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Zusammenfassung

Auflösung von Singularitäten spielt eine wichtige Rolle in der Arbeit von
algebraischen Geometern seit dem Ende des 19. Jahrhunderts.
In Charakteristik 0 ist bekannt, dass immer eine Auflösung durch eine endliche

Folge von Aufblasungen existiert, wie H. Hironaka im Jahr 1964 bewies. In positiver
Charakteristik ist dies oberhalb kleinster Dimensionen eines der grundlegendsten
offenen Probleme der Algebraischen Geometrie. Lediglich für Spezialfälle, wie
bspw. Binomialideale ist dieses Problem bereits gelöst.

Wir werden in dieser Arbeit die Menge der Spezialfälle mit dem
nächstschwierigeren Fall, nämlich einer speziellen Klasse determinantieller Ideale,
erweitern. Dabei nutzen wir die bisherigen Kenntnisse über die Auflösung von
Binomialidealen und den determinantiellen Singularitäten, erzeugt durch generische
Matrizen, aus. Diese spezielle Klasse verallgemeinert die determinantiellen
Singularitäten generischer Matrizen zum Fall der determinantiellen Singularitäten
monomialer und binomialer Matrizen.
Außerdem werden wir einen effizienteren Weg sehen, (schief-)symmetrische
generische determinantielle Singularitäten aufzulösen. Dieser Weg wird die
(Schief-)Symmetrie grundlegend ausnutzen.

Insgesamt zeigt sich, dass wir, durch eine geeignete Implementation der
präsentierten Strategie, die Klasse, der in der Praxis berechenbaren Auflösungen
durch geeignete Zentrumswahlen und Ausnutzen struktureller Eigenschaften
erweitern können.

Abstract

The resolution of singularities has played a crucial role in the work of algebraic
geometers since the end of the 19th century.
In characteristic 0, it is known that a resolution of singularities by a finite

sequence of blow-ups always exists, as H. Hironaka proved in 1964. In positive
characteristic, this is one of the most fundamental open problems in algebraic
geometry above the smallest dimensions. Only for special cases, such as binomial
ideals, has this problem already been solved.

In this thesis, we extend the set of special cases with the next more complex case,
namely a special class of determinantal ideals. In doing so, we exploit previous
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knowledge of the resolution of binomial ideals and the determinantal singularities
of generic matrices. This special class generalizes the determinantal singularities of
generic matrices to the next most challenging case: the determinantal singularities
of at most binomial type.

Overall, by implementing the presented strategy, we can extend the class of
resolutions computable in practice by appropriate center choices and exploiting
structural properties.
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1. Introduction

This chapter presents the basic definitions, notations, and preliminaries required in
the later chapters and further outlines this thesis’ structure.

1.1. Motivation

Resolution of singularities plays a crucial role in the work of many algebraic
geometers since the end of the 19th century. The problem of resolution of
singularities asks whether every algebraic variety or, more generally, every
sufficiently nice scheme X has a desingularization, i.e., whether there is a
non-singular variety or scheme W with a proper birational map W → X.
Hironaka [54] proved the existence of resolution of singularities for arbitrary
dimensional algebraic varieties over fields of characteristic 0 in 1964. This proof
consists of more than 200 pages with many technical details. The proof has
constructive points, but there are crucial non-constructive points.
It took a quarter of a century to fill the non-constructive steps with algorithmic

details with the pioneering work of Bierstone and Milman [6], [7], and Villamayor
[76] and [77].
Further, the arguments were simplified, for example, by Bravo, Encinas, and

Villamayor [16], Cutkosky [26], Encinas Hauser [33], Hauser [51], Kollár [63] and
Włodarczyk [79] in order to understand the problems of the proof in positive
characteristic.
There exist implementations of a Hironaka-style resolution (more precisely, the

simplification by Villamayor [16]). One of them is implemented by Bodnár and
Schicho in the computer algebra system maple [13] and another is written in the
computer algebra system Singular by Frühbis-Krüger and Pfister (see [37]).
In positive characteristic, it is still an open problem for dimensions higher than 3.

The first result for some special cases was shown by Abhyankar [1]. He showed the
resolution of singularities of surfaces and the three-dimensional case in characteristic
greater than 5 for algebraically closed base fields. Simplified proofs can be found in
[27] and [28].
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1. Introduction

For curves, there are two fundamental strategies by normalization and by
blow-ups. In dimension 2, there is, for example, the algorithm of Lipman [65]
and the algorithm of Cossart, Jannsen, and Saito [20]. Whereas the first deals with
alternating normalization and blow-up in finitely many isolated singular points,
the second one is achieved by a canonical sequence of blow-ups (see Section 5.6).
Normalizations in combination with blow-ups do not yield an embedded resolution
for dimensions bigger than 2 since the normalization destroys the embedding. So it
can not be generalized for a higher-dimensional case. That is why we do not want
to consider the algorithm of Lipman here. The strategy of Cossart, Jannsen, and
Saito terminates for arbitrary excellent schemes of dimension at most 2 in positive
and also mixed characteristic (see also [35]). For surfaces, this strategy completely
dispenses with the use of coefficient ideals.

While it is formulated for arbitrary dimension, it is unknown if the approach
of Cossart, Jannsen, and Saito terminates for higher dimensions and whether this
property holds then, too, in particular not in characteristic 0.
In dimension 3, there are some results on weak resolution of singularities. Zariski
[82] proved the weak resolution of singularities for threefolds over a field K of
characteristic 0. Cossart and Piltant [22] prove the existence of a birational and
global resolution in dimension 3. Originally, the base field was assumed to be
differentially finite over a perfect field. In newer articles this requirement has been
dropped [24] and [23]. This result is not constructively given through an algorithm.
It is unclear, if the resolution is achieved purely by blow-ups in regular centers.

Furthermore, some algorithms yield a resolution of arbitrary characteristic
and dimensions for a restricted class of singularities – namely binomial or toric
singularities. Many arguments become much easier when dealing with the restricted
class of binomial ideals. The problem becomes more combinatorial in this case,
whereas the general problem is more geometric. With these ideas Blanco (see [9]
and [10], see also Section 5.4) could apply the ideas of Bierstone and Milman
and Bravo, Encinas, and Villamayor to arbitrary binomial singularities. There
is also an implementation by Blanco and Pfister [12] in the computer algebra
system Singular. This implementation was a proof-of-concept implementation.
Unfortunately, the structure of the implementation is not modular enough to use it
as a blackbox. We only need a submethod which calculates the center and updates
every data for next blow-up. That is neither given in resbinomial.lib nor in
resolve.lib. So the author reimplements the version for resolution of binomial
ideals in characteristic zero. More information can be found in the Appendix in
Section A.3.
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1.1. Motivation

Furthermore, there is an algorithm of Blanco, and Encinas [11] for toric varieties,
which is more or less the same algorithm with a small change of the invariant, so
it does not depend on a choice of a Gröbner basis, and there is the algorithm of
Bierstone and Milman [8] for toric singularities.
A weaker condition of the structure is a determinantal singularity for which a
generating matrix has monomial entries. If the entries are generic, the first result
is by [75] and was later generalized in [71]. See also Section 6.1 for details.
Dropping the generality, we arrive at the goal of this thesis. The goal of this thesis
is to combine these different approaches to get a resolution strategy for a special
class of determinantal singularities. For a determinantal singularity in this class,
there exists a generating matrix with, at most binomial entries, and we will see that
in characteristic 0, this leads us to a resolution strategy of arbitrary determinantal
singularities. Furthermore, we will see that we are not restricted to binomials but
to entries for which there exists a constructive simultaneous local monomialization
procedure.

In this thesis, we first give an overview of the preliminaries (Section 1.2) and
the goal (Section 1.3). In Chapter 2, we give the most important definitions
and fundamental constructions in the resolution of singularities. So we first
illustrate the idea of resolution of singularities with the so-called polyhedral game of
Hironaka (Section 2.1), which gives an intuition on the construction of the blow-up
(Section 2.2). Afterwards, we can define the task of resolution of singularities
(Section 2.3) and different measures that are suitable to measure improvements
during the process of resolution of singularities (Section 2.4).
The next chapter (Chapter 3) presents the most accessible resolution strategies for
curves and surfaces.
Then, in Chapter 4, we are able to formulate a simplified local version of the main
idea of resolution of determinantal singularities.

Afterwards, in Chapter 5, we illustrates the idea of a general Hironaka-style
resolution and the main ideas of the algorithm of Villamayor. Then we restrict the
considered singularities to the class of singularities which are generated by binomial
ideals and discuss the algorithm of Blanco and Encinas. Section 5.5 discusses the
algorithm of Hu for the resolution of simple arrangements, and finally we formulate
the algorithm of Cossart, Jannsen and Saito in Section 5.6.

Then we can present the approach in the generic determinantal case, the
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1. Introduction

symmetric generic determinantal case, and the skewsymmetric generic determinantal
case in Chapter 6.
In Chapter 7, we go back to binomial hypersurfaces and compare a strategy of

local monomialization of a binomial considering a complexity analysis of different
choices of centers.
Everything comes together in Chapter 8, where the main result is presented by

the main algorithm (Construction 8.2.2).
Chapter 9 gives a summary and formulates future work that is still to be done.

In the Appendix, one can find the main ideas in implementations of the presented
strategies in Chapter A. Since the algorithm of Villamayor has an implementation in
the computer algebra system Singular, we give the main ideas of the implementation
of the author of the algorithms of Cossart, Jannsen, and Saito (dimension-free)
(Section A.2), Hu (Section A.4), the generic determinantal case in arbitrary
characteristic and the non-generic determinantal case of at most binomial type in
characteristic 0 (Section A.5). This main algorithm only needs the choice of center
of [12] or [37]. Both implementations have not the neccessary structure, so the
author also rewrote the algorithm of Blanco (Section A.3), and her main ideas can
be read in the Appendix, too.

Furthermore, Chapter B gives a brief illustration of the given complexity results
concerning the number of considered charts of the different methods, which yield a
comparison of the several implementations of the author and given implementations
in Singular.

Unit tests of the implementation of the main algorithm are described in Chapter C.

1.2. Preliminaries

Before we specify our goal, we have to discuss the preliminaries in this section.
Throughout this thesis, we fix K to be an algebraically closed field and we use

multiindex notation. We write xA = xA1
1 · · · xAnn , for A = (A1, . . . , An) ∈ Zn≥0 and

|A| :=
∑n

i=1Ai. Furthermore, given a polynomial f ∈ K[x], we write D+(f) =

D(f) = An
K\V (f) = {p ∈ An

K | f(p) 6= 0} for the principal open set defined by
f , where V (f) denotes the vanishing locus of f . And we assume all schemes to be
irreducible and reduced excellent noetherian schemes.

In order to formulate the goal of this thesis, we have to define the property of
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1.2. Preliminaries

being singular.

Definition 1.2.1. Let X be an irreducible reduced excellent noetherian scheme.

• A point x ∈ X is called regular (or non-singular), if the local ring (OX,x,mX,x)

is regular, which means, that

dimk(x) mx/m
2
x = dimOX,x,

where k(x) = OX,x/mx denotes the residue field.

• A point x ∈ X is called singular, if it is not regular.

• X is called regular (or non-singular), if every x ∈ X is regular.

• X is called singular, if there exists an x ∈ X which is singular.

Note, that for perfect fields regular is equivalent to the term of being smooth.

Definition 1.2.2 ([26, Definition 2.6]). Let X be a variety of dimension s ∈ N over
a field K and let P ∈ X. Furthermore, let U = Spec(R) be an affine neighborhood
of P such that R ∼= K[x1, . . . , xn]/I with I = 〈f1, . . . , fm〉. Then X is smooth over
K at P , if the jacobian matrix of I with respect to x has rank n− s at P .

Remark 1.2.3. Let X be a variety over a perfect field K and let p ∈ X. Then X
is regular at p if and only if X is smooth at p.
If K is not a perfect field, regularity implies smoothness but not vice versa.

If we want to consider resolutions of a singular scheme X, we need to say what
is meant by this term. The main goal is to find a scheme X̃ which has the same
properties as X outside its singular locus, which we want to denote with Sing(X).
X̃ should also be regular. More generally:

Definition 1.2.4. An embedded resolution of singularities of a given scheme X ⊂ Z

with Z regular, is a proper, birational morphism π : Z ′ → Z, for some regular scheme
Z ′, such that

(a) the reduced strict transform X ′red of X in Z ′ is regular,

(b) π is an isomorphism outside of the singular locus of Xred, i.e.,

π−1(Z \ Sing(Xred)) ∼= Z \ Sing(Xred),
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1. Introduction

(c) π−1(Sing(Xred)) is a simple normal crossings divisor, i.e., all irreducible
components are regular and they intersect transversally, which intersects X ′red

transversally.

The property of being a simple normal crossing divisor says that the intersection
behaviour should be as simple as possible.

Definition 1.2.5 ([16, Definition 2.1]). Let W be a regular scheme and let
Y1, . . . , Yk ⊂ W be a set of closed subschemes. Y1 ∪ · · · ∪ Yk are said to have
normal crossings at a point x ∈ W if there exists a regular system of parameters
{x1, . . . , xd} ⊂ OW,x such that for each i ∈ {1, . . . , k} either I(Yi)x = OW,x or
I(Yi)x = 〈xi1 , . . . , xis〉 for some xi1 , . . . , xis ∈ {x1, . . . , xd}.
We say that Y1 ∪ · · · ∪ Yk have normal crossings in W if they have normal crossings
at any point of W .

More definitions of several ’levels’ of resolution of singularities are given in
Section 2.3.1.

We want to use the approach of singularities generated by binomial ideals, so we
state the definition of a binomial ideal here.

Definition 1.2.6. An ideal I is called binomial ideal if there exists a set of generators
{f1, . . . , fr} such that each fi = xAi − λixBi ∈ K[x] is a binomial, where λi ∈ K×
and xAi = x

Ai1
1 · · ·xAinn for Ai = (Ai1 , . . . , Ain) ∈ Zn≥0 for all 1 ≤ i ≤ r.

1.3. Goal

We aim to generalize the approaches in the resolution of binomial ideals and
the resolution of the generic matrix case. We want to combine them with some
approaches, e.g., the resolution of arrangements of hypersurfaces (see Section 5.5).
We want to generalize these approaches to get an algorithm that resolves

determinantal singularities.
The next step is to consider a special case of determinantal singularities, namely

the determinantal singularities, which are generated by matrices with, at most
binomial entries to prove the correctness and the terminancy.

Definition 1.3.1 (determinantal singularity of at most binomial type). Let K be

an algebraically closed field and let M =


f1,1 f1,2 . . . f1,m

f2,1 f2,2 . . . f2,m

...
... . . . ...

fn,1 fn,2 . . . fn,m

 ∈ (K[x])n×m,
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1.3. Goal

where fi,j = xCi,j(xAi,j − λi,jxBi,j) are binomials.

Let It be the ideal generated by the t-minors of M , for all 1 ≤ t ≤ min{n,m}.
Then It is called a determinantal singularity of at most binomial type.

The main question is, how to resolve the singularities of V (It), where It is an ideal
like in Definition 1.3.1.
We are in the tension field between the completely open problem in positive
characteristic and the binomial case, which is completely solved. We want to move
the boundary of actually computable resolution of singularities. We will see the
following results:

Main Theorem 1. In arbitrary characteristic the algorithm in Construction 8.2.2
provides a resolution of arbitrary determinantal singularities of at most binomial
type.

Main Theorem 2. In characteristic 0 the algorithm in Construction 8.2.2 provides
a resolution of arbitrary determinantal singularities.

Main Theorem 3. If there is a constructive procedure which principalizes
the entries and establishes normal crossings (and a covering) to the entries of
a matrix that generates the determinantal singularity, then the algorithm in
Construction 8.2.2 provides a resolution.

In order to reduce complexity, we will also restrict to (skew-)symmetric generic
determinantal singularities and see the following results:

Main Theorem 4. Let m, ` ∈ Z+ with 2` ≤ m, let R0 be a regular ring with
char(R0) 6= 2, and let Am := (xi,j)i,j be the generic skew-symmetric m ×m matrix
with entries in R0[xi,j|1 ≤ i ≤ j ≤ m], i.e., xi,j = −xj,i for all i, j ∈ {1, . . . ,m}.
The following sequence of blowing ups is an embedded resolution of singularities

for the generic skew-symmetric determinantal singularity Y skew
m,2` ⊂ Zskew,

Zskew =: Z0
π1←− Z1

π2←− . . .
π`−1←− Z`−1,

where πi is the blowing up with center the strict transform of (Y skew
m,2i )red in Zi−1, for

1 ≤ j ≤ `− 1.

Main Theorem 5. Let m, r ∈ Z+ with r ≤ m, let R0 be a regular ring, and let
Bm := (xi,j)i,j be the generic symmetric m ×m matrix with entries in R0[xi,j|1 ≤
i ≤ j ≤ m], i.e., xi,j = xj,i for all i, j ∈ {1, . . . ,m}.
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1. Introduction

The following sequence of blowing ups is an embedded resolution of singularities
for the generic symmetric determinantal singularity Y sym

m,r ⊂ Zsym,

Zsym =: Z1
π1←− Z2

π2←− . . .
πr−1←− Zr

where πj is the blowing up with center the strict transform of Y sym
m,j in Zj, for 1 ≤

j ≤ r − 1.

Why should we consider these determinantial singularities?

• It is interesting because of being an open problem for characteristic p > 0 and
dimension > 3.

• We may get a more efficient resolution than a general Hironaka-style resolution
in characteristic 0.

• We can reduce it to a binomial resolution and the resolution of a determinantal
singularity generated by a generic matrix, which is solved in arbitrary
characteristic.
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2. Theoretical background

In this chapter, we will discuss the main constructions that are used for the resolution
of singularities. Therefore we firstly discuss the construction of the blow-up
(Section 2.2). The idea is to blow-up the most singular points and take advantage
of that blow-ups are proper birational morphisms which are isomorphisms outside
the center of the blow-up. So we can improve the singular points without changing
the regular points. We will illustrate in Section 2.1 via Hironaka’s polyhedral game
the construction of blow-ups, which only should give an intuition of how blow-ups
come into play at the resolution of singularities.
Then (Section 2.3), we talk about resolution of singularities itself. We give a short
overview of several resolution problems in Section 2.3.1. The data which has to be
stored during the calculation of the resolution is stored in basic objects or idealistic
exponents. We discuss them in Section 2.3.2 and Section 2.3.3. At the end of this
chapter, in Section 2.4, we discuss how to measure singular points. We define the
multiplicity in Section 2.4.1 and focus on the order, and the refined order of [35] in
Section 2.4.2.

2.1. Hironaka’s polyhedral game

In this section, we introduce the polyhedral game of Hironaka in the version that
Hauser stated in [51, page 324]. This illustrates one way how singularities will be
resolved. One round in the game is analogous looking at the origin of one chart
(j-chart) expression of a blow-up with chosen center J .

Let us formulate the polyhedral game. Let A be a set of points in Nn and let N
be the positive convex hull in Rn, N = conv(A) + Rn

≥0. Figure 2.1 illustrates the
situation.
The game has two players, P1 and P2. Player P1 starts by choosing a non-empty

subset J ⊂ {1, . . . , n} and afterwards player P2 picks a number j ∈ J .
After the players have made their choices the set A is replaced by the set A′

obtained from A by substituting the j-th component of the vectors α in A by the

9



2. Theoretical background

x2

x1

A

x2

x1

N

Figure 2.1.: Convex hull of a set A of points

sum of the components αi with i ∈ J , so αj 7→ α′j =
∑

i∈J αi holds.
The other components remain the same, so αk = αk′ for every k 6= j. And we set
N ′ = conv(A′) + Rn

≥0.
After this round, the next round starts again with N ′ instead of N , and players P1

and P2 have to make the analogous choices as in the round before. This procedure
is repeated.

Player P1 wins if the polyhedron N has become an orthant N = α + Rn
≥0 for

some α ∈ Nn after finitely many steps. If this is not the case, player P2 wins.

The interesting question in this game is whether player P1 always possesses a
winning strategy.

We have a look at the game with 2 variables. So n = 2 holds. If P1 always chooses
J = {1} or J = {2}, the transformation is the identity map, so N ′ = N and player
P1 loses the game. So player P1 has to choose J = {1, 2} and player P2 can choose
j = 1 or j = 2.
In Figure 2.2 we see the transformation of N , if player P2 chooses j = 1.

If player P2 chooses j = 2 afterwards, the vertices move vertically and yield a
polyhedron N ′′ which is in this case already a quadrant (see Figure 2.3).

Now we have given a rough intuition of how blow-ups works. The technical details
behind the idea can be read in Section 2.2.

10
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x2

x1

N

x2

x1

N N ′

Figure 2.2.: Transform of the polyhedron N

x2

x1

N ′

N ′′

Figure 2.3.: Transform of the polyhedron N ′

11
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2.2. Blow-up

In Chapter 3 and Chapter 5, we will discuss some of the most known algorithmic
strategies for the resolution of singularities. All strategies discussed in this thesis
deal with blow-ups, which we introduce below: The resolution of singularities with
these blow-ups illustrated by the Hironaka polyhedral game in Section 2.1.

Definition 2.2.1 ([49, page 163]). Let W be a scheme, Y ⊂ W a subscheme
associated by the coherent ideal sheaf J . The blow-up of W with center Y is
defined by

π : W̃ := Proj(
⊕
d≥0

J d)→ W.

Remark 2.2.2. Each blow-up is uniquely defined by its center Y .
The center is the locus of W above which the map π is not an isomorphism.

Remark 2.2.3 ([51, page 332]). The role of a blow-up is to untie the singularities
of some X ⊂ W by looking at its inverse image X ′ in W ′. The scheme W ′ offers
X ′ more ’space’ to spread out than W since W ′ lives inside a higher dimensional
ambient space. The main idea is to repeat this process until after (hopefully) finitely
many blow-ups the final inverse image X̃ of X has been resolved.

Remark 2.2.4. Let R0 be a regular ring and let Z = Spec(R0[t1, . . . , tN ]) ∼=
AN
R0
. Consider the blowing up π : B`D(Z) → Z of Z with center D =

Spec(R0[t1, . . . , tN ]/〈ti | i ∈ I〉), for some I ⊆ {1, . . . , N}. Globally, B`D(Z) is
described by the Proj-construction as

B`D(Z) = Proj(R0[t1, . . . , tN ][Ti | i ∈ I]/〈tiTj − tjTi | i, j ∈ I〉),

where (Ti | i ∈ I) are projective coordinates. In particular, B`D(Z) is covered by
the affine charts D+(Ti) with i ∈ I, where D+(Ti) denotes the standard open set of
points, where Ti is invertible. We call D+(Ti) also the Ti-chart of the blowing up.
Fix i ∈ I. In the Ti-chart, the relation tiTj − tjTi = 0 can be rewritten as

tj = ti
Tj
Ti
, for j ∈ I \ {i}.

This shows that the B`D(Z) ∩D+(Ti) is isomorphic to

Spec(R0[tk, ti,
Tj
Ti
| k /∈ I, j ∈ I \ {i}]) ∼= AN

R0
.

Often the abbreviation t′j :=
Tj
Tj

is used and by setting t′i := ti and t′k := tk for k /∈ I,
it is said that the variables of the Ti-chart are (t′1, . . . , t

′
N), where the relation to the

12



2.2. Blow-up

variables (t1, . . . , tN) before the blowing up is described by

tj =

t′it′j, if j ∈ I /∈ {i}
t′j, otherwise.

Note that the exceptional divisor of the blowing up π, i.e., the preimage of D
along π (the locus where π is not an isomorphism), is given by the divisor div(t′i) in
the Ti-chart.

For example, in the determinantal setting (Section 6 and Section 8), we have
(t1, . . . , tN) = (xi,j | i, j ∈ {1, . . . ,m}) and we speak of the X1,2-chart, or similar
expressions. Besides reflecting the origin of the variables (xi,j) coming from a matrix
structure, the index set {1, . . . ,m}2 has no impact or deeper meaning.

When resolving, e.g., single binomials, it is more efficient if we work
combinatorical, i.e., on the exponents instead of storing whole polynomial
structures in the computer. The polynomial structure is more complex than a
simple list. So we give here an equivalent characterization of the blow-up in the
case of canonical centers, e.g., if we resolve a single binomial (Section 7) or in the
case of resolution of a binomial scheme (Section 5.4) as a map

B`D(An
K)→ An

K .

Definition 2.2.5. The blow-up π : B`D(An
K)→ An

K in a regular center D = V (xi |
i ∈ I), for some I ⊆ {1, . . . , n} is covered by the standard charts

Ui := D+(xi) ∼= An
K ,

i ∈ I , where D+(xi) := B`D(An
K) \ V (xi) is the complement of V (xi). On Ui, the

blowup π is given by the morphism

K[x1, . . . , xn] −→ K[x′1, . . . , x
′
n] =: K[x′]

xj 7→ x′i x
′
j, if j ∈ I \ {i},

xj 7→ x′j, if j = i or j /∈ I,
λ 7→ λ, for λ ∈ K.

The image of f ∈ K[x] in K[x′] is called the total transform of f in Ui.

Note, that both definitions are well-defined.

13



2. Theoretical background

In Chapter 7, we will use this characterization as a map on the exponents
explicitly.

Remark 2.2.6. On the level of exponents, the morphism in Definition 2.2.5
corresponds to the map

φπ,i : Zn≥0 −→ Zn≥0,

where A = (A1, . . . , An) is mapped to A′ = (A′1, . . . , A
′
n), which is defined by A′i :=∑

j∈I Aj and A
′
j := Aj if j 6= i.

In every Ui ∼= An
K , we may choose a center Di of the same shape as D, and we

can iterate blow-ups to obtain a sequence of local blow-ups. See Section 7 for more
information.

Now we can connect blow-ups and Hironaka’s polyhedral game. Player P1 chooses
an index set J ⊂ {1, . . . , n} which encodes information on the center V (xj | j ∈ J)

of the corresponding blow-up. Player P2 chooses the considered chart. Player P1

wins the game if after finitely many blow-ups or in the notion of the game after
finitely many steps Player P2 could not choose a chart such that the singularity
is resolved resp. the convex hull N i is an ordinate for some i ∈ N. That is why
resolution of singularities exists if there is a winning strategy for Player P1. For
more information on the notion of resolution of singularities, we refer to Section 2.3.

We give now some properties of the blow-up.

Lemma 2.2.7 (Basic Properties of the blow-up [49, Proposition II.7.13]). Let
π : W̃ → W be the blow-up of W with center Y ⊂ W . Then the exceptional divisor
of the blow-up π−1(JOW̃ ) is an invertible sheaf on W̃ . Furthermore,

π : π−1(W \ Y )→ W \ Y

is an isomorphism.

The first basic property gives us information about the exceptional divisor. The
second property that we have an isomorphism on the complement of our center
says that we only change our scheme in the center of our blow-up. Thus the basic
idea behind the resolution of singularities is to choose a ’bad’ locus and iteratively
improve it and keep the information of the ’good’ loci.

Lemma 2.2.8 (Universal Property of the blow-up [49, Proposition II.7.14]). If
f : Z → W is any morphism such that f−1JOZ is an invertible sheaf on Z, there
exists a unique morphism g : Z → W̃ factoring f .
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2.2. Blow-up

Lemma 2.2.9 ([49, Proposition II.7.16.(b)]). Let X be a variety over a field K and
let J ⊆ OX be a nonzero coherent sheaf of ideals on X, and let π : X̃ → X be the
blow-up with center J . Then π is a birational, proper, surjective morphism.

Lemma 2.2.10 (Strict Transform [36, Lemma 50]). Let Z1
i
↪−→ W be a closed

subscheme. Let π1 : Z ′1 → Z1 be the blow-up of Z1 along i−1JOZ1. Then the
following diagram commutes

Z ′1 ↪→ W ′

π1 ↓ ↓ π
Z1 ↪→ W.

Z ′1 is called the strict transform of Z1 under the blow-up π : W ′ → W .

When calculating explicit examples, it is more convenient to pass to a covering
of the scheme W by affine charts. In each of these charts we are in the following
situation.

Let U ⊂ W be an affine open subset and denote A := Γ(U,OW ) and J :=

Γ(U,J ) = 〈f1, . . . , fm〉 ⊆ A.

Now the blow-up of U in center Y ∩ U is

π−1(U) = Proj(
⊕
d≥0

Jd).

For an explicit computation, we can consider the canonical graded A-algebra
homomorphism

Φ: A[y1, . . . , ym]→
⊕
n≥0

Jntn ⊆ A[t],

which is defined by Φ(yi) = tfi. Then⊕
n≥0

Jn ∼= A[y1, . . . , ym]/Ker(Φ).

Construction 2.2.11 ([36, Page 58]). Let I ⊂ OW be an ideal and X the
corresponding subscheme ofW . The exceptional divisor and the different transforms
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of X under the blow-up of W at center Y can be computed in the following way:

exceptional divisor I(H) = JOW̃
total transform π?(I) = IOW̃
strict transform IX̃ = (IOW̃ : JOW̃ ∞)

weak transform (IOW̃ : JOW̃ k)

controlled transform (IOW̃ : JOW̃ c),

where (I1 : I2
∞) :=

⋃
i≥0(I1 : I2

i) is the saturation of I1 with respect to I2, where
k = max{` ∈ N | (IOW̃ : JOW̃ `−1) = (IOW̃ : JOW̃ `) · JOW̃} and where c ∈ N is
called control.

Remark 2.2.12. The exceptional divisor of the blow-up is the inverse image of the
center Y . So it is the locus of W ′ where π fails to be an isomorphism.

2.3. Fundamental concepts and constructions for

resolution of singularities

In the first subsection (Section 2.3.1), we discuss several resolution problems and the
connection between the principalization of ideals and the resolution of singularities.
When constructing a resolution of singularities, it is necessary to consider more data
than the singular points. So we have to discuss basic objects (Section 2.3.2) and
idealistic exponents (Section 2.3.3).

2.3.1. Resolution of singularities and Principalization of ideals

We can find different ’levels’ of resolution strategies in the literature. We want
to present them here and indicate the relationship between the resolution of
singularities and the principalization of ideals. While the existence of resolution of
singularities is one of the most important results in the area, principalization of
ideals is related to the classical problem of elimination of base points of a linear
system.

We use the approach of [63, Section 3] here.

Definition 2.3.1 (Weakest Resolution Problem). Let X be a variety. The weakest
resolution problem is given by the question:
Is there a projective variety X ′ such that X ′ is smooth and birational to X?
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Remark 2.3.2. An example for a solving algorithm of the weakest resolution
problem for curves is given by the Albanese method.
The main idea is to take a curve C that spans a projective space Pm of sufficiently
large dimension (m > 2 · deg(C)) and repeatedly projecting down from singular
points to projective spaces of smaller dimension.

Definition 2.3.3 (Weak Resolution Problem). Let X be a variety. The weak
resolution problem is given by the question:
Is there a variety X ′ and a birational proper morphism π : X ′ → X such that X ′ is
smooth ?

Definition 2.3.4 (Strong Resolution Problem). Let X be a variety. The strong
resolution Problem is given by the question:
Is there a variety X ′ and a projective morphism π : X ′ → X such that the following
holds:

1. X ′ is smooth and π is birational,

2. π : π−1(X\ Sing(X))→ X\ Sing(X) is an isomorphism and

3. π−1(Sing(X)) is a divisor with simple normal crossings.

Note, that blow-ups in smooth centers are projective birational maps, so we can
formulate these ’levels’ in the notion of blow-ups.

Definition 2.3.5 (Resolution by blowing up smooth centers Problem). Let X be
a variety. The resolution by blowing up smooth centers problem is given by the
question:
Is there a resolution πX : X ′ → X such that πX is a composite of morphisms

πX : X ′ = Xn
πn−1−−−→ Xn−1

πn−2−−−→ · · · π1−→ X1
π0−→ X0 = X,

where each πi : Xi+1 → Xi is obtained by blowing up a smooth variety Zi ⊂ Xi.

Remark 2.3.6 (Strong Resolution by blowing up smooth centers Problem). If we
are in the situation of Definition 2.3.5 but we want πX to be a strong resolution, then
we need additional requirements on Zi. Often Zi ⊂ Sing(Xi) is required, although
we only need that π0 · · · πi−1(Zi−1) ⊂ Sing(X).

See Section 3 and 5 for examples.
Furthermore, every variant of resolution of singularities also has an embedded

version. The most famous version is the following:
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Theorem 2.3.7 (Embedded Resolution of Singularities, Hironaka 1964 [54]). Let
W be a smooth algebraic scheme over a field K of characteristic zero and let X be
a subscheme with ideal sheaf IX ⊂ OW . There exists a sequence

W = W0
π1←− W1

π2←− · · · πr←− Wr

of blow-ups πi : Wi → Wi−1 at smooth centers Ci−1 ⊂ Wi−1 such that

1. The exceptional divisor of the induced morphism Wi → W has only normal
crossings and Ci has normal crossings with it.

2. Let Xi ⊂ Wi be the strict transform of X. All centers Ci are disjoint from
Reg(X) ⊂ Xi, the set of points where X is regular or smooth (which are in
characteristic zero equivalent).

3. Xr is smooth and has normal crossings with the exceptional divisor of the
morphism Wr → W .

4. The morphism (Wr, Xr)→ (W,X) is equivariant under group actions.

Embeddedness requires two properties:

• The strict transform X ′ has to be regular.

• The strict transform X ′ should meet the exceptional locus Y ′ in W ′

transversally.

In general, regularity of the strict transform X ′ will be reached earlier in the process
of resolution. Then transversality requires some additional blow-ups. The following
example should illustrate this.

Example 2.3.8. Consider the blow-up in the origin in A2. This desingularizes the
curve X = V (x2 − y3). We can see in Figure 2.4, Figure 2.5, and Figure 2.6 the
process in the real picture of a single chart after several blow-ups. The figures can
be read as follows:
In the first picture of Figure 2.4, we see the cusp in blue and the singular point at
the origin in green. After blowing up the origin, we can see the exceptional divisor
as the green y-axis, which is the preimage of the origin in this chart of the real
picture, and the blue component is the strict transform of the cusp.
In Figure 2.5, we see that we have to blow-up a second time in the origin (red point)
since the strict transform (blue component) is tangent to the exceptional divisor
(green component). After this second blow-up, we get transversality but not normal
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y2 − x3

←

y2 − x3 = x′2(y′2 − x′)

Figure 2.4.: First blow-up of the cusp

y2 − x3 = x′2(y′2 − x′)

←

x′′ − y′′

Figure 2.5.: Second blow-up of the cusp

crossings. After a third blow-up at the origin (one chart is to be seen in Figure 2.6),
we achieved normal crossings.

Note, that embedded desingularization will also define a non-embedded
desingularization of schemes that can be locally embedded in smooth centers. This
is not a restriction at all if we consider Noetherian separated schemes of finite type
over a field.

More details on how to construct this resolution variant can be found in Sections 3
and 5.2.

Remark 2.3.9 (How good is a resolution algorithm in the computability sense).
In our setting, we are interested in computing an explicit resolution by hand or
computer. One famous complexity result is the worst-case analysis of an effective
Hironaka-style resolution by [5]. They showed that the complexity of resolution of an
ideal on an m-dimensional variety is bounded by a function from class εm+3, where
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x′′ − y′′

←

1− y′′′

Figure 2.6.: Third blow-up of the cusp

ε` denotes the `-th class of the Grzegorczyk-Hierarchy, which consists of integer
functions whose construction requires ` nested primitive recursions. See [47] and
Section B.1 for more information about this hierarchy.
That could explain why the existing methods work badly, even on the simplest
singularities. Some of these implementations are [13], and [37].
So for practical interests, one can define a good resolution algorithm to be one with
a better worst-case or average-case complexity than the known ones.
Hence, some worst-case number of charts analysis of the determinantal algorithms
are presented in this thesis.

Closely linked to the resolution of singularities is the principalization of ideals.

Definition 2.3.10 ([16, Page 2]). Let I be a non zero sheaf of ideals in a
non-singular variety W . A principalization of I is a proper birational morphism
ϕ : W ′ → W such that W ′ is non-singular and IOW ′ is locally principal.

The main goal of principalization of ideals is to get a locally principal ideal sheaf,
while the resolution of singularities’ goal is to get a non-singular ideal sheaf.

Remark 2.3.11 (Resolution of singularities implies principalization). Let π : X1 :=

B`I(X)→ X be the blow-up in center I of X. Then π−1(I) is locally principal (cf.
[49, II.7.13]). Hence, if h : X ′ → X1 is any resolution, then π ◦ h : X ′ → X is a
principalization of I.

This remark allows us to use every resolution algorithm for calculating a
principalization of ideals. In our main algorithm in Section 8, we will use
the algorithm of Blanco and Encinas (Section 5.4) as such an algorithm for
principalization of ideals. Then the entries of our matrix become locally monomial,
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but the determinantal singularity is not resolved. So we apply the algorithm of
Hu (Section 5.5) for establishing normal crossings. More methods are given in [10,
Remark 2.22] or Remark 5.4.39. For more details, see Section 8.

2.3.2. Basic objects

The resolution of singularities and the principalization of ideals will be deduced
from the resolution of more complicated objects. Such objects appear in various
formulations in the literature. Hironaka introduces the notion of idealistic exponents
(see Section 2.3.3), Abhyankar used the notion of trio, quartet, and quintet (see
[2]), Bierstone and Milman introduced the infinitesimal presentation (see [7]) and
in this subsection, we want to present the basic objects by Villamayor (see [77]).

From now on, we want to define these so-called basic objects. A basic object
consists of the essential data of a sequence of blow-up in the Hironaka-style
resolution. See Section 5. We follow the argumentation of Encinas, and Villamayor
[34].

Definition 2.3.12. Let (W,E = {H1, ..., Hr}), where W is a regular variety
(irreducible scheme separated of finite type and smooth over a field K), for
1 ≤ i ≤ r Hi is a regular hypersurface in W and

⋃r
i=1Hi has normal crossings.

A regular closed subscheme Y ⊂ W has normal crossings with E if at any x ∈ Y
there is a regular system of parameters X1, . . . , Xn such that I(Y )x = 〈X1, . . . , Xs〉
and for any Hi containing x, I(Hi) = 〈Xij〉.

In this case, we say that Y is permissible and we define a transformation of
(W,E) by blowing up Y and setting E1 = {H ′1, . . . , H ′r, Hr+1}, where H ′i is the strict
transform of Hi, for all 1 ≤ i ≤ r and Hr+1 = π−1(y) is the exceptional hypersurface
in W1.

Remark 2.3.13. Note, that the property permissible is defined more than once in
this thesis, since every strategy of resolution construct a bit different centers, but
the main idea is always the same.

Definition 2.3.14. A basic object is (W0, (J0, b), E0 = {H1, . . . , Hr}), where W0 is
a regular variety, for i = 1, . . . , r Hi is a regular hypersurface in W ,

⋃r
i=1Hi has

normal crossings, J ⊆ OW0 is an ideal such that (J0)x 6= 0 for any x ∈ W0 and b is
a positive integer.
We also call (J0, b) a pair.
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Definition 2.3.15. The transform (W1, (IX1 , b), E1) of a basic object
(W0, (IX0 , b), E0) under a blow-up π : (W1, (IX1 , b), E1) → (W0, (IX0 , b), E0) is
defined as follows:

• W1 = W̃0,

• IX1 is the ideal of the weak transform of IX0 ,

• b does not change,

• E1 is the union of the strict transform of the exceptional divisors from E0 and
the new exceptional divisor.

Definition 2.3.16 ([16, 12.2]). A basic object (W1, (IX1 , b), E1) is contained in
(W1, (IX2 , c), E1) if Sing(IX1 , b) ⊂ Sing(IX2 , c).

Example 2.3.17 ([16, Example 12.3]). Let IX1 ⊂ IX2 be two sheaves of ideals.
Then

(W, (IX1 , b), E) ⊂ (W, (IX2 , b), E).

Definition 2.3.18. [16, Remark 12.4] Two basic objects (W, (IX1 , b1), E)

and (W, (IX2 , b2), E) are called equivalent if (W, (IX1 , b1), E) is contained in
(W, (IX2 , b2), E) and vice versa. We will use the notation

(W, (IX1 , b1), E) ∼= (W, (IX2 , b2), E).

Example 2.3.19 ([16, Example 12.6]). Let (IX2 , b2) := (I2
X1
, 2b) then

(W, (IX1 , b), E) ∼= (W, (I2
X1
, 2b), E).

Definition 2.3.20 ([16, 12.7]). Let (W1, (IX1 , b), E1) and (W1, (IX2 , c), E1) be two
basic objects. The intersection (W1, (IX1 , b), E1)∩(W1, (IX2 , c), E1) is defined as the
basic object (W1, (IX3 , d), E1), where IX3 = IcX1

+ IbX2
and d = bc.

Definition 2.3.21 ([26, Definition 6.25]). Let (W0, E0) be like in Definition 2.3.12.
We define a general basic object (F0,W0, E0) on (W0, E0) to be a collection of
(Wi, Ei) (like in Definition 2.3.12) with closed sets Fi ⊂ Wi which have been
constructed inductively to satisfy the following properties:

1. F0 ⊂ W0

2. Assume Fi ⊂ Wi is defined for (Wi, Ei). Let πi+1 : (Wi+1, Ei+1)→ (Wi, Ei) be
a restriction, then Fi+1 := π−1

i+1(Fi).
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3. Assume Fi ⊂ Wi is defined for (Wi, Ei). Let πi+1 : (Wi+1, Ei+1)→ (Wi, Ei) be
a transformation centered at Yi ⊂ Fi, then Fi+1 ⊂ Wi+1 is a closed set such
that Fi\Yi ∼= Fi+1\πi+1(Yi) by the map πi+1.

These sets Fi will be called the closed sets associated to (F0,W0, E0).

2.3.3. Idealistic exponents

Another key idea similar to basic objects in Hironaka’s original proof of resolution of
singularities in charateristic zero is the idealistic exponent, which we want to discuss
in the following.
The main idea is to encode the local resolution data of a scheme X ⊂ Z at a point

x ∈ X in a pair E = (J, b) on the regular ring R = OZ,x, where J ⊂ R is the ideal
defining X at x locally and b ∈ Q+ is a positive rational number.
We use the notation of idealistic exponents introduced by Hironaka in [56],[58]

on regular schemes of finite type over a perfect field. Later he extended this notion
to excellent regular noetherian schemes, which are not necessarily of finite type, see
[59]. See [71] for a more modern presentation.
Let Z be a regular irreducible scheme of finite type over an arbitrary ring K.

Definition 2.3.22 ([16, Definition 3.1]). A pair E = (J, b) on Z is a pair consisting
of an ideal sheaf J ⊂ OZ and a positive integer b ∈ Z+.

The main idea is to encode the local resolution data of a scheme X ⊂ Z at a point
x ∈ X in a pair E = (J, b) on the regular ring R = OZ,x, where J ⊂ R is the ideal
defining X at x locally and b ∈ Q+ is a positive rational number.

Definition 2.3.23. Let E = (J, b) be a pair on a regular local ring R and let
(t) = (t1, . . . , ta) be an arbitrary finite system of independent indeterminates. Then
the lift of E to R[t] is defined as the pair E[t] = (J ·R[t], b).

Definition 2.3.24 ([71, Definition 1.2]). Let X ⊂ Z and J ⊂ R the stalk of I(X)

at x. Furthermore let mx be the maximal ideal in the local ring at x. Then

ordx(J) := sup{d ∈ Z0 ∪ {∞} | Jx ⊆ md
x}

is called the order of J at x.
The order of an idealistic exponent E = (J, b) at a not necessarily closed point x ∈ Z
is defined as

ordx(E) =


ordx(J)

b
, if ordx(J) ≥ b and

0, otherwise.
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2. Theoretical background

Definition 2.3.25 ([71, Definition 1.2]). Let E = (J, b) be an idealistic exponent.
We define the singular locus of E as

Sing(E) = {x ∈ Z | ordx(E) ≥ 1}.

Remark 2.3.26. Note, that Sing(E) coincides with Sing(J, b) in the notation of,
e.g., [16]. Since we define the order function on E with a division by b, we have in
this case ≥ 1 in our definition of Sing(E) and not like in the definition of [16] ≥ b.

The following example should illustrate the role of the value of b in the definition
of the singular locus of E:

Example 2.3.27. • Let E1 = (〈y2 + x4〉, 2) and let E2 = (〈y2 + x4〉, 3). Then
Sing(E1) = V (x, y) but Sing(E2) = ∅.

• Let E1 = (〈x3 − y3z2〉, 2) and let E2 = (〈x3 − y3z2〉, 3). Then Sing(E1) =

V (x, y) ∪ V (x, z) and Sing(E2) = V (x, y).

Definition 2.3.28 ([71, Definition 1.5.1]). Let E = (J, b) be a pair on Z. A blow-up
π : Z ′ → Z with centerD is called permissible for E, ifD ⊂ Sing(E) andD is regular,
i.e, D is a permissible center for (E).

Remark 2.3.29. Let E1 and E2 be pairs on R. By definition

• Sing(E1 ∩ E2) = Sing(E1) ∩ Sing(E2) and

• ordx(E1 ∩ E2) = min{ordx(E1), ordx(E2)}, for x ∈ Sing(E1 ∩ E2).

In older literature the order is also defined as õrdx(E) = ordx(J)
b

(see, e.g., [56,
Section 1, Remark 5]). The difference to our definition is that for some x /∈ Sing(E)

the equation ordx(E) = 0 holds, but 0 ≤ õrdx(E) ≤ 1 is possible.

Definition 2.3.30 ([71, Definition 1.7]). Two pairs E1 = (J1, b1) and E2 = (J2, b2)

on Z are equivalent, if the following holds:
Let (t) = (t1, . . . , ta) be an arbitrary finite system of independent indeterminates.
Then any sequence of local blow-ups over R[t] which is permissible for E1[t] is also
permissible for E2[t] and vice versa.
We write E1[t] ∼ E2[t].
An idealistic exponent E∼ is the equivalence class of a pair E.

If it is clear from the context, we abuse notation and use E instead of E∼.
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2.3. Fundamental concepts and constructions for resolution of singularities

Example 2.3.31 ([70, Remark 1.1.7.]). Let E = (J, b) such that Sing(E) = ∅. Let
x be a fixed point on Z. Let E1 and E2 be in the same idealistic exponent as E.
Then ˜ordx(Ei) ∈ [0, 1)∩Q, for i = 1, 2 but the values do not have to coincide, where
ordx(Ei) = 0, for i = 1, 2.
Let E1 = (〈y + z〉, 2) and E2 = (〈y + z〉, 3) and x = V (y, x), then

˜ordx(E1) =
1

2
6= 1

3
= ˜ordx(E2)

but
ordx(E1) = ordx(E2) = 0.

Definition 2.3.32 ([71, Definition 1.5.2]). Let E = (J, b) be a pair on R, let π be
a permissible blow-up for E and U ′ = Spec(R′) ⊂ Z ′ an affine chart. We define the
controlled transform of E in U ′ as E′ = (J ′, b), where J ′ is defined via the equation

J ·R′ = J ′Hb,

where H denotes the exceptional divisor in U ′ and b is the control.

Remark 2.3.33. Let d ∈ N0 and let R be a regular ring. Then Diff≤mZ (R) is the
set of differential operators of order at most m of R.

Lemma 2.3.34 ([71, Facts 1.11]). Let R be a regular local ring, let E1 = (J, b) =

(J1, b1) and E2 = (J2, b2) be pairs on R.

1. For every a ∈ Z+, (Ja, ab) ∼ (J, b) holds. Furthermore, if b2 = b1 = b then
(J1, b) ∩ (J2, b) = (J1 + J2, b) holds.

2. If Sing(J1, b1 + 1) = Sing(J2, b2 + 1) = ∅, then we have (J1, b1) ∩ (J2, b2) ∼
(J1J2, b1 + b2).

3. Let D ∈ Diff≤mR (Z) be a differential operator of order m ∈ Z≥0,m < b on R

such that D(R) ⊂ R. Then (J, b) ∼ (DJ, b−m) ∩ (J, b).

Proof. The proof is straight forward and we are guided by the presentation of [16].

1. Let E1 = (J, b),E2 = (Ja, ab) and x ∈ Z arbitrary. Then

ordx(J
a)

ab
=
a · ordx(J)

ab
=

ordx(J)

b

holds. This implies ordx(E1) = ordx(E2). This argumentation is stable under
the change from (Ei, Z) to (Ei[t], Z[t]) for a finite system of indeterminates (t).
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2. Theoretical background

Furthermore it is stable under suitable blow-ups π : Z ′ → Z: The transform
E′1 = (J ′, b′) of E1 = (J, b) under the blow-up π is defined via JOZ′ = HbJ ′,
where H is the sheaf of the exceptional divisor under π.

JaOZ′ = (JOZ′)a = (HbJ ′)a = HabJ ′a

implies that the transform of E2 is E′2 = (J ′a, ab). So ordx′(E′1) = ordx′(E′2)

holds for every x′ ∈ Z ′. Hence, every local sequence of regular blow-ups which
are suitable for E1 is also suitable for E2 and vice versa.

2. With an analog argumentation as in (1) and the use of

ordx(J1J2, b1 + b2) =
b1

b1 + b2

ordx(J1, b1) +
b2

b1 + b2

ordx(J2, b2)

we get (J1, b1) ∩ (J2, b2) ⊂ (J1J2, b1 + b2).
For the other direction, Sing(Ji, bi + 1) = ∅, for i = 1, 2 implies

ordx(Ji, bi + 1) =
ordx(Ji)

bi + 1
< 1,

for all i = 1, 2 and for all x ∈ Z. Suppose there is no local sequence of regular
blow-ups which is regular for (J1J2, b1 + b2) and not regular for E1 ∩ E2. We
may assume that this sequence is generated by a single blow-up π : Z ′ → Z

with center D and D is not a suitable center for E1 ∩ E2. Without loss of
generality, we assume D is not permissible for E1. This implies that there is a
y ∈ D such that

ordy(E1) =
ordy(J1)

b1

=:
m1

b1

< 1

but ordy(J1J2, b1 + b2) ≥ 1. We write ordy(E2) = m2

b2
. We get

ordy(J1J2, b1 + b2) =
m1

b1 + b2

+
m2

b1 + b2

<
b1

b1 + b2

+
m2

b1 + b2

= 1
m2 − b1

b1 + b2

.

Since ordy(J1J2, b1 + b2) ≥ 1 we know m2−b1
b1+b2

≥ 0. This yields

ordy(J2, b2 + 1) =
m2

b2 + 1
≥ 1

which contradicts ordx(J1J2, b1 + b2) < 1.

3. See [59, Theorem 3.4] or [70, Proposition 1.1.13] for a more modern
presentation.
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2.4. Different measures of being singular

2.4. Different measures of being singular

In different resolution strategies, it is often the idea to blow-up the locus of the
most singular points. We first give an overview of the properties of such a measure,
followed by some famous examples we need later in this thesis.

Definition 2.4.1 ([9, Definition 2.1]). Let g : X → (A,≤) be a function on a
topological noetherian space X, where A is a totally ordered set. We call g upper
semi-continuous, if

• Im(g) = {a1, . . . , as} is a finite subset of A and

• the sets Fai = {ξ ∈ X | g(ξ) ≥ ai} are closed for all i = 1, . . . , s.

Lemma 2.4.2 ([20, Lemma 2.34(a)]). A map g : X → (A,≤) is upper
semi-continuous if and only if

1. if x, y ∈ X such that x ∈ {y}, then g(x) ≤ g(y) and

2. for all y ∈ X there is a dense open subset U ⊂ {y} such that g(x) = g(y) for
all x ∈ U .

With this property and assuming that the invariant g cannot increase under
suitable blow-ups and that g decreases only finitely many times until the strict
transform of X is regular, we can construct a finite sequence of blow-ups such that
the minimal value achieved by the invariant of the resolution decreases strictly.

Then this implies an embedded resolution of singularities for X ⊂ Z. So the
question is: Given a reduced scheme X ⊂ Z, can we find a finite sequence of
blow-ups.

Z =: Z0 ← B`D0(Z0) =: Z1 ← · · · ← B`Dm0−1(Zm0−1) =: Zm0

⊂ ⊂ ⊂

X = X0 ← X1 ← · · · ← Xm0

Example 2.4.3. Some examples of upper semi-continuous functions are

• The order function, see [54, Chapter III §3 Corollary 1 p.220], Definition 2.4.8
and Section 2.4.2,

• The Hilbert-Samuel function, see [20, Definition 2.28] or [7].

• The E-order function, see Definition 5.4.5 and Lemma 5.4.16.
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2. Theoretical background

• The multiplicity, see Section 2.4.1 and [26, Definition A.17].

Since we focused on the computation of a resolution of singularities, we do not
discuss the Hilbert-Samuel function here. If we want to calculate the locus where
the Hilbert-Samuel function is maximal, we would have to compute a stratification
by the initial forms of the local standard bases (Definition 5.1.1) in all points
seperately. This is not easy and efficient to calculate.

For resolution of singularities, it is standard to use upper semi-continuous
functions as an invariant of the singularity. This stems from the fact that the level
sets of an upper semi-continuous function are Zariski-closed, such that especially
the singular loci are Zariski-closed.
We want to consider subsets of the singular locus in this thesis. Different

approaches use different notions of this locus. We want to present them now.

Remark 2.4.4. • In Section 5.4, we will consider the E-singular locus of a
(binomial) ideal J with respect to c is (Definition 5.4.10)

E- Sing(J, c) = {ξ ∈ W | E- ordξ(J) ≥ c}.

• Let E = (J, b) be an idealistic exponent. We define the singular locus of E as
(Definition 2.3.25)

Sing(E) = {x ∈ Z | ordx(E) ≥ 1}.

This is considered in Section 8.1.

• Let t ∈ N. We define the t-singular locus of a surface S ⊂ V (Definition 3.2.2)
as the set

Singt(S) := {p ∈ V | νp(S) ≥ t},

where ν denotes the mulitplicity. We will use this locus in Chapter 3.
Note, that these constructions are quite analogous. Only the measure differs and

the ≥ t resp. ≥ c term is a priori given by the order of an idealistic exponent.

2.4.1. Multiplicity

Since we need the definition of the multiplicity in the case of curve singularities, we
define them first in this setting.
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2.4. Different measures of being singular

Definition 2.4.5 ([49, 5.3]). Let K be an algebraically closed field of characteristic
0 and let K[[x, y]] be its power series ring in two variables x and y. Let

f =
∑
i,j

ai,jx
iyj ∈ K[[x, y]]

be a non-unit such that x does not divide f . We define the multiplicity of f as

mult(f) := min{i+ j | ai,j 6= 0}

and
mult(f(0, y)) := min{j | a0,j 6= 0}.

Remark 2.4.6. If I = 〈f〉 is a principal ideal, then the order of I at a point x
(Definition 2.4.8) equals the multiplicity of the hypersurface V (f) at x.

In the general setting the multiplicity has the following definition.

Definition 2.4.7 ([26, Definition A.17]). Let q be a point on a variety W and let
J ⊂ OW be an ideal sheaf. The multiplicity of J at q is defined as

νq(J) = ordOW,q(JOW,q).

2.4.2. Locus of maximal order

In this subsection, we give a brief overview of the basic ideas of the maximal order
and its locus which are influenced by [35].
Furthermore, we will use a refinement of the usual order in Section 5.6. The
implementation of the calculation is described in Section A.1.
In this subsection, we assume that X is a reduced excellent Noetherian scheme

(of dimension two), embedded in some excellent regular scheme Z.

Definition 2.4.8 ([35, Definition 2.2]). Let X be a noetherian excellent scheme and
let x ∈ X be a point. Let (R = OZ,x,m, k = R/m) be the local ring of Z at x and
let IX ⊂ R be the ideal which defines X locally at x. We define

1. the order of X in x as the order of IX in m:

ordx(X) := ordm(IX) := sup{t ∈ N | IX ⊂ mt},

2. the maximal order of X

max-ord(X) := sup{ordx(X) | x ∈ X},
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2. Theoretical background

3. the locus of maximal order of X

Max-ord(X) := {x ∈ X | ordx(X) = max-ordx(X)} and

4. the initial form of f with respect to m

inm(f) := f mod md(f)+1 ∈ grm(R),

where grm(R) =
⊕

t≥0 m
t/mt+1 denotes the associated graded ring of R at m

and d(f) := ordm(f),

5. the initial ideal of IX at m as the ideal Inm(IX) in grm(R) generated by the
initial forms of the elements in IX

Inm(IX) := 〈inm(f) | f ∈ IX〉.

Note, that in contrast to Definition 2.3.24, we do not divide by a number b, here.
So the definition of the order of an idealistic exponent and the definition of the order
of a scheme differs in this detail.

Definition 2.4.9 ([36, Definition 54]). In characteristic 0, we define ∆(IX) ⊂ OW
for a basic object (W, (IX , c), E) as the sheaf of ideals locally generated by

∆(IX) := {gi | 1 ≤ i ≤ s} ∪ { ∂gi
∂xj
| 1 ≤ i ≤ s, 1 ≤ j ≤ d},

where x1, . . . , xd is a regular system of parameters for OW,w and g1, . . . , gs are a set
of generators for IX .
Moreover, we define ∆i(IX) inductively as ∆(∆i−1(IX)).

Remark 2.4.10 ([16, Page 33]). In characteristic 0, the order of J is c if and only
if the order of ∆c−1(J) is 1. An element of order 1 in ∆c−1(J) defines a smooth
hypersurface.
The locus of order at least c of J coincides with V (∆c−1(J)).

Remark 2.4.11 ([16, 13.7]). Assuming we are in characteristic 0. Let J ⊂ OW be
a non zero sheaf of ideals at any irreducible component of the smooth scheme W
then ∆(J) satisfies the following properties:

1. J ⊂ ∆(J) ⊂ ∆b(J) = OW for some b ∈ N.

2. For any point x ∈ W the equation ordOW,x(Jx) = b > 1 holds if and only if
ordOW,x(∆(J)x) = b− 1.
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2.4. Different measures of being singular

3. For any point x ∈ W the in equality ordOW,x(J) ≥ b > 1 holds if and only if
x ∈ V (∆b−1(J)).

Now we give an illustration of the idea of the refined order.

Since we will use this refined order only for the Cossart, Jannsen and Saito
algorithm, we will assume that X be a reduced excellent Noetherian scheme of
dimension 2 embedded in some excellent regular scheme Z, to the end of the section.

Remark 2.4.12 ([35, Observation 2.3]). We denote by (R = OZ,x,m, k = R/m)

the local ring of Z at x which is excellent and regular. Let M := Inm(m) ∈ grm(R).
Set I1 = Inm(IX). If ordM(I1) = 1, we can consider the image I1 in the degree
1 slice of grm(R). This yields a subspace of the finite dimensional k-vector space
grm(R)1 = m/m2.
We can find a basis F1, . . . , Fa of I1 for some a := ax ∈ N. Either I1 =

〈F1, . . . , Fa〉grm(R) or ordM(H) > 1 for all elements H in Ia+1 which denotes the
ideal generated by the set I1/〈F1, . . . , Fa〉grm(R).
We define

dx :=

1, if I1 = 〈F1, . . . , Fa〉
ordM(Ia+1) > 1, otherwise.

For each Fi ∈ Inm(IX), we can choose a lift fi ∈ IX such that inm(fi) = Fi for
all 1 ≤ i ≤ a. We have ordm(fi) = ordM(Fi) = 1 and (f1, . . . , fa) forms a regular
sequence and in particular fi 6∈ 〈f1, . . . , fi−1〉, for all 1 ≤ i ≤ a.
Y := V (f1, . . . , fa) defines a (n− a)-dimensional regular subscheme of Z = Spec(R)

which contains X = V (IX). This implies

ax ≤ nx − dimX ≤ N = dimZ.

