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I

Abstract

We consider the Lorentzian Atiyah-Singer-Dirac operator on a temporal compact, glob-
ally hyperbolic spin manifold of even dimension with non-compact Cauchy hypersurface
which induces two boundary hypersurfaces due to the compactness of the time domain.
We specify the non-compactness of the Cauchy hypersurface by considering it as a Ga-
lois covering with closed base manifold. The Dirac operator of interest can be viewed as
lift of the same Dirac operator on the base manifold. We equip the lifted Dirac operator
with (generalised) Atiyah-Patodi-Singer boundary conditions and show Fredholmness in
this setting, or more precisely, Breuer-/L2-Fredholmness of the lifted Dirac operator un-
der the mentioned boundary conditions. The presented method of proof is based on the
descriptions and results for compact hypersurfaces, provided by Christian Bär and Alexan-
der Strohmaier for ordinary Atiyah-Patodi-Singer boundary conditions; we also consider
generalised Atiyah-Patodi-Singer boundary conditions for which we rely on results from
Christian Bär and Sebastian Hannes for the compact setting.

The starting point of the presented derivation is the well-posedness of the initial value
problem for the Lorentzian Atiyah-Singer-Dirac operator on globally hyperbolic space-
times with initial values in certain Sobolev spaces and inhomogeneities which are (locally)
square-integrable in time and of (local) Sobolev degree in space. The well-posedness of the
associated homogeneous problem implies the existence of an evolution operator which acts
unitarily between L2-spaces in the space domain. It turns out to be a Fourier integral op-
erator. The L2-spaces of spinors on the boundary hypersurfaces are decomposed into two
eigenspaces of the corresponding hypersurface Dirac operator of the lifted Dirac operator
such that they are appropriate with the boundary conditions. The spectral decomposition
will be applied to the evolution operator which splits into four spectral evolution operators,
mapping a spectral subspace from one boundary hypersurface to another spectral subspace
of the other boundary hypersurface. The unitarity of the evolution operator and its regu-
larity as Fourier integral operator show that some of the spectral evolution operators are
Breuer-Fredholm. With further functional-analytic methods it follows from this observa-
tion that the Dirac operator of interest is Breuer-Fredholm as well. The algebraic index
is expressed by the spectral �ow of the hypersurface Dirac operators, varying in the time
parameter. The geometric index follows by comparing with the index of the Riemannian
Dirac-operator.

We prove everything in our setting in the language of von Neumann algebras with re-
spect to Galois coverings where the L2- and Sobolev spaces are (free) Hilbert modules
with unitary left representations of a discrete group action. In passing, we take a closer
look on Seeley`s theorem and the spectral �ow which are two main ingredients of the proof.
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Zusammenfassung

Wir betrachten den Lorentzschen Atiyah-Singer-Dirac-Operator auf Zeit-kompakten global
hyperbolischen Spin Mannigfaltigkeiten gerader Dimension mit nicht kompakter, raumar-
tiger Cauchy-Hyper�äche, welche aufgrund der Kompaktheit der Zeit-Domäne zwei rau-
martige Randhyper�ächen impliziert. Insbesondere betrachten wir die Cauchy-Hyper�äche
als Galois-Überlagerung mit geschlossener Basismannigfaltigkeit. Der zu betrachtende
Dirac Operator entspricht dem gleichen Dirac Operator auf der Basismannigfaltigkeit,
welcher auf die Überlagerung geliftet wurde. Wir beweisen, dass dieser Lift unter (ve-
rallgemeinerten) Atiyah-Patodi-Singer Randbedingungen Breuer-Fredholm ist. Die hier
vorgestellte Beweisstrategie basiert auf den Ausführungen und Ergebnissen für kompakte
Hyper�ächen von Christian Bär und Alexander Strohmaier für gewöhnliche Atiyah-Patodi-
Singer Randbedingungen; der Fall verallgemeinerter Atiyah-Patodi-Singer Randbedingun-
gen beruht auf Ergebnissen von Christian Bär und Sebastian Hannes für den Fall kompakter
Cauchy-Hyper�ächen.

Der Ausgangspunkt der hier vorgestellten Herleitung ist die Wohlgestelltheit des An-
fangswertproblems für den Lorentzschen Atiyah-Singer-Dirac Operator auf global hyper-
bolischen Raumzeiten mit Anfangswerten in gewissen Sobolev-Räumen und Inhomogen-
itäten, die (lokal) quadrat-integrabel in der Zeit und von (lokaler) Sobolev-Ordnung in den
Raumkoordinaten sind. Die Wohlgestelltheit des dazugehörigen homogenen Problems im-
pliziert einen Evolutionsoperator, der unitär zwischen L2-Räume in den Raumkoordinaten
agiert. Es stellt sich heraus, dass dieser ein Fourier-Integraloperator ist. Die L2-Räume
bezüglich Spinore auf den Randhyper�ächen werden passend zu den gewählten Randbedin-
gungen in zwei Eigenräume des Rand-Dirac Operators zerlegt. Diese Zerlegung impliziert
eine Zerlegung des Evolutionsoperators in spektrale Evolutionsoperatoren, welche zwischen
den Eigenräume der Rand-Hyper�ächen abbilden. Da der Evolutionsoperator unitär und
als Fourier-Integraloperator aufgefasst werden kann, sind einige der spektralen Evolution-
soperatoren Breuer-Fredholm. Hieraus folgt durch funktional-analytische Methoden, dass
der zu untersuchende Dirac-Operator ebenso Breuer-Fredholm ist. Der algebraische Index
wird durch den spektralen Fluss der Hyper�ächen-Dirac-Operatoren ausgedrückt, welche
durch die Zeit parametrisiert sind. Der geometrische Index folgt durch einen Vergleich mit
dem Index des Riemannschen Dirac-Operators.

In unserem Setting beweisen wir die Resultate in der Sprache von von-Neumann-Algebren
bezüglich Galois-Überlagerungen, in der die L2- und Sobolev-Räume als (freie) Hilbert-
Module mit unitärer Darstellung der Linkswirkung einer diskreten Gruppe auftreten. Ins-
besondere betrachten wir das Theorem von Seeley und den spektralen Fluss unter diesen
Modi�kationen als zwei wichtige Schlüsselelemente in der Beweisführung.
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1. Background, structure and results of

this thesis

Before we introduce the structure of the thesis and our main results, we will review the
evolution of index theory and the results of Bär and Strohmaier and further so far known
extensions on which this thesis is based on. Atiyah and Singer presented in [AS63] the
�rst index theorem which connects the analytic index of an elliptic di�erential operator
on an oriented closed manifold to the topological index of the operator which is de�ned
by the Chern character of the (principal symbol of the) operator and the Todd class of
the underlying manifold. The latter index is non-trivial if the dimension of the manifold
is even. In a series of papers (see [AIMSII68] and [AS71]) Atiyah, Segal and Singer re�ned
their results and proofs and introduced several extensions, such as the extension to elliptic
pseudo-di�erential operators, to elliptic complexes, and a Lie group equivariant index the-
orem. All of their proofs rely on K-theoretic methods. In 1973 Atiyah, Bott and Patodi
introduced an alternative and more analytic proof method of the index theorem for an
elliptic di�erential operator which is based on the heat equation; see [ABP73] or the text-
books [BGV03] and [Roe99]. Getzler extended this method to elliptic pseudo-di�erential
operators in [Get83]. We want to point out two extensions which become important in this
thesis.

[A] Manifolds with boundary : Suppose E,F are two vector bundles over a compact man-
ifold M with boundary dM and D : C∞(M,E) → C∞(M,F ) a linear �rst order elliptic
di�erential operator. Atiyah, Patodi and Singer have shown in [APS75a] that this operator
is Fredholm under additional conditions next to the required ellipticity:

(A) the neighbourhood of the boundary has product structure, i.e. any neighbourhood
of dM is of the form [0, ε)× dM with ε > 0.

(B) the operator D takes the form

D|[0,ε)×dM = β (∂n +A)

in the neighbourhood of the boundary where β is a bundle isomorphism from E|dM to
F |dM , ∂n the normal derivative with respect to inwards pointing normal coordinates
and A is a self-adjoint elliptic di�erential operator on dM .

(C) in order to have an elliptic boundary problem, one needs to impose boundary con-
ditions: let P≥0 be the spectral projection of A which corresponds to non-negative
eigenvalues. The Atiyah-Patodi-Singer boundary condition is the global boundary
condition

P≥0u|dM = 0 (1.1)

for all u ∈ C∞(M,E).
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For geometric operators like the Dirac operator, (B) can be easily achieved by imposing the
equivalent condition that the Riemannian metric near the boundary has product structure:

g |[0,ε)×dM = dn⊗2 + gdM

where gdM is the induced metric on the boundary and does not depend on the boundary-
de�ning coordinate n. We de�ne C∞APS(M,E) as the space of smooth sections which satisfy
the boundary condition (1.1). We writeDAPS for the operatorD with domain C∞APS(M,E).
The result can then be phrased as follows.

Theorem 1.0.1 (cf. Theorem 3.10 in [APS75a]). Let M be a compact manifold with
boundary dM , E,F vector bundles over M and D : C∞(M,E) → C∞(M,F ) a linear
elliptic �rst order di�erential operator such that the above requirements (A) and (B) are
satis�ed. Then the operator DAPS : C∞APS(M,E)→ C∞(M,F ) is Fredholm with index

ind(D) =

∫
M
a(M)− η(A) + dim ker (A)

2
(1.2)

where a(M) is a density-valued local term and η(A) the eta-invariant of the boundary
operator A.

The concrete de�nition of the eta-invariant will be given in subsection 8.2.1. Theo-
rem 1.0.1 has been extended to pseudo-di�erential operators by Piazza in [Pia93]. The
local term a(M) coincides with the local term in the boundaryless case. If M is a Rieman-
nian spin manifold, E and F spinor bundles, associated to the two half-spin representations,
and D the (Atiyah-Singer-)Dirac operator, Theorem 1.0.1 reduces to the following result.

Corollary 1.0.2 (cf. Theorem 4.2 in [APS75a]). The Dirac operator is Fredholm with
index (1.2) with local term a(M), described by the Â-genus Â: a(M) = Â(M).

If we twist the Dirac operator with a Hermitian bundle E over M , the local term be-
comes a(M) = Â(M) ∧ ch(E) where ch(E) is the (total) Chern character of E . In both
cases, the hypersurface operator is itself a (twisted) Dirac operator which enters in the
boundary contribution; see [APS75a, Eq.(4.3)]. The concrete de�nitions of the Â-genus
and the Chern character will be given in subsection 10.3.3.

[B] Extension to non-compact manifolds: Two main di�culties arise if one considers non-
compact manifolds M : �rst of all, one needs to impose practical growth conditions at
in�nity, i.e. outside any compact subset of M . In addition, the null-spaces of elliptic dif-
ferential operators are in general in�nite-dimensional. The �rst di�culty can be resolved
by choosing square-integrability with respect to a natural inner product as growth condi-
tion which leads to Hilbert spaces. However, this does not resolve the second problem and
thus the de�nition of the index as di�erence of dimensions becomes meaningless. But one
is able to introduce a renormalised, but in general real-valued dimension in a von Neumann
algebra if certain geometric as well as analytic conditions are given as follows: let Γ be a
discrete and freely acting group on a non-compact manifold M such that the orbit space
MΓ := M/Γ is compact. We furthermore need to assume that a chosen unitary left action
representation operator of the group action commutes with the elliptic operator D. The
non-compact manifold M can then be seen as Galois covering with compact base mani-
fold MΓ and the elliptic operator D, acting on su�cient regular sections of vector bundles
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over M , can be viewed as lift of an elliptic operator D which acts on su�cient regular
section of vector bundles over MΓ . We impose a positive density on MΓ and a (positive
de�nite) Hermitian bundle metric for the vector bundle EΓ over MΓ such that they lift to
a Γ -invariant positive density onMΓ and a Γ -invariant (positive de�nite) Hermitian bundle
metric of a vector bundle bundle E overM . The Hilbert space of square-integrable sections
of E with respect to these Γ -invariant lifted quantities L2

Γ (M,E) becomes a Γ -module with
respect to the von Neumann algebra BΓ (L

2
Γ (M,E)) of bounded operators on L2

Γ (M,E)
which commutes with the action of Γ . This algebra has a natural trace TrΓ which de�nes
the mentioned renormalised dimension: let H be any Γ -submodule1 of L2

Γ (M,E) and PH

the orthogonal projection onto H which is again an element of the von Neumann algebra
BΓ (L

2
Γ (M,E)); the Γ -dimension of H is

dimΓ (H ) := TrΓ (PH ) .

Let F be another vector bundle over the covering M with a Γ -invariant (positive de�nite)
Hermitian bundle metric. The L2-kernel of the operator D : C∞(M,E)→ C∞(M,F )

kerL2 (D) :=
{
u ∈ L2

Γ (M,E) |Du = 0
}

and of its L2-adjoint D∗

kerL2 (D∗) :=
{
v ∈ L2

Γ (M,F ) |D∗v = 0
}

then have �nite Γ -dimensions and a meaningful Γ -index can be de�ned by

indΓ (D) = dimΓ kerL2 (D)− dimΓ kerL2 (D∗) .

The �niteness of this renormalised index is guaranteed if the operator D is Γ -Fredholm2.
Atiyah has shown the following result.

Theorem 1.0.3 (cf. Introduction and Theorem 3.8 in [Ati76]). In the introduced setting,
the elliptic Γ -invariant di�erential operator D, which acts between (di�erent) sections of
vector bundles over the Galois covering M and is a lift of the elliptic operator D, is Γ -
Fredholm and its Γ -index satis�es

indΓ (D) = ind(D) .

If Γ is a �nite group with cardinality |Γ |, then M is already compact and one recovers
the �nite-covering index formula

indΓ (D) = |Γ | ind(D) .

The proof can be extended to elliptic classical pseudo-di�erential operators which is e.g.
presented in [Shu, Thm.3.11.3]. The omitted details and concepts will be given in Chapter 5
of this thesis.

1We will clarify later that the Γ -modules needs to be free or even more projective.
2This concept of Breuer- or L2-Fredholmness in a von Neumann setting will be explained in subsection 5.2.3
which we will introduce with the terminology Γ -Fredholmness.
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A combination of Theorem 1.0.3 and Corollary 1.0.2 for Dirac-type operators on Rieman-
nian manifolds has been worked out by Ramachandran.

Theorem 1.0.4 (cf. Theorem 1.1 in [Ram93]). Let M be a Galois covering with Galois
group Γ of a compact Riemannian manifold MΓ with boundary and D a Dirac-type operator
on M which acts on a graded Cli�ord/spinor bundle S(M) and is a lift of a Dirac-type
operator D on MΓ , acting on a graded Cli�ord/spinor bundle S(MΓ ). If MΓ and D have
product structure near the boundary, then the operator DAPS under Atiyah-Patodi-Singer
boundary conditions is Γ -Fredholm with Γ -index

indΓ (DAPS) =

∫
MΓ

a(MΓ )−
ηΓ (A) + dimΓ ker (A)

2
(1.3)

where A the lifted hypersurface Dirac operator, ηΓ (A) its Γ -eta-invariant and a(MΓ ) is
formally the same density as in (1.2).

Theorem 6.6 of the same reference shows that the operator DAPS is Γ -Fredholm as map
from L2

Γ (M, S(M)) → L2
Γ (M, S(M)) with domain H1

Γ ,APS(M, S(M)) which are Sobolev
sections of S(M) with respect to the inner product of L2

Γ (M, S(M)), satisfying the Atiyah-
Patodi-Singer boundary condition. Further here omitted details and de�nitions will be
given in Chapter 5 and subsection 8.2.4.

Another worth mentioning extension is the Callias index theorem for the Callias-Dirac
operator on an odd-dimensional non-compact manifold which is equipped with a Callias
potential, regulating the behaviour outside any compact subset of the manifold. We refer
to [Cal78] and [BS78] for further remarks. An index theorem for elliptic Fourier integral
operators for certain canonical relations is discussed in [EM98] ; further explainations and
a local index formula for these Fourier integral operator are presented in [LNT01]. Another
extension to open manifolds has been proven for manifolds with bounded geometry by Roe
in [Roe88a] and [Roe88b].

On the other hand, an index theorem can be used for geometric as well as application-
oriented questions in physics, especially in Quantum Field Theory. For the latter, the
ellipticity condition is in general not satis�ed for geometrically related operators such as
the Dirac operator. In this situation a Riemannian structure is necessary, but not given in
the context of physical theories which are constructed in the framework of Special or Gen-
eral Relativity. However, the Atiyah-Singer index theorem has been used in order to relate
the topology of a underlying manifold M as space in a physical system to the zero modes
of a physical di�erential operator (i.e. its kernel solutions) on M . The index of a Dirac
operator in particular plays an important role in calculating the excess of dimensions of the
spaces of zero modes with respect to one chirality, i.e. a particular choice of the grading of
the spinor bundle, to the space of zero modes with respect to the opposite chirality. This is
known as (gravitational) chiral anomaly. The a priori lack of ellipticity of the Dirac opera-
tor due to a Lorentzian manifold as physical spacetime is resolved by translating everything
in the Euclidean or Riemannian geometric picture before applying the Atiyah-Singer in-
dex theorem for the Dirac operator. Afterwards, the Wick rotation3 for translating into

3The time coordinate is treated as complex variable, constraint to the real axis. The Wick rotation rotates
the real time axis to a imaginary time axis. In this way, the Lorentzian spacetime can be interpreted as
Euclidean spacetime with an imaginary time coordinate.
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the Euclidean setting is reperformed to the Lorentzian setting. Another prominent use
of index theorems in physics is the ghost number anomaly in BRST symmetry theories
where the Gauss-Bonnet theorem and the Riemann-Roch theorem as special cases of index
theorems in two dimensions are used. For these two and other quantum anomalies we refer
to [FS04] . The Callias index theorem is used in Topological Quantum Field Theory of
odd-dimensional manifolds and in Chern-Simons (gauge) theory; see [NS] for a rigorous
treatment with physical applications. It is also conceivable to use index theorems for sort-
ing out (parts of a) gravitational action in some modifying geometric theories of gravity
because they turn out to be invariant with respect to the �eld variation which leads to the
�eld equations. Last, but not least, the proof of the Atiyah-Singer theorem with the help
of the heat equation in [ABP73] can be interpreted in terms of supersymmetry; see [AG83].

Besides its great use in relativistic physics, it is though somehow unsatisfying to work
with index theorems of geometric operators on Lorentzian spacetimes just by analogy or
with the help of the Wick rotation if practicable at all. Furthermore, an index theorem
for such in general non-elliptic operators is also of mathematical interest. A major step in
this direction has been done by Bär and Strohmaier in 2015 for the Atiyah-Singer-Dirac
operator D : C∞(M, S(M)) → C∞(M, S(M)) for positive-chirality spinors on an even-
dimensional globally hyperbolic, temporal compact4 spin manifold with compact space-
like Cauchy hypersurface and two boundary hypersurfaces on which Atiyah-Patodi-Singer
boundary conditions are enjoined. The boundary hypersurfaces are again spacelike Cauchy
hypersurfaces. The spinor bundle S(M) decomposes into two subbundles S±(M) which
sections are spinors of positive respectively negative chirality. Hence D becomes a map
from C∞(M, S+(M)) to C∞(M, S−(M)). They worked out an index theorem similar to
Theorem 1.0.1 with Corollary 1.0.2. The domain FE0

APS(M, T , D) of smooth sections
of S+(M) with respect to the L2-graph norm for the Dirac operator, subject to Atiyah-
Patodi-Singer boundary conditions, turns out to be the correct setting for Fredholmness.
Roughly speaking, spinors of this space are continuous in time and of Sobolev degree 0
and thus square-integrable with respect to space coordinates such that the action of D is
in L2(M, S−(M)).

Theorem 1.0.5 (cf. Main Theorem in [BS19]). Let (M, g) be a temporal compact, time-
oriented, even-dimensional globally hyperbolic Lorentzian spin manifold with boundary dM
and compact smooth spacelike hypersurface Σ such that the boundary is dM = Σ2 t Σ1,
with Σ2 as the Cauchy boundary in the future of Σ1. The Atiyah-Singer-Dirac operator

DAPS : FE0
APS(M, T , D)→ L2(M, S−(M))

is Fredholm with index

ind(DAPS) =

∫
M
Â(M) +

∫
dM

T Â(g)

− dim ker (A1) + dim ker (A2) + η(A1)− η(A2)

2
. (1.4)

4Temporal compactness means that the time domain T (M) of the globally hyperbolic manifold M is a
compact time interval, i.e. there exist t1, t2 ∈ R such that T (M) = [t1, t2]. We will also use this terminology
to express that we restrict the possibly non-compact time domain ofM to any compact time interval [t1, t2].
Thus, any restriction M |[t1,t2] becomes temporal compact in the original sense.
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Â(M) is the Â-genus, manufactured from the curvature of the Levi-Civita connection
with respect to g , T Â(g) its corresponding transgression form and A1, A2 are the hyper-
surface Dirac operators on Σ1 and respectively Σ2. Comparing with Theorem 1.0.1 and
Corollary 1.0.2 shows that it is the Lorentzian analogue of the Atiyah-Patodi-Singer index
theorem for the spin-Dirac operator with two boundary hypersurfaces. The additional
term is given by the transgression form which vanishes, if the boundary is totally geodesic,
or equivalently the manifold and Dirac operator have product structure near the bound-
ary. We note that the product structure assumption is a priori essential for (1.0.1), but
is not required for Theorem 1.0.5. In the same paper, they worked out an index theorem
for anti-Atiyah-Patodi-Singer boundary conditions which are the corresponding orthogonal
boundary conditions. The Dirac operator DaAPS in this case has the index

ind(DaAPS) = −ind(DAPS) .

Furthermore, they generalised their results to spin-Dirac operators with twisting bundles
for spinors with values in another Hermitian vector bundle. Moreover, they allowed thatM
has Spinc-structure such thatM carries an associated Hermitian (determinant) line bundle.
The square-root of this bundle is then twisted with an arti�cial global spin structure on
M . Bär and Hannes extended the results to generalised Atiyah-Patodi-Singer boundary
conditions in [BH18] where the spectral cuts in the spectrum of the self-adjoint boundary
Dirac operators are allowed to be any other point than just zero. Altogether, the most
general formulation of these theorems is stated as follows.

Theorem 1.0.6 (cf. Theorem 7.1 in [BS19] with section 4.2 in [BH18]). Let (M, g) be a
temporal compact, time-oriented, even-dimensional globally hyperbolic Lorentzian manifold
with boundary dM and compact smooth spacelike hypersurface Σ such that the boundary
is dM = Σ2 t Σ1, where Σ2 is the Cauchy hypersurface in the future of Σ1. Assume in
addition that M is equipped with a Spinc-structure by means of a Hermitian line bundle
L → M with metric connection ∇L, and carries a Hermitian vector bundle E → M with
metric connection ∇E. The twisted Spinc-Dirac operator on sections of the graded twisted
Spinc-spinor bundle SL,E(M) = S+

L,E(M)⊕ S−L,E(M),

DEL
APS(a1,a2) : FE0

APS(a1,a2)(M,DEL)→ L2(M, S−L,E(M)) ,

is Fredholm under generalised Atiyah-Patodi-Singer boundary conditions with spectral cuts
a1, a2 ∈ R at Σ1 and respectively Σ2, and its index is given by

ind
(
DEL

APS(a1,a2)

)
=

∫
M
Â(M) ∧ ec1(L)/2 ∧ ch(E) +

∫
dM
T G(g , E, L)

−
dim ker

(
AEL1

)
+ dim ker

(
AEL2

)
+ η(AEL1 )− η(AEL2 )

2
(1.5)

+χ{a1>0} dim
(
L2

(0,a1](SL,E(Σ1))
)
−χ{a1<0} dim

(
L2

[a1,0)(SL,E(Σ1))
)

+χ{a2<0} dim
(
L2

(a2,0](SL,E(Σ2))
)
−χ{a2>0} dim

(
L2

(0,a2](SL,E(Σ2))
)
.

In comparison to (1.4), there are additional contributions from the �rst Chern form
c1(L) of the curvature of ∇L and the Chern character ch(E) of the curvature of ∇E .
T G(g , E, L) is the transgression form of the wedge product of the Â-genus with these other
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two characteristic classes. AEL1 and AEL1 are the twisted hypersurface Dirac operators on
the boundary hypersurfaces Σ1 and Σ2. The additional boundary contributions due to the
modi�cation are the dimensions of the spaces L2

I which are ranges of L2-spaces under a
spectral projection onto an interval I ⊂ R, describing the range of regarded eigenvalues of
the boundary Dirac operators. The interval is determined by the spectral cut points a1

or a2, depending on the chosen hypersurface. The characteristic function controls which
part of this extra term contributes, depending on the sign of the spectral cut points. (1.5)
reduces to (1.4) if we set a2 = 0 = a1 and ignore any extra structure besides a global spin
structure. It is mandatory that the twisting bundle do carry a positive de�nite bundle met-
ric. The induced hypersurface Dirac operators are otherwise no longer self-adjoint such
that the spectral contributions do have to be analysed with more care. This implies that
natural bundles from TM needs to be excluded as twisting bundles. This problem has been
resolved and is presented in [BS20]. The globally hyperbolic manifolds is assumed to have
product structure near the boundaries, but any Dirac-type operator can be regarded which
is not necessarily self-adjoint and therefore dropped the assumptions of a positive de�nite
bundle metric on E. Based on their results, Bär and Strohmaier gave a rigorous derivation
of the chiral anomaly on curved backgrounds in [BS16] where they used Theorem 1.0.6
with product structure near the boundary and a1 = 0 = a2. The index then occurs once as
relative left-handed charge and again as relative right-handed charge which di�ers from the
�rst by a sign. The di�erence of these charges is non-zero and describes the relative chiral
current, manifesting the anomaly. The twisting bundle is interpreted as associated vector
bundle of a compact gauge group in the physical picture. If we for example choose the com-
pact gauge group to be the circle group U(1), the twisting spinor bundle can be viewed as
Spinc-spinor bundle which mimics electromagnetic potentials in the physical interpretation.

We brie�y sketch the steps of the proofs of Theorem 1.0.5 and Theorem 1.0.6. We re-
call that temporal compactness and global hyperbolicity of M imply that at each point
in time t ∈ [t1, t2] =: T (M) (t1, t2 ∈ R) there is as slice Σt = {t} × Σ. In particular, we
have Σ1 := Σt1 and Σ2 := Σt2 . Hence M can be viewed as foliation of spacelike compact
Cauchy hypersurfaces {Σt}t∈T (M). We denote the restriction of the spinor bundles S±(M)

to a hypersurface Σt with S±(Σt).

(I) Well-posedness of the Cauchy problem: The starting point in showing Fredholm-
ness and its index is the well-posedness of the initial value problem for D on M
with initial values in Sobolev spaces Hs(S+(Σ2)), s ∈ R, and inhomogeneities in
L2(T (M), Hs(S+(Σ•))). The operational description of the well-posedness of the
Cauchy problem is that the direct sum of the restriction operator rest and D

rest ⊕D : FEs(M,D) → Hs(S+(Σt))⊕ L2(T (M), Hs(S−(Σ•)))

is an isomorphism of Banach spaces for all s ∈ R and all t ∈ T (M). The space
FEs(M,D) is de�ned as FE0

APS(M,D) without imposing boundary conditions and
for arbitrary Sobolev degree s. In analytic terms it means that the Cauchy problem
with inital time t = t0 ∈ T (M)

Du ∈ L2(T (M), Hs(S−(Σ•))) with u|Σt0 ∈ H
s(S+(Σt0))

has a unique solution u ∈ FEs(M,D).
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(II) Dirac-wave evolution operator : The homogenous problem from step (I) says that

rest : FEs(M,D) ∩ ker (D) → Hs(S+(Σt))

is an isomorphism of topological vector spaces for all s ∈ R and all t ∈ T (M).
This induces the (Dirac-)wave evolution operator

Q(t, τ) : Hs(S+(Στ )) → Hs(S+(Σt))

for all t, τ ∈ T (M) which is an isomorphism of Hilbert spaces for all Sobolev degrees
s. In particular, it is a unitary map if s = 0. One further important property is
that Q(t, τ) can be described as Fourier integral operator of order 0 with canonical
relation which is associated to a canonical map, given by the �ow of lightlike geodesics
from Στ to Σt for all t, τ . This is shown by constructing Q with the help of solution
operators of initial value problems for normally hyperbolic operators of real principal
type.

(III) Boundary conditions: The imposed Atiyah-Patodi-Singer boundary conditions on
dM induces orthogonal splittings of the L2-spaces

L2(S+(Σ1)) = L2
[0,∞)(S+(Σ1))⊕ L2

(−∞,0)(S+(Σ1))

L2(S+(Σ2)) = L2
(0,∞)(S+(Σ2))⊕ L2

(−∞,0](S+(Σ2))
.

These imply a splitting of Q(t2, t1) by restricting its domain and range to one of the
two spectral subspaces of L2(S+(Σ1)) and L2(S+(Σ2)). The wave evolution operator
can then be represented as a (2× 2)-matrix of the form

Q(t2, t1) =

(
Q++(t2, t1) Q+−(t2, t1)
Q−+(t2, t1) Q−−(t2, t1)

)
(1.6)

where the entries are compositions of Q with the spectral projectors P≷0(t), P≥0(t)
and P≤0(t) onto the eigenspaces of the hypersurface Dirac operator at time t for
eigenvalues cutted at 0:

Q++(t2, t1) := P>0(t2) ◦Q(t2, t1) ◦ P≥0(t1)

Q−−(t2, t1) := P≤0(t2) ◦Q(t2, t1) ◦ P<0(t1)

Q+−(t2, t1) := P>0(t2) ◦Q(t2, t1) ◦ P<0(t1)

Q−+(t2, t1) := P≤0(t2) ◦Q(t2, t1) ◦ P≥0(t1) .

These are the spectral (Dirac-)wave evolution operators. A regularity analysis of
Q±±(t2, t1) and Q±∓(t2, t1) shows that all entries in (1.6) are again Fourier integral
operators with respect to the same canonical relation for Q, but the o�-diagonal
entries in (1.6) have in fact order (−1) due to the vanishing of their principal sym-
bols of order 0. This implies that the o�-diagonal entries are compact operators
on L2-spaces. The unitarity of Q implies Q∗Q = 1 and QQ∗ = 1. The matrix
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representation (1.6) then indicates

(Q++(t2, t1))∗Q++(t2, t1) + (Q−+(t2, t1))∗Q−+(t2, t1) = 1

(Q+−(t2, t1))∗Q+−(t2, t1) + (Q−−(t2, t1))∗Q−−(t2, t1) = 1

Q++(t2, t1)(Q++(t2, t1))∗ + Q+−(t2, t1))(Q+−(t2, t1))∗ = 1

Q−+(t2, t1)(Q−+(t2, t1))∗ + Q−−(t2, t1))(Q−−(t2, t1))∗ = 1

and further equations which are not important for the further proceeding. As the
Q±∓(t2, t1) are compact, the adjoint and compositions among each other are compact
as well. One observes from these four equations that the diagonal entries of (1.6) are
in fact Fredholm with their adjoints as their parametrices.

(IV) Index of Q±±(t2, t1): Q(t2, t1) is Fredholm with index 0 on L2-spaces as it maps as
unitary operator. Hence the di�erence

Q(t2, t1)−
(
Q++(t2, t1) 0

0 Q−−(t2, t1)

)
=

(
0 Q+−(t2, t1)

Q−+(t2, t1) 0

)
is a compact operator and thus Q(t2, t1) and Q++(t2, t1)⊕Q−−(t2, t1) have the same
index. Since the index of the direct sum is the sum of the indices, one gains

ind(Q(t2, t1)) = 0 = ind(Q++(t2, t1)) + ind(Q−−(t2, t1))

⇔ ind(Q−−(t2, t1)) = −ind(Q++(t2, t1)) .

In particular, one can directly compute ind(Q++(t1, t1)) to be dim ker (A1). Tele-
scoping the di�erence ind(Q−−(t2, t1))− ind(Q−−(t1, t1)) with respect to a partition
of T (M) allows to relate the index of Q−−(t2, t1) with the spectral �ow sf {At}t∈T (M)

of the smooth family of self-adjoint and Fredholm hypersurface Dirac operators
{At}t∈T (M) (At2 = A2 and At1 = A1):

ind(Q−−(t2, t1)) = sf {At}t∈T (M) − dim ker (A2) = −ind(Q++(t2, t1)) .

(V) Fredholmness and Indices of DAPS and DaAPS: Let PAPS and PaAPS denote the op-
erators which generate the (anti-)Atiyah-Patodi-Singer boundary conditions. Due to
some functional-analytic lemmas the operators PAPS⊕D and PaAPS⊕D are Fredholm
if and only if PAPS|ker(D) and respectively PaAPS|ker(D) are Fredholm. The ranges of
the latter are closed and the kernels and cokernels are isomorphic to the kernels of
Q±±(t2, t1) and Q∗±±(t1, t2). As the latter are Fredholm, PAPS ⊕D and PaAPS ⊕D
become Fredholm, too. One concludes with the same argument that D|ker(PAPS) and
D|ker(PaAPS) are Fredholm and, as they coincide with DAPS and respectively DaAPS,
the Dirac operators of interest become Fredholm with indices

ind(DAPS) = ind(Q−−(t2, t1)) = sf {At}t∈T (M) − dim ker (A2)

= −ind(Q++(t2, t1)) = −ind(DaAPS) .
(1.7)

(VI) Geometric index of D(a)APS: One considers the Dirac operator Ď which di�ers from
D by a sign �ip in the temporal part of the metric g , making it a Riemannian metric.
This operator is elliptic. If we consider in addition a product structure near the two
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boundary hypersurfaces, we can apply Corollary 1.0.2, showing

ind(ĎAPS) =

∫
M
Â(∇̌)− dim ker (A1) + dim ker (A2) + η(A1)− η(A2)

2

where Â(∇̌) is the Â-genus, computed from the curvature of the Levi-Civita connec-
tion ∇̌ with respect to the auxiliary Riemannian metric. As two equal characteristic
classes with di�erent choices of the connection are in the same cohomology class, the
genus Â(∇̌) di�ers from Â(M) in an exact form, given by the transgression form
T Â(g) which turns out to be independent by the particular choice of the auxiliary
Riemannian metric as consequence of the product structure in the Riemannian case.
Hence we can rewrite the integral part in Lorentzian geometric quantities:

ind(ĎAPS) =

∫
M
Â(M) +

∫
dM

T Â(g)

− dim ker (A1) + dim ker (A2) + η(A1)− η(A2)

2
.

As D and Ď only di�er in their temporal directions along any hypersurface Σt, they
come with the same family of self-adjoint and Fredholm hypersurface Dirac operators
{At}t∈T (M). From the geometrical expression of ind(ĎAPS) and the constance of the
index, one can express the spectral �ow of this family in geometric terms:

sf {At}t∈T (M) =

∫
M
Â(M) +

∫
dM

T Â(g)

− dim ker (A1)− dim ker (A2) + η(A1)− η(A2)

2
.

With (1.7), the index formula (1.4) follows which concludes the proof of Theo-
rem 1.0.5.

The steps of the proofs transfer to the twisted Spinc-case which only makes the compu-
tations of the principal symbol in step (IV) and the index formula in the last step more
involved. If generalised Atiyah-Patodi-Singer boundary conditions are imposed, one can
show that the matrix entries of Q with respect to the corresponding orthogonal splitting
of L2-spaces di�er from compositions of Q±±(t2, t1) and Q±∓(t2, t1) in �nite-rank projec-
tions. Since these �nite-rank projections are Fredholm, the diagonal matrix entries for
generalised Atiyah-Patodi-Singer boundary conditions are Fredholm while the o�-diagonal
entries are compact. The indices of the �nite-rank projections exactly give the additional
spectral contribution for spectral cuts di�erent than zero. Steps (I), (II) and (VI) are not
in�uenced by this modi�cation. The proof of the Fredholmness of the Dirac operators for
these generalised boundary conditions works analogously. Hence formula (1.5) and �nally
Theorem 1.0.6 are shown. An alternative proof with the additional assumption of a product
structure near the boundaries is based on Feynman parametrices of the Dirac operators.
This other method of proof is also presented in [BS19] and has been used in [BS20] to ex-
tend Theorem 1.0.5 to any Dirac-type operator with a possibly twisting bundle, equipped
with a possibly inde�nite bundle metric.
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In this thesis we want to present a Lorentzian pendent of Theorem 1.0.4, based on The-
orem 1.0.5 or rather Theorem 1.0.6. We consider the Fredholm property and the indices
of the Lorentzian (Atiyah-Singer-)Dirac operator D and its chiral decomposits D± on an
even-dimensional, temporal compact, globally hyperbolic spin manifold (M, g) such that
the Cauchy hypersurface Σ is a Galois covering with compact base with respect to a Galois
group Γ . Such manifolds M are referred on as spatial Γ -manifolds in this thesis as the
covering is proactive on the spacelike Cauchy hypersurface. The compact base manifold
MΓ of the covering is therefore isomorphic to the product [t1, t2] × ΣΓ with ΣΓ := Σ/Γ
as compact base manifold of the covering Σ. All vector bundles over MΓ can be lifted to
vector bundles on the covering by lifting the time-independent spatial action of the group
to each foliating hypersurface. We call such vector bundles Γ -vector bundles. We extend
the domains FE0

APS(a1,a2) and FE
0
aAPS(a1,a2) and in particular FE0

APS = FE0
APS(0,0) and

FE0
aAPS = FE0

aAPS(0,0) to the Γ -setting by replacing the Sobolev spaces of degree s in the
de�nition of FEs(M,D) with Γ -Sobolev spaces. The Γ -Fredholmness of D as well as its
pendent D̃, acting on negative spinor �elds, and thus D has been presented in [Dam21] for
ordinary Atiyah-Patodi-Singer boundary conditions and their orthogonal boundary condi-
tions in the untwisted case.

Main Theorem 1 (cf. Theorem 7.6, 7.9 and 1.2 in [Dam21], 2021). Let M be a tempo-
ral compact, even-dimensional globally hyperbolic spatial Γ -manifold, S±(M) → M Γ -spin
bundles of positive and respectively negative chirality of the chiral decomposition S(M) =
S+(M)⊕ S−(M); the Γ -invariant Dirac operators

DAPS : FE0
Γ ,APS(M, T , D) → L2

Γ (M, S−(M))

DaAPS : FE0
Γ ,aAPS(M, T , D) → L2

Γ (M, S−(M))

D̃APS : FE0
Γ ,APS(M, T , D̃) → L2

Γ (M, S+(M))

D̃aAPS : FE0
Γ ,aAPS(M, T , D̃) → L2

Γ (M, S+(M))

DAPS : FE0
Γ ,APS(M, T ,D) → L2

Γ (M, S(M))

DaAPS : FE0
Γ ,aAPS(M, T ,D) → L2

Γ (M, S(M))

as lifts of Dirac operators on the base manifold are Γ -Fredholm under Atiyah-Patodi-Singer
and respectively anti-Atiyah-Patodi-Singer boundary conditions on the Cauchy boundary
hypersurfaces Σ1 and Σ2.

The Γ -indices of DAPS and DaAPS are related to those of D and D̃ with the corresponding
boundary conditions:

indΓ (DAPS) = indΓ (DAPS) + indΓ (D̃APS) = −indΓ (DaAPS) . (1.8)

The skew-adjointness of D on one hand implies that the Γ -indices of D(a)APS vanish such
that

indΓ (DAPS) = −indΓ (D̃APS) and indΓ (DaAPS) = −indΓ (D̃aAPS) .

On the other hand, we will show in this thesis that these equivalences are true without
using skew-adjointness of D by calculating the Γ -indices directly. We prove Γ -Fredholmness
in the more general case that the spinors are twisted with a Hermitian Γ -vector bundle
E →M with positive de�nite bundle metric which is a lift of the vector bundle EΓ →MΓ .
The spin-structure is replaced with a Spinc-structure which comes with a Hermitian line
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bundle L→M as lift of LΓ →MΓ , and generalised Atiyah-Patodi-Singer boundary condi-
tions.

The following statement sums up our results as Γ -version of Theorem 1.0.6.

Main Theorem 2. Let a1, a2 ∈ R, M a temporal compact, globally hyperbolic spatial Γ -
manifold with compact base MΓ , S±L,E(M)→M Γ -spin bundles of positive and respectively
negative chirality which is twisted with a Hermitian Γ -vector bundle E → M and twisted
with the square-root of a Hermitian Γ -line bundle L → M for a Spinc-structure; we set
EΓ →MΓ and LΓ →MΓ for the vector bundles over the compact base which lift to E →M
respectively L→M . Under these assumptions, the Γ -invariant Dirac operators

DEL
APS(a1,a2) : FE0

Γ ,APS(a1,a2)(M, T , DEL) → L2
Γ (S−L,E(M))

DEL
aAPS(a1,a2) : FE0

Γ ,aAPS(a1,a2)(M, T , DEL) → L2
Γ (S−L,E(M))

D̃EL
APS(a1,a2) : FE0

Γ ,APS(a1,a2)(M, T , D̃EL) → L2
Γ (S+

L,E(M))

D̃EL
aAPS(a1,a2) : FE0

Γ ,aAPS(a1,a2)(M, T , D̃EL) → L2
Γ (S+

L,E(M))

as lifts of Dirac operators on the base manifold are Γ -Fredholm under generalised Atiyah-
Patodi-Singer and respectively generalised anti-Atiyah-Patodi-Singer boundary conditions
on the Cauchy boundary hypersurfaces Σ1 and Σ2 for all choices of a1, a2; their Γ -indices
are

indΓ

(
DEL

APS(a1,a2)

)
=

∫
MΓ

Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) +

∫
dMΓ

T G(g , EΓ , LΓ )

− 1

2

(
ρΓ (A

EL
t2
, AELt2 )− ρΓ (AELt1 , A

EL
t1

)
)
− ξΓ (AEL1 )− ξΓ (−AEL2 )

+χ{a2<0} dimΓ L
2
Γ ,(a2,0](SL,E(Σ2))−χ{a2>0} dimΓ L

2
Γ ,(0,a2](SL,E(Σ2))

+χ{a1>0} dimΓ L
2
Γ ,[0,a1)(SL,E(Σ1))−χ{a1<0} dimΓ L

2
Γ ,[a1,0)(SL,E(Σ1))

= indΓ (D̃
EL
aAPS(a1,a2)) = −indΓ (D

EL
aAPS(a1,a2)) = −indΓ (D̃

EL
APS(a1,a2)) .

The Γ -eta invariant ηΓ and the Γ -dimension of the null-space of the hypersurface Dirac
operator have been condensed to the Γ -xi invariant

ξΓ (A
EL
t ) =

ηΓ (A
EL
t ) + dim ker

(
AELt

)
2

and the odd-dimensionality of Σ implies that the spinor bundle has no grading, i.e. S(Σt) =
S±(Σt) for all t ∈ T (M). For a1 = 0 = a2 the Γ -indices for Main Theorem 1 follow.

Corollary 1.0.7. The Γ -indices for Main Theorem 1 are

indΓ (DAPS) =

∫
MΓ

Â (MΓ ) +

∫
dMΓ

T Â(g)− ξΓ (A1)− ξΓ (−A2)

− 1

2

(
ρΓ (At2 , At2)− ρΓ (At1 , At1)

)
= indΓ (D̃

EL
aAPS) = −indΓ (DaAPS) = −indΓ (D̃APS) .
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One observes by comparing the Γ -indices from Corollary 1.0.7 and (1.4) that the di�er-
ence of Cheeger-Gromov-rho invariants

1

2

(
ρΓ (At2 , At2)− ρΓ (At1 , At1)

)
of the hypersurface Dirac operators At on Σ and At on ΣΓ occur as additional term which
is in general a non-trivial contribution and vanishes if the group Γ is reduced to the identity
element.

The structure of the thesis is oriented on the presented steps of the proof. The �rst
�ve chapters in Part II introduce necessary notations, background informations and some
preparatory material. Chapter 2 deals with general concepts from functional analysis
and some notions from di�erential geometry. In Chapter 3 we concentrate on pseudo-
Riemannian manifolds where we take a closer look on globally hyperbolic manifolds and
Riemannian topological cylinder manifolds. In Chapter 4 we recall basic facts of function
spaces and operators on manifolds where we take a closer look on Fourier integral oper-
ators as one of the main needed concepts in our proof. Chapter 5 is dedicated to Galois
coverings, von Neumann algebras associated to a Galois group and functional calculus in
the von Neumann setting, in particular function and operator spaces for those von Neu-
mann algebras which are associated to Galois coverings. Chapter 6 gives an introduction of
spin structures and Dirac operators on pseudo-Riemannian manifolds in general. We then
specify to spin structures in the presence of hypersurfaces, in particular the presence of a
spacelike Cauchy hypersurface in globally hyperbolic spacetime and a base hypersurface
in a Riemannian topological cylinder manifold.

In Part III we prove in four chapters Main Theorem 1, Main Theorem 2 and Corollary 1.0.7.
The �rst two steps are considered in Chapter 7. We prove well-posedness results of the
Cauchy problems for the Dirac operators D and D̃ in the more general situation that the
manifold is a globally hyperbolic spin manifold with non-compact, but complete Cauchy
hypersurface. We extract from the homogeneous problem two Dirac-wave evolution opera-
tors for D and D̃ and show that they are unitary on compactly supported L2-sections and
in particular Fourier integral operators of order zero with the same canonical relation as
in the main reference [BS19] if the globally hyperbolic manifold is temporal compact. We
then specify the non-compactness to Galois coverings of our interest. The well-posedness
result in the general case is used in this special situation and the Fourier integral operator
character of the evolution operator carries over as well if M is temporal compact. The
evolution operator becomes Γ -invariant in this special case. For this situation we will also
observe that the domains of the Dirac operator in the well-posedness result are in fact
Hilbert Γ -modules.

Important results about regularity of projectors and the spectral �ow in the group von
Neumann setting are prepared in Chapter 8. These concepts are widely known in the
compact case. We present a version of Seeley's theorem of complex powers in the Galois
covering case which we deduce from the known extensions for manifolds with bounded
geometry. Spectral projectors onto eigenspaces of (essentially) self-adjoint operators on
a Riemannian Γ -manifold with eigenvalues in any compact interval of the spectrum in R
are smoothing in the sense that they map between any Γ -Sobolev spaces. Our version of
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Seeley's theorem allows to consider such spectral projectors with eigenvalues in any subin-
terval of R as Γ -invariant operators which di�er from a Γ -invariant properly supported
pseudo-di�erential operator of order 0 in such a smoothing operator. Thus, we can intro-
duce the ordinary and generalised boundary conditions of Atiyah, Patodi and Singer by
means of spectral projectors with similar regularity properties as spectral projectors on
compact manifolds. These boundary conditions induce orthogonal splittings of L2

Γ -spaces
as Hilbert Γ -modules. Afterwards, we introduce the concepts of Fredholm pairs and the
spectral �ow in the von Neumann setting of our interest which we introduce as Γ -Fredholm
pairs and Γ -spectral �ow. We de�ne the latter one with functional-analytic concepts and
show an analytic expression in terms of the Γ -eta invariant.

These two concepts then become important in Chapter 9 where we proceed as in the
steps (III) and (IV). We �rst focus on the splittings of the evolution operators with re-
spect to ordinary (anti-)Atiyah-Patodi-Singer boundary conditions. We show that each
spectral wave evolution operator is again a Γ -invariant Fourier integral operator of order 0.
A principal symbol analysis shows that the o�-diagonal elements in (1.6) have vanishing
principal symbol of order 0. We show Γ -Fredholmness of the diagonal elements in two
ways: we clarify that the o�-diagonal elements are Γ -compact such that the equations of
the unitary properties imply the wanted properties. An alternative argumentation for this
step is based on the observation that error terms in the unitarity equations only imply
an initial parametrix. A Neumann series argument shows that this can be improved and
one can construct full left- and right-parametrices after �nitely many iterations. This pro-
cedure is known from the classical theory of pseudo-di�erential operators where unitarity
replaces ellipticity for constructing an initial parametrix. This prove has been presented
in [Dam21]. Γ -Fredholmness for generalised boundary conditions then follows from the
ordinary case. The Γ -index of the diagonal elements in (1.6) can be expressed with the
Γ -spectral �ow and additional terms due to generalised boundary conditions.

We �nally prove the main results as in the steps (V) and (VI) in Chapter 10. We �rst prove
that certain functional-analytic facts for boundary-value problems carry over to Hilbert Γ -
modules. We then prove Γ -Fredholmness of D with the help of this modi�ed argument.
We �nally derive the Γ -index formula in Main Theorem 2 with the help of Theorem 1.0.4
and the deduced analytic expression of the Γ -spectral �ow.

We end this part with some remarks about further conceivable generalisations and open
problems which are based on our result or are otherwise interesting. The appendix chap-
ters are stored in the Backmatter.

Parts of this thesis are taken literally or are paraphrased from [Dam21] and it is planned
to publish these results in the near future.



Part II.

Background and preparations
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2. Basics and notations

In this subsection we �x some notations and recall basic material from Di�erential Geom-
etry and Functional Analysis which we assume is familiar for the reader of this thesis. In
the �rst section we also give a more extended recapitulation about unbounded operators
which occurs to be useful at some points.

2.1. Basics from Functional Analysis

For a vast description of these topics we suggest to consult the classical literature, e.g.
[Tre06], [Yos95], and [Kat76].

2.1.1. Basic notations and concepts

Let V be a topological C-vector space (TVS), i.e. a topological space which is compatible
with a C-linear structure. This is the most general setting in functional analysis from
which one can derive several known concepts, depending on the additional structure V is
allowed to have:

De�nition 2.1.1. A TVS V is

(a) a locally convex set if there is a basis of neighbourhoods {Vi}i∈J in V which consists
of convex sets, i.e. the straight line between any two points p, q ∈ Vi lies entirely in
Vi for all i ∈ J .

(b) a metrizable TVS if it is Hausdor� and has a countable basis of neighbourhoods of
0 ∈ V . Equivalently, the underlying topology of V is de�ned by a metric. We call
V moreover complete if every Cauchy sequence in V converges in V with respect to
this metric.

(c) a Fréchet space if V is metrizable, complete and locally convex.

(d) a normable/normed space if the topology on V is de�ned by a norm ‖·‖V . A complete
normed space is a Banach space.

(e) a pre-Hilbert space if a positive de�nite sesquilinear form
〈
·
∣∣ · 〉

V
: V × V → C is

de�ned on V . We call it Hilbert space if it is complete with respect to the topology,

de�ned by the induced norm ‖u‖V =
√〈

u
∣∣u〉

V
for u ∈ V .

(f) an LF-space if V is a countable strict inductive limit of Fréchet spaces; in other
words, V is a union of countable many Fréchet spaces {Vj} such that the natural
injection Vj ⊂ Vj+1 is an isomorphism for each j in a countable index set. The initial
topology on each Vj coincides with the induced topology from Vj+1. The union is
called LB-space or LH-space if we replace Fréchet spaces with Banach respectively
Hilbert spaces in the de�nition.
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An alternative de�nition of a locally convex set is based on the notion of a seminorm
which is an assignment p : V 3 v 7→ p(v) with the following three properties:

(a) (p is subadditive) p(v + u) ≤ p(v) + p(u) for all u, v ∈ V .

(b) (p is positive homogeneous) p(λv) = |v| p(v) for all λ ∈ C and v ∈ V .

(c) p(0) = 0.

A locally convex set is then characterised by a family of seminorms {pi}i∈J which deter-
mines the topology of the TVS. If on the other hand p(v) = 0 implies v = 0 in (c), the
seminorm becomes a norm with ‖·‖V := p(·). If the TVS is clear from the context we
neglect the subscript and write ‖·‖. We also use the short term inner product for a pos-
itive de�nite sesquilinear form. A (Hermitian) sesquilinear form, which is (a priori) not
positive de�nite, will be denoted with

(
·
∣∣ · )

V
to distingush them from a positive de�nite

sesquilinear form
〈
·
∣∣ · 〉

V
on V . In order to have a well-de�ned Hausdor� topology on V

one needs to consider those inde�nite sesquilinear forms which are non-degenerate, i.e. the
map

v 7→
(
u 7→

(
u
∣∣ v)

V

)
(2.1)

is an isomorphism. This is automatically satis�ed for inner products. From now on the
designation H always stands for a Hilbert space with inner product. If V is an LF-space
with respect to the countable collection {Vj} and F any locally convex TVS one de�nes
a map u : V → F to be continuous if and only if u|Vj : Vj → F is a continuous map for
all members in the collection. Any LF-space is complete. If V is �nite dimensional with
dim(V ) = n, then V is isomorphic to Cn, complete, and any functional as well as any map
from V onto any locally convex TVS are continuous. In the course of this thesis we are
going to meet several examples of these spaces in a more or less direct way.

The anti-dual V
∗
of a TVS V is the space of maps F : V → C which are anti-linear:

F (λu+ v) = λF (u) + F (v)

for u, v ∈ V and λ ∈ C. If the space of functionals is just linear, we denote the dual by
V ∗. The map (2.1) is a continuous linear map between V and V

∗
as normed spaces. In

the Hilbert space case it becomes in addition an isometry due to non-degeneracy/positive
de�niteness of the sesquilinear form. In this way one can identify an element in V

∗
with

an element in V in a unique way such that V ∼= V
∗
(Fréchet-Riesz Theorem). Hence the

elements of the (anti-)dual of any Hilbert space H can be described with elements in H. A
modi�cation of Hilbert spaces with inde�nite, but non-degenerate (Hermitian) sesquilinear
form

(
·
∣∣ · )

V
is a Krein space V which decomposes into a direct sum of two complete

subspaces from which one is positive de�nite and one negative de�nite. A fundamental
symmetry J , which is a self-adjoint and unitary operator, can be used to distinguish be-
tween the positive and negative de�nite subspaces. This symmetry then allows to introduce
an inner product via

〈
v
∣∣u〉

V
=
(
J v
∣∣u)

V
for u, v ∈ V . We refer to [vdD18, Sec.5.1] and

contained references for more informations about Krein spaces and fundamental symme-
tries. We note that the main theorems of functional analysis for Banach spaces have a
generalisation to the level of TVSs; see [Tre06, Sec.17/18/33] for details. The closed range
theorem is one exception which only holds for operators between Banach spaces.
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In this thesis we mostly focus on Hilbert spaces and on some Banach spaces and bounded
mappings between them. Let H1,H2 and H3 be Hilbert spaces; we write B(H1,H2) for
the set of bounded (or equivalently continuous) linear operators. This space is itself a
Banach space with respect to the norm

‖A‖B(H1,H2) := sup
u∈H/{0}

{
‖Au‖H2

‖x‖H1

}
(2.2)

for an operator A ∈ B(H1,H2). We write B(H1) for B(H1,H1). The composition of two
operators A ∈ B(H1,H2) and B ∈ B(H2,H3) is again bounded: B ◦A ∈ B(H1,H3); the
norm of the composition is smaller or equal the product of the norms: ‖B ◦A‖B(H1,H3) ≤
‖B‖B(H2,H3) · ‖A‖B(H1,H2). If the image of the open ball B̊H1

(0) in H1 under an operator
A ∈ B(H1,H2) is relatively compact, we call the operator compact. We designate the set
of those operators with

K (H1,H2) :=
{
A ∈ B(H1,H2)

∣∣∣A(B̊H1
(0)
)
is relatively compact

}
which is a closed subset of B(H1,H2) and consequently also a Banach space with respect
to the same operator norm (2.2). We write K (H1) for K (H1,H1). Another subset of
B(H1,H2) is the set of �nite-rank operators

R(H1,H2) := {A ∈ B(H1,H2) | dim ran (A) <∞} . (2.3)

These operators can be represented in a canonical way: let u ∈ H1 and v ∈ H2; a canonical
a rank-1 operator is an operator of the form

θv,u(w) :=
〈
u
∣∣w〉H1

v , (2.4)

acting on a w ∈ H1. Let {ui} and {vj} be orthonormal bases in H1 respectively H2, then
we can write any operator T ∈ R(H1,H2) with m = dim ran (T ) like

Tw =
m∑
i=1

θvi,ui(w) =
m∑
i=1

αi
〈
ui
∣∣w〉H1

vi (2.5)

where only �nitely many basis elements from both Hilbert spaces contribute and the coef-
�cients αi are positive. These operators are clearly compact as their range is bounded and
�nite-dimensional and thus relatively compact. It is well-known that the norm-closure of
R(H1,H2) in B(H1,H2) coincides with set of compact operators. From spectral theory
of compact operators one observes that (2.5) corresponds to the singular value decompo-
sition of a compact operator for m→∞; the values αi are then the singular values which
accumulate to zero. Compact and �nite-rank operators have the property that they are
left-ideals for B(H2) and right-ideals for B(H1) and thus two-sided ideals if H1 = H2.
Several further ideals can be introduced as follows: if the sequence of singular values of a
compact operator is in lp(N) for p ∈ [1,∞), i.e.∑

i∈N
αpi <∞ ,

this operator is called p-Schatten-class operator and we de�ne the set of these operators
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with
S p(H1,H2) := {A ∈ K (H1,H2) | {αi}i ∈ l

p(N)} .

As �nite-rank operators come with terminating sequences of singular values, they are
contained in any lp(N) such that R ⊂ S p for all p ∈ [1,∞). In fact it is a dense subspace
in S 1. Two speci�c cases are Hilbert-Schmidt operators for p = 2 and trace-class operators
for p = 1. If 1 ≤ p < q < ∞, then S p ⊂ S q. The composition of operators in di�erent
Schatten-classes are trace-class if their orders are a conjugated pair5. More precisely,
if p and q are conjugated pairs and A ∈ S p(H1,H2) and B ∈ S p(H2,H3), then the
composition satis�es B ◦ A ∈ S 1(H1,H3). On the other hand one can express any trace-
class operator as a �nite sum of compositions of two operators in Schatten-classes with
orders which are conjugated number pairs. The easiest and most known realisation is that
any trace-class operator is a �nite sum of compositions of Hilbert-Schmidt operators. For
A ∈ S 1(H1) we de�ne its trace to be the operation

Tr (A) :=
∑
i∈N

〈
Aui

∣∣ vi〉H1
(2.6)

for two orthonormal bases {ui} and {vj} in H1. If A ∈ S 1(H1,H2) for H2 6= H1, we either
need to consider A as an operator on the Hilbert space H1 ⊕ H2, in order to apply the
de�nition of the trace, or we take |A| as operator on H1 from the polar decomposition of
A. The latter way of computing the trace is motivated from the fact that an operator A is
in S 1(H1,H2) if and only if Tr (|A|) <∞. In a nutshell, we have the following inclusions
of ideals in B:

R ⊂ S p ⊂ K ⊂ B (2.7)

for any p ∈ [1,∞). We note that the composition B ◦ A of two bounded operators is
trace-class if and only if one of them is trace-class, both Hilbert-Schmidt operators or in
any other Schatten-classes such that their orders are a conjugated pair. In this case, one
has the additional property Tr (AB) = Tr (BA) and this carries over to the rule that one
can cyclically commute operators of a �nite composition under the trace as long as the
new compositions are well-de�ned and remain trace-class.

The inner products on H1 and H2 induces the notion of an adjoint operator A∗ which
is de�ned via 〈

Au
∣∣ v〉H2

=
〈
u
∣∣A∗v〉H1

. (2.8)

In fact, if A ∈ A (H1,H2), where A is in any operator space in (2.7), the adjoint satis�es
A∗ ∈ A (H2,H1). Adjoining an operator is an anti-linear map which satis�es A∗∗ = A and
‖A∗‖A (H2,H1) = ‖A‖A (H1,H2) and thus ‖A∗A‖B(H1) = ‖AA∗‖B(H2) = ‖A‖2B(H1,H2). One
also observes from (2.8) that (BA)∗ = A∗B∗ for B ∈ B(H2,H3). We can de�ne certain
further characterisations of operators with respect to adjoining.

De�nition 2.1.2. Let A ∈ B(H1,H2); we call A

(a) an isometry if
〈
Au
∣∣Av〉H2

=
〈
u
∣∣ v〉H1

for all u, v ∈ H1. This is equivalent to
A∗A = 1H1 .

(b) a coisometry if
〈
A∗u

∣∣A∗v〉H1
=
〈
u
∣∣ v〉H2

for all u, v ∈ H2. This is equivalent to
AA∗ = 1H2 .

5For p, q ∈ [1,∞) we call (p, q) a conjugated (number) pair if 1 = 1/p+ 1/q.
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(c) unitary if A is an isometry and a coisometry.

If moreover H1 = H = H2, we say A is

(d) self-adjoint if
〈
Au
∣∣ v〉H =

〈
u
∣∣Av〉H for all u, v ∈ H.

(e) skew-adjoint if
〈
Au
∣∣ v〉H = −

〈
u
∣∣Av〉H for all u, v ∈ H.

(f) normal if AA∗ = A∗A.

(g) an orthogonal projection if A2 = A = A∗ and ker (A) ⊥ ran (A).

Any projection is bounded with norm 1 and a positive operator. If V ⊂ H, we write PV
for the projection from H onto V . An equivalent and more practical characterisation of
unitary operators is as isometries with dense ranges in H2. The trace of the adjoint of a
trace-class operator A is the complex conjugate of the trace of A: Tr (A∗) = Tr (A).

If V is a TVS, one can de�ne the dual pairing as map
[
·
∣∣ · ]

V
: V

∗ × V → C such
that [

w
∣∣ v]

V
= w(v)

for v ∈ V and w ∈ V ∗. If A is a map on V , we write A† for the dual/adjoint operator with
respect to this dual pairing which satis�es[

w
∣∣Av]

V
=
[
A†w

∣∣ v]
V

.

2.1.2. A short recap about unbounded operators

As we are going to deal with di�erential operators, we need to recall some basic facts about
unbounded operators as it becomes important to consider operators in one Hilbert space
instead of two di�erent Hilbert spaces. An unbounded operator between Hilbert spaces
H1 and H2 is a linear operator A : domH1(A) → H2 such that the domain domH1(A)
is a linear subspace in H1. We designate the set of these operators with L (H1,H2).
Known operations between unbounded operators and certain subspaces have to be re�ned
by taking the domain into account: let A,A′ be unbounded operators from H1 to H2 and
B an unbounded operator with domain in H2, then

(a) ker (A) := {u ∈ domH1(A) |Au = 0};

(b) ran (A) := {v | v = Au for a u ∈ domH1(A)};

(c) The inverse operator A−1 of A exists if and only if ker (A) = {0} (i.e. A is injective),
domH2(A−1) = ran (A), ran

(
A−1

)
= domH1(A), and A−1v = u if and only if v = Au;

(d) domH1(B ◦A) := {u |u ∈ domH1(A) : Au ∈ domH2(B)};

(e) domH1(αA+ βA′) := domH1(A) ∩ domH1(A′) for all α, β ∈ C \ {0}.

We say that A is densely de�ned if domH1(A) is dense in H1 such that the adjoint operator
becomes well-de�ned by

〈
Au
∣∣ v〉H2

=
〈
u
∣∣A∗v〉H1

and its domain is

domH2(A∗) =
{
v ∈ H2

∣∣∣ domH1(A) 3 u 7→
〈
Au
∣∣ v〉H2

is a continuous linear funtional
}

.
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If for a densely de�ned operator A there exists a C > 0 such that ‖H2‖Au ≤ C ‖u‖H1
for

u ∈ domH1(A), then A can be uniquely extended to a bounded linear operator from the
closure of domH1(A) to H2. In this way one observes that B(H1,H2) ⊂ L (H1,H2). The
graph of a linear operator A is

Graph(A) :=
{

(u,Au)
∣∣∣u ∈ domH1(A)

}
⊂ H1 ⊕H2 .

The linear operator is closed if Graph(A) is a closed subset in H1 ⊕H2. If this is not the
case, but the closure of Graph(A) is a graph of a linear operator A, A is called closeable
and A its closure. Being closed is equivalent with the implication that if un → u and
Aun → v, then v = Au. If already A ∈ B(H1,H2), then A is always closeable and closed if
and only if domH1(A) equals or is closed in H1. If the operator is closed, then its graph is
a closed subspace of a Hilbert space which induces a Hilbert space structure on the graph.
Thus, the graph becomes itself a Hilbert space with the graph norm

‖u‖2Graph(A) = ‖u‖2H1
+ ‖Au‖2H2

.

Equipping the domain domH1(A) of the closed operator A with this norm makes it a Hilbert
space and A : domH1(A) → H2 becomes bounded.

Let H1 = H = H2. A densely de�ned operator A ∈ L (H) is symmetric/formally self-
adjoint if

〈
Au
∣∣ v〉H =

〈
u
∣∣Av〉H for u, v ∈ domH(A) which is equivalent with domH(A) ⊂

domH(A∗). If in addition domH(A) ⊃ domH(A∗) and thus domH(A) = domH(A∗), the op-
erator is self-adjoint and A = A∗. If the closure of a linear operator is self-adjoint, we call
the operator essentially self-adjoint. We have the following further useful characterisations
of self-adjoint operators: let A ∈ L (H) be densely de�ned, then

(1) A is self-adjoint if and only if A is closed, symmetric and ker (A∗ ± i) = {0};

(2) A is self-adjoint if and only if A is symmetric and ran (A± i) = H;

(3) A is self-adjoint if and only if A is symmetric and the spectrum σ(A) is real;

(4) if A is also closed, then A∗A is self-adjoint and 1H +A∗A has bounded inverse.

(5) (Hellinger-Toeplitz) If A is symmetric and domH(A) = H, then A is bounded;

(6) if A is moreover bounded, then it is a positive operator (i.e.
〈
Au
∣∣u〉H ≥ 0 for

u ∈ domH(A)) if and only if A is self-adjoint with σ(A) ⊂ [0,∞);

(7) if A is moreover bounded, then it is a positive operator if and only if there exists a
bounded (or self-adjoint) operator B on H, such that A = B∗B (or A = B2).

We observe that an unbounded operator behaves somehow nicely if it is densely de�ned
and closed; see for example [Kat76, Chap.3 �5] for a precise analysis. We introduce the
notation C (H1,H2) for the space of closed and densily de�ned operators between Hilbert
spaces. Because any bounded operator is closed if its domain is closed, we observe B ⊂ C ,
such that the inclusion (2.7) can be extended to

R ⊂ S p ⊂ K ⊂ B ⊂ C ⊂ L (2.9)

for any p ∈ [1,∞). Now we recall the de�nition of a Fredholm operator.
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De�nition 2.1.3. An operator A ∈ C (H1,H2) is called a Fredholm operator if the dimen-
sions of ker (A) and of coker (A) are �nite. The index of a Fredholm operator is de�ned
as

ind(A) = dim ker (A)− dim coker (A) .

It is not necessary that the operator is densely de�ned, but becomes helpful in practice.
Fredholmness implies that ran (A) is closed in H2, such that coker (A) ∼= (ran (A))⊥ =
ker (A∗). Thus, one could have also de�ned Fredholmness of an operator to be equivalent
with closed (densely de�ned) operators for which dim ker (A) < ∞, ran (A) is closed, and
codim ran (A) = dim ker (A∗) <∞ and the index can be calculated with

ind(A) = dim ker (A)− codim ran (A) = dim ker (A)− dim ker (A∗) .

This quantity is locally constant and Z-valued. We will distinguish between bounded
Fredholm operators and closed Fredholm operators with the designations

F (H1,H2) := BF (H1,H2) := {A ∈ B(H1,H2) |A is Fredholm} ,
C F (H1,H2) := {A ∈ C (H1,H2) |A is Fredholm} .

A more practical characterisation of (bounded) Fredholm operators is the existence of an
inverse modulo some ideal.

Proposition 2.1.4. Let A ∈ B(H1,H2); A ∈ F (H1,H2) if and only if there exist left-
and right-parametrices B1 ∈ B(H1), B2 ∈ B(H2) with

B2A− 1H2 ∈J (H2) and AB1 − 1H1 ∈J (H1)

where J stand for any ideal in (2.7).

We will use several functional calculi in the forthcoming thesis. We refer to [Kad83] for a
vast description of the holomorphic, continuous and Borel functional calculus. In addition,
we refer to [Haa06, Chap.2] for the holomorphic calculus of sectorial operators for which
we recall some basics.

De�nition 2.1.5. An operator A ∈ C (H1) is sectorial of angle ω if its spectrum σ(A) lies
inside the closure of a sector6

Sω :=
{
z ∈ C \ {0}

∣∣∣ |arg(z)| < ω
}

for ω ∈ (0,π] and the resolvent R(λ,A) satis�es

sup
λ∈C\S$

{
‖λR(λ,A)‖B(H1)

}
<∞ ∀$ ∈ (ω, π) .

An important example of such an operator are multiplication operators for which

‖R(λ,A)‖B(H1) ≤
1

dist(λ, Sω)

6Some authors consider the sector to be contained in the resolvent set ρ(A) which is just a change of the
point of view.
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holds for ω ∈ (0,π] and λ ∈ C \ Sω. The functional calculus of normal operators then
implies that these operators are sectorial. Let A be sectorial of angle ω and f(z) be
a bounded holomorphic function on the sector Sφ with angle φ ∈ (ω,π) such that the
function decays regularly at z = 0 and |z| → ∞. One can de�ne the operator f(A) with a
Banach space-valued Cauchy integral formula:

f(A) :=
1

2πi

∫
Γ1($)

f(z)R(z;A) dz (2.10)

with Γ1($) as boundary path of the sector S$ for $ ∈ (ω, φ), given by the parametrisation

Γ1($) :=


−ρei$ ρ ∈ (−∞, 0]

for
ρe−i$ ρ ∈ (0,∞)

. (2.11)

C

σ(A)

ω

$
π− φ

= Γ1($)

= dSω

= dSφ

(a)

C

σ(A)

ω

$= Γ2($)

= dSω

R

(b)

Figure 2.1.: Illustration of the contours (2.11) in (a) and (2.12) in (b).

The condition on f , being only holomorphic at zero, can be relaxed, but then we need
to circle around the origin in the complex plane with some radius R > 0 and we have to
replace Γ1($) with

Γ2($) :=


−ρei$ ρ ∈ (−∞,−R]
Re−iα for α ∈ (−$,$)
ρe−i$ ρ ∈ [R,∞)

. (2.12)

(2.10) then induces a holomorphic functional calculus which is investigated in [Haa06,
Chap.2 & 3] in some detail.



2.2. BASICS FROM DIFFERENTIAL GEOMETRY 25

2.2. Basics from Di�erential Geometry

From now onM will always stand for a smooth manifold which is assumed to be Hausdor�
and satis�es the second axiom of countability, i.e. there is a countable basis for the topology
ofM . The dimension of the manifold is denoted with dim(M). The set of smooth functions
on M is denoted with C∞(M). A submanifold Σ of a smooth manifold is a subset Σ ⊂M
which carries the structure of a smooth manifold. The tangent and the cotangent bundle
of M are

TM :=
⊔
p∈M

TpM and T ∗M :=
⊔
p∈M

T ∗pM

where TpM is the tangent space and T ∗pM = (TpM)∗ the cotangent space, each at p. From
these two bundles one can de�ne the (r, s)-tensor bundle

T r
s M :=

⊔
p∈M

(T rs)pM

where (T r
s )pM := (T ∗pM)⊗r ⊗ (TpM)⊗s is a r-fold tensor product of the cotangent space

with the s-fold tensor product of the tangent space. These are some examples of �bre
bundles. In general, a space E is a �bre bundle over M with �bre F if there exists a
continuous surjective function π : E → M and for all p a neighbourhood Up ⊂ M and a
homeomorphism ψ : π−1(Up)→ Up × F such that the following diagram commutes:

π−1(Up) Up × Fψ

Up

π

Figure 2.2.: Diagram for the de�nition of a �bre bundle.

The manifold M is called base of the �bre bundle. Smooth sections of a �bre bundle are
smooth maps σ : M → E such that (π ◦ σ)(p) = p for all p ∈ M . The set of all smooth
sections is denoted by C∞(M,E). If the base is clear from the context or by the notation
of the �bre bundle, we just write C∞(E). We denote any �bre bundle with E → M and
we just write E if the base is clear from the context or the notation of E. We recall some
important examples of �bre bundles:

(a) trivial bundle: E = M×F and π is the projection on the �rst factor of the Cartesian
product.

(b) coverings: the �bre F is a discrete set and π is a covering map. More informations
about coverings are given in Section 5.1.

(c) vector bundle of rank k: the �bre F is a real/ complex vector space of dimension k.

(d) principal G-bundle: a �bre bundle P with projection π : P → M and a continuous
right action on P with respect to a topological group G (structure group), such that
the action is free and transitive, and π(p · g) = π(p) is satis�ed for all p ∈ P and
g ∈ G.
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(e) associated vector bundle: if P → M is a principal G-bundle and ρ : G → Aut(V ) a
real or complex representation of the group with vector space V as representation
space, the quotient space P × V/G with equivalence relation [p, v] ∼ [p · g, ρ(g−1)v]
for p ∈ P, v ∈ V and all g ∈ G becomes a vector bundle.

The tangent and cotangent bundle are vector bundles of rank n. An example of a principal
bundle is the frame bundle of a vector bundle E → M which we denote with PGL(E). It
is a principal bundle with structure group GLn(R) and group action (A · g)(v) = A(g · v)
where A : Rn → Ep (p ∈ M), g ∈ G and v ∈ Rn. Sections of these bundles are frames,
i.e. they assign to each �bre Ep at each point p ∈ M a basis. In this sense, the vector
bundle E can be viewed as an associated vector bundle E ∼= PGL(E) × Rn/GLn(R). The
frame bundle of TM is denoted by PGL(M). By restricting the structure group to On(R)
(orthogonal transformation in Rn) one can introduce orthogonal frames and moreover ori-
ented and orthonormal frames if the structure group can be restricted to SOn(R). Further
examples of such bundles are going to occur at di�erent points.

For two given (complex) vector bundles E,F →M one can construct further vector bun-
dles which come with di�erent notations. Denote with Ep and Fp the �bres of the vector
bundles over p ∈M , then one can introduce the

(a) dual bundle E∗ for which the �bres over a point p are given by the dual spaces E∗p .

(b) conjugate bundle E for which the �bres over a point p are given by Ep, i.e. each
element in Ep is complex conjugated.

(c) Whitney/direct sum bundle E ⊕ F for which the �bres over a point p are given by
the vector space direct sum Ep ⊕ Fp. A k-fold direct sum of one vector bundle is
denoted by E⊕k := E ⊕ E ⊕ ...⊕ E (k summands).

(d) tensor bundle E ⊗ F for which the �bres over a point p are given by the tensor
vector space Ep ⊗ Fp. The k-fold tensor product of a vector bundle is denoted by
E⊗k := E ⊗ E ⊗ ...⊗ E (k factors).

(e) vector subbundle F ⊂ E which is de�ned to be the vector bundle F →M such that
Fp is a vector subspace of Ep for each p ∈M .

(f) exterior power bundle E ∧F for which the �bres over a point p are given by Ep ∧Fp.
It is a subbundle of the tensor bundle E ⊗ F , consisting of totally antisymmetric
combinations of tensor products. The k-fold exterior power of vector bundle is de�ned
by E∧k.

(g) symmetric power bundle E � F for which the �bres over a point p are given by
Ep�Fp. It is a subbundle of E⊗F which consists of totally symmetric combinations
of tensor products. k-fold symmetric powers are denoted by E�k.

(h) homomorphism bundle Hom(E,F ) := F ⊗ E for which the �bres are linear vector
space maps from Ep to Fp. The endomorphism bundle is End(E) := Hom(E,E).

One observes from (d) that the (r, s)-tensor bundle is in fact also a vector bundle over
M . Smooth sections for some of these vector bundles get their own notation: X(M) :=
C∞(TM) and Ωk(M) := C∞((T ∗M)∧k) for k ∈ {0, 1, ...,dim(M)}. Another set of smooth
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sections are densities on a manifold of dimension n: for r ∈ R a map µ : Ωn(M)→ C∞(M)
is a r ∈ R an r-density if it satis�es µ(λu) = |λ|r µ(u) for all u ∈ Ωn(M) \ {0} and
λ ∈ C∞(M,R>0). The set of all r-densities on M is denoted by |Ωn(M)|r. One can also
combine vector bundles which have di�erent bases. Let f : M ′ → M be a smooth map
between manifolds M and M ′. The pullback bundle of a vector bundle E →M is a vector
bundle over M ′, de�ned by

f∗(E) :=
{

(p, e) ∈M ′ × E | f(p) = π(e)
}

(2.13)

where π : E →M . Let E be as introduced and F →M ′. The Cartesian product M ′ ×M
comes with two projections πM : M ′ ×M → M and πM ′ : M ′ ×M → M ′. The pullback
of the bundles E and F to bundles over the Cartesian product allows to take the tensor
product which de�nes the exterior tensor bundle

F � E := π∗M ′(F )⊗ π∗M (E) .

In the context of operators on manifolds in subsection 4.1.2, which maps sections of E →M
to sections of F → M ′, the external tensor product is combined with half-densities on
the Cartesian product M ×M ′ which are taken into account to have an invariant nota-

tion of integration. We will write Hom(E,F ) for
∣∣∣Ωn+n′(M ′ ×M)

∣∣∣ 1
2 ⊗ F � E∗ where∣∣∣Ωn+n′(M ′ ×M)

∣∣∣ 1
2 ∼=

∣∣∣Ωn′(M ′)
∣∣∣ 1

2
� |Ωn(M)|

1
2 with n′ = dim(M ′).

An orientation of a manifold can be described in di�erent ways. After we have introduced
principal bundles one can think about the orientation as a reduction of the structure group
for the frame bundle PGL(M) from GLn(R) to

GL+
n (R) := {A ∈ GLn(R) | det(A) > 0} . (2.14)

This is equivalent to the existence of an atlas such that the transition functions are ori-
entation preserving linear maps in the tangent space. In this sense, the manifold becomes
orientable. Another equivalent description of orientation is given through the existence of
a nowhere vanishing section ω of (T ∗M)∧ dim(M) which is called volume form.

A connection on �bre bundles can be introduced in di�erent ways. The common ax-
iomatic way for vector bundles is a Koszul connection: a covariant derivative7 is a map
∇E : C∞(M,E)→ C∞(M,T ∗M ⊗E) such that ∇E is R-linear and obeys the Leibniz rule
∇E(fs) = ( df)⊗ s+ f∇Es for all f ∈ C∞(M), s ∈ C∞(M,E). The covariant derivative
in direction X of a vector �eld X ∈ X(M) is an assignment ∇EX : X(M) ⊗ C∞(M,E) →
C∞(M,E) which satis�es for s1, s2 ∈ C∞(M,E) and c ∈ R

(a) X 7→ ∇EXs is C∞(M)-linear: ∇EfXs = f∇EXs for all f ∈ C∞(M) ;

(b) s 7→ ∇EXs is R-linear: ∇EX(cs1 + s2) = c∇EXs1 +∇EXs2 ;

(c) Leibniz rule: ∇EX(fs) = (Xf)s+ f∇EXs for all f ∈ C∞(M) .

7As we will only consider connections on a vector bundle, we will parallely use the term connection for
covariant derivative.
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A connection on one or di�erent vector bundles induce a connection on several combina-
tions:

(a) dual connection ∇E∗X : suppose E∗ is the dual bundle to E with respect to the (point-
wise) dual pairing

〈
·
∣∣ · 〉

Ep
: E∗p ×Ep → C; the dual connection is de�ned to be the

covariant derivative ∇E∗X which satis�es〈
∇E∗X s1

∣∣ s2

〉
Ep

:= X
〈
s1

∣∣ s2

〉
Ep
−
〈
s1

∣∣∇EXs2

〉
Ep

at each point p ∈M and s1 ∈ E∗p , s2 ∈ Ep.

(b) tensor product connection of two connections ∇E and ∇F for vector bundles E,F
over M :

∇E⊗FX (s1 ⊗ s2) := (∇EXs1)⊗ s2 + s1 ⊗ (∇FXs2)

for s1 ∈ C∞(M,E) and s2 ∈ C∞(M,F ). This carries over to total symmetric and
total antisymmetric tensor products:

∇E�FX (s1 � s2) := (∇EXs1)� s2 + s1 � (∇FXs2) ,

∇E∧FX (s1 ∧ s2) := (∇EXs1) ∧ s2 + s1 ∧ (∇FXs2) .

(c) direct sum connection: ∇E⊕FX (s1 ⊕ s2) = (∇EXs1)⊕ (∇FXs2).

(d) homomorphism/endomorphism connection: let V ∈ C∞(M,Hom(E,F )) and s ∈
C∞(M,E), then the homomorphism covariant derivative is de�ned by(

∇Hom(E,F )
X V

)
(s) := ∇FX(V (s))− V (∇EXs) .

The endomorphism connection is thus given by replacing F with E which we denote
with ∇End(E)

X .

(e) pullback connection: let f : M ′ →M be a smooth map and E →M a vector bundle
with connection ∇E ; the connection on the pullback bundle f∗(E) in direction of a
vector �eld X ∈ X(M ′) is de�ned to be

∇f
∗E
X (f∗s) =

(
f∗∇E

)
X

(f∗s) := f∗
(
∇Ef∗Xs

)
(2.15)

where s ∈ C∞(M,E) and f∗X is the (pointwise) pushforward of the vector �eld.

Every connection gives rise to the notion of bundle curvature:

REX,Y (s) := ∇EX∇EY s−∇EY∇EXs−∇E[X,Y ]s (2.16)

with X,Y ∈ X(M) and s ∈ C∞(M,E). Another term, which is induced by a connection
on a vector bundle, is parallel transport. Let γ be a curve on the manifold M ; the parallel
transport is a collection of vector space homomorphisms

P τt (γ) : Eγ(t) → Eγ(τ)

which satisfy
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(a) P tt = 1Eγ(t);

(b) P ττ(γ) ◦ P τ
t (γ) = P τt (γ);

(c) P τt (γ) depends smoothly on the curve γ and on the parameters t, τ .

If we want to stress the vector bundle E, we write PE . Property (a) and (b) imply that the
parallel transport is in fact a vector space isomorphism with inverse (P (γ)tτ )−1 = P (γ−1)τt
where γ−1 denotes the curve γ with reverse orientation. A connection induces a parallel
transport operator by integrating the system of ODE's ∇Eγ̇ Y (t) = 0 with initial condition
Y (0) = Y0 such that formally Y (t) = P t0Y0. On the other hand, having a parallel transport
allows to de�ne a covariant derivative: let s ∈ C∞(M,E) and X ∈ TpM , then

∇EXs|p :=
d

dt
P 0
t (γ)s(γ(t))

∣∣∣∣
t=0

= lim
h→0

P 0
h(γ)s(γ(h))− s(γ(0))

h
(2.17)

where the curve γ is an integral curve with initial conditions γ(0) = p and γ̇(0) = X.
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3. Lorentzian and Riemannian geometry

We recall some basic concepts of pseudo-Riemannian geometry and globally hyperbolic
manifolds. At the end we brie�y introduce the notion of manifolds with bounded geometry.
We refer to the main literatur in [O'N83] for a complete overview of topics in pseudo-
Riemannian geometry. Some supporting material has been taken from [Bau81, Sec.0.15],
[BGM05, Sec.4] and in particular from [Lee19].

3.1. Pseudo-Riemannian geometry

3.1.1. General aspects

LetM be a n-dimensional manifold. A smooth section g of C∞((T ∗M)�2) is called pseudo-
Riemannian metric if at each p ∈M the bilinear form

gp : TpM × TpM → R

is non-degenerate. For an arbitrary, but �xed point p ∈M let {ei}ni=1 a basis of the tangent
space TpM such that any v ∈ TpM can be written as linear combination v =

∑n
i=1 aiei.

We can choose the basis in such a way that it diagonalise the quadratic form gp(v, v):

gp(v, v) =

r(p)∑
i=1

a2
i −

s(p)∑
i=1

a2
i+r(p) =:

(
v
∣∣ v)Rn (3.1)

with r(p)+s(p) ≤ n. (3.1) is the inde�nite bilinear form on Rn with respect to its standard
basis. TpM decomposes into TpM = T+

p M ⊕ T−p M ⊕ T 0
p M where

T±p M :=
{
v ∈ ṪpM

∣∣∣ gp(v, v) ≷ 0
}

;

T 0
p M :=

{
v ∈ TpM | gp(v, v) = 0

}
.

(3.2)

We can relate their dimensions to the numbers r and s: r(p) = dim(T+
p M) and s(p) =

dim(T−p M); the dimension d(p) := dim(T 0
p M) describes the defect d(p) = n−(r(p)+s(p)).

The triple (r(p), s(p), d(p)) is the signature of the quadratic form at p. Sylvester's law of
inertia says that these numbers do not depend on the chosen basis. Moreover, the assumed
smoothness and non-degeneracy imply that these numbers are independent of the point
and thus (r, s, d) is a global invariant and d = 0 in particular. Hence we write (r, s) for
(r, s, 0) which is the only case of interest. We call the metric g Riemannian and the tupel
(M, g) Riemannian manifold if s = 0 and g becomes positive de�nite8. If s = 1, we call
the metric Lorentzian9 and the pair (M, g) a Lorentzian manifold. The three subspaces of

8(r, s) = (0, n) implies a negative de�nite metric which becomes Riemannian after rescaling with (−1); we
only refer to (r, s) = (n, 0) as the Riemannian case as the other possibility di�ers in a global sign.

9This is the east-coast convention which we are going to use in this thesis. Another common way to de�ne
a Lorentzian metric is the choice s = n− 1 which is the so-called west-coast convention.
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TpM induce the following causal characterisations: a vector v ∈ TpM is called

(a) spacelike if v ∈ T+
p M , i.e. gp(v, v) > 0;

(b) lightlike/null-vector if v ∈ Ṫ 0
p M , i.e. gp(v, v) = 0 for v 6= 0;

(c) timelike if v ∈ T−p M , i.e. gp(v, v) < 0.

These de�nitions10 transfer to vector �elds X ∈ X(M) and curves γ ∈ C∞(I,M), pro-
vided that Xp ∈ TpM and respectively γ̇(p) are spacelike, lightlike or timelike at each
point p ∈M .

A Riemannian metric can always be locally constructed and globally extended with a par-
tition of unity. The situation for general pseudo-Riemannian manifolds is more involved
as the gluing of local pseudo-Riemannian metrics does not need to be non-degenerate. In
order to check that a smooth manifold admits a pseudo-Riemannian metric, one needs to
consider reductions of structure groups. The pseudo-orthogonal group is

O(r, s) :=
{
A ∈ GL(n)

∣∣∣ (Av ∣∣Au)Rn =
(
v
∣∣u)Rn ∀u, v ∈ Rn

}
, (3.3)

i.e. the group of all linear mappings which left (3.1) invariant. We write SO(r, s) for
the special pseudo-orthogonal group to indicate those elements in O(r, s) for which their
determinant is one. The existence of a Riemannian metric is equivalent to the reduction
of the frame bundle PGL(M) to the orthogonal frame bundle PO(n)(M). This transfers to
the pseudo-Riemannian case: a smooth manifold admits a pseudo-Riemannian metric if
the frame bundle is reduceable to the pseudo-orthonormal bundle PO(r,s)(M). The tangent
bundle is then viewed as associated vector bundle

TM = PO(r,s)(M)× Rn/O(r, s) .

Sections of PO(r,s)(M) are local pseudo-(Riemannian-)orthonormal tangent frames {ei}ni=1

with the property that e1, ..., er are spacelike and er+1, ..., er+s are timelike:

g(ei, ej) = εiδij with εi = g(ei, ei) =


1 i = 1, ..., r

for
−1 i = r + 1, ..., r + s

. (3.4)

We call such a basis Riemann-orthonormal respectively Lorentz-orthonormal if the metric
is Riemannian respectively Lorentzian. Due to non-degeneracy of the metric, there is
no lightlike basis element. Thus, any lightlike vector is a combination of timelike and
spacelike basis elements. Moreover, the pseudo-orthonormal frame bundle can be reduced
to a principal bundle with structure group O(r)×O(s) which then decomposes into a direct
sum of principal bundles with respect to each factor:

PO(r,s)(M) → PO(r)×O(s)(M) = PO(r)(M)⊕ PO(s)(M) .

This implies a splitting of the tangent bundle into two subbundles:

TM =
(
PO(r)(M)× Rn/O(r)

)
⊕
(
PO(s)(M)× Rn/O(s)

)
=: T+M ⊕ T−M .

10In other contexts where we need to distinguish between spacelike and timelike properties, we also use the
synonyms spatial respectively temporal.
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These two subbundles T±M are in fact the disjoint unions over T±p M from (3.2) over all
p ∈M :

T+M = PO(r)(M)× Rn/O(r) =
⊔
p∈M

T+
p M ,

T−M = PO(s)(M)× Rn/O(s) =
⊔
p∈M

T−p M .
(3.5)

T+M is the spacelike subbundle whereas T−M is called timelike bundle. Both are or-
thogonal to each other. Certain topological characteristic classes like the Stiefel-Whitney
classes are independent of the concrete choice of the orthogonal splitting. Orientability in
the pseudo-Riemannian setting becomes more involved: a pseudo-Riemannian manifold is

(a) space-oriented if the �rst Stiefel-Whitney class of T+M vanishes, i.e. T+M has
orientation;

(b) time-oriented if the �rst Stiefel-Whitney class of T−M vanishes, i.e. T−M has
orientation;

(c) time and space-oriented if the �rst Stiefel-Whitney classs of T±M vanish, i.e. T±M
have orientation;

(d) (fully) oriented if the �rst Stiefel-Whitney class of TM vanishes.

Note that space and time orientablility does not necessarily imply full orientability of M .
Another characterisation of orientability of a pseudo-Riemannian manifold can be phrased
by means of principal bundles: a pseudo-Riemannian manifold is oriented/orientable if the
pseudo-orthonormal frame bundle in addition reduces to a frame bundle with structure
group SO(r, s) which has two connected components. Time and space orientability can be
rephrased with subgroups of the pseudo-orthogonal group, explaining the inequivalence of
fully orientability and concurrent time and space orientability. We refer to [Bau81, Satz
0.51] and the corresponding section in [O'N83, Chap.9] for more details.

The non-degeneracy of the metric allows to relate elements in TpM to those in T ∗pM
and vice versa in a unique way. This is achieved by the two musical isomorphisms, known
as �at and sharp isomorphisms:

[ :TpM → T ∗pM : X 7→ X[(·) := gp(X, ·)

] :T ∗pM → TpM : ξ 7→ ξ]
; (3.6)

the latter one is de�ned in such a way that gp(ξ], X) = ξ(X) for any X ∈ TpM .

3.1.2. Globally hyperbolic manifolds

A subset Σ of a (n+ 1)-dimensional time-oriented Lorentzian manifold M with Lorentzian
metric g is called Cauchy hypersurface if Σ is a smooth, embedded hypersurface and every
inextendable timelike curve in M meets Σ exactly once. If M admits several Cauchy hy-
persurfaces, then all of them are homeomorphic to each other. A time-oriented Lorentzian
manifold is called globally hyperbolic if and only if it contains a Cauchy hypersurface;
see [Ger70, Thm.11]. Geroch as well as later on Bernal and Sánchez proved several results
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in order to classify these kinds of Lorentzian spaces and their properties: if a Cauchy
hypersurface Σ is �xed, one can �nd a function on M which level sets are foliating the
spacetime with Σ being one of them:

Theorem 3.1.1 (Theorem 1.2 in [BS06]). Suppose (M, g) is a globally hyperbolic manifold
and Σ a spatial Cauchy hypersurface; there exists a function T ∈ C∞(M,R) such that

(1) Σt0 = Σ for a �xed chosen t0 ∈ R,

(2) Σt := T −1(t) is a Cauchy hypersurface ∀ t ∈ R \ {t0} if non-empty.

Geroch's topological splitting theorem says that any globally hyperbolic manifold M is
homeomorphic to R×Σ. The following result shows that the manifold is even isometrically
related to this product manifold:

Theorem 3.1.2 (Geroch's splitting theorem, Theorem 1.1 in [BS05] & [Ger70]). (M, g) is
isometric to the product manifold R× Σ with Lorentzian metric

g = −N2 dT ⊗2 + gT

where T is a surjective smooth function on M , N ∈ C∞(M,R>0) and gT is a smooth
one-parameter family of smooth Riemannian metrics on Σ, satisfying

(1) grad(T ) is a past-directed timelike gradient on M ,

(2) each hypersurface Σt is a spacelike Cauchy hypersurface with Riemannian metric gT ,
where Σt0 := Σ, and

(3) span {grad|p(T )} is orthogonal to TpΣt with respect to gT |p at each p ∈ R× Σ.

