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Summary
Ecological communities not only frequently harbor an enormous species diversity but also, as

a result of the multitude of interactions, regularly show complex nonlinear dynamics in com-

munity composition. While we have made progress in understanding communities of macroor-

ganisms, the structure and dynamics of microbial communities poses a new challenge and calls

existing theoretical concepts into question.

In the face of climate change and biodiversity loss and given the critical role that microbial

communities play in sustaining life on Earth, one of the most important challenges of our time is

to understand how anthropogenic influences are changing these communities and consequently

impacting ecosystem functioning.

Achieving a mechanistic understanding of microbial community dynamics encounters obsta-

cles in data-driven as well as model-led approaches. The curse of dimensionality complicates

the extraction of important information from datasets, while uncertainties in functional forms

and rate laws in microbial communities impede the formulation of mechanistic models.

In this thesis, we work towards a better understanding of complex microbial communities

through a twofold approach. On the one hand we address the challenge of analyzing high-

dimensional datasets and extracting key variables. On the other hand, we apply an alternative

modeling approach to develop a mechanistic understanding of systems characterized by high

uncertainties.

Applying a framework based on diffusion maps to a long-term bacterial time series from the

Baltic Sea, we are able to identify key variables, i.e. metabolic niches in this dataset. This allows

us to coarse-grain the bacterial communities in terms of their metabolic niches. Identifying these

niches enables us to transform the species time series into potentially occupied metabolic niches

over time. Thereby this approach reduces dimensionality by identifying key variables, that are

nonlinear combinations of the measured variables and establishes a framework to link the data

to a fundamental ecological concept, the niche.

In the second part of this thesis, we employ a generalized modeling approach to study a

common motif of bacterial communities, i.e. mutualistic cross-feeding. While these mutual-

istic interactions are typically anticipated to be destabilizing, real-world observations of their

common occurrence in bacterial communities appear to contradict these predictions. Applying

the generalized modeling approach we can efficiently analyze a large range of plausible models

and derive analytical results. We identify metabolic costs of trade metabolite production as an

important factor that contributes to stability of these systems. In summary, the advancements

made here in both, data analysis and modeling of microbial communities, contribute to develop

an understanding of the mechanisms behind community composition, dynamics over time and

the relation to ecosystem functioning.
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Zusammenfassung

Ökologische Gemeinschaften beherbergen nicht nur häufig eine enorme Artenvielfalt, sondern

zeigen aufgrund der Vielzahl von Interaktionen auch regelmäßig komplexe nichtlineare Dy-

namiken in der Gemeinschaftszusammensetzung. Während wir Fortschritte bei der Erforschung

von Makroorganismen-Gemeinschaften gemacht haben, stellt die Struktur und Dynamik von

mikrobiellen Gemeinschaften eine neue Herausforderung dar und stellt bestehende theoretische

Konzepte in Frage.

Angesichts des Klimawandels und des Verlusts an Biodiversität sowie der entscheidenden

Rolle, die mikrobielle Gemeinschaften für das Leben auf der Erde spielen, ist eine der wichtigsten

Herausforderungen unserer Zeit, zu verstehen, wie anthropogene Einflüsse diese Gemeinschaften

verändern und folglich die Funktionsweise von Ökosystemen beeinflussen.

Die Erlangung eines mechanistischen Verständnisses der Dynamik mikrobieller Gemeinschaften

stößt sowohl bei datengestützten als auch bei modellgestützten Ansätzen auf Hindernisse. Der

Fluch der Dimensionalität erschwert die Gewinnung wichtiger Informationen aus Datensätzen,

während Unsicherheiten in funktionalen Formen und Ratengesetzen in mikrobiellen Gemein-

schaften die Formulierung mechanistischer Modelle erschweren.

In dieser Arbeit streben wir ein besseres Verständnis komplexer mikrobieller Gemeinschaften

durch einen zweigeteilten Ansatz an. Einerseits gehen wir die Herausforderung an, hochdimen-

sionale Datensätze zu analysieren und Schlüsselvariablen zu extrahieren. Andererseits wenden

wir einen alternativen Modellierungsansatz an, um ein mechanistisches Verständnis von Syste-

men zu entwickeln, die durch große Unsicherheiten gekennzeichnet sind

Durch die Anwendung einer auf Diffusion Maps basierenden Methode auf eine Langzeitdaten-

reihe von Bakteriengemeinschaften der Ostsee können wir Schlüsselvariablen, d.h. metabolische

Nischen in diesem Datensatz, identifizieren. Dadurch können wir die bakteriellen Gemein-

schaften im Hinblick auf ihre Stoffwechselnischen grob einteilen. Die Identifizierung dieser

Nischen ermöglicht es uns, die Zeitreihen der Arten in potenziell besetzte metabolische Nischen

im Laufe der Zeit zu übersetzen. Auf diese Weise reduziert diese Methode die Dimensionalität

durch die Identifizierung von Schlüsselvariablen, die nichtlineare Kombinationen der gemessenen

Variablen sind, und schafft einen Rahmen, um die Daten mit einem grundlegenden ökologischen

Konzept, der Nische, zu verknüpfen.

Im zweiten Teil dieser Arbeit verwenden wir eine Methode zur Formulierung allgemeiner Mod-

elle, um ein häufiges Motiv bakterieller Gemeinschaften zu untersuchen, nämlich die wechselseit-

ige Nährstoffzufuhr. Während diese mutualistischen Interaktionen typischerweise als destabil-

isierend beurteilt werden, scheint das häufige Vorkommen dieser in bakteriellen Gemeinschaften

dem zu widersprechen. Durch die Anwendung der Methode zur Formulierung allgemeiner Mod-

elle können wir eine große Bandbreite plausibler Modelle effizient analysieren und analytische

Ergebnisse ableiten. Wir konnten zeigen, dass die metabolischen Kosten der Produktion von

Nährstoffen für den Partner wichtige Faktoren sind, die zur Stabilität dieser Systeme beitra-

gen. Zusammenfassend lässt sich sagen, dass die hier erzielten Fortschritte sowohl bei der

v



vi

Datenanalyse als auch bei der Modellierung mikrobieller Gemeinschaften dazu beitragen, die

Mechanismen hinter der Zusammensetzung der Gemeinschaften, ihrer Dynamik im Laufe der

Zeit und ihre Auswirkungen auf Ökosystemfunktionen besser zu verstehen.
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Chapter 1

Introduction

Imagine an alien visiting Earth for the first time. Robert May pointed out that the first

question of this visitor might be “How many distinct life forms - species - does your

planet have?” [1]. Embarrassingly, we could still only provide a very rough estimate,

for example that there are probably ∼ 8.7 million eukaryotic species [2]. More than 60

years ago, Hutchinson expressed his astonishment at the enormous diversity of animals

and plants, asking how such a number of species can exist in the light of competitive

exclusion [3]. A little later he formulated the paradox of the plankton, wondering how

these organisms can be so diverse in the face of apparently limited resources [4].

Today, the estimated diversity of microbial species on Earth, which probably exceeds 1

trillion species, extends this apparent contradiction to microbes and makes us wonder

if we can ever answer the question of how many life forms inhabit Earth [5]. Recent

advancements in molecular methods, enabling the study of uncultivated and formerly

unknown organisms [6], reveal the dominance of bacterial diversification in the tree of

life, the Domain Bacteria encompasses more major lineages of organisms than any other

Domain [7].

Not only are there an enormous number of organisms on this planet, these “endless forms

most beautiful” are also entangled, interacting with each other in various ways, coming to-

gether in complex ecological communities [8]. Robert May opens our eyes for how special

these communities are in showing that large random communities are almost always un-

stable (putting random organisms together is unlikely to lead to a stable community) [9].

Hence, the communities that we find in nature are these special combinations of a variety

of organisms.

Through their diversity in genetic material, metabolic and physiological activity, micro-

bial communities are capable of performing sophisticated and diverse chemical reactions,

driving major biogeochemical cycles [10], and engaging in diverse interactions among each

other and with macroorganisms e.g. [11, 12, 13]. Microbes inhibit almost every corner

of Earth, encompassing the vast majority of the Earth’s biological and evolutionary va-
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2 CHAPTER 1. INTRODUCTION

riety [6]. Their diverse capabilities make them crucial for ecosystem functioning and

ultimately critical for life on Earth.

Presently, the human population is drastically impacting the environment, causing the

twin crisis of climate change and biodiversity loss. Due to the importance of microbial

communities for life on Earth, two of today’s most important challenges are to understand

and predict how the anthropogenic influence alters microbial communities and how these

changes in microbial community composition in turn affect ecosystem functioning [14, 15].

While we have made progress in understanding communities of macroorganisms, the struc-

ture and dynamics of microbial communities poses a new challenge and changes how we

think about biology. For example, short generation times in microorganisms can lead to

fast changes in microbial community composition and rapid evolution [16], horizontal gene

transfer and asexual reproduction in microorganisms challenge the species concept [17]

and the multitude and crucial role of interactions between microbes and multi-cellular

organisms has led to the inception of the holobiont or more generally the metaorganism

concept [18, 19].

Progress in molecular methods, especially the ability to study also non-culturable mi-

croorganisms, has given rise to the availability of large datasets of microbial species, gene

and protein diversity and their (potential) functions [6, 20]. It has become possible to

monitor microbial community composition over time, establishing short and long-term

time series, enabling the recording of microbial diversity over time [21]. These revealed

that in addition to their enormous diversity overall, microbial communities are dynamic,

often undergoing complex dynamic fluctuations in abundances and species composition

on the daily, monthly and annual scale [22, 23, 24].

The collection of extensive datasets documenting microbial diversity worldwide, such as

the Earth microbiome project [25] and the Tara Oceans project [26], has played a crucial

role in identifying significant environmental factors that shape overarching patterns of

microbial composition. These factors include for example pH levels, nutrient availability,

climate and light conditions [23, 27, 28, 29]. These approaches have revealed aspects of

the interplay between microbial community composition and ecosystem functioning and

response to environmental change, emphasizing the importance of changes in microbial

community composition for ecosystem functions [30, 31, 32].

Experimental and field studies of microbial communities on a smaller scale shed light

on the importance of interactions among microbes and with other organisms on driv-

ing community dynamics [22, 33]. These interactions range from resource competition

and cross-feeding to viral lysis, grazing, toxin production and employment of mechanical
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weaponry [23, 34, 35, 36]. Also, microbial interactions occur on multiple spatial scales,

for example metabolite-based interactions may happen in neighboring cells or metabo-

lites may be released, spreading as public goods that may eventually be taken up by

other microbes in other locations [37].

Every endeavor to elucidate the underlying mechanisms of microbial community compo-

sition and its relation with ecosystem function is complicated by the complexity of these

communities, i.e. their enormous species diversity, their complex nonlinear dynamics and

their multitude of interactions. Descriptive studies still largely dominate the literature on

microbial community ecology, providing species or gene sequence inventories or descrip-

tions of the effect of environmental factors on the community composition [14]. Mech-

anistic understanding of microbial community composition and functions is still largely

limited to small communities or specific functions studied in isolation [38].

To foster understanding of how complex microbial communities function, we need two

essential ingredients: First conceptual frameworks to makes sense of the high-dimensional

datasets that are available. Second a modeling framework that can deal with the com-

plexities and the many uncertainties that characterize microbial communities.

Existing approaches reduce the dimensionality of large datasets of microbial communities

by coarse-graining, for example at some taxonomic level [39], into functional groups de-

rived by literature analysis [40] or along niche gradients obtained by linear dimensionality

reduction methods [41]. In most cases these ways of coarse-graining constitute an approxi-

mation, i.e. information is probably lost and nonlinear relationships may be approximated

by linear representations.

Commonly employed dimensionality reduction techniques like PCA (Principal Component

Analysis) [42], PCoA (Principal coordinates analysis), MDS (multidimensional scaling),

and t-SNE (t-Distributed Stochastic Neighbor Embedding) [43] have offered valuable in-

sights. However, it is important to note their limitations [44, 45, 46]. While PCA detects

certain global structures at the expense of local details [47], t-SNE finds some local struc-

tures at the cost of not reliably identifying global structures [44, 45]. MDS is susceptible

to noise, often causing failure in generating insightful visualizations for complex, nonlinear

data [44, 45]. The quality of the PCoA output suffers in particular if for example species

turnover is high between sampled communities [46].

A recent study by Fahimipour and Gross [44] demonstrates an alternative: Diffusion

maps [48], a de-facto parameter-free, nonlinear dimensionality reduction method yields

new variables from bacterial metabolic networks, that can be interpreted as composite

functional strategies of bacteria. In addition, Ryabov et al. [49] show that diffusion maps
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can infer functional trait axes from monitoring data and thereby enable an estimation of

functional diversity.

In this work, I extend the diffusion map approach to quantitatively organize genomic

information into potentially occupied bacterial metabolic niches over time. I apply the

method to reconstruct the dynamics of putatively occupied metabolic niches using a long-

term bacterial time series from the Baltic Sea.

In terms of modeling frameworks, interesting insights have been gained by combining

methods from statistical physics, nonlinear dynamics and complex systems theory. Com-

bining a generalized Lotka-Volterra model framework with random matrix theory, Coyte

et al. [50] study different kinds of microbial interactions and show that cooperation within

microbial communities has a destabilizing effect that can be counteracted by competitive

interactions that weaken the positive feedback loop between the interacting partners.

Other approaches consider explicitly the resource-mediated interactions, building on the

classic consumer-resource model by MacArthur [51, 52, 53]. Butler and O’Dwyer [54, 55]

for example show that the incorporation of resources that mediate interactions can change

the conclusions about system’s stability. Integrating a coarse-grained metabolism into a

consumer-resource model, Muscarella and O’Dwyer [56] demonstrate that metabolic rates

and the distribution of resources can alter interactions between species and hence can

change species dynamics.

While the generalized Lotka-Volterra modeling framework has the advantage of requiring

only few parameters and being very flexible in incorporating a mixture of interactions,

one of its limitations is that is lacks the ability to consider resource-mediated interactions

that are prevalent in microbial communities [57]. Modeling approaches following the

consumer-resource framework capture these interactions, however they often deal with a

large number of unknown parameters [38]. Since the majority of bacteria can still not be

cultured [58, 59], the precise rate laws and functional forms of ecological interactions in

microbial communities are mostly unknown. Often Holling- [60] Hill- [61] and Monod-

type [62] functions are applied in microbial community models [54, 55, 56, 63, 64, 65].

Although they are mathematical simple and satisfy some basic biological requirements,

functions with similar shapes describe certain phenomena just as well, however the effects

on stability may differ significantly [66]. In addition, estimating their parameters requires

extensive time series and model-fitting procedures which aren’t feasible even for simple

microbial communities [67].

In this thesis I explore the generalized modeling (GM) approach [66, 68] for microbial

communities. GM captures the structure of the system without restricting it to specific
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functional forms, enabling us to analyze a whole class of systems in parallel. A special

parameterization procedure yields easily interpretable parameters that can be robustly

estimated from noisy empirical data [68, 69].

I apply this modeling approach to study a common motif in bacterial communities, cross-

feeding of two types of bacteria that affect each other by producing and releasing chemical

metabolites that the other uses for growth and metabolism. In particular, I ask which

factors stabilize or destabilize these bacterial cross-feeding communities. Stability of mu-

tualistic interactions is a hotly debated topic in microbial ecology. Despite that commensal

and mutualistic interactions are predicted to be destabilizing [70] unless specific conditions

are met [54, 55], we observe apparently stable [37, 71] environmental and host-associated

microbial communities comprising opportunistic or obligate mutualists. Applying GM, I

can study this bacterial community motif with a high degree of generality, allowing us to

draw general conclusions about these systems.

I start in Chapt. 2 with introducing important concepts and tools that I use in this work.

After I give a brief introduction to dynamics and bifurcations, I provide a short overview

of networks and diffusion on networks. Then, I focus on diffusion maps in more detail as

this constitutes one of the key methods that I apply in this work. In particular, I show

how diffusion maps can overcome the so-called curse of dimensionality and identify major

explanatory variables in high-dimensional datasets.

In Chapt. 3 I review the generalized modeling (GM) approach, providing a guide to the

GM procedure as well as to the analysis of generalized models. Specifically, I show how

the GM approach can deal nicely with uncertainties in the system, offering insights on a

large class of systems. Additionally, I introduce the master stability function approach

which extends the GM approach to spatial systems.

In Chapt. 4, I apply the diffusion map method to a long-term dataset of relative abun-

dances of prokaryotic populations obtained from amplicon sequencing data of the Baltic

Sea. The diffusion map reveals a broad range of metabolic strategies of the analyzed taxa

and a distinct shape of the metabolic niche space. Using these newly identified variables,

I extend the diffusion map approach such that it allows the translation of species time

series into potentially occupied metabolic niches over time. Thereby, I can observe the

potential niche occupation dynamics, which reveal interesting niche participation as well

as patterns over time related to environmental conditions.

In Chapt. 5 I study a common cross-feeding motif of bacterial systems. I propose a simple

generalized model of two cross-feeding types of bacteria, which enables me to study the

stability properties for a large range of parameter values. Through the efficient analysis
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procedure, I can for example analyze systems, where bacteria exchange costly, cheap or

even both types of metabolites. I identify a key factor that contributes to stability in our

model system.

In Chapt.6 I outline some future directions towards developing a mechanistic understand-

ing of microbial community ecology. Using large datasets, I show the effectiveness of an

aggregated diffusion map analysis leading to improved results and potentially a compre-

hensive global map of community characteristics and functional diversity. In addition,

I introduce the concept of community maps to identify variables that influence changes

in functional community composition. Finally, I address synthetic metabolic interaction

networks that link reaction chemistry to bacterial substrate interactions and point the

way to a potential niche model for bacteria.

Finally, in Chapt. 7 I conclude this work by summarizing the results and expressing my

hope for future research. In particular, I envision the combination of diffusion maps and

GM to develop a new way of modeling complex microbial communities.



Chapter 2

Concepts and Tools

The purpose of this work is to develop new approaches that capture the dynamics of

complex communities by combining concepts and tools from dynamical systems theory

and network science. In this chapter I introduce important concepts and tools. I begin

in Sec. 2.1 with an introduction to dynamics and bifurcations. Then, I provide a short

overview about networks and diffusion on networks (Sec. 2.2). In Sec. 2.3 I present

the nonlinear dimensionality reduction method, diffusion maps, which is one of the key

methods that I will come back to in the following chapters.

2.1 Dynamics and bifurcations

In this section we briefly introduce several fundamental concepts of the theory of dy-

namical systems without delving into mathematical rigor. These topics are fundamental

and are commonly covered in most textbooks, e.g. Kuznetsov [72], Strogatz [73] and

Guckenheimer and Holmes [74]. This section provides a short introduction to readers

unfamiliar with the field. We start with an introduction to dynamical systems and steady

states (Sec. 2.1.1). Thereafter, we explain the concept of local stability of steady states

(Sec. 2.1.2) and finally outline the notion of bifurcations (Sec. 2.1.3).

2.1.1 Dynamical systems and steady states

Dynamical systems are used across many scientific disciplines to describe and predict the

behaviour of systems that change in time. For example, in an ecosystem we could be

interested in how the number of different species changes over time. To a certain extent

we can predict the past and future state of some systems given the current state and

prescriptions for the evolution of the system.

A dynamical system comprises a set of state variables and the prescriptions for the evo-

lution of the state in time, with time serving as the independent variable [72]. The state

variables can be interpreted as coordinates in the space of all possible states, the phase

7
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space, and the prescriptions specify the trajectory of the system through phase space.

Commonly, these prescriptions are formulated in the form of differential equations or

discrete-time maps.

In this work, we focus on the study of dynamical systems that are described by ordinary

differential equations (ODEs). The general form of an n-dimensional ODE can be written

as

ẋn = fn(x1, ..., xN , p1, ..., pM) (2.1)

with n = 1, ..., N , where N is the total number of state variables. x1, ..., xN is the set of

state variables that change in time. The functions f1, ..., fN describe the change of the

state variables, i.e. dependent variables in time, depending on the parameters p1, ..., pM ,

where M is the total number of parameters. Sets of state variables for which the variables

do not change in time are called steady states x∗,

fn(x
∗
n, pm) = 0. (2.2)

2.1.2 Stability of steady states

In natural systems, we are often interested in how the system would react to perturbations,

for example how an ecosystem would react to a brief period of elevated temperature (pulse

perturbation). Mathematically, we can determine the local stability of steady states. If a

steady state is locally stable, then small perturbations will decay and the system variables

will return to the steady state values.

Let’s consider a system with multiple variables

ẋ = f(x) (2.3)

that is subject to a small perturbation from the steady state

x = x∗ + δ, (2.4)

where we denote vectors in bold italic. Substituting into the differential equation system

yields

ẋ = δ̇ = f(x∗ + δ). (2.5)
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Using Taylor expansion, we obtain

δ̇ = f(x∗) + Jδ +O(δ2), (2.6)

where J ∈ Rnxn denotes the Jacobian matrix with the elements

Ji,j =
∂

∂xj

ẋi

∣∣∣∣
x=x∗

, (2.7)

where i, j = 1, ..., N and O(δ2) denotes quadratically small terms in δ, that are negligible

if Jδ ̸= 0 and f(x∗) = 0 since x∗ is a steady state. Close to the steady state, we can

hence approximate the system by the linear system

δ̇ = Jδ. (2.8)

Since the matrix entangles different variables, the solution is to define new variables which

do not get entangled when they pass through the matrix. Let vn be eigenvectors of J with

corresponding eigenvalues λn, such that

Jvn = λnvn. (2.9)

We can then write the perturbation as a linear combination of eigenvectors (Sepera-

tionsansatz),

δ =
∑
n

cnvn, (2.10)

where the coefficients cn act as a new set of variables. Unlike the variables xi they do not

get entangled when they pass through the matrix.

The solution of the linear system is then

δ(t) =
N∑

n=1

cne
λntvn, (2.11)

where cn denotes expansion coefficients determined by the initial conditions. Equa-

tion (Eq.) 2.11 shows that the perturbation will grow exponentially in time if there is

at least one eigenvalue Re(λn) > 0. If all eigenvalues of J have negative real parts then

the perturbation will decline exponentially, i.e. the system will return to the steady state.

Hence, a steady state is stable if Re(λn) < 0 for all n. For the case Re(λn) = 0 higher

orders of the expansion have to be considered.
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In other cases, we are interested how a system will respond to a press perturbation, i.e. a

permanent change of parameters, such as an increase in temperature or the invasion of a

new species. A sufficiently small perturbation leads to a shift in the steady states, that

can be described by

δ = −J−1p, (2.12)

where δ is the shift in the steady state, J−1 is the inverse of the Jacobian matrix, and p is a

vector describing the direct impacts of the perturbations on the individual equations [69].

We will discuss the impact of a press perturbation in more detail in Sec. 3.4.

2.1.3 Bifurcations

We saw above that dynamical systems usually depend on a set of parameters

ẋn = fn(x1, ..., xN , p1, ..., pM). (2.13)

In natural systems we are often interested in the impact of the change of one or more

parameters on the system, for example an increase in temperature. It is therefore of

interest to study families of dynamical systems with different parameter values. Take a

system with the parameter set p and a second system with a slightly different parameter

set p′. Generally, we expect the two systems to show very similar dynamical behavior.

There are however sets of parameter values where the dynamical behavior changes qual-

itatively, e.g. the number of steady states or their stability change. The parameter sets

at which such changes occur are called bifurcation points and the transition itself is a

bifurcation [74].

Dynamical systems often depend on a multitude of parameters and their time evolution

is usually governed by smooth functions of these parameters. In this case, the bifurcation

points are not isolated, but are located on manifolds, consisting of bifurcation points.

The codimension of a bifurcation is the difference between the dimension of parameter

space and the dimension of the manifold on which that bifurcation occurs [72]. So, the

codimension defines the number of parameters that need to be varied to find the respective

bifurcation. In this work, we focus on codimension-1 bifurcations.

Since the Jacobian matrix is generally a real matrix, its eigenvalues are real or form

complex conjugate pairs. Therefore, we can define two fundamental types of bifurcations:

(1) If real eigenvalues become positive, this is called a Saddle-node-type bifurcation. (2)

If a conjugate pair becomes positive, we call this a Hopf bifurcation [73]. In a Saddle-node

type bifurcation typically two steady states collide and annihilate. However, if a certain

symmetry is present, the bifurcation can appear as a transcritical bifurcation in which



2.2. NETWORKS 11

two states intersect and exchange their stability. The Hopf bifurcation can be further

distinguished: If a complex conjugate eigenvalue pair becomes positive and as a result a

stable limit cycle is born as the steady state loses stability, this is a supercritical Hopf

bifurcation. If instead an unstable limit cycle vanishes, the respective bifurcation is a

subcritical Hopf bifurcation.

After identifying the bifurcations within a system, one can represent them visually through

bifurcation diagrams. Commonly three-parameter bifurcation diagrams are used to get an

overview of the interactions of these parameters [75]. Each point in the volume spanned

by the bifurcation diagram represents a particular steady state and the bifurcation points

form surfaces that separate qualitatively different steady states. This approach is also

useful to identify regions where different bifurcations meet and intersect, which can reveal

other interesting dynamical features of the system (see for example Zumsande et al. [76]).

2.2 Networks

Networks can represent systems composed of many parts which interact in various ways,

such as species in ecosystems, individuals in social groups or metabolites in a cell [77].

In a network each element is depicted as a node and interactions are illustrated as links

between nodes, resulting in a reduction of the complexity of the system’s elements, while

preserving the complexity of the interaction structure [78]. The arrangement of inter-

actions within a network is termed its topology. If the interactions are reciprocal, the

network is classified as undirected, for example consider a network of protein-protein

interactions, where the nodes represent proteins and the links represent physical inter-

actions between the proteins. If protein A interacts with protein B, then protein B also

interacts with protein A, hence the relationship is symmetric and the network undirected.

In contrast, the network is directed when interactions lack reciprocity. For instance, in

the context of an energy flow within a food chain, where each species is represented as

a node, and the directional flow of energy between them is indicated as a link. In this

scenario, energy transfers from the consumed species to the predator species, but the flow

does generally not occur in the reverse direction. In addition, a network can be charac-

terized solely by the presence or absence of links, resulting in an unweighted network. Or

it may incorporate information about the attributes or weights associated with each link,

giving rise to a weighted network. Considering the examples from above, the protein-

protein interactions could for instance be represented by a binary “yes” or “no”, resulting

in an unweighted network. In the energy flow network, we may quantify the amount of

transferred energy, leading to a weighted network.
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Figure 2.1: Example network of two nodes connected by one undirected link.

.

2.2.1 Network representation

To describe a network’s topology, we can construct the adjacency matrix of the network

[77, 79]. The adjacency matrix is a square matrix with dimensions corresponding to

the size of the network. For every link in the network, e.g. from node i to node j the

adjacency matrix has a nonzero entry at position Ai,j, whereas all other entries are set

to zero, indicating the absence of a link. For an unweighted network, the entries are 1

(link present) or 0 (link absent), whereas for a weighted network, the adjacency entries

represent the weights of the corresponding links. The adjacency matrix for the example

network in Fig.2.1 is

A =

(
0 1

1 0

)
. (2.14)

From the structure of a network we can also derive the Laplacian matrix [77, 80], which

is closely related to the adjacency matrix. The Laplacian matrix is given by

L = D−A, (2.15)

where D is the degree matrix of the network. The degree matrix is a diagonal matrix

that contains the sum over each row of A on its diagonal, i.e.

Di,i =
∑
k

Ai,j. (2.16)

Considering again the example network in Fig.2.1, we obtain

D =

(
1 0

0 1

)
, L =

(
1 −1

−1 1

)
. (2.17)

In this example, we can see that for undirected networks the degree matrix contains the

information about the degree, i.e. the number of links connecting to the respective node.
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2.2.2 Diffusion on networks

The Laplacian matrix is useful, if we investigate diffusion processes on a network. Let us

again consider the example network in Fig. 2.1. Assuming we have a number of particles

in node 1, denoted as x1 and a number of particles in node 2, x2, and these particles

randomly jump from one node to the other at rate 1, we can write

ẋ1 = −x1 + x2 (2.18)

ẋ2 = −x2 + x1. (2.19)

In matrix notation this yields

ẋ = −Lx, (2.20)

where x =
(

x1 x2

)T
and L is the Laplacian matrix from Eq. 2.17. Let us examine

the scenario when the system is initiated by releasing a single particle at node 1. In this

case, we can interpret x1 and x2 as the probabilities of finding the particles in node 1 or

2, respectively. We can use the eigenvalues of the Laplacian,

λ1 = 0, λ2 = 2 (2.21)

and the corresponding eigenvectors

v1 =

(
1

1

)
, v1 =

(
1

−1

)
(2.22)

to write the initial state as

x(0) =

(
1

0

)
=

1

2
v1 +

1

2
v2. (2.23)

Applying the Separationsansatz, which we have introduced in the last chapter, the solution

to the system is

x(t) =
1

2

(
1

1

)
+

1

2
e−2t

(
1

−1

)
. (2.24)

We can see that the differences between the two nodes become smaller and smaller in

time and the second eigenvalue indicates the speed at which the system equilibrates.

If we consider a larger n-dimensional network, where particles travel between links at rate
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1, the equation for particles in node i is

ẋi = −xi

(∑
Ai,j

)
+
(∑

Ai,jxj

)
. (2.25)

In matrix form this yields Eq. 2.20, where

Li,j =

{
−Ai,j if i ̸= j∑

Ai,j if i = j
. (2.26)

We again solve the equation by eigendecomposition (see Sec. 2.1.2), obtaining a solution

of the form

x(t) =
∑
n

cn(0)e
−λntvn, (2.27)

where cn are the expansion coefficients of an initial state x(0) in relation to the eigenvec-

tors vn of L.

In a connected network as t → ∞ all nodes approach the same state, since the Laplacian

has exactly one eigenvalue λ1 = 0 with the corresponding eigenvector v1 = (1, . . . , 1)T

and all other eigenvalues are positive. The smallest non-zero eigenvalue determines the

rate of equilibration and consequently corresponds to the most important eigenvector as

the perturbations that excite the corresponding eigenvector will decay the slowest and

hence have a long impact on the system. Differences in the entries of the most important

eigenvectors therefore indicate a distance to each other. Due to these properties Laplacian

matrices are employed in various applications, for example in spectral clustering and in

nonlinear dimensionality reduction, as we will see in the next section.

2.3 Diffusion maps

While there is an increasing availability of high-quality ecological monitoring datasets and

an increasing breadths of the information that we are able to capture, the complexity of

these datasets poses new challenges to their analysis. Often, we are dealing with high-

dimensional datasets, in which well-established data analysis methods fail due to the

so-called curse of dimensionality. Diffusion mapping, a method introduced by Coifman et

al. [48], is a powerful tool to reduce the dimensionality of these datasets via the detection

of new explanatory variables.

We start in Sec. 2.3.1 with the concept of dimensionality reduction, followed by outlining

the diffusion map procedure (Sec. 2.3.2). Thereafter, I provide examples of applications
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of diffusion maps in ecological studies, explaining also the measure for functional diversity

(Sec. 2.3.3). Finally, PHATE as a method to visualize high dimensional data is introduced

(Sec. 2.3.4).

2.3.1 Dimensionality reduction

In ecological datasets, we often face a multitude of variables. Suppose we repeatedly

sample a liter of seawater, each time we may record the population densities of several

thousand bacterial species [81, 82]. In this case, the number of variables, i.e. the dimen-

sionality of the data space equals the number of different variables that are recorded in

the dataset, e.g. the number of detected species, hence several thousands. Advancements

in molecular methods also enable the data collection of genomic data, gene expression

data, protein structures etc. Take again the example of the liter of seawater, many of the

detected species possess genomes containing probably at least several hundred genes [83].

Thus, we frequently find ourselves challenged by the high-dimensionality of those datasets.

In high-dimensional datasets , it is a challenge to make sense of the data, since for example,

we cannot even consider all the extreme points anymore. Suppose we sample a bacterial

community and record the relative population densities for each detected species over

time. A system that is well described by one dimension is easy to understand, consider

for instance that only one species would be enough to describe the system. In this case

we could get a first impression of our dataset by considering the samples with the highest

abundance of the species and the one with the lowest abundance. In the case of two

species that matter, the number of extreme points would double, the dataspace has now

four corners, the lowest value of species 1, the highest value of species 1, the lowest value

of species 2 and the highest value of species 2. For every variable that we add the number

or corners of the dataspace doubles. Let’s say we find 4,000 different species, each sample

would then map to a point in a 4,000 dimensional space. This space would have 24,000

corners, which is greater than the estimated number of species on Earth of around 1-6

billion (∼ 230-233) [84]. As a consequence, we would not even be able to collect enough

data to cover all the extreme points.

To overcome this so-called curse of dimensionality [85], we need to realize that the actual

data points only cover a tiny part of the data space. We don’t expect to find all the

combinations for example of different species in a sample. Take again the continuous

sampling of seawater, even though there are many different species, we will not see all

possible combinations of species in the sampled communities. Instead species appearing

together may be using similar resources, profit from certain interactions of benefit from

the same environmental conditions. Due to these dependencies the data points may ap-



16 CHAPTER 2. CONCEPTS AND TOOLS

proximately trace a curve, a curved surface, or some other comparatively low-dimensional

object within the data space. These underlying structures are summarized under the term

manifold and the task of locating them is known as manifold learning.

Let’s take a brief detour to understand this concept a bit more intuitively. As an illus-

trative example consider different types of houses, e.g. a single-family house, a villa or a

skyscraper. Although numerous variables can be used to compare these different houses,

most of the data space spanned by these variables is empty. Take for instance the vari-

ables number of floors and height of the building. It is likely that buildings with a large

number of storeys are also characterized by a great height. Consequently, the datapoints

along these two variables tend to show patterns, creating regions of empty space, such

as those found at coordinates corresponding to low height and high number of floors or

great height and low number of floors. With limited information like the number of floors

we can therefore often accurately infer other properties, e.g. the approximate height of

the building. The underlying structures of the data are manifolds and because the di-

mensionality of the manifold is lower than that of the embedding data space, manifold

learning allows us to reduce the complexity of the data without losing information [86].

To describe our data in reduced dimensions we can hence define new explanatory variables

that follow the main dimensions of the data manifolds. Take the abstract example shown

in Fig. 2.2, the datapoints are characterized by two variables, but most of the dataspace

is actually empty and the datapoints cluster around the spiral structure. Thus, we can

reduce the number of variables, i.e. the dimensions, by describing the dataset just in terms

of one new explanatory variable, that follows the main dimension of the data manifold

(Fig. 2.2).

Principle component analysis (PCA), a de-facto manifold learning method, is widely ap-

plied to reduce the dimensionality of datasets [42]. PCA is a linear method that approx-

imates the curved manifolds in the data as flat surfaces. These surfaces are constructed

by a fitting procedure that is implemented as an algebraic operation. For this procedure

it takes long-distance comparisons into account.

