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Abstract  

This thesis focuses on investigating the localized mode profile, complex near-field 

response function, and field dynamics of individual dielectric nanostructures. The 

experiment is realized by a scattering-type scanning near-field optical microscope (s-

SNOM) combined with spectral interferometry: the incident broad bandwidth light is 

divided in two paths by a beam splitter. One is focused to a vibrating tip (typically at 

around 30 kHz) in the vicinity of the sample, denoted as sample arm, and the other is 

reflected by a mirror denoted as the reference arm. The tip scattered field and the 

broadband reference field combine at the beam splitter, and the interference is directly 

measured in spectral domain by a fast line camera detector with a capture frequency that 

is faster than the typical 30 kHz tip modulation.  

We firstly investigate the optical properties of nanostructures of antimony sulfide (Sb2S3), 

a direct-bandgap semiconductor material that has recently sparked considerable interest 

as a thin film solar cell absorber. Fabrication from a nanoparticle ink solution and two- 

and three-dimensional nanostructuring with pattern sizes down to 50 nm have recently 

been demonstrated. Insight into the yet unknown nanoscopic optical properties of these 

nanostructures is highly desired for their future applications in nanophotonics. We 

implement a spectrally broadband scattering-type near-field optical spectroscopy 

technique to study individual Sb2S3 nanodots with a 20-nm spatial resolution, covering 

the range from 700 to 900 nm. We show that in this below-bandgap range, the Sb2S3 

nanostructures act as high-refractive-index, low-loss waveguides with mode profiles 

close to those of idealized cylindrical waveguides, despite a considerable structural 

disorder. In combination with their high above-bandgap absorption, this makes them 

promising candidates for applications as dielectric metamaterials, specifically for ultrafast 

photoswitching. 

Metallic, semiconducting and dielectric nanoparticles form outstanding tools for localizing 

light on the nanoscale. Their optical shape resonances confine light in certain localized 

modes and in spectral regions, largely tunable by varying the size, shape or composition 

of the particle. Often, the lifetimes of the optical resonance of those particles are so short, 

in the range of few femtoseconds, that direct time-resolved measurements of their 
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localized optical near-fields are highly challenging. Here, we employ the broad-bandwidth 

interference SNOM to reconstruct the complex response function of a single 

nanostructure in the time domain and with nanometer-spatial resolution. We demonstrate 

this approach by analyzing single MAPbI3 perovskite nanoparticles, promising new 

candidates for nanoscale light sources. Their optical spectra are expected to feature 

distinct Fano resonances, arising from the coupling of excitons to the Mie resonances of 

the particles. Here, we provide direct evidence for these Fano resonances by measuring 

amplitude and phase of their local optical near-field with high spatial and spectral 

resolution. Our technique provides a general approach for measuring the response 

functions of nanostructures in the visible and near-infrared spectral range with 

femtosecond temporal and nanometer spatial resolution.  

Key words: near-field spectroscopy, scattering-type near-field optical microscopy, local 

density of state, Fano resonance, field dynamics 
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1 Introduction 

The beauty of light is ascribable to the fact that its energy lies in the energy range of 

electric and vibrational transitions in matter.1 This enables optical techniques that are not 

restricted to imaging, but that also enable studying structural and dynamic properties of 

materials by analyzing the interaction between light and matter. Additional advantages of 

optical techniques, such as sensitivity, flexibility, and relatively low cost, brought about a 

rapid development of optical spectroscopy. However, traditional optical techniques can 

not satisfy the demand of exploring nanoscale objects due to the diffraction limit, and the 

characterization of the spectral properties of single nanostructures or hybrid nanosystems 

is far out of reach with today’s possibilities. Nanoplasmonics, i. e., studying the 

electromagnetic response of metal nanostructures, is a rapidly growing field of research. 

On the one hand, the realization and design of metallic nanostructures with tunable 

plasmon resonances, as well as tuning the dynamics of surface plasmon polariton 

excitations have great potential for creating nano-optical devices with novel functionalities. 

On the other hand, dielectric nanostructures offer an alternative means to light 

manipulation on a spatial scale of a few to hundred nanometers, such as Rayleigh or Mie 

scattering by small particles or waveguiding in switchable semiconductor nanostructures. 

All these processes call for an optical spectroscopy with nanometer scale spatial 

resolution. 

In traditional optical microscopy, the spatial resolution is limited by the wavelength of light, 

as formulated by Abbe:2  

𝑑 = 0.61𝜆/𝑛 𝑠𝑖𝑛(𝜃)                                                  (1) 

Abbe’s equation states that the minimum resolvable distance, d, is on the order of half of 

the incident light wavelength 𝜆 . 𝑛 𝑠𝑖𝑛(𝜃)  is the numerical aperture (NA) of the used 

focusing objective and can be optimized to 1.4 by operating in a high-refractive-index 

medium such as oil. Altogether, for light in the visible spectral range, the spatial resolution 

of an optical microscope can, in principle, be optimized to about 200 nm.  
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The fundamental reason for this limitation lies in Fourier optics. According to the 

uncertainty principle, the lateral size of a particle, ∆𝑟⫽, and its wave vector spectrum ∆𝑘⫽ 

fulfill: 

∆𝑟⫽ ≥
1

2 ∆𝑘⫽
                                                        (2) 

It means that a smaller lateral size of a particle corresponds to a wider spread of its wave 

vector spectrum along the same dimension. Since the wave vector components are 

limited by 𝑘 = √𝑘⫽
2 + 𝑘⏊

2 = 2𝜋/𝜆 , a large lateral wave vector signifies a squeezed 

orthogonal component. When a particle is small in lateral direction (𝑟⫽ is a few or several 

tens of nanometers), its wave vector spectrum in the relevant direction, 𝑘⫽, will even 

exceed 𝑘. In this case, the associated 𝑘⏊
2  becomes negative, resulting in an imaginary 

perpendicular wave vector 𝑘⏊. Such a wave is bound to the surface of the particle and 

decays quickly away from the surface. This evanescent wave does not propagate, 

therefore is not detectable in the signal collected in conventional microscopy. Instead, 

one way to access this information is bringing a probe close enough to the surface to 

access the near field within its decay length.  

Scanning near-field optical microscopy (SNOM) makes use of this principle to provide an 

option to construct nanoscale images using near-field light. The possibility was firstly 

raised by Synge in 1928.3   He proposed to produce a minute aperture with a diameter 

much smaller than wavelength of the light, and illuminate it from the backside. The so 

created new light source, whose dimension is determined by the aperture size, is then 

placed at a very close distance above the sample. The aperture-sample distance is kept 

constant, while the aperture is raster-scanned across the sample and the reflected or 

transmitted light is recorded, enabling surface imaging. In the described scheme, the 

lateral resolution would be determined by the aperture size rather than the wavelength of 

the light. However, neither fabricating such a minute aperture nor controlling the small 

aperture-sample distance was realizable at that time. Synge’s idea was not 

experimentally verified until the end of the 19th century. Benefiting from tremendous 

progress in nanotechnology and from the invention of scanning probe microscopy,4 the 
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first subwavelength images with visible light were reported in 1984 independently by 

Lewis et al. and Pohl et al. almost at the same time.5, 6 Following the  subsequent 

experimental realization of aperture SNOM,7-9 a great amount of high resolution 

measurements was implemented, which more importantly discovered previously 

unknown properties in the new sub-wavelength dimension for various samples. In 1993, 

a single dye molecule was imaged, and the dipole transition orientation was studied.10 

Soon after that, the emission of single molecules was observed,11 and single molecule 

dynamics were probed12.  

The above described first near-field images were achieved with aperture probes, glass 

fibers that are manufactured to a sharp tip and often covered with a metal film with a 

nanometer-sized opening for light transmission. These aperture tips, however, impose a 

significant limitation due to their finite aperture size and light transmission. To relieve that 

limitation, an alternative scheme of apertureless SNOM system (or scattering SNOM 

(sSNOM)) was demonstrated by utilizing a nanoscaled scattering tip instead of an 

aperture tip.13-17 Metallic tips are preferentially used because of their high scattering cross 

section, excellent light confinement, and field enhancement characteristics. The most 

common application of sSNOM is to plasmonic nanostructures and metamaterials, where 

they are used for nanoscale visualization of field and charge distributions.18-28  Owing to 

the broad in-plane momentum range of the tip dipole, different surface polariton 

properties can be inferred from sSNOM measurements, such as the dispersion of 

polaritons in van der Waals crystals, or the anisotropy of phonon polaritons.29-34 Besides 

plasmonic nanostructures, sSNOM has been applied to mapping the evanescent field 

distribution of a multitude of dielectric samples, such as waveguides and 

microresonators,35, 36photonic crystal microcavities,37 and, more recently, all-dielectric 

nanostructures.38, 39 

Despite the remarkable performance improvement of sSNOM, however, there remains a 

challenge due to the near-field light scattered from the small tip being dominated by a 

large background signal. This undesired background light may originate from the tip shaft 

or the sample and therefore it may cause artefacts in the detected signal and complicate 

retrieval of information from the sample. In principle, the background signal can be largely 
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avoided by employing adiabatic nanofocusing to SNOM.40-45 This technique is an active 

topic of current research and first applications in broadband light scattering and time-

resolved spectroscopy are currently pursued in different laboratories,40, 46 however, it’s 

not widely employed because its application is difficult. In a more common approach, the 

near-field signal is modulated by oscillating the metal tip with a frequency in the 10-kHz-

range.47 Due to the highly nonlinear dependence of the scattered near-field signal on the 

tip-sample distance, higher harmonics of the modulation frequency are found in the signal. 

Even though the near-field-to-background ratio is improved by demodulating at higher 

harmonics, a complete suppression of the unwanted background is challenging. 

Generally, the light field components that are scattered from the near field, from the tip 

apex and from the tip shaft interfere and lead to the detection of a mixed intensity signal 

that cannot be disentangled, because mixing occurs at the electric field level.48-50 In order 

to enable such discrimination of the different contributions to the signal and to eliminate 

the background signal, amplification of the near-field signal by mixing of the scattered 

signal with a well-controlled reference wave was introduced. A simple way to achieve 

such amplification is by homodyne mixing via a stable Michelson interferometer.  

As the spatial resolution was improved to the nanometer scale, broadband spectroscopy 

combined with sSNOM also gained great popularity. Infrared (IR) near-field spectroscopy 

has been broadly applied to extract chemical and structural information in the last 

decades.51-57 However, in the visible spectral range broad-bandwidth near-field 

spectroscopy remains challenging. this requires efficient background suppression based 

on tip–sample distance modulation and near-field enhancement using homodyne or 

heterodyne mixing.47-50, 58 In this work, I propose and experimentally demonstrate a 

scanning near-field optical spectroscopy technique with an interferometrical detection 

scheme over a broad bandwidth in the visible/near-infrared, and I obtain nearly 

background-free near-field spectra in the spectral range from 720 to 900 nm. This new 

method is applied to the investigation of two typical high-refractive-index nanostructures, 

namely isolated stibnite (antimony sulfide, Sb2S3) nanodots and halide perovskite 

nanoparticles MAPbI3. 
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Very recently, nanoparticles of high-index dielectric materials have gained attention, 

because they offer an alternative means to light manipulation well below the diffraction 

limit.59 Compared to metallic nanoparticles, they show reduced Ohmic losses at visible 

frequencies and they often are compatible with complementary metal oxide 

semiconductor (CMOS) fabrication processes, which makes them favorable candidates 

for some integrated optical devices like waveguides in photonic circuitry. Instead of free 

electrons and electric fields concentrating at metal-dielectric interfaces, in all-dielectric 

nanoparticles electric dipoles and low-order multipoles give rise to Mie-type resonances 

and concurrent spatial light localization. Recent investigations of high-index dielectric 

nanoparticles arose in particular due to their capability of supporting dielectric as well as 

magnetic resonances, which can interfere and create unusual spatial and spectral 

scattering patterns and which may become a key for realizing devices and surfaces with 

novel optical properties59-62.  For example, stibnite (antimony sulfide, Sb2S3) is currently 

gaining increasing attention as an emerging photovoltaic material.63, 64 The combination 

of a direct bandgap and a high absorption coefficient leads to considerable 

photoconductivity, enabling applications in optoelectronics.65 Power conversion 

efficiencies of up to 7.5% have been demonstrated for an Sb2S3-sensitized heterojunction 

solar cell.66 As recently demonstrated, nanopatterning via direct electron beam 

lithography (EBL) writing enables the creation of 2D and 3D nanometric structures of 

various shapes.65 The availability of easy structuring, together with the possibility of 

changing the refractive index on an ultrafast time scale by injecting free carriers, makes 

the material an interesting candidate for the realization of photoswitchable 

metasurfaces.67  

As a second example of dielectric nanoparticles with intriguing properties, we turn to 

halide perovskite nanocrystals. These hybrid perovskites support excitonic states at room 

temperature, have refractive indices (n = 2−3) high enough for the efficient excitation of 

Mie resonances, combined with low losses at the exciton wavelength, a chemically 

tunable band gap,68 high defect tolerance,69 and a high quantum yield (more than 30%70) 

of photoluminescence. These properties make them extremely interesting candidates for 

effective nanoscale light sources.  
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Using our nano-spectroscopy, I found that in the below-bandgap range, the Sb2S3 

nanostructures act as high-refractive-index, low-loss waveguides with mode profiles 

close to those of idealized cylindrical waveguides. In the above-bandgap rage of the 

hybrid perovskite nanoparticles, the exciton is found to be coupled to the geometry-driven 

Mie resonance, displaying a Fano-shaped resonance. Using the interferometric 

spectroscopy approach developed in this these, the amplitude as well as the phase of 

the Fano-type resonance are retrieved. 
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Outline  

This thesis is organized as follows: 

Chapter 1 gives a brief introduction of nano-optics near-field spectroscopy background. 

Chapter 2 covers the theoretical background in three aspects. From the material point of 

view, optical properties of two common categories of nanosturctures, optical antenna and 

waveguide, are discussed. Concerning the relationship between SNOM measurement 

and sample property, near-field signal explanation methods, optical Local Density of 

State (LDOS) and dipole model, are outlined. At last, we introduce the working principle, 

on the field level, of homodyne and heterodyne based SNOM technique. 

Chapter 3 presents the home built experimental setup. We employ a scattering SNOM 

scheme and a gold tip as the near-field prober. Based on this, a homodyne interferometry 

is incorporated to achieve spectrally broadband scattering-type near-field optical 

spectroscopy in visible range. Wherein the spectrum demodulation from a fast line 

camera recording is carefully discussed. Moreover, we propose another approach to 

near-field spectrum realized by Fourier spectroscopy, and compared performances of 

two approaches.  

Chapter 4 and chapter 5 discuss the broad bandwidth near-field spectroscopy application 

on dielectric nanostructures. In chapter 4, eigen modes of individual Sb2S3 nanodot are 

observed with 10 nm spatial resolution by the near-field imaging, which is demonstrated 

to resemble the low order waveguide modes of a cylindrical optical fiber. Moreover, the 

spectral mode properties are explored by the near-field spectroscopy. These modes are 

seen across the entire bandwidth of our laser. Chapter 5 employ our SNOM technique 

combined with spectral interference technique to resolve the time structure of optical 

near-fields from the hot spots of a single MAPbI3 perovskite nanoparticle with high spatial 

resolution. Here, we provide direct evidence for a Fano resonance of individual MAPbI3 

nanoparticles by measuring amplitude and phase of their local optical near-field with high 

spatial and spectral resolution. We identify a destructive interference dip in the time 
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structure of the reconstructed optical near-field as the distinct signature of these Fano 

resonances. 

Chapter 6 briefly summarizes the results and gives a outlook on future applications of the 

work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

2 Theoretical background 

This chapter introduces a theoretical description of the optical response of two kinds of 

nanoparticles to light in free space and in a SNOM system, and then describes the 

technical reconstruction of nanostructural information from sSNOM signal. To describe 

the optical property of a nanoparticle, Maxwell’s equations for electric and magnetic field 

vectors are generally solved under certain boundary condition and constitutive relations.71 

Accordingly, the basic properties of two types of nanostructures, dielectric optical antenna 

and cylindrical waveguide, are discussed. In weak probe-sample coupling regime, the 

scattered near-field signal is supposed to probe the optical local density of state in the 

nanoparticle region which is mainly the superposition of eigen modes. For particles close 

to probe size scale, point-dipole model is more suitable to describe the probe and sample 

near-field interaction, in which the coupling system response is analytically formulated.  

At last, from technical point of view, we will analyze the signal on the field level to identify 

the near-field and background-field signal contributions for a typical sSNOM and sSNOM 

combined with homodyne and heterodyne interferometry. 

2.1 Optical antenna  

Optical antenna, as an analogy of antenna in radio wave or microwave regime, refers to 

structures efficiently concentrating free-space light wave into a nanoscale volume, and 

are constructed from subwavelength scale structures. The conventional ways to 

manipulate light is realized by altering its phase, amplitude, and polarization using lens, 

prism, and birefringent or diffractive elements. All these means shape optical wave fronts 

using the propagation effect, therefore cannot surpass diffraction limit to control fields in 

subwavelength scale. In contrast, the optical antenna structure provides efficient means 

to manipulate light at the nanoscale. These nanostructures have been demonstrated to 

be able to enhance spectroscopic techniques, such as surface-enhanced Raman 

scattering (SERS)72-82 and enhanced fluorescence spectroscopy,83-97 strong coupling,98, 

99 ultrafast emission,100-102 photovoltaics,103, 104 photodetection,105 and biosensors.106, 107  
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To fundamentally understand the optical response of nano-antennas, we need to study 

the scattering of electromagnetic waves by a structure. As stated in [38], the underlying 

physics of scattering is the same for all systems.108 Matter is composed of discrete electric 

charges: electrons and protons. when an obstacle is illuminated by an electromagnetic 

wave, electric charges in the obstacle are driven into oscillatory motion by the electric 

field of the incident wave. The accelerated electric charges then radiate electromagnetic 

energy in all directions. The scattering of electromagnetic waves by an obstacle is the 

superposition of incident wave and the re-radiated wave:  

Scattering = excitation + reradiation 

In addition to reradiating electromagnetic energy, the excited elementary charges may 

transform part of the incident electromagnetic energy into other forms, which is 

absorption.108  

2.1.1 Rayleigh scattering and Mie scattering 

Literally, the scattering of light includes elastic scattering and inelastic scattering. Elastic 

scattering means that the wavelength of the scattered light is not changed in comparison 

to the incident light. It is categorized in terms of two theoretical frameworks, Rayleigh 

scattering and Mie scattering. Rayleigh scattering109-111 (named after John William Strutt, 

3rd Baron Raileigh) refers to the elastic scattering of light from single atomic and molecular 

particles whose diameter is much smaller than wavelength of light. In contrast, Mie 

scattering112 occurs when the scattering particle size is comparable to light wavelength. 

A parameter for distinguishing two kinds of particles is given by 𝛼 =
2𝜋𝑎

𝜆
, where 𝑎 is the 

circumference of a particle and 𝜆 is the wavelength of incident radiation in the medium. 

The criterion for Rayleigh scattering is 𝛼 ≪ 1, and for Mie scattering is 𝛼 ≫ 1. The specific 

scattering coefficient of a sphere has been discussed in a variety of books such as [Kerker 

Milton, 1969, Bohren and Huffman, 1983, Kreibig and Vollmer, 1995]. Here we illustrate 

the basic deduction clue and the main conclusions.108 
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Figure 2.1 The incident field 𝐸⃑ 𝑖, 𝐻⃑⃑ 𝑖  gives rise to a field inside a sphere 𝐸⃑ 1, 𝐻⃑⃑ 1 and a 

scattered field 𝐸⃑ 𝑠, 𝐻⃑⃑ 𝑠 in the surrounding medium. 

For simplicity, we take a spherical particle as the scatterer and discuss the Maxwell’s 

equations in x dimension. The problem is sketched in figure 2.1: A spherical particle with 

specified size, shape, and optical properties is embedded in a homogeneous medium. 

When illuminated by a polarized monochromatic wave, determine the electromagnetic 

field scattered by the sphere.  

The incident field is denoted by (𝐸⃑ 𝑖 , 𝐻⃑⃑ 𝑖), and the scattered field is (𝐸⃑ 𝑠, 𝐻⃑⃑ 𝑠), where 𝐸⃑ 𝑖 =

𝐸0𝑒
𝑖(𝑘⃑ ∙𝑥 −𝜔𝑡)  and 𝐻⃑⃑ 𝑖 = 𝐻0𝑒

𝑖(𝑘⃑ ∙𝑥 −𝜔𝑡)  with 𝑘  and 𝜔  are wave vector and light wave 

frequency in medium. Firstly, the fields satisfy the Maxwell equation: 

∇ ∙ 𝐸⃑ = 0                                                         (2.1) 

∇ ∙ 𝐻⃑⃑ = 0                                                         (2.2) 

∇ × 𝐸⃑ = 𝑖𝜔𝜇𝐻⃑⃑                                                  (2.3) 

∇ × 𝐻⃑⃑ = −𝑖𝜔𝜀𝐸⃑                                                (2.4) 

where the permittivity 𝜀 and  the permeability 𝜇 are continuous. Applying ∇ × to equation 

(2.3) and (2.4) yields 

     ∇ × (∇ × 𝐸⃑ ) = 𝑖𝜔𝜇∇ × 𝐻⃑⃑ = 𝜔2𝜀𝜇𝐸⃑  

       ∇ × (∇ × 𝐻⃑⃑ ) = −𝑖𝜔𝜀∇ × 𝐸⃑ = 𝜔2𝜀𝜇𝐻⃑⃑  



12 

 

Provided the vector identity 

∇ × (∇ × 𝐴 ) = ∇ ∙ (∇ ∙ 𝐴 ) − ∇2𝐴  

We obtain   

                                          ∇2𝐸⃑ + 𝑘2𝐸⃑ = 0, ∇2𝐻⃑⃑ + 𝑘2𝐻⃑⃑ = 0                                     (2.5) 

Namely the wave equation  

                                                    ∇2𝜓 + 𝑘2𝜓 = 0                                                    (2.6) 

The solutions of this equation are determined by the boundary condition in specific 

system. In this problem, the field undergoes discontinuous environment when crossing 

the boundary between sphere and medium. The boundary condition on the fields is that 

the tangential components are supposed to be continuous on the interface between two 

media: 

[𝐸⃑ 2(𝑥) − 𝐸⃑ 1(𝑥)] × 𝑛̂ = 0 

[𝐻⃑⃑ 2(𝑥) − 𝐻⃑⃑ 1(𝑥)] × 𝑛̂ = 0                                           (2.7) 

where 𝐸⃑ 1(𝑥) and 𝐸⃑ 2(𝑥) are field inside particle and in the surrounding medium, x is on 

the particle surface 𝑆, 𝑛̂ is pointing outward normal to 𝑆. 

In spherically symmetric problems, it is more convenient to choose functions 𝜓  that 

satisfy the wave equation written in spherical polar coordinates 𝑟, 𝜃, 𝜙.  

                            
1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝜓

𝜕𝑟
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝜓

𝜕𝜃
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕𝜓2

𝜕𝜙2 + 𝑘2𝜓 = 0                 (2.8) 

and the boundary conditions are 

                                           𝐸𝑖𝜃 + 𝐸𝑠𝜃 = 𝐸1𝜃,       𝐸𝑖𝜙 + 𝐸𝑠𝜙 = 𝐸1𝜙    

                                          𝐻𝑖𝜃 + 𝐻𝑠𝜃 = 𝐻1𝜃,       𝐻𝑖𝜙 + 𝐻𝑠𝜙 = 𝐻1𝜙                                (2.9) 

Constructing solutions of Maxwell equations (2.8) that satisfy the boundary conditions 

(2.9) results in the scattered field:113 

                                  𝐸⃑ 𝑠 = ∏ 𝑖𝑛𝐸𝑖√(2𝑛 + 1)(𝑖𝑎𝑛𝑁⃑⃑ 𝑚) − 𝑏𝑛𝑀⃑⃑ 𝑚
𝑛=∞
𝑛=1                             (2.10) 
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where n is the multipole order (i.e., n=1 stands for dipole mode, 2-quadrupole etc.) for 

scattering elements and it is terminated according to the convergence criterion 𝑛 = 𝑥 +

4√𝑥
3

+ 2 with 𝑥 =
2𝜋𝑟

𝜆
, as proposed in [Bohren and Huffman, 1983]. 𝐸𝑖  is the incident 

electric field strength, and Mie coefficients 𝑎𝑛, 𝑏𝑛 depend on particle size and material 

coefficients for electric and magnetic multipole modes. Given a typical system, once the 

Mie coefficients are known, the scatterer optical response is supposed to be uncovered. 

The expression of total scattering cross section of a sphere for a plane wave is given by: 

                                     𝐶𝑠𝑐𝑎 =
𝑃𝑠𝑐𝑡

𝐼𝑖
=

2𝜋

𝑘2
∑ (2𝑛 + 1)(|𝑎𝑛|2 + |𝑏𝑛|2)𝑛=∞

𝑛=1                        (2.11) 

Where 𝑃𝑠𝑐𝑡 is the scattered light power, 𝐼𝑖is the incident light intensity. If the permeability 

of the particle and the surrounding medium to be the same (𝜇1 = 𝜇2), the coefficients can 

be derived from the following expressions: 

                                  𝑎𝑛 =
𝜓𝑛(𝑥)𝜓𝑛

′ (𝑚𝑥)−𝑚𝜓𝑛
′ (𝑥)𝜓𝑛(𝑚𝑥)

𝜉𝑛(𝑥)𝜓𝑛
′ (𝑚𝑥)−𝑚𝜉𝑛

′ (𝑥)𝜓𝑛(𝑚𝑥)
                                          (2.12) 

                                    𝑏𝑛 =
𝜓𝑛(𝑚𝑥)𝜓𝑛

′ (𝑥)−𝑚𝜓𝑛(𝑥)𝜓𝑛
′ (𝑚𝑥)

𝜓𝑛(𝑚𝑥)𝜉𝑛
′ (𝑥)−𝑚𝜉𝑛(𝑥)𝜓𝑛

′ (𝑚𝑥)
                                          (2.13) 

where 𝑚 is the complex refractive index, 𝑥 =
2𝜋𝑟

𝜆
 is the size parameter given 𝜆 is the 

wavelength of the radiation and r is the radius of the sphere, prime denotes a derivation 

with respect to the argument in parentheses. The Functions 𝜓𝑛(𝑥) and 𝜉𝑛(𝑥) are Riccati-

Bessel functions defined in terms of the spherical Bessel function of the first kind, 𝐽𝑛(𝑥), 

and the spherical Hankel function of the first kind, 𝐻𝑛
(1)

(𝑥).114 

                                    𝜓𝑛(𝑥) = 𝑥𝑗𝑛(𝑥) = √
𝜋𝑥

2
𝐽
𝑛+

1

2

(𝑥)                                      (2.14) 

                                    𝜉𝑛(𝑥) = 𝑥ℎ𝑛(𝑥) = −√
𝜋𝑥

2
𝐻

𝑛+
1

2

(1) (𝑥)                                 (2.15) 

On the other hand, for the case that the particle is much smaller than the wavelength of 

incident light, the Rayleigh scattering cross section is proportional to the absolute square 

of particle polarizability: 

𝐶𝑅 =
𝑘4

6𝜋
|𝛼|2                                                   (2.16) 
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where 𝛼 is the polarizability of the particle and 𝑘 is the wave vector in the medium. For a 

nanosphere with polarizability of 4𝜋𝑟2 𝜀−1

𝜀+2
 , the scattering cross section is given as 

(
8𝜋

3
) (

2𝜋𝑚0

𝜆
)
4
𝑟6 (

𝜀−1

𝜀+2
)
2

, where  𝑚0  and 𝜀0  are the refractive index and permittivity of 

medium, r and 𝜀 are the radius and permittivity of nanosphere. Accordingly, Mie theory 

may be used to describe most spherical particle scattering systems, including Rayleigh 

scattering. However, Rayleigh scattering theory is generally preferred if applicable 

because of the complexity of the Mie scattering formulation.  

2.1.2 Dielectric function of metallic and dielectric material 

Dielectric function describes the electric polarizability response of material to external 

electric field, denoted by the Greek letter  𝜀.  It can be experimentally determined via 

complex refractive index of the medium, 𝑛̃(𝜔) = 𝑛(𝜔) + 𝑖𝜅(𝜔), defined as 𝑛̃ = √𝜀. As 

previously stated, an applied electromagnetic field drives the positive and negative 

charges in material oscillating. Since the nucleus of atom is much more massive than the 

electrons, the oscillation resembles conduction electrons moving against a background 

of heavy immobile ions. Hence, the optical response of material can be treated as an 

electron-spring model.  

In metallic structures, electrons can more or less freely move under the influence of 

applied electric fields. Therefore, they are considered as ideal gas in the Drude model, 

therein the dielectric function of metal  is approximated as:115 

                                                  𝜀𝐷𝑟𝑢𝑑𝑒 = 𝜀∞ −
𝜔𝑃

2

𝜔2−𝑖𝜔𝛾
                                           (2.17) 

Where the plasma frequency ωp = √
Ne2

mε0
 is a function of electron density N, as well as the 

effective mass m, and the vacuum dielectric function ε0. Their motion is damped via 

collisions occurring with a characteristic collision frequency 𝛾 =
1

𝜏
 (𝜏  is the relaxation time 

of electron gas). It is noteworthy that the Drude model is proposed under free-electron 

approximation, which means it’s adequate when electrons from filled band are not excited 
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to higher bands. Once interband transition occurs, it cannot provide a good fit to the 

experimental data such as gold at the visible range.  

Figure 2.2 displays measured values (blue circles) of the real and imaginary components 

for gold dielectric function from [Johnson and Christy, 1972].116 The black curve, fitted by 

the Drude model with parameters presented in previous publication117 shows clear 

mismatch with the experimental data at high frequencies, especially for the imaginary 

part because the Drude model considerably underestimates losses in the visible.  

Figure 2.2 Dielectric function 𝜀(𝜔) of gold from the literature values (blue circle) fitted by 

Drude model (black line) and Drude-Lorentz model (red line).  

The limitation of Drude model in visible range can be overcome by incorporating a 

separated interband (bound-electron) expression. The interband transition effect can be 

described by means of a Lorentz component, leading to the Drude-Lorentz model 

                                           𝜀𝐷−𝐿 = 𝜀𝐷𝑟𝑢𝑑𝑒 + ∑
𝜔𝑃

2

 𝜔𝑙
2−𝜔2−𝑖𝜔𝛾𝑙

𝑙
𝑘=1                                 (2.18) 

Where 𝑙 is the number of Lorentz resonances, 𝜔𝑙 and 𝛾𝑙 are the plasma frequency and 

damping frequency for the bound electrons. The gold dielectric function calculate by the 

extended Drude model matches the measured data much better as presented in figure 

2.2.  