T is referred to as Cauchy temporal function. The time domain for a certain globally
hyperbolic manifold is denoted with T (M). The existence of such a function ensures that
each level set can be interpreted as a slice {t} × Σ which from now is meant by Σt. The
result can be extended to non-spacelike, non-smooth or achronal11, but at least non-acausal
Cauchy hypersurfaces; see [BS06] for more details. Theorem 3.1.2 furthermore suggests
that along grad(T ) the spacetime is foliated by these level sets wherefore the function N
is called lapse function (of the foliation). If T (M) does not contain any critical points of
T , then each level set is regular and the regular level set theorem ensures that Σt is a
closed embedded submanifold of codimension one. Each embedding it : Σt ↪→ M becomes
a proper map. In the following we will use dt and ∂t instead of dT and grad(T ) to stress
the time di�erentials/derivatives as coordinate (co-)vector with respect to a hypersurface
Σt for t ∈ T (M). Hence and henceworth we will rewrite the metric of a globally hyperbolic
manifold as

g = −N2 dt⊗2 + gt . (3.7)

An alternative de�ntion of global hyperbolic manifolds is given by means of causal sets:
for any p ∈M de�ne

J +(p) := {q ∈M | ∃ causal future-directed curve γ : p  q} and

J −(p) := {q ∈M | ∃ causal past-directed curve γ : p  q} .

11No two points in Σ can be connected with a timelike curve.
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For any subset A ⊂ M put J ±(A) :=
⋃
p∈A J ±(p) as future respectively past light cone

of A. The causal domain, domain of in�uence or light cone of A is the union J (A) :=
J +(A) ∪ J −(A).

A ⊂M
p

A ⊂M

J +(A)

J −(A)

J (p) = J +(p) ∪ J −(p)

Figure 3.1.: Depiction of a future and past light cone of a subset A ⊂M and a point p ∈ A.

In comparison, the domain of dependence, causal diamond or Cauchy developement is
de�ned as D(A) = D+(A) ∪ D−(A) for A ⊂M such that A is achronal, where

D+(A) := {p ∈M | every past inextendible causal curve through p meets A} and

D−(A) := {p ∈M | every future inextendible causal curve through p meets A}

are the future are respectively past domain of dependence of a subset A.

A ⊂M

D+(A)

D−(A)

Figure 3.2.: Depiction of a future and past domain of dependence of a subset A ⊂M .

In particular A ⊂ D±(A) ⊂ J ±(A). The concept of light cones can be used to rephrase
global hyperbolicity in terms of causal sets:

Theorem 3.1.3 (Theorem 3.2 in [BS07]). Given a time-oriented Lorentzian manifold
(M, g); the following claims are equivalent to each other:

(1) (M, g) is globally hyperbolic.

(2) (M, g) satis�es
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(a) J +(p) ∩ J −(q) is compact for all p, q ∈M ,

(b) (M, g) is causal, i.e. has no causal loops, and

(c) (M, g) is strongly causal, i.e. given a neighbourhood Up for any p ∈ M , there
exists a smaller neighbourhood Vp ⊂ Up, containing p, such that any causal
future-directed or past-directed curve on M with endpoints in Vp is entirely con-
tained in Up.

In terms of the domain of dependence, a globally hyperbolic manifold can be depicted as
causal diamond of its Cauchy hypersurface Σ: M = D(Σ). A subset A ⊂M is called spa-
tially/spacelike compact if A is a closed subset and there exists a compact subset K ⊂M
such that A ⊂ J (K). The intersection of a spatially compact subset with any Cauchy
hypersurface is compact. In contrast to this de�nition, one calls the whole manifold M
spatially compact if every spacelike Cauchy hypersurface of M is compact.

A notion of timelike compactness can be introduced as well: a closed subset A ⊂ M
is future/past compact if A ∩ J ±(K) is compact for every compact K ⊂ M ; it is called
temporal/timelike compact if A is both future and past compact. We call in contrast the
whole manifold M temporal compact if T (M) is a closed interval. This is equivalent by
saying that there exist t1, t2 ∈ R such that T (M) = [t1, t2]. M is then viewed as the causal
diamond J +(Σ1)∩J −(Σ2) for Σ1 = Σt1 and Σ2 = Σt2 . The reader should recall footnote
4 on page 5.

Σ2

Σ1

J +(Σ1)

J −(Σ2)

M = J −(Σ2) ∩ J +(Σ1)

Figure 3.3.: Depiction of a temporal compact M .

3.1.3. Metric-a�ne connections

Let {ei}ni=1 be a not necessarily pseudo-orthonormal tangent frame. The dual tangent or
cotangent frame can be constructed by applying the �at-isomorphism from (3.6) to each
basis element in the tangent frame; we denote the dual frame with

{
ei
}n
i=1

which satis�es

ei = (ei)
[ and ei(ej) = εiδ

i
j . The exterior derivative on each element of the dual frame

de�nes the anholonomity two-forms

Ξi := −dei =
1

2
Ξjk

iek ∧ ej (3.8)

with the structure coe�cients Ξjk
i, de�ned by [ej , ek] = Ξjk

iei. A frame is called holonomic
if all structure coe�cients are zero and thus [ej , ek] = 0 or dei = 0 for all i, j, k ∈ {1, ..., n}.
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A connection on TM with respect to this local frame is given by the matrix coe�cients
(ω)ij of the connection one-form ω ∈ Ω1(M,TM):

∇TMei ej :=

n∑
k=1

ωk
j (ei)ek . (3.9)

The one-form coe�cients can be expressed by means of the dual basis
{
ei
}n
i=1

and coe�-
cients Γikj := ωi

j(ek) such that

ωi
j =

n∑
k=1

Γikje
k . (3.10)

In order to �x a connection on the tangent bundle, one needs to impose conditions, given by
structure equations. For metric-a�ne connections one usually considers three geometric
quantities which determine the connection. For this, we �rst introduce the notion of a
solder form for any vector bundle E which is a vector-valued one-form θ ∈ Ω1(M,E),
mapping as linear isomorphism from TM to E. For E = TM such a form is given by the
identity map. As we have a pseudo-Riemannian metric g , it induces the �at isomorphism
from TM to T ∗M in (3.6). Hence it gives rise to a solder form θ ∈ Ω1(M,TM) on T ∗M
as per θ(ei) = (ei)

[ = ei. The exterior covariant derivative d∇ of the solder form de�nes
the vector-valued torsion two-form Θ of the connection:

Θi := d∇θ(ei) = dei +

n∑
k=1

ωi
k ∧ ek = −Ξi +

n∑
j,k=1

Γijke
j ∧ ek =:

1

2
Tjk

iej ∧ ek (3.11)

where Tjk
i = Γijk − Γikj − Ξjk

i are the coe�cients of the torsion tensor T ∈ C∞(T 2
1 (M)):

X(M)×2 3 (X,Y ) 7→ T (X,Y ) = ∇TMX Y −∇TMY X − [X,Y ] .

The curvature two-form Ω ∈ Ω2(M,TM) is de�ned by Ω = d∇ω and locally given by the
components Rlkj i:

Ωi
j = dωi

j +
n∑
l=1

ωi
l ∧ωl

j =
n∑

k,l=1

[
elΓ

i
kj +

n∑
m=1

(
ΓilmΓmkj −

1

2
ΓimjΞlk

m

)]
el ∧ ek

=:
1

2

n∑
k,l=1

Rlkj iel ∧ ek
(3.12)

where

Rlkj i = elΓ
i
kj − ekΓilj +

n∑
m=1

[
ΓilmΓmkj − ΓikmΓmlj − ΓimjΞlk

m
]

are the coe�cients of the curvature tensor R ∈ C∞(T 1
3 (M)):

X(M)×3 3 (X,Y, Z) 7→ R(X,Y )Z := ∇TMX ∇TMY Z −∇TMY ∇TMX Z −∇TM[X,Y ]Z . (3.13)

The non-metricity tensor is a smooth section of T 0
3 (M), de�ned by

Q(Z,X, Y ) := −(∇TMZ g)(X,Y ) = g(∇TMZ X,Y ) + g(X,∇TMZ Y )− Zg(X,Y )
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for X,Y, Z ∈ X(M). We abbreviate gij := g(ei, ej) and Γij,k := g(∇TMei ej , ek) such that we
can write its components as

Qijk = −(∇TMei g)(ej , ek) = g(∇TMei ej , ek) + g(ej ,∇TMei ek)− eig(ej , ek)

= Γij,k + Γik,j − eigjk .

The non-metricity one-form is then de�ned by

Qjk =

n∑
i=1

Qijkei . (3.14)

The equations (3.14), (3.11) and (3.12) are in this order the zeroth, �rst and second Maurer-
Cartan structural equations which are used to determine the connection coe�cients. The
Levi-Civita connection is de�ned by setting torsion and non-metricity to zero, giving two
determining equations from (3.11) and (3.14):

Qjk = 0 ⇔ Γij,k + Γik,j = eigjk (3.15)

Θi = 0 ⇔ −Ξi = dei = −Γijke
j ∧ ek . (3.16)

(3.16) can be used to derive the connection coe�cients from the anholonomity one-form.
The vanishing of the torsion implies

Γijk = Γikj + Ξjk
i ; (3.17)

it shows that the anholonomity perturbs the symmetric part of the connection coe�cients.
(3.15) describes how the anti-symmetric part of the connection coe�cients are determined.
The vanishing non-metricity implies the anti-symmetry of the connection one-forms: for a
vector �eld Y we get after choosing a pseudo-orthonormal basis as in (3.4)

0 = Y g(ei, ej) = g(ei,∇Y ej) + g(ej ,∇Y ei) =
n∑
k=0

[
ωk
j (Y )g(ei, ek) +ωk

i (Y )g(ej , ek)
]

= ω
j
i (Y ) +ωi

j(Y ) . (3.18)

Combining (3.15) and (3.17) �nally shows that the connection coe�cients are given by

Γij,k =
1

2

[
ei(gjk) + ej(gik)− ek(gij) +

n∑
m=1

gmkΞjim + gimΞkjm + gjmΞkim
]

. (3.19)

If we choose a holonomic frame, we get the Christo�el symbols of �rst kind :

Γij,k =
1

2

[
ei(gjk) + ej(gik)− ek(gij)

]
.

The Christo�el symbols of second kind Γkij are then determined by Γij,k =
∑n

l=1 glkΓlij .
Thus, the Levi-Civita connection is with (3.19) locally given by

∇LC
ei ej :=

n∑
k=1

Γkijek . (3.20)
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An example of a holonomic basis is the coordinates frame {∂i}ni=1 for which each Christo�el
symbols take the known form. The remaining equation (3.12) is left to determine the cur-
vature tensor components. We suggest [McC92] for more informations about metric-a�ne
connections.

It is a general fact that the Levi-Civita connection on a pseudo-Riemannian manifold
is the unique connection which is torsion-free and compatible with the pseudo-Riemannian
metric (vanishing non-metricity). It can be abstractly characterised by the Koszul formula

2g(∇LCX Y,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]) . (3.21)

Several further notions of curvature can be de�ned from (3.13) like the Riemannian/metric
curvature tensor

R(X,Y, Z,W ) := g(R(X,Y )Z,W )

for X,Y, Z,W ∈ X(M) and from here the Ricci-endomorphism, the Ricci curvature, sec-
tional curvatures and the scalar curvature R := RM . For more about these curvature
notions we refer to the sections in [O'N83, Chap.3] and [Lee19, Chap.7]. Further notions
of curvature can be de�ned and become more involved after taking any metric-a�ne con-
nection.

3.2. Pseudo-Riemannian submanifolds

We add some basic facts from pseudo-Riemannian submanifold theory and give some useful
results for the coming analysis.

Let (M, g) be a pseudo-Riemannian manifold of dimension (n + k) and i : Σ ↪→ M the
embedding of a smooth n-dimensional submanifold Σ. If the pullback i∗g is a pseudo-
Riemannian metric on Σ, we say that Σ is a pseudo-Riemannian submanifold with induced
metric gΣ := i∗g , commonly known as �rst fundamental form. The tangent spaces at each
point p ∈ Σ decompose into a direct sum of non-degenerate subspaces

TpM = TpΣ⊕NpΣ (3.22)

where TpΣ is the tangent space and NpΣ the normal space of Σ. Depending on the
dimension of the normal space which determines the codimension of Σ inM , the signature
of the induced metric depends on the causal character of vectors in NpΣ. We decompose
the normal space into the two orthogonal subspaces

N±p Σ :=
{
v ∈ NpΣ | g |NpΣ(v, v) ≷ 0

}
.

The non-degeneracy of the subspace assures that the lightlike normal bundle N 0
Σ has zero

dimension. If the codimension of Σ is k = dim(NpΣ) and similarly k± = dim(N±p Σ) for
all p, then k = k+ + k− and the signature of the induced metric becomes (r − k+, s− k−)
if the signature of g is (r, s).
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The decomposition of the tangent spaces along the submanifold (3.22) induce an orthogonal
projection πp : TpM → TpΣ for p ∈ Σ such that TpΣ = πp(TpM) and NpΣ = π⊥p (TpM).

These projection then maps a local frame {ei}n+k
i=1 for TpM into a local frame {ei}ni=1 for

TpΣ respectively into a local frame {ei+n}ki=1 for NpΣ. The orthogonal projection lifts to
a smooth bundle homomorphism from TM to TΣ respectively to the normal bundle NΣ,
so we can apply it to sections of TΣM := TM |Σ. Let ∇ be the Levi-Civita connection on
the tangent bundle TM . In order to decompose this connection into a tangential and a
normal part, we need to consider two vector �elds X,Y on Σ which must be extended to
vector �elds on M or an open subset of M , containing Σ. Denoting them with the same
letters, the Levi-Civita connection decomposes along Σ to

∇XY |Σ = π (∇XY ) + π⊥ (∇XY ) . (3.23)

The normal component is the map II : X(M) × X(M) to C∞(NΣ), given by II(X,Y ) :=
π⊥ (∇XY ). This is a C∞(Σ)-bilinear and symmetric form, known as the second fundamen-
tal form. The value of this form at a point p on Σ depends only on the vectors Xp and Yp;
hence it is independent of the extension of the vector �elds on Σ. The induced Levi-Civita
connection is de�ned by ∇TΣ

X Y := π (∇XY ). With these two de�nitions (3.23) becomes
the Gauss formula:

∇XY |Σ = ∇TΣ
X Y + II(X,Y ) . (3.24)

If we replace the vector �eld Y with a normal vector �eld n ∈ C∞(NΣ), one can express its
extrinsic covariant derivative with the Weingarten map/shape operator Wp(n, ·) : TpΣ →
TpΣ in direction of n:

g(W(n,X), Y ) = g(n, II(X,Y )) = g(n,∇XY ) . (3.25)

It is a C∞(Σ)-linear map and due to the symmetry of g and the second fundamental form
it is furthermore a self-adjoint map. The Weingarten equation then expresses the extrinsic
covariant derivative of the normal vector along the submanifold:

∇TΣ
X n = −W(n,X) . (3.26)

If Σ has codimension 1 inM , we call it a pseudo-Riemannian hypersurface. If bothM and
Σ are oriented, we might pick a global unit normal vector �eld n such that n(p) ∈ NpΣ
for any p ∈ Σ. However, this is in general not true, but as long as the computations are
local, we can assume that there is a small enough neighbourhood on which such a unit
normal vector �eld exists. We explain in Appendix A how a transverse vector �eld induces
a normal vector �eld with respect to the pseudo-Riemannian metric g for the case that
the hypersurface is a boundary. The causal character of the unit normal vector de�nes a
causal character of the hypersurface: we call a hypersurface spacelike if n(p) is timelike at
any point p ∈ Σ. In contrast we call a hypersurface timelike if the unit normal vector �eld
is everywhere spacelike. (3.24) remains true and due to the fact that the normal bundle is
trivial and spanned by n, one can project the second fundamental form onto the normal
component which de�nes the scalar second fundamental form:

IIg (X,Y ) := g(II(X,Y ), n) = g(∇XY, n) (3.27)

for X,Y ∈ X(Σ). It is an element in C∞((T ∗M)�2) with the same symmetry, inherited
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from the second fundamental form. The Gauss formula (3.24) in this setting then becomes

∇XY |Σ = ∇TΣ
X Y + IIg (X,Y )n . (3.28)

The Weingarten map is still de�ned like in (3.25), but we just write W for W(n, ·) due to
the unique choice of a normal vector �eld. The causal character of the unit normal vector
�elds now in�uences the Weingarten equation: pairing (3.25) with g(·, n) gives

g(∇XY, n) = IIg (X,Y )g(n, n)
(3.27)

= g(II(X,Y ), n)g(n, n)

(3.25)
= g(W(X), Y )g(n, n)

and on the other hand we have

g(∇XY, n) = Xg(Y, n)− g(Y,∇Xn) = −g(∇Xn, Y ) ;

combining these two equations yields

W(X) = −g(n, n)∇Xn (3.29)

due to non-degeneracy and g(n, n) = ±1. (3.28) then takes the form

∇XY |Σ = ∇TΣ
X Y − g(∇Xn, Y )n = ∇TΣ

X Y + g(n, n)g(W(X), Y )n . (3.30)

As W is still self-adjoint, we can apply the spectral theorem for self-adjoint maps in �nite
dimensions, saying that for any p ∈ Σ the Weingarten mapWp : TpΣ→ TpΣ has a pseudo-
orthonormal basis of eigenvectors and real eigenvalues κ1(p), ..., κn(p). These eigenvalues
are the principal curvatures and the eigenvectors are the principal curvature directions at
p. The determinant and the trace of the Weingarten map at p de�ne further curvature
notions which are speci�c for hypersurfaces:

(a) mean curvature: H(p) =
1

n

n∑
i=1

κi(p) =
1

n
trTpM (Wp) =:

1

n
trgΣ (Wp) , (3.31)

(b) Gauss-Kronecker curvature: K(p) =

n∏
i=1

κi(p) = det(Wp) . (3.32)

For more informations about pseudo-Riemannain manifolds in this context we refer to
chapter 7 in [Lee19] and chapter 4 in [O'N83]. Before we consider the two important cases
for the forthcoming analysis, we recall how the Levi-Civita connection coe�cients of ∇ =
∇TM along Σ and ∇TΣ are related to each other. Suppose {ei}ni=1 is a pseudo-orthonormal
local tangent frame with respect to the induced metric on Σ. As the embedding is a
homeomorphism on its image, we can de�ne a local pseudo-orthonormal tangent frame for
TM with respect to g by pointwise pushforward and adding i∗n to the basis. (3.28) implies
on one hand that

∇Y ei|Σ = ∇TΣ
Y ei + g(n, n)IIg (Y, ei)n =

n∑
k=1

(ωTΣ)ki ek + g(n, n)IIg (Y, ei)n . (3.33)

On the other hand: let Y be a vector �eld on Σ which we lift to a vector �eld on M via
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pushforward12; with (3.9) and the pullback connection (item (e) on page 28) we get

∇Y ei|Σ = i∗
(
∇i∗Y i∗ei

)
= (i∗∇)Y ei

=
n∑
k=0

(i∗ω)ki (Y )ek = (i∗ω)0
i (Y )n +

n∑
k=1

(i∗ω)ki (Y )ek .
(3.34)

Comparing (3.33) with (3.34) shows that

(i∗ω)ki (Y ) = (ωTΣ)ki for k ∈ {1, .., n} ,

(i∗ω)0
i (Y ) = g(n, n)IIg (Y, ei) for k = 0 .

(3.35)

The other coe�cients are determined by (3.18).

We now focus on a Riemannian hypersurface in an ambient manifold; the latter one is
either an oriented Riemannian manifold or a space and time-oriented Lorentzian manifold.
We assume additionally that the ambient manifold is a topological cylinder manifold, i.e.
it is isometric to R×Σ. The Lorentzian case then becomes a globally hyperbolic manifold.
We want to investigate both cases together and consider the metric

g [ε] := εN2 dt⊗2 + gt (3.36)

for ε ∈ {±1}. A geometric cylinder manifold in comparison is a topological cylinder
manifold with metric

g [ε] = εdt⊗2 + gΣ (3.37)

where gΣ denotes the t-independent Riemannian metric on the hypersurface Σ. As in (3.7),
N is again a lapse function and

{
gt
}
t∈R with gt := gΣt is a smooth one-parameter family of

Riemannian metrics on Σ. For ε = −1 we are in the Lorentzian case with g [−1] = g .
For ε = +1 we are in the Riemannian case which we will denote by ǧ := g [+1] for

later use and is referred to as the �ipped metric of (3.7).

Let {ei(t)}ni=1 be a local tangent frame on the slice Σt which is Riemann-orthonormal
with respect to gt. We can lift this basis to a local frame {e0(t)} ∪ {ei(t)}ni=1 in M which
is orthonormal with respect to g [ε] for each t ∈ R. This implies that e0(t) has to be per-
pendicular to each slice. We construct e0 to be parallel to (−∂t) and we conclude from the
orthonormality assumption that

g [ε](e0(t), ei(t)) = 0 ∀ i ∈ {1, ..., n} and ε = g [ε](e0(t), e0(t)) = εN2

and thus e0(t) = − 1
N ∂t. Because of its often appearance this vector gets from now on the

designation ν and it comes with several important properties.

Lemma 3.2.1 (cf. Proposition 4.1 (14) in [BGM05]). For p ∈ Σt let X,Y ∈ TpΣt; the
following expressions for ν are ful�lled near the point p:

(1) ν is autoparallel with respect to ∇, i.e. ∇νν = 0, and

(2) g [ε](W(X), Y ) = ε
2N ∂tgt(X,Y ) .

12To be more precise, i∗Y is a section of the pullback bundle i∗(TM) along Σ.
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Proof.

(1) We lift and extend X ∈ TpΣτ to a vector �eld onM near (τ, p) which we denote with
the same symbol. The action of ν on g [ε](X,ν) = 0 gives

0 = νg [ε](X,ν) = g [ε](∇νX,ν) + g [ε](∇νν, X)
(3.29)

= −εg [ε](W(X),ν) + g [ε](∇νν, X)

(∗)
= g [ε](∇νν, X)

where we have used in (∗) that the Weingarten map acts as a bundle endomorphism
by which W(X) ⊥ ν. The action of ν on g [ε](ν,ν) = ε leads to

0 = νg [ε](ν,ν) = 2g [ε](∇νν,ν)

with vanishing non-metricity of the Levi-Civita connection. We observe that due to
non-degeneracy of g [ε] the tangent as well as the normal parts of ∇νν are vanishing
and therefore ν is a geodesic.

(2) Extend the vectors X,Y to vector �elds on Σt and lift them to M . We have
g [ε](X,Y ) = gt(X,Y ). If we apply ν to this product, we get with the self-adjointness
of the Weingarten map

νgt(X,Y ) = νg [ε](X,Y ) = g [ε](∇νX,Y ) + g [ε](X,∇νY )

(3.29)
= −ε

[
g [ε](W(X), Y ) + g [ε](X,W(Y ))

]
= −2εg [ε](W(X), Y ) .

Thus we have

g [ε](W(X), Y ) = − ε
2
νgt(X,Y ) =

ε

2N
∂t
[
gt(X,Y )

]
and the claim is proven.

(3.30) takes the form

∇XY |Σt = ∇TΣt
X Y + εg [ε](W(X), Y )ν . (3.38)

With this we can calculate the Christo�el symbols ΓMij,k where latin indices will stand for
tangential or spacelike coordinates, "0" for the normal or timelike direction e0 = ν,∇ for
the Levi-Civita connection, and Σ short for Σt for each t with hypersurface metric gΣ:

ΓMjk,l = g [ε](∇ejek, el)
(3.38)

= g [ε](∇TΣ
ej ek, el) = gΣ(∇TΣ

ej ek, el) = ΓΣ
jk,l

ΓMjk,0 = g [ε](∇ejek,ν)
(3.38)

= εg [ε](W(ej), ek)g [ε](ν,ν) = ε2g [ε](W(ej), ek)

= g [ε](W(ej), ek) (3.39)

ΓMj0,l = g [ε](∇ejν, el)
(∗)
= ejg [ε](ν, el)− g [ε](ν,∇ejel)

(3.38)
= −εg [ε](ν,ν)g [ε](W(ej), el)

= −ε2g [ε](W(ej), el) = −g [ε](W(ej), el) = −ΓMjl,0

ΓMj0,0 = ΓM00,0 = ΓM00,l = 0 .
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In (∗) we used that the connection is compatible with the metric. The trivial symbols are
determined by the fact that ν is an autoparallel due to Lemma 3.2.1 (1).

The volume form on M and its induced volume forms on each slice are given as follows:
in local coordinates

{
xi
}n
i=1

for Σ we de�ne

dvol :=
√
gtN dt ∧

n∧
i=1

dxi and dvol Σt := ι−ν dvol =
√
gt

n∧
i=1

dxi for t �xed (3.40)

where gt = det
(

gt
)
and ι−ν is the interior product. Later, we need time-derivatives of

expressions like

If (t) =

∫
Σt

ft dvol Σt (3.41)

where ft is any integrable and t-di�erentiable function on Σt. In order to do so, one needs
to introduce variations with respect to a reference hypersurface. For τ ∈ R let Στ be such
a reference hypersurface with Riemannian metric gτ ; its embedding intoM is denoted with
iτ . A variation map of iτ is a map e ∈ C∞(T (M)× Στ ,M) such that

(1) et := e(t, ·) is a Riemannian or spacelike immersion for all t ∈ T (M) such that eτ = iτ ,
and

(2) if the boundary of Στ is non-empty: et|dΣτ = iτ |dΣτ for all t ∈ T (M) .

Hence any slice can be viewed as Σt = et(Στ ) with dΣt = dΣτ if the boundary is non-empty.
A particular choice is given by the exponential map along the geodesics of a normal �eld:

et(p) = expi(p) [(t− τ)φ(p)ν(p)] ;

the function φ ∈ C∞c (Σ0) is introduced to guarantee a variation under compact support in
case of non-compact hypersurfaces. We then get the following result.

Lemma 3.2.2. Let M be a topological cylinder manifold of dimension (n+ 1), τ ∈ R and
iτ : Στ → M the embedding of a hypersurface. The variation under compact support of
the integral (3.41) at t = τ for a time-di�erentiable function ft on Σt is

d

dt
If (t)

∣∣∣∣
τ

= −
∫

Στ

φ(p)
[
εnHτ (p) + (νft) |τ,p

]
dvol Στ (p)

where φ ∈ C∞c (Στ ) and Hτ is the mean curvature of Στ .

Proof. With Σt = et(Στ ) and pullback properties we get

If (t) =

∫
et(Στ )

ft(p) dvol Σt(p) =

∫
Στ

e∗t (p) (ft dvol Σt) =

∫
Στ

(f• ◦ et)(p)(e∗t dvol Σt)|p

where • stands for the (un�xed) time-dependence. The time derivative at t = τ leads to

d

dt
If (t)

∣∣∣∣
τ

=

∫
Στ

d

dt
(f• ◦ et)(p)

∣∣∣∣
τ

dvol Στ + (f• ◦ i0)(p)
d

dt
e∗t dvol Σt

∣∣∣∣
τ,p

. (3.42)
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The �rst term can be computed by the chain rule and the derivative of the exponential
map, giving

d

dt
(f• ◦ et)(p)

∣∣∣∣
τ

= df•|i0(p) (φ(p)ν(p)) = φ(p) (νft) |τ,p . (3.43)

Let
{
xi(t)

}n
i=1

be local coordinates at et(p) on a level set Σt. The pullback by et of these
local coordinates implies coordinates on Στ , denoted by

{
xi(τ)

}n
i=1

such that the pullback
of the volume form is

e∗t dvol Σt |p = (
√
g• ◦ et)(p))

n∧
i=1

d(e∗t x
i(t))|p = (

√
g• ◦ et)(p)

n∧
i=1

dxi(τ) .

Performing the derivative with respect to t yields

d

dt
e∗t dvol Σt

∣∣∣∣
τ,p

=
d

dt
(
√
g• ◦ et)(p)

∣∣∣∣
τ

n∧
i=1

dxi(τ) = φ(p)(ν
√
gt)|τ,p

n∧
i=1

dxi(τ)

= − φ(p)

2N(τ, p)
√
gτ (p)

∂t[(det(gt)]|τ,p
n∧
i=1

dxi(τ) (3.44)

(∗)
= − φ(p)

2N(τ, p)
trgt

(
∂tgt
)
|τ,p dvol Στ

(∗∗)
= −εφ(p)tr (Wp) |τ dvol Στ = −nεφ(p)Hτ (p) dvol Στ (3.45)

where one has used Jacobi's formula for the derivative of the determinant in (∗), and
Lemma 3.2.1 (2) and (3.31) at (∗∗). Plugging (3.43) and (3.45) into (3.42) leads to the
claimed expression.

3.3. Manifolds of bounded geometry

We end this introductory chapter with a short description about manifolds of/with bounded
geometry, based on material from [Shu92] and [Kor91]. Suppose Σ is a connected Rieman-
nian manifold of dimension n. The Riemannian metric g induces a distance function
d : Σ × Σ → R by taking the in�mum of lengths of arcs, connecting two points and mea-
sured with respect to the Riemannian metric. The manifold becomes a metric space in this
way. The exponential geodesic map expp : TpΣ → Σ is de�ned through expp(v) = γ(1)
where γ is a geodesic, given in such a parametrisation that γ(0) = p and γ̇(0) = v. If we
assume Σ to be complete, we can de�ne the geodesic γ(t) on all R. If we take a ball B̊nr (0)
of radius r > 0 around the zero vector in TpΣ, the ball becomes a di�eomorphism onto its
image Ur(p) = exp(B̊nr (0)) which is an open neighbourhood of p ∈ Σ. Let

r(p) := sup
{
r > 0

∣∣∣ expp : B̊nr (0)→ Ur(p) di�eomorphism
}

.

The in�mum over all points p ∈ Σ then de�nes the injectivity radius

rinj := inf
p∈Σ
{r(p)} . (3.46)



3.3. MANIFOLDS OF BOUNDED GEOMETRY 45

For rinj > 0 and r ∈ (0, rinj) the exponential map expp : B̊nr (0)→ Ur(p) is a di�eomorphism
for all p ∈ Σ which motivates the following de�nition.

De�nition 3.3.1. Let Σ be a Riemannian manifold; we say that Σ is a manifold of/with
bounded geometry if the following two conditions are satis�ed:

(a) rinj > 0;

(b) the transition maps from Ur(p)∩Ur(q) to Rn are bounded for any �xed r ∈ (0, rinj) and
any points p, q with open neighbourhoods Ur(p), Ur(q) such that Ur(p) ∩ Ur(q) 6= ∅.

(a) implies that Σ is complete and (b) is equivalent to the boundedness of all covariant
derivatives of the Riemannian curvature tensor. Examples of such spaces are homogenous
spaces with invariant metrics, covering manifolds of compact manifolds13 as well as leaves
of foliations on a compact manifold. We call a vector bundle E to be of bounded geometry
if all derivatives of the vector bundle transition functions on Ur(p)∩Ur(q) 6= ∅ are bounded
for all p, q ∈ Σ. Examples of such vector bundles are Σ× C and complexi�cations of TΣ,
T ∗Σ as well as any other complexi�ed natural bundle.

A manifold of bounded geometry can be covered by countably many balls. To be more
precise, there exists a radius R > 0 such that for all r ∈ (0, R) the manifold Σ can be
covered by open balls B̊r(pi) around countably many points pi ∈ Σ:

Σ =
⋃
i

B̊r(pi) ; (3.47)

this covering has the property that if we double the radii, but �xing the centres of the open
balls in Σ, this covering has a �nite number of non-empty intersections in this covering.
This implies the existence of a suitable partition of unity (see [Shu92, Lem.1.2] and [Shu92,
Lem.1.4]).

Lemma 3.3.2. For every R > 0 there exists a partition of unity {φi} on Σ such that

(1) φi ∈ C∞c (Σ,R≥0) with supp(φi) ⊂ B̊2r(pi) for all pi from (3.47).

(2) all derivatives are uniformly bounded.

With this partition of unity one can de�ne Sobolev spaces Hs(Σ) on manifolds with
bounded geometry for any s ∈ R as follows:

‖u‖2Hs(Σ) :=
∑
i

‖φu‖2
Hs(B̊2r(pi)))

. (3.48)

Hs(Σ) is then de�ned to be the completion of C∞c (Σ) with respect to (3.48). This can be
easily extended to sections of a vector bundle of bounded geometry. (3.47) will occur in
subsection 5.1.2 in the setting of Galois coverings with compact base manifolds.

13The case of such coverings is proven in [CG91].
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4. Function spaces and operators on

manifolds

In this chapter we recapitulate some notions and facts about function spaces and opera-
tors, mapping between smooth sections of vector bundles over manifolds. The �rst section
deals with general notions. We also take a closer look on Sobolev spaces for compact and
in particular non-compact manifolds. We recall in the second section the necessary de�-
nitions and facts about Fourier integral operators from the global point of view. The last
section deals with special function spaces on globally hyperbolic manifolds which become
important in Part II.

The main literature for this chapter are the books [H�03], [H�07] and [H�09] with some sup-
porting material from [SA11] and [IS20]. The last section is based on results and facts,
taken from [BTW15] and [Bä14].

4.1. Function spaces and operators on manifolds

4.1.1. Function spaces on manifolds

Let E → M be any C−(anti-)linear smooth vector bundle over a pseudo-Riemannian
manifold M with metric g . We equip the tangent bundle TM and via (3.6) the cotangent
bundle T ∗M with the Levi-Civita connection, and the vector bundle comes with a related
Koszul connection ∇E . The l'th covariant derivative ∇l := (∇E)l is induced by the con-
nection on (T ∗M)⊗l ⊗ E via l-fold application of ∇E . Let K ⊂ M be compact, m ∈ N0

and ‖·‖(T ∗M)⊗l⊗E a norm on the vector bundle (T ∗M)⊗l ⊗ E. The space C∞(M,E) is
equipped with the seminorm

‖f‖K,m := max
l∈{0,...,m}

max
x∈K

{∥∥∥(∇lf)(x)
∥∥∥

(T ∗M)⊗l⊗E

}
(4.1)

for f ∈ C∞(M,E). Compactness of K implies that di�erent norms and connections on
the vector bundle lead to equivalent seminorms. Since M can be exhausted by compact
subsets {Ki}i∈N, we can select a seminorm ‖·‖Ki,m for each compact subset. Moreover,
C∞(M,E) is a complete such that it becomes a Fréchet space according to De�nition 2.1.1
(3). If the support is contained in a closed subset A ⊂M , one de�nes

C∞A (M,E) := {u ∈ C∞(M,E) | supp (u) ⊂ A} .

The union over all compact subsets ofM de�nes C∞c (M,E) as space of compactly supported
sections of E:

C∞c (M,E) :=
⋃

K⊂M
K compact

C∞K (M,E) . (4.2)
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This is an LF-space with continuous inclusion mapping C∞K ↪→ C∞c for K bM . Any linear
map between this space and other locally convex topological vector spaces is continuous if
any restriction C∞K (M,E) to any compact subspace K is continuous. We �rst assume that
M is orientable such that a volume form dvol on M exists. If the vector bundle E comes
with a bundle metric

(
·
∣∣ ·)

E
which is a pointwise sesquilinear form14

(
·
∣∣ ·)

Ep
: Ep×Ep → C,

another sesquilinear form

C∞c (M,E)× C∞c (M,E) 3 (u, v) 7→
(
u
∣∣ v)

C∞c (M,E)
:=

∫
M

(
u
∣∣ v)

Ep
dvol (p) (4.3)

can be introduced. If the vector spaces Ep for each p ∈ M are equipped with an inner
product

〈
·
∣∣ · 〉

E
(p) : E ×E → C, they become Hilbert spaces and (4.3) becomes positive

de�nite if we replace
(
·
∣∣ · )

Ep
with

〈
·
∣∣ · 〉

Ep
. We also write

(
·
∣∣ · )

E
(p) for

(
·
∣∣ · )

Ep

and similarly
〈
·
∣∣ · 〉

E
(p) for

〈
·
∣∣ · 〉

Ep
. The bundle metric is called Hermitian if it is

Hermitian at each point. If the vector bundle does not come with a further structure,
we can consider the anti-dual vector bundle E

∗ → M such that a pointwise dual pairing[
·
∣∣ · ]

E
(p) =

[
·
∣∣ · ]

Ep
: E
∗
p × Ep → C can be introduced. Integrating over the manifold

yields a distributional pairing for smooth and compactly supported sections of E:

C∞c (M,E
∗
)× C∞c (M,E) 3 (ψ, φ) 7→

[
ψ
∣∣φ]

C∞c (M,E)
:=

∫
M

[
ψ
∣∣φ]

E
(p) dvol (p) . (4.4)

If the bundle metric is Hermitian, (4.3) induces a L2-inner product

〈
u
∣∣ v〉

L2(M,E)
:=

∫
M

〈
u
∣∣ v〉

E
(p) dvol (p) (4.5)

for u, v as in (4.3) and
〈
·
∣∣ · 〉

E
(p) positive de�nite and Hermitian. This inner product

induces an L2-norm ‖u‖2L2(M,E) :=
〈
u
∣∣u〉

L2(M,E)
. The completion of C∞c (M,E) with re-

spect to this norm de�nes the Hilbert space L2(M,E) of square-integrable sections of E.

Furthermore, one can consider special spaces, related to L2(M,E), which come with dif-
ferent support properties. Let K be a compact subset of M ; the space of L2-sections with
support in K is de�ned by

L2
K(M,E) :=

{
u ∈ L2(M,E) | supp (u) ⊂ K

}
.

This is a Hilbert space with induced topology of L2(M,E). The space of L2-sections with
compact support is the LH-space

L2
c(M,E) :=

⋃
K⊂M

K compact

L2
K(M,E) .

These two spaces are subsets of L2(M,E). On the other hand one could consider functions
which are locally in L2(M,E). This can be realised by multiplying with a cut-o� function
ψ ∈ C∞c (M) such that the product is L2 on the support of the cut-o� function. This

14Here and in the following we choose the sesquilinearity in such a way that the �rst entry is anti-linear.



48 CHAPTER 4. FUNCTION SPACES AND OPERATORS ON MANIFOLDS

de�nes the space of local L2-sections as another example of a Fréchet space:

L2
loc(M,E) :=

{
u : M → E |ψu ∈ L2

supp(ψ)(M,E) ∀ψ ∈ C∞c (M)
}

.

If the manifold is not orientable, we need to take densities instead of volume forms and

for any kind of pairings half-densities. We abbreviate the space of half-densities |Ωn(M)|
1
2

with |Ω|
1
2
M . The dual pairing (4.4) then takes the form

[
ψ
∣∣φ]

C∞c (M,E)
:=

∫
M

[
ψ
∣∣φ]

E
(p) (4.6)

for (ψ, φ) ∈ C∞c (M,E
∗⊗ |Ω|

1
2
M )×C∞c (M,E⊗ |Ω|

1
2
M ) where the pointwise pairing

[
ψ
∣∣φ]

Ep

is now density-valued. Similarly, one can neglect the volume form in (4.3) and (4.5) after
replacing the sections with half-density-valued sections, such that the sesquilinear form or
inner product becomes density-valued. As long as the intersection of supports of the two
sections φ and ψ is compact, (4.4) or rather (4.6) still make sense. Fixing φ to be smooth
and compactly supported, we call the section ψ a regular distribution if (4.4) or (4.6) are
still meaningful.

With C−∞(M,E) we designate distributional sections as dual space of smooth sections
with compact support. A distribution on E is a C-linear functional on test functions
φ ∈ C∞c (M,E

∗
) with respect to a dual or rather distributional pairing

[
u
∣∣φ]

C∞c (M,E
∗
)

which is a map

C−∞(M,E
∗ ⊗ |Ω|

1
2
M )× C∞c (M,E ⊗ |Ω|

1
2
M )→ C ,

coinciding with (4.6) for regular distributions. In the same way we de�ne the space

C−∞c (M,E ⊗ |Ω|
1
2
M ) of compactly supported distributions as the dual space (C∞(M,E

∗⊗
|Ω|

1
2
M ))∗.

4.1.2. Operators between sections of manifolds

Let E → M be as in the former subsection and F → N another C-(anti-)linear vector
bundle over a manifold N ; the ranks of the vector bundles are mE for E and mF for
F . The dimension of the manifolds are denoted with m respectively n. Denote with

P a linear operator which a priori maps from C∞c (M,E ⊗ |Ω|
1
2
M ) to C−∞(N,F ⊗ |Ω|

1
2
N ).

The formal dual operator P † with respect to (4.6) is a map from C∞c (N,F
∗ ⊗ |Ω|

1
2
N ) to

C−∞(M,E
∗ ⊗ |Ω|

1
2
M ) with the de�ning property[

P †ψ
∣∣φ]

C∞c (M,E)
:=
[
Pφ
∣∣ψ]

C∞c (N,F
∗
)

for ψ ∈ C∞c (N,F
∗ ⊗ |Ω|

1
2
N ) and φ ∈ C∞c (M,E ⊗ |Ω|

1
2
M ). This can be used to extend the

linear operator P to an operator on distributions: if P † maps from C∞c (N,F
∗ ⊗ |Ω|

1
2
N ) to

C∞c (M,E
∗⊗|Ω|

1
2
M ), the operator P can be extended to a map from C−∞(M,E⊗|Ω|

1
2
M ) to
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C−∞(N,F ⊗ |Ω|
1
2
N ) and the action on a distribution u ∈ C−∞(M,E ⊗ |Ω|

1
2
M ) is de�ned by[

Pu
∣∣χ]

C∞c (N,F
∗
)

:=
[
u
∣∣P †χ]

C∞c (M,E
∗
)

for χ ∈ C∞c (N,F
∗ ⊗ |Ω|

1
2
N ). The formal adjoint operator P ∗ of an operator P , mapping

from C∞c (M,E⊗|Ω|
1
2
M ) to C∞c (N,F ⊗|Ω|

1
2
N ), is the dual operator with respect to the inner

product (4.5) with the de�ning property〈
P ∗ψ

∣∣φ〉
L2(N,F )

:=
〈
ψ
∣∣Pφ〉

L2(M,E)

for ψ, φ as before and P ∗ maps from C∞c (N,F ⊗ |Ω|
1
2
N ) to C∞c (M,E ⊗ |Ω|

1
2
M ).

If the operator P is continuous, then there is a bijective correspondence between P and
a Schwartz kernel K which is a half-density-valued distribution on the Cartesian product
N ×M such that the action of P on a function φ can be represented as

(Pφ)(x) =

∫
M
K(x, y)u(y)

in the distributional sense. This is the statement of the Schwartz Kernel Theorem.

Theorem 4.1.1 (cf. Theorem 5.2.1 in [H�03], p.93 in [H�07]). Given two manifolds M,N as
well as vector bundles E → M and F → N and suppose K ∈ C−∞(N ×M,Hom(E,F ))

de�nes the operator PK : C∞c (M,E ⊗ |Ω|
1
2
M ) → C−∞(N,F ⊗ |Ω|

1
2
N ) through[

PKψ
∣∣φ]

C∞c (N,F )
:=
[
K
∣∣ψ ⊗ φ]

C∞c (N×M,F�E∗)

for all φ ∈ C∞c (M,E ⊗ |Ω|
1
2
M ) and ψ ∈ C∞c (N,F ⊗ |Ω|

1
2
N ); this assignment K 7→ PK

is a bijection from C−∞(N ×M,Hom(E,F )) to continuous elements in L (C∞c (M,E ⊗
|Ω|

1
2
M ), C−∞(N,F ⊗ |Ω|

1
2
N )).

In this way we can characterise an operator by the properties of its kernel. The dual
operator has a Schwartz kernel which is an element in C−∞(M × N,Hom(F

∗
, E
∗
)). An

operator P with Schwartz kernel K is said to be properly supported if both projections
πN : N ×M → N and πM : N ×M → M are proper maps on supp (K) ⊂ N ×M , i.e.
for compact supsets KN ⊂ N and KM ⊂M the intersections with the preimages of these
projections

supp (K) ∩ (πM )−1(KM ) and supp (K) ∩ (πN )−1(KN )

are compact. A more handy characterisation is the following: the operator P is properly
supported if and only if

(1) ∀KM bM ∃K ′N b N : supp (u) ⊂ KM ⇒ supp (Pu) ⊂ K ′N ,

(2) ∀KN b N ∃K ′M bM : supp (v) ⊂ KN ⇒ supp
(
P †u

)
⊂ K ′M .

(4.7)

In a nutshell, an operator is properly supported if and only if it maps compactly supported
sections to compactly supported sections. This has been proven in [SA11, Prop.3.4] for
operators on one manifold. The proof carries over to the here presented general case. The
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composition Q ◦ P of two operators then becomes well-de�ned if at least P is properly
supported. Moreover, the composition of properly supported operators is again properly
supported.

We now turn our attention to di�erential and pseudo-di�erential operators for which we
need to consider the caseM = N . The standard, non-geometric introduction of di�erential
operators is based on local coordinates

{
xl
}m
l=1

,
{
yl
}m
l=1

on a neighbourhood U ⊂ M and
two trivialisations

φE : E → U × CmE , φF : F → U × CmF

of the vector bundles. The action of a continuous map P : C∞(M,E) → C∞(M,F ) on
u ∈ C∞c (U , E) is locally given by a (mF ×mE)-matrix (Pij):

[φF (Pu)|U ]i =

mE∑
j=1

Pij(φEu)i

for i ∈ {1, ...,mF }. We call P a (partial-)di�erential operator of order k if for all open
neighbourhoods and trivialisations the matrix elements Pij are linear di�erential operators
of order k:

Pij =
∑
|α|≤k

Pijα(x)∂αx (4.8)

where α is a multi-index in Nm0 , Pijα(x) smooth functions on U and ∂αx are combinations
of partial derivatives. We denote the set of those linear partial-di�erential operators of
order k with Diffk(M,Hom(E,F )) and write Diffk(E,F ) if the manifold is clear from the
context; in addition we set Diffk(E) for Diffk(M,End(E))15. The Schwartz kernel of each
matrix entry Pij is the distribution

Kij(x, y) =
∑
|α|≤k

Pijα(x)∂αx δ(x− y) (4.9)

where δ(x− y) stands for the Dirac distribution along the diagonal in M ×M . A pseudo-
di�erential operator of order r ∈ R is a continuous map P : C∞c (M,E) → C∞(M,F ) if
for every open neighbourhood and any trivialisation of the vector bundles each entry of
the matrix (Pij) of local operators is given as an integral operator with Schwartz kernel

Kij(x, y) =

∫
Rm

exp
(
i
〈
x− y

∣∣ ξ〉Rm) aij(x, ξ) dξ

(2π)m/2
(4.10)

where the aij are elements in C∞(T ∗M,π∗T ∗M (Hom(E,F ))) such that their pullbacks with
the inverse map of the trivialisation T ∗M → U × Rm are symbols of order r on U × Rm;
πT ∗M is the bundle projection T ∗M → M . The concrete de�nition and properties of
symbols are comprehensively described in the main references of this chapter; a condensed
introduction can be found in [IS20, App.A]. We designate the set of pseudo-di�erential
operators of order r with Ψr(M,Hom(E,F )).

15We will use this convention for any other occuring space of operators, acting between sections on one and
the same manifold.
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We recall some basic facts about di�erential and pseudo-di�erential operators. Let E,F
and M be as before and G→M another vector bundle, k, l ∈ N0, and r, s ∈ R.

Lemma 4.1.2.

(1) if P ∈ Diffk(M,Hom(E,F )), then supp (Pu) ⊂ supp (u) for all k and u ∈ C∞(M,E).

(2) Diffk(M,Hom(E,F )) ⊂ Ψr(M,Hom(E,F )) for all k with k ≤ r.

(3) given two operators Q ∈ Ψs(M,Hom(F,G)) and P ∈ Ψr(M,Hom(E,F )); if one
of them is properly supported, then Q ◦ P ∈ Ψr+s(M,Hom(E,G)); if in particular
Q ∈ Diffk(M,Hom(F,G)) and P ∈ Diffl(M,Hom(E,F )), then the composition Q ◦P
is an operator in Diffk+l(M,Hom(E,G));

(4) if P ∈ Ψr(M,Hom(E,F )), then P † ∈ Ψr(M,Hom(F
∗
, E
∗
)); in particular: if P ∈

Diffk(M,Hom(E,F )), then P † ∈ Diffk(M,Hom(F
∗
, E
∗
));

(5) if P ∈ Ψr(M,Hom(E,F )) is properly supported, then it continuously maps

C∞c (M,E) → C∞c (M,F )

C−∞c (M,E) → C−∞c (M,F )

C∞(M,E) → C∞(M,F )

C−∞(M,E) → C−∞(M,F ) .

(6) P ∈ Ψ−∞(M,Hom(E,F )) if and only if P : C−∞c (M,E)→ C∞(M,F ).

(1) says that di�erential operators are local operators which implies that any di�eren-
tial operator is properly supported due to (4.7). (3) implies that for E = F = G the
commutator [Q,P ] is a pseudo-di�erential operator of order (r + s). The property on the
right-handside of the equivalence in (6) is called smoothing and implies the smoothness of
the Schwartz kernel and vice versa.

The principal symbol of a di�erential operator is de�ned through the highest order contri-
bution in (4.8). An invariant de�nition is given by oscillatory testing: for any Φ ∈ C∞(M),
such that ξ = dΦ, the principal symbol of the di�erential operator P of order k is de�ned
by

σk(P )(p, ξ)u = lim
λ→∞

(
1

λ

)k
e−iλΦP

(
eiλΦu

)∣∣∣∣∣
p

(4.11)

for any smooth section u in E. It is an element in C∞(T ∗M,π∗T ∗MHom(E,F )). The
principal symbols for pseudo-di�erential operators of order r are denoted in the same way,
but de�ned as symbols of order r modulo symbols of order (r − 1). If the symbol class is
classical, i.e. the local symbol a(P ) of P has an asymptotic expansion

a(P )(p, ξ) ∼
∞∑
j=0

aj(p, ξ) (4.12)

where each aj(p, ξ) is smooth on U × (Rn \{0}) and positive homogeneous of order (r− j),
the principal symbol is then given by the leading term a0(p, ξ). We denote the set of those
pseudo-di�erential operators with the subscript cl. We collect some properties of principal
symbols.
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Lemma 4.1.3. Let Q ∈ Ψs(M,Hom(F,G)) and P ∈ Ψr(M,Hom(E,F )) with principal
symbols σs(Q) and σr(P );

(1) σr+s(Q ◦ P ) = σs(Q) ◦ σr(P ) if P or Q are properly supported.

(2) σr(P
†) = (σr(P ))∗.

If the operators act between scalar sections, the principal symbols are C-valued and the
symbols in (1) commute.

The principal symbol of an arbitrary operator with distributional kernel is introduced
within the concept of symbols and orders of distributions. The interested reader shall
consult the two papers [Wei76] and [Wei78] of Weinstein for these concepts.

4.1.3. Sobolev spaces on manifolds

On a Riemannian manifold M there exists for any vector bundle E → M with Rieman-
nian/Hermitian inner product and connection ∇E as well as for any real number s ∈ R a
properly supported, classical, elliptic pseudo-di�erential operator of order s with strictly
positive principal symbol. A special choice is given by a power of the Laplace-type operator
(∇E)∗∇E + 1 : C∞(M,E) → C∞(M,E):

Λs :=
(
(∇E)∗∇E + 1

) s
2 . (4.13)

This operator satis�es all stated features for s ∈ R and is furthermore essentially self-
adjoint16 on L2(M,E) with positive spectrum if M is compact or complete.

Sobolev spaces on compact manifolds M without boundary are going to be introduced
�rst since they provide a bulding block for the non-compact case. The s−Sobolev norm of
u ∈ C∞(M,E) is de�ned as

‖u‖Hs(M,E) := ‖Λsu‖L2(M,E) (4.14)

and the norm completion of C∞(M,E) with respect to (4.14) de�nes the Sobolev space of
order s which we designate with Hs(M,E). The de�nition depends on neither the choice
of the metric nor of the connection such that all Sobolev norms and spaces with di�erent
metrics and connections are equivalent. For s = m ∈ N0 the norm (4.14) is equivalent to

‖u‖2Hm(M,E) :=

m∑
j=0

∥∥∥∥(∇E)ju∥∥∥∥2

L2(M,E)

(4.15)

where we introduced another notation of this norm for distinguishing reasons. Hs can
be extended to non-compact manifolds under additional conditions and concepts, see e.g.
[Heb96] for details. We start with Sobolev sections of order m with respect to a vector
bundle E → M which have a �xed support in K b M . They are introduced as norm

16This follows from the essentially self-adjointness of the identity map and the Bochner Laplacian (∇E)∗∇E ,
see [BMS02] or [Yos92]. It holds true for any compact manifold since they are complete by the Hopf-Rinow
theorem.
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closure of smooth functions with compact support in K with respect to ‖ · ‖Hm(M,E):

Hm
K (M,E) = C∞K (M,E)

‖·‖Hm(M,E)
.

They carry the topology of a Hilbert space. The compactly supported Sobolev sections
then follow by taking the union over all compact subsets:

Hm
c (M,E) =

⋃
K⊂M
compact

Hm
K (M,E) (4.16)

which makes them an LH-space. We observe H0
c (M,E) = L2

c(M,E). Local Sobolev
sections are regarded as those distributional sections u such that φu ∈ Hs

supp(φ) for all
smooth and compactly supported function φ:

Hm
loc(M,E) :=

{
u ∈ C−∞(M,E) |φu ∈ Hm

c (M,E) ∀φ ∈ C∞c (M)
}

. (4.17)

The norm in Hm
supp(φ) induces a seminorm ‖ · ‖Hm

loc(M,E) which makes Hm
loc a Fréchet space.

Note that H0
loc(M,E) corresponds to L2

loc(M,E).

The extension of (4.16) and (4.17) to real powers s ∈ R can be performed with inter-
polation. We follow a more practical way of introducing Sobolev spaces on non-compact
manifolds, based on [BTW15, Sec.1.6]. Sobolev sections of E with �xed compact support
on a non-compact Riemannian manifold are reinterpreted as Sobolev sections on another
Riemannian, but closed manifold. In order to do so, one extends all structures to the
double of a suitable subset of M . Let K be a compact subset of M , containing the sup-
port of a function. Take another relatively compact subset K1 ⊂ M such that K1 has a
smooth boundary dK1 and contains K inside K̊1. The closed double of K1 is constructed
by taking a copy of K1, denoted with K2, and then one glues both copies together along
their common boundary dK1 = dK2 which results in a closed manifold:

M̃ := K1 ∪dK1 K2 := (K1 tK2) \ dK1 .

During this procedure everything on K is untouched. Any smooth vector bundle Ẽ → M̃
can be considered as extension of E|K1 if Ẽ|K1 = E|K1 . All bundle metrics on K ⊂ M̃
can be extended to smooth bundle metrics on the whole closed double which is assured by
additional assumptions17 on K1. The Levi-Civita connection with respect to the restricted
metric and the Koszul connection of the restricted bundle E|K1 can be extended to a
smooth metric and a smooth connection on TM̃ and respectively Ẽ. Any smooth section
of E with compact support in K can then be viewed as smooth section of Ẽ over a closed
manifold. The space Hs

K(M,E) for real powers s is then de�ned as the completion of
smooth, compactly supported functions with respect to the norm ‖ · ‖

Hs(M̃,Ẽ)
from (4.14):

Hs
K(M,E) := C∞K (M,E)

‖·‖
Hs(M̃,Ẽ) .

The spaces Hs
c and Hs

loc are then de�ned as in (4.16) und (4.17) for real orders s which
completes the extension to arbitrary real Sobolev orders. The advantage of this de�nition

17K1 has to be chosen in such a way that its boundary dK1 is totally geodesic with normal vector �eld n
such that all normal derivatives of R(X, n)n vanish; see [Mor91] for details
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is that Sobolev sections with compact support can be treated in the same way as Sobolev
sections on a closed manifold with all bene�cial properties. If K ⊂ K ′, one has the in-
clusion C∞K (M,E) ⊂ C∞K′(M,E), inducing Hs

K(M,E) ⊂ Hs
K′(M,E) as continuous linear

inclusion. This implies the continuous inclusion Hs
K(M,E) ↪→ Hs

c (M,E).

We list some properties of Sobolev spaces and properties of maps between those spaces.

Proposition 4.1.4 (pp.57-65 in [SA11]). Given a manifold M with compact subsets K,
E,F Hermitian vector bundles over M , and an operator A ∈ Ψm(M,Hom(E,F )) for
m ∈ R, then the following properties are true for s, t ∈ R:

(1) (Localisation) let a ∈ C∞(M), then

a) au ∈ Hs
loc(M,E) for u ∈ Hs

loc(M,E) ;

b) if a ∈ C∞c (M) and u ∈ Hs
c (M,E), then au ∈ Hs

c (M,E).

(2) Hs
K(M,E) is a Hilbert space with scalar product〈

u
∣∣ v〉

Hs
K(M,E)

=
〈
Λsu

∣∣Λsv〉
L2(K,E)

∀ v ∈ Hs
K(M,E), u ∈ Hs

K(M,E) ;

the same holds true for Hs(M,E) if M is compact.

(3) (Continuous embeddings) Hs
c (M,E) ⊂ Ht

c(M,E) and Hs
loc(M,E) ⊂ Ht

loc(M,E) for
s > t.

(4) (Rellich-Kontrachov theorem) the inclusion Hs
K(M,E) ↪→ Ht

K(M,E) is compact if
M is compact.

(5) (Sobolev embedding theorem) if k < s− dim(M)
2 , then

a) Hs
loc(M,E) ⊂ Ck(M,E) is continuous;

b) Hs
K(M,E) ⊂ Ckc (M,E) is compact.

(6)
⋂
s∈RH

s
loc(M,E) = C∞(M,E) and

⋃
s∈RH

s
K(M,E) = C−∞c (M,E).

(7) (Duality) (Hs
c (M,E⊗|Ω|

1
2
M ))∗ = H−sloc (M,E

∗⊗|Ω|
1
2
M ) with respect to the dual pairing

(4.6) and its distributional extension.

(8) (Restriction theorem) let N ⊂ M be a submanifold of codimension d; if s > d
2 , then

the restriction of u ∈ Hs
loc(M,E) is a continuous map with u|N ∈ Hs− d

2 (N,E|N ).

(9) (Regularity) the operator A maps between Sobolev spaces:

a) A : Hs
c (M,E)→ Hs−m

loc (M,F );

b) A : Hs
c (M,E) → Hs−m

c (M,F ) and A : Hs
loc(M,E) → Hs−m

loc (M,F ) if A is
properly supported.
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4.2. Fourier integral operators

In this section we consider Fourier integral operators (FIO) as a class of operators between
sections on possibly di�erent manifolds which contains di�erential and pseudo-di�erential
operators as subclasses. We will only focus on their global properties as we will only use
them in the following analysis. The presented content is based on the papers of Hör-
mander and Hörmander-Duistermaat ( [Hö71] and [DH72]) as well as the textbooks refer-
ences [Dui10], [H�09] and [Tre22]. Further supporting notes are taken from [IS20, Sec.2.1]
and [IS20, App.B] and further references which we will mention throughout this section.

In this section we take the manifolds M,N and the vector bundles E and F as intro-
duced in subsection 4.1.2.

4.2.1. Lagrangian distributions

In order to introduce Lagrangian distributions, we recall the de�nition of a Lagrangian
submanifold. The cotangent bundle T ∗M is a symplectic manifold with respect to a non-
degenerate and closed two-form ωM . A subset Λ ⊂ T ∗M is a Lagrangian submanifold if
ωM vanishes on Λ and dim(Λ) = 1

2 dim(T ∗M) = m. A Lagrangian submanifold Λ in the
punctured cotangent bundle Ṫ ∗M is called conic if

(p, ξ) ∈ Λ ⇒ (0, ξ) ∈ T(p,ξ)Λ .

A clean phase function is a real-valued smooth function φ on an open and conic subset
U ⊂M × Ṙk, k ∈ N0 which satis�es the following properties:

(a) φ is homogeneous of degree 1 with respect to the �bre variables ξ ∈ Ṙk:

φ(p, λξ) = λφ(p, ξ)

for all λ ∈ Ṙ;

(b) dx,ξφ 6= 0;

(c) the �bre-critial set Cφ := {(p, θ) ∈ U | ( dξφ)(p, θ) = 0} is a smooth manifold such
that T(p,θ)Cφ = ker

(
[ d(x,ξ)∂ξφ](p, θ)

)
for all (p, θ) ∈ Cφ.

The number of linearly independent vectors in the tangent spaces is smaller or equal k;
the di�erence is described by the excess e := dim(Cφ)− dim(M). If the excess is zero, the
phase function is called non-degenerate. A clean phase function φ on an open subset in
Rm de�nes an immersed conic Lagrangian submanifold Λφ in the cotangent bundle of this
open subset which is de�ned by the map

Cφ 3 (p, ξ) 7→ (p, ( dxφ)(p, ξ)) ∈ Λφ . (4.18)

With these concepts one is able to lift the notion of oscillatory integrals of order r ∈ R to
manifolds via coordinate neighbourhoods. They are of the form(

1

2π

)e+(m,k,e) ∫
Rk

eiφ(x,ξ)a(x, ξ) dξ (4.19)
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where e±(m, k, e) = (m± 2k − 2e)/4 and a is a symbol of order (r + e−(m, k, e)) which is
supported in the interior of a small conic neighbourhood of Cφ in the support of the clean
phase function. Based on (4.19), Lagrangian distributions on manifolds can be de�ned as
follows.

De�nition 4.2.1 (De�nition 3.2.2 in [H�03], De�nition 2.2 in [IS20]). Let Λ ⊂ Ṫ ∗M be a

smooth, closed and conic Langrangian submanifold; a distribution u ∈ C−∞(M,E⊗|Ω|
1
2
M )

is called a Lagrangian distribution of order r ∈ R, associated to the Lagrangian submanifold
Λ, if it can be represented as sum

u =
∑
j

uj

of locally �nite supported oscillatory integrals uj in a coordinate neighbourhood Uj of M
which are characterised as follows:

(a) for each uj there exists a clean phase function φj with critical set Cφj which de�nes the
Lagrangian submanifold Λφj through (4.18),

(b) Λφj ⊂ Λ for all j,

(c) for each component (uj)
i, i ∈ {1, ...,mE} of uj with respect to local coordinates and to

a bundle chart there exists a symbol (aj)
i of order (r + e−(m, kj , ej)) with support in the

interior of a su�ciently small conic neighbourhood of the critical set Cφj such that each
component (uj)

i takes the form

(uj)
i =

(
1

2π

)e+(m,kj ,ej) ∫
Rk

eiφj(x,ξ)(aj)
i(x, ξ) dξ

in the distributional sense.

We designate Ir(M ; Λ, E ⊗ |Ω|
1
2
M ) as the set of Lagrangian distributions of order r ∈ R,

associated to the Lagrangian submanifold Λ.

4.2.2. Fourier integral operators

Loosely speaking, a map of the form C∞c (M,E ⊗ |Ω|
1
2
M )→ C−∞(N,F ⊗ |Ω|

1
2
N ) is a Fourier

integral operator if its Schwartz kernel is a Lagrangian distribution on N ×M . In order to
state this more precisely, let Λ ⊂ Ṫ ∗(N×M) be a closed conic Lagrangian submanifold with
respect to the symplectic form ωN ⊕ωM on T ∗(N ×M) where ωM , ωM are the symplectic
forms for T ∗M respectively T ∗N . A homogeneous canonical relation from Ṫ ∗M to Ṫ ∗N
is a closed conic Lagrangian submanifold C in Ṫ ∗(N ×M) with respect to the symplectic
form ωN ⊕ (−ωM ) which is contained in Ṫ ∗N × Ṫ ∗M . Its relation to the initial Lagrangian
submanifold Λ is given by

C =
{

(x, ξ, y, η) ∈ Ṫ ∗M × Ṫ ∗N
∣∣∣ (x, ξ, y,−η) ∈ Λ

}
.

We follow the common literature and denote the corresponding Lagrangian submanifold Λ
with C′ to stress the homogeneous canonical relation.
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De�nition 4.2.2 (cf. De�nition 25.2.1 in [H�09]). Given E → M and F → N and a
closed conic Lagrangian submanifold Λ ⊂ Ṫ ∗(M × N) with corresponding homogeneous
canonical relation C from Ṫ ∗N to Ṫ ∗M ; a Fourier integral operator of order r ∈ R is

an operator P : C∞c (M,E ⊗ |Ω|
1
2
M ) → C−∞(N,F ⊗ |Ω|

1
2
N ) with Schwartz kernel K ∈

Ir(N ×M ; Λ,Hom(E,F )).

We will designate the space of those operators with FIOr(M,N ; C′;Hom(E,F )). The
local description of the kernels can be recapitulated in [IS20, Sec.2.1].

Before we list some properties, we introduce further notions and concepts. The maps

r : T ∗M → T ∗M , s : N ×M →M ×N
(x, ξ) 7→ (x,−ξ) (y, x) 7→ (x, y)

are the re�ection in the cotangent bundle respectively the interchanging of factors in the
Cartesian product. We set Λ−1 := r∗s∗(Λ) as inverse of the closed conic Lagrangian sub-
manifold and C−1 denotes the corresponding inverse canonical relation which is itself a
canonical relation from Ṫ ∗N and Ṫ ∗M . Let W be another manifold; the composition of
two homogeneous canonical relations C1 from Ṫ ∗N to Ṫ ∗W and C2 from Ṫ ∗M to Ṫ ∗N is

C1 ◦ C2 :=
{

(x, ξ, z, ζ) ∈ Ṫ ∗M × Ṫ ∗W
∣∣∣ ∃ (y, η) ∈ Ṫ ∗N : (x, ξ, y, η) ∈ C2

and (y, η, z, ζ) ∈ C1

}
.

The composition is called clean if C1 × C2 and T ∗M × diag(T ∗N) × T ∗W intersect in a
manifold C̃ such that

TpC̃ = Tp(C1 × C2) ∩ Tp(T ∗M × diag(T ∗N)× T ∗W )

for all points p in C̃. The composition is in contrast transversal if

TpC̃ = Tp(C1 × C2) + Tp(T
∗M × diag(T ∗N)× T ∗W )

for all points p in C̃. Both cases are distinguished by the (global) excess e which is the
codimension of �bres of the intersection. Transversality becomes equivalent to e = 0. The
composition is called proper if the projection C̃→ Ṫ ∗(M ×W ) is a proper map, and con-
nected if the �bres of C1 ◦ C2 → C1 × C2 are compact and connected.

A special situation arises for m = n. A homogeneous canonical relation from Ṫ ∗M to
Ṫ ∗N will be called local canonical graph if both projections on Ṫ ∗M and Ṫ ∗N are local
di�eomorphisms. The homogeneous canonical relation is locally the graph of a canonical
transformation and a symplectic manifold on its own right. It is called bijective if in addi-
tion C−1 is a local canonical graph, too.

We �rst collect some algebraic properties of Fourier integral operators which are proven
in and taken from [H�09, Sec.25.2] and [Hö71, Chap.4], supported with additional details
from [IS20, Sec.4.1].
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Lemma 4.2.3. Given E → M and F → N , a vector bundle G → W and homogeneous
canonical relations C = C1 from Ṫ ∗M to Ṫ ∗N and C2 from Ṫ ∗N to Ṫ ∗W ; the following
properties hold for all r, s ∈ R,

(1) (adjoint FIO) if A ∈ FIOs(M,N ; C′;Hom(E,F )), then the adjoint/dual with respect
to the pairing (4.6) satis�es

A† ∈ FIOr(N,M ; (C−1)′;Hom(F
∗
, E
∗
)) ;

(2) (composition) given two operators

A2 ∈ FIOr(M,N ; C2;Hom(E,F ))

A1 ∈ FIOs(N,W ; C1;Hom(F,G)) ;

if the operators are properly supported and the composition C1◦C2 is clean, proper and
connected with excess e, then A1 ◦ A2 ∈ FIOr+s+e/2(M,W ; (C1 ◦ C2)′;Hom(E,G));
the same holds if the composition C1 ◦ C2 is proper and transversal with e = 0.

(3) let N = M , then Ψr(M,Hom(E,F )) ⊂ FIOr(M,M ; (N∗diag(M))′; Hom(E,F ));

(4) A ∈ FIO−∞(M,N ; C;Hom(E,F )) if and only if A is smoothing.

(5) (A† ◦A) ∈ Ψ2m(M,End(E)) for A as in (1).

Property (5) is a consequence of (1), (2) and (3) with

C−1 ◦ C = N∗diag(M) and Hom(E,E) = End(E)⊗ |Ω|
1
2
M×M

∼= End(E)⊗ |Ωn|M .

We denote the set of properly supported Fourier integral operators of order r with FIOrprop.
Similarly we write Ψr

prop to indicate properly supported pseudo-di�erential operators of
order r. To have a well-de�ned composition in (2), it is only necessary that the �rst operator
is properly supported. But this does not assure that the resulting operator is again a FIO
even if the other requirements are satis�ed. If the homogeneous canonical relation is a
local canonical graph, then one can show the following two regularity properties of Fourier
integral operators which are also based on results, proven in [H�09], [Hö71] and [Tre22,
Sec.18.5.3].

Lemma 4.2.4. Given two vector bundles E → M , F → N and r as in Lemma 4.2.3; let
C be a local canonical graph from Ṫ ∗M to Ṫ ∗N and A ∈ FIOr(M,N ; C′;Hom(E,F )), then
the following holds:

(1) (L2-regularity) if r = 0, A becomes a continuous map from L2
c(M,E ⊗ |Ω|

1
2
M ) to

L2
loc(N,F ⊗ |Ω|

1
2
N ); if

sup
(x,y)∈K

‖σ0(A)(x, ξ; y, η)‖Hom(E,F ) → 0

for |(ξ, η)| → ∞ for all K b M × N , then it maps as compact operator between

L2(M,E ⊗ |Ω|
1
2
M ) to L2(N,F ⊗ |Ω|

1
2
N ).
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(2) (Sobolev regularity) the operator A maps continuously from Hs
c (M,E ⊗ |Ω|

1
2
M ) to

Hs−r
loc (N,F ⊗ |Ω|

1
2
N ) for all s ∈ R;

(3) if A is properly supported, then A : Hs
c (M,E)→ Hs−r

c (N,F ) and A : Hs
loc(M,E)→

Hs−r
loc (N,F ) are continuous linear maps for all s ∈ R.

We end this subsection with some remarks about the principal symbol σr(A) of a Fourier
integral operator A. The principal symbol of A ∈ FIOr(M,N ; C′;Hom(E,F )) is an el-
ement in the equivalence class of symbols of order (r + (n + m)/4) modulo symbols of
order (r + (n + m)/4 − 1) which are sections of the bundle MC ⊗ π∗C(Hom(E,F )) → C;
πC is the bundle projection T ∗(N ×M) ⊃ C → N ×M , such that π∗C(Hom(E,F )) =

π∗C(Hom(E,F ))⊗ |Ω|
1
2
C and the bundle MC is the Keller-Maslov bundle which is a complex

trivial line bundle with respect to the structure group Z/4Z, describing the invariance
of the amplitude and the half-density of an oscillatory integral under the change of the
phase function due to coordinate transformations. The transition from one trivialisation
to another is given by multiplying with il for any l ∈ Z. More informations about the geo-
metric nature of the Keller-Maslov bundle are given in [Dui10, Sec.4.1] and [Hö71, Sec.3.3].

The principal symbol of A† is given by σr(A
†) = s∗((σr(A))∗) by which it becomes a

symbol section of the bundle MC−1 ⊗ π∗C−1(Hom(F
∗
, E
∗
)) → C−1 with the bundle pro-

jection πC−1 : T ∗(M × N) ⊃ C−1 → M × N . The principal symbol of the composition
of two Fourier integral operators with the required assumptions from Lemma 4.2.3 (2)
is a more involved combination of the single principal symbols; see [H�09, Thm.25.2.3]
and [Hö71, Sec.3.2]. The situation becomes much easier if both homogeneous canonical
relations of the composing Fourier integral operators are local canonical graphs. Then the
composition of canonical relations is a graph of a composition of two symplectomorphisms
and the principal symbol of the composition becomes

σr+s(A1 ◦A2) = σs(A1) ◦ σr(A2) . (4.20)

We refer to the literature and the content of [IS20, App.B] for details and section 2.1 in
the same reference for the local expression of the principal symbol.

Having the notion of a principal symbol, we can de�ne the notion of ellipticity of a FIO: a
FIO, associated to a local canonical graph C as homogeneous canonical relation, is called
elliptic if its principal symbol does not vanish on C.

Lemma 4.2.5. Given two vector bundles E → M , F → N and r as in Lemma 4.2.3; let
C be a homogeneous canonical relation and A ∈ FIOrprop(M,N ; C′;Hom(E,F )), then the
following holds:

(1) (exact sequence) there is a symbol exact sequence

0→ FIOr−1
prop(M,N ; C′;Hom(E,F )) ↪→ FIOrprop(M,N ; C′;Hom(E,F ))

σr−→ C∞(C,MC ⊗ |Ω|
1
2
C ⊗ π

∗
CHom(E,F ))→ 0

for all r ∈ R; hence the operator has at least one order less if and only if its principal
symbol vanishes.
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(2) if A is a unitary map from L2
c(M,E) to L2

c(N,F ) and C a local canonical graph, then
A is elliptic.

Fact (2) is from [Tre22, Prop.18.5.28] for the scalar case; the proof carries over to the
vector-bundle case. Another worth mentionable fact about principal symbols of Fourier
integral operators is the Theorem of Egorov which is e.g. stated in [H�09, Thm.25.3.5]
for operators, mapping between scalar sections; a modi�ed version for Fourier integral
operators between vector-valued sections is presented in [IS20, App.D].

4.2.3. Restriction and corestriction as Fourier integral operators

Let E → M be as before and now N is an embedded submanifold of codimension k in
M with inclusion i : N ↪→ M . The pullback of the embedding de�nes the restriction
operator

resN := i∗ : C∞(M,E ⊗ |Ω|
1
2
M ) → C∞(N,E|N ⊗ |Ω|

1
2
N ) (4.21)

which assigns each function its trace on the submanifold. The adjoint/dual of resN with
respect to the dual pairing C−∞c × C∞ → C is the corestriction operator

res†N : C−∞c (N,E|N ⊗ |Ω|
1
2
N ) → C−∞c (M,N ⊗ |Ω|

1
2
M ) . (4.22)

As pushforward is the dual operator to pullback, one also writes i∗ for res†N . We outline
the important properties.

Proposition 4.2.6. Let N be an embedded smooth submanifold of a smooth manifold M
with codimension k and inclusion map i : N ↪→ M as well as a vector bundle E → M ;
then the following holds.

(1)

resN : Hs
loc(M,E) → H

s−k/2
loc (N,E|N )

res†N : H
−s+k/2
c (N,E|N ) → H−sc (M,E)

(4.23)

for all s ∈ R with s > k/2.

(2) a) i∗ ∈ FIOk/4(M,N ; C′(i∗);Hom(E,E|N )) with homogenous canonical relation

C(i∗) :=
{

(y, η, x, ξ) ∈ Ṫ ∗(N ×M)
∣∣∣ (x, ξ) ∈ Ṫ ∗M : i∗(x, ξ) = (y, η)

}
. (4.24)

b) i∗ ∈ FIOk/4(N,M ; C′(i∗);Hom(E|N , E)) with homogenous canonical relation

C(i∗) := N∗graph(i) = C(i∗)−1 .

(3) if N is a closed subset in M , then both operators (4.21) and (4.22) are properly
supported.

Proof. (1) is a consequence of the restriction theorem of Sobolev spaces and the dual pair-
ing; see (7) and (8) in Proposition 4.1.4. It has been shown in [Dui10, Sec.5.1] that the
restriction operator is a Fourier integral operator of order k/4 with claimed homogeneous
canonical relation in the scalar case. This carries over to the vector-valued case as this
holds in any trivialisation of the vector bundle. The claim for the corestriction operator
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follows from Lemma 4.2.3 (1) which concludes the proof for (2).

The corestriction operator maps compactly supported distributions to compactly supported
distributions by de�nition. Suppose u ∈ C∞(M,E) has compact support in K ⊂M . The
support of i∗u is contained in i(N) ∩K which is w.l.o.g. not empty or there is nothing to
show otherwise. Since N is a closed subset in M , the embedding is a closed map as well.
The intersection of the compact support with the closed subset i(N) is a closed subset of
K and thus itself compact. Thus the restriction maps compactly supported sections to
compactly supported sections and due to (4.7) it is a properly supported operator in this
situation.

IfM is a globally hyperbolic manifold with spacelike Cauchy hypersurface Σ, the closed-
ness condition in Proposition 4.2.6 (3) is always satis�ed because the Cauchy hypersurface
of a globally hyperbolic manifold is always closed.

Corollary 4.2.7.

i∗ ∈ FIO1/4
prop(M,Σ; C′(i∗);Hom(E,E|Σ)) and i∗ ∈ FIO1/4

prop(Σ,M ; C′(i∗);Hom(E|Σ, E)) .

4.3. Function spaces on globally hyperbolic manifolds

We recall some special function spaces on a globally hyperbolic manifold M with Cauchy
hypersurface Σ and Cauchy temporal function T : M → R. Further details and more exam-
ples of function spaces on globally hyperbolic manifolds are presented in [BTW15, Sec.1.7]
and [Bä14, Chap.2].

The space of spatially compactly supported sections on E is de�ned via

C∞sc (M,E) :=
⋃
A⊂M

A spatially
compact

C∞A (M,E) .

This is an LF-space as the C∞A (M,E) are Fréchet spaces. We assume that the space-
like Cauchy hypersurface is complete and has no boundary such that the family of slices
{Σt}t∈T (M) foliates M . Fix s ∈ R and consider the family {Hs

loc(E|Σt)}t∈T (M) as Fréchet
bundle over T (M) ⊂ R. The slices di�er from each other only in the metric gt, but not
topologically. Since di�erent metrics lead to equivalent Sobolev norms, each Sobolev space
Hs
K(E|Σt) for K b Σ and consequently Hs

c (E|Σt) and Hs
loc(E|Σt) are equivalent. We keep

the extra t to mark the di�erent metrics and furthermore keep notational compatability
with the referred literature. {Hs

loc(E|Σt)}t∈T (M) can be globally trivialised as follows: for
each t ∈ T (M) a section of this bundle becomes a section in Hs

loc(E|Σt). Sections of this
bundle can be moved to Hs

loc(E|Στ ) for a �xed τ ∈ T (M) by parallel transport along the
integral curves of the vector �eld grad(T ). The support properties and the Sobolev reg-
ularity are preserved by this transport such that this bundle of Fréchet spaces becomes
di�eomorphic to T (M)×Hs

loc(E|Στ ); l-times continuously di�erentiable sections in the time
parameter (l ∈ N0) are denoted by C l(T (M), Hs

loc(E|Σ•)). The elements can be considered
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as regular distribution on M :[
u
∣∣φ]

C∞c (M,E
∗
)

:=

∫
T (M)

[
u(t)

∣∣ (Nφ)|Σt
]
C∞c (E

∗|Σt )
dt

for u ∈ C l(T (M), Hs
loc(E|Σ•)) and φ ∈ C∞c (M,E

∗
). The lapse function N ∈ C∞(M,R>0)

appears in the volume element dvol in (3.40). These distributional sections are locally
integrable for s ≥ 0 since Hs

loc ⊂ L2
loc by the continuous embedding of Sobolev spaces. The

dual pairing in the integral can be expressed as regular distributional action of the form[
u(t)

∣∣ (Nφ)|Σt
]
C∞c (E

∗|Σt )
=

∫
Σt

[
u
∣∣ (Nφ)|Σt

]
(E
∗|Σt )∗

dvol Σt

and thus[
u
∣∣φ]

C∞c (M,E
∗
)

=

∫
T (M)

[∫
Σt

[
u
∣∣ (Nφ)|Σt

]
(E
∗|Σt )∗

dvol Σt

]
dt =

∫
M

[
u
∣∣φ]

E
∗ dvol .

This observation con�rms that C l(T (M), Hs
loc(E|Σ•)) is embedded into C−∞(M,E). For

any compact subinterval I ⊂ T (M) and any spatially compact K ⊂M one de�nes

C lK(T (M), Hs
loc(E|Σ•)) :=

{
u ∈ C l(T (M), Hs

loc(E|Σ•))
∣∣∣ supp (u) ⊂ K

}
(4.25)

with the seminorm

‖u‖I,K,l,s := max
k∈[0,l]∩N0

max
t∈I

∥∥∥(∇t)ku
∥∥∥
Hs

loc(E|Σt )
. (4.26)

Varying over all compact subsets I ⊂ T (M) shows for �xed l, K, and s that (4.25) is a
Fréchet space. Taking the union over all spatially compact subset de�nes sections of this
bundle which have support in any spatially compact subset of M :

C lsc(T (M), Hs
loc(E|Σ•)) :=

⋃
K⊂M

K spatially
compact

C lK(T (M), Hs
loc(E|Σ•)) . (4.27)

This is again an LF-space. The inclusion C lK(T (M), Hs
loc(E|Σ•)) ↪→ C lsc(T (M), Hs

loc(E|Σ•))
is continuous and any linear map from C lsc(T (M), Hs

loc(E|Σ•)) to any locally convex topo-
logical vector space is continuous if and only if the restriction to C lK(T (M), Hs

loc(E|Σ•)) is
continuous for any spatially compact subset K. The case l = 0 will be of special interest.

De�nition 4.3.1. Let E →M be a vector bundle over a globally hyperbolic manifold M
with temporal function T and foliating family of spatial Cauchy hypersurfaces {Σt}t∈T (M);
for any s ∈ R we set

FEssc(M, T , E) := C0
sc(T (M), Hs

loc(E|Σ•)) (4.28)

to be the space of �nite s-energy sections.
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The di�erentiability in (4.27) with respect to the time coordinate can be weakened to
local square-integrability:

De�nition 4.3.2. Let E →M be a vector bundle over a globally hyperbolic manifold M
with temporal function T and foliating family of spatial Cauchy hypersurfaces {Σt}t∈T (M)

and K ⊂ M spatially compact; the space L2
loc,K(T (M), Hs

loc(E|Σ•)) consists of those sec-
tions u such that

(a) supp (u) ⊂ K ∩ Σt for almost all t ∈ T (M) ;

(b) t 7→
[
u
∣∣φ|Σt]C∞c ((E|Σt )∗)

is measurable for any φ ∈ C∞c (M,E) ;

(c) t 7→ ‖u‖Hs
loc(E|Σt ) is in L

2
loc(T (M))

for any s ∈ R.

One can prove with a similar argument as for C lK(T (M), Hs
loc(E|Σ•)) that the embedding

L2
loc,K(T (M), Hs

loc(E|Σ•)) ↪→ C−∞(M,E)

is continuous. In order to topologise this space, one introduces the seminorms

‖u‖2I,K,s :=

∫
I
‖u‖2Hs

loc(E|Σt )
dt

for any compact subinterval I in T (M). This turns L2
loc,K(T (M), Hs

loc(E|Σ•)) into a Fréchet
space from which one can de�ne the LF-space

L2
loc,sc(T (M), Hs

loc(E|Σ•)) =
⋃

K⊂M
K spatially
compact

L2
loc,K(T (M), Hs

loc(E|Σ•)) .

We recall one useful result from [BTW15].

Lemma 4.3.3 (Lemma 2 in [BTW15]). Let M be a globally hyperbolic manifold with
temporal function T : M → R such that the manifold is foliated by a family of spatial
Cauchy hypersurfaces {Σt}t∈T (M) and E →M a vector bundle; for any s ∈ R one has

(1) C∞sc (M,E) is a dense subset of L2
loc,sc(T (M), Hs

loc(E|Σ•)) ;

(2) Any u ∈ L2
loc,sc(T (M), Hs

loc(E|Σ•)) with supp (u) ⊂ K can be approximated by smooth

sections in C∞K′(M,E) if K,K ′ ⊂M are spatially compact with K ⊂ K̊ ′.

Other support systems for other types of compact subsets in globally hyperbolic mani-
folds are presented in [Bä14, Chap.1/2].
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5. Galois coverings, von-Neumann

algebras and Γ-operators

We recall the basic, but important concepts of functional algebra and analysis on Galois
coverings with respect to a group Γ . The �rst section deals with topological properties
of these kind of coverings which we specify to pseudo-Riemannian manifolds. The main
objects for the functional analysis in this setting is given by von Neumann algebras and
modules with respect to Γ . We introduce the basic background of these concepts and how
Fredholm theory is implemented. The last section deals with analytic applications of the
functional algebra and operators, acting between sections over Galois coverings, in regards
to ellipticity and Fredholmness.

This chapter relies on [Shu, Chap.2] and [Shu, Chap.3] which is supported with additional
material from [Bre68], [Bre69], [Vai08] as well as [Sch05].

5.1. Galois Coverings and Γ-manifolds

5.1.1. Basic facts about (Galois) coverings

Let E and B be topological spaces and p : E → B a continuous, surjective function. We call
the triple (E , p,B) a covering of B if there exists for every point b ∈ B a neighbourhood
Ub ⊂ B such that the following holds:

(a) the preimage of Ub under p is a countable union of open and pairwise disjoint subsets
in Oj ⊂ E :

p−1(Ub) =
⊔
j∈J
Oj (J index set)

and

(b) p|Oj : Oj → Ub is a homeomorphism for each j ∈ J .

Some authors presuppose in addition that the covering E has to be connected and locally
path-connected. E is called total space, B base and p is the projection/covering map. If the
base and the covering map is clear or �xed from the context, we refer the notion covering
to the total space. The preimage of a point b ∈ B under p is the �bre Eb := p−1(b). If
for all b ∈ B each �bre has �nite cardinality #Eb =: l, then the covering is called �nite or
more precisely l-fold covering.
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O1 O2 O3

. . . . . . . . .

O|J |

p

Ub ⊂ Bp−1(Ub)

Figure 5.1.: Schematic illustration of a covering.

The (�rst) fundamental group Π1(B, b) for �xed b is the homotopy class of curves, clos-
ing in b. It is a group with respect to concantenation of paths as group operation such
that {b} is the neutral element and the inverse element of a class of curve is given by the
curve itself with reversed orientation. If G is a subgroup of Π1(B, b), then there exists a
covering with total space E such that E is connected and the image of the induced map
p∗ : Π1(E , e) → Π1(B, p(e)) with e ∈ Eb coincides with G; see [Lee11, Thm.11.16/18]. If
p∗(Π1(E , e)) is the neutral element in Π1(B, p(e)) and E connected, then the covering is
called universal. A covering with connected total space is universal if and only if the total
space is simple connected (see [Lee11, Thm.11.43]).

With this general background, we now consider group actions on manifolds and how they
induce coverings. Suppose G is a topological group with group operation ∗ which acts from
left or from the right on a topological space M :

G×M → M M × G → M

(g, p) 7→ g · p (p, g) 7→ p · g .

We denote with ε the neutral element in G and the action satis�es the associative law:

(g ∗ h) · x = g · (h · x)

for x ∈M and g, h ∈ G or
x · (g ∗ h) = (x · g) · h

for the right action. The space M becomes a G-space. It is su�cient to consider the left
action on M as it automatically induces a right action by setting x · g := g−1 ·x. The right
action associative law is satis�ed because of (g ∗ h)−1 = h−1 ∗ g−1:

x · (g ∗ h) = (g ∗ h)−1 · x = (h−1 ∗ g−1) · x = h−1 · (g−1 · x) = h−1 · (x · g) = (x · g) · h .

One can distinguish between di�erent kinds of group actions (see [Lee13, Chap.7] for more
information): the action of a group G is called

(a) faithful/e�ective if g · x = x for all x ∈M implies g = ε.

(b) (�x point) free if g · x = x for some x ∈M implies g = ε.
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(c) transitive if for any x, y ∈M there exists a g ∈ G, so that y = g · x.

(d) simple transitive/regular if it is transitive and free, i.e. for any x, y ∈ M exists a
unique g ∈ G, so that y = g · x.

(e) freely discontinuous if every x ∈M has a neighbourhood Ux such that
g(Ux) ∩ Ux = ∅ for all g ∈ G \ {ε}.

(f) continuous if the left action is continuous.

(g) proper if (g, x) 7→ (x, g · x) is a proper map: for two given compact subsets K1,K2

of M the set {g ∈ G | g(K1) ∩K2 6= ∅} is compact.

(h) properly discontinuous if the set {g ∈ G | g(K1) ∩K2 6= ∅} for every two compact
subsets K1,K2 of M is �nite.

Remarks 5.1.1.

(i) If G is a discrete group, properness of G is equivalent to proper discontinuity of G
(see [Lee13, Lem.21.11]).

(ii) Free discontinuity of a group action in (e) can be formulated in terms of two group
elements: a group action is (freely) discontinuous if every x ∈M has a neighbourhood
Ux such that g(Ux) ∩ h(Ux) = ∅ for all g, h ∈ G with g 6= h.

Let (M,p,X) be a covering and f an automorphism on M . This automorphism is called
deck transormation if it preserves the covering map, i.e. p ◦ f = p. We denote the set of
deck transformations on M with respect to the covering p with Deck(M,p,X); this is a
subgroup of the group of automorphisms on M . Following [Lee11, Chap.12] we can sum
up the following properties of deck transformations:

(1) Deck(M,p,X) acts freely on M by homeomorphisms.

(2) Deck(M,p,X) acts transitively on each �bre of the covering if and only if the covering
map is normal, i.e. for every x ∈ X the subgroups p∗(Π1(M,m)) are the same for
all m ∈ p−1(x).

The orbit of a point m ∈ M is the set of all points in M such that it can be related to
m with an element in G through left action: G ·m := {g ·m | g ∈ G} ⊂ M . If the group
action G is transitive, there exists only one orbit such that G ·m = M for all m ∈M . The
orbit space is then de�ned to be the quotient18 of the action: M/G := {G ·m |m ∈M}.
The quotient map M → M/G becomes a covering map in such a way that the group of
deck transformations coincides with G.

Theorem 5.1.2 (Covering Space Quotient Theorem, cf. Theorem 12.14 in [Lee11]). Let
M be a connected and locally path-connected space with e�ective action of a group G on
M by homeomorphisms. The quotient map q : M → M/G is a normal covering map
with Deck(M, q,M/G) = G if and only if the group acts properly discontinuous on M by
homeomorphisms.

18It is common to discern the orbits spaces for left and right actions with G/M respectively M/G. We don't
distinguish between these two designations since we have restricted ourselves to left actions.
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Quotient maps with respect to G, which are normal coverings as in this theorem, are
called Galois coverings and the corresponding group G Galois group. We want to extend
this to smooth manifolds for which we recapitulate some facts about smooth covering maps:

(1) A topological covering map is a smooth covering map if and only if it is a local
di�eomorphism. If the covering map is in addition injective, the covering map is a
di�eomorphism.

(2) Suppose X is a smooth and connected manifold and p : M → X a topological
covering map, then M is a topological manifold with unique smooth structure such
that p is a smooth covering map. If X is furthermore a manifold with boundary dX,
then also M is a topological manifold with boundary dM = p−1(dX).

(3) Given two non-empty connected smooth manifolds with or without boundary M
and X and a smooth covering map p : M → X. The deck transformation group
Deck(M,p,X), equipped with the discrete topology, is a zero-dimensional Lie group,
acting smoothly and freely on M . Furthermore, Deck(M,p,X) acts properly on M .

See [Lee13, Prop.4.33] for (1), [Lee13, Prop.4.40/41] for (2), and [Lee13, Prop.7.23] as
well as [Lee13, Prop.21.12] for (3). Any group with discrete topology can be considered
as discrete group. If in addition the group is �nite or countably in�nite, it becomes a
zero-dimensional Lie group which de�nes the notion discrete Lie group. The following fact
assures that for these groups G the orbit space is again a smooth manifold and the quotient
map a Galois covering.

Proposition 5.1.3 (Quotient Manifold Theorem, discrete Lie group, cf. Theorem 21.13 in
[Lee13]). If M is a connected smooth manifold and G a discrete Lie group, acting smoothly,
freely and properly on M , the orbit space is a topological manifold and has a unique smooth
structure such that the quotient map becomes a smooth Galois covering.

The main geometric objects in these thesis are Galois coverings which allow to extend
index theory on compact manifolds to some non-compact manifolds under a certain addi-
tional requirement: a group action on M with respect to G is cocompact if there exists a
subspace A ⊂ M such that M = G · A. Cocompactness is equivalent to a compact orbit
space M/G if the action is properly discontinuous.