The following are equivalent:

1. ax < nx − dimX

2. dx > 1

3. X is singular at x.

The value of nx− ax coincides with the embedding dimension of X at x at closed
point corresponding to a maximal ideal mx .

Remark 2.4.12 is precisely the beginning of a possible way to construct a standard
basis for IX in the Hironaka sense and thus to determine the Hironaka invariant

31



2. Theoretical background

ν∗(IX , R). See Section 5.2 for more information about this invariant.
We set I := Inm(IX) then

ν∗(IX , R) = (ν1(I), ν2(I), . . . , νa(I), νa+1(I), . . .) = (1, . . . , 1, dx, ν
a+2(I), . . .) ∈ (N∪{∞})N.

The invariant in Section 5.6 max-ν at a closed point x corresponding to a maximal
ideal of IX is (N −ax, dx). Hence, our invariant coincides with the truncation of the
ν∗-invariant after the first entry with value > 1.

Definition 2.4.13 ([35, Definition 2.4]). Let x, ax and N as in Remark 2.4.12.

1. νref := νref X,Z : X → (N2,≤lex), νref(x) := (N − ax, dx) is called refined order
of X.

2. Let A in N2. We set V≥A(X) := {x ∈ X | νref(x) ≥ A}. The maximal refined
order is

max-ν(X) := (α, δ) := max{νref (x) | x ∈ X}.

The locus of maximal refined order is

Max-ν(X) :=

V≥max-ν(X)(X), if δ > 1,

X, if δ = 1.

Remark 2.4.14. If X = V (f) is an affine hypersurface, then νref(X) = ord(X).
If dim(X) = 2 and X is reduced, then Max-ν(X) has at most dimension one. In
particular, Max-ν(X) itself has at most isolated singularities.

In [35, Proposition 2.8] shows that max-ν(·) is upper semi-continous. Hence, in
particular Max-ν(·) is closed.

Moreover, [35, Proposition 2.8] shows that the refinement of the order function
is more suitable than the usual order function, since it distinguishes regular from
singular points, while the order function does not. The following example illustrates
the problem.

Example 2.4.15 ([35, Example 2.7]). Let R = K[t, v, w, y, z]m, where m =

〈t, v, w, y, z〉. We consider the scheme X := V (J) ⊂ Spec(R), where J :=

〈t, v2 − y3, z5 − y2w5〉.
Then ordm(J) = 1, although the point in X that corresponds to m is singular.
The refined order is νref = (3, 2), since ordm(v2 − y3) = 2 is maximal.

More information about the explicit calculation is found in Section A.1.
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singularities

In this chapter we will present an introduction to the easiest cases in resolution
of singularities. We give a brief overview about the most intuitive results in
algorithmic resolution of singularities, namely the case of curve singularities and
the case of surface singularities in characteristic zero. This chapter presents an
intuition that is fundamental for the understanding of the remaining thesis.

The central point of resolution of singularities by a sequence of blow-ups is the
appropriate choice of the centers. For this reason, desingularization algorithms are
often stated as algorithms for the choice of centers. The choice is controlled by
assigning an invariant which decreases (strictly) after blow-up in a suitable center.

We discuss the resolution of curve singularities for arbitrary fields and surface
singularities in the characteristic zero setting (see Section 3.1 and Section 3.2).
Chapter 5 discusses the background of the algorithmic approaches in more complex
singularities.

3.1. Resolution of curve singularities in arbitrary

characteristic

Resolution of curve singularities was investigated in the 19th century. The book
of Cutkosky gives a good summary of the results. For that reason we follow the
argumentation of his book [26, Chapter 3.1].

Let K be an algebraic closed field of arbitrary characteristic. In this section we
assume C ⊆ A2

K to be a curve. On the algebraic side of view, K[x, y] is a unique
factorization domain. So we know that there exists some f ∈ K[x, y] such that
V (f) = C.
Let q ∈ C be a closed point. In this chapter νq(C) denotes the multiplicity of C

at q. Note however that νq(C) = ordq(C), since C is a hypersurface singularity and
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3. Easiest cases of resolution of singularities

q is a closed point on C (Remark 2.4.6). So one can interpret νq(C) as multiplicity
or as order.

The following Lemma provides a criterion for regularity of points on plane curves.

Lemma 3.1.1 ([26, Lemma 3.2]). The point q ∈ A2
K is a regular point of C if and

only if νq(C) = 1.

Proof. See [26, proof of Lemma 3.2].

Remark 3.1.2. Lemma 3.1.1 is also true if q is a closed point on a regular surface S
over a field K and C is a curve contained in S. So we can apply it in Section 3.1.1,
too.
The proof only has to be modified by replacing R with the regular local ring OS,q
which has parameters (x, y) which are a K(q) basis of mq/m

2
q. Since R is a unique

factorization domain there exists some f ∈ R such that C = V (f) at q.
For more details see [26, Remark 3.3].

3.1.1. Blow-up points on a regular surface

In this subsection, we want to focus on blow-ups of points on regular surfaces. Later
we discuss the resolution of curve singularities in the embedded case. We will see
that our curve C can be embedded into a regular surface and that we only need to
blow-up singular points for the resolution of C.

Lemma 3.1.3 ([26, Lemma 3.10]). Let X be a regular surface over an algebraically
closed field K, and let C be a curve on X. Furthermore, let p ∈ X such that
νp(C) = r and let π : B`p(X) → X the blow-up in center p. We denote by C ′ the
strict transform of C under π and we assume that q ∈ π−1(p).
Then νq(C

′) ≤ r and if r ∈ Z>0 there is at most one point q ∈ π−1(p) such that
νq(C

′) = r.

Proof. see [26, proof of Lemma 3.10].

Theorem 3.1.4 (Jacobian Criterion, [14, Theorem 2.1]). Let K be an algebraically
closed field, let Z = V (f1, . . . , fs) ⊂ An

K be an affine variety which is equidimensional
of dimension d. Let

IZ = {f ∈ K[x] | f(p) = 0 for all p ∈ Z}

be the vanishing ideal of Z. Write In−d(J ) for the ideal generated by the (n −
d)-minors of the Jacobian matrix J = ( ∂fi

∂xj
).
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3.1. Resolution of curve singularities in arbitrary characteristic

If In−d(J ) + IZ = 〈1〉, then Z is smooth and the ideal 〈f1, . . . , fs〉 ⊂ K[x] is equal
to the vanishing ideal IZ of Z.

Note that the Jacobian criterion is only appliable for regularity over perfect fields,
since over non-perfect fields regularity and smoothness are not equivalent.

Example 3.1.5 ([26, Example pages 25-26]). Let C = V (y2 − x3) in A2
K . With

the Jacobian criterion (Theorem 3.1.4), we see that the only singular point is the
origin, so p = V (x, y). Let π : B`p(C) → C the blow-up of C with center p. We
denote by C ′ the strict transform of C and with E = π−1(p) the exceptional divisor
of π.
We now have a look at the two charts U1 = Spec(K[x

y
, y]) ⊂ B`p(C) and

U2 = Spec(K[x, y
x
]) ⊂ B`p(C).

In U1 we have coordinates x1, y1 with x = x1y1 and y = y1. So we have
y2 − x3 = y2

1(1 − x3
1y1). The exceptional divisor E on U1 is V (y1) and the strict

transform is CV (1− x3
1y1) on U1. (1− x3

1y1) is a unit on E ∩U1 so C ′ ∩E ∩U1 = ∅.

On U2 we get, by abuse of notation, the exceptional divisor is V (x1) and the strict
transform of C is V (y2

1 − x1), which has order ≤ 1 everywhere, so C ′ is regular.

This example provides us with an intuition to an algorithm to resolve curve
singularities:

Construction 3.1.6. 1. Blow-up the most singular points of the curve.

2. a) If the curve is resolved, we are finished.

b) If the curve is not resolved, repeat step 1. with the new most singular
points as long as the curve is resolved.

Algorithm 1 Algorithm for resolution of curve singularities
INPUT: C = V (f)
1: while ∃ singular points on C do
2: Choose a most singular point x ∈ C
3: blow-up with center x
4: stop

Figure 3.1 presents a flow chart of the Algorithm 1. Note that we abuse notation
in this flow chart. There, C denotes the curve and the strict transforms of C.
The algorithm in Construction 3.1.6 only makes sense, if we can guarantee that
we only repeat 1. finitely many times, which we will be proven in the following
subsection.
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C = V (f), where C is a curve singularity

Has C
singular
points?

blow-up in a most singular point

stop

yes

no

Figure 3.1.: Flow chart of resolution of curve singularities

3.1.2. Resolution of curve singularities

In this section, we consider singular curves embedded in regular surface over K. Our
goal in this section is to prove that Algorithm 1 terminates after finitely many steps.

Before we can state the main theorem of this section, we want to state a Lemma
to simplify the proof of this goal.

Lemma 3.1.7 ([26, Lemma 3.14]). Let S be a regular surface over K, let C be a
curve on S and let p be a closed point on C. Furthermore, let π : B`p(S)→ S be the
blow-up of S with center p. We denote by C ′ the strict transform of C on B`p(S)

and assume that q ∈ π−1(p) ∩ C ′.
Then νq(C ′) ≤ νp(C), and if we have equality than K(q) = K(p).

Proof. See [26, Lemma 3.14].

The following theorem shows that Algorithm 1 terminates after finitely many
steps.

Theorem 3.1.8 ([26, Theorem 3.15]). Let C be a curve which is a subvariety of a
regular surface X over a field K. Then there exists a sequence of blow-ups of points
λ : Y → X such that the strict transform C ′ of C in Y is regular.

Proof. See [26, Theorem 3.15].
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3.2. Resolution of surface singularities in characteristic zero

Note, that the presented resolution of singularities is not an embedded resolution
since the exceptional divisors does not need to have normal crossings. Example 2.3.8
illustrates the differences and shows that we have to do some more blow-ups for an
embedded resolution of curve singularities.

3.2. Resolution of surface singularities in

characteristic zero

The first complete proof of the existence of a resolution of surface singularities over
C was given by R. J. Walker [78] in 1935. In 1939, Zariski [80] proved the existence
of a resolution of singularities given by irreducible surfaces over algebraic closed
fields of characteristic zero. In 1944, he [81] proved the existence of resolution of
surface singularities embedded in a regular threefold, over characteristic zero.

We have seen in the section above that it is a good idea to blow-up the whole
singular locus in the curve case. Now we want to consider surfaces for which
the situation is more complicated but the idea still works but some cautions
have to be taken. We will see that the singular locus of a surface consists of
a finite number of isolated points and irreducible curves which may even be
singular. Curves are not allowed to be centers of blow-ups in a strong resolution
if they are not regular or if they intersect. So the idea is to make them regular
(we have seen in the section before that this is possible) by some blow-ups then
separate them from each other by blow-ups and afterwards take their union as center.

We follow the argumentation of Cutkosky [26] and show how to desingularize
surface singularities by the good point algorithm of Abhyankar [2] in characteristic
zero.

In this section, we assume K to be an algebraic closed field of characteristic zero.
Furthermore we assume V to be a regular three dimensional variety over K and
S ⊂ V is a surface.

Theorem 3.2.1 ([26, Theorem 5.2]). Let S be a hypersurface of dimension 2

embedded in a regular variety V of dimension 3 over K. Then there exists a finite
sequence of blow-ups of points and regular curves contained in the strict transform
Si of S

Vn → Vn−1 → · · · → V1 → V,
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3. Easiest cases of resolution of singularities

such that Sn is regular on Vn.

Definition 3.2.2 ([26, Page 45]). Let t ∈ N. We define the t-singular locus of a
surface S ⊂ V as the set

Singt(S) := {p ∈ V | νp(S) ≥ t}.

In particular, we use the multiplicity here to construct the t-singular locus as the
locus where the multiplicity is greater than or equal to t.

Remark 3.2.3. Recall that the locus Singt(S) is Zariski closed in V , since ν(·) is
an upper semi-continuous function.

In the topic of resolution of singularities it is standard to consider only the most
singular points of a variety. We have already seen this in Section 2.4.2, where we
have defined the maximal order.
From now on, r := max{t | Singt(S) 6= 0} denotes the maximal multiplicity of

points of S.

Remark 3.2.4. The irreducible components of Singr(S) are points and curves.

In contrast to the curve singularities, where we only have to blow-up of points,
we have to consider in the surface case two types of blow-ups of regular subvarieties
on a regular three-dimensional variety. These two types are

1. a blow-up of a point,

2. a blow-up of a regular curve.

So we see that the actual situation is a bit more complicated then the case of
a surface singularity. The additional difficulty is that we also have to look at the
blow-up in a regular curve.
Lemma 3.2.8 provides us with more information on the singular locus of the strict
transforms after blow-up in a regular curve contained in the singular locus. For
the proof, we need the Weierstrass preperation theorem (Theorem 3.2.5) and the
Tschirnhausen transformation (Definition 3.2.6).

Lemma 3.2.5 (Weierstrass preperation theorem [26, Lemma 3.7]). Let K be a field
and suppose that f ∈ K[[x1, . . . , xn, y]] fulfills

0 < r = ν(f(0, . . . , 0, y)) = max{n | yn divides f(0, . . . , 0, y)} <∞.

38



3.2. Resolution of surface singularities in characteristic zero

Then there is a unit series u in K[[x1, . . . , xn, y]] and non-unit series ai ∈
K[[x1, . . . , xn]] such that

f = u(yr + a1y
r−1 + . . .+ ar).

Proof. See [83, Chapter VII, Section 1, Theorem 5].

Definition 3.2.6 (Tschirnhausen transformation [26, Definition 3.8]). Let K be a
field of characteristic p ≥ 0 and let f ∈ K[[x1, . . . , xn, y]] have an expression

f = yr + a1y
r−1 + . . .+ ar

with ai ∈ K[[x1, . . . xn]] and p = 0 or p does not divide r. Then the Tschirnhausen
transformation of f is the change of variables replacing y with y′ = y + a1

r
.

Remark 3.2.7. Let f be like in Definition 3.2.6. By applying the Tschirnhausen
transformation, f has an expression

f = (y′)r + b2(y′)r−2 + . . .+ br,

for some bi ∈ K[[x1, . . . , xn]], for i = 2, . . . , r.

Lemma 3.2.8 ([26, Lemma 5.4]). Let V be a regular three-dimensional variety,
S ⊂ V be a surface, C ⊂ Singr(S) be a regular curve, π : B`C(V ) → V is the
blow-up of C and S ′ is the strict transform of S in B`C(V ). Let p ∈ C be a closed
point.
Then νq(S

′) ≤ r for all q ∈ π−1(p) and there is at most one point q ∈ π−1(p) with
νq(S

′) = r.
In particular, if E = π−1(C), then either Singr(S

′) ∩ E is a regular curve which
maps isomorphically onto C or Singr(S

′) ∩ E is a finite union of points.

Proof. By applying Weierstrass preparation theorem and a Tschirnhausen
transformation. See [26, Lemma 5.4] for more details.

Now we state the analogous result for a blow-up in a point which follows with the
same argument as above.

Lemma 3.2.9 ([26, Lemma 5.5]). Assume p ∈ Singr(S) is a point, π : B`p(V )→ V

is the blow-up of p, S ′ is the strict transform of S in B`p(V ) and E = π−1(p).
Then νq(S

′) ≤ r for all q ∈ π−1(p) and either Singr(S
′) ∩ E is a regular curve or

Singr(S
′) ∩ E is a finite union of points.
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3. Easiest cases of resolution of singularities

Definition 3.2.10. Singr(S) has simple normal crossings (SNCs) if

1. all reducible components of Singr(S) are regular and

2. p is a singular point of Singr(S), then there exists a system of regular
parameters (x, y, z) in OV,p such that ISingr(S),p = 〈xy, z〉.

Corollary 3.2.11 ([26, Lemma 5.7]). Assume that Singr(S) has simple normal
crossings, W is a point or an irreducible curve contained in Singr(S), π : V ′ =

B`W (V ) → V and S ′ is the strict transform of S under π. Then Singr(S
′) has

simple normal crossings.

Definition 3.2.12 ([26, Definition 5.8]). We say a closed point p ∈ S is a pregood
point if Singr(S) is either

• empty,

• a regular curve through p in a neighborhood of p or

• a union of two regular curves intersecting transversally at p.

Definition 3.2.13 ([26, Definition 5.9]). A closed point p ∈ S is a good point, if p
is a pregood point and for any sequence of blow-ups of regular curves in Singr(Si)

Xn → Xn−1 → . . .→ X1 → SpecOV,p,

where Si is the strict transform of S ∩ SpecOV,p on Xi implies that q is a pregood
point for all closed points q ∈ Singr(Sn). In particular, Singr(Sn) does not contain
isolated points.
A point which is not good is called a bad point.

The following Lemma shows that there is a resolution procedure in which we have
to blow-up only the regular curves in Singr(Si), if all points of Singr(S) are good
points.

Lemma 3.2.14 ([26, Lemma 5.10]). Assume that all points of Singr(S) are good.
Then there exists a sequence of blow-ups of regular curves containing Singr(Si)

V ′ = Vn → . . .→ V1 = V,

where Si is the strict transform of S in Vi, such that Singr(S
′) = ∅, where S ′ is the

strict transform of S in V ′.

Proof. See [26, Lemma 5.10].
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3.2. Resolution of surface singularities in characteristic zero

With the previous Lemma we know how to finish the resolution if singularities,
if we only have good points in S. Because the idea is to blow-up in the bad points
and than apply Lemma 3.2.14. This is possible in finite many steps if there are only
finitely many bad points. This is guaranteed by the following lemma.

Lemma 3.2.15 ([26, Lemma 5.11]). There are only finitely many bad points on S.

Proof. See [26, Lemma 5.11].

Theorem 3.2.16 ([26, Theorem 5.12]). Let

. . .→ Vn → Vn−1 → . . .→ V1 → V

be the sequence where πn : Vn → Vn−1 is the blow-up of all bad points in the strict
transform Sn−1 of S. This sequence terminates after finitely many steps in a variety
Vm such that all points of Singr(Sm) are good.

Proof. See [26, Theorem 5.12].

Construction 3.2.17. In summary, we can resolve Singr(S) by blowing up all
bad points of S and all bad points of the strict transform S ′ of S. After finitely
many steps, S ′ has only good points. Then we apply Lemma 3.2.14 and blow-up
in regular curves in Singr(S

′) in order to resolve Singr(S
′). After doing so, we can

apply induction on r until we reach Sing2(S ′) = ∅, where S ′ is the strict transform
of S under all of these blowing ups.

This leads us to the Algorithm 2.

Algorithm 2 Algorithm for resolution of surface singularities
INPUT: S a singular surface
1: r := max{t | Singt(S) 6= ∅}
2: while r > 1 do
3: while ∃ bad points in S and Singr(S) 6= ∅ do
4: Choose a bad point point x ∈ S
5: Do the blow-up with center x
6: while ∃ regular curves on Singr(S) and Singr(S) 6= ∅ do
7: Choose a regular curve C ⊂ Singr(S)
8: Do the blow-up with center C
9: r := max{t | Singt(S) 6= ∅}
10: stop

Figure 3.2 presents a flow chart of the Algorithm 2.
By abuse of notation S denotes the strict transform of S, too.
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3. Easiest cases of resolution of singularities

S a surface singularity

r := max{t | Singt(S) 6= ∅}

r > 1?

Has S bad
points?

blow-up in a bad point

Singr(S) 6= ∅

blow-up in a curve on Singr(S)

stop

yes

yes

no

yes

no

no

Figure 3.2.: Flow chart of the good point algorithm for resolution of surface
singularities

42



4. Simpified main ideas of
resolution of determinantal
singularities

In this chapter, we want to anticipate the intuitive idea of the main strategies of
this thesis.
We have seen in Chapter 2 and Chapter 3 what the resolution of singularities
is. We have also noticed that the so-called blow-up (Definition 2.2.1) has proven
to be a good tool in resolution of singularities. The presented algorithms for
desingularization of curve and surface singularities blow-up in the whole singular
locus. Maybe we had to make the singular components regular first. However, this
construction fails for three-folds and higher dimensional schemes, mainly since the
passage to the singular locus does not commute with blow-ups. The singular locus
of X ′ may have singular components in the exceptional locus, which do not correlate
with the singular locus of X (see [50]).
That is why it is more challenging to desingularize determinantal singularities
or singularities in general. We discuss the general approach in Section 5.2 and
Section 5.3.

The starting point of resolution of determinantal singularities in this thesis is the
solved problem (by [75] and [71]) of the resolution of singularities of determinantal
singularities generated by generic matrices.

The idea behind the solution to the problem is illustrated in the following remark.

Remark 4.0.1. Let R0 be a regular ring, n ∈ Z+ and let R = R0[xi,j | 1 ≤ i, j ≤ n]

be the polynomial ring in n2 independent variables.
Let M = (xi,j)1≤i,j≤n. We want to consider the determinantal singularity V (f)

generated by a single equation f := det(M).
We blow-up in the origin V (xi,j | 1 ≤ i, j ≤ n). Considering only the X1,1-chart
suffices for an intuitive idea.
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4. Simpified main ideas of resolution of determinantal singularities

The strict transform f ′ of f is given by

f ′ = det


1 x′1,2 . . . x′1,n

x′2,1 x′2,2 . . . x′2,n
...

... . . . ...
x′n,1 x′n,2 . . . x′n,n

 .

Since the addition of rows does not change the determinant, we can add −x1,j-times
row 1 to row j, for 2 ≤ j ≤ n. We obtain

f ′ = det


1 x′1,2 . . . x′1,n

0 x′2,2 − x′2,1x′1,2 . . . x′2,n − x′2,1x′1,n
...

... . . . ...
0 x′n,2 − x′n,1x′1,n . . . x′n,n − x′n,1x′1,n

 .

By applying col` 7→ col` − x′1,` · col1, for 2 ≤ ` ≤ k, we obtain

f ′ := det


1 0 · · · 0

0 x′2,2 − x′2,1x′1,2 . . . x′2,k − x′2,1x′1,k
...

... . . . ...
0 x′r,2 − x′r,1x′1,2 . . . x′r,k − x′r,1x′1,k

 .

By the Laplace Expansion of the determinant we get

f ′ = 1 · det


x′2,2 − x′2,1x′1,2 . . . x′2,n − x′2,1x′1,n

... . . . ...
x′n,2 − x′n,1x′1,n . . . x′n,n − x′n,1x′1,n

 .

Since all variables are independent, all entries of the former matrix are principalized
and have normal crossings. We can apply a change of variables such that variables
yi,j := xi,j − xi,1x1,j, for 1 ≤ i, j ≤ n.

f ′ = 1 · det


y2,2 . . . y2,n

... . . . ...
y2,n . . . yn,n

 .

So we can trace the problem of desingularizing the determinant of a generic (n×
n)-matrix to the problem of desingularizing the determinant of a generic ((n− 1)×
(n− 1))-matrix. By induction, this procedure ends after finitely many steps.
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The next step is to solve the problem of resolving determinantal singularities
generated by a monomial matrix.
The goal is to principalize the monomial ideal 〈xAi,j | 1 ≤ i, j ≤ m〉 generated by
the entries of a matrix M = (xAi,j)1≤i,j≤m ∈ K[x]n×n, where K is an algebraically
closed field.
The subgoal is to blow-up in the ideal of the 1-minors of M as before in the generic
setting, but this ideal could be an arbitrary monomial ideal which is potentially very
singular. We will reduce the problem to the problem of desingularizing a binomial
ideal. The algorithm of Blanco and Encinas (see Section 5.4) solves this problem.

After applying the algorithm of Blanco and Encinas, the ideal of entries of the
matrix equals 〈1〉. For simplicity, we assume in this chapter that there is a 1 entry
in the matrix. In general, this has not to be automatically the case, but we refer
here to Chapter 8 for the technical details. After applying the step of the Gaussian
algorithm like in the generic case, we have in each chart the following situation: We
have a matrix

M ′ =


m2,2 −m2,1m1,2 . . . m2,r −m2,1m1,r

... . . . ...
mk,2 −mk,1m1,2 . . . mk,r −mk,1m1,r

 ,

where mi,j ∈ K[x] are arbitrary monomials. Since we do not have several variables
xi,j but some arbitrary monomials here, we are not guaranteed to find a linear
transformation such that every entry of our matrix is a monomial.

Altogether, in local charts, we are in a situation which is simplified described by
Figure 4.1.
That explains why our goal is to desingularize determinantal singularities of at

most binomial type as the next more difficult problem.
We will later see that our algorithm is not restricted to binomial entries but

entries for which we can find a principalization and establish normal crossings. So
in characteristic zero, we can use the resolution of Hironaka (see Section 5.2) instead
of the algorithm of Blanco and Encinas.

Furthermore, there are topics we need to discuss before presenting the main
algorithm of this thesis.

So we have to discuss the algorithm of Villamayor (Section 5.3) for characteristic
zero as an example for a Hironaka-style resolution (Section 5.2), the algorithm of
Blanco and Encinas (Section 5.4) for the characteristic p > 0 case and determinantal

45



4. Simpified main ideas of resolution of determinantal singularities

determinantal_resolve (M)

resolved?

x
A1,1 − λ1,1x

B1,1 . . . xA1,n − λ1,nx
B1,n

... . . . ...
xAn,1 − λn,1xBn,1 . . . xAn,n − λn,nxBn,n



x
C1,1 . . . xC1,n

... . . . ...
xC1,n . . . xCn,n




1 xD1,2 . . . xD1,n

xD2,1 xD2,2 . . . xD2,n

... . . . . . . ...
xD1,n . . . . . . xDn,n


x

E2,2 − η2,2x
F2,2 . . . xE2,n − η2,nx

F2,n

... . . . ...
xEn,2 − ηn,2xFn,2 . . . xEn,n − ηn,nxFn,n



return
yes

no

binomial resolution

monomial resolution

induction

Figure 4.1.: Simplified local illustration of the flowchart of the main algorithm.
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singularities of at most binomial type and the algorithm of Hu (Section 5.5) for
establishing normal crossings for our entries in Chapter 5.
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5. Algorithmic background of
resolution of singularities

In this chapter, we discuss some algorithmic strategies for resolution of singularities,
which influences the main strategy of this thesis. First, we discuss different notions
of standard bases (Section 5.1). Then we discuss the main idea of Hironaka’s
famous proof (Section 5.2). This was the first strategy for resolution of Excellent
noetherian schemes in characteristic zero. Since the original proof consists of more
than 200 pages, we restrict ourselves to the main ideas and constructions.
In Section 5.3, we give a more constructive view on a Hironaka-style resolution with
a briefly overview of the algorithm of Bravo, Encinas and Villamayor.

The Hironaka-style resolution resolves singularities in characteristic 0 but the
complexity of a constructive Hironaka-style resolution of an excellent noetherian
scheme of dimension ` is classified in the (` + 3)-th level of the Grzegorczyk
hierarchy, see [5] or Section B.1 for more details about the hierarchy. For practical
reasons, it might be interesting to restrict the complexity by dealing with a smaller
input class.
After this section, we reduce the complexity of the problem by assuming some
special structure of the generators of the singularity. The first such structural
requirement is that we only deal with binomial ideals, i.e., ideals with a generating
set containing at most binomials. For this, we discuss the algorithm of Blanco
and Encinas (Section 5.4), which resolves singularities that can be generated by
binomial ideals in arbitrary characteristic. Since the algorithm of Villamayor and
the one of Blanco are similar we discuss the main ideas in the more general case
in Section 5.3 and the ideas and constructions which are specific for resolution of
binomial singularities in Section 5.4. Later in this thesis we need this constructions
for the reimplementation of [12]. This is necessary since we need a more modular
structure that allows us to reuse the algorithm resp. the choice of center as a black
box in our main algorithm in Chapter 8.
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5. Algorithmic background of resolution of singularities

We will see that our use of the algorithm of Blanco and Encinas gives us
principalized entries which do not need to have normal crossings. To resolve this
problem, we use the algorithm of Hu [60] for the resolution of simple arrangements.
This algorithm is described in Section 5.5.

For surfaces, there exists a different approach we want to discuss here. This is
the algorithm of Cossart, Jannsen, and Saito (CJS algorithm). We will discuss it
in Section 5.6. It is formulated for arbitrary dimensional excellent schemes, but
it is only known that it resolves surface singularities in characteristic 0, positive
characteristic, and even mixed-characteristic (see [20]). Algorithmic aspects can
be found in [35]. It is unknown if the CJS algorithm also resolves singularities
in larger dimensions. Therefore we have implemented a dimension-free variant
in the computer algebra system Singular for studying this algorithm to find some
interesting examples. It is to be found in the appendix in Section A.2.

5.1. Different notions of standard bases

In this section, we will discuss the different notions of standard bases in terms of
computer algebra and resolution of singularities. In the classical setting of computer
algebra we refer to Definition 5.1.4.
In the setting of resolution of singularities, a standard basis in the sense of Hironaka
(see Definition 5.1.1) is often meant.
Both constructions are in the same flavor differing in minor aspects. While standard
bases in computer algebra belong to an arbitrary monomial ordering, Hironaka
standard bases are a local construction.

After defining both cases, we want to discuss the idea behind them and their
commonalities.

In order to compute and control the invariants associated with the ideal which
have to be resolved, Hironaka introduced standard bases.

Definition 5.1.1. Let R be a local ring, m its maximal ideal, and 0 6= I ⊂ R be an
ideal in R. Let {f} = {f1, . . . , fr} be a set of elements in I. Set bi := ordm(fi) and
Fi := inm(fi), for 1 ≤ i ≤ r.
Then {f} is called a standard basis for I (in the Hironaka-sense) if the following
properties hold:

1. 〈F1, . . . , Fr〉 = Inm(I) ⊂ grm(R),
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5.1. Different notions of standard bases

2. b1 ≤ b2 ≤ . . . ≤ br and

3. Fi 6∈ 〈F1, . . . Fi−1〉, for all 2 ≤ i ≤ r.

For detecting singularities and controlling the resolution process, the theory of
standard bases for local rings and their completions in the Hironaka-sense were
developed.

Remark 5.1.2. • A standard basis for I generates I.

• Let {f} be a standard basis for I. The strict transform of {f} under reasonable
blow-up generates the strict transform of I under the same blow-up. This is
not true for any set of generators, in general. Let I := 〈x2 − y3, x2 − z5〉 ⊂
K[x, y, z]〈x,y,z〉, where K is any field. The blow-up of the maximal ideal is a
counterexample:
If we consider only the X-chart, the strict transform of the generators are
1− xy3 and y3− z5x2 and J := 〈1− xy3, y3− z5x2〉 6= I ′ = 〈1− xy3, 1− x3z5〉,
where I ′ is the strict transform of I.

This remark illustrates the reason why Hironaka standard bases play a big role
in resolution of singularities.

Now we take a look on the standard bases in the computer algebra setting. First,
we consider the global construction of Gröbner bases.

A Gröbner basis is defined with respect to a global monomial ordering. For a
fixed monomial ordering ≤ we denote by K[x]≤ the polynomial ring K[x] equipped
with the monomial ordering ≤.

Example 5.1.3 ([46, Pages 13 and 14]). Let n be the number of variables in K[x].
The following are examples of monomial orderings:

1. The lexicographical ordering ≤`p is defined as

xα <`p x
β ⇐⇒ ∃1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1, αi < βi,

i.e., xα <`p x
β if the number of occurrences of x1 in xα is less than in xβ, or

they are equal and the number of occurrences of x2 in xα is less than in xβ, or
they are equal too and so on.
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5. Algorithmic background of resolution of singularities

2. The degree lexicographical ordering ≤Dp is defined as

xα <Dp x
β ⇐⇒

∑
i

αi <
∑
i

βi or
(∑

i

αi =
∑
i

βi and xα <`p x
β

)
.

In other words, the degree lexicographical ordering first sorts by total degree,
and then uses lexicographical ordering as a tie-breaker.

3. The degree reverse lexicographical ordering ≤dp is defined as

xα <dp x
β ⇐⇒

∑
i

αi <
∑
i

βi or
(∑

i

αi =
∑
i

βi and

∃1 ≤ i ≤ n : αn = βn, . . . , αi+1 = βi+1, αi < βi).

In other words, the degree reverse lexicographical ordering first sorts by
total degree, and then uses the reverse lexicographical ordering, i.e., the
lexicographical ordering starting at the end and comparing in the reverse order
than the lexicographical ordering, as a tie-breaker.

Definition 5.1.4 ([46, Definition 1.6.1]). Let R be the localization of K[x] with
respect to a fixed monomial ordering < and let I ⊂ R be an ideal.

1. A finite set G ⊂ R is called a standard basis (in the computer algebra sense)
of I if

G ⊂ I and L(I) = L(G),

i.e., G is a standard basis, if the leading monomials of the elements of G
generate the leading ideal of I. Note, that L(G) resp. L(I) denotes the
leading ideal of G resp. I.

2. If < is a global ordering, a standard basis is called Gröbner basis.

Remark 5.1.5. Note, that a standard basis referring to an arbitrary monomial
ordering while Gröbner bases need a global monomial ordering.

Definition 5.1.4.1. says that for any f\{0} there exists a g ∈ G with LM(g) |
LM(f), where LM denotes the leading monomial.

Definition 5.1.6 ([46, Definition 1.6.2]). Let R be the localization of K[x] with
respect to a fixed monomial ordering < and let G ⊂ R be any subset.

1. G is called interreduced if 0 6∈ G and if LM(g) - LM(f) for any two elements
f 6= g ∈ G.
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5.1. Different notions of standard bases

2. f ∈ R is called reduced with respect to G if no monomial of the power series
expansion of f is contained in L(G).

3. G is called reduced if G is interreduced and if for any g ∈ G the leading
coefficient of g equals 1 and the tail of g is completely reduced with respect to
G.

Remark 5.1.7. Let R be the localization of K[x] with respect to a fixed global
monomial ordering <. For every ideal I ⊂ R a unique reduced Gröbner base can be
computed.

Definition 5.1.8 ([46, Definition 1.6.4]). Let R be the localization of K[x] with
respect to a fixed monomial ordering <. Let G be the set of all finite lists G ⊂ R.

NF : R× G → R, (f,G) 7→ NF(f | G),

is called a normal form on R, if for all G ∈ G and for all f ∈ R,

1. NF(0 | G) = 0

2. NF(f | G) 6= 0 =⇒ LM(NF(f | G)) 6∈ L(G).

3. If G = {g1, . . . , gs} then f − NF(f | G) has a standard representation with
respect to NF(− | G),

f − NF(f | G) =
s∑
i=1

aigi, ai ∈ R, s ≥, 0

such that LM(
∑s

i=1 aigi) ≥ LM(aigi) for all i.

NF is called a reduced normal form if NF(f | G) is also reduced with respect to G.

The following remark states equivalent characterizations of Gröbner bases.

Remark 5.1.9. Let I be an ideal in R = K[x]≤ and let G = {g1, . . . , gs} ⊆ I be a
finite set. The following statements are equivalent.

• In(I) = 〈LT(G)〉, where LT denotes the sets of all leading terms of polynomials
in G.

• For all f ∈ R there is a unique r such that f − r ∈ I and no LT(gi) divides
any m ∈ supp(r).

• For all f ∈ R, f ∈ I if and only if NF(f | G) = 0.
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5. Algorithmic background of resolution of singularities

Remark 5.1.10 (Computational aspects of Gröbner bases). • The
computation of Gröber bases is implemented in several computer algebra
systems, e.g., Singular, Oscar, Magma, Maple,...

• The computational complexity of a Gröbner basis computation is
EXPSPACE-complete. For more information on the complexity
reductions, we refer to [61]. For more information about the notion of
EXPSPACE-completeness, see Appendix B.1.

Gröbner bases and standard bases in the sense of Hironaka define the same
construction in a slightly different manner. While Gröbner bases work with a fixed
global ordering, standard bases in the computer algebra sense work in arbitrary
orderings and Hironaka standard bases in local orderings. That is why they need a
modified normalform algorithm in the sense of Mora.
Furthermore, Gröbner bases and standard bases in the sense of computer algebra
consider the initial terms of the leading terms or initial monomials and Hironaka
standard bases consider the initial form.

Example 5.1.11. Let f = x2 + y2 + z3 ∈ K[x, y, z]. The leading term of f with
respect to ≤dp is z3.

Remark 5.1.12. A Gröbner basis with respect to a negative weighted degree
ordering is also a standard basis in the sense of Hironaka, since the ordering refines
Hironaka’s ordering on the initial parts.
In the homogeonous setting, the lexicographical order coincide with the graded
lexicographical order, so Gröbner bases and standard bases coincide, too.
We will use this special case in Section 6.2.

In the theoretical part of this thesis, we are dealing with standard bases in the
case of Hironaka. Later, when constructing the algorithms, we calculate Gröbner
bases, too, when we can guarantee that they coincide with the standard bases in
the Hironaka sense.

5.2. Ideas of a Hironaka-style Resolution

We have seen in Section 3 that it is a good idea to consider the whole singular locus
as the center of blow-ups for curves and surfaces. Maybe we had to make the singular
components regular first. However, this center construction fails for three-folds and
higher dimensional schemes. This mostly relies to the fact that the passage to the
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5.2. Ideas of a Hironaka-style Resolution

singular locus does not commute with blow-ups. The singular locus of X ′ may have
singular components in the exceptional locus, which have nothing to do with the
singular locus of X (see [50]). That is the reason why it seems impossible to make
the singular locus regular as it is done in the surface case. This section should give
a simplified intuition to the main ideas of a Hironaka-style resolution. More general
(and algorithmic) formulations of such a resolution are given in the next two sections.

The strategy of a Hironaka-style resolution is the following: We have to develop
certain invariants which measure how ’good’ or ’bad’ a single point of a singularity
is. These invariants should construct a sequence of blow-ups for which the invariants
are non-increasing and can decrease only finitely many times. When they decrease
to the minimum, we should be able to conclude that we have reached a regular
scheme.
So the choices for the centers of the blow-ups are made canonical by considering the
loci where the invariants are maximal, i.e., we blow-up the ’worst’ locus. This is
illustrated by Algorithm 3 and Figure 5.1. The main point of the proof is to show
that the invariants finally decrease.
Considering Theorem 2.3.7 (embedded resolution of singularities) from a practical

point of view, one have to discuss two central tasks.

1. The calculation of the blow-up (see Section 2.2)

2. The choice of the center

a) strategy

b) canonicity

There is a flexibility in the choice of the upper semi-continuous function (see
Section 2.4) controlling the process.
We take a special invariant and calculate the locus of the maximal invariant. This
locus is the center of the next blow-up. This invariant has to fulfill the following
properties:

1. Zariski- upper semi-continuous

2. infinitesimally upper semi-continuous

3. show when resolution of singularities is finished

4. being constant on the complement of the singular locus.
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5. Algorithmic background of resolution of singularities

(W, (IX , b), E)

finished?

(W, (IX , b), E) = blow-up in Max f(W,(IX ,b),E)

stop

yes

no

Figure 5.1.: Flow chart of a Hironaka-style resolution

The Zariski-upper semi-continuity implies that the chosen center is Zariski closed.
The infinitesimally upper semi-continuity implies that the invariant will not grow
during the process.

Algorithm 3 and Figure 5.1 illustrate this procedure. Again, we abuse notation
and every strict transform of the basic object is also denoted as (W, (IX , b), E).
The heart of the resolution process is to find an invariant f(W,(IX ,b),E) with respect

to a basic object (W, (IX , b), E) and with some special properties, discussed in this
Section. We follow the argumentation of [51], [52] and [36].

Algorithm 3 Hironaka-style resolution
INPUT: (W, (IX , b), E)
1: while f(W,(IX ,b),E) is not minimal do
2: Calculate the center D = Max f(W,(IX ,b),E) . depending on the strategy
3: (W, (IX , b), E) = blow-up with center D
4: stop

In contrast to the previous sections, the general situation is more complicated
than the curve or the surface case. We had discussed in Section 2.3.1 how to take
the exceptional divisors into account, and we will see in Example 5.6.3 that it is
necessary to distinguish the exceptional components.
Since the original proof of Hironaka is about 200 pages and is very technical, we

only give an intuition of the basic ideas of the proof here. For simplicity, we will
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5.2. Ideas of a Hironaka-style Resolution

sometimes change the point of view to a covering of affine charts. There we will
abuse notation and we will look at a chart and the corresponding ideal J instead of
the global ideal sheaf IX .
More technical details can be found in Section 5.3 where the notion of basic objects
come into play. This present section only gives a simplified intuition.

Like in Theorem 2.3.7, we assume X to be a scheme in a regular ambient space
W . The scheme X is defined by an ideal sheaf IX ⊂ OW . Furthermore, we assume
that the embedding of X in W is minimal.
The basic information on how singular X is at a point a can be found in the number
orda(IX). This is the same number we obtain when working in the completed ring
ÔW,a instead of OW,a.
We know by [54, Chapter III §3 Corollary 1 p.220] that ord is an upper
semi-continuous function, so for all c ∈ N the locus of order at least c, Sing(IX , c)
is closed in X.
Hence, we have a stratification of X by locally closed subschemes along which the
order of X is constant. Max-ord(X) is the smallest subscheme in this stratification.
It is a closed reduced subscheme of X, which might be singular.

Remark 5.2.1. Let a be a point in X ⊂ W . Let π : W ′ → W be the blow-up of W
in a regular center Z contained in a stratum along which the order of IX is constant.
We denote with Xst the strict transform of X. Then

orda′(X
st) ≤ orda(X).

So the order of the strict transform Xst at the preimage a′ of a does not increase.
In particular, this holds for Z being contained in Max-ord(X). We call such a Z
permissible center.

Remark 5.2.2. Note, that the order of the total transform of X usually increases
in the situation of Remark 5.2.1.

After blow-up in a center contained in the locus of maximal order of Z the order
of X decreases at most points of the exceptional divisor. At these points, the
situation has improved and we can apply an induction on the order. We call this
vertical induction.

In some special point, which we call equiconstant or very infinitely near points of
IX or X in W ′, the order remains constant.
The following example shows an illustration of this fact in an affine chart of X.
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5. Algorithmic background of resolution of singularities

Example 5.2.3 ([51, page 339]). Let g = x2 − z3(z − y2) ∈ K[x, y, z]. Then
ord〈x,y,z〉(g) = 2. After blow-up in the origin, we consider the strict transform
g′ = x2 − z(z − y2) of g in the Z-chart. Again, ord〈x,y,z〉(g

′) = 2, so the origin is an
equiconstant point.

At these points, we need extra information on the singularity of X ′ in order to
have a measure that the situation there also improved. The idea is to add a second
local invariant as second element of a pair. We want to measure the improvement
by a comparison with respect to the lexicographical order.

The equiconstant points of IX in the exceptional divisor Y ′ can be determined
from the tangent cone of IX at a.

Remark 5.2.4 ([51, page 347]). Let x1, . . . , xn be coordinates of W at a such
that the coordinate xi appears in the tangent cone of IX for some i ≤ k then the
equiconstant points a′ above a lie in the hypersurface V (xi) of W ′.
In other words, let V ⊂ W be the regular hypersurface V (xi) and let V ′ ⊂ W ′ be
its strict transform. Then all equiconstant points of IX lie in V ′.
We call such hypersurfaces adjacent to IX .

We use in the remark that the coordinates are chosen such that the number of
coordinates appearing in the tangent cone is minimal.

Assume, this hypersurface V ′ has a regular image V in W and that V ′ = V st is
the strict transform of V . Then the following diagram commutates:

V ′ ⊂ W ′

π|V ′ ↓ ↓ π
Z ⊂ V ⊂ W

Let a ∈ Z ⊂ V be a point. Let a′ ∈ Y ′ ∩ V ′ be a point above a. The task still
is to find the second component of the induction invariant of J at a and its strict
transforms J ′ = Jst. The natural idea is to use V and V ′ for its definition.

The main idea is to associate to the ideals J in W a J ′ in W ′ and some ideals
J_ in V and (J ′)_ in V ′ which measure the improvement. The minus sign in the
index refers to the decrease in the embedding dimension. Additionally, we want to
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5.2. Ideas of a Hironaka-style Resolution

construct these ideal such that (J ′)_ is the transform of J_ in V ′, i.e., the diagram

J ′ → (J ′)_ = (J_)′

π|J ′ ↓ ↓ π|(J ′)_
J → J_

commutates. This means that the descent in dimension has to commutate with
blow-ups.
This additional requirement allows us to control the change between J_ and

(J ′)_.
Again, if the center Z is contained in Max-ord(J_) with Remark 5.2.1 the order
would not increase after blow-up. So we can apply induction here. Furthermore,
the center Z has to be contained in Max-ord(J) and Max-ord(J_). It remains to
be shown that the order does not depend on the local choice of V .

J_ is in V defined in a lower dimensional ambient space. By induction, we may
assume that we know how to associate a local invariant with J_. This invariant
has to be a vector of numbers given as the order of a string of ideals and we have
to measure the improvement by the lexicographical order. This is the Hironaka
invariant ν∗. We want to call this induction horizontal induction.

Using this horizontal induction we either arrive in some dimension at an ideal of
order 0 or at dimension 1.

1. The first case is a special case what Hironaka called monomial case. We will
discuss this case at the end of Section 5.3.

2. The second case uses the fact that the order of an ideal in a one-dimensional
regular scheme always drops under blow-up to 0, when passing through its
strict transform.

So we have to answer the question of how to construct the ideal J_. There are
at least two possible ways. The first is to start from the ambient space W , and the
second is to start from a hypersurface V .

• We can start from X = V (J) in W . This could only work locally on W ,
depending on the choice of the local hypersurface V . This choice is neither
unique, nor patches on overlaps give a global hypersurface.
So we consider the other direction.
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5. Algorithmic background of resolution of singularities

• We start from V . It is only required that at each point a inW , the hypersurface
V accompanies the resolution process of J as long as the order of J remains
constant. Such a hypersurface is said to be in permanent contact with J .
In characteristic 0, such a hypersurface exists. We can even choose such a
hypersurface so it contains the locus of maximal order of J locally. Such a
hypersurface is called a hypersurface of maximal contact.

So we use the second way.

Let us have a look at examples of how such hypersurfaces V may be computed in
affine charts.

Example 5.2.5 ([51, Example 4]). LetX = V (xa+yb) in A2 with b ≥ a and let J be
the ideal describing IX in this chart. So max-ord(J) = a and Max-ord(J ) = V (x, y).
The blow-up W ′ of W = A2 in the origin is covered by two affine charts. The total
transforms are xa+xbyb = xa(1+xb−ayb) in the x-chart and xaya+yb = ya(xa+yb−a)

in the Y -chart. We are only interested in points a′ ∈ Y ′ ∼= P1. It is useful to partition
Y ′ into two sets, namely the entire X-chart and the orgin of the Y -chart. In the
first set the order of J ′ is everywhere 0. So we do not need to consider these points.
We are left with the origin of the Y -chart with strict transform defined by xa+yb−a.
Obviously the origin lies in the hypersurface V (x) in the Y -chart of W ′. Whether
the order has dropped or not depends on the value of b− a. If b ≥ 2a the order has
not dropped.
For later reference we note that the order of restriction of J|V (x)

comes into play.
The strict transform V ′ of V (x) contains the only possible equiconstant point. The
improvement of J ′ seems to be captured by J ′|V ′ = 〈yb−a〉 whose order is strictly
smaller than J|V (x)

= 〈yb〉.

Now we consider an example for a generalization of the whitney umbrella (a =

b = 2, c = 1):

Example 5.2.6 ([51, Example 5]). Now we consider the surface X = V (xa + ybzc)

with b+ c ≥ a. Then V (x, y, z) is contained in the locus of maximal order of X.

• If b, c < a, then Max-ord(X) = V (x, y, z).

• If b < a ≤ c, then Max-ord(X) = V (x, z).

• If c < a ≤ b, then Max-ord(X) = V (x, y) .

• If b, c ≥ a, then Max-ord(X) = V (x, y) ∪ V (x, z). In this case there are three
possible choices for Z:
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5.2. Ideas of a Hironaka-style Resolution

– V (x, y, z),

– V (x, y) or

– V (x, z).

In all cases the tangent cone of J consists of the monomial xa except if b+ c = a, in
which case it is xa + ybzc.
The hypersurface V = V (x) is always a good candidate for finding equiconstant
points since x appears in the tangent cone.

Remark 5.2.7 ([51, page 376]). Note, that in the literature it is often a good
idea to select a center among the possible candidates by taking the intersection
of components whose total age (sum of individual ages (number of blow-ups after
which the components is born) of the components) is the largest or the smallest.

In characteristic p > 0 the locus of maximal order is not contained in any regular
hypersurface, in general, since hypersurfaces of maximal contact do not need to exist.
That is one of the main points why Hironaka’s proof fails in positive characteristic.
The following example illustrates the problem for characteristic 2.

Example 5.2.8 ([67]). Let f = x2 + yz3 + zw3 + y7w ∈ F2[x, y, w, z] and X =

V (f) ⊂ A4
F2
. The maximal order is 2 and the singular locus is given by

Sing(X) = V (x2 + yz3 + zw3 + y7w, z3 + y6w, yz2 + w3, zw2 + y7).

The singular locus contains the curve C := Im(t 7→ (t32, t7, t19, t15)). C is not
contained in any smooth hypersurface:
Assume that V (g) is a hypersurface containing C and assume that V (g) is smooth
at the origin. Then one of x, y, w, z appears linearly in g and g(t32, t7, t19, t15) ≡ 0.
This linear term yields a nonzero tm for some m in {32, 7, 19, 15}, so it must be
canceled out by another term tn.
This implies that we can write m = 32a + 7b + 19c + 15d and a + b + c + d ≥ 2

for a, b, c, d ≥ 0. This is a contradiction since none of the numbers 32, 7, 19, 15 is a
positive linear combination of the others.

Back in characteristic 0, assuming we have chosen a hypersurface of maximal
contact V . It is essential here that V in W has the transform V ′ in W ′, which
contains all equiconstant points of J in W ′. We can expand each element of J as
a power series with respect to a local coordinate defining V in W . The resulting
coefficients can be equilibrated by raising them to a suitable power and generating
an ideal in V . This ideal is called the coefficient ideal CoeffV (J) of J in V (see
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Definition 5.3.4 for more details). Analogous ideals can be constructed for J ′ and
V ′. We are not ready yet, since the coefficient ideal of the strict transform J ′ of J
at an equiconstant point a′ is not the strict transform of the coefficient ideal of J
at a. So the diagram does not commutate.

This can be remedied by suitable factorization of the coefficient ideal CoeffV (J)

into a product of a principle monomial ideal supported by the exceptional divisor
and another ideal. This other ideal is the relevant part. With this second part, the
commutativity with blow-ups can be established. This second ideal is the searched
J_.

Altogether, we have seen that the basis of the proof is a cartesian induction,
i.e., the horizontal induction on the local embedding dimension is merged with the
vertical induction on the resolution invariant.

Remark 5.2.9 ([51, page 381]). The properties commutativity and decrease are
proven by descending horizontal induction on the embedding dimension and refer to
the vertical map given by the blow-up. The property transversality is proven by the
vertical induction on the sequence of blow-ups and refers to the horizontal structure
in W .

Hironaka’s original proof is not constructive. E.g., the hypersurface of maximal
contact was not constructed.
A constructive variant of Bravo, Encinas and Villamayor is briefly discussed in the
following section.

5.3. Resolution of singularities in characteristic

zero: Algorithm of Bravo, Encinas and

Villamayor

In this section we want to convey an intuition of the main ideas when constructing
a Hironaka-style resolution. Whereas the Section 5.2 gives the ideas and intuitions
this section deals with some more details about the definitions and constructions.
More specific constructions are given in the much easier binomial case in Section 5.4.
The first constructive resolution of singularities was given by Bravo, Encinas and
Villamayor [16] and is implemented in the computer algebra system Singular by
Frühbis-Krüger and Pfister [37] and in maple by Bodnár and Schicho [13].
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We use parts of this theoretical background for the reimplementation of Blanco’s
algorithm in Section A.3.

Hironaka gave an existential proof of resolution of singularities and also
principalization of ideals in characteristic zero. Originally, he considers a
stratification of the considered variety by means of the Hilbert-Samuel function and
provides an existential argument to show that the maximum of the Hilbert-Samuel
function drops.

Bravo, Encinas and Villamayor show that embedded desingularization can be
archieved avoiding the Hilbert-Samuel function and fills the non-constructive gaps
in the proof. Their strategy is based on the reduction of a simpler result, namely
the algorithmic resolution of basic objects. Embedded desingularization is a direct
consequence of the existence of an algorithmic resolution of basic objects.
As before in Section 5.2, we assume the base field K to be of characteristic 0 in this
section.

Definition 5.3.1 ([16, Definition 5.5]). Let (W, (IX , b), E) be a basic object. Let
(J,≤) be a totally ordered set. A family of functions

f(W,(J,b),E) : X → J,

which is equivariant under isomorphisms of basic objects, is said to be governing a
blow-up

π : (W1, (IX1 , b), E1)→ (W0, (IX0 , b), E0)

if the following conditions hold:

1. The set of points Maxf(W0,(IX0
,b),E0) ⊂ X0, where f(W0,(IX0

,b),E0) takes its
maximal value max f(W0,(IX0

,b),E0), is a closed subset of W0.

2. Maxf(W0,(IX0
,b),E0) is a permissible center, i.e., it is regular, has normal crossings

with E0 and is disjoint from

{x ∈ X0 | x 6∈ Sing(X0, b), x 6∈ E0, for all 1 ≤ i ≤ #E0}.

3. Maxf(W0,(IX0
,b),E0) is the center of the blow-up π.

4. max f(W1,(IX1
,b),E1) < max f(W0,(IX0

,b),E0).

5. f(W0,(IX0
,b),E0)(x) = f(W1,(IX1

,b),E1)(x) for all points x ∈ X0\Max f(W0,(IX0
,b),E0).
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An algorithm for the resolution of basic objects consists of such a family of functions
dictating the subsequent blow-ups for any given basic object (W, (IX , b), E) subject
to the additional conditions that

1. There is a finite index N depending on the basic object such that the object
is resolved after N steps.

2. If X0 is a regular pure-dimensional subscheme of dimension r, b = 1 and
E0 = ∅, then there is a value s(r) ∈ J such that f(W0,(IX0

,b),E0)(x) = s(r) for
all x ∈ X0.

Given a basic object (W, (IX , b), E) the first two entries of the governing function
are

f(W,(IX ,b),E),trunc = (ordx(I), NE(x)),

where NE(x) is an integer which counts the exceptional divisors containing x and
which are been born before the order at x attained its current value.

Definition 5.3.2 ([36, Definition 45]). Let (W, IX , b, E) be a basic object, where b
is the maximal order of IX . A smooth hypersurface Z ⊂ W is called a hypersurface
of maximal contact, if it fulfills all of the following requirements:

1. For every open set U ⊂ W , the locus of maximal value of the truncated
governing function f(W,(IX ,b),E),trunc is contained in Z|U .

2. For every open set U ⊂ W and every sequence of blow-up at centers of maximal
value of the invariant function starting at the basic object (U, IX |U , b, E|U) the
center of every blow-up is again contained in the respective strict transform
Z|U .

3. Z has transversal intersections with each exceptional divisor which arose after
the maximal order dropped to the current value.

4. The set {Ei ∩ Z | Ei ∈ E born after maximal order dropped to b} is normal
crossing.

The conditions 1. and 2. ensure that we do not loose any points of maximal value
of the truncated governing function when passing to the hypersurface of maximal
contact and that we do not need to choose a new hypersurface as long as our
maximal value does not drop.
Condition 3. ensures that centers determined by means of passing to the hypersurface
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Z are also permissible as centers for the given basic objects. Condition 4. ensures
normal crossings after passing to Z.

We have seen in Section 5.2, that we want to descent in dimension. Therefore we
have to construct a new basic object with help of the coefficient ideal. We mark the
descent in dimension by ; and we get the whole invariant

fB(x) = (fB,trunc(x); fBdim(W )−1,trunc(x); . . . ; fB2,trunc(x)),

where B = (W, (IX , c), E) and Bdim(W )−1, . . . ,B2 are the auxiliary basic objects in
the descent in dimension.

From the constructive point of view, the only thing to do is to calculate the choice
of center, since this leads to a resolution of singularities. We split this up into several
subtasks:

1. Computation of the locus of maximal order of a given basic object
(Section A.1).

2. Computation of the locus of maximal NE inside the locus of maximal order.

3. Descent in dimension and construction of the auxiliary basic object.

Since we discuss the first part in the Appendix in Section A.1 and the second
part is straight forward, we only have to discuss the third subtask, here.

Our task is to find a hypersurface of maximal contact and determine an auxiliary
basic object permitting the induction step of the resolution process depending on
the basic object (W, (IX , c), E).
We can choose a hypersurface of maximal contact as follows:

Lemma 5.3.3 ([36, Lemma 56]). Let (W, (IX , c), E) be a basic object, where b is
the maximal order of IX . Let w ∈ X ⊂ W be a point. Any element with order 1 of

∆b−1(IX)w ⊂ OW,w,

which satisfies conditions 3 and 4 of Definition 5.3.2, can be chosen as a hypersurface
of maximal contact in a sufficiently small neighborhood of the point w.

Afterwards, the auxiliary basic object can defined as follows:

Definition 5.3.4. Let (W, (IX , c), E) be a basic object, where b is the maximal
order of IX . Let U ⊂ W be an open set where a hypersurface Z can be chosen
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as hypersurface of maximal contact for (W, (IX , c), E) like in Lemma 5.3.3. The
auxiliary basic object (Z, (Inew, c), Enew) on U is defined as

Inew := CoeffZ(IX) =
b∑
i=0

(∆i(IX))OZ)
b!
b−i

c := b!

Enew := {Ei ∩ Z | Ei ∈ E born after maximal order dropped to b}.

Remark 5.3.5. In the literature there are different definitions of the coefficient
ideal. The differences are the exponents. Here we use b!

b−i to avoid rational constants.
Sometimes there is also the exponent b

b−i given, because it is related to projections
of the newton polygon of the ideal.

Example 5.3.6 ([16, Example 13.12]). Let W = A3
C and consider the ideal J =

〈z2 + x3y3〉. Then
∆(J) = 〈z2 + x3y3, 2z, 3x2y3, 3x2y2〉

and ∆2(J) = OW . Then

Sing(J, 2) = V (∆(J)) = V (x, z) ∪ V (y, z).

If we choose Z = V (z) and A = 〈x3y3〉 then

(W, (J, 2), ∅) ≡ (Z, (A, 2), ∅).

Note, that A = CoeffZ(J) is the coefficient ideal with respect to the hypersurface
of maximal contact Z.

The advantage of the usage of the auxiliary basic object is that it is a basic object
of a dimension one lower than the first basic object, so we can apply induction on
the dimension here.

Lemma 5.3.7 ([36, Lemma 58]). Let B = (W, (IX , c), E) be a basic object and let
A = (Z, (Inew, c), Enew) be an auxiliary basic object. Then the controlled transform
with respect to the control c under a blow-up at a center determined by the governing
function coincides with the auxiliary basic object constructed from the weak transform
of B under the same blow-up using the strict transform of Z as the hypersurface of
maximal contact.

We have seen that as soon as we find such a hypersurface Z the computation
of the coefficient ideal only involves determining ∆i (Definition 2.4.9) of the ideal
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which has previously been discussed and basic operations on ideals such as taking
powers and sums.

