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Abstract

This thesis discusses simple polarized abelian varieties with complex multiplication
by an arbitrary order S in a CM field K, especially the case in which the field of
moduli k0 is contained in the reflex field Kr of a CM type (K,Φ). From Shimuras
third main theorem, we deduce necessary conditions on the orders S and apply
them to the dimension 3 case, focusing on field of moduli Q. We construct explicit
bounds on the primes dividing the index [OK : S ] and their exponents. In some
interesting special cases, the results allow constructing a certain minimal order,
which is contained in every possible order S appearing as the endomorphism ring of
a simple polarized abelian variety with complex multiplication and field of moduli
Q. This allows to apply our results to simple genus 3 CM curves and algorithmically
analyze Q̄-isomorphism classes of their Jacobians. In the end, we are able to show
that there are no simple genus 3 hyperelliptic or Picard curves of a certain kind,
which have complex multiplication by a non-maximal order S and field of moduli Q.
Additionally, this thesis includes an algorithmic analysis of orders in cubic number
fields and their property of being Gorenstein.
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Zusammenfassung

In dieser Arbeit besprechen wir einfache polarisierte abelsche Varietäten mit kom-
plexer Multiplikation bezüglich einer Ordnung S in einem CM Körper K, insbeson-
dere in dem Fall, dass der Modulkörper k0 in dem Reflexkörper Kr von einem
CM Typ (K,Φ) liegt. Ausgehend von Shimuras drittem Hauptsatz folgern wir
notwendige Bedingungen an die Ordnungen S und wenden diese auf den Dimen-
sion 3 Fall mit Fokus auf die Modulkörper Q Situation an. Wir bestimmen ex-
plizite Schranken an die Primzahlen, die den Index [OK : S ] der auftretenden
Ordnungen teilen und an deren Exponenten. In einigen interessanten Situationen
erlauben es unsere Resultate eine bestimmte minimale Ordnung zu konstruieren,
die in allen Ordnungen S enthalten sein muss, welche als Endomorphismenringe
von einfachen polarisierten abelschen Varietäten mit komplexer Multiplikation und
Modulkörper Q auftreten können. Dies erlaubt eine algorithmische Analyse der
Q̄-Isomorphieklassen der Jacobischen von einfachen Kurven vom Geschlecht 3 mit
komplexer Multiplikation. Am Ende können wir zeigen, dass es keine einfachen
hyperelliptischen oder Picard Kurven vom Geschlecht 3 einer bestimmten Art gibt,
die komplexe Multiplikation bezüglich einer nicht maximalen Ordnung S und Mod-
ulkörper Q haben. Zusätzlich enthält diese Arbeit eine algorithmische Analyse von
Ordnungen in kubischen Zahlkörpern und ihrer Eigenschaft, Gorenstein zu sein.
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Introduction

Background

In the year 1853, Kronecker ([Kro53]) stated the subsequent famous theorem, today
known as the Kronecker-Weber Theorem.

Theorem.
Every finite abelian extension of Q is contained in some cyclotomic field.

In the following years, mathematicians like Weber ([Web86]) and Hilbert ([Hil96])
completed the proof. The natural generalization of this theorem asks for finite
abelian extensions of arbitrary number fields. This is known as Kronecker’s Ju-
gendtraum or Hilbert’s 12th problem. One approach to describe finite abelian ex-
tensions of arbitrary number fields is class field theory, which connects class groups
and Galois groups of abelian extensions via the Artin map. However, this is not
explicit and does not answer the question in the spirit of Kronecker, which asks for
a single function, like the exponential function z 7→ exp(2π z / 2) for ground field
Q, that parametrizes the generators of the abelian extensions.

For imaginary quadratic number fields, complex multiplication (CM) theory of
elliptic curves and their j-invariants provided a complete answer to Kronecker’s Ju-
gendtraum. This is due to Fueter ([Fue14]), Takagi ([Tak20]) and Hasse ([Has27]).
The generalization of the complex multiplication theory from elliptic curves to mul-
tidimensional abelian varieties was then developed by Weil ([Wei55]), Taniyama
([Tan55]) and Shimura ([Shi55]) and answers Kronecker’s Jugendtraum for so-called
complex multiplication fields (CM fields), which are totally imaginary quadratic ex-
tensions of totally real number fields. A first summary of this theory is given in
[ST61].

Now consider Gauss’ class number one problem, which seeks to identify all
imaginary quadratic number fields K of class number one. As the j-invariant
of an elliptic curve with complex multiplication is actually an algebraic number
that generates the maximal order of a quadratic CM field, the theory of complex
multiplication of elliptic curves allows a reformulation of this number theoretical
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INTRODUCTION

problem in terms of algebraic geometry: Find all elliptic curves with complex mul-
tiplication by the maximal order OK of a quadratic number field K and which
have field of moduli K. This problem has been solved by Heegner ([Hee52]),
Baker ([Bak68]) and Stark ([Sta+67]) and the arising fields are K = Q(

√
−d)

for d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}. Due to Shimuras and Taniyamas multidimen-
sional theory on abelian varieties with complex multiplication ([ST61]), the natural
generalization of this question is to ask for the following:

Find all simple principally polarized abelian varieties, which have
complex multiplication by a maximal order and field of moduli

contained in the reflex field Kr of a CM type (K,Φ).

In the cases of dimensions 2 and 3, we can think of simple principally polar-
ized abelian varieties over the complex numbers C as Jacobians of simple curves.
Specifically, these are curves of genus 2 or 3, depending on the dimension. Hence,
restricting to abelian varieties over C, this allows us to express the same question,
but in the language of curves instead of abelian varieties:

Find all simple curves over the complex numbers C, whose Jacobians
have complex multiplication by a maximal order and field of moduli

contained in the reflex field Kr of a CM type (K,Φ).

Much research has been performed around this question. For genus 2 curves,
the problem has been entirely solved thanks to several mathematicians. Spallek
([Spa94]) described an explicit construction of such curves, van Wamelen ([VW99])
computed examples over the rationals, Murabayashi and Umegaki ([MU01]) deter-
mined all rational CM points in the moduli space of principally polarized abelian
surfaces, Bouyer and Streng ([BS15]) focused on examples over the reflex field, and
Kilicer ([Kıl16]) listed all quartic CM fields appearing as the corresponding CM
fields of these curves.

However, the situation is more complex for genus 3 curves. This is mainly be-
cause the corresponding CM fields are of degree six over Q, not of degree four,
and genus 3 curves may not be hyperelliptic, which complicates explicit construc-
tion. There has still significant progress been made. Weng ([Wen01b]) gives a
detailed method for constructing hyperelliptic CM curves of genus 3. Koike and
Weng ([KW05]) explain how to construct genus 3 Picard curves with CM. More-
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INTRODUCTION

over, in [Kıl16], Kilicer lists all sextic CM fields that have an imaginary quadratic
subfield and provides a complete list of CM fields for curves with field of moduli
Q. Summarizing, Table 1 gives an overview of the advantages in the construction
of low genus curves over subfields of C with complex multiplication by maximal
orders.

Genus Current status Researchers

1 Problem solved Heegner, Baker, Stark
2 Problem solved Spallek, van Wamelen,

Murabayashi & Umegaki, Bouyer
& Streng, Kilicer

3 Progress made, examples con-
structed for hyperelliptic and Pi-
card curves, CM pairs completely
classified for sextic CM fields con-
taining an imaginary quadratic
subfield

Weng, Koike, Kilicer

≥ 4 open

Table 1: Overview of the research on simple low genus curves with complex multi-
plication by maximal orders

In this thesis, we want to consider a closely related question arising from the
previous work together with Shimuras third main theorem ([ST61]). Instead of
focusing on maximal orders, we will consider arbitrary orders and especially address
the case in which these orders are non-maximal:

Find all simple curves over the complex numbers C, whose Jacobians
have complex multiplication by a non-maximal order and field of

moduli contained in the reflex field Kr of a CM type (K,Φ).

One of the main problems is determining how to narrow down the many dif-
ferent orders that could appear as the endomorphism rings of the CM curves. To
make things more manageable, researchers often investigate special cases with ex-
tra constraints, for example, assuming the field of moduli to be Q or assuming the
CM field K to contain specific subfields. In the case of elliptic curves, considering
isomorphism classes over an algebraic closure Q̄ of Q, it is well known that the list
of nine isomorphism classes of elliptic curves over Q with complex multiplication
by a maximal order can be extended by four isomorphism classes with complex
multiplication by a non-maximal order (see [Sil09][Appendix C.11]). For genus 2
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INTRODUCTION

curves, Bisson and Streng ([BS17]) were able to expand van Wamelen’s ([VW99])
list of curves with complex multiplication by maximal orders. They added two iso-
morphism classes of rational curves with complex multiplication by a non-maximal
order and demonstrated a complete classification of all rational genus 2 curves with
complex multiplication by an arbitrary order S ⊆ OK up to isomorphism.

One natural next step is to see how far we can generalize these principles to
genus 3 curves. However, the complexity increases notably for several reasons. On
the one hand, we have to deal with the same issues as when considering maximal
orders in sextic CM fields. On the other hand, non-maximal orders usually do not
come with a classical ideal factorization into prime ideals unless they are integrally
closed and thus Dedekind. Moreover, for non-maximal orders in sextic CM fields,
unlike in quartic CM fields, their restrictions to the maximal totally real subfield do
not always have an invertible trace dual which is crucial in the approach of Bisson
and Streng in [BS17]. This thesis aims to present some partial solutions to the
presented challenges.

Application

Elliptic and hyperelliptic curves are fundamental in modern cryptography, espe-
cially in public-key cryptography. Our main reference on this topic is [Coh+05].
Introduced by Diffie and Hellman in the late 1970s, as explained in [DH76], public-
key cryptography relies on specific one-way functions that are computationally easy
to evaluate but difficult to reverse within a reasonable amount of time. When these
functions are selected carefully, it becomes nearly impossible for attackers to decrypt
the encrypted messages, even if they are familiar with the function.

A main task in public-key cryptography is choosing suitable cryptosystems.
Among the numerous methods developed over time, two have been particularly
stood out. The first group of methods, including the famous RSA cryptosystem, is
based on the challenge of factoring products of large prime numbers. The second
approach builds on the discrete logarithm problem (DLP) in cyclic groups of prime
order, which is defined to be the following.

Let (G, ·) be a cyclic group of prime order together with a generator
g ∈ G. Given any element h ∈ G with h = gk for some k ∈ N, determine

the integer k.

The group G can be chosen as the set of points on an elliptic curve over a finite
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field or, more generally, as the set of elements in the Jacobian of small genus curves
over finite fields. In certain groups, the DLP can be attacked with subexponential
methods, making their security comparable to RSA. However, when using specific
elliptic or hyperelliptic curves of genus g ≤ 3, the DLP seems to be resistant to
such strategies as no subexponential attack has been discovered yet.

A resistance to subexponential attacks is of great significance to cryptographers.
It is suggested that elliptic curves can provide security comparable to RSA, but with
much shorter key lengths. For instance, in order to match the security of a 3200-bit
RSA, an elliptic curve over a finite field is estimated to require a group size of only
about 256 bits (see [IS23]). While operations on elliptic curves or Jacobians are more
complex than in other groups, such as (Z/nZ)×, they have efficient addition rules.
The smaller key size compensates for this slightly more complex group operation.
This feature is especially beneficial in environments such as smart cards, where
computational resources are limited.

In order to benefit from these considerations, a main task is the identification
of suitable elliptic curves over finite fields that provide a large prime factor in
their group order. In the early 1990s, Atkin and Morain proposed a method to
address this challenge by considering elliptic curves with complex multiplication,
as described in [AM93]. This method is called CM method. Over the years, this
approach has been extended to Jacobians of small genus curves. For curves of genus
2 and 3, we refer to [Wen01b] and [KW05]. The CM method especially requires the
identification of suitable CM fields and involves determining isomorphism classes of
the curves over C, a task that is specifically addressed in this thesis with a special
focus on endomorphism rings which are non-maximal orders in the CM fields.

Overview

In Chapter 1, we give basic definitions and statements on fractional ideals of or-
ders, global class field theory, complex multiplication theory and abelian varieties,
especially over C. Within Chapter 2, we discuss orders in cubic number fields,
with a special focus on diagonal orders.The orders in cubic number fields play an
important role in the discussion on abelian varieties of dimension 3 having CM by
a non-maximal order S in a sextic CM field K. To be more precise, they appear
when we intersect the endomorphism ring S of the abelian variety with the totally
real cubic subfield K0 of K. We provide explicit representations of the Z-bases for
both diagonal Gorenstein orders and diagonal orders that are not Gorenstein. For
diagonal orders, we prove the following result, that completely describes the Z-basis
of a diagonal order in a cubic number field.
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Proposition.
Let L be a cubic number field with ring of integers OL = 〈1, ω1, ω2〉Z. Let λij ∈ Z
with 1 ≤ i ≤ 2 and 0 ≤ j ≤ 2 such that

ω2
1 = λ10 + λ11 ω1 + λ12 ω2 and

ω2
2 = λ20 + λ21 ω1 + λ22 ω2 .

A sublattice S = 〈1, a ω1, c ω2〉Z of OL with a, c ∈ N is an order in L if and only if

a | λ21 c
2 and c | λ12 a

2 .

This proposition about the structure of the Z-bases of diagonal orders in cubic
number fields enables us to provide explicit descriptions of diagonal Gorenstein
orders in cubic number fields. We have computationally verified this for a defined
bound on the index [OK : S ] and a specific list of cubic number fields, which are
of relevance in our discussion about sextic CM fields and their totally real cubic
subfields. Those fields are presented in Table 2.1. The subsequent theorem extends
the known types of Gorenstein orders in cubic number fields, as documented in
[JT15].

Theorem.
Let L be a cubic number field from Table 2.1 with ring of integers OL = 〈1, ω1, ω2〉Z.
Let λ21, λ12 ≥ 1 be integers such that S = 〈1, a ω1, c ω2〉Z is an order if and only
if a | λ21 c

2 and c | λ12 a
2 . Let D1 and D2 be the set of divisors of λ21 and λ12,

respectively.

(a) Let x, y ≥ 1 with gcd(x, y) = 1. For all r ∈ D1 and s ∈ D2 such that

(i) 1 = gcd(x, s) = gcd(r, y) = gcd(r, s),
(ii) ∀ p | x prime : vp(r) = vp(λ21),

(iii) ∀ p | y prime : vp(s) = vp(λ12) and
(iv) (r x2 y) (s x y2) ≤ 105

the lattice S = 〈1, r x2 y ω1, s x y
2 ω2〉Z is an order of L which is Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L with [OL : S ] ≤ 105, then
exist x, y ≥ 1, r ∈ D1 and s ∈ D2 with

(i) 1 = gcd(x, y) = gcd(x, s) = gcd(r, y) = gcd(r, s),
(ii) ∀ p | x prime : vp(r) = vp(λ21) and

(iii) ∀ p | y prime : vp(s) = vp(λ12)

such that a = r x2 y and c = s x y2.
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Additionally, we give a corresponding result for non-Gorenstein orders in cubic
number fields, as presented below. Together with the previous theorem, this pro-
vides a complete characterization of both Gorenstein and non-Gorenstein diagonal
orders in the considered list of cubic number fields with special relevance.

Theorem.
Let L be a cubic number field from Table 2.1 with ring of integers OL = 〈1, ω1, ω2〉Z.
Let λ21, λ12 ≥ 1 be integers such that S = 〈1, a ω1, c ω2〉Z is an order if and only
if a | λ21 c

2 and c | λ12 a
2 . Let D1 and D2 be the set of divisors of λ21 and λ12,

respectively.

(a) Let x > 1. Then for all e, d | x with gcd(e, d) = 1 and e d 6= x and for all
r ∈ D1, s ∈ D2 with (r e x) (s d x) ≤ 105 the lattice S = 〈1, r e x ω1, s d x ω2〉Z
is an order of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L with [OL : S ] ≤ 105 which is not
Gorenstein, then exist x > 1, e, d | x with gcd(e, d) = 1 and e d 6= x such as
r ∈ D1, s ∈ D2 with a = r e x and c = s d x.

Afterwards, in Chapter 3, we summarize the construction of polarized abelian
varieties over C with complex multiplication by arbitrary orders and discuss the
computation of the so-called ideal class monoid.

Furthermore, in Chapter 4.1, we present Shimuras third main theorem, both, in
the classical way and in a modern formulation in terms of the polarized class group
and the type norm. This theorem lays the foundation for the whole discussion on
curves with CM by non-maximal orders.

Theorem (Shimuras Third Main Theorem - Modern Formulation).
Let (Kr,Φr) be a primitive CM-type and (K,Φ) its reflex. Let S ⊆ OK be an order
of K, f := [OK : S ] and (A, ι) be an abelian variety of type (K,Φ) with CM by S.
Let C be a polarization of A and k0 be the field of moduli of (A,C ). Then k0 ·Kr

is the class field over Kr corresponding to ΩS = ΩS(f).

In particular, Shimuras third main theorem for arbitrary orders provides neces-
sary conditions on the orders, which may appear as endomorphism rings of simple
polarized abelian varieties with CM and field of moduli contained in the reflex field.
To be more precise, those orders are CM class number one orders in CM class num-
ber one fields. Due to the Rosati involution, the orders additionally have to be
stable under complex conjugation.

In Chapter 4.2, we revisit results from [Kıl16] and discuss the possible appearing
CM fields in the field of moduli Q situation. We show that, analogue to the case
of maximal orders, even for arbitrary orders, the CM fields are cyclic sextic CM
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class number one fields containing an imaginary quadratic subfield. In Chapter 4.3,
we extend results from [Wen01b] and [KW05], originally demonstrated for maximal
orders, to arbitrary orders. In particular, on the one hand, we will show that if an
order S is isomorphic to the endomorphism ring of a simple CM curve C over C
and Z[i] ⊆ S, then it is hyperelliptic. On the other hand, considering simple CM
curves of genus 3 over C, this curve is a Picard curve if and only if Z[ζ3] ⊆ S.

From now, we focus on bounding the index of the orders which might appear as
endomorphism rings of principally polarized abelian varieties over C with complex
multiplication and field of moduli Q. This generalizes an approach from Bisson
and Streng ([BS17]) from quartic CM fields to sextic CM fields. In a first step,
in Chapter 5, we take a closer look at CM class number one orders in cyclic and
non-normal sextic CM fields, and we show that the kernel of the relative norm is of
exponent at most two. In Chapter 6, we give relations between the index of an order
and the index of its restriction to a subfield. We present two different approaches,
one using Minkowskis convex body theorem and the other one generalizes a result
from [BS17].

Definition.
Let S be an order in a number field K and a be a fractional ideal of S. We define

δ(a) := [OK : aOK ]
[S : a ] .

Let K0 ⊆ K be a number field with m = [K : K0 ] and S0 := S ∩K0, then, for S∗0
denoting the trace dual of S0, we define

δS := δ(S∗0)m
δ(S∗0S) .

The main result of Chapter 6 is the following theorem.

Theorem.
Let Q ⊆ K0 ⊆ K be number fields, where K0 is of degree n over Q and K is a
degree m Galois extension of K0. Let S ⊆ OK be an order of K, which is stable
under the Galois group Gal(K/K0), and let S0 := S ∩K0. Then [S∗ : S∗0S ] is an
integer and there exists δS ∈ Q such that

[S∗ : S∗0S ] [OK0 : S0 ]2m = NK0/Q(∆K/K0) [OK : S ]2 δS .

We give two classes of orders S in which the parameter δS is equal to 1. In
particular, this is the case whenever S0 is Gorenstein.

8
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Within Chapter 7, we delve deeper into the situation of cyclic sextic CM fields
and, under the assumption that the kernel of the relative norm is of exponent at
most 2, prove another divisibility criterion for the indices of relative orders, inspired
by a similar result for quartic CM fields in [BS17].

Theorem.
Let K be a cyclic sextic CM field with maximal totally real subfield K0 and S ⊆ R

be orders in K with f := [OK : S ]. Let S0 := S ∩K0 and R0 := R ∩K0. Let the
kernel of the relative norm

ψ :
(
R�fOK

)×
�(S�fOK)× µR −→

(
R0�fOK0

)×
�(S0�fOK0

)×
be of exponent at most 2. Then

[R : S ]
[R0 : S0 ]

∣∣∣∣ B ,

where B is an integer depending only on the number of elements in the group of
roots of unity µR.

This result requires decomposing ideals into so-called q-primary parts, some
results on the decomposition of unit groups of finite rings and the decomposition
of the indices. In addition, we make use of the specific splitting behavior of primes
in cyclic sextic CM fields. Applying this theorem for R = OK to the main result of
Chapter 6, we will then deduce the following theorem.

Theorem.
Let K be a cyclic sextic CM field and let K0 be the totally real cubic subfield of K.
Let S ⊆ OK be an order of K stable under complex conjugation and let the kernel
of the relative norm

ψ :
(OK�fOK)×�(S�fOK)× µK −→

(
OK0�fOK0

)×
�(S0�fOK0

)×
be of exponent at most 2, where f := [OK : S ]. Then we have

f 2 = [OK : S ]2
∣∣∣∣ B4 NK0/Q(∆K/K0) δS,

where B is an integer, depending only on the number of elements in the group of
roots of unity µK and δS ∈ Q.
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Combing the results from Chapter 4.1 and Chapter 7, in Chapter 8 we give
explicit bounds on the index of the orders that can appear as endomorphism rings
of simple polarized abelian varieties over C with complex multiplication and field
of moduli Q. This is the main theoretical result of this work and combines most of
the previous considerations in this thesis.

Theorem.
Let (K,Φ) be a sextic CM type, (Kr,Φr) be its reflex and let K0 denote the totally
real cubic subfield such as S ⊆ OK be an order of index f = [OK : S ]. Let
P = (A, ι,C ) be a simple polarized abelian variety over C of type (K,Φ) with
complex multiplication by S and field of moduli Q. Then K is a cyclic sextic CM
class number one field containing an imaginary quadratic subfield, ΩS = IKr(f) and

f 2 = [OK : S ]2
∣∣∣∣ B4 NK0/Q(∆K/K0) δS,

where B is an integer depending only on the number of elements in the group of
roots of unity µK and δS ∈ Q.

The provided bound on the index depends on δS, and, as we will demonstrate,
there does not exist a general upper bound for δS. However, in the case of orders
S with δS = 1, such as those where the reduction S0 of S to K0 is Gorenstein, this
theorem offers an explicit divisibility criterion. In order to find a comprehensive
list of potential endomorphism rings, a straightforward search for all orders with an
index satisfying this criterion is not realistic in a reasonable amount of time due to
the large number of possibilities. In the two scenarios addressed in Chapter 4.3, we
will be able to construct certain minimal orders which allow to only consider their
overorders during our search.

In the last chapter (Chapter 9), we apply our results to the computation of
simple genus 3 curves over C with complex multiplication by arbitrary orders and
field of moduli Q. Under the condition that δS = 1, we computationally prove that
there are no Picard curves having field of moduli Q and complex multiplication by
an order S ( OK for all CM fields with a group of roots of unity satisfying |µK | = 6.

Corollary.
Let K be a sextic CM field with |µK | = 6 and totally real cubic subfield K0. There
is no simple Picard curve C/C having field of moduli Q and complex multiplication
by a non-maximal order S in K such that δS = 1.

10
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If we omit the condition that δS = 1, then, assuming that the index is only
divisible by primes up to a certain bound, we show an analogue result. This gives
us reason to believe that there might be no Picard curves with field of moduli Q
and CM by a non-maximal order at all.

Corollary.
Let K be a sextic CM field with |µK | 6= 18 and totally real cubic subfield K0. There
is no simple Picard curve C/C having field of moduli Q and complex multiplication
by a non-maximal order S in K such that [OK : S ] is only divisible by prime
numbers p ≤ 105.

We also computationally show that there are no such hyperelliptic curves with
Z[i] ⊆ S ( OK , but we find some curves defined over K0. This requires computing
period matrices and Shioda invariants, such as models of the curves over its field of
moduli. Some examples of the received models over K0 are given in Appendix E.

Corollary.
Let K be a sextic CM field with totally real cubic subfield K0. There is no simple
hyperelliptic curve C/C having field of moduli Q and complex multiplication by a
non-maximal order S ⊇ Z[i] in K such that δS = 1.

Additionally, omitting the condition that δS = 1, we prove a similar result for
orders up to a certain bound on the primes dividing the index [OK : S ]. Again,
this gives us reason to believe that there might be no hyperelliptic curve having
field of moduli Q and CM by a non-maximal order S ⊇ Z[i].

Corollary.
Let K be a sextic CM field with totally real cubic subfield K0. There is no simple
hyperelliptic curve C/C having field of moduli Q and complex multiplication by a
non-maximal order S ⊇ Z[i] in K such that [OK : S ] is only divisible by primes
p ≤ 105.

11



Notations

µK Group of roots of unity of a number field K

∆K/L Relative discriminant of number fields K ⊇ L

TrK/L Trace of number fields K ⊇ L

NK/L Norm of number fields K ⊇ L

OK Maximal order of a number field K

IK Group of fractional ideals of OK
IK(a) Subgroup of IK of fractional ideals coprime to the integral ideal a of OK
PK Subgroup of IK of principal fractional ideals
PK(a) Intersection of IK(a) and PK

C`K Quotient of IK by PK , the class group of K
IK(m) Group IK(m0) for a modulus m = m0 m∞ of a number field K

PK,1(m) Subgroup of IK(m) of principal ideals αOK with α ≡ 1 (mod m0) and
σ(α) > 0 for all infinite places σ dividing m∞ for a modulus m = m0 m∞

of a number field K.
C`K(m) Quotient of IK(m) by PK,1(m), the Ray class group of K modulo m

r(a) Multiplier ring of a lattice a in a number field K

a∗ Trace dual of a lattice a in a number field K

JS Set of fractional ideals of an order S
IS Group of invertible fractional ideals of an order S
IS(a) Subgroup of IS of invertible ideals coprime to the integral ideal a of S
PS Subgroup of IS of principal invertible ideals
PS(a) Intersection of IS(a) and PS

ICM(S) Quotient of JS by PS, the ideal class monoid of S
C`(S) Quotient of IS by PS, the class group of S
Pic(S) Picard group of S
fS Conductor of an order S in OK
Spec(S) Set of prime ideals of an order S, the spectrum of S
K0 Maximal totally real subfield of a CM field K

S0 Intersection of an order S in a CM field K with K0



IS Group of tuples (a, α) ∈ (IS, K0), where α is totally positive
and a ā = αS

PS Subgroup of IS consisting of tuples (xS, xx̄) ∈ (IS, K0) with x ∈ K∗

C(S) Quotient of IS by PS
Φ CM type of a CM field K

(Kr,Φr) Reflex type of a CM type (K,Φ)
NΦ Type norm of a CM type Φ
Ψ Map IKr(f)→ C(S) , a 7→ (NΦr(a),NKr/Q(a), where S ⊆ OK is an

order of index f .
ΩS Kernel of Ψ
ψ Relative norm
C Polarization of an abelian variety
P Polarized abelian variety (A,C )
Hom(A,B) Set of homomorphisms between two abelian varieties A and B

End(A) Group Hom(A,A)
HomQ(A,B) Set Hom(A,B)⊗Z Q
EndQ(A) Algebra HomQ(A,A)
A∗ Picard variety of A
k0 Field of moduli of a polarized abelian variety P = (A,C )
Hg g-dimensional Siegel upper half-space
JC Jacobian of a curve C



Chapter 1

Preliminaries

This chapter contains some fundamental definitions and results on orders in number
fields, class field theory, complex multiplication and abelian varieties. While the first
four sections focus on number theoretical aspects, in the last section, we will turn
our attention to algebraic geometry and the relation between both fields provided
by complex multiplication theory.

1.1 Fractional ideals and orders

Fractional ideals of orders in number fields play an important role in constructing
abelian varieties with complex multiplication. We collect some basic terminologies
and results, mainly following [Neu99], [Ste08] and [AK13].

1.1.1 Fractional ideals of noetherian domains

Definition 1.1.
Let R be a noetherian domain with field of fractions K. A finitely generated non-
zero R-submodule a of K is called a fractional ideal of R (also called a fractional
R-ideal). If a is contained in R, then we say that a is an integral ideal of R and
denote it as a ≤ R.

A non-zero R-submodule a of a noetherian domain R with field of fractions K is
a fractional R-ideal if and only if there exists x ∈ R with xa ⊆ R. Hence, fractional
R-ideals are precisely the R-submodules a 6= {0} such that there exists x ∈ R with
xa ⊆ R.
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Definition 1.2.
Let R be a noetherian domain with field of fractions K, and let a such as b be
fractional ideals of R. We define the intersection a ∩ b, the sum a+ b, the product
a b and the quotient (colon ideal) (a : b) as

a ∩ b := {x ∈ K | x ∈ a , x ∈ b} ,

a + b := {a+ b | a ∈ a , b ∈ b} ,

a b := 〈{a b | a ∈ a , b ∈ b}〉 , and

(a : b) := {x ∈ K | xb ⊆ a} .

All four objects are in particular fractional R-ideals.

Definition 1.3.
Let R be a noetherian domain with field of fractions K, and let a be a fractional
ideal of R. Then a is said to be principal if there exists y ∈ K× with a = yR.

We may consider a fractional R-ideal as a quotient of an integral R-ideal divided
by a principal integral R-ideal.

Definition 1.4.
Let R be a noetherian domain with field of fractions K, and let a be a fractional
ideal of R. We define a−1 := (R : a) and we say that a is invertible, if a a−1 = R.

Note that a a−1 ⊆ R is true for every fractional ideal a of a noetherian domain R.
Being invertible is equivalent to the property that there exists a fractional R-ideal b
such that a b is a non-zero principal R-ideal. By JR we denote the set of fractional
ideals of R. The set IR of invertible fractional R-ideals forms a group under ideal
multiplication and contains a subgroup PR formed by the principal fractional ideals.
PR is then isomorphic to the quotient K×/R×.

Definition 1.5.
Let R be a noetherian domain with field of fractions K. Let IR be the group of
invertible fractional ideals of R, and let PR be its subgroup consisting of principal
fractional ideals. We define the ideal class group of R to be

C`(R) := IR�PR.

In noetherian domains, the ideal class group of R is canonically isomorphic to
the Picard group Pic(R), which is defined to be the group of isomorphism classes of
R-modules which are invertible under the tensor product. For more details on this,
see [AK13][Chapter 25]. In this situation, we will use the term Picard group as a
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synonym of the term ideal class group. As already indicated above, the following
sequence is exact and summarizes the relations between the introduced objects:

0 −→ R× −→ K× −→ IR −→ Pic(R) −→ 0.

1.1.2 Number fields and orders

Throughout this thesis, we will discuss orders in number fields, their fractional
ideals, and their specific properties. This section summarizes the basic knowledge
on these objects.

Definition 1.6.
A finite field extension K of the rational numbers Q is said to be a number field.
For two number fields K and L such that L can be embedded into K, we may write
L ⊆ K and define the degree of K over L to be the dimension of K as a L - vector
space. If this is the case, we say K is normal over L if every irreducible polynomial
in L[x] that has a root in K splits completely in K.

Especially during our discussions on the construction of abelian varieties, we
frequently refer to the terms outlined below.

Definition 1.7.
Let K be a number field. A free Z-module of full rank in K is defined as a lattice
in K. For any lattice a in K, we define the multiplier ring of a to be

r(a) := {x ∈ K | xa ⊆ a}.

If b is a lattice in K and b is contained in a, then b said to be sublattice of a.

Definition 1.8.
Let a and b be lattices in a number field K with bases (a1, . . . , ar) and (b1, . . . , br),
respectively. Let P ∈ Q r×r be a transformation matrix such that

(b1, . . . , br) = (a1, . . . , ar) · P .

Then the index of b in a is defined to be [ a : b ] := | det(P )|.

For every c ∈ Q× we have [ a : cb ] = c r [A : B ] and if b is contained in a, then
[ a : b ] ∈ Z. We also mention that [ a : b ]−1 = [ b : a ] and whenever c is another
lattice in K, then [ a : b ] = [ a : c ] [ c : b ].
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As one of the main objects of interest in this thesis, we consider the following
specific type of subrings of number fields, which also provide the structure of a
lattice.

Definition 1.9.
Let K be a number field. A subring R ⊆ K that is also a lattice in K is called
an order of K. For any order R̃ of K contained in an order R, we say that R̃ is a
suborder of R, and say that R is an overorder of R̃.

For two orders R̃ ⊆ R in a number field K, the index of R̃ in R can be expressed
as

[R : R̃ ] =
∣∣∣R�R̃∣∣∣ .

Every order R of a number field K is a subring of the ring of integers of K:

OK := {x ∈ K | fx,Q ∈ Z[t]},

which is itself an order of K and hence called the maximal order of K. The following
result can be found in [Neu99][Chapter 1.12] and [Ste08][Chapter 2+6] summarizing
some of the most basic knowledge on orders.

Proposition 1.10.
Let R be an order in a number field K. Then:

(a) The field of fractions of R is K.
(b) R is a one-dimensional noetherian integral domain. Especially, every non-

zero prime ideal p of R is maximal and R/p is a field.
(c) R is integrally closed if and only if it is a Dedekind domain. In particular,

the maximal order OK of K is Dedekind.
(d) For every suborder R̃ ⊆ R, the index [R : R̃ ] is finite and for every non-zero

ideal a ≤ R, the ideal norm N(a) := |R/a | is finite.

Based on these considerations, we can relate the terms lattices and fractional
ideals of orders. For any lattice a in a number field K, the multiplier ring r(a)
of a is an order in K but not necessarily equal to OK . We will now present the
relationship between fractional ideals and lattices.

Proposition 1.11.
Let K be a number field, and let S be an order in K.

(a) Every lattice a in K is a fractional ideal of its multiplier ring r(a).
(b) Every fractional ideal a of S is a lattice in K.
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Proof. Firstly, let a be a lattice in K, and let r(a) be its multiplier ring. Then we
have r(a)a ⊆ r(a) and a is a r(a)-submodule of K. Since a is free and has full
rank as a Z-module, a is non-zero and finitely generated as a r(a)-submodule of K.
Hence a is a fractional ideal of r(a). Secondly, let S be an order in K and a be a
fractional S-ideal. Then a is finitely generated as a S-submodule of K, and since
S is a lattice in K, the fractional ideal a is also a lattice in K.

Definition 1.12.
Let K be a number field, and let S be an order in K. A fractional S-ideal a is said
to be proper if its multiplier ring equals S:

r(a) = {x ∈ K | xa ⊆ a} = S .

According to Proposition 1.11, every lattice in a number field K is a proper
fractional ideal of some order S in K. For any fractional ideal a of an order S ⊆ OK ,
the order S is contained in the multiplier ring r(a). Furthermore, every invertible
fractional ideal is proper because for every x in r(a), x is contained in aa−1 = S.

The following definitions and discussions are based on [Neu99][Chapter 3.2] as
well as the considerations in [Ste08][Chapter 7].

Definition 1.13.
Let L ⊆ K be number fields with r = [K : L ]. For any basis (α1, . . . , αr) of L as
a vector space over K, we define the discriminant of (α1, . . . , αr) to be

disc(α1, . . . , αr) := det(TrK/L(αi αj)i,j) .

Additionally, we define the discriminant of K over L to be the following integral
ideal of OL:

∆K/L := 〈{disc(α1, . . . , αr) | (α1, . . . , αr) is a K-basis of L lying in OL}〉 .

We may also define a similar object for orders.

Definition 1.14.
Let S be an order in a number field K. Let (α1, . . . , αr) with αi ∈ S be a basis of
S as a lattice. We define the discriminant of S, denoted as ∆(S), as

∆(S) := det(TrK/Q(αiαj))i,j ∈ Z .
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The following statement summarized considerations from [Ste08][Chapter 7].

Proposition 1.15.
Let K be a number field, and let S be an order in K. If σ1, . . . , σr denote the
different embeddings of K into C and (α1, . . . , αr) with αi ∈ S is a basis of S as a
lattice, then

∆(S) = (det(σi(αj))i,j)2 ∈ Z .

The discriminant of OK is the discriminant of K over Q: ∆(OK) = ∆K/Q. More-
over, for any suborder S ′ ⊆ S, we have

∆(S ′) = [S : S ′ ]2 ∆(S) .

Note that whenever K is totally real and S is an order in K, then σ1, . . . , σr

have values in R and ∆(S) is positive.

Definition 1.16.
Let S be an order in a number field K. We define the trace dual of S to be the
following fractional ideal of S:

S∗ := {α ∈ K | TrK/Q(αS) ⊆ Z} .

The inverse DK/Q := (O∗K)−1 ≤ OK of the trace dual of OK is said to be the
different of K.

In the following proposition, we give relations between the objects mentioned
above, partially following [Neu99][Chapter 3].

Proposition 1.17.
Let K0 be a number field contained in a number field K.Let n := [K0 : Q ] such as
m := [K : K0 ]. Let S be an order in K and S0 := S ∩K0. Then

(a) ∆(S) = [S∗ : S ],
(b) ∆K/Q = NK/Q(DK/Q),
(c) ∆K/Q = NK0/Q(∆K/K0) ·∆m

K0/Q,
(d) [S∗ : S ] = [OK : S ]2 ∆K/Q, and
(e) if K is Galois over K0 and S is stable under Gal(K/K0), then

TrK/K0(S) ⊆ S0 .

Especially, TrK/Q(S) ⊆ TrK0/Q(S0) and S∗0S ⊆ S∗.
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Proof. Let r := nm be the degree of K over Q, and let (α1, . . . , αr) be a basis of S as
a lattice. Then (α∗1, . . . , α∗r), uniquely determined by the relation TrK/Q(α∗iαj) = δi j,
defines a basis of S∗ as a lattice and the transformation matrix of S∗ into S is given
by P = (TrK/Q(αiαj))i j. It follows that [S∗ : S ] = | det(P )| = ∆(S), which proves
(a). The results (b) and (c) can be found in [Neu99][Theorem 2.9 + Corollary
2.10, Chapter 3]. Result (d) follows from (a) together with the properties of the
index. If K is additionally Galois over K0 and S stable under Gal(K/K0), then
TrK/K0(S) ⊆ S ∩K0 = S0 and by the transitivity of the trace it is

TrK/Q(S) = TrK0/Q(TrK/K0(S)) ⊆ TrK0/Q(S0).

Now let x ∈ S∗0 , then

TrK/Q(xS) = TrK0/Q(xTrK/K0(S)) ⊆ TrK0/Q(xS0) ∈ Z .

In order to prepare for our discussion on the decomposition of indices in Chapter
7, we summarize some fundamental definitions and results on localizing orders as it
can be found in [Ste08][Chapter 3]. Beginning with arbitrary multiplicative subsets
S of an order R, we will not only apply this to S = R \ p for prime ideals p of R,
but also to S = Z \ pZ.

Proposition 1.18.
Let R be an order in a number field K, and let S be a multiplicative subset of R.
Then:

(a) S−1R = {r/s | r ∈ R and s ∈ S} is a subring of K.

(b) The fractional ideals of S−1R are of the form

S−1a = {a/s | a ∈ a and s ∈ S} ,

where a is a fractional ideal of R. If S ∩ a 6= ∅, then S−1a = S−1R.

(c) The prime ideals of S−1R are of the form S−1q, where q is a prime ideal of
R with S ∩ q = ∅.

(d) If R̃ is a suborder of R with [R : R̃ ] ∈ S, then S−1R = S−1R̃.

We will primarily focus on the case where S = R \ p for prime ideals p of R,
defined as localizations Rp := (R \ p)−1R at p. The localizations of fractional ideals
a of R at p in the sense of Proposition 1.18 (b) will classically be denoted by ap.
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The ring Rp is local with the unique maximal ideal

pR p = {r/s | r ∈ p , s 6∈ p}.

For every fractional ideal a of R we have a = ⋂
p ap, which means that we can

recover a from its localizations at the primes p of R. For more information, see
[Ste08][Chapter 4].

Additionally, we have special interest in the case S = Z \ pZ, where p ∈ Z is a
prime number. In this scenario,

R(p) := S−1R = {r/s ∈ K | r, s ∈ R and p - s}

is a semi-local ring having only finitely many primes which all contain p. Those
primes correspond to the primes of R lying above p.

Definition 1.19.
Let R be an order in a number field K, and let a such as b be integral ideals of R.
We say that a and b are coprime, if a + b = R. Sometimes we may also say that a

is prime to b.

Locally, and since R is a noetherian domain, this is equivalent to the property
that a p + b p = R p for all primes p of R. Recall that pR p is the unique maximal
ideal of R p. On the one hand, if p does not contain b, then b p = R p and we
have a p + b p = R p. On the other hand, if p contains b, then pR p contains b p

and a p + b p = R p holds if and only if a p 6⊆ pR p. In this case we have a p = R p,
respectively, aR p = R p. This motivates the following generalization of the previous
definition from integral ideals to fractional ideals.

Definition 1.20.
Let R be an order in a number field K. A fractional R-ideal a is said to be prime
to an integral R-ideal b if aR p = R p for every prime ideal p of R containing b.

The set IR(b) of all invertible fractional ideals of R prime to a fixed integral
ideal b of R forms a subgroup of IR. We denote by PR(b) the intersection of IR(b)
and PR.

Definition 1.21.
Let R be an order in a number field K. We define the conductor of R in OK as

fR := {x ∈ OK | xOK ⊆ R } .
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The conductor of R in OK is the largest OK-ideal contained in R, and hence
also an R-ideal. The index f := [OK : R ] is contained in fR and fR ⊆ fOK ⊆ fR.
There are only finitely many prime ideals p of R, which contain fR. Following
[Neu99][Theorem 12.10, Chapter 1], for every prime ideal q of R not containing fR,
the ideal p := qOK of OK is a prime ideal. This leads to the following proposition,
in which we denote by Spec(R) the set of prime ideals of R, the so-called spectrum
of R.

Proposition 1.22.
Let R be an order in a number field K. The map

Spec(OK) −→ Spec(R)

p 7−→ p ∩R

is well-defined, surjective and becomes a bijection if we restrict to primes, which
do not contain the conductor fR. In this case, the inverse map is then given by
q 7−→ qOK.

Having introduced localizations and the conductor fR of an order R in OK , we
can give some equivalent descriptions of invertible prime ideals p of R. The following
theorem summarizes results from [Neu99][Chapter 1.12].

Theorem 1.23.
Let R be an order in a number field K. Let fR be the conductor of R in OK, and
let p be a prime ideal of R. The following conditions are equivalent:

(a) p is invertible,
(b) p does not contain fR,
(c) R p is a discrete valuation ring (DVR),
(d) R p = (OK)p,
(e) pR p is principal.

Now let a be fractional R-ideal. For every invertible prime ideal p of R, there
exists a uniformizer π p, such that aR p = π v p (a) R p for some v p (a) ∈ Z. Recalling
Definition 1.20, a being prime to the invertible prime p is equivalent to v p (a) = 0.
Assuming the nominator c ⊆ R and denominator y ∈ R of a not to be divisible by
the same prime ideal, v p (a) = 0 if and only if v p (c) = 0 and v p (yR) = 0. Now
let b be an arbitrary invertible integral R-ideal. Then b is not contained in any
non-invertible prime ideal p. Thus, we have
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Proposition 1.24.
Let R be an order in a number field K. Let a = 1

y
c be a fractional R-ideal with

integral nominator c ⊆ R and denominator y ∈ R, both not divisible by the same
prime ideal. Let b be an invertible integral R-ideal. Then a is prime to b if and
only if v p (c) = 0 and v p (yR) = 0 holds for every p containing b.

