ2𝜕2
𝑥 and will

not impact any initial solution. The case of 𝛿 = 0 only has impact on 𝜕2
𝑥 , transforming it into a

more general second order differential operator 𝜕2
𝑥 + 2𝜑′𝜕𝑥 + (𝜑′)2 + 𝜑′′. Choosing 𝛿 > 0, on
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the other hand, has a significant impact on the structure of (3.5). Due to the higher multiplicity
of 𝜑′, the two lowest terms of the conjugated operator are given by

𝑒−𝜑/ℎ
𝛿

𝑃𝑒𝜑/ℎ
𝛿

= −ℎ2−2𝛿 (𝜑′)2 +𝑉 + O
(
ℎ2−𝛿

)
,

with parity of exponents 0 and 2 − 2𝛿 of ℎ of the first two terms gained at 𝛿 = 1. The lowest
order term 𝑇 of 𝑒−𝜑/ℎ𝛿𝑃𝑒𝜑/ℎ𝛿 with respect to 𝛿 ∈ R is given by

𝑇 =


𝑉 , if 𝛿 < 1 ,

−(𝜑′)2 +𝑉 , if 𝛿 = 1 ,

−(𝜑′)2 , if 𝛿 > 1 ,

which is a multiplication operator in all of these cases. Hence, we have deg𝑇 = 0, which
means that the only chance of obtaining quasimodes is by erasing the multiplication operator
as whole. This is only possible in the cases of 𝛿 = 1 and 𝛿 > 1 by an appropriate choice of 𝜑
satisfying 

(𝜑′)2 = 𝑉 , if 𝛿 = 1 ,

(𝜑′)2 = 0 , if 𝛿 > 1 .

Since 𝑉 was chosen to be strictly negative in the beginning of Subsection 3.1.3, any solution
𝜑 = ±

∫
𝑖
√
−𝑉 in the case of 𝛿 = 1 takes only imaginary values and thus 𝑒Φ = 𝑒𝜑/ℎ

𝛿 is
oscillating as ℎ → 0. In the case of 𝛿 > 1, all solutions 𝜑 of 𝜑′ = 0 are trivial. In particular,
𝑒𝜑/ℎ𝐴 is not independent from 𝐴 and 𝑒−𝜑/ℎ𝑃𝑒𝜑/ℎ = 𝑃. When 𝛿 = 1 and 𝜑 =

∫
𝑖
√
−𝑉 , the

lowest order term𝑇 = (−2𝜑′𝜕𝑥−𝜑′′) of 𝑒−𝜑/ℎ𝑃𝑒𝜑/ℎ was already computed in Example 3.1.12.

Allowing for arbitrary powers 𝛿 > 0 in the ansatz will turn out to be extremely fruitful,
especially when it is analyzed in the context of sets of exponents. Before we continue following
the approach described in Section 2.4, we want to illustrate the applicability of the generalized
WKB-ansatz with some slightly more complicated examples of generalized semi-classical
operators.

Examples

The easiest operator where we can apply the generalized WKB-ansatz is the direct extension
of the Schrödinger operator, where we allow for any positive power 𝛾 > 0 of ℎ in front of the
derivative.

Example 3.1.15. Let 𝐼 ⊂ R and define 𝑃 ≔ −ℎ2𝛾𝜕2
𝑥 +𝑉 , for some 𝑉 ∈ C∞(𝐼). Its associated

set of exponents Λ = Λ(𝑃) = {(0, 0), (2, 2𝛾)} is contained in the diagonal if and only if 𝛾 = 1
and thus it is a generalized semi-classical operator. By applying a generalized WKB-ansatz with
𝑒𝜑/ℎ

𝛾 , one can directly and analogously repeat the computations in Examples 3.1.3 and 3.1.12.
On the other hand, by defining ℎ̃ ≔ ℎ𝛾 , this is exactly the same setting as in the mentioned
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examples. Hence its quasimodes are of the form

𝑢± = 𝑒±𝑖
∫ √

−𝑉/ℎ̃𝐴 = 𝑒±𝑖
∫ √

−𝑉/ℎ𝛾 𝐴 .

We revisit Example 3.1.14, where we have computed a quasimode for 𝑃 = −ℎ2𝜕2
𝑥 + (𝜕𝑥 −1),

and try to compute the missing quasimode using the generalized WKB-ansatz.

Example 3.1.16. Let 𝐼 ⊂ R and define 𝑃 ≔ −ℎ2𝜕2
𝑥 + (𝜕𝑥 − 1). Since its highest order

derivative also vanishes as ℎ → 0 compared to every other term of 𝑃, we expect there to be
a quasimode obtainable by the use of the generalized WKB-method. Applying it, the lowest
order term of

𝑒−𝜑/ℎ
𝛿

𝑃𝑒𝜑/ℎ
𝛿

= −ℎ2−2𝛿 (𝜑′)2 − ℎ2−𝛿 (2𝜑′𝜕𝑥 + 𝜑′′) − ℎ2𝜕2
𝑥 + ℎ−𝛿𝜑′ + 𝜕𝑥 − 1

is given by

𝑇 =


𝜑′ , if 0 < 𝛿 < 2 ,

−(𝜑′)2 + 𝜑′ , if 𝛿 = 2 ,

−(𝜑′)2 , if 𝛿 > 2 .

Thus, for the value 𝛿 = 2 there is a WKB-ansatz whose leading operator vanishes with a
non-trivial phase 𝜑(𝑥) = 𝑥. Again, following Equation 3.5 with 𝛿 = 2 and 𝜑(𝑥) = 𝑥 the
leading operator in the expansion of 𝑒−𝜑/ℎ2

𝑃𝑒𝜑/ℎ
2 is given by

𝑇 = (1 − 2𝜑′)𝜕𝑥 − (1 + 𝜑′′) = − (𝜕𝑥 + 1) .

Since this is an elliptic operator we can apply Proposition 3.1.7 and obtain a quasimode
𝑢 = 𝑒𝑥/ℎ

2
𝐴(𝑥, ℎ) with 𝐴 ∈ C∞

ℎ
(𝐼).

3.2 Combinatorial Geometry I: Newton Polygons

The observations made in Subsection 3.1.3 allowing for the construction of exponential-
polyhomogeneous quasimodes are vague at this stage. The aim of this section is to work
through these observations systematically to establish a framework in which we can see a
priori in what form, if any, quasimodes exist for any operator. In the core of this section,
we will present the notion of 𝛿-symbols Σ𝛿 (𝑃) in Definition 3.2.3, a family of symbols
generalizing the standard semi-classical symbol, whose leading term 𝐸𝛿 (𝑃) can be used to
express eikonal equations. These symbols can be used efficiently with the introduction of
Newton polygons for semi-classical operators in Definition 2.3.2. Newton polygons allow an
analysis of generalized semi-classical operators based on their combinatorial data in form of
the set of exponents. This results in Proposition 3.2.15 using the Newton polygon to determine
the relevant values 𝛿 for Σ𝛿 (𝑃). Eventually, these values of 𝛿 coincide with the relevant values
for the generalized WKB-ansatz in Section 3.1.
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3.2.1 Semi-Classical 𝛿-Principal Symbol

Motivation

Revisiting Example 3.1.15 with its operator 𝑃 = −ℎ2𝛾𝜕2
𝑥 + 𝑉 , the successful application of a

generalized WKB-ansatz of the form 𝑒𝜑/ℎ
𝛿 with 𝛿 = 𝛾 was not far-fetched. The commutator

of the vector field 𝜕𝑥 and the exponential term[
𝜕𝑥 , 𝑒

𝜑/ℎ𝛿
]
= ℎ−𝛿 · 𝜑′𝑒𝜑/ℎ𝛿 (3.6)

has a decreased homogeneity with respect to ℎ if and only if 𝛿 > 0. Since 𝑃 is a second order
differential operator it appears quadratically exactly once. Thus, one only needs to choose
𝛿 ∈ R such that the powers associated to the squared commutator and the potential 𝑉 match,
i.e.

2𝛾 − 2𝛿 = 0 .

The operator 𝑃 = −ℎ2𝜕2
𝑥 + (𝜕𝑥 − 𝑉) in Example 3.1.16 with the value 𝛿 = 2 has proven to

be successful for the generalized WKB-ansatz 𝑒𝜑/ℎ𝛿 . The main concern in this example was
the differential term 𝜕𝑥 in the middle, which will generate an additional commutator whose
associated power −𝛿 < 0 is negative, in particular when choosing 𝛿 = 1 such that (𝜑′)2 and
𝑉 have the same homogeneity 0 in ℎ. Thus, the only possibility of leveling different leading
powers of ℎ can occur between the terms which arise from ℎ2𝜕2

𝑥 and 𝜕𝑥 ,

𝑒𝜑/ℎ
𝛿
(
−ℎ2−2𝛿 (𝜑′)2 + ℎ−𝛿𝜑′

)
(3.7)

which happens for 𝛿 = 2. In general any summand of order 𝑛 of a generalized operator 𝑃 ∈
Diff Λ(𝐼) will generate (𝑛 + 1) summands after conjugation with 𝑒𝜑/ℎ𝛿 . A direct computation
in (2.15) shows that

𝑒−𝜑/ℎ
𝛿

𝜕𝑛𝑥 𝑒
𝜑/ℎ𝛿 = ℎ−𝑛𝛿 (𝜑′)𝑛 + ℎ−(𝑛−1) 𝛿

[
𝑛(𝜑′)𝑛−1

(
𝜕𝑥 +

𝑛 − 1
2

𝜑′′

𝜑′

)]
+ O

(
ℎ−(𝑛−2) 𝛿

)
.

the lowest of these terms with respect to ℎ is the 𝑛-th power of the phase function’s first
derivative 𝜑′. Equation 3.6 shows that the conjugation of 𝑃 = 𝑝(𝑥, ℎ, 𝜕𝑥) can be expressed
again using its symbol

𝑒−𝜑/ℎ
𝛿

𝑃𝑒𝜑/ℎ
𝛿

= 𝑝

(
𝑥, ℎ, 𝜕𝑥 +

𝜑′

ℎ𝛿

)
.

In particular, Equation 2.15 shows that its leading term

𝑝

(
𝑥, ℎ, 𝜕𝑥 +

𝜑′

ℎ𝛿

)
= ℎ𝑙𝛿𝐸𝛿 (𝑃) (𝑥, 𝜑′) + 𝑜(ℎ𝑙𝛿 ) , (3.8)

is always given by an element 𝐸𝛿 (𝑃) ∈ C∞
ℎ
(𝐼) [Z], for some value 𝑙𝛿 ∈ R. This is important

since all higher terms in the expansion of 𝑝(𝑥, ℎ, 𝜕𝑥 + 𝜑′/ℎ𝛿) = 𝑝(𝑥, ℎ, 𝜕𝑥 , 𝜑′) are depending
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3 Regular Operators

on two non-commutating variables Z and b, evaluated at Z = 𝜑′ and b = 𝜕𝑥 . We want to keep
track for both the power of 𝜑′ and the order of differentiation of each term in 𝑒−𝜑/ℎ𝛿𝑃𝑒𝜑/ℎ𝛿

independently. An important commutator relation between vector fields and functions was
already given in (3.6), saying that [𝜕𝑥 , 𝑓 ] = 𝑓 ′ for any function 𝑓 ∈ C∞(𝐼). In particular, the
commutator of 𝜕𝑥 and 𝑓 is an element of C∞(𝐼) itself, hence the iterated commutator

[[𝜕𝑥 , 𝑓 ], 𝑔] = 0 , (3.9)

vanishes identically, for any 𝑔 ∈ C∞(𝐼). This is reflected in our definition of symbol algebras.

Definitions & Properties

Definition 3.2.1 (Semi-Classical Symbol Algebra). Let 𝐼 ⊂ R be an interval and Aℎ (𝐼) ≔
C∞
ℎ
(𝐼)⟨b, Z⟩ be the non-commutative, associative, unital algebra over C∞

ℎ
(𝐼) generated by b

and Z . Let I ≤ A be the two-sided ideal generated by [[b, Z], Z].
Then we call

Sℎ (𝐼) ≔ Aℎ (𝐼)⧸I

the semi-classical symbol algebra over 𝐼.

We need to check if the (re-)substitution of b = 𝜕𝑥 and Z = 𝜑′ is well defined on the quotient
space Sℎ (𝐼).

Lemma 3.2.2. Let 𝐼 ⊂ R be an interval, 𝑓 ∈ C∞(𝐼) and 𝔳 ∈ 𝔛(𝐼). Then the associated
evaluation homomorphism

] 𝑓 ,𝔳 : Aℎ (𝐼) → C∞
ℎ (𝐼) ⊗ Diff(𝐼) ,

defined by the basis element mappings

1 ↦→ 1 , b ↦→ 𝔳 , Z ↦→ 𝑓 ,

descends to a map

] 𝑓 ,𝔳 : Sℎ (𝐼) → C∞
ℎ (𝐼) ⊗ Diff(𝐼) .

Proof. This is an immediate consequence of ] 𝑓 ,𝔳 |I ≡ 0 since

] 𝑓 ,𝔳 ( [[b, Z], Z]) = [[𝔳, 𝑓 ], 𝑓 ] = 0

by (3.9). □

For convenience, we denote the equivalence class of 𝑎 ∈ Aℎ (𝐼) in Sℎ (𝐼) by 𝑎 again and
for any 𝑎 ∈ Sℎ (𝐼) we use the short notation 𝑎(ℎ, 𝑥, 𝔳, 𝑓 ) ≔ (] 𝑓 ,𝔳) (ℎ, 𝑥).
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3.2 Combinatorial Geometry I: Newton Polygons

The idea of the upcoming definition of semi-classical 𝛿-symbol is to map generalized semi-
classical operators 𝑃 = 𝑝(𝑥, ℎ, 𝜕𝑥) to the non-commutative polynomial 𝑝(𝑥, ℎ, b+Z/ℎ𝛿). This
way the full 𝛿-symbol Σ𝛿 distinguishes between differential terms 𝜕𝑥 and contributions of the
commutator in (3.6) of the conjugated operator 𝑒−𝜑/ℎ𝛿𝑃𝑒𝜑/ℎ𝛿 .

Definition 3.2.3 (Semi-Classical 𝛿-Symbol). Let 𝐼 ⊂ R be an interval, Λ ⊂ N × R be a
set of exponents, 𝛿 > 0 and 𝑃 ∈ Diff Λ(𝐼) be a generalized semi-classical operator, 𝑃 =∑
_∈Λ 𝑎_ℎ

𝛼𝜕𝑘𝑥 .

The full 𝛿-symbol Σ𝛿 is the map

Σ𝛿 : Diff Λ(𝐼) → Sℎ (𝐼)

𝑃 ↦→
∑︁
_∈Λ

_=(𝑘,𝛼)

𝑎_ℎ
𝛼

(
b + Z

ℎ𝛿

) 𝑘
.

The 𝛿-principal symbol of 𝑃 is the map

𝐸𝛿 : Diff Λ(𝐼) → C∞(𝐼) [Z]

defined by the leading part of Σ𝛿 (𝑃) with respect to ℎ with associated power 𝑙𝛿 ∈ R, i.e.

Σ𝛿 (𝑃) (ℎ, 𝑥, b, Z) ∼ ℎ𝑙𝛿𝐸𝛿 (𝑃) (𝑥, Z) + 𝑜(ℎ𝑙𝛿 ) , ℎ → 0 . (3.10)

Lemma 3.2.4. Let 𝐼 ⊂ R and 𝑃 ∈ Diff Λ(𝐼). Then we have

𝑙𝛿 = min{𝛼 − 𝑘𝛿 : (𝑘, 𝛼) ∈ Λ} .

Proof. This is a direct consequence of 𝐸𝛿 (𝑃) being the leading part of Σ𝛿 (𝑃) and Equa-
tion 2.14. □

Remark 3.2.5. By definition of the full 𝛿-symbol, we have

𝑒−𝜑/ℎ
𝛿

𝑃𝑒𝜑/ℎ
𝛿

= Σ𝛿 (𝑃) (ℎ, 𝑥, 𝜕𝑥 , 𝜑′) = ℎ𝑙𝛿𝐸𝛿 (𝑃) (𝑥, 𝜑′) + 𝑜(ℎ𝑙𝛿 ) . (3.11)

In particular, we have that the 𝛿-symbol maps vector fields

ℎ𝛾𝜕𝑥 ↦→ ℎ𝛾
(
b + Z

ℎ𝛿

)
to its conjugated symbolic counterpart. It is noteworthy that for trivial phase functions 𝜑 the
full 𝛿-symbol

Σ𝛿 (𝑃) (ℎ, 𝑥, b, 0) = 𝜎(𝑃) (ℎ, 𝑥, b)

coincides with the classical full symbol of operators 𝑃.
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Recall that, by construction, the 𝛿-principal symbol is independent of Z . Since it is the
lowest order term with respect to ℎ in the expansion of Σ𝛿 (𝑃) (𝑥, ℎ, b, Z), we can express the
eikonal equation in terms of 𝐸𝛿 (𝑃) namely

𝐸𝛿 (𝑃) (𝑥, 𝜑′) = 0 ,

of the associated conjugation of 𝑃 by 𝑒𝜑/ℎ𝛿 as in (3.11). The 𝛿-principal symbol 𝐸𝛿 coincides
with the standard semi-classical symbol for 𝛿 = 1 when applied to any standard semi-classical
operator𝑄 = 𝑞(𝑥, ℎ, ℎ𝜕𝑥). In particular, we have 𝑙1 = 0 if 𝑞(𝑥, 0, b) . 0. Note that in the case
of generalized semi-classical operators 𝑙𝛿 can take arbitrary values in R, even if 𝛿 = 1.

Definition 3.2.6 (Eikonal Equation). Let 𝐼 ⊂ R be an interval,Λ ⊂ N×R be a set of exponents,
𝛿 > 0 and 𝑃 ∈ Diff Λ(𝐼) be a generalized semi-classical operator. Let 𝐸𝛿 be the 𝛿-principal
symbol.

We call 𝐸𝛿 (𝑃) ∈ C∞(𝐼) [Z] the eikonal polynomial of 𝑃 with respect to 𝛿. The first order
differential equation

𝐸𝛿 (𝑃) (·, 𝜑′) = 0 ,

is called eikonal equation with respect to 𝑃 and 𝛿. Its solutions 𝜑 are called simple, if for each
𝑥 ∈ 𝐼 the solution 𝜑′(𝑥) of 𝐸𝛿 (𝑃) (𝑥, 𝜑′(𝑥)) = 0 is simple. Further, a solution 𝜑 of an eikonal
equation is call trivial, if 𝜑′ ≡ 0.

Additionally, we call 𝐸𝛿 (𝑃) trivial, if for any solution 𝜑′ of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0 it follows that
𝜑′ ≡ 0.

For a generalized semi-classical operator 𝑃 and almost all values of 𝛿 > 0 their associated
eikonal polynomials 𝐸𝛿 (𝑃) are monomials in Z , i.e.

𝐸𝛿 (𝑃) (𝑥, Z) = 𝑎(𝑥)Z 𝑘 ,

with 𝑎 ∈ C∞(𝐼). In these cases the solutions 𝜑 ∈ C∞(𝐼) of the induced eikonal equations

𝐸𝛿 (𝑃) (𝑥, 𝜑′) = 𝑎(𝑥) (𝜑′(𝑥))𝑘 = 0 ,

are trivial.
For those values of 𝛿 > 0 where 𝐸𝛿 (𝑃) is not trivial, the non-trivial solutions 𝜑′ of the

associated eikonal equation are smooth under certain conditions. In particular, 𝜑 is smooth,
too.

Proposition 3.2.7. Let 𝐼 ⊂ R, 𝑑 ∈ N, 𝑎𝑘 ∈ C∞(𝐼), 1 ≤ 𝑘 ≤ 𝑑, and 𝐸 ∈ C∞(𝐼) [Z], be a
polynomial of degree 𝑑 ≥ 1, 𝐸 (𝑥, Z) = ∑𝑑

𝑘=0 𝑎𝑘 (𝑥)Z 𝑘 , with 𝑎𝑑 (0) ≠ 0. Assume that for 𝑥 = 0
all roots Z1,0, . . . , Z𝑑,0 of 𝐸 (0, ·) are simple.

Then there is a neighborhood 𝑈 ⊂ 𝐼 of 0 and smooth maps Z𝑘 : 𝑈 → C, such that
𝐸 (·, Z𝑘) |𝑈 = 0 and Z𝑘 (0) = Z𝑘,0, for all 1 ≤ 𝑘 ≤ 𝑑.
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3.2 Combinatorial Geometry I: Newton Polygons

Proof. Let 𝑑 ∈ N, 𝑑 ≥ 1, let 𝑎𝑘 ∈ C∞(R), 𝑎𝑑 (0) ≠ 0, and define 𝐸 ≔
∑
𝑎𝑘Z

𝑘 ∈ C∞(𝑈) [Z].
Since all solutions Z1,0, . . . , Z𝑑,0 of 𝐸 (0, ·) = 0, the differential (𝜕Z 𝐸) (0, Z𝑘,0) is invertible for
all 1 ≤ 𝑘 ≤ 𝑑. Hence we can apply the implicit function theorem which yields functions Z𝑘
on a maximal interval𝑈 ⊂ 𝐼 such that for all 1 ≤ 𝑘 ≤ 𝑑

𝐸 (·, Z𝑘) |𝑈 = 0 .

In particular, we have that Z𝑘 (0) = Z𝑘,0. □

Examples

We compute the images of the full and principal 𝛿-symbol of some known operators to show
that it coincides with the standard semi-classical symbol and yields a way of approximating
the missing quasimode of Example 3.1.16.

Example 3.2.8. Let 𝑃 ≔ −ℎ2𝜕2
𝑥 + 𝑉 for a potential 𝑉 ∈ C∞(𝐼) and an interval 𝐼 ⊂ R. The

eikonal polynomial 𝐸𝛿 (𝑃) of 𝑃 is given by

𝐸𝛿 (𝑃) (𝑥, Z) =


𝑉 (𝑥) , if 0 < 𝛿 < 1 ,

−Z2 +𝑉 (𝑥) , if 𝛿 = 1 ,

−Z2 , if 𝛿 > 1 .

For 𝛿 = 1 the full 𝛿-symbol is given by

Σ1(𝑃) (𝑥, ℎ, b, Z) = ℎ0(−Z2 +𝑉 (𝑥)) + ℎ (−2Zb − [b, Z]) + ℎ2(−b2) ,

where we used that −(Zb + bZ) = −2Zb − [b, Z].

Example 3.2.9. Let 𝑃 ≔ −ℎ2𝜕2
𝑥 + 𝜕𝑥 − 𝑉 for a potential 𝑉 ∈ C∞(𝐼) and an interval 𝐼 ⊂ R.

Then the eikonal polynomial 𝐸𝛿 (𝑃) of 𝑃 is given by

𝐸𝛿 (𝑃) (𝑥, Z) =


Z , if 0 < 𝛿 < 2 ,

−Z2 + Z , if 𝛿 = 2 ,

−Z2 , if 𝛿 > 2 .

For 𝛿 = 2 the full 𝛿-symbol is given by

Σ2(𝑃) (𝑥, ℎ, b, Z) = ℎ−2(−Z2 + Z) + ℎ0 ((1 − 2Z)b + [b, Z] −𝑉 (𝑥)) + ℎ2(−b2) .

It is still unclear how to systematically obtain all relevant values of 𝛿 > 0 yielding non-trivial
phase functions as solutions of the eikonal equation associated to 𝛿. The tool allowing us to
detect these values geometrically based on the set of exponents Λ(𝑃) is the so called Newton
polygon. We will introduce it for semi-classical operators in the upcoming subsection.
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3.2.2 Newton Polygon

The central problem concerning the 𝛿-principal symbol is that we do not have a method to
compute the relevant values of 𝛿 > 0 for which the eikonal polynomial 𝐸𝛿 (𝑃) is not trivial.
This subsection aims to introduce a Newton polygon approach based on the set of exponents Λ
to determine 𝐸𝛿 (𝑃). The relevant values of 𝛿 > 0 for the eikonal polynomial 𝐸𝛿 (𝑃) are given
by the slopes of the edges L in the lower boundary of the Newton polygon. The summands of
𝐸𝛿 (𝑃) correspond one-to-one with the pairs of exponents _ ∈ L ∩ Λ.

Remark 3.2.10. There have been Newton polygon approaches in the literature to construct
Puiseux series approximations of non-linear ordinary differential equations. They date back to
the 19th century (see [BB56] and [Fin89]) and after that have been used in a few modern works
(see [Can05], [DJ97] or [GS91] for instance). These approaches are limited to polynomial
differential equations corresponding to 𝐹 ∈ C[𝑥, 𝑦1, . . . , 𝑦𝑛], given by

𝐹 (𝑥, 𝑦, 𝑦′, . . . , 𝑦 (𝑛) ) = 0 ,

whose approximate solutions are Puiseux series in certain cases. In this context, the Newton
polygon is the convex hull of tuples (𝑘, 𝛼) for powers 𝑥𝑘𝑦𝛼, where 𝑦𝛼 = 𝑦

𝛼1
1 · · · 𝑦𝛼𝑛𝑛 , of

non-vanishing coefficients 𝐴𝑘,𝛼 ∈ C of 𝐹. The use of a Newton polygon approach to construct
quasimodes semi-classical operators appears to be new.

Motivation

Returning to the Schrödinger-operator we can see some important invariants concerning the
𝛿-principal symbol. Only for the value of 𝛿 = 1 the application of the 𝛿-principal symbol to
the Schrödinger operator

𝐸1(𝑃) (𝑥, Z) = −Z2 +𝑉 (𝑥) ,

imposes an eikonal equation 𝐸1(𝑃) (·, 𝜑′) = 0 with non-trivial solutions 𝜑 ∈ C∞(𝐼) for
general potentials 𝑉 ∈ C∞(𝐼). Increasing the order of differentiation or the power of
ℎ on both summands of 𝑃 equally, i.e. 𝑃1 ≔ −ℎ2𝜕𝑘+2

𝑥 + 𝑉𝜕𝑘𝑥 = (−ℎ2𝜕2
𝑥 + 𝑉)𝜕𝑘𝑥 and

𝑃2 ≔ −ℎ2+𝛼𝜕2
𝑥 + ℎ𝛼𝑉 = ℎ𝛼 (−ℎ2𝜕2

𝑥 +𝑉), has no effect on the choice of 𝛿 = 1 nor the outcome

𝐸1(𝑃) (𝑥, Z) = 𝐸1(𝑃1) (𝑥, Z) = 𝐸1(𝑃2) (𝑥, Z) = −Z2 +𝑉 .

The only difference is the value of 𝑙1, i.e. the power 𝑙𝛿 (𝑃) of the coefficient ℎ𝑙𝛿 (𝑃) associated
to 𝐸1(𝑃1) in the asymptotic expansion of Σ1(𝑃1) and Σ1(𝑃2). In particular, 𝑙1(𝑃) = 0,
𝑙1(𝑃1) = −𝑘 and 𝑙1(𝑃2) = 𝛼.

As a consequence, the relevant values of of 𝛿 with respect to 𝑃 are related to the relative
position of the points (0, 0), (2, 2) ∈ Λ(𝑃) or (𝑘, 0), (𝑘 +2, 2) ∈ Λ(𝑃1) and (0, 𝛼), (2, 2+𝛼) ∈
Λ(𝑃2), respectively. Another important point is that additional terms ℎ𝛼𝜕𝑘𝑥 only impact
𝐸1(𝑃 + ℎ𝛼𝜕𝑘𝑥 ) if their relative position is low enough regarding (0, 0) and (2, 2). By linearity
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ℎ𝛼

𝜕𝑘𝑥
0 1 2

0

1

2

Figure 3.2: The set of exponents Λ ≔ {(0, 3/2), (1, 3/2), (2, 3)} with the two half spaces de-
fined by (0, 3/2), (1, 3/2) and (1, 3/2), (2, 3) and their corresponding intersection
in light blue. The point omitted in each case is in the upper half space respectively.

of Σ𝛿 we can compute the 𝛿-principal symbol of ℎ𝛼𝜕𝑘𝑥 independently, yielding

Σ𝛿

(
𝑃 + ℎ𝛼𝜕𝑘𝑥

)
= ℎ0𝐸𝛿 (𝑃) + ℎ𝛼−𝑘 𝛿Z 𝑘 + h.o.t. .

There are three different cases based on the choices of 𝛼 and 𝑘 . If 𝛼 > 𝑘𝛿, then we have

𝐸𝛿

(
𝑃 + ℎ𝛼𝜕𝑘𝑥

)
= 𝐸1(𝑃) .

On the other hand, if 𝛼 < 𝑘𝛿, then

𝐸𝛿

(
𝑃 + ℎ𝛼𝜕𝑘𝑥

)
= Z 𝑘 .

In the intermediate case 𝛼 = 𝑘𝛿 both terms are part of the 𝛿-principal symbol

𝐸𝛿

(
𝑃 + ℎ𝛼𝜕𝑘𝑥

)
= 𝐸1(𝑃) + Z 𝑘 .

These distinctions are also relative to the positions of (0, 0) and (2, 2) on one hand and (𝑘, 𝛼)
on the other hand, in particular the relation between 𝛼 and 𝑘𝛿 reflects the position of (𝑘, 𝛼)
relative to half spaces defined by the straight line with slope 𝛿 = 1 going through (0, 0) and
(2, 2) (see Figure 3.2).

If (𝑘, 𝛼) is in the upper half space defined by L ≔ (0, 0), (2, 2), then the additional
summand ℎ𝛼𝜕𝑘𝑥 has no impact on the 𝛿-principal symbol. Only if (𝑘, 𝛼) is in the lower half
space with respect to L the summand ℎ𝛼𝜕𝑘𝑥 affects or even dominates the 𝛿-principal symbol
𝐸1(𝑃 + ℎ𝛼𝜕𝑘𝑥 ).

This point of view by means of half spaces naturally confirms the invariance of 𝐸𝛿 with
respect to increases of the differentiation order or the power of ℎ since these only shift the
associated set of exponents Λ(𝑃 + ℎ𝛼𝜕𝑘𝑥 ) horizontally or vertically as whole.
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ℎ𝛼

𝜕𝑘𝑥

𝐴𝛿 (𝑙𝛿)
𝐴𝛿 (𝑙𝛿-Y)
𝐴𝛿 (𝑙𝛿-2Y)𝑙𝛿

𝑙𝛿-Y
𝑙𝛿-2Y

0 1 2 3 4

Figure 3.3: Relation between 𝐴𝛿 (𝑡) and 𝜕-P(Λ) for some Y > 0. 𝑙𝛿 is the unique value where
both sets intersect for the first time.

Recall that by (2.14) the lowest order summands with respect to ℎ of 𝑃 =
∑
_∈Λ 𝑎_ℎ

𝛼𝜕𝑘𝑥

after conjugation with 𝑒𝜑/ℎ𝛿 for 𝛿 > 0 are amongst the summands∑︁
_∈Λ

_=(𝑘,𝛼)

𝑎_ℎ
𝛼−𝑘 𝛿 (𝜑′)𝑘 . (3.12)

We can geometrically determine the lowest order summand(s) corresponding to ℎ𝑙𝛿 . Recall
that sets of exponents are bounded from below. Let

𝐴𝛿 (𝑡) ≔ {(𝑥, 𝑦) ∈ R2 : 𝑦 − 𝛿𝑥 = 𝑡} , (3.13)

𝑡 ∈ R, be a family of affine spaces partitioning R2. Then the power 𝑙𝛿 of the coefficient of
𝐸𝛿 (𝑃) in (3.10) is given by the value 𝑡 ∈ R for which 𝐴𝛿 (𝑡) intersects with Λ for the first time
(see Figure 3.3), i.e.

𝑙𝛿 = min{𝑡 ∈ R : 𝐴𝛿 (𝑡) ∩ Λ ≠ ∅} . (3.14)

Even more importantly, this geometric point of view shows that 𝐸𝛿 (𝑃) is a monomial in Z
if and only if |𝐴𝛿 (𝑙𝛿) ∩ Λ| = 1. Note that for all 𝛿 > 0 we have that |𝐴𝛿 (𝑙𝛿) ∩ Λ| ≥ 1. In
particular, if we choose 𝛿 > 0 such that 𝐴𝛿 (𝑡) is parallel to the one of the lower edges of the
convex hull of Λ, 𝐸𝛿 (𝑃) is not a monomial. Hence the values of 𝛿 where 𝐸𝛿 (𝑃) is not a
monomial are given by the positive slopes of edges of conv(Λ).

Example 3.2.11. Let 𝐼 = R and 𝑃 ≔ −ℎ2𝜕2
𝑥 + ℎ1/2𝜕𝑥 + 𝑉 . Its associated set of exponents

is given by Λ(𝑃) = {(0, 0), (1, 1/2), (2, 2)}. We can use the slopes of the edges spanned by
(0, 0), (1, 1/2) and (1, 1/2), (2, 2) to compute the relevant values of 𝛿. These are given by
𝛿1 = 1/2 and 𝛿2 = 3/2. For 𝛿 = 1/2 we have

Σ1/2(𝑃) (𝑥, ℎ, b, Z) = −ℎ2
(
b + Z

ℎ1/2

)2
+ ℎ1/2

(
b + Z

ℎ1/2

)
+𝑉 (𝑥) = Z +𝑉 (𝑥) + 𝑜(1) ,

62



3.2 Combinatorial Geometry I: Newton Polygons

and hence

𝐸1/2(𝑃) (𝑥, Z) = Z +𝑉 (𝑥) .

On the other hand for 𝛿 = 3/2 we have

Σ3/2(𝑃) (𝑥, ℎ, b, Z) = −ℎ2
(
b + Z

ℎ3/2

)2
+ ℎ1/2

(
b + Z

ℎ3/2

)
+𝑉 (𝑥) = ℎ−1

(
−Z2 + Z

)
+ 𝑜

(
ℎ−1

)
,

and thus its 𝛿-principal symbol is given by

𝐸3/2(𝑃) (𝑥, Z) = −(Z − 1)Z .

These values 𝛿1 = 1/2 and 𝛿2 = 3/2 provide single, non-trivial solutions of their corrsponding
eikonal equations 𝜑′1 +𝑉 = 0 and −(𝜑′2 − 1)𝜑′2 = 0 each.

All information required to determine the relevant values of 𝛿 > 0 were given by the slopes
of the lines separating the space. Thus, we focus our investigation on edges L between points
in Λ having the property that Λ is contained in a single half space defined by L. The central
object containing these edges based on the set of exponents is the Newton polygon.

Definition & Proposition

Definition 3.2.12 (Newton Polygon of a Semi-Classical Operator). Let 𝑃 be a generalized
semi-classical operator and Λ = Λ(𝑃) its set of exponents. The Newton polygon of 𝑃 is the
Newton polygon P(Λ) of Λ as in Definition 2.3.2.

The lower boundary 𝜕-P(Λ) is the same as in Definition 2.3.2 (compare Figure 3.4). Thus,
we have a notion of edges in P(Λ) associated to 𝑃. Recall that for L ≔ (𝑘1, 𝛼1), (𝑘2, 𝛼2) ⊂
𝜕-P(Λ) its width is given by |L| = |𝑘2 − 𝑘1 | and its slope is given by 𝛿(L) = |𝛼2 − 𝛼1 |/|L|.

Definition 3.2.13 (Minimal Point). Let 𝑃 be a generalized semi-classical operator and Λ its
set of exponents. The unique point _min = (𝑘∗, 𝛼∗) ∈ Λ with 𝛼∗ ≔ min{𝛼 : (𝑘, 𝛼) ∈ Λ} and
𝑘∗ ≔ max{𝑘 : (𝑘, 𝛼∗) ∈ Λ} is called minimum of Λ.

Remark 3.2.14. The minimal point _min ∈ Λ of P(Λ) corresponds one-to-one with the
maximal, horizontal edge L ⊂ 𝜕-P(Λ), if |L| > 0. Note that |L| = 0 is not allowed, since
there is no well-defined notion of slope for edges with no width.

The Newton polygon Λ of a generalized semi-classical operator 𝑃 is divided into halves by
its minimal point _min ∈ Λ. The set of points _ ∈ Λ contained in the horizontal affine space
that includes L ⊂ 𝜕-P(Λ) impact the shape of the transport operator 𝑇 of 𝑃 = ℎ𝑙0𝑇 + 𝑜(ℎ𝑙0),
where deg𝑇 = |L|. On its right side the lower boundary 𝜕-P(Λ) consists of edges with
positive slopes. Summing up their widths coincides with the difference deg 𝑃 − deg𝑇 .

The following proposition relates the Newton polygon of a generalized semi-classical op-
erator to its associated family of eikonal polynomials. In particular, it links all relevant values
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ℎ𝛼

𝜕𝑘𝑥

P(Λ)

0 1 2
0

1

2

Figure 3.4: The Newton polygon P(Λ) of the set of exponents Λ ≔ {(0, 2), (1, 4), (2, 4)}.
The red line is the lower boundary 𝜕-P(Λ).

𝛿 ∈ R>0 where 𝐸𝛿 (𝑃) is not trivial to the geometry of P(Λ). Note that there are always two
points in the boundary of an edge 𝜕L.

Proposition 3.2.15. Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 × R be a set of exponents, 𝑎_ ∈ C∞(𝐼)
and 𝑃 =

∑
_∈Λ 𝑎_ℎ

𝛼𝜕𝑘𝑥 be a generalized semi-classical operator. Then the following holds:

(i) For each 𝛿 > 0 it holds that 𝐸𝛿 (𝑃) . 0.

(ii) The eikonal polynomial 𝐸𝛿 (𝑃) is non-trivial if and only if there is an edge L ⊂ 𝜕-P(Λ)
with slope 𝛿 > 0.

(iii) Let L ⊂ 𝜕-P(Λ) be an edge with slope 𝛿 > 0. Then the eikonal polynomial is given by

𝐸𝛿 (𝑃) (𝑥, Z) =
∑︁

_∈L∩Λ
_=(𝑘,𝛼)

𝑎_(𝑥)Z 𝑘 .

(iv) Let L ⊂ 𝜕-P(Λ) be an edge with slope 𝛿 > 0, 𝑥0 ∈ 𝐼 and 𝑎_(𝑥0) ≠ 0 for all _ ∈ 𝜕L.
If all non-zero roots Z 𝑗 (𝑥0) of 𝐸𝛿 (𝑃) (𝑥0, Z) = 0 are simple, then there is an interval
𝑈 ⊂ 𝐼 and simple, non-trivial solutions 𝜑 𝑗 of 𝐸𝛿 (𝑃) (·, 𝜑′𝑗) = 0 with 𝜑′

𝑗
(𝑥0) = Z 𝑗 (𝑥0)

on𝑈.

Proof. (i) This is true by construction, since 𝐸𝛿 (𝑃) is the leading term of the expansion of
Σ𝛿 (𝑃) with respect to ℎ.

(ii) This was already discussed in (3.12) and thereafter.
(iii) Let L ⊂ 𝜕-P(Λ) with slope 𝛿 > 0. Since L ⊂ 𝐴𝛿 (𝑙𝛿), this is a direct consequence of

𝐴𝛿 (𝑙𝛿) ∩ Λ = L ∩ Λ.
(iv) Let L ≔ (𝑘1, 𝛼1), (𝑘2, 𝛼2) ⊂ 𝜕-P(Λ) with slope 𝛿 > 0. Then |L| ≥ 1 and we have

|L ∩ Λ| ≥ 2. Thus, the induced eikonal polynomial

𝐸𝛿 (𝑃) (·, Z) =
∑︁

_∈L∩Λ
_=(𝑘,𝛼)

𝑎_ · Z 𝑘
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is not a monomial. It is a polynomial of degree 𝑘2 ≥ 1, which can be factorized into

𝐸𝛿 (𝑃) (·, Z) = Z 𝑘1
∑︁

_∈L∩Λ
_=(𝑘,𝛼)

𝑎_ · Z 𝑘−𝑘1 .

Its latter factor is a polynomial of degree 𝑘2 − 𝑘1 = |L| whose highest and lowest order
coefficient does not vanish at 𝑥 = 𝑥0, since 𝑎_(𝑥0) ≠ 0 for _ ∈ 𝜕L. Thus, there are non-zero
roots Z1, . . . , Z | L | , which are all simple by assumption. Applying Proposition 3.2.7, there is
an interval𝑈 ⊂ 𝐼 and there are functions Z 𝑗 ∈ C∞(𝑈), 𝑗 = 1, . . . , |L|, such that

𝐸𝛿 (𝑃) (·, Z 𝑗) |𝑈 = 0 .

For 𝑥 ∈ 𝑈, integration yields the solutions

𝜑 𝑗 (𝑥) =
∫ 𝑥

𝑥0

Z 𝑗 (𝑡)𝑑𝑡 ,

of the eikonal equation 𝐸𝛿 (𝑃) (·, 𝜑′) = 0 with 𝜑′
𝑗
(𝑥0) = Z 𝑗 (𝑥0) for each 𝑗 = 1, . . . , |L|. □

What remains to be investigated in order to construct quasimodes is the existence and
regularity of transport operators of a generalized semi-classical operator 𝑃 after solving any
eikonal equation. The eikonal polynomials 𝐸𝛿 (𝑃) are in a direct one-to-one relation with
the positively sloped edges L ⊂ 𝜕-P(Λ(𝑃)). Thus, their appearance changes drastically,
depending on the selected edge. For any solution 𝜑 of the eikonal equation 𝐸𝛿 (𝑃) (·, 𝜑′) = 0,
we expect the transport operator of the conjugated operator

𝑒−𝜑/ℎ
𝛿

𝑃𝑒𝜑/ℎ
𝛿

to be in a direct relation with the edge L ⊂ 𝜕-P(Λ) of slope 𝛿, in general.

3.2.3 Semi-Classical 𝛿-Regularity

Motivation

Before moving on we want to take a step back and evaluate what we have done so far. The
initial problem was that arbitrary, generalized semi-classical operators 𝑃 cannot be analyzed
in general by standard semi-classical symbols 𝜎s-cl mapping ℎ𝜕𝑥 ↦→ b. In most cases the
principal symbol part of the full symbol 𝜎s-cl(𝑃) (𝑥, ℎ, b) admits less than deg 𝑃 non-trivial
solutions of its imposed eikonal equation 𝜎s-cl(𝑃) (·, 0, 𝜑′) = 0, if it exists at all. This happens
due to 𝜎s-cl(𝑃) (·, 0, b) having degree less than 𝑃 itself. There is another undesirable case of
𝜎s-cl(𝑃) (·, 0, b) having full degree but 𝜎s-cl(𝑃) (·, 0, b) = b𝑘𝑄(b), where deg𝑄 = 𝑚 − 𝑘 . In
that case, 𝑘 of the 𝑚 solutions of 𝜎s-cl(𝑃) (·, 0, 𝜑′) = 0 are trivial and thus irrelevant in the
construction of independent quasimodes.

The first deficiency is a severe failure of standard semi-classical ellipticity, i.e. the leading
coefficient 𝑎𝑚 ∈ C∞(𝐼) of the highest polynomial power b𝑚 of 𝜎s-cl(𝑃) (·, ℎ, b) vanishes
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not only at a single point 𝑥 ∈ 𝐼 but vanishes identically as ℎ → 0. The other case of
𝜎s-cl(𝑃) (·, 0, b) = b𝑘𝑄(b) usually does not fall under 𝑃 not being semi-classically elliptic, but
can also pose severe problems in creating initial solutions. This can be seen for the operator
−ℎ2𝜕2

𝑥 + ℎ𝑉 , where 𝑉 ∈ C∞(𝐼) with 𝑉 > 0. Its semi-classical principal symbol

𝜎s-cl(𝑃) (·, 0, b) = b2 ,

is semi-classically elliptic. But none of the solutions 𝜑 = const. of the corresponding eikonal
equation have an impact on the construction of a quasimode since [𝑃, 𝑒𝜑/ℎ] = 0. The leading
term of 𝑃 remains to be ℎ𝑉 , which is a multiplication operator and thus is not a useful choice
as a transport operator in Proposition 3.1.7.

The semi-classical 𝛿-symbol can compensate for these deficiencies of 𝜎s-cl. A family of
admissible values of 𝛿 > 0 can be determined by the use of the Newton polygon P(Λ(𝑃)) of 𝑃.
The corresponding family of semi-classical 𝛿-principal symbols 𝐸𝛿 (𝑃) each admit non-trivial
solutions 𝜑 of their associated eikonal equations 𝐸𝛿 (𝑃) (·, 𝜑′) = 0. Their introduction reduces
the non-regularity of generalized semi-classical operators from the severe failure to the non-
ellipticity at points 𝑥 ∈ 𝐼 where the multiplicity of solutions 𝜑′ of the eikonal equations jump,
as we will show.

Definitions & Proposition

We start with the definition of 𝛿-regular operators. Despite its name, an operator is not required
to be 𝛿-regular to admit quasimodes with smooth phase functions and amplitudes. However,
it will be required in the existence of a basis of independent quasimodes in general, as stated
in Remark 3.3.12.

Definition 3.2.16 (𝛿-Regularity). Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 ×R be a set of exponents,
𝑎_ ∈ C∞(𝐼) and 𝑃 =

∑
_∈Λ 𝑎_ℎ

𝛼𝜕𝑘𝑥 be a generalized semi-classical operator. Let 𝛿 > 0 and
L ⊂ 𝜕-P(Λ) be the maximal edge of the lower boundary with slope 𝛿 > 0.

The operator 𝑃 is called 𝛿-regular in 𝑥 ∈ 𝐼, if 𝑎_(𝑥) ≠ 0, for all _ ∈ 𝜕L. It is called
𝛿-regular, if it is 𝛿-regular in every point 𝑥 ∈ 𝐼.

If 𝑃 is not 𝛿-regular (in 𝑥 ∈ 𝐼) it is called 𝛿-singular (in 𝑥).

Remark 3.2.17. As proven in Proposition 3.2.15, 𝛿-regularity in 𝑥 ∈ 𝐼 guarantees that |L|
solutions 𝜑′(𝑥) of 𝐸𝛿 (𝑃) (𝑥, 𝜑′(𝑥)) = 0 are non-zero. Thus, 𝛿-regularity can and will be used
to count the number of non-trivial solutions. However, we will show the central property
regarding the ellipticity of the transport operator is the simplicity, or more general the constant
multiplicity, of solutions 𝜑′ ∈ C∞(𝐼) of the eikonal equations. The notion of 𝛿-regularity
affects this indirectly. Let L = _` with slope 𝛿 > 0. If 𝑃 is 𝛿-singular in 𝑥0 ∈ 𝐼, then either the
leading coefficient 𝑎` or the lowest coefficient 𝑎_ of the eikonal polynomial 𝐸𝛿 (𝑃) vanishes
at 𝑥0.

In the first case this results in the existence of unbounded solutions 𝜑′ of the eikonal equation.
This will lead to the question whether these solutions admit exponential-polyhomogeneous
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quasimodes, which will be answered in Chapter 4. In the second case this results in solutions
of the eikonal equation vanishing in 𝑥0. The latter case leads to a crossing of solutions in
𝑥0 in most cases, since |L ∩ Λ| ≤ |L|. The presence of more than two points on an edge is
generic! Since the crossing point coincides with the vanishing point of the coefficient 𝑎_, the
resolution of 𝑃 becomes much harder than in the case of 𝛿-regular operators having a solution
𝜑′ of an eikonal equation that jumps in multiplicity. In the 𝛿-regular case the non-constant
multiplicity can be resolved by a single blow-up, as we will show in Algorithm 1. However,
in the 𝛿-singular case, where the crossing point coincides with the vanishing point of 𝑎_,
the behavior of 𝑃 under the pullback of a blow-up is much different and requires a thorough
analysis, presented in Chapter 5.

The central object of this subsection is the so called induced 𝛿-transport operator. Associ-
ated to each summand 𝑎_Z 𝑘 of 𝐸𝛿 (𝑃) with _ = (𝑘, 𝛼) ∈ L ∩Λ, there is a natural partial sum
in the expansion of Σ𝛿 (𝑃)

𝑎_ ·
(
bZ 𝑘−1 + ZbZ 𝑘−2 + . . . + Z 𝑘−1b

)
= 𝑎_ · 𝑘Z 𝑘−1

(
b + 𝑘 − 1

2
[b, Z]

)
. (3.15)

This expression is the second lowest term with respect to ℎ in the expansion of 𝜕𝑘𝑥 ◦exp(𝜑/ℎ𝛿)
as shown in (2.15). Summing over all of these sums for each _ ∈ L ∩ Λ and evaluating it at
b = 𝜕𝑥 and Z = 𝜑′ yields a first order differential operator, the induced 𝛿-transport operator.

Definition 3.2.18 (Induced Transport Operator). Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 × R be a
set of exponents, 𝑎_ ∈ C∞(𝐼) and 𝑃 =

∑
_∈Λ 𝑎_ℎ

𝛼𝜕𝑘𝑥 be a generalized semi-classical operator.
Let L ⊂ 𝜕-P(Λ) be an edge of the lower boundary with slope 𝛿 > 0. Let 𝜑 be a solution of
𝐸𝛿 (𝑃) (·, 𝜑′) = 0.

Then we call

𝑇𝛿,𝜑′ (𝑃) ≔
∑︁

_=(𝑘,𝛼)
_∈L∩Λ

𝑎_ · 𝑘 (𝜑′)𝑘−1
(
𝜕𝑥 +

𝑘 − 1
2

𝜑′′

𝜑′

)
(3.16)

the induced 𝛿-transport operator of 𝑃 with respect to 𝜑.

