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ABSTRACT: The pre-electrolysis of LiClO4 in acetonitrile in an undivided cell applying only “catalytic” amounts of current (e.g.,
0.05 F) led to the formation of a strong acidic medium for the activation of benzylic ethers and acetals. The activated primary and
secondary benzylic ethers and acetals could be converted with a range of carbon nucleophiles, such as allyl trimethylsilane, silyl enol
ethers, and enol acetates, for the formation of new carbon−carbon bonds. A chemoselective reaction was observed when electron-
deficient benzylic acetals were converted with allyl trimethylsilane to the monoallylated products, whereas an electron-rich benzylic
acetal led to the double allylated product under activation of both ether groups.

■ INTRODUCTION
Benzylic ethers and benzylic acetals are well-established
protecting groups in organic synthesis. On the other hand,
these functional groups can be utilized with neutral carbon
nucleophiles, such as allyl trimethylsilanes and silyl enol ethers,
for the formation of new carbon−carbon bonds. The
stabilization of the primary carbenium ion-type intermediate
is thereby accomplished with additional alkyl or aryl
substituents in the benzylic position (= secondary or tertiary
benzylic ethers), while purely primary benzylic ethers are quite
robust and much harder to activate. However, a few reports
describe the activation of such primary benzylic alcohols,
ethers, and acetals utilizing Lewis acids such as FeCl3, In(OTf),
and Sc(OTf)3.

1 Additionally, the synthesis of homoallylic
ethers can be accomplished by the Hosomi−Sakurai reaction
when benzylic acetals and ketals are reacted with allyl
trimethylsilane under Lewis acid catalysis. Among the Lewis
acids established to undergo this transformation, a vast number
of main group and several transition metal catalysts were
reported. Among those are FeCl3,

2 AlCl3,
3 AlBr3/CuBr,

4

BiBr3,
5 Bi(OTf)3,

6 Sc(OTf)3,
7 NbCl5/AgClO4,

8 Cp2Ti-
(SO3CF3)2,

9 TiCl4,
10 and Re(BrCO)5

11 as well as silicon-,
boron-, and carbon-based Lewis acids, such as TMSOTf,12

TMSNTf2,
13 TMSN(SO2F)2,

9,14 TMSI,15 BF3·Et2O,3,16 diphe-
nylboryl triflate,17 and trityl perchlorate17 (Scheme 1a). Also,
(chiral) organic Brønsted acids have been reported for the
Hosomi−Sakurai reaction,18,19 and strong inorganic acids, such
as HClO4 absorbed on silica,20 were also in the focus of
interest. All of these reagents and catalysts have their
advantages and disadvantages, but the Hosomi−Sakurai

reaction is considered a redox-neutral reaction, and from an
organic electrochemical point of view, there is obviously no
report that electrochemical methods have been applied to
facilitate this transformation. Accordingly, we would like to
report herein the pre-electrolysis of the electrolyte for the
simple application of an in situ generated strong Brønsted acid
as a catalyst in the Hosomi−Sakurai reaction and similar
transformations.
Also of interest in this respect are the electrochemical

oxidation of toluene derivatives and the stabilization of the
benzylic cation by a tosylated sulfanimine derivative in a
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Scheme 1. (a,b) Allylation Reactions in the Benzylic
Position
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cation-pool electrolysis as was described by Yoshida et al.
(Scheme 1b).21

■ RESULTS AND DISCUSSION
The application of electrochemical methods is a hot topic in
organic synthesis and related fields at current times, and a
number of recent reviews are trying to keep up with the
steadily increasing number of new transformations.22 In this
respect, we focused our attention toward the activation of
carbon−hydrogen bonds. In an attempt to oxidize benzylic
ethers, such as 1, under mild redox-mediated conditions,
utilizing triarylamines as a catalyst, in the presence of the allyl
trimethylsilane as an allylating agent, we attempted to access
homoallylic ethers in a single transformation (Scheme 2).23 To

our disappointment, the formation of the desired homoallylic
ether 2 was not observed, but fortunately instead, the
deoxygenated product 3 was formed in a control experiment
in the absence of the triarylamine catalyst in substantial
amounts.
The octyl ether in 1 was utilized to identify the side products