However, in high-dimensional datasets these long-distance comparisons become unreliable.

We intuitively know that it is easier to compare similar things than it is to compare very

dissimilar things. Comparing different types of houses is easy, comparing a house to a

painting or to a cat is hard. This is because we do not know the traits that we should use

to quantify very dissimilar things. To illustrate, consider the comparison of two species

based on their gene similarity. If a species pair A,B is 99.9% similar in gene content, the

0.1% mismatch is a good quantification of the distance between the two species and we
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Figure 2.2: Abstract example of a data manifold. We can describe this dataset in terms of
one variable and another variable. Since the datapoints cluster around the spiral structure, we
can also describe the dataset in terms of a new variable, that follows the main dimension of the
data manifold.

.

could say that species A is closer to species B than it is to another species C with which it

has 0.2% mismatch. In contrast, if we have two species D,E that have an overlap of 50%,

the distance across which we are now measuring is so large that we cannot confidently

claim that species D is more similar to species E than it is to a species with which it is

55% similar.

From a mathematical perspective, this occurs because on the local scale the curvature

of the data-manifolds is negligible, whereas on the large scale it needs to be taken into

account. When comparing gene similarities of two species in a naive manner, we measure

the distance between them along the shortest line. However, real-world systems have

non-linear characteristics that cannot be captured by a line. Consequently, these long-

distance comparisons, relying on the shortest line, lead us away from the manifold on

which real genomes exist, thus departing from the biologically plausible space. As a

consequence, such long-distance comparisons lack reliability unless deliberate efforts are

made to conduct them along the actual data manifold. PCA thus eventually fails twice,

because the long-distance comparisons leave the biologically plausible space and because

it attempts to fit a flat surface to a structure that is generally curved.

An alternative approach is offered by diffusion maps [48]. This method rejects all long-

distance comparisons between data points and instead constructs a network of short
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reliable comparisons, where data points are linked to their k most similar neighbors.

Establishing this network enables the comparison of distant data points along the network

of trusted comparisons. Diffusion maps hence identify data manifolds and embed the data

in a new space where long-distance measurements represent dissimilarity in the real-world

plausible space.

In the next section, we will introduce the diffusion map method in detail and provide a

simple introductory example.

2.3.2 Diffusion map method

The diffusion map method that we introduce here is a variation of the method presented

in Coifman et al. [48]. It consists of the following six steps [47].

1. Standardize the data

2. Compute distances between all data points

3. Construct a similarity matrix

4. Threshold the similarity matrix

5. Define a Laplacian matrix

6. Eigendecomposition of the Laplacian provides new variables

Let’s revisit the abstract example discussed in the previous section and examine each

step of the diffusion map method. Our starting point is the data matrix A with the

dimensions M x N , where M=1,000 is the number of datapoints and N=2 is the number

of dimensions, i.e. the coordinates in the dataspace. First, we standardized the data such

that each column has a mean of zero and a standard deviation of 1. This ensures that

we consider the variables on the same scale. The components of the standardized data

matrix Â are computed as

Âm,n =
Am,n − µn

σn

, (2.28)

with

µn =

∑
m Am,n

M
(2.29)

σn =

√∑
m(Am,n − µn)2

M
(2.30)
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being the mean and standard deviation of the nth column of A.

Following step 2, we compute all Euclidean distances between all data points. Thereby

we obtain an M x M distance matrix D, where

Di,j =

√∑
n

(Âi,n − Âj,n)2 (2.31)

is the Euclidean distance between the datapoints i and j in the data space. This includes

also many long-distance comparisons.

Next, we define similarities of two datapoints as the inverse of the Euclidean distance of

the respective datapoint pair. As a result, we convert the distance matrix into a similarity

matrix C, where

Ci,j = 1/Di,j (2.32)

is the similarity of the datapoint pair i, j. The diagonal elements of the matrix C,

comparing each datapoint to itself, are set to zero. The selection of the distance and

similarity metric depends on the dataset at hand. Recent papers used for example the

re-scaled Spearman correlation coefficient as similarity measure for phytoplankton abun-

dance data [49] and in Chapt. 4 we apply the hamming distance as distance measure to

compare bacterial genomes using gene presence-absence data.

As discussed in the previous section, comparisons between distal points are highly unreli-

able and therefore a source of noise that rather hurts than helps our analysis. To eliminate

all long-distance comparisons, we threshold the similarity matrix (step 3), keeping only

the top-10 highest similarity entries for each datapoint and setting all other entries in the

matrix to zero. Thus, an entry Ci,j is kept if it is among the top-10 highest similarity

scores for either datapoint i or for datapoint j or both. We thereby retain only the trusted

comparisons in the dataset.

If we imagine the datapoints as nodes in a network, we can interpret the similarity matrix

as the weight matrix of the network. Thus, we build a network from the comparisons that

we trust. Establishing this network enables us to make comparisons between distant points

by measuring the distance on the network of allowed comparisons. For example, in Fig. 2.3

we see that before thresholding, point A and C would be closer than A and B, whereas in

the thresholded network, we measure the distances along the trusted comparisons, which

makes A and B closer than A and C. Previous studies showed that the value of 10 is often

a good threshold and the results are robust to the exact choice of the threshold [47, 49].

However, if the network becomes disconnected we need to apply a higher threshold.
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Figure 2.3: Measuring distances in a dataset. Allowing all comparisons in a dataset, we find
that point A is closer to C than to B (A). If we trust only the comparisons to the 10-nearest
neighbors of each point, we measure the distance along the data manifold. Point A is then closer
to B than to C. The trusted connections are indicated in grey (B).

.

We have constructed a network of trusted comparisons and the idea is that we can now

quantify the distance between dissimilar data points as the distance on this network. An

intuitive way to measure the distances on the network would probably be to consider

the shortest path distance. However, due to the dependence of this distance on the

presence and absence of single links, the shortest path distance is very susceptible to

noise. Diffusion maps use the concept of diffusion distance [48], which robustly quantifies

the distance between data points, taking all the possible paths between the nodes in the

network into account. The diffusion distances can be computed from the eigenvectors of

the Laplacian matrix. Accordingly, from the thresholded similarity matrix we compute

the corresponding M x M row-normalized Laplacian matrix (step 5), defined by

Li,j =

1 for i = j,

− ci,j∑
n cnj

otherwise.
. (2.33)

In a final step, the eigenvectors and corresponding eigenvalues of this Laplacian matrix are

computed. Due to the structure of the Laplacian, we obtain at least one zero eigenvalue.

The number of zero eigenvalues indicates the number of components of the network [87].

Hence, if we obtain more than one zero eigenvalue, the network has become disconnected

and we have to repeat our analysis applying a higher threshold. The eigenvectors have

a dimensionality equal to the number of data points, thus each eigenvector assigns one

value to every data point. The eigenvector corresponding to the zero eigenvalue does not

contain any information and can be disregarded. The eigenvectors corresponding to the

smallest non-zero eigenvalues are the most interesting as they identify the directions of the

largest variation, i.e. the main dimensions of the data manifolds. In our example, we see
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Figure 2.4: Diffusion map detects data manifold. The datapoints are colored according to
their values in the first eigenvector of the diffusion map. The first eigenvector follows the main
manifold of the data.

that the first eigenvector, i.e. the one corresponding to the smallest non-zero eigenvalue,

follows the main dimension of the data manifold (Fig. 2.4). The eigenvectors represent new

variables that are nonlinear combinations of the original variables and can be interpreted

as coordinates in trait space [47, 48]. Hereby, we have moved from the measured space

that is difficult to make sense of, because it is high dimensional and sparse, to a space

in which we can confidently compare datapoints by measuring the Euclidean distances in

this new trait space [48].

In conclusion the diffusion map is a deterministic and de-facto parameter-free method

that represents a powerful tool to reduce the dimensionality of datasets by identifying the

important dimensions of the data manifolds, which reflect nonlinear combinations of the

measured variables.

2.3.3 Applications in Ecology

Recent papers demonstrate the power of diffusion maps in their application to ecological

data [44, 46, 49, 88]. Diffusion mapping metabolic capabilities predicted from bacterial

genomes, Fahimipour and Gross [44] identify a multitude of new variables represent-

ing interpretable metabolic strategies that span a functional coordinate system, i.e. the

metabolic niche space. The mapping of this niche space enables coarse-graining of bacte-

rial communities from different habitats in terms of their metabolic niches that may be

filled.

Reiter et al. [88] combined diffusion maps with continuous differential expression analysis
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to investigate asynchronous gene expression data during wine fermentation of Saccha-

romyces cerevisiae. They were able to identify site-specific differences and biologically

relevant shifts in gene expression related to interactions with the environment.

Gault et al. [46] demonstrates the applicability of diffusion maps to compositional data.

The diffusion map results in a dimensionality reduction that enables the calculation of

meaningful distances between samples even when they share no species in common.

Applying diffusion maps to monitoring data of phytoplankton communities, i.e. species

abundances or biomasses, Ryabov et al. [49] reconstructed the functional trait space

of these communities. The reconstruction of the trait space enables them to quantify

functional diversity across communities and time. To calculate the functional diversity,

first they compute the distances in the reconstructed trait space for all species pairs. The

distance between two species i, j is

di,j =

√∑
k

(
vk,i − vk,j

λk

)
, (2.34)

where vk,i is the entry of eigenvector, i.e. trait, k for species i and λk is the corresponding

eigenvalue [49]. These pairwise functional distances are then used to calculate the func-

tional diversity of each sample as Rao index [89, 90]. The functional diversity (FD) for

sample k is computed as

FDk =
n−1∑
i=1

n∑
j=i+1

di,jp
(i)
k p

(j)
k , (2.35)

where p
(i)
k = a

(i)
k /
∑

j a
(j)
k is the relative biomass of species i in sample k [49]. The proposed

procedure allows us to use existing monitoring data to measure changes in functional

biodiversity.

Together, these applications highlight the diffusion map as a tool that yields new explana-

tory variables that represent composite functional strategies of the studied organisms.

These new variables emerge as nonlinear functions of the input data. The diffusion map

is hence able to unravel complex relationships in large datasets.

2.3.4 Visualizing high dimensional data using PHATE

Diffusion mapping high-dimensional datasets usually results in a still relatively high-

dimensional representation. For quantitative analysis this is very useful as it enables to

accurately quantify functional differences as we saw for example in the study by Ryabov



2.4. SUMMARY 23

et al. [49]. However, if we want to gain an intuitive understanding of the structure or

shape of our dataset, we need to create a 2-3-dimensional representation. This is the idea

of PHATE (Potential of Heat-diffusion for Affinity-based Transition Embedding) [45]:

Multi-dimensional scaling is used to find a good 2- or 3-dimensional embedding for the

diffusion map results. Moon et al. [45] demonstrate that PHATE generates meaningful

representations of high-dimensional data, making it a valuable tool for visualizing datasets

with high dimensionality.

2.4 Summary

In this chapter I have reviewed concepts and tools for the analysis of dynamical systems,

which I use in the following chapters to make sense of the dynamics of ecological commu-

nities. Also, I introduced diffusion maps as a powerful tool for nonlinear dimensionality

reduction. This method will be among the key approaches in the following chapters to

advance our understanding of complex ecological communities.
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Chapter 3

Generalized modeling

Ecological systems are not only composed of many constituents as we have seen in the

previous section, the different constituents also interact in diverse and complex ways.

This poses a major challenge for understanding the dynamics of these systems and for

predicting their future behavior. Often, we face limited data availability and can only

approximate the specific functional forms and parameter values used in conventional dy-

namical models. It was shown that small changes in these functional forms can have large

impacts on the qualitative behavior of the model [66, 91]. For example, such changes can

lead to increasing supply of nutrients or prey being stabilizing in some foodchain models

and destabilizing in other very similar models [66]. Additionally, conventional models fre-

quently lack mathematical tractability and numerical explorations are impaired by both

computational and data limitations. Generalized modeling [68, 92] (GM) is an alternative

way of modeling that extracts insights using unspecified functions, instead of restricting

the processes to specific functional forms. GM thereby offers a highly efficient analysis

with insights into the dynamics and bifurcations of uncertain systems.

To make this method more accessible for a broad audience of researchers with different

levels of experience in modeling, we summarized the state of the art of GM and provided

a hands-on guide on how to use GM in [93]. The following sections on GM follow the

lines of this paper. I begin in Sec. 3.1 with the idea of GM, followed by an introductory

example of a generalized model in Sec. 3.2. Thereafter, I give a detailed description of

the GM procedure (Sec. 3.3) and show different ways of analyzing a generalized model

(Sec. 3.4). In Sec. 3.5 applications of GM in ecology are reviewed. Finally, I explain the

master stability approach (Sec. 3.6), which can be employed to extend the generalized

model analysis to spatial systems.

3.1 Idea of generalized modeling

Mathematics is a powerful tool especially because it can work with unknown objects.

Consider the number π, no one knows its exact value, however this does not impact our

25
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ability to use π in calculations or investigate its properties. Mathematics possesses the

capability to operate with unknown entities beyond just numbers. In modeling, we can

leverage this capacity by formulating models using unspecified functions. Working with

unknown functions is commonplace in mathematics. When writing the definition of a

derivative we use for instance the unknown function x(t)

ẋ =
d

dt
x(t) = lim

δ→0

x(t+ δ)− x(t)

δ
. (3.1)

Here, x represents an arbitrary variable and t is time.

If we leave variables or functions unspecified we are actually performing massively parallel

computations, because we consider all possible values or forms these variables or functions

could take. This is the idea of generalized modeling (GM): Capturing the structure of a

system without restricting it to specific functional forms enables us to analyze a whole

class of systems in parallel.

As a result of working with unspecified functional forms, we gain insights into how dy-

namical properties link to these unknown functions. To make sense of these results, it is

therefore important that these properties are interpretable in the specific context. GM

captures these properties in a set of parameters that have a clear and intuitive interpre-

tation in the context of the model.

To see how this is achieved, let’s compare GM to conventional modeling: The conventional

modeling approach can be described as a 3-step process:

1. Parameterization: Restrict the model to equations that are specified except for a

number of unknown parameters.

2. Steady states: Find steady states of the ordinary differential equations (ODEs).

3. Linearization: Compute the Jacobian matrix, which provides a linearization of the

dynamics around the steady state.

Once we obtain the Jacobian, we can analyze the stability of steady states, find their

bifurcations etc. In this conventional approach, we deal with different difficulties at each

step. The first step involves the difficulty of finding the right model for a given phe-

nomenon or process, which often requires experience. In the second step, we need to find

the roots of an equation system, this is very difficult for all but the simplest systems.

We often have to turn to numerics, but no algorithms with guaranteed convergence are

known. In the last step we need to differentiate functions, which is generally easy.
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The computation of steady states, step 2, clearly stands out in terms of technical difficulty.

In many systems, we know the steady states already, hence the reward for dealing with

these difficulties is often small. We therefore consider how to circumvent this step in the

analysis. Random matrix models offer an alternative, they directly formulate a model for

the Jacobian matrix, instead of deriving this matrix from ODEs [9, 70, 94]. While these

models have provided powerful insights, e.g. that large random food webs are unlikely

to be stable [9], they are relatively abstract and hence suffer from low interpretability,

e.g. from the abstract model researchers gained little intuition what the features could be

that stabilize large food webs.

GM combines the advantages of both approaches, being almost as interpretable as con-

ventional models, while offering almost the efficiency of random matrix models. This is

achieved by re-ordering and slightly modifying the three steps of the modeling procedure

to:

1. Steady states: Consider a class of models that is general enough that steady states

must exist in this class. Define symbols to denote the variables in these unknown

steady states.

2. Linearization: Formally compute the derivative of the processes with respect to

variables to compute the Jacobian.

3. Parameterization: Identify the quantities that appear in the Jacobian as parameters

in the model.

In GM we do not restrict the processes in the model to specific functional forms. There-

fore, we cannot meaningfully compute the steady states of the model. Hence, in the

generalized model the steady states are unknown quantities. We can still formally lin-

earize the dynamics around the steady states, which yields the Jacobian matrix. In the

parameterization step we use a specific mathematical identify to give meaning to the

quantities in the Jacobian matrix (explained in more detail in the following section). This

specific way of parameterization sets generalized models apart from other models contain-

ing unknown functions. As a result of the GM procedure, we get the Jacobian matrix in

a steady state as a function of a set of possibly unknown but interpretable parameters.

The underlying ODEs provide guidance in the interpretation of this matrix.
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3.2 An introductory example

Let us start with a simple example to illustrate how GM works. Consider a system where

a variable, X, undergoes dynamic changes in response to gains and losses (Fig. 3.1). The

variable X could for example represent the biomass or number of individuals of a species

in an ecosystem. We can write the differential equation

Ẋ = G(X)− L(X), (3.2)

where the dot denotes a time derivative, G represents an unknown function of the gain

terms and L represents an unknown function of the loss terms. The only assumption that

we have made so far is that gain and loss are describable by mathematical functions.

Figure 3.1: Illustration of a system where a variable,X, undergoes dynamic changes in response
to gains, G(X), and losses, L(X).

If we were following the conventional approach, we would now restrict the gain and loss

processes to specific functional forms, compute steady states and then delve into deeper

analysis, e.g. compute stability and bifurcations. GM draws on the insight that we do not

need to restrict the system to specific functional forms to perform this deeper analysis of

the system. Take for example the Jacobian matrix J that captures the stability of steady

states. Its elements are defined as

Ji,j =
∂

∂Xj

Ẋi

∣∣∣∣
∗
, (3.3)

where |∗ denotes that the expression is evaluated at the steady state under consideration.

The Jacobian of the simple example system from above is

J11 = G′(X∗)− L′(X∗), (3.4)

whereX∗ is the steady state under consideration and the dash denotes a partial derivative.

We can see that we can derive the Jacobian of this system, however in this form it is not

very informative. G′(X∗) is the derivative of an unknown function at an unknown point.

As we know that G′(X∗) is a number, we can think of it as a parameter of the system.

However, we do not have an intuitive interpretation of this parameter in the context of

the application.
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As mentioned in the previous section, in GM we parameterize the model in a way that

provides an interpretable set of unknown parameters that captures the uncertainty about

the system without restricting the processes in the model to a specific functional form.

To achieve this, we need to make one more assumption: All variables and process rates

have positive values. In many cases, this is very intuitive since for example the number

of species does not take negative values. Process rates are by design non-negative, if

we have a process that can run in two directions, we can define two processes that run

antagonistically, which often leads to a better and more interpretable model.

We can however imagine that variables or processes become zero, for example a species

could go extinct. In this case, we can make a model where the species is absent. In

the scenario that we are interested in the transition where the extinction occurs, we can

consider the model in which the species is present since it remains valid as we approach

the point of extinction. Validity in this limit is sufficient to identify the transition in

which the extinction of the species occurs.

Let’s return to our example model from above (Eq. 3.2). Since this equation describes a

whole class of models, positive steady states must exist. We use X∗ as a placeholder for

every positive steady state in the system and denote the rates of processes in the steady

state as L∗ = L(X∗) and G∗ = G(X∗). We can formally normalize the equation with

respect to X∗,

x =
X

X∗ , (3.5)

hence X = xX∗. Also, we define normalized

g(x) =
G(xX∗)

G∗ , (3.6)

l(x) =
L(xX∗)

L∗ . (3.7)

A convention in GM is to use upper-case variables to define unnormalized quantities

and lower-case variables to define normalized quantities. Writing the differential for the
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normalized variable, we obtain

ẋ =
d

dt

X

X∗ (3.8)

=
Ẋ

X∗ (3.9)

=
G(X)− L(X)

X∗ (3.10)

=
G∗

X∗ g(x)−
L∗

X∗ l(x). (3.11)

Note that for this normalized system, we defined the normalized quantities such that

x∗ = 1 (3.12)

g∗ = 1 (3.13)

l∗ = 1, (3.14)

i.e. in the normalized system the steady state is x∗ = 1 and all the processes run at rate

1. Hence, by this normalization procedure, we have moved from a system in which we do

not know the steady state to a system where we know it. In addition, the normalization

procedure results in the appearance of the factors G∗/X∗ and L∗/X∗. Since these factors

are scalars we can interpret them as unknown parameters of the system. Note that these

unknown parameters have an intuitive interpretation: They are per-unit turnover rates,

G∗/X∗ is the per-capita gain per X in the steady state and L∗/X∗ is the per-capita loss

per X in the steady state, respectively. If we take the example from above that X is

the number of individuals of a species, G∗/X∗ would represent the birth rate and L∗/X∗

would be the per-capita death rate.

We can also see that that the per-capita gain must equal the per-capita loss, i.e. G∗ = L∗

must hold in all steady states. It is important to incorporate this condition of identity

into the model, since otherwise we might end up investigating steady states that cannot

exist in the real world (i.e. where G∗ ̸= L∗). This allows us to define a scale parameter α

such that

α =
G∗

X∗ =
L∗

X∗ . (3.15)

Rewriting the system yields

ẋ = α(g(x)− l(x)). (3.16)
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Now let’s return to stability analysis, the Jacobian of the normalized system with the

steady state x∗ = 1 is

J = [α(g′(1)− l′(1))]. (3.17)

Since we did not constrain the functions g and l to specific functional forms, we cannot

compute their derivatives, thus they represent two additional unknown parameters. We

define

gx = g′(1) (3.18)

lx = l′(1), (3.19)

which are called elasticities or exponent parameters in the context of GM. Note that these

parameters are the logarithmic derivatives of the original functions, e.g.

gx =
d lnG

d lnX

∣∣∣∣
∗
. (3.20)

The exponent parameters measure the nonlinearity of the sensitivity of the functions to

variations in the argument [68, 95]. Consider for example that the gain is a linear function,

G(X) = aX, (3.21)

with a > 0. Normalization yields

g(x) =
G(X)

G∗ =
aX

aX∗ =
X

X∗ , (3.22)

hence gx = 1 regardless of a. Consequently, every linear function results in a parameter

value of 1. Let’s see what happens in case of a quadratic relationship, e.g.

G(X) = aX2. (3.23)

Normalization in this case yields

g(x) =
G(X)

G∗ =
aX2

a(X∗)2
=

X2

(X∗)2
= x2, (3.24)

hence gx = 2.

In general, for any power law aXp the corresponding exponent parameter is p. This also

holds for decreasing functions, e.g. a/Xp for which the corresponding exponent parameter
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is −p. In the case of more complex relationships, the exponent parameter can depend

on the location of the steady state. Take for example the Holling type-II functional

response [60], which is linear for low prey density and saturates for high prey density. The

corresponding exponent parameters is approximately 1 where the functional response is

linear and decreases to 0 as the functional response approaches the saturated regime [95].

Elasticities are used in a number of scientific disciplines [96, 97], because they offer an

intuitive way to describe non-linearity and can be estimated conveniently from limited

and noisy data.

Returning to our example system, we can now write the Jacobian that captures the

dynamics around the steady states in all models of the form Eq. 3.2 as a function of the

three parameters that we can interpret,

J = [α(gx − lx)]. (3.25)

In this case the Jacobian is a 1x1 matrix, so it has only one eigenvalue, that is

λ = α(gx − lx). (3.26)

Since a steady state is stable if all eigenvalues of the Jacobian have negative real parts,

we can derive for our example system that a steady state under consideration is stable if

gx < lx. (3.27)

Hence, in every system of the form of Eq. 3.2, every positive steady state is stable if the

elasticity of the loss is greater than the elasticity of the gain. The turnover rate does not

impact the stability directly. It may have an indirect effect, for example if the nonlinearity

of the gains increases under high turnover rates. Overall, GM is able to extract concrete

results even with the very little structural information we have provided in this simple

example.

3.3 Generalized modeling procedure

We now discuss the procedure of formulating generalized models for more complex sys-

tems, taking the example of the predator-prey system from Yeakel et al. [95]. In this

example system the growth of a predator population depends entirely on the prey. This

example includes intra- as well as interspecific interactions.
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(1) Identification of State Variables

In a first step, we need to identify the state variables that we want to describe. In our

predator-prey example, we are for instance interested in the populations of the predator

and prey species. Therefore, we define two state variables, X and Y that represent

the population sizes of prey and predator, respectively. Often, it is easy to identify the

state variables but it can get more complicated if the system involves more abstract parts

playing a role such as human behavior. In general, it is a good idea to include additional

state variables rather than leaving them out, since their cost is low and additional variables

can increase the interpretability of the model.

(2) Identification of Processes

In the next step we have to identify the processes that drive the changes in our state

variables. For each state variable there must be at least one gain and one loss process.

Instead of formulating specific functional forms for all the interactions involved in the

considered phenomena, we try to describe the basic structure of the system. E.g. for

predator-prey interactions it is easy to say that predation depends on the number of

predators and the number of prey. It is much harder to derive the exact functional form

that quantifies this interaction [68].

Focusing on the structural information of our predator-prey system, we can for example

write

Ẋ = S(X)− F (X, Y )− L(X) (3.28)

Ẏ = G(X, Y )−M(Y ), (3.29)

where S(X) describes the reproduction of the prey, F (X, Y ) models the loss of prey due

to predation, L(X) is the loss of prey due to other causes, G(X, Y ) is the gain of predators

through predation and M(Y ) describes the loss of predators.

One could argue that we could summarize the loss terms of X in one term, however

separating each of the loss processes here makes the model more interpretable and the

individual processes become tangible. Particularly, in the analysis of this predator-prey

model we are probably interested in considering the loss terms by predation and by other

causes separately. Also, in GM we generate insights by structural information on the

system. Consequently, the more detailed the structural information we feed into the

model, the more insights we can gain.

(3) Normalization

Once we have formulated our model, we proceed with the normalization procedure as
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shown in the introductory example (Sec. 3.2). Accordingly, we define the normalized

state variables

x =
X

X∗ (3.30)

y =
Y

Y ∗ , (3.31)

where X∗ and Y ∗ are placeholders for every positive steady state in the system. And we

define normalized functions

s(x) :=
S(X∗x)

S∗ (3.32)

f(x, y) :=
F (X∗x, Y ∗y)

F ∗ (3.33)

l(x) :=
L(X∗x)

L∗ (3.34)

g(x, y) :=
G(X∗x, Y ∗y)

G∗ (3.35)

m(y) :=
M(Y ∗y)

M∗ , (3.36)

where

S∗ := S(X∗) (3.37)

F ∗ := F (X∗) (3.38)

L∗ := L(X∗) (3.39)

G∗ := G(X∗) (3.40)

M∗ := M(X∗) (3.41)

are used as abbreviated notations.

Normalizing our model in this way, we have moved to a system in which we know the

steady state:

x∗ = y∗ = s∗ = f ∗ = l∗ = g∗ = m∗ = 1. (3.42)

We can write our normalized model as

ẋ =
S∗

X∗ s(x)−
F ∗

X∗f(x, y)−
L∗

X∗ l(x) (3.43)

ẏ =
G∗

Y ∗ g(x, y)−
M∗

Y ∗ m(y). (3.44)
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Our goal is now to simplify the model through the introduction of new easily interpretable

parameters, while considering the stationarity condition of the steady state. To start, we

consider the system in the steady state, which yields

0 =
S∗

X∗ − F ∗

X∗ − L∗

X∗ (3.45)

0 =
G∗

Y ∗ − M∗

Y ∗ , (3.46)

so in the steady state the sum of the gain terms has to be equal to the sum of the loss

terms for each variable, i.e.

S∗

X∗ =
F ∗

X∗ +
L∗

X∗ (3.47)

G∗

Y ∗ =
M∗

Y ∗ . (3.48)

We now want to define scale parameters, which have been already introduced in Sec. 3.2.

A convenient procedure is often to use one parameter for each variable to describe the

total turnover and then to define additional parameters that capture the contributions

of the individual loss and gain terms to the total turnover. Ergo, we define the scale

parameters

αx =
S∗

X∗ =
F ∗

X∗ +
L∗

X∗ (3.49)

αy =
G∗

Y ∗ =
M∗

Y ∗ , (3.50)

which describe the turnover of species X and Y , respectively. Re-writing the system using

these scale parameters yields

ẋ = αx

(
s(x)− 1

αx

F ∗

X∗f(x, y)−
1

αx

L∗

X∗ l(x)

)
(3.51)

ẏ = αy(g(x, y)−m(y)). (3.52)

Due to the two loss terms of the prey population, i.e. loss through predation and loss

through other causes, we are still left with prefactors in front of the f and l terms. How-

ever, these can be captured in additional parameters that have a convenient interpretation,
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e.g. we use β to denote the prefactor of the f term and write

β =
1

αx

F ∗

X∗ (3.53)

=
1(

F ∗

X∗ +
L∗

X∗

) F ∗

X∗ (3.54)

=
X∗

(F ∗ + L∗)

F ∗

X∗ (3.55)

=
F ∗

F ∗ + L∗ . (3.56)

Thus, β quantifies the relative contribution of predation to prey’s loss in the steady state.

Correspondingly, we define

β̃ =
1

αx

L∗

X∗ (3.57)

=
L∗

F ∗ + L∗ , (3.58)

so β̃ describes the relative contribution of other causes to prey’s loss in the steady state.

These parameters that capture the relative contribution of the individual terms within

the loss (or gain) terms are called branching parameters as they describe the branching

or merging of flows in the system. The two branching parameters β and β̃ are not

independent of each other as the losses of a particular variable have to add up to 1. We

can show that

β + β̃ =
F ∗

F ∗ + L∗ +
L∗

F ∗ + L∗ = 1. (3.59)

We can now write our model as

ẋ = αx(s(x)− βf(x, y)− β̃l(x)) (3.60)

ẏ = αy(g(x, y)−m(y)) (3.61)

β̃ = 1− β. (3.62)

Once, we have familiarized ourselves with the normalization procedure, we can see that

the resulting equations always follow the same pattern, for example the equation

Ż = A(Y ) +B(Z) + C(Y, Z)−D(Y )− E(Z)− F (Y, Z) (3.63)
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normalizes to

ż = α(γaa(y) + γbb(z) + γcc(y, z)− ρdd(y)− ρee(z)− ρff(y, z)) (3.64)

1 = γa + γb + γc (3.65)

1 = ρd + ρe + ρf . (3.66)

(4) Timescale Normalization and Jacobian

One of the scale parameters can always be set to 1 by timescale normalization. For

example, if we measure in terms of multiples of the turnover time of the prey 1/αx,

rescaling both equations by this factor yields

ẋ = s(x)− βf(x, y)− β̄l(x) (3.67)

ẏ = α(g(x, y)−m(y)) (3.68)

β̄ = 1− β, (3.69)

where

α =
αx

αy

(3.70)

describes the relative rate of predator turnover to prey turnover. If predator and prey

population are measured in terms of biomass this turnover rate is the metabolic rate of

the prey divided by the metabolic rate of the predator, hence the ratio of metabolic rates.

If we measure in terms of abundances the turnover rate is the prey life expectancy divided

by the predator life expectancy.

In the next step, we calculate the Jacobian matrix, which elements are defined as

Ji,j =
∂

∂Xj

Ẋi

∣∣∣∣
∗
, (3.71)

where |∗ denotes that the expression is evaluated at the steady state under consideration.
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Defining the exponent parameters

sx =
∂

∂x
s(x)

∣∣∣∣
∗

(3.72)

fx =
∂

∂x
f(x, y)

∣∣∣∣
∗

(3.73)

fy =
∂

∂y
f(x, y)

∣∣∣∣
∗

(3.74)

lx =
∂

∂x
l(x)

∣∣∣∣
∗

(3.75)

gx =
∂

∂x
g(x, y)

∣∣∣∣
∗

(3.76)

gy =
∂

∂y
g(x, y)

∣∣∣∣
∗

(3.77)

my =
∂

∂y
m(y)

∣∣∣∣
∗
, (3.78)

we obtain the derivatives

∂ẋ

∂x

∣∣∣∣
1

= sx − βfx − (1− β)lx (3.79)

∂ẋ

∂y

∣∣∣∣
1

= −βfy (3.80)

∂ẏ

∂x

∣∣∣∣
1

= αgx (3.81)

∂ẏ

∂y

∣∣∣∣
1

= α(gy −my) (3.82)

(3.83)

yielding the Jacobian matrix

J =

(
sx − βfx − (1− β)lx −βfy

αgx α(gy −my)

)
. (3.84)

We arrived at a relatively simple matrix that captures the structural knowledge that we

have about the system. For example, net growth is the difference between gains and losses,

independent processes add up and the dependence of predator-prey interactions on the

number of predators and the number of prey. We did not have to make any specifications

that we are not certain about like the exact form of the predator-prey interaction.

(5) Additional Constraints and Auxiliary Variables Once we have a general model
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like the predator-prey example model, we can always refine the model and add additional

insights that we gained about the system in consideration. For example, in our predator-

prey system, we know that the gain of the predator should be related to the loss of the

prey, therefore the functions F and G are not independent. A simple way to incorporate

this dependence in the model is to assume that the predator gain is a function of the

prey’s loss, for example,

G(X, Y ) = H(F (X, Y )). (3.85)

Incorporating this insight into the model even in this unspecified way is useful since all

of the terms have an intuitive interpretation: G is the predation gain, F is the predation

loss and H is the conversion efficiency. And including these elements in the equations

makes them tangible, we can investigate their impact in the system.

Whenever we want to include such additional insights in our model, we need to check if this

imposes additional constraints on the scale and exponent parameters. In this example, in

the steady state we obtain G∗ = H∗, thus this does not impose any additional constraints

on the scale parameters. Next, we consider the constraints on the exponent parameters.

We start by using the GM normalization procedure to normalize the new condition.

Defining

h(f) =
H(F ∗f, Y ∗y)

H∗ , (3.86)

this yields

g(x, y) =
G(X∗x, Y ∗y)

G∗ =
H(F ∗f, Y ∗y)

H∗ = h(f(x, y)). (3.87)

Next, we compute the corresponding exponent parameters

gx =
∂

∂x
h(f(x, y))

∣∣∣∣
1

= hffx (3.88)

gy =
∂

∂y
h(f(x, y))

∣∣∣∣
1

= hffy, (3.89)

where hf is a new parameter that captures the elasticity of the predator’s gain with respect

to prey’s loss. Assuming a constant conversion efficiency like most models do, hf = 1 as H

is a linear function. This is a very basic example of including additional constraints in our

model. Gross and Feudel [68] for example show how to build more complex relationships

into the model that result in realistic prey-switching behavior.
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For illustration, we can build a slightly more complicated case by considering that the

conversion efficiency should depend on the per-capita consumption of prey by predators.