Remark 3.2.19. Returning to Proposition 3.2.7.(ii) and (3.15) we have

𝐸𝛿 (𝑃) (·, 𝜑′) = ]𝜑′ ,𝜕𝑥

[ ∑︁
_∈L∩Λ

𝑎_ · Z 𝑘
]

and parallel to that

𝑇𝛿,𝜑′ (𝑃) = ]𝜑′ ,𝜕𝑥

[ ∑︁
_∈L∩Λ

𝑎_ ·
(
bZ 𝑘−1 + ZbZ 𝑘−2 + . . . + Z 𝑘−1b

)]
. (3.17)

Recall that bZ ≠ Zb. Whenever it is clear from context, we will refer to the induced 𝛿-transport
operator as 𝑇𝛿 .
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The upcoming proposition shows the importance of simplicity of solutions of eikonal
equations for their associated induced transport operators.

Proposition 3.2.20. Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 × R be a set of exponents and
𝑃 ∈ Diff Λ(𝐼) be a generalized semi-classical operator. Let L ⊂ 𝜕-P(Λ) be an edge of the
lower boundary with slope 𝛿 > 0 and let 𝜑 be a solution of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0 on 𝐼.

If 𝜑′ is a simple solution, then 𝑇𝛿,𝜑′ is elliptic.

Proof. By definition, 𝑇𝛿,𝜑 (𝑃) is elliptic, if and only if the coefficient
∑
_∈L∩Λ 𝑎_ · 𝑘 (𝜑′)𝑘−1

of 𝑇𝛿,𝜑 (𝑃) in (3.16) has no zeros 𝑥 ∈ 𝐼. This coefficient can be rephrased in terms of the
eikonal polynomial ∑︁

_∈L∩Λ
𝑎_ · 𝑘 (𝜑′)𝑘−1 = (𝜕Z 𝐸𝛿 (𝑃)) (·, 𝜑′) .

Since 𝜑′ is a simple solution of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0, it holds that (𝜕Z 𝐸𝛿 (𝑃)) (𝑥, 𝜑′(𝑥)) ≠ 0, for
all 𝑥 ∈ 𝐼. □

Examples

Vanishing phase functions are not a new phenomenon of generalized semi-classical operators
and can be seen in the following example.

Example 3.2.21. Let 𝐼 = (0,∞) and 𝑃 ≔ ℎ2𝜕2
𝑥 + ℎ𝜕𝑥 − 𝑥. Its associated set of exponents is

given by Λ = {(0, 0), (1, 1), (2, 2)} and its Newton polygon P(Λ) consists of a single edge
L = (0, 0), (2, 2) = P(Λ(𝑃)) with slope 𝛿 = 1. Its induced eikonal equation

𝐸1(𝑃) (𝑥, 𝜑′) = (𝜑′)2 + 𝜑′ − 𝑥 = 0 ,

has solutions 𝜑′±(𝑥) ≔ −1/2 ±
√︁

1/4 + 𝑥. While 𝜑− is bounded from above by −1, the other
solution

𝜑′+(𝑥) ∼ 𝑥 + O(𝑥2) , as 𝑥 → 0

vanishes to first order. Its induced transport operator with respect to 𝜑′+ is given by

𝑇𝛿,𝜑′
+ =

(
2𝜑′+(𝑥) + 1

)
𝜕𝑥 +

1
2
𝜑′′+ (𝑥) =

(
2
√︁

1/4 + 𝑥
)
𝜕𝑥 +

1
4

1√︁
1/4 + 𝑥

.

This example shows us that there can be both vanishing and non-vanishing phase functions
𝜑 solving the eikonal equation with respect to a single edge. In both cases 𝑇𝛿,𝜑′ is elliptic,
since 𝜑′+ and 𝜑′− are simple for 𝑥 ≠ −1/4.

Example 3.2.22 (Schrödinger Operator with Linear Potential). Let 𝑃 ≔ −ℎ2𝜕2
𝑥 + 𝑥 on the

interval 𝐼 B (0,∞). Its associated set of exponents is given by Λ = {(0, 0), (2, 2)} and the
Newton polygon P(Λ) consists of a single edge L = (0, 0), (2, 2) = P(Λ(𝑃)) with slope
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𝛿 = 1. Its induced eikonal equation

𝐸𝛿 (𝑃) (𝑥, 𝜑′) = −(𝜑′(𝑥))2 + 𝑥 = 0 ,

has solutions 𝜑±(𝑥) ≔ ±2/3𝑥3/2. Choosing 𝜑 ≔ 𝜑+, the corresponding conjugated operator
is given by

𝑒−𝜑/ℎ𝑃𝑒𝜑/ℎ = ℎ

(
−2

√
𝑥𝜕𝑥 +

1
2
√
𝑥

)
+ ℎ2𝜕2

𝑥 . (3.18)

The induced transport operator is given by 𝑇𝛿,𝜑′
+ = −2𝑥−1/2 (𝑥𝜕𝑥 − 1/4).

There are two new features presented by this example. The first one is that solutions 𝜑 of the
induced eikonal equation 𝐸𝛿 (𝑃) (·, 𝜑′) = 0 are not smooth in general, but polyhomogeneous at
the boundary of 𝐼. The second new phenomenon is given by the fact that the induced transport
operator 𝑇𝛿,𝜑′ is a b-operator with an additional vanishing order of 𝑥−1/2. The non-ellipticity
of the induced transport operator 𝑇𝛿,𝜑′ at 𝑥 = 0 is caused by the jump in multiplicity of the
solutions 𝜑′±(𝑥) =

√
𝑥 at 𝑥 = 0.

It is important to notice that we have not shown yet that for any solution 𝜑 of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0
of 𝑃 the induced transport operator 𝑇𝛿,𝜑′ is the transport operator, i.e. the leading term of
𝑒−𝜑/ℎ

𝛿

𝑃𝑒𝜑/ℎ
𝛿 , in general. Despite being called induced 𝛿-transport operator, there might be

lower terms with respect to ℎ in the expansion of the conjugated operator. But we will show
in Subsection 3.3.2 that it can be turned into one eventually. We move on to the final step, the
construction of quasimodes.

3.3 Construction of Quasimodes I: Regular Operators

In the final section of this chapter we prove the existence of quasimodes of generalized semi-
classical operators 𝑃 solutions 𝜑′ with constant multiplicity. The proof is constructive and,
in addition, is capable of generating sufficiently many independent quasimodes matching the
length of all corresponding edges L ⊂ 𝜕-P(𝑃) with the number of generated quasimodes.

What remains to be investigated after Section 3.2 is the existence of sufficient conditions
such that 𝑇𝛿,𝜑′ (𝑃) coincides with the transport operator of 𝑃 after conjugation in the sense of
Equation 3.4 for any solution 𝜑′ of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0. We will show in the beginning of this
section that simplicity of the eikonal solution 𝜑′ is not sufficient. In Subsection 3.3.3 we will
briefly discuss the approach of constructing quasimodes when the solutions 𝜑′ of the eikonal
polynomial are not simple but of constant higher multiplicity.

3.3.1 𝛿-Separation

In the first part of Section 3.3 we present a new phenomenon of semi-classical operators.
Whenever their corresponding set of exponents Λ is too dense, the induced and explicit trans-
port operator do not coincide. The aim of this subsection is to characterize this phenomenon
geometrically on Λ and introduce the concept of full phase functions to resolve this defect.
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Motivation & Examples

Let 𝑃 ∈ Diff Λ(𝐼) be a generalized semi-classical operator and let 𝜑 be a simple solution of
the associated eikonal equation 𝐸𝛿 (𝑃) (·, 𝜑′) = 0. The lowest order term in the expansion of
𝑒−𝜑/ℎ

𝛿

𝑃𝑒𝜑/ℎ
𝛿 of differential order greater than 0 is given by the induced 𝛿-transport operator

𝑇𝛿 . This is a direct consequence of 𝑇𝛿 being the lowest order symbolic term containing b in
(3.17). However, there can still be a multiplication operator 𝑉 ∈ C∞(𝐼), such that

ℎ−𝑙𝛿 · 𝑒−𝜑/ℎ𝛿𝑃𝑒𝜑/ℎ𝛿 = ℎY𝑉 + ℎ𝛿𝑇𝛿 + 𝑜
(
ℎ𝛿

)
, (3.19)

for some 0 < Y ≤ 𝛿, due to [𝑉, 𝑒𝜑/ℎ𝛿 ] = 0.

Example 3.3.1. Let 𝐼 = R and 𝑃 ≔ −ℎ2𝜕2
𝑥 + (1 + ℎ1/2). The lower boundary of its associated

Newton polygon 𝜕-P(Λ(𝑃)) = L consists of a single edge L ≔ (0, 0), (2, 2). The solutions
of the eikonal equation 𝐸1(𝑃) (·, 𝜑′) = 0 are given by 𝜑′±(𝑥) ≔ ±1 and hence are simple.
Conjugating 𝑃 by the exponential term induced by 𝜑 = 𝜑+ yields

𝑒−𝑥/ℎ𝑃𝑒𝑥/ℎ = ℎ1/2 + ℎ (−2𝜕𝑥) + ℎ2
(
−𝜕2

𝑥

)
, (3.20)

which does not admit polyhomogeneous quasimodes due to its leading part ℎ1/2 · 1 being
elliptic and of order 0.

The term −2𝜕𝑥 in (3.20) in Example 3.3.1 is the induced 𝛿-transport operator 𝑇𝛿,𝜑′ (𝑃) of
𝑃 = −ℎ2𝜕2

𝑥 + (1 + ℎ1/2) for 𝛿 = 1 and 𝜑(𝑥) = 𝑥. The presence of ℎ1/2 geometrically implies
the presence of points ` ∈ Λ(𝑃) in the strip between 𝐴𝛿 (𝑙𝛿) and 𝐴𝛿 (𝑙𝛿 + 𝛿).

However, the following example shows that one is still able to construct a quasimode in this
setting with a few adjustments.

Example 3.3.2. Let 𝐼 ⊂ R be an interval and 𝑎,𝑉 ∈ C∞(𝐼), where 𝑎 is positive. Let
𝑃 ≔ ℎ3/2𝜕2

𝑥 + ℎ1/2𝑎𝜕𝑥 +𝑉 . Its set of exponents is given by Λ = {(0, 0), (1, 1/2), (2, 3/2)}.
Thus, the associated Newton polygon has two lower edges corresponding to the slopes 𝛿1 = 1/2
and 𝛿2 = 1. Choosing 𝛿 = 𝛿2 = 1 the conjugated operator is given by

𝑒−𝜑/ℎ𝑃𝑒𝜑/ℎ = ℎ−1/2(𝜑′) (𝑎 + 𝜑′) +𝑉 + ℎ1/2 ((2𝜑′ + 𝑎)𝜕𝑥 + 𝜑′′) + ℎ3/2𝜕2
𝑥 ,

where 𝜑 ∈ C∞(𝐼). The corresponding eikonal equation 𝐸1(𝑃) (·, 𝜑′) = 0 is solved by
𝜑 = −

∫
𝑎. Then the conjugated operator

𝑒−𝜑/ℎ𝑃𝑒𝜑/ℎ = 𝑉 + ℎ1/2 (−𝑎𝜕𝑥 − 𝑎′) + ℎ3/2𝜕2
𝑥 ,

is similar to 𝑃 and in particular it does not satisfy the requirements of Proposition 3.1.7. The
only obvious option remaining is the conjugation with respect to Y = 1/2 and an arbitrary
𝜓 ∈ C∞(𝐼). Denote Φ := 𝜑/ℎ + 𝜓/ℎ1/2. By doing so we obtain an operator

𝑒−Φ𝑃𝑒Φ = (𝑉 − 𝑎(𝜓′)) + ℎ1/2
(
−𝑎𝜕𝑥 − 𝑎′ + (𝜓′)2

)
+ ℎ (2𝜓′𝜕𝑥 + 𝜓′′) + ℎ3/2𝜕2

𝑥 ,
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whose corresponding eikonal equation

𝐸1/2

(
𝑒−𝜑/ℎ𝑃𝑒𝜑/ℎ

)
(·, 𝜓′) = 𝑉 − 𝑎𝜓′ = 0 ,

can be solved by 𝜓 = +
∫
𝑉
𝑎

. Thus, the double conjugated operator

𝑒−(𝜑/ℎ+𝜓/ℎ1/2)𝑃𝑒(𝜑/ℎ+𝜓/ℎ1/2) = ℎ1/2
(
−𝑎𝜕𝑥 − 𝑎′ + (𝑉

𝑎
)2

)
+ ℎ

(
2
𝑉

𝑎
𝜕𝑥 + (𝑉

𝑎
)′
)
+ ℎ3/2𝜕2

𝑥 ,

has an elliptic leading term 𝑇 = −𝑎𝜕𝑥 + (𝑎′ + (𝑉/𝑎)2). Applying Proposition 3.1.7 then yields
a quasimode of the form

𝑢 = 𝑒𝑖(𝜑/ℎ+𝜓/ℎ1/2)
∞∑︁
𝑘=0

𝑢𝑘ℎ
𝑘/2 .

The essence of these examples can be extracted easily. Let 𝑃 ∈ Diff Λ(𝐼), L ⊂ 𝜕-P(Λ),
𝛿 ≔ 𝛿(L) > 0 and 𝜑′ be a solution of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0. The existence of points

_ ∈ Λ ∩ conv (𝐴𝛿 (𝑙𝛿) ∪ 𝐴𝛿 (𝑙𝛿 + 𝛿))◦

lead to the defect of 𝑇𝛿,𝜑 not being the leading term of 𝑒−𝜑/ℎ𝛿𝑃𝑒𝜑/ℎ𝛿 with respect to ℎ (see
Figure 3.5). This is a direct consequence of (2.15). If Λ ∩ conv (𝐴𝛿 (𝑙𝛿) ∪ 𝐴𝛿 (𝑙𝛿 + 𝛿))◦ is
empty and

Λ ∩ 𝐴𝛿 (𝑙𝛿 + 𝛿) ≠ ∅ ,

we have that in the expansion of the conjugated operator

𝑒−𝜑/ℎ
𝛿

𝑃𝑒𝜑/ℎ
𝛿

= ℎ𝑙𝛿+𝛿

(
𝑇𝛿,𝜑 +

𝑚∑︁
𝑘=0

𝑎 (𝑘,𝑙𝛿+𝑘 𝛿 ) · (𝜑′)𝑘
)
+ 𝑜

(
ℎ𝑙𝛿+𝛿

)
the transport operator 𝑇 of 𝑃 with respect to 𝛿 and 𝜑

𝑇 = 𝑇𝛿,𝜑 +
𝑚∑︁
𝑘=0

𝑎 (𝑘,𝑙𝛿+𝑘 𝛿 ) · (𝜑′)𝑘 , (3.21)

is a perturbation of the induced transport operator. Note that 𝑎 (𝑘,𝑙𝛿+𝑘 𝛿 ) ≡ 0 if and only if
(𝑘, 𝑙𝛿 + 𝑘𝛿) ∉ Λ.

Definitions & Remarks

One can a priori tell whether the phenomenon in Example 3.3.2 appears for a semi-classical
operator 𝑃 based on the geometry of Λ(𝑃).
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ℎ𝛼

𝜕𝑘𝑥

𝐴𝛿 (𝑙𝛿)
𝐴𝛿 (𝑙𝛿+𝛿)

𝑙𝛿

𝑙𝛿+𝛿
𝑙𝛿+2𝛿

0 1 2 3 4

Figure 3.5: A non-𝛿-separated set Λ.

Definition 3.3.3 (𝛿-Separation). Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 × R be a set of exponents
and 𝑃 ∈ Diff Λ(𝐼) be a generalized semi-classical operator. Let L ⊂ 𝜕-P(Λ) be an edge of
the lower boundary with slope 𝛿 > 0.

Then we call 𝑃 𝛿-separated, if

Λ ∩ conv (𝐴𝛿 (𝑙𝛿) ∪ 𝐴𝛿 (𝑙𝛿 + 𝛿))◦ = ∅ , (3.22)

with 𝑙𝛿 given by (3.14) and 𝐴𝛿 defined in (3.13). If additionally

Λ ∩ 𝐴𝛿 (𝑙𝛿 + 𝛿) = ∅ ,

then we call 𝑃 strictly 𝛿-separated.

Remark 3.3.4. Note that 𝑃 can be 𝛿-separated with respect to multiple values of 𝛿 > 0.

3.3.2 Existence of Full Phase Functions

A key finding in Example 3.3.2 is that introducing a second, minor phase function with a
lower power of ℎ resolved the defect caused by non-separateness. Analyzing the behavior of a
semi classical operator under the inclusion of these minor phase functions is the focus of this
subsection.

In the upcoming definition we introduce a short notation for iteratively conjugated operators
and classify partial sums of phase functions.

Definition 3.3.5 (Full Phase Function). Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 × R be a set of
exponents and 𝑃 ∈ Diff Λ(𝐼) with ord(𝑃) = 𝑚. Let L ⊂ 𝜕-P(Λ) with slope 𝛿 > 0 and
𝜑 ∈ C∞(𝐼) be a simple solution of 𝐸𝛿 (·, 𝜑′) = 0. Let 𝑛 ∈ N0, (Y, 𝜓) ∈ (0, 𝛿)𝑛 × C∞(𝐼)𝑛 and
let Φ ≔ 𝜑/ℎ𝛿 + ∑𝑚

𝑙=1 𝜓𝑙/ℎY𝑙 be the sum of phase functions.
If the leading term 𝑇 in the expansion of the conjugated operator

𝑃Φ ≔ exp (−Φ) ◦ 𝑃 ◦ exp (Φ) ,
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is given by (3.21), we call Φ a full phase function of 𝑃 with respect to 𝛿.

Often one has to add multiple smaller phase functions to obtain a full phase function. It
will be useful to emphasize iteration steps in the process of constructing full phase functions.
Thus, we will introduce the notation

𝑃𝛿,𝜑 ≔ exp(−𝜑/ℎ𝛿)𝑃 exp(𝜑/ℎ𝛿)

and 𝑃(Y,𝜓) accordingly, for (Y, 𝜓) ∈ (0, 𝛿)𝑛 × C∞(𝐼)𝑛.

Example 3.3.6. Example 3.3.2 already showed us an operator with a small, correcting phase
and corresponding full phase function.

If 𝑃 is 𝛿-separated for some 𝛿 > 0, then any phase function 𝜑 solving the eikonal equation
𝐸𝛿 (𝑃) (·, 𝜑′) = 0 is a full phase function.

Example 3.3.7. Revisiting Example 3.3.1 with 𝑃 ≔ −ℎ2𝜕2
𝑥+(1+ℎ1/2) we can resolve the non-

separateness as in Example 3.3.2 by introducing an additional minor phase function 𝜓1/ℎ1/2,
with 𝜓1 = 1/2𝑥.

Motivation

The remaining question is when are we able to construct full phase function for non-𝛿-
separated operators. Let L ⊂ P(Λ(𝑃)) be an edge with slope 𝛿 > 0 and let 𝜑 ∈ C∞(𝐼) be a
simple solution of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0. Since 𝑃𝛿,𝜑 is non-𝛿-separated in general, the conjugated
operator is given by

𝑃𝛿,𝜑 = 0 +
𝑟∑︁
𝑗=1

𝐹𝑗ℎ
𝛾 𝑗 + ℎ𝛿𝑇 + 𝑜(ℎ𝛿) , (3.23)

for 𝛾 𝑗 ∈ (0, 𝛿) ordered and 𝐹𝑗 ∈ C∞(𝐼), with 𝑇 given by (3.21), where we assumed without
loss of generality that 𝑙𝛿 = 0. Notice that for Y ≔ 𝛿 − 𝛾1 and any 𝜓1 ∈ C∞(𝐼) we have

(
𝑃𝛿,𝜑

)
Y,𝜓1

= ℎ𝛾1 (𝐹1 + [𝑇, 𝜓1]) +
𝑟1∑︁
𝑗=1

𝐹1, 𝑗ℎ
𝛾1, 𝑗 + ℎ𝛿𝑇 + 𝑜(ℎ𝛿) (3.24)

since 𝑇Y,𝜓1 = ℎ
𝛾1−𝛿 [𝑇𝛿,𝜑 , 𝜓1] +𝑇 . The additional terms in the sum arise from the conjugation

of the remaining differential operators in 𝑃𝛿,𝜑 − ℎ𝛿𝑇 . We can solve the sub-eikonal equation
for the sub-oscillation

𝐸𝛿−𝛾1 (𝑇) (·, 𝜓′) = 𝐹1 + [𝑇, 𝜓] = 0 (3.25)

since 𝜑′ is a simple solutions and hence 𝑇 = 𝑇𝛿 +
∑𝑚
𝑘=0 𝑎 (𝑘,𝑙𝛿+𝑘 𝛿 ) · (𝜑′)𝑘 is elliptic and of

order ord(𝑇) = 1. It is not clear yet if we have resolved the problem partially, since the number
of multiplication operators increased. This problem is very similar to the infinite asymptotic
expansion of 𝑅(ℎ) in the proof of Proposition 3.1.7 and is a matter of efficient counting as the
upcoming subsection will show.
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Central Statement

A central tool of this subsection is the observation that simple phase functions 𝜑 always admit
full phase functions, as stated in the next proposition.

Proposition 3.3.8. Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 × R be a set of exponents and let
𝑃 ∈ Diff Λ(𝐼). Let L ⊂ 𝜕-P(Λ) with slope 𝛿 > 0. Let 𝜑 ∈ C∞(𝐼) be a simple, non-trivial
solution of 𝐸𝛿 (·, 𝜑′) = 0.

Then there is a full phase functionΦ ∈ C∞
ℎ
(𝐼) with respect to 𝑃 and 𝛿withΦ = 𝜑/ℎ𝛿+𝑜(ℎ𝛿).

Proof. Since 𝜑′ is simple on 𝐼 we have that𝑇𝛿 is elliptic by Proposition 3.2.20. Without loss of
generality we assume that 𝑙𝛿 = 0. With𝑇 given by (3.21) and for 𝑛, 𝑟 ∈ N0, 𝐹𝑗 , 𝐺𝑘 , 𝑓𝑙 ∈ C∞(𝐼)
and 𝛽𝑘 , 𝛾𝑙 ∈ (0, 𝛿) ordered, we can write

𝑃𝛿,𝜑 =

𝑟∑︁
𝑗=1

𝐹𝑗ℎ
𝛾 𝑗 + ℎ𝛿𝑇 +

𝑛∑︁
𝑘=1

𝐺𝑘ℎ
𝛿+𝛽𝑘 +

𝑟∑︁
𝑙=1

𝑓𝑙ℎ
𝛿+𝛾𝑙𝜕𝑥 + O(ℎ2𝛿) .

Letting Y1 ≔ 𝛿 − 𝛾1 and 𝜓1 ∈ C∞(𝐼) then yields the following leading terms in the expansion
of (𝑃𝛿,𝜑)Y1,𝜓1

(𝐹1 + [𝑇𝛿 , 𝜓])ℎ𝛾1 +
𝑟∑︁
𝑗=2

𝐹𝑗ℎ
𝛾 𝑗 + ℎ𝛿𝑇 +

𝑛∑︁
𝑘=1

𝐺𝑘ℎ
𝛿+𝛽𝑘 +

𝑟∑︁
𝑙=1

𝑓𝑙 · (𝜓′
1)ℎ

𝛾1+𝛾𝑙 + O(ℎ2𝛾1) ,

since for all terms 𝑄 of differential order 𝑘 we have 𝑄 = O(ℎ𝑘 𝛿) and thus 𝑄Y1,𝜓1 = O(ℎ𝑘𝛾1).
By solving the sub-eikonal equation 𝐸𝛿−𝛾1 (𝑇𝛿) (·, 𝜓′) = 𝐹1 + [𝑇𝛿 , 𝜓] = 0 we are able to
increase the vanishing order from 𝑃𝛿,𝜑 = O(ℎ𝛾1) to (𝑃𝛿,𝜑)Y1,𝜓1 = O(ℎmin{𝛾2,2𝛾1}) at the
cost of lowering the remainder estimate to O(ℎ2𝛾1). Repeating this step for all remaining 𝐹𝑙,
𝑙 = 2, . . . , 𝑚, simultaneously and solving all corresponding sub-eikonal equations then yields

(𝑃𝛿,𝜑) Ŷ,𝜓 = ℎ𝛿𝑇 +
𝑛∑︁
𝑘=1

𝐺𝑘ℎ
𝛿+𝛽𝑘 + O(ℎ2𝛾1) ,

for Ŷ ≔ (Y1, . . . , Y𝑚), Y𝑙 ≔ 𝛿 − 𝛾𝑙 and 𝜓 ≔ (𝜓1, . . . , 𝜓𝑚), where 𝜓 𝑗 are the corresponding
solutions of the sub-eikonal equations. If 2𝛾1 ≥ 𝛿 then the operator (𝑃𝛿,𝜑) Ŷ,𝜓 satisfies the
requirements of Proposition 3.1.7 and thus Φ ≔ 𝜑/ℎ𝛿 + ∑𝑚

𝑙=1 𝜓𝑙/ℎY𝑙 is a full phase function.
Otherwise we can repeat this construction starting with (𝑃𝛿,𝜑) Ŷ,𝜓 and increase the remainder
O(ℎ2𝛾1) by ℎ𝛾1 for each iteration until 𝑁𝛾1 ≥ 𝛿 for some 𝑁 ∈ N. □

We are able to prove the main theorem of this chapter in two versions. Theorem 3.3.9 shows
the existence of quasimodes in one-to-one relation to solutions Z of an eikonal polynomial
𝐸𝛿 (𝑃) (·, Z) = 0. As a consequence, Theorem 3.3.11 shows that under sufficient conditions
there is a full set of independent quasimodes of a semi-classical operator, i.e. their number
matches the degree of the operator.
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Theorem 3.3.9. Let 𝐼 ⊂ R be an interval, Λ ⊂ N0×R be a set of exponents and 𝑃 ∈ Diff Λ(𝐼).
Let L ⊂ 𝜕-P(Λ) with slope 𝛿 > 0. Let 𝜑 ∈ C∞(𝐼) be a simple, non-trivial solution of
𝐸𝛿 (𝑃) (·, 𝜑′) = 0 on 𝐼. Let 𝑇 be given by (3.21).

Then there is a full phase function Φ corresponding to 𝜑′, such that

𝑃Φ = ℎ𝑙𝛿+𝛿𝑇 + 𝑜
(
ℎ𝑙𝛿+𝛿

)
.

Moreover, there is a quasimode 𝑢 = 𝑒Φ(ℎ)𝐴, with 𝐴 ≔
∑∞
𝑘=0 𝑎𝑘ℎ

𝛽𝑘 , where 𝑎𝑘 ∈ C∞(𝐼) and
𝑎0 ∈ ker𝑇 with 𝑎0 . 0, such that

𝑃Φ𝐴 = O(ℎ∞) .

If 𝑃 is 𝛿-separated, then Φ(ℎ) = 𝜑/ℎ𝛿 . Additionally, if 𝑃 is strongly 𝛿-separated, then
𝑇 = 𝑇𝛿,𝜑 .

Proof. Let L ⊂ 𝜕-P(Λ) be an edge with slope 𝛿 > 0 and let 𝜑 be a simple solution of
𝐸𝛿 (·, 𝜑′) = 0. Since 𝜑 is a simple, non-trivial solution, Proposition 3.2.20 yields that 𝑇𝛿 is an
elliptic first order differential operator and in particular 𝑇 given in (3.21) is elliptic, too. Since
𝑇 is elliptic, applying Proposition 3.3.8 yields a Φ ∈ C∞

ℎ
(𝐼), with Φ = 𝜑/ℎ𝛿 + 𝑜(ℎ𝛿), such

that

𝑃Φ = 0 + ℎ𝛿+𝑙𝛿𝑇 + 𝑜
(
ℎ𝛿+𝑙𝛿

)
,

for 𝑙𝛿 ∈ R given by (3.14). Hence𝑇 is the leading operator of 𝑃Φ. Proposition 3.1.7 then yields
a polyhomogeneous quasimode

∑
𝑘 𝑎𝑘ℎ

𝛽𝑘 for 𝑃Φ with 𝑎𝑘 . 0 and further 𝑢 = 𝑒Φ
∑
𝑘 𝑎𝑘ℎ

𝛽𝑘 is
a quasimode of 𝑃. □

Example 3.3.10. Let 𝑛 ∈ N, let 0 ≤ 𝑘 < 𝑛 and 𝐴𝑘 ∈ C∞(𝐼) [ℎ] be polynomial in ℎ, where we
assume that 𝐴0(0, 0) ≠ 0. Let

𝑃 ≔ ℎ𝑛𝜕𝑛𝑥 +
𝑛−1∑︁
𝑘=0

𝐴𝑘 (𝑥, ℎ)ℎ𝑘𝜕𝑘𝑥

be a semi-classical operator. Its corresponding set of exponents Λ(𝑃) is contained in the cone
spanned by the ℎ-axis and the diagonal ΔR+ ≔ {(𝑥, 𝑥) : 𝑥 ∈ R+} and its lower boundary
coincides with the edge L = (0, 0), (𝑛, 𝑛). These operators correspond to a class of operators
considered in Chapter 5 of [Fed93], for which the author sketches a way of obtaining the phase
functions and leading term of the amplitude, under the assumptions that all solutions 𝜑′

𝑗
, for

𝑗 = 1, . . . , 𝑛, of the eikonal equation

𝐸1(𝑃) (𝑥, Z) = 0 ,

are simple, for all 𝑥 ∈ 𝐼. Applying Theorem 3.3.9 yields the full asymptotic expansion of the
amplitudes in that setting for each 𝜑′

𝑗
, with corresponding leading terms 𝑎 𝑗 ,0 ∈ C∞(𝐼) of the
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amplitudes, up to a constant determined by

𝑇1,𝜑′
𝑗
𝑎 𝑗 ,0 =

©«
∑︁

_=(𝑘,𝛼)
_∈L∩Λ

𝑎_ · 𝑘 (𝜑′)𝑘−1
(
𝜕𝑥 +

𝑘 − 1
2

𝜑′′

𝜑′

)ª®®®¬ 𝑎 𝑗 ,0 = 0 .

Requiring that all solutions 𝜑′ ∈ C∞(𝐼) eikonal equations 𝐸𝛿 (𝑃) (·, Z) = 0 for all slopes
𝛿 > 0 of the Newton polygon 𝜕-P(Λ) are simple, simultaneously, implies that almost all
solutions 𝜑′ are bounded away from 0 on 𝐼. This will be discussed briefly in Remark 3.3.12.
Thus, the following theorem about the existence of a basis of independent quasimodes, whose
number coincides with the order of the operator requires instead the existence of a point 𝑥0 ∈ 𝐼
where all eikonal polynomials have only non-zero roots.

Theorem 3.3.11. Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 × R be a set of exponents and 𝑃 ∈
Diff Λ(𝐼) with ord 𝑃 = 𝑚. Let Δ ⊂ R>0 be the set of slopes corresponding to maximal edges
L𝛿 ⊂ 𝜕-P(Λ) for 𝛿 ∈ Δ. Denote their length by 𝐿 𝛿 ≔ |L𝛿 |. Assume that there is an 𝑥0 ∈ 𝐼
such that for each positive 𝛿 ∈ Δ the eikonal polynomial 𝐸𝛿 (𝑃) (𝑥0, Z) = 0 has simple roots
Z𝛿, 𝑗 ≠ 0 for each 𝑗 = 1, . . . , 𝐿 𝛿 .

Then there is an interval𝑈 ⊂ 𝐼 and there are independent (exponential)-polyhomogeneous
quasimodes 𝑢𝛿, 𝑗 = 𝑒Φ𝛿, 𝑗 𝐴𝛿, 𝑗 of 𝑃 with 𝐴𝛿, 𝑗 . 0, for each 𝛿 ∈ Δ and 𝑗 = 1, . . . , 𝐿 𝛿 , such that

𝑃Φ𝛿, 𝑗 𝐴𝛿, 𝑗 = O(ℎ∞) .

For each positive 𝛿 ∈ Δ and 𝑗 = 1, . . . , 𝐿 𝛿 the phase functions satisfyΦ𝛿, 𝑗 = 𝜑𝛿, 𝑗/ℎ𝛿+𝑜(ℎ−𝛿)
for 𝜑𝛿, 𝑗 ∈ C∞(𝑈) with 𝜑′

𝛿, 𝑗
(𝑥0) = Z𝛿, 𝑗 and 𝐸𝛿 (𝑃) (·, 𝜑′𝛿, 𝑗) = 0. For 𝛿 = 0 we have that

Φ0, 𝑗 ≡ 0 for all 𝑗 = 1, . . . , 𝐿0.
In particular, the number of independent quasimodes 𝑢𝛿, 𝑗 is equal to 𝑚 =

∑
𝛿∈Δ 𝐿 𝛿 .

Remark 3.3.12. Note that in the statement of Theorem 3.3.11 we do not require simplicity of
solutions of eikonal equations and instead reduce it to the existence of local non-zero roots
Z𝛿, 𝑗 of the eikonal polynomials 𝐸𝛿 (𝑃) (𝑥0, Z) at 𝑥0 ∈ 𝐼. This is equivalent to the existence
of simple solutions and 𝛿-regularity in a neighborhood of 𝑥0 ∈ 𝐼, as we will show. Reducing
this to simple roots Z𝛿, 𝑗 ∈ C by allowing roots Z𝛿, 𝑗 = 0, excluding the trivial roots, for one
𝑗 = 1, . . . , 𝐿 𝛿 , has negative impacts on solutions of eikonal equations on adjacent edges.

Let L1,L2 ⊂ 𝜕-P(Λ) be two maximal, adjacent edges to the left with slopes 𝛿𝑘 ≔ 𝛿(L𝑘),
𝑘 = 1, 2, and 𝛿1 < 𝛿2. Allowing for a vanishing solution 𝜑′2(𝑥0) = 0 of

𝐸𝛿2 (𝑃) (𝑥0, Z) = Z 𝑙 ·
𝐿2∏
𝑗=1

(Z − Z𝛿2, 𝑗) = Z 𝑙 ·
𝐿2∑︁
𝑗=0
𝑎2, 𝑗 (𝑥0)Z 𝑗

implies 𝑎2,0(𝑥0) = 0. On the other hand, 𝑎2,0 is the leading coefficient of 𝐸𝛿1 (𝑃) (·, Z),
resulting in the existence of an unbounded solutions 𝜑′1 at 𝑥0. Since we aim to find an interval
𝑈 ⊂ 𝐼 on which we have the maximal amount of independent quasimodes, the point 𝑥0 ∈ 𝐼
has to be excluded from𝑈.

76



3.3 Construction of Quasimodes I: Regular Operators

This can be relaxed to requiring that all but one solution are non-zero, with the exception
of Z𝛿1,1, where the slope of the zero root

𝛿1 ≔ min{𝛿 : there is a L ⊂ 𝜕-P(Λ), with 𝛿 = 𝛿(L)} ,

has to be minimal, following the discussion above.

Proof. Without loss of generality assume that all edges are ordered from left to right with
corresponding slopes 𝛿𝑘 and widths 𝐿𝑘 ≔ |L𝛿𝑘 |. Since Z𝛿2, 𝑗 ≠ 0 for all 𝑗 = 1, . . . , 𝐿2, the
associated eikonal polynomial at 𝑥0 ∈ 𝐼 is of the form

𝐸𝛿2 (𝑃) (𝑥0, Z) = Z𝐿1 ·
𝐿2∑︁
𝑗=0
𝑎 𝑗 (𝑥0)Z 𝑗 ,

with 𝑎0(𝑥0), 𝑎𝐿2 (𝑥0) ≠ 0. Thus, there is a maximal neighborhood 𝑈2 ⊂ 𝐼 of 𝑥0, such that
𝑎0(𝑥), 𝑎𝐿2 (𝑥) ≠ 0 for all 𝑥 ∈ 𝑈2. This is equivalent to 𝑃 being 𝛿2-regular. Thus, we can
apply Proposition 3.2.15 and obtain smooth, simple solutions 𝜑𝛿2, 𝑗 of 𝐸𝛿2 (𝑃) (·, 𝜑′𝛿2, 𝑗

) = 0 on
𝑈2 ⊂ 𝑈2 with 𝜑′

𝛿2, 𝑗
(𝑥0) = Z𝛿2, 𝑗 for 𝑗 = 1, . . . , 𝐿2. Applying Theorem 3.3.9 then yields full

phase functions Φ𝛿2, 𝑗 = 𝜑𝛿2, 𝑗/ℎ𝛿2 + 𝑜
(
ℎ𝛿2

)
and amplitudes 𝐴𝛿2, 𝑗 , 𝑗 = 1, . . . , 𝐿2, such that

𝑃Φ𝛿2 , 𝑗
𝐴𝛿2, 𝑗 = O (ℎ∞) ,

on 𝑈2. Repeating the same argument for all remaining positive edge L𝑘 , 𝑘 > 1, then yields a
set of independent quasimodes

𝑢𝛿𝑘 , 𝑗 = 𝑒
Φ𝛿𝑘 , 𝑗 𝐴𝛿𝑘 , 𝑗 ,

of 𝑃 on 𝑈 ≔
⋂
𝑘𝑈𝑘 . Moreover, for the horizontal edge L1 we have that 𝑃 = ℎ𝑙0𝑇0 + 𝑜

(
ℎ𝑙0

)
with

𝑇0 = 𝑎0(𝑥)𝜕𝐿1
𝑥 +

𝐿1−1∑︁
𝑘=0

𝑏𝑘 (𝑥)𝜕𝑘𝑥 ,

for some 𝑏𝑘 ∈ C∞(𝐼) and the coefficient 𝑎0 of 𝐸𝛿2 (𝑃) (𝑥, Z). Since 𝑎0(𝑥) ≠ 0 for all 𝑥 ∈ 𝑈2

it holds that 𝑇0 is elliptic. Thus, applying Proposition 3.1.7 yields 𝐿1 polyhomogeneous
quasimodes 𝐴0, 𝑗 for 𝑃 on𝑈2. In total, this yields

𝑚 =
∑︁
𝛿𝑘∈Δ

𝐿𝑘

independent quasimodes on𝑈, of which 𝐿0 are polyhomogeneous. □

3.3.3 Multiple Roots

In the end of this chapter we want to briefly discuss the phenomenon of operators 𝑃 with edges
L ⊂ 𝜕-P(Λ(𝑃)) whose solutions Z of 𝐸𝛿 (L) (𝑃) (·, Z) = 0 have multiplicities 𝑟 ∈ N, 𝑟 ≥ 1,
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globally on 𝐼. Due to the structure of 𝑇𝛿 in (3.16), it can be displayed as

𝑇𝛿,Z = 𝜕Z (𝐸𝛿 (𝑃)) (·, Z) · 𝜕𝑥 +
∑︁

_=(𝑘,𝛼)
_∈L∩Λ

𝑎_
𝑘 (𝑘 − 1)

2
Z 𝑘−2 [𝜕𝑥 , Z] ,

where 𝛿 = 𝛿(L). Thus, the leading coefficient 𝜕Z (𝐸𝛿 (𝑃)) (·, Z) of 𝑇𝛿,Z vanishes, since for
solutions Z of multiplicity 𝑟 ∈ N it holds that 𝜕𝜌

Z
(𝐸𝛿 (𝑃)) (·, Z) = 0, for all 𝜌 < 𝑟 . The

canonical replacement for the induced transport operator in these cases is the operator induced
by the 𝑟-th lowest summand in the expansion of (2.15).

Definitions & Proposition

Definition 3.3.13 (𝑟-𝛿-Transport Operator). Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 × R be a set of
exponents and 𝑃 ∈ Diff Λ(𝐼) be a generalized semi-classical operator. Let L ⊂ 𝜕-P(Λ) be an
edge of the lower boundary with slope 𝛿 > 0 and let 𝑟 ∈ N. For any 𝑘 ∈ N0 and 𝜎 ∈ 𝑆𝑘 let
(b𝑟 Z 𝑘−𝑟 )𝜎 be the permutation of factors of the product b𝑟 Z 𝑘−𝑟 .

Then we call

𝑇𝛿,𝜑′ ,𝑟 (𝑃) ≔ ]𝜑′ ,𝜕𝑥


∑︁

_=(𝑘,𝛼)
_∈L∩Λ

∑︁
𝜎∈𝑆𝑘

𝑎_ · (b𝑟 Z 𝑘−𝑟 )𝜎
 ,

the 𝑟-th order induced transport operator with respect to 𝛿.

Note that [Z, b] ≠ 0. Thus, b𝑟 Z 𝑘−𝑟 ≠ (b𝑟 Z 𝑘−𝑟 )𝜎 for many 𝜎 ∈ 𝑆𝑘 . The simplicity of a
solution 𝜑′ of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0 to show the ellipticity of 𝑇𝛿,𝜑′ can be replaced by requiring
𝜑′ to have maximal, constant multiplicity for 𝑇𝛿,𝜑′ ,𝑟 .

Proposition 3.3.14. Let 𝐼 ⊂ R be an interval, Λ ⊂ N0 × R be a set of exponents and
𝑃 ∈ Diff Λ(𝐼) be a generalized semi-classical operator. Let L ⊂ 𝜕-P(Λ) be an edge of the
lower boundary with slope 𝛿 > 0 and let 𝑟 ∈ N. Let 𝜑′ be a solution of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0 with
constant multiplicity 𝑟 .

Then the 𝑟-𝛿-induced transport operator 𝑇𝛿,𝜑′ ,𝑟 of 𝑃 has order 𝑟 and is elliptic.

Proof. Let 𝜑′ be a solution of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0 with constant multiplicity 𝑟 ∈ N. The
𝑟-𝛿-induced transport operator 𝑇𝛿,𝜑′ ,𝑟 is a differential operator of the form

𝑇𝛿,𝜑′ ,𝑟 =

( ∑︁
_∈Λ∩L

𝑎_ ·
𝑘!

(𝑘 − 𝑟)! · (𝜑
′)𝑘−𝑟

)
𝜕𝑟𝑥 +

𝑟−1∑︁
𝑗=0

𝐴 𝑗𝜕
𝑗
𝑥 ,

with a leading coefficient that can be rephrased using (2.12) to

(𝜕𝑟Z 𝐸𝛿 (𝑃)) (·, 𝜑′) =
∑︁

_∈Λ∩L
𝑎_ ·

𝑘!
(𝑘 − 𝑟)! · (𝜑

′)𝑘−𝑟 .
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The multiplicity 𝑟 of 𝜑′ with respect to 𝐸𝛿 (𝑃) (·, Z) = 0 is constant. Thus, the leading
coefficient of 𝑇𝛿,𝜑′ ,𝑟 does not vanish, i.e. (𝜕𝑟

Z
𝐸𝛿 (𝑃)) (𝑥, 𝜑′(𝑥)) ≠ 0 for all 𝑥 ∈ 𝐼. In particular,

the 𝑟-𝛿-induced transport operator is elliptic on 𝐼 and ord𝑇𝛿,𝜑′ ,𝜌 = 𝑟. □

Due to the higher order coefficient ℎ𝑙𝛿+𝑟 𝛿 of 𝑇𝛿,𝜑′ ,𝑟 in the expansion of 𝑃𝛿,𝜑′ we need to
extend the margins of separation for them to be useful.

Definition 3.3.15 (𝑟-𝛿-Separation). Let 𝐼 ⊂ R be an interval, Λ ⊂ N0×R be a set of exponents
and 𝑃 ∈ Diff Λ(𝐼) be a generalized semi-classical operator. Let L ⊂ 𝜕-P(Λ) be an edge of
the lower boundary with slope 𝛿 > 0 and let 𝑟 ∈ R.

Then we call 𝑃 𝑟-𝛿-separated, if

Λ ∩ conv (𝐴𝛿 (𝑙𝛿) ∪ 𝐴𝛿 (𝑙𝛿 + 𝑟𝛿))◦ = ∅ ,

with 𝑙𝛿 given by (3.14) and 𝐴𝛿 defined in (3.13). Additionally, if

Λ ∩ 𝐴𝛿 (𝑙𝛿 + 𝑟𝛿) = ∅ ,

then we call 𝑃 strictly 𝑟-𝛿-separated. 𝑃 is called 𝛿-separated, if there is an 𝑟 ∈ N such that 𝑃
is 𝑟-𝛿-separated.

Remark 3.3.16. As in (3.21) the transport operator 𝑇 for 𝑟-𝛿-separated operators 𝑃 can be
computed combinatorially and is given by

𝑇 = 𝑇𝛿,𝜑′ ,𝑟 +
𝑚∑︁
𝑘=0

𝑎 (𝑘,𝑙𝛿+(𝑟+𝑘 ) 𝛿 ) · (𝜑′)𝑘 , (3.26)

where 𝑎 (𝑘,𝑙𝛿+(𝑟+𝑘 ) 𝛿 ) ≡ 0, if and only if (𝑘, 𝑙𝛿 + (𝑟 + 𝑘)𝛿) ∉ Λ.

Remark 3.3.17. We will not cover the question of how to resolve general non-separated
operators with multiplicities higher than one. Other than in Proposition 3.3.8, higher order
multiplicities 𝑟 > 1 of the solution 𝜑′ of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0 impose significantly worse starting
points to resolve 𝑃𝛿,𝜑′ . This is due to the existence of points (𝑘, 𝛼) ∈ Λ(𝑃𝛿,𝜑) with 0 < 𝑘 < 𝑟
and 𝛼 < 𝑙𝛿 + 𝑟𝛿.

In general, Λ(𝑃𝛿,𝜑) is contained in a upward facing, closed cone with base point (0, 𝑙𝛿)
with a vertical side and a side with slope 𝛿 (see Figure 3.6). Non-separateness corresponds to
the existence of points _ in the interior of the triangle Δ((0, 𝑙𝛿), (0, 𝑙𝛿 + 𝑟𝛿), (𝑟, 𝑙𝛿 + 𝑟𝛿)) for
all 𝑟 > 0, see Figure 3.6. One can eliminate these points by repeating the general process of
constructing quasimodes for 𝑃𝛿,𝜑 with respect to edges L ⊂ 𝜕-P(Λ(𝑃𝛿,𝜑)) that are contained
in that triangle, i.e.

L ⊂ Δ((0, 𝑙𝛿), (0, 𝑙𝛿 + 𝑟𝛿), (𝑟, 𝑙𝛿 + 𝑟𝛿)) .

79



3 Regular Operators

ℎ𝛼

𝜕𝑘𝑥

𝑙𝛿

𝑙𝛿+𝛿

𝑙𝛿+2𝛿

𝑙𝛿+3𝛿

0 1 2 3

Figure 3.6: The set of exponents Λ(𝑒−𝜑/ℎ𝛿𝑃𝑒𝜑/ℎ𝛿 ) of a semi-classical operator 𝑃 after con-
jugation. The red dashed lines show the extension of the cone based at (0, 𝑙𝛿).
The blue dotted box highlights the triangle in the cone underneath {𝛼 = 𝑙𝛿 + 𝛿},
which is empty if and only if 𝑃 is 1-𝛿-separated.

Central Statement

We will prove the last version of the existence of quasimodes in the regular case, Theo-
rem 3.3.18, including solutions of their corresponding eikonal equations with higher order
multiplicities.

Theorem 3.3.18. Let 𝐼 ⊂ R be an interval,Λ ⊂ N0×R be a set of exponents and 𝑃 ∈ Diff Λ(𝐼).
Let L ⊂ 𝜕-P(Λ) with slope 𝛿 > 0. Let 𝜑 ∈ C∞(𝐼) be a solution of 𝐸𝛿 (𝑃) (·, 𝜑′) = 0 with
constant multiplicity 𝑟 ∈ N and assume that 𝑃 is 𝑟-𝛿-separated. Let 𝑇 be given by (3.26).

Then there are quasimodes 𝑢 𝑗 = 𝑒𝜑/ℎ
𝛿

𝐴 𝑗 , where 𝐴 𝑗 ≔
∑∞
𝑘=0 𝑎 𝑗 ,𝑘ℎ

𝛽𝑘 with 𝑎 𝑗 ,𝑘 ∈ C∞(𝐼),
and 𝑎 𝑗 ,0 ∈ ker𝑇 linearly independent, for 𝑗 = 1, . . . , 𝑟 , with 𝑎 𝑗 ,0 . 0, such that

𝑃𝛿,𝜑𝐴 𝑗 = O(ℎ∞) .

Additionally, if 𝑃 is strongly 𝑟-𝛿-separated, then 𝑇 = 𝑇𝛿,𝜑′ ,𝑟 .

Proof. Let L ⊂ 𝜕-P(Λ) be an edge of 𝑃 ∈ Diff Λ(𝐼) with slope 𝛿 and let 𝜑 be a solution of
𝐸𝛿 (·, 𝜑′) = 0 with multiplicity 𝑟 ∈ N. Since 𝑃 is 𝑟-𝛿-separated we have

𝑒−𝜑𝑃𝑒𝜑 = 0 + ℎ𝑟 𝛿+𝑙𝛿𝑇 + 𝑜(ℎ𝑟 𝛿+𝑙𝛿 ) ,

for 𝑙𝛿 ∈ R given by (3.14) and 𝑇 defined in (3.26). By Remark 3.3.16 we have 𝑇 = 𝑇𝛿,𝜑′ ,𝑟 , if
and only ifΛ∩𝐴𝛿 (𝑙𝛿 + 𝑟𝛿) = ∅. Since 𝜑′ has constant multiplicity 𝑟 , Proposition 3.3.14 yields
that 𝜑′(𝑥) ≠ 0, for all 𝑥 ∈ 𝐼. Hence 𝑇𝛿,𝜑,𝑟 is an elliptic differential operator of order 𝑟 , and in
particular𝑇 is elliptic, too. Thus, we can apply Proposition 3.1.7 to the leading term𝑇 = 𝑇𝛿,𝜑,𝑟

of 𝑃𝜑, 𝛿 = ℎ𝑙𝛿+𝑟 𝛿𝑇 + 𝑜(ℎ𝑙𝛿+𝑟 𝛿), yielding polyhomogeneous quasimodes 𝐴 𝑗 ≔
∑
𝑘 𝑎 𝑗 ,𝑘ℎ

𝛽𝑘 .
Hence 𝑢 𝑗 = 𝑒𝜑/ℎ

𝛿 ∑
𝑘 𝑎 𝑗 ,𝑘ℎ

𝛽𝑘 is a quasimode of 𝑃, for any 𝑗 = 1, . . . , 𝑟 . □
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3.3 Construction of Quasimodes I: Regular Operators

The case where the multiplicity of 𝜑′(𝑥) in 𝐸𝛿 (L) (𝑃) (𝑥, 𝜑′(𝑥)) = 0 is not continuous and
thus has points with higher order zeros is the essential problem of the following chapters and
will cause many new phenomena.
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4 Resolved Operators

In this chapter we are interested in the construction of quasimodes for 𝛿-singular operators.
We will present the notion of resolved operators, a subclass of singular operators, which admit
a construction of exponential-polyhomogeneous quasimodes with the methods developed in
Chapter 3. We will see that the lack of regularity results in phase functions and amplitudes
not being smooth in general. Thus, it is natural to consider operators on the quarter space R2

+
instead of the half space H.