5.1.2. Γ-manifolds

From now on we denote with Γ a discrete group which acts freely, freely discontinuous and
cocompactly on a non-compact manifold M by di�eomorphisms. We reserve the notion of
Galois groups only for these kind of discrete groups.

De�nition 5.1.4. A connected manifold M is called Γ -manifold if it is a Galois covering
with respect to a cocompactly Galois group Γ .

Proposition 5.1.3 assures that the orbit space M/Γ as base of the covering is again a
smooth manifold. We also writeMΓ forM/Γ . Examples of such manifoldsM are universal
coverings of compact manifolds X where Γ = Π1(X) is the fundamental group which acts
by deck transformations. A more concrete example is M = Rn and the n-Torus X = Tn
with fundamental group (Zn,+). From now on we designate the quotient map

lΓ : M → MΓ (5.1)
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as covering map. If the Γ -manifold M is equipped with a smooth and complex vector
bundle E with projection π : E → M , one can de�ne an action of Γ on the vector bundle
E through the map

πΓ |p : Ep → Eγp (5.2)

for all p ∈ M,γ ∈ Γ . We presuppose that this map is a linear isomorphism, such that
the action on E covers the action on M , and that the projection π is Γ -equivariant, i.e.
π(γp, vγp) = γπ(p, vp) for all p,γ, and vp vector at p. According to [Lee13, Exc.21-8] we
can view E as normal covering of a smooth vector bundle over M/Γ which we denote by
E/Γ . We follow the convention from our main reference [Shu] and call E a Γ -vector bundle
if it is a vector bundle over a Γ -manifold such that E is the pullback bundle l∗Γ (E/Γ) of
a vector bundle E/Γ over the compact base M/Γ . We can furthermore extend πΓ |p to
an isometry by introducing a Hermitian inner product

(
•
∣∣ • )

Ep
on each �bre Ep for

p ∈M . This is either already given on E or it is induced as pullback of a bundle metric on
E/Γ . In order to extend (5.2) to an isometry, we have to require that the bundle metric is
Γ -invariant: (

•
∣∣ • )

Eγp
=
(
•
∣∣ • )

Ep
∀γ ∈ Γ , p ∈M . (5.3)

In a similar way we can equipp M with a positive, Γ -invariant smooth density dµ:

dµ(γp) = dµ(p) ∀γ ∈ Γ , p ∈M . (5.4)

This can be either directly obtained by lifting a positive smooth density on M/Γ or with
a metric on T (M/Γ) which induces a Γ -invariant metric on TM and thus a Γ -invariant
smooth density on M .

The action of a group G on a topological space by homeomorphisms implies the notion
of a fundamental domain which is, loosely speaking, a set of representatives for the group
action.

De�nition 5.1.5. An open subset F of a topological set M , on which a group G acts on,
is called fundamental domain of the action if it is disjoint from all its translates by G (i.e.
g(F) ∩ F = ∅ for all g ∈ G \ {ε}) and

M \
⋃
g∈G

g(F)

has measure zero.

The standard example of such a domain is the n-square F = [0, 1)n in M = Rn with
transformation group G = (Zn,+). If the action is freely discontinuous, the fundamental
domain contains the free regular set, being the largest subset in X on which the action is
freely discontinuous. It is an open set which is transformed by G into disjoint copies and
as good as the fundamental domain in representing the orbits. With this foreword and
Remarks 5.1.1 (ii) we can reformulate the requirements for a fundamental domain F of Γ :
F is an open subset in M such that

(a) (γ1F) ∩ (γ2F) = ∅ ∀γ1,γ2 ∈ Γ ⇒ γ1 6= γ2

(b) M =
⋃
γ∈Γ

γF (c) F \ F is a null set.
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Property (a) re�ects the property of containing or coinciding with the free regular set of
the Γ -action. Moreover, these properties imply that

M ' Γ ×F , (5.5)

i.e. M can be viewed as principal Γ -bundle.

The compactness of the orbit space allows to de�ne a Γ -invariant locally �nite open cover-
ing and a Γ -invariant partition of union subordinated to this open covering. Since M/Γ is
compact, one can take a �nite covering by open balls B̊j , j ∈ J �nite index set, such that

M/Γ =
⋃
j∈J

B̊j .

These open balls can be lifted to M which de�nes an in�nite, but countable covering for
M due to the countability of Γ :

M =
⋃
j∈J
γ∈Γ

γ(B̊j) . (5.6)

A subordinated partition of unity (γB̊j , φj,γ)j∈J
γ∈Γ

can be constructed by taking compactly

supported functions φj,γ ∈ C∞c (γB̊j ,R≥0) which satisfy φj,γ(p) = φj,ε(γ
−1p) as well as∑

j∈J
γ∈Γ

φj,γ = 1 . (5.7)

Remarks 5.1.6.

(i) If we compare property (b) in the re�ned characterisation of the fundamental domain
with (5.6), we observe that the closure F of the fundamenmtal domain F of the group
action is in fact the compact orbit space M/Γ . Thus, F is a dense subspace in M/Γ .

(ii) We observe from (5.6) by comparing with (3.47) that Γ -manifolds are indeed exam-
ples of manifolds of bounded geometry. The radii-condition on the functions for the
partition of unity in Lemma 3.3.2 is replaced with the assumption on Γ to act freely
discontinuous.

5.1.3. Galois coverings and pseudo-Riemannian manifolds

We give some few remarks about coverings and pseudo-Riemannian manifolds; we follow
the material of [Bau81, Sec.2.3] and [O'N83, p.191]. We specify afterwards to globally
hyperbolic coverings which are going to play an important role in the coming analysis.

De�nition 5.1.7. A pseudo-Riemannian covering map is a covering map of pseudo-
Riemannian manifolds that is a local isometry.

The isometry property is required to obtain a pseudo-Riemannian metric on the covering:
if p : (M1, g1) → (M2, g2) is a covering map, then the exigence of p to be a local isometry
implies that the pseudo-Riemannian metrics are related by the pullback metric (g1 = p∗g2)
and both metrics have the same signatures. Every local isometry onto M2 lifts to a local
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isometry onto M1 through p, implying that any deck transformation is a local isometry
since they are di�eomorphic to the lift of the identity. We have the following facts:

(1) If (M2, g2) is a connected and pseudo-Riemannian manifold and (M1, g1) a pseudo-
Riemannian covering, the group Deck(M1, p,M2) becomes a properly discontinuous
group of isometries of M1.

(2) If (M1, g1) is simply connected, the pseudo-Riemannian metric g1 is time and space-
oriented if g2 does.

(3) If G is a properly discontinuous group of isometries of a pseudo-Riemannian manifold
M , the covering map q : M → M/G is a pseudo-Riemannian covering with M/G
as pseudo-Riemannian manifold with the same signature. If M is connected, then
Deck(M, q,M/G) = G ( [O'N83, Cor.7.12]).

Hence we don't need to impose further modi�cations than the assumption that the cover-
ing maps are local isometries.

We focus on a globally hyperbolic manifold M which is equipped with a Γ -invariant
Lorentzian metric and a Cauchy hypersurface. As M is di�eomorphic to T (M) × Σ, one
could consider Γ -actions on either the whole manifold or on the temporal and the spatial
part separately. A temporal Γ -manifold is a Γ -manifold where the action is induced by a
group Γ , acting on the time domain T (M) as Γ -manifold with closed base. Analogously
a spatial Γ -manifold is a Γ -manifold where the action is induced by a group Γ , acting on
the hypersurface as Γ -manifold. The Γ -invariance of the metric is then induced by the
Γ -invariance of the Riemannian metric of the Cauchy hypersurface. The corresponding
canonical projections are

lΓ ,t : M → T (M)/
Γ × Σ and lΓ ,s : M → T (M)× Σ/

Γ . (5.8)

Remark 5.1.8. The temporal Γ -manifolds might come with conceptual problems, depend-
ing on T (M). If the the orbit space is closed, the resulting Lorentzian manifold is temporal
closed, inducing closed timelike geodesics or the possibility of closed timelike curves such
that one can not expect that the global hyperbolicity property is preserved. From the an-
alytic point of view they cause non well-posed initial value problems and violate causality
conditions such that they become unsuitable for applications in General Relativity, too.

We will only consider the covering lΓ ,s for this reason and we denote with lΓ from now on
the covering lΓ ,s; the orbit M/Γ for these spatial coverings coincides with T (M)× (Σ/Γ).
The facts and results at the beginning of this subsection assure that the covering is a time
as well space-oriented Lorentzian manifold if and only if the base does. It is left to clarify
how the property of global hyperbolicity is preserved under those spatial covering maps.
The following result shows that in fact the covering M becomes globally hyperbolic if the
base of the covering is already globally hyperbolic.

Lemma 5.1.9 (c.f Lemma 4.1. in [GH97]). Let M be a globally hyperbolic spacetime and

M̃ its universal covering with metric g̃ , induced by the metric g on M , then M̃ is also
globally hyperbolic.
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The proof in the given reference shows that if Σ is a Cauchy hypersurface in M , the
preimage of Σ under the covering map induces a Cauchy hypersurface Σ̃ ⊂ M̃ . Hence
the Galois coverings lΓ (lΓ ,s in (5.8)) indeed preserve the global hyperbolicity from the
compact base.

T (M)

τ1

τ2

τ3

Στ1

Στ2

Στ3

LΓ ,s|τ1

LΓ ,s|τ2

LΓ ,s|τ3

Στ2/Γ

Στ1/Γ

Στ3/Γ

T (M)

τ1

τ2

τ3

Figure 5.2.: Schematic illustration of a spatial Γ -manifold.

5.2. Von Neumann-algebra and Fredholm theory according to
a Γ-action

We �rst introduce some general aspects of von Neumann algebras and specify later on
those algebras which are associated with a discrete group. We introduce the modules and
operators of our interest in this setting.

5.2.1. Von Neumann algebras - general aspects and in association with
discrete groups

Next to our main reference [Shu] we refer to [Bla06] or [KR83] for the general aspects of
Banach and von Neumann algebras.

We recall the de�nition of a C∗-algebra. Given a Banach space (A, ‖•‖A) and a C-anti-
linear map ∗ : A → A as per a 7→ a∗ which is an isometric involution, i.e. a∗∗ = a,
(a◦ b)∗ = b∗ ◦a∗ and ‖a∗‖A = ‖a‖A for a, b ∈ A. If the norm on A is submultiplicative (i.e.
‖a ◦ b‖A ≤ ‖a‖A ‖b‖A for a, b ∈ A) and satis�es ‖a∗ ◦ a‖A = ‖a‖2A, the triple (A, ‖•‖A , ∗)
is a C∗-algebra. If A contains a unit element, the algebra is called unital. Any quotient
of a C∗-algebra with one of its two-sided ideals and any of its subalgebra, which is closed
with respect to the involution, becomes a C∗-algebra on its own right.
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The most prominent example of a unital C∗-algebra is the set of bounded linear operators
B(H) on a Hilbert space H with operator norm (2.2), identity 1H and involution is given
by adjoining the operator. In comparison, the set of bounded linear operators B(H1,H2)
between di�erent Hilbert spaces H1, H2 is not a C∗-algebra because adjoining an element
in B(H1,H2) gives an element in B(H2,H1) and thus de�nes no involution. The set of
compact operators K (H) is a closed subalgebra of B(H) and due to the characterisa-
tion theorem of Schauder the adjoint of a compact operator is again compact. Hence it
is another example of a C∗-algebra. As it is also a two-sided ideal, the Calkin-algebra
Q(H) := B(H)/K (H) becomes a C∗-algebra, too. We �x the C∗-algebra to be B(H)
and consider a subspace N . The commutant of N is the subspace

N ′ := {A ∈ B(H) |AB = BA ∀B ∈ N } . (5.9)

It is a closed and unital subalgebra of B(H). The bicommutant of N is N ′′ := (N ′)′.
Like the question, how the dual of the dual of a space is related to the space itself, we
could ask how the bicommutant of N is related to N . This leads to the concept of a von
Neumann algebra.

De�nition 5.2.1. A subalgebra N ⊂ B(H) with 1H ∈ N and A∗ ∈ N for all A ∈ N
is a von Neumann algebra if N ′′ = N .

The Bicommutant Theorem of von Neumann implies that a von Neumann algebra is
weakly and thus strongly and norm closed. We collect some properties of these algebras.

Proposition 5.2.2 (see section 2.5 in [Shu]). Let N be a von Neumann algebra.

(1) A subset M ⊂ B(H) is a von Neumann algebra if and only if it is a commutant of
a subset M ⊂ B(H) with A ∈M implying A∗ ∈M .

(2) If A ∈ N is self-adjoint (i.e. A = A∗ ∈ N ), then the spectral projection PI(A) :=
χI(A) are also elements in N for all intervals I ⊂ R.

(3) N is the smallest von Neumann algebra, containing the set

P (N ) :=
{
P ∈ N |P 2 = P = P ∗

}
.

(4) A ∈ N if and only if U−1AU = A for all unitarities in N ′.

(5) Let A ∈ B(H) has polar decomposition A = US, then A ∈ N if and only if U ∈ N
and S ∈ N .

Let H1 and H2 be two Hilbert spaces. Taking an orthonormal basis {ei}i∈J in H2 allows
us to decompose the tensor product of Hilbert spaces into

H1 ⊗H2 =
⊗
j∈J
H1 ⊗ {ej} .

We can de�ne matrix elements for an operator A ∈ B(H1⊗H2) with the help of projections
πj : H1 ⊗ H2 → H1 ⊗ {ej} by setting Ajk := πjAπk which are now viewed as bounded
operators from H1⊗{ek} to H1⊗{ej}. Hence the operator A can be represented as in�nite
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block matrix (Ajk)j,k∈J with entries in B(H1). The tensor product of a von Neumann
algebra and B(H1) is de�ned as

N ⊗B(H2) = {A ∈ B(H1 ⊗H2) |Ajk ∈ N ∀ j, k ∈ J} . (5.10)

A similar construction works if we decompose H1 ⊗H2 with an orthonormal basis of H1.
The Grassmannian of a von Neumann algebra N is the set of all subspaces in H which
are the range of projections in N :

GrN (H) := {V ⊂ H |V = ran (P ) for aP ∈ P (N )} .

The map P 7→ ran (P ) implies an isomorphism P (N ) ∼= GrN (H) which leads to the
concept of a dimension function for elements in GrN (H):

dimN : GrN (H)→ [0,∞] .

The construction of a unique dimension function is given by �xing a trace on a von Neu-
mann algebra. Properties of these traces as well as this dimension function are going to be
introduced later when we consider a special choice of a von Neumann algebra which we are
going to use in the forthcoming analysis. We close this general point of view by recalling
the classi�cations of factors: a factor is a von Neumann algebra N which satis�es

N ∩N ′ = {B ∈ N |AB = BA ∀A ∈ N } = {λ1H |λ ∈ C} .

According to the range of the dimension function, �xed by a trace, one can classify di�erent
types of factors.

De�nition 5.2.3. Suppose N is a factor and n ∈ N; N is of type

(a) In (�nite and discrete) if dimN (GrN (H)) ∈ {1, ..., n};

(b) I∞ (semi�nite and discrete) if dimN (GrN (H)) ∈ {1, ...,∞};

(c) II1 (�nite and continuous) if dimN (GrN (H)) ∈ [0, 1];

(d) II∞ (semi�nite and continuous) if dimN (GrN (H)) ∈ [0,∞];

(e) III (in�nite) if there exists no trace on N .

An example of a type In-factor is the set of square matrices in Cn; B(H) itself is a
type I∞-factor if H is in�nite-dimensional; otherwise19 it is a type In2-factor as B(H) ∼=
Mat(n,C) for dimC(H) = n. It is known that factors of type II∞ are tensor prod-
ucts of type II1-factors with B(H); these tensor products are �nite type factors if H is
�nite-dimensional. A deeper insight of classi�cations is given in [Shu, Sec.2.28] or [Bla06,
Sec.III.1.4]. The type III-factors can be even more subdivided into further classes. The
interested reader shall consult [Tak77] or [Loi92] for more details. We now want to specify
to a von Neumann algebra which we will use in the Γ -setting. Let u, v be two functions
Γ → C; we de�ne an inner product which is similar to the inner product on l2(N):〈

u
∣∣ v〉

`2(Γ)
:=
∑
g∈Γ

u(g)v(g) . (5.11)

19Mat(n,C) = Matn×n(C) is the algebra of complex (n× n)-matrices.
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Motivated from this resemblance, we de�ne the Hilbert space of l2-functions to be

`2(Γ) :=
{
u : Γ → C |

〈
u
∣∣u〉

`2(Γ)
<∞

}
. (5.12)

The group action Γ induces left and right translation operators on `2(Γ), de�ned by

(lγ1u)(γ2) = u(γ−1
1 γ2) and (rγ1u)(γ2) = u(γ2γ1) (5.13)

for γ1,γ2 ∈ Γ and a function u : Γ → C. They obey

(lγ)−1 = lγ−1 , (rγ)−1 = rγ−1

lγ1γ2 = lγ1 lγ2 rγ1γ2 = rγ1rγ2 .
(5.14)

The most important property is that (5.13) are unitary operators which follows from the
inner product in `2(Γ) and (5.14):

(lγ)∗ = lγ−1 and (rγ)∗ = rγ−1 .

Herewith, γ 7→ lγ and γ 7→ rγ become unitary representations of the discrete group
in `2(Γ). We denote with Nr(Γ) the smallest von Neumann algebra in B(`2(Γ)) which
contains the set {rγ |γ ∈ Γ} and Nl(Γ) as the smallest von Neumann algebra which contains
{lγ |γ ∈ Γ}. Since `2(Γ) is a Hilbert space, one can introduce an orthonormal basis {δγ}γ∈Γ
which satis�es δγ1(γ2) = 1 if γ1 = γ2 and zero otherwise. Applying the left and right
translation operators to this basis leads to

lγ1δγ2 = δγ1γ2 and rγ1δγ2 = δγ2γ
−1
1

(5.15)

which can be checked as follows: we compute (5.11) with u = δγ3 and v = lγ1δγ1 for
γ1,γ2,γ3 ∈ Γ , then〈

δγ3

∣∣ lγ1δγ2

〉
`2(Γ)

=
∑
g∈Γ

δγ3(g)(lγ1δγ2)(g) = (lγ1δγ2)(γ3) = δγ2(γ−1
1 γ3) ;

the inner product is non-zero for γ3 = γ1γ2. As δγ is orthonormal and the left translation
operators unitary, we have the �rst equivalence. The second relation with the right trans-
lation operator follows similarly. Each operator A ∈ B(`2(Γ)) can be related to a matrix
element by Aγ1,γ2 =

〈
Aδγ1

∣∣ δγ2

〉
`2(Γ)

for γ1,γ2 ∈ Γ . In [Shu, Thm.2.10] it is proven that

the von Neumann algebras Nl(Γ) and Nr(Γ) take the form

Nl(Γ) =
{
A ∈ B(`2(Γ)) |Aaγ,bγ = Aa,b ∀ a, b,γ ∈ Γ

}
,

Nr(Γ) =
{
A ∈ B(`2(Γ)) |Aγa,γb = Aa,b ∀ a, b,γ ∈ Γ

} (5.16)

with (Nl(Γ))′ = Nr(Γ) and (Nr(Γ))′ = Nl(Γ). It is proven in the same reference that these
two von Neumann algebras are factors if and only if all conjugacy classes in Γ/ {ε} are
in�nite. Those groups Γ , for which this is true, are called i.c.c-groups (in�nite-conjugacy-
class). For an operator A in either Nl(Γ) or Nl(Γ) one can de�ne a trace by

τΓ (A) :=
〈
Aδγ

∣∣ δγ〉`2(Γ)
=
〈
Aδε

∣∣ δε〉`2(Γ)
(5.17)
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for γ ∈ Γ ; the de�nition is independent of the choice of γ which explains the second
equivalence.

Lemma 5.2.4 (Lemma 2.6.1 in [Shu]). Let N +
r,l (Γ) := {A ∈ Nr,l(Γ) |A positive de�nite};

the trace τΓ as map from N +
r,l (Γ) to [0,∞] satis�es the following conditions:

(1) τΓ is linear: τΓ (aA+ bB) = aτΓ (A) + bτΓ (B) for all a, b ∈ R≥0 and A,B ∈ N +
r,l (Γ).

(2) τΓ is tracial: τΓ (A
∗A) = τΓ (AA

∗) for A ∈ Nr,l(Γ).

(3) τΓ is faithful: τΓ (A) = 0 for A ∈ N +
r,l (Γ) implies A = 0.

(4) τΓ is normal: if {Ai}i∈J is a sequence of operators in N +
r,l (Γ) with Ai → A ∈ N +

r,l (Γ),
then τΓ (Ai)→ τΓ (A).

(5) τΓ is invariant under conjugation with unitary operators: τΓ (A) = τΓ (U
−1AU) for

any A ∈ N +
r,l (Γ) and unitary maps U ∈ Nr,l(Γ).

One observes that this trace shares the same properties as the trace in (2.6) if restricted
on B+(H) = {A ∈ B(H) |A is positive de�nite}. For Nr(Γ) or Nl(Γ) the trace (5.17)
gives rise to a dimension function dimτ:

dimτ(V ) := τΓ (PV )

where V ∈ GrNr,l(Γ)(`
2(Γ)) and PV ∈ P (Nr,l(Γ)). It is shown in [KR83, Prop.6.7.4] that

Nr(Γ) and Nl(Γ) are �nite von Neumann algebras20. If Γ is in addition an i.c.c.-group,
they are factors of type II1, according to Theorem 6.7.5 in the same reference.

Repeating the construction of the tensor product of a von Neumann algebra and the
set of bounded operators, we take an ONB from `2(Γ) which then induces an orthogonal
decomposition of the tensor product

`2(Γ)⊗H =
⊗
γ∈Γ

(δγ ⊗H) .

This decomposition implies that any operator A ∈ B(`2(Γ)⊗H) can be represented with
matrix entries Aγ1,γ2 ∈ B(H) for γ1,γ2 ∈ Γ , de�ned by〈

Aγ1,γ2x
∣∣ y〉H :=

〈
A(δγ1 ⊗ x)

∣∣ δγ2 ⊗ y
〉
`2(Γ)⊗H (5.18)

for x, y ∈ H. From [Shu, Thm.2.13.2] we use that

Nl(Γ)⊗B(H) :=
{
A ∈ B(`2(Γ)⊗H) |Aaγ,bγ = Aa,b ∀ a, b,γ ∈ Γ

}
,

Nr(Γ)⊗B(H) :=
{
A ∈ B(`2(Γ)⊗H) |Aγa,γb = Aa,b ∀ a, b,γ ∈ Γ

}
.

(5.19)

are again von Neumann algebras. If Nl(Γ) and Nr(Γ) are factors, these tensor products
are also factors, but now of type II∞ as they are tensor products of type II1-factors and
the type I∞-factor B(H) for an in�nite-dimensional Hilbert space H. As the traces in

20We also suggest the introduction of [Tay76] for more details as well as some analysis about the types if
one replaces Γ with a suitable locally compact, but not necessarily discrete groups.
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(5.17) and (2.6) share the same properties, the tensor product do have them as well and
we de�ne the Γ -trace to be the trace on tensor products (5.19):

TrΓ (A) := (τΓ ⊗ Tr (A)) = Tr (Aε,ε) . (5.20)

5.2.2. Hilbert Γ-modules and Γ-dimension

Given a Hilbert space H and a C∗-algebra A of operators, acting on H . We call this
space a (general) Hilbert A-module if H is a left or right A-module with A-valued inner
product

〈
·
∣∣ · 〉

H
: H ×H → A which is a positive de�nite and Hermitean sesquilinear

form, and is conjugate-linear with respect to A:〈
u
∣∣ va〉

H
=
〈
u
∣∣ v〉

H
a if H is a right A-module, or〈

u
∣∣ av〉

H
=
〈
u
∣∣ v〉

H
a if H is a left A-module.

for u, v ∈ H and a ∈ A. Any ordinary Hilbert space H is a Hilbert C-module. We refer
to [LS95, Chap.1] for more informations. We focus on the C∗-algebra B(`2(Γ)) ⊗B(H).
We abbreviate any left [B(`2(Γ)) ⊗B(H)]-module as (general) Hilbert Γ -module. Thus,
any Hilbert Γ -module carries a unitary left action representation Lγ of Γ which generalises
the left translation operator, introduced for `2(Γ) in (5.13).

De�nition 5.2.5. Let H and H be Hilbert spaces;

(a) A general Hilbert Γ -module H is called free if it is unitarily isomorphic to a Γ -module
`2(Γ)⊗H and the representation of Γ is given by γ 7→ lγ ⊗ 1H for γ ∈ Γ .

(b) A general Hilbert Γ -module H is projective if it is unitarily isomorphic to a closed
Γ -invariant subspace in `2(Γ)⊗H.

The unitary isomorphisms are understood as unitary maps, commuting with the action
of Γ . We collect some facts about Γ -modules (see in [Shu] the results Proposition 2.16,
Corollary 2.16.1, Corollary 2.16.2).

Proposition 5.2.6.

(1) Let V1, V2 be general Hilbert Γ -modules and A : V1 → V2 a linear topological Γ -
isomorphism of Γ -modules, then there exists a unitary Γ -isomorphism U : V1 → V2

of Hilbert Γ -modules.

(2) If V is a general Hilbert Γ -module and there exists a topological Γ -isomorphism onto
a closed Γ -submodule of a free Hilbert Γ -module, then V is in fact a projective Hilbert
Γ -module.

This is a consequence of Proposition 5.2.2 (5). The notion topological Γ -isomorphism
means that the topological isomorphism commutes with the left action representation.
Both properties (1) and (2) indicate that it is enough to consider topological isomorphisms
in De�nition 5.2.5. The focus will rely on free and projective Hilbert Γ -modules. Certain
subspaces carry the structure of a Hilbert Γ -module which we will show for later purposes.

Lemma 5.2.7. Let H ,H1,H2 be projective Hilbert Γ -modules; the subspaces H1 ⊕H2,
W⊥ and H /W for any closed, Γ -invariant subspace W ⊂ H are projective Hilbert Γ -
(sub)modules.
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Proof. Let γ be any element in Γ . One needs to check that these subspaces are themselves
Γ -invariant Hilbert spaces. The Hilbert space characters follow easily from functional anal-
ysis since any closed subspace of a Hilbert space is a Hilbert space. The direct sum of two
Hilbert spaces is again a Hilbert space; the same holds true for the quotient of a Hilbert
space with one of its closed subspaces and for the orthogonal complement.

Since H1 and H2 are both Hilbert Γ -modules, they could have in general di�erent left
action representations with respect to the same group: let {Lγ|γ ∈ Γ} denote the left ac-
tion representation on H1 and {Lγ|γ ∈ Γ} the left action representation on H2. The left
action representation on the direct sum is the direct sum of the left action representation,
i.e. Γ induces a diagonal action on both Hilbert Γ -modules. As the ranges of the left action
representations are contained in their Hilbert Γ -module, we have

(Lγ ⊕ Lγ)(H1 ⊕H2) = Lγ(H1)⊕ Lγ(H2) ⊆H1 ⊕H2

for any γ ∈ Γ . Hence the direct sum is Γ -invariant and becomes a general Hilbert Γ -module.
The orthogonal complement is also a Γ -invariant subpace: let {Lγ|γ ∈ Γ} denote the left
action representation on H ; suppose v ∈ W⊥, i.e. v ∈ H such that

〈
v
∣∣u〉

H
= 0 for all

u ∈W . Then Lγv ∈W⊥ since the action of Γ is unitary:〈
LΓv

∣∣Lεu〉H =
〈
Lγv

∣∣Lγ(Lγ)−1u
〉
H

=
〈
v
∣∣ (Lγ)−1u

〉
H

= 0 ∀u ∈W

and so (Lγ)−1u ∈ W since it is a Γ -submodule. One concludes that Lγ(W⊥) ⊆ W⊥,
implying W⊥ to be a general Hilbert-Γ -submodule. The quotient Hilbert space consists of
equivalence classes for each element in H where two Hilbert vectors are equivalent if the
di�erence is an element in W . We �rst check that this equivalence relation is also true for
transformed Hilbert vectors: as H is a Hilbert Γ -module the elements Lγv1, Lγv2 are in
Lγ(H ) ⊆ H for v1, v2 ∈ H and Lγ(v1 − v2) ∈ Lγ(W ) ⊆ W since W is a Γ -submodule.
As the group action is linear, we have

Lγ(v1 − v2) = (Lγv1 − Lγv2) ∈W .

Thus each equivalence class is Γ -invariant: Lγ (H /W ) ⊆H /W .

Hence all Hilbert subspaces in the claim are Γ -invariant and thus carry the structure of
a Hilbert Γ -module. It is left to check that they are projective. Let H ,H1 and H2 be
projective Hilbert Γ -modules such that they are unitarily related to closed submodules of
`2(Γ)⊗H, `2(Γ)⊗H1 and respectively `2(Γ)⊗H2 where H,H1 and H2 are Hilbert spaces.
As any isomorphism is a closed map and these unitary isomorphisms commute with the
Γ -action, we only need to check that the subspaces in the claim are isomorphic to a closed
subset in `2(Γ)⊗ (H1 ⊕H2) and respectively `2(Γ)⊗H

The direct sum of the two unitary Γ -isomorphisms implies a unitary Γ -isomorphism on
the direct sum of the closed Γ -submodules which is again a closed Γ -submodule of

(`2(Γ)⊗H1)⊕ (`2(Γ)⊗H2) ∼= `2(Γ)⊗ (H1 ⊕H2) .

Projectivity ofW⊥ follows from restricting the unitary Γ -isomorphism onW⊥ which again
maps to a closed subspace in `2(Γ) ⊗H. The commuting of the Γ -isomorphisms with the
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group action implies Γ -invariance of this closed subspace such that W⊥ becomes a pro-
jective Hilbert Γ -submodule. Since W⊥ and H /W are Γ -invariant, the known isomorphy
W⊥ ∼= H /W due to closedness of W is Γ -invariant and induces a unitary Γ -isomorphism
according to Proposition 5.2.6 (1). AsW⊥ is already a projective Hilbert Γ -module, H /W
becomes a projective Hilbert Γ -module due to Proposition 5.2.6 (2).

Consider the space of bounded operators on a general Hilbert Γ -module H which com-
mute with the left action representation Lγ for all γ ∈ Γ :

BΓ (H ) := {A ∈ B(H ) |ALγ = LγA ∀γ ∈ Γ} . (5.21)

This is again a von Neumann algebra according to Proposition 5.2.2 (1) as BΓ (H ) is
the commutant of the space {Lγ |γ ∈ Γ} which is due to the unitarity of the left action
representation closed under the involution: Lg ∈ {Lγ |γ ∈ Γ} implies (Lg)

∗ ∈ {Lγ |γ ∈ Γ}
for all g ∈ Γ . If we replace H with the tensor product `2(Γ)⊗H with Hilbert space H, we
gain

BΓ (`
2(Γ)⊗H) =

{
A ∈ B(`2(Γ)⊗H) |ALγ = LγA ∀γ ∈ Γ

}
. (5.22)

The matrix representation Ag,h of A for g, h ∈ Γ and the unitarity of the left action
representation show that

Aγg,γh =
〈
Aδγg

∣∣ δγh〉`2(Γ)

(5.15)
=

〈
Alγδg

∣∣ lγδh〉`2(Γ)

(∗)
=
〈
lγAδg

∣∣ lγδh〉`2(Γ)

=
〈
Aδg

∣∣ δh〉`2(Γ)
= Ag,h

where we used the commuting of A with the left action representation in (∗). Comparing
with (5.19) shows that in fact (5.22) reduces to

BΓ (`
2(Γ)⊗H) = Nr(Γ)⊗B(H) . (5.23)

Thus, if H is in fact a free Hilbert Γ -module which is unitarily isomorphic to `2(Γ) ⊗ H
with Hilbert space H, then this unitary Γ -isomorphism induces a unitary Γ -isomorphism
between (5.21) and (5.23):

BΓ (H ) ∼= Nr(Γ)⊗B(H) . (5.24)

Let V be a Hilbert Γ -module which is unitarily isomorphic to a closed Γ -invariant subspace
W ⊂ `2(Γ) ⊗H. The orthogonal projection PW commutes with Lγ ⊗ 1H for every γ ∈ Γ
such that PW ∈ BΓ (`

2(Γ) ⊗ H) and thus PV ∈ BΓ (H ). The trace on the von Neumann
algebra (5.24) is given by (5.20). From [Shu, Thm.2.16] we recall that the trace does not
depend on the inclusion of V in `2(Γ)⊗H via W such that the Γ -dimension

dimΓ (V ) := TrΓ (PV ) = TrΓ (PW ) (5.25)

is well-de�ned and has the following properties.



5.2. VON NEUMANN-ALGEBRA ASSOCIATED TO A Γ -ACTION 79

Proposition 5.2.8. Let H , H1 and H2 be (free or projective) Hilbert Γ -modules; the
following properties are satis�ed by (5.25):

(1) dimΓ (H ) is independent of the inclusion H ⊂ `2(Γ)⊗H;

(2) dimΓ (`
2(Γ)) = 1, dimΓ ({0}) = 0 and dimΓ (`

2(Γ)⊗H) = dimC(H);

(3) dimΓ (H1 ⊕H2) = dimΓ (H1) + dimΓ (H2) for two orthogonal Γ -modules H1,H2;

(4) H1 ⊂H2 ⇒ dimΓ (H1) ≤ dimΓ (H2) and dimΓ (H1) = dimΓ (H2) ⇔ H1 = H2;

(5) dimΓ (H1) = dimΓ (H2) ⇔ H1 and H2 are unitarily Γ -isomorphic to each other;

(6) If Γ is �nite with cardinality |Γ |, then |Γ | dimΓ coincides with dimC; if Γ = {ε},
then dimΓ coincides with dimC.

The von Neumann algebra (5.21) motivates to de�ne bounded operators between two
di�erent Hilbert Γ -modules in the same way.

De�nition 5.2.9. Given two Hilbert Γ -modules H1, H2 with left action representations
{Lγ|γ ∈ Γ} respectively {Lγ|γ ∈ Γ} and A ∈ L (H1,H2), then we call A a

(a) Γ -operator if ALγ = LγA for all γ ∈ Γ ;

(b) Γ -morphism if A is a Γ -operator and A ∈ B(H1,H2).

The second part in the de�nition contains operators in (5.21) for H1 = H2 = H where-
fore we will denote the space of Γ -morphisms with BΓ (H1,H2). Note that in comparison
to (5.21) this space is not a von Neumann algebra !

The von Neumann setting for linear unbounded operators becomes slightly more deli-
cate. Let A ∈ L (H) has domain dom(A) := domH(A) and N ⊂ B(H) a von Neumann
algebra. We are looking for an algebra in L (H ) such that it contains the von Neumann
algebra N as subalgebra. In order to do so, we need to introduce the notion of a�liation.

De�nition 5.2.10 (De�nition 4.2.1 in [MvN36]). Let M be a subset of L (H) and N ⊂
B(H) a von Neumann algebra; an operator A ∈M is a�liated to N if U−1AU = A for
all unitary operators U ∈ N ′

If A ∈ B(H), then A is also a�liated with N . If A is a densely-de�ned, self-adjoint
operator, which is a�liated to N , and f : R→ C a Borel function, then f(A) is a�liated
to N and f(A) ∈ N if f is bounded.

In order to �nd a suitable subset in L (H), which is a ∗-algebra with the a�liation prop-
erty, we recall some basic facts about unbounded operators from Section 2.1. If we restrict
to closed operators, then the domain of these operators becomes a Hilbert space with the
graph norm as Hilbert space norm such that they map continuously between its domain
and H. Restricting to densely de�ned operators in addition implies that the domain is
dense in the Hilbert space and an adjoint operator is well-de�ned, closed and densely de-
�ned which suggests a well-de�ned involution operation. For the a�liation property we
need to understand the commutator of a linear densely de�ned and closed operators A
and an operator B ∈ B(H). These two operators commute if for any u ∈ dom(A) also
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Bu ∈ dom(A) such that ABu and thus [AB,BA]u are meaningful. It becomes necessary to
demand that B leaves the domain dom(A) invariant: B(dom(A)) ⊂ dom(A). So if we take
B to be unitary in B(H), we have B−1AB = A which gives us our a�liation condition if
B is in the commutant of N . This motivates the following de�nition.

De�nition 5.2.11. Let N ⊂ B(H) be a von Neumann algebra and A ∈ L (H); we say
that A is a N -a�liated operator if

(a) A is densely de�ned and closed;

(b) A is a�liated to N .

We now come back to our Γ -setting. Let H be a free Hilbert Γ -module and LΓ (H )
is the set of linear, Γ -invariant operators21 on H . The commutant B′Γ (H ) of the von
Neumann algebra (5.21) in H is the smallest von Neumann algebra which contains the
set {Lγ |γ ∈ Γ}. Proposition 5.2.2 (4) implies that the unitary operators in B′Γ (H ) are
exactly the unitary operators {Lγ |γ ∈ Γ}. Thus we can describe the BΓ (H )-a�liated
operators as those elements in L (H ) which are closed and densely de�ned Γ -operators
and write

CΓ (H ) := {A ∈ L (H ) |A closed and densely de�ned Γ -operator} .

In fact, according to [MvN36, Theorem XV] this set is a ∗-algebra which contains the von
Neumann algebra BΓ (H ). The commuting with the left action representation implies that
the domain of operators in CΓ (H ) is invariant under the action of Lγ for each γ ∈ Γ ; this is
in fact already true for operators in LΓ (H ). The closedness of operators in CΓ (H ) implies
that they are bounded on their domains. Their polar decomposition induces a unitary
Γ -isomorphism from domH (A) to H such that domH (A) becomes a projective Hilbert
Γ -module due to Proposition 5.2.6 (2). The graph of each operator in CΓ (H ) is a closed
subspace in H ⊕H which is a projective Hilbert Γ -module according to Lemma 5.2.7.
The Γ -invariance of the operator A ∈ CΓ (H ) and the invariance of the domain dom(A)
imply that

Lγ(Graph(A)) ⊂ Graph(A) ∀γ ∈ Γ .

Thus, the graph is Γ -invariant and in summary a projective Hilbert Γ -module.

These arguments for the graph and the domain do not depend on the ∗-algebra struc-
ture of CΓ (H ) and thus they carry over to the case where we could also take two di�erent
Hilbert Γ -modules H1,H2. We de�ne the sets

LΓ (H1,H2) := {A ∈ L (H1,H2) |ALγ = LγA ∀γ ∈ Γ}
and (5.26)

CΓ (H1,H2) := {A ∈ LΓ (H1,H2) | domH1(A) dense , Graph(A) closed inH1 ⊕H2} .

As long H1 6= H2, the last set is not a ∗-algebra! All made observations for closed and
densely-de�ned Γ -operators are then summarised as follows.

21Other authors use the terminology Γ -equivariant operator to stress that the operator intertwines the two
left translation representations. We stick with the notion of Γ -invariant operator.
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Lemma 5.2.12 (Lemma 3.8.4 in [Shu]). Let H1,H2 be Hilbert Γ -modules and A ∈
C (H1,H2), then

(1) A ∈ CΓ (H1,H2) if and only if Graph(A) is Γ -invariant with respect to the diagonal
action of Γ ;

(2) If A ∈ C (H1,H2), the domain (domH1(A), ‖•‖Graph(A)) becomes a projective Hilbert
Γ -module.

Certain subspaces with respect to Γ -operators do carry a Hilbert Γ -module structure
which we will show for later purposes.

Lemma 5.2.13. Let H1,H2 be Hilbert Γ -modules and A ∈ CΓ (H1,H2), then

(1) ker (A) is a projective Hilbert Γ -submodule of H1.

(2) If ran (A) is closed, then it is a projective Hilbert Γ -submodule of H2.

Proof. Let γ be any element in Γ and assume for simplicity that A ∈ BΓ (H1,H2). We
proceed as in the proof of Lemma 5.2.7. The kernel is always closed in H1 and the range
of A is closed in H2 by assumption such that the kernel and the range are Hilbert spaces.
We check that they are Γ -invariant due to the Γ -invariance of the operator A: let Lγ denote
the left action representation of Γ on H1 and let Lγ the left action representation on H2;

(1) suppose u ∈ ker (A), then the intertwining of A and the left action representation
shows that also Lγu ∈ ker (A):

Au = 0 ⇒ ALγu = LγAu = 0 ⇒ Lγ(ker (A)) ⊆ ker (A) .

(2) if v ∈ ran (A), then there exists a u ∈ H1 such that v = Au. Applying Lγ from the
left and using the commutation property of A gives

Lγv = LγAu = ALγu ⇒ Lγ(ran (A)) ⊆ {v ∈H2 | ∃w ∈ ran (Lγ) : v = Aw} .

But H1 is already a Hilbert Γ -module, so the unitary representation of Γ has range
in H1 such that

Lγ(ran (A)) ⊆ {v ∈H2 | ∃u ∈H1 : v = Au} = ran (A) .

Consequently, the kernel and the range of a Γ -morphism are Γ -invariant and thus carry the
structure of a Hilbert Γ -module. It is left to check that they are projective. Let H1 and
H2 as well as H1 and H2 be as in the proof of Lemma 5.2.7. As the unitary isomorphisms
of H1 to `2(Γ) ⊗ H1 respectively H2 to `2(Γ) ⊗ H2 commute with the Γ -action and are
closed maps, they map the closed subsets ker (A) ⊂H1 and ran (A) ∈H2 to closed subsets
in `2(Γ)⊗H1 respectively `2(Γ)⊗H2 and stay Γ -invariant due to Γ -invariance of the kernel
and the range of A; hence they become projective Hilbert Γ -submodules.

The arguments carry over to Γ -operators in CΓ (H1,H2) with little modi�cation: from
Section 2.1, the kernel and the range of unbounded operators are de�ned with their do-
mains. According to Lemma 5.2.12 (2), the domain of A in H1 is a projective Hilbert
Γ -module and the shown Γ -invariance holds true as the domain is Γ -invariant, too.
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5.2.3. Γ-operators and Γ-Fredholm theory

In the former subsection we already introduced the three spaces of operators BΓ (H1,H2)
after De�nition 5.2.9 as well as LΓ (H1,H2) and CΓ (H1,H2) in (5.26) for two Hilbert
Γ -modules H1 and H2. Fredholm operators in Γ -setting are introduced with the help of
Γ -ideals which we introduce �rst.

De�nition 5.2.14 (De�nition 3.10.4, 3.10.5 in [Shu], De�nition 2.5 in [Vai08]). Given an
operator A ∈ BΓ (H1,H2); the following operator spaces are Γ -ideals:

(a) A is a �nite Γ -rank operator (denoted by A ∈ RΓ (H1,H2)) if dimΓ (ran (A)) <∞.

(b) A is a Γ -Hilbert-Schmidt operator (denoted by A ∈ S 2
Γ (H1,H2)) if TrΓ (A∗A) <∞.

(c) A is a Γ -trace class operator (denoted by A ∈ S 1
Γ (H1,H2)) if TrΓ (|A|) <∞.

(d) A is a Γ -compact operator (denoted by A ∈ KΓ (H1,H2)) if A lies in the norm closure
of S 1

Γ (H1,H2) in B(H1,H2).

Remarks 5.2.15.

(i) ( [Shu, Lem.3.10.13(a)], [Vai08, Lem.2.6]) All introduced operators are right-ideals
over BΓ (H1) and left-ideals over BΓ (H2). They become two-sided ideals if H1 = H2.
We also have the following inclusions:

RΓ ⊂ S 1
Γ ⊂ S 2

Γ ⊂ KΓ ⊂ BΓ ⊂ CΓ ⊂ LΓ .

(ii) ( [Shu, Lem.3.10.13(b)]) An alternative de�nition for Γ -trace class operators is the
representation as a �nite sum of two Γ -Hilbert Schmidt operators: let J be a �nite
index set and {Aj}j∈J ,{Bj}j∈J collections of operators in S 2

Γ (H1,H2), then

C ∈ S 1
Γ (H1) ⇔ C =

∑
j∈J

B∗j ◦Aj .

If A ∈ BΓ (H1,H2), B ∈ BΓ (H2,H1) and either one of them is Γ -trace class or both
Γ -Hilbert-Schmidt, then AB ∈ S 1

Γ (H2), BA ∈ S 1
Γ (H1) and TrΓ (AB) = TrΓ (BA)

holds.

(iii) Γ -compact operators are in general not compact in the usual sense.

Let H1(= H ) and H2 be free Hilbert Γ -modules which are isomorphically related to
`2(Γ)⊗H1 and respectively `2(Γ)⊗H2 with Hilbert spaces H1(= H) and H2. We denote
the unitary left action representation of H1 with Lγ while we take Lγ for the representation
in H2.

H1

H2

`2(Γ)⊗H1

`2(Γ)⊗H2

A 1`2(Γ) ⊗A

Figure 5.3.: Depiction of the commutative diagrams for (5.27).
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(5.24) indicates that an operator A ∈ BΓ (H ) corresponds to an operator of the form
1`2(Γ) ⊗ A with A ∈ B(H). As one can view any operator from H1 to H2 as an operator
on the direct sum H1 ⊕H2, we have in fact

BΓ (H1,H2) ∼= Nr(Γ)⊗B(H1,H2) . (5.27)

We want to show that (5.24) and thus (5.27) carry over to something similar for Γ -compact
operators which is a more practical characterisation22 of this operator class. We want to
sketch this correspondence as there is no or at least not clearly written argument in the
literature though it is used in practice23. For this we follow [LS95, pp.9-10] which gives a
hint how to prove this correspondence. Let X ∈H2 and Y, Z ∈H2; we de�ne a �nite-rank
projection operator

ΘX,Y :H1 →H2 as per Z 7→ ΘX,Y (Z) :=
〈
Y
∣∣Z〉

H1
X (5.28)

which is an analogue to rank-1-operators in Hilbert spaces (see (2.4)). Applying Lγ from
the left shows

LγΘX,Y (Z) = LΓ (
〈
Y
∣∣Z〉

H1
X) =

〈
Y
∣∣Z〉

H1
(LγX) = ΘLΓX,Y (Z)

and the unitarity of Lγ implies

ΘX,Y (Z) =
〈
Y
∣∣Z〉

H1
X =

〈
LγY

∣∣LγZ〉H1
X = ΘX,LγY (LγZ) ;

we observe
ΘX,Y (Z) = L∗γLγΘX,LγY (LγZ) = L∗γΘLγX,LγY (LγZ)

and thus
ΘLγX,LΓY = Lγ ◦ΘX,Y ◦ L∗γ = Lγ ◦ΘX,Y ◦ L−1

γ ∀γ ∈ Γ , (5.29)

i.e. the intertwining of the �nite range projections with the left action representation. We
can also consider the �nite linear span of those operators: if we take �nitely many elements
{Yk}k∈L in H1 and {Xl}l∈L in H2 for a �nite index set L, the �nite-rank projector takes
the form ∑

k,l∈L
ΘXl,Yk(·) =

∑
k,l∈L

〈
Yk
∣∣ · 〉

H1
Xl . (5.30)

Clearly, they are elements in BΓ (H1,H2). As the Hilbert Γ -modules are free, any of their
elements can be unitarily related to the following tensor products:

X is related to a⊗ x with a ∈ `2(Γ), x ∈ H2 ,
Y is related to b⊗ y with b ∈ `2(Γ), y ∈ H1 ,
Z is related to c⊗ z with c ∈ `2(Γ), z ∈ H1 .

The action of (5.28) on tensor product elements is

Θa⊗x,b⊗y(c⊗ z) =
〈
b⊗ y

∣∣ c⊗ z〉
H1

(a⊗ x) =
〈
b
∣∣ c〉

`2(Γ)

〈
y
∣∣ z〉H1

(a⊗ x)

=
〈
b
∣∣ c〉

`2(Γ)
a⊗ (

〈
y
∣∣ z〉H1

x) =
〈
b
∣∣ c〉

`2(Γ)
a⊗ θx,y(z) (5.31)

22See [BR15, App.A] for the unitary identi�cation of KΓ (H ) and Nr(Γ)⊗K (H).
23See e.g. [Vai08, Prop.4.1], [Vai08, Lem.6.5] or [Sch05, Thm.6.21].
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where θx,y(z) :=
〈
y
∣∣ z〉H1

x is now a rank-1 operator between the Hilbert spacesH1 andH2:
θx,y ∈ R(H1,H2) (recall (2.4) from Section 2.1). The Γ -trace can be related to the ordinary
trace in this case: let {ei}i∈I and {fj}j∈J be two orthonormal bases in H1 respectively H2,
then

TrΓ (Θa⊗x,b⊗y) =
∑
γ∈Γ

i∈I,J∈J

〈
Θa⊗x,b⊗y(δγ ⊗ ei)

∣∣ δγ ⊗ fj〉`2(Γ)⊗H2

(5.31)
=

∑
γ∈Γ

i∈I,J∈J

〈
b
∣∣ δγ〉`2(Γ)

〈
a⊗ θx,y(ej)

∣∣ δγ ⊗ fj〉`2(Γ)⊗H2

=
∑
γ∈Γ

i∈I,J∈J

〈
b
∣∣ δγ〉`2(Γ)

〈
a
∣∣ δγ〉`2(Γ)

〈
θx,y(ej)

∣∣ fj〉H2

=
∑
γ∈Γ

〈
b
∣∣ δγ〉`2(Γ)

〈
a
∣∣ δγ〉`2(Γ)

∑
i∈I,J∈J

〈
θx,y(ej)

∣∣ fj〉H2

(∗)
=

〈
a
∣∣ b〉

`2(Γ)
Tr (θx,y)

where we have used both the Parseval equation for the Hilbert space `2(Γ) and the de�nition
of the ordinary trace in B(H1,H2) in (∗). As θx,y is a rank-1 operator between two Hilbert
spaces, the ordinary trace is �nite and b ∈ `2(Γ) imply b ∈ `2(Γ). Hence Θa⊗x,b⊗y has
�nite Γ -trace. For H1 = H2 this implies that due to the unitary isomorphism H to
`2(Γ) ⊗ H, the traces of ΘX,Y and Θa⊗x,b⊗y are the same if X,Y are unitarily related to
a ⊗ x respectively b ⊗ y. Consequently, any ΘX,Y on a free Hilbert Γ -module is Γ -trace
class and according to De�nition 5.2.14 (a) is a �nite Γ -rank operator. This carries over to
any �nite linear combination and it can be shown that any operator in RΓ (H ) and indeed
any RΓ (H1,H2) can be written like (5.30). In summary, the unitary Γ -isomorphism of the
free Hilbert Γ -module and (5.31) induce the isomorphism

RΓ (H ) ∼= Nr(Γ)⊗R(H) (5.32)

and with the same reasoning as applied for the Γ -morphisms they furthermore induce

RΓ (H1,H2) ∼= Nr(Γ)⊗R(H1,H2) . (5.33)

These isomorphisms are preserved under the norm closure with respect to the norm on
BΓ (H ) respectively BΓ (H1,H2) which are induced by the norm on B(H ) and respec-
tively B(H1,H2). The norm closure of the space of �nite Γ -rank operators as subset of
the Γ -trace class operators is the space of Γ -compact operators due to Remarks 5.2.15 (i)
and De�nition 5.2.14 (d). The norm closure on the right-hand side of (5.32) respectively
(5.33) decomposes into the norm closure of Nr(Γ) in B(`2(Γ)) and the norm closure of
�nite-rank operators in the space of bounded operators between the same Hilbert spaces.
The latter one complies with ordinary compact operators. As Nr(Γ) is a von Neumann
algebra, it is weakly closed and thus also already norm closed. In summary we get

KΓ (H ) ∼= Nr(Γ)⊗K (H) (5.34)
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and also
KΓ (H1,H2) ∼= Nr(Γ)⊗K (H1,H2) . (5.35)

After this extensive introduction of Γ -ideals we can de�ne Γ -Fredholm operators.

De�nition 5.2.16 (De�nition 3.10.3 in [Shu]). Let H1,H2 be Hilbert Γ -modules and
A ∈ BΓ (H1,H2); A is a Γ -Fredholm operator (denoted with A ∈ FΓ (H1,H2)) if there
exists a B ∈ BΓ (H2,H1) such that (1H1 − BA) ∈ S 1

Γ (H1) and (1H2 − AB) ∈ S 1
Γ (H2);

this B is the Γ -Fredholm parametrix and the Γ -index is de�ned by the Atiyah-Bott formula

indΓ (A) := TrΓ (1H1 −BA)− TrΓ (1H2 −AB) . (5.36)

The existence of one parametrix in this de�nition can be replaced with the existence of
B1, B2 ∈ BΓ (H2,H1) which are left- and right-parametrices for A: let R1 = 1H1 − B1A
and R2 = 1H2 −AB2 be two remainders which are Γ -trace class, then

B1 −B2 = B11H2 − 1H1B2 = B1AB2 +B1R2 −R2B2 −B1AB2

= B1R2 −R1B2 ∈ S 1
Γ (H2,H1)

and thus these parametrices di�er in a Γ -trace class operator and we can replace the left
Γ -Fredholm parametrix with the right Γ -Fredholm parametrix in De�nition 5.2.16 and vice
versa. Some properties of Γ -Fredholm operators and their Γ -indices are listed below:

Proposition 5.2.17 (section 3.10 in [Shu]).

(1) indΓ (A) : FΓ (H1,H2) → R is locally constant.

(2) If A ∈ FΓ (H1,H2), its Γ -Fredholm parametrix B is in FΓ (H2,H1) with
indΓ (B) = −indΓ (A).

(3) If A ∈ FΓ (H1,H2) and B ∈ FΓ (H2,H3), then BA ∈ FΓ (H1,H3) and
indΓ (BA) = indΓ (B) + indΓ (A).

(4) If A is an invertible element in BΓ (H1,H2), then A ∈ FΓ (H1,H2) with indΓ (A) = 0.

(5) If A ∈ FΓ (H1,H2), b ∈ C/ {0} and C is in one of the Γ -ideals in De�nition 5.2.14,
then indΓ (bA+ C) = indΓ (A).

(6) If A ∈ FΓ (H1,H2), then A∗ ∈ FΓ (H2,H1) with indΓ (A
∗) = −indΓ (A).

(7) If A ∈ FΓ (H1,H2), then dimΓ (ker (A)) <∞ and dimΓ (ker (A∗)) <∞ such that
indΓ (A) = dimΓ (ker (A))− dimΓ (ker (A∗)).

(8) A ∈ FΓ (H1,H2) if and only if dimΓ (ker (A)) < ∞ and there exists a closed set

W ∈H2 such that W ⊂ ran (A) and codimΓ (W ) := dimΓ

(
H2
/
W

)
<∞.

Remarks 5.2.18.

(i) In De�nition 5.2.16 it is required that the remainders are Γ -trace class operators
such that the Γ -index is well-de�ned. It can be shown that it is su�cient if we replace
the ideal of Γ -trace class operators with Γ -compact operators and thus any Γ -ideal,
presented in De�nition 5.2.14. The Γ -index is then de�ned with Proposition 5.2.17
(7).



86 CHAPTER 5. GALOIS COVERINGS AND VON-NEUMANN ALGEBRAS

(ii) The Γ -ideal in Proposition 5.2.17 (5) can be replaced with norm continuous pertu-
bations ( [Shu95, p.492]): let A ∈ FΓ (H1,H2), then there exists an ε > 0 such
that, if C ∈ BΓ (H1,H2) with ‖C‖ < ε, then (A + C) ∈ FΓ (H1,H2) with Γ -index
indΓ (A+ C) = indΓ (A).

A consequence of Proposition 5.2.17 (7) and (8) as well as Lemma 5.2.7 is

Corollary 5.2.19. Given Hilbert Γ -modules Hj, H
′
j , j ∈ {1, 2}, and two Γ -morphisms

Aj : Hj →H
′
j , then

(A1 ⊕A2) ∈ FΓ (H1 ⊕H2,H
′

1 ⊕H
′

2 ) if and only if Aj ∈ FΓ (Hj ,H
′
j )

and the Γ -index of (A1 ⊕A2) is

indΓ (A1 ⊕A2) = indΓ (A1) + indΓ (A2) . (5.37)

Proof. The kernel and the range of (A1 ⊕ A2) are unitarily related to the direct sum of
kernels and ranges:

ker (A1 ⊕A2) ∼= ker (A1)⊕ ker (A2) and ran (A1 ⊕A2) ∼= ran (A1)⊕ ran (A2) .

Lemma 5.2.7 and Lemma 5.2.13 imply that all occuring spaces are projective Hilbert Γ -
modules such that each of these isomorphisms imply unitary Γ -isomorphisms. If (A1⊕A2) is
Γ -Fredholm, then the left-hand sides do have �nite Γ -dimensions respectively Γ -codimension
according to Proposition 5.2.17 (8) such that ker (Ai) have �nite Γ -dimensions and ran (Ai)
�nite Γ -codimensions for i ∈ {1, 2}. Proposition 5.2.17 (8) again implies that also A1 and
A2 are Γ -Fredholm. As the argument is symmetric, the other implication follows instantly.
It is left to show that the Γ -index has the claimed form. Since all three operators are
Γ -Fredholm, we can use Proposition 5.2.17 (7) to calculate the Γ -index:

indΓ (A1 ⊕A2) = dimΓ ker (A1 ⊕A2)− dimΓ ker ((A1 ⊕A2)∗)

= dimΓ ker (A1 ⊕A2)− dimΓ ker (A∗1 ⊕A∗2)

= dimΓ ker (A1)− dimΓ ker (A∗1) + dimΓ ker (A2)− dimΓ ker (A∗2)

= indΓ (A1) + indΓ (A2).

5.3. (Di�erential-)Operators and Sobolev spaces on
Γ-manifolds

The geometric facts and the machinery of von Neumann algebras, associated to a Galois
group, of the former sections now come together. Let E → M be a Γ -vector bundle over
a Γ -manifold M . The left action representation of Γ on a smooth section u of E is then
described by

(LEγ u)(p) = (πEΓ u)(γ−1p) (5.38)

where πEΓ is an isometry which maps the section at p to (γ · p)s. Note that now (LEγ )−1 6=
LE
γ−1 as the isometry operator is in general not involutive. Hence we only have (LEγ )−1u(p) =

((πEΓ )−1u)(γp). We equipM with a Γ -invariant smooth density dµ, which is either de�ned
by a Γ -invariant pseudo-Riemannian metric or otherwise, and E with a Γ -invariant inner
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product
(
·
∣∣ · )

Ep
on each �ber Ep:

dµ(γp) = dµ(p) and
(
·
∣∣ · )

Eγp
=
(
·
∣∣ · )

Ep
∀γ ∈ Γ .

We introduce the inner product〈
u
∣∣ v〉

L2
Γ (M,E)

=

∫
M

〈
u(p)

∣∣ v(p)
〉
Ep

dµ(p) . (5.39)

The norm closure of C∞c (M,E) with respect to this inner product is the space of square-
integrable sections of E on M which we denote with L2

Γ (M,E) in order to stress the
Γ -invariant density and bundle metric. The Γ -invariance of the density and the bundle
metric ensure that the left action representation (5.38) is unitary with respect to (5.39).
As πE is an isometry, the bundle metric in (5.39) for

〈
LEγ u

∣∣ v〉
L2
Γ (M,E)

becomes〈
(LEγ u)(p)

∣∣ v(p)
〉
Ep

=
〈
πEΓ u(γ−1p)

∣∣ v(p)
〉
Ep

=
〈
πEΓ u(γ−1p)

∣∣πEΓ (πEΓ )−1v(p)
〉
Ep

=
〈
u(γ−1p)

∣∣ (πEΓ )−1v(p)
〉
Ep

such that〈
LEγ u

∣∣ v〉
L2
Γ (M,E)

=

∫
M

〈
(Lγu)(p)

∣∣ v(p)
〉
Ep

dµ(p) =

∫
M

〈
u(γ−1p)

∣∣ (πEΓ )−1v(p)
〉
Ep

dµ(p)

=

∫
γ−1M

〈
u(q)

∣∣ (πEΓ )−1v(γq)
〉
Eγq

dµ(γq)

=

∫
M

〈
u(q)

∣∣ (πEΓ )−1v(γq)
〉
Eq

dµ(q) =
〈
u
∣∣ (LEγ )−1v

〉
L2
Γ (M,E)

.

We observe (LEγ )∗ = (LEγ )−1 for each element in the group. Other function spaces of interest
next to L2

Γ (M,E) are Sobolev spaces. We recall from [Shu, Sec.3.9] that the appropriate
norm is de�ned with a Γ -invariant partition of unity (5.7):

‖u‖2Hs
Γ (M,E) :=

∑
j∈J
γ∈Γ

‖φj,γu‖2Hs(supp(φj,γ),E) (5.40)

where Hs(supp (φj,γ) , E) := Hs
supp(φj,γ)(M,E). The corresponding Sobolev spaces are

then de�ned for any s ∈ R via

Hs
Γ (M,E) :=

{
u ∈ Hs

loc(M,E)
∣∣∣ ‖u‖Hs

Γ (M,E) <∞
}

(5.41)

as Γ -Sobolev spaces. We note from the main reference [Shu] that the de�nition does not
depend on the choice of the Γ -invariant partition of unity and the choice of the discrete
group, i.e. if we take a di�erent discrete group Γ ′, such that M is also a Γ ′-manifold,
the Sobolev spaces coincide. We also want to point out the resemblance of the Γ -Sobolev
spaces with the Sobolev spaces on manifolds with bounded geometry from (3.48). An
equivalent description of these Γ -Sobolev spaces is given in terms of operators which we
need to introduce �rst.
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Let F be the fundamental domain of the Γ -action. (5.5) implies that M is a principal
Γ -bundle. The action of the group on the Γ -manifold becomes isomorphically related to
an action on Γ × F : γ2(γ1, p) = (γ2γ1, p) for each p ∈ F and γ1,γ2 ∈ Γ . This induces a
unitary isomorphism between L2-sections,

L2
Γ (M,E) ∼= `2(Γ)⊗ L2(F , E|F ) , (5.42)

which is given by
u 7→

∑
γ∈Γ

δγ ⊗ (LEγ )∗u|F (5.43)

for a u ∈ L2
Γ (M,E). The left action representation LEγ becomes lγ ⊗ 1F on `2(Γ) ⊗

L2(F , E|F ) where lγ is the left translation operator (5.13). Moreover, (5.42) implies that
L2
Γ (M,E) is a free Hilbert Γ -module according to De�nition 5.2.5 (a) and hence any closed
Γ -invariant subset of L2

Γ (M,E) becomes a projective Hilbert Γ -module. We can use Re-
marks 5.1.6 and replace L2(F , E|F ) with L2(F , E|F ) = L2(MΓ , EΓ ) (EΓ := E/Γ) as F and
MΓ di�er in a set of measure zero and due to the Γ -invariance of the density on M the
densities on X and F coincide such that both L2-spaces become unitarily isomorphic and
(5.42) becomes

L2
Γ (M,E) ∼= `2(Γ)⊗ L2(MΓ , EΓ ) . (5.44)

(5.24) implies with H = L2
Γ (M,E) and H = L2(MΓ , EΓ ) that the von Neumann algebra

of operators in BΓ (L
2
Γ (M,E)) is naturally isomorphic to Nr(Γ) ⊗ B(L2(MΓ , EΓ )). This

isomorphism extends to

BΓ (L
2
Γ (M

′, F ), L2
Γ (M,E)) ∼= Nr(Γ)⊗B(L2(M ′Γ , FΓ ), L

2(MΓ , EΓ )) (5.45)

according to (5.27) where M ′ is another Γ -manifold with M ′Γ := M ′/Γ and F a Γ -vector
bundle over M ′ such that FΓ = F/Γ with respect to the same Γ-action. Similarly we have
the descriptions (5.34) and (5.35) for Γ -compact operators. The formal trace TrΓ (·) in
(5.20) is independent of the choice of the fundamental domain, see [Shu, Thm.2.14].

The analytic expression of the trace TrΓ (·) in terms of the Schwartz kernel of a Γ -trace class
operator and properties of Γ -trace class and Γ -Hilbert-Schmidt operators in this analytic
setting are explained in [Shu, Sec.2.19] and [Shu, Sec.2.23] as well as in [Ati76, �4] with
some detail. We want to point out some facts and details which we are going to use at
some point. Given an operator A which maps between sections of two Γ -vector bundles
E →M and F →M ′ of two Γ -manifoldsM andM ′ with respect to the same Γ -action, i.e.
A : C∞c (M ′, F )→ C−∞(M,E). The Schwartz-Kernel KA of A is in general a distribution
in C−∞(M ×M ′, E � F ∗) (for the purpose of this introduction we forgo the half-density
description here). The action of A on u ∈ C∞c (M ′, F ) then becomes

(Au)(p) =

∫
M ′
KA(p, q)u(q) dµM ′(q) .

If the Schwartz kernel is in L2
loc(M×M ′, E�F ∗), it becomes a regular distribution and Au

becomes a function again. The following result shows how A ∈ BΓ (L
2
Γ (M

′, F ), L2
Γ (M,E))

implies Γ -equivariance of its Schwartz kernel function KA.
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Lemma 5.3.1 (cf. Lemma 2.24. in [Shu]). Let A ∈ BΓ (L
2
Γ (M

′, F ), L2
Γ (M,E)) with

Schwartz-kernel KA, then

KA(γp,γq) =
[
πEΓ ◦KA ◦ (πFΓ )−1

]
(p, q) (5.46)

for all γ ∈ Γ , (p, q) ∈M ×M ′ and isometries πEΓ (p) : Ep → Eγ·p, π
F
Γ (q) : Fq → Fγ·q.

Proof. The action of each γ ∈ Γ on M ×M ′ is given by the diagonal action: γ(p, q) =
(γp,γq). W.l.o.g. let KA ∈ L2

loc(M ×M ′, E�F ∗), otherwise we have to consider the proof
in the paring picture which makes it cumbersome to follow. Applying LFγ to u ∈ L2

c(M
′, F )

gives (πFΓ u)(γ−1·). The action of A on LFγ u on the level of Schwartz kernels takes the form

KA(p, q)(πFΓ u)(γ−1q) = (KA ◦ πFΓ )(p,γq)u(q) = (KA ◦ πFΓ )(p,γq)u(q)

and composing with (LEγ )−1 from the left leads to

(LEγ )−1KA(p, q)(πFΓ u)(γ−1q) =
[
(πEΓ )−1 ◦KA ◦ πFΓ

]
(γp,γq)u(q)

such that

(LEγ )−1A(LFγ u)(p) =

∫
M ′

[
(πEΓ )−1 ◦KA ◦ πFΓ

]
(γp,γq)u(q) dµM ′(q) .

Since A intertwines the actions on L2
Γ (M

′, F ) and L2
Γ (M,E), we have (LEγ )−1ALFγ = A

and thus

(LEγ )−1A(LFγ u)(p) = (Au)(p) =

∫
M ′
KA(p, q)u(q) dµM ′(q) .

Thus we get [
(πEΓ )−1 ◦KA ◦ πFΓ

]
(γp,γq) = KA(p, q)

by coincidence of the operators which implies the coincidence of the Schwartz kernels
because of the Schwartz Kernel Theorem 4.1.1.

This Lemma implies that any element in BΓ (L
2
Γ (M

′, F ), L2
Γ (M,E)) has a Schwartz ker-

nel which is a distribution on the compact orbit space (M ×M ′)/Γ under the diagonal
action of Γ .

From now on, we consider for simplicity the case M = M ′. If we take an operator
A ∈ S 1

Γ (L2
Γ (M,E)) or even Γ -Hilbert-Schmidt, the Schwartz-Kernel already satis�es KA ∈

L2
Γ (M ×M,E ⊗ E∗). The Γ -invariant density is the product of Γ -invariant densities on

M . Let the Γ -trace of A be expressed with the trace over two Γ -Hilbert-Schmidt operators
C ∈ S 2

Γ (L2
Γ (M,E)) and B ∈ S 2

Γ (L2
Γ (M,E)) such that A = B ◦ C. Denote with KC the

Schwartz kernel of C which is a sections of E ⊗ E∗ → M ×M ; let KB be the Schwartz
kernel of B which is a section of E ⊗E∗ = End(E)→M . With F as fundamental domain
of the Γ -action onM and the �brewise trace trp (·) along Ep, p ∈ F , the analytic expression
of the Γ -trace of A becomes

TrΓ (A) =

∫
F×M ′

trEp (KB(p, q) ◦KC(q, p)) dµM×M (p, q) . (5.47)
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The equality follows from (5.42) such that〈
A(δε ⊗ u)

∣∣ (δε ⊗ v)
〉
L2
Γ (M,E)

=
〈
A(δε ⊗ u)

∣∣ (δε ⊗ v)
〉
`2(Γ)⊗L2(F ,E|F )

=
〈
Aε,εu

∣∣ v〉
L2(F ,E|F )

for u, v ∈ L2(F , E|F ). If the Schwartz kernel of A is already continuous at the diagonal,
the Schwartz kernels of B and C do as well and vice versa such that the inner integral can
be performed, giving KA and consequently

TrΓ (A) =

∫
F

trEp (KA(p, p)) dµM (p) . (5.48)

Lemma 5.3.1 implies

Corollary 5.3.2. For A ∈ S 1
Γ (L2

Γ (M,E)) with Schwartz kernel KA the �brewise trace of
(5.46) satis�es

trEγp (KA(γp,γp)) = trEp (KA(p, p)) .

This can be proven by using the cyclic permutation of the �brewise trace and that πEΓ is
an isometry. As the fundamental domain di�ers from MΓ by a set of measure zero and the
integrands are Γ -invariant in both cases, we can rewrite the analytic Γ -traces as integral
over MΓ , too.

We want to consider di�erential operators, pseudo-di�erential and Fourier integral op-
erators in the Γ -setting. We denote with

DiffmΓ (M,Hom(E,F )) :=
{
A ∈ Diffm(M,Hom(E,F )) |ALEγ = LFγA ∀γ ∈ Γ

}
,

Ψs
Γ (M,Hom(E,F )) :=

{
A ∈ Ψs(M,Hom(E,F )) |ALEγ = LFγA ∀γ ∈ Γ

}
,

FIOsΓ (M,N ; Λ;Hom(E,G)) :=
{
A ∈ FIOs(M,N ; Λ;Hom(E,G)) |ALEγ = LGγA ∀γ ∈ Γ

}
the sets of Γ -di�erential, Γ -pseudo-di�erential and Γ -Fourier integral operators whereM,N
are Γ -manifolds, E,F →M and G→ N are Γ -vector bundles, Λ a Lagrangian submanifold
and m ∈ N0, s ∈ R. These are in general unbounded operators, hence are elements in LΓ

between suitable Hilbert Γ -modules. If an operator in one of these operator spaces enjoys
the property of being properly supported, its Schwartz kernel is compactly supported with
support in (M×M)/Γ respectively (M×N)/Γ . Thus, any Γ -invariant di�erential operator
has compactly supported Schwartz kernel on the orbit space.

We are now in the position to present an alternative de�nition for Γ -Sobolev spaces with
the help of Γ -di�erential operators:

Hs
Γ (M,E) :=

{
u ∈ L2

Γ (M,E)
∣∣∣Au ∈ L2

Γ (M,E)

for anyA ∈ DiffmΓ (M,End(E))withm ≤ s
}

(5.49)

for s ≥ 0; H−sΓ (M,E) for the same range of degrees is de�ned by duality, see Proposi-
tion 4.1.4 (7).
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A certain subclass of Γ -invariant pseudo-di�erential operators are classical operators:

A ∈ Ψm
cl,Γ (M,Hom(E,F )) :⇔ A ∈ Ψm

Γ (M,Hom(E,F )) : A = Â+R where

Â ∈ Ψm
Γ (M,Hom(E,F )) has classical symbol

andR ∈ Ψ−∞Γ (M,Hom(E,F )) .

We collect some known results.

Proposition 5.3.3 (Corollary 3.9.2, Theorem 3.9.1/2/3/4(a) in [Shu]).

(1) If A ∈ Ψm
prop,Γ (M,Hom(E,F )), then A becomes a bounded map from Hs

Γ (M,E) to

Hs−m
Γ (M,F )) for all s ∈ R and commutes with the left action representation of Γ .

(2) Let A ∈ Ψm
cl,Γ (M,Hom(E,F )) be properly supported and elliptic, and suppose

u ∈ H−rΓ (M,E) for some r ∈ R such that Au ∈ Hs−m
Γ (M,F ); then u ∈ Hs

Γ (M,E).
If E = F is Hermitian and A symmetric in L2

Γ (M,E), then A becomes essentially
self-adjoint and with Hm

Γ (M,E) as domain of the closure.

(3) If A ∈ BΓ (L
2
Γ (M,E), L2

Γ (M,F )) and A ∈ Ψm
prop,Γ (M,Hom(E,F )) form < −dim(M),

then A ∈ S 1
Γ (L2

Γ (M,E), L2
Γ (M,F )).

The results (2) and (3) have an important consequence: if we consider A as unbounded
operator from L2

Γ (M,E) to L2
Γ (M,F ) with order m ≥ 0, one observes that A is closed and

its domain coincides with Hm
Γ (M,E). The identity operator from Hm

Γ (M,E) → dom(A)
is bounded due to (2) with respect to the graph norm. Thus, it is closed due to the
Closed Graph theorem. As the identity operator is in addition bijective, it maps dom(A)
to Hm

Γ (M,E) by the bounded inverse theorem. Thus, the domain is dense and thus A
densely de�ned! According to Lemma 5.2.12 (2) the domain becomes a Hilbert Γ -module
and the introduced identity operator implies a topological isomorphism which is Γ -invariant
and maps from Hm

Γ (M,E) as general Hilbert Γ -module onto the closed domain such that
Proposition 5.2.6 (2) indicates Hm

Γ (M,E) to be a projective Hilbert Γ -module. The case
m < 0 follows by duality. For more details concerning this fact, we refer to [Shu, Cor.3.9.2].
In summary: Hm

Γ (M,E) are projective Hilbert Γ -modules and (1) then shows that in fact

A ∈ BΓ (H
s
Γ (M,E), Hs−m

Γ (M,F )) (5.50)

for all s ∈ R if A ∈ Ψm
prop,Γ (M,Hom(E,F )).

We note that the requirement of being properly supported for all wanted properties in
Proposition 5.3.3 is always ful�lled for di�erential operators, but too restrictive for a gen-
eral class of operators. We �rst introduce a wider class of Γ -operators such that they are
smoothing in the sense that they map Γ -Sobolev spaces into Γ -Sobolev spaces.

De�nition 5.3.4. Given E →M and F →M ′ Γ -vector bundles over Γ -manifolds M,M ′

with respect to the same Γ -action and let A : C∞c (M,E) → C−∞(M ′, F ) be a Γ -operator;
A is said to be s-smoothing if it extends to a continuous linear operator between Γ -Sobolev
spaces for any orders r, p:

A : Hr
Γ (M,E) → Hp

Γ (M ′, F ) .
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This is a slight generalisation of s-smoothing operators, introduced in [Shu, Sec.3.11]; if
M = M ′ and A a pseudo-di�erential operator, we write A ∈ SΨ−∞Γ (M,Hom(E,F )). We
list some properties of the class SΨ−∞Γ (M,Hom(E,F )).

Lemma 5.3.5 (Lemma 3.11.1/2 in [Shu]). Given two Γ -vector bundles E →M and F →
M ′ over Γ -manifolds M,M ′ with respect to the same Γ -action and let A : C∞c (M,E) →
C−∞(M ′, F ) be a Γ -operator;

(1) if A is a properly supported Γ -operator with smooth Schwartz kernel on M ′×M , then
A is s-smoothing.

(2) if M = M ′ and A ∈ SΨ−∞Γ (M,Hom(E,F )), then its Schwartz kernel is smooth on
M ×M .

(3) if M = M ′ and A ∈ SΨ−∞Γ (M,Hom(E,F )), then it is a Γ -trace class operator.

Especially for Γ -invariant pseudo-di�erential operators one can de�ne a class of operators
which di�er from a properly supported Γ -invariant pseudo-di�erential operator in a s-
smoothing pseudo-di�erential operator.

De�nition 5.3.6 (De�nition 3.11.2 in [Shu]). Let E,F be Γ -vector bundles over the
Γ -manifold M ; an operator A ∈ Ψm

Γ (M,Hom(E,F )) is called s-regular if there is an
operator Â ∈ Ψm

Γ ,prop(M,Hom(E,F )) such that (A − Â) ∈ SΨ−∞Γ (M,Hom(E,F )). If

Â ∈ Ψm
cl,Γ (M,Hom(E,F )) and properly supported, then they are de�ned to be classical

s-regular.

As in the reference we denote these spaces of operators with SΨm
Γ (M,Hom(E,F )) and

respectively SΨm
cl,Γ (M,Hom(E,F )). We also introduce the notation SFIOm for m ∈ R

to stress that an operator is the sum of a properly supported Γ -invariant Fourier integral
operator and a s-smoothing remainder. We observe that Γ -invariant di�erential operators
do belong to this class as they don't have any smoothing remainder and are always properly
supported; the same holds for any properly supported Γ -invariant operator. We list some
further important properties which can be found in our main reference [Shu] as Corollary
3.11.1/5, Lemma 3.11.3, Proposition 3.11.2/3/4, Theorem 3.11.2.

Proposition 5.3.7. Let E,F →M be Γ -vector bundles over the Γ -manifold M and let
A : C∞c (M,E) → C−∞(M,F ) be a Γ -operator.

(1) DiffmΓ (M,Hom(E,F )) ⊂ Ψm
prop,Γ (M,Hom(E,F )) ⊂ SΨm

Γ (M,Hom(E,F )) and
DiffmΓ (M,Hom(E,F )) ⊂ Ψm

cl,Γ (M,Hom(E,F )) ⊂ SΨm
cl,Γ (M,Hom(E,F )).

(2) SΨ−∞Γ (M,Hom(E,F )) =
⋂
m∈R SΨm

(cl,)Γ (M,Hom(E,F )).

(3) If A ∈ BΓ (L
2
Γ (M,E), L2

Γ (M,F )) and A ∈ SΨm
Γ (M,Hom(E,F )) for m < −dim(M),

then A ∈ S 1
Γ (L2

Γ (M,E), L2
Γ (M,F )).

(4) If A ∈ SΨm
Γ (M,Hom(E,F )), then A ∈ BΓ (H

s
Γ (M,E), Hs−m

Γ (M,F )) for all s ∈ R.

(5) (uniform elliptic regularity) If A ∈ SΨm
Γ (M,Hom(E,F )) is elliptic, u ∈ H−rΓ (M,E)

for some r ∈ R and Au ∈ Hs
Γ (M,F ) for some s ∈ R, then u ∈ Hs+m

Γ (M,E).
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(6) For any s ∈ R there exists a formally self-adjoint operator in SΨs
cl,Γ (M,Hom(E,F ))

which is elliptic and maps from Hs
Γ (M,E)→ L2

Γ (M,F ) as a topological isomorphism
of Hilbert Γ -modules.

(7) If A ∈ SΨm
Γ (M,Hom(E,F )) is elliptic with m > 0 and formally self-adjoint, then A

is essentially self-adjoint and χI(A) ∈ SΨ−∞Γ (M,Hom(E,F )) for any bounded Borel
set I ⊂ R.

(8) If E,F are Hermitean Γ -vector bundles and A ∈ SΨm
cl,Γ (M,Hom(F,E)) elliptic, then

A ∈ FΓ (H
s
Γ (M,F ), Hs−m

Γ (M,E)) for any s ∈ R with an s-independent Γ -index

indΓ (A) = dimΓ ker (A)− dimΓ ker (A∗)

where A∗ ∈ SΨm
cl,Γ (M,Hom(E,F )) is the formal adjoint of A with respect to (5.39).

Properties (1) and (8) together imply that elliptic Γ -di�erential and elliptic, properly
supported Γ -pseudo-di�erential operators are Γ -Fredholm. A generalisation of property
(7) to unbounded intervals is presented in subsection 8.1.1. (6) implies together with
Proposition 5.2.6 (1) that the topological isomorphism induces a unitary isomorphism of
Hilbert Γ -modules and that in fact the Γ -Sobolev spaces are free Hilbert Γ -modules for all
s ∈ R as L2

Γ (M,F ) is a free Hilbert Γ -module. For s > 0 the unitary isomorphism is of the
form

Hs
Γ (M,E) ∼= `2(Γ)⊗Hs(F , E|F ) ∼= `2(Γ)⊗Hs(MΓ , EΓ ) . (5.51)

This as well as an extension of the Rellich�Kondrachov theorem from compact manifolds
to Galois coverings with compact base can be proven where the identi�cation (5.35) is
exemplarily applied.

Proposition 5.3.8 (cf. Proposition 4.1 in [Vai08], Theorem 6.21 in [Sch05]). Let E →M
be a Γ -vector bundle over a Γ -manifold M and s, r ∈ R>0 with s > r; the embedding

Hs
Γ (M,E) ↪→ Hr

Γ (M,E)

is Γ -compact.

This is a consequence of the classical Rellich�Kondrachov theorem where the embedding
Hs(MΓ , EΓ ) ↪→ Hr(MΓ , EΓ ) is compact and lifts due to (5.35) to a Γ -compact operator.
Some other properties about Sobolev spaces on manifolds in Proposition 4.1.4 carry over
to the Γ -setting:

(1) localisation: let a ∈ C∞(M,R>0) and u ∈ Hs
Γ (M,E), then au ∈ Hs

Γ (M,E);
if a ∈ C∞c (M), then the multiplication with u 7→ au ∈ Hs

Γ (M,E) is Γ -compact for
s > 0.

(2) continuous embedding: Hs
Γ (M,E) ↪→ Hr

Γ (M,E) is a Γ -morphism for s > r.

Property (1) follows because au ∈ Hloc(M,E) is a consequence of the localisation property
in Proposition 4.1.4 (1) and {aφi,γ}i∈I,γ∈Γ is a Γ -invariant partition of unity, induced from
the Γ -invariant partition of unity {φi,γ}i∈I,γ∈Γ , subordinated to a covering of M . The fact
that the Γ -Sobolev norm does not depend on the concrete choice of the Γ -invariant partition
of unity, concludes the argument. For the second part of (1) we refer to [Vai08, Prop.4.5].
(2) is a consequence of Proposition 4.1.4 (3) and (5.27) by identifying bounded maps
between Sobolev spaces on the compact bases with Γ -morphisms on the Galois covering.
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6. Dirac operators

In this last introductory chapter we focus on Dirac operators on pseudo-Riemannian mani-
folds and in particular on Lorentzian and Riemannian Dirac operators as both special cases
will appear in our later analysis. We �rst repeat some basics about a spin structure and
Dirac operators on pseudo-Riemannian manifolds. Afterwards, we consider the decom-
position of the Dirac operator once along a Riemannian hypersurface in a time-oriented
Lorentzian and once in a Riemannian manifold.

The content of this chapter relies on the detailed explainations in the textbooks [Bau81]
and [LM16], with supporting notes from [BGM05], [vdD18] and [Gin09]. The sections
about Dirac operators on hypersurfaces rely on [BGM05, Chap.3-5] as well as some addi-
tional notes from [vdD18, Sec.2.3] and [vdD18, Sec.3.1/2].

6.1. Spin structure for pseudo-Riemannian manifolds

We �rst start with the notions of Cli�ord algebra and spin groups on n-dimensional vec-
tor spaces V before considering the special case of V = Rn and how to implement these
structure on a pseudo-Riemannian manifold.

Given a n-dimensional vector space V over the �eld R with quadratic form q : V → R such
that its polarisation de�nes a symmetric bilinear form b : V × V → R on V via:

2b(v, w) = q(v) + q(w)− q(v − w) (6.1)

for v, w ∈ V . Cl(V, b) denotes the Cli�ord algebra of (V, b), which is an associative algebra
over K with unit element 1, and linear mapping c : V → Cl(V, b) such that

(a) c (v)2 := c (v) ◦ c (v) = −q(v)1 .

(b) suppose f : V → A is a linear map into another associative algebra A with unit
element 1A and f(v) ◦ f(v) = −q(v)1A for all v ∈ V , then this map extends uniquely
to an algebra homomorphism f ′ : Cl(V, b)→ A such that f = f ′ ◦ c .

Condition (b) says that the Cli�ord algebra is uniquely determined up to isomorphisms.
We follow the minus-convention in (a) and write "·" for the composition; moreover, we can
express (a) directly by means of b with (6.1) and linearity of c:

c (v) · c (w) + c (w) · c (v) = −b(v, w)1 . (6.2)

This is known as Cli�ord relation. The vector space endomorphism a : v 7→ (−v) for v ∈ V
can be extended to an endomorphism in Cl(V, b) and induces a Z2-grading

Cl(V, b) = Cl0(V, b)⊕ Cl1(V, b)
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where Cli(V, b) for i ∈ {0, 1} are the eigenspaces

Cli(V, b) =
{
w ∈ Cl(V, b) | aw = (−1)iw

}
.

They satisfy Cli ◦ Clj ⊂ Cli+j for i, j, (i + j) ∈ Z2. Cl(V, b) has dimension 2n. The space
Cl×(V, b) is a subgroup of elements in Cl(V, b) which have a left and right inverse. It de�nes
two further subgroups:

(a) the pin group of (V, b) is

Pin(V, b) := {c (v1) · · · c (vl) ∈ Cl(V, b) | vi ∈ V : q(v) = b(v, v) = ±1} ;

(b) the spin group of (V, b) is

Spin(V, b) = Pin(V, b) ∩ Cl0(V, b) .

The Cartan-Dieudonné theorem (see e.g in [LM16, Thm.2.7]) states that every element
in the orthogonal group O(V, b) := {A ∈ GL(V, b) | b(Av,Aw) = b(v, w)∀ v, w ∈ V } can be
decomposed into maximal n concantenations of re�ections which are de�ned by the adjoint
representation of Cl×(V, b): for a v ∈ V , such that q(v) 6= 0, the re�ection across the
hyperplane {v}⊥ is

V 3 w 7→ v−1wv = −w + 2
b(v, w)

q(v)
v .

This implies a homomorphism Cl×(V, b) → O(V, b) which can be restricted to the pin-
and spin-group. Both restrictions yield exact sequences for real vector spaces V with
non-degenerate bilinear form b:

0

0

R

R

Pin(V, b)

Spin(V, b)

O(V, b)

SO(V, b)

1

1

Figure 6.1.: Exact sequences for Pin(V, b) and Spin(V, b), adapted from [LM16, Thm.2.9].

Thus, the homomorphism, restricted to either the pin group or the spin group, maps to
O(V, b) or SO(V, b) := {A ∈ O(V, b) | det(A) = 1}. These are two-fold coverings of groups
with kernel in Z2 = {1,−1}.

We now specify to V = Rn with n = r + s and non-degenerate symmetric bilinear form
(3.1). We denote the Cli�ord algebra with respect to this bilinear form on Rn with CLr,s.
The even and odd subspaces of CLr,s are then denoted with CL0

r,s and respectively CL1
r,s.

We designate the spin group with Spin(r, s) on which our attention is focused on. We also
consider the complexi�ed Cli�ord algebra Clr,s := Clr,s ⊗R C which satis�es the following
isomorphy properties:
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(1) Clr,s ∼= Mat(2n/2,C) if n is even;

(2) Clr,s ∼= Mat(2(n−1)/2,C)⊕Mat(2(n−1)/2C) if n is odd.

They imply representations of the spin group, known as spinor representations:

(1) Spin(r, s) ∼= GL(2n/2,C) if n is even;

(2) Spin(r, s) ∼= GL(2(n−1)/2,C)⊕ GL(2(n−1)/2C) if n is odd.

The corresponding irreducible representation spaces are de�ned to be ∆r,s for n even and
∆r,s(1) and ∆r,s(2) for the �rst and second summand in the representation for n odd. For
even dimensions the spinor module ∆r,s decomposes into two submodules ∆±r,s which are
called spinor modules of postive respectively negative chirality :

∆r,s = ∆+
r,s ⊕ ∆−r,s .

Let {ej}nj=1 be a positive-oriented orthonormal basis in Rn; one can show that ∆±r,s can be
characterised as eigenspaces of the spinorial volume form

ω(r, s) := (−i)s+n(n+1)/2c (e1) · c (e2) · · · · · · c (en) ∈ Cl0r,s (6.3)

such that
∆±r,s = {w ∈ ∆r,s |ω(r, s)w = ±w} . (6.4)

The Cli�ord algebra for odd dimensions n has two inequivalent spinor modules ∆r,s(1) and
∆r,s(2) which can be distinguished as "+"-eigenspace for ∆r,s(1) and the "−"-eigenspace
for ∆r,s(2) of (6.3) as an element in Cl1r,s. While restricting to Cl0r,s, these two submodules
coincide and we write ∆r,s for both subbundles. Thus we can get rid of one summand in the
representation of Spin such that we have the following irreducible spinor representations:

(1) Spin(r, s) ∼= Aut(∆+
r,s)⊕ Aut(∆−r,s) if n is even;

(2) Spin(r, s) ∼= Aut(∆±r,s) if n is odd.

All presented spinor modules carry a Hermitian form
〈
·
∣∣ ·〉

∆r,s
which is inherited from the

standard inner product on C2n for n = 2m or n = 2m+ 1. This inner product is invariant
under the action of Spin(n) := Spin(n, 0), but for general signatures it is only invariant
with respect to a compact subgroup of Spin(r, s) (see [Bau81, pp.55-57] for details). But
one can �nd a canonical non-degenerate symmetric sesquiliniear form

(
·
∣∣ · )

∆r,s
which has

the desired invariance property. However, it is possible to relate this non-degenerate form
to the inner product on C2m . In order to do so, we introduce the following element in Clr,s:
we denote with {ej+r}sj=1 the timelike directions in {ej}nj=1; we de�ne

b :=


c (er+1) · c (er+2) · · · c (er+s) s ∈ {0, 1} mod 4

for
ic (er+1) · c (er+2) · · · c (er+s) s ∈ {2, 3} mod 4

; (6.5)

it is a spinorial volume form for all timelike directions and satis�es b · b = 1 as well as〈
bφ
∣∣ψ〉

∆r,s
=
〈
φ
∣∣ bψ〉

∆r,s
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for φ, ψ ∈ ∆r,s. This last equation implies how
(
·
∣∣ · )

∆r,s
and

〈
·
∣∣ · 〉

∆r,s
are related to

each other: (
φ
∣∣ψ)

∆r,s
=
〈
bφ
∣∣ψ〉

∆r,s
forφ, ψ ∈ ∆r,s (6.6)

which in addition satis�es for v ∈ Rn and φ, ψ ∈ ∆r,s the symmetry property(
c (v)φ

∣∣ψ)
∆r,s

+ (−1)s
(
φ
∣∣ c (v)ψ

)
∆r,s

= 0 . (6.7)

We now turn our attention on how to implement a spin structure on a time- and space-
oriented n-dimensional pseudo-Riemannian manifold M with metric g of signature (r, s)
such that n = r + s. There are two ways to implement a spin structure on a manifold.
Let GL+(n,R) be as in (2.14) and PGL+(M) the principal GL+(n,R)-bundle of positive-
oriented tangent frames. Let τ be the connected double covering map with preimage

G̃L
+

(n,R) := τ−1(GL+(n,R)). A topological spin structure on M is a principal G̃L
+

(n,R)-
bundle P

G̃L
+(M) over M with a principal bundle morphism Θ : P

G̃L
+(M) → PGL+(M)

such that the following diagram commutes:

P
G̃L

+(M)× G̃L
+

(n,R)

PGL+(M)× GL+(n,R)

P
G̃L

+(M)

PGL+(M)

MΘ× τ Θ

Figure 6.2.: Commuting diagram for the de�nition of a topological spin structure according
to [BGM05] & [vdD18].

This is a metric-independent spin structure on the oriented manifold M if it admits
certain topological criterions24. We call such a manifold spin manifold or just spin. A
metric spin structure in comparison is implemented as follows: let PSO(M) be the prin-
cipal SO(r, s)-bundle of positive-oriented orthonormal tangent frames. Since SO(r, s) ⊂
GL+(n,R) we can restrict τ to the preimage of SO(r, s) which gives the twofold covering
map τ : Spin(r, s) → SO(r, s). We de�ne a principal Spin(r, s)-bundle as the preimage of
PSO(M) under Θ: PSpin(M) = Θ−1(PSO(M)). The commutative diagram 6.2 then takes
the form

PSpin(M)× Spin(r, s)

PSO(M)× SO(r, s)

PSpin(M)

PSO(M)

MΘ× τ Θ

Figure 6.3.: Commuting diagram for the de�nition of a metric spin structure according
to [BGM05] & [vdD18].

