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With smartphone-based mobile electroencephalography (EEG), we can investigate

sound perception beyond the lab. To understand sound perception in the real world,

we need to relate naturally occurring sounds to EEG data. For this, EEG and audio

information need to be synchronized precisely, only then it is possible to capture fast

and transient evoked neural responses and relate them to individual sounds. We have

developed Android applications (AFEx and Record-a) that allow for the concurrent

acquisition of EEG data and audio features, i.e., sound onsets, average signal power

(RMS), and power spectral density (PSD) on smartphone. In this paper, we evaluate

these apps by computing event-related potentials (ERPs) evoked by everyday sounds.

One participant listened to piano notes (played live by a pianist) and to a home-office

soundscape. Timing tests showed a stable lag and a small jitter (<3 ms) indicating a high

temporal precision of the system. We calculated ERPs to sound onsets and observed the

typical P1-N1-P2 complex of auditory processing. Furthermore, we show how to relate

information on loudness (RMS) and spectra (PSD) to brain activity. In future studies, we

can use this system to study sound processing in everyday life.

Keywords: mobile EEG, smartphone-based experimentation, auditory perception, ERP, android applications

1. INTRODUCTION

Mobile electroencephalography (EEG) allows to record brain activity beyond the lab while
participants go about their everyday life (Debener et al., 2012; De Vos et al., 2014; Hölle et al.,
2021; Wascher et al., 2021). It thereby provides unique insights into human cognition that cannot
be gained by introspection or by the observation of behavior alone. Importantly, it can help us to
understand the coupling of action and cognition (Gramann et al., 2014; Ladouce et al., 2017; Parada,
2018). In everyday life, action and cognition are tightly coupled—the brain has to continuously
adapt to changing events in the environment and adjust goal-directed behavior accordingly. For
example, we have to react immediately to the honking of a car. By studying the brain in complex
naturalistic environments, we can learn more about the dynamics of brain processes over longer
time periods (Hölle et al., 2021) and in response to environmental events that are difficult to recreate
in the laboratory.
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If we want to understand the brain in relation to everyday
life events (we will focus here on auditory events), we need
to capture both the brain activity and information about the
events concurrently with high temporal precision: simply put,
to analyze the brains’ response to the honking car at the correct
moment, we need to know when the honk occurred relative to
the EEG data. By relating naturally occurring sounds in everyday
life to ongoing EEG activity, we can investigate questions about
auditory perception and attention in real world scenarios. There
is an increasing number of studies using naturalistic stimuli to
study auditory perception (e.g., Perrin et al., 2005; De Lucia
et al., 2012; Roye et al., 2013; Scheer et al., 2018; Zuk et al.,
2020). However, in this lab-based research, everyday life sounds
and contexts are approximated by using artificial stimuli and
conditions. With mobile EEG we can record the brain and the
acoustic environment throughout the day in everyday live, and
start to understand sound processing in real life contexts (Hölle
et al., 2021).

Ideally, brain recordings in everyday life should not interfere
with natural behavior. The used recording setup should
neither be noticeable for the participant nor for outside
observers, only then we can expect a natural and therefore
representative behavior of the participant. Hence, the optimal
setup is maximally transparent, portable, and non-restrictive
for a participant (Bleichner and Debener, 2017). Such a
transparent EEG solution is smartphone-based, as smartphones
have sufficient computational power for EEG recordings and
processing, and they can be comfortably carried in a pocket
(Debener et al., 2015; Blum et al., 2017, 2019; Piñeyro
Salvidegoitia et al., 2019; Hölle et al., 2021).

To investigate sound processing in daily life, we have
developed two apps for Android smartphones (Record-a and
AFEx) that allow us to record and process naturally occurring
sounds and brain data. Record-a is a generic app that uses
the LabStreamingLayer (LSL) framework for the simultaneous
acquisition and synchronization of different data streams (Blum
et al., 2021). The AFEx app dissects raw audio into acoustic
features (Power spectral density, PSD; average signal power,
RMS; sound onsets) in a privacy-protecting way. These features
are broadcast as LSL streams and can be recorded concurrently
with EEG data by the Record-a app.