The singularities of these operators arise when coefficients corresponding to pairs of ex-
ponents _, ` spanning an edge L vanish at 0 ∈ R+. These singularities result in pointwise
jumps in multiplicity, i.e. crossing points, or in unbounded behavior of solutions of the eikonal
equation in 𝑥 = 0. Crossing points lead to a vanishing leading coefficient of the induced
transport operator

𝑇𝛿,𝜑′ (𝑃) =
∑︁

_=(𝑘,𝛼)
_∈L∩Λ

𝑎_ · 𝑘 (𝜑′)𝑘−1
(
𝜕𝑥 +

𝑘 − 1
2

𝜑′′

𝜑′

)
,

whose zero 𝑥 = 0 coincides with the zero of 𝑎_. Thus, one needs to have an overview of
the vanishing orders of all coefficients 𝑎_ in 𝑥 = 0 in the expansion of 𝑃. Unbounded phase
functions lead to a b-transport operator in the same way crossing solutions of the eikonal
equations do. The focus of this chapter is to determine when these singular operators admit
polyhomogeneous amplitudes.

The new quantity we have to take into account to determine a priori whether an operator
admits the construction of a quasimode is the vanishing order of the coefficients. As we will
show in Section 4.2, this is possible if the increase of homogeneity in 𝑥 of the coefficients
along a lower edge L is minimal compared to all other points in Λ. The minimality in
increase directly corresponds to the considerations of the Newton polygon and thus leads
to the introduction of the three-dimensional Newton polyhedron, additionally accounting for
these homogeneities. Using these polyhedrons and an appropriate notion of lower boundary,
we are able to characterize resolved operators geometrically, which can easily be transferred
to Chapter 5 and the resolution of general singular operators.

In contrast to Chapter 3, it is convenient to treat generalized semi-classical operators in
terms of b-differential operators, although it is not necessary to do so. Due to the excessive
use of blow-ups in Chapter 5, there are two different types of b-vector fields 𝑉 that have to
be considered when treating singular operators of the form 𝑃 =

∑
𝑘 𝐴𝑘 (𝑥, ℎ)𝑉 𝑘 : horizontal

b-vector fields𝑉 = 𝑥𝜕𝑥 and hyperbolic b-vector fields𝑉 = 𝑥𝜕𝑥− 𝑦𝜕𝑦 . In the end of this chapter
we will be able to prove the existence of quasimodes constructively for both cases, leading to
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4 Resolved Operators

Theorems 4.3.3 and 4.3.10. The chapter starts with a sequence of examples in Section 4.1
exploring the phenomena occurring when dropping 𝛿-regularity. These examples motivate
the definitions presented in Section 4.2 but can be skipped entirely.

4.1 Examples of Singular Operators

This section presents many examples of 𝛿-singular operators and approaches to construct
quasimodes for most of them. Recall Definition 3.2.16 that 𝑃 is called 𝛿-regular on 𝐼 ⊂ R, if
the maximal edge L = _` ⊂ 𝜕-P(Λ(𝑃)) with slope 𝛿 > 0 has width |L| > 0 and if for all
𝑥 ∈ 𝐼 we have that 𝑎_(𝑥) ≠ 0 and 𝑎` (𝑥) ≠ 0. Its absence can lead to unbounded or crossing
solutions of its associated eikonal equation

𝐸𝛿 (𝑃) (·, 𝜑′) = 0 .

We will outline some classes of singular operators and their properties to show what sort of
undesirable side effects occur with these. In particular, we will split this section into two parts:
Subsection 4.1.1 shows examples of so called resolved operators, which will be introduced
in Section 4.2. These are operators that admit exponential-polyhomogeneous quasimodes
corresponding to an edge L, despite being 𝛿(L)-singular. We aim to emphasize important
observations in their construction. In its center is the distribution of weights along Λ(𝑃). The
weight 𝜔(_) of a point _ = (𝑘, 𝛼) is the homogeneity in 𝑥 of its associated summand in the
expansion of 𝑃 and coincides with the difference ord0(𝑎_) − 𝑘 .

Subsection 4.1.2 exceeds the scope of Chapter 4 by presenting so called unresolved operators,
i.e. operators that do not admit exponential-polyhomogeneous quasimodes. It briefly sketches
possible ways to resolve these operators by the successive use of quasihomogeneous blow-ups
in 0 ∈ R+. The goal is to show how the analysis of the distribution of weights 𝜔(_) can be
used to determine the appropriate parameters for the required blow-ups and to define a final
state that does not require further resolution.

4.1.1 Examples I: Resolved Operators

This subsection contains examples of operators which will later be referred to as resolved. We
will construct quasimodes following the methods developed in Chapter 3 and show that these
have polyhomogeneous phases and amplitudes on R2

+.

Singular Unperturbed Operators

A part of the class of perturbed, singular operators are unperturbed operators. In particular,
we will refer to Theorem 2.2.19, which says that for every asymptotic solution of a singular
ordinary differential equation

∑
𝑘 𝑎𝑘𝑦

(𝑘 ) = 0 there is a solution of this equation matching the
approximative solution asymptotically. Unperturbed operators can and will occur repeatedly
in the resolution of singularities in Chapter 5.
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4.1 Examples of Singular Operators

Example 4.1.1. Let 𝑃 ≔ 𝑥3𝜕2
𝑥 +𝑥𝜕𝑥 +1 and 𝐼 ≔ R+. We use the Newton polygon of the orders

of differentiation and powers of 𝑥 to compute asymptotic solutions of 𝑃𝑢 = 0 at the singular
point 𝑥 = 0 of 𝑃 according to Proposition 2.3.6. Its set of exponents (in powers of 𝜕𝑘𝑥 and 𝑥𝜔)
is given by Λ = {(0, 0), (1, 1), (2, 3)}. Choosing the edge L ≔ (0, 0), (1, 1) ⊂ 𝜕-P(Λ), its
corresponding initial solution is given by 𝑢0(𝑥) ≔ 𝑥−1. This yields

𝑃𝑢0 = (𝑥𝜕𝑥 + 1)𝑥−1 + (𝑥3𝜕2
𝑥)𝑥−1 = 0 + 2 .

A first order correction term 𝑢1 would need to solve 𝑃𝑢1 = −2, which is satisfied by 𝑢1 ≔ −2.
In particular,

𝑢0 + 𝑢1 = 𝑥−1 − 2

is a solution of 𝑃𝑢 = 0. Following Proposition 2.3.6, another initial solution of 𝑃𝑢 = 0 is
given by 𝑣0 ≔ 𝑒1/𝑥 , yielding

𝑃𝑣0 = (𝑥3𝜕2
𝑥 + 𝑥𝜕𝑥)𝑒1/𝑥 + 𝑒1/𝑥 = 𝑒1/𝑥 .

This can be rephrased to

𝑒−1/𝑥𝑃𝑒1/𝑥 = −(𝑥𝜕𝑥 − 2) + 𝑥
(
(𝑥𝜕𝑥)2 − 𝑥𝜕𝑥

)
,

which is a system of b-transport equations with transport operators𝑇 ≔ 𝑥𝜕𝑥−2 and remainder
operator 𝑅 ≔ 𝑥((𝑥𝜕𝑥)2 − 𝑥𝜕𝑥). An initial solution 𝑎0 ∈ ker𝑇 is given by 𝑎0(𝑥) ≔ 𝑥2 and
the first inhomogeneous term 𝑎1 is the solution of 𝑇𝑎1 = 𝑅𝑎0, i.e. 𝑇𝑎1 = 6𝑥3. Having
determined these exponential-polyhomogeneous, asymptotic solutions of 𝑃𝑢 = 0, we can
apply Theorem 2.2.19 and obtain a second solution 𝑣 which has 𝑣0 · ∑∞

𝑘=0 𝑎𝑘 as asymptotic
expansion as 𝑥 → 0.

Remark 4.1.2. All sets of exponents discussed after this example are with respect to ℎ𝛼 and
𝜕𝑘𝑥 . However, powers of 𝑥𝜔 will be included in a 3-dimensional extension of sets of exponents
in Section 4.2. These will be called localized sets of exponents and lead to the introduction of
Newton polyhedra in Definitions 4.2.23 and 4.2.24.

Partial Regularity

We want to emphasize that 𝛿-regularity was only required in Theorem 3.3.11 to obtain a
basis of independent quasimodes for operators with multiple edges. In particular, if 𝜕-P(Λ)
consists of a single edge L, simplicity of solutions 𝜑′ of the eikonal equation is sufficient
for the existence of exponential-polyhomogeneous quasimodes, wherever these exists. Exam-
ple 4.1.3 shows that there can be two simple solutions of a 𝛿-singular operator of which one
solution even extends smoothly to the 𝛿-singular point 𝑥 = 0. Thus, there is one exponential-
polyhomogeneous quasimode whose amplitude is smooth in 𝑥 on R+. The existence of an
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4 Resolved Operators

ℎ𝛼

𝜕𝑘𝑥

L

P(Λ(𝑃))

0 1 2
0

1

2

Figure 4.1: The set of exponents Λ(𝑃) associated to 𝑃 ≔ 𝑥2ℎ2𝜕2
𝑥 + ℎ𝜕𝑥 −1 and the lower edge

L of the associated polygon P(Λ(𝑃)).

exponential-polyhomogeneous quasimode for the other, unbounded solution of the eikonal
equation will be analyzed in greater generality Section 4.2.

Example 4.1.3 (Partial Regularity). Let 𝑃 ≔ 𝑥2ℎ2𝜕2
𝑥 + ℎ𝜕𝑥 − 1 and 𝐼 ≔ R+. The associated

set of exponents is given by Λ(𝑃) = {(0, 0), (1, 1), (2, 2)} (see Figure 4.1). Thus, 𝑃 is not
𝛿-regular with respect to its only edge L ≔ P(𝑃) = (0, 0), (2, 2) with slope 𝛿(L) = 1, since
𝑎 (2,2) (𝑥) = 𝑥2 vanishes at {𝑥 = 0}. We analyze the behavior of the phase functions on 𝐼◦ as
𝑥 → 0. The 𝛿-principal symbol of 𝑃 for 𝛿 = 1 is given by

𝐸𝛿 (𝑃) (𝑥, Z) = 𝑥2Z2 + Z − 1 ,

and the corresponding eikonal equation 𝐸𝛿 (𝑃) (·, Z) = 0 has solutions

Z±(𝑥) = − 1
2𝑥2 ±

√︂
1

4𝑥4 + 1
𝑥2 = − 1

2𝑥2

(
1 ∓

√︁
1 + 4𝑥2

)
, (4.1)

which are simple for all 𝑥 > 0. In particular, Z+ is defined and smooth in 𝑥 = 0, since
Z+(𝑥) ∼ −1/(2𝑥2)

(
1 − 1 + O(𝑥2)

)
as 𝑥 → 0. The asymptotic expansion of the conjugation of

𝑃 with 𝜑′+ ≔ Z+ is a sum of its induced transport operator

𝑇𝛿,𝜑′
+ = (2𝑥2𝜑′+ + 1)𝜕𝑥 + 𝑥2𝜑′′+ ,

with coefficient ℎ1 and a single remainder operator 𝑅𝛿 = 𝑥2𝜕2
𝑥 with coefficient ℎ2. Since both

solutions Z± are simple, we can apply Theorem 3.3.9. However, since only Z+ is defined in
𝑥 = 0, the theorem yields a quasimode 𝑢+ corresponding to Z+ on R+ with smooth phase and
amplitude. The other quasimode 𝑢− corresponding to Z− is restricted to (0,∞). With our
methods we cannot decide yet whether 𝑢− exponential-polyhomogeneous on R+.

Remark 4.1.4. One can link the existence of the smooth solution 𝜑′+ of the eikonal equation
in Example 4.1.3 to the existence of a regular subedge (0, 0), (1, 1) ⊂ L, i.e. the coefficients
𝑎 (0,0) and 𝑎 (1,1) do not vanish in 𝑥 = 0.
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4.1 Examples of Singular Operators

Singular Minimum

Let 𝑃 be a semi-classical operator with set of exponents Λ ⊂ N0 ×R. A regular minimal point
_min = (𝑘min, 𝛼min) ∈ Λ, i.e. 𝑎_min (0) ≠ 0, with its associated horizontal edge Lhor ⊂ 𝜕-P(Λ)
and elliptic transport operator

𝑇0 =
∑︁

_∈Lhor∩Λ
_=(𝑘,𝛼)

𝑎_𝜕
𝑘
𝑥

allows for a direct construction of polyhomogeneous quasimodes which are smooth in 𝑥 via
Proposition 3.1.7. However, 𝑎_min (0) ≠ 0 is not required for the existence of quasimodes with
polyhomogeneous behavior on R2

+. In some cases, we can allow vanishing coefficients 𝑎_min

of minimal points in 𝑥 = 0.
The point _min = (𝑘min, 𝛼min) corresponds to a summand

𝑎_minℎ
𝛼min𝜕𝑘min

𝑥 ,

in the asymptotic expansion of 𝑃 and is the leading term of the transport operator 𝑇0. In
particular any transport equation will be of the form

𝑇0𝑢 = 𝑅𝑘𝑣 ,

where 𝑅𝑘 is a summand in 𝑃 = 𝑇 + ∑∞
𝑘=0 ℎ

𝛽𝑘𝑅𝑘 , 𝑣 is known and we want to compute 𝑢. If
𝑎_min vanishes in 𝑥 = 0, these recurrent equations can produce a family of regular solutions if
and only if the homogeneity in 𝑥 of 𝑎_minℎ

𝛼min𝜕
𝑘min
𝑥 is minimal amongst all summands in the

expansion of 𝑃. More specific, denote the zero order of 𝑎_ = (𝑘, 𝛼) ∈ Λ at 𝑥 = 0 by 𝑙 (_) and
the corresponding homogeneity in 𝑥 = 0 by 𝜔(_) ≔ 𝑙 (_) − 𝑘 . Then the minimality condition
can be phrased as

∀ _ ∈ Λ : 𝜔(_min) ≤ 𝜔(_) .

The number 𝜔(_) ∈ Z will be called weight of _ in 𝑥 = 0 in Definition 4.2.3.

Example 4.1.5 (Singular Minimum). Let 𝑃 ≔ 𝑥𝜕𝑥 + ℎ on 𝐼 ≔ R+. Although the coefficient
𝑎 (1,0) (𝑥) = 𝑥 of the highest order differential term vanishes at 𝑥 = 0, the function 𝑢0 ≡ 1 is a
first order quasimode, i.e. 𝑃𝑢0 = O(ℎ). Its first inhomogeneous transport equation

𝑥𝜕𝑥𝑢1 = −1

has a solution 𝑢1 = − log, 𝑢 = 𝑢0 + ℎ𝑢1, and all succeeding solutions of 𝑥𝜕𝑥𝑢𝑘 = −𝑢𝑘−1 will
have increasing powers of log, i.e. 𝑢𝑘 = (−1)𝑘 log𝑘/(𝑘!). This suggests that we should make
an ansatz

𝑢 = 𝑒𝜑/ℎ
𝛿

𝐴 ,
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4 Resolved Operators

where 𝜑 and 𝐴 are polyhomogeneous functions and 𝛿 = −1. Then 𝜑 has to solve the equation

𝑥𝜑′ + 1 = 0 .

Choosing the solution 𝜑 ≔ − log for the ansatz and conjugating 𝑃 = 𝑥𝜕𝑥+ℎ yields a b-operator

𝑒log(𝑥 ) ·ℎ (𝑥𝜕𝑥 + ℎ) 𝑒− log(𝑥 ) ·ℎ = 𝑥𝜕𝑥 .

Then any constant amplitude 𝐴 ∈ C \ {0} yields not only a quasimode, but a solution
𝑢(𝑥, ℎ) = 𝑒− log(𝑥 )ℎ𝐴 of

𝑃𝑢 = 0 .

Semi-Classical b-Operators

Another important example are semi-classical b-operators. Their invariance under the pullback
of a blow-up, in the sense that they remain to be b-operators, will become relevant in the
resolution of singular operators in Subsection 5.2.2. The essential difference to quasimodes
of 𝛿-regular operators is given by the possible presence of logarithms in the phase functions
and a b-operator as an associated induced transport operator. The presence of logarithms is
directly linked to the zero weight 𝜔(_) of each point _ ∈ Λ for a b-operator.

Example 4.1.6 (Semi-Classical b-Operator). Let 𝑃 ≔ 𝑥2ℎ2𝜕2
𝑥 +1 and 𝐼 ≔ R+. The associated

set of exponents is given by Λ(𝑃) = {(0, 0), (2, 2)}. Thus, 𝑃 is 𝛿-singular with respect to
its only edge L = (0, 0), (2, 2) ⊂ 𝜕-P(Λ(𝑃)) with slope 𝛿(L) = 1. In particular, it is a
semi-classical b-operator, since

𝑃 = 𝑥2ℎ2𝜕2
𝑥 + 1 = ℎ2(𝑥𝜕𝑥)2 − ℎ2(𝑥𝜕𝑥) + 1 .

We construct its phases and amplitudes to analyze their behavior as 𝑥 → 0. According to
the slope 𝛿 = 1, its phase functions 𝜑± are solutions of the eikonal equation

(𝑥𝜑′)2 + 1 = 0

and are given by 𝜑± ≔ ±𝑖 log on (0,∞). The induced transport operator corresponding to
𝜑 ≔ 𝜑+

𝑇𝛿,𝜑′ = 2𝑥2(𝜑′)𝜕𝑥 + 𝑥2𝜑′′ = 2𝑖𝑥𝜕𝑥 − 𝑖

is a b-differential operator on R+. Instead of applying Theorem 3.3.9 for 𝜑′ on (0,∞), we
compute the amplitude explicitly to analyze its behavior as 𝑥 → 0.

In combination with the only remainder operator 𝑅𝛿 = 𝑥2𝜕2
𝑥 in the expansion of 𝑃𝛿,𝜑 ,

the recurrent system of inhomogeneous transport equations admit polyhomogeneous solutions
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4.1 Examples of Singular Operators

with resonances

𝑖 (2𝑥𝜕𝑥 − 1) 𝑎𝑘+1 = 𝑐𝑘
√
𝑥 ·

(
log𝑘 +𝑜(log𝑘)

)
in the asymptotic series 𝑎 =

∑∞
𝑘=0 𝑎𝑘ℎ

𝑘 of the quasimode. Normalizing 𝑇𝛿,𝜑′ via conjugation
with

√
𝑥 yields

𝑃 ≔
√
𝑥
−1
𝑃𝛿,𝜑

√
𝑥 = ℎ · (2𝑖(𝑥𝜕𝑥)) + ℎ2 ·

(
(𝑥𝜕𝑥)2 − 1

4

)
,

showing that the origin of the increasing powers of log lies within the non-zero term −1/4
of

√
𝑥
−1
𝑅𝛿

√
𝑥. This can be addressed uniformly by the same means as in the case of sub-

oscillations. Computing the difference in powers of ℎ of the summands ℎ𝑇𝛿 and ℎ2(−1/4),
i.e. 2 − 1 = 1, we can extend the phase function by a term with homogeneity of the difference
in the powers of ℎ to erase this term. Thus, we introduce an additional phase function
𝜙1 = −𝑖/8 · log, yielding

𝑃𝜙1,−1 = ℎ · (2𝑖(𝑥𝜕𝑥)) + ℎ2 · (𝑥𝜕𝑥)2 + ℎ3 ·
(
−2

8
𝑖(𝑥𝜕𝑥) +

1
8
𝑖

)
+ ℎ4 ·

(
− 1

64

)
.

Although there is a new constant summand ℎ4 · (−2𝑖/8) present in the asymptotic expansion of
𝑃𝜙1,−1, its corresponding power in ℎ is higher than the power of its predecessor ℎ2(−1/4). Thus
the first two summands 𝑎0, 𝑎1 of 𝑢(𝑥, ℎ) = 𝑒 (𝑖/ℎ+1/2−𝑖/8ℎ) log(𝑥 )𝐴(𝑥, ℎ) are free of resonances
and consist of single powered log terms, where the term 1/2 emerged from the normalization.
Continuing this procedure, we end up with an asymptotic phase function

Φ =

(
𝑖
1
ℎ
+

∞∑︁
𝑘=0

𝑐𝑘ℎ
𝑘

)
· log , (4.2)

which yields a significantly simplified conjugated operator

𝑃Φ = 𝑒−Φ𝑃𝑒Φ = 𝑃 ◦ 𝜕𝑥 + O(ℎ∞) ,

where 𝑃 is a b-operator. Hence 𝐴 ≡ 1 is a quasimode solving (𝑒−Φ𝑃𝑒Φ)𝐴 = O(ℎ∞) and
consequently 𝑢 = 𝑒Φ𝐴 is a quasimode for 𝑃.

Double Exponential Behavior

A completely new type of behavior can be observed in the construction of quasimodes of
semi-classical operators 𝑃 with an edge L = _` with increasing weights from left to right
endpoint, i.e. 𝜔(_) < 𝜔(`). Then there are solutions of the corresponding eikonal equation
𝐸𝛿 (𝑃) (·, 𝜑′) = 0 which are unbounded as 𝑥 → 0 and hence the quasimode oscillates at both
{ℎ = 0} and {𝑥 = 0}. In Example 4.1.7 we will construct quasimodes for a semi-classical
operator of this type. For general operators one has to measure the increase in weight from _

to ` and compare it to the rest of the set of exponents to check whether this operator admits an
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4 Resolved Operators

exponential-polyhomogeneous quasimode. This leads to the notion of L-resolved operators
in Definition 4.2.18.

Example 4.1.7 (Double Exponential Behavior). Let 𝑃 ≔ ℎ2𝑥4𝜕2
𝑥 + 1 and 𝐼 ≔ R+. Its

associated set of exponents is Λ = {(0, 0), (2, 2)} whose Newton polygon P(Λ) consists of a
single edge L ≔ (0, 0), (2, 2) with slope 𝛿(L) = 1. The eikonal polynomial for 𝛿 = 1 is given
by

𝐸1(𝑃) (𝑥, Z) = 𝑥4Z2 + 1

and hence Z± ≔ ±𝑖𝑥−2 are the two simple solutions of its associated eikonal equation
𝐸1(𝑃) (·, Z) = 0 on (0,∞).

Conjugating 𝑃 with exp(−𝑖𝑟/(𝑥ℎ)) then yields

𝑒𝑖/(𝑥ℎ)𝑃𝑒−𝑖/(𝑥ℎ) = ℎ · 2𝑖𝑥 (𝑥𝜕𝑥 − 1) + ℎ2 · 𝑥4𝜕2
𝑥 .

The recurrent transport equation 2𝑖𝑥(𝑥𝜕𝑥 − 1)𝑢𝑘 = −𝑥4𝑢′′
𝑘−1 will successively increase the

vanishing order of its solutions 𝑢𝑘 by one. However, in this particular example we have
ker (𝑥𝜕𝑥 − 1) ⊂ ker 𝜕2

𝑥 . Hence there is a polyhomogeneous amplitude 𝑢0(𝑥) ≔ 𝑥, such that

𝑃(𝑒−𝑖/(𝑥ℎ)𝑥) = 0 .

In particular, 𝑢(𝑥) ≔ 𝑒−𝑖/(𝑥ℎ)𝑥 is a solution of the equation 𝑃𝑢 = 0. It is exponential-
polyhomogeneous on R2

+.

Another important case of double exponential behavior that will occur frequently in Chap-
ter 5 is operators 𝑃 = 𝑃(𝑥, 𝑦,𝑉), where 𝑉 = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 . Whenever we blow up 0 ∈ R × R+
homogeneously, the pullback of the initial b-vector field 𝑥𝜕𝑥 turns into a b-vector field
𝛽∗(𝑥𝜕𝑥) = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 , at the right corner, where 𝑦 ≔ ℎ/𝑥. Thus the question arises of
how potential quasimodes behave at the corner and how one is able to construct any in a
neighborhood of the whole boundary 𝜕 [𝐼 × R+, 0].

Example 4.1.8. Let 𝑉 ≔ 𝑥𝜕𝑥 − 𝑦𝜕𝑦 on R2
+, 𝐹 ∈ C∞(R2

+) with 𝐹 (𝑝) ≠ 0 for all 𝑝 ∈ 𝜕R2
+ and

𝑃 ≔ (𝑥𝑦)2𝑉2 + 𝐹. One approach to construct quasimodes on R2
+ is to construct quasimodes

at both boundary hypersurfaces, 𝐻1 ≔ {𝑦 = 0} and 𝐻2 ≔ {𝑥 = 0}, and try to extend these to
an exponential-polyhomogeneous function on R2

+. Let 𝜑 𝑗 ∈ C∞(𝐻 𝑗) for 𝑗 = 1, 2.

Conjugating 𝑃 with 𝜑1(𝑥)/𝑦 and 𝜑2(𝑦)/𝑥 yield leading terms

𝑥2 (
𝑥𝜑′1 + 𝜑1

)2 + 𝐹|𝐻1

at 𝐻1 as 𝑦 → 0 and

𝑦2 (
−𝑦𝜑′2 − 𝜑2

)2 + 𝐹|𝐻2
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at 𝐻2 as 𝑥 → 0. Thus, either solution of the respective eikonal equation

(
𝑥𝜑′1 + 𝜑1

)
=

√︃
−𝐹|𝐻1

𝑥(
𝑦𝜑′2 + 𝜑2

)
=

√︃
−𝐹|𝐻2

𝑦
,

is given by

𝜑1(𝑥) ≔
1
𝑥

∫ 𝑥

𝑥0

√︁
−𝐹 |𝐻1 (𝑡)
𝑡

𝑑𝑡 and 𝜑2(𝑦) ≔
1
𝑦

∫ 𝑦

𝑦0

√︁
−𝐹 |𝐻2 (𝑡)
𝑡

𝑑𝑡 ,

which behave as

𝜑(𝑥) ∼
√︁
−𝐹 (0, 0) log(𝑥)/𝑥 + 𝑜(𝑥−1) at 𝐻2 as 𝑥 → 0

and

𝜑(𝑦) ∼
√︁
−𝐹 (0, 0) log(𝑦)/𝑦 + 𝑜(𝑦−1) at 𝐻2 as 𝑦 → 0 ,

since 𝐹 (0, 0) ≠ 0. Thus, the pair 𝜑1(𝑥)/𝑦 and 𝜑2(𝑦)/𝑥 admit a polyhomogeneous extension
Φ to R2

+. Conjugating 𝑃 with Φ then yields

𝑃Φ = (𝑥𝑦) ·
(
(𝑥𝑦) (𝑉Φ)𝑉 + (𝑥𝑦) (𝑉2Φ)

)
+ (𝑥𝑦)2 · 𝑉2 ,

where (𝑉Φ) (𝑥, 𝑦) ∼
√︁
−𝐹 (0, 0) log(𝑥𝑦)/(𝑥𝑦) + 𝑜((𝑥𝑦)−1). Note that (𝑥𝑦)𝑉Φ(𝑥, 𝑦) ∼ O(1).

Thus, the sum

𝑇 ≔ (𝑥𝑦) (𝑉Φ)𝑉 + (𝑥𝑦) (𝑉2Φ) ,

is a first order, elliptic b-operator and has homogeneity 0 in (𝑥𝑦). Constructing amplitudes
can be done either directly for the transport system (𝑥𝑦)𝑇 + (𝑥𝑦)2𝑉2 or consecutively for every
boundary hypersurface as we will show in Section 4.3.2

4.1.2 Examples II: Unresolved Operators

The second subsection we will discuss a selection of singular operators that do not allow
for an immediate construction of exponential-polyhomogeneous quasimodes with the theory
developed in Chapter 3 or tools similar to this approach. These will later be referred to as
unresolved operators. They are not resolved in the sense that their distribution of weights
𝑙 − 𝑘 of summands 𝑥𝑙ℎ𝛼𝜕𝑘𝑥 in the expansion of an operator 𝑃 is not ordered as required in
Definition 4.2.18. We will present and develop ad hoc methods to resolve the operators using
quasihomogeneous blow-ups and relate the relevant parameters 𝑡 > 0 of these blow-ups to the
weights of the points in the set of exponents.

91
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Singular Minimum

The first example of this section is a variation of Example 4.1.5. By increasing the weight of
the minimal point, it does not have minimal weight anymore. As mentioned before, this leads
to a decrease in regularity of the functions 𝑎𝑘 at {𝑥 = 0} in the asymptotic expansion of the
polyhomogeneous quasimode 𝐴 as 𝑘 → ∞.

Example 4.1.9 (Singular Minimum II). Let 𝑃 ≔ 𝑥4𝜕2
𝑥 + ℎ and 𝐼 ≔ R+. The set of exponents

is given by Λ = {(0, 1), (2, 0)} and its Newton polygon P(Λ) contains only one lower edge
L = (0, 0), (2, 0). Hence the operator 𝑇 ≔ 𝑥4𝜕2

𝑥 is the transport operator of 𝑃 and 𝑅 ≔ ℎ is
the only remainder operator.

A first order quasimode of 𝑃𝑢 = 0 is given by 𝑢0(𝑥) ≔ 1. Following the construction shown
in Proposition 3.1.7, any subsequent term 𝑢𝑘 has to be a solution of

𝑥4𝑢′′𝑘 = −𝑢𝑘−1 ,

for 𝑘 ≥ 1. Hence, for 𝑘 = 1 it is given by 𝑢1(𝑥) = −1/(6𝑥−2). Proceeding in this way all,
subsequent terms 𝑢𝑘 will have more and more negative powers in 𝑥, namely 𝑢𝑘 (𝑥) ∼ 𝑥−2𝑘 . In
particular, the asymptotic series 𝑢 =

∑
𝑢𝑘ℎ

𝑘 does not allow a polyhomogeneous extension to
R2
+.

Schrödinger Operator with Vanishing Potential

Probably the most famous example in semi-classical analysis is given by the Schrödinger
operator

𝑃 ≔ −ℎ2𝜕2
𝑥 +𝑉

for some potential 𝑉 ∈ C∞(𝐼) on an interval 𝐼 ≔ R+. This operator allows for an exponential-
polyhomogenous quasimode if 𝑉 > 0 on 𝐼. However, when 𝑉 (0) = 0 the Schrödinger
operator is not 𝛿-regular and its minimal point (0, 0) with coefficient 𝑎 (0,0) = 𝑉 does not
have minimal weight. Example 4.1.10 continues the previous discussion about Schrödinger
operators with linear vanishing potentials in Subsection 2.4.2 and shows their resolution by
the use of blow-ups.

Quasimodes of the equation 𝑃𝑢 = 0 and their corresponding resolution in terms of blow-
ups for this operator are well known for linear and quadratic potentials. In either case,
a quasihomogeneous blow-up of 0 in the combined space (𝑥, ℎ) ∈ R2

+ is included in the
construction of a quasimode to make its asymptotic expansions uniform along the boundary
hypersurfaces. The reason a blow-up is able to resolve the operator lies within the lower
weight −2 of the summand −ℎ2𝜕2

𝑥 compared to the weight 0 of 𝑉 at 𝑥 = 0. As we will show,
pulling back a summand 𝑥𝑙ℎ𝛼𝜕𝑘𝑥 by a homogeneous blow-up 𝛽 : [R2

+, 0] → R2
+ will lead to a

shift in powers of ℎ on the front face

𝛽∗
(
𝑥𝑙ℎ𝛼𝜕𝑘𝑥

)
= 𝑥𝑙ffℎ

𝛼−𝜔𝜕𝑘𝑥ff
,
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ℎ𝛼

𝜕𝑘𝑥
0 1 2
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𝛽

ℎ𝛼
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Figure 4.2: The set of exponents Λ(𝑃) associated to 𝑃 = −ℎ2𝜕2
𝑥 − 𝑥 in Example 4.1.10 and

its transformation induced by the quasihomogeneous blow-up of 0 corresponding
to the quasihomogeneous projective coordinate 𝑥ff ≔ 𝑥/ℎ𝛾 with 𝛾 = 2/3. The
dotted, blue arrows indicate the direction in which the points_ ∈ Λ(𝑃) are shifting.
The second diagram represents the set of exponents Λ(𝛽∗𝑃) of 𝛽∗𝑃 at the front
face of [R2

+, {0}]𝛾 .

where 𝜔 = 𝑙 − 𝑘 and 𝑥ff ≔ 𝑥/ℎ is the induced coordinate along the front face. This shift of
powers also results in a transformation of the set of exponents at the front face, which will be
the core of the resolution algorithm in Chapter 5. We will use this idea with quasihomogeneous
blow-ups to achieve that the point of the Schrödinger operator (2, 2) ∈ Λ with lowest weight
becomes the minimal point on the front face.

Example 4.1.10 (Singular Potential). Let 𝑃 ≔ −ℎ2𝜕2
𝑥 − 𝑥 and 𝐼 ≔ R+. Its set of exponents is

given by Λ(𝑃) = {(0, 0), (2, 2)} and 𝑃 is 𝛿-singular for 𝛿 = 1. In particular, the solutions of
its eikonal equation

(𝜑′)2 + 𝑥 = 0 ,

given by 𝜑′±(𝑥) = ±𝑖
√
𝑥, are not simple in 𝑥 = 0.

By application of the chain rule one can see that any solution 𝑢 of 𝑃𝑢 = 0 has non-trivial
behavior in terms of the quasi-projective coordinate 𝑥ff = 𝑥/ℎ𝛾 , since(

ℎ2𝜕2
𝑥 + 𝑥

)
𝑢

( 𝑥
ℎ𝛾

)
= ℎ2−2𝛾𝑢′′

( 𝑥
ℎ𝛾

)
+ ℎ𝛾

( 𝑥
ℎ𝛾

)
· 𝑢

( 𝑥
ℎ𝛾

)
= 0

is a non-trivial differential equation if 𝛾 = 2/3. Introducing the associated quasihomogeneous
blow-up of 0 ∈ R2

+ with weights 2 and 3 and with front face ff ≔ 𝛽−1(0) yields

(𝛽∗𝑃) |ff = ℎ1/3
(
−𝜕2

𝑥ff
− 𝑥ff

)
.

It is important to notice that the set of exponents associated to (𝛽∗𝑃) |ff

Λ(𝛽∗𝑃 |ff) = {(0, 1/3), (2, 1/3)} ,
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consists of two leveled points and thus its associated Newton polygon contains only a horizontal
lower edge L, compare Figure 4.2. Moreover, (𝛽∗𝑃) |ff is an elliptic differential operator on
ff \ {𝑥ff = +∞} � R+ and thus we can apply Proposition 3.1.7 along ff \ {𝑥ff = +∞}. To
determine the behavior of 𝛽∗𝑃 at the right face rf we compute the pullback of 𝜕𝑥 in the
quasi-projective coordinates [ ≔ ℎ/𝑥3/2 and 𝑟 ≔ 𝑥1/2 according to Definition 2.1.19,

𝛽∗𝜕𝑥 =
𝜕𝑟

𝜕𝑥
𝜕𝑟 +

𝜕[

𝜕𝑥
𝜕[ =

1
2
𝑟−1𝜕𝑟 −

3
2
𝑟−2[𝜕[ = 𝑟−2

(
1
2
𝑟𝜕𝑟 −

3
2
[𝜕[

)
.

Thus, 𝛽∗𝜕𝑥 is the product of a b-vector field 𝑉 ≔ 1
2𝑟𝜕𝑟 −

3
2[𝜕[ with an additional factor 𝑟−2.

It holds that (𝛽∗𝜕𝑥)2 = 𝑟−4(𝑉2 − 2𝑉). The pullback of 𝑃 is then given by

(𝛽∗𝑃) |rf = (𝑟6[2)𝑟−4𝑃 + 𝑟2 = 𝑟2
(
[2(𝑉2 − 2𝑉) + 1

)
. (4.3)

Conjugating the pullback with 𝑒𝜑 (𝑟 )/[ yields an eikonal equation(
1
2
𝑟𝜑′ + 3

2
𝜑

)2
+ 1 = 0 ,

which can be transformed to [(𝑟3𝜑)′]2 = −4𝑟4. In particular, there are two smooth, non-
vanishing solutions 𝜑±(𝑟) ≔ ±2𝑖/3 on the right face.

It remains to be investigated that the oscillation of the solutions of
(
𝜕2
𝑥ff

+ 𝑥ff
)
𝑢 = 0 at its

singular point 𝑥ff = +∞ matches the oscillation of 𝜑 at rf and if this is generally true. This will
be done in Section 5.3.

Regular Remainder Terms (Splitting)

The transformation of the set of exponents seen in Example 4.1.10 by introducing a rescaled
variable 𝑥ff = 𝑥/ℎ𝛾 gives an ad hoc idea of how to resolve some singular operators. In
Example 4.1.11 we increase the complexity of the 𝛿-singular operator by allowing for three
summands, where one corresponding point _ ∈ Λ will be contained in the interior of the
Newton polygon and will have the lowest weight. Due to its lower weight, the interior point
_ will decrease its distance to the subspace spanned by edge L ⊂ 𝜕-P(Λ) after the pullback
via the quasihomogeneous blow-up 𝛽𝑡 , as 𝑡 grows. This inevitably leads to the collision of
the point _ and the L for sufficiently large values of 𝑡 on the front face (see Figure 4.3). Its
biggest impact is the change of the eikonal equation on the front face, now being defined by
the coefficients of all three points.

Geometrically, the edge L of the Newton polygon will break into two edge, if the interior
point contained in the interior of the vertical strip above the L. Determining the maximal
parameter 𝑡 for which the edge is stable leads to the notion of collision time in Definition 5.2.1.
We interpret the parameter 𝑡 as time in which the points _ ∈ Λ move in the plane. Collision
times are an essential part of the resolution in Algorithm 1.

Example 4.1.11 (Splitting Edge). Let 𝑃 ≔ 𝑥2ℎ3𝜕2
𝑥 + ℎ3𝜕𝑥 − 𝑥 and R+. The operator’s set

of exponents is given by Λ(𝑃) = {(0, 0), (1, 3), (2, 3)} and its associated polygon is bounded
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Figure 4.3: The picture on the left shows the set of exponents Λ(𝑃) and its corresponding
Newton polygon P(Λ(𝑃)) associated to 𝑃 ≔ 𝑥2ℎ3𝜕2

𝑥 + ℎ3𝜕𝑥 − 𝑥 in Example
4.1.11. Due to the relatively low weight of the middle summand in the asymp-
totic expansion of 𝑃, the central point (1, 3) shortens its distance towards L and
eventually breaks through, splitting 𝜕-P(Λ(𝑃)) into two edges. The picture in
the middle and on the right show the sets of exponents after the application of a
quasihomogeneous blow-up with parameters 𝑠 = 1 and 𝑠 = 3/2. The splitting of
L ⊂ 𝜕-P(Λ(𝑃)) happens once 𝑠 > 1.

from below by a single edge L ≔ (0, 0), (2, 3) = 𝜕-P(𝑃). Thus, 𝑃 is 𝛿-singular for 𝛿 = 3/2
on R+, since 𝑎 (0,0) (0) = 𝑎 (2,3) (0) = 0. We expect both quasimodes to have similar asymptotic
behavior as 𝑥 → 0. The associated eikonal equation

(𝑥𝜑′)2 − 𝑥 = 0

has two solutions 𝜑±(𝑥) ≔ ±2
√
𝑥, which are simple on (0,∞). The transport operator of

𝑃𝛿,𝜑′
+ ,

𝑇 = 𝑇𝛿,𝜑′
+ + 𝜑

′
+ = 2𝑥−1/2

(
𝑥2𝜕𝑥 −

1
4
𝑥 + 1

)
,

is a scattering operator with additional factor 𝑥−1/2, where 𝑇𝛿,𝜑′
+ was defined in (3.16).

Moreover, the remainder operator is given by 𝑅 ≔ 𝜕𝑥 + 𝑥2𝜕2
𝑥 with 𝜕𝑥 having the lowest

homogeneity as 𝑥 → 0. Thus, one has to solve the recurrent transport equations of the form

2𝑥−1/2
(
𝑥2𝜕𝑥 −

1
4
𝑥 + 1

)
𝑎𝑘 =

(
𝜕𝑥 + 𝑥2𝜕2

𝑥

)
𝑎𝑘−1 ,

effectively resulting in a decrease of regularity of 𝑎𝑘 in 𝑥 in steps of 3/2 at 𝑥 = 0 as 𝑘 → ∞.
This defect is due to the relatively low homogeneity 0− 1 = −1 of 𝑥0𝜕𝑥 compared to 2− 2 = 0
of 𝑥2𝜕2

𝑥 .
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We assume that there is a small scale 𝑡 ∈ R>0 and an associated blow-up 𝛽𝑡 : [R2
+, 0]𝑡 → R2

+
at least partially resolving 𝑃 on its front face ff ≔ 𝛽−1

𝑡 (0). However, we have no method of
determining any such scale.

For 𝑡 = 1, the quasihomogeneous blow-up 𝛽𝑡 : [R2
+, 0]𝑡 → R2

+ defined by 𝑥ff,𝑡 ≔ 𝑥/ℎ𝑡

changes the geometry of P(Λ(𝛽∗𝑡 𝑃 |ff)) significantly, compared to P(Λ) (see Figure 4.3). It is
the smallest value 𝑡 such that the shifted interior point starting at _ = (2, 3) is contained in the
lower boundary. For each 𝑡 > 1 it holds that the lower boundary of the polygon associated to
𝛽∗𝑡 𝑃 |ff splits into two non-collinear edges

𝜕-P(Λ(𝛽∗𝑡 𝑃 |ff)) = L1 ∪ L2 ,

with L1 ≔ (0, 𝑡), (1, 3 − 𝑡) and L2 ≔ (1, 3 − 𝑡), (2, 3) (see Figure 4.3). At 𝑡 = 1 these two
lines are contained in L. The corresponding operator on the front face of the homogeneous
blow-up 𝛽 = 𝛽1 is given by

(𝛽∗𝑃) |ff = ℎ3𝑥2
ff𝜕

2
𝑥ff

+ ℎ2𝜕𝑥ff − ℎ𝑥ff ,

with projective coordinates 𝑥ff ≔ 𝑥/ℎ and ℎ. It is 𝛿-singular for 𝛿 = 1 since the coefficients of
both boundary points vanish at 𝑥ff = 0, i.e. 𝑎 (2,3) (0) = 𝑎 (0,1) (0) = 0.

The observation that L splits into two edges at ff if 𝑡 > 1 suggests that we should treat the
parts of 𝛽∗𝑃 associated to either L1 and L2 differently. The operator

𝑃L1 ≔
∑︁
_∈L1

𝑎_𝜕
𝑘
𝑥ff

= ℎ2𝜕𝑥ff − ℎ𝑥ff ,

corresponding to the first subedge L1 has a singular potential, resembling the Schrödinger
operator covered in Example 4.1.10. Reproducing the strategy to resolve the singularity of
the latter we introduce yet another quasihomogeneous blow-up 𝛽1/2 of the left corner {0} ⊂ ff
with respect to 𝑡 = 1/2, yielding

(𝛽∗𝑡 𝛽∗𝑃) |lff = ℎ3𝜏2𝜕2
𝜏 + ℎ3/2 (𝜕𝜏 − 𝜏) ,

where 𝜏 ≔ 𝑥ff/ℎ1/2 is the induced coordinate along lff ≔ 𝛽−1
𝑡 (0). Its lowest order summand

𝑇 ≔ 𝜕𝜏 − 𝜏 is elliptic and thus admits polyhomogeneous quasimodes on the most recent front
face lff when we apply Corollary 3.1.9. There are two caveats which we will have to check in
Chapter 5, precisely Lemma 5.3.16 and Proposition 5.1.16:

(i) The compatibility of elements 𝑢0 ∈ ker𝑇 with the oscillation 𝑢ff at ff with respect to
L1 ⊂ 𝜕-P(𝛽∗𝑃) at the central corner lff ∩ ff, as in Example 4.1.10.

(ii) The compatibility of local solutions at the bottom corner ff∩rf, where we have oscillatory
quasimodes at both ff and rf.
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Returning to the (first) front face ff, the partial polynomial of 𝐸𝛿 (L) (𝛽∗𝑃) (𝑥ff, Z) = 𝑥2
ffZ

2+Z−𝑥ff

corresponding to L2 = (1, 2), (2, 3) given by

𝐸L2 (𝛽∗𝑃) = (𝑥2
ff · Z + 1)Z

essentially resembles the situation in Example 4.1.6. Its solution Z̃2(𝑥ff) ≔ −1/𝑥2
ff is a first

order solution of the full eikonal equation 𝐸𝛿 (L) (𝛽∗𝑃) (𝑥ff, Z) = 0, since

𝐸𝛿 (L) (𝛽∗𝑃) (𝑥ff, Z̃2(𝑥ff)) = 𝑥2
ff(−𝑥

−2
ff )2 − 𝑥−2

ff − 𝑥ff = 0 − 𝑥ff = O(𝑥ff) .

Thus, Z̃2 determines a solution Z± of the full eikonal equation 𝐸𝛿 (L) (𝛽∗𝑃) (𝑥ff, Z) = 0,

Z±(𝑥ff) ≔ − 1
2𝑥2

ff
±

√︄
1

4𝑥4
ff
+ 1
𝑥ff

= − 1
2𝑥2

ff

(
1 ∓

√︃
1 + 4𝑥3

ff

)
, (4.4)

which satisfies Z− (𝑥ff) ∼ Z̃ (𝑥ff) as 𝑥ff → 0. Thus, exp(𝜑/ℎ) is a first order solution of 𝛽∗𝑃 |ff
corresponding to the subedge L2, where 𝜑′2 ≔ Z− . In particular, the equations

(𝛽∗𝑃)1,𝜑2 = ℎ
2
(
(2𝑥2

ff𝜑
′
2 + 1)𝜕𝑥ff + 𝑥2

ff𝜑
′′
2

)
+ ℎ3𝑥2

ff𝜕
2
𝑥ff

=
ℎ2

𝑥ff

(
𝑎 · 𝑥ff𝜕𝑥ff − 2𝑏(𝑥ff)

)
+ ℎ3𝑥2

ff𝜕
2
𝑥ff

holds, where 𝑎(0) = 𝑏(0) = 1. Thus, the transport operator 𝑇𝛿 = 1/𝑥ff · (𝑎 · 𝑥ff𝜕𝑥ff −
2𝑏) is a b-operator whose homogeneous solutions 𝑎0 ∈ ker𝑇𝛿 behave asymptotically as
𝑎0(𝑥ff) ∼ 𝑥2

ff as 𝑥ff → 0. Due to the additional factor 1/𝑥ff in front of the b-operator 𝑇𝛿 ,
the 0-homogeneous remainder operator 𝑅𝛿 = 𝑥2

ff𝜕
2
𝑥ff

does not produce resonances, and, thus
we can apply Proposition 3.1.7 to construct an asymptotic amplitude 𝐴 =

∑∞
𝑘=0 𝑎𝑘ℎ

𝑘 for the
quasimode corresponding to L2 at the front face.

Remark 4.1.12. If the interior point with lowest weight is contained outside of the vertical
strip over the edge the same principle holds, essentially. But instead of splitting the edge itself,
the point will hit the horizontal part of the Newton polygon, split it into two parts and merge
the right part with the original edge.

Covered Points

Recall the discussion before Example 4.1.11. Let 𝑃 be a semi-classical operator with set
of exponents Λ = {_, `, 𝜏} and 𝜕-P(Λ) = `𝜏. One case we have not discussed was the
presence of an interior point _ ∈ Λ ∩ P(Λ)◦ with minimal weight, which is placed on the
boundary of the vertical strip above the lower edge L. As before, the point _ will collide
with L for sufficiently large 𝑡 > 0 after being pulled back by a quasihomogeneous blow-up
𝛽𝑡 : [R2

+, 0]𝑡 → R2
+. It will have the same impact on the eikonal equation as in the case

of splitting in Example 4.1.11. However, the exact collision of the interior point _ with a
boundary point results in the scattering of zeros of the leading coefficients of the edge along
the front face.
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Assume that _ = (2, 2) with 𝑎_(𝑥) = −1, ` = (0, 0) with 𝑎` (𝑥) = 1 and 𝜏 = (2, 1)
with 𝑎𝜏 (𝑥) = 𝑥2. In particular, the corresponding semi-classical operator is given by
𝑃 = (𝑥2ℎ − ℎ2)𝜕2

𝑥 + 1. Then (𝛽∗𝑡 𝑎𝜏) (𝑥ff) = 𝑥2
ff, for all 𝑡 > 0. But for the collision time

𝑡 = 2 we have that the pulled back operator

(𝛽∗2𝑃) = ℎ ·
(
𝑥2

ff − 1
)
𝜕2
𝑥ff

+ 1

has a corresponding set of exponents consisting of two points. In particular, its leading
coefficient vanishes at 𝑥ff = ±1 instead of 𝑥ff = 0.

This scattering of zeros along the front face will complicate the resolution of general semi-
classical operators in Chapter 5. In the following example, we will show how one can obtain
a quasimode by the use of consecutive blow-ups.