derived from the “leaving group” 1-octanol by GC and GCMS
analysis. As it turned out, 1-octanol could be detected
alongside the octyl trimethylsilyl ether as side-products. This
analysis of the reaction products revealed a redox-neutral
transformation for the synthesis of 3 since no net redox process
occurred. Therefore, we investigated this transformation in
some more detail to determine the role of the electricity in this
transformation. Over the course of the investigation, we
identified conditions where only a catalytic amount of
electricity (e.g., 0.025 F) was sufficient to realize the
transformation. The hypothesis that an electrocatalytic process,
where a radical cation is generated at the anode and the “hole”
located at the starting material acts as catalyst in solution, was
disproven when the pure electrolyte H3CCN/LiClO4 was
electrolyzed applying a 0.05 F current and the starting
materials were added after the electrolysis leading to complete
conversion. After pre-electrolysis, the solution was colorless
but turned to a fade-red color for a few seconds after the
addition of the starting materials; after 5 min, the trans-
formation was complete, and the product 3 was isolated in 86%
yield. In the following, we tested a number of other solvent/
supporting electrolyte combinations to realize the trans-
formation. Only two other combinations, namely, H3CNO2/
LiClO4 and H3CCN/NaClO4, gave the desired product 3 in
significant amounts after pre-electrolysis towards utilizing a
0.05 F current in 75−80% yield, but the reaction time in
nitromethane as a solvent was considerably longer (>4 h).
Also, other supporting electrolytes, such as nBu4NClO4 and
KClO4 in acetonitrile, gave no or only trace amounts of
product 3. A selected number of key experiments are
summarized in Table 1.

It seems that the combination of LiClO4 and acetonitrile
generates a unique reactive medium for conducting this
transformation, while other solvent/supporting electrolyte
combinations mostly fail. This observation was already
described by Torii et al. utilizing the combination of
acetonitrile and LiClO4 under electrochemical conditions for
other similar transformations.24 Interestingly, Torii and co-
workers reported in their investigation of the ring opening of
epoxides that chlorinated solvents, such as CH2Cl2 and
ClCH2−CH2Cl, gave the best results, while the reaction in
acetonitrile failed. However, when the pre-electrolysis of
LiClO4 in acetonitrile was conducted in a divided cell applying
2.0 F, the anode compartment became very acidic, and in the
GCMS spectrum, the formation of oxidation side products,
such as succino nitrile (NC−CH2CH2−CN) as well as “higher
oligomers”, was detected. At the cathode, the formation of a
black precipitate was observed with the naked eyes. We
propose that amorphous lithium was generated at the cathode,
which reacted only very slowly with acetonitrile over time, and
after the electrolysis, the electrodes were removed to obtain a
highly acidic medium, and the lithium remained at the cathode
(Scheme 3). By then, most of the organic transformations

described herein were mostly complete. The black amorphous
material on the cathode reacted with water under formation of
gas, and therefore, we assume that the electrochemical pre-
electrolysis primarily generated protons at the anode upon the
oxidation of acetonitrile.
When potassium or tetrabutyl ammonium perchlorate was

tested as a supporting electrolyte, gas formation was observed
at the cathode, no precipitate was formed at the cathode, and
also no product formation could be detected. Accordingly,
from HPLC-grade acetonitrile and easy-to-handle lithium
perchlorate, a strong, water-free acid (= perchloric acid) was

Scheme 2. Attempted Electrochemical Allylation of Benzylic
Ethers

Table 1. Results of the Pre-electrolysis of Solvent/
Supporting Electrolyte Mixtures for the Synthesis of 3a

no. solvent electrolytea yield of 3

1 CH2Cl2 LiClO4 0%
2 DMF LiClO4 0%
3 2,2,2-trifluoroethanol LiClO4 11%
4 CH3CN LiClO4 86%b

5 CH3NO2 LiClO4 80%c

6 CH3CN NaClO4 79%
7 CH3CN KClO4 0%
8 CH3CN Bu4NClO4 0%
9 CH3CN Bu4NCl 0%

aThe yields were determined by GC analysis with mesitylene as an
internal standard, added after the reaction. bComplete conversion
after 5 min. cComplete conversion after 4−5 h.

Scheme 3. Proposed Reactions during the Pre-electrolysis of
H3CCN/LiClO4
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generated upon electrolysis, which induced the reactions that
we report herein. Other reaction parameters, such as the
applied amount of current, the electrode materials, the amount
of the supporting electrolyte, the reaction temperature, the
electrode distance, and the stirring rate, were also optimized
(see the SI). With the optimized reaction conditions in hand,
we investigated the scope and limitations of the benzylic ether
activation of electrochemically in situ generated perchloric acid.
For atom economic reasons, we also altered the “leaving
group” from 1-octanol to methanol or ethanol in the further
course of the investigation. The results of these reactions are
summarized in Scheme 4.