Before studying sound processing in everyday life in a
hypothesis-driven manner with this system, each component has
to be carefully tested and validated (Scheel et al., 2021). Hence, in
this paper, we evaluate this smartphone-based system regarding
timing precision and plausibility of the EEG data. We show
how we use this system to relate EEG and acoustic features to
study ERPs. We use sound onsets to calculate ERPs, spectral
information to distinguish tones, and information on loudness
to contrast ERPs elicited by loud and soft sounds.

2. MATERIALS AND METHODS

For the recordings, we used a smartphone running three
apps: AFEx computes and streams the acoustic features (sound
onsets, PSD, RMS); Smarting (mBrainTrain, Belgrade, Serbia), a

commercial app, streams EEG data; and Record-a concurrently
records the former two data streams into one xdf-file. We
recorded EEG from one person equipped with a mobile EEG
cap. In our analyses, we could use the audio onsets provided by
AFEx to cut the continuous EEG data and average over these
epochs to gain ERPs. See Figure 1 for an illustration of the system
components and how they play together.

2.1. Software
2.1.1. Smarting
For streaming EEG data, we used a Smarting (mBrainTrain,
Belgrade, Serbia) system. The ongoing EEG signal was provided
as an LSL stream by the Smarting android app (Version 1.6.0).
Note that any EEG system that provides the EEG data as LSL
stream can be used.

2.1.2. AFEx
AFEx is an Android app that calculates acoustic features (https://
doi.org/10.5281/zenodo.5814670). It implements a framework
that allows to concatenate various stages such as audio capture,
signal filtering, and signal transformation to produce the desired
metrics. The produced data is pushed to the LSL in chunks
equivalent to the block sizes specified below. Figure 2 shows the
signal path.

The different metrics are calculated and parameterized as
follows:

2.1.2.1. Audio Capture
A stereo microphone signal is captured at a sampling rate of
16 kHz, buffered and transferred to subsequent stages in chunks
of 250ms. Each stage is rebuffering data to provide the blocksizes
(incl. overlaps) requested by succeeding processing stages. Note
that the properties of the signal are depending on the recording
setup. A signal being recorded using an Android’s device internal
microphone or input via the headphone/mic jack will usually
result in two identical, i.e., duplicated, mono channels. Stereo
signals can be recorded using external USB devices.

2.1.2.2. Highpass Filter
The second order biquad filter has a cutoff frequency of 250Hz
to suppress low frequency noise. The signal is filtered in blocks of
25ms.

2.1.2.3. Signal Power (RMS)
The RMS is calculated with a blocklength of 25ms and an overlap
of 50%, resulting in a sampling rate of 80 Hz.

2.1.2.4. Spectra (PSD)
The power spectral density is calculated for blocks of 125ms
with an overlap of 50%, resulting in a sampling rate of 8Hz.
The resulting spectra are exponentially smoothed and averaged,
with one spectrum being produced every 125ms. This method
prevents reconstruction of the time domain signal to protect a
person’s privacy.

2.1.2.5. Acoustic Onset Detection
To detect acoustic onsets, a variable state filter produces low-,
band-, and highpass filtered signals (2nd order, fg , fc = 800 Hz,
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FIGURE 1 | Schematic of recording setup. The participant was equipped with a mobile EEG and listened to audio. An EEG data stream was generated by the

Smarting app that received the data from the amplifier via Bluetooth. The sound features (PSD, RMS, onsets) were computed by the AFEx app which received the

audio data via a microphone connected to the smartphone. Audio feature and EEG data streams were recorded with the Record-a app and written in an xdf-file. With

the sound onsets, we can epoch the EEG data (red lines) and compute ERPs.

FIGURE 2 | Signal path through the different stages of the Audio Feature Extraction Framework AFEx.

TABLE 1 | Smoothing time constants for the low-, band-, and highpass-filtered

signals used for acoustic onset detection.