As already described in Chapter 1.1.1 in the more general situation of noetherian
domains, we may define the class group (also called the Picard group) of an order
R as Pic(R) = IR/PR. Recall that, for a fixed integral ideal b of R, we denote by
IR(b) the group of invertible fractional ideals of R, which are prime to b, and by
PR(b) the analogue subgroup consisting of the principal invertible ideals prime to
b. If b = xR is principal, we may just write IR(x) and PR(x). If R = OK , we
often just write K in the index instead of OK .

We will now show that every class in the Picard group of an order R contains
a representative, which is prime to a fixed arbitrary integral ideal of R. In the first
step, we recall the result for R = OK , which is a well-known consequence of the
following weak approximation theorem ([Coh12][Proposition 1.2.3]).

Theorem 1.25.
Let R be a Dedekind domain with field of fractions K. Let S be a set of prime ideals
of R, let (ep)p∈S a set of integers, and let (xp)p∈S be a set of elements in K. Then
there exists an element x ∈ K such that:

(a) vp(x− xp) = ep for all p ∈ S,
(b) vp(x) ≥ 0 for all p 6∈ S.

The following lemma about the representation of classes in the class group can
be found for example in [Coh12][Corollary 1.2.11].

Lemma 1.26.
Let K be a number field, and let a be a non-zero integral ideal of OK. Every class
in the ideal class group C`K can be represented by an integral ideal b prime to a.

Proof. Let K be a number field, and let a be an integral ideal of OK . Consider
a fractional ideal c of OK . We can apply the weak approximation theorem (as
presented in Theorem 1.25) to the set S of those prime ideals p that either divide
c or for which vp(c) < 0. Setting ep = −vp, we can find an element α ∈ K that
satisfies vp(α) = ep for these specific prime ideals p, and has non-negative valuation
for all other prime ideals. As a result, the ideal b = αc is integral, is coprime to a,
and represents the same class as c in the ideal class group C`K .
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We now describe a group homomorphism between IK(b) and IR(b) for every
integral OK-ideal b contained in the conductor fR.

Theorem 1.27.
Let R be an order in a number field K with conductor fR. Let b be an integral ideal
of OK contained in fR. Then there exists a group isomorphism between IK(b) and
IR(b) induced by p 7−→ p ∩ R. In particular, every fractional ideal a ∈ IR(b) has
a unique factorization into prime ideals a = ∏

p eii which matches the factorization
in OK in the sense that aOK = ∏

q eii with qi ∩R = pi.

Proof. It is b ⊆ fR ⊆ R ⊆ OK such that b is also an ideal of R and IR(b) is well-
defined. Let p be a prime ideal of IK(b). Then p∩R is coprime to b and Proposition
1.22 gives the isomorphism between the subgroups of the prime ideals coprime to b,
which expands to an isomorphism between IK(b) and IR(b). Now every a ∈ IR(b)
has a unique image aOK ∈ IK(b) with a prime ideal factorization aOK = ∏

q eii

and a = ∏
p eii provides a unique factorization into primes pi = qi ∩R of R.

Combining Proposition 1.26 and Theorem 1.27, we can give a surjective homo-
morphism between the class groups of R and OK .

Theorem 1.28.
Let K be a number field, and let R be an order in K. The following group homo-
morphism is surjective:

η : Pic(R) −→ C`K
[b] 7−→ [bOK ] .

The kernel is given by ker η = {[αOK ∩R] | α ∈ OK prime to fR}, where fR is the
conductor of R.

Proof. Following Lemma 1.26, we can represent every class of C`K by an integral
ideal a coprime to fR and a ∩ R is also coprime to fR. Due to Theorem 1.27, we
have a = (a∩R)OK , so a∩R is an invertible ideal of R and [a∩R] is a preimage of
[a]. It remains to determine the kernel. of η. On the one hand, a class [b] ∈ Pic(R)
becomes trivial in C`K if there exists α ∈ OK with bOK = αOK . Since bOK is
coprime to fR, α has to be coprime to fR. Then b = bOK ∩ R = αOK ∩ R. On
the other hand, if α ∈ OK is coprime to fR, then αOK ∩R is coprime to fR. Hence
(αOK ∩R)OK = αOK , which is trivial in C`K .
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In a first step, we now show that every class in the Picard group of an order R
can be represented by an ideal coprime to the conductor fR.

Lemma 1.29.
Let R be an order in a number field K with conductor fR. Then every ideal class in
Pic (R ) contains an ideal prime to fR.

Proof. Let [b] ∈ Pic (R ). According to Theorem 1.28, there exists a class [a] ∈ C`K
such that η([b]) = [a] ∈ C`K and by Lemma 1.26, we may assume, without loss of
generality, that a ∈ IK (fR) is integral. Now

η([a ∩R]) = [a] = η([b])

and since we know the kernel of η, there exists an α ∈ OK prime to fR such that

[b] = [(a ∩R)] [(αOK ∩R)].

Applying the isomorphism of Theorem 1.27, the R-ideal a ∩ R is prime to fR. On
the other hand, since αOK is prime to fR, the same holds for αOK ∩R. It follows
that every ideal class can be represented by an ideal prime to fR.

In the final lemma of this section, we generalize Lemma 1.26 to arbitrary orders
R, and, respectively, Lemma 1.29 to arbitrary integral ideals b. Note that, due to
Theorem 1.23, we can apply the idea of the weak approximation theorem for all
primes that do not contain the conductor.

Lemma 1.30.
Let R be an order in a number field K. Let b be an integral OK-ideal. Then every
ideal class in Pic (R ) can be represented by an integral ideal prime to b.

Proof. Let fR be the conductor of R inOK . Following Lemma 1.29, we can represent
every class in Pic(R) by an ideal integral a, which is coprime to fR. Hence, a p = R p

for all p ⊇ fR. Now let P be the set of prime ideals of R, which lie above b, but
do not lie above fR. Following Theorem 1.23, every prime ideal p in P is invertible,
which means that Rp is a DVR and Rp = (OK)p. Hence, we can take a uniformizer
πp, which satisfies

πp ≡ 1 (mod fR) and πp ≡ 1 (mod q) for all q ∈ P \ {p}.

Now define
x :=

∏
p∈P

π
− ordπp (a)
p .
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Then a ′ := x a is a fractional ideal prime to b representing the class of a. To be
more precise, for every p ∈ P we have

a ′R p = (x a) p = x p a p = π
− ordπp (a)
p π

ordπp (a)
p R p = R p.

For every p ⊇ b with p 6∈ P we have p ⊇ fR and since a is prime to fR we get

a ′R p = (x a) p = x p a p = R p.

If we multiply by the norm of the denominator of a ′, we additionally receive an
integral representative prime to b.

1.1.3 Gorenstein orders

During this section, we follow [JT15] and [Mar20] starting with the definition of the
term Gorenstein order in number fields.

Definition 1.31.
Let K be a number field, and let S be an order in K. We call S a Gorenstein order
if its trace dual S∗ is an invertible fractional ideal of S. Furthermore, S is called a
Bass order, if every overorder S ′ ⊇ S of S is also Gorenstein.

As pointed out in [JT15][Characterization 2.6], there are further equivalent de-
scriptions of the term Gorenstein order, but we will focus on the above-mentioned
view as orders with an invertible trace dual. For a number field K = Q(α) with
α ∈ OK , classical examples of Gorenstein orders include Z[α] and the ring of integers
OK . Moreover, if K is a quadratic number field, every order S in K is Gorenstein.
However, this is not true if the degree of K over Q is three or larger. In that
case, K contains infinitely many orders that are Gorenstein, as well as infinitely
many that are not. For instance, if p ∈ Z is a prime number, then, according to
[JT15][Example 7.2], the lattice Z[pα] is a Gorenstein order in K, while the lattice
〈1, pα, pα2, . . . , pαn−1〉Z is an order in K that is not Gorenstein. We can also con-
sider the compositum of Gorenstein orders in different number fields. In order to
do so, we introduce the following term.

Definition 1.32.
Let K and L be number fields. Then K and L are said to be linearly disjoint over
Q if every Q-basis of K is linear independent over L.
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We can now formulate the following result, which is [JT15][Proposition 3.5].

Proposition 1.33.
If S = S1 · · ·Sr is the compositum of r ≥ 1 Gorenstein orders Si, and their fields
of fractions Ki := Quot(Si) are pairwise linearly disjoint over Q, then S is also a
Gorenstein order.

Consequently, for a number field K and α1, . . . , αr ∈ K, the order Z[α1, . . . , αr]
in K is Gorenstein if the fields Q(α1), . . . ,Q(αr) are linearly disjoint. It is clear
that Proposition 1.33 can also be employed to construct many other Gorenstein
and non-Gorenstein orders. In Chapter 2, we will explicitly analyze and partially
classify Gorenstein and non-Gorenstein orders in cubic number fields.

1.2 Finite Rings

In this section, we consider R to be a finite ring and focus on the relationship
between the cardinalities of finite rings and their unit groups. These considerations
will later be applied in decomposing the index of relative orders. Our primary
references are [McD74][Chapter 18] and [Ste08][Chapter 5].

Definition 1.34.
Let R be a finite ring, and let p be a prime ideal of R. We define the norm of p to
be

N(p) :=
∣∣∣(R�p)∣∣∣ .

The following statement relates the cardinalities of finite rings with the cardi-
nalities of their unit group and can be found in [Ste12][Exercise 44, Chapter 2] as
an unproven exercise.

Proposition 1.35.
Let R be a finite ring, and let p1, . . . , pr be the prime ideals of R. Then we have

∣∣∣R× ∣∣∣ = |R |
r∏
i=1

(
1− 1

N(pi)

)
.

Proof. Firstly, we have {0} = ∩ri=1p
ni
i for some ni ≥ 1. All those prime ideals are

coprime to each other such that the Chinese remainder theorem gives us

R ∼= R�{0} ∼=
R�∩ri=1p

ni
i

∼= R� r∏
i=1

pnii

∼= R�pn1
1
× · · · ×R�pnrr . (1.1)
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Considering the units on both sides gives us

R× ∼=
(
R�pn1

1

)×
× · · · ×

(
R�pnrr

)×
. (1.2)

Combing (1.1) with (1.2) we get

|R× |
|R |

=
r∏
i=1

∣∣∣∣∣
(
R�pnii

)×∣∣∣∣∣∣∣∣∣(R�pnii
)∣∣∣∣ . (1.3)

For all i ∈ {1, . . . , r} it is R/pnii a finite local ring with the unique maximal ideal
mi = pi/p

ni
i such that

∣∣∣∣∣
(
R�pnii

)×∣∣∣∣∣ =
∣∣∣∣(R�pnii

)∣∣∣∣− ∣∣∣∣(pi�pnii
)∣∣∣∣ . (1.4)

Hence, for each factor on the right-hand side of (1.3), we receive from (1.4) that
∣∣∣∣∣
(
R�pnii

)×∣∣∣∣∣∣∣∣∣(R�pnii
)∣∣∣∣ = 1−

∣∣∣∣(pi�pnii
)∣∣∣∣∣∣∣∣(R�pnii
)∣∣∣∣ . (1.5)

Finally, combining the fact that (R/pn1
i )/(pi/pn1

i ) ∼= (R/pi) with (1.5), we receive
∣∣∣∣∣
(
R�pnii

)×∣∣∣∣∣∣∣∣∣(R�pnii
)∣∣∣∣ = 1− 1∣∣∣(R�pi)∣∣∣ = 1− 1

N(pi)

and (1.3) becomes the following equation, which is equivalent to the claim

|R× |
|R |

=
r∏
i=1

(
1− 1

N(pi)

)
.

The following theorem is a result from [McD74][Theorem 2, Chapter 18] and
describes the connection between unit groups and residue fields of finite local rings.

Theorem 1.36.
Let R be a finite local ring with unique maximal ideal m and residue field k := R/m.
The following sequence is exact:

1→ 1 + m→ R× → k× → 1 .
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1.3 Global class field theory

This section presents some basic results of global class field theory. We specifically
focus on Ray class groups, which will play a significant role in the discussion on
the construction of certain minimal orders (see Chapter 8.1). One of the main
results of global class field theory is Artin’s Reciprocity theorem, which establishes
a connection between the Galois group of an abelian extension of a global field
and certain generalized ideal class groups. Note that Artin’s Reciprocity Theorem
is non-constructive. The complex multiplication theory of abelian varieties, which
we will discuss later, provides partial answers to the question of constructing these
abelian extensions. However, before delving into complex multiplication theory, it
is valuable to review and state some essential principles of global class field theory
and understand its limitations. In order to do so, we follow the ideal theoretic
version of global class field theory, as presented in [Jan96], [Coh12], and [Cox13].

Definition 1.37.
Let K be a number field. We define a modulus of K to be a formal product
m = ∏

p p
mp over all places p of K, where the integer exponents satisfy the following

conditions:

(a) mp ≥ 0 and at most finitely many are non-zero,
(b) mp = 0 if p is a complex infinite place and
(c) mp ≤ 1 if p is a real infinite place.

Now let m be a modulus of a number field K. We will write m as a formal
product m = m0 m∞, where m0 collects the finite part, which is actually an integral
OK-ideal, and m∞ consists of the infinite real part of m. We say that another
modulus n = ∏

p p
np of K divides m = ∏

p p
mp , if np ≤ mp for all places p of

K. Note that for number fields K without any real embedding, we may consider a
modulus simply as an integral OK-ideal. Recall that the group of fractional ideals
of K that are coprime to m0 is

IK(m) := {a ∈ IK | vp(a) = 0 for all p | m0} .
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Definition 1.38.
Let K be a number field and let m be a modulus of K. We define the following
groups:

(a) The group of units in K which generate ideals coprime to m0 is denoted as

K(m) :=
{
α ∈ K× | αOK ∈ IK(m)

}
.

(b) The subgroup K1(m) of K(m) is defined as

K1(m) :=

α ∈ K(m)
∣∣∣∣ vp(α− 1) ≥ vp(m0) for all p | m0,

αv > 0 for all real places v ∈ m∞

 .

(c) The subgroup of IK(m) containing the principal ideals generated by elements
of K1(m) is represented as

PK,1(m) := {αOK | α ∈ K1(m)} .

(d) The Ray class group of K modulo m is defined as:

C`K(m) := IK(m)�PK,1(m).

Note that the Ray class group of K for the modulus m = 1 is the classical
ideal class group C`K . We give a simple example for the introduced notation, in
particular for a Ray class group, in order to better understand their definitions.
The following example can be found in [Sut19][Example 21.6, Chapter 21.3].

Example 1.39.
Consider the rational number field K = Q with OK = Z and the modulus m = 5Z.
Now, the group of fractional ideals (α) = αZ coprime to m = m0 is given by:

IK(m) =
{

(1),
(1

2

)
, (2),

(1
3

)
,
(2

3

)
,
(3

2

)
, (3),

(1
4

)
,
(3

4

)
,
(4

3

)
, (4),

(1
6

)
, (6), . . .

}
.

Among these, the subgroup PK,1(m) consists of:

PK,1(m) =
{

(1),
(2

3

)
,
(3

2

)
,
(1

4

)
, (4), (6),

(1
6

)
,
(2

7

)
,
(7

2

)
, . . .

}
.

The occurrence of
(

2
3

)
in PK,1(m) might wonder since 2

3 is not an element of Km,1.
However, its negative counterpart −2

3 is an element of Km,1 and, in terms of ideal
representation,

(
−2
3

)
is equal to

(
2
3

)
. The Ray class group of K modulo m is then
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given by:

C`K(m) = IK(m)�PK,1(m) = {[(1)], [(2)]} ∼= (Z/5Z)× /{±1}.

As pointed out in [Coh12][Lemma 3.3.1] and presented below, Theorem 1.26
generalizes to Ray class groups, which means that we can always take an integral
representative of C`K(m) which is prime to a fixed integral ideal b of OK .

Lemma 1.40.
Let m be a modulus of a number field K, and let b be an integral ideal of OK.
Every class in the Ray class group C`K(m) can be represented by an integral ideal a
coprime to b.

Before we state the fundamental theorems of class field theory, we introduce
some notation.

Definition 1.41.
Let L be a finite abelian extension of a number field K, and let m be a modulus
of K divisible by all places of K, which ramify in L. Via the Artin symbol we can
define the Artin map, which is

Φm : IK(m) −→ Gal(L/K)

a 7−→
(
L/K

a

)
.

Definition 1.42.
Given a number field K and a modulus m of K, a subgroup H ⊆ IK(m) is termed
a congruence subgroup for m if it contains PK,1(m). When this condition is given,
the quotient group IK(m)/H is considered as a generalized ideal class group for m.
When H = PK,1(m), the congruence subgroup for m is specifically defined as the
Ray class group of m.

We can now recall the famous Artin Reciprocity Theorem, which can be found
for example in [Jan96][Theorem 5.7, Chapter 5].
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Theorem 1.43.
Let K be a number field and L be an abelian extension of K. Let m be a modulus
of K, which is divisible by all places of K that ramify in L. Then:

(a) The Artin map is surjective.
(b) If the exponents of the places in m0 are sufficiently large, then ker(Φm) is a

congruence subgroup for m and

IK(m)�ker(Φm) ∼= Gal(L/K).

Let m be a modulus of a number field K as in Theorem 1.43 such that ker(Φm)
is a congruence subgroup for m and let n be another modulus divisible by m, then
ker(Φn) is a congruence subgroup for n. Actually, following [Jan96][Theorem 12.7,
Chapter V], for every finite abelian extension L over K there exists a minimal
modulus f, called the conductor of L over K, which satisfies

IK(f)�ker(Φf)
∼= Gal(L/K).

Consider a place p of K. It ramifies in L precisely when it divides f. Now, given a
modulus m that is divisible by all places that ramify, the kernel ker(Φm) becomes
a congruence subgroup for m only when m itself is divisible by f. We say that a
finite abelian extension L of K admits a modulus m if, firstly, all places of K that
ramify in L are included in m, and secondly, ker(Φm) is a congruence subgroup for
m. This foundational idea is captured in what is known as the Existence theorem,
which can be found in [Jan96][Theorem 9.16, Chapter V]:

Theorem 1.44.
Let K be a number field, and let m be a modulus of K. Let H be a congruence
subgroup for m. Then there exists a unique abelian extension L of K such that all
places of K that ramify in L divide m and if Φm : IK(m)→ Gal(L/K) is the Artin
map of L over K, then H = ker(Φm). In particular, the map L 7→ ker(Φm) is an
inclusion reversing bijection of the finite abelian extensions of K which admit m

and the congruence subgroups H for m.

Applying this theorem to the modulus m = 1, we obtain that there exists a
unique finite abelian extension L of K, such that C`K ∼= Gal(L/K).

Definition 1.45.
Let L be the finite abelian extension of a number fieldK such that C`K ∼= Gal(L/K),
then L is said to be the Hilbert class field of K.
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Clearly, the Hilbert class field L of a number field K is unramified for the choice
of m = 1 and maximal with this property, due to the choice of H = PK,1(m).
In other words, the Hilbert class field is the finite abelian extension of K, which
corresponds to the Ray class group for the modulus m = 1. The Existence theorem
also justifies the following term.

Definition 1.46.
Let m be a modulus of a number field K. We define the finite abelian extension
Km of K corresponding the congruence group H = PK,1(m) as the Ray class field
for the modulus m.

We may derive the Kronecker-Weber theorem from the Existence theorem, which
is for example proven in [Cox13][Theorem 8.8, Chapter 2]. This theorem states that
every abelian extension of Q is contained in Q(ζm) for some m ∈ Z. In the following
example, we present this result in the case where m is a prime number:

Example 1.47.
Consider the rational number field K = Q and a modulus m = (p), where p is a
prime number. Theorem 1.44 implies the existence of a unique maximal abelian
extension L of K that ramifies precisely at the places of m and nowhere else. In
our case, this is the cyclotomic extension L = K(m) = Q(ζp) generated by a p-th
root of unity, ζp. The Galois group of L/K corresponds to the quotient of the ideal
class group of K by the congruence subgroup defined by m.

While global class field theory offers a theoretical framework for the description
of abelian extensions of number fields, it does not provide their explicit construction.
This limitation is addressed by the complex multiplication theorem and solves this
issue for a specific class of number fields. In the following section, we will introduce
the basic terms of complex multiplication theory.

1.4 Complex multiplication fields and types

This section provides essential definitions and results on complex multiplication
fields and types. This represents the number theoretical side of complex multipli-
cation theory and is fundamental for the following discussions on abelian varieties
with complex multiplication. Our primary references are [Lan83], [Spa94], [Shi16],
[Str10], [Bis11], and [Kıl16]. We also refer to [Spa94] and [Wen01b].

Definition 1.48.
A number field K is said to be a complex multiplication field (CM field), if it is a
totally imaginary quadratic extension of a totally real number field K0.
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For every CM field K, there exists an automorphism ρ, which fixes K0 and
satisfies the condition that if ι : K ↪→ C is an embedding from K into C and ·̄
denotes the complex conjugation of C, then ·̄ ◦ ι = ι ◦ ρ.

Definition 1.49.
Let K be a CM field, and let K0 be its maximal totally real subfield. The automor-
phism ρ of K is called the complex multiplication on K if it fixes K0 and satisfies
the condition that if ι : K ↪→ C is an embedding from K into C, then ·̄ ◦ ι = ι ◦ ρ.

In order to simplify notation, we will admit both notations ·̄ and ρ for the
complex conjugation ofK. Note that, due to the fact thatK is a quadratic extension
of a totally real number field K0, we can always assume that there exists an n ∈ N
with [K : Q ] = 2n.

Definition 1.50.
Let K be a CM field of degree 2n over Q. Let N ′ be a number field, which contains
a subfield that is isomorphic over Q to a normal closure of K over Q. We call a set
Φ of n different embeddings φ : K ↪→ N ′, where none of these embeddings is a
complex conjugated of one of the others, a complex multiplication type (CM type)
of K with values in N ′. We may also call such a tuple (K,Φ) a CM type.

Definition 1.51.
Let K be a CM field, and let K̃ be a strict CM subfield of K. If Φ̃ is a CM type of
K̃ with values in N ′, then we call

Φ := {φ ∈ Hom(K,N ′) | φ|K̃ ∈ Φ̃}

the CM type of K induced by Φ̃. If (K,Φ) is not induced by any CM type (K̃, Φ̃),
then we call (K,Φ) primitive.

If we fix a CM type (K,Φ), then the normal closure N of K over Q is also a
CM field, and we may fix a CM type ΦN of N with values in N ′, which is induced
by Φ. As presented in [Shi16][Proposition 26], we have the following proposition.

Proposition 1.52.
Let (K,Φ) be a CM type, and let N be a normal closure of K over Q. Then (K,Φ)
is primitive if and only if

Gal(N/K) = {γ ∈ Gal(K/Q) | ΦN ◦ γ = ΦN}.

Applying this proposition to the case in which K is normal over Q, we can
immediately formulate the following corollary.
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Corollary 1.53.
Let Φ be a CM type of a CM field K, which is normal over Q. Then (K,Φ)
is primitive if and only if there exists no non-trivial σ ∈ Gal(K/Q) such that
Φ ◦ σ = Φ.

Definition 1.54.
Let K be a CM field, and let Φ1 such as Φ2 be CM types of K. Then Φ 1 and Φ 2

of a CM field K are called equivalent, if there exists an automorphism σ of K with
Φ 1 ◦ σ = Φ 2.

Now let (K,Φ) be a CM type with values in N ′ and N be a normal closure
of K over Q. If we assume N ′ to be isomorphic to N , then ΦN only contains
isomorphisms, and we may take their inverse, which we collect in the set

Φ−1
N := {φ−1 : N ′ ↪→ N | φ ∈ ΦN}.

The fixed field Kr of {γ ∈ Gal(N ′/Q) | Φ−1
N ◦ γ = Φ−1

N } is a CM field and its CM
type Φr := Φ−1

N |Kr is primitive. This justifies the following definition.

Definition 1.55.
Let (K,Φ) be a CM type with values in a number field N ′ ∼= N , where N is a
normal closure of K over Q. We define the reflex field Kr of (K,Φ) as the fixed
field of

{γ ∈ Gal(N ′/Q) | Φ−1
N ◦ γ = Φ−1

N }.

Additionally, the CM type Φr = Φ−1
N |Kr is identified as the reflex type of (K,Φ) and

the pair (Kr,Φr) is said to be the reflex of (K,Φ).

Note that if a CM type (K,Φ) is induced by a CM type (K̃, Φ̃), then they have
the same reflex (Kr,Φr). If we take the reflex (Krr,Φrr) of the reflex (Kr,Φr) of
(K,Φ), then this is a primitive CM type and Krr ⊆ K (see [Str10][Lemma 7.2]). If
(K,Φ) is primitive, then Krr = K and Φrr = Φ. The following lemma can be found
in [Str10][Lemma 7.3] and is a direct consequence of the definition of the reflex field.
We also refer to [Lan83][Chapter 3.3].

Lemma 1.56.
Let (K,Φ) be a CM type with values in N ′. The reflex field Kr of (K,Φ) satisfies

Gal(N ′/Kr) = {γ ∈ Gal(N ′/Q) | γ ◦ Φ = Φ}.

This lemma justifies the following definition of the term type norm of Φ.
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Definition 1.57.
Let (K,Φ) be a CM type with values in a number field N ′ ∼= N , where N is a
normal closure of K over Q. We define the type norm of Φ as

NΦ : K −→ Kr ⊆ N ′ , x 7−→
∏
φ∈Φ

φ(x) .

As presented in [Shi16][Proposition 28, Chapter 8.3] and [BS17][Chapter 2], the
image of K under the type norm generates the reflex field over Q:

Kr = Q({
∏
φ∈Φ

φ(x) | x ∈ K}) ⊆ N ′ .

Furthermore, this map defines a group homomorphism on the unit groups of K and
Kr. As presented in [Shi16][Proposition 29, Chapter 8.3], for all fractional ideals a

of OK , there exists a unique fractional ideal b of OKr , such that

bON ′ =
∏
φ∈Φ

φ(a)ON ′ .

This enables us to extend the term type norm to the group of fractional ideals
of K and to the class group of K. The following lemma is for example stated in
[Lan83][Remark, Chapter 3.3] and [Str10][Lemma 8.3].

Lemma 1.58.
Let (K,Φ) be a CM type with values in N ′, and let Kr be the reflex field of (K,Φ).
The type norm induces group homomorphisms NΦ : IK −→ IKr , a 7−→ b =: NΦ(a),
where bON ′ = ∏

φ∈Φ φ(a)ON ′, and NΦ : C`K −→ C`Kr .

Using the insights from the previous lemma, we find the following properties of
the type norm. These are detailed further in [Str10][Chapter 1.8].

NΦ(x) NΦ(x) = NK/Q(x) ∀x ∈ K×, and

NΦ(a) NΦ(a) = NK/Q(a) ∀a ∈ IK .

Note that all of these considerations also hold for the so-called reflex type norm
N Φr , which is defined to be the type norm of the reflex (Kr,Φr) of (K,Φ).

We state one further proposition in order to handle images of ideals prime to an
integer under the type norm.

Proposition 1.59.
Let (K,Φ) be a CM type, and let (Kr,Φr) be its reflex. Let a be a fractional ideal
of OKr prime to an integer f ∈ Z. Then NΦr(a) is prime to f .
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Proof. Let N be a normal closure containing K and Kr. Since f is an integer, the
ideal f ON is Galois invariant, so for every σ ∈ Gal(N/Q) we have that σ(a) and
σ(f ON) = f ON are coprime. Consequently, NΦr(a )ON = ∏

φ∈Φr φ(a) is coprime
to f ON . This implies that NΦr(a ) is coprime to f OK .

1.5 Abelian varieties with complex multiplication

In this section we turn our attention to the connection between algebraic geometry
and complex multiplication, focusing specifically on abelian varieties with complex
multiplication. On the geometrical side, abelian varieties can be thought of as an
extension of elliptic curves, and they hold a significant place in modern mathematics,
especially in cryptography. We will lay out the foundational definitions for abelian
varieties over arbitrary fields. This is crucial as these varieties are of interest not
just considered over C, but also over finite fields and number fields. We introduce
fundamental terms such as the Picard variety, polarization, and the field of moduli
of polarized abelian varieties. However, our primary focus will be on the properties
and behaviors of abelian varieties over C. Additionally, we discuss the relationship
between algebraic curves, their Jacobians, and abelian varieties, helping to provide a
clearer understanding of the topic. Finally, combining the geometrical aspects with
the number theoretical aspects from the previous sections, we will then explore
what it means for an abelian variety to have complex multiplication.

1.5.1 Abelian varieties and polarizations

We begin with fundamental definitions related to abelian varieties, their homomor-
phisms, and dual varieties. Our discussion starts with abelian varieties over any
field k. For our exploration, we mainly follow the works in [ST61], [Shi16], [Lan19],
and [Liu02].

Abelian varieties and homomorphisms

Definition 1.60.
A group variety V over a field k is an algebraic variety together with a group
structure such the operations ◦ : V × V → V , (a, b) 7→ a ◦ b, and ·−1 : V → V ,
a 7→ a−1 are rational and defined everywhere on V . If both V and the operations
are defined over k, then the group variety is said to be defined over k. Furthermore,
V is said to be affine or projective if it can be embedded into either an affine or
projective space, respectively.
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Example 1.61.
Now, to provide a more in-depth understanding of the given definition, we give
some examples.

(a) A simple example of an algebraic variety that is not a group variety is the
parabola given by the equation y = x2 in C2. While it represents solutions
to a polynomial equation, making it an algebraic variety, it does not have a
group structure.

(b) Elliptic curves are algebraic varieties, but also come with a group structure
thanks to a well-defined addition operation. Being non-singular, an elliptic
curve can be embedded into projective space, making it a projective group
variety.

(c) For a straightforward example of an affine group variety, consider the ad-
ditive group C of complex numbers. The group operation ◦ is simply the
standard addition of complex numbers, while the inverse ·−1 corresponds to
negation. This group variety exists over the field C and is affine, being natu-
rally embedded into the affine space C via the identity map z 7→ z. However,
it does not have an embedding into a projective space.

Building on our understanding of group varieties, we introduce the following
terminology and refer to [Shi16] as our primary reference.

Definition 1.62.
An abelian variety A is defined to be a projective non-singular group variety having
a commutative group law. We use additive notation for the group law. A subvariety
of an abelian variety A is called abelian subvariety of A, if it is a subgroup of A and
A is said to be simple if the only abelian subvarieties are {0} and A itself. We say
a field k is a field of definition for an abelian variety A if A is definable over k.

Example 1.63.
By further examining our previous examples, we briefly present the distinction
between group varieties and abelian varieties.

(a) Elliptic curves are projective group varieties and have a commutative group
law. Therefore, they are abelian varieties.

(b) The additive group C of complex numbers, on the other hand, demonstrates
a group variety that is not abelian. While it has a clear commutative group
structure, it cannot be embedded into a projective space. Thus, the additive
group C is a commutative affine group variety but not an abelian variety.

Continuing to follow [ST61] and [Shi16], we can now delve deeper into the struc-
ture of abelian varieties by considering homomorphisms.
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Definition 1.64.
Let k be a field, and let A and B be abelian varieties defined over k. By a homo-
morphism of A into B, we define a rational mapping λ : A→ B with

λ(P +Q) = λ(P ) + λ(Q)

for all P ∈ A and Q ∈ B. Such a homomorphism is called endomorphism if
A = B.We denote by Hom(A,B) the set of all homomorphisms from A to B over
any extension of k and define End(A) := Hom(A,A).

The set Hom(A,B) forms a free Z-module of finite rank. Each element in
Hom(A,B) is defined over a separable algebraic extension of k. By extending
the scalars to Q, we can now define HomQ(A,B) := Hom(A,B) ⊗Z Q such as
EndQ(A) := HomQ(A,A). We know that EndQ(A) is an algebra over Q.

Definition 1.65.
Let k be a field, and let A and B be abelian varieties defined over k. A surjective
homomorphism λ ∈ Hom(A,B) is called isogeny if it has a finite kernel. The
cardinality of the kernel is said to be the degree of λ. If such an isogeny exists
between the two abelian varieties A and B, they are called isogenous.

The Picard variety and polarizations

Understanding the concepts of polarization and the dual space is essential when
studying abelian varieties. We introduce these concepts following [ST61], [Shi16]
and [Lan83]. For further details on equivalence classes of divisors we refer to [Lan19].

Definition 1.66.
Let A be an abelian variety over a field k with algebraic closure k̄. A divisor D on
A is a formal sum:

D =
∑

P∈A(k̄)
nPP,

where nP are integers, and only a finite number of these are non-zero. We let Da(A)
denote the group of divisors of A over k̄, which are algebraically equivalent to 0 and
D`(A) denotes the subgroup of all divisors which are linearly equivalent to 0. The
dual variety (or Picard variety) A∗ of A is an abelian variety isomorphic over k̄ to

Pic0(A) := Da(A)/D`(A).

In order to introduce polarizations on abelian varieties following [Shi16], let X
be a divisor of an abelian variety A over a field k. If we define Xa as the translation
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of X by an element a ∈ A, then the mapping

ϕX : A→ A∗, a 7→ (Xa −X)′

is a homomorphism. The divisor X is called non-degenerate if ϕX is an isogeny. Two
divisors X and Y on A satisfy ϕX = ϕY if and only if X is algebraically equivalent
to Y . Let C (X) represent the set of divisors Y on A for which positive integers
m and m1 exist, such that mX and m1Y are algebraically equivalent. When X is
non-degenerate, C (X) corresponds to the isogeny ϕC = ϕX : A→ A∗.

Definition 1.67.
Let A be an abelian variety over a field k, and let X be a non-degenerate divisor of
A. Then C := C (X), respectively ϕC := ϕX : A→ A∗, is said to be a polarization
on A. We say that a polarization on A is principal if ϕ is an isomorphism, which
means that it has degree one. Moreover, we say that a pair (A,ϕ) (or (A,C ))
is a polarized abelian variety over k, if a A is an abelian variety and ϕ is a fixed
polarization on A, both defined over k.

The term polarization for abelian varieties was introduced by Weil during his dis-
cussion on abelian varieties with complex multiplication. He suggested an analogy
to oriented manifolds in topology, as discussed in [Wei55]. Around the same period,
Matsusaka expanded on this concept in [Mat58]. Both Weil’s and Matsusaka’s
pioneering works on this topic are frequently cited, for example in Shimura’s writ-
ings. The concept of polarization can be considered a generalization of the fol-
lowing well-known ideas related to elliptic curves, which is for example stated in
[Sil09][Proposition 3.4, Chapter 3].

Example 1.68.
Let k be a field with an algebraic closure k̄. Let E be an elliptic curve over k
together with a point O ∈ E(k̄). Let Pic0(E) := Pic0

k̄(E) denote the Picard group
of E. Then the following map is a bijection:

E(k̄) −→ Pic0(E)

P 7−→ [P ]− [O]

Just as for elliptic curves, a polarization lets us view the Picard group Pic0(A) of
an abelian variety A as a geometric object. When the polarization is principal, the
Picard group Pic0(A) (or the dual variety A∗) can be identified with the polarized
abelian variety A. Every abelian variety has a polarization over its field of definition,
as outlined in [ST61][Proposition 11+12, Chapter 1].
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Building on [Shi16], we will now discuss the concepts of the transpose and the
Rosati involution for abelian varieties. These concepts are crucial for our later in-
vestigation of endomorphism rings of abelian varieties with complex multiplication.

Let A and B be abelian varieties over a field k. Let A∗ and B∗ represent their
respective dual varieties. For a detailed elaboration, we refer the reader to [Shi16].
However, we give a short sketch of the idea. Given any Z ∈ Da(A), it corresponds to
a point on A∗, represented as Z ′. For a given homomorphism λ ∈ Hom(A,B), there
exists a corresponding λ∗ ∈ Hom(B∗, A∗) such that we have λ∗(Z ′) = (λ−1(Z))′

whenever λ−1(Z) is defined for Z ∈ Da(A).

This establishes a map

Hom(A,B)→ Hom(B∗, A∗)

λ 7→ λ∗

which extends uniquely to an isomorphism

·t : HomQ(A,B)→ HomQ(B∗, A∗).

Definition 1.69.
Let k be a field, and letA such asB be abelian varieties over k. The unique extension
·t : HomQ(A,B) → HomQ(B∗, A∗) of Hom(A,B) → Hom(B∗, A∗) , λ 7→ λ∗ is
called transpose or dual.

Now, we may extend the term homomorphism to polarized abelian varieties and
introduce the term Rosati involution.

Definition 1.70.
Let (A,CA) and (B,CB) be polarized abelian varieties over a field k. A homomor-
phism λ ∈ Hom(A,B) is called a homomorphism from (A,CA) to (B,CB) if

λt ◦ ϕCB ◦ λ = ϕCA ,

where λt denotes the transpose of λ.

Consider the case A = B and CA = CB with ϕ : A → A∗. Then every
λ ∈ EndQ(A) has a transpose λt ∈ EndQ(A∗) and the map λ 7→ ϕ−1 ◦ λt ◦ ϕ is an
involution on EndQ(A).

Definition 1.71.
Let k be field, and let (A,C ) be a polarized abelian variety with corresponding
isogeny ϕ : A → A∗. The map λ 7→ ϕ−1 ◦ λt ◦ ϕ is called Rosati involution.
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In the context of abelian varieties with complex multiplication, which we will
discuss later, the Rosati involution establishes a crucial link between polarizations
and endomorphisms of the abelian variety. This involution acts as a conjugate
transpose on the endomorphism algebra and, over the complex field C, preserves
the Riemann form induced by the polarization.

The field of moduli

The following construction follows [ST61], which we also refer to for further de-
tails. Consider a polarized abelian variety (A,C ) defined over a field k. For every
isomorphism σ ∈ Gal(k/Q), (Aσ,C σ) is a polarized abelian variety. Based on
[ST61][Theorem 2, Chapter 1], there exists a subfield k0 of k such that (A,C ) is
isomorphic to (Aσ,C σ) if and only if σ ∈ Gal(k/k0). Importantly, when the char-
acteristic of k is zero, k0 is uniquely determined, as outlined in [ST61][Proposition
14, Chapter 1].

Definition 1.72.
Let (A,C ) be a polarized abelian variety over a field k, and let k0 be the subfield
of k such that (A,C ) is isomorphic to (Aσ,C σ) if and only if σ ∈ Gal(k/k0). Then
k0 is called the field of moduli of (A,C ).

The field of moduli plays a foundational role in understanding isomorphism
classes of polarized abelian varieties, and can be considered as the smallest field
over which at least one polarized abelian variety in the isomorphism class can be
defined.

1.5.2 Abelian varieties over C

In this thesis, our main focus is on abelian varieties over C. Firstly, we will see
how they relate to complex tori and discuss Riemann forms. We will also show
how theta functions let us connect polarizations on abelian varieties with Riemann
forms on tori, and introduce period matrices. Most of what we discuss in this section
comes from [Lan83][Chapter 3.4], [BL04], and [Spa94][Chapter 3]. At the end of this
section, we will also take a brief look at theta characteristics using [Wen01b][Chapter
1.1.6]. These are important when we classify and construct models of hyperelliptic
curves.

Complex tori and Riemann forms

It is well known that, as presented in [Sil09], elliptic curves over C are complex tori
and that every torus of dimension one defines an elliptic curve. Moreover, every
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abelian variety A over C is isomorphic to a torus Cg/Λ for some g ∈ N and lattice
Λ in Cg via an analytic isomorphism θ : Cg/Λ −→ A(C). The integer g is defined
to be the dimension of A. However, if g is strictly greater than one, not every torus
Cg/Λ arises from an abelian variety.

Definition 1.73.
A (non-degenerated) Riemann form E on a torus Cg/Λ with g ∈ N is an alternating
(non-degenerated) form on Cg such that E(v, w) ∈ Z for all v, w ∈ Λ. A torus is
said to be polarizable if it admits a Riemann form.

We receive the following crucial theorem, which can be found for example in
[Mum99][Lecture 4].

Theorem 1.74.
Let g be a positive integer. A complex torus Cg/Λ with Λ being a lattice in Cg is
isomorphic to an abelian variety A over C if and only if it is polarizable.

Theta functions

Next, we briefly look at how polarizations of abelian varieties over C relate to Rie-
mann forms on complex tori. This correspondence will be important when we later
talk about the construction of specific abelian varieties. We refer to [Lan83][Chapter
3.4] and [Spa94][Chapter 3] as our primary references.

Definition 1.75.
Let g be a positive integer and Cg/Λ be a complex torus, where Λ denotes a lattice
in Cg.

(a) A function f : Cg/Λ→ C is said to be holomorphic if it is complex differen-
tiable at every point of Cg/Λ.

(b) A function f : Cg/Λ→ C∪{∞} is termed meromorphic if it is holomorphic
everywhere on Cg/Λ except possibly at a set of isolated points, where the
function might not be defined or might take the value ∞.

(c) A meromorphic function f on Cg/Λ is said to be a theta function if there
exists a C-linear form L on Cg such that for all u ∈ Λ it is

f(z + u) = f(z) · e2πi(L(z,u)+c(u)).

Let f be a theta function on a complex torus Cg/Λ with corresponding linear
form L. Following [Spa94][Chapter 3], as L(z, u1 + u2) = L(z, u1) + L(z, u2), we
may extend L to a R-bilinear function on Cg. If f is holomorphic, we can define a
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Riemann form on Cg/Λ via

Ef (u, v) := L(u, v)− L(v, u).

On the other hand, if E is a Riemann form on Cg/Λ, there is always a holomorphic
theta function f on Cg/Λ such that E = Ef .

The Riemann form Ef depends only on the divisor X := (f) on Cg/Λ, and two
divisors X , Y on Cg/Λ are algebraically equivalent if and only if they correspond
to the same Riemann form E.

Summarizing our considerations, for every polarization C = C (X) on an abelian
variety A over C we may associate a unique Riemann form EX on the corresponding
torus Cg/Λ via the theta function fX . On the other hand, assuming that the torus
Cg/Λ is polarizable, every Riemann form on Cg/Λ determines a holomorphic theta
function f on Cg/Λ and an equivalence class of divisors, hence a polarization on
A. Thus, we receive a one-to-one correspondence between Riemann forms and
polarizations:

C = CX ←→ [X]a ←→ E = EC = EX .

In the following we will see how this correspondence plays a role in categorizing
isomorphism classes of polarized abelian varieties through the use of period matrices.

Period matrices and the Siegel upper half-space

Now let (A,C ) be a polarized abelian variety of dimension g over C such that
A(C) ∼= Cg/Λ for some torus Cg/Λ, and let E be the Riemann form corresponding
to the polarization C . We follow [Spa94][Chapter 3] and [Str10][Chapter 2.4]. There
exists a basis (b1 , . . . , b2g) of Λ with

(E(bi, bj))i,j =
 0 D

−D 0

 ,
where D = (di j)i,j ∈ Zg×g+ is a diagonal matrix with positive integer entries such
that d11 | · · · | dgg. The polarization C of A is principal if and only if D = Eg.
This is equivalent to say that ϕC induces an isomorphism between A and the dual
variety A∗ of A.
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Definition 1.76.
Let (A,C ) be a polarized abelian variety of dimension g over C such that A is
isomorphic over C to a complex torus Cg/Λ, and let E be the Riemann form corre-
sponding to the polarization C . A basis (b1 , . . . , b2g) of Λ with

(E(bi, bj))i,j =
 0 D

−D 0

 ,
where D = (di j)i,j ∈ Zg×g+ is a diagonal matrix with positive integer entries such
that d11 | · · · | dgg is called symplectic with respect to E.

Moreover, if we define Ω1 := (b1 , · · · , bg) and Ω2 := (bg+1 , · · · , b2g), then C

is a principal polarization of A if and only if Ω := Ω−1
2 Ω1 is symmetric and has

positive definite imaginary part (Im(Ω) > 0).