For semiconductors that have a negligible free carrier density, their dielectric function in 

the visible and ultraviolet range is dominated by interband transitions, while the Drude 
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contribution is neglectable.  Therefore, they can be constructed by linear combinations of 

several Lorentzian resonances: 

                                            𝜀𝐿 = 𝜀∞ + ∑
𝜔𝑃

2

 (𝜔)𝑙
2
−𝜔2−𝑖𝜔𝛾𝑙

𝑙
𝑘=1                                       (2.19) 

For example, the crystalline silicon (Si) dielectric function measurement data (blue curve) 

is perfectly fitted according to equation (2.19) as shown in figure 2.3. The fitting 

parameters are invoked in [48]. Here 5 resonances (𝑙 =5) are included and the phases of 

all 5 poles are close to 
𝜋

2
, corresponding to a classical damped Lorentz oscillator, such 

as a spring.  

Figure 2.3 Dielectric function 𝜀(𝜔) of Si (red curve) fitted by Lorentz model (blue circles) 

with parameters from previous publication.  

2.1.3 Metallic and dielectric optical antenna 

Typically, optical antennas are based on metals (Au and Ag) owing to their radiation less 

energy transport and spatial field confinement properties of SPPs. However, such 

metallic materials have high losses at optical frequencies. Together with the limited 

electric field enhancement,118, 119 new materials of high-index dielectric nanostructures 

with improved plasmonic properties have been proposed. These structures can facilitate 

light manipulation, and offer very low optical losses, moreover, support both electric and 

magnetic resonant response. Here we compare the scattering cross section of plasmonic, 

and high-index dielectric nanoparticle as shown in figure 2.4. The calculation is based on 
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the Mie scattering coefficient equations from equation (2.11) - (2.15) and the involved 

material properties are discussed in part 2.1.2. 

 

 

 

 

 

 

 

Figure 2.4 Total scattering cross section of (a) Ag nanosphere and (b) Si nanosphere, 

depending on radius and incident light energy.120  

Scattering coefficient diagram of Ag and Si nanoparticle is presented as function of their 

radius and incident light energy. For an Ag nanoparticle with diameter below 140 nm and 

in the energy range of 2.6 eV to 3.8 eV, there is resonant mode of electric dipole (ed), 

electric quadrupole (eq), and electric octupole (eo). All resonances demonstrate a red 

shift with increasing nanoparticle radius from 20 nm to 150 nm. On the other hand, the 

high-index dielectric Si nanoparticle supports both electric and magnetic resonance. 

Magnetic mode also displays smooth spectral red-shift with increase of particle size.  

 

 

 

 

  

 

Figure 2.5 Scattering spectrum from a free-standing Si sphere with a radius of 100 nm 

calculated by Mie theory, with the overall scattering efficiency (black curve) and the 

(a) (b) 

ed 

eq 
eo 

md ed mq 

Full scattering 

md 

mq 
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contributions of the electric dipole (red) and magnetic dipole (blue) and quadrupole (green) 

modes.120, 121  

For the dielectric material, as the main concern in this work, figure 2.5 illustrates the 

scattering spectrum of a Si particle with diameter of 100 nm (black curve). The overall 

spectrum can be further decomposed into several Mie resonant modes, namely the 

magnetic dipole (blue curve), electric dipole (red curve), and magnetic quadrupole (green 

curve).120, 121  

Concerning the dissipative losses of metallic and dielectric nanostructures, we also 

calculate the absorption cross section of Ag nanoparticle and Si nanoparticle according 

to Equation (2.20) and (2.21).108, 122, 123 A significant less absorption strength of Si 

nanoparticle can be seen in Figure 2.6 in comparison to Au nanoparticle, and the 

absorption of Si rapidly decreases as the light energy is reduced because of the lower 

loss away from the main absorption band.  

                                        𝐶𝑒𝑥𝑡 =
2𝜋

𝑘2
∑ (2𝑛 + 1)𝑅𝑒(𝑎𝑛 + 𝑏𝑛)𝑛=∞

𝑛=1                                 (2.20) 

                                        𝐶𝑎𝑏𝑠 = 𝐶𝑒𝑥𝑡 − 𝐶𝑠𝑐𝑡                                                (2.21) 

Where 𝐶𝑒𝑥𝑡 and 𝐶𝑎𝑏𝑠 are extinction and absorption cross sections of a particle. 

 

 

 

 

 

 

Figure 2.6 Total absorption cross section of (a) Ag nanosphere and (b) Si nanosphere, 

depending on radius and incident light energy.  

(a) (b) 
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2.2 Optical waveguide 

Waveguide nanostructures are also an approach to manipulate light. This paragraph 

discusses the wave propagation in a simple form of waveguide, step index optical fiber. 

Its structure is sketched in figure 2.7. A light-conducting fiber core with circular cross-

section is surrounded by ring-shaped cladding area, forming a refractive index profile: 

𝑛(𝑟) = {

𝑛𝐾                                           𝑟 < 𝑎

𝑛𝑀                                𝑎 < 𝑟 <
𝐷

2

 

In order to realize light confinement, the refractive index of cladding material nM is about 

a few percent smaller than that of the core nK, satisfying the total internal reflection 

condition. 

 

 

 

 

 

 

Figure 2.7 schematic of a step index fiber. The index ‘K’, ’M’ and ‘0’ denotes the quantity 

of core, cladding, and vacuum, respectively. 

In this geometry, we take the wave equation (2.6) in cylindrical coordinates 𝑟, ∅, 𝑧, and 

the wave propagation is in z direction 

                                      
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
𝐸) +

1

𝑟2𝜕2

𝜕∅2 𝐸 +
𝜕2

𝜕𝑧2 𝐸 = −𝑘2 𝜕2

𝜕𝑡2 𝐸                              (2.22) 

It can be sorted as124 

         −
1

𝛷

𝜕2

𝜕∅2 𝛷 =
1

ℛ
(𝑟2 𝜕2

𝜕𝑟2 ℛ + 𝑟
𝜕

𝜕𝑟
ℛ + 𝑟2(𝑘2 − 𝛽2)ℛ)                         (2.23) 

with the electric field 𝐸 = ℛ(𝑟)𝛷(∅). 𝛽 is named as propagation constant, which is the 

longitudinal component of wave vector. Clearly, the two variables ∅ and 𝑟 of optical field 

𝑛0 = 1 
𝑛𝑀 

𝑛𝐾 

2𝑎 

𝛾1 
𝜗1 𝐷 
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stand separately in two sides of the function and must be equal to some constant, 𝑙2 for 

instance. Therefore, we get two equations of function 𝛷(∅) and ℛ(𝑟): 

                                                             
𝜕2

(𝜕∅2)
𝛷 + 𝑙2𝛷 = 0                                          (2.24) 

                                           𝑟2 𝜕2

𝜕𝑟2 ℛ + 𝑟
𝜕

𝜕𝑟
ℛ + (𝜅2𝑟2 − 𝑙2)ℛ = 0                               (2.25) 

with 𝜅2 = 𝑘2 − 𝛽2. Recall the introduction of 𝛽 as longitudinal wave vector, 𝜅 is therefore 

the transversal component of wave vector k. 

Apparently, the equation (2.25) has the form of Bessel’s differential equation where 𝑙 is 

the order of the Bessel equation. For a specific 𝑙, it is solved by: 

   ℛ = {
   𝑐1𝐽𝑙(𝜅𝑟) + 𝑐2𝑁𝑙(𝜅𝑟)                          (𝜅𝑟)

2 ≥ 0   

𝑐3𝐼𝑙(𝜅𝑟) + 𝑐4𝐾𝑙(𝜅𝑟)                          (𝜅𝑟)
2 < 0

                           (2.26 a)       

where 𝐽𝑙 , 𝑁𝑙 , 𝐼𝑙 , 𝐾𝑙  are Bessel functions, (𝜅𝑟)2 < 0  corresponds to an imaginary wave 

vector component in fiber cross section, representing the evanescent wave in cladding, 

and the relationship of 𝑘𝐾
2 − 𝛽2 ≥ 0 in core and 𝑘𝑀

2 − 𝛽2 < 0 in cladding, implies that  

𝑘𝐾 ≥ 𝛽 > 𝑘𝑀.  

 

 

 

 

 

 

 

 

Figure 2.8 Plot of Bessel function of the first kind 𝐽𝑙  and second kind  𝑌𝑙 , as well as 

modified Bessel function of the first kind  𝐼𝑙 and second kind 𝐾𝑙 for integer orders 𝑙 =

1, 2, 3. 

𝐽 𝑙
( 𝑥
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Figure 2.8 illustrates four Bessel functions for low orders. Both 𝐽𝑙  and 𝑁𝑙  display 

oscillating line shape and 𝐼𝑙 , 𝐾𝑙  are exponentially increasing or decreasing function. 

Physically speaking, we do not expect an electric field amplitude to have singularities. 

However, 𝑁𝑙 has singularity at origin (x=0), and 𝐽𝑙 is infinite as x increases, therefore the 

coefficient of 𝑁𝑙 in the core,  𝐼𝑙 in the cladding are supposed to be eliminated. Moreover, 

𝐽𝑙 is finite at the origin (x=0) for integer number 𝑙, otherwise it is a multivalued function 

with singularity at 0.  Hence, 𝑙 must be an integer number. Overall, the solution ℛ(𝑟) 

holds the form of either Bessel function 𝐽𝑙  in core or modified Hankel function  𝐾𝑙  in 

cladding: 

ℛ = {
   𝑐1𝐽𝑙(𝜅𝑟)                          𝑟 ≤ 𝑎   

𝑐4𝐾𝑙(𝜅𝑟)                          𝑟 > 𝑎
                                 (2.26 b) 

To this point, we may seek the solutions. Because the equation (2.24) has general 

solution of 

                                              𝛷 = 𝑐0 cos(𝑙∅ + ∅0)                                               (2.27) 

Where 𝑐0 and ∅0 are constant.  𝛷 and 
𝜕𝛷 

𝜕∅
 must be continuous at ∅0 and ∅0 + 2𝜋.  

the solution of the wave equation for a step index fiber is given by 

                                         𝐸𝐾 = 𝐶𝐾𝐽𝑙 (
𝑢𝑟

𝑎
) cos(𝑙∅ + ∅0)                 𝑟 ≤ 𝑎      

𝐸𝑀 = 𝐶𝑀𝐾𝑙 (
𝑤𝑟

𝑎
) cos(𝑙∅ + ∅0)               𝑟 > 𝑎                         (2.28) 

Here  𝑢 = 𝜅𝐾𝑎 and 𝑤 = 𝜅𝑀𝑎 are real positive quantities. Combing the boundary condition 

that solutions are continuous at 𝑟 = 𝑎: 

𝐸𝐾(𝑟 = 𝑎) = 𝐸𝑀(𝑟 = 𝑎)       

𝜕

𝜕𝑟
𝐸𝐾(𝑟 = 𝑎) =

𝜕

𝜕𝑟
𝐸𝑀(𝑟 = 𝑎)                                        (2.29) 

the characteristic relation determining solutions of the wave equation in a step index 

fiber is obtained: 

𝐽𝑙(𝑢)

𝑢𝐽𝑙+1(𝑢)
=

𝐾𝑙(𝑤)

𝑤𝐾𝑙+1(𝑤)
                                                (2.30) 
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For a given a system with known 𝑎, 𝑛𝐾 , 𝑛𝑀, the propagation of light can be described 

numerically from Equation (2.30). It has multiple solutions that are numbered with 𝑙 =

 1,2,3… Adopting the terminology that was introduced for fiber modes in 1971 by Gloge,125 

These are LP01, LP11, LP02, and LP21 modes strongly localized within the waveguide. 

Here, the first index indicates the number of pairs of nodes of the electric field strength in 

the azimuthal coordinate, and the second index gives the number of nodes in the radial 

direction, including the approach toward zero for large radii. Before we discuss the mode 

profile for different value of 𝑙, the parameters we introduced are summarized in table 1, 

which are also universally used in literatures. 

 Table 1  

 

 

 

 

 

 

 

 

 

 

Now we take a numerical example of a step index fiber with radius of 1 µm and 𝑛𝐾 = 2, 

𝑛𝑀 = 1.4. The calibrated electric field distributions of four typical modes for an incident 

light wavelength of 900 nm are displayed in figure 2.9. For mode LP01, the distribution is 

rotationally invariant, and on any circular path around the center one would find a 

constant field amplitude. For mode LP11 and LP13, the field amplitude will vary according 

to a sinusoidal function of the azimuthal angle. There is a positive lobe and a negative 

lobe, and the algebraic sign indicates the phase of the field. Thus, in one lobe the field 

 Definition 

Longitudinal wave vector 𝑘𝐾 ≥ 𝛽 > 𝑘𝑀 

Transversal wave vector 𝜅 = √𝑘2 − 𝛽2 

Core parameter 
𝑢 = 𝑎√𝑘0

2𝑛𝐾
2 − 𝛽2 

Cladding parameter 
𝑤 = 𝑎√𝛽2 − 𝑘0

2𝑛𝑀
2  

Fiber parameter  
𝑉 = 𝑢2 + 𝑤2 = 𝑎𝑘0√𝑛𝐾

2 − 𝑛𝑀
2  
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oscillates in opposite phase to the other. For mode LP42, a circular path would run through 

four full periods of the sine function. The electric field pattern then resembles a four-leafed 

clover. Again, each pair of leaves in opposite positions has the same phase while the 

other pair has opposite phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Electric field distributions of several LP modes and normalized electric field 

plots at the center position. From top: LP01, LP11, LP13, LP42. 
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2.3 Optical local density of state 

The rapid development of SNOM technique calls for a theoretical understanding the 

signals of near-field optical microscopy and spectroscopy. Unlike the far-field optical 

microscope, the images obtained by SNOM are not necessarily coincident with the 

topography but are expected to be the solutions of Maxwell equations. Carminati and 

Sáenz proposed that the measured near-field quantity is related to optical local density 

of state (LDOS).126  

As well known, the LDOS is not a commonly used concept in optics but is rather applied 

to electrons in solid state physics. It describes the possibility of finding an electron of 

energy ℏ𝜔 in a volume V. It was demonstrated that, in STM, the tunneling current is 

proportional to the value of the electron LDOS of the surface.127 The analogy between 

STM and SNOM, under a weak tip-sample coupling approximation, allows using the 

formula of scanning tunneling microscopy (STM) to fundamentally understand SNOM 

signal. Moreover, the connection of measured near-field quantity and optical local density 

of states (LDOS) was demonstrated by experimental work.128, 129  

2.3.1 Scanning tunneling microscope  

The scanning tunneling microscope (STM), namely based on quantum mechanical 

tunneling, is a type of microscope for imaging geometry of surfaces at the atomic level. 

The idea is applying a small bias voltage between an atomically metallic tip and 

conducting material, when the sharp tip is brought in proximity to the sample (≤ 10Å), a 

tunneling electrons form current flowing across the gap.130, 131 The measurements are 

usually performed in a constant current mode to probe the electronic structure of the 

sample.  The tip is mounted on a piezo drive made of piezoelectric ceramics, therefore 

the tunneling current is kept constant during scanning the sample by applying appropriate 

voltages to the piezo drive. Simultaneously a feedback loop controls the distance 

between the sample and the tip to achieve a constant tunneling current. Finally, the 

applied voltages to piezo drive are converted into a topographic image of the scanned 

surface with a resolution in the order of atomic distances. It is noteworthy that the image 

can not only be interpreted as a topographic map but also probe information on the 
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property vibrations of the sample because the tunneling current is influenced by the 

lateral and vertical variation of the electronic state density at the surface.  

2.3.1.1 Tunneling a rectangular potential barrier 

The relationship between STM signal and electric LDOS is concluded from the tunneling 

current between the probe and sample surface. Before deducing the STM tunneling 

signal, we firstly introduce the general concept of quantum tunneling.  

In classical mechanics, it is not possible for a particle to penetrate or across a potential 

such as a barrier if the energy of a particle is smaller than the potential energy of the 

barrier. In quantum, a particle as wave-like properties may propagate through a potential 

barrier, known as quantum tunneling. Tunneling is normally described by a transmission 

coefficient which gives the ratio of the current density emerging from a barrier divided by 

the current density incident on a barrier. Here we illustrate quantum tunneling in simple 

case of a particle in a rectangular potential energy barrier.  

Suppose a uniform and time-independent beam of electrons with energy 𝐸  traveling 

along x-axis encounters a potential barrier illustrated in figure 2.10. A constant potential 

𝑉(𝑥) = 𝑉0 resembles the energy barrier between the STM tip and the sample surface. 

Therefore, the area is divided into three regions. Region ǀ and region ⫴ represent the tip 

and sample respectively, and region ǁ represents the vacuum gap. We consider the 

situation that 𝐸 < 𝑉0. The question here is the probability of an individual particle in region 

ǀ traversing through the potential barrier to region ⫴. 

 

 

 

 

 

 

Figure 2.10 Schematic of a potential energy barrier. 
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The wave characteristics of a particle is described by wave function which is determined 

by the Schrödinger equation, analogous to electric and magnetic fields described by 

Maxwell’s equations. The time independent Schrödinger equation in 1D case is  

   𝐻𝜓(𝑥) = −
ℏ2

2𝑚

𝑑2𝜓(𝑥)

𝑑𝑥2 + 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)                             (2.31) 

where 𝜓(𝑥) is the Hamiltonian, 𝑚 is the mass, 𝐸 the energy of the particle, and 𝑉(𝑥) 

is the potential energy of barrier that in this case follows the function: 

𝑉(𝑥) = {
0,                            𝑥 < 0
𝑉0                   0 ≤ 𝑥 ≤ 𝐿
0,                           𝑥 > 𝐿 

                                        (2.32) 

Hence the stationary Schrödinger function has three forms in three regions. In left 

regionⅠ ∞ < 𝑥 < 0, 

−
ℏ2

2𝑚

𝑑2𝜓Ⅰ(𝑥)

𝑑𝑥2 = 𝐸𝜓Ⅰ(𝑥)                                               (2.33) 

In region Ⅱ0 ≤ 𝑥 ≤ 𝐿, 

−
ℏ2

2𝑚

𝑑2𝜓Ⅱ(𝑥)

𝑑𝑥2 = (𝐸 − 𝑉0)𝜓Ⅱ(𝑥)                                        (2.34) 

In region Ⅲ 𝐿 < 𝑥 < ∞, 

−
ℏ2

2𝑚

𝑑2𝜓Ⅲ(𝑥)

𝑑𝑥2 = 𝐸𝜓Ⅲ(𝑥)                                             (2.35) 

The general solution of such differential equation is a linear combination: 

𝜓(𝑥) = 𝐶1𝑒
𝜆1𝑥 + 𝐶2𝑒

𝜆2𝑥                                             (2.36) 

where 𝜆1,2(𝑉) = ±√−
2𝑚

ℏ2
(𝐸 − 𝑉) . These coefficients can be either real or imaginary 

depending on the relative magnitude of particle energy 𝐸 and potential barrier 𝑉. The sign 

‘±’ indicates the direction of moving waves either forward ‘+’ or backward ‘−’. Therefore, 

the solutions of the Schrödinger function (2.33) - (2.35) are obtained separately for each 

region 
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Ⅰ. V = 0,                𝜓Ⅰ(𝑥) = 𝐴𝑒𝑖𝑘Ⅰ𝑥 + 𝐵𝑒−𝑖𝑘Ⅰ𝑥                           with 𝑘Ⅰ = √
2𝑚𝐸

ℏ
              (2.37) 

Ⅱ. V = V0,             𝜓Ⅱ(𝑥) = 𝐶𝑒𝑘Ⅱ𝑥 + 𝐷𝑒−𝑘Ⅱ𝑥                           with 𝑘Ⅱ = √
−2𝑚(𝐸−𝑉0)

ℏ
     (2.38) 

Ⅲ. V = 0,               𝜓Ⅲ(𝑥) = 𝐹𝑒𝑖𝑘Ⅲ𝑥                                         with 𝑘Ⅲ = √
2𝑚𝐸

ℏ
            (2.39) 

There are two waves in region Ⅰ,in which one is incident 𝜓in(𝑥) = 𝐴𝑒𝑖𝑘Ⅰ𝑥 and the other 

is reflected 𝜓ref(𝑥) = 𝐵𝑒−𝑖𝑘Ⅰ𝑥. In region Ⅲ, there is only one term because there only 

exists transmitted wave 𝜓tra(𝑥) = 𝐹𝑒−𝑖𝑘Ⅲ𝑥. In the region Ⅱ, the coefficient 𝜆 in Equation 

(2.36) is imaginary number, therefore the general solution is not oscillatory but in the form 

of exponentials. The relation between five coefficients can be calculated from the 

continuity condition at region boundaries  

𝜓Ⅰ(0) = 𝜓Ⅱ(0);                      𝜓Ⅱ(𝐿) = 𝜓Ⅲ(𝐿)                          (2.40) 

 
𝑑𝜓Ⅰ(0)

𝑑𝑥
=

𝑑𝜓Ⅱ(0)

𝑑𝑥
;                      

𝑑𝜓Ⅱ(𝐿)

𝑑𝑥
=

𝑑𝜓Ⅲ(𝐿)

𝑑𝑥
                           (2.41) 

In general, the probability density is |𝜓(𝑥)|2 = 𝜓(𝑥)𝜓∗(𝑥), hence the tunneling probability 

or transmitted probability can be obtained from the ratio of corresponding coefficients. 

For instance, the probability of transmission is given as 

 𝑇 =
|𝜓𝑡𝑟𝑎(𝑥)|2

|𝜓𝑖𝑛(𝑥)|2
=

|𝐹|2

|𝐴|2
                                             (2.42) 

This is the probability a particle in incident beam tunneling through the potential barrier 

as a function of barrier width 𝐿, particle total energy 𝐸, and barrier potential energy 𝑉0. 

When an electron is incident upon a vacuum barrier with potential energy larger than the 

kinetic energy of the electron, there is still a non-zero probability that it may travel the 

forbidden region and appear on the other side of the barrier.  

2.3.1.2 Tunneling current  

Theories of STM had been developed shortly after the first experimental demonstrations. 

Many of these theories are in common derivation analogous to that of Bardeen's 
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approach which  makes use of the time dependent perturbation theory, originally derived 

for electron tunneling between two weakly coupled electrodes.132 In Bardeen’s formalism, 

the total tunneling current in terms of wave functions determined separately for each 

electrode in the absence of each other is given by 

𝐼 =
2𝜋𝑒

ℏ
∑ 𝑓(𝐸𝜇)[1 − 𝑓(𝐸𝜈 + 𝑒𝑉)]|𝑀𝜇𝜈|

2
𝛿(𝐸𝜇 − 𝐸𝜈)𝜇𝜈                         (2.43) 

𝑓(𝐸) = 𝑒
(
𝐸−𝐸𝐹
𝑘𝐵𝑇

+1)
−1

                                            (2.44) 

𝑓(𝐸) is the Fermi function, V is the applied voltage, 𝑀𝜇𝜈 is the tunneling matrix element 

between the tip wavefunction 𝜓𝜇 and the sample surface wavefunction 𝜓𝜈. 𝛿(𝑥) the delta 

function, 𝐸𝜇 and 𝐸𝜈 are the energy of the state 𝜓𝜇 and 𝜓𝜈 in the absence of tunneling.  

For small tunneling voltages and low temperature, f(E) can be expanded to obtain: 

𝐼 =
2𝜋

ℏ
𝑒2𝑉 ∑ |𝑀𝜇𝜈|

2
𝛿(𝐸𝜇 − 𝐸𝐹)𝛿(𝐸𝜈 − 𝐸𝐹)𝜇,𝜈                               (2.45) 

the tunneling matrix element is given by an integral over a surface in the barrier region 

lying between the tip and sample, as shown by Bardeen: 

𝑀𝜇𝜈 =
ℏ2

2𝑚
∫(𝜓𝜇

∗ ∇⃑⃑ 𝜓𝜈 − 𝜓𝜈 ∇⃑⃑ 𝜓𝜇
∗)𝑑𝑠                                          (2.46) 

Where m is the free electron mass, * denotes the complex conjugate.  

Tersoff and Hamann have applied this model and described the tip as a spherical 

potential well where approaches nearest to the surface with a distance 𝑑 as sketched in 

figure 2.11.127 The local radius of curvature of the tip apex is 𝑅. As discussed in equation 

(2.37) – (2.39), the wavefunctions in the gap can be written as: 

𝜓𝜈(𝑧) = 𝜓𝜈
0e𝜅z                                                   (2.47) 

𝜓𝜇(𝑧) = 𝜓𝜇
0e𝜅(z−d)                                             (2.48) 

where  𝜅 =
√2mϕ

ℏ
 is the minimum inverse decay length for the wave function in vacuum, 

ϕ is the local barrier height. Such exponential dependence enables STM atomic scale 

resolution. The wavefunctions in the xy plane are expanded: 
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𝜓𝜈
0 = Ω𝑠

−
1

2 ∑ 𝑎𝐺𝑒
(𝜅2+|𝑘⃑ ∥+𝐺 ⃑⃑  ⃑|

2
)

1
2
𝑧
𝑒𝑖(𝑘⃑ ∥+𝐺 )𝑥 

𝐺                                (2.49) 

𝜓𝜇 = Ω𝑡

−
1

2𝑐𝑡𝜅𝑅𝑒𝜅𝑅(𝜅|𝑟 − 𝑟 0|)
−1𝑒−𝜅|𝑟 −𝑟 0|                               (2.50) 

where Ω𝑠/𝑡 is the volume of sample or tip, 𝑘⃑ ∥ is a surface Bloch wave vector of the state, 

and 𝐺  is a two-dimensional reciprocal-lattice vector of the surface. The first few factors 

𝑎𝐺 are typically of order unity.  

The concluded tunneling current is: 

 𝐼 =
32𝜋3𝑒2𝑉

ℏ
ϕ2𝐷𝑡(𝐸𝐹)𝑅

2𝜅−4𝑒2𝜅𝑅 × ∑ |𝜓𝜈(𝑟 0)|
2𝛿(𝐸𝜈 − 𝐸𝐹)𝜈               (2.51) 

Where 𝐷𝑡 is the density of states per unit volume of the tip.  

Correspondingly, the tunneling conductance 
𝑑𝐼

𝑑𝑉
 can be obtained as 𝜎 ∝ 𝜌(𝑟0, 𝐸𝐹) that is 

proportional to the surface local density of states:  

𝜌(𝑟0, 𝐸𝐹) = ∑ |𝜓𝜈(𝑟 0)|
2𝛿(𝐸𝜈 − 𝐸𝐹)𝜈                                         (2.52) 

 

 

 

 

 

Figure 2.11 Geometry of tip-sample tunneling. Prober has a locally spherical apex with 

radius of curvature R. The center of curvature is at position of 𝑟 0. The distance between 

tip a sample surface is d. 

Therefore, by measuring the derivation of the tunneling current with respect to the applied 

voltage, one can simply detect the sample local density of state. 

Experimentally, electron LDOS was nicely imaged in the direct space with low 

temperature STM in 1993.133 Crommie, Lutz, and Eigler constructed a quantum corral 

with STM by placing 48 Fe atoms on a Cu surface, forming a ring with diameter of 10 nm. 
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The electronic local density of stated at fermi energy surrounding the atoms were 

beautifully observed.  

2.3.2 Optical LDOS 

The identification of the role of the electron LDOS in the formation of STM images led 

Carminati and Sáenz to derive Bardeen's formula to the scattering of electromagnetic 

waves in SNOM.134 For the SNOM situation, the tip-sample system is illuminated by a 

light source, and part of the scattered energy is collected by a detector. The gap region 

(between the sample and the tip) is assumed to be vacuum or air. Being analogy to the 

described stationary state of the electron, the state of the electromagnetic field at a given 

frequency𝜔 is represented by a wave function 𝜓(𝑟 ), and can be written in the form of an 

angular spectrum of plane wave as described in equation (2.37) and (2.38) 

𝜓(𝑟 ) = ∫ 𝑎(𝑘⃑ ‖)𝑒
(𝑖𝑘⃑ ‖𝑅⃑ +𝑖𝜅𝑧)𝑑2𝑘⃑ ‖

∞

0
+ ∫ 𝑏(𝑘⃑ ‖)𝑒

(𝑖𝑘⃑ ‖𝑅⃑ −𝑖𝜅𝑧)𝑑2𝑘⃑ ‖
∞

0
                   (2.53) 

Where 𝑎(𝑘⃑ ‖) and 𝑎(𝑘⃑ ‖) are angular spectra of the wave function in the gap region, the 

perpendicular wave vector (along z direction) 𝜅 = √𝑘2 − 𝑘‖  for 𝑘‖
2 ≤ 𝑘2  and 𝜅 =

𝑖√𝑘‖ − 𝑘2  for 𝑘‖
2 > 𝑘2. The wave vector 𝑘 =

𝜔

𝑐
 for the electromagnetic field with 𝑐 being 

the speed of light in vacuum, and 𝑘2 =
2𝑚

ℏ2(𝐸−𝑉)
 for the electron wave function with 𝑚 being 

the electron mass ℏ is the Plonk constant.  The notations 𝑅⃑ = (𝑥, 𝑦), 𝑟 = (𝑥, 𝑦, 𝑧).  

The optical field probability current can be expressed by the introduced wave function as  

𝐽 (𝑟 ) =
ℏ

𝑚
𝐼𝑚[𝜓∗(𝑟 )∇𝜓(𝑟 )] where 𝑚 is the particle mass, 𝐼𝑚 denotes imaginary part and ∇ 

the del operator. It is also called probability flux that describes the flow of probability in 

terms of probability per unit time per unit area. Therefore, the total current through the 

gap region across a plane is ∅ = ∫ 𝐽(𝑟)𝑑2𝑅  in the form of： 

∅ =
ℏ

𝑚
∫ 𝛾 [|𝑎(𝑘⃑ ‖)|

2
− |𝑏(𝑘⃑ ‖)|

2
] 𝑑2𝑘⃑ ‖ +

ℏ

𝑚
∫ 𝛾[𝑎(𝑘⃑ ‖)𝑏

∗(𝑘⃑ ‖) − 𝑎∗(𝑘⃑ ‖)𝑏(𝑘⃑ ‖)]𝑑
2𝑘⃑ ‖𝑘‖

2>𝑘2𝑘‖
2≤𝑘2     (2.54) 

Here the total current is proportional to the total energy flux which includes two 

contributions. The first integral for a real perpendicular wave vector describes 
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propagating currents flowing in opposite directions. The other integral is for the case of 

imaginary perpendicular wave vector that describes an evanescent current. This causes 

the fundamental difference between SNOM and STM that both the propagating wave and 

evanescent wave are included in SNOM signal, while in the case of STM, the current in 

the gap only has the evanescent channel.  

 

 

  

 

 

 

 

Figure 2.12 (a) A SNOM setup with directional illumination with polarization 𝑘⃑ 𝑠. The light 

from source is scattered to detector with analyzer along direction of 𝑘⃑ 𝑑. 𝑎(𝑘⃑ ‖) and 𝑏(𝑘⃑ ‖) 

are the wave function coefficients representing opposite direction. (b) Illustration of the 

meaning of the sample wave function 𝜓⃑ 𝑠 which is the electric field, in the gap region, that 

results from scattering of the illuminating plane wave by the sample, in the absence of 

the tip. (c) Illustration of the meaning of the tip wave function 𝜓⃑ 𝑑 which is the electric field, 

in the gap region, that results from scattering by the tip of a plane wave of amplitude unity 

coming from the direction of the detector (wave vector −𝑘⃑ 𝑑, polarization state 𝑎 𝑑). 