We could write this condition as

G(X, Y ) = H(F,C), (3.90)

where C is the per-capita consumption

C(F, Y ) =
F (X, Y )

Y
. (3.91)

In this example, in the steady state we obtain G∗ = H∗, thus also this new form does

not impose any additional constraints on the scale parameters. To find the implications

of the condition for the exponent parameters we define

h(f, c) =
H(F ∗f, C∗c)

H∗ c(f, y) =
C(F ∗f, Y ∗y)

C∗ (3.92)

and then we can show that

g(x, y) =
G(X∗x, Y ∗y)

G∗ =
H(F ∗f, C∗c)

H∗ = h(f, c). (3.93)

Computing the corresponding exponent parameters yields

gx = hffx + hccffx (3.94)

gy = hffy + hc(cffy + cy). (3.95)

To gain an understanding of the new parameters, we need to think about their ecological

interpretation. The parameter hf is the partial derivative of h with respect to x at constant

c, since c now appears as an explicit argument of h. Hence hf denotes how the growth

of the predator population is changing if more predators are feeding but the per-capita

amount stays constant. We can assume a linear relationship with better confidence than

in the previous example, so hf = 1.

The parameter hc describes how the growth of the predator population changes with

varying per-capita consumption. The conversion efficiency could increase or decrease

in complex nonlinear ways depending on the ecological circumstances, thus we leave this

parameter tunable, enabling us to investigate its behavior in the analysis of the generalized

model.
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The parameters cf and cy denote the elasticities of the per-capita consumption with respect

to the prey’s loss and with respect to the predator population, respectively. As we have

defined C explicitly in Eq. 3.91, we can compute

cf =
∂

∂f
c(f, y)

∣∣∣∣
1

=
∂

∂f

C(F ∗f, Y ∗y)

C(F ∗, Y ∗)

∣∣∣∣
1

=
∂

∂f

F ∗f

Y ∗y

Y ∗

F ∗

∣∣∣∣
1

(3.96)

=
∂

∂f

f

y

∣∣∣∣
1

= 1 (3.97)

cy =
∂

∂y

f

y

∣∣∣∣
1

= −1. (3.98)

We could have also guessed this relationship directly from the definition of C since we

defined C to be linear in F and to be inversely related to Y .

This slightly more complex example illustrates the power of GM in enabling us to include

structural information that we can confidently assume, e.g. hf = 1, and leaving the

relationships, where we are not confident about the explicit structure, e.g. hc, unspecified

for further investigation. In the next step, we can write the Jacobian replacing gx and gy

by the new parameters and then we can dive into the analysis of the generalized model.

(6) Conservation Laws, Derivative Conditions and Optimality

Additional constraints can also come in the form of conservation laws or derivative con-

ditions. These are imposed on the generalized model in a similar way as described above.

In the case of conservation laws, there are two possible procedures to impose them on our

model. We could use the conservation law to reduce the number of variables and then

proceed with the normalization or we could normalize the model and the conservation

law and constrain the parameters with the conditions given by the conservation law. In

most cases, the second option is advisable, since in this case we also allow for the inves-

tigation of perturbations that violate the conservation law. In many real-world examples

this leads to a better representation of the system since perturbations from the outside

are a realistic phenomenon. If we have to deal with a lot of constraints imposed by con-

servation laws, for example in metabolic models where the number of atoms is conserved

throughout the metabolic reactions, we can manage the scale parameter for example by

representing them as a linear combination of a set of fundamental flux modes that satisfy

all constraints [98].

It is also possible to impose additional constraints in the form of derivative conditions.

We can for example demand that the partial derivative of a process P with respect to
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some state variable X is zero in the steady state, i.e.

∂P (X)

∂X

∣∣∣∣
∗
= 0. (3.99)

Normalization yields

0 =
∂P (X)

∂X

∣∣∣∣
∗
=

∂P ∗p(x)

∂x

∂x

∂X

∣∣∣∣
∗
=

P ∗

X∗px, (3.100)

so in this case the exponent parameter px = 0. The ability to impose constraints in the

form of derivative conditions enables us to investigate phenomena, where a variable is in

a local minimum or maximum of some function. We can for example study cooperation

of governance models where each agent allocates their resources optimally. Or we can use

an adaptive dynamics model to study biological evolution [99] where we force the species

to stay in locally evolutionary stable states.

3.4 Analyzing generalized models

The GM procedure arrives at a Jacobian matrix, containing easily interpretable param-

eters in the context of the system. The different values the parameters in the Jacobian

can take represent ensembles of possible realities that are consistent with the available

structural knowledge. Analysis of the whole ensemble of possible worlds captured by the

generalized model is more limited in comparison to the analysis of conventional models,

since we cannot compute the steady state and we cannot simulate a generalized model.

However, we can provide some insights on the whole ensemble of possible worlds trough

very efficient analyses of the generalized model. We can for example generate insights

into the dynamics of the system and the stability of steady states, we can explore the

response to different types of perturbations and we can identify important parameters

and parameter regions.

Often a good step to start the analysis of a generalized model is the numerical stability

analysis. We restrict the parameters to plausible ranges in the context of the model, draw

random ensembles of parameter values and calculate the leading eigenvalue, i.e. the sta-

bility for each of the parameter ensembles. As this approach is computationally cheap, we

can generate a high number of random parameter ensembles and calculate their stability

efficiently. To get a first impression of the behavior of the system, we can then investigate

the correlation of individual parameters with stability.

i.e. suppose we consider a generalized model with P different generalized parameters and
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we drawM different sets of parameter values. We denote them’th realization of parameter

i as pmi where i ∈ [1, P ] and m ∈ [1,M ]. And we denote the stability of the steady state

by the parameter set m as sm, where we define

sm =

{
1 Re(λ0) < 0

0 otherwise
, (3.101)

thus sm is 1 if the parameter set m is stable and zero otherwise. After calculating the

stability for all M parameter sets, we can compute

ci = Covm(p
m
i , sm), (3.102)

i.e. we estimate the impact of each individual parameter on stability. If a parameter

is positively correlated to stability, that is high values of the parameter correspond to

stability, ci takes positive values up to the value of 1, if stability is completely explained

by this particular parameter. If a parameter is negatively correlated to stability, that is

high values of the parameter correspond to instability, ci takes negative values up to the

value of -1, if stability is completely explained by this particular parameter.

For the random sampling of parameter values it is important to restrict the range to

reasonable values in the context of the model since the correlations are not independent

of the sampling. Parameters from a wider range will for example show a higher correlation.

We can also explore the impact of press perturbations, i.e. permanent change of parame-

ters, on the system. A sufficiently small perturbation leads to a shift in the steady states,

that can be described by

δ = −J−1p, (3.103)

where δ is the shift in the steady state, J−1 is the inverse of the Jacobian matrix, and p is a

vector describing the direct impacts of the perturbations on the individual equations [69].

In the context of a generalized model, the vector δ describes the impact on the steady

state in the normalized variables and the vector p contains the direct impact on the

individual equations in units of normalized turnover.

Take again the simple predator-prey example from Sec. 3.3 with the Jacobian matrix

J =

(
sx − βfx − (1− β)lx −βfy

αgx α(gy −my)

)
. (3.104)

We could for example ask how a small fraction of additional loss for the prey, e.g. by

harvesting, would impact the steady state of the system. The direct impact on the
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individual equations could then be described by

p =

(
−ρ

0

)
, (3.105)

i.e. a small fraction ρ of the total turnover of the prey is harvested. Substituting into

Eq. 3.103 yields

δ = − 1

det J

(
α(gy −my) βfy

−αgx sx − βfx − (1− β)lx

)(
−ρ

0

)
, (3.106)

where

det J = α((sx − βfx − (1− β)lx)(gy −my) + gxβfy). (3.107)

Let’s take a closer look at the impact on the steady state of prey and predator, described

by

δprey =
α(gy −my)

det J
ρ, δpred = − αgx

det J
ρ. (3.108)

In the case that there is no social interaction or strong interference between predators,

we can assume gy = 1, i.e. predation is linear in predator abundance. And if diseases and

overcrowding are absent, we can assume linear mortality of the prey, hence my = 1. In

this scenario, we get

δprey =
α(gy −my)

det J
ρ = 0, (3.109)

hence there is no impact of the small amount of harvesting on the prey. The prey is still

controlled by the predator, that is, an additional small amount of loss is compensated

by reduced predation. In the equation for the predator, we can see that the predator

population is negatively impacted by the loss of its prey. At low loss rates the predator

population responds with a proportional loss. Doizy et al. [100] show that this impact

analysis can also be applied to much larger generalized models containing more than

200 species, enabling us to predict the species that benefit and those that suffer from a

bioinvasion and providing indicator species for the detection of bioinvasion.

If we are not interested in a specific perturbation but rather in the general response to

perturbations, we can identify sensitive species, i.e. species that are easily perturbed and

influential species, i.e. species that have a strong impact on other species. We can do so

by computing the proposed measures by Aufderheide et al. [69]

Sei = log

(
−
∑
n

|vi|(n)

λn

)
, Ini = log

(
−
∑
n

|wi|(n)

λn

)
, (3.110)
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where Sei is the sensitivity of species i, Ini is the influence of species i, λn is the nth

eigenvalue of J, and vn and wn are the corresponding left and right eigenvectors. For

example, v2|(1) is the second element in the left eigenvector of J corresponding to the first

eigenvalue. We can summarize the two measures in one variable describing the importance

by taking the product of the sensitivity and the influence value. In general, these measures

allow us to investigate not only species networks but also various other types of networks,

such as supply networks. For these we can for example identify the sensitivity of firms

and products [101].

We have seen in Sec. 2.1.3 that the Jacobian is commonly used for bifurcation analy-

sis, i.e. to detect where the dynamical behavior of the system changes qualitatively. In

generalized models there are two types of bifurcations that can occur, saddle-node-type

bifurcations and Hopf bifurcations. Saddle-node-type bifurcations can be easily computed

even in large generalized models. Since these bifurcations occurs if the Jacobian has a

zero eigenvalue, we have to find the combinations of generalized parameters where the

determinant becomes zero. To locate the parameter values that result in a Hopf bifurca-

tion, the method in Guckenheimer et al. [102] is useful for systems with ca. 10 variables

(see also [103]). In systems with more variables the equations become too complicated.

Typically during the analysis process, we gain more and more insights into our system of

interest. We already saw in the previous section (Sec. 3.3) that we can add these additional

information for example in the form of additional constraints and auxiliary variables.

Other information may be used to restrict the plausible ranges for our parameter values

in the generalized model. Often we can identify interesting parameter regions through

the analysis of our generalized mode.

To further explore the dynamical behavior of the system in these regions, we may want to

run numerical simulations. This means that we need to construct a conventional model

that is consistent with the generalized parameter values of interest. An easy way to do

this is to construct specific functions that are consistent with the normalization condition

F (1) = α, where α is the turnover rate. This results as before in a steady state of 1. Let’s

consider again the introductory example from the Sec. 3.2

Ẋ = G(X)− L(X), (3.111)

where the Jacobian of the normalized system is

J = α(gx − lx). (3.112)
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If we are interested in a steady state at the parameter values α = 1, gx = 2/3 and lx = 2,

we have to find specific functions that obey the steady state condition and match the

desired parameter values. One easy way to find those functions is to use power laws of

the form F (X) = Xp, for the chosen parameter values one possible example model is

Ẋ = X2/3 −X2. (3.113)

However, let’s say the first termX2/3 would be unrealistic in the context of our application.

Instead, we want the function G(X) in the form

G(X) =
AX

X +K
. (3.114)

In this case, we first ensure that our function obeys the normalization condition G(1) = 1,

by setting A = 1 +K. In the next step we choose K such that

p =
2

3
=

∂

∂X

(1 +K)X

K +X

∣∣∣∣
1

=
K

(K + 1)
, (3.115)

resulting in K = 2. So, a specific model consistent with the chosen parameter values is

Ẋ =
3X

2 +X
−X2. (3.116)

This approach commonly works well for simulation studies, however for the analysis of

bifurcations one has to be careful, since the procedure results in degeneracy of certain

bifurcations.

3.5 Applications of generalized modeling in ecology

Over the past 13 years, GM has been proven a powerful tool to advance our understanding

of complex ecological systems. In the study of food webs, Gross et al. [66] show that minor

changes in the shape of functions used in conventional food chain models can have a major

impact on the stability of these systems. Through their efficient analysis, generalized

models helped to study phenomena in food webs like the paradox of enrichment and helped

to identify properties that lend food webs their stability [104, 105, 106]. Considering

eigenvector localization in GM, Aufderheide et al. [107] showed that mesoscale symmetries

in food webs can explain why certain food webs have a different structure but the same

generalized bifurcation diagram.

As shown in the previous section, we can use GM analysis to identify species in the food
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web that are most sensitive to perturbations and those that have the strongest impact on

others [69, 100]. Yeakel et al. [108] applied this methodology to study a 6,000 years time

span of Egyptian mammalian food web structure, reconstructed from Egyptian art history.

Species identified as most vulnerable in the model, were indeed the first to go extinct. Lade

and Gross [109] propose a new method for identifying early warning signals for critical

transitions for example in fish stocks, integrating information trough GM. Generalized

models were also applied in the study of delay-coupled networks of populations [110, 111].

Kühn et al. [112] extended the GM approach, using non local generalized models to study

periodic predator-prey dynamics. Yeakel and Mangel used GM for the analysis of stock

recruitment [113].

Generalized models were also applied to examine food webs in space. First, predator-prey

systems were modeled in space trough partial differential equations [114]. This approach

was used to study predator interference [43], the dynamics of ecoepidemic models [115]

and the impact of nutrient content on predator-prey systems [116]. In more recent times,

generalized models were also used to study meta-food webs, i.e. models in which food

webs in different spatial patches are coupled by dispersal [117]: from the study of a single

population on a spatial network [118] to food webs on two patches [119] up to the dynamics

of complex food webs in large spatial networks [120]. Anderson and Fahimipour [121]

used GM to study the effects of positive body size scaling of dispersal on the stability of

heterogeneous metacommunities.

Another large field of application for generalized models is the study of metabolism. GM

in this context is known as structural kinetic modeling [122]. Here, generalized models

could for example help to identify metabolic components that impact stability in common

metabolic pathways like glycolysis, pentose pathway and TCA cycle [98, 123, 124]. Gen-

eralized models proved also powerful in investigating the combined ecological and social

effects in social-ecological models [125, 126, 127] and in understanding the stability of

environmental governance [128].

3.6 Master Stability Approach

Ecological communities are not isolated entities, they inhabit specific spatial contexts,

and this spatial dimension can significantly impact the dynamics of these communities.

Initial models focused solely on a single species within a spatial framework, referred

to as a metapopulation [118, 129, 130]. Following that, metacommunities, comprising

competing, similar species and predator-prey systems were modeled, e.g. [119, 131, 132].

The complexity of these models often limits the analyses to either a small number of
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species or a small number of habitats. The master stability function approach [120, 133,

134] offers an alternative: Diffusion-driven instabilities can be studied in complex meta-

food webs on large spatial networks.

In this section, we explain the master stability function (MSF) approach providing an

introductory example (Sec. 3.6.1) and outlining the algorithm (Sec. 3.6.2).

3.6.1 An introductory example

As an example, consider an ecological model featuring two species, A and B, with their

population sizes governed by the following set of differential equations

Ȧ = f(A,B) (3.117)

Ḃ = g(A,B). (3.118)

Usually, we know the functions f and g, allowing us us to calculate the steady states, A∗

and B∗

f(A∗, B∗) = 0 (3.119)

g(A∗, B∗) = 0. (3.120)

As discussed in Sec. 2.1.2, to analyze the stability of the steady state, we examine the

eigenvalues of the Jacobian matrix P

P =

(
P11 P12

P21 P22

)
, (3.121)

with

P11 = ∂AȦ
∣∣∣
∗

(3.122)

P12 = ∂BȦ
∣∣∣
∗

(3.123)

P21 = ∂AḂ
∣∣∣
∗

(3.124)

P22 = ∂BḂ
∣∣∣
∗
. (3.125)

The steady state is considered stable if all eigenvalues of the Jacobian have negative real

parts.

Let’s now consider the scenario in which the two populations can disperse at rates rA and
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rB between two habitat patches. We can write this system as

Ȧ1 = f(A1, B1)− raA1 + raA2 (3.126)

Ḃ1 = g(A1, B1)− rbB1 + rbB2 (3.127)

Ȧ2 = f(A2, B2)− raA2 + raA1 (3.128)

Ḃ2 = g(A2, B2)− rbB2 + rbB1. (3.129)

Since (A∗, B∗) is a steady state of the local system

A1 = A2 = A∗ (3.130)

B1 = B2 = B∗ (3.131)

is a steady state of the spatial system. We refer to these solutions as homogeneous states.

Again, to investigate stability of the steady state, we consider the Jacobian matrix J. J11

is computed as follows

J11 =
∂

∂A1

Ȧ1

∣∣∣∣
∗

(3.132)

=
∂

∂A1

[
f(A1, B1)− raA1 + raA2

]∣∣∣∣
∗

(3.133)

=
∂

∂A1

f(A1, B1)

∣∣∣∣
∗
− ra (3.134)

=
∂

∂A
f(A,B)

∣∣∣∣
∗
− ra (3.135)

= P11 − ra. (3.136)

In the same way we derive entries J12 − J14 of the Jacobian

J12 =
∂

∂B1

[
f(A1, B1)− raA1 + raA2

]∣∣∣∣
∗
= P12 (3.137)

J13 =
∂

∂A2

[
f(A1, B1)− raA1 + raA2

]∣∣∣∣
∗
= ra (3.138)

J14 =
∂

∂B2

[
f(A1, B1)− raA1 + raA2

]∣∣∣∣
∗
= 0. (3.139)



50 CHAPTER 3. GENERALIZED MODELING

Computing all the entries yields the Jacobian matrix for the spatial system

J =


P11 − ra P12 ra 0

P21 P22 − rb 0 rb

ra 0 P11 − ra P12

0 rb P21 P22 − rb

 . (3.140)

Due to the specific structure of this Jacobian, we can re-write the matrix in block form

J =

(
P−C C

C P−C

)
, (3.141)

where P is the Jacobian matrix of the local system and C is the coupling matrix of the

form

C =

(
ra 0

0 rb

)
. (3.142)

Using Kronecker products, we can re-write the Jacobian as

J = I⊗P− L⊗C, (3.143)

where I is the identity matrix and L is the Laplacian of the spatial network

L =

(
1 −1

−1 1

)
. (3.144)

To gain insights into the stability of the spatial system our aim is now to compute the

eigenvalues and eigenvectors. Since the Jacobian of the spatial system is the sum of the

two Kronecker products we can assume that its eigenvectors can likewise be expressed in

the form of Kronecker products [120], i.e.

w = v ⊗ s, (3.145)

such that

Jw = λw (3.146)

J(v ⊗ s) = λ(v ⊗ s). (3.147)



3.6. MASTER STABILITY APPROACH 51

Exploiting the properties of Kronecker products we can write

Jw = (I⊗P− L⊗C)(v ⊗ s) (3.148)

= (I⊗P)(v ⊗ s)− (L⊗C)(v ⊗ s) (3.149)

= (Iv ⊗Ps)− (Lv ⊗Cs) (3.150)

= (v ⊗Ps)− (Lv ⊗Cs). (3.151)

We can make progress if v in an eigenvector of L, such that Lv = κv, where κ is the

corresponding eigenvalue of L. We can write

Jw = (v ⊗Ps)− (κv ⊗Cs). (3.152)

Now we need to bring the matrices together, i.e.

Jw = (v ⊗Ps)− κ(v ⊗Cs) (3.153)

= (v ⊗Ps)− (v ⊗ κCs) (3.154)

= v ⊗ (Ps− κCs) (3.155)

= v ⊗ (P− κC)s. (3.156)

Assuming that s is an eigenvector of P − κC, so that (P − κC)s = λs, where λ is the

corresponding eigenvalue, we can write

Jw = v ⊗ λs (3.157)

= λ(v ⊗ s). (3.158)

To recap, we have seen that if v is an eigenvector of L with eigenvalue κ and s is an

eigenvector of P − κC with eigenvalue λ, then v ⊗ s is an eigenvector of J and the

corresponding eigenvalue is also λ. Consequently all eigenvectors of J can be constructed

in this way, revealing the complete set of eigenvalues of J [120]

Ev(J) =
N⋃

n=1

Ev(P− κnC). (3.159)

Following this equation, we can define the so-called master stability function (MSF) [120]

M(κ) = Re[λmax(κ)], (3.160)
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which is the real part of the leading eigenvalue λmax of P−κnC as a function of κ. Using

this approach, the impact of the spatial topology on the dynamics is captured solely in

the Laplacian eigenvalues. In conclusion stability of the homogeneous state is lost if any

Laplacian eigenvalue κ falls into the range where M(κ) is positive.

3.6.2 Master Stability Function

To construct the master stability function (MSF), we proceed as follows:

1. We compute the Jacobian P of the local system.

2. We construct the matrix P− κnC, handling κ as an unknown parameter.

3. We compute the leading eigenvalue of P− κnC as a function of κ.

4. The real part of the leading eigenvalue as a function of κ yields the master stability

function M(κ).

Master stability functions offer the ability to efficiently explore instabilities in coupled

identical systems. Also MSFs are useful for designing networks with specific stability

properties by choosing κ according to the MSF such that the desired characteristics are

met.

3.7 Summary

In this chapter, I have reviewed the GM approach, a powerful tool to capture the dynamics

of uncertain systems. Additionally, I introduced the master stability approach that can be

used to expand the GM analysis to spatial systems. In the upcoming chapters, GM will

be a key tool to explore the underlying mechanisms of complex ecological communities.



Chapter 4

Bacterial niche occupancy dynamics

Advances in molecular methods enable us to monitor bacterial populations in time [21].

However, due to the tremendous diversity of bacteria, understanding their community dy-

namics and its links with ecosystem functioning remains challenging. We need conceptual

frameworks that make sense of time series of taxonomically diverse bacterial communities

in terms of their potential ecological function. In ecology, a key concept for such synthesis

is the niche, the set of strategies that enable a population to survive and that shape its

impacts on the surroundings.

In this chapter I present a framework based on diffusion maps [48] to coarse-grain tax-

onomically-rich bacterial communities in terms of their metabolic strategies and quanti-

tatively organize genomic information in terms of potentially occupied metabolic niches

over time. Applying this framework to a long-term bacterial time series from the Baltic

Sea, I am able to reconstruct the dynamics of putatively occupied metabolic niches.

This chapter follows the lines of Massing et al. 2023 [135]. I start with a general intro-

duction to the dynamics of marine bacterial communities (Sec. 4.1). In Sec. 4.2 I apply

the diffusion map approach to a dataset of a Baltic Sea bacterial community time se-

ries. The method identifies important metabolic strategies and delineates the structure

of the niche space. In Sec. 4.3 I translate the species time series to potentially occupied

metabolic niches over time. In addition, I estimate the functional diversities of the Baltic

Sea bacterial community over time (Sec. 4.4). Finally, I discuss the results in Sec. 4.5.

4.1 Dynamics of marine bacterial communities

Marine bacterial communities are a critical component of global element cycles [10], of the

marine microbial food web [23] and in interacting with other micro- and macroorganisms

(e.g. [11, 12, 136]). With over 40,000 marine microbial species detected so far [82, 137],

marine bacterial communities are highly diverse. In addition to their high species diversity,

these communities also display a high diversity in terms of their dynamics over time. As

53
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a result of short generation times, in surface waters normally hours to days [22, 138],

and their diverse interactions, marine bacterial communities show complex dynamics

fluctuations in abundances and species composition on the daily, monthly and annual

scale [22, 23].

Studies of short- and long-term time series of marine bacterial communities show that their

composition changes in response to multiple forces acting over different time-scales [22].

In spite of strong variations on shorter scales, these communities show stability in their

average community composition [22]. Biological interactions among bacteria themselves

and between bacteria and other organisms, for example, phytoplankton, play an im-

portant role in shorter-scale community dynamics [34]. Driven by changes in multiple

interacting environmental features, bacterial communities in surface waters in temperate

and polar regions show strong seasonal patterns [23]. Despite the insights gained on these

communities, their tremendous diversity remains a challenge for data analysis.

Progress in understanding bacterial community dynamics and its links with ecosystem

functions requires abstracting from individual taxa and coarse-graining of these complex

communities in terms of their occupied niches over time. To achieve this, we need to

identify new variables that describe our data sets in reduced dimensions. We have seen

in Chapt. 2.3 that the diffusion map [48] finds new dynamically relevant variables that

describe the most important dimensions in a system. In the following we apply the

diffusion map to reconstruct bacterial metabolic strategies from a monitoring dataset and

subsequently use the identified metabolic strategies to convert our species time series into

strategy time series.

4.2 Reconstructing the metabolic strategy space

4.2.1 Sampling data

Seawater samples from the Linnaeus Microbial Observatory (LMO) were collected ap-

proximately on a weekly basis from 2011 to 2013 and monthly from 2014 to 2019. The

observatory is located at N 56°55.854’, E 17°3.6420’ in the Western Baltic Proper. Water

sampling was conducted using 3- or 5-L Ruttner water samplers, extracting samples from

a depth of 2 meters at approximately 9 a.m. during each sampling event. In the laboratory

at Linnaeus University, seawater was processed, during which environmental parameters,

i.e. temperature, salinity, chlorophyll a, dissolved organic carbon (DOC), nitrate and ni-

trite (together named as nitrate), phosphate, silicate, and ammonium were analyzed using

methods previously outlined [139, 140, 141]. To assess microbial community composition,
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seawater was filtered either directly onto 0.22 µm Sterivex cartridge filters (Millipore) or

initially prefiltered onto 3 µm polycarbonate filters and then further processed through

0.22 µm Sterivex cartridges (collectively referred to as the 3-0.2 µm size fraction), using

a peristaltic pump. The filters were preserved in Tris–EDTA (TE) buffer at -80°C until

DNA extraction. The extraction process followed a phenol–chloroform method outlined

by Boström et al. [142] and modified after Bunse et al. [143]. The V3V4 region of the 16S

rRNA gene was amplified through PCRs, employing the primer pair 341f-805r [144, 145].

DNA concentrations were assessed using either a NanoDrop or Qubit 2.0 Fluorometer

(Life Technologies) and gel electrophoresis was conducted to verify the specificity of the

amplicons. Sample batches for sequencing were successively dispatched to the Science

for Life Laboratory, Sweden, on the Illumina MiSeq platform, leading to 2 × 300 bp

paired-end reads. Bioinformatic processing was conducted using the nf-core Ampliseq

pipeline [146, 147] with the following software versions: nf-core/ampliseq = v1.2.0dev;

Nextflow = v20.10.0; FastQC = v0.11.8; MultiQC = v1.9; Cutadapt = v2.8; and QIIME2

= v2019.10.0. DADA2 [148] implemented in QIIME2 [149] was employed and trimmed

the sequences at forward 259 bp and reverse 199 bp before denoising. Among all samples

from the LMO, we included all filter fractions in the niche space analysis. For abundance

estimates, only the non-prefiltered 0.22 µm fraction was considered (refer to the detailed

method description below).

4.2.2 Obtaining genomes and genes from ASV data

We obtained the GTDB reference database [150] of all 16S rRNA gene sequences from

genomes that passed quality control criteria employed by GTDB [151]. Identification of

sequences were performed with nhmmer [152] using the 16S rRNA model from the RFAM

database [153]. Subsequently, we conducted a BLAST sequence similarity search using

default parameters to match denoised sequence variants present in each LMO sample

to the BLAST database and retain the top hits. In cases of multiple matches with

equal similarity, we retained a randomly-chosen representative. Out of 48,098 Amplicon

Sequence Variants (ASVs), 21,102 (so 44%) could be matched well (similarity greater

than 95%) to a genome from the GTDB. In terms of abundances, a mean of 82% (column

sums) were good matches. From the well-matched species we obtained 4,265 complete

genomes from GTDB and NCBI (Refseq and GenBank). These complete genomes were

annotated using Prokka [154].
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4.2.3 Diffusion mapping the strategy space

Following the algorithm explained in Chapt. 2.3.2, we diffusion map the dataset of genomes

and genes using the similarity in gene composition as similarity measure between the

genomes. The starting point for the analysis is the data table of genomes (rows) and

annotated genes (columns). If a certain gene is present in a genome the entry is 1 for

the respective column (gene) and row (genome), if the gene is absent in the genome the

table entry is 0. For the diffusion map analysis, we first need to establish some notion of

similarity between the genomes. Due to the presence-absence type of data, we calculate

the hamming distance between all genome pairs, counting their differences in gene com-

position. Taking the inverse of the hamming distances yields the similarity values. Next,

we threshold the similarity matrix, keeping only the top-25 highest similarity entries for

each datapoint. From the thresholded similarity matrix we calculate the row-normalized

Laplacian matrix. Finally, we compute the eigenvectors and eigenvalues of the Laplacian

matrix.

The result of the diffusion map analysis are new variables that are composites of metabolic

capabilities of the analyzed taxa, i.e. metabolic strategies (Fig.4.1). The eigenvectors

assign an entry to each genome for each new variable and the corresponding eigenvalues

provide information on the importance of the identified variable. The most important

eigenvector, hereafter called variable 1, corresponds to the smallest non-zero eigenvalue.

The eigenvector corresponding to the second-smallest non-zero eigenvalue is the second

most important, hereafter called variable 2, and so on.

Each new variable represents a dimension of the metabolic strategy space [44]. There are

variables that trace a continuum in the strategy space, ranging from one pure strategy

at one end to another pure strategy at the other end. In addition, we find variables that

correspond to localized eigenvectors, i.e. there is a clear separation between non-zero and

almost zero entries in the vector. The former type of variables describes a true continuum

in the data, for example going from genomes that have the full set of genes for a certain

strategy at one end, over partial sets to another strategy at the other end. The set of

genes for this strategy is gradually completed as we approach the other end of the variable.

Localized eigenvectors identify a separation in the data, i.e. the set of genes for a strategy

is almost complete or almost completely absent with little middle ground. Each variable

is divided into positive and negative side for interpretation.
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Figure 4.1: Overview of the procedure from diffusion mapping the dataset of genomes and
genes to conversion of the species time series into strategy time series. The circles represent the
genomes, which have different abundances over time (size). The two axes in the figure are just
representatives for the many axes that describe the known gene content of the genomes in a
high-dimensional space. Figure is adapted from Massing et al. [135] with modifications.

4.2.4 Identifying metabolic strategies

To identify the metabolic strategies that are described by the new variables, we examine

the genomes that score extreme values in the respective variable and check the genes that

are enriched in these genomes. For the sake of simplicity, we refer to the genomes with

extreme variable entries as ’extreme taxa’ in the following. To reveal overrepresented genes

of the extreme taxa we use a permutational variant of the gene set enrichment analysis,

GSEA [155]. Given an apriori defined set of genes S the goal of GSEA is to determine

whether the members of S are randomly distributed throughout a ranked list (according

to their appearance in genomes with high or low variable values) or if they are primarily

found at the top or bottom. The orderings specified by each diffusion variable are used to

rank the genomes. We perform gene set enrichment analysis with a Benjamini-Hochberg-

adjusted [156] P value <0.01 used as a threshold for retaining genes corresponding to

extreme taxa in the respective diffusion variable. For analysis we separate the negative

and positive values for each diffusion variable and we refer to these sides as “variable x

negative” and “variable x positive” respectively, where “x” corresponds to the variable

number.
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4.2.5 Important metabolic strategies in the Baltic Sea data

Variable 1, the most important variable identified by the diffusion map, separates a

group of Gammaproteobacteria clearly from the rest of the taxa (Fig. 4.2A). The dis-

tinct group consists primarily of human- and animal-associated Enterobacteriaceae, for

example Cronobacter, Salmonella and Yersinia (Table S2). While this group of a total

of 92 genomes scores large negative values in variable 1, all other genomes are assigned

values close to zero. This localized variable indicates that the separated taxa possess a

cluster of unique capabilities. Overrepresented genes in these taxa include genes encoding

machinery for iron acquisition common in Enterobacteriaceae, such as the Enterobactin

synthase component F [157, 158], genes responsible for the flagellar formation [159] and

genes associated to biofilm formation [160] (Table S3).

Given what is known about the ecological role of Enterobacteriaceae in marine ecosystems,

this result may seem surprising at first. Despite the extremely low abundances of these

taxa in the samples (mean relative abundances of 0.007) the diffusion map detects this

variable as the most important one. Nevertheless, the distinct separation of this group

from the rest of the taxa makes sense in the light of the well-known biases towards

sequences of pathogenic taxa and genes associated with pathogenesis in global databases

(e.g. [161]). As a result, these taxa stand out as significantly distinct from other bacterial

species in the Baltic Sea community. This illustrates the power of the diffusion map in

uncovering such differences and identifying biases within the dataset.

The diffusion map also reveals many strategies more relevant for the Baltic Sea bacterial

community. For example, the localized variable 4 negative detects cyanobacterial pho-

tosynthesis. It separates all the Cyanobacteria (large negative values) from the rest of

the taxa (positive or close-to-zero values) (Fig. 4.2D). Enriched genes encode the sub-

units of photosystem I and photosystem II as well as associated cytochrome components

and cyanobacterial-specific light-harvesting antennae [162]. The localized character of

this variable supports the findings that cyanobacterial photosynthesis is a yes-or-no strat-

egy [44], indicating that the oxygenic photosynthetic lifestyle has wide ranging metabolic

consequences. Indeed, this photosynthetic lifestyle is for example expensive in terms of

avoiding and repairing photoinhibition and -damage. These costly adaptations mean that

the invested energy cannot be spent for other metabolic pathways [163].

Variable 2 and variable 3 (Fig. 4.2B,C) are examples of variables that trace a continuum

in the strategy space. At the positive extremum in variable 2 are marine host-associated

Gammaproteobacteria, such as Photobacterium, Shewanella and Vibrio, whereas olig-

otrophic Gammaproteobacteria and Alphaproteobacteria are assigned values close to zero.
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Figure 4.2: The ordering of taxa defined by variable entries 1-4 (A-D), from negative to positive
(left to right). The taxonomic compositions corresponding to these variable entries are shown for
each of 80 equally spaced bins. Figure is adapted from Massing et al. [135] with modifications.

Chemotaxis and response to various stressors are the most correlated capabilities for the

taxa situated at the positive end of variable 2. Our interpretation is that variable 2

positive represents the metabolic strategy of marine host-associated Gammaproteobac-

teria. Variable 3 reveals different strategies of marine Alphaproteobacteria: Free-living

Pelagibacterales and the obligate intracellular pathogens Rickettsiales, known for their

streamlined genomes, score close-to-zero values, while Rhodobacteraceae and Rhizobiales,

known for their capability of utilizing a variety of carbon sources [164, 165], are assigned

large positive values. Since the overrepresented genes at the positive end of this variable

encode machinery for the utilization of various dissolved organic compounds, e.g. phos-

phonate, acetate and urea that constitute exudates of phytoplankton [166], we interpret

this variable as metabolic approach of Alphaproteobacteria that enables them to utilize

a wide range of carbon sources.