Lowpass (ms) Bandpass (ms) Highpass (ms)

Slow 160 20 1

Fast 4 2 2

Q = 1/
√
2). Those are then smoothed with both, slow and fast

time constants, tuned to different values per band (Table 1). If
the faster signal emerges from the slower in any band, an onset
is triggered.

All calculations are performed on the smartphone and the
results are written to LSL. The audio signal does not need to be
stored or cached on the device’s permanent storage. Additionally,
the parameters have been chosen in such a way as to prevent
reconstruction of semantic content or information, i.e., from
PSDs, thus ensuring a participant’s privacy (Kissner et al., 2015;
Bitzer et al., 2016). Note that modified parameters or new features
would require a re-validation of said privacy.

AFEx has been tested with Android OS up to version 10.
Permissions to access storage and the microphone are explicitly

required. Processing runs as foreground service, giving it some
precedency over other apps. There are, however, no additional
mechanisms in place to prevent interaction with the app. The
Android OS may, for instance, decide to end AFEx based on a
lack of available storage space or low battery level. Moreover,
the app is not hardened against end-users: there is no kiosk
mode to prevent a user from performing actions that might
cause a processing lag (e.g., open another app) or any GUI that
might guide an end-user and prevent incorrect usage. Note that a
processing lag would not lead to lost or inaccurate data, the audio
data would only be processed later. For optimal recordings, we
recommend to ensure that the phone has enough storage space
and battery, and that not needed apps or services are disabled.

2.1.3. Record-a
The Record-a app allows to record LSL data streams in the
network into one xdf-file. With the LSL framework, different
data streams with different sampling rates can be recorded
simultaneously. Each data stream has its own time information
in reference to a master clock and upon import, they are time
corrected and thereby synchronized. This app is described in
detail in Blum et al. (2021). The app is available at: https://github.
com/s4rify/Pocketable-Labs.
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2.2. Hardware
2.2.1. EEG System
We used a 24-channel cap (easycap GmbH, Germany) connected
to a mobile 24-channel Smarting mobi amplifier with 24 bit
resolution (mBrainTrain, Belgrade, Serbia). We recorded the
EEG data with a sampling rate of 250 Hz. The amplifier
transmitted the data to the smartphone via bluetooth.

2.2.2. Smartphone and Microphone
We used a Google Pixel 3a smartphone (Android Version: 10).
To record stereo sound with this phone, we used customized
ear microphones comprising two omni-directional EK-23024
microphones (Knowles Electronics, Illinois, USA) placed into
behind-the-ear shells. The ear-microphones were connected to
the phone via the USB-C port with a sound adapter (Andrea Pure
Audio USB-MA, Andrea Electronics, Bohemia, USA). Naturally,
the microphones process sounds differently than human ears:
they may pick up on sounds not perceptible to human ears, but
they may also miss sounds that the ear would perceive. However,
the microphone clearly detects the onset sounds that are essential
to our analyses.

2.3. System Validation
To relate EEG data and audio onsets reliably, both data streams
need to be stable over time and have sufficient temporal precision
in the millisecond domain. As the audio signal is buffered and
then processed, there is a lag between the actual audio onset and
the recorded audio onsets (onset marker) as they occurred in the
real world. In the system validation, we conducted timing tests to
quantify this lag. Furthermore, we also checked whether this lag
remains stable over time (jitter).

We conducted five short (∼45 min) and one long (∼180 min)
timing tests. The smartphone was restarted between timing tests.
For these timing tests we used wav-files that were generated with
Matlab (Version: 9.6.0.1335978; The Mathworks Inc., Natick,
MA, USA). The wav-files contained square wave impulses that
were presented at 1 sec intervals at a sampling rate of 44,100 Hz.
We used square waves as they produce a sharp response in the
EEG amplifier. The square wave impulse had a duration of 50 ms.
For the short timing test, the wav-file consisted of a 10 s silence
at the beginning followed by 2,500 impulses. The wav-file of the
long-term timing test consisted of four times the wav-file for the
short timing test for a total of 10,000 impulses. These sound files
were presented via PC on external speakers (Wavemaster 1520,
Bremen, Germany) in a soundproof cabin and simultaneously fed
into the EEG amplifier via a customized adapter.