The SNOM signal can in principle be computed with the known angular spectra 𝑎(𝑘⃑ ‖) 

and 𝑏(𝑘⃑ ‖) that can be obtained by numerically solving the specific scattering problem. 

Alternatively, analogy to the STM situation, the current can be described from Bardeen’s 

formula in the weak coupling condition. Carminati and Sáenz derived the electromagnetic 

current formula of SNOM with such approach.134 Figure 2.12 shows the SNOM setup 

depicted in [63]. The incident light wave with wave vector 𝑘⃑ 𝑠 has a state of polarization 

𝑎 𝑠. The detected scattering field is defined by the wave vector 𝑘⃑ 𝑑, and its polarization is 

(a) (b) (c) 
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determined by the analyzer on the detection path with polarization direction of 𝑎 𝑑. To 

express the scatter mathematically, the sample, tip, and the entire setup are described 

by their transmission tensor 𝑡⃡𝑠(𝑘⃑ ‖, 𝑘⃑ 𝑠), 𝑡⃡𝑑(𝑘⃑ 𝑑 , 𝑘⃑ ‖), 𝑇(𝑘⃑ 𝑑 , 𝑘⃑ 𝑠). The energy flux density on 

the detector is the flux of the Pointing vector is  

𝑆 = 2𝜋2𝜖0𝑐𝜅
2(𝑘⃑ 𝑑)|𝑎 𝑑 ∙ 𝑇(𝑘⃑ 𝑑 , 𝑘⃑ 𝑠) ∙ 𝑎 𝑠|

2
                                   (2.55)      

Where the matrix main quantity of 𝑀𝑑𝑠 = 𝑎 𝑑 ∙ 𝑇(𝑘⃑ 𝑑 , 𝑘⃑ 𝑠) ∙ 𝑎 𝑠 is analogous to the tunneling 

matrix in Bardeen’s formalism in equation (2.46). 

In a weak coupling approximation, namely the current in the gap results from fields 

scattered once between tip and sample, the transmission coefficient is 

𝑇(𝑘⃑ 𝑑 , 𝑘⃑ 𝑠) = ∫ 𝑡⃡𝑑(𝑘⃑ 𝑑, 𝑘⃑ ‖) 𝑡⃡𝑠(𝑘⃑ ‖, 𝑘⃑ 𝑠)𝑑
2𝑘                                     (2.56) 

The two fields illustrated in figure 2.12 (b) and (c) have the form of 

𝜓⃑ 𝑠(𝑟 ) = ∫ 𝑡⃡𝑠(𝑘⃑ ‖, 𝑘⃑ 𝑠) ∙ 𝑎 𝑠𝑒
(𝑖𝑘⃑ ‖𝑅⃑ +𝑖𝜅𝑧)𝑑2𝑘⃑ ‖

∞

0
                                   (2.57) 

𝜓⃑ 𝑑(𝑟 ) = ∫ 𝜏⃡𝑑(𝑘⃑ ‖, −𝑘⃑ 𝑑) ∙ 𝑎 𝑑𝑒(𝑖𝑘⃑ ‖𝑅⃑ −𝑖𝜅𝑧)𝑑2𝑘⃑ ‖
∞

0
                               (2.58) 

Where 𝜏⃡𝑑  satisfies 𝜅(𝑘⃑ 𝑑)𝑡⃡𝑑(𝑘⃑ 𝑑, 𝑘⃑ ‖) = 𝜅(𝑘⃑ 𝑑)𝜏⃡𝑑
𝑇(𝑘⃑ ‖, 𝑘⃑ 𝑑) , the superscript 𝑇  denoting the 

transposed tensor.135 Combing equation (2.57) – (2.58), the critical matrix is 

𝑀𝑑𝑠 =
1

8𝜋2𝑖𝜅(𝑘⃑ 𝑑)
∫[𝜓⃑ 𝑑(𝑟 ) ∙

𝜕𝜓⃑⃑⃑ 𝑠(𝑟 )

𝜕𝑧
− 𝜓⃑ 𝑠(𝑟 ) ∙

𝜕𝜓⃑⃑⃑ 𝑑(𝑟 )

𝜕𝑧
]𝑑2𝑅                        (2.59) 

This equation is like electron tunneling matrix element 𝑀𝜇𝜈 which is also an integral of 

function between state of probe and state of sample. It is noteworthy that the complex 

conjugation of the tip wave function is absent here. This is not a problem when the tip is 

not lossy, because the tip wave function 𝜓⃑ 𝑑(𝑟 ) is a real value. 

The derivation of equation (2.59) provides a general expression of the signal in STM and 

SNOM, which is appropriate to both the tunneling channels and electromagnetic vector 

fields. This unification thereby opens the way of attributing the SNOM signal to optical 

LDOS in weak coupling circumstance. Dereux et al 136 suggested that the near-field 

optical microscope operating in illumination mode should detect the surface 
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electromagnetic LDOS. Moreover, as the experimentally imaging the electron LDOS of a 

quantum corral with STM, the optical corral was also designed137 and its calculated optical 

LDOS maps were reproduced  by the detected the SNOM near-field signal.128 

To this point, we have introduced an important approach to explain the SNOM image and 

spectrum, that is to relate it to the local density of optical states (LDOS). The remaining 

part would be focused on the numerical calculations of the LDOS of a nanostructure. An 

elegant expression will be derived from an important relationship between the normal 

eigen modes of the structure and the dyadic Green’s function.1, 138 

For a closed non-absorbing nanocavity whose dimension is much smaller than 

wavelength of light, a set of discrete eigenmodes exist139 and obey the Helmholtz 

equation under a certain boundary condition as introduced in [67]:  

                                             ∇ × ∇ × 𝑒 𝑛(𝑟 ) −
𝜀(𝑟 )𝜔𝑛

2

𝑐2 𝑒 𝑛(𝑟 ) = 0                                  (2.60) 

where 𝑒 𝑛(𝑟 ) and 𝜔𝑛 are regarded as the eigen vectors and eigen frequencies. 𝜀(𝑟 ) is the 

dielectric function of the medium in the cavity. The corresponding eigen modes, namely 

the obtained solutions, satisfy the orthogonal relationship 

                                          ∫ 𝜀(𝑟 )
𝑉

𝑒 𝑚(𝑟 ) ∙ 𝑒 𝑛
∗(𝑟 )𝑑3𝑟 = 𝛿𝑚𝑛                                   (2.61) 

with the cavity volume 𝑉. Hence, the density of states (DOS) that corresponds to the 

number of states or modes within per unit volume and unit interval of frequency can be 

defined as: 

                                                 𝜌(𝜔) =
1

𝑉
∑ 𝛿(𝜔 − 𝜔𝑛)𝑛                                            (2.62) 

The local DOS is evaluated through a certain summation of the included states whose 

contribution is weighted by its amplitude of each eigen mode: 

                                             𝜌𝑒(𝜔) = ∑ |𝑒 𝑛(𝑟 )|2𝛿(𝜔 − 𝜔𝑛)𝑛                                      (2.63) 

The LDOS can be related to the dyadic Green’s function as following. The electric Green’s 

function 𝐺 𝐸(𝑟 , 𝑟 ′, 𝜔) for a homogeneous medium is a solution to: 

                          ∇ × ∇ × 𝐺 𝐸(𝑟 , 𝑟 ′, 𝜔) −
𝜀(𝑟 )𝜔2

𝑐2 𝐺 𝐸(𝑟 , 𝑟 ′, 𝜔) = 𝛿(𝑟 − 𝑟 ′)I⃡                      (2.64) 
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where I⃡ is the unit tensor.  

The Green function can be written in terms of the eigenmodes introduced above,138 

                                               𝐺 𝐸(𝑟 , 𝑟 ′, 𝜔) = ∑ 𝑐2
𝑛

𝑒 𝑛
∗(𝑟 ′)⊗𝑒 𝑛(𝑟 )

𝜔𝑛
2−𝜔2−2𝑖𝜔𝛾𝑛

                                 (2.65) 

Recalling the LDOS definition in equation (2.63), one can express the LDOS in the form 

of  

                                               𝜌𝑒(𝑟 , 𝜔) =
2𝜔

𝜋𝑐2 I𝑚[𝑇𝑟𝐺𝐸(𝑟 , 𝑟 , 𝜔)]                                  (2.66) 

where 𝑇𝑟  denotes the trace of the tensor in brackets. The Green’s function here 

describes the dipole emitted power summed over all directions, in contrast, for the case 

of specific oriented dipole source 𝑢⃑ , a projected LDOS is defined and written in the form  

                                     𝜌𝑒,𝑢⃑⃑ (𝑟 ,𝜔) =
2𝜔

𝜋𝑐2 I𝑚[𝑢⃑ ∙ 𝐺𝐸(𝑟 , 𝑟 , 𝜔) ∙ 𝑢⃑ ]                               (2.67) 

In practice, 𝜌𝑒,𝑢⃑⃑  is more significant to 𝜌𝑒  because any detected signal stems from the 

translation of charge carriers from one point to another. This formula is the main result of 

this section. It establishes the relationship between the LDOS and the imaginary part of 

the Green’s function, therefore provides a numerical calculation of LDOS which 

interpolates the near-field signal of SNOM. 

Interestingly, the projected LDOS also allows one to calculate the spontaneous decay 

rate (𝛾) of a two-level quantum system in an arbitrary reference system:1 

                                              𝛾 =
2𝜔0

3ℏ𝜀0
|𝑢⃑ |2𝜌𝑒,𝑢⃑⃑ (𝑟 ,𝜔)                                             (2.68) 

2.4 Point dipole model  

In this section, we will introduce another SNOM theory of tip-sample coupling system 

proposed by B. Knoll and F. Keilmann [77], then discuss background suppression and 

signal contrast enhancement of SNOM signal.  

Typically, in scattering SNOM, the incident laser source focused by conventional optics 

(fibers or objectives) allow for far-field illumination. Hence, the scattered signal comes 

from not only the near-field of emitters in the vicinity of the tip, but also directly from the 
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tip shaft as well as the sample. This directly scattered light usually causes a large 

background signal, obscuring the orders of magnitude smaller near-field signal. It 

contains no useful information and could introduce artifacts into s-SNOM images. 

Background suppression methods are therefore required to extract the pure near-field 

contribution. 

In principle, the background signal can be largely avoided by employing adiabatic 

nanofocusing to SNOM.140, 141 This technique is an active topic of current research and 

first applications in broadband light scattering and time-resolved spectroscopy are 

currently pursued in different laboratories.46 Regular s-SNOM is already much better 

understood. Specifically, some effort has been devoted in the past to distinguishing the 

near-field signal from the background in s-SNOM.58, 142-145 In a very common approach, 

the tip-sample distance is modulated with a frequency typically in the 10-kHz-range.146 

Due to the highly nonlinear dependence of the scattered near-field signal on the tip-

sample distance, higher harmonics of the modulation frequency are found in the signal. 

Demodulating at higher harmonics improves the near-field to background ratio and leads 

to improved contrast.145  

 

 

 

 

 

 

 

Figure 2.13 A typical probe-sample configuration of point dipole model in a uniform 

electric field (a) perpendicular and (b) parallel to the sample surface. The probe tip dipole 

𝑝 and sample image dipole 𝑝′ are separated with a distance of 2d.  

In the point dipole model, both probe tip and sample are represented by polarizable 

spheres. Within small distances, tip and sample dipole moments are mutually enhanced. 

(a) (b) 
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This theory is suitable for single molecules, small particles, or a planar surface. As 

illustrated in figure 2.13, the probe is modeled as a polarizable sphere with radius of a 

and polarizability of 𝛼. Sample with complex dielectric function of 𝜀 is positioned close to 

the probe with distance of 𝑑. As applying an incident electric field 𝐸0 perpendicular to the 

sample surface in panel (a), the probe sphere is excited, creating a dipole moment with 

polarization 𝑝 = 𝛼𝐸0. The polarization is the source of a point- dipole-like excitation at the 

tip position and emits a secondary field, 𝐸𝑑𝑖𝑝𝑜𝑙𝑒 =
𝑝

2𝜋𝑑3, which in turn induces an image 

dipole in the sample if the tip-sample-distance is roughly equal to or smaller than the apex 

radius of curvature. The image dipole has dipole moment determined by the complex 

dielectric function of the sample material, 𝑝′ = (𝜀 − 1)/𝜀 + 1) ∙ 𝑝 , and locates at a 

distance of 2𝑑 to the tip. It emits an electric field 𝐸𝐼𝐷 =
𝑝′

16𝜋𝑑3 which enhances the incident 

field at the tip position, such that the actual tip dipole moment becomes:145 

                                               𝑝 = 𝛼(𝐸0 + 𝐸𝐼𝐷) =
𝛼(1+𝛽)

1−
𝛼𝛽

16𝜋𝑑3

𝐸0                                       (2.69) 

where 𝛼 =
4𝜋𝑎3(𝜀𝑝−1)

𝜀𝑝+2
  with probe dielectric function 𝜀𝑝, and 𝛽 =

𝜀−1

𝜀+1
.  

Hence, the output signal of a tip-sample couple system is equivalent to an effective 

response to the incident electric field. The effective polarizability for the incident field 

perpendicular to the sample surface is： 

𝛼𝑒𝑓𝑓Ʇ =
𝛼(1+𝛽)

1−
𝛼𝛽

16𝜋𝑑3

                                                    (2.70) 

As the incident electric field parallel to the sample, the image dipole has an opposite sign 

to the tip dipole as shown in figure 2.13(b), and the corresponding effective polarizability:

  

𝛼𝑒𝑓𝑓‖ =
𝛼(1−𝛽)

1−
𝛼𝛽

32𝜋𝑑3

                                                     (2.71) 

Obviously, the response of tip in such dipole-dipole coupling model is strongly distance-

dependent. Here we take an example system applying a gold tip and 780 nm excitation 

light and calculate the scattering cross section of the tip apex according to 𝐶𝑠𝑐𝑎 =
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𝑘4

6𝜋
|𝛼𝑒𝑓𝑓|

2
 according to the Rayleigh scattering Equation (2.16). Figure 2.14 discuss the 

𝐶𝑆𝑐𝑎  dependency on the tip-sample distance for different incident electric field 

polarizations, tip radii, dielectric function (sample materials).  

 

 

 

 

 

Figure 2.14 Effective polarizability dependency on the tip-sample distance for (a) 

perpendicular (solid line) and parallel (dashed line) polarization of the incident electric 

field for 15 nm radius gold tip, (b) 15 nm (black curve) and 30 nm (red curve) radius gold 

tip under perpendicular polarization excitation on a gold film, (c) gold and silicon sample 

for a 15 nm radius gold tip under perpendicular polarization excitation. 

When excitation electric field polarization is parallel to the sample, the tip and image 

dipole cancel in the effective polarizability. Figure 2.14 (a) compares the scattering of a 

gold tip with 15 nm radius under excitation either parallel or perpendicular to the gold 

surface. An exponential increase is observed as tip-sample distance is reduced, which 

fits the evanescent feature of near-field. Clearly, the parallel polarization yields weaker 

response because the image dipole is out of phase to the probe dipole therefore 

destructively interference. From the aspect of tip size, the spatial resolution of SNOM 

could be improved by applying sharper tips. However, a smaller scatterer weakens near-

field enhancement (as indicated in Figure 2.14 (b)), because the Rayleigh scattering is 

proportional to the sixth power of radius. Another important factor influencing the near-

field signal is the material dielectric function. Panel (c) of Figure 2.14 depicts the 

perpendicular effective polarizability of gold tip for gold and silicon sample. Obviously, the 

sample with higher dielectric function is beneficial to the tip and sample enhancement. 

For a broad bandwidth measurement, a sample that is resonant in the incident light range 

generally displays a resonance in the near-field signal. From this point of view, SNOM 

(a) (b) (c) 
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enables identifying the local property of nanostructures. 

Due to the strong distance-dependence of the dipole-dipole coupling, the near-field signal 

resembles an exponential signal decreasing with tip-sample distance becoming larger, 

and a phase of 𝜑𝑁𝐹 due to the dipole-dipole coupling is taken into account:147 

𝐸𝑁𝐹(𝑧) = 𝐸𝑁𝐹,0 ∙ 𝑒
−

𝑑

𝑑0 ∙ 𝑒𝑖𝜑𝑁𝐹                                      (2.72) 

Here 𝑑0 is the near-field decay length, which depends on the tip radius of curvature. In 

contrast, the background field scattered from the tip shaft oscillates in a sinusoidal fashion 

and the variation period is in the light wavelength scale. Due to the pathway difference of 

two fields, the background signal 𝐸𝐵 has a phase shift with respect to the near field. The 

pathway of 𝐸𝐵  is longer the tip-sample distance 𝑑  plus a constant distance 𝑑̅ , which 

combines the distance from the apex, at which the backscattering from the shaft occurs. 

The pathway multiplied with the wave vector 𝑘 =
2𝜋

𝜆
 determines the phase of 𝐸𝐵 , together 

with a phase shift 𝜑𝐵 that can occur due to the reflection the background field is: 

𝐸𝐵(𝑧) = 𝐸𝐵,0 ∙ 𝑒𝑖2𝑘(𝑑+𝑑̅) ∙ 𝑒𝑖𝜑𝐵                                      (2.73) 

The other background field scattered from the sample 𝐸𝑠 is independent of the tip-sample 

distance. Both near-field and tip scattered background field are varying as a function of 

the tip-sample distance, while their dependency is essentially different. If the tip vibrates 

above the sample surface, the rapidly changing 𝐸𝑁𝐹(𝑧) generates light scattering at 

higher harmonics, while background is confined mostly to the DC term and lower 

harmonics. This is the main accordance to distinguish tow contributions.  

When the tip-sample distance d varies as a periodic function with period 𝑇: 𝑑 =  𝑑 (𝑡 ) =

 𝑑 (𝑡 + 𝑇 ), where 𝑇 =  𝑓−1 =  2𝜋𝛺−1 is the inverse of the tip modulation frequency. The 

distance can be written as a sinusoidal function with the modulation amplitude M, 

centered at the average tip-sample distance 𝑑̅: 

𝑑(𝑡) = 𝑑̅ + 𝑀 ∙ cos(𝛺𝑡)                                                (2.74) 

Thus 𝐸𝐵 and 𝐸𝑁𝐹 are temporally periodic function with the same period T: 

𝐸𝐵(𝑧̅, 𝑡) ≈ 𝐸𝐵,0 ∙ 𝑒𝑖𝑘𝑑̅+𝑖𝜑𝐵 ∙ 𝑒𝑖𝑘𝑀𝑐𝑜𝑠(𝛺𝑡)                                      (2.75) 



39 

 

𝐸𝑁𝐹(𝑧̅, 𝑡) ≈ 𝐸𝑁𝐹,0 ∙ 𝑒𝑖𝜑𝑁𝐹 ∙ 𝑒
−

𝑑

𝑑0 ∙ 𝑒
−

𝑀

𝑑0 cos(𝛺𝑡)                               (2.76) 

The explicitly time-dependent factors of these two fields can be approximated as Fourier 

sums: 

𝐸𝐵(𝑧̅, 𝑡) ≈ 𝐸𝐵,0 ∙ 𝑒𝑖𝑘𝑑̅+𝑖𝜑𝐵 ∙ ∑ 𝑏(𝑛)𝑒𝑖𝑛𝛺𝑡∞
𝑛=−∞                                    (2.77) 

𝐸𝑁𝐹(𝑧̅, 𝑡) ≈ 𝐸𝑁𝐹,0 ∙ 𝑒𝑖𝜑𝑁𝐹 ∙ 𝑒
−

𝑑̅

𝑑0 ∙ ∑ 𝑐(𝑛)𝑒𝑖𝑛𝛺𝑡∞
𝑛=−∞                              (2.78) 

Here we have introduced the complex Fourier coefficients 𝑏(𝑛)  and 𝑐(𝑛)  of the 

background field 𝐸𝐵 and the near field 𝐸𝑁𝐹, respectively, where n is the harmonic order 

of the tip modulation frequency. The Fourier coefficients can be easily calculated: 

𝑏(𝑛) =
1

𝑇
∫ 𝑒𝑖𝑘𝑀𝑐𝑜𝑠(𝛺𝑡) ∙ 𝑒−𝑖𝑛𝛺𝑡𝑑𝑡 = (𝑖)𝑛 ∙ 𝐽𝑛(2𝑘𝑀)

𝑇

0
                             (2.79) 

𝑐(𝑛) =
1

𝑇
∫ 𝑒

−
𝑀

𝑧0 cos(𝛺𝑡) ∙ 𝑒−𝑖𝑛𝛺𝑡𝑑𝑡 = (−1)𝑛 ∙ 𝐼𝑛 (
𝑀

𝑧0
)

𝑇

0
                               (2.80) 

The Fourier coefficients for the background field 𝑏(𝑛)are given by Bessel functions of the 

first kind and of order n, 𝐽𝑛, which displays oscillating line shape as illustrated in figure 

2.8. Fourier coefficients 𝑏(𝑛) of even order are real values, while those of odd orders are 

imaginary. This means that the phase of the background field shifts with each modulation 

order. The Fourier coefficients of the near-field are modified Bessel functions of the first 

kind and of order n, 𝐼𝑛 that exponentially increasing and are all real. The absolute of the 

Fourier coefficients as a function of demodulation order 1 to 4 are shown in a bar diagram 

in figure 2.15, specifically for a wavelength λ = 600 nm and the tuning fork modulation 

amplitude M = 12 nm. The red bars are the background-field coefficients normalized to 

the zeroth order coefficient, i. e., |
𝑏(𝑛)

𝑏(0)| , and the blue bars the according near-field 

coefficients |
𝑐(𝑛)

𝑐(0)| . It is noteworthy that both coefficients decrease with demodulation order, 

and the relative strength of the background decreases much more rapidly than that of the 

near field. This implies that the near-field contribution becomes more clearly visible as 

the demodulation order increases. The increase of the near-field-to-background-ratio with 

demodulation order forms the basis for higher-order demodulation SNOM. 
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Figure. 2.15 Relative amplitude of the Fourier coefficients 𝑏(0) to 𝑏(4) (red bars) and 𝑐(0) 

to 𝑐(4) (blue bars) normalized to 𝑏(0) and 𝑏(0), respectively, as a function of demodulation 

order n. The amplitude of both decreases with demodulation order, but the background-

field coefficients 𝑏(𝑛) decreases much more rapidly than the near-field coefficients 𝑐(𝑛). 

To precisely reveal our experiment, we simulate the signal by quantifying the tip 

modulation, electric field interference, and lock-in amplifier demodulation as follows. 

Firstly, the tip vibrating frequency is set as  𝑓 = 32𝑘𝐻𝑧,  amplitude is 𝑀 = 12 𝑛𝑚. In actual 

measurement, the minimum tip-sample distance is about 𝑧̅ = 3 𝑛𝑚. Figure 2.16 (a) shows 

the simulated tip vibration curve in the manner of 𝑑(𝑡) = 𝑑̅ + 𝑀 ∙ cos(𝛺𝑡). Then, the near-

field amplitude 𝐸𝑁𝐹,0 = 2 is approximated from √𝐶𝑠𝑐𝑎 when a gold tip is 3 nm away from 

a gold film. The amplitude and phase of background field from tip shaft as 𝐸𝐵,0 = 60, and 

from sample surface as 𝐸𝑠 = 3. The phase of three fields are  𝜑𝐵 = 0,𝜑𝑁𝐹 = π. Three 

electric fields can be determined according to Equation (2.75) and (2.76). The signal that 

is measured in the detector plane is proportional to the absolute square of the total field    

𝐸𝑡𝑜𝑡𝑎𝑙(𝑧̅, 𝑡) = 𝐸𝐵(𝑧̅, 𝑡) + 𝐸𝑁𝐹(𝑧̅, 𝑡) + 𝐸𝑠: 

|𝐸𝑡𝑜𝑡𝑎𝑙(𝑧̅, 𝑡)|
2 = |𝐸𝐵(𝑧̅, 𝑡) +𝐸𝑁𝐹(𝑧̅, 𝑡) + 𝐸𝑠|

2                                 (2.81) 
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Figure 2.16 (a) Tip-sample distance modulation function and (b) the modulated total 

signal. 

The resulted time dependent total intensity for optical wavelength of 780 nm is calculated 

as illustrated in figure 2.16 (b). Given the time dependent total intensity |𝐸𝑡𝑜𝑡𝑎𝑙(𝑧̅, 𝑡)|
2, the 

power impinging on a detector is  

𝑃(𝑧̅, 𝑡) =
1

2
𝜀0𝑐𝐴|𝐸𝑡𝑜𝑡𝑎𝑙|

2                                              (2.82) 

Where 𝐴 is the area of the detector. Multiplication with the detector efficiency 𝜂 yields the 

output voltage 𝑈(𝑧̅, 𝑡) = 𝜂 ∙ 𝑃(𝑧̅, 𝑡).  The demodulation is achieved by a lock-in amplifier 

which can be written as: 

𝑆𝑛𝑓(𝑧̅) = 𝛾 ∙
1

𝑇
∫ cos[𝑛𝛺𝑡 + 𝜃] ∙ 𝑈(𝑧̅, 𝑡)

𝑡′

𝑡′−𝑇
𝑑𝑡                               (2.83)  

Here, the index 𝑛𝑓 denotes the demodulation frequency, 𝛾 is the gain parameter of the 

lock-in detector, and 𝜃 is the phase between modulation waveform and detected signal. 

When measuring 𝑆𝑛𝑓(𝑧̅)with the lock-in detector, the influence of this phase is eliminated 

by actually recording the amplitude, i. e., the geometrical average of 𝑆𝑛𝑓(𝑧̅, 𝜃1) measured 

for one phase setting 𝜃1 and 𝑆𝑛𝑓(𝑧̅, 𝜃2) measured for a second phase setting 𝜃2 = 𝜃1 +
𝜋

2
. 

In our calculation, the same effect is achieved easily by evaluating the integral of Equation 

(2.83) for 𝜃 = 0.  

Figure 2.17 shows the output amplitude of the lock-in amplifier for a detected signal in 

figure 2.16 (b), specifically for light wavelength of 780 nm. The Lock-in signal from the 

(a) (b) 
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first to the 8th harmonic are calculated for an integration time of 5 ms. The demodulation 

signal decreases rapidly with the demodulation orders and can be barely seen above 

fourth harmonic order.  

 

 

 

 

 

Figure 2.17 Lock-in amplifier output versus demodulation harmonic orders. 

At last, the approach curves demodulated at the fundamental and at the second and third 

harmonic frequency are calculated. Figure 2.18 shows the amplitude of the lock-in-

detector signal during the approach at the respective demodulation frequency. The 

optical signal demodulated at the fundamental tip modulation frequency, 1𝑓 in Figure 

2.18 (a), shows a strong modulation with a period of ~300 nm, corresponding to half the 

wavelength of the excitation laser. This modulation is a result of the interference of the 

near-field and background field. The optical signal demodulated at the second harmonic, 

2𝑓 in Figure 2.18 (b) shows a small modulation still. When demodulating at the third 

harmonic, however, 3𝑓 if figure 2.18 (c), there is a clear near-field contribution. The near-

field signal resembles a strong exponential signal increase with a decay length of about 

8 nm. The improved near-field-to-background-ratio with demodulation order forms the 

basis for higher-order demodulation SNOM. Additionally, the demodulated signal 

magnitude decreases with harmonic order. 
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Figure 2.18 lock-in amplifier output as a function of tip-sample distance for (a) the fundamental 

and (b) the second, (c) third harmonic frequencies. The tip sample distance is adjusted by 

varying the 𝑧̅ in Equation 2.74 

2.5 Homodyne and Heterodyne detection  

As described in last section, the near-field is the dominant part in higher harmonic signal, 

however, a complete suppression of the unwanted background is challenging regardless 

of the harmonic order. Generally, the light field components that are scattered from the 

near field, from the diffraction-limited spot on the sample and from the tip shaft interfere 

and lead to the detection of a mixed intensity signal that cannot be disentangled, because 

mixing occurs at the electric field level. A general approach to enabling the discrimination 

of the different contributions is amplifying the near-field signal by homodyne, heterodyne, 

or pseudo-heterodyne mixing of the scattered signal with a well-controlled reference 

wave. In this session, we will introduce the working principle of homodyne and 

heterodyne scheme, and particularly discuss the improve of near-field strength and 

contrast in a homodyne detection combined SNOM.  

Figure 2.19 (a) represents schematically a typical homodyne sSNOM. The tip-sample 

junction is illuminated with a monochromatic field at frequency 𝜔. The reference field is a 

branch of the incident light 𝐸𝑅, and has a constant amplitude 𝐸𝑅,0 and phase 𝜑𝑅. The tip-

sample scattered fields 𝐸𝐵 and 𝐸𝑁𝐹 together with 𝐸𝑅 form the Michelson interferometer. 

According to equation (2.81) and (2.82), the detected intensity in this case is: 

(a) (b) (c) 
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𝐼 = |𝐸𝐵 +𝐸𝑁𝐹 + 𝐸𝑅|2                                                                                                               

   = (𝐸𝐵 + 𝐸𝑁𝐹 + 𝐸𝑅)(𝐸𝐵
∗ + 𝐸𝑁𝐹

∗ + 𝐸𝑅
∗)  

   = |𝐸𝑅,0𝑒
𝑖𝜑𝑅 + 𝐸𝐵,0𝑒

𝑖𝑘𝑑̅+𝑖𝜑𝐵 ∙ ∑ 𝑏(𝑛)𝑒𝑖𝑛𝛺𝑡∞
𝑛=−∞ + 𝐸𝑁𝐹,0𝑒

𝑖𝑘𝜑𝑁𝐹𝑒
−

𝑑̅

𝑑0 ∙ ∑ 𝑐(𝑛)𝑒𝑖𝑛𝛺𝑡∞
𝑛=−∞ |

2

(2.84) 

 𝐼 = |𝐸𝑅,0|
2
 

    +|𝐸𝐵,0|
2

∑ ∑  𝑏(𝑛)𝑏(𝑚)∗𝑒𝑖(𝑛−𝑚)𝛺𝑡
∞

𝑛=−∞

∞

𝑛=−∞

 

    +|𝐸𝑁𝐹,0|
2
𝑒

−2
𝑑̅
𝑑0 ∑ ∑ 𝑐(𝑛)𝑐(𝑚)∗𝑒𝑖(𝑛−𝑚)𝛺𝑡

∞

𝑛=−∞

∞

𝑛=−∞

 

    + (𝐸𝑅,0𝐸𝐵,0𝑒
𝑖𝑘𝑑̅+𝑖(𝜑𝐵−𝜑𝑅) ∙ ∑ 𝑏(𝑛)𝑒𝑖𝑛𝛺𝑡

∞

𝑛=−∞
+ 𝑐. 𝑐. ) 

    + (𝐸𝑅,0𝐸𝑁𝐹,0𝑒
𝑖𝑘(𝜑𝑁𝐹−𝜑𝑅)𝑒

−
𝑑̅
𝑑0 ∙ ∑ 𝑐(𝑛)𝑒𝑖𝑛𝛺𝑡

∞

𝑛=−∞
+ 𝑐. 𝑐. ) 

    + (𝐸𝐵,0𝐸𝑁𝐹,0
∗ 𝑒𝑖𝑘𝑑̅+𝑖(𝜑𝐵−𝜑𝑅)𝑒

−
𝑑̅

𝑑0 ∑ ∑ 𝑏(𝑛)𝑐(𝑚)∗𝑒𝑖(𝑛−𝑚)𝛺𝑡∞
𝑛=−∞

∞
𝑛=−∞ + 𝑐. 𝑐. )                       (2.85) 

 

 

 

 

 

 

 

Figure 2.19 (a) Sketch of a heterodyned sSNOM containing an additional optical 

interferometer with a ∆  frequency-shifted reference field 𝐸𝑅 and the tip-sample scattered 

fields near-field 𝐸𝑁𝐹  and background 𝐸𝐵.  (b) Homodyne optical system in which the 

detected light is the coherent superposition of 𝐸𝑅, 𝐸𝑁𝐹 and 𝐸𝐵. 