Diffusion mapping also identifies strategies that subdivide groups that cluster together

in other variables. For example, the Cyanobacteria that all scored large negative val-
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Figure 4.3: The ordering of taxa defined by variable entries 14, 27 and 33 (A-C), from negative
to positive (left to right). The taxonomic compositions corresponding to these variable entries
are shown for each of 80 equally spaced bins. Figure adapted from Massing et al. [135] with
modifications.

ues in variable 4 are separated in variable 33 (Fig. 4.3C). While the Picocyanobacteria

group towards the negative extremum, all other cyanobacterial genomes score positive

values. Among these, the cyanobacterial family Nostocaceae, that is known to form het-

erocysts, scores highest values. Other examples are variable 27 (Fig. 4.3B) that separates

the Enterobacterales of variable 2 positive into the family Shewanellaceae at the nega-

tive end and the other enterobacterial families like Vibrionaceae at the positive end as

well as variable 14 (Fig. 4.3A) that divides the Bacteroidota into complex polysaccha-

ride degraders e.g. Flavobacterium [167] on the negative side and anaerobic, intestinal

Bacteroidota e.g. Prevotella [168] on the positive side. Genes for different CAZymes

(carbohydrate-active enzymes) [169], responsible for the degradation of major plant cell

wall components, are overrepresented in the genomes of the complex polysaccharide de-

graders.

Furthermore, there are variables that group genera from different taxonomic groups to-
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Figure 4.4: The ordering of taxa defined by variable entries 38 (A) and 43 (B), from negative
to positive (left to right). The taxonomic compositions corresponding to these variable entries
are shown for each of 80 equally spaced bins. Figure is adapted from Massing et al. [135] with
modifications.

gether. For example, bacteria with the capability to oxidize methyl groups and C1 com-

pounds (e.g. formaldehyde and methanol) belonging to different taxonomic families such

as Acetobacteraceae, Beijerinckiaceae and Xanthobacteraceae are found at the negative

end of variable 38 (Fig. 4.4A). Genes encoding machinery for formaldehyde and methanol

degradation [170] are correlated to this strategy. Variable 43, associated with genes for

sulfate respiration [171], clusters positive non-spore forming sulfate-reducing bacteria from

the families Desulfocapsaceae, Desulfobacteraceae, Desulfurivibrionaceae and others to-

gether (Fig. 4.4B).

4.2.6 Inferred niche space

The examples explained above demonstrate that the diffusion variables provide possibly

hundreds of meaningful coordinates that trace the space of bacterial metabolic strategies.

Collectively, these strategies delineate the metabolic niche space of the community and al-
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locate taxa to specific coordinates in a multidimensional space. Using PHATE [45], which

we introduced in Chapt. 2.3.4, we combined the diffusion variables in a low-dimensional

visualization of the strategy space. Despite the fact that low-dimensional embeddings

should be interpreted with caution, the structure that we observe shows resemblance to

the niche space of a previous study [44]: the strategy space of the Baltic Sea bacterial

community is represented as a tree-like structure comprising clusters of taxa featuring

localized traits and continuous branches (Fig. 4.5).

The coarse structure of the metabolic niche space roughly follows the taxa’s phylogeny.

The core of the branched structure is comprised of uncultured taxa and streamlined

genomes, including Patescibacter [172], Pelagibacterales [173], and Rickettsiales [174].

Their genomes predominantly retain essential basic functions required for survival and

reproduction, which they share with many other organisms and they lack many of the

more ’specialized’ genes [175]. The grouping of uncultured taxa towards the center occurs

either because they also possess streamlined genomes or due to the limited knowledge

about their genes and respective functions. Consequently, their position in the metabolic

niche space may undergo changes as further knowledge is acquired.

Distinct clusters within the structure are formed by taxa characterized by localized vari-

ables such as the Cyanobacteria. Their separation could reflect that an intermediate

strategy is not feasible due to certain trade-offs resulting from adopting the respective

strategy, that applying the strategy demands complex and costly adaptations [176] and

that the acquisition of necessary machinery is not easily achievable, like through horizontal

gene transfer [177]

Bacterial taxa linked to human disease, such as species related to Klebsiella, Mycobac-

terium, Staphylococcus, and Fusobacterium, are positioned farthest from the central struc-

ture and manifest as peripheral clusters of dots. This spatial arrangement can probably

be attributed to the bias in global databases, which primarily focus on human pathogens

and their associated functional traits, as discussed earlier.

Another interesting feature of this mapping is the amount of white space, the geometric

structure indicates significant unoccupied areas within the metabolic niche space. This

suggests the presence of either strategies that are not viable within the specific ecosystem

or in general, or strategies that have not yet been discovered [44].
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Figure 4.5: Two-dimensional embedding of diffusion variables created using the PHATE al-
gorithm [45]. Each point represents an individual genome that is coloured by taxonomic class.
Figure adapted from from Massing et al. [135] with modifications.
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4.3 Dynamics of occupied metabolic niches

4.3.1 Translation into strategy time series

In the previous section we saw that the diffusion map approach identifies new variables

from the dataset that represent interpretable metabolic bacterial strategies. Our next aim

is to understand the bacterial communities in terms of their occupied metabolic strategies

over time, i.e. we want to use the identified metabolic strategies to convert our species

time series into strategy time series.

As previously mentioned, for our analysis, we divided the diffusion variables into negative

and positive side. Considering the relative abundances of the amplicon sequence variants

(ASVs), we calculated abundance-weighted mean values for each variable side. For a given

variable side v and sample k, the abundance-weighted mean strategy value is defined as

follows:

mean strategy valuev,k =

∑n
i=1 vipk,i∑n
i=1 pk,i

, (4.1)

where vi represents the variable entry of variable side v assigned to genome i, pk,i denotes

the relative abundance of the ASV corresponding to genome i in this particular sample,

and n is the total number of genomes. To translate the species time series into a strategy

time series, we computed the weighted means of each diffusion variable side, i.e. metabolic

strategy for every sample, corresponding to each sampling time-point. As a result, this

allows us to observe the dynamic changes in the occupation of metabolic strategies over

time within the Baltic Sea bacterial community (Fig. 4.1).

4.3.2 Metabolic strategies over time in the Baltic Sea

The occupation of metabolic niches shows a variety of patterns over time. For example,

the strategy of utilizing a variety of carbon sources (variable 3 positive) and the capa-

bility of metabolizing complex polysaccharides (variable 14 negative) both reach high

abundance-weighted mean values in May (Fig. 4.6), following the peak of the phyto-

plankton spring bloom [139]. The occupation of the two strategies however differ in their

evolution over time: The capability of metabolizing complex polysaccharides, primarily

governed by members of the Flavobacteriaceae, shows a pronounced peak in May. In

contrast, the strategy of utilizing a variety of carbon sources attains high values in May

without displaying a distinct peak, instead it decreases more slowly, reaching a minimum

mean value in September.

The peak of the strategy values of metabolizing complex polysaccharides is probably
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Figure 4.6: Abundance-weighted mean values of variable 14 negative, i.e. the inferred ability
of using complex polysaccharides (A, B) and of variable 3 positive, i.e. inferred ability of using a
variety of carbon sources (C, D) over the whole time period and over the yearly cycle. Summer
months are indicated by a gray background. Taxonomic orders (B) and taxonomic classes (D)
are color-coded. Figure is adapted from Massing et al. [135] with modifications.

closely linked to the phytoplankton bloom, since phytoplankton exudes significant quan-

tities of photosynthetic products, primarily polysaccharides [178], and Flavobacteria have

developed adaptations to effectively utilize these high-molecular-weight molecules [167].

During spring 2011, which coincided with the peak phytoplankton biomass [139], the oc-

cupation of this strategy shows particularly high levels. The strategy of utilizing a variety

of carbon sources (variable 3 positive) is dominated by the marine Rhodobacteraceae,

which play a crucial role in metabolizing low-molecular-weight phytoplankton-derived

compounds and are characterized by their high trophic versatility [179, 180]. In winter

2015/16 and 2016/17 Rhodospirillales, especially of the genus Thalassospira, drive ele-

vated values of these strategy values. Thalassospira is known for its ability to degrade

polycyclic aromatic hydrocarbons (PAHs) [181], and its occurrence in the upper water

column could be associated with Major Baltic Inflow events [182] and subsequent winter

mixing.

Cyanobacterial photosynthesis (variable 4 negative) reaches its highest strategy values

in summer (Fig. 4.7). This time pattern supports our interpretation of this strategy as

cyanobacterial photosynthesis, since the occurrence of massive summer blooms caused

by Cyanobacteria in the Baltic Sea is well-documented [183]. Distinguishing between

various cyanobacterial families reveals different time patterns within these groups: an
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Figure 4.7: Strategy time series with different taxonomic resolutions: abundance-weighted
mean values of variable 4 negative, i.e. inferred cyanobacterial photosynthesis, over the yearly
cycle. Summer months are indicated by a gray background. Taxonomic class (A) and cyanobac-
terial taxonomic families (B) are color-coded. Figure adapted from Massing et al. [135] with
modifications.

early summer peak attributed to the filamentous Nostocaceae and a sustained plateau of

niche values for the unicellular Cyanobiaceae, gradually increasing until the beginning of

autumn (Fig. 4.7B). The utilization of nutrients from filamentous Cyanobacteria could

potentially fuel the metabolism of opportunistic picocyanobacteria [184].

There are also metabolic niches that reach their occupation minimum in May, right after

the phytoplankton bloom, like the metabolic ability to oxidize methyl groups and C1

compounds (variable 38 negative), and the strategy of non-spore forming sulfate reducers

(variable 38 negative) (Fig. 4.8). The former strategy is dominated by Alphaproteobac-

teria, especially Pelagibacter in winter and Planctomycetes in autumn in the Baltic Sea

bacterial community. In the marine environment, diverse C1 and methylated compounds

originate from dissolved organic carbon, where methanol constitutes a major fraction of

oxygenated volatile organic chemicals, and formaldehyde is ubiquitous in seawater [170].

The capacity to utilize these compounds allows for energy production from relatively

abundant substrates in the water, but this ability is outcompeted as concentrations of

phytoplankton-derived substrates increase during spring.

Driven by Baltic Sea sulfate reducers of the phylum Desulfobacterota, predominantly

found in sediments and oxygen-depleted waters [185, 186], variable 43 positive peaks in

February (Fig. 4.8B). Strong winter mixing is probably the cause for the appearance of
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Figure 4.8: Abundance-weighted mean values of variable 38 negative, i.e. the inferred ability to
oxidize methyl groups and C1 compounds (A) and of variable 43 positive, i.e. the strategy of non-
spore forming sulfate reducers (B) over the yearly cycle. Taxonomic classes (A) and taxonomic
phyla () are color-coded. Figure is adapted from Massing et al. [135] with modifications.

these sulfate reducers in the upper water column during this period. Overall, comparing

the strategy time series with the environmental data obtained at LMO and examining the

abundance-weighted mean values over the months, reveals a strong signal of seasonality.

In Fig. 4.9A, the left-side variables correlate with higher nutrient concentrations and lower

temperatures, indicative of winter conditions, while the right-side variables are associated

with higher temperatures and chlorophyll a concentrations, reflecting summer conditions.

Fig. 4.9B complements this observation, showing higher mean strategy values in summer

and autumn for the variables on the left side, and higher values in winter and spring for

the variables on the right side.
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Figure 4.9: A: Heatmap of Spearman correlation coefficients (CV) between the first 49 vari-
ables, i.e. strategy time series and the environmental variables (Chla: chlorophyll a concentra-
tions; DOC: dissolved organic carbon concentrations; T: temperature). All concentrations are
in µM . Significance levels are expressed by asterisks (*** for p-value ≤ 0.001, ** for p-value
≤ 0.01, * for p-value ≤ 0.05). P-values are Benjamini-Hochberg-adjusted [156]. B: Heatmap of
abundance-weighted variable mean values of the first 49 variables for each month over the whole
sampling period, standardized to mean = 0 and standard deviation = 1 for each variable side.
Figure adapted from Massing et al. [135].

4.4 Functional diversity

In Chapt. 2.3.3, we have seen that the diffusion distances in the reconstructed trait space

can be used to robustly estimate functional diversities of communities [49]. This allows

us to investigate changes in functional biodiversity from monitoring datasets. Adopting

the approach of Ryabov et al. [49], we computed the diffusion distances between all pairs

of species from the variables obtained via diffusion mapping. These distances were then

used to quantify the functional diversity of each sample, calculated as Rao index [49].

Low functional diversity values imply that the sampled community is dominated by few
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metabolic strategies, whereas higher values indicate that the community is more diverse

in terms of metabolic strategies.

Summarizing all sampling years, the functional diversity mean values are highest in Febru-

ary and July and reach lowest values in May and October over the yearly cycle (Fig. 4.10).

A likely explanation for the observed pattern is the absence of the thermocline in win-

ter, that causes deeper mixing of the water layers [187], leading to bacterial communities

from the former mesopelagic to be found also in surface waters [140, 188]. The pres-

ence of these communities in the surface waters during winter can lead to an increase in

functional diversity, as their members may possess distinct strategies adapted to deeper

water layer or sediment conditions [140]. Due to their taxonomic and functional diver-

sity generally being higher than surface communities [82], their appearance in the surface

layers contributes to the increased overall functional diversity during this period. Also,

increased nutrient availability in winter leading to a higher resource heterogeneity benefits

functional diversity [189, 190]. The decrease in functional diversity following the phyto-

plankton bloom is likely driven by the dominance of strategies that are associated to the

utilization of phytoplankton-derived substrates during bloom phases as these compounds

increase massively in relative abundance [167, 169, 191].
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Figure 4.10: Mean and SE of functional diversity estimation calculated as Rao index [49]
for the sampled Baltic Sea bacterial community over the yearly cycle summarizing the years
2011–2019. Gray background indicates summer months. Figure from Massing et al. [135].
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4.5 Discussion

In this chapter, I showed that the diffusion map procedure is a powerful tool to coarse-

grain complex bacterial communities in terms of their metabolic strategies over time.

Diffusion mapping the bacterial capabilities uncovered a wide spectrum of interpretable

metabolic strategies. These strategies ranged from localized ones, like cyanobacterial

photosynthesis, to continua of strategies, such as the degree of association with marine

hosts and the degree of trophic versatility. The analysis revealed strategies that align

with phylogeny, strategies that differentiate closely-related taxa, and strategies that unite

distantly-related taxa [44]. The observed similarities among distantly-related taxa in their

metabolic strategies may be attributed to metabolic niche convergence [192] or horizontal

gene transfer (e.g. [193]).

Systematizing the genomic information via our diffusion map approach enables us to

translate the changes in bacterial species abundances to quantitative changes in potential

occupation of metabolic niches over time. These abundance-weighted strategy values

showcased a wide range of temporal patterns. These include seasonal dynamics, such

as increasing trends in summer or increases following the phytoplankton bloom, as well

as higher values related to winter mixing. Inter annual changes are also observed in

some strategies. Moreover, specific events like a pronounced spring bloom or a Major

Baltic Inflow event left discernible imprints in the strategy time series. Some functional

strategies are strongly driven by a single bacterial group, whereas others were shared

among multiple bacterial groups, with the distribution often varying depending on the

season.

In the Baltic Sea, seasonality appears to play a significant role not only in shaping the

phylogenetic composition of bacterial communities [140, 188] but also in influencing the

occupation of bacterial metabolic niches and the functional diversity. This strong impact

of seasonality on metabolic strategies is likely linked to the interplay between seasonal

changes in substrate availabilities and fluctuations in abiotic parameters that influence

metabolic activities [188, 194, 195].

The results also reveal the power of the diffusion map to objectively detect biases in the

datasets, illustrated by the identification of the pathogen bias in our dataset. In the first

variable, the diffusion map separated all the pathogenic members of the Enterobacteri-

aceae from all other taxa, revealing the bias that bacterial pathogenic taxa and genes

involved in pathogenesis are overrepresented in global databases (e.g. [161]). This also

highlights one of the major limitations of the approach: our knowledge of genes and their

functions. As we acquire further knowledge, new strategies may be detected and the
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metabolic strategy space might change. As a consequence, branches may be added to the

tree-like structure, representing previously unknown taxa and strategies and positions of

certain taxa and distances between taxa might change.

It is important to emphasize that genes merely represent the theoretical capabilities of

a species [44], akin to the fundamental niche concept [196]. Nevertheless, recent find-

ings reveal that functional genes can effectively predict a species’ position along major

niche gradients, surpassing predictions based solely on phylogenetic information [41]. Fur-

thermore, Gralka et al. [197] have demonstrated that functional predictions derived from

genomes exhibit remarkable accuracy in forecasting real metabolic niches. Gowda et

al. [198] also demonstrated the feasibility of predicting community metabolic dynamics in

the denitrification process based on the presence and absence of genes in metagenomes.

In contrast to their approach, our method involves the assignment of amplicon sequence

variants (ASVs) to species and acquiring their complete genomes from available databases.

Hence our method relies heavily on the quality of these databases and genome assemblages.

The 95% similarity threshold we employed for matching ASVs to genomes provides a broad

identification, and it is worth noting that substantial changes in genome content can occur

at the sub-genus level [199]. As of now, to our knowledge, ASV data remains the only

available data for our system, meeting the data requirements for our approach. Despite its

relative simplicity, this crude tool has already provided evidence that our method yields

a useful trait space.

In the future, diffusion map analysis of bacterial trait space stands to benefit from ongoing

developments. One promising avenue is the integration of metagenome analysis, which can

enrich the analysis by considering within-species genome variability, the accessory genome,

and prophages’ potential role in shaping organismal strategies and traits [200, 201, 202].

Furthermore, leveraging tools like PICRUSt 2 [203] in conjunction with diffusion mapping

may enhance the prediction of metagenome functions.

In an ideal scenario, having access to the complete genomes of all taxa present in the

sampled habitat would be highly beneficial. However, since this is not yet the case,

we currently depend on a straightforward mapping scheme. Deep shotgun metagenomic

sequencing and long read technologies will be crucial in gathering the data required to

make our method even more powerful. Looking ahead, we also envision the potential of

utilizing future transcriptomic data to investigate the strategies employed by organisms

under specific environmental conditions [44].

In conclusion, the diffusion map approach outlined in this chapter allows us to coarse

grain complex bacterial communities in terms of metabolic bacterial strategies and pro-
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vides a quantitative framework to organize genomic information into potentially occupied

metabolic niches over time. This approach advances our understanding of the conse-

quences of changes in bacterial abundances and species composition for the dynamics

of the potential occupation of metabolic niches. The results demonstrate the power of

manifold learning approaches to shed light on the relationships between bacterial commu-

nity composition and ecosystem functioning, facilitating analysis, monitoring, and future

predictions.



Chapter 5

Generalized model of bacterial mutu-

alism

In the previous chapters, we have developed tools to make sense of the large datasets that

are available on bacterial communities. To gain insights into the underlying mechanisms

of bacterial community dynamics and functioning we also need to be able to develop good

models of this system and its phenomena and dynamics. The study of these complex

communities requires an integrated approach that combines data analysis and modeling.

This entails a reciprocal flow of information, where results from experimentation and

data analysis inform the model, and conversely, insights derived from modeling guide

experimentation and hypothesis generation.

As discussed above, the main challenge in modeling bacterial communities is their com-

plexity and the many uncertainties associated with them. We have seen in Chapt. 3 that

generalized modeling provides a framework to model systems with many uncertainties.

In this chapter I apply this modeling approach to study a small common motif in bacte-

rial communities, bacterial cross-feeding, i.e. two types of bacterial taxa that reciprocally

produce and exchange limiting metabolites needed for growth [37, 204]. This exchange of

metabolites is a crucial mechanism that impacts the growth and composition of bacterial

communities [205]. Given that this mutualistic relationship forms a positive feedback

loop, it should inherently be unstable. Therefore, here I aim to explore the factors that

contribute to the stabilization of this mutualistic relationship.

I start in Sec. 5.1 with an introduction to metabolite-based bacterial interactions. Then

I formulate the generalized model (Sec. 5.2), which I analyze in the subsequent sec-

tions. I investigate parameter correlations to stability (Sec. 5.3), response to parameter

changes (Sec. 5.4) as well as bifurcations (Sec. 5.5). For an easier analysis, I reduce the

4-dimensional system to a 2-dimensional system in Sec. 5.6. Moreover, I study the 4-

dimensional as well as the 2-dimensional system in space (Sec. 5.7). Finally, I discuss the

findings in Sec. 5.8.

73
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5.1 Metabolite-based bacterial interactions

Owing to their broad diversity of metabolic capabilities, bacteria release a variety of

metabolites, that are frequently taken up and utilized by fellow bacteria. The prevalence

of these metabolite-based interactions in bacteria plays a role in community composi-

tion, ecosystem function and stability [206, 207]. Outsourcing the production of essential

metabolites such as amino acids, lipids, vitamins, cofactors and signaling molecules [37,

208, 209, 210], bacteria create metabolite trading networks that impact the dynamics

of bacterial systems [54, 55, 211]. Around 98% of the bacterial genomes that have

been sequenced apparently lack the capability to independently synthesize all essential

amino acids, indicating their dependence on the production of metabolites by other bac-

teria [205]. This suggests that commensal or mutualistic interactions among microorgan-

isms based on sharing metabolites, are likely widespread in ecosystems and macrobiotic

hosts [204, 210, 212].

Since mutualistic interactions create positive feedback loops, i.e. each species benefits

from the respective other, they are generally predicted to be destabilizing for ecological

communities comprising interacting macro- or bacteria populations [50, 70], unless spe-

cific criteria are satisfied [54, 55]. These theoretical predictions appear to be in contrast

to real-world observations of apparently stable environmental and host-associated bac-

terial communities, which include both opportunistic and obligate mutualists [37, 71].

To address this apparent paradox, we need to identify ecological factors that generally

promote stability and coexistence within communities featuring beneficial bacterial inter-

actions [54, 213].

Metabolite-based interactions present across a range of spatial scales [210]. From interac-

tions between neighboring cells, for example between diverse phenotypes within bacterial

biofilms, through cell-to-cell contact or along nanotubes [37, 212] to instances in which

metabolites are released or leak into the surroundings and disperse as public goods that

might eventually be taken up by microorganisms in distant areas [210, 214, 215]. The

metabolites that are exchanged range from costly to produce and export [37] to waste or

byproducts of the own metabolism [216].

Given that the majority of identified bacteria remain uncultured [58, 59], our knowledge on

the precise rate laws and functional forms of these interactions is often very limited. This

high uncertainty coupled with the diversity of interaction modes impedes our ability to

predict dynamics of interacting bacterial populations across various scales [215, 217]. To

circumvent these issues, in the next section I present a generalized model of bacterial cross-

feeders. Without making specific assumptions about the functional forms or rate laws
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underlying the bacterial metabolite-based interactions, the generalized model describes

the stability properties of all stationary states for the entire class of systems.

5.2 Model formulation

To address the challenges of the diversity of interaction modes and the high uncertainty

in rate laws and functional forms governing bacterial interactions, we apply a generalized

modeling approach. We model the small bacterial motif of bacterial cross-feeding, i.e. two

types of bacterial taxa, X and Y , that reciprocally produce and exchange essential growth-

limiting metabolites (either A or B) [37, 204]. In this model, it is assumed that the

additional metabolites needed for growth are sufficiently available.

The cross-feeding relationship is illustrated in Fig. 5.1 and represented by the 4-dimen-

sional. system of equations

Ẋ = Mx[Gx(X,B)]− Lx(X) (5.1)

Ẏ = My[Gy(Y,A)]− Ly(Y ) (5.2)

Ȧ = Sa +Gx(X,B)−Da(A)−Gy(Y,A) (5.3)

Ḃ = Sb +Gy(Y,A)−Db(B)−Gx(X,B). (5.4)

The functions Mx and My represent the biomass growth of bacteria X and Y with re-

spect to their metabolic throughput, Gx and Gy. Hence Gx and Gy model the metabolic

throughput of bacterial cells, namely the transformation of metabolite type A to type B

and vice versa by bacteria through uptake, metabolism, and release. The functions Lx

and Ly model the losses of the bacteria to mortality. In the equations that describe the

change of metabolites A and B, the constants Sa and Sb represent a constant exogenous

supply of metabolites to the system. The functions Da and Db represent the losses of the

metabolites to decay. Unlike phenomenological models of interspecific bacterial interac-

tions, we consider the class of models with explicit metabolite dynamics, which can lead

to qualitatively different behaviors compared to phenomenological models [54, 55, 218].

In conventional modeling, we would now proceed by assigning specific functional forms to

each process, finding the steady states of the system and computing the Jacobian matrix,

which provides a linearization of the dynamics around the steady state. As we have seen in

Chapt. 3 generalized modeling (GM) however draws on the insight that computing steady

states is technically difficult, whereas determining stability around the steady state is in

comparison easier. For determining the stability around a given steady state, we only

need to parameterize the Jacobian, which requires less information than restricting the



76 CHAPTER 5. GENERALIZED MODEL OF BACTERIAL MUTUALISM

Figure 5.1: Community motif. Cross-feeding of two bacterial taxa, X and Y , on two types of
metabolites, A and B. Gain and loss processes of bacteria and metabolites with corresponding
unspecified functions and descriptions of the process they represent.

functions to specific functional forms.

Following the procedure explained in Chapt. 3.3, to parameterize the Jacobian in an

interpretable way, we assume that all variables and process rates have positive values and

the class of models we consider is general enough that positive steady states must exist.

We denote these steady states as X∗ and the rates of the processes in the steady state as

P ∗ = P (X∗) and normalize the equations with respect to X∗, i.e. for every variable X we

define

x =
X

X∗ (5.5)

and for every process P (X) we define

p(x) =
P (xX∗)

P ∗ . (5.6)

This leads to the normalized differential equations

ẋ =
M∗

x

X∗ mx[gx(x, b)]−
L∗
x

X∗ lx(x) (5.7)

ẏ =
M∗

y

Y ∗ my[gy(y, a)]−
L∗
y

Y ∗ ly(y) (5.8)

ȧ =
S∗
a

A∗ +
G∗

x

A∗ gx(x, b)−
D∗

a

A∗ da(a)−
G∗

y

A∗ gy(y, a) (5.9)

ḃ =
S∗
b

B∗ +
G∗

y

B∗ gy(y, a)−
D∗

b

B∗ db(b)−
G∗

x

B∗ gx(x, b), (5.10)

where normalized functions are indicated by lowercase letters. This normalization proce-

dure maps the unknown steady state to a known location, i.e. x∗ = y∗ = a∗ = b∗ = 1, and

in the steady state all processes run at rate 1. Because gains and losses are balanced in
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the steady state, we can define scale parameters representing metabolites and bacterial

turnover rates

αx :=
M∗

x

X∗ =
L∗

X∗ (5.11)

αy :=
M∗

y

Y ∗ =
L∗
y

Y ∗ (5.12)

αa :=
S∗
a

A∗ +
G∗

x

A∗ =
D∗

a

A∗ +
G∗

y

A∗ (5.13)

αb :=
S∗
b

B∗ +
G∗

y

B∗ =
D∗

b

B∗ +
G∗

x

B∗ . (5.14)

To quantify the relative contribution of each gain and loss process to the population

turnovers we define branching parameters [68, 93]

βa :=
1

αa

D∗
a

A∗ (5.15)

βb :=
1

αb

D∗
b

B∗ (5.16)

γa :=
1

αa

S∗
a

A∗ (5.17)

γb :=
1

αb

S∗
b

B∗ , (5.18)

with β̃a = 1 − βa, β̃b = 1 − βb, γ̃a = 1 − γa and γ̃b = 1 − γb. For instance, when

γ̃a = 0, it indicates that all of metabolite A originates from an external source, implying

zero bacteria production of metabolite A. Conversely, if γ̃a = 1 there is no external

supply of metabolite A to the system, instead it is entirely produced by the bacteria.

When β̃a = 0, metabolite A solely undergoes decay, without any uptake by bacteria.

Conversely, if metabolite A is exclusively removed from the environment through bacteria

uptake, meaning there is no natural decay, then β̃a = 1.

Descriptions and ranges for scale and branching parameters are provided in Table 5.1 and

discussed by Gross et al. [68] and Yeakel et al. [95]. Substituting scale and branching

parameters into Eqs. 5.7-5.10 yields

ẋ = αx[mx(gx(x, b))− lx(x)] (5.19)

ẏ = αy[my(gy(y, a))− ly(y)] (5.20)

ȧ = αa[γa + γ̃agx(x, b)− βada(a)− β̃agy(y, a)] (5.21)

ḃ = αb[γb + γ̃bgy(y, a)− βbdb(b)− β̃bgx(x, b)]. (5.22)
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Local stability of this system can be analyzed by calculating the corresponding Jacobian

matrix P, which determines the behavior of the system close to the steady state. It is

defined by Pi,j = ∂ni/∂nj|∗, n ∈ {x, y, a, b}. The Jacobian contains additional parameters

called elasticities or exponent parameters [68, 93], where for instance

l′x,x =
∂ log Lx(X)

∂ log X

∣∣∣∣
∗

(5.23)

are logarithmic derivatives, and |∗ indicates that the derivatives are evaluated at the

steady state. The double subscript “x, x” indicates that we are referring to bacteria

denoted as X and that the function is being differentiated with respect to x. Hence, the

parameter l′x,x is an indication of the sensitivity of bacteria X mortality to density of X.

In general, these parameters are a measure of nonlinearity of the process at the steady

state. Exponent parameters are defined in Table 5.1. We obtain the Jacobian

P =


αx 0 0 0

0 αy 0 0

0 0 αa 0

0 0 0 αb



m′

xg
′
x,x − l′x,x 0 0 m′

xg
′
x,b

0 m′
yg

′
y,y − l′y,y m′

yg
′
y,a 0

γ̃ag
′
x,x −β̃ag

′
y,y −βad

′
a,a − β̃ag

′
y,a γ̃ag

′
x,b

−β̃bg
′
x,x γ̃bg

′
y,y γ̃bg

′
y,a −βbd

′
b,b − β̃bg

′
x,b

 .(5.24)

A steady state is stable if all eigenvalues of the system’s Jacobian have negative real parts,

and a loss of stability occurs if the real parts of one or more eigenvalues become positive.
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Table 5.1: Parameter descriptions and ranges used for numerical analyses.

Parameter Description Range or Value

Scale parameters

αx Turnover rate of bacterial species X and Y 0.1

Branching parameters

βa Fraction of losses of metabolite A from natural decay [0, 1]

β̃a Fraction of losses of metabolite A from uptake by Y 1− βa

βb Fraction of losses of metabolite B from natural decay [0, 1]

β̃b Fraction of losses of metabolite B from uptake by X 1− βb

γ̃a Fraction of gains of metabolite A from production by X [0, 1]

γ̃b Fraction of gains of metabolite B from production by Y [0, 1]

Elasticities

g′x,x Sensitivity of metabolite A production to density of bacteria X 1

g′x,b Sensitivity of metabolite A production to concentration of B [0.5, 1.5]

g′y,y Sensitivity of metabolite B production to density of bacteria Y 1

g′y,a Sensitivity of metabolite B production to concentration of A [0.5, 1.5]

l′x,x Sensitivity of bacteria X mortality to density of X [1, 2]

l′y,y Sensitivity of bacteria Y mortality to density of Y [1, 2]

d′a,a Sensitivity of metabolite A decay to density of A 1

d′b,b Sensitivity of metabolite B decay to density of B 1

m′
x Sensitivity of bacteria X biomass growth to [0.5, 1.5]

metabolic throughput of bacteria X

m′
y Sensitivity of bacteria Y biomass growth to [0.5, 1.5]

metabolic throughput of bacteria Y

5.3 Parameter correlation with stability

Due to the relatively large model size and the many forms of cross-feeding relationships

between bacteria, we do not want to restrict the model to few fixed parameter values,

but instead we adopt an ensemble approach [100], in which various model realizations are

explored. The generalized modeling procedure ensures the feasibility of all these states,

meaning that for each state, we can construct a realistic cross-feeding model in which the

bacterial populations and the metabolites’ concentrations have positive values and are

stationary.

To gain initial insights into the influence of the various model parameters on the stability of

the cross-feeding motif, we perform a numerical stability analysis similar to the procedure

explained in detail in Sec. 3.4. In short, we constrain the 17 parameters to biologically

plausible ranges in the context of the model (Table 5.1), draw 107 random parameters

sets and calculate the leading eigenvalue, i.e. the stability for each of the parameter sets.
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We denote the m’th realization of parameter i as pmi where i ∈ [1, 17] and m ∈ [1, 107].

And we denote the stability of the steady state by the parameter set m as sm, where we

define

sm =

{
1 Re(λ0) < 0

0 otherwise
, (5.25)

hence sm is 1 if the parameter set m is stable and zero otherwise. We then employ a

generalized linear model with binomial error and a logit link function to relate the system’s

stability sm to the model parameters. For this procedure we standardize each parameter

that was varied to a mean of zero and a standard deviation of one. The coefficients of the

model estimate the effect of each parameter on the stability of the system.

We find that large fractions of metabolite uptake by bacteria (β̃m) are strongly correlated

to stability, whereas large fractions of metabolite production by bacteria (γ̃m) are strongly

correlated to instability (Fig. 5.2A). In Fig. 5.2B, we can also see that increasing the

fraction of metabolite uptake by bacteria (β̃a) and decreasing the fraction of metabolite

production by bacteria (γ̃a) result in the highest proportions of stable systems. The ratio

of metabolite uptake to metabolite production of bacteria seems to be impacting the

stability of the system and we will explore this phenomenon in the following sections in

more detail.

We also find that the sensitivities of the bacteria’s mortality to their own population size

(l′b,b) are positively correlated with stability (Fig. 5.2). The latter corresponds to our

expectation that nonlinear, for example quadratic mortalities, promote stability [104].

Conversely, high sensitivities of bacteria’s growth to metabolic throughput (m′
b) and high

sensitivities of bacteria’s metabolite production to the concentration of the consumed

trade metabolites (g′b,m) are negatively correlated to stability. These two observations

correspond to positive feedback loops: When there is a high sensitivity of bacteria’s

growth to metabolic throughput, this means that bacteria’s growth is profiting from the

production of the trade metabolite. The bacterial population will grow more with an

increasing production of the trade metabolite, which will in turn fuel the growth of the

trade partner. High sensitivities of metabolite production to the concentration of the

consumed trade metabolite imply that one metabolite promotes the production of the

other metabolite hence also resulting in a reinforcing loop.

5.4 Response to parameter change

In Sec. 3.4, we showed how to analyze the response of the system to a permanent change

of parameters, i.e. a press perturbation. We apply this approach here to analyze the
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Figure 5.2: A: Correlations between model parameters and community stability, calculated
as coefficients in a binomial GLM (generalized linear model) from 107 parameter sets (m=
metabolite, b = bacteria). B: Proportion of stable systems as β̃a (fraction of metabolite uptake
by bacteria A) and γ̃a (fraction of metabolite production by bacteria A) are varied, calculated
from 4×107 parameter sets. All other parameters are randomly drawn from uniform distributions
(Table 5.1).

4-dimensional system, writing

δ = −P−1k, (5.26)

where δ is the shift in the steady state, P−1 is the inverse of the Jacobian matrix, and k is a

vector describing the direct impacts of the perturbations on the individual equations [69].