24Next to orientability (i.e the vanishing of the �rst Stiefel-Whitney class of TM) also its second Stiefel-
Whitney class has to vanish.
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The pairM with PSpin(M) is a pseudo-Riemannian spin manifold25. Both spin structures
can be reinterpreted in terms of each other; see [vdD18, Sec.2.2]. A spin(or) bundle of M
is de�ned as complex vector bundle which is associated to the spinor representation ρ of
the representation space ∆r,s:

S(M) := PSpin(M)×ρ ∆r,s . (6.8)

In other words, the �bre Sp(M) of S(M) over a point p ∈M is a vector space of equivalence
classes, given by pairs [A, φ] with A ∈ PSpin(M)|p and φ ∈ ∆r,s, which satisfy

[A, φ] = [Ag−1, gφ] for g ∈ Spin(r, s) .

We call these elements spinors and sections of S(M) are de�ned to be spinor �elds. We
see that the spinor bundle construction depends on the metric. We recall that for even
dimensions the spin representation space ∆r,s decomposes into the two submodules ∆±r,s.
This chirality decomposition carries over to the spinor bundle such that S(M) splits into
the two subbundles S±(M) := PSpin(M)×ρ±∆+

r,s with ρ±, denoting the spin representations
for the submodules ∆±r,s:

S(M) = S+(M)⊕ S−(M) . (6.9)

These subbundles are called positive respectively negative half-spin(or) bundles and we call
their sections spinor �elds of positive respectively negative chirality.

The Cli�ord multiplication can also be lifted to the manifold. We recapitulate that the
tangent bundle can be considered as associated vector bundle of the form PSO(M) ×
Rn/SO(r, s) if the tangent frames are oriented. The Cli�ord bundle is then considered
as associated vector bundle of the form Cl r,s(M) := PSO(M) × Clr,s/SO(r, s). A metric
spin structure allows to rewrite the bundle PSO(M) in terms of PSpin(M)×λSO(r, s) where
λ denotes the double cover Spin(r, s)→ SO(r, s). The Cli�ord bundle can then be viewed
as associated bundle of PSpin(M) which takes the form

Cl r,s(M) = PSpin(M)×f Clr,s

where the representation map f is de�ned by conjugating elements from Clr,s with ele-
ments in Spin(r, s).

Let A ∈ PSO(M) and v ∈ Rn which de�ne an element [A, v] in TM as associated bundle.
The Cli�ord multiplication/representation is then de�ned as map c : TM → Cl r,s(M) by

c ([A, v]) := [A, iClr,s(v)]

where iClr,s denotes the subspace inclusion Rn ↪→ Clr,s. In this way the Cli�ord multipli-
cation inherits the Cli�ord relation of Clr,s such that c becomes a pointwise acting vector
space homomorphism from TpM to End(Sp(M)), satisfying

c (X) · c (Y ) + c (Y ) · c (X) = −2gp(X,Y )1Sp(M) ∀X,Y ∈ TpM . (6.10)

25Since M is time- and space-oriented, its tangent bundle obeys the decomposition (3.2). If the subbundles
T±M admit themselves spin structures, TM has vanishing second Stiefel-Whitney class. For more details,
see [Bau81, Sec.2.1].
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The canonical non-degenerate form on ∆r,s implies a non-degenerate Hermitian bundle
product

(
·
∣∣ · )S(M)

which is pointwise given by(
·
∣∣ · )Sp(M)

: Sp(M)× Sp(M) → C (6.11)

which has property (6.7) and is only positive de�nite in the Riemannian case ((r, s) =
(n, 0)). The action of c (X) on a spinor is formally self-adjoint with respect to (6.11): let
u, v ∈ Sp(M);(

c (X)u
∣∣ v)Sp(M)

+ (−1)s
(
u
∣∣ c (X) v

)
Sp(M)

= 0 ∀X ∈ TpM . (6.12)

A consequence of (6.10) and (6.12) is that(
c (X)u

∣∣ c (X) v
)

Sp(M)
= −(−1)s

(
u
∣∣ c (X) · c (X) v

)
Sp(M)

= (−1)sg(X,X)
(
u
∣∣ v)Sp(M)

.
(6.13)

Integrating (6.11) over the manifold against the volume form dvol g gives a pairing which
is positive de�nite in the Riemannian case, but in general only non-degenerate:(

φ
∣∣ψ)

C∞c (S(M))
:=

∫
M

(
φ(p)

∣∣ψ(p)
)

Sp(M)
dvol g (p) (6.14)

for φ, ψ ∈ C∞c (S(M)). In order to construct L2-spaces for spinor sections as Hilbert spaces,
we have to consider the completion of C∞c (S(M)) with respect to (6.14) which only works
for M being a Riemannian manifold. However, recalling the construction of the non-
degenerate sesquilinear form (6.6) on ∆r,s, we are able to relate the non-degenerate bundle
metric to a positive de�nite Hermitean sesquilinear form. For Lorentzian manifolds, which
is the case of our interest, this works as follows: ifM is space- and time-oriented, it admits
a global unit and timelike vector �eld t such that〈

·
∣∣ · 〉S(M)

:=
(
c (t) ·

∣∣ · )S(M)
(6.15)

is a positive-de�nite bundle metric on S(M) which implies (6.14) to be a (Hermitian) inner
product after replacing (6.11) with (6.15). The completion of C∞c (S(M)) with respect to
this inner product then induces a Krein space where c (t) acts as fundamental symmetry,
since c (t) is self-adjoint by (6.12) (s = 1), and unitary from (6.13) because g(t, t) = −1
holds: (

c (t)u
∣∣ c (t) v

)
S(M)

= −g(t, t)
(
u
∣∣ v)S(M)

=
(
u
∣∣ v)S(M)

. (6.16)

Remarks 6.1.1.

(i) Let E be any vector bundle over M , then we can de�ne the tensor product SE(M) :=
S(M) ⊗ E as twisted spinor bundle. This modi�cation becomes interesting if one
wants to consider spinors, taking values in another vector space. The vector bundle
appears to be a coe�cient bundle, describing E-valued spinors.

(ii) Let V = R and b from (3.1). If we replace in Fig. 6.1 the group SO(r, s) with
SO(r, s)×U(1) with U(1) as circle group, we get the group Spinc(r, s) from the modi�ed
exact sequence:
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0 Z2 Spinc(r, s) SO(r, s)× U(1) 1

Figure 6.4.: Exact sequence for Spinc(r, s)

This exact-sequence property implies that Spinc(r, s) = (Spin(r, s) × U(1))/Z2. Pro-
ceeding as for the ordinary spin group, one can de�ne a (metric) spinc-structure on
M as principal Spinc(r, s)-bundle PSpinc(M) such that the bundle map PSpinc(M) →
PSO(M) × PU(1)(M) is equivariant against Spinc(r, s)-actions. Such a structure ex-
ists on a manifold if M is orientable and if the third integral Stiefel-Whitney class is
vanishing. The tangent frame bundle carries a Spinc-structure and we call the man-
ifold Spinc-manifold. If M is already spin, then it is canonically a Spinc-manifold
with PSpinc(M) = (PSpin(M) × U(1))/Z2 where Z2 = {±1} acts diagonally. The
corresponding spinor bundles are then de�ned as in the spin case where PSpin(M) is
replaced by PSpinc(M) and the representation spaces of Spin(r, s) are replaced with the
one for the group Spinc(r, s). A more practical point of view is to treat these spinor
bundles as twisted spinor bundles: as one can associate to a Spinc-manifold a complex
line bundle L, one can show that the spinor bundle in this situation is given by the
tensor product S(M) ⊗ L1/2 =: SL(M) where S(M) is a spinor bundle on M which
exists only locally due to the possible lack of a spin structure on M . The square root
L1/2 of L does not need to exist globally either. But the tensor product of these two
bundles exists globally. For more details we refer to [LM16, App.D] for the technical
background and [Ike05] for the situation of pseudo-Riemannian manifolds.

(iii) If a pseudo-Riemannian manifold M is spin, then its pseudo-Riemannian covering
does admit a spin structure as well; Lemma 2.10 in [Bau81]. If M is a connected

and pseudo-Riemannian manifold and M̃ is its universal covering with respect to
the deck transformations, e.g. a Galois covering, then the spin structure on M̃ also
implies a spin structure on M and vice versa; [Bau81, Satz 2.7]. We also refer
to [Bau81, Sec.2.3] for more background informations. The Riemannian analogue is
stated in [Gin09, Thm.1.4.2].

6.2. Dirac operators

In order to de�ne the spin- or Atiyah-Singer Dirac operator, we have to clarify how to
implement a connection on S(M). One way is to lift the connection one-form of the Levi-
Civita connection on TM via the covering map Θ to a connection one-form on S(M),
inducing a covariant derivative for spinor �elds. A less invariant, but equivalent and
more concrete way to do so, is the a covariant derivative ∇S(M) on S(M) from the Levi-
Civita connection ∇ is the following local description: a spinor �eld Ψ ∈ C∞(S(M)) can
be described as an equivalence class [A,ψ] with A a local section of PSpin(M) and ψ as
element in the representation space of the spin group. Using the covering map Θ on A gives
a local oriented pseudo-Riemannian-orthonormal tangent frame Θ(A) = {ei}ni=1, satisfying
g(ei, ej) = εiδij with εi = g(ei, ei) = ±1. The Levi-Civita connection ∇ := ∇LC is locally
given by (3.20):

∇eiej :=

n∑
k=1

Γkijek .
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It is proven in [Bau81, Satz 3.2] that the local expression for the spin Levi-Civita connection
∇S(M) is given by

∇S(M)
X Ψ =

[
A,X(Ψ) +

1

2

∑
k<l

εkεlg(∇Xek, el)c (ek) · c (el)ψ

]
. (6.17)

The action of X on the local function ψ with values in ∆r,s is de�ned as for scalar functions.
Replacing X with an element ej in the tangent frame allows to rewrite g(∇ejek, el) with
Christo�el symbols. As like any other Koszul connection, also ∇S(M) complies with the
Leibniz rule which is inherited from the one of ∇. One can determine the connection
further in such a way that the following compatability conditions are moreover satis�ed:

X
(
u
∣∣ v)S(M)

=
(
∇S(M)
X u

∣∣ v)S(M)
+
(
u
∣∣∇S(M)

X v
)

S(M)
(6.18)

∇S(M)
X (c (Y )u) = c (∇XY )u+ c (Y )∇S(M)

X u (6.19)

where u, v ∈ C∞(S(M)) and X,Y ∈ X(M). This makes S(M) a Dirac bundle with
compatible bundle metric, ful�lling the Leibniz rule. Condition (6.19) implies that the

connection satis�es ∇End(S(M))
X c = 0 such that the spinorial volume form

ωr,sS(M) := (−i)s+n(n+1)/2c (e1) · c (e1) · · · · · c (en) (6.20)

becomes globally parallel: ∇End(S(M))
X ωr,sS(M) = 0. (6.4) carries over to the manifold situation

such that for even dimensions n the subbundles can be rephrased as the eigenbundles:

S±(M) :=
{
u ∈ C∞(S(M))

∣∣∣ωr,sS(M)u = ±u
}

;

the global parallelity of the spinorial volume form implies that this connection preserves
this eigenspaces and thus the eigenspace decomposition (6.9). The volume form moreover
satis�es (ωr,sS(M))

2 = (−1)s1S(M). Another consequence of (6.19) is the fact that Cli�ord
multiplication commutes with the parallel transport: let Ψ ∈ C∞(S(M)), X,Y ∈ X(M)
and γ(s) be the integral curve of X. The spin covariant derivative on Ψ in direction of X
can be expressed as parallel transport along γ with p = γ(0):

∇S(M)
X Ψ

∣∣∣
p

=
d

dτ
P (γ)0

τΨγ(τ)

∣∣∣∣
τ=0

(recall (2.17) for the notation). Global parallelity implies ∇S(M)
X (c(Y )Ψ) = c(Y )∇S(M)

X Ψ
and thus

d

dτ
P (γ)0

τc|γ(τ)(Yγ(τ))Ψγ(τ) =
d

dτ
c|γ(0)(Yγ(0))P (γ)0

τΨγ(τ)

⇔ 0 =
d

dτ

[(
P (γ)0

τc|γ(τ)(Yγ(τ))− c|γ(0)(Yγ(0))P (γ)0
τ

)
Ψγ(τ)

]
⇔ C =

(
P (γ)0

τc|γ(τ)(Yγ(τ))− c|γ(0)(Yγ(0))P (γ)0
τ

)
Ψγ(τ) .

The right-hand side vanishes for τ = 0 and because C is a constant we get

P (γ)0
τc|γ(τ)(Yγ(τ))Ψγ(τ) = c|γ(0)(Yγ(0))P (γ)0

τΨγ(τ) . (6.21)
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After clarifying the implementation of the connection, we are able to de�ne the Dirac
operator as the map D : C∞(S(M)) → C∞(S(M)) which is locally given by

DΨ :=

n∑
j=1

εjc (ej)∇S(M)
ej Ψ

(6.17)
=

A, n∑
j=1

(
εjc (ej) ej(Ψ) +

1

2

∑
k<l

Γjk,lεjεkεlc (ej) · c (ek) · c (el)ψ

) (6.22)

for a local orthonormal pseudo-Riemannian tangent frame e1, ..., en. One sees that D ∈
Diff1(S(M)) and its principal symbol can be calculated with (4.11):

σ1(D)(x, ξ)Ψ = lim
λ→∞

(
1

λ

)
e−iλΦD

(
eiλφΨ

)∣∣∣∣
x

= i

n∑
j=1

εjξ(ej)c (ej) Ψ(x) = ic
(
ξ]
)

Ψ(x) ;

the sharp isomorphism is taken with respect to g . It shows that D is not-elliptic if s 6= 0 as
it can vanish for ξ being a lightlike covector. If M is odd-dimensional, the Dirac operator
is purely de�ned by (6.22) and one does not need to distinguish between spinor �elds of
positive or negative chirality as the spin structure does not admit a chirality decomposition.
But for n even, the Z2-grading of the spinor bundle (6.9) induces a decomposition of the
Dirac operator itself. We �rst observe

Dωr,sS(M) = (−1)n−1ωr,sS(M)D (6.23)

which can be seen as follows: we choose a local pseudo-Riemannian-orthonormal tangent
frame {ej}nj=1 which is synchronous, i.e. ∇eiej = 0 for all i, j ∈ {1, ..., n}; since

c (ei) · c (e1) · · · c (ei) · · · c (en) = (−1)i−1c (e1) · · · c (ei)
2 · · · c (en)

= (−1)i−1+(n−i)c (e1) · · · c (ei) · · · c (en) · c (ei)

= (−1)n−1c (e1) · · · c (ei) · · · c (en) · c (ei) (6.24)

we have c (ei) ·ωr,sS(M) = (−1)n−1ωr,sS(M) ·c (ei) and due to the chosen synchronous frame the
relation (6.19) reduces to

∇S(M)
ei (c (ej)u) = c

(
∇LC
ei ej

)
u+ c (ej)∇S(M)

ei u = c (ej)∇S(M)
ei u

for a section u ∈ C∞(S(M)). Hence ∇S(M)
ei commutes with the spinorial volume form and

with (6.24) the equivalence (6.23) is proven; it shows that the Dirac operator respects the
splitting (6.9). As we have focused on n even, we have in fact Dωr,sS(M) = −ωr,sS(M)D and the

Dirac operator maps sections of S+(M) to sections in S−(M) and vice versa. This allows
to represent26 D as

D =

(
0 D−
D+ 0

)
with D± ∈ Diff1(S±(M), S∓(M)) . (6.25)

26Here and henceforth we use the convention that combinations of objects (A,B, g, f elements, C as set)
like A±B∓ or g, f± ∈ C± are meant for the upper and lower signs separately if not otherwise stated, i.e.
A±B∓ is either A+B− or A−B+ whereas A±B± stands for either A+B+ or A−B−. In a similar manner
we write g, f± ∈ C± for either g, f+ ∈ C+ or g, f− ∈ C−.
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Both D± are also non-elliptic as long as 0 < s < n.

The Dirac-Laplacian D2 is a di�erential operator of second order and its principal sym-
bol can be calculated by Lemma 4.1.3 (1): σ2(D2)(x, ξ) = σ1(D)(x, ξ) ◦ σ1(D)(x, ξ) =
g(ξ], ξ])1S(M) which is also a non-elliptic operator apart from the Riemannian setting. In
particular this shows that D2 is a normally hyperbolic operator in the Lorentzian setting;
see (C.5) in Appendix C. D2 and (6.25) imply in particular that D±D∓ are also normally
hyperbolic.

One could ask how D2 and the Bochner-Laplacian ∇S(M)∗∇S(M) di�er from each other.
The Lichnerowicz formula answers this question in the Riemannian setting and remains
true for pseudo-Riemannian manifolds:

D2 = ∇S(M)∗∇S(M) +
1

4
R (6.26)

where R is the scalar curvature; we refer to [Bau81, Satz 3.4] and for more technical
explainations to [LM16, Sec.II.8]. If we twist the spinor bundle with a vector bundle E
over M and denote the corresponding Dirac operator with DE , the pseudo-Riemannian
Lichnerowicz formula (6.26) gets an extra contribution from the curvature endomorphism
RE which is de�ned as follows: let REei,ej be the curvature of the twisting bundle; an
element in C∞(SE(M)) is given as a tensor product of elements ψ ∈ C∞(S(M)) and
f ∈ C∞(E) such that the curvature endomorphism takes the form

RE(ψ ⊗ f) :=
n∑

i,j=1

(
c (ei) c (ej)ψ ⊗

(
REei,ejf

))
. (6.27)

(6.26) then generalises to

(DE)2 = ∇SE(M)∗∇SE(M) +
1

4
R+ RE . (6.28)

If we moreover twist the spinor bundle with the square root of a complex line bundle
L, we can consider Spinc-structures instead and we formally replace the bundle E with
EL := L1/2 ⊗ E. The curvature endomorphism (6.27) is replaced by REL in (6.28). As
the curvature endomorphism factorises with respect to the tensor product, the curvature
endomorphism REL splits into a sum of RE and a contribution from the line bundle
curvature two form ΩL, given by

ΩL :=
∑
j<k

ΩL(ej , ek)c (ej) c (ek) .

The pseudo-Riemannian Lichnerowicz formula for the Spinc-twisted Dirac operator DEL ,
acting on sections of SL,E(M) := SEL(M), then takes the form

(DEL)2 = ∇SL,E(M)∗∇SL,E(M) +
1

4
R+ RE +

i

2
ΩL . (6.29)

For more informations about these modi�cations we refer to [LM16, Sec.II.8] and [LM16,
App.D].
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Now we want to show some formal self-adjointness properties of D. In order to do so,
we �rst consider a technical result.

Lemma 6.2.1. Given u, v ∈ C∞(S(M)) and a local pseudo-Riemannian-orthonormal tan-
gent frame {ej}nj=1; the Dirac operator satis�es

(
Du
∣∣ v)S(M)

+ (−1)s+1
(
u
∣∣Dv

)
S(M)

= (−1)s+1
n∑
j=1

εjdiv
((
u
∣∣ c (ej) v

)
S(M)

ej

)
. (6.30)

Proof. We choose {ej}nj=1 to be a synchronous frame. We use the adjoints of the Cli�ord
multiplication and the spin connection:

(−1)s
(
c (ej)∇S(M)

ej u
∣∣ v)S(M)

(6.12)
= −

(
∇S(M)
ej u

∣∣ c (ej) v
)

S(M)

(6.18)
=

(
u
∣∣∇S(M)

ej c (ej) v
)

S(M)
− ej

(
u
∣∣ c (ej) v

)
S(M)

(6.19)
=

(
u
∣∣ c (ej)∇S(M)

ej v
)

S(M)
+
(
u
∣∣ c(∇ejej) v)S(M)

− ej
(
u
∣∣ c (ej) v

)
S(M)

(∗)
=
(
u
∣∣ c (ej)∇S(M)

ej v
)

S(M)
− ej

(
u
∣∣ c (ej) v

)
S(M)

. (6.31)

We used in (∗) that the frame has been chosen to be synchronous. With the help of the
product rule of divergence, the resulting term can be described as

ej
(
u
∣∣ c (ej) v

)
S(M)

= div
((
u
∣∣ c (ej) v

)
S(M)

ej

)
−
(
u
∣∣ c (ej) v

)
S(M)

div (ej) ,

but since ej belongs to a synchronous frame, the latter divergence will vanish for all j.
Plugging this into (6.31) shows(
c (ej)∇S(M)

ej u
∣∣ v)S(M)

+(−1)s+1
(
u
∣∣ c (ej)∇S(M)

ej v
)

S(M)
= (−1)s+1div

((
u
∣∣ c (ej) v

)
S(M)

ej

)
and after multiplying with εj and thus each summand in (6.30).

We now specify M to be a globally hyperbolic spin manifold. We consider any compact,
but �xed time interval [t1, t2] such that M on this reduced time interval becomes temporal
compact. We write M |[t1,t2] for this restriction. The global hyperbolicity implies the
existence of a spacelike Cauchy hypersurface such that M |[t1,t2] becomes a manifold with
boundary Σ1 t Σ2.

Proposition 6.2.2. SupposeM is a globally hyperbolic spin manifold with spacelike Cauchy
hypersurface Σ, Lorentzian metric (3.7) and D the Dirac operator; for any time interval
[t1, t2] and spinor �elds u, v ∈ C∞sc (S(M)) with temporal support in this time interval we
have∫

M

(
Du
∣∣ v)S(M)

+
(
u
∣∣Dv

)
S(M)

dvol

=

∫
Σ2

(
u
∣∣ c (ν) v

)
S(M)

dvol Σt −
∫

Σ1

(
u
∣∣ c (ν) v

)
S(M)

dvol Σt . (6.32)
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Proof. We choose any, but a �xed time interval [t1, t2] and two spinors u, v as in the claim.
Recalling the preface of this claim it is enough to consider M |[t1,t2] due to the temporal
support of the spinors. The boundary ofM |[t1,t2] is given by Σ1tΣ2. Applying Lemma 6.2.1
for s = 1 leads to

(
Du
∣∣ v)S(M)

+
(
u
∣∣Dv

)
S(M)

=
n∑
j=0

εjdiv
((
u
∣∣ c (ej) v

)
S(M)

ej

)
. (6.33)

Because M is time and space-oriented, we have a global unit timelike vector ν which we
choose to be past-directed. We choose the future-oriented Lorentz-orthonormal tangent
frame in such a way that e0 is future-timelike, indicating e0 = −ν and ε0 = −1; the
other members in the frame are spacelike with ε0 = 1 for j > 0. We apply the divergence
theorem for Lorentzian manifolds (see (A.7) in Appendix A) with a timelike unit normal
vector n where n = −ν is inwards-pointing on Σ1 since it has been chosen to be a past-
directed orthonormal to all hypersurfaces; n coincides with ν on Σ2 to assure that n is
inwards-pointing. Integrating the right-hand side of (6.33) gives

n∑
j=1

εj

∫
M |[t1,t2]

div
((
u
∣∣ c (ej) v

)
S(M)

ej

)
dvol = −

n∑
j=1

εj

∫
dM

(
u
∣∣ c (ej) v

)
S(M)

g(ej , n) dvol Σt .

As g(ej , n) = 0 for j > 1, we gain

n∑
j=1

εj

∫
M |[t1,t2]

div
((
u
∣∣ c (ej) v

)
S(M)

ej

)
dvol = −

∫
dM |[t1,t2]

(
u
∣∣ c (e1) v

)
S(M)

g(e1, n) dvol dM

=−
∫

Σ2

(
u
∣∣ c (e1) v

)
S(M)

g(e1, n) dvol Σt −
∫

Σ1

(
u
∣∣ c (e1) v

)
S(M)

g(e1, n) dvol Σt

(∗)
=

∫
Σ2

(
u
∣∣ c (ν) v

)
S(M)

g(e1, n) dvol Σt −
∫

Σ1

(
u
∣∣ c (ν) v

)
S(M)

g(e1, n) dvol Σt .

In (∗) we have used g(e1, n) = −g(ν, n) which is just (−1) on Σ1 and 1 on Σ2. Some extra
signs come from c (e1) = −c (ν) such that we �nally have proven (6.32).

As a consequence we get

Corollary 6.2.3. D is formally skew-adjoint if u, v ∈ C∞c (S(M)): D† = −D.

Being compactly supported means that the spinor �elds are spatially compact and tem-
poral compact supported in the interior of M . We furthermore get for n even

Corollary 6.2.4. For the same preassumptions one has formally D†+ = −D− and D†− =
−D+.

Remarks 6.2.5.

(i) Proposition 6.2.2 remains true if we merely consider di�eretiable spinor �elds with
the same support properties. The results remain true if we replace D with its twisting
version DEL if we take E and L to be Hermitian vector bundles (i.e. E has a positive
de�nite bundle metric).
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(ii) For M globally hyperbolic we have used that there exists a global unit timelike vector
�eld ν. Recalling the construction of the inner product (6.15), we observe that we
can de�ne a bundle metric which is a positive de�nite and Hermitian: let β := c (ν),
then the bundle product 〈

·
∣∣ · 〉S(M)

:=
(
β ·
∣∣ · )S(M)

(6.34)

is positive de�nite and induces an (Hermitian) inner product for φ, ψ ∈ C∞c (S(M)):

〈
φ
∣∣ψ〉

L2(S(M))
:=

∫
M

〈
φ
∣∣ψ〉S(M)

dvol g =

∫
M

(
βφ
∣∣ψ)S(M)

dvol g . (6.35)

The completion of C∞c (S(M)) with respect to the norm, induced by (6.35), de�nes
the space of square-integrable spinor �elds L2(S(M)). With (6.16) we also have the
property〈

βφ
∣∣βψ〉S(M)

=
(
β2φ

∣∣βψ)S(M)
=
(
βφ
∣∣ψ)S(M)

=
〈
φ
∣∣ψ〉S(M)

. (6.36)

The Cli�ord multiplication on SE(M) becomes (c⊗ 1E) such that〈
·
∣∣ · 〉SE(M)

:=
(
(β⊗ 1E) ·

∣∣ · )SE(M)
(6.37)

is a (positive de�nite) Hermitian bundle metric, indicating a L2-inner product

〈
Φ
∣∣Ψ〉

L2(SE(M))
:=

∫
M

〈
Φ
∣∣Ψ〉SE(M)

dvol g (6.38)

for Φ,Ψ ∈ C∞c (SE(M)). The completion of C∞c (SE(M)) with respect to the norm,
induced by this inner product, de�nes the space L2(SE(M)). In addition, we get a
twisted version of the isometry property (6.36):〈

(β⊗ 1E)Φ
∣∣ (β⊗ 1E)Ψ

〉
SE(M)

=
(
(β⊗ 1E)2Φ

∣∣ (β⊗ 1E)Ψ
)

SE(M)

=
(
(β⊗ 1E)Φ

∣∣Ψ)SE(M)
=
〈
Φ
∣∣Ψ〉SE(M)

.
(6.39)

Both isometries (6.36) and (6.39) carry over to isometries on L2(S(M)) and respec-
tively on L2(SE(M)).

(iii) It follows from Proposition 6.2.2 that the Riemannian Dirac operator is formally
self-adjoint. We recall from [GL83, Thm.1.17] that in fact the Riemannian Dirac
operator is essentially self-adjoint if the underlying Riemannian manifold is either
compact or complete. If the underlying manifold is compact without boundary, the
spectrum of the Dirac operator is discrete and unbounded on both sides of R with
�nite-dimensional eigenspaces; see [Gin09, Thm.1.3.7]. On non-compact, but com-
plete manifolds, the spectrum of the Dirac operator decomposes into a, possibly non-
discrete, point spectrum and a continuous spectrum; the eigenspaces of di�erent eigen-
values are still orthogonal to each other, but may have in�nite multiplicity. We refer
to [Bä05, Sec.1.2] and [Bä09] for more informations. For Dirac operators on general
pseudo-Riemannian manifolds the situation is somehow more complicated. We refer
the interested reader to [Bau81, Sec.3.3.2/3/4] for more informations.
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6.3. Spin structures and Dirac operators along hypersurfaces

We start with a general pseudo-Riemannian hypersurface Σ in a pseudo-Riemannian man-
ifold M . After this, we specify to even dimensions of M and the two cases that either M
is Lorentzian with Σ as spacelike Cauchy hypersurface or M is a Riemannian topological
product manifold which contains Σ as base hypersurface of the cylinder.

6.3.1. Spin structures on pseudo-Riemannian hypersurfaces

SupposeM is a (n+1)-dimensional spin manifold with pseudo-Riemannian metric g of sig-
nature (r, s) and Σ ⊂M is a pseudo-Riemannian hypersurface with trivial timelike normal
bundle, i.e. there exists a global timelike unit vector �eld ν in M such that g(ν,ν) = −1

and {ν}⊥ = TΣ. The hypersurface Σ then has signature (r, s− 1).

We �rst assume that the spin structure of M is of topological nature, i.e. Θ : P+

G̃L
(M) →

P+
GL(M) is the twofold covering map (see Fig. 6.2). We can restrict the topological spin

structure two a metric spin structure by restricting GL+(n + 1) to SO(r, s) such that
PSpin(M) = Θ−1(PSO(M)) and the covering map for the metric spin structure is given by
Θg := Θ|Θ−1(SO(r,s)). The hypersurface inherits a spin structure in the following way: the
tangent space TM along Σ decomposes into the tangent bundle TΣ and the normal bundle
NΣ := TΣ⊥. Since the normal bundle is assumed to be trivial, we get

TM |Σ = R⊕ TΣ .

Let {ei}ni=1 be an oriented tangent frame for TΣ with the corresponding frame bundle
PGL+(Σ). A tangent frame forM can be established by adding ν as element e0 to the frame
such that {ei}ni=0 becomes an oriented tangent frame for TM with the corresponding frame
bundle PGL+(M). Thus, there is an embedding of frames, i : {ei}ni=1 ↪→ {ei}

n
i=0 such that

the frame bundle PGL+(Σ) can be embedded into the restricted frame bundle PGL+(M)|Σ,
de�ning the principal bundle

P
G̃L+(Σ) := Θ−1 ◦ i(PGL+(Σ))

for a topological spin structure on Σ. A corresponding metric spin structure with respect
to the induced metric gΣ on Σ can be found by restricting the inclusion27 i of frames to
PSO(Σ), de�ning igΣ := i |PSO(Σ); this is an embedding from PSO(Σ) to PSO(M)|Σ where the
latter frame bundle is given by the group SO(r, s) and thus with respect to the metric g
on M . Hence

PSpin(Σ) := Θ−1
g ◦ igΣ(PSO(Σ))

becomes a metric spin structure for Σ with respect to gΣ. Let ρ be the representation map
of Spin(r, s) with representation space ∆r,s; we recall that the spinor bundle on M is given
by (6.8). If n is even, i.e. M odd-dimensional, the restriction of spinor bundle do not
decompose into a direct sum and we set

S(Σ) := S(M)|Σ

27The group SO in the subscript of the frame bundle is an abbreviation for SO(r, s− 1).
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which admits a chirality decomposition as Σ is even-dimensional. For even-dimensional
M (n odd), we already have a chirality decomposition of the spinor bundle such that
each subbundle restricts to one and the same spinor bundle on Σ which is now an odd-
dimensional hypersurface:

S±(M)|Σ =: S(Σ) .

The Cli�ord representation with respect to spinors on M depend on the representation of
Clr,s on ∆r,s while the representation on Σ is depending on the representation of Clr,s−1

on ∆r,s−1. Hence the concrete form of the Cli�ord multiplications depends implicitly on
the signature. In the next subsection we focus on two representations which we are going
to use in the forthcoming analysis.

We end this subsection by focusing on two special cases: we view M to be either a glob-
ally hyperbolic manifold with Cauchy hypersurface Σ, such that M is di�eomorphic to
R × Σ and the metric g as in (3.7), or M is a Riemannian product space with base Σ
such that M becomes isomorphic to R × Σ with metric N2 dt⊗2 + gt. In both cases we
also consider Σ to be a smooth and Riemannian (thus spacelike) hypersurface in M with
lapse function N ∈ C∞(M,R>0) and a smooth family of Riemannian metrics

{
gt
}
t∈R. In

both cases we consider M to be isomorphic to the topological product28, thus both cases
di�ers only by the choice of the metric. For the following implementations, which relies
on [vdD18, Sec.3.1], we consider the metric (3.36). We set Σt to be a spacelike slice at
time t ∈ R in the topological product space which is a Riemannian submanifold for each
t ∈ R if we equip each of the slices with the Riemannian metric gt.

Given a topological spin structure P
G̃L

+(M) on M which induces a metric spin struc-

ture PSpin(M) with respect to g [ε]. The made observations imply that a topological spin
structure P

G̃L
+(Σt) and a corresponding metric spin structure PSpin(Σt) on Σt can be ob-

tained for each t where the latter spin structure is de�ned with respect to the Riemannian
metrics gt. The topological spin structure depends on the inclusion Σt ↪→M and therefore
on the chosen t ∈ R. However, because a topological spin structure does not depend on
the metric, all topological spin strutures P

G̃L
+(Σt) on Σ are equivalent and can be identi-

�ed by parallel transport along t-lines t 7→ (t, p) (p ∈ Σ) between principal �bre bundles.
This parallel transport extends to a principal bundle isomorphism P

G̃L
+(Σ1)→ P

G̃L
+(Σ2)

as any parallel transport on a principle bundle is compatible with the right action of the
structure group. The converse startegy describes how a spin structure on Σ and thus
each Σt implements a spin structure on M ; see [BGM05, Chap.5] and supporting notes
in [vdD18, Sec.3.1] for details.

Remarks 6.3.1.

(i) As we will focus on even-dimensional ambient spaces (n odd), we abuse notation and
write S±(Σ) for S±(M)|Σ in the forthcoming analysis to point out which subbundle
has been restricted. As long as we are in this case with Σ being a odd-dimensional
manifold, there should be no danger of missunderstanding.

(ii) All made considerations carry over to twisted spinor bundles without further concep-
tual modi�cations.

28In comparison: a geometric product space is the product space R×Σ with product metric (6.8) where the
hypersurface metric gΣ is �xed for all t ∈ R.
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6.3.2. Special case: M globally hyperbolic

For this subsection we assume M to be an even dimensional globally hyperbolic spin man-
ifold with spacelike Cauchy hypersurfaces Σ (of odd dimension n) with Lorentzian metric
g = g [−1]. There exists a global unit timelike vector �eld ν which we choose to be past-
directed. The spinor bundle on M admits a chirality decomposition (6.9) and we denote
Cli�ord multiplication with c. Recalling Remarks 6.2.5 (ii), the vector �eld ν induces an
isometry β := c (ν) according to (6.36) (and (6.39) for the twisted case). (6.10) further-
more implies β2 = 1S(M) as well as the anti-commuting with c and it induces the (positive
de�nite) Hermitian bundle metric (6.34) and thus the inner product (6.35).

In the last subsection we discussed how the spin structures of the hypersurfaces Σ and
{Σt}t∈T (M) are inherited from the one on M . As n is odd, we obtain a spinor bundle on
each Σt:

S(M)|Σt = S+(M)|Σt ⊕ S−(M)|Σt = S(Σt)⊕ S(Σt) =: S(Σt)
⊕2

for all t ∈ T (M). In accordance with Remarks 6.3.1 (i), we write S±(Σt) to stress which
spinor eigenbundle on M is restricted to the hypersurface. Following the explainations in
chapter 1 of [BS19], supported with section 2.3 of [vdD18], we can de�ne Cli�ord multi-
plication for spinors on the hypersurfaces: for a vector �eld X on Σt we set

ct (X) := iβc (X) ; (6.40)

if it acts on sections of S(M)|Σt , it takes the form ct (X) ⊕ (−ct (X)). If it only acts on
sections of the restricted subbundles, it is either +ct (X) for S+(Σt) or −ct (X) for S−(Σt).
A Cli�ord relation on the hypersurface is inherited from the one on M : choose two vector
�elds X,Y on Σt for �xed t, then

ct (X) ct (Y ) = −βc (X)βc (Y ) = c (X) c (Y )
(6.10)

= −c (Y ) c (X)− 2g(X,Y )1S(Σt)

= βc (Y )βc (X)− 2gt(X,Y )1S(Σt) = −ct (Y ) ct (X)− 2gt(X,Y )1S(Σt)

and �nally
ct (X) ct (Y ) + ct (Y ) ct (X) = −2gt(X,Y )1S(Σt) . (6.41)

In order to investigate further properties of this Cli�ord multiplication, we de�ne a Her-
mitian bundle metric by restricting (6.34): let u, v ∈ C∞c (S(Σt)), then〈

u
∣∣ v〉S(Σt)

=
(
βu
∣∣ v)S(M)

(6.42)

and hereby a L2-inner product〈
u
∣∣ v〉

L2(S(Σt))
:=

∫
Σt

〈
u
∣∣ v〉S(Σt)

dvol gt . (6.43)

We observe that ct is formally skew-adjoint with respect to (6.42) for all t:〈
ct (X)u

∣∣ v〉S(Σt)
= −

〈
u
∣∣ ct (X) v

〉
S(Σt)

; (6.44)

this skew-adjointness carries over to the inner product (6.43). β still acts as an isometry
with respect to the induced bundle metric because of β2 = 1 and its formal self-adjointness
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such that (6.36) implies 〈
βφ
∣∣βψ〉S(Σt)

=
〈
φ
∣∣ψ〉S(Σt)

; (6.45)

the twisted case is considered with (6.39):〈
(β⊗ 1E)Φ

∣∣ (β⊗ 1E)Ψ
〉

SE(Σt)
=
〈
Φ
∣∣Ψ〉SE(Σt)

. (6.46)

The connection on S(M)|Σt is the direct sum connection ∇S(Σt) ⊕∇S(Σt) where ∇S(Σt) is
induced by the covariant derivative along a vector in TpΣt from (3.30). If e0 = ν, e1, ..., en
is a Lorentz-orthonormal tangent frame, then e1, ..., en becomes a Riemann-orthonormal
frame for Σt. We �rst manipulate with (3.39) the sum in the local expression (6.17)∑

k<l

Γjk,lεkεlc (ek) · c (el) =
∑

1≤k<l≤n
Γjk,lεkεlc (ek) · c (el) +

∑
0<l≤n

Γj0,lε0εlc (e0) · c (el)

=
∑

1≤k<l≤n
ΓMjk,lc (ek) · c (el) +

∑
0<l≤n

g(W(ej), el)c (e0) · c (el)

=
∑

1≤k<l≤n
ΓMjk,lc (ek) · c (el) + c (e0)

∑
0<l≤n

g(W(ej), el)c (el)

=
∑

1≤k<l≤n
ΓMjk,lc (ek) · c (el) + c (e0) c (W(ej)) .

With e0 = ν we get

1

2

∑
k<l

Γjk,lεkεlc (ek) · c (el) =
1

2

∑
1≤k<l≤n

ΓMjk,lc (ek) · c (el) +
1

2
β · c (W(ej))

and thus for a section u of S(M)|Σt

∇S(M)
X u

∣∣∣
Σt

= ∇S(Σt)
X u

∣∣∣
Σt

+
1

2
βc (W(X))u

∣∣∣∣
Σt

. (6.47)

This enables us to decompose the Dirac operator along a �xed hypersurface:

Du|Σt =

n∑
j=0

εj c (ej)∇S(M)
ej u

∣∣∣
Σt

= − β∇S(M)
ν u

∣∣∣
Σt

+

n∑
j=1

c (ej)∇S(M)
ej u

∣∣∣
Σt

= −β

(
∇S(Σt)
ν u

∣∣∣
Σt

+
1

2
βc (W(ν))u

∣∣∣∣
Σt

)

+
n∑
j=1

c (ej)

(
∇S(Σt)
ej u

∣∣∣
Σt

+
1

2
βc (W(ej))u

∣∣∣∣
Σt

)

(∗)
= −β∇S(Σt)

ν u
∣∣∣
Σt

+
n∑
j=1

c (ej)∇S(Σt)
ej u

∣∣∣
Σt

+
1

2

n∑
j=1

c (ej)βc (W(ej))u

∣∣∣∣∣∣
Σt

.

In (∗) we used Lemma 3.2.1 (2). In order to calculate the remaining triple Cli�ord multipli-
cation, we use the following calculation: as each ei is in TpΣt for all p, we haveW(ei) ∈ TpΣt
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for all p ∈ Σt and thus

−2c (ej)βc (W(ej)) = 2βc (ej) c (W(ej)) = 2c (ej) c (W(ej))β

= βc (ej) c (W(ej)) + c (W(ej)) c (ej)β

= βc (ej) c (W(ej))− c (W(ej))βc (ej)

= [βc (ej) , c (W(ej))] ;

we observe on the other hand that

−2gt(ej ,W(ej))β = −2g(ej ,W(ej))β = c (ej) c (W(ej))β+ c (W(ej)) c (ej)β

= βc (ej) c (W(ej))− c (W(ej))βc (ej) = [βc (ej) , c (W(ej))]

and thus

− [βc (ej) , c (W(ej))] = 2c (ej)βc (W(ej)) = 2gt(ej ,W(ej))β . (6.48)

The �nal expression for the decomposition of the Dirac operator then becomes

Du|Σt = −β∇S(Σt)
ν u

∣∣∣
Σt
∓ iβ

n∑
j=1

ct (ej)∇S(Σt)
ej u

∣∣∣
Σt

+
1

2
β

n∑
j=1

gt(ej ,W(ej))u

∣∣∣∣∣∣
Σt

= −

β∇S(Σt)
ν u

∣∣∣
Σt
± iβ

n∑
j=1

ct (ej)∇S(Σt)
ej u

∣∣∣
Σt
− 1

2
βtrgt (W)u

∣∣∣∣
Σt

 .

With nHt = trgt (W) as mean curvature of the hypersurface Σt and

At :=

(
At 0
0 −At

)
with At =

n∑
j=1

ct (ej)∇S(Σt)
ej . (6.49)

as the hypersurface Dirac operator on sections of S(M)|Σt for an odd dimensional subman-
ifold the Dirac operator �nally becomes

Du|Σt = − β
(
∇S(Σt)
ν ± iAt −

n

2
Ht

)
u
∣∣∣
Σt

(6.50)

and (6.25) implies

D±u|Σt = −β
(
∇S(Σt)
ν ± iAt −

n

2
Ht

)
u
∣∣∣
Σt

= −β
(
∇S(Σt)
ν +Bt,±

)
u
∣∣∣
Σt

(6.51)

where we introduced the abbreviation Bt,± := ±iAt − n
2Ht which is an operator of most

�rst order, acting tangential to the hypersurface. If we further twist the Dirac operator
with a Hermitian vector bundle E (either for a Spinc-structure, a coe�cient bundle or

both), we replace in (6.49) ∇S(Σt)
ej with the twisted spin connection ∇SE(Σt)

ej and ct with
(ct ⊗ 1E); the result de�nes the twisted hypersurface Dirac operator

AEt :=

(
AEt 0
0 −AEt

)
with AEt :=

n∑
j=1

(ct (ej)⊗ 1E)∇SE(Σt)
ej . (6.52)
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Hence for a section u of S±E (M)|Σt we gain

DEu
∣∣
Σt

= − (β⊗ 1E)
(
∇SE(Σt)
ν ± iAEt −

n

2
Ht1SE(Σt)

)
u
∣∣∣
Σt

(6.53)

and consequently

DE
±u
∣∣
Σt

= −(β⊗ 1E)
(
∇SE(Σt)
ν ± iAEt −

n

2
Ht1SE(Σt)

)
u
∣∣∣
Σt

= −(β⊗ 1E)
(
∇SE(Σt)
ν +BE

t,±

)
u
∣∣∣
Σt

(6.54)

with BE
t,± := ±iAEt − n

2Ht1SE(Σt).

6.3.3. Special case: M Riemannian product space

Let M be isomorphic to R × Σ with Riemannian metric g [1] =: ǧ from (3.36) which is
the �ipped metric of g . We de�ne M̌ := (M, ǧ) in order to stress that we consider M as
Riemannian manifold with respect to ǧ . The product structure implies that the normal
vector �eld of Σ becomes a global normal vector �eld on M at each Σt. We also denote it
with ν and we set it to be ouward-pointing, i.e. ν = −1/N∂t such that ǧ(ν,ν) = 1. S(M̌)
is the spinor bundle of M̌ which also decomposes due to the even-dimensionality of the
manifold according to (6.9), i.e.

S(M̌) = S+(M̌)⊕ S−(M̌) .

The bundle admits an a priori Hermitean bundle metric
〈
·
∣∣ · 〉S(M̌)

which is pointwise
de�ned to be 〈

·
∣∣ · 〉Sp(M̌)

: Sp(M̌)× Sp(M̌) → C . (6.55)

We write č for the Cli�ord multiplication. (6.10) takes the form

č (X) · č (Y ) + č (Y ) · č (X) = −2ǧp(X,Y )1Sp(M) (6.56)

for X,Y ∈ TpM . Formula (6.12) with s = 0 implies that č is skew-adjoint with respect to
(6.55): 〈

č (X)u
∣∣ v〉Sp(M̌)

= −
〈
u
∣∣ č (X) v

〉
Sp(M̌)

∀u, v ∈ Sp(M̌) . (6.57)

A consequence of both relations is that〈
č (X)u

∣∣ č (X) v
〉

Sp(M̌)
= ǧp(X,X)

〈
u
∣∣ v〉Sp(M̌)

. (6.58)

We set β̌ := č (ν) which becomes an isometry according to (6.36)(and (6.39) in the twisted
bundle case). (6.56) implies β̌2 = −1S(M̌) as well as the anti-commuting with č.

We want to restrict the spinor bundle to the hypersurfaces Σt and set S(Σ̌t) := S(M̌)|Σt .
Because the metrics on the hypersurfaces are the same in the Lorentzian as well as Rie-
mannian ambient space and the normal bundle of each hypersurface is trivial, Σt becomes
spin and we can identify S(Σ̌t) with S(Σt) for each t as the restricted spinor bundle can
be identi�ed with the intrinsic spinor bundle on Σt. This holds true for the restriction of
subbundles S±(M̌) which we again write as S±(Σt) = S±(M̌)|Σt to stress the restricted
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eigenbundle: (6.9) transfers to

S(M̌)|Σt = S+(Σt)⊕ S−(Σt) .

A Hermitian bundle metric can be de�ned by restricting (6.55) for spinor �elds u, v on Σt:〈
u
∣∣ v〉S(Σt)

:=
〈
u
∣∣ v〉S(M̌)

(6.59)

this induces a L2-inner product:〈
u
∣∣ v〉

L2(S(Σt))
:=

∫
Σt

〈
u
∣∣ v〉S(Σt)

dvol gt . (6.60)

In comparison to the Lorentzian case we de�ne the Cli�ord multiplication for spinors on
each Σt analogoues, but without the i-factor like in (6.40): let X be a vector �eld on Σt,
then the we set (cf. [Gin09, Prop.1.4.1])

čt (X) := č (X) β̌ for S(Σt) = S±(M̌)|Σt . (6.61)

Depending on the chirality of the restricted spinor �eld, the restricted Cli�ord multiplica-
tion is č (X) |Σt = ±čt (X). It remains skew-adjoint with respect to (6.59):〈

čt (X)u
∣∣ v〉S(Σt)

=
〈
č (X) β̌u

∣∣ v〉S(M̌)
= −

〈
β̌u
∣∣ č (X) v

〉
S(M̌)

=
〈
u
∣∣ β̌č (X) v

〉
S(M̌)

= −
〈
u
∣∣ čt (X) v

〉
S(M̌)

.

It also inherits a Cli�ord algebra: for X,Y vector �elds tangent to Σt for �xed t we obtain

čt (X) čt (Y ) = č (X) β̌č (Y ) β̌ = č (X) č (Y )
(6.56)

= −č (Y ) č (X)− 2ǧ(X,Y )1S(Σt)

= −β2c (Y ) c (X)− 2gt(X,Y )1S(Σt) = −č (Y ) β̌č (X) β̌− 2gt(X,Y )1S(Σt)

= −čt (Y ) čt (X)− 2gt(X,Y )1S(Σt)

and thus
čt (X) čt (Y ) + čt (Y ) čt (X) = −2gt(X,Y )1SΣt . (6.62)

If we compare with (6.41), we observe

čt (X) = ±ct (X) (6.63)

for each t and vectors X tangent to Σt. Both signs are possible, but for consistence we
choose the negative one.

We indicate the Riemannian Dirac operator from (6.22) with the designation Ď as well
as Ď± from (6.25) and want to proceed as in the former subsection. Let e0 = ν, e1, ..., en
be a Riemann-orthonormal tangent frame with e1, ..., en, becoming a Riemann-orthonormal
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frame for Σt. Using (3.39) with ε = 1 in (6.17) shows∑
k<l

Γjk,lεkεlč (ek) · č (el) =
∑

1≤k<l≤n
Γjk,lč (ek) · č (el) +

∑
0<l≤n

Γj0,lč (e0) · č (el)

=
∑

1≤k<l≤n
ΓMjk,lč (ek) · č (el)−

∑
0<l≤n

ǧ(W(ej), el)č (e0) · č (el)

=
∑

1≤k<l≤n
ΓMjk,lč (ek) · č (el)− č (ν) č (W(ej))

and thus

∇S(M̌)
X v

∣∣∣
Σt

= ∇S(Σt)
X v

∣∣∣
Σt
− 1

2
β̌č (W(X)) v

∣∣∣∣
Σt

(6.64)

for v ∈ C∞(S(M̌)). The Riemannian Dirac operator along a �xed hypersurface is then
given as follows: for a spinor �eld u ∈ C∞(S±(M̌)) we obtain

Ďu
∣∣
Σt

=

n∑
j=0

č (ej)∇S(M̌)
ej u

∣∣∣
Σt

= β̌∇S(M̌)
ν u

∣∣∣
Σt

+

n∑
j=1

č (ej)∇S(M̌)
ej u

∣∣∣
Σt

= β̌

(
∇S(Σt)
ν u

∣∣∣
Σt
− 1

2
β̌č (W(ν))u

∣∣∣∣
Σt

)

+
n∑
j=1

č (ej)

(
∇S(Σt)
ej u

∣∣∣
Σt
− 1

2
β̌č (W(ej))u

∣∣∣∣
Σt

)

(∗)
= β̌ ∇S(Σt)

ν u
∣∣∣
Σt

+
n∑
j=1

č (ej)∇S(Σt)
ej u

∣∣∣∣∣∣
Σt

− 1

2

n∑
j=1

č (ej) β̌č (W(ej))u

∣∣∣∣∣∣
Σt

= β̌ ∇S(Σt)
ν u

∣∣∣
Σt
− β̌2

n∑
j=1

č (ej)∇S(Σt)
ej u

∣∣∣∣∣∣
Σt

− 1

2

n∑
j=1

č (ej) β̌č (W(ej))u

∣∣∣∣∣∣
Σt

(6.61)
= β̌ ∇S(Σt)

ν u
∣∣∣
Σt
± β̌

n∑
j=1

čt (ej)∇S(Σt)
ej u

∣∣∣∣∣∣
Σt

− 1

2

n∑
j=1

č (ej) β̌č (W(ej))u

∣∣∣∣∣∣
Σt

(6.63)
= β̌ ∇S(Σt)

ν u
∣∣∣
Σt
∓ β̌

n∑
j=1

ct (ej)∇S(Σt)
ej u

∣∣∣∣∣∣
Σt

− 1

2

n∑
j=1

č (ej) β̌č (W(ej))u

∣∣∣∣∣∣
Σt

(6.49)
= β̌ ∇S(Σt)

ν u
∣∣∣
Σt
∓ β̌ Atu|Σt −

1

2

n∑
j=1

č (ej) β̌č (W(ej))u

∣∣∣∣∣∣
Σt

(∗∗)
= β̌ ∇S(Σt)

ν u
∣∣∣
Σt
∓ β̌ Atu|Σt −

1

2

n∑
j=1

gt(W(ej), ej)β̌u

∣∣∣∣∣∣
Σt

= −β̌

(
− ∇S(Σt)

ν u
∣∣∣
Σt
± Atu|Σt +

1

2
trgt (W)u

∣∣∣∣
Σt

)
.
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In (∗) we used that the integral curves of ν are geodesics, and in (∗∗) we used (6.48) which
remains correct after replacing the Lorentzian Cli�ord multiplication with the Riemannian
Cli�ord multiplication. According to (3.29), the Weingarten map in the Riemannian and
Lorentzian setting di�er in a minus sign as the normal vector ν is the same vector in both
settings. Thus, trgt (W) = −nHt and we obtain

Ďu
∣∣
Σt

= − β
(
−∇S(Σt)

ν ±At −
n

2
Ht

)
u
∣∣∣
Σt

(6.65)

and consequently

Ď±u
∣∣
Σt

= −β
(
−∇S(Σt)

ν ±At −
n

2
Ht

)
u
∣∣∣
Σt

(6.66)

Taking a twisting bundle E into account yields

ĎEu
∣∣
Σt

= − (β⊗ 1E)
(
−∇SE(Σt)

ν ±AEt −
n

2
Ht1SE(Σt)

)
u
∣∣∣
Σt

(6.67)

and
ĎE
±u
∣∣
Σt

= −(β⊗ 1E)
(
−∇SE(Σt)

ν ±AEt −
n

2
Ht1SE(Σt)

)
u
∣∣∣
Σt

(6.68)

for a section u ∈ C∞(S±E (M̌)).

6.3.4. Parallel transport along t-lines

We close this chapter with a technicality which allows us to relate L2-spaces for spinor bun-
dles S(Σt) with di�erent t. For simplicity, we only consider the untwisted spinor bundles;
the results will transfer to the twisted spinor bundle case. Following the argumentation
in [vdD18, Sec.3.2], we recall that any parallel transport acts as an isometry: taking the
Hermitian bundle metric (6.59) and γ to be the integral curve of ν, the parallel transport
map P t0(p) : Sp(Σt0)→ Sp(Σt) for p ∈ Σ and any t0, t ∈ R satis�es〈

P tt0(p)u
∣∣ P tt0(p)v

〉
S(Σt)

=
〈
u
∣∣ v〉S(Σt0 )

(6.69)

for u, v ∈ S(Σt0). We write Σ0 for Σt0 for simplicity. The parallel transport extends to
a linear map between L2(S(Σt0)) and L2(S(Σt)) with respect to (6.43) with either (6.42)
or (6.55) as Hermitian bundle metric. In order to make it an isometry with respect to
the L2-inner product, we need to take the change of the volume form into account. The
volume function in local coordinates is given by

%t :=

(
det(gt)
det(gt0)

)1/4

. (6.70)

It satis�es dvol Σt = %2
t dvol Σ0 . Due to the fact that the determinants of the occuring

Riemannian metrics are positive, the function becomes positive and well-de�ned. The
map

U(t, 0) : L2(S(Σ0))→ L2(S(Σt))

ψ 7→ (%t)
−1P (γ)t0ψ

(6.71)



116 CHAPTER 6. DIRAC OPERATORS

takes spinorial L2-sections from the reference hypersurface Σ0 to L2-sections on Σt for any
t. It is a linear isomorphism with inverse P (γ)0

t%t which can be used to map spinor �elds
on Σt to the reference hypersurface. It is in fact an isometry and thus a bounded operator:
let u, v ∈ L2(S(Σ0)); with (6.59) as bundle metric we see that

〈
U(t, 0)u

∣∣U(t, 0)v
〉
L2(S(Σt))

=

∫
Σ

〈
U(t, 0)u

∣∣U(t, 0)v
〉

S(Σt)
dvol Σt

=

∫
Σ

〈
P tt0(p)u

∣∣ P tt0(p)v
〉

S(Σt)
%−2
t dvol Σt

(6.69)
=

∫
Σ

〈
u
∣∣ v〉S(Σ0)

dvol Σ0 =
〈
u
∣∣ v〉

L2(S(Σ0))
.

With (6.42) as bundle metric we �rst observe that

〈
U(t, 0)u

∣∣U(t, 0)v
〉
L2(S(Σt))

=

∫
Σ

〈
U(t, 0)u

∣∣U(t, 0)v
〉

S(Σt)
dvol Σt

=

∫
Σ

〈
P tt0(p)u

∣∣ P tt0(p)v
〉

S(Σt)
%−2
t dvol Σt

(6.70)
=

∫
Σ

(
βP tt0(p)u

∣∣ P tt0(p)v
)

S(M)
dvol Σ0

=

∫
Σ

(
P tt0 ◦ P t0t βP tt0(p)u

∣∣ P tt0(p)v
)

S(M)
dvol Σ0

(∗)
=

∫
Σ

(
P t0t βP tt0(p)u

∣∣ v)S(M)
dvol Σ0 .

In (∗) we used the fact that parallel transport in the Lorentzian setting is an isometry with
respect to

(
·
∣∣ · )S(M)

, restricted to spinors on Σt for each t ∈ T (M). As ν and Cli�ord

multiplication are parallel, we conclude from (6.21) and P tt0ν = νP tt0 (parallel transport in
TM) that

P t0t βP tt0 = P t0t c (ν) P tt0 = P t0t P tt0c (ν) = β

and thus〈
U(t, 0)u

∣∣U(t, 0)v
〉
L2(S(Σt))

=

∫
Σ

(
βu
∣∣ v)S(M)

dvol Σ0(p)
(6.42)

=
〈
u
∣∣ v〉

L2(S(Σ0))
.

We denote the inverse map of U(t, 0) by U(0, t). The global parallelity of the spinorial
volume form implies in addition that the parallel transport also preserves the grading for
even-dimenional manifolds M , i.e.

P tt0 : S±(Σ0)→ S±(Σt) → U(t, 0) : L2(S±(Σ0))→ L2(S±(Σt)) .



Part III.

Results
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General assumptions and settings

From now on we consider the following key assumptions in order to prove our Main The-
orem 1, Main Theorem 2 and Corollary 1.0.7.

With the exception of the following �rst two sections, M will always denote a globally
hyperbolic spin manifold of even dimension (n+ 1) (n odd). The spacelike Cauchy hyper-
surface Σ ⊂ M is assumed to be a Riemannian Galois covering with respect to a Galois
group Γ which is a discrete, freely discontinuous, freely and cocompactly acting group with
in�nite conjugacy class. To be more precise Σ is a normal covering with deck transforma-
tion group Γ and compact quotient Σ/Γ . Thus Σ is from now on a Γ -manifold according
to De�nition 5.1.4. M becomes a spatial Γ -manifold with globally hyperbolic base such
that it is isometric to T (M)× Σ/Γ (see subsection 5.1.3 for the concrete de�nition). The
group does not vary with the time parameter t. In the progress, we will also specify M
to be temporal compact, i.e. there are times t1, t2 ∈ R such that the time domain is
T (M) = [t1, t2]. The base of M as covering then becomes compact. The manifold M gets
two disjoint boundary hypersurfaces Σ1 and Σ2, induced by the Cauchy hypersurface Σ
at times t1, t2: Σ1 := Σt1 = {t1} × Σ and Σ2 := {t2} × Σ. M can therefore be viewed
as intersection of a future and past light cone: M = J +(Σ1) ∩ J −(Σ2). These boundary
hypersurfaces are Γ -manifolds with respect to the same Galois group Γ .

The metric g on M is given by Theorem 3.1.2 or rather (3.7). The �ipped metric to
g is denoted with ǧ . The smooth one-parameter family of hypersurface metrics

{
gt
}
on

the slices Σt is assumed to be Γ -invariant which implies the spatial Γ -invariance of g and
thus a spatial Γ -invariant volume form.

The assumptions on M to be globally hyperbolic and spin as well as on Σ to be a spin
Cauchy hypersurface is justi�ed as long these to properties are true on the compact bases
MΓ respectively ΣΓ according to Lemma 5.1.9 and Remarks 6.1.1 (iii). The tangent bun-
dles TΣ and TM are Γ -vector bundles with respect to the covering Σ → ΣΓ respectively
lΓ : M → MΓ . As the spinor bundles over Σ or M are naturally related to the tan-
gent bundles over Σ respectively M , the bundles S±(M), S(M), S±(Σ) = S(Σ) become
Γ -vector bundles (recall Remarks 6.3.1 (i) for the notation). We consider the Lorentzian
(Atiyah-Singer-)Dirac operator D from (6.22) and its decomposition into tangential and
normal operators along a slice Σt, investigated in subsection 6.3.2. The Γ -invariance of
the hypersurface metric implies that the tangential part of D commutes with the left
action representation L

S(Σt)
γ on Σt at each time t and γ ∈ Γ . The left action represen-

tation on M acts as LS(Σt)
γ in spatial direction and as identity in temporal direction, i.e.

(L
S(M)
γ u)(t, p) = π

S(Σt)
Γ u(t,γ−1 · p) for u ∈ C∞(S(Σt)). Hence the Dirac operator D be-

comes Γ -invariant with respect to this induced Γ -action and can be viewed as lift of a Dirac
operator D on the compact base. Consequently, also the Dirac operators D± from (6.25)
become Γ -invariant with respect to the same action and the hypersurface Dirac operator At
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from (6.49) becomes Γ -invariant with respect to the Γ -action on each slice Σt with respect

to the left action representation LS(Σt)
γ for each t ∈ T (M), γ ∈ Γ . Similar assumptions can

be made for the Riemannian Dirac operators Ď and Ď± from subsection 6.3.3, induced by
the �ipped metric of (3.7). Thus also D±, At, Ď and Ď± can be viewed as lifts of their
corresponding Dirac operator D±, At, Ď respectively Ď±.

If we twist the Dirac operator, we will consider a Hermitian line bundle L with (possi-
bly only existing) square-root L

1
2 and a twisting Hermitian vector bundle E. If we assume

that MΓ is Spinc, we can take a possibly non-existing global spinor bundle S(MΓ ) on MΓ

and lift it to a possibly non-existing global spinor bundle S(M) on M ; if we moreover
assume that the twisting bundles are Γ -vector bundles over M , we can characterise the
twisted spinor bundle SL,E(M) = S(M) ⊗ EL as Γ -vector bundle where EL stands for

L
1
2 ⊗E. The same argument carries over for S±L,E(M) as well as for the restricted bundles

S±L,E(Σt).

We will focus on L2- and Sobolev-sections of the spinor bundles S±L,E(Σt) = SL,E(Σt) in the
Γ -setting. We observe from (5.42) and (5.51) that due to the di�eomorphy of Σ to Γ × F
with F as fundamental domain of the Γ -action these spaces are free Hilbert Γ -modules:

L2
Γ (S±L,E(Σt)) ∼= `2(Γ)⊗ L2(F , S±L,E(Σt)|F ) ∼= l2(Γ)⊗ L2(S±L,E(Σt/Γ)) ,

Hs
Γ (S±L,E(Σt)) ∼= `2(Γ)⊗Hs(F , S±L,E(Σt)|F ) ∼= l2(Γ)⊗Hs(S±L,E(Σt/Γ))

for all s ∈ R>0 and t ∈ T (M); the right isomorphisms in each line come from the density
of F in the compact base. As Γ is assumed to have in�nite conjugacy class, these Hilbert
Γ -modules imply that

BΓ (H
s
Γ (S±L,E(Σt)), H

s−m
Γ (S±L,E(Σt))) ∼= Nr(Γ)⊗B(Hs(S±L,E(Σt)), H

s−m(S±L,E(Σt)))

are type II∞ von Neumann algebra factors for s ≥ m.

As the (twisted) hypersurface Dirac operator At is a Riemannian Dirac operator, it is
an elliptic, essentially self-adjoint Γ -operator. From Proposition 5.3.3 (1) and (2) it follows
that it is an essentially self-adjoint operator with closure on the domain H1

Γ (S±L,E(Σt)) and

becomes a Γ -morphism from Hs
Γ (S±L,E(Σt)) to H

s−1
Γ (S±L,E(Σt)). From Proposition 5.3.7 (1)

we could also view the hypersurface Dirac operators At as s-regular Γ -operator for each
t ∈ T (M). Properties (4), (7) and (8) of Proposition 5.3.7 show that each At is a Γ -
morphism betwenn Γ -Sobolev spaces and that ellipticity and (essentially) self-adjointness
imply that the spectral projections onto L2

Γ -subsets with respect eigenvalues in a bounded
Borel set as well as the projection onto the kernel of each At in L2

Γ (S±L,E(Σt)) are Γ -trace
class operators. The most relevant conclusion is that each Γ -invariant hypersurface Dirac
operator is Γ -Fredholm between Γ -Sobolev spaces and the Γ -index vanishes due to their
self-adjointness (Proposition 5.3.7 (8)).
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7. Well-posedness of the Cauchy problem

for the Dirac equation

We deduce several well-posedness results in this chapter which become important in the
progress of proving the Fredholmness property for the Lorentzian Dirac operator on Galois
coverings in two ways: the well-posedness of the Cauchy problem for the Dirac equation
allows us to identify certain spaces as Hilbert Γ -modules, where on the other hand the
well-posedness of the homogeneous Cauchy problem in particular implies the existence of
a wave evolution operator which we will analyse in great detail in this and coming chapters.
This evolution operator will be they key ingredient to show Fredholmness in the Γ -setting.

The �rst subsection is dedicated to well-posedness results of the Cauchy problem for the
Dirac equation in a more general situation that the Cauchy hypersurface Σ of the glob-
ally hyperbolic spacetime M is a non-compact, but complete submanifold. Since any two
Cauchy hypersurfaces of one and the same spacetime are homeomorphic to each other, the
completness is then given for any Cauchy hypersurface. The wave evolution operator is
introduced in the ensuing section where its nature as Fourier integral operator is worked
out. The content of the last section is a speci�cation of these two results to the case of
those Σ, being a Galois covering where M then becomes a spatial Γ -manifold.

7.1. Well-posedness of the Cauchy problem for the Dirac
equation

The aim of this section is to prove well-posedness of the Cauchy problem for the Dirac op-
erator DEL := DEL

+ on a globally hyperbolic Lorentzian spin manifold where each member
in the foliating family {Σt}t∈T (M) is a non-compact, but complete Cauchy hypersurface:

DELu = f with u|Σt = g (7.1)

where u is a suitable weak solution as section of S+
L,E(M), f a suitable section of S−L,E(M)

and g a section of S+
L,E(Σt). Similar results are then worked out for the Dirac operator

D̃EL := DEL
− , acting on spinors with negative chirality.

7.1.1. Some preparatory results

In comparison to the approach in [BTW15], on which our proof strategy relies on, several
special relations turn out to be useful in computing energy estimates.
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Lemma 7.1.1. The following relations hold for a vector �eld X ∈ X(Σt) and a smooth
section u of S(M) along a hypersurface Σt for each t ∈ T (M):

(1) ∇S(Σt)
X (βu) = β∇S(Σt)

X u and At(βu) = −βAtu ;

if moreover each Σt is complete, then

(2) Λstβ = βΛst for s ∈ R where Λ2
t = 1 + (∇S(Σt))∗∇S(Σt);

(3) 〈
Bt,±v

∣∣w〉
L2(S(Σt))

+
〈
v
∣∣Bt,±w〉L2(S(Σt))

= −nHt

〈
v
∣∣w〉

L2(S(Σt))
(7.2)

for all v, w ∈ C∞(S±(Σt)), sharing the same chirality.

Proof.

(1) The �rst commutativity is a consequence of the compatibility with Cli�ord multipli-
cation (6.19) and βct (X) = −ct (X)β for all t, implying the anti-commuting with
At.

(2) Denote with RΣt the (Ricci) scalar curvature for Σt and At := At ⊕ (−At). The
Lichnerowicz formula (6.26) for the hypersurface Dirac operator and result (a) lead
to

(∇S(Σt))∗∇S(Σt)(βu) = A2
t (βu)− RΣt

4
βu

= βA2
tu− β

RΣt

4
u = β(∇S(Σt))∗∇S(Σt)u

(7.3)

and thus Λ2
t (βu) = βΛ2

tu. This holds true for any positive even power Λ2k
t , k ∈ N0,

after applying (7.3) k times and thus for any polynomial in Λ2
t . As Λ2

t is essentially
self-adjoint on L2(S±(Σt)) by completeness of the hypersurfaces, its spectrum is
positive wherefore the function f(x) = xs/2 is continuous on the spectrum of Λ2

t .
Consequently, Λst = f(Λ2

t ) is de�ned by the limit of any sequence of polynomials in
Λ2
t , converging uniformly on the spectrum to f . Λst (βu) = βΛstu then follows for any

s ∈ R because the action of β commutes with the limit and with each element of the
sequence.

(3) The left-hand side of the equation in the claim gives for both chiralities

±
(〈
iAtv

∣∣w〉S(Σt)
+
〈
v
∣∣ iAtw〉S(Σt)

)
− nHt

〈
v
∣∣w〉S(Σt)

.

At is formally self-adjoint with respect to the induced inner product on Σt since
dΣt = ∅ for all t ∈ T (M) by assumption and by completeness of the hypersurface; the
proof works similarly as the proof of Lemma 6.2.1. One only needs to be careful with
the signs since Cli�ord multiplication is formally skew-adjoint (see (6.44)). The action
of the covariant derivative on ct (ej) has two contributions, coming with c

(
∇ejν

)
after applying β and c

(
∇ejej

)
. We choose the Riemann-orthonormal frame e1, ..., en

in such a way that the Lorentz-orthonormal frame ν, e1, ..., en becomes synchronous
at a point. These Cli�ord multiplications won't contribute and the left boundary
contribution vanishes. Thus, iAt is formally skew-adjoint with respect to the same
inner product and the term in the round brackets vanishes.
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In order to extend this to a positive de�nite L2-scalar product, we now use the
essential self-adjointness of the Riemannian Dirac operator At on L2-spaces which is
justi�ed29 if each hypersurface is either compact or complete. The operator Bt,± is
then de�ned as in (6.51), but one takes the extension of At instead.

This can be generalised to twisted Dirac operators. Let BEL
t,± = ±iAELt − n/2Ht be the

tangential part of DEL
± along Σt from (6.54).

Lemma 7.1.2. The following relations hold for a vector �eld X and a smooth section u
of SL,E(M) along each hypersurface Σt without boundary for each t ∈ T (M):

(1) Λst (β⊗1EL) = (β⊗1EL)Λst for s ∈ R, where Λ2
t = 1+ (∇SL,E(Σt))∗∇SL,E(Σt), if each

Σt is complete;

(2)
〈
BEL
t,±u

∣∣ v〉
L2(SL,E(Σt))

+
〈
u
∣∣BE,L

t,± v
〉
L2(SL,E(Σt))

= −n
〈
Htu

∣∣ v〉
L2(SL,E(Σt))

for all u, v ∈
L2(S±L,E(Σt)) with the same chirality.

Proof. (1) Since β only acts on the pure spinor part and commutes with ∇S(Σt) for any

t ∈ T (M), one has ∇SL,E(Σt)
X (β⊗ 1EL) = (β⊗ 1EL)∇SL,E(Σt)

X for all vector �elds X,
tangent to Σt. Because of

(ct (ej)⊗ 1EL) (β⊗ 1EL) = (ct (ej)β⊗ 1EL) = (−βct (ej)⊗ 1EL) ,

the hypersurface Dirac operatorAELt with respect to the induced twisted Spinc-bundle
SL,E(Σt) anti-commutes in the �rst factor, i.e.

(−β⊗ 1EL)AELt = AELt (β⊗ 1EL) ,

such that it commutes with its square. The modi�ed Lichnerowicz-Weitzenböck
formula (6.28) for the twisted spin Dirac operator on the hypersurface is

(∇SL,E(Σt))∗∇SL,E(Σt) =
(
AELt

)2
− RΣt

4
−REL

Σt

with REL
Σt

as curvature endomorphism of EL from (6.27). It is left to show that
(β ⊗ 1EL) commutes with this part in the Lichnerowicz formula. Since β anti-
commutes with the restricted Cli�ord multiplication in the �rst tensor factor and
thus commutes with ct (ei) ct (ej), one observes R

EL
Σt

(β⊗1EL) = (β⊗1EL)REL
Σt

and
�nally Λ2

t (β ⊗ 1EL) = (β ⊗ 1EL)Λ2
t . The rest of the proof works as in the proof of

Lemma 7.1.1 (2).

(2) The density of C∞c in L2 allows to restrict the proof to twisted spinor �elds u, v ∈
C∞c (S±L,E(Σt)) where both spinors carry the same chirality. The same arguments as
in the proof of Lemma 7.1.1 (3) can be applied where the commuting of the covariant

derivative ∇SL,E(Σt)
ei with the product (ct (ei) ⊗ 1EL) has been used to rewrite the

di�erence as a divergence of a vector �eld. The usual arguments for showing essential
self-adjointness of Dirac operators show that only the part with the mean curvature
is left after integration since dΣt = 0 for all t ∈ T (M).

29See Remarks 6.2.5 (iii).
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To distinguish between solutions of the homogeneous and inhomogeneous Cauchy prob-
lem in the space of �nite energy sections one introduces the following two subspaces.

De�nition 7.1.3. For any s ∈ R the set of �nite s-energy solutions of DEL
± is de�ned by

FEssc(M, T , DEL
± )

:=
{
u ∈ FEssc(M, T , S±L,E(M))

∣∣∣DEL
± u ∈ L2

loc,sc(T (M), Hs
loc(S∓L,E(Σ•)))

}
; (7.4)

the set of �nite s-energy kernel solutions of DEL
± is de�ned as

FEssc

(
M, T , ker

(
DEL
±

))
:= FEssc(M, T , S±L,E(M)) ∩ ker

(
DEL
±

)
. (7.5)

The kernel solutions come with an interesting property.

Lemma 7.1.4. If u ∈ FEssc
(
M, T , ker

(
DEL
±

))
and s > n

2 + 2, then u ∈ C1
sc(S±L,E(M)).

Proof. With (6.54) the equations DEL
± u = 0 along each hypersurface take the form

∇SL,E(M)
∂t

u
∣∣∣
Σt

= −N ∇SL,E(M)
ν u

∣∣∣
Σt

= N
(
±iAELt −

n

2
Ht

)
u|Σt .

A section u ∈ C0
sc(T (M), Hs

loc(S±L,E(Σ•))) has support inside a spatially compact subset

in M by de�nition. For u|Σt ∈ Hs
loc(S±L,E(Σt)) at each t ∈ T (M) and supp (u) ∩ Σt com-

pact by the spatial compactness of the support the right-hand side consists of di�erential

operators at most order 1 along each Σt and thus the restriction of ∇SL,E(M)
∂t

u to Σt is in

∈ Hs−1
loc (S±L,E(Σt)) and consequently u ∈ C1

sc(T (M), Hs−1
loc (S±L,E(Σ•))). The claim follows

by the Sobolev embedding theorem for s− 1 > n
2 + 1.

We choose inhomogeneities f ∈ L2
loc,sc(T (M), Hs

loc(S∓L,E(Σ•))) and initial data u|Σt ∈
Hs

loc(S±L,E(Σt)) for any s ∈ R and t ∈ T (M) for each Cauchy problems of DEL
± in (7.1). We

start with the more stronger condition for each chirality that f ∈ FEs−1
sc (M, T , S∓L,E(M))

which can be weakened later on, but does not a�ect the main proof. For the coming energy
estimates a time reversal argument is going to be used, for which reason a closer look on
the time reversed Cauchy problem needs to be taken. We denote withM |[t1,t2] the manifold
M with restricted time domain to [t1, t2]. The time reversal map

T : M |[t1,t2] → M |[t1,t2]

(t, x) 7→ ((t2 + t1)− t, x)
(7.6)

is smooth and acts as involution since T 2 = 1M . This makes it a di�eomorphism on
M |[t1,t2]. It implies in addition that T is formally self-adjoint. We will quote its inverse
with the same letter as it is a self-inverse map. The pullback of a spinor �eld with respect
to this di�eomorphism is well-de�ned as spinor �eld with respect to a Cli�ord algebra
which is de�ned by the pullback metric T ∗g :

(T ∗u)(t, x) = u(T (t, x))

for a smooth spinor �eld u; more details, concerning the structure of this scalar like trans-
formation behaviour, can be found in [DP86]. We use these facts in the proof of the
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following statement which provides us a time reversal argument.

Lemma 7.1.5. Given a globally hyperbolic manifold M with Cauchy temporal function T ,
a spinor bundle SL,E(M), K ⊂M compact and s ∈ R; the following are equivalent for each
time interval [t1, t2] ⊂ T (M):

(1) u ∈ FEssc(M, T , S±L,E(M)) solves the forward time Cauchy problem

DEL
± u = f ∈ FEs−1

sc (M, T , S∓L,E(M)) , u|t =: u0 ∈ Hs
loc(S±L,E(Σt))

for the Dirac equation at �xed initial time t ∈ T (M).

(2) T ∗u ∈ FEssc(T −1(M), T (T ), (T −1)∗S±L,E(M)) solves the backward time Cauchy prob-
lem

(T ∗ ◦DEL
± ◦ T ∗)u = T ∗f , (T ∗u)|T (t) = u0 ∈ Hs

loc(S±L,E(Σt))

with T ∗f ∈ FEs−1
sc (T −1(M), T (T ), (T −1)∗S∓L,E(M)) for the Dirac equation at �xed

initial time T (t) := (t2 + t1 − t) ∈ T (M).

Moreover, (T ∗ ◦DEL
± ◦ T ∗) is the twisted Dirac operator for reversed time orientation and

takes the form

(T ∗ ◦DEL
± ◦ T ∗)v

∣∣∣
Σt

= − (β̃⊗ 1E)
(
∇ν̃ ± iÃELt v − n

2
H̃t

)
v
∣∣∣
Σt

where ν̃ = T∗ν, β̃ = c (ν̃), H̃t is the mean curvature with respect to the normal vector ν̃
and ÃELt the hypersurface Dirac operator, de�ned as in (6.52) with a Riemann-orthonormal
tangent frame with respect to T ∗gt.

Proof. We note that the pullback with the time reversion map T commutes with the tensor
product and T ∗1ELT ∗ = 1EL ; we can stick to the untwisted case for the sake of legibility.

We choose any, but a �xed time interval [t1, t2] ∈ T (M) and de�ne T as in (7.6). To
keep the proof legible, we assume M to be temporal compact with T (M) = [t1, t2] such
that we don't need to restrict the time domain. Both Dirac equations are formally the same
if one applies a pullback by T to both sides and uses the self-inverse property T 2 = 1M

between D± and the spinor u with appropiate chirality. The claim will be proven for
smooth initial data and inhomogeneities. Because �nite energy sections are embedded in
the set of distributional sections, the claim follows from the proof of this reduction by du-
ality: consider the dual pairing [·|·] of any operator, applied to a spin-valued distribution
u ∈ C−∞(S(M)), with a smooth compactly supported section φ ∈ C∞c (S∗(M)), i.e. a
smooth compactly supported cospinor �eld. This is equivalent with the dual pairing of u
with the formal adjoint operator, now acting on φ. Thus, the forward and backward time
Dirac equations for distributions are[

D±u
∣∣φ]S(M)

= −
[
u
∣∣D∓φ]S(M)

and
[
(T ∗ ◦D± ◦ T ∗)u

∣∣φ]S(M)
= −

[
u
∣∣ (T ∗ ◦D∓ ◦ T ∗)φ]S(M)

where we have used the formal self-adjointness of T and Corollary 6.2.4. Since the sup-
port of u is contained in the future and past light cone, T only swaps these two cones
wherefore the support satis�es supp (T ∗u) ⊂ J (K). Suppose u|Σt ∈ C∞c (S±(Σt)) and
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f ∈ C∞c (S∓(M)). The statement [AB18, Thm.4] implies the existence of a unique section
u ∈ C∞(S±(M)) with support supp (u) ⊂ J (K) for K ⊂ M compact, solving D±u = f
on M with initial condition u|Σt . T ∗u and T ∗f are de�ned and smooth; the latter is com-
pactly supported. The initial value has to be imposed at time T (t) = (t2 + t1 − t0 − t) if
t is the time for the initial value for the foreward time Cauchy problem. Hence (T ∗u)|T (t)

coincides with u0 as (7.6) is an involution. The same holds true for any initial value with
Sobolev regularity since only the metric is in�uenced by the time reversal, but di�erent
metrics leads to equivalent Sobolev norms. v = T ∗u for a solution u is de�ned and again
smooth with supp (v) ⊂ J (K). The formal equivalence of the forward and backward time
Dirac equation implies that v solves T ∗D±T ∗v = T ∗f if and only if u solves D±u = f .
Thus, one only needs to check that T ∗D±T ∗ along any hypersurface Σt are also Dirac
operators, given as in (6.51). The pullback spin-structure is determined by the pullback
metric such that the pullback on any Cli�ord multiplication c (X) with respect to a vector
�eld X becomes the Cli�ord multiplication with respect to the pushforward T∗X at each
point:

T ∗ ◦ c (X) = c (T∗X) .

We can apply to each component of (6.51) the pullback on the Dirac operator along any
spatial hypersurface by linearity: if a Riemann-orthonormal tangent frame {ej}nj=1 with
respect to gt for each leaf is given, {T∗ej}nj=1 = {T ∗ej}nj=1 becomes a Riemann-orthonormal
tangent frame with respect to T ∗gt for each leaf ΣT (t). Using all these ingredients shows

T∗ν = − 1

N ◦ T
T∗∂t =: ν̃

T ∗ ◦ (β∇ν) ◦ T ∗v = c (T∗ν) T ∗∇ν (T ∗v) = c (ν̃)∇ν̃T ∗T ∗v = β̃∇ν̃v

T ∗ ◦ (βAt) ◦ T ∗v = β̃

n∑
j=1

c (T∗ej) T ∗∇ejT ∗v = β̃

n∑
j=1

c (T∗ej)∇T∗ejv = β̃Ãtv

T ∗ ◦ (βHt) ◦ T ∗v = β̃

n∑
j=1

T ∗gt
(
W̃(ej), ej

)
v = β̃H̃tv

⇒ (T ∗ ◦D± ◦ T ∗)v = −β̃
(
∇ν̃ + iÃtv −

n

2
H̃t

)
v

(7.7)

where the tilded quantities are Cli�ord multiplication, the Weingarten map and the mean
curvature with respect to the future poining vector ν̃, being orthonormal to each hyper-
surface as well. All quantities along a hypersurface have been lifted to the manifold M
before (without extra notation) in order to compute the pullback.

As the whole proof does not depend on the concrete choice of the subinterval in the time
domain, it holds for all time intervals in the (possible unbounded) time domain.

The third line in (7.7) implies that AELt is invariant under this time-reversing, so (AELt )2

and (AELt )2 do as well. The Lichnerowicz formula then shows that the spinorial Laplacian
ful�lls

T ∗ ◦ (∇SL,E(Σt))∗∇SL,E(Σt) ◦ T ∗ = (∇SL,E(ΣT (t)))∗∇SL,E(ΣT (t)).

In an analogous way as in the proof of Lemma 7.1.1 (2) one gains with T (t) as t under
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reversed time orientation

ΛsT (t) = T ∗ΛstT ∗ ∀ s ∈ R , t ∈ T (M) (7.8)

where Λst is given by (4.13) with the induced spin connection on each hypersurface Σt.

7.1.2. Energy estimates

Roughly speaking, one de�nes the energy along an initial spatial hypersurface as sum of
the norms of all values which has to be �xed on this leaf. Suppose M is spatially compact,
then the Cauchy hypersurface Σ is compact and one de�nes the s-energy along Σ of a
su�ciently di�erentiable section u of a vector bundle E →M as

Es(u,Σ) := ‖u|Σ‖2Hs(E|Σ) .

For a non-compact hypersurface Σ one needs to apply the presented doubling procedure in
order to reduce to the above considered compact case. Let (M, g) be a globally hyperbolic
spacetime and E → M a Riemannian or Hermitian vector bundle. Choose a connection
which is compatible with the bundle metric. Let u be again a su�ciently di�erentiable
section of this bundle, but has compact support supp (u) ⊂ J (K) with K b M . Since
the support is de�ned to be a closed set, one observes that it is spatially compact by this
assumption. As a consequence one obtains that K := (supp (u) ∩ Σ) ⊂ Σ is compact for
every Cauchy hypersurface. Without changing K we choose a compact subset K1 as in
the description of Sobolev spaces via the double and receive Σ̃ as double of K1. With this
procedure we get a corresponding extended vector bundle Ẽ of E|K1 and a zero-extended
section ũ of u|Σ. This allows to consider the s-energy along Σ of a su�ciently di�erentiable
section u in a similar manner:

Es(u,Σ) := ‖ũ‖2
Hs(Σ̃,Ẽ) (7.9)

for any s ∈ R. The following statement is the pendant of [BTW15, Thm.8] for the Dirac
equation acting for spinor sections of positive chirality. The proof contains a similar argu-
mentation, but since only one initial value is given and no constraint on the mean curvature
is proposed, we had to show the equations in (2) and (3) of Lemma 7.1.1 in advance.

Proposition 7.1.6. Let I ⊂ T (M) be a closed interval, K ⊂M compact and s ∈ R; there
exists a constant C > 0, depending on K and s such that

Es(u,Σt1) ≤ Es(u,Σt0)eC(t1−t0) +

∫ t1

t0

eC(t1−τ)
∥∥∥DEL
± u|Στ

∥∥∥2

Hs
loc(SL,E(Στ ))

dτ (7.10)

applies for all t0, t1 ∈ I with t0 < t1 and for all u ∈ FEs+1
sc (M, T , S±L,E(M)) with support

supp (u) ⊂ J (K) and DEL
± u ∈ FEssc(M, T , S∓L,E(M)).

Proof. It is enough to prove this Proposition in detail for the untwisted case and for spinor
solutions of positive chirality. The necessary changes for the twisted case and for solutions
of negative chirality will be mentioned.

W.l.o.g. we assume M to be spatially compact, i.e. every leaf Σt is closed; otherwise, one
applies the doubling procedure of each complete, non-compact hypersurfaces and starts
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with (7.9) - the di�erence in the following calculation is only of notational nature. The
Dirac operator is decomposed into a tangential and normal part with respect to the hy-
persurface Σt: D = −β (∇ν +Bt) with Bt := Bt,+ as in Lemma 7.1.1 (3) (Lemma 7.1.2
(2) for the twisted case). Rewriting this as the covariant derivative ∇∂t = −Nt∇ν leads to

∇∂tu|Σt = NtβDu|Σt + NtBtu|Σt .

Bt is a di�erential operator of order at most 1, acting in tangential direction; the preas-
sumption u ∈ FEs+1

sc (M, T , S+(M)) implies u|Σt ∈ Hs+1
loc (S+(Σt)) and thus NtBtu|Σt ∈

Hs
loc(S+(Σt)), implying NtBtu ∈ FEssc(M, T , S+(M)). Since Du ∈ FEssc(M, T , S−(M)) by

preassumption the �rst part of the right-hand side satis�es βNtDu ∈ FEssc(M, T , S+(M)).
Thus, the covariant derivative with respect to ν along any hypersurface Σt is a Sobolev
section in Hs

loc(S+(Σt)) and therefore ∇∂tu ∈ C0(T (M), Hs
loc(S+(Σ•)), implying u ∈

C1(T (M), Hs
loc(S+(Σ•)). This time-di�erentiability and the continuity of the norm shows

that the map t 7→ Es(u,Σt) is di�erentiable. Di�erentiation of Es(u,Σt) with respect to t
and Lemma 3.2.2 together imply

d

dt
Es(u,Σt) =

∫
Σt

nHt

〈
Λstu

∣∣Λstu〉S(Σt)
− ν

〈
Λstu

∣∣Λstu〉S(Σt)
dvol Σt

= n
〈
HtΛ

s
tu
∣∣Λstu〉L2(S(Σt))

−
∫

Σt

ν
〈
Λstu

∣∣Λstu〉S(Σt)
dvol Σt

where u is evaluated on the hypersurface Σt and one has choosen φ = 1 in Lemma 3.2.2
since every hypersurface is an arti�cially closed submanifold. Choose the connection to be
compatible with the bundle metric and one obtains

d

dt
Es(u,Σt) = n

〈
HtΛ

s
tu
∣∣Λstu〉L2(S(Σt))

− 2<e
{〈

Λstu
∣∣∇νΛstu〉L2(S(Σt))

}
= n

〈
HtΛ

s
tu
∣∣Λstu〉L2(S(Σt))

− 2<e
{〈

Λstu
∣∣ [∇ν,Λst ]u〉L2(S(Σt))

}
− 2<e

{〈
u
∣∣∇νu〉Hs(S(Σt))

}
= n

〈
HtΛ

s
tu
∣∣Λstu〉L2(S(Σt))

+ ‖u‖2Hs(S(Σt))
+ ‖[∇ν,Λst ]u‖

2
L2(S(Σt))

− ‖(Λst + [∇ν,Λst ])u‖
2
L2(S(Σt))

− 2<e
{〈
u
∣∣∇νu〉Hs(S(Σt))

}
≤ n

〈
HtΛ

s
tu
∣∣Λstu〉L2(S(Σt))

+ (1 + c1) ‖u‖2Hs(S(Σt))
− 2<e

{〈
u
∣∣∇νu〉Hs(S(Σt))

}
= c2 ‖u‖2Hs(S(Σt))

+ n
〈
HtΛ

s
tu
∣∣Λstu〉L2(S(Σt))

+ 2<e
{〈
u
∣∣βDu〉

Hs(S(Σt))
+
〈
u
∣∣Btu〉Hs(S(Σt))

}
where one has used polarisation identities of the real parts and a Sobolev estimate for ∇ν
as �rst order operator along Σt which has led to the �rst inequality. The compactness30 of
the hypersurface justi�es the use of Lemma 7.1.1 (2) (or Lemma 7.1.2 (1) for the twisted
case). With (7.2) (or its twisted analogue in Lemma 7.1.2 (2)) and another polarisation
identity the calculation goes on as follows:

30This is still justi�ed in the non-compact case because the Cauchy hypersurfaces are assumed to be complete.



7.1. WELL-POSEDNESS OF THE CAUCHY PROBLEM 129

d

dt
Es(u,Σt) = c2 ‖u‖2Hs(S(Σt))

+ n
〈
HtΛ

s
tu
∣∣Λstu〉L2(S(Σt))

+ 2<e
{〈

Λstu
∣∣βΛstDu

〉
L2(S(Σt))

}
+ 2<e

{〈
Λstu

∣∣BtΛstu〉L2(S(Σt))
+
〈
Λstu

∣∣ [Λst , Bt]u〉L2(S(Σt))

}
≤ (c2 + 2) ‖u‖2Hs(S(Σt))

+ ‖βΛstDu‖
2
L2(S(Σt))

+ ‖[Λst , Bt]u‖
2
L2(S(Σt))

≤ c ‖u‖2Hs(S(Σt))
+ ‖Du‖2Hs(S(Σt))

= cEs(u,Σt) + ‖Du‖2Hs(S(Σt))
.

Formula (6.45) has been used in the last step which carries over to the twisted case with
(6.46). The remaining commutator acts as pseudo-di�erential operator of order (s + 1)
which generates together with the continuous embedding of Sobolev spaces (Proposi-
tion 4.1.4 (3)) the last inequality.

A closer look on the constant c, coming from the Sobolev estimates, needs to be taken be-
fore applying Grönwall's inequality: it is known from the local theory that these constants
depend on compact supersets of supp (u) (either for Σt closed or K for Σt non-compact,
depending on K via the support of u in the light cone) and compact subsets, appearing
in the symbol estimation of the acting pseudo-di�erential operator. Further dependencies
on the Sobolev regularity degree s and on �nitely many derivatives on the product of the
section u with the volume form prefactor are coming from partial integration (for this we
take s to be in N0 �rst). By Jacobi's formula the derivatives on the volume form prefactor
generate derivatives of the metric gt under recreation of the volume form prefactor. This
makes the constant c time-dependent and, since the product rule generates products of
derivatives on the section and on the metric, it depends smoothly on t because gt does.
The derivatives on the section can be extracted which generates the Sobolev norms in
terms of (4.15) and �nally the known embedding and operator estimates in the end of the
above calculation. Since on a (here possibly auxiliary) closed manifold the space H−s is
dual to Hs for s ∈ N0, the estimate also holds for Sobolev degrees s ∈ Z. Interpolating
between Hs and Hs±1 for any of these degrees allows an extension to real-valued orders.
In summary, the computed estimate of d

dtEs(u,Σt) is precisely

d

dt
Es(u,Σt) ≤ c(‖gt‖K(K),m(s))Es(u,Σt) + ‖Du‖2Hs(S(Σt))

with the (spatial) seminorm (4.1) and m(s) ∈ N0 such that |s| ≤ m. Grönwall's Lemma
gives

Es(u,Σt1) ≤ Es(u,Σt0)e
∫ t1
t0
c(‖gt‖K(K),m(s)) dt +

∫ t1

t0

e
∫ t1
τ c(‖gt‖K(K),m(s)) dt ‖Du|Στ ‖

2
Hs(S(Στ )) dτ .

The extreme value theorem on closed (sub-)intervals in I, applied on c, leads to the stated
result where C = C(‖g•‖J (K),m(s)) is the maximum on I. Going back to non-compact hy-
persurfaces, the same procedure can be applied where the duality between Hs

loc and H
−s
c

has to be used instead. This explains the norm for local Sobolev sections in the claim.