Definition 1.77.
Let g be a positive integer. We define the g-dimensional Siegel upper half-space to
be

Hg := {Ω ∈ GL(g,C) | ΩT = Ω and Im(Ω) > 0}

and call the elements of Hg period matrices.

There is an action of the symplectic group, defined to be

SP2g(Z) =

M ∈ GL(2g,Z) |MT

 0 Eg

−Eg 0

M =
 0 Eg

−Eg 0

 ,
on the Siegel upper half-space viaA B

C D

Ω = (AΩ +B)(CΩ +D)−1.

Definition 1.78.
Let g be a positive integer and Hg be the g-dimensional Siegel upper half-space. The
set of orbits under the action of SP2g(Z) on Hg is defined to be the g-dimensional
moduli space.

The moduli space in a one-to-one correspondence to the set of isomorphism
classes of principally polarized abelian varieties over C.

45



1.5. ABELIAN VARIETIES WITH COMPLEX MULTIPLICATION

Theta characteristics

We now introduce theta characteristics, which are, for example, used in the con-
struction of Rosenhain models and in the classification of hyperelliptic curves. For
more information, see [Wen01b]. For a given positive integer g, we define the Rie-
mann theta function to be

Θ : Cg ×Hg −→ C

(z,Ω) 7−→
∑
n∈Zg

exp
(
πi
(
nTΩn+ 2nT z

))
.

Such a function is always holomorphic and Θ(z,Ω) = Θ(−z,Ω). If we fix a period
matrix Ω ∈ Hg of a principally polarized torus Cg/Λ, we receive a function from Cg

into C and we may define a Riemann theta divisor of Ω:

Θ(Ω) := {z + Λ | z ∈ Cg and Θ(z,Ω) = 0}.

One can show that two period matrices Ω,Ω1 ∈ Hg within in the same orbit
do not necessarily induce the same theta divisor. However, the theta divisors are
translations of each other in the sense that Θ(Ω1) = Θ(Ω)

a for some a ∈ Ω
(

1
2Z

g
)
+ 1

2Z
g.

This motivates the following definition.

Definition 1.79.
Let g be a positive integer, and let δ, ε ∈ (Z/2Z)g. A theta characteristic is a
function

Θ[δ, ε] : Cg ×Hg −→ C

(z,Ω) 7−→
∑
n∈Zg

exp
(
πi
(

(n+ 1
2δ)

TΩ(n+ 1
2δ) + 2(n+ 1

2δ)
T (z + 1

2ε)
))

.

Observe that Θ[δ, ε](−z,Ω) = (−1)δT εΘ[δ, ε](z,Ω). We introduce the concept of
theta null values, which are determined by evaluating theta characteristics at zero.

Definition 1.80.
Let g be a positive integer, let δ, ε ∈ (Z/2Z)g, and let Θ[δ, ε] be a theta character-
istic. The mapping

Θ[δ, ε] : Hg −→ C

Ω 7−→ Θ[δ, ε](0,Ω)

is called a theta null value or theta constant. A theta null value is said to be even
if δT ε is even, and odd otherwise.
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Note that, for g ∈ N and vectors δ, ε ∈ (Z/2Z)g, if δT ε ≡ 1 ≡ δT1 ε1, then
Θ[δ, ε](0,Ω) = 0 if and only if Θ[δ1, ε1](0,Ω) = 0. Building on insights from
[Wen01b], there are always 2g−1(2g +1) odd and 2g−1(2g−1) even theta null values.
For instance, when g = 2, there are 10 even theta constants, and for g = 3, there
are 36 odd theta constants.

1.5.3 Curves and Jacobians

Based on [Liu02] and [BL04], we briefly introduce the concepts of curves and their
Jacobians.

Definition 1.81.
An (algebraic) curve over a field k is defined to be an algebraic variety whose
irreducible components have dimension one.

In this thesis, we always assume that a curve is smooth, geometrically connected,
and projective. We state that for every curve C over a field k, there exists a certain
abelian variety J of dimension g ∈ N over k, such that J(L) is isomorphic to
Picard group Pic0(CL) of C for every field extension L ⊇ k. While we do not dive
deep into the construction details, we refer the reader to [Liu02][Chapter 7.4] or
[BL04][Chapter 11.1] for a comprehensive overview.

Definition 1.82.
Let C be a curve over a field k. The abelian variety J over k that satisfies

J(L) ∼= Pic0(CL)

for every field extension L ⊇ k is said to be the Jacobian of C.

The genus of the curve C equals the dimension of its corresponding Jacobian J
and we can think of the elements of J as equivalence classes of g-tuples of points
on C. Jacobians come with a principal polarization, relating curves to principally
polarized abelian varieties (see [BL04][Proposition 11.1.2]). While the Jacobian of
an elliptic curve is isomorphic to the curve itself, this is not the case for curves of
genus g ≥ 2.

Definition 1.83.
Let C be a curve of a field k and J be its Jacobian. We say that C is simple, if J
is simple as an abelian variety.
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Over the complex numbers, we can state the following crucial theorems about
Jacobians over C. The following is known as Torellis theorem and can be found in
[BL04][Theorem 11.1.7] or [Mum99][Lecture IV].

Theorem 1.84.
Let C and C1 be curves over C, and let P = (JC ,C ) and P1 = (JC1 ,C1) be their
principally polarized Jacobians, respectively. If P and P1 are isomorphic, then C

and C1 are isomorphic.

Fortunately, we can characterize simple principally polarized abelian varieties
of low dimension as Jacobians of curves, as summarized in [BL04][Corollary 11.8.2]
and originally proved by Weil (g = 2) and Matsusaka-Ran (g = 3).

Theorem 1.85.
Every simple principally polarized abelian variety over C of dimension g ∈ {1, 2, 3}
is the Jacobian of a simple curve of genus g.

We have observed a deep connection between simple curves, their Jacobians, and
simple principally polarized abelian varieties. Specifically, the isomorphism classes
of simple curves and these structures are closely linked. To be precise, over the
complex numbers C, we can connect each isomorphism class of simple principally
polarized abelian varieties with a dimension g to an isomorphism class of simple
curves with the same genus g.

1.5.4 Abelian varieties with complex multiplication

In this section, following [ST61] and [Lan83], we discuss the concept of complex
multiplication of abelian varieties, connecting the number theoretical and the geo-
metrical aspects.

Definition 1.86.
Let A be an abelian variety of dimension g over a field k. If there is an embedding
ι : F ↪→ EndQ(A) := End(A) ⊗Z Q from a CM field F of degree 2g into the
endomorphism algebra of A, then A is said to have complex multiplication (CM) by
F . To be precise, there exists an order R ⊆ OF of F such that

R = ι−1(End(A) ∩ ι(F )) .

We say that A has complex multiplication (CM) by R. In addition, we say that
a curve C over k has complex multiplication by R if its Jacobian has complex
multiplication by R.
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Now, let A be an abelian variety of dimension g over a field k with complex
multiplication by F . Then there exists a simple abelian variety B such that A is
isogenous to the product B × · · · × B. Let K be the center of EndQ(B), then K

is a subfield of F . Whenever the characteristic of k is equal to zero, then K is a
CM field isomorphic to EndQ(B). Furthermore, (A, ι) is said to be defined over k,
if k is a field of definition of A and every element of ι(R) is defined over k.

Definition 1.87.
Let (A, ι) and (A′, ι′) be abelian varieties with CM by F . We say that a homomor-
phism λ : A → A′ is a homomorphism from (A, ι) to (A′, ι′), if λ ι(α) = ι′(α)λ
for every α ∈ F .

Consider an abelian variety (A, ι) of dimension g over C with CM by a CM field
F of degree 2g over Q. Let Tgt0(A) denote the tangent space of A at the point
zero, which is a g-dimensional C-vector space. According to [Lan83][Chapter 1.4],
there exists a CM type Φ of F consisting of embeddings φ : F ↪→ C where the
representation of F on End(Tgt0(A)) via ι is equivalent to ⊕φ∈Φφ. This CM type
Φ is uniquely defined by both A and ι.

Definition 1.88.
Let (A, ι) be an abelian variety of dimension g over C with CM by the CM field F .
Let Φ be the CM type of F such that the representation of F on End(Tgt0(A)) via
ι is equivalent to ⊕φ∈Φφ. The tuple (A, ι) is said to be an abelian variety of type
(F,Φ).

The next proposition, presented in [Shi16][Chapter 8.2], links the term simple
of an abelian variety on the geometric side with the term primitive of a CM type
on the number theoretical side.

Proposition 1.89.
Let (F,Φ) be a CM type. An abelian variety (A, ι) over C of type (F,Φ) is simple
if and only if Φ is primitive.

By including polarization, we introduce one more definition.

Definition 1.90.
Let (F,Φ) be a CM type. A triple (A, ι,C ) is said to be a polarized abelian variety of
type (F,Φ) if (A, ι) is an abelian variety over C of type (F,Φ) and C is a polarization
of A. Two polarized abelian varieties (A, ι,C ) and (A1, ι1,C1) of the same type
(F,Φ) are called isomorphic, if there exists an isomorphism from (A, ι) to (A1, ι1),
which maps C to C1.
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Orders in cubic number fields

In this chapter, we delve into orders in cubic number fields and provide concrete
representations for both Gorenstein and non-Gorenstein orders. These orders will
be fundamental in following discussions on the existence of certain simple CM curves
of genus 3. Specifically, in order to determine the index of the endomorphism rings
of the Jacobians of these curves, which are orders in sextic CM fields K, we need to
ensure their reductions to the totally real cubic subfield K0 of K are of a particular
type. Gorenstein orders will be one of the main examples of these orders in cubic
number fields, which justifies a detailed investigation of these objects. The opening
section introduces orders in cubic number fields and outlines conditions on the Z-
bases of orders. The following sections provide detailed descriptions of Gorenstein
and non-Gorenstein orders.

2.1 Representation of orders in cubic number fields

Throughout this section, let L = Q(β) = Q[x]/〈f〉 be a cubic number field with
monic irreducible polynomial f ∈ Z[x], and let β ∈ OL. Firstly, every order S ⊆ OL
is a lattice and a ring with field of fractions L. Thus, it contains the multiplicative
unit 1 ∈ L and there exists a Z-basis (1, ω1, ω2) of OL as a lattice for some integral
ω1, ω2 ∈ L. In other words, we have

OL = 〈1, ω1, ω2〉Z,

where 〈1, ω1, ω2〉Z denotes the Z-module contained in L generated by 1, ω1 and
ω2. Since S is a subset of OL, a Z-basis (s0, s1, s2) of S can then be derived by
multiplying the fixed Z-basis of OL with a transformation matrix U in Hermite
normal form. Again, since Z ⊆ S, we may assume s0 = 1 such that there are
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integers a, c ∈ N and b ∈ {0, . . . , a− 1} with

s0

s1

s2

 =


1 0 0
0 a 0
0 b c


︸ ︷︷ ︸

U


1
ω1

ω2

 =


1
aω1

b ω1 + c ω2

 .

As a consequence, without loss of generality, we assume that every suborder S
of OL can be described as a lattice via S = 〈1, a ω1, b ω1 + c ω2〉Z.

Note that while every combination of such a, b, c defines a sublattice of OL, only
a few combinations actually define rings and, consequently, suborders of OL. For
this to hold, S must be multiplicatively closed, which implies that

S2 = 〈1, a ω1, b ω1 + c ω2, a
2 ω2

1, a ω1 (b ω1 + c ω2), (b ω1 + c ω2)2〉Z ⊆ S.

The following theorem provides conditions on a, b, c to ensure this property. Given
that OL is multiplicatively closed, there exist integers λij ∈ Z for 1 ≤ i ≤ 3 and
0 ≤ j ≤ 2 such that

ω2
1 = λ10 + λ11 ω1 + λ12 ω2 ,

ω2
2 = λ20 + λ21 ω1 + λ22 ω2 and

ω1 ω2 = λ30 + λ31 ω1 + λ32 ω2 .

Theorem 2.1.
Let L = Q(β) = Q[x]/〈f〉 be a cubic number field with monic irreducible polynomial
f ∈ Z[x] and β ∈ OL. Let OL = 〈1, ω1, ω2〉Z for some integral ω1, ω2 ∈ L and let
λij ∈ Z with 1 ≤ i ≤ 3 and 0 ≤ j ≤ 2 such that

ω2
1 = λ10 + λ11 ω1 + λ12 ω2 ,

ω2
2 = λ20 + λ21 ω1 + λ22 ω2 and

ω1 ω2 = λ30 + λ31 ω1 + λ32 ω2 .

Then S = 〈1, a ω1, b ω1+c ω2〉Z is an order in L if and only if the following conditions
hold:

(a) c | a2 λ12 and c | a b λ12,

(b) c | (a b λ12 + a c λ32) and c | (b2 λ12 + b c λ32),

(c) c | (b2 λ12 + 2 b c λ32 + c2 λ22) and
a |

(
b2 λ11 + 2 b c λ31 + c2 λ21 − b b

2 λ12+2 b c λ32+c2 λ22
c

)
.
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Proof. In order to show that S is multiplicatively closed, we have to show that

S2 = 〈1, a ω1, b ω1 + c ω2, a
2 ω2

1, a ω1 (b ω1 + c ω2), (b ω1 + c ω2)2〉Z ⊆ S.

Given that these elements precisely generate S, the first three generators of S2

belong to S. We now determine conditions on a, b, c ensuring that the next three
generators are also contained in S.
Starting with the first remaining generator, we have

a2 ω2
1 = a2 (λ10 + λ11 ω1 + λ12 ω2)

= a2 λ10 + a2λ11 ω1 + a2 λ12 ω2 .

We have a2 λ10 ∈ S and receive that a2 ω2
1 ∈ S if and only if

a2λ11 ω1 + a2 λ12 ω2 ∈ S .

This is the case if and only if there exist µ1, µ2 ∈ Z with

a2λ11 ω1 + a2 λ12 ω2 = µ1 aω1 + µ2 (b ω1 + c ω2) .

Equating coefficients results in the following system of linear equations over Z:a b

0 c

 µ1

µ2

 =
a2λ11

a2λ12

 .

Now a2 ω2
1 ∈ S if and only if this system of linear equations has a solution

(
µ1 µ2

)T
over Z. On the one hand, we receive the condition

c | a2 λ12 . (2.1)

If condition (2.1) holds, then exists µ2 ∈ Z with µ2 c = a2 λ12. Now, on the other
hand, the second condition becomes

a | (a2 λ11 − b µ2) =
(
a2 λ11 −

a2 b λ12

c

)
,

which is equivalent to

c | a b λ12 . (2.2)

We follow the same argument for the other generators. For the second remaining
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generator of S2, we have

aω1 (b ω1 + c ω2) = a b ω2
1 + a c ω1 ω2

= a b(λ10 + λ11 ω1 + λ12 ω2) + a c (λ30 + λ31 ω1 + λ32 ω2)

= (a b λ10 + a c λ30) + (a b λ11 + a c λ31)ω1 + (a b λ12 + a c λ32)ω2 .

Again, aω1 (b ω1 + c ω2) ∈ S if and only if

(a b λ11 + a c λ31)ω1 + (a b λ12 + a c λ32)ω2 ∈ S .

This is the case if and only if there exist η1, η2 ∈ Z such that

(a b λ11 + a c λ31)ω1 + (a b λ12 + a c λ32)ω2 = η1 aω1 + η2 (b ω1 + c ω2) .

Equating coefficients gives the following system of linear equations over Z:a b

0 c

 η1

η2

 =
a b λ11 + a c λ31

a b λ12 + a c λ32

 .

Now aω1 (b ω1+c ω2) ∈ S if and only if this system of linear equations has a solution
over Z. Hence, on the one hand, we receive the condition

c | (a b λ12 + a c λ32) . (2.3)

Assuming that condition (2.3) holds, there exists a η2 ∈ Z with η2 c = a b λ12 +
a c λ32. Then, on the other hand, the second condition becomes

a | (a b λ11 + a c λ31 − b η2) .

Again, substituting η2, this condition is equivalent to

c | (b2 λ12 + b c λ32) . (2.4)

It remains to find an analogous condition for the last generator of S2. We have

(b ω1 + c ω2)2 = b2 ω2
1 + 2 b c ω1 ω2 + c2 ω2

2

= b2 (λ10 + λ11 ω1 + λ12 ω2) + 2 b c(λ30 + λ31 ω1 + λ32 ω2)

+ c2 (λ20 + λ21 ω1 + λ22 ω2) .
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For this generator, (b ω1 + c ω2)2 ∈ S if and only if there exist γ1, γ2 ∈ Z such that

(b2 λ11 +2 b c λ31 +c2 λ21)ω1 +(b2 λ12 +2 b c λ32 +c2 λ22)ω2 = γ1 aω1 +γ2 (b ω1 +c ω2) .

Equating coefficients, we obtain the next system of linear equations over Z:a b

0 c

 γ1

γ2

 =
b2 λ11 + 2 b c λ31 + c2 λ21

b2 λ12 + 2 b c λ32 + c2 λ22

 .

Now, on the one hand, we obtain the condition

c | (b2 λ12 + 2 b c λ32 + c2 λ22) . (2.5)

Hence, there exists a γ2 ∈ Z satisfying γ2 c = b2 λ12 + 2 b c λ32 + c2 λ22. Then, on the
other hand, we have the following condition

a | (b2 λ11 + 2 b c λ31 + c2 λ21 − b γ2) .

Substituting γ2 yields

a |
(
b2 λ11 + 2 b c λ31 + c2 λ21 − b

b2 λ12 + 2 b c λ32 + c2 λ22

c

)
. (2.6)

This general description of the Z-bases of orders S ⊆ OL as a lattice still allows
many different choices of the parameters a, b, c ∈ N. In what follows, we want to
give a more explicit representation for Z-bases of Gorenstein orders, which is only
possible if we add further constrains. We focus on orders in cubic number fields
with diagonal transformation matrix U , meaning that b = 0. Those orders are called
diagonal. Focusing on diagonal orders allows us to get a clear view on the structure
of Z-bases of those orders in cubic number field. Setting b = 0 into Theorem 2.1
directly delivers the following corollary.
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Corollary 2.2.
Let L be a cubic number field with maximal order OL = 〈1, ω1, ω2〉Z. Let λij ∈ Z
with 1 ≤ i ≤ 2 and 0 ≤ j ≤ 2 such that

ω2
1 = λ10 + λ11 ω1 + λ12 ω2 and

ω2
2 = λ20 + λ21 ω1 + λ22 ω2 .

A sublattice S = 〈1, a ω1, c ω2〉Z of OL with a, c > 0 is an order in L if and only if

a | λ21 c
2 and c | λ12 a

2 .

Recall that the parameters λ21 and λ12 depend only on the cubic number field

L = Q(β) = Q[x]�〈f〉,

where f = x3 +α2 x
2 +α1 x+α0 ∈ Z[x] is irreducible. Especially, these parameters

depend on the Z-basis of the ring of integers OL. Whenever OL is monogenic,
meaning that ω1 = β and ω2 = β2, we receive the following corollary.

Corollary 2.3.
Let L = Q(β) = Q[x]/〈f〉 with irreducible f = x3 + α2 x

2 + α1 x + α0 ∈ Z[x] be
a cubic number field with a monogenic ring of integers OL = 〈1, β, β2〉Z. Then a
sublattice S = 〈1, a β, c β2〉Z of OL is an order in L if and only if a | (α2

2 α1−α0) c2

and c | a2.

Proof. In the notation of Corollary 2.2, We have ω2
1 = ω2 and λ12 = 1. On the

other hand, applying that f(β) = 0, we have

ω2
2 = (β2)2 = β3 β = −(α0 + α1 β + α2

2 β
2) β

= −α0 β − α1 β
2 − α2

2 β
3

= −α0 β − α1 β
2 − α2

2 (−(α0 + α1 β + α2
2 β

2))

= α2
2 α0 + (α2

2 α1 − α0)β + (α4
2 − α1) β2

= α2
2 α0 + (α2

2 α1 − α0)ω1 + (α4
2 − α1)ω2 .

As a consequence, λ21 = α2
2 α1 − α0. Substituting λ12 and λ21 into Corollary 2.2

proves the claim.

We now present a list of examples of cubic number fields with their specific
parameters λ21 and λ12 (see Table 2.1 below). In following chapters, we will consider
a specific list of sextic CM fields. These fields appear as the CM fields of specific
principally polarized abelian varieties with complex multiplication. The first eleven
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cubic fields listed in Table 2.1 are totally real and serve as the cubic subfields of
these sextic CM fields. The final five fields, in contrast, are randomly selected cubic
number fields that are not totally real.

We denote L = Q(β) = Q[x]/〈f〉, where f is an irreducible monic polynomial
defined as f = x3 + α2 x

2 + α1 x + α0 ∈ Z[x]. The coefficients of f are represented
by the tuple [α0, α1, α2]. Additionally, we define OL = 〈1, ω1, ω2〉Z. With the above-
mentioned considerations, it becomes straightforward to calculate both λ21 and λ12,
thus, all diagonal orders in L up to an arbitrary bound on the index.

Table 2.1: Examples of parameters λ21 and λ12
No. f monogenic ω1 ω2 λ21 λ12
1 [−1,−3, 0] yes β β2 1 1
2 [−1,−2,−1] yes β β2 1 1
3 [1,−5, 2] yes β β2 11 1
4 [1,−4, 1] yes β β2 5 1
5 [1,−9, 6] yes β β2 55 1
6 [8,−14, 1] no β β+β2

2 2 2
7 [−8,−10, 1] no β β+β2

2 2 2
8 [8,−18, 3] no β β+β2

2 12 2
9 [−27,−15, 4] no β β+β2

3 3 3
10 [−27,−21, 2] no β 2β+β2

3 3 3
11 [−64,−36, 3] no β β+β2

4 4 4
12 [−3, 1,−1] yes β β2 2 1
13 [−7, 0, 0] yes β β2 7 1
14 [26,−12,−1] yes β β2 14 1
15 [−104,−16,−1] no β β+β2

2 33 2
16 [12, 4,−1] no β β+β2

2 6 2
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2.2 Diagonal Gorenstein orders in cubic number
fields

Based on the description of diagonal orders from the previous section, our focus now
shifts to Gorenstein orders in cubic number fields. In the literature, only very few
classes of Gorenstein orders in cubic number fields are documented. For a detailed
overview, we refer to [JT15]. In our study, we performed a detailed investigation on
Gorenstein orders in the cubic number fields L listed in Table 2.1. We computed
all diagonal orders S ⊆ OL up to an index of [OL : S ] ≤ 105 and observed a
specific structure whenever S is Gorenstein, as presented in the following theorem.
This structure not only aligns with the known classes of Gorenstein orders in cubic
number fields, as described in [JT15][Example 7.2], but also produces numerous
additional Gorenstein orders. Our findings offer valuable insights into the structure
of Z-bases of Gorenstein orders in these fields.

Theorem 2.4.
Let L be a cubic number field from Table 2.1 with ring of integers OL = 〈1, ω1, ω2〉Z.
Let λ21, λ12 ≥ 1 be integers such that S = 〈1, a ω1, c ω2〉Z is an order if and only if
a | λ21 c

2 and c | λ12 a
2 . Let D1 ⊆ N and D2 ⊆ N be the set of divisors of λ21 and

λ12, respectively.

(a) Let x, y ≥ 1 with gcd(x, y) = 1. For all r ∈ D1 and s ∈ D2 such that

(i) 1 = gcd(x, s) = gcd(r, y) = gcd(r, s),
(ii) ∀ p | x prime : vp(r) = vp(λ21),

(iii) ∀ p | y prime : vp(s) = vp(λ12) and
(iv) (r x2 y) (s x y2) ≤ 105,

the lattice S = 〈1, r x2 y ω1, s x y
2 ω2〉Z is an order of L which is Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L with [OL : S ] ≤ 105, then
exist x, y ≥ 1, r ∈ D1 and s ∈ D2 with

(i) 1 = gcd(x, y) = gcd(x, s) = gcd(r, y) = gcd(r, s),
(ii) ∀ p | x prime : vp(r) = vp(λ21) and

(iii) ∀ p | y prime : vp(s) = vp(λ12),

such that a = r x2 y and c = s x y2.

Proof. Let L be one of the cubic number fields from Table 2.1 together with its cor-
responding parameters λ12 and λ21. Firstly, determine the set of divisors D1 ⊆ N for
λ21 and D2 ⊆ N for λ12. Next, applying Corollary 2.2, we computed every diagonal
order S = 〈1, a, ω1, c, ω2〉Z in L with [OL : S ] ≤ 105 and filtered out those ones that
are Gorenstein. For each of the identified Gorenstein orders, we find parameters
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x, y, r, s that meet the criteria specified in (b). Conversely, by selecting parame-
ters that fulfill the conditions in (a), the lattice S = 〈1, r, x2, y, ω1, s, x, y

2, ω2〉Z is a
Gorenstein order of L. Combining these two observations, we have fully character-
ized all diagonal Gorenstein orders up to the stated index for each cubic number
field in Table 2.1.

Given that Table 2.1 includes randomly selected cubic fields, we conjecture that
this theorem applies universally to all cubic number fields, without any constraints
on the index. It is worth highlighting that Theorem 2.4 covers the Gorenstein orders
previously identified in cubic number fields, as mentioned in [JT15][Example 7.2].
To verify this, consider y ∈ {1, p} and set x = r = s = 1, with p being a prime
number. A more detailed application of Theorem 2.4 to each of the totally real
cubic number fields listed in Table 2.1 is presented in Appendix C. Two significant
examples from our findings are presented below.

Example 2.5.
Let L = Q(β) = Q[x]/〈x3 − 3x− 1〉 or L = Q(β) = Q[x]/〈x3 − x2 − 2x− 1〉 with
OL = 〈1, ω1, ω2〉Z. Then ω1 = β and ω2 = β2. In the meaning of Corollary 2.2
and due to Table 2.1, the parameters λ21, λ12 are both equal to 1. Consequently,
D1 = {1} = D2 and we only have to consider the case r = 1 = s. Now the
conditions (i)-(iii) in Theorem 2.4 (a) are trivial, and we receive the following.

(a) Let x, y ≥ 1 with gcd(x, y) = 1. Then the lattice S = 〈1, x2 y ω1, x y
2 ω2〉Z is

an order of L which is Gorenstein.
(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L, then there exist x, y ≥ 1

with gcd(x, y) = 1 such that a = x2 y and c = x y2.

Example 2.6.
Let L = Q(β) = Q[x]/〈x3 + 3x2 − 36x− 64〉 with OL = 〈1, ω1, ω2〉Z, where ω1 = β

and ω2 = (1/4) (β + β2). Now, due to Table 2.1, λ21 = 4 = λ12 such that we have
D1 = {1, 2, 4} = D2 and Theorem 2.4 tells us the following.

(a) Let x, y ≥ 1 with gcd(x, y) = 1.

(i) If r = 1, s = 1 and 2 - x such as 2 - y or
(ii) if r = 1, s = 2 and 2 - x such as 2 - y or

(iii) if r = 1, s = 4 and 2 - x or
(iv) if r = 2, s = 1 and 2 - x such as 2 - y or
(v) if r = 4, s = 1 and 2 - y, then

S = 〈1, r x2 y ω1, s x y
2 ω2〉Z is an order of L which is Gorenstein,

(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L, then exist x, y, r, s ∈ Z as
in (a) with a = r x2 y and c = s x y2.
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2.3 Diagonal non-Gorenstein orders in cubic num-
ber fields

Similar to our approach in Chapter 2.2, we can provide a description of the Z-bases
of all diagonal orders in a cubic number field from Table 2.1 that are not Goren-
stein. This expands upon the known diagonal orders in cubic number fields that
are not Gorenstein, as outlined in [JT15][Example 7.2]. Once more, we computed
all diagonal orders S with an index [OL : S ] ≤ 105 and identified the following
result on the structure.

Theorem 2.7.
Let L be a cubic number field from Table 2.1 with ring of integers OL = 〈1, ω1, ω2〉Z.
Let λ21, λ12 ≥ 1 be integers such that S = 〈1, a ω1, c ω2〉Z is an order if and only if
a | λ21 c

2 and c | λ12 a
2 . Let D1 ⊆ N and D2 ⊆ N be the set of divisors of λ21 and

λ12, respectively.

(a) Let x > 1. Then for all e, d | x with gcd(e, d) = 1 and e d 6= x and for all
r ∈ D1, s ∈ D2 with (r e x) (s d x) ≤ 105 the lattice S = 〈1, r e x ω1, s d x ω2〉Z
is an order of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L with [OL : S ] ≤ 105 which is not
Gorenstein, then exist x > 1, e, d | x with gcd(e, d) = 1 and e d 6= x such as
r ∈ D1, s ∈ D2 with a = r e x and c = s d x.

Proof. Let L be a cubic number field from Table 2.1. We fix the corresponding
parameters λ12 and λ21 as presented in the table. We then determine the sets of
divisors D1 ⊆ N of λ21 and D2 ⊆ N of λ12. Applying Corollary 2.2, we compute
every diagonal order S = 〈1, a, ω1, c, ω2〉Z in L with index [OL : S ] ≤ 105, fil-
tering out those ones that are not Gorenstein. For each resulting non-Gorenstein
order, we identify parameters x, e, d, r, s that satisfy the conditions in (b). Con-
versely, with parameters meeting the conditions in (a), we find that the lattice
S = 〈1, r, e, x, ω1, s, d, x, ω2〉Z is an order in L that is not Gorenstein. By combining
these two observations, we describe all non-Gorenstein diagonal orders up to the
given index in the fields from Table 2.1.

Again, we conjecture that this theorem applies to arbitrary cubic fields, with-
out any limitations on the index. Theorem 2.7 covers the known diagonal non-
Gorenstein orders from [JT15][Example 7.2] for cubic number fields. To see this,
take x = p as a prime and set 1 = e = d = r = s. We will present a few illustrative
examples below. A comprehensive list where Theorem 2.7 is applied to each of the
totally real cubic number fields from Table 2.1 can be found in Appendix D.
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Example 2.8.
Let L = Q(β) = Q[x]/〈x3 + 2 x2 − 5x + 1〉 with OL = 〈1, ω1, ω2〉Z, where ω1 = β

and ω2 = β2. Then, due to Table 2.1, the parameters λ21 = 11 and λ12 = 1 such
that D1 = {1, 11} and D2 = {1}. Applying Theorem 2.7 gives the following.

(a) Let x > 0 and e, d be positive divisors of x with gcd(e, d) = 1 and e d 6= x.
Then, for r ∈ D1 = {1, 11}, the lattice S = 〈1, r e x ω1, d x ω2〉Z is an order
of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L which is not Gorenstein, then exist
x, e, d, r as in (a) such that a = r e x and c = d x.

Example 2.9.
Let L = Q(β) = Q[x]/〈x3 + 3x2− 18x+ 8〉 with OL = 〈1, ω1, ω2〉Z and ω1 = β such
as ω2 = (1/2) (β + β2). Here the parameters are λ21 = 12 and λ12 = 2 such that
D1 = {1, 2, 3, 4, 6, 12} and D2 = {1, 2}. We obtain the following from Theorem 2.7.

(a) Let x > 0 and e, d be positive divisors of x with gcd(e, d) = 1 and e d 6= x.
Then, for r ∈ D1 = {1, 2, 3, 4, 6, 12} and s ∈ D2 = {1, 2}, the lattice given
by S = 〈1, r e x ω1, s d x ω2〉Z is an order of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L which is not Gorenstein, then there
exist x, e, d, r, s as in (a) such that a = r e x and c = s d x.
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Chapter 3

Constructing isomorphism classes
of abelian varieties

By Theorem 1.74, there is a one-to-one correspondence between abelian varieties
over C and polarizable complex tori. The focus of this chapter is to present the
construction of principally polarized abelian varieties A over C that have CM by
an arbitrary order S in a CM field K, and to develop an algorithm from this con-
struction. In order to do so, we will reinterpret some classical results from [ST61],
[Lan83], and [Shi16] using the framework of proper fractional ideals rather than
lattices. Furthermore, we will present how to identify representatives of the iso-
morphism classes of principally polarized abelian varieties over C with CM by the
specified order S. Additionally, as this is a significant part of the algorithm, we
will outline how to find representatives of the ideal class monoid of a chosen order
S, revisiting [Mar20]. At the end of this chapter, we will combine our discussions
to present the final algorithm. Specifically, this algorithm will compute a represen-
tative for each isomorphism class of principally polarized abelian varieties over C
with CM by a particular order S in a CM field K. The algorithm is inspired by a
similar algorithm for quartic CM fields in [Str21], which itself extends the classical
approach in [VW99] to arbitrary orders.

3.1 Constructing polarized abelian varieties over
C with CM

The construction of polarized abelian varieties over C with CM by a CM field K,
as given in [Lan83][Chapter 1.4], is expressed in terms of lattices in K. To compute
these lattices more efficiently, it is helpful to view them as proper fractional ideals
of an order S in K. The relationship between these two concepts was previously
investigated in Chapter 1.1.2. We revisit [Lan83][Theorem 4.1, Chapter 1] using
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the framework of proper fractional ideals.

Theorem 3.1.
Let (K,Φ) be a CM type with 2n = [K : Q].

(a) If S is an order in K and a is a proper fractional S-ideal, then Φ(a) is a
lattice in Cn and Cn/Φ(a) is a complex torus with End(Cn/Φ(a)) ∼= S.

(b) If (A, ι) is an abelian variety over C of type (K,Φ), then there exists an
order S in K and a proper fractional S-ideal a such that A(C) ∼= Cn/Φ(a)
and ι−1(End(A)) = S.

Proof. Firstly, let S be an order in K and a be a fractional S-ideal. Due to Propo-
sition 1.11, a is also a lattice in K. Therefore, we can apply [Lan83][Theorem 4.1
(i), Chapter 1] and get that Cn/Φ(a) is a complex torus of type (K,Φ). Since a is
also proper, by using [Lan83][Theorem 4.1 (iii), Chapter 1], the endomorphism ring
of Cn/Φ(a) is isomorphic to S.
Secondly, let (A, ι) be an abelian variety over C of type (K,Φ). Then, according to
[Lan83][Theorem 4.1 (ii), Chapter 1], there exists a lattice a in K such that A is
isomorphic to Cn/Φ(a). From Proposition 1.11, a is a fractional ideal of its multi-
plier ring r(a) =: S. Additionally, by applying [Lan83][Theorem 4.1 (iii), Chapter
1], we conclude that End(A) is isomorphic to r(a), which is an order in K.

Note that it remains to show that the complex torus from Theorem 3.1 (a)
is actually an abelian variety (A, ι) of type (K,Φ). That requires to show that
it is polarizable, which will be done explicitly in Theorem 3.3. We will see that
Riemann forms on complex tori of type (K,Φ) correspond to certain elements of
K. We introduce some notation.

Definition 3.2.
Let (K,Φ) be a CM field with [K : Q ] = 2n. For every α ∈ K we define

SΦ(α) :=


φ1(α) 0

. . .
0 φn(α)

 ∈ Cn×n .

The upcoming theorem summarizes the results presented in [ST61][Chapter 6.2].
We will formulate it in the context of proper fractional ideals. As a further reference,
see also [Lan83][Chapter 1, Theorem 4.5].
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Theorem 3.3.
Let (K,Φ) be a CM type with [K : Q ] = 2n. Let a be a proper fractional ideal of
some order S of K.

(a) There exists ξ ∈ K such that

K = K0(ξ) , −ξ2 ∈ K++
0 , Imφ(ξ) > 0 for all φ ∈ Φ, (3.1)

where K++
0 denotes the set of totally positive elements in K0. Especially, for

such an element ξ ∈ K, we have ξ̄ = −ξ.
(b) Let ξ ∈ K satisfy (3.1) and define Eξ(u, v) := ∑n

j=1 φj(ξ)(uj v̄j − ūjvj) for
all u, v ∈ Cn. There exists a positive integer g ∈ Z such that g E is a
non-degenerate Riemann form. Furthermore, we have Eξ(Φ(α),Φ(β)) =
TrK/Q(ξ α β̄) for all α, β ∈ K and

Eξ(u, SΦ(ξ)v) = Eξ(SΦ(ξ̄)u, v) for all u, v ∈ Cn. (3.2)

(c) Every non-degenerate Riemann form on Cn/Φ(a) satisfying (3.2) is obtained
by a ξ ∈ K satisfying (3.1).

(d) If Cn/Φ(a) is simple, then every non-zero Riemann form on Cn/Φ(a) is
non-degenerate and satisfies (3.2).

We briefly outline the implications of this theorem. Given a CM type (K,Φ) and
a proper fractional ideal a of some order S in K, Theorem 3.3 (a)+(b) show that
there is always a Riemann form on the torus Cn/Φ(a) given via a ξ ∈ K satisfying
(3.1). Consequently, the torus is polarizable and isomorphic to an abelian variety
A. On the other hand, as presented in Theorem 3.3 (c)+(d), whenever (K,Φ)
is primitive, every Riemann form on the torus Cn/Φ(a) is coming from a ξ ∈ K

satisfying the condition of (3.1). It’s worth noting that for every α ∈ K, the linear
transformation given by SΦ(α) corresponds to an element in EndQ(A). We will
denote this element as ι(α), allowing us to define an embedding ι such that (A, ι)
corresponds to the type (K,Φ).

We have thus seen that an abelian variety (A, ι) of primitive type (K,Φ) with
endomorphism ring isomorphic to an order S in K corresponds to a proper fractional
ideal a of S. Moreover, we can explicitly give a Riemann from on Cn/Φ(a) for
every ξ satisfying (3.1) and hence a polarization of the abelian variety (A, ι). This
determines all abelian varieties (A, ι) over C with primitive CM type (K,Φ). Recall
from Proposition 1.89 that an abelian variety (A, ι) of type (K,Φ) is simple if and
only if Φ is primitive.
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In the following proposition, we demonstrate that it is not necessary to initially
specify the CM type Φ. Instead, we can determine the CM type based on a suitable
element ξ ∈ K. In order to justify the existence of such an element, we refer to
Theorem 3.3. Although we have cited [ST61] and [Lan83] for a complete proof, we
will provide a brief insight into why, in Theorem 3.3 (a), the condition ξ2 ∈ K0

results in ξ̄ = −ξ. Using an arbitrary embedding σ from K into C, it follows that
σ(ξ) = a + i b for some a, b ∈ R and σ(ξ2) = (a + i b)2 = a2 + 2 a b i + b2, which can
only be contained in R if either a = 0 or b = 0. Given that ξ cannot be embedded
into R, we receive that b cannot be zero, leaving us with a = 0. As a direct
consequence, σ(ξ̄) = −i b = σ(−ξ). Applying the injectivity of the embedding, we
can conclude that ξ̄ = −ξ.

Proposition 3.4.
Let K be a CM field, and let ξ ∈ K× with ξ̄ = −ξ and K = K0(ξ). There exists a
CM type Φ of K satisfying Im(φ(ξ)) > 0 for all φ ∈ Φ.

Proof. Firstly, φ(ξ) 6∈ K0 for all φ ∈ Φ because ξ generates K over K0 and K can
not be embedded into K0. Thus, Im(φ(ξ)) 6= 0 for all φ ∈ Φ. If Im(φ(ξ)) < 0, there
exists another CM Φ′ of K, which differs by Φ only by replacing φ with φ′ := ρ ◦ φ,
where ρ denotes the complex conjugation of K. Now Im(φ′(ξ)) > 0 and we can
find a suitable CM type by repeating this procedure until Im(φ′(ξ)) > 0 for all
φ′ ∈ Φ′.

Definition 3.5.
Let (A, ι) be an abelian variety of dimension n over C of type (K,Φ). We define
(A, ι) as being of type (K,Φ, a) if A(C) ∼= Cn/Φ(a). Furthermore, if (A, ι) is also
polarized by C through an element ξ ∈ K that satisfies (3.1), then (A, ι,C ) is called
a polarized abelian variety of type (K,Φ, a, ξ).

Summarizing the discussions from this section and applying the introduced no-
tation, we can state the following. If (A,C ) is a simple polarized abelian variety of
dimension n over C with complex multiplication, then, by definition, there exists a
CM field K of degree 2n over Q and an isomorphism ι : K ↪→ EndQ(A) such that
ι−1(End(A)) =: S ⊆ OK is an order in K. Given the fixed isomorphism ι, a unique
primitive CM type Φ of K exists such that (A, ι,C ) is of type (K,Φ). Following
Theorem 3.1 and Theorem 3.3, there exists a proper fractional ideal a of S and an
element ξ ∈ K satisfying (3.1). In our notation, we say that (A, ι,C ) is of type
(K,Φ, a, ξ).
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3.2 Isomorphism classes of abelian varieties with
CM

This section collects results from [Lan83], [JT15] and [Mar20] in order to present
how to determine isomorphism classes of polarized abelian varieties (A, ι,C ) of type
(K,Φ). As discussed in the previous section, each such polarized abelian variety can
be represented by a tuple (a, ξ), where ξ is a certain element in K and a is a proper
fractional ideal in some order S of K. In the first part of this section, mainly
following [Lan83], we explain how to determine isomorphism classes of polarized
abelian varieties and highlight the special case in which the polarization is principal.
In the second half, we present results from [JT15] and [Mar20] in order to introduce
and discuss the ideal class monoid. This allows to compute a representative of
each class of proper fractions ideals which will then be helpful to compute the
isomorphism classes of polarized abelian varieties explicitly, as presented in the
next section.

3.2.1 Isomorphism classes and principal polarizations

Beginning with some basic knowledge about homomorphisms between abelian va-
rieties over C with complex multiplication, we introduce the following theorem. It
can be found in [Lan83][Theorem 4.2, Chapter 1] in terms of lattices. Again, we
present it in terms of fractional ideals.

Theorem 3.6.
Let (A, ι) and (A1, ι1) be abelian varieties over C of the same type (K,Φ), say of
type (K,Φ, a) and (K,Φ, a1), respectively, where a, a1 are proper fractional ideals in
the same order S of K. Then:

(a) The homomorphisms from (A, ι) to (A1, ι1) correspond to

SΦ((a1 : a)) = SΦ({γ ∈ K | γa ⊆ a1}).

(b) If Φ is primitive, then every homomorphism from A to A1 is a homomor-
phism from (A, ι) to (A1, ι1).
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The following diagram shows the situation in Theorem 3.6 (a) for λ being a
homomorphism from (A, ι) to (A1, ι1) corresponding to γ ∈ K with γa ⊆ a1.

A A1

Cn�Φ(a)
Cn�Φ(a1)

λ

θ θ1

SΦ(γ)

We note that due to Theorem 3.6, if (A, ι,C ) and (A1, ι1,C1) are polarized abelian
varieties of the same primitive type (K,Φ), then every isomorphism from (A,C )
to (A1,C1) gives rise to an isomorphism from (A, ι,C ) to (A1, ι1,C1). By applying
Theorem 3.6, we can derive the following corollary on the representation of isomor-
phisms between abelian varieties with complex multiplication using elements of the
CM field K and proper fractional ideals.

Corollary 3.7.
Let (A, ι) and (A1, ι1) be abelian varieties over C of the same type (K,Φ), say of
type (K,Φ, a) and (K,Φ, a1), respectively, where a, a1 are proper fractional ideals
in the same order S of K. Then, the set of isomorphisms from (A, ι) to (A1, ι1) is
represented by

SΦ({γ ∈ K \ {0} | γa = a1}).

If Φ is primitive, this even holds for the isomorphisms from A to A1.

Proof. Let λ be a non-zero homomorphism from (A, ι) to (A1, ι1). Then, due to
Theorem 3.6, the homomorphism λ is represented by SΦ(γ) for some γ ∈ K \ {0}
with γ a ⊆ a1. Now SΦ(γ−1) is an inverse of SΦ(γ) in HomQ(Cn/Φ(a),Cn/Φ(a1)).
It remains to show that SΦ(γ−1) ∈ Hom(Cn/Φ(a1),Cn/Φ(a)) if and only if γ a = a1.
Theorem 3.6 also tells us that SΦ(γ−1) ∈ Hom(Cn/Φ(a1),Cn/Φ(a)) if and only if
γ−1a1 ⊆ a. Therefore, λ has an explicit inverse in Hom(Cn/Φ(a1),Cn/Φ(a)) if and
only if

a = γ−1 γ a ⊆ γ−1a1 ⊆ a.