Hence, with this procedure, an impulse produced both a
response in the data recorded with the EEG amplifier and an
audio onset as detected by the AFEx app. We can then cut the
sound signal recorded with the EEG amplifier based on the audio
onsets and calculate lag and jitter. The AFEx app detected onsets
for all impulses plus a few extra sounds (experimenter leaving
the room, nearby construction work). In our analysis (also in
Matlab), we deleted these additional onsets.

We then epoched the data from −1 to 0.1 s (baseline
correction −1 to −0.9) relative to the detected sound onsets.
To quantify the delay between audio onset and onset marker,

we identified the time point when the audio onset in the EEG
reached its half maximum (same time point for all recordings)
and then calculated the time difference between this maximum
and the onset marker for every epoch.

2.4. Participant
We recorded one volunteer (male, age between 25 and
35, ambidextrous) who had previous experience with EEG
recordings. He provided written informed consent prior to
participation. We deemed neural data from one participant
sufficient to demonstrate the functionality of the technical setup.

2.5. Procedure
For the EEG recordings we had three conditions that increase in
stimulus complexity. In the first two conditions, the participant
listened to piano notes played live by a pianist. In the third
condition, the participant listened to an home-office soundscape.
In Figure 3, we show the average ERPs to all detected audio
onsets for the three conditions.

Before the participant was fit with the EEG cap, his skin was
cleaned with alcohol and electrolyte gel (Abralyt HiCl, easycap
GmbH, Germany). All impedance was kept below 10 kOhm. The
ear microphones were plugged into the smartphone and placed
on the participant’s ear. The smartphone was always placed on a
table adjacent to the participant. For condition one and two, the
participant sat in a chair approximately at a distance of 1 m to
the piano (Yahama Digital Piano P-35, Hamamatsu, Japan; set to
75% volume, LAeq ≈ 62 dB at participant’s location), fixating
his gaze on a fixation cross on a wall. The participants sat with
his back to the piano; hence, he could neither see the pianist nor
the experimenter. In the third condition, the participant sat in a
soundproof cabin looking at a fixation cross on a computer screen
while listening to a soundscape that was presented free-field (two
Sirocco S30 loudspeakers, Cambridge Audio, London, United
Kingdom) at a participant-comfortable volume (LAeq ≈ 63 dB).
For all conditions, the participant was instructed to move as little
as possible.

2.5.1. Piano Oddball
The participant listened to live played notes on the piano. The
pianist alternated between playing middle c (∼264 Hz, 159 in
total, standards) and middle g (∼392 Hz, 39 in total, targets) on
the keyboard. The sequence of tones was predefined and provided
on a paper sheet. We recorded this oddball twice with a different
predefined sequence in the second run. The participants task was
to count the target tones. To check whether the pianist played
exactly the notes from the sheet, we also recorded the MIDI file
of the oddball. Each oddball took 3 min. For later analysis, we
merged both oddball datasets.

2.5.2. Piano Freeplay
The participant listened to the pianist playing a monophonic
sequence of random tones with variable loudness and tempo for
6 min. The exact sequence of sounds was recorded as a MIDI file.
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FIGURE 3 | Grand average event-related potentials (ERPs) of all channels in the EEG recorded in response to the random sequence of two tones (piano oddball, 402

onsets), the random sequences of multiple tones (piano freeplay, 201), and to home-office soundscape events (1,357).

2.5.3. Home-Office Soundscape
In this condition, the participant listened to a soundscape of
a home-office environment for 27 min. This soundscape (wav-
file) included typical home-office activities such as operating a
computer (clicking with the mouse, typing on the keyboard,
notification sounds), walking around, using a hole puncher, or
unloading the dishwasher. It did not contain music or speech.
Due to technical interference in this recording, we recorded the
sound onsets again in an empty room andmapped them onto the
EEG recording.