(a) (b) 
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There are six terms in the total intensity. The first three terms are the respective intensities 

of three fields. The intensity |𝐸𝑅,0|
2
 is not time dependent thereby is filtered out by lock-

in amplifier. For nth order demodulated signal, the second intensity is nonzero only for 

the case of m=0, however 𝑐(0) is inexistent. Hence the second term is also filtered out. 

The later three terms correspond to the mutual interference among the near-field field, 

background field, and reference field. Obviously, the reference field strength can be 

adjusted to be several orders of magnitude higher than other fields, 𝐸𝑅,0 ≫ 𝐸𝑁𝐹,0, 𝐸𝑅,0 ≫

𝐸𝐵,0. On the other hand, the calculation of the Fourier coefficients in Figure 2.15 showed 

that the near-field and background contribution decreases rapidly with increasing 

demodulation order, such that |𝐸𝐵,0𝑏
(𝑛)| ≪ |𝐸𝐵,0𝑏

(0)| for |𝑛| > 0. With these assumptions 

the signal measured at the first and higher harmonic demodulation frequencies, 𝑆1𝑓 to 

𝑆4𝑓, can be approximated:147 

 𝑆1𝑓(𝑧̅) ≈ 𝛾𝜂𝜀0𝑐𝐴 ∙ |−𝑅𝑒{𝐸𝑅,0𝐸𝐵,0}|𝑏
(1)| ∙ sin(𝑘𝑑̅ + 𝜑𝐵) − 𝑅𝑒{𝐸𝑅,0𝐸𝑁𝐹,0}|𝑐

(1)|𝑒
−

𝑧̅
𝑧0 ∙ cos(𝜑𝑁𝐹) 

                           −𝑅𝑒{𝐸𝐵,0𝐸𝑁𝐹,0}|𝑏
(0)||𝑐(1)|𝑒

−
𝑧̅

𝑧0 cos(𝑘𝑑̅ + 𝜑𝐵 − 𝜑𝑁𝐹)                                       (2.86)  

𝑆2𝑓(𝑧̅) ≈ 𝛾𝜂𝜀0𝑐𝐴 ∙ |−𝑅𝑒{𝐸𝑅,0𝐸𝐵,0}|𝑏
(2)| ∙ cos(𝑘𝑑̅ + 𝜑𝐵) + 𝑅𝑒{𝐸𝑅,0𝐸𝑁𝐹,0}|𝑐

(2)|𝑒
−

𝑧̅

𝑧0 ∙ cos(𝜑𝑁𝐹)                

  −|𝐸𝐵,0|
2
|𝑏(0)||𝑏(2)| + 𝑅𝑒{𝐸𝐵,0𝐸𝑁𝐹,0}|𝑏

(0)||𝑐(2)|𝑒
−

𝑧̅

𝑧0 cos(𝑘𝑑̅ + 𝜑𝐵 − 𝜑𝑁𝐹)              (2.87) 

𝑆3𝑓(𝑧̅) ≈ 𝛾𝜂𝜀0𝑐𝐴 ∙ |−𝑅𝑒{𝐸𝑅,0𝐸𝐵,0}|𝑏
(3)| ∙ sin(𝑘𝑑̅ + 𝜑𝐵) − 𝑅𝑒{𝐸𝑅,0𝐸𝑁𝐹,0}|𝑐

(3)|𝑒
−

𝑧̅

𝑧0 ∙ cos(𝜑𝑁𝐹)                

  −𝑅𝑒{𝐸𝐵,0𝐸𝑁𝐹,0}|𝑏
(0)||𝑐(3)|𝑒

−
𝑧̅

𝑧0 cos(𝑘𝑑̅ + 𝜑𝐵 − 𝜑𝑁𝐹)                                         (2.88) 

𝑆4𝑓(𝑧̅) ≈ 𝛾𝜂𝜀0𝑐𝐴 ∙ |𝑅𝑒{𝐸𝑅,0𝐸𝐵,0}|𝑏
(4)| ∙ cos(𝑘𝑧̅ + 𝜑𝐵) + 𝑅𝑒{𝐸𝑅,0𝐸𝑁𝐹,0}|𝑐

(4)|𝑒
−

𝑧̅

𝑧0 ∙ cos(𝜑𝑁𝐹)                     

   +|𝐸𝐵,0|
2
|𝑏(2)|

2
+ 𝑅𝑒{𝐸𝐵,0𝐸𝑁𝐹,0}|𝑏

(0)||𝑐(4)|𝑒
−

𝑧̅

𝑧0 cos(𝑘𝑑̅ + 𝜑𝐵 − 𝜑𝑁𝐹)                    (2.89) 

When the reference field strength is controllable and is adjusted to strong enough, 

𝐸𝐵,0|𝑏
(0)| ≪ 𝐸𝑅 holds. The cross terms between higher-order coefficients within reference 

field dominate. Moreover, the faster decay of |𝑏(𝑛)| with increasing demodulation order 

nearly completely removes the influence of the background field at higher harmonics. 
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 Eventually, the dominance of the near-field and reference field product 

𝑅𝑒{𝐸𝑅,0𝐸𝑁𝐹,0}|𝑐
(𝑛)|  is a result of a homodyne interferometer. It is the most important 

conclusion in our measurement. We will use this to retrieve the near-field response of 

various samples. 

The heterodyne version is sketched in Figure 2.18 (b). It incorporates a reference wave 

that has shifted frequency ∆𝜔 with respect to the illumination light source. 𝐸𝐵 and 𝐸𝑁𝐹 are 

simply characterized by their amplitude and phase (𝐸𝐵,0, 𝜑𝐵)  and (𝐸𝑁𝐹,0, 𝜑𝐵) . In 

comparison to homodyne technique, the interference term between reference field and 

either background field or reference field and near-field oscillates in a new frequency ∆𝜔, 

therefore the last three terms of equation (2.85) contain an additional frequency part. 

Here we only focus on the difference of two methods, hence the far-field detection of 

heterodyne scheme can be simplified as:148 

                                                       𝐼 = |𝐸𝐵|2 + |𝐸𝑁𝐹|
2 + |𝐸𝑁𝐹|

2                                                                     

                                                        +2|𝐸𝐵||𝐸𝑁𝐹|           

                                                        +2|𝐸𝐵||𝐸𝑅|ei(∆𝜔𝑡) 

                                                +2|𝐸𝑁𝐹||𝐸𝑅|ei(∆𝜔𝑡)                                                         (2.90) 

Keep in mind that the |𝐸𝐵| and |𝐸𝑁𝐹| includes modulated by the tip oscillation. The sixth 

term which dominants at higher harmonics is proportional to: 

𝐸𝑅,0𝐸𝑁𝐹,0 ∙ 𝑒𝑖(𝜑𝑁𝐹−𝜑𝑅) ∙ 𝑒
−

𝑑̅

𝑑0 ∙ ∑ 𝑐(𝑛)𝑒𝑖(𝑛𝛺±∆𝜔)𝑡∞
𝑛=−∞                            (2.91) 

In this case, the SNOM signal is obtained by lock-in detection at various frequencies 

(𝑛𝛺 ± ∆𝜔)/2𝜋. Similarly, to the homodyne detection method, the dominant output of the 

lock-in amplifier is independent of the background field. Moreover, in this amplitude the 

near-field strength is enhanced by the adjustable reference field. On the other hand, the 

phase channel in homodyne and heterodyne technique provides pure information on the 

phase delay of the optical near field relative to the reference field. This can evaluate the 

physical origin of the optical near field, such as plasmon resonance or electronic coupling 

in a nanostructure system. 
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3 Experimental setup and data processing 

3.1 Overview over the optical setup 

The experiments presented in this thesis were performed with a home-built sSNOM that 

has been presented in our previous work.147, 149 A part of content in this section has been 

modified from [1].  

The home-built sSNOM incorporated in the sample arm of a Michelson interferometer is 

depicted schematically in Figure 3.1. Light from a Titanium:Sapphire laser (Femtolasers 

Rainbow), with a spectral bandwidth of around 150 nm and centered at a wavelength of 

820 nm (see inset in the lower left of Figure 3.1), is used to illuminate the sample. The 

input power is set to 12 mW (in front of the interferometer setup). The direction of the 

electric field vector of the linearly polarized light can be rotated using a half-wave plate 

(HWP), and it’s in a specific experiment set to either s-polarization (in the sample plane) 

or p-polarization (along tip axis). Incident light passes a beam splitter (BS), where 20% 

is reflected and is then focused on the sample at an angle of 65° using a reflective 

microscope objective (MO, Beck Optronics Solutions, model 5003-000) with NA=0.4 and 

working distance of 14.5 mm. Using a reflective MO minimizes dispersion, which would 

otherwise result in a varying fringe spacing in the recorded spectral interferogram. 80% 

of the incident light is transmitted at the BS and serves as a reference field 𝐸𝑅 in our 

measurements. For this, the power is adjusted by a variable grey filter before light is 

reflected back to the BS by a mirror (MR) that forms the reference arm of the Michelson 

interferometer. The reference arm length is adjusted to be shorter than the sample arm 

by ~100 µm in order to enable spectral interference with a convenient fringe spacing and 

then kept constant during the measurement. To access the near-field region, a sharp gold 

nanotaper is brought in close proximity to the sample surface. Scattered light is collected 

in backwards direction by the MO. The part that is transmitted through the BS is 

overlapped with the reference field 𝐸𝑅, and the resulting superposition is collected for 

detection. Typically, we employ two different detection methods. In the first case, the 

reference arm is blocked and the signal back-scattered from the focus region is detected 

with an avalanche photodiode (APD, Hamamatsu, model C5331-02). It is further 
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processed by a lock-in amplifier (Zurich Instruments HFLI), with the tip modulation 

frequency as the reference signal. The signal demodulated at the fundamental tip 

modulation frequency as well as those demodulated at its second, third, and fourth 

harmonic are obtained and stored. We label these spectrally unresolved signals produced 

by the lock-in amplifier with 𝑆1𝑓, 𝑆2𝑓, 𝑆3𝑓, and 𝑆4𝑓. In this case, with the reference arm 

blocked, the signal detected by the APD is constituted of light scattered out of the near 

field by the sharp tip, 𝐸𝑁𝐹 , and of unwanted background field 𝐸𝐵 , scattered from the 

sample and from the tip shaft. Together, this results in a voltage proportional to  

|𝐸𝑁𝐹 + 𝐸𝐵|2. While for demodulation at the fundamental tip modulation frequency we 

expect the signal  𝑆1𝑓 to carry a significant amount of background. For the higher-order 

demodulated signals, the term |𝐸𝑁𝐹|
2 becomes dominant over background and mixed 

terms due to the strongly nonlinear dependence of the near field signal on the tip-sample 

distance. With the tip in close vicinity to the sample surface, i. e., with a minimal tip-

sample distance of ~4 nm, the light focus position is aligned to maximize 𝑆3𝑓 or 𝑆4𝑓 signal 

that is monitored by the Zurich instrument. During a measurement, the positions of the 

tip and the laser focus are fixed, and the sample can be moved in three dimensions.  

 

 

 

 

 

 

 

 

Figure. 3.1 Experimental setup for broad-bandwidth interference SNOM (BISNOM). Light 

from a broad-bandwidth titanium:sapphire laser (see the spectrum in the inset in the lower 

left) is focused onto the sample by an MO. The polarization is controlled by an HWP. A 
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sharply etched gold tip is brought close to the sample to scatter light from the near-field 

region to the far field. The scattered light is collected by the MO. The larger part of the 

incident light (80%) is transmitted through a BS to the reference arm of a Michelson 

interferometer, adjusted in power by a variable gray filter, reflected (MR), and 

superimposed with the light from the sample arm at the BS (see the spectral interferogram 

in the inset in the lower right). The light is detected either by an APD or by a 

monochromator followed by a 2D camera. 

In the second case, for spectrally resolved measurements, the reference arm is 

unblocked, and the output of the Michelson interferometer is steered to the 

monochromator (Princeton Instruments, IsoPlane-160) equipped with a fast line camera 

(e2V Aviiva EM4 with 512 pixels). The line camera has a maximum readout rate of 

210 𝑘𝐻𝑧, and we typically record 60.000 consecutive spectra with the maximum read-out 

rate. When recording spectra with the fast line-camera, the fundamental and higher-order 

demodulated signals are extracted in post-processing. The numerical generation of those 

demodulated spectra and the extraction of the sample’s transmission function with sub-

diffraction-limit spectral resolution will be described in more detail later in the chapter. In 

short, the recorded values are considered separately, i. e., for each wavelength 

component of the spectrum, the line camera records a time series of 60.000 values. A 

Fourier series expansion is performed around multiples of the tip modulation frequency. 

For each pixel, the so determined Fourier coefficients are quantities analogous to the 

signals generated by the lock-in amplifier in the monochromatic measurements. 

Assembling the respective Fourier components for all camera pixels results in spectra 

𝑆1𝑓(𝜆)  to 𝑆4𝑓(𝜆) , demodulated at the first to fourth harmonic of the tip modulation 

frequency. As previously discussed, for higher order demodulation these spectra produce 

𝑅𝑒{𝐸𝑁𝐹𝐸𝑅} dominates such that the background field 𝐸𝐵 is strongly suppressed.  

3.2 Tip fabrication and vibration 

In scanning probe microscopy, tip production is of great importance. Especially for 

scattering SNOM, the tip apex radius determines the spatial resolution and the tip surface 

roughness greatly affects the far-field strength scattered from the tip shaft. Therefore, 

preparing smooth and sharp tapers appears to be a crucial issue in sSNOM. In this thesis, 



50 

 

the near-field probes are prepared by electrochemical etching.150  

Polycrystalline gold wires with a diameter of 125 µm (Advent Research Materials) are first 

annealed under 800 ℃  for 8 hours in argon atmosphere. The annealing process 

increases the grain size of the polycrystalline gold wires. It is important to produce single-

crystalline grains of that are several tens of micrometers in length, such that no grain 

boundaries are in the volume that is electrochemically etched to form a sharp tip in the 

following step. In the absence of grain boundaries, the etching process typically leaves a 

smooth defect-free surface.151  

Then, gold tips are prepared by electrochemically etching the monocrystalline gold wires 

in hydrochloric acid (Sigma-Aldrich, purity: 37%) as sketched in figure 3.2(a). The gold 

wire and a platinum ring constitute the two electrodes. They are both immersed in the 

solution and suspend slightly beneath the surface. The voltage applied between the two 

electrodes is supplied by a function generator. Figure 3.2 (b) depicts the rectangular 

voltage with 3 kHz frequency, peak-to-peak voltage of 𝑉𝑝𝑝 = 7.5 𝑉, 10% duty circle and 

250 mV DC offset. As the voltage is turned on, the following chemical reactions take place 

in the solution for varied electrode potential 𝐸0:152  

𝐴𝑢 + 4𝐶𝑙− → 𝐴𝑢𝐶𝑙4
− + 3𝑒−                 𝐸0 = 1.002 𝑉                         (3.1) 

    𝐴𝑢 + 2𝐶𝑙− → 𝐴𝑢𝐶𝑙2
− + 𝑒−                    𝐸0 = 1.154 𝑉                         (3.2) 

𝐴𝑢𝐶𝑙2
− + 2𝐶𝑙− → 𝐴𝑢𝐶𝑙4

− + 2𝑒−            𝐸0 = 0.926 𝑉                         (3.3) 

Meanwhile, a great amount of 𝐶𝑙− ions are consumed. A temporal depletion of 𝐶𝑙− around 

the Au wire leads to the formation of gold oxides, which passivates the gold electrode 

and decreases the reaction current. Subsequent 𝐶𝑙−  supply from the bulk solution 

dissolves the oxide as 𝐴𝑢𝐶𝑙4
−, producing O2. As a result, the exposed bare gold surface 

re-consumes 𝐶𝑙−, increasing the reaction current. We adopted the AC supply such that 

𝐶𝑙−  ions are efficiently resupplied during the duty-cycle, and the current fluctuation is 

reduced. 

 

 



51 

 

 

 

 

 

 

 

 

Figure 3.2 (a) Schematic of etching procedure gold wire. A gold wire and a platinum ring 

with diameter of 5 cm is dipped in HCl solution. (b) The periodic voltage pulses applied 

by a function generator  

When the Au wire is immersed in the HCl, a meniscus around the wire is observed at the 

liquid/solid interface. The reactions in Equation (3.1)-(3.3) occur faster in this meniscus 

region than in the bulk solution.153 Therefore, the wire within the meniscus area is 

observed to be shrinking and the meniscus simultaneously moves down. When the 

shrinking region is too narrow to support the weight of wire below solution surface, the 

neck breaks in two parts and the lower part drops off forming a sharp tip. The etching is 

terminated automatically. During the etching process, a bubbling effect is observed owing 

to side reactions of O2 and Cl2 evolution. 

 

 

 

 

 

 

Figure 3.3 Scanning electron microscopy (SEM) images of a typical gold taper. (a) The 

single-crystalline sharp gold taper has a smooth surface. (b) High magnification image of 

(a) (b) 

(a) (b) (c) 
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the front part with an even profile. (c) The apex of the tip exhibits a radius of curvature of 

less than 10 nm with an opening angle around 30°.   

The etched tips are then characterized by a scanning electron microscope (FEI Helios 

NanoLab 600i). A suitable tip ideally has a radius of curvature below 20 nm, an opening 

angle between 10° to 40° and a smooth surface. Figure 3.3 depicts a typical gold tip 

produced by the described method. The side-view in panel (a) is the light incident facet 

and has an overall even and smooth surface. More importantly, there are no defects 

visible on the last tens micrometers from the apex. A closer view of the tip end 

demonstrates the apex radius of 9 nm and opening angle of 30°.  

3.3 Tuning fork 

Practically, a precise control of the tip-sample distance is a stringent condition of near-

field optical microscope to bring the sample to the vicinity of the probe with a precision of 

nanometers, meanwhile, a constantly smooth scan of the sample surface need to be 

guaranteed. In contact mode, the tip experiences both a longitudinal compressive force 

and a lateral shear force, and such force varies along with the surface topography. Hence 

one of the distance control methods is based on the optical detection of the force acting 

on the tip.154-158 In such detection modes, the tip is vibrated either parallel (shear force 

mode) or perpendicular (tapping mode) to the sample surface at a mechanical resonance. 

The vibration amplitude is optically detected by differential interferometry or by the 

intensity of a laser beam focused on the tip. Despite the reliable operation, this method 

is not technically convenient, and the light path may induce an undesired optical 

background. Alternatively, the piezoelectric technique utilizing quartz tuning fork was 

introduced by Karrai and Grober159, 160. The piezoelectricity of quartz crystal allows 

mechanical excitation of tuning fork and convert it to a voltage signal and vice versa.  

A commercial quartz tuning fork (Auris TC26, UV curing glue Cyberbond U3200) is 

encased in vacuum-sealed canister, and resonant at ~32 kHz. After removing the metallic 

outer can, a gold tip is glued on one prong along the tuning fork and an equally sized gold 

wire is fixed on the top of the other prong. The tip is then aligned with its axis along the 

z-axis, i. e., the sample surface normal, and the tuning fork is driven with an AC voltage 

such that the tip moves back and forth along the z-axis. The bending amplitude of the 
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prongs is maximum at its resonance frequency, and this mechanical oscillation in turn 

generates an oscillation potential which is the ‘signal’ measured by a lock-in amplifier. A 

typical resonance of the piezoelectric signal is shown in Figure 3.4 (a). The quality of 

factor is defined as 𝑄 = 𝑓0/∆𝑓 , where 𝑓0  is the resonant frequency and ∆𝑓  is the full 

frequency width at half-maximum of the resonance curve. When freely vibrating in air, a 

tuning fork has a Q of 9000. Such a high quality factor enables the tuning fork sensitive 

to sub hertz shifts, which results in a high force resolution.161 This is the main advantage 

of tuning fork over the conventional silicon cantilever. Figure 3.4 (b) illustrates the 

resonance curve of the tuning fork with a tip glued on one prong and a balance gold wire 

glued on the other prong. The fork resonance is shifted to 26.91 kHz and the quality of 

factor drops to 6700.  

 

 

 

 

 

 

Figure 3.4 Amplitude of the Lock-in amplifier signal as function of the driving frequency 

for (a) a tuning fork in air, (b) the tuning fork with a gold tip and a balancer glued on two 

prongs. The quality of factor Q is calculated using the resonance frequency and the full 

width frequency width at half-maximum of the output amplitude. 

In the experiment, the tuning fork works at the resonance frequency. When the sample 

surface is approached to tens of nanometers of a sample surface, the lock-in amplitude 

decreases due to the tip-sample interaction. The relationship of this force and the output 

voltage is given by:160 

 |𝐹𝑆| = (1 −
𝑉

𝑉0
) ⋅ 𝑘 ⋅ |𝑥0|/(𝑄 ⋅ √3)                                       (3.4) 

where 
𝑉

𝑉0
 is the normalized piezoelectric signal amplitude at resonance frequency.  𝑥0 and 

Q=9000 
(a) (b) 

Q=6700 
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𝑄 are the tip amplitude and quality of factor when tip is away from the sample. 𝑘 is the 

static compliance of one prong and can be inferred by 𝑘 = 𝑚𝑒𝜔0 with 𝜔0 = 2𝜋 ⋅ 𝑓0. The 

effective mass is determined by 𝑚𝑒 = 0.2427𝜌 ⋅ (𝐿𝑡𝑤) , with the density of quartz 𝜌 =

2650 𝑘𝑔/𝑚3  and the fork geometrical dimensions (length 𝐿 , width 𝑤  and thickness 𝑡 ). 

Applying the parameters of the tuning fork used in our measurement (𝐿 = 3.2𝑚𝑚,𝑤 =

400𝜇𝑚, 𝑡 = 360𝜇𝑚, 𝑓0 = 26.91𝑘𝐻𝑧), a typical static compliance is 𝑘 = 8.47
𝑘𝑁

𝑚
. Using 𝑄 =

6700 and |𝑥0| = 12 𝑛𝑚, a signal amplitude duction of 2% corresponds to an interaction 

force of |𝐹𝑆| = 8.3 𝑛𝑁. During a sSNOM scan, the tip-sample distance is controlled by 

adjusting the sample z-position using the piezoelectric signal 
𝑉

𝑉0
 as a setpoint.  

3.4 Near-field spectroscopy with homodyne detection 

To realize near-field spectroscopic technique, the reference arm is incorporated, namely 

the light reflected from the reference mirror is superimposed with the signal scattered out 

of the focus area on the sample by the near-field prober. The length of either arm is about 

150 mm, and the reference arm is normally shorter than the sample arm by a few hundred 

micrometers. This path length difference is chosen to be moderately large such that the 

delay time can easily be separated from the DC background in time domain, at the same 

time the spectral interference caused fringe spacing is large enough to be resolved by a 

detector. The output of the Michelson interferometer is collected by the fast line camera 

with a maximal readout rate of 𝑓𝑐𝑎𝑚𝑒𝑟𝑎 = 210 𝑘𝐻𝑧 . In the measurement, the frame 

acquisition rate of the line camera is normally set to the highest value such that high order 

harmonic optical signal can be achieved. On the other hand, for each measurement 

position, 𝑁𝑠𝑝𝑒𝑐 = 60000 frames are accumulated, which corresponds to an integration 

time of about 280 ms, to get a good signal-to-noise ratio. 

3.4.1 Fast camera data  

Figure 3.5 (a) illustrates 60.000 spectra recorded consecutively at position on gold. The 

spectral wavelength abscissa correlates to the 512 pixels of camera chip, and it could be 

changed as the incidence coupling to the monochromator is different, therefore it is 

calibrated for different measurement. In the vertical direction, time increases from bottom 
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to top, and the count per pixel is color-coded. Evidently, the interference fringes swing in 

the integration time, indicating the arm length difference varies during a measurement. 

The sample arm in the interferometer including the near-field probe and sample is housed 

inside a foam-covered box for acoustic noise suppression, hence the arm length delay 

drift could be caused by a jittering reference arm mirror. The prior step of spectral data 

analysis is correcting such effect. The panel (b) depicts a typical spectrum, and the 

maximal intensity count reaches 3600 for a full capacity of 4096 (12-bit depth). 

 

 

 

 

 

 

 

Figure 3.5 (a) Counts recorded by the fast line camera, color-coded as a function of 

wavelength and time. (b) One exemplary spectrum from panel (a). 

For further quantitative analysis, the data in wavelength units is converted to equidistant 

distributed energy axis, based on the principle that the signal values in energy domain is 

corrected to retain the power spectral density according to:162 

𝑓(𝐸)𝑑𝐸 = 𝑓(𝜆)𝑑𝜆                                                  (3.5) 

where 𝑓(𝐸)  and 𝑓(𝜆)  corresponds to the spectrum in energy and wavelength unit, 

respectively. Figure 3.6 shows the converted spectra in energy units.  

 

 

 

Figure 3.6 Spectra in energy domain converted from figure 3.5. 

(b) 

(a) 
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Before further analyzing such 2D spectral data, I will firstly demonstrate a method of 

correcting the time delay drift (wavy fringes) in the camera data by simulating a spectral 

interferogram signal like the measurement data, then apply such processing method on 

the measurement data to achieve spectral interferogram data with straight stripes. 

Moreover, the Fourier transform technique is illustrated to retrieve an input Lorentzian 

resonance introduced in the sample arm. This technique will be utilized on BISNOM data 

analysis in chapter 5. 

3.4.2 Spectral interference simulation 

 

 

 

 

 

 

 

Figure 3.7 Michelson interferometer. The incident light is divided into two parts by a 45° 

oriented 50/50 beam splitter (BS). Half of the incidence is reflected to a sample surface, 

and the remaining part transmits through the BS and is reflected by a silver mirror to the 

BS, forming the reference arm of the interferometer. The reference mirror is movable to 

vary the path length, and the reference field strength can be adjusted by a grey filter.    

To mimic the rainbow laser source used in the measurement, I introduce a broadband 

width light which is an ultrashort pulse in the time domain (as depicted in the inset of 

figure 3.7): 

𝐸0(𝑡) = |𝐸0| ⋅ 𝑒
−2𝑙𝑛(2)

(𝑡−𝑡0)2

𝑇2 ⋅ cos(𝜔𝑐 ⋅ 𝑡 + 𝜑𝐶𝐸)                             (3.6) 

Where |𝐸0| is the field amplitude which is set as 1, 𝑡0 = 0 is the time when the pulse is 

centered, and 𝑇 = 4 𝑓𝑠 is the full width at half maximum, 𝜔𝑐 is the Gaussian envelope 
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center frequency (ℏ𝜔𝑐 = 1.51 𝑒𝑉), 𝜑𝐶𝐸 = 0 is the carrier-envelope phase at the BS. The 

incident light spectrum is given by the Fourier transformation of the pulse 𝐸0(𝑡), as shown 

in figure 3.8 (a). 

 

 

 

 

 

Figure 3.8 Simulation of (a) incident electric field 𝐸0(𝜔), and (b) a Lorentzian resonance 

of the sample. 

This incident light is divided into two paths by a BS, one of which transmits through the 

BS and is reflected by a mirror. The position of the mirror is movable such that the 

reference arm length is varied to be different from the other path length. An ND filter is 

inserted to adjust the reference field intensity without varying the spectral shape, and the 

transmission efficiency of the filter is expressed by 𝑡𝑓(𝜔) = |𝑡𝑓|𝑒
𝑖𝜑𝑓(𝜔)  with |𝑡𝑓| = 0.7 . 

Therefore, the reference field reflected by the BS is given by 𝐸1(𝜔) =
1

4
⋅ 𝑡𝑓

2(𝜔)𝐸0(𝜔) ⋅

𝑒𝑖𝜑1, where phase 𝜑1 is generated by a time delay of 𝐿1/𝑐0 and 𝐿1 is the additional optical 

length of 𝐸1(𝜔) in comparison to the incident field 𝐸0(𝜔) at the BS.  

The remaining part of the incidence is reflected by a sample surface with a reflection 

coefficient of 𝜎(𝜔) = |𝜎(𝜔)|𝑒𝑖𝜑𝜎.  For simplification, this sample response coefficient is 

assumed as a Lorentzian line shape 𝜎(𝜔) = 𝐴𝜎γ𝜎(
1

ω+ω𝜎+iγ𝜎
−

1

ω−ω𝜎+iγ𝜎
) , where the 

resonant frequency and line width is ℏ𝜔𝜎 = 1.51 𝑒𝑉,ℏ𝛾𝜎 = 50 𝑚𝑒𝑉, respectively, and the 

amplitude is taken as 𝐴𝜎 = 0.2. Figure 3.8 (b) shows the simulated Lorentzian response 

in which the phase has a 𝜋 jump at the resonant energy position. Thus the reflected field 

from the sample arm is 𝐸2(𝜔) =
1

4
𝜎(𝜔)𝐸0(𝜔) ⋅ 𝑒𝑖𝜑2 , where 𝜑2  is generated by a time 

delay 𝐿2/𝑐0 of 𝐸2(𝜔) in comparison to the incident field 𝐸0(𝜔) at the BS. 

Hence, the detected interference signal is denoted as: 

(a) (b) 
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                         𝑆𝑠(𝜔) = |𝐸1(𝜔) + 𝐸2(𝜔)|2 

=
1

16
|𝐸0(𝜔)|2(|𝑡𝑓|

4
+ |𝜎(𝜔)|2 + |𝑡𝑓|

2
|𝜎(𝜔)|𝑒𝑖(∆𝜑−𝜑𝜎) + 𝑐𝑐. )                         (3.7)  

Where ∆𝜑 = 𝜑𝑓 + 𝜑0 is the setup introduced phase, 𝜑0 = 𝜑1 − 𝜑2 =
∆𝐿

𝑐0
⋅ 𝜔  is the optical 

path length difference generated phase, and it is the factor that introduces delay drifts 

when ∆𝐿 varies.   