That means that λ is an isomorphism if and only if γ−1a1 = a, which is equivalent
to saying that γ a = a1. Whenever Φ is primitive, every isomorphism from A to A1

also serves as an isomorphism from (A, ι) to (A1, ι1).

In other words, according to Corollary 3.7, two abelian varieties (A, ι) and
(A1, ι1) over C of the same type (K,Φ), denoted as (K,Φ, a) and (K,Φ, a1), re-
spectively, are isomorphic if and only if there exists a γ ∈ K such that γa = a1. We
now turn our attention to including polarizations in our considerations.
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Definition 3.8.
Let S be an order in a number field K, and let a be a fractional ideal of S. The
trace dual of a is defined to be

a∗ := {x ∈ K | TrK/Q(xā) ⊆ Z} .

Following the discussions in [ST61][Chapter 6.3], let (K,Φ) be a CM type where
[K : Q ] = 2n. Let (A, ι,C ) be a polarized abelian variety over C of type (K,Φ, a, ξ)
together with an isomorphism θ : A/C→ Cn/Φ(a) such that ι ∈ EndQ(A) is defined
for every α ∈ K via

ι(α) = θ−1(SΦ(α) · θ(α)).

Based on [ST61][Chapter 14.2], there exists an isomorphism

θ∗ : A∗(C)→ Cn/Φ(a∗) ,

whereA∗ denotes the Picard variety ofA. Furthermore, as highlighted in [ST61][Chapter
6.2], we can define an isomorphism ι∗ from K to EndQ(A∗) by

ι∗(α) := (ι(ρ(α))t ,

where ·t represents the transpose, as defined in Chapter 1.5.1. Consequently, (A∗, ι∗)
shares the same type (K,Φ) as (A, ι).

Definition 3.9.
Let (A, ι,C ) be a polarized abelian variety over C of type (K,Φ, a, ξ), and let A∗

be the Picard variety of A. Let

ι∗ : K −→ EndQ(A∗)

α 7−→ (ι(ρ(α))t ,

where we denote by ρ the complex conjugation and by ·t the transpose. Then we
call (A∗, ι∗) the dual of (A, ι).

Building further on the discussion from [ST61][Chapter 6.3], we consider the
implications to the polarization. As we have pointed out in Theorem 3.3, the
polarization ϕξ : A→ A∗ can be represented by the diagonal matrix SΦ(ξ).
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We summarize this setup in the following two commutative diagrams, providing
an overview of the relationships:

A(C) A∗(C)

Cn�Φ(a)
Cn�Φ(a∗)

ϕξ

θ θ∗

SΦ(ξ)

K EndQ(A∗)

K EndQ(A)

ι∗

ρ

ι

·t

Additionally, simply by adapting the definitions and using that we can commute
diagonal matrices, we can state that, for each α ∈ K and for each point P ∈ A(C),
we have

ϕξ(ι(α)(P )) = ϕξ
(
θ−1(SΦ(α)) · θ(P )

)
= (θ∗)−1

(
SΦ(ξ) · θ

(
θ−1(SΦ(α)) · θ(P )

))
= (θ∗)−1 (SΦ(ξ) · SΦ(α) · θ(P ))

= (θ∗)−1 (SΦ(α) · SΦ(ξ) · θ(P ))

= (θ∗)−1
(
SΦ(α) · θ∗

(
(θ∗)−1 (SΦ(ξ)) · θ(P )

))
= (θ∗)−1 (SΦ(α) · θ∗(ϕξ(P )))

= ι∗(α)(ϕξ(P )) .

Consequently, we can state that, for every α ∈ K, we have

ϕξι(α) = ι∗(α)ϕξ .

As a consequence of the previous considerations, we can now determine whether
a polarization is principal.

Corollary 3.10.
Let (K,Φ) be a CM type with [K : Q ] = 2n, and let (A, ι,C ) be a polarized abelian
variety over C of type (K,Φ, a, ξ). The polarization C on A corresponding to ξ is
principal if and only if

ξa = a∗.

Proof. Let (A∗, ι∗) be the dual of (A, ι). The polarization on A coming from ξ is
principal if and only if ϕξ is an isomorphism. Since (A, ι) and (A∗, ι∗) are of the
same type (K,Φ), Corollary 3.7 shows that ϕξ is an isomorphism if and only if
ξa = a∗.

The next theorem identifies the isomorphism classes of polarized abelian varieties
of a specified type, as defined in Definition 1.70. The argument can be viewed as
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a combination of Corollary 3.7 and the discussion in [Lan83][Chapter 3.5.2]. The
result can be found in [Spa94][Theorem 3.19].

Theorem 3.11.
Let (K,Φ) be a CM type with [K : Q ] = 2n. Let P = (A, ι,C ) and P1 =
(A1, ι1,C1) be principally polarized abelian varieties of the same type (K,Φ), say
(K,Φ, a, ξ) and (K,Φ, a1, ξ1), respectively. Then P and P1 are isomorphic if and
only if there exists γ ∈ K× with a = γa1 and ξ = γγ̄ξ1.

Proof. Let θ : A(C) → Cn/Φ(a) such as θ1 : A1(C) → Cn/Φ(a1) be fixed isomor-
phisms and let λ be an isomorphism from P to P1, implying an isomorphism from
(A, ι) to (A1, ι1) that fulfills

λt ◦ ϕ ◦ λ = ϕ1.

Firstly, based on Corollary 3.7, there exists a γ ∈ K× such that γ a = a1. Secondly,
the map from Cn/Φ(a) to Cn/Φ(a1) given by the matrix multiplication with SΦ(γ)
satisfies θ1◦λ = SΦ(γ)◦θ. Now, let E and E1 denote the Riemann forms on Cn/Φ(a)
and Cn/Φ(a1) = Cn/Φ(γa), corresponding to ξ and ξ1, respectively. Then we have

E1(SΦ(γ)u, SΦ(γ) v) = E(u, v)

and for every α, β ∈ K,

E(Φ(α),Φ(β)) = TrK/Q(ξ α β̄)

and
E1(Φ(α),Φ(β)) = TrK/Q(ξ1 α β̄).

From this, it follows that

TrK/Q(ξ α β̄) = TrK/Q(ξ1 γα γ̄β̄) = TrK/Q(γγ̄ξ1 α β̄)

for all α, β ∈ K. This implies ξ = γγ̄ξ1. The reverse argument establishes the
converse.

Definition 3.12.
Let (K,Φ) be a CM type with [K : Q ] = 2n. Moreover, let P = (A, ι,C )
and P1 = (A1, ι1,C1) be polarized abelian varieties of the same type (K,Φ), say
(K,Φ, a, ξ) and (K,Φ, a1, ξ1), respectively. We say that two tuples (a, ξ) and (a1, ξ1)
are equivalent if there exists γ ∈ K× with a = γa1 and ξ = γγ̄ξ1. Such an
equivalence class is called a polarized ideal class. In order to simplify notation, the
polarized ideal classes will also be denoted by (a, ξ).
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Building on Theorem 3.11, we present an additional corollary that highlights
the implications of fixing a.

Corollary 3.13.
Let (K,Φ) be a CM type. Let P = (A, ι,C ) and P1 = (A1, ι1,C1) be principally po-
larized abelian varieties of the same type (K,Φ, a), say (K,Φ, a, ξ) and (K,Φ, a, ξ1),
respectively. Let S be the multiplier ring of a. Then P and P1 are isomorphic if
and only if there exists γ ∈ S× with ξ = γγ̄ξ1.

Proof. Let P and P1 be isomorphic. Due to Theorem 3.11, there exists γ ∈ K with
a = γa and ξ = γγ̄ξ1. As a is a proper fractional ideal of its multiplier ring S, we
have a = γa if and only if γ ∈ S×. On the other hand, if there exists γ ∈ S× with
ξ = γγ̄ξ1, then γ ∈ K and Theorem 3.11 shows that P and P1 are isomorphic.

The following proposition can be found in [Str10][Chapter 1.5.2]. We provide a
brief sketch of the proof.

Proposition 3.14.
Let (K,Φ) and (K,Φ′) be CM types, and let Φ′ be primitive. Let P be a principally
polarized abelian variety of type (K,Φ, a, ξ), and let P ′ be a principally polarized
abelian variety of type (K,Φ′, a′, ξ′). Then P and P ′ are isomorphic, if and only if
Φ and Φ′ are equivalent, meaning that there exists σ ∈ Aut(K) with Φ′ = Φ ◦ σ,
and there exists an element γ ∈ K× such that σ(a′) = γ a and σ(ξ′) = γγ̄ξ.

Proof. Let P be isomorphic to P ′, which implies they are also isogenous. Given
the primitiveness of Φ′, according to [Str10][Lemma 5.6, Chapter 1], Φ and Φ′ are
equivalent. There exists an automorphism σ ∈ Aut(K) such that Φ = Φ′ ◦σ−1. Re-
ferring to [Str10][Lemma 5.4, Chapter 1], P ′ is isomorphic to a principally polarized
abelian variety P1 characterized by the type (K,Φ, σ(a), σ(ξ)). Consequently, P is
isomorphic to P1. By invoking Theorem 3.11, this holds if and only if there exists
an element γ ∈ K× such that σ(a) = γa and σ(ξ) = γγ̄ξ. The reverse reasoning
applies analogously.

Hence, when it comes to determining isomorphism classes of simple polarized
abelian varieties, it is sufficient to only consider equivalence classes of primitive CM
types.
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3.2.2 The ideal class monoid

Recall that we want to construct isomorphism classes of abelian varieties (A, ι)
over C of type (K,Φ) with CM by an arbitrary order S. In Chapter 3.2.1 we
explained that this comes down to determine proper fractional S-ideals up to a
certain equivalence. To be more precise, this equivalence is characterized by a ∼ b

if and only if there exists γ ∈ K× with γa = b. This section follows [JT15] and
[Mar20].

In order to put the upcoming definition into context, let us revisit a fundamental
concept. In quadratic number fields, every order S is Gorenstein, which implies
that every proper fractional ideal of S is invertible, as for example pointed out in
[Lan87][Chapter 8.1] or [JT15]. This property does not universally hold for number
fields of higher degree over Q. We illustrate this in the following example found in
[San91][Chapter 2], originally due to Dade, Taussky and Zassenhaus ([DTZ61]).

Example 3.15.
Let ω be an algebraic integer, and let K = Q(ω) be a number field of degree
[K : Q ] = n. Let S := Z + 2Z[ω] ⊆ OK . Then S is an order in K. Furthermore,
a = Z + ωZ + 2Z[ω] is a proper fractional S-ideal which is not invertible and the
fractional ideal an−1 is not even proper, which shows that the set of proper fractional
S-ideals is not multiplicatively closed.

Following [JT15], the set of fractional S-ideals is a commutative monoid and
the group of principal fractional S-ideals acts on this set by multiplication. The
received set of orbits is a monoid. This motivates the following definition.

Definition 3.16.
Let S be an order in a number field K. We denote by JS the set of fractional S-
ideals is a commutative monoid and by PS of group of principal fractional S-ideals.
The set of orbits ICM(S) := JS/PS is called ideal class monoid of S. The elements
of ICM(S) will be denoted as {a}.

As presented in [Mar20], the ideal class monoid of an order S can be parti-
tioned into classes of fractional S-ideals with the same multiplier ring. Note that
ICM(S) contains the Picard group Pic(S) of S and that both are equal if and
only if S = OK . We give the following results, which are [Mar20][Lemma 3.6] and
[Mar20][Proposition 3.7].

Lemma 3.17.
Let S be an order in a number field K. Let a and b be fractional S-ideals. If a and
b lie in the same class of ICM(S), then they have the same multiplier ring.
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Proposition 3.18.
Let S be an order in a number field K. Then

ICM(S) ⊇
⋃̇

S⊆S′⊆OK
Pic(S ′)

and the inclusion is an equality if and only if S is Bass.

Definition 3.19.
Let a and b be fractional ideals of an order S in a number field K. We say that a

and b are weakly equivalent if they have the same multiplier ring S ′ and there exists
an invertible fractional ideal c of S ′ such that a = c b. The set of weak equivalence
classes of fractional ideals of S is denoted by W (S), and a class in W (S) will be
denoted by [a].

Note that, as pointed out in [Mar20][Proposition 4.1], to say that a is weakly
equivalent to b is equivalent to saying that 1 ∈ (a : b)(b : a).

Definition 3.20.
Let S be an order in a number field K, and let S ′ be an overorder of S. Then we
set

W (S ′) := {[a] ∈ W (S) | (a : a) = S ′}.

As highlighted in [Mar20], the set of weak equivalence classes, denoted as W (S),
for S, inherits the structure of a commutative monoid from JS. It can be partitioned
as

W (S) =
⋃̇

S⊆S′⊆OK
W (S ′).

A fractional ideal is invertible if and only if it is weakly equivalent to its multiplier
ring. Thus, we deduce that W (S ′) = {[S ′]} if and only if S ′ is Gorenstein. If this
is not the case, we do always have at least two different weak equivalent classes
in W (S ′), namely {[S ′]} and {[S ′ ∗]}, where S ′ ∗ denotes the trace dual of S ′. The
proposition that follows is [Mar20][Corollary 4.5].

Proposition 3.21.
Let S be an order in a number field K. Let a and b be weakly equivalent fractional
S-ideals with the same multiplier ring S ′. Then a ∼ b if and only if (a : b) is a
principal fractional S ′-ideal.
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Definition 3.22.
Let S be an order in a number field K. For any overorder S ′ of S we define

ICM(S ′) := {{a} ∈ ICM(S) | (a : a) = S ′} .

Using the previously introduced notation and Proposition 3.21, we obtain a
partition of the ideal class monoid ICM(S) of an order S in a number field K given
by

ICM(S) =
⋃̇
S⊆S′⊆OK

ICM(S ′).

The next theorem, as presented in [Mar20][Theorem 4.6], establishes the connec-
tion between the Picard group, the commutative monoid of weak equivalence classes
and the ideal class monoid of an order. This provides a full set of representatives
for the ideal class monoid.

Theorem 3.23.
Let S be an order in a number field K. For every overorder S ′ of S, the action of
Pic(S ′) on ICM(S ′), induced by ideal multiplication, is free and

W (S ′) = ICM(S ′)�Pic(S ′).

To be more precise, if we have complete sets of representatives

W (S ′) = {[a1] , . . . , [ar]} and Pic(S ′) = {{b1} , . . . , {bs}},

then
ICM(S ′) = {{ai bj} | 1 ≤ i ≤ r, 1 ≤ j ≤ s}.

Combining Proposition 3.18 and Theorem 3.23 allows finding representatives of
the ideal class monoid ICM(S) of an order S by computing all overorders S ′ of S,
their Picard groups Pic(S ′) and W (S ′).

Recall from the beginning of this section that we are interested in identifying all
proper fractional S-ideals up to the equivalence ∼ for a given order S in a particular
number field K. These are specifically represented by ICM(S). Based on Theorem
3.23, ICM(S) can be found by determining the weak equivalence classes W (S) and
the Picard group Pic(S).
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3.3 Computing polarized ideal classes

At the end of this chapter, we summarize the considerations from Chapter 3.1 and
Chapter 3.2 in an explicit algorithm to compute representatives for every isomor-
phism class of simple principally polarized abelian varieties A over C with CM by a
given order S in a CM field K. This algorithm is based on an algorithm for quartic
CM fields used in [Str21]. In order to compute representatives of ICM(S), we apply
the MAGMA implementation from [Mar21] called ICM_bar.

Note that, according to Proposition 3.14, it is generally sufficient to consider
representatives from the equivalence classes of primitive CM types to identify all
isomorphism classes of simple principally polarized abelian varieties over C with CM
by S. Our following algorithm is formulated specifically for a single, fixed primitive
CM type. Moreover, we point out that a generator of the ideal c in the algorithm is
unique only up to multiplication by O×K . This is precisely why we initially compute
representatives of O×K/NK/K0(S×), where NK/K0 denotes the norm from K into the
maximal totally real subfield K0 of K. The correctness directly follows from the
considerations in Chapter 3.1 and Chapter 3.2.
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Algorithm 1: Polarized Ideal Classes
input : A primitive CM type (K,Φ) and an order S in K.
output: All tuples (a, ξ) representing the isomorphism classes of simple

principally polarized abelian varieties (A, ι,C ) over C of type
(K,Φ) with CM by S.

1 Initialize an empty sequence Ret.
2 Compute a list of representatives of the proper part ICM(S) of the ideal

class monoid ICM(S). Save them in ICMbar.
3 Compute representatives of O×K/NK/K0(S×) and save them in UnitsMod.
4 for a in ICMbar do
5 Compute the complex conjugate b of the trace dual of a.
6 Compute the fractional OK-ideal c = bOK · (aOK)−1.
7 if c is principal then
8 Compute a generator ξ ∈ K of c.
9 for u in UnitsMod do

10 Compute the fractional S-ideal e = u ξ a.
11 if e equals b then
12 if u ξ equals −u ξ then
13 if Φ maps ξ to the positive imaginary axis then
14 Add (a, ξ) to Ret.
15 end
16 end
17 end
18 end
19 end
20 end
21 return Ret
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Chapter 4

Shimuras third main theorem

This chapter introduces the famous third main theorem of Shimura as outlined
in [ST61]. We will present this theorem in its original form and in its modern
interpretation found in [BS17]. Shimuras third main theorem provides an explicit
description of class fields of complex multiplication fields. This enlarges the results
from global class field theory as we revisited in Chapter 1.3. Furthermore, these
findings specify certain conditions for principally polarized abelian varieties P of
CM type (K,Φ), especially when their field of moduli is contained in the reflex
field of (K,Φ). Our final goal is to deduce specific conditions helping to reduce the
amount of possible endomorphism rings of our aimed principally polarized abelian
varieties allowing to explicitly classify and construct them. To do so, we further
focus on the situation in which this field of moduli equals Q. We will then apply
our results to Jacobians of simple curves of genus 3.

4.1 Shimuras third main theorem

In this section, our focus is on Shimura’s third main theorem, as originally presented
in [ST61][Chapter 17]. While the first main theorem of [ST61] is well-known and
can be viewed as a special case of the third main theorem, the third is clearly much
more general. Afterwards, we introduce so called polarized ideal classes and apply
these objects in order to reformulate Shimuras third main theorem in its modern
formulation.

4.1.1 Classical formulation of Shimuras third main theorem

The following theorem is known as Shimuras third main theorem and can be found
in [ST61][Chapter 17].
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Theorem 4.1.
Let (Kr,Φr) be a primitive CM-type, and let (K,Φ) be its reflex. Let S be an order
in K of conductor f, and let (A, ι) be an abelian variety of type (K,Φ) with CM by
S. Let u be a point on A of finite order, and let

m := {ξ ∈ S | ι(ξ)u = 0} ≤ S.

Let C be a polarization of A, and let k0 be the field of moduli of (A,C ). Let s be the
smallest positive integer in f ∩m. Let H(S;m) ⊆ IKr(s) be the subgroup of ideals a

such that there exists x ∈ K× with

NΦr(a) = xOK , NKr/Q(a) = xx̄ and x ≡ 1 mod (S;m),

where x ≡ 1 mod (S;m) means that there exists α, β ∈ S, both prime to f, satisfying
x = α

β
and α ≡ β ≡ 1 mod m. Then k0(F (u)) · Kr is the class field over Kr

corresponding to H(S;m).

In order to obtain practical necessary conditions on the endomorphism rings
of simple polarized abelian varieties with a given field of moduli, we deduce some
consequences of Theorem 4.1. Before doing so, we introduce some notation.

Definition 4.2.
Let (Kr,Φr) be a primitive CM-type, and let (K,Φ) be its reflex. Let (A,C ) be a
polarized abelian variety of type (K,Φ), and let k0 be the field of moduli of (A,C ).
Then we define

k∗0 := k0 ·Kr.

Firstly, choosing the point of finite order u in Theorem 4.1 to be zero, the module
m becomes the whole order S and we receive the analogue of the first main theorem
of Shimura for arbitrary orders.

Corollary 4.3.
Let (Kr,Φr) be a primitive CM-type, and let (K,Φ) be its reflex. Let S be an order
in K of conductor f, let s be the smallest positive integer in f, and let (A, ι) be an
abelian variety of type (K,Φ) with CM by S. Let C be a polarization of A, and let
k0 be the field of moduli of (A,C ). Let H(S) ⊆ IKr(s) be the subgroup of ideals a

such that there exists x ∈ K× with NΦr(a) = xOK and NKr/Q(a) = xx̄. Then k∗0 is
the class field over Kr corresponding to H(S).
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Proof. Let u = 0, the additive identity element on A. This u is a point of finite
order on A. Using the notation from Theorem 4.1, we have

m = {ξ ∈ S | ι(ξ) 0 = 0} = S .

Consequently, since m = S, the group H(S;m) from Theorem 4.1 consists of all
ideals a in IKr(s) for which there exists an element x ∈ K× such that NΦr(a) = xOK
and NKr/Q(a) = xx̄. Therefore, given our choice of u, it follows that H(S;m) is
equal to H(S). By applying Theorem 4.1, we derive that k∗0 is the class field over
Kr corresponding to H(S).

We can summarize the situation from Corollary 4.3 in the following diagram.
Here, k is a certain suitable number field as presented in [ST61][Chapter 17.3],
[K : Q ] =: 2n, and [ k∗0 : Kr ] =: m.

k

k∗0

K k0 Kr

K0 Kr
0

Q

m

2 2

n n

If the polarized abelian variety has its field of moduli k0 contained in the reflex field
Kr (implying that m = 1), we can immediately deduce the following result.

Corollary 4.4.
Let (Kr,Φr) be a primitive CM-type, and let (K,Φ) be its reflex. Let S be an order
in K of conductor f, let s be the smallest positive integer in f, and let (A, ι) be an
abelian variety which is of type (K,Φ) with CM by S. Let C be polarization of A,
and let the field of moduli k0 of (A,C ) be contained in the reflex field Kr. Then,
for every a ∈ IKr(s), there ex. x ∈ K× with NΦr(a) = xOK and NKr/Q(a) = xx̄.

Proof. Firstly, as indicated by Corollary 4.3, we have k∗0 as the class field over
Kr corresponding to H(S). Given that the field of moduli k0 is selected to be
contained in the reflex field Kr, it follows that k∗0 = Kr. Therefore, the field
extension of k∗0 over Kr becomes trivial. Consequently, the group H(S) is trivial,
implying H(S) = IKr(s). Based on the definition of H(S), for each a in IKr(s),
there exists an element x ∈ K× such that NΦr(a) = xOK and NKr/Q(a) = xx̄.
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Note that, if we assume A to be defined over a number field ` ⊆ Kr and do not
fix a polarization in the first place, then we can always choose a polarization C of
A, which is also defined over ` (see [ST61][Proposition 11, Chapter 1]) such that `
is a field of definition of (A,C ). The field of moduli k0 of (A,C ) is then contained
in `, which means it is contained in Kr and we get the same necessary condition as
in Corollary 4.4.

4.1.2 The polarized class group

We introduce the following notation as it can be found in [BGL11], [Bis11], [BS17]
and [JW19].

Definition 4.5.
The polarized class group (or Shimura class group) C(S) of an order S in K is
defined to be the quotient IS/PS, where

IS := {(a, α) ∈ (IS, K0) | aā = αS and α is totally positive}

PS := {(xS, xx̄) ∈ IS | x ∈ K×}.

This definition naturally generalizes a similar group in the well-known case of
maximal orders of CM fields as given in [ST61][Chapter 14]. In order to simplify
notation, whenever the situation is clear, we will also denote the classes of C(S) by
(a, α). The group operation is given as component-wise multiplication. In the same
way as in Lemma 1.30, every class in C(S) can be represented by an element (a, α),
where a is prime to a fixed integral ideal c.

If we fix a primitive CM type (K,Φ), as we have seen in Chapter 3, a prin-
cipally polarized abelian variety P = (A,C ) over C of type (K,Φ) with complex
multiplication by an order S in K is simple. It is completely determined by a pair
(a, ξ), where a is a proper fractional ideal of S and ξ is a certain element in K

corresponding to the polarization of A. As pointed out in [JW19], the polarized
class group acts on the set of such pairs in the following way. For (b, β) ∈ C(S), the
pair P1 = (b−1a, β ξ) determines a principally polarized abelian variety with CM
by S that is isogenous to A. This action is free on the set of isomorphism classes
of principally polarized abelian varieties with CM by S, or in other words, on the
principally polarized ideal classes of S.
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Definition 4.6.
Let K be a number field, and let K0 be a subfield contained in K. For every order
S in K, we set S0 := S ∩K0. The group Pic+(S0) is defined to be the quotient of
invertible ideals of S0 by the principal ideals that have a totally positive generator.
Furthermore, we use (S×0 )+ to represent the totally positive units of S0.

Applying this notation, as described in [Bis11][Chapter 3.4] and [JW19][Chapter
2.3], we may also describe the polarized class group by the following exact sequence.

1→ (S×0 )+
�NK/K0(S×)

u7→(S,u)−−−−−→ C(S) (a,α) 7→a−−−−−→ Pic(S)
a7→NK/K0 (a)
−−−−−−−→ Pic+(S0) .

Note that the first non-trivial map u 7→ (S, u) has a trivial kernel because
(S, u) ∈ PS if and only if u = x x̄ for some x ∈ K× with xS = S. This is the
case if and only if x ∈ S× which is equivalent to u ∈ NK/K0(S×). The kernel of
the second map (a, α) 7→ a consists of all classes (a, α) ∈ C(S) with a being an
invertible principal ideal of S. Therefore, for every class (a, α) in the kernel, there
exists a x ∈ K× with a = xS. In particular, it is x−1 a = S and by defining
u := x−1 x−1α ∈ (S×0 )+ we conclude that (S, u) = (a, α) in C(S). The kernel of
the third map a 7→ NK/K0(a) in the sequence consists of all classes in Pic(S) such
that their image under the norm NK/K0 is a principal invertible ideal of S0 having a
totally positive generator. This equals, by definition, the image of the second map.

4.1.3 Modern formulation of Shimuras third main theorem

We are now ready to reformulate Shimuras third main theorem in the framework
of polarized class groups.We follow the notation from [BS17]. Let (K,Φ) be a fixed
CM type with reflex (Kr,Φr). Let S ⊆ R ⊆ OK be orders in K and f := [OK : S ].
If a ∈ IKr(f) then NΦr(a) ∈ IK(f) (see Proposition 1.59), especially

NΦr(a) ∈ IK([OK : R ]) ⊆ IK(fR) .

If we restrict this ideal to R, then it is still coprime to fR and hence invertible as
we have seen in Theorem 1.23. Consequently, the following map is well-defined.

Ψ : IKr(f) −→ C(R)

a 7−→ (NΦr(a),NKr/Q(a)).

The kernel of Ψ will be denoted as ΩR(f) := ker Ψ. Since C(R) does not depend on
the integer f , the image isomorphic to IKr(f)/ΩR(f) does not depend on f . As a
consequence and in order to simplify notation, we can now just write ΩR := ΩR(f).
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We consider two important special cases. Firstly, if R = OK , then Ψ is a map
from IKr(f) to C(OK) and we denote the kernel by ΩOK := ΩOK (f). Secondly,
whenever R = S, then Ψ is a map from IKr(f) to C(S) and we denote the kernel by
ΩS := ΩS(f). We can now reformulate Shimuras third main theorem for arbitrary
orders in terms of this modern notation.

Theorem 4.7.
Let (Kr,Φr) be a primitive CM-type, and let (K,Φ) be its reflex. Let S be an order
in K of index f := [OK : S ], and let (A, ι) be an abelian variety of type (K,Φ)
with CM by S. Let C be a polarization of A, and let k0 be the field of moduli of
(A,C ). Then k∗0 is the class field over Kr corresponding to ΩS = ΩS(f).

Proof. Due to Corollary 4.3, we know that H(S) ⊆ IKr(s) corresponds to the class
field k∗0 over Kr, where s is the smallest positive integer in the conductor f of S
in OK . The image of an ideal a ∈ IKr(s) under NΦr lies in IK(s) ⊆ IK(f), and is
hence actually an ideal in IS(f). In the definition of Ψ, we may also replace f by
s and Ψ is still well-defined by the same argument. In this sense, it follows that
H(S) = ΩS(s) and

IKr(s)�ΩS(s) = IKr(f)�ΩS(f).

Consequently, we know that ΩS corresponds to the class field k∗0 over Kr.

This motivates the following definition.

Definition 4.8.
Let K be a CM field, and let S be an order in K of index f := [OK : S ]. We say
that S is a CM class number one order, if there exists a primitive CM type Φ of K
with ΩS = IKr(f), where Kr is the reflex field of (K,Φ). If the maximal order OK
of K is a CM class number one order, then K is said to be a CM class number one
field.

We should mention at this point that ΩS ⊆ ΩOK ⊆ IKr(f). Due to Theorem
4.7, we know that ΩS = IKr(f) whenever the field of moduli is contained in the
reflex field k0 ⊆ Kr. Especially, ΩOK = IKr(f), which means that K has to be CM
class number one field. Analog to Corollary 4.4, we obtain the following corollary
in the framework of polarized class groups.
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Corollary 4.9.
Let (Kr,Φr) be a primitive CM-type, and let (K,Φ) be its reflex. Let S be an order
in K of index f := [OK : S ], and let (A, ι) be an abelian variety of type (K,Φ)
with CM by S. Let C be a polarization of A, and let k0 be the field of moduli of
(A,C ) contained in Kr. Then S is a CM class number one order and K is a CM
class number one field.

Proof. As a consequence of Theorem 4.7, k∗0 = k0 · Kr is the class field over Kr

corresponding to ΩS = ΩS(f). Since we chose k0 to be contained in Kr, the
field extension k∗0 over Kr is trivial, and we receive that ΩS = IKr(f), which, by
definition, means that S is a CM class number one field.

Summarizing the latest results of this section, we see that every simple polarized
abelian variety P = (A, ι,C ) of a CM type (K,Φ) with field of moduli k0 contained
in the reflex field Kr of (K,Φ) must have an endomorphism ring isomorphic to a
CM class number one order S, and K has to be a CM class number one field. The
upcoming section will now focus on the case k0 = Q concluding further conditions
on K.

4.2 Simple polarized abelian varieties with CM
and field of moduli Q

In this section we revisit [Shi71][Chapter 5.5] and generalize results on the field of
moduli of simple polarized abelian varieties with complex multiplication by maximal
orders from [Kıl16][Chapter 4] to arbitrary orders. We start with some notation
following [Shi71].

Definition 4.10.
Let (K,Φ) be a primitive CM type, let (Kr,Φr) be its reflex, and let P = (A, ι,C )
be a polarized abelian variety over C of type (K,Φ). For any subfield L of K, we
define the field of moduli k0,L of (A, ι|L,C ) to be the unique subfield of C such
that an automorphism σ of C is the identity on k0,L if and only if there exists an
isomorphism η : A→ Aσ with η(C ) = C σ and η ◦ ι|L(α) = ι|σL(α) ◦ η for all α ∈ L.

Note that, in the situation of this definition, the field of moduli of (A, ι|Q,C ) is
the field of moduli of (A,C ). The following proposition is [Shi71][Proposition 5.17].
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Proposition 4.11.
Let (K,Φ) be a primitive CM type, and let (Kr,Φr) be its reflex. Let P = (A, ι,C )
be a polarized abelian variety over C of type (K,Φ) and let L be a subfield of K.
Then

(a) k0,L ·Kr is the field of moduli of (A, ι|L,C )
(b) Kr is normal over k0,L ∩Kr,
(c) k0,L ·Kr is normal over Kr,
(d) Gal(k0,L ·Kr/k0,L) is isomorphic to Aut(K/L),
(e) k0,L contains the smallest subfield of Kr over which Kr is normal.

We obtain the following proposition, which can be found in [Kıl16][Proposition
4.2.3], and we provide a brief sketch of the proof.

Proposition 4.12.
Let (K,Φ) be a primitive CM type, and let (Kr,Φr) be its reflex. Let P = (A, ι,C )
be a polarized abelian variety over C of type (K,Φ). If L is a subfield of K and
k0,L = Q, then L = Q and K ∼= Kr is Galois over Q.

Proof. Let L be a subfield of K, and let k0,L = Q. Proposition 4.11 (b) tells us
that Kr is normal over Q and by (d) the Galois group of Kr over Q is isomorphic
to a subgroup of Aut(K/L), which means that [Kr : Q ] | [K : L ]. Since Φ is
primitive, we have Krr = K, and because Kr is normal over Q, the reflex Krr is
isomorphic to a subfield of Kr. Especially [K : L ] ≤ [Kr : Q ] and together with
the previous considerations on the degrees we have L = Q and Kr ∼= K.

We can now formulate the following generalization of [Kıl16][Lemma 4.3.2],
which extends to arbitrary orders. The initial part of the proof mirrors the one
given in [Kıl16]. It is presented for the sake of completeness and a more in-depth
understanding. In the latter part of the proof, we apply Shimura’s third main
theorem in instead of the first main theorem.

Lemma 4.13.
Let (K,Φ) be a CM type with [K : Q ] = 2n for some prime number g 6= 2. Let
P = (A, ι,C ) be a n-dimensional polarized abelian variety over C of type (K,Φ)
and ι−1(End(A)) = S, where S is an order in K. If A is simple and the field of
moduli k0 = k0,Q of (A,C ) is Q, then Φ is primitive and S is CM class number
one order in a cyclic Galois CM class number one field K containing an imaginary
quadratic subfield k.

Proof. Let A be simple, and let the field of moduli k0 = k0,Q of (A,C ) be equal to Q.
Due to Proposition 1.89, the CM type Φ is primitive. Then, together with Lemma
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4.12, the CM field K is Galois over Q and contains a maximal totally real subfield
K0 of odd prime degree n, which implies that Gal(K0/Q) is cyclic. Moreover,
Gal(K/K0) contains the complex conjugation ρ on K and |Gal(K/K0)| = 2. If
k is the subfield of K fixed by the cyclic subgroup of Gal(K/Q) of order n, then,
as n 6= 2, we have Gal(K/F ) = 2. Therefore, the subfield k of K is imaginary
quadratic over Q. As ρ commutes with every element in Gal(K/k), the Galois
group Gal(K/Q) is abelian and K is cyclic over Q. We may now apply Corollary
4.9 and since k0 = Q, we receive that S a CM class number one order and K is a
CM class number one field.

In the following discussions, we consider the case n = 3. We are asking for simple
polarized abelian varieties (A,C ) with field of moduli Q and complex multiplication
by an arbitrary order S in a sextic CM field K. Relying on Corollary 4.9 and Lemma
4.13, it is sufficient to focus on CM class number one fields K that are cyclic Galois
over Q and contain an imaginary quadratic subfield. These 37 fields are already
presented in [Kıl16][Table 3.1], which we present below.

The table presents the cyclic sextic CM field K, which contains an imaginary
quadratic subfield denoted as k. Additionally, F represents the totally real cu-
bic subfield of K, defined by a monic, irreducible polynomial p(X). The value
dk denotes the absolute value of the discriminant of k, and hF denotes the class
number of F . In column C, a ’∗’ indicates the availability of a rational model of a
corresponding curve with CM by the maximal order OK of K.

[Kıl16][Table 3.1]: All CM class number one cyclic sextic CM fields
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4.3 Simple genus 3 curves over C with CM by
arbitrary orders

We remind the reader that every simple principally polarized abelian variety of di-
mension 3 over C corresponds to the Jacobian of a simple genus 3 curve over C (see
Theorem 1.85). Additionally, the Jacobian of a simple genus 3 curve over C can be
described as a principally polarized simple abelian variety over C. Consequently,
considering simple genus 3 curves over C with complex multiplication is equivalent
to consider simple principally polarized abelian varieties over C with complex mul-
tiplication. We expand the results from [Wen01b] and [KW05] on two specific types
of curves with complex multiplication by maximal orders. To be more precise, we
will also investigate non-maximal orders. This generalization will be very helpful
in explicitly computing isomorphism classes of simple genus 3 CM curves.

4.3.1 Simple hyperelliptic genus 3 curves with CM

Definition 4.14.
Let g be an integer. A hyperelliptic curve of genus g over a subfield k of C is a curve
given by an affine equation y2 = f(x), where f ∈ k[x], deg f ∈ {2g + 1, 2g + 2}
and f has no multiple roots in k̄. The subspace of g-dimensional Jacobians of
hyperelliptic curves of genus g in the g-dimensional moduli space is defined to be
the moduli space of hyperelliptic curves of genus g.

It is well-known that every genus 2 curve over C is hyperelliptic. This is not the
case for genus g ≥ 3. As outlined in [Wen01b], the moduli space of hyperelliptic
curves of genus 3 has codimension 1 in the moduli space of genus 3 curves. Thus,
the chance of a randomly chosen genus 3 curve being hyperelliptic is quite small.
Unfortunately, as all simple principally polarized abelian varieties over C are Ja-
cobians of simple genus 3 curves, this observation extends to the construction of
abelian varieties with complex multiplication by an order S in a CM field K, as
discussed in Chapter 3. In [Wen01b], Weng introduced a strategy to circumvent
this complication for the case S = OK by further assuming that K contains Q(i).
The goal of this section is to generalize this approach to arbitrary orders S.

The next theorem extends the findings of [Wen01b][Theorem 4.4.2], and its
argument is largely analogous to the original. We provide a brief outline of the
proof and direct the reader to [Wen01b] for details on the part that is entirely the
same.
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Theorem 4.15.
Let C be a simple genus g curve over C with CM by an order S ⊆ OK in a CM
field K. If Z[i] ⊆ S, then C is hyperelliptic.

Proof. Let (J,C ) be the principally polarized Jacobian of C. As a corollary of
Torellis theorem (see [Wen01b][Theorem 1.1.1 and Corollary 1.1.2]) we have

Aut(C) ∼=


Aut(J,C ), if C is hyperelliptic
Aut(J,C )�{±1}, if C is not hyperelliptic.

Following [Wen01b][Chapter 4.4], every automorphism on (J,C ) is a root of unity
in S. Let Z[ i ] ⊆ S. Since End(J) ∼= S, the automorphism group Aut(J,C )
has order 4, and the automorphisms correspond to {± 1 , ±i}. Accordingly, there
exists an automorphism α ∈ Aut(C) of order 2. Since J is simple, C/〈α〉 has
genus 0. It follows that C is a degree 2 cover of P1, which is equivalent to C being
hyperelliptic.

Using Theorem 4.15, we narrow our search for simple hyperelliptic genus 3
CM curves to those with complex multiplication by an order S that contains Z[i].
Specifically, we concentrate on sextic CM fields that contain Q(i).

Building on our considerations from Chapter 4.2, by assuming that the Jacobian
of the hyperelliptic genus 3 curves have field of moduli Q, we can further narrow our
search to those sextic CM fields, which are cyclic Galois over Q and have CM class
number one. Summarizing these considerations, we finally present the following
theorem.

Theorem 4.16.
Let C be a genus 3 curves over a subfield k of C with complex multiplication by an
order S in a CM field K such that Z[i] ⊆ S. Let J denote the Jacobian of C having
field of moduli Q. Then

(a) C is hyperelliptic,
(b) K is a cyclic sextic CM class number one field containing Q(i), and
(c) S is a CM class number one order.

Proof. By applying Theorem 4.15 to C and noting that Z[i] ⊆ S, we deduce that C
is hyperelliptic. Furthermore, given that J is assumed to have a field of moduli Q,
the application of Lemma 4.13 confirms that K is a sextic cyclic Galois CM field
with a CM class number of one, which includes Q(i), and S is an order with a CM
class number of one.
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As highlighted at the very end of the previous section, [Kıl16][Table 3.1] provides
a complete list of cyclic sextic CM class number one fields containing an imaginary
quadratic subfield. Of the 37 fields listed, six contain the quadratic subfield Q(i).
Table 4.1 collects these six fields from [Kıl16][Table 3.1].

In the following table, we define K as Q[x]/〈f〉, where the irreducible polynomial
f is given by f = ∑6

i=0 αix
i with αi ∈ Z[x]. Similarly, K0 is defined as Q[x]/〈g〉,

where g = ∑3
i=0 βix

i with βi ∈ Z[x]. K0 is the totally real cubic subfield of K
such that K = Q(i)K0. We take both f and g to be monic, implying α6 = 1 and
β3 = 1. Consequently, we represent the polynomials, and thus the fields, as tuples
[α0, . . . , α5] and [β0, β1, β2].

Table 4.1: CM class number one fields K = Q(i)K0

No. g f

1 [1,−5, 2] [37,−32, 40,−10,−3, 4]
2 [−1,−3, 0] [17, 12, 12,−2,−3, 0]
3 [−1,−2, 1] [13, 8, 7,−2, 0, 2]
4 [8,−14, 1] [274,−298, 217,−8,−24, 2]
4 [−8,−10, 1] [202, 190, 89,−32,−16, 2]
6 [8,−18, 3] [386,−438, 393,−80,−24, 6]

Summarizing the discussions in this section, when seeking hyperelliptic genus 3
curves over C with CM by an order S in a CM field K, it is beneficial to focus on
those where Z[i] is a subset of S. Furthermore, when assuming that the Jacobian
of such a curve has field of moduli Q, the CM field must be among those listed in
Table 4.1. In order to provide a complete list of potential endomorphism rings for
these curves, we will deduce further conditions in the following chapters.

4.3.2 Simple Picard genus 3 curves with CM

Definition 4.17.
A Picard curve over a subfield k of C is a cyclic trigonal curve of genus 3 given by
an affine equation y3 = f(x) with f ∈ k[x] being a polynomial of degree 4 having
no multiple roots in k̄.

In [KW05], Koike and Weng present an explicit method for constructing Picard
curves with complex multiplication by the maximal orderOK in a sextic CM field K.
Specifically, as illustrated in [KW05][Lemma 1], they demonstrate that if K includes
Q(ζ3), where ζ3 represents a third root of unity, the curve is Picard. Conversely, if
a curve is a Picard curve, then K must contain Q(ζ3).
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4.3. SIMPLE GENUS 3 CURVES OVER C WITH CM BY ARBITRARY ORDERS

The theorem below extends the findings of [KW05][Lemma 1]. Again, its argu-
ment largely follows the original. We provide a brief outline of the proof, and we
direct the reader to [KW05] for details on the part that is entirely analogous.

Theorem 4.18.
Let C be a simple genus 3 curve over C with CM by an order S ⊆ OK in a sextic
CM field K. Then C is Picard if and only if Z[ζ3] ⊆ S. If this is the case, then
K = Q(ζ3)K0, where K0 denotes the maximal totally real subfield of K.

Proof. On the one hand, if C is Picard, then C can be represented by an affine
equation y3 = f(x) with f ∈ C[x], deg f = 4 and f has no multiple roots. Hence,
C has an automorphism of order 3 and Z[ζ3] ⊆ S. On the other hand, if Z[ζ3] ⊆ S

we can apply Torellis theorem (see [Wen01b][Theorem 1.1.1 and Corollary 1.1.2])
and receive that C has an automorphism α of order 3. Now let C(C) = C(x, y) be
the function field of C and let C(C̃) be the function field of C factored by α. As
the Jacobian J of C is simple, C(C̃) must be the rational field and C(C)/C(C̃) is a
Kummer extension of degree 3. Accordingly, C can be given by an affine equation
y3 = f(x). The Riemann-Hurwitz formula tells us that C → P1 is branched at five
points. If we choose the point at infinity to be a ramification point, then f has
degree 4 and C is Picard.