Example 4.1.13 (Covered Point). Let 𝑃 ≔ (ℎ𝑥 − ℎ2(1 + 𝑥))𝜕𝑥 + 1 on R+. Its associated set
of exponents is Λ(𝑃) = {(0, 0), (1, 1), (1, 2)} and its Newton polygon P(Λ(𝑃)) is bounded
from below by a single edge L = (0, 0), (1, 1) ⊂ 𝜕-P. Since the operator associated to L

𝑃L = ℎ𝑥𝜕𝑥 + 1

is a semi-classical b-differential operator of degree 1, one might expect a solution as in
Example 4.1.6. The solution 𝜑 of the eikonal equation for 𝛿 = 1 induced by the eikonal
polynomial

𝐸𝛿 (𝑃) (𝑥, Z) = 𝑥Z + 1 ,

is given by 𝜑 ≔ − log on (0,∞). However, the transport operator of 𝑃𝛿,𝜑′

𝑇 = 𝑥𝜕𝑥 +
(
1
𝑥
+ 1

)
is not a b-differential operator with smooth coefficients and neither is the remainder operator

𝑅 ≔ (1 + 𝑥)𝜕𝑥 .

Normalizing 𝑃𝛿,𝜑′ by conjugation with 𝑢0(𝑥) ≔ 𝑒1/𝑥 · 𝑥−1, where 𝑢0 ∈ ker𝑇 , yields a new
remainder

𝑅0 = (1 + 𝑥)𝜕𝑥 −
(1 + 𝑥)2

𝑥2

whose associated inhomogeneous transport equation

𝑇𝑢𝑘 = 𝑅0𝑢𝑘−1

does not admit uniformly polyhomogeneous solutions at 𝑥 = 0. This is due to the non-
vanishing coefficient (1 + 𝑥) of 𝑅, which, unlike the case of Example 4.1.6, cannot be erased
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ℎ𝛼

𝜕𝑘𝑥

(0)
(0)

(0), (−1)

0 1
0

1

2
𝛽

ℎ𝛼

𝜕𝑘𝑥ff

(0)
(0), (−1)

(0)
𝑥ff = 𝑥ff − 1

0 1
0

1

2
ℎ𝛼

𝜕𝑘�̄�ff

(0)

(0)

(0), (−1)

0 1
0

1

2

Figure 4.4: The transformations of the set of exponents Λ(𝑃) of 𝑃 ≔ (ℎ𝑥 − ℎ2(1 + 𝑥))𝜕𝑥 + 1
in Example 4.1.13 due to the homogeneous blow-up of 0 ∈ R2

+ and the shift of the
coordinate 𝑥ff ≔ 𝑥ff − 1 along the front face. The weights (in the brackets) of the
points involved lead to a full recreation of the singularity at the beginning of the
transformations on the front face at 𝑥ff = 0.

by slower, logarithmic extension of the phase function, since these additions will only cancel
out constant terms of the remainder operators. Due to the different weight in space of the
points (1, 1) and (1, 2), we apply the same approach as in Example 4.1.11. This suggests a
homogeneous blow-up of 0 in R2

+, yielding an operator

(𝛽∗𝑃) |ff = (ℎ(𝑥ff − 1) + ℎ2𝑥ff)𝜕𝑥ff + 1 ,

at the front face ff, where 𝑥ff ≔ 𝑥/ℎ is the induced projective coordinate. As in the previous
example, there is a new singularity at 𝑥ff = 1, where the leading term

ℎ(𝑥ff − 1)

of the operator (𝛽∗𝑃) |ff has a singularity in 𝑥ff = 1. Introducing a coordinate shift 𝑥ff ≔ 𝑥ff − 1
then yields

(𝛽∗𝑃) |ff = (ℎ𝑥ff + ℎ2(𝑥ff − 1))𝜕�̄�ff + 1 ,

which brings us back to the starting point with a singular point in 𝑥ff = 0 (see Figure 4.4). Thus,
it is not possible to resolve this operator immediately. Analyzing the coefficient 𝐴1(𝑥, ℎ) =
ℎ𝑥 − ℎ2(1 + 𝑥) of 𝑃 = 𝐴1𝜕𝑥 + 𝐴0 itself might be required. The zero level set of 𝐴1

𝑁 ≔

{
(𝑥, ℎ) :

ℎ(1 + 𝑥)
𝑥

= 1
}

is not a p-submanifold on R2
+ (see Figure 4.5). However, being pulled back via blow-up

𝛽hom : [R2
+; {0}] → R2

+ to the blown-up space, the zero level set 𝛽∗hom𝑁 = {(𝑥ff − 1)/𝑥ff = ℎ}
of 𝛽∗hom𝐴1 is a p-submanifold of [R2

+; {0}]. The introduction of a new coordinate �̃�ff ≔

(𝑥ff − 1)/𝑥ff shows that 𝛽∗hom𝑁 = {ℎ − �̃�ff = 0} is the zero level set of a homogeneous
polynomial. Blowing up ℎ = �̃�ff = 0 homogeneously and finally blowing up the pullback
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𝛽

𝑦

𝑥

𝑁

Figure 4.5: The resolution of 𝐴1(𝑥, ℎ) ≔ ℎ𝑥 − ℎ2(1 + 𝑥) along its zero set 𝑁 ⊂ R2
+. The

process of regularizing 𝐴1 erases the problem in Example 4.1.13, where the term
ℎ2(1 + 𝑥) would create a loop in the direct attempt of resolving 𝑃 = 𝐴1𝜕𝑥 + 𝐴0.

𝛽∗𝛽∗𝑁 = {1 − 𝑠 = 0}, 𝑠 = �̃�ff/ℎ, yields

(𝛽∗𝛽∗hom𝐴1) (𝑠, ℎ) ∼ ℎ4𝑠2(1 + 𝑠) , as 𝑠 → 0 .

In particular, ℎ4𝑠2(1 + 𝑠) is a regular, polyhomogeneous leading coefficient of 𝛽∗𝛽∗hom𝑃 at the
new boundary 𝛽∗𝛽∗hom𝑁 = {1 − 𝑠 = 0}.

4.2 Combinatorial Geometry II: Newton Polyhedra

4.2.1 Semi-Classical b-Operators

In this subsection, we introduce the notion of resolved operators. These are a subclass of
singular operators that admit exponential-polyhomogeneous quasimodes on R2

+. The relevant
characteristic distinguishing the examples of Subsections 4.1.1 and 4.1.2 is their corresponding
distribution of weights 𝑙−𝑘 of the summands 𝑥𝑙ℎ𝛼𝜕𝑘𝑥 of 𝑃. Controlling these combined weights
𝑙− 𝑘 of every summand in the expansion of 𝑃 as ℎ → 0 is essential in the definition of resolved
operators and is crucial in Subsection 5.2.2 as termination condition for the algorithm resolving
general singular operators.

Definitions

An efficient way to approach resolved operators is to shift to the b-operator notation with the
corresponding change in the sets of exponents.

Definition 4.2.1 (b-Set of Exponents). LetΛ ⊂ N×R be a set of exponents and 𝑃 ∈ DiffΛ(R+).
Then the b-set of exponents, 𝑏Λ ⊂ N × R, is defined as the unique, minimal set, such that

𝑃 =
∑︁
_∈Λ

𝑎_(𝑥)ℎ𝛼𝜕𝑘𝑥 =
∑︁
_∈𝑏Λ

�̃�_(𝑥)ℎ𝛼 (𝑥𝜕𝑥)𝑘 . (4.5)

Remark 4.2.2. Note that by construction of the Newton polygon we have 𝜕-P(𝑏Λ) = 𝜕-P(Λ).
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The essential tool to determine whether 𝑃 is resolved is the aforementioned weight or
homogeneity in 𝑥 of a summand in the expansion of 𝑃. The weights 𝜔(_) correspond to the
vanishing order of �̃�_ in 0 ∈ R+ when switching to semi-classical b-operators.

Comparing weights of points along an edge L ⊂ 𝜕-P(Λ) contains the relevant information
to determine the asymptotic behavior of solutions of the eikonal equation 𝐸𝛿 (L) (𝑃) = 0.
Their distribution affects the regularity of the solutions of the eikonal equations, as we saw in
Examples 4.1.7 and 4.1.10.

Definition 4.2.3 (Weight of a b-Coefficient). Let Λ ⊂ N × R be a set of exponents and
𝑃 ∈ DiffΛ(R+) with 𝑃 =

∑
_∈𝑏Λ �̃�_(𝑥)ℎ𝛼 (𝑥𝜕𝑥)𝑘 . Then we call

𝑏𝜔(_) ≔ ord0(�̃�_)

the weight of _ ∈ 𝑏Λ. The relative increase of weights along L ≔ _`, where _ = (𝑘_, 𝛼_)
and ` = (𝑘`, 𝛼`) ∈ 𝑏Λ, is defined by

𝛾(L) ≔
𝑏𝜔(`) − 𝑏𝜔(_)

𝑘` − 𝑘_
.

Remark 4.2.4. The conversion of 𝑎_ to �̃�_ in (4.5) reduces the order of zeros for 𝑘 ≥ 1.
However, 𝑃 and 𝑥𝑚𝑃 have the same quasimodes. Thus, without loss of generality, we can
assume that 𝑏𝜔(_) ≥ 0.

Example 4.2.5. Let 𝑃 ≔ ℎ2𝑥2𝜕2
𝑥 − 1 = ℎ2(𝑥𝜕𝑥)2 − ℎ2(𝑥𝜕𝑥) − 1. Then the relative increase of

weight along L ≔ (0, 0), (2, 2) ⊂ 𝑏Λ(𝑃) is given by 𝛾(L) = 0.

Remark 4.2.6. The increase of weights 𝛾(L) of an edge L ⊂ 𝜕-P(𝑏Λ) in Definition 4.2.3 is
the direct analogue to the slope

𝛿(L) = 𝛼(`) − 𝛼(_)
𝑘` − 𝑘_

,

of an edge. This is a very important point of view and will be further developed in Subsec-
tion 4.2.3.

We want to transfer our notion of 𝛿-symbol to operators generated by the b-vector field 𝑥𝜕𝑥 .

Definition 4.2.7 (b-𝛿-Symbol). Let Λ ⊂ N ×R be a set of exponents and 𝑃 ∈ DiffΛ(R+) with
𝑃 =

∑
_∈𝑏Λ �̃�_(𝑥)ℎ𝛼 (𝑥𝜕𝑥)𝑘 and let 𝛿 > 0.

The b-𝛿-symbol, 𝑏Σ𝛿 , is the map

𝑏Σ𝛿 : DiffΛ(R+) → Sℎ (R+)∑︁
_∈𝑏Λ

�̃�_(𝑥)ℎ𝛼 (𝑥𝜕𝑥)𝑘 ↦→
∑︁
_∈𝑏Λ

�̃�_(𝑥)ℎ𝛼
(
b + Z

ℎ𝛿

) 𝑘
.

Its leading part 𝑏𝐸𝛿 is called b-𝛿-principal symbol.
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Using the b-𝛿-symbol bΣ𝛿 for 𝑃 =
∑
_∈𝑏Λ �̃�_(𝑥)ℎ𝛼 (𝑥𝜕𝑥)𝑘 , the associated eikonal equation

b𝐸𝛿 (𝑃) (𝑥, 𝑥𝜑′) = 0 can be reduced to solving the equation

(𝑥𝜕𝑥) 𝜑 = Z 𝑗 , (4.6)

for any solution Z 𝑗 of b𝐸𝛿 (𝑃) (𝑥, Z) = 0.

We can compute the asymptotic behavior of 𝜑(𝑥) as 𝑥 → 0 for solutions 𝜑 of the eikonal
equation, which corresponds to the increase of weight of the associated edge.

Proposition 4.2.8. Let Λ ⊂ N × R be a set of exponents and 𝑃 ∈ DiffΛ(R+) be an operator
with 𝑃 =

∑
_∈𝑏Λ �̃�_(𝑥)ℎ𝛼 (𝑥𝜕𝑥)𝑘 . Let L ≔ _1_𝑛 ⊂ 𝜕-P(𝑏Λ) be an edge with slope 𝛿 > 0

such that Λ ∩ L = {_1, . . . , _𝑛}. Assume that 𝛾(L) ≤ 𝛾(_𝑖_ 𝑗), for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Suppose
that 𝑃 is 𝛿-singular in 𝑥 = 0 according to Definition 3.2.16. Let 𝜑 be a solution of the eikonal
equation

𝑏𝐸𝛿 (𝑃) (·, 𝑥𝜑′) = 0 ,

and 𝛾 ≔ 𝛾(L) be the increase of weight of L. Then for some 𝑐 ∈ C we have

𝜑(𝑥) ∼

𝑐 log(𝑥) if 𝛾 = 0

𝑐𝑥−𝛾 else
,

as 𝑥 → 0.

Proof. Let _ 𝑗 = (𝑘 𝑗 , 𝑘 𝑗𝛿 + 𝑙𝛿) and L ≔ _1_𝑛 ⊂ 𝜕-P(𝑏Λ) with Λ ∩ L = {_1, . . . , _𝑛}. Thus,
the b-eikonal polynomial

𝑏𝐸𝛿 (𝑃) (·, Z) =
(
𝑛∑︁
𝑙=1

𝑎_𝑙 · Z 𝑘𝑙−𝑘1

)
Z 𝑘1

has solutions Z𝑙, 𝑙 = 1, . . . , 𝑘𝑛 − 𝑘1, of its associated eikonal equation 𝑏𝐸𝛿 (𝑃) (·, Z) = 0.
Since 𝛾(L) ≤ 𝛾(_𝑖_ 𝑗), the Newton polygon associated to 𝐸𝛿 (𝑃) with respect to the powers
of 𝑥 and Z has only one edge in its lower boundary with slope 𝛾 = 𝛾(L). Thus, for some
𝑐 𝑗 ∈ C it holds that

Z 𝑗 (𝑥) ∼ 𝑐 𝑗 · 𝑥−𝛾 ,

as 𝑥 → 0. Since 𝜑 𝑗 is the solution of the b-differential equation (𝑥𝜕𝑥)𝜑 𝑗 = Z 𝑗 , the statement
holds. □

Remark 4.2.9. In the simple and usual case where L ∩ Λ = {_, `}, we can compute the
asymptotic behavior of Z𝑙 directly. We have that 𝐸𝛿 (𝑃) (·, Z) = (𝑎` · Z 𝑘`−𝑘_ + 𝑎_)Z 𝑘_ and,
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hence,

Z𝑙 = (−1) 𝑗/(𝑘2−𝑘1 ) ·
���� 𝑎_𝑎`

����1/(𝑘2−𝑘1 )
.

In particular, these solutions of the eikonal equation then behave as

Z𝑙 (𝑥) ∼ 𝑐𝑙 · 𝑥 (
𝑏𝜔 (_)− 𝑏𝜔 (`) )/(𝑘2−𝑘1 ) = 𝑐𝑙 · 𝑥−𝛾 (L) ,

as 𝑥 → 0, where 𝑐𝑙 is the leading coefficient of (−1)𝑙/(𝑘2−𝑘1 )
��𝑎_/𝑎`��1/(𝑘2−𝑘1 ) .

Due to the symbolic nature of Definition 4.2.7 we can make use of Remark 3.2.19 to define
b-transport operators. Recall the evaluation homomorphism ] 𝑓 ,𝑉 associated to a vector field
𝑉 and a function 𝑓 , mapping symbols 𝑎(Z, b) ∈ Sℎ (R+) to operators ] 𝑓 ,𝑉𝑎 = 𝑎( 𝑓 , 𝑉).

Definition 4.2.10 (Induced b-Transport Operator). Let Λ ⊂ N × R be a set of exponents and
𝑃 ∈ DiffΛ(R+) with 𝑃 =

∑
_∈𝑏Λ �̃�_(𝑥)ℎ𝛼 (𝑥𝜕𝑥)𝑘 . Let 𝛿 > 0 and let L ⊂ 𝜕-P(𝑏Λ) be an edge

with slope 𝛿. Let 𝜑 be a solution of b𝐸𝛿 (𝑃) (𝑥, 𝑥𝜑′) = 0.

Then we call

𝑏𝑇𝛿,𝜑′ (𝑃) ≔ ]𝑥𝜑′ ,𝑥𝜕𝑥


∑︁

_∈L∩𝑏Λ
�̃�_ ·

(
bZ 𝑘−1 + ZbZ 𝑘−2 + . . . + Z 𝑘−1b

) ,
the induced b-𝛿-transport operator associated to 𝛿 and 𝜑′.

Remark 4.2.11. Assume that Z1 is a simple root of b𝐸𝛿 (𝑃) (𝑥, Z) = 0 with Z1(𝑥) ∼ 𝑐𝑥−𝛾 for
some 𝛾 ≥ 0 and that 𝜑 is a solution of the corresponding eikonal equation (4.6). Note that
this can only be the case if for some 𝑙𝛾 ∈ R and �̂�_(𝑥) ≔ 𝑥−(𝛾𝑘+𝑙𝛾 ) �̃�_(𝑥) bounded for all
_ ∈ L ∩ 𝑏Λ, we have that

b𝐸𝛿 (𝑃) (𝑥, Z) =
∑︁

_=(𝑘,𝛼)
_∈L∩𝑏Λ

�̃�_(𝑥)Z 𝑘 =
∑︁

_=(𝑘,𝛼)
_∈L∩𝑏Λ

�̂�_(𝑥)𝑥𝛾𝑘+𝑙𝛾 · Z 𝑘 = 𝑥𝑙𝛾
∑︁

_=(𝑘,𝛼)
_∈L∩𝑏Λ

�̂�_(𝑥) (𝑥𝛾Z)𝑘 .

Then 𝜑(𝑥) = 𝑥−𝛾 𝑓 (𝑥) for some function 𝑓 with 𝑓 (0) ≠ 0 and, for some function 𝑉 , the
induced b-transport operator

𝑏𝑇𝛿,𝜑′ (𝑃) =
∑︁

_=(𝑘,𝛼)
_∈L∩𝑏Λ

�̃�_(𝑥)
(
𝑥𝜕𝑥 ◦ (𝑥𝜑′)𝑘−1 + . . . + (𝑥𝜑′)𝑘−1𝑥𝜕𝑥

)
=

∑︁
_=(𝑘,𝛼)
_∈L∩𝑏Λ

�̂�_(𝑥)𝑥𝛾𝑘−𝛾 (𝑘−1)+𝑙𝛾 (𝑥𝜕𝑥 +𝑉 (𝑥)) = 𝑥𝛾+𝑙𝛾
∑︁

_=(𝑘,𝛼)
_∈L∩𝑏Λ

�̂�_(𝑥) (𝑥𝜕𝑥 +𝑉 (𝑥))

is a first order b-operator with additional vanishing factor 𝑥𝛾+𝑙𝛾 . Note that 𝑉 (0) ≠ 0 since
𝜑(𝑥) = 𝑥−𝛾 𝑓 (𝑥).
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4 Resolved Operators

4.2.2 Resolved Operators

Restoring a notion of regularity for semi-classical b-operators is more difficult than in the reg-
ular case in Chapter 3. We need to compare weights 𝑏𝜔(_) of points on the edge L ⊂ 𝜕-P(Λ)
with weights of points in the interior of the Newton polygon Λ ∩ P(Λ)◦. The necessity was
shown in Example 4.1.11.

The upcoming definition of essential points plays the central role in determining whether
an operator can be considered resolved. To make it more accessible, we revisit some of
the examples in Section 4.1 to analyze why we were not able to construct exponential-
polyhomogeneous quasimodes regarding the distribution of weights.

Examples 4.1.7 and 4.1.10 (and possible variations of them) show that the minimal point
according to Definition 3.2.13 has minimal weight, necessarily (see Figure 4.6). Example 4.1.6
shows that there can be multiple points with minimal weight. Example 4.1.7 shows that relative
increases of weight along an edge L ⊂ 𝜕-P(𝑏Λ) should be allowed. However, these should
be minimal, as the singular behavior in Example 4.1.11 shows.

Note that we will only treat simple solutions Z of eikonal equations 𝐸𝛿 (𝑃) (·, Z) = 0
to exclude jumps in multiplicity of the roots at isolated points. This phenomenon will be
addressed in Section 5.2. For an edge L ⊂ 𝜕-P(Λ), recall the definitions of its slope 𝛿(L)
and relative increase of weight 𝛾(L) in Definitions 2.3.2 and 4.2.3. We present a recursive
argument to select points in 𝑏Λ with pairwise minimal increase in weight.

Lemma 4.2.12. Let Λ ⊂ N × R be a set of exponents and 𝑃 ∈ DiffΛ(R+) be an operator with
𝑃 =

∑
_∈𝑏Λ �̃�_(𝑥)ℎ𝛼 (𝑥𝜕𝑥)𝑘 . Denote the differential order by 𝑚 B ord(𝑃).

(i) Let `0 = (𝑘0, 𝛼0) ∈ 𝑏Λ be the minimal point of 𝑏𝜔−1(0) ⊂ 𝑏Λ.

(ii) If 𝑘𝑛−1 < 𝑚 for 𝑛 ≥ 1, let `𝑛 = (𝑘𝑛, 𝛼𝑛) ∈ 𝑏Λ be the unique point with 𝑘𝑛−1 < 𝑘𝑛, such
that

(a) For all _ = (𝑘, 𝛼) ∈ 𝑏Λ with 𝑘𝑛−1 < 𝑘 , we have 𝛾(`𝑛−1`𝑛) ≤ 𝛾(`𝑛−1_),

(b) For all _ = (𝑘, 𝛼) ∈ 𝑏Λ satisfying (a). we have 𝛿(`𝑛−1`𝑛) ≤ 𝛿(`𝑛−1_),

(c) 𝑘𝑛 is maximal among all points satisfying (a) and (b).

Then this iteration terminates after 𝑁 ∈ N0 steps, where 𝑁 ≤ 𝑚.

Proof. This is a direct consequence of 0 ≤ 𝑘𝑛−1 < 𝑘𝑛 for `𝑛 = (𝑘𝑛, 𝛼𝑛) ∈ 𝑏Λ and 𝑘 ≤ 𝑚, for
all (𝑘, 𝛼) ∈ 𝑏Λ. □

Definition 4.2.13 (Essential Points). Let Λ ⊂ N ×R be a set of exponents and 𝑃 ∈ DiffΛ(R+)
with 𝑃 =

∑
_∈𝑏Λ �̃�_(𝑥)ℎ𝛼 (𝑥𝜕𝑥)𝑘 .

The points `0, . . . , `𝑁 ∈ 𝑏Λ, with 𝑁 ∈ N0, determined in 4.2.12 for 𝑃, are called essential
points of 𝑃 in 0. The point `0 is called essential minimum.

Remark 4.2.14. There are some additions in Definition 4.2.13 to the discussion prior. When-
ever there are pairs of exponents with the same increase of weight stacked over the same value
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ℎ𝛼

𝜕𝑘𝑥

(1)
(4)

(6)(1)
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Figure 4.6: Illustration of the set of exponents Λ(𝑃) = {(0, 3), (2, 0.5), (3, 1), (3, 3.5), (4, 3)}
with respective weights of an operator 𝑃 in the brackets at each point and its
Newton polygon P(Λ(𝑃)). The blue points are the essential points of 𝑃 in
Λ(𝑃). The essential minimum is given by `0 = (2, 0.5). Of the three points
(3, 1), (3, 3.5), (4, 3) on the right side of `0, the lowest increase of weight is given
by `1 = (3, 3.5), since (3− 1)/(3− 2) = 2 < 5/2 = (6− 1)/(4− 2). There is only
one remaining point on the right side of `1. Thus `2 = (4, 3) is the last essential
point. In particular, 𝑃 is not resolved, since `1 ∉ 𝜕-P(Λ(𝑃)).

of 𝑘 , we consider only the pair _ = (𝑘, 𝛼) with the lowest value of 𝛼. Also, if there are multiple
collinear points with identical increase of weight, then only the rightmost is another essential
point.

Remark 4.2.15. The iteration in Lemma 4.2.12 can also be phrased in the following way. Let
𝑏Λ0 ≔ 𝑏𝜔−1(0) and `0 be its minimal point. Let `𝑛 = (𝑘𝑛, 𝛼𝑛) ∈ 𝑏Λ, where

`𝑛+1 ≔ arg max
`=(𝑘,𝛼)

{
𝑘 > 𝑘𝑛 : 𝛿(`𝑛`) = min

𝑘∗>𝑘𝑛
{𝛿(`𝑛`∗) : 𝛾(`𝑛`∗) = min

�̂�>𝑘𝑛

𝛾(`𝑛 ̂̀)}} , (4.7)

if the set is not empty.

Example 4.2.16. Let 𝑃 ≔ ℎ2𝑥4𝜕2
𝑥 + 1 as in Example 4.1.7. Then `0 = (0, 0) is the essential

minimum and `1 = (2, 2) is another essential point with weight 𝑏𝜔((2, 2)) = 2. In particular,
𝑁 = 1.

Example 4.2.17. Let 𝑃 ≔ ℎ3𝑥2𝜕2
𝑥 + ℎ3𝜕𝑥 − 𝑥 as in Example 4.1.11. Then `0 = (1, 3) is the

essential minimum and `1 = (2, 3) is the only other essential point, since 𝑏𝜔((1, 3)) = −1
and 𝑏𝜔((0, 0)) = 1. Note that `0 ∉ 𝜕-P(𝑏Λ).

Regular operators as in Definition 3.2.16 cannot be characterized well in terms of essential
points. However, it is not necessary to do so, since essential points have been introduced to
describe a class of singular operators whose quasimodes have polyhomogeneous amplitudes
on the model space R2

+.
As we observed in Section 4.1, we are not able to construct exponential-polyhomogeneous

quasimodes of singular operators whenever essential points are contained in the interior of
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4 Resolved Operators

𝜕-P(Λ). Moreover, if the minimal point does not coincide with the essential minimum, there
are no polyhomogeneous quasimodes either.

Definition 4.2.18 (Resolved Operators). LetΛ ⊂ N×Rbe a set of exponents and𝑃 ∈ DiffΛ(R+)
with 𝑃 =

∑
_∈𝑏Λ �̃�_(𝑥)ℎ𝛼 (𝑥𝜕𝑥)𝑘 . Let `0, . . . , `𝑁 be the essential points of 𝑃 and L ≔ _` ⊂

𝜕-P(𝑏Λ) be an edge with slope 𝛿. Suppose that 𝑃 is 𝛿-singular in 0.
Then we call 𝑃 L-resolved in 0, if either

(i) ` = `0 is the minimal point of 𝑏Λ, or

(ii) _ = `𝑘 and ` = `𝑘+1, for some 𝑘 ≥ 0.

If the semi-classical operator 𝑃 is L-resolved for all L ⊂ 𝜕-P(𝑏Λ), we call 𝑃 resolved in 0.

Example 4.2.19. The operator 𝑃 ≔ ℎ2𝑥4𝜕2
𝑥 + 1 as in Example 4.2.16 is resolved, since its

only edge L = (0, 0), (2, 2) is spanned by essential points `0 = (0, 0) and `1 = (2, 2).

Example 4.2.20. The operator 𝑃 ≔ ℎ3𝑥2𝜕2
𝑥 +ℎ3𝜕𝑥−𝑥 as in Example 4.2.17 is unresolved with

respect to its only edge L = (0, 0), (2, 2). The only essential point `0 = (1, 3) is contained in
the interior of the Newton polygon.

Example 4.2.21. The operator 𝑃 ≔ 𝑥3ℎ2𝜕2
𝑥 +ℎ𝜕𝑥 −1 as in Example 4.1.3 is partially resolved.

Multiplying 𝑃 with an additional factor 𝑥, the essential points are given by `0 = (1, 1) and
`1 = (2, 2) with weights 𝑏𝜔(`0) = 0 and 𝑏𝜔(`1) = 1. Its only edge in the lower boundary
L = (0, 0), (2, 2) consists of two segments. Since one of them is spanned by `0 and `1, it is
partially resolved with respect to 𝛿 = 1.

Remark 4.2.22. We want to emphasize again that 𝛿-regularity of 𝑃 =
∑
_∈Λ 𝑎_ℎ

𝛼𝜕𝑘𝑥 is a
property which can be verified by only knowing the coefficients 𝑎_ for _ ∈ Λ ∩ 𝜕-P(Λ).
In particular, knowing the shape of 𝜕-P(Λ), we can determine the exponential behavior,
regularity and the amount of independent amplitudes based only on the coefficients associated
to each maximal edge L ⊂ 𝜕-P(Λ) and its associated eikonal polynomial.

In contrast to that, it is not possible to determine whether a singular operator is resolved
with respect to any edge L ⊂ 𝜕-P(𝑏Λ) in general, even if we know all weights along
the lower boundary. The relatively lower weights of essential points `𝑘 in the interior of
the Newton polygon let them dominate on the front face of a quasihomogeneous blow-up
𝛽𝑡 : [R2

+, 0]𝑡 → R2
+ for some 𝑡 > 0. Scraping these to the lower boundary of 𝜕-P(𝑏Λ) is the

main task of resolving these operators in Chapter 5 and involves successive quasihomogeneous
blow-ups.

4.2.3 Newton Polyhedra

The goal of this subsection is to describe resolved operators using the language of Newton
polygons as in Chapter 3. By construction, essential points are pairs of exponents (𝑘, 𝛼)
whose increase of weight, as in Definition 4.2.3, from the previous essential point is minimal
compared to all other points. The minimality of the increase of weights is the direct analogue
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4.2 Combinatorial Geometry II: Newton Polyhedra

of the discussion about slopes of edges L ⊂ 𝜕-P(Λ) in Section 3.2. Thus, we are interested in
an extension of the notion of Newton polygons to three dimensional sets, including not only
the order of differentiation 𝑘 and power 𝛼 of ℎ𝛼, but also the weight 𝜔 = 𝑙 − 𝑘 of 𝑥𝑙𝜕𝑘𝑥 . This
results in the definition of Newton polyhedra of an operator; a three-dimensional convex set
in N0 ×R ×N0, whose projection onto the first two entries N0 ×R coincides with the Newton
polygon of the operator.

We start this subsection by introducing the set of triples (𝑘, 𝛼, 𝜔) associated to an operator
at the point 𝑥 = 0. Since these weights depend on the choice of a point 𝑝 ∈ {ℎ = 0} ⊂ R2

+ we
will refer to the sets of triples as localized set of exponents.

Definition 4.2.23 (Localized Set of Exponents). Let 𝑃 ∈ DiffΛ(R+), let (𝑘, 𝛼, 𝜔) ∈ N0×R×N0

and 𝑎𝑘,𝛼,𝜔 ∈ C \ {0}, such that 𝑃 =
∑
𝑘,𝛼,𝜔 𝑎𝑘,𝛼,𝜔 · 𝑥𝜔ℎ𝛼 (𝑥𝜕𝑥)𝑘 at (0, 0). Then we call

Λ0 ≔
{
(𝑘, 𝛼, 𝜔) : 𝑎𝑘,𝛼,𝜔 ≠ 0

}
,

the localized set of exponents of 𝑃 at 0 ∈ R2
+.

The upcoming definition of Newton polyhedra is a direct extension from Newton polygons
in Definition 2.3.2. Its lower boundary refers to the lower boundaries of its projections. Recall
that the set conv(𝐴) is the convex hull of 𝐴 ⊂ N0 × R × N0 ⊂ R3 in the Euclidean space.

Definition 4.2.24 (Newton Polyhedron). LetΛ0 ⊂ N×R2 be discrete and bounded from above
in the first and from below in the latter two arguments.

Then we call

P(Λ0) ≔ conv ({(𝑥, 𝑦, 𝑧) : ∃ (𝑘, 𝛼, 𝜔) ∈ Λ0 with 𝑥 ≤ 𝑘 and𝑦 ≥ 𝛼 and 𝑧 ≥ 𝜔})

its Newton polyhedron and

𝜕-P(Λ0) ≔
{
_ ∈ 𝜕P(Λ0) : 𝜋 (𝑘,𝛼𝑗 ) (_) ∈ 𝜕-P(𝜋 (𝑘,𝛼𝑗 ) (Λ0)) for 𝑗 = 2, 3

}
the lower boundary of the Newton polyhedron P(Λ0), with projections 𝜋 (𝑘,𝛼𝑗 ) , for 𝑗 = 2, 3,
defined by

𝜋 (𝑘,𝛼𝑗 ) : N × R2 → N × R

(𝑘, 𝛼2, 𝛼3) ↦→ (𝑘, 𝛼 𝑗) .

Remark 4.2.25. We want to stress the fact that requiring a general point in the boundary
_ ∈ 𝜕P(Λ0) to project to both lower boundaries via 𝜋 (𝑘,𝛼𝑗 ) , 𝑗 = 2, 3, usually leads to 𝜕-P(Λ0)
being “incomplete” and often being empty. The lower boundary can only contain points and
edges with a combined horizontal length of at most 𝑚 = max{𝑘 ∈ N : (𝑘, 𝛼, 𝜔) ∈ Λ0}.

We keep the indexing of 𝜋 (𝑘,𝛼𝑗 ) via (𝑘, 𝛼 𝑗) for 𝑗 = 2, 3 to indicate whether the second or
third entry will be present in the image of the projection.

This notion of lower boundary of a Newton polyhedron gives us a geometric interpretation
of essential points of Λ(𝑃).
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Proposition 4.2.26. Let Λ ⊂ N×R be a set of exponents and 𝑃 ∈ Diff Λ(R). Let L ⊂ 𝜕-P(Λ)
be an edge and assume that 𝑃 is L-singular.

Then the following is true:

(i) If ` = (𝑘, 𝛼) ∈ 𝜕-P(Λ) is essential, then (𝑘, 𝛼, 𝜔(`)) ∈ 𝜕-P(Λ0).

(ii) 𝑃 is L-resolved if there exists L′ ⊂ 𝜕-P(Λ0) with 𝜋 (𝑘,𝛼3 ) (L′) = L.

Proof. (i). Proof by Induction. Assume that ` = (𝑘, 𝛼) ∈ 𝜕-P(Λ) is essential. If ` = `0

is the essential minimum then (𝑘, 𝛼, 𝑏𝜔(`)) ∈ 𝜕-P(Λ0), since 𝑏𝜔(`) ≤ 𝑏𝜔(_), for
all _ = (𝑙, 𝛽) ∈ Λ and 𝑙 ≤ 𝑘 if their weights 𝑏𝜔(_) and 𝑏𝜔(`0) are equal. Assume that
`0, . . . , `𝑁−1 ∈ 𝜕-P(Λ) are essential in ascending order, for 𝑁 ≥ 1, ` 𝑗 = (𝑘 𝑗 , 𝛼 𝑗) and
𝜔 𝑗 ≔

𝑏𝜔(` 𝑗), with (𝑘 𝑗 , 𝛼 𝑗 , 𝜔 𝑗) ∈ 𝜕-P(Λ0). Let `𝑁 be the next essential point. By Defini-
tion 4.2.13, we have that 𝛾(`𝑁−1`) is minimal if ` = `𝑁 for all sets of exponents (𝑘, 𝛼) with
𝑘 ≥ 𝑘𝑁−1. Hence (𝑘𝑁−1, 𝜔𝑁−1) ∈ 𝜕-P(𝜋𝑘,𝜔 (Λ0)) implies that (𝑘𝑁 , 𝜔𝑁 ) ∈ 𝜕-P(𝜋𝑘,𝜔 (Λ0))
and thus (𝑘𝑁 , 𝛼𝑁 , 𝜔𝑁 ) ∈ 𝜕-P(Λ0).

(ii). This is a direct consequence from (1). □

Note that Proposition 4.2.26 deals only with essential points that are already contained in
the lower boundary 𝜕-P(Λ). Identifying the remaining essential points in Λ0 will become
important in Chapter 5 when we show that for every operator 𝑃 there is a quasihomogeneous
blow-up 𝛽𝑡 such that all essential points are contained in 𝜕-P(Λ(𝛽∗𝑡 𝑃)).

Remark 4.2.27. The converse of the first statement in Proposition 4.2.26 is not true in general.
Whenever there are more than two points on an edge L′ ⊂ 𝜕-P(Λ0), all (relatively) interior
points ` ∈ L′ \ 𝜕L′ are contained in the lower boundary of P(Λ0) but are not essential.

4.3 Construction of Quasimodes II: Resolved Operators

In this section, we show that there is an algorithm to construct exponential-polyhomogeneous
quasimodes of singular, but resolved operators 𝑃 =

∑𝑚
𝑘=0 𝐴𝑘𝑉

𝑘 , where 𝑉 is a b-vector field on
R2
+. In contrast to regular operators in Chapter 3, neither the phase functions nor the amplitudes

will be smooth. They will however be polyhomogeneous in general. There are two different
types of b-vector fields on the quarter space: those whose image under projection onto the
boundary 𝑏𝜋𝐻 𝑗 ,∗(𝑉) vanishes on one boundary hypersurface 𝐻 𝑗 , 𝑗 = 1, 2, i.e. 𝑉 = 𝑥𝜕𝑥 , and
those whose image does not vanish, i.e.𝑉 = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 . The latter case will become important
in the resolution process of Chapter 5, where we are frequently facing vector fields of this type
whenever we pull back a b-vector field 𝑥𝜕𝑥 to a blown-up space of {𝑥 = ℎ = 0}.

4.3.1 Horizontal b-Vector Fields

b-Transport Equation

A recurring phenomenon in Section 4.1 in that the transport operator 𝑇 of the opera-
tors discussed in the examples is a b-operator. Moreover, all remainder operators 𝑅𝑘 of
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exp(−𝜑/ℎ𝛿)𝑃 exp(𝜑/ℎ𝛿) = 𝑇 + ∑
𝑘 𝑅𝑘ℎ

𝛼𝑘 were b-operators with various weights. It is im-
portant to note that these weights follow a strict pattern indicated by 𝜑(𝑥) ∼ 𝑐𝑥−𝛾 , as 𝑥 → 0,
for some 𝛾 > 0. As we have computed in Remark 4.2.11, the induced transport operator

𝑏𝑇𝛿,𝜑′ = 𝑥𝛾+𝑙𝛾
∑︁

_∈L∩𝑏Λ
�̂�_(𝑥) (𝑥𝜕𝑥 +𝑉 (𝑥)) ,

has an additional factor of 𝑥𝛾+𝑙𝛾 . This is the direct analogue of the power 𝛿 + 𝑙𝛿 of ℎ for the
induced transport operator

𝑃𝛿,𝜑′ = ℎ𝑙𝛿+𝛿𝑇𝛿,𝜑′ + 𝑜
(
ℎ𝑙𝛿+𝛿

)
,

in its counterpart 𝜋𝑘,𝜔 (Λ0). For any pair of exponents _ = (𝑘, 𝛼) ∈ 𝑏Λ, with weight
𝜔 = 𝑏𝜔(_), conjugating its associated differential operator

exp(−𝜑/ℎ𝛿)
(
𝑎_ℎ

𝛼 (𝑥𝜕𝑥)𝑘
)

exp(𝜑/ℎ𝛿) = ℎ𝑙𝛿 (𝑥𝜑′)𝑘𝑎_ + h.o.t.

results in a lowest order summand with weight −𝛾𝑘 + 𝑏𝜔(_) and all higher order summands
with weights of the form −𝛾 · (𝑘 − 𝑗) + 𝑏𝜔(_). There are two important things to notice.
Firstly, all weights increase in steps with size 𝛾. Secondly, if 𝑃 is resolved, i.e. 𝜑 is the solution
of an eikonal equation related to an edge spanned by essential points `𝑘 and `𝑘+1 with increase
of weight 𝛾, the weight of _ satisfies 𝑏𝜔(_) ≥ 𝛾𝑘 + 𝑙𝛾 . Hence, the weight of the lowest order
summand after conjugation is bounded from below,

−𝛾𝑘 + 𝑏𝜔(_) ≥ −𝛾𝑘 + 𝛾𝑘 + 𝑙𝛾 = 𝑙𝛾 .

Thus, the weights of the lowest order summands of the expansion of the conjugation of(
𝑎_ℎ

𝛼𝜕𝑘𝑥
)

are not separated in 𝜋𝑘,𝜔 (Λ0) by default, if 𝑃 is resolved. However, the only point
_ ∈ 𝜋𝑘,𝜔 (Λ0) below 𝛾 + 𝑙𝛾 has height 𝑙𝛾 . This can be resolved analogously to Proposition
3.3.8 and is the reason that the sum in Equation 4.8 starts at 𝑙 = −1.

This motivates the following proposition which shows that we are able to construct polyho-
mogeneous quasimodes of transport systems induced by resolved operators.

Proposition 4.3.1 (b-Normal Form). Let 𝐼 ⊂ N0. For 𝑘 ∈ 𝐼, let 𝑅𝑘 be b-differential operators
with smooth coefficients, 𝛾 ∈ R and𝑇 ≔ 𝑥1+𝛾𝜕𝑥 . Let 𝑃 ≔ 𝑇+∑𝑘∈𝐼 ℎ

𝛼𝑘𝑅𝑘 , where {𝛼𝑘 : 𝑘 ∈ 𝐼}
is discrete and positive. Assume that 𝑅𝑚 = 𝑥ord(𝑅𝑚 )𝛾𝑅𝑚, for some smooth b-operator 𝑅𝑚 for
each 𝑚 ∈ 𝐼.

Then there is a phase function Φ and an asymptotic sum of b-operators 𝑃 such that

exp(−Φ)𝑃 exp(Φ) = 𝑃𝑉 + O(ℎ∞) ,
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where

Φ(𝑥) = ©«
∞∑︁
𝑗=0

𝑏 𝑗 ,0(𝑥)ℎ𝛽 𝑗,0ª®¬ · log(𝑥) +
∞∑︁
𝑙=−1
𝑙≠0

©«
∞∑︁
𝑗=0

𝑏 𝑗 ,𝑙 (𝑥)ℎ𝛽 𝑗,𝑙ª®¬ · 𝑥𝑙𝛾 , (4.8)

for some 𝑏 𝑗 ,𝑙 ∈ C∞(R+) and 𝛽 𝑗 ,𝑙 ∈ R>0.

Proof. Denote 𝑅 ≔
∑
𝑘∈𝐼 ℎ

𝛼𝑘𝑅𝑘 , then 𝑃 = 𝑇 + 𝑅. Note that for any 𝑚 with differential order
ord(𝑅𝑚) = 0, i.e. 𝑅𝑚 = − 𝑓 with 𝑓 = O(𝑥𝑘), the solution 𝑏 of the eikonal equation

(𝑥1+𝛾𝜕𝑥)𝑏 = 𝑓 ,

is polyhomogeneous with 𝑏 = O(𝑥𝑘−𝛾), if 𝑘 ≠ 𝛾 and 𝑏 = O(log(𝑥)), if 𝑘 = 𝛾. Conjugating
any b-operator 𝑅𝑛 with exp(𝑏) then yields

𝑒−𝑏𝑅𝑛𝑒
𝑏 = (𝑥𝑏′)𝑙 · 𝑥𝑙𝛾︸       ︷︷       ︸

= O(1)

+ h.o.t. ,

where we used that 𝑥1+𝛾𝑏′ = O( 𝑓 (𝑥)) and 𝑅𝑛 = 𝑥𝑙𝛾𝑅𝑛 for ord(𝑅𝑛) = 𝑙. In particular, the
assumption that �̌�𝑚 = 𝑥𝑘𝛾𝑅𝑚 for some b-operator 𝑅𝑚 whenever ord(�̌�𝑚) = 𝑘 remains true
for all b-operators in the expansion of exp(−𝑏ℎ𝛽)𝑃 exp(𝑏ℎ𝛽) = ∑∞

𝑙=0 ℎ
�̌�𝑙 �̌�𝑙.

Thus any non-differential term ℎ𝛼𝑚𝑃𝑚 = −ℎ𝛼𝑚 𝑓𝑚, 𝑓𝑚 ∈ C∞(R+) can be erased by the
conjugation of 𝑃 = 𝑇 + 𝑅 with exp(𝜓 · ℎ𝛼𝑚), where 𝜓 satisfies

𝑥𝜓′ = 𝑥−𝛾 𝑓𝑚 .

Although this conjugation “enlarges” the asymptotic sum exp(−𝜓 · ℎ𝛼𝑚)𝑃 exp(𝜓 · ℎ𝛼𝑚) com-
pared to 𝑃 in general, we can erase all constant terms ℎ𝛼𝑚𝑅𝑚 = −ℎ𝛼𝑚 𝑓𝑚 with 𝛼𝑚 ≤ 𝑁 for all
𝑁 ∈ N eventually. This is analogue to the proof of Proposition 3.3.8.

Summing over all 𝜓𝑘ℎ𝛽𝑘 and sorting the asymptotic expansion of the sum Φ by powers of
𝑥𝑙 Y we get

Φ =
©«

∞∑︁
𝑗=0

𝑏 𝑗 ,0ℎ
𝛽 𝑗,0ª®¬ · log +

∞∑︁
𝑙=−1
𝑙≠0

©«
∞∑︁
𝑗=0

𝑏 𝑗 ,𝑙ℎ
𝛽 𝑗,𝑙ª®¬ · 𝑥𝑙 Y ,

for some 𝛽 𝑗 ,𝑙 ∈ R and 𝑏 𝑗 ,𝑙 ∈ C∞(R+). □

Remark 4.3.2. Note that for 𝛾 = 0 this is coincides with the statement of Corollary 3.1.9 for
b-operators where the transport operator 𝑇 is b-elliptic.

Construction

We are now able to combine all previous results from Chapter 4 and show that quasimodes
constructed on (0,∞) are exponential-polyhomogeneous at 𝑥 = 0 for resolved operators 𝑃. In
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4.3 Construction of Quasimodes II: Resolved Operators

particular, the number of independent quasimodes corresponds to the width of the edge L as
in the statement of Theorem 3.3.9 for regular operators. We can use Proposition 3.2.15 for the
existence of phase functions on the interior of R+, where phases are simple. Proposition 4.2.8
then quantifies the asymptotic behavior of these phase functions at the boundary 𝑥 = 0 and, in
the case of resolved operators, allows us to apply Proposition 4.3.1 to obtain polyhomogeneous
amplitudes.

Theorem 4.3.3 (Construction of Quasimodes I: Horizontal b-Vector Fields). Let Λ ⊂ N × R
be a set of exponents and 𝑃 ∈ Diff Λ(R+). Let L ⊂ 𝜕-P(Λ) be an edge with |L| = 𝐿 and
slope 𝛿 > 0. Assume that 𝑃 is 𝛿-singular in 0 and L-resolved. Assume that all solutions 𝜑′

𝑗

of 𝐸𝛿 (𝑃) (·, Z) = 0 are simple on (0,∞), for 𝑗 = 1, . . . , 𝐿. Then the following holds:

(i) If 𝛿 > 0, then there are polyhomogeneous amplitudes 𝐴 𝑗 with 𝐴 𝑗 | {ℎ=0} . 0 and indepen-
dent, exponential-polyhomogeneous quasimodes 𝑢 𝑗 = 𝑒Φ 𝑗 𝐴 𝑗 , withΦ 𝑗 = 𝜑 𝑗/ℎ𝛿+𝑜(ℎ𝛿),
for 𝑗 = 1, . . . , 𝐿, such that

𝑃Φ 𝑗 𝐴 𝑗 = O(ℎ∞) .

(ii) If 𝛿 = 0, then there are polyhomogeneous quasimodes 𝐴 𝑗 with 𝐴 𝑗 | {ℎ=0} . 0, for
𝑗 = 1, . . . , 𝐿, such that

𝑃𝐴 𝑗 = O(ℎ∞) .

Proof. Without loss of generality assume that 𝑏𝜔(_) ≥ 0 for all _ ∈ 𝑏Λ and that _min = (𝑛, 0)
for some 𝑛 ∈ N. Let 𝑚 ≔ ord(𝑃) and 𝛾 = 𝛾(L).

1. Consider the case 𝛿 > 0. Then there are essential points `𝑘 , `𝑘+1, for some 0 ≤ 𝑘 ≤ 𝑚,
such that L = `𝑘`𝑘+1. Since 𝑃 is 𝛿-singular in 0 and all solutions 𝜑′

𝑗
of 𝐸𝛿 (𝑃) (·, Z) = 0 are

simple, we can apply Proposition 3.2.15 on (0,∞) and obtain solutions 𝜑 𝑗 of the associated
eikonal equation for 𝑗 = 1, . . . , 𝐿. Further, we can apply Proposition 4.2.8 for each 𝜑 𝑗 since
𝛾(L) ≤ 𝛾(_`), for all _, ` ∈ L, which yields that 𝜑 𝑗 (𝑥) ∼ 𝑥−𝛾 (or 𝜑 𝑗 (𝑥) ∼ log(𝑥), if 𝛾 = 0)
as 𝑥 → 0. Applying Proposition 3.3.8 on (0,∞) for each 𝜑′

𝑗
then yields 0 < 𝛿 𝑗 ,𝑖 < 𝛿, and full

phases

Φ 𝑗 =
𝜑 𝑗

ℎ𝛿
+

𝑁∑︁
𝑖=1

𝜓 𝑗 ,𝑖

ℎ𝛿 𝑗,𝑖
.

By the same argument as in the beginning of Subsection 4.3.1 and Proposition 4.3.1 we have
that 𝜓 𝑗 ,𝑖 (𝑥) = 𝑜(1) or 𝜓 𝑗 ,𝑖 (𝑥) ∼ log(𝑥). Finally, we can apply Proposition 4.3.1 to 𝑃Φ 𝑗 and
obtain functions Ψ 𝑗 such that (

𝑃Φ 𝑗

)
Ψ 𝑗

= 𝑃 ◦ 𝑥𝜕𝑥 + O(ℎ∞) ,
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4 Resolved Operators

for an asymptotic sum of b-operators 𝑃. In particular, 𝐴 𝑗 ≔ exp(Ψ 𝑗) satisfies

𝑃Φ 𝑗 𝐴 𝑗 = O(ℎ∞) .