Before simulating an interferogram analogous to the experimental data depicted in figure 

3.6, I will firstly discuss the interferogram in time domain for the simulated signal 𝑆𝑠(𝜔) in 

three cases ∆𝜑: 

(1) The first case assumes the transmission coefficient phase 𝜑𝑓 is 0 and 𝜑0 is negative 

with ∆𝐿 = −900 𝑛𝑚. Figure 3.9 (a) exhibits the field amplitude of 𝐸1(𝜔) and 𝐸2(𝜔), as 

well as the phase φ0 = −300fs ⋅ ω  (red curve). According to the shift theorem of 

Fourier transform, such a linear phase φ0  in frequency domain corresponds to a 

delay (a shift) in time domain. Figure 3.9 (d) displays the interferogram 𝑠(𝑡) =

ℱ−1[𝑆𝑠(𝜔)] , which is composed of three parts, one center peak  𝑠0(𝑡)  and two 

symmetric sidebands 𝑠+/−(𝑡) as expressed: 

             𝑠0(𝑡) = 𝐹𝑇−1 {1/16 ⋅ |𝐸0(𝜔)|2 (|𝑡𝑓|
4
+ |𝜎(𝜔)|2)} 

                                  𝑠+(𝑡) = 𝐹𝑇−1 {1/16 ⋅ |𝐸0(𝜔)|2 ⋅ |𝑡𝑓|
2
|𝜎(𝜔)|𝑒𝑖(−𝜑𝜎+∆𝜑)} 

𝑠−(𝑡) = 𝐹𝑇−1 {1/16 ⋅ |𝐸0(𝜔)|2 ⋅ |𝑡𝑓|
2
|𝜎(𝜔)|𝑒𝑖(−𝜑𝜎−∆𝜑)}                     (3.8) 

where 𝐹𝑇−1 denotes an inverse Fourier transformation. s0(𝑡) denotes the zero delay 

peak (dc peak), and s+(𝑡) and s−(𝑡) corresponds to the positive and negative peak 

(ac peak) that carry identical amplitude information. In the central peak, the incident 

laser |𝐸0(𝑡)|
2 dominates such that exhibits a Gaussian profile, while the shape of the 

side peak is determined by the time structure of 𝐹𝑇−1{|𝜎(𝜔)| ⋅ |𝐸0(𝜔)|2}, namely a 

convolution of an exponential function and a Gaussian function. Hence an 

exponential decay appears shortly after the side peak.  
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Figure 3.9 Field amplitude of 𝐸1(𝜔) (black curves) and 𝐸2(𝜔) (blue curves) as well as the 

phase of ∆𝜑   (red curves) for (a) 𝜑𝑓 = 0  and ∆𝜑 > 0 , (b) 𝜑𝑓 = 0  and ∆𝜑 < 0 , (c) 𝜑𝑓 =

100𝑓𝑠 ⋅ 𝜔2 and ∆𝜑 < 0. (d,e,f) Real valued Fourier transformation of the corresponding 

interferogram, ℱ−1{𝑆𝑠(𝜔)}. 

(2) Oppositely, for 𝜑𝑓 = 0 and the length difference is positive ∆𝐿 = +900 𝑛𝑚 as shown 

in figure 3.9 (b), two side peaks in time domain still sit at 𝜏𝑠 = ±300𝑓𝑠 , while the 

exponential decay tail in the side peak is reversed and shows up shortly ahead of the 

peak position. In this case, the exponential tail is possibly overlapped with the central 

band when the delay time is not sufficiently large, and it also depends on the lifetime 

of the Lorentzian resonator as well as the pulse width.  

(3) On the base of the second case with ∆𝐿 = +900 𝑛𝑚 , the third case introduces a 

quadratic phase of 𝜑𝑓 = 𝑎(𝜔 − 𝜔0)
2 where 𝑎 = 100 𝑓𝑠 is the chirp parameter of the 

filter, as depicted in Figure 3.9(c). Correspondingly, two side peaks in the time domain 

as observed in panel (f) shows a stretched envelope in comparison to the time 

structure in panel (e). This broadened amount depends on the dispersion index of the 

filter material in the laser spectral range. 

(a) (d) 

(b) (e) 

(c) (f) 
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Now I simulate the experimental interferogram data recorded on the fast line camera by 

taking the first case. To mimic the reference mirror jittering, a time dependent arm length 

difference is additionally introduced (as illustrated in figure 3.10 (a)), ∆𝐿(𝑡) = 𝐴 ∗

sin (2𝜋𝑓𝑗𝑡) where A=500 nm and 𝑓𝑗 = 10 𝐻𝑧 is the mirror vibration frequency. The time 

delay caused phase of the interferogram in equation (3.1) is in this case altered as a time 

dependent function, ∆𝜑(𝑡) =
𝜔

𝑐0
⋅ (∆𝐿 + ∆𝐿(𝑡)). The resulting signal in an integration time 

of 300 ms is shown in figure 3.10 (b), in which the spectral interference fringes regularly 

swings.  

 

 

 

 

  

 

Figure 3.10 (a) Reference mirror jitter length in 0.3 s integration time and (b) the resulted 

spectral interference. 

For such a data series, the first step is to eliminate the signal noise introduced by the 

setup system, literally to stretch the stripes in the image. The essential work is to find out 

the time delay in each interferogram and then normalize to the same point. Generally, 

there are methods to realize the delay between two interference fields. For the first 

method, the side peak position of the interferogram in time domain gives the time delay, 

𝜏𝑛. Taking 𝜏1 of the first spectral interferogram 𝑆𝑠1(𝜔) as a reference, one gets the delay 

time evolution of 𝜏𝑑 = 𝜏𝑛 − 𝜏1 . Therefore, this delay drift can be corrected by 

compensating a phase term of 𝑒±𝑖⋅𝜔0𝜏𝑑  (𝜔0  is the spectral central frequency) to the 

negative/positive component of 𝑆𝑠(𝑡) , for instance, 𝑠′(𝑡) = 𝑆𝑠
+(𝑡) ⋅ 𝑒−𝑖𝜔0𝜏𝑑 + 𝑆𝑠

0(𝑡) +

𝑆𝑠
−(𝑡) ⋅ 𝑒𝑖𝜔0𝜏𝑑, then the drift corrected interferogram spectrum is obtained from its inverse 

Fourier transformation: 𝑆𝑠
′(𝜔) = ℱ−1[𝑠′(𝑡)] . On the other hand, according to the shift 

property of the Fourier transform, a shift in time domain corresponds to a linear phase of 

(a) (b) 
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𝑒𝑖𝜏𝜔 in frequency domain, therefore the second method verifies the time delay from the 

slope of the linear spectral phase, for example 𝐴𝑟𝑔(𝑆−(𝜔)), where 𝑆−(𝜔) = ℱ−1{𝑠−(𝑡)}. 

Correspondingly, the delay drift is corrected in the frequency domain as well, thus the 

compensated time structure in this case is 𝑠′(𝑡) = ℱ[𝑆+(𝜔) ⋅ 𝑒−𝑖𝜔𝜏𝑑] + 𝑠0(𝑡) + ℱ[𝑆+(𝜔) ⋅

𝑒−𝑖𝜔𝜏𝑑].  

In principle, both methods help correcting the reference arm jitter caused time delay drift 

in the interferogram signal, however precisely searching for the peak position is difficult 

for a broad band spectrum because the side component of 𝑠+(𝑡) is no longer a sharp 

peak but a blunt band. Hence, the second approach is utilized to retrieve the time delay 

evolution as displayed in figure 3.11(a) which precisely overlaps with the set values. Then 

the corrected signal is obtained as displayed in panel (b) which shows straight stripes as 

expected.   

 

 

 

 

 

 

Figure 3.11. (a) Retrieved (black) and manually set (red) mirror jitter length, and (b) 

corrected spectral interferogram series. 

At last, I will describe the Fourier-transform technique based on the simulation data. This 

technique will be eventually referred to as retrieving the near-field response function 

which will be discussed in detail in Chapter 5. As discussed in equation (3.8), the Fourier 

amplitude of an interferogram consists of three components. The essential idea of the 

Fourier-transform technique is to isolate the dc and ac peaks by filter. In this way, more 

relationships among variables in the formular are formed such that the near-field property 

is retrievable from solving equation set. 

Figure 3.12 (a,b) display the simulated interferogram 𝑆𝑠(𝜔) and its Fourier amplitude 𝑠(𝑡). 

(a) (b) 
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Applying a rectangular window (red dashed lines in panel b) divides 𝑠(𝑡) data into three 

segments as formulated in equation (3.8). Then preforming inverse Fourier transform 

algorithm to the DC peak 𝑠0(𝑡) results in a DC spectrum: 

 𝑆0(𝜔) = 1/16 ⋅ |𝐸0(𝜔)|2 (|𝑡𝑓|
4
+ |𝜎(𝜔)|2)                                    (3.9) 

As illustrated in black curve in figure 3.12 (c), the DC spectrum shows a similar shape to 

the input spectrum. The AC spectrum transferred from the positive component 𝑠+(𝑡) is 

given by: 

𝑆+(𝜔) = 1/16 ⋅ |𝐸0(𝜔)|2 ⋅ |𝑡𝑓|
2
|𝜎(𝜔)|𝑒𝑖(−𝜑𝜎+∆𝜑)                             (3.10) 

as plotted in red curve in panel c. It displays evident difference from the DC spectrum 

because of the influence of the Lorentzian response 𝜎(𝜔).  

 

 

 

 

 

Figure 3.12 (a) Spectral interferogram with a fringe contrast of 20%. (b) Fourier transform 

of the interferogram in (a) with a DC contribution around 𝜏 = 0 𝑓𝑠 and an AC contribution 

around 𝜏 = ±300𝑓𝑠 . (c) nnverse Fourier transforms of the DC (dashed black) and the 

positive AC (solid blue) component as isolated by the window in (b). (d) Retrieved 

amplitude (blue) and phase (red) of the sample response. 

Combining the Equation (3.9) and (3.10), with setting the constant 𝑡𝑓 = 1 for simiplicity, 

the ratio between the AC and DC components gives a quadratic equation of the amplitude 

|𝜎(𝜔)|: 

|𝑆+(ω)|

|𝑆0(ω)|
=

|𝜎(𝜔)|

1+|𝜎(𝜔)|2
                                                   (3.11) 

Solving the equation of |𝜎(𝜔)|2 − |𝜎(𝜔)| +
|𝐴𝐶(𝜔)+|

|𝐷𝐶(ω)|
= 0 gives two solutions: |𝜎+(𝜔)| =

1

2f
⋅

(a) (b) (c) 
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(1 + √1 − 4f2)  and |𝜎−(𝜔)| =
1

2f
⋅ (1 − √1 − 4f2) , with 𝑓 =

|𝑆+(ω)|

|𝑆0(ω)|
 . The laser spectrum, 

according to the equation (3.10), is given by |𝐸0(𝜔)|2 = 16 ⋅ |𝐴𝐶(𝜔)+|/|𝜎(𝜔)|. For two 

solutions of |𝜎+,−(𝜔)|, the spectral shape of |𝐸0
𝑐(𝜔)|2 results in two possibilities as shown 

in figure 3.13. The negative solution |𝜎−(𝜔)| generated spectral shape (in red dash curve) 

exactly coincidences with the assumed laser spectrum |𝐸0(𝜔)|2 (in black solid curve). 

Therefore, one concludes that the response function amplitude is determined by the 

negative solution in equation (3.11), |𝜎(𝜔)|=|𝜎−(𝜔)|, as plotted in figure 3.13 (b) which 

also matches the simulated Lorentzian line shape.  

Moreover, the phase structure of the AC component in equation (3.11) implies that: 

φ𝜎 = ∆𝜑 − arg(𝑆+(𝜔))                                                   (3.12) 

Figure 3.13 (c) shows the phase shape of arg(𝑆+(𝜔)), in which a large amount of linear 

component originating from phase ∆𝜑 is contained. To deduce the influence of ∆𝜑, the 

linear phase component is fitted by performing a first order polynomial fitting of 

arg(𝑆+(𝜔)), as plotted in red dashed line in panel (c). Based on such fitted phase, the 

response function phase φ𝜎 is retrieved according to equation (3.12) and is displayed in 

Figure 3.13 (d) which demonstrates a great agreement with the principal values and 

shows a 𝜋 phase jump at the resonance frequency. 

 

 

 

 

 

 

 

Figure 3.13 (a) Calculated input laser spectral shape as |𝜎(𝜔)| is taken as a negative 

solution of 
1

2f
⋅ (1 − √1 − 4f2)  (red dashed curve) and a positive solution 

1

2f
⋅ (1 +

(a) 

(c) 

(b) 

(d) 
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√1 − 4f2) (blue curve). The laser spectrum calculated from the negative solution |𝜎−(𝜔)| 

has the same spectral shape as the assumed laser spectrum |𝐸0(𝜔)|2 (black curve). (b) 

Calculated (black curve) and simulated (red dashed curve) lineshape of |𝜎(𝜔)| . (c) 

Spectral phase (black curve) of the side peak component, arg(𝑆+(𝜔)) and the fitted linear 

phase (red dashed curve). (d) The retrieved response function phase (red dashed curve) 

and the simulated Lorentzian phase φσ. 

3.4.3 Experimental spectral data processing 

For the measurement data as displayed in figure 3.5, a spectrum captured by the line 

camera is illustrated in figure 3.14 (a), where spectral fringes originate from the spectral 

interference between the sample arm field and the reference field. The interferogram in 

delay time domain in panel (b) evidently shows one central contribution (DC part) and 

two delay components (AC part), and the time delay is large enough such that two AC 

peaks can be isolated from the DC peak. As discussed in the simulation, such a time 

delay corresponds to a linear phase in frequency domain. The phase of the AC peak 

spectrum, namely the inverse Fourier transformation of the AC peak, in figure 3.11 (c) 

displays a prominent linear shape, therefore the slope of a linear fit to the AC spectral 

phase reveals the delay time 𝜏 of the interferogram. Moreover, this deduced delay time 

for every interferogram in the measured 60000 frames (in figure 3.6) is shown in figure 

3.11 (d). It contains a fast modulation in a slow vibrating motion. The fast modulation is 

generated by tip vibration with an amplitude of about 30 nm. The wavy fringes in the 

camera 2D data are obviously caused by slow motion. Hence the fast tip modulation is 

eliminated by filtering the time delay signal in frequency domain (panel (e)), and the jitter 

length can be obtained from 𝑐0∆𝜏 where ∆𝜏 is the time delay variation referenced to the 

first interferogram.  
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Figure 3.14. (a) A typical spectral interferogram in energy axis, from the measurement 

signal (figure 3.5). (b) Fourier transformation (black curves) of the interferogram in 

logarithm scale where two side peaks (AC component) located at time delay of ±𝜏 are 

distinguishable from the central peak (DC component). Red dashed lines isolate the 

positive AC peak. (c) Side peak spectrum (black peak), namely inverse Fourier 

transformation of the isolated positive peak in (b), and the spectral phase (blue line) in 

which the slope of the linear component quantifies the time delay 𝜏 of the interferogram. 

(d) Retrieved time delay values between two arms in the measurement data in figure 3.5. 

A slow vibration of 𝜏 originates from the reference mirror jitter and a fast modulation is 

generated by the tip vibration. (e) Fourier transformation (black curves) of the time delay 

evolution, in which the peaks at about ±26.2 𝑘𝐻𝑧 represents the tip modulation frequency, 

and a narrow window (red curve) is used to filter out the slow variation in the time delay. 

(f) Delay drift of the measurement data in figure 3.5, obtained from the inverse Fourier 

transformation of the filtered component in (e). 

According to the simulation, the retrieved delay drift is compensated in frequency domain, 

and the corrected interferogram data 𝑆(𝜔, 𝑡)  is shown in figure 3.15 which displays 

straight interference fringes instead of the original oscillating stripes. 

 

 

 

(a) (c) 

(f) (d) 

𝜏  
(b) 

(e) 
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Figure 3.15 Measurement data after drift delay correction. 

3.4.4 Demodulated spectral interferogram 

At this point, demodulated spectral information can be achievable from the drift corrected 

signal 𝑆(𝜔, 𝑡). Beforehand, the tip vibration frequency is precisely identified.  

For a specific frequency of 𝜔, the time series 𝑆𝜔(𝑡) records the optical signal evolution 

which is modulated at the tip vibration frequency. To show the temporal modulation, the 

fast Fourier transform of each time series is performed. Figure 3.16(a) illustrates the 

Fourier amplitude of 𝑆𝜔𝑛
(𝑡) as ℏ𝜔𝑛 = 1.65 𝑒𝑉  and ℏ𝜔𝑛 = 1.46 𝑒𝑉, respectively. Several 

peaks evidently appear at multiples of the fundamental tip modulation frequency, 𝑓0 =

27.756 𝑘𝐻𝑧  with an accuracy of 𝑑𝑓𝑡 =
𝑓𝑐𝑎𝑚𝑒𝑟𝑎

𝑁𝑠𝑝𝑒𝑐
= 3.5 𝐻𝑧 . The signal to noise ratio of 

harmonic peaks decreases as the demodulation order increases.  

 

 

 

 

 

Figure 3.16 (a) The Fourier transforms of the signal shown in figure 3.15 along the time 

axis for specific energy axis point of ℏ𝜔𝑛 = 1.65 𝑒𝑉  (black curve) and ℏ𝜔𝑛 = 1.46 𝑒𝑉 

(blue curve), showing peaks at the fundamental (peak marked with ‘𝑓0’) and harmonics 

of the tip modulation frequency. The unmarked peak between 2𝑓0 and 3𝑓0 originates from 

the utility frequency. (b) DFT function calculated over a section near the 𝑓0 as plotted in 

red curve, together with the corresponding values of the FFT function as labeled with 

black circles.  

Here, the obtained frequency 𝑓0 may not be precise enough because the camera readout 

speed (210 kHz) is not a multiple of the tip frequency. Thus, a more accurate method 

seeking the tip modulation frequency is needed. Based on the preliminarily estimated 𝑓0, 

1𝑓0  

2𝑓0 

3𝑓0 

(a) (b) 
𝑓  
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we take 100 evenly spaced frequency values 𝑓𝑖 distributed around  𝑓0 and compute the 

discrete Fourier transform (DFT) of the time series for each frequency 𝑓𝑖,  

𝑠(𝑓𝑖) = ∑𝑆(𝑡) ⋅ 𝑒−𝑖⋅2𝜋𝑓𝑖⋅𝑡                                        (3.13) 

Figure 3.16 (b) plots the integrated Fourier amplitude ∑𝑠𝑛(𝜔𝑖) for each frequency 𝜔𝑖 in 

the subtle range. The finer grid calculation (red curve) leads to a higher first harmonic 

signal, because the peak of the DFT curve more precisely determines the tip frequency. 

Hence, the peak frequency 𝑓  of the DTF curve is determined as the tip modulation 

frequency for the following data processing.  

In the following, the interferograms demodulated at different order harmonics of the tip 

frequency are calculated. As discussed in Chapter 2, the time series 𝑆𝜔(𝑡)  can be 

approximated by a Fourier series: 

𝑆𝜔(𝑡) ≈ ∑ 𝑐𝑛,𝜔 ⋅ 𝑒𝑖2𝜋𝑛𝑓𝑡∞
𝑛=−∞                                         (3.14)  

with the complex Fourier coefficients: 

 𝑐𝑛,𝜔 =
1

𝑇
∫ 𝑆𝜔(𝑡) ⋅ 𝑒−𝑖2𝜋𝑛𝑓𝑡𝑑𝑡

𝑇/2

−𝑇/2
                                     (3.15) 

Here, n is the demodulation order, and 𝑇 = 1/𝑓 is the modulation period with the tip 

modulation frequency f. In practice, we typically extract five coefficients 𝑐𝑛,𝜔  with 

0 1 2 3 4n , , , ,=  and 𝑐−𝑛,𝜔 = 𝑐𝑛,𝜔
∗ .  

Plotted as a function of energy in Figure 3.17 (a), for n=0, the (real-valued) Fourier 

component 𝑐0,𝜔 represents the temporally averaged spectrum,  

 𝑆0𝑓(𝜔) = 𝑐0,𝜔 = 〈𝑆𝜔〉                                             (3.16) 

The Fourier components 𝑐𝑛,𝜆  with 𝑛 > 0 are complex-valued, and literally express the 

signal demodulated at nth order harmonics as denoted by 𝑆𝑛𝑓(𝜔) = 𝑐𝑛,𝜔. Figure 3.17 (b) 

depicts the demodulated interferogram 𝑆𝑛𝑓(𝜔)  for 𝑛 = 1, 2, 3, 4 . Fringes in the 

demodulated signal 𝑆𝑛𝑓(𝜔) originate from interference between the reference field and 

the background field scattered by the tip shaft as well as the near-field from the tip apex.  
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Figure 3.17 The spectral interferogram demodulated at (a) 0th order, and (b) 1st, 2nd, 3rd, 

4th order harmonic of the tip modulation frequency, 𝑐𝑛,𝜔 , show strongly modulated 

spectrum. 

At last, the demodulated spectra are obtained from the interferograms 𝑆𝑛𝑓(𝜔). Figure 

3.18 (a) illustrates the Fourier transform amplitude of signal 𝑆2𝑓(𝜔), and the blue dashed 

line labels the isolated positive side peak. Inverse Fourier transformation of the AC peak 

results in the positive spectrum 𝑆2𝑓
+ (𝜔)  where the interference spectral fringes are 

eliminated, (figure 3.18 (b)). Analogously, demodulated spectra 𝑆n𝑓
+ (𝜔) for n=1,3,4 are 

retrieved as well, and 𝑆2𝑓
+ (𝜔), 𝑆3𝑓

+ (𝜔), 𝑆4𝑓
+ (𝜔) spectra closely resemble each other, while 

the spectral shape of 𝑆1𝑓
+ (𝜔)  clearly deviates from others. In agreement with the in 

chapter 2, this leads to conclude that the higher-order demodulated spectra reliably 

reflect near-field spectra, while spectral interference of background and reference fields 

give rise to spectral variations in the 𝑆1𝑓
+ (𝜔) signal.  

 

 

 

 

 

 

(a) 

(b) 

(c) 
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Figure 3.18 (a) The Fourier transform of the spectral interferogram signal 𝑆2𝑓(𝜔)  in 

logarithm shows AC peak (marked with blue dashed line). (b) The side peak in (a) is 

isolated, then applying the inverse Fourier transform yields unmodulated spectra 𝑆2𝑓
+ (𝜔). 
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4 Spatial and spectral mode mapping of a dielectric nanodot 

4.1 Sample preparation  

Sb2S3 has recently sparked interest as a promising sensitizer for hybrid solar cells.163 It 

has a high absorption coefficient (1.8 × 105 𝑐𝑚−1 at 450 nm for amorphous thin films) and 

a bandgap of 1.7 eV, consists of abundant materials and is assumed to be of reduced 

toxicity.164 Here, we investigate Sb2S3 nanoparticles on a flat, 140-nm-thick film of 

crystalline Sb2S3. The nanoparticles are created by EBL65 on top of the flat film in a regular 

order. 

Sample preparation is inspired by a metal-butyldithiocarbamic acid (BDCA)165-based 

molecular precursor solution that we adopted for direct patterning. BDCA is nontoxic, 

cheap, and thermally degradable and can be easily synthesized by the reaction of carbon 

disulfide and 1-butylamine. The ethanol solution of BDCA can be directly applied to 

dissolve various types of hydroxides and metal oxides, such as Sb2O3 forming 

chalcogenide precursor solutions. This Sb2S3-complex solution diluted with ethanol (ratio 

2 to 1)166 was deposited on TiO2 substrate by spin-coating at a speed of 8000 rpm for 

30 s. After spin-coating, the substrate was baked at 140 °C for 1 min, which resulted in 

the formation of a 180-nm thick orange-red amorphous Sb2S3 thin film. The obtained 

substrates were transferred into a glove box to anneal at 300 °C for 30 min, upon high-

temperature annealing, the thermal decomposition of metal–organic molecular 

precursors will generate chalcogenide materials, forming a 140-nm thick, compact, 

crystalline Sb2S3 film. On top of this dense Sb2S3 film, a second, 100-nm thick Sb2S3 film 

was deposited as a precursor for the nanostructure fabrication, by spin-coating an Sb2S3-

complex solution diluted with ethanol. We then directly transferred the obtained substrate 

into the electron beam lithography (EBL) system (Elphy nanolithography based on Zeiss 

Neon 40EsB 30 keV scanning electron microscopy) for electron beam patterning (EBP) 

with a typical dose of 36.000 µC/cm2 at 20 keV. After the EBL process, the substrates 

were annealed at 300 °C for 30 min in a glove box. At last, the patterned Sb2S3 

nanoparticle array was developed with acetone rinse. 
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Figure 4.1 (a) shows a scanning electron microscope (SEM) image of the nanoparticles 

array. The spacing between particles (2 μm in Figure 4.1) is chosen sufficiently large to 

avoid dipolar couplings between adjacent nanoparticles such that each nanodot may be 

considered as an isolated nanoparticle. They are typically dome-shaped, with a round or 

slightly elliptical cross section of ∼350 nm diameter and a height of ∼150 nm. As indicated 

in Figure 4.1 (b), a higher resolution image of an individual nanoparticle reveals a slightly 

elliptical shape and a somewhat rough surface. The center of the particle seems to have 

collapsed to some extent after the annealing processes following EBL. These features 

(ellipticity, surface roughness, and indentation) vary slightly from one nanoparticle to the 

next.  

 

 

 

 

 

 

Figure. 4.1 Scanning electron microscopy (SEM) images of the sample. (a) Sb2S3 

nanodots are created on a flat, compact Sb2S3 film by electron beam lithography (EBL). 

The nanodots are regularly spaced by 2 µm, their shape varies slightly. (b) The SEM 

image of an individual nanodot shows a slight ellipticity and a dark shadow in the center, 

where the material has collapsed after EBL and annealing. 

Our samples are annealed at 300 °C such that crystalline thin films and nanostructures 

are formed. This procedure results in a reduced above-gap absorption coefficient 

( 8 × 104𝑐𝑚−1 at 450 nm),64 and appreciable absorption just below the band edge 

(2.5 × 104𝑐𝑚−1 at 700 nm). In the spectral region investigated here (700 nm and 900 nm), 

Sb2S3 has relatively low losses (absorption < 104 𝑐𝑚−1 at 800 nm) and a high index of 

refraction with a positive real part varying from 3.2 at 700 nm to 2.9 at 900 nm as 

demonstrated in figure 4.2, which means it interacts with the light from the 
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Titanium:Sapphire laser as a dielectric. 

 

 

 

 

 

Figure 4.2 Dielectric function of Sb2S3 film. 

Subband absorption observed in crystalline Sb2S3 suggests the existence of trap states, 

for example due to defects in the crystalline structure.64 Such trap states could be used 

to increase the total light conversion efficiency of a solar cell, particularly if the interaction 

length of below-bandgap light with the material is increased. Here we cover the flat 

crystalline Sb2S3 film with Sb2S3 nanoparticles, aiming at a cylindrical structure that should 

guide the incident light into the underlying thin film.  

4.2 Near-field imaging  

Before recording BISNOM spectra, we perform preparatory experiments to validate the 

near-field contrast and spatial resolution of the optical signals in our near-field microscope.  

4.2.1 Near-field contrast 

We use a quasi-monochromatic spectrum for excitation, created by inserting a 40-nm 

bandwidth interferometric filter centered at a wavelength of 900 nm in front of the BS, and 

the APD and lock-in amplifier for detection. The demodulated signals 𝑆1𝑓, 𝑆2𝑓, 𝑆3𝑓  and 

𝑆4𝑓 are generated by the lock-in amplifier and are recorded during the measurement. 

Figure 4.3 (a) shows approach curves recorded above a flat Sb2S3 film, i. e., the 

demodulated signals as a function of tip-sample distance. The approach is stopped when 

the tuning fork oscillation amplitude is reduced by 2.5% (see inset of Figure 4.3 (a)). This 
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position, which corresponds to a minimum tip-sample distance of about 4 nm, is later 

taken as the set point for lateral sSNOM scans. The blue, green and red curves in Figure 

4.3 show the optical signals 𝑆1𝑓 , 𝑆2𝑓 and 𝑆4𝑓, respectively, when the sample is retracted 

from the tip. To retain clarity in Figure 4.3 (a), 𝑆3𝑓 is not shown, as its shape is very similar 

to that of 𝑆2𝑓. As the tip is retracted, the near field decays quickly. This is reflected by all 

three curves shown in Figure 4.3 (a), where the strong peaks at the minimum tip-sample 

distance of 4 nm decrease to their half maximum value within increasing the tip-sample 

distance by 1 nm. Compared to the near field, the background field’s dependence on the 

tip-sample distance is weaker. As a result, the first-order demodulated signal, 𝑆1𝑓, which 

mainly probes background scattering from tip shaft, remains at a rather high level and 

fluctuates strongly also for large tip-sample distances. Fluctuations arise from finite 

mechanical instabilities and/or laser noise. The higher demodulation orders, however, 

measure an interference between the near-field signal and the background. Here, a 

measurable signal is only seen for tip–sample distance of <10 nm. The signal amplitude 

in contact decreases when going from 2f to 4f due to the demodulation of the signal 

recorded with finite tapping amplitudes.58 

 

 

 

 

 

 

 

 

Figure 4.3 Quasi-monochromatic SNOM measurements of an individual nanoparticle 
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using a 40-nm bandwidth laser spectrum centered at 900 nm for excitation and the APD 

and lock-in amplifier for detection. (a) Optical signal demodulated at the first (blue curve), 

second (green curve), and fourth harmonic (red curve) of the tip modulation frequency as 

a function of tip-sample distance. The higher order demodulated signals demonstrate 

improved near-field contrast. The inset shows the simultaneously recorded tuning fork 

amplitude. (b) Topographical map, and (c)-(e) maps of the optical signals𝑆1𝑓, 𝑆2𝑓 and 𝑆4𝑓, 

respectively. All maps show a ring-shaped intensity distribution. (f) Cross cuts through the 

topographical map (blue curve) and the 𝑆4𝑓 signal (black curve) along dashed lines in 

Figures. (b) and (e). 

To further evaluate the optical image capabilities of the near-field microscope we then 

scanned a single Sb2S3 nanodot with the quasi-monochromatic measurement method, 

while the tip-sample distance was kept constant at ~4 nm. The height of the sample and 

the demodulated signals 𝑆1𝑓 to 𝑆4𝑓 were recorded over a 1 µm by 1 µm large area. The 

sample was scanned line-wise in the x-direction with a step size of 4 nm and with a step-

size of 16 nm between the lines, i. e., in y-direction. The topographic image displayed in 

Figure 4.3 (b) shows that this nanodot was almost circular, with lengths of 360 nm and 

380 nm of the short and the long axis of an ellipse, respectively, and with a height of about 

150 nm. The simultaneously recorded maps of the signals 𝑆1𝑓, 𝑆2𝑓 and 𝑆4𝑓 are displayed 

in Figure 4.3 (c), (d), and (e), respectively. They all display a clear optical signal drop in 

the shape of a ring over the particle. In the following we investigate several of the 

observed features one by one. 