2.6. Data Analysis
Data were analyzed offline with Matlab (Version: 9.6.0.1335978;
The Mathworks Inc., Natick, MA, USA) and EEGLAB (Version:
v2019.0; Delorme and Makeig, 2004) using custom scripts
(available at https://osf.io/bcfm3/). Filters were used as
implemented in EEGLAB (zero-phase Hamming windowed
sync finite impulse response).

2.6.1. Preprocessing
The EEG data were re-referenced to linked mastoids, low-pass
filtered at 25 Hz (Order 134) and high-pass filtered at 0.1 Hz
(Order 8,250). To account for the previously determined time lag,
the recorded markers for sound onsets were shifted by −248 ms
(−62 samples; see system validation results). We deleted some
markers at the beginning and the end of each recording (14
in total) as these onsets were due to the starting and stopping
of the recording. We used artifact subspace reconstruction
(ASR) to clean the data. For ASR, we used the EEGLAB-plugin
clean_rawdata (Version: 1.0; parameters: flatline criterion = 60,
high-pass = [0.25 0.75], channel criterion = off, line noise
criterion = off, burst criterion= 20, window criterion= off). We

epoched the data from −0.1 to 0.8 s relative to each sound onset
(baseline correction−0.1 to 0 s).

2.6.1.1. Piano Oddball
Based on the recorded PSD data, we identified target and
standard tones. First, we visually identified the first target tone
in the spectrum. Second, we created a template based on this
target tone. We then correlated this template with every tone in
the spectrum. This procedure allowed us to automatically identify
target tones when the correlation was higher than 0.9.

2.6.1.2. Piano Freeplay and Home-Office Soundscape
In both conditions, for each audio onset, we computed an average
RMS based on the mean of five samples (62.5 ms) after the audio
onset of both audio channels to gain a corresponding RMS value
for each sound onset.

2.6.2. Data Quality Measures
To obtain an estimation for the reliability of the ERPs, we
calculated an amplitude threshold based on ERPs extracted from
random events for each condition. Data within this threshold
can be considered as noise. For 1,000 permutations, we inserted
500 markers at random time points in the data, epoched with
these markers, and computed the ERP over all channels. We
then determined the maximum and minimum amplitude of
the mean over all permutations plus two times the standard
deviation. This value corresponds to ∼95% of the amplitude
distribution. Additionally, for all ERP components used in
statistical comparisons, we report the standardized measurement
error (SME) as a data quality measure (Luck et al., 2021).
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TABLE 2 | Timing test results.

Test M (Lag) (ms) SD (Jitter) (ms) Range (ms)

1 (short) 249.54 1.98 [244–252]

2 (short) 243.95 1.73 [240–248]

3 (short) 246.60 1.98 [244–252]

4 (short) 249.63 2.72 [160–259]

5 (short) 248.86 2.69 [168–256]

6 (long) 244.79 2.29 [172–248]

Lag describes the difference between the actual sound onset and the recorded sound

onset. Jitter describes the variation of the lag over time. Short recording: 45 min; long

recording: 180 min.

3. RESULTS

3.1. System Validation
Table 2 shows the results of the timing tests. We identified a
mean lag of 247.23 ms (62 samples at 250 Hz). When shifting the
recorded sound onset markers by this number, they align with the
actual onset of the sound.

3.2. EEG Recordings
Apart from timing tests, we also recorded neural data to validate
the system. The participant listened to three different auditory
inputs (a random sequence of two tones, a random sequence of
multiple tones, and a home-office soundscape). In Figure 3, we
show the average ERPs to all detected audio onsets for the three
conditions. These conditions are analyzed in more detail below.

3.2.1. Piano Oddball
In this condition, the participant listened to two tones that
were played live by a pianist in the same room. One note was
played frequently and the other infrequently. The participant had
to count the infrequent tone (target). The participant correctly
counted all targets. On average, the AFEx app detected a tone
every 0.99 s (SD= 0.24 s, Range= [0.25–1.42 s]). AFEx detected
all tones played by the pianist. Figure 4A shows the results of
the piano oddball, split into target and standard tones based
on the PSD data. The automatic identification of targets and
standards corresponded exactly to the actual notes played as
recorded by a MIDI file (ground truth). For both tones, auditory
evoked potentials (P1,N1,P2) can be observed. Compared to the
standard tone, the target tone also shows a P3 response. A
two-sample t-test based on the mean single trial amplitudes at
electrode Cz (Polich, 2007) from 368 to 392 ms (see topoplots)
confirmed that this difference is significant [t(393) = −5.11, p =
< 0.001, SMEstandard = 0.36, SMEtarget = 0.97].