2. Since 𝑃 is L-resolved and 𝛿 = 0, we have that L = (0, 0), (𝐿, 0) and in particular
_min = (𝐿, 0) ∈ 𝑏Λ. Without loss of generality we can assume that 𝑎_min (0) ≠ 0. Thus,

𝑃 = 𝑇 +
∞∑︁
𝑘=0

ℎ𝛼𝑘𝑅𝑘 ,

is a sum of b-operators and that 𝑇 is a 𝐿-th order b-elliptic operator. By Proposition 3.1.7,
there are polyhomogeneous quasimodes 𝐴 𝑗 , where 𝐴 𝑗 = 𝑎 𝑗 ,0 + 𝑜(1) with 𝑎 𝑗 ,0 spanning ker𝑇 ,
for each 𝑗 = 1, . . . , 𝐿.

□

4.3.2 Hyperbolic b-Vector Fields

Another important case in Chapter 5 is operators of the form 𝑃 ≔
∑𝑚
𝑘=0 𝐴𝑘𝑉

𝑘 , where
𝑉 ≔ 𝑥𝜕𝑥 − 𝑦𝜕𝑦 is a b-vector field whose image under projection does not vanish at either face
{𝑦 = 0} and {𝑥 = 0}. These vector fields occur whenever we blow up singular points 𝑝 ∈ 𝜕H
of 𝑃 with respect to ℎ and 𝑥, resulting in the pullback of 𝑥𝜕𝑥 of the form 𝛽∗(𝑥𝜕𝑥) = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 .

Although we have not taken this case into consideration in Section 4.2 explicitly, it easily
fits into the theory of resolved operators. Constructing quasimodes in this case reduces to the
analysis of Newton polygons in powers of 𝑥 and 𝑦 at either boundary face. If these edges have a
common, three dimensional pre-image L ⊂ 𝜕-P(Λ0), the corresponding eikonal polynomials
essentially coincide at the corner {𝑥 = 𝑦 = 0}, allowing for a polyhomogeneous extension Φ

of pairs of solutions 𝜑 𝑗 to the quarter space R2
+.

Eikonal Equations

Choosing a hypersurface and a corresponding edge is ambiguous for an operator 𝑃 with a
symmetrical vector field 𝑉 = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 . We will phrase all statements in terms of lower
edges L ⊂ 𝜕-P(Λ0) of the Newton polyhedron at the corner 0 ∈ R2

+. We will distinguish
between eikonal polynomials at different faces of R2

+ by adding the relevant face in the index,
i.e. 𝐸𝐻,𝛿 (𝑃).

Proposition 4.3.4. Let 𝑉 ≔ 𝑥𝜕𝑥 − 𝑦𝜕𝑦 on R2
+, 𝑘 ∈ N0, 𝐴𝑘 ∈ A(R2

+) be log-free, 𝑚 ∈ N,
𝑃 ≔

∑𝑚
𝑘=0 𝐴𝑘𝑉

𝑘 and Λ0 ⊂ N0 × R × N0 be the associated set of exponents at {𝑥 = 𝑦 = 0}.
Denote 𝐻1 ≔ {𝑦 = 0} and 𝐻2 ≔ {𝑥 = 0} and let Λ𝐻 𝑗 , 𝑗 = 1, 2, be their respective sets of
exponents. Let L ⊂ 𝜕-P(Λ0) and denote 𝛿 𝑗 ≔ 𝛿(L 𝑗), for L 𝑗 ≔ 𝜋 (𝑘,𝛼𝑗 ) (L) ⊂ 𝜕-P(Λ𝐻 𝑗 ).
Assume that 𝛿1 ≠ 𝛿2, where 𝛿 𝑗 ≥ 0 and for 𝑃 ∼ ∑

_∈Λ0 𝛼_𝑥
𝜔𝑦𝛼𝑉 𝑘 at 0 ∈ R2

+ let 𝑐 ∈ C be a
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solution of ∑︁
_∈L∩Λ0
_=(𝑘,𝛼)

𝛼_𝑐
𝑘 = 0 .

Assume that all non-trivial solutions of 𝐸𝐻 𝑗 , 𝛿 𝑗 (𝑃) (·, Z) = 0 are simple on 𝐻◦
𝑗
, 𝑗 = 1, 2.

(i) If 𝛿1, 𝛿2 > 0 then there is a phase Φ ∈ A(R2
+) with Φ(𝑥, 𝑦) ∼ 𝑦−𝛿1𝜑1(𝑥) at 𝐻1 and

Φ(𝑥, 𝑦) ∼ 𝑥−𝛿2𝜑2(𝑦) at 𝐻2 such that for 𝑗 = 1, 2

𝐸𝐻 𝑗 , 𝛿 𝑗 (𝑃) (·, 𝑉𝜑 𝑗) = 0 at 𝐻 𝑗 ,

and

Φ(𝑥, 𝑦) ∼ 𝑐

𝛿1 − 𝛿2

1
𝑥 𝛿2𝑦 𝛿1

+ h.o.t. ,

at the corner 0 ∈ R2
+.

(ii) If 𝛿2 = 0 then there is a solution 𝜑1 ∈ C∞(𝐻1) of 𝐸𝐻1, 𝛿1 (𝑃) (·, 𝑉𝜑1) = 0 with 𝜑1(0) ≠ 𝑐
and a solution 𝑢 of the equation ∑︁

_∈Λ𝐻2∩L2
_=(𝑘𝛼 )

𝑎_𝑦
(𝑘 ) = 0

on 𝐻2 such that

𝑢(𝑦) ∼ 𝑒𝑐/(𝛿2 ·𝑦𝛿1 ) + 𝑜
(
𝑦−𝛿1

)
.

Proof. (i). Let 𝛿1, 𝛿2 > 0 and 𝜑 𝑗 be simple solutions of 𝐸𝛿 𝑗 ,𝐻 𝑗 (𝑃) (·, (𝑉 − 𝛿𝑙)𝜑 𝑗) = 0 at each
face 𝐻◦

𝑗
respectively, 𝑙, 𝑗 = 1, 2, 𝑙 ≠ 𝑗 . All we need to show is that 𝜑1/𝑦−𝛿1 and 𝜑2/𝑥−𝛿2 match

pairwise at the corner 0 ∈ R2
+, in the sense that they allow for a polyhomogeneous extension

Φ to the interior of R2
+. We normalize these solutions 𝜑 𝑗 by 𝜓1 ≔ 𝑥 𝛿2 · 𝜑1 and 𝜓2 ≔ 𝑦 𝛿1 · 𝜑2.

It suffices to show that 𝜓1, 𝜓2 are continuous and 𝜓1(0) = 𝜓2(0).
Since L is an edge in 𝜕-P(Λ0) there are 𝑏 𝑗 ∈ R, 𝑗 = 1, 2, such that

L = {(𝑘, 𝛿1𝑘 + 𝑏1, 𝛿2𝑘 + 𝑏2) : (𝑘, 𝛿1𝑘 + 𝑏1) ∈ L1 ∩ Λ𝐻1} .

We have to distinguish two different cases depending on the shape of P(Λ0). If there is a
surface 𝐹 adjacent to L in P(Λ0) that is perpendicular to either {𝛼 = 0} or {𝜔 = 0} in R3

+,
then denote 𝐴 𝑗 ≔ 𝜋 (𝑘,𝛼𝑗 ) (𝐹 \ L). Otherwise set 𝐴 𝑗 ≔ ∅.

Without loss of generality assume 𝐴2 ≠ ∅ and let ˜̀ ∈ 𝐴2. Then there is Y > 0 such that˜̀= (𝑛, 𝛿1𝑛 + 𝑏1 + Y, 𝛿2𝑛 + 𝑏2) for some 𝑛 ∈ N.
Let 𝑄 ≔ 𝑉 − (𝛿1 − 𝛿2) and 𝑢 𝑗 ≔ 𝑒𝜓𝑗/𝑦

𝛿1 𝑥 𝛿2 . Then there are numbers 𝑙𝛿 𝑗 ,𝐻 𝑗 ∈ R and
𝑎_ ∈ A(𝐻1), 𝑏_, 𝑏` ∈ A(𝐻2), with _ ∈ L ∩ Λ0 and ` ∈ 𝐴2 such that the conjugation of 𝑃
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with 𝑢 𝑗 at 0 ∈ R2
+ yields

𝑢−1
1 𝑃𝑢1 = 𝑦𝑙𝛿1 ,𝐻1 ·

©«
∑︁

_∈L∩Λ0
_=(𝑘, 𝛿1𝑘+𝑏1, 𝛿2𝑘+𝑏2 )

𝑎_(𝑥) · 𝑥−𝑘 𝛿2 (𝑄𝜓1)𝑘 + 𝑜(𝑦𝑙𝛿1 ,𝐻1 )
ª®®®¬

𝑢−1
2 𝑃𝑢2 = 𝑥𝑙𝛿2 ,𝐻2 ·

©«
∑︁

_∈L∩Λ0
_=(𝑘, 𝛿1𝑘+𝑏1, 𝛿2𝑘+𝑏2 )

𝑏_(𝑦) · 𝑦−𝑘 𝛿1 (𝑄𝜓2)𝑘 +
∑̀︁
∈𝐴2

𝑏` (𝑦) · 𝑦−𝑘 𝛿1 (𝑄𝜓2)𝑘
ª®®®¬

+ 𝑜(𝑥𝑙𝛿2 ,𝐻2 ) .

Since all pairs _ ∈ L ∩ Λ0 are aligned along the edge L, we can rewrite∑︁
_∈L∩Λ0

𝑎_(𝑥) · 𝑥−𝑘 𝛿2 (𝑄𝜓1)𝑘 =
∑︁

_∈L∩Λ0
_=(𝑘, 𝛿1𝑘+𝑏1, 𝛿2𝑘+𝑏2 )

�̃�_(𝑥) · 𝑥𝑘 𝛿2+𝑏2−𝑘 𝛿2 (𝑄𝜓1)𝑘

= 𝑥𝑏2 ·
∑︁

_∈L∩Λ0

�̃�_(𝑥) · (𝑄𝜓1)𝑘 ,

with �̃�_(0) ≠ 0 for all _ ∈ 𝜕L, and∑︁
_∈L∩Λ0

𝑏_(𝑦) · 𝑦−𝑘 𝛿1 (𝑄𝜓2)𝑘 +
∑︁
`𝑙∈𝐴2

𝑏` (𝑦) · 𝑦−𝑘 𝛿1 (𝑄𝜓2)𝑘

=
∑︁

_∈L∩Λ0

�̃�_(𝑦) · 𝑦𝑏1 (𝑄𝜓2)𝑘 +
∑︁
`𝑙∈𝐴2

�̃�` (𝑦) · 𝑦𝑏2+Y` (𝑄𝜓2)𝑘

for finitely many Y` > 0 and �̃�_(0) ≠ 0, for all

_ ∈ 𝜕L = 𝜕{(𝑘, 𝛿1𝑘 + 𝑏1, 𝛿2𝑘 + 𝑏2) : (𝑘, 𝛼) ∈ L1} .

In particular, we have �̃�_(0) = �̃�_(0) for all _ ∈ L ∩ Λ0, since all coefficients of 𝑃 are
polyhomogeneous on R2

+ and L ∈ 𝜕-P(Λ0) is minimal. Thus, all solutions Z𝑖,1, Z𝑖,2 for
𝑖 = 1, . . . , |L|, of ∑︁

_∈L∩Λ0

�̃�_(𝑥) · (Z𝑖,1)𝑘 = 0 ,∑︁
_∈L∩Λ0

�̃�_(𝑦) · (Z𝑖,2)𝑘 = 0 ,

coincide pairwise at 𝑝 with Z𝑖,1(0) = Z𝑖,2(0) = 𝑐, where 0 ≠ 𝑐 ∈ C, is a root of∑︁
_∈L∩Λ0

𝛼_𝑐
𝑘 = 0 ,

with 𝛼_ ∈ C given by 𝑃 =
∑
_∈Λ0 𝛼_𝑥

𝜔𝑦𝛼𝑉 𝑘 at 0 ∈ R2
+. Solving both𝑄𝜓1 = Z1 and𝑄𝜓2 = Z2

then yields 𝜓1(0) = 𝜓2(0) = 𝑐/(𝛿1 − 𝛿2), since 𝑄 = 𝑉 − (𝛿1 − 𝛿2) is a first order b-differential
operator with 𝛿1 ≠ 𝛿2.
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(ii). Let 𝛿2 = 0 and 𝛿1 > 0. We have 𝜓1(0) = 𝜓1(0) = 𝑐/𝛿1, following the computations
above. Applying Proposition 2.3.6 to the leading operator of 𝑃 ∼ 𝑦𝑙𝐻2 , 𝛿2𝑃0 + 𝑜(𝑦

𝑙𝐻2 , 𝛿𝐻2 ) at
𝐻2 given by

𝑃0 =
∑︁

_∈Λ𝐻2∩L2
_=(𝑘𝛼 )

𝑎_𝜕
𝑘
𝑦

then yields asymptotic solutions 𝑢 = 𝑒𝜑 (𝑦)𝐴(𝑦) of 𝑃0𝑢 = 0 at the corner 0 ∈ R2
+ on 𝐻2, with

𝜑(𝑦) ∼ 𝑐/𝛿2𝑦
−𝛿2 + 𝑜(𝑦−𝛿2). □

It is important to emphasize that the existence of an edge in the lower boundary of a Newton
polyhedron L ⊂ 𝜕-P(Λ0) is only a sufficient condition for the existence of matching phase
functions by Proposition 4.3.4 in the asymptotic construction. In the following example we will
analyze an operator admitting an exponential-polyhomogeneous solution despite not having a
lower edge in the Newton polyhedron at the corner 0 ∈ R2

+.

Example 4.3.5. Let 𝑉 = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 , 𝑃 ≔ 𝑦𝑉 + (𝑥 + 𝑦) on R2
+, denote 𝐻1 ≔ {𝑦 = 0},

𝐻2 ≔ {𝑥 = 0} and let Λ0 ≔ {(0, 1, 0), (0, 0, 1), (1, 0, 1)} be the associated set of exponents
localized at 0 ∈ R2

+. At 𝐻 𝑗 , 𝑗 = 1, 2, the sets of exponents at both faces are given by
Λ𝐻1 = {(0, 0), (0, 1), (1, 1)} and Λ𝐻2 = {((0, 0), (0, 1), (1, 0))}, where the difference in the
last tuples corresponds to the coefficient 𝑦 of 𝑉 . Thus, there is no edge L ∈ 𝜕-P(Λ0) with
𝜋 (𝑘,𝛼𝑗+1 ) (L) ⊂ 𝜕-P(Λ𝐻 𝑗 ) for 𝑗 = 1, 2. Attempting to construct local approximations corre-
sponding to Λ𝐻 𝑗 for L1 ≔ (0, 0), (1, 1) ⊂ 𝜕-P(Λ𝐻1) and L2 ≔ (0, 0), (1, 0) ⊂ 𝜕-P(Λ𝐻2)
results in an exponential ansatz at 𝐻1 since 𝛿(L1) = 1, and a polyhomogeneous ansatz at 𝐻2

since 𝛿(L2) = 0. Thus, the eikonal polynomial at 𝐻1

𝐸𝛿1 (𝑃) (𝑥, Z) = Z + 𝑥

has a single solution Z ≔ −𝑥 and the corresponding eikonal equation

(𝑥𝜕𝑥 + 1)𝜑 = −𝑥

is solved by 𝜑(𝑥) ≔ −𝑥/2. Conjugation of 𝑃 with exp(𝜑(𝑥)/𝑦) then yields

𝑃𝜑/𝑦 = 𝑦 · (𝑉 + 1) .

Applied to functions, it has a kernel spanned by 𝐴(𝑥) ≔ 𝑥−1. In particular, the function
𝑢1(𝑥, 𝑦) ≔ exp(𝜑(𝑥)/𝑦)𝐴(𝑥) = 𝑒−𝑥/(2𝑦)𝑥−1 is a solution of 𝑃𝑢 = 0. On the other hand,
𝛿(L2) = 0 yields a local solution at 𝐻2, which is given by 𝑢𝐻2,0(𝑦) ≔ 𝑦 and solves

𝑦(−𝑦𝜕𝑦 + 1)𝑢𝐻2,0(𝑦) = 0 ,

115
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where −𝑦2𝜕𝑦 + 𝑦 is the leading part of 𝑃 = 𝑦(𝑥𝜕𝑥 − 𝑦𝜕𝑦) + (𝑥 + 𝑦) with respect to powers in 𝑥.
For higher order corrections 𝑢𝐻2,𝑘 (𝑦) · 𝑥𝑘 the family of inhomogeneous transport equations

𝑦(−𝑦𝜕𝑦 + (1 + 𝑘))𝑢𝐻2,𝑘 (𝑦) = −𝑢𝐻2,𝑘−1(𝑦) ,

has solutions 𝑢𝐻2,1(𝑦) = −1/2 for 𝑘 = 1 and 𝑢𝐻2,𝑘 (𝑦) = (−1)𝑘/𝑘!𝑦−𝑘+1 for 𝑘 ∈ N, 𝑘 > 1.
Thus, the asymptotic series of correction terms converges, namely

𝑢2(𝑥, 𝑦) =
∞∑︁
𝑘=0

(−1)𝑘
𝑘!

𝑦

(
𝑥

𝑦

) 𝑘
= 𝑦 exp(−𝑥/𝑦)

and coincides with the exponential behavior of 𝜑(𝑥)/𝑦 = −𝑥/(2𝑦). In particular, we have
(𝑥𝑦)𝑢2(𝑥, 𝑦) = 𝑢1(𝑥, 𝑦), which means that we have essentially constructed the same solution
locally at each face, since [𝑃, 𝑥𝑦] = 0.

There is another important point of view for Example 4.3.5. b-Vector fields of the form
𝑉 = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 usually appear at the corner of the front face after blowing up an interior
point of a boundary hypersurface. Thus the blow-down of 𝑃 results in a semi-classical, one
dimensional, first order differential operator, which can be analyzed completely.

Example 4.3.6. Changing the coordinates in Example 4.3.5 corresponding to the integral
curves yields a system of coordinates (𝑡, ℎ) in the interior of R2

+ defined by 𝑡 ≔ 𝑥 and ℎ ≔ 𝑥𝑦.
Thus the vector field transforms as

𝑉 = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 = 𝑥
(
𝜕𝑡

𝜕𝑥
𝜕𝑡 +

𝜕ℎ

𝜕𝑥
𝜕ℎ

)
− 𝑦

(
𝜕𝑡

𝜕𝑦
𝜕𝑡 +

𝜕ℎ

𝜕𝑦
𝜕ℎ

)
= 𝑡

(
𝜕𝑡 +

ℎ

𝑡
𝜕ℎ

)
− ℎ

𝑡
(0 + 𝑡𝜕ℎ) = 𝑡𝜕𝑡 .

In these coordinates the operator 𝑃 is given by

𝑃 = ℎ𝜕𝑡 + 𝑡 +
ℎ

𝑡
.

Computing the set of exponents relative to ℎ → 0 yields Λ = {((0, 0), (0, 1), (1, 1))} with
a single lower edge L ≔ (0, 0), (1, 1). It is important to note that 𝑃 is L-resolved in these
coordinates, since there are two essential points `0 ≔ (0, 0) and `1 B (1, 1), spanning L.
Solving the family of ODEs directly yields a family of solutions 𝑢ℎ, ℎ > 0, given by

𝑢ℎ (𝑡) =
1
𝑡
𝑒−𝑡

2/(2ℎ) .

Thus, we can compute the pullback of 𝑢(𝑡, ℎ) ≔ 𝑢ℎ (𝑡) in terms of the coordinate change 𝛽
from (𝑥, 𝑦) to (𝑡, ℎ) and obtain

(𝛽∗𝑢) (𝑥, 𝑦) = 1
𝑥
𝑒−𝑥/(2𝑦) ,
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which is exponential-polyhomogeneous on R2
+, despite Λ0(𝑃) not having a lower edge

L ⊂ 𝜕-P(Λ0). In particular, 𝛽∗𝑢 coincides with the solution computed in Example 4.3.5
up to a power of 𝑥𝑦.

Transport Equations

Analogously to Subsection 4.3.1 the induced transport operator as in Definition 3.1.10 will
be given by the b-vector field 𝑉 = 𝑥𝜕𝑥 − 𝑦𝜕𝑦 multiplied with some powers of 𝑥 and 𝑦,
i.e. 𝑇 = 𝑥𝑙𝛿2+𝛿2𝑦𝑙𝛿1+𝛿1𝑉 . Thus we need to make sure that solutions along both boundary hy-
persurfaces 𝐻 𝑗 match asymptotically at the corner, allowing for a polyhomogeneous extension
to R2

+.

Lemma 4.3.7. Let 𝑉 ≔ 𝑥𝜕𝑥 − 𝑦𝜕𝑦 on R2
+. Let 𝐺 ∈ C∞(R2

+), 𝑠 ≔ 𝐺 (0, 0) and 𝑃 ≔ 𝑉 − 𝐺.
Then the following holds:

(i) There is an asymptotic solution 𝑢 ∈ A(R2
+) of 𝑃𝑢 = 0, i.e. 𝑃𝑢 = 𝑜(𝑢) at 𝜕R2

+, with
𝑢(𝑥, 𝑦) ∼ 𝑢1(𝑥) + 𝑜(1) as 𝑦 → 0 and 𝑢(𝑥, 𝑦) ∼ 𝑢2(𝑦)𝑥𝑠 + 𝑜(𝑥𝑠) as 𝑥 → 0.

(ii) For each 𝑓 ∈ A(R2
+) log-free, there is a polyhomogeneous function 𝑢 = O( 𝑓 ), such

that 𝑃𝑢 − 𝑓 = 𝑜( 𝑓 ) at 𝜕R2
+.

Proof. (i) Let 𝑔1(𝑥) ≔ 𝐺 (𝑥, 0), 𝑔2(𝑦) ≔ 𝐺 (0, 𝑦) and 𝑠 ≔ 𝐺 (0, 0). Let 𝑢1 ∈ A(R+), be a
solution of (𝑥𝜕𝑥 − 𝑔1)𝑢1 = 0 and 𝑢2 ∈ A(R+) be a solution of (−𝑦𝜕𝑦 − (𝑔2 − 𝑠))𝑢2 = 0. Then
𝑢1(𝑥) ∼ 𝑥𝑠 + 𝑜(𝑥𝑠) and 𝑢2(𝑦) ∼ 1 + 𝑜(1). By the Borel lemma 2.2.18 the pair (𝑢1, 𝑢2 · 𝑥𝑠)
admits a polyhomogeneous extension 𝑢 to R2

+ and 𝑃𝑢 ∼ (𝑥𝜕𝑥 − 𝑔1)𝑢1 = 0 at {𝑦 = 0} and

𝑃𝑢 ∼ (𝑉 − (𝑔2 − 𝑠))𝑢2𝑥
𝑠 = −𝑦𝜕𝑥𝑢2 = 0

at {𝑥 = 0}. Hence 𝑃𝑢 = 𝑜(𝑢) at 𝜕R2
+.

(ii) Let 𝑓 ∈ A(R2
+) and denote the leading parts of 𝑓 at 𝜕R2

+ by 𝑓1 and 𝑓2 respectively, i.e.
𝑓 (𝑥, 𝑦) ∼ 𝑓1(𝑥)𝑦𝛼+ h.o.t. as 𝑦 → 0 and 𝑓 (𝑥, 𝑦) ∼ 𝑓2(𝑦)𝑥𝛽+ h.o.t. as 𝑥 → 0. If 𝛽 > 𝑠, let
𝑢1 ∈ A(R+) be the solution of (𝑥𝜕𝑥 − 𝑔1)𝑢1 = 𝑓1 with 𝑢1(𝑥) ∼ 𝑥𝛽 , and if 𝛽 ≤ 𝑠 let 𝑢1 be any
solution. If 𝛼 > 𝑠 let 𝑢2 be the solution of (𝑦𝜕𝑥 + (𝑔2 − 𝑠))𝑢2 = − 𝑓𝑦 with 𝑢2(𝑦) ∼ 𝑦𝛼, or any
solution otherwise. By the Borel lemma the pair (𝑢1𝑦

𝛽 , 𝑢2𝑥
𝛼) admits a polyhomogeneous

extension 𝑢 to R2
+ and

𝑃𝑢 − 𝑓 ∼ (𝑥𝜕𝑥 − 𝑔1)𝑢1 − 𝑓1 = 0

at {𝑦 = 0} and

𝑃𝑢 − 𝑓 ∼ (𝑦𝜕𝑦 + (𝑔2 − 𝑠))𝑢2 + 𝑓𝑦 = 0

at {𝑥 = 0}. □
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Remark 4.3.8. If 𝑢 is an asymptotic solution of (𝑉 − 𝐹)𝑢 = 0 at 𝜕R2
+, then (𝑥𝑦)𝑡𝑢 is an

asymptotic solution for all 𝑡 ∈ R, since any b-vector field 𝑉 commutes with 𝑥𝑦 as operators,
i.e. [𝑉, 𝑥𝑦] = 0.

Remark 4.3.9. Although it is not necessary, one can do more than proposed in Lemma 4.3.7.
Recall that R2

+ � [R2
+, 0] \ lf, where [R2

+, 0] is the space resulting from the homogeneous blow-
up of 0 in R2

+, i.e. 𝛽 : [R2
+, 0] → 0. In particular, 𝑥𝜕𝑥 − 𝑦𝜕𝑦 = 𝛽∗(𝑥𝜕𝑥) in the interior of either

space and the differential equation (𝑉 − 𝐺)𝑢 = 𝑓 corresponds to the ordinary b-differential
equation (𝑥𝜕𝑥 + 𝐺)𝑢 = �̃� . Hence we can compute explicit solutions of these differential
equations, which are given in terms of push-forwards for some 𝑐 ∈ C, i.e.

𝑢(𝑥, ℎ) = 𝑒−(
∫ 𝑥

0 𝐺 (𝑡 ,ℎ) 𝑑𝑡
𝑡
)
(
𝑐 +

∫ 𝑥

0
𝑒 (

∫ 𝑠
0 𝐺 (𝑡 ,ℎ) 𝑑𝑡

𝑡
) �̃� (𝑠, ℎ) 𝑑𝑠

𝑠

)
.

These solutions are not unique in powers of 𝑥𝑦, since [𝑉, 𝑥𝑦] = 0, as mentioned before. Their
asymptotics can be computed explicitly based on the behavior of the integral kernel

𝐾 (𝑥, 𝑠, ℎ) = 𝑒 (
∫ 𝑠
𝑥
𝐺 (𝑡 ,ℎ)𝑑𝑡/𝑡 ) 𝜒𝑠≤𝑥 ,

using the singular asymptotics lemma or the push-forward theorem. These can be found in
[Mel96] and [Gri01].

Construction

Combining both Proposition 4.3.4 and Lemma 4.3.7, we are able to prove that local quasimodes
at either adjacent boundary hypersurface 𝐻 𝑗 corresponding to an edge L ⊂ 𝜕-P(Λ0) can be
extended as a joint, single quasimode to the interior of R2

+. The whole process is summarized
in the following theorem.

Theorem 4.3.10 (Construction of Quasimodes II: Hyperbolic b-Vector Fields). Let I be an
index family on R2

+, 𝑛 ∈ N, 𝐴𝑘 ∈ AI (R2
+), 0 ≤ 𝑘 ≤ 𝑛, 𝑉 ≔ 𝑥𝜕𝑥 − 𝑦𝜕𝑦 and 𝑃 ≔

∑
𝐴𝑘𝑉

𝑘

with associated set of exponents Λ0 at 0 ∈ R2
+. Denote 𝐻1 ≔ {𝑦 = 0}, 𝐻2 ≔ {𝑥 = 0} and let

Λ𝐻 𝑗 , be the set of exponents generated by the asymptotic expansion of 𝑃 at 𝐻 𝑗 , 𝑗 = 1, 2. Let
L ⊂ 𝜕-P(Λ0) and denote L 𝑗 ≔ 𝜋 (𝑘,𝛼𝑗+1 ) (L), 𝑗 = 1, 2, and 𝛿 𝑗 ≔ 𝛿(L 𝑗). Let all roots Z 𝑗 ,
𝑗 = 1, 2, of 𝐸𝛿 𝑗 (·, Z 𝑗) = 0 be simple and let 𝑃 be strictly 𝛿 𝑗-separated at 𝐻 𝑗 .

Then for each root 𝑐 ∈ C of
∑
_∈L∩Λ0 𝛼_𝑐

𝑘 = 0 as in Proposition 4.3.4 there are functions
Φ, 𝐴 ∈ A(R2

+) and 𝜑 𝑗 with 𝜑′
𝑗
= Z 𝑗 , such that Φ(𝑥, 𝑦) ∼ 𝜑1(𝑥)𝑦 𝛿1+ h.o.t. at 𝐻1 and

Φ(𝑥, 𝑦) ∼ 𝜑2(𝑦)𝑥 𝛿2+ h.o.t. at 𝐻2, with

Φ(𝑥, 𝑦) ∼ 𝑐

𝛿1 − 𝛿2

1
𝑥 𝛿2𝑦 𝛿1

+ h.o.t. ,

at 0 ∈ R2
+. The function 𝑢 = 𝑒Φ𝐴 is a WKB-type quasimode of 𝑃 on R2

+, i.e.

𝑃Φ𝐴 = O((𝑥𝑦)∞) .
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Proof. By Proposition 4.3.4 there is a phase Φ whose leading parts 𝜑 𝑗 , 𝑗 = 1, 2 at 𝐻 𝑗
are solutions of 𝑉𝜑 𝑗 = Z 𝑗 , with Z 𝑗 solutions of 𝐸𝛿 𝑗 (·, Z 𝑗) = 0 corresponding to 𝑐 ∈ C,
i.e. 𝜑1(𝑥) ∼ 𝑐/(𝛿1 − 𝛿2)𝑥−𝛿2 and 𝜑2(𝑦) ∼ 𝑐/(𝛿1 − 𝛿2)𝑦−𝛿2 . Since L ⊂ 𝜕-P(Λ0), conjugating
𝑃 with 𝑒Φ yields an operator of the form

𝑄 ≔ 𝑒−Φ𝑃𝑒Φ = 𝑄0 +
∞∑︁
𝑘=1

𝑥𝛼𝑘 𝑦𝛽𝑘𝑄𝑘 ,

and without loss of generality we can assume that the transport operator is given by𝑄0 = 𝑉 − 𝐺
for some 𝐺 ∈ C∞(R2

+). Denote 𝑠 ≔ 𝐺 (0, 0). Both sequences (𝛼𝑘)𝑘 and (𝛽𝑘)𝑘 and
strictly increasing, positive and have no accumulation point. This is a direct consequence
of 𝜋 (𝑘,𝛼𝑗 ) (L) ⊂ 𝜕-P(Λ𝐻 𝑗 ), analogous to the remarks in the beginning of Subsection 4.3.1.
Applying Lemma 4.3.7 (1.) to 𝑄0 then yields a zeroth order quasimode 𝑢0, satisfying

𝑄𝑢0 = 𝑄0𝑢0 + (
∞∑︁
𝑘=1

𝑥𝛼𝑘 𝑦𝛽𝑘𝑄𝑘)𝑢0 = O(𝑥𝛼1𝑦𝛽1) .

Its lowest remainder term is given by 𝑓0,1 ≔ 𝑥𝛼1𝑦𝛽1𝑄1𝑢0. By Lemma 4.3.7, (ii) solving the
inhomogeneous equation 𝑄0𝑢1 = 𝑓0,1 then yields a first order quasimode 𝑢0 + 𝑢1 with

𝑄(𝑢0 + 𝑢1) = O(𝑥min{2𝛼1,𝛼2}𝑦min{2𝛽1,𝛽2}) .

Since {(𝛼𝑘 , 𝛽𝑘) : 𝑘 ∈ N} is discrete in the Euclidean topology, the same principle as in
Theorem 3.3.11 holds and for any threshold 𝑁 ∈ N there is a finite number 𝑀 ∈ N of
iterations, such that

𝑄

(
𝑀∑︁
𝑘=1

𝑢𝑘

)
= O((𝑥𝑦)𝑁 ) .

Thus 𝐴 ≔
∑∞
𝑘=1 𝑢𝑘 is an amplitude and 𝑢 ≔ 𝑒Φ𝐴 is a quasimode of 𝑃. □
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This chapter analyses unresolved operators and their resolutions by using successive blow-ups
in the half space H. Section 5.1 starts with the lift of the notion of sets of exponents Λ𝐻 to
arcs 𝐻 ⊂ 𝜕𝑀 of a blown-up half space 𝛽 : 𝑀 → H. The lifts can be computed explicitly and
correspond to the parameters 𝑡 > 0 of the blow-up maps 𝛽𝑡 . Using a specific family of induced
coordinates at each arc, we are able to specify a notion of 𝛿-regular and L-resolved operators
along these arcs. Finally, we can transfer the results of Proposition 4.3.4 to blown-up spaces
in order to extend local solutions of eikonal equations at adjacent arcs. Eventually, we are able
to specify a list of conditions in Section 5.1 to check whether a chain of blow-ups has resolved
an unresolved operator.

Section 5.2 advances in analyzing the effects of blow-ups 𝛽𝑡 : 𝑌 → H on zeros of the
coefficients 𝛽∗𝑡 𝑎_ on the new front face. These are the relevant quantities for 𝛿-regularity and
L-resolved operators introduced in Section 5.1. Increasing the parameter 𝑡 > 0 deforms the
Newton polygon and splits up single or merges multiple edges. When this phenomenon occurs,
it is not clear if lower three-dimensional edges of the Newton polyhedron still exist at the corner
of the front face. This leads to the introduction of collision times in Definition 5.2.1. These
are maximal parameters 𝑡 (L) for a blow-up and are associated to an edge L, such that a lower
three-dimensional edge remains at the corner of the new front face. They are easy to compute
and important for the resolution of operators. The successive use of blow-ups with collision
times as parameters then allows for an algorithmic regularization of the operator’s associated
unresolved points. A new problem compared to the setting in Chapters 3 and 4 that arises
is the necessity to construct quasimodes for multiple edges and solutions simultaneously at
some arcs. This issue is already present in the construction of quasimodes for the Schrödinger
operator with linear potential and only leads to some technical difficulties in the resolution
process. We will display the full algorithm in a blow-up graph G = (V, E), accounting for all
spaces, arcs, edges and solutions of eikonal equations

(𝑌, 𝐻,L, Z) ∈ V

that appear in any step of the resolution. This is specified in Algorithm 1, which terminates
when the operator 𝛽∗𝑃 is either regular or resolved on all arcs and when its solutions of
eikonal equations have constant multiplicities. The finiteness of the algorithm is proven in
Theorem 5.2.18. We apply the resolution algorithm to the Schrödinger operator with vanishing
potential and the Bessel operator in Subsections 5.2.3 and 5.2.4.

In Section 5.3 the goal is to recover the systematic approach to construct and improve
asymptotic amplitudes on blown-up spaces as in Proposition 3.1.7. The complexity arises
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from solving the transport equations at all arcs 𝐻 ⊂ 𝜕𝑀 generated in the resolution process of
the previous section simultaneously. The problems that emerge are mostly technical challenges
which can be addressed by ordering the edges L and solutions Z of the associated eikonal
polynomial at the arcs. Due to the variety of edges and phases at a single arc one has to solve
multiple transport equations corresponding to different induced transport operators at each
step of the iteration, since these are directly linked to the choice of L and Z . Eventually, we
are able to present suitable spaces of exponential-polyhomogeneous functions

EAI(G) (𝑀; Γ(G))

with a family of index sets I(G) and a collection of phase functions Γ(G). Having these,
we can solve a family of homogeneous transport equations on 𝑀 and extend these local
solutions to an exponential-polyhomogeneous quasimode 𝑢 of 𝛽∗𝑃 with low order on 𝑀 .
The order of this initial quasimode can be improved by eliminating the leading parts of its
image 𝐹 = (𝛽∗𝑃)𝑢, resulting in a chain of inhomogeneous transport equations at each arc.
Theorem 5.3.22 summarizes this process, namely we are able to construct quasimodes to a
given set of initial data (L0, Z0) on their corresponding resolution space 𝛽 : 𝑀 → H.

Afterwards we extend the scope and take a look at the vector valued Schrödinger operator in
Subsection 5.3.5. We perform an ad-hoc resolution by means of a quasihomogeneous blow-up.

5.1 Combinatorial Geometry III: Resolution

In this section we lift the central tools developed in Chapters 3 and 4 to blown-up half spaces
𝛽 : 𝑀 → H. We start with the introduction of sets of exponents associated to arcs 𝐻 ⊂ 𝜕𝑀

and the effects of blow-ups towards these sets on the newly generated front face. In particular,
we will present a family of induced coordinates along the arcs, allowing for a unique choice
of coordinates. Having these we can reintroduce a notion of 𝛿-regularity and L-resolved
operators on arcs and can discuss the behavior of essential points under blow-ups.

Eventually, we can lift a notion of eikonal polynomials 𝐸𝐻,𝛿 (𝛽∗𝑃) to arcs 𝐻 ⊂ 𝜕𝑀 . At
the end of this section we prove in Proposition 5.1.16 that under the presence of lower three
dimensional edges over corners of adjacent arcs 𝐻1 and 𝐻2, there is a pair (𝜑1, 𝜑2) of solutions
of eikonal equations at both adjacent arcs such that (𝜑1/ℎ𝛿1 , 𝜑2/ℎ𝛿2) has a polyhomogeneous
extension to the interior of 𝑀 . Although this statement is a direct transfer of the local
statement of Proposition 4.3.4, it will be crucial in the resolution of operators in Section 5.2,
systematically using the effects of blow-ups to sets of exponents.

5.1.1 Sets of Exponents and Blow-Ups

We start this section with the introduction and discussion of sets of exponents at arcs on a
manifold 𝑀 and the effects of blow-ups to sets of exponents.
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Induced Action

To analyze how blow-ups affect sets of exponents Λ we have to investigate their effects on
semi-classical operators itself when being pulled back. Let ^ℎ, ^𝑥 ∈ N, let 𝑡 ≔ ^𝑥/^ℎ and let
𝛽𝑡 : 𝑀 → H be the corresponding quasihomgeneous blow-up with 𝑀 ≔ [H, 0]𝑡 . Then the
pullback of coefficients of 𝑃 on the front face 𝛽−1

𝑡 (0)

𝛽∗𝑡

(
𝑥𝑙ℎ𝛼𝜕𝑘𝑥

)
= 𝑥𝑙ff · ℎ̂^𝑥 (𝑙−𝑘 )+^ℎ𝛼 · 𝜕𝑘𝑥ff

(5.1)

changes only the powers of ℎ, with coordinates 𝑥ff ≔ 𝑥/ℎ𝑡 and ℎ̂ = ℎ1/^ℎ as in Definition
2.1.19. Since [𝜕𝑥ff , ℎ̂] = 0, we can rescale ℎ̂ to ℎ

ℎ𝛼+𝑡 ·𝜔 = ℎ̂^𝑥 (𝑙−𝑘 )+^ℎ𝛼 ,

with 𝜔 ≔ 𝑙 − 𝑘 , which relates the coordinate change only to the quotient 𝑡 = ^𝑥/^ℎ and
simplifies later computations along multiple arcs. On the other hand, at the corner we have

𝛽∗𝑡 (𝜕𝑥) = 𝑟−^𝑥
(

1
^𝑥
𝑟𝜕𝑟 −

1
𝑡
[𝜕[

)
, (5.2)

which is a b-vector field on 𝑀 with negative weight at the front face, where 𝑟 ≔ 𝑥1/^𝑥 and
[ ≔ ℎ/𝑟 ^ℎ , following Lemma 2.1.20. Since 𝑟 and ℎ̂ coincide at the corner away from the right
face 𝐻, rescaling 𝑟 as

𝑟𝐻 ≔ 𝑟 ^ℎ = 𝑥1/𝑡

then leads to the same weight of both coordinates ℎ and 𝑟𝐻 at the front face. Thus, we can
write

𝛽∗𝑡 (𝜕𝑥) =
1
𝑡
· 𝑟−𝑡𝐻

(
𝑟𝐻𝜕𝑟𝐻 − [𝜕[

)
=

1
𝑡
𝑟−𝑡𝐻 𝑉 ,

where 𝑉 ≔ 𝑟𝐻𝜕𝑟𝐻 − [𝜕[ is a regular b-vector field at the corner.

Denote𝜔 = 𝑙−𝑘 . In a more general way, coefficients of operators with vanishing amplitudes
transform as

𝛽∗𝑡

(
𝑥𝑙ℎ𝛼𝜕𝑘𝑥

)
= (𝛽∗𝑥)𝑙 (𝛽∗ℎ)𝛼 (𝛽∗(𝑥𝑘𝜕𝑘𝑥 )) = 𝑟𝛼+𝑡𝜔𝐻 [𝛼𝑉 𝑘 + O(𝑉 𝑘−1) (5.3)

to leading differential order 𝑉 𝑘 . Thus, by construction, the power of 𝑟𝐻 at 𝐻 matches that of
ℎ at the front face, after pulling back 𝑥𝑙ℎ𝛼𝜕𝑘𝑥 . Recursively, we can introduce coordinates of
the same type at each arc arising from succeeding blow-ups. This leads to the definition of
induced coordinates.

Definition 5.1.1 (Induced Coordinates). Let (𝑥, ℎ) be coordinates on H, let 𝑡 ∈ Q>0 and
𝛽 : 𝑀 → H be a sequence of quasihomogeneous blow-ups of 0. Denote 𝐻0 ≔ 𝜕H and let
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𝐻0

𝐻𝑙 𝐻𝑟

ℎ𝛼

𝜕𝑘𝑥𝐻0

P(Λ𝐻0)

ℎ𝛼

𝜕𝑘𝑥𝐻𝑙

P(Λ𝐻𝑙 )

Figure 5.1: The Newton polygons P(Λ𝐻0) and P(Λ𝐻𝑙 ) at front face 𝐻0 and left face 𝐻𝑙 on
the blown-up space 𝛽 : [H, 0] → H.

𝐻 ⊂ 𝜕𝑀 be a boundary face. Let 𝑡 > 0, 𝑝 ∈ 𝐻◦ and 𝛽𝑡 : [𝑀, 𝑝]𝑡 → 𝑀 be the corresponding
blow-up.

Then the coordinates defined recursively from 𝐻 to 𝛽−1(𝑝) in the following scheme are
called induced coordinates of (𝑥𝐻0 , ℎ) ≔ (𝑥, ℎ) on 𝑀 .

(i) Interior coordinates (𝑥ff, ℎ) at the front face ff ≔ 𝛽−1
𝑡 (𝑝), where 𝑥ff ≔ (𝑥𝐻 − 𝑝)/ℎ𝑡 ,

with induced coordinates (𝑥𝐻 , ℎ) on 𝐻.

(ii) Corner coordinates (𝑟𝐻 , [𝐻) at the corner ff ∩ 𝛽∗𝑡𝐻, where [𝐻 ≔ ℎ/(𝑥𝐻 − 𝑝)1/𝑡 and
𝑟𝐻 ≔ 𝑥

1/𝑡
𝐻

, with induced coordinates (𝑥𝐻 , ℎ) on 𝐻.

With the introduction of induced coordinates we have a unique way to lift the notion of sets
of exponents in Definition 4.2.23 to manifolds with corners.

Definition 5.1.2 (Set of Exponents on Manifolds). Let 𝛽 : 𝑀 → H be a chain of quasihomo-
geneous blow-ups of 0 ∈ H, let 𝑃 be a semi-classical operator on H and 𝐻 ⊂ 𝜕𝑀 be an arc.
For _ = (𝑘, 𝛼) ∈ N0 × R let 𝑎_ ∈ C∞(𝐻), such that 𝛽∗𝑃 =

∑
_ 𝑎_ℎ

𝛼𝜕𝑘𝑥𝐻 at 𝐻 with induced
coordinates (𝑥𝐻 , ℎ) at 𝐻.

Then we call

Λ𝐻 (𝛽∗𝑃) ≔ {_ = (𝑘, 𝛼) : 𝑎_ . 0} ,

the set of exponents of 𝛽∗𝑃 at 𝐻.

Expanding 𝑎_ ∈ C∞(𝐻) at 𝑝 ∈ 𝜕𝐻 then yields a direct way to lift the notion of the localized
version, corresponding to Definition 4.2.23.

Definition 5.1.3 (Localized Set of Exponents). Let 𝛽 : 𝑀 → H be a sequence of quasihomo-
geneous blow-ups of 0 ∈ H and denote 𝑉 ≔ 𝛽∗𝜕𝑥 . Let 𝑃 ∈ DiffΛ(R) and let 𝐻 ⊂ 𝜕𝑀 be
an arc. Let 𝑝 ∈ 𝜕𝐻 and 𝛼𝑘,𝛼,𝜔 ∈ C, for _ = (𝑘, 𝛼, 𝜔) ∈ N0 × R × Z, be the coefficients of
𝛽∗𝑃 =

∑
_ 𝛼𝑘,𝛼,𝜔𝑟

𝜔[𝛼𝑉 𝑘 at 𝑝.
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5.1 Combinatorial Geometry III: Resolution

Then we call

Λ𝑝 (𝛽∗𝑃) ≔
{
(𝑘, 𝛼, 𝜔) : 𝛼𝑘,𝛼,𝜔 ≠ 0

}
the localized set of exponents of 𝛽∗𝑃 at 𝑝 ∈ 𝜕𝐻, where (𝑟𝐻 , [𝐻) are the induced coordinates
at 𝑝 ∈ 𝜕𝐻.

One can easily return to the two-dimensional set of exponents by omitting the latter entry
of each element in Λ𝑝. Projecting the convex hull of Λ𝑝 on either the (𝑘, 𝛼2) or (𝑘, 𝛼3) plane
as in Definition 4.2.24 yields a way to lift the notion of lower boundary from two to higher
dimensions.

By Definitions 2.3.2 and 4.2.24 we have a notion of lower boundary and edges corresponding
to the Newton polygons and Newton polyhedra of an operator 𝛽∗𝑃 on 𝛽 : 𝑀 → H (see
Figure 5.1). The following definition formalizes the computations (5.1)-(5.3).

Definition 5.1.4 (Transformation Maps). Let 𝑡 ∈ Q+ and 𝛽 : 𝑀 → H be a chain of quasi-
homogeneous blow-ups of 0 ∈ H, let 𝐻 ⊂ 𝜕𝑀 be an arc and 𝑝 ∈ 𝐻◦. Let 𝑡 > 0 and
𝛽𝑡 : [𝑀, 𝑝]𝑡 → 𝑀 be the associated blow-up of 𝑝. Let _, ` ∈ Λ𝐻 and L = _` ⊂ 𝜕-P(Λ𝐻)
be an edge.

(i) The matrices mapping (𝑘, 𝛼, 𝜔) ↦→ (𝑘, 𝛼 + 𝑡𝜔, 𝜔) and (𝑘, 𝛼, 𝜔) ↦→ (𝑘, 𝛼, 𝛼 + 𝑡𝜔),

𝐿+(𝑡) ≔
©«
1 0 0
0 1 𝑡

0 0 1

ª®®¬ , 𝐿-(𝑡) ≔
©«
1 0 0
0 1 0
0 𝑡 1

ª®®¬
are called transformation maps induced by a blow-up corresponding to 𝑡.

(ii) We call 𝜔𝑝 (_) ≔ ord𝑝 (𝑎_) − 𝑘_ the weight of _ ∈ Λ𝐻 at 𝑝 ∈ 𝐻.

(iii) We call _(𝑡) ≔ 𝜋 (𝑘,𝛼) (𝐿+(𝑡) (𝑘_, 𝛼_, 𝜔(_))) ∈ Λ𝛽−1
𝑡 (𝑝) and L(𝑡) ≔ _(𝑡)`(𝑡) the

transformation of _ and L by 𝛽𝑡 at 𝐻, respectively.

Remark 5.1.5. Note that Definitions 4.2.3 and 5.1.4 have a coinciding notion of weights,
i.e. 𝜔0(_) = 𝑏𝜔(_). The latter notion 𝜔0 : Λ → Z in 5.1.4 refers to the coefficients of 𝑃 with
respect to 𝑉 = 𝜕𝑥𝐻 , which is a non-vanishing vector field in 0 ∈ H.

Remark 5.1.6. Note that 𝑘_ and 𝛼_ are constant along 𝐻, but 𝜔(_) = 𝜔𝑝 (_) = ord(𝑎_) − 𝑘_
depends heavily on the choice of the point 𝑝 ∈ 𝐻. By design we have that

𝜔(_) = min{𝜔 : (𝑘_, 𝛼_, 𝜔) ∈ Λ𝑝} .

5.1.2 Resolved Operators on Hypersurfaces

The main reason for the non-existence of exponential-polyhomogenous quasimodes in Chap-
ter 4 is the presence of essential points `𝑘 ∈ Λ in the interior of the Newton polygon P(Λ).
Recall that 𝑃 is called L-resolved for L ⊂ 𝜕-P(Λ), if and only if the edge is spanned by
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5 Resolution of Operators

essential points, i.e. L = `𝑘`𝑘+1. Thus, we study the impact of blow-ups for essential points
of 𝑃 at a point 𝑝 ∈ 𝜕𝑀 in the subsection.

Definition 5.1.7 (𝛿-Regularity on Blown-Up-Spaces). Let 𝑃 be a generalized semi-classical
operator on R, let 𝛽 : 𝑀 → H be a chain of quasihomogeneous blow-ups, 𝐻 ⊂ 𝜕𝑀 be an arc.
Let L ⊂ 𝜕-P(Λ𝐻) be a maximal edge with slope 𝛿 ≔ 𝛿(L).

The operator 𝛽∗𝑃 is called 𝛿-regular in 𝑝 ∈ 𝐻◦, if 𝑎_(𝑝) ≠ 0, for all _ ∈ 𝜕L. It is called
𝛿-regular on 𝐻 if it is 𝛿-regular in all points 𝑝 ∈ 𝐻◦.

If 𝑃 is not 𝛿-regular (in 𝑝 ∈ 𝐻) it is called 𝛿-singular (in 𝑝 ∈ 𝐻).