The direct effect of decreasing the bacteria X population by 10% can for example be

written as

k =


−0.1

0

0

0

 . (5.27)

The impact vector, denoted as δ, and obtained by substituting the corresponding k into

equation 5.26, reveals the indirect relative changes in bacteria or metabolite levels in the

steady state once the perturbation has propagated within the motif. These changes are

normalized with respect to the unperturbed steady state and are measured per unit of

direct effect. These values should be interpreted as proxy values, where negative numbers

represent losses, positive numbers represent gains and larger absolute values indicate more
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substantial impacts. Hence the values provide insights into both the direction and the

relative magnitude of the perturbation effects.

Specifically, we use the 107 parameter sets from Sec. 5.3 and eliminate the unstable states,

resulting in a reduced number of parameter sets of ∼ 7×106. For the remaining parameter

sets we then calculate the impact vector δ, using Eq. 5.26 for different perturbation sce-

narios (Fig. 5.3). Across the different impact scenarios, we observe a consistent pattern:

the impact is always highest for at least one of the bacterial species. Notably, altering the

density of bacteria has a much stronger effect (up to 7.5x) on the system in comparison

to changing metabolite concentrations. A shift in metabolite levels primarily affects the

bacterial species that consumes those metabolites, whereas a change in bacterial pop-

ulation density primarily influences the concerned bacterial population the most. This

latter change has a comparatively smaller, opposing effect on the metabolites consumed

by the affected bacterial species. Overall, we see that changing bacterial densities has a

higher leverage on the mutualistic cross-feeding system compared to changing metabolite

concentrations.

Figure 5.3: Impact of press perturbations, i.e. additional gain (+10%) and loss (-10%) terms
for bacteria’s and metabolites’ density on the cross-feeding motif. The y-axis is the negative or
positive impact of the change to the system. Each bar represents the median impact of each
bacterium (mic) and metabolite (met) type. Calculated from ∼ 7× 106 parameter sets.
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5.5 Bifurcation analysis

Studying the transitions between dynamical regimes in the bacteria-metabolite system

reveals the position of bifurcations in the parameter space, i.e. parameter sets at which

the dynamical behavior of the system changes qualitatively. For the bacteria-metabolite

system we located the saddle-node-type bifurcations and visualized them in bifurcation

diagrams (Fig. 5.4). Each point in the plane/volume corresponds to a particular steady

state. If steady states are located in the same plane/volume, they show qualitatively

similar local dynamical properties. Steady states are stable in the lower part/volume of

parameter space. The line/surface mark bifurcation points, where qualitative transitions

take place [93]. Here, we focus on saddle-node type bifurcations, since they are especially

a concern in mutualistic relationships. For example, the runoff of populations to infinity

as well as changes that disrupt the symmetry within the mutualistic relationship may be

caused by a saddle-node type bifurcation [219, 220]. In Sec. 2.3.1 we will also explore

Hopf bifurcations.

As we have seen in Sec. 3.4, to locate the saddle-node type bifurcations, we have to find the

combination of generalized parameters that results in a zero eigenvalue of the Jacobian.

Since the determinant of a matrix is the product of its eigenvalues, the Jacobian has a

zero eigenvalue only if its determinant is zero. The determinant of the Jacobian therefore

serves as a test function for this bifurcation [75]. Solving det(P) = 0 for the different

variables, we derive the following test functions:

g′x,b =
(βb(l

′
x,x − g′x,xm

′
x)(−g′y,al

′
y,y + βa((−1 + g′y,a)l

′
y,y + g′y,ym

′
y)))

(l′x,x(g
′
y,a(−βb + γa − (−1 + γa)γb)l′y,y + βa(−1 + βb)((−1 + g′y,a)l

′
y,y + g′y,ym

′
y)))

(5.28)

m′
x =

(l′x,x(g
′
y,a(βb(−1 + g′x,b) + g′x,b(−γa + (−1 + γa)γb))l

′
y,y

(βbg′x,x(−g′y,al
′
y,y + βa((−1 + g′y,a)l

′
y,y + g′y,ym

′
y)))

−

βa(βb(−1 + g′x,b)− g′x,b)((−1 + g′y,a)l
′
y,y + g′y,ym

′
y)))

(βbg′x,x(−g′y,al
′
y,y + βa((−1 + g′y,a)l

′
y,y + g′y,ym

′
y)))

(5.29)

βa =
(g′y,al

′
y,y(g

′
x,b(γa(−1 + γb)− γb)l

′
x,x + βb((−1 + g′x,b)l

′
x,x + g′x,xm

′
x)))

((−g′x,bl
′
x,x + βb((−1 + g′x,b)l

′
x,x + g′x,xm

′
x))((−1 + g′y,a)l

′
y,y + g′y,ym

′
y))

(5.30)

γa =
(g′y,al

′
y,y(g

′
x,bγbl

′
x,x + βb(−((−1 + g′x,b)l

′
x,x)− g′x,xm

′
x))

(g′x,bg
′
y,a(−1 + γb)l′x,xl

′
y,y)

+

βa(−g′x,bl
′
x,x + βb((−1 + g′x,b)l

′
x,x + g′x,xm

′
x))((−1 + g′y,a)l

′
y,y + g′y,ym

′
y))

(g′x,bg
′
y,a(−1 + γb)l′x,xl

′
y,y)

(5.31)

Let us first focus on the parameters m′
x and m′

y, that describe the sensitivity of the

biomass growth of the two bacteria to their metabolic throughput. In the context of the
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model, low values (< 1) of these parameters imply a costly production, i.e. the bacteria

grow less than linearly in relation to their metabolic throughput. The production of

the amino acid methionine for the trade partner is an example of a costly production,

where energy is consumed during the process that cannot be invested into the own growth

anymore [221]. High values (> 1) refer to a benefit of the metabolic throughput for the

biomass growth of the bacteria. For instance, consider a scenario in which bacteria engage

in the breakdown of organic matter, converting it into a rich energy source for their growth

and releasing waste products. In this case, the more metabolic throughput they engage

in (i.e. breaking down more organic matter), the faster they grow such that the growth

can increase superlinearly in relation to the metabolic throughput.

We saw before, in Sec. 5.3, that the parameters m′
x and m′

y are negatively correlated to

stability. Let us know examine the corresponding bifurcation diagram (Fig. 5.4A). In the

bifurcation diagram we have assumed balanced metabolite supply and decay (βa = βb =

γa = γb = 0.5), nonlinear mortalities (l′x,x = l′y,y = 1.2) and a linear relationship between

metabolite concentrations and production of the trade metabolites (g′x,b = g′y,a = 1.0).

The positive steady state is stable in the lower space of the parameter space (S) and

unstable in the upper space (U). If m′
x and m′

y are increased, destabilization occurs in

a saddle-node type bifurcation. For the steady state to be stable, if m′
y is increased,

m′
x has to take lower values. In the context of the model, these results indicate that

costly synthesis of metabolites is a stabilizing factor for the mutualistic cross-feeding

relationship. Moreover, costly metabolite production by one of the bacterial species can

offset the destabilizing effect of cheap synthesis by the trade partner. Costly metabolite

synthesis serves as a stabilizing factor by attenuating the positive feedback between the

two bacteria. Conversely, beneficial production amplifies the positive feedback, as an

increased bacterial population also results in more substantial metabolite production.

The corresponding eigenvectors of the eigenvalues turning positive when crossing the bi-

furcation provide information about the relative changes in different variables of the sys-

tem, i.e. on the direction of the perturbation that causes the system to move away from

the equilibrium. For the parameter sets at the bifurcation in the m′
x and m′

y diagram,

the eigenvectors corresponding to the largest eigenvalue indicate that the two bacteria

and one of the metabolites change in the same direction, whereas the other metabo-

lite changes in the opposite direction. The change of the bacterial population with the

cheaper metabolite synthesis is more pronounced compared to the change of the trade

partner’s population. These results indicate that one bacterial species takes control over

the system as its abundance increases in comparison to the trade partner. Let us now

consider the influence of varying a third parameter, g′x,b, the sensitivity of metabolite A



5.5. BIFURCATION ANALYSIS 85

production to the concentration of metabolite B. This parameter describes the role of the

consumed metabolite concentrations for the production of the trade metabolite. If the

consumed metabolite is only required in small amounts (e.g. trace elements), increasing

the consumed metabolite concentration will not result in an increase in the production of

the trade metabolite once a concentration threshold is reached, hence g′x,b < 1. The same

holds if the uptake machinery or synthesis machinery of the bacteria is nearing saturation.

Conversely, if the consumed metabolite enhances the production of the trade metabolite,

g′x,b may be higher than 1. For example increasing concentrations of lactose can lead to

an increase in the expression of enzymes for the degradation of lactose in E. coli, resulting

in an increase of lactose metabolism and its products [222].

The bifurcation diagram including the parameter g′x,b (Fig. 5.4B) shows that if bacteria

Y is performing costly trade metabolite synthesis, then high values of g′x,b are stabilizing.

Conversely, when the synthesis is cheap, low values of g′x,b are stabilizing, counteracting

the effect of m′
y in each case. Costly trade metabolite synthesis by bacteria Y is regulating

the feedback loop, so in this case a superlinear sensitivity of the metabolite production

on the concentration of B allows for higher m′
x since it strengthens the regulatory aspect.

In contrast, if trade metabolite synthesis by bacteria Y is cheap, then the effect of the

metabolite on the trade partner X can be kept small if g′x,b takes small values, weakening

the positive feedback loop, since X cannot profit much from increased production of B.

Overall, the effect of g′x,b on the stability of the system is much smaller compared to the

effects ofm′
x andm′

y. Considering the eigenvectors corresponding to the largest eigenvalue

for the parameter sets at the bifurcation, indicates again that the two bacteria and one of

the metabolites change in the same direction, whereas the other metabolite changes in the

opposite direction. However, in the range where g′x,b stabilizes the system, the difference

in the eigenvector entries for the two bacteria decreases.

Next, we want to analyze the role of the different branching parameters for the stability

of the system. The fractions of metabolite supply to the system, γa and γb, and the

sensitivity of bacteria X biomass growth to its metabolic throughput, m′
x, span the three-

dimensional parameter space in Fig. 5.5. The bifurcation diagrams are plotted for three

different parameter values for the fractions of natural decay of metabolites, βa and βb,

from low fractions of 0.1 (A), to intermediate fractions of 0.5 (B) to high fractions of 0.9

(C). In general, increasing the portions of metabolites that are supplied externally to the

system, γa and γb, has a positive effect on stability, whereas increasing the fractions that

decay, βa and βb, has a destabilizing effect on the stability of the system.

This is intriguing because our initial assumption would likely be that low fractions of

bacterial metabolite production, i.e. high values of γa and γb, and low portions of uptake



86 CHAPTER 5. GENERALIZED MODEL OF BACTERIAL MUTUALISM

Figure 5.4: Bifurcation diagrams of bacteria-metabolite system, depending on the sensitivity
of bacteria Y biomass growth to metabolic throughput of bacteria Y , m′

y, and the sensitivity
of bacteria X biomass growth to metabolic throughput of bacteria X, m′

x, (A) and additionally
on the sensitivity of metabolite A production to concentration of B, gx,b (B). Steady states are
stable (S) in the lower part/volume of parameter space. Stability is lost (U) in a bifurcation
of a saddle-node type, when crossing the line/surface (parameters: βa = βb = γa = γb = 0.5,
l′x,x = l′y,y = 1.2, g′x,b = g′y,a = 1.0).

.

by the bacteria, i.e. high values of βa and βb, would weaken the positive feedback effect,

due to less coupling between the bacteria. However, the ratio of metabolites consumed

by the bacteria to the trade metabolite fraction produced by the bacteria is key in deter-

mining stability of the positive steady state. When the bacteria predominantly consume

the partner’s metabolite while making only a minor contribution to the partner’s trade

metabolite concentration, this contributes to the system’s stability. The eigenvectors cor-

responding to the largest eigenvalue for the parameter sets at the bifurcation indicate that

the bacterial population profiting the most from the mutualistic cross-feeding relationship

experiences the largest changes.

Let us now examine what increasing γ and β at a constant ratio does to the system’s

stability (Fig. 5.6). As before, we see that in general higher fractions of metabolite supply,

γ, compared to metabolite decay, β, are stabilizing (compare Y-axes of Fig. 5.6A vs. B).

In the latter case, i.e. γ > β, increasing γ and β, while maintaining a constant ratio

between them has a destabilizing effect (Fig. 5.6A). Conversely, if γ < β, increasing both

at a constant ratio results in a minor stabilizing effect until large values of my (Fig. 5.6B).

In systems, where γ > β the fraction of bacterial uptake is larger than the fraction

of bacterial production, i.e. the negative feedback loop that we identified before. If we

decrease the fractions that are part of this negative feedback loop, this has a destabilizing
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Figure 5.5: Bifurcation diagrams of bacteria-metabolite system, depending on the fraction of
supply of metabolite A, γa, fraction of supply of metabolite B, γb, and sensitivity of bacteria X
biomass growth to metabolic throughput of bacteria X, m′

x. Fraction of losses of metabolite A,
βa, and metabolite B, βb are set to 0.1 (A), 0.5 (B) and 0.9 (C). Note the different color scales.
Steady states are stable in the lower volume of parameter space. Stability is lost in a bifurcation
of a saddle-node type, when crossing the line/surface (parameters: m′

x = 1.5, l′x,x = l′y,y = 1.2,
g′x,b = g′y,a = 1.0).

.

effect since it weakens the impact of this inhibitory feedback loop. Conversely, for γ < β,

the fraction of bacterial uptake is lower than the fraction of bacterial production, resulting

in a positive feedback loop.

Figure 5.6: Bifurcation diagrams of bacteria-metabolite system, depending on the sensitivity
of bacteria Y biomass growth to metabolic throughput of bacteria Y , m′

y, and the sensitivity of
bacteriaX biomass growth to metabolic throughput of bacteriaX, m′

x for different combinations
of fractions of gains of metabolites from supply, γ, and fractions of losses of metabolites to natural
decay, β. For γ > β increasing γ and β at a constant ratio results in a destabilization of the
system (A), whereas when γ < β, increasing both at a constant ratio results in a stabilization
until large values of my (B). Steady states are stable in the lower part of the parameter space.
Stability is lost in a bifurcation of a saddle-node type, when crossing the line (parameters:
l′x,x = l′y,y = 1.2, g′x,b = g′y,a = 1.0).

.
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5.6 Reduction to a 2-dimensional system

Since the 4-dimensional system is still relatively complicated, it makes sense to reduce it

to a 2-dimensional system to obtain further insights into the stability properties, enabling

us to obtain analytical results. For the reduction to 2-dimensional we take advantage of

the structure of the Jacobian of the 4-dimensional system. Assuming equal steady state

values of the two bacterial populations and the two metabolite concentrations respectively

as well as equal parameter pairs, e.g. m′
x = m′

y, g
′
x,b = g′y,a, we see that in this case, the

matrix

P =


αx 0 0 0

0 αy 0 0

0 0 αa 0

0 0 0 αb



m′

xg
′
x,x − l′x,x 0 0 m′

xg
′
x,b

0 m′
yg

′
y,y − l′y,y m′

yg
′
y,a 0

γ̃ag
′
x,x −β̃ag

′
y,y −βad

′
a,a − β̃ag

′
y,a γ̃ag

′
x,b

−β̃bg
′
x,x γ̃bg

′
y,y γ̃bg

′
y,a −βbd

′
b,b − β̃bg

′
x,b

 ,(5.32)

is of the structure 
A 0 0 B

0 A B 0

C D E F

D C F E

 . (5.33)

And hence 
A 0 0 B

0 A B 0

C D E F

D C F E




a

a

b

b

 =


Aa+Bb

Aa+Bb

(C +D)a+ (E + F )b

(C +D)a+ (E + F )b

 . (5.34)

We can see that the vector
(

a a b b
)T

is an eigenvector of the matrix with corre-

sponding eigenvalue λ if two conditions are met. Given that these conditions are met, we

can represent the conditions in the matrix equation as a 2x2 matrix(
A B

(C +D) (E + F )

)(
a

b

)
= λ

(
a

b

)
. (5.35)

Therefore, the 4x4 matrix has an eigenvalue λ if this 2x2 matrix has an eigenvalue λ.
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Similarly, we can show that
A 0 0 B

0 A B 0

C D E F

D C F E




a

−a

b

−b

 =


Aa−Bb

−Aa+Bb

(C −D)a+ (E − F )b

(D − C))a+ (F − E)b

 . (5.36)

In this case we get (
A −B

(C −D) (E − F )

)(
a

b

)
= λ

(
a

b

)
. (5.37)

While in the first case the instabilities obey the symmetry, in this case they break the

symmetry.

Taken together, we expect to get two eigenvectors from the symmetric case and two from

the asymmetric case. Hence, we can find all eigenvectors of the 4x4 matrix in this way.

Since there are no additional eigenvectors, λ can only be an eigenvalue of the 4x4 matrix

if it is an eigenvalue of at least one of the 2x2 matrices. Consequently, assuming equal

steady state values of the bacteria and the metabolites and equal parameter pairs, we can

write the 4x4 Jacobian of the 4-dimensional system as two 2x2 Jacobians

Q =

(
α 0

0 1

)(
m′

zg
′
z,z − l′z,z m′

zg
′
z,c

γ̃cg
′
z,z − β̃cg

′
z,z −βcd

′
c,c − β̃cg

′
z,c + γ̃cg

′
z,c

)
(5.38)

R =

(
α 0

0 1

)(
m′

zg
′
z,z − l′z,z −m′

zg
′
z,c

γ̃cg
′
z,z + β̃cg

′
z,z −βcd

′
c,c − β̃cg

′
z,c − γ̃cg

′
z,c

)
, (5.39)

where z now represents the bacteria and c denotes the metabolites. In the following, we

set g′zz = 1 and d′cc = 1 as before and use a simplified notation, i.e. m′
z := m, l′zz :=

l, g′z,c := g, γ̃c := 1− γ, βc := β, β̃c := 1− β.

5.6.1 Stability conditions

The simplicity of the eigenvalue analysis for 2x2 matrices allows us to derive the stability

conditions for the 2-dimensional system. In a 2-dimensional system, a steady state is

considered stable, if the determinant of the Jacobian is positive and the trace is negative.

Consequently, during the Hopf bifurcation, the trace becomes positive, while in the case

of a saddle-node type bifurcation the determinant becomes negative. Therefore, to see if
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the Hopf bifurcation can occur in the symmetric case, we consider

Q =

(
α 0

0 1

)(
m− l mg

β − γ −β + βg − γg

)
(5.40)

with

det(Q) = α(βl + γgl − βgl − βm) > 0 (5.41)

tr(Q) = α(m− l)− β + g(β − γ) = 0. (5.42)

We know that −β < 0 and g(β−γ) < 0 if β < γ, hence β and γ have to take small values

and m > l for a Hopf bifurcation to occur.

For the Jacobian of the asymmetric case we consider

R =

(
α 0

0 1

)(
m− l −mg

2− β − γ βg + γg − β − 2g

)
(5.43)

with

det(R) = α(βl + 2gl − βm− βgl − γgl) > 0 (5.44)

tr(R) = α(m− l) + βg + γg − β − 2g = 0. (5.45)

A Hopf bifurcation within a realistic parameter range will not occur, since βg + γg < 2g

the trace will always be negative.

Hence, a Hopf bifurcation can only occur in the symmetric case and only if the system

is characterized by a tight cooperation between the bacteria. This means that we do not

see a periodic cycle between the species, instead we expect a periodic cycle between the

bacteria and the metabolites. The cycle is driven by resource exploitation. Since we do

not see a Hopf bifurcation in the asymmetric case we do not expect cycles of shifting

dominance between the two species.

Next, our aim is to identify the saddle-node type bifurcations. We consider

det(Q) = α(βl + γgl − βgl − βm) = 0 (5.46)

det(R) = α(βl + 2gl − βm− βgl − γgl) = 0, (5.47)

while keeping in mind that the trace values have to be negative for the saddle-node type

bifurcation to occur in the 2-dimensional systems. To gain insights into the stabilizing or



5.6. REDUCTION TO A 2-DIMENSIONAL SYSTEM 91

destabilizing properties of each parameter, we differentiate the determinant with respect

to each parameter.

First, we investigate the Jacobian Q, i.e. the scenario where the instabilities obey the

symmetric condition. We obtain

∂ det(Q)

∂γ
= αgl (5.48)

∂ det(Q)

∂m
= −αβ (5.49)

∂ det(Q)

∂g
= α(γl − βl) (5.50)

∂ det(Q)

∂l
= α(β + γg − βg) (5.51)

∂ det(Q)

∂β
= α(l − gl −m). (5.52)

As expected, we see that γ is always stabilizing, whereas m is always destabilizing. Also,

we see again that the effect of g depends on the ratio of γ to β. When γ > β, higher values

of g contribute to stabilization, and conversely, they lead to destabilization when γ < β.

Interestingly, the part g(β−γ)−β of the derivative with respect to l, equals a part of the

trace. So, for l to be destabilizing, g(β − γ)− β > 0, hence β > γ and g > 1 and for the

trace to still be negative l > m. Therefore, increasing l can destabilize a system, where

the bacteria strongly depend on the production of the partner’s metabolite, while their

profit from producing the trade metabolite is limited. However, these systems are not

stable within the plausible parameter range. Increasing the parameter β is destabilizing

if m > 1 or g ≥ 1.

Considering the Jacobian R, i.e. the scenario where the instabilities break the symmetric

condition, we obtain

∂ det(R)

∂γ
= α(−gl) (5.53)

∂ det(R)

∂m
= −αβ (5.54)

∂ det(R)

∂g
= α(2l − βl − γl) (5.55)

∂ det(R)

∂l
= α(β + 2g − βg − γg) (5.56)

∂ det(R)

∂β
= α(l −m− gl). (5.57)

We can see that the conditions for m and β mirror those for the Jacobian Q. Large values



92 CHAPTER 5. GENERALIZED MODEL OF BACTERIAL MUTUALISM

of the parameters g and l are always stabilizing in the considered parameter range, since

2 > γ + β. Interestingly, γ is always destabilizing in this scenario, probably because it

decreases the dependence of the bacteria on the interaction and therefore could lead to

diverging developments of the two bacterial populations.

5.6.2 Response to parameter change

In Sec. 3.4, we showed how to analyze the response of the system to a permanent change

of parameters, i.e. a press perturbation. We apply this approach here to analyze the

2-dimensional system with respect to a reduction in bacterial density and a reduction in

metabolite concentration. Let us first examine the scenario where the instabilities obey

the symmetry. We can now ask, how an additional loss term for the bacteria impacts the

steady state. Substituting the Jacobian into Eq. 3.103, we can write

δ = − 1

det Q

(
−β + βg − γg −αmg

−β + γ α(m− l)

)(
−ϵ

0

)
, (5.58)

where ϵ is the small fraction of the bacteria that is lost and

det(Q) = α(βl + γgl − βgl − βm). (5.59)

We can examine the two components, i.e. for the bacteria and the metabolites respectively,

of the resulting impact on the steady state

δbac =
−β + g(β − γ)

det Q
ϵ, δmet =

γ − β

det Q
ϵ. (5.60)

If the sensitivity of metabolite production to the concentration of the respective other

metabolite, g ≤ 1 a small additional loss of bacteria results in a reduction of bacterial

density. Only if g > 1 and β > γ then there could also be a positive effect of a small loss

of bacteria on bacteria’s density. However, these systems are unstable within the plausible

parameter range. The impact term for the metabolites shows that if γ > β, i.e. bacteria

take up a higher fraction of metabolites than they produce, then a small reduction in

bacteria leads to an increase in metabolites, whereas if γ < β metabolites are reduced by

a loss of bacteria.

In the case that the system experiences a small addition of bacteria, we write

δ = − 1

det Q

(
−β + βg − γg −αmg

−β + γ α(m− l)

)(
ϵ

0

)
, (5.61)
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resulting in

δbac =
β + g(γ − β)

det Q
ϵ, δmet =

β − γ

det Q
ϵ. (5.62)

Hence, if γ > β, a small addition of bacteria leads to an increase in bacterial density.

Only in the case that γ << β and g > 1 an addition of bacteria to the system could

lead to a decrease in bacteria’s density. However, we saw before that for system where

γ << β, the system in unstable in the plausible parameter range. For the metabolites a

gain in bacteria means an increase in metabolite concentrations if β > γ and vice versa.

We can now also investigate the impact of a small additional loss of metabolites on the

system’s steady state, i.e.

δ = − 1

det Q

(
−β + βg − γg −αmg

−β + γ α(m− l)

)(
0

−ϵ

)
, (5.63)

resulting in

δbac =
−αmg

det Q
ϵ, δmet =

α(m− l)

det Q
ϵ. (5.64)

Hence, a loss of metabolites leads to a decrease in bacterial density. The response of

the metabolite concentrations depends on the ratio of m/l. If m > l then the loss of

metabolites results in an increase of metabolite concentrations and vice versa. If we add

an additional gain term of metabolites, we can write

δ = − 1

det Q

(
−β + βg − γg −αmg

−β + γ α(m− l)

)(
0

ϵ

)
, (5.65)

hence

δbac =
αmg

det Q
ϵ, δmet =

α(l −m)

det Q
ϵ. (5.66)

Consequently, an increase in metabolite concentrations results in an increase in bacterial

density. Metabolite concentrations increases in response if l > m and vice versa.

Let us now consider, how an additional loss term for the bacteria impacts the steady state

of the Jacobian R, i.e. the asymmetric case. Substituting the Jacobian into Eq. 3.103

yields

δ = − 1

det R

(
βg + γg − β − 2g αmg

−2 + β + γ α(m− l)

)(
−ϵ

0

)
, (5.67)
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where ϵ is the small fraction of the bacteria that is lost and

det(R) = α(βl + 2gl − βm− βgl − γgl). (5.68)

We can examine the two components, i.e. for the bacteria and the metabolites respectively,

of the resulting impact on the steady state

δbac =
βg + γg − β − 2g

det R
ϵ, δmet =

−2 + β + γ

det R
ϵ. (5.69)

We see that if a small fraction of bacteria is lost, bacterial populations as well as metabolite

concentrations decrease.

In the case that the system experiences a small addition of bacteria, we write

δ = − 1

det R

(
βg + γg − β − 2g αmg

−2 + β + γ α(m− l)

)(
ϵ

0

)
, (5.70)

resulting in

δbac =
−βg − γg + β + 2g

det R
ϵ, δmet =

2− β − γ

det R
ϵ. (5.71)

In this case, both the bacterial populations as well as the metabolite concentrations

increase.

Investigating the impact of a small additional loss of metabolites on the system’s steady

state,

δ = − 1

det R

(
βg + γg − β − 2g αmg

−2 + β + γ α(m− l)

)(
0

−ϵ

)
, (5.72)

results in

δbac =
αmg

det R
ϵ, δmet =

α(m− l)

det R
ϵ. (5.73)

Interestingly, a loss of metabolites leads to an increase in bacterial density. This may hap-

pen in the asymmetric case because decreasing the metabolite concentration increases the

dependence on the trade partner’s metabolite production and makes a shift of dominance

of one bacterium less likely. The response of the metabolite concentration depends on

the ratio of m/l. If m > l then the loss in metabolite results in an increase of metabolite

concentration and vice versa.
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If we add an additional gain term of metabolites, we can write

δ = − 1

det R

(
βg + γg − β − 2g αmg

−2 + β + γ α(m− l)

)(
0

ϵ

)
, (5.74)

hence

δbac =
−αmg

det Q
ϵ, δmet =

α(m− l)

det Q
ϵ. (5.75)

Consequently, an increase in metabolite concentration results in decrease of bacterial

density. In this case, an increase of metabolites could lead to the bacteria being less

dependent on each other’s metabolite production and hence a shift of dominance is more

likely to occur. Metabolite concentrations increase in response if m > l and vice versa.

To summarize, we have seen how different the effects of the parameters and changes in

the system can be, depending on which instability we consider. While in the symmetric

case the independence on the trading partner’s production stabilizes the system, in the

asymmetric case the opposite is true. This can lead to interesting observations, such as

an increase of bacterial populations in response to a decrease of metabolites, a counter-

intuitive response, also known as hydra effect [223].

5.7 Spatial system

The examined motif of bacterial cross-feeding is not confined to isolated occurrences in

natural communities; instead, it is interwoven within a spatial trade network [211]. Con-

sequently, the spatial aspect significantly influences the dynamics of these communities

and, in turn, has broader implications for example for host health, ecosystem functioning

and global nutrient cycling. In this section, we expand the small motif of bacterial cross-

feeding to a spatial trade network. We explore the occurrence of diffusion-driven Turing

instabilities [224] to investigate the emergence of complex spatial patterns. Interactions in

systems coupled by diffusion can result in the spontaneous emergence of patterns, carry-

ing significant implications [225, 226]. We begin with the 2-dimensional system and then

move on to analyze the 4-dimensional system for the case that metabolites can diffuse in

space, whereas bacteria cannot.

5.7.1 2D system

Let us start by considering the occurrence of Turing instabilities in the 2-dimensional

system. As in the non-spatial system, we examine the two Jacobians Q and R. From

the Jacobian of the symmetric case, Q, we derive the Jacobian of the diffusion-coupled
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system [114], which is

JQ =

(
α(m− l)− ρκ αmg

β − γ −β + βg − γg − κ

)
, (5.76)

where ρ is the quotient of the diffusion coefficients of the bacteria and metabolites and

κ is the wave number, i.e the eigenvalue of the Laplacian operator. The determinant for

this matrix yields a quadratic polynomial with respect to κ

det(JQ) = (α(m− l)− ρκ)(−β + βg − γg − κ)− (β − γ)αmg (5.77)

= ρκ2 + ρκβ − ρκβg + ρκγg − ακm+ ακl − αβm+ αβl − αβgl + αγgl. (5.78)

For a Turing instability to occur in this system, presuming stability of the equilibrium in

the local model, the extremum of the polynomial, κe, must be a minimum with κe > 0

and det(JQ(κe)) ≤ 0.

To find the minimum, κe, we differentiate Eq. 5.77 with respect to κ and set the resulting

equation equal to zero

0 = ρ2κ+ ρβ − ρβg + ργg − αm+ αl, (5.79)

we obtain

κe =
−ρβ + ρβg − ργg + αm− αl

2ρ
. (5.80)

To assure that det(JQ(κe)) ≤ 0, we substitute κe into Eq. 5.77

det(JQ(κe)) =
ρ(−β2 − β2g2 + 2β2g − 2βγg + 2βγg2)

4
+

α2(−l2 −m2 + 2lm)

4ρ

+
α(−βm+ βl − βgm− βgl + γgm+ γgl)

2
(5.81)

≤ 0. (5.82)

For small ρ, i.e. the diffusion coefficient of metabolites is much larger than the diffusion

coefficient of bacteria, the following term dominates

0 ≥
(
α2(−l2 −m2 + 2lm)

4ρ

)
(5.83)

≥
(
−α2(m− l)2

4ρ

)
(5.84)

This term takes only negative values, hence the system is always unstable at κe
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(det(JQ(κe) < 0)) if ρ is small. For small ρ, in Eq. 5.80 the following term dominates

κe =
α(m− l)

2ρ
. (5.85)

As κ is the eigenvalue of the Laplacian operator, it is constrained to non-negative values.

The zero eigenvalue has to be stable, since this describes the local system. Consequently, a

necessary condition for a Turing bifurcation is κe > 0, hence finite positive wave numbers

require m > l. This means that JQ11 > 0, hence tr(JQ) requires stabilization by β or γg.

From the Jacobian of the asymmetric case, R, we derive the Jacobian of the diffusion-

coupled system, which is

JR =

(
α(m− l)− ρκ −αmg

2− β − γ βg + γg − β − 2g − κ

)
, (5.86)

where ρ is the quotient of the diffusion coefficients of the bacteria and metabolites and

κ is the eigenvalue of the Laplacian operator. The determinant for this matrix yields a

quadratic polynomial with respect to κ

det(JR) = (α(m− l)− ρκ)(βg + γg − β − 2g − κ)− (2− β − γ)(−αmg) (5.87)

= ρκ2 − αmκ+ αlκ− βρgκ− γρgκ+ βρκ+ 2ρgκ− αβm− αβgl

−αγgl + αβl + 2αgl (5.88)

Differentiating with respect to κ and setting the resulting equation equal to zero

0 = 2ρκ− αm+ αl − βρg − γρg + βρ+ 2ρg, (5.89)

we obtain

κe =
αm− αl + βρg + γρg − βρ− 2ρg

2ρ
. (5.90)

Substituting κe into Eq. 5.87 yields

det(JR(κe)) = ρ

(
αm− αl + βρg + γρg − βρ− 2ρg

2ρ

)2

−
(
(αm− αl + βρg + γρg − βρ− 2ρg)2

2ρ

)
−αβm− αβgl − αγgl + αβl + 2αgl. (5.91)
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For small ρ, i.e. the diffusion coefficient for metabolites are much larger than the diffusion

coefficient for bacteria, the following term dominates

0 ≥ −(αm− αl + βρg + γρg − βρ− 2ρg)2

2ρ
. (5.92)

This term takes only negative values, hence the system is always unstable at κe if ρ is

small. For small ρ, the minimum is at

κe =
α(m− l)

2ρ
. (5.93)

Since one condition is κe > 0, finite positive wave numbers require m > l. This means

that JQ11 > 0, however this is stabilized by β and g.

Overall, in the case that only metabolites diffuse, we can identify the following factor as

promoter for diffusion-induced instabilities: The sensitivity of the bacterial biomass to

metabolic throughput, m, is higher than the sensitivity of bacterial mortality to bacterial

density, l.

5.7.2 4D system

We now analyze the 4-dimensional system, applying the Master Stability Function Ap-

proach introduced in Sec. 3.6. Similarly to the symmetric reduction to the 2-dimensional

system that we performed before in Sec. 5.6, also the master stability function approach

exploits a symmetry in the system. In this case, it is the symmetry that the local patches

all contain the same local community motif.

Eq. 5.24 can be straightforwardly extended to the case of longer range metabolic in-

teractions using a master stability function approach [120, 133, 134]. Namely, we are

interested in extending Eq. 5.24 to the case of metabolites that spread on an unspecified

spatial network with nodes that represent habitat patches. These patches contain copies

of the community motif, and are linked by metabolite diffusion. The eigenvalues of the

meta-Jacobian J with patches linked by density-independent per capita dispersal can be

calculated as Ev(P− κC). The eigenvalues of this matrix will equal the eigenvalues of J

for a spatial topology represented by a Laplacian matrix with eigenvalues κ [120].