3.2.2. Piano Freeplay
The participant passively listened to the free playing of individual
tones by the pianist. The pianist varied the speed and the loudness
at which he played the tones. He played 329 tones (6 min) of
which the AFEx app detected 201 (61.09%) including one false
event. On average, AFEx detected a tone every 1.82 s (SD =
1.28 s, Range = [0.39–9.83 s]). Figure 4B shows the average
ERPs for the 50 events with the highest RMS and for the 50

events with the lowest RMS (RMS distribution: M = 6488.40,
SD = 5262.06, Range = [37.17–25924.36]). Again, a P1-N1-P2
complex is clearly visible (cf. Figure 3 for the grand average of all
tones). A paired t-test based on the mean single trial amplitudes
at electrode Pz (Woods, 1995) from 96 to 120 ms (see topoplots)
indicates that there is no difference in the N1 component between
both RMS conditions [t(49) = −0.5, p = 0.62, SMElowRMS =
0.62, SMEhighRMS=0.57].

3.2.3. Home-Office Soundscape
The participant passively listened to a pre-recorded soundscape.
AFEx detected 1357 onsets. On average, it detected a sound every
1.17 s (SD = 1.52 s, Range = [0.16–21.49 s]). Figure 4C shows
the average ERPs for the 250 events with the highest RMS and
for the 250 events with the lowest RMS (RMS distribution: M
= 2449.57, SD = 2746.32, Range = [805.07–21970.01]). Again,
a P1-N1-P2 complex is clearly visible. A higher amplitude of the
N1 component (at around 100 ms) in the high-RMS condition
compared to the low-RMS one can also be observed. A paired
t-test based on the mean single trial amplitudes at electrode
Pz from 104 to 128 ms (see topoplots) indicates that this
difference is statistically significant [t(249) = 4.23, p < 0.001,
SMElowRMS=0.33, SMEhighRMS = 0.39].

4. DISCUSSION

We presented a system incorporating two Android apps that
allow to relate acoustic features of the soundscape to continuous
EEG data. Our goal was to evaluate the timing precision and EEG
data plausibility of this system. In the timing tests, we showed
that the temporal precision of the system is sufficient to compute
ERPs. We identified a constant lag (due to signal buffering of
AFEx), that can be easily accounted for by shifting the recorded
onset marker, and a negligible jitter. For the EEG recordings,
we presented sounds with increasing stimulus complexity from
single piano tones to complex office sounds. In all experimental
conditions, we found clear auditory evoked potentials in response
to sound onsets.

Furthermore, we showed how acoustic features in addition
to sound onsets can be used to analyse EEG data. In the
piano oddball condition, we used PSD to distinguish
target from standard tones. The resulting ERPs show
the expected P3 response for target tones only (Polich,
2007). Advancing from this simple validation task to
everyday life settings, PSD information could be used to
differentiate between different sound sources (e.g., Fahim
et al., 2018). For example, in a two speaker scenario, PSD
can be used to identify which speaker (low vs. high voice) is
currently talking.