For the case u having negative chirality we observe that the only in�uence of the chi-
rality appears in expressing the spinorial covariant derivative with respect to ν in terms
of D− and operators on the hypersurfaces where Bt has to be replaced by Bt,−. But since
the result of Lemma 7.1.1 (2), (3) (Lemma 7.1.2 (1) and (2) for the twisted case) are
independent of the chirality, the proof carries over for this case as well.
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One can conclude several consequences and technicalities for the next subsection. The
following two corollaries are the equivalent results from [BTW15, Cor.10/11], speci�ed for
the Dirac equation.

Corollary 7.1.7. Given [t0, t1] ⊂ T (M), τ ∈ T (M), K ⊂ M compact and s ∈ R; there
exists a C > 0, depending on K and s such that

Es(u,Σt) ≤ C
(
Es(u,Στ ) +

∥∥∥DEL
± u

∥∥∥2

[t0,t1],J (K),s

)
is valid for all t ∈ [t0, t1], for all u ∈ FEs+1

sc (M, T , DEL
± ) with supp (u) ⊂ J (K) and

DEL
± u ∈ FEssc(M, T , S∓L,E(M)).

Proof. As in the proof of Proposition 7.1.6 we focus on the untwisted Dirac operator to
keep notation simple, but take both chiralities into account:

Assume again that each leaf is closed, otherwise one extends again everything to a suit-
able double. Choose τ ∈ [t0, t1], otherwise take t0, t1 ∈ T (M) in such a way that it is
true. Suppose �rst t ∈ [τ, t1]; since u ∈ FEs+1

sc (M, T , D±) ⊂ FEs+1
sc (M, T , S±(M)) all

preassumptions from this corollary coincides with the one from Proposition 7.1.6 such that
(7.10) holds. By assumption D±u ∈ L2

loc,J(K)(T , Hs(S∓(Σ•))) implies integrability of the
map λ 7→ ‖D±u|Σλ‖Hs(S(Σλ)) such that

Es(u,Σt) ≤ cEs(u,Στ )ec(t−τ) +

∫ t

τ
ec(t−λ) ‖D±u|Σλ‖

2
Hs(S(Σλ)) dλ

≤ cEs(u,Στ ) +

∫ t

τ
‖D±u|Σλ‖

2
Hs(S(Σλ)) dλ

≤ max{c, 1}
(
Es(u,Στ ) +

∫ t1

t0

‖D±u|Σλ‖
2
Hs(S(Σλ)) dλ

)
≤ C

(
Es(u,Στ ) + ‖D±u‖2[t0,t1],J (K),s

)
.

We use a time-reversal argument with T from (7.6), applied on [t0, τ ]. Lemma 7.1.5 ensures
that T ∗u solves the backward time Dirac equation with time-reversed data such that the
proof of Proposition 7.1.6 can be repeated and applied for this situation:

Es(T ∗u,ΣT (t)) ≤ cEs(T ∗u,ΣT (τ))e
c(T (t)−T (τ))

+

∫ T (t)

T (τ)
ec(T (t)−λ)

∥∥∥(D̃±T ∗u)|Σλ
∥∥∥2

Hs(S(Σλ))
dλ

≤ C

(
Es(T ∗u,ΣT (τ)) +

∫ T (t)

T (τ)

∥∥∥(D̃±T ∗u)|Σλ
∥∥∥2

Hs(S(Σλ))
dλ

)
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where D̃± = T ∗ ◦D± ◦ T ∗. Because T is an involution, the s-energy and the last integral
over the inhomogeneity are invariant under this time-orientation reversion according to
(7.8):

Es(T ∗u,ΣT (t)) =

∫
ΣT (t)

〈
T ∗(Λstu)

∣∣ T ∗(Λstu)
〉
T ∗S(Σt)

T ∗ dvol Σt

=

∫
ΣT (t)

T ∗
(〈

Λstu
∣∣Λstu〉S(Σt)

dvol Σt

)
=

∫
Σt

〈
Λstu

∣∣Λstu〉S(Σt)
dvol Σt

= Es(u,Σt)

where the pullback-description of the integral transformation law has been used. A similar
integration shows the latter invariance by substitution:∫ T (t)

T (τ)

∥∥∥(D̃±T ∗u)|Σλ
∥∥∥2

Hs(S(Σλ))
dλ

=

∫ T (t)

T (τ)

∫
Σλ

〈
Λst (D̃±T ∗u)|Σλ

∣∣Λst (D̃±T ∗u)|Σλ
〉

S(Σλ)
dvol Σλ dλ

=

∫ T (t)

T (τ)

∫
Σλ

T ∗
〈
Λst (D±u)|ΣT (λ)

∣∣Λst (D±u)|ΣT (λ)

〉
S(ΣT (λ))

dvol ΣT (λ) dλ

=

∫
T ([τ,t]×Σ)

T ∗
(〈

Λst (D±u)|Σρ
∣∣Λst (D±u)|Σρ

〉
S(Σρ)

dvol Σρ dρ
)

=

∫ t

τ

∥∥(D±u)|Σρ
∥∥2

Hs(S(Σρ))
dρ .

Consequently, we get the same inequality as in the case without time reversion.

The following conclusion can be interpreted as uniqueness of the Cauchy problem for the
Dirac equation.

Corollary 7.1.8. u ∈ FEssc(M, T , DEL
± ) is uniquely determined by the inhomogeneity

DEL
± u and the initial condition u|Σt on a hypersurface Σt for any t ∈ T (M).

Proof. The argumentation carries over literally from the proof of [BTW15, Cor.11] where
Corollary 10 in the same reference is replaced by Corollary 7.1.7: we suppose that there are
two sections u1 and u2 in FEssc(M, T , DEL

± ) which solves the Dirac equation with the same

inhomogeneity DEL
± u1 = f = DEL

± u2 and the same initial condition u1|Σt = u0 = u2|Σt
for all t ∈ T (M). Since the space of �nite energy spinors is a topological vector space
and DEL

± are linear, one observes that (u1 ± u2) is a section in FEssc(M, T , DEL
± ) as well.

The di�erence U = (u1 − u2) then solves the homogeneous Dirac equation with initial
condition U |Σt = 0 on all leaves. Using Corollary 7.1.7 with a shifted value s and �xed
initial condition on Στ leads to

Es−1(U,Σt) ≤ C
(
Es−1(U,Στ ) +

∥∥∥DEL
± U

∥∥∥2

[t0,t1],J (K),s

)
= 0

and thus Es−1(U,Σt) = 0 for all t. Since the s-energy is de�ned by a s-Sobolev norm
(either for Σt closed or interpreted on the double), one obtains U |Σt = 0 for any t. Thus,
the solution U is identically vanishing.
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7.1.3. Well-posedness of DEL
±

After all preparations the well-posedness of the inhomogeneous Cauchy problem for the
Dirac equation for spinor �elds with positive chirality can be proven in the same way
as it has been done for the wave equation in [BTW15]. The proof from this reference
carries over literally to the setting of our interest where the used corollaries 10 and 11
from [BTW15] are replaced by Corollary 7.1.7 as well as by the uniqueness of solutions of
the Dirac equation in Corollary 7.1.8. But for the sake of completeness and of later use
we repeat the argument. We introduced the restriction operator rest in (4.21). The map
which generates the initial value problem onto any hypersurface Σt, associated to DEL

± , is

rest ⊕DEL
± : C∞(S±L,E(M)) → C∞(S±L,E(Σt))⊕ C∞(S∓L,E(M))

u 7→ (u|Σt , D
EL
± u) .

(7.11)

Theorem 7.1.9. For a �xed t ∈ T (M) and s ∈ R the map (7.11) extends to

rest⊕DEL
± : FEssc(M, T , DEL

± ) → Hs
c (S±L,E(Σt))⊕L2

loc,sc(T (M), Hs
loc(S∓L,E(Σ•))) (7.12)

which is an isomorphism of topological vector spaces.

Proof. This result has been proven in [Dam21, Thm 4.7,Thm 4.13] for the untwisted Dirac
operator. But since the proof is of functional-analytic nature, we can present it here in the
full case with just notational modi�cations. One �rst checks the continuity of the map rest⊕
DEL
± , induced by the continuity of both summands: by de�nition FEssc(M, T , S±L,E(M)) is

the union of all continuous functions from T (M) to Hs
loc(S±L,E(Σ•)) with spatially compact

support in K ⊂M . An intersection of K with any Cauchy hypersurface in the foliation of
M is a compact subset and, since Hs

c (S±L,E(Σ•)) is also de�ned as union over all compact
subsets in any slice, it is enough to consider the restriction onto a �xed hypersurface Σt

as map between C0
K(T (M), Hs

loc(S±L,E(Σ•))) and Hs
K∩Σt

(S±L,E(Σt)). The continuity follows
immediatly from the estimate

‖restu‖Hs(K∩Σt,SL,E(Σt))
≤ max

τ∈T (M)

{
‖u|Στ ‖Hs(K∩Στ ,SL,E(Σt))

}
= ‖u‖T (M),K,0,s

with the norm on C0
K(T (M), Hs

loc(S±L,E(Σ•))) as de�ned in (4.26). The two inclusion map-

pings C0
K(T (M), Hs

loc(S±L,E(Σ•))) ↪→ C0
sc(T (M), Hs

loc(S±L,E(Σ•))) and Hs
K∩Σ•

(S±L,E(Σ•)) ↪→
Hs

c (S±L,E(Σ•)) are continuous and the restriction map between FEssc(M, T , DEL
± ) as subset

of FEssc(M, T , S±L,E(M)) and Hs
c (S±L,E(Σt)) for a �xed Σt becomes continuous. DEL

± as

map from FEssc(M, T , DEL
± ) onto the range L2

loc,sc(T (M), Hs
loc(S∓L,E(Σ•))) is continuous on

FEssc(M, T , DEL
± ), implying the whole map to be continuous.

It is left to show that the map is bijective with continuous inverse. For this step one
constructs the inverse map of (7.12). We take a K ⊂ Σt compact for t ∈ T (M) �xed. The
well-posedness of the Cauchy problem for the Dirac equation with smooth and compactly
supported initial data on Σt (see Proposition B.1) states that for given u0 ∈ C∞K (S±L,E(Σt))

and f ∈ C∞J (K)(S∓L,E(M)) there exists a solution u ∈ C∞(S±L,E(M)) of the Dirac equation
with inhomogeneity f and initial value u0 = u|Σt which has support in J (K) by �nite
propagation speed. Since C∞(S±L,E(M)) ⊂ FEssc(M, T , S±L,E(M)) for all s ∈ R, one can
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apply Corollary 7.1.7 in order to estimate the norm of C0
sc(T (M), Hs

loc(S±L,E(Σ•))): let
I ⊂ T (M) be a subinterval and t ∈ I a �xed initial time, then

‖u‖2I,J (K),0,s = max
τ∈I

{
‖u|Στ ‖

2
Hs

loc(SL,E(Σt))

}
= max

τ∈I

{
E(u,Στ )

}
≤ C max

τ∈I

{
‖u|Σt‖

2
Hs

loc(SL,E(Σt))
+
∥∥∥DEL
± u

∥∥∥2

I,J (K),s

}
= C

(
‖u0‖2Hs(SL,E(Σt))

+ ‖f‖2I,J (K),s

)
where the estimation constant comes from the used corollary and thus it is not depending
on the smooth data of the Cauchy problem. This result implies that the continuous map
(u0, f) 7→ u from Proposition B.1 can be extended to a continuous map

Hs
K(S±L,E(Σt))⊕ L2

loc,J (K)(T (M), Hs
loc(S∓L,E(Σ•))) → C0

J(K)(T (M), Hs
loc(S±L,E(Σ•))) .

Since J ±(K) is closed for K ⊂ Σt ⊂ M compact, also J (K) is closed and thus spatially
compact. As a consequence, the continuity of the map

Hs
c (S±L,E(Σt))⊕ L2

loc,sc(T (M), Hs
loc(S∓L,E(Σ•))) → FEssc(M, T , S±L,E(M))

is proven as the inclusionsHs
K ↪→ Hs

c , L
2
loc,J (K) ↪→ L2

loc,sc and C
0
J (K) ↪→ C0

sc are continuous.
The formal inverse is the map

Hs
c (S±L,E(Σt))⊕ L2

loc,sc(T (M), Hs
loc(S∓L,E(Σ•))) → FEssc(M, T , DEL

± ) . (7.13)

The composition (7.12) after (7.13) clearly gives the identity after �xing one hypersurface
for the initial data. The converse composition starts with a solution from which one extracts
the initial data and the inhomogeneity and solves again by (7.13). From Corollary 7.1.8
the solution is unique and the result coincides with the input. This implies that also
this composition gives the identity and thus bijectivity of (7.12). The continuity of the
inverse follows from the composition of DEL

± with (7.13) which is a restriction on the

second summand. Thus, the composition is continuous and because DEL
± is continuous on

FEssc(M, T , DEL
± ) the claim follows. Summarising all results shows that (7.12) is indeed

an isomorphism.

The well-posedness of the homogeneous Cauchy problem for the Dirac equation follows
immediately.

Corollary 7.1.10. For a �xed t ∈ T (M) and s ∈ R the map

rest : FEssc

(
M, T , ker

(
DEL
±

))
→ Hs

c (S±L,E(Σt))

is an isomorphism of topological vector spaces.

These two results lead to the following consequences.

Corollary 7.1.11. For any s ∈ R

(1) C∞sc (S±L,E(M)) ⊂ FEssc(M, T , DEL
± ) is dense,

(2) C∞sc (S±L,E(M)) ∩ ker (D) ⊂ FEssc
(
M, T , ker

(
DEL
±

))
is dense.
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Proof. The proof can be taken from [BTW15, Cor.15] with the only di�erence that The-
orem 13 and Corollary 14 in [BTW15] are replaced by the well-posedness for the homo-
geneous and inhomogeneous Cauchy problem: Proposition B.1 says that smooth Cauchy
data u0 ∈ C∞K (S±L,E(Σt)) and f ∈ C∞J (K)(M, S∓L,E(M)) give smooth solutions (Σt initial

hypersurface, K ⊂ Σt compact). Since C∞c (S±L,E(Σt)) is a dense subset in Hs
c (S±L,E(Σt))

for all s ∈ R and the inclusion C∞sc (M, S±L,E(M)) ⊂ L2
loc,sc(T (M), Hs(S±L,E(Σ•))) is dense

by Lemma 4.3.3 (1), the isomorphisms in either Theorem 7.1.9 or Corollary 7.1.10 map
the smooth Cauchy data onto smooth data with support in the spatially compact set
J (K) by the map (7.13). Since this map is surjective and continuous, it maps the
mentioned dense subsets to another dense subset in FEssc(M, T , DEL

± ) for (1) and in

FEssc

(
M, T , ker

(
DEL
±

))
for (2).

A consequence is that solutions of the Dirac equation have �nite propagation speed.

Corollary 7.1.12. A solution u with u|Σt = u0 for any leaf Σt, t ∈ T (M), and DEL
± u = f

satis�es supp (u) ⊂ J (K) for a compact subset K ⊂M which satis�es the support relation
supp (u0) ∪ supp (f) ⊂ K.

Proof. Since C∞sc (S+(M)) is dense in FEssc(M, T , D), the �niteness of propagation speed
from Corollary B.2 for smooth and spatially compact spinor �elds can be extended to �nite
s-energy spinors.

Another consequence of Corollary 7.1.11 is an optimisation of the assumed regularity in
Proposition 7.1.6 as it has been done in [BTW15, Cor.17] for the wave equation.

Corollary 7.1.13. The energy estimate (7.10) already holds for all t0, t1 ∈ I ⊂ T (M) with
t0 < t1 and for all u ∈ FEssc(M, T , DEL

± ) with support supp (u) ⊂ J (K).

Proof. Because of Corollary 7.1.11 (1) the energy estimate in Proposition 7.1.6 holds for
all u ∈ C∞sc (M, S±L,E(M)) which has support in J (K) with K ⊂ M compact. By conti-
nuity of the restriction map in the proof of Theorem 7.1.9 the �rst term in (7.10) can be
expressed with the norm in FEssc(M, T , S±L,E(M)) ⊃ FEssc(M, T , DEL

± ). The second term

can be estimated by a L2
loc,sc(T (M), Hs(S±L,E(Σ•))) seminorm by which the estimate can

be extended to u ∈ FEssc(M, T , DEL
± ) with supp (u) ⊂ J (K).

The last conclusion from the density of smooth sections in �nite energy spinors is the
independence of the Cauchy temporal function T for those �nite energy spinors which are
solutions of the homogeneous Dirac equation.

Corollary 7.1.14. Given two Cauchy temporal functions T and T ′ on M , then for all
s ∈ R

FEssc

(
M, T , ker

(
DEL
±

))
= FEssc

(
M, T ′, ker

(
DEL
±

))
.

Proof. The detailed, but involved proof can be taken from [BTW15, Cor.18] with the shown
uniqueness of the Cauchy problem for the Dirac equation in Corollary 7.1.8.

Thus, we can simplify notation to FEssc
(
M, ker

(
DEL
±

))
to stress this independence of

the temporal function.
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7.2. (Dirac-)Wave evolution operators

The well-posedness of the homogeneous Cauchy problem in Corollary 7.1.10 motivates to
de�ne several evolution operators which we denote as (Dirac-)wave evolution operators.
This section is dedicated to study several properties of these wave evolution operators and
in particular their property of being a Fourier integral operator.

7.2.1. General properties

For latter reasons we will �rst consider the wave-evolution operators for the untwisted
Dirac operators.

De�nition 7.2.1. For a globally hyperbolic manifold M and t1, t2 ∈ T (M) the (Dirac-)
wave evolution operators for positive and negative chirality are the following isomorphisms
of topological vector spaces

Q(t2, t1) := rest2 ◦ (rest1)−1 : Hs
c (S+(Σ1)) → Hs

c (S+(Σ2)) ,

Q̃(t2, t1) := rest2 ◦ (rest1)−1 : Hs
c (S−(Σ1)) → Hs

c (S−(Σ2)) .

Both operators close their commutative part in the following diagram where S⊕2(Σj)
denotes the direct sum S+(Σj)⊕ S−(Σj)

FEssc(M, ker (D+))

Hs
c (S+(Σ1)) Hs

c (S+(Σ2))

rest1 rest2

Q(t2, t1)

⊕ ⊕Hs
c (S⊕2(Σ1)) = = Hs

c (S⊕2(Σ2))

Hs
c (S−(Σ1)) Hs

c (S−(Σ2))
Q̃(t2, t1)

FEssc(M, ker (D−))

rest1 rest2

	

	

Figure 7.1.: Commuting diagrams for de�ning Q(t2, t1) and Q̃(t2, t1) .

The operator Q(t2, t1) occurs in [BS19] for compact hypersurfaces and in [BS20] for square-
integrable sections on non-compact hypersurfaces. The wave evolution operators in our
setting act between compactly supported Sobolev sections of any degree over non-compact,
but complete hypersurfaces. We can de�ne the evolution operators for the twisted Dirac
operators analogously.

De�nition 7.2.2. For a globally hyperbolic manifold M and t1, t2 ∈ T (M) the twisted
(Dirac-)wave evolution operators for positive and negative chirality are the following iso-
morphisms of topological vector spaces

QEL(t2, t1) := rest2 ◦ (rest1)−1 : Hs
c (S+

L,E(Σ1)) → Hs
c (S+

L,E(Σ2)) ,

Q̃EL(t2, t1) := rest2 ◦ (rest1)−1 : Hs
c (S−L,E(Σ1)) → Hs

c (S−L,E(Σ2)) .
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The same properties of Q, as shown in [BS19], are given for all introduced operators as
well.

Lemma 7.2.3. The following properties hold for any s ∈ R and t, t1, t2, t3 ∈ T (M):

(1) QEL(t3, t2) ◦QEL(t2, t1) = QEL(t3, t1) ;

(2) QEL(t, t) = 1Hs
c (S+

L,E(Σt))
and QEL(t1, t2) = (QEL)−1(t2, t1) ;

(3) Q̃EL(t3, t2) ◦ Q̃EL(t2, t1) = Q̃EL(t3, t1) ;

(4) Q̃EL(t, t) = 1Hs
c (S−L,E(Σt))

and Q̃EL(t1, t2) = (Q̃EL)−1(t2, t1) ;

(5) For any [t1, t2] ⊂ T (M) the operators QEL(t2, t1) and Q̃EL(t2, t1) are unitary for
s = 0.

For the untwisted case these properties carry over to Q and Q̃.

Proof. To keep notation simple, we will focus on the untwisted case since the twist only
modi�es the complexity, but not the following arguments. (1) to (4) follow by the same
reasoning as in [BS19]: because the composition of two suitable wave evolution operators
is again an isomorphism of topological vector spaces, one obtains another wave evolution
operator of the same kind respectively; hence (1) and (3) are clear.

FEssc(M, ker (D+))

Hs
c (S+(Σt1)) Hs

c (S+(Σt2)) Hs
c (S+(Σt3))

rest1
rest2

rest3

Q(t2, t1) Q(t3, t2)

Q(t3, t1)

Hs
c (S−(Σt1)) Hs

c (S−(Σt2)) Hs
c (S−(Σt3))

⊕ ⊕ ⊕

Q̃(t2, t1) Q̃(t3, t2)

FEssc(M, ker (D−))

rest1
rest2

rest3

Q̃(t3, t1)

Figure 7.2.: Diagram for the proof of 7.2.3 (1)-(4) for the untwisted Dirac-wave evolution
operators.

The identity properties in (2) and (4) are trivial: since Q is an isomorphism, we use (2)
with Q(t2, t1) ◦Q(t1, t2) = Q(t2, t2) = 1Hs

c (S+(Σ2)) and apply the inverse from the left. The

same argument transfer to the same properties of Q̃.
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The well-posedness of the homogeneous Cauchy problem implies that any initial value
u± ∈ Hs

c (S±(Σt)) for t ∈ T (M) is uniquely related to a �nite energy spinor ψ± ∈
FEssc(M, ker (D±)) for both chiralities such that ψ±|Σt = u±. Lemma 7.1.4 ensures that
one even has ψ± ∈ C1

sc(S±(M)) for �xed s > n
2 + 2. Restricting to any compact time

interval [t1, t2] implies that ψ± ∈ C1
c (S±(M)) and Proposition 6.2.2 leads to the claim: for

ψ± ∈ C1
c (S±(M)) ∩ ker (D±)) we have

0 =

∫
M |[t2,t1]

(
Dψ±

∣∣ψ±)S(M)
+
(
ψ±
∣∣Dψ±

)
S(M)

dvol

(6.32),(6.42)
=

∫
Σ2

〈
ψ±|Σ2

∣∣ψ±|Σ2

〉
S(Σ2)

dvol Σ2 −
∫

Σ1

〈
ψ±|Σ1

∣∣ψ±|Σ1

〉
S(Σ1)

dvol Σ1 .

Using ψ+|Σ2 = Q(t2, t1)ψ+|Σ1 = Q(t2, t1)u+ and ψ−|Σ2 = Q̃(t2, t1)u−, we get

0 =

∫
Σ2

〈
Q(t2, t1)u+

∣∣Q(t2, t1)u+

〉
S(Σ2)

dvol Σ2 −
∫

Σt1

〈
u+

∣∣u+

〉
S(Σ1)

dvol Σ1

= ‖Q(t2, t1)u+‖2L2(S+(Σ2)) − ‖u+‖2L2(S+(Σ1))

and

0 =

∫
Σ2

〈
Q̃(t2, t1)u−

∣∣ Q̃(t2, t1)u−
〉

S(Σ2)
dvol Σ2 −

∫
Σt1

〈
u−
∣∣u−〉S(Σ1)

dvol Σ1

=
∥∥∥Q̃(t2, t1)u−

∥∥∥2

L2(S−(Σ2))
− ‖u−‖2L2(S−(Σ1)) .

Here we assumed w.l.o.g. that the compact supports of ψ± intersect both boundary hyper-
surfaces Σ1 and Σ2; otherwise one gets the trivial identi�cations ‖Q(t2, t1)u+‖L2(S+(Σ2)) =

0 = ‖u+‖L2(S+(Σ1)) and ‖Q̃(t2, t1)u−‖L2(S−(Σ2)) = 0 = ‖u−‖L2(S−(Σ1)). Hence (5) has been
shown.

Remark 7.2.4. The map t 7→ rest = resΣt is continuous for all t ∈ T (M). This implies
the continuity of the map t 7→ Q(t, ·). Corollary 7.1.10 states that the solution depends
continuously on the initial data and is continuous in t due to the de�nition of �nite en-
ergy spinors. Hence t 7→ res−1

t is continuous for all t ∈ T (M) such that t 7→ Q(·, t) is
continuous, too. Thus, the map

(t, s) 7→ Q(t, s)

is continuous for all s, t ∈ T (M). The same reasoning transfers to the other introduced
Dirac-wave evolution operators.

7.2.2. Evolution operators as FIO

The proof of the following result is the main task of this subsection and generalises a part
of [BS19, Lem.2.6].
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Theorem 7.2.5. For all s ∈ R the operators Q, Q̃, QEL and Q̃EL satisfy

Q(t2, t1) ∈ FIO0
prop(Σ1,Σ2; C′1→2; Hom(S+(Σ1), S+(Σ2)))

Q̃(t2, t1) ∈ FIO0
prop(Σ1,Σ2; C′1→2; Hom(S−(Σ1), S−(Σ2)))

QEL(t2, t1) ∈ FIO0
prop(Σ1,Σ2; C′1→2; Hom(S+

L,E(Σ1), S+
L,E(Σ2)))

Q̃EL(t2, t1) ∈ FIO0
prop(Σ1,Σ2; C′1→2; Hom(S−L,E(Σ1), S−L,E(Σ2)))

for any �xed time interval [t1, t2] ⊂ T (M) and with canonical graphs

C1→2 = C(i∗) ◦ C = C1→2|+ t C1→2|− where

C1→2|± =
{

((x±, ξ±), (y, η)) ∈ Ṫ ∗Σ2 × Ṫ ∗Σ1

∣∣∣ (x±, ξ±) ∼ (y, η)
} (7.14)

with respect to the lightlike (co-)geodesic �ow as canonical relation; their principal symbols
are

σ0(QEL)(x, ξ±; y, η) = σ0(Q)(x, ξ±; y, η)⊗
[
1EL|Σ2

◦ PEL(x,ς±)←(y,ζ±) ◦ 1EL|Σ1

]
with σ0(Q)(x, ξ±; y, η) = ±1

2
‖η‖−1

gt1 (y)

(
∓‖ξ±‖gt2 (x) β+ ct2

(
ξ]±

))
(7.15)

◦P S(M)
(x,ς±)←(y,ζ±) ◦ β

and

σ0(Q̃EL)(x, ξ±; y, η) = σ0(Q̃)(x, ξ±; y, η)⊗
[
1EL|Σ2

◦ PEL(x,ς±)←(y,ζ±) ◦ 1EL|Σ1

]
with σ0(Q̃)(x, ξ±; y, η) = ±1

2
‖η‖−1

gt1 (y)

(
∓‖ξ±‖gt2 (x) β− ct2

(
ξ]±

))
(7.16)

◦P S(M)
(x,ς±)←(y,ζ±) ◦ β

where (y, ζ±) ∈ T ∗Σ1
M and (x, ς±) ∈ T ∗Σ2

M restrict to (y, η) and (x, ξ±) respectively.

P S(M)
(x,ς±)←(y,ζ±) and PEL(x,ς±)←(y,ζ±) denote the parallel transport from (y, ζ±) to (x, ς±) with

respect to the spinorial and respectively twisting bundle covariant derivative, ‖•‖gt a norm
for covectors, induced by the dual metric of gt for �xed t, and T ∗ΣtM := T ∗pM for any
p ∈ Σt.

Proof. W.l.o.g. we assume that M is temporal compact with T (M) = [t1, t2]; otherwise
we have to replaceM with the temporal restriction M |[t1,t2]. In order to describe QEL and

Q̃EL as FIOs, one uses the fact that (DEL)2 and thus DEL
∓ DEL

± are normally hyperbolic.
Theorem C.2 assures that the homogeneous Cauchy problems

DEL
+ DEL

− v = 0 , resΣ1v = g−0 , resΣ1(−∇SL,E(M)
ν )v = g−1

DEL
− DEL

+ w = 0 , resΣ1w = g+
0 , resΣ1(−∇SL,E(M)

ν )w = g+
1

(7.17)

have unique solutions v and w as spinor �eld with negative and respectively positive chiral-
ity where Σ1 is chosen to be the initial hypersurface with initial values g±0 and g±1 as spinor
�elds on this hypersurface. The solutions can be expressed with the solution operators
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from Theorem C.2:

v = G−0 (t1)g−0 + G−1 (t1)g−1 and w = G+
0 (t1)g+

0 + G+
1 (t1)g+

1

where G±j (t1) ∈ FIO−j−1/4(Σ,M ; C′; Hom(S±L,E(Σ1), S±L,E(M))) with canonical relation C
from (C.6). Consider the spinor �elds u+ = DEL

− v and u− = DEL
+ w which satisfyDEL

+ u+ =

0 = DEL
− u− by construction. The boundary conditions for v and w imply boundary

conditions for u±:

u+|Σ1 = DEL
− v|Σ1

(6.54)
= −(β⊗ 1EL)

[
∇S(M)
ν v

∣∣∣
Σ1

+ BEL
t1,−v

∣∣∣
Σ1

]
(7.17)

= (β⊗ 1EL)|Σ1g
−
1 − (β⊗ 1EL) BEL

t1,−v
∣∣∣
Σ1

and

u−|Σ1 = DEL
+ w|Σ1

(6.54)
= −(β⊗ 1EL)

[
∇S(M)
ν w

∣∣∣
Σ1

+ BEL
t1,+

w
∣∣∣
Σ1

]
(7.17)

= (β⊗ 1EL)|Σ1g
+
1 − (β⊗ 1EL) BEL

t1,+
w
∣∣∣
Σ1

.

The spinorial covariant derivatives ∇SL,E(M)
ν and ∇SL,E(Σ1)

ν di�er in a term which contains
a Cli�ord multiplication with respect to ∇νν. This vanishes as the t-lines are geodesics.
Because the initial conditions for the Cauchy problem of the normally hyperbolic equations
are free to choose, it is suitable to take g±0 = 0 and g±1 as any initial spinor �elds on the
initial hypersurface with positive or negative chirality. Both BEL

t1,± act tangential to the
hypersurface Σ1 and due to the chosen boundary conditions both v and w vanish along

Σ1. This implies that the terms with BEL
t1,−v

∣∣∣
Σ1

and BEL
t1,+

w
∣∣∣
Σ1

vanish as well. We obtain

u±|Σ1 = (β ⊗ 1EL)|Σ1g
±
1 . The spinor �elds u± then solve the homogeneous initial value

problems

DEL
± u± = 0 , resΣ1u± = (β⊗ 1EL)|Σ1g

±
1 = (β⊗ 1EL|Σ1

)g±1 .

The solution operator is then formally given by DEL
∓ ◦ G∓(t1) where we write G±(t1) for

G±1 (t1). The Cli�ord multiplication in the initial condition changes the chirality and has to
be added to the solution operators in order to get rid of the Cli�ord multiplication in the
initial condition: DEL

∓ ◦G∓(t1)◦ (β⊗1EL|Σ1
). Choosing compactly supported initial values

g±1 ∈ C∞c (S∓L,E(Σ1), one can represent the Dirac wave evolution operators QEL(t2, t1) and

Q̃EL(t2, t1) by lifting each spinor �eld u±|Σ1 on the initial hypersurface to a solution on
M via G±(t1) ◦ (β⊗ 1EL|Σ1

), apply DEL
∓ and then restrict to Σ2, i.e.

QEL(t2, t1) = resΣ2 ◦D
EL
− ◦ G−(t1) ◦ (β⊗ 1EL|Σ1

) (7.18)

and

Q̃EL(t2, t1) = resΣ2 ◦D
EL
+ ◦ G+(t1) ◦ (β⊗ 1EL|Σ1

) . (7.19)
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In order to show that (7.18) and (7.19) are well de�ned on non-compact manifolds, the
compositions of the two canonical relations C(i∗) from (4.24) with C and of the operators
are well de�ned:

(1) resΣ2 is properly supported;

(2) G±(t1) is properly supported;

(3) DEL
± ◦ G±(t1) ∈ FIO−1/4

prop (M ; C′; Hom(S±L,E(Σ1), S±L,E(M)));

(4) C(i∗) ◦ C transversal and proper.

(1) follows from Corollary 4.2.7.

(2) We show that the projections πM : M × Σ1 → M and πΣ1 : M × Σ1 → Σ1 are
proper maps on the support of (the Schwartz kernels of) G±. The support is according to
Theorem C.2 given by

S :=
{

(p, x) ∈M × Σ1 |x ∈ J −(p) ∩ Σ1

}
,

i.e. for every point p inM only those points on the initial hypersurface Σ1 contribute which
are lying inside its causal past J −(p) = J −({p}). Since J −({p}) is spatially compact and
Σ1 a Cauchy hypersurface, J −({p}) ∩ Σ1 is compact and so only points from this subset
contribute to the solution at p. Since M is temporally compact and Σ1 closed, M and the
product M × Σ1 are closed as well such that S becomes closed, too. Let K be a compact
subset in M ; its preimage under the �rst projection (πM )−1(K) = K × Σ1 is closed. The
intersection S ∩ (πM )−1(K) contains only points in K × (J −(K) ∩ Σ1):

S ∩ (πM )−1(K) ⊂ K × (J −(K) ∩ Σ1) . (7.20)

As J −(K) ⊂ J (K) is again spatially compact, it implies J −(K) ∩Σ1 to be compact. As
S ∩ (πM )−1(K) is closed and contained in a compact set, it is compact as well, showing
that πM is proper on S.

Σ1

J +(Σ1)

J −(K)

K bM

p

Σ1

= J −(p)

Figure 7.3.: Illustration for the intersection (7.20).
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Suppose that K is now a compact subset in Σ1. The preimage of K under πΣ1 is
(πΣ1)−1(K) = M ×K. The intersection is

S ∩ (πΣ1)−1(K) = S ∩ (M ×K) =
{

(p, x) ∈M ×K |x ∈ J −(p) ∩K
}

⊂ (J +(K) ∩M)×K .
(7.21)

(πΣ1)−1(K) = M × K is closed as M is closed and K a compact subset in a Hausdor�
space. Thus, K and �nally the intersection are closed, too. Temporal compactness of M
implies that J +(K) ∩M is temporal and spatial compact and thus fully compact. The
intersection consequently becomes a closed set inside a compact set for which reason it
becomes compact, showing the properness of πΣ1 on S and �nally properly supportness of
G±.

Σ1

p1

p2

p3

p4

K b Σ1

p1 /∈ J +(K)

p2, p3, p4 ∈ J +(K)

= J −(p1)

= J −(p2)

= J −(p3)

= J −(p4)

Figure 7.4.: Illustration for the intersection (7.21).

Hence the �rst compositions from the right in (7.18) and (7.19) is well-de�ned and a
properly supported Fourier integral operator of order 0 with the canonical relation C from
G±(t1) because (β⊗1EL |Σ1) is a properly supported operator of order zero with canonical
relation N∗diag(Σ1).

(3) Since DEL
± ∈ Diff1(M,Hom(S±L,E(M), S∓L,E(M))) is properly supported, one can take

the composition with G±(t1) ∈ FIO−5/4
prop (Σ,M ; C′; Hom(S±L,E(Σ1), S∓L,E(M))): since di�eren-

tial operators on M can be interpreted as FIO from M to M with the conormal bundle of
the diagonal in M (see (3) in Lemma 4.2.3), the composition N∗diag(M) ◦ C is proper and
transversal and results in C. Since both operators are properly supported, part (2) from

Lemma 4.2.3 implies that (DEL
∓ ◦ G∓(t1)) ∈ FIO−1/4

prop (Σ,M ; C′; Hom(S∓L,E(Σ1), S±L,E(M))).

(4) The construction of the solution operators as FIO has been already done in such a
way that the canonical relation C(i∗) ◦ C as composition is transversal and proper. We
refer to the explainations in Appendix C and in particular [Dui10, Chap.5] for details. The
Dirac operators DEL

± do not a�ect the argument since its canonical relation corresponds
to the conormal bundle of the diagonal as explained in (3).

Lemma 4.2.3 (2) implies that the compositions (7.18) and (7.19) are indeed well-de�ned
properly supported Fourier integral operators of order 0. Since Hs

c is the completion of
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C∞c with respect to the Sobolev norm on each �xed compact support, these representations
extend to initial values in Hs

c (S∓L,E(Σ1) and maps to Hs
c (S∓L,E(Σ2) by properly supportness

(see Lemma 4.2.4 (3)).

The composition C(i∗) ◦ C of the canonical relations and its interpretation are given in
accordance to [BS19]. For an element (y, η) ∈ Ṫ ∗Σ1 there are two lightlike covectors
ζ± ∈ Ṫ ∗yM such that resΣ1ζ± = η according to (C.7). Assigning ζ+ to be future- and ζ−
to be past-directed, the geodesic �ows along each lightlike initial covector intersect Σ2 in
at most one point in Ṫ ∗Σ2

M for each direction due to transversality:

(x±, ξ±) ∼ (y, ζ±)

where the notation is explained after the de�niton of (C.6). The pullback via restriction
to Σ2 then gives two points in Ṫ ∗Σ2 which are also denoted as (x±, ξ±). Summing up,
the composition C(i∗) ◦ C± for each connected component C± of C belongs to those pairs
((x±, ξ±), (y, η)) ∈ Ṫ ∗Σ2× Ṫ ∗Σ1 which are related by lightlike geodesic �ows in future and
past direction. Because of this two connected components we also write

C1→2 = C1→2|+ t C1→2|− where

C1→2|± = C(i∗) ◦ C± =
{

((x±, ξ±), (y, η)) ∈ Ṫ ∗Σ2 × Ṫ ∗Σ1

∣∣∣ (x±, ξ±) ∼ (y, η)
}

.

The canonical relation is a union of canonical graphs for each component: the geodesic �ow
on TM can be interpreted as Hamiltonian/cogeodesic �ow on T ∗M since the Hamiltonian
for (co-)geodesics is given by half of the principal symbol of normally hyperbolic opera-
tors. Hamiltonian �ows preserve the Hamiltonian equations by which they are canonical
transformations. Each of the point (x±, ξ±) is then related to (y, η) by these canonical
transformations Φ±: (x±, ξ±) = Φ±(y, η) such that

C1→2|± =
{

((y, η), χ±(y, η)) ∈ Ṫ ∗Σ1 × Ṫ ∗Σ2

∣∣∣ (y, η) ∈ Ṫ ∗Σ1

}
= graph(Φ±)

and thus the claim.

This observation allows to calculate the principal symbol of Q by multiplying the prin-
cipal symbols of each occuring operator (see (4.20) or recall [Hö71, Thm.4.2.2/3] for
the details of this fact). The principal symbols of the solution operators follow from
the initial value problem for the normally hyperbolic operator from Theorem C.2. With
resΣ◦(−(∇ν)j)◦Gk = δjk1 up to smoothing operators one yields for the covectors ζ± ∈ Ṫ ∗yM

σ0(G±0 |Σ1)(y, ζ±; y, η) = 1 , σ−1(G±1 |Σ1)(y, ζ±; y, η) = O ,

σ1((−∇ν) ◦ G±0 |Σ1)(y, ζ±; y, η) = O , σ0((−∇ν) ◦ G±1 |Σ1)(y, ζ±; y, η) = 1 .

The left equation in the �rst line determines the principal symbols of G±0 , restricted to the
initial hypersurface Σ1. The multiplication of symbols is then used in the second line in
order to extract the symbol of the covariant derivative on the initial hypersurface which is

σ1(−∇ν)(y, ζ±)u = − lim
λ→∞

(
1

λ

)
e−iλΦ∇ν

(
eiλφu

)∣∣∣∣
y

= − lim
λ→∞

(
1

λ

)
(iλ dφ(ν) +∇νu)

∣∣∣∣
y

= −iζ±(ν) .
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This system of equations becomes

σ0(G±0 |Σ1)(y, ζ±; y, η) = 1 , σ−1(G±1 |Σ1)(y, ζ±; y, η) = O ,

−iζ±(ν)σ0(G±0 |Σ1)(y, ζ±; y, η) = O , −iζ±(ν)σ−1(G±1 |Σ1)(y, ζ±; y, η) = 1 .

Since ζ± is non-zero and in general ζ±(ν) 6= 0, we can divide in the lower left equation and
add it to the upper left equation, giving

1 = 1 +O = 2σ0(G±0 |Σ1)(y, ζ±; y, η) ⇔ σ0(G±0 |Σ1)(y, ζ±; y, η) =
1

2
1 .

Multiplying the upper equation on the right side with (−iζ±(ν)) and adding this to the
equation below gives

1 = 1 +O = −2iζ±(ν)σ−1(G±1 |Σ1)(y, ζ±; y, η) ⇔ σ−1(G±1 |Σ1)(y, ζ±; y, η) =
i

2
ζ±(ν)−1

1 .

If (x, ς±) ∈ Ṫ ∗Σ2
M lies on the orbit of the lightlike cogeodesic �ow and restricts to (x, ξ±)

on Σ2, the parallel transport operator P(x,ς±)←(y,ζ±) with respect to ∇ = ∇SL,E(M) along
this geodesic relates these two points such that the pure principal symbols of both solution
operators are

σ−1/4(G0)(x, ς±; y, η) =
1

2
P(x,ς±)←(y,ζ±)

and

σ−5/4(G1)(x, ς±; y, η) =
i

2
ζ±(ν)−1P(x,ς±)←(y,ζ±)

where the restriction operator rest1 as FIO of order 1/4 has been taken out, which is
again possible, as both operators are properly supported and their canonical relations are
constructed in such a way that their composition is proper, transversal and a graph of a
canonical transformation. The choice of the sign depends on the initial velocity covector
ζ±, in�uencing the direction of the geodesic �ow in future or past timelike direction. The
prefactor can be rewritten as follows: ζ± is a lightlike covector which restricts to η on
Σ1. Since ν was chosen to be past-directed and orthonormal to each hypersurface, the
projection of ζ]± in temporal direction is ∓ν. The lightlike property and the ansatz ζ]± =
∓αν+ η along Σ1 allows to compute ζ±(ν)|y:

0 = g |y(ζ]±, ζ
]
±) = α2g |y(ν,ν) + gt1 |y(η, η) = −α2(y) + gt1 |y(η, η)

⇔ α(y) = gt1 |y(η, η) =: ‖η‖2gt1 (y) 6= 0 ∀ y ∈ Σ1

⇒ ζ±(ν)|y = g |y(ζ]±,ν) = ∓α(y)g |y(ν,ν) + 0 = ±α(y) = ±‖η‖gt1 (y) .

The parallel transport on the tensor product is naturally de�ned to be the tensor product
of the parallel transport of each factor:

P(x,ς±)←(y,ζ±)(ψ ⊗ f) = P S(M)
(x,ς±)←(y,ζ±)(ψ)⊗ PEL(x,ς±)←(y,ζ±)(f)

with P S(M) and PEL , denoting the parallel transport operator for each factor in SL,E(M),
and ψ as well as f sections of the untwisted spinor bundle and respectively the twisting
bundle. By C∞(M)-linearity this extends to any section of the twisted spinor bundle.
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Thus, both Fourier integral operators have the principal symbols

σ−1/4(G0)(x, ς±; y, η) =

[
1

2
P S(M)

(x,ς±)←(y,ζ±)

]
⊗ PEL(x,ς±)←(y,ζ±) and

σ−5/4(G1)(x, ς±; y, η) =

[
± i

2 ‖η‖gt1 (y)

P S(M)
(x,ς±)←(y,ζ±)

]
⊗ PEL(x,ς±)←(y,ζ±) .

(7.22)

The last part comes from the principal symbols of DEL
± at (x, ς = ς±), restricted to (x, ξ =

ξ±) on the hypersurface Σ2: let {ei}ni=0 be a future-oriented Lorentz-orthonormal frame
with e0 = −ν, then

DEL
± u =

n∑
i=0

εi(c (ei)⊗ 1EL)∇eiu = −(β⊗ 1EL)∇−νu+
n∑
i=1

(c (ei)⊗ 1EL)∇eiu

⇒ σ1(DEL
± )((t, x), ς)u = (β⊗ 1EL)σ1(−∇−ν)(x, ς)u+

n∑
i=1

(c (ei)⊗ 1EL)σ1(∇ei)(x, ς)u

= iς(ν)(β⊗ 1EL)u+
n∑
i=1

iς(ei)(c (ei)⊗ 1EL)u

= i

[
ς(ν)β⊗+

n∑
i=1

iς(ei)c (ei)

]
⊗ 1ELu

which implies

σ5/4(DEL
± )|Σ2(x, ξ) := σ5/4(resΣ2 ◦D

EL
± )(x, ξ) = i

[
ς|x(ν)β± ct2

(
ξ]
)]
⊗ 1EL|Σ2

;

the di�erence in the signs occurs since the choice of the Cli�ord multiplication on the
hypersurface depends on the chirality of the spinor on which the Dirac operators DEL

±
are acting on. The order 5/4 comes by composing DEL

± with the restriction as FIO of
order 1/4. Since ς = ς± is lightlike, the same calculations lead to ς±(ν)|x = ±‖ξ±‖gt2

(x).
Composing everything shows the claimed principal symbols:

σ0(QEL)(x, ξ±; y, η) = σ5/4(DEL
− )|Σ2(x, ξ±)σ−5/4(G−(t1))(x, ξ±; y, η) ◦ (β⊗ 1EL|Σ1

)

=
±i2

2 ‖η‖gt1 (y)

[(
±‖ξ±‖gt2 (x) β− ct2

(
ξ]
))
⊗ 1EL|Σ2

]
◦
[

P S(M)
(x,ς±)←(y,ζ±) ⊗ PEL(x,ς±)←(y,ζ±)

]
◦(β⊗ 1EL|Σ1

)

= ±1

2
‖η‖−1

gt1 (y)

[(
∓‖ξ±‖gt2 (x) β+ ct2

(
ξ]
))
◦ P S(M)

(x,ς±)←(y,ζ±) ◦ β
]

⊗
[
1EL|Σ2

◦ PEL(x,ς±)←(y,ζ±) ◦ 1EL|Σ1

]
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and

σ0(Q̃EL)(x, ξ±; y, η) = σ5/4(DEL
+ )|Σ2(x, ξ±)σ−5/4(G+(t1))(x, ξ±; y, η) ◦ (β⊗ 1EL|Σ1

)

=
±i2

2 ‖η‖gt1 (y)

[(
±‖ξ±‖gt2 (x) β+ ct2

(
ξ]
))
⊗ 1EL|Σ2

]
◦
[

P S(M)
(x,ς±)←(y,ζ±) ⊗ PEL(x,ς±)←(y,ζ±)

]
◦(β⊗ 1EL|Σ1

)

= ±1

2
‖η‖−1

gt1 (y)

[(
∓‖ξ±‖gt2 (x) β− ct2

(
ξ]
))
◦ P S(M)

(x,ς±)←(y,ζ±) ◦ β
]

⊗
[
1EL|Σ2

◦ PEL(x,ς±)←(y,ζ±) ◦ 1EL|Σ1

]
.

The same procedure can be done analogously for the untwisted case where (7.18) and
(7.19) reduce to

QEL(t2, t1) = resΣ2 ◦D− ◦ G−(t1) ◦ β (7.23)

and

Q̃EL(t2, t1) = resΣ2 ◦D+ ◦ G+(t1) ◦ β . (7.24)

The character of the opertors does not explicitly depend on the twisting such that

Q ∈ FIO0
prop(Σ1,Σ2; C′1→2; Hom(S+(Σ1), S+(Σ2)))

Q̃ ∈ FIO0
prop(Σ1,Σ2; C′1→2; Hom(S−(Σ1), S−(Σ2)))

with the same canonical relations and support properties as stated. The principal symbols
of each component in the composition take the form

σ−5/4(G1)(x, ς±; y, η) =
±i

2 ‖η‖gt1
(y)

P S(M)
(x,ς±)←(y,ζ±)

and
σ5/4(D±)|Σ2(x, ξ) = i

(
ς|x(ν)β± ct2

(
ξ]
))

such that

σ0(Q)(x, ξ±; y, η) = ±1

2
‖η‖−1

gt1 (y)

(
∓‖ξ±‖gt2 (x) β+ ct2

(
ξ]
))
◦ P S(M)

(x,ς±)←(y,ζ±) ◦ β (7.25)

σ0(Q̃)(x, ξ±; y, η) = ±1

2
‖η‖−1

gt1 (y)

(
∓‖ξ±‖gt2 (x) β− ct2

(
ξ]
))
◦ P S(M)

(x,ς±)←(y,ζ±) ◦ β . (7.26)

These are exactly the �rst factors in the tensor product for the twisting case.

Remark 7.2.6. The properly supportness of the Dirac-wave evolution operators imply that
they are extendable as map from local Sobolev sections to local Sobolev sections:

QEL(t2, t1) : Hs
loc(S+

L,E(Σ1)) → Hs
loc(S+

L,E(Σ2)) ,

Q̃EL(t2, t1) : Hs
loc(S−L,E(Σ1)) → Hs

loc(S−L,E(Σ2)) ;
(7.27)

recall Lemma 4.2.4 (3). This becomes important for Sobolev spaces in the setting of Galois
coverings, de�ned by local Sobolev sections.
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7.3. Well-posedness in Γ-setting

From now on we implement all assumptions and settings, we made at the beginning of
Part III. M is a globally hyperbolic, spatial Γ -manifold with spin structure. Later we will
also consider the case, were M is also temporal compact. All coming vector bundles are
understood as Γ -vector bundles. The Γ -invariances of At, D and D± have to be understood
as intertwining with the left action representations:

AtL
S(Σt)
γ = L

S(Σt)
γ At DLS(M)

γ = L
S(M)
γ D D±L

S±(M)
γ = L

S∓(M)
γ D± (7.28)

for any γ ∈ Γ and t ∈ T (M). We assume similar for the twisted Dirac operators.

We de�ne the following spaces for Hs
Γ ⊂ Hs

loc and any s ∈ R:

(a) FEssc,Γ (M, T , S±L,E(M)) := C0
sc(T (M), Hs

Γ (S±L,E(Σ•))) ;

(b) FEssc,Γ (M, T , DEL
± ) :={

u ∈ FEssc,Γ (M, T , S±L,E(M))
∣∣∣DEL
± u ∈ L2

loc,sc(T (M), Hs
Γ (S∓L,E(Σ•)))

}
;

(c) FEssc,Γ

(
M, ker

(
DEL
±

))
:=
{
u ∈ FEssc,Γ (M, T , S±L,E(M))

∣∣∣DEL
± u = 0

}
.

The seminorm on FEssc,Γ (M, T , S±L,E(M)) is de�ned as in (4.26) where the seminorm of
local Sobolev sections is replaced by the norm for Γ -Sobolev spaces:

‖u‖I,K,l,s,Γ := max
k∈[0,l]∩N0

max
t∈I

∥∥∥(∇t)ku
∥∥∥
Hs

Γ (S±L,E(Σ•))
. (7.29)

We can formulate with this modi�cations Γ -versions of Theorem 7.1.9 and Corollary 7.1.10
where the isomorphisms become Γ -invariant.

Proposition 7.3.1. For a �xed t ∈ T (M) with M a globally hyperbolic spatial Γ -manifold
and any s ∈ R the maps

rest⊕DEL
± : FEssc,Γ (M, T , DEL

± ) → Hs
Γ (S±L,E(Σt))⊕L2

loc,sc(T (M), Hs
Γ (S∓L,E(Σ•))) (7.30)

are Γ -isomorphisms of topological vector spaces.

Corollary 7.3.2. For a �xed t ∈ T (M) with M a globally hyperbolic spatial Γ -manifold
and any s ∈ R the maps

rest : FEssc,Γ

(
M, ker

(
DEL
±

))
→ Hs

Γ (S±L,E(Σt)) (7.31)

are Γ -isomorphisms of topological vector spaces.

Proof. W.l.o.g. we will prove this result for both untwisted Γ -invariant Dirac operators
and label those places where a modi�cation for the twisted case is needed.

The continuity of D± as map from FEssc,Γ (M, T , D±) to L2
loc,sc(T (M), Hs

Γ (S∓(Σ•))) follows
by construction of the domain. The continuity of the restriction is given by the following
modi�ed argument: for all t ∈ T (M) the di�eomorphism between M and the product
manifold T (M) × Σ by Theorem 3.1.2 implies that for each Γ -hypersurface one and the
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same time independent Γ -invariant partition of unity {φi,γ} i∈I
γ∈Γ

, subordinated to a covering

of Σ, can be chosen. Thus, every slice in {Σt}t∈T (M) has the same partition of unity. As
in the the proof of Theorem 7.1.9 with K∩Σt replaced by K(t, i,γ) := K∩Σt∩ supp (φi,γ)
for each i ∈ I, γ ∈ Γ and K spatially compact we gain

‖restu‖2Hs
Γ (S±(Σt))

=
∑
i∈I
γ∈Γ

‖φi,γrestu‖2Hs(K(t,i,γ),S±(Σt))

≤ max
τ∈T (M)

∑
i∈I
γ∈Γ

‖φi,γresτu‖2Hs(K(τ,i,γ),S±(Στ ))

= max
τ∈T (M)

{
‖resτu‖2Hs

Γ (S±(Στ ))

} (7.29)

≤ ‖u‖2T (M),K,0,s,Γ

⇔ ‖restu‖Hs
Γ (S±(Σt))

≤ ‖u‖T (M),K,0,s,Γ .

The continuous inclusion of C0
K into C0

c then leads to the wanted feature. The second
estimate in the proof of Theorem 7.1.9 can be modi�ed after introducing a suitable energy
in the Γ -setting: de�ne the Γ -s-energy as square of the Γ -Sobolev norm:

Es,Γ (u,Σt) = ‖u‖2Hs
Γ (S(Σt))

=
∑
i∈I
γ∈Γ

‖φi,γu‖2Hs(K(t,i,γ),S(Σt))
=
∑
i∈I
γ∈Γ

Es(φi,γu,Σt) .

From the last equality we can see that the de�ned Γ -s-energy can be rewritten as the usual
s-energy. We abbreviate φ := φi,γ and ũ = φu and perform the estimate of the energy
Es(φi,γu,Σt) from the proof of Proposition 7.1.6 up to the fourth line where one makes use
of the time independence of the partition of unity:

d

dt
Es(ũ,Σt) ≤ n

〈
HtΛ

s
t ũ
∣∣Λst ũ〉L2(S(Σt))

+ c2 ‖ũ‖2Hs(S(Σt))
− 2<e

{〈
ũ
∣∣φ∇νu〉Hs(S(Σt))

}
= n

〈
HtΛ

s
t ũ
∣∣Λst ũ〉L2(S(Σt))

+ c2 ‖ũ‖2Hs(S(Σt))

+ 2<e
{〈
ũ
∣∣βφD±u〉Hs(S(Σt))

}
+ 2<e

{〈
ũ
∣∣φBt,±u〉Hs(S(Σt))

}
(∗)
≤ n

∣∣∣〈HtΛ
s
t ũ
∣∣Λst ũ〉L2(S(Σt))

∣∣∣ + c2 ‖ũ‖2Hs(S(Σt))

+ 2<e
{〈

Λst ũ
∣∣βΛstφD±u

〉
L2(S(Σt))

}
+ 2<e

{〈
Λst ũ

∣∣ΛstφBt,±u〉L2(S(Σt))

}
(∗∗)
≤ n ‖HtΛ

s
t ũ‖

2
L2(S(Σt))

+ c3 ‖ũ‖2Hs(S(Σt))
+ ‖βΛstφD±u‖

2
L2(S(Σt))

+ ‖ΛstφBt,±u‖
2
L2(S(Σt))

≤ c4 ‖ũ‖2Hs(S(Σt))
+ ‖φD±u‖2Hs(S(Σt))

+ ‖φBt,±u‖2Hs(S(Σt))
.

We used in (∗) Lemma 7.1.1 (2) (Lemma 7.1.2 (1) for the twisted case after replacing
β with β ⊗ 1EL) and in (∗∗) the Cauchy-Schwarz inequality and polarisation identities.
Since HtΛ

s
t ∈ Ψs(Σt, S±(Σt)), we have HtΛ

s
t ũ ∈ L2(S±(Σt)) and the estimate for Sobolev

norms; furthermore, we used the isometry of β from (6.45) ((6.46) for the twisted case)
in the last step. Since Bt,± are properly supported, we have Bt,±u|Σt ∈ Hs

loc(S+(Σt)) for
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u|Σt ∈ Hs+1
loc (S+(Σt)). Summing over all covering balls and Γ -actions gives∑

i∈I
γ∈Γ

‖φi,γBt,±u‖2Hs(S(Σt))
≤ c

∑
i∈I
γ∈Γ

‖φi,γu‖2Hs+1(S(Σt))
≤ c̃Es,Γ (u,Σt) .

The second inequality is a result of the continuous inclusion of Sobolev spaces. One �nally
yields

d

dt
Es(u,Σt) ≤ c5Es,Γ (u,Σt) + ‖D±u‖2Hs

Γ (S(Σt))

and repeating all further steps from the proof in the general case as well as from Corol-
lary 7.1.7 shows that for τ ∈ T (M), K ⊂M compact and s ∈ R there exists a C > 0 such
that

Es,Γ (u,Σt) ≤ C
(
Es,Γ (u,Στ ) + ‖D±u‖2T (M),J (K),s,Γ

)
(7.32)

is valid for all t in any [t1, t2] ⊂ T (M) and for all u ∈ FEs+1
sc,Γ (M, T , D±) with D±u ∈

FEssc,Γ (M, T , S∓(M)) and supp (u) ⊂ J (K). In comparison to the statements in Propo-
sition 7.1.6 and Corollary 7.1.7 the spatial compact support has been ensured by the
Γ -invariant partition of unity, which has been used in order to carry over the proof up to
these modi�cations. Hence the constant C depends on the projection of the support onto
Σ \Γ , but since this base is compact by our general preassumption, the constant C is now
independent of the support of u. The Γ -versions of Corollary 7.1.7 and Corollary 7.1.8
then follow with identical arguments and can be used for the well-posedness of the Cauchy
problem on Γ -manifolds.

Any �nite energy section in FEssc,Γ (M, T (M), D±) can be estimated with an initial value
u0 ∈ Hs

Γ (Σ1, S±(Σ1)) and inhomogeneity f = D±u ∈ L2
loc,sc(T (M), Hs

Γ (S∓(Σ•))) with
(7.32) at initial time t = t1:

‖u‖2T (M),J (K),0,s,Γ ≤ max
τ∈T (M)

{
‖u‖2Hs

Γ (S±(Στ ))

}
= max

τ∈T (M)
{Es,Γ (u,Στ )}

≤ C
(

max
τ∈T (M)

{
Es,Γ (u,Σ1) + ‖D±u‖2T (M),J (K),s,Γ

})
= C

(
Es,Γ (u0,Σ1) + ‖f‖2T (M),J (K),s,Γ

)
.

The rest of the proof works analogously such that one yields an isomorphism between the
topological vector spaces FEssc,Γ (M, T , D±) and Hs

Γ (S±(Σt))⊕L2
loc,sc(T (M), Hs

Γ (S±(Σ•))).

It is left to show that the isomorphisms are Γ -invariant. D± and DEL
± are Γ -invariant by

assumption and since the restriction operator rest just �xes a slice at time t it intertwines
the Γ -action:

L
S±(Σt)
γ rest = restL

S±(M)
γ ∀ t ∈ T (M),∀γ ∈ Γ . (7.33)

Consequently, the direct sum is Γ -invariant. The proof of the Corollary follows easily.

IfM is moreover temporal compact, any spatially compact subset ofM is itself compact
since it is a closed subset in M and J (K) ⊂M for any K bM becomes compact. Thus,

C lsc(T (M), Hs
loc(S±L,E(Σ•))) −→ C l(T (M), Hs

loc(S±L,E(Σ•)))

L2
loc,sc(T (M), Hs

loc(S±L,E(Σ•))) −→ L2(T (M), Hs
loc(S±L,E(Σ•)))
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for l ∈ N0 and s ∈ R. We de�ne

FEsc (M, T , S±L,E(M)) := C0(T (M), Hs
loc(S±L,E(Σ•))) .

The de�nition of the subspaces FEsc (M, T , DEL
± ) and FEsc

(
M, ker

(
DEL
±

))
are clear from

the general case. Theorem 7.1.9 and Corollary 7.1.10 are still valid in this setting since
the isomorphism, restricted to the subset FEsc (M, T , DEL

± ) ⊂ FEssc(M, T , DEL
± ), maps

isomorphically to L2(T (M), Hs
loc(S±L,E(Σ•))). In the Γ -setting we then de�ne the spaces

(a) FEsΓ (M, T , S±L,E(M)) := C0(T (M), Hs
Γ (S±L,E(Σ•))) ;

(b) FEsΓ (M, T , DEL
± ) :=

{
u ∈ FEsΓ (M, T , S±L,E(M))

∣∣∣
DEL
± u ∈ L2(T (M), Hs

Γ (S∓L,E(Σ•)))
}

;

(c) FEsΓ

(
M, ker

(
DEL
±

))
:=
{
u ∈ FEsΓ (M, T , S±L,E(M))

∣∣∣DEL
± u = 0

}
.

(7.34)

The seminorm on FEsΓ (M, T , S±L,E(M)) is de�ned as in (7.29). L2(T (M), Hs
Γ (S±L,E(Σ•))) is

a bundle of free Hilbert Γ -modules; the left action representation LS±L,E(Σt) on Hs
Γ (S±L,E(Σt))

for each time induces a left action LS±L,E(M) on L2(T (M), Hs
Γ (S±L,E(Σ•))) by applying

LS±L,E(Σt) at each time t ∈ T (M). Thus, L2(T (M), Hs
Γ (S±L,E(Σ•))) becomes a free Hilbert

Γ -module on its own right. We point out that

L2(T (M), H0
Γ (S±L,E(Σ•))) = L2(T (M), L2

Γ (S±L,E(Σ•))) = L2
Γ (S±L,E(M)) .

After this clari�cation further well-posedness results for DEL
± can be proven:

Theorem 7.3.3. For a �xed t ∈ T (M) with M a temporal compact globally hyperbolic
spatial Γ -manifold and any s ∈ R the maps

rest ⊕DEL
± : FEsΓ (M, T , DEL

± ) → Hs
Γ (S±L,E(Σt))⊕ L2(T (M), Hs

Γ (S∓L,E(Σ•))) (7.35)

are Γ -isomorphisms of Hilbert Γ -modules.

Corollary 7.3.4. For a �xed t ∈ T (M) with M a temporal compact globally hyperbolic
spatial Γ -manifold and any s ∈ R the maps

rest : FEsΓ

(
M, ker

(
DEL
±

))
→ Hs

Γ (S±L,E(Σt)) (7.36)

are Γ -isomorphisms of Hilbert Γ -modules.

Proof. Proposition 7.3.1 already imply that rest⊕DEL
± respectively rest are Γ -isomorphisms

as the reduction to a bounded time interval has no e�ect. We clari�ed beforehand that
L2(T (M), Hs

Γ (S±L,E(Σ•))) are free Hilbert Γ -modules for all s ∈ R. Since Hs
Γ (S±L,E(Σt)) is

also a free Hilbert Γ -module, its direct sum in (7.30) becomes a free Hilbert Γ -module due
to Lemma 5.2.7. FEsΓ (M, T , DEL

± ) is a general Hilbert Γ -module because the isomorphism
implies a Hilbert space structure and the space admits a left action representation, induced
from the one on each Hs

Γ (S±L,E(Σt)) for each time t. Proposition 5.2.6 (2) �nally ensures

that FEsΓ (M, T , DEL
± ) becomes a (free) Hilbert Γ -module.
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A similar reasoning, based on Corollary 7.3.2, applies to FEsΓ

(
M, ker

(
DEL
±

))
which

shows Corollary 7.3.4. As in the general setting we can extract several Dirac-wave evolution
operators from Corollary 7.3.4.

De�nition 7.3.5. For a globally hyperbolic manifold M and t1, t2 ∈ T (M) the (Dirac-)
wave evolution operators for positive and negative chirality are the following isomorphisms
of Hilbert Γ -modules

Q(t2, t1) := rest2 ◦ (rest1)−1 : Hs
Γ (S+(Σ1)) → Hs

Γ (S+(Σ2)) ,

Q̃(t2, t1) := rest2 ◦ (rest1)−1 : Hs
Γ (S−(Σ1)) → Hs

Γ (S−(Σ2)) .

FEsΓ (M, ker (D+))

Hs
Γ (S+(Σ1)) Hs

Γ (S+(Σ2))

rest1 rest2

Q(t2, t1)

⊕ ⊕Hs
Γ (S⊕2(Σ1)) = = Hs

Γ (S⊕2(Σ2))

Hs
Γ (S−(Σ1)) Hs

Γ (S−(Σ2))
Q̃(t2, t1)

FEsΓ (M, ker (D−))

rest1 rest2

	

	

Figure 7.5.: Commuting diagrams for de�ning Q(t2, t1) and Q̃(t2, t1) in Γ -setting.

Analogously we can de�ne the evolution operators for the twisted Dirac operators.

De�nition 7.3.6. For a globally hyperbolic manifold M and t1, t2 ∈ T (M) the twisted
(Dirac-)wave evolution operators for positive and negative chirality are the following iso-
morphisms of Hilbert Γ -modules

QEL(t2, t1) := rest2 ◦ (rest1)−1 : Hs
Γ (S+

L,E(Σ1)) → Hs
Γ (S+

L,E(Σ2)) ,

Q̃EL(t2, t1) := rest2 ◦ (rest1)−1 : Hs
Γ (S−L,E(Σ1)) → Hs

Γ (S−L,E(Σ2)) .

The properties of the wave evolution operators in De�nition 7.2.1 and De�nition 7.2.2
transfer to the Γ -case.

Lemma 7.3.7. For any s ∈ R and t, t1, t2, t3 ∈ T (M) the following hold

(1) QEL(t3, t2) ◦QEL(t2, t1) = QEL(t3, t1) ;

(2) QEL(t, t) = 1Hs
Γ (S+

L,E(Σt))
and QEL(t1, t2) = (QEL)−1(t2, t1) ;

(3) Q̃EL(t3, t2) ◦ Q̃EL(t2, t1) = Q̃EL(t3, t1) ;

(4) Q̃EL(t, t) = 1Hs
Γ (S−L,E(Σt))

and Q̃EL(t1, t2) = (Q̃EL)−1(t2, t1) ;
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(5) For any [t1, t2] ⊂ T (M) the operators QEL(t2, t1) and Q̃EL(t2, t1) are unitary for
s = 0;

(6) QEL ∈ FIO0
Γ (Σ1,Σ2; C′1→2; Hom(S+

L,E(Σ1), S+
L,E(Σ2))) and

Q̃EL ∈ FIO0
Γ (Σ1,Σ2; C′1→2; Hom(S+

L,E(Σ1), S+
L,E(Σ2))) as in Theorem 7.2.5.

As before these properties carry over to Q and Q̃ for the untwisted case.

Proof. The claims (1) to (5) follow as in the proof of Lemma 7.2.3. Claim (6) has been
proven in Theorem 7.2.5 for a more general setting. It is left to show that the Dirac-
wave evolution operators are Γ -invariant, i.e. intertwine the Γ action on Hs

Γ (S±L,E(Σ1)) and

Hs
Γ (S±L,E(Σ2)). We just consider the untwisted case for spinors of positive chirality: as the

restriction operator is Γ -invariant and bijective on Hs
Γ (S+

L,E(Σt)) for each t ∈ T (M), (7.33)
implies

L
S+(Σ2)
γ Q(t2, t1)rest1 = L

S+(Σ2)
γ rest2 = rest2L

S+(M)
γ = Q(t2, t1)rest1L

S+(M)
γ

= Q(t2, t1)L
S+(Σ1)
γ rest1

and thus the claim; the other cases follow with the same reasoning such that

L
S+(Σ2)
γ Q(t2, t1) = Q(t2, t1)L

S+(Σ1)
γ ,

L
S−(Σ2)
γ Q̃(t2, t1) = Q̃(t2, t1)L

S−(Σ1)
γ ,

L
S+
L,E(Σ2)
γ QEL(t2, t1) = QEL(t2, t1)L

S+
L,E(Σ1)
γ ,

L
S−L,E(Σ2)
γ Q̃EL(t2, t1) = Q̃EL(t2, t1)L

S−L,E(Σ1)
γ .

(7.37)
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8. Projectors and Spectral �ow in the

Γ-setting

This chapter contains more technical questions concerning the role of projections in von
Neumann algebras, their regularity as a Γ -pseudo-di�erential operator, and to de�ne bound-
ary conditions. As the second major task in this chapter we classify the de�nition of spectral
�ow in Γ -setting and extend the de�nition to the case where the family of operators is not
de�ned on a common domain.

8.1. Projectors and g(a)APS-boundary conditions in the
Γ-setting

In this section we introduce the boundary conditions which we need to show Γ -Fredholmness
for DEL . Moreover, we clarify how the pseudo-di�erential operator property of projectors
for compact manifolds transfer to Galois coverings. To be more precise, we are looking for a
version of Seeley's theorem for complex powers of pseudo-di�erential operators from [See69]
on Galois coverings.

8.1.1. Projections as Γ-pseudo-di�erential operators

The aim of this subsection is a Γ -capable description of spectral projectors as pseudo-
di�erential operators with certain regularity properties. We already know from Propo-
sition 5.3.7 (7) that elliptic and formally self-adjoint Γ -pseudo-di�erential operators of
positive order are essential self-adjoint and their spectral projectors onto any bounded
Borel set in the spectrum are s-smoothing Γ -operators. In particular, the projection onto
the kernel of the operator becomes s-smoothing, too. Lemma 5.3.5 (3) implies that these
spectral projections are Γ -trace class between two Hilbert Γ -modules.

We want to generalise Proposition 5.3.7 (7) to unbounded intervals in R. In order to
do so, we consider an elliptic and self-adjoint operator A ∈ Ψm

Γ ,prop(Σ, E) of order m > 0
which acts between smooth sections of the (Hermitian) Γ -vector bundle E over the (Rie-
mannian) manifold Σ. The characteristic function of such an operator can be de�ned by
means of unbounded functional calculus for self-adjoint operators or the Browder-Garding
Theorem [Bro54, Thm.1]. These approaches have the disadvantage that one can cannot
extract enough analytic informations in order to understand its interaction with other dif-
ferential operators. To bypass this, we rewrite the characteristic function χ on (0,∞) and
(−∞, 0) with the signum-function which in turn can be expressed as quotient x/ |x| if x is
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the variable:

χ>0(x) := χ(0,∞) =
1

2

(
1 +

x

|x|
−χ{0}(x)

)
χ<0(x) := χ(−∞,0) =

1

2

(
1− x

|x|
−χ{0}(x)

)
.

(8.1)

Hence the idea is to replace χ≷0(A) with (8.1) where the variable is replaced with the
operator A. The one in these formulas has to be replaced with the unity operator; the
expression χ{0}(A) already makes sense due to Proposition 5.3.7 (7) and is a s-smoothing
Γ -pseudo-di�erential operator. It is left to show that the expressions

A ◦ |A|−1

and in particular |A|−1 are meaningful. The latter can be rephrased as operator A∗A = A2

to the power (−1/2). If Σ is closed, Seeley's theorem for complex powers states that under
further conditions on A any of its complex powers become meaningful as pseudo-di�erential
operator and their principal symbols can be calculated from the one of A. We want some-
thing similar for the Γ -setting, thus our aim is a Γ -invariant pendent of Seeley's theorem
for complex powers of elliptic pseudo-di�erential operators.

Fortunately, such a result is known for manifolds of bounded geometry. As Γ -manifolds are
special cases of these type of manifolds, we hope that this result transfers to our situation.
We need to take a little detour through some theoretic aspects of pseudo-di�erential opera-
tors on manifolds of bounded geometry. We give some details and clarify its pendent in the
Γ -setting. The interested reader is referred to [Kor00], [Shu92] and [Kor91] for more details.

Let Σ be a manifold of bounded geometry and E → Σ a vector bundle of bounded ge-
ometry as described in Section 3.3. An element B ∈ BΨm

prop(Σ, E) is a pseudo-di�erential
operator of order m ∈ R with uniformly bounded symbol if the following requirements are
satis�ed:

(a) In any coordinate system the operator is of the form B = Op(a) +R where

1.

(Op(a)u)(x) :=

∫∫
e
i

〈
x−y
∣∣ ξ〉

a(x, ξ)u(y) dy�ξ

for any u ∈ C∞c (B̊n(0)), such that a(x, ξ) ∈ C∞(B̊n(0) × Rn) is a complete
symbol and there exists a constant Cα,β > 0 with∣∣∣∂αx ∂βξ a(x, ξ)

∣∣∣ ≤ Cα,β(1 + |ξ|)m−|β|

for x ∈ B̊n(0), ξ ∈ Rn and α, β ∈ Nn0 .
2. R is a smoothing and uniformly bounded operator on B̊n(0).

(b) (c-locality): there exists a constant c > 0 such that the Schwartz kernel KB of B
satis�es KB(x, y) = 0 if the geodesic distance satis�es ρ(x, y) > c.

(c) For any ε > 0 all covariant derivatives of the Schwartz kernel are uniformly bounded
on (Σ× Σ) \ Uε where Uε is an ε-neighbourhood of the diagonal in Σ.
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If the complete symbol admits a uniformly asymptotic expansion of the form (4.12) in
any coordinate system, the related pseudo-di�erential operator is classical. The operators
R in (a) has a complete uniformly bounded symbol and maps between C∞c (M,E) and
C∞(M,E); moreover, it is continuous mapping between any Sobolev spaces Hs(Σ, E)
of bounded geometry. We denote the class of such operators with BΨ−∞(Σ, E). Any
uniformly bounded pseudo-di�erential operator of orderm ∈ R can be represented as a sum
of uniformly bounded pseudo-di�erential operators where one is properly supported with
the same order and the other is smoothing: for B ∈ BΨm(Σ, E) exists a B′ ∈ BΨm

prop(Σ, E)
and a R ∈ BΨ−∞(Σ, E) such that

B = B′ +R ;

if B′ is classical, B becomes also classical.

From now on, let B ∈ BΨm
prop,cl(Σ, E) be a uniformly elliptic and positive operator with

scalar positive de�nite principal symbol σm(B)(p, ξ) which lies inside a sector. Follow-
ing [Kor00], we construct a parametrix C(λ) for the operator (λ−B) for λ ∈ C \R+ with
principal symbol a(p, ξ;λ) := (λ− σm(B)) as for these values of λ the sum (λ−B) stays
elliptic. It is shown that

(λ−B)C(λ) = 1 +R(λ)

with

BΨ−∞(Σ, E) 3 R(λ) : ∃C > 0 with ‖R(λ)‖B(Hs(Σ,E),Ht(Σ,E)) ≤
C

1 + |λ|
BΨ−m(Σ, E) 3 C(λ) : ∃C > 0 with ‖C(λ)‖B(Hs(Σ,E),Hs+αm(Σ,E)) ≤ C(1 + |λ|)α−1

hold for λ ∈ Λθ := {λ ∈ C | |arg(λ)| > θ} with θ ∈ (0,π/2), s, t ∈ R and α ∈ (0, 1). This is
a sector in the complex plane with vertex at 0 ∈ C. W.l.o.g. we assume that Λθ does not
contain any point λ∗ such that the principal symbol a(p, ξ;λ∗) is vanishing for all ξ 6= 0.
The construction of the parametrix works as usual by inverting the principal symbol in the
asymptotic expansion:

b−m(p, ξ;λ) :=
1

a(p, ξ;λ)
=

1

λ− σm(B)
. (8.2)

This value de�nes the principal symbol σ−m(C(λ))(p, ξ) for C(λ) while the subprincipal
symbols b−m+l for l ∈ N0 are de�ned recursively via a transport equation. It's asymptotic
summation yields a local parametrix and by gluing all coordinate patches with the partition
of unity from Lemma 3.3.2, it gives a global parametrix. W.l.o.g. we assume that Λθ does
not intersect with the spectrum σ(B) of B; otherwise we shrink Λθ to a smaller subset such
that this condition holds. This implies for Λθ 6= ∅ that the resolvent set ρ(B) is not void
and Λθ ⊂ ρ(B). Then (λ − B) becomes invertible as unbounded operator with resolvent
R(B, λ) = (λ − B) which is bounded on Hs(Σ, E) due to the fact that the non-empty
resolvent set of B implies closedness of B. Thus, for any λ ∈ Λθ,r := Λθ ∩{λ ∈ C | r < |λ|}
with r > 0 the resolvent can be expressed by the parametrix: applying C(λ) from the right
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gives

1 = R(B, λ)(λ−B) ⇒ C(λ) = R(B, λ) ◦ (1 +R(λ)) = R(B, λ) +R(B, λ) ◦R(λ)

⇔ R(B, λ) = C(λ)− R(B, λ) ◦R(λ) .

Since smoothing operators extend to continuous operators from any Sobolev space to any
other Sobolev space and the resolvent is bounded on any Sobolev space, the composition
on the right-hand side is again a smoothing operator and �nally R(B, λ) ∈ BΨ−m(Σ, E).
In addition, the following norm estimates hold:

∃C(s) > 0 : ‖R(B, λ)‖B(Hs(Σ,E),Hs(Σ,E)) ≤
C(s)

1 + |λ|
,

∃C(s) > 0 : ‖R(B, λ)‖B(Hs(Σ,E),Hs+m(Σ,E)) ≤ C(s)

for any s ∈ R and λ ∈ Λθ,r with r > 0 and θ ∈ (0,π/2). One observes that B is a
sectorial operator according to De�nition 2.1.5 with sector Sθ such that Λθ = C \ Sθ (see
also footnote 6 on page 23).

C

σ(B)

θ
Λθ

(a)

C

σ(B)

θ

Λθ,r

r

(b)

Figure 8.1.: Sector Λθ in (a) and the keyhole-sector Λθ,r in (b).

Now we are allowed to use the holomorphic functional calculus for sectorial operators with
(2.10): let f be a function, which can be extended to an entire function such that for any
η ∈ R the function R+ 3 x 7→ f(x + iy) is a Schwartz function with uniformly bounded
seminorms on compact subsets in R. f(B) can be expressed as Cauchy integral

f(B) :=
1

2πi

∫
γ
f(λ)(λ−B)−1 dλ =

1

2πi

∫
γ
f(λ)R(B, λ) dλ (8.3)

where γ is a Hankel-like contour (2.12) which acts as boundary curve of the keyhole-sector
Λθ,r in Fig. 8.1 (b). This allows us for example to consider the functions f(B) = e−tB for
t ∈ R+ because the resolvent estimates and the closedness of B imply that B is a generator
of a parabolic semigroup. According to [Kor00, Prop.1] this can even be extended to a
holomorphic semigroup. Another examples of our interest are complex powers with z ∈ C
which can be either de�ned directly by setting f(λ) = λz with the branch chosen, such
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that λz = ez log λ for λ > 0, or with the parabolic semigroup via

Bz :=
1

Γ(−z)

∫ ∞
0

x−(z+1)e−xB dx (8.4)

for <e {z} < 0 and the Gamma function Γ(−z) which is holomorphic for complex arguments
with positive real part. The semigroup property then carries over to the case with complex
powers: let z, w ∈ C have negative real parts. One can calculate the composition for
<e {z + w} < 0 as follows:

Bw ◦Bz =
1

Γ(−z)Γ(−w)

∫ ∞
x=0

∫ ∞
y=0

x−(w+1)y−(z+1)e−xBe−yB dy dx

=
1

Γ(−z)Γ(−w)

∫ ∞
x=0

∫ ∞
y=0

x−(w+1)y−(z+1)e−(x+y)B dy dx

=
1

Γ(−z)Γ(−w)

∫ ∞
x=0

x−(w+1)

∫ ∞
σ=x

(σ − x)−(z+1)e−σB dσ dx

=
1

Γ(−z)Γ(−w)

∫ 1

%=0
%−(w+1)(1− %)−(z+1)

∫ ∞
σ=0

σ−(z+w+1)e−σB dσ d%

=
1

Γ(−z)Γ(−w)

∫ 1

%=0
%−(w+1)(1− %)−(z+1) d%

∫ ∞
σ=0

σ−(z+w+1)e−σB dσ

=
Γ(−w)Γ(−z)
Γ(−z)Γ(−w)

1

Γ(−(z + w))

∫ ∞
σ=0

σ−(z+w+1)e−σB dσ = Bz+w . (8.5)

We used that e−tB is a semigroup and we have substituted σ = (x+ y) as well as x = σ%
in the third and fourth step with % ∈ [0, 1]. We used both depictions of the Beta functions
in terms of its de�ning integral and as combination of Gamma functions. The semigroup
property (8.5) can be extended to powers with positive real part: let <e {z} > 0; we choose
a (−k) ∈ N0 such that <e {z + k} < 0. Hence B−k and Bz+k are de�ned and moreover its
composition such that we can de�ne complex powers of B for any z ∈ C with positive real
part to be

Bz := Bz+k ◦B−k . (8.6)

It is clear from its de�nitions in (8.4) and (8.6) that Bz is a uniformly bounded pseudo-
di�erential operator. The principal symbol of Bz for <e {z} < 0 is de�ned by the same
integral in (8.3) where the resolvent is replaced with (σm(B)(p, ξ)− λ)−1:

σm<e{z}(B
z)(p, ξ) :=

1

2πi

∫
γ

λz

λ− σm(B)(p, ξ)
dλ = (σm(B)(p, ξ))z . (8.7)

The second equality follows with a contour integration argument: for any, but �xed p ∈ Σ,
ξ ∈ Ṫ ∗Σ we choose a ρ ∈ (r,∞). A parametrisation of the path γ is given by (2.12). We cut
the two rays of the path at length ρ, de�ning the path γρ which satis�es limρ→∞ γρ = γ.
We close γp to a counterclockwise contour Γρ with an arc of radius ρ inside the resolvent
set: Γρ = γρ ∪ arcρ. By assumption, the scalar principal symbol of B lies on the positive
half-line in the complex plane and thus outside the closed contour Γp. Since B is assumed
to be a positive operator, its spectrum lies in [0,∞) which is not intersected by the closed
contour for any value ρ. Moreover, the branch cut of λz at λ = 0 is bypassed by the closed
contour such that λ 7→ λz(σm(B)(p, ξ) − λ)−1 is holomorphic in the domain, rimmed by



8.1. PROJECTORS AND G(A)APS-BOUNDARY CONDITIONS 157

Γρ, for all ρ > 0, <e {z} < 0 and p ∈ M , ξ ∈ Ṫ ∗pΣ. Applying the Cauchy integral formula
yields∫

γρ

λz

λ− σm(B)(p, ξ)
dλ =

∫
Γρ

λz

λ− σm(B)(p, ξ)
dλ−

∫
arcρ

λz

σm(B)(p, ξ)− λ
dλ

= 2πiσzm(B)(p, ξ)−
∫
arcρ

λz

λ− σm(B)(p, ξ)
dλ .

C

σ(B)

θ

Λθ,r

r

ρ

= γρ
= arcρ

x
σm(B)(p, ξ)

Figure 8.2.: Position of σm(B)(p, ξ) compared to the closed path Γρ.

The arc-contribution can be estimated:∫
arcρ

λz

λ− σm(B)(p, ξ)
dλ = i

∫ 2π−θ

α=θ

ρz+1e(1+z)iα

ρeiα − σm(B)(p, ξ)
dα

= i

∫ 2π−θ

α=θ

ρz+1e(1+<e{z})iαe−=m{z}α

ρeiα − σm(B)(p, ξ)
dα

⇒

∣∣∣∣∣
∫
arcρ

λz

λ− σm(B)(p, ξ)
dλ

∣∣∣∣∣ ≤
∫ 2π−θ

α=θ

ρ<e{z}+1e−=m{z}α√
(σm(B)(p, ξ)− ρ cos(α))2 + ρ2 sin2(α)

dα

≤
∫ 2π−θ

α=θ

C(θ, z)ρ<e{z}+1√
σ2
m(B)(p, ξ) + ρ2 − 2ρσm(B)(p, ξ) cos(α)

dα

where C(θ, z) is the maximum of the exponential function on the domain of integration.
If we choose ρ > σm(B)(p, ξ) for �xed p, ξ, we observe

σ2
m(B)(p, ξ) + ρ2 − 2ρσm(B)(p, ξ) cos(α) ≥ σ2

m(B)(p, ξ) + ρ2 − 2ρσm(B)(p, ξ)

= (ρ− σm(B)(p, ξ))2 > 0

and thus

⇔
√
σ2
m(B)(p, ξ) + ρ2 − 2ρσm(B)(p, ξ) cos(α) ≥ ρ− σm(B)(p, ξ) > 0

⇔ (σ2
m(B)(p, ξ) + ρ2 − 2ρσm(B)(p, ξ) cos(α))−

1
2 ≤ (ρ− σm(B)(p, ξ))−1 .
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Hence the arc-contribution vanishes for ρ→ +∞ for <e {z} < 0:∣∣∣∣∣
∫
arcρ

λz

λ− σm(B)(p, ξ)
dλ

∣∣∣∣∣ ≤ C(θ)

∫ 2π−θ

α=θ

ρ<e{z}+1

ρ− σm(B)(p, ξ)
dα

= C(θ)2(π− θ) ρ<e{z}+1

ρ− σm(B)(p, ξ)

ρ→∞−→ 0 .

So we get with {γp} as compact exhaustion of γ

1

2πi

∫
γ

λz

λ− σm(B)(p, ξ)
dλ = lim

ρ→∞

1

2πi

∫
γρ

λz

λ− σm(B)(p, ξ)
dλ = σzm(B)(p, ξ)

and so the second equality in (8.7). The factorising property of the principal symbol and
the semigroup-property (8.6) of complex powers allows to extend the equality to all z ∈ C.
We sum up the results with all necessary details.

Proposition 8.1.1 (cf. Proposition 1 in [Kor00]). Let B ∈ BΨm
prop,cl(Σ, E) be a posi-

tive and uniformly elliptic operator with scalar positive de�nite principal symbol a(p, ξ) :=
σm(B)(p, ξ) such that (a(p, ξ) − λ) is not vanishing for λ in a sector Λθ ⊂ ρ(B) for
θ ∈ (0,π/2) and ξ ∈ ṪpΣ. Then the following holds:

(1) there exists a value r > 0 such that for λ ∈ Λθ,r ⊂ C the operator B becomes
sectorial and the resolvent satis�es R(B, λ) ∈ BΨ−m(Σ, E) with principal symbol
(8.2); moreover R(B, λ) becomes a bounded operator from Hs(Σ, E) to Hs+m(Σ, E)
for any s ∈ R;

(2) B generates a holomorphic semigroup e−zB for <e {z} > 0 in L2(Σ, E);

(3) Bz ∈ BΨm<e{z}(Σ, E) for all z ∈ C with principal symbol (8.7).

The last assertion is an equivalent of Seeley's theorem for complex powers in the setting
of manifolds and vector bundles with bounded geometry.

For the purpose of this detour we specify Proposition 8.1.1 to such manifolds of bounded
geometry which come from a Galois covering of a compact manifold. We have already
pointed out in Remarks 5.1.6 (2) that a Galois covering with compact base can be viewed
as manifold of bounded geometry. The role of the vector bundle of bounded geometry E
reduces to a Γ -vector bundle. Any pseudo-di�erential operator, which acts between sec-
tions of a Γ -vector bundles, can be considered as uniformly bounded pseudo-di�erential
operator, acting between vector bundles of bounded geometry. Elements in Ψ∗Γ ,prop(Σ, E)

commute with the left representation action LEγ for all γ ∈ Γ . They correspond to uniformly
bounded pseudo-di�erential operators which commute with LEγ . The c-locality property is
implied by Γ -invariance and properly supportness. The subordinated partition of unity is
also uniformly bounded due to Γ -invariance such that the Sobolev spaces of bounded geom-
etry transfer to the Γ -Sobolev spaces in the Γ -setting. The space BΨ−∞(Σ, E) corresponds
to s-smoothing operators SΨ−∞Γ (Σ, E) such that BΨm

(cl)(Σ, E) corresponds to (classical)
s-regular operators SΨm

Γ ,(cl)(Σ, E).
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Σ has bounded geometry → Σ Γ -manifold
E has bounded geometry → E Γ -vector bundle

Hs(Σ, E) → Hs
Γ (Σ, E)

BΨprop(Σ, E) → ΨΓ ,prop(Σ, E)

BΨ−∞(Σ, E) → SΨ−∞Γ (Σ, E)

BΨm(Σ, E) → SΨm
Γ (Σ, E)

Table 8.1.: Correspondences between quantities in the bounded geometry setting to the
one in the Γ -setting.

After clarifying all correspondences we can extract from Proposition 8.1.1.

Corollary 8.1.2. Let B ∈ Ψm
Γ ,prop,cl(Σ, E) be an elliptic and positive operator with scalar

positive de�nite principal symbol a(p, ξ) := σm(B)(p, ξ) such that (a(p, ξ)− λ) is not van-
ishing for λ in a sector Λθ ⊂ ρ(B) for θ ∈ (0,π/2) and ξ ∈ ṪpΣ. Then the following
holds:

(1) there exists a value r > 0 such that for λ ∈ Λθ,r ⊂ C the operator B becomes
sectorial and the resolvent satis�es R(B, λ) ∈ SΨ−mΓ (M,E) with principal symbol
(8.2); moreover R(B, λ) becomes a bounded operator from Hs

Γ (Σ, E) to Hs+m
Γ (M,E)

for any s ∈ R;

(2) B generates a holomorphic semigroup e−zB for <e {z} > 0 in L2
Γ (Σ, E);

(3) Bz ∈ SΨ
m<e{z}
Γ (Σ, E) for all z ∈ C with principal symbol (8.7).

The third point in this result is thereby an analogue of Seeley's theorem for complex
powers in the setting of Galois coverings. It is only left to show that the resolvent commutes
with the left action representation if B does: the commuting LEγB = BLEγ implies

(λ−B)LEγ = LEγ (λ−B)

for all λ ∈ C and any γ ∈ Γ . For λ ∈ ρ(B) we can conclude from

(λ−B)−1LEγ = (λ−B)−1LEγ (λ−B)(λ−B)−1 = (λ−B)−1(λ−B)LEγ (λ−B)−1

= LEγ (λ−B)−1

the commuting of the resolvent with the left action representation. Thus, f(B) in (8.3)
commutes with LEΓ for all γ and allowable functions f .

We now come back to the (essentially) self-adjoint and elliptic operator A ∈ Ψm
Γ ,prop,cl(Σ, E),

m > 0; the operator B := A∗ ◦A = A2 ∈ Ψ2m
Γ ,prop,cl(Σ, E) is again self-adjoint and its spec-

trum lies on the positive half-line. Hence B becomes positive and altogether sectorial.
The ellipticity of B is also inherited from the ellipticity of A and the principal symbol is
positive de�nite if the principal symbol of A is positive de�nite. Under this assumptions,
the expression |A|−1 becomes well-de�ned as s-regular pseudo-di�erential operator of order
(−m) and �nally one can consider projectors as s-regular Γ -pseudo-di�erential operators.
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Corollary 8.1.3. Let A ∈ Ψm
Γ ,prop,cl(M,E) be elliptic and (essentially) self-adjoint with

positive order m > 0 such that A2 has a positive de�nite principal symbol; the spectral
projections onto eigenspaces of (the closure of) A in the spectral range (0,∞)

P>0(A) := P+(A) := χ(0,∞)(A) =
1

2

(
1 +A ◦ |A|−1 − P0(A)

)
(8.8)

and in the spectral range (−∞, 0)

P<0(A) := P−(A) := χ(−∞,0)(A) =
1

2

(
1 −A ◦ |A|−1 − P0(A)

)
(8.9)

are well-de�ned and satisfy P±(A) ∈ SΨ0
Γ (Σ, E) with principal symbols

σ0(P±)(p, ξ) =
1

2

(
1± σm(A)(p, ξ)σ−m

(
|A|−1

)
(p, ξ)

)
(8.10)

for all p ∈ Σ and ξ ∈ Ṫ ∗Σ.