As a consequence of Theorem 4.18, for every Picard curve with complex multi-
plication by an order S in a CM field K, we know that S contains Z[ζ3] and K is
a sextic CM field that contains Q(ζ3).

Following the argument of Chapter 4.2, by assuming that the Jacobian of the
Picard curve has field of moduli Q, we can further narrow our search to sextic CM
fields, which are cyclic Galois over Q and have CM class number one. Summarizing
these considerations, we receive the following theorem.

Theorem 4.19.
Let C be a genus 3 curve over a subfield k of C with complex multiplication by an
order S in a CM field K. Let J be the Jacobian of C. Then C is a Picard curve
if and only if Z[ζ3] ⊆ S. If this is the case and if J has field of moduli Q, then
S is a CM class number one order in a cyclic sextic CM class number one field K
containing Q(ζ3).

Proof. By applying Theorem 4.18, we deduce that C is a Picard curve if and only
if Z[ζ3] ⊆ S. Given that C is a Picard curve and its Jacobian has a field of moduli
Q, Lemma 4.13 implies that S is a CM class number one order in a cyclic Galois
sextic CM field which includes an imaginary quadratic subfield. Since Z[ζ3] ⊆ S,
this specific subfield is Q(ζ3).
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Similar to the argument in Chapter 4.3.1, [Kıl16][Table 3.1] provides a com-
plete list of all 37 cyclic sextic CM class number fields K containing an imaginary
quadratic subfield. Of these 37 fields, ten contain the subfield Q(ζ3).

In the following table, we define K as Q[x]/〈f〉, where the irreducible polynomial
f is given by f = ∑6

i=0 αix
i with αi ∈ Z[x]. Similarly, K0 is defined as Q[x]/〈g〉,

where g = ∑3
i=0 βix

i with βi ∈ Z[x]. K0 is the totally real cubic subfield of K
such that K = Q(ζ3)K0. We let both f and g be monic, implying α6 = 1 and
β3 = 1. Consequently, we represent the polynomials, and thus the fields, as tuples
[α0, . . . , α5] and [β0, β1, β2].

Table 4.2: CM class number one fields K = Q(ζ3)K0

No. g f

7 [1,−4, 1] [151,−32, 51, 6, 2, 2]
8 [−1,−2, 1] [91, 28, 35, 6, 6, 2]
9 [−8,−10, 1] [628, 262, 117,−24,−10, 2]
10 [8,−14, 1] [892,−434, 245, 0,−18, 2]
11 [8,−18, 3] [1324,−702, 453,−56,−18,−18, 6]
12 [1,−9, 6] [721,−252, 336,−34, 27, 12]
13 [−64,−36, 3] [9892, 5166, 993,−308,−54, 6]
14 [−27,−15, 4] [2493, 1008, 132,−126,−5, 8]
15 [−27,−21, 2] [2817, 1404, 384,−114,−29, 4]
16 [−1,−3, 0] [109, 24, 36,−2, 3, 0]

We note that the first nine fields in Table 4.2 have |µK | = 6, whereas the last
field has |µK | = 18. This will play a role in later chapters on the existence of certain
Picard curves with CM.

Summarizing the discussions from this section, we have found that for Picard
curves over C with CM by an order S in a CM field K, it is sufficient to narrow our
focus to those where Z[ζ3] is contained in S. Moreover, if we assume their Jacobian
to have a field of moduli Q, the CM field is contained in those outlined in Table
4.2. An open challenge is finding further constrains of the orders S to provide a
complete list of potential endomorphism rings for these curves. We will explore this
in the following chapters, especially in Chapter 7.
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Chapter 5

The relative norm of CM class
number one orders

During this chapter, (K,Φ) is a primitive CM type, where K a cyclic Galois or
non-normal sextic CM field containing an imaginary quadratic subfield k. We let S
and R be orders in K such that S is contained in R. As in the previous chapters,
we denote by K0 the totally real cubic subfield of K, and let S0 and R0 be the
restrictions of S and R to K0, respectively. Additionally, define f := [OK : S ] to
be the index of S in the maximal order OK of K.

The goal of this chapter is to establish a relationship between the orders S and
R as well as their restrictions S0 and R0, in the context, where S is a CM class
number one order. We will do this by examining the following map with a special
focus on its kernel. The approach is inspired by [BS17] in which Bisson and Streng
considered quartic instead of sextic CM fields, and we will use the same notation.

Definition 5.1.
Let R and S be orders in a CM field K with S ⊆ R, and let µR be the group of
roots of unity of R. Let K0 the maximal totally real subfield of K, and let R0 and
S0 be the restrictions of R and S to K0, respectively. We define the relative norm
to be the following map induced by the relative norm NK/K0 :

ψ : (R/fOK)×�(S/fOK)×µR −→
(R0/fOK0)×�(S0/fOK0)×.

As discussed in the previous chapters, the above-mentioned situation in this
chapter applies to several situations when asking for curves with complex multi-
plication. For example, simple polarized abelian varieties of dimension 3 with CM
and field of moduli Q (see Lemma 4.13), hyperelliptic genus 3 CM curves C/C with
Z[i] ⊆ S, which means that Q(i) ⊆ K (see Theorem 4.15) and Picard CM curves
C/C with Z[ζ3] ⊆ S, implying that Q(ζ3) ⊆ K (see Theorem 4.18).
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Due to the fact that K contains an imaginary quadratic subfield, we can charac-
terize the primitive CM types as detailed in [Kıl16][Chapter 3]. We provide a brief
summary. Since K0 is a totally real cubic field and k is imaginary quadratic, we
conclude that k ∩ K0 = Q and K = K0k. Let N represent the normal closure of
K. In this context, K can either be Galois with Gal(N/Q) = Gal(K/Q) ∼= C6 or
non-normal with Gal(N/Q) ∼= S3 × C2 ∼= D6. The diagram below summarizes the
situation.

N

K

K0 k

Q

2 3

3 2

As pointed out in [Kıl16][Proposition 3.3.2] and [Kıl16][Proposition 3.4.2], in
both cases, whether K is Galois or non-normal, there is only one equivalence class
of primitive CM types. Furthermore, we can give an explicit description of a repre-
sentative for this class.

(a) (K cyclic Galois): The Galois group is given by Gal(K/Q) = 〈τ〉, where τ is
an automorphism such that τ 3 = ρ, which represents the complex conjuga-
tion. Without loss of generality, we state that a primitive CM type Φ of K
takes the form Φ = {1, τ, τ−1}. This ensures that Kr = K and Φr = Φ.

(b) (K non-normal): In this case, the corresponding Galois group is given by
Gal(N/Q) = 〈τ, σ | τ 6 = σ2 = 1, (τσ)2 = 1〉. Here, the second automor-
phism, σ, leaves K invariant, and once more τ 3 = ρ represents the complex
conjugation. Without a loss of generality, we state that a primitive CM type
Φ of K has the form Φ = {1, τ |K , τ−1|K}. We also have Kr = K and Φr = Φ.

In order to simplify our notation, and as the argument is completely analogue,
we will denote the CM type of our CM field K by Φ = {1, τ, τ−1} in both cases. In
the non-normal case, this actually means the restriction of τ to K. Furthermore,
for the rest of this chapter, we will assume that Kr = K and Φr = Φ.
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We return to the map Ψ from Chapter 4.1.3, examining it in this particular
context, which now takes the form:

Ψ : IK(f) −→ C(S)

a 7−→ (NΦ(a),NK/Q(a)).

The kernel of Ψ is denoted by ΩS := ΩS(f).

The aim of this section is to show that when S is a CM class number one order,
i.e. ΩS = IK(f), the kernel of the relative norm of the two orders S ⊆ R has
an exponent of at most two. The argument is inspired by [BS17], which handles
non-biquadratic quartic CM fields.

Before proving the first proposition of this section, it is important to note that
for Φ = {1, τ, τ−1}, we get ρ ◦ τ = τ−2 and ρ ◦ τ−1 = τ 2, with ρ representing the
complex conjugation in K.

Proposition 5.2.
Let (K,Φ) be a primitive sextic CM type, let K contain an imaginary quadratic
subfield, and let K be cyclic Galois or non-normal. Let Φ = {1, τ, τ−1}, and let S
be an order in K. Then, for every (a, α) ∈ IS, we have

NΦ(NΦ(a)) = a2
(
τ(α)τ−1(α) NΦ(a)

)
and

NK/Q (NΦ(a)) = α2
(
τ(αᾱ)τ−1(αᾱ) NΦ(aā)

)
.

Proof. Let (a, α) ∈ IS, then aā = αS. Applying the type norm twice, we receive

NΦ(NΦ(a)) = NΦ(aτ(a)τ−1(a))

=
(
aτ(a)τ−1(a)

) (
τ(a)τ 2(a)a

) (
τ−1(a)aτ−2(a)

)
= a2

(
τ(a)τ−2(a)τ−1(a)τ 2(a)

) (
aτ(a)τ−1(a)

)
.

Together with ρ ◦ τ = τ−2 and ρ ◦ τ−1 = τ 2 we can further say that

NΦ(NΦ(a)) = a2
(
τ(a)(τ ◦ ρ)(a)τ−1(a)(τ−1 ◦ ρ)(a)

) (
aτ(a)τ−1(a)

)
= a2

(
τ(a)τ(ā)τ−1(a)τ−1(ā)

) (
aτ(a)τ−1(a)

)
= a2

(
τ(aā)τ−1(aā)

) (
aτ(a)τ−1(a)

)
= a2

(
τ(α)τ−1(α) NΦ(a)

)
.
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Since NK/Q (NΦ(a)) = NΦ(NΦ(a)) · NΦ(NΦ(a)) and aā = αS, we receive that

NK/Q (NΦ(a)) = a2(τ(α)τ−1(α) NΦ(a)) a2 (τ(α)τ−1(α) NΦ(a))

= α2
(
τ(αᾱ)τ−1(αᾱ) NΦ(aā)

)
.

We are now in a position to state the following lemma, which provides a neces-
sary condition for CM class number orders S. Specifically, it establishes that every
element in C(S) has an order of at most 2.

Lemma 5.3.
Let (K,Φ) be a primitive sextic CM type, let K contain an imaginary quadratic
subfield, and let K be cyclic Galois or non-normal. Let Φ = {1, τ, τ−1}, and let
S be an order in K of index f = [OK : S]. If ΩS = IK(f), then, for every
(a, α) ∈ C(S), we have

(a, α)2 = Ψ(NΦ(a)) = (S, 1).

Proof. Let (a, α) ∈ IS ∈ C(S) and ΩS = IK(f). Then NΦ(a) ∈ PS and

(
τ(α)τ−1(α) NΦ(a), τ(αᾱ)τ−1(αᾱ) NΦ(aā)

)
= (S, 1),

hence it is trivial in C(S). Applying Proposition 5.2 we receive

(a, α)2 =
(
a2
(
τ(α)τ−1(α) NΦ(a)

)
, α2

(
τ(αᾱ)τ−1(αᾱ) NΦ(aā)

))
=
(
NΦ(NΦ(a)),NK/Q (NΦ(a))

)
= Ψ(NΦ(a)).

Now (a, α)2 is in the image of Ψ and since ΩS = IK(f), we get that (a, α)2 = (S, 1)
is trivial in C(S).

We will now rephrase this theorem in terms of elements rather than ideals by
using the relative norm introduced at the beginning of this section. The following
lemma can be found in [BS17][Lemma 7]. It is of significant generality in order to
be applicable to our situation. We will sketch the proof to better illustrate the links
between the various parts. For a more detailed view, we refer to [BS17].
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Lemma 5.4.
Let S and R be orders in a CM field K, and let S ⊆ R. Let K0 be the maximal totally
real subfield of K, and let S0 := S∩K0 such as R0 := R∩K0. Let η : C(S) −→ C(R)
be the natural homomorphism, f := [OK : S ]. We consider the relative norm

ψ : (R/fOK)×�(S/fOK)×µR −→
(R0/fOK0)×�(S0/fOK0)×.

Then
ker η ∼= kerψ and coker η ∼= cokerψ.

Proof. The diagram below describes the relationships among the groups IS, PS, and
the polarized class group C(S) of the order S as defined in Definition 4.5, together
with the corresponding objects for the order R.

1 PS IS C(S) 1

1 PR IR C(R) 1

The snake lemma (see [Lan12][Lemma 9.1, Chapter 3]) tells us that

(co-) ker η ∼= (co-) ker
(
PR�PS →

IR�IS

)
.

It remains to give an isomorphism between PR/PS and (R/fOK)×/(S/fOK)×µR
and an embedding from IS/IR into (R0/fOK0)×/(S0/fOK0)× such that the induced
map is ψ. For the first map we take

PR�PS −→
(R/fOK)×�(S/fOK)×µR

(xR, xx̄) 7−→ x,

and for the second map we take

IS�IR −→
(R0/fOK0)×�(S0/fOK0)×

(a, α) 7−→ α ,

each defined on the integral representatives.

The initial map is defined on PR since the pair (xR, xx̄) uniquely determines x
up to roots of unity in R. Looking at the kernel, it includes those pairs (xR, xx̄) for
which x is invertible modulo f . This means that xS does not share any common
factor with f . In other words, the kernel is PS. Therefore, the map is indeed
well-defined, surjective, and injective when factoring its kernel PS.
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Let the pair (a, α) belong to the kernel of the second map, a being integral. It
follows that αS0 does not share any common factor with f , which means αS is also
coprime to f . Let b denote the unique S-ideal that is coprime to f and satisfies
a = bR. From this, we get bb̄R = αR and, given that both αS and b are coprime
to f , it follows that (b, α) belongs to IS. This suggests (a, α) is also in IS, proving
injectivity.

Combining this result with Lemma 5.3, we obtain the final proposition of this
section.

Proposition 5.5.
Let (K,Φ) be a primitive sextic CM type, where K contains an imaginary quadratic
subfield. Let K be cyclic Galois or non-normal. Let Φ = {1, τ, τ−1}, let S and R

be orders in K with S ⊆ R, and let f = [OK : S ]. If ΩS = IK(f), then the kernel
of the relative norm

ψ : (R/fOK)×�(S/fOK)×µR −→
(R0/fOK0)×�(S0/fOK0)×

is of exponent at most 2.

Proof. By applying Lemma 5.4, we deduce that kerψ ∼= ker η. More specifically, we
have

(kerψ)2 ∼= (ker η)2 ⊆ C(S)2 .

Now, following Lemma 5.3, the square of any class within C(S) is trivial. This leads
to the conclusion that C(S)2 = {(S, 1)}. Merging these observations, we see that
(kerψ)2 is trivial, and every element in kerψ has an order not exceeding 2.

We have discussed that CM class number one orders come with a unique prop-
erty for the associated relative norm. This property will be important in the next
chapters, providing additional constrains on CM class number one orders. Specifi-
cally, Proposition 5.5 will be employed in Theorem 8.1 in order to establish bounds
for the index of the endomorphism rings of certain simple principally polarized
abelian varieties of dimension 3 that have complex multiplication.
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Chapter 6

Relating the index of orders and
their restrictions

Throughout this chapter, we consider towers of number fields Q ⊆ K0 ⊆ K and
orders S ⊆ OK , as well as their restriction S0 := S ∩ OK0 to K0. We aim to
develop upper bounds on [OK0 : S0 ] which depend only on [OK : S ] and the
number fields. In the initial section, we adopt a lattice-based approach, building on
Minkowski’s convex body theorem. In the following section, we expand on a result
from [BS17], which not just proved an upper bound but also a divisibility criterion.
The diagram that follows shows the considered situation.

K ⊇ OK ⊇ S

K0 ⊇ OK0 ⊇ S0

Q ⊇ Z

m

n

6.1 Minkowski’s convex body theorem

Before discussing useful consequences of Minkowski’s convex body theorem, we first
introduce some notation.

Definition 6.1.
Let (V, 〈·, ·〉) be an Euclidean vector space, and let a be lattice in V of full rank n.
Let (α1, . . . , αn) be a basis of a. The fundamental domain of a is defined to be the
set of vectors v ∈ V such that there exist λ1, . . . , λn ∈ [ 0, 1) with v = ∑n

i=1 λi αi.
The covolume of a, denoted as covol(a), is defined as the volume of the fundamental
domain, which is

covol(a) = | det(〈αi, αj〉)i,j)|1/2 .
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The next theorem is known as Minkowskis convex body theorem, and can be for
example in [Neu99][Theorem 4.4, Chapter 1].

Theorem 6.2.
Let (V, 〈·, ·〉) be an Euclidean vector space of dimension n, and let a be a complete
lattice in V . Let X ⊆ V be a bounded, convex, symmetric subset with

vol(X) > 2n covol(a) .

Then X ∩ a contains an element different from zero.

In order to apply Theorem 6.2, we consider number fields as Euclidean vector
spaces in the following way, as it can be found in [Ste08][Chapter 10].

Definition 6.3.
Let K be a number field with [K : Q ] = n. Let σ1, . . . , σn : K ↪→ C denote
the embeddings of K into C. The base extension from K as a Q-vector space to a
C-vector space, denoted KC := K ⊗Q C, delivers a ring homomorphism

jK : K −→ KC ∼= Cn×1

x 7−→ (σi(x))i .

We let KR be the subring of KC consisting of the elements, which are invariant
under the involution F : (zσi)i 7→ (z̄σ̄i)i .

Now let K be a number field, then jK(K) ⊆ KR and KR is an Euclidean vector
space inheriting the scalar product from KC ∼= Cn. If we denote by r the number
of real embeddings and by 2s the number of complex embeddings of K, then

KR ∼= Rr × Cs .

The volume in KR is by a factor of 2s larger than the canonical volume on Rr×Cs.
Note that whenever K is totally real then KR ∼= Rn, and then the volumes coincide.
The following proposition can be found in [Ste08][Lemma 10.3]. It can be used to
determine the covolume of orders and ideals.

Proposition 6.4.
Let S be an order in a number field K. Then the covolume of jK(S) in KR is equal
to |∆(S)|1/2. Furthermore, for every integral ideal a in S we have

covol(jK(a)) = [S : a ] |∆(S)|1/2.

97



6.1. MINKOWSKI’S CONVEX BODY THEOREM

By merging Theorem 6.2 with Proposition 6.4, we can identify a non-zero ele-
ment with a minimal norm in the trace dual of an order. This approach is inspired
by the discussions on the finiteness of Picard groups found in [Ste08][Chapter 10].

Theorem 6.5.
Let K be a totally real number field of degree n over Q, and let S be an order in K.
Then the trace dual S∗ of S contains a non-zero element α ∈ S∗ with

0 < NK/Q(α) ≤ [S : S∗ ] ∆(S)1/2 = [OK : S ]−1 ∆−1/2
K/Q .

Proof. Let σ1, . . . , σn denote the embeddings from K into R and jK : K → KR be
the map from Definition 6.3, where KR ∼= Rn×1. We know that S∗ is a fractional
ideal of S with S ⊆ S∗ and if c := [S∗ : S ], then a := c S∗ is an integral ideal
in S. Now jK(a) is a lattice in KR ∼= Rn×1 with covol(jK(a)) = [S : a ] ∆(S)1/2

(see Proposition 6.4). In order to apply Theorem 6.2 we define bounded, convex,
symmetric subsets X of KR with

vol(X) > 2n covol(jK(a)) .

For any ε > 0 let R(ε) := [S : a ]1/(n−1) ∆(S)1/2(n−1) + ε and

XR(ε) :=
{(
x1 · · · xn

)T
| |x1| < 1 , |xj| < R(ε) for all j = 2, . . . , n

}
.

Then vol(XR(ε)) = 2nR(ε)n−1, which implies that

vol(XR(ε)) = 2nR(ε)n−1 = 2n ( [S : a ]1/(n−1) ∆(S)1/2(n−1) + ε )n−1

> 2n[S : a ] ∆(S)1/2 = 2n covol(a) .

Now Theorem 6.2 tells us that, for every ε > 0, jK(a) contains a non-zero element
b =

(
b1 · · · bn

)T
with

|b1| < 1 and |bj| < R(ε) = [S : a ]1/2 ∆(S)1/4 + ε for all j = 2, . . . , n .

Hence, there exists β ∈ a \ {0} with

0 < NK/Q(β) =
n∏
i=1

σi(β) < 1 ·R(ε)n−1 .

Note that β 6∈ Z as |b1| < 1. Especially, for ε→ 0, we receive that

0 < NK/Q(β) ≤ [S : a ] ∆(S)1/2 .
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Now we have
[S : a ] = [S : cS∗ ] = cn [S : S∗ ],

and there exists α ∈ S∗ \ {0} with β = c α. It follows that

0 < cn NK/Q(α) = NK/Q(β) ≤ cn [S : S∗ ] ∆(S)1/2,

which is equivalent to

0 < a := NK/Q(α) ≤ [S : S∗ ] ∆(S)1/2 . (6.1)

Additionally, applying Proposition 1.17, we get that

[S : S∗ ] = [S∗ : S ]−1 = (∆K/Q [OK : S ]2)−1 = ∆−1
K/Q [OK : S ]−2.

Also ∆(S) = [OK : S ]2 ∆K/Q. This implies ∆(S)1/2 = [OK : S ] ∆1/2
K/Q. Conse-

quently, the right-hand side of (6.1) is equal to [OK : S ]−1 ∆−1/2
K/Q .

We are now in the position to present the main result of this section, which is
based on Theorem 6.5. The following diagram provides an overview of the situation.

K ⊇ OK ⊇ S

K0 ⊇ OK0 ⊇ S0

Q ⊇ Z

m
Galois stable under Gal(K/K0)

ntotally real

Theorem 6.6.
Let K0 be a totally real number field of degree n over Q, and let K be a Galois
extension of K0 of degree m. Let S be an order in K stable under Gal(K/K0), and
let S0 denote the restriction of S to K0. Then

[OK0 : S0 ]m ≤ [OK : S ]2∆K/Q ∆−m/2K0/Q .

Proof. Due to Theorem 6.5, there exists α ∈ S∗0 \ {0} with

0 < a := NK0/Q(α) ≤ [OK0 : S0 ]−1 ∆−1/2
K0/Q .

Since S is stable under Gal(K/K0), we know that S∗0S ⊆ S∗ such that the following
is a positive integer:

[S∗ : αS ] = am[S∗ : S ] .

99



6.2. DIVISIBILITY CRITERION

Now

[OK0 : S0 ]m ∆m/2
K0/Q ≤ a−m = [S∗ : S ]

[S∗ : αS ] ≤ [S∗ : S ] = [OK : S ]2∆K/Q .

Summarizing the discussions of this section within the context of Theorem 6.6,
we have identified an upper bound for the index [OK0 : S0 ] that depends only on
the number fields and [OK : S ]. Importantly, the scenario that we have considered
covers the cases where K is a CM field because a CM field is a totally real quadratic
extension of a totally real subfield K0. Especially, K is Galois over K0.

6.2 Divisibility criterion

In this section, we consider a tower of number fields Q ⊆ K0 ⊆ K and an order S of
K, as well as its restriction S0 := S∩OK0 toK0. Our goal is to extend [BS17][Lemma
13] and to eliminate the constraint [K0 : Q ] = 2. Additionally, we apply our results
to specific scenarios, especially to the case in which S0 is Gorenstein. The following
proposition on the index can be found in [DCD00][Theorem 1].

Proposition 6.7.
Let S be an order in a number field K. Let a be a fractional ideal of S. Then, as
fractional ideals of Z, we have

(a) [OK : aOK ] ⊆ [S : a ]
(b) [OK : a−1OK ] ⊆ [ a : S ]
(c) [S : a−1 ] ⊆ [ aOK : OK ].

The inclusions are equations if and only if a is invertible (a a−1 = S).

Definition 6.8.
Let S be an order in a number field K, and let a be a fractional ideal of S. We
define

δ(a) := [OK : aOK ]
[S : a ] ≥ 1 .

According to Proposition 6.7, for a fractional ideal a of the order S in the number
field K, we have δ(a) = 1 if and only if a is invertible. Specifically, if a = S∗, being
the trace dual of S, then δ(S∗) = 1 if and only if S∗ is invertible. This is true if and
only if S is Gorenstein. The following proposition provides bounds on δ(a) which
are independent of the fractional ideal, but depend on the conductor and the index
of the considered order.
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Proposition 6.9.
Let S ⊆ OK be an order in a number field K of conductor fS. Let a be a fractional
ideal of S. Then

1 ≤ δ(a) ≤ [OK : S ] NK/Q(fS) .

Proof. In a first step, we show that there exists another fractional ideal b of S, which
is locally isomorphic to a satisfying fS ⊆ b ⊆ OK . Let p be a prime ideal of S and
S̄p be the integral closure of Sp, then S̄p = (S \p)−1OK as integral closure commutes
with localization. Now S̄p is Dedekind (see [Neu99][Theorem 11.4, Chapter 1]) and
local, hence a discrete valuation ring. In fact, there exists α ∈ K with

ap S̄p = α S̄p .

Now let bp := α−1 ap. Then bp ⊆ bp S̄p = S̄p and on the other hand, due to the fact
that fS is an ideal of both S and OK , we have

(fS)p = (fS)p S̄p = (fS)p bp S̄p = (fS)p S̄pbp = (fS)p bp ⊆ bp .

Accordingly, for every prime p of S we get a bp with (fS)p ⊆ bp ⊆ S̄p and there exists
a fractional ideal b of S locally isomorphic to a such that fS ⊆ b ⊆ OK . Since b is
locally isomorphic to a, they differ only by an invertible ideal of S which is locally
principal. Thus, locally δ(a) equals δ(b) at every prime, and we receive δ(a) = δ(b).
Applying Proposition 6.7 and the fact that fS ⊆ bOK ⊆ OK we receive that

[S : b ] ≤ [OK : bOK ] ≤ [OK : fS ] .

This comes down to

1 ≤ δ(a) = δ(b) = [OK : bOK ]
[S : b ] ≤ [OK : fS ]

[S : b ] .

Now, as fS ⊆ b ⊆ OK , we get that

[OK : fS ]
[S : b ] = [OK : fS ]

[S : fS ] [ b : fS ] = [OK : S ] [ b : fS ] ≤ [OK : S ] [OK : fS ] .

Combining the last two inequalities with the definition of the norm, we receive

1 ≤ δ(a) ≤ [OK : S ] NK/Q(fS) .
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We now turn our attention to generalizing [BS17][Lemma 13]. While this lemma
was originally formulated for quadratic extensions K0 of Q, we aim to extend it to
any degree n = [K0 : Q ]. The following diagram illustrates the situation.

K ⊇ OK ⊇ S

K0 ⊇ OK0 ⊇ S0

Q ⊇ Z

m
Galois stable under Gal(K/K0)

n

In order to simplify notation, we introduce one more definition.

Definition 6.10.
Let Q ⊆ K0 ⊆ K be number fields with n = [K0 : Q ] and m = [K : K0 ]. Let S
be an order in K, and let S0 := S ∩K0. Then we define

δS := δ(S∗0)m
δ(S∗0S) ∈ Q .

The following theorem generalized [BS17][Lemma 13] and it contains the aimed
divisibility criterion.

Theorem 6.11.
Let Q ⊆ K0 ⊆ K be number fields, where K0 is of degree n over Q. Let K be a
degree m Galois extension of K0. Let S be an order of K which is stable under the
Galois group Gal(K/K0), and let S0 := S ∩ K0. Then [S∗ : S∗0S ] is an integer,
and

[S∗ : S∗0S ] [OK0 : S0 ]2m = NK0/Q(∆K/K0) [OK : S ]2 δS .

Proof. We consider the trace dual S∗0 of S0 as a fractional ideal of S0. Following
Proposition 1.17 (e) we know that S∗0S ⊆ S∗ and [S∗ : S∗0S ] is an integer. On the
other hand,

[S∗ : S∗0S ] = [S∗ : S ][S : S∗0S ] . (6.2)

The first factor on the right-hand side of (6.2), as described in Proposition 1.17 (d),
decomposes into

[S∗ : S ] = ∆K/Q[OK : S ]2 . (6.3)

For the second factor on the right-hand side of (6.2), applying Definition 6.10, the
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usual properties of the norm and Proposition 1.17 (d) together deliver that

[S : S∗0S ] = [OK : S∗0OK ] δ(S∗0S)−1

= NK/Q(S∗0OK) δ(S∗0S)−1

= NK/Q((S∗0OK0)OK) δ(S∗0S)−1

= NK0/Q((S∗0OK0)m) δ(S∗0S)−1

= [OK0 : S∗0OK0 ]m δ(S∗0S)−1

= [S0 : S∗0 ]m δ(S∗0)m δ(S∗0S)−1

= [S∗0 : S0 ]−m δ(S∗0)m δ(S∗0S)−1

= ∆−mK0/Q[OK0 : S0 ]−2m δ(S∗0)m δ(S∗0S)−1︸ ︷︷ ︸
=δS

.

Combining this with (6.3) we receive

[S∗ : S∗0S ] =
(
∆K/Q[OK : S ]2

) (
∆−mK0/Q[OK0 : S0 ]−2m δS

)
,

which is equivalent to

[S∗ : S∗0S ] [OK0 : S0 ]2m = NK0/Q(∆K/K0) [OK : S ]2 δS .

Note that both sides of the equation in Theorem 6.11 are integers. Furthermore,
we have special interest in the case, in which we can control the quotient

δS = δ(S∗0)m
δ(S∗0S) .

In this case, the theorem can be used to provide an explicit divisibility criterion for
the indices of the considered orders. The simplest situation is, of course, the case
when δS = 1. In this situation, we receive the following corollary.

Corollary 6.12.
Let Q ⊆ K0 ⊆ K be number fields, where K0 is of degree n over Q and K is a
degree m Galois extension of K0. Let S be an order of K which is stable under the
Galois group Gal(K/K0), and let S0 := S ∩K0. Then [S∗ : S∗0S ] is an integer and
if δS = 1, then

[S∗ : S∗0S ] [OK0 : S0 ]2m = NK0/Q(∆K/K0) [OK : S ]2 .

There are two explicit situations in which we know that δS = 1 and where
Corollary 6.12 can be applied. These are stated in the next two theorems.
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Theorem 6.13.
Let Q ⊆ K0 ⊆ K be number fields, where K0 is of degree n over Q and K is a
degree m Galois extension of K0. Let S be an order in K, and let S0 := S ∩ OK0.
If S0 is Gorenstein, then δS = 1.

Proof. Let S0 be Gorenstein. Then S∗0 is invertible as a fractional ideal of S0 and also
S∗0 S is invertible as a fractional ideal of S. This implies that δ(S∗0) = 1 = δ(S∗0S)
and hence

δS = δ(S∗0)m
δ(S∗0S) = 1m

1 = 1 .

It is worth mentioning that, in the situation of Theorem 6.11, if n = 2, as in
the original result [BS17][Lemma 13], every order S0 in K0 is Gorenstein and comes
with an invertible trace dual S∗0 . Consequently, δS = 1. This is not true if n ≥ 3.

Note that since (S∗0OK0)OK = S∗0OK we have

[OK : S∗0OK ] = [OK0 : S∗0OK0 ]m ,

which implies that
δS := δ(S∗0)m

δ(S∗0S) = [S : S∗0S ]
[S0 : S∗0 ]m .

If we assume in addition that K is a CM field containing an imaginary quadratic
subfield k such that K = kK0, we obtain the following result.

Theorem 6.14.
Let K be a CM field of degree 2n containing an imaginary quadratic subfield k such
that K = kK0, where K0 = Q(β) denotes the maximal totally real subfield of K.
Let Sk be an order in k, and let S0 be an order in K0. If S = Sk S0, then δS = 1.

Proof. Let S∗0 be the trace dual of S0, which is a fractional ideal of S0 and, conse-
quently, we have S∗0S0 = S∗0 . Then S∗0S = S∗0(S0 Sk) = S∗0 Sk . We let Ok = 〈1, ζ〉Z
for some integral ζ ∈ k and without loss of generality, we assume that Sk = 〈1, ` ζ〉Z
for some ` > 0. Additionally, we may also assume that

S0 = 〈1, s0,1, . . . , s0,n−1〉Z

for some s0,1, . . . , s0,n−1 ∈ OK0 . Combining both sets of generators, we receive that

S = S0 Sk = 〈1, s0,1, . . . , s0,n−1, ` ζ, ` ζ s0,1, . . . , ` ζ s0,n−1〉Z .
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On the other hand, if S∗0 = 〈s∗0,0, s∗0,1, . . . , s∗0,n−1〉Z, then

S∗0S = S∗0Sk = 〈s∗0,0, s∗0,1, . . . , s∗0,n−1, ` ζ s
∗
0,0, ` ζ s

∗
0,1, . . . , ` ζ s

∗
0,n−1〉Z .

Moreover, those generators of S∗0S form a Z-basis of S∗0S. Let M denote the trans-
formation matrix of S0 with respect to (1, β, β2, . . . , βn−1), where β was chosen to be
a primitive element of K0 over Q, and let T := (TrK0/Q β

i+j)n−1
i,j=0. Then [S0 : S∗0 ] is

the absolute value of the determinant of the matrix P such that M P = (M T )−1.
As M is invertible, the last equation is equivalent to P = M−1 T−1M−1. Hence,

[S0 : S∗0 ] = | det(M)−2 det(T )−1| .

Now the transformation matrix of the basis of S into the basis of S∗0S is the following
block matrix: (M2T )−1 0

0 (M2T )−1

 .

The index [S : S∗0S ] is now the absolute value of the determinant of this block
matrix, which is

[S : S∗0S ] = | det((M2T )−1)|2 = | det(M)−2 det(T )−1|2 = [S0 : S∗0 ]2 .

Therefore, we receive that
δS = δ(S∗0)2

δ(S∗0S) = 1 .

We have thus given two different situations in which we find that δS = 1 and,
combining this with Corollary 6.12, we receive the following two theorems starting
with the consequences of Theorem 6.13.

Theorem 6.15.
Let Q ⊆ K0 ⊆ K be number fields, where K0 is of degree n over Q, and K is a
degree m Galois extension of K0. Let S be an order of K stable under the Galois
group Gal(K/K0) and such that S0 := S ∩K0 is Gorenstein. Then [S∗ : S∗0S ] is
an integer, and

[S∗ : S∗0S ] [OK0 : S0 ]2m = NK0/Q(∆K/K0) [OK : S ]2 .

As every order in a quadratic number field is Gorenstein, this generalizes the
result of [BS17][Lemma 13]. On the other hand, we receive the following theorem
combining Theorem 6.14 with Corollary 6.12.
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Theorem 6.16.
Let K be a sextic CM field with totally real cubic subfield K0 containing an imaginary
quadratic subfield k = Q(ζ). Let S0 be an order in K0, let Sk be an order in k, and
let S := S0 Sk ⊆ OK be stable under complex conjugation. Then S ∩K0 = S0, and
[S∗ : S∗0S ] is an integer such as

[S∗ : S∗0S ] [OK0 : S0 ]2m = NK0/Q(∆K/K0) [OK : S ]2 .

We give a significant explicit class of examples for Theorem 6.16 in which S0 is
not Gorenstein, but we still have δS = 1.

Example 6.17.
Let K be a cyclic sextic CM class number one field containing an imaginary
quadratic subfield k = Q(ζ) ∈ {Q(i),Q(ζ3)}, and let K0 = Q(β) be the totally
real cubic subfield of K such that K = kK0. Let p be a prime number and

S = 〈1, p β, p β2, ζ, ζ p β, ζ p β2〉Z .

Then, due to [JT15][Example 7.2] (see also Theorem 2.7), S0 = S∩K0 = 〈1, p β, p β2〉Z
is an order in K0 which is not Gorenstein. Additionally, S is stable under complex
conjugation and, due to Theorem 6.16, we obtain

δS = δ(S∗0)2

δ(S∗0S) = 1.

Hence, [S∗ : S∗0S ] is an integer and

[S∗ : S∗0S ] [OK0 : S0 ]2m = NK0/Q(∆K/K0) [OK : S ]2 .

It remains to give some examples for δS in situations where one can neither apply
Theorem 6.13 nor Theorem 6.14. We let K be a cyclic sextic CM field containing
an imaginary quadratic subfield k and let K0 be the totally real cubic subfield of
K. Let S0 be an order of K0 and let Sk be an order of k. Then, since k is a
quadratic extension of Q, Sk is Gorenstein, and if S0 is Gorenstein, then S = S0 Sk

is a Gorenstein order in K (see Proposition 1.33). Equivalently, if S = S0 Sk is not
Gorenstein, then S0 is not Gorenstein. We make use of the examples in Chapter
1.1.3 and computed δS for every prime p ≤ 104. The results are presented in the
following examples.
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Example 6.18.
Let K = Q(α) be a cyclic sextic CM class number one field containing an imaginary
quadratic subfield k = Q(i), and let K0 be the totally real cubic subfield of K such
that K = kK0. Let p ≤ 104 be a prime number, and let

S = 〈1, p α, p α2, p α3, p α4, p α5〉Z .

Then S and S0 = S ∩K0 are not Gorenstein and

δS = δ(S∗0)2

δ(S∗0S) = p .

Example 6.19.
Let K = Q(α) be a cyclic sextic CM class number one field containing an imaginary
quadratic subfield k = Q(ζ3), and let K0 be the totally real cubic subfield of K such
that K = kK0. Let p ≤ 104 be a prime number, and let

S = 〈1, p α, p α2, p α3, p α4, p α5〉Z .

Then S and S0 = S ∩K0 are not Gorenstein and

δS = δ(S∗0)2

δ(S∗0S) ∈
{
p ,

p

3

}
.

If we want to make sure that S is also stable under complex conjugation, we
may take a look at the following example. Again, we computationally verified the
correctness of this example for all p ≤ 104.

Example 6.20.
Let K = Q(α) be a cyclic sextic CM class number one field containing an imaginary
quadratic subfield k = Q(i), and let K0 be the totally real cubic subfield of K such
that K = kK0. Let p ≤ 104 be a prime number, and let

S ′ = 〈1, p α, p α2, p α3, p α4, p α5〉Z .

Then S := S ′ + S̄ ′ and S0 = S ∩K0 are not Gorenstein, S is stable under complex
conjugation and

δS = δ(S∗0)2

δ(S∗0S) = p .

Observe that, due to their construction, the orders S in Example 6.17 and Exam-
ple 6.20 are stable under complex conjugation, making them applicable to Theorem
6.11. This demonstrates that even when δS 6= 1, given a certain structure of S, we
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can still derive divisibility conditions. Generally, beside the cases from Theorem
6.15 and Theorem 6.16 which are manageable, the parameter δS in Theorem 6.11
remains unbounded. Thus, in order to achieve a divisibility criterion as in Corol-
lary 6.12, additional constraints on S are necessary, such as setting a specific δS or
assuming that S0 is Gorenstein.
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Chapter 7

Bounding the index of relative
orders

In this chapter, following the notation from Chapter 6, we concentrate on decom-
posing the indices [R : S ] and [R0 : S0 ], where S ⊆ R are orders in a complex
multiplication field K, and R0 as well as S0 are their restrictions to the largest
totally real subfield K0 of K. Initially, we delve into the primary decomposition of
ideals within orders. Afterwards, we will establish bounds on both the domain and
codomain of the relative norm at prime numbers p, as highlighted in Definition 5.1.
We then deduce constraints on the indices of relative orders under the assumption
that the kernel of the relative norm has an exponent smaller or equal to two. This is
a condition that is satisfied by CM class number one orders as discussed in Chapter
5. Concluding this chapter, we apply our results to situations where K is a cyclic
sextic CM field, presenting explicit bounds on the quotient of the indices [R : S ]
and [R0 : S0 ], as well as on the index [R : S ] directly. The basic ideas are due to
the findings in [Ste08] and [BS17]. They are also inspired by [Ste12].

7.1 Primary decomposition

Within this section, we let R be an order in a number field K, and we let I be an
integral R-ideal. The ideas mainly follow the considerations in [Ste08][Chapter 5].

Definition 7.1.
Let R be an order in a number field K, and let I be an integral R-ideal. For any
prime ideal q of R we define the q-primary part of I to be the restriction of the
localization of I at a prime ideal q:

I(q) := Iq ∩R.
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Recall that an order R in a number field is a Dedekind domain if it is maximal.
Consequently, an arbitrary order in a number field does not necessarily have a
unique factorization into prime ideals. However, being a Noetherian domain, it
will yield a factorization into q-primary components, as highlighted in the following
lemma, which is sourced from [Ste08][Lemma 5.1]. It is noteworthy that I(q) = R

for all prime ideals q not containing I.

Lemma 7.2.
Let K be a number field and Rq be a localization of an order R ⊆ OK at a prime
ideal q ≤ R. Then every non-zero ideal Iq of Rq contains some power of the unique
maximal ideal qRq.

In particular, this lemma shows that the q-primary part I(q) of an ideal I ( R

contains some power or q. There are no inclusion between different prime ideals in
orders. Hence, q-primary parts at different prime ideals q are coprime. This brings
us to the following result, which can be found in [Ste08][Theorem 5.2].

Theorem 7.3.
Let K be a number field, let R ⊆ OK be an order, and let I � R be a non-zero ideal
of R. Then I has a decomposition in q-primary parts as follows:

I =
∏
q⊇I

q≤R prime

I(q) and R�I ∼=
∏
q⊇I

q≤R prime

R�I(q)
∼=

∏
q⊇I

q≤R prime

Rq�Iq .

For some positive integers n ∈ Z sufficiently large, we have

I(q) := Iq ∩R = (I ·Rq) ∩R = I + qn.

Definition 7.4.
Let R be an order in a number field K, and let I be an integral ideal of R. A
decomposition of I into q-primary parts is called primary decomposition of I.

This primary decomposition extends the unique factorization of an ideal into
powers of prime ideals, covering a larger class of rings beyond unique factorization
domains or Dedekind rings. By grouping the q-primary parts of the prime ideals q

that lie over the same prime number, we introduce the following notation.
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Definition 7.5.
Let K be a number field, let R be an order in K, and let I be an integral ideal of
R. For any prime number p ∈ Z, we define

I(p) :=
∏

q≤R prime
q∩Z=pZ

I(q).

It is crucial to note that, under the conditions of Theorem 7.3, the ring R/I

is finite, and R/I(q) is a finite local ring with the unique maximal ideal q + I(q).
Building on the discussions on finite rings in Chapter 1.2, we arrive at the following
crucial consequences.

Corollary 7.6.
Let R be an order in a number field K, and let I be an integral ideal of R. Let
p1, . . . , pr be the prime ideal of R lying above I. Then

∣∣∣∣(R�I)×
∣∣∣∣ =

∣∣∣(R�I)∣∣∣ · r∏
i=1

(
1− 1

N(pi)

)
.

Proof. We have that R̃ := R/I is a finite ring, and the prime ideals of R̃ are precisely
the images of the prime ideals p1, . . . , pr under the canonical projection R→ R/I.
Applying Proposition 1.2 proves the claim.

Theorem 7.7.
Let R be an order in a number field K, and let I be an integral ideal of R. For any
prime number p ∈ Z and prime ideal q ≤ R containing I such that q ∩ Z = pZ, we
have (

R�I(q)

)×
∼=
(
R�q

)×
× (1 + q)�(1 + I(q)) .

Moreover, ∣∣∣∣(R�q)×∣∣∣∣ = pr − 1 and
∣∣∣∣(1 + q)�(1 + I(q))

∣∣∣∣ = ps

for some r, s ∈ Z≥0.