C is the coupling matrix with diagonal entries representing diffusion rates ra and rb. We
consider the case of metabolites that spread on much faster timescales than bacteria. We



5.7. SPATIAL SYSTEM 99

can therefore rewrite Eq. 5.24 for the general spatial case as

J = E


g′x,x − βxl

′
x,x − β̃xt

′
x,x 0 −β̃xt

′
x,a g′x,b

0 g′y,y − βyl
′
y,y − β̃yt

′
y,y g′y,a −β̃yt

′
y,b

g′x,x −β̃ag
′
y,y −βad

′
a,a − β̃ag

′
y,a − κra g′x,b

−β̃bg
′
x,x g′y,y g′y,a −βbd

′
b,b − β̃bg

′
x,b − κrb

 ,

(5.94)

with

E =


αx 0 0 0

0 αy 0 0

0 0 αa 0

0 0 0 αb

 . (5.95)

When κ = 0, the system is equivalent to the nonspatial model. The spatial system is stable

on any spatial topology if all eigenvalues for all κ ≥ 0 are negative. Since the Laplacian is

a positive semidefinite matrix, it will have at least one zero eigenvalue. This means that

the multi-patch system cannot be stable on any spatial topology if the nonspatial system

is unstable. That is, spatial flows of metabolites have the potential to destabilize already

stable systems, but not the reverse.

In Fig. 5.7 we see an example of a diffusion-driven Turing instability, occurring due to diffu-

sion of metabolites across the network. The master stability function relates the Jacobian

eigenvalue of the spatial system to the Laplacian eigenvalue of the spatial network [120]

(Fig. 5.7A). Here it reveals that stronger coupling strength (bubbles in Fig. 5.7A) can

destabilize a previously stable system by expanding the range of the Laplacian spectrum.

The Turing instability here is very localized (Fig. 5.7B and C), affecting only few nodes

the network. This instability is the result of a positive feedback loop within the system,

as bacterial growth is enhanced by higher metabolite concentrations.

The identified instability is only meaningful in the context of a network, as in continuous

space, the parameter κ can become infinitely large. Consequently, if the system exhibits

instability for high values of κ in continuous space, it implies an unrealistic scenario where

everything converges to a single point in space. On a network, however, large values of κ

indicate concentration on a node, which represents a plausible scenario.
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Figure 5.7: Example of a diffusion-driven Turing instability that occurs when metabolites
diffuse. The master stability function (MSF) (A) links the Jacobian eigenvalue of the spatial
system to the Laplacian eigenvalue of the spatial network. The spatial system is stable if none
of the Laplacian eigenvalues lie within the interval where the MSF takes on positive values (blue
shaded area). Increasing global coupling strength (Glob. coupl. strength) can destabilize the
system by expanding the range of the Laplacian spectrum. Panel B shows the eigenvector entries
of the different patches and panel B shows the example of a fully connected random geometric
graph with a 100 nodes and a radius of 0.32, where the patches are colored according to their
eigenvector entries.

5.8 Discussion

In this chapter I applied the generalized modeling approach to study a small common

cross-feeding motif of bacterial systems. Specifying only the general structure of the

system, with this simple model we were able to explore a wide range of ensembles of

models with different parameter values. This includes qualitatively different cross-feeding

systems, e.g. from the release of cheap to the production of costly metabolites and from

the bacteria being the major source of the metabolites to the bacteria only contributing

to a minority of the metabolites’ concentration.

The results highlight the role of the bacteria’s cost of metabolite production for the

stability of the system. While exchange of cheap metabolites tends to destabilize the

system, costly production of metabolites is a strong factor to promote system’s stability.

Also, systems with a cheap production of one metabolite can be stabilized by a costly

production of the other metabolite involved in the cross-feeding relationship. An example

from the literature is the interaction between acetate-releasing E.coli, where production



5.8. DISCUSSION 101

is cheap and methionine-releasing S.enterica, a process incurring metabolic costs [221].

Mee et al. [205] showed that amino acids with high bio-synthetic costs tend to favour

stronger cooperative interactions than amino acids that are less costly. Analysing > 6, 000

sequenced bacteria from various environments, they also revealed that only few bacteria

produce the costliest amino acids [205]. If the bacterial community depends on the pro-

duction of these costly metabolites by a few species, it could imply that the community

is regulated by this costly production, similar to a limiting nutrient in the environment

that regulates organism’s growth.

From an evolutionary perspective, benefits in exchanging metabolites lie in the division

of metabolic labor [227] and in increasing resource efficiency by separating conflicting

metabolic pathways [228], creating a fitness advantage for cross-feeding bacteria [229, 230].

This is particularly meaningful when metabolites are expensive to produce, such as in

cases where the metabolic machinery incurs significant costs. This suggests that from an

evolutionary perspective, there is a selection for cross-feeding of costly metabolites. Also,

bidirectional costly cross-feeding can emerge from initially costless exchange [231].

Another factor influencing stability in our model is the ratio of the fraction of uptake

of trade metabolites by bacteria to the production of trade metabolites by bacteria.

Ratios > 1 promote stability in our model, probably by weakening the positive feedback

loop as bacteria take up more of the metabolite they use for metabolism than they con-

tribute to the metabolite of the partner. In real world systems, the availability of external

nutrient supply to the systems can actually change the mode of interaction, e.g. from mu-

tualism to competition and to competitive exclusion [219]. In their study, Hoek et al. [219]

showed that low nutrient concentrations favored cooperation as the partners were more

dependent on each other. This comparison underscores the significance of recognizing

that bacteria engage in not just a single interaction but a myriad of interactions, which

can influence each other and exhibit variations across conditions, space, and time [232].

Investigating the way in which instabilities occur, we observed a consistent pattern where

one bacterial species consistently exhibited stronger reactions than its trade partner, in-

dicating that one species might take control over the system by becoming more abun-

dant. Due to differences in external nutrient supply rates, uptake rates by bacteria and

metabolic costs, the instability is not trivial, i.e. both species decrease or increase the

same, instead we see a change in the same direction, but with different magnitudes. This

result highlights the role of the different parameters on the dynamics of the system.

Previous models on mutualistic relationships primarily predicted destabilizing effects

of these interactions on the system, given their inherent nature as positive feedback
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loops [50, 70]. More recent approaches, explicitly incorporating resource dynamics, show

that mutualistic interactions are unstable unless specific criteria are met, such as weak

interaction strengths or exact reciprocation by the partner [54, 55]. In contrast, our re-

sults demonstrate that metabolic costs associated to the production of trade metabolites

contribute to the stabilization of these mutualistic cross-feeding interactions. In the pre-

vious section, we also showed that the exchange of costly metabolites may be evolutionary

attractive.

In addition to identifying stabilizing and destabilizing conditions for the stability of steady

states in this cross-feeding system, we explored the response of the system components to

perturbations. In general, we found that changes in bacterial density had a higher influ-

ence on the entire system and all types of perturbations investigated had a stronger effect

on the bacteria compared to the metabolites’ concentration. These findings could have

important implications for example for the manipulation of bacterial systems, e.g. through

pro- or prebiotics [24].

Furthermore, we extended our analysis to a spatial system of homogeneous patches.

Whereas a simple bacterial motif can be stable on its own, the same motif can lead

to pattern formation in space by diffusion of metabolites. On a network, the homoge-

neous state becomes more prone to instability when the diffusive coupling is stronger,

since this extends the Laplacian spectrum [120]. Even though in our model this insta-

bility did not occur in continuous space, this kind of analysis could be very interesting

when investigating future bacterial models. Due to these cross-feeding motifs in bacteria,

bacteria may form large trade networks over space, making metabolism an attribute of

the community instead of the single cell [37]. Pattern formations play an important role

in these networks of cooperating organisms [233], their survival [234], evolution [235] and

community properties [236].

In summary, the formulation of a simple generalized model of bacterial mutualism gen-

erated a multitude of insights regarding the dynamics of the system, the conditions for

the stability of steady states, the response to perturbations, susceptible components of

the system and the system’s behavior over spatial scales. This is the strength of GM,

being able to analyze a multitude of realistic functional forms and parameter ranges in a

short time frame, we can generate a quick intuition for the system and its key features. In

addition, owing to the simplicity of the model we can explore the system using pen and

paper math, enabling a deep understanding of the underlying mechanism driving specific

outcomes.



Chapter 6

Towards microbial community

ecology

In the previous chapters, we have seen that diffusion maps identify key variables in high-

dimensional datasets, while generalized modeling allows for the formulation of models

encompassing uncertainties in microbial systems. The paper on applying diffusion maps

to reconstruct bacterial niche occupancy dynamics is published in Massing et al. [135],

while the work on the generalized model of bacterial mutualism is in preparation. My hope

for the future is the integration of these two approaches to devise a new way of modeling

microbial communities and thereby develop a mechanistic understanding of community

composition, dynamics and the relations to ecosystem functioning. In this chapter I want

to outline some routes towards achieving this goal.

6.1 Combining datasets

While we have demonstrated the application of diffusion maps on a single large dataset

in Chapt. 4, it is also possible to merge multiple datasets for the analysis [237]. This

aggregation of datasets is generally a nontrivial task, as variations in the observation of

taxa and taxonomic names may arise due to discrepancies in the equipment, personnel,

and procedures employed by different sampling teams. Consequently, the absence of e.g. a

species in one of the datasets may indicate either its actual absence or that the species

was not identified or assigned a different name [238, 239].

Hence, when aggregating different datasets, we cannot just merge two datasets into one

and follow the diffusion map analysis. Instead, we need to first derive and threshold

the similarity matrices for both datasets independently. As a next step, we merge these

similarity matrices by considering all pairs of the units that we are comparing, for instance

species. We apply the following rules [237]:

• If a species is identified in both datasets, we average the values of their similarities.

103



104 CHAPTER 6. TOWARDS MICROBIAL COMMUNITY ECOLOGY

• If a species is only identified in one of two datasets, we take the values from this

matrix.

• If one species exists only in one matrix, whereas the other exists only in the other

matrix, we set the similarity to zero.

We show in Carrasco de la Cruz et al. [237] that this approach works well for merging

two datasets of phytoplankton communities. Since the characteristics of phytoplankton

and bacterial data are similar, e.g. high diversity of species, different analysis procedures

can differ in their results etc. we can also apply this approach in the future to combine

datasets of bacteria. Merging datasets, hence including a higher number of observations,

should increase the accuracy in the diffusion map results [44, 47] as well as downstream

analyses such as the functional diversity estimation [49]. In addition, dataset aggregation

on a large scale could enable comparisons of bacterial communities from very different

habitats in their key variables [44] and their functional diversity [237].

6.2 Community maps

In Chapt. 4 we have applied the diffusion map approach to identify key metabolic strate-

gies of bacterial species. To get a grasp of community dynamics, a crucial step is the

identification of system variables that describe the major dimensions along which the

functional community changes. To illustrate the idea of system variables, let us draw an

analogy to the global job market. Similar to the diversity of jobs in different places, one

could imagine the functional capabilities of the different bacteria in a community. The

dimensionality of the jobs is high since they are characterized by numerous features that

vary among them, similar to the functional capabilities of bacteria. However, when con-

sidering for instance the dimensionality of industries across different locations, one might

anticipate a comparatively smaller dimensionality. For example, a specific type of indus-

try comprises a diverse but also quite distinct set of jobs. In the context of functional

microbial communities, we could therefore ask, what we would expect to see when we

observe a community over time. To how many dimensions could we map the change of

the functional community in time? Our idea is to use diffusion maps as manifold learning

method to find the dimensionality of the functional community composition.

To be able to compare different functional communities to each other, we first need to

derive a new distance metric. The functional diversity measure by Ryabov et al. [49] allows

us to quantify the functional diversity of single samples. However, to employ the diffusion

map as embedding method, we need a certain understanding of similarity between these

single communities. Here, we therefore take the functional diversity measure as a basis to
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derive a distance measure that compares different communities in terms of their species

abundances and positions in the functional coordinate system.

Reconstructing the trait space through diffusion mapping the species co-occurrences, we

derive the positions of the species in the trait space and their distances to each other.

The distance between two species i, j is

di,j =

√∑
b

(
vb,i − vb,j

λb

)
, (6.1)

where vb,i is the entry of eigenvector (i.e. trait) b for species i, vb,j is the entry of trait b

for species j and λb is the corresponding eigenvalue.

Next, we employ these distances in the reconstructed trait space in combination with

the abundances of the species in the samples to calculate the functional diversities of

each sample as Rao index following the procedure explained in Sec. 2.3.3. The functional

diversity (FD) for sample k is computed as

FDk =
n−1∑
i=1

n∑
j=i+1

di,jp
(i)
k p

(j)
k , (6.2)

where p
(i)
k = a

(i)
k /
∑

j a
(j)
k is the relative biomass of species i in sample k [49]. The Rao

index represents the weighted average functional distance between all pairs of species in

each sample.

Then, we calculate the functional diversity of the sample pair by taking the mean abun-

dances of the species in the two samples into account

FDkl =
n−1∑
i1

n∑
j=i+1

di,j

(
p
(i)
k + p

(i)
l

2

)(
p
(j)
k + p

(j)
l

2

)
. (6.3)

The result is a weighted average functional distance between all pairs of species i and j,

where the weighting factor is the mean probability of the two samples that one of two

randomly selected individuals belongs to species i and the other to species j.

Finally, we subtract the mean functional diversities of the two samples, here k and l, from

the FD of the sample pair, FDkl,

FDistkl = FDkl −
(
FDk + FDl

2

)
. (6.4)

This functional distinctness measure allows us to establish a notion of similarity between
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two samples in terms of their difference in functional community composition. The func-

tional distinctness of a sample pair equals zero if the communities are identical in species

composition and abundances and increases with communities being more different to each

other.

To test our procedure for deriving system variables, we generated synthetic communities

by sampling from generated bivariate species response surfaces to two environmental

variables. Following the procedure of Minchin [240], also applied in Gault et al. [46] we

proceed as follows:

1. We randomly select a response surface for each of a total of 1,000 species modeled

as bivariate Gaussian dome with random mean, variance and covariance in relation

to two environmental variables. In ecological context the mean equals the environ-

mental optimal conditions for the respective species, hence the niche centroid. The

shape of the Gaussian dome, i.e. the squared length of the principal axes and the

orientation, namely the rotation angle is controlled by the variance and covariance

values. We adjust the peak height of each Gaussian dome by the standard prefactor

of a multivariate normal distribution, i.e. Gaussian density. This results in narrower

domes having higher peaks than broader domes and simulates the trade-off between

specialist and generalist species.

2. We choose 100 sampling locations along the environmental gradients. We employ a

regular 10x10 grid, which is a simplification, since real-world environmental factors

are often correlated and seasonally variant. Reinterpreting the two environmental

factors as coordinates along the first two principal axes derived from a PCA of a

higher-dimensional environmental space helps to reduce this discrepancy.

3. At each sampling location, we evaluate the joint probability density function for each

species and scale these values by a sampling “space” to obtain the expected number

of individuals of each species in the sampling space. We then take the expected

values of the number of individuals for each species and generate random numbers,

i.e. Poisson variates to represent the actual observed numbers of individuals in a

single sample. Since the sampling space is constant, a smaller number of species

will be sampled when species densities are low.

In detail, the bivariate Gaussian response surface is defined in a way that the expected

number of individuals n is a function of x, µ, Σ, i.e.

n(x,µ,Σ) =
1√
|Σ|

exp[−(x− µ)TΣ−1(x− µ)]. (6.5)
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|Σ| is the determinant of Σ, x denotes a vector that specifies the locations of the sample

along the environmental gradients

x =

(
x1

x2

)
, (6.6)

µ is the vector defining the location of the niche centroid along the environmental gradients

µ =

(
µ1

µ2

)
(6.7)

and Σ denotes the symmetric variance-covariance matrix with respect to the environmen-

tal gradients x1 and x2

Σ =

(
σ2
1 σ12

σ12 σ2
2

)
. (6.8)

For a non-degenerate covariance ellipsoid with |Σ| > 0 the inverse Σ−1 exists. Via a

principal axis transformation

x− µ = Ry ⇔ y = RT (x− µ) (6.9)

where R is the orthogonal matrix and its two columns contain the two orthonormal

eigenvectors of the matrix Σ, we can show that

(x− µ)TΣ−1(x− µ) = yTRTΣ−1Ry = yTΛ−1y, (6.10)

where the diagonal matrix Λ is

Λ =

(
λ2
1 0

0 λ2
2

)
, (6.11)

with λ2
1 and λ2

2 being related eigenvalues of Σ. Hence, the matrices Σ and Λ are connected

trough the relations

Λ = RTΣR ⇔ Σ = RΛRT . (6.12)

Due to orthonormality R is a rotation matrix

R =

(
cos θ −sin θ

sin θ cos θ

)
(6.13)
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and |R| = |RT | = 1, which leads to |Σ| = |Λ|. Consequently, we can write

Σ =

(
λ2
1 cos

2 θ + λ2
2 sin

2 θ λ2
1 cos

2 θ sin θ − λ2
2 cos θ sin θ

λ2
1 cos θ sin θ − λ2

2 cos θ sin θ λ2
1 sin

2 θ + λ2
2 cos

2 θ

)
. (6.14)

Thus, selecting values for the two scaling factors λ2
1 and λ2

2 and for the angle of rotation

θ suffices to generate the variance-covariance matrix Σ. Therefore, to define each species’

response surface we only need to specify the niche centroid µ, the length of the principal

axes λ1 and λ2 and the angle of rotation θ.

Assuming that our environmental variables are restricted to values between 0 and 1, we

drew the values of µ from a uniform distribution between 0 and 1. The values for the

angle of rotation were generated by randomly drawing the value for cos(θ) from a uniform

distribution spanning the interval from -1 to 1 and the value for sin(θ) as ±
√

1− cos2(θ),

while randomly choosing the sign. For the simulation we distinguished two scenarios,

following Gault et al. [46]. For the high turnover scenario, we selected the values of

λ2
1 and λ2

2 from a normal distribution, constrained within 0.005-0.01, while for the low

turnover scenario we chose them from a normal distribution between 0.01-0.09.

Diffusion mapping the functional distinctness values of the 100 generated synthetic com-

munities successfully recovers the two main dimensions of variation in the synthetic com-

munities of the low and high turnover scenarios (Fig. 6.1).

Moving forward, we additionally evaluated the approach using real-world datasets. First,

we applied the approach to Dutch and German phytoplankton data from the Southern

North Sea, aggregated and diffusion mapped in Carrasco et al. [237]. The diffusion map

of functional distinctness values identifies the single-species blooms as the most important

variables in the dataset (Fig. 6.2). While this analysis successfully identifies important

features, specifically phytoplankton blooms, it falls short of achieving our primary goal of

extracting community traits from the dataset.

The application of this method to the bacterial data from the Baltic Sea that we have

focused on in Chapt. 4, reveals one important variable that is mainly driven by species

appearing in very high relative abundances in the samples (Fig. 6.3). The higher variables

seem to be harmonic eigenvectors of the first.
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Figure 6.1: Diffusion maps of functional distinctness values for low (A,C) and high turnover
scenarios. Values of environmental variables (Environ. variable) X (A,B) and Y (C,D) are color-
coded.

.

Figure 6.2: Diffusion map results of functional distinctness values of phytoplankton data from
the Southern North Sea [237]. Values of relative abundances (rel. ab.) of the bloom species,
i.e. Phaeocystis globosa (A), Micromonas pusilla (B) and Planktothrix agardhii (C, D) are color-
coded.

.
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Figure 6.3: Diffusion map results of functional distinctness values of bacterial data from the
Baltic Sea [135]. Relative abundances (rel. ab.) of species belonging to the Class Bacteroidia
(A) and the Class Cyanobacteria (B, C, D) are color-coded.

.

From these results, we can see that the functional distinctness measure is strongly driven

by variations in abundances, which is problematic if our data shows large variation in

relative abundances. Since this is a prevalent feature in microbial communities, a fu-

ture direction is to derive an alternative similarity measure that can handle such data

characteristics.

6.3 Synthetic metabolic interaction networks

We have seen that the prevalence of metabolite-based interactions in bacteria contributes

to shaping community composition, ecosystem function and stability [206, 207, 211]. An

intriguing question is if we can derive overarching principles governing bacterial metabolic

interactions. For example, a rule for how many species can co-exist on a single substrate or

a principle specifying the most effective metabolic strategy based on a given interaction

structure. More generally, we could explore how the structure of metabolic reactions

corresponds to co-existence, i.e. diversity of bacteria and their metabolic strategies.
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Mentges et al. [241] showed that a simple mechanistic model of microbe-substrate inter-

actions already provides interesting insights. In their modeling approach they represent

microbe-substrate interactions as uptake and release matrices, that are governed by simple

rules that ignore the specific chemistry of reactions. Our hope is to expand this approach

by integrating insights from chemical reaction systems, such as the conservation of the

number of atoms in reactions, as well as drawing on principles from thermodynamics,

e.g. the concept of increasing entropy. One route towards this aim is to create an artificial

chemistry that follows general chemical principles such as the stoichiometric balance. An

approach involves devising an algorithm capable of predicting all potential reactions based

on a given set of chemical compounds and their elemental composition.

An an example, let us consider that we have the four chemical compounds methane

(CH4), oxygen (O2), carbon dioxide (CO2) and water (H2O) and we want to derive pos-

sible chemical reactions between these that obey stoichiometric balance. We know the

elemental composition of the compounds (Table 6.1).

Table 6.1: Number of elements in chemical compounds

Compounds

Elements Methane Oxygen Carbon dioxide Water

C 1 0 1 0

H 4 0 0 2

O 0 2 2 1

Writing the elemental composition in matrix notation yields

M =

 1 0 1 0

4 0 0 2

0 2 2 1

 . (6.15)

Now we want to find all possible chemical reactions that can take place between these

molecules, while ensuring stoichiometric balance. To achieve this, let us define a col-

umn vector of educts, denoted as v, and a column vector of products, denoted as w,

with v,w ∈ {(nCH4 , nO2 , nCO2 , nH2O)}, where nCH4 , nO2 , nCO2 , nH2O are the numbers of

methane, oxygen, carbon dioxide and water molecules. Our objective is to determine

vectors v and w that satisfy

Mv = Mw. (6.16)
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This equation ensures stoichiometric balance, since the matrix M converts the chemical

compounds into their atom numbers. Rewriting Eq. 6.16, we obtain

M(v −w) = 0. (6.17)

Hence, we see that the vector (v − w) has to be (part of) the nullspace of the matrix

M. The nullspace (or kernel) of a matrix represents the set of all vectors that, when

multiplied by the matrix, result in the zero vector.

For our example system, we can show that

 1 0 1 0

4 0 0 2

0 2 2 1




1

2

−1

−2

 =


0

0

0

0

 . (6.18)

Translating into possible chemical reactions yields

CH4 + 2O2
r−−→ CO2 + 2H2O (6.19)

CO2 + 2H2O
s−−→ CH4 + 2O2, (6.20)

where r and s represent the reaction rates. Therefore, determining the nullspace of the

matrix reveals potential chemical reactions among the chemical compounds, ensuring

stoichiometric balance. Using mass action laws we can write the following ODE system

˙[CH4] = s[CO2][H2O]2 − r[CH4][O2]
2 (6.21)

˙[O2] = 2s[CO2][H2O]2 − 2r[CH4][O2]
2 (6.22)

˙[CO2] = r[CH4][O2]
2 − s[CO2][H2O]2 (6.23)

˙[H2O] = 2r[CH4][O2]
2 − 2s[CO2][H2O]2, (6.24)

where the square brackets indicate the concentrations of the chemical compounds.

The next step could be the development of a method to generate a potential interaction

network among bacteria from the possible chemical reactions. Our hope is to create

synthetic metabolic interaction networks automatically from given random matrices that

capture the element composition of certain chemical compounds. Here, we showed a first

step towards such a model, i.e. identifying possible chemical reactions from a matrix of

chemical compounds and their elemental composition.

Being able to create synthetic metabolic interaction networks from simple elemental com-
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position matrices could enable us to build realistic topologies of complex interaction net-

works of bacteria. This approach could be considered a niche model for bacteria, akin to

the niche model by Williams and Martinez [242] that yields complex food webs based on

a simple set of rules. Such a model has the potential to unveil the mechanisms behind

the structure of bacterial communities, addressing also long-standing mysteries such as

the enormous diversity of bacteria as a whole and of rare species in particular [243].

6.4 Summary

In this chapter I outlined some future directions towards developing a mechanistic un-

derstanding of microbial community ecology. I showed that the increasing availability of

large datasets can be used for an aggregated diffusion map analysis that improves the

overall results and could eventually provide a global map of communities, their traits and

functional diversities. Also, I explored the concept of community maps as an approach to

derive the variables along which the functional community composition changes. Finally,

I discussed synthetic metabolic interaction networks that link the chemistry of reactions

to bacterial substrate interactions and could serve as a niche model for microbes.
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Chapter 7

Conclusions

In this work, I explored novel approaches for the analysis and modeling of the dynamics of

complex ecological communities with a focus on bacterial communities. These approaches

have enabled us to make sense of large datasets of bacterial communities on the one hand

and to study the dynamics of interacting bacteria with a high degree of generality on the

other hand. I have analyzed a large dataset of bacterial community composition from the

Baltic Sea, coarse-graining the complex bacterial communities into potentially occupied

metabolic niches over time. Subsequently, I have focused on the question how a mutual-

istic cross-feeding relationship between two bacterial species that inherently constitutes a

positive feedback loop can be stabilized. Let us now discuss the results of this work and

outline some future research directions.

Diffusion map approach to make sense of large datasets

In Chapt. 4 we have shown that the diffusion map approach enables us to make sense

of high-dimensional datasets of bacterial communities by coarse-graining the over 4,000

bacterial taxa in terms of their metabolic strategies. The identification of these metabolic

strategies allows us to translate the species time series into potentially occupied metabolic

niches over time. Not only does this approach achieve a dimensionality reduction in terms

of the most important variables, it also provides a framework to connect the data to an im-

portant theoretical concept from ecology, i.e. the niche. These conceptual frameworks are

important to advance our understanding of bacterial communities alongside the produc-

tion of data on these [14]. Findings through these frameworks can help the formulation

of hypotheses-driven research, enabling the development and testing of general princi-

ples [14].

The diffusion map approach of the Baltic Sea dataset identified a wealth of metabolic

strategies, representing localized as well as continuous strategies, strategies that group

related taxa together and those that distinguish them, forming together the metabolic

strategy space of the community. Our results also highlight the power of the diffusion
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map to objectively detect biases in the dataset. If there are data points that are isolated

from the rest, the diffusion map identifies those separations. Organizing the genomic

information into potentially occupied metabolic niches over times allowed us to observe

the metabolic niche occupation dynamics over time. These revealed the driving taxa of

these strategies as well as seasonal and environmental impacts on the dynamics.

One of the limiting factors of diffusion maps is the data that we have available on the

system we want to investigate. One factor to consider is that we need a certain amount

of data to ensure the applicability of the diffusion map, while another aspect is that the

analysis is limited by the type of data. The diffusion map can be applied to almost any

dataset where we have a certain understanding of similarity between the data points.

The data usually consists of a tabular format that records a set of properties for a specific

number of samples. Because the insights by diffusion mapping diminish if the diffusion

map network diameter remains low after thresholding, this method should not be applied

to datasets with less than ca. 30 samples. In the case of very large datasets, the diffusion

map is able to even analyze for example millions of samples in a comparably short time

frame. The limiting factor lies in the sample comparisons, which scales as O(N2). In the

case of exceptionally large data sets, complexity can be mitigated by employing heuristics

that decrease the number of necessary comparisons.

The type of data plays a major role in the insights we can gain using diffusion maps,

especially as bacteria show genetic diversity for example among individuals of the same

species [201, 244, 245]. In our case, assigning amplicon sequence variants data to species

and obtaining the complete genomes from databases is a rather crude tool, that cannot

fully capture the whole genomic diversity and possible adaptations specific to the bacteria

in those communities. Also, when working with genomic data, we can only gain insights

into potentially employed strategies. To investigate which strategies are actually applied

by the bacteria, we would need other types of data, for example transcriptomic data.

Thanks to technological progress and ongoing long-term monitoring efforts, we are wit-

nessing an increasing availability of extensive datasets that meet the prerequisites for

the diffusion map method. This expansion for example also encompasses datasets of

metagenomes and transcriptomic data, that could create a more detailed picture of the

specific metabolic strategies employed in the respective system under specific conditions.

Diffusion maps provide a ranking of the importance of the detected variables, however

they do not provide us with an interpretation of these variables. Therefore, it is essential

to possess some knowledge of the system, and additional information can prove valuable

in formulating these interpretations. As a result, the process of interpreting the new
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variables can be time-consuming.

Overall, we believe that the diffusion map approach has great potential to help us make

sense of the increasing wealth of datasets of ecological communities, especially bacterial

communities. The coarse-graining of species into their metabolic niches provides a first

step to bridge the current gap between data and theory. Our approach to translate the

species time series into strategy time series provides new insights into the dynamics of

these communities and possible relation to environmental factors as well as ecosystem

functioning. The results illustrate the power of manifold learning approaches to advance

our understanding of the links between community composition and functioning.

Generalized modeling to gain insights into uncertain systems

In Chapt. 3 we have reviewed the generalized modeling (GM) approach and provided a

hands-on guide to apply it to various kinds of systems. The many insights gained through

GM in the past demonstrate the power of this approach to extract valuable information

from a wide range of systems [93]. GM is especially useful for systems where we have

limited information available and hence are uncertain about specific functional forms and

precise rate laws.

In Chapt. 4 we have applied the GM approach to gain insights into a common motif in

bacterial communities, i.e. mutual cross-feeding between two types of bacteria. The GM

approach of specifying the structure but not the specific functional forms has enabled us to

explore a whole range of plausible cross-feeding scenarios, while making few assumptions.

We not only acquired efficient numerical results through the analysis of 107 parameter sets

but also derived analytical findings for this relatively complex four-variable model. More-

over, the general model allowed for the analysis of the response to various perturbations

and the behaviour of multiple motifs within a spatial context.

While GM enables efficient analysis, the applicable tools are limited, constraining the

analysis to local dynamics close to equilibrium [246]. It is thus not useful to study be-

haviours of systems that are far from equilibrium or to explore transient behaviors. Also,

the results of GM cannot be verified by data directly. However, bifurcations of specific

models can be compared to bifurcations in general models, that describe those specific

models [103].

Current modeling approaches of microbial communities have provided valuable insights

into the dynamics of microbial communities [54, 55, 56, 57, 64, 70, 247]. However, these

approaches are often limited either by ignoring features that characterize microbial sys-
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tems [70], like metabolite-mediated interactions, or by dealing with a large number of

parameters [64, 247], which often restricts the analysis to simulations. In other cases the

models only explore a small range of plausible models [54, 55, 56], e.g. assuming the release

of costless metabolites or linear mortalities. GM is different in that it can integrate struc-

tural information, like the interaction through metabolite exchange, while incorporating

the uncertainty about the system in easily interpretable parameters. Thereby, GM allows

us to explore the whole range of plausible models and study their dynamical implications.

Overall, we believe that GM provides a good addition to current modeling approaches of

microbial communities. GM can deal to a certain extent with the complexity of microbial

communities and their interactions by being able to analyze a whole ensemble of different

models in a relatively short time frame. We have also shown that we can integrate new

information that we gain on the system iteratively into a generalized model, allowing

us to refine the model efficiently. Moreover, to enable simulations, we can construct

conventional models from generalized models, allowing us to study specific parameter

regions in more detail. Future investigations may reveal additional factors that impact

stability of mutualistic interactions between microbes, e.g. removal of inhibitory molecules

could play an important role [248]. GM could also be used to compare conventional models

with different dynamics [232], as the general parameters span a natural coordinate system

that can be used to compare specific models [103]. It would also be interesting to extend

our analysis to interactions of > 2 bacterial species and multiple metabolites or different

types of interactions, including for example competition for resources [56].

Towards a better understanding of the dynamics of complex ecological com-

munities

Our aim in this work has been the development of new tools and frameworks to deal with

the complexity of ecological community dynamics, especially among microbes. We have

worked on extending both frontiers, the frontier of analyzing high-dimensional datasets

and the frontier of incorporating the many uncertainties that exist in complex communi-

ties. Our vision for the future is the combination of the two approaches, diffusion maps

and generalized modeling.

We have seen that diffusion maps detect important metabolic strategies of the bacterial

species. As mentioned above we envision that this method can also be used to identify

system variables that describe the major dimensions along which the functional commu-

nity changes. These system variables could then be used in a GM framework to explore

the dynamics of these communities, their stability properties and to study their response
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to perturbations, like a change in temperature or a decrease in oxygen concentrations.

Our hope is therefore to combine diffusion maps and the generalized modeling framework

to develop a new way of modeling bacterial communities and thereby develop an under-

standing of the mechanisms behind community composition, dynamics over time and the

relation to ecosystem functioning.
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system. Theoretical ecology 6, 359–372 (2013).

[126] Lade, S. J. et al. An empirical model of the baltic sea reveals the importance of social

dynamics for ecological regime shifts. Proceedings of the National Academy of Sciences

112, 11120–11125 (2015).

[127] Lade, S. J. & Niiranen, S. Generalized modeling of empirical social-ecological systems.

Natural Resource Modeling 30, e12129 (2017).

[128] Molla, N., DeIonno, J., Gross, T. & Herman, J. Governing change: a dynamical sys-

tems approach to understanding the stability of environmental governance. Earth System

Dynamics 13, 1677–1688 (2022).

[129] Levins, R. Some demographic and genetic consequences of environmental heterogeneity

for biological control. Bulletin of the ESA 15, 237–240 (1969).
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[225] Baurmann, M., Ebenhöh, W. & Feudel, U. Turing instabilities and pattern formation

in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering 1,

111–130 (2004).

[226] Ruuskanen, M. O., Sommeria-Klein, G., Havulinna, A. S., Niiranen, T. J. & Lahti, L.

Modelling spatial patterns in host-associated microbial communities. Environmental Mi-

crobiology 23, 2374–2388 (2021).

[227] Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge

upon gene loss in bacteria. The ISME journal 8, 953–962 (2014).

[228] Lilja, E. E. & Johnson, D. R. Segregating metabolic processes into different microbial cells

accelerates the consumption of inhibitory substrates. The ISME journal 10, 1568–1578

(2016).

[229] Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the

origin of a microbial mutualism. Proceedings of the National Academy of Sciences 107,

2124–2129 (2010).

[230] D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria.

PLoS genetics 12, e1006364 (2016).

[231] Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J.

Evolution of bidirectional costly mutualism from byproduct consumption. Proceedings of

the National Academy of Sciences 115, 12000–12004 (2018).

[232] Coyte, K. Z. & Rakoff-Nahoum, S. Understanding competition and cooperation within

the mammalian gut microbiome. Current Biology 29, R538–R544 (2019).

[233] Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooper-

ation over cheating. Elife 2, e00960 (2013).



BIBLIOGRAPHY 137

[234] Ratzke, C. & Gore, J. Self-organized patchiness facilitates survival in a cooperatively

growing bacillus subtilis population. Nature microbiology 1, 1–5 (2016).