Definition 5.1.8 (Essential Points on Blown-Up Spaces). Let 𝑃 be a generalized semi-classical
operator onR, let 𝛽 : 𝑀 → H be a quasihomogeneous blow-up, 𝐻 ⊂ 𝜕𝑀 be an arc and (𝑥𝐻 , ℎ)
be its corresponding pair of induced coordinates. Let 𝑝 ∈ 𝐻◦, assume that 𝜔𝑝 (𝜏) ≥ 0 for all
𝜏 ∈ Λ𝐻 . Let _, ` ∈ Λ𝐻 and define

𝛾(_`) ≔ (𝜔𝑝 (`) − 𝜔𝑝 (_))/(𝑘` − 𝑘_) .

The points `0, . . . , `𝑁 ∈ Λ𝐻 , with 𝑁 ∈ N0, determined in 4.2.12 for 𝛽∗𝑃, are called
essential points of 𝛽∗𝑃 in 𝑝. The point `0 is called essential minimum.

Remark 5.1.9. As in Definition 4.2.13 there are at most𝑚 = ord(𝑃) essential points associated
to each point 𝑝 ∈ 𝜕𝐻. If ` = (𝑛, 𝛼`) is an essential point with 𝑛 < 𝑚 then there is always
another essential point `∗ ∈ Λ since 𝛾(`_) ∈ Q and 𝛿(`_) ∈ R+ are bounded from below for
all _ = (𝑘, 𝛼) with 𝑘 > 𝑛.

We can immediately lift the definition of L-resolved operators to blown-up half spaces
𝛽 : 𝑀 → H.

Definition 5.1.10 (Resolved Operators on Blown-Up Spaces). Let 𝑃 be a generalized semi-
classical operator onR, let 𝛽 : 𝑀 → H be a chain of quasihomogeneous blow-ups, 𝐻 ⊂ 𝜕𝑀 be
an arc, 𝑝 ∈ 𝐻◦ and (𝑥𝐻 , ℎ) be its corresponding pair of induced coordinates. Let `0, . . . , `𝑁

be the essential points of 𝛽∗𝑃 at 𝑝 ∈ 𝐻 and L ≔ _` ⊂ 𝜕-P(Λ𝐻) be an edge with slope 𝛿.
Suppose that 𝛽∗𝑃 is 𝛿-singular in 𝑝.

Then we call the operator 𝛽∗𝑃 L-resolved in 𝑝, if either ` is the minimal point of Λ𝐻 and
` = `0 or _ = `𝑘 and ` = `𝑘+1, for some 𝑘 ≥ 1.

If 𝛽∗𝑃 is L-resolved in 𝑝 for all L ⊂ 𝜕-P(Λ𝐻), we call it resolved in 𝑝.

Resolution of Essential Points

Having a notion of essential points on blown-up half-spaces 𝛽𝑡 : [H, 0]𝑡 → H, we can analyze
their transformation fromH to [H, 0]𝑡 under the application of the blow-up 𝛽𝑡 . Note that there
is a canonical successor of 0 ∈ H in the front faces, given by 0ff ∈ 𝛽∗{𝑥 = 0} ∩ ff, where
ff ≔ 𝛽−1(0). These points are important since 𝛽∗𝑡 𝑎_ will vanish in 0ff if 𝑎_(0) = 0.

In Proposition 5.1.11 we will show that essential points are invariant under the transforma-
tion induced by 𝛽𝑡 at the succeeding zeros 0ff. Moreover, we will show that the lower boundary
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will be spanned by essential points eventually, for 𝑡 big enough. This can be done either with
a single or a chain of quasihomogeneous blow-ups at their respective zero points.

Proposition 5.1.11. Let Λ ⊂ N × R be a set of exponents, 𝑃 ∈ Diff Λ(R+) and `0, . . . , `𝑁 be
the essential points of 𝑃 at 0 ∈ {ℎ = 0}. Then the following is true:

(i) `0(𝑡), . . . , `𝑁 (𝑡) are the essential points of Λ𝛽−1
𝑡 (0) with respect to 𝛽∗𝑡 𝑃 at 0ff, for all

𝑡 ≥ 0.

(ii) There is a 𝑇 ≥ 0 such that for all 𝑡 ≥ 𝑇 and for each L ⊂ 𝜕-P(Λ𝛽−1
𝑡 (0) ) with 𝛿(L) > 0

there is a 𝑘 < 𝑁 with L = `𝑘 (𝑡)`𝑘+1(𝑡).

Proof. (i.) Let `0, . . . , `𝑁 be the essential points of 𝑃, where ` 𝑗 ∈ 𝜔−1(0), 𝑗 ≤ 𝑁 . Since
ord0ff (𝛽∗𝑡 𝑎_) = ord0(𝑎_) we have that `0(𝑡), . . . , `𝑛 (𝑡) are essential points for some 𝑛 ≤ 𝑁 .
In particular since 𝜔(`) = 𝜔(`(𝑡)), for all 𝑡 ∈ R+, we have

min 𝛾(`𝑛 (𝑡)_) = min 𝛾(`𝑛`) = 𝛾(`𝑛`𝑛+1) = 𝛾(`𝑛 (𝑡)`𝑛+1(𝑡)) .

Since `𝑛+1 is the lowest point of all points ` satisfying (4.7), `𝑛+1(𝑡) is an essential point.
Iterating this argument we find that `0(𝑡), . . . , `𝑁 (𝑡) are essential points.

(ii.) Let ` 𝑗 = (𝑘 𝑗 , 𝛼 𝑗), 𝑗 ∈ {𝑚, 𝑚 + 1}, be essential points and assume that there is a point
_ = (𝑘, 𝛼) ∈ Λ ∩ 𝜕-P(𝑏Λ), such that 𝑘𝑚 ≤ 𝑘 ≤ 𝑘𝑚+1. Then there is an 𝑎𝑚 ∈ R such that
𝜔(` 𝑗) = 𝛾𝑚 · 𝑘 𝑗 + 𝑎𝑚, for 𝑗 = 𝑚, 𝑚 + 1 and 𝛾𝑚 ≔ 𝛾(`𝑚`𝑚+1). Since _ is not essential, we
have that 𝛾(`𝑚_) > 𝛾(`𝑚`𝑚+1). In particular, 𝜔(_) > 𝜔(`𝑚+1) and hence there is a 𝑇 ≥ 0
such that 𝜕-P({`𝑚(𝑡), _(𝑡), `𝑚+1(𝑡)}) = 𝜕-P({`𝑚(𝑡), `𝑚+1(𝑡)}), for all 𝑡 ≥ 𝑇 . □

Remark 5.1.12. Recall that by Definition 5.1.10 the latter statement means that 𝛽∗𝑡 𝑃 is resolved
for all edges and for all 𝑡 ≥ 𝑇 .

Remark 5.1.13. It is important to emphasize that the lower boundary of a polygon outside of
the blown-up point remains unchanged, i.e. 𝜕-P(Λ𝛽∗𝑡𝐻) = 𝜕-P(Λ𝐻). This is due to the choice
of induced coordinates in Definition 5.1.1, for any blow-up of 𝑝 ∈ 𝐻 ⊂ 𝜕𝑀 . In particular, any
edge L ⊂ 𝜕-P(Λ𝐻) with positive slope will be mapped to itself in Λ𝛽∗𝑡𝐻 . Only the weights
𝜔(_) of _ ∈ Λ𝐻 are affected by the pullback of Λ𝐻 to 𝛽∗𝑡𝐻.

Combinatorial Requisites of Matching

To analyze the behavior of potential quasimodes of 𝛽∗𝑃 based on its associated edges L ⊂
𝜕-P(Λ𝐻) over arcs 𝐻 ⊂ 𝑀 we need to reintroduce a notion of eikonal polynomials. Induced
coordinates in Definition 5.1.1 give us a unique way to display the operator at 𝐻 and thus are
an apparent choice.

Definition 5.1.14 (𝛿-Principal Symbol on Blown-up Spaces). Let 𝑃 ∈ DiffΛ(R) be an operator,
let 𝛽 : 𝑀 → H be a blow-up and 𝐻 ⊂ 𝜕𝑀 an arc. Let L𝐻 ⊂ 𝜕-P(Λ𝐻) be an edge with
𝛿 ≔ 𝛿(L) > 0 and 𝛽∗𝑃 =

∑
_∈Λ𝐻 𝑎_ℎ

𝛼𝜕𝑘𝑥𝐻 at 𝐻 with induced coordinates (𝑥𝐻 , ℎ).
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Then the 𝛿-principal symbol of 𝛽∗𝑃 at 𝐻 is the polynomial

𝐸𝛿,𝐻 (𝛽∗𝑃) (·, Z𝐻) ≔
∑︁

_∈Λ𝐻∩L𝐻
𝑎_Z

𝑘
𝐻 .

We generalize the height 𝑙𝛿 of Λ(𝑃) after conjugation in Definition 3.2.3 to the blown-up
case.

Definition 5.1.15. Let 𝑃 ∈ DiffΛ(R+), 𝛽 : 𝑀 → R2
+ be a blow-up, 𝐻 ⊂ 𝛽−1({ℎ = 0}) and

𝛿 ≥ 0. Then define

𝑙𝛿,𝐻 ≔ min{𝛼 − 𝑘𝛿 : (𝑘, 𝛼) ∈ Λ(𝛽∗𝑃)𝐻 } .

Matching at the Corner

It was discussed in Chapters 3 and 4 when an eikonal equation has smooth solutions on H or
R2
+. The same principles apply for an eikonal equation

𝐸𝛿,𝐻 (𝛽∗𝑃) (·, 𝜕𝑥𝐻𝜑𝐻,𝛿) = 0

induced by 𝛽∗𝑃 at an arc 𝐻 ⊂ 𝜕𝑀 of a blown up space 𝛽 : 𝑀 → H. Thus, we need to
compare solutions of eikonal equations at adjacent arcs 𝐻 and 𝐻′ to show when these admit
a polyhomogeneous extension to a neighborhood of both arcs. In particular, these solutions
𝜑𝐻,𝛿 are asymptotic solutions of the eikonal equation associated to the asymptotic expansion
of the operator

𝛽∗𝑃 =
∑︁
_∈Λ𝑝

_=(𝑘,𝛼,𝜔)

𝛼_𝑟
𝜔
𝐻[

𝛼
𝐻𝑉

𝑘 ,

in induced coordinates (𝑟𝐻 , [𝐻) at the intersection 𝑝 ∈ 𝐻 ∩ 𝐻′ with 𝑉 = 𝑟ℎ𝜕𝑟𝐻 − [𝐻𝜕[𝐻 .
This is the same situation locally as in Subsection 4.3.2, allowing us to solve matching pairs
of eikonal equations in the presence of lower three dimensional edges in 𝜕-P(Λ𝑝).

Proposition 5.1.16. Let 𝑃 ∈ DiffΛ(R), let 𝛽 : 𝑀 → H and 𝐻 𝑗 ⊂ 𝜕𝑀 , 𝑗 = 1, 2, be adjacent
arcs with 𝑝 ∈ 𝐻1 ∩ 𝐻2 and denote 𝐻 B 𝐻1. Let 𝑉 ≔ 𝑟𝜕𝑟 − [𝜕[ be a b-vector field with
induced coordinates (𝑟, [) at 𝑝. Assume there is an edge L ⊂ 𝜕-P(Λ𝑝 (𝛽∗𝑃)) and denote
𝛿 𝑗 ≔ 𝛿(L 𝑗), for L 𝑗 ≔ 𝜋 (𝑘,𝛼𝑗 ) (L) ⊂ 𝜕-P(Λ𝐻 𝑗 ). Assume that 𝛿1 ≠ 𝛿2 and 𝛿 𝑗 ≥ 0. Let 𝑐 ∈ C
be a solution of ∑︁

_∈L∩Λ0
_=(𝑘,𝛼,𝜔)

𝛼_𝑐
𝑘 = 0 ,

for 𝛽∗𝑃 ∼ ∑
_∈Λ𝑝 𝛼_𝑟

𝜔[𝛼𝑉 𝑘 at 𝑝. Assume that all non-trivial solutions of the eikonal equation
𝐸𝐻 𝑗 , 𝛿 𝑗 (𝛽∗𝑃) (·, Z) = 0 are simple on 𝐻◦

𝑗
, 𝑗 = 1, 2.
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(i) If 𝛿1, 𝛿2 > 0 then there is a phase function Φ ∈ A(𝑀) with Φ(𝑟𝐻 , [𝐻) ∼ [−𝛿1
𝐻

𝜑1(𝑟𝐻)
at 𝐻1 and Φ(𝑟𝐻 , [𝐻) ∼ 𝑟−𝛿2

𝐻
𝜑2([𝐻) at 𝐻2, such that

𝐸𝐻 𝑗 , 𝛿 𝑗 (𝛽∗𝑃) (·, 𝑉𝜑 𝑗) = 0 ,

where 𝜑1(𝑥𝐻) ≔ 𝜑1(𝑟𝐻) · (ℎ/[𝐻) 𝛿1 and 𝜑2(𝑥𝐻2) ≔ 𝜑2([𝐻) · (ℎ/𝑟𝐻) 𝛿2 , and

Φ(𝑟𝐻 , [𝐻) ∼
𝑐

𝛿1 − 𝛿2
· 1
𝑟
𝛿2
𝐻

· [𝛿1
𝐻

+ h.o.t. ,

at the corner 𝑝 ∈ 𝐻1 ∩ 𝐻2.

(ii) If 𝛿2 = 0 then there is a solution 𝜑1 ∈ C∞(𝐻1) of 𝐸𝐻1, 𝛿1 (𝛽∗𝑃) (·, 𝑉𝜑1) = 0 with
𝜑1(0) ≠ 𝑐 and a solution 𝑢 of the equation∑︁

_∈Λ𝐻2∩L2
_=(𝑘𝛼 )

𝑎_𝑦
(𝑘 ) = 0

on 𝐻2 such that

𝑢(𝑦) ∼ 𝑒𝑐/(𝛿2 ·𝑦𝛿1 ) + 𝑜
(
𝑦−𝛿1

)
.

Proof. This is a consequence of Proposition 4.3.4, with the slight difference that ℎ is a global
boundary defining function on 𝑀 . Thus, we need to rescale 𝜑1(𝑟𝐻)/[𝛿1

𝐻
≔ 𝜑1(𝑥𝐻)/ℎ𝛿1 and

rescale analogously for 𝑗 = 2. Then for each 𝑐 ∈ C solving
∑
_∈L∩Λ0 𝛼_𝑐

𝑘 = 0 we can apply
Proposition 4.3.4, yielding a phase functionΦwithΦ(𝑟𝐻 , [𝐻) ∼ 𝜑1(𝑟𝐻)/[𝛿1

𝐻
and analogously

for 𝑗 = 2. □

5.2 Resolution of Operators

This section is the programmatic center of Chapter 5 with the derivation of a resolution
algorithm for unresolved operators. The essential new tool in this section is the so called
collision time 𝑡 (L) of an edge L ⊂ 𝜕-P(Λ) in Definition 5.2.1, determining a priori a range
of values 𝑡 ∈ (0, 𝑡 (L)] for which quasihomogeneous blow-ups 𝛽𝑡 : 𝑌 → H partially resolve
operators. It is designed in such a way that it guarantees the existence of a lower three
dimensional edge over the corner at the end of the front face, which is sufficient for the
existence of extendable pairs of solutions of eikonal equations.

The resolution algorithm itself will generate a graph, accounting for all spaces, arcs, edges
and solutions of the eikonal equation that appear during the stepwise resolution of operators.
It terminates once the operator in question is either regular or resolved at all points and if all
solutions of eikonal equations in question do not jump in multiplicity pointwise. At the end
of the section we show that the algorithm terminates for all relevant types of operators and
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5 Resolution of Operators

also discuss possible extensions. Due to the simplification of regularity to collision times and
graphs, the proof of Theorem 5.2.18 will be mostly combinatorial.

5.2.1 Collisions

The key in the resolution of operators will be the so called collision time. It is the smallest
parameter 𝑡 such that there is another pair of exponents _ ∈ Λff which is collinear with the
transformed edge L(𝑡) (see Figure 5.2). Afterwards we will show that the collision time is
always positive, guaranteeing the short time existence of lower, three dimensional edges after
blowing up single points.

Definition 5.2.1 (Collision Time). Let Λ ⊂ N × R be a set of exponents and 𝑃 ∈ Diff Λ(R).
Let 𝛽 : 𝑀 → H be a blow-up, 𝐻 ⊂ 𝜕𝑀 an arc and Λ𝐻 be the set of exponents of 𝛽∗𝑃
at 𝐻. Let L = _, ` ⊂ 𝜕-P(Λ𝐻) be an edge. Let 𝑝 ∈ 𝐻◦ and 𝛽𝑡 : [𝑀, 𝑝]𝑡 → 𝑀 be the
quasihomogeneous blow-up of 𝑝 in 𝑀 with respect to 𝑡 > 0.

Then we call

𝑡 (L) ≔ inf {𝑡 > 0 : there exists a ∈ Λ \ L with a(𝑡) ∈ span(L(𝑡))} ,

the collision time of L, where L(𝑡) = _(𝑡)`(𝑡).

Proposition 5.2.2. Let Λ ⊂ N × R be a set of exponents and 𝑃 ∈ Diff Λ(R). Let 𝛽 : 𝑀 → H
be a blow-up, 𝐻 ⊂ 𝜕𝑀 an arc and Λ𝐻 be the set of exponents of 𝛽∗𝑃 at 𝐻. Let L ⊂ 𝜕-P(Λ𝐻)
be an edge. Then we have 𝑡 (L) > 0.

An essential part of the proof will be the following basic lemma about collinearity of points
scattering in the plane along rays.

Lemma 5.2.3 (Collision Lemma). Let Λ ⊂ R2 ×R2 be finite and assume that 𝑝1, 𝑝2, 𝑝3 ∈ R2

are not collinear, for each (𝑝 𝑗 , 𝑣 𝑗) ∈ Λ, 𝑗 = 1, 2, 3. Denote Λ(𝑡) ≔ {(𝑝+ 𝑡𝑣, 𝑣) : (𝑝, 𝑣) ∈ Λ}.
Then 𝜏(Λ) ≔ {𝑡 ∈ R : three points in Λ(𝑡) are collinear} is finite.

Proof. Without loss of generality assume that (𝑝1, 𝑣1) = 0. Then the points 0, 𝑝2 and 𝑝3 are
collinear at time 𝑡 ∈ R, if and only if

det (𝑝2 + 𝑡𝑣2, 𝑝3 + 𝑡𝑣3) = 0 .

Since det (𝑝2 + 𝑡𝑣2, 𝑝3 + 𝑡𝑣3) is a second degree polynomial there are only two solutions.
Repeating this process for each triple (𝑝1, 𝑣1), (𝑝2, 𝑣2), (𝑝3, 𝑣3) then yields

|𝜏(Λ) | ≤ 2|Λ|
(
|Λ |−1

2

)
= |Λ| ( |Λ| − 1) ( |Λ| − 2) .

□

Proof of Proposition 5.2.2. To show that the collision time ofL ⊂ 𝜕-P(Λ𝐻) is always positive
it is sufficient to consider an Y-strip around 𝐴(𝑙𝛿 (L) ) for arbitrary small Y > 0. Since the
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ℎ𝛼

𝜕𝑘𝑥
0 1 2 3 4

0

1

2

3

4

Figure 5.2: Set of exponents with induced action by the blow-up indicated by the dashed blue
arrows. A collision is triggered when the second left point hits the lower boundary
𝜕-P(Λ) or the second right point hits the dotted line.

transformation of _ ∈ Λ𝑝 is continuous with respect to 𝑡, pairs of exponents ` outside of that
strip have a lower bound on the distance to span(L). Since P(Λ𝐻) is convex, the intersection
of the Y-strip with Λ𝐻 is finite. Thus, we can apply Lemma 5.2.3 and show that 𝑡 (L) > 0. □

Conveniently, the collision time also detects whether an operator is already L-resolved as
the following proposition shows.

Proposition 5.2.4. Let Λ ⊂ N × R be a set of exponents and 𝑃 ∈ Diff Λ(R). Let L ⊂ 𝜕-P(Λ)
with slope 𝛿(L) ≥ 0. Assume that 𝑃 is 𝛿(L)-singular in 0 ∈ R2

+.
Then 𝑡 (L) = ∞ if and only if 𝑃 is L-resolved in 0.

Proof. For the ’if’ direction, let L = _` for some _, ` ∈ Λ and let `0, . . . , `𝑘 be all essential
points on the left side of _. Assume that `𝑘+1 ≠ _, i.e. 𝑃 is not L-resolved in 0. Thus,
𝛾(`𝑘`𝑘+1) < 𝛾(`𝑘_) and eventually `𝑘+1(𝑡) ∈ span(L(𝑡)) for some 𝑡 > 0, which contradicts
𝑡 (L) = ∞.

For the other direction, let L = _` and assume that 𝑡 ≔ 𝑡 (L) < ∞. Thus, there is a set of
exponents 𝜏 ∈ Λ such that 𝜏(𝑡) ∈ span(L(𝑡)). This can only be true in one of the following
cases: Either 𝑘𝜏 ≠ 𝑘_ and 𝛾(_𝜏) < 𝛾(L), or 𝑘𝜏 = 𝑘_ and 𝜔(𝜏) < 𝜔(_), or the analogue for
𝜏 and `. In any case it follows that either _ or ` cannot be essential. In particular, 𝑃 is not
L-resolved in 0. □

Remark 5.2.5. The statement of Proposition 5.2.4 can be lifted directly to arcs on blown-up
half spaces 𝛽 : 𝑀 → H.

The following proposition justifies the attempt to resolve singular operators 𝑃 by the suc-
cessive use of blow-ups at its singular points 𝑝 ∈ 𝐻 in Subsection 5.2.2. Proposition 5.2.6
states that for short periods of time 0 < 𝑡 ≤ 𝑡 (L) the transformed edge L(𝑡) ⊂ 𝜕-P(Λff) and
𝛽∗𝑡 ,-L ⊂ 𝜕-P(Λ𝐻) are images of projections of a three dimensional edge L𝑡 ⊂ 𝜕-P(Λ𝑝𝑡 ),
where 𝑝𝑡 ∈ 𝛽∗𝑡𝐻 ∩ ff. Thus, we can apply Proposition 5.1.16 and obtain a phase function Φ

solving both eikonal equations corresponding to L(𝑡) and 𝛽∗𝑡 ,-L for all 0 < 𝑡 ≤ 𝑡 (L).

131
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Proposition 5.2.6. Let Λ ⊂ N × R be a set of exponents and 𝑃 ∈ Diff Λ(R). Let 𝛽 : 𝑀 → H
be a blow-up, 𝐻 ⊂ 𝜕𝑀 be an arc and Λ𝐻 be the set of exponents of 𝛽∗𝑃 at 𝐻. Let
L0 ≔ _` ⊂ 𝜕-P(Λ𝐻) and 𝑡0 ≔ 𝑡 (L0) be the collision time of L0 at 𝑝 ∈ 𝐻. For each 𝑡 > 0
let ff𝑡 be the front face corresponding to 𝛽𝑡 : [𝑀, 𝑝]𝑡 → 𝑀 and 𝑝𝑡 be the unique point in
𝛽∗𝑡𝐻 ∩ ff𝑡 .

Then for all 0 < 𝑡 ≤ 𝑡0 there exists an edge L𝑡 ⊂ 𝜕-P(Λ𝑝𝑡 ), such that

𝜋 (𝑘,𝛼2 ) (L𝑡 ) = L0(𝑡) and 𝜋 (𝑘,𝛼3 ) (L𝑡 ) = L0 .

Proof. This is a direct consequence of the continuity of 𝐿+ with respect to 𝑡 ∈ (0,∞). □

Since edges might split up or merge after blowing up the singular point at their collision
times, we need to keep track of their succeeding edges. These can be multiple edges succeeding
a single edge in general after blow-up.

Definition 5.2.7 (Successor). Let Λ ⊂ N × R be a set of exponents and 𝑃 ∈ Diff Λ(R). Let
𝛽 : 𝑀 → H be a blow-up, 𝐻 ⊂ 𝜕𝑀 an arc and Λ𝐻 be the set of exponents of 𝛽∗𝑃 at 𝐻. Let
L ≔ _` ⊂ 𝜕-P(Λ𝐻) and 𝑡0 ≔ 𝑡 (L) be the collision time of L at 𝑝 ∈ 𝐻. Let 0 < 𝑡 ≤ 𝑡0 and
𝛽𝑡 : [𝑀, 𝑝]𝑡 → 𝑀 be the corresponding blow-up. Denote ff𝑡 ≔ 𝛽−1

𝑡 (𝑝).
Assume there is an edge L0 ⊂ 𝜕-P(Λff𝑡 ), such that L0 ⊂ L(𝑡) or L ⊂ L0. Let Z and Z0 be

solutions of 𝐸𝐻,𝛿 (L) (·, Z) = 0 and 𝐸ff𝑡 , 𝛿 (L0 ) (·, Z0) = 0, respectively, such that they admit an
extension of their phase functions to [𝑀, 𝑝]𝑡 in the sense of Proposition 5.1.16.

Then we call the pair (L0, Z0) successor of (L, Z) at ff𝑡 .

Remark 5.2.8. We want to emphasize that 𝑡 ∈ (0, 𝑡0) can be chosen arbitrarily in Defini-
tion 5.2.7, since incomplete resolutions will only shift singular points to the next front face.

Remark 5.2.9. Another complication arises in the presence of horizontal edges during the
resolution process. The associated homogeneous solutions at the corresponding arc can have
different exponential behavior at both corners of the arc. This possibly requires multiple
solutions of the relevant eikonal equation on the other side of the arc to match the behavior of
the homogeneous solutions. However, these solutions of the eikonal equation will be added
manually in the resolution algorithm, in Step 6, since these are additional data on the same
adjacent arc whereas successors are pairs of edges and solutions on a deeper level of blow-ups.

5.2.2 Resolution Algorithm

Keeping track of the successors of an initial choice of an edge L ⊂ 𝜕-P(Λ(𝑃)) and a
corresponding solution Z of its induced eikonal equation 𝐸𝛿 (L) (𝑃) (·, Z) = 0 requires us to
specify the regions where these solutions exist.

Definition 5.2.10 (Regular Boundary). Let 𝑃 ∈ DiffΛ(R) and 𝛽 : 𝑀 → H be a blow-up. Let
𝐻 ⊂ 𝜕𝑀 be an arc and L ⊂ 𝜕-P(Λ𝐻) be a lower edge with slope 𝛿 > 0.

Then we call

𝐻sing(L) ≔ {𝑝 ∈ 𝐻 : 𝛽∗𝑃 is 𝛿-singular at 𝑝}
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Z

𝑥

𝐸𝐻,𝛿 (𝛽∗𝑃) = 0

Figure 5.3: Zero set of an eikonal polynomial 𝐸𝐻,𝛿 (𝛽∗𝑃) of 𝛽∗𝑃 over an arc 𝐻 in 𝑇∗
C
𝐻. The

multiple leaves may intersect at various points or diverge at the boundary of 𝐻.

singular boundary of 𝐻 with respect to L. Its complement 𝐻reg(L) ≔ 𝐻 \𝐻sing(L) is called
the regular boundary.

A new phenomenon we encounter are intersecting graphs of solutions Z 𝑗 of

𝐸𝐻,𝛿 (𝛽∗𝑃) (·, Z 𝑗) = 0 .

The pointwise jumps in multiplicity of solutions of solutions of the eikonal equation in a point
𝑝 ∈ 𝐻 lead to an increase in the vanishing order of the leading coefficient of the induced
transport operator. However, these jumps can be resolved as we will show in Algorithm 1.

Definition 5.2.11 (Crossing Points and Simple Operators). Let 𝑃 ∈ DiffΛ(R) and 𝛽 : 𝑀 → H
be a blow-up. Let 𝐻 ⊂ 𝜕𝑀 be an arc, L ⊂ 𝜕-P(Λ𝐻) be a lower edge with slope 𝛿 > 0 and Z
be a solution of 𝐸𝐻,𝛿 (𝛽∗𝑃) (·, Z) = 0 on 𝐻reg(L). Let 𝑝 ∈ 𝐻 and denote the multiplicity of
Z (𝑝) of 𝐸𝐻,𝛿 (𝑃) (𝑝, Z) = 0 by 𝑚Z (L)(𝑝). Define the global multiplicity of Z along 𝐻 by

𝑚Z (L) ≔ min{𝑚Z (L)(𝑝) : 𝑝 ∈ 𝐻} .

Then we call

𝐻cross(L, Z) ≔ {𝑝 ∈ 𝐻◦
reg : 𝑚Z (L)(𝑝) > 𝑚Z (L)}

crossing points in 𝐻 with respect to (L, Z).
We call 𝛽∗𝑃 simple along 𝐻reg(L) with respect to Z , if 𝐻cross(L, Z) = ∅.

Remark 5.2.12. The term crossing points refers to the crossing of the graphs of solutions of
𝐸𝐻,𝛿 (𝑃) (𝑝, Z) = 0 and the resulting non-constant multiplicity (see Figure 5.3).

Example 5.2.13. Let𝑃 ≔ 𝑥2ℎ2𝜕2
𝑥+ℎ𝜕𝑥+1 onR+. Its associated Newton polygon is given by the

single edge L = (0, 0), (2, 2) and has a single singular point 0 ∈ R+, i.e. R+,reg(L) = (0,∞).
Its solutions of the eikonal equation 𝐸1(𝑃) (·, Z) = 0 are given by

Z±(𝑥) = − 1
2𝑥2 ±

√︂
1

4𝑥4 − 1
𝑥2 = − 1

2𝑥2

(
1 ∓

√︁
1 − 4𝑥2

)
,
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and coincide in 𝑥 = 1/2 and thus have a crossing point. Thus, 𝑃 is not simple along R+ since
𝑚Z± (L) = 1 < 2 = 𝑚Z± (L)(1/2).

Algorithm

We can now specify Algorithm 1 to resolve singular semi-classical operators using the notion
of successors in Definition 5.2.7. The goal is to blow up H successively until 𝛽∗𝑃 is resolved
in all singular points according to Definition 5.1.10 and is simple along the interior of all
arcs 𝐻 ⊂ 𝜕𝑀 . We start on the half space H with a generalized semi-classical operator
𝑃 ∈ DiffΛ(R), an edge L ⊂ 𝜕-P(Λ) and a solution Z of 𝐸𝛿 (L) (𝑃) (·, Z) = 0 on an interval
𝐼 ⊂ 𝜕Hreg. There are three different types of problems we need to address step-by-step in the
algorithm to eliminate all singularities:

(i) The resolution of singular points at which 𝑃 is non-resolved.

(ii) The elimination of crossing points at which other solutions of 𝐸𝛿 (L) (𝑃) (·, Z) = 0
intersect the initially chosen solution.

(iii) The division of the space at a singular point in the interior of a hypersurface at which 𝑃
is already resolved.

In the first part Resolution of Singular points of Algorithm 1 we deal with singular points
𝑝 ∈ 𝐼 at which 𝑃 is unresolved regarding an edge L. Introducing a quasihomogeneous blow-
up 𝛽𝑡 : [H, 𝑝]𝑡 → H corresponding to its collision time 𝑡 = 𝑡 (L) thus generates a successor
(L0, Z0) at 𝛽−1

𝑡 (𝑝) of L and Z chosen initially. This successor (L0, Z0) of (L, Z) is unique.
However, if L is horizontal, then the homogeneous solutions of the leading operator of 𝛽∗𝑡 𝑃
at 𝐻 can have a different exponential asymptotic behavior at both corner of the front face.
Thus, we need to consider additional pairs (L′, Z ′) on the other side of the front face. This
can be observed in Subsection 2.4.2 with the Airy function for the Schrödinger operator on
the blown-up space.

By construction, all pairs (L, Z) on all arcs have to be taken into consideration to be able
to construct phase functions on the blown-up space [H, 𝑝]𝑡 matching the local solution of
𝜕𝑥𝜑 = Z at 𝐼. To account for this amount of simultaneous problems, we will introduce a
directed graph G = (V, E) capturing the resolution process step-by-step. Its vertices are
4-tupels 𝔶 ≔ (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V consisting of: the (partially) blown-up space 𝛽𝑌 : 𝑌 → H
at that step 𝔶 of the iteration, an arc 𝐻, an edge L𝐻 ⊂ 𝜕-P(Λ𝐻) and a solution Z𝐻 of
𝐸𝛿 (L𝐻 ) (𝛽∗𝑌𝑃) (·, Z𝐻) = 0 on 𝐻reg.

To minimize confusion, we will refer to edges of the (directed) graph as arrows. In
particular, the tree with arrows connecting vertices can be interpreted as a blow-up diagram.
Vertices 𝔵 ≔ (𝑋, 𝐻0,L, Z), 𝔶 ∈ V are connected by arrows, i.e. ordered pairs of vertices
(𝔶, 𝔵) ∈ E ⊂ V ×V, if there is a point 𝑝 ∈ 𝐻0 with finite collision time 𝑡 = 𝑡 (L), such that
the associated blow-up 𝛽𝑡 : [𝑋, 𝑝]𝑡 → 𝑋 and the successor (L𝐻 , Z𝐻) of (L, Z) coincide with
𝔶. In particular, it holds that 𝑌 = [𝑋, 𝑝] and 𝐻 = 𝛽−1

𝑡 (𝑝). Thus, the graph G is a directed tree
whose arrows correspond to partial blow-downs.
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To order the resolution process, we sort the arcs from right to left. For any point 𝑝 ∈ 𝐻0

we can split it into a left side 𝐻0,𝑙 and right side 𝐻0,𝑟 . Since there is no singular point in
𝐻0,𝑟 , we can lift the right side with the corresponding vertex to the next level in the tree by
adding the vertex (𝑌, 𝐻0,𝑟 ,L, Z) and the arrow connecting it with 𝔵. Putting these leaves to
the end of their own branch will simplify the construction of solution spaces. These are spaces
of exponential-polyhomogeneous functions in Definition 5.3.11 and thus refer to families of
edges and solutions (L, Z) over each arc 𝐻.

If at some point a vertex (𝑌, 𝐻,L𝐻 , Z𝐻) is added with 𝛿(L𝐻) = 0, one might need to
add additional vertices (𝑌, 𝛽∗𝑡𝐻0,𝑙,L, Z 𝑗) for multiple solutions Z 𝑗 of 𝐸𝛿 (L)(𝑃) (·, Z) = 0,
𝑗 = 1, . . . , 𝑟 , 𝑟 ∈ N. This might be required to match the asymptotic expansion of the
homogeneous solution of the transport operator of 𝛽∗𝑡 𝑃 at 𝐻. A prominent example for which
this is necessary is the resolution of the Schrödinger equation with linear potential. Its local
approximate solution at the front face, the Airy function, has real exponential behavior on one
side, but oscillatory behavior on the other side. Thus, one needs to add another solution Z± of
the eikonal equation on the oscillatory side of the front face.

In the second step Resolution of Crossing Points, we eliminate potential crossings in
(𝑌, 𝐻,L, Z) ∈ V of solutions Z, Z𝑖 , 𝑖 = 1, . . . , 𝑟 , 𝑟 ∈ N, of 𝐸𝐻,𝛿 (𝛽∗𝑃) (·, Z) = 0 at 𝐻,
with 𝛿 = 𝛿(L). If there is an 𝑟-fold intersection at a crossing point 𝑝 ∈ 𝐻reg of solutions Z, Z𝑖 ,
𝑖 = 1, . . . , 𝑟 , we can write

𝐸𝛿 (𝛽∗𝑃) (𝑥𝐻 , Z𝐻) =
∑︁

_∈L∩Λ𝐻
_=(𝑘,𝛼)

(𝑎_(𝑝) − �̃�_(𝑥𝐻)) Z 𝑘𝐻 ,

where �̃�_(𝑥𝐻) = O(𝑥𝐻 − 𝑝). Since 𝑎_(𝑝) ≠ 0 for all _ ∈ 𝜕L by regularity, we have∑︁
_∈L∩Λ𝐻
_=(𝑘,𝛼)

𝑎_(𝑝)Z 𝑘𝐻 = (Z𝐻 − 𝑐)𝑟+1𝑄(Z𝐻) ,

for some 𝑐 ∈ C∗ and𝑄 ∈ C∞(𝐻) [Z𝐻] with𝑄(Z (𝑝)), 𝑄(Z 𝑗 (𝑝)) ≠ 0, for 𝑗 = 1, . . . , 𝑟 . Blowing
up 𝑝 quasihomogeneously with parameter 𝑡 = 𝛿 then yields a horizontal edge L𝑝 as a single
successor with corresponding symbol

𝐸𝐻𝑝 ,0(𝑥ff, Zff) = (Zff − 𝑐)𝑟+1𝑄(Zff)

along 𝛽−1
𝛿
(𝑝). In particular, the leading operator at the front face 𝐻𝑝

𝛽∗𝛿𝛽
∗𝑃 = ℎ𝑙𝐻𝑝,0

∑︁
_∈L∩Λ𝐻
_=(𝑘,𝛼)

𝑎_(𝑝)𝜕𝑘𝑥ff
+ 𝑜(ℎ𝑙𝐻𝑝,0)

is an elliptic operator along 𝐻𝑝. These blow-ups add at most one vertex per crossing point to
the resolution graph.

In the third and final step Resolution of Rays we resolve the space by trivially blowing
up a submanifold of 𝑀 transversally intersecting the boundary. This might be necessary in
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general due to the presence of singular points in the interior of arcs 𝐻 ⊂ 𝜕𝑀 where 𝛽∗𝑃
is resolved. In general, the quasimodes’ phases and amplitudes will have polyhomogeneous
behavior at these submanifolds, which have to be blown-up for technical reasons. This blow-up
will be accounted for by two additional vertices in the graph for both sides of the blown-up
submanifold.

These considerations are formally written in Algorithm 1 whose output is the resolution
tree.

Definition 5.2.14 (Resolution Tree). Let Λ ⊂ N × R be a set of exponents and 𝑃 ∈ DiffΛ(R).
Let L ⊂ 𝜕-P(Λ(𝑃)) with slope 𝛿, let 𝐼 ⊂ 𝜕Hreg(L) and Z be a solution of 𝐸𝛿 (𝑃) (·, Z) = 0
on 𝐼.

The graph G = (V, E) generated in Algorithm 1 with initial data (H, 𝜕H,L, Z) is called
resolution tree of 𝑃 and (L, Z) and 𝐼.

Based on the resolution tree G = (V, E) generated in Algorithm 1 we can construct the
resolution space, including all blow-ups contained in E. We say that G = (V, E) is finite if
V is finite.

Definition 5.2.15 (Resolution Space). Let Λ ⊂ N×R be a set of exponents and 𝑃 ∈ DiffΛ(R).
Let L ⊂ 𝜕-P(Λ(𝑃)), 𝐼 ⊂ 𝜕Hreg(L) and Z be a solution of 𝐸𝛿 (𝑃) (·, Z) = 0 on 𝐼. Let G be the
resolution tree of Algorithm 1 for (H, 𝜕H,L, Z). Assume that G is finite.

We call the space 𝛽 : 𝑀 → H generated by the blow-up graph G in the sense of Corol-
lary 2.1.23 the resolution space of 𝑃 and (L, Z).

Remark 5.2.16. Step 6 of the Resolution of Singular Points in Algorithm 1 will not add
new leaves in most cases. However, if Step 5 of the algorithm adds solutions Z ≠ Z𝐻 we
need to complete the tree with edges and solutions matching (L𝐻 , Z) successively on all arcs
positioned left of the left face 𝐻𝑙 corresponding to Step 6.

Remark 5.2.17. We will only present initial data 𝔞 = (H, 𝜕H,L, Z) of Algorithm 1 for an
operator 𝑃 in form of an edge L ⊂ 𝜕-P(Λ(𝑃)) with positive slope and corresponding solution
Z of the eikonal equation 𝐸𝛿 (L) (𝑃) (·, Z) = 0. While one can also initiate the algorithm
with a horizontal edge and corresponding homogeneous solution of the transport equation,
it does not require any changes in the algorithm but complicates the notation in the proof of
Theorem 5.2.18 due to the different cases.

136



5.2 Resolution of Operators

Algorithm 1: Construction of the Resolution Tree
Data: Semi-classical operator 𝑃 and 𝔞 ≔ (H, 𝜕H,L, Z), where L ⊂ 𝜕-P(Λ(𝑃)) and Z

solving 𝐸𝛿 (L) (𝑃) (·, Z) = 0 on 𝐼 ⊂ Hreg.
Result: Resolution tree G = (V, E).

Resolution of Singular Points:
while ∃ 𝔳 = (𝑋, 𝐻,L𝐻 , Z𝐻), 𝔲 ∈ V with (𝔳, 𝔲) ∈ E, and a rightmost point 𝑝 ∈ 𝐻◦,
s.t. 𝛽∗

𝑋
𝑃 is neither 𝛿(L𝐻)-regular nor L-resolved in 𝑝 do

1. Determine the collision time 𝑡𝑝 of L𝐻 in Λ(𝛽∗
𝑋
𝑃)𝐻 .

2. Add 𝔴 ≔ (𝑌, 𝐻𝑝,L𝐻𝑝 , Z𝐻𝑝 ) to V and (𝔴, 𝔳) to E, where 𝑌 ≔ [𝑋, 𝑝]𝑡𝑝 ,
𝐻𝑝 ≔ 𝛽−1

𝑡𝑝
(𝑝), for the successor (L𝐻𝑝 , Z𝐻𝑝 ) of (Lℎ, Z𝐻) in Λ𝐻𝑝 .

3. Add 𝔶 ≔ (𝑌, 𝐻𝑟 ,L𝐻 , Z𝐻) ∈ V and (𝔶, 𝔳) ∈ E.

4. If 𝛿(L𝐻𝑝 ) > 0, then add 𝔷 ≔ (𝑌, 𝐻𝑙,L𝐻 , Z𝐻) ∈ V and (𝔷, 𝔳) ∈ E.

5. If 𝛿(L𝐻𝑝 ) = 0, let 𝑢 be the solution of (𝛽∗
𝑌
𝑃)𝑢 = 0 at 𝐻𝑝 matching Z𝐻 at 𝐻𝑟 .

For all solutions Z of 𝐸𝐻𝑙 , 𝛿 (L𝐻 ) (𝛽∗𝑌𝑃) (·, Z) = 0 matching 𝑢 at 𝐻𝑙 add
𝔵 ≔ (𝑌, 𝐻𝑙,L𝐻 , Z) ∈ V and (𝔵, 𝔳) ∈ E.

6. If there is (𝑌, 𝐻,L, Z) ∈ V, an adjacent arc 𝐻′ on the left side of 𝐻

and a pair (L′, Z ′), s.t. (L, Z) is a successor of (L′, Z ′),

then add 𝔶 = (𝑌, 𝐻′,L′, Z ′) ∈ V and (𝔶, 𝔞) ∈ E.

Resolution of Crossing Points:
while ∃ 𝔳 = (𝑋, 𝐻,L𝐻 , Z𝐻) ∈ V and 𝑝 ∈ 𝐻◦, s.t. 𝛽∗

𝑋
𝑃 is 𝛿(L𝐻)-regular in 𝑝 and

𝑚Z𝐻 (L𝐻) (𝑝) > 𝑚Z𝐻 (L𝐻) do
Add 𝔴 ≔ (𝑌, 𝐻𝑝,L𝐻𝑝 , Z𝐻𝑝 ) to V and (𝔴, 𝔳) to E, where 𝑌 ≔ [𝑋, 𝑝] 𝛿 ,
𝐻𝑝 ≔ 𝛽−1

𝛿
(𝑝), with successor (L𝐻𝑝 , Z𝐻𝑝 ) of (L𝐻 , Z𝐻) in Λ𝐻𝑝 .

Resolution of Rays:
forall (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V and for all 𝑝 ∈ 𝐻◦ do

if 𝛽∗
𝑌
𝑃 is 𝛿(L𝐻)-singular and resolved in 𝑝 then

Add 𝔴𝑟 ≔ (𝑍, 𝐻𝑟 ,L, Z) and 𝔴𝑙 ≔ (𝑍, 𝐻𝑙,L, Z) to V and (𝔴𝑙, 𝔳), (𝔴𝑟 , 𝔳) to
E, where 𝑍 ≔ [𝑌, 𝑁𝑝] is the trivial blow-up along the ray
𝑁𝑝 ≔ {𝑥𝐻 − 𝑝 = 0} ⊂ 𝑌 .

Before we prove that Algorithm 1 terminates in Theorem 5.2.18, we want to perform
the complete analysis and algorithmic resolution to characteristic examples to demonstrate
their application. For this we will revisit the standard example of Schrödinger operators in
Subsection 5.2.3 since it will already include the inconvenient property of multiple successors.
After that we will discuss the Bessel equation in Subsection 5.2.4 which is not given by a semi-
classical operator by design but can be brought into the form easily. Although we can only
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construct quasimodes for this family of equations, we want to underline that this algorithm
derives the resolution of the Bessel operator by a double blow-up of 𝑥 = a = ∞ quickly.
Simultaneously, it also predicts an Airy-type behavior at the center face of the second blow-
up.

5.2.3 Schrödinger Operator

Let 𝐼 = R, 𝑘 ∈ N, let 𝑉 ∈ C∞(𝐼) with 𝑉 (𝑥) = 𝑥𝑘 · 𝑉 (𝑥) and 𝑉 (𝑥) ≠ 0 for all 𝑥 ∈ R, and

𝑃 ≔ −ℎ2𝜕2
𝑥 +𝑉 ,

be the associated Schrödinger operator. This is the general case of Example 4.1.10.

Resolution

Its associated set of exponents is given by Λ(𝑃) = {(0, 0), (2, 2)} with a single edge in the
lower boundary L ≔ (0, 0), (2, 2) = 𝜕-P(Λ). Since the potential 𝑉 is vanishing in 𝑥 = 0,
the operator is not 𝛿-regular for its only slope 𝛿 = 𝛿(L) = 1 according to Definition 3.2.16.
The weight 𝜔((2, 2)) = −2 of `0 is smaller than then weight 𝜔((0, 0)) = 𝑘 of (0, 0). Thus,
following Definition 4.2.13, the only essential point `0 ofΛ(𝑃) in 𝑥 = 0 is given by `0 = (2, 2).
Since `0 is not the minimal point on the lower boundary of 𝜕-P(Λ), 𝑃 is not resolved in 𝑥 = 0
with respect to L.

In order to resolve 𝑃, the first collision time is given by 𝑡 (L) = 2/(𝑘 + 2), since both points
(0, 0) and (2, 2) shift when applying a quasihomogeneous blow-up and have same powers
of ℎ if 2 − 2𝑡 = 𝑘𝑡. The associated blow-up is given by 𝛽𝑡 (L) : [H, 0]𝑡 (L) → H, where
𝑥ff ≔ 𝑥/ℎ𝑡 (L) is the induced coordinate along ff. Denote 𝑀 ≔ [H, 0]𝑡 (L) . The leading term
of 𝛽∗

𝑡 (L)𝑃 at ff is given by

𝛽∗
𝑡 (L)𝑃 = ℎ2−4/(𝑘+2)

(
−𝜕2

𝑥ff
+ 𝑥𝑘ff · 𝑉 (0)

)
+ O

(
ℎ2−2/(𝑘+2)

)
.

It is an elliptic, ordinary differential operator of order two. In particular, 𝛽∗
𝑡 (L)𝑃 has no

singular points on 𝜕𝑀 , since 0 ∈ R is the only singular point on the original space H.
To check whether 𝛽∗

𝑡 (L)𝑃 has any crossing points, i.e. jumps in multiplicities of solutions
of the eikonal equation, we analyze

𝐸L (𝑃) (𝑥, Z) = −Z2 + 𝑥𝑘𝑉 (𝑥) = 0 ,

at 𝛽∗
𝑡 (L) {ℎ = 0, 𝑥 ≠ 0}. Its solutions are given by Z±(𝑥) ≔ ±𝑥𝑘/2

√︃
𝑉 (𝑥), whose graphs

intersect for 𝑥 ≠ 0 if and only if 𝑉 (𝑥) = 0. Since this is not possible, there are no crossing
points. Note that 𝑉 (𝑥0) = 0 for 𝑥0 ≠ 0 would also imply that 𝑥0 is a singular point. Thus, the
resolution is almost complete.

As initial data for the resolution tree we choose (H, 𝜕H,L, Z−), where Z− is non-positive
and real-valued on R+. Following Step 2 in Algorithm 1, we add (𝑀,ff,Lff, Z−) and attach
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(H, 𝜕H,L, Z−) (𝑀,ff,Lff, Zff,−)

(𝑀, 𝜕H𝑙,L, Z𝜕H𝑙 ,±)

(𝑀, 𝜕H𝑟 ,L, Z𝜕H𝑟 ,−)

Figure 5.4: The resolution tree of 𝑃 = −ℎ2𝜕2
𝑥 + 𝑉 with respect to L = (0, 0), (2, 0) and

Z+(𝑥) = 𝑥𝑘/2𝑉 (𝑥)1/2. The dashed arrow corresponds to the lift of 𝜕H to the
blown-up space [H, 0]𝑡 (L) . The middle arrow corresponds to two vertices. The
addition of Z+ to the tree at the lift of 𝜕H𝑙 to match the Airy function’s asymptotic
behavior on the front face.

it to (H, 𝜕H,L, Z−), where Zff,− is the unique solution of −Z2
ff + 𝑥𝑘ff𝑉 (0) = 0 matching Z− at

the right corner of ff. Following Step 3, we lift the initial data to the blown-up space and add
(𝑀, 𝜕H𝑟 ,L, ZH𝑟 ,−) on the right side of the front face, attached to (H, 𝜕H,L, Z−). Since the
Airy function, corresponding to Zff,−, has oscillatory behavior at the left corner of ff, we need
to add vertices for both lifted solutions ZH𝑙 ,±, according to Step 5. Thus, we add two vertices
(𝑀, 𝜕H𝑙,L, Z±), attached to (H, 𝜕H,L, Z−). The vertex set is given by

V = {(H, 𝜕H,L, Z−), (𝑀,ff,Lff, Zff,−), (𝑀, 𝜕H𝑙,L, Z±), (𝑀, 𝜕H𝑟 ,L, Z−)}

with edges from all vertices containing 𝑀 pointing towards (H, 𝜕H,L, Z−) (see Figure 5.4).