Such a hypersurface Z usually does not exist globally (not even in characteristic
zero). In an implementation, the choice of the hypersurface involves passing to a
suitable open covering such that on each open set Uj is a hypersurface which can
be used as Z for each point w ∈ Uj.

The basic idea for finding such a covering is to consider ∆c−1(IX).
Recall that c is the maximal order, so the singular loci of the generators of
∆c−1(IX) are empty. Furthermore, it is possible to express 1 as a combination of
the generators of the ideals of these singular loci. We use the complement of those
generators appearing with non-zero coefficients as the open covering.

When passing to an open covering, it can enlarge the number of charts which
significantly slows down the resolution step. The first idea is to keep the number
of open sets as low as possible and recombine them at the end. Unfortunately, the
auxiliary objects depend on the chosen hypersurface although the resulting value of
the governing function at each point is independent of this choice. So we continue
with the algorithm for finding the maximal locus of this governing function in each
of these open sets and combine those maximal loci. After passing to the closure and
dropping components not meeting the open set Uj each open set Uj provides an ideal
IYj describing a candidate for the next center. Then the next center corresponds to
the ideal

⋂
j with maximal vj IYj .

The calculation of the center is illustrated in Algorithm 4 and Figure 5.2.

Algorithm 4 center calculation of Bravo, Encinas and Villamayor
INPUT: (W, (IX , b), E)
1: Calculate the center D = Max(ordIX , NE)
2: if D is not regular then
3: Calculate a covering U = ∪jUj . See Remark A.1.5
4: Centerlist = ∅
5: for Uj ∈ U do
6: Centerlist = Centerlist + calculate_center(Uj, (CoeffUj , b!), E))
7: D = glue(Centerlist)
8: return(D)

An interesting special case we should mention here is the so called monomial
case. We will consider this case if the w− ord function is equal to zero at every
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(W, (IX , b), E)

D := Max(ord, NE)

D regular?

calculate center for each (Uj, (CoeffUj(IUj), b!), E)

return D

calculate covering Uj

glueing

no

yes

Figure 5.2.: Flow chart of the center calculation of Bravo, Encinas and Villamayor

point. The w− ord function for basic objects (W, (J, b), E) equals the order of an
idealistic exponent in Definition 2.3.24, where we consider the pair (J, b). For this
special case the resolution is defined by means of an upper-semi continuous function
without making any induction on the dimension of the basic object. This resolution
is purely combinatorial.
First, we have a look on why it is called monomial case.

Remark 5.3.8 ([16, Remark 15.23(b)]). If max w− ord = 0 then
Jx = I(H1)

α1(x)
x I(H2)

α2(x)
x · · · I(Hk)

αk(x)
x .

Definition 5.3.9 ([16, Definition 20.1]). Let (W, (J, b), E) be a basic object with
E = {H1, . . . , Hr}. We say that the basic object is monomial if for any point
x ∈ Sing(J, b)

Jx = I(H1)α1(x)
x I(H2)α2(x)

x · · · I(Hk)
αk(x)
x ,

where αi : Hi ∩ Sing(J, b)→ Z is a locally constant function.

So the ideal J of a monomial basic object is generated by a single monomial.

Now we define the considered upper-semi-continuous function. The maximal locus
of this function will determine the center of the following blow-up.
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Definition 5.3.10 ([16, Definition 20.2]). Let (W, (J, b), E) be a monomial basic
object like in Definition 5.3.9. We define the function

h : Sing(J, b) → Γ = Z×Q× ZN

h(x) = Γ(J, b)(x) := (−p(x), ω(x), `(x)).

If x ∈ Sing(J, b)

p(x) = min{q | ∃i1, . . . iq such that ai1(x) + . . .+ aiq(x) ≥ b, x ∈ Hi1 ∩ . . . ∩Hiq},

ω(x) = max

{
ai1(x) + . . .+ aiq(x)

b
| q = p(x), x ∈ Hi1 ∩ . . . ∩Hiq

}
and

`(x) = max
<lex
{(i1, . . . , iq, 0, . . . , 0) | q = p(x),

ai1(x) + . . .+ aiq(x)

b
= ω(x), x ∈ Hi1 ∩ . . . ∩Hiq

}
.

Let C1, . . . , Cs be the irreducible components of Sing(J, b) at a point x ∈
Sing(J, b). Since we want to maximize h(x) to obtain our center, we have to set
the maximize −p(x) in order to minimize the value of p(x). This will indicate the
minimal codimension of C1, . . . Cs. We will denote this components with minimal
codimension with C ′1, . . . C ′s′ .
The second component is ω(x) = b′

b
where b′ denotes the maximum order of J along

the sets C ′1, . . . C ′s′ . We denote these components of order ω(x) by C ′′1 , . . . C ′′s′′ . With
the last component we choose a unique component containing x.

An example and an implementation of the center calculation of the monomial case
is illustrated in Algorithm 33 and the subsequent example.

5.4. Resolution of binomial varieties in

characteristic p ≥ 0: Algorithm of Blanco and

Encinas

From now on we leave the general case and we will take advantage of some structural
properties of special singularities. In this section we handle the resolution of binomial
singularities. Here we give more details than in the general case before. This belongs
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to the fact that is was reimplemented for the use in the main algorithm of this thesis.
This implementation is explained in Section A.3.

We present the algorithm of Blanco and Encinas, which first was presented in [9]
and [10]. This algorithm provides a resolution of singularities for binomial varieties
over a field of arbitrary characteristic. The algorithm deals with combinatorial
centers of blow-up which preserve the binomial structure of the ideal after blow-up.
Furthermore, this lets us ensure the existence of a hypersurface of maximal contact
even in characteristic p > 0, so we can apply induction on the dimension of the
ambient space and follow the main ideas and constructions of Villamayor and
Hironaka with small changes.

It is the first algorithm for resolving singularities of binomial ideals without any
restriction, i.e., that algorithm can also resolve singularities of monomial ideals and
p-th powers in a field of characteristic p > 0.

Other algorithms for resolution of binomial ideals can only handle toric varieties
which coincide with binomial ideals which are prime ideals or binomial ideals
without any p-th powers, e.g., see the algorithm of Bierstone and Milman [8] for a
characteristic-free resolution for reduced binomial ideals with no nilpotent elements
and in particular toric ideals or the algorithm of González Pérez and Teissier [44].

While the algorithm of Bierstone and Milman deals with the Hilbert-Samuel
function as resolution function, the presented algorithm deals with a modified order
function which is called E-order.

In practice, the Hilbert-Samuel function is not easy to compute because we would
need a stratification according to the initial monomials/forms of the local standard
bases at all points (in the sense of the local rings or their completions at all points).
So from a computational point of view the algorithm of Blanco and Encinas seems
to be more practicable.

In this section let K be an algebraic closed field of arbitrary characteristic and we
denote by W the regular ambient space. At any stage of the resolution process we
cover W = ∪i∈IUi by affine charts Ui ∼= An

K and we will work locally inside these
affine charts Ui and consider an open set W . At any stage of the resolution proces
we can glue charts together.

Remark 5.4.1 ([9, Remark 1.1]). Let E = {V1, . . . , Vr} be a simple normal crossing
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divisor in W . E definies a stratification of W by regular closed sets

EΛ :=
⋂
λ∈Λ

Vλ, where Λ ⊆ {1, . . . , r}.

Then, by definition E∅ = W holds and each E0
Λ = EΛ\((

⋃
j /∈Λ Vj) ∩ EΛ) is locally

closed and W =
⋃

ΛE
0
Λ.

Hence, for all ξ ∈ W there is a unique Λ(ξ) ⊆ {1, . . . , r} with ξ ∈ E0
Λ(ξ).

Remark 5.4.2 ([9, Paragraph 1.3]). Let J ⊂ K[x] = K[x1, . . . , xn] be a binomial
ideal. We fix a monomial ordering in K[x] and compute the Gröbner basis of J .
We know by [32, Proposition 1.1] that the reduced Gröbner basis of a binomial
ideal is again generated by binomials.

Definition 5.4.3 ([9, Definition 1.8]). Let J ⊂ OW be a binomial ideal. The
binomial equations of J of the form 1 − µyb with µ ∈ K and b ∈ Zn are called
hyperbolic equations of J .

So we can start with a binomial ideal J = 〈f1(x), . . . , fm(x)〉 ⊂ K[x] such that
the set of generators {f1(x), . . . , fm(x)} is the reduced Gröbner basis of J .
After blow-up W ′ → W hyperbolic equations appear naturally in the transform
of J . The points ξ′ ∈ W ′ outside the exceptional divisor where 1 − µxb vanishes
satisfies xb(ξ′) 6= 0.
We denote each variable xi that do not vanish anywhere over V (J)∩ V (1− µxb) as
yi. And afterwards we work in localized rings of the type K[x, y]y.

Remark 5.4.4 ([9, Remark 1.4 and Remark 1.6]). At any stage of the resolution
process, we cover W =

⋃
i∈I Ui by affine charts Ui ∼= An

K . Inside any chart Ui we
consider the open set

W = Spec(K[x, y]y) ⊂ An
K .

The variables yi are invertible in the local ring OW,ξ, where

ξ ∈ V (1− µyb) ⊂
⋂

{i|Bi 6=0}

D(yi).

Definition 5.4.5 ([9, Definition 1.10]). Let W = Spec(K[x, y]y) be the regular
ambient space. Let J be an ideal in W and let E = {V1, . . . , Vr} be a normal
crossing divisor in An

K . Let ξ ∈ W be a closed point and let Λ(ξ) ⊂ {1, . . . , n} such
that ξ ∈ E0

Λ(ξ). We define the E-order of Jξ in OW,ξ to the order of the ideal with
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respect to the I(E0
Λ(ξ))ξ-adic topology

E- ordOW,ξ(Jξ) = max{m ∈ N | Jξ ⊂ (I(E0
Λ(ξ))ξ)

m}.

Definition 5.4.6 ([9, Definition 1.11]). Let J ⊂ OW be a binomial ideal and let ξ
be a point. The E-order function associated to J is

E- ordJ : W → N

ξ 7→ E- ordJ(ξ) := E- ordξ(J) := E- ordOW,ξ(Jξ).

The E-order of J computes the order of the ideal J along E ∩ W =

{V (x1), . . . , V (xs)}. Along the points in E0
Λ(ξ) the E-order function is constant.

Like in the Villamayor-setting (see Section 5.3), where we consider basic objects,
we consider in the binomial setting so called binomial basic objects along E. First
we define the affine version of this object before we are able to define the non affine
version.

Definition 5.4.7 ([9, Definition 1.15]). An affine binomial basic object along E

(short: BBOE) is a tuple B = (W, (J, c), H,E) where

• W = Spec(K[x, y]y) ⊂ An
K ,

• E is a set of normal crossing regular hypersurfaces in An
K such that

E = {V (x1), . . . , V (xs), V (y1), . . . , V (yn−s)}.

Moreover,
E ∩ Spec(K[x, y]y) = {V (x1), . . . , V (xs)}

holds,

• J is a binomial ideal and c is a positive integer number and

• H ⊂ E is a set of normal crossing regular hypersurfaces in W .

Remark 5.4.8. Note, that we have here an additional element H in comparison to
the basic objects of Section 5.3. We discuss the reason later in this section.

Now we define the non affine version.

Definition 5.4.9 ([9, Definition 1.16]). A non affine binomial basic object along E
is a tuple B = (W , (J , c), H,E) which is covered by affine BBOEs where
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• W is the regular ambient space over a field K of arbitrary characteristic,

• E is a set of normal crossing regular hypersurfaces in W ,

• (J , c) is a binomial pair, i.e., J ⊂ OW is a coherent sheaf of binomial ideals
with respect to E satisfying Jξ 6= 0 for all ξ ∈W and c is a positive integer
number and

• H ⊂ E is a set of normal crossing regular hypersurfaces in W .

Now we can define the considered E-singular locus. Along a normal crossing
divisor E it is analogous to the usual definition of the singular locus.

Definition 5.4.10 ([9, Definition 1.18]). Let J ⊂ OW be a binomial ideal and let c
be a positive integer. The E-singular locus of J with respect to c is

E- Sing(J, c) = {ξ ∈ W | E- ordξ(J) ≥ c}.

Since the E-order is upper semi-continous, the level sets and in particular the
E-singular locus is a closed subset of W .

We have seen the notion of idealistic exponents in Section 2.3.3 and there the
definition of the singular locus does not depend on the generator of an idealistic
exponent. So we have to show that the E-order is well-defined (Definition 5.4.5) in
the class of idealisitc exponents. We have to define equivalence in this setting first.

Definition 5.4.11 ([9, Definition 1.20]). Let W be a regular scheme and let J1, J2

be coherent ideal sheafs in W and let c1, c2 ∈ N0. The pair (J1, c1) is equivalent to
the pair (J2, c2), if for every morphism h : Spec(A)→ W

ν(J1A)

c1

=
ν(J2A)

c2

,

where (A, ν) is a valuation ring and JiA is the ideal generated by Ji by means of h
in A for i = 1, 2.

Remark 5.4.12. Let B1 = (W, (J1, c1), H,E) and B2 = (W, (J2, c2), H,E) be
binomial basic objects along E that define the same binomial basic object, then
for every point ξ ∈ Sing(J, c) = Sing(J0, c0)

ordξ(J1)

c1

=
ordξ(J2)

c2

73



5. Algorithmic background of resolution of singularities

holds. So it suffices to consider only the pair (J, c). For more details, see [34] or
[56].

Definition 5.4.13 ([9, Definition 1.22]). LetW = Spec(K[x1, . . . , xs, y1, . . . , yn−s]y)

.Let

(W, (J, c), H,E = {V (x1), . . . , V (xs), V (y1), . . . , V (yn−s)} = {V1, . . . , Vn})

be an affine binomial basic object along E. Furthermore, let H = {H1, . . . , Hr} ⊂ E

be a normal crossing divisor with Hi = Vj for 1 ≤ j ≤ s and 1 ≤ i ≤ r. We define a
transformation of the binomial basic object (W, (J, c), H,E) ← (W ′, (J ′, c), H ′, E ′)

by means of the blow-up W
π←− W ′ in the center Z contained in the E- Sing(J, c)

with

• W ′ is the strict transform of W ,

• H ′ = {H ′1, . . . H ′r, Y ′}, with H ′i is the strict transform of Hi for all 1 ≤ i ≤ r,

• E ′ = {V ′1 , . . . V ′n, Y ′}, with E ′i is the strict transform of Ei for all 1 ≤ i ≤ n,

• J ′ = I(Y ′)θ−c · J∗ is the controlled transform of J (with control c), where J∗

is the total transform of J and

where Y ′ is the exceptional divisor in W ′ and θ = maxE- ord(J).

A combinatorial center is given by an intersection of some coordinate
hypersurfaces defined by some variables xi.

Definition 5.4.14 ([11, Definition 5.15]). A sequence of transformations of binomial
basic objects

(W (0), (J (0), c), H(0), E(0))← (W (1), (J (1), c), H(1), E(1))← · · · ← (W (N), (J (N), c), H(N), E(N))

is called an E-resolution of (W (0), (J (0), c), H(0), E(0)) or for shorthand an
E-resolution of (J (0), c), if E- Sing(J (N), c) = ∅.

Lemma 5.4.15 ([9, Corollary 2.5]). Let J ⊂ OW be a binomial ideal. Then

E- ordξ(J) ≤ ordξ(J),

for every ξ ∈ W .

Proof. See [9, Corollary 2.5].

74



5.4. Resolution of binomial varieties in characteristic p ≥ 0: Algorithm of Blanco
and Encinas

Lemma 5.4.16 ([9, Proposition 2.6]). Let J ⊂ OW be a binomial ideal and let
ξ ∈ W . Then

E- ordJ : W → (Z,≤), ξ 7→ E- ordJ(ξ) := E- ordξ(J)

is an upper semi-continuous function.

Proof. See [9, Proposition 2.6].

We have seen in Section 5.2 and Example 5.2.8 that Hironaka’s proof for the
resolution of singularities fails in characteristic p > 0 in general because of the
non-existance of hypersurfaces of maximal contact in positive characteristic. The
E-order is a suitable resolution function since it can deal with the existence of
hypersurfaces of maximal contact in positive characteristics in the binomial case.

Definition 5.4.17 ([9, Definition 2.13]). Let J ⊂ OW be a binomial ideal. Let
ξ ∈ W be a point such that E- ordξ(J) = maxE- ord(J) = θ. A regular hypersurface
V is called hypersurface of maximal contact along E (or shorthand: hypersurface of
E-maximal contact) for J at ξ

• ξ ∈ V ,

• E- Sing(J, θ) ⊆ V and their transforms under blow-up along a combinatorial
center Z ⊆ V also satisfy E- Sing(J ′, θ) ⊆ V ′, where J ′ denotes the controlled
transform of J and V ′ denotes the strict transform of V .

Note, that a hypersurface of E-maximal contact fulfills the useful properties for
binomials like a hypersurface of maximal contact in the characteristic zero case, i.e.,
such a hypersurface always exists and it makes the descend in dimension possible.

Theorem 5.4.18 ([9, Corollary 2.17]). Let f(x, y) = yγxα − µxβ ∈ K[x, y]y be a
binomial equation. Let a ∈ Spec(K[x, y]y) be a point with ai = 0 for all i with
αi > 0, yγ(a) 6= 0 and E- orda(f) = |α|. If |α| > 0 then

E- Sing(J, θ) ⊂
⋂

{i|αi>0}

V (xi).

Proof. See [9, Theorem 2.16] + [9, Corollary 2.17].

Hence, the hypersurface of maximal contact is always given by coordinate
equations. That is the reason why the centers of the blow-ups are always
combinatorial in this setting. It remains to show that these hypersurfaces always
exist.
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Lemma 5.4.19. Let B = (W, (J, c), H,E) be an affine binomial basic object along
E. Then there is a hypersurface of maximal contact along E for J .

Proof. See [9, Remark 3.10, Lemma 3.11 and Lemma 3.31].

5.4.1. Induction on the dimension

Like in the Hironaka-setting we discussed in Section 5.2 we will apply induction of
the dimension to the ambient space W . So given a BBOE (like for basic objects
in the Villamayor-setting) we want to construct ideals Ji defined in the local flags
W = Wn ⊇ Wn−1 ⊇ . . . ⊇ Wi ⊇ . . . ⊇ W1 and the BBOEs (Wi, (Ji, ci+1), Hi, Ei) in
dimension i where each Ei = Wi ∩ E.

If E- Sing(Ji, ci+1) 6= ∅, we factorize the ideal Ji = Mi · Ii such that Mi is defined
by a normal crossing divisor Di supported by the current exceptional locus.

We also need the companion ideal Pi.

Definition 5.4.20 ([9, Definition 3.2]). Let Ji = Mi · Ii be an ideal at ξ ∈ Wi in
Wi. Let θi = E- ordξ(Ii). Then the companion ideal Pi of Ji at ξ with respect to
the critical value ci+1 satisfying E- ordξ(Ji) ≥ ci+1 is the ideal

Pi =

Ii , if θi ≥ ci+1

Ii +M
θi

ci+1−θi
i , if 0 < θi < ci+1.

If θi = 0 but ordξ(Ii) 6= 0 then there are some hyperbolic equations in the ideal
Ii. Therefore Ii 6= 1 but we will treat it like Ii ≡ 1 since the ideal Ji behaves like a
monomial ideal with respect to the E-order. So Ji ≡Mi.

Remark 5.4.21 ([9, Definition 3.6]). The critical value ci corresponding to the
dimension i− 1 is ci = E- ordξ(Pi).

We have already seen the role of the coefficient ideal (Definition 5.3.4) in the
characteristic zero setting. In the binomial setting we will use the coefficient ideal
along E:

Definition 5.4.22 ([9, Definition 3.7]). Let P be an ideal in W , let V ⊂ W be a
regular hypersurface and let ξ ∈ V be a point. Let {z, w} be a regular system of
parameters of OW,ξ and let {w} be a regular system of parameters of OV,ξ such that
V (z) defines V inW . Let for all f ∈ P, f =

∑
α af,αz

α be the Taylor expansion with
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respect to the equation defining V so that af,α ∈ OV,ξ and this equality holds after
passing through the completion.
The coefficient ideal of P along E at ξ with respect to V is the ideal

E-CoeffV (P ) = 〈E-CoeffV (f) | f ∈ P 〉 =
∑

f∈P,|α|<c

(af,α)
c

c−|α| ,

where c is the suitable critical value.

Note, that the computation of the coefficient ideal along E commutes with the
blow-up (see [9, Section 3.5] for more information).

Remark 5.4.23 ([9, Remark 3.8]). The pair (E-CoeffV (P ), c!) with integer
exponents, i.e., take c!

c−|α| instead of c
c−|α| is equivalent to the pair (E-CoeffV (P ), c)

with rational exponents. So we can avoid rational exponents in Definition 5.4.22
like in Remark 5.3.5.

Proposition 5.4.24 ([9, Proposition 3.9]). Let P be an ideal in W , let V ⊂ W a
regular hypersurface. Then

E- ordξ(E-CoeffV (P )) ≤ E- ordξ(P )

for every ξ ∈ V .

Proof. See [9, Proposition 3.9].

Remark 5.4.25. The coefficient ideal of P along E has the same properties
concerning the process of resolution of singularities (e.g. commutativity, stability,...)
like the coefficient ideal which we discussed in Section 5.2. The proofs are the same
or at least similar enough.

Definition 5.4.26 ([9, Definition 3.14]). Let P be an ideal in a hypersurface V =

V (x1) ⊂ W = Spec(K[x, y]y). The ideal P is called bold regular along E or E-bold
regular if P is of the form 〈yγ(1− µyδ)xα1

1 〉 with µ ∈ K, γ, δ ∈ Zn, α1 ∈ Z>0.

Note, that E- ord(yγ(1−µyδ)) = 0 for all ξ ∈ V ∩{η ∈ W | yγ(η) 6= 0, yδ(η) 6= 0}.

Proposition 5.4.27 ([9, Proposition 3.16]). Let P 6= 0 be an ideal in W . Let
V ⊂ W be a hypersurface of E-maximal contact for P in a neighborhood of ξ ∈ V
and let c = E- ordξ(P ). Then E-CoeffV (P ) = 0 if and only if P is E-bold regular
or 1.

Proof. See [9, Proposition 3.16].
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Now we can discuss how to apply the induction on dimension.

Definition 5.4.28 ([9, Definition 3.17]). Let Pi be an ideal in Wi. Let V ⊂ Wi be
a hypersurface of E-maximal contact for Pi at ξ ∈ V . Let ci = E- ordξ(Pi). The
junior ideal of Pi in V is the ideal

Ji−1 =

E-CoeffV (Pi) , if E-CoeffV (Pi) 6= 0

1 , if E-CoeffV (Pi) = 0.

By construction the junior ideal Ji in V can be expressed in terms of binomials,
i.e., it is locally generated by binomials or powers of binomials. So we can apply
induction on the dimension and we remain in the binomial setting.

Now we can discuss the procedure which constructs the center of the blow-up.

Construction 5.4.29 ([9, Remark 3.19]). • Choose a hypersurface of
E-maximal contact for Pi in Wi (like in [9, Theorem 2.16]).

• Compute the junior ideal Ji−1 inside this hypersurface

• Set Z =
⋂
i∈I V (xi) with I ⊆ {1, . . . , n}.

Definition 5.4.30 ([9, Definition 3.20]). Let (W, (J, c), H,E) be a binomial basic
object along E. For all points ξ ∈ E- Sing(J, c) we define the resolution function
E- invJ,c with its n components with lexicographic order. It will be of one of the
following types:

t(ξ) =


(
E- ordξ(In)

cn+1
,
E- ordξ(In−1)

cn
, . . . ,

E- ordξ(In−r)

cn−r+1
,∞,∞, . . . ,∞

)
(a)(

E- ordξ(In)

cn+1
,
E- ordξ(In−1)

cn
, . . . ,

E- ordξ(In−r)

cn−r+1
,Γ(ξ),∞, . . . ,∞

)
(b)(

E- ordξ(In)

cn+1
,
E- ordξ(In−1)

cn
, . . . ,

E- ordξ(In−r)

cn−r+1
, . . . ,

E- ordξ(I1)

c2

)
(c)

,

where ci+1 = maxE- ord(Pi+1) is the critical value in dimension i.

(a) If Ji = 〈1〉, for i < n we define (ti−1(ξ), . . . , t1(ξ)) = (∞, . . . ,∞) in order to
preserve the number of components.

(b) If E- ordξ(Ii) = 0 for some i < n then we set ti(ξ) = Γ(ξ), where Γ(·) is the
resolution function of the monomial case see [34] or the end of Section 5.3, and
tj(ξ) =∞, for all j = 1, . . . , i− 1.

(c) Otherwise.

78



5.4. Resolution of binomial varieties in characteristic p ≥ 0: Algorithm of Blanco
and Encinas

To compute the maximal value of t it suffices to look at the points of maximal
E-order at each dimension i. In this case ci+1 = E- ordξ(Ii+1).

Definition 5.4.31. We define the maximal E-invariant locus as

E-Max(t) = {ξ ∈ E- Sing(J, c) | E- inv(J,c)(ξ) = max t},

where max t is the maximal value of t.

Remark 5.4.32 ([9, Lemma 3.24]). E-Max(t) is a closed set and t : W → (I,≤
), ξ 7→ t(ξ) is a upper semi-continous function, where I is a totally ordered set
with lexicographical order, ξ ∈ W is a point and J ⊂ OW is a binomial ideal.
Furthermore, the function t drops lexicographically after blow-ups (see [9, Section
3.6]) and by construction, E-Max(t) = Z =

⋂
i∈I V (xi) so it is the center of the next

blow-up.

We now discuss the role of H in the BBOE. It is necessary to take into account
the exceptional divisors coming from the previous blow-ups and their transforms.
When the higher coordinates of the E-resolution function remain constant under
the blow-up the strict transforms of the hypersurface of E-maxinal contact from the
previous step are again hypersurfaces of E-maximal contact. Then it is indispensable
to consider these strict transforms at the same positions as their ancestors. So we
have to determine the set of permissible hypersurfaces.

Notation 1 ([9, 3.35]). Let H(k)
i 6= ∅ be the exceptional divisor at dimension i at

the k-th step of the resolution process.
Let ξ(k0) ∈ W (k0), ξ(k−1) ∈ W (k−1) and ξ(k) ∈ W (k) be points satisfying

πk(ξ
(k)) = ξk−1, . . . , πk0+1(ξ(k0+1)) = ξ(k0),

where the E-resolution function is maximal and k0 ≤ k.
If t(k)

i > 0 let k0 be the smallest index such that

max t
(k0−1)
i > max t

(k0)
i = . . . = max t

(k)
i .

Definition 5.4.33 ([9, Definition 3.36]). Let H(k)−
i be the set of hypersurfaces of

H
(k)
i which are strict transforms of H(k0)

i with the Notation 1. We set

H
(k)
i = H

(k)+
i ∪H(k)−

i

where the union is disjoint. Elements in H(k)−
i are called permissible hypersurfaces

in the sense that they are the only hypersurfaces of E-maximal contact that can
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be considered in practice to apply induction on the dimension at this step of the
E-resolution.

Note, that for H = ∅, every hypersurface of E-maximal contact is permissible.

5.4.2. Algorithm

Let (W, (J, c), H,E) be a basic binomial object along E and write W = Wn, where
dim(Wn) = n.

Construction 5.4.34 ([9, Algorithm 4.4]). If E- Sing(J, c) 6= ∅ and if we assume
(tn, . . . , ti+1) and Jn, . . . , Ji+1, Ji are given we can construct ti and Ji as follows:

1. Factorize Ji = Mi · Ii, where Mi has support in Di.

2. Compute maxE- ord(Ii) and let ξ ∈ MaxE- ord(Ii) be a point.

• If E- ordξ(Ii) > 0, then ti+1(ξ) =
E- ordξ(Ii)

E- ordξ(Pi+1)
. Compute the companion

ideal Pi and go to step 3.

• If E- ordξ(Ii) = 0 for all ξ ∈ W apply Γ to Mi, then
(ti(ξ), ti−1(ξ), . . . , t1(ξ)) = (Γ(ξ),∞, . . . ,∞) and stop.

3. Set ci = maxE- ordξ(Pi). Compute a hypersurface V of E-maximal contact
for Pi in a neighborhoof of ξ.

4. Compute E-CoeffV (Pi) with respect to V ∈ H−i in order to construct Ji−1 in
Wi−1 such that dim(Wi−1) = i− 1.

• If E-CoeffV (Pi) = 0, then Pi is bold regular, Ji−1 = 1 and
(ti−1(ξ), . . . , t1(ξ)) = (∞, . . . ,∞), stop.

• If E-CoeffV (Pi) 6= 0 set Ji−1 = E-CoeffV (Pi) and go to step 1.

Algorithm 5 and Figure 5.3 illustrate the induction on the dimension of the
algorithm of Blanco and Encinas.

Remark 5.4.35 ([9, Remark 4.5]). If E- ordξ(I) = 0 for all ξ ∈ W but there is a
point a ∈ W such that orda(I) 6= 0 then there are hyperbolic equations in I.
In dimension < n these ideals I are considered as I = 1 and with respect to the
E-order the ideal J behaves like a monomial ideal.
In dimension n we apply Γ to Jn and stop when E- Sing(Jn, c) = ∅.
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(W, (J, c), H,E)

Factorize J = M · I

Choose ξ ∈ MaxE- ord(Ii)

E- ordξ(Ii) >
0

Apply Γ to Mi

ti(ξ) =
E- ordξ(Ii)

E- ordξ(Pi+1) return D

Compute the companion ideal Pi

E-CoeffV (Pi) =
0

Ji−1 = 1

Ji−1 = E-CoeffV (Pi)

yes

no

no

yes

Figure 5.3.: Flow chart of the induction on dimension
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5. Algorithmic background of resolution of singularities

Algorithm 5 Algorithm of Blanco and Encinas for induction on the dimension
INPUT:
OUTPUT:
1: Factorize Ji = Mi · Ii
2: Compute maxE- ord(Ii)
3: Choose a point ξ ∈ MaxE- ord(Ii)
4: if E- ordξ(Ii) > 0 then
5: ti(ξ) =

E- ordξ(Ii)

E- ordξ(Pi+1)

6: Compute the companion ideal Pi
7: else if E- ordξ(Ii) = 0 for all ξ ∈ W then
8: Apply Γ to Mi and stop.
9: if E-CoeffV (Pi) = 0 then
10: Ji−1 = 1 and (ti−1(ξ), . . . , t1(ξ)) = (∞, . . . ,∞) . Pi is bold regular
11: else if E-CoeffV (Pi) 6= 0 then
12: Ji−1 = E-CoeffV (Pi)
13: Go to 1.

By blowing up only combinatorial centers we obtain a locally monomial ideal
as output. We can apply some known algorithm to complete the resolution or
alternatively, we can apply the same algorithm again (see Remark 5.4.39). The
latter yields a log-resolution of binomial ideals and an embedded desingularization
of the corresponding binomial variety.

Let (W (0), (J (0), c), H(0), E(0)) be an affine binomial basic object and let
{g1, . . . , gm} be a Gröbner basis of J (0) in W (0). After applying Construction 5.4.34,
we have in each chart E- Sing(J (r), c) = ∅ for some index r, where
J (r) = J

(r)
n = M

(r)
n · I(r)

n . The Algorithm terminates when E- ord(I
(r)
n ) = 0.

If I(r)
n = 1 the resolution process is finished. If I(r)

n 6= 1, we have to modify the
part of the singular locus which is included in the hyperbolic hypersurfaces which
contain V (I

(r)
n ).

Let ξ ∈ W (r) be a point. In a neighborhood of ξ set I(r)
n = 〈f1, . . . , fm〉 where fj

are the transforms of the generators of gj for 1 ≤ j ≤ m by the sequence of blow-ups.
At W (r) we define

Ĩ(r)
n = (Nhyp(I(r)

n ))y(〈fi | 1 ≤ i ≤ m,E- ordξ(fi) 6= 0∀ξ ∈ W (r)〉)y ⊂ K[x, y]y,

where Nhyp(I
(r)
n )) is the ideal generated by the non-hyperbolic generators of I(r)

n .
It is necessary to rename the variables x appearing in the hyperbolic equations of I(r)

n

as y before passing through the localization. We have already seen this idea in the
computation of the locus of refined order in Section 2.4.2. If the maximal E-order
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of J is one, the scheme corresponding to J can locally be embedded into a regular
hypersurface on an open set and the equation of this hypersurface can be added
to the generators of the ideal of the ambient space. Then by construction Ĩ(r)

n 6= 0

implies E- ordξ(Ĩ
(r)
n ) > 0 for all ξ ∈ W (r). Finally, we can resolve the binomial pair

(Ĩ
(r)
n , c) using Construction 5.4.34.

Remark 5.4.36 ([10, Remark 2.2]). The construction of Ĩ depends on the choice of
the generators of I. Therefore we have to fix a Gröbner basis of J (0) at the beginning
of the resolution process. In the toric case one can add the hyperbolic embedding
dimension to the invariant. The algorithm is more or less the same. See [11] for
more details.

Construction 5.4.37 ([10, Algorithm 2.4]). Let J ⊂ OW be a binomial ideal
without hyperbolic equations with respect to a normal crossing divisor. We fix a
reduced Gröbner basis of J and consider J = M · I.
At the beginning we assume OW = K[x], E = {V (x1), . . . , V (xn)}, H = ∅ and
J = I.

1. Apply Construction 5.4.34 to (W, (J,maxE- ord(J)), H,E) and obtain J ′ =

M ′ · I ′ with E- Sing(J ′, c) = ∅.

2. If maxE- ord(I ′) = 0

• If I ′ = 1 finish and J ′ is principal.

• If I ′ 6= 1, compute Ĩ in K[x, y]y.

– If Ĩ 6= 0, set J = Ĩ and go to step 1.

– If Ĩ = 0 finish and the ideal I ′ is given by hyperbolic equations.

3. If maxE- ord(I ′) > 0 set J = J ′ and go to step 1.

Algorithm 6 and Figure 5.4 illustrate the principalization of the algorithm of
Blanco and Encinas.

Remark 5.4.38. Construction 5.4.37 provides a principalization of a binomial ideal.

We still have to resolve the establish normal crossings.

Remark 5.4.39 ([10, Remark 2.22]). To establish normal crossings we can apply:

1. The algorithm of Goward [45].

2. In characteristic 0: The algorithm of Villamayor (see Section 5.3) adapted
to the case of an ideal generated by monomials which works over a field of
arbitrary characteristic.
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(W, (J, c), H,E)

J ′ = M ′ · I ′
by applying

Construction 5.4.34

maxE- ord(I ′) =
0

J = J ′

I ′ 6= 1

compute Ĩ in K[x, y]y

return DĨ 6= 0J = Ĩ

yes

no

no

yes

yes no

Figure 5.4.: Flow chart of the principalization of Blanco
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Algorithm 6 Algorithm of Blanco and Encinas (principalization)
INPUT: (W, (J, c), H,E)
OUTPUT:
1: J ′ = M ′ · I ′ . Apply Algorithm 5; E- Sing(J ′, c) = ∅
2: if maxE- ord(I ′) = 0 then
3: if I ′ = 1 then
4: finish . J ′ is principal
5: else if I ′ 6= 1 then
6: compute Ĩ in K[x, y]y

7: if Ĩ 6= 0 then
8: set J = Ĩ
9: Go to 1.
10: else if Ĩ = 0 then
11: finish . I ′ is given by hyperbolic equations.
12: else if maxE- ord(I ′) > 0 then
13: set J = J ′

14: Go to 1.

3. The algorithm of Bierstone and Milman [8] to resolve ideals generated by
monomials.

4. Construction 5.4.34 of E-resolution of BBOE.

Another algorithm we can and will use in our main algorithm in Section 8 is the
algorithm of Hu for simple arrangements (see Section 5.5).

Remark 5.4.40 ([10, Remark 3.5 and Remark 3.6]). The several charts of affine
BBOE glue together and form a unique resolution of singularities of a non affine
BBOE.
Every center of the sequence of blow-up is compatible with the centers at other
charts.
So the algorithm for resolution of binomial varieties of Blanco and Encinas is a
global one.

5.5. Desingularization of arrangements of smooth

subvarieties: Algorithm of Hu

The goal of this thesis is to resolve determinantal ideals for which there is a matrix
with at most binomial entries. For this goal it is not enough to use the resolution
of binomial ideals for a principalization step. We discuss this problem in Section 8.
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5. Algorithmic background of resolution of singularities

We also need a procedure establishing normal crossings.

The algorithm of Hu is an alternative algorithm to the previously mentioned
approaches in Remark 5.4.39.

The problem of forcing normal crossings to of several principalized hypersurfaces,
is connected to the desingularization of arrangements of smooth subvarieties, which
is discussed in [60].

Definition 5.5.1. An arrangement of smooth subvarieties of a nonsingular algebraic
variety X is a finite set D = {Di}i of closed irreducible subvarieties such that

1. Di is smooth;

2. Di and Dj meet cleanly, i.e., the scheme-theoretic intersection Di ∩ Dj is
smooth and T (Di ∩Dj) = T (Di) ∩ T (Dj) holds for their tangent spaces;

3. Di ∩Dj = ∅ or a disjoint union of D`.

For our main resolution algorithm, we want to use the algorithm described in the
theorem below:

Theorem 5.5.2 ([60], Theorem 1.1). Let X0 be an open subset of a nonsingular
algebraic variety X. Assume that X\X0 can be decomposed into a union

⋃
i∈I Di

which is an arrangement of smooth subvarieties.
Then the set D = {Di}i is a partially ordered set.
Let k be the rank of D. Then there is a sequence of well-defined blow-ups

BlD(X)→ BlD≤k−1
(X)→ · · · → BlD≤0

(X)→ X,

where BlD≤0
(X) → X denotes the blow-up of X along Di of rank 0. Inductively

BlD≤r(X) → BlD≤r−1
(X) denotes the blow-up of BlD≤r−1

(X) along the proper
transforms of Dj of rank r, such that

1. BlD(X) is smooth;

2. BlD(X\X0) =
⋃
i∈I D̃i is a divisor with normal crossings;

3. D̃i1 ∩ D̃i2 ∩ . . . ∩ D̃in is non-empty if and only if D̃i1 . . . D̃in form a chain in
the partially ordered set D. Consequently D̃i and D̃j meet cleanly if and only
if D̃i and D̃j are comparable.
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Obviously, there are only finitely many Di so the following algorithm ends after
finitely many steps. Complexity aspects concerning our case of use are discussed in
Section A.4.

For the proof of Theorem 5.5.2, we need two additional Lemma.

Lemma 5.5.3 ([60], Lemma 2.1). Let U and V be smooth closed subvarieties of a
smooth variety W such that U and V meet cleanly. Then

1. the proper transform of U and V in B`U∩V (W ) are disjoint.

2. the proper transformation of V in B`U(W ) is isomorphic to B`U∩V (V ).

3. if Z is a smooth subvariety of U ∩ V , then the proper transforms of U and V
in B`Z(W ) meet cleanly.

Lemma 5.5.4 (Flag Blow-up Lemma; [74]). Let V 1
0 ⊂ V 2

0 ⊂ . . . ⊂ V s
0 ⊂ W be a

flag of smooth subvarieties in a smooth algebraic variety W0.
We define inductively for k = 1, . . . , s:
Wk is the blow-up of Wk−1 along V k

k−1, V k
k is the exceptional divisor in Wk and V i

k

is the proper transform V i
k−1 in Wk, for k 6= i.

Then the preimage of V s
0 in the variety Ws is a normal crossing divisor V 1

s ∪ . . .∪V s
s .

Proof. Let π : B`Z(W )→ W be a blow-up of a smooth algebraic variety W along a
smooth center Z, if Ṽ is the proper transform of a smooth variety V ⊃ Z, then in
terms of ideal sheaves

I(π−1(V )) = I(V) · I(E).

If we apply this in each step this yields

I(π1
s(V

s
0 )) = I(V 1

s )× . . .× I(V s
s ),

where πs : Ws → W0 is the composition of the stated blow-ups.

Definition 5.5.5. D<Di denotes the partially ordered subset of the elements less
than Di.

Proof of Theorem 5.5.2. Let B`D≤0
(X) be the blow-up of X along the disjoint

smooth subvarieties of Di of rank 0 and let D1
j be the proper transform of Dj of

rank ≥ 1. Lemma 5.5.3(1) shows that the proper transforms D1
j of Dj of rank 1

are disjoint in B`D≤0
. Lemma 5.5.3(2) and (3) show that all D1

j are smooth and
intersect cleanly or are disjoint. Di ∩Dj =

⋃
`D` implies D1

i ∩D1
j =

⋃
rank(D`)>0D

1
`

otherwise Di ∩Dj = ∅ and therefore D1
i ∩D1

j = ∅ holds.
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Hence D1 = {D1
j = B`D<Dj (Dj) | rank(Dj) ≥ 1} is an arrangement of subvarieties

in B`D≤0
(X) and D1

≤0 = {D1
j = B`D<Dj (Dj) | rank(Dj) = 1}.

We repeat the first step by computing the blow-up

B`D≤1
(X) = B`D1

≤0
(B`D≤0

(X))→ B`D≤0
(X).

Let D2 be the proper transform of Dj in B`D≤1
(X) of rank ≥ 2.

Analogous to the argumentation above, Lemma 5.5.3 shows that

D2 = {D1
j = B`(D<Dj )≤1

(Dj) | rank(Dj) ≥ 2}

is an arrangement of subvarieties and

D2
≤0 = {D1

j = B`(D<Dj )≤1
(Dj) | rank(Dj) = 2}.

Again, we repeat this step and we obtain

B`D≤2
(X) = B`D2

≤0
(B`D≤1

(X))→ B`D≤1
(X).

We have rank(D2) = rank(D1)− 1 = rank(D)− 2.
We repeat this step until the subvarieties in the rank 0 are partially ordered sets Dk
is blown up. Altogether we have the iterated blow-up along smooth disjoint centers

B`D(X) = B`Dk≤0
(B`Dk−1

≤0
(· · ·B`D1

≤0
(B`D≤0

(X)) · · · )).

This proofs statement (1).
To show statement (3), we assume that Di ∩ Dj 6= ∅, i.e., that Di and Dj are
incomparable. Lemma 5.5.3(1) again, shows that their proper transform is disjoint
at the stage B`D≤r(X) → X with r := max{rank(D`) | D` ⊂ Di ∩ Dj}. Hence,
D̃i1 ∩ D̃i2 ∩ . . . ∩ D̃in is non-empty if and only if Di1 . . . Din form a chain in the
partially orderet set D.
To show statement (2), we use the Flag Blow-up Lemma (Lemma 5.5.4). We can
apply it since the proof of statement (3) yields that for any chain Di1 < . . . < Din

blow-up the proper transform of any Dj which is not in the chain is irrelevant to
the intersection D̃i1 ∩ D̃i2 ∩ . . . ∩ D̃in .
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5.6. Resolution of surface singularities in arbitrary

characteristic: Algorithm of Cossart, Jannsen

and Saito

We also want to consider the CJS-Algorithm, which is originally stated in [20].
It is an algorithm for the embedding resolution and it is known, that it works
correctly and terminates after finitely many steps in characteristic 0, p > 0 and
mixed characteristic, if the excellent noetherian scheme is of dimension 2. It is
an open question if it resolves higher dimensional schemes, too. So the idea is to
give an environment for testing and to find special examples in order to study this
approach in an experimental manner.
The chosen upper semi-continuous function in the original variant is the
Hilbert-Samuel function. The variant of Frühbis-Krüger, Ristau and Schober
[35] replaces the measure function by a refinement of the order function (see
Section 2.4.2). This is due to the fact that computing the locus of maximal
order it is more efficient than the maximal Hilbert-Samuel stratum. Furthermore,
their variant of the CJS algorithm is a generalization and also an embedded
desingularization for arithmetic surfaces, so the ground field of characteristic zero
in the original variant can be replaced by any field or principal Dedekind ring,
e.g., Z. Moreover, the approach of [35] in the arithmetic case makes a distinction
between vertical and horizontal components. Both variants may lead to different
resolution processes [35, Example 4.16].

We have already seen that it is standard technique in resolution of singularities to
store the information on the exceptional divisor. While Hironaka-style resolutions
are using basic objects the CJS algorithm uses boundarys to encode the information
about it.

In this section, we assume that X is a reduced excellent Noetherian scheme of
dimension two, embedded in some excellent regular scheme Z.

Definition 5.6.1 ([35, Definition 2.9]). A boundary on Z is a set B = {B1, ..., Bs}
containing regular divisors on Z such that div(B) = B1 ∪ ...∪Bs is a simple normal
crossing divisor.

With this boundary we are able to define weakly permissible centers.

Definition 5.6.2 ([35, Definition 2.9]). Let B be a boundary on Z. A closed
subscheme D ⊂ X is called B-weakly permissible, if D is regular contained in
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5. Algorithmic background of resolution of singularities

Max-ν(X) and has transversal intersections with div(B).
We also say that the corresponding blow-up π : Z ′ := B`D(Z) → Z with center D
is a B-permissible blow-up.
The transform B′ of the boundary B under π is the union of the strict transforms
of the components of B and the exceptional divisors E ′π of π.

As already mentioned in the construction of the Hironaka invariant (Section 5.2)
we have to divide the set of boundary components into two sets: The set of old
components and the set of new components. Since we want to consider these old
components in our calculation of center, too, we need a new definition of our order
and the locus of our maximal order. The following example illustrates the reason
why.

Example 5.6.3 ([35, page 7]). Assume that the singular locus of a scheme is defined
by X := V (x2 − y2z2). Then

max-ν(X) = V (x, y)︸ ︷︷ ︸
=:L1

∪V (x, z)︸ ︷︷ ︸
=:L2

.

There is a priori no way to distinguish them. We need to blow-up their intersection
V (x, y, z). In the z-chart, V (x′, z′) is contained in the exceptional divisor and
V (x′, y′) is the strict transform of L1. So with this idea, we can distinguish the
lines and pick one of them as the next center. The CJS algorithm will choose the
older component L′1 in this case.

Construction 5.6.4. Let π : Z ′ → Z be a blow-up in a B-weakly permissible center
D. We denote by X ′ and B′ = {B′1, . . . , B′s, E ′π} the strict transforms of X and B
under the blow-up π where E ′π denotes the exceptional divisor of π.

• If max-ν(X ′) < max-ν(X), the invariant has improved and we define all
components of B′ to be old.

• If max-ν(X ′) = max-ν(X), we define E ′π to be a new component of the
boundary B.

Furthermore, we define the set of old components of the boundary as O(X) and the
set of new components is written as N(X).

Definition 5.6.5 ([35, Definition 2.10]). Let B be a boundary on Z. We define

νOref = νOref X,Z : X → (N3,≤lex),
x 7→ (νref(x), |O(X)|).
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0 2 3 5 7 11

Max-ord(X)

Figure 5.5.: Horizontal and vertical components of the locus of maximal order in the
arithmetic case

For Ã ∈ N3 we define

VO≥Ã(X) := {x ∈ X | νOref(x) ≥ Ã},

and
max−νO(X) := (α, δ, σ) := max{νOref(x) | x ∈ X}

and the locus of maximal log-refined order

Max-νO(X) :=

V≥max−νO(X)(X), if δ > 1 or σ > 0,

X, if δ = 1 or σ = 0.

Remark 5.6.6. The function νOref : X → (N3,≤) is upper semi-continuous ([35,
Proposition 2.12]).

When we consider the locus of maximal order in the arithmetic case, we are in
the setting of Figure 5.5.
On the one hand, we have components of the locus of maximal order which

can be seen in every prime. This corresponds to the horizontally aligned line in
Figure 5.5. That is why we call such components horizontal components. On the
other hand, there are components that can only be seen above a single prime. In
the picture above, these are the components above 2 and 7. These lie vertically and
are therefore called vertical components of the locus of maximal order
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In the geometric case1, we do not have these vertical components above the
individual primes.

Definition 5.6.7 ([35, Definition 2.13]). We distinguish the irreducible components
of Max-νO(X) as follows:

• Geometric case: If Z contains a field, then all irreducible components are
defined to be vertical.

• Arithmetic case: Assume that Z does not contain a field. Let Y ⊂ Max-νO(X)

be an irreducible component.

– We say Y is a horizontal component of Max-νO(X), if

Y ×Spec(Z) Spec(Q) 6= ∅.

– We say Y is a vertical component of Max-νO(X), if

Y ×Spec(Z) Spec(Q) = ∅.

We denote by Max-νOhor the set of horizontal components of Max-νO(X) and by
Max-νOvertical the set of the vertical ones.

Such a prime like 2 or 7 in Figure 5.5 is called a bad prime:

Definition 5.6.8 ([35, Notation 4.5]). Let Z ⊆ Spec(Z[x]) be an equidimensional,
regular closed subscheme and let X ⊂ Z be a non-empty closed subscheme of Z
then we call a prime p ∈ Z bad prime for X, if the following conditions hold.

• Max-ord(X)hor = ∅

• there is an irreducible component W ⊆ Max-ord(X) such that W ⊂ V (p).

If p is not a bad prime, we say that p is a good prime for X.

Definition 5.6.9 ([35, Definition 2.15]). Let π : Z ′ → Z the blow-up with a regular
irreducible center D. Let Y ′ ⊂ Z ′ be an irreducible subscheme contained in the
exceptional divisor Eπ.
We say Y ′ dominates D, if π(Y ′) is dense in D.
In the case that D is not irreducible, we say Y ′ dominates D = D1 ∪ . . . ∪Ds with
irreducible components Di for 1 ≤ i ≤ 1, if there is an irreducible component Di

which is dominated by Y .
1The case, where the ambient space Z contains a field.
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Example 5.6.10. Let X = V (f1, . . . , fr), where fi = xAi − ρxBi . We know:

• The centers, since being Max-νO(·)-components have the form V (g1, ..., gt),
where g` ∈ {1− xB` , xj − xB`(with B`j = 0), x} and irreducible components of
Max-νO(X) can be written as V (g′i1 , g

′
i2
, . . . , g′is), where the g

′
ij
are of the same

form as the gi.

• Exceptional divisors can be written as V (xi).

Let Y ′ := 〈g′i1 , g′i2 , . . . , g′is〉 be an ideal of an irreducible component of Max-νO(X ′).
We assume that an irreducible component of the locus of maximal log-refined order
of X was Y = V (g1, . . . , gt). If there exists a j with ij /∈ {1, . . . , t} such that Y ′

dominates Y . Otherwise Y ′ is not dominating Y .

The variant of [35] gives precedence to the horizontal components and considers
the vertical components only when no more horizontal components are left. This
idea goes back to Hironaka. Now we can state the algorithm in the variant of [35]:

Construction 5.6.11 ([35, Construction 2.16]). Let X be a reduced noetherian
excellent scheme of dimension two, which is embedded in a regular scheme Z. Let
B be a boundary on Z.

• Horizontal case:
Let Y0 := Max-νOhor(X) 6= ∅.
If X is regular and has only transversal crossings with the boundary, the
resolution is finished.
Since X is reduced, we have dim(Y0) < dim(X), i.e., we can inductively find
a sequence of B weak permissible blow-ups

Z = Z0 ← · · · ← Zm0 =: Z ′

B = B0 ← · · · ← Bm0 =: B′

such that the strict transform Y ′0 of Y0 in Z ′ B is a weak permissible center
for Xm0 . We get this sequence of blow-ups by applying the CJS algorithm
recursively with Y0 instead of X. The center of the next blow-up is Dm0 := Y ′0 .

Z ′ =: Zm0 ← BlDm0
(Zm0) =: Zm0+1

B′ =: Bm0 Bm0+1

LetXm0 be the strict transform ofX0 := X (with respect to the whole sequence
of blow-ups).
We distinguish the following cases:
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5. Algorithmic background of resolution of singularities

1. max-νO(Xm0+1) < max-νO(X0): The singularity has improved. The
construction starts with the the new boundary (strict transforms of the
exceptional divisors of the sequence of blow-ups) and Xm0+1 plays the
role of X.

2. max-νO(Xm0+1) = max-νO(X0): The singularity has not improved.
Calculate a decomposition

Ym0+1 := Max-νO(Xm0+1) = Y
(0)
m0+1 ∪ Y (1)

m0+1 ∪ . . . ∪ Y (m0+1)
m0+1 ,

where

a) It holds for all 1 ≤ i ≤ m0 that Y (i)
m0+1 is an irreducible component

of Ym0+1, which appears after the i-th blow-up at the first time, also
called label i components.

b) Y (0)
m0+1 are the irreducible components, which dominate the center
Dm0 of the last blowing up. These components inherit the label of
Dm0 .

c) Y (m0+1)
m0+1 are the irreducible components lying over Dm0 , but which

do not dominate this center. This components are also called label
m0 + 1 components.

We set k := min{j ∈ {0, . . . ,m0 + 1} | Y (j)
m0+1 6= ∅} and we start this

construction again, where Y (k)
m0+1 plays the role of Y0.

• Vertical case:
Assume Max-νOhor(X) = ∅. Then we set Y0 := Max-νO(X) = Max-νvertical(X)

and proceed analogous to the horizontal case using Max-νO instead of
Max-νOhor.

Figure 5.6 illustrates Construction 5.6.11.
More information on the flowchart and an implementation of max-νO

(Section A.1.2) and of the CJS algorithm (see Section A.2) is found in the
appendix.

Theorem 5.6.12 ([35, Proposition 2.18]). Let X be a reduced noetherian scheme
of dimension at most 2 embedded in a regular scheme Z. Suppose that one of the
following conditions holds

1. X has at most dimension 1, or
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5.6. Resolution of surface singularities in arbitrary characteristic: Algorithm of
Cossart, Jannsen and Saito

CJS (X = V (〈xC̃1(xÃ1 − xB̃1), ..., xC̃n(xÃn − xB̃n)〉))

Y = Max-νO(X)

finished?

CJS(Y)

Calculate the blow-up in Y

max-νO(X ′) <lex

max-νO(X)?X := X ′, Y := Max-νO(X)

Y := Max-νO(X ′)

Y =: Y (0) ∪ Y (1) ∪ . . . ∪ Y (m)

Y := Y (k); k minimal, s.t Y (k) 6= ∅

return

no

yes

yes

no

Figure 5.6.: Flow chart of the CJS algorithm
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5. Algorithmic background of resolution of singularities

2. X has dimension 2 and there is a covering Z =
⋃m
i=1 Ui such that X ∩ Ui is

isomorphic to a hypersurface.

Then the sequence of blow-ups in regular centers constructed in Construction 5.6.11
provides a desingularization of X. In particular, after finitely many blow-ups the
strict transform is regular and transversal to the exceptional locus which is a normal
crossing divisor.

Proof. See [35, Proposition 2.18].

The formulation of the CJS algorithm allows arbitrary dimensional schemes
instead of two-dimensionals. For both variants, it is an open question if the
algorithm terminates or not, even in the characteristic zero case. The newly created
components in the locus of maximal singularity, i.e., the label 1 or higher labeled
components are well-behaved in the dimension two case but there is less control in
a higher dimensional case. See [25, Example 2.6] for an example why one has to be
careful in a higher dimensional case.
Another problem in higher dimension is to obtain a similar control on the
characteristic polyhedron or an alternative invariant measuring for the improvement.
For that reason, an implementation of the CJS algorithm is found in the appendix
in Section A.2.
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6. Determinantal Singularities

The class of determinantal singularities generalizes the class of complete intersections
and has more structure than arbitrary singularities because of the underlying matrix
structure. For references providing more on the background of determinantal
singularities, we refer to the survey of Frühbis-Krüger and Zach [38], the book of
Bruns and Vetter [18], or the book of Harris [48, Lecture 9]. Examples of more
specialized approaches are the studies of symmetric determinantal singularities,
which can be found in the articles of Gaffney and Molino [39] and [40] and the studies
of skew-symmetric determinantal singularities by Bruce, Goryunov and Haslinger
[17], for example.
In this section, we focus on resolution of generic skew-symmetric resp. generic

symmetric determinantal singularities, generalizing results of [71] and [75]. An
implementation of the presented algorithms is described in Section A.5.
A resolution of more general determinantal singularities, namely such

determinantal singularities for which there exists a procedure which principalizes
the entries (e.g. binomial entries), can be found in Chapter 8.
Throughout this chapter, we fix m, r ∈ Z+ with r ≤ m. Let R0 be a regular ring

(e.g., R0 = C,Fq,Z,Z[T ]〈2,T 〉, . . .) and let

R := R0[xi,j | i, j ∈ {1, . . . ,m}]

be the polynomial ring over R with m2 independent variables.

6.1. Generic case of determinantal singularities

First, we want to consider the approach of [71, Section 5], which we briefly illustrated
in Chapter 4.

Example 6.1.1. [[71, Observation 5.3]] Let R0 be a regular ring, n ∈ Z+ and let
R = R0[xi,j | 1 ≤ i, j ≤ n] be the polynomial ring in n2 independent variables.
Let M be a generic square matrix with homogeneous entries of degree 1. Without
loss of generality, and maybe after some transformations of coordinates, we can
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6. Determinantal Singularities

assume that M = (xi,j)1≤i,j≤n. Furthermore, we want to consider the determinantal
singularity V (f) generated by a single equation f := det(M).
We blow-up with center V (xi,j | 1 ≤ i, j ≤ n). For readability and by symmetry, we
only consider the X1,1-chart. The other charts are analogous and only the position
of the 1-entry differs.
The strict transform f ′ of f is given by

f ′ = det


1 x′1,2 . . . x′1,n

x′2,1 x′2,2 . . . x′2,n
...

... . . . ...
x′n,1 x′n,2 . . . x′n,n

 .

Since the addition of rows does not change the determinant, we can add −x1,j-times
row 1 to row j, for 2 ≤ j ≤ n. We get

f ′ = det


1 x′1,2 . . . x′1,n

0 x′2,2 − x′2,1x′1,2 . . . x′2,n − x′2,1x′1,n
...

... . . . ...
0 x′n,2 − x′n,1x′1,n . . . x′n,n − x′n,1x′1,n

 .

By the Laplace Expansion of the determinant we get

f ′ = 1 · det


x′2,2 − x′2,1x′1,2 . . . x′2,n − x′2,1x′1,n

... . . . ...
x′n,2 − x′n,1x′1,n . . . x′n,n − x′n,1x′1,n

 .

Since all variables are independent, all entries of the former matrix are
simultaneously locally monomial and we can apply a change of variables to
obtain variables yi,j := xi,j − xi,1x1,j, for 1 ≤ i, j ≤ n.

f ′ = 1 · det


y2,2 . . . y2,n

... . . . ...
y2,n . . . yn,n

 .

Although we perform a coordinate change, the blowing up globally glues together.
See Construction 6.1.2 for more details.
By induction we can introduce new variables zn−1,n−1, zn−1,n, zn,n−1, zn,n, after n− 2
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6.1. Generic case of determinantal singularities

blow-ups such that

f (n−2) = det

(
zn−1,n−1 zn−1,n

zn,n−1 zn,n

)
.

And therefore
f ′ = zn−1,n−1zn,n − zn,n−1zn−1,n.

So we can reduce the problem of resolving a determinantal singularity of a square
generic matrix to the problem of resolving a singularity generated by a single
binomial.
This problem is solved in, e.g., [8], [11], [71] and [42]. But this special situation is
so easy that it suffices to blow-up ones more in the origin to resolve the singularity.

Now we generalize this procedure to resolve generic matrices, which are not
necessarily square matrices (see for example [71, Theorem 5.4]).