Proof. Let p ∈ Z be a prime number and q be a prime ideal of R with q ∩ Z = pZ.
We aim to apply Theorem 1.36 in order to show the existence of the following exact
sequence

1 −→ (1 + q)�(1 + I(q)) −→
(
R�I(q)

)×
−→

(
R�q

)×
−→ 1 . (7.1)

On the one hand, the unique maximal ideal of R/I(q) is given by m := q+ I(q) since
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it corresponds to the maximal ideal qRq + Iq of Rq/Iq. On the other hand,

(1 + q)�(1 + I(q))
∼= 1 + q + I(q) = 1 + m,

because 1+I(q) is the kernel of the epimorphism 1+q −→ 1+q+I(q). Furthermore,

R�q ∼=

(
R�I(q)

)
�(q + I(q)) .

Applying Theorem 1.36 leads to the exactness of the sequence in (7.1). The group
(R/q)× is the multiplicative cyclic group of the finite field R/q. Since m is the
maximal ideal of a finite local ring of characteristic p, it is a p-group. Consequently,

1 + m ∼= (1 + q)�(1 + I(q)),

and it is also a p-group.

7.2 Decomposing the index of relative orders

We can now decompose the index of relative orders S ⊆ R in a number field K,
applying the primary decomposition of a specific integral ideal.

Corollary 7.8.
Let S ⊆ R be orders in a number field K, and let I ( S be an integral ideal of R.
Then I is also an integral ideal of S, and I provides a primary decomposition in
both R and S such that

I =
∏

p∈Z prime
I(p) =

∏
p∈Z prime

∏
p≤R prime
p∩Z=pZ

I(p) and

I =
∏

q∈Z prime
I(q) =

∏
q∈Z prime

∏
q≤S prime
q∩Z=qZ

I(q) .

Furthermore, we have

R�I ∼=
∏

p∈Z prime

R�I(p)
∼=

∏
p∈Z prime

∏
p≤R prime
p∩Z=pZ

R�I(p)
and

S�I ∼=
∏

q∈Z prime

S�I(q)
∼=

∏
q∈Z prime

∏
q≤S prime
q∩Z=qZ

S�I(q)
.

Proof. Given that I ( S ⊆ R and that I is an integral ideal of R, it is especially an
integral ideal of S. According to Theorem 7.3, I provides a primary decomposition
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in both R and S such that

I =
∏

p∈Z prime
I(p) =

∏
p∈Z prime

∏
p≤R prime
p∩Z=pZ

I(p) and

I =
∏

q∈Z prime
I(q) =

∏
q∈Z prime

∏
q≤S prime
q∩Z=qZ

I(q) .

Consequently, by factoring the orders with I, we derive the following decompositions
of finite rings:

R�I ∼=
∏

p∈Z prime

R�I(p)
∼=

∏
p∈Z prime

∏
p≤R prime
p∩Z=pZ

R�I(p)
and

S�I ∼=
∏

q∈Z prime

S�I(q)
∼=

∏
q∈Z prime

∏
q≤S prime
q∩Z=qZ

S�I(q)
.

Definition 7.9.
For any a ∈ Q, we define the p-part of a as ap := pvp(a), where vp(a) denotes the p-
valuation of a. Especially, if we let S and R be orders in a number field K satisfying
S ⊆ R, then we define the p-part of the index [R : S ] ∈ Z to be

[R : S ]p := pvp([R :S ]).

Thus, due to Corollary 7.8, we can express the index [R : S ] as follows.

Proposition 7.10.
Let S ⊆ R be orders in a number field K, and let I ( S be an integral ideal of R.
Then, for every prime p ∈ Z , we have

[R : S ]p =
∣∣∣∣R�I(p)

∣∣∣∣ · ∣∣∣∣S�I(p)

∣∣∣∣−1
,

and the index can be decomposed in p-parts as

[R : S ] =
∏

p∈Z prime
[R : S ]p .

Proof. As a consequence of Corollary 7.8, it is

[R : S ] =
∣∣∣R�S∣∣∣ =

∣∣∣∣∣
(
R�I

)
�(S�I)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

 ∏
p∈Z prime

R�I(p)


�
 ∏
q∈Z prime

S�I(q)


∣∣∣∣∣∣∣∣∣ .
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Given a prime p ∈ Z and any prime ideal p of R satisfying p ⊇ I and p ∩ Z = pZ,
there exists a prime ideal q of S such that q ⊇ I, q ∩ Z = pZ, and I(p) ∩ S = I(q).
This allows us to express the index of S in R as:

[R : S ] =
∏

p∈Z prime

∣∣∣∣∣∣
(
R�I(p)

)
�(S�I(p)

)∣∣∣∣∣∣ =
∏

p∈Z prime

(∣∣∣∣R�I(p)

∣∣∣∣ · ∣∣∣∣S�I(p)

∣∣∣∣−1
)
.

Applying the definition of the p-part of the index, we find that

[R : S ]p =
∣∣∣∣R�I(p)

∣∣∣∣ · ∣∣∣∣S�I(p)

∣∣∣∣−1

and, consequently, it is

[R : S ] =
∏

p∈Z prime
[R : S ]p .

By further investigating the p-part of an index, we can conclude the following
lemma.

Lemma 7.11.
Let S ⊆ R be orders in a number field K, and let I ( S be an integral ideal of R.
Let p ∈ Z be a prime number. Then

[R : S ]p =
∣∣∣∣(R�I(p)

)∣∣∣∣
p

∣∣∣∣(S�I(p)

)∣∣∣∣−1

p

∏
p≤R prime
p∩Z=pZ

N(p)
∏

q≤S prime
q∩Z=pZ

N(q)−1

Proof. As shown in Proposition 7.10 it is

[R : S ]p =
∣∣∣∣R�I(p)

∣∣∣∣ · ∣∣∣∣S�I(p)

∣∣∣∣−1
.

Applying Corollary 7.6 to both factors on the right-hand side, we receive that
∣∣∣∣R�I(p)

∣∣∣∣ =
∣∣∣∣(R�I(p)

)×∣∣∣∣ ∏
p≤R prime
p∩Z=pZ

(
1− 1

N(p)

)−1
=
∣∣∣∣(R�I(p)

)×∣∣∣∣ ∏
p≤R prime
p∩Z=pZ

N(p)
N(p)− 1 and

∣∣∣∣S�I(p)

∣∣∣∣ =
∣∣∣∣(S�I(p)

)×∣∣∣∣ ∏
q≤S prime
q∩Z=pZ

(
1− 1

N(q)

)−1
=
∣∣∣∣(S�I(p)

)×∣∣∣∣ ∏
q≤S prime
q∩Z=pZ

N(q)
N(q)− 1 .

For all the prime ideals p ≤ R and q ≤ S lying above p, we have that N(p)− 1
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and N(q)− 1 are not divisible by p. Thus, considering only the p-parts, delivers

∣∣∣∣R�I(p)

∣∣∣∣
p

=
∣∣∣∣∣
(
R�I(p)

)×∣∣∣∣∣
p

∏
p≤R prime
p∩Z=pZ

N(p) and

∣∣∣∣S�I(p)

∣∣∣∣
p

=
∣∣∣∣∣
(
S�I(p)

)×∣∣∣∣∣
p

∏
q≤S prime
q∩Z=pZ

N(q) .

After establishing our results for an arbitrary integral ideal I, we can now make
these considerations explicit. This leads us to the main result of this section, which
is inspired by [BS17][Proposition 10].

Lemma 7.12.
Let K be a number field of degree n over Q, and let S ⊆ R ⊆ T be orders in K.
Let f be a multiple of [ T : S ], and let I := fT . For every p | f we have

[R : S ]p
(

1− 1
p

)n
≤

∣∣∣∣∣∣∣
(
R�I(p)

)×
�(S�I(p)

)×
∣∣∣∣∣∣∣ ≤ [R : S ]p

(
1− 1

p

)−n
.

Proof. Firstly, by definition, I = fT is an integral ideal of T that is contained in
both R and S. Let p ∈ Z be a prime number that divides f . Then we can apply
Corollary 7.6 to obtain

∣∣∣∣∣∣∣
(
R�I(p)

)×
�(S�I(p)

)×
∣∣∣∣∣∣∣ =

∣∣∣∣(R�I(p)

)∣∣∣∣∣∣∣∣(S�I(p)

)∣∣∣∣ ·
∏

p(1− 1
N(p))∏

q(1− 1
N(q))

, (7.2)

where p ranges overall prime ideals of R containing the integral ideal I(p) of R and
q ranges over all prime ideals of S containing the integral ideal I(p) of S.

There are at most n such primes each, and we can deduce the following bounds:

(
1− 1

p

)n
≤
∏

p(1− 1
N(p))∏

q(1− 1
N(q))

≤
(

1− 1
p

)−n
. (7.3)

Multiplying this inequality by [R : S ]p and applying Proposition 7.10 gives us

[R : S ]p
(

1− 1
p

)n
≤

∣∣∣∣(R�I(p)

)∣∣∣∣∣∣∣∣(S�I(p)

)∣∣∣∣ ·
∏

p(1− 1
N(p))∏

q(1− 1
N(q))

≤ [R : S ]p
(

1− 1
p

)−n
.
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Finally, by using equation (7.2), we obtain

[R : S ]p
(

1− 1
p

)n
≤

∣∣∣∣∣∣∣
(
R�I(p)

)×
�(S�I(p)

)×
∣∣∣∣∣∣∣ ≤ [R : S ]p

(
1− 1

p

)−n
.

It is noteworthy that we have presented this result for arbitrary orders T . In
our application during the next sections, we will focus on the case where T = OK .
Then f is the index of S in the maximal order OK of K.

7.3 Bounding quotients of indices in CM fields

Let K be a CM field, and let S ⊆ R be orders in K together with their restrictions
S0 and R0 to the maximal totally real subfield K0 of K. Let f := [OK : S ], and
let I := fOK such as I0 := fOK0 .

In this section, we will apply the results from Section 7.2 to the domain and
codomain of the relative norm, as outlined in Definition 5.1. Within the given
framework, the relative norm is specified as:

ψ :
(
R�I

)×
�(S�I)× µR −→

(
R0�I0

)×
�(S0�I0

)× .
In order to improve notation, we introduce two closely related maps.

Definition 7.13.
Let K be a CM field, and let S ⊆ R be orders in K. Let S0 and R0 denote the
restrictions of S and R to the maximal totally real subfield K0 of K, respectively.
Let f := [OK : S ], and let I := fOK such as I0 := fOK0 . Let p ∈ Z be a prime
dividing f and I(p) such as I0(p) denote the p-parts of I and I0, respectively. We
define the following maps induced by the relative norm ψ:

ψ′ :
(
R�I

)×
�(S�I)× −→

(
R0�I0

)×
�(S0�I0

)×,
ψp :

(
R�I(p)

)×
�(S�I(p)

)× −→
(
R0�I0(p)

)×
�(S0�I0(p)

)×.
We let D and C represent the domain and the codomain of ψ′, respectively. Addi-
tionally, we denote the domain of ψp as Dp and the codomain of ψp as Cp.
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The p-parts of D and C are given by the domain Dp and the codomain Cp of
ψp, respectively. Using these definitions, ψ′ can be expressed as ψp1 × · · · × ψpr ,
where p1, . . . , pr are the primes dividing f . As a consequence, kerψ′ is isomorphic
to ∏p|f kerψp and kerψ is isomorphic to kerψ′/(µR/{±1}). Using this notation, we
can now reformulate Lemma 7.12 to conclude initial bounds for Dp and Cp.

Corollary 7.14.
Let K be a CM field of degree 2n over Q, and let S ⊆ R be orders in K. Let S0

and R0 denote the restrictions of S and R to the maximal totally real subfield K0

of K, respectively. Let p ∈ Z be a prime dividing f . Then

[R : S ]p
(

1− 1
p

)2n

≤ |Dp| ≤ [R : S ]p
(

1− 1
p

)−2n

, and

[R0 : S0 ]p
(

1− 1
p

)n
≤ |Cp| ≤ [R0 : S0 ]p

(
1− 1

p

)−n
.

Proof. Let f := [OK : S ]. By applying Lemma 7.12 to I := fOK , we deduce that

[R : S ]p
(

1− 1
p

)2n

≤

∣∣∣∣∣∣∣
(
R�I(p)

)×
�(S�I(p)

)×
∣∣∣∣∣∣∣ ≤ [R : S ]p

(
1− 1

p

)−2n

The term in the center of this inequality represents the size of Dp. If we apply
Lemma 7.12 to K0, S0, and R0 with I0 := fOK0 , we obtain the analogous result for
Cp.

We are now in a position to state bounds on the primes that divide the quotient
of the indices [R : S ] and [R0 : S0 ], given a certain constraint on the relative
norm. This result generalized a similar result for quartic CM fields, which can be
found in [BS17][Lemma 11].

Lemma 7.15.
Let K be a CM field of degree 2n over Q, and let S ⊆ R be orders in K. Let S0

and R0 denote the restrictions of S and R to the maximal totally real subfield K0

of K, respectively. Let f := [OK : S ], and let I := fOK such as I0 := fOK0. Let
p ∈ Z be a prime dividing f and the kernel of ψp be of exponent at most two. If we
denote by vp the p-valuation of [R : S ]/[R0 : S0 ], then

pvp−3n · (p− 1)3n ≤ 22n .
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Proof. As ψp is surjective, it is | kerψp| · |Cp| = |Dp|. We apply Corollary 7.14, and
we get

| kerψp| ≥
[R : S ]p

[R0 : S0 ]p
·

(
1− 1

p

)2n

(
1− 1

p

)−n = [R : S ]p
[R0 : S0 ]p

·
(

1− 1
p

)3n

. (7.4)

Now kerψp is generated by at most 2n elements of exponent at most two. Combining
this with (7.4), we receive the following inequality:

22n ≥ [R : S ]p
[R0 : S0 ]p

·
(

1− 1
p

)3n

= pvp ·
(

1− 1
p

)3n

. (7.5)

By expanding the right hand side, inequality (7.5) is equivalent to our claim.

Note that assuming the kernel of the relative norm ψ to be of exponent two does
not imply that the kernel of ψp is of exponent at most two. But we do have the
following lemma.

Lemma 7.16.
Let K be a CM field of degree 2n over Q, and let S ⊆ R be orders in K. Let S0 and
R0 denote the restrictions of S and R to the maximal totally real subfield K0 of K,
respectively. Let f := [OK : S ] and I := fOK such as I0 := fOK0. Let p ∈ Z be a
prime dividing f and the kernel of ψ be of exponent at most two. If we denote by
vp the p-valuation of [R : S ]/[R0 : S0 ], then

pvp−3n · (p− 1)3n ≤ 22n−1 · |µR| .

Proof. As in the proof of Lemma 7.15, we have

| kerψp| ≥ pvp ·
(

1− 1
p

)3n

. (7.6)

As the kernel of ψ has an exponent of at most two, so has the group kerψp/(µR/{±1}).
Now kerψp/(µR/{±1}) is generated by at most 2n elements of exponent at most
two, such that

22n ≥

∣∣∣∣∣∣kerψp�(µR�{±1}
)∣∣∣∣∣∣ = |kerψp| · 2 |µR|−1 . (7.7)
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Now, combining (7.6) with (7.7) proves our claim:

pvp ·
(

1− 1
p

)3n

≤ 22n−1 · |µR| .

In other words, under the condition that the kernel of the relative norm ψ is of
exponent at most two, then there are only finitely many primes p at which

[R : S ]p 6= [R0 : S0 ]p ,

and we do have an explicit bound on those primes and their multiplicities.

7.4 Bounding the index of orders in cyclic sextic
CM fields

Until now, we have considered arbitrary CM fields. In this section, we will delve into
a specific scenario. We let K be a cyclic sextic CM field with its totally real cubic
subfield K0, and let S ⊆ R be orders in K. As before, we use S0 and R0 to denote
their restrictions to K0. We describe the prime splitting behavior in this context,
and we apply our previous findings to provide bounds on the primes potentially
dividing the index [R : S ] as well as their exponents.

Now, since K is a cyclic sextic CM field, its subfield K0 is also cyclic and Galois
over Q. This property simplifies our investigation of the explicit splitting behavior
of primes. The following diagram provides an overview of the situation.

K ⊇ OK ⊇ R ⊇ S

K0 ⊇ OK0 ⊇ R0 ⊇ S0

Q ⊇ Z

2
Galois

Galois

3 Galois

7.4.1 Splitting behavior of primes

We assume the situation to be as defined at the beginning of Section 7.4. Now,
we let p ∈ Z be a prime number, and let P ≤ OK be a prime ideal such that
P∩Z = pZ. Its restrictions to R and S are denoted as p and q, respectively. Both
p and q are prime ideals. Thus, the corresponding residue fields satisfy:

OK�P ⊇
R�p ⊇ S�q .
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Similarly, for the residue fields associated with the prime ideals P0 := P ∩OK0

of OK0 , p0 := p ∩R0 of R0, and q0 := q ∩ S0 of S0, we have:

OK�P ⊇
OK0�P0

, R�p ⊇ R0�p0, and S�q ⊇ S0�q0 .

Considering the unit groups of the respective fields, we observe the following
relationships: (OK�P)× ⊇ (R�p)× ⊇ (S�q)× .
Furthermore,

(OK�P)× ⊇ (OK0�P0

)×
,

(
R�p

)×
⊇
(
R0�p0

)×
, and

(
S�q

)×
⊇
(
S0�q0

)×
.

On the one hand, all the above-mentioned fields are of cardinality ps for some s ∈ N
, and their corresponding unit groups have a cardinality ps−1. This provides several
conditions on the divisibility of the cardinalities.

On the other hand, the well-known fundamental equation for Galois extensions
(see [Neu99][Theorem 8.2, Chapter 1]) gives additional conditions on the splitting
behavior of prime ideals in maximal orders.

Proposition 7.17.
Let K be a cyclic sextic CM field, and let K0 be its totally real cubic subfield. Let
p ∈ Z be a prime number, and let pOK0 = ∏r0

i=1 P
e0,i
0,i be the unique prime ideal

factorization in OK0, such as f0,i := [OK0/P0,i : Z/pZ ]. Then we have e0,1 =
. . . = e0,r0 =: e0 such as f0,1 = . . . = f0,r0 =: f0, and 3 = r0 e0 f0. Furthermore, p
splits in OK0 in one of the following three ways:

(a) If r0 = 3, then e0 = 1 = f0 and pOK0 = ∏3
i=1 P0,i for some prime ideals P0,i

of OK0 lying above p. For all three residue fields, we receive that |OK0/P0,i| =
p and

∣∣∣(OK0/P0,i)×
∣∣∣ = p− 1.

(b) If e0 = 3 then r0 = 1 = f0 and pOK0 = P3
0 for a prime ideal P0 of OK0

lying above p. Accordingly, for the residue field, we get |OK0/P0| = p and∣∣∣(OK0/P0)×
∣∣∣ = p− 1.

(c) If f0 = 3 then r0 = 1 = e0 and pOK0 = P0 for some prime ideal P0 of OK0

lying above p. Considering the residue field, we receive |OK0/P0| = p3 and∣∣∣(OK0/P0)×
∣∣∣ = p3 − 1.

Proof. Given that K0 is a Galois extension of Q, we can apply the fundamental
equation for Galois extensions. This implies e0,1 = . . . = e0,r0 =: e0 such as f0,1 =
. . . = f0,r0 =: f0, and we have the relationship 3 = r0 e0 f0. Evaluating the remaining
possible combinations of r0, e0, and f0, we have proved the stated claim.
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Building on this, we can explore the possibilities for a prime ideal P0 of OK0

that lies above p when it is lifted to OK . Again, there are three different ways in
which this can happen. These three ways are similar to our previous considerations,
as we are once again considering a Galois extension. The only difference now is that
the extension is of degree two, not three.

Proposition 7.18.
Let K be a cyclic sextic CM field, and let K0 be its totally real cubic subfield.
Let p ∈ Z be a prime number, and let P0 ≤ OK0 be a prime ideal above p. Let
P0OK = ∏r

i=1 P
ei
i be the unique prime ideal factorization in OK such as fi :=

[OK/Pi : OK0/P0 ]. Then e1 = . . . = er =: e and f1 = . . . = fr =: f such as
2 = r e f . Furthermore, P0OK splits in OK in one of the following ways:

(a) If r = 2, then e = 1 = f , and P0OK = ∏2
i=1 Pi for prime ideals Pi of OK

lying above P0. For both residue fields, we have |OK/Pi| = |OK0/P0| and∣∣∣(OK/Pi)×
∣∣∣ =

∣∣∣(OK0/P0)×
∣∣∣.

(b) If e = 2, then r = 1 = f , and P0OK = P2 for a prime ideal P of OK
lying above P0. For the residue field, we get |OK/P| = |OK0/P0| and∣∣∣(OK/P)×

∣∣∣ =
∣∣∣(OK0/P0)×

∣∣∣.
(c) If f = 2, then r = 1 = e, and P0OK = P for some prime ideal P of OK

lying above P0. Additionally, the residue field fulfills |OK/P| = |OK0/P0|2

and
∣∣∣(OK/P)×

∣∣∣ = |OK0/P0|2 − 1.

Proof. Given that K is a Galois extension of K0, we can use the fundamental
equation for Galois extensions. This implies the equalities e1 = . . . = er =: e such
as f1 = . . . = fr =: f , and we have the relationship 2 = r e f . By evaluating the
remaining potential combinations of r, e, and f , we have proved the claim.

7.4.2 Bound quotients of indices

We are now prepared to prove the main results of this chapter. Initially, we will
consider a trivial group of roots of unity, followed by a discussion on arbitrary groups
of roots of unity. By the end of this section, we will provide explicit bounds on the
index of relative orders. The following lemma is inspired by [BS17][Proposition 12],
which handles quartic CM fields.
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Lemma 7.19.
Let K be a cyclic sextic CM field with maximal totally real subfield K0 together with
orders S ⊆ R ⊆ OK in K such that µR = {±1}. Let f := [OK : S ], S0 := S ∩K0

and R0 := R ∩K0. Let the kernel of the relative norm

ψ :
(
R�fOK

)×
�(S�fOK)× −→

(
R0�fOK0

)×
�(S0�fOK0

)×
be of exponent at most two. Then, for all prime numbers p > 7, we have

vp([R : S ]) = vp([R0 : S0 ]).

Proof. Let p > 7 be a prime number. If vp([R : S ]) = 0, then vp([R0 : S0 ]) = 0.
So let p divide [R : S ], which means that p also divides f . Let I := fOK ,
I0 := fOK0 and consider the map

ψp :

(
R�I(p)

)×
�(S�I(p)

)× −→
(
R0�I0(p)

)×
�(S0�I0(p)

)×.
Recall that, in the terminology as we defined in Chapter 7.3, ψ = ψ′ because µR

is trivial. We denote the domain of ψp by Dp and the codomain of ψp by Cp. As a
consequence of Theorem 7.7, we obtain

(
R�I(p)

)×
∼=

∏
p≤R prime
p∩Z=pZ

(
R�p

)×
× (1 + p)�(1 + I(p)) and

(
S�I(p)

)×
∼=

∏
q≤S prime
q∩Z=pZ

(
S�q

)×
× (1 + q)�(1 + I(q)) .

Thus, we can decompose the p-part of the domain of ψ, or equivalently, the domain
of ψp, as

Dp :=

(
R�I(p)

)×
�(S�I(p)

)× ∼=


∏
p≤R prime
p∩Z=pZ

(
R�p

)×
� ∏

q≤S prime
q∩Z=pZ

(
S�q

)×


︸ ︷︷ ︸
=:D̃p

× Ap

for some p-group Ap.
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Decomposing the p-part of the codomain of ψ, respectively the codomain of ψp,
results in

Cp :=

(
R0�I0(p)

)×
�(S0�I0(p)

)× ∼=


∏
p0≤R0 prime
p0∩Z=pZ

(
R0�p0

)×
� ∏

q0≤S0 prime
q0∩Z=pZ

(
S0�q0

)×


︸ ︷︷ ︸
=:C̃p

× A0,p

for some p-group A0,p ⊆ Ap.

Given that the kernel of the relative norm ψ has an exponent of at most two,
the same holds for the kernel of ψp. Since p is odd, we can embed Ap into A0,p

through ψp, implying that Ap = A0,p. The p-valuations of D̃p and C̃p are trivial,
but the decompositions into prime ideals also appear in the decomposition of the
indices, as observed in Lemma 7.11:

[R : S ]p =
∣∣∣D̃p

∣∣∣
p
|Ap|p

∏
p≤R prime
p∩Z=pZ

N(p)
∏

q≤S prime
p∩Z=pZ

N(q)−1

= |Ap|p
∏

p≤R prime
p∩Z=pZ

N(p)
∏

q≤S prime
p∩Z=pZ

N(q)−1 .

On the other hand, we have

[R0 : S0 ]p =
∣∣∣C̃p∣∣∣

p
|A0,p|p

∏
p0≤R0 prime
p0∩Z=pZ

N(p0)
∏

q0≤S0 prime
q0∩Z=pZ

N(q0)−1

= |A0,p|p
∏

p0≤R0 prime
p0∩Z=pZ

N(p0)
∏

q0≤S0 prime
q0∩Z=pZ

N(q0)−1 .

The p-part of the index [R0 : S0 ] is now in correspondence with C̃p in the following
sense. If we consider |C̃p| as a polynomial in p, then the sum of its degree and the
p-valuation of |A0,p| equals the p-valuation of the index [R0 : S0 ]. The same holds
for D̃p and for [R : S ], if we replace |A0,p| by |Ap|.

It remains to show that |C̃p| = |D̃p| for all p > 7. If this is the case, then
[R0 : S0 ]p = [R : S ]p for all p > 7. Based on the splitting behavior of p in OK0

and the insights from Proposition 7.17, we derive the following possibilities for the
cyclic factors of C̃p:
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(a) If pOK0 = ∏3
i=1 P0,i, then |OK0/P0,i| = p, and there are at most two (non-

trivial) cyclic factors in C̃p, each of cardinality p − 1. Consequently, the
cardinality of |C̃p| is contained in {(p− 1)2, (p− 1), 1}.

(b) If pOK0 = P3
0, there is no (non-trivial) cyclic factor in C̃p, and |C̃p| = 1.

(c) If pOK0 = P0, there is at most one (non-trivial) cyclic factor in C̃p of cardi-
nality (p3− 1)/(p− 1) = p2 + p+ 1 or (p2− 1)/(p− 1) = p+ 1. Accordingly,
we obtain that |C̃p| ∈ {(p2 + p+ 1, p+ 1, 1}.

Given that the kernel of ψ has an exponent of at most two and it is generated by no
more than six elements, it follows that the cardinality of kerψp divides 2m, where
m in the set {1, . . . , 6} represents the number of cyclic factors of D̃p. Therefore,

|D̃p| = | kerψp| · |Im(ψp)| = | kerψp| · |C̃p|
∣∣∣∣ 2m · |C̃p|

Each cyclic factor of D̃p contains at most two elements from the kernel. From this,
we deduce that the cardinality of a cyclic factor of D̃p divides 2 · |C̃p|.

We observe that D̃p has at least as many cyclic factors as C̃p. Each cyclic
factor of D̃p has a cardinality either of the form p`− 1 or pg−1

ph−1 , where `, g, h belong
to the set {1, 2, 3, 6}, and h divides g (because otherwise pg−1

ph−1 would not be an
integer). We will explore all potential values for |C̃p|, keeping in mind the associated
splitting behavior of p in each case, as discussed in Proposition 7.17 and Proposition
7.18. We will conclude that |D̃p| = |C̃p| for all p > 7. Specifically, we have
[R : S ]p = [R0 : S0 ]p for all p > 7, by evaluating each case, step by step.

(a) (|C̃p| = 1): Every cyclic factor of D̃p has a cardinality dividing 2, which is
only possible if this factor has cardinality 1 or (p− 1) for p = 3. Hence, for
p > 3, every factor is trivial and |D̃p| = 1 = |C̃p|.

(b) (|C̃p| = (p−1)): Every cyclic factor of D̃p has a cardinality dividing 2·(p−1),
which is only possible if this factor has order (p − 1) or (p + 1) for p = 3.
Assume that D̃p is the product of 2 ≤ m ≤ 6 cyclic groups of order (p− 1)
satisfying (p − 1)m | 2m · (p − 1). Then p ∈ {2, 3, 5}. It follows that
|D̃p| = (p− 1) = |C̃p| for all p > 5.

(c) (|C̃p| = (p+1)): Every cyclic factor of D̃p has a cardinality dividing 2·(p+1),
which is only possible if this factor has order (p + 1) or (p − 1) for p = 3.
Assume that D̃p is the product of 2 ≤ m ≤ 6 cyclic groups of order (p + 1)
satisfying (p+1)m | 2m ·(p+1). Then p = 3 and we have |D̃p| = (p+1) = |C̃p|
for all p > 3.

(d) (|C̃p| = (p− 1)2): This is the first case, where C̃p has two non-trivial cyclic
factors instead of one, both of order (p− 1). Now D̃p has at least two cyclic
factors and every cyclic factor has cardinality divided by (p − 1). On the
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other hand, every cyclic factor of D̃p has a cardinality dividing 2 · (p− 1)2,
which is only possible if this factor has order (p − 1), (p − 1)2 or (p2 − 1)
if p = 3. Assume there are 2 ≤ m ≤ 5 factors with cardinality (p − 1) or
(p−1)2 such that (p−1)m1 ·(p−1)2m2 | 2m ·(p−1)2 for some m1 ∈ {0, . . . , 5}
and m2 ∈ {1, . . . , 5} with m1 + m2 = m. Then p ∈ {2, 3, 5}. Hence, there
will be no factor of cardinality (p − 1)2 if p > 5. On the other hand, if D̃p

consists of more than 2 non-trivial factors of cardinality (p − 1), it follows
that p ∈ {2, 3, 5}. Jointly, we receive that |D̃p| = (p − 1)2 = |C̃p| for all
p > 5.

(e) (|C̃p| = (p2 + p + 1)): Every cyclic factor of D̃p has a cardinality dividing
2 · (p2 + p+ 1), which is only possible if this factor has order (p2 + p+ 1) or
p ≤ 7. There can be at most two cyclic factors in D̃p because r = 1. But
for all prime numbers (p2 + p + 1)2 - 22 · (p2 + p + 1). Consequently, for all
p > 7, we have |D̃p| = (p2 + p+ 1) = |C̃p|.

In total, we have shown that |D̃p| equals |C̃p| for all p > 7, which means that
[R0 : S0 ]p = [R : S ]p for all p > 7.

In a next step, the following theorem generalizes Lemma 7.19 to arbitrary car-
dinalities of µR. This requires a comparison of the maps ψ and ψ′. For µR = {±1}
we have ψ = ψ′, but this is not true in general. Note that for any degree six number
field K it is |µK | ∈ {2, 4, 6, 14, 18}, which implies that |µR| ∈ {2, 4, 6, 14, 18} for all
orders R ⊆ OK .

Theorem 7.20.
Let K be a cyclic sextic CM field with maximal totally real subfield K0. Let S ⊆ R

be orders in K, and let f := [OK : S ]. Let S0 := S ∩K0 and R0 := R ∩K0. Let
the kernel of the relative norm

ψ :
(
R�fOK

)×
�(S�fOK)× µR −→

(
R0�fOK0

)×
�(S0�fOK0

)×
be of exponent at most two and let B be defined as in the following table, depending
on the size of µR:

|µR| 2 4 6 14 18
B 7 17 19 43 73

.

Then for every prime p > B, we have

vp([R : S ]) = vp([R0 : S0 ]).
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Proof. Let I = fOK . We obtain the following relation of the cardinalities of the
domains of ψ and ψ′ depending on the intersection of S× and µR:

∣∣∣∣∣∣∣
(
R�I

)×
(
S�I

)×
µR

∣∣∣∣∣∣∣ =

∣∣∣∣(R�I)×
∣∣∣∣∣∣∣∣(S�I)×
∣∣∣∣ ·
|S× ∩ µR|
|µR|

∈

x ·
∣∣∣∣(R�I)×

∣∣∣∣∣∣∣∣(S�I)×
∣∣∣∣
∣∣∣∣ x ∈

{
1, 2
|µR|

} .

Consequently, the cardinality of the domain of ψ divides the cardinality of the
domain of ψ′. In order to generalize Lemma 7.19, we can mainly follow the same
argument, but when relating D̃p, and its cyclic factors with C̃p, we get an additional
factor. Recall that, in the proof of Theorem 7.19, we stated

|D̃p| = | kerψp| · |Im(ψp)| = | kerψp| · |C̃p| .

We have kerψ = kerψ′/(µR/{±1}), which is generated by at most six elements of
exponent at most two, and we have

| kerψp|
∣∣∣∣ 26 |µR|

2 .

Consequently,
|D̃p| = | kerψp| · |C̃p|

∣∣∣∣ 26 |µR|
2 |C̃p| .

Now, the cyclic factors of D̃p contain at most two elements of the kernel and their
cardinalities divide 2 µR

2 |C̃p| = |µR| |C̃p|. Having these two conditions, we can now
follow the same argument as in the proof of Lemma 7.19 and receive the following
relations of |D̃p| and |C̃p| depending on the size of µR.

(a) (|C̃p| = 1): We have |D̃p| = 1 = |C̃p| for all p > B where

|µR| 2 4 6 14 18
B 3 5 7 13 19

(b) (|C̃p| = p − 1): For all p > B every cyclic factor of D̃p has order (p − 1)
where

|µR| 2 4 6 14 18
B 3 7 11 13 17

Now assume that D̃p is the product of 2 ≤ m ≤ 6 factors of order (p − 1).
Then (p− 1)m | |µK | · 2m−1 · (p− 1), which is impossible for all p > B where

|µR| 2 4 6 14 18
B 5 5 13 29 37
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As a consequence, for these bounds B depending on µR and every p > B,
we receive that |D̃p| = p− 1 = |C̃p|.

(c) (|C̃p| = p + 1): For all p > B every cyclic factor of D̃p has order (p + 1)
where

|µR| 2 4 6 14 18
B 5 5 13 29 37

Now assume that D̃p is the product of 2 ≤ m ≤ 6 factors of order (p + 1).
Then (p+ 1)m | |µK | · 2m−1 · (p+ 1), which is impossible for all p > B if

|µR| 2 4 6 14 18
B 3 7 11 13 17

Accordingly, for the following bounds B depending on µR and every p > B,
we receive that |D̃p| = p− 1 = |C̃p|:

|µR| 2 4 6 14 18
B 5 7 13 29 37

(d) (|C̃p| = (p− 1)2): The cardinality of every cyclic factor of D̃p has to divide
|µK | · |C̃p| and contains a cyclic factor of C̃p with cardinality (p− 1). Hence,
its order is of the form (p− 1) for all p > B where

|µR| 2 4 6 14 18
B 3 7 11 13 17

We know that D̃p has at least two and at most four factors of order (p− 1).
Hence, |D̃p| = (p− 1)2 = |C̃p| for all p > B, if

|µR| 2 4 6 14 18
B 5 17 13 29 73

(e) (|C̃p| = p2 + p + 1): For p > B every cyclic factor of D̃p has cardinality
(p2 + p+ 1), if

|µR| 2 4 6 14 18
B 7 13 19 43 19

Now assume that D̃p is the product of 2 ≤ m ≤ 6 factors of order (p2 +p+1).
Then (p2 + p + 1)m

∣∣∣∣ |µK | · 2m−1 · (p2 + p + 1), which is impossible for all
primes p except for p = 2, if |µR| = 14.
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Summarizing these considerations, we find that |D̃p| = |C̃p| for all p > B with

|µR| 2 4 6 14 18
B 7 17 19 43 73

.

Thus, for each such p > B, we have vp([R : S ]) = vp([R0 : S0 ]).

Combining Theorem 7.20 with Lemma 7.15, we can now deduce the first main
theorem of this chapter.

Theorem 7.21.
Let K be a cyclic sextic CM field with maximal totally real subfield K0, and let
S ⊆ R ⊆ OK be orders in K with f := [OK : S ]. Let S0 := S ∩ K0, and let
R0 := R ∩K0. Let the kernel of the relative norm

ψ :
(
R�fOK

)×
�(S�fOK)× µR −→

(
R0�fOK0

)×
�(S0�fOK0

)×
be of exponent at most two. Then

[R : S ]
[R0 : S0 ]

∣∣∣∣ B ,

where B is given by the following table depending on the number of elements in the
group of roots of unity µR.

|µR| B

2 215375372

4 21637547311213217
6 216385473112132

14 217385573112132 · · · 23229
18 218395573113132 · · · 23229 · · · 73

Proof. As the kernel of the relative norm is of exponent at most two, using Theorem
7.20, we receive that there are no primes greater than B in the quotient of [R : S ]
by [R0 : S0 ]. On the other hand, Lemma 7.15 gives us the bounds on the exponents
to the remaining primes and proves the claim.

7.4.3 Explicit bounds on the index

Combining Theorem 7.21 with Theorem 6.11, we receive the following second main
theorem of this chapter.
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Theorem 7.22.
Let K be a cyclic sextic CM field, and let K0 be the totally real cubic subfield of K.
Let S ⊆ OK be an order of K stable under complex conjugation, and let the kernel
of the relative norm

ψ :
(OK�fOK)×�(S�fOK)× µK −→

(
OK0�fOK0

)×
�(S0�fOK0

)×
be of exponent at most two, where f := [OK : S ]. Then we have

f 2 = [OK : S ]2
∣∣∣∣ B4 NK0/Q(∆K/K0) δS,

where B is given by the following table depending on the number of elements in the
group of roots of unity µK.

|µK | B

2 215375372

4 21637547311213217
6 216385473112132

14 217385573112132 · · · 23229
18 218395573113132 · · · 23229 · · · 73

Proof. Applying Theorem 7.21 for the case R = OK , we receive that

[OK : S ]
∣∣∣∣ B [OK0 : S0 ],

where the bound B depends on the cardinality of µK . On the other hand, due to
Theorem 6.11, we know that

[OK0 : S0 ]4
∣∣∣∣ NK0/Q(∆K/K0)[OK : S ]2 δS.

Combining this information, we obtain

[OK : S ]4
∣∣∣∣ B4 [OK0 : S0 ] 4

∣∣∣∣ B4 NK0/Q(∆K/K0) [OK : S ]2 δS,

which is equivalent to or claim.

Now, whenever δS is known, Theorem 7.22 allows giving an explicit set of primes
which can possibly divide the index [OK : S ]. For example, if δS = 1 we receive
the following result.
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Theorem 7.23.
Let K be a cyclic sextic CM field, and let K0 be the totally real cubic subfield of K.
Let S ⊆ OK be an order of K stable under complex conjugation with δS = 1, and
let the kernel of the relative norm

ψ :
(OK�fOK)×�(S�fOK)× µK −→

(
OK0�fOK0

)×
�(S0�fOK0

)×
be of exponent at most two, where f := [OK : S ]. Then we have

f 2 = [OK : S ]2
∣∣∣∣ B4 NK0/Q(∆K/K0) ,

where B is given by the following table depending on the number of elements in the
group of roots of unity µK.

|µK | B

2 215375372

4 21637547311213217
6 216385473112132

14 217385573112132 · · · 23229
18 218395573113132 · · · 23229 · · · 73

Proof. Using Theorem 7.22, we deduce

f 2 = [OK : S ]2
∣∣∣∣ B4 NK0/Q(∆K/K0) δS,

with B defined as in Theorem 7.21. Given that δS = 1, this confirms our claim.

From what we observed in Theorem 6.15 and Theorem 6.16, Theorem 7.23 covers
the cases where S0 is Gorenstein and the case where S is composed of an order Sk in
k and an order S0 in K0. Consequently, we can state the following two corollaries.

Corollary 7.24.
Let K be a cyclic sextic CM field and K0 be the totally real cubic subfield of K. Let
S ⊆ OK be an order of K stable under complex conjugation such that S0 = S ∩K0

is Gorenstein and let the kernel of the relative norm

ψ :
(OK�fOK)×�(S�fOK)× µK −→

(
OK0�fOK0

)×
�(S0�fOK0

)×
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be of exponent at most two, where f := [OK : S ]. Then we have

f 2 = [OK : S ]2
∣∣∣∣ B4 NK0/Q(∆K/K0),

where B is given by the following table depending on the number of elements in the
group of roots of unity µK.

|µK | B

2 215375372

4 21637547311213217
6 216385473112132

14 217385573112132 · · · 23229
18 218395573113132 · · · 23229 · · · 73

Proof. Given that S0 is Gorenstein, Theorem 6.15 indicates that δS = 1. By apply-
ing Theorem 7.23, we have proved our claim.

Corollary 7.25.
Let K be a cyclic sextic CM field containing an imaginary quadratic subfield k, and
let K0 be the totally real cubic subfield of K. Let Sk be an order in k, and let S0 be
an order in K0. If S := Sk S0 is stable under complex conjugation and if the kernel
of the relative norm

ψ :
(OK�fOK)×�(S�fOK)× µK −→

(
OK0�fOK0

)×
�(S0�fOK0

)×
is of exponent at most two, where f := [OK : S ], then we have

f 2 = [OK : S ]2
∣∣∣∣ B4 NK0/Q(∆K/K0),

where B is given by the following table depending on the number of elements in the
group of roots of unity µK.

|µK | B

2 215375372

4 21637547311213217
6 216385473112132

14 217385573112132 · · · 23229
18 218395573113132 · · · 23229 · · · 73

Proof. Given S = Sk S0, Theorem 6.16 suggests that δS = 1. Using Theorem 7.23,
we confirm our claim.

131



7.4. BOUNDING THE INDEX OF ORDERS IN CYCLIC SEXTIC CM FIELDS

In view of our later applications, Theorem 7.22 provides bounds on the index of
orders that could serve as endomorphism rings for specific polarized abelian varieties
over C with complex multiplication in a sextic CM field. This not only proves the
finiteness of the number of potential endomorphism rings S with δS = 1, but also
allows the computation of all such endomorphism rings. We will discuss this in
detail in the following chapters.

Even when δS 6= 1, we can still give bounds on the index from Theorem 7.22 for
specific classes of orders. We show this in the following example in which the value
of δS was verified computationally.

Example 7.26.
Let K be a cyclic sextic CM field with OK = 〈1, λ1, . . . , λ5〉Z and totally real
cubic subfield K0. Let a ∈ Z, and let S = 〈1, a λ1, . . . , aλ5〉Z be an order. Then
[OK : S ] = a5, and δS = a. If S is stable under complex conjugation and the
kernel of the relative norm is of exponent at most two, Theorem 7.22 gives us

a9 = a2·5−1
∣∣∣∣ B4 NK0/Q(∆K/K0) .

Since that the right-handed side does not depend on S, this provides a concrete
bound on the primes dividing [OK : S ].
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Chapter 8

Endomorphism rings of abelian
varieties of dimension 3

We recall that, in Chapter 4.2, we discussed polarized abelian varieties over C with
CM by an arbitrary order S in a CM field K that have field of moduli Q. We
identified all potential CM fields K in the dimension 3 case. Building on these
results, in this chapter we aim to provide necessary conditions for the orders S in
these CM fields, which potentially appear as endomorphism rings of such polarized
abelian varieties. For the context of this chapter, we let (K,Φ) denote a sextic CM
type, let (Kr,Φr) its reflex type, and let S an order in K. We let P = (A, ι,C ) be a
simple polarized abelian variety over C of type (K,Φ) with complex multiplication
by S and field of moduli Q. The goal of this chapter is to explicitly compute the
possible endomorphism rings S of such polarized abelian varieties P . The following
first main result of this chapter is a consequence of Shimuras third main theorem
(see Chapter 4.1) combined with our results from Chapter 7.
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Theorem 8.1.
Let (K,Φ) be a sextic CM type and (Kr,Φr) be its reflex. Let K0 denote the totally
real cubic subfield of K, and let S ⊆ OK be an order of index f = [OK : S ].
Let P = (A, ι,C ) be a simple polarized abelian variety over C of type (K,Φ) with
complex multiplication by S and field of moduli Q. Then

(a) K is a cyclic sextic CM class number one field containing an imaginary
quadratic subfield,

(b) ΩS = IKr(f), and
(c) f 2 = [OK : S ]2

∣∣∣∣ B4 NK0/Q(∆K/K0) δS, where B is given by the following
table depending on the number of elements in the group of roots of unity µK.

|µK | B

2 215375372

4 21637547311213217
6 216385473112132

14 217385573112132 · · · 23229
18 218395573113132 · · · 23229 · · · 73

Proof. Given that A is simple and by applying Proposition 1.89, the CM type
(K,Φ) is primitive. Consequently, by definition, (Kr,Φr) is also primitive and thus
(Krr,Φrr) = (K,Φ). Using Corollary 4.9 and noting that the field of moduli Q is a
subfield of the reflex fieldKr, we conclude ΩS = ΩOK = IKr(f). As shown in Lemma
4.13, this means that K is a cyclic sextic CM class number one field containing an
imaginary quadratic subfield. As we have pointed out in Chapter 5, in this situation
all primitive CM types are equivalent. Therefore, without loss of generality, we can
assume Φ = {1, τ, τ−1}, where τ is a generator of the automorphism group of K
over Q. Given ΩS = IKr(f), the kernel of the relative norm has an exponent at
most two, as presented in Proposition 5.5. Moreover, S is invariant under complex
conjugation because of the Rosati involution. We can now apply Theorem 7.22 to
receive the upper bounds for the primes p | f and their multiplicities.