Eikonal Equations

To construct quasimodes, we first have to determine the associated eikonal equations and solve
them accordingly. Their associated varieties are given by

Γ𝜕H𝑟 = {(𝑥, Z) : Z2 −𝑉 (𝑥) = 0, 𝑥 > 0} ,

on 𝛽∗𝐼, by Γ𝜕H𝑙 = {(𝑥, Z) : Z2 − 𝑉 (𝑥) = 0, 𝑥 < 0} and by Γ = ∅ on ff. The solutions of the
eikonal equations are given by

𝜑±(𝑥) ≔ ±
∫ 𝑥

𝑥0

𝑡𝑘/2
√︃
𝑉 (𝑡)𝑑𝑡 ,

for either 𝑥, 𝑥0 > 0 or 𝑥, 𝑥0 < 0 depending on the choice of face 𝜕H𝑙, 𝜕H𝑟 .

Transport Equations

Depending on the choice of phases 𝜑±, the transport operators at 𝜕H𝑙, 𝜕H𝑟 are given by the
b-operator

𝑇𝜕H𝑙/𝑟 , 𝛿,± = ±
(
−2𝑥𝑘/2

√︃
𝑉 (𝑥)𝜕𝑥 −

(
𝑥𝑘/2

√︃
𝑉 (𝑥)

) ′)
.
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The transport operator on the front face is given by the leading part of 𝛽∗𝑃 at ff

𝑇ff = −𝜕2
𝑥ff

+ 𝑥𝑘ff · 𝑉 (0) .

For 𝑘 = 1 and 𝑉 (0) this coincides with the Airy operator in Example 3.1.3. Depending on the
choice of a homogeneous solution 𝑢0 at ff, we can determine the phases 𝜑± required to match at
both corners of ff. Iteratively solving the transport equations as in Lemmas 5.3.20 and 5.3.21
then yields quasimodes 𝑢 ∈ EA (I) (𝑀; Γ) for 𝛽∗

𝑡 (L)𝑃.

5.2.4 Bessel Equation

Let 𝐼 ≔ R+ and a ∈ R>0. The Bessel operator on R+ is given by

𝑃 ≔ 𝑥2𝜕2
𝑥 + 𝑥𝜕𝑥 + (𝑥2 − a2) .

It is a b-operator that does not fit into the class of semi-classical operators immediately.
However, we are able to analyze the exponential-polyhomogenous behavior of its quasimodes
as 𝑥 → +∞, a → ∞ by changing coordinates to 𝑟 ≔ 𝑥−1 and ℎ ≔ a−1. This way we obtain
an associated semi-classical operator on R2

+, where

𝑃 ≔ 𝑟2ℎ2𝑃 = ℎ2𝑟4𝜕2
𝑟 + ℎ2𝑟3𝜕𝑟 + ℎ2 − 𝑟2 ,

which we can analyze. Note that multiplying 𝑃 with monomial factors does not impact the
behavior of the quasimodes and can be used to normalize semi-classical operators.

With the resolution of the operator 𝑃 we derive the same resolution space as in [She22].
The asymptotic behavior of the asymptotic solutions at the boundary faces coincide with the
results in that work. However, this work describes the asymptotic expansions of solutions of
the Bessel equations, while we are only able to compute asymptotic solutions.

Resolution

Its associated set of exponents

Λ(𝑃) = {(0, 0), (0, 2), (1, 2), (2, 2)} ,

has only a single edge L ≔ (0, 0), (2, 2) in the lower boundary of its Newton polygon 𝜕-P(Λ).
Their corresponding coefficient functions 𝑎 (0,0) (𝑟) = 𝑟2 and 𝑎 (2,2) (𝑟) ≔ 𝑟4 are both vanishing
in 𝑟 = 0 and non-vanishing everywhere else. Thus, 𝑃 is not 𝛿(L)-regular on {ℎ = 0} with a
single non-regular point in 𝑟 = 0 according to Definition 3.2.16. The weights of all points in
𝑟 = 0 are given by

𝜔((0, 0)) = 2 , 𝜔((0, 2)) = 0 , 𝜔((1, 2)) = 2 and 𝜔((2, 2)) = 2 .
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Thus, the essential points are given by `0 ≔ (0, 2) and `1 ≔ (2, 2), since the increase of
weight from `0 to (2, 2) is minimal among all points _ ∈ Λ(𝑃), _ ≠ (0, 2). That means that
there is a minimal point in 𝑟 = 0 that is not on the lower boundary 𝜕-P(Λ), implying that 𝑃 is
not resolved on {ℎ = 0} in the sense of Definition 4.2.18.

In order to resolve the singular point 𝑟 = 0 in {ℎ = 0}, we have to compute the collision
time of L. Since all points have weight 𝜔(_) = 2 with the exception of 𝜔((0, 2)) = 0, the
only collision will be due to (0, 0) and (0, 2). The collision time is given by 𝑡 (L) = 1. The
homogeneous blow-up 𝛽1 : [R2

+, 0] → R2
+ of 0 ∈ R2

+ associated to it results in an operator

𝛽∗1𝑃 = ℎ4𝑡4𝜕2
𝑡 + ℎ4𝑡3𝜕𝑡 + ℎ2(1 − 𝑡2) ,

at the front face 𝛽−1
1 (0) in its induced coordinates ℎ and 𝑡 ≔ 𝑟/ℎ. The associated set of

exponents

Λff(𝛽∗1𝑃) = {(0, 2), (1, 4), (2, 4)}

remains to have a single edge Lff in the lower boundary of its Newton polygon 𝜕-P(Λff). What
has changed is the localization and relevance of the non-regular points 𝑝 ∈ 𝜕ff in comparison
to {ℎ = 0} ⊂ R2

+. The relevant coefficient functions 𝑏 (0,2) (𝑡) = 𝑡4 and 𝑏 (2,4) (𝑡) = (1− 𝑡) (1+ 𝑡)
corresponding to Lff vanish at 𝑡 = 0 and 𝑡 = ±1, respectively. In particular, for 𝑡 = 0 we have
that the corresponding weights of _ ∈ Λff are

𝜔0((0, 2)) = 0 , 𝜔0((1, 4)) = 2 and 𝜔0((2, 4)) = 2 .

Thus, the essential points are given by (0, 2) and (2, 4), which span the lower boundary
𝜕-P(Λff), implying that 𝛽∗1𝑃 is resolved in 𝑡 = 0.

For 𝑡 = 1, on the other hand, the weights are given by

𝜔1((0, 2)) = 1 , 𝜔1((1, 4)) = 0 and 𝜔1((2, 4)) = 0 .

Thus, there is only one essential point in 𝑡 = 1 given by (2, 4), showing that 𝛽∗1𝑃 is still
singular in 𝑡 = 1. Rewriting the pullback of the semi-classical operator with the coordinate
shift 𝑡 ≔ 𝑡 − 1, we obtain

𝛽∗1𝑃 = ℎ4
(
1 + 4𝑡 + 6𝑡2 + 4𝑡3 + 𝑡4

)
𝜕2
𝑡
+ ℎ4

(
1 + 3𝑡 + 3𝑡2 + 𝑡3

)
𝜕𝑡 + ℎ2𝑡 (2 + 𝑡) .

The collision time of Lff is given by 𝑡 (Lff) = 2/3, yielding a blow-up 𝛽2/3 : 𝑀 → [R2
+, 0],

where

𝑀 ≔ [[R2
+, 0], {ℎ = 𝑡 = 0}] .

We will refer to the newly generated front face cf ≔ 𝛽−1
2/3({𝑡 = ℎ = 0}) as center face, to

lf ≔ 𝛽∗2/3(ff \ {𝑡 ≥ 0}) as left face and to rf ≔ 𝛽∗2/3(ff \ {𝑡 ≤ 0}) as right face. Pulling back
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𝛽∗1𝑃 to cf results in

𝛽∗2/3(𝛽
∗
1𝑃) = ℎ

2+2/3
(
𝜕2
𝑠 + 2𝑠

)
+ O

(
ℎ3+1/3

)
, (5.4)

where ℎ and 𝑠 ≔ 𝑡/ℎ2/3 are the induced coordinates at the center face. Denote 𝛽 ≔ 𝛽1 ◦ 𝛽2/3.
The leading operator 𝜕2

𝑠 + 2𝑠 of 𝛽∗𝑃 is essentially the Airy operator. In particular, it is elliptic
on the interior of cf. Thus, the chain of blow-ups

𝛽 : [[R2
+, 0], {ℎ = 𝑡 = 0}] → [R2

+, 0] → R2
+

resolves all singular points of 𝑃 in the relative interior of 𝜕𝑀 . We still need to check if 𝛽∗𝑃
has crossing points on 𝜕𝑀 . This can only be done by computing the solutions of the eikonal
equations associated to L ⊂ 𝜕-P(Λ) and Lff ⊂ 𝜕-P(Λff) with slope 𝛿 and 𝛿ff, respectively.
The eikonal polynomials are given by

𝐸𝛿 (𝑃) (𝑟, Z) = 𝑟4Z2 − 𝑟2 ,

on 𝛽∗R>0 and

𝐸𝛿ff (𝑡, Z) = 𝑡4Z2 + (1 − 𝑡2) ,

on lf∪ rf, where we omitted 𝛽∗𝑃 in the argument of 𝐸 . In the first case, the solutions are given
by

Z±(𝑟) ≔ ±1/𝑟 ,

for 𝑟 > 0, and in the latter case they are given by

Zff,±(𝑡) ≔ ±
√︁

1 − 𝑡2/𝑡2 ,

for 𝑡 > 0, 𝑡 ≠ 1. Neither Z+ nor Zff,+ have any zeros on their respective domains. Thus, both
Z+, Z− and Zff,+, Zff,− do not intersect themselves pairwise, resulting in a constant multiplicity
of roots of 𝐸𝛿 (L) (𝑟, Z) and 𝐸𝛿 (Lff ) (𝑡, Z) on their respective domains on 𝑀 . Thus, 𝑃 is
completely resolved by the chain of blow-ups.

To summarize this resolution, we construct its associated resolution tree (see Figure 5.5).
Its root is given by the vertex (R2

+, {ℎ = 0},L, Z+). Pointing towards the root, there are
two vertices. The first vertex ( [R2

+, 0],ff,Lff, Zff,+) is due to the first blow-up of 0 ∈ R2
+,

corresponding to Step 2 in Algorithm 1. The second vertex ( [R2
+, 0], {ℎ = 0}𝑟 ,L, Z+) is the

lift of the root according to Step 3. Note that there is no left side of {ℎ = 0} in [R2
+, 0] after

blowing up (0, 0) ∈ R2
+.

Following this vertex there is a second level of depth given by (𝑀, cf,Lcf, Zcf,+), where
(Lcf, Zcf,+) is the successor of (Lff, Zff,+) according to Step 2. Note that Zcf,+ is a solution of
𝜎(𝜕2

𝑠 + 2𝑠) (𝑠, Z) = 0. Its associated homogeneous solution of the equation (𝜕2
𝑠 + 2𝑠)𝑢 = 0
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(R2
+, {ℎ = 0},L, Z+)

( [R2
+, 0], {ℎ = 0}𝑟 ,L, Z+)

( [R2
+, 0],ff,Lff, Zff,+) (𝑀, cf,Lcf, Zcf,+)

(𝑀, lf,Lff, Zff,±)

(𝑀, rf,Lff, Zff,+)

Figure 5.5: The resolution tree of semi-classical version of the Bessel operator 𝑃 = ℎ2𝑟4𝜕2
𝑟 +

ℎ2𝑟3𝜕𝑟 + ℎ2 − 𝑟2. The dashed arrows correspond to lifted vertices according to
Step 3 in Algorithm 1. The two vertices in the top right with signs ± are required
to match the asymptotic behavior of the Airy function(s) at the center face cf,
corresponding to (𝑀, cf,Lcf, Zcf,+).

has two successors (L, Zff,±) on lf = ff𝑙. Thus, we add two vertices (𝑀, lf,Lff, Zff,±) point-
ing to ( [R2

+, 0],ff,Lff, Zff,+), according to Step 5. Finally, we lift ( [R2
+, 0],ff,Lff, Zff,+) to

(𝑀, rf,Lff, Zff,+), which points to ( [R2
+, 0],ff,Lff, Zff,+) according to Step 3, where rf=ff𝑟 .

Note that due to the simplicity of 𝑃 and the symmetry of the solutions of the eikonal
equations related by a change of sign, all resolution trees starting on R2

+ lead to the same chain
of resolving blow-ups 𝛽 : 𝑀 → R2

+.

Eikonal Equations

It is worth noting that

Zff,±(𝑡) = ±
√︁

1 − 𝑡2/𝑡2 ∼ ±1/𝑡

as 𝑡 → +∞. Equivalently, the corresponding solutions of the b-symbol b𝐸Lff (𝑡, bZ) = 0,
given by bZff,±(𝑡) = ±

√
1 − 𝑡2/𝑡 are bounded and non-vanishing as 𝑡 → +∞. Thus, there are

non-zero log-coefficients in the phase functions at rf∩ 𝛽∗{ℎ = 0} for any quasimode generated
in the construction process. One can immediately see the logarithmic behavior of the phases
𝜑 solving

𝜕𝑟𝜑± = ±Z±

as 𝑟 → 0 along {ℎ = 0} due to the behavior of Z±(𝑟) = ±1/𝑟 . Yet the presence of logarithms
did not show the behavior on the more refined, blown-up space 𝛽 : 𝑀 → R2

+.

For simplicity, we start the construction of our quasimode at the center face, where we
choose 𝑢cf,0(𝑠) ≔ Ai(

√︁
1/2𝑠), accounting for the additional 2 in front of the monomial 𝑠 in

𝜕2
𝑠 + 2𝑠. Due to the oscillatory behavior of Ai(𝑠) as 𝑠 → −∞, i.e. 𝑝 → cf ∩ lf along cf,

there are two successors (Lff, Zff,+) and (Lff, Zff,−) required to match Ai at lf. Their respective
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solutions are given by the phases

𝜑lf,±(𝑡) ≔ ±
∫ 𝑡

𝑡0

√
1 − 𝜏2

𝜏2 𝑑𝜏 ,

for some 𝑡0 ∈ (0, 1), solving 𝜕𝑡𝜑lf,± = Zff,±. On the right face rf we can define the single
required phase 𝜑rf,+ by the same expression with the difference that 𝑡, 𝑡0 > 1. Due to 𝑡, 𝑡0 > 1,
we have 1− 𝑡2 > 0 and thus 𝜑rf,+(𝑡) > 0 for all 𝑡 > 1, whereas 𝜑lf,±(𝑡) ∈ 𝑖R for each 𝑡 ∈ (0, 1).
On rr ≔ 𝛽∗{ℎ = 0} the solution of the eikonal equation solving 𝜕𝑟𝜑 = 1/𝑟 and matching 𝜑rf,+

is given by

𝜑rr(𝑟) ≔ log(𝑟) .

Transport Equations

We start on the very right face rr = 𝛽∗{ℎ = 0}. Recall from the beginning of this example that
𝑃 = ℎ2𝑟4𝜕2

𝑟 + ℎ2𝑟3𝜕𝑟 + ℎ2 − 𝑟2. Conjugating 𝛽∗𝑃 with exp(𝜑rr/ℎ) at rr yields

𝑒−𝜑rr/ℎ (𝛽∗𝑃)𝑒𝜑rr/ℎ = ℎ1 ·
(
2𝑟3𝜕𝑟 − 𝑟2

)
+ ℎ2 ·

(
𝑟4𝜕2

𝑟 + 𝑟3𝜕𝑟 + 1
)
.

Thus, the transport operator is given by 𝑇rr ≔ 𝑟2((1 + 2𝑟)𝜕𝑟 + 1) and the only remainder
operator is 𝑅rr ≔ 𝑟4𝜕2

𝑟 + 𝑟3𝜕𝑟 + 1. Repeating the same process simultaneously at lf∪ rf yields

𝑒−𝜑±/ℎ (𝛽∗𝑃)𝑒𝜑±/ℎ = ℎ3 · 𝑡
√︁

1 − 𝑡2 (2𝑡𝜕𝑡 − 1) + ℎ4 ·
(
𝑡4𝜕2

𝑡 + 𝑡3𝜕𝑡
)
,

with transport operators 𝑇± ≔ 𝑡
√

1 − 𝑡2(2𝑡𝜕𝑡 − 1) and remainder operator 𝑅± ≔ 𝑡3(𝑡𝜕𝑡 + 1)𝜕𝑡 .
We have already displayed the transport operator on the central face 𝑇cf ≔ 𝜕2

𝑠 + 2𝑠 in (5.4).
Due to the form of

𝛽∗1𝑃 = ℎ4
(
1 + 4𝑡 + 6𝑡2 + 4𝑡3 + 𝑡4

)
𝜕2
𝑡
+ ℎ4

(
1 + 3𝑡 + 3𝑡2 + 𝑡3

)
𝜕𝑡 + ℎ2𝑡 (2 + 𝑡)

there is no reasonable way to display all remainder operators associated to 𝛽∗𝑃 on cf. However,
their corresponding powers of ℎ increase in increments of 2/3, starting with 2 + 2/3 for 𝑇cf.
Since the increments are all of size 2/3, the index set can be chosen such that I(G)(cf) ≔
2/3N. Due to the increments of size 1 at any other face, all other index sets coincide and are
given by N.

5.2.5 Finiteness of Resolutions

The goal of this subsection is to prove the main result of Section 5.2, Theorem 5.2.18, showing
that all resolution trees are finite. The proof is mostly combinatorial due to the language of
graphs used in Algorithm 1. Since we are only considering smooth coefficients 𝑎_ in the class
of generalized semi-classical operators, all coefficients in the asymptotic expansion of 𝛽∗𝑃
at the front faces will be polynomial after any blow-up. The branching of G is a result of
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the presence of multiple singular points, which is stated implicitly in the while condition of
Resolution of Singular Points in Algorithm 1. It occurs when an interior point collides with a
corner point on the lower boundary under blow-up, since their coefficient’s leading terms

𝛽∗𝑡
(
ℎ𝛼𝑥𝜔 + ℎ𝛼+Y𝑥𝜔−𝑛) = ℎ𝛼+𝑡𝜔 (

𝑥𝜔ff + 𝑥𝜔−𝑛
ff

)
have the same homogeneity on the front face. The corresponding new leading term 𝑥𝜔ff + 𝑥𝜔−𝑛

ff
has zeros outside of {𝑥ff = 0}.

The zero set of the leading coefficient 𝐴𝑚 = 𝐴𝑚(𝑥, ℎ) will be of special interest and needs
to be considered separately in the resolution of 𝑃 as in Example 4.1.13. This is covered in
the resolutions of zeros in the beginning of the proof of Theorem 5.2.18 below. In a special
case, it results in the trivial blow-up of 𝛽∗{𝑥 = 0} for the resolution space 𝑀 in the Resolution
of Rays of Algorithm 1. The chain of successive zeros is of special interest. If 𝑓 ∈ C∞(R)
vanishes to 𝑙-th order in 0, then for every blow-up 𝛽𝑡 : [H, 0]𝑡 → H of 0 we have

(𝛽∗𝑡 𝑓 ) (𝑥ff, ℎ) = ℎ𝑡𝑙𝑥𝑙ff + 𝑜
(
ℎ𝑡𝑙

)
,

i.e. the leading part of 𝛽∗𝑡 𝑓 vanishes in 𝑥ff = 0 on ff to 𝑙-th order as well.

Theorem 5.2.18. Let 𝑃 ∈ DiffΛ(R) be a semi-classical operator, 𝑃 =
∑𝑚
𝑘=0 𝐴𝑘 (𝑥, ℎ)𝜕𝑘𝑥 , such

that the leading coefficient 𝐴𝑚 analytic in 𝑥. Let L ⊂ 𝜕-P(Λ(𝑃)), let 𝐼 ⊂ 𝜕Hreg and Z be a
solution of 𝐸𝛿 (L) (𝑃) (·, Z) = 0 on 𝐼.

Then the resolution tree G of (H, 𝜕H,L, Z) is finite.

In other words, Theorem 5.2.18 says that Algorithm 1 creates a resolution space 𝛽 : 𝑀 → H
for 𝑃. By construction, 𝛽∗𝑃 is resolved and simple on 𝜕𝑀 .

Proof. We first prove a special case. Assume that the leading coefficient is 𝐴𝑚(𝑥, ℎ) = 𝑥𝑙𝑚ℎ𝛼𝑚
and thus

{𝐴𝑚(𝑥, ℎ) = 0} ∩ {ℎ > 0} = {𝑥 = 0} ∩ {ℎ > 0} .

Under this assumption, we will prove the following for statements:

(i) The branch B0 ⊂ G resolving iterated zeros along each newly generated front face is
finite.

(ii) For each path B ⊂ G there are only finitely many collisions involving splitting or
merging of edges.

(iii) There are at most finitely many paths in G.

(iv) Each path B ≠ B0 is finite.

(i) We start by resolving the sequence of zeros along the arcs. These are given by consecutive
points 0ff ∈ 𝛽∗{𝑥 = 0} ∩ ff. By Proposition 5.1.11 there is a 𝑇 ≥ 0 such that 𝛽∗𝑡 𝑃 is resolved
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at 0 on the recent arc for all 𝑡 ≥ 𝑇 . We show that after finitely many collisions at the sequence
of zeros, the sum of collision times

∑
𝑡𝑝 exceeds 𝑇 . Let `𝑙 be the essential points of Λ, for

𝑙 ∈ {1, . . . , 𝑛} and denote

𝛼max ≔ max
`𝑙∈Λ

{𝛼𝑙 : `𝑙 = (𝑘𝑙, 𝛼𝑙)} .

The value 𝛼max is finite and thus there are at most finitely many points in Λ ∩ {𝛼 ≤ 𝛼max}.
Since `𝑙 is essential we have 𝜔0(`𝑙) ≤ 𝜔0(_) for all _ = (𝑘𝑙, 𝛼) ∈ Λ. Hence there are no
collisions regarding any points outside of Λ ∩ {𝛼 ≤ 𝛼max} and therefore there are at most
finitely many collisions in [0, 𝑇]. Thus, the sequence of blow-ups regularizing the chain of
zeros is finite.

(ii) Assume for some vertex 𝑣0 ≔ (𝑋, 𝐻,L𝐻 , Z𝐻) in the path B0 resolving 0 that there is a
point 𝑝 ∈ 𝐻sing(L𝐻 , Z𝐻). We distinguish between two types of collisions with L𝐻 :

1. There exists _ ∈ Λ𝐻 \ L𝐻 , 𝑡 ∈ Q+ : _(𝑡) ∈ 𝜕L𝐻 (𝑡).

2. There exists ` ∈ Λ𝐻 \ L𝐻 , 𝑡 ∈ Q+ : `(𝑡) ∈ span (L𝐻 (𝑡)) \ 𝜕L𝐻 (𝑡).

We will call them collisions of first type and of second type, respectively. Let B ≠ B0 be
a path starting in 𝑣0 at 𝑝 ≠ 0. For convenience we re-label the ordered vertices 𝔳 𝑗 ∈ B to
𝔳 𝑗 ≔ (𝑌 𝑗 , 𝐻 𝑗 ,L 𝑗 , Z 𝑗) with 𝛽 𝑗 : 𝑌 𝑗 → 𝑌 𝑗−1 and 𝑝 𝑗 ∈ 𝐻 𝑗 , s.t. 𝛽−1

𝑗+1(𝑝 𝑗) = 𝐻 𝑗−1. In particular
(𝑌0, 𝐻0,L0, Z0) = (𝑋, 𝐻,L𝐻 , Z𝐻). We show that there are at most finitely many collisions of
the second type along B.

The idea is to use that every collision of second type requires the existence of a point in the
interior of P(Λ) with a weight that is lower than of the points spanning the edge L. Since
weights of _ = (𝑘, 𝛼) are bounded from below by−𝑘 , there can be only finitely many collisions
of this type.

Recall that 𝑚 = ord(𝑃). Let Ω 𝑗 ≔ (𝜔 𝑗 ,1, . . . , 𝜔 𝑗 ,𝑚) ∈ Z𝑚 be the list of lowest weights at
each column of 𝜕-P(Λ𝐻 𝑗 ) up to the 𝑗-th vertex 𝑣 𝑗 defined in the following way:

(a) 𝜔0,𝑖 is the weight of the point in {𝑖} × R ∩ 𝜕-P(Λ𝐻0) ∩ Λ𝐻0 if this set is non-empty.
Otherwise 𝜔0,𝑖 is the maximum of the weights of 𝜕L0, where L0 ⊂ 𝜕-P(Λ𝐻0) is the
unique edge with L0 ∩ {𝑖} × R ≠ ∅.

(b) For collisions of second type with respect to _ and L 𝑗 on the 𝑗-th leaf of the branch, let
𝜔 𝑗 ,𝑖 ≔ 𝜔𝑝 𝑗+1 (_), if _ = (𝑖, 𝛼𝑖). Otherwise define 𝜔 𝑗 ,𝑖 ≔ 𝜔 𝑗−1,𝑖 .

(c) If the 𝑗-th collision is of first type, we let 𝜔 𝑗+1,𝑖 B 𝜔𝑝 𝑗+1 (_).

Furthermore Thus, the sequence (Ω 𝑗) 𝑗 is ordered, decreasing in 𝑗 ∈ N and by construction
bounded from below by (0,−1, . . . ,−𝑚). Since collisions of second type of L 𝑗 ≔ _ 𝑗 ,1_ 𝑗 ,2

with _ require that 𝜔𝑝 𝑗 (_) < 𝜔𝑞 (_ 𝑗 ,𝑖), 𝑖 = 1, 2, the sequence (Ω 𝑗) 𝑗 is strictly decreasing
following these collisions. Thus, after finitely many iterations all collisions are of first type.

(iii) Recall that there are multiple paths at a vertex 𝔳 = (𝑌, 𝐻,L, Z) in G if there are
multiple singular points corresponding to L B _1_2. These originate in collisions of first
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type. Without loss of generality assume that _ collides with _1. In particular, this branching
can only occur if 𝑎_(𝑡𝑝 ) ≔ 𝛽∗𝑡𝑝 (𝑎_ + 𝑎_1) has multiple roots along the arc ff𝑝 ≔ 𝛽−1

𝑡𝑝
(𝑝).

Since deg(𝑎_(𝑡𝑝 ) ) = 𝑙, with 𝑙 ≔ ord𝑝 (𝑎_), there are at most 𝑙 different roots along ff𝑝. More
precisely, we have ∑︁

𝑞∈ff𝑝

ord𝑞 (𝑎_(𝑡𝑝 ) ) ≤ deg(𝑎_(𝑡𝑝 ) ) ≤ ord𝑝 (𝑎_) .

Branching implies that ord𝑞 (𝑎_(𝑡𝑝 ) ) < ord𝑝 (𝑎_). Since ord𝑞 (𝑎_) ≥ 0 for all _ ∈ Λ𝐻 , this can
happen only finitely often.

(iv) Return to 𝔳1 = (𝑌1, 𝐻1,L1, Z1) and recall that 𝐻1 = 𝛽−1
1 (𝑝) with 𝑝 ≠ 0, where we

continue to use the index notation of 𝔳 𝑗 , 𝛽 𝑗 : 𝑌 𝑗 → 𝑌 𝑗−1 and 𝑝 𝑗 ∈ 𝐻 𝑗 for the chain of blow-
ups. Thus, the leading term 𝑎`1 of 𝛽∗

𝑌1
𝐴𝑚 with respect to ℎ as ℎ → 0 is non-zero everywhere

along the arc 𝐻1, since 𝐴𝑚(𝑥, ℎ) = 𝑥𝑙𝑚ℎ𝛼𝑚 . In particular, Λ𝐻1 has only one essential point
`1 = (𝑚, 𝛼∗). Thus, 𝛽∗

𝑌1
𝑃 can only be resolved if `1 is the minimal point of Λ𝐻1 or if any

successor L 𝑗 , 𝑗 ≥ 1, of L1 is regular (as in Definition 3.2.16). Assume that B is infinite and
that L 𝑗 is singular for all 𝑗 ≥ 1.

Since 𝑎`1 is non-zero everywhere on 𝐻1, all leading terms 𝑎` 𝑗 of 𝛽∗
𝑌𝑗
𝐴𝑚 are non-zero

everywhere and ` 𝑗 = ` 𝑗−1(𝑡𝑝 𝑗−1) remains to be the only essential point of Λ𝐻 𝑗 . Due to
𝐴𝑚(𝑥, ℎ) = 𝑥𝑙𝑚ℎ𝛼𝑚 we have 𝜔𝑝1 (`1) < 𝜔𝑝1 (_) for all _ ∈ Λ𝐻1 , _ ≠ `1. In particular, there
is a time 𝑇 after which 𝛽∗

𝑇
`1 is the minimal point of 𝛽∗

𝑇
Λ. Thus, all we need to show is that

there is 𝑀 ∈ N such that

𝑀∑︁
𝑗=2
𝑡𝑝 𝑗 ≥ 𝑇 . (5.5)

Without loss of generality assume that all collisions in B are of first type and are with
the left boundary point _ 𝑗 ≔ (𝑘1, 𝛼 𝑗) = _ 𝑗 ,1 of L 𝑗 . Note that the order of zeros of 𝑎_ 𝑗 at
𝑝 𝑗 is decreasing and converges to 𝐿 ≥ 1. Since ord𝑝 𝑗 (𝑎_ 𝑗 ) ∈ N, there is 𝑁 ∈ N such that
ord𝑝 𝑗 (𝑎_ 𝑗 ) = 𝐿 for all 𝑛 ≥ 𝑁 . To prove that B is finite we show that the sequence of partial
sums (∑𝑛

𝑗=2 𝑡𝑝 𝑗 )𝑛 can be bounded from below similar to the harmonic series.

Let Λ̃0 ≔ {( 𝑗 , 𝛼) ∈ Λ𝐻0 : 𝛼 − 𝛼0 < 𝐿𝑇} be the set of points in Λ𝐻0 which can potentially
collide with L0 in time less than or equal to 𝑇 . Also let

Λ̃ 𝑗 ≔ {(𝑘, 𝛼) ∈ Λ𝐻 𝑗 : 𝛼 − 𝛼 𝑗 < 𝐿(𝑇 −
𝑗−1∑︁
𝑙=0

𝑡𝑝𝑙 )}

be the set of points in Λ𝐻𝑘 that can potentially collide with L𝑘 .
A necessary condition for 𝜔𝑝 𝑗 (_ 𝑗) = 𝐿, as 𝑗 → ∞, is that there is a point ` ∈ Λ̃ 𝑗−1, with

𝜔𝑝 𝑗−1 (˜̀) = 𝐿 − 1, that collides with _ 𝑗−1 at time 𝑡𝑝 𝑗−1 . Otherwise the polynomial 𝑎_ 𝑗 would
be given by

𝑎_ 𝑗 (b) = 𝑐𝐿b𝐿 +
𝐿−2∑︁
𝑙=0

𝑐𝑙b
𝑙 ,
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for some 𝑐𝑙 ∈ R, 𝑙 = 0, . . . , 𝐿, not all vanishing, which has no root of order 𝐿. Since points
of order 𝐿 or higher keep their vertical distance towards _ 𝑗 , the distance between _ 𝑗 and
𝐵 𝑗 ≔ {˜̀ ∈ Λ𝐻 𝑗 : 𝜔𝑝 𝑗 (˜̀) ≥ 𝐿} is bounded from below by

𝑡∗ ≔ min{𝛼 − 𝛼0 : (𝑘1, 𝛼) ∈ Λ𝐻0 , 𝛼 > 𝛼 𝑗} ,

independently of 𝑗 ∈ N0. Thus, all 𝑛0 ∈ N collisions in the time period
∑𝑛0
𝑘=0 𝑡𝑘 < 𝑡

∗ are only
due to points within Λ̃0 ∩ (N0 × [𝛼∗, 𝛼∗ + 𝑡∗)). After these first 𝑛0 collisions there are at most
finitely many points in Λ̃1∩ (N0× [𝛼∗, 𝛼∗+ 𝑡∗)), and again all collisions within

∑𝑛1
𝑘=𝑛0+1 𝑡𝑘 < 𝑡

∗

are only due to points in that region. Repeating this process yields that after finitely many
iterations there is 𝑀 ∈ N such that 𝑇 − ∑𝑛𝑀

𝑘=0 𝑡𝑘 < 0, proving (5.5). Hence, the only essential
point ` ∈ Λ𝐻𝑛𝑀 is the minimal point.

The addition of successors in Step 6 of Resolution of Singular Points whose purpose is to
account for horizontal edges leads only to a finite number of iterations of (ii)-(iv) in the proof
of Algorithm 1 for these additional branches. Since both (ii) and (iii) are adding only finitely
many blow-ups to each arc generated by (i), the tree G is finite. Hence we proved the theorem
under the assumption that 𝐴𝑚(𝑥, ℎ) = 𝑥𝑙𝑚ℎ𝛼𝑚 .

For the general case let 𝐴𝑚 be analytic in 𝑥. Without loss of generality assume that 0 ∈ 𝐼
and 𝐴𝑚(0, 0) = 0. Let 𝑛 ∈ N and 𝑁 𝑗 ⊂ H, 𝑗 = 1, . . . , 𝑛, be the zero level sets of 𝐴𝑚, i.e.

{𝐴𝑚 = 0} =
⋃
𝑗

𝑁 𝑗 .

We fix 𝑁1 and resolve 𝐴𝑚 with respect to this zero set. Then there are at most 𝑙 = 1, . . . , 𝑛− 1
iterated, quasihomogeneous blow-ups 𝛽𝑙 of 0 ∈ H such that 𝛽∗𝑁1 ∩ 𝛽∗𝑁 𝑗 = ∅ for 𝑗 ≥ 2,
with 𝛽 ≔ Π𝑙𝛽𝑙. If Algorithm 1 has not terminated already, we add these blow-ups 𝛽 𝑗 to
the resolution process, since they can be treated as additional collisions. Note that these do
not compromise the ability of extending phase functions to the interior of 𝑀 . We denote the
complete chain of blow-ups also including 𝛽 𝑗 , 𝑗 = 1, . . . , 𝑛, by 𝛽. If 𝑁1 = {𝑥 = 0}, then
the leading term 𝛽∗𝐴𝑚 is simple, i.e. satisfies the same properties as in the special case after
weaving in all blow-ups 𝛽 𝑗 , 𝑗 = 1, . . . , 𝑛− 1. On the other hand, if 𝑁1 ≠ {𝑥 = 0}, then we can
apply the implicit function theorem for analytic functions (see [KP13]) to obtain a regular curve
𝑐1 : R+ → H with 𝑐1(R+) = 𝑁1. Introducing a new coordinate ℎ̄(𝑥ff, ℎ) ≔ ℎ − (𝛽∗𝑐1) (𝑥ff)
results in the leading term 𝛽∗𝐴𝑚 being simple in (𝑥ff, ℎ̄). Thus, Algorithm 1 terminates
eventually. □

5.3 Construction of Quasimodes III: Unresolved Operators

In this section we will lay out the tools and methods required for our approach to construct
quasimodes on resolved spaces. After having shown that operators 𝑃 can be resolved by finitely
many quasihomogeneous blow-ups, the question that remains is how one is able to solve all
appearing transport equations simultaneously. To do so, we will introduce a family of transport
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operators 𝑇𝐻,L,Z linked to the vertices (𝑌, 𝐻,L, Z) ∈ V of the resolution tree G = (V, E).
This yields a local description of the transport equations at every arc 𝐻. After showing that
one can solve these equations consecutively, we introduce the solution and remainder spaces,
allowing us to account for the asymptotic behavior of the functions’ amplitudes. With these
spaces we will present a way to describe transport equations after blow-ups based on [Gri17]
and with the addition of multiple boundary faces as in [Sob18]. Theorem 5.3.22 then states that
the iteration of inhomogeneous transport equations eliminating leading orders of remainder
terms results in an arbitrarily good quasimode.

We want to emphasize that we will only present initial data of the form 𝔞 = (H, 𝜕H,L, Z)
for Algorithm 1 in Section 5.3, following Remark 5.2.17. This does not affect the statements
throughout the section. Of all these statements, only Theorem 5.3.22 references the initial date
in the construction of the resolution space. Both edges with positives slope and horizontal
edges will be addressed separately in the statement of Theorem 5.3.22.

5.3.1 Transport Operators

We begin this section by re-introducing the notion of induced transport operators. Since there
are multiple arcs 𝐻 ⊂ 𝜕𝑀 in a resolved manifold 𝛽 : 𝑀 → H this will be a family of operators,
depending on the arc. Moreover, due to the branching of resolution trees G associated to its
generators (L0, Z0), there will be multiple induced transport operators at each arc associated
to each successor (L, Z). Thus, we will define multiple new objects whose purpose is to sort
vertices of G to simplify the transport equations at every arc 𝐻 eventually.

Eikonal Variety

In the upcoming definition we will specify the relevant solutions Z of the respective eikonal
polynomial at arcs 𝐻 ⊂ 𝜕𝑀 . These can be derived from the resolution tree G.

Definition 5.3.1 (Eikonal Variety). Let 𝑃 ∈ DiffΛ(R) be a semi-classical operator, L0 ⊂
𝜕-P(Λ) be an edge, 𝐼 ⊂ 𝜕Hreg be a regular interval, Z0 be a solution of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0
on 𝐼 and 𝛽 : 𝑀 → H be the associated resolution space with resolution tree G. Then we call

Γ(G) ≔
⋃

ord( (𝑌,𝐻,L,Z ) )=1
(𝑌,𝐻,L,Z ) ∈V

graph(Z) × {𝛿(L)} (5.6)

the eikonal variety, where
{
𝐸𝐻,𝛿 (L) (𝛽∗𝑃) = 0

}
⊂ 𝑇∗
C
𝐻◦, for each 𝐻 ⊂ 𝜕𝑀 .

Remark 5.3.2. Only including vertices of order one in (5.6) in Definition 5.3.1 restricts the
variety to end points of branches when considering relevant arcs, edges and solutions. The
lift of right sides of blown-up arcs as described in Algorithm 1 was designed to create short
branches with terminal vertices (𝑌, 𝐻𝑟 ,L, Z), such that 𝛽∗

𝑌
𝑃 is L-resolved on 𝐻𝑟 .

It is useful to sort the resolution tree G, yielding a set of edges L and a set of solutions Z
corresponding to edges at arcs 𝐻.
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Definition 5.3.3. Let 𝑃 ∈ DiffΛ(R) be a semi-classical operator, L0 ⊂ 𝜕-P(Λ) be an edge,
𝐼 ⊂ 𝜕Hreg be a regular interval, Z0 be a solution of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0 on 𝐼 and 𝛽 : 𝑀 → H
be the associated resolution space with resolution tree G. Let 𝐻 ∈ M1(𝑀).

Then we call

𝐿 (𝐻; G) ≔ {L ⊂ 𝜕-P(Λ𝐻) : there exists𝑌 and Z with (𝑌, 𝐻,L, Z) ∈ V}

the edges associated to 𝐻, and

𝑍 (𝐻,L; G) ≔ {Z : there exists𝑌 with (𝑌, 𝐻,L, Z) ∈ V}

the solutions of 𝐸𝐻,𝛿 (L) (𝛽∗𝑃) (·, Z) = 0, for L ⊂ 𝜕-P(Λ𝐻).

Remark 5.3.4. Note that we identify each connected component of 𝛽∗𝐻 ⊂ 𝜕𝑀 with 𝐻 ⊂ 𝜕𝑌 ,
where 𝛽 : 𝑀 → 𝑌 .

The following proposition illustrates how exponential-polyhomogeneous functions asso-
ciated to an eikonal variety Γ(G) look locally, including the logarithmic behavior at some
arcs.

Proposition 5.3.5. Let 𝑃 ∈ DiffΛ(R) be a semi-classical operator, let L0 ⊂ 𝜕-P(Λ) be an
edge, 𝐼 ⊂ 𝜕Hreg be a regular interval and Z0 a solution of 𝐸𝛿 (𝑃) (·, Z0) = 0 on 𝐼. Let
𝛽 : 𝑀 → H be the associated resolution space with resolution tree G and Γ = Γ(G) be the
corresponding eikonal variety. Let I be a family of index sets on 𝑀 corresponding to Γ.

Then for each function 𝑢 ∈ EAI (𝑀; Γ) and arc 𝐻 ∈ M1(𝑀) we have

𝑢 =
∑︁

L∈𝐿 (𝐻;G)

∑︁
Z ∈𝑍 (𝐻,L;G)

𝑒𝜑L,Z /ℎ
𝛿 + 𝑐·log(ℎ)/ℎ𝛿 𝐴𝐻,L,Z at 𝐻◦ , (5.7)

with 𝐴𝐻,L,Z being polyhomogeneous in a neighborhood of 𝐻◦, for some 𝑐 : Γ → N locally
constant and where the phase functions 𝜑L,Z are the solutions of

𝐸𝐻,𝛿 (L) (·, 𝜕𝑥𝐻𝜑L,Z ) = 0 ,

for each L ∈ 𝐿 (𝐻; G) and Z ∈ 𝑍 (𝐻,L; G).

Proof. By construction, every exponential-polyhomogeneous function 𝑢 ∈ EAI (𝑀; Γ) is of
the form 𝑢 =

∑𝑁
𝑘=1 𝑒

Φ 𝑗 𝐴 𝑗 for some Φ 𝑗 , 𝐴 𝑗 ∈ A. In particular, at every arc 𝐻 ∈ M1(𝑀) we
have

Φ 𝑗 = 𝜑 𝑗 ,L,Z /ℎ𝛿 + 𝑐 · log(ℎ)/ℎ𝛿 ,

where 𝛿 = 𝛿(L), 𝑐 = 𝑐(𝐻,L, Z), for some L ∈ 𝐿 (𝐻; G) and graph(𝑑𝜑 𝑗 ,L,Z ) × {𝛿} ⊂ Γ at
𝐻◦. Thus, there are at most |𝑍 (𝐻,L; G)| different sheets and hence different phases 𝜑 for
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each L ∈ 𝐿 (𝐻; G). Therefore, we can write

𝑢 =

𝑁∑︁
𝑘=1

𝑒Φ 𝑗 𝐴 𝑗 =
∑︁

L∈𝐿 (𝐻;G)

∑︁
Z ∈𝑍 (𝐻,L;G)

𝑒𝜑L,Z /ℎ
𝛿 + 𝑐·log(ℎ)/ℎ𝛿 𝐴𝐻,L,Z ,

with 𝛿 = 𝛿(L) and, as a consequence of graph(𝑑𝜑 𝑗) ⊂ {𝐸𝐻,𝛿 (L) (𝛽∗𝑃) = 0}, it follows that
𝐸𝐻,𝛿 (L) (𝛽∗𝑃) (·, 𝜕𝑥𝐻𝜑L,Z ) = 0. □

Transport Operator

The upcoming definition of induced transport operators along arcs is straightforward and
coincides with Definition 3.2.18 for the boundary of the half space H. These operators reflect
the symbolic nature of the transport operators as shown in Remark 3.2.19.

Definition 5.3.6 (Transport Operator on Resolved Manifolds). Let 𝑃 ∈ DiffΛ(R) be a semi-
classical operator, L0 ⊂ 𝜕-P(Λ) be an edge, 𝐼 ⊂ 𝜕Hreg be a regular interval, Z0 be a solution
of 𝐸𝛿 (L0 ) (𝑃) (·, Z) = 0 on 𝐼 and 𝛽 : 𝑀 → H be the associated resolution space with resolution
tree G. Let 𝐻 ∈ M1(𝑀), L ∈ 𝐿 (𝐻; G) and Z ∈ 𝑍 (𝐻,L; G) be simple. Assume that 𝛽∗𝑃 is
𝛿(L)-separated and let 𝜑 be a solution of 𝜕𝑥𝐻𝜑 = Z .

If 𝛿(L) > 0 we call

𝑇𝐻,L,Z ≔
∑︁

_∈L∩Λ𝐻
_=(𝑘,𝛼)

𝑎_𝑘 (𝜑′)𝑘−1
(
𝜕𝑥𝐻 + 𝑘 − 1

2
𝜑′′

𝜑′

)

the induced transport operator of 𝛽∗𝑃 at 𝐻 with respect to ℎ and (L, Z).
If 𝛿(L) = 0 we call the leading term

𝑇𝐻,0 ≔ (𝛽∗𝑃)𝐻 ,

of (𝛽∗𝑃) at 𝐻◦ with respect to ℎ the transport operator.

Immediately, it holds that 𝑇𝐻,L,Z is elliptic on 𝐻◦ for L with 𝛿(L) > 0, if 𝜑′ is a simple,
non-trivial solution of 𝐸𝛿 (L) (𝛽∗𝑃) (·, Z) = 0.

Remark 5.3.7. We can define transport operators for higher order multiplicities as in Defi-
nition 3.3.13 at each arc 𝐻 ⊂ 𝜕𝑀 for any choice of L and Z . Since these only occur in
extreme marginal cases we will restrict the algorithmic construction in Subsection 5.3.3 to
simple solutions Z of eikonal polynomials 𝐸𝐻,𝛿 (𝛽∗𝑃) with 𝛿 > 0.

The following proposition shows that we are able to solve transport equations on resolved
manifolds as in the model cases of Chapters 3 & 4. This is important to determine the jumps
for the minimal exponents in the asymptotic expansion of the amplitudes between arcs.

Proposition 5.3.8 (Homogeneous Transport Solution). Let 𝑃 ∈ DiffΛ(R), L0 ⊂ 𝜕-P(Λ), let
𝐼 ⊂ 𝜕Hreg, Z0 a solution of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0 on 𝐼 and 𝛽 : 𝑀 → H be the associated reso-
lution space and Γ = Γ(G) be the corresponding eikonal variety. Let 𝐻1, 𝐻2 ∈ M1(𝑀) be ad-
jacent hypersurfaces, 𝑝 ∈ 𝐻1 ∩ 𝐻2, L ⊂ 𝜕-P(Λ𝑝 (𝛽∗𝑃)) and L 𝑗 ≔ 𝜋 (𝑘,𝛼𝑗 ) (L) ⊂ 𝜕-P(Λ𝐻 𝑗 )
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𝐻2

𝐻1

𝐻0

[1

𝑟1
[0

𝑟0

Figure 5.6: Illustration of adjacent arcs with their induced quasi-projective coordinate systems
(𝑟 𝑗 , [ 𝑗).

with slopes 𝛿 𝑗 , for 𝑗 = 1, 2. Let Z 𝑗 be simple solutions of 𝐸𝐻 𝑗 , 𝛿 𝑗 (𝛽∗𝑃) (·, Z 𝑗) = 0 on 𝐻◦
𝑗

matching in the sense of Proposition 5.1.16. Suppose that 𝛽∗𝑃 is strictly 𝛿 𝑗-separated at 𝐻 𝑗 ,
𝑗 = 1, 2.

Then for each solution 𝑢1 of 𝑇𝐻1, 𝛿1,Z 𝑗𝑢1 = 0 there is a solution 𝑢2 of 𝑇𝐻2, 𝛿2,Z2𝑢2 = 0 and
there is 𝑠 ∈ R, such that the pair (𝑢1, 𝑢2ℎ

𝑠) has a polyhomogeneous extension to 𝑀 . In
particular, 𝑠 is given by 𝑢1(𝑟) ∼ 𝑟𝑠 as 𝑟 → 0.

Proof. By Proposition 5.1.16 there is a function Φ ∈ A(𝑀) such that the leading terms 𝜑 𝑗
of ℎ𝛿 𝑗Φ ∼ 𝜑 𝑗 + 𝑜(1) at 𝐻◦

𝑗
satisfy 𝜕𝑥𝐻𝑗 𝜑 𝑗 = Z 𝑗 . Since 𝑃 is 𝛿 𝑗-separate at 𝐻 𝑗 , 𝑗 = 1, 2, the

operators 𝑇𝐻 𝑗 , 𝛿 𝑗 ,Z 𝑗 from Definition 3.2.18 are the transport operators at both faces. They are
elliptic, since Z 𝑗 are simple solutions of 𝐸𝐻 𝑗 , 𝛿 𝑗 (𝛽∗𝑃) (·, Z 𝑗) = 0. These can be rephrased to

∑︁
_∈L 𝑗∩Λ𝐻𝑗
_=(𝑘,𝛼)

𝑎_𝑘 (𝜑′𝑗)𝑘−1

(
𝜕𝑥𝐻𝑗 +

𝑘 − 1
2

𝜑′′
𝑗

𝜑′
𝑗

)
= (𝜕Z 𝐸𝐻 𝑗 , 𝛿 𝑗 (𝛽∗𝑃))𝜕𝑥𝐻𝑗 +

𝜑′′
𝑗

2
𝜕2
Z 𝐸𝐻 𝑗 , 𝛿 𝑗 (𝛽∗𝑃) .