Construction 6.1.2 (Resolution of determinantal singularities generated by generic
matrices [71, Theorem 5.4]). Let R0 be a regular ring. Let r, k ∈ Z+ and let S =

R0[xi,j | 1 ≤ i ≤ r, 1 ≤ j ≤ k] be the polynomial ring in r · k independent variables.
Let Mr,k be a generic matrix with homogeneous entries of degree 1. Without loss
of generality, and maybe after some transformations of coordinates, we can assume
that Mr,k = (xi,j)1≤i≤r,1≤j≤k. Furthermore, we want to consider the determinantal
singularity Jr,k,n which is the ideal generated by the n-minors of M , where n ≤
min{r, k},

Jr,k,n = 〈fI,J | I ⊂ {1, . . . , r}, J ⊂ {1, . . . , k},#I = #J = n〉,

where fI,J = det(MI,J) and MI,J denotes the n × n submatrix of Mr,k determined
by I and J .
fI,J is homogeneous of degree n, every monomial in fI,J is a product of n different
variables and every xi,j such that i ∈ I and j ∈ J appears in fI,J . Hence, (fI,J)I,J

is a standard basis for Jr,k,n at the origin. See [66, Theorem 1] for more details.

After blowing up in V (xi,j | 1 ≤ i ≤ r, 1 ≤ j ≤ k), the ideal generated by the
1-minors of the strict transform M ′ of M equals 〈1〉 in each chart (after a change of
rows and columns), i.e.,

M ′ =


1 x′1,2 . . . x′1,k
x′2,1 x′2,2 . . . x′2,k
...

... . . . ...
x′r,1 x′r,2 . . . x′r,k

 .
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6. Determinantal Singularities

So the relevant ideal (lowest minor size such that the ideal generated by the `-minors
does not equal 〈1〉) is the ideal generated by the 2-minors. The ideals generated by
`-minors for each ` = 2, . . . ,max{r, k} do not change by applying elementary row
operations1.

By applying the elementary operations rowj 7→ rowj − x′j,1 · row1, for 2 ≤ j ≤ r

and col` 7→ col` − x′1,` · col1, for 2 ≤ ` ≤ k we get

M̃ ′ :=


1 0 · · · 0

0 x′2,2 − x′2,1x′1,2 . . . x′2,k − x′2,1x′1,k
...

... . . . ...
0 x′r,2 − x′r,1x′1,2 . . . x′r,k − x′r,1x′1,k

 .

We call the highlighted (r − 1)× (k − 1)-dimensional submatrix M ′
1.

Obviously, the ideal generated by the `-minors of M ′ is the same as the ideal
generated by the (`−1)-minors of M ′

1. By a coordinate change, which we can apply
because the variables are independent, we can assume

M ′
1 =


y2,2 . . . y2,k

... . . . ...
yr,2 . . . yr,k

 ,

where yi,j = x′i,j − x′i,1x
′
1,j. Hence 〈yi,j | 2 ≤ i ≤ r, 2 ≤ j ≤ k〉 is the strict

transform of the ideal Jr,k,2 defined by the 2-minors of Mr,k. By a suitable choice
of local coordinates, the strict transforms in the charts are global strict transforms
of the ideal generated by the `-minors. The variety did not change, only the
presentation has changed. We are now in the same situation as before blow-up M .

Like in the quadratic setting, we can blow-up in the center V (yi,j | 2 ≤ i ≤ r, 2 ≤
j ≤ k) and we can repeat this procedure until we are left with the 2-minors as
maximal minors.
Then, we only have to resolve the ideal generated by the 2-minors of the strict
transform of M .
The 2-minors of a generic matrix have binomial generators and we have multiple
possibilities to resolve it, e.g., by the algorithm of Bierstone and Milman [8] or by the
algorithm of Blanco and Encinas [9] and [10]. Another possibility is to continue the
process described in Construction 6.1.2, namely blowing up with the ideal generated

1with exception of the multiplication of a scalar with a row, which we do not apply here
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6.1. Generic case of determinantal singularities

by the entries of the matrix as center and obtaining a one-entry in every chart, then
repeating the row- and column transformations.

This result of Schober [71] generalized a result by Vainsencher [75] who proved
this for generic determinantal singularities, if R0 contains an algebraic closed field.

Example 6.1.3. Let

M =

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

 .

Let Ij be the ideal generated by the j-minors of M . Then

I1 = 〈xi,j | 1 ≤ i ≤ 3, 1 ≤ j ≤ 4〉 6= 〈1〉.

So our first center is I1. Following Construction 6.1.2 after blow-up in I1, we have

I ′1 = 〈1〉
I ′2 = 〈yi,j | 2 ≤ i ≤ 3, 2 ≤ j ≤ 4〉 6= 〈1〉.

In the X1,1-chart we have

M ′
1 =

(
y2,2 y2,3 y2,4

y3,2 y3,3 y3,4

)
.

The situation in the other 11 charts is analogous. Hence it suffices to focus on the
X1,1-chart. There we are in the same situation as above. The next center is I ′2 the
ideal generated by the strict transform of the 2-minors of M , which equals the ideal
generated by the 1-minors of M ′

1. So in each of the 12 charts of the first blow-up,
we get 6 new charts by applying the second blow-up. In the Y2,2-chart we have

M ′′
2 =

(
z3,3 z3,4

)
and V (z3,3, z3,4) is already resolved. The situation in the other charts is still
analogous. Altogether we have 12 · 6 = 72 final charts and the whole process works
with 12 · 6 + 12 + 1 = 85 charts. The 12 intermediate charts exist after the first
blow-up and the initial chart is the additional chart in the end of the calculation.
until I ′′′i = 〈1〉 for all i = 1, 2, 3.

The whole complexity analysis of the exact number of total and final charts can
be found in the appendix in Section B.2.
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6. Determinantal Singularities

It is a natural question to ask whether a resolution exists for non-generic
determinantal singularities, i.e., where the entries xi,j are replaced by arbitrary
elements in R.

If R0 contains a field of characteristic zero, there exists a resolution by Hironaka
[54]. For constructive accounts, we refer to the previous Chapter 5. We allow R0

to be of positive and mixed characteristics. Hence, the question on the existence
of a desingularization is neither known nor clear, in general. A class of such
determinantal singularities and how to desingularize them is found in Section 8.
We provide an affirmative answer to this in the generic symmetric and generic
skew-symmetric setup, both of which we introduce below in more details.

Furthermore, it is an interesting problem to investigate to what extent the
determinantal structure resp. the geometry of the entries contribute to the
singularity and its resolution.

6.2. (Skew-)Symmetric generic determinantal

Singularities

In the present section, we focus on the case of symmetric resp. skew-symmetric
generic determinantal singularities, where we consider the generic matrix with
additional relations xi,j = xj,i resp. xi,j = −xj,i, for all i, j ∈ {1, . . . ,m}.
A more general approach for not necessarily generic entries in the matrix is

presented in Chapter 8, where the determinantal structure playes an essential role.

Let us fix some notation in order to formulate our main result in the
skew-symmetric case, where Mm is replaced by the generic skew-symmetric
matrix. First assume char(R0) 6= 2. Then xi,j = −xj,i implies for i = j that xi,i = 0,
for i ∈ {1, . . . ,m}. Hence we introduce

Iskew := 〈xi,j + xj,i, xk,k | 1 ≤ i < j ≤ m, 1 ≤ k ≤ m〉

and define

Sskew := R/Iskew, Zskew := Spec(Sskew), Iskew
m,r := Jm,r + Iskew

as well as
Y skew
m,r := Spec(R/Iskew

m,r ) ⊂ Zskew.

In other words, if char(R0) 6= 2, then Y skew
m,r is defined by the vanishing locus of the
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6.2. (Skew-)Symmetric generic determinantal Singularities

r-minors of the matrix

Am :=


0 x1,2 · · · x1,m

−x1,2 0 x2,m

... . . . ...
−x1,m −x2,m · · · 0

 . (6.2.1)

By construction, Am is skew-symmetric, ATm = −Am. Recall that (pf(A))2 = det(A)

holds for any skewsymmetric square matrix A and note that pf(B) = det(B) = 0

for any skewsymmetric square matrix B of size (2r+ 1)× (2r+ 1) for r ∈ N0, where
pf(B) denotes the pfaffian of the matrix B. Furthermore, [62, Theorem 3.2] tells
us that

√
〈2`-minors of Am〉 =

√
〈(2`− 1)-minors of Am〉, where

√
I denotes the

radical of an ideal I. That is the reason why we only need to consider the ideal of
the 2`-minors and not the (2`− 1)- ones.

It is necessary to be careful and to consider the reduced strict transforms. For

example, Y skew
2,2 is defined by the vanishing of det

(
0 x1,2

−x1,2 0

)
= −x2

1,2. Hence,

Y skew
2,2 is non reduced, which implies that no blowing up in a regular center improves

the singularities, while on the other hand its reduction is regular. Note that we have

(Y skew
2,2 )red = Y skew

2,1 and pf

(
0 x1,2

−x1,2 0

)
= −x1,2 = Y skew

2,2 )red.

Furthermore, since Am is skew-symmetric, we have for m being an odd number
such that m = 2`+ 1 for some ` ∈ Z+,

det(Am) = det(ATm) = det(−Am) = (−1) det(Am).

As we assume that char(R0) 6= 2, this yields that det(A2`+1) ≡ 0 is the zero
polynomial and hence, Y skew

2`+1,2`+1 = Zskew is regular.
In conclusion, we do not need to consider Y skew

m,m with m = 2`+ 1 and ` ∈ Z+.

Main Theorem 4. Let m, ` ∈ Z+ with 2` ≤ m, let R0 be a regular ring with
char(R0) 6= 2, and let Am := (xi,j)i,j be the generic skew-symmetric m ×m matrix
with entries in R0[xi,j|1 ≤ i ≤ j ≤ m], i.e., xi,j = −xj,i for all i, j ∈ {1, . . . ,m}.
The following sequence of blowing ups is an embedded resolution of singularities

for the generic skew-symmetric determinantal singularity Y skew
m,2` ⊂ Zskew,

Zskew =: Z0
π1←− Z1

π2←− . . .
π`−1←− Z`−1,

where πi is the blowing up in the strict transform of (Y skew
m,2i )red in Zi−1, for 1 ≤ j ≤

`− 1.
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6. Determinantal Singularities

Note that we only have to blow-up minors of odd size for the desingularization
since

√
〈2j-minors of Am〉 =

√
〈(2j − 1)-minors of Am〉 holds for all j = 2, 4, . . . ,m.

The situation changes slightly if we move on to char(R0) = 2. The relation
xi,j = −xi,j becomes xi,j = xj,i. In particular, for i = j the relation xi,j = xj,i does
not imply xi,i = 0. So if char(R0) = 2, the skew-symmetric generic case naturally
leads us to the generic symmetric case.

Let us introduce the symmetric setup. Let R0 be a regular ring of arbitrary
characteristic. We define

Isym := 〈xi,j − xj,i | 1 ≤ i < j ≤ m〉,

Ssym := R/Isym, Zsym := Spec(Ssym), Isym
m,r := Jm,r + Isym

and

Y sym
m,r := Spec(R/Isym

m,r ) ⊂ Zsym.

Therefore, Y sym
m,r is given as the locus, where all r-minors of the following matrix Bm

vanish,

Bm :=


x1,1 x1,2 · · · x1,m

x1,2 x2,2 x2,m

... . . . ...
x1,m x2,m · · · xm,m

 . (6.2.2)

Main Theorem 5. Let m, r ∈ Z+ with r ≤ m, let R0 be a regular ring, and let
Bm := (xi,j)i,j be the generic symmetric m ×m matrix with entries in R0[xi,j|1 ≤
i ≤ j ≤ m], i.e. xi,j = xj,i for all i, j ∈ {1, . . . ,m}.
The following sequence of blowing ups is an embedded resolution of singularities

for the generic symmetric determinantal singularity Y sym
m,r ⊂ Zsym,

Zsym =: Z1
π1←− Z2

π2←− . . .
πr−1←− Zr

where πj is the blowing up in the strict transform of Y sym
m,j in Zj, for 1 ≤ j ≤ r − 1.

The proofs are done by induction on the size r ≥ 1 of the minors defining the
determinantal singularity. In the case r = 1, there is nothing to show since Y skew

m,1

and Y sym
m,1 are regular. For r > 1, the key ingredient is to apply in each chart of a
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6.2. (Skew-)Symmetric generic determinantal Singularities

blowing up elimination steps to the strict transform of Am resp. Bm which preserve
the (skew-)symmetric structure. Eventually, the determinantal structure allows to
make a reduction from r to r − 1 resp. r − 2 and from m to m− 1 resp. m− 2.

Let us briefly summarize the content of the chapter: In Section 6.2.1, we discuss
examples for m ∈ {2, 3, 4} to visualize the idea and to provide the basis for our
induction. In Section 6.2.2, we prove Theorem 4 and in Section 6.2.3, we show
Theorem 5.

6.2.1. First Examples

First, we illustrate the ideas and appearing phenomena for some examples.

Example 6.2.1 (m = 2). Fix a regular basis ring R0. Let us consider Y skew
2,r and

Y sym
2,r for r ∈ {1, 2}.

1. It is clear that both are regular for r = 1 since we assume R0 to be regular.

2. Suppose that char(R0) 6= 2. We have already seen in the introduction of this
chapter that the reduction of Y skew

2,2 is regular and hence no further blowing
ups are required.

3. In the symmetric case, Y sym
2,2 is a singular hypersurface given by the equation

det

(
x1,1 x1,2

x1,2 x2,2

)
= x1,1x2,2 − x2

1,2 = 0.

The singular locus is equal to Y sym
2,1 and by blowing up the center D1 = Y sym

2,1 =

V (x1,1, x1,2,, x2,2), we obtain an embedded desingularization.

Therefore, we have verified Theorems 4 and 5 for the special case m = 2.

In general, Y skew
m,r and Y sym

m,r are not hypersurfaces if r < m. In order to be able to
control them after a blowing up, we have to make a particular choice for the system
of generators for their respective ideal.

Remark 6.2.2. 1. Applying the same arguments as in [55, Corollary (2.21,d),
p. 270] it can be shown that a standard basis for I generates I.

2. Set X := Spec(R/I). Suppose D := Spec(R/P ) is regular and that D ⊂
Sing(X) is contained in the singular locus of X. Let (f) be a standard basis
for I with respect to P ⊂ R. Blow-up with center D and consider an affine
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6. Determinantal Singularities

chart, as in Remark 2.2.4. By [20, Theorem 9.1] the strict transform X ′ of X
is determined as the vanishing locus of the strict transforms (f ′) of (f).

In general, the last conclusion is not true if we take any system of generators.
For example, consider R = K[x, y, z]〈x,y,z〉, P = 〈x, y, z〉 ⊂ R, and the ideal
I = 〈x2 − y3, x2 − z5〉 ⊂ R, where K is any field. Clearly, (g1, g2) := (x2 −
y3, x2 − z5) is not a standard basis with respect to P since the initial form of
h := y3− z5 = g2− g1 is not contained in 〈inP (g1), inP (g2)〉. If we blow-up the
origin D = Spec(R/P ) and consider the Z-Chart, we get the strict transforms
g′1 = x′2 − y′3z′, g′2 = x′2 − z′3, h′ = y′3 − z′2. Note that g′2 − g′1 = z′(y′3 − z′2).
Let I ′ be the ideal generated by the strict transforms of all g ∈ I. We see that
h′ ∈ I ′, but h′ /∈ 〈g′1, g′2〉. Hence, I ′ 6= 〈g′1, g′2〉.

In order to discuss the relevant examples of standard bases in our context, we
have to introduce the following notation.

Definition 6.2.3. Let r,m ∈ Z+ with r ≤ m. Let R be a regular ring and let
M = (mi,j) be a m×m matrix with entries in R. For the symmetric case, we define
Isym
r (M) ⊆ R to be the ideal generated by the r-minors of a symmetric matrix M ,

i.e.,
Isym
r (M) = 〈det(MI,J) | I, J ⊂ {1, . . . ,m} : #I = #J = r〉,

where MI,J denotes the r × r submatrix of M given by (mi,j)i∈I,j∈J .

For the skewsymmetric case, we define Iskew
r (M) ⊆ R to be the ideal generated

by the radical of the r-minors of a skewsymmetric matrix M , i.e.,

Iskew
r (M) =

√
〈det(MI,J) | I, J ⊂ {1, . . . ,m} : #I = #J = r〉,

where r = 2k for 0 ≤ k ≤ bm
2
c.

We fix a regular ring R0 for the rest of the section.

Example 6.2.4. Let r,m ∈ Z+ with r ≤ m and consider the matrices Am and Bm

introduced in (6.2.1) and (6.2.2), respectively.

1. Set Iskew
m,r :=Iskew

r (Am) and let f skew
I,J :=

√
det(AI,J). We have:

a) Iskew
m,r = 〈f skew

I,J | I, J ⊂ {1, . . . , r},#I = #J = r};
b) each f skew

I,J is homogeneous of degree r;

c) every monomial appearing in f skew
I,J is a product of r variables and every

xi,j appears in f skew
I,J for i ∈ I and j ∈ J .
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6.2. (Skew-)Symmetric generic determinantal Singularities

It follows from [53, Theorem 5.1] that (f skew
I,J | I, J ⊂ {1, . . . , r},#I = #J = r)

is a Gröbner basis and because of being homogenous this is also a standard
basis in the Hironaka sense for Iskew

m,r at the maximal ideal 〈xi,j | 1 ≤ i, j ≤ m〉.

2. In analogue to (1), for the symmetric case we set Isym
m,r := Isym

r (Bm) and
f sym
I,J := det(BI,J).

a) Isym
m,r = 〈f sym

I,J | I, J ⊂ {1, . . . , r},#I = #J = r}

b) the f sym
I,J are homogeneous of degree r.

c) Let m be a monomial appearing in fj ∈ f sym
I,J , then m is a product of r

variables. And for all variables xi,j there are at least one and at most
two such f sym

I,J where it appears. With [19, Theorem 2.9] we can argue
analogous to (1), that {f sym

I,J | I, J ⊂ {1, . . . , r},#I = #J = r} is a
standard base for Isym

r at the maximal ideal 〈xi,j | 1 ≤ i, j ≤ m〉.

In the next example, we illustrate how we preserve the symmetry by appropriate
row and column operations.

Example 6.2.5 (m = 3, symmetric). Consider Y sym
3,3 , which is determined by the

vanishing of the determinant of B3,

B3 =

x1,1 x1,2 x1,3

x1,2 x2,2 x2,3

x1,3 x2,3 x3,3

 .

The first center for blowing up proposed by Theorem 5 is

Y sym
3,1 = Spec(S/〈x1,1, x1,2, . . . , x3,3〉).

First, we consider the X1,1-chart, i.e., as described in Remark 2.2.4, we have
x1,1 = x′1,1 and xi,j = x′1,1x

′
i,j for (i, j) 6= (1, 1). The strict transform of Y3,3 is

defined by the vanishing locus of the determinant of the strict transform of B3,

B′3 :=

 1 x′1,2 x′1,3

x′1,2 x′2,2 x′2,3

x′1,3 x′2,3 x′3,3

 .

We perform elementary row and column operations to eliminate all entries in the
first row and column expect for the 1 at position (1, 1). Since these do not change
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the determinant, we have

det(B′3) = det

1 0 0

0 x′2,2 − x′21,2 x′2,3 − x′1,2x′1,3
0 x′2,3 − x′1,2x′1,3 x′3,3 − x′21,3

 = det

(
y2,2 y2,3

y2,3 y3,3

)
,

where y2,2 := x′2,2 − x′21,2, y2,3 := x′2,3 − x′1,2x
′
1,3, y3,3 := x′3,3 − x′21,3. Recall that

the exceptional divisor of the first blowing up is div(x′1,1) and x′1,1 is transveral to
y2,2, y2,3, y3,3.

We have reduced the problem to r = m = 2 and the ideal of the upcoming center
is I := 〈y2,2, y2,3, y3,3〉. We leave it to the reader to verify that the singularities are
locally resolved after the blowing up.

We claim that the ideal I provides a global center. Indeed, we observe that yi,j is
the strict transform of the 2-minor of B3 that contains x1,1 and xi,j,

det

(
x1,1 x1,j

x1,i xi,j

)
= x1,1xi,j − x1,jx1,i.

The strict transform of every 2-minor of B3 that does not contain x1,1 is already
contained in I: yi,j = x′i,j − x′1,ix′1,j is by definition the strict transform of x1,1x1,j −
xi,1x1,j. Furthermore, I = 〈y2,2, y2,3, y3,3〉 is the strict transform of 〈xk,`xi,j−xi,`xk,j |
1 ≤ k, `, i, j ≤ 3〉. For i 6= 1 6= j, b 6= 1 we have

x′1,`x
′
i,j − x′i,`x′1,j = x′1,`(y

′
i,j − x′1,ix′1,j)− (yi,` + x′1,ix

′
1,`)x

′
1,j = x′1,`yi,j − yi,`x′1,j ∈ I.

In other words, the center of the second blowing up is the strict transform of the
determinantal singularity Y sym

3,2 defined by the 2-minors of B3. The situation in the
X2,2- and the X3,3-chart is analogous.

Let us study the X2,3-chart. (The cases of the X1,2- resp. the X1,3-chart are
analogous.) In order to have a clear distinction to the X1,1-chart, we write x̃i,j
instead of x′i,j for the variables in the present chart. Hence, the transformation of
the variables is x2,3 = x̃2,3 and xi,j = x̃2,3x̃i,j for (i, j) 6= (2, 3). The strict transform
of Y sym

3,3 is given by the determinant

det

x̃1,1 x̃1,2 x̃1,3

x̃1,2 x̃2,2 1

x̃1,3 1 x̃3,3

 = (x̃2,2x̃3,3 − 1)x̃1,1 + h,

where h does neither depend on x̃1,1 nor on the exceptional variable x̃2,3.
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By Remark 2.2.4, the set of points for which x̃2,2x̃3,3 − 1 = X2,2

X2,3

X3,3

X2,3
− 1 = 0 is

entirely contained in the intersection of the X2,2- and the X3,3-chart. Therefore,
we may assume without loss of generality that x̃2,2x̃3,3 − 1 is invertible in the given
chart. This implies that the strict transform of Y sym

3,3 is regular and transversal to
the exceptional divisor div(x̃2,3). In other words, we have resolved the singularities
of Y sym

3,3 .
Notice that x̃2,2x̃3,3−1 is the strict transform of the 2-minor of B3 containing x2,3

twice. Hence, the strict transform of Y sym
3,2 is empty in the X2,3-chart, if we assume

that we neglect the part that is already contained in D+(X2,2) ∩D+(X3,3).

In conclusion, we have seen that the strict transform of Y sym
3,2 , which is the next

center for blowing up proposed by Theorem 5, is regular and it is contained in
the union of three charts given by the diagonal elements, (Y sym

3,2 )′ ⊂ D+(X1,1) ∪
D+(X2,2) ∪D+(X3,3). After blowing up (Y sym

3,2 )′, we have resolved Y sym
3,3 .

Note that we have especially seen that Y sym
3,2 is resolved after blowing up Y sym

3,1 .

The next example illustrates the method for the reduction in the skew-symmetric
setting.

Example 6.2.6 (m = 4, skew-symmetric). Assume that char(R) 6= 2. Recall that
Y skew

4,4 , is given by det(A4) = 0 = pf(A4), where

A4 =


0 x1,2 x1,3 x1,4

−x1,2 0 x2,3 x2,4

−x1,3 −x2,3 0 x3,4

−x1,4 −x2,4 −x3,4 0

 .

Theorem 4 suggests Y skew
4,1 = Spec(S/〈x1,2, . . . , x3,4〉) as the first center to blow-up.

We consider the X1,2-chart of this blowing up. (All other charts are analogous.)
In there, we have x1,2 = x′1,2 and xi,j = x′1,2x

′
i,j for (i, j) 6= (1, 2). In particular, the

strict transform (Y skew
4,4 )′ is defined by det(A′4) = 0, where

A′4 =


0 1 x′1,3 x′1,4

−1 0 x′2,3 x′2,4

−x′1,3 −x′2,3 0 x′3,4

−x′1,4 −x′2,4 −x′3,4 0

 .

Observe that (Y skew
4,1 )′ = ∅ (since the strict transform of the center is always empty)

and (Y skew
4,2 )′ = ∅ (since there is a 2-minor that is equal to one after the blowing up

[62, Theorem 3.2]).
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We perform elementary row operations on A′4 which do neither change the pfaffian
nor the determinant. First, we add x′2,3-times the first row to the third row and
x′2,4-times the first row to the fourth row. After that the second column becomes
(1, 0, 0, 0)T and we can eliminate the entries at position (1, 3) and (1, 4) via column
operations. We get

pf(A′4) = pf


0 1 0 0

−1 0 x′2,3 x′2,4

−x′1,3 0 x′1,3x
′
2,3 x′3,4 + x′1,4x

′
2,3

−x′1,4 0 −x′3,4 + x′1,3x
′
2,4 x′1,4x

′
2,4

 .

Next, we add x′2,3-times the first column on the third column and x′2,4-times the
first column on the fourth column to obtain that the second row becomes (−1, 0, 0, 0).
Then, we eliminate the entries at position (3, 1) and (4, 1) via row operations. This
provides

pf(A′4) = pf


0 1 0 0

−1 0 0 0

0 0 0 x′3,4 + x′1,4x
′
2,3 − x′1,3x′2,4

0 0 −x′3,4 + x′1,3x
′
2,4 − x′1,4x′2,3 0

 .

This equals

pf(A′4) = pf

(
0 y3,4

−y3,4 0

)
= y3,4, for y3,4 := x′3,4 + x′1,4x

′
2,3 − x′1,3x′2,4.

Therefore, (Y skew
4,4 )′red coincides with the divisor div(y3,4) in the given chart. The

latter is regular and transversal to the exceptional divisor div(x1,2). Therefore, the
singularity is resolved. This is not surprising, since we have

pf(A4) = (x1,2x3,4 + x1,4x2,3 − x1,3x2,4).

We point out that y3,4 is the reduced strict transform of the 3-minor of A4

containing x1,2 twice and x3,4, i.e., the minor of (A4){1,2,3},{1,2,4}:

x1,2

(
x1,2x3,4 + x1,4x2,3 − x1,3x2,4

)
= det

 0 x1,2 x1,4

−x1,2 0 x2,4

−x1,3 −x2,3 x3,4.

 .

Furthermore, note that for every non-zero 3-minor the corresponding matrix contains
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exactly one element xi,j twice and it is up to sign of the form

xi,j
(
x1,2x3,4 + x1,4x2,3 − x1,3x2,4

)
.

The other 3-minors are determinants of a generic skewsymmetric square matrix of
size 3, so they equals 0. Hence, by Example 6.2.4(1) and Remark 6.2.2(2), the ideal
of (Y skew

4,3 )′ is equal to 〈y3,4〉 – recall that we consider the X1,2-chart. Thus, we have
(Y skew

4,3 )′ = (Y skew
4,4 )′red.

For completeness, let us also have a look at the skew-symmetric case for m = 3.

Example 6.2.7 (m = 3, skew-symmetric). As explained in the introduction of this
chapter, Y skew

3,1 and Y skew
3,3 are regular. Thus, let us have a look at the 2-minors of

A3 =

 0 x1,2 x1,3

−x1,2 0 x2,3

−x1,3 −x2,3 0

 .

The principal 2-minors provide that x2
1,2, x

2
1,3, x

2
2,3 ∈ I2(A3) (using the notation of

Definition 6.2.3). This implies that

(Y skew
3,1 )red

∼= Spec(R0[x1,2, x1,3, x2,3]/〈x1,2, x1,3, x2,3〉) ∼= Spec(R0)

is regular and no blowing ups are required.

6.2.2. Proof of Main Theorem 4

Proof of Theorem 4. Recall that R0 is a regular ring of characteristic different from
2. In order to lighten the notation, we abuse notation and write

S := Sskew
∼= R0[xi,j | 1 ≤ i < j ≤ m], Z := Zskew = Spec(S).

Recall that

Am =


0 x1,2 · · · x1,m

−x1,2 0 · · · x2,m

...
... . . . ...

−x1,m −x2,m · · · 0

 .

Using Definition 6.2.3 and identifying S with the ring on the right hand side of the
isomorphism above, the determinantal singularity which we aim to resolve is given
as
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Ym,r := Y skew
m,r = Spec(S/Ir(Am)).

First, observe that Ym,1 is always regular, as it is isomorphic to Spec(R0) and R0

is a regular ring by assumption. Moreover, by considering the principal 2-minors,
we see that (Ym,2)red = (Ym,1)red.

Let ` ≥ 2 and assume that Z0
π1←− Z1

π2←− . . .
π`−2←− Z`−2 is an embedded resolution

of (Ym,2(`−1))red. Hence, all centers (Ym,2j)red are regular and global defined, for all
j = 0, . . . , `− 2.

It remains to show that the blowing up π`−1 resolves (Ym,2`)red.

We consider Am with m = 2`.

We consider the case of Ym,m. As the examples of the previous section indicate,
we will prove the statement for Ym,r with r < m along the way.

We only have to blow-up in the (2k−1)-minors since the 2k-minors are zero after
blow-up in the (2k − 1)-minors, since

√
〈(2k − 1)-minors〉 =

√
〈(2k − 1)-minors〉.

We have

(Ym,m)red = Spec(S/ pf(Am)).

We perform an induction on the sizem ∈ Z+ of the matrix Am. Form = 1, there is
nothing to prove. Furthermore, we treated the casesm ∈ {2, 3, 4} in Examples 6.2.1,
6.2.7, 6.2.6, respectively. Therefore, we go on to the induction step and assume
m ≥ 5 in the following.

The first center proposed by Theorem 4 is D1 := Ym,1 = (Ym,2)red, which is
regular as we discussed explained before. Let us look at a chart of the blowing
up with center D1. Without loss of generality, we consider the X1,2-chart. (Note
that for the Xk,`-chart, we may perform a suitable interchange of columns and rows
followed by a renaming of the variables in order to attain in the same setting as the
X1,2-chart.)

In the given chart, the strict transform Y ′m,m of Ym,m is determined by the strict
transform f ′ of f := pf(Am). We have that f ′ is equal to the following pfaffian

f ′ = pf



0 1 x′1,3 · · · x′1,m

−1 0 x′2,3 · · · x′2,m

−x′1,3 −x′2,3 0 · · · x′3,m
...

... . . . ...
−x′1,m −x′2,m −x′3,m · · · 0


.
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We eliminate all entries in the second column of the matrix except for the 1 at
position (1, 2) by adding the first row x′2,i-times to the i-th row, for i ≥ 3. After
that we perform column operations to eliminate all entries in the first row except
for the 1 at position (1, 2). The latter step has no effect on the other entries of the
matrix since we cleaned the second column beforehand. We can obtain that f ′ is
equal to

pf



0 1 0 · · · 0

−1 0 x′2,3 · · · x′2,m

−x′1,3 0 x′1,3x
′
2,3 · · · x′3,m + x′1,mx

′
2,3

...
... . . . ...

−x′1,m 0 −x′3,m + x′1,3x
′
2,m · · · x′1,mx

′
2,m.


In order to regain the skew-symmetry, we first add (−x1,i)-times the second row to
the i-th row, for i ≥ 3, which eliminates all entries in the first column except for the
−1 at position (2, 1). Using the latter entry, we then perform column operations to
clean up the second row. This leads to

f ′ = pf



0 1 0 0 · · · 0

−1 0 0 0 · · · 0

0 0 0 y3,4 · · · y3,m

0 0 −y3,4 0 · · · y4,m

...
...

...
... . . . ...

0 0 −y3,m −y4,m · · · 0


,

where we introduce

yi,j := x′i,j − x′2,jx′1,i + x′1,jx
′
2,i, for 3 ≤ i < j ≤ m.

Observe that (yi,j) are independent variables and they are transversal to the
variable x′2,1, which describes the exceptional divisor of the blowing up in the present
chart.

Finally, we expand the pfaffian with respect to the first two columns and get

f ′ = pf


0 y3,4 · · · y3,m

−y3,4 0 · · · y4,m

...
... . . . ...

−y3,m −y4,m · · · 0

 .

Note that the latter is the pfaffian of the generic skew-symmetric matrix of size
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(m − 2) × (m − 2). Therefore, by induction on the size of the matrix, Theorem 4
provides an embedded resolution for the subscheme determined by the vanishing of
f ′.

It remains to show that the desingularization obtained by induction coincides
with the one proposed in the statement of Theorem 4. In other words, we have to
prove that the strict transform Y ′m,r of Ym,r is equal to Ym−2,r−2 (up to renaming the
generic variables) in the present chart, i.e., if we set

A′m :=



0 1 x′1,3 · · · x′1,m

−1 0 x′2,3 · · · x′2,m

−x′1,3 −x′2,3 0 · · · x′3,m
...

... . . . ...
−x′1,m −x′2,m −x′3,m · · · 0


, Ãm−2 :=


0 y3,4 · · · y3,m

−y3,4 0 · · · y4,m

...
... . . . ...

−y3,m −y4,m · · · 0



and use the notation introduced in Definition 6.2.3, then we have to prove:

Ir−2(Ãm−2) = Ir(A′m). (6.2.3)

Notice that this also provides that the desingularizations obtained by induction
in every chart of the first blowing up glue to a global resolution of singularities as
desired.

Moreover, we obtain from this that Y ′m,3 = (Y ′m,4)red is regular and transversal to
the exceptional divisor div(x′1,2) since the last two properties are true for Ym−2,1.

We already explained that Y ′m,m identifies with Ym−2,m−2. Moreover, we have
Y ′m,1 = ∅ (since the strict transform of the center is always empty) and Y ′m,2 = ∅
(since we have (Ym,2)red = Ym,1).

Let r ≥ 3. By Example 6.2.4(1) and Remark 6.2.2(2), Y ′m,r is generated by the
radical of the r-minors of the matrix A′m. As we have seen before, after some
elementary row and column operation the matrix A′m becomes 0 1 0

−1 0 0

0 0 Ãm−2

 .

For every r-minor gI,J of A′m corresponding to I, J ⊂ {1, . . . ,m} with J ⊃ {1, 2} ⊂
I, we may perform the same row and column operations and obtain that it is equal
to the (r − 2)-minor of the matrix Ãm−2, whose index sets correspond to I \ {1, 2}
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and J \ {1, 2} (up to a shift in the index set). This shows

Ir−2(Ãm−2) ⊆ Ir(A′m).

We are left with the task to show that the radical of any r-minor gI,J of A′m with
{1, 2} 6⊂ I or {1, 2} 6⊂ J is contained in the ideal Ir−2(Ãm−2).
This belongs to the basic calculation of minors and determinants by gaussian

elimination.

Let I = {i1, . . . , ir} and J = {j1, . . . , jr}, where we can assume that j1 is the first
column of AI,J . We have

f ′I,J = det


x′i1,j1 yi1,j2 · · · yi1,jr

x′i1,j2 yi2,j2 · · · yi2,jr
...

... . . . ...
x′i1,jr yi2,jr · · · yir,jr



= det


x′i1,j1 yi1,j2 + x′i2,j2x

′
i1,j1
− x′i1,j2x′i1,j2 · · · yi1,jr + x′i2,jrx

′
i1,j1
− x′i1,jrx′i1,j1

x′i1,j2 yi2,j2 + x′i2,j2x
′
i1,j2
− x′i1,j2x′i2,j1 · · · yi2,jr + x′i2,jrx

′
i1,j2
− x′ir,jrx′i1,j2

...
... . . . ...

x′i1,jr yi2,jr + x′i2,jrx
′
i1,j2
− x′i1,jrx′i2,j2 · · · yir,jr + x′i2,jrx

′
i1,jr
− x′i1,jrx′i1,jr



= det


x′i1,j1 x′i1,j2 · · · x′i1,jr
x′i1,j2 x′i2,j2 · · · x′i2,jr
...

... . . . ...
x′i1,jr x′i2,jr · · · x′ir,jr

 ∈ Ir(A′m).

6.2.3. Proof of Main Theorem 5

Proof of Theorem 5. Analogous to the previous section, we abuse notation and
abbreviate

S := Ssym, Z := Zsym, Im,r := Isym
m,r , I := Isym.

We come to the proof of Theorem 5. Recall that

Bm :=


x1,1 x1,2 · · · x1,m

x1,2 x2,2 · · · x2,m

...
... . . . ...

x1,m x2,m · · · xm,m

 .
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Our goal is to resolve the singularity which is given as

Ym,r := Y sym
m,r = Spec(S/Ir(Bm)).

As in the proof of Theorem 4, we perfom an induction on the size m ∈ Z+ of the
matrix Bm. The ideal generated by the 1-minors of Bm, Ym,1 is always regular, since
Ym,1 ∼= Spec(R0) and R0 is assumed to be regular. So we have to consider the case
Ym,r, for 1 < r ≤ m.

Theorem 5 proposed that the first center is D1 := Ym,1 which is regular.

We first have a look at the X1,2-chart, which is a representative of the Xi,j-charts
for 1 ≤ i < j ≤ m. For the Xi,j-charts, we may perform a suitable interchange of
columns and rows followed by renaming of the charts and we get the same setting
as in the X1,2-chart.

In the given chart, the strict transform Y ′m,m of Ym,m is determined by the strict
transform f ′ of f := det(Bm). We know that f ′ is equal to

f ′ = det


x′1,1 1 · · · x′1,m

1 x′2,2 · · · x′2,m
...

... . . . ...
x′1,m x′2,m · · · x′m,m

 .

We can eliminate all entries in the first row and second column by adding (−1) ·x′2,j
times the first row on the j-th row, for j = 2, . . . ,m, we get

f ′ = det



0 1 0 · · · 0

1− x′1,1x′2,2 0 x′2,3 − x′2,2x′1,3 · · · x′2,m − x′2,2x′1,m
x′1,3 − x′1,1x′2,3 0 x′3,3 − x′2,3x′1,3 · · · x′3,m − x′2,3x′1,m

...
...

... . . . ...
x′1,m − x′1,1x′2,m 0 x′3,m − x′2,mx′1,3 · · · x′m,m − x′2,mx′1,m


.

In order to regain the symmetry, we multiply the first column with ε−1, where
ε := 1 − x′1,1x′2,2, which is invertible (see Example 6.2.5) and multiply the j-th row
(3 ≤ j ≤ m) with ε, we get
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6.2. (Skew-)Symmetric generic determinantal Singularities

f ′ = det



0 1 0 · · · 0

1 0 x′2,3 − x′2,2x′1,3 · · · x′2,m − x′2,2x′1,m
x′1,3 − x′1,1x′2,3 0 ε · (x′3,3 − x′2,3x′1,3) · · · ε(x′3,m − x′2,3x′1,m)

...
...

... . . . ...
x′1,m − x′1,1x′2,m 0 ε(x′3,m − x′2,mx′1,3) · · · ε(x′m,m − x′2,mx′1,m)


.

Now we apply rowj 7→ rowj − (x′1,j − x′1,1x′2,j)row2 for 3 ≤ j ≤ m and afterwards
we apply columnj 7→ columnj − (x′2,j − x′2,2x′1,j)column1. Altogether we get

f ′ = det



0 1 0 · · · 0

1 0 0 · · · 0

0 0 y3,3 · · · y3,m

...
... . . . ...

0 0 y3,m · · · ym,m


,

where
yi,i = ε(x′i,i − x′2,ix′1,i)− (x′1,i − x′1,1x′2,i)(x′2,i − x′2,2x′1,i),

for 3 ≤ i ≤ m. Note that this step is well-defined since ε is a unit. Moreover,
note that yi,j are independent variables and they are transversal to the exceptional
variable x′1,2. Furthermore, we observe that

yi,j = ε(x′i,j − x′2,jx′1,i)− (x′i,i − x′1,1x′2,i)(x′2,j − x′2,2x′1,j)
= εx′i,j − x′1,jx′2,i − x′1,ix′2,j + x′1,ix1,jx

′
2,2 + x′1,1x

′
2,ix
′
2,4

= ε(x′i,j − x′2,ix′1,j)− (x′j,j − x′1,1x′2,j)(x′2,i − x′2,2x′1,i)
= yj,i,

for 3 ≤ i, j ≤ m. So the resulting matrix is symmetric.

Like in the previous approaches, we can expand the determinant by the first two
rows and we get

f ′ = det


y3,3 · · · y3,m

... . . . ...
y3,m · · · ym,m

 .

Again, we reduced the problem to a determinant of a matrix with size
(m− 2)× (m− 2).
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In thisX1,2-chart, the vanishing locus of the 2-minors is empty, since det

(
0 1

1 0

)
∈

〈2-minors〉 using the assumption that ε is invertible. In this chart 〈2-minors〉′ = ∅.
Therefore, we do not see the second center of the resolution procedure here in this
chart. Hence, the chart remains unchanged under the next blowing up. Since
〈3-minors〉′ 6= ∅ the third center of the blowing up procedure changes the chart
again.

In contrast to the previous chapter we have to look at the X1,1-chart as
representative of the Xi,i-charts for 1 ≤ i ≤ m, too. Again, by interchanging
columns and rows and by renaming variables, we have in the other Xi,i-charts the
same situation.

In considered X1,1-chart, the strict transform f ′ of f is given by the following
determinant

f ′ = det


1 x′1,2 · · · x′1,m

x′1,2 x′2,2 · · · x′2,m
...

... . . . ...
x′1,m x′2,m · · · x′m,m

 .

We will eliminate the entries in the first column by adding (−1) · x1,j-times the first
row to the j-th row, for j ≥ 2. We get

f ′ = det


1 x′1,2 · · · x′1,m

0 x′2,2 − x′21,2 · · · x′2,m − x′1,mx′1,2
...

... . . . ...
0 x′2,m − x′1,2x′1,m · · · x′m,m − x′21,m

 .

For eliminating the entries of the first row, we do the same column operation
as for the row operation above, i.e., (−1) · x1,j-times the first column to the j-th
column, for j ≥ 2. This yields

f ′ = det


1 0 · · · 0

0 x′2,2 − x′21,2 · · · x′2,m − x′1,mx′1,2
...

... . . . ...
0 x′2,m − x′1,2x′1,m · · · x′m,m − x′21,m

 .

Like we have seen in Observation 6.2.2, we now can expand the determinant with
respect to the first column or first row, we get
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f ′ = det


y2,2 · · · y2,m

... . . . ...
y2,m · · · ym,m

 , where yi,j := x′i,j − x′1,ix1,j, for 2 ≤ i, j,≤ m.

These yi,j are independent variables which are transversal to the exceptional
variable x′1,1. This shows, that f ′ is now defined by the generic (m − 1) × (m − 1)

matrix.

Therefore, by induction on the size of the matrix, Theorem 5 provides an
embedded resolution for the subscheme determined by the vanishing locus of f ′.
It remains to show, that this desingularization coincides with the one proposed in

the statement of Theorem 5, i.e., we have to prove that the strict transform Y ′m,r of
Ym,r resp. Y ′′m,r of Ym,r (after two blow-ups) coincide with Ym−1,r−1 resp. Ym−2,r−2.
This resolution is a global one with the same argument as before.

An implementation of the author is described in Section A.5. The complexity
analysis of the number of charts can be found in the appendix in Section B.2.
Experiments on low dimensional examples show that our implementation is faster
than the general implementation of Villamayor’s algorithm [16] of resolution of
singularities in the singular library resolve.lib [37]. This belongs to the fact that our
specific implementation needs less time per chart and in total we have to consider
less charts (and less final charts). For more information see Section B.4.
So the set of resolution of singularities which are computable in practice is

extended by this implementation.
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7. Algorithmic local
monomialization of a single
binomial: efficiency
considerations

This section presents the article [42] in our context. This article is a joint work with
Bernd Schober published in International Journal of Algebra and Computation.
Bernd Schober was a part of the DFG-project “Order zeta functions and
resolutions of singularities" (principal investigators: Christopher Voll and Anne
Frühbis-Krüger), he could motivate the article in the context of explicit computation
of specific p-adic integrals. In particular, the structure of the integrals considered
there allow a reduction to the case of finitely many binomials. An increasing
complexity in the p-adic integrals (which is reflected in a rapidly increasing number
of variables and binomials) requires to find monomialization algorithms which keep
the numbers of blowups and final charts that have to be considered small. In
contrast to the focus on application the author of this thesis concentrated on the
heart of the article, namely the algorithmical and implementational parts of the
article resp. chapter.

The goal of this section is to investigate and to compare different methods of
transforming a single binomial into a monomial via blowing up appropriate centers.
Within this, we develop explicit implementations so that the different approaches
can be compared on the basis of numerous examples.
Since the problem is of combinatorial nature, we focus on the situation over a

field, while we briefly discuss the case over Zp in Remark 7.6.4.

Definition 7.0.1. Let K be a field and let f = xA − ρxB ∈ K[x] := K[x1, . . . , xn]

be a binomial, where ρ ∈ K× and xA = xA1
1 · · ·xAnn for A = (A1, . . . , An) ∈ Zn≥0. We

say that f is locally a monomial if for every point q ∈ An
K = Spec(K[x]) there exists

a regular system of parameters for the local ring OAnK ,q such that f is a monomial
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7. Algorithmic local monomialization of a single binomial: efficiency considerations

times a unit with respect to these parameters.

For example, x3
1x

2
2(1 − x1)4 is locally monomial since for every q ∈ A2

K at least
x1 or 1 − x1 is a unit. On the other hand, x1x2(x1 + x2) is not locally a monomial
as there is no regular system of parameter for the local ring at the origin such that
x1x2(x1 + x2) becomes a monomial times a unit. The tool that we want to apply to
make a binomial locally monomial are blowups, e.g., x1x2(x1 + x2) becomes locally
monomial after blowing up with center V (x1, x2).
The tool that we want to apply to make a binomial locally monomial are blowups

as considered in Remark 2.2.6.

Definition 7.0.2. We say that a finite sequence of local blow-ups obtained by
iterating the previous procedure is a local monomialization of f = xA − ρxB if the
total transform of f is locally a monomial in every final chart of the blowup tree.

For example, the latter is the case if the total transform is of the form (up to
multiplication by a non-zero constant)

Example 7.0.3. Let g = x1x2(x1+x2) ∈ K[x1, x2]. Then g is not locally a monomial
as there is no regular system of parameter for the local ring at the origin such that
g becomes a monomial times a unit. g becomes locally monomial after blowing up
with center V (x1, x2).

A finite sequence of local blowups obtained by iterating the previous procedure is
a local monomialization if the total transform is of the form (up to multiplication
by a non-zero constant)

xC(1− µxB′) or xC(xi − µxB
′
), (7.0.1)

for C,B′ ∈ Zn≥0 and µ ∈ K×, where we require in the second case that Ci = B′i =

0 for the special i ∈ {1, . . . , n} given. The last hypothesis implies that we may
introduce the coordinate change yi := xi − µxB

′ such that xC(xi − µxB
′
) = xCyi

becomes a monomial. It is clear that xC(1 − µxB′) is a monomial times a unit if
1− µxB′ is invertible in OAnK ,q. On the other hand, if 1− µxB′ is not invertible, we
have to distinguish two cases. Let d be the greatest common divisor of the entries
of B′. First, if d = 1 or if d > 1 and µ has no d′-th root in K with d′|d, then
1 − µxB′ is irreducible and regular. Hence, it can be extended to a regular system
of parameters at q. Otherwise, 1 − µxB′ is not irreducible, but then all but one of
the distinct irreducible factors are invertible since they arise from the factorization
of T d′ − 1 ∈ K[T ] (with maximal d′ as in the first case and T a substitute for
(µxB

′
)1/d′ ∈ K[x]). Note that in both cases all xi with B′i 6= 0 are units in OAnK ,q
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Observe that (7.0.1) is not equivalent to being locally monomial. For example,
x2− y2 ∈ C[x, y] and xp + yp ∈ Fp[x, y] (p ∈ Z prime) do not fulfill (7.0.1), but they
are monomial after a suitable change of variables x̃ := x+ y, ỹ := x− y in the first
example and x̄ := x+ y for the second.

We choose the centers in each chart independent of the other charts, i.e., we do
not necessarily obtain a sequence of global blowups. This provides more freedom in
the choice of the center and is still sufficient for the explicit computations, where
the local charts are interpreted as case distinctions. In [72, Question 5.6], this local
variant of monomialization via blowups is discussed in the context of resolution of
singularities.

The differences in the methods appear in choice of the center for the next blowup.
Let us briefly explain the variants. Consider a binomial

f = xC(xA − ρxB),

where A,B,C ∈ Zn≥0 are such that AiBi = 0 for all i ∈ {1, . . . , n}. Set

g := xA − ρxB.

Suppose that f is not locally monomial. The basic idea for the four variants that
we consider are:

(1) Centers contained in the locus of maximal order (section 7.2 /
Construction 7.2.3). Choose D = V (xi | i ∈ I) such that D is contained in
the locus of maximal order of V (g). This is equivalent to imposing

min
{∑

i∈I

Ai,
∑
i∈I

Bi

}
= min

{
|A|, |B|

}
.

(2) Centers of codimension two (section 7.3 / Construction 7.3.4). Choose i, j ∈
{1, . . . , n} such that Ai 6= 0, Bj 6= 0 and both are maximal. Then, the center
for the blowup is D = V (xi, xj).

(3) Centers of minimal codimension contained in the singular locus (section 7.4 /
Construction 7.4.1). If min

{
|A|, |B|

}
≥ 2, choose I ⊆ {1, . . . , n} such that∑

i∈I Ai ≥ 2,
∑

i∈I Bi ≥ 2 and such that #I is minimal with this property.
Then D := V (xi | i ∈ I). Else, choose D as in (2).

(4) Centers of minimal codimension contained in an exceptional divisor or
contained in the singular locus (section 7.5 / Construction 7.5.1). If there
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7. Algorithmic local monomialization of a single binomial: efficiency considerations

is a center D of type (2) contained in an exceptional divisor, we choose this.
Otherwise, we follow (3).

Note that the centers are not necessarily uniquely determined and one might have to
make a choice. In the respective sections, we provide examples for this phenomenon.
While (1) follows the usual approach to resolution of singularities, method (2)

solely has the motivation to minimize the numbers of charts after a single blowup in
order to make it easier to control the transform of the binomial. In particular, the
resulting morphism is not necessarily an isomorphism outside of the singular locus of
g. In (3), we consider a mixture of (1) and (2); we try to choose the centers as large
as possible, but moreover, we require that the centers are contained in the singular
locus of g (resp. its variant after a blowup) and if the latter is empty, we follow (2).
Finally, in (4), we relax the last condition (3) and allow centers of codimension two,
which are not necessarily contained in the singular locus of g, if they are contained
in an exceptional divisor.
In the respective sections, we discuss the benefits of each approach and show

the termination of the local monomialization algorithm resulting from the different
choices, see Propositions 7.2.7, 7.3.5, 7.4.2, and Corollary 7.5.2, respectively.
Along this, we discuss algorithms for explicit implementations of each variant to
monomialize a binomial, which have been realized in the open source computer
algebra system Singular [30].
We study the binomial through the appearing exponents A,B,C and their

behavior along the combinatorial interpretation of blowups using φπ,i of
Remark 2.2.6. More precisely, we deduce from the exponents numerical measures
that detect how far the given binomial is from being monomial. Then we show
that the respective measure decreases strictly after a single blowup following the
corresponding procedure and that a strict decrease may only appear finitely many
times.
In the Appendix in Section B.3, we analyze the different variants for the choice

of the centers by comparing the numbers of charts for a worst case scenario and
for numerous explicit examples. The latter is based on an implementation of the
discussed algorithms in Singular. As a measure for the complexity, we consider
the number of charts along the monomialization process as well as at the end. A
brief summary is that variant (1) has a significant larger number than the other
three, while (2) is often the most efficient algorithm. But there exist cases, where
(3) and (4) are slightly better than (2). As mentioned above, we have to make a
choice among the possible centers. For some of the example, we study the different
results if we vary the choices.
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binomial f = xÃ − ρxB̃

initialization
f = xC(xA − ρxB)

finished? return

center

transformation

yes

no

Figure 7.1.: Flow chart of the local monomialization of a single binomial

7.1. The basic algorithmic framework

We begin by discussing the basic structure for the implementation of a
monomialization procedure. Within this, we also introduce numerical invariants,
which we later use to prove the termination of the different monomialization
methods. Furthermore, we provide an algorithm testing whether a given binomial
fulfills condition (7.0.1), which implies that the binomial is locally monomial.
Finally, we give an implementation of the transformation of the exponents along a
blowup.

The main method is the same for all of the four strategies. The difference of the
monomialization methods appears only in the choice of the center. In Figure 7.1,
we provide the flow chart of the main method and in Algorithm 7 the precise
implementation.

The implementations are of combinatorial nature. Instead of working with
the binomial xC(xA − ρxB), we consider the exponents A = (A1, . . . , An), B =

(B1, . . . , Bn) and C = (C1, . . . , Cn). Additionally, we introduce a vector of ones
and zeros E = (E1, . . . , En) ∈ {0, 1}n, where we encode, which variables correspond
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to exceptional divisors, i.e., Ei = 1 if and only if div(xi) is an exceptional divisor.
This will be necessary for the variant for choosing the center of section 7.5, see
Construction 7.5.1.
Before stating and explaining Algorithm 7, let us introduce the following numbers,

which play an important role in parts of the monomialization procedures discussed
in the present work.

Definition 7.1.1. Let K be any field. Let g = xA − ρxB ∈ K[x], for ρ ∈ K× and
A,B ∈ Zn≥0 such that AiBi = 0 for all i ∈ {1, . . . , n}. We define

α(g) := max{Ai | i ∈ {1, . . . , n}}
a(g) := #{i ∈ {1, . . . , n} | Ai = α(g)}
β(g) := max{Bi | i ∈ {1, . . . , n}}
b(g) := #{i ∈ {1, . . . , n} | Bi = β(g)}
ι(g) := (α(g), a(g), β(g), b(g)) ∈ Z4

≥0.

Here, we equip Z4
≥0 with the lexicographical ordering ≤`p. Given f = xCg with

C ∈ Zn≥0, we also write α(f) := α(g), . . . , ι(f) := ι(g), if no confusion is possible.

Clearly, ι(g) depends on the order of the monomials in g. In general, we
have ι(xA − xB) 6= ι(−xB + xA). Since we fix an order of the monomials in an
implementation anyways, we will work later with the string (A,B) instead of g and
we neglect the matter of making ι(g) independent of the order of the monomials.

Remark 7.1.2 (Algorithm 7). The input is:

• a binomial f = xÃ − ρxB̃ ∈ K[x] = K[x1, . . . , xn];

• an integer mode ∈ {1, 2, 3, 4}, which determines the method for choosing the
centers;

The output of Algorithm 7 is a list L which consists of all charts of the
monomialization process. From this list, one can determine a list of all leaves of
the monomialization tree, i.e., of all final charts. The data in a chart L[i] is of the
following form:

[1] (A,B,C,E) ∈ (Zn≥0)4 such that the total transform of f in the chart is f =

xC(xA − ρxB) and AiBi = 0, for all i ∈ {1, . . . , n}. Furthermore, E ∈ {0, 1}n
is the vector encoding which variables are exceptional.

[2] ι(f) = (α, a, β, b) ∈ Z4
≥0 is the measure introduced in Definition 7.1.1.
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Algorithm 7 Main method of local monomialization (for a description see
Remark 7.1.2)

INPUT: f = xÃ − ρxB̃, mode ∈ {1, 2, 3, 4}, where (x) = (x1, . . . , xn), Ã, B̃ ∈ Zn≥0

OUTPUT: list L, where L[i] is the data of the i-th chart
1: list Lf
2: Lf [1] = list(A,B,C, (0)), where f = xC(xA − ρxB) such that AiBi = 0, for all
i, and (0) ∈ Zn≥0

3: if check_finished(Lf [1]) then . see Algorithm 8
4: Lf [2] = Lf [3] = Lf [4] = ∅
5: L[1] = Lf
6: return L
7: Lf [2] = ι(f) = list(α, a, β, b) ∈ Z4

≥0 . Definition 7.1.1
8: I_center = compute_center(Lf,mode)
9: Lf [3] = I_center

10: intmat path[2][1] = 0,−1
11: Lf [4] = path
12: L[1] = Lf
13: successors = fill_list_for_next_charts(L[1], 1)
14: for L+ ∈ successors do
15: L[size(L) + 1] = L+

16: i = 2
17: while i ≤ size(L) do
18: L[i] = transformation(L[i], mode) . see Algorithm 9
19: if check_finished(L[i][1]) == false then
20: successors = fill_list_for_next_charts(L[i], i)
21: for L+ ∈ successors do
22: L[size(L) + 1] = L+

23: i = i+ 1

24: return L
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[3] I_center ⊆ {1, . . . , n} is the index set such that 〈xi | i ∈ I_center〉 is the
ideal defining the center for the next blowup.

[4] a pathmatrix

(
0 · · · x

−1 · · · y

)
such that x is the number of the predecessor

chart. The successors of the predecessors are labeled from 1 to #successors.
The number y indicates which of these successors the given chart is. This entry
is not important for the monomialization process, but for a later evaluation of
the final data to keep track of the global picture.

First, Algorithm 7 performs an initialization, by determining the exponents such
that f = xÃ − ρxB̃ = xC(xA − ρxB) has the desired form. Since there are no
exceptional divisors yet E = (0). Then, we check whether f verifies condition (7.0.1)
using the method check_finished, see Algorithm 8. If (7.0.1) holds, then the binomial
is locally monomial and we fill the list Lf with trivial data and return L.
If (7.0.1) is not fulfilled, we determine the full data of the chart (lines 7–11). In

there, compute_center(Lf,mode) is the method determining the index set of the
center for the next blowup. The input mode ∈ {1, 2, 3, 4} fixes, which of our four
methods is used. In the following sections, we discuss the methods for choosing the
center in detail. Furthermore, intmat initiates an integer matrix called path, which
encodes the tree structure of the monomialization process.
Then, the method fill_list_for_next_charts copies the data from L[i] (in line 13

for i = 1) to a list successors, which contains as many charts as needed (depending on
the center of the upcoming blowup). The only difference in the data of the charts
in successors is the adapted path matrix which contains the tree of the blowup
procedure. After this, the charts from list successors are added to the end of L.
Let us explain this step more in details: If we want to determine the successors
for L[i] and if the upcoming blowup has m many charts and if L has k entries in
total (with k ≥ i) before adding the successors to it, then the successors become
the entries L[k + 1], . . . , L[k + m] and we extend path for the successor L[k + j] by
the column (i, j)T at the end since it is the j-th chart of the blowup in L[i], where
j ∈ {1, . . . ,m}.
In the while-loop (lines 17–23), the data of L[i] (except for path) is modified

such that it becomes the transformed version of its predecessor with respect to
the previously determined center. The transformation algorithm is provided in
Algorithm 9 and described in Observation 7.1.3. Finally, we verify whether the data
in L[i] fulfills (7.0.1). If so, then the procedure continues with the entry L[i + 1] if
it exists (i.e., with the next chart which needs to be handled) or it stops if L has
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i entries. Otherwise, if (7.0.1) does not hold, we blow-up, the successor charts are
stored at the end of the list, analogous to before, and we continue with the chart
i+ 1. The while-loop will eventually end since we will show in the following sections
that the respective monomialization procedures terminate.

(End of Remark 7.1.2.)

Algorithm 8 check_finished
INPUT: list (A,B,C,E) of vectors in Zn≥0 such that A 6= B and AiBi = 0 for all

i ∈ {1, . . . , n}
OUTPUT: true, if the binomial xC(xA − xB) fulfills (7.0.1); false otherwise
1: if min{|A|, |B|} == 0 then
2: return true
3: if |A| = 1 or |B| = 1 then
4: if ∃ i : Ci = 0 and (Ai = 1 and |A| = 1) or (Bi = 1 and |B| = 1) then
5: return true
6: return false

Note that in Algorithm 8 it does not matter that the coefficient is 1 instead of ρ.
The result is the same.