Theorem 8.1 applies to Jacobians of simple genus 3 curves over C with CM
by arbitrary orders, as these Jacobians are principally polarized abelian varieties.
Again, as already discussed in Chapter 6 and Chapter 7, we are especially interested
in situations where we can control δS, for example when δS = 1. In this context,
we can state the following corollary.
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Corollary 8.2.
Let (K,Φ) be a sextic CM type and (Kr,Φr) be its reflex. Let K0 denote the totally
real cubic subfield of K and S ⊆ OK be an order of index f = [OK : S ]. Let
P = (A, ι,C ) be a simple polarized abelian variety over C of type (K,Φ) with
complex multiplication by S and field of moduli Q. Then

(a) K is a cyclic sextic CM class number one field containing an imaginary
quadratic subfield,

(b) ΩS = IKr(f), and
(c) if δS = 1, then f 2 = [OK : S ]2

∣∣∣∣ B4 NK0/Q(∆K/K0) , where B is given by the
following table depending on the number of elements in the group of roots of
unity µK.

|µK | B

2 215375372

4 21637547311213217
6 216385473112132

14 217385573112132 · · · 23229
18 218395573113132 · · · 23229 · · · 73

Proof. Applying Theorem 8.1 and inserting δS = 1 proves the claim.

Building on the notation of the last two statements, let k denote the imaginary
quadratic subfield of K, S0 = S ∩ K0 and Sk = S ∩ k. Note that we can apply
Corollary 8.2 to the case where S0 = S ∩K0 is Gorenstein (see Corollary 7.24) and
to the case where S = Sk S0 is the composition of orders Sk and S0 (see Corollary
7.25). On the other hand, if we omit the condition δS = 1, but have knowledge of
δS and [OK : S ] in terms of a Z-basis of S, we can still derive bounds on the index
from Theorem 8.1. Such a class of orders was presented in Example 7.26.

Unfortunately, in practical applications, one might observe that the bounds on
the prime powers dividing the indices as presented in Theorem 8.1 can be too large
in order to compute all potential endomorphism rings within a feasible time. In
order to circumvent this challenge, we will construct an explicit minimal order and
narrow down our focus to the two important cases illustrated in Chapter 4.3.

8.1 Minimal orders

Let (A, ι) be an abelian variety of primitive CM type (K,Φ) with CM by an order
S ⊆ OK of index f = [OK : S ]. Let C be a polarization of A such that the field
of moduli k0 of (A,C ) is contained in the reflex field Kr of (K,Φ). Then, due to
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Shimura’s third main theorem, we have ΩS = IKr(f). Especially, for all α ∈ IKr(f),
we have NΦr(α) = xOK and NKr/Q(α) = xx̄ ∈ Q for some x ∈ K×. Within this
section, we aim to determine specific suborders of S.

Definition 8.3.
Let (K,Φ) be a CM type, (Kr,Φr) be its reflex and ΩKr = IKr . Let f be an integer
and a1, . . . , as be integral generators of the ray class group IKr(f)/PKr,1(f). Let
αj ∈ K× be generators of NΦr(aj) with αjᾱj ∈ Q for j = 1, . . . , s. We define Smin,f
to be the order of K generated by α1, . . . , αs, fOK and µK .

The following statement generalizes [BS17][Lemma 18], which aims quartic CM
fields.

Lemma 8.4.
Let (K,Φ) be a CM type and (Kr,Φr) be its reflex. Let ΩKr = IKr . Let f be an
integer, let S be an order of K such that fOK ⊆ S, and let the roots of unity µK
of K be all contained in S. Let a1, . . . , as be integral generators of the ray class
group IKr(f)/PKr,1(f), and let αj ∈ K× be generators of NΦr(aj) with αjᾱj ∈ Q
for j = 1, . . . , s. Then

ΩS = IKr(f) if and only if Smin,f ⊆ S.

Proof. On one hand, we can select integral generators for the Ray class group whose
images under the type norm are integral. Since ΩKr = IKr , there exists an element
αj ∈ OK such that

NΦr(aj) = αj OK and NKr/Q(aj) = αjᾱj ∈ Q

for each index j ∈ {1, . . . , s}. For every element ζ ∈ µK , the product ζ αj ∈ OK
satisfies the same properties. Hence αj is unique up to roots of unity of K.

As pointed out in Proposition 1.59, we deduce that NΦr(aj) ∈ PK(f) ⊆ PK(fS)
and by applying Theorem 1.27, NΦr(aj) ∈ PS(f). Since µK = µS ⊆ S, it follows
that αj ∈ S for all j ∈ {1, . . . , s}.On the other hand, both fOK and µK are subsets
of S. This implies that S includes Smin,f .

Conversely, if S contains Smin,f , then any a ∈ IKr(f) can be integrally repre-
sented in the Ray class group of Kr modulo f . Let this representation be ∏s

j=1 a
γj
j

for some non-negative integers γj. Thus, we can write a = ∏s
j=1 a

γj
j I, where

I ∈ PKr,1(f). Given that αj ∈ S for each j ∈ {1, . . . , s} and µK ⊆ S, we get
NΦr(aj) ∈ PS(f).
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Furthermore, we can express I as I = xOK , where x ≡ 1 (mod fOKr) and
NΦr(x) ≡ 1 (mod fOK). This leads to

NΦr(I) = NΦr(x)OK = (y + 1)OK

for some y ∈ fOK . Given that S is a ring that includes fOK , we conclude that
y + 1 ∈ S and NΦr(I) ∈ PS(f). Combining these observations, we receive that
NΦr(a) ∈ PS(f) which shows that ΩS = IKr(f).

Note that, in Lemma 8.4, we assume S to contain every root of unity in K. This
is a crucial aspect. However, the lemma can still be applied to several interesting
situations.

Firstly, consider the case where K has a trivial group of roots of unity, denoted
by µK = {±1}. In such cases, S naturally contains µK . Additionally, our focus
is on simple genus 3 CM curves with a field of moduli Q. From Lemma 4.13,
we know that the corresponding CM fields are cyclic sextic CM class number one
fields containing an imaginary quadratic subfield. We can now deduce the following
two theorems on potential endomorphism rings for the Jacobians of both specific
hyperelliptic curves and Picard curves.

Theorem 8.5.
Let C/C be a simple genus 3 curve with CM by an order S ⊆ OK in a CM field
K and field of moduli Q. Let f be the index of S in OK. If Z[i] ⊆ S, then C is
hyperelliptic, and S contains Smin,f .

Proof. Let Z[i] ⊆ S. Given that C is simple over C and has a field of moduli Q,
Lemma 4.13 includes that K is a cyclic sextic CM field that contains an imaginary
quadratic subfield. According to Theorem 4.15, the curve C is hyperelliptic, and
the imaginary quadratic subfield is Q(i). Every such field K has a group of roots
of unity µK = {±1,±i}. As S contains Z[i], we deduce µK ⊆ S and, by applying
Lemma 8.4, it follows that S contains Smin,f .

Note that every determined CM class number one field K containing Q(i) from
Table 4.1 fulfills µK = µQ(i). This allows applying Theorem 8.5. A similar result
can be formulated for curves such that the endomorphism ring of their Jacobian
contains Z[ζ3].

Theorem 8.6.
Let C/C be a simple genus 3 curve with CM by an order S ⊆ OK in a CM field K
and field of moduli Q. Let f be the index of S in OK and µK = {ζk3 | k ∈ {0, . . . , 5}}.
If Z[ζ3] ⊆ S, then C is Picard, and S contains Smin,f .

137



8.1. MINIMAL ORDERS

Proof. Let Z[ζ3] ⊆ S. Given that C is simple over C, and that C has a field of
moduli Q, Lemma 4.13 tells us that K is a cyclic sextic CM field, which includes an
imaginary quadratic subfield. As presented in Theorem 4.18, the curve C is Picard.
Given that µK = {ζk3 | k ∈ {0, . . . , 5}}, and that S is assumed to contain Z[ζ3], it
follows that µK ⊆ S. Applying Lemma 8.4, we deduce that S contains Smin,f .

In contrast to the case Q(i) ⊆ K discussed above, not all CM class number
one fields K that contain Q(ζ3), as of Table 4.2, satisfy the necessary condition
µK = {ζk3 | k ∈ {0, . . . , 5}} in Theorem 8.6. Specifically, there is one field with
|µK | = 18, which exceeds the size of µQ(ζ3). Using the notation from Table 4.2, this
particular CM field is denoted as [−1,−3, 0]. For the remaining 9 CM fields that
contain Q(ζ3), they all satisfy µK = µQ(ζ3), allowing us to apply Theorem 8.6.

To conclude this section, we present how we can consider sequences of minimal
orders and tell when such a sequence stabilizes. This will become powerful in order
to determine possible endomorphism rings of the hyperelliptic and Picard curves.

Lemma 8.7.
Let (K,Φ) be a CM type, let (Kr,Φr) be its reflex, and let ΩKr = IKr . Let f and f ′

be two positive integers with f | f ′. Let Smin,f and Smin,f ′ be defined as in Lemma
8.4. Then Smin,f ′ ⊆ Smin,f .

Proof. Firstly, f ′OK ⊆ fOK . Now let a1 , . . . , ar be generators of the Ray class
group modulo f of the reflex field Kr, and b1 , . . . , bs be generators of the Ray class
group modulo f ′ of Kr. The images of the generators under the reflex type norm
NΦr are principal, and we denote them as αj and βj, respectively. Since IKr(f ′) ⊆
IKr(f), for all j ∈ {1 , . . . , s} there exist γ1 , . . . , γr ∈ N and I ∈ PKr,1(f) such
that

bj =
r∏
i=1

aγii I . (8.1)

To be more precise, there is a totally positive x ∈ Kr with I = xOKr and
x ≡ 1 (mod fOKr). Now, applying the type norm and using (8.1), we receive that
βj OK = (∏r

i=1 α
γi
i ) NΦr(x)OK and NΦr(x) ≡ 1 (mod fOK), which means that

there exists y ∈ fOK with

βj OK = (
r∏
i=1

αγii ) (y + 1)OK .

The generator of the right-hand side differs from βj only by a root of unity. Since
all roots of unity of K are contained in Smin,f and the generator on the right-hand
side lies in Smin,f , we receive βj ∈ Smin,f for all j ∈ {1 , . . . , s}.Consequently, we
have Smin,f ′ ⊆ Smin,f .
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As a consequence of this lemma, we can define sequences (Smin,pk)k≥0 for every
prime number p. The following lemma is presented in [BS17][Lemma 19] up to the
fact that we add the roots of unity of K to the minimal orders, which does not affect
its correctness. It allows recognizing when such a sequence becomes stationary at
some point.We sketch the proof and refer to [BS17] for details.

Lemma 8.8.
Let (K,Φ) be a CM type, let (Kr,Φr) be its reflex, and let ΩKr = IKr . For any
prime number p ∈ Z, if Smin,pk = Smin,pk+1 for some k ∈ Z≥0, then Smin,p` = Smin,pk

for all ` ≥ k.

Proof. Let p ∈ Z be prime, let k ∈ Z≥0, and assume that Smin,pk = Smin,pk+1 . We
aim to show that Smin,pk+2 = Smin,pk+1 . For all n ≤ k + 2, we have the relation
Smin,pn = Smin,pk+1 + pnOK . Specifically, this implies that

Smin,pk+2 ⊆ Smin,pk+1 = Smin,pk+2 + pkOK .

Multiplying the entire relation by p inverts this inclusion, leading to the fact that

Smin,pk+2 ⊇ Smin,pk+2 + pkOK = Smin,pk+1 .

Consequently, we deduce that Smin,pk+2 = Smin,pk+1 .

We formulate one final corollary based on Lemma 8.4, which allows us to exclude
certain primes from dividing the potential index of our considered orders.

Corollary 8.9.
Let (K,Φ) be a CM type, let (Kr,Φr) be its reflex, and let ΩKr = IKr . Let S ( OK
be an order of index f ∈ Z containing µK and satisfying ΩS = IKr(f). If p is a
prime number such that Smin,p = OK, then p - f .

Proof. Let p be a prime number with Smin,p = OK . If pOK ⊆ S, then, by Lemma
8.4, we have OK = Smin,p ⊆ S ⊆ OK . This implies S = OK , which is a con-
tradiction. Thus, pOK is not a subset of S. Furthermore, if p divides f , then
fOK ⊆ pOK 6⊆ S, which again contradicts the assumption fOK ⊆ S. Thus, p does
not divide f .

Let (K,Φ) be CM type and (Kr,Φr) be its reflex type. As a consequence of this
corollary, if ΩKr = IKr , and whenever Smin,p = OK , the prime p cannot divide any
index f ∈ Z of an order S ( OK that includes µK and satisfies ΩS = IKr(f).

Now, let P = {p1, . . . , pr} represent a complete set of primes that might divide
the index f of such an order. If Smin,pi = OK for every prime pi ∈ P except one
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specific prime pj, then according to Corollary 8.9, the index takes the form f = p`j

for some ` ∈ N. Let k(pj) denote the integer at which the sequence (Smin,pkj
)k

stabilizes. In that case, Smin,f provides an overorder of S
min,p

k(pj)
j

.

Building on the considerations from this section, we present the following algo-
rithms for computing the orders Smin,f as described in Lemma 8.4, and for deter-
mining the order Smin,pk(p) for a particular prime p.

Algorithm 2: Computing the order Smin,f
input : A CM type (K,Φ) with ΩOK = IKr and an integer f .
output: The order Smin,f of K.

1 Compute the reflex (Kr,Φr) of (K,Φ).
2 Compute the degree n of K over Q.
3 Compute the maximal order OK of K.
4 Compute a generator ζ of the torsion unit group of OK .
5 Compute a basis (β1 , . . . , βn) of OK as a Z-module.
6 Compute generators a1 , . . . , as of the Ray class group of K modulo f .
7 for i = 1 , . . . , s do
8 Compute a generator αi ∈ K of the reflex type norm NΦr of ai.
9 end

10 Compute the order Smin,f of K generated by α1, . . . , αs, f · β1, . . . , f · βn,
and ζ.

11 return Smin,f

Algorithm 3: Computing the order Smin,pk(p)

input : A CM type (K,Φ) with ΩOK = IKr and a prime number p.
output: The order Smin,pk(p) .

1 Initialize k1 as 0 and k2 as 1.
2 Define f1 as pk1 and f2 as pk2 .
3 Compute the minimal orders Smin,f1 and Smin,f2 with Algorithm 2.
4 while Smin,f1 6= Smin,f2 do
5 Replace k1 with k2 and raise k2 by 1.
6 Define f1 as f2 and f2 as pk2 .
7 Define Smin,f1 as Smin,f2 .
8 Compute the minimal order Smin,f2 with Algorithm 2.
9 end

10 return Smin,f1
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8.2 Application to simple genus 3 curves with
field of moduli Q

Let C/C be a simple genus 3 curve with complex multiplication by an order S in
a sextic CM field K. Then its Jacobian J is a simple principally polarized abelian
variety of dimension 3 over C of a primitive CM type (K,Φ). Let the field of moduli
of J be Q. By Theorem 8.1, K is a cyclic CM class number one field that contains
an imaginary quadratic subfield. Consequently, K is listed in [Kıl16][Table 3.1]. Let
f denote the index of S in OK . Theorem 8.1 also tells us that ΩS = IKr(f), where
(Kr,Φr) = (K,Φ) is the reflex of (K,Φ), and, under the assumption that δS = 1,
provides explicit bounds on the primes which might divide f . We will now discuss
two scenarios, one where the endomorphism ring of the Jacobian J of C contains
Z[i] and the other where it contains Z[ζ3]. We begin with the case where Z[i] ⊆ S.

Theorem 8.10.
Let C/C be a simple genus 3 curve with complex multiplication by an order S ⊇ Z[i]
in a CM field K. Let the field of moduli of C be Q. Let K0 denote the totally real
cubic subfield of K, let S0 := S ∩ K0, and let SQ(i) := S ∩ Q(i). Then C is
hyperelliptic. Furthermore, if δS = 1, then S is one of the orders whose indices are
given in Table 8.2. If S0 is Gorenstein, then S is one of the orders in Table 8.3. If
S = SQ(i) S0, then S is one of the orders in Table 8.4.

Proof. Let Z[i] ⊆ S. By Theorem 8.1, we know that K is a cyclic CM class number
one field, which includes the imaginary quadratic subfield Q(i). Using Theorem
8.5, we deduce that C is hyperelliptic, and S contains the order Smin,f , where f
represents the index of S in OK . Assuming δS = 1, Corollary 8.2 implies that only
primes less than or equal to 17 can divide f . Define P as the set of primes up to
17. Employing Algorithm 3, we compute Smin,pk(p) for each prime in P . We observe
that Smin,pk(p) = OK for all primes p 6= 2 in all six sextic CM class number one fields
K containing Q(i). Building on the conclusions of Chapter 8.1, and given that f is
an integer not divided by any prime not contained in P , we receive:

Smin,2k(2) ⊆ Smin,f ⊆ S.

Furthermore, given that S is stable under complex conjugation, S is an overorder
of

S ′min,2k(2) := Smin,2k(2) + Smin,2k(2) .
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We apply the MAGMA algorithm FindOverOrders from [Mar21] in order to
compute every overorder of S ′min,2k(2) which is stable under complex conjugation.
This computation results in 33 orders from which 6 are maximal and 27 are non-
maximal. The computational results are detailed in Appendix A. Table 8.1 summa-
rizes our findings, providing the indices of the orders in their corresponding maximal
order. Furthermore, Table 8.2 filters the orders from Table 8.1 based on the con-
straint δS = 1. In Table 8.3 and Table 8.4 we further filter the orders from Table 8.3
by applying the conditions that S0 is Gorenstein and S = SQ(i)S0, respectively.

In the following tables, applying the notation from Table 4.1, the tuple [β0, β1, β2]
represents the defining irreducible monic polynomial g = ∑3

i=0 βix
i ∈ Z[x] of the

totally real cubic subfield K0 contained in K. Here, K is assumed to be the com-
posite K = Q(i)K0. The other columns present the amount of suitable orders cor-
responding to a specific index. Detailed descriptions of these orders are presented
in Appendix A.

Table 8.1: Suitable orders for K = Q(i)K0
No. g Index 1 Index 2 Index 4 Index 8 Index 16
1 [1,−5, 2] 1 0 1 3 1
2 [−1,−3, 0] 1 0 1 3 1
3 [−1,−2, 1] 1 0 1 3 1
4 [8,−14, 1] 1 3 1 0 0
5 [−8,−10, 1] 1 3 1 0 0
6 [8,−18, 3] 1 3 1 0 0

Table 8.2: Suitable orders with δS = 1 for K = Q(i)K0
No. g Index 1 Index 2 Index 4 Index 8 Index 16
1 [1,−5, 2] 1 0 0 3 1
2 [−1,−3, 0] 1 0 0 3 1
3 [−1,−2, 1] 1 0 0 3 1
4 [8,−14, 1] 1 3 0 0 0
5 [−8,−10, 1] 1 3 0 0 0
6 [8,−18, 3] 1 3 0 0 0
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Table 8.3: Suitable orders with S0 = S ∩K0 is Gorenstein for K = Q(i)K0
No. g Index 1 Index 2
1 [1,−5, 2] 1 0
2 [−1,−3, 0] 1 0
3 [−1,−2, 1] 1 0
4 [8,−14, 1] 1 3
5 [−8,−10,−1] 1 3
6 [8,−18, 3] 1 3

Table 8.4: Suitable orders with S = SQ(i) S0 for K = Q(i)K0
No. g Index 1 Index 16
1 [1,−5, 2] 1 1
2 [−1,−3, 0] 1 1
3 [−1,−2, 1] 1 1
4 [8,−14, 1] 1 0
5 [−8,−10, 1] 1 0
6 [8,−18, 3] 1 0

If we omit the condition that δS = 1, then, in general, we do not get an explicit
bound on the primes dividing the index [OK : S ], unless we are considering specific
classes of examples.

In situations where we do not have a complete set of primes P as previously
mentioned, we make the assumption that the index is not divisible by any prime
larger than 105. We then replace P in the proof of Theorem 8.10 with the set of all
primes below 105 and apply the same search for potential endomorphism rings. We
get that there appear no new orders. Apart from using a different set of primes P ,
the proof of Theorem 8.11 is the same as the one of Theorem 8.10.

Theorem 8.11.
Let C/C be a simple genus 3 curve with complex multiplication by an order S ⊇ Z[i]
in a CM field K and field of moduli Q. Then C is hyperelliptic, and if [OK : S ]
is not divisible by any prime p ≥ 105, then S is one of the orders whose indices are
given in Table 8.1.

Proof. We replace the set P in the proof of Theorem 8.10 by the set of primes below
or equal 105. Applying the same computations for this set of primes does not yield
any orders beyond the ones presented in Theorem 8.10.
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Theorem 8.11 might be an indicator that the orders listed in Table 8.1 represent
the only potential endomorphism rings of simple genus 3 CM curves C with field
of moduli Q and complex multiplication by orders S which include Z[i]. Within
Chapter 9, we will explicitly compute hyperelliptic curves based on the orders de-
tailed in Table 8.1 and determine whether their respective fields of moduli are Q or
not.

Similar to our previous discussions, we now focus on the second situation, con-
sidering orders S where Z[ζ3] ⊆ S. In order to apply Theorem 8.6, we assume that
K fulfills the condition |µK | = 6. This condition is satisfied for all cyclic sextic CM
class number one fields K that include Q(ζ3), as listed in Table 4.2, except for field
No.16, where |µK | = 18.

Theorem 8.12.
Let C/C be a simple genus 3 Picard curve field of moduli field of moduli Q and
complex multiplication by an order S in a CM field K with |µK | = 6. Let K0 denote
the totally real cubic subfield of K. Then Z[ζ3] ⊆ S, and if δS = 1, then S is
maximal. Especially, for S0 = S ∩K0 and SQ(ζ3) = S ∩ Q(ζ3), if S0 is Gorenstein
or if S = SQ(ζ3) S0, then S is maximal.

Proof. Given that C is a Picard curve, Theorem 4.18 implies that Z[ζ3] ⊆ S. By
Theorem 8.1, we deduce that K is a cyclic CM class number one field that includes
the imaginary quadratic subfield Q(ζ3). Since |µK | = 6, when applying Theorem
8.6, we receive that S contains the order Smin,f , where f = [OK : S ]. Assuming
δS = 1, Corollary 8.2 provides that only primes up to 13 can divide f . Let P denote
the set of such primes. Applying Algorithm 3, we compute Smin,pk(p) for each prime
within P and discover that Smin,pk(p) = OK for all primes p 6= 3 in all the nine sextic
CM fields. Following the considerations presented at the end of Chapter 8.1, and
given that f is an integer not divided by any prime not contained in P , we conclude:

Smin,3k(3) ⊆ Smin,f ⊆ S.

Now, given that S is stable under complex conjugation, it is an overorder of

S ′min,3k(3) := Smin,3k(3) + Smin,3k(3) .

Once more, we apply the MAGMA algorithm FindOverOrders from [Mar21] to
determine the overorders of S ′min,3k(3) that are stable under complex conjugation in
all nine fields.
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This search produces 13 orders in total, of which 9 are maximal and 4 are non-
maximal. The detailed results of these computations are outlined in Appendix B.
The obtained indices are presented in Table 8.5. None of these non-maximal orders
actually fulfills δS = 1.

Following the notation from Table 4.2, in Table 8.5, the tuple [β0, β1, β2] deter-
mines the defining irreducible monic polynomial g = ∑3

i=0 βi x
i ∈ Z[x] of the totally

real cubic subfield K0 of K such that K = Q(ζ3)K0 and |µK | = 6. The other
columns give the amount of suitable orders for the specific index.

Table 8.5: Suitable orders for K = Q(ζ3)K0
No. g Index 1 Index 9
7 [1,−4, 1] 1 1
8 [−1,−2, 1] 1 1
9 [−8,−10, 1] 1 1
10 [8,−14, 1] 1 1
11 [8,−18, 3] 1 0
12 [1,−9, 6] 1 0
13 [−64,−36, 3] 1 0
14 [−27,−15, 4] 1 0
15 [−27,−21, 2] 1 0

Again, if we omit the condition δS = 1, we can only provide a complete set of
primes dividing the index [OK : S ] in specific classes of examples. Assuming that
the index is divisible only by primes less than 105, we modify P in the previous
proof of Theorem 8.12 to contain all primes below or equal 105. Once more, we
observe that no orders appear apart from those with indices specified in Table 8.5.
For further details, we refer to Appendix B. When replacing the set of primes P ,
the argument in the following theorem is precisely the one of Theorem 8.12.

Theorem 8.13.
Let C/C be a simple genus 3 Picard curve with field of moduli Q and complex
multiplication by an order S in a CM field K with |µK | = 6. Then Z[ζ3] ⊆ S, and
if [OK : S ] is not divisible by any prime p ≥ 105, then S is one of the orders in
Table 8.5.

Proof. Replacing the set P in the proof of Theorem 8.12 by the set of primes below
105 and applying the same computations for this set of primes does not yield any
orders beside those presented in Table 8.5.
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Chapter 9

Computing genus 3 curves with
CM by arbitrary orders

In this concluding chapter, we aim to show how to determine isomorphism classes of
simple genus 3 curves C/C that have complex multiplication by arbitrary orders and
field of moduli Q. This combines the theoretical results and algorithms presented
in the previous chapters.

We recall that on the one hand, the Jacobians of simple curves over C are
principally polarized abelian varieties over C. On the other hand, according to
Theorem 1.85, every principally polarized abelian variety of dimension three over
C is the Jacobian of a simple genus three curve over C. Therefore, over C, the
principally polarized abelian varieties of dimension three correspond exactly to the
Jacobian of simple genus three curves.

Moreover, as a consequence of Torelli’s theorem (see Theorem 1.84), there exists
a bijection between the isomorphism classes of genus three curves over C and the
isomorphism classes of their Jacobians. Consequently, determining the isomorphism
classes of simple genus three curves over C with complex multiplication by an
arbitrary order S in a CM field K is equivalent to determining the isomorphism
classes of simple principally polarized abelian varieties of dimension three over C
with complex multiplication by an arbitrary order S in a CM field K.

As presented in [Kıl16][Theorem 4.1.1], there are precisely 37 isomorphism classes
of principally polarized abelian varieties over C having complex multiplication by
maximal orders and field of moduli Q. Each isomorphism class corresponds to a
sextic CM class number one field that contains an imaginary quadratic subfield,
as listed in [Kıl16][Table 3.1]. Addressing this for non-maximal orders remains an
open question. We give partial answers to this question in this chapter. For context,
we refer to [BS17] in which the genus 2 case was discussed. This paper builds the
foundation of our discussion on the genus 3 case.
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We summarize the previous discussions. Firstly, as outlined in Chapter 3, in
order to identify isomorphism classes of simple principally polarized abelian varieties
of dimension 3 over C having complex multiplication by an arbitrary order S, we
want to find certain quadruples (K,Φ, a, ξ).

Within such a quadruple, we let K be a sextic CM field, let Φ be a primitive
CM type of K, and let (a, ξ) be a principally polarized ideal class of an order S in
K. Then, a is a proper fractional ideal of S, and ξ is a specific element of K as
defined in Chapter 3. We let (Kr,Φr) denote the reflex of (K,Φ).

Now, let P be a simple principally polarized abelian variety of type (K,Φ, a, ξ)
and let the field of moduli of P be Q. Then, due to Corollary 4.9, K is a cyclic
sextic CM class number one field containing an imaginary quadratic subfield and
ΩS = IKr(f) for f := [OK : S ]. As discussed in Chapter 5, this includes that
Kr = K and Φr = Φ.

Hence, our approach to determine all isomorphism classes of simple genus 3
curves having field of moduli Q can roughly be divided into the subsequent steps:

(a) Determine the cyclic sextic CM class number one fields K containing an
imaginary quadratic subfield.

(b) Find all orders S in K, which are stable under complex conjugation and
fulfill ΩS = IKr(f).

(c) Compute representatives of all principally polarized ideal classes (a, ξ), as in
Chapter 3.

(d) Reconstruct models of the curves corresponding to the principally polarized
abelian varieties.

The fields mentioned in (a) correspond directly to those listed in [Kıl16][Table
3.1]. The second point, (b), is the most challenging. We present results in Chapter 8
for the two cases Z[i] ⊆ S and Z[ζ3] ⊆ S (excluding the one field where |µK | = 18).
These cases yield either hyperelliptic or Picard curves. To be precise, in Chapter
8, we identify all such orders S with constraints on the primes dividing the index
[OK : S ] and provide a complete description whenever δS = 1. For these specific
orders S, in both scenarios, we calculate all principally polarized ideal classes (a, ξ)
for (c) applying Algorithm 1. Further details and outcomes are presented in Chapter
9.1 and Chapter 9.2. In the following sections we do now aim to answer (d).
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9.1 Picard curves with CM by an order S ⊇ Z[ζ3]

Summarizing our results on Picard curves with complex multiplication and field of
moduli Q, we state two main theorems.

Theorem 9.1.
Let K be a sextic CM field with |µK | 6= 18 and totally real cubic subfield K0. There
is no simple Picard curve C/C of genus 3 having field of moduli Q and complex
multiplication by a non-maximal order S in K with δS = 1. In particular, there
is no such Picard curve satisfying either the condition that S0 is Gorenstein or the
condition that S = SQ(ζ3) S0, where SQ(ζ3) := S ∩Qζ3 and S0 := S ∩K0.

Proof. Let C/C be a simple Picard curve of genus 3 with CM by a non-maximal
order S in K with δS = 1 and field of moduli Q. Then, due to Theorem 8.12, S is
maximal. This contradicts the assumption that S is non-maximal.

Additionally, when we omit the condition δS = 1 and instead assume that the
index [OK : S ] is divisible only by primes less than 105, we obtain at the following
theorem, which was verified computationally using Algorithm 1.

Theorem 9.2.
Let K be a sextic CM field with |µK | 6= 18 and totally real cubic subfield K0. There
is no simple Picard curve C/C having field of moduli Q and complex multiplication
by a non-maximal order S in K such that [OK : S ] is only divisible by prime
numbers p ≤ 105.

Proof. Let C/C be a simple Picard curve of genus 3 with CM by a non-maximal
order S in K. Let [OK : S ] be only divisible by prime numbers p ≤ 105, and let
C have field of moduli Q. Then, due to Theorem 8.13, S is one of the orders in
Appendix B whose indices are also presented in Table 8.5. None of these 4 non-
maximal orders provides a principally polarized ideal class. This contradicts the
assumption that C has CM by S.
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9.2 Hyperelliptic genus 3 curves with CM by an
order S ⊇ Z[i]

When considering simple hyperelliptic genus 3 curves with CM by a non-maximal
order S that includes Z[i], a more in-depth understanding of the explicit construc-
tion of the curves is required. Generally, taking (a, ξ) as a principally polarized
ideal class that determines an isomorphism class, as described in Chapter 3 (com-
puted using Algorithm 1), we describe the process of computing a model of the
corresponding hyperelliptic curve. Finally, we will present an explicit reconstruc-
tion algorithm in Chapter 9.2.5. The computational results are given in Chapter
9.2.6 and Chapter 9.2.7. Our implementations in MAGMA ([Bos+22]) are based
on the very useful packages [SCV21], [Sij22], and [Sij21].

9.2.1 Computing the period matrix

Building on the findings in Chapter 3, with a particular focus on Theorem 3.3, let
g be a positive integer, and let (K,Φ) be a CM type where [K : Q ] = 2g. Given a
principally polarized ideal class (a, ξ) of an order S in K, our goal is to determine
the associated period matrix Ω in the Siegel upper half-space Hg. For a detailed
exploration, we refer to [Lan83].

Revisiting Theorem 3.3, the CM type Φ and ξ are chosen such that

K = K0(ξ) , −ξ2 ∈ K++
0 , and Imφ(ξ) > 0 for allφ ∈ Φ.

We represent the embeddings in Φ by φ1, . . . , φg. For two vectors in Cg×1, namely
x = (x1, . . . , xg)T ∈ Cg×1 and y = (y1, . . . , yg)T ∈ Cg×1, we introduce a Riemann
form as

Eξ(x, y) =
g∑
j=1

φj(ξ)(x̄jyj − xj ȳj).

Given that φj(ξ) is purely imaginary with a positive imaginary part, this symmetric
form Eξ is positive definite. Moreover, for any α, β ∈ K, we have

Eξ(Φ(α),Φ(β)) = TrK/Q(ξᾱβ).

For the computation, an initial step is determining a Z-basis A = (a1, . . . , a2g)
for a such that Φ(A) is symplectic with respect to Eξ. This means that

Eξ(Φ(ai),Φ(aj))i,j =
 0 Eg

−Eg 0

 .
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We define the vectors bi := Φ(ai) ∈ Cg. Then, we let Ω1 := (b1 · · · bg) ∈ Cg×g, and
let Ω2 := (bg+1 · · · b2g) ∈ Cg×g. Then Φ(a) ≈ Ω1Zg + Ω2Zg, which is isomorphic to
Zg +ΩZg. In this context, Ω := Ω−1

2 Ω1 is contained in Hg and represents the period
matrix corresponding to (a, ξ).

9.2.2 The Rosenhain model of a hyperelliptic curve

Definition 9.3.
Let C be a hyperelliptic genus g curve over C. A complex model

C : y2 = x (x− 1) (x− a3) · · · (x− a2g+1)

where a3, . . . , a2g+1 ∈ C, is called Rosenhain model of C.

We assume that a period matrix Ω ∈ Hg is given.

Definition 9.4.
A period matrix Ω ∈ Hg is called hyperelliptic if it represents the Jacobian of a
hyperelliptic curve.

We provide a brief overview on how to determine whether Ω is hyperelliptic,
following [Wen01a]. Recall the definitions of theta characteristics as discussed in
Chapter 1.5.2.

Definition 9.5.
We call a set {ηi | i = 1, . . . , 2g+ 1} of distinct column vectors ηi ∈ (Z/2Z)2g \ {0}

such that for all ηi =
δi
εi

 and ηj =
δj
εj

 with i 6= j we have ηTi ηj ≡ 0 (mod 2) an

azygetic fundamental system.

For {ηi | i = 1, . . . , 2g + 1}, B := {1, . . . , 2g + 1} and T ⊆ B, we define
ηT := ∑

t∈T ηt and for U ⊆ B we define T ◦ U := (T ∪ U) \ (T ∩ U). We can now
state the following theorem, which is [Wen01a][Theorem 4.2].

Theorem 9.6.
Let Ω ∈ Hg be a period matrix. Then Ω is hyperelliptic if and only if there exists an
azygetic fundamental system {ηi | i = 1, . . . , 2g + 1} such that the theta constants
Θ[ηT ](Ω) vanish in Ω for T ⊆ B with |T | ≡ 0 (mod 2) if and only if |(T ◦U)| 6= g+1,
where U = {u ∈ B | u ≡ 1 (mod 2)}.

Note that by [Mum07] we can immediately provide such an azygetic fundamental
system (see also citeWEHYP). Furthermore, Sp(2g,Z/2Z) acts transitively on the
set of azygetic fundamental systems.
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Definition 9.7.
An azygetic fundamental system is called admissible if all even theta constants are
contained in

M := {Θ[ηT ] | |T | ≡ 0 (mod 2) and |(T ◦ U)| 6= g + 1}.

In the case when g = 3, according to [Wen01a][Section 4.2], there are 29 subsets
T ⊆ B = {1, . . . , 7} such that |T | ≡ 0 (mod 2) and |(T ◦ U)| 6= 4, where we
have U = {1, 3, 5, 7} for this scenario. Conversely, there are 28 odd theta constants.
Therefore, when choosing any admissible fundamental system, there exists precisely
one even theta constant Θ[η] where η = ηT for a certain subset T that fulfills the
conditions |T | ≡ 0 (mod 2) and |(T ◦ U)| 6= 4. Following this, the theorem given
above can be reduced to the following criterion, which is [Wen01a][Theorem 4.3].

Theorem 9.8.
Let Ω ∈ H3 be a period matrix. Then Ω is hyperelliptic if and only if exactly one
even theta constant vanishes in Ω.

Let Ω ∈ H3 be hyperelliptic. We are then able to compute a Rosenhain model of
C using the vanishing theta constant and the azygetic fundamental system as out-
lined in [Web97], [Wen01a], and [Bal+16]. In our computational work, we applied
the algorithms provided in the Magma package [Sij22], especially the fast theta
computation algorithm CalculTheta, which is originally presented in [LT16].

9.2.3 The Shioda invariants of a hyperelliptic curve

We first provide a very brief introduction to Shioda invariants. Then we explain how
to compute them when given a Rosenhain model of a hyperelliptic curve of genus
three. For a more profound understanding and definitions related to this topic,
we refer to [LR12] and [Wen01b], which are also the references for the following
discussions.

Consider a field k together with its algebraic closure denoted as k̄. Let V be a 2-
dimensional vector space over k, together with a basis (X,Z). For a given positive
integer n ∈ Z, let Sn(V ) denote the vector space of dimension n + 1 containing
homogeneous forms of degree n in terms of (X,Z). Let G be a subset of GL(2, k)
and M be contained in G. For any form F ∈ Sn(V ), we can define the action of
M on F as (M.F )(X,Z) = F (M−1(X,Z)), resulting in a projectively equivalent
binary form M.F .
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Definition 9.9.
Let r ≥ 0 be an integer and (n1, . . . , nm) be positive integers. We call a multi-
homogeneous polynomial function

C :
m⊕
i=1

Sni(V ) −→ Sr(V )

of multi-degree (d1, . . . , dm) a covariant if there exists ω ∈ Z such that

C(M.F1, . . . ,M.Fm) = det(M)−ωM.C(F1, . . . , Fm)

for all M ∈ G and (F1, . . . , Fm) ∈ ⊕mi=1S
ni(V ). The integer r is called the order

of C and if r = 0, then C is called an invariant. The quotient of two invariants is
called an absolute invariant.

We have special interest in the case m = 1, in which we set n := n1 and d := d1.
Here r is called the order of the covariant and whenever nd − r ≡ 0 (mod 2), we
call ω the weight of the covariant. Otherwise, the covariant is zero. Note that
F (X,Z) ∈ Sn(V ) is actually a covariant of degree n and of order 1.

Definition 9.10.
Let g1 and g2 be covariants of degree n and m and orders r and s, respectively. For
any h ∈ N, we define the h-th ueberschiebung of g1 and g2 as

(g1 g2)h := (m− h)! (n− h)!
m!n!

(
∂g1

∂x

∂g2

∂z
− ∂g1

∂z

∂g2

∂x

)h
.

In the notation of the definition, the h-th ueberschiebung of g1 and g2 determines
another covariant of degree n+m and order r + s− 2h.

Let us revisit the scenario where C : y2 = f(x) and deg f ∈ {2g + 1, 2g + 2}
defines a hyperelliptic curve of genus g. This could be represented by a Rosenhain
model of C/C. By homogenizing f(x), we obtain Y 2 = F (X,Z) where F is a
binary form of degree 2g + 2. Let I2g+2 denote the graded ring of invariants. The
following proposition, presented in [LR12][Proposition 1.3], states that, up to a
specific equivalence, the potential values of a generator set for I2g+2 correspond to
the points in the coarse moduli space of hyperelliptic curves of genus g.

Proposition 9.11.
Let {Ii} be a set of homogeneous generators of I2g+2 and di := deg Ii. Then two
hyperelliptic curves C1 : y2 = f1(x) and C2 : y2 = f2(x) of genus g are k̄-isomorphic
if and only there exists λ ∈ k̄×, such that Ii(f2) = λdiIi(f1) for all i.
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Definition 9.12.
Let f be a binary octic. The following set of invariants is called Shioda invariants:

J2 = (f f)8, J3 = (f g)8, J4 = (e e)4, J5 = (me)4, J6 = (e h)4,

J7 =(mh)4, J8 = (p h)4, J9 = (n h)4, J10 = (q h)4 .

Here we let

g = (f f)4, e = (f f)6, h = (e e)2, m = (f e)4,

n =(f h)4, p = (g e)4, q = (g h)4.

Now let g = 3, and let f be a binary octic. Then, as shown in [Shi67], the Shioda
invariants are generators for I8 and provided due to the ueberschiebung of f . Note
that, according to Proposition 9.11, the invariants J2, . . . , J10 uniquely determine
the isomorphism class. Furthermore, only the invariants J2, . . . , J7 are algebraically
independent, while J8, J9, and J10 can be expressed in terms of J2, . . . , J7. For our
specific situation, we present the subsequent lemma, which originally appears in
[Wen01b][Corollary 4.4.5] and is also mentioned in [LR12][Lemma 3.4].

Lemma 9.13.
Let C : x2 = f(x) be a hyperelliptic curve over a subfield k of C with Aut(C) ⊇ C4,
then Ji(f) = 0 for all i = 3, 5, 7, 9 and the isomorphism class of C over k̄ is uniquely
determined by (J2, J4, J6, J8, J10).

Note that Weng has used specific absolute invariants j1, . . . , j9, which are for-
mulated as products of J2, . . . , J10 divided by the discriminant ∆ of the binary form
f . Specifically, she defined

j1 := J7
2

∆ , j3 := J5
2J4

∆ , j5 := J4
2J6

∆ , j7 := J3
2J8

∆ , j9 := J2
2J10

∆ .

For our calculations, we applied [Sij22]. In order to reconstruct a model of the curve
in the subsequent step, it is essential to recognize the Shioda invariants as algebraic
elements. The package [SCV21] provides the algorithm NumberFieldExtra, which
proved to be highly effective in identifying complex Shioda invariants as algebraic
numbers.

9.2.4 From Shioda invariants to hyperelliptic curves

The remaining task is to reconstruct the curve from its Shioda invariants. A method
for this is provided in [LR12]. This method depends on the automorphism group
of the curve (see [LR12][Algorithm 3]). In the case where Aut(C) = C4, the hyper-
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elliptic curve C can be defined over its field of moduli k0 (see [LR12][Proposition
4.18]). To be precise, there exists f ∈ k0[x] such that C : y2 = f(x). For the recon-
struction of a model of the curve over its field of moduli from the Shioda invariants,
we apply the MAGMA function HyperellipticCurveFromShiodaInvariants.

Note that, if C : y2 = f(x) for some polynomial f ∈ k[x], then its Shioda
invariants I2(f), . . . , I10(f) are contained in k. Specifically, if C has a model over
Q, then the Shioda invariants are elements in Q.