The near-field images of the nanodot in Figure 4.3 show a rather smooth surface and 

sharp signal change at the edge of the nanoparticle. The maps of the 𝑆1𝑓 and 𝑆2𝑓 signals 

display some variation across the surrounding Sb2S3 film, which may be caused by 

residual background interference. The 𝑆1𝑓 and 𝑆2𝑓 maps both show a strong and sharp 

signal increase at the left-hand edge of the nanoparticle, which is probably caused by the 

grazing incidence of the illuminating laser light. The sharp spike in the 𝑆2𝑓 map (the red 

border on the left side of the particle in Figure 4.3 (d)) gives an upper limit for the spatial 

resolution of the optical images of 10 nm (a cut through Figure 4.3 (d) is shown in the 
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Figure 4.4). 

The best near-field contrast is reached with the 𝑆4𝑓 signal (Figure 4.3 (e)). The optical 

signal measured across the particle is reduced in the ring-shaped area with respect to 

the signal measured on the film by roughly 90%. This difference can be understood as 

follows. While the tip is within a small distance to the flat film, the tip dipole, which is 

excited by the laser light incident on the tip, induces a polarization in the Sb2S3 film. The 

incident light and light scattered from the film couple to the polarizability component of 

the tip dipole that is oriented along the polarization direction of the incident laser field. 

The laser is polarized perpendicular to the tip axis to avoid strong resonance excitation 

of the longitudinal tip polarizability. The y-polarized tip dipole induces an image in the 

sample and electric field re-emitted by the film enhanced the tip dipole, and as a result 

the field scattered by the tip that reaches the detector is enhanced. In the flat film region, 

the near-field contrast thus results from the coupling of the tip and image dipoles as 

introduced by Knoll and Keilmann as the coupling of a probe dipole and an image 

dipole.167 The strong signal in the area surrounding the nanoparticle corresponds to a 

large LDOS, through the continuum of evanescent waves the tip point dipole can couple 

to.168, 169 As the tip reaches the edge of the particle and is lifted off the flat film, it does no 

longer couple to an extended film, but to a nanoparticle of finite size, or, more specifically, 

to nanoparticles arranged in a square array. The environment of the tip dipole can now 

better be described by a square lattice of pillars surrounded by air, with a refractive index 

ratio of 3 , giving rise to Bloch waves as solution to the wave equation rather than a 

continuum of modes.170 This considerably reduces the LDOS, which is seen by the signal 

decrease at the rim of the nanodots. 

From this low-signal region near the rim inside the nanodot, the near-field signal again 

rises steadily towards the center of the nanodot. The over-all symmetry is roughly radial. 

To show this more clearly, cuts through the topographic image and through the  𝑆4𝑓 map 

(along the dashed lines in Figures 4.3(b) and (e)) are plotted together in Figure 4.3 (f). 

The topography contour (blue curve) is a smooth cone, with its maximum leaning 

somewhat to the right. The 𝑆4𝑓 signal drops abruptly as the tip reaches the particle and 

has a minimum close to the edge. Scanning towards the center of the particle the signal 
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rises again until it reaches a maximum at the center of the particle, where the signal 

strength is slightly higher than measured on the flat film. In contrast to plasmonic 

nanoparticles, where the electric fields usually concentrate at the surface, the field 

penetrates dielectric nanoparticles, and the electric field maxima are usually formed 

within the particles.59 We thus interpret the central feature as the spatial extent of the 

superposition of optical modes excited by the laser light. The dome-like shape of the 

observed mode is reminiscent of fundamental fiber-optical modes and suggests that such 

a waveguide mode is excited in the Sb2S3 nanoparticle.  As the nanodot and the film are 

fabricated from the same material and are annealed after EBL, near perfect index 

matching prevents back-reflection. We expect that the nanodot efficiently guides and 

couples the incident light to the underlying film, where the light finally dissipates.  

4.2.2 Spatial resolution 

In order to determine the spatial resolution of our sSNOM, we measure the size of the 

smallest features in the measured near-field maps. A suitable example can be found in 

the monochromatic sSNOM measurements shown in Figure 4.3, where at the left side of 

the nanoparticle a sharp spike appears. The 𝑆2𝑓 signal map is redrawn in Figure 4.4 (a). 

While the near-field probe scans from the left to the right, it comes in close contact with 

the side of the nanodot before the tip is retracted. This causes the sharp signal increase 

seen as the red border around the particle on the left side. Figure 4.4 (b) shows a crosscut 

along the dashed line in Figure 4.4 (a). The pixel-size of such a line scan is 4 nm. One 

can clearly see the sharp spike that arises as the tip reaches the edge of the nanoparticle, 

and a fast decrease of the 𝑆2𝑓 signal to the low level inside the particle. Both, the width 

of the peak and the distance over which the signal drops, are ~10 nm. We thus can take 

10 nm as the upper limit for the optical resolution in our SNOM.  
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Figure 4.4 Spatial resolution of the optical signal in sSNOM. (a) Map of the optical signal 

𝑆2𝑓  of a single Sb2S3 nanodot with slightly elliptic shape of approximately 360 nm by 

380 nm, and of 150 nm height. For the measurement, a quasi-monochromatic laser 

spectrum with 40 nm bandwidth centred at 900 nm was used. (b) Cut along the dashed 

line in (a). A sharp spike is seen, followed by a drop of the signal to a lower level inside 

the particle. Both the width of the peak and the distance over which the signal drop occurs 

are 10 nm. 

4.2.3 Influence of surface roughness 

In order to demonstrate the influence of shape and surface structure on the sSNOM 

images, we selected a Sb2S3 nanodot with a relatively rough surface and recorded near-

field maps using the APD and lock-in amplifier. In these measurements, we turn our 

attention to hotspots of high electric field intensity that are supported by nanoscopic 

features, like cracks and other surface defects.171, 172 The spatial extent of these hotspots 

is usually less than the spatial resolution in SNOM, such that their apparent size is 

resolution-limited. The recorded images of the selected nanodot are presented in Figure 

4.5. 

The topographic image (Figure 4.5 (a)) shows an almost circular nanodot of 

approximately 380 nm diameter and 150 nm height. With the height information provided 

by the atomic force microscope the surface seems smooth, with the remarkable exception 

in the lower right area. The fast modulation of the height information as the tip moves 

from left to right shows that the height change was rather rapid, such that the height 

control started oscillating. Possibly the nanodot was chipped on this side. The optical 
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signal demodulated with the fundamental tip modulation frequency, 𝑆1𝑓 (Figure 4.5 (b)) 

reflects this height control oscillation by interference fringes that are visible in the same 

area, but the higher order demodulated signal maps𝑆2𝑓, 𝑆3𝑓, and 𝑆4𝑓, shown in Figures 

4.5 (c), (d), and (e), respectively, do not show any modulation in this area. All optical 

signal maps do, however, show a strongly modulated signal in the central area of the 

nanodot, which may indicate localized electric fields due to surface roughness on a scale 

below the resolution limit of the AFM image. Figure 4.5 (f) compares the topographical 

information (blue curve) and the 𝑆4𝑓 signal (black curve) along a crosscut indicated by 

the dashed lines in Figure 4.5 (a) and (e), respectively. While the topology appears 

smooth, the 𝑆4𝑓 signal is stronger structured, and indicates the mentioned hotspots on 

the nanodot surface. The size of the features reaches down to 20 nm, which agrees with 

the earlier estimation of the optical resolution in our SNOM. 

 

 

 

 

 

 

 

 

 

Figure 4.5 Near-field maps of an Sb2S3 nanodot. (a) The topographic image shows a 

slightly elliptic nanodot of approximately 320 nm by 380 nm, and of 150 nm height. With 

the height information provided by the atomic force microscope the surface seems 

smooth. (b)-(e) Maps of the optical signals recorded by demodulating at the first to fourth 

harmonic of the tip modulation frequency. (f) Cuts through the topographic map (blue 
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curve) and the 𝑆4𝑓  signal (black curve), along the dashed lines in Figs. (a) and (e), 

respectively. While the topology appears smooth, the 𝑆4𝑓 signal is stronger structured 

and thereby reveals hotspots on the nanodot surface. The size of the features reaches 

down to 20 nm. 

In essence, the mode structure that was so clearly visible in many of the investigated 

nanodots is completely obscured by the smaller features observed here. In this example, 

the surface is strongly structured on a nanometer scale and thereby supports hotspots, 

which constitute the dominant features in the SNOM maps. In the less structured 

nanodots, we expect to measure a convolution of eigenmodes and surface features. The 

observed deviations of the measured SNOM maps from projected LDOS calculations can 

be seen as a result of such a convolution.  

4.2.4 Calculation of eigen modes in Sb2S3 nanodot 

In order to explain the measured spatial function of the waveguide modes, shown in 

Figure 4.3, we calculate the projected local optical density of states (LDOS). In the 

spectral region covered by the laser in this work, the nanodot material shows negligible 

absorption and very weak dispersion. Under these conditions the nanodot supports 

eigenmodes, which are very similar to the well-known modes of an optical fiber. Here we 

describe the calculations used to derive the projected LDOS, which then is compared to 

the measured near-field maps.  

We assume that the LDOS in the nanodot region is mainly given as a sum over these 

bound modes with eigenvectors 𝑒 𝑚(𝑟 ) and eigenfrequencies 𝜔𝑚. Each of these modes 

is characterized by a finite damping rate 𝛾𝑚 that describes the temporal decay of the 

electromagnetic field emitted by this mode after impulse excitation. In the limit of 

sufficiently weak damping, the LDOS may be phenomenologically written as  

𝜌(𝑟 , 𝜔) = ∑ |𝑒 𝑚(𝑟 ,𝜔)|2𝛿(𝜔 − 𝜔𝑚)𝑚                                    (4.1) 

Here 𝛿(𝜔 − 𝜔𝑚) = −
2𝑖𝜔𝑚

′

𝜋(𝜔𝑚−𝜔2−2𝛾𝜔𝛾𝑚)
 with 𝜔𝑚

′ = √𝜔𝑚
2 − 𝛾𝑚

2  is a generalized Dirac delta 

function. Its integral along the frequency axis gives unity. Quite generally, the damping 
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can be induced by the finite lifetime of the mode 𝑚, 𝑇1𝑚, and possible pure dephasing 

processes with pure dephasing time 𝑇2𝑚  resulting from stochastic fluctuations of the 

environment. Phenomenologically, the damping rate can then be taken as 𝛾𝑚 =

(2𝑇1𝑚)−1 + (𝑇2𝑚)−1  and the mode can be characterized by a complex resonance 

frequency 𝜔̃𝑚 = 𝜔𝑚 − 𝑖𝛾𝑚 . The contribution of unbound radiation modes is neglected 

since their overlap with the nanodot core is small. For the perfect cylindrical waveguide 

considered here, for each bound mode a continuum of modes that are propagating along 

the fiber axis exists and the LDOS is spectrally flat. 

Figure 4.6 (a)-(d) Solutions of the modes identified in FDTD simulations for a cylindrical 

structure of 200 nm diameter and 75 nm height, capped with a semi-ellipse to a total 

height of 150 nm and placed on top of a 100-nm thick film, both with refractive index of 

3.04. The circumference is outlined by the broken white circles. The modes profiles are 

very similar to analytical calculations for a cylindrical waveguide. 

In order to retrieve the eigenmodes, we first performed FDTD simulations of a Sb2S3 

nanodot. We modelled the structure as a cylinder with 200 nm radius and 75 nm height, 

capped with a semi-ellipse on top. The total height was 150 nm, and the structure was 

placed on a 100-nm thick film. For both the film and the structure we applied the 

experimentally measured refractive index function of Sb2S3, which varies from 3.2 at 700 

nm to 2.9 at 900 nm. The solution for the modes identified by the FDTD solver in the 

structure, in the xy-plane parallel to the surface of the film, are shown in Figure 4.6. They 

are very similar to analytical solutions for an infinitely long, cylindrical waveguide, which 

are well known, for example, for optical fibers (shown in Figure 4.7). For the sake of clarity 

in the following considerations of the LDOS, we continue with the analytical solutions of 

the cylindrical waveguide. 

(a) (b) (c) (d) 
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To calculate the eigenmodes of the Sb2S3 nanodot, we calculate the solutions of the 

vector Helmholtz equation for a weakly guiding, cylindrical waveguide, as introduced in 

Chapter 2. Taking a cylindrical structure with radius 𝑎 = 200 𝑛𝑚, with the refractive index 

of Sb2S3 and surrounded by air. We find that over the wavelength range covered in our 

experiment, such a structure supports four guided modes, the LP01, LP11, LP02 and LP21 

modes. Here, the first index, m, designates the angular momentum, i. e., the number of 

azimuthal nodes divided by 2, and the second index, p, gives the number of nodes in the 

radial coordinate r, including the node at 𝑟 → ∞. The cutoff wavelength for the highest 

order of these modes, the LP21 mode, is expected to lie close to the long-wavelength limit 

of the used laser spectrum. The intensity profiles of these four modes, calculated for a 

wavelength 𝜆 = 800 𝑛𝑚 and 𝑛𝑆𝑏2𝑆3
(𝜆 = 800 𝑛𝑚) = 3.04, are plotted in Figure 4.7. Note 

that the modes with angular momentum m=1 and m=2 are degenerate, such that the 

superposition and hence the LDOS is always rotationally symmetric (Figure 4.7 (a)). The 

waveguide modes are furthermore polarization degenerate and support electric field 

vectors in x- and y-direction. 

 

Figure 4.7 Calculated mode intensity profiles for a Sb2S3 cylindrical waveguide with radius 

200 nm. The waveguide boundary is outlined by the broken white circle. Such a structure 

surrounded by air supports (a) the LP01, (b) the LP11, (c) the LP02, and (d) the LP21 mode. 

The LP11 and LP21 modes are degenerate: in addition to the profiles shown there exist 

profiles that are rotated such that the position of nodes and antinodes is switched. (e) 

The superposition of these four modes, including the degenerate solutions, represents 

the LDOS and is rotationally symmetric.  
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The sum over the eigenmodes in Equation 4.1 is performed over the quantum numbers 

m and p of the bound fiber modes, as well as over the propagation constant 𝛽𝑚,𝑝(𝜔), 

since, for every frequency 𝜔 in our spectral range and every bound mode (𝑚, 𝑝) a wave 

exists that propagates along the fiber core with constant 𝛽𝑚,𝑝(𝜔).  

The LDOS for a cylindrical waveguide of 200 nm radius is plotted in Figure 4.8 (a). In this 

picture, the corresponding eigenvectors are two-fold polarization degenerate, for light 

field polarization along the x and the y axis, while the z-axis is the direction of propagation 

of the guided waves. An SNOM measurement carried out by scanning a point dipole 𝑝  

oriented along 𝑢̂ across a structure with localized modes probes the projected LDOS, 

𝑝𝑢(𝑟 , 𝜔) =
2𝜔

𝜋𝑐2 𝐼𝑚[𝑢̂ ⋅ 𝐺(𝑟 , 𝑟 , 𝜔) ⋅ 𝑢̂]                                      (4.2) 

where, for weakly dissipative systems, Green’s function can be written as  

𝐺(𝑟 , 𝑟 , 𝜔) ≈ 𝑐2 ∑ (𝑒 𝑚
∗

𝑚 (𝑟 ′) ⊗ 𝑒 𝑚(𝑟 ))/(𝜔𝑚
2 − 𝜔2 − 2𝑖𝜔𝛾𝑚)                     (4.3) 

In principle, if a tip closely representing a point dipole was scanned across a flat surface 

with such a waveguide mode profile (such as the flat top of a pillar of Sb2S3 surrounded 

by air), the resulting SNOM map should be an image of the calculated LDOS shown in 

Figure 4.8 (a). In our experiment, however, the surface of the nanodot is not flat, but it is 

more truthfully described by a flattened half-ellipse with circular base of 200 nm radius 

and a shorter height of 140 nm. When scanning a point dipole across the nanodot, the 

point dipole projection onto its surface changes continuously. Figure 4.8 (b) shows in a 

sketch how the projection onto the surface (the red arrow) increases as an x-oriented tip 

dipole is moved along the central x-axis from the rim of the particle to its center. When 

scanning an x-oriented dipole along the central y-axis, however, the projection onto the 

surface does not change. In total, the projected LDOS then resembles the LDOS shown 

in Figure 4.8 (a), but it is cropped at the left and right side (see Figure 4.8 (c)). 

Analogously, when scanning a y-oriented dipole across the nanodot, the projected LDOS 

appears rotated by 90° (Figure 4.6 (d)). In contrast, a z-oriented tip dipole creates the 

largest projection close to the particle rim, resulting in the image shown in Figure 4.6 (e). 
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Figure 4.8 (a) Local density of states in a Sb2S3-waveguide with circular cross section of 

200-nm radius. (b) An x-oriented tip dipole is moved along the x-axis from the left rim to 

the center over the surface of the elliptical nanodot. Below is shown how the dipole 

orientation changes relative to the surface, and the red arrows at the bottom indicate the 

projection on the surface. (c) The projected LDOS as probed with an x-oriented tip dipole 

is cropped at the left and right rim, corresponding to the small projection of the tip-dipole 

onto the surface at these edges. (d) Using a y-oriented tip dipole results in a 90°-rotated 

image, and (e) a z-oriented dipole in particular probes the edge of the rim. (f) shows the 

asymmetric SNOM map calculated for a tip dipole  𝑝 = (0.3,1,0.2)and (g) for comparison 

the measured S4f map (same as Figure 3(e)). The main maximum as well as the 

asymmetric side lobes on the left and lower right and the near-zero signal regions at the 

top and bottom are well recreated. (h) A horizontal and vertical cut (upper and lower graph, 

respectively), of the measured SNOM map (black circles) together with calculated SNOM 

signals (black curve), calculated for the nanodot curvature shown by the blue curves. 
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In order to account for the curved surface, we here consider a modified projected LDOS, 

which we describe in the following. We assume a fixed dipole 𝑝 = |𝑝 | ⋅ 𝑝̂ as excited by 

the laser focus. For each position (x, y) of the tip during a scan, the z-coordinate is 

retrieved as the height of the Sb2S3 nanodot surface: 

𝑧2 = {
𝐻2

𝑅2
(𝑅2 − 𝑥2 − 𝑦2)             𝑥2 + 𝑦2 ≤ 𝑅2 

0                                               𝑥2 + 𝑦2 > 𝑅2  
                                (4.4) 

With R=200 nm the radius and H=140 nm the height at the center of the nanoparticle.  

At every position (x, y) this yields the height z(x, y) and from the derivation of Equation 

(4.4) the surface normal 𝑛̂. The projection onto the surface is: 

u⃑ ′ = 𝑝̂ − 𝑛̂(𝑛̂ ⋅ 𝑝̂)                                                 (4.5) 

This modified projected LDOS is calculated by applying Equations (4.2) and (4.3), and it 

defines the field enhancement at the tip position and hence the induced dipole moment 

𝑝 ′ of the tip.  

In our experiment, the light was incident from a direction in the x-z-plane, with an angle 

of ~20° to the negative x axis and ~70° to the z-axis, with the field polarization along the 

y-axis. However, as the tips are etched and then glued onto the tuning fork manually, their 

orientation relative to the sample is with some error margin (~10°). Thus, an excitation of 

the z-oriented as well as the x-oriented tip dipoles can hardly be avoided due to 

uncertainties in the alignment of the tips, and an excitation of the three components on 

the diagonal of the polarizability tensor was considered. Considering the experimental 

configuration, we find that the tip dipole can be described well with 𝑝 𝑡𝑖𝑝 = (0.3,1,0.2) . 

Finally, the radiation of the tip dipole, locally enhanced by the coupling to the waveguide 

modes into the far field (i. e., the detector, located at position 𝑅⃑ 𝑑𝑒𝑡 in the direction of the 

incident light) is calculated to yield the simulated SNOM map, shown in Figure 4.8 (f). 

The SNOM map displays a distinct radial asymmetry, which is likely to arises from the 

particular orientation of the tip dipole. The simulation using the projection of the tip dipole 

on an elliptical surface explains in particular the rather narrow central maximum in the 

SNOM map, as well as the side lobes to the left and lower right and the near-zero signal 
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strength at the upper and lower rim (compare S4f map in Figure 4.8 (g)). Figure 4.8 (h) 

compares the simulated (black curves) and measured S4f signals (black circles) along a 

horizontal and a vertical cut (upper and lower graph, respectively). These cuts have been 

calculated for the LDOS shown in Figure 4.8 (a), but for differently curved surfaces 

(indicated by the blue curves), in order to account for the slightly asymmetric shape of 

the nanoparticle. One can in particular see that neither simulated nor measured values 

reach zero at the left and right rim of the nanodot (see x-cut), but they do so at the upper 

and lower rim (y-cut). Even though the simulations reproduce most of the experimental 

observations, some minor discrepancies remain. In particular the plateau formed around 

the center by of the measured SNOM map and a very sharp ring around that central 

plateau are not reproduced. We believe that here the mode structure is disturbed by the 

particular shape of the nanodot, i. e., the dark shadow in the central region that was 

visible in the electron micrographs. As the height profile measured with the SNOM tip 

(Figure 4.8 (b) and (f)) did not reproduce the feature seen in the electron micrographs, 

this dark region may indicate a refractive index gradient, possibly caused by gas captured 

during collapse of the nanodot after annealing. Such a refractive index gradient could 

explain the observed deviation. Summarizing the projected LDOS calculations, they verify 

that the shape of the SNOM images resembles the projected LDOS given by four lowest-

order bound modes of a circular waveguide with a dome-like surface topography.  

4.3 Spectral response of Sb2S3 waveguide modes 

In the following, we will employ spectrally resolved near-field measurements of a Sb2S3 

nanodot to study these modes in more detail. In particular, we can approach this in two 

ways. Firstly, the waveguide modes proposed above provide a solution for a continuum 

of wavelengths. At a fixed spatial position, these modes should be excited across the 

complete spectral range covered by the broad-bandwidth laser and the scattered spectra 

therefore should show negligible spectral variation in our experiments. We will next 

present spectra recorded at different positions on the nanodot and the film to verify this 

behavior. Secondly, the spatial extent of LP fiber modes increases slightly with increasing 

wavelength. By spectrally filtering near-field maps obtained from a nanodot we will also 

verify this behavior. 
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4.3.1 Near-field spectrum and dipole model simulation 

 

 

 

 

 

 

Figure 4.9 Spectrally resolved approach curves measured above the flat Sb2S3 film. (a) 

Spectra recorded on the Sb2S3 film, demodulated at the fundamental tip modulation 

frequency 𝑆1𝑓(𝜆) as a function of tip-sample distance. Due to background interference 

the spectra change their shape as the tip is retracted. (b) The signal demodulated at the 

fourth harmonic, 𝑆4𝑓(𝜆) , retains its shape and decreases rapidly as the tip-sample 

distance increases.  

In order to verify that near-field contrast is achieved also with BISNOM measurements, 

we record near-field spectra during an approach over the flat Sb2S3 film. Figures 4.9 (a) 

and (b) compare the spectra demodulated at the fundamental tip modulation frequency, 

𝑆1𝑓(𝜆) , and spectra demodulated at the fourth harmonic, 𝑆4𝑓(𝜆) , for a few tip-sample 

distances between 3 nm and 12 nm. The 𝑆1𝑓(𝜆) spectrum (Figure 4.9 (a)) increases in 

intensity, when the sample is removed from the tip, and the spectral shape changes. Both 

effects can be ascribed to interference of the reference field with a strong background 

signal scattered from the tip. In contrast, the 𝑆4𝑓(𝜆)  spectrum (Figure 4.9 (b)) decays 

strongly as the sample is removed from the tip; as the distance is increased by 12 nm, 

the signal has mostly vanished. During the process, the spectral shape is retained. In 

order to show that the measured 𝑆4𝑓(𝜆) spectrum represents in good approximation the 

near-field spectrum, we have calculated the latter. 



88 

 

In Chapter 2, we introduced the dipole model of SNOM signal and concluded an effective 

polarizability describing the tip-sample coupling system. Ideally, a prober is approximated 

as a sphere with isotropic polarizability 𝛼𝑡𝑖𝑝 = 1⃡ ⋅ 4𝜋 ⋅ 𝑅3(𝜀𝐴𝑢 − 𝜀𝑎𝑖𝑟)(𝜀𝐴𝑢 + 2𝜀𝑎𝑖𝑟)
−1 . 

However, the tips with conical or pyramidal shapes have longitudinal polarizability (along 

the taper cone) different from the transversal sphere resonances. This have been 

confirmed by finite-difference time-domain simulations16 and our previous experimental 

work.44 Therefore, we assume the tip response is a diagonal polarizability tensor: 

𝛼𝑡𝑖𝑝(𝜔) = (

𝛼𝑥𝑥(𝜔) 0 0
0 𝛼𝑦𝑦(𝜔) 0

0 0 𝛼𝑧𝑧(𝜔)

)                                (4.6) 

The transversal component αxx = αyy  can be described by the polarizability of a 

nanosphere with diameter of r = 10nm and is shorten as αx,y: 

αx,y(ω) = 4πr3 ⋅ (εAu − 1)/(εAu + 2)                                   (4.7) 

Here 𝜀𝐴𝑢  is the dielectric functions of gold. And the longitudinal polarizability can be 

modeled by a Lorentz lineshape. More precisely, we have independently deduced 

resonance energies and linewidths for both components by broadband, polarization-

resolved evanescent wave excitation,44 and concluded resonance energy (ℏ𝜔0 ) and 

damping rate (ℏ𝛾) for the longitudinal resonance 𝛼𝑧𝑧(𝜔) of 1.58 eV and 0.33 eV and for 

the transversal resonance 𝛼𝑥,𝑦(𝜔) of 2.17 eV and 0.17 eV. Here the Lorentzian line 

shape functions hold the form of: 

𝐿(ω) =
|𝜇𝑡|

2

ℏ
(

1

ω+ω0+iγ
−

1

ω−ω0+iγ
)                                     (4.8) 

As demonstrated in our previous work,44 when the tip mode is mainly excited by the 

incident excitation, the effective dipole moment 𝜇𝑡 gives a maximum field enhancement 

factor of approximately 7 at the very apex of the taper as indicated in figure 4.10.  



89 

 

 

 

 

 

 

 

Figure 4.10 Longitudinal (blue curve) and transversal (red curve) polarizability of a gold 

tip with diameter 10 nm. 

With incident electric field excitation, a dipole oscillation in the tip is activated. Following 

Knoll and Keilmann, the tip dipole causes a polarization in the material, which re-emits a 

field acting back on the tip dipole, effectively enhancing the incident field. This is 

described by an effective polarizability, which increases in a super-linear fashion as the 

tip-sample distance is decreased. For a specific wavelength, the effective polarizability 

tensor is: 

𝛼𝑒𝑓𝑓(𝑑) =
𝛼⃑⃡ 𝑡𝑖𝑝

1−
𝛼⃑⃡ 𝑡𝑖𝑝𝛽

32𝜋𝑑3

                                               (4.9) 

Here, 𝛽 = (𝜀𝑆𝑏2𝑆3
− 1)(𝜀𝑆𝑏2𝑆3

+ 1)
−1

 is the material response with the dielectric function of 

Sb2S3 (in Figure 4.2) and d is the tip-sample distance.  

The near field radiated by the tip at position 𝑟⃡′ and detected at position 𝑟⃡ is calculated by 

applying the dyadic Green’s function 𝐺:   

𝐸⃑ 𝑁𝐹(𝑟 , 𝑑) = 𝐺(𝑟 , 𝑟 ′)𝛼𝑒𝑓𝑓(𝑑)𝐸⃑ 𝑖𝑛𝑐                                              (4.10) 

the dyadic Green function 𝐺0(𝑟 , 𝑟 
′
) is defined as: 

𝐺0(𝑟 , 𝑟 
′
) =

𝑒𝑖𝑘𝑅

4𝜋𝑅
[(1 +

𝑖𝑘𝑅−1

𝑘2𝑅2 ) 𝐼⃡ +
3−3𝑖𝑘𝑅−𝑘2𝑅2

𝑘2𝑅2 ⋅
𝑅⃑ 𝑅⃑ 

𝑅2  ]                            (4.11) 

Where R is the absolute value of vector R⃑⃑ = r − 𝑟 
′
, and R⃑⃑ R⃑⃑  denotes the outer product of 

R⃑⃑  with itself. According to the distance range 𝑅 in comparison with the wavelength 𝜆, the 
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Green function 𝐺0(𝑟 , 𝑟 0, 𝜔) can be written as the addition of that for near-field, 𝐺𝑁𝐹(𝑅 ≫

𝜆), intermediate-field, 𝐺𝑁𝐹(𝑅 ≈ 𝜆), and far-field, 𝐺𝐹𝐹 (𝑅 ≪ 𝜆): 

𝐺0 = 𝐺𝑁𝐹 + 𝐺𝐼𝐹 + 𝐺𝐹𝐹                                                (4.12) 

with 

𝐺𝑁𝐹(𝑟 , 𝑟 0, 𝜔) =
𝑒𝑖𝑘𝑅

4𝜋𝑅
⋅

1

𝑘2𝑅2 (−𝐼⃡ +
3𝑅⃑ 𝑅⃑ 

𝑅2  )                                     (4.13) 

𝐺𝐼𝐹(𝑟 , 𝑟 0, 𝜔) =
𝑒𝑖𝑘𝑅

4𝜋𝑅
⋅

𝑖

𝑘𝑅
(𝐼⃡ −

3𝑅⃑ 𝑅⃑ 

𝑅2  )                                            (4.14) 

𝐺𝐹𝐹(𝑟 , 𝑟 0, 𝜔) =
𝑒𝑖𝑘𝑅

4𝜋𝑅
(𝐼⃡ −

𝑅⃑ 𝑅⃑ 

𝑅2  )                                                    (4.15) 

For the present experiments, with an incident field that is polarized in y-direction 𝐸⃑ 𝑖𝑛𝑐 =

𝐸𝑖𝑛𝑐𝑦̂ parallel to the sample surface, we only consider the polarizability in y-direction (αyy) 

of the gold tip. In Figure 4.11 (a) the yy matrix element of the effective polarizability (the 

only non-zero element under excitation with y-polarized light) is plotted as a function of 

wavelength for the same tip-sample distances d as were measured in the experiment and 

taking into account the dielectric functions of gold and of Sb2S3. One can see that the 

effective polarizability increases as the tip-sample distance decreases. The increase 

towards short wavelengths is caused by the tip resonance, which is far detuned to the 

blue. This spectral shape is preserved during the approach.  

 

 

 

 

 

 

 

Figure 4.11 (a) Effective tip polarizability calculated for the same tip-sample distances as 

(b) (a) 
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used in the measurements, and (b) calculated near-field spectra. The inset shows the 

reference spectrum that was measured in the experiment and used as the input spectrum 

for the simulations. The calculated near-field spectra are in good agreement with the 

measured 𝑆4𝑓(𝜆) spectra. 