Observation 7.1.3. Let f = xC(xA − ρxB) ∈ K[x] be a binomial with AiBi = 0

for all i ∈ {1, . . . , n}. Let us consider how the exponents change along the blowup
with center D = V (x1, . . . , xm), for some m ∈ {2, . . . , n}. In the X1-chart, we have

x1 = x′1, x2 = x′1x
′
2, . . . , xm = x′1x

′
m, xm+1 = x′m+1, . . . , xn = x′n.

On the level of exponents, this provides

A = (A1, A2, . . . , An) 7→ Ã′ := (A1 + A2 + . . .+ Am, A2, . . . , An)

and analogous for B and C.
We factor the total transform of f as x′C′(x′A′ − ρx′B′) such that A′iB′i = 0 for all

i ∈ {1, . . . , n}. If we set

δ := min{A1 + . . .+ Am, B1 + . . .+Bm},

then we get
A′ = (A1 + A2 + . . .+ Am − δ, A2, . . . , An),

B′ = (B1 +B2 + . . .+Bm − δ, B2, . . . , Bn),

C ′ = (C1 + C2 + . . .+ Cm + δ, C2, . . . , Cn).
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The other charts are analogous. Furthermore, it is straight forward to adapt this to
blowups in centers of the form V (xi | i ∈ I), where I ⊆ {1, . . . , n} is not necessarily
equal to {1, . . . ,m}.

This leads to Algorithm 9 for determining the transform of a binomial in a given
chart of the blowup in V (xi | i ∈ I).

Algorithm 9 transformation (for a description see Remark 7.1.4)
INPUT: list M , mode ∈ {1, 2, 3, 4}, where M is of the same form as L[i] in

Remark 7.1.2
OUTPUT: list retList which is the transformed variant of chart M
1: (A,B,C,E) = M [1]
2: path = M [4]
3: I = M [3] . the index set of the center
4: i = path[2,ncols(path)] . so M is the Xi-chart of the blowup

. with center V (xi | i ∈ I)
5: δ = min{∑j∈I Aj,

∑
j∈I Bj}

6: Ai =
∑

j∈I Aj − δ
7: Bi =

∑
j∈I Bj − δ

8: Ci =
∑

j∈I Cj + δ
9: Ei = 1
10: retList[1] = list(A,B,C,E)
11: if check_finished(retList[1]) then
12: retList[2] = retList[3] = ∅
13: retList[4] = path;
14: return retList
15: retList[2] = ι(xC(xA − ρxB)) . Definition 7.1.1
16: I_center = compute_center(retList[1],mode)
17: retList[3] = I_center
18: retList[4] = path
19: return retList

Remark 7.1.4 (Algorithm 9). The input is:

• a list M , which represents the data of a chart and hence is of the same form
as L[i] in Remark 7.1.2

• an integer mode ∈ {1, 2, 3, 4}, which determines the method for choosing the
centers;

The output of Algorithm 9 is the transformed data of the input chart.
First, we initialize the data (lines 1–4). In particular, we specify the index set

I corresponding to the center of the blowup and the element i ∈ I such that M
corresponds to the Xi-chart of the blowup. After that, we transform the exponents
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7.2. Centers contained in the locus of maximal order

(A,B,C,E) as described in Observation 7.1.3 (but now for the general case) and
mark the variable xi as exceptional in lines 6–9. Finally, we check whether the
transformed binomial fulfills (7.0.1) and determine the remaining data so that the
output data is of the same form as L[i] in Remark 7.1.2. (Note that the path matrix
is extended in line 20 of Algorithm 7.)

The only part of implementation which differs in the various modes is the
computation of the center. We have seen above that every other method
of the implementation only uses the mode parameter in order to call the
compute_center -method which is described later.

7.2. Centers contained in the locus of maximal

order

In this section we discuss the first of the four variants for the choice of center in
details. We fix a binomial

f = xC(xA − ρxB) ∈ K[x] = K[x1, . . . , xn],

where ρ ∈ K×, A,B,C ∈ Zn≥0 are such that AiBi = 0 for all i ∈ {1, . . . , n} and K
is a field. We set

g := xA − ρxB.

Observe that the condition AiBi = 0 implies that at least one of them is zero and
hence xi cannot be factored from g.
If g = 1−µxB or f = xC(xi−µxB), for C,B ∈ Zn≥0 and µ ∈ K×, where we require

in the second case that Ci = 0 for the given i, then f is locally monomial and no
blowups are required. Hence, throughout this section, we assume that (7.0.1) is not
fulfilled, i.e., that the following condition holds:

• either min{|A|, |B|} ≥ 2, or

• min{|A|, |B|} = 1 and Ci 6= 0 for every i such that Ai = 1 if
|A| = 1, or Bi = 1 if |B| = 1.

(7.2.1)

Again, let us point out that (7.2.1) does not imply that f is not locally monomial.
For example, x2− y2 ∈ C[x, y] is monomial after introducing x̃ := x+ y, ỹ := x− y,
but (7.2.1) holds. Nonetheless, it is not hard to test with a computer whether
(7.0.1) is true and thus we admit that we might perform some blowups, which are
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7. Algorithmic local monomialization of a single binomial: efficiency considerations

not needed.

A common approach in resolution of singularities for a hypersurface V (g) is to
consider regular centers contained in its locus of maximal order, see Definition 2.4.8.

If X is a variety, which is not a hypersurface, then the order is not an appropriate
measure for the complexity of the singularity, see [35, Example 2.7] or Section 2.4.2.

Lemma 7.2.1. Let g = xA− ρxB ∈ K[x] be a binomial such that min{|A|, |B|} ≥ 1

and AiBi = 0 for all i ∈ {1, . . . , n}. Let I ⊆ {1, . . . , n} be any subset. Set X := V (g)

and DI := V (xi | i ∈ I). We have:

1. max-ord(X) = min{|A|, |B|}.

2. DI ⊆ Max-ord(X)⇐⇒ min
{∑

i∈I Ai,
∑

i∈I Bi

}
= min

{
|A|, |B|

}
.

The condition min{|A|, |B|} ≥ 1 comes from the fact that we assume (7.2.1) to
hold. Notice that it is necessary, e.g., for g = x1x2−1 the maximal order is 1 and not
zero, which can be seen by computing the order at 〈x1−1, x2−1〉, cf. Example 7.6.2.

Proof of Lemma 7.2.1. Let m := 〈x1, . . . , xn〉 be the maximal ideal corresponding
to the origin. We have min{|A|, |B|} = ordm(g) ≤ max-ord(X).

Suppose there is some prime ideal p ⊂ K[x] with ordp(g) > ordm(g). This implies,
if we base change to an algebraic closure K of K, then there is a maximal ideal n ⊂
K[x] such that ordn(g) > ordm(g) = min{|A|, |B|}. Since K is algebraically closed
and n is a maximal ideal, there are c1, . . . , cn ∈ K such that n = 〈x1−c1, . . . , xn−cn〉
by Hilbert’s Nullstellensatz.

Set I1 := {i ∈ {1, . . . , n} | Ai 6= 0} and I2 := {i ∈ {1, . . . , n} | Bi 6= 0} . Since
AiBi = 0 for all i ∈ {1, . . . , n}, we have I1 ∩ I2 = ∅ and it makes sense to define
yi := xi − ci for i ∈ I1 and zi := xi − ci for i ∈ I2. This provides

xA − ρxB =
∏
i∈I1

(yi + ci)
Ai − ρ

∏
i∈I2

(zi + ci)
Bi =

∑
α∈Z|I1|≥0

λα(c)yα −
∑

β∈Z|I2|≥0

µβ(c)zβ,

where the coefficients λα(c), µβ(c) ∈ K fulfill λA(c) = 1, µB(c) = ρ and λα(c) =

µβ(c) = 0 if |α| ≥ |A| and α 6= A, resp. if |β| ≥ |B| and β 6= B (and we use
the obvious notation c, y, z). In order to have ordn(g) > min{|A|, |B|}, all terms
yCzD with |C| + |D| ≤ min{|A|, |B|} have to cancel out. This is impossible since
the variables appearing in the products are disjoint and λA(c)µB(c) 6= 0. Thus, we
arrived to a contradiction and (1) follows.
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7.2. Centers contained in the locus of maximal order

Let us come to part (2). Set d := max-ord(X) = min{|A|, |B|}. The condition
DI = V (xi | i ∈ I) ⊆ Max-ord(X) is equivalent to

xA − ρxB ∈ 〈xi | i ∈ I〉d \ 〈xi | i ∈ I〉d+1.

The latter is equivalent to
∑

i∈I Ai ≥ d and
∑

i∈I Bi ≥ d, and equality has to hold
for one of them. Hence, (2) follows.

Example 7.2.2. Let g = x3
1x2 − x3

3x
4
4 and set X := V (g) ⊂ A4

K . Using the
previous lemma, we get that max-ord(X) = 4, V (x1, x2, x4) ⊆ Max-ord(X), while
V (x1, x2, x3) 6⊆ Max-ord(X).
Let us blow-up with center D := V (x1, x2, x3, x4) ∈ Max-ord(X), the origin of

A4
K . In the X3-chart, we have (x1, x2, x3, x4) = (x′1x

′
3, x
′
2x
′
3, x
′
3, x
′
3x
′
4) and the total

transform of g is x′43 (x′31 x
′
2 − x′33 x′44 ). We obtain essentially the same binomial and

no improvement is detected. The reason for this is that the center has been chosen
too small.
We leave it as an exercise to the reader to verify that the maximal order decreases

at every chart after blowing up with center V (x1, x2, x4).

Let us now describe the method for choosing the center for a binomial using the
locus of maximal order.

Construction 7.2.3. Let f = xC(xA−ρxB) ∈ K[x] with ρ ∈ K× and A,B,C ∈ Zn≥0

such that AiBi = 0 for all i ∈ {1, . . . , n}. Set g := xA−ρxB. Assume that hypothesis
(7.2.1) holds. We choose I ⊆ {1, . . . , n} such that

min
{∑

i∈I

Ai,
∑
i∈I

Bi

}
= min

{
|A|, |B|

}
and we require additionally that

∀ j ∈ I : min
{ ∑
i∈I\{j}

Ai,
∑

i∈I\{j}

Bi

}
< min

{
|A|, |B|

}
. (7.2.2)

Then, the center for the next blowup is DI := V (xi | i ∈ I).

By Lemma 7.2.1, the center DI is contained in the maximal order locus of
V (g). On the other hand, (7.2.2) guarantees that DI is not too small so that an
improvement can be detected.

Example 7.2.4. Let f = xA − xB = x3
1x

2
2 − x5

3x4 ∈ K[x1, x2, x3, x4]. Since
min{|A|, |B|} = |A| = 5, we have {1, 2} ⊆ I for every I ⊆ {1, . . . , 4} fulfilling
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the conditions of Construction 7.2.3. Furthermore, I ′ := {1, 2, 3, 4} does not fulfill
(7.2.2) for j = 4. Therefore, the unique center determined by Construction 7.2.3 is
V (x1, x2, x3).

Clearly, the subset I ⊆ {1, . . . , n} is not unique in general and we may have to
make a choice, as the following example shows. As explained in the introduction,
we do not require that our procedure provides a global monomialization of V (f).
Therefore we may allow to make choices as long as we can prove the termination of
the resulting procedure (Proposition 7.2.7).

Example 7.2.5. Let f = x1x
2
2 − x3

3x
2
4x5 ∈ K[x1, . . . , x5]. Since no xi can be

factored in f , we have g = f . The maximal order of g is three and D1 :=

V (x1, x2, x3) and D2 := V (x1, x2, x4, x5) are the possible choices for the center
following Construction 7.2.3.

1. Blow-up with center D1. In the X3-chart, we have

(x1, x2, x3, x4, x5) = (x′1x
′
3, x
′
2x
′
3, x
′
3, x
′
4, x
′
5).

Hence, the total transform of f is f = x′33 (x′1x
′2
2 − x′24 x

′
5) = x′33 g

′, where we
define g′ := x′1x

′2
2 − x′24 x′5. (Note that g′ fulfills the property that no x′i divides

g′.) We have max-ord(g) = 3 = max-ord(g′) and |B′| = 3 = |A| < |B| = 6.

2. Blow-up with center D2. In the X4-chart, we have

(x1, x2, x3, x4, x5) = (x̃1x̃4, x̃2x̃4, x̃3, x̃4, x̃4x̃5).

(For a better distinction to (1), we use ∗̃ instead of ∗′ for the coordinates here.)
The total transform of f is f = x̃3

4(x̃1x̃
2
2−x̃3

3x̃5). Thus, we set g̃ := x̃1x̃
2
2−x̃3

3x̃5.
We get max-ord(g̃) = 3 = max-ord(g) and |B̃| = 4 < 6 = |B|. (The situation
in the X5-chart is analogous.)

On the other hand, in both cases, one can show that the maximal order is strictly
smaller than three if we consider the X1- or the X2-chart.

For the general case, we have to introduce a measure which detects the
improvement.

Definition 7.2.6. Let g = xA − ρxB ∈ K[x] with ρ ∈ K× and A,B ∈ Zn≥0 such
that AiBi = 0 for all i ∈ {1, . . . , n}. We define

inv(g) :=
(

min{|A|, |B|}, max{|A|, |B|}
)
∈ Z2

≥0.
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7.2. Centers contained in the locus of maximal order

Here, we equip Z2
≥0 with the lexicographical ordering ≥`p.

In the above example, we have inv(g) = (3, 6), inv(g′) = (3, 3) <`p inv(g), and
inv(g̃) = (3, 4) <`p inv(g).
In fact, inv(g) = (max-ord(g),max-ord(g) ·δ(g)), where δ(g) is a known secondary

invariant to measure the complexity of a given singularity, e.g., see [57, p. 120, where
it is called γ], [25, Theorem 3.18] or [21, Corollary 5.1].

Proposition 7.2.7. Let f = xC(xA − ρxB) ∈ K[x] = K[x1, . . . , xn] with ρ ∈ K×
and A,B,C ∈ Zn≥0 such that AiBi = 0 for all i ∈ {1, . . . , n}. Set g := xA−ρxB. Let
π : B`DI (An

K)→ An
K be the blowup in a center DI , which fulfills the properties as in

Construction 7.2.3. For every standard chart Uxj := D+(Xj) ∼= An
K, j ∈ I, we have

inv(g′) <`p inv(g),

where f = x′C
′
(x′A

′ − ρx′B
′
) ∈ K[x′] with A′iB

′
i = 0 for all i ∈ {1, . . . , n}, g′ :=

x′A
′ − ρx′B′ is the strict transform of g, and (x′) = (x′1, . . . , x

′
n) are the coordinates

in Uxj .
In particular, the local monomialization process obtained by choosing the centers

as in Construction 7.2.3 terminates.

Proof. If hypothesis (7.2.1) does not hold for f , then f is already locally monomial
and there is nothing to show. Hence, suppose that (7.2.1) holds. Without loss of
generality, we have |A| ≤ |B|. After relabeling the variables (x1, . . . , xn) we may
assume that

{i ∈ {1, . . . , n} | Ai 6= 0} = {1, . . . ,m},

for some m < n. Thus, we have {1, . . . ,m} ⊆ I, i.e., DI ⊆ V (x1, . . . , xm).
Let us consider the Xi-chart of the blowup with center DI . We distinguish two

cases, i ≤ m and i > m.
Assume that i ≤ m, i.e., Ai 6= 0. Using the notation of the proposition, we have

g′ = x′A(x′i)
−Ai − ρx′B(x′i)

|BI |−|A| ∈ K[x′],

where |BI | :=
∑

j∈I Bj. Notice that |BI | − |A| ≥ 0. Our hypothesis |A| ≤ |B|
implies that inv(g′) = (|A|−Ai, |B|+ |BI |− |A|) in this case. Since Ai 6= 0, we have
|A| > |A| − Ai and hence inv(g′) <`p inv(g).
Now, suppose that i ∈ {m+ 1, . . . n}, i.e., Bi 6= 0. We get

g′ = x′A
′ − ρx′B′ = x′A − ρx′Bx′|BI |−|A|−Bii ∈ K[x′].
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First, we observe that min{|A′|, |B′|} ≤ |A′| = |A|. If the inequality is strict, we
obtain inv(g′) <`p inv(g) as desired. Hence, let us assume that min{|A′|, |B′|} =

|A′| = |A|. The claim follows if we can show |B′| < |B|. By (7.2.2) and the
hypothesis |A| ≤ |B|, we have that |BI | − Bi < |A| and therefore we get |B′| =

|B|+ |BI | − |A| −Bi < |B| and in particular inv(g′) <`p inv(g).
Since the improvement of inv(.) is strict and since inv(.) takes values in Z2

≥0, the
local monomialization procedure using centers of the kind in Construction 7.2.3 ends
after finitely many steps.

Given a binomial in K[x] = K[x1, . . . , xn], we provide in Algorithm 10 a method
to determine a subset I ⊆ {1, . . . , n} fulfilling the conditions of Construction 7.2.3.
Therefore, V (xi | i ∈ I) will be our center contained in the maximal order locus of
the binomial.

Remark 7.2.8 (Algorithm 10). The input is:

• a list M , which represents the data of a chart and hence is of the same form
as L[i] in Remark 7.1.2

• the integer mode = 1, which tells us to choose the center as in
Construction 7.2.3;

The output of Algorithm 10 is the index set I ⊆ {1, . . . , n} determining the next
center for the monomialization procedure.
First, we initialize the data (lines 1–3). We introduce the exponents of the

binomial xC(xA − ρxB) in the given chart. Further, we introduce two auxiliary
sets I and J , where I will become the output set.
Then we perform a case distinction depending on whether |A| < |B| (lines 4–14),

or |A| > |B| (lines 15–25), or |A| = |B| (lines 26–28).
Suppose |A| < |B|. Then, the maximal order of xA − ρxB is |A| and every i

with Ai > 0 contributes to the index set of the center (line 5). After that, we
sum up the elements of B until the resulting sum is ≥ |A| (lines 6–9). Within
this, we collect in J the indices j with Bj > 0 appearing in the sum. At this
moment, the index set Ĩ := I ∪ J fulfills the first condition of Construction 7.2.3,
min

{∑
i∈Ĩ Ai,

∑
i∈Ĩ Bi

}
= min

{
|A|, |B|

}
. But the second condition (7.2.2) does not

necessarily hold, i.e., the number of elements in Ĩ might be too large. Hence, we
remove step-by-step elements from J , without destroying the first condition, until
(7.2.2) holds (lines 10–12).
The case |A| > |B| is analogous, we only have to interchange the role of A and B.

Finally, if |A| = |B|, all variables appearing in the binomial with non-zero exponent
have to be contained in the ideal of the center.
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Algorithm 10 compute center (in the locus of maximal order)
INPUT: list M , mode = 1, where M is of the same form as L[i] in Remark 7.1.2
OUTPUT: I ⊆ {1, . . . , n} such that V (xi | i ∈ I) is the next center in the

monomialization process
1: (A,B,C,E) = M [1]
2: I = ∅, J = ∅
3: A = {i | Ai > 0}, B = {i | Bi > 0}
4: if |A| < |B| then
5: I = A
6: for b ∈ B do
7: J = J ∪ {b}
8: if

∑
j∈J Bj ≥ |A| then

9: break
10: for i ∈ J do
11: if

∑
j∈J\{i}Bj ≥ |A| then

12: J = J \ {i}
13: I = I ∪ J
14: return I
15: else if |B| < |A| then
16: I = B
17: for a ∈ A do
18: J = J ∪ {a}
19: if

∑
j∈J Aj ≥ |B| then

20: break
21: for i ∈ J do
22: if

∑
j∈J\{i}Aj ≥ |B| then

23: J = J \ {i}
24: I = I ∪ J
25: return I
26: else if |A| = |B| then
27: I = A ∪ B
28: return I
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Clearly, the choice of center depends on the ordering of the variables. In
Example 7.2.5, we obtain the center D1 if we choose the ordering (x1, x2, x3, x4, x5),
while we get D2 for the ordering (x1, x2, x4, x5, x3) (using the notation of the
example).

7.3. Centers of codimension two

Let us come to the second method for choosing the center. Recall that f = xC(xA−
ρxB) and g = xA − ρxB such that no xi can be factored from g. In contrast to the
previous method, we may neglect the connection to the singularities of V (g) and
choose centers of minimal codimension. This has the benefit that we reduce the
number of charts which we have to control after a single blowup. Hence, the idea
is to take i, j ∈ {1, . . . , n} such that Ai 6= 0 and Bj 6= 0, which provides the center
D = V (xi, xj). An additional requirement, which we shall need in order to detect an
improvement after the blowup, is that the exponents Ai and Bj are maximal among
the possible choices.

Example 7.3.1. (cf. Example 7.2.4) LetX = V (f) be the hypersurface described by
the binomial f = x3

1x
2
2−x5

3x4 ∈ K[x1, x2, x3, x4]. The maximal exponents appearing
in the monomials are A1 = 3 and B3 = 5. Therefore, we will choose D = V (x1, x3)

as the center for the next blowup.
In comparison to Example 7.2.4 we see that we can reduce the number of successor
charts by choosing a center of codimension 2.

Note that the maximal order is not an appropriate measure to detect the
improvement along a blowup of the given type.

Example 7.3.2. Let f = g = xa1x
a
2x

a
3 − xb4 ∈ K[x1, x2, x3, x4] with a, b ∈ Z≥2 such

that a < b < 2a. (For example, take a = 3 and b = 5). Observe that max-ord(g) = b.
We choose the center V (x1, x4). In the X1-chart, we have

(x1, x2, x3, x4) = (x′1, x2, x3, x
′
1x
′
4)

and the total transform of f is f ′ = x′a1 (xa2x
a
3 − x′b−a1 x′b4 ) = x′a1 g

′, where we define

g′ := x′A
′ − x′B′ := xa2x

a
3 − x′b−a1 x′b4 .

Since a < b, we have |B′| = 2b − a > b, while b < 2a implies |A′| = 2a > b.
Therefore, we have max-ord(g′) > max-ord(g), which is not a surprise since the
center V (x1, x4) is not contained in Max-ord(g).
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Note that the same happens if we blow-up one of the other reasonable centers of
codimension two, which are V (x2, x4) and V (x3, x4).

We use ι(g) = (α(g), a(g), β(g), b(g)) ∈ Z4
≥0 of Definition 7.1.1 to deduce the

termination for the present method of monomialization. In Example 7.3.2, we have
ι(g′) = (a, 2, b, 1) <`p (a, 3, b, 1) = ι(g). In general, not any codimension two center
provides an improvement of ι(.).

Example 7.3.3. Consider the binomial f = g = xa1 − xb2x
c
3 ∈ K[x1, x2, x3] with

a, b, c ∈ Z≥2 and b ≤ c. We have

ι(g) =

{
(a, 1, c, 1), if b < c,

(a, 1, c, 2), if b = c.

Suppose that b < c. Let us blow-up with center V (x1, x2), which does not fulfill
the additional hypothesis that the corresponding exponents in g are maximal. For
simplicity, we define m := min{a, b}. In the X2-chart, the total transform of f is
f = x′m2 (x′a1 x

′a−m
2 − x′b−m2 xc3), which provides g′ = x′a1 x

′a−m
2 − x′b−m2 xc3 and ι(g′) =

(a, 1, c, 1) = ι(g).

In order to guarantee a decrease of ι(.), we choose the center as follows:

Construction 7.3.4. Let f = xC(xA−ρxB) ∈ K[x] with ρ ∈ K× and A,B,C ∈ Zn≥0

such that AiBi = 0 for all i ∈ {1, . . . , n}. Set g := xA−ρxB. Assume that hypothesis
(7.2.1) holds. If ι(g) = (α, a, β, b) ∈ Z4

≥0, then we choose j1, j2 ∈ {1, . . . , n} such
that Aj1 = α and Bj2 = β. The center for the next blowup is then DI = V (xj1 , xj2),
for I = {j1, j2}.

Already in Example 7.3.2, we have seen that the center described in the above
construction is not unique. But, analogous to Proposition 7.2.7, we can prove the
following result.

Proposition 7.3.5. Let f = xC(xA − ρxB) ∈ K[x] = K[x1, . . . , xn] with ρ ∈ K×
and A,B,C ∈ Zn≥0 such that AiBi = 0 for all i ∈ {1, . . . , n}. Set g := xA−ρxB. Let
π : B`DI (An

K)→ An
K be the blowup in a center DI , which fulfills the properties as in

Construction 7.3.4. For every standard chart Uxj := D+(Xj) ∼= An
K, j ∈ I, we have

ι(g′) <`p ι(g),

where f = x′C
′
(x′A

′ − ρx′B
′
) ∈ K[x′] with A′iB

′
i = 0 for all i ∈ {1, . . . , n}, g′ :=

x′A
′ − ρx′B′, and (x′) = (x′1, . . . , x

′
n) are the coordinates in Uxj .
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In particular, the local monomialization process obtained by choosing the centers
as in Construction 7.3.4 terminates.

Proof. We may assume j1 = 1 and j2 = 2 after relabeling the variables (x1, . . . , xn).
Hence, the center is V (x1, x2). Since the exponents A+ := (A3, . . . , An) and B+ :=

(B3, . . . , Bn) are not changed by the blowup, we use the abbreviation

g = xα1x
A+

+ − ρxβ2xB+

+ ,

where ι(g) = (α, a, β, b) and x+ := (x3, . . . , xn). Without loss of generality, we
assume α ≤ β.
In the X1-chart, the total transform of f provides g′ = x′A

′ − ρx′B
′

:= x
′A+

+ −
ρx′β−α1 x′β2 x

′B+

+ . Therefore, α(g′) < α = α(g), if a = a(g) = 1, or (α(g′), a(g′)) =

(α, a− 1) otherwise. So, we get ι(g′) <`p ι(g).
Let us consider theX2-chart of the blowup. In there, we obtain g′ = x′A

′−ρx′B′ :=

x′α1 x
′A+

+ − ρx′β−α2 x
′B+

+ . In order to show that ι(.) improves, we first notice that
(α(g′), a(g′)) = (α(g), a(g)) since A′ = A. Analogous to the X1-chart, we have
β(g′) < β = β(g), if b = b(g) = 1, or (β(g′), b(g′)) = (β, b − 1) otherwise. Hence,
we have in all cases that ι(g′) <`p ι(g).
Since the improvement of ι(.) is strict and since ι(.) takes values in Z4

≥0, the local
monomialization procedure using centers of the kind in Construction 7.3.4 ends after
finitely many steps.

The blowup π : B`DI (An
K) → An

K with center DI chosen the following
Construction 7.3.4 is not necessarily an isomorphism outside the singular
locus of V (g).

Example 7.3.6. Let f = g = x1x2−x5
3 ∈ K[x1, x2, x3]. Construction 7.3.4 provides

the possible centers V (x1, x3) and V (x2, x3). Both are not contained in the singular
locus of V (g), which is Sing(V (g)) = V (x1, x2, x3). Therefore, the potential centers
are strictly larger than the singular locus and the corresponding blowup morphisms
are not an isomorphisms outside of the singular locus.

In Algorithm 11, we provide an implementation of Construction 7.3.4 to choose a
center of codimension 2.

Remark 7.3.7 (Algorithm 11). The input and the output are of the same form as
in Algorithm 10 (see Remark 7.2.8) with the only difference that the input mode
is 2. We initialize the data, by fixing the names of the exponents of the binomial
f = xC(xA − ρxB) of this chart and determining the maximal exponents α resp. β
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Algorithm 11 compute center (with codimension 2)
INPUT: list M , mode = 2, where M is of the same form as L[i] in Remark 7.1.2
OUTPUT: I ⊆ {1, . . . , n} such that V (xi | i ∈ I) is the next center in the

monomialization process
1: (A,B,C,E) = M [1]
2: α = max{Ai}, β = max{Bi}
3: I = {min{i | Ai = α}, min{i | Bi = β} }
4: return I

appearing on each side. Then, we choose i and j minimal in {1, . . . , n} such that
Ai = α and Bj = β achieve the maximal values.

Note that we cannot have α = 0 or β = 0 in this algorithm since we tested
whether (7.0.1) holds before applying compute_center in Algorithm 7 (line 3) resp. in
Algorithm 9 (line 11).

7.4. Centers of minimal codimension contained in

the singular locus

The third variant is a mixture of the first two. Namely, we want to choose centers as
large as possible (as in Construction 7.3.4), but we require additionally that along the
monomialization process the centers are contained in the singular locus of the factor,
which we obtain after factoring the monomial part (similar to Construction 7.2.3). If
this singular locus is empty, we follow the method of section 7.3 (Construction 7.3.4).
Within this, we have to distinguish several cases.

Construction 7.4.1. Let f = xC(xA−ρxB) ∈ K[x] with ρ ∈ K× and A,B,C ∈ Zn≥0

such that AiBi = 0 for all i ∈ {1, . . . , n}. Set g := xA−ρxB. Assume that hypothesis
(7.2.1) holds. Let ι(g) = (α, a, β, b) ∈ Z4

≥0.

(i) If min{α, β} ≥ 2 or min{|A|, |B|} = 1, chooseDI = V (xj1 , xj2), for I = {j1, j2}
as in Construction 7.3.4, for the center of the blowup.

(ii) If α = 1, β ≥ 2 and min{|A|, |B|} ≥ 2, choose j1, j2, j3 ∈ {1, . . . , n} with Aj1 =

Aj2 = 1 and Bj3 = β. The center of the next blowup is DI = V (xj1 , xj2 , xj3),
for I = {j1, j2, j3}.

(iii) If α ≥ 2, β = 1 and min{|A|, |B|} ≥ 2, choose j1, j2, j3 ∈ {1, . . . , n} with Aj1 =

α and Bj2 = Bj3 = 1. The center of the next blowup is DI = V (xj1 , xj2 , xj3),
for I = {j1, j2, j3}.
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7. Algorithmic local monomialization of a single binomial: efficiency considerations

(iv) If α = β = 1 and min{|A|, |B|} ≥ 2, choose j1, j2, j3, j4 ∈ {1, . . . , n}
with Aj1 = Aj2 = Bj3 = Bj4 = 1. The center of the next blowup is
DI = V (xj1 , xj2 , xj3 , xj4), for I = {j1, j2, j3, j4}.

We say (f, g) is in case (∗) if condition (∗) is fulfilled, where ∗ ∈ {i, ii, iii, iv}.

Observe that for f = x1(x1 − x2x3) we are in case (i), while f = x1(x1 − x2)

is monomial. Furthermore, f = x1x2x3 − x4x5x6 is case (iv) and there are several
choices for the center.

Proposition 7.4.2. Let f = xC(xA − ρxB) ∈ K[x1, . . . , xn] with ρ ∈ K× and
A,B,C ∈ Zn≥0 such that AiBi = 0 for all i ∈ {1, . . . , n}. Let g = xA − ρxB

and ι(g) = (α, a, β, b) ∈ Z4
≥0. Let π : B`DI (An

K) → An
K be the blowup in a center

DI , which fulfills the properties as in Construction 7.4.1. For every standard chart
Uxj := D+(Xj) ∼= An

K, j ∈ I, we have

ι(g′) <`p ι(g),

where f = x′C
′
(x′A

′ − ρx′B
′
) ∈ K[x′] with A′iB

′
i = 0 for all i ∈ {1, . . . , n}, g′ :=

x′A
′ − ρx′B′, and (x′) = (x′1, . . . , x

′
n) are the coordinates in Uxj .

In particular, the local monomialization process obtained by choosing the centers
as in Construction 7.4.1 terminates.

Proof. We show the result by going through all cases of Construction 7.4.1. First,
if (f, g) is in case (i), then we have ι(g′) <`p ι(g) by Proposition 7.3.5.

Next, we assume that (f, g) is in case (ii), i.e., α = 1, β ≥ 2 and min{|A|, |B|} ≥ 2.
We relabel the variables, so that we have Bm+1 = β and {i ∈ {1, . . . , n} | Ai = 1} =

{1, . . . ,m} for some 2 ≤ m < n. In particular,

g = x1x2 · · ·xm − ρxB.

Hence, without loss of generality, the center is DI := V (x1, x2, xm+1).
The X1- and the X2-chart are analogous, so we consider only one of them. In the

X1-chart, we get (using the notation of the statement of the proposition)

g′ = x′2 · · ·x′m − ρ x′β−2
1 x′B.

We see that (α(g′), a(g′)) = (1,m − 1) <`p (1,m) = (α(g), a(g)). This implies the
desired decrease ι(g′) <`p ι(g). Observe that (β(g′), b(g′)) = (β(g), b(g)) did not
change.
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7.4. Centers of minimal codimension contained in the singular locus

On the other hand, using the notation xB = xβm+1x
B+

+ , we obtain in theXm+1-chart

g′ = x′1 · · ·x′m − ρ x′β−2
m+1 x

′B+

+ .

We have (α(g′), a(g′)) = (α(g), a(g)) and β(g′) ≤ β(g). Either the inequality is strict
or we have equality and b(g′) = b(g)− 1 since the power of x′m+1 decreased strictly.
In both cases, we get ι(g′) <`p ι(g).

The case that (f, g) is in case (iii) is analogous to the previous one. One only
has to interchange the role of A and B and take into account that (α(g′), a(g′)) =

(α(g), a(g)) in the X1-(resp. X2-)chart.

Finally, suppose that (f, g) is in case (iv). After relabeling the variables we get

g = x1 · · ·xm − ρxm+1 · · ·xm+`,

for some 2 ≤ m < n and 2 ≤ ` < n with m+ ` ≤ n. Without loss of generality, the
center is DI = V (x1, x2, xm+1, xm+2). So, we have to consider four charts. In the
X1-chart we get

g′ = x′A
′ − ρx′B′ = x′2 · · ·x′m − ρx′m+1 · · ·x′m+`.

This implies that (α(g′), a(g′)) = (α(g), a(g) − 1) and (since B′ = B) we also have
(β(g′), b(g′)) = (β(g), b(g)). In particular, we get ι(g′) <`p ι(g). The other three
charts are analogous.

Since the improvement of ι(.) is strict in every case and since ι(.) takes
values in Z4

≥0, the local monomialization procedure using centers of the kind in
Construction 7.4.1 ends after finitely many steps.

In Algorithm 12 we discuss an implementation for the choice of the center following
Construction 7.4.1.

Remark 7.4.3 (Algorithm 12). The input and the output are of the same form as
in Algorithm 10 (see Remark 7.2.8) with the only difference that the input mode
is 3. First, we initialize the data and determine the minimal indices i1 and i2, for
which the maximal entry of A resp. B is achieved, where f = xC(xA − ρxB) is the
monomial in the given chart.
If V (xi1 , xi2) is contained in the singular locus of V (xA − ρxB) or if f is of the

form f = xC(xj − xD), for j ∈ {i1, i2} and D ∈ {A,B} the corresponding element,
then the algorithm returns {i1, i2} as the index set for the upcoming center (line
5–6). This is case (i) of Construction 7.4.1.
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Algorithm 12 compute center of minimal codimension contained in the singular
locus
INPUT: list M , mode = 3, where M is of the same form as L[i] in Remark 7.1.2
OUTPUT: I ⊆ {1, . . . , n} such that V (xi | i ∈ I) is the next center in the

monomialization process
1: (A,B,C,E) = M [1]
2: α = max{Ai}, β = max{Bi}
3: i1 = min{i | Ai = α}, i2 = min{i | Bi = β}
4: I = {i1, i2}
5: if min{α, β} ≥ 2 or min{|A|, |B|} == 1 then B case(i)
6: return I
7: else if min{|A|, |B|} ≥ 2 then
8: if α = 1 and β ≥ 2 then . case(ii)
9: I = I ∪min{i | Ai = 1 and i > i1}
10: else if α ≥ 2 and β = 1 then . case(iii)
11: I = I ∪min{i | Bi = 1 and i > i2}
12: else if α = 1 and β = 1 then . case(iv)
13: I = I ∪ {min{i | Ai = 1 and i > i1}, min{i | Bi = 1 and i > i2} }
14: return I

Otherwise, we have min{α, β} = 1 and min{|A|, |B|} ≥ 2. Thus we make a case
distinction depending on the value of α and β (starting line 7), where we have to
add an index i > i1 for which Ai = 1 if α = 1 and analogous if β = 1. The latter
guarantees the center is contained in the singular locus of xA−ρxB. This covers the
missing cases (ii)–(iv) of Construction 7.4.1.

As in Algorithm 11, the case min{α, β} = 0 cannot appear since we tested
whether the data of the chart is of the form (7.0.1) (line 3 Algorithm 7 and line
11 Algorithm 9).

If we consider the binomial of Example 7.3.1 and apply Algorithm 12, we obtain
the same center as using Algorithm 11. But it may happen that the two algorithms
lead to different centers.

Example 7.4.4. Let f = x1x2 + x2
3 ∈ K[x1, x2, x3]. Algorithm 12 provides the

center V (x1, x2, x3), while Algorithm 11 gives the center V (x1, x3).
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contained in the singular locus

7.5. Centers of minimal codimension contained in

an exceptional divisor or contained in the

singular locus

Now, we present the fourth variant, where we slightly relax the restriction on the
centers that we imposed in the previous section. We obtain this by taking the
preceding resolution process into account.
Let π : B`D(An

K) → An
K be the blowup with center D = V (xi | i ∈ I) for I ⊆

{1, . . . , n}. In the Xi-chart Ui = D+(Xi) ∼= An
K (i ∈ I), we have the coordinates

(x′) = (x′1, . . . , x
′
n) and 〈xj | j ∈ I〉 ·K[x′] = 〈x′i〉 ⊂ K[x′]. Hence, the preimage of

the center along the blowup π coincides with the divisor E := div(xi) in Ui. Since a
blowup is an isomorphism outside of its center, we have the freedom to choose any
center D′ ⊂ Ui contained in E without losing the condition that the composition
of π and the blowup in D′ is an isomorphism outside of D. In particular, we may
choose centers of codimension two as in Construction 7.3.4.
Clearly, the previous observation extends to any finite sequence of (local) blowups

of the above type. This motivates the following method for choosing the center.

Construction 7.5.1. Let f = xC(xA−ρxB) ∈ K[x] with ρ ∈ K× and A,B,C ∈ Zn≥0

such that AiBi = 0 for all i ∈ {1, . . . , n}. Let (y1, . . . , ym), m ≤ n, be a subsystem
of distinguished variables of (x1, . . . , xn) such that the exceptional divisor of the
local monomialization procedure is given by div(y1 · · · ym). If there is a center DI =

V (xj1 , xj2) as in Construction 7.3.4, which is also contained in the exceptional locus,
DI ⊂ div(y1 · · · ym), then choose DI as the center for the next blowup. Otherwise,
we follow Construction 7.4.1.

Note that DI ⊂ div(y1 · · · ym) is equivalent to the condition that xj1 = yk1 or
xj2 = yk2 , for some k1, k2 ∈ {1, . . . ,m}.
As a consequence of Propositions 7.3.5 and 7.4.2, we get the termination of the

local monomialization procedure using centers given by Construction 7.5.1 (since
ι(.) decreases strictly after the blowup).

Corollary 7.5.2. The local monomialization process obtained by choosing the
centers as in Construction 7.5.1 terminates for every binomial f ∈ K[x].

In Algorithm 13 we present an implementation of Construction 7.5.1. This is
analogous to Algorithm 12 with the only difference in line 5, where we have the
additional condition Ei1 +Ei2 > 0. The latter holds whenever xi1 or xi2 correspond
to an exceptional divisor of a previous blowup.
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Algorithm 13 compute center with minimal codimension contained in an
exceptional divisor or contained in the singular locus
INPUT: list M , mode = 4, where M is of the same form as L[i] in Remark 7.1.2
OUTPUT: I ⊆ {1, . . . , n} such that V (xi | i ∈ I) is the next center in the

monomialization process
1: (A,B,C,E) = M [1]
2: α = max{Ai}, β = max{Bi}
3: i1 = min{i | Ai = α}, i2 = min{i | Bi = β}
4: I = {i1, i2}
5: if min{α, β} ≥ 2 or min{|A|, |B|} == 1 or Ei1 + Ei2 > 0 then
6: return I . exceptional or case(i)
7: else
8: I = compute_center(M, 3)
9: return I . case(ii),(iii),(iv)

7.6. A glimpse into the case of more than one

binomial and non-invertible coefficients

Let us briefly outline a method to extend our procedures to finitely many binomials
and to a single binomial with coefficients in Zp.

Construction 7.6.1. Let f1, . . . , fm ∈ K[x] = K[x1, . . . , n] be finitely many
binomials, where K is a field. In order to monomialize them, we may successively
apply one of the discussed procedures to f1, then the total transform of f2 and so
on. Since each of these methods terminates, we reach the case that each fi is locally
monomial.

At the end of the last construction, the total transform of the binomials f1, . . . , fm

are not necessarily simultaneously locally monomial, or in other words, the product
f1 · · · fm is not necessarily locally monomial, as the Example 7.6.2 illustrates.

Example 7.6.2. Let K be a field and consider

f1 := x1 − 1, f2 := x2 − 1, f3 := x1x2 − 1.

We claim that the product f1f2f3 is not locally monomial. To see this, we introduce
y1 := x1 − 1 and y2 := x2 − 1. Then f1f2f3 = y1y2(y1y2 + y1 + y2).

Eventually, the task to make f1, . . . , fm simultaneously locally monomial can be
reduced to the problem of (locally) monomializing an element of the form

m∏
i=1

(xA(i) − λi), λi ∈ K× and A(i) ∈ Zn≥0 for 1 ≤ i ≤ m.
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This problem is connected to the desingularization of arrangements of smooth
subvarieties, which is treated over algebraically closed fields in [60] or [64], for
example. Nonetheless, for finitely many prime characteristics p = char(K) > 0

(depending on the exponents A(i)) the situation becomes more involved and further
investigations are required. Since the present article focuses on the case of a single
binomial, we do not go into the details here.

When successively applying a monomialization method to (f1, f2, . . . , fm), the
order in which we handle the elements has an impact on the final numbers of charts.

Example 7.6.3. Let K be any field. Consider the binomials

f1 = v2 − y4z, f2 = x2y − z3 ∈ K[x, y, z, v].

If we use our local monomialization method with codimension two centers for
(f1, f2) (i.e., first for f1 and then for the total transform of f2), then the procedure
needs computation in 43 charts and 19 of these charts are final charts.
On the other hand, if we take the order (f2, f1), then the same procedure needs

only 31 charts and 12 of them are final charts.

We now turn our attention to the situation over Zp instead of over a field.

Remark 7.6.4. We observe that our proofs for the termination of the local
monomialization procedures rely on a study of the exponents. This suggests that
the methods may also be used for a first step towards a monomialization if we
are not necessarily restricted to the situation over field K. Consider a binomial in
Zp[x] = Zp[x1, . . . , xn], say

f = pexC(xA − λpdxB ), λ ∈ Z×p ,

for d, e ∈ Z≥0 and A,B,C ∈ Zn≥0 with AiBi = 0 for all i ∈ {1, . . . , n}. We fix one
of the procedures, which we discussed, and apply it to f , considered as a binomial
with coefficients in the field Qp = Quot(Zp). As we have seen, this terminates after
finitely many blowups. Since the coefficients are in Zp, the resulting total transform
of f is not necessarily locally monomial. For example, it may appear that the total
transform of f is of the form

pex′C
′
(x′A

′ − λpd ),

for some A′ ∈ Zn≥0 with |A′| ≥ 2. Here, d, e ∈ Z≥0 are the same integers as at the
beginning since we did not touch coefficients. If d 6= 0, then the monomialization
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process is not finished, yet.
There are at least two directions that one could follow:

1. We blow-up centers of the form 〈x′i, p〉, where i is chosen appropriately. This
has the drawback that the ambient ring after the blowup is not necessarily
isomorphic to a polynomial ring over Zp. More precisely, in the X ′i-chart, we
get Zp[x′, v]/〈p− x′iv〉.

2. An alternative method is to make a case distinction depending on the residues
of x′i modulo p. If x′i ≡ 0 mod p, we can write it as x′i = p yi for some new
variables taking values in Zp. By choosing i appropriately, we can make d
decrease. On the other hand, if x′i 6≡ 0 mod p for all i, then x′A′ − λpd is a
unit. Thus f is monomial.

The analysis of the complexity and a comparison of the variants (Section B.3) can
be found in the Appendix.
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8. Algorithmic aspects of the
determinantal case

In this chapter, we present a new algorithm for resolution of singularities defined by
minors of matrices with entries for which a principalization construction exists, e.g,
binomial entries. We focus on centers which are globally chosen but not required to
be contained in the singular locus of the variety, but which take advantage of the
determinantal binomial structure. Furthermore, we use some black boxes for later
improvements.

Throughout the chapter, we fix K to be an algebraic closed field and we use
multiindex notation: We write xA = xA1

1 · · ·xAnn , for A = (A1, . . . , An) ∈ Zn≥0.
Furthermore let f = xA − λxB ∈ K[x] := K[x1, . . . , xn] be a binomial, where
λ ∈ K×.

First methods of resolution of so called determinantial singularities can be found
in [75]. In [71], Schober described the resolution of determinantial singularities
of generic matrices. In this section, we want to generalize and implement our
generalization of the strategy of [71], which we discussed in Section 6.1.

Furthermore, we use for our approach the results in resolution on binomial ideals,
namely, the algorithm of Blanco and Encinas.

The following example shows that it is not obvious which singularities are
determinantal since some terms are vanishing when we calculate the determinant.

Example 8.0.1. Let f = x2z2 + y3wv + v2yz + x2wv ∈ F2[x, y, z, v, w]. Then f is
a determinantal singularity generated by a matrix with binomial entries, since

f = det

(
x2 − y3 yz

v2 − y2z z2 − wv

)
= x2z2 + y3wv + x2wv + y3z2 + v2yz + y3z2

= x2z2 + y3wv + x2wv + v2yz.
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8.1. Determinantally monomial case

We want to generalize the generic approach and let our matrices be matrices with
monomial entries. So we consider a matrix M = (mi,j)1≤i≤r,1≤j≤k, with mi,j = xAi,j

being some arbitrary monomials in K[x].

Our goal is to mimic and adapt the algorithm described above in Section 6.1.
The ideal of 1-minors is a monomial ideal and the ideal generated by the 2-minors
is a binomial ideal. In the worst case, the generators of the ideal generated by the
3-minors have six terms, so the number of terms does not increase linearly. And
in arbitrary characteristic, it is an open question if there is a finite procedure to
resolve a singularity of dimension > 3.

Without loss of generality and for better readability, we restrict M to be a
quadratic matrix. In general this is no restriction.

We treat binomial resolution as a black box in this section. We fix the algorithm
of [9] and [10] but it is also possible to use one of the algorithms we have mentioned
in Construction 6.1.1.

We use the notation of idealistic exponents (see [71] or Section 2.3.3 for more
details).

With the necessary theoretical background (Section 2.3.3), we can principalize
the monomial ideal 〈xAi,j | 1 ≤ i, j ≤ m〉 generated by the entries of the matrix
M = (xAi,j)1≤i,j≤m.
The subgoal is to blow-up in the ideal generated by the 1-minors of M as before in
the generic setting. But this ideal could be an arbitrary monomial ideal which is
potentielly very singular. That is why we need a canonical global procedure to get
this reduction of dimension, like in the generic case.

We can factor out the greatest common divisor of the set of all entries of the
matrix. We set

d := min{|Ai,j| | i, j} = ordx〈xAi,j〉.

Without loss of generality, we can assume that the ideal generated by the entries
in row j has order d, for all 1 ≤ j ≤ m, since according to Lemma 2.3.34, we can
multiply with an xdi,j , such that d equals the least common multiple.

Then we consider the idealistic exponent
⋂
i,j(x

Ai,j , d), i.e., we consider every
entry in our matrix but we only want to factorize out a term of order d. For better
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readability, we write
N⋂
`=0

(xAi,j , d)

for ` = 1, . . . , i · j and count the variables line by line, i.e., xi,j = x(i−1)·m+j.
We define new variables y2` and y2`+1 for ` = 0, . . . , N and use the canonical
embedding to K[x, y]. We consider the idealistic exponent

(yd−1
2` y2`+1 + xA` , d) ∼ (y2`, 1) ∩ (y2`+1, 1) ∩ (xA` , d).

We see by considering the partial derivative ∂
∂y2`+1

that these idealistic exponents
are equivalent. This yields us (yd−1

2` y2`+1, d) ∩ (yd−1
2` , d − 1) which is equivalent to

(y2`, 1).

The goal is to consider each of these idealistic exponents similarly, so we have to
do the same calculations with

⋃N
`=0(yd−1

2` y2`+1 + xA` , d). Then 〈yd−1
2` y2`+1 + xA` | ` =

0, . . . , N〉 yields a standard basis. We can resolve this ideal by any algorithm which
resolves binomial ideals by resolving the idealistic exponent. Since we only want to
resolve

⋃N
`=0(xA` , d) and d is the maximal order, we obtain after a finitely number

of blow-ups a new value dnew < d. The value of d can only decrease finitely many
times. And this yields a resolution of the ideal 〈yd−1

2` y2`+1 + xA` | ` = 0, . . . , N〉.
This algorithm has centers of the form V (y, xI). We get a resolution of the ideal
〈xA` | ` = 0, . . . , N〉 by using only the XI-charts, namely by blowing up in centers
V (xI).

Remark 8.1.1. We need two types of variables y2` and y2`+1 for the case that d
divides the characteristic char(K) of the underlying field K. If we only add yd`
instead of yd−1

2` y2`+1 then applying the partial derivative ∂
∂y`

yields (dyd−1
` , d − 1)

which vanishes in characteristic char(K).

Remark 8.1.2. In characteristic 0, the d cannot divide the characteristic like in
Remark 8.1.1. So we only need to add yd` for each monomial. We use this fact in
our implementation described in Section A.5.2 in order to reduce complexity.

Altogether we have the following principalization of a monomial ideal, with the
black box of a binomial resolution procedure.

Construction 8.1.3. LetA be an algorithm, which resolves binomial ideals globally
and canonically, e.g., the algorithm of [9]. Let M be a monomial matrix in K[x]

and let J be the ideal generated by the entries of M .

1. Set d = max-ord(J).
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8. Algorithmic aspects of the determinantal case

2. If d = 1, then the procedure is finished.

3. Set J := 〈yd−1
2` y2`+1 + xA` | 1 ≤ ` ≤ N〉.

4. Apply A to J and substitute each center of the blowup C for J by deleting
the V (y)-components (name it C) and calculate the blowup with center C for
J .

5. Go to (1).

We have a binomial ideal in each affine chart which can be embedded in some
An×PM1×· · ·×PM` , whereMi, i = 1, . . . , `, is the number of new variables that first
appear in the i-th blow-up. The algorithm described in [9] and [10] chooses a global
center where we have to blow-up our binomial ideal. Thus our algorithm inherits
the property of being global and it ensures the glueing of our charts. Therefore, this
resolution step is a global one.

If we have a 1 entry in our matrix, we can use the gaussian step. Without loss of
generality, we can assume that we have locally m1,1 = 1 than, we have the following
situation:

M ′ =


m2,2 −m2,1m1,2 . . . m2,r −m2,1m1,r

... . . . ...
mk,2 −mk,1m1,2 . . . mk,r −mk,1m1,r

 ,

where mi,j are monomials. Since we do not have several variables xi,j but some
arbitrary monomials here, it is not guaranteed that our entries have enough normal
crossings, i.e., that we find a linear transformation such that every entry of our
matrix is a monomial.
That is why we cannot handle the determinantally monomial case without the
determinantally binomial case, which we discuss in the next section.

8.2. Main algorithm for resolution of determinantal

singularities of at most binomial type

We now turn to the main task of this chapter. We wish to resolve a determinantal
singularity of at most binomial type ,i.e., for which there exists a generating matrix
with at most binomial entries. We want to take advantage of the approach in the
resolution of binomial ideals and the exploitation of the matrix structure as described
above.
From now on, we will distinguish the following cases:
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8.2. Main algorithm for resolution of determinantal singularities

1. K has characteristic 0 or

2. K has positive characteristic.

In characteristic 0, we have at least two possibilities to desingularize the ideal of
maximal minors by an algorithm that provides a Hironaka-style resolution, so the
most obvious way to resolve this singularity is

(a) calculate the ideal generated by the minors,

(b) resolve it by a Hironaka-style resolution.

The complexity of a Hironaka-style resolution is bounded by the (` + 3)-rd level
of the Grzegorczyk hierarchy, where ` denotes the dimension of the scheme which
we want to resolve. See [5] for more information about the complexity analysis and
[47] or Section B for more information on the Grzegorczyk hierarchy.
So our approach can be useful for practical reasons also in characteristic 0 since it
could provide an algorithm with a smaller computational complexity and it could
extend the set of resolution of singularities that can be calculated by a computer.

The second approach we describe below. In characteristic p > 0, the question, if
there exist such a procedure for dimension > 3, is still wide open. The considered
determinantal ideals are generated by matrices with binomial entries, but the ideal
itself is far from being a binomial ideal. A (constructive) resolution of determinantal
singularities in positive characteristics is, however, not known due to their large
dimensionality.

First, we state the important parts of the algorithm as black boxes. This has the
advantage that we can replace our explicit modular formulation of Algorithms 1, 2
and 3 with another (possibly improved) algorithm in the future. Furthermore, it is
obvious that we are not restricted to binomial entries here, but to entries for which
a constructive principalization procedure exists. The different parts do not depend
on the explicit algorithms but we give examples here.
We divide our computation (illustrated in Figure 8.1) into the following four parts.

1. Principalization of a list of, e.g., binomial entries, for example, see section 8.2.1.

2. Establishing normal crossings and a covering to obtain monomial entries in
each chart, see for example Section 8.2.2.

3. Determinantally monomial case, see Section 8.1.
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8. Algorithmic aspects of the determinantal case

determinantal_resolve (M)

finished?

principalization

establishing
normal crossings
and a covering

determinantally
monomial Case

Induction step
M := (r−1)×(k−1)
dim. submat of M

return
yes

no

Figure 8.1.: Flow chart of the main algorithm for determinantal resolution

4. Induction step to a matrix with (r − 1) × (k − 1) binomial entries, see
Remark 6.1.1 and Remark 6.1.2

Remark 8.2.1. For M = (fi,j) we can relax the condition of fi,j being binomials.
We only have to assume that a constructive principalization of the fi,j is possible.
If we know such a global principalization algorithm A for the fi,j then we can
replace the algorithm in section 8.2.1 by A. The main algorithm leads us to a weak
determinantal resolution of the singularity with these small changes.

Construction 8.2.2. Mainly we get the construction described in Figure 8.1.
As said before, the main algorithm consists of some black boxes we have to encode:
First, we want to principalize the entries of our matrix M and finally, we need
to make them normal crossing to do some variable transformation to have only
monomial entries in the strict transform M ′ of M .
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8.2. Main algorithm for resolution of determinantal singularities

8.2.1. Principalization of the entries in positive characteristic

The goal is to obtain entries that are principalized.
We will not focus on choosing centers in the singular locus of our determinantal

singularity but rather on the binomial structure in our entries.

Remark 8.2.3. An effective simultaneous resolution of binomials with toric Artin
stacks, for which only a single weighted blow-up is needed, we refer to [3]. The
computational effort is shifted to the destackification of the Artin stack, here. It is
possible to use this approach instead of the variant which we present here.

We focus on the transformation of the individual entries as polynomials.

To reach principalized entries, which does not need to have normal crossings (for
more information see Section 8.2.2), in a covering of our variety, we use the following
construction.

Construction 8.2.4. 1. We fix the entries of our matrix and store the binomial
entries which are not principalized in an ordered list (f1, . . . , fm).

2. We concentrate on the first binomial f1 and monomialize the ideal 〈f1〉 using
a resolution procedure for a binomial ideal (e.g., see [8]).

3. After this sequence of blow-ups we have a principalized weak transform of f1.
So we can delete this item from our list.

4. We repeat this process until our list is empty.

Remark 8.2.5. • The second step of Construction 8.2.4 uses the fact that every
monomial generating set of a monomial ideal is a standard basis.

• Construction 8.2.4 terminates after finitely many steps since our list contains
finitely many binomials and the algorithm for each binomial terminates after
finitely many steps.

• The choices of the centers of the blowing ups are global since the order is fixed,
and for every resolution of each hypersurface we are using the same algorithm
with canonical choice of center. For binomial entries, see [9] and [10].

• The ordering in the list influences the number of charts and the choice of the
canonical centers.
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8. Algorithmic aspects of the determinantal case

• To obtain a global algorithm, we need to store and edit the tuple of tuples of
1-, 2-, . . . resp. min{r, k}-minors of the initial matrix. During the whole
process we have to edit each such tuple. Thus we fix an ordering, then
choose an ordered tuple of 1-minors, then the tuple of 2-minors etc. until
we reach min{r, k}. This yields a fixed order on the minors and in the lists
during the whole process. For this reason, the centers during this process
are canonical. The Construction 8.2.4 then has to deal with the unique list
which has principalized entries. Note, that if the i-minors are principalized,
the (i + 1)-minors are locally binomial and the j-minors for j < i contain a
unit.

Note, that we cannot guarantee that the computed centers are in the singular locus
of the considered determinantal singularity. Therefore, this step is the only step of
the algorithm which ensures that our resolution is a weak resolution of singularities.

Example 8.2.6. Let

M =

(
x2 − y3 z

v2 − w3 xy

)
∈ (K[x, y, z, v, w])2×2.

Then our algorithm for principalization of the entries may choose V (x, y) as the
next center but this is not contained in the singular locus of the determinant of M .

Remark 8.2.7. This part of the main algorithm is the only part where we can not
guarantee that our centers are contained in the singular locus of the determinantal
variety. Former ideas were to

• principalize the ideal of the 1-minors of the matrix,

• principalize the ideals generated by single rows of the matrix and

• principalize the ideals generated by single columns of the matrix.

We can guarantee in these approaches that the centers are contained in the singular
locus of the determinantal variety, but let I be a binomial ideal then the equality
I = 〈1〉 does not imply that every entry in the matrix become principalized.
Let

M =

 1 z3 − x2 0

v2 − w3 1 x

v2 − w3 z3 − x2 1

 ∈ (K[x, y, z, v, w])3×3.

Then every of the considered ideals equal 〈1〉 but a subsequent use of the gaussian
step would destroy the binomial structure of the algorithm.
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8.2. Main algorithm for resolution of determinantal singularities

Remark 8.2.8. Some analysis of the complexity, namely the required number of
charts for some examples and worst-case number of charts, for local monomialization
of a single binomial is considered in [42, Section 8].

Our goal is to obtain binomials of the form (1− λxA). More precisely, each entry
of the matrix is of the form xC(1− λxA), for some λ ∈ K. We want to avoid entries
of the form xC(y − λxB) and blow-up some more time if it is necessary.

8.2.2. Establishing normal crossings and a covering

The fact that every entry of our matrixM is principalized is not sufficient. We need
normal crossings instead. The following example illustrates the differences.

Example 8.2.9 ([42, Example 7.2], Example 7.6.2). Let

M =

(
1 xy − 1

x− 1 y − 1

)
∈ (K[x, y])2×2.

Each entry f1 = 1, f2 = x− 1, f3 = xy− 1, f4 = y− 1 is principalized, but they have
not normal crossings, i.e., the product f1 · · · f4 is not principalized. If we introduce
new variables x′ := x−1 and y′ := y−1, we get f1f2f3f4 = x′y′(x′y′+x′+y′) which
is not principalized.