For 𝑗 = 1, 2 and for

𝑓 𝑗 ≔ 𝑥𝐻 𝑗𝜑
′′
𝑗 /2 · (𝜕2

Z 𝐸𝐻 𝑗 , 𝛿 𝑗 )/(𝜕Z 𝐸𝐻 𝑗 , 𝛿 𝑗 ) (𝛽∗𝑃)

we have 𝑠 ≔ 𝑓1(0) = 𝑓2(0) ≠ 0 by Proposition 4.3.4 since L ⊂ 𝜕-P(Λ𝑝). Thus, they admit
an extension 𝐹 to 𝑀 and we can apply Lemma 4.3.7 at 𝑝 ∈ 𝐻1 ∩ 𝐻2 to 𝑇 ≔ 𝛽∗(𝑥𝜕𝑥) + 𝐹 and
obtain an asymptotic solution 𝑢. In particular, for 𝑢 ∼ 𝑢1 + 𝑜(1) at 𝐻1 and 𝑢 ∼ 𝑢2ℎ

𝑠 + 𝑜(ℎ𝑠)
at 𝐻2 we have 𝑇𝐻 𝑗 , 𝛿 𝑗 ,Z 𝑗𝑢 𝑗 = 0, completing the proof. □

5.3.2 Solution- & Remainder Spaces

The goal of this subsection is to find a suitable space of exponential-polyhomogeneous func-
tions EAI (𝑀; Γ) on the resolved space 𝛽 : 𝑀 → H, containing quasimodes 𝑢 for the operator
𝛽∗𝑃 on 𝑀 . We use the eikonal variety Γ(G) associated to a resolution tree to specify the
exponential behavior of potential quasimodes at each arc 𝐻0 ⊂ 𝜕𝑀 . What remains to be
determined are the index families I(G) associated to each phase corresponding to each sheet
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in Γ(G). Due to the asymptotic behavior of homogeneous solutions of the transport equations
at each arc, the corresponding index sets will have slightly shifted minima going from one
arc 𝐻0 to an adjacent arc 𝐻. Incorporating these shifts Y𝐻,L,Z for each combination of arcs,
edges and solutions is crucial in the definition of solution- and remainder spaces. These will
become especially important in the definition of leading parts.

Index Shift

Proposition 5.3.8 has significant implications on the structure of potential solution spaces.
Let 𝔳 𝑗 = (𝑌 𝑗 , 𝐻 𝑗 ,L 𝑗 , Z 𝑗) ∈ V, for 𝑗 = 1, 2, be leaves of order one in the resolution tree of
𝑃. Suppose that these leaves are matching in the sense that the arcs are adjacent, i.e. there
is 𝑝 ∈ 𝐻1 ∩ 𝐻2, there is an three-dimensional edge L ⊂ Λ(𝛽∗𝑃)𝑝 with 𝜋 (𝑘,𝛼𝑗+1 ) = L 𝑗 and
matching solution Z 𝑗 , for 𝑗 = 1, 2. Assume that 𝐻2 is on the left side of 𝐻1. Denote 𝑥𝐻 := 𝑥𝐻1 .

Then the value

𝑠(𝔳2) B lim
𝑥𝐻→0

𝑥𝐻𝜑
′′
1 (𝑥𝐻)
2

(𝜕2
Z
𝐸𝐻1, 𝛿 (L1 ) (𝛽∗𝑃)) (𝑥𝐻 , 𝜑′1(𝑥𝐻))

(𝜕Z 𝐸𝐻1, 𝛿 (L1 ) (𝛽∗𝑃)) (𝑥𝐻 , 𝜑′1(𝑥𝐻))
(5.8)

is the shift of the minimal value in the index set at 𝐻2 from 𝐻1 with respect to the leaves 𝔳 𝑗 ,
𝑗 = 1, 2. The solution space will be a space of exponential-polyhomogeneous functions with
a family of index sets corresponding to these leaves. Note that 𝑠(𝔳2) exists and is real valued.

Lemma 5.3.9. In the setting above, let 𝑠(𝔳2) be the value defined in (5.8). Then 𝑠(𝔳2) ∈ R.

Proof. At 𝑥𝐻 = 0 we can factorize the eikonal polynomial of 𝛽∗𝑃 at 𝐻1

𝐸𝐻1, 𝛿 (L1 ) (𝛽∗𝑃) (·, Z) =
𝐿∏
𝑙=1

(Z − Z𝑙) ,

where 𝐿 ≥ 2 is the length of the associated edge in 𝜕-P(Λ𝐻1). By assumption, we have
(Z1/Z2) (0) = 1. Differentiating 𝐸𝐻1, 𝛿 (L1 ) (𝛽∗𝑃) in Z then yields

(
𝜕Z 𝐸𝐻1, 𝛿 (L1 ) (𝛽∗𝑃)

)
(·, Z) =

𝐿∑︁
𝑘=1

𝐿∏
𝑙=1
𝑙≠𝑘

(Z − Z 𝑗)

(
𝜕2
Z 𝐸𝐻1, 𝛿 (L1 ) (𝛽∗𝑃)

)
(·, Z) =

𝐿∑︁
𝑗 ,𝑘=1
𝑗≠𝑘

𝐿∏
𝑙=1
𝑙≠ 𝑗 ,𝑘

(Z − Z 𝑗) .
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Sorting this and the second derivative by vanishing order at 𝑥𝐻 = 0 and with respect to Z1 then
yields

(
𝜕Z 𝐸𝐻1, 𝛿 (L1 ) (𝛽∗𝑃)

)
(·, Z) = (Z − Z2)

𝐿∏
𝑗=2

(Z − Z 𝑗) + O (Z − Z1)

(
𝜕2
Z 𝐸𝐻1, 𝛿 (L1 ) (𝛽∗𝑃)

)
(·, Z) = 2 ·

𝐿∏
𝑗=2

(Z − Z 𝑗) + O (Z − Z2) + O(Z − Z1) ,

where the two Os in the second equation mean that some summands only vanish at 𝑥𝐻 = 0
and most summands vanish globally on 𝐻1 if Z = Z1. Thus, as 𝑥𝐻 → 0 we have

𝑥𝐻Z
′
1(𝑥𝐻)
2

(𝜕2
Z
𝐸𝐻1, 𝛿 (L1 ) (𝛽∗𝑃)) (𝑥𝐻 , Z1(𝑥𝐻))

(𝜕Z 𝐸𝐻1, 𝛿 (L1 ) (𝛽∗𝑃)) (𝑥𝐻 , Z1(𝑥𝐻))
∼

𝑥𝐻Z
′
1(𝑥𝐻)

Z1(𝑥𝐻) − Z2(𝑥𝐻)
+ 𝑜(1) .

Denoting Z ′
𝑗
(𝑥𝐻) ∼ 𝑐 𝑗𝑥𝛾 𝑗 , for 𝑗 = 1, 2, and taking the limit, we have

𝑠(𝔳2) =
𝑐1

𝑐1 − 𝑐2
≠ 0 ,

since Z1, Z2 intersect cleanly in 𝑥𝐻 = 0. Since Z1, Z2 are implicit functions of the real valued
polynomial 𝐸𝐻1, 𝛿 (L1 ) (𝛽∗𝑃) they coincide with the implicit differential evaluated at 𝑥𝐻 = 0
and are real valued. In particular, we have 𝑠(𝔳2) ∈ R. □

Solution Space

Without loss of generality we can assume that any quasimode we construct for initial data
L ⊂ 𝜕-P(Λ), 𝐼 ⊂ 𝜕Hreg and Z solving 𝐸𝛿 (L) (𝑃) (·, Z) = 0 is bounded at 𝜕H𝑟 on the resolved
space 𝛽 : 𝑀 → H, since [𝑃, ℎ] = 0. Thus, the index set I(G; 𝜕H𝑟 ,L, Z) ⊂ R+×{0} at 𝜕H𝑟 is
log-free and does not contain negative polynomial powers. We will denote the minimal entry
of I(G; 𝜕H𝑟 ,L, Z) by Y𝜕H𝑟 ,L,Z ≔ 0. The number in (5.8) shifts the minimal value of the
index sets going from one hypersurface to an adjacent hypersurface. Thus, we need to sum
all values 𝑠(𝔳) for a chain of leaves at the end of branches to determine the minimal value of
I(G;𝐻,L𝐻 , Z𝐻) at the final leaf (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V.

Let (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V be a leaf at the end of a branch and (𝔳𝑛)𝑁𝑛=0 with

𝔳𝑛 ≔ (𝑌𝑛, 𝐻𝑛,L𝑛, Z𝑛)

be the unique family of pairwise matching leaves at the end of branches starting from
𝔳0 ≔ (H, 𝜕H,L, Z) to 𝔳𝑁 := (𝑌, 𝐻,L𝐻 , Z𝐻), for some 𝑁 ∈ N. For 1 ≤ 𝑛 ≤ 𝑁 let 𝑠(𝔳𝑛) in
(5.8) corresponding to the pair (𝔳𝑛−1, 𝔳𝑛). Then the lowest entry of I(G;𝐻𝑛,L𝑛, Z𝑛) is given
by

Y𝐻𝑛 ,L𝑛 ,Z𝑛 ≔
𝑁∑︁
𝑛=1

𝑠(𝔳𝑛) . (5.9)

154



5.3 Construction of Quasimodes III: Unresolved Operators

Recall that transport equations for determining the amplitude 𝑢 ∼ ∑
𝑢𝑘ℎ

𝛾𝑘 are asymptoti-
cally of the form

𝑇𝑢𝑘 = −𝑅 𝑗𝑢𝑘−1 ,

where 𝑇 is the transport operator of the expansion of the conjugated operator

𝑒−𝜑/ℎ
𝛿

𝑃𝑒𝜑/ℎ
𝛿

= ℎ𝛼0𝑇 +
∞∑︁
𝑙=1

ℎ𝛼𝑙𝑅𝑙 .

The other operators 𝑅𝑙 are differential operators in the expansion with a higher order in ℎ. Thus,
the non-negative parts of the pairwise differences (𝛼𝑙 − 𝛼0)+ and their linear combinations
over N0 for all 𝑙 ∈ N are the relevant exponents 𝛾𝑘 in the expansion of 𝑢. This motivates the
upcoming definition of induced index sets.

Definition 5.3.10 (Induced Index Sets). Let Λ ⊂ N × R be a set of exponents. Denote
𝛼min ≔ min{𝛼 : (𝑘, 𝛼) ∈ Λ}. Then we define the induced index set of Λ,

𝐸 (Λ) ≔ ⟨{(𝛼 − 𝛼min)+ | (𝑘, 𝛼) ∈ Λ}⟩N ,

to be the free semi group overN generated by the pairwise non-negative differences in the first
entries of Λ.

Using this notion of induced index sets we are able to introduce the spaces of potential
quasimodes of an operator 𝑃.

Definition 5.3.11 (Solution Space). Let 𝑃 ∈ DiffΛ(R) be an operator, L0 ⊂ 𝜕-P(Λ) be an
edge, 𝐼 ⊂ 𝜕Hreg be a regular interval, Z0 be a solution of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0 on 𝐼 and
𝛽 : 𝑀 → H be the associated resolution space with resolution tree G. Assume Z𝐻 is simple
on 𝐻◦ for all (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V of order one. Let Γ be the associated eikonal variety and
for each leaf (𝑌, 𝐻,L, Z) ∈ V of order one let Y𝐻,L,Z be the transport shift given by (5.9).
Let

I(G;𝐻,L, Z) ≔ 𝐸
(
Λ

(
(𝛽∗𝑃𝐻)𝛿 (L) ,Z

) )
+ Y𝐻,L,Z

be a family of index sets at 𝐻 induced by all leaves in G of order one and denote

I(G) B (I(G;𝐻,L, Z))𝐻,L,Z .

Then the space

EAI(G) (𝑀; Γ)

is called solution space of 𝛽∗𝑃 and G.

It will become clear at the end of this chapter that it is very important to keep an accurate
record of the remainder functions 𝑓 = 𝑃𝑢 during the iterative construction of quasimodes.

155



5 Resolution of Operators

Their asymptotic behavior will be used to measure the quality of the quasimode after finite
iterations. In the upcoming definition, we will introduce the notion of remainder space. This
turns out to be the image of the solution space with respect to the operator 𝛽∗𝑃 on the resolution
space 𝛽 : 𝑀 → H.

Definition 5.3.12 (Remainder Space). Let 𝑃 ∈ DiffΛ(R) be an operator, L0 ⊂ 𝜕-P(Λ) be
an edge, 𝐼 ⊂ 𝜕Hreg be a regular interval, Z0 be a solution of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0 on 𝐼 and
𝛽 : 𝑀 → H be the associated resolution space with resolution tree G. Assume Z𝐻 is simple on
𝐻◦ for all (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V of order one. Let Γ be the associated eikonal variety. Denote
𝛼min(𝐻,L, Z) ≔ min{𝛼 : (𝑘, 𝛼) ∈ Λ𝐻 ((𝛽∗𝑃)𝛿 (L) ,Z )} and let

J (G;𝐻,L, Z) ≔ ⟨I(G;𝐻,L, Z) + {𝛼 : (𝑘, 𝛼) ∈ Λ𝐻 ((𝛽∗𝑃)𝛿 (L) ,Z )}⟩N

be the semi group generated by I(G) for leaves in G of order one, 𝛼 𝑗 at 𝐻 with respect to L
and Z . Then the space

EAJ(G) (𝑀; Γ)

is called remainder space of 𝛽∗𝑃 with respect to G.

The upcoming definition of leading parts is crucial in the construction of quasimodes. It
simplifies the transport equations at any arc 𝐻 and evaluating remainder terms.

Definition 5.3.13 (Space of Leading Parts and Leading Part Operator). Let 𝑃 ∈ DiffΛ(R) be
a semi-classical operator, L0 ⊂ 𝜕-P(Λ) be an edge, 𝐼 ⊂ 𝜕Hreg be a regular interval, Z0 be a
solution of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0 on 𝐼 and 𝛽 : 𝑀 → H be the associated resolution space with
resolution tree G. Assume Z𝐻 is simple on 𝐻◦ for all (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V of order one. Let
Γ = Γ(G) be the associated eikonal variety and let 𝑘 ∈ N0.

For any 𝐻 ∈ 𝜕1(𝑀) let
∑

L
∑
Z 𝑒

Φ𝐻,L,Z 𝐴𝐻,L,Z be the expansion of 𝑢 ∈ EAI(G) (𝑀; Γ)
at 𝐻◦. Let 𝑎𝐻,L,Z be the leading part of ℎ−𝛼𝐻,L,Z 𝐴𝐻,L,Z ∼ 𝑎𝐻,L,Z + 𝑜(1) to the power
𝛼𝐻,L,Z ∈ R at 𝐻◦. The operator LP defined by

𝑢 ↦→ (𝑎𝐻,L,Z )𝐻,L,Z

is called leading part operator. Its restriction to the filtered subspace EAI𝑘 (G) (𝑀; Γ) is
denoted by

LP𝑘 ≔ LP | EAI𝑘 (G) (𝑀;Γ) .

Further we call

S𝑘 (𝜕𝑀; Γ) ≔ LP𝑘
(
EAI𝑘 (G) (𝑀; Γ)

)
the space of leading parts to 𝑘-th order.
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Remark 5.3.14. We will also apply LP and its restrictions LP𝑘 to elements 𝑓 ∈ EAJ (𝑀; Γ)
in the same sense without introducing any new terminology.

Remark 5.3.15. For 𝑢 ∈ EAI(G) (𝑀; Γ) the function LP0(𝑢)𝐻,L,Z does not vanish on 𝐻 if
and only if 𝛼𝐻,L,Z = Y𝐻,L,Z .

To extend families of asymptotic solutions at different arcs to the interior of 𝑀 , we need a
more sophisticated version of the Borel lemma 2.2.18, respecting the exponential behavior at
corners and in particular the successors going from one arc to an adjacent arc.

Lemma 5.3.16 (Extended Borel lemma). Let 𝑃 ∈ DiffΛ(R) be an operator, L0 ⊂ 𝜕-P(Λ) be
an edge, 𝐼 ⊂ 𝜕Hreg be a regular interval, Z0 be a solution of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0 on 𝐼 and
𝛽 : 𝑀 → H be the associated resolution space with resolution tree G. Assume Z𝐻 is simple on
𝐻◦ for all (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V of order one. Let Γ = Γ(G) be the associated eikonal variety
and I(G) be the induced index family. Let (𝑎𝐻,L,Z )𝐻,L,Z be a family of functions such that
𝑎𝐻,L,Z ∈ A(𝐻) such that

𝑎𝐻,L,Z (𝑟𝐻′) ∼ 𝑟 Y𝐻′ ,L′ ,Z ′−Y𝐻,L,Z
𝐻′ ,

for all matching leaves (𝑌, 𝐻,L, Z), (𝑌, 𝐻′,L′, Z ′) ∈ V of order one, adjacent hypersurface
𝐻′ and successor (L′, Z ′).

Then there is a function 𝑢 ∈ EAI(G) (𝑀; Γ) such that

𝐿𝑃(𝑢) = (𝑎𝐻,L,Z )𝐻,L,Z .

Proof. Since all solutions Z for all L and 𝐻 in G are simple, there are global phase functions
𝜑𝐻,L,Z on 𝐻◦ with

𝜕𝑥𝐻𝜑𝐻,L,Z = Z𝐻,L,Z ,

for all leaves (𝑌, 𝐻,L, Z) ∈ V at the end of branches. Since (𝑌 ′, 𝐻′,L′, Z ′) and (𝑌, 𝐻,L, Z)
are matching leaves, the corresponding phase functions 𝜑𝐻,L,Z and 𝜑𝐻′ ,L′ ,Z ′ can be extended
polyhomogeneously to 𝑀 .

Let 𝑣𝐻,L,Z ≔ 𝑒𝜑𝐻,L,Z ℎY𝐻,L,Z 𝑎𝐻,L,Z be a family of local exponential-polyhomogeneous
functions at 𝐻 with respect to Γ. Since Y𝐻′ ,L′ ,Z ′ − Y𝐻,L,Z = 𝑠((𝑌 ′, 𝐻′,L′, Z ′)) and

𝑎𝐻,L,Z (𝑟𝐻′) ∼ 𝑟 Y𝐻′ ,L′ ,Z ′−Y𝐻,L,Z
𝐻′ ,

the amplitudes ℎY𝐻,L,Z 𝑎𝐻,L,Z and 𝑎𝐻′ ,L′ ,Z ′ can be extended to 𝑀 . Thus, starting at the
vertex (H, 𝜕H𝑟 ,L, Z) for initial values (L, Z) on H, Propositions 5.1.16 and 5.3.8 determine
a function 𝑢 ∈ EAI (𝑀; Γ) with

𝐿𝑃(𝑢) = (𝑎𝐻,L,Z )𝐻,L,Z .

□
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We have to correct the polyhomogeneous amplitudes of the exponential-polyhomogeneous
functions 𝑢 ∈ EAI (𝑀; Γ(G)) in the iterative construction of quasimodes. Thus, we can
make use of a short exact sequence of similar solution spaces.

Lemma 5.3.17 (Short Exact Sequence). Let 𝑃 ∈ DiffΛ(R) be an operator, L0 ⊂ 𝜕-P(Λ) be
an edge, 𝐼 ⊂ 𝜕Hreg be a regular interval, Z0 be a solution of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0 on 𝐼 and
𝛽 : 𝑀 → H be the associated resolution space with resolution tree G. Assume Z𝐻 is simple on
𝐻◦ for all (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V of order one. Let Γ = Γ(G) be the associated eikonal variety
and let 𝑘 ∈ N0.

Then the sequence

0 → EAI𝑘+1 (G) (𝑀; Γ) ]→ EAI𝑘 (G) (𝑀; Γ) LP𝑘→ S𝑘 (𝜕𝑀; Γ) → 0

is exact, where the left map is the canonical inclusion ] and the right map LP𝑘 is the leading
part operator.

Proof. The proof for 𝑘 > 0 is the same as the proof for 𝑘 = 0. By construction we have
LP(EAI(G) (𝑀; Γ)) = S(𝜕𝑀; G). Since ℎ is a global boundary defining function, it holds
that LP(EAI+ (G) (𝑀; Γ)) = ∅. Let 𝑢 ∈ EAI(G) (𝑀; Γ) such that LP(𝑢) = 0. Thus, the
leading part 𝑎𝐻,L,Z of 𝐴𝐻,L,Z vanishes globally at each 𝐻 for each L and Z , implying that
𝑢 ∈ EAI+ (G) (𝑀; Γ). □

Remark 5.3.18. If I(G) can be generated by a finite amount of elements for each (𝐻,L, Z)
then one can simplify the construction of quasimodes by using only the principal symbol of
LP. In order to do so, one needs to expand I(G) so that it is generated by the greatest common
divisor of all generating elements mentioned above and shifted afterwards by Y𝐻,L,Z .

5.3.3 Model Operators & Compatibility

In this subsection we derive a method to construct quasimodes on a resolved manifold 𝑀 . This
is done via three subsequent lemmas, showing that we can solve a family of transport equations
at all arcs simultaneously. The following lemma demonstrates the core of the iteration in the
construction of quasimodes. It shows how solution- and remainder spaces are related by the
operator 𝛽∗𝑃 and that the leading part of 𝛽∗𝑃𝑢 is given by the image of the transport operator
applied to the leading part of 𝑢 at any arc 𝐻 for any edge L and solution Z . In particular, this
lemma shows that the elimination of leading parts of remainders improves the quasimode and
that this can be done by adding correction terms.

Lemma 5.3.19 (Leading Part and Model Operator Lemma). Let 𝑃 ∈ DiffΛ(R) be a semi-
classical operator, L0 ⊂ 𝜕-P(Λ) be an edge, 𝐼 ⊂ 𝜕Hreg be a regular interval, Z0 be a solution
of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0 on 𝐼 and 𝛽 : 𝑀 → H be the associated resolution space with resolution
tree G. Assume Z𝐻 is simple on 𝐻◦ for all (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V of order one. Let Γ = Γ(G) be
the associated eikonal variety. Let 𝐻 ∈ M1(𝑀) be an arc, 𝑘 ∈ N0, let 𝑓 ∈ EAJ𝑘 (G) (𝑀; Γ)

158



5.3 Construction of Quasimodes III: Unresolved Operators

and let 𝑢 ∈ EAI(G) (𝑀; Γ) such that

𝑢 =
∑︁

L∈𝐿 (𝐻;G)

∑︁
𝜑′∈𝑍 (𝐻,L;G)

𝑒𝜑L,Z /ℎ
𝛿

𝑎𝐻,L,𝜑′ℎY𝐻,L,𝜑′ + h.o.t. at 𝐻◦ .

Then the following hold:

(i) 𝛽∗𝑃 : EAI𝑘 (G) (𝑀; Γ) → EAJ𝑘 (G) (𝑀; Γ) ,

(ii) At 𝐻◦ we have

(𝛽∗𝑃)𝑢 =
∑︁

L∈𝐿 (𝐻;G)

∑︁
𝜑′∈𝑍 (𝐻,L;G)

𝑒𝜑L,Z /ℎ
𝛿

ℎ𝑙𝐻,𝛿 (L)+𝛿 (L)+Y𝐻,L,𝜑′𝑇𝐻,L,𝜑′𝑎𝐻,L,𝜑′ + h.o.t. ,

(iii) 𝑓 ∈ EAJ𝑘+1 (G) (𝑀; Γ) if and only if LP𝑘 ( 𝑓 ) = 0 .

Proof. (i) This is true by construction. (ii) This is an immediate consequence of the construc-
tion of 𝐿 (𝐻; G) and 𝑍 (𝐻,L; G) for 𝑢 ∈ EAI(G) (𝑀; Γ). (iii) The proof is analogue to the
proof of Lemma 5.3.17, exchanging EAI(G) (𝑀; Γ) with EAJ(G) (𝑀; Γ). □

The method described above starts with the family of homogeneous transport equations at
each arc 𝐻. One effect of the resolution algorithm is that crossing points turn into constant
multiplicities of solutions. However, since the corresponding edge is horizontal, it is separated
by default. Thus, the presence of constant multiplicities of solutions for non-horizontal edges
is highly generic and will be excluded from Theorem 5.3.22 for simplicity. Recall the notion
of truncated, real index sets 𝐼𝑛 in Definition 2.2.7.

Lemma 5.3.20 (Initial Step Lemma). Let 𝑃 ∈ DiffΛ(R) be an operator, L0 ⊂ 𝜕-P(Λ) be
an edge, 𝐼 ⊂ 𝜕Hreg be a regular interval, Z0 be a solution of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0 on 𝐼 and
𝛽 : 𝑀 → H be the associated resolution space with resolution tree G. Assume Z𝐻 is simple on
𝐻◦ for all (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V of order one. Let Γ = Γ(G) be the associated eikonal variety
and assume that 𝑚Z (L) = 1 for all (𝑌, 𝐻,L, Z) ∈ V with 𝛿(L) > 0. Assume that 𝛽∗𝑃 is
strictly 𝛿(L)-separated for every (𝑌, 𝐻,L, Z) ∈ V.

Then there is 𝑢 ∈ EAI(G) (𝑀; Γ), with LP(𝑢) ≠ 0, such that

(𝛽∗𝑃)𝑢 ∈ EAJ+ (G) (𝑀; Γ) . (5.10)

Proof. Let 𝐻0 ≔ 𝛽∗𝐼, assume that all boundary faces are on the right of 𝐻0 and index them
by order from left to right. For 𝐻0, the only choice of edges and solutions is given by L0 and
Z0, respectively. Let 𝑎0 ≠ 0 be a solution of 𝑇𝐻0,L0,Z0𝑎0 = 0. The asymptotic behavior of 𝑢0

towards 𝐻0 ∩ 𝐻1 yields boundary value problems for 𝑇𝐻1,L′ ,Z ′ (𝑎𝐻1,L′ ,Z ′ℎ
Y𝐻1 ,L′ ,Z ′ ), for each

leaf 𝔳′ with respect to 𝐻1, L′ and Z ′. Repeating this argument for all 𝔳 ∈ V successively
yields a family of homogeneous solutions (𝑎𝐻,L,Z ℎY𝐻,L,Z )𝐻,L,Z matching successively at
each corner. Thus, by Lemma 5.3.16, we have (𝑎𝐻,L,Z ) ∈ S(𝜕𝑀; G) and by Lemma 5.3.17
there is 𝑢 ∈ EAI(G) (𝑀; Γ) such that (𝛽∗𝑃)𝑢 ∈ EAJ+ (G) (𝑀; Γ). □
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The leading terms of the remainders of the homogeneous solutions can now be eliminated
by adding suitable correction terms 𝑣 ∈ EAI𝑘 (G) (𝑀; Γ). This will lead to inhomogeneous
transport equations in the upcoming lemma.

Lemma 5.3.21 (Iterated Improvement Lemma). Let 𝑃 ∈ DiffΛ(R) be a semi-classical op-
erator, L0 ⊂ 𝜕-P(Λ) be an edge, 𝐼 ⊂ 𝜕Hreg be a regular interval, Z0 be a solution
of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0 on 𝐼 and 𝛽 : 𝑀 → H be the associated resolution space with
resolution tree G. Assume Z𝐻 is simple on 𝐻◦ for all (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V of order
one. Let Γ = Γ(G) be the associated eikonal variety and assume that the multiplicity
𝑚Z (L) = 1 for all (𝑌, 𝐻,L, Z) ∈ G with 𝛿(L) > 0. Assume that 𝛽∗𝑃 is strictly 𝛿(L)-
separated for every (𝑌, 𝐻,L, Z) ∈ V. Suppose that there is 𝑢 ∈ EAI(G) (𝑀; Γ) such that
(𝛽∗𝑃)𝑢 ∈ EAJ𝑘 (G) (𝑀; Γ).

Then there is 𝑣 ∈ EAI𝑘 (G) (𝑀; Γ) such that

(𝛽∗𝑃) (𝑢 + 𝑣) ∈ EAJ(𝑘+1) (G) (𝑀; Γ) . (5.11)

Proof. Let 𝑣 ∈ EAI𝑘 (G) (𝑀; Γ). Denote 𝐹 B (𝛽∗𝑃)𝑢. Since 𝐹 ∈ EAJ𝑘 (G) (𝑀; Γ), we have

LP[(𝛽∗𝑃) (𝑢 + 𝑣)] = LP𝑘 [𝐹 + (𝛽∗𝑃)𝑣] ∈ SJ𝑘 (𝜕𝑀; Γ) .

By Lemma 5.3.19 we have [𝐹 + (𝛽∗𝑃)𝑣] ∈ EAJ𝑘+1 (G) (𝑀; Γ) if and only if LP𝑘 ( [𝐹 +
(𝛽∗𝑃)𝑣]) = 0 which, again by Lemma 5.3.19, is equivalent to 𝑣 solving the equation

𝑇𝐻,L,Z
(
LP𝑘 (𝑣)𝐻,L,Z

)
= −LP𝑘 (𝐹)𝐻,L,Z , (5.12)

for all 𝐻, L and Z with 𝛿 = 𝛿(L). For each arc 𝐻 the transport operator of the equation
𝑇𝐻,L,Z 𝑏𝐻,L,Z = − 𝑓𝐻,L,Z is elliptic in the interior of 𝐻 since 𝑀 is resolved, Z is a simple
solution and 𝛽∗𝑃 is 𝛿(L)-separated at 𝐻. Thus, there are solutions 𝑏𝐻,L,Z which are polyho-
mogeneous at the corner𝐻∩𝐻′ for all adjacent hypersurfaces with respect to J𝑘 (G;𝐻′,L′, Z ′)
for their respective successors L′ and Z ′. By Lemma 5.3.19 we have

(𝛽∗𝑃)𝑢 =
∑︁
L

∑︁
Z

𝑒𝜑L,Z /ℎ
𝛿

𝑇𝐻,L,Z 𝐴𝐻,L,Z + h.o.t.

and (𝛽∗𝑃𝑢) ∈ EAJ𝑘 (G) (𝑀; Γ). Applying Lemma 5.3.16 to the family (𝑏𝐻,L,Z ℎ𝛾𝐻,L,Z )𝐻,L,Z
yields a function 𝑣 ∈ EAI𝑘 (G) (𝑀; Γ) satisfying (5.12) at every boundary hypersurface 𝐻,
which is equivalent to (𝛽∗𝑃) (𝑢 + 𝑣) ∈ EAJ(𝑘+1) (G) (𝑀; Γ). □

5.3.4 Construction

Finally, we are able to prove the existence of quasimodes for any semi-classical operator
on a resolved manifold 𝑀 . The theorem is stated in a way that it shows the existence of a
quasimode 𝑢 on 𝑀 coinciding with the regular solution constructed in Theorem 3.3.11 on the
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initial regular interval 𝐼 ⊂ Hreg. Note that this is equivalent to an initial value problem which
is unique up to a factor 𝐴(ℎ), since [𝑃, 𝐴(ℎ)] = 0.

The proof itself is relatively short since most of the steps involved in the construction of
quasimodes have been sourced out into Theorem 5.2.18 and Lemmas 5.3.19-5.3.21.

Theorem 5.3.22 (Existence of Quasimodes). Let 𝑃 ∈ DiffΛ(R) be a semi-classical operator,
L0 ⊂ 𝜕-P(Λ) be an edge and

(i) A regular interval 𝐼 ⊂ 𝜕Hreg and a simple solution Z0 of 𝐸𝛿 (L0 ) (𝑃) (·, Z0) = 0 on 𝐼, if
𝛿(L0) > 0, or

(ii) A function 𝑎0 ∈ ker𝑇0, if 𝛿(L0) = 0.

In either case, let 𝛽 : 𝑀 → H be the associated resolution space with resolution tree
G = (V, E). Let Γ = Γ(G) be the associated eikonal variety and assume that 𝑚Z (L) = 1 for
all (𝑌, 𝐻,L, Z) ∈ V of order one with 𝛿(L) > 0. Assume that 𝛽∗𝑃 is strictly 𝛿(L)-separated
for every (𝑌, 𝐻,L, Z) ∈ V. Additionally, if 𝛿(L0) > 0, let 𝜑0 be a solution of 𝜑′0 = Z0 and
𝑎0 ∈ ker𝑇𝜕H,L0,Z0 be a solution of the homogeneous transport equation on 𝐼.

Then there is a quasimode 𝑢 ∈ EAI(G) (𝑀; Γ) such that (𝛽∗𝑃)𝑢 ∈ EA∅ (𝑀; Γ) and

(i) 𝑢 = 𝑒𝜑0/ℎ𝛿 (L0 ) (𝑎0 + 𝑜(1)) at 𝐼 , if 𝛿(L0) > 0, or

(ii) 𝑢 = 𝑎0 + 𝑜(1) at 𝐼, if 𝛿(L0) = 0.

Proof. In either case let 𝛽 : 𝑀 → H be the associated resolution space with resolution tree
G = (V, E). Applying Lemma 5.3.20 yields a unique, initial quasimode 𝑢0 ∈ EAI(G) (𝑀; Γ)
with either

(i) 𝑢0 = 𝑒𝜑0/ℎ𝛿 (L0 )
𝑎0 at 𝐼 satisfying (5.10), in (i), or

(ii) 𝑢0 = 𝑎0, where 𝑎0 ∈ ker𝑇0, in (ii).

In particular, we have (𝛽∗𝑃)𝑢0 ∈ EAJ+ (G) (𝑀; Γ) and can apply Lemma 5.3.21 itera-
tively. Thus, for every 𝑘 ∈ N we to obtain improved quasimodes 𝑢𝑘 ∈ EAI(G) (𝑀; Γ)
with (𝛽∗𝑃)𝑢𝑘 ∈ EAJ𝑘 (G) (𝑀; Γ) and

(i) 𝑢𝑘 = 𝑒𝜑0/ℎ𝛿 (L0 )
𝑎0 + 𝑜(1) at 𝐼, in (i), or

(ii) 𝑢𝑘 = 𝑎0 + 𝑜(1) at 𝐼, in (ii).

Since J (G) is discrete for every (𝐻,L, Z), there is a quasimode 𝑢 ∈ EAI(G) (𝑀; Γ) such
that (𝛽∗𝑃)𝑢 ∈ EA∅ (𝑀; Γ) with leading part 𝑒𝜑0/ℎ𝛿𝑎0 or 𝑎0 in either case, respectively. □

Remark 5.3.23. The statement that the quasimode 𝑢 satisfies (𝛽∗𝑃)𝑢 ∈ EA∅ (𝑀; Γ) is stronger
than requiring (𝛽∗𝑃)𝑢 = O(ℎ∞) at all boundary hypersurfaces. The latter condition is already
true for all functions 𝛽∗𝑣, where 𝑣 ∈ A∅ (H), for instance 𝑣(𝑥, ℎ) ≔ 𝑒−1/ℎ𝑥. The statement
thus requires the quasimode’s remainder (𝛽∗𝑃)𝑢 to vanish faster than 𝑢 multiplied by any
polyhomogeneous function 𝛽∗ 𝑓 for any 𝑓 ∈ A𝐽 (H) with non-trivial index set 𝐽.
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Remark 5.3.24. These quasimodes are highly non-unique. Since [𝑃, ℎ] = 0, it holds that the
product of a function 𝑓 = 𝑓 (ℎ) and any quasimode 𝑢 is a quasimode as well.

Corollary 5.3.25. Let 𝑃 ∈ DiffΛ(R) be a semi-classical operator and let𝑚 ∈ N be the order of
𝑃. Let 𝐿0 ∈ N0, let L0 ⊂ 𝜕-P(Λ) be the horizontal edge with |L0 | = 𝐿0 and let 𝑎1,0, . . . , 𝑎𝐿0,0

be a basis of ker𝑇𝛿 (L0 ) . For each unique tuple (L0, 𝑎 𝑗 ,0), 𝑗 = 1, . . . 𝐿0, and (L 𝑗 , Z 𝑗), with
𝛿(L 𝑗) > 0 and Z 𝑗 solving 𝐸𝛿 (L 𝑗 ) (𝑃) (·, Z 𝑗) = 0, for 𝑗 = 𝐿0 + 1, . . . , 𝑚, let G(L0,𝑎 𝑗,0 )/(L 𝑗 ,Z 𝑗 )

be the resolution tree and

𝛽(L0,𝑎 𝑗,0 )/(L 𝑗 ,Z 𝑗 ) : 𝑀(L0,𝑎 𝑗,0 )/(L 𝑗 ,Z 𝑗 ) → H

be the resolution space. Assume that for all pairs (L0, 𝑎 𝑗 ,0)/(L 𝑗 , Z 𝑗) and for all leaves
(𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V(L0,𝑎 𝑗,0 )/(L 𝑗 ,Z 𝑗 ) of order one with 𝛿(L𝐻) > 0 the solution Z𝐻 of
𝐸𝐻,𝛿 (L𝐻 ) (𝑃) (·, Z𝐻) = 0 is simple and 𝛽∗(L0,𝑎 𝑗,0 )/(L 𝑗 ,Z 𝑗 )𝑃 is strictly 𝛿(L)-separated.

Then there are independent, exponential-polyhomogeneous quasimodes 𝑢1, . . . , 𝑢𝑚, satis-
fying (

𝛽∗(L0,𝑎 𝑗,0 )𝑃
)
𝑢 𝑗 ∈ EA∅ (𝑀(L0,𝑎 𝑗,0 ) , Γ(L0,𝑎 𝑗,0 ) ) ,

with 𝑢 𝑗 = 𝑎 𝑗 ,0 + 𝑜(1) at 𝜕H𝑟 , for 𝑗 = 1, . . . , 𝐿0, and(
𝛽∗(L 𝑗 ,Z 𝑗 )𝑃

)
𝑢 𝑗 ∈ EA∅ (𝑀(L 𝑗 ,Z 𝑗 ) , Γ(L 𝑗 ,Z 𝑗 ) ) ,

with 𝑢 𝑗 = 𝑒𝜑 𝑗/ℎ
𝛿 (L 𝑗 )

𝐴 𝑗 at 𝜕H𝑟 , where 𝜑′
𝑗
= Z 𝑗 , for 𝑗 = 𝐿0 + 1, . . . , 𝑚.

Note that L𝑖 = L 𝑗 is not excluded for 0 < 𝑖, 𝑗 ≤ 𝑚, 𝑖 ≠ 𝑗 . However, if there are 𝑖, 𝑗 > 0
with 𝑖 ≠ 𝑗 and L𝑖 = L 𝑗 , then Z𝑖 ≠ Z 𝑗 .

Proof. This is a direct application of Theorem 5.3.22. For any tuple

(L0, 𝑎1,0), . . . , (L0, 𝑎𝐿0,0), (L𝐿0+1, Z𝐿0+1), . . . , (L𝑚, Z𝑚)

the application of this theorem yields a quasimode 𝑢 𝑗 with

(i) 𝑢 𝑗 = 𝑎 𝑗 ,0 + 𝑜(1) at 𝜕H𝑟 , for 𝑗 = 1, . . . , 𝐿0, and

(ii) 𝑢 𝑗 = 𝑒𝜑 𝑗/ℎ
𝛿 (L 𝑗 ) (

𝑎 𝑗 + 𝑜(1)
)

at 𝜕H𝑟 , for 𝑗 = 𝐿0 + 1, . . . , 𝑚, where 𝜑′
𝑗
= Z 𝑗 .

Since (𝑎1,0, . . . , 𝑎𝐿0,0) is a basis of𝑇0 on 𝜕H𝑟 and (L 𝑗 , Z 𝑗) are unique for 𝑗 = 𝐿0+1, . . . , 𝑚, the
collection (𝑢1, . . . , 𝑢𝑚) is an independent basis of quasimodes. In addition, these quasimodes
satisfy (

𝛽∗(L0,𝑎 𝑗,0 )𝑃
)
𝑢 𝑗 ∈ EA∅ (𝑀(L0,𝑎 𝑗,0 ) , Γ(L0,𝑎 𝑗,0 ) ) ,

at 𝜕H𝑟 , for 𝑗 = 1, . . . , 𝐿0, and(
𝛽∗(L 𝑗 ,Z 𝑗 )𝑃

)
𝑢 𝑗 ∈ EA∅ (𝑀(L 𝑗 ,Z 𝑗 ) , Γ(L 𝑗 ,Z 𝑗 ) ) ,
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at 𝜕H𝑟 , where 𝜑′
𝑗
= Z 𝑗 , for 𝑗 = 𝐿0 + 1, . . . , 𝑚. □

Separation

In Theorem 5.3.22 we have excluded operators 𝑃 with resolution 𝛽 : 𝑀 → H whose pullback
𝛽∗𝑃 to 𝑀 is not separated at every arc 𝐻 ⊂ 𝜕𝑀 . To deal with this phenomenon, we can lift
the result of Proposition 3.3.8 to 𝛽∗𝑃 on the resolution space 𝑀 for each arc 𝐻 individually.

Proposition 5.3.26 (Resolution of Non-Separation). Let 𝑃 ∈ DiffΛ(R) be a semi-classical
operator, L ⊂ 𝜕-P(Λ) be an edge, 𝐼 ⊂ 𝜕Hreg be a regular interval, Z be a simple solution of
𝐸𝛿 (L) (𝑃) (·, Z) = 0 on 𝐼 and 𝛽 : 𝑀 → H be the associated resolution space with resolution
tree G. Let (𝑌, 𝐻,L𝐻 , Z𝐻) ∈ V be a leaf of order one and 𝜑𝐻,L𝐻 ,Z𝐻 be a solution of
𝜕𝑥𝐻𝜑 = Z𝐻 .

Then there is 𝑁 ∈ N, subphases 𝜓𝐻,L𝐻 ,Z , 𝑗 ∈ C∞(𝐻) and 0 < Y 𝑗 < 𝛿(L), for 𝑗 = 1, . . . , 𝑁 ,
such that for the function

Φ ≔
𝜑𝐻,L𝐻 ,Z𝐻
ℎ𝛿 (L) +

𝑁∑︁
𝑗=1

𝜓𝐻,L𝐻 ,Z , 𝑗

ℎY 𝑗
.

the conjugated operator (𝛽∗𝑃)Φ is separated at 𝐻.

Proof. This is the same proof as in Proposition 3.3.8 in induced, local coordinates (𝑥𝐻 , ℎ) at
𝐻. □

Remark 5.3.27. The reason why we have excluded non-separated operators from Theo-
rem 5.3.22 is because we did not show that these full phase functions Φ in Proposition 5.3.26
match at the corner of two adjacent arcs 𝐻 and 𝐻′. However, we expect that these phase
functions match pairwise and that a proof involves a thorough analysis of the points in the
localized set of exponents at 𝑝 ∈ 𝐻 ∩ 𝐻′ and their correspondence to the subphases at both
arcs. This can be very cumbersome, so another approach may be preferable.

5.3.5 Further Applications: Vector Bundles

A generalization where we want to apply the geometric resolution are semi-classical operators
on a vector bundle. We analyze the case of intersecting eigenbands. Let 𝑉 ∈ C∞(R,R2) be
self-adjoint for all 𝑥 ∈ R and denote the Schrödinger operator on vector bundles by

𝑃 B −ℎ2𝜕2
𝑥 +𝑉 .

Let _1, _2 ∈ C∞(R) be the eigenbands of 𝑉 , i.e. for all 𝑥 ∈ R and 𝑗 = 1, 2 we have

det
(
𝑉 (𝑥) − _ 𝑗 (𝑥)𝐼

)
= 0 .

Assume that these eigenbands cross transversally in 𝑥 = 0, i.e. _1(0) = _2(0) = 0 and that
_′1(0) < 0 < _′2(0). Let 𝐼 B R>0 and 𝑣1, 𝑣2 ∈ C∞(𝐼,R2) be an orthonormal eigenframe with
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respect to 𝑉 , i.e. for each 𝑥 > 0 and 𝑗 = 1, 2 we have ∥𝑣 𝑗 (𝑥)∥2 = 1,(
𝑉 (𝑥) − _ 𝑗 (𝑥)𝐼

)
𝑣 𝑗 (𝑥) = 0

and ⟨𝑣1(𝑥), 𝑣2(𝑥)⟩ = 0. Note that ⟨𝑣 𝑗 , 𝑣′𝑗⟩ = 0, since (𝑣1, 𝑣2) is an orthonormal frame. We
want to construct WKB-type quasimodes of the form

𝑢 𝑗 = 𝑒
𝜑 𝑗/ℎ

∞∑︁
𝑘=0

𝑤𝑘, 𝑗ℎ
𝑘

for 𝑃 and 𝑗 = 1, 2, where 𝑤𝑘, 𝑗 ∈ C∞(𝐼,R2). Expanding the remainder of 𝑃𝑢1 then yields

ℎ0
(
−(𝜑′1)

2𝐼 +𝑉
)
𝑤0,1 + ℎ

(
(−2𝜑′𝜕𝑥 − 𝜑′′𝐼) 𝑤0,1 +

(
−(𝜑′1)

2𝐼 +𝑉
)
𝑤1,1

)
+ O

(
ℎ2

)
.

Thus, the WKB function 𝑢1 can only be a quasimode if the lowest order term in the expansion
vanishes, i.e. (

−(𝜑′1)
2𝐼 +𝑉

)
𝑤0,1 = 0 .

A necessary condition for the solvability of the equation is that the determinant of the operator

det
(
−(𝜑′1)

2𝐼 +𝑉
)

vanishes, for all 𝑥 ∈ 𝐼. This determinant vanishes, if and only if −(𝜑′1)
2 coincides with one of

the eigenbands. We choose

𝜑1 B

∫ √︁
_1𝑑𝑥 .

Ultimately, the lowest order term in the expansion of 𝑃𝑢1

(−_1𝐼 +𝑉) 𝑤0,1

vanishes, if and only if 𝑤0,1(𝑥) ∈ ker (−_1(𝑥)𝐼 +𝑉 (𝑥)) for all 𝑥 ∈ 𝐼, i.e.

𝑤0,1 = 𝑎0 · 𝑣1 ,

for any 𝑎0 ∈ C∞(𝐼,R2). Hence we still need to determine 𝑎0. The next order term with
coefficient ℎ in the expansion of 𝑃𝑢1 then can be written as(

−2
√︁
_1𝜕𝑥 −

√︁
_1

′
𝐼

)
(𝑎0 · 𝑣1) + (−_1𝐼 +𝑉) 𝑤1,1 .
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Denote 𝑇 B −2
√
_1𝜕𝑥 −

√
_1

′. Requiring the next order term to vanish induces different
equations on each subbundle

𝑇𝑎0 = 0

(−_1𝐼 +𝑉) 𝑤1,1 = −2
√
_1𝑎0⟨𝑣′1, 𝑣2⟩𝑣2

.

Thus, the second set of equations fully determines the first term 𝑤0,1 in the expansion of
𝑢1 by the choice of 𝑎0 ∈ ker𝑇 . The latter equation does not determine 𝑤1,1 entirely, since
ker (_1𝐼 −𝑉) coincides with the eigenbundle spanned by 𝑣1. Denote 𝑤1,1 = 𝑎1𝑣1 + 𝑏1𝑣2 for
𝑎1, 𝑏1 ∈ C∞(𝐼). Then the latter equation can be written as

(_2 − _1) 𝑏1𝑣2 = −2
√︁
_1𝑎0⟨𝑣′1, 𝑣2⟩𝑣2 .

This is a trivial equation without any differentiation and the solution is given by

𝑏1 =
−2

√
_1𝑎0⟨𝑣′1, 𝑣2⟩
_1 − _2

. (5.13)

This solution justifies the reduction of the base of the vector bundle from R to 𝐼 = R>0 in the
case of crossing eigenbands _1, _2, leading to a singular behavior of 𝑢1 at 𝑥 = 0, if 𝑣′1 ≠ 0.
Denoting all terms in the expansion of 𝑢1 by

𝑤𝑘,1 = 𝑎𝑘𝑣1 + 𝑏𝑘𝑣2 ,

the following set of equations is given by
𝑇𝑎1 = 𝑎′′0 + 2𝑎0⟨𝑣′′1 , 𝑣1⟩ + 2

√
_1𝑏1⟨𝑣′2, 𝑣1⟩

(_2 − _1) 𝑏2 = 2(
√
_1𝑎1 + 𝑎′0)⟨𝑣

′
1, 𝑣2⟩ + 𝑎0⟨𝑣′′1 , 𝑣2⟩ + 𝑇𝑏1

.

Thus, the singular behavior of 𝑏1 in (5.13) transfers from sections of the second eigenbundle,
spanned by 𝑣2, to the first eigenbundle if these are non-constant. Since 𝑇 is a b-operator
at 𝑥 = 0, the dominant contribution for the asymptotic behavior of 𝑏2 at 𝑥 = 0 is given by
𝑎1/(_1 − _2). Thus, their asymptotic behavior as 𝑥 → 0 worsens as 𝑘 increases by powers
of −3𝑘/2, indicating a relevant scale of ℎ/𝑥3/2, as for the standard Schrödinger operator with
linear potential.

Expanding 𝑉 (𝑥) = ∑∞
𝑗=1𝑉 𝑗𝑥

𝑗 and 𝑣𝑖 (𝑥) =
∑∞
𝑗=0 𝑣𝑖, 𝑗𝑥

𝑗 at 𝑥 = 0 for 𝑖 = 1, 2, the quasihomo-
geneous blow-up

𝛽 : [H, 0]2/3 → H

then yields an asymptotic series

𝛽∗
((
−ℎ2𝜕2

𝑥 +𝑉 (𝑥)
)
𝑣𝑖 (𝑥)

)
= ℎ2/3

(
−𝜕2

b + b𝑉1

)
𝑣𝑖,0 + O

(
ℎ4/3

)
,
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where 𝑉1𝑣𝑖,0 = _′
𝑖
(0)𝑣𝑖,0 for 𝑖 = 1, 2. Since _′1(0) < 0 < _′2(0), we have two initial,

independent quasimodes

𝑤0,1 = Ai(b)𝑣1,0 and 𝑤0,2 = Ai(−b)𝑣2,0

on the front face 𝛽−1(0). The different signs of b in the Airy function correspond to the
dichotomy of signs of _1 and _2 on both sides of 𝑥 = 0. Solving all higher order corrections,
one obtains a quasimode at the front face.

Note that one needs both 𝑤0,1 and 𝑤0,2 with different powers of ℎ to match the asymptotic
behavior of 𝑢 𝑗 as 𝑥 → 0. This is due to the different behavior of 𝑎0(𝑥) ∼ 𝑥1/4 and 𝑏0(𝑥) = 0,
which transfers to an offset in powers of 𝑎1(𝑥) ∼ 𝑥1/4−3/2 and 𝑏1(𝑥) ∼ 𝑥1/4−2.
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