In order to calculate the near field radiated towards the detector, we apply the dyadic 

Green’s function, but for this simple estimate we neglect its direction dependence.  The 

near field is then mixed with the reference field to yield the measured near-field spectrum: 

𝑆𝑁𝐹(𝜆, 𝑑) ∝ 𝑘2𝑅𝑒 {(𝛼𝑒𝑓𝑓(𝜆, 𝑑))
𝑦𝑦

⋅ 𝐸𝑅(𝜆) ⋅ 𝐸𝑖𝑛𝑐(𝜆)}                            (4.16) 

Finally, one has to take into account the demodulation process that reduces the signal to 

its AC components. We do this numerically by subtracting the near field signal at a large 

tip-sample distance of 50 nm and approximate the measured 𝑆4𝑓(𝜆, 𝑑) signal by 

𝑆4𝑓(𝜆, 𝑑) = 𝑆𝑁𝐹(𝜆, 𝑑) − 𝑆4𝑓(𝜆, 𝑑𝑓𝑎𝑟 = 50𝑛𝑚)                                (4.17) 

The result calculated by Equations (4.9), (4.16-17) are the near-field spectra shown in 

Figure 4.8 (d). The agreement with the measured 𝑆4𝑓 spectra is excellent, both in spectral 

shape and in distance dependence. 

4.3.2 Spatially resolved near-field spectrum  

We now perform a spectrally resolved BISNOM scan of an Sb2S3 nanoparticle, using the 

monochromator and fast line camera. The laser spectrum used for this particular 

measurement is the one shown in the setup sketch Figure 4.1. We record complete near-

field spectra 𝑆1𝑓(𝜆), 𝑆2𝑓(𝜆), 𝑆3𝑓(𝜆), and 𝑆4𝑓(𝜆), across a 500-nm by 400-nm large area, 

and with a step size of 12.5 nm and 20 nm in x and in y direction, respectively. In Figures 

4.12 (a), (b), and (c) we show sets of these four spectra exemplarily for three different 

positions, in the center of the nanoparticle (Pos. 1, Figure 4.12 (a)), on the flat Sb2S3 film 

(Pos. 2, Figure 4.12 (b)), and on the outer area of the nanoparticle, where the near-field 

signal is strongly reduced (Pos. 3, Figure 4.12 (c)). The positions are marked in the 

SNOM map in the inset in Figure 4.12 (d), which has been prepared by plotting the 

spectrally integrated signal 𝑆4𝑓(𝜆) as a function of position on the sample. Within each of 
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the Figure 4.12 (a)-(c) one can see that the measured 𝑆2𝑓(𝜆), 𝑆3𝑓(𝜆), and 𝑆4𝑓(𝜆) spectra 

closely resemble each other, while the spectral shape of 𝑆1𝑓(𝜆)  clearly deviates from 

these and furthermore varies between the positions. In agreement with the observation 

shown in Figures 4.9(a) and (b), this leads us to conclude that the higher-order 

demodulated spectra reliably reflect near-field spectra, while spectral interference of 

background and reference fields leads to spectral variations in the 𝑆1𝑓(𝜆) signal.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Near-field spectra recorded at different positions on an Sb2S3 nanoparticle 

using the monochromator and fast line camera. (a) Demodulated signals  S1f(𝜆) to  S4f(𝜆) 

recorded with the tip in close contact above the centre of the nanodot, (b), on the film, 

and (c), above the outer area on the nanodot. (d) Comparison of the three S4f(𝜆) spectra 

shown in (a)-(c) and a calculated  S4f(𝜆) spectrum (black curve). The inset indicates the 

three positions, where the spectra shown in this figure are recorded. 
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In contrast, the higher-order demodulated spectra seem to hardly vary as the position on 

the sample is changed. In order to facilitate a direct comparison, the 𝑆4𝑓(𝜆) spectra of the 

three positions are plotted together in Figure 12 (d). The black curve represents a near-

field spectrum calculated from the effective polarizability above a flat Sb2S3 film and using 

the laser input spectrum shown in Figure 4.1. As expected, the 𝑆4𝑓(𝜆) spectrum recorded 

on the film (Pos. 2, dotted red curve) matches the calculated spectrum well. A similar 

agreement can be seen for the 𝑆4𝑓(𝜆) spectrum recorded at the center of the nanodot 

(Pos. 1, dashed red curve). This supports our interpretation of the central feature of the 

field profile as a waveguide mode, which has a broad bandwidth and is spectrally flat 

within our measurement range. Coupling into the waveguide is nearly wavelength-

independent, which is reflected by the close resemblance of the calculated spectra and 

those measured on the film and the central area of the nanodot. The last spectrum, 

measured in the outer area of the nanodot, has a slightly different shape (Pos. 3, solid 

red curve): here the long-wavelength edge is markedly higher compared to the short-

wavelength side. As known from fiber modes, the diameter of the waveguide mode 

increases slightly with wavelength. Thus, when probing at a radius that lies just at the 

edge of these modes, one would expect that the coupling efficiency for the shorter 

wavelengths has already dropped, while longer wavelengths still could be coupled to a 

guided mode with considerably higher efficiency. This would result in an overexpression 

of the longer-wavelength edge of the spectrum as observed in this measurement. 

Together, the measurements presented in Figure 4.12 verify the assumption of the broad 

bandwidth and flat spectral shape of the observed fundamental optical mode of the 

nanodot and supports modelling the dielectric structure as a waveguide. We have also 

seen first evidence of the typical spatial-spectral behavior of guided wave modes. 
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Figure 4.13 Spectrally resolved near-field maps of a Sb2S3 nanodot. (a)-(g) Near-field 

maps recreated from 30-nm spectral bands centered at 715, 745, 775, 805, 835, 865, 

and 895 nm. (h) Cross cuts through the near field maps shown in (a) (spectral range 700-

730 nm, blue symbols) and in (f) (spectral range 850-880 nm, red symbols) together with 

calculated SNOM maps at 715 nm (blue curve) and 865 nm (red curve). 

As a final verification of the spatial-spectral mode properties, we extract spectral near-

field maps from the BISNOM data. In Figures 4.13(a)-(g) we have plotted maps created 

by spectrally integrating the 𝑆4𝑓(𝜆) signal over 30-nm wide spectral bands, centered at 

equally spaced wavelengths from 715 nm to 895 nm. The contrast in these SNOM maps 

remains high throughout these seven spectral bands, which is yet another implication of 

the negligible spectral variation of the waveguide modes. At the short- and the long-

wavelength edge, the measurement noise is increased due to the lower spectral power 

density of the laser. In each of these maps, a ring-shaped signal decrease can be seen 
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clearly. On closer inspection, the characteristic features from the projected LDOS 

calculation can be found here again, namely the secondary maxima at the left and lower 

right of the nanodot, and the near-zero signal regions at the top and bottom. Compared 

to the earlier investigated nanodot (cmp. Figure 4.8), here the main maximum appears to 

be more centered, which indicates that the nanodot is more regularly shaped. 

Figure 4.13 (h) compares cross cuts through the maps created at the outermost spectral 

bands at 715 nm and 865 nm (Figures 4.13 (a) and (f), respectively) with calculated 

SNOM measurements above an elliptical surface over the LP01, LP11, LP02, and LP21 

mode profiles, once calculated for a wavelength of 715 nm and once for 865 nm. The 

measured values are shown as symbols in Figure 4.13 (h) and the calculated values as 

solid curves. As all curves are normalized, the larger extent of the long-wavelength mode 

is reflected by the lower decrease with larger radius (red curve). The general shape of 

the cross cuts through the measured near-field maps agrees well with the simulated 

projected LDOS. Unfortunately, the expected difference in diameter for the two different 

wavelength ranges cannot easily be seen in the measurements. The noise in these 

measurements is probably too high to see this small distinction. For example, there is 

one position, slightly left from the center, where the signal drops in both measured curves. 

Such a drop can appear due to a small dent on the surface of the nanostructure, where 

momentarily the tip-sample distance is increased. The larger extent of the waveguide 

mode at long wavelengths can, however, be seen in the measurement at larger radii, 

where the wings of the red symbols are clearly offset from the blue symbols. Together, 

the spectrally resolved near-field measurements presented in Figures. 4.11 and 4.12 

verify that the Sb2S3 nanodot supports LP-like waveguide modes. 

This wavelength dependent waveguide model distribution is further supported by (FTDT) 

simulations. Figure 4.14 shows the intensity profiles of the fundamental modes LP01 and 

LP11, calculated for a Gaussian-shaped spectrum of 20-nm width and centred at 700 nm 

(left column), at 800 nm (middle collum), and at 900 nm (right column). From left to right, 

one can see that the extents of the two guided modes increases slightly with increasing 

wavelength. This matches our measurement results and calculation expectation 

illustrated in Figure 4.13. 
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Figure 4.14 Intensity mode profiles obtained from finite-difference time domain (FTDT) 

simulations. Shown are the two lowest-order (a,b,c) mode LP01, and (d,e,f) mode LP11 

profiles calculated for a 20-nm width Gaussian laser spectrum centred at a wavelength 

of 700 nm, 800 nm, and 900 nm. 

Figure 4.15 shows the crosscut through the calculated intensity profile of the LP01 mode 

for 700 nm, and 900 nm (black, and red curves). As displayed in figure 4.14 (h), the 

increasing diameter of the mode profiles is clearly visible in the measurements. A small 

increase in width is observed when the center wavelength increases from 700 nm to 

900 nm in Figure 4.15, which is in good agreement with the simulated mode profile widths.  

 

 

 

 

 

Figure 4.15 Cross cuts through the maps shown in Figure 4.14 (a) (spectral range 700-

730 nm, blue curve) and in (c) (spectral range 850-880 nm, red curve). 

(a) (b) (c) 

(d) (e) (f) 

700 nm 800 nm 900 nm 
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In summary, we have realized scanning near-field optical spectroscopy with a broad 

bandwidth in the near-infrared. The key to the method is a fast CCD line camera capable 

of recording complete spectra with a read-out rate of more than eight times the tip 

modulation frequency, such that near-field spectra demodulated at the fourth order can 

be obtained in post-processing. Furthermore, we have incorporated the near-field 

microscope in a Michelson interferometer for homodyne mixing and boosting the weak 

near field signal. 

We have demonstrated the potential of the broad-bandwidth interferometric near-field 

spectroscopy by experimentally investigating the optical modes supported by an Sb2S3 

nanoparticle. We observe a round mode profile reminiscent of the fundamental fiber-

optical mode. Near-field spectroscopy reveals that the observed mode is continuous 

across the bandwidth supported by our laser. Measuring near field spectra with high 

spatial resolution specifically at the outer edge of the observed mode profile reveals that 

here efficient coupling is retained predominantly for the longer-wavelength side of the 

spectrum. This indicates that the extent of the mode profile increases slowly with 

increasing wavelength and is a demonstration of the spatial-spectral mode characteristics. 

In agreement with FDTD simulations, the observation is that of a guided mode of the 

dielectric waveguide nanostructure. Such nanodots created on top of a thin film of the 

same material may serve as an efficient waveguide for below-band gap light into the film 

and thereby can help to improve the over-all efficiency of photovoltaic materials. In a 

different branch of applications, such dielectric nanostructures designed to support either 

guided or standing wave modes may in the future become an important alternative to 

metallic plasmonic nanostructures. Compared to those, dielectric nanostructures realize 

lower field enhancement, but they also cause much lower Ohmic losses, which makes 

them advantageous specifically for waveguide realizations in plasmonic circuitry. As such, 

the samples investigated in this report represent a novel class of basic plasmonic 

elements. 
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5 Time-domain response of single Halide Perovskite nanoparticl

es 

Metallic, semiconducting and dielectric nanoparticles form outstanding tools for localizing 

light on the nanoscale. Their optical shape resonances confine light in certain localized 

modes and in spectral regions, largely tunable by varying the size, shape or composition 

of the particle. Such particles find broad applications in nanosensing, nonlinear optical 

switching, photocatalysis, and biomedicine. Often, the lifetimes of the optical resonance 

of those particles are so short, in the range of few femtoseconds, that direct time-resolved 

measurements of their localized optical near-fields are highly challenging. In this chapter, 

the broadband, interferometric scattering-type scanning near-field optical spectroscopy 

technique is utilized, setup details as described in chapter 3, to reconstruct the complex 

response function of a single nanostructure in the time domain and with nanometer-

spatial resolution. We demonstrate this approach by analyzing single MAPbI3 perovskite 

nanoparticles, promising new candidates for nanoscale light sources. Their optical 

spectra are expected to feature distinct Fano resonances, arising from the coupling of 

excitons to the Mie resonances of the particles. In this chapter, we provide direct evidence 

for these Fano resonances by measuring amplitude and phase of their local optical near-

field with high spatial and spectral resolution. We identify a destructive interference dip in 

the time structure of the reconstructed optical near-field as the distinct signature of these 

Fano resonances. Our technique provides a general approach for measuring the 

response functions of nanostructures in the visible and near-infrared spectral range with 

femtosecond temporal and nanometer spatial resolution. 

5.1 Sample preparation 

Perovskite nanoparticles are fabricated by laser printing method from a perovskite thin 

film.121, 173 For preparing a uniform and dense perovskite film, a solution of perovskite 

precursor (MAPbI3) is firstly prepared in a drybox as follows: methylammonium iodide 

(MAI) in 𝛾-butyrolactone with dimethyl sulfoxide (GBL/DMSO) at the concentration of 1.5 

M is used to dissolve 1.5 M of lead iodine (PbI2). The solution is stirred and heated at 
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70 °C overnight and used after filtration through 0.45 μm PTFE syringe filter. With this 

solution, a perovskite layer is created by a solvent engineering technique inside the 

drybox.174 First, the solution precursor MAPbI3 is spread over the entire surface of the 

substrate at rotation speed 1000 rpm. The solvent is evaporated after maintaining the 

rotation for several tens of seconds. Then, 200 µL of toluene is dripped at 3000 rpm. 

During the film formation, the toluene does not dissolve perovskite. At last, the formed 

film is annealed at 100 °C for 10 min, converting the complex into highly uniform and 

crystalline perovskite. 

For the laser printing method, the forward-transfer geometry is employed. The receiving 

substrate, glass substrate, is washed by sonication in deionized water, toluene, acetone, 

and isopropanol. Yb3+ femtosecond laser pulses at λ = 1050 nm with energy around 50 

nJ is tightly focused by 10× objective with numerical aperture (NA) of 0.26. According to 

the relation 𝑑 ≈
1.22𝜆

𝑁𝐴
, the diameter of the beam focal spot is approximately 5 µm. 

Previously prepared perovskite film is used as the sample for nanoparticle fabrication. It 

is placed on a three-dimensional are-bearing translating stage driven by brushless 

servomotors (ABL1000, Aerotech), allowing translation of the sample with an accuracy 

higher than 100 nm. In the experiment, the nanoparticles were fabricated from a smooth 

surface (in a single-shot regime) in the forward-transfer (LIFT) geometry when the 

receiving substrate is placed under the film with a spacing of ∼50 μm.173 Morphology and 

size of the nanoparticles are studied by scanning electron microscopy (SEM) with an 

electron microscope (Crossbeam 1540 XB, Carl Zeiss). An SEM image of MAPbI3 

nanoparticles on a glass substrate is depicted in Figure 5.1, which shows half-spherical 

shaped particles with radius of tens to hundreds of nanometers. Optical properties of 

nanoparticles and nanostructures are sensitive to the variations of shape, size, 

composition, and surrounding medium. Thus, it is vital to know exact morphology of the 

structure for proper description and further predictions of optical properties. Concerning 

to the influence of surrounding medium, it has been demonstrated that the presence of a 

silica glass substrate does not affect dramatically the mode excitation and spectral 

position of the resonances of a single high-index spherical nanoparticle.175  
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Figure 5.1 Scanning electron microscope image of MAPbI3 particles fabricated by laser 

ablation. 

Figure 5.2 shows the dielectric function 𝜀 of MAPbI3 material measured by ellipsometry 

in previous works.176, 177 A pronounced onset is observed near the material bandgap at 

1.642 eV. The imaginary part of 𝜀, normally associated with the absorption component, 

can be decomposed by spectral fitting to an excitonic resonance and a continuum 

background as illustrated in figure 5.2 (b).  

 

 

 

Figure 5.2 (a) Real (blue curve) and imaginary (red curve) parts of dielectric function for 

all perovskite nanoparticles composition MAPbn3. (b) The imaginary part (red curve) is 

denoted as a combination of the excitonic resonance at 1.642 eV (green dashed line) 

and a continuum background (blue dashed line). 
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Figure 5.3 (a) Topography image of a 3 µm ×3 µm area of a sample with laser-ablated 

MAPbn3 nanoparticles on a glass cover slip. (b-e) Map of the optical near-field signal 

recorded for broadband excitation of the sample with a 6-fs Ti:sapphire laser and 

detected on an avalanche photodiode (APD). The signal is demodulated at the (b) first, 

(c) second, (d) third and (e) fourth harmonic of the tip modulation frequency. The 

fundamental order optical signal 𝑆1𝑓 shows a stronger strength on the particles, which is 

originated from their high scattering cross section in far-field. Higher harmonic maps,  𝑆2𝑓 

𝑆3𝑓 and 𝑆4𝑓, show dipolar field enhancement on the nanoparticle surface. nt can be clearly 

depicted by the cross-section contrast, in panel (f), between the topography (black curve) 

and the 𝑆3𝑓 optical signal (red curve) along dashed lines labeled in panel (a) and (d). The 

optical near-field signal displays evident enhancement within three stripe areas. 

Figure 5.3 (a-e) display a SNOM scan of a typical area in the sample. The topographic 

image in panel (a) is acquired by scanning the sample as the tuning fork amplitude was 

adjusted to 12 nm and the tip-sample distance held at 4 nm. The nanostructures revealed 

by the AFM topography are correspondingly observed in the optical image 𝑆1𝑓 (panel (b)). 

The signal strength on particles is evidently higher than that on the substrate, which 

benefits from the higher dielectric function of the halide perovskite in comparison with the 

glass substrate. Moreover, the near-field enhancement on the particles is stronger for the 

(a) (b) (c) 

(d) (e) (f) 
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large particles. This is because the near-field enhancement is directly related to the 

polarizability of the object which is, as indicated by the Keilmann dipole coupling model, 

proportional to the volume for a nanoparticle. For higher demodulation order, the optical 

image of each particle displays two lobes regardless of size and shape, which indicates 

that dipolar mode arises in MAPbI3 particles under linearly polarized light excitation. As 

the demodulation order increases, optical contrast is improved. The near-field contrast in 

the signal 𝑆3𝑓  is maximized. Cuts through of the topographic image and the 𝑆3𝑓  map 

along the dashed lines in Figure 5.3 (a) and (d) are plotted together in panel (f). The 

topography contour (black curve) is a basically symmetric cone, and the 𝑆3𝑓  signal 

outlines the dipolar mode, in which the signal increases as the tip reaches the particle 

edge and extremely decreases when it approaches to the center. An obvious dip can be 

observed within the left lobe which corresponds to the additional field enhancement near 

the particle rim in the 𝑆3𝑓 image.  

Such mode profile is demonstrated by an FDTD simulation of a MAPbI3 half sphere as 

illustrated in figure 5.4. The simulated particle has comparable dimensions of the particle 

in the measurement as labeled by a black dash line in figure 5.3 (a). Optical images of 

the half sphere as shown in figure 5.4 (a-c) manifest that the optical modes for both x- 

and z-component have a dipolar mode profile under a linear polarized light excitation. 

Distinguishably, the x-component is tightly confined at the structural rim, while the dipolar 

mode for the z-component locates in the particle and exhibits an additional outer ring at 

the structural edges which coincides with the near-field mode feature probed in the 

measurement. Hence, we conclude that the tip in the measurement mainly probes the z-

component of the particle. An overall signal as shown in figure 5.4(f), by integrating all 

three components with a larger proportion of the z-direction field distribution (𝐸𝑥: 𝐸𝑦: 𝐸𝑧 =

1: 1: 6 ), is employed to mimic the measured near-field mode distribution of individual 

MAPbI3 nanoparticle. 
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Figure 5.4 Map of the (a) x-, (b) y- and (c) z- component of the local optical near-field 

enhancement, averaged over a spectral range from 680 to 880 nm, at the surface of the 

MAPbn3 nanoparticle. The field enhancement is simulated on a perovskite half sphere 

with radius of 300 nm and height of 300 nm, excited with an x-polarized plane wave. (d) 

Normalized absolute total electric field distribution around the particle where the different 

field components contribute with the of 𝐸𝑥: 𝐸𝑦: 𝐸𝑧 = 1: 1: 6. nn qualitative agreement with 

experiment, the integrated field shows a dipolar enhancement on the surface of the 

particle and a secondary field enhancement near the rim. 

5.2 Near-field spectra 

To understand the resonance property of the dipolar mode, we employ the broad-

bandwidth interference SNOM, as described in chapter 3, to study the near field spectrum 

of individual MAPbI3 nanoparticle.  

5.2.1 Measurement results 

The local spectrum within an individual MAPbI3 particle is measured by the fast camera 

employing homodyne interferometric detection. Figure 5.5(a) shows 60,000 spectra 

(a) (c) 

(b) (d) 
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𝑆(𝜔, 𝑡) recorded consecutively at one position on the MAPbI3 particle, by adapting the 

fast camera. The maximum readout speed of the camera is 210 kHz which corresponds 

to a line period of 4.6 µs. Each horizontal line of the data image represents a spectrum, 

and the count per pixel is color-coded. The vertical straight stripes with a spacing of about 

2 nm express the spectral interference fringes detuned by the optical path length 

difference of ∆𝐿𝑅 ≈ 326 𝑛𝑚. Each vertical line accumulates the pixelwise time series 

𝑆𝜔(𝑡) integrated in 276 ms. Demodulated interferograms are obtained by preforming 

discrete Fourier transformation of 𝑆𝜔(𝑡) for each specific energy 𝜔 (detailed information 

can be found in chapter 3). Figure 5.5 (b) and (c) depict the demodulated interferogram 

at nth order harmonic of tip frequency 𝑓 , 𝑆𝑛𝑓(𝜔) , with demodulation order of 𝑛 =

0,1, 2, 3, 4.  

 

 

 

 

 

Figure 5.5 Near-field spectrum within the dipolar mode of a MAPbI3 particle. (a) Counts 

collected by the fast line camera, color-coded as a function of energy and time 𝑆(𝜔, 𝑡). 

(b,c) Demodulated interferogram 𝑆𝑛𝑓(𝜔) obtained by extracting the nth order (n = 0,1, 2, 

3, 4) Fourier series of the signal at each pixel plotted with a shift of dc-intensity offsets 

between orders for visibility. (d) A sketch of the interferogram in the BISNOM setup. The 

field propagating to the beam splitter (BS) is assumed as an incident field 𝐸0(𝜔), and is 
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divided by the BS into two paths. The field expressions on the beam path are labeled 

where 𝑟 and 𝑡 denoting the reflection and transmission coefficients of optical elements, 𝜎 

is the response parameter of the tip-sample area. 

Recall the setup scheme as sketched in figure 5.5 (d), for an incident electric field𝐸0(𝜔), 

the detected output signal of the interferogram  𝑆(𝜔, 𝑡) is generally composed of three 

parts: near-field  𝐸𝑁𝐹(𝜔) scattered from the tip apex, background field 𝐸𝐵(𝜔) scattered 

from the tip shaft, and reference field  𝐸𝑅(𝜔)  reflected from the reference arm. As 

illustrated in panel (d), three fields can be expressed by the incident field and the optical 

properties of each element in the setup as follows: 

          𝐸𝑅(𝜔) = 𝑡𝑏𝑠(𝜔)𝑟𝑏𝑠(𝜔)𝑡𝑓
2(𝜔)𝑟𝑀(𝜔)𝐸0(𝜔)𝑒𝑖𝜑1(𝜔) 

𝐸𝐵(𝜔) = 𝑡𝑏𝑠(𝜔)𝑟𝑏𝑠(𝜔)𝑡𝑚𝑜
2 (𝜔)𝐸0(𝜔)𝑒𝑖𝜑2(𝜔) ⋅ 𝜎𝑆(𝜔)                      (5.1) 

                                𝐸𝑁𝐹(𝜔) = 𝑡𝑏𝑠(𝜔)𝑟𝑏𝑠(𝜔)𝑡𝑚𝑜
2 (𝜔)𝐸0(𝜔)𝑒𝑖𝜑2(𝜔) ⋅ 𝜎𝑇(𝜔) 

The reflection and transmission efficiency of BS, the transmission efficiencies of MO and 

gray filter, as well as the reflection efficiency of silver mirror has been measured and 

demonstrated to be wavelength independent as shown in the Appendix. Hence three 

fields can be simplified as: 

                                                         𝐸𝑅(𝜔) = ℎ1𝐸0(𝜔)𝑒𝑖𝜑1(𝜔) 

𝐸𝐵(𝜔) = ℎ2𝐸0(𝜔)𝑒𝑖𝜑2(𝜔) ⋅ 𝜎𝑆(𝜔)                                      (5.2) 

                                               𝐸𝑁𝐹(𝜔) = ℎ2𝐸0(𝜔)𝑒𝑖𝜑2(𝜔) ⋅ 𝜎𝑇(𝜔) 

Here 𝜎𝑆(𝜔) = |𝜎𝑆(𝜔)|𝑒𝑖𝜑𝑆  and 𝜎𝑇(𝜔) = |𝜎𝑇(𝜔)|𝑒𝑖𝜑𝑇  denote the near-field and 

background field scattering response. 𝜑1,2(𝜔) is the phase of electric field from two arms 

in comparison to the phase of incident field 𝐸0(𝜔) at the BS.  

Therefore, the detected signal is the interference of three fields: 

𝑆(𝜔) ∝ |𝐸𝑁𝐹(𝜔) + 𝐸𝐵(𝜔) + 𝐸𝑅(𝜔)|2                                  (5.3) 
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When the reference field is extremely strong, the interference signal demodulated at 

higher order (𝑛 ≥ 2) harmonics is dominated by the product of near-field and reference 

field, for example: 

𝑆2𝑓(𝜔) ∝ 𝑅𝑒{ℎ1ℎ2 ⋅ |𝐸0(𝜔)|2 ⋅ |𝜎𝑇(𝜔)| ⋅ 𝑒𝑖(∆𝜑(𝜔))}                       (5.4) 

where the phase delay  ∆𝜑(𝜔) = 𝜑1(𝜔) − 𝜑2(𝜔) =
ω(∆L)

𝑐0
𝑛 is caused by the path length 

difference between reference field and near-field, and 𝑛 is the refractive index of the 

medium on the optical path. In the case of propagation in air (𝑛 = 1), the phase delay is 

linearly proportional to frequency, ω∆L/𝑐0 . When 𝑛  is frequency dependent, ∆𝜑(𝜔) 

becomes a nonlinear function of frequency. Hence the phase term of ∆𝜑(𝜔) can be 

written in two parts,  

∆𝜑(𝜔) = ω
∆L

𝑐0
+ ∆𝜑𝑁𝐿(𝜔) = ωτ0 + ∆𝜑𝑁𝐿(𝜔)                                 (5.5) 

According to the shift theorem of Fourier transformation, a linear phase in frequency 

domain corresponds to a time shift in time domain.  Fourier transformation of 𝑆2𝑓(𝜔) 

therefore carries three components:  

s2f(𝑡) = 𝑠2𝑓
− (𝑡 + 𝜏0) + 𝑠2𝑓

0 (𝑡) + s2f
+ (𝑡 − 𝜏0)                                   (5.6) 

Three components correspond to three parts in the spectral interferogram signal 𝑆2𝑓(𝜔). 

For instance, the positive side peak in s2f(𝑡) can be expressed as: 

   𝑠2𝑓
+ (𝑡 − 𝜏0) = 𝐹𝑇−1{ℎ1ℎ2 ⋅ |𝐸0(𝜔)|2 ⋅ |𝜎𝑇(𝜔)| ⋅ ei∆𝜑(𝜔) }                     (5.7) 

where 𝐹𝑇−1 denotes inverse Fourier transform.  

Figure 5.6 (a) shows the Fourier transformation of the interferogram 𝑆2𝑓(𝜔)  on a 

logarithmic scale which contains one DC peak that centers at 𝑡 = 0, and two symmetric 

AC peaks sitting at 𝑡 = −𝜏0  and 𝑡 = +𝜏0 . The positive and negative AC peaks have 

identical absolute values and reversed phase signs. Applying rectangular windows, as 

indicated by dashed lines in panel (a), isolates the DC and AC components, then 

performing inverse Fourier transform to the positive AC peak s2f
− (𝑡 − 𝜏0)  yields the 2f 
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spectrum as shown in panel (b): 

𝑆2𝑓
− (𝜔) = ℎ1ℎ2 ⋅ |𝐸0(𝜔)|2 ⋅ 𝜎𝑇(𝜔) ⋅ 𝑒𝑖(∆𝜑(𝜔))                              (5.8) 

The essential information of the complex near-field response function is encoded in the 

𝑆2𝑓
− (𝜔). From equation (5.8), the near-field response function 𝜎𝑇(𝜔) amplitude and phase 

can be achieved by:  

|𝜎𝑇(𝜔)| =
|𝑆2𝑓

− (𝜔)|

ℎ1ℎ2⋅|𝐸0(𝜔)|2
∝

|𝑆2𝑓
− (𝜔)|

|𝐸0(𝜔)|2
                                         (5.9) 

𝜑𝑇(𝜔) = 𝐴𝑟𝑔(𝑆2𝑓
− (𝜔)) − ∆𝜑(𝜔)                                      (5.10) 

Obviously, to realize the amplitude |𝜎𝑇(𝜔)|  and phase 𝜑𝑇(𝜔) , both laser spectrum 

|𝐸0(𝜔)|2 and the phase delay ∆𝜑(𝜔) are required, respectively.   

Figure 5.6 Normalized Fourier transform of (a) 𝑆2𝑓(𝜔) and (c) 𝑆0𝑓(𝜔) in logarithm which 

own one DC peak and two AC peaks, respectively. Applying two window boxes divides 

𝑠(𝑡) data into three segments. nnverse Fourier transform of one side peak in 𝑠2𝑓(𝑡) and 

𝑠0𝑓(𝑡)  yield unmodulated spectrum (b) 𝑆2𝑓
− (𝜔)  and (d) 𝑆0𝑓

− (𝜔) , and nnverse Fourier 

transform the DC peak in 𝑠0𝑓(𝑡) yield the spectrum of  𝑆0𝑓
0 (𝜔). 