9.2.5 Hyperelliptic curve reconstruction algorithm

In order to summarize the discussions of this section, we present a final algorithm
for reconstructing a hyperelliptic curve. Let (a, ξ) be a principally polarized ideal
class (a, ξ), where the multiplier ring of a is an order S ⊇ Z[i] in a sextic CM
class number one field K ⊇ Q(i). The element ξ ∈ K defines a primitive CM
type Φ mapping ξ to the positive imaginary axis. If we define f := [OK : S ],
then ΩS = IKr(f), where Kr is the reflex field of (K,Φ). Then (a, ξ) uniquely
characterizes an isomorphism class of the Jacobian J of a hyperelliptic curve C

with its field of moduli k0 contained within the reflex field Kr.

The following Algorithm 4 computes a hyperelliptic model of C over k0 by
specifically applying the mentioned algorithms from [SCV21], [Sij22], and [Sij21]. In
order to identify the Shioda invariants as algebraic numbers, we use of the function
NumberFieldExtra. Note that, in our applications, we do not exceed a precision of
5400 digits in order to identify the Shioda invariants as algebraic integers. In most
cases, a precision of 1000 digits is enough.
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Algorithm 4: Principally Polarized Ideal Class To Curve
input : A principally polarized ideal class (a, ξ) as above.
output: A hyperelliptic model of the curve over the field of moduli k0.

1 Find the primitive CM type Φ that maps ξ to the positive imaginary axis.
2 Compute a Z-basis A of a such that Φ(A ) is symplectic with respect to Eξ.
3 Initialize a precision prec.
4 Compute the period matrix Ω with precision prec.
5 Reduce Ω with LLL algorithm.
6 Compute the theta values of Ω.
7 Construct a complex Rosenhain model Cros from the theta values.
8 Compute complex Shioda invariants T from Cros.
9 Try to algebraize T over the subfields of the reflex field Kr of (K,Φ).

10 while dind’t find algebraic Shiodas do
11 Raise the precision prec.
12 Compute the period matrix Ω with precision prec.
13 Reduce Ω with LLL algorithm.
14 Compute the theta values of Ω.
15 Construct a complex Rosenhain model Cros from the theta values.
16 Compute complex Shioda invariants T from Cros.
17 Try to algebraize T over the subfields of the reflex field Kr of (K,Φ).
18 end
19 Compute a model C/k0 from the algebraized Shioda invariants.
20 return C
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9.2.6 Results for hyperelliptic curves over Q

Having discussed the construction of a simple genus three hyperelliptic curve over
its field of moduli applying Algorithm 1 and Algorithm 4, we can now formulate
the following theorems for these curves.

Theorem 9.14.
Let K be a sextic CM field with totally real cubic subfield K0. There is no simple hy-
perelliptic curve C defined over Q having complex multiplication by a non-maximal
order S ⊇ Z[i] in K such that δS = 1.

Proof. Let C/C be a simple hyperelliptic curve of genus 3 with field of moduli Q
and CM by a non-maximal order S ⊇ Z[i] satisfying δS = 1. Given Theorem 8.10,
S is one of the orders listed in Appendix A, with their respective indices presented
in Table 8.2. Applying Algorithm 1, we calculate every principally polarized ideal
class for each of the 21 non-maximal orders S. For every such class, we apply
Algorithm 4 to compute the Shioda invariants and a model of C over its field of
moduli k0. Observing that none of these Shioda invariants are completely defined
over Q, it follows that none of these curves have field of moduli Q, which contradicts
our initial assumption. Hence, none of these curves can be represented over Q.

While performing the computations for the proof of Theorem 9.14, we observe
that each set of Shioda invariants is defined over the totally real cubic subfield K0

of K. Furthermore, we derive models of the curves over k0 = K0. Note that, due to
Corollary 4.7 and the fact that ΩS = IK(f), we already know that a model should
exist over a subfield of K. However, the precise field only becomes evident when
computing the Shioda invariants.

We mention that not all considered orders deliver principally polarized ideal
classes. The subsequent table presents the number of classes for each of the orders.
The numbering of the orders corresponds to the convention in Appendix A.

Table 9.1: Non-maximal orders Z[i] ⊆ S with principally polarized ideal classes
No. 1.2. 1.3. 1.4. 2.2. 2.3. 2.4. 3.2. 3.3. 3.4.

# ppics 2 3 2 2 2 2 2 2 2

On the other hand, omitting the condition that δS = 1, but assuming that the
index [OK : S ] is only divisible by primes smaller than 105, we find the subsequent
theorem.
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Theorem 9.15.
Let K be a sextic CM field with totally real cubic subfield K0. There is no simple hy-
perelliptic curve C defined over Q having complex multiplication by a non-maximal
order S ⊇ Z[i] in K such that [OK : S ] is only divisible by primes p ≤ 105.

Proof. Let C/C be a simple hyperelliptic genus 3 curve with field of moduli Q and
CM by a non-maximal order S ⊇ Z[i] such that [OK : S ] is divisible only by
primes p ≤ 105. Then, by Theorem 8.11, S corresponds to one of the orders listed
in Appendix A, with their indices also shown in Table 8.1. By using Algorithm
1, we compute every principally polarized ideal class for each of the non-maximal
orders S. For each of these classes, applying Algorithm 4, we observe that none of
the resulting sets of Shioda invariants are entirely defined over Q. Consequently,
none of these curves has field of moduli Q, contradicting our initial assumption.
Specifically, none of these curves can be defined over Q.

9.2.7 Results for hyperelliptic curves over K0

For 17 of the 19 computed principally polarized ideal classes in a non-maximal order
S ⊇ Z[i], we are able to compute a model of the corresponding hyperelliptic curve
over the totally real cubic subfield K0 of the CM class number one field K using
Algorithm 4. We provide a very brief summary of the reduction process of their
models and refer to [BS15] for more details.

In general, following the notation in [BS15], if Hn(k) denotes the set of separable
binary forms of degree n ≥ 3 in k[X,Z] for some field k, then GL(n, k) × k∗ acts
on Hn(k) via

F (X,Z), (
a b

c d

 , u)
 7→ uF (aX + bZ, cX + dZ) .

If f ∈ k[x] is a polynomial such that f(x) = F (x, 1), then this action comes down
to f(x)× (

a b

c d

 , u)
 7→ u (cx+ d)n f

(
ax+ b

cx+ d

)
.

Now let n ≥ 6 be even, F ∈ Hn(k) and f ∈ k[x] define the hyperelliptic curve C
of genus g = (n− 2)/2 meaning that C : Y 2 = F (X,Z) in the weighted projective
space P(1,g+1,1) and C : y2 = f(x) is an affine model of C. The following proposition
is [BS15][Proposition 4.1].
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Proposition 9.16.
Let k be a field and F, F1 ∈ H2g+2(k) for g ≥ 2. If Aut(C)k̄ = {1, ι}, where ι

denotes the hyperelliptic involution, then CF and CF1 are isomorphic over k̄ if and
only if they lie in the same orbit of GL(n, k)× k∗.

Due to Proposition 9.16, we may find smaller models of the curves by searching
for minimal representatives within a specific orbit. To be more precise, we aim to
compute a binary form F within an orbit for which the valuation of the discriminant
is minimal for all places of k. Generally, there does not always exists such a binary
form (see [BS15][Chapter 4.2.2]). Fortunately, if k has class number one, then such
a minimal binary form exists. This condition is met for all our considered totally
real cubic number fields K0. Moreover, we assume that Z[i] ⊆ S. Hence, for each of
our 19 principally polarized ideal classes the automorphism group of the curve over
K̄0 is {1, ι}. This justifies the application of the reduction algorithms reduce_gcd
and reduce_discriminant from [BS22] (implemented in SageMath [The21]). For
a more detailed discussion on the reduction of binary forms, we direct the reader to
[SC03] and [BS15]. In order to verify the complex multiplication of the curves C/K0,
we use the function HeuristicEndomorphismAlgebra from [Sij21]. In Appendix
E, we present some examples of the models (after applying both reduce_gcd and
reduce_discriminant) of the resulting simple hyperelliptic curves C/K0 that have
complex multiplication by a non-maximal order S ⊇ Z[i].

9.3 Outlook

There are still various open questions that are worth considering for future research
on these topics.

Firstly, in order to limit the number of CM types (K,Φ) to consider, we assumed
our principally polarized abelian varieties of dimension 3 with complex multiplica-
tion by an order S in K to have field of moduli Q. As highlighted in Chapter
8.2, the resulting CM fields are cyclic Galois. A potential generalization would be
considering any field of moduli contained in the reflex field Kr. This would still
result in CM class number one orders.

Secondly, it is of interest to explore cases where δS 6= 1. This would make it
quite challenging to follow the presented approach, as we could lose the divisibility
criterion from Chapter 6.2. However, it would significantly expand the range of
possible endomorphism rings.

Another research direction could be to seek smaller models of the curves over
the totally real cubic subfield K0 of Q. Unfortunately, over number fields larger
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than Q, the reduction techniques for models are rare. Nevertheless, this presents
an opportunity for future research.

We only briefly touched Gorenstein orders in number fields. These orders come
with a lot of useful structure. They are certainly worth a detailed examination.
We provided some computational insights and developed a foundation for better
understanding these orders, especially in number fields of degree three or greater.

Lastly, but not less significant, the CM methods for hyperelliptic genus 3 and
Picard curves, as presented in [Wen01b] and [KW05], require a more profound un-
derstanding of the invariants and the class polynomials of the isomorphism classes
of the corresponding principally polarized abelian varieties over C. We computed
several such isomorphism classes for Jacobians of hyperelliptic genus 3 curves rep-
resented by polarized ideal classes and identified their Shioda invariants. Building
on these findings, one might potentially be able to construct hyperelliptic genus 3
curves over finite fields with cryptographically useful properties.
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Appendix A

Suitable orders I

In the following tables, we let K = Q(α) = Q[x]/〈f〉 with irreducible f ∈ Z[x] and
α ∈ OK be a sextic CM class number one field containing Q(i). Let K0 = Q[x]/〈g〉
with g ∈ Z[x] be the maximal totally real cubic subfield of K such that K = K0Q(i).
Moreover, we let λ1, . . . , λ5 ∈ K be integral such that OK = 〈1, λ1, . . . , λ5〉Z. For
each such CM field, we compute every non-maximal order S ( OK containing Z[i],
which has a CM class number one, is stable under complex conjugation, and fulfills

[OK : S ]
∣∣∣∣ B4 NK0/Q(∆K/K0),

where B is the parameter depending only on K given by Theorem 7.21. This
delivers the computational results for Chapter 8.2 (the case Z[i] ⊆ S). We give
the order S via the transformation matrix T ∈ Z6×6 of OK into S with respect
to (1, λ1, . . . , λ5). Additionally, we provide the parameter δS and indicate whether
S0 := S ∩K0 is Gorenstein or if S = SQ(i)S0, where SQ(i) := S ∩Q(i).

Table A.1: Orders in sextic CM field K ⊇ Q(i) No. 1

f = x6 + 4x5 − 3x4 − 10x3 + 40x2 − 32x+ 37
g = x3 + 2x2 − 5x+ 1

λ1 = α, λ2 = α2, λ3 = α3, λ4 = α4

λ5 = 1/2477 (α5 + 44α4 + 1757α3 + 914α2 + 1922α + 61)
No. T [OK : S ] δS S0 Gorenstein S = SQ(i) S0

1.1



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 1 1 0 1 0
0 0 0 0 0 2


16 1 X

√
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No. T [OK : S ] δS S0 Gorenstein S = SQ(i) S0

1.2



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 1 1 0 1 0
0 1 1 0 0 1


8 1 X X

1.3



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 1 1 0 1 0
0 1 0 1 0 1


8 1 X X

1.4



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 1 1 0 0
0 1 1 0 1 0
0 0 0 0 0 2


8 1 X X

1.5



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 1 1 0 0
0 1 1 0 1 0
0 1 1 0 0 1


4 2 X X
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Table A.2: Orders in sextic CM field K ⊇ Q(i) No. 2

f = x6 − 3x4 − 2x3 + 12x2 + 12x+ 17
g = x3 − 3x− 1

λ1 = α, λ2 = α2, λ3 = α3, λ4 = α4

λ5 = 1/757 (α5 + 162α4 + 503α3 + 485α2 + 611α + 584)
No. T [OK : S ] δS S0 Gorenstein S = SQ(i) S0

2.1



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 1 1 0 1 0
0 0 0 0 0 2


16 1 X

√

2.2



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 1 1 0 1 0
0 0 0 0 0 1


8 1 X X

2.3



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 1 1 0 1 0
0 0 1 1 0 1


8 1 X X

2.4



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 1 1 0 0
0 1 1 0 1 0
0 0 0 0 0 2


8 1 X X

2.5



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 1 1 0 0
0 1 1 0 1 0
0 0 0 0 0 1


4 2 X X
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Table A.3: Orders in sextic CM field K ⊇ Q(i) No. 3

f = x6 + 2x5 − 2x3 + 7x2 + 8x+ 13
g = x3 + x2 − 2x− 1

λ1 = α, λ2 = α2, λ3 = α3, λ4 = α4

λ5 = 1/533 (α5 + 212α4 + 281α3 + 378α2 + 503α + 104)
No. T [OK : S ] δS S0 Gorenstein S = SQ(i) S0

3.1



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 1 1 0 1 0
0 0 0 0 0 2


16 1 X

√

3.2



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 1 1 0 1 0
0 1 1 0 0 1


8 1 X X

3.3



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 1 0 1 0 0
0 1 1 0 1 0
0 0 0 0 0 2


8 1 X X

3.4



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 1 1 0 1 0
0 0 1 1 0 1


8 1 X X

3.5



1 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 1 0 1 0 0
0 1 1 0 1 0
0 1 1 0 0 1


4 2 X X
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Table A.4: Orders in sextic CM field K ⊇ Q(i) No. 4

f = x6 + 2x5 − 24x4 − 8x3 + 217x2 − 298x+ 274
g = x3 + x2 − 14x+ 8

λ1 = α, λ2 = α2, λ3 = α3, λ4 = 1/4 (α4 + 2α3 + 3α2 + 2α + 2)
λ5 = 1/16232 (α5 + 1257α4 + 15181α3 + 3895α2 + 6668α + 446)

No. T [OK : S ] δS S0 Gorenstein S = SQ(i) S0

4.1



1 0 0 0 0 0
0 2 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2


4 2 X X

4.2



1 0 0 0 0 0
0 2 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1


2 1

√
X

4.3



1 0 0 0 0 0
0 2 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


2 1

√
X

4.4



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2


2 1

√
X
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Table A.5: Orders in sextic CM field K ⊇ Q(i) No. 5

f = x6 + 2x5 − 16x4 − 32x3 + 89x2 + 190x+ 202
g = x3 + x2 − 10x− 8

λ1 = α, λ2 = α2, λ3 = α3, λ4 = 1/4 (α4 + 2α3 + 3α2 + 2α + 2)
λ5 = 1/8744 (α5 + 1933α4 + 5477α3 + 187α2 + 4868α + 4870)

No. T [OK : S ] δS S0 Gorenstein S = SQ(i) S0

5.1



1 0 0 0 0 0
0 2 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2


4 2 X X

5.2



1 0 0 0 0 0
0 2 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1


2 1

√
X

5.3



1 0 0 0 0 0
0 2 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


2 1

√
X

5.4



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2


2 1

√
X
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Table A.6: Orders in sextic CM field K ⊇ Q(i) No. 6

f = x6 + 6x5 − 24x4 − 80x3 + 393x2 − 438x+ 386
g = x3 + 3x2 − 18x+ 8

λ1 = α, λ2 = α2, λ3 = α3, λ4 = 1/4 (α4 + 2α3 + 3α2 + 2α + 2)
λ5 = 1/33832 (α5 + 345α4 + 6977α3 + 13799α2 + 17896α + 27294)

No. T [OK : S ] δS S0 Gorenstein S = SQ(i) S0

6.1



1 0 0 0 0 0
0 2 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2


4 2 X X

6.2



1 0 0 0 0 0
0 2 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1


2 1

√
X

6.3



1 0 0 0 0 0
0 2 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


2 1

√
X

6.4



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2


2 1

√
X
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Appendix B

Suitable orders II

In the following tables, we let K = Q(α) = Q[x]/〈f〉 with f ∈ Z[x], α ∈ OK , and
let |µK | = 6 be a sextic CM class number one field containing Q(ζ3). Moreover, let
K0 = Q[x]/〈g〉 with g ∈ Z[x] be the maximal totally real cubic subfield of K such
that K = K0Q(ζ3). We let λ1, . . . , λ5 ∈ K be integral with OK = 〈1, λ1, . . . , λ5〉Z.
For each such CM field, we compute every non-maximal order S ( OK containing
Z[ζ3], which has a CM class number one, is stable under complex conjugation, and
fulfills

[OK : S ]
∣∣∣∣ B4 NK0/Q(∆K/K0),

where B is the parameter depending only on K given by Theorem 7.21. This
provides the computational results for Chapter 8.2 (the case Z[ζ3] ⊆ S). Again, we
present the order S via the transformation matrix T ∈ Z6×6 with respect to the
basis of OK . Additionally, we provide the parameter δS, and we indicate whether
S0 := S ∩ K0 is Gorenstein or if S = SQ(ζ3)S0, where SQ(ζ3) := S ∩ Q(ζ3). In the
last table, which is Table B.5, we list the sextic CM fields K ⊇ Q(ζ3) that do not
produce a non-maximal order satisfying the above-mentioned conditions.

167



Table B.1: Orders in sextic CM field K ⊇ Q(ζ3) No. 7

f = x6 + 2x5 + 2x4 + 6x3 + 51x2 − 32x+ 151
g = x3 + x2 − 4x+ 1

λ1 = α, λ2 = α2, λ3 = 1/2 (α3 + α + 1), λ4 = 1/2 (α4 + α2 + α)
λ5 = 1/15338 (α5 + 5558α4 + 4856α3 + 8069α2 + 13779α + 11803)

No. T [OK : S ] δS S0 Gorenstein S = SQ(ζ3) S0

7.1



1 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 2 2 1 0 0
0 2 0 0 1 0
0 1 0 0 0 1


9 3 X X

Table B.2: Orders in sextic CM field K ⊇ Q(ζ3) No. 8

f = x6 + 2x5 + 6x4 + 6 x3 + 35x2 + 28x+ 91
g = x3 + x2 − 2x− 1

λ1 = α, λ2 = α2, λ3 = 1/2 (α3 + α + 1), λ4 = 1/2 (α4 + α2 + α)
λ5 = 1/8762 (α5 + 562α4 + 3675α3 + 3317α2 + 4392α + 6188)

No. T [OK : S ] δS S0 Gorenstein S = SQ(ζ3) S0

8.1



1 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 2 1 0 0
0 0 1 0 1 0
0 1 1 0 0 1


9 3 X X
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Table B.3: Orders in sextic CM field K ⊇ Q(ζ3) No. 9

f = x6 + 2x5 − 10x4 − 24x3 + 117x2 + 262x+ 628
g = x3 + x2 − 10x− 8

λ1 = α, λ2 = 1/2 (α2 + α), λ3 = 1/2 (α3 + α), λ4 = 1/8 (α4 + 2α3 + 3α2 + 2α + 4)
λ5 = 1/26032 (α5 + 827α4 + 11941α3 + 11205α2 + 22406α + 2492)

No. T [OK : S ] δS S0 Gorenstein S = SQ(ζ3) S0

9.1



1 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 1 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1


9 3 X X

Table B.4: Orders in sextic CM field K ⊇ Q(ζ3) No. 10

f = x6 + 2x5 − 18x4 + 245x2 − 434x+ 892
g = x3 + x2 − 14x+ 8

λ1 = α, λ2 = 1/2 (α2 + α), λ3 = 1/2 (α3 + α), λ4 = 1/8 (α4 + 2α3 + 3α2 + 2α + 4)
λ5 = 1/43696 (α5 + 4773α4 + 17273α3 + 20675α2 + 7874α + 9708)

No. T [OK : S ] δS S0 Gorenstein S = SQ(ζ3) S0

10.1



1 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 1 1 1 0 0
0 1 2 0 1 0
0 0 2 0 0 1


9 3 X X
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Table B.5: CM fields K ⊇ Q(ζ3) without suitable non-
maximal orders

No. f, g

11 f = x6 + 6x5 − 18x4 − 56x3 + 453x2 − 702x+ 1324
g = x3 + 3x2 − 18x+ 8

12 f = x6 + 12x5 + 27x4 − 34x3 + 336x2 − 252x+ 721
g = x3 + 6x2 − 9x+ 1

13 f = x6 + 6x5 − 54x4 − 308x3 + 993x2 + 5166x+ 9892
g = x3 + 3x2 − 36x− 64

14 f = x6 + 8x5 − 5x4 − 126x3 + 132x2 + 1008x+ 2493
g = x3 + 4x2 − 15x− 27

15 f = x6 + 4x5 − 29x4 − 114x3 + 384x2 + 1404x+ 2817
g = x3 + 2x2 − 21x− 27,
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Appendix C

Examples of diagonal Gorenstein
orders

We apply Theorem 2.4 to each totally real cubic number field listed in Table 2.1 to
describe all diagonal Gorenstein orders within these fields.

Example C.1.
Let L = Q(β) = Q[x]/〈x3 − 3x− 1〉 or L = Q(β) = Q[x]/〈x3 − x2 − 2x− 1〉 with
OL = 〈1, ω1, ω2〉Z. Then ω1 = β and ω2 = β2. In the meaning of Corollary 2.2
and due to Table 2.1, the parameters λ21, λ12 are both equal to 1. Consequently,
D1 = {1} = D2 and we only have to consider the case r = 1 = s. Now the
conditions (i)-(iii) in Theorem 2.4 (a) are trivial, and we receive the following.

(a) Let x, y ≥ 1 with gcd(x, y) = 1. Then the lattice S = 〈1, x2 y ω1, x y
2 ω2〉Z is

an order of L which is Gorenstein.
(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L, then there exist x, y ≥ 1

with gcd(x, y) = 1 such that a = x2 y and c = x y2.

Example C.2.
Let L = Q(β) = Q[x]/〈x3 + 2x2 − 5x + 1〉 with OL = 〈1, ω1, ω2〉Z. Then ω1 = β

and ω2 = β2. Due to Table 2.1, the parameters are λ21 = 11 and λ12 = 1 such that
we receive D1 = {1, 11} and D2 = {1}. Now Theorem 2.4 delivers the following.

(a) Let x, y ≥ 1 with gcd(x, y) = 1.

(i) If r = 1, s = 1 and 11 - x or
(ii) if r = 11, s = 1 and 11 - y, then

S = 〈1, r x2 y ω1, s x y
2 ω2〉Z is an order of L which is Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L, then exist x, y, r, s ∈ Z as
in (a) with a = r x2 y and c = s x y2.
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Example C.3.
Let L = Q(β) = Q[x]/〈x3 + x2 − 4x + 1〉 with OL = 〈1, ω1, ω2〉Z. Then ω1 = β

and ω2 = β2. In this case, we receive the same situation as in Example C.2 just
by replacing 11 by 5. To be more precise because of Table 2.1, the parameters are
λ21 = 5 and λ12 = 1 such that we receive D1 = {1, 5} and D2 = {1}. Now Theorem
2.4 delivers the following.

(a) Let x, y ≥ 1 with gcd(x, y) = 1.

(i) If r = 1, s = 1 and 5 - x or
(ii) if r = 5, s = 1 and 5 - y, then

S = 〈1, r x2 y ω1, s x y
2 ω2〉Z is an order of L which is Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L, then exist x, y, r, s ∈ Z as
in (a) with a = r x2 y and c = s x y2.

Example C.4.
Let L = Q(β) = Q[x]/〈x3 + 6 x2 − 9x+ 1〉 with OL = 〈1, ω1, ω2〉Z. Again, the ring
of integers is monogenic, which means that ω1 = β and ω2 = β2. Now, due to Table
2.1, the parameters are λ21 = 55 and λ12 = 1 such that we receive D1 = {1, 5, 11, 55}
and D2 = {1}. Then Theorem 2.4 delivers the following.

(a) Let x, y ≥ 1 with gcd(x, y) = 1.

(i) If r = 1, s = 1 and 5, 11 - x or
(ii) if r = 5, s = 1 and 11 - x such as 5 - y or

(iii) if r = 11, s = 1 and 5 - x such as 11 - y or
(iv) if r = 55, s = 1 and 5, 1 - y, then

S = 〈1, r x2 y ω1, s x y
2 ω2〉Z is an order of L which is Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L, then exist x, y, r, s ∈ Z as
in (a) with a = r x2 y and c = s x y2.

Example C.5.
Let L = Q(β) = Q[x]/〈x3 + x2− 14x+ 8〉 or L = Q(β) = Q[x]/〈x3 + x2− 10x− 8〉
with OL = 〈1, ω1, ω2〉Z. For both fields, we consider ω1 = β and ω2 = (1/2) (β+β2).
Now, due to Table 2.1, λ21 = 2 = λ12 such that D1 = {1, 2} = D2 and Theorem 2.4
tells us the following.

(a) Let x, y ≥ 1 with gcd(x, y) = 1.

(i) If r = 1, s = 1 and 2 - x such as 2 - y or
(ii) if r = 1, s = 2 and 2 - x or

(iii) if r = 2, s = 1 and 2 - y, then

S = 〈1, r x2 y ω1, s x y
2 ω2〉Z is an order of L which is Gorenstein,
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(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L, then exist x, y, r, s ∈ Z as
in (a) with a = r x2 y and c = s x y2.

Example C.6.
Let L = Q[x]/〈x3 + 3x2 − 18x + 8〉 with OL = 〈1, ω1, ω2〉Z. We consider ω1 = β

and ω2 = (1/2) (β + β2). Again, in the meaning of Corollary 2.2 and due to Table
2.1, λ21 = 12 and λ12 = 2 such that we get D1 = {1, 2, 3, 4, 6, 12} and D2 = {1, 2}.
Now Theorem 2.4 delivers the following.

(a) Let x, y ≥ 1 with gcd(x, y) = 1.

(i) If r = 1, s = 1 and2, 3 - x such as 2 - y or
(ii) if r = 1, s = 2 and 2, 3 - x or

(iii) if r = 2, s = 1 and 2, 3 - x such as 2 - y or
(iv) if r = 3, s = 1 and 2 - x such as 2, 3 - y or
(v) if r = 3, s = 2 and 2 - x such as 3 - y or

(vi) if r = 4, s = 1 and 2, 3 - x such as 2 - y or
(vii) if r = 6, s = 1 and 2, 3 - x such as 2 - y or

(viii) if r = 12, s = 1 and 2, 3 - x such as 2 - y, then

S = 〈1, r x2 y ω1, s x y
2 ω2〉Z is an order of L which is Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L, then exist x, y, r, s ∈ Z as
in (a) with a = r x2 y and c = s x y2.

Example C.7.
Let L = Q(β) = Q[x]/〈x3 +4x2−15x+−27〉 with OL = 〈1, ω1, ω2〉Z, where ω1 = β

and ω2 = (1/3) (β + β2). Now, due to Table 2.1, λ21 = 3 = λ12 and we receive the
analogue situation as in Example C.5 by replacing the prime 2 by 3. To be more
precise, we have D1 = {1, 3} = D2 and Theorem 2.4 tells us the following.

(a) Let x, y ≥ 1 with gcd(x, y) = 1.

(i) If r = 1, s = 1 and 3 - x such as 3 - y or
(ii) if r = 1, s = 3 and 3 - x or
(iii) if r = 3, s = 1 and 3 - y, then

S = 〈1, r x2 y ω1, s x y
2 ω2〉Z is an order of L which is Gorenstein,

(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L, then exist x, y, r, s ∈ Z as
in (a) with a = r x2 y and c = s x y2.

Example C.8.
Let L = Q(β) = Q[x]/〈x3 + 2 x2 − 21x − 8 − 27〉 with OL = 〈1, ω1, ω2〉Z and
ω1 = β such as ω2 = (1/3) (2 β + β2). Now, due to Table 2.1, λ21 = 3 = λ12 and
we receive the analogue situation as in Example C.7. To be more precise, we have
D1 = {1, 3} = D2 and Theorem 2.4 tells us the following.
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(a) Let x, y ≥ 1 with gcd(x, y) = 1.

(i) If r = 1, s = 1 and 3 - x such as 3 - y or
(ii) if r = 1, s = 3 and 3 - x or

(iii) if r = 3, s = 1 and 3 - y, then

S = 〈1, r x2 y ω1, s x y
2 ω2〉Z is an order of L which is Gorenstein,

(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L, then exist x, y, r, s ∈ Z as
in (a) with a = r x2 y and c = s x y2.

Example C.9.
Let L = Q(β) = Q[x]/〈x3 + 3x2 − 36x− 64〉 with OL = 〈1, ω1, ω2〉Z, where ω1 = β

and ω2 = (1/4) (β + β2). Now, due to Table 2.1, λ21 = 4 = λ12 such that D1 =
{1, 2, 4} = D2 and Theorem 2.4 tells us the following.

(a) Let x, y ≥ 1 with gcd(x, y) = 1.

(i) If r = 1, s = 1 and 2 - x such as 2 - y or
(ii) if r = 1, s = 2 and 2 - x such as 2 - y or

(iii) if r = 1, s = 4 and 2 - x or
(iv) if r = 2, s = 1 and 2 - x such as 2 - y or
(v) if r = 4, s = 1 and 2 - y, then

S = 〈1, r x2 y ω1, s x y
2 ω2〉Z is an order of L which is Gorenstein,

(b) If S = 〈1, a ω1, c ω2〉Z is a Gorenstein order in L, then exist x, y, r, s ∈ Z as
in (a) with a = r x2 y and c = s x y2.
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Appendix D

Examples of diagonal
non-Gorenstein orders

For each of the totally real cubic number fields listed in Table 2.1, we describe all
non-Gorenstein orders by applying Theorem 2.7.

Example D.1.
Let L = Q(β) = Q[x]/〈x3 − 3x− 1〉 or L = Q(β) = Q[x]/〈x3 − x2 − 2x− 1〉 with
OL = 〈1, ω1, ω2〉Z, ω1 = β and ω2 = β2. Then, in the meaning of Corollary 2.2 and
due to Table 2.1, the parameters λ21, λ12 are both equal to 1 and D1 = {1} = D2.
We only have to consider the case r = 1 = s. Then Theorem 2.7 gives the following.

(a) Let x > 0 and e, d be positive divisors of x with gcd(e, d) = 1 such as e d 6= x.
Then S = 〈1, e x ω1, d x ω2〉Z is an order of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L which is not Gorenstein, then there
exist x, e, d as in (a) such that a = e x and c = d x.

Example D.2.
Let L = Q(β) = Q[x]/〈x3 + 2 x2 − 5x + 1〉 with OL = 〈1, ω1, ω2〉Z, where ω1 = β

and ω2 = β2. Then, due to Table 2.1, the parameters λ21 = 11 and λ12 = 1 such
that D1 = {1, 11} and D2 = {1}. Applying Theorem 2.7 gives the following.

(a) Let x > 0 and e, d be positive divisors of x with gcd(e, d) = 1 and e d 6= x.
Then, for r ∈ D1 = {1, 11}, the lattice S = 〈1, r e x ω1, d x ω2〉Z is an order
of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L which is not Gorenstein, then exist
x, e, d, r as in (a) such that a = r e x and c = d x.

Example D.3.
Let L = Q(β) = Q[x]/〈x3 + x2− 4x+ 1〉 with OL = 〈1, ω1, ω2〉Z, where ω1 = β and
ω2 = β2. Then, due to Table 2.1, the parameters λ21 = 5 and λ12 = 1 such that
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D1 = {1, 5} and D2 = {1}. Applying Theorem 2.7, we receive the analogue result
as in Example D.2 by replacing the prime 11 by 5. To be more precise, we get the
following.

(a) Let x > 0 and e, d be positive divisors of x with gcd(e, d) = 1 and e d 6= x.
Then, for r ∈ D1 = {1, 5}, the lattice S = 〈1, r e x ω1, d x ω2〉Z is an order of
L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L which is not Gorenstein, then exist
x, e, d, r as in (a) such that a = r e x and c = d x.

Example D.4.
Let L = Q(β) = Q[x]/〈x3 + 6x2 − 9x + 1〉 with OL = 〈1, ω1, ω2〉Z and ω1 = β

such as ω2 = β2. Due to Table 2.1 the parameters λ21 = 55 and λ12 = 1 such that
D1 = {1, 5, 11, 55} and D2 = {1}. Theorem 2.7 gives the following.

(a) Let x > 0 and e, d be positive divisors of x with gcd(e, d) = 1 and e d 6= x.
Then, for r ∈ D1 = {1, 5, 11, 55}, the lattice S = 〈1, r e x ω1, d x ω2〉Z is an
order of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L which is not Gorenstein, then exist
x, e, d, r as in (a) such that a = r e x and c = d x.

Example D.5.
Let L = Q(β) = Q[x]/〈x3 + x2− 14x+ 8〉 or L = Q(β) = Q[x]/〈x3 + x2− 10x− 8〉
with OL = 〈1, ω1, ω2〉Z, where ω1 = β and ω2 = (1/2) (β+β2). Then, for both fields,
Table 2.1 tells us that the parameters are λ21 = 2 = λ12 and D1 = {1, 2} = D2.
Now Theorem 2.7 delivers:

(a) Let x > 0 and e, d be positive divisors of x with gcd(e, d) = 1 and e d 6= x.
Then, for each r ∈ D1 = {1, 2} and s ∈ D2 = {1, 2}, the lattice defined by
S = 〈1, r e x ω1, s d x ω2〉Z is an order of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L which is not Gorenstein, then there
exist x, e, d, r, s as in (a) such that a = r e x and c = s d x.

Example D.6.
Let L = Q(β) = Q[x]/〈x3 + 3x2− 18x+ 8〉 with OL = 〈1, ω1, ω2〉Z and ω1 = β such
as ω2 = (1/2) (β + β2). Here the parameters are λ21 = 12 and λ12 = 2 such that
D1 = {1, 2, 3, 4, 6, 12} and D2 = {1, 2}. We obtain the following from Theorem 2.7.

(a) Let x > 0 and e, d be positive divisors of x with gcd(e, d) = 1 and e d 6= x.
Then, for r ∈ D1 = {1, 2, 3, 4, 6, 12} and s ∈ D2 = {1, 2}, the lattice given
by S = 〈1, r e x ω1, s d x ω2〉Z is an order of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L which is not Gorenstein, then there
exist x, e, d, r, s as in (a) such that a = r e x and c = s d x.
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APPENDIX D. EXAMPLES OF DIAGONAL NON-GORENSTEIN ORDERS

Example D.7.
Let L = Q(β) = Q[x]/〈x3 + 4x2 − 15x− 27〉 with OL = 〈1, ω1, ω2〉Z, where ω1 = β

and ω2 = (1/3) (β + β2). Table 2.1 tells us that the parameters are λ21 = 3 = λ12

and D1 = {1, 3} = D2. We receive the analogue result as Example D.5 by replacing
the prime 2 with 3. To be more precise, Theorem 2.7 delivers:

(a) Let x > 0 and e, d be positive divisors of x with gcd(e, d) = 1 and e d 6= x.
Then, for every r ∈ D1 = {1, 3} and s ∈ D2 = {1, 3}, the lattice defined by
S = 〈1, r e x ω1, s d x ω2〉Z is an order of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L which is not Gorenstein, then there
exist x, e, d, r, s as in (a) such that a = r e x and c = s d x.

Example D.8.
Let L = Q(β) = Q[x]/〈x3 + 2x2 − 21x− 27〉 with OL = 〈1, ω1, ω2〉Z, where ω1 = β

and ω2 = (1/3) (2 β+β2). As in Example D.7, Table 2.1 tells us that the parameters
are λ21 = 3 = λ12 and D1 = {1, 3} = D2. Again, Theorem 2.7 gives us the following.

(a) Let x > 0 and e, d be positive divisors of x with gcd(e, d) = 1 and e d 6= x.
Then, for every r ∈ D1 = {1, 3} and s ∈ D2 = {1, 3}, the lattice given by
S = 〈1, r e x ω1, s d x ω2〉Z is an order of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L which is not Gorenstein, then there
exist x, e, d, r, s as in (a) such that a = r e x and c = s d x.

Example D.9.
Let L = Q(β) = Q[x]/〈x3 + 3x2 − 36x− 64〉 with OL = 〈1, ω1, ω2〉Z, where ω1 = β

and ω2 = (1/4) (β + β2). For this field, Table 2.1 tells us that the parameters
are λ21 = 4 = λ12 and D1 = {1, 2, 4} = D2 such that Theorem 2.7 gives us the
following.

(a) Let x > 0 and e, d be positive divisors of x with gcd(e, d) = 1 and e d 6= x.
Then, for each r ∈ D1 = {1, 2, 4} and s ∈ D2 = {1, 2, 4}, the lattice defined
by S = 〈1, r e x ω1, s d x ω2〉Z is an order of L which is not Gorenstein.

(b) If S = 〈1, a ω1, c ω2〉Z is an order in L which is not Gorenstein, then there
exist x, e, d, r, s as in (a) such that a = r e x and c = s d x.
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Appendix E

Models over the totally real cubic
subfield

In the following examples, we let S be a non-maximal order from Appendix A in a
sextic CM class number one field K = Q(α). Let K0 = Q(β) represent the totally
real cubic subfield of K. The specific label of the order is provided in the header of
each table. The curve C : y2 = f(x) offers an affine model of a simple hyperelliptic
curve over K0 with complex multiplication by S. Here, f = ∑8

i=0 λix
i ∈ OK0 [x]

is detailed through its coefficients in a separate table. The second, third, and
fourth columns present integral factors preceding β2, β, and 1 for the coefficient
λi, respectively. The table’s last row provides the prime factorization of the norm
of the discriminant of C. These models arise either from the reduction algorithm
reduce_gcd or reduce_discriminant from [BS22], depending on which yielded
smaller coefficients. The examples are organized based on the precision required to
compute the Shioda invariants from the principally polarized ideal classes.
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APPENDIX E. MODELS OVER THE TOTALLY REAL CUBIC SUBFIELD
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5894

8420
8055

9839
1883

4096
0978

0876
8262

6769
4119

2008
6679

4853
8675

2440
8595

3780
6132

5586
3360

1275
1227

2873
8060

1732
0111

7813
1933

1601
7225

9751
5243

0734
6810

3842
1711

0891
1251

4308
1707

3654
2716

4411
5648

0000
0000

0000
000

β2
1445

0610
1771

7036
0518

2933
7735

2072
5034

2261
0024

8007
1580

3294
6774

7720
3956

4127
8146

9514
8016

0836
5188

8994
6678

8435
6270

1577
5422

6227
0833

6651
9056

5113
8838

6246
3265

2793
3695

9839
5771

5618
5994

6401
1263

1457
6293

9240
7027

0068
5653

9960
1817

8784
3523

3513
1759

8383
7247

9565
0184

0413
5665

5676
1031

2500
0000

0000
000

λ 6
β

3209
8567

0318
0015

5317
2306

5419
8945

0794
2638

9030
8610

9921
0322

5434
3398

5703
2483

1308
8213

4725
0838

3420
8677

7749
4822

8394
4942

3536
4403

2588
7860

2771
1914

5549
9299

9384
0301

9272
9800

1137
3892

4015
7539

3839
8840

7850
0385

8873
3359

9193
2730

2411
8594

0398
2758

6202
8995

7871
9100

7351
2410

7249
9034

1593
7500

0000
0000

000
1

-651
1773

2681
4938

4690
4514

9932
8657

8408
6502

3277
5174

4730
2392

7337
3662

3101
2762

1609
2818

6750
9315

7444
0107

2128
5041

1103
0494

9472
6371

7700
7662

3278
6588

5558
0668

5047
6221

8382
1438

7374
1036

4429
8735

8501
7020

0302
6711

4742
1268

7300
2934

2006
1788

4699
1325

9484
7812

2588
4569

4358
6139

2277
2760

3818
7500

0000
0000

0000
β2

-712
4970

7149
6991

5281
2194

0812
6780

3186
1506

8822
4003

3233
1970

9699
8201

9923
2322

7225
1503

4186
5981

2124
2412

2142
0978

9139
7265

5410
7834

0689
5816

3083
1490

2630
2403

5249
6971

3219
0894

4085
2809

8724
1515

3974
3647

2373
3498

3674
4707

1679
9194

1827
6932

4097
8998

3761
5327

0738
9910

1425
2437

0445
7779

7607
4218

7500
0000

000
λ 7

β
1582

8294
1132

1919
6614

0477
9879

2064
8278

5905
0499

8454
2326

7938
6573

1109
5118

0159
2954

8435
3017

4106
6799

5538
1033

7986
7506

9078
3815

7798
4114

7229
2188

4697
5705

6797
3223

4156
9886

9102
7741

1261
3419

7657
2530

1950
8808

3518
7482

9372
1436

7996
7056

5795
1422

3483
5108

4684
7384

2664
0363

7518
9955

1126
7333

9843
7500

0000
000

1
3210

9152
1029

4715
5232

1447
6028

8966
4487

3686
6627

4644
1276

9346
7566

4664
2689

0116
2810

4856
8077

3513
2276

6941
9417

0319
2210

6056
1753

7627
6069

1569
8767

0059
9362

1863
6957

9965
5239

0800
2692

7890
3867

5160
0313

6106
2034

0349
1729

1671
2004

7343
0382

0390
5572

2241
8947

2219
0608

8043
1533

6805
8183

7467
5048

8281
2500

0000
000

β2
1088

9798
5673

6857
0360

2397
3529

1750
1353

9361
2243

3109
5272

4876
7308

9303
7740

4657
3571

0871
1900

0834
0535

2185
3589

7121
4122

3405
1555

2874
4090

9841
8747

9310
8158

1627
2097

7760
4302

1603
4637

9938
6907

2704
4157

2749
9626

9333
4691

2192
0727

5796
2435

5812
7566

7595
4171

5415
5606

9515
5309

5807
0593

5134
5896

7208
8623

0468
75

λ 8
β

2419
3121

9751
3245

7754
9787

5151
6749

2926
6071

4502
0864

3952
9167

4419
9397

6043
6426

0908
2762

2654
2025

2178
7859

8876
7046

0860
9613

2209
7508

8040
2737

7564
3821

1357
1949

0731
4190

4150
9364

1638
4260

3745
2017

4847
8360

9607
8797

7882
5950

2108
4189

4567
5380

4260
0126

2681
9539

3607
0564

4481
3090

6800
5020

3800
2014

1601
5625

00
1

-490
7710

4286
7646

8887
4497

2356
6273

5826
7256

3688
6482

8941
8252

9514
4146

9533
3594

3485
1947

8180
7874

3837
1053

7505
7866

0996
9460

2283
5130

5314
0918

8697
8893

1201
9404

3759
2244

4121
1203

8494
1692

5336
7071

4790
8667

8122
0874

5632
6418

6746
3457

1588
2641

3097
1966

6954
2075

4974
8036

8077
9486

1347
3125

0643
7301

6357
4218

750
N K 0/

Q(∆
C)

21152
·3504

·5504
·7865

·11584
·19168

·3156 ·8
356 ·1

0312 ·1
5156 ·1

7956 ·2
2956 ·3

53112
·467

56 ·1
15156 ·1

78756 ·2
95721 ·6

619112
·198

6756 ·2
2751

56 ·2
4525

8552
321 ·1

5930
5741

669112
·117

1785
4830

4054
0391

21 ·1
2218

7983
2716

7954
2336

3519
756 ·1

3672
2642

1107
6816

6584
2903

7271
45756 ·2

2489
0685

3674
9603

7899
2579

7305
4950

4039
1321

9194
9967

2173
5921
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