[235] Kayser, J., Schreck, C. F., Yu, Q., Gralka, M. & Hallatschek, O. Emergence of evolutionary

driving forces in pattern-forming microbial populations. Philosophical Transactions of the

Royal Society B: Biological Sciences 373, 20170106 (2018).

[236] Goldschmidt, F., Caduff, L. & Johnson, D. R. Causes and consequences of pattern di-

versification in a spatially self-organizing microbial community. The ISME Journal 15,

2415–2426 (2021).

[237] Carrasco De La Cruz, P., Antonucci Di Carvalho, J., Massing, J. C. & Gross, T. Aggrega-

tion of monitoring datasets for functional diversity estimation. Frontiers in Ecology and

Evolution In review.

[238] Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional

diversity perform? Ecology 85, 847–857 (2004).

[239] Legras, G., Loiseau, N., Gaertner, J.-C., Poggiale, J.-C. & Gaertner-Mazouni, N. Assessing

functional diversity: the influence of the number of the functional traits. Theoretical

Ecology 13, 117–126 (2020).

[240] Minchin, P. R. Simulation of multidimensional community patterns: towards a compre-

hensive model. Vegetatio 71, 145–156 (1987).

[241] Mentges, A., Feenders, C., Deutsch, C., Blasius, B. & Dittmar, T. Long-term stability

of marine dissolved organic carbon emerges from a neutral network of compounds and

microbes. Scientific reports 9, 17780 (2019).

[242] Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404,

180–183 (2000).

[243] Lynch, M. D. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nature

Reviews Microbiology 13, 217–229 (2015).

[244] Leimbach, A., Hacker, J. & Dobrindt, U. E. coli as an all-rounder: the thin line between

commensalism and pathogenicity. Between pathogenicity and commensalism 3–32 (2013).

[245] Van Rossum, T., Ferretti, P., Maistrenko, O. M. & Bork, P. Diversity within species:

interpreting strains in microbiomes. Nature Reviews Microbiology 18, 491–506 (2020).

[246] Gross, T. Generalised modelling in systems biology. New Frontiers of Network Analysis

in Systems Biology 59–75 (2012).

[247] Gibbs, T., Zhang, Y., Miller, Z. R. & O’Dwyer, J. P. Stability criteria for the consumption

and exchange of essential resources. PLoS computational biology 18, e1010521 (2022).



138 BIBLIOGRAPHY

[248] Boza, G., Barabas, G., Scheuring, I. & Zachar, I. Eco-evolutionary modelling of micro-

bial syntrophy indicates the robustness of cross-feeding over cross-facilitation. Scientific

Reports 13, 907 (2023).



Appendix A

Supplementary Tables

Table S1: Genomes that map to the 100 most abundant ASVs obtained from amplicon se-
quencing data in terms of relative mean abundance over the whole sampling period. Genome,
taxonomic information, mean and maximum abundance (ab) over the whole sampling period
are provided.

Genome Class Family Species Mean ab Max ab

GCF 003011885.1 Cyanobacteriia Cyanobiaceae Cyanobium A usitatum 0.1150 0.7222

GCF 002252665.1 Cyanobacteriia Cyanobiaceae Cyanobium A sp002252665 0.0533 0.2779

GCA 003569125.1 Acidimicrobiia Ilumatobacteraceae BACL27 sp003569125 0.0488 0.3656

GCA 001593825.1 Cyanobacteriia Nostocaceae Aphanizomenon B flosaquae 0.0400 0.5437

GCF 000173115.1 Bacteroidia Flavobacteriaceae MAG-120531 sp000173115 0.0397 0.5443

GCA 002358295.1 Gammaproteobacteria D2472 D2472 sp002358345 0.0287 0.2754

GCA 003569145.1 Actinomycetia Nanopelagicaceae MAG-120802 sp003569145 0.0286 0.2757

GCA 001438235.1 Alphaproteobacteria Rhodobacteraceae UBA10365 sp003536295 0.0235 0.1846

GCA 002405515.1 Planctomycetes UBA1268 UBA4655 sp002405515 0.0226 0.1789

GCA 007280255.1 Planctomycetes UBA1268 QWOQ01 sp003669585 0.0213 0.2010

GCA 001437765.1 Acidimicrobiia Ilumatobacteraceae UBA3006 sp002367695 0.0208 0.2445

GCA 002325485.1 Bacteroidia Flavobacteriaceae BACL21 sp002694465 0.0201 0.3039

GCA 002340585.1 Gammaproteobacteria Porticoccaceae HTCC2207 sp001438605 0.0191 0.2454

GCF 001485105.1 Actinomycetia Streptomycetaceae Streptomyces acidiscabies 0.0163 0.3385

GCA 002711735.1 Acidimicrobiia Ilumatobacteraceae Ilumatobacter A sp002711735 0.0142 0.2166

GCF 000496475.1 Gammaproteobacteria Burkholderiaceae RS62 sp000496475 0.0139 0.1293

GCF 000257665.1 Actinomycetia Microbacteriaceae Aquiluna sp000257665 0.0129 0.2494

GCF 000312705.1 Cyanobacteriia Nostocaceae LE011-02 sp000312705 0.0122 0.5288

GCF 002287885.2 Actinomycetia Nanopelagicaceae Nanopelagicus limnes 0.0114 0.0733

GCF 000242915.1 Campylobacteria Sulfurimonadaceae Sulfurimonas gotlandica 0.0107 0.6154

GCA 002746305.1 Bacteroidia UBA9320 UBA9320 sp002746305 0.0100 0.0928

GCA 002430225.1 Actinomycetia Microbacteriaceae Pontimonas sp001438965 0.0093 0.2095

GCF 002252705.1 Cyanobacteriia Cyanobiaceae Vulcanococcus limneticus 0.0092 0.1075

GCA 000750175.1 Alphaproteobacteria Pelagibacteraceae IMCC9063 sp000750175 0.0090 0.1093

GCA 002340845.1 Gammaproteobacteria Methylophilaceae BACL14 sp002384685 0.0079 0.0679

GCA 001438645.1 Gammaproteobacteria Methylophilaceae BACL14 sp002384685 0.0076 0.0700

GCA 001438145.1 Gammaproteobacteria Pseudohongiellaceae OM182 sp001438145 0.0074 0.0646

GCF 002284895.1 Actinomycetia Nanopelagicaceae Planktophila sp002284895 0.0074 0.0575

GCA 000485495.1 Actinomycetia Nanopelagicaceae AAA044-D11 sp000485495 0.0074 0.0642

GCA 002170165.1 Bacteroidia BACL11 TMED123 sp002170165 0.0072 0.0501

GCF 900129545.1 Bacteroidia Flavobacteriaceae Flavobacterium fluvii 0.0060 0.2432

GCF 001983935.1 Planctomycetes Planctomycetaceae Fuerstia marisgermanicae 0.0058 0.1676

GCA 001438305.1 Bacteroidia Schleiferiaceae TMED14 sp001438205 0.0056 0.0693

GCF 002252635.1 Cyanobacteriia Cyanobiaceae WH-5701 sp002252635 0.0055 0.0868

GCA 004292795.1 Bacteroidia Microscillaceae RDXI01 sp004292795 0.0054 0.1049

GCF 006491595.1 Bacteroidia Flavobacteriaceae Flavobacterium jejuense 0.0052 0.0682

GCF 002943715.1 Bacteroidia Flavobacteriaceae Polaribacter filamentus 0.0052 0.1530

GCF 000299115.1 Alphaproteobacteria HIMB59 HIMB59 sp000299115 0.0051 0.0616

GCF 900114485.1 Alphaproteobacteria Rhodobacteraceae Loktanella salsilacus 0.0049 0.0452

GCA 004379135.1 Acidimicrobiia Ilumatobacteraceae Casp-actino8 sp004379135 0.0048 0.0220

GCA 003249095.1 Cyanobacteriia Microcystaceae Snowella sp003249095 0.0047 0.1042

GCF 002631185.1 Alphaproteobacteria Acetobacteraceae Roseomonas rhizosphaerae 0.0047 0.3294

GCA 000738435.1 Alphaproteobacteria Rhodobacteraceae Planktomarina temperata 0.0046 0.1321

GCF 003096315.1 Gammaproteobacteria Burkholderiaceae Achromobacter insuavis 0.0046 0.4719

GCA 003284275.1 Alphaproteobacteria Pelagibacteraceae Pelagibacter A sp003284275 0.0045 0.0547

GCF 002252675.1 Cyanobacteriia Cyanobiaceae Cyanobium sp002252675 0.0044 0.0434

GCF 002954645.1 Bacteroidia Flavobacteriaceae Polaribacter gangjinensis 0.0043 0.0744

GCF 002101315.1 Alphaproteobacteria Pelagibacteraceae Pelagibacter sp002101315 0.0040 0.0398
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GCF 002115755.1 Alphaproteobacteria Thalassospiraceae Thalassospira mesophila 0.0039 0.2429

GCA 002733565.1 Gammaproteobacteria Psychromonadaceae Moritella sp000170855 0.0039 0.0718

GCF 002288225.1 Actinomycetia Nanopelagicaceae Planktophila dulcis 0.0039 0.0286

GCA 002428815.1 Gammaproteobacteria Porticoccaceae HTCC2207 sp001438605 0.0038 0.0499

GCF 000590925.1 Alphaproteobacteria Rhodobacteraceae Roseicyclus elongatum 0.0037 0.0555

GCA 002346275.1 Gammaproteobacteria Halieaceae IMCC3088 sp003520285 0.0037 0.0802

GCF 002940745.1 Bacteroidia Flavobacteriaceae Hanstruepera crassostreae 0.0036 0.0623

GCF 003335085.1 Bacteroidia Flavobacteriaceae Polaribacter sp003335085 0.0036 0.1667

GCF 000699505.1 Actinomycetia Microbacteriaceae Rhodoluna lacicola 0.0035 0.0265

GCA 003149555.1 Actinomycetia Microbacteriaceae Aquiluna sp003149555 0.0034 0.0827

GCA 004379115.1 Actinomycetia S36-B12 Mxb001 sp004379115 0.0034 0.0716

GCA 001438005.1 Verrucomicrobiae UBA3015 UBA3015 sp001438005 0.0032 0.0291

GCA 002346225.1 Bacteroidia BACL12 UBA11426 sp002346225 0.0031 0.1118

GCF 003003055.1 Gammaproteobacteria Burkholderiaceae SCGC-AAA027-K21 sp003003055 0.0031 0.0317

GCF 002284855.1 Actinomycetia Nanopelagicaceae Planktophila sp002284855 0.0029 0.0379

GCA 002863125.1 Bacteroidia UA16 UA16 sp002863125 0.0029 0.0250

GCF 002284915.1 Actinomycetia Nanopelagicaceae IMCC26077 sp002284915 0.0029 0.0279

GCA 001438165.1 Bacteroidia Schleiferiaceae TMED14 sp002381225 0.0029 0.0274

GCF 001457835.1 Clostridia Ezakiellaceae Fenollaria timonensis 0.0029 0.1789

GCF 000152785.1 Alphaproteobacteria Rhodobacteraceae Yoonia vestfoldensis A 0.0028 0.0290

GCA 002292365.1 Bacteroidia Cyclobacteriaceae UBA4465 sp002292365 0.0028 0.0194

GCF 001439695.1 Gammaproteobacteria Pseudomonadaceae Pseudomonas E veronii 0.0028 0.1510

GCA 000421325.1 Alphaproteobacteria AAA536-G10 AAA536-G10 sp000421325 0.0027 0.0406

GCA 003208775.1 Cyanobacteriia Cyanobiaceae Synechococcus C sp002500205 0.0026 0.1927

GCA 003671255.1 Planctomycetes Gemmataceae UBA969 sp003671255 0.0025 0.0379

GCA 007093895.1 Gammaproteobacteria Enterobacteriaceae Salmonella enterica 0.0024 0.0168

GCF 003011125.1 Cyanobacteriia Cyanobiaceae Synechococcus D lacustris 0.0024 0.0380

GCF 004337435.1 Actinomycetia Streptomycetaceae Streptomyces sp004337435 0.0024 0.0120

GCA 002167745.1 Gammaproteobacteria SG8-40 UBA3031 sp002167745 0.0023 0.0320

GCA 900618205.1 Gammaproteobacteria Burkholderiaceae Bordetella trematum 0.0023 0.1770

GCF 000173095.1 Bacteroidia Flavobacteriaceae MS024-2A sp000173095 0.0023 0.0428

GCF 000797465.1 Bacteroidia Flavobacteriaceae Psychroserpens jangbogonensis 0.0021 0.0377

GCA 002690755.1 Phycisphaerae SM1A02 UBA12014 sp002690755 0.0021 0.0255

GCA 002480055.1 Gammaproteobacteria Porticoccaceae HTCC2207 sp002335945 0.0020 0.0215

GCF 000143825.1 Actinomycetia Mycobacteriaceae Corynebacterium genitalium A 0.0020 0.0926

GCF 006385135.1 Alphaproteobacteria Emcibacteraceae Emcibacter A congregatus 0.0020 0.0176

GCF 002284875.1 Actinomycetia Nanopelagicaceae Planktophila sp002284875 0.0019 0.0111

GCA 002697205.1 Gammaproteobacteria HTCC2089 GCA-2697205 sp002697205 0.0019 0.0172

GCA 003045825.1 Bacteroidia Schleiferiaceae UBA10364 sp003045825 0.0019 0.0476

GCA 000762985.1 Actinomycetia Mycobacteriaceae Mycobacterium rufum 0.0018 0.0245

GCA 002282055.1 Bacteroidia Sphingobacteriaceae Daejeonella sp002257025 0.0018 0.0238

GCA 002499015.1 Poseidoniia Poseidoniaceae MGIIa-L1 sp002499015 0.0018 0.0959

GCF 000176015.1 Alphaproteobacteria Rhodobacteraceae Pseudorhodobacter B sp000176015 0.0018 0.0476

GCF 006937785.1 Cyanobacteriia Pseudanabaenaceae Pseudanabaena sp006937785 0.0017 0.1092

GCF 001623485.1 Cyanobacteriia Nostocaceae Nodularia spumigena 0.0016 0.0348

GCF 000171835.1 Alphaproteobacteria Thalassobaculaceae BAL199 sp000171835 0.0015 0.0138

GCF 000156155.1 Gammaproteobacteria Methylophilaceae BACL14 sp000156155 0.0015 0.0159

GCA 002733945.1 Campylobacteria Sulfurimonadaceae Sulfurimonas sp002733945 0.0015 0.0763

GCF 003856375.1 Bacteroidia Crocinitomicaceae Fluviicola sp003856375 0.0015 0.0449

GCF 900110395.1 Alphaproteobacteria Reyranellaceae Reyranella sp900110395 0.0015 0.0222

GCF 002368115.1 Cyanobacteriia Nostocaceae Dolichospermum A compactum 0.0014 0.0579

GCF 900100865.1 Actinomycetia Microbacteriaceae Aquiluna sp900100865 0.0014 0.0188

Table S2: Species that map to the 100 ASVs scoring most negative values in variable 1.

Species Value Genome Class Family

Salmonella enterica -0.09769 GCA 007094035.1 Gammaproteobacteria Enterobacteriaceae

Salmonella enterica -0.09769 GCA 007093895.1 Gammaproteobacteria Enterobacteriaceae

Salmonella enterica -0.09763 GCA 007093765.1 Gammaproteobacteria Enterobacteriaceae

Salmonella enterica -0.09756 GCF 003548795.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09754 GCF 002094495.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09754 GCF 002094665.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09754 GCF 002977865.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter turicensis -0.09754 GCF 002976545.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09753 GCA 002094675.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09753 GCF 002094645.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09752 GCF 002977315.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter malonaticus -0.09752 GCF 002978245.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter malonaticus -0.09752 GCF 002978235.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09751 GCF 002094575.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09751 GCF 002976775.1 Gammaproteobacteria Enterobacteriaceae



141

Cronobacter malonaticus -0.09751 GCF 002978375.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09751 GCF 002094585.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09751 GCA 002976965.2 Gammaproteobacteria Enterobacteriaceae

Cronobacter dublinensis -0.09751 GCF 002979155.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter malonaticus -0.09751 GCF 002978545.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter malonaticus -0.09751 GCF 002978185.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09751 GCF 002977405.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09751 GCF 002094475.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter malonaticus -0.0975 GCF 002978535.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.0975 GCF 002976735.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.0975 GCF 002976795.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.0975 GCA 002977005.2 Gammaproteobacteria Enterobacteriaceae

Escherichia coli -0.09749 GCA 002078275.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09749 GCF 002977155.1 Gammaproteobacteria Enterobacteriaceae

Escherichia coli -0.09749 GCF 001268585.1 Gammaproteobacteria Enterobacteriaceae

Escherichia coli -0.09749 GCF 001269185.1 Gammaproteobacteria Enterobacteriaceae

Escherichia coli -0.09748 GCF 004523105.1 Gammaproteobacteria Enterobacteriaceae

Escherichia coli -0.09748 GCF 005889645.1 Gammaproteobacteria Enterobacteriaceae

Escherichia coli -0.09748 GCF 001268685.1 Gammaproteobacteria Enterobacteriaceae

Escherichia coli -0.09748 GCF 002007165.1 Gammaproteobacteria Enterobacteriaceae

Escherichia coli -0.09748 GCF 002959275.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09748 GCF 002978035.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.09747 GCF 002978105.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter dublinensis -0.09747 GCA 002978875.2 Gammaproteobacteria Enterobacteriaceae

Cronobacter dublinensis -0.09747 GCF 002978655.1 Gammaproteobacteria Enterobacteriaceae

Enterobacter sp. -0.09746 GCF 000534395.1 Gammaproteobacteria Enterobacteriaceae

Scandinavium goeteborgense -0.09744 GCF 004361715.1 Gammaproteobacteria Enterobacteriaceae

Scandinavium goeteborgense -0.09743 GCA 003935895.2 Gammaproteobacteria Enterobacteriaceae

Klebsiella pneumoniae -0.09742 GCF 003967395.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter dublinensis -0.09742 GCF 002978855.1 Gammaproteobacteria Enterobacteriaceae

Klebsiella quasivariicola -0.09742 GCF 002269255.1 Gammaproteobacteria Enterobacteriaceae

Klebsiella variicola -0.09742 GCF 001033575.1 Gammaproteobacteria Enterobacteriaceae

Klebsiella quasipneumoniae -0.09742 GCF 002853635.1 Gammaproteobacteria Enterobacteriaceae

Klebsiella pneumoniae -0.09742 GCF 004127885.1 Gammaproteobacteria Enterobacteriaceae

Citrobacter freundii -0.09741 GCA 001686345.1 Gammaproteobacteria Enterobacteriaceae

Enterobacter cloacae -0.09741 GCF 001562175.1 Gammaproteobacteria Enterobacteriaceae

Enterobacter sp. -0.0974 GCF 000493015.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter sakazakii -0.0974 GCF 002977115.1 Gammaproteobacteria Enterobacteriaceae

Citrobacter koseri -0.09739 GCF 002393245.1 Gammaproteobacteria Enterobacteriaceae

Klebsiella pneumoniae -0.09739 GCF 003227185.1 Gammaproteobacteria Enterobacteriaceae

Klebsiella pneumoniae -0.09739 GCF 004127515.1 Gammaproteobacteria Enterobacteriaceae

Pantoea sp. -0.09737 GCF 002920175.1 Gammaproteobacteria Enterobacteriaceae

Klebsiella grimontii -0.09736 GCA 902159485.1 Gammaproteobacteria Enterobacteriaceae

Enterobacter sp. -0.09736 GCA 007035975.1 Gammaproteobacteria Enterobacteriaceae

Pantoea sp. -0.09736 GCF 002313185.2 Gammaproteobacteria Enterobacteriaceae

Pantoea sp. -0.09736 GCF 003813865.1 Gammaproteobacteria Enterobacteriaceae

Buttiauxella izardii -0.09735 GCF 003601925.1 Gammaproteobacteria Enterobacteriaceae

Klebsiella grimontii -0.09735 GCA 902158675.1 Gammaproteobacteria Enterobacteriaceae

Lelliottia nimipressuralis -0.09734 GCF 004402045.1 Gammaproteobacteria Enterobacteriaceae

Pantoea stewartii -0.09732 GCF 001310295.1 Gammaproteobacteria Enterobacteriaceae

Pantoea sp. -0.09729 GCF 000963985.1 Gammaproteobacteria Enterobacteriaceae

Rahnella aquatilis -0.09729 GCF 000735505.1 Gammaproteobacteria Enterobacteriaceae

Buttiauxella sp. -0.09728 GCF 003675305.1 Gammaproteobacteria Enterobacteriaceae

Cronobacter dublinensis -0.09727 GCF 002978705.2 Gammaproteobacteria Enterobacteriaceae

Erwinia sp. -0.09726 GCF 002752575.1 Gammaproteobacteria Enterobacteriaceae

Rouxiella chamberiensis -0.09724 GCF 000951135.1 Gammaproteobacteria Enterobacteriaceae

Erwinia sp. -0.09724 GCF 004551645.1 Gammaproteobacteria Enterobacteriaceae

Enterobacter sp. -0.09721 GCF 000277545.1 Gammaproteobacteria Enterobacteriaceae

Gamma proteobacterium -0.09715 GCA 000335795.1 Gammaproteobacteria Enterobacteriaceae

Rahnella aquatilis -0.09711 GCA 003956145.2 Gammaproteobacteria Enterobacteriaceae

Rahnella woolbedingensis -0.09709 GCF 003602095.1 Gammaproteobacteria Enterobacteriaceae

Ewingella americana -0.09702 GCF 006438725.1 Gammaproteobacteria Enterobacteriaceae

Ewingella americana -0.09696 GCF 900451015.1 Gammaproteobacteria Enterobacteriaceae

Serratia quinivorans -0.09689 GCF 900457075.1 Gammaproteobacteria Enterobacteriaceae

Atlantibacter hermannii -0.09685 GCF 900635495.1 Gammaproteobacteria Enterobacteriaceae

Serratia proteamaculans -0.09685 GCF 004684015.1 Gammaproteobacteria Enterobacteriaceae

Serratia sp. -0.09684 GCF 002607755.1 Gammaproteobacteria Enterobacteriaceae

Pseudescherichia vulneris -0.09681 GCF 900450975.1 Gammaproteobacteria Enterobacteriaceae

Buttiauxella sp. -0.09678 GCF 006376615.1 Gammaproteobacteria Enterobacteriaceae

Pantoea vagans -0.09644 GCF 001506165.1 Gammaproteobacteria Enterobacteriaceae

Ewingella americana -0.09632 GCF 000735345.1 Gammaproteobacteria Enterobacteriaceae

Pectobacterium carotovorum -0.096 GCF 002250215.1 Gammaproteobacteria Enterobacteriaceae
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Serratia fonticola -0.09576 GCF 006714955.1 Gammaproteobacteria Enterobacteriaceae

Serratia sp. -0.0957 GCF 003668775.1 Gammaproteobacteria Enterobacteriaceae

Yersinia enterocolitica -0.09544 GCF 002082245.2 Gammaproteobacteria Enterobacteriaceae

Yersinia enterocolitica -0.09536 GCF 002083285.2 Gammaproteobacteria Enterobacteriaceae

Yersinia kristensenii -0.09526 GCF 002188895.1 Gammaproteobacteria Enterobacteriaceae

Morganella morganii -0.05621 GCF 003287815.1 Gammaproteobacteria Enterobacteriaceae

Plesiomonas sp. -0.01279 GCF 000800945.1 Gammaproteobacteria Enterobacteriaceae

Plesiomonas shigelloides -0.01279 GCF 002093895.1 Gammaproteobacteria Enterobacteriaceae

Aeromonas jandaei -0.01248 GCF 000708125.1 Gammaproteobacteria Aeromonadaceae

Aeromonas veronii -0.01245 GCF 000298015.1 Gammaproteobacteria Aeromonadaceae

Photobacterium kishitanii -0.01235 GCF 003025945.1 Gammaproteobacteria Vibrionaceae

Photobacterium phosphoreum -0.01235 GCF 003025815.1 Gammaproteobacteria Vibrionaceae

Aeromonas popoffii -0.01224 GCF 000820025.1 Gammaproteobacteria Aeromonadaceae

Table S3: Top 100 over-represented annotated genes in the genomes of the taxa that receive the
most negative entries on variable 1. The NES and FDR-Adj. P columns show the normalized
’Enrichment score’ and FDR-adjusted [156] P -value from the enrichment analysis [155].

Gene FDR-Adj. P NES

Major outer membrane lipoprotein Lpp 1 -11.844 0.00025

Phage shock protein G -11.798 0.00025

Primosomal replication protein N” -11.753 0.00025

DNA damage-inducible protein I -11.694 0.00025

Outer membrane porin C -11.614 0.00025

Chaperone protein YcdY -11.562 0.00025

USG-1 protein -11.506 0.00025

HTH-type transcriptional regulator cbl -11.357 0.00025

Inner membrane protein YghB -11.34 0.00025

Cytochrome c-type protein NrfB -11.321 0.00025

Plasmid partition protein A -11.288 0.00025

Protein rof -11.241 0.00025

putative inner membrane protein Smp -11.208 0.00025

putative protein YbjN -11.199 0.00025

putative lipoprotein YbaY -11.157 0.00025

putative HTH-type transcriptional regulator YbdO -11.112 0.00025

Inner membrane protein YqjE -11.063 0.00025

putative protein YfeY -11.051 0.00025

Secretion monitor -11.041 0.00025

putative ECA polymerase -11.035 0.00025

Protein Sxy -10.994 0.00025

Kdo(2)-lipid A phosphoethanolamine 7”-transferase -10.986 0.00025

Intermembrane phospholipid transport system binding protein MlaB -10.98 0.00025

putative cyclic di-GMP phosphodiesterase PdeD -10.94 0.00025

Phosphatidylglycerophosphatase C -10.93 0.00025

Inner membrane protein YlaC -10.922 0.00025

Multiple stress resistance protein BhsA -10.922 0.00025

Protein YdgH -10.922 0.00025

Protein PhoH -10.898 0.00025

Outer membrane protein X -10.882 0.00025

Sensor protein BasS -10.881 0.00025

Inner membrane protein YgbE -10.872 0.00025

putative protein YjjI -10.872 0.00025

Biofilm regulator BssS -10.87 0.00025

DNA polymerase III subunit theta -10.87 0.00025

Multidrug efflux pump accessory protein AcrZ -10.87 0.00025

putative protein YejG -10.87 0.00025
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putative protein YhcO -10.87 0.00025

Protein YhjJ -10.864 0.00025

Constitutive lysine decarboxylase -10.863 0.00025

Pirin-like protein YhaK -10.861 0.00025

Constitutive ornithine decarboxylase -10.843 0.00025

Inner membrane protein YdgK -10.817 0.00025

putative cyclic di-GMP phosphodiesterase PdeK -10.815 0.00025

Flagellar regulator flk -10.81 0.00025

Lipoprotein BsmA -10.81 0.00025

Modulator protein MzrA -10.81 0.00025

Inner membrane protein YgfX -10.808 0.00025

Protein DsrB -10.808 0.00025

Phosphoethanolamine transferase OpgE -10.764 0.00025

Transcriptional regulatory protein RcsA -10.748 0.00025

Osmotically-inducible lipoprotein B -10.748 0.00025

Cyclic di-GMP phosphodiesterase PdeH -10.735 0.00025

Hha toxicity modulator TomB -10.732 0.00025

Type II secretion system protein H -10.728 0.00025

putative lipoprotein YajI -10.69 0.00025

putative protein YebV -10.682 0.00025

Inner membrane protein YbjO -10.682 0.00025

putative lipoprotein YbjP -10.682 0.00025

putative protein YccJ -10.663 0.00025

Inner membrane protein YfeZ -10.655 0.00025

Flagella synthesis protein FlgN -10.649 0.00025

Periplasmic chaperone Spy -10.637 0.00025

putative ferredoxin-like protein YdhX -10.629 0.00025

Regulatory protein SoxS -10.485 0.00025

Protein TonB -10.47 0.00025

Cyclic di-GMP binding protein BcsE -10.384 0.00025

Quorum-sensing regulator protein G -10.381 0.00025

Signal transduction histidine-protein kinase/phosphatase UhpB -10.368 0.00025

Regulator of sigma S factor FliZ -10.328 0.00025

Inner membrane protein YbjM -10.323 0.00025

Trimethylamine-N-oxide reductase -10.318 0.00025

Ferric iron reductase protein FhuF -10.31 0.00025

putative protein YaiA -10.29 0.00025

Negative regulator of flagellin synthesis -10.282 0.00025

Anti-adapter protein IraP -10.27 0.00025

Ferric enterobactin transport protein FepE -10.235 0.00025

Intracellular growth attenuator protein igaA -10.225 0.00025

Outer membrane porin N -10.133 0.00025

Flagellar protein FlhE -10.095 0.00025

Inner membrane protein YebE -10.087 0.00025

HTH-type transcriptional repressor BluR -10.05 0.00025

Enterobactin synthase component F -10.035 0.00025

Sec-independent protein translocase protein TatE -9.992 0.00025

Alternative ribosome-rescue factor A -9.987 0.00025

Primosomal protein 1 -9.919 0.00025

putative csgAB operon transcriptional regulatory protein -9.909 0.00025

putative protein YgaM -9.887 0.00025

Multiple antibiotic resistance protein MarA -9.846 0.00025

Inner membrane protein YbhQ -9.832 0.00025

Inner membrane protein YjiG -9.829 0.00025
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Putative selenoprotein YdfZ -9.827 0.00025

HTH-type transcriptional regulator MlrA -9.802 0.00025

Tryptophanase -9.8 0.00025

Universal stress protein C -9.798 0.00025

Hemolysin expression-modulating protein Hha -9.771 0.00025

6-phospho-beta-glucosidase BglB -9.762 0.00025

Ribonucleoside-diphosphate reductase 2 subunit alpha -9.711 0.00025

Transcriptional regulator SutA -9.71 0.00025

Cyclic di-GMP binding protein -9.705 0.00025

Table S4: Top 100 over-represented annotated genes in the genomes of the taxa that receive the
most positive entries on variable 2. The column descriptions are provided with Supplementary
Table 3.

Gene FDR-Adj. P NES

Outer-membrane lipoprotein LolB 15.094 0.0004

DNA-binding protein Fis 15.02 0.0004

LPS-assembly lipoprotein LptE 15.004 0.0004

Ammonia monooxygenase gamma subunit 14.873 0.0004

Thiol:disulfide interchange protein DsbA 14.848 0.0004

DNA polymerase III subunit delta 14.719 0.0004

Phosphate regulon sensor protein PhoR 14.697 0.0004

Pyruvate kinase II 14.344 0.0004

1,6-anhydro-N-acetylmuramyl-L-alanine amidase AmpD 14.232 0.0004

Cell division protein FtsN 14.223 0.0004

Stringent starvation protein A 14.185 0.0004

Lipopolysaccharide export system permease protein LptF 14.002 0.0004

Succinate dehydrogenase hydrophobic membrane anchor subunit 13.978 0.0004

Recombination-associated protein RdgC 13.944 0.0004

Modulator of FtsH protease YccA 13.94 0.0004

Cell division protein ZipA 13.785 0.0004

Cbb3-type cytochrome c oxidase subunit CcoN1 13.784 0.0004

Cytochrome c4 13.777 0.0004

2-octaprenylphenol hydroxylase 13.656 0.0004

2-octaprenyl-6-methoxyphenol hydroxylase 13.643 0.0004

Phosphoenolpyruvate synthase regulatory protein 13.401 0.0004

HTH-type transcriptional regulator CysB 13.346 0.0004

2-methyl-aconitate isomerase 13.193 0.0004

Ferredoxin 1 13.12 0.0004

Intermembrane phospholipid transport system ATP-binding protein MlaF 13.091 0.0004

Large ribosomal RNA subunit accumulation protein YceD 13.051 0.0004

Cytoskeleton protein RodZ 13.043 0.0004

Chorismate pyruvate-lyase 12.981 0.0004

Soluble lytic murein transglycosylase 12.981 0.0004

Intermembrane phospholipid transport system binding protein MlaD 12.951 0.0004

2Fe-2S ferredoxin 12.898 0.0004

Cell division protein DedD 12.872 0.0004

Protein YcgL 12.871 0.0004

Uroporphyrinogen-III synthase 12.748 0.0004

High frequency lysogenization protein HflD 12.712 0.0004

putative protein YaeQ 12.679 0.0004

Exodeoxyribonuclease I 12.653 0.0004

Co-chaperone protein HscB 12.641 0.0004
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Phosphatase NudJ 12.606 0.0004

Glutamate-pyruvate aminotransferase AlaA 12.599 0.0004

Ribonuclease T 12.541 0.0004

Intermembrane phospholipid transport system binding protein MlaC 12.528 0.0004

Colicin V production protein 12.514 0.0004

5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase YigB 12.51 0.0004

Fimbrial protein 12.493 0.0004

Inner membrane transport protein YajR 12.469 0.0004

50S ribosomal protein L16 3-hydroxylase 12.462 0.0004

Protein phosphatase CheZ 12.411 0.0004

FKBP-type 16 kDa peptidyl-prolyl cis-trans isomerase 12.376 0.0004

putative protein YibN 12.342 0.0004

Molybdopterin-synthase adenylyltransferase 12.331 0.0004

Inner membrane protein YpjD 12.312 0.0004

Iron-sulfur cluster assembly protein CyaY 12.218 0.0004

Sigma factor AlgU regulatory protein MucB 12.217 0.0004

Protein-glutamine gamma-glutamyltransferase 12.205 0.0004

Pyrimidine/purine nucleotide 5’-monophosphate nucleosidase 12.141 0.0004

Bifunctional (p)ppGpp synthase/hydrolase SpoT 12.134 0.0004

Putative glutamine amidotransferase YafJ 12.126 0.0004

Penicillin-binding protein 1B 12.077 0.0004

CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase 12.042 0.0004

Peptidoglycan hydrolase FlgJ 12.011 0.0004

Methylmalonate-semialdehyde dehydrogenase [acylating] 11.998 0.0004

Acid stress protein IbaG 11.995 0.0004

Ribosome modulation factor 11.907 0.0004

Cbb3-type cytochrome c oxidase subunit CcoP2 11.904 0.0004

ATP synthase subunit beta 1 11.902 0.0004

3-deoxy-D-manno-octulosonic acid kinase 11.79 0.0004

ADP compounds hydrolase NudE 11.777 0.0004

HTH-type transcriptional regulator YhaJ 11.776 0.0004

Nucleoid-associated protein YejK 11.714 0.0004

Sensor protein QseC 11.713 0.0004

UTP pyrophosphatase 11.706 0.0004

ATP-dependent DNA helicase DinG 11.685 0.0004

Riboflavin transporter 11.672 0.0004

Membrane-bound lytic murein transglycosylase B 11.611 0.0004

putative acyltransferase YihG 11.598 0.0004

Protein ImuB 11.561 0.0004

HTH-type transcriptional regulator HmrR 11.528 0.0004

DNA polymerase III subunit chi 11.502 0.0004

Flagellar basal-body rod protein FlgF 11.498 0.0004

Outer membrane protein assembly factor BamC 11.498 0.0004

Aerotaxis receptor 11.478 0.0004

Protein-glutamate methylesterase/protein-glutamine glutaminase 1 11.468 0.0004

Dihydroorotase-like protein 11.451 0.0004

Protein YciI 11.451 0.0004

Cell division protein ZapD 11.45 0.0004

Peptidyl-prolyl cis-trans isomerase cyp18 11.442 0.0004

FAD assembly factor SdhE 11.418 0.0004

D-erythrose-4-phosphate dehydrogenase 11.393 0.0004

putative DNA endonuclease SmrA 11.37 0.0004

Protein Smg 11.35 0.0004

Type II secretion system protein K 11.347 0.0004
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Cysteine synthase A 11.339 0.0004

Exoribonuclease 2 11.332 0.0004

Chaperone protein HscA 11.319 0.0004

tRNA/tmRNA (uracil-C(5))-methyltransferase 11.319 0.0004

Murein hydrolase activator NlpD 11.28 0.0004

Methyl-accepting chemotaxis protein McpP 11.26 0.0004

Glutathione S-transferase GST-6.0 11.243 0.0004

Methyl-accepting chemotaxis protein McpH 11.228 0.0004

Table S5: Top 100 over-represented annotated genes in the genomes of the taxa that receive the
most positive entries on variable 3. The column descriptions are provided with Supplementary
Table 3.