The idea of this ’establishing normal crossing and a covering’-step is illustrated
in Figure 8.2. The principalized entries of the matrix coincide with several
hypersurfaces which intersects in a point. In a two-dimensional space, three different
lines could not meet transversal in a point. So we have to blow-up to seperate the
lines. We get two points where two lines have normal crossings. We can cover this
chart by the complement of the green line (where we consider the left point) and
the complement of the red line (where we consider the right point).
This problem is connected to the desingularization of arrangements of smooth

subvarieties, which is discussed in [60] and Section 5.5. We want to use the Theorem
of Hu (Theorem 5.5.2).
If the intersection lattice of the entries of the matrix is a simple arrangement, the

process of forcing normal crossings is a combinatorial problem, which is solved by
Hu [60].

Remark 8.2.10. In our setting, X0 := X \ Y , where Y := V (
∏m

`=1 f`) and
f` = 1 − ρ`x

A` are the principalized entries. Furthermore, let I = P({1, . . . ,m})
and for all i ∈ I we define Di =

⋂
`∈i V (f`).
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7→

Figure 8.2.: Illustration of the ’establishing normal crossing and a covering’ step

The rank of Di is equal to m− |i|.

Altogether we get:

Lemma 8.2.11. If the intersection lattice of the entries of the matrix is a simple
arrangement, the simultaneous local monomialization process is a combinatorial
problem, which is solved by the sequence of blowups by [60] (Theorem 1.1) for all
but finitely many characteristics.
Let f` = 1 − λ`x

A` be the locally monomial entries. Furthermore, let I =

P({1, . . . ,m}) and for all i ∈ I we define Di =
⋂
`∈i V (f`).

Then {Di}i∈I is a simple arrangement, if the following holds:

1. Di is smooth.

2. Di and Dj meet cleanly.

3. Di ∩Dj = ∅ or a disjoint union of D`.

Not every such intersection lattice needs to be a simple arrangement. The
following example should illustrate this.

Example 8.2.12. Consider f = (x−1)(y−1)(xpy−1) ∈ K[x, y] with p = char(K) >

0.
Let w := x− 1 and z := y − 1. Then f = wz(z + wp + wpz).
Let D{1} = V (w), D{2} = V (z) and D{3} = V (z + wp + wpz).
Then D{2} and D{3} do not meet cleanly, since the scheme-theoretic intersetion
〈z, wp〉 is non-reduced and it is not smooth.

Remark 8.2.13. Example 8.2.12 illustrates the reason for stating that our
algorithm terminates and is correct for all but finitely many positive characteristics:
In this special example, we have to exclude the characteristic p > 0.
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8.2. Main algorithm for resolution of determinantal singularities

Lemma 8.2.14. The assignments in Remark 8.2.10 meet the assumptions in
Theorem 5.5.2.

Proof. 1. It is clear that Di =
⋂
`∈i V (f`) = V (f`|` ∈ i) = V (1− λ`xA` |` ∈ i), for

each i ∈ {1, . . . ,m} is smooth.

(3) We have
Di ∩Dj =

⋂
`1∈i

V (f`1) ∩
⋂
`2∈i

V (f`2) =
⋂
`∈i∪j

V (f`).

Since i, j ⊆ {1, . . . , n}, we know that i ∪ j ∈ P({1, . . . , n}). And therefore we
can find an i′ with i′ = i ∪ j and Di′ = Di ∩Dj.

(2) Di and Dj meet cleanly, since Di ∩ Dj is smooth by (1) and (3) for i 6= j ∈
P({1, . . . , n}) and for their tangent spaces

T (Di ∩Dj) = T (
⋂
`1∈i

V (f`1) ∩
⋂
`2∈i

V (f`2))

= T (V (1− λ`x` | ` ∈ i ∩ j))
= T (V (1− λ`x` | ` ∈ i)) ∩ T (V (1− λ`x` | ` ∈ j))
= T (

⋂
`∈i

V (f`)) ∩ T (
⋂
`∈j

V (f`))

= T (Di) ∩ T (Dj)

holds in all but finitely many characteristics.

Obviously, there are only finitely many Di so the following algorithm ends after
finitely many steps.

Remark 8.2.15. Since we are dealing with algebraic varieties in Theorem 5.5.2 our
algorithm for forcing normal crossings is a global one.

Example 8.2.16 (Continuation of Example 8.2.9). Let f1 = 1, f2 = x − 1, f3 =
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xy − 1 and f4 = y − 1. Then Y := V (f2 · f3 · f4) and I = P({2, 3, 4}) and we define

D∅ = ∅
D{2} = V (f2)

D{3} = V (f3)

D{4} = V (f4)

D{2,3} = V (f2) ∩ V (f3)

D{2,4} = V (f2) ∩ V (f4)

D{3,4} = V (f3) ∩ V (f4)

D{2,3,4} = V (f2) ∩ V (f3) ∩ V (f4).

We only need to consider the Di 6= ∅, for i ∈ P({2, 3, 4}). If we order the Di for
i ∈ P({2, 3, 4}) by their rank then we obtain the following diagram:

V (f2) V (f3) V (f4)

V (f2, f3) V (f2, f4) V (f3, f4)

V (f2, f3, f4)

Hu’s algorithm’s choice for the center is the lowest level in the intersection lattice
which is not empty, thus our center of the first blowing up is V (f1, f2, f3). After this
first blowing up, we have the following situation:

V (f2)′ V (f3)′ V (f4)′

V (f2, f3)′ V (f2, f4)′ V (f3, f4)′

Here V (·)′ denotes the strict transform of V (·). For the next blowing up, the center
of our choice is

C = V (f2, f3)′ ∪ V (f2, f4)′ ∪ V (f3, f4)′.

Finally, we have to consider

V (f2)′′ V (f3)′′ V (f4)′′,

where V (·)′′ denotes the strict transform of V (·)′. The center of the last blowing up
is

C̃ := V (f2)′′ ∪ V (f3)′′ ∪ V (f4)′′.

Then f ′′′2 , f
′′′
3 , f

′′′
4 have normal crossings.
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8.2. Main algorithm for resolution of determinantal singularities

Note, that in practice we do not need to blow-up everywhere in the intersection
lattice. More information can be found in Section A.4.

8.2.3. Gaussian step

Now we are in the situation of Remark 6.1.2. Without loss of generality, since
swapping rows and columns does not change the vanishing locus of the determinant,
we can assume the following local situation

M ′ =


1 g1,2 . . . g1,k

g2,1 g2,2 . . . g2,k

...
... . . . ...

gr,1 gr,2 . . . gr,k

 ,

where {gi,j | 1 ≤ i ≤ r, 1 ≤ j ≤ k} are principalized and we had applied the
algorithm of Hu. We only have to make a change of coordinates and obtain some
monomials mi,j:

M ′ =


1 m1,2 . . . m1,k

m2,1 m2,2 . . . m2,k

...
... . . . ...

mr,1 mr,2 . . . mr,k


We can perform some elementary gaussian steps to eliminate the entries in row 1

and column 1 as before. This yields

M ′
1 =


m2,2 −m2,1m1,2 . . . m2,r −m2,1m1,r

... . . . ...
mk,2 −mk,1m1,2 . . . mk,r −mk,1m1,r

 .

We have reduced our problem of resolving the ideal of the max{r, k}-minors of M
to the problem of resolving the ideal of the (max{r, k} − 1)-minors of M ′

1.

Remark 8.2.17. The gaussian step does not change the determinant and it is the
reason why we have to deal with a tuple of tuples in the principalization step since
it gives us the next tuple of the (i+ 1)-minors.
Therefore in total our presented algorithm is a global one.

Altogether, we have seen:

Main Theorem 1. In arbitrary characteristic the algorithm in Construction 8.2.2
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provides a resolution of arbitrary determinantal singularities of at most binomial
type.

Furthermore, we have seen that only our black boxes uses the specific structure of
binomial entries. In general we can substitute them by other algorithm. This yield:

Main Theorem 3. If there is a constructive procedure which principalizes
and establishes normal crossings to the entries of a matrix that generates the
determinantal singularity, then the algorithm in Construction 8.2.2 provides a
resolution.

Since in characteristic zero there is always a constructive Hironaka-style resolution,
we obtain the following result:

Main Theorem 2. In characteristic 0, the algorithm in Construction 8.2.18
provides a resolution of arbitrary determinantal singularities.

If we perform the gaussian steps before monomializing the entries we get entries
with a high number of terms, which are, in particular, not binomial anymore. In
this case, we cannot use specialized algorithms, e.g., for resolving binomial ideals.
This is a problem since it is well known that resolution of singularities in positive
and mixed characterstic is still an open problem.

Another problem could be the complexity of the algorithms with respect to the
high runtime.

8.2.4. Flexibility of the algorithmic setup

In this subsection, we discuss possible variants of our main algorithm.
As already mentioned, we can replace in particuar the first two steps of our

algorithm (principalization and establishing normal crossings). This may provide
a perspective of other cases beyond at most binomial entries. The usage of Hu’s
algorithm and the gaussian step do not depend on the initially binomial structure.
Thus, if we know that there exists a constructive procedure of principalization of
the entries of the matrix, we can replace step 1. For example, in characteristic zero
we know by Hironaka’s famous paper [54] that there exists a sequence of blowing
ups such that the transform of every hypersurface is resolved. Furthermore, we
know that resolution of singularities in characteristic 0 implies principalization of
ideals. So in characteristic 0, we can use the algorithm of Hironaka as a subroutine
which plays the role of the principalization and yield a resolution, here.
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8.2. Main algorithm for resolution of determinantal singularities

In characteristic p > 0, our presented algorithm yields a principalization of a
determinant of a binomial matrix, so it is a principalization procedure as required
in Section 8.2.1. Hence, we could use this algorithm recursively to resolve nested
determinants, for instance of the formdet

(
f1,1 f1,2

f2,1 f2,2

)
det

g1,1 det

(
h1,1 h1,2

h2,1 h2,2

)
g2,1 g2,2


x2,1 x2,2

 ,

where fi,j, gi,j, hi,j are binomials for i, j = 1, 2 and x2,1 and x2,2 are variables.
Furthermore, we can replace the generic approach by the (skew-)symmetric generic
approach of Section 6.2.

In the future, we can take a look at another new method that is described in the
following construction:

Construction 8.2.18. Let M = (mi,j) be an arbitrary (k× n) -matrix over a field
K of characteristic zero. The goal is to reduce the ideal of the r-minors of M with
r ≤ min{k, n}. We can take advantage of the determinantal structure and apply a
Hironaka-style resolution in characteristic zero as follows:

1. Set I := 〈mi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ n〉.

2. Resolve I by a Hironaka-style resolution.

3. If r > 1. Blow-up in the regular center which coincides with the ideal generated
by the entrys of the weak transform of M .
Else: stop.

4. In every chart we get a 1 entry in the weak transform of M . Apply Gauß.

5. Set r := r − 1. If r ≥ 1, go to 1.

This should lead to a strong resolution of arbitrary determinantal singularities in
characteristic zero.

In characteristic p > 0, we have discussed in Remark 8.2.7 that we can always
principalize the ideals generated by the rows and colums which lead to a matrix
(maybe we have to generate coverings here) with a one entry in each column and
each row. All of the considered centers are in the singular locus and one only has
to show that the singularity is already resolved after this resolution of the ideals
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8. Algorithmic aspects of the determinantal case

generated by the columns and rows. In the case that we have a (m × m)-matrix
of which we can assume without loss of generality that the one-entrys are on the
diagonal and than we can apply Gauß to see this.

If these proof ideas lead to correct proofs, we can substitute the prinzipalization
step of our matrix (which is the only weak step in our resolution) and we obtain a
strong resolution in all of the presented cases.
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We have seen several well-known strategies for the resolution of singularities in
Section 3 and Section 5. We can summarize all of these strategies as ’blow-up in
centers contained in the most singular locus and repeat,’ and the calculation of these
centers can be quite different. Furthermore, we have seen in Sections 6 and 8 that
determinantal singularities possess a quite good matrix structure which helps us to
resolve the resolution in the generic case.
We have adapted this approach to the generic (skew-)symmetric case and saw that
this case is more efficient concerning the exact number of charts and the running
time.
Afterwards, we have put everything together to generalize the resolution strategy of
generic determinantal singularities to a resolution of

1. arbitrary determinantal singularities in characteristic 0,

2. determinantal singularities of at most binomial type in positive characteristic,

3. determinantal singularities for which there exists a matrix with entries for
which there exists a constructive principalization procedure which force normal
crossings, in positive characteristic and

4. determinantal singularities for which a matrix exists with entries of recursive
determinants of the form of 3 in positive characteristics.

We have seen that our new algorithm provides a strong resolution for
(skew)-symmetric generic determinantal singularities but only a weak resolution
for arbitrary determinantal singularities in characteristic p ≥ 0 of the types in the
enumeration above. This is because our principalization procedure uses centers
that do not have to be contained in the singular locus of the determinantal variety.
This gap has to be closed to achieve a strong resolution.

Moreover, our new algorithm is very modular and flexible, so we can use the
algorithm as an algorithm of black boxes and use every improved algorithm in the
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future instead of the presented ones. Under the stated assumptions, the correctness
and termination will not be touched.

The author will implement the algorithms in the new computer algebra system
Oscar because of the more developed data structures. Although the computer
algebra systems Oscar and Singular differ, the pseudo code in the Appendix should
be helpful since the implementation of the main algorithm is the first modular
implementation of resolution of singularities, such that we can exchange the choice
of the center by replacing single function calls. Moreover, this can be a starting
point for a general implementation of resolution of singularities, of which the input
consists of the singularity we want to resolve and the underlying algorithm.

From the complexity-theoretic point of view, it remains to do a worst-case
complexity analysis of the algorithm of Blanco to be able to compare the newly
presented algorithm with the one of Blanco or a general Hironaka-style resolution.
In the ((skew-)symmetric) generic case, we have seen that a more specialized
algorithm can yield an exact number of chart analysis and a much better complexity
than a general resolution algorithm. For more information, see B.4.

The bottleneck in practice remains the high worst-case complexity and the
high number of charts, so it might be helpful to parallelize the implementation
such that each chart of a generation can be calculated simultaneously. Since the
implementation is written in Singular, the tool of choice could be GPI-Space [68].
We have seen in [14] that this parallelization with GPI-Space often produces results
in mainly lower runtime.

Furthermore, we have seen different approaches of local monomializations of single
binomials. We can generalize it for binomial ideals for a better use in the calculation
of p-adic integrals.

The following example illustrates the situation:

Example 9.0.1. The goal is to enumerate unitary subrings of Zn. We can do this
with zeta functions

ζ1,<
Zn (s) =

∑
1∈H≤Zn

|Zn : H|−s =
∏

p prime

ζ1,<
Zn,p(s).

So the goal is reachable when determining the Euler factors ζ1,<
Zn,p(s) for p being a

prime.
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By applying a result of du Sautoy and Grunewald [31], the equation

ζ1,<
Zn,p(s) = (1− p−1)−n

∫
S

|x1,1|s−n+1 · · · |xn−1,n−1|s−1dµ

holds. This is a p-adic integral over the region S which is given by inequalities:

vp(x1,1) ≤ vp(x2,1(x2,1 − x2,2))
...

vp(x1,1x2,2) ≤ vp(x2,1x3,2(x3,2 − x3,3)− x2,2x3,1(x3,1 − x3,3))
...

vp(x1,1x2,2x3,3) ≤ vp(x2,1x3,2x4,3(x4,3 − x4,4)− · · · further terms

vp denotes the p-adic valuation and the xi,j could have all p-adic values.
Let n = 3. Then ∫

vp(x1,1)≤vp(x2,1(x2,1−x2,2))

|x1,1|s−2 · |x2,2|s−1dµ.

Since |x1,1|s−2 · |x2,2|s−1 is monomial, we only need to consider the region S. We
have to distinguish different cases:

1. vp(x1,1) = 0. In that case, the inequality does always hold.

2. vp(x1,1) > 0 and vp(x2,2) = 0, the situation is always monomial.

3. vp(xi,j) > 0, for all i, j, the situation is more complicated and we need
monomialization.

Figure 9.1 illustrates the situation of case 3 as a real picture. The yellow plane
illustrates V (x1,1), the green and blue one are the V (x2,1) and V (x2,2) and the
red diagonal is V (x2,1 − x2,2). We see commonalities to the process of establishing
normal crossings, we discussed in Section 2.3.1 and Section 8.2.2. So we have to
blow-up in V (x2,1, x2,2).

Figure 9.2 illustrates the situation after this blow-up. We obtain an exceptional
plane which is the grey one in Figure 9.2 and the other planes have normal crossings.
This is more or less the same procedure and an analogue picture we have seen in
Figure 8.2 in the two dimensional case.
In these two charts, we have:

X2,1-chart: E = V (x2,1) and all three cases are monomial.
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9. Summary and Future Work

Figure 9.1.: Real picture illustration of the most complicated case for the p-adic
integration

Figure 9.2.: Real picture illustration of situation after the blow-up
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X2,2-chart: E = V (x2,2) and the remaining case is monomial.

So the integration becomes more easier after this monomialization procedure.

Furthermore, we can proof that the ideal in Example 9.0.1 is a determinantal one,
we also can use our main algorithm or we could compare both approaches in this
setting.
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A. Implementational Aspects

In this chapter, we will discuss the implementational aspects of this thesis.

The constructive parts of this thesis are implemented in the computer algebra
system Singular in version 4.1.1. [30]. This relies on the author deciding which
computer algebra system to use at the beginning of the corona pandemic in 2020 and
the lower risk to implement in the well-known Singular instead of a newly developing
computer algebra system Oscar [29]. In principle, it is sense full to immigrate or
reimplement these parts in Oscar, too.
Further reasons for version 4.1.1. belongs to the fact that the implementation of
the locus of maximal order was already implemented in the master’s thesis of the
author [41] in that version.

In Section A.1, we give pseudo code representations of the calculation of the
maximal order, the locus of maximal order and the respective refined versions
we discussed in Section 2.4.2. We follow the argumentation of [35] and discuss
optimizations, too. Note, that the implementation is explicitly written for the
variant of the CJS algorithm of [35], so we prefer the horizontal components in the
arithmetic case like discussed in Section 5.6.

Afterwards, we give in Section A.2 a pseudo code of an implementation in
Singular of the CJS algorithm. This implementation is a test environment for a
better study of the algorithm. Furthermore, we present the main ideas of the data
structures and how to handle the recursion, which we had seen in Section 5.6. Some
comparisons can be found in Section B.4.

In Section A.4, we give a pseudo code of the algorithm of Hu, which we discussed
in Section 5.5. In there, we give different implementations. The first is a general
variant of Hu’s algorithm, and the second is explicitly written for our setting of
resolution of determinantal singularities.

At the end of this chapter, we discuss in Section A.5 how to implement the generic
determinantal case and our new algorithm for resolving determinantal singularities.
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A. Implementational Aspects

A.1. Implementational Aspects of the locus of

maximal order and the locus of maximal

log-refined order

In [41], the author describes how to implement the algorithms of maximal order in
the arithmetic case, which are given in [35]. We recall the main ideas of both work
together with new optimization in this topic.
As the first version of the implementation, the discussed version is also

implemented in Singular version 4.1.1. [30] which was published in 2018.

In this section, we assume that X is a reduced excellent Noetherian scheme (not
necessarily of dimension two), embedded in some excellent regular scheme Z.

A.1.1. MaxOrd Calculations

In this subsection, we consider the computation of the locus of maximal order,
described in [35] with additional optimizations by the author.

Construction A.1.1 ([35, Construction 3.7]). Let 0 6= J ⊂ B = A[x] be
an ideal, where A is a field or a Dedekind ring. Let X := V (J) and let
d := max{ordx(X) | x ∈ X} ≥ 1. If d = 1. Then the locus of maximal order of X
is X itself. Assume d > 1.

• If B contains a field k, then Max-ord(X) = Max-ord(J) equals

∆d−1(J) := V (Df | f ∈ J,D ∈ Diff≤d−1
Z (B)).

• If B does not contain such a field, i.e, A has mixed characteristic. Then let
F := Frac(A) be the field of fractions of A and we set BF := B ⊗A F = F [x].
If the maximal order of V (J · BF ) equals d, then ∆d−1(J · BF ) is the set of
horizontal irreduzible components of Max-ord(X).

For the vertical components, let p ∈ A be a prime element. We pass from B = A[x]

to Bp := B⊗Agrp(A) = (grp(A))[x]. An element
∑
fax

a ∈ B is mapped to
∑
Fax

a.
Note that

Fa = Fa(P ) = inp(fa) ∈ grp(A) ∼= kp[P ],

with P := inp(p) mod p2 und kp := A/p the residual field. Note that B′ ∼= kp[p, x]

is a polynomial ring over the field kp.
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A.1. Implementational Aspects of the locus of maximal order

If max-ord(V (J ·Bp)) = d, then ∆d−1(J ·Bp) is the set of vertical components of the
locus of maximal order of X = V (J) with I ∩ A = 〈p〉A. Applying this procedure
for every prime p ∈ A, we obtain Max-ord(X).

First, we give the pseudocode of Algorithm 1 in [35], which differs in specially
optimized lines.

Remark A.1.2 (Algorithm 14). Our implementation of Algorithm 14 gets the
following input:

• An ideal IZ ⊆ Q[x1, . . . , xn], such that Z = V (IZ) is equidimensional and
regular

• An ideal IX ( Q[x], such that IZ ⊂ IX .

Algorithm 14 Max-ord(ideal IZ , ideal IX) (char K = 0)
1: Itemp = IX ;
2: if (IZ == 〈0〉) then
3: Imax = 〈1〉;
4: max-ord = 0;
5: while (Itemp 6= 〈1〉) do
6: Imax = Itemp;
7: Itemp = Itemp + 〈 ∂fi

∂xj
| 1 ≤ j ≤ n, 1 ≤ i ≤ r〉; . 〈f1, . . . fr〉 = Itemp

8: max-ord = max-ord +1;
9: return(max-ord, Itemp);
10: else
11: L1 = GenerateL1(codim(Z), J(IZ), IX , IZ);
12: max-ord = 1, thisord = 0, Imax = 〈0〉;
13: for M ∈ L1 do
14: Itemp = IX ;
15: while Itemp + IZ 6= 〈1〉 do;
16: Iold = Itemp;
17: Itemp = Itemp + 〈 ∂fi

∂yj
| 1 ≤ j ≤ s, 1 ≤ i ≤ r〉; . See Remark A.1.5.

18: Itemp = sat(Itemp, det(M));
19: thisord = thisord +1;
20: if (thisord ≥ max-ord) then
21: if (thisord == max-ord) then
22: Imax = Imax ∩ Iold;
23: else
24: max-ord = thisord;
25: Imax = Iold;
26: thisord = 0;
27: return(max-ord, Itemp);
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A. Implementational Aspects

J(IZ) in line 11 denotes the jacobian matrix of IZ . (End of Remark A.1.2.)

The covering named L1 is calculated (line 11) by adding elements to the covering
until the covering fulfills the following conditions.

• L is the set of codim(Z)× codim(Z) submatrices of the Jacobian matrix of IZ .

• L1 ⊂ L such that X ⊂ ⋃M∈L1
D(det(M)), where D(det(M)) is the principal

Zariski-open set determined by det(M).

If there is a 1 entry in the jacobian matrix, we only need to consider the minors
with this 1 entry. If there is no 1 entry, we add all the submatrices of J (IZ) until L1

fulfills all conditions. The whole pseudo code of the GenerateL1-function is described
in Algorithm 15.

Remark A.1.3 (Algorithm 15). The input consists of

• an integer codim(Z), describing the the codimension of Z,

• the considered Jacobian matrix JZ of IZ ,

• the ideal IX ,

• the ideal IZ and

• optional: a list of prime factors (only needed for InterestingPrimes in the
ConditionOfL1 subcall).

The output is the covering L1 with the required properties.
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A.1. Implementational Aspects of the locus of maximal order

Algorithm 15 GenerateL1(int codim(Z), matrix JZ , ideal IX , ideal IZ)
1: containsOne = false;
2: for (i = 1;i ≤ #rows; i++) do
3: for (j = 1; j ≤ #cols; j++) do
4: if (JZ [i, j] == 1) then
5: containsOne = true;
6: hi = xj − fi;
7: for (k = 1; k ≤ #rows; k++) do
8: if (k 6= i) then
9: fk(xj 7→ hi); . Substitute xj by hi
10: break;
11: if containsOne == true then
12: return(codim(Z) square submatrices of JZ which contains the 1-entry);
13: L1 = ∅;
14: while (ConditionOfL1(L1) == false) do
15: L1.add(arbitrary invertible codim(Z) × codim(Z) submatrix M of JZ , not

contained in L1);
16: return(L1);

(End of Remark A.1.3.)

Remark A.1.4 (Algorithm 16). The ConditionOfL1 algorithm differs, if we call it
from the InterestingPrimes or any MaxOrd-Calculation. If we are in a call of an
InterestingPrimes-call, we have an optional parameter stored in the list #. In this
case, we first calculate the product of all prime factors. Then we define

Itmp =
⋃

M∈L1

det(M) ∪ V (p1 · · · pα).

The pseudocode of this function is described in Algorithm 16. The input consists
of

• the potential covering L1, which is to check if it fulfills the conditions,

• the considered Jacobian matrix JZ of IZ and

• optional: a list of prime factors (only needed for InterestingPrimes).

The output is a boolean. It is true if L1 fulfills the required properties and false
otherwise.
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A. Implementational Aspects

Algorithm 16 ConditionOfL1(list L1, matrix JZ , optional: list #)
1: Itmp =

⋂
M∈L1

det(M);
2: if (primelist = ∅) then
3: if (deg(std(JX + Itmp))[1] == 0) then . X ∩ tmp = ∅
4: return(true);
5: else
6: return(false);
7: primeproduct = Πp∈primelistp;
8: Itmp = Itmp∩ primeproduct;
9: if (Itmp == 〈1〉) then
10: return(true);
11: else
12: return(false);

(End of Remark A.1.4.)

Remark A.1.5 ([15, Remark 3.3]). The minor det(M) is only invertible on a
principal open set, the differentiation can be calculated as follows:
We start the computation by determining the matrix of cofactors A, a square matrix
satisfying

A ·M = q · Ecodim(Z),

where q = det(M) and Ecodim(Z) denotes the unit matrix of size codim(Z). On D(q),
1
q
·A is exactly the inverse ofM . The system of parameters {y1, . . . , ys} of our choice

is induced by the set {xi | i is not a column in M}.
Let g1, . . . , gt ∈ Q[x] be a set of generators of IZ . We want to choose a set of
generators f1, . . . fr ∈ Q[x]/IZ for the ideal IZ ·Q[x]/IZ and we choose representatives
f1, . . . , fr ∈ Q[x] for these. For better readability, we assume that M involves
exactly the last columns of the Jacobian matrix so that the indices of yi and
the corresponding xi coincide. By applying the chain rule, we get the following
derivatives

q · ∂fi
∂yj

= q · ∂fi
∂xj
−

∑
k column of M ,
` row of M

∂g`
∂xj

A`k
∂fi
∂xk

mod IZ .

The discard the extra factor q, we need to saturate the resulting ideal with 〈q〉. For
more information see [14, Construction 3.15].

For the arithmetic case, we want to systematically determine the primes relevant
to the locus of maximal order by trying to mimic the MaxOrd algorithm for
characteristic 0. On Z, we are missing the derivative with respect to a prime. We

176



A.1. Implementational Aspects of the locus of maximal order

call primes arising from the following Algorithm 17 interesting as the bad primes
will eventually appear among those in the course of resolution. However, not all of
these arising primes have to be bad.

Remark A.1.6 (Algorithm 17). The Algorithm 17 shows how to compute these
interesting primes. [35, Lemma 4.6] shows that the returned set contains all bad
primes. The input of InterestingPrimes consists of

• an ideal IZ = 〈g1, . . . , gt〉, such that Z = V (IZ) is equidimensional and regular
and

• an ideal IX = 〈g1, . . . , gt, f1, . . . , fr〉 ( Z[x].

The output is a set of interesting primes which contains all bad primes for X.

Algorithm 17 InterestingPrimes(ideal IZ , ideal IX)
1: Itmp = 〈f1, . . . , fr〉;
2: Iint = 〈0〉;
3: if (IZ ∩ Z 6= 〈0〉) then
4: return(primefactors(generator of the principal ideal IZ ∩ Z));
5: else if (IZ == 〈0〉) then
6: while (Iint == 〈0〉) do
7: Itmp = Itmp + 〈∂Fi

∂xj
| 1 ≤ j ≤ n, 1 ≤ i ≤ q〉; . 〈F1, . . . , Fq〉 = Itmp

8: Iint = Itmp ∩ Z;
9: return(primefactors(generator of the principal ideal Iint));
10: resultlist = {p1, . . . , pα};
11: L1 = GenerateL1(codim(Z), J(Z),IX ,IZ ,resultlist);
12: for M ∈ L1 do
13: Iint = 〈0〉;
14: Itmp = 〈f1, . . . , fr〉;
15: while (Iint == 〈0〉) do
16: Itmp = Itmp + 〈∂Fi

∂yj
| 1 ≤ j ≤ s, 1 ≤ i ≤ q〉; . 〈F1, . . . , Fq〉 = Itmp

17: Iint = (Itmp + IZ) ∩ Z;
18: if (Iint 6= 〈1〉) then
19: resultlist = resultlist ∪ primefactors(generator of the principal ideal Iint;
20: return(resultlist);

In line 10 p` are the primefactors appearing in coefficients of g1, . . . , gt for some
1 ≤ ` ≤ α and α ∈ Z≤0.

In line 16, (y1, . . . , ys) denotes the system of parameters in D(det(M)) ∩
D(p1 · · · pα) which is induced by the subsystem of (x) of variables which do not
correspond to a column of M .
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A. Implementational Aspects

(End of Remark A.1.6.)

We can finally present the pseudo code of the computation of the locus of maximal
order in the arithmetic case. We call the algorithmMaxOrdArith (see Algorithm 18).
This implementation is explicitly written for the CJS implementation in Section A.2
(see also Section 5.6 for the theoretical details). Therefore the output is not
necessarily the whole locus of maximal order in the arithmetic case but the horizontal
components of this locus if there are some and the vertical components otherwise.

Remark A.1.7 (Algorithm 18). The input of Algorithm 18 contains

• an ideal IZ ⊆ Z[x1, . . . , xn] such that Z = V (IZ) is equidimensional and regular
and

• an ideal IX ( Z[x] such that IZ ⊂ IX .

The output is a pair (max-ord(X), L), where L is a list such that L[i] = (pi, Ii) with

• either pi = 0 for all i and Max-ord(X)hor =
⋃
i V (Ii) 6= ∅

• or Max-ord(X) = Max-ord(X)vertcal =
⋃
i V (Ii) such that Ii has been detected

locally at the bad prime pi.

Recall, that we ignore vertical components of the locus of maximal order, if there
are horizontal components.
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A.1. Implementational Aspects of the locus of maximal order

Algorithm 18 MaxOrdArith(ideal IZ , ideal IX)
1: MaxOrd0 = MaxOrd(IZ ⊗Q, IX ⊗Q), maxord = MaxOrd0[1];
2: Imax = MaxOrd0[2] ∩Z[x], RetList[1] = (0, Imax);
3: PrimeList = InterestingPrimes(IZ , IX);
4: for p ∈ PrimeList do
5: JX = ReplaceCoeffs(IX , p), JZ = ReplaceCoeffs(IZ , p);
6: if (IZ == 〈0〉) then
7: DiffList = HasseDeriv(〈0〉, JX , (x, P ), 0);
8: m = size(DiffList);
9: for (i = 1; i ≤ m; i+ +) do
10: DiffList[i] = ideal(substitute(DiffList[i],P, p));
11: while (DiffList[m] == 〈1〉) do
12: m = m− 1;
13: if (m ≥ maxord) then
14: Imax = DiffList[m];
15: if (m > maxord) then
16: RetList = ∅, maxord = m, RetList[1] = (p, Imax);
17: else if RetList[1][1] 6= 0 then; . no horizontal components
18: RetList[last] = (p, Imax);
19: else
20: L1 = GenerateL1(codim(Z), J (JZ),JX ,JZ);
21: locord = 1;
22: for M ∈ L1 do
23: DiffList = HasseDeriv(JZ , JX , y,M); . y like in Remark A.1.5
24: m = size(DiffList);
25: for (i = 1; i ≤ m; i+ +) do
26: Difflist[i] = ideal(substitute(DiffList[i],P, p));
27: while (DiffList[m] == 〈1〉) do
28: m = m− 1;
29: if (m > locord) then
30: Imax = DiffList[m];
31: locord = m;
32: else if (m == locord) then
33: Imax = Imax∩DiffList[m];
34: if (locord ≥ maxord) then
35: if (locord > maxord) then
36: RetList = ∅, maxord = m, RetList[1] = (p, Imax);
37: else if (RetList[1][1] 6= 0) then . no horizontal components
38: RetList[last] = (p, Imax);
39: return(maxord,RetList);

(End of Remark A.1.7.)

The submethod ReplaceCoeffs replaces each appearing coefficient c ∈ Z by c
p`
P `,
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A. Implementational Aspects

where ` is maximal, and P is a new variable. The resulting ideals JX and JZ are in
Z[x, P ].

Since the p-th usual derivatives vanish in characteristic p, it is standard to use
Hasse-Schmidt derivatives in characteristic p.

Definition A.1.8 ([43, Sections 2.5 and 2.6]). Let S = K[x] = K[x1, . . . , xn] be a
polynomial ring over a field K. Let F = F (x) ∈ S. We introduce new variables
(t) = (t1, . . . , tn) and consider

F (x+ t) = F (x1 + t1, . . . , xn + tn) =
∑
a∈Zm≥0

Fa(x)ta.

The Hasse-Schmidt derivative of F by xa is defined by the coefficient of ta in the
previous expansion.

Remark A.1.9. We can relate the Hasse-Schmidt derivatives to usual derivatives
via the following symbolic computation

∂

∂xa
=

1

a1! · · · an!

(
∂

∂x1

)a1
· · ·
(

∂

∂xn

)an
.

That is why Hasse Derivatives often were used in positive characteristics instead
of the usual ones.

Algorithm 19 shows how to compute Hasse derivations in our setting.

Remark A.1.10 (Algorithm 19). The input contains

• an ideal IZ = 〈g1, . . . , gt〉 ⊆ Z[x] such that Z = V (IZ) is equidimensional and
regular,

• an ideal IX = 〈g1, . . . , gt, f1, . . . , fr〉 ( Z[x],

• a system of parameters (y) on D(det(M)) and

• a matrix M which is a square submatrix of the Jacobian matrix of IZ .

The output is a list where the i-th entry are the Hasse derivatives up to the i-th
derivatives of IX .
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Algorithm 19 HasseDeriv(ideal IZ , ideal IX , list y , matrix M)
1: if (IZ == 〈0〉) then
2: for (j = 1; j ≤ r; j + +) do
3: Fj(y, t) = fj(x1 + t1, . . . , xn + tn); . new variables ti
4: i = 1;
5: tempid = f1, . . . , fr;
6: while ((i == 1) or (tempid 6= RetList[i− 1])) do
7: RetList[i] = tempid;
8: for (a ∈ {b ∈ Z | |b| == i}) do
9: tempid = tempid, { coefficients of ta in F1, . . . , Fr};

10: i = i+ 1;
11: else if (IZ 6= 〈0〉) then
12: Itmp = IX ;
13: for (i = 1; i ≤ r; i+ +) do
14: L[i] = (fi, (0, . . . , 0︸ ︷︷ ︸

#(y)

));

15: old = 0, cur = r;
16: while (Itmp ∩ Z == 〈0〉) do
17: for (old ≤ i ≤ cur) do
18: for (yj ∈ (y)) do
19: (ftmp, note) = L[i];
20: note[j] = note[j]+1;
21: ftmp = 1

note[j]
· ftmp

∂yj
;

22: L.append(ftmp,note);
23: Itmp = Itmp + 〈ftmp〉;
24: Itmp = sat(Itmp, det(M));
25: RetList.append(Itmp);
26: old = cur, cur = size(L);
27: return(RetList);

Note, that RetList[-1] doesn’t throw an error in line 6, since the boolean function
or evaluates i == 1 first. If this is true, the second term of the or-function will
not evaluated anymore. (End of Remark A.1.10.)

A.1.2. Max-ν Calculations

With Construction A.1.11 we can reduce the calculation of the maximal refined-order
locus to the locus of maximal order for which we apply Construction A.1.1.

Construction A.1.11 ([35, Construction 3.9]). Let 0 6= J ⊂ B = A[x] be an ideal,
where A is a field or any principal Dedekindring. Set X = V (J). Assume, like in
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Definition 2.4.8
max-ν(X) = (α, δ) ∈ N.

We provide an inductive construction of Max-ν(X) depending on
a := a(Z) := N − α = dim(Z)− α ≥ 0.
If a(Z) = 0, then Max-ν(X) coincides with Max-ord(X) and we apply
Construction A.1.1.
So we can assume a(Z) ≥ 1. Then J has order 1 at every point in X. So we can
descent in the dimension of the ambient space locally at every point. Hence, for
every point q in Spec(B) there exists a differential operator ∂ = ∂(q), such that
(∂J) · BIq = BIq , with ∂J = 〈∂h | h ∈ J〉 and BIq denotes the localization of B at
the ideal of q.
Let (f1, ...fr) be a set of generators of J . This implies that there is a refined finite
open covering X ⊂ ⋃` U`, such that in each U` we have

X` := X ∩ U` ⊂ V (fj(`)) ∩ U` =: Z`.

Furthermore, V (fj(`)) is regular in U` for j(`) ∈ {1, ..., r} .

• If A is a perfect field, we can apply the Jacobian criterion (Theorem 3.1.4) for
each generator of J separately, and we consider the derivatives with respect
to the variables (x).

• If A is a non-perfect field, we apply Zariski’s Jacobian criterion (see [82,
Theorem 11]). This involves a p-basis for A and uses that there are only
infinitely many non-zero coefficients of each generator f1, ...fr.

• If A is a principal ideal Dedekindring, which is not a field (e.g., A = Z),
there are only finitely many prime elements p1, ..., pρ in A, appearing in the
coefficients of fi for each i and for all j ∈ 1, ..., ρ. Then we substitute each
a ∈ A, appearing in the generators by a

p`j
P `, with ` is the maximal choice and

P is a new variable. Then we can apply the Jacobian criterion and use the
derivative by P .

Note that dim(Z`) = dim(Z)− 1 implies a(Z`) = a(Z)− 1, since νref and max-ν(X)

do not depend on the embedding.
By Induction, we can calculate Max-ν(X`) and max-ν(X`). if maxν(X`) =

max-ν(X), then Max-ν(X`) = Max-ν(X). We obtain Max-ν(X) by gluing the
relevant affine charts.
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Remark A.1.12 ([35, Remark 4.1]). 1. If the maximal order of X equals one,
the scheme can locally be embedded into a regular hypersurface, and it thus
suffices to find an open covering such as using a single such hypersurface on
an open set is possible. The equation of this hypersurface can then be added
to the generators of the ideal of the ambient space Z.
Iterating this process, we descent in ambient space as long as we have not
reached to minimal appearing ax at any point x ∈ X. At these points, the
first entry of the invariant N − ax attains a maximal value.

2. Again, computing the locus of maximal order of X with the new ambient space
resulting from (1.), we reach the locus of maximal refined order.

3. By considering the exceptional divisors, we obtain the locus of log-refined
order.

4. We label the irreducible components of Max-νO(X) using the history of the
resolution process and detect the locus of components that have the smallest
label. Since X is reduced and of dimension two, the latter components have
at most dimension one. Hence, we either blow-up the smallest label locus or
prepare it to become weakly permissible by blowing up closed points.

This yield the following construction.

Construction A.1.13. Let X and Z be as above. We can calculate Max-ν(X,Z)

as follows:

1. Calculate max-ord(X,Z) and Max-ord(X,Z).

2. a) Case max-ord(X,Z) > 1 :

The equalities Max-ord(X,Z) = Max-ν(X,Z) and max-ord(X,Z) =

max-ν(X,Z) hold.
So we already have calculated Max-ν(X,Z) by calculating
Max-ord(X,Z).

b) Case max-ord(X,Z) = 1:
Let f1, . . . , fr be a standard basis of IX such that X = V (IX). Take a
regular generator fi of X and add the equation of fi to the generators of
Z, so we have Z̃ = V (〈fi〉+ IZ).
If IZ̃ 6= IX , go to (1) where Z̃ plays the role of Z.
Otherwise, we are finished, too.
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By counting the number of runs through this process a (number of loops which run
through the case (2)(b)), we get

max-ν(X) := (1, . . . , 1︸ ︷︷ ︸
a

,max-ord(X, Z̃)).

Remark A.1.14 (Algorithm 20). Like described in [35], we need for V (f1, . . . , fr)

for i > 1 a refinement of the ordering. Therefore we show how to compute
this refinement of the ordering and the locus of maximal refined order (see
Construction A.1.13). The input is

• an ideal IX describing X and

• an ideal IZ describing the ambient space.

The output is a list with the same form as Max-ord(IX , IZ), i.e., invariant and locus
of maximal order and the ambient space.

Algorithm 20 Max-ν( ideal IX , ideal IZ)

1: counter = 0;
2: descented_IZ = 〈0〉;
3: while (max-ord(IX ,descented_IZ) == 1) do
4: Choose one generator fi of a standard basis of IX which is regular.
5: descented_IZ :=descented_IZ + 〈fi〉;
6: counter = counter +1;
7: invariant = list(1, ..., 1︸ ︷︷ ︸

counter

,max-ord(IX ,descented_IZ));

8: return list(list(invariant, Max-ord(IX ,descented_IZ ,)), descented_IZ);

If max-ord(IX) > 1, then Max-ν(IX) = Max-ord(IX). So we only need to
consider the interesting case max-ord(IX) = 1.
So we assume max-ord(IX) = 1. Then we compute the set of generators of a
standard basis of IX = V (f1, . . . , fr). Furthermore. we compute the subset of
generators for which max-ord(fi) = 1 holds. This set is the set of generators of our
new ambient space descented_IZ . Then Max-ord(IX , IZ) = Max-ν(〈0〉, IX) and we
can use the method which computes Max-ord(IX , IZ).

(End of Remark A.1.14.)

Section 2.4.2 defines the refined order as a pair (N−ax, dx). For this construction,
it is easy to show that it is upper semi-continuous. For practical reasons, it might
be more sense-full to encode the number N − ax unary as a (N − ax)-tuple of 1s.
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This belongs to the fact that it is more or less a truncated Hironaka invariant, so
in practice, it is easier to use the same data types in order to be able to reuse some
methods of the Hironaka setting. Therefore, we have implemented the same ’value’
in a different encoding, so it is not a mistake.

A.1.3. Max-νO Calculations

As we have seen when discussing Hironaka-style resolution above, the version in
[35] of the CJS algorithm distinguishes old and new exceptional divisors, too. So
we consider the locus of maximal refined order with respect to the old boundary
components instead of the locus of maximal order as the measure how singular a
point is. If the Input is generated by a single polynomial, i.e., if we consider a
hypersurface X = V (f), it suffices to use Max-ordO(·).

Construction A.1.15 ([35], Remark 4.1). LetX be an excellent noetherian scheme,
embedded in a regular ambient space Z. We can calculate Max-νO(X,Z) as follows:

1. Calculate max-ν(X,Z) and Max-ν(X,Z).

2. Define O(X) := {Bi ∈ B | Bi is an old component and X ∩Bi = ∅}.

3. If |O| = 0, we have Max-ν(X,Z) = Max-νO(X,Z) and

max-νO(X,Z) = (max-ν(X,Z), 0).

4. If |O| > 0, Max-νO(X,Z) = Max-ν(X,Z) ∩O(X) and

max-νO(X,Z) = (max-ν(X,Z), |O(X)|).

Remark A.1.16 (Algorithm 21). In Algorithm 21, we intersect the locus of maximal
order resp. maximal refined order, with only necessary old boundary components.
So we do not intersect with all components, but all the old components, which
possibly are not transversal to the strict transform.

Algorithm 21 Max-νO( ideal IX , ideal IZ)

1: OldComps = {var(i) | boundary[2][i] < 0, and var(i) ∪ IX 6= 〈1〉};
2: invariant = (max-ν(IX , IZ), |OldComps|);
3: descented_IZ = Max-ν(IX , IZ)[2] ;
4: return(list(invariant,Max-ν(IX , IZ)∩ OldComps),descented_IZ);

(End of Remark A.1.16.)
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The described singular code is explicitly written for the CJS-Algorithm (see
5.6), so we have to discuss this Algorithm before we are able to construct the old
components explicitely.

A.2. Singular Implementation of the

CJS-Algorithm

In this section, we discuss a dimension-free implementation of the CJS-Algorithm.
We present two theoretically possibilities to handle the recursion in Section A.2.1.
Then we present the pseudo code of the main method in Section A.2.2. Finally, we
discuss the used submethods in Section A.2.3.

Recall that first, the CJS-Algorithm calculates a locus where the singularity
is maximal with respect to our measure max-νO(·). We follow the approach of
[35] and choose the log-refinement of the order function, which we discussed in
Definition 2.4.13.
So we calculate Y := Max-νO(IX). Then there is a decomposition in irreducible
components Y = Y1 ∪ . . . ∪ Yn. The irreducible components are stored in a list
together with a labeling. At the beginning, every label equals 0.
After that, our implementation checks whether the procedure has already been

finished. This is the case, if max-νO(X) = (1, . . . , 1, 0).
If we are already finished, our algorithm returns the initial chart.
If not, then the CJS algorithm calculates recursively a canonical center with

another CJS-call with the corresponding input (ambient space IZ , ideal Y , boundary
B).
This recursion tower of CJS-calls stabilize as soon as we get an B-permissible

center Max-νO(Y(k)) = Y(k) for a recursion-level k. And then we have to blow-up in
Y(k).

When the transform of the canonical center of the upperst CJS-call is
B-permissible, we have already gotten an X ′′ which is the transform with respect
to the sequence of blow-ups. Now we can calculate the blowing Up of the ambient
space Z ′′, which contains X ′′ in this B-permissible center.
The diagram in Figure A.1 illustrates the situation.
If the invariant has not improved, our algorithm calculates Max-νO(X1). The

next step is to calculate a decomposition of this locus in irreducible components.
These labels are determined in each step of the sequence of blow-ups which are
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B1 B′′ B′ B
Z1 → Z ′′ → . . .→ Z ′ → Z

⊂ ⊂ ⊂ ⊂

X1 → X ′′ → . . .→ X ′ → X

⊂ ⊂ ⊂

Y ′′ → . . .→ Y ′ → Y = Max-νO(X)
...

...

⊂ ⊂

A′ → A = Max-νO(·)

⊂

B = Max-νO(A)(= Max-νO(B)).

Figure A.1.: CJS recursion as a tower

done in order to get a B-permissible center. These irreducible components, which
do not lie over the center, are isomorphic to their image since the blow-up is an
isomorphism outside the center. Therefore these components inherit their labels.
These components lying over the center are subdivided into two types. The first
type is the components dominating the center. Components of this type inherit
their label. Components not dominating the center get the number of the blow-up
as a label. Theoretically a component could posses different labels in different
CJS-calls. But in practice it suffices that j < i or j = i hold for labels i and j

of different components, if it should hold. The exact values of the labels does not
matter.

Afterwards, we calculate the union of all irreducible components of Max-νO(X1)

with the same label, i.e., we get

Max-νO(X1) =: Y1 = Y
(0)

1 ∪ Y (1)
1 ,

where Y (0)
1 denotes the union of the label 0 components and Y (1)

1 denotes the union
of the label 1 components of Max-νO(X1).

The next pass through the loop (see Figure 5.6) we replace Y by Y
(k)

1 , where
k = mini∈{0,1}{i | Y (i)

1 6= ∅}.

If the invariant has improved, we can delete all labels and start at the first level
of recursion, like at the beginning of the CJS-Algorithm with X1 instead of X,
Y1 := Max-νO(X1) instead of Y and the divisor of the exceptional divisor instead of
an empty boundary.
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A.2.1. How to handle the recursion

There are at least two possible data structures to handle the recursion of the main
algorithm (see Figure 8.1).
The first method is described above in Figure A.1 with the additional data

structures as follows:
We store the towers of centers, boundaries, and invariants in several lists. In

the case of the tower of the center, this list’s first element is a list containing the
irreducible components of Max-νO(X) =: Y together with their labels. These labels
have the value 0 at the beginning of the algorithm. This list of centers’ second
element is the irreducible components of Max-νO(Y ) =: Z and their labels. The
last element of the list of centers is the unique irreducible component of B, namely
B itself, with the label 0. The lowest level of the tower theoretically needs no label,
but for practical reasons, it is easier to handle every level of the tower equally.
Then the ambient space Z is blow-up with center B.

After that, we have to label the irreducible components of the locus of maximal
refined order of X and the labels of the irreducible components obtained in a sublist
of the list of centers. The next step is to evaluate the situation, and we have to check
if A′ is B-permissible or not. If it is the case, we can blow-up the ambient space with
center A′ and so on. If not, we need to generate a new tower below A′ as described
above. The tower of boundaries is a list of boundaries with the labeling old or new
for each component, where the boundary of an arbitrary level of recursion (at the
beginning) consists of the new components of the boundary of the level of recursion
above. The tower of invariants is a list with entries max-νO(X), max-νO(Y ) resp.
max-νO(A) and so on concerning the boundary on this recursion level.

There is a second way to handle this construction. We can consider it as a
sequential recursion. This is the natural way to implement recursion. The sequential
recursion is described in [35] in Construction 2.16. and in Figure A.2. In this
Construction, we first calculate the locus of maximal log-refined order of the input
ideal IX and denote the ideal which describes this locus as IY . Then we get a
B-permissible center by calculating CJS(IY ). So this implementation structure is a
pure recursion. One part of the output has to be a list of charts of the sequence
of blow-up. In each of these charts, the parent chart has to be stored in the path
matrix. In the following setting, when we have a recursion in CJS(Y ) and another
recursion in CJS(Y ′) it is complicated to append the successor charts to X or X ′.
Another problem is the labeling of the components of Max-νO(X ′) because there

is no single blow-up but a composing of multiple blow-ups. A further problem is
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B′ B
Z ′ → Z

⊂ ⊂

X ′ → X
⊂ ⊂

BlA′′(Y
′′) = ∅ → BlB1(Y

′) =: Y ′′ → BlB(Y ) =: Y ′ → Y = Max-νO(X)

⊂ ⊂ ⊂

BlB1(A
′) =: A′′ → BlB(A) =: A′ → A = Max-νO(Y )

⊂ ⊂

B1 B = Max-νO(A) regular

Figure A.2.: CJS recursion as natural recursion

the inheritance of the labels in the different stages.
That is why we reject this approach and choose the first possibility of
implementation.

A.2.2. CJS main method

Now we can formulate the CJS algorithm in a pseudo code way which is the one
that underlies the implementation.

Remark A.2.1 (Algorithm 22). The input consists of

• an ideal IX = 〈f1, . . . , fr〉, where fi ∈ K[x] = K[x1, . . . , xn], for 1 ≤ i ≤ r and
K being a field of arbitrary charakteristic,

• an integer mode ∈ {1, 2}, which determines the method for choosing the
transform, i.e., mode = 1 means choosing the strict transform and mode = 2

means choosing the weak transform,

• a list boundary that consists of a sublist of polynomials and a sublist of same
size with entries in {−2,−1, 1, 2} (see below), which describes the boundary.
If it is not given, it would be state by default to boundary= list() the empty
list. This describes the first level of the tower of boundaries and

• an ideal describing the ambient space IZ ⊂ IX (default IZ = 〈0〉).

The output of Algorithm 22 is a list of a list allRings and a list EndCharts, of which
the first consists of all charts that are generated and the second consists of all final
charts that are generated during the CJS-algorithm. Each chart has the data type
ring in Singular and in these rings we can find some global (for the ring) variables
of the following form:
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• an ideal IX , which descrices the (strict/weak) transform of the input ideal,

• an ideal IZ ⊂ IX , which describes the ambient space,

• an ideal desended_IZ , which describes the corresponding Z̃ in
Construction A.1.13. IZ ⊆ descented_IZ ⊆ IX holds,

• a list boudary a, which is a list containing three sublists. The first list is the
tower of boundarys. The second list is a list of polynomials which describes
the exceptional divisors of the sequence of blow-up. The third sublist has
an encoded information whether a boundary component is old, new or the
exceptional divisor of the latest blow-up, i.e.,

boundary [j][2][i] =


1, boundary[j][1][i] is a new component; not the latest
−1, boundary[j][1][i] is an old component; not the latest

2, boundary[j][1][i] is a new component and the latest
−2, boundary[j][1][i] is an old component and the latest

,

• a list MaxIX a, which is a list containing a list of integer vectors (i.e., the
tower of invariants) and a sublist. The first sublist contains the invariants
max-νO(·), which we introduce in Definition 5.6.5. The second sublist contains
of irreducible components of Max-νO(X) and their labels. Information about
the labeling is described in Construction 5.6.11. The list of invariants has
to be stored together with the locus of maximal refined order, because as an
integer vector or a list of integer vectors, it could not be stored global in a
ring in Singular (everything that should be stored in a ring must contains a
variable of the ring), i.e., because of technical reasons,

• a list tower which stores the centers of the several levels of the recursion. In
each level of the tower we can find the irreducible components of the center
with their labels,

• a pathmatrix path =

(
0 · · · k

−1 · · · `

)
such that k describes the number of the

predecessor chart (cf. [42]). The successors of the predecessors are labeled from
1 to #successors. The number ` indicates which of these successors the given
chart is. The first column is following the notation of the resolve.lib [37] which
is part of the Singular computer algebra system. That is why it is internal
safed as a module and autoconverted to an integer matrix;

• an ideal Centerideal, which describes the image of the center of the parent
chart under the canonical blow-up map,
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• an ideal last_map, which describes the last map and

• an ideal total_map, which describes the map from the beginning of the
sequence of blow-ups until this chart.

Algorithm 22 is the main method of the CJS-Algorithm.

Algorithm 22 CJS(ideal IZ , ideal IX , ideal descented_IZ, list boundary)
1: allRings =init_list();
2: EndCharts = ∅;
3: if (isEndChart()) then return(list(allRings, allRings));
4: Y := list(Max-νO(IX , IZ)m, 0)m; . irred. comp. with label 0
5: create_towers(Y ); . create tower of boundary, invariant and center
6: allRings = allRings+CopiesOfCharts(1); . blow-up method
7: for (i = 2; i ≤ size(allRings); i++) do
8: setring(allRings[i]);
9: invariant = MaxIX[1]; . invariant before last blow-up
10: (invariant_new, Y_new) =Maxlocus(tower_of_centers,tower_of_boundary,IZ , IX)[1];
11: descented_IZ =Maxlocus(tower_of_centers,tower_of_boundary,IZ , IX)[2];
12: if (invariantHasImproved() == 1) then
13: SetAllBoundaryComponentsOld();
14: invariant =Maxlocus(tower_of_centers,tower_of_boundary,IZ , IX)[1][1];
15: MaxIX[1] = invariant;
16: Y_new = list((Maxlocus(tower_of_centers,tower_of_boundary,IZ , IX)[1][2])m,0);
17: for (j = 1; j ≤size(Y ); j++) do
18: MaxIX[2][j] = list(Yj, 0); . Yj is the j-th irred. comp of Y
19: if (isEndChart() == 1) then
20: Endcharts.append(allrings[i]);
21: else
22: Y :=

⋃
m(Y_new)m . union of the irred. comp

23: create_tower_of_centers(Y )
24: else
25: SetAllBoundaryComponentsOld(); . if an invariant improves
26: if (isEndChart() == 1) then
27: Endcharts.append(allrings[i]);
28: else
29: labeling();
30: if (size(tower) == 0) then
31: Y_list = orderYbylabel(Y_new);
32: else
33: Y_list = orderYbylabel(tower[last]);
34: Y = Y_list[k] . with k minimal s.t. Y_list[k] 6= ∅
35: create_tower(Y);
36: allRings = allRings+CopiesOfCharts(i);
37: return(list(allRings,EndCharts));
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First, the algorithm checks whether the first chart is already an end chart, so the
algorithm is finished. If not, the algorithm computes the first center by calculating
Max-νO(IX , IZ). The m-th irreducible component of Max-νO(IX , IZ) is denoted as
(Max-νO(IX , IZ))m and stored together with label 0 as a list in the Singular variable
Y , for m ∈ Z≥0. Then the towers (of center ideals, boundaries, and invariants) are
calculated by the create_tower -algorithm. For more details see Algorithm A.2.4.
Now the blow-up in the center, which is the last entry of the tower of center, is
calculated, and the successor charts are appended (after the blow-up) to the list
of all charts. For more details, see Algorithm A.2.2. The input value of 1 explains
that all of these charts are successors of the first chart.

After this, we get in a for-loop which computes the blow-up of each chart
and chooses centers by applying rules of the theoretical CJS algorithm (see
Construction 5.6.11). This can be seen in the for-loop in lines 7 to 36.
At each run through the for loop, we have to switch the underlying ring to the

ring which describes the current chart, in which we perform the calculations. Then
we store the invariant from the predecessor chart in order to be able to check the
improvement of the invariant. The next step is to calculate the new locus of maximal
log-refined order and the new invariants (max-νO(· · · )) at each level of the tower.
Now, we have to distinguish two cases:

1. The invariant of the first level of recursion (the initial CJS-call) has improved.

2. The invariant of the first level of recursion (the initial CJS-call) has not
improved.

In the first case, we mark all of the elements of the boundary of this level to
be old (line 13).1 Then we have to calculate Max-νO(IX , IZ) and the invariant
max-νO(IX , IZ) again since the set of old boundary elements could have changed
(lines 14-15).
The next step is to check whether the chart is an end chart. For more details,

see Algorithm A.2.6. If it is the case, the chart does not need further blow-ups, and
we go through the next run of the for loop. If it is not an end chart, we set Y to
the value of Y_new which coincides with Max-νO(IX), and we have to calculate the
next tower of recursive centers and calculate the subsequent blow-up.
In the second case, the singularity has not improved. The invariant of some level

of recursion may improve. Then the level’s boundary components must be marked
as ’old’ if the invariant of this level improves, too. That is what the submethod

1Only if max-ν(IX) improves. The improvement of max-νO(IX) is not enough.
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SetAllBoundaryComponentsOld does. It checks the invariants of all levels, and if
there is some improvement, the boundary components will be marked to be old. As
in the first case, we must check whether we are in an end chart.
After that, we have to label the irreducible components of each recursive centers and
the locus of maximal log-refined order Max-νO(IX). Suppose we are in a recursive
CJS call. In that case, the tower is not empty, so we have to calculate the next
center by taking the union of the minimal label components of the last element of
the tower of centers or the locus of maximal Max-νO(IX). We write this information
in the variable Y_list respectively Y .

The end of the calculation in this chart is analogue to the first case. We have to
blow-up in center Y and append the successor charts to the list of all charts.

If there are no more charts, we return the list of all charts together with a list of
all end charts.

(End of Remark A.2.1.)

A.2.3. Submethods of the CJS implementation

In this subsection, we consider the used submethods in the Singular implementation
of the CJS algorithm.

We start with our method which calculates the blow-up and update the data in the
successor charts. We will see such a submethod in resbinomial2 (Algorithm 34)
and det_resolve (Algorithm 56), too.