In the piano freeplay and home-office soundscape condition,
we contrasted high-RMS sounds with low-RMS sounds. In
line with literature (May and Tiitinen, 2010), we observed a
significantly higher N1 response for high-RMS onsets compared
to low-RMS ones in the home-office soundscape. We did not
observe this difference in the piano freeplay, which may be
due to the lower number of onsets and thus lower variance
of RMS values. Note that ERP amplitudes in the home-office
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A

B

C

FIGURE 4 | Grand average ERPs per condition. (A) Average ERP to piano oddball, divided into standard (frequent, n = 317 blue) and target (infrequent, n = 78,

orange) tones based on the PSD information. (B) Average ERP in the piano freeplay. RMS information was used to sort audio onsets from lowest to highest RMS. The

ERP is shown in response to the 50 softest (left) and 50 loudest sounds (right). The histogram shows the distribution of the RMS values (n = 201) and the color coding

indicates which value range was used for the plots. (C) Average ERP in response to detected sounds in the home-office soundscape (left: 250 softest sounds; right:

250 loudest sounds). The histogram shows the distribution of the RMS values (n = 1,357) and the color coding indicates which value range was used

(Continued)
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FIGURE 4 | for the plots. Each line represents a channel. The gray shaded arrays correspond to the time windows of the topographies. The dotted black lines

represent the amplitude threshold for a signal deviation that is significantly different from baseline. Data below this threshold was considered as noise. The bold lines

show electrode Cz (Piano, Office) or electrode Pz (Oddball). The corresponding electrodes are also highlighted in the topoplot (larger circle).

condition were lower than in the other conditions, which is
most visible in the grand average of all sound onsets. This
finding can be explained by the higher number of low-RMS
onsets (see histogram) in this recording, resulting in lower
amplitudes overall.

To calculate these ERPs, we relied on sound onsets.
Importantly, there are many different methods of defining sound
onsets (e.g., Thoshkahna and Ramakrishnan, 2008; Böck et al.,
2012); for example, some methods are specifically geared for
detecting onsets in music (Bello et al., 2005; Haumann et al.,
2021). For the online detection of onsets, we optimized the
parameters to detect clear, isolated sound onsets in the presence
of background noise. Consequently, not all onsets that humans
perceive as onsets are picked up by the detector. For example,
in the freeplay condition, 120 notes were missed by the detector.
Thus, the onsets that were detected are a subset of all onsets
a person perceives. Depending on the use case, the parameter
settings can be adapted and optimized to detect fewer or more
sound onsets. It is important to note that missing onsets could
distort the ERP, for instance, when a missed sound overlaps
with a detected sound. Moreover, false alarms could decrease
the average ERP amplitude; however, we observed only one
false alarm.

Obviously, the acoustic features that are provided by AFEx
only provide limited information about the soundscape. The
app does not provide information about many aspects that
are known to be relevant for sound perception; for example,
whether a sound was self-generated or generated by another
sound source (e.g., Sanmiguel et al., 2013), whether the sound
was relevant or irrelevant (e.g., Scheer et al., 2018; Dehais et al.,
2019; Holtze et al., 2021), or expected or unexpected for a
person (e.g., Dalton and Fraenkel, 2012; Koreimann et al., 2014).
How to assess these factors remains a challenge. Some of these
factors could be assessed by asking the person about subjective
experience of the soundscape on a regular basis usingmomentary
ambulatory assessment (Trull and Ebner-Priemer, 2013), but this
will interrupt the person in their normal activity. An alternative
is to use additional microphones that provide more information
about the origin of a sound, or sensors that provide context
information. However, it is unlikely that we will be able to
capture the full complexity of the participants environment in the
near future.

To sum up, we demonstrated that the presented technical
setup reliably combines EEG and acoustic features and thereby
allows to measure event related potential in response to everyday
sounds. This smartphone-based setup can be used fast and
easily. It allows us to study brain activity everywhere: We could
record EEG next to a construction site, while driving through
the city, or in the classroom. These contexts are already of

interest to researchers (e.g., Ko et al., 2017; Getzmann et al.,
2018; Ke et al., 2021). In these everyday contexts, we can also
investigate individual differences in sound processing: Why do
some individuals notice some sounds that other people miss?
How does their brain response to sounds differ? Which sounds
are distracting or even annoying to an office worker on the neural
level? As evident from these various examples, the AFEx app in
combination with Record-a and a commercial EEG app facilitate
new research of auditory processing in everyday life, which was
henceforth typically only assessed with surveys (e.g., Banbury and
Berry, 2005; Oseland and Hodsman, 2018).
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