The composition A ◦ |A|−1 is well-de�ned due to properly supportness of A and is an
element in SΨ0

Γ (Σ, E).

Remarks 8.1.4.

(i) One has P± = p± + r± where p± ∈ Ψ0
Γ ,prop,cl(Σ, E) and r± is s-smoothing. As the

principal symbol is de�ned modulo smoothing terms, one has σm(P±) = σm(p±).

(ii) P≥0(A) := χ[0,∞)(A) and P≤(A) := χ(−∞,0](A) di�er from P+(A) respectively
P−(A) in P0 := χ{0} which is s-smoothing. Hence we also have P≥0(A), P≤0(A) ∈
SΨ0

Γ (Σ, E) with principal symbols (8.10).

(iii) Since A has been chosen to be self-adjoint, the complex power z in the construction
of Bz does not depend on the angle of the rays in the Hankel-like contour. The
same treatment could be applied to non-self-adjoint operators A since the self-adjoint
operator A∗A occurs in this framework, but now each complex power z depends on
the choice of the ray by �xing an angle via arg(z). This observation has been used
in [BS20] for the index theorem with compact Cauchy boundaries, but a-priori non-
self-adjoint Dirac operators.

8.1.2. g(a)APS-boundary conditions

In order to introduce boundary conditions, we need some kind of product structure near
the boundary. The collar neighbourhood theorem states that the manifold is di�eomorphic
to a product structure near each Cauchy boundary. The metric near the boundary dM =
Σ1 tΣ2 can be deformed in such a way that it becomes ultra-static: g = −dt⊗2 + gtj near
Σj for j ∈ {1, 2}; and each mean curvature Htj of the spacelike boundary hypersurfaces is
vanishing identically. Both Dirac operators are then given by

DEL
± |Σj := (β⊗ 1EL) (∂t ∓ iAj) = −(β⊗ 1EL) (−∂t ± iAj) (8.11)

along Σj with past-directed timelike vector ν = −∂t, β = c (ν) and Aj = Atj where
we supressed the superscript for the twisting bundle. Recalling Remarks 6.2.5 (iii), the
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hypersurface Dirac operators A1 and A2 are essentially self-adjoint and the spectrum of
their unique self-adjoint extensions, still denoted as A1 and A2, decomposes disjointly into
a point and continuous spectrum. The eigenvalues with their multiplicities in the point
spectrum are real and their eigenspaces are orthogonal to each other, but these spaces have
in general in�nitely many dimensions (multiplicites) and the point spectrum does not need
to be discrete as for example on closed manifolds. The continuous spectrum is real-valued
as well and their eigensections are smooth, but not square-integrable.

Recapitulating our general assumptions, the (twisted) hypersurface Dirac operators At
along each slice are Γ -invariant di�erential operators of �rst order: At ∈ Diff1

Γ (S±L,E(Σt))
for each t ∈ T (M). Hence they can be viewed as properly supported Γ -invariant pseudo-
di�erential operators of order 1. Moreover, they are elliptic and essentially self-adjoint
such that A2

t is an elliptic, positive and properly supported Γ -invariant pseudo-di�erential
operator for each t ∈ T (M). In order to apply Corollary 8.1.3, we need to analyse the prin-
cipal symbol of At which we calculate for the untwisted Dirac operator: �x any t ∈ T (M);
let w ∈ Σt and Φ is a smooth function on Σt such that ρ := dΦ|w. We lift ρ to M where
it becomes a one form ϑ, such that ϑ|Σt = ρ. We choose an orthonormal tangent frame
{ei}ni=1 on Σt which we also lift to a spacelike orthonormal tangent frame inM . The action
of At of a spinor �eld u ∈ C∞(S±(M)) becomes

n∑
i=1

c (ei)∇eiu = iβ

n∑
i=1

ct (ei)∇eiu = iβAtu

which implies

iβσ1(At)(w, ϑ)u =
n∑
i=1

σ1(c (ei)∇ei)(w, ϑ)u = i

n∑
i=1

ϑ(ei)c (ei)u = c
(
ρ]
)
u .

Restricted to the hypersurface, we gain

iβσ1(At)(w, ρ) = iβσ1(At)|Σt(w, ρ) = ±ict
(
ρ]
)

and �nally

σ1(At)(w, ρ) = ∓βct
(
ρ]
)

(8.12)

where the upper sign is for spinors with positive chirality and the lower sign for spinors
with negative chirality; the sharp isomorphism is taken with respect to the Riemannian
metric gt. The principal symbol of A2

t becomes

σ2(A∗t ◦At)(w, ρ) = σ2(A2
t )(w, ρ) = βct

(
ρ]
)
βct

(
ρ]
)

= gt(ρ], ρ])1S(Σt) (8.13)

which is a scalar times identity and positive de�nite because the metric does. Hence
Corollary 8.1.3 and Proposition 5.3.7 (7) imply that PI(t) := χI(At) is well-de�ned for all
t ∈ T (M) and all measurable intervals I ⊂ R, and in particular that

P±(At) :=
1

2

(
1 ±At ◦ |At|−1 − P0(At)

)
∈ SΨ0

Γ (S±(Σ)) ; (8.14)
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if I is bounded, we have PI(t) ∈ SΨ−∞Γ (S±(Σt)), e.g. P0(t) := Pker(At). (8.7), (8.10), (8.12)
and (8.13) then imply

σ−1

(
|At|−1

)
(w, ρ) = (σ2(A∗tAt)(w, ρ))−

1
2 =

(
gt|w(ρ], ρ])

)− 1
2

=
1

‖ρ‖gt(w)

1S(Σt) ;

and thus

σ0(P≷0(t))(w, ρ) = σ0(P±(t))(w, ρ) =
1

2

(
1± σ1(At)(w, ρ)σ−1

(
|At|−1

)
(w, ρ)

)
=

1

2

(
1∓ (‖ρ‖gt(w))

−1βct

(
ρ]
))

.

(8.15)

(8.14) carries over to the twisted case such that

PEL≷0 (t) = PEL± (t) =
1

2

(
1 ±AELt ◦

∣∣∣AELt ∣∣∣−1 − P
ker
(
A
EL
t

)) ∈ SΨ0
Γ (S±L,E(Σt)) . (8.16)

Because the principal symbol of a twisted covariant derivative becomes the product of
the principal symbols times the tensor product of the identities for each bundle, the
principal symbol of the twisted hypersurface Dirac operator becomes σ1(AELt )(w, ρ) =
σ1(At)(w, ρ)⊗ 1EL|Σt such that its principal symbol becomes ∓(βct

(
ρ]
)
⊗ 1EL|Σt ) and

σ2((AELt )∗AELt )(w, ρ) = (βct

(
ρ]
)
⊗ 1EL|Σt ) ◦ (βct

(
ρ]
)
⊗ 1EL|Σt )

= (βct

(
ρ]
)
βct

(
ρ]
)
⊗ 1EL|Σt ) = gt|w(ρ], ρ])1SL,E(Σt) .

With the same arguments as for the untwisted hypersurface Dirac operator we gain

σ−1

(∣∣∣AELt ∣∣∣−1
)

(w, ρ) =
(
σ2((AELt )∗AELt )(w, ρ)

)− 1
2

=
1

‖ρ‖gt(w)

1SL,E(Σt) .

One observes that the projectors also factorise with respect to the tensor product:

σ0

(
PEL± (t)

)
(w, ρ) =

1

2

(
1SL,E(Σt) ± σ−1

(∣∣∣AELt ∣∣∣−1
)

(w, ρ) ◦ σ1(AELt )(w, ρ)

)
=

1

2

(
1SL,E(Σt) ∓ (‖ρ‖gt(w))

−1(βct

(
ρ]
)
⊗ 1EL|Σt )

)
= σ0 (P±(t)) (w, ρ)⊗ 1EL|Σt .

(8.17)

If we cut the spectral range at another point a ∈ R than zero, we will also write

P>a(t) := P(a,∞)(t) = χ(a,∞)(At) and P<a(t) := P(−∞,a)(t) = χ(−∞,a)(At)

P≥a(t) := P>a(t) + P{a}(t) and P≤a(t) := P<a(t) + P{a}(t) .

These projectors are also s-regular Γ -pseudo-di�erential operators: depending on whether
the spectral cutpoint a ∈ R is bigger or smaller then 0, they can be related to PQ0: for a
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�xed t ∈ T (M) the di�erences

P≤0(t)− P≤a(t) =


P(a,0](t) a < 0

0 for a = 0
−P(0,a](t) a > 0

(8.18)

and

P≥0(t)− P≥a(t) =


P[a,0)(t) a < 0

0 for a = 0
−P[0,a)(t) a > 0

(8.19)

as well as all other possibilities via

P≤a(t)− P<a(t) = P{a}(t) = P≥a(t)− P>a(t) . (8.20)

The di�erences are projectors with bounded intervals in the spectrum of At wherefore they
are s-smoothing. Consequently,

P≷a(t), P≥a(t), P≤a(t) ∈ SΨ0
Γ (S±(Σt)) . (8.21)

Knowing this, one can easily see that the Kato dual P⊥I (t) := 1S±(Σt) − PI(t) = PI{(t) is
s-regular of order 0 for all I ⊂ R and all t ∈ T (M). All these properties of course transfer
to any Γ -invariant operator A as in Corollary 8.1.3:

P≷b(A), P≥b(A), P≤b(A), PI(A) ∈ SΨ0
Γ (Σ, E) (8.22)

for all b ∈ R and unbounded I ⊂ R. After clarifying these details, we are able to intro-
duce the boundary conditions of our interest. The Atiyah-Patodi-Singer (APS) boundary
conditions are de�ned as follows:

P[0,∞)(t1)(u|Σ1) = 0

P(−∞,0](t2)(u|Σ2) = 0

for positive chirality
and

P(−∞,0)(t1)(u|Σ1) = 0

P(0,∞)(t2)(u|Σ2) = 0

for negative chirality
. (8.23)

Another set of boundary conditions are the anti Atiyah-Patodi-Singer (aAPS or anti-APS)
boundary conditions which are orthogonal to the APS boundary conditions:

P(−∞,0)(t1)(u|Σ1) = 0

P(0,∞)(t2)(u|Σ2) = 0

for positive chirality
and

P[0,∞)(t1)(u|Σ1) = 0

P(−∞,0](t2)(u|Σ2) = 0

for negative chirality
. (8.24)

The boundary conditions for the negative chirality are chosen to be the adjoint (a)APS-
boundary conditions for positive chirality because D− = −D†+ by Corollary 6.2.4. Thus,
they are de�ned by the hypersurface boundary operator of D−. Since D+ acts with Aj
along the hypersurface, we need to take (−Aj) at the boundary Σj . Following the general
treatment in [BB11, Sec.7.2] and the concrete construction in [Shi, Sec.4.14], the adjoint
boundary condition of PI(Aj)u|Σj = 0 becomes with χI(−At) = χ−I(At) and (−I) :=
{−x |x ∈ I}

0 = P−I{(−Aj)u|Σj = PI{(Aj)u|Σj
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where I ⊂ R is any Borel set in the spectrum of Aj . This is based on the observation
that the involution β (see β2 = 1S(M)) anti-commutes with At for each slice such that
PI(At)β = βPI(−At) = βP−I(At). The complement follows from the de�nition of adjoint
boundary conditions as an orthogonality relation. Hence the adjoint boundary conditions
for positive chirality are indeed the orthogonal boundary conditions.

All introduced boundary conditions induce an orthogonal splitting of L2
Γ -spaces. We de-

note the range of the projectors on L2
Γ -spaces by L

2
Γ ,I(S±L,E(Σj)) = PI(tj)[L

2
Γ (S±L,E(Σj))] =:

ran (PI(tj)), then we can decompose as follows:

L2
Γ (S+

L,E(Σ1)) = L2
Γ ,[0,∞)(S+

L,E(Σ1))⊕ L2
Γ ,(−∞,0)(S+

L,E(Σ1))

L2
Γ (S+

L,E(Σ2)) = L2
Γ ,(0,∞)(S+

L,E(Σ2))⊕ L2
Γ ,(−∞,0](S+

L,E(Σ2))

L2
Γ (S−L,E(Σ1)) = L2

Γ ,[0,∞)(S−L,E(Σ1))⊕ L2
Γ ,(−∞,0)(S−L,E(Σ1))

L2
Γ (S−L,E(Σ2)) = L2

Γ ,(0,∞)(S−L,E(Σ2))⊕ L2
Γ ,(−∞,0](S−L,E(Σ2))

. (8.25)

The choice of the cut in the spectrum around zero is somehow arbitrary. In order to relax
this choice one introduces generalised boundary conditions: let a1, a2 ∈ R; the generalised
Atiyah-Patodi-Singer (gAPS) boundary conditions are de�ned by

P[a1,∞)(t1)(u|Σ1) = 0

P(−∞,a2](t2)(u|Σ2) = 0

for positive chirality
and

P(−∞,a1)(t1)(u|Σ1) = 0

P(a2,∞)(t2)(u|Σ2) = 0

for negative chirality
. (8.26)

Another set of boundary conditions is given by the generalised anti-Atiyah-Patodi-Singer
(gaAPS) boundary conditions:

P(−∞,a1)(t1)(u|Σ1) = 0

P(a2,∞)(t2)(u|Σ2) = 0

for positive chirality
and

P[a1,∞)(t1)(u|Σ1) = 0

P(−∞,a2](t2)(u|Σ2) = 0

for negative chirality
, (8.27)

cf. [BH18, Sec.4.2]. Since our projectors are orthogonal, we can introduce similar L2
Γ -

orthogonal splittings:

L2
Γ (S+

L,E(Σ1)) = L2
Γ ,[a1,∞)(S+

L,E(Σ1))⊕ L2
Γ ,(−∞,a1)(S+

L,E(Σ1))

L2
Γ (S+

L,E(Σ2)) = L2
Γ ,(a2,∞)(S+

L,E(Σ2))⊕ L2
Γ ,(−∞,a2](S+

L,E(Σ2))

L2
Γ (S−L,E(Σ1)) = L2

Γ ,[a1,∞)(S−L,E(Σ1))⊕ L2
Γ ,(−∞,a1)(S−L,E(Σ1))

L2
Γ (S−L,E(Σ2)) = L2

Γ ,(a2,∞)(S−L,E(Σ2))⊕ L2
Γ ,(−∞,a2](S−L,E(Σ2))

. (8.28)

Because of ran (PI(t)) = ker (1 − PI(t)), all subspaces in (8.28) are closed for all a1, a2.
Since PI(t) is s-regular for all I ⊂ R, it is a Γ -morphism on L2

Γ -spaces in regards to
Proposition 5.3.7 (4) such that all the ranges and hence all subspaces in the orthogonal
splittings are projective Hilbert Γ -modules. In particular, we can show that these closed
subspaces are free Hilbert Γ -modules.

Lemma 8.1.5. Let I ⊂ R and E → Σ the Γ -vector bundle over the Γ -manifold Σ with
compact base ΣΓ , then there exists a unitary isomorphism such that

L2
Γ ,I(E) ∼= `2(Γ)⊗ L2

I(EΓ ) .



8.1. PROJECTORS AND G(A)APS-BOUNDARY CONDITIONS 165

Proof. We already noticed that L2
Γ ,I(E) are closed and Γ -invariant subsets of the free

Hilbert Γ -module L2
Γ (E) and are therefore unitarily related to a closed Γ -invariant subset

of `2(Γ)⊗ L2(EΓ ); hence they are projective Hilbert Γ -modules. In order to show that all
L2
Γ ,I are free Hilbert Γ -modules, we recall the isomorphism (5.43) which we denote with J .

We want to show that the restriction of J to L2
Γ ,I(E) for any, but �xed interval I is an

isomorphism with range `2(Γ)⊗ L2
I(EΓ ).

Let v ∈ L2
Γ ,I(E); the action of J on v is

J v =
∑
γ∈Γ

δγ ⊗ LE−γv|F

with F as fundamental domain of Σ. We denote with PI : L2
Γ (E)→ L2

Γ ,I(E) the Γ -invariant
spectral projection on the level of Γ -modules and PI : L2(E|F ) → L2

I(E|F ) the spectral
projection on the level of Hilbert spaces over the base manifold. PIv = v implies that

J v = J (PIv) =
∑
γ∈Γ

δγ ⊗ LE−γ(PIv)|F
(∗)
=
∑
γ∈Γ

δγ ⊗ PI(LE−γ(v)|F ) = (1 ⊗ PI)J v

where we used in (∗), that PI commutes with the left action representation and with the
restriction to the fundamental domain. We observe that J v ∈ `2(Γ) ⊗ L2

I(E|F ) and thus
J (L2

Γ ,I(E)) ⊂ `2(Γ) ⊗ L2
I(E|F ). As F is dense in ΣΓ , we moreover have J (L2

Γ ,I(E)) ⊂
`2(Γ)⊗ L2

I(EΓ ).

Let w ∈ `2(Γ) ⊗ L2
I(EΓ ). The unitary isomorphism implies that there exists a unique

u ∈ L2
Γ (E) such that w = J u. On the other hand we have (1 ⊗ PI)w = w and herewith

w = (1 ⊗ PI)w = (1 ⊗ PI)J u =
∑
γ∈Γ

δγ ⊗ PI(LE−γ(u)|F )
(∗∗)
=
∑
γ∈Γ

δγ ⊗ LE−γ(PIu)|F

where in (∗∗) we can argue as for (∗). If we take the di�erence with w on both sides and
apply the inner product with a basis element (δg ⊗ ei) of `2(Γ) ⊗ L2

I(EΓ ) for g ∈ Γ and
ei ∈ L2

I(EΓ ), we get

0 = w −
∑
γ∈Γ δγ ⊗ LE−γ(PIu)|F =

∑
γ∈Γ δγ ⊗

[
LE−γ(u)|F − LE−γ(PIu)|F

]
⇒ 0 =

∑
γ∈Γ

〈
δγ ⊗

[
LE−γ(u)|F − LE−γ(PIu)|F

] ∣∣∣ δg ⊗ ei〉
`2(Γ)⊗L2

I(EΓ )

⇔ 0 =
∑
γ∈Γ

〈 [
LE−γ(u)|F − LE−γ(PIu)|F

] ∣∣∣ ei〉
L2
I(EΓ )

〈
δγ
∣∣ δg〉`2(Γ)

⇔ 0 =
〈 [
LE−g(u)|F − LE−g(PIu)|F

] ∣∣∣ ei〉
L2
I(EΓ )

and thus LE−g(u)|F = LE−g(PIu)|F . Since the left action representation is unitary, this
implies u|F = (PIu)|F . As F and F di�er in a set of measure zero, we have u|F = (PIu)|F
almost everywhere. This carries over to all translations of F with Γ :

u|γF = (PIu)|γF

almost everywhere for all γ ∈ Γ . As Σ =
⋃
γ∈Γ γ(F), we have u = PIu almost everywhere
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and so u ∈ L2
Γ ,I(E). Consequently, we have shown J (L2

Γ ,I(E)) = `2(Γ)⊗L2
I(EΓ ) and (5.43)

restricts to an isomorphism as stated in the claim. This restriction does not a�ect the Γ -
invariance of this map and a unitary isomorphism can be taken from its polar decomposition
due to Proposition 5.2.6 (1).

Similar splittings can be obtained if we replace the L2
Γ -spaces with Γ -Sobolev spaces:

Hs
Γ ,I(S±(Σj)) := PI(tj)

(
Hs
Γ (S±(Σj))

)
.

Motivated from the functional-analytic treatment of spectral �ow in [Ron19] and [vdDR20],
we also introduce projectors with domains on the range of another projector: let a, b ∈ R
and N,H any symbol in {<,>,≤,≥}; we de�ne as restricted projectors the maps

P
Na
Hb := PHb : ran (PNa)→ ran (PHb) . (8.29)

One is tempted to write P[a,b] for P
Na
Hb for a < b. However, the former is a bounded operator

on L2
Γ -spaces, but in general not necessarily Fredholm. The latter operator is the restriction

of the former to a closed subspace of L2
Γ . It turns out that (8.29) is in fact Γ -Fredholm

under certain conditions.

Lemma 8.1.6. Let a, b ∈ R, A as in Corollary 8.1.3 and PNa, PHb spectral projections of A
in L2

Γ (E); if codimΓ (ran (PHb) ∩ ran (PNa)) <∞ and dimΓ

(
ran (PNa) ∩ ran

(
(PHb)

⊥)) <∞,

then P
Na
Hb ∈ FΓ (ran (PNa) , ran (PHb)) with

indΓ (P
Na
Hb ) = dimΓ

(
ran (PNa) ∩ ran

(
(PHb)

⊥
))
− codimΓ (ran (PHb) ∩ ran (PNa)) (8.30)

where
codimΓ (ran (PHb)) = dimΓ

(
ran (PHb)

/
ran (PHb) ∩ ran (PNa)

)
. (8.31)

Proof. The range and the kernel of P
Na
Hb can be calculated directly:

ker
(
P
Na
Hb

)
= ker (PHb) ∩ ran (PNa) = ran

(
(PHb)

⊥
)
∩ ran (PNa)

ran
(
P
Na
Hb

)
= ran (PHb) ∩ ran (PNa)

because an element in ran (PNa) might have non-trivial intersection with ran (PHb) and
(ran (PHb))

⊥, but only functions in the former intersection contribute to the range. By
preassumption the kernel has �nite Γ -dimension. Since all ranges are closed subsets of
L2
Γ (S±L,E(Σt)), the range of P

Na
Hb as intersection of closed sets does as well and has �nite

Γ -codimension by assumption.

In order to calculate the Γ -index, it is left to compute the kernel of the formal adjoint
of P

Na
Hb . As P

Na
Hb has closed range by construction, the closed range theorem implies that

exactly this kernel is given by

(ran (PHb) ∩ ran (PNa))
⊥

where the orthogonal complement has to be taken in ran (PHb) as ambient Hilbert space.
The intersection of Hilbert Γ -modules is in general not a Hilbert Γ -module. But since the
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intersection of ranges results again in a range of a spectral projection, the intersection

ran
(
PI(a,b)

)
:= ran (PHb) with I(a, b) ⊂ R

is again a projective Hilbert Γ -module. Lemma 5.2.7 implies that the orthogonal comple-
ment of ran

(
PI(a,b)

)
is a projective Hilbert Γ -module, too. The same holds true for the

quotient
ran (P )Hb

/
ran
(
PI(a,b)

) .

As ran
(
PI(a,b)

)
is closed, the canonical isomorphy between the quotient and the orthogonal

complement implies a unitary Γ -isomorphism such that

dimΓ ran
(
PI(a,b)

)⊥
= dimΓ

(
ran (P )Hb

/
ran
(
PI(a,b)

) )
according to Proposition 5.2.8 (5). The right-hand side coincides with the Γ -codimension
of ran

(
PI(a,b)

)
which shows the claimed Γ -index formula.

8.2. Γ-spectral �ow

The spectral �ow is used in [BS19] to connect the algebraic index with geometric quantities.
We introduce the algebraic de�nition of spectral �ow in our setting and give an analytic
expression at the end of this section. We refer to the achievements, made in [BCP+06] for
the case of a general von Neumann algebra, and specify as well as modify the results to
our case.

8.2.1. Idea of spectral �ow

Let I ⊂ R be a closed interval and {St}t∈I a continuous path of self-adjoint Fredholm
operators on a Hilbert space H. The heuristical idea of the spectral �ow is that it counts
the net number of eigenvalues with multiplicities which pass through zero from negative to
positive along the path. If H is �nite-dimensional, the path of operators coincides with a
continuous path of Hermitian maps/matrices; this path de�nes in turn a path of quadratic
forms

st(u, v) :=
〈
Stu

∣∣ v〉H
for u, v ∈ H and t ∈ I. The spectral �ow for I = [t1, t2] is half the di�erence of the
signatures of these quadratic forms at t = t1 and t = t2:

sf {St}t∈I =
1

2
[Sign(st2)− Sign(st1)] .

A topological de�nition of spectral �ow for operators on an in�nite-dimensional Hilbert
space with discrete spectrum is presented in [APS76, Sec.7] where one needs to look at the
graph of eigenvalues t 7→ λ(t) and perturbs the t-axis into broken lines with alternating
horizontal and vertical segments. The segments are chosen in such a way that the mul-
tiplicites are correctly counted and the horizontal segments do not contain points of the
spectrum. An analytic de�nition has been given by John Phillips in [Phi96] which we are
going to present in this subsection. Q(H) denotes the Calkin algebra B(H)/K (H) with
Calkin map Π : B(H)→ Q(H). As Fredholm operators are characterised by operators on
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H, which are invertible modulo compact operators, the Calkin map of those operators are
invertible in Q(H) and the set of Fredholm operators can be de�ned as

F (H) := {A ∈ B(H) |Π(A) invertible inQ(H)} . (8.32)

The subset F sa(H) contains all self-adjoint elements in F (H). The essential spectrum
σess of these operators induces a decomposition of this space into three di�erent subsets:

F sa(H) = F sa
+ (H) tF sa

− (H) tF sa
∗ (H)

with (R+ := (0,∞), R− := (−∞, 0))

F sa
± (H) := {A ∈ F sa(H) |Π(A) ≷ 0} = {A ∈ F sa(H) |σess(Π(A)) ⊂ R±} ,

F sa
∗ (H) := {A ∈ F sa(H) |σess(Π(A)) * (R+ t R−)} ,

denoting the spaces of essentially positive and respectively negative operators in F sa(H)
and their uni�ed complement. It is a classical result31 that the subspaces F sa

± (H) are
contractible to {±1H}. The introduced continuous path of operators can then be viewed
as a path in F sa

∗ (H) as the only non-trivial contribution in F sa(H). Suppose there is a
continuous family {Pt} of �nite-rank projections such that Pt is the spectral projection of St
for each t ∈ I inside an interval [−a, a] for a ∈ R. The spectral �ow is then described as the
di�erence of eigenspace dimensions for non-negative eigenvalues of StPt at the endpoints
of the path, i.e.

dim Eig(St2Pt2)− dim Eig(St1Pt1) .

As the path of �nite projections is assumed to be continuous, any leakage of eigenvalues
is precluded. The existence of such a global path is in general not possible, but locally
constructable by partioning the time interval I into subintervals and adding up each spec-
tral �ow contribution over the subintervals. This construction is assured by the following
result.

Lemma 8.2.1 (Lemma in [Phi96]). Let S ∈ F sa

∗ (H); there exists a number a ∈ R+

and a neighbourhood US ⊂ F sa

∗ (H) of S such that S 7→ χ[−a,a](S) is a norm-continuous
�nite-rank projection on US.

Hence the initial analytic construction of spectral �ow can be made rigorous.

De�nition 8.2.2 (cf. [Phi96]). Let {St}t∈I be a continuous path in F sa
∗ (H); choose an

N ∈ N and a partition of the time interval I = [t1, t2], t1 = τ0 < τ1 < ... < τN = t2, and
positive real numbers a0, a1, ..., aN such that t 7→ χ[−ai,ai](St) is a continuous �nite-rank
projection on [τi−1, τi] for each i ∈ {1, ..., N}, then the spectral �ow of the path is de�ned
to be the number

sf {St}t∈I :=

N∑
i=1

[
dim ran

(
χ[0,ai]

(Sτi)
)
− dim ran

(
χ[0,ai]

(Sτi−1)
)]

. (8.33)

We collect some properties of this quantity.

31See [AS69, Thm.B] or one recalls [Phi96, Prop.1].
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Proposition 8.2.3 (Theorem and Proposition 2,3 in [Phi96]). Let {St}t∈I be a continuous
path in F sa

∗ (H) and I1, I2 disjoint subintervals of I.

(1) sf {St}t∈I is well-de�ned and depends only on the continuous path.

(2) If the path {St}t∈I is a concatenation of the paths {St}t∈I1 and {St}t∈I2, such that
I = I1 t I2, the spectral �ows add to

sf {St}t∈I = sf {St}t∈I1 + sf {St}t∈I2 .

(3) sf {St}t∈I is a homotopy invariant: if {S′t}t∈I is another continuous path in F sa

∗ (H)
on I = [t1, t2] such that {St}t∈I and {S′t}t∈I are homotopic with �xed endpoints
S′t1 = St1 and S′t2 = St2, then sf {St}t∈I = sf {S′t}t∈I .

(4) sf {St}t∈I is Z-valued.

Fact (1) can be reformulated by saying that the spectral �ow is independent of the choice
of the partition and of the choice of the real numbers in De�nition 8.2.2. Next to paths of
self-adjoint Fredholm operators, one can consider real skew-adjoint Fredholm operators

F rsa(H) :=
{
A ∈ F (H) |T = T and T ∗ = −T

}
which can be considered in the known framework by multiplying with i, inducing a self-
adjoint operator. The de�nition and properties of the spectral �ow carry over besides
that the spectral �ow becomes Z2-valued with additivity modulo 2. The interested reader
should consult [CPSB19, Sec.3/4] for more details about this setting. Another modi�cation
of current research is the extension to unbounded self-adjoint Fredholm operators which
has been intensively studied in [Les04] and [BBLP05] as well as [BCLR20, Sec.6] for the
skew-adjoint case. A key element is the restriction to self-adjoint Fredholm operators in
C (H) ⊂ B(H). De�nition 8.2.2 and the properties of the spectral �ow remain correct if
one replaces F sa

∗ (H) with the set

C F sa(H) := {A ∈ C (H) |A is Fredholm, closed and self-adjoint} ;

see [BBLP05, Prop.2.10] and [BBLP05, Def.2.12]. We note that in this case the decompo-
sition into disjoint subsets as for F sa(H) does not lead to similar contractability results;
the interested reader should consult [BBLP05, Sec.1.2].

Before we discuss an analytic expression, we introduce a slight extension of the spectral
�ow formula. Denote with

ind(P |Q) := ind(Q : ran (P )→ ran (Q)) = ind(QP : ran (P )→ ran (Q))

the relative index of two projections P and Q on H such that (P − Q) ∈ K (H). Such a
pair of projections is a Fredholm pair. We denote with P≥λ(t) the spectral projection of
the self-adjoint Fredholm operator St of the path {St}t∈I which maps onto the subspace,
spanned by eigenvectors with eigenvalues bigger equal λ. Relying on the implementations
in [Les04, Sec.3], the existence of �nite-rank projections in De�nition 8.2.2 can be relaxed
to the condition that the path {P≥λ(t)}t∈I of projections satis�es∥∥P>aj (ts)− P>aj (tr)∥∥B(H)

< 1 (8.34)
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for all r, s ∈ [τj−1, τj ] and in each subinterval [τj−1, τj ] of the partition. In particular,
[Les04, Thm.3.6] and [Les04, Cor.3.8] motivate the following de�nition of spectral �ow
which we formulate for the bounded case.

De�nition 8.2.4. Let {St}t∈[t1,t2] be a continuous path of bounded self-adjoint Fredholm
operators and choose a subdivision t1 = τ0 < τ1 < ... < τN = t2 of I �ne enough such that∥∥P>0(t)− P>0(t′)

∥∥
B(H)

< 1

is satis�ed for t, t′ ∈ [τj−1, τj ], then we have

sf {St}t∈I :=
N∑
i=1

ind(P≥0(τj) |P≥0(τj−1)) . (8.35)

This de�nition is the key ingredient in de�ning a spectral �ow in von Neumann algebras
and in particular in the Γ -setting. If there exist positive real numbers a0, a1, ...., aN with
±aj /∈ σ(St) and σess(St)∩ [−aj , aj ] = ∅ for t in every subinterval [tj−1, tj ], we get from this
de�nition the formula (8.33) and thus De�nition 8.2.2 follows as the family of projectors{
P>aj

}
becomes continuous for ±aj /∈ σ(St), and

ind(P≥0(τj) |P≥0(τj−1)) = dim ran
(
P[0,ai](τi)

)
− dim ran

(
P[0,ai](τi−1)

)
.

This de�nition of spectral �ow transfers to operators in C F sa(H) with the additional
assumptions that (1 + S2

t )−1/2 ∈ K (H) and e−sS
2
t ∈ S 1(H) for each t and s > 0. The

spectral �ow is then de�ned by replacing the path {St}t∈[t1,t2] with the path

t 7→ St(1 + S2
t )−1/2

of bounded self-adjoint Fredholm operators. We refer the interested reader for further de-
tails to [Les04, Thm.3.6] for the unbounded case as well as [vdDR20, Lem.3.4] and [vdDR20,
Lem.3.5], based on arguments from [BS19, Sec.4.2].

We now come back to the formal relation of spectral �ow with the notion of signature
for in�nite-dimensional Hilbert spaces. We consider an elliptic and self-adjoint (pseudo-
)di�erential operator A of order m ≥ 0 on a closed manifold M of dimension n which
is equivalent to A, being self-adjoint and Fredholm and with discrete spectrum σ(A) =
{λj | j ∈ N0}. We recapitulate the de�nition of the ζ-function: if A is in addition a positive
operator, then

ζ(z;A) =
∑

λ∈σ(A)\{0}

λ−z = Tr
(
A−z

)
. (8.36)

It is an analytic function for <e {z} > n
m and has a meromorphic extension with simple

poles at z ∈ (−1/m)Z \ {0}. The positivity condition can be relaxed by introducing the
eta-function of a self-adjoint and elliptic operator A:

η(z;A) :=
∑

λ∈σ(A)\{0}

sign(λ)

|λ|z
= Tr

(
A ◦ |A|−(z+1)

)
. (8.37)

It is used to study eigenvalues of a self-adjoint operator and the asymmetry of its spec-
trum (see introduction of [APS75a]). It is holomorphic on the same domain as the zeta-
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function and can can be expressed with (8.36): the authors of [APS76] introduced with
Seeley's theorem for complex powers of positive and elliptic pseudo-di�erential operators
the pseudo-di�erential operators

A± =
3

2
|A| ± 1

2
A

where |A| =
√
A∗A. These operators are again elliptic, self-adjoint and positive. Herewith

they have shown that
η(z;A) =

ζ(z;A+)− ζ(z;A−)

2−z − 1

which implies that z = 0 is a simple pole as the zeta-functions are holomorphic at z = 0.
The residue of η(z;A) at z = 0 is determined by the complete symbol of the operator A
(see [APS76, Prop.2.8]), implying that it is in general non-zero. However, the same au-
thors has shown that the residue is vanishing for n odd (see [APS76, Thm.4.5]); the same
results hold for the case of even-dimensional manifolds which has been studied in [Gil81]
(Theorem 0.1, Lemma 1.1/2). Thus, z = 0 is a removeable singularity and η(0;A) the
well-de�ned eta-invariant. It mimics the signature in in�nite-dimensional Hilbert spaces
as (8.37) for z = 0 can be viewed a sum of in�nitely many signs of eigenvalues.

As in complex analysis, the zeta- and eta- functions of an operator each have an inte-
gral expression where the integral formula of the Gamma function Γ(z) has been used to
express the summands. Instead of using the geometric series, one ends up with the trace
of the operator Ae−sA

2
where s is an integration parameter. The eta-function of A then

becomes (see [Goe00])

η(z;A) =
1

Γ( z+1
2 )

∫ ∞
0

s
z−1

2 Tr
(
Ae−sA

2
)

ds . (8.38)

This presentation of the eta-function allows to give an explicit formula for the eta-invariant:

η(A) := η(0, A) =
1√
π

∫ ∞
0

s−
1
2 Tr

(
Ae−sA

2
)

ds . (8.39)

If one adds the dimension of the kernel of A, one gains the xi-invariant (see [APS75b])

ξ(A) :=
η(A) + dim ker (A)

2
(8.40)

as another invariant which occurs in the APS index Theorem 1.0.1 for compact manifolds
with boundary. The connection of the spectral �ow and the eta-invariant as in�nite-
dimensional pendent of the signature is studied in [APS76] in section 2,4,6,7, and 8 where
K-theoretic as well as analytic methods has been used. The following fact sums up their
result.

Proposition 8.2.5. Let {St}t∈[t1,t2] be a smooth family of elliptic, self-adjoint operators;
the function t 7→ η(St) is piecewise smooth and admits a decomposition of the form

ξ(St2)− ξ(St1) = sf {St}t∈[t1,t2] +
1

2

∫ t2

t1

d

dt
η(St) dt (8.41)

where the spectral �ow is piecewise constant in t and the integral expression smooth in the
parameter t.
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(8.41) on the other hand can be used to determine the spectral �ow in terms of the
(reduced) eta-invariants:

sf {St}t∈[t1,t2] = ξ(St2)− ξ(St1)− 1

2

∫ t2

t1

d

dt
η(St) dt . (8.42)

Remark 8.2.6. A modi�cation of the eta- and xi-invariant for possibly non-self-adjoint
Dirac-type operators A has been studied in [BS20, Sec.4/5]: let

∆sθ(A) := exp
(
s log(A∗A+ Pker(A))

)
◦ (1− Pker(A))

for s ∈ R; the kernel projection is viewed as

Pker(A) =
1

2πi

∫
γ
(A∗A− λ1)−1 dλ .

The angle θ controls a sector, containing the spectrum. If A is self-adjoint, the zero-
eigenvalue lies in the resolvent set. The projectors onto positive and negative parts of the
spectrum of A are de�ned by

p>0 :=
1

2

(
1 − Pker(A) + ∆

−1/2
θ (A)A

)
,

p<0 :=
1

2

(
1 − Pker(A) − ∆

−1/2
θ (A)A

)
.

The attentive reader observes the conceptual resemblance of these expressions for the spec-
tral projections and the one in Corollary 8.1.3. The eta-function is then introduced via

η(z;A) := Tr
(

(p>0 − p<0)∆
−z/2
θ (A)

)
which is regular at z = 0, de�ning the eta-invariant.

8.2.2. Γ-Fredholm pairs and their Γ-indices

We will introduce the spectral �ow in the Γ -setting through De�nition 8.2.4. In order to do
so, we need to transfer some further concepts of relative Fredholm theory to von Neumann
algebras in association with a Galois group Γ . The introduced framework for this and the
following sections is based on the papers of [BCP+06] for general semi�nite (or type II) von
Neumann algebras N which refers to previous work by Carey and Phillips (e.g. [CP99]).
We translate the concepts to our setting with N = BΓ (H ) for a free Hilbert Γ -module H .

We �rst deal with Fredholm operators in a Hilbert Γ -module where their domains and
images are restricted to the range of certain projectors. Given two free Hilbert Γ -modules
H1, H2 and two projections P and Q with ran (P ) ⊂H2 and ran (Q) ⊂H1. We can de�ne
the following extended notion of Fredholmness in the Γ -setting

De�nition 8.2.7. Given two projectors P and Q in Hilbert Γ -modules H1 H2 such that
ran (Q) ⊂ H1 and ran (P ) ⊂ H2; an operator A ∈ BΓ (P (H1), Q(H2)) is called (P,Q)-Γ -
Fredholm if A ∈ FΓ (Q(H1), P (H2)).
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The belonging Γ -index is de�ned as

indΓ
(P,Q)

(A) := indΓ
(
A|ran(Q)→ran(P )

)
= dimΓ (ker (A) ∩Q(H1))− dimΓ (ker (A∗) ∩ P (H2)) .

(8.43)

Several properties of ordinary Γ -Fredholm operators carry over to this new concept.

Proposition 8.2.8. Given projectors Q,P, P1, P2, P3 on Hilbert Γ -modules H1, H2 and
H3 such that ran (Q) ⊂H1, ran (P ) ⊂H2 and ran (Pi) ⊂Hi for i ∈ {1, 2, 3};

(1) if A ∈ FΓ (Q(H1), P (H2)) with parametrix B, then B ∈ FΓ (Q(H2), P (H1)) with
indΓ
(Q,P )

(B) = −indΓ
(P,Q)

(A).

(2) if A ∈ FΓ (Q(H1), P (H2)), then A∗ ∈ FΓ (Q(H2), P (H1)) with indΓ
(Q,P )

(A∗) = −indΓ
(P,Q)

(A).

(3) if A ∈ FΓ (Q(H1), P (H2)) and C ∈ KΓ (Q(H1), P (H2)), then the sum
(A+ C) ∈ FΓ (Q(H1), P (H2)) with indΓ

(P,Q)
(A+ C) = indΓ

(P,Q)
(A).

(4) if A ∈ FΓ (Q(H1), P (H2)), then there exists a δ > 0 such that

‖A−B‖B(H1,H2) < δ for B ∈ BΓ (Q(H1), P (H2)) ⇒ B ∈ FΓ (Q(H1), P (H2))

with indΓ
(P,Q)

(B) = indΓ
(P,Q)

(A).

(5) if A ∈ FΓ (P1(H1), P2(H2)) and B ∈ FΓ (P2(H2), P3(H3)), then the composition
satis�es BA ∈ FΓ (P1(H1), Q(H3)) with indΓ

(P3,P1)
(BA) = indΓ

(P3,P2)
(B) + indΓ

(P2,P1)
(A).

(6) if A ∈ FΓ (Q(H1), P (H2)) has polar decomposition A = U |A|, then |A| ∈ FΓ (Q(H1))
and U ∈ FΓ (Q(H1), P (H2)) with indΓ

(P,Q)
(U) = 0 and indΓ

(P,Q)
(A) = indΓ

(Q,Q)
(|A|).

An example of such operators are the restricted projections (8.29) with P = PHb and
Q = PNa and Hilbert Γ -modules H1 = H2 = L2

Γ (M,E).

A Fredholm pair of projections P and Q is another concept, related to the question,
under which conditions the composition PQ, restricted as map from ran (Q) to ran (P ) be-
comes Fredholm. The has been studied in [ASS94] for the ordinary Hilbert space setting.
We follow the implementations in [BCP+06] and convert the framework into the Hilbert
Γ -module setting. We introduce the Γ -Calkin-map

ΠΓ : BΓ (H ) −→ BΓ (H )/
KΓ (H ) .

An operator is Γ -Fredholm if and only if its Γ -Calkin map is invertible. We formulate
a condition under which the composition of two projectors P,Q ∈ BΓ (H ) is (P,Q)-Γ -
Fredholm.

Lemma 8.2.9 (cf. Lemma 4.1 in [BCP+06]). Given two projections P,Q ∈ BΓ (H ), then

PQ ∈ FΓ (PQ(H )) if and only if ‖ΠΓ (P )− ΠΓ (Q)‖B(H ) < 1 .
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In this case we call these projectors Γ -Fredholm pair and we de�ne the corresponding
index as

indΓ (P |Q) := indΓ
(P,Q)

(PQ) = indΓ (P |ran(Q)→ran(P )) . (8.44)

We can conclude the following properties of this index from [BCP+06].

Proposition 8.2.10. For orthogonal projections P,Q,R ∈ BΓ (H ) the following holds:

(1) if PQ ∈ FΓ (PQ(H )), then dimΓ ker (P −Q± 1) <∞ and

indΓ (P |Q) = dimΓ ker (P −Q+ 1)− dimΓ ker (P −Q− 1) . (8.45)

(2)
PQ ∈ FΓ (PQ(H )) if and only if QP ∈ FΓ (QP (H ))

with indΓ (Q|P ) = −indΓ (P |Q).

(3) The Kato duals P⊥ and Q⊥ satisfy

PQ ∈ FΓ (PQ(H )) if and only if P⊥Q⊥ ∈ FΓ (P
⊥Q⊥(H ))

with indΓ (P
⊥|Q⊥) = −indΓ (P |Q).

(4) if PR ∈ FΓ (PR(H )) and RQ ∈ FΓ (PQ(H )) with

‖ΠΓ (R)− ΠΓ (Q)‖B(H ) <
1

2
and ‖ΠΓ (P )− ΠΓ (R)‖B(H ) <

1

2
,

then (P ◦Q) ∈ FΓ (PQ(H )) with

indΓ (P |Q) = indΓ (P |R) + indΓ (R|Q) .

(5) if ‖P −Q‖B(H ) < 1, then indΓ (P |Q) = 0.

Proof. As the condition for Fredholmness in Lemma 8.2.9 is symmetric in P and Q, the
equivalence (2) follows easily. As the identity operator is invertible, the linear Γ -Calkin
map gives ΠΓ (1) = 1 wherefore∥∥∥ΠΓ (P⊥)− ΠΓ (Q⊥)

∥∥∥
B(H )

= ‖1 − ΠΓ (P )− 1 + ΠΓ (Q)‖B(H ) = ‖ΠΓ (P )− ΠΓ (Q)‖B(H )

shows the equivalence (3).

Statement (1) can be proven purely algebraically as in the proof of [ASS94, Prop.3.1]:

ker
(
P |ran(Q)→ran(P )

)
= {x ∈ ran (Q) |PQx = 0} = {x ∈ ran (Q) |Px = 0}
= ker (P −Q+ 1) ,

ker
(
Q|ran(P )→ran(Q)

)
= {x ∈ ran (P ) |QPx = 0} = {x ∈ ran (P ) |Qx = 0}
= ker (P −Q− 1)

where the second equivalence in each line comes from the fact that P 2 = P and Q2 = Q
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for x ∈ ran (P ) and respectively x ∈ ran (Q). The last equivalences follow from

Px = 0 = x− x = Qx− x = (Q− 1)x ⇔ (P −Q+ 1)x = 0 ∀x ∈ ran (Q)

and

Qx = 0 = x− x = Px− x = (P − 1)x ⇔ (P −Q− 1)x = 0 ∀x ∈ ran (P ) .

Since PQ ∈ FΓ (PQ(H )), the range of P |ran(Q)→ran(P ) is closed and

dimΓ ker (P −Q+ 1) = dimΓ ker
(
P |ran(Q)→ran(P )

)
<∞ ,

dimΓ ker (P −Q− 1) = dimΓ ker
(
Q|ran(P )→ran(Q)

)
<∞

such that the index formula (8.45) and the relation between the indices in (2) and (3) follow.

(4) and (5) are proven in [BCP+06] as Lemma 4.3 and Remark 4.4 for general semi�-
nite von Neumann algebras. We only point out that by

1 > ‖ΠΓ (R)− ΠΓ (Q)‖B(H ) + ‖ΠΓ (P )− ΠΓ (R)‖B(H )

≥ ‖ΠΓ (P )− ΠΓ (R) + ΠΓ (R)− ΠΓ (Q)‖B(H ) = ‖ΠΓ (P )− ΠΓ (Q)‖B(H )

the Fredholm-property follows easily such that all indices are de�ned.

8.2.3. Γ-spectral �ow - algebraic de�nition

We consider a family {St}t∈[a,b] of self-adjoint operators in BΓ (H1,H2) for two �xed Hilbert
Γ -modules such that the path t 7→ St is continuous and ΠΓ (St) is invertible modulo any
norm-closed two-sided ideal in BΓ (H1,H2) for any t ∈ [a, b]. We de�ne

F sa
Γ (H1,H2) := {A ∈ FΓ (H1,H2) |A self-adjoint} (8.46)

as set of all self-adjoint Γ -Fredholm operators between the two Hilbert Γ -modules H1 and
H2.

The heuristic idea of spectral �ow from subsection 8.2.1 is that it measures the amount
of spectrum gained minus the amount of spectrum lost while moving along the path. The
mathematical tool behind this quantity is provided by the Γ -index of a Γ -Fredholm pair of
projections P≥0(St) (see (8.44)):

indΓ (P≥0(Sb)|P≥0(Sa)) = indΓ

(
P≥0(Sb)|ran(P≥0(Sa))→ran(P≥0(Sb))

)
.

One would de�ne the Γ -spectral �ow to be

indΓ (P≥0(Sb)|P≥0(Sa))

if the right-hand side is well-de�ned. The question, whether a pair of projections with
respect to a continuous path is a Γ -Fredholm pair, depends on the path. If we choose
the path t 7→ St to lie entirely in F sa

Γ (H1,H2), the path of projections P≥0(St) initially
becomes a path in BΓ (H ) which is discontinuous in t. In order to get around these
problems, we mimic the approach for spectral �ow in any von Neumann setting ( [CP99]
and [BCP+06]) and adapt it to our setting: we choose an L ∈ N big enough and a
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corresponding partition a = t0 < t1 < · · · < tL = b of the time interval [a, b] such that

‖ΠΓ (P≥0(St))− ΠΓ (P≥0(Sr))‖B(H ) < 1 ∀ t, r ∈ [tj−1, tj ] .

Roughly speaking, we approximate the path by a polygonal chain in such a way that
the projectors and the endpoints of each segment of the chain are a Γ -Fredholm pair and
thus indΓ (P≥0(St)|P≥0(Sr)) is well-de�ned for each t, r in each subinterval of the partition.
Taking the �nite sum over all contributions gives a well-de�ned quantity which we identify
with the spectral �ow.

De�nition 8.2.11. Let {St}t∈[a,b] be a continuous path in F sa
Γ (H1,H2) and {P≥0(t)}t∈[a,b]

the corresponding path of projections in BΓ (H2), de�ned by P≥0(t) := χ(St) for each
t ∈ [a, b]; for an L ∈ N consider the partition a = t0 < t1 < · · · < tL = b such that

‖ΠΓ (P≥0(t))− ΠΓ (P≥0(r))‖B(H2) < 1 ∀ t, r ∈ [tj−1, tj ]

is satis�ed for each j ∈ {1, 2, .., L}. The Γ-spectral �ow of the path {St}t∈[a,b] is de�ned
as the number

sfΓ {St}t∈[a,b] :=

L∑
j=1

indΓ (P≥0(tj−1)|P≥0(tj)) . (8.47)

Remarks 8.2.12.

(i) The de�nition is independent of the chosen partition and works equally well for all
von Neumann algebras of type I and II; see [BCP+06, Thm.2.1]. In the �rst case
the Γ -spectral �ow is integer-valued while in the semi�nite case the Γ -spectral �ow
becomes a real number due to the fact that the Γ -indices are in general real numbers.

(ii) If the path of projections {P≥0(t)} is already continuous, we can choose a �ne enough
partition such that already

‖P≥0(t))− P≥0(s))‖B(H1) < 1 ∀ t, s ∈ [tj−1, tj ]

is ful�lled. Proposition 8.2.10 (5) then implies that each two projections are a Γ -
Fredholm pair with indΓ (P≥0(r)|P≥0(s)) = 0 for each r, s ∈ [tj−1, tj ] in the partition.
As a consequence sfΓ {St}t∈[a,b] vanishes. This �ts with the heuristical expectation
that the spectral �ow is only non-trivial if the path of projections has discontinuities.

(iii) If {St}t∈[a,b] and
{
S̄t
}
t∈[a,b]

are two continuous paths and homotopic in F sa

Γ (H1,H2),

such that S̄a = Sa and S̄b = Sb, the Γ -spectral �ow of these paths coincide. Hence
the Γ -spectral �ow is a homotopy invariant. This is proven for general von Neumann
algebras of type I and II in [BCP+06, Prop.4.7].

So far we considered the case that the domain H1 and the range H2 of each member
in the continuous path are the same for each t ∈ [a, b]. In view of applying the Γ -spectral
�ow concept to the path of Γ -invariant hypersurface Dirac operators {At}, we have to deal
with time-depending domains and ranges. We need to consider a reference hypersurface,
in order to �x this for such kind of operators, and an operation which maps everything to
this hypersurface in such a way that it does not in�uence the index and thus the Γ -spectral
�ow. For our special interest we have such an operator, given by the Dirac wave evolution
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operator Q(τ2, τ1) for τ1, τ2 ∈ [a, b]. The following ideas are inspired by the treatment of
the Lorentzian index theorem in [Ron19] and [vdDR20] which we will use and adapt for
our situation. We assume that there exists a unitary Γ -morphism

U(τ2, τ2) : H (τ1)→H (τ2) (8.48)

between two time-di�erent Hilbert Γ -modules H (τ1) and H (τ2) for each τ1, τ2 ∈ [a, b]. We
denote with D(τ) the domain dom(Sτ ) of each Sτ ; we furthermore assume that each domain
is a dense subspace in H (τ) for each τ ∈ [a, b] separately. This and the (essential) self-
adjointness imply that each (closure of) St becomes closed and densely de�ned. Recalling
Lemma 5.2.12, the domain D(τ) becomes a Hilbert Γ -module with respect to the graph
norm if the domain is not already a Hilbert Γ -module on its own right. We introduce the
evolved operator

Ŝt := U(a, t)St U(t, a)

as operator from D(a) to H (a) for each t ∈ [a, b] and consider the Γ -spectral �ow with
respect to this path. We need to check that this path is well-de�ned to connect it with a
spectral �ow.

Lemma 8.2.13. Given J ⊂ R and a bundle {H (t)}t∈[a,b] of Hilbert Γ -modules and a
bundle of domains {D(t)}t∈[a,b] such that for each �xed time τ ∈ [a, b] the domain D(τ) is
dense in H (τ); we moreover assume that there exists a unitary Γ -morphism (8.48) which
is continuous in both time arguments. For S• ∈ C0([a, b],F sa

Γ (D(•),H (•)) the evolved
operator satis�es

(1) [a, b] 3 t 7→ Ŝt ∈ F sa

Γ (D(a),H (a)) is continuous.

(2) P̂J(t) = U(a, t)PJ(t)U(t, a) for all t ∈ [a, b] is an orthogonal projection with

ran
(
P̂J(t)

)
= U(a, t)(ran (PJ(t))).

Proof. Because St and U(t, a)|D(a)→U(t,a)(D(a)) are Γ -Fredholm, it is clear that the evolved

operator satis�es Ŝt ∈ FΓ (D(a),H (a)). Furthermore, the Γ -indices of St and Ŝt coincide
for each t. The self-adjointness of St and the unitarity of U(t, a) imply

(Ŝt)
∗ = U(t, a)∗(St)

∗U(a, t)∗ = U(a, t)St U(t, a) = Ŝt .

Hence Ŝt is symmetric32 and thus Ŝt ∈ F sa
Γ (D(a),H (a)) for each t. The continuity in t

follows from the continuous dependence of St and U(t, ·) on t which �nally shows the �rst
assertion.

The second assertion follows by proving χJ(Ŝt) = U(a, t)χJ(St)U(t, a) for all t ∈ [a, b]
which we show for any real-valued Borel function f : f(Ŝt) = U(a, t)f(St)U(t, a). Fix a
t ∈ [a, b]. Since St and Ŝt are self-adjoint for each t, their domains D(t) and D(a) are
dense in H (t) and respectively H (a) and so we can consider the self-adjointness in these
ranges and use the spectral theorem for unbounded self-adjoint operators: for each St
there exists a measure space (X,µ) and a unitary operator U(t) from H (t) to L2(X,µ)

32We can check that the closedness of St implies the closedness of Ŝt for each �xed t due to the fact that

the wave evolution operator is bounded. The condition ker
(
Ŝt
∗ ± i1H2(a)

)
= {0} is implied by the

preassumption ker
(
S∗t ± i1H2(t)

)
= {0} since Q(t, a) and Q(a, t) are isomorphisms.
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and a measurable function st : X → R such that St = U−1(t)MstU(t) where M denotes
multiplication with this measurable function. The Γ -invariance of St for each t forces U(t)
and Mst to be Γ -invariant: the unitary left action representation Lγ on H (t) does not
depend on time because we have generally assumed that the Γ -action is the same on each
hypersurface. As D(t) is dense in H (t), the left action representation can be applied to
elements in the domain such that

LγSt = StLγ
⇔ LγU(t)−1MstU(t) = U(t)−1MstU(t)Lγ
⇔ U(t)−1MstU(t) = (Lγ)−1U(t)−1MstU(t)Lγ
⇔ U(t)−1MstU(t) = (U(t) ◦ Lγ)−1Mst(U(t) ◦ Lγ) .

This shows that U(t) is right Γ -invariant: U(t) = U(t) ◦ Lγ for all γ ∈ Γ . On the other
hand we can insert Lε = (Lγ)−1Lγ and observe

U(t)−1MstU(t) = U(t)−1 ◦ (Lγ)−1Lγ ◦Mst ◦ (Lγ)−1Lγ ◦ U(t)

= (Lγ ◦ U(t))−1 ◦ LγMst(Lγ)−1 ◦ (Lγ ◦ U(t)) .

Thus, U(t) is also left-Γ -invariant and �nally Γ -invariant. We observe that the multiplica-
tion operator is Γ -invariant as well: LγMst(Lγ)−1 = Mst . Thus, for any real-valued Borel
function f the operator f(St) is de�ned by U(t)−1Mf◦stU(t) and is Γ -invariant. Since Ŝt
is the conjugation of St, we observe

Ŝt = U(a, t) ◦ St ◦ U(t, a) = U(a, t) ◦ U−1(t)MstU(t) ◦ U(t, a)

= (U ◦ U(t, a))−1(t)Mst(U(t) ◦ U(t, a))
(8.49)

which gives a spectral representation of Ŝt with the same multiplication operator, but with
another Γ -invariant unitary operator U(t) ◦ U(t, a) from H (a) to L2(X,µ). Applying the
spectral theorem, we get

f(Ŝt) = (U ◦ U(t, a))−1(t)Mf◦st(U(t) ◦ U(t, a))

= U(a, t) ◦ U−1(t)Mf◦stU(t) ◦ U(t, a) = U(a, t)f(St)U(t, a)
(8.50)

and the claim is proven for f(St) = χJ(St) = PJ(t). The part about the range follows
from the fact that PJ(t) = χJ(St) is an orthogonal projection which holds true for P̂J(t)
by the unitarity of U(t, a):

(P̂J(t))2 = U(a, t)PJ(t)U(t, a)U(a, t)PJ(t)U(t, a) = U(a, t)(PJ(t))2U(t, a) = P̂J(t)

(P̂J(t))∗ = U(a, t)(PJ(t))∗U(t, a) = U(a, t)PJ(t)U(t, a) = P̂J(t) .

The ranges and the kernels of PJ(t) and its evolved operator can be related to each other
by using the Kato dual for PJ(t):

ker (PJ(t)) = ran
(

(PJ(t))⊥
)

= ran (1 − PJ(t)) = ran
(
PJ{(t)

)
ran (PJ(t)) = ran

(
1 − (PJ(t))⊥

)
= ker

(
(PJ(t))⊥

)
= ker

(
PJ{(t)

)
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and the same for P̂J(t) with its Kato-dual (P̂J(t))⊥ = U(a, t)(PJ(t))⊥U(t, a). As the
isometry has trivial kernel, we get

ran
(
P̂J(t)

)
= ker

(
(P̂J(t))⊥

)
= (U(t, a))−1

{
((PJ(t))⊥)−1 {0}

}
= (U(t, a))−1

{
ker
(

(PJ(t))⊥
)}

= U(a, t)(ran (PJ(t))) .

Remark 8.2.14. One observes directly that Ŝ2
t = U(a, t)S2

t U(t, a). Alternatively, we
could have also used the holomorphic functional calculus for sectorial operators from Corol-
lary 8.1.2 to de�ne f(S2

t ) if S2
t is sectorial:

f(S2
t ) =

1

2πi

∫
γ
f(λ)R(λ, S2

t ) dλ

with R(λ, S2
t ) as resolvent and γ a Hankel-like curve along the rays of the sector (see again

�gure Fig. 8.1). Since the resolvent of Ŝ2
t obeys

R(λ, Ŝ2
t ) =

(
λ− Ŝ2

t

)−1
=
(
U(a, t)(λ− S2

t )U(t, a)
)−1

= (U(t, a))−1R(λ, S2
t )(U(t, a))−1

= U(a, t)R(λ, S2
t )U(t, a) ,

the calculus implies
f(Ŝ2

t ) = U(a, t)f(S2
t )U(t, a) . (8.51)

The advantage in using the spectral theorem for unbounded operators is that it also works
for non-sectorial operators. However, the calculation here is going to be useful in subsec-
tion 8.2.5.

After proving all necessary ingredients, the Γ -spectral �ow of the path {Ŝt} is well-de�ned
and we introduce the Γ -spectral �ow of a path of operators, acting on di�erent Hilbert Γ -
modules in a Hilbert Γ -module bundle as follows: let {H (t)}t∈[a,b] and {D(t)}t∈[a,b] be
given as introduced and let U in (8.48) be time-continuous.

De�nition 8.2.15. Given a continuous path {St}t∈[a,b], such that St ∈ F sa
Γ (D(t),H (t))

for each t, and let {P≥0(t)}t∈[a,b] be the path of spectral projections such that P≥0(t) =

χ(0,∞)(St) and P≥0(t) ∈ BΓ (H (t)) for each t; let {Ŝt}t∈[a,b] be the corresponding con-

tinuous path of evolved operators in F sa
Γ (D(a),H2(a)) and {P̂≥0(t)}t∈[a,b] the path of

projections in BΓ (H (a)) such that P̂≥0(t) = χ(0,∞)(Ŝt) for each t. For an L ∈ N consider
the partition a = t0 < t1 < · · · < tL = b such that∥∥∥ΠΓ (P̂≥0(s))− ΠΓ (P̂≥0(r))

∥∥∥
B(U(a,t)(H2(t)))

< 1 ∀ s, r ∈ [tj−1, tj ]

is satis�ed for each j ∈ {1, 2, .., L}. The modi�ed Γ-spectral �ow of the path {St}t∈[a,b]

is the number

s̃fΓ {St}t∈[a,b] := sfΓ

{
Ŝt

}
t∈[a,b]

=

L∑
j=1

indΓ (P̂≥0(tj−1)|P̂≥0(tj)) . (8.52)
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We will show that in fact s̃fΓ {St}t∈[a,b] = sfΓ {St}t∈[a,b] by showing that the Γ -spectral
�ow is invariant under conjugation with isometries. Because of the previous lemma, we
could rewrite this with the original projectors and the evolution operator between two
points in time of the partition:

indΓ (P̂≥0(tj−1)|P̂≥0(tj)) = indΓ

(
P̂≥0(tj−1)P̂≥0(tj)|ran(P̂≥0(tj))→ran(P̂≥0(tj−1))

)
= indΓ

(
U(a, tj−1)P≥0(tj−1)U(tj−1, tj)P≥0(tj)U(tj , a)

∣∣∣ran(P̂≥0(tj))→ran(P̂≥0(tj−1))

)
= indΓ

(
P≥0(tj−1)U(tj−1, tj)P≥0(tj)

∣∣∣ran(P≥0(tj))→ran(P≥0(tj−1))

)
where we have used that ran

(
P̂≷

)
= U(a, τ)(ran (P≷(τ))). Thus, (8.52) becomes

s̃fΓ {St}t∈[a,b] =
L∑
j=1

indΓ

(
P≥0(tj−1)U(tj−1, tj)P≥0(tj)

∣∣∣ran(P≥0(tj))→ran(P≥0(tj−1))

)
.

We see that the rough heuristical picture of spectral �ow as measure of the amount of
spectrum gained minus the amount of spectrum lost while moving along the path, is kept,
but in order to compare the spectra at two di�erent times the amount has to be transported
isometrically to the spectrum of a former point along the path.

8.2.4. Eta- and Rho-invariants in Γ-setting

M. Ramachandran introduced in [Ram93] in his proof of Theorem 1.0.4 the Γ -pendent for
the eta function (8.38) where the trace is replaced with the Γ -trace; more precisely, for any
Γ -invariant and geometric Dirac operator33 the Γ -eta function is de�ned via

ηΓ (z;A) =
1

Γ( z+1
2 )

∫ ∞
0

s
z−1

2 TrΓ

(
Ae−sA

2
)

ds . (8.53)

Ramachandran has also studied the Γ -eta invariant which is the value of ηΓ (z;A) at z = 0.
He has shown that it is well-de�ned and given by

ηΓ (A) :=
1√
π

∫ ∞
0

s−
1
2 TrΓ

(
Ae−sA

2
)

ds . (8.54)

To show well-de�nedness, he introduced the lower and upper truncated Γ -eta invariants

η>εΓ (A) =
1√
π

∫ ∞
ε

s−1/2TrΓ

(
Ae−sA

2
)

ds and

η<εΓ (A) =
1√
π

∫ ε

0
s−1/2TrΓ

(
Ae−sA

2
)

ds ; (8.55)

he studied the limit limε→∞ η
<ε
Γ (0;A) and moreover proved that the Γ -invariant �brewise

trace of the Γ -equivariant Schwartz kernel KA
Γ (p, q; s) (p, q ∈ Σ) of Ae−sA

2
behaves like

trEp
(
KA
Γ (p, p; s)

)
= O(s

1
2 ) for s→ 0+ . (8.56)

33E.g. the spin-Dirac, signature- or Gauss-Bonnet operator.
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Hence the asymptotic expansion of s−1/2trEp
(
KA
Γ (p, p; s)

)
near s = 0 does not contain any

singular terms. The coe�cients of the asymptotic expansion are also Γ -invariant such that
integrating over the fundamental domain of Σ does not change the asymptotic behaviour.

Thus, s−1/2TrΓ

(
Ae−sA

2
)

= O(1) and it becomes integrable near 0. This observation from

(8.56) is known as Bismut-Freed-cancellation property (see [Ram93, Lem.3.1.1] or [BF86])
and the upper truncated Γ -eta invariant becomes well-de�ned and

lim
ε→0+

η<εΓ (A) = 0 . (8.57)

The well-de�nedness of the lower truncated Γ -eta invariant exists because the integrand is
rapidly decreasing for s → ∞ which has been used for the proof in [Ram93]. He showed
that

lim
ε→∞

η<εΓ (A) = ηΓ (A) (8.58)

such that the integral (8.54) and also the Γ -xi invariant

ξΓ (A) :=
ηΓ (A) + dimΓ ker (A)

2
(8.59)

are well-de�ned. The latter appears to be the boundary contribution of the Γ -index (1.3)
in Theorem 1.0.4. The di�erence of ηΓ (A) and the ordinary eta-invariant (8.39) for the
operator A on the compact base, which lifts to A on the covering, is studied for several
geometric operators and is de�ned as the relative Γ -eta /Cheeger-Gromov rho invariant
( [CG85], [BR15]):

ρΓ (A,A) := ηΓ (A)− η(A) . (8.60)

The di�erence
ηΓ (z;A)− η(z;A) (8.61)

is regular at z = 0 if both eta functions ηΓ (z;A), η(z;A) are regular at z = 0, i.e. both
eta-invariants are well-de�ned. If regularity of the eta-functions is a priori not given, the
short time asymptotics (s→ 0+) of the traces

Tr
(
Ae−sA

2
)

and TrΓ

(
Ae−sA

2
)

cancel and (8.61) becomes regular at z = 0, implying the well-de�nedness of (8.60).

If At and At are Riemannian spin-Dirac operators, we observe that they depend smoothly
on the parameter t as Cli�ord multiplication ct (·) and the Riemannian Levi-Civita con-
nection ∇Σt depend smoothly on t due to (6.62) and the Koszul formula. The dependence
of ρΓ on the parameter t has been studied for the signature and the spin-Dirac operator
for which the following result is known.

Proposition 8.2.16 (cf. Theorem 1.11 in [PS07]). If the path of smooth Riemannian
metrics

{
gt
}
t∈I has positive scalar curvature (i.e. RΣt > 0 for all t ∈ I), then ρΓ (At, At)

is constant.

According to [PS07, Rem.1.12], this result has been proven by Nigel Higson and Thomas
Schick in an unpublished work. We refer to the given reference for more informations.
We end this subsection by focusing on the special case that Γ is �nite and thus Σ is
compact and an ordinary |Γ |-covering where |Γ | denotes the �nite cardinality of Γ . Following
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Proposition 5.2.8 (6) and [Shu, Sec.3.17] the Γ -trace of a Γ -trace-class operator C reduce
to

TrΓ (C) =
1

|Γ |
Tr (C) .

The Γ -dimension of a Hilbert Γ -submodule H is de�ned by the Γ -trace over a Γ -trace class
projector PH and reduces to

dimΓ (H ) =
1

|Γ |
Tr (PH ) =

1

|Γ |
dimC(H ) .

If H is already a free Hilbert Γ -module, it is unitarily isomorphic to l2(Γ)⊗H with Hilbert
space H. In this case we have |Γ | ·dimΓ (H ) = dimC(H). The Γ -eta and Γ -xi functions and
correspondingly their invariants at z = 0 for a Γ -invariant operator A in (8.54) and (8.59)
are then given by

ηΓ (z;A) =
1

|Γ |
η(z;A) and ξΓ (z;A) =

1

|Γ |
ξ(z;A) (8.62)

where each right-hand side is de�ned as in (8.39) and (8.40). We de�ne the di�erence in
(8.61) as the relative eta function ρ|Γ |(z;A,A):

ρΓ (z;A,A) =
1

|Γ |
η(z;A)− η(z;A) =

1

|Γ |
(η(z;A)− |Γ | η(z;A) =:

1

|Γ |
ρ|Γ |(z;A,A) . (8.63)

The well-de�nedness of the Cheeger-Gromov rho invariant implies that also the reduced
Γ -eta function is well-de�ned at z = 0 which de�nes the reduced eta-invariant ρ|Γ |(A,A) :=
ρ|Γ |(0;A,A). (8.63) vanishes for |Γ | = 1 because the cover coincides with the base and thus
A with A.

8.2.5. Analytic expression for the Γ-spectral �ow

As mentioned in the introduction of this chapter, we want an analytic expression of the
Γ -spectral �ow by means of the Γ -eta invariant as in (8.42). As a starting point we use
the result [AW11, Prop.3.3]. Based on the same algebraic de�nition of spectral �ow, the
authors have proven an analytic spectral �ow formula, similar to (8.42), for any type II
von Neumann algebra setting. We only need to adapt their result to our setting.

sfΓ {At}t∈[t1,t2] =
η>εΓ (A2) + dimΓ ker (A2)

2
−
η>εΓ (A1) + dimΓ ker (A1)

2

+

√
ε

π

∫ t2

t1

TrΓ

(
Ȧte
−εA2

t

)
dt

= ξ>εΓ (A2)− ξ>εΓ (A1) +

√
ε

π

∫ t2

t1

TrΓ

(
Ȧte
−εA2

t

)
dt (8.64)

for all ε > 0 where ξ>εΓ (Ai) are the lower truncated Γ -xi invariants ξ>εΓ (Ai) from (8.59)
where the Γ -eta invariants are replaced by the lower truncated Γ -eta invariant (8.55). Ȧt
is the derivative of At with respect to t.

The truncation parameter ε has been introduced to bypass possible irregularities of the
trace of Ae−sA

2
at s = 0 for any von Neumann algebra setting. In view of (8.57) we can
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get rid of the dependence on ε in the Γ -setting. We rewrite (8.64) with the well-de�ned
upper truncated Γ -eta invariants and consider the limit ε→ 0+:

sfΓ {At}t∈[t1,t2] = ξΓ (A2)− ξΓ (A1) +
η<εΓ (A1)− η<εΓ (A2)

2

+

√
ε

π

∫ t2

t1

TrΓ

(
Ȧte
−εA2

t

)
dt .

(8.65)

The integral part can be expressed as the derivative of η>εΓ (At).

Lemma 8.2.17.
d

dt
η>εΓ (At) = −2

√
ε

π
TrΓ

(
Ȧte
−εA2

t

)
.

Proof. The main part of the proof consists of justifying the interchange of derivatives and
integration over the fundamental domain of Σt. To simplify the calculation we consider
again the evolved operators Ât := U(t1, t)AtU(t, t1) and e−sÂ

2
t = U(t1, t)e

−sA2
tU(t, t1)

where U(t, t1) is the natural isometry on a Hilbert Γ -module which contains the domain
of At as dense subset and is de�ned by parallel transport (see subsection 6.3.4). This
allows us to consider the �brewise trace of the heat kernel and the Γ -volume measure with
respect to the reference hypersurface Σ1. Like in the construction of the modi�ed Γ -spectral
�ow it ensures that the operator Ât acts on one and the same domain. This simpli�es the

calculation because then the only t- and s-dependence comes from s−1/2trEp

(
K̂Γ (p, p, t; s)

)
where K̂Γ (p, p, t; s) is the Schwartz kernel of Âte−sÂ

2
t along the diagonal in Σ1 × Σ1. We

want to show that

(1) ∂tTrΓ

(
Âte
−sÂ2

t

)
= TrΓ

(
∂t(Âte

−sÂ2
t )
)

,

(2) ∂ss1/2TrΓ

(
Ȧte
−sA2

t

)
= TrΓ

(
∂s(s

1/2Ȧte
−sA2

t )
)

.

Denote by K̇Γ (p, p, t; s) the Schwartz kernel of Ȧte−sA
2
t . The map p 7→ trEp

(
K̂Γ (p, p, t; s)

)
is integrable for all t over the fundamental domain F of Σ since Ate−sA

2
t and thus Âte−sÂ

2
t

are Γ -trace class for all t. Ȧt is an unbounded operator, but since e−sA
2
t is Γ -trace class and

smoothing, the composition Ȧte−sA
2
t becomes Γ -trace class for all s ≥ 0 and all t which

won't change if we multiply with s1/2. So the map p 7→ s1/2trEp

(
K̇Γ (p, p, t; s)

)
is also

integrable over F for all s ≥ 0 and t. The smoothness of At, e−sA
2
t and di�erentiability

of U(·, t) and U(t, ·) with respect to t imply di�erentiability of Âte−sÂ
2
t . In terms of the

Schwartz kernel, this is inherited by the fact that near s = 0 (choose ε > 0 small enough)
K̂Γ (p, p, t; s) has an asymptotic expansion of the form

trEp

(
K̂Γ (p, p, t; s)

)
∼

s→ 0+

∞∑
j≥n+3

2

âj(p, t)s
−n−2j+1

2 ;

with coe�cients âj(p, t) which are di�erentiable with respect to t because they are locally
computed by the �brewise trace over t-di�erentiable curvature expressions which are in
turn expressions in gt. The cancellation property (8.56) forces the sum to start at the �rst
positive exponent in s which explains the starting index of the asymptotic summation.
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Thus, the map t 7→ K̂Γ (p, p, t; s) is di�erentiable for all s and p ∈ F with derivative given
by the derivative of the expansion coe�cients. Hence the asymptotic expansion of the
�brewise trace of the Schwartz kernel K̇Γ (p, p, t; s) takes the form

s1/2trEp

(
K̇Γ (p, p, t; s)

)
∼

s→ 0+

∞∑
j≥n+3

2

bj(p, t)s
−n−2j

2 . (8.66)

The coe�cients bj(p, t) are smooth in t due to their local de�nitions via curvature expres-

sions. We also observe that s1/2trEp

(
K̇Γ (p, p, t; s)

)
is di�erentiable in s and its derivative

∂s

[
s1/2trEp

(
K̇Γ (p, p, t; s)

)]
exists for all p ∈ F . The expressions

∂ttrEp

(
K̂Γ (p, p, t; s)

)
and ∂s

[
s1/2trEp

(
K̇Γ (p, p, t; s)

)]
are continuous in t and respectively s, so restricting to any subinterval It ⊂ R for t and
Is ⊂ [0,∞) gives an integrable majorant in each case. The two claims (1) and (2) are
then justi�ed by the dominated convergence theorem and so we can compute the terms as
follows:

∂tTrΓ

(
Âte
−sÂt

2) (1)
= TrΓ

(
∂t(Âte

−sÂ2
t )
)

= TrΓ

(
∂t[U(t1, t)Ate

−sA2
tU(t, t1)]

)
= TrΓ

(
U̇(t1, t)Ate

−sA2
tU(t, t1) + U(t1, t)Ate

−sA2
t U̇(t, t1)

)
+TrΓ

(
U(t1, t)∂t(Ate

−sA2
t )U(t, t1)

)
(∗)
= TrΓ

(
Ȧte
−sA2

t +At∂te
−sA2

t

)
= TrΓ

(
Ȧte
−sA2

t − sAtȦtAte−sA
2
t

)
(∗∗)
= TrΓ

(
Ȧt(e

−sA2
t − sA2

t e
−sA2

t )
)

= TrΓ

(
Ȧt (1 + 2s∂s) e−sA

2
t

)
.

In (∗) we used that by unitarity we have U̇(t1, t)U(t, t1) = −U(t1, t)U̇(t, t1) and since U
and U̇Ate−sA

2
t are bounded, we can rearrange under the Γ -trace in cyclic order such that

the �rst two terms cancel each other. For the same reason the isometries cancel each other
in the remaining term. For (∗∗) we used, that At is unbounded, but A2

t is sectorial such
that e−sA

2
t and Akt e

−sA2
t are bounded for all k, since e−sA

2
t is smoothing, and At commutes

with e−sA
2
t . This allows us to commute cyclically under the trace as follows:

TrΓ

(
AtȦtAte

−sA2
t

)
= TrΓ

(
AtȦtAte

− s
2
A2
t e−

s
2
A2
t

)
= TrΓ

(
e−

s
2
A2
tAtȦtAte

− s
2
A2
t

)
= TrΓ

(
Ate
− s

2
A2
t Ȧte

− s
2
A2
tAt

)
= TrΓ

(
Ȧte
− s

2
A2
tA2

t e
− s

2
A2
t

)
= TrΓ

(
ȦtA

2
t e
−sA2

t

)
.

We can multiply with s−1/2 = 2∂ss
1/2 which leads to

∂ts
−1/2TrΓ

(
Âte
−sÂ2

t

)
= TrΓ

(
Ȧt

(
s−1/2 + 2s1/2∂s

)
e−sA

2
t

)
= 2TrΓ

(
∂s

(
Ȧts

1/2e−sA
2
t

))
(2)
= 2∂sTrΓ

(
Ȧts

1/2e−sA
2
t

)
.
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We perform the integration over s ∈ (ε,∞): on one hand we get∫ ∞
ε

∂sTrΓ

(
Ȧts

1/2e−sA
2
t

)
ds = −

√
εTrΓ

(
Ȧte
−εA2

t

)
.

On the other hand s−1/2TrΓ

(
Âte
−sÂ2

t

)
is integrable for all t and the partial derivative with

respect to t exists, so we can conclude again with the dominated convergence theorem that∫ ∞
ε

∂sTrΓ

(
Ȧts

1/2e−sA
2
t

)
ds =

1

2

∫ ∞
ε

∂t

[
s−1/2TrΓ

(
Âte
−sÂ2

t

)]
ds

=
1

2

d

dt

∫ ∞
ε

s−1/2TrΓ

(
Âte
−sÂ2

t

)
ds =

√
π

2

d

dt
η>εΓ (At)

=

√
π

2

d

dt
ηΓ (At)−

√
π

2

d

dt
η<εΓ (At)

and �nally the claim.

With this observations we can rewrite (8.65) further into

sfΓ {At}t∈[t1,t2] = ξΓ (A2)− ξΓ (A1) +
η<εΓ (A1)− η<εΓ (A2)

2
− 1

2

∫ t2

t1

d

dt
ηΓ (At) dt

+
1

2

∫ t2

t1

d

dt
η<εΓ (At) dt .

We repeat the last step from the former proof, but perform the integration for s ∈ [0, ε)
giving us on one hand∫ ε

0
∂sTrΓ

(
Ȧts

1/2e−sA
2
t

)
ds =

√
εTrΓ

(
Ȧte
−εA2

t

)
and on the other hand with a similar argument∫ ε

0
∂sTrΓ

(
Ȧts

1/2e−sA
2
t

)
ds =

√
π

2

d

dt
η<εΓ (At) .

The asymptotic expansion in ε near 0 for TrΓ

(
Ȧte
−εA2

t

)
can be calculated with (8.66) and

shows that the last expression is O(ε3/2) and thus

sfΓ {At}t∈[t1,t2] = ξΓ (A2)− ξΓ (A1)− 1

2

∫ t2

t1

d

dt
ηΓ (At) dt+

η<εΓ (A1)− η<εΓ (A2)

2
+O(ε3/2) .

The left-hand side does not depend on the truncating parameter, so we can consider the
limit ε → 0+ for which the latter three terms vanish according to (8.57). As a result, we
have worked out a Γ -version of (8.42):

sfΓ {At}t∈[t1,t2] = ξΓ (A2)− ξΓ (A1)− 1

2

∫ t2

t1

d

dt
ηΓ (At) dt . (8.67)

In subsection 8.2.3 we have de�ned the modi�ed Γ -spectral �ow as the ordinary Γ -spectral
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�ow of the evolved family of Dirac operators. Because any functional calculus is invariant
under conjugation with isometries, we have

e−sÂ
2
t = e−sU(t1,t)A2

tU(t,t1) = U(t1, t)e
−sA2

tU(t, t1)

and with cyclic permutation under the Γ -trace

TrΓ

(
Âte
−sÂ2

t

)
= TrΓ

(
U(t1, t)Ate

−sA2
tU(t, t1)

)
= TrΓ

(
U(t, t)Ate

−sA2
t

)
= TrΓ

(
Ate
−sA2

t

)
.

(8.67) then shows that our modi�ed Γ -spectral �ow coincides with the ordinary Γ -spectral
�ow:

sfΓ {At}t∈[t1,t2] = sfΓ

{
Ât

}
t∈[t1,t2]

= s̃fΓ {At}t∈[t1,t2] . (8.68)

All of these results of course transfer to the smooth family of twisted hypersurface Dirac
operators {AELt }.
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9. Γ-Fredholmness and Γ-indices of the

Dirac-wave evolution operators

We present regularity and Fredholmness of Q and Q̃ as well as their spectral decomposits
with respect to the splitting due to boundary conditions. We �rst focus on Γ -Fredholmness
under (a)APS boundary conditions in the �rst section. These results are then extended to
g(a)APS boundary conditions in the second section. The last section is dedicated to the
computation of the Γ -indices which will turn out to be related to the Γ -spectral �ow.

9.1. Γ-Fredholmness for (a)APS boundary conditions

We start with (a)APS boundary conditions and consider the decomposition of L2
Γ -spaces

for spinors on the lower and upper Cauchy boundaries Σ1 and Σ2 due to these boundary
conditions. These imply a decomposition of QEL and Q̃EL like (1.6). We investigate how
the Fourier integral operator character of the wave evolution operators transfers to each
spectral entry. The Γ -Fredholmness of QEL and Q̃EL as unitary Γ -morphisms between
L2
Γ -spaces likewise motivates the question how unitarity and Fredholmness carry over to

the spectral entries.

9.1.1. Q and Q̃ under (a)APS boundary conditions

If we apply the splittings in (8.25) for positive chirality to Q(t2, t1), it allows us to rewrite
the operator as a (2× 2)-matrix

Q(t2, t1) =

(
Q++(t2, t1) Q+−(t2, t1)
Q−+(t2, t1) Q−−(t2, t1)

)
(9.1)

like in (1.6). We de�ne the entries as maps of the form

Q++(t2, t1) : L2
Γ (S+(Σ1)) → L2

Γ ,(0,∞)(S+(Σ2))

u 7→ P>0(t2) ◦Q(t2, t1) ◦ P≥0(t1)u
Q−−(t2, t1) : L2

Γ (S+(Σ1)) → L2
Γ ,(−∞,0](S+(Σ2))

u 7→ P≤0(t2) ◦Q(t2, t1) ◦ P<0(t1)u
Q+−(t2, t1) : L2

Γ (S+(Σ1)) → L2
Γ ,(0,∞)(S+(Σ2))

u 7→ P>0(t2) ◦Q(t2, t1) ◦ P<0(t1)u
Q−+(t2, t1) : L2

Γ (S+(Σ1)) → L2
Γ ,(−∞,0](S+(Σ2))

u 7→ P≤0(t2) ◦Q(t2, t1) ◦ P≥0(t1)u

. (9.2)

These matrix entries will be referred on as spectral or rather matrix entries. We call Q±±
the diagonal34 and Q±∓ the o�-diagonal entries of Q. We will also need these operators,

34We follow the convention in footnote 26 and write Q±± for either Q++ or Q−− while Q±∓ is either Q+−
or Q−+. We apply this to all coming quantities with similar subscripts.
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acting as maps on spectral subspaces of L2
Γ (S+(Σ1)):

Q++(t2, t1) = P>0(t2) ◦Q(t2, t1) : L2
Γ ,[0,∞)(S+(Σ1)) → L2

Γ ,(0,∞)(S+(Σ2))

Q−−(t2, t1) = P≤0(t2) ◦Q(t2, t1) : L2
Γ ,(−∞,0)(S+(Σ1)) → L2

Γ ,(−∞,0](S+(Σ2))

Q+−(t2, t1) = P>0(t2) ◦Q(t2, t1) : L2
Γ ,(−∞,0)(S+(Σ1)) → L2

Γ ,(0,∞)(S+(Σ2))

Q−+(t2, t1) = P≤0(t2) ◦Q(t2, t1) : L2
Γ ,[0,∞)(S+(Σ1)) → L2

Γ ,(−∞,0](S+(Σ2))

. (9.3)

Any spectral entry in (9.3) is a bounded and Γ -invariant operator because Q(t2, t1) is a
Γ -isomorphism between Hs

Γ -spaces due to De�nition 7.3.5; the projectors are equally Γ -
morphisms as maps between L2

Γ -subspaces due to (8.14) and Proposition 5.3.7 (4). As the
spectral subspaces of L2

Γ are closed and free Hilbert Γ -modules (recall Lemma 8.1.5), all
entries in (9.3) have closed range. The commuting with the left action representation is
clear. Hence these observations prove the following result.

Lemma 9.1.1. All spectral entries in (9.3) are Γ -morphism between Hilbert Γ -modules, i.e.

Q++(t2, t1) ∈ BΓ (L
2
Γ ,[0,∞)(S+(Σ1)), L2

Γ ,(0,∞)(S+(Σ2)))

Q−−(t2, t1) ∈ BΓ (L
2
Γ ,(−∞,0)(S+(Σ1)), L2

Γ ,(−∞,0](S+(Σ2)))

Q+−(t2, t1) ∈ BΓ (L
2
Γ ,(−∞,0)(S+(Σ1)), L2

Γ ,(0,∞)(S+(Σ2)))

Q−+(t2, t1) ∈ BΓ (L
2
Γ ,[0,∞)(S+(Σ1)), L2

Γ ,(−∞,0](S+(Σ2)))

.

Furthermore, all ranges are closed.

The unitarity property on L2-sections in Lemma 7.2.3 (5) implies that the o�-diagonal
entries are isomorphisms between the kernels of the diagonal entries and their adjoints.

Lemma 9.1.2. The operators Q+−(t2, t1) and Q−+(t2, t1) restrict to Γ -isomorphisms

Q+−(t2, t2) : ker (Q−−(t2, t1)) → ker ((Q++(t2, t1))∗)

Q−+(t2, t2) : ker (Q++(t2, t1)) → ker ((Q−−(t2, t1))∗)
.

Proof. The result is shown in [BS19, Lem.2.5] which can be taken without any further
modi�cations because the proof is purely algebraic. For the sake of completeness we re-
peat their arguments.

The matrix representation (9.1) is done with respect to sections in L2
Γ (S+(Σj)) for j ∈

{1, 2}. From (Q(t2, t1))∗Q(t2, t1) = 1L2
Γ (S+(Σ1)) and Q(t2, t1)(Q(t2, t1))∗ = 1L2

Γ (S+(Σ2)) we
get the following system of equations:

(Q++(t2, t1))∗Q++(t2, t1) + (Q−+(t2, t1))∗Q−+(t2, t1) = 1

(Q+−(t2, t1))∗Q+−(t2, t1) + (Q−−(t2, t1))∗Q−−(t2, t1) = 1

(Q++(t2, t1))∗Q+−(t2, t1) + (Q−+(t2, t1))∗Q−−(t2, t1) = 0
(Q+−(t2, t1))∗Q++(t2, t1) + (Q−−(t2, t1))∗Q−+(t2, t1) = 0

(9.4)

and
Q++(t2, t1)(Q++(t2, t1))∗ +Q+−(t2, t1))(Q+−(t2, t1))∗ = 1

Q−+(t2, t1)(Q−+(t2, t1))∗ +Q−−(t2, t1))(Q−−(t2, t1))∗ = 1

Q++(t2, t1)(Q−+(t2, t1))∗ +Q+−(t2, t1))(Q−−(t2, t1))∗ = 0
Q−+(t2, t1)(Q++(t2, t1))∗ +Q−−(t2, t1))(Q+−(t2, t1))∗ = 0

. (9.5)
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Suppose u ∈ L2
Γ (S+(Σ1))∩ker (Q−−(t2, t1)); applying the third equation of (9.4) to u shows

(Q++(t2, t1))∗Q+−(t2, t1)u = 0 and thus Q+−(t2, t1)u ∈ L2
Γ (S+(Σ1)) ∩ ker ((Q++(t2, t1)∗).

If one takes u ∈ L2
Γ (S+(Σ1))∩ker (Q++(t2, t1)), one can observe from the fourth equation in

(9.4) that Q−+(t2, t1)u ∈ L2
Γ (S+(Σ1))∩ ker ((Q−−(t2, t1)∗). Thus, the operators, restricted

to the given kernels, map to the corresponding kernels as given in the Lemma to show. If
vice versa u lies in the kernel of (Q++(t2, t1))∗, the fourth equation in (9.5) implies that
(Q+−(t2, t1))∗u lies in ker (Q−−(t2, t1)). Using the third equation in (9.5) for a section u in
ker ((Q−−(t2, t1)∗) shows (Q−+(t2, t1))∗u ∈ ker (Q++(t2, t1)). Thus, the adjoints of the op-
erators map between the same kernels in reversed direction. This observation and the non-
vanishing equations in (9.4) and (9.5) lead to the conclusion that the restricted operators
are isomorphisms because taking again u in the kernel of Q−−(t2, t1) implies from the sec-
ond equation in (9.4) that (Q+−(t2, t1))∗Q+−(t2, t1)u = u; Q+−(t2, t1)(Q+−(t2, t1))∗v = v
is implied from the �rst equation in (9.5) if v lies in the kernel of (Q++(t2, t1))∗. So
the compositions (Q+−(t2, t1))∗Q+−(t2, t1) and Q+−(t2, t1)(Q+−(t2, t1))∗ act as identities
on the kernels and thus (Q+−(t2, t1))∗ becomes the inverse operator of Q+−(t2, t1). One
proves from the so far unused equations in (9.4) and (9.5) with an analogue argument that
(Q−+(t2, t1))∗ is the inverse operator of Q−+(t2, t1).

All isomorphisms act between kernels of Γ -invariant operators. As those kernels are projec-
tive Hilbert Γ -modules and in particular Γ -invariant, the isomorphisms become Γ -invariant
as well.

If we apply the splittings in (8.25) for negative chirality to Q̃(t2, t1), we get a similar
description as (2x2)-matrix:

Q̃(t2, t1) =

(
Q̃++(t2, t1) Q̃+−(t2, t1)

Q̃−+(t2, t1) Q̃−−(t2, t1)

)
(9.6)

where the matrix entries are analogously de�ned via

Q̃++(t2, t1) : L2
Γ (S−(Σ1)) → L2

Γ ,(0,∞)(S−(Σ2))

u 7→ P>0(t2) ◦ Q̃(t2, t1) ◦ P≥0(t1)u

Q̃−−(t2, t1) : L2
Γ (S−(Σ1)) → L2

Γ ,(−∞,0](S−(Σ2))

u 7→ P≤0(t2) ◦ Q̃(t2, t1) ◦ P<0(t1)u

Q̃+−(t2, t1) : L2
Γ (S−(Σ1)) → L2

Γ ,(0,∞)(S−(Σ2))

u 7→ P>0(t2) ◦ Q̃(t2, t1) ◦ P<0(t1)u

Q̃−+(t2, t1) : L2
Γ (S−(Σ1)) → L2

Γ ,(−∞,0](S−(Σ2))

u 7→ P≤0(t2) ◦ Q̃(t2, t1) ◦ P≥0(t1)u .

(9.7)

We also need to consider the restrictions to certain spectral subspaces as in the case for
positive chirality.