Remark A.2.2 (Algorithm 23). Algorithm 23 describes the blow-up in the center,
stored in the last element of the list tower.
The input consists of

• an integer chartnumber, which denotes the number of the parent chart, and

• an integer mode ∈ {1, 2}. If the value of mode equals 1, the Algorithm chooses
the strict transform; otherwise, if the value equals 2, the Algorithm chooses
the weak transform.

The output is a list of charts we get by the blow-up. Every chart in this list has
the same data structure as the one described in Algorithm A.2.1.
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Algorithm 23 CopiesOfCharts(int chartnumber, int mode) (CJS)
1: successor_list = blowUp(〈0〉,tower.last); . ambient space and center
2: Center_this_chart = tower.last;
3: for (j = 1; j ≤size(successor_list); j++) do
4: def newring = successor_list[j];
5: map BlowUpMap = r,bM; . BlowUpMap : r → newring
6: IX = BlowUpMap(IX) + sT ;
7: if (elimpart(IX)[3] 6= 〈0〉) then . elimpart() necessary
8: IX = elimpart(IX)[1] + elimpart(IX)[3];
9: change ordering of ring s.t. std(IX) is eliminated by elimpart
10: map BlowUpElimMap = r,bM ◦ elimpartmap;
11: elimpartmap(eD); . transform the exc div
12: elimpartmap(sT);
13: else
14: map BlowUpElimMap = BlowUpMap; . elimpart() not used
15: IZ = sT ;
16: tower = BlowUpElimMap(tower);
17: transform(tower,mode); . build transform
18: total_map = BlowUpElimMap(total_map);
19: last_map = BlowUpElimMap(last_map);
20: MaxIX = BlowUpElimMap(MaxIX);
21: transform(MaxIX,mode); . build transform
22: boundary = BlowUpElimMap(boundary);
23: transform(boundary,mode); . build strict transform
24: descented_IZ = MaxOrdArithO(IX , IZ)[2];
25: MaxIX[2] = MaxOrdArithO(IX , IZ)[1];
26: path = BlowUpElimMap(path);
27: path=path,[chartnumber,j]; . add last column to path
28: tower = delete(tower,size(tower)); . remove last entry of tower
29: reset_boundary(); . reset former latest component
30: for (i = 1; i ≤size(boundary); i++) do
31: boundary[i][1][size(boundary[i][1])+1] = eD; . add exc. div
32: boundary[i][2] = boundary[i][2] + list(2); . new and latest divisor
33: return (successor_list);

First of all, the map of the blow-up in this center is calculated with the method
BlowUp() of the Singular-Library resolve.lib [37]. After that, the data is
mapped into the new ring, generated by the blowUp(·)-method. The input of this
method consists of an ambient space 〈0〉 and the center of the blow-up, which equals
the last value of the list tower.

The internal method blowUp(·) from the Singular library resolve.lib

calculates the several charts of the blow-up. Each chart has the data type ring, and
the variables which are already in these rings are the following:
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• sT , the strict transform of the blow-up of 〈0〉 in center tower.last,

• eD, the exceptional divisor of this blow-up and

• bM , the map of blow-up.

The parent chart’s other elements must be mapped in the new successor chart by
applying (bM ◦ elimpartmap)(·).
After blowing up the trivial ambient space, we add the ideal of the strict transform

of this ambient space to our total transform of IX . Then we have to distinguish two
cases:

1. The elimpart-map is not the identity. We have to adapt the ordering of
the ring data structure to get the same generators of IX if we call std(IX)

and elimpart(IX). That is why we have the if-statement in line 7 and have
to change and combine the map of the blowing up with the map of the
elimpart-method.

2. The elimpart-map is the identity, so we do not need any changes but the
name of the map.

After this (line 15), we only have to map each component without blow-up map. In
order to do this, the Algorithm has to know in which ring these components live,
so we have this declaration in line 4.
Lines 16 to 22 and 26 are the several mappings of the data structure components.
The last lines of the Algorithm belong to little changes on the variables, so the
path has to get a new column, the last element of the tower of centers, i.e., the
last center has to be deleted, and the new exceptional divisor has to add to the
boundary of each level of the tower. So this divisor is the latest divisor and not
that one which has the entry 2 resp. −2 in the list. So this value has to change to
1 resp. −1 and the latest divisor gets the value 2.

The submethod transform only calculates the transform concerning the mode of
the locus of maximal refined order and the tower. If mode equals 1, then we use
the strict transform, and if mode equals 2, then we use the weak transform. The
transform of the boundary is independent of the mode. Here we always use the
strict transform. This method is treated as a black box here.
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It is crucial to notice that this algorithm does not calculate the invariant. So after
this Algorithm, in all of the successor charts, the stored invariant is the version of
the parent chart. This has to be done later in the main algorithm when j in the
for-loop of the main algorithm gets the value of the number of this chart. First, we
read the old value, and after this, we can calculate the new value and compare them
concerning a lexicographical ordering. We cannot calculate the former value of the
invariant after Algorithm 23. (End of Remark A.2.2.)

Before blowing up, we have to compute the center. For that calculation we need
to label the irreducible components of our locus of maximal invariant.

Remark A.2.3. Algorithm 24 describes our labeling method. We label the
irreducible components of the locus of maximal log-refined order and the irreducible
components of the tower, which contains several centers. The input is

• a list, which encodes the boundary and

• an ideal last_Center, which describes the center of the last blowing up.

The boundary is necessary because it contains information about the last exceptional
divisor.
We assume that last_Center = V (〈x1, . . . , x`〉) has the label k ∈ N0, see
Construction 5.6.11.
The output is the list of irreducible components of maximal singularity together
with their labels and the tower of centers.

Algorithm 24 labeling(list boundary, ideal last_Center)
1: maxlabel = ncols(path);
2: for Y_new ∈ { MaxIX[2], tower[1], . . . ,tower[size(tower)]} do
3: for Yi =: 〈xi1 , . . . xim〉, irred. comp of Ynew contained in the last exc.div do
4: for 1 ≤ j ≤ m do
5: if xij /∈ {x1, . . . , x`} then
6: label_of_Yi = maxlabel; . not dominating!
7: break;
8: label_of_Yi = k;
9: return list(MaxIX,tower)

Line 1 uses the fact that the number of columns of the pathmatrix equals number
of the blow-up. (End of Remark A.2.3.)

Now we are able to compute the recursion via the above described tower.
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Remark A.2.4. Algorithm 25 describes the generation of the towers.
The input is an ideal Y , which we want to insert in this tower. This Y is a locus
where the singularity is maximal or is a locus described by a union of minimal label
components of the lowest center.

If the tower is empty, we insert the irreducible components of Y with the label 0

in the list.

As long as the locus of maximal log-refined order differs from the latest component
of the tower, the irreducible components of this locus are inserted with the label 0

in the lowest label of the tower.

Since this algorithm only manipulates global variables, there is no particular
output.

Algorithm 25 create_tower Methode(ideal Y)
1: if (tower == ∅) then
2: tower[1] =

⋃
ilist(Yi,0); . Yi i-th irred. comp. of Y

3: boundary[1] = N(X), (1, . . . , 1);
4: invariant = max-νO(Y, IZ);
5: while (Max-νO(tower[last]) 6= tower[last]) do
6: Y = Max-νO(tower[last]);
7: boundary.append(N(tower[last]), (1, . . . , 1));
8: tower.append(

⋃
ilist(Yi,0));

9: invariant = max-νO(Y, IZ);
10: stop;

(End of Remark A.2.4.)

The next pseudo code we will discuss shows how to detect the improvements of
the invariant.

Remark A.2.5 (Algorithm 26). The input are two lists. The first list encodes the
invariant in the considered chart. The second encodes the invariant in the parent
chart. The output is a boolean. The algorithm returns 1, if the new invariant is
smaller than the old invariant in the parent chart. Otherwise it returns 0.
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Algorithm 26 invariantHasImproved(intvec invariant, intvec invariant_new)
(CJS)
1: if (size(invariant_new) > size(invariant)) then
2: return(1);
3: for (i = 1; i ≤size(invariant); i++) do
4: if (invariant_new[i] <lex invariant[i]) then
5: return(1);
6: return(0);

In order to check whether the invariant of some level of the tower has improved, we
first have to compare the length of both lists. If the list invariant_new is longer than
the list invariant, then the invariant has improved because we have more generators
of IX fi, where max-ord(fi) = 1 than before. If both lists’ lengths are equal, then
we have to compare all entries but the last lexicographically. This belongs to the
fact that the last entry is the additional component which encodes |O| in max-νO,
but we only consider here the improvement of max-ν.

(End of Remark A.2.5.)

Finally, the main algorithm has to stop anywhere. So we present now the
detection, if the considered chart is an end chart.

Remark A.2.6 (Algorithm 27). This method has neither input nor output, since
the needed information is stored in global (global for each chart) variables.

Algorithm 27 isEndchart() (CJS Algorithm)
1: if (IZ 6⊂ IX or IX == 1) then
2: return (1);
3: if (max-ord(IX , IZ) > 1 or max-ν(IX , IZ).last > 1) then
4: return (0);
5: if IZ == IX then return (1);
6: return (1);

The method isEndchart (Algorithm 27) checks if the maximal order is greater
than 1 or if there is more than one old boundary component. In these cases, we are
not finished with our CJS algorithm because the scheme is still singular, or we do
not know whether we have simple normal crossings. Therefore this method returns
in these cases 0 and otherwise 1.

(End of Remark A.2.6.)

Experiments on several examples can be found in Section C.
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A.3. New implementation of Blanco’s algorithm

We need a seperated method for the calculation of the center of Blanco’s algorithm
and therefore a modular implementation of it. Unfortunately, the implementation
of Blanco and Pfister [12] is only a proof of concept implementation and therefore
it not focusses on the structure or a good worst-case complexity. For this reason,
the author reimplements the algorithm of Blanco in the resbinomial2.lib. There
she uses some methods of resolve.lib [37] as a black box. This is the reason why we
assume that the underlying ring R (in Singular) is a field of characteristic 0.

First, we explain the main method, and afterwards, we present the important
submethods of this method.

As seen before, every chart is represented by the singular data type ring. In this
ring, we have the data of the basic object which is stored in the list BO. We use the
notation of Section 5.3, here. The entries of the list are the following:

1. An ideal encoding the ambient space W ,

2. the considered ideal J ,

3. an intvec b, which contains the order of J and the order of the (recursive)
coefficient ideals of J ,

4. the set E of exceptional divisors,

5. an ideal encoding the map describing the blow-up map,

6. internal data we inherit from resolve.lib and

7. an intvec, where the entries (corresponding to the descent in dimension) point
to the exceptional divisors with which we have to intersect.

This data type is already used by resolve.lib and allows us to use methods of
resolve.lib on this list BO. Since we do not touch the sixth entry during the whole
computation, we do not discuss it, here. See [37] for more information.
Furthermore, there is a global variable which contains the pathmatrix path =(

0 · · · k

−1 · · · `

)
such that k describes the number of predecessor charts (cf. [42]).

The successors of the predecessors are labeled from 1 to #successors. The number `
indicates which of these successors the given chart is. The first column is following
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the notation of the resolve.lib [37]. We have already seen this concept of encoding
the path in the implementation of the CJS algorithm in Section A.2.

Now we have a look at the main method of the new implementation of Blanco’s
algorithm.

Remark A.3.1 (Algorithm 28). The input is a binomial ideal J . The output is
a list consisting of a the list of all final charts EndCharts and the list of all charts
BlowUpTree.

Algorithm 28 resbinomial2( ideal J)

1: def r = basering;
2: list BlowUpTree;
3: BlowUpTree[1] = r;
4: BO = createBO(J);
5: descent_BOlist, b, Center = descent_BO(BO);
6: if (finished(BO)==1) then
7: Endcharts[1] = BlowUpTree[1];
8: else
9: BlowUpTree.append(SuccessorCharts(descent_BOlist[1],Center,1));
10: for (i = 2; i ≤ size(BlowUpTree); i+ +) do
11: actual_chart = L[i];
12: setring(actual_chart);
13: descent_BOlist, b, Center = descent_BO(BO);
14: if (finished(BO)==1) then
15: Endcharts.append(BlowUpTree[i]);
16: else
17: BlowUpTree.append(SuccessorCharts(descent_BOlist[1],Center,i));
18: return(Endcharts,BlowUpTree);

First, the algorithm creates the basic object and calculates the descent in
dimension. Afterwards, we can store the center in an additional variable. Then
the first chart (if necessary) will be blown up, and the successor charts will be
appended to the list of all charts. Then the same procedure will be repeated for
every successor chart until there is no more chart.

(End of Remark A.3.1.)

The following method we will look at is the descentBO-method. In this
method, the descent in dimension is computed.
The called subroutines DeltaList, which calculates ∆i−1(J) (Definition 2.4.9) and
the maximal i such that ∆i−1(J) is not empty, and inters_E, which computes
the intersection with the necessary exceptional divisors, were implemented in the
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library resolve.lib.

This method is the most important method for the det_resolve-algorithm in
Section A.5.2. We call this method from det_resolve, because it calculates the
center and updates the whole basic object. So the resbinomial2-method is only
the skeleton and here we have the heart of Blanco’s algorithm:

Remark A.3.2 (Algorithm 29). The input is a list BO which encodes the basic
object with the additional data described at the beginning of this Section. The
output is a list consisting of a list of the associated coefficient ideals, an intvec b
which describes the order at each step of the descent in dimension, and an ideal
which encodes the center of the next blow-up following the algorithm of Blanco.
The variable counter stores the current level of the decent in dimension, where

the considered basic object starts at level 1. First, we update the ambient space
described in Remark 31. Afterwards, we store the basic object as the first element
in the list CoeffBOList and calculate via the method DeltaList of resolve.lib. The
size of the returned list corresponds to the order of the considered ideal.
Next, we update the value of BO[7]. This is an internal pointer in which the
method inters_E of resolve.lib uses to calculate the relevant exceptional divisors.
Ultimately, we intersect the center and the ideal of the basic object with the relevant
exceptional divisors.
Then we are finished considering this level of descent in dimension and check whether
we have to consider the coefficient basic object or whether we are finished with
the induction and return the center. If we have to consider the next level via
the coefficient basic object of the current basic object, we repeat the same steps.
However, before returning the center, we have to check the case in which we are, i.e.,
if we have to compute the intersection of basic objects or if we are in the monomial
case. See Remark 32 for more information.

(End of Remark A.3.2.)

We also have to calculate whether the descent in dimension is finished. We use
the following method for this calculation: the following descentfinished-method.

Remark A.3.3 (Algorithm 30). The input is an ideal describing the current
maximal locus Ctemp, an integer btmp which equals the current maximal order of
the current coefficient ideal and a list of type basic object which encodes the current
coefficient ideal in the descent in dimension. The output is an integer {0, 1, 2, 3, 4}
which encodes with which status we end up or returns 0, if we are not finished.
The status is 1, if Ctemp is a point, 2 if the coefficient ideal equals 〈0〉, 3 if the
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Algorithm 29 descent_BO(list BO)
1: counter = 1;
2: BO = UpdateAmbientSpace(BO);
3: CoeffBOList[1] := BOtmp:= BO;
4: intvec bold = BO[3];
5: DList = DeltaList(BOtmp); btmp = size(DList);
6: b[1] = btmp;
7: Ctemp = DList[btmp]; . ∆btmp−1(J)
8: orderdecreased = 0;
9: if (b[1] == bold) then
10: BO7new[1] = BO[7];
11: if (b[1] < bold) then
12: BO7new[1] = size(BO[4]);
13: orderdecreased = 1;
14: BOtmp[7] = BO7new;
15: list E = inters_E(BOtmp); . E[1] are the relevant exc divs
16: CoeffBOList[1][2] = std(E[1]b[1]+ CoeffBOList[1][2]); . Companion ideal
17: Ctemp = std(Dlist[btmp] + E[1]);
18: while (descent_finished(Ctemp, BOtmp) == 0) do
19: BOtmp = UpdateAmbientSpace(Coeff(BOtmp,b[size(b)])); . coefficient BO
20: CoeffBOList[size(CoeffBOList)+1] = BOtmp;
21: casenumber = DetectCase(BOtmp,DList);
22: if (casenumber == 2) then
23: BO[1..4] = (BO[1],(Icontrolbcounter+BO[2]bcounter), E) . intersection of

BOs
24: DList = DeltaList(BOtmp), btmp = size(DList);
25: b[size(b)+1] = btmp;
26: if (orderdecreased == 0 and (size(bold) ≥ counter)) then
27: if (b[counter] == bold[counter]) then
28: BO7new[counter] = BO7old[counter];
29: if (b[counter] < bold[counter]) then
30: BO7new[counter] = size(BOtmp[4]);
31: orderdecreased = 1;
32: else
33: BO7new[counter] = 0;
34: BOtmp[7][1] = BO7new[counter];
35: if (casenumber == 1 or casenumber == 2) then
36: E = inters_E(BOtmp); . intersection with the exc divs
37: CoeffBOList[counter][2] = std(E[1]b[1]+ CoeffBOList[counter][2]);
38: Ctemp = std(Dlist[btmp] + E[1]);
39: else
40: BOtmp[2] = Icontrol;
41: BOcontrol[3] = CoeffBOList[counter−1][3];
42: center = MonomialCase(BOcontrol,DList);
43: counter++;
44: for (j = 1; j ≤ size(BO7new); j + +) do . set all BO[7] entries
45: CoeffBOList[j][7] = intvec(BO7new[j..size(BO7new)]);
46: return(CoeffBOList,Ctemp);202
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coefficient ideal equals 〈1〉 and 4 if Ctemp is smooth and simple normal crossing
with the exceptional divisors, so it is a suitable center

Algorithm 30 descent_finished(ideal Ctemp, int btmp, list CoeffBO)

1: if isSmooth(Ctemp) and normalCross(Ctemp,CoeffBO[4]) == 1 then
2: return(1);
3: else if CoeffBO[2] == 〈0〉 then
4: return(2);
5: else if CoeffBO[2] == 〈1〉 then
6: return(3);
7: else
8: Ctemp =

√
Ctemp

9: if isSmooth(Ctemp) and normalCross(Ctemp,CoeffBO[4]) == 1 then
10: return(4);
11: return(0);

Case 4 abbreviates the vertical induction so we can take the radical as the center
if it is smooth and has normal crossings with the exceptional divisors in the binomial
case. (End of Remark A.3.3.)

We have already seen the main idea of the following method in the implementation
of the refined order (see Remark A.1.12). If we have generators of the form, 1− xA,
we add them to the set of generators of the ambient space.

Remark A.3.4 (Algorithm 31). The input is a list describing the current
(coefficient) basic object of the descent in dimension. The algorithm detects
generators of BO[2] of the form 1− xA and adds it to the generators of the ambient
space BO[1].

Algorithm 31 UpdateAmbientSpace(list BO)
1: DList = DeltaList(BO);
2: for (j = 1; j ≤ size(BO[2]);j + +) do
3: if size(DList) == 1 then
4: tmpBO[2] = BO[2][j];
5: DListtmp = DeltaList(tmpBO[2]); . calculate order of the j-th entry
6: if (size(DListtmp) == 1) then
7: BO[1] = BO[1] + tmpBO[2];
8: BO[2] = delete(BO[2],j);
9: Dlist = DeltaList(BO);
10: return(BO);

(End of Remark A.3.4.)
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Now, we have a distuingish the different three cases, which we detect in the
following algorithm.

Remark A.3.5 (Algorithm 32). The input is the current (coefficient) basic object
on level i of the descent in dimension and the deltalist of the (coefficient) basic
object on level i− 1.
The output is an integer describing the current case. We return 1, if the order of
the strict transform (of the coefficient ideal of level i) is greater or equal to b!, where
b is the order of the coefficient ideal of level i − 1. In this case, we do not need
to calculate the intersection of basic objects because it has no effort. So we can
abbreviate the process.
In the second case, the order of the strict transform (of the coefficient ideal of level
i) is between 1 and b!, where b is again the order of the coefficient ideal of level i−1.
And we return 3, if we are in the monomial case. That is the case, if the order of
the strict transform equals 1.

Algorithm 32 DetectCase(list BO, list DList)
1: int b = size(DeltaList(BO));
2: if (b ≥ size(DList)!) then
3: return(1);
4: else if (1 < b < size(DList)!) then
5: return(2);
6: return(3);

(End of Remark A.3.5.)

We discuss now the monomial case of the algorithm of Bravo, Encinas and
Villamayor (see end of Section 5.3), which is our case number three.

Remark A.3.6 (Algorithm 33). The input is the current (coefficient) basic object
on level i of the descent in dimension and the deltalist of the (coefficient) basic
object on level i − 1. The output is the center of the next blow-up following the
monomial case.
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Algorithm 33 MonomialCase(list BO, list DList)
1: int b = BO[3][1];
2: J = BO[2];
3: list Explist = leadexp(J [1]);
4: for (j = 1; j ≤ n; j + +) do
5: duplicate Explist n-times in list tmplist
6: delete a single superfluent entry s.t.

∑
i∈IExplisti ≥ b holds

7: add list without dulicates to tmplist
8: delete sublists with not minimal codimension
9: only keep sublists with maximal sum of entries

10: return the lexicographical minimal element

(End of Remark A.3.6.)

We use the following example to illustrate the implementation of the monomial
case. The example is inspired by [16, Example 20.4].

Example A.3.7. Let (W, (J, 9), E = {H1, H2, H3, H4}) be a basic object, where W
denotes the real analytic space R4, Hi, 1 ≤ i ≤ 4 are the coordinate hyperplanes
and

J = I(H1)6I(H2)4I(H3)2I(H4)2.

The intersection H1∩H2∩H3∩H4 is a closed point. The singular locus of the basic
object is

Sing(J, 9) = (H1 ∩H2) ∪ (H1 ∩H3 ∩H4),

since 6 + 4 = 6 + 2 + 2 ≥ 9.
The function h is given by

h(ξ) =

(−2, 10
9
, (1, 2, 0, 0)), if ξ ∈ H1 ∩H2

(−3, 10
9
, (1, 3, 4, 0)), if ξ ∈ (H1 ∩H3 ∩H4)\(H1 ∩H2)

.

The maximum value is maxh = (−2, 10
9
, (1, 2, 0, 0)) and therefore Maxh = H1 ∩H2.

Our Algorithm 33 first takes the leadexponents, so we have a list (6, 4, 2, 2) and
duplicate it 4 times. So the list tmplist consists of 4 times the list (6, 4, 2, 2), i.e.,
tmplist[1] = (6, 4, 2, 2), tmplist[2] = (6, 4, 2, 2) and so on.
Afterwards, we delete elements such that the sum of the remaining elements have a
sum greater or equal 9. So (0, 4, 2, 2) is not a possibility since 4+2+2 = 8 < 9. The
next possibility is (6, 0, 2, 2). The sum of the elements is 10 > 9. So tmplist[5] =
(6, 0, 2, 2). The remaining possibilities yield tmplist[6] = (6, 4, 0, 2) and tmplist[7] =
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(6, 4, 2, 0). Repeating this procedure, we get a further entry tmplist[8] = (6, 4, 0, 0).

So we detect in the for loop the singular locus

Sing(J, 9) = (H1 ∩H2) ∪ (H1 ∩H3 ∩H4).

Since 6 + 4 = 6 + 2 + 2 = 10, the second component of h(ξ) equals 10
9
, for ξ ∈

Sing(J, 9).
Finally, we detect the lexicographical minimal element (with respect to the indices)
and return (H1 ∩H2).

In the main method resbinomial2 the blow-up is fulfilled by the
successorcharts-method. In there we perform the blow-up and update
the data of the basic object and the path of the successor charts. We have
seen this type of method already in the implementation of the CJS algorithm in
Algorithm 23.

Remark A.3.8 (Algorithm 34). The input consists of

• a list describing the basic object BO,

• the ideal describing the center and

• an integer which denotes the total number of the charts.

The output is a list of successor charts. This algorithm creates and fills the successor

Algorithm 34 SuccessorCharts(list BO, ideal cent, int chartnumber)
1: def r = basering;
2: successor_list = blowUpBO(BO,cent,2);
3: Numb_sucessors = size(successor_list);
4: for (j = 1; j ≤ Numb_sucessors; j + +) do
5: def newring = successor_list[j];
6: setring(newring);
7: n = nvars(basering);
8: ideal bM=BO[5]; . copied from resolve.lib
9: map BlowUpMap = r,bM;
10: ideal last_map = bM;
11: ideal total_map = BlowUpMap(total_map);
12: def path = imap(r,path);
13: path=path,[chartnumber,j];
14: setring(r);
15: return(successor_list);

charts with the necessary data. (End of Remark A.3.8.)
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A.4. Implementational aspects of Hu’s algorithm

In this section we present our implementation of Hu’s algorithm. First, we
discuss how to implement the algorithm in general. Later on, we discuss how
the implementation looks like, if we want to plug in our main implementation
det_resolve in Section A.5.2.

Remark A.4.1. The input is

• an ideal X describing the ambient space and

• {f1, . . . , fm} a list of binomials, with fj = fj = 1− ρjxAj , 1 ≤ j ≤ m.

The output of Algorithm 35 is a list of total Charts and final charts for the
determinantal algorithm.

Algorithm 35 Hu(ideal X, list {f1, . . . , fm})
INPUT: X,{f1, . . . , fm}, with fj = 1− ρjxAj , 1 ≤ j ≤ m
1: Y := V (

∏m
j=1 fj)

2: X0 := X\Y ;
3: I = P{1, . . . ,m}
4: L = list(list());
5: for i ∈ I do
6: Di :=

⋂
j∈i V (fj);

7: L[n−size(i)].append(Di); . The `-th element of L is a list of Di of rank `.
8: for (` = n, ` ≥ 1, `−−) do
9: for (k = 1, k ≤ size(L[`]), k + +) do

10: if (L[`][k] 6= ∅) then
11: X = B`L[`][k](X); . Blow-up with center L[`][k]
12: L = B`L[`][k](L); . short notation for blow-up every element in L
13: return

(End of Remark A.4.1.)

We will not focus on this general approach of implementing Hu’s algorithm here
since we only need the choice of the center of Hu’s algorithm. Here, we will only
calculate the intersection lattice and the covering for the normal crossing process.

Since our main goal is to resolve determinantal singularities of at most binomial
type, we optimized the implementation of Hu’s algorithm for the use as a black
box in the determinantal resolution algorithm, i.e., we will not calculate the whole
intersection lattice but the elements of this which we will need until our entries of
the matrix become normal crossings. Furthermore, Hu’s algorithm provides the
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covering we need for the monomialization process. So we calculate this covering
here and do not need to calculate it later a second time.

Remark A.4.2 (Algorithm 36). The input is a matrix M which has principalized
entries which do not need to have normal crossings. The output of Algorithm 36 is:

• a list IntersectionLattice, which contains the elements in the intersection
lattice, where we have to blow-up and

• a list CoveringAndComponentList, that contains the relative extremal
elements of the intersection lattice together with a list of elements in Entrylist
which does not generate the covering. More information can be found in
Section A.5.2.

Algorithm 36 HuAlgorithm(matrix M)
1: Entrylist = removeDuplicates(ListForHu(M));
2: list IntersectionLattice = HuCalc(Entrylist);
3: list coveringlist = IntersectionLattice[2];
4: list CoveringAndComponentList;
5: if (size(IntersectionLattice[1][1]) == 0) then . Only calculate the covering
6: for (i = 1; i ≤size(Entrylist);i+ +) do
7: if (size(Entrylist[i]) == 1) then
8: CoveringAndComponentList.append(list(list(Entrylist[i]),{Entrylist[j]|
i 6= i}));

9: else
10: for (i = 1; i ≤size(coveringlist);i+ +) do
11: CoveringAndComponenList[i][1] = coveringlist(i);
12: for (j = 1; j ≤size(Entrylist);j + +) do
13: if (MemberOfList(Entrylist[j], coveringlist[i]) == 0) then
14: CoveringAndComponentList[i][2].append(list(Entrylist[j]));
15: CoveringAndComponentList[2].append({Entrylist[j]| i 6= i})
16: return(IntersectionLattice[1],CoveringAndComponentList);

(End of Remark A.4.2.)

The method ListForHu converts the principalized entries of the matrix into a
list of the irreducible components without duplicates and 1 entries.

Remark A.4.3 (Algorithm 37). The input is a matrix M which has principalized
entries which do not need to have normal crossings. The output of Algorithm 37 is
a list Entrylist, which contains the converted list.
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Algorithm 37 ListForHu(matrix M)
1: Entrylist = list();
2: for (i = 1; i ≤ #rows(M); i+ +) do
3: for (j = 1; j ≤ #cols(M); j + +) do
4: if (M [i, j] 6= 1) then
5: Entrylist.append(minAssGTZ(M [i, j]));
6: deleteDuplicates(Entrylist);
7: return(Entrylist);

In line 5, the method minAssGTZ calculates the minimal associated prime ideals
of proper ideal. (End of Remark A.4.3.)

Remark A.4.4 (Algorithm 38). The input is the list Entrylist, calculated in
Algorithm 37. The output of Algorithm 38 is a list containing:

• a list centerlist, which contains the elements of the intersection lattice where
we have to blow-up

• a list covering list, which contains the relative extremal components of the
intersection lattice.

Algorithm 38 HuCalc(list Entrylist)
1: IntersectionLattice = CalculateIntersectionLattice(Entrylist)
2: for (i = 1; i ≤size(IntersectionLattice[1]);i+ +) do
3: calculate centerlist[i] . an ideal generated by the elements of

IntersectionLattice[1][i];
4: coveringlist = IntersectionLattice[2];
5: return(centerlist,coveringlist);

(End of Remark A.4.4.)

Remark A.4.5 (Algorithm 39). The input is the list Entrylist, calculated in
Algorithm 37. The output of Algorithm 39 is a list containing:

• a list centerlist, which contains the elements of the intersection lattice where
we have to blow-up

• a list covering list, which contains the relative extremal components of the
intersection lattice.
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Algorithm 39 CalculateIntersectionLattice(list Entrylist)
1: list IntersectionLattice = list();
2: emptyOrOrigin = 0, i = 2;
3: sizeL = size(Entrylist);
4: Listideal = ideal(Entrylist);
5: n = Codimension(Listideal);
6: while (emptyOrOrigin == 0) do
7: emptyOrOrigin = 0, NotEmpty = 0;
8: SubsetList = subsets(sizeL,i); . list of all sizeL-element subsets of
{1, . . . , n}

9: for (j = 1; j ≤ size(SubsetList);j + +) do
10: IntersectionLattice[i].append(list());
11: for (k = 1; k ≤ i; k + +) do
12: IntersectionLattice[i][last].append(Entrylist[SubsetList[j][k]]);
13: if (〈 IntersectionLattice[i][last][j] | j ≤ size

IntersectionLattice[i][last]〉) then
14: delete(IntersectionLattice[i][last]);
15: if (IntersectionLattice[i] = ∅ or i == sizeL) then
16: emptyOrOrigin = 1;
17: list coveringlist = list();
18: for (i = min{n,size(IntersectionLattice)}; i > 1; i−−) do
19: for (j = 1; j ≤ size(IntersectionLattice[i];j + +)) do
20: contained = 0;
21: for (k = 1; k ≤ size(coveringlist);k + +) do
22: if (isSubList(IntersectionLattice[i][j],coveringlist[k])) then
23: contained = 1;
24: if (contained == 0) then
25: coveringlist.append(IntersectionLattice[i][j]);
26: for (i = 1; i ≤ n; i+ +) do
27: for (j = 1; j ≤ size(IntersectionLattice[i]); j + +) do
28: if (allPairwiseTransversal(IntersectionLattice[i][j])) then
29: delete(IntersectionLattice[i][j]);
30: delete emptylists in IntersectionLattice
31: return(IntersectionLattice,coveringlist);

The while loop calculates the intersection lattice. Afterwards, the covering is
calculated as the relative extremal components, i.e., the codimension n components,
or if this component is empty, then we have to take the elements with lower
codimension that are not empty lying above in a full (i.e., with empty components)
intersection lattice.
Finally, we delete the superfluent components of the intersection lattice, namely if
the codimension is n or less and all components are pairwise transversal.
We use the notation ’delete(list[entry])’ which is shorthand for the call of ’delete(list,
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entry)’. (End of Remark A.4.5.)

A.5. Implementational aspects of the

determinantial resolution

We have discussed the methods that help us to present this thesis’s main algorithms.
In the first subsection, we discuss the implementational aspects of the generic cases.
The theoretical background we gave in Chapter 6. Afterwards, we generalize the
skeleton of the generic case for the determinantal resolution of Chapter 8.

A.5.1. Implementational aspects of the generic case

In this subsection, we discuss an implementation of the generic, the generic
symmetric, and the generic skew-symmetric case written in the computer algebra
system Singular [30].

Throughout this section, we assume that the underlying ring R (because of the
constraints of the computer algebra system Singular and the fact that only fields
and Z are implemented) is a field or Z. Furthermore, we assume that char(R) 6= 2

in the skewsymmetric case.

The main algorithm is for all cases the same. To distinguish the several cases, we
add input parameter mode. So we do not need to duplicate the same code. So we
get better readability.
For better usability, we add different methods generic_resolve,
symmetric_generic_resolve and skewsymmetric_generic_resolve which only
call the main algorithm with the suitable parameters.

Remark A.5.1 (Algorithm 40). The input is:

• a stringmode ∈ { "skew", "sym", "gen"} which encodes the desired algorithm,

• an integer m which describes the number of rows,

• optional: an integer n which describes the number of columns, if it is not
given, then we assume the generic m×m matrix. Only availiable for the pure
generic case and

• optional: an integer r ∈ {1, . . . , rank(M)}, which gives the information about
what Ir,m,n the algorithm has to resolve. Default: r = min{m,n}.

211



A. Implementational Aspects

The output of Algorithm 40 is a list of a list of all final charts EndCharts and a list
of all charts allRings.

Algorithm 40 generic_resolve(string mode, int m[, int n, int r])
1: if (not defined(n)) then
2: n = m;
3: matrix M = generate_matrix(mode,m,n); . M = Mm,n, M = Am or M = Bm

4: list allRings =init_list(M ,r);
5: list EndCharts = list();
6: if (finished(M)) then
7: return(list(allRings,allRings));
8: allRings.append(blowup(M ,minor(M ,1)));
9: for (i = 2; i ≤ size(allRings); i++) do
10: setring(allRings[i]);
11: M = gaussian_step(mode, M);
12: M = submatrix(M , mode);
13: r = min{#rows of M,#columns of M};
14: if (finished(M)) then
15: EndCharts.append(actual_ring);
16: continue;
17: else
18: M = transformationOfVariables(mode,M);
19: allRings.append(blowup(M ,std(radical(minor(M ,1)))));
20: return(list(EndCharts,allRings));

First, we have to initialize the ring structure with all its information. So every
chart in the list allRings provides the information about the strict transform of M
(by abuse of notation, also called M), the dimension of the size of the relevant
minors (rank(M)− r) and the linear transformation of the variables.
We are finished if the considered minor is regular, i.e., r == 1 in the generic case
and r == 2 in the generic skew-symmetric case. If we are finished, there is nothing
to do, and the algorithm returns a list with a list of the actual ring twice since it is
the list of all charts during this resolution process, and it is also the list of all end
charts.
Otherwise, we have to blow-up the origin, and in the next steps, we have to consider
the successor charts, which are now stored in the list of all charts.
During the for-loop (lines 9 to 19), we first have to change our setting to the setting
of the following unconsidered chart (actual_ring). In this chart, we first have to
do the gaussian_step and reduce the value of r by one or two depending on the
mode and the considered chart. Now, we are in the same setting as we have seen
in the first chart. If in the considered chart, the ideal generated by the interesting
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minors is regular, this chart is an end chart, so we add it to the list of end charts.
Otherwise, we blow-up in origin (after suitable linear transformation).
We repeated this until every chart in the list of all charts was considered. Then we
return the list of all charts together with the list of end charts.

(End of Remark A.5.1.)

The only differences between all of the generic cases are

• the construction of the initial matrix M ,

• the gaussian steps, we have discussed in Construction 6.1.2 and in the proofs
of Main Theorem 4 and Main Theorem 5,

• the computation of the submatrix and

• the transformation of variables.

Since the construction of the initial matrix and the calculation of the right
submatrix are obvious, we only have to handle the different Gaussian steps and
transformation of variables implementations.

We want to take advantage of the structure to reduce complexity, here. So we do
not have to calculate the blow-up via ideals, but we can manipulate the entries in
every single chart by setting the 1 entry at the correct position. So we can consider
less complex data structures here.

We now look at the implementations of the several gaussian steps and start with
the generic case.

Remark A.5.2 (Algorithm 41). The input is:

• a string mode = "gen" which encodes the desired algorithm and

• a matrix M .

The output of Algorithm 41 is the corresponding matrix M after the gaussian step.
The algorithm first finds the position of the 1 entry inM . This position is denoted

as (j, k). Afterwards, we generalize the Gaussian step discussed in 6.2 to all charts.
We only need to perform the row operation since we have already seen that the
column operations only set the entries of the `-th row to the value of 0, so we can
reduce complexity here and we directly set these entries. (End of Remark A.5.2.)

The next more difficult mode is the generic skew-symmetric case since we need to
perform two row resp. column operations.
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Algorithm 41 gaussian_step(string mode="gen", matrix M)
1: (j, k) = PositionOfOneEntry(M);
2: for (i = 1; i ≤ #rows(M); i+ +) do
3: for (` = 1; ` ≤ #cols(M); `+ +) do
4: if (i 6= j) then
5: M [i, `] = M [i, `]−M [i, k] ·M [j, `];
6: for (` = 1; ` ≤ #cols(M); `+ +) do
7: if (` 6= k) then
8: M [j, `] = 0;
9: return(M);

Remark A.5.3 (Algorithm 42). The input is:

• a string mode = "skew" which encodes the desired algorithm and

• a matrix M .

The output of Algorithm 42 is the corresponding matrix M after the gaussian step.

Algorithm 42 gaussian_step(string mode="skew", matrix M)
1: (j, k) = PositionOfOneEntry(M);
2: for (i = 1; i ≤ #rows(M); i+ +) do
3: for (` = 1; ` ≤ #cols(M); `+ +) do
4: if i 6= j and i 6= k then
5: M [i, `] = M [i, `]−M [i, k] ·M [j, `];
6: for (` = 1; ` ≤ #cols(M); `+ +) do
7: if (` 6= k) then
8: M [j, `] = 0;
9: for (i = 1; i ≤ #rows(M); i+ +) do
10: for (` = 1; ` ≤ #cols(M); `+ +) do
11: if (` 6= j and ` 6= k) then
12: M [i, `] = M [i, `]−M [i, j] ·M [k, `];
13: for (i = 1; i ≤ #rows(M); i+ +) do
14: if (i 6= k) then
15: M [i, k] = 0;
16: return(M);

The algorithm first detects the position of the 1 entry in M . This position
is denoted as (j, k). Afterwards, we generalize the Gaussian step discussed in
Section 6.2 to all charts. We only need to perform the first row operation and the
second column operation since we have already seen that the first column operation
and the second row operation only set the corresponding entries to the value of 0.
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Again, we can reduce complexity by directly setting these entries to 0. (End of
Remark A.5.3.)

The last and the most complicated mode is the symmetric mode since we have
to distinguish 2 cases depending on the position of the 1 entry in the matrix M ,
namely the diagonal and the non-diagonal charts.

Remark A.5.4 (Algorithm 43). The input is:

• a string mode = "sym" which encodes the desired algorithm and

• a matrix M .

The output of Algorithm 43 is the corresponding matrix M after the gaussian step.

After storing the position of the 1-entry in (j, k), the algorithm checks if it is in a
Xj,j-chart or a Xj,k-chart with j 6= k.

We have to perform only a single row operation in the Xj,j-charts. In the
Xj,k-charts, we first have to perform the first row operation and set the corresponding
entries afterwards to 0. The next step is to multiply and divide entries with ε. Then
we have to perform the second column operation, and finally, we need to set the
corresponding entries to the value of 0 instead of performing a second row operation.
(End of Remark A.5.4.)

We now discuss the transformation of the variables in the different modes.
The difference between the modes is the concrete substitution because we have
to preserve the (skew-)symmetry in the (skew-)symmetric case and the generic
structure in the generic case.

In the following remark, we discuss the generic skew-symmetric transformation of
variables in the generic skew-symmetric case:

Remark A.5.5 (Algorithm 44). The input is:

• a string mode = "skew" which encodes the desired algorithm and

• a skewsymmetric generic matrix M .

The output of Algorithm 44 is the transformed matrix M .
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Algorithm 43 gaussian_step(string mode="sym", matrix M)
1: (j, k) := PositionOfOneEntry(M);
2: if (j = k) then . Xj,j-chart
3: for (i = 1; i ≤ #rows(M); i+ +) do
4: for (` = 1; ` ≤ #cols(M); `+ +) do
5: if (i 6= j) then
6: M [i, `] = M [i, `]−M [i, j] ·M [j, `];
7: for (` = 1; ` ≤ #cols(M); `+ +) do
8: if (` 6= j) then
9: M [j, `] = 0;
10: else . Xj,k-chart, j 6= k
11: for (i = 1; i ≤ #rows(M); i+ +) do
12: for (` = 1; ` ≤ #cols(M); `+ +) do
13: if (i 6= k) then
14: M [i, `] = M [i, `]−M [i, j] ·M [k, `];
15: for (` = 1; ` ≤ #cols(M); `+ +) do
16: if (` 6= j) then
17: M [j, `] = 0;
18: ε := 1−M [j, j] ·M [k, k];
19: M [j, k] = 1; . Divide M [j, k] by ε
20: for (i = 1; i ≤ #rows(M); i+ +) do
21: for (` = 1; ` ≤ #cols(M); `+ +) do
22: if (i 6= j and i 6= k) then
23: M [i, `] = M [i, `] · ε;
24: for (i = 1; i ≤ #rows(M); i+ +) do
25: for (` = 1; ` ≤ #cols(M); `+ +) do
26: if (i 6= j) then
27: M [i, `] = M [i, `]−M [i, k] ·M [j, `];
28: for (` = 1; ` ≤ #cols(M); `+ +) do
29: if (` 6= k) then
30: M [j, `] = 0;
31: return(M);
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Algorithm 44 transformationOfVariables(string mode="skew", matrix M)
1: var_counter = 1;
2: for (i = 1; i ≤ #rows(M); i+ +) do
3: for (j = i+ 1; j ≤ #cols(M); j + +) do
4: M [i, j] = var(var_counter);
5: M [j, i] = − var(var_counter);
6: var_counter++;
7: return(M);

So the algorithm only takes the entry (i, j) of M and substitute it with the
variable with number var_counter. Afterwards, we preserve the skew symmetry
and substitute the entry (j, i) of M by −1 times the same variable.
Then we increase the value of var_counter and repeat the procedure for (i, j) is the
entries of M in the upper triangle of M .

(End of Remark A.5.5.)

The other modes are analogous. The symmetric case does not multiply the
(j, i)-entry with −1 and also considers the diagonal entries.

Remark A.5.6 (Algorithm 45). The input is:

• a string mode = "sym" which encodes the desired algorithm and

• a symmetric generic matrix M .

The output of Algorithm 45 is the transformed matrix M .

Algorithm 45 transformationOfVariables(string mode="sym", matrix M)
1: var_counter = 1;
2: for (i = 1; i ≤ #rows(M); i+ +) do
3: for (j = i; j ≤ #cols(M); j + +) do
4: M [i, j] = var(var_counter);
5: M [j, i] = var(var_counter);
6: var_counter++;
7: return(M);

So the algorithm only takes the entry (i, j) of M and substitute it by the variable
with number var_counter. We preserve the symmetry and substitute the entry (j, i)

of M by the same variable.
Then we increase the value of var_counter and repeat the procedure for (i, j) is the
entries of M in the upper triangle of M . (End of Remark A.5.6.)
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In the generic case, the two for loops iterate over all entries (i, j) and only set
M [i, j] to the variable with number var_counter.

Remark A.5.7 (Algorithm 46). The input is:

• a string mode = "gen" which encodes the desired algorithm and

• a generic matrix M .

The output of Algorithm 46 is the transformed matrix M .

Algorithm 46 transformationOfVariables(string mode="gen", matrix M)
1: var_counter = 1;
2: for (i = 1; i ≤ #rows(M); i+ +) do
3: for (j = 1; j ≤ #cols(M); j + +) do
4: M [i, j] = var(var_counter);
5: var_counter++;
6: return(M);

The algorithm only takes the entry (i, j) of M and subtitute it by the variable
with number var_counter. (End of Remark A.5.7.)

A.5.2. Implementational aspects of resolution of

determinantal singularities of at most binomial type

In this subsection, we will generalize the generic skeleton for the determinantal
resolution algorithm. Since we will use methods of resolve.lib [37] which is
an implementation of Villamayors’s algorithm, that resolves singularities in
characteristic zero, we restrict the implementation to the case of determinantal
singularities of at most binomial type in characteristic zero. We have seen in
Section 8 that we can substitute several methods by other algorithms, so the
implementation is also modular and we are able to substitute several algorithms in
the future.

First, we discuss the considered data types and data sets.
The list datalist consists of the main data of the ring. The order of the entries

is influenced by the order of the elements of the list BO in resolve.lib. We can find
the following data in the variable datalist:

1. an ideal defining the ambient space,

2. the considered matrix in the actual chart,

218



A.5. Implementational aspects of the determinantial resolution

3. a list which consists of the state and the size of the minors which generate
the considered ideal,

4. a list of exceptional divisors and

5. an ideal defining the map ob blow-up.

Further variables living in the underlying ring are the variables HuList and BO.
Whereas the first consists of the intersection lattice resulting from Hu’s algorithm,
the second is the basic object of resbinomial2.lib. They only exist when we are
in the process of resolution of singularities binomial ideals resp. arrangements of
hypersurfaces.

As we have seen in Chapter 8, we have to divide our Algorithm into five parts,
namely the determinantal binomial case, the usage of the Algorithm of Hu, the
linear transformation for getting monomial entries in the matrix, the determinantal
monomial case and the usage of the Gaussian Algorithm.

So the idea is to implement the main Algorithm as a state machine, i.e., we have
to check the state and depending on this state we perform the calculation. After the
calculation in a state is finished we have to recheck the current state. In particular,
we have to notice if we are in the middle of a calculation in a state or not.

This is realized with the additional data BO and HuList and that they are only
defined if we are in the middle of a calculation in resbinomial2 or Hu’s algorithm.

Remark A.5.8 (Algorithm 47). The input is:

• a matrix M ∈ K[x]n×m, where every entry of M is at most binomial, K is a
field of characteristic zero and

• an integer sizeOfMinor ∈ {1, . . . , rank(M)}, which gives the information about
what IsizeOfMinor,n,m the algorithm has to resolve.

The output of Algorithm 47 is a list of a list allRings and a list EndCharts.
Algorithm 47 is the main method.
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Algorithm 47 determinantal_resolve(matrix M ,int sizeOfMinor)
1: list datalist = createDatalist(M,sizeOfMinor);
2: list allRings; allRings[1] = basering;
3: list EndCharts;
4: string state = datalist[3][1];
5: for (i = 1; i ≤ size(allRings); i++) do
6: actual_ring = allRings[i];
7: if (defined(BO) or defined(HuList)) then
8: if (defined(BO)) then
9: ideal center = calculate_center();
10: if (center == 〈1〉 or center ==BO[1] or center ==BO[2]) then
11: kill(center); kill(BO); . Endchart in resbinomial2
12: datalist[3][1] = state = calculate_state(M ,datalist[4]);
13: else
14: if HuList[1] 6= ∅ then
15: ideal center = calculate_center();
16: else . Endchart in Hu’s Algorithm
17: datalist[3][1] = stat = "transformation";
18: ideal center = 〈0〉 . Go directly to state ’transformation’
19: if !defined(center) then
20: while (state == "gauss") do
21: M = generic_gauss(M ,nrows(M),ncols(M));
22: state = calculate_state(M ,datalist[4]);
23: datalist[3][2] = minorsize;
24: if (state == "binresol") then
25: list binomiallist = GenerateListOfBinomials(M);
26: ideal J = binomiallist[1];
27: list BO = createBO(J);
28: if (state == "Hu") then
29: list centerlist = HuAlgorithm(M);
30: if (state == "transformation") then
31: ideal cent = 〈0〉; . dummy value for detecting the case in blowup

method
32: if (state == "monomial") then
33: ring r_new, ideal J = CreateBinomialFromMinomialMatrix(M);
34: setring(r_new);
35: list BO = createBO(J);
36: allRings[i] = r_new;
37: if (min{ncols(M), nrows(M)} == 1) then
38: list BO = createBO(minor(M, 1));
39: if defined(BO) or defined(centerlist) then
40: ideal center = compute_center();
41: if (finished(allRings[i])== 1) then
42: EndCharts.append(actualRing[i]);
43: else
44: allRings.append(BlowUpMethodDetresolve(datalist,center));
45: return(list(allRings,EndCharts));
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The skeleton of this pseudo code is very similar to the one of Algorithm 40. The
differences are that

• we do not know wheather the initial matrix is arbitrary, locally monomial
or simultaneously locally monomial, so we have to handle this chart in the
for-loop, too.

• we have to check first, at which state of the algorithm we are and afterward
we have to use one of the subroutines.

• We use the fact that BO or HuList is only defined if we are not finished with
tha calculation in a state using resbinomial2 or Hu’s algorithm.

Note, that one has to guarantee that maximal one of BO and HuList is defined.
And the lists only have to be defined if we are not ready with applying resbinomial2
or Hu’s algorithm together with the corresponding translation.

(End of Remark A.5.8.)

Theoretically, one can implement this algorithm with an additional input
parameter which encodes the algorithms we want to use since the algorithm is
modular. In practice, the bottleneck is the implementation of other resolution
algorithms, like, e.g., resolve.lib. We need a submethod which generates the
considered data types and data sets, and in addition, we need a method which
calculates the next center and modifies the data set. That is another reason why we
reimplement the algorithm of Blanco in Section A.3.

Now we discuss how to calculate the current state of the process.

Remark A.5.9 (Algorithm 48). The input of Algorithm 48 is the considered matrix
M in the actual chart together with the list of exceptional divisors E. The output
is a string which encodes the state of the resolution process.

Algorithm 48 calculate_state(matrix M , list E)
1: matrix N = strictTransformsOf(M ,E);
2: if (not isLocallyMonomial(N)) then
3: return("binresolve");
4: if (isMonomial(N) and not isresolvedMonomial(N)) then
5: return("monomial");
6: if (isresolvedMonomial(N) ) then
7: return("gauss");
8: if (isLocallyMonomial(N) and not isSimultaneouslyLocallyMonomial(N)) then
9: return("Hu");
10: if (isSimultaneouslyLocallyMonomial(N) and not isMonomial(N)) then
11: return("transformation");
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First, we need a matrix N whose entries are the strict transforms of the input
matrix’s M entries. For a better readability, the single decisions, if a state is right,
are outsourced in sub-methods.
Note that method() is shorthand for method() == 1 and not method() is shorthand
for method() == 0, if the return type of the method is a boolean. (End of
Remark A.5.9.)

Next we discuss the submethods of the calculation of the current state.

Remark A.5.10 (Algorithm 49). The input of Algorithm 49 is the matrix N in
Algorithm 48. The output is a boolean. The method returns 1, if every entry of the
matrix is of the form 1 − xA and 0 otherwise. Line 5 is singular notation for the

Algorithm 49 isLocallyMonomial(matrix M)
1: LocallyMonomial = 1;
2: for (i = 1; i ≤ ncols(M); i+ +) do
3: for (j = 1; j ≤ nrow(M); j + +) do
4: if (size(M [i, j]) == 2) then
5: if (|M [i, j][1]| 6= 1 and |M [i, j][2]| 6= 1) then
6: LocallyMonomial = 0;
7: return(LocallyMonomial);

term M [i, j] 6∈ {1± xA, xA ± 1}. (End of Remark A.5.10.)

Remark A.5.11 (Algorithm 50). Since this algorithm is the last which is called
in calculate_state we can assume that the input matrix M is not a monomial
matrix but that has principalized entries.
The input of Algorithm 50 is the matrix N in Algorithm 48. The output is a boolean.
The method returns 1, if there exists a linear transformation such that every entry
of N is monomial. We use the fact that our implementation of Hu’s algorithm only

Algorithm 50 isSimultaneouslyLocallyMonomial(matrix M)
1: list HuList = HuAlgorithm(M);
2: list centerlist = HuList[1];
3: if (size(centerlist) == 1) then
4: return(1);
5: return(0);

returns the necessary centers until our entries become normal crossing.
In case that we have normal crossing entries Hu’s algorithm calculates the covering
we use in the next ’transformation’ step. Since this is stored in the list HuList which
is a global variable, we do not have to return it. (End of Remark A.5.11.)

222



A.5. Implementational aspects of the determinantial resolution

Remark A.5.12 (Algorithm 51). The input of Algorithm 51 is the matrix N in
Algorithm 48. The output is a boolean. The method returns 1, if every entry of N
is monomial.

Algorithm 51 isMonomial(matrix N)
1: Monomial = 1;
2: for (i = 1; i ≤ ncols(N); i+ +) do
3: for (j = 1; j ≤ nrow(N); j + +) do
4: if (size(N [i, j]) ≥ 2) then . more than one term in N [i, j]
5: Monomial = 0;
6: return(0);

(End of Remark A.5.12.)

Remark A.5.13 (Algorithm 52). The input of Algorithm 52 is the matrix N in
Algorithm 48. The output is a boolean. The method returns 1, if every entry of N
is monomial and the ideal generated by the entries of N equals 〈1〉.

Algorithm 52 isresolvedMonomial(matrix M)
1: if isMonomial(M) == 0 then
2: return(0);
3: ideal J = minor(M ,1);
4: return(J == 〈1〉);

(End of Remark A.5.13.)

After discussing how to choose the right state, we present how to modify the
data to use the black box resbinomial2.lib as a black box. First, we discuss the
modification in the determinantal binomial case.

Remark A.5.14 (Algorithm 53). The input of Algorithm 53 is the matrix M in
the considered chart. The output is a a list of all entries of M which are binomial
and not locally monomial.

Algorithm 53 GenerateListOfBinomials(matrix M)
1: list returnlist;
2: for (i = 1; i ≤ #cols; i+ +) do
3: for (j = 1; j ≤ #rows; j + +) do
4: if M [i, j] is binomial and not (locally) monomial then
5: returnlist.add(M [i, j]);
6: return(returnlist);

(End of Remark A.5.14.)
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In the determinantal monomial case, we have to adapt the ideal generated by the
entries.

Remark A.5.15 (Algorithm 54). The input of Algorithm 54 is the matrix M in
the considered chart. The output is a ring with the additional y-variables and the
binomial ideal corresponding to the determinantal monomial case.

Algorithm 54 CreateBinomialIdealFromMonomialMatrix(matrix M)
1: 〈f1, . . . , fm〉 := std(minor(M, 1));
2: d := Max-ord(〈f1, . . . , fm〉);
3: ring r_new = actual_ring[y];
4: setring(r_new);
5: for (i = 1; i ≤ m ; i+ +) do
6: fi = ydi + fi;
7: I = 〈f1, . . . , fm〉
8: return(r_new,I);

Since our implementation is written for characteristic 0, we do not need two new
variables y2` and y2`+1 like discussed in Remark 8.1.1 and Remark 8.1.2. For a better
worst-case time complexity, we will use as few as possible many variables. (End of
Remark A.5.15.)

Remark A.5.16 (Algorithm 55). This method has no input data since every data
has to be stored globally in the underlying ring. The output is an ideal describing
the next center of the resolution process.

Algorithm 55 calculate_center()
1: int n = nvars(basering);
2: centerlist = HuList[1];
3: if (defined(centerlist)) then
4: center = centerlist.last;
5: centerlist = delete(centerlist, last);
6: if (defined(BO)) then
7: BO, b, center = resbinomial2.DescentInDimension(BO,1);
8: if (state == "monomial") then
9: V (x, y) 7→ V (x); . delete y-components

10: return(center);

The algorithm distinguishes two cases:

1. The center resulting from the algorithm of Hu. We have to choose the
last entry, which is not empty in our center list, as the upcoming center.

224



A.5. Implementational aspects of the determinantial resolution

Afterwards, this entry has to be deleted from the center list. If the center list
is empty, we have to delete it.

2. The usage of resbinomial2.lib in the determinantally binomial case and
the determinantally monomial case. Since both cases deal with the same
algorithm, which only distinguishes the initial ideal, we can consider them
together. Note that in the determinantal monomial case, we have to delete
the y-components of the center.

If there is a defined basic object, we use the center calculation method of
resbinomial2.lib directly. We can delete the basic object variable, if we are in a
final chart of a resbinomial2-call. (End of Remark A.5.16.)

We have discussed how to calculate the next center, so we are ready to do the
blow-up.

Remark A.5.17 (Algorithm 56). The input of Algorithm 56 is the list datalist
together with the center of the blow-up. The output the list of successor charts of
the actual chart.

Algorithm 56 BlowUpMethodDetresolve(list datalist, ideal center)
1: if (center 6= 〈0〉) then
2: successorList = blowUp3(datalist[1],center);
3: numbSuccessors = size(successorList);
4: for (i = 1; i ≤ numbSuccessors; i+ +) do
5: setring(successorList[i]);
6: datalist = blowUp(datalist);
7: datalist[4].append(eD);
8: path = path,[chartnumber,i];
9: if (defined(BO)) then
10: BO = blowUp(BO);
11: else
12: if defined(HuList) then
13: successorlist = blowUp(HuList);
14: HuList[3].append(eD);
15: else . Hu’s algorithm finished just now
16: state = "transformation";
17: else
18: successorList = generateCovering(datalist);
19: return(successorList);

We first check whether we have to blow-up or if we have to cover our chart for
the transformation of variables. Afterwards, we blow-up the necessary data. If Hu’s
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algorithm finishes at the moment, we store the state directly to reduce complexity.
In the real implementation, there are more technical details, like reducing variables
of the ring, if the determinantal monomial case finishes. But it would work without
these technical details, so we do not focus on them here. (End of Remark A.5.17.)

Remark A.5.18 (Algorithm 57). The input of Algorithm 57 is the list datalist
together with the center of the blow-up. The output the list of successor charts of
the actual chart.

Algorithm 57 generateCovering(list datalist, int chartnumber)
1: def r = basering;
2: for (i = 1; i ≤ size(HuList[2]);i+ +) do
3: list parametersystem[i] = HuList[2][i][1];
4: list complementlist[i] = HuList[2][i][2];
5: for (i = 1; i ≤ size(parametersystem);i+ +) do
6: for (j = 1; j ≤ #HuList[3]; j + +) do
7: parametersystem[i].append(HuList[3][j]);
8: parametersystem[i] = AddComponentToSystemOfParameters(parametersystem[i],

complementlist[i]);
9: for (member = 1; member ≤ size(parametersystem); member++) do
10: N = parametersystem[member];
11: normcrossideal = 〈N [1][i] | 1 ≤ i ≤ size(N[1])〉
12: complementideal = 〈N [2][i] | 1 ≤ i ≤ size(N[2])〉
13: def newring = C[t]; . new variables t, same number as in r
14: map f = newring, normcrossideal;
15: datalist = sat(datalist,complementideal);
16: setring(newring);
17: datalist = preimage(r,f ,datalist);
18: path = path,[chartnumber,member];
19: successorList.add(newring);
20: return(successorList);

First, we read the data from HuList[2]. The first entry is a list of system of
parameters and the second list describes the generators of the covering D(h1 · · ·hr).
Every system of parameters need exactly n (variables of the unserlying
ring) normal crossing hypersurfaces. So we have to add the exceptional
divisors and maybe some more components which are calculated in the
AddComponentToSystemOfParameters-method.
Afterwards, we can cover the actual chart by the different D(h1 · · ·hr)-charts with
the corresponding system of parameters.
We transfer the data (like in the blow-up method) to the chart of the covering and
saturate with h1 · · ·hr. (End of Remark A.5.18.)
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Note, that a covering with a single chart is also stored as a successor chart although
we could do it in the same chart in theory. This fact yield a higher number of total
chart in our implementation. We will see this in the unit tests concerning the
((skew-)symmetric) generic cases in Section C.2.