Gene FDR-Adj. P NES

GTP pyrophosphokinase rsh 12.285 0.00054

putative peptidoglycan D,D-transpeptidase FtsI 12.172 0.00054

Chromosome-partitioning protein ParB 12.152 0.00054

5-aminolevulinate synthase 12.02 0.00054

FtsZ-localized protein C 11.923 0.00054

6,7-dimethyl-8-ribityllumazine synthase 1 11.812 0.00054

FtsZ-localized protein A 11.775 0.00054

Aerobic cobaltochelatase subunit CobT 11.742 0.00054

Phyllosphere-induced regulator PhyR 11.705 0.00054

NADH-quinone oxidoreductase chain 1 11.649 0.00054

Ubiquinone hydroxylase UbiL 11.525 0.00054

Cell cycle response regulator CtrA 11.398 0.00054

Protein phosphotransferase ChpT 11.394 0.00054

Heat shock protein HspQ 11.378 0.00054

Aerobic cobaltochelatase subunit CobS 11.303 0.00054

Ferredoxin-2 11.301 0.00054

Dihydrolipoyl dehydrogenase 3 11.181 0.00054

flagellum biosynthesis repressor protein FlbT 11.152 0.00054

Cytochrome c oxidase subunit 1 , bacteroid 11.079 0.00054

Thiol:disulfide interchange protein CycY 11.068 0.00054

putative protein RP812 10.703 0.00054

Polyphosphate:NDP phosphotransferase 3 10.652 0.00054

Serine hydroxymethyltransferase 2 10.633 0.00054

Transcriptional regulatory protein ros 10.535 0.00054

Ferredoxin-6 10.444 0.00054

Glutamate–cysteine ligase EgtA 10.444 0.00054

Propionyl-CoA carboxylase regulator 10.367 0.00054

RNA polymerase sigma-54 factor 2 10.354 0.00054

Bifunctional enzyme IspD/IspF 10.297 0.00054

Cytochrome c1 10.28 0.00054

Cold shock protein CspA 10.25 0.00054

Thiol:disulfide interchange protein TlpA 10.212 0.00054

Nitrogen fixation regulation protein FixK 10.079 0.00054

Cytochrome c oxidase subunit 1-beta 9.815 0.00054

NADH-quinone oxidoreductase chain 5 9.719 0.00054

(3S)-malyl-CoA thioesterase 9.564 0.00054

UDP-2,3-diacylglucosamine pyrophosphatase LpxI 9.371 0.00054

ATP synthase protein I 9.331 0.00054

Hypotaurine/taurine–pyruvate aminotransferase 9.33 0.00054
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Blue-light-activated histidine kinase 9.329 0.00054

HTH-type transcriptional regulator RamB 9.327 0.00054

Porin 9.325 0.00054

Penicillin-insensitive murein endopeptidase 9.315 0.00054

Glycine betaine methyltransferase 9.294 0.00054

L-arabinose 1-dehydrogenase (NAD(P)(+)) 9.267 0.00054

Putative metal-sulfur cluster biosynthesis proteins YuaD 9.264 0.00054

ATP synthase subunit b’ 9.25 0.00054

N-acetylmuramoyl-L-alanine amidase AmiD 9.212 0.00054

Periplasmic alpha-galactoside-binding protein 9.195 0.00054

10 kDa chaperonin 1 9.186 0.00054

Urease subunit gamma 1 9.152 0.00054

(2S)-methylsuccinyl-CoA dehydrogenase 9.097 0.00054

Urease subunit alpha 1 9.066 0.00054

Hemolysin C 9.047 0.00054

Urease accessory protein UreE 1 8.894 0.00054

Lysine/ornithine decarboxylase 8.874 0.00054

Dicamba O-demethylase 1, ferredoxin reductase component 8.873 0.00054

Serine–glyoxylate aminotransferase 8.855 0.00054

Precorrin-3B C(17)-methyltransferase 8.849 0.00054

Nicotinate phosphoribosyltransferase 8.819 0.00054

Glycogen synthase 1 8.812 0.00054

3-hydroxybenzoate 6-hydroxylase 1 8.768 0.00054

nicotinate-nucleotide adenylyltransferase 8.741 0.00054

Molybdenum cofactor insertion chaperone PaoD 8.735 0.00054

Arginine–pyruvate transaminase AruH 8.718 0.00054

D-hydantoinase/dihydropyrimidinase 8.695 0.00054

putative 3-hydroxyisobutyrate dehydrogenase 8.592 0.00054

Response regulator receiver protein CpdR 8.56 0.00054

60 kDa chaperonin 5 8.547 0.00054

Lysophospholipase L2 8.545 0.00054

Type I secretion system ATP-binding protein PrsD 8.544 0.00054

Phosphatidylcholine synthase 8.531 0.00054

Carbonic anhydrase 1 8.507 0.00054

Bifunctional coenzyme PQQ synthesis protein C/D 8.503 0.00054

NAD-dependent dihydropyrimidine dehydrogenase subunit PreT 8.474 0.00054

Anti-sigma-F factor NrsF 8.456 0.00054

FAD-dependent catabolic D-arginine dehydrogenase DauA 8.437 0.00054

Nopaline-binding periplasmic protein 8.432 0.00054

Mesaconyl-CoA hydratase 8.431 0.00054

putative riboflavin import permease protein RfuD 8.419 0.00054

Sulfite dehydrogenase subunit C 8.391 0.00054

Crotonyl-CoA carboxylase/reductase 8.381 0.00054

Precorrin-2 C(20)-methyltransferase 8.38 0.00054

Acyl carrier protein AcpXL 8.376 0.00054

Polysialic acid transport ATP-binding protein KpsT 8.372 0.00054

Alkane 1-monooxygenase 2 8.352 0.00054

HTH-type transcriptional regulator RafR 8.331 0.00054

S-formylglutathione hydrolase 8.326 0.00054

Ethylmalonyl-CoA mutase 8.282 0.00054

Outer membrane protein 8.273 0.00054

Cytochrome c oxidase subunit 4 8.252 0.00054

Cytochrome c-556 8.237 0.00054

Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit PhnG 8.236 0.00054
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Alpha-D-ribose 1-methylphosphonate 5-triphosphate diphosphatase 8.223 0.00054

Sulfite dehydrogenase subunit A 8.218 0.00054

Glutathione-specific gamma-glutamylcyclotransferase 8.17 0.00054

(S)-ureidoglycine aminohydrolase 8.165 0.00054

Hydrogenobyrinate a,c-diamide synthase 8.101 0.00054

Alanine racemase, biosynthetic 8.068 0.00054

Alpha-D-ribose 1-methylphosphonate 5-triphosphate synthase subunit PhnH 8.045 0.00054

Table S6: Top 100 over-represented annotated genes in the genomes of the taxa that receive the
most negative entries on variable 4. The column descriptions are provided with Supplementary
Table 3.

Gene FDR-Adj. P NES

Cytochrome f -6.889 0.00031

Photosystem II manganese-stabilizing polypeptide -6.876 0.00031

Protein Thf1 -6.874 0.00031

Photosystem II CP47 reaction center protein -6.859 0.00031

NAD(P)H-quinone oxidoreductase subunit N -6.857 0.00031

Photosystem I assembly protein Ycf4 -6.857 0.00031

Photosystem I reaction center subunit III -6.857 0.00031

Phycocyanobilin:ferredoxin oxidoreductase -6.85 0.00031

Photosystem II reaction center Psb28 protein -6.836 0.00031

Photosystem II lipoprotein Psb27 -6.835 0.00031

NAD(P)H-quinone oxidoreductase subunit O -6.833 0.00031

Photosystem I P700 chlorophyll a apoprotein A1 -6.833 0.00031

Photosystem II reaction center protein K -6.829 0.00031

Cytochrome b559 subunit alpha -6.826 0.00031

Photosystem II CP43 reaction center protein -6.826 0.00031

Photosystem I reaction center subunit IV -6.824 0.00031

30S ribosomal protein S21 A -6.812 0.00031

Pentapeptide repeat protein Rfr32 -6.807 0.00031

Photosystem II reaction center protein H -6.804 0.00031

Ycf54-like protein -6.803 0.00031

Ferredoxin-thioredoxin reductase, catalytic chain -6.802 0.00031

NAD(P)H-quinone oxidoreductase subunit M -6.795 0.00031

Long-chain acyl-[acyl-carrier-protein] reductase -6.795 0.00031

Bifunctional pantoate ligase/cytidylate kinase -6.792 0.00031

RNA polymerase sigma factor SigA2 -6.78 0.00031

Photosystem I reaction center subunit II -6.779 0.00031

Photosystem I reaction center subunit XI -6.779 0.00031

Phycobiliprotein beta chain -6.773 0.00031

Phycobilisome 7.8 kDa linker polypeptide, allophycocyanin-associated, core -6.773 0.00031

Photosystem I reaction center subunit XII -6.769 0.00031

Aldehyde decarbonylase -6.752 0.00031

Photosystem II reaction center protein Z -6.75 0.00031

Ferredoxin-thioredoxin reductase, variable chain -6.739 0.00031

Photosystem II 12 kDa extrinsic protein -6.73 0.00031

Photosystem II protein Y -6.723 0.00031

Protein PsbN -6.723 0.00031

Proton extrusion protein PcxA -6.719 0.00031

Cytochrome b6-f complex subunit 7 -6.698 0.00031

Phycocyanobilin lyase subunit alpha -6.692 0.00031

Orange carotenoid-binding protein -6.684 0.00031
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Cytochrome b559 subunit beta -6.665 0.00031

Photosystem I iron-sulfur center -6.638 0.00031

Vitamin K epoxide reductase -6.628 0.00031

Photosystem I reaction center subunit IX -6.626 0.00031

ATP-dependent zinc metalloprotease FtsH 2 -6.612 0.00031

Putative diflavin flavoprotein A 3 -6.577 0.00031

putative glutaredoxin -6.556 0.00031

Monoglucosyldiacylglycerol epimerase -6.546 0.00031

Photosystem II protein D1 2 -6.546 0.00031

NAD(P)H-quinone oxidoreductase subunit L -6.543 0.00031

Lipoyl synthase 2 -6.517 0.00031

Phycocyanobilin lyase CpcT -6.495 0.00031

2-methyl-6-phytyl-1,4-hydroquinone methyltransferase -6.492 0.00031

Photosystem II reaction center X protein -6.491 0.00031

Photosystem II D2 protein -6.47 0.00031

Transcription regulator LexA -6.463 0.00031

Ycf53-like protein -6.463 0.00031

D-fructose 1,6-bisphosphatase class 2/sedoheptulose 1,7-bisphosphatase -6.447 0.00031

putative arabinosyltransferase C -6.445 0.00031

Phycobiliprotein ApcE -6.435 0.00031

Photosystem II reaction center protein T -6.434 0.00031

NAD(P)H-quinone oxidoreductase subunit K 1 -6.424 0.00031

Sensor protein SphS -6.419 0.00031

Allophycocyanin beta chain -6.412 0.00031

Photosystem II reaction center protein M -6.396 0.00031

Photosystem II reaction center protein Ycf12 -6.39 0.00031

Circadian clock protein KaiA -6.388 0.00031

Photosystem I reaction center subunit VIII -6.371 0.00031

High-affinity Na(+)/H(+) antiporter NhaS3 -6.34 0.00031

putative 30S ribosomal protein PSRP-3 -6.308 0.00031

Isoaspartyl peptidase/L-asparaginase -6.297 0.00031

Phytol kinase -6.261 0.00031

Regulatory protein CysR -6.248 0.00031

Photosystem II reaction center protein I -6.243 0.00031

Serine/threonine-protein kinase B -6.237 0.00031

Ferredoxin-dependent glutamate synthase 2 -6.229 0.00031

Phycobilisome rod-core linker polypeptide CpcG -6.226 0.00031

Galactan 5-O-arabinofuranosyltransferase -6.217 0.00031

NAD(P)H-quinone oxidoreductase subunit J -6.213 0.00031

Putative serine protease HhoA -6.174 0.00031

Phycocyanobilin lyase subunit CpcS -6.151 0.00031

Photosystem II reaction center protein J -6.149 0.00031

Putative acetyl-coenzyme A carboxylase carboxyl transferase subunit beta -6.134 0.00031

Phycocyanobilin lyase subunit beta -6.125 0.00031

NAD(P)H-quinone oxidoreductase subunit I -6.123 0.00031

Phosphoribulokinase -6.118 0.00031

Putative isochorismate synthase MenF -6.103 0.00031

Allophycocyanin subunit alpha-B -6.097 0.00031

Putative cytochrome P450 120 -6.075 0.00031

Putative diflavin flavoprotein A 5 -6.071 0.00031

Bicarbonate-binding protein CmpA -6.071 0.00031

C-phycocyanin beta chain -6.068 0.00031

Chromophore lyase CpcS/CpeS -6.065 0.00031

4-hydroxybenzoate solanesyltransferase -6.034 0.00031
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Hydrolase -6.024 0.00031

L,D-transpeptidase 2 -6.004 0.00031

putative ferredoxin/ferredoxin–NADP reductase -5.991 0.00031

Photosystem II reaction center protein L -5.972 0.00031

Alpha-(1-¿3)-arabinofuranosyltransferase -5.963 0.00031

Serine/threonine-protein kinase F -5.943 0.00031

Table S7: Top 100 over-represented annotated genes in the genomes of the taxa that receive the
most negative entries on variable 14. The column descriptions are provided with Supplementary
Table 3.

Gene FDR-Adj. P NES

Thymidylate synthase 1 -5.522 0.00055

DNA-binding protein Bv3F -5.446 0.00055

mupirocin-resistant isoleucine–tRNA ligase MupA -5.294 0.00055

Cobalt-precorrin-7 C(5)-methyltransferase -5.114 0.00055

Cobalt-zinc-cadmium resistance protein CzcI -5.103 0.00055

IS200/IS605 family transposase ISCth10 -4.897 0.00055

Na(+)-translocating ferredoxin:NAD(+) oxidoreductase complex subunit C -4.843 0.00055

Anaerobic sulfite reductase subunit C -4.814 0.00055

(R)-2-hydroxyglutaryl-CoA dehydratase activating ATPase -4.812 0.00055

Salicylate 5-hydroxylase, large oxygenase component -4.778 0.00055

Tyrosine aminotransferase -4.765 0.00055

putative protein YgcP -4.703 0.00055

Alkaline phosphatase PhoK -4.685 0.00055

Salicylate 5-hydroxylase, small oxygenase component -4.684 0.00055

Propanediol utilization protein PduU -4.64 0.00055

Putative superoxide reductase -4.596 0.00055

Sortase B -4.552 0.00055

Propanediol utilization protein PduV -4.424 0.00055

Elongation factor G, mitochondrial -4.343 0.00055

Germination protease -4.315 0.00055

Stage IV sporulation protein A -4.315 0.00055

Stage V sporulation protein AD -4.315 0.00055

putative N-glycosylase/DNA lyase -4.309 0.00055

(R)-phenyllactyl-CoA dehydratase alpha subunit -4.297 0.00055

Nickel-cobalt-cadmium resistance protein NccX -4.295 0.00055

(R)-2-hydroxyglutaryl-CoA dehydratase, subunit beta -4.293 0.00055

Putative transport protein YbjL -4.292 0.00055

RNA polymerase sigma-G factor -4.286 0.00055

Translocation-enhancing protein TepA -4.271 0.00055

Stage V sporulation protein T -4.261 0.00055

Light-activated DNA-binding protein EL222 -4.254 0.00055

RNA polymerase sigma-28 factor -4.245 0.00055

putative anti-sigma-F factor NrsF -4.242 0.00055

Oxalate-binding protein -4.225 0.00055

IS256 family transposase ISCth4 -4.222 0.00055

Propanediol utilization protein PduB -4.202 0.00055

Stage III sporulation protein D -4.195 0.00055

Spore protein YabP -4.194 0.00055

3,4-dehydroadipyl-CoA semialdehyde dehydrogenase -4.18 0.00055

Nickel and cobalt resistance protein CnrR -4.118 0.00055

Neopullulanase 1 -4.117 0.00055
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Small, acid-soluble spore protein C2 -4.111 0.00055

Mini-ribonuclease 3-like protein -4.103 0.00055

L-threonine kinase -4.09 0.00055

IS3 family transposase ISStma17 -4.039 0.00055

Outer membrane protein 40 -4.031 0.00055

Methionine-rich peptide X -3.993 0.00055

IS5 family transposase ISBmu20 -3.97 0.00055

Reverse rubrerythrin-1 -3.967 0.00055

Histidine racemase -3.951 0.00055

Spore germination protein B1 -3.947 0.00055

2-pyrone-4,6-dicarboxylate hydrolase -3.936 0.00055

Glycine/sarcosine/betaine reductase complex component C subunit alpha -3.931 0.00055

Tryptophanase 1 -3.919 0.00055

Nickel and cobalt resistance protein CnrC -3.918 0.00055

putative sporulation protein YlmC -3.91 0.00055

mupirocin-resistant isoleucine–tRNA ligase MupB -3.907 0.00055

putative deoxyuridine 5’-triphosphate nucleotidohydrolase YncF -3.89 0.00055

IS110 family transposase ISCaa14 -3.886 0.00055

SpoIVB peptidase -3.885 0.00055

Glycine reductase complex component B subunit gamma -3.874 0.00055

Propionate catabolism operon regulatory protein -3.87 0.00055

RNA polymerase sigma-35 factor -3.865 0.00055

Propanediol dehydratase medium subunit -3.852 0.00055

Chloroacetanilide N-alkylformylase, ferredoxin reductase component -3.835 0.00055

Ribulose bisphosphate carboxylase large chain, chromosomal -3.835 0.00055

IS66 family transposase ISBcen14 -3.824 0.00055

putative tryptophan transport protein -3.82 0.00055

IS66 family transposase ISBcen19 -3.809 0.00055

Peptidoglycan-N-acetylmuramic acid deacetylase PdaA -3.808 0.00055

Light-harvesting protein B-870 beta chain -3.798 0.00055

PEP-dependent dihydroxyacetone kinase 2, phosphoryl donor subunit DhaM -3.796 0.00055

Glycine reductase complex component B subunits alpha and beta -3.793 0.00055

IS1182 family transposase ISCpe5 -3.79 0.00055

Accessory gene regulator protein B -3.788 0.00055

CRISPR-associated endoribonuclease Cas6 -3.787 0.00055

Phosphoglycolate phosphatase, plasmid -3.786 0.00055

Glycerol dehydratase large subunit -3.781 0.00055

Glycine/sarcosine/betaine reductase complex component C subunit beta -3.773 0.00055

Diol dehydratase-reactivating factor alpha subunit -3.759 0.00055

IS3 family transposase ISElsp1 -3.754 0.00055

Stage II sporulation protein E -3.754 0.00055

IS110 family transposase ISCaa7 -3.754 0.00055

Propanediol dehydratase small subunit -3.748 0.00055

Reverse rubrerythrin-2 -3.747 0.00055

Cytochrome c-type protein SHP -3.744 0.00055

Antigen TpF1 -3.731 0.00055

Serine/threonine-protein kinase CtkA -3.731 0.00055

Diadenosine hexaphosphate hydrolase -3.73 0.00055

Glycine/sarcosine/betaine reductase complex component A -3.724 0.00055

Outer membrane protein 41 -3.721 0.00055

Stage III sporulation protein AE -3.703 0.00055

N-acetylmuramoyl-L-alanine amidase -3.7 0.00055

Catechol 1,2-dioxygenase 2 -3.696 0.00055

Glycine/sarcosine/betaine reductase complex component A1 -3.678 0.00055
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D-proline reductase proprotein PrdA -3.654 0.00055

Catechol 1,2-dioxygenase 1 -3.633 0.00055

Phthalate 4,5-dioxygenase oxygenase reductase subunit -3.63 0.00055

Iron hydrogenase 1 -3.623 0.00055

Metal-staphylopine import system ATP-binding protein CntD -3.618 0.00055

Table S8: Top 100 over-represented annotated genes in the genomes of the taxa that receive the
most negative entries on variable 38. The column descriptions are provided with Supplementary
Table 3.

Gene FDR-Adj. P NES

Bifunctional protein MdtA -5.039 0.00064

Flagellar assembly protein FliX -4.91 0.00064

Presqualene diphosphate synthase -4.54 0.00064

mupirocin-resistant isoleucine–tRNA ligase MupA -4.537 0.00064

Formyltransferase/hydrolase complex subunit D -4.476 0.00064

Formyltransferase/hydrolase complex Fhc subunit A -4.455 0.00064

Methenyltetrahydromethanopterin cyclohydrolase -4.406 0.00064

3’,5’-cyclic-nucleotide phosphodiesterase -4.329 0.00064

Formyltransferase/hydrolase complex Fhc subunit C -4.301 0.00064

Methylmalonyl-CoA mutase small subunit -4.277 0.00064

Bifunctional dihydropteroate synthase/dihydropteroate reductase -4.27 0.00064

Plasminogen-binding protein PgbB -4.237 0.00064

Oxygen-independent coproporphyrinogen-III oxidase-like protein HemZ -4.205 0.00064

GTP cyclohydrolase 1 type 2 -4.195 0.00064

5,6,7,8-tetrahydromethanopterin hydro-lyase -4.19 0.00064

Methanol dehydrogenase [cytochrome c] subunit 2 -4.181 0.00064

Sensor protein DivL -4.173 0.00064

Hydroxycarboxylate dehydrogenase B -4.148 0.00064

Sortase B -4.142 0.00064

2-amino-5-chloromuconate deaminase -4.127 0.00064

L-hydantoinase -4.024 0.00064

Cytochrome c-L -4.022 0.00064

Flagellar FliL protein -4.012 0.00064

Putative ATP-dependent DNA helicase YjcD -3.986 0.00064

Beta-methylmalyl-CoA dehydratase -3.968 0.00064

Cytochrome c-553 -3.959 0.00064

(2R)-sulfolactate sulfo-lyase subunit alpha -3.955 0.00064

Malyl-CoA/beta-methylmalyl-CoA/citramalyl-CoA lyase -3.953 0.00064

Oxalate:formate antiporter -3.934 0.00064

Inducible ornithine decarboxylase -3.921 0.00064

Dihydromethanopterin reductase -3.891 0.00064

10 kDa chaperonin 2 -3.884 0.00064

Na(+)-translocating ferredoxin:NAD(+) oxidoreductase complex subunit G -3.882 0.00064

Lipoprotein NlpI -3.873 0.00064

Bifunctional DNA-directed RNA polymerase subunit beta-beta’ -3.83 0.00064

Inner membrane protein YabI -3.823 0.00064

Cbb3-type cytochrome c oxidase subunit FixP -3.797 0.00064

Bifunctional coenzyme PQQ synthesis protein C/D -3.774 0.00064

Opacity-associated protein OapA -3.769 0.00064

Surface-adhesin protein E -3.769 0.00064

Accessory gene regulator protein B -3.752 0.00064

Blue-light absorbing proteorhodopsin -3.709 0.00064
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Beta-(1–¿2)glucan export ATP-binding/permease protein NdvA -3.708 0.00064

Chaperone protein YcdY -3.702 0.00064

Ribulose bisphosphate carboxylase large chain 2 -3.684 0.00064

Outer membrane protein P5 -3.68 0.00064

Chloramphenicol resistance protein CraA -3.654 0.00064

Na(+)-translocating ferredoxin:NAD(+) oxidoreductase complex subunit C -3.644 0.00064

Neopullulanase 1 -3.64 0.00064

DNA transformation protein TfoX -3.632 0.00064

Beta-carotene 15,15’-dioxygenase -3.631 0.00064

Redox-sensing transcriptional repressor Rex 1 -3.631 0.00064

Metallopeptidase AprA -3.629 0.00064

Rubrerythrin-1 -3.628 0.00064

Hydrogenase/urease maturation factor HypB -3.615 0.00064

Small, acid-soluble spore protein C2 -3.598 0.00064

Ribulose bisphosphate carboxylase small chain 2 -3.595 0.00064

Translocation-enhancing protein TepA -3.591 0.00064

Gamma-glutamyl-L-1-hydroxyisopropylamide hydrolase -3.587 0.00064

putative protein YgcP -3.566 0.00064

RNA polymerase sigma-28 factor -3.526 0.00064

PTS system N-acetylglucosamine-specific EIIB component -3.52 0.00064

Na(+)-translocating ferredoxin:NAD(+) oxidoreductase complex subunit D -3.513 0.00064

Germination protease -3.511 0.00064

Stage IV sporulation protein A -3.511 0.00064

Squalene–hopene cyclase -3.508 0.00064

putative cobalt-factor III C(17)-methyltransferase -3.491 0.00064

USG-1 protein -3.485 0.00064

Valine dehydrogenase -3.482 0.00064

Molybdenum storage protein subunit alpha -3.479 0.00064

Stage V sporulation protein AD -3.476 0.00064

RNA polymerase sigma-G factor -3.474 0.00064

5-(methylthio)ribulose-1-phosphate aldolase -3.473 0.00064

Translational regulator CsrA2 -3.469 0.00064

Spore protein YabP -3.459 0.00064

Stage V sporulation protein T -3.446 0.00064

Oxalyl-CoA decarboxylase -3.444 0.00064

Quinone-reactive Ni/Fe-hydrogenase large chain -3.442 0.00064

Translational regulator CsrA1 -3.44 0.00064

L-proline trans-4-hydroxylase -3.437 0.00064

Undecaprenyl-diphosphooligosaccharide–protein glycotransferase -3.428 0.00064

D(-)-tartrate dehydratase -3.423 0.00064

Resuscitation-promoting factor Rpf -3.42 0.00064

Nucleoid-associated protein Lsr2 -3.405 0.00064

Elongation factor G, mitochondrial -3.399 0.00064

Potassium/sodium uptake protein NtpJ -3.398 0.00064

Malate synthase -3.396 0.00064

Formyltransferase/hydrolase complex Fhc subunit B -3.394 0.00064

Stage III sporulation protein D -3.381 0.00064

Putative septation protein SpoVG -3.369 0.00064

Hemolysin C -3.365 0.00064

Tyrosine recombinase XerH -3.355 0.00064

NAD(P)-dependent methylenetetrahydromethanopterin dehydrogenase -3.355 0.00064

Oxalate decarboxylase OxdD -3.353 0.00064

Cobalt-dependent inorganic pyrophosphatase -3.352 0.00064

60 kDa chaperonin 3 -3.351 0.00064
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Protein PhoH -3.35 0.00064

Glutathione amide-dependent peroxidase -3.342 0.00064

putative quinol monooxygenase YgiN -3.326 0.00064

DNA-binding protein HB1 -3.326 0.00064

Table S9: Top 100 over-represented annotated genes in the genomes of the taxa that receive the
most positive entries on variable 43. The column descriptions are provided with Supplementary
Table 3.

Gene FDR-Adj. P NES

Sirohydrochlorin cobaltochelatase CbiKP 5.05 0.00064

Bifunctional protein MdtA 4.982 0.00064

Cytochrome c-L 4.843 0.00064

Methanol dehydrogenase [cytochrome c] subunit 2 4.798 0.00064

Carbon monoxide dehydrogenase 1 4.71 0.00064

NAD(+)–dinitrogen-reductase ADP-D-ribosyltransferase 4.631 0.00064

Carbon monoxide dehydrogenase/acetyl-CoA synthase subunit alpha 4.487 0.00064

Corrinoid/iron-sulfur protein large subunit 4.47 0.00064

Hydrogenase-2 large chain 4.455 0.00064

Molybdenum storage protein subunit beta 4.406 0.00064

Sulfite reductase, dissimilatory-type subunit gamma 4.308 0.00064

Acetolactate synthase isozyme 1 small subunit 4.265 0.00064

Protein DsvD 4.254 0.00064

mupirocin-resistant isoleucine–tRNA ligase MupA 4.214 0.00064

Hopanoid C-3 methylase 4.162 0.00064

Menaquinone reductase, iron-sulfur cluster-binding subunit 4.161 0.00064

Metal-binding protein SmbP 4.145 0.00064

Menaquinone reductase, molybdopterin-binding-like subunit 4.065 0.00064

Reverse rubrerythrin-1 4.054 0.00064

Rubredoxin 3 4.026 0.00064

Hydrogenase-2 small chain 3.991 0.00064

Ribulose bisphosphate carboxylase small chain 2 3.969 0.00064

Periplasmic [NiFe] hydrogenase large subunit 3.965 0.00064

Ribulose bisphosphate carboxylase large chain 2 3.918 0.00064

Menaquinone reductase, multiheme cytochrome c subunit 3.913 0.00064

(R)-2-hydroxyisocaproyl-CoA dehydratase beta subunit 3.895 0.00064

Formyltransferase/hydrolase complex Fhc subunit B 3.822 0.00064

Toluene-4-monooxygenase system, ferredoxin component 3.812 0.00064

Hydroxylamine oxidoreductase 3.79 0.00064

Menaquinone reductase, integral membrane subunit 3.777 0.00064

Accessory gene regulator protein B 3.775 0.00064

Resuscitation-promoting factor Rpf 3.76 0.00064

Split-Soret cytochrome c 3.752 0.00064

Carbon monoxide dehydrogenase 2 3.747 0.00064

Dihydromethanopterin reductase 3.726 0.00064

Protein FeSII 3.712 0.00064

PTS system N-acetylglucosamine-specific EIIB component 3.705 0.00064

Nitrogen fixation regulatory protein 3.626 0.00064

Na(+)-translocating ferredoxin:NAD(+) oxidoreductase complex subunit C 3.608 0.00064

Alpha-amylase 1 3.584 0.00064

Elongation factor G, mitochondrial 3.576 0.00064

Neopullulanase 1 3.574 0.00064

Hydrogenase-4 component G 3.525 0.00064
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Ribulose bisphosphate carboxylase 3.525 0.00064

D-xylonate dehydratase YagF 3.51 0.00064

Sporulation-specific cell division protein SsgB 3.506 0.00064

EtfAB:quinone oxidoreductase 3.505 0.00064

Lipoprotein NlpI 3.494 0.00064

CRISPR-associated endonuclease Cas6 3.461 0.00064

Cytochrome c-type protein ImcH 3.421 0.00064

Opacity-associated protein OapA 3.417 0.00064

Surface-adhesin protein E 3.417 0.00064

Fused nickel transport protein NikMN 3.416 0.00064

Molybdenum storage protein subunit alpha 3.414 0.00064

Corrinoid/iron-sulfur protein small subunit 3.399 0.00064

Small, acid-soluble spore protein C2 3.399 0.00064

Cytochrome c” 3.384 0.00064

IS1182 family transposase ISRssp12 3.375 0.00064

Mannosylglucosyl-3-phosphoglycerate synthase 3.347 0.00064

Flagellar FliL protein 3.344 0.00064

Valine dehydrogenase 3.333 0.00064

Sensor protein CseC 3.319 0.00064

Tyrosine-protein kinase CpsD 3.312 0.00064

Rubredoxin-oxygen oxidoreductase 3.306 0.00064

putative nitrate/nitrite transporter NarK2 3.298 0.00064

5-hydroxybenzimidazole synthase BzaA 3.297 0.00064

Enoyl-[acyl-carrier-protein] reductase [NADPH] FabI 3.295 0.00064

Putative sulfur carrier protein YeeD 3.292 0.00064

Translocation-enhancing protein TepA 3.28 0.00064

IS66 family transposase ISSwo2 3.258 0.00064

Citrate (Re)-synthase 3.257 0.00064

putative protein YgcP 3.257 0.00064

PTS system N-acetylglucosamine-specific EIIC component 3.256 0.00064

Putative superoxide reductase 3.256 0.00064

Cyanuric acid amidohydrolase 3.247 0.00064

IS91 family transposase ISCARN110 3.24 0.00064

IS5 family transposase ISPso2 3.234 0.00064

IS1595 family transposase ISMpo2 3.232 0.00064

60 kDa chaperonin 3 3.229 0.00064

Particulate methane monooxygenase beta subunit 3.206 0.00064

Oxalate oxidoreductase subunit beta 3.205 0.00064

10 kDa chaperonin 2 3.2 0.00064

Sucrose synthase 3.199 0.00064

putative sporulation protein YlmC 3.187 0.00064

IS66 family transposase ISDpr4 3.186 0.00064

DNA transformation protein TfoX 3.185 0.00064

(R)-2-hydroxyisocaproyl-CoA dehydratase alpha subunit 3.17 0.00064

Outer membrane protein P5 3.159 0.00064

putative secretion system apparatus ATP synthase SsaN 3.15 0.00064

IS1182 family transposase ISClbu1 3.15 0.00064

2-amino-5-chloromuconate deaminase 3.147 0.00064

Type A flavoprotein fprA 3.145 0.00064

Benzylsuccinate synthase activating enzyme 3.144 0.00064

(R)-phenyllactate dehydratase activator 3.142 0.00064

Particulate methane monooxygenase alpha subunit 3.133 0.00064

(R)-phenyllactyl-CoA dehydratase alpha subunit 3.126 0.00064

Barbiturase 1 3.122 0.00064
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CRISPR system Cascade subunit CasE 3.112 0.00064

NADH-dependent phenylglyoxylate dehydrogenase subunit gamma 3.106 0.00064

ECF RNA polymerase sigma factor ShbA 3.103 0.00064



Eigenständigkeitserklärung

Name:

Matrikelnummer:

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
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