Q̃++(t2, t1) = P>0(t2) ◦ Q̃(t2, t1) : L2
Γ ,[0,∞)(S−(Σ1)) → L2

Γ ,(0,∞)(S−(Σ2))

Q̃−−(t2, t1) = P≤0(t2) ◦ Q̃(t2, t1) : L2
Γ ,(−∞,0)(S−(Σ1)) → L2

Γ ,(−∞,0](S−(Σ2))

Q̃+−(t2, t1) = P>0(t2) ◦ Q̃(t2, t1) : L2
Γ ,(−∞,0)(S−(Σ1)) → L2

Γ ,(0,∞)(S−(Σ2))

Q̃−+(t2, t1) = P≤0(t2) ◦ Q̃(t2, t1) : L2
Γ ,[0,∞)(S−(Σ1)) → L2

Γ ,(−∞,0](S−(Σ2))

. (9.8)
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Since Q̃ is equally a unitary Γ -morphism on L2
Γ , its matrix representation (9.6) implies the

following set of equations:

(Q̃++(t2, t1))∗Q̃++(t2, t1) + (Q̃−+(t2, t1))∗Q̃−+(t2, t1) = 1

(Q̃+−(t2, t1))∗Q̃+−(t2, t1) + (Q̃−−(t2, t1))∗Q̃−−(t2, t1) = 1

(Q̃++(t2, t1))∗Q̃+−(t2, t1) + (Q̃−+(t2, t1))∗Q̃−−(t2, t1) = 0

(Q̃+−(t2, t1))∗Q̃++(t2, t1) + (Q̃−−(t2, t1))∗Q̃−+(t2, t1) = 0

(9.9)

and
Q̃++(t2, t1)(Q̃++(t2, t1))∗ + Q̃+−(t2, t1))(Q̃+−(t2, t1))∗ = 1

Q̃−+(t2, t1)(Q̃−+(t2, t1))∗ + Q̃−−(t2, t1))(Q̃−−(t2, t1))∗ = 1

Q̃++(t2, t1)(Q̃−+(t2, t1))∗ + Q̃+−(t2, t1))(Q̃−−(t2, t1))∗ = 0

Q̃−+(t2, t1)(Q̃++(t2, t1))∗ + Q̃−−(t2, t1))(Q̃+−(t2, t1))∗ = 0

. (9.10)

The pendent of Lemma 9.1.2 for negative chirality can be proven equally.

Lemma 9.1.3. The operators Q̃+−(t2, t1) and Q̃−+(t2, t1) restrict to Γ -isomorphisms

Q̃+−(t2, t2) : ker
(
Q̃−−(t2, t1)

)
→ ker

(
(Q̃++(t2, t1))∗

)
Q̃−+(t2, t2) : ker

(
Q̃++(t2, t1)

)
→ ker

(
(Q̃−−(t2, t1))∗

)
We also get a pendent for Lemma 9.1.1

Lemma 9.1.4. All spectral entries in (9.8) are Γ -morphisms between Hilbert Γ -modules,
i.e.

Q̃++(t2, t1) ∈ BΓ (L
2
Γ ,[0,∞)(S−(Σ1)), L2

Γ ,(0,∞)(S−(Σ2)))

Q̃−−(t2, t1) ∈ BΓ (L
2
Γ ,(−∞,0)(S−(Σ1)), L2

Γ ,(−∞,0](S−(Σ2)))

Q̃+−(t2, t1) ∈ BΓ (L
2
Γ ,(−∞,0)(S−(Σ1)), L2

Γ ,(0,∞)(S−(Σ2)))

Q̃−+(t2, t1) ∈ BΓ (L
2
Γ ,[0,∞)(S−(Σ1)), L2

Γ ,(−∞,0](S−(Σ2)))

with closed ranges.

All made results remain true if we twist the graded spinor bundles with EL. We just
have to replace Q with QEL and Q̃ with Q̃EL ; the projectors are then de�ned with respect
to the twisted hypersurface Dirac operator.

9.1.2. Regularity properties of the matrix entries

We have seen how unitarity of the Dirac-wave evolution operators as Γ -morphisms on L2
Γ

carry over to the matrix entries in (9.1) and (9.6). We now want to clarify how their
regularity as Fourier integral operator transfers to the spectral entries. To do so, we need
to investigate whether the compositions of the wave evolution operators with the projectors
as s-regular pseudo-di�erential operators are meaningful on the level of Fourier integral
operators. We will show that these compositions are s-regular Fourier integral operators
of the same order and with same canonical relation as for Q and Q̃; hence they di�er from
a properly supported Fourier integral operator in a s-smoothing operator.

Proposition 9.1.5. The operators in (9.2) and (9.7) as well as their twisted versions are
Γ -invariant Fourier integral operators of order 0 modulo s-smoothing remainders, i.e.
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(1) Q±±(t2, t1), Q±∓(t2, t1) ∈ SFIO0
Γ (Σ1,Σ2; C′1→2;Hom(S+(Σ1), S+(Σ2))) ;

(2) Q̃±±(t2, t1), Q̃±∓(t2, t1) ∈ SFIO0
Γ (Σ1,Σ2; C′1→2;Hom(S−(Σ1), S−(Σ2))) ;

(3) QEL±±(t2, t1), QEL±∓(t2, t1) ∈ SFIO0
Γ (Σ1,Σ2; C′1→2;Hom(S+

L,E(Σ1), S+
L,E(Σ2))) ;

(4) Q̃EL±±(t2, t1), Q̃EL±∓(t2, t1) ∈ SFIO0
Γ (Σ1,Σ2; C′1→2;Hom(S−L,E(Σ1), S−L,E(Σ2))) .

Proof. We prove (1) of this assertion as the following arguments can be transferred to the
proof of (2) by replacing Q with Q̃; (3) as well (4) follow with the same reasoning.

Let P±(tj) be either P>0(tj) for the plus case or P<0(tj) for the minus case; these pro-
jectors are elements in SΨ0

Γ (Σj , S+(Σj)) ((8.14)). According to Remarks 8.1.4 (i) they
can be decomposed as P±(tj) = p±(tj) + r±(tj) where r±(tj) ∈ SΨ−∞Γ (Σj , S+(Σj)) and
p±(tj) ∈ Ψ0

Γ ,cl(Σj , S+(Σj)) are properly supported and classical Γ -pseudo-di�erential oper-
ators. The other projectors P≥0(tj) and P≤0(tj) di�er from P>0(tj) respectively P<0(tj)
in an s-smoothing projector P0(tj). We write r̃±(tj) for r±(tj) + P0(tj) such that

P≥0(tj) = p+(tj) + r̃+(tj) and P≤0(tj) = p−(tj) + r̃−(tj) .

Each spectral entry in (9.2) can be split up into a sum of a properly supported Γ -Fourier
integral operator and a s-smoothing operator:

Q±±(t2, t1) = q±±(t2, t1) +R±±(t2, t1) with q±±(t2, t1) := p±(t2) ◦Q ◦ p±(t1)

and R±±(t2, t1) := r̃±(t2) ◦Q ◦ p±(t1) + p± ◦Q ◦ r±(t1) + r̃±(t2) ◦Q ◦ r±(t1) ;

Q±∓(t2, t1) = q±∓(t2, t1) +R±∓(t2, t1) with q±∓(t2, t1) := p±(t2) ◦Q ◦ p∓(t1)

and R±∓(t2, t1) := r̃±(t2) ◦Q ◦ p∓(t1) + p± ◦Q ◦ r∓(t1) + r̃±(t2) ◦Q ◦ r∓(t1) .

The triple compositions q±± and q±∓ of properly supported operators are properly sup-
ported Fourier integral operators of order 0 with canonical relation (7.14) since the com-
position of N∗diag(Σj) and C1→2 is proper, transversal, and results in C1→2:

q±±(t2, t1), q±∓(t2, t1) ∈ FIO0
Γ ,prop(Σ2; C′1→2;Hom(S+(Σ1), S+(Σ2))) . (9.11)

The remainders R±±(t2, t1) and R±∓(t2, t1) are sums of compositions between s-smoothing
pseudo-di�erential operators and the properly supported Fourier integral operator Q. As
p± is a properly supported pseudo-di�erential operator of order 0, it maps Hs

Γ (S+(Σ1))
to Hs

Γ (S+(Σ1)) for any s ∈ R (see Proposition 5.3.3 (1)). Composing with Q is on one
hand well-de�ned as Fourier integral operator, but on the other hand gives a map from
Hs
Γ (S+(Σ1)) to Hs

Γ (S+(Σ2)) for any s ∈ R. Since r± and r̃± are s-smoothing, they map be-
tween any two Γ -Sobolev spaces. As this holds true for the �rst two summands in R±± and
R±∓, they become s-smoothing, too. Q(t2, t1) on the other hand only maps H∗Γ (S+(Σ1))
to H∗Γ (S+(Σ2)) without a�ecting the order. Hence the remaining triple compositions of
the form r̃ ◦Q ◦ r are equally s-smoothing wherefore R±± and R±∓ become s-smoothing.

The intertwining of the left action representations is clear since every part in the com-
position is a Γ -invariant operator on its own right. Summing up, this shows that Q±±
and Q±∓ are sums of properly supported Γ -Fourier integral operators and s-smoothing
operators and thus elements in SFIO0

Γ (Σ1,Σ2; C′1→2;Hom(S+(Σ1), S+(Σ2))).
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Now we are able to compute the principal symbols of the compositions by multiplication
since the character of C1→2, being a disjoint union of graphs of symplectomorphisms, has
been preserved under the above calculated composition. In doing so, we observe that we
can improve the result for the o�-diagonal entries.

Proposition 9.1.6.

(1) Q±∓(t2, t1) ∈ SFIO−1
Γ (Σ1,Σ2; C′1→2;Hom(S+(Σ1), S+(Σ2))) ;

(2) Q̃±∓(t2, t1) ∈ SFIO−1
Γ (Σ1,Σ2; C′1→2;Hom(S−(Σ1), S−(Σ2))) ;

(3) QEL±∓(t2, t1) ∈ SFIO−1
Γ (Σ1,Σ2; C′1→2;Hom(S+

L,E(Σ1), S+
L,E(Σ2))) ;

(4) Q̃EL±∓(t2, t1) ∈ SFIO−1
Γ (Σ1,Σ2; C′1→2;Hom(S−L,E(Σ1), S−L,E(Σ2))) .

Proof. We will �rst prove (1) and (2). For (3) and (4) we will observe that the former
claims become important and their use simplify the argumentation.

We start with (1): let q±∓(t2, t1) be the properly supported part of Q±∓(t2, t1) from (9.11);
their principal symbols are the same up to smoothing terms which are not contributing;
the same holds for the symbol of the s-regular projectors. The fact, that the resulting
canonical relation and thus its nature as graph of a symplectomorphism are preserved un-
der the composition, allows us to compute the principal symbol of the compositions by
just composing the principal symbol of each occuring operator (see (4.20)):

q±∓(x, ξ±; y, η) := σ0(q±∓)(x, ξ±; y, η) = σ0(Q±∓)(x, ξ±; y, η)

= σ0(p±)(x, ξ±) ◦ σ0(Q)(x, ξ±; y, η) ◦ σ0(p∓)(y, η)

for (x, ξ±) ∈ T ∗xΣ2 and (y, η) ∈ T ∗yΣ2. The principal symbol (7.25) of the wave evolution
operator comes with future- and past-pointing lightlike covectors ς± which restrict to ξ±
respectively at Σ2. We need to distinguish between these two directions in the principal
symbol calculation. For the future-pointing lightlike covector ς+ we have

q±∓(x, ξ+; y, η) =
‖η‖−1

gt1 (y)

8

(
1∓ ‖ξ+‖−1

gt2 (x) βct2

(
ξ]+

))
◦
(
−‖ξ+‖gt2 (x) β+ ct2

(
ξ]+

))
◦ P(x,ς+)←(y,ζ+) ◦ β ◦

(
1± ‖η‖−1

gt1 (y) βct1

(
η]
))

=
‖η‖−2

gt1 (y) ‖ξ+‖−1
gt2 (x)

8

(
‖ξ+‖gt2 (x) ∓ βct2

(
ξ]+

))
◦
(
−‖ξ+‖gt2 (x) β+ ct2

(
ξ]+

)
β2
)

◦ P(x,ς+)←(y,ζ+) ◦ β ◦
(
‖η‖gt1 (y) ± βct1

(
η]
))

=
‖η‖−2

gt1 (y) ‖ξ+‖−1
gt2 (x)

8

(
‖ξ+‖gt2 (x) ∓ βct2

(
ξ]+

))
◦
(
−‖ξ+‖gt2 (x) − βct2

(
ξ]+

))
◦ β ◦ P(x,ς+)←(y,ζ+) ◦ β ◦

(
‖η‖gt1 (y) ± βct1

(
η]
))

= −
‖η‖−2

gt1 (y) ‖ξ+‖−1
gt2 (x)

8

(
‖ξ+‖gt2 (x) ∓ βct2

(
ξ]+

))
◦
(
‖ξ+‖gt2 (x) + βct2

(
ξ]+

))
◦ β ◦ P(x,ς+)←(y,ζ+) ◦ β ◦

(
‖η‖gt1 (y) ± βct1

(
η]
))

.
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We used the fact that the parallel transport acts as linear isomorphism such that for �xed
(x, ξ±; y, η) the shift of the norms from one side of the composition to the other side of the
parallel transport operator does not a�ect the norm. A similar calculation shows a similar
formula for the past-pointing lightlike covector ς− which restricts to ξ− at Σ2:

q±∓(x, ξ−; y, η) = −
‖η‖−1

gt1 (y)

8

(
1∓ ‖ξ−‖−1

gt2 (x) βct2

(
ξ]−

))
◦
(
‖ξ−‖gt2 (x) β+ ct2

(
ξ]−

))
◦ P(x,ς−)←(y,ζ−) ◦ β ◦

(
1± ‖η‖−1

gt1 (y) βct1

(
η]
))

= −
‖η‖−2

gt1 (y) ‖ξ−‖
−1
gt2 (x)

8

(
‖ξ−‖gt2 (x) ∓ βct2

(
ξ]−

))
◦
(
‖ξ−‖gt2 (x) β+ ct2

(
ξ]−

)
β2
)

◦ P(x,ς−)←(y,ζ−) ◦ β ◦
(
‖η‖gt1 (y) ± βct1

(
η]
))

= −
‖η‖−2

gt1 (y) ‖ξ−‖
−1
gt2 (x)

8

(
‖ξ−‖gt2 (x) ∓ βct2

(
ξ]−

))
◦
(
‖ξ−‖gt2 (x) − βct2

(
ξ]−

))
◦ β ◦ P(x,ς−)←(y,ζ−) ◦ β ◦

(
‖η‖gt1 (y) ± βct1

(
η]
))

=
‖η‖−2

gt1 (y) ‖ξ−‖
−1
gt2 (x)

8

(
‖ξ−‖gt2 (x) ∓ βct2

(
ξ]−

))
◦
(
−‖ξ−‖gt2 (x) + βct2

(
ξ]−

))
◦ β ◦ P(x,ς−)←(y,ζ−) ◦ β ◦

(
‖η‖gt1 (y) ± βct1

(
η]
))

.

The composition of Cli�ord multiplications on the left-hand side of the parallel transport
in q±∓(x, ξ+; y, η) can be further analysed:(

‖ξ+‖gt2 (x) ∓ ct2

(
ξ]+

)
β
)
◦
(
‖ξ+‖gt2 (x) + ct2

(
ξ]+

)
β
)

= ‖ξ+‖2gt2 (x) + ‖ξ+‖gt2 (x) βct2

(
ξ]+

)
± ‖ξ+‖gt2 (x) βct2

(
ξ]+

)
∓ βct2

(
ξ]+

)
βct2

(
ξ]+

)
= ‖ξ+‖2gt2 (x) + (1∓ 1) ‖ξ+‖gt2 (x) βct2

(
ξ]+

)
± β2ct2

(
ξ]+

)2

= ‖ξ+‖2gt2 (x) + (1∓ 1) ‖ξ+‖gt2 (x) βct2

(
ξ]+

)
∓ gt2(ξ]+, ξ

]
+)

which vanishes for the upper signs; the same composition of Cli�ord multiplications in
q±∓(x, ξ−; y, η) on the other hand becomes(

‖ξ−‖gt2 (x) ∓ ct2

(
ξ]−

)
β
)
◦
(
−‖ξ−‖gt2 (x) + ct2

(
ξ]−

)
β
)

= −‖ξ−‖2gt2 (x) + ‖ξ−‖gt2 (x) βct2

(
ξ]−

)
± ‖ξ−‖gt2 (x) βct2

(
ξ]−

)
∓ βct2

(
ξ]−

)
βct2

(
ξ]−

)
= −‖ξ−‖2gt2 (x) + (1± 1) ‖ξ−‖gt2 (x) βct2

(
ξ]−

)
± β2ct2

(
ξ]−

)2

= −‖ξ−‖2gt2 (x) + (1± 1) ‖ξ−‖gt2 (x) βct2

(
ξ]−

)
∓ gt2(ξ]−, ξ

]
−)

which vanishes for the lower signs. Equation (6.10) has been used in each last line and

βct (X) = iβ2c (X) = −iβc (X)β = −ct (X)β (9.12)

for any spacelike vector �eld X along Σt. So q+−(x, ξ+; y, η) = q−+(x, ξ−; y, η) = 0. In
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order to show the vanishing of the other combinations, we need to use the following fact.

Claim.

P(x,ς±)←(y,ζ±)

(
∓‖η‖gt1 (y) β+ ct1

(
η]
))

=
(
∓‖ξ±‖gt2 (x) β+ ct2

(
ξ]±

))
P(x,ς±)←(y,ζ±) . (9.13)

In order to show this, we make use of the global parallelity of the Cli�ord multiplication
in the form of (6.21). We choose the path γ in (6.21) to be a lightlike geodesic, connecting
(y, ζ]±) and (x, ς]±); the parametrisation is chosen in such a way that γ(0) = x, γ̇(0) = ς]±
and γ(s) = y, γ̇(s) = ζ∗± are satis�ed for a �xed parameter s. We gain

P (γ)0
sc(ζ∗±) = c(ς∗±)P (γ)0

s with P (γ)0
s = P(x,ς±)←(y,ζ±) .

ζ± and ς± restrict to η at y ∈ Σ1 and respectively to ξ± at x ∈ Σ2; both are (anti-)parallel35

to ν such that one can make the ansatz

ζ∗±|Σ1 = ∓aν+ η] ,

ς∗±|Σ2
= ∓bν+ ξ]±

where the positive normalisation factors a, b can be determined by the constraint that both
vectors are lightlike:

0 = gy(ζ±) = −a2 + gt|y(η], η]) = −a2 + ‖η‖2gt1 (y) ⇒ a = ‖η‖gt1 (y)

and analogously b = ‖ξ±‖gt2 (x). The corresponding Cli�ord-multiplications are

c (ζ±|Σ1) = ∓‖η‖gt1 (y) c (ν) + ct1

(
η]
)

= ∓‖η‖gt1 (y) β+ ct1

(
η]
)

,

c (ς±|Σ1) = ∓‖ξ±‖gt2 (x) c (ν) + ct2

(
ξ]±

)
= ∓‖ξ±‖gt2 (x) β+ ct2

(
ξ]±

)
and with (6.21) the claim (9.13) is proven.

The other not already vanishing principal symbols also vanish by changing the order of
parallel transport and Cli�ord multiplication: denote as a shorthand notation the prefactor

‖η‖−2
gt1 (y) ‖ξ+‖−1

gt2 (x)

8
=: C(η, ξ±) .

We have to rearrange the left- and right-hand side of the parallel transport operators in
q−+(x, ξ+; y, η) and q+−(x, ξ−; y, η) by perfoming the Cli�ord multiplications with β in
order to apply (9.13):

35Since ν is chosen to be globally past-directed, the temporal projection of ζ+ is anti-parallel to ν whereas
the projection of ζ− in temporal direction is parallel; the same holds for ς±.
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q−+(x, ξ+; y, η) = −C(η, ξ+)
(
‖ξ+‖gt2 (x) + βct2

(
ξ]+

))
◦
(
‖ξ+‖gt2 (x) + βct2

(
ξ]+

))
◦β ◦ P(x,ς+)←(y,ζ+) ◦ β ◦

(
‖η‖gt1 (y) − βct1

(
η]
))

= −C(η, ξ+)
(
‖ξ+‖gt2 (x) + βct2

(
ξ]+

))
◦
(
‖ξ+‖gt2 (x) β+ βct2

(
ξ]+

)
β
)

◦P(x,ς+)←(y,ζ+) ◦
(
‖η‖gt1 (y) β− β

2ct1

(
η]
))

= −C(η, ξ+)
(
‖ξ+‖gt2 (x) + βct2

(
ξ]+

))
◦
(
‖ξ+‖gt2 (x) β− β

2ct2

(
ξ]+

))
◦P(x,ς+)←(y,ζ+) ◦

(
‖η‖gt1 (y) β− ct1

(
η]
))

= C(η, ξ+)
(
‖ξ+‖gt2 (x) + βct2

(
ξ]+

))
◦
(
−‖ξ+‖gt2 (x) β+ ct2

(
ξ]+

))
◦P(x,ς+)←(y,ζ+) ◦

(
‖η‖gt1 (y) β− ct1

(
η]
))

(9.13)
= C(η, ξ+)

(
‖ξ+‖gt2 (x) + βct2

(
ξ]+

))
◦ P(x,ς+)←(y,ζ+) (9.14)

◦
(
−‖η‖gt1 (y) β+ ct1

(
η]
))
◦
(
‖η‖gt1 (y) β− ct1

(
η]
))

.

The composition of the round brackets in (9.14) vanishes:[
−‖η‖2gt1 (y) β

2 + ‖η‖gt1 (y)

(
βct1

(
η]
)

+ ct1

(
η]
)
β
)
− ct1

(
η]
)2
]

=
[
−‖η‖2gt1 (y) β

2 + gt1(η], η])
]

= 0 .

We can perform the same calculations for q+−(x, ξ−; y, η):

q+−(x, ξ−; y, η) = C(η, ξ−)
(
‖ξ−‖gt2 (x) − βct2

(
ξ]−

))
◦
(
−‖ξ−‖gt2 (x) + βct2

(
ξ]−

))
◦β ◦ P(x,ς−)←(y,ζ−) ◦ β ◦

(
‖η‖gt1 (y) + βct1

(
η]
))

= C(η, ξ−)
(
‖ξ−‖gt2 (x) − βct2

(
ξ]−

))
◦
(
−‖ξ−‖gt2 (x) β+ βct2

(
ξ]−

)
β
)

◦P(x,ς−)←(y,ζ−) ◦
(
‖η‖gt1 (y) β+ β2ct1

(
η]
))

= C(η, ξ−)
(
‖ξ−‖gt2 (x) − βct2

(
ξ]−

))
◦
(
−‖ξ−‖gt2 (x) β− β

2ct2

(
ξ]−

))
◦P(x,ς−)←(y,ζ−) ◦

(
‖η‖gt1 (y) β+ ct1

(
η]
))

= −C(η, ξ−)
(
‖ξ−‖gt2 (x) − βct2

(
ξ]−

))
◦
(
‖ξ−‖gt2 (x) β+ ct2

(
ξ]−

))
◦P(x,ς−)←(y,ζ−) ◦

(
‖η‖gt1 (y) β+ ct1

(
η]
))

(9.13)
= −C(η, ξ−)

(
‖ξ−‖gt2 (x) − βct2

(
ξ]−

))
◦ P(x,ς−)←(y,ζ−) (9.15)

◦
(
‖η‖gt1 (y) β+ ct1

(
η]
))
◦
(
‖η‖gt1 (y) β+ ct1

(
η]
))
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such that the round brackets in (9.15) yield[
‖η‖2gt1 (y) β

2 + ‖η‖gt1 (y)

(
βct1

(
η]
)

+ ct1

(
η]
)
β
)

+ ct1

(
η]
)2
]

=
[
‖η‖2gt1 (y) − gt1(η], η])

]
= 0 .

Hence q−+(x, ξ+; y, η) and q+−(x, ξ−; y, η) vanish, too.

The calculation of the principal symbols with respect to the matrix entries of Q̃ can be
performed likewise. We again use the fact that the resulting canonical relation and thus its
nature as graph of a symplectomorphism are preserved under the composition such that

q̃±∓(x, ξ±; y, η) := σ0(q̃±∓)(x, ξ±; y, η) = σ0(Q̃±∓)(x, ξ±; y, η)

= σ0(p±)(x, ξ±) ◦ σ0(Q̃)(x, ξ±; y, η) ◦ σ0(p∓)(y, η)

with (x, ξ±) ∈ T ∗xΣ2 and (y, η) ∈ T ∗yΣ2. The principal symbol of Q̃ is given as in (7.26)
of Theorem 7.2.5 and again we need to distinguish between the future- and past-pointing
lightlike covector ς+ and ς− which restrict to ξ+ respectively ξ− at Σ2:

q̃±∓(x, ξ+; y, η) =
‖η‖−1

gt1 (y)

8

(
1∓ ‖ξ+‖−1

gt2 (x) βct2

(
ξ]+

))
◦
(
−‖ξ+‖gt2 (x) β− ct2

(
ξ]+

))
◦ P(x,ς+)←(y,ζ+) ◦ β ◦

(
1± ‖η‖−1

gt1 (y) βct1

(
η]
))

=
‖η‖−2

gt1 (y) ‖ξ+‖−1
gt2 (x)

8

(
‖ξ+‖gt2 (x) ∓ βct2

(
ξ]+

))
◦
(
−‖ξ+‖gt2 (x) β− ct2

(
ξ]+

)
β2
)

◦ P(x,ς+)←(y,ζ+) ◦ β ◦
(
‖η‖gt1 (y) ± βct1

(
η]
))

=
‖η‖−2

gt1 (y) ‖ξ+‖−1
gt2 (x)

8

(
‖ξ+‖gt2 (x) ∓ βct2

(
ξ]+

))
◦
(
−‖ξ+‖gt2 (x) + βct2

(
ξ]+

))
◦ β ◦ P(x,ς+)←(y,ζ+) ◦ β ◦

(
‖η‖gt1 (y) ± βct1

(
η]
))

for the future-pointing lightlike covector ς+ and

q̃±∓(x, ξ−; y, η) = −
‖η‖−1

gt1 (y)

8

(
1∓ ‖ξ−‖−1

gt2 (x) βct2

(
ξ]−

))
◦
(
‖ξ−‖gt2 (x) β− ct2

(
ξ]−

))
◦ P(x,ς−)←(y,ζ−) ◦ β ◦

(
1± ‖η‖−1

gt1 (y) βct1

(
η]
))

= −
‖η‖−2

gt1 (y) ‖ξ−‖
−1
gt2 (x)

8

(
‖ξ−‖gt2 (x) ∓ βct2

(
ξ]−

))
◦
(
‖ξ−‖gt2 (x) β− ct2

(
ξ]−

)
β2
)

◦ P(x,ς−)←(y,ζ−) ◦ β ◦
(
‖η‖gt1 (y) ± βct1

(
η]
))

= −
‖η‖−2

gt1 (y) ‖ξ−‖
−1
gt2 (x)

8

(
‖ξ−‖gt2 (x) ∓ βct2

(
ξ]−

))
◦
(
‖ξ−‖gt2 (x) + βct2

(
ξ]−

))
◦ β ◦ P(x,ς−)←(y,ζ−) ◦ β ◦

(
‖η‖gt1 (y) ± βct1

(
η]
))



9.1. Γ -FREDHOLMNESS FOR (A)APS BOUNDARY CONDITIONS 197

for the past-pointing lightlike covector ς−. We use the same techniques to show that these
principal symbols also vanish: from q̃±∓(x, ξ+; y, η) we have(

‖ξ+‖gt2 (x) ∓ βct2
(
ξ]+

))
◦
(
−‖ξ+‖gt2 (x) + βct2

(
ξ]+

))
=− ‖ξ+‖2gt2 (x) + ‖ξ+‖gt2 (x)

(
βct2

(
ξ]+

)
± βct2

(
ξ]+

))
∓ βct2

(
ξ]+

)
βct2

(
ξ]+

)
=− ‖ξ+‖2gt2 (x) + ‖ξ+‖gt2 (x) βct2

(
ξ]+

)
(1± 1)± β2ct2

(
ξ]+

)2

=− ‖ξ+‖2gt2 (x) + ‖ξ+‖gt2 (x) βct2

(
ξ]+

)
(1± 1)∓ gt2 |x(ξ]+, ξ

]
+) ;

this vanishes for the lower signs, implying q̃−+(x, ξ+; y, η) = 0. The same composition in
the symbol q̃±∓(x, ξ−; y, η) takes the form(

‖ξ−‖gt2 (x) ∓ βct2
(
ξ]−

))
◦
(
‖ξ−‖gt2 (x) + βct2

(
ξ]−

))
= ‖ξ−‖2gt2 (x) + ‖ξ−‖gt2 (x)

(
βct2

(
ξ]−

)
∓ βct2

(
ξ]−

))
∓ βct2

(
ξ]−

)
βct2

(
ξ]−

)
= ‖ξ−‖2gt2 (x) + ‖ξ−‖gt2 (x) βct2

(
ξ]−

)
(1∓ 1)± β2ct2

(
ξ]−

)2

= ‖ξ−‖2gt2 (x) + ‖ξ−‖gt2 (x) βct2

(
ξ]−

)
(1∓ 1)∓ gt2 |x(ξ]−, ξ

]
−)

and vanishes for the upper signs; hence q̃+−(x, ξ−; y, η) = 0. The vanishing of the two
remaining symbols can be again shown with (9.13) where we point out that the plus sign
in front of the restricted Cli�ord multiplication is somewhat arbitrary and can be replaced
by a minus sign:

P(x,ς±)←(y,ζ±)

(
∓‖η‖gt1 (y) β− ct1

(
η]
))

=
(
∓‖ξ±‖gt2 (x) β− ct2

(
ξ]±

))
P(x,ς±)←(y,ζ±) . (9.16)

In q̃+−(x, ξ+; y, η) we have(
−‖ξ+‖gt2 (x) + βct2

(
ξ]+

))
◦ β ◦ P(x,ς+)←(y,ζ+) ◦ β ◦

(
‖η‖gt1 (y) + βct1

(
η]
))

=
(
−‖ξ+‖gt2 (x) β+ βct2

(
ξ]+

)
β
)
◦ P(x,ς+)←(y,ζ+) ◦

(
‖η‖gt1 (y) β+ ct1

(
η]
))

=
(
−‖ξ+‖gt2 (x) β− ct2

(
ξ]+

))
◦ P(x,ς+)←(y,ζ+) ◦

(
‖η‖gt1 (y) β+ ct1

(
η]
))

(9.16)
= −P(x,ς+)←(y,ζ+) ◦

(
‖η‖gt1 (y) β+ ct1

(
η]
))
◦
(
‖η‖gt1 (y) β+ ct1

(
η]
))

= −P(x,ς+)←(y,ζ+) ◦
[
‖η‖2gt1 (y) β

2 + ‖η‖gt1 (y)

(
βct1

(
η]
)

+ ct1

(
η]
)
β
)

+ ct1

(
η]
)2
]

= −P(x,ς+)←(y,ζ+) ◦
[
‖η‖2gt1 (y) + ‖η‖gt1 (y)

(
βct1

(
η]
)
− βct1

(
η]
))
− gt1 |y(η], η])

]
= 0
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and consequently q̃+−(x, ξ+; y, η) = 0; we equally have in q̃−+(x, ξ−; y, η) the expression(
‖ξ−‖gt2 (x) + βct2

(
ξ]−

))
◦ β ◦ P(x,ς−)←(y,ζ−) ◦ β ◦

(
‖η‖gt1 (y) ± βct1

(
η]
))

=
(
‖ξ−‖gt2 (x) β+ βct2

(
ξ]−

)
β
)
◦ P(x,ς−)←(y,ζ−) ◦

(
‖η‖gt1 (y) β− β

2ct1

(
η]
))

=
(
‖ξ−‖gt2 (x) β− ct2

(
ξ]−

))
◦ P(x,ς−)←(y,ζ−) ◦

(
‖η‖gt1 (y) β− ct1

(
η]
))

= P(x,ς−)←(y,ζ−) ◦
(
‖η‖gt1 (y) β− ct1

(
η]
))
◦
(
‖η‖gt1 (y) β− ct1

(
η]
))

= P(x,ς−)←(y,ζ−) ◦
[
‖η‖2gt1 (y) β

2 − ‖η‖gt1 (y)

(
βct1

(
η]
)

+ ct1

(
η]
)
β
)

+ ct1

(
η]
)2
]

= 0

and �nally also q̃−+(x, ξ−; y, η) = 0. Hence the principal symbols of Q±∓(t2, t1) and
Q̃±∓(t2, t1) are identically vanishing. The exact sequence property in Lemma 4.2.5 (1)
then implies that the order of the properly supported part is (−1) which proves (1) and
(2).

The vanishing of the principal symbols of order zero for (3) and (4) can be explained
as follows: (7.15), (7.16), and (8.17) show that the principal symbols of the wave evolution
operators and the projectors for both chiralities decompose into a tensor product of the
principal symbols where the left factors are equivalent to the principal symbols of the cor-
responding objects in the untwisted case. Let N,H denote either + or − in the following
argument. Combining all calculated principal symbols shows that the principal symbols in
the twisted case factorise with respect to the tensor product:

σ0(QELN,H)(x, ξ±; y, η) = σ0

(
PELN (t2)

)
(x, ξ±) ◦ σ0(QEL)(x, ξ±; y, η) ◦ σ0

(
PELN (t1)

)
(y, η)

=
[
σ0 (PN(t2)) (x, ξ)⊗ 1EL|Σ2

]
◦σ0(Q)(x, ξ±; y, η)⊗

[
1EL|Σ2

◦ PEL(x,ς±)←(y,ζ±) ◦ 1EL|Σ1

]
◦
[
σ0 (PH(t1)) (y, η)⊗ 1EL|Σ1

]
= [σ0 (PN(t2)) (x, ξ) ◦ σ0(Q)(x, ξ±; y, η) ◦ σ0 (PH(t1)) (y, η)]

⊗
[
1EL|Σ2

◦ PEL(x,ς±)←(y,ζ±) ◦ 1EL|Σ1

]
= σ0(QN,H)(x, ξ±; y, η)⊗

[
1EL|Σ2

◦ PEL(x,ς±)←(y,ζ±) ◦ 1EL|Σ1

]
and

σ0(Q̃ELN,H)(x, ξ±; y, η) = σ0(Q̃N,H)(x, ξ±; y, η)⊗
[
1EL|Σ2

◦ PEL(x,ς±)←(y,ζ±) ◦ 1EL|Σ1

]
.

The vanishing of the principal symbols in the untwisted case then implies the vanishing of
these tensor products. The exact sequence property in Lemma 4.2.5 (1) �nally proves the
proposition.
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9.1.3. Γ-Fredholmness of the matrix entries

We have proven in Section 7.3 that Q and Q̃ as well as QEL and Q̃EL are unitary Γ -
morphisms on L2

Γ -spaces. Hence these four operators are Γ -Fredholm with identical van-
ishing Γ -indices.

Corollary 9.1.7.

(1) Q ∈ FΓ (L
2
Γ (S+(Σ1)), L2

Γ (S+(Σ2))) with indΓ (Q) = 0 ;

(2) Q̃ ∈ FΓ (L
2
Γ (S−(Σ1)), L2

Γ (S−(Σ2))) with indΓ (Q̃) = 0 ;

(3) QEL ∈ FΓ (L
2
Γ (S+

L,E(Σ1)), L2
Γ (S+

L,E(Σ2))) with indΓ (Q
EL) = 0 ;

(4) Q̃EL ∈ FΓ (L
2
Γ (S−L,E(Σ1)), L2

Γ (S−L,E(Σ2))) with indΓ (Q̃
EL) = 0 .

Now the question arises how the Γ -Fredholm property carries over to their matrix entries
for (a)APS boundary conditions. The following result gives an answer.

Theorem 9.1.8.

(1) Q±± and Q̃±± are Γ -Fredholm as maps from

Q++(t2, t1) : L2
Γ ,[0,∞)(S+(Σ1)) → L2

Γ ,(0,∞)(S+(Σ2))

Q−−(t2, t1) : L2
Γ ,(−∞,0)(S+(Σ1)) → L2

Γ ,(−∞,0](S+(Σ2))

Q̃++(t2, t1) : L2
Γ ,[0,∞)(S−(Σ1)) → L2

Γ ,(0,∞)(S−(Σ2))

Q̃−−(t2, t1) : L2
Γ ,(−∞,0)(S−(Σ1)) → L2

Γ ,(−∞,0](S−(Σ2))

(9.17)

with Γ -indices
indΓ (Q++(t2, t1)) = −indΓ (Q−−(t2, t1))

and
indΓ (Q̃++(t2, t1)) = −indΓ (Q̃−−(t2, t1)) .

(2) QEL±± and Q̃EL±± are Γ -Fredholm as maps from

QEL++(t2, t1) : L2
Γ ,[0,∞)(S+

L,E(Σ1)) → L2
Γ ,(0,∞)(S+

L,E(Σ2))

QEL−−(t2, t1) : L2
Γ ,(−∞,0)(S+

L,E(Σ1)) → L2
Γ ,(−∞,0](S+

L,E(Σ2))

Q̃EL++(t2, t1) : L2
Γ ,[0,∞)(S−L,E(Σ1)) → L2

Γ ,(0,∞)(S−L,E(Σ2))

Q̃EL−−(t2, t1) : L2
Γ ,(−∞,0)(S−L,E(Σ1)) → L2

Γ ,(−∞,0](S−L,E(Σ2))

(9.18)

with Γ -indices
indΓ (Q

EL
++(t2, t1)) = −indΓ (Q

EL
−−(t2, t1))

and
indΓ (Q̃

EL
++(t2, t1)) = −indΓ (Q̃

EL
−−(t2, t1)) .

Proof. As in the former subsection we focus on the spectral entries of the Dirac-wave evo-
lution operators with respect to D± without twisting bundle EL.
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Based on Proposition 9.1.5 (1), a precise analysis of the compositions Q∗±∓ ◦ Q±∓ with
idempotence and self-adjointness of the projections shows that

Q∗±∓ ◦Q±∓ = (P±(t2) ◦Q(t2, t1) ◦ P∓(t1))∗ ◦ (P±(t2) ◦Q(t2, t1) ◦ P∓(t1))

= P∓(t1) ◦Q∗(t1, t2) ◦ P±(t2) ◦ P±(t2) ◦Q(t2, t1) ◦ P∓(t1)

= P∓(t1) ◦Q∗(t1, t2) ◦ P±(t2) ◦Q(t2, t1) ◦ P∓(t1)

= P∓(t1) ◦Q∗(t1, t2) ◦Q±∓(t2, t1) (9.19)

= (p∓(t1) + r̃∓(t1)) ◦Q∗(t1, t2) ◦ (q±∓(t2, t1) +R±∓(t2, t1))

= p∓(t1) ◦Q∗(t1, t2) ◦ q±∓(t2, t1) + r̃∓(t1) ◦Q∗(t1, t2) ◦ q±∓(t2, t1)

+ p∓(t1) ◦Q∗(t1, t2) ◦R±∓(t2, t1) + r̃∓(t1) ◦Q∗(t1, t2) ◦R±∓(t2, t1) .

The �rst triple composition is a properly supported operator as it is a composition of
properly supported operators; the same follows for p± ◦ Q∗ and Q∗ ◦ q±∓. Moreover,
they are Γ -morphisms between Hilbert Γ -modules. As r̃∓ is a s-smoothing Γ -invariant
pseudo-di�erential operator, it is Γ -trace class due to Lemma 5.3.5 (3) and consequently
r̃∓(t1) ◦Q∗(t1, t2) ◦ q±∓(t2, t1), too. Recalling the de�nitions of R±∓(t2, t1) from the proof
of Proposition 9.1.5, i.e.

R±∓(t2, t1) = r̃±(t2) ◦Q ◦ p∓(t1) + p± ◦Q ◦ r∓(t1) + r̃±(t2) ◦Q ◦ r∓(t1) ,

we observe that the �rst two compositions are Γ -trace class as they are s-smoothing. Q∗

is a (bounded) Γ -isomorphism and the s-smoothing pseudo-di�erential operators r∓(t1)
and r̃±(t2) are Γ -trace class (Lemma 5.3.5 (3)) such that the left triple compositions
r̃±(t2) ◦Q ◦ r∓(t1) are Γ -trace class as left ideal (via r∓(t1)) and as right ideal (via r̃±(t2)).
Thus, R±∓(t2, t1) and �nally the last remainder in (9.19) are Γ -trace class.

We equally notice that p∓(t1)◦Q∗ ◦q±∓(t2, t1) coincides with q∗(t1, t2)◦q±∓(t2, t1) modulo
a Γ -trace class operator: recalling q±∓ from the proof of Proposition 9.1.5, we get from the
idempotency of the projectors p2

± = p± modulo a s-smoothing pseudo-di�erential operator
and thus

p∓(t1) ◦Q∗(t1, t2) ◦ q±∓(t2, t1) = p∓(t1) ◦Q∗ ◦ q±∓(t2, t1)

= p∓(t1) ◦Q∗ ◦ p±(t2) ◦Q ◦ p∓(t1)

= p∓(t1) ◦Q∗ ◦ p2
±(t2) ◦Q ◦ p∓(t1)

= (p±(t2) ◦Q ◦ p∓(t1))∗ ◦ p±(t2) ◦Q ◦ p∓(t1)

= q∗±∓(t1, t2)q±∓(t2, t1)

modulo an s-smoothing and thus Γ -trace class operator such that

Q∗±∓(t1, t2) ◦Q±∓(t2, t1) ≡ q∗±∓(t1, t2)q±∓(t2, t1)

where we use '≡' to mark the equivalence up to Γ -trace class operators. The compositions
(q∗±∓ ◦ q±∓)(t1) are in fact properly supported Γ -pseudo-di�erential operators of order
(−2) due to Lemma 4.2.3 (5). Hence Q∗±∓(t1, t2) ◦ Q±∓(t2, t1) is the sum of an element
B ∈ Ψ−2

Γ ,prop(S+(Σ1)) with a Γ -trace class remainder.
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The �rst two equations in (9.4) show the important observation that Q∗++ and Q∗−−
can be used as initial parametrices of Q++ respectively Q−− with remainders of the form
Q∗∓±◦Q∓±. We can construct an even better parametrix for each operator with a Neumann
series argument, so that the order of the error becomes su�ciently negative. Ellipticity
would become an important property in constructing an initial parametrix, but becomes
irrelevant here as the unitarity of Q replaces this step. We de�ne Q±∓ := −Q∗±∓ ◦ Q±∓.
Proposition 5.3.3 (1) implies that B is a Γ -morphism. Hence any power l ∈ N0 of Q±∓
is the sum of Bl ∈ Ψ−2l

prop(S+(Σ1)) with di�erent combinations of powers of B and Γ -trace
class remainders, i.e.

(−Q±∓)l ≡ (−1)lBl . (9.20)

We �rst construct a left and a right parametrix for Q−−(t2, t1). Given an operator QN ∈
Ψ−2N
Γ ,prop(S+(Σ1)) for an N ∈ N, we de�ne

P+− :=

(
N−1∑
l=0

(−1)lQl+− +QN

)
Q∗−− . (9.21)

Because Q−− ≡ q∗−−, we deduce from (9.20) that

P+− ≡

(
N−1∑
l=0

(−1)lBl +QN

)
q∗−− . (9.22)

Since q∗−− is an element in FIO0
Γ ,prop(Σ1,Σ2; (C1→2)−1′;Hom(S+(Σ1), S+(Σ2))), the impli-

cations

Bl ◦ q∗−− ∈ FIO−2l
Γ ,prop(Σ1,Σ2; (C1→2)−1′;Hom(S+(Σ1), S+(Σ2))) for l ∈ {0, 1, .., N − 1}

and

QN ◦ q∗−− ∈ FIO−2N
Γ ,prop(Σ1,Σ2; (C1→2)−1′;Hom(S+(Σ1), S+(Σ2)))

follow; hence (9.22) is a properly supported Γ -Fourier integral operator of order (−2N)
with canonical relation (C1→2)−1 modulo Γ -trace class operators. We apply (9.22) to Q−−
from the left and use the second equation in (9.4):

P+−Q−− =

(
N−1∑
l=0

(−1)lQl+− +QN

)
Q∗−−Q−− =

(
N−1∑
l=0

(−1)lQl+− +QN

)
(1 +Q+−)

=

N−1∑
l=0

(−1)lQl+− +QN (1 +Q+−) +

N−1∑
l=0

(−1)lQl+1
+−

= 1 + (−1)N+1QN+− +QN (1 +Q+−)

where an index shift has been applied to get the last equation. We conclude from here that

(P+−Q−− − 1) ∈ Ψ−2N
Γ ,prop(S+(Σ1)) (9.23)

modulo Γ -trace class operators. If we choose N > dim(Σ)/2 and recall Lemma 9.1.1, then
Proposition 5.3.3 (3) already characterises (P+−Q−− − 1) as Γ -trace class operator and
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thus P+− becomes a suitable left parametrix. The second equation in (9.5) implies for the
same reason that

P+− := Q∗−−

(
N−1∑
l=0

(−1)l(Q∗+−)l +Q∗N

)
(9.24)

is a properly supported Γ -Fourier integral operator of order (−2N) with canonical relation
(C1→2)−1 modulo Γ -trace class operators. We apply (9.24) to Q−− and use the second
equation in (9.5):

Q−− P+− = Q−−Q
∗
−−

(
N−1∑
l=0

(−1)l(Q∗+−)l +Q∗N

)
= (1 +Q∗+−)

(
N−1∑
l=0

(−1)l(Q∗+−)l +Q∗N

)

=

(
N−1∑
l=0

(−1)l(Q∗+−)l + (1 +Q∗+−)Q∗N

)
+
N−1∑
l=0

(−1)l(Q∗+−)l+1

=

(
N−1∑
l=0

(−1)l(Q∗+−)l + (1 +Q∗+−)Q∗N

)
−

N∑
l=1

(−1)k(Q∗+−)k

= 1 + (1 +Q∗+−)Q∗N + (−1)N+1(Q∗+−)N .

This implicates
(Q−− P+− − 1) ∈ Ψ−NΓ ,prop(S+(Σ2)) (9.25)

up to a Γ -trace class pertubation and becomes itself Γ -trace class if we choose N >
dim(Σ)/2. (9.24) becomes a right parametrix and consequently Q−− is Γ -Fredholm.

Suitable left and right parametrices for Q++ are

P−+ :=

(
N−1∑
l=0

(−1)lQl−+ +QN

)
Q∗++ (9.26)

and

P−+ := Q∗++

(
N−1∑
l=0

(−1)l(Q∗−+)l +Q∗N

)
. (9.27)

(9.26) and (9.27) are properly supported Γ -Fourier integral operator of order (−2N) with
canonical relation (C1→2)−1 modulo Γ -trace class operators for the same reasons as (9.22)
and (9.24). We apply P−+ from the left to Q++ which shows

P−+Q++ =

(
N−1∑
l=0

(−1)lQl−+ +QN

)
Q∗++Q++ =

(
N−1∑
l=0

(−1)lQl−+ +QN

)
(1 +Q−+)

=
N−1∑
l=0

(−1)lQl−+ +QN (1 +Q−+) +
N−1∑
l=0

(−1)lQl+1
−+

= 1 + (−1)N+1QN−+ +QN (1 +Q−+)
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with the �rst equation in (9.4); similarly applying P−+ to Q++ from the right shows

Q++ P−+ = Q++Q
∗
++

(
N−1∑
l=0

(−1)l(Q∗−+)l +Q∗N

)
= (1 +Q∗−+)

(
N−1∑
l=0

(−1)l(Q∗−+)l +Q∗N

)

=

(
N−1∑
l=0

(−1)l(Q∗−+)l + (1 +Q∗−+)Q∗N

)
+
N−1∑
l=0

(−1)l(Q∗−+)l+1

=

(
N−1∑
l=0

(−1)l(Q∗−+)l + (1 +Q∗−+)Q∗N

)
−

N∑
l=1

(−1)k(Q∗−+)k

= 1 + (1 +Q∗−+)Q∗N + (−1)N+1(Q∗−+)N

with the �rst equation in (9.5). Choosing N > dim(Σ)/2 shows that (P−+Q++ − 1) and
(Q++ P−+ − 1) are Γ -trace class operators and �nally Q++ becomes Γ -Fredholm.

Lemma 9.1.2 and Proposition 5.2.6 (1) imply that there are unitary Γ -isomorphisms such
that

dimΓ ker (Q±±) = dimΓ ker
(
Q∗∓∓

)
. (9.28)

The index formula in Proposition 5.2.17 (7) completes the proof for (1) because

indΓ (Q−−) = dimΓ ker (Q−−)− dimΓ ker
(
Q∗−−

)
(9.28)

= dimΓ ker
(
Q∗++

)
− dimΓ ker (Q++) = indΓ (Q++) .

The argument carries over to Q̃±±(t2, t1) with the help of (9.9), (9.10) and Lemma 9.1.3. If
we repeat the argumentation with the twisted versions of (9.4), (9.5), Lemma 9.1.2, (9.9),
(9.10) and Lemma 9.1.3, the second assertion follows.

The presented proof has been published in [Dam21]. At that time there were some
caveats concerning the correctness of (5.35) and its use as proof method. As we have
clari�ed this characterisation of Γ -compact operators in subsection 5.2.3, we can give an
alternative and more direct proof of Theorem 9.1.8, based on the following fact.

Lemma 9.1.9.

(1) Q+−(t2, t1) ∈ KΓ (L
2
Γ ,(−∞,0)(S+(Σ1)), L2

Γ (S+(Σ2))) and

Q−+(t2, t1) ∈ KΓ (L
2
Γ ,[0,∞)(S+(Σ1)), L2

Γ (S+(Σ2))) .

(2) Q̃+−(t2, t1) ∈ KΓ (L
2
Γ ,(−∞,0)(S−(Σ1)), L2

Γ (S−(Σ2))) and

Q̃−+(t2, t1) ∈ KΓ (L
2
Γ ,[0,∞)(S+(Σ1)), L2

Γ (S+(Σ2))) .

(3) QEL+−(t2, t1) ∈ KΓ (L
2
Γ ,(−∞,0)(S+(Σ1)), L2

Γ (S+
L,E(Σ2))) and

QEL−+(t2, t1) ∈ KΓ (L
2
Γ ,[0,∞)(S+(Σ1)), L2

Γ (S+
L,E(Σ2))) .

(4) Q̃EL+−(t2, t1) ∈ KΓ (L
2
Γ ,(−∞,0)(S−L,E(Σ1)), L2

Γ (S−L,E(Σ2))) and

Q̃EL−+(t2, t1) ∈ KΓ (L
2
Γ ,[0,∞)(S−L,E(Σ1)), L2

Γ (S−L,E(Σ2))) .
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(1) then implies that Q∗±∓ and the compositions Q∗±∓Q±∓ are equally Γ -compact such
that Γ -Fredholmness of Q±± follow directly from (9.4) and (9.5). The Γ -Fredholm para-
metrices are then fully given by the adjoints of Q±±. The second assertion imply with (9.9)
and (9.10) the Γ -Fredholmness of Q̃±± with Γ -Fredholm parametrices Q̃∗±±. The reasoning
for the twisted cases are similar.

Proof. We focus on (1) in this proof; (2), (3) and (4) follow with the same argumentation.

Q±∓ are unitarily related to (1 ⊗Q±∓) according to the following commutative diagram.

L2
Γ ,I±

(S+(Σ1))

L2
Γ (S+(Σ2))

`2(Γ)⊗ L2
I±

(S+(Σ1/Γ))

`2(Γ)⊗ L2(S+(Σ2/Γ))

Q±∓(t2, t1) 1`2(Γ) ⊗Q±∓(t2, t1)

∼=

∼=

Figure 9.1.: Commutative diagram for Q±∓(t2, t1).

L2
Γ ,I are free Hilbert Γ -modules for any interval I ⊂ R as per Lemma 8.1.5. The proof

in [BS19, Lem.2.6] shows that Q±∓(t2, t1) are compact operators on the compact bases:

Q+−(t2, t1) ∈ K (L2
(−∞,0)(S+(Σ1/Γ)), L2(S+(Σ2/Γ)))

Q−+(t2, t1) ∈ K (L2
[0,∞)(S+(Σ1/Γ)), L2(S+(Σ2/Γ))) .

We recall the argument: Q±∓ are (properly supported) Fourier integral operators of order
0. The vanishing of their principal symbols (of order 0) imply that these tend to 0 outside
any compact subset such that Lemma 4.2.4 (1) implies compactness of Q±∓ as proclaimed.
Thus

1 ⊗Q+−(t2, t1) ∈ Nr(Γ)⊗K (L2
(−∞,0)(S+(Σ1/Γ)), L2(S+(Σ2/Γ)))

1 ⊗Q−+(t2, t1) ∈ Nr(Γ)⊗K (L2
[0,∞)(S+(Σ1/Γ)), L2(S+(Σ2/Γ)))

and (5.35) implies Γ -compactness of Q±∓.

The Γ -indices then follow with the same trick as presented in the proof of Theorem 9.1.8.

9.2. Generalised (a)APS-boundary conditions

The aim of this subsection is to extend the Γ -Fredholm results to generalised (a)APS
boundary conditions, introduced in subsection 8.1.2. According to the splittings in (8.28),
we can represent Q(t2, t1) and Q̃(t2, t1) as (2x2)-matrices:

Q(t2, t1) =

(
Q>a2
≥a1

(t2, t1) Q>a2
<a1

(t2, t1)

Q≤a2
≥a1

(t2, t1) Q≤a2
<a1

(t2, t1)

)
(9.29)
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and

Q̃(t2, t1) =

(
Q̃>a2
≥a1

(t2, t1) Q̃>a2
<a1

(t2, t1)

Q̃≤a2
≥a1

(t2, t1) Q̃≤a2
<a1

(t2, t1)

)
(9.30)

where the entries are given by

Q>a2
≥a1

(t2, t1) := P(a2,∞)(t2) ◦Q(t2, t1) ◦ P[a1,∞)(t1)

Q≤a2
<a1

(t2, t1) := P(−∞,a2](t2) ◦Q(t2, t1) ◦ P(−∞,a1)(t1)

Q>a2
<a1

(t2, t1) := P(a2,∞)(t2) ◦Q(t2, t1) ◦ P(−∞,a1)(t1)

Q≤a2
≥a1

(t2, t1) := P(−∞,a2](t2) ◦Q(t2, t1) ◦ P[a1,∞)(t1)

(9.31)

and

Q̃>a2
≥a1

(t2, t1) := P(a2,∞)(t2) ◦ Q̃(t2, t1) ◦ P[a1,∞)(t1)

Q̃≤a2
<a1

(t2, t1) := P(−∞,a2](t2) ◦ Q̃(t2, t1) ◦ P(−∞,a1)(t1)

Q̃>a2
<a1

(t2, t1) := P(a2,∞)(t2) ◦ Q̃(t2, t1) ◦ P(−∞,a1)(t1)

Q̃≤a2
≥a1

(t2, t1) := P(−∞,a2](t2) ◦ Q̃(t2, t1) ◦ P[a1,∞)(t1)

. (9.32)

We again refer to each �rst two as diagonal entries and the remaining are the o�-diagonal
matrix entries. For a1 = a2 = 0 we have the already known matrix entries

Q++(t2, t1) = Q>0
≥0(t2, t1)

Q−−(t2, t1) = Q≤0
<0(t2, t1)

Q+−(t2, t1) = Q>0
<0(t2, t1)

Q−+(t2, t1) = Q≤0
≥0(t2, t1)

and
Q̃++(t2, t1) = Q̃>0

≥0(t2, t1)

Q̃−−(t2, t1) = Q̃≤0
<0(t2, t1)

Q̃+−(t2, t1) = Q̃>0
<0(t2, t1)

Q̃−+(t2, t1) = Q̃≤0
≥0(t2, t1)

from (9.2) and (9.7). We conclude as in subsection 9.1.1 the following fact.

Lemma 9.2.1. All spectral entries in (9.3) are Γ -morphism between Hilbert Γ -modules, i.e.

Q>a2
≥a1

(t2, t1) ∈ BΓ (L
2
Γ ,[a1,∞)(S+(Σ1)), L2

Γ ,(a2,∞)(S+(Σ2)))

Q≤a2
<a1

(t2, t1) ∈ BΓ (L
2
Γ ,(−∞,a1)(S+(Σ1)), L2

Γ ,(−∞,a2](S+(Σ2)))

Q>a2
<a1

(t2, t1) ∈ BΓ (L
2
Γ ,(−∞,a1)(S+(Σ1)), L2

Γ ,(a2,∞)(S+(Σ2)))

Q≤a2
≥a1

(t2, t1) ∈ BΓ (L
2
Γ ,[a1,∞)(S+(Σ1)), L2

Γ ,(−∞,a2](S+(Σ2)))

Q̃>a2
≥a1

(t2, t1) ∈ BΓ (L
2
Γ ,[a1,∞)(S−(Σ1)), L2

Γ ,(a2,∞)(S−(Σ2)))

Q̃≤a2
<a1

(t2, t1) ∈ BΓ (L
2
Γ ,(−∞,a1)(S−(Σ1)), L2

Γ ,(−∞,a2](S−(Σ2)))

Q̃>a2
<a1

(t2, t1) ∈ BΓ (L
2
Γ ,(−∞,a1)(S−(Σ1)), L2

Γ ,(a2,∞)(S−(Σ2)))

Q̃≤a2
≥a1

(t2, t1) ∈ BΓ (L
2
Γ ,[a1,∞)(S−(Σ1)), L2

Γ ,(−∞,a2](S−(Σ2))

with closed ranges.
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As for the ordinary splitting due to (a)APS boundary conditions, unitarity of Q(t2, t1)
and Q̃(t2, t1) implies that the o�-diagonal matrix entries are isomorphisms if they are
restricted to the kernels of the diagonal entries where each one maps onto the kernel of the
adjoint of the other entry.

Lemma 9.2.2. The operators Q>a2
<a1

(t2, t1), Q≤a2
≥a1

(t2, t1), Q̃>a2
<a1

(t2, t1) and Q̃≤a2
≥a1

(t2, t1) re-
strict to Γ -isomorphisms

Q>a2
<a1

(t2, t1) : ker
(
Q≤a2
<a1

(t2, t1)
)
→ ker

(
(Q>a2
≥a1

(t2, t1))∗
)

Q≤a2
≥a1

(t2, t1) : ker
(
Q>a2
≥a1

(t2, t1)
)
→ ker

(
(Q≤a2

<a1
(t2, t1))∗

)
Q̃>a2
<a1

(t2, t1) : ker
(
Q̃≤a2
<a1

(t2, t1)
)
→ ker

(
(Q̃>a2
≥a1

(t2, t1))∗
)

Q̃≤a2
≥a1

(t2, t1) : ker
(
Q̃>a2
≥a1

(t2, t1)
)
→ ker

(
(Q̃≤a2

<a1
(t2, t1))∗

)
.

Since the proof for the ordinary splitting is fully algebraic and do not depend on the
cut in the spectrum, we skip the proof here since it is just exchanging 0 by a1 and
a2. The unitarity of Q(t2, t1) and Q̃(t2, t1) implies that the non-vanishing elements of
(Q(t2, t1))∗Q(t2, t1) = 1 and Q(t2, t1) (Q(t2, t1))∗ = 1 as well as (Q̃(t2, t1))∗Q̃(t2, t1) = 1

and Q̃(t2, t1)
(
Q̃(t2, t1)

)∗
= 1 satisfy(

Q>a2
≥a1

(t2, t1)
)∗
Q>a2
≥a1

(t2, t1) = 1 −
(
Q>a2
<a1

(t2, t1)
)∗
Q≤a2
≥a1

(t2, t1)(
Q≤a2
<a1

(t2, t1)
)∗
Q≤a2
<a1

(t2, t1) = 1 −
(
Q>a2
<a1

(t2, t1)
)∗
Q≤a2
≥a1

(t2, t1)

Q>a2
≥a1

(t2, t1)
(
Q>a2
≥a1

(t2, t1)
)∗

= 1 −Q>a2
<a1

(t2, t1)
(
Q≤a2
≥a1

(t2, t1)
)∗

Q≤a2
<a1

(t2, t1)
(
Q≤a2
<a1

(t2, t1)
)∗

= 1 −Q>a2
<a1

(t2, t1)
(
Q≤a2
≥a1

(t2, t1)
)∗

(9.33)

and (
Q̃>a2
≥a1

(t2, t1)
)∗
Q̃>a2
≥a1

(t2, t1) = 1 −
(
Q̃>a2
<a1

(t2, t1)
)∗
Q̃≤a2
≥a1

(t2, t1)(
Q̃≤a2
<a1

(t2, t1)
)∗
Q̃≤a2
<a1

(t2, t1) = 1 −
(
Q̃>a2
<a1

(t2, t1)
)∗
Q̃≤a2
≥a1

(t2, t1)

Q̃>a2
≥a1

(t2, t1)
(
Q̃>a2
≥a1

(t2, t1)
)∗

= 1 − Q̃>a2
<a1

(t2, t1)
(
Q̃≤a2
≥a1

(t2, t1)
)∗

Q̃≤a2
<a1

(t2, t1)
(
Q̃≤a2
<a1

(t2, t1)
)∗

= 1 − Q̃>a2
<a1

(t2, t1)
(
Q̃≤a2
≥a1

(t2, t1)
)∗

. (9.34)

We could follow the same strategy as in subsection 9.1.3 and view the adjoints of the diago-
nal entries Q>a2

≥a1
(t2, t1),Q≤a2

<a1
(t2, t1), Q̃>a2

≥a1
(t2, t1), and Q̃≤a2

<a1
(t2, t1) as (initial) parametrices

if we show that the error terms are s-regular pseudodi�erential operators with suitable
negative order such that we can construct full parametrices and conclude Γ -Fredholmness.
The following result shows that this in fact true, but instead of repeating this procedure,
we consider the restricted projection operator (8.29) which relates our known results to
this generalised situation. We recall that ran (PI(t)) stands for L2

Γ ,I(S±(Σt)) for t ∈ T (M)
and I ⊂ σ(At).
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Theorem 9.2.3.

Q>a2
≥a1

(t2, t1) ∈ FΓ (ran (P≥a1(t1)) , ran (P>a2(t2)))

Q≤a2
<a1

(t2, t1) ∈ FΓ (ran (P<a1(t1)) , ran (P≤a2(t2)))

Q̃>a2
≥a1

(t2, t1) ∈ FΓ (ran (P≥a1(t1)) , ran (P>a2(t2)))

Q̃≤a2
<a1

(t2, t1) ∈ FΓ (ran (P<a1(t1)) , ran (P≤a2(t2)))

for a1, a2 ∈ R with Γ -indices

indΓ

(
Q>a2
≥a1

(t2, t1)
)

= χ{a2>0} dimΓ

(
ran
(
P(0,a2]

))
−χ{a2<0} dimΓ

(
ran
(
P(a2,0]

))
+χ{a1<0} dimΓ

(
ran
(
P[a1,0)

))
−χ{a1>0} dimΓ

(
ran
(
P[0,a1)

))
+ indΓ (Q++(t2, t1)) , (9.35)

indΓ

(
Q≤a2
<a1

(t2, t1)
)

= χ{a2<0} dimΓ

(
ran
(
P(a2,0]

))
−χ{a2>0} dimΓ

(
ran
(
P(0,a2]

))
+χ{a1>0} dimΓ

(
ran
(
P[0,a1)

))
−χ{a1<0} dimΓ

(
ran
(
P[a1,0)

))
+ indΓ (Q−−(t2, t1)) , (9.36)

indΓ

(
Q̃>a2
≥a1

(t2, t1)
)

= χ{a2>0} dimΓ

(
ran
(
P(0,a2]

))
−χ{a2<0} dimΓ

(
ran
(
P(a2,0]

))
+χ{a1<0} dimΓ

(
ran
(
P[a1,0)

))
−χ{a1>0} dimΓ

(
ran
(
P[0,a1)

))
+ indΓ

(
Q̃++(t2, t1)

)
, (9.37)

indΓ

(
Q̃≤a2
<a1

(t2, t1)
)

= χ{a2<0} dimΓ

(
ran
(
P(a2,0]

))
−χ{a2>0} dimΓ

(
ran
(
P(0,a2]

))
+χ{a1>0} dimΓ

(
ran
(
P[0,a1)

))
−χ{a1<0} dimΓ

(
ran
(
P[a1,0)

))
+ indΓ

(
Q̃−−(t2, t1)

)
. (9.38)

χa>0 and χa<0 are abbreviations for the characteristic functions χ(0,∞)(a) respectively
χ(−∞,0)(a).

Proof. We show that Q>a2
≥a1

(t2, t1) and Q≤a2
<a1

(t2, t1) are compositions of Γ -Fredholm opera-

tors; the results for Q̃>a2
≥a1

(t2, t1) and Q̃≤a2
<a1

(t2, t1) follow by replacing Q(t2, t1) with Q̃(t2, t1).
We already know for a1 = a2 = 0 that the entries Q++(t2, t1) and Q−−(t2, t1) are Γ -
Fredholm. We can rewrite the projections in (9.31) as spectral projections with spectral
cut at 0 with the help of (8.29) such that Q++(t2, t1) and Q−−(t2, t1) can be recovered.
We have for all a1, a2 ∈ R

P>a2(t2) = P>a2(t2)1 = P>a2(t2) (P>0(t2) + P≤0(t2))

= P>a2(t2) ◦ P>0(t2) + P>a2(t2) ◦ P≤0(t2)

= P
>0
>a2

(t2)P>0(t2) + P(a2,∞)∩(−∞,0](t2) ,

P≥a1(t1) = 1P≥a1(t1) = (P≥0(t1) + P<0(t1))P≥a1(t1)

= P≥0(t1) ◦ P≥a1(t1) + P<0(t1) ◦ P≥a1(t1)

= P
≥a1

≥0 (t1)P≥a1(t1) + P[a1,∞)∩(−∞,0)(t1) .
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The projectors

P(a2,∞)∩(−∞,0](t2) =


P∅(t2) a2 ≥ 0

for
P(a2,0](t2) a2 < 0

and

P[a1,∞)∩(−∞,0)(t1) =


P∅(t1) a1 ≥ 0

for
P[a1,0)(t1) a1 < 0

are s-smoothing and therefore Γ -trace class because they are spectral projections on a
bounded Borel set. Hence we get

Q>a2
≥a1

(t2, t1) = P
>0
>a2

(t)P>0(t2)Q(t2, t1)P
≥a1

≥0 (t1)P≥a1(t1) + S 1
Γ

= P
>0
>a2

(t)Q++(t2, t1)P
≥a1

≥0 (t1)P≥a1(t1) + S 1
Γ

for all a1, a2 ∈ R. Likewise, we can relate Q≤a2
<a1

(t2, t1) to Q−−(t2, t1): we have

P≤a2(t2) = P≤a2(t2)1 = P≤a2(t2) ◦ (P≤0(t2) + P>0(t2))

= P≤a2(t2) ◦ P≤0(t2) + P≤a2(t2) ◦ P>0(t2)

= P
≤0
≤a2

(t2)P≤0(t2) + P(−∞,a2]∩(0,∞)(t2) ,

P<a1(t1) = 1P<a1(t1) = (P<0(t1) + P≥0(t1)) ◦ P<a1(t1)

= P<0(t1) ◦ P<a1(t1) + P≥0(t1) ◦ P<a1(t1)

= P
<a1

<0 (t1)P<a1(t1) + P[0,∞)∩(−∞,a1)(t1)

with s-smoothing and thus Γ -trace class remainders

P(−∞,a2]∩(0,∞)(t2) =


P∅(t2) a2 ≤ 0

for
P(0,a2](t2) a2 > 0

and

P[0,∞)∩(−∞,a1)(t1) =


P∅(t1) a1 ≤ 0

for
P[0,a1)(t1) a1 > 0

.

We obtain for all a1, a2 ∈ R

Q≤a2
<a1

(t2, t1) = P
≤0
≤a2

(t)P≤0(t2)Q(t2, t1)P
<a1

<0 (t1)P<a1(t1) + S 1
Γ

= P
≤0
≤a2

(t)Q−−(t2, t1)P
<a1

<0 (t1)P<a1(t1) + S 1
Γ .

If we consider Q>a2
≥a1

as operator on ran (P≥a1(t1)) and Q≤a2
<a1

as operator on ran (P<a1(t1)),
we gain

Q>a2
≥a1

(t2, t1) = P
>0
>a2

(t2)Q++(t2, t1)P
≥a1

≥0 (t1) + S 1
Γ ,

Q≤a2
<a1

(t2, t1) = P
≤0
≤a2

(t2)Q−−(t2, t1)P
<a1

<0 (t1) + S 1
Γ .

(9.39)
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As we would like to show Γ -Fredholmness of Q>a2
≤a1

and Q≥a2
<a1

with the help of the known
Γ -Fredholmness of Q±± from Theorem 9.1.8, we are left with the task to show that the

restricted projectors P
>0
>a2

(t2), P
≥a1

≥0 (t1), P
≤0
≤a2

(t2) and P
<a1

<0 (t1) are Γ -Fredholm. To do so
we calculate the Γ -dimensions and -codimensions from Lemma 8.1.6:

dimΓ

(
ran (P>0) ∩ (ran (P>a2))⊥

)
= dimΓ (ran (P>0) ∩ ran (P≤a2))

= χ{a2>0} dimΓ

(
ran
(
P(0,a2]

))
,

dimΓ

(
ran (P≥a1) ∩ (ran (P≥0))⊥

)
= dimΓ (ran (P≥a1) ∩ ran (P<0))

= χ{a1<0} dimΓ

(
ran
(
P[a1,0)

))
,

dimΓ

(
ran (P≤0) ∩ (ran (P≤a2))⊥

)
= dimΓ (ran (P≤0) ∩ ran (P>a2))

= χ{a2<0} dimΓ

(
ran
(
P(a2,0]

))
,

dimΓ

(
ran (P<a1) ∩ (ran (P<0))⊥

)
= dimΓ (ran (P<a1) ∩ ran (P≥0))

= χ{a1>0} dimΓ

(
ran
(
P[0,a1)

))
;

codimΓ (ran (P>0) ∩ ran (P>a2)) = dimΓ

(
ran (P>a2)/

ran (P>0) ∩ ran (P>a2)

)

=


dimΓ

(
ran (P>a2)/

ran (P>a2)

)
a2 ≥ 0

for

dimΓ

(
ran (P>a2)/

ran (P>0)

)
a2 < 0


= χ{a2<0} dimΓ

(
ran
(
P(a2,0]

))
,

codimΓ (ran (P≥0) ∩ ran (P≥a1)) = dimΓ

(
ran (P≥0)/

ran (P≥0) ∩ ran (P≥a1)

)

=


dimΓ

(
ran (P≥0)/

ran (P≥a1)

)
a1 > 0

for

dimΓ

(
ran (P≥0)/

ran (P≥0)

)
a1 ≤ 0


= χ{a1>0} dimΓ

(
ran
(
P[0,a1)

))
,

codimΓ (ran (P≤0) ∩ ran (P≤a2)) = dimΓ

(
ran (P≤a2)/

ran (P≤0) ∩ ran (P≤a2)

)

=


dimΓ

(
ran (P≤a2)/

ran (P≤a2)

)
a2 ≤ 0

for

dimΓ

(
ran (P≤a2)/

ran (P≤0)

)
a2 > 0


= χ{a2>0} dimΓ

(
ran
(
P(0,a2]

))
,
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codimΓ (ran (P<0) ∩ ran (P<a1)) = dimΓ

(
ran (P<0)/

ran (P<0) ∩ ran (P<a1)

)

=


dimΓ

(
ran (P<0)/

ran (P<a1)

)
a1 < 0

for

dimΓ

(
ran (P<0)/

ran (P<0)

)
a1 ≥ 0


= χ{a1<0} dimΓ

(
ran
(
P[a1,0)

))
.

All occuring Γ -dimensions are �nite since the spaces are images of spectral projections
for eigenvalues in bounded Borel sets. Hence they are Γ -trace class. This shows that
the restricted projectors P

>0
>a2

(t2), P
≥a1

≥0 (t1), P
≤0
≤a2

(t2) and P
<a1

<0 (t1) are Γ -Fredholm with
Γ -indices

indΓ

(
P
>0
>a2

(t2)
)

= χ{a2>0} dimΓ

(
ran
(
P(0,a2]

))
−χ{a2<0} dimΓ

(
ran
(
P(a2,0]

))
,

indΓ

(
P
≥0
≥a1

(t1)
)

= χ{a1<0} dimΓ

(
ran
(
P[a1,0)

))
−χ{a1>0} dimΓ

(
ran
(
P[0,a1)

))
,

indΓ

(
P
≤0
≤a2

(t2)
)

= χ{a2<0} dimΓ

(
ran
(
P(a2,0]

))
−χ{a2>0} dimΓ

(
ran
(
P(0,a2]

))
,

indΓ

(
P
<0
<a1

(t1)
)

= χ{a1>0} dimΓ

(
ran
(
P[0,a1)

))
−χ{a1<0} dimΓ

(
ran
(
P[a1,0)

))
.

Hence Q>a2
≥a1

(t2, t1) and Q≤a2
<a1

(t2, t1) in (9.39) are Γ -Fredholm as compositions of Γ -Fredholm
operators with Γ -trace class pertubations. The invariance with respect to Γ -compact per-
tubations and the additivity of the Γ -index with respect to compositions leads to the given
formulas in the claim.

We can identify further Γ -index relations between di�erent spectral entries with the help
of those in Theorem 9.1.8 (1).

indΓ

(
Q≤a2
<a1

(t2, t1)
)

= −indΓ

(
Q>a2
≥a1

(t2, t1)
)

and

indΓ

(
Q̃≤a2
<a1

(t2, t1)
)

= −indΓ

(
Q̃>a2
≥a1

(t2, t1)
)

.

(9.40)

Remark 9.2.4. We focused on the untwisted case for the sake of readability, but the results
and proofs carry over to the matrix entries of the wave evolution operators with respect to
the twisted Dirac operators.

With regard to Lemma 9.1.9, we could have also proven Theorem 9.2.3 without The-
orem 9.1.8 by showing Γ -compactness of the o�-diagonal terms in(9.29) and respectively
(9.30).

Lemma 9.2.5.

(1) Q>a2
<a1

(t2, t1) ∈ KΓ (L
2
Γ ,(−∞,a1)(S+(Σ1)), L2

Γ (S+(Σ2))) and

Q≤a2
≥a1

(t2, t1) ∈ KΓ (L
2
Γ ,[a1,∞)(S+(Σ1)), L2

Γ (S+(Σ2))).

(2) Q̃>a2
<a1

(t2, t1) ∈ KΓ (L
2
Γ ,(−∞,a1)(S−(Σ1)), L2

Γ (S−(Σ2))) and

Q̃≤a2
≥a1

(t2, t1) ∈ KΓ (L
2
Γ ,[a1,∞)(S+(Σ1)), L2

Γ (S+(Σ2))).
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Proof. We proceed as in the �rst proof of Theorem 9.2.3 and recapitulate the representa-
tions of the projectors P>a2 , P≤a2 , P≥a1 and P<a1 with restricted projectors (8.29):

P>a2(t) = P
>0
>a2

(t2)P>0(t2) ,

P≤a2(t) = P
≤0
≤a2

(t2)P≤0(t2) ,

P≥a1(t) = P
≥a1

≥0 (t1)P≥a1(t1) ,

P<a1(t) = P
<a1

<0 (t1)P<a1(t1) ,

each modulo Γ -trace class operators. Q>a2
<a1

(t2, t1) and Q(t2, t1) are related to Q+−(t2, t1)

and respectively Q≤a2
≥a1

(t2, t1) as follows:

Q>a2
<a1

(t2, t1) = P
>0
>a2

(t2)P>0(t2)Q(t2, t1)P
<a1

<0 (t1)P<a1(t1) + S 1
Γ

= P
>0
>a2

(t2)Q+−(t2, t1)P
<a1

<0 (t1)P<a1(t1) + S 1
Γ ,

Q≤a2
≥a1

(t2, t1) = P
≤0
≤a2

(t2)P≤0(t2)Q(t2, t1)P
≥a1

≥0 (t1)P≥a1(t1) + S 1
Γ

= P
≤0
≤a2

(t2)Q−+(t2, t1)P
≥a1

≥0 (t1)P≥a1(t1) + S 1
Γ .

If we apply Q>a2
<a1

to sections in the domains L2
Γ ,(−∞,a1)(S+(Σ)) and Q≤a2

≥a1
to sections in the

domain L2
Γ ,[a1,∞)](S+(Σ)), we obtain

Q>a2
<a1

(t2, t1) = P
>0
>a2

(t2)Q+−(t2, t1)P
<a1

<0 (t1) + S 1
Γ ,

Q≤a2
≥a1

(t2, t1) = P
≤0
≤a2

(t2)Q−+(t2, t1)P
≥a1

≥0 (t1) + S 1
Γ .

We have proven in Theorem 9.2.3 that the occuring restricted projections are Γ -Fredholm
and thus Γ -morphisms. AsQ±∓ are Γ -compact due to Lemma 9.1.9 (1), the Γ -ideal property
of KΓ shows that Q

>a2
<a1

(t2, t1) and Q≤a2
≥a1

(t2, t1) are Γ -compact operators as claimed. The

second assertion follows analogously by replacing Q with Q̃.

9.3. Γ-indices

For simplicity and legibility we neglect the superscript EL everywhere by focussing on the
untwisted case. The concepts, results and observations from all former subsections now
come together to express the Γ -indices of Q±± and Q̃±± with the modi�ed spectral �ow;
the Γ -indices of Q>a2

≥a1
, Q≤a2

<a1
(t2, t1), Q̃>a2

≥a1
and Q̃≤a2

<a1
(t2, t1) follow with (9.35), (9.36), (9.37)

respectively (9.38).

Theorem 9.3.1. The Γ -indices of Q±±(t2, t1) and Q̃±±(t2, t1) from Theorem 9.1.8 are

indΓ (Q±±(t2, t1)) = ∓sfΓ {At}t∈[t1,t2] ± dimΓ ker (A2) = indΓ

(
Q̃±±(t2, t1)

)
. (9.41)

Before we start with the concrete proof, we will prepare certain conclusions and obser-
vations.

Lemma 9.3.2. For a �xed t ∈ T (M) we have Q++(t, t) ∈ FΓ (ran (P≥0(t)) , ran (P>0(t)))
and Q−−(t, t) ∈ FΓ (ran (P<0(t)) , ran (P≤0(t))) with Γ -indices

indΓ (Q±±(t, t)) = ±dimΓ (ker (At)) = indΓ

(
Q̃±±(t, t)

)
. (9.42)
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Proof. (Lemma 9.3.2) Fix a t ∈ T (M). The Γ -Fredholm-property is a consequence of
Theorem 9.1.8 (1) (or (2) for the twisted case). The concrete forms of Q±±(t, t) become

Q++(t, t) = Q̃++(t, t) = P>0(t)P≥0(t) = P
≥0
>0(t)P 2

≥0(t) = P
≥0
>0(t)P≥0(t) ,

Q−−(t, t) = Q̃−−(t, t) = P≤0(t)P<0(t) = P
<0
≤0(t)P<0(t) .

(9.43)

If Q++(t, t) and Q̃++(t, t) are viewed as operators on ran (P≥0(t)), they coincide with

P
≥0
>0(t); likewise, if Q−−(t, t) and Q̃−−(t, t) are viewed as operators on ran (P<0(t)), they

coincide with P
<0
≤0(t). Because Q±±(t, t) and Q̃±±(t, t) are Γ -Fredholm, P

<0
≤0(t) and P

≥0
>0(t)

become Γ -Fredholm on the same domain and range. Their Γ -indices can be computed as
in Lemma 8.1.6 at each t:

dimΓ

(
ran (P≥0) ∩ (ran (P>0))⊥

)
= dimΓ (ran (P≥0) ∩ ran (P≤0)) = dimΓ (ran (P0)) ,

dimΓ

(
ran (P<0) ∩ (ran (P≤0))⊥

)
= dimΓ (ran (P<0) ∩ ran (P>0)) = dimΓ (ran (P∅)) = 0 ,

codimΓ (ran (P≥0) ∩ ran (P>0)) = dimΓ

(
ran (P>0)/

ran (P≥0) ∩ ran (P>0)

)
= dimΓ (ran (P∅)) = 0 ,

codimΓ (ran (P<0) ∩ ran (P≤0)) = dimΓ

(
ran (P≤0)/

ran (P<0) ∩ ran (P≤0)

)
= dimΓ (ran (P0))

and thus
indΓ (Q±±(t, t)) = ±dimΓ (ran (P0(t))) .

The range of P0(t) has �nite Γ -dimension because P0(t) is the projector onto the kernel of
At which is a Γ -Fredholm operator for all t.

The isometry between M and R×Σ suggests that at each t ∈ T (M) the globally hyper-
bolic manifold M locally has product structure around the slice Σt. The used boundary
conditions therefore makes sense on some arti�cial boundary hypersurface Σt for each t.
The unitarity of Q(τ2, τ1) and Q̃(τ2, τ1) remains true since they are unitary for any bounded
time interval in T (M). Hence Q(τ2, τ1) and Q̃(τ2, τ1) remain Γ -Fredholm with vanishing
Γ -indices. Then the argument of the proof of Theorem 9.1.8 stays valid if we replace the
interval [t1, t2] with a smaller subinterval [τ1, τ2] ⊂ [t1, t2] such that

Q++(τ2, τ1) ∈ FΓ (L
2
Γ ,[0,∞)(S+(Στ1)), L2

Γ ,(0,∞)(S+(Στ2))) ,

Q−−(τ2, τ1) ∈ FΓ (L
2
Γ ,(−∞,0)(S+(Στ1)), L2

Γ ,(−∞,0](S+(Στ2))) ,

Q̃++(τ2, τ1) ∈ FΓ (L
2
Γ ,[0,∞)(S−(Στ1)), L2

Γ ,(0,∞)(S−(Στ2))) ,

Q̃−−(τ2, τ1) ∈ FΓ (L
2
Γ ,(−∞,0)(S−(Στ1)), L2

Γ ,(−∞,0](S−(Στ2)))

(9.44)

with the same Γ -index relations as in Theorem 9.1.8. This of course carries over to the
twisted case (claim (2) in Theorem 9.1.8).
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We notice the following facts for any a, b ∈ R and N,H, being one of the relations in
{<,>,≤,≥}:

�

P̂Hb(t) = P̂
Na
Hb (t)P̂Na(t) (9.45)

with P̂
Na
Hb (t) = Q(t1, t)P

Na
Hb (t)Q(t, t1) which is Γ -Fredholm if only if P

Na
Hb (t) is Γ -

Fredholm and they have the same Γ -index.

�

ran (PN0(t)) = QN0
H0(t, t1)[ran (PH0(t1))] . (9.46)

These observations result in the following claim.

Lemma 9.3.3. Given τ, t ∈ T (M);

P̂>0(t) : ran
(
P̂≥0(τ)

)
→ ran

(
P̂>0(t)

)
and P̂≤0(t) : ran

(
P̂<0(τ)

)
→ ran

(
P̂≤0(t)

)
are Γ -Fredholm with Γ -indices

indΓ

(
P̂>0(t)

)
= indΓ (Q++(t, τ)) = indΓ

(
Q̃++(t, τ)

)
and

indΓ

(
P̂≤0(t)

)
= indΓ (Q−−(t, τ)) = indΓ

(
Q̃−−(t, τ)

)
.

(9.47)

Proof. Let τ, t ∈ T (M). We express each evolved projector as composition of Γ -Fredholm

operators: let v ∈ ran (P≥0(τ)) and u = Q(t1, τ)v ∈ ran
(
P̂≥0(τ)

)
, then

P̂>0(t)u = Q(t1, t)P>0(t)Q(t, t1)u = Q(t1, t)P>0(t)Q(t, t1)Q(t1, τ)v = Q(t1, t)Q++(t, τ)v

= Q(t1, t)Q++(t, τ)Q(τ, t1)u .

If we take v ∈ ran (P<0(τ)) instead such that u = Q(t1, τ)v ∈ ran
(
P̂<0(τ)

)
, we get

P̂≤0(t)u = Q(t1, t)P≤0(t)Q(t, t1)u = Q(t1, t)P≤0(t)Q(t, t1)Q(t1, τ)v = Q(t1, t)Q−−(t, τ)v

= Q(t1, t)Q−−(t, τ)Q(τ, t1)u .

Similar things hold if we replace Q with Q̃.

Because Q±± and Q̃±± are Γ -Fredholm for all subintervals in [t1, t2] as well as Q and
Q̃ are unitary for all time intervals with vanishing Γ -index, we observe that the evolved
projectors are indeed Γ -Fredholm with claimed Γ -indices.

This and the corresponding relations for the case of negative chirality are going to be
used to prove the main result of this subsection.

Proof. (Theorem 9.3.1) We start with the wave evolution operator of D+. We apply
De�nition 8.2.15 with the isometry U(τ2, τ1) = Q(τ2, τ1) to L2

Γ -spaces for computing the
modi�ed Γ -spectral �ow of {At}t∈[t1,t2] which is a smooth path of (essentially) self-adjoint
Riemannian Dirac operators on each Σt. Since every At is Γ -invariant and elliptic, each
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At of the path is Γ -Fredholm between the Hilbert Γ -modules H1
Γ (S+(Σt) and L2

Γ (S+(Σt));
hence

[t1, t2] 3 t 7→ At ∈ F sa
Γ (H1

Γ (S+(Σt), L
2
Γ (S+(Σt)))

is continuous. Lemma 8.2.13 and Remark 7.2.4 imply continuity of

[t1, t2] 3 t 7→ Ât ∈ F sa
Γ (H1

Γ (S+(Σ1), L2
Γ (S+(Σ1))) .

We choose a large enough L such that the partition t1 = τ0 < τ1 < · · · < τL = t2 of [t1, t2]
implies ∥∥∥ΠΓ (P̂≥0(s))− ΠΓ (P̂≥0(r))

∥∥∥ < 1 ∀ s, r ∈ [τj−1, τj ]

to be satis�ed for all j ∈ {1, 2, .., L}. Likewise, we could argue that by Lemma 9.3.3
the evolved projectors at any point in the time interval are Γ -Fredholm with well-de�ned
Γ -index. Starting with any of these arguments shows that the sum

s̃fΓ {At}t∈[t1,t2] = sfΓ

{
Ât

}
t∈[t1,t2]

=
L∑
j=1

indΓ

(
P̂≥0(τj−1)|ran(P̂≥0(τj))→ran(P̂≥0(τj−1))

)
from formula (8.52) is well-de�ned. Unfortunately, the Γ -index relations in Lemma 9.3.3
are not useful in this form, even after correcting the spectral range of the projectors. We
rewrite the evolved projector P̂≥0(t) in the following way to continue with the proof: let
t, τ ∈ [τj−1, τj ]; if we apply P̂≥0(t) to an element in ran (P≥0(t1)), we get

P̂≥0(t)|ran(P̂≥0(τ)) := P̂≥0(t)|ran(P̂≥0(τ))→ran(P̂≥0(t))

= P̂≥0(t)P̂
>0
≥0(τ)|ran(P̂>0(τ))

(∗)
= P̂≥0(t)P̂

>0
≥0(τ)Q(t1, τ)|ran(P>0(τ))

= Q(t1, t)P≥0(t)Q(t, t1)Q(t1, τ)P
>0
≥0(τ)Q(τ, t1)Q(t1, τ)|ran(P>0(τ))

(∗∗)
= Q(t1, t)P≥0(t)Q(t, τ)P

>0
≥0(τ)|ran(P>0(τ))

(9.46)
= Q(t1, t)P≥0(t)Q(t, τ)P

>0
≥0(τ)Q++(τ, t1) (9.48)

where we used ran
(
P̂J(t)

)
= Q(t1, t)[ran (PJ(t))] in (∗) and the evolution operator prop-

erties from Lemma 7.3.7 (1) and (2) in (∗∗). The Γ -index then takes the form

indΓ

(
P̂≥0(t)|ran(P̂≥0(τ))

)
= indΓ

(
Q(t1, t)P≥0(t)Q(t, τ)P

>0
≥0(τ)Q++(τ, t1)

)
= indΓ

(
P≥0(t)Q(t, τ)P

>0
≥0(τ)Q++(τ, t1)

)
+ indΓ

(
Q(t1, t)|ran(P≥0(t))→ran(P̂≥0(t))

)
= indΓ

(
P≥0(t)Q(t, τ)P

>0
≥0(τ)Q++(τ, t1)

)
after applying the composition rule of the Γ -index with the restriction of the Γ -isomorphism
Q to its range which is still a Γ -isomorphism with identically vanishing Γ -index. We extend
this expression by introducing a zero in the form of the Γ -index of

P>0(t1)Q(t1, t)|ran(P≥0(t)) = Q++(t1, t)
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to eliminate the extra projector; this step cancels afterwards:

indΓ

(
P̂≥0(t)|ran(P̂≥0(τ))

)
= indΓ

(
P≥0(t)Q(t, τ)P

>0
≥0(τ)Q++(τ, t1)

)
+ indΓ

(
P>0(t1)Q(t1, t)|ran(P≥0(t))

)
− indΓ (Q++(t1, t))

= indΓ

(
P>0(t1)Q(t1, τ)P≥0(t)Q(t, τ)P

>0
≥0(τ)Q++(τ, t1)

)
− indΓ (Q++(t1, t))

= indΓ

(
Q(t, τ)P

>0
≥0(τ)Q++(τ, t1)

)
.

Each of the remaining three operators is Γ -Fredholm such that we �nally gain

indΓ

(
P̂≥0(t)|ran(P̂≥0(τ))

)
= indΓ

(
Q(t, τ)|ran(P>0(τ))→Q(t,τ)[ran(P>0(t))]

)
+ indΓ

(
P
>0
≥0(τ)

)
+ indΓ (Q++(τ, t1)) = indΓ

(
P
>0
≥0(τ)

)
+ indΓ (Q++(τ, t1)) .

We implicitly used the fact that in the proof of the Γ -Fredholmness of Q±± the time-
orientation is soley determined by the wave evolution operator which does not a�ect the
Γ -Fredholmness of Q++. In order to calculate the Γ -index of P

>0
≥0(τ) we proceed as in the

proof of Lemma 9.3.2 and observe

indΓ

(
P
>0
≥0(τ)

)
= −indΓ

(
P
≥0
>0(τ)

)
(9.43)

= −indΓ (Q++(τ, τ))
(9.42)

= −dimΓ ker (Aτ ) .

The results of the whole calculation becomes

indΓ

(
P̂≥0(t)|ran(P̂≥0(τ))

)
= indΓ (Q++(τ, t1))− dimΓ ker (Aτ ) . (9.49)

It is left to show that the modi�ed spectral �ow can be related to the Γ -indices of Q±±.
We add a zero in the form of

indΓ

(
P̂≥0(τj)|ran(P̂≥0(τj))→ran(P̂≥0(τj))

)
= indΓ

(
1ran(P̂≥0(τj))

)
= 0

to each summand in the Γ -spectral �ow formula and perform the telescope sum afterwards:

s̃fΓ {At}t∈[t1,t2] =

L∑
j=1

[
indΓ

(
P̂≥0(τj−1)|ran(P̂≥0(τj))→ran(P̂≥0(τj−1))

)
−indΓ

(
P̂≥0(τj)|ran(P̂≥0(τj))→ran(P̂≥0(τj))

)]
= −indΓ

(
P̂≥0(t2)|ran(P̂≥0(t2))

)
+ indΓ

(
P̂≥0(t1)|ran(P̂≥0(t1))

)
.

(9.42) and (9.49) imply

s̃fΓ {At}t∈[t1,t2] = −indΓ (Q++(t2, t1)) + dimΓ ker (A2) + indΓ (Q++(t1, t1))

− dimΓ ker (A1) = −indΓ (Q++(t2, t1)) + dimΓ ker (A2)

= indΓ (Q−−(t2, t1)) + dimΓ ker (A2) ,

We can express our modi�ed Γ -spectral �ow with the ordinary Γ -spectral �ow due to
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(8.68). The argument carries over to the case of negative chirality by replacing the isometry
U(τ2, τ1) with Q̃(τ2, τ1).

(9.42) and the Γ -index relations in (9.17) implicate

indΓ (Q−−(t2, t1)) = −indΓ (Q++(t2, t1)) = indΓ (Q̃−−(t2, t1)) = −indΓ (Q̃++(t2, t1)) .

Combining (9.42) with (9.35), (9.36), (9.37) and (9.38) yields the following Γ -index formulas
for the matrix entries of Q(t2, t1) and Q̃(t2, t1) according to the splitting with respect to
generalised (anti-)APS boundary conditions:

indΓ

(
Q>a2
≥a1

(t2, t1)
)

= indΓ

(
Q̃>a2
≥a1

(t2, t1)
)

= −sfΓ {At}t∈[t1,t2] + dimΓ ker (A2)

+χ{a2>0} dimΓ

(
ran
(
P(0,a2]

))
−χ{a2<0} dimΓ

(
ran
(
P(a2,0]

))
+χ{a1<0} dimΓ

(
ran
(
P[a1,0)

))
−χ{a1>0} dimΓ

(
ran
(
P[0,a1)

))
and (9.50)

indΓ

(
Q≤a2
<a1

(t2, t1)
)

= indΓ

(
Q̃≤a2
<a1

(t2, t1)
)

= sfΓ {At}t∈[t1,t2] − dimΓ ker (A2)

+χ{a2<0} dimΓ

(
ran
(
P(a2,0]

))
−χ{a2>0} dimΓ

(
ran
(
P(0,a2]

))
+χ{a1>0} dimΓ

(
ran
(
P[0,a1)

))
−χ{a1<0} dimΓ

(
ran
(
P[a1,0)

))
.