(a) (b) 

(d) (c) 
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In 𝑆0𝑓(𝜔)  signal, the near-field 𝐸𝑁𝐹(𝜔) is negligible because it is much weaker than 

background field 𝐸𝐵(𝜔)  and reference field 𝐸𝑅(𝜔) . 𝑆0𝑓  is approximated as the 

interference between reference field and background field: 

    𝑆0𝑓(𝜔)  ≈ |𝐸𝑅(𝜔) + 𝐸𝐵(𝜔)|2 

                   = |ℎ1𝐸0(𝜔)𝑒𝑖𝜑1(𝜔) + ℎ2𝐸0(𝜔)𝑒𝑖𝜑2(𝜔) ⋅ 𝜎𝑆(𝜔)|
2
                            

  = |𝐸0(𝜔)|2ℎ1
2 ⋅ (1 + (

ℎ2

ℎ1
)
2
|𝜎𝑆(𝜔)|2 + 2

ℎ2

ℎ1
⋅ |𝜎𝑆(𝜔)|cos (∆𝜑(𝜔)))                  (5.11) 

In analogy to the interferogram signal 𝑆2𝑓(𝜔), performing a Fourier transformation of 

𝑆0𝑓(𝜔) leads to three components:  

s0f(𝑡) = 𝑠0𝑓
− (𝑡 + 𝜏0) + 𝑠0𝑓

0 (𝑡) + s0f
+ (𝑡 − 𝜏0)                                (5.12) 

When three components are isolated as depicted in figure 5.6(c), separately performing 

inverse Fourier transformation of the isolated terms 𝑠0𝑓
− (𝑡 + 𝜏0) and 𝑠0𝑓

0 (𝑡) results in the 

individual spectrum of 𝑆0𝑓
− (𝜔), 𝑆0𝑓

0 (𝜔) as listed below: 

𝑆0𝑓
− (𝜔) = |𝐸0(𝜔)|2ℎ1

2 ⋅ [
ℎ2

ℎ1
⋅ 𝜎𝑆(𝜔)𝑒𝑖∆𝜑(𝜔))]                                 (5.13) 

𝑆0𝑓
0 (𝜔) = |𝐸0(𝜔)|2ℎ1

2 ⋅ (1 + (
ℎ2

ℎ1
)
2
|𝜎𝑆(𝜔)|2)                                (5.14) 

A normalization of |𝑆0𝑓
− (𝜔)|/|𝑆0𝑓

0 (𝜔)| eliminates the coefficients of the laser spectrum 

|𝐸0(𝜔)|2 and gives a relationship of: 

                                     
|𝑆0𝑓

− (𝜔)|

|𝑆0𝑓
0 (𝜔)|

=

ℎ2
ℎ1

⋅|𝜎𝑆(𝜔)|

1+(
ℎ2
ℎ1

)
2
|𝜎𝑆(𝜔)|2

                                             (5.15)                                

which forms a quadratic equation in terms of 
ℎ2

ℎ1
⋅ |𝜎𝑆(𝜔)|: 

  𝑅(
ℎ2

ℎ1
|𝐶𝑠(𝜔)|)2 − 

ℎ2

ℎ1
|𝐶𝑠(𝜔)| +  𝑅 = 0                                 (5.16) 

with 𝑅 = 
|𝑆0𝑓

− (𝜔)|

|𝑆0𝑓
0 (𝜔)|

. Solving the quadratic equation results in two solutions: 
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 |𝜎𝑆(𝜔)| ∝
1±√1−4𝑅2

2 𝑅
                                               (5.17) 

This means that the background field scattering response amplitude can be calculated 

from the spectral shape ratio of  𝑅 , and owns two solutions |𝜎𝑆
+(𝜔)| ∝

1+√1−4𝑅2

2 𝑅
  and 

|𝜎𝑆
−(𝜔)| ∝

1−√1−4𝑅2

2 𝑅
. Correspondingly, the laser spectrum can be obtained from equation 

(5.13): 

|𝐸0(𝜔)|2 =
|𝑆0𝑓

− (𝜔)|

|𝜎𝑆(𝜔)|
                                               (5.18) 

Figure 5.7 (a) display the resulted laser spectrum |𝐸0(𝜔)|2 from two possible solutions 

|𝜎𝑆
+,−(𝜔)|. The solid black curve resulted from the positive solution |𝜎𝑆

+(𝜔)| matches the 

laser spectral shape measured by the spectrometer, therefore |𝐸0(𝜔)|2 =
|𝑆0𝑓

− (𝜔)|

|𝜎𝑆
+(𝜔)|

. 

Moreover, the laser spectrum further helps to calculate the near-field response function 

amplitude according to equation (5.9), |𝜎𝑇(𝜔)| ∝
|𝑆2𝑓

− (𝜔)|

|𝐸0(𝜔)|2
  as shown in black curve in figure 

5.7(d). An absorption shape is observed in |𝜎𝑇(𝜔)|, and an evident spectral dip appears 

at around 1.72 eV.  

 

 

 

 

 

 

 

Figure 5.7 Retrieved (a) Spectrum of the incident light, (b) near-field response function 
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amplitude (black circles) and phase (red circles) of individual nanoparticle. 

Regarding the phase of the near-field response function, it is encoded in the 2f spectral 

phase 𝐴𝑟𝑔 (𝑆2𝑓
− (𝜔)) = 𝜑𝑇(𝜔) + ∆𝜑(𝜔) . The phase delay ∆𝜑(𝜔)  appears in the 0f 

spectral phase as well, 𝐴𝑟𝑔 (𝑆0𝑓
− (𝜔)) = 𝜑𝑆(𝜔) + ∆𝜑(𝜔)， together with the phase term 

𝜑𝑠(𝜔) that stems from the reflection of the gold tip shaft. Because the dielectric function 

of gold in the energy range of 1.4eV-1.8eV shows small variations, it is taken as a 

constant. Therefore, the reflection phase 𝜑𝑆(𝜔) of a gold surface is regarded as an 

offset in the 0f spectral phase. Hence, the near-field response function phase is 

approximated by 𝜑𝑇(𝜔) ≈ 𝐴𝑟𝑔 (𝑆2𝑓
− (𝜔)) − 𝐴𝑟𝑔 (𝑆0𝑓

− (𝜔)). 

Figure 5.7(b) displays the spectral phase of  𝑆0𝑓
− (𝜔) and 𝑆2𝑓

− (𝜔), both of which display 

a strong linear behavior. It is because of the reference arm and sample arm length 

difference caused linear phase delay 𝜔𝜏0 in the phase terms ∆𝜑(𝜔). As indicated in 

figure 5.6(c), the time delay 𝜏0 can be determined from the Fourier transform of the 

interferogram. Therefore, the linear phase given by 𝜔𝜏0 is plotted in blue dashed curve 

in figure 5.7(b). Subtracting the linear portion from the spectral phase of  𝑆0𝑓
− (𝜔) and 

𝑆2𝑓
− (𝜔), remaining phase components display a parabolic shape. Such nonlinear phase 

term of  ∆𝜑(𝜔) − 𝜔𝜏0 originates from optical elements on the optical beam path that 

own frequency dependent refractive index, for example, the thick gray filter on the 

reference arm. Distinctly, the subtracted 2f spectral phase 𝜑2𝑓
− (𝜔) − 𝜑𝐿(𝜔) has a step 

rising at around 1.7eV based on the parabolic curve. Hence, the near-field response 

function phase is given by 𝜑𝑇(𝜔) ≈ 𝐴𝑟𝑔 (𝑆2𝑓
− (𝜔)) − 𝐴𝑟𝑔 (𝑆0𝑓

− (𝜔)) as depicted in figure 

5.7(d). An obvious 2𝜋 phase jump is visualized at the absorptive dip position of  |𝜎𝑇(𝜔)|. 

Such amplitude dip and the phase jump behavior at around 1.7 eV indicates that a local 

resonance is probed. While conventional Lorentzian or Gaussian resonances display 

the characteristic phase jump by  . The retrieved 2𝜋 phase jump here originates from 

a Fano resonance which can be understood by considering the interference between 

two resonators. A detailed explanation of the observed resonance will be discussed in 

the next part.  



112 

 

 

 

 

 

 

 

 

 

Figure 5.8 (a) Topography of a 400*480*450 nm MAPbn3 nanoparticle. (b,c) Calculated 

near-field response function strength distribution of the MAPbn3 nanoparticle obtained by 

integrating |𝜎𝑇(𝜔)| in the energy range of 1.4-1.8 eV, and (c) in the resonance energy 

range of 1.58-1.8 eV. (d) the resonance distribution obtained by subtracting the 

background of integration |𝜎𝑇(𝜔)|  between 1.4-1.58 eV from the integration between 

1.58-1.8 eV. 

Based on the complex function 𝜎𝑇(𝜔) reconstruction method, two dimensional spectral 

interferogram maps are studied. The fast camera data flow is recorded when the tip raster 

scans across an 800-nm by 900-nm area around the nanoparticle. The simultaneously 

probed topography is depicted in figure 5.8(a). Again, the demodulated interferogram 

𝑆0𝑓(𝜔)  and 𝑆2𝑓(𝜔)  are used to retrieve the complex function 𝜎𝑇(𝜔) at every position in 

the scan area. The images in figure 5.8(b) show the near-field response amplitude of the 

particle, which is obtained by spectrally integrating the |𝜎𝑇(𝜔)| in the spectral range and 

in a 2D area. In analogy to the near-field distribution shown in figure 5.3 (d), such 

response map mainly probes a dipolar mode and displays about x10 field enhancement 

within two lobes. Moreover, a more precise distribution of  |𝜎𝑇(𝜔)|  integrated in the 

resonance range between 1.58 and 1.8 eV is mapped in figure 5.8(c). The dominating 
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dipole feature is observed, and the noise level is smaller than panel (b). To further reveal 

the dipole mode contrast, the distribution image of  |𝜎𝑇(𝜔)| beyond the resonance range, 

namely integrated from 1.4eV to 1.58eV, is subtracted from the image in panel (c). The 

response map shown in figure 5.8 (d) clearly sketches a dipolar mode profile with positive 

and negative poles. 

5.3.3 Fano interference in a MAPbI3 nanoparticle 

Interference in Physics is generally an interaction of coherent waves, resulting in intensity 

variation (monochromatic light source) or spectral interference pattern (broad bandwidth 

light source) in a symmetric spectral shape. However, in certain cases, an asymmetric 

resonance can be obtained as a result of interference between a narrow spectrum from 

the discrete state and a broad spectral resonator mediated by continua states under light 

excitation, which is known as the famous Fano resonance. Such resonances are normally 

regarded as quantum mechanical phenomena. As illustrated in figure 5.9 (a), under 

excitation light, the transition from the ground state |0⟩ to excited states can be realized 

by two alternative ways. For example, the continuum state |𝐶𝑖⟩ can be directly coupled to 

the ground state |0⟩ by the incident light as depicted by the black arrows, or the incident 

photon is absorbed to the excited state |1⟩   followed by a transition from |1⟩  to the 

continuum state |𝐶𝑖⟩  via energy transfer as indicated by the blue arrow, vice versa. 

Therefore, the overall transition polarizability is the superposition of the polarizability 

amplitude through each channel, which could give rise to a constructive or destructive 

interference and produce asymmetric Fano profile as formulated by: 

𝑓(𝜀) =
(𝑞+𝜀)2

1+𝜀2                                                    (5.19) 

with the energy parameter 𝜀 = 2
𝐸−𝐸0

Γ
 with the incident light energy 𝐸  and resonance 

energy 𝐸0 and spectral width 𝛤 of the discrete state,178, 179 𝑞 = −cot (
𝜑

2
) is the so-called 

Fano’s asymmetry parameter, namely the Fano-type spectra have 4 characteristic 

shapes depending on the phase of the Lorentzian resonance from the discrete state in 

comparison to the broad bandwidth spectrum from the continuum. As shown in figure 5.9 

(b-c), for the specific value of 𝑞 = 0, the Fano spectrum shows a symmetric absorption 
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shape; for the extreme case of 𝑞 → ±∞, the spectrum has a symmetric Lorentzian peak, 

which indicates that the background continuum excitation vanishes; for a moderate value, 

0 < 𝑞 < ∞ or −∞ < 𝑞 < 0, the profile has asymmetric profile that is mirrored for opposite 

sign of q. 

 

 

 

  

Figure 5.9 (a) Energy diagram describing the coupling scheme in a Fano resonance, 

where |1⟩  and |0⟩  are the excited and ground state respectively, |𝐶𝑖⟩  represents 

continuum states and V is the coupling strength. (b,c) Plots of Fano’s formula as function 

of the reduced energy 𝜀 for different values of the parameter q. When q is very large, the 

Fano profile is basically a symmetric peak, and when q approaches to 0, a symmetric 

absorption window type resonance appears. For intermediate values, the Fano 

resonance shows asymmetric peak profiles.  

Such characteristic spectral profiles can also be found in classical systems as described 

by the coupled harmonic oscillators (CHO), which is also called ‘classical Fano 

resonance’. Apart from the similarity of spectral peak shape, the physical mechanism of 

the Fano parameter q was also clarified in the CHO.180, 181 Figure 5.10 illustrates the 

equivalent classical system where the continua and the discrete resonance are simulated 

as a damped oscillator 𝑆1 and a harmonic oscillator 𝑆2. Two oscillators are fixed to walls 

and connected by a weak spring with constant 𝐾.  

 

 

(a) (b) (c) 
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Figure 5.10 Two coupled harmonic oscillators. 𝑘1,2 are the spring constants, 𝛾1,2 are the 

damping factors and 𝛾1 > 𝛾2 , 𝑥1,2  are the displacements form the equilibrium, 𝐾  is the 

coupling spring constant between oscillator 𝑆1  and 𝑆2 , 𝐹 = 𝑚1𝐹0𝑒
𝑖𝜔𝑡  is the oscillatory 

external force. 

Starting from Newton’s equations of motion for point messes 𝑚1 and 𝑚2, one gets the 

motion of the system of 𝑚1𝑥1̈ = 𝐹1 and 𝑚2𝑥2̈ = 𝐹2 where 𝐹1,2 are the total force on the 

masses. For the oscillator 𝑆1 , 𝐹1 = 𝐹1𝑅 + 𝐹1𝐷 + 𝐹𝐶 + 𝐹𝑒𝑥𝑡1  where the restoring force is 

𝐹1𝑅 = −𝑘𝑥1, the friction force 𝐹1𝐷 = −𝑚1𝛾1𝑥1̇, the coupling force 𝐹𝐶 = 𝐾(𝑥1 − 𝑥2), and the 

external force 𝐹𝑒𝑥𝑡1 = 𝑚1𝐹0𝑒
−𝑖𝜔𝑡 .  For the oscillator 𝑆2 , 𝐹2 = 𝐹2𝑅 + 𝐹2𝐷 − 𝐹𝐶 + 𝐹𝑒𝑥𝑡2 

where the restoring force is 𝐹2𝑅 = −𝑘𝑥2 , the friction force 𝐹2𝐷 = −𝑚2𝛾2𝑥2̇ ,  and the 

external force 𝐹𝑒𝑥𝑡2 = 0. Hence the equations of motion are: 

𝑚1𝑥1̈ + 𝑚1𝛾1𝑥1̇ + 𝑘1𝑥1 + 𝐾(𝑥1 − 𝑥2) = 𝑚1𝐹0𝑒
𝑖𝜔𝑡 

𝑚2𝑥2̈ + 𝑚2𝛾2𝑥2̇ + 𝑘2𝑥2 − 𝐾(𝑥1 − 𝑥2) = 0                            (5.20 a) 

For simplification, one assumes that 𝑚1 = 𝑚2 = 𝑚 , and sets 𝜔1 = √(𝑘1 + 𝐾)/𝑚  and  

𝜔2 = √(𝑘2 + 𝐾)/𝑚 as the uncoupled eigenfrequency,  𝑣12 = −𝐾/𝑚, then equation (5.20a) 

is given by: 

𝑥̈1 + 𝛾1𝑥1̇ + 𝜔1
2𝑥1 + 𝑣12𝑥2 = 𝐹0𝑒

𝑖𝜔𝑡 

𝑥̈2 + 𝛾2𝑥2̇ + 𝜔2
2𝑥2 + 𝑣12𝑥1 = 0                                   (5.20 b) 

Taking the solution with the format of 𝑥1(𝑡) = 𝑐1(𝜔)𝑒𝑖𝜔𝑡  and 𝑥2(𝑡) = 𝑐2(𝜔)𝑒𝑖𝜔𝑡 , and 
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substituting the solutions into equation (5.20 b), the amplitudes of steady state oscillation 

are obtained: 

𝑐1(𝜔) =
𝜔2

2−𝜔2+𝑖𝛾2𝜔

(𝜔1
2−𝜔2+𝑖𝛾1𝜔)(𝜔2

2−𝜔2+𝑖𝛾2𝜔)−𝑣12
2 𝐹0                             (5.21) 

𝑐2(𝜔) =
−𝑣12

(𝜔1
2−𝜔2+𝑖𝛾1𝜔)(𝜔2

2−𝜔2+𝑖𝛾2𝜔)−𝑣12
2 𝐹0                             (5.22) 

For the limit of vanishing coupling 𝑣 → 0 , the amplitude 𝑐2(𝜔) = 0  is not visible (dark 

mode) and only the damped oscillator 𝑐1(𝜔)  is excited: 

𝑐1(𝜔) =
1

(𝜔1
2−𝜔2+𝑖𝛾1𝜔)

𝐹0                                          (5.23) 

which is a single Lorentzian resonance showing a peak shape amplitude and a phase 

shift of −acot ((𝜔2 − 𝜔1
2)/𝛾1𝜔) with respect to the external force. Therefore, for a weak 

coupling strength, the spectrum of 𝑐1(𝜔) has response at frequency around 𝜔 = 𝜔2 due 

to the influence of the resonance 𝑐2(𝜔), and such spectral response provides asymmetric 

resonance profiles. Analogy to the Fano profile depending on the q values, the 

asymmetric profile at 𝜔 = 𝜔2 is mainly determined by the intrinsic damping factor 𝛾1 of 

oscillator 𝑆1, according to the definition concluded in previous work, 180 𝑞 =
1

𝛾1𝜔2
(𝜔2

2 −

𝜔1
2) . When the coefficient 𝛾1  is large enough, namely 𝑞  is super small, window type 

resonance emerges. This is coincident with the Fano profile as illustrated in figure 5.9. 

Recall the transfer function spectral shape shown in figure 5.7, the spectral dip centered 

around 1.72 eV implies a Fano resonance in the individual MAPbI3 perovskite 

nanoparticle. It has been demonstrated that such particles support strong excitonic 

resonances in the visible range.121, 182 In the nanoparticles, excitons are coupled to the 

Mie resonances of the dielectric nano resonator. The optical spectra of these hybrid 

nanoparticles therefore show two distinct types of shape resonances. In the first case, for 

the spectral region below the bandgap, far field light couples to the regular Mie 

resonances of a high-refractive index dielectric nano resonator. On the other hand, above 

the bandgap (about 1.61 eV for MAPbI3), the Mie resonances are efficiently coupled to 
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the excitons of the material, making these nanoparticles an interesting antenna for 

enhancing light-exciton interaction. This gives rise to (a) distinct Kerker resonances183-185 

reflecting the destructive interference in backward scattering direction between different 

Mie resonances in the region below the bandgap, (b) Fano resonances182, 186 due to 

exciton-Mie resonance coupling above the bandgap. Together, these phenomena result 

in rather complex single particle scattering spectra which have recently been studied for 

the first time.182 While dark field spectra of MAPbBr3 particles in this work indeed showed 

some signatures of the expected Fano resonances, a definite assignment of spectral 

features around the bandgap to exciton Mie-resonance coupling is challenging due to the 

rather complex geometric shape of the induvial particles. This is also a motivation for 

investigating these resonances in more detail in the present work. 

Figure 5.11. (a,b) Amplitude and spectral phase of a Fano-type response function (see 

equation (5.24)) with different relative phase between a spectrally sharp Lorentzian 

resonance and a broad background. The resonance parameters are chosen to match the 

light-scattering spectra from those of individual MAPbI3 particles. When the amplitude of 

the Lorentzian resonance exceeds that of the background, a distinct phase jump of 2  

is seen in the case of destructive interference, 𝜑 = 0.9𝜋. (c) Time structure of the Fano-

type response function after excitation with a broadband 6-fs Gaussian pulse for various 

(a) (b) 

(c) (d) 
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relative phase values. A dip in the time structure at around 5 fs for 𝜑 = 𝜋 is the signature 

of a destructive Fano-type interference between Lorentzian resonance and background, 

as illustrated in the inset of (d).  

A distinct signature of such Fano resonances is their peculiar profile of their spectral 

phase. While conventional Lorentzian or Gaussian resonances display the characteristic 

phase jump by 𝜋, the spectral phase profile of the Fano resonances depends sensitively 

on the details of the coupling between the involved quasi particles. We can understand 

the spectral shape of a Fano resonance by considering the interference between the light 

from a quantum emitter coupled to the light that is emitted from the continuum.187  

Equation (5.24) expresses a simplified model of a Fano resonance, in which the phase 

of the light emitted from the continuum states is spectrally flat while that of the quantum 

emitter shows the characteristic 𝜋  phase jump of a Lorentzian resonance. Thus, the 

relative phase between the fields changes as the color is tuned across the resonance, 

resulting in a complex amplitude and phase profile that depends sensitively on the relative 

amplitude and phase shift between resonance and continuum (figure 5.11 (a,b)). A 

particularly interesting case of a Fano resonance appears if quantum emitter and 

continuum interfere destructively at 𝜔0 . If the on-resoanance amplitude of the emitter 

exceeds that of the background, the spectral phase shows a characteristic phase jump 

of 2𝜋 , as opposed to 𝜋  phase jump for a single resonance. Such a destructive 

interference situation has in fact been anticipated for the investigated halide perovskite 

nanoparticles, when probing light scattering in backward direction.182 This makes it 

particularly interesting to probe amplitude and phase of the backscattered field from such 

particles in attempts to prove their Fano resonance behavior and to access the field 

dynamics. To gain more insights into the Fano resonance dynamics, we simulated the 

time- and relative phase-dependent field emitted from a Fano resonator, 𝑓(𝑡) ∗ 𝐸0(𝑡) 

(figure 5.11(c)). The incident field 𝐸0(𝜔) is a Gaussian pulse with a pulse duration of 6 fs 

and the resonant parameters of the Fano profile are described in figure 5.11 (a,b). A 

prominent dip appears after 𝑓(𝑡)  and  𝐸0(𝑡) overlap when the relative phase in the Fano 

resonance drops in the range of 𝜋 to 2𝜋, namely destructive interference occurs between 

the background and the Lorentzian resonance. 
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𝑓(𝜔) = 𝑖𝐴𝑏𝑔 −
𝐴𝐿𝑒𝑖𝜑𝛾

𝜔−𝜔0+𝑖𝛾
+

𝐴𝐿𝑒−𝑖𝜑𝛾

𝜔+𝜔0+𝑖𝛾
                              (5.24) 

 

 

 

 

Figure 5.12 Transfer function  𝜎𝑇(𝜔)  (a) amplitude (black circles) and (b) phase (red 

circles) of the nanoparticle and fitted (solid lines) to a Fano-resonance line shape model 

𝜎𝑇
𝑓
(𝜔) as formulated in equation (5.24). (c) The time structure of a simulated incident 

Gaussian pulse 𝐸0(𝑡) , as well as the corresponding field dynamics of the MAPbn3 

nanoparticle (𝜎𝑇
𝑓
∗ 𝐸0)(𝑡). 

As claimed in figure 5.7, the retrieved near-field response function of a MAPbI3 indicates 

a Fano resonance with destructive interference between the discrete mode and 

continuum background. At last, the complex function 𝜎𝑇(𝜔) is fitted by the Fano model 

as depicted in figure 5.13. The fitting result 𝜎𝑇
𝑓(𝜔) reveals that the dipolar resonant mode 

in the MAPbI3 particle is termed as the destructive interference between a background 

(Mie resonance) and a Lorentzian resonance (Excitonic resonance) that is specifically 

characterized by a resonant energy of ℏ𝜔0 = 1.72 𝑒𝑉  and line width of ℏ𝛾 = 42 𝑚𝑒𝑉 . 

Correspondingly, the field dynamic is calculated from (𝜎𝑇
𝑓
∗ 𝐸0)(𝑡)  where we assume the 

incident laser in frequency domain 𝐸0(𝜔) is a Gaussian pulse centered at ℏ𝜔0 = 1.72 𝑒𝑉 

with pulse duration of 6 fs. In frequency domain, the Fano profile of the transfer function 

comprises a constant background and a Lorentzian resonance, which in time domain 

corresponds to a delta function and an exponential function decaying with a dephasing 

time 1/𝛾  of about 15 fs. Therefore, the re-emitted field dynamics of the sample is a 

convolution of a Gaussian pulse and an exponential function together with a delta function 

as illustrated in figure 5.12(c). 

(a) (b) (c) 
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Figure 5.13 Calculated transfer function strength distribution of the MAPbI3 nanoparticle. 

The white dashed curve roughly outlines the particle position. (A-D) Reconstructed 

(circles) and fitted (solid curves) complex transfer function at different positions. (A’-D’) 

The corresponding field dynamics of the MAPbI3 nanoparticle  (𝐸0 ∗ 𝜎𝑇
𝑓
)(𝑡) as well as the 

simulated incident Gaussian pulse 𝐸0(𝜔). 

Figure 5.13 A,B display the reconstructed transfer functions on the particle as well as the 

fit results, which demonstrate that the particle response 𝜎𝑇  in the dipolar mode 

consistently shows a clear absorption line curve with a 2𝜋 phase jump. At the edge of the 

particle (position C) away from the dipolar mode, the absorptive contrast of the transfer 

function reduces while the 2𝜋  phase jump holds. In contrast, at the position on the 

substrate (position D), the response function shows a noisy curve due to the low near-

field enhancement. Figure 5.13 A’-D’ exhibit unified exponential profiles, and the 

intriguing dip at around 3fs is observed in the dipolar mode, which as proposed is caused 

by the destructive interference between the Mie resonance and the exciton.   
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In this chapter, we have analyzed single MAPbI3 perovskite nanoparticles by employing 

broad-bandwidth interferometric near-field spectroscopy. We observe a dipolar mode 

profile on every individual particle. In agreement with FDTD simulations, the observed 

near-field image dominantly probes the z-component of the particle resonance.  

By employing the Fourier technique, both amplitude and phase of the near-field response 

are reconstructed from the measured spectral interferometry. The complex response 

function reveals a Fano resonance which shows an absorptive spectral amplitude 

centered at about 1.72 eV and 2𝜋 jump in the phase. This Fano resonance stems from 

the featured coupling of the excitons and the Mie resonances in the Halide Perovskite 

nanoparticle. Moreover, we identified a distinct destructive interference dip in the time 

structure of the reconstructed optical near-field as the distinct signature of these Fano 

resonances.  It has been demonstrated that such resonance arises when the on-

resonance amplitude of the emitter exceeds that of the background, which reveals that in 

individual MAPbI3 nanoparticle the excitons have stronger resonance. This is rarely 

observed because in far-field detection the Mie resonances have much higher scattering 

efficiency.  
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6 Conclusion and Outlook 

In this thesis, a new interferometrically detected scanning near-field optical spectroscopy 

technique with a broad bandwidth in the near-infrared is realized. we have identified and 

designed a near-field microscope in a Michelson interferometer for homodyne mixing and 

boosting the weak near-field signal that allows disentangling near-field and background-

related signal contributions by mixing the near field with a strength adjustable reference 

field. We have shown that this efficiently amplifies the near field and suppresses the 

background light, such that when demodulating the signal with the second or third 

harmonic of the tip modulation frequency mainly the near field is detected. 

 

The key to this method is a fast CCD line camera capable of recording complete spectra 

with a readout rate of more than eight times the tip modulation frequency such that near-

field spectra demodulated at the fourth order can be obtained in postprocessing. With the 

homodyne detection scheme and with the fast line camera, we have measured pure near-

field spectra over a broad bandwidth in the visible spectral region. Our measured and 

calculated optical signals verify and demonstrate the challenging effect of background 

signals in scattering-type SNOM. Interference between light that is reflected from the 

sample and light that is scattered from the tip shaft dominates the measured signal. For 

broad-bandwidth spectroscopy, this results in spectral interference that basically 

determines the shape of the measured spectra. In this thesis, we have shown that a 

reference field of sufficient amplitude can achieve efficient background suppression. The 

reference field then amplifies the near field such that at demodulation at the second or 

third harmonic of the tip modulation frequency results in the very precise detection of the 

near field. 

 

We have demonstrated the potential of broad-bandwidth interferometric near-field 

spectroscopy by experimentally investigating the optical modes supported by individual 

Sb2S3 nanodots deposited on an Sb2S3 thin film. The near-field measurements reveal 

mode profiles reminiscent of low-order optical modes typical for more idealized cylindrical 
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waveguides. These modes are seen in near-field spectra across the entire bandwidth 

supported by our laser while we find no clear signatures for spectrally sharp Fabry–Perot 

resonances of the nanodots. These results show that the Sb2S3 nanodots can act as high 

refractive-index dielectric waveguides with low losses in a broad spectral range below the 

bandgap. Together with their high above-bandgap absorption, their high 

photoconductivity, and the possibility for easy 2D and 3D structuring, this makes them 

promising candidates as switchable metamaterials. It will be highly interesting to 

investigate their nonlinear properties in future works.  

 

More intriguingly, we utilized this technique to reconstruct the amplitude and phase of the 

linear optical near-field response from the hot spots of a single MAPbI3 perovskite 

nanoparticle with high spatial resolution, and further resolved a destructive interference 

dip in the time structure of the reconstructed optical near-field as the distinct signature of 

these Fano resonances. We show that this destructive interference dip in the time domain 

response of the particle is the distinct signature of a Fano resonance that arises from the 

coupling of the excitons to the Mie resonances of the particle. Our technique provides a 

general approach for measuring the response functions of nanostructures in the visible 

and near-infrared spectral range with femtosecond temporal and nanometer spatial 

resolution. 

 

In summary, we have made considerable progress towards broadband s-SNOM 

spectroscopy in the visible spectral range. We have realized an homodyne interferometer 

for mixing the near field with a strong reference field by depositing a thin gold film on the 

sample substrate and covering it with a thin dielectric layer. We have shown that this 

efficiently amplifies the near field and suppresses the background light. Using a fast line 

camera, we have recorded complete spectra in tip-modulated s-SNOM. By post-

measurement extraction of spectra demodulated with the fourth-order harmonic 

frequency we have acquired pure near-field spectra in over a broad bandwidth of the 

visible spectral region. Employing Fourier-transform technique, we retrieved the inherent 

resonance property in an individual nanoparticle and further, Our results open up a new 
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approach towards quantitative, ultrahigh resolution, broadband near-field scattering 

spectroscopy.  
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Appendix A: Wavelength dependency of optical elements in the BISNOM setup 

 

 

 

Figure S5.1 Spectral shape comparison between the incident light and the light (a) 

reflected and transmitted by the beam splitter, (b) focused by the reflecting objective, in 

which the focused spectrum is measured by two approaches, either positioning the 

spectrometer at the focus point or detecting the scattering light using a diffusor. (c) 

Spectral shape comparison between the incident light and the incident light reflected by 

the reference arm. 

The spectral shape of light transmitting the beam splitter resembles the incident lase 

spectrum and the reflected spectrum. Therefore, in our spectral range, the reflection and 

transmission of the beam splitter are wavelength independent and can be set as a 

constant. For the reflecting objective, the transmitted focusing light is measured either by 

a diffusor or by positioning the fiber detector at the focused position. The resulting 

spectral shapes are identical and resemble the incident spectrum. This demonstrates that 

the transmission of the reflecting objective is a constant in the detected wavelength range. 

The transmission of the ND filter is demonstrated in panel (c). When the sample arm is 

blocked, the reflected light on the reference arm at the detector position shows an 

unchanged spectral shape (black curve) compared to the incident spectrum (red curve). 

Hence the transmission of the filter is also wavelength independent. 

 

 

 

 

 

(a) (b) 

(a) (b) (c) 
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