For the activation of primary benzylic ether by the
electrochemically generated HClO4, the 4-methoxy group in
4 seems to be necessary, as the desired product 6a was not
obtained. However, when secondary benzylic methoxy ethers
were applied, desired products 6b−6f were generated in good
yields. The stabilization of the primary cationic intermediate,
as proposed for similar Lewis acid-initiated processes, could be
realized by alkyl (6b−6e) and an additional aryl group, as in
6f. Noteworthy seems the fact that product 6d was also
generated in good yields although an electron-withdrawing
fluoro substituent is in the 4-position.
In order to test the compatibility of the transformation, we

also tested other potential nucleophiles in the substitution
reaction for the formation of carbon−carbon bonds. The
results of these transformations are summarized in Scheme 5.
In this case, we used the benzylic ether 8 as an educt and

added the starting materials after pre-electrolysis after
consumption of 0.05 F. Electron-rich arenes gave the desired
products 9a and 9b in terms of a Friedel−Crafts-type
substitution in good yields,25 and product 9c was formed in
a very good yield of 94% from 2,4-pentadione as a mixture of
tautomers. Allylation was also realized with trimethyl(2-
methylallyl)silane to afford 9d in a very good yield as well.
Also, the substitution of an allyl silane with a silyl enol ether as
a carbon nucleophile gave the desired carbon−carbon bond
formation product 9e in acceptable yields. In addition, the
introduction of a nucleophilic acetone synthon for the
synthesis of 9f could be realized under the present reaction
conditions when the silyl enol ether was substituted with prop-
1-en-2-yl acetate to afford the desired product in 46% yield
within 24 h, thereby expanding the scope of suitable carbon
nucleophiles.

In the next set of experiments, the benzylic ethers were
substituted by ethoxy and methoxy acetals of type 10 as this
functional group can also be well-activated by Brønsted or
Lewis acids and were reacted with allyl trimethyl silane. The
results of these Hosomi−Sakurai transformations are summar-
ized in Scheme 6.

The desired products of type 11 were generated in good
yields of around 80% within a 1 h reaction time at ambient
temperature. As in the case of secondary benzylic ethers, the
aryl substituent could be substituted with strong electron-
abstracting groups (11b), such as the 4-nitro substituent.
Finally, a “homo”-benzylic acetal was reacted successfully to
afford the product 11c in 81% yield, which indicates that the
substrate scope for this electrochemically generated reagent
might be wider than we imagined. Also, the last reaction,
applying the 4-methoxy-substituted benzylic acetal, led to a
result that can be explained by the stabilization of the
intermediate cation. The double benzylic methoxy substitution
can be realized when an electron-rich arene is additionally
stabilizing the cation derived from the corresponding
monoallyl-substituted methoxy intermediate to afford product
12 in an acceptable yield of 55%.
In conclusion, we have explored a simple and easy-to-

perform electrochemical method for the activation of primary
electron-rich and secondary benzylic ethers as well as for
benzylic acetals for carbon−carbon bond formation processes
with allyl silanes and a range of other neutral carbon
nucleophiles. The activation was made possible by pre-

Scheme 4. Application of the Pre-electrolysis of H3CCN/
LiClO4 for the Allylation of Secondary Benzylic Ethers

Scheme 5. Application of the Pre-electrolysis of H3CCN/
LiClO4 for the Nucleophilic Substitution of Benzylic Ethers

Scheme 6. Application of the Pre-electrolysis of H3CCN/
LiClO4 for the Allylation of Acetals
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electrolysis of easy-to-handle lithium perchlorate in HPLC-
grade acetonitrile in an undivided cell utilizing catalytic
amounts of current (0.05 F) with respect to the ether/acetal
starting materials.

■ EXPERIMENTAL SECTION
General Experimental Procedure for the Nucleophilic

Substitution of Benzylic Ethers and Acetals. In an undivided
cell, lithium perchlorate (213 mg, 2.0 mmol) was dissolved in
acetonitrile (10 mL). Afterward, the mixture was electrolyzed under
constant current (10 mA, 0.05 F) utilizing Pt plate electrodes (1.5
cm2). After removal of the electrodes, both the benzylic ether or acetal
(1.0 mmol, 1.0 equiv) and the nucleophile (5.0 mmol, 5.0 equiv.; for
acetals 10.0 mmol, 10.0 equiv) were added. Samples for GC-MS
analysis were taken after 5 and 60 min. After completion of the
reaction, an aqueous saturated Na2CO3 solution (5 mL) was added,
and the mixture was extracted with Et2O (3 × 30 mL). The combined
organic layers were dried over MgSO4 and filtered, and the solvent
was removed under reduced pressure. The residue was purified by
column chromatography to furnish the respective product.

Most of the generated products are literature known compounds,
and the details for their specific synthesis, purification, and analytical
data can be found in the Supporting Information.
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