We recall that we introduced the notion S±(Σt) to stress which subbundle S±(M) has been
restricted to Σt. As Σt is odd-dimensional, there is no chirality decomposition, so we have
S±(Σt) = S(Σt) and all ranges of projectors in (9.50) due to shifted boundary conditions
are in fact the same for both chiralities. Thus, we can point out the following Γ -index
relations:

−indΓ

(
Q>a2
≥a1

(t2, t1)
)

= indΓ

(
Q≤a2
<a1

(t2, t1)
)

= indΓ

(
Q̃≤a2
<a1

(t2, t1)
)

= −indΓ

(
Q̃>a2
≥a1

(t2, t1)
)

.
(9.51)
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10. Γ-Fredholmness and Γ-index of the

Lorentzian Dirac operator

This chapter �nally presents the proof of the Γ -Fredholmness of DEL
± with generalised

(a)APS boundary conditions from Main Theorem 2 and in particular the special case
Main Theorem 1 with Corollary 1.0.7. We will show that the Fredholm-property to show
is related to the Γ -Fredholmness of the diagonal spectral entries of Q and Q̃. In order to do
such a comparison, we furthermore need another technical result in the Γ -setting. This tool
is presented in the �rst section, before we �nally show the Γ -Fredholmness of DEL

± in the
following section. The Γ -indices are then determined by the Γ -spectral �ow of the smooth
family of twisted hypersurface Dirac operators. To compare with the Riemannian Γ -index
formula, we need to rewrite the Γ -spectral �ow with geometric quantities. This procedure
and results will be explained in the third section. We end this chapter by considering the
case of �nite coverings as a special case of Galois coverings.

10.1. An important Lemma

We want to provide an important technical result in order to apply it for proving the Γ -
Fredholm part of Main Theorem 2. It is a Hilbert Γ -module version of [BB11, Lem.A.1]
which has been used in the proof of the Fredholmness in [BS19] for compact Cauchy
boundary.

Lemma 10.1.1. Let H ,H1,H2 be (projective) Hilbert Γ -modules, A ∈ BΓ (H ,H1), and
B ∈ BΓ (H ,H2) which is onto; de�ne C = A|ker(B) ⊕ 1H2, then

(1) dimΓ ker (C) = dimΓ ker (A⊕B) ;

(2) ran (C) is closed if and only if ran (A⊕B) is closed and

codimΓ (ran (C)) = codimΓ (ran (A⊕B)) ;

(3) C is Γ -Fredholm if and only if A⊕B is Γ -Fredholm and indΓ (C) = indΓ (A⊕B).

Proof. Let γ ∈ Γ ; we denote with Lγ and L(i,γ) the left action representations on H and
respectively Hi for i ∈ {1, 2}. The left action representation on H1⊕H2 is L(1,γ)⊕L(2,γ).

Since A and B are bounded, also A|ker(B), C and A⊕B are bounded and their Γ -invariance
follows trivially in each summand: C, (A⊕B) ∈ BΓ (H

⊕2,H1 ⊕H2).

(1) One equally concludes from the proof in [BB11] that there exist two Γ -isomorphisms
I ∈ BΓ (H

⊕2) and J ∈ BΓ (H1 ⊕H2) such that

C = J ◦ (A⊕B) ◦ I . (10.1)
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B|ker(B)⊥ is injective and thus bijective due to the assumed surjectivity of B. The
open mapping theorem implies that B|ker(B)⊥ is open and consequently the inverse

(B|ker(B)⊥)−1 of B|ker(B)⊥ is bounded by the bounded inverse theorem. By the fact,

that ker (B) and ker (B)⊥ are Γ -invariant subspaces (see Lemma 5.2.13), the restric-
tion B|ker(B)⊥ is equally Γ -invariant with Γ -invariant inverse (B|ker(B)⊥)−1:

Lγ(B|ker(B)⊥)−1 =
(
B|ker(B)⊥ ◦ (Lγ)∗

)−1
=
(

(L(2,γ))
∗B|ker(B)⊥

)−1

= (B|ker(B)⊥)−1L(2,γ) .

Thus, (B|ker(B)⊥)−1 intertwines the Γ -action on H2 and H . We used the fact that
(L(2,γ))

∗ and (Lγ)∗ are also left action representations. We de�ne

I = 1ker(B) ⊕
(
B|ker(B)⊥

)−1
and J =

(
1H1 −A|ker(B)⊥ ◦

(
B|ker(B)⊥

)−1

O 1H2

)
.

I is clearly a Γ -isomorphism with Γ -invariant inverse

I−1 =

(
1 O

O (B|ker(B)⊥)−1

)
.

The inverse of J is

J −1 =

(
1H1 A|ker(B)⊥ ◦

(
B|ker(B)⊥

)−1

O 1H2

)

which can be seen from(
1H1 ∓A|ker(B)⊥ ◦

(
B|ker(B)⊥

)−1

O 1H2

)(
1H1 ±A|ker(B)⊥ ◦

(
B|ker(B)⊥

)−1

O 1H2

)

=

(
1H1 ∓A|ker(B)⊥ ◦

(
B|ker(B)⊥

)−1
±A|ker(B)⊥ ◦

(
B|ker(B)⊥

)−1

O 1H2

)
= 1H1⊕H2 .

J and J −1 are Γ -morphisms because its matrix entries are Γ -morphisms. Hence J
is a Γ -isomorphism. (10.1) can be checked by multiplying the matrices of operators
with the matrix representation of the direct sum of operators, decomposed by H =
ker (B)⊕ ker (B)⊥: with B|ker(B) = O we have

(A⊕B) ◦ I =

(
A|ker(B) A|ker(B)⊥

O B|ker(B)⊥

)(
1ker(B) O

O

(
B|ker(B)⊥

)−1

)

=

(
A|ker(B) A|ker(B)⊥ ◦

(
B|ker(B)⊥

)−1

O 1H2

)
= J −1 ◦ C

⇔ J ◦ (A⊕B) ◦ I = JJ −1C = C =

(
A|ker(B) O

O 1H2

)
.
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The null-spaces of the left- and right-hand side of (10.1) are projective Hilbert Γ -
modules. Proposition 5.2.8 (4) then implies

dimΓ ker (C) = dimΓ (ker (J ◦ (A⊕B) ◦ I)) .

J and I−1 restrict to Γ -isomorphisms between the kernels as projective Γ -modules:
if u ∈ ker (A⊕B), then I−1u ∈ ker ((A⊕B) ◦ I). If on the other hand v ∈
ker ((A⊕B) ◦ I), then Iv ∈ ker ((A⊕B)) whereof one concludes

I−1 : ker (A⊕B) ↔ ker ((A⊕B) ◦ I) .

The Γ -isomorphism J maps ker ((A⊕B) ◦ I) to ker (J ◦ (A⊕B) ◦ I). Thus, the
composition

J ◦ I−1 : ker (A⊕B) ↔ ker (J ◦ (A⊕B) ◦ I) .

is a Γ -isomorphism. Proposition 5.2.6 (1) guarantees the existence of a unitary Γ -
isomorphism between the same Γ -modules such that

ker (A⊕B) ∼= ker (J ◦ (A⊕B) ◦ I) .

The invariance of the Γ -dimension between unitary isomorphic spaces (Proposi-
tion 5.2.8 (5)) shows the claim.

(2) Since closedness does not involve any property with respect to the group Γ , this
claim follows as in [BB11, Lem.A.1] from the closed range theorem. We repeat the
argument for the sake of completeness: suppose ran (A⊕B) is closed. By the closed
range theorem this is equivalent with a closed range of the adjoint of A ⊕ B and
its range equals the annihilator of the kernel of A ⊕ B which corresponds to the
orthogonal complement in the Hilbert space setting: ran ((A⊕B)∗) = ker (A⊕B)⊥.
Because the constructed isomorphism maps between the kernels of A⊕B and C, it
induces another isomorphism between the orthogonal complements since the kernels
and their orthogonal complements are closed, Γ -invariant, and decompose the same
Hilbert space:

H ⊕2 = ker (C) ⊕ ker (C)⊥

H ⊕2 = ker (A⊕B) ⊕ ker (A⊕B)⊥

∼= ∼=

The orthogonal complement of the kernel with respect to C is isomorphic to the dual
of the quotient space H ⊕2/ker (C) and since it is a Hilbert space, it is isomorphic
to the quotient. The homomorphism theorem then implies that

ran ((A⊕B)∗) ∼= ker (C)⊥ ∼= H ⊕2/
ker (C)

∼= ran (C) .

The closedness of ran ((A⊕B)∗) is preserved under isomorphisms such that ran (C)
is closed. Starting with ran (C) being closed, the same argumentation backwards
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shows that ran ((A⊕B)∗) is closed. The closed range theorem �nally implies the
closedness of ran (A⊕B).

Lemma 5.2.7 and closedness imply that

(H1 ⊕H2)/
ran (C) and (H1 ⊕H2)/

ran (A⊕B)

are projective Hilbert Γ -submodules. A unitary Γ -isomorphism between these two
spaces needs to be found. Since both quotient spaces are again Hilbert spaces,
they are isomorphic to their dual spaces by the Frechet-Riesz theorem. The dual
of a quotient of a Hilbert space and a closed subset is isomorphic to the orthogonal
complement of the closed subset:

(H1 ⊕H2)/
ran (C)

∼=
(

(H1 ⊕H2)/
ran (C)

)′ ∼= ran (C)⊥

and analogous for the other quotient. The closed range theorem implies again that
the orthogonal complement of the ranges are equal to the null space of their adjoint
operators such that

(H1 ⊕H2)/
ran (C)

∼= ker (C∗) and (H1 ⊕H2)/
ran (A⊕B)

∼= ker ((A⊕B)∗) .

These isomorphisms become Γ -invariant because the spaces on both sides of the
isomorphy are Γ -invariant subspaces with respect to their unitary left action repre-
sentation. It is left to show that the kernels of the adjoint operators are isomorphic
to each other. Adjoining (10.1) yields

C∗ = I∗ ◦ (A⊕B)∗ ◦ J ∗

where I∗ ∈ BΓ (H
⊕2) and J ∗ ∈ BΓ (H1 ⊕ H2) are again Γ -isomorphisms with

inverses, given by the adjoints of the inverses of I and J . A similar argument as in
(1) shows that the kernels of C∗ and (A ⊕ B)∗ are indeed (unitarily) isomorphic to
each other:

ker (C∗) ∼= ker ((A⊕B)∗) .

Thus, the composition with the other isomorphisms, used to reduce the quotients,
implies again a topological and thus a unitary Γ -isomorphism between projective
Γ -submodules which �nally leads to the claim:

codimΓ (ran (C)) = dimΓ ran (C)⊥ = dimΓ ker (C∗) = dimΓ ker ((A⊕B)∗)

= dimΓ ran (A⊕B)⊥ = codimΓ (ran (A⊕B)) .

(3) Γ -Fredholmness of C implicates dimΓ ker (C) <∞, ran (C) is closed, and that the Γ -
codimension satis�es codimΓ (ran (C)) <∞. (1) and (2) imply dimΓ ker (A⊕B) <∞,
ran (A⊕B) is closed and codimΓ (ran (A⊕B)) < ∞ and thus Γ -Fredholmness of
A ⊕ B. We can on the other hand conclude the Γ -Fredholmness of C from the
assumed Γ -Fredholmness of A ⊕ B as the above arguments are symmetric in terms
of both operators. The equivalence of the Γ -indices follows from the equivalence of
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the Γ -dimensions in this proof and (7) of Proposition 5.2.17:

indΓ (C) = dimΓ ker (C)− dimΓ ker (C∗) = dimΓ ker (A⊕B)− dimΓ ker ((A⊕B)∗)

= indΓ (A⊕B) .

10.2. Γ-Fredholmness of DEL under generalised (a)APS
boundary conditions

We are now in the position to prove the Fredholm part of our main theorem. In doing so,
we focus on DEL = DEL

+ �rst and give a detailed proof. In the next subsection we consider

D̃EL = DEL
− and �nally show the expected result for the full Dirac operator DEL .

10.2.1. Γ-Fredholmness of DEL
+ with generalised (a)APS boundary

conditions

The following statement is a generalisation of [Dam21, Thm.7.6] to twisting Dirac operators
with generalised (a)APS boundary conditions. We �rst de�ne the �nite energy spinors of
the Dirac equation which satisfy either gAPS or gaAPS boundary conditions for positive
chirality in the setting of non-compact manifolds, coming from a Galois covering: based
on (7.34) (b), we de�ne

FEsΓ ,APS(a1,a2)(M, T , DEL)

:=
{
u ∈ FEsΓ (M, T , DEL)

∣∣∣PEL[a1,∞)(t1) ◦ resΣ1u = 0 = PEL(−∞,a2](t2) ◦ resΣ2u
}

,

FEsΓ ,aAPS(a1,a2)(M, T , DEL)

:=
{
u ∈ FEsΓ (M, T , DEL)

∣∣∣PEL(−∞,a1)(t1) ◦ resΣ1u = 0 = PEL(a2,∞)(t2) ◦ resΣ2u
}

.

They coincide with the spaces FEsΓ ,APS(M, T , D) respectively FEsΓ ,aAPS(M, T , D) for a1 =
a2 = 0 in the untwisted case, introduced in [Dam21, Sec.7.3]. All these spaces are closed
subspaces of FEsΓ (M, T , DEL). Since FEsΓ (M, T , DEL) is a free Hilbert Γ -module due
to Theorem 7.3.3, its left action representation transfers to FEsΓ ,(a)APS(a1,a2)(M, T , DEL);
moreover, it is Γ -invariant as it is de�ned with spectral projectors and restrictions as Γ -
invariant operators. Proposition 5.2.6 (2) then implies that they are projective Hilbert
Γ -submodules on its own right. The choice s = 0 is of particular interest as the related
spaces then appear to be the correct domain for Γ -Fredholmness. We thus de�ne the Dirac
operator under gAPS boundary conditions

DEL
APS(a1,a2) : FE0

Γ ,APS(a1,a2)(M, T , DEL) → L2
Γ (S−L,E(M))

and the Dirac operator under gaAPS boundary conditions

DEL
aAPS(a1,a2) : FE0

Γ ,aAPS(a1,a2)(M, T , DEL) → L2
Γ (S−L,E(M)) .

We show their Γ -Fredholm property.



222 CHAPTER 10. Γ -FREDHOLMNESS AND Γ -INDEX OF D±

Theorem 10.2.1. Let a1, a2 ∈ R, M a temporal compact, globally hyperbolic spatial Γ -
manifold with compact baseMΓ , S+

L,E(M)→M the Γ -spin bundle of positive chirality which
is twisted with a Hermitian Γ -vector bundle E → M and twisted with the square-root of a
Hermitian Γ -line bundle L → M for a Spinc-structure. The Γ -invariant Dirac operators
DEL

APS(a1,a2) and D
EL
aAPS(a1,a2) as lifts of Dirac operators on the base manifold are Γ -Fredholm

with Γ -indices
indΓ (D

EL
APS(a1,a2)) = indΓ

(
Q≤a2
<a1

(t2, t1)
)

and
indΓ (D

EL
aAPS(a1,a2)) = indΓ

(
Q>a2
≥a1

(t2, t1)
)

.

Proof. We suppress the super- and subscripts, denoting the twisting character, for the sake
of readability. Besides, a proof in the untwisted case is su�cient since it turns out that it
is purely algebraic.

We denote with

P+ := (P[a1,∞)(t1) ◦ resΣ1)⊕ (P(−∞,a2](t2) ◦ resΣ2) (10.2)

the boundary condition operator for gAPS boundary conditions and with

P− := (P(−∞,a1)(t1) ◦ resΣ1)⊕ (P(a2,∞)(t2) ◦ resΣ2) (10.3)

the operator for gaAPS boundary conditions. The main task is to show that

P+ ⊕D :

FE0
Γ ,APS(a1,a2)(M, T , D) →

[
L2
Γ ,[a1,∞)(S+(Σ1))⊕ L2

Γ ,(−∞,a2](S+(Σ2))
]
⊕ L2

Γ (S−(M))

and

P− ⊕D :

FE0
Γ ,aAPS(a1,a2)(M, T , D) →

[
L2
Γ ,(−∞,a1)(S+(Σ1))⊕ L2

Γ ,(a2,∞)(S+(Σ2))
]
⊕ L2

Γ (S−(M))

are Γ -Fredholm with the claimed Γ -indices. We want to apply Lemma 10.1.1 with

H = FE0
Γ (M, T , D) H1 = L2

Γ ,[a1,∞)(S+(Σ1))⊕ L2
Γ ,(−∞,a2](S+(Σ2))

H2 = L2
Γ (S−(M)) (10.4)

B = D = D+ A = P+

to prove Γ -Fredholmness of P+⊕D by checking that C = A|ker(B)⊕1H2 = P+|ker(D)⊕1H2

is Γ -Fredholm. The use is legitimated, because H1 and H2 are Hilbert Γ -modules and H
is a Hilbert Γ -module by Theorem 7.3.3 and Proposition 5.2.6 (2); boundness in the spririt
of Γ -morphisms and surjectivity of D+ follow from Theorem 7.3.3 from which also follows
that the restriction to the hypersurfaces are Γ -morphisms on H ; the s-regularity of the
spectral projections then imply that P+ is equally a Γ -morphism. We furthermore use the
shorthand notations H1(t1) = L2

Γ ,[a1,∞)(S+(Σ1)) and H1(t2) := L2
Γ ,(−∞,a2](S+(Σ2)) which
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imply

H1 = H1(t1)⊕H1(t2)

H ⊥
1 (t1) = L2

Γ ,(−∞,a1)(S+(Σ1)) H ⊥
1 (t2) = L2

Γ ,(a2,∞)(S+(Σ1)) .

The kernel of C consists of spinors u ∈ FE0
Γ (M, ker (D)) such that u|Σ1 ∈ H ⊥

1 (t1) and
u|Σ2 ∈ H ⊥

1 (t2); u|Σ1 ∈ H ⊥
1 (t1) already satis�es the boundary condition on the initial

hypersurface. In order to assure the boundary condition on the �nal hypersurface Σ2, the
evolution of u|Σ1 with Q(t2, t1) has to map to H ⊥

1 (t2), i.e.

P(−∞,a2](t2)(Q(t2, t1)(u|Σ1)) = Q≤a2
<a1

(t2, t1)(u|Σ1)) = 0 .

Thus, the kernel of C becomes

ker (C) =
{
u ∈ FE0

Γ (M, ker (D))
∣∣∣u|Σ1 ∈H ⊥

1 (t1) , P(−∞,a2](t2)u|Σ2 = 0
}
⊕ {0H2}

= ker
(
Q≤a2
<a1

(t2, t1)
)
⊕ {0H2} ;

{0H2} is the only element in the kernel of 1H2 . The right-hand side has �nite Γ -dimension
due to Γ -Fredholmness of Q≤a2

<a1
(t2, t1) such that

dimΓ ker (C) = dimΓ

[
ker
(
Q≤a2
<a1

(t2, t1)
)
⊕ {0}

]
= dimΓ ker

(
Q≤a2
<a1

(t2, t1)
)

+ dimΓ {0H2} = dimΓ ker
(
Q≤a2
<a1

(t2, t1)
)
<∞

where Proposition 5.2.8 (3) and (4) have been used. The image of C can be computed
as follows: let u1 = u|Σ1 ∈ H1(t1); the action of C on any u ∈ FE0

Γ (M, ker (D)) with
u|Σ1 = u1 is given by (u1, u2) where u2 = u|Σ2 ∈ H1(t2) can be decomposed into a part,
coming from u1, and one from an element v ∈H ⊥

1 (t1) which is mapped by the Dirac wave
evolution operator to the second Cauchy boundary:

u2 = P(−∞,a2](t2)(u|Σ2) = P(−∞,a2](t2)(Q(t2, t1)u1 +Q(t2, t1)v)

= Q≤a2
≥a1

(t2, t1)u1 +Q≤a2
<a1

(t2, t1)v .
(10.5)

Thus

ran (C) =
{[

(u1, Q
≤a2
≥a1

(t2, t1)u1 +Q≤a2
<a1

(t2, t1)v), f
]
∈H1⊕H2

∣∣∣ v ∈H ⊥
1 (t1) , f ∈H2

}
.

As the spaces H ⊥
1 (t1), H1(t1) and H1(t2) are closed Hilbert spaces, any sequences (u1,i)

in H ⊥
1 (t1), (u2,i) in H1(t1) and (vi) in H1(t2) converge in their belonging spaces where

the latter sequence has to be chosen such that

(u1,i, Q
≤a2
≥a1

(t2, t1)u1,i +Q≤a2
<a1

(t2, t1)vi) −→ (u1, u2) .

Q≤a2
<a1

(t2, t1) are Γ -morphisms between the L2
Γ -spaces of interest and each has closed range

(see Lemma 9.2.1). Either implies that the images converge in H1(t2),

Q≤a2
≥a1

(t2, t1)u1,i → Q≤a2
≥a1

(t2, t1)u1
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and

Q≤a2
<a1

(t2, t1)vi = u2,i −Q≤a2
≥a1

(t2, t1)u1,i → u2 −Q≤a2
≥a1

(t2, t1)u1 = Q≤a2
<a1

(t2, t1)v

from (10.5). The limit (u1, Q
≤a2
≥a1

(t2, t1)u1 +Q≤a2
<a1

v) thus lies in the image and consequently
implies the closedness of ran (C). This closedness then implies that we can consider the
orthogonal complement instead of the quotient:

ran (C)⊥ =
{

((v1, v2), 0) ∈H1 ⊕H2

∣∣∣ 〈(v1, v2)
∣∣ (u1, u2)

〉
L2
Γ (S+(Σ2))⊕2 = 0

∀ (u1, u2) ∈ ran (C)
}

=
{

((v1, v2) ∈H1

∣∣∣ 〈(v1, v2)
∣∣ (u1, u2)

〉
L2
Γ (S+(Σ2))⊕2 = 0

∀ (u1, u2) ∈ ran (C)
}
⊕ {0H2} .

As (u1, u2) ∈ ran (C), we have u1 ∈H1(t1) and with a v ∈H ⊥
1 (t1)

u2 = Q≤a2
≥a1

(t2, t1)u1 +Q≤a2
<a1

(t2, t1)v .

The inner product then becomes

0 =
〈
(v1, v2)

∣∣ (u1, u2)
〉
L2
Γ (S+(Σ2))⊕2 =

〈
v1

∣∣u1

〉
L2
Γ (S+(Σ2))

+
〈
v2

∣∣u2

〉
L2
Γ (S+(Σ2))

=
〈
v1

∣∣u1

〉
L2
Γ (S+(Σ2))

+
〈
v2

∣∣Q≤a2
≥a1

(t2, t1)u1 +Q≤a2
<a1

(t2, t1)v
〉
L2
Γ (S+(Σ2))

=
〈
v1 + (Q≤a2

≥a1
(t2, t1))∗v2

∣∣u1

〉
L2
Γ (S+(Σ2))

+
〈
Q≤a2
<a1

(t2, t1)∗v2

∣∣ v〉
L2
Γ (S+(Σ2))

such that

ran (C)⊥ =
{

(−(Q≤a2
≥a1

(t2, t1))∗v2, v2)
∣∣∣ v2 ∈ ker

(
(Q≤a2

<a1
)∗(t1, t2)

)}
⊕ {0H2} .

Lemma 9.2.2 implies that (Q≤a2
≥a1

)∗(t2, t1) is an Γ -isomorphism on ker
(

(Q≤a2
<a1

)∗(t1, t2)
)
.

Hence the map

(v2, v2) 7→
(
−(Q≤a2

≥a1
(t2, t1))∗v2, v2

)
is an Γ -isomorphism for v2 ∈ ker

(
(Q≤a2

<a1
)∗(t1, t2)

)
. The embedding V ↪→ V ⊕2 for any

vector space V is an isomorphism if it is restricted onto its image. As the kernel of
any Γ -morphism is invariant under the action of the unitary left action representation,
the embedding intertwines the left action on the kernel with the diagonal action on

ker
(

(Q≤a2
<a1

)∗(t1, t2)
)⊕2

and becomes a Γ -isomorphism, too. Consequently, the map

v2 7→ (v2, v2) 7→
(
−(Q≤a2

≥a1
(t2, t1))∗v2, v2

)
is a Γ -isomorphism such that

ran (C)⊥ ∼= ker
(

(Q≤a2
<a1

)∗(t1, t2)
)
⊕ {0H2} .

The quotient H1⊕H2/ran (C) is isomorphic to ran (C)⊥, as ran (C) is closed, and since the
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quotient and the orthogonal complement are Γ -invariant subspaces of Hilbert Γ -modules
(see Lemma 5.2.7), this isomorphism becomes a Γ -isomorphism such that

H1 ⊕H2
/

ran (C)
∼= ker

(
(Q≤a2

<a1
)∗(t1, t2)

)
⊕ {0H2} .

We use Proposition 5.2.6 (1) to extract a unitary Γ -isomorphism and Proposition 5.2.8 (5)
such that

dimΓ

(
H1 ⊕H2

/
ran (C)

)
= dimΓ

[
ker
(

(Q≤a2
<a1

)∗(t2, t1)
)
⊕ {0H2}

]
= dimΓ ker

(
(Q≤a2

<a1
)∗(t2, t1)

)
= dimΓ ker

(
(Q≤a2

<a1
(t2, t1))∗

)
<∞

since Q≤a2
<a1

(t2, t1) is Γ -Fredholm. We conclude that the Γ -codimension of the range of C is
�nite from which we conclude Γ -Fredholmness of C and P+ ⊕D with coinciding Γ -index

indΓ (P+ ⊕D) = indΓ (C) = dimΓ ker (C)− dimΓ coker (C)

= dimΓ ker
(
Q≤a2
<a1

(t2, t1)
)
− dimΓ ker

(
(Q≤a2

<a1
(t2, t1))∗

)
= indΓ (Q

≤a2
<a1

(t2, t1)).

The second statement follows in the same way by choosing

H1 = L2
Γ ,(−∞,a1)(S+(Σ1))⊕ L2

Γ ,(a2,∞)(S+(Σ2)) and A = P−

in (10.4) with the same legimitations. Now we replace the shorthand notations from the
upper case to H1(t1) = L2

Γ ,(−∞,a1)(S+(Σ1)) and H1(t2) := L2
Γ ,(a2,∞)(S+(Σ2)) such that

H1 = H1(t1)⊕H1(t2) and H ⊥
1 (t1) = L2

Γ ,[a1,∞)(S+(Σ1)).

It turns out that the Γ -Fredholmness can be related to the Γ -Fredholm-property ofQ>a2
≥a1

(t2, t1):
the kernel of C = P−|ker(D) ⊕ 1H2 consists of sections u ∈ FE0

Γ (M, ker (D)) which restric-
tion onto the initial hypersurface Σ1 is a section in H ⊥

1 (t1) and its restriction onto Σ2,
transported by Q(t2, t1), vanishes:

0 = P(a2,∞)(t2)(v) = P(a2,∞)(t2) ◦Q(t2, t1) ◦ P[a1,∞)(t1)u|Σ1 = Q>a2
≥a1

(t2, t1)u|Σ1 .

Thus, the kernel of C is isomorphic to the kernel of Q>a2
≥a1

(t2, t1):

ker (C) ∼= ker
(
Q>a2
≥a1

(t2, t1)
)
⊕ {0H2} .

Because Q>a2
≥a1

(t2, t1) is Γ -Fredholm, we gain with the same reasoning

dimΓ ker (C) = dimΓ ker
(
Q>a2
≥a1

(t2, t1)
)

+ dimΓ ({0}) = dimΓ ker
(
Q>a2
≥a1

(t2, t1)
)
<∞ .

We compute the image in a similar way: let ((u1, u2), f) ∈H1⊕H2 are given by elements
u1 ∈H1(t1) and u2 ∈H1(t2). The action of C on u ∈ FE0

Γ (M, ker (D)) leads to an element
(u1, u2) ∈H1⊕H2 where u1 = u|Σ1 ∈H1(t1) and u2 = u|Σ2 ∈H1(t2). The latter one can
be decomposed into a part, coming from u1, and one coming from an element w ∈H ⊥

1 (t1)
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such that

u2 = P(a1,∞)(t2)(u|Σ2) = P(a2,∞)(t2)(Q(t2, t1)u1 +Q(t2, t1)w)

= Q>a2
<a1

(t2, t1)u1 +Q>a2
≥a1

(t2, t1)w . (10.6)

Because Q>a2
<a1

(t2, t1) and Q>a2
≥a1

(t2, t1) are Γ -morphisms, the same argument from the case
with gAPS boundary conditions applies such that

ran (C) =
{[

u1, (Q
>a2
<a1

(t2, t1)u1 + (Q>a2
≥a1

(t2, t1)w), f
]
∈H1⊕H2

∣∣∣w ∈H1(t2), f ∈H2

}
is closed. We can similarly compute the Γ -codimension after determining the orthogonal
complement:

ran (C)⊥ =
{

((v1, v2), 0) ∈H1 ⊕H2

∣∣∣ 〈(v1, v2)
∣∣ (u1, u2)

〉
L2
Γ (S+(Σ2))⊕2 = 0

∀ (u1, u2) ∈H1 ⊕H2

}
=
{

(v1, v2) ∈H1

∣∣∣ 〈v2

∣∣Q>a2
<a1

(t2, t1)u1 +Q>a2
≥a1

(t2, t1)w
〉
L2
Γ (S+(Σ2))

= 0

and
〈
v1

∣∣u1

〉
L2
Γ (S+(Σ2))

= 0 ∀u1 ∈H1(t1), w ∈H ⊥
1 (t1)

}
⊕ {0H2}

=
{

(v1, v2) ∈H1

∣∣∣ 〈v1 + (Q>a2
<a1

(t2, t1))∗v2

∣∣u1

〉
L2
Γ (S+(Σ2))

= 0

and
〈
(Q>a2
≥a1

(t2, t1))∗v2

∣∣w〉
L2
Γ (S+(Σ2))

= 0 ∀u1 ∈H1(t1), w ∈H ⊥
1 (t1)

}
⊕ {0H2}

=
{

(−(Q>a2
<a1

(t2, t1))∗v2, v2)
∣∣∣ v2 ∈ ker

(
(Q>a2
≥a1

(t2, t1))∗
)}
⊕ {0H2} .

We can argue as for P+|ker(D) and observe that

H1 ⊕H2
/

ran (C)
∼= ker

(
(Q>a2
≥a1

(t2, t1))∗
)
⊕ {0H2}

and consequently

dimΓ

(
H1 ⊕H2

/
ran (C)

)
= dimΓ ker

(
(Q>a2
≥a1

(t2, t1))∗
)
<∞

which concludes the proof that P−|ker(D) is Γ -Fredholm. Hence P−⊕D is Γ -Fredholm with
index

indΓ (P− ⊕D) = indΓ (C) = dimΓ ker
(
Q>a2
≥a1

(t2, t1)
)
− dimΓ ker

(
(Q>a2
≥a1

(t2, t1))∗
)

= indΓ (Q
>a2
≥a1

(t2, t1)) .

Γ -Fredholmness of P± ⊕ D implies Γ -Fredholmness of D ⊕ P± as this property does not
depend on the order of the direct sum. The Dirac operators of interest are related to P±
via

DAPS(a1,a2) = D|ker(P+) and DaAPS(a1,a2) = D|ker(P−) . (10.7)
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The main claim thus follows by applying Lemma 10.1.1 with

H = FE0
Γ (M, T , D) H2 = L2

Γ ,(−∞,a1)(S+(Σ1))⊕ L2
Γ ,(a2,∞)(S+(Σ2))

H1 = L2
Γ (S−(M))

A = D = D+ B = P+ ,

such that DAPS(a1,a2) is Γ -Fredholm with index indΓ (Q
≤a2
<a1

(t2, t1)), and

H = FE0
Γ (M, T , D) H2 = L2

Γ ,(−∞,a1)(S+(Σ1))⊕ L2
Γ ,(a2,∞)(S+(Σ2))

H1 = L2
Γ (S−(M))

A = D = D+ B = P− ,

proving Γ -Fredholmness of DaAPS(a1,a2). The application is justi�ed since D and P± are
Γ -morphism for the known reasons and P± are onto between the correct spaces as the
spectral projections are surjective. The stated Γ -indices follow from (9.50).

The proof is an adapted version of the one given in [Dam21] for a1 = a2 = 0 which we
state as corollary.

Corollary 10.2.2. Let M be a temporal compact, even-dimensional globally hyperbolic
spatial Γ -manifold, S+(M) → M the Γ -spin bundle of positive chirality; the Γ -invariant
Dirac operators DAPS and DaAPS as lifts of Dirac operators on the base manifold are Γ -
Fredholm with Γ−indices

indΓ (DAPS) = indΓ (Q−−(t2, t1)) = sfΓ {At}t∈[t1,t2] − dimΓ ker (A2)

and
indΓ (DaAPS) = indΓ (Q++(t2, t1)) = −sfΓ {At}t∈[t1,t2] + dimΓ ker (A2) .

10.2.2. Γ-Fredholmness of DEL
− and DEL with generalised (a)APS boundary

conditions

We can prove in a similar fashion Γ -Fredholmness for the Dirac operator D̃EL := DEL
− ,

acting on spinor �elds with negative chirality. We de�ne

FEsΓ ,APS(a1,a2)(M, T , D̃EL)

:=
{
u ∈ FEsΓ (M, T , D̃EL)

∣∣∣PEL(−∞,a1)(t1) ◦ resΣ1u = 0 = PEL(a2,∞)(t2) ◦ resΣ2u
}

,

FEsΓ ,aAPS(a1,a2)(M, T , D̃EL)

:=
{
u ∈ FEsΓ (M, T , D̃EL)

∣∣∣PEL[a1,∞)(t1) ◦ resΣ2u = 0 = PEL(−∞,a2](t2) ◦ resΣ1u
}

.

These spaces have been introduced in [Dam21, Sec.7.4] for the special case a1 = a2 = 0
and without twisting bundle (FEsΓ ,APS(M, T , D̃) and FEsΓ ,APS(M, T , D̃)). For the same

reasons as in the last subsection these spaces are all Hilbert Γ -modules. Restricting D̃EL

to these domains for s = 0 de�nes the Dirac operators for g(a)APS-boundary conditions
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with respect to negative chirality:

D̃EL
APS(a1,a2) : FE0

Γ ,APS(a1,a2)(M, T , D̃EL) → L2
Γ (S+

L,E(M)) ,

D̃EL
aAPS(a1,a2) : FE0

Γ ,aAPS(a1,a2)(M, T , D̃EL) → L2
Γ (S+

L,E(M)) .

The proof for their Γ -Fredholmness works out as the one for Theorem 10.2.1 and gen-
eralises [Dam21, Thm.7.9] to twisting Dirac operators and generalised (a)APS boundary
conditions:

Theorem 10.2.3. Let a1, a2 ∈ R, M a temporal compact, globally hyperbolic spatial Γ -
manifold with compact base MΓ , S−L,E(M) → M the Γ -spin bundle of negative chirality
which is twisted with a Hermitian Γ -vector bundle E → M and twisted with the square-
root of a Hermitian Γ -line bundle L → M for a Spinc-structure. The Γ -invariant Dirac
operators D̃EL

APS(a1,a2) and D̃
EL
aAPS(a1,a2) as lifts of Dirac operators on the base manifold are

Γ -Fredholm with Γ -indices

indΓ (D̃
EL
APS(a1,a2)) = indΓ

(
Q̃>a2
≥a1

(t2, t1)
)

and
indΓ (D̃

EL
aAPS(a1,a2)) = indΓ

(
Q̃≤a2
<a1

(t2, t1)
)

.

Proof. The diagonal matrix entries of Q̃ with respect to the used boundary conditions
are just de�ned as those for Q where Q is replaced with Q̃ (see (9.31) and (9.32)), the
space FE0

Γ ,APS(a1,a2)(M, T , D̃EL) coincides with FE0
Γ ,aAPS(a1,a2)(M, T , DEL) and the space

FE0
Γ ,aAPS(a1,a2)(M, T , D̃EL) coincides with FE0

Γ ,APS(a1,a2)(M, T , DEL). The same proof

strategy shows that D̃EL
APS(a1,a2) and D̃EL

aAPS(a1,a2) are Γ -Fredholm with claimed Γ -indices.

If we reduce to the untwisted case with a1 = a2 = 0, we get the mentioned result
from [Dam21].

Corollary 10.2.4. Let M be a temporal compact, even-dimensional globally hyperbolic
spatial Γ -manifold, S−(M) → M the Γ -spin bundle of negative chirality; the Γ -invariant
Dirac operators D̃APS and D̃aAPS as lifts of Dirac operators on the base manifold are Γ -
Fredholm with Γ -indices

indΓ (D̃APS) = indΓ

(
Q̃++(t2, t1)

)
= −sfΓ {At}t∈[t1,t2] + dimΓ ker (A2)

and
indΓ (D̃aAPS) = indΓ

(
Q̃−−(t2, t1)

)
= sfΓ {At}t∈[t1,t2] − dimΓ ker (A2) .

(9.51) shows

−indΓ (D
EL
aAPS(a1,a2)) = indΓ (D

EL
APS(a1,a2))

= −indΓ (D̃
EL
APS(a1,a2)) = indΓ (D̃

EL
aAPS(a1,a2)) .

(10.8)

We de�ne FE0
Γ ,(a)APS(a1,a2)(M, T ,DEL) to be the direct sums

FE0
Γ ,(a)APS(a1,a2)(M, T , DEL

+ )⊕ FE0
Γ ,(a)APS(a1,a2)(M, T , DEL

− ) .
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In view of Corollary 5.2.19, Theorem 10.2.1 and Theorem 10.2.3 imply the following result
which is expected due to skew-adjointness of D.

Corollary 10.2.5. Let a1, a2 ∈ R, M a temporal compact, globally hyperbolic spatial Γ -
manifold with compact base MΓ , SL,E(M) → M a Γ -spin bundle which is twisted with a
Hermitian Γ -vector bundle E →M and twisted with the square-root of a Hermitian Γ -line
bundle L → M for a Spinc-structure. Under these assumptions, the Γ -invariant Dirac
operators

DEL
APS(a1,a2) : FE0

Γ ,APS(a1,a2)(M, T ,DEL)→ L2
Γ (SL,E(M))

and
DEL

aAPS(a1,a2) : FE0
Γ ,aAPS(a1,a2)(M, T ,DEL)→ L2

Γ (SL,E(M)) ,

which are lifts of Dirac operators on the base manifold and equipped with gAPS and re-
spectively gaAPS boundary conditions on the Cauchy boundary hypersurfaces Σ1 = Σt1 and
Σ2 = Σt2, are Γ -Fredholm with Γ -indices

indΓ (DEL
APS(a1,a2)) = 0 = indΓ (DEL

aAPS(a1,a2)) .

Proof. The Γ -Fredholmness and the Γ -indices are consequences of Corollary 5.2.19 and the
fact that (

0 1

1 0

)
is an invertible element in BΓ :

indΓ (DEL |(a)APS(a1,a2)) = indΓ

((
0 1

1 0

)
(DEL

+ |(a)APS(a1,a2) ⊕DEL
− |(a)APS(a1,a2))

)
= indΓ

((
0 1

1 0

))
+ indΓ

(
DEL

+ |(a)APS(a1,a2)

)
+indΓ

(
DEL
− |(a)APS(a1,a2)

)
= indΓ

(
DEL

+ |(a)APS(a1,a2)

)
+ indΓ

(
DEL
− |(a)APS(a1,a2)

)
= indΓ

(
DEL

(a)APS(a1,a2)

)
+ indΓ

(
D̃EL

(a)APS(a1,a2)

)
(10.8)

= 0 .
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10.3. Geometric Γ-index formulas for DEL

±,(a)APS(a1,a2)

Now we tackle the geometric description of the Γ -index formula for which we need to
recapitulate the Γ -index of the Riemannian Dirac operator ĎEL

APS. The aim is to express this
index by means of the Γ -spectral �ow of the smooth family of hypersurface Dirac operators
{At}t∈[t1,t2]. The role of the Γ -spectral �ow then becomes important as a connecting

element of the geometric Γ -index expression and the Lorentzian Γ -index of DEL
(a)APS(a1,a2)

which allow us to express the latter one in geometric terms. This task is presented in the
�rst two subsections. The special case of �nite coverings is covered in the last subsection.

10.3.1. Γ-index of ĎEL
APS as Γ-spectral �ow

We consider an auxiliary Riemannian situation with product structure near the boundary
M , introduced in subsection 6.3.3. We assume the base hypersurfaces to be a Γ -manifold
such that M becomes a Galois covering with boundary. We introduce a product struc-
ture on the Riemannian Dirac operator of interest by choosing the auxiliary Γ -invariant
Riemannian metric ǧ appropiately such that it takes the form

ǧ |[0,ε)×Σj = dt⊗2 + gtj (ε > 0, j ∈ {1, 2})

in the collar neighbourhood of the boundary hypersurfaces Σ1 and Σ2. The twisted Γ -
invariant Riemannian Dirac operator ĎEL then has the desired product structure

ĎEL |[0,ε)×Σj = (β⊗ 1EL)(∂t −AELj ) = −(β⊗ 1EL)(ν+AELj )

near the boundary due to (6.68) with N = 0, Htj = 0, and the boundary hypersurface
Dirac operators Aj := Atj . This brings us in the position to apply Theorem 1.0.4 to ĎEL

which is a Γ -Fredholm operator from H1
Γ ,APS(S+

L,E(M̌)) to L2
Γ (S−(M̌)) where the Γ -Sobolev

spaces, subject to APS boundary conditions, takes the form

H1
Γ ,APS(S+

L,E(M̌)) :=
{
u ∈ H1

Γ (S+
L,E(M̌))

∣∣∣P≥0(t1) ◦ rest1u = 0 = P<0(t2) ◦ rest2u
}

.

SinceM is closed by two boundary hypersurfaces, we have to be careful while evaluating the
boundary contribution. Since we have chosen ν to be an outwards-pointing normal vector
to each hypersurface, it points outwards at Σ1, but inwards at Σ2. To apply Theorem 1.0.4
correctly, we have to take (−ν) as normal vector at Σ such that the sign in front of (−AEL1 )
�ips. The index formula (1.3) thus takes the form

indΓ (Ď
EL
APS) =

∫
MΓ

a(M̌Γ , EΓ , LΓ )− ξΓ (AEL1 )− ξΓ (−AEL2 ) (10.9)

where the integrand can be related to certain characteristic classes from the proof of the
compact case (see e.g. [LM16, Thm.III.13.10] and [LM16, Thm.IV.1.3]):

a(M̌Γ , EΓ , LΓ ) = Â
(
T (M̌/Γ)

)
∧ ch (EL/Γ) = Â

(
T (M̌/Γ)

)
∧ ec1(L/Γ)/2 ∧ ch (E/Γ) ;

Â
(
M̌/Γ

)
is the (total) Â-genus with respect to the Riemannian Levi-Civita connection

on the tangent bundle, c1 (L/Γ) is the �rst Chern class of a Hermitian line bundle L/Γ
and ch (E/Γ) is the Chern character of the Hermitian vector bundle E/Γ . Though the
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concrete de�nition of these characteristic classes won't be important for the rest of this
thesis, we present them for completeness: let ΩL and ΩE be the curvature two-forms of
the connections of L/Γ and E/Γ , then the �rst Chern form and the (total) Chern character
form are

c1(L/Γ) :=
i

2π
tr
(
ΩL
)

and ch (E/Γ) := tr

(
exp

(
i

2π
ΩE

))
each modulo exact forms. The concrete de�nition of the Â-genus will be recalled in the
coming subsection. The wedge product of these characteristic classes is in general a direct
sum of all even forms since all classes are de�ned via formal power series in the curva-
ture two-form. For powers higher than half of the dimension of M \Γ the sum cancels,
consequently the wedge product contains all possible and non-trivial combinations of even
degree forms where only those of total degree (n+ 1) contribute to the integral.

The boundary contribution in (10.9) can be rewritten as follows:

ξΓ (A
EL
1 ) + ξΓ (−AEL2 ) =

ηΓ (A
EL
1 ) + dimΓ ker

(
AEL1

)
+ ηΓ (−AEL2 ) + dimΓ ker

(
−AEL2

)
2

=
ηΓ (A

EL
1 ) + dimΓ ker

(
AEL1

)
2

−
ηΓ (A

EL
2 ) + dimΓ ker

(
AEL2

)
2

+ dimΓ ker
(
AEL2

)
= ξΓ (A

EL
1 )− ξΓ (AEL2 ) + dimΓ ker

(
AEL2

)
.

The di�erence of Γ -xi invariants can be expressed by means of the analytic Γ -spectral �ow
formula (8.67):

indΓ (Ď
EL
APS) =

∫
MΓ

Â
(
M̌Γ

)
∧ ec1(LΓ )/2 ∧ ch (EΓ ) + sfΓ

{
AELt

}
t∈[t1,t2]

+
1

2

∫ t2

t1

d

dt
ηΓ (A

EL
t ) dt− dimΓ ker

(
AEL2

)
.

(10.10)

We want to rewrite the Γ -spectral �ow by means of geometric and spectral invariants. The
Γ -index and the Γ -spectral �ow as �nite sum of Γ -indices are locally constant functions from
FΓ to R. Besides the geometric contribution with the Â-genus, taking values in Z, all other
contributions are real-valued. In order to split the equation into an integer-valued part
and a part which is continuous in t1, t2, we consider the index of the Dirac operator Ď

EL
APS

on the compact base M \Γ from [APS75a] and [APS76]: we denote with AELt the twisted
hypersurface Dirac operator on Σt \Γ for each t ∈ [t1, t2] and η(AELt ) from (8.39) (we recall
that the spectrum of Riemannian Dirac operators on compact manifolds is discrete), then

ind
(
Ď
EL
APS

)
=

∫
MΓ

Â
(
M̌Γ

)
∧ ec1(LΓ )/2 ∧ ch (EΓ ) + ξ(AEL2 )− ξ(AEL1 )− dim ker

(
AEL2

)
(8.42)

=

∫
MΓ

Â
(
M̌Γ

)
∧ ec1(LΓ )/2 ∧ ch (EΓ ) + sf

{
AELt

}
t∈[t1,t2]

− dim ker
(
AEL2

)
+

1

2

∫ t2

t1

d

dt
η(AELt ) dt . (10.11)
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Apart from the last term every summand is integer-valued, so we can compare this ordinary
index with the Γ -index and arrange the terms as proposed, provided that the integral over
the characteristic classes functions as connecting element between (10.11) and (10.11):

indΓ (Ď
EL
APS)− sfΓ

{
AELt

}
t∈[t1,t2]

− 1

2

∫ t2

t1

d

dt
ηΓ (A

EL
t ) dt+ dimΓ ker

(
AEL2

)
=

∫
MΓ

Â
(
M̌Γ

)
∧ ec1(LΓ )/2 ∧ ch (EΓ )

= ind
(
Ď
EL
APS

)
− sf

{
AELt

}
t∈[t1,t2]

− 1

2

∫ t2

t1

d

dt
η(AELt ) dt+ dim ker

(
AEL2

)
.

We add the integral over the time derivative of η(AELt ) and use (8.60):

indΓ (Ď
EL
APS)− sfΓ

{
AELt

}
t∈[t1,t2]

− 1

2

∫ t2

t1

d

dt

(
ηΓ (A

EL
t )− η(AELt )

)
dt+ dimΓ ker

(
AEL2

)
=

∫
MΓ

Â
(
M̌Γ

)
∧ ec1(LΓ )/2 ∧ ch (EΓ ) +

1

2

∫ t2

t1

d

dt
η(AELt ) dt (10.12)

= ind
(
Ď
EL
APS

)
− sf

{
AELt

}
t∈[t1,t2]

+ dim ker
(
AEL2

)
.

If we compare the �rst and the third line in (10.12), we get

indΓ (Ď
EL
APS)− sfΓ

{
AELt

}
t∈[t1,t2]

− 1

2

∫ t2

t1

d

dt
ρΓ (A

EL
t , AELt ) dt+ dimΓ ker

(
AEL2

)
= ind

(
Ď
EL
APS

)
− sf

{
AELt

}
t∈[t1,t2]

+ dim ker
(
AEL2

)
∈ Z .

Because the right-hand side is integer-valued, the left-hand side also becomes integer-
valued. If we compare the �rst and second line in (10.12), we can moreover show that it is
already zero: starting from

indΓ (Ď
EL
APS)− sfΓ

{
AELt

}
t∈[t1,t2]

− 1

2

∫ t2

t1

d

dt
ρΓ (A

EL
t , AELt ) dt+ dimΓ ker

(
AEL2

)
(10.13)

=

∫
MΓ

Â
(
M̌Γ

)
∧ ec1(LΓ )/2 ∧ ch (EΓ ) +

1

2

∫ t2

t1

d

dt
η(AELt ) dt , (10.14)

we see that the right-hand side of this equation is continuous in t1 and t2. We �x t1 and
consider (10.14) as function of t2. (10.13) of the same equation implies that also (10.14) is
integer-valued. By continuity in t2 of (10.14), (10.13) however becomes locally constant in
t2. Because t1, t2 are from a connected interval, the side (10.13) becomes even constant in
t2. Consequently, the limit t2 → t1 does not a�ect (10.13) while (10.14) vanishes because
ÂΓ

(
M̌
)
∧ ecΓ1(L) ∧ chΓ (E) is a sum of even degree forms up to degree (n+ 1) and thus has

no contribution while integrated over the remaining odd-dimensional submanifold Σ1 \Γ .
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The constancy of (10.13) implies in the limit that it already equals zero:

indΓ (Ď
EL
APS)− sfΓ

{
AELt

}
t∈[t1,t2]

− 1

2

∫ t2

t1

d

dt
ρΓ (A

EL
t , AELt ) dt+ dimΓ ker

(
AEL2

)
= 0 . (10.15)

The remaining integral can be perfomed by the fact that t 7→ ρΓ (A
EL
t , AELt ) is di�erentiable

from the proof of Proposition 8.2.16. This gives us the di�erence of two Cheeger-Gromov-
invariants at di�erent boundary hypersurfaces. (10.15) enables us to express the Γ -spectral
�ow by means of geometric and spectral invariants:

sfΓ

{
AELt

}
t∈[t1,t2]

= indΓ (Ď
EL
APS)− 1

2

(
ρΓ (A

EL
t2
, AELt2 )− ρΓ (AELt1 , A

EL
t1

)
)

+ dimΓ ker
(
AEL2

)
=

∫
MΓ

Â
(
M̌Γ

)
∧ ec1(LΓ )/2 ∧ ch (EΓ )− ξΓ (AEL1 )− ξΓ (−AEL2 ) (10.16)

−1

2

(
ρΓ (A

EL
t2
, AELt2 )− ρΓ (AELt1 , A

EL
t1

)
)

.

10.3.2. Geometric Γ-index formulas for DEL
±,(a)APS

Before we relate (10.16) to the Γ -spectral �ow of {At}t∈T (M), we further have to manip-
ulate (10.16) in such a way that the geometric elements are purely expressed by means
of Lorentzian quantities. For this we need to analyse the dependency on the auxiliary
Riemannian metric.

Apart from the integral over the wedge product of characteristic classes in (10.16) the
other terms in the Γ -spectral �ow formula are coming from the boundary hypersurfaces Σ1

and Σ2 which are the same in both the Lorentzian and the auxiliary Riemannian situation.
The only leftover of the auxiliary Riemannian structure is just the �rst integral over the
whole manifold. Since the Hermiticity of E and a possibly necessary line bundle L has been
already considered in the Lorentzian case, the only piece, carrying the auxiliary Rieman-
nian structure, comes from the Â-genus which is evaluated with the curvature two-form
Ω̌ of the Levi-Civita connection with respect to ǧ . The Â-genus is de�ned as element in⊕

m∈4N0
Ωm(M,R) and has the form

Â
(
M̌Γ

)
=

√
det

(
Ω̌/2

sinh(Ω̌/2)

)
=: P(Ω̌) , (10.17)

see [BGV03, Sec.1.5]. We use P(Ω̌) as abbreviation and describes a formal, but termi-
nating power series in the curvature two-form. The determinant is an invariant towards
the adjoint action of GL(n + 1,R), so P(Ω̌) is an invariant polynomial with respect to
invertible matrices, i.e.

P(U−1Ω̌U) = P(Ω̌) ∀U ∈ GL(n+ 1,R) .
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The second Bianchi identity and the de�nition of the curvature two-form via the connection
one-form matrix ω̌ for ∇̌ imply that P(Ω̌) is a closed form. The Chern-Weil theorem states
that the Â-genus is independent of the choice of the connection and this fact allows us to
relate this genus to the one with respect to ∇, induced by g : let {∇(s)}s∈[0,1] be a smooth
path in the space of connections on MΓ which is a connected set. This path has endpoints
at ∇(1) = ∇̌ and ∇(0) = ∇. It induces smooth paths of connection one-forms {ω(s)}s∈[0,1]

and curvature two-forms {Ω(s)}s∈[0,1] with endpoints

ω(0) = ω, ω(1) = ω̌, Ω(0) = Ω and Ω(1) = Ω̌ .

The cohomology class of P does not depend on the concrete choice of the connection, so
the di�erence of P(Ω) and P(Ω̌) are in the same cohomology class, i.e. they di�er in an
exact form:

P(Ω̌)−P(Ω) = d

[∫ 1

0
∇̇(s)P ′(Ω(s)) ds

]
=: dT Â(∇̌,∇) .

The form T Â(∇̌,∇) is called transgression form of the Â-genus; P ′(Ω(s)) is the derivative
of P(Ω(s)) with respect to the curvature entries. The homotopy invariance of the de Rham
cohomology allows us to consider the concrete path of connections ∇(s) = ∇+ s(∇̌ − ∇)
which implies ω(s) = ω + s(ω̌ − ω). The transgression form then becomes

T Â(∇̌,∇) =

∫ 1

0
(∇̌ − ∇)P ′(Ω(s)) ds . (10.18)

Since the Chern classes and Chern characters are equally invariant polynomials, they are
also closed forms such that we can rewrite the wedge product Â

(
M̌Γ

)
∧ ec1(LΓ )/2 ∧ ch (EΓ )

as follows:

Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) + dT Â(∇̌,∇) ∧ ec1(LΓ )/2 ∧ ch (EΓ )

=Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) + d
[
T Â(∇̌,∇) ∧ ec1(LΓ )/2 ∧ ch (EΓ )

]
∓ T Â(∇̌,∇) ∧ d(ec1(LΓ )/2) ∧ ch (EΓ )∓ T Â(∇̌,∇) ∧ ec1(LΓ )/2 ∧ d(ch (EΓ ))

=Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) + d
[
T Â(∇̌,∇) ∧ ec1(LΓ )/2 ∧ ch (EΓ )

]
;

the integral formula over MΓ becomes∫
MΓ

Â
(
M̌
)
∧ ec1(LΓ )/2 ∧ ch (EΓ ) =∫
MΓ

Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) +

∫
dMΓ

i∗
[
T Â(∇̌,∇) ∧ ec1(LΓ )/2 ∧ ch (EΓ )

]
where we have used Stokes-Cartan (A.1) with the embedding i : dMΓ ↪→ MΓ . Since
the boundary is the disjoint union Σ1/Γ t Σ2/Γ , where each Γ -hypersurface has opposite
orientation, the embedding coincides with ij : Σj/Γ →MΓ on each disjoint Γ -hypersurface
(j ∈ {1, 2}). Since pullbacks distribute over wedge products and the Chern classes and
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Chern characters are natural with respect to pullbacks, the boundary contribution becomes∫
dMΓ

i∗
[
T Â(∇̌,∇)) ∧ ec1(LΓ |dM )/2 ∧ chΓ (EdM )

]
=:

∫
dMΓ

T GΓ (∇̌,∇)

with
T GΓ (∇̌,∇) = i∗(T Â(∇̌,∇)) ∧ ec1(LΓ |dM )/2 ∧ ch (EΓ |dM ) (10.19)

as twisted transgression form; we introduced the abbreviations c1 (LΓ |dMΓ
) for c1 (i∗LΓ )

and ch (EΓ |dM ) for ch (i∗EΓ ). The only possible leftovers from the auxiliary Riemannian
structure in (10.19) might appear in i∗T Â(∇̌,∇) which we are going to investigate further.
We apply (D.3) in Appendix D to c = Â, w = T Â and f = i . This results in i∗T Â(∇̌,∇) =
T Â(i∗∇̌, i∗∇) plus an exact form dv. The closedness of the other charateristic classes then
shows that the twisted transgression forms i∗(T Â(∇̌,∇)) and T Â(i∗∇̌, i∗∇) di�er in an
exact form:

i∗(T Â(∇̌,∇)) ∧ ec1(LΓ |dM )/2 ∧ ch (EΓ |dM )

=T Â(i∗∇̌, i∗∇) ∧ ec1(LΓ |dM )/2 ∧ ch (EΓ |dM ) + dv ∧ ec1(LΓ |dM )/2 ∧ ch (EΓ |dM )

=T Â(i∗∇̌, i∗∇) ∧ ec1(LΓ |dM )/2 ∧ ch (EΓ |dM ) + d
[
v ∧ ec1(LΓ |dM )/2 ∧ ch (EΓ |dM )

]
± v ∧ d

[
ec1(LΓ |dM )/2

]
∧ ch (EΓ |dM )± v ∧ ec1(LΓ |dM )/2 ∧ d [ch (EΓ |dM )]

=T Â(i∗∇̌, i∗∇) ∧ ec1(LΓ |dM )/2 ∧ ch (EΓ |dM ) + d
[
v ∧ ec1(LΓ |dM )/2 ∧ ch (EΓ |dM )

]
.

But since we integrate over the boundary, the exact part does not contribute due to Stokes-
Cartan theorem. It �nally remains to analyse how

T Â(i∗∇̌, i∗∇) =

∫ 1

0
(i∗∇̌ − i∗∇)P ′((i∗Ω)(s)) ds

in
T GΓ (∇̌,∇) = T Â(i∗∇̌, i∗∇) ∧ ec1(LΓ |dM )/2 ∧ ch (EΓ |dM ) (10.20)

depends on ǧ with product structure near the boundary hypersurfaces. Let X be a vector
�eld, tangent to Σi/Γ (i ∈ {1, 2}). The formulas in (3.35) describe how the connection
coe�cients (i∗ω) and (i∗ω̌) of i∗∇ and respectively i∗∇̌ are determined:

−(i∗ω)j0(X) = (i∗ω)0
j (X) = −IIg (ej , X), (i∗ω)kj (X) = ωTΣΓ (X) = (i∗ω̌)kj (X), (10.21)

−(i∗ω̌)j0(X) = (i∗ω̌)0
j (X) = II ǧ (ej , X), (i∗ω)0

0 = 0 = (i∗ω̌)0
0 (10.22)

for k, j ∈ {1, ..., n}. Since ǧ has product structure near the boundary, the boundary
hypersurfaces become totally geodesic, implying II ǧ (ej , X) to vanish for all j and X. The
di�erence of the �rst two equations in (10.21) is thus

(i∗ω̌)0
j (X)− (i∗ω)0

j (X) = [i∗(ω̌ − ω)]0j (X) = IIg (ej , X) (10.23)

for all j ∈ {1, ..., n}. This re�ects that i∗(∇̌ − ∇) does not depend on ǧ . The path of
curvature two-forms is the covariant derivative with respect to the path of connection
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one-forms:

Ω(s) = ∇(s)ω(s) = dω(s) +
1

2
[ω(s) ∧ ω(s)]

= dω + s d (ω̌ − ω) +
1

2

(
[ω ∧ ω] + 2s [ω ∧ (ω̌ − ω)] + s2 [(ω̌ − ω) ∧ (ω̌ − ω)]

)
= Ω + Ωs(ω̌−ω) + s [ω ∧ (ω̌ − ω)] .

Ωs(ω̌−ω) is the curvature two-form expression, evaluated with the coe�cients of s(ω̌ − ω).
Because the di�erence of connection one-forms (10.23) is independent of the metric ǧ , the
curvature two-form of the path is also independent of the metric ǧ and is fully determined
by the curvature with respect to ∇ and the second fundamental form IIg as well as its

derivatives in Ωs(ω̌−ω). Consequently, we have shown that T Â(i∗∇̌, i∗∇) in fact do not
depend on the choice of the auxiliary metric, but only on informations from g and IIg .

We set T Â(g) for T Â(i∗∇̌, i∗∇) as well as T G(g , EΓ , LΓ ) for T GΓ (∇̌,∇) to stress this
observation. The Γ -spectral �ow formula (10.16) becomes completely determined by the
geometry of (M, g) and spectral invariants on the Cauchy hypersurface. Inserting this into
the formulas in Theorem 10.2.1 and Theorem 10.2.3 gives

indΓ (D
EL
APS(a1,a2)) =

∫
MΓ

Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) +

∫
dMΓ

T G(g , EΓ , LΓ ) (10.24)

−1

2

(
ρΓ (A

EL
t2
, AELt2 )− ρΓ (AELt1 , A

EL
t1

)
)
− ξΓ (AEL1 )− ξΓ (−AEL2 )

−χ{a2>0} dimΓ

(
L2
Γ ,(0,a2](S+

L,E(Σ2))
)

+χ{a2<0} dimΓ

(
L2
Γ ,(a2,0](S+

L,E(Σ2))
)

−χ{a1<0} dimΓ

(
L2
Γ ,[a1,0)(S+

L,E(Σ1))
)

+χ{a1>0} dimΓ

(
L2
Γ ,[0,a1)(S+

L,E(Σ1))
)

=− indΓ (D
EL
aAPS(a1,a2))

and

indΓ (D̃
EL
aAPS(a1,a2)) =

∫
MΓ

Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) +

∫
dMΓ

T G(g , EΓ , LΓ ) (10.25)

−1

2

(
ρΓ (A

EL
t2
, AELt2 )− ρΓ (AELt1 , A

EL
t1

)
)
− ξΓ (AEL1 )− ξΓ (−AEL2 )

−χ{a2>0} dimΓ

(
L2
Γ ,(0,a2](S−L,E(Σ2))

)
+χ{a2<0} dimΓ

(
L2
Γ ,(a2,0](S−L,E(Σ2))

)
−χ{a1<0} dimΓ

(
L2
Γ ,[a1,0)(S−L,E(Σ1))

)
+χ{a1>0} dimΓ

(
L2
Γ ,[0,a1)(S−L,E(Σ1))

)
=− indΓ (D̃

EL
APS(a1,a2))

and thus the geometric Γ -indices from Main Theorem 2. They satisfy (10.8) and con-
clusively show all the Γ -index formulas in Main Theorem 2. We recall that we have
S+
L,E(Σj) = S−L,E(Σj) for j ∈ {1, 2} as Σ1 and Σ2 are odd-dimensional and thus admit no
chirality decomposition. For ordinary APS and aAPS boundary conditions (a1 = 0 = a2)
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these Γ -index formulas reduce to

indΓ (D
EL
APS) =

∫
MΓ

Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) +

∫
dMΓ

T G(g , EΓ , LΓ )

− 1

2

(
ρΓ (A

EL
t2
, AELt2 )− ρΓ (AELt1 , A

EL
t1

)
)
− ξΓ (AEL1 )− ξΓ (−AEL2 )

= indΓ (D̃
EL
aAPS) = −indΓ (D

EL
aAPS) = −indΓ (D̃

EL
APS) ;

if we consider no twisting bundles L and E, we gain

indΓ (DAPS) = indΓ (D̃aAPS) = −indΓ (DaAPS) = −indΓ (D̃APS)

=

∫
MΓ

Â (MΓ ) +

∫
dMΓ

T Â(g)− 1

2

(
ρΓ (At2 , At2)− ρΓ (At1 , At1)

)
− ξΓ (A1)− ξΓ (−A2)

which proves the Γ -index formulas in Corollary 1.0.7.

10.3.3. Special case: �nite coverings

We now want to consider �nite coverings as special case of Galois coverings. We assume
that Γ is a �nite discrete Galois group. As a consequence that the Cauchy hypersurface
Σ has been assumed to be a Galois covering with closed base, Σ becomes itself compact
because it is covered by �nitely many open balls. Consequently, M becomes compact with
boundary due to its temporal compactness. The Galois covering map becomes an ordinary
l-fold covering map in this situation.

We write l for the cardinality of Γ : |Γ | = l ∈ N. The Γ -trace of a Γ -trace class opera-
tor A then becomes TrΓ (A) = 1

lTr (A) such that the Γ -dimension, Γ -eta invariant and the
Γ -xi invariant reduce to

dimΓ =
1

l
dim , ηΓ =

1

l
η ⇒ ξΓ =

1

l
ξ .

The Γ -index of a Γ -Fredholm operator A then becomes indΓ (A) = 1
l ind(A). We rewrite

(10.24) to

indΓ (D
EL
APS(a1,a2)) =

∫
MΓ

Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) +

∫
dMΓ

T G(g , EΓ , LΓ )

− PΓ − ΞΓ + SΓ (10.26)

where

PΓ :=
1

2

(
ρΓ (A

EL
t2
, AELt2 )− ρΓ (AELt1 , A

EL
t1

)
)

,

ΞΓ := ξΓ (A
EL
1 )− ξΓ (−AEL2 ) ,

SΓ := −χ{a2>0} dimΓ

(
L2
Γ ,(0,a2](S+

L,E(Σ2))
)

+χ{a2<0} dimΓ

(
L2
Γ ,(a2,0](S+

L,E(Σ2))
)

−χ{a1<0} dimΓ

(
L2
Γ ,[a1,0)(S+

L,E(Σ1))
)

+χ{a1>0} dimΓ

(
L2
Γ ,[0,a1)(S+

L,E(Σ1))
)
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are shorthand notations for the boundary contributions. We recall the reduced eta function
from (8.63) and introduce further abbreviations:

Pl :=
1

2

(
ρl(A

EL
t2
, AELt2 )− ρl(AELt1 , A

EL
t1

)
)

,

Ξl := ξ(AEL1 )− ξ(−AEL2 ) ,

S := −χ{a2>0} dim
(
L2

(0,a2](S+
LΓ ,EΓ

(Σ2/Γ))
)

+χ{a2<0} dim
(
L2

(a2,0](S+
LΓ ,EΓ

(Σ2/Γ))
)

−χ{a1<0} dim
(
L2

[a1,0)(S+
LΓ ,EΓ

(Σ1/Γ))
)

+χ{a1>0} dim
(
L2

[0,a1)(S+
LΓ ,EΓ

(Σ1/Γ))
)

,

Ξ := ξ(AEL1 )− ξ(−AEL2 ) .

Hence for �nite covering we gain from (10.26)

gammaindexshort
1

l
ind(DEL

APS(a1,a2)) =

∫
MΓ

Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) +

∫
dMΓ

T G(g , EΓ , LΓ )

− 1

l
Pl −

1

l
Ξl +

1

l
S , (10.27)

We multiply (10.27) with l and add several zeroes such that the index formula (1.5) for
the Dirac operator DEL

APS(a1,a2) on the compact base, i.e.

ind(DEL
APS(a1,a2)) =

∫
MΓ

Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) +

∫
dMΓ

T G(g , EΓ , LΓ )− Ξ + S ,

can be recovered:

ind(DEL
APS(a1,a2)) = l

∫
MΓ

Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) + l

∫
dMΓ

T G(g , EΓ , LΓ )

− Pl − Ξl + S

= l

(∫
MΓ

Â (MΓ ) ∧ ec1(LΓ )/2 ∧ ch (EΓ ) +

∫
dMΓ

T G(g , EΓ , LΓ )− Ξ + S

)
+ lΞ− lS − Pl − Ξl + S

= lind(DEL
APS(a1,a2)) + lΞ− Ξl + (1− l)S − Pl . (10.28)

We already observed for l = 1 (no covering) that due to AELt = AELt the di�erences of
ξ-invariants coincide, Ξ1 = Ξ, and the reduced eta-invariant ρ1 vanishes such that P1 = 0.
Hence (10.28) reduces to

ind
(
DEL

gAPS(a1,a2)

)
= ind

(
DEL

gAPS(a1,a2)

)
(10.29)

and we recover the index formulas from [BH18] and from [BS19] if we furthermore set
a1 = a2 = 0. For any l > 1, we can rearrange the additional contribution (lΞ− Ξl − Pl) a
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little bit more:

lΞ− Ξl − Pl = lξ(AEL1 ) + lξ(−AEL2 )− ξ(AEL1 )− ξ(−AEL2 )− Pl

=
l

2

[
η(AEL1 ) + dim ker

(
AEL1

)
+ η(−AEL2 ) + dim ker

(
−AEL2

)]
− 1

2

[
η(AEL1 ) + dim ker

(
AEL1

)
+ η(−AEL2 ) + dim ker

(
−AEL2

)]
− Pl

=
l

2

[
η(AEL1 ) + dim ker

(
AEL1

)
− η(AEL2 ) + dim ker

(
AEL2

)]
− 1

2

[
η(AEL1 ) + dim ker

(
AEL1

)
− η(AEL2 ) + dim ker

(
AEL2

)]
− Pl

=
1

2

[
l dim ker

(
AEL1

)
− dim ker

(
AEL1

)
+ l dim ker

(
AEL2

)
− dim ker

(
AEL2

)]
− 1

2

[
η(AEL1 )− lη(AEL1 )− (η(AEL2 )− lη(AEL2 ))

]
− Pl

(∗)
=

1

2

[
l dim ker

(
AEL1

)
− dim ker

(
AEL1

)
+ l dim ker

(
AEL2

)
− dim ker

(
AEL2

)]
+

1

2

[
ρl(A

EL
2 , AEL2 )− ρl(AEL1 , AEL1 )

]
− Pl

=
1

2

[
l dim ker

(
AEL1

)
− dim ker

(
AEL1

)
+ l dim ker

(
AEL2

)
− dim ker

(
AEL2

)]
=: DIMl

whereby we used (8.63) in (∗). Hence the contribution from the reduced eta-invariant ρl
is eliminated in the index for �nite coverings. We rewrite l into |Γ | and get

ind
(
DEL

APS(a1,a2)

)
= |Γ | ind(DEL

APS(a1,a2)) + (1− |Γ |)S + DIM|Γ | (10.30)

and thus a Lorentzian �nite covering index formula. The same observations can be made
for the other indices in (10.24) and (10.25). For |Γ | = l = 1 we also observe (10.29).
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11. Open questions and further tasks

Our results Main Theorem 1, Main Theorem 2 and Corollary 1.0.7 extend [BS19, Thm.4.1],
[BS19, Thm.7.1] and the index formulas from [BH18, Sec.4.1/2] to a spatial non-compact
situation by replacing the compact Cauchy hypersurfaces with Galois coverings, associated
to a Galois group Γ . All quantities in the known index formulas transfer to their pendent in
the Γ -setting apart from one other contribution which is given by the di�erence of Cheeger-
Gromov rho invariants for the hypersurface Dirac operators along Σ2 and Σ1: we recall
from (10.24) the Γ -index of DAPS(a1,a2):

indΓ (DAPS(a1,a2)) =

∫
MΓ

Â (MΓ ) +

∫
dMΓ

T ÂΓ (g)− ξΓ (A1)− ξΓ (−A2)

+χ{a2<0} dimΓ

(
L2
Γ ,(a2,0](S(Σ2))

)
−χ{a2>0} dimΓ

(
L2
Γ ,(0,a2](S(Σ2))

)
+χ{a1>0} dimΓ

(
L2
Γ ,[0,a1)(S(Σ1))

)
−χ{a1<0} dimΓ

(
L2
Γ ,[a1,0)(S(Σ1))

)
− 1

2

(
ρΓ (At2 , At2)− ρΓ (At1 , At1)

)
;

the new input is the last line. As long as the smooth family of (Riemannian) hypersurface
metrics on each Σt has non-positive scalar curvature, this additional term is a non-trivial
extension of the results from the compact setting; otherwise Proposition 8.2.16 implies that
the Cheeger-Gromov rho invariant is constant in the parameter t and the extra contribu-
tion vanishes. We have seen in subsection 10.3.3 that this additional term cancels for �nite
coverings and the expected covering version of [BS19, Thm.7.1] with generalised (a)APS
boundary conditions shows up. This observation a�rms that the di�erence of Cheeger-
Gromov rho invariants is indeed not an artefact and may in�uences the use of our results
in geometrical as well as application-oriented �elds, e.g. extending the rigorous treatment
of the chiral anomaly e�ect from [BS16] to our non-compact setting.

Several possible modi�cations can be discussed or even proposed within or beyond our
setting.

[A] Spatial and temporal non-compactness
The other so far known extension of the treatment and results in [BS19] to spatial non-
compact odd -dimensional globally hyperbolic manifolds is presented in [Bra20] for strongly
Callias-Dirac operators. There, a Callias potential is added to the Dirac operator and con-
trols the regularity outside any compact subset of the Cauchy hypersurface. The most
obvious wanted extension of our result is to replace the hypersurfaces as Galois coverings
with general manifolds of bounded geometry. Our treatment already provided several nec-
essary ingredients for this situation, e.g. existence and properties of the wave evolution
operators which has been shown for general complete Cauchy hypersurfaces. As we have
already used results about function spaces on manifolds with bounded geometry to char-
acterise the projectors as suitable Γ -pseudo di�erential operators, the regularity results for
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showing Fredholmness can be adapted within this framework. A suitable spectral �ow
concept as well as an index theorem for the Riemannian Dirac operator on manifolds with
boundary and bounded geometry has to be worked out in order to derive an index for-
mula in the same way. But this can be circumvented as a local index theorem for any
Dirac-type operator, provided in [BS20], makes the necessity of the spectral �ow and a
Riemannian index theorem redundant whether the hypersurface is compact or not. An-
other non-compactness result is presented in [SW22] wherein the temporal compactness is
relaxed and hypersurfaces at in�nity can be taken into account if the metric is of asymptot-
ically static type, i.e. the metric decays to a static and product type metric for (t→ ±∞).
Thus, one could think of relaxing the temporal compactness in our situation as well where
for example one needs to consider the mentioned metrics and boundary conditions at in�n-
ity in the Γ -setting. There might be some issues in showing that the Dirac-wave evolution
operators are Fourier integral operators for a possibly unbounded time domain T (M) be-
cause temporal compactness has been a crucial point in this step.

[B] Other groups Γ
The group Γ has been taken to be a discrete group of deck transformations with compact
quotient Σ/Γ . One could think of replacing the group Γ with a locally compact unimodular
group G which then acts properly, cocompactly and as isometry on the complete hyper-
surfaces Σ. The corresponding L2-index theory is presented in e.g. [Wan11, Sec.2/3] and
is quite similar to the one we used for our Γ -setting apart from a cuto�-function along the
orbits which comes with a proper and cocompact G-action and contributes to the G-index.
Because of this resemblance, one could have the impression that the Fredholm part in our
proof can be extended to this situation which is in fact clear up to the part where we
extended Seeley's theorem of complex powers to Galois coverings. Our Γ -spectral �ow con-
cept can be carried over as we introduced it as a special case of spectral �ow in a general
semi�nite von Neumann algebra. A lower truncated eta-invariant η>εG can be de�ned as
in [AW11, Prop.3.3] with the G-trace, introduced in [Wan11, Sec.3.1]: let A be an elliptic
and G-invariant operator such that e−sA

2
becomes G-trace class for all s > 0, then

η>εG (A) =
1√
π

∫ ∞
ε

s−1/2TrG

(
Ae−sA

2
)

ds

is well-de�ned for ε > 0. The spectral �ow expression with η>εG becomes similar to (8.64).
It is left to check that the limit ε → 0+ and thus the full G-eta invariant is well-de�ned.
In order to express the G-index with geometric data, a corresponding G-index for the Rie-
mannian Dirac operator is needed. There are known equivariant APS-index theorems for
the latter case with G being a compact Lie group which has been studied for example
in [Don78], [Goe00] and [BM17] for compact manifolds with boundary and non-product
type Dirac operators near the boundary.

Instead of replacing the group, one could also �x an element g ∈ Γ \ {ε} which have
�nitely many conjugates in Γ and take the �nite conjugacy class < g > instead of Γ . In
other words, we relax the condition that the discrete group is an i.c.c. group. The case
for non-compact manifolds has been studied in [Lüc02]. The extension to manifolds with
boundary could be worked out as in [Ram93] and the discussed Γ -eta invariant reduces
to Lott's delocalised eta-invariant: let F be the fundamental domain and K(p, p; s) the



242 CHAPTER 11. OPEN QUESTIONS AND FURTHER TASKS

Schwartz kernel of Ae−sA
2
for an elliptic Γ -invariant operator A, then

η<g>(A) =
1√
π

∫ ∞
0

s−1/2Tr<g>

(
Ae−sA

2
)

ds

with Tr<g>

(
Ae−sA

2
)

=
∑
γ∈g

∫
F

trp (K(p,γp; s)) dvol (p)

is well-de�ned for �nite < g > or of polynomial growth if |< g >| = ∞, see [Lot99]. One
could also think about relaxing the condition that the Γ -action is the same on every slice,
i.e. does depend on the time parameter. Let {Γ(t)}t∈T (M) a smooth one-parameter family
of groups of deck transformations; this change implies that the Γ -invariant partition of unity
becomes time-dependent. The possible time-dependence of the left action representation
on t has been already used in this thesis because the Dirac-wave evolution operators and
all their following operators already have intertwined the Γ -actions on Hilbert Γ -modules
for di�erent times. It is an open question whether a time-depending Γ -invariant partition
of unity can be used without further constraints which might be necessary for the proof of
Proposition 7.3.1.

[C] Further possible modi�cations
Another conceivable generalisation of our result is to consider any other, not necessary self-
adjoint Dirac type operator than just the Atiyah-Singer Dirac operator; hence a spatially
L2-index version of [BS20, Thm.5.4] becomes very attractive. This attempt would allow
to introduce any complex twisting bundles. Besides the already proposed generalisations
in section 7 of [BS19], one could also think about an odd-dimensional version, inspired
by [Zad08, Thm.1] and based on [Fre96, Thm.B]. A geometric expression becomes redun-
dant since the heat kernel expression in the integral over the odd-dimensional manifold and
the eta-invariants on the even-dimensional boundary hypersurfaces vanish. Using another
connection than the Levi-Civita connection would allow to extend the physical appplica-
tions from a general relativistic point of view to any modi�ed geometric theory of gravity,
based on other possible choices of a metric-a�ne connections. This kind of modi�cations
would lead to another transgression form of the Â-genus as additional boundary integral in
the non-product case. It is an open task how Fredholmness of the Dirac operator is a�ected.

At the end we want to point out that there is an alternative way in proving L2-index
theorems with respect to a Galois covering M → MΓ . Instead of working with the lifted
Dirac operators on the covering, one can consider the operator on the compact base MΓ ,
but one needs to twist the operator with the Mishchenko-Fomenko bundle which is the line
bundle

M × C∗(Γ)/Γ →MΓ

where C∗(Γ) is the (reduced) C∗-algebra of Γ which is de�ned as follows: let CΓ denote
the space of complex-valued functions on Γ with �nite support which is a subset of `2(Γ).
The algebra C∗(Γ) is the norm closure of the image lγ(CΓ) in the C∗-algebra B(`2(Γ)).
This treatment is suitable for a K-theoretic approach and proof of an index theorem as
one can work on compact manifolds. On the other hand it provides a base for higher index
theories which has topological and geometric applications as the question of the existence of
positive-scalar-curvature metrics on M wherefore the Cheeger-Gromov invariant becomes
an important tool. We refer to [Lot92] for more background informations.
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A. Gauss divergence theorem on

pseudo-Riemannian manifolds

We give a brief recapitulation about the divergence theorem on pseudo-Riemannian man-
ifolds. Let M be a (n+ 1)-dimensional manifold with smooth boundary dM and pseudo-
Riemannian metric g of any signature (r, s) such that r + s = n + 1. If M is assumed to
be fully oriented, it admits a (n + 1)-form ω as volume form. An orientation on dM can
be introduced as follows: denote with i : dM ↪→ M the embedding of the boundary into
the manifold. As the boundary is a smooth manifold, there exists a transverse vector �eld
n ∈ C∞(i∗(TM)) on dM , i.e. for all p ∈ dM the vector n(p) lies in TpdM ⊂ TpM and
is not entirely tangent to dM . Thus a transverse vector �eld is roughly speaking a vector
�eld inM which is everywhere inwards- or outwards-pointing on any connected component
of dM . Conventionally, one chooses the outwards-pointing orientation. Such a vector �eld
induces an orientation on the boundary by the interior product ιn:

ωdM = ιnω .

If M has no orientation, one can only introduce a smooth density dµ on M which induces
a smooth density on the boundary: let n be a transverse vector �eld and {ej}nj=1 a basis
on TpdM for p ∈ dM . The interior product on the density is then de�ned by

(ιn dµ)|p(e1, ..., en) := dµ(n(p), e1, ..., en)

and is again a smooth density. It is positive, if dµ does, and C∞(M)-linear: ιn(f dµ) =
(i∗f)ιn dµ for all f ∈ C∞(M) and ιgn dµ = |g| ιn dµ for all g ∈ C∞(dM). As the whole
construction does not involve any information about the pseudo-Riemannian metric we can
�x the �rst step in direction to a divergence theorem on a pseudo-Riemannian manifold in
the shape of the Stokes-Cartan theorem.

Theorem A.1 (Theorem 16.11 in [Lee13]). Let M be an oriented smooth manifold of
dimension (n + 1) with boundary inclusion i : dM ↪→ M and ν a compactly supported
smooth (n− 1)-form on M , then ∫

M
ν =

∫
dM

i∗ν . (A.1)

The assumption on orientability of M can be relaxed if we replace forms with smooth
densities (see [Bot82, Thm.7.7]).

Now we take the pseudo-Riemannian metric g on M into account. One can distinguish
di�erent vector �elds due to its causal character through this metric which induces a de-
composition of the boundary into three pairwise disjoint components: let n be a transverse
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vector �eld along dM ; one de�nes

dM≷0 :=
{
p ∈ dM | g(n(p), n(p)) ≷ 0

}
,

dM0 :=
{
p ∈ dM | g(n(p), n(p)) = 0

}
,

dM := dM>0 t dM<0 t dM0 .

(A.2)

dM≷0 are both open subsets and dM0 is closed (see [Ün95, Lem.3.3]). We only consider the
case of a non-degenerate boundary where dM0 = ∅. Thus, g(n(p), n(p)) is either positive or
negative on each connected component. A metric allows to characterise transverse vectors
to be orthonormal vectors to dM . As dM is a codimension one submanifold, the normal
space NpdM := (TpdM)⊥ is one-dimensional at each point p ∈ dM . As non-degeneracy
of the boundary implies that NpdM does not contain any lightlike vector, the transverse
vector �eld is the unique outwards-pointing vector �eld, orthonormal to dM , which we
refer on as normal vector �eld. A pseudo-Riemannian metric on the boundary can be
induced in a unique way by pulling back the metric on M via the embedding: gdM := i∗g .
The pseudo-Riemannian volume density in local coordinates x0, x1, ..., xn is

dµg =
√∣∣det(g)

∣∣ dx0 ∧ dx1 ∧ ... ∧ xn

and the normal vector �eld induces a unique pseudo-Riemannian volume density by means
of

dµgdM = dµi∗g = ιn dµg . (A.3)

We �rst focus on the orientable case. Let X be a compactly supported vector �eld on M .
We want to apply Stokes theorem for ν = ιX dµg . We can express the exterior derivative
with the Lie derivative £X with the help of Cartan's magic formula:

dν = d ◦ ιX dµg = £X dµg − ιXc d dµg = £X dµg = div(X) dµg .

Formula (A.1) then implies∫
M

div(X) dµg =

∫
dM

i∗(ιX dµg ) . (A.4)

The integrand on the right-hand side can be calculated as for Riemannian metrices (e.g.
[Lee13, Lem.16.30]) and one obtains

i∗ιX dµg = εg(X, n) dµgdM

where ε = g(n, n) is constant on dM such that (A.4) transfers to

Proposition A.2 (cf. Theorem 3.7 in [Ün95]). Let M be an oriented manifold with non-
degenerate boundary dM and pseudo-Riemannian metric g which induces a volume form
dµg on M . For a compactly supported vector �eld X one obtains∫

M
div(X) dµg = ε

∫
dM

g(X, n) dµgdM (A.5)

where n is the outwards-pointing unit normal vector �eld along dM and dµgdM the induced
volume form on the boundary.
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The decomposition dM = dM>0 t dM<0 implies a splitting of the normal vector �eld
into normal vector �elds on each connected components:

n =


n+ dM>0

on
n− dM<0

with g(n±, n±) = ±1 and g(n±, n∓) = 0 .

(A.5) then takes the form∫
M

div(X) dµg =

∫
dM>0

g(X, n+) dµgdM −
∫
dM<0

g(X, n−) dµgdM . (A.6)

The extension to non-oriented pseudo-Riemannian manifolds can be justi�ed as in the
Riemannian case by using an orientation covering, which is a local isometry, and apply
Proposition A.2 to the covering; see e.g. [Lee13, Thm.16.48] for the technical details which
carry over to the pseudo-Riemannian case.

The Lorentzian case of our interest is covered as follows. M is a time- and space-oriented
Lorentzian manifold which contains a spacelike Cauchy hypersurface, i.e. M is globally
hyperbolic. Hence M is isometric to a topological cylinder manifold R× Σ. If we restrict
the temporal domain from R to [T,∞) for a T ∈ R, then M becomes a manifold with
boundary dM = ΣT := {T} × Σ. We write dvolM as volume form on M and dvol ΣT as
volume form on the boundary. The global hyperbolicity of the Lorentzian manifold implies
the existence of a global timelike unit vector �eld t. The divergence theorem (A.5) for a
compactly supported vector �eld X on M becomes∫

M
div(X) dµg = −

∫
dM<0

g(X, t) dvol ΣT = −
∫

ΣT

g(X, t) dvol ΣT . (A.7)

Up to this point there is still a freedome to choose which timelike direction (future, past)
corresponds with the property of pointing outwards.
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B. Well-posedness of the Cauchy problem

for smooth initial data

This chapter provides some known results about the well-posedness of the Cauchy problem
for the Dirac equation with smooth and compactly supported initial data for Section 7.1.
We formulate the results for any operator P which is of Dirac-type, i.e. P 2 is normally
hyperbolic (see (C.5))

Proposition B.1 (cf. Theorem 4 in [AB18]). Let E and F be a smooth vector bundles over
a globally hyperbolic manifold M with spacelike Cauchy hypersurface Σ and P a Dirac-type
operator

P : C∞(M,E)→ C∞(M,F ) .

For each u0 ∈ C∞c (Σ, E|Σ) and for each f ∈ C∞c (M,F ) there exists a unique u ∈
C∞(M,E) which solves the Cauchy problem

Pu = f on M with u|Σ = u0 ; (B.1)

the solution depends continuously on the data (u0, f).

If we take the foliation of M with a smooth familiy of Cauchy hypersurfaces {Σt} into
account, we can rephrase this result as follows: the Cauchy problem (B.1) is well-posed,
i.e. for any, but �xed t ∈ T (M) the map

rest ⊕ P : C∞(M,E) → C∞c (Σt, EΣt)⊕ C∞c (M,F )
u 7→ (u|Σt , Pu)

(B.2)

extends to an isomorphism of topological vector spaces. This proposition is a consequence
of the well-posedness of the Cauchy problem for the linear wave equation of normally hyper-
bolic operators which is applied to P 2; see e.g. [AB18, Thm.2] or the main source [BGP07,
Thm.3.2.11].

A �nite propagation speed result can be deduced from the one of the wave equation.

Corollary B.2. The solution u in the situation of Proposition B.1 satis�es supp (u) ⊂
J (K) where K is the compact subset supp (u0) ∪ supp (f).

We will apply these results to the spin-Dirac operators P = D±, E = S±(M), F =
S∓(M) and E|Σt = S±(Σt) which we will also equip with a twisting bundle.



249

C. Solution operators for initial value

problems of normally hyperbolic

operators

This appendix is dedicated to solutions of the Cauchy Problem

Pu = 0 and resΣQju = Qju|Σ = gj (C.1)

where P ∈ Ψm(M), Qj ∈ Ψmj (M) and gj ∈ C−∞c (Σ), j ∈ {0, ...,m− 1}, are initial values
on the initial hypersurface Σ of a manifold M . The Qj are operators which generates the
intial values. The aim is to express u with solution operators, applied to the initial values
gj in (C.1). These solution operators are represented as FIOs and we recapitulate some
facts and results from [Dui10, Chap.5]. In order to do so, one needs to impose several
conditions on P and Qj : the bicharacteristics from the principal symbol σm(P ) needs
to be transversal to the initial hypersurface with dim(ker (σm(P )(x0, ξ0))) = µ for all
(x0, ξ0) ∈ Ṫ ∗Σ. Such an operator is called strictly hyperbolic of multiplicity µ with respect
to Σ. The value µ counts the number of solutions of

σm(P )(x0, ξ) = 0 and ξ|Tx0Σ = ξ0 . (C.2)

The transversality of the bicharacteristics is equivalent to the condition that zeroes of the
principal symbol at (x0, ξ) are simple and non-vanishing on the orthogonal complement
of T ∗x0

Σ; in other words: the initial hypersurface is non-characteristic and the number
of simple zeroes is �nite. Further assumptions has to be made to guarantee well-de�ned
compositions of the solution operators with Qj as pseudo-di�erential operators on the
hypersurface. The solution operators should have a canonical relation of the form

C :=
{

(y, η, x0, ξ0) ∈ Ṫ ∗M × Ṫ ∗Σ
∣∣∣ (x0, ξ) (y, η) : (C.2) holds

}
(C.3)

where (x0, ξ)  (y, η) denotes that (y, η) is connected with a bicharacteristic through
(x0, ξ). It is an embedded submanifold of Ṫ ∗(M×Σ) if in addition the following conditions
hold:

(1) (transversality) every bicharacteristic curve of P intersects Σ at most once;

(2) (properness) for all K b M exists a K0 b Σ such that each bicharacteristic curve,
starting in K, hits Σ in K0;

(3a) no bicharacteristic curve, starting on Σ, stays in a compact region in M ;

(3b) (pseudo-convexity) for all K0 b Σ and K bM exists a K ′ bM such that a segment
of the bicharacteristic curve, connecting one point in Σ and one in M , lies inside K ′.

Another necessary condition takes the initial value operators Qj into account:
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(4) the principal symbols of Qj are non-singular for any (x0, ξ
(j)(x0, ξ0)) ∈ Ṫ ∗Σ such

that (C.2) holds for any solution ξ(j), j ∈ {1, ..., µ}.

[Dui10, Thm.5.1.2] states that there exist solution operators Gk ∈ FIO−mk−1/4(Σ,M ; C′)
with canonical relation (C.3) for strictly hyperbolic pseudo-di�erential operators, satisfying
conditions (1) up to (4). A solution u of (C.1) can be expressed by means of u =

∑µ
j=1 Gjgj .

We restrict our attention to scalar-valued di�erential operators P of order m and (C.1) as
inhomogenous initial value problem, i.e. Qj = (∇∂t)j are the initial value operators for
j ∈ {1, ...,m}:

Pu = f in M

resΣ0(∇∂t)ju = gj for j ∈ {1, ...,m}
(C.4)

where Σ0 is the initial hypersurface, gj ∈ C∞(Σ0) the initial values and f ∈ C∞(M) the
inhomogeneity. The manifold M is an open subset in R × Σ and Σt ⊂ M is a slice of
the form Σt = ({t} × Σ) ∩ M for any t ∈ R. A di�erential operator is called strictly
hyperbolic (of multiplicity µ = m) with respect to Σt if (1) up to (3) hold. The principal
symbols of the initial value operators are given by qj(x, ξ) := σj(Qj)(x, ξ) = (iξ(∂t))

j |x
for x ∈M, ξ ∈ Ṫ ∗xM . The matrix qj(x0, ξ

(k)(x0, ξ0)) is a Vandermonde matrix for (x0, ξ
(k))

which solves (C.2). Its determinant vanishes if all ξ(k)(∂t) for k ∈ {1, ...,m} are the same.
But since P is a di�erential operator of order m, its principal symbol is a polynomial of
order m in ξ and by strict hyperbolicity the multiplicity equals the order of the polynom
wherefore all roots of the principal symbol are di�erent. Thus, (4) is satis�ed.

[Dui10, Lem.5.1.3] and [Dui10, Lem.