Remark A.5.19 (Algorithm 58). The input of Algorithm 58 is the list
parametersystem together with the list complementlist in Algorithm 57. The
output the updated list parametersystem

Algorithm 58 AddComponentToSystemOfParameters(list parameterlist, list
complementlist)
1: def r = basering;
2: int n = nvars(r);
3: if (size(parametersystem) == n) then
4: return(parametersystem);
5: parametersystemideal = 〈N [1][i] | 1 ≤ i ≤ size(N[1])〉;
6: complementideal = 〈N [2][i] | 1 ≤ i ≤ size(N[2])〉;
7: for (i = 1; i ≤ n; i+ +) do
8: if (size(parametersystem) == n) then
9: return(parametersystem);

10: if (xi is not contained in parametersystem) then . xi denotes the i-th
variable in r

11: if (parametersystemideal + 〈xi〉 == 〈1〉) then
12: parametersystem.append(xi);
13: parametersystemideal += 〈xi〉;
14: if (parametersystemideal + 〈xi + 1〉 == 〈1〉) then
15: parametersystem.append(xi + 1);
16: parametersystemideal += 〈xi + 1〉;
17: if (parametersystemideal + 〈xi − 1〉 == 〈1〉) then
18: parametersystem.append(xi − 1);
19: parametersystemideal += 〈xi − 1〉;
20: return(parametersystem);

If the system of parameters has the right size, we do not need to add anything.
Otherwise, the idea is to add fi = xi + ci, where ci ∈ {0, 1,−1} and xi is a variable
in the basering which is not contained in the system of parameters. Every fi has to
fullfil the following conditions:

• fi has to lie in D(h1 · · ·hr) and

• fi has to intersect each of the other components in the intersection point.

(End of Remark A.5.19.)
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The last thing we have to discuss is the detection of the final charts.
Since we have used the algorithm of Blanco and Hu as a black box and after
the algorithm of Blanco is finished we go on at the next step (Hu or Gauß) of
our calculation, if the considered singularity is not resolved yet. We should not
interrupt the execution of the algorithm of Blanco. That is the reason why we only
call the finished-method in Algorithm 47 after an application of Hu or Blanco
finished or before application of Hu or Blanco started and nowhere inbetween.
At the end of an application of Blanco and Hu, we have normal crossings with the
exceptional divisors. Afterwards we check, if the current chart is a final chart by
testing if the singular locus (slocus-method in Singular) of the variety generated
by the minors of the considered size is empty or not.

So we have discussed all parts of the implementation of the resolution of
determinantal singularities of at most binomial type. Comparisons with state of
the art libraries can be found in Section B.6.
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complexity of the algorithms

Before stating some remarks on the complexity of our algorithms in Section B.3, we
give in Section B.1 the background to complexity theory in general.

B.1. Theoretical background in complexity theory

We define the usual complexity classes in the typical complexity theory and give a
context to the results we have seen in the thesis. We refer to [4] for more information
and details.

Definition B.1.1. • The complexity class P is the class of problems which are
solvable in deterministic polynomial time ([4, Definition 1.20]).

• The complexity class NP is the class of problems which are verifiable in
determinitic polynomial time, i.e., solvable in nondeterministic polynomial
time ([4, Definition 2.1]).

• The complexity class EXPTIME is the class of problems which are solvable in
determinitic exponential time, i.e., running time is bounded by some f(n) =

2n
O(1) ([4, Definition 2.24]).

• The complexity class EXPSPACE is the class of problems which are solvable in
determinitic exponential space, i.e., the space is bounded by some f(n) = nO(1)

(analogous to [4, Definition 2.24]).

Remark B.1.2. The following chain of inclusion holds

P ⊆ NP ⊆ EXPTIME ⊆ EXPSPACE,

where P ( EXPTIME holds.

For practical reasons, the classes P and NP are the classes of the most interesting
problems because problems in P are efficiently solvable. It is a famous open problem
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whether P 6= NP or not.

In order to compare problems and classes of problems, we need the concept of
reduction.

Definition B.1.3. ([4, Definition 2.7]). We say a problem A ⊆ Σ∗ is polynomial
many-one reducible (pm-reducible) to a problem B ⊆ Γ∗ denoted by A ≤P

m B, if
there is a polynomial-time computable function f : Σ∗ → Γ∗ such that for every
x ∈ Σ∗, x ∈ A ⇐⇒ f(x) ∈ B.

Definition B.1.4. ([4, Definition 2.7]) Let C be a complexity class. We say a
problem A is C-hard, if for every problem B ∈ C there is a pm-reduction such that
B ≤P

mA holds.
We say a problem A is C-complete, if A ∈ C and A is C-hard.

So the notion of hardness gives a lower bound on the complexity, and the notion of
completeness gives an exact classification in this class. In other words, we have stated
in Remark 5.1.10, that the Gröbner basis computation is EXPSPACE-complete, so
there is no running time ≤ 2n

O(1) and no space requirement ≤ 2n
O(1) .

In theoretical computer science and complexity theory, people say such an
algorithm for Gröbner basis computing cannot be efficient. Nevertheless, we consider
more inefficient classes when dealing with Hironaka-style resolutions, so we have to
introduce the Grzegorczyk hierarchy.

Definition B.1.5. [47]. Let E0(x, y) = x + y, let E1(x) = x2 + 2 and we define
iteratively for n ≥ 2

En = Ex
n−1(2).

We define the Grzegorczyk hierarchy as follows. Let εn be the n-th set of the
hierarchy, then it contains the following functions

1. Ek, for k < n,

2. Z(x) ≡ 0,

3. S(x) = x+ 1,

4. pmi (t1, . . . , tm) = ti,

5. the composition of functions in this set and

6. results of limited (primitive) recursion applied to functions in the set.
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Remark B.1.6. The inclusion chain of the sets in the hierarchy is a chain of strict
inclusions, i.e.,

ε0 ( ε1 ( ε2 ( . . . .

This belongs to the fact that the n-th hyper operation is in εn but not in εn−1.

Example B.1.7. • {x+ 1, x+ 2, . . .} ⊆ ε0

• {x+ y, 6x, . . .} ⊆ ε1, so ε1 provides all addition functions.

• {x · y, x6, . . .} ⊆ ε2, i.e., ε2 provides all multiplication functions.

• {xy, 222
x

, . . .} ⊆ ε3, i.e., ε3 provides all exponential functions.

• ε4 provides all tetration functions.

These examples show that the (` + 3)-th level of the hierarchy can potentially
contain very fast-growing functions (depending on `). This may illustrate the
complexity of the Hironaka-style resolution of large dimensional singularities.

B.2. Complexity analysis of the generic

determinantal case

For interests of computational complexity, it might be interesting to know if this
specific algorithm is less complex than a general algorithm for the resolution of
singularities. An effective Hironaka resolution of a scheme X is classified to be an
element of the (dim(X)+3)-rd level of the Grzegorczyk hierarchy [5]. So for practical
reasons, a general algorithm is very unusable.

Therefore we give some remarks on the number of considered charts and the
number of final charts in the three cases. We start with the generic case.

Remark B.2.1. The first blow-up of Mn,m is covered by n ·m charts. In there, we
can interpret the transform of M as a generic (n− 1)× (m− 1) matrix.
A second blow-up gives us (n − 1) · (m − 1) additional charts in every of the n ·m
charts, so for resolution of the 2-minors we need

n ·m︸ ︷︷ ︸
first blow-up

+n ·m · (n− 1) · (m− 1)︸ ︷︷ ︸
second blow-up
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charts where the last n ·m · (n− 1) · (m− 1) are the final charts and so on. In total
for a generic matrix, we need to consider

min{r,k}−1∑
i=1

min{r,k}∏
j=i

(r − (r − j)) · (k − (k − j))

charts. Only the charts which are created by the last blow-up are final charts so we
have

min{r,k}−1∏
j=0

(r − j) · (k − j)

final charts.
Thus for a generic quadratic matrix the described resolution procedure (see
Example 6.1.1) has

n−1∑
i=1

n∏
j=i

(n− (n− j))2

charts and
n−1∏
j=0

(n− j)2

final charts.

We continue with the generic skew-symmetric case.

Remark B.2.2. Let M be the generic skew-symmetric matrix of dimension n× n,
where n = 2m is an even positive number. The goal is to resolve the ideal generated
by the maximal pfaffians of M . We have seen that we the first blow-up generates
tn−1 = n(n−1)

2
charts. Afterwards, in all of these charts we have the transform M ′

of M which is the generic skew-symmetric matrix of dimension (n − 2) × (n − 2).
In all of these charts, the second blow-up generates tn−3 further charts. For a
skew-symmetric matrix we have

m−1∏
j=0

t2j+1

final charts, where ti = i(i+1)
2

denotes the i-th triangular number and

1︸︷︷︸
initial chart

+
m−1∑
i=0

m−1∏
j=1

t2j+1

total charts. For quadratic skew-symmetric matrices M of odd dimension,
det(M) = 0 holds, so there is no blow-up needed for resolution.
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The quadratic symmetric generic matrix case is more complicate and we have to
distinguish several types of charts.

Remark B.2.3. Let us have a look at the generic symmetric matrix Bm. Our
subgoal is to find a sequence (ci)0≤i≤m−2 for the number of charts where the transform
is of the form Bm−i. This matrix lives in the initial chart. This implies c0 = 1.
After one blow-up, we have tn−1 of Xj,k-charts with j 6= k where we can consider
the transform of Bm as some matrix Bm−1. Therefore c1 = tn−1. In addition to
these charts, we have m charts of the type Xj,j-chart. In there, we can consider the
transform as a matrix of the form Bm−2.
The second blow-up is only necessary for the charts with the transform as a matrix
Bm−1. In each of the tm−1 charts, we obtain tn−2 charts of the Xj,k-type and m− 1

charts of the Xj,j-type. This leads to

c2 = n︸︷︷︸
#Xj,j-charts after first blow-up

+ tn−1 · tn−2︸ ︷︷ ︸
#Xj,k-charts after second blow-up

.

By applying this argument inductively, we get

ci = ci−2(n− (i− 1))︸ ︷︷ ︸
#Xj,j-charts

+ ci−1 · tn−i︸ ︷︷ ︸
#Xj,k-charts

, for i ≥ 2.

The total number of charts is
m−2∑
i=0

ci

and the number of final charts is cm−2.

B.3. Comparing the variants of local

monomialization

Let us compare the discussed algorithms for monomializing a binomial in Section 7.
First, we analyze the complexity of the algorithms by estimating the maximal
possible number of blowups needed to monomialize a given binomial. After that
we turn out attention to explicit examples, where we compare the numbers of charts
appearing along the monomialization and as well as the number of final charts. At
the end, we briefly look at the question, whether the different choices for the centers
in a fixed method have an impact on the resulting numbers.
During this section we assume to K be a field and f = xA − ρxB ∈ K[x] :=

K[x1, . . . , xn] be a binomial, where ρ ∈ K× and xA = xA1
1 · · ·xAnn for A =
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f = y2 − x3

D+(X) : x2(y2 − x) D+(Y ) : y2(1− x3y)

D+(X) : x3(xy2 − 1) D+(Y ) : x2y3(y − x)

D+(X) : x6y3(y − 1) D+(Y ) : x2y6(1− x)

(0)

(1)

(2)

(3)

Figure B.1.: Example for the tree structure of a blowup process for f = y2 − x3.

(A1, . . . , An) ∈ Zn≥0. Furthermore, we use the notation of Chapter 7.

Remark B.3.1. We can interpret the process of blowing up as a tree structure.
The vertices correspond to the charts, where we put the original data on level 0 and
all charts, which arise after the `-th blowup are put on level `. Two vertices v on
level ` and w on level ` + 1 are connected by an edge if the chart corresponding to
w is one of the charts of the blowup in v. The unique vertex on level 0 is called
the root of the tree and vertices on level `, which are not connected to any vertex
of a higher level, are called leaves of the tree. The latter correspond to the final
charts of the blowup procedure. In Figure B.1, we illustrate the tree structure for a
simple example. In the boxes we indicate, which of the charts of the blowup we are
considering, and we provide the total transform of f . We abuse notation and denote
the coordinates in each chart by (x, y). In every case, where a blowup is performed,
the ideal of the center is 〈x, y〉. The number (`) on the right marks the level. There
are two leaves on level 3 and one leaf each on level 2 and 1.

The number of charts is delimited by the number of charts, which we newly create
after a blowup, and by the longest path from the root to any leaf. The first of these
numbers is determined by the codimension of the center. This provides the following
bounds:
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mode maximal codimension of a possible center

1 (max.ord.) n = (number of variables)

2 (codim.2) 2

3 (min.codim.) 4

4 (exc.) 4

(B.3.1)

Using the invariant, which we introduced to prove the termination of the respective
variant for monomialization, we can bound the length of the longest path of the
resulting tree of blowups.

Lemma B.3.2. Let g = xA−ρxB ∈ K[x] = K[x1, . . . , xn] with ρ ∈ K×, A,B ∈ Zn≥0

such that AiBi = 0 for all i ∈ {1, . . . , n}. The following are upper bounds for the
longest path from the root to any leaf in the blowup tree of the respective mode:

mode upper bound for the longest path

1 (max.ord.) 2m−1M +m− 1−
m−1∑
`=1

2m−`−1(m− `+ 1)

2 (codim.2) (α + β − 4)(n− 1) + a + b + 1

3 (min.codim.) (α + β − 4)(n− 1) + a + b + 1

4 (exc.) (α + β − 4)(n− 1) + a + b + 1

(B.3.2)

where

m := min{|A|, |B|}, M := max{|A|, |B|},
α := max{Ai | i ∈ {1, . . . , n}}, a := #{i ∈ {1, . . . , n} | Ai = α(g)},
β := max{Bi | i ∈ {1, . . . , n}}, b := #{i ∈ {1, . . . , n} | Bi = β(g)}.

Proof. Recall that for centers contained in maximal order locus of g (mode = 1),
we introduced inv(g) =

(
min{|A|, |B|}, max{|A|, |B|}

)
∈ Z2

≥0 as measure for the
complexity of the singularity (Definition 7.2.6), which strictly decreases with respect
to the lexicographical ordering on Z2

≥0 after each blowup. We have inv(g) = (m,M).

Observe that m ≤ M . Let (m′,M ′) be the value of inv(g′) in a chart after the
blowup in a center contained in the locus of maximal order of g. The proof of
Proposition 7.2.7 provides that either

(i) (m′,M ′) ≤`p (m− 1, 2M −m), or
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(ii) (m′,M ′) ≤`p (m,M − 1).

If we are k1 times in case (ii) and then once in (i), we obtain that the value of inv(.)

is bounded by
(m− 1, 2(M − k1)−m).

Note that k1 ∈ {0, . . . ,M −m} since we cannot have M − 1 < m in (ii). At this
stage, we performed k1+1 blowups. Iterating this, the upper bound for the invariant
becomes (

m− s, 2sM −
s∑
`=1

2s−`+1k` −
s∑
`=1

2s−`(m− `+ 1)
)

after s steps, where, for ` ∈ {1, . . . , s},

k` ∈ {0, . . . , 2`−1M −
`−1∑
q=1

2`−qkq −
`−1∑
q=1

2`−1−q(m− q + 1)− (m− `+ 1)},

is the number of times that we are in case (ii) until the first entry drops fromm−`+1

to m− ` in case (i). The number of blowups up to this point is k1 + . . .+ ks + s.
If s = m − 1, the first entry of the bound for inv(.) is 1. In particular, we

can only be in case (ii) for the remaining decreases if we want to determine the
maximal length of a path in the blowup tree. Hence, the second entry for the bound
determines the number of blowups remaining. In total, we obtain the bound

m−1∑
`=1

k` + (m− 1) + 2m−1M −
m−1∑
`=1

2m−`k` −
m−1∑
`=1

2m−`−1(m− `+ 1) =

= 2m−1M +m− 1−
m−1∑
`=1

(2m−` − 1)k` −
m−1∑
`=1

2m−`−1(m− `+ 1).

We aim to maximize the bound for the number of blowups. The only variation in
the expression are the numbers k1, . . . , km−1. Since 2m−` − 1 ≥ 1 the maximum is
obtained if k` = 0, for all ` ∈ {1, . . . ,m − 1}. In conclusion, we have proven the
bound of (B.3.2) for mode = 1.

Let us consider the remaining three cases (mode ∈ {2, 3, 4}). For each of them,
we used ι(g) = (α(g), a(g), β(g), b(g)) ∈ Z4

≥0 of Definition 7.1.1 to measure the
improvement of the singularity after the blowup following the respective strategy.
We have ι(g) = (α, a, β, b). Note that a + b ≤ n. Let us fix the value of mode ∈
{2, 3, 4}.
Let (α′, a′, β′, b′) be the value of ι(g′) after the blowup in the center, which is

determined by the strategy given by mode. Let j ∈ {1, . . . , n} be such that we
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are in the Xj-chart. By Propositions 7.3.5, 7.4.2, and Corollary 7.5.2, we have
(α′, a′, β′, b′) <`p (α, a, β, b). The decrease can be made more precise depending on
which chart we are. Since g = xA − ρxB and AiBi = 0 for all i ∈ {1, . . . , n}, we
either have Aj 6= 0 (case (I)) or Bj 6= 0 (case (II)). In these two cases, the proofs
of Propositions 7.3.5, 7.4.2, and Corollary 7.5.2 provide that we have:

(I)

{
(α′, a′, β′, b′) = (α, a− 1, β, b), if a > 1;

(α′, a′, β′, b′) = (α′, a′, β, b), with α′ < α, if a = 1;

(II)

{
(α′, a′, β′, b′) = (α, a, β, b− 1), if b > 1

(α′, a′, β′, b′) = (α, a, β′, b′), with β′ < β, if b = 1.

Note that a′ ≤ n− b in (I) and b′ ≤ n− a in (II). Since in (I) (resp. (II)), the last
two (resp. first two) entries remain the same, the operations determined by (I) and
(II) are independent of each other.

Due to the bound of a′ and b′, we get the longest path in the resolution tree if
both the value of a(.) and b(.) decrease to the value 1 first. This is achieved after
a + b − 2 blowups following the respective monomialization procedure. We denote
the strict transform of g at this step by g′′, which is obtained after factoring the
monomial part from the total transform of g. Notice that we have ι(g′′) = (α, 1, β, 1).

After the next blowup the invariant is at most (α − 1, n − 1, β, 1) (in case (I))
resp. (α, 1, β−1, n−1) (in case (II)). If the maximum is attained, then we get after
n− 2 further blowups the value (α− 1, 1, β, 1) resp. (α, 1, β − 1, 1). Therefore, after
at most a + b + (α− 2)(n− 1) + (β − 2)(n− 1) blowups, the value of ι(.) becomes
(1, 1, 1, 1). The latter means that the total transform of g is of the form xC(x1−ρx2),
for some C ∈ Zn≥0 and appropriately chosen variables. After one more blowup, the
total transform of g fulfills condition (7.0.1) and thus is locally monomial and the
assertion follows.

As an immediate consequence of (B.3.1) and Lemma B.3.2, we obtain:

Corollary B.3.3. Let g = xA − ρxB ∈ K[x1, . . . , xn] with ρ ∈ K× and A,B ∈ Zn≥0

such that AiBi = 0 for all i ∈ {1, . . . , n}. Using the notation of Lemma B.3.2, the
following are upper bounds for the number of charts in the respective variant for
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monomializing g:

mode upper bound for the number of charts

1 (max.ord.) nd(m,M)

for d(m,M) := 2m−1M +m− 1−
m−1∑
`=1

2m−`−1(m− `+ 1)

2 (codim.2) 2(α+β−4)(n−1)+a+b+1

3 (min.codim.) 4(α+β−4)(n−1)+a+b+1

4 (exc.) 4(α+β−4)(n−1)+a+b+1

Moreover, this worst case number of charts yields to a non-polynomial time
algorithm in the number of variables and the degree of the binomial. The running
time results as a product of the running time per chart times the number of charts
and for each procedure the numer of charts is potentially exponential in α, β, a, b

resp. m,M , where α and β are bounded by the degree of the binomial, a and b are
bounded by the number of variables and M and m are bounded by the degree of g,
too.
Of course, the upper bounds are quite rough and the concrete number of blowups

can be far smaller for explicit examples. For example, in the variant, where we
choose the centers in the locus of maximal order, the codimension of the center is
not necessarily always n in every blowup.

Let us come to the study of explicit examples. In Figures B.2 and B.3, we provide
several examples, where we consider the number of leaves and the number of total
charts for each method for choosing the center. All examples are computed via an
explicit implementation in Singular of the algorithms described in the previous
sections and the base field is always Q. In the following, we discuss patterns, which
can be observed in the examples, and we provide some indications for the noticed
behavior of the different methods. Nonetheless, we do not provide rigorous proofs
for the patterns in general.

Example B.3.4 (Figure B.2, Examples 1–10). In the first block of examples, all
exponents of the starting binomial are one. This has the effect that the variant
choosing centers of codimension two has a strong advantage, as can be easily seen
in the number of charts. The reason for this is that the codimension of the centers
in the other methods is very large, but the effect of the blowup is not much different
than with a center of codimension two.
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binomial max.ord. codim.2 min.codim exc.

1. x1x2 − x3x4 4 / 5 2 / 3 4 / 5 4 / 5

2. x1x2 − x3x4x5 10 / 13 3 / 5 10 / 13 10 / 13

3. x1x2 − x3x4x5x6 22 / 29 4 / 7 22 / 29 22 / 29

4. x1x2x3 − x4x5x6 60 / 79 6 / 11 40 / 53 40 / 53

5. x1x2x3 − x4x5x6x7 246 / 325 10 / 19 124 / 165 124 / 165

6. x1x2x3 − x4 · · ·x8 876 / 1.159 15 / 29 340 / 453 340 / 453

7. x1 · · ·x4 − x5 · · ·x8 1.968 / 2.601 20 / 39 496 / 661 496 / 661

9. x1 · · ·x4 − x5 · · ·x9 11.376 / 15.041 35 / 69 1.672 / 2.229 124 / 165

10. x1 · · ·x5 − x6 · · ·x10 113.760 / 150.411 70 / 139 6.688 / 8.917 6.688 / 8.917

11. x1x2 − x2
3 3 / 4 3 / 5 3 / 4 3 / 4

12. x1x2x3 − x2
4 7 / 10 7 / 13 7 / 10 7 / 10

13. x1x2x3x4 − x2
5 15 / 22 15 / 29 15 / 22 15 / 22

14. x1x2x3 − x4
4 21 / 33 21 / 41 21 / 31 21 / 38

15. x1x2x3x4 − x4
5 85 / 134 85 / 169 85 / 127 85 / 162

16. x1 · · ·x5 − x4
6 341 / 538 341 / 681 341 / 511 341 / 666

17. x1 · · ·x6 − x4
7 1.365 / 2.154 1.365 / 2.729 1.365 / 2.047 1.365 / 2.698

18. x1x2 − x3
3 4 / 6 4 / 7 4 / 6 4 / 6

19. x1x2x3 − x3
4 13 / 20 13 / 25 19 / 30 13 / 22

20. x1x2x3x4 − x3
5 40 / 62 40 / 79 104 / 164 40 / 72

21. x1x2x3 − x5
4 31 / 47 31 / 61 43 / 67 31 / 58

22. x1x2x3x4 − x5
5 236 / 364 156 / 311 364 / 565 156 / 304

23. x1 · · ·x5 − x5
6 1.181 / 1.822 781 / 1.561 3.381 / 5.223 781 / 1.546

24. x1 · · ·x6 − x5
7 5.906 / 9.112 3.906 / 7.811 32.782 / 50.521 3.906 / 7.780

Figure B.2.: List of examples. In the last four columns, the entries are “the number
of leaves/total number of charts".
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Let us illustrate this for g = x1x2x3−x4x5x6. The codimension two center, which
will choose is V (x1, x4). In the X1-chart of the blowup, the strict transform of g is
g′ = x2x3 − x4x5x6. (Here, we abuse notation and denote the variables in the chart
of the blowup also by x1, . . . , x6.) In the X4-chart, we obtain the strict transform
x1x2x3 − x5x6.
On the other hand, the variant choosing a center in the locus of maximal order

determines the origin V (x1, . . . , x6) as the unique center. In the X1-chart of the
corresponding blowup, the strict transform of g is g′ = x2x3 − x4x5x6. This is the
same as the one before. In the remaining 5 charts, the strict transforms are of the
same (up to renaming the variables). In contrast to the codimension two center, we
have 6 different charts instead of only 2.
For the other two methods, the center is V (x1, x2, x4, x5) and the analogous

behavior appears, as the reader may verify.

Example B.3.5 (Figure B.2, Examples 11–17). In the second block of examples,
all binomials have a term x2k

n appearing and the other monomial is of the form as
in Examples 1–10. The number of leaves is in all cases the same, the total number
of charts varies. The variant which seems to be most efficient is the one, where we
choose the centers in the singular locus with minimal codimension. Note that the
centers in this case are all of codimension three.
If k = 1, the maximal order is two. Therefore, the centers for mode ∈ {1, 3, 4}

coincide. Since the codimension of the center is three in these cases, none of the
variables remaining in the strict transforms are exceptional. Moreover, already for
x1x2 − x2

3 one can verify that the codimension two centers requires more blowups
to monomialize than the other methods. In the latter, the blowup with center
V (x1, x2, x3) is sufficient.
This changes slightly for k = 2 and the differences in the number of total charts

increases. The variant for mode = 3 remains the most efficient one. For example,
the maximal order locus of x1x2x3 − x4

4 = 0 is V (x1, x2, x3, x4), while V (x1, x2, x4)

is the chosen center of the minimal codimension contained in the singular locus.

Example B.3.6 (Figure B.2, Examples 18–24). The last block of examples in
Figure B.2 is of the same form as the previous one, but we have x2k+1

n as a monomial.
As one can see in the numbers, the behavior changes, except for Example 18.
If the maximal order of the binomial is ≤ 3, then the variant, which chooses the

center in the locus of maximal order, is the best choice. One can verify that in this
method, the behavior is the same as in the previous block.
One of the reasons for the large numbers for mode = 3 (centers of minimal

codimension contained in the singular locus) is that the codimension is three at the
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beginning. For example, if k = 1, the strict transform of the binomial in theXn-chart
of the first blowup is x1 · · ·xn−1 − xn. This is not transversal to the exceptional
divisor, which is given by xn = 0 in this chart. Therefore n − 1 more blowups are
necessary in this chart. Moreover, in the X1-chart, we obtain x2 · · ·xn−1 − x1x

3
n as

strict transform, so x1 just switch the side in the binomial. In contrast to this, the
variable x1 disappears in the X1-chart of the blowup in V (x1, x2, x3, xn) (which is
the center for mode = 1).
The phenomenon that a variable is switching sides also appears for the other two

methods (mode ∈ {2, 4}), but it has less impact for the codimension two centers as
we are creating less charts, where the mentioned blowups arise. On the other hand,
for examples of this kind of larger maximal order, the codimension 2 center become
more efficient and the last variant (mode = 4) is slightly better. The reasons for the
latter are the same as in Example B.3.5.

Example B.3.7 (Figure B.3, Examples 25–29). Let us turn to examples, where the
appearing exponents are larger. More precisely, we consider binomials of the form
x2

1−x3
2x

4
3 · · ·xn+1

n , for n ∈ Z≥3. The large exponents have the effect that the centers
are of codimension two at the beginning of all variants. Due to the exceptional
divisors created there, the centers for mode = 4 coincide with the centers in the
codimension two variant (mode = 2).
For centers in the locus of maximal order and centers of minimal codimension

(mode ∈ {1, 3}), there appear eventually centers of higher codimension. For
example, in x2

1 − x3
2 · · ·x6

5, we obtain after five blowups with centers of codimension
two the strict transform x2

1 − x2x4x
6
5 and (x2, x3, x4) are exceptional. Our variant

for choosing centers in the locus of maximal order, determines V (x1, x2, x4) as the
next center, while, for mode = 3, the next center is V (x1, x5). This leads to more
charts in the first variant. Analogous to Example B.3.5, the centers of minimal
codimension are slightly better in the number of total charts than the centers of
codimension two, but the number of leaves are the same.

Example B.3.8 (Figure B.3, Examples 30–34). In contrast to the previous block of
examples, the difference between centers of codimension two and centers of higher
codimension becomes more clear for binomials of the type x1x2 − x3

3x
4
4 · · ·xnn, for

n ∈ Z≥4. As a consequence the variants with mode ∈ {2, 4} are more efficient for
large n� 4, while mode = 4 is slightly better as the center of codimension three at
the beginning provide a fast improvement. On the other hand, the number of charts
are larger for the remaining two variants, where the reason for the large numbers if
mode = 1 are the same as in Example B.3.7.
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binomial max.ord. codim.2 min.codim exc.

25. x2
1 − x3

2x
4
3 6 / 11 6 / 11 6 / 11 6 / 11

26. x2
1 − x3

2x
4
3x

5
4 12 / 22 12 / 23 12 / 22 12 / 23

27. x2
1 − x3

2x
4
3x

5
4x

6
5 18 / 34 15 / 29 15 / 28 15 / 29

28. x2
1 − x3

2x
4
3x

5
4x

6
5 · · ·x12

11 288 / 560 98 / 195 98 / 180 98 / 195

29. x2
1 − x3

2x
4
3x

5
4x

6
5 · · ·x17

16 2.304 / 4.480 582 / 1.163 582 / 1.036 582 / 1.163

30. x1x2 − x3
3x

4
4 8 / 12 8 / 15 8 / 12 8 / 13

31. x1x2 − x3
3x

4
4x

5
5 16 / 24 13 / 25 16 / 24 13 / 22

32. x1x2 − x3
3x

4
4x

5
5x

6
6 28 / 42 19 / 37 22 / 33 19 / 33

33. x1x2 − x3
3x

4
4x

5
5x

6
6 · · ·x12

12 512 / 768 76 / 151 132 / 198 76 / 141

34. x1x2 − x3
3x

4
4x

5
5x

6
6 · · ·x17

17 4.096 / 6.144 151 / 301 652 / 978 151 / 286

35. x2
1 − x2

2x3 2 / 3 2 / 3 2 / 3 2 / 3

36. x2
1 − x2

2x
2
3x4 3 / 5 3 / 5 3 / 5 3 / 5

37. x2
1 − x2

2x
2
3x

2
4x

2
5 · · ·x2

11x12 11 / 21 11 / 21 11 / 21 11 / 21

38. x2
1 − x2

2x
2
3x

2
4x

2
5 · · ·x2

16x17 16 / 31 16 / 31 16 / 31 16 / 31

39. x1x
2
2 − x3x

2
4 6 / 9 2 / 3 2 / 3 2 / 3

40. x2
1x

3
2 − x4x

2
5x

2
6 146 / 264 24 / 47 22 / 42 24 / 47

41. x1x
2
2x

3
3 − x4x

2
5x

3
6 385 / 677 26 / 51 16 / 29 16 / 29

42. x2
1x

2
2x

2
3 − x4x

2
5x

3
6 1.486 / 2.677 154 / 307 108 / 191 115 / 218

43. x2
1x

3
2x

3
3 − x4x

2
5x

2
6x

3
7 18.702 / 34.262 126 / 251 104 / 196 124 / 246

44. x1x
2
2x

3
3x

4
4 − x5x

2
6x

3
7x

4
8 107.062 / 196.798 260 / 519 206 / 371 213 / 392

Figure B.3.: List of examples (continued).
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Example B.3.9 (Figure B.3, Examples 35–38). There are also types of binomials,
for which all variants choose the same centers. For example, for binomials of the
form x2

1 − x2
2 · · ·x2

n−1xn, for some n ∈ Z≥3, all centers in the monomialization
procedures are of codimension two. If we blowup with center V (x1, x2), the total
transform of the binomial in the respective charts are x2

1(1 − x2
2 · · ·x2

n−1xn) and
x2

2(x2
1−x2

3 · · ·x2
n−1xn). While the first chart is locally monomial, the second one is of

the same form as the original binomial with the difference that x2 does not appear
anymore. Hence, the total number of charts is 2(n−1)−1 and the number of leaves
is n− 1.

Example B.3.10 (Figure B.3, Examples 39–44). This block of examples consists
of homogeneous polynomials. Hence, the variant choosing the centers in the locus
of maximal order will first blow-up the closed point, which creates many charts. For
increasing degree of the homogeneous binomial, we obtain a fast growing number
of charts and leaves. The other three variants are more efficient, where all of them
choose first centers of codimension two. In contrast to mode = 1, the centers of
larger codimension are more efficient than the codimension two centers towards the
end of the monomialization procedure, where the appearing exponents are at most
one. This phenomenon has already been observed in Example B.3.5.

Example B.3.11 (Figure B.4). As we have seen, it may appear that we have to
make a choice for the center in the respective variant for monomialization. Let us
have a glimpse into the question, how different choices affect the number of charts.
Instead of modifying the implementations, we explore this by interchanging the
appearing exponents appropriately in a given example.

If mode ∈ {2, 3, 4}, the numbers do not change, except for the block of example 41
in Figure B.4. In 41, i.e. x1x

2
2x

3
3 − x4x

2
5x

3
6 the numbers are larger compared to

the other choices 41.2 and 41.3. The reason for this is that the codimension two
centers (mode ∈ {2, 4}) for example 41 are of the form V (x1, xi) or V (xj, x4) (for
i ∈ {4, 5, 6} and j ∈ {1, 2, 3}) at the beginning of the monomialization process.
Hence, the improvement of the exponent of xi, resp. xj, is only by one and more
blowups are needed. On the other hand, mode = 3 is less affected by this, for
example, the first center for example 41, x1x

2
2x

3
3 − x4x

2
5x

3
6, is V (x2, x5). Example

41.3 is slightly better if mode = 3, as the first appearing powers are even.
The first method (via centers contained in the locus of maximal order) varies more

if we interchange the exponents. In the cases, where the maximal order is two, the
number of charts is significantly larger if we the first exponents are odd. The reason
for this can be seen in Example B.3.7, where the binomial became x2

1 − x2x4x
6
5.
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binomial max.ord. codim.2 min.codim exc.

27. x2
1 − x3

2x
4
3x

5
4x

6
5 18 / 34 15 / 29 15 / 28 15 / 29

27.2 x2
1 − x5

2x
3
3x

6
4x

4
5 20 / 38 15 / 29 15 / 28 15 / 29

27.3 x2
1 − x6

2x
5
3x

4
4x

3
5 15 / 28 15 / 29 15 / 28 15 / 29

28. x2
1 − x3

2x
4
3x

5
4x

6
5 · · ·x12

11 288 / 560 98 / 195 98 / 180 98 / 195

28.2 x2
1 − x11

2 x
9
3 · · ·x3

6x
12
7 x

10
8 · · ·x4

11 414 / 812 98 / 195 98 / 180 98 / 195

28.3 x2
1 − x12

2 x
11
3 x

10
4 x

9
5 · · ·x3

11 141 / 266 98 / 195 98 / 180 98 / 195

28.4 x2
1 − x12

2 x
10
3 · · ·x4

6x
11
7 x

9
8 · · ·x3

11 114 / 212 98 / 195 98 / 180 98 / 195

31. x1x2 − x3
3x

4
4x

5
5 16 / 24 13 / 25 16 / 24 13 / 22

31.2 x1x2 − x3
3x

5
4x

4
5 20 / 30 13 / 25 16 / 24 13 / 22

32. x1x2 − x3
3x

4
4x

5
5x

6
6 28 / 42 19 / 37 22 / 33 19 / 33

32.2 x1x2 − x6
3x

5
4x

4
5x

3
6 22 / 33 19 / 37 22 / 33 19 / 33

33. x1x2 − x3
3x

4
4x

5
5x

6
6 · · ·x12

12 512 / 768 76 / 151 132 / 198 76 / 141

33.2 x1x2 − x12
3 x

11
4 x

10
5 · · ·x3

12 218 / 327 76 / 151 132 / 198 76 / 141

38. x2
1 − x2

2x
2
3x

2
4x

2
5 · · ·x2

16x17 16 / 31 16 / 31 16 / 31 16 / 31

38.2 x2
1 − x2x

2
3x

2
4x

2
5 · · ·x2

17 16 / 31 16 / 31 16 / 31 16 / 31

41. x1x
2
2x

3
3 − x4x

2
5x

3
6 385 / 677 26 / 51 16 / 29 16 / 29

41.2 x3
1x2x

2
3 − x3

4x5x
2
6 244 / 427 12 / 23 16 / 29 12 / 23

41.3 x2
1x2x

3
3 − x2

4x5x
3
6 274 / 483 19 / 37 14 / 25 14 / 25

Figure B.4.: List of examples, where the different choice within one method are
considered.
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general state of the art algorithms

The next center following our way of choosing the center (for mode = 1), would be
V (x1, x2, x4). Hence, we create three new charts and in two of them, we have to
blow-up V (x1, x5) three times. In contrast to this, if we blowup first in V (x1, x5), we
would get a smaller number of charts, since we only have to blow-up V (x1, x2, x4)

at the end, when we reach x2
1 − x2x4 as strict transform.

Note that we interchanged the exponents only at the beginning of the
monomialization process. In principle, one could interchange them after each
blowup in order to optimize the choice of the center, but we do not address this
here.

In conclusion, the approach by blowing up centers contained in the locus of
maximal order provides a significant larger number of charts than the other variants
if the exponents appearing in the binomial increase. Most of the time, choosing only
centers of codimension two (mode = 2) leads to a small number of charts, while a
particular structure of the binomial may give a small advantage to the other variants
(mode ∈ {3, 4}) in some cases. But since the advantage is only small, our choice for
a first investigation of a local monomialization of a binomial and the data resulting
from it is via centers of codimension two.

B.4. Comparing the implementation of the generic

determinantal resolution with general state of

the art algorithms

In this section, we want to compare our implementation of generic determinantal
resolution (described in Section A.5.1) with the implementation of Frühbis-Krüger
and Pfister [37] of the Algorithm in the computer algebra system Singular

and the implementation of Blanco’s algorithm of Blanco and Pfister [12]. These
implementations can be found in the libraries resolve.lib and resbinomial.lib.

There is also an implementation of Bodnár and Schicho of the algorithm of
Villamayor, but [16, page 43] says that in practice, examples for dimension less or
equal 4 can be computed, and the dimension of our determinantal singularities are
larger. That is the reason why we focus on the implementation of Frühbis-Krüger
and Pfister, here. Originally, there is a boundary for the order b ≤ 5 when
calculating the coefficient ideal with the Coeff-method. For testing, we have
deleted this boundary in the local Singular installation.
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First, we start with comparing the generic_resolve with the general
resolve-method of resolve.lib which is a singular implementation of Villamayor’s
algorithm. So every calculation has to be done in a ring of characteristic 0. We
choose the singular ring with characteristic 0 and the minimal possible number of
variables (namely n · m for a n × m generic matrix) for complexity reasons. In
Figure B.5, some examples are given. In the first column, the considered matrix is
given. The second column gives the r ∈ Z>0 that says which ideal of r-minors we
want to resolve. The following two columns give the running time in seconds of the
generic_resolve and the charts in the form final charts/ total charts, and the last
two columns give the analogous data for the resolve algorithm.

With the results of Figure B.5 we see, that the high complexity of a general
Hironaka resolution is a bottleneck in practice, so we cannot resolve a singularity
which is more complex than the determinantal singularity that is generated by the
4-minors of the generic (4× 4)-matrix.
Our new implementation is constructed for exactly the case of resolving generic
determinantal singularities, i.e., we do not deal with the complex data structure
of ideals and the high complexity of Gröbner base computations. Therefore, the
runtime of all calculations of our new algorithm is much better, i.e., smaller than
the resolve.lib-calculations.

Another interesting point is that for every generic determinantal singularity
which is generated by 2-minors of a generic matrix, all center calculation and
therefore the whole resolution process is the same, if we start our new algorithm or
the algorithm resolve.

If we consider determinantal singularities which are generated by r-minors of a
generic matrix, where r > 2 (and where the dimension of the generic matrix is big
enough), our new algorithm considers less charts and final charts then resolve.
This belongs to the fact that if we consider minors of size > 2, i.e., in Section 6 we
have seen that we can apply a change of variables to obtain new variables yi,j :=

xi,j − xi,1x1,j which reduces the complexity. So we take advantage of this change
of variables in the new algorithm. The general implementation resolve.lib does
not use ths change of variables, so the complexity of the singularity seems to be
higher than it really is. This change of variables is not an advantage if the size of
the considered minors is ≤ 2 since we have to blow-up at most one time and then
we see in each chart, that the singularity is resolved and do not need this change of
variables afterwards.
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Matrix minor size charts: generic time: generic charts: resolve time: resolve
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

 1 1 / 1 0 1 / 1 0


x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

 2 9 / 10 0 9 / 10 3


x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

 3 36 / 46 0 180 / 226 27



x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

x4,1 x4,2

x5,1 x5,2


2 10 / 11 0 10 / 11 8


x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

 3 72 / 85 1 504 / 589 15482


x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

 4 576 / 737 10 − /− killed process

Figure B.5.: List of examples, where we compare our generic implementation with
the resolve.lib w.r.t charts and running time
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Matrix minor charts: generic time: generic charts: resolve
0 x1,2 x1,3 x1,4

−x1,2 0 x2,3 x2,4

−x1,3 −x2,3 0 x3,4

−x1,4 −x2,4 −x3,4 0

 2 1 / 1 0 1 / 1


0 x1,2 x1,3 x1,4

−x1,2 0 x2,3 x2,4

−x1,3 −x2,3 0 x3,4

−x1,4 −x2,4 −x3,4 0

 4 6 / 7 0 6 / 7

skewsymmetric 6× 6 matrix 4 15 / 16 0 killed

skewsymmetric 6× 6 matrix 6 90 / 106 1 killed

skewsymmetric 8× 8 matrix 8 2520 / 2969 30 killed

Figure B.6.: List of examples, where we compare our skewsymmetric generic
implementation with the resolve.lib w.r.t charts

In Figure B.6, we do not write the running time of resolve, since it is zero or has
was killed. We see at the first glance, that we do not have much comparisons. This
relies to the fact that we have seen in Section 6, that the

√
〈2`-minors of Am〉 =√

〈(2`− 1)-minors of Am〉. So we have to double the dimension of the matrix (in
comparison to the generic case) to get the same number of blow-ups of the minors.
The bigger dimension is bad for resolve, since the complexity is bounded by the
dimension. Therefore, the complexity in this case is extremly high so we are able
to resolve the 2 simplest cases of skewsymmetric generic matrices with resolve,
namely the trivial cases of 2-minors and the determinantal singularity generated by
the 4 matrix of the skewsymmetric generic matrix of size (4× 4).

Figure B.7 shows comparisons for symmetric generic determinantal singularities.
We see, that for every symmetric generic determinantal singularity which is
generated by 2-minors of a symmetric generic matrix, we need only a single blow-up
with our new algorithm and with resolve, but resolve returns less total and
final charts.

If we consider symmetric generic determinantal singularities which are generated
by r-minors, where r > 2 (and where the dimension of the generic matrix is big
enough), our new algorithm considers less charts and final charts then resolve.
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B.4. Comparing the implementation of the generic determinantal resolution

Matrix minor charts: generic time: generic charts: resolve time: resolvex1,1 x1,2

x1,2 x2,2

 2 3 / 4 0 2 / 3 0
x1,1 x1,2 x1,3

x1,2 x2,2 x2,3

x1,3 x2,3 x3,3

 2 6 / 7 0 3 / 4 0


x1,1 x1,2 x1,3

x1,2 x2,2 x2,3

x1,3 x2,3 x3,3

 3 21 / 28 0 48 / 73 2423


x1,1 x1,2 x1,3 x1,4

x1,2 x2,2 x2,3 x2,4

x1,3 x2,3 x3,3 x3,4

x1,4 x2,4 x3,4 x4,4

 2 10 / 11 0 4 / 5 1523


x1,1 x1,2 x1,3 x1,4

x1,2 x2,2 x2,3 x2,4

x1,3 x2,3 x3,3 x3,4

x1,4 x2,4 x3,4 x4,4

 3 64 / 75 1 − /− killed


x1,1 x1,2 x1,3 x1,4

x1,2 x2,2 x2,3 x2,4

x1,3 x2,3 x3,3 x3,4

x1,4 x2,4 x3,4 x4,4

 4 222 / 297 5 − /− killed

Figure B.7.: List of examples, where we compare our symmetric generic
implementation with the resolve.lib w.r.t charts and running time
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This could explained with the same argument, we applied above concerning the
change of variables.

The high complexity of a general Hironaka resolution let us not resolve a
singularity which is more complex than the determinantal singularity that is
generated by the 3-minors of the symetric generic (4 × 4)-matrix. Although the
number of charts is less, we see by comparing the runtime of resolve for generic
determinantal singularities and for symmetric generic determinantal singularities,
that this case and the calculation of each single chart is more complex than the
generic case.

Altogether, we see that we can reduce complexity by taking advantage of the
determinantal structure, if the considered size of a minor is bigger than 2. If the
size of the minors is ≤ 2, the considered ((skew)-symmetric) generic determinantal
singularity is a binomial singularity. We have discussed in the theory sections of
this thesis, that it is much easier to resolve binomial ideals than general ideals.
Furthermore, the structure of the binomial ideals are very simple for these cases,
since the order of such a binomial ideal is at most 2 and we need at most a single
blow-up. Therefore resolve is not worse than our new algorithm with respect to
the considered number of charts.
If the size of minors is > 2, the considered ((skew)-symmetric) generic determinantal
singularity is more complex and we can take advantage of the change of coordinates
to reduce complexity.
Furthermore, the use of complex data structures like ideals and standard basis
decrese complexity, so our new algorithm needs less runtime than resolve.

The next algorithm with which we want to compare our implementation is the
BINresolve method of the library resbinomial.lib [12], which is a singular
implementation of the algorithm of Blanco.
Note, that we only can compare our implementation with the algorithm of Blanco
if we resolve binomials, i.e., if we resolve the 2-minors of a generic matrix.

The comparisons in Figure B.8 show that the library resbinomial.lib considers
more total and final charts and that the runtime is much higher than the considered
charts and runtime of our new algorithm.
We do not have more examples here because the process was killed in all other cases
of determinantal singularities generated by 2- minors of ((skew)-symmetric) generic
matrices.
The author reimplements this library in Section A.3.
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B.5. Comparison of CJS, resolve.lib and resbinomial2.lib

Matrix charts: generic time: generic charts: resbinomial time: resbinomialx1,1 x1,2

x2,1 x2,2

 4 / 5 0 28 / 49 0
x1,1 x1,2

x2,1 x2,2

x3,1 x3,2

 6 / 7 0 264 / 661 13

Figure B.8.: List of examples, where we compare our generic implementation with
the resbinomial.lib w.r.t charts and running time

ideal CJS resbinomial2 resolve

z2 − x2y2 3 / 5 15 / 26 4 / 9

z3 − x2y2 19 / 34 15 / 24 70 / 141

〈w2z2 − x2y2, x− y〉 16 / 23 18 / 29 4 / 9

〈z2 − x4y4〉 5 / 9 33 / 62 10 / 21

〈z2x3 − y4〉 47 / 86 12 / 19 96 / 202

Figure B.9.: List of examples, where we compare our implementation of the CJS
algorithm with the resbinomial2.lib and resolve.lib w.r.t the number of
charts

B.5. Comparison of CJS, resolve.lib and

resbinomial2.lib

In this subsection, we compare the implementations of resolve.lib and the new
implementations resolve2.lib and the CJS-algorithm.
We see in Figure B.9 that we can find for every of these implementations an

example such that every of these implementation is more efficient than the other
implementations (with respect to the number of total and final charts).

So one cannot say for surface singularities generated by binomial ideals, that there
is the unique best implementation.
In some examples the computation of the tower (see Section A.2.2 for more

details) yield a less number of charts than the coefficient ideal. Then CJS is
more efficient than the other implementations. Sometimes the coefficient ideal
construction yield less charts. Then it depend if the implementation of resolve or
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associated Hypersurface Normal form CJS resolve detresolve

D4


y x 0

x y 0

0 0 y

 2 / 3 2 / 3 2 / 3

E6


0 x y

x y 0

y 0 xy

 2 / 5 3 / 5 2 / 3

E7

x 0

0 x2 + y3

 3 / 7 3 / 6 3 / 5

∆1,1

w y x

z w y

 − /− 2 / 3 4 / 5

Figure B.10.: List of examples, where we compare our new implementation with
resolve.lib w.r.t the number of charts

In Figure B.10, we see that for easy cases of determinantal singularities, there is no
outlier and all of the algorithms considers more or less the same number of total
and final charts.

the binomial case implementation resbinomial2 possesses an abbreviation.

B.6. Comparing the implementation of the

resolution of determinantal singularities at

most binomial type with general state of the

art algorithms

In this section, we give a short list of examples of comparisons of the considered
number of charts of resolve, CJS and our algorithm for resolution of determinantal
singularities of at most binomial type. We begin with a list of simple square and
symmetric matrices in [38, Table 7], [38, Table 10], [38, Table 12] and [38, Table 13].

In Figure B.11, we see that the new algorithm which take advantage of the
determinantal structure is not more efficient, if the ideal of r-minors is a binomial
ideal generated by less binomials than we have entries in the matrix.
This is not surprising since it uses more steps than an algorithm which only resolves
the binomial ideal. Here, we maybe first principalize a binomial generator and
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B.7. Complexity remarks on Hu’s Algorithm

Singularity resolve detresolve

2-minors of

x2 y3

xy z

 48 / 102 8 / 14

1-minors of

x2 y3

xy z

 Error 3 / 4

2-minors of

x3 −y4z4 + x2

y4 z2

 90 / 180 35 / 67

2-minors of

 x3 −y4z4 + x2

y − x z2

 10 / 19 33 / 62

2-minors of

 x3 −yz + x

y − x z2

 3 / 6 6 / 9

Figure B.11.: List of examples, where we compare our new implementation with
resolve.lib w.r.t the number of charts

afterwards principalize the monomial ideal generated by the entries via another call
of a binomial resolution procedure. An in this step, we need more variables which
increases the worst-case complexity.

We see that our new algorithm could be more efficient, if the ideal of the
considered minors is not a binomial, anymore.

Altogether, it was not easy to find examples where resolve and detresolve

finish the calculation. Both implementations uses the ∆-operator and the
construction of the coefficient ideal, which potentially deal with big numbers and
they could enlarge the complexity of the calculation.
Since one could not predict with which input the complexity of constructing
a coefficient ideal after some blow-ups is too high, one can not predict if the
computation of resolve or of detresolve ends.
In general, we have seen that detresolve could be more efficient. But this is only
the case if the representation as a matrix is less complex than the representation as
an ideal.

B.7. Complexity remarks on Hu’s Algorithm

We refer to the implementation described in Section A.4.
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Remark B.7.1. Let C = Di ]Dj for some Di and Dj be a center appearing in the
algorithm of Hu. Note that for practical reasons, it is easier to blow-up in Di and
Dj separately than to blow-up in C.
The reason is that I(C) has more generators than I(Di) and I(Dj), and the
complexity of the computation of the blow-up increases non-linearly in the number
of generators.

Remark B.7.2 (Worst-case number of blow-ups). The number of blow-ups only
depends on the number of Elements fj. We assume we have f1, . . . , fm, so we have
m such elements. Then we have the index set I = P{1, . . . ,m} with 2m element.
Therefore, the maximum number of the Di elements is 2m. The list L only handles
the right order of the blow-ups and does not change the number of elements. If
none of the Di is empty, we have to blow-up in each of these elements, so we need,
in the worst case, 2m blow-ups.

In our context, we have these fj elements in a matrix of dimension n×m, so we
have at most 2n·m blowups in the first call of Hu’s Algorithm. After reduction to
dimension (n− 1)× (m− 1), we have still (at most) 2(n−1)·(m−1) blow-ups.
In total, our applications of Hu’s algorithm need at most

min{n,m}−1∑
i=0

2(n−i)·(m−i)

blow-ups.
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C. Unit Tests

The most important task of unit tests is to ensure that the respective code under test
realizes the functionality correctly and completely. The functionality is synonymous
with the input and output behaviour of the code under test. In software projects,
this functionality is defined by the requirements specification. This is not the basis
for our code because the mathematics already supplies the correct results (see [73]).

In this chapter, we will use so-called white-box tests to show that our algorithms
work correctly in many cases. Finally, we will try to cover the entire code using test
cases to show the correctness of the code.

We follow the procedures of [69] in this chapter.

When testing, one must proceed systematically to cover all classes of possibilities
since there are usually an infinite number of input possibilities, but one can only
process a finite number of test cases.
A white-box test is a test that deals with the exact appearance of the code. Thus,
a concrete test is the one made so that a certain path is traversed in the code. So,
using white-box tests, we can cover certain paths of the code and measure the code
coverage in percentage to get a measure of the ratio of the tested code. Our goal is
to achieve a code coverage of 100%.

Various test cases can be derived from the program flow graph.

Like in the theory chapter, we start with the most easiest cases and go bottom up.
First, we begin with trivial inputs, i.e., minors which are not singular. Afterwards,
we test the following classes of determinantal singularities:

1. generated by ((skew)-symmetric) generic matrices

2. generated by monomial entries

3. generated by at most binomial entries
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C. Unit Tests

C.1. Test cases for trivial inputs

The first class of inputs we want to test are regular minors of matrices M with at
most binomial entries.

The considered test cases use a matrix where the entries could be a unit, zero,
variables, monomials and at most binomials. Furthermore, we consider dense and
sparse matrices and maximal, minimal and other sizes of the minors.

Table C.1 shows the matrix generating the trivial determinantal singularity, the
considered size of minor and the number of final and total charts.

C.2. Test cases of ((skew-)symmetric) generic

determinantal singularities

The following cases are the different classes of generic determinantal singularities.
We start with the generic determinantal singularities, followed by the symmetric
generic singularities and the skewsymmetric generic singularities.

In Section B.4, we have seen how many charts we consider with our specific
implementation for resolution of ((skew)-symmetric) generic determinantal
singularities.
In this chapter, we also discussed that the change of variables is an advantage of the
specific implementation. Our algorithm for resolution of determinantal singularities
of at most binomial type generates a covering with a single chart at this part of the
algorithm. That explains the number of extra charts here.

Table C.2 illustrates the test case for generic determinantal singularities in the
same format we have seen above.
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C.2. Test cases of ((skew-)symmetric) generic determinantal singularities

matrix size of minor final charts total charts
M = (1) 1 1 1

M =

(
x
1

)
1 1 1

M =
(
x 1

)
1 1 1

M =

(
x 1
1 1

)
1 1 1

M =

(
x 1
1 1

)
2 1 1

M =

1 0 0
0 x 2
0 1 1

 3 1 1

M =

0 x 2
1 0 0
0 1 1

 3 1 1

M =

 0 y 0
−x 0 0
0 0 z

 3 1 1

M =


1 0 0 0 0
0 1 0 0 0
0 0 0 y 0
0 0 −x 0 0
0 0 0 0 z

 3 1 1

M =


0 1 0 0 0
1 0 0 0 0
0 0 0 y 0
0 0 −x 0 0
0 0 0 0 z

 3 1 1

M =


0 x 0 0 0
1 0 0 0 0
0 0 0 y 0
0 0 1 0 0
0 0 0 0 z

 3 1 1

M =

 0 y z
−y 0 u
−z −u 0

 3 1 1

M =

 0 y2 z3

−y2 0 u4

−z3 −u4 0

 3 1 1

Table C.1.: Test cases of regular minor ideals
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C. Unit Tests

matrix size of minor final charts total charts
M = (x) 1 1 1

M =

(
x y
z a

)
1 1 1

M =

(
x y
z a

)
2 4 5

M =

(
x y z
a b c

)
2 6 7

M =

x y z
a b c
d e f

 2 9 10

M =

x y z
a b c
d e f

 3 36 46

Table C.2.: Test cases of generic determinantal singularities

In Table C.3, we can see the test cases for symmetric generic determinantal
singularities in the same format we have seen above. Here, we see the additional
charts in the last test case. We only have them in this example since all other
examples are resolved after a single blow-up, and we do not need to generate a
covering.

matrix size of minor final charts total charts

M =

(
x y
y x

)
1 1 1

M =

(
x y
y x

)
2 3 4

M =

x y z
y a b
z b c

 2 9 10

M =

x y z
y a b
z b c

 3 45 55

Table C.3.: Test cases of symmetric generic determinantal singularities

Table C.4 illustrates the test cases where the input are skewsymmetric generic
determinantal singularities. We consider the trivial singularities, and the 3- and
4-minors of the skewsymmetric generic (4× 4)-matrix.
Here, we see that our new algorithm can resolve as much singularities as resolve

can resolve.
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C.3. Test cases of determinantal singularities of at most monomial type

matrix size of minor final charts total charts

M =

(
0 x
−x 0

)
1 1 1

M =

(
0 x
−x 0

)
2 1 1

M =

 0 y z
−y 0 u
−z −u 0

 3 1 1

M =


0 x1,2 x1,3 x1,4

−x1,2 0 x2,3 x2,4

−x1,3 −x2,3 0 x3,4

−x1,4 −x2,4 −x3,4 0

 3 6 7

M =


0 x1,2 x1,3 x1,4

−x1,2 0 x2,3 x2,4

−x1,3 −x2,3 0 x3,4

−x1,4 −x2,4 −x3,4 0

 4 6 7

Table C.4.: Test cases of skewsymmetric generic determinantal singularities

Regarding path coverage, we have covered the trivial return path, the easiest cases
of the determinantal-monomial case, the gauss-state, the translation state and the
blow-up method. It remains to cover the determinantal binomial state.

C.3. Test cases of determinantal singularities of at

most monomial type

In this section, we want to test determinantal singularities of at most monomial
type. Since we test singularities of at most binomial type later in this chapter, we
consider only minors of size 2.

matrix size of minor final charts total charts
M = (x3y) 1 3 5

M =

(
x2 y3

x y

)
2 3 5

M =

(
x2 y3

xy z3

)
2 8 14

Table C.5.: Test cases of determinantal singularities of at most monomial type

Table C.5 illustrates the test cases for determinantal singularities of at most
monomial type in the same format as we have seen above.
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C. Unit Tests

C.4. Test cases of determinantal singularities of at

most binomial type

In this section, we want to tests determinantal singularities of at most binomial
type. Since we already discussed the high worst case complexity and since we have
already covered the gauss-state in the path by other test cases, we restrict the test
cases here to 2-minors.

matrix size of minor final charts total charts
M = (x2 − y2z2) 1 15 26

M =

(
−y2z2 + x2 x3

y4 z2

)
2 34 65

M =

(
x3 −y4z4 + x2

y4 z2

)
2 35 67

M =

(
x3 −y4z4 + x2

x− y z2

)
2 33 62

Table C.6.: Test cases of determinantal singularities of at most binomial type

Table C.6 illustrates the test cases for determinantal singularities of at most
binomial type.

Altogether, we reach a high path coverage with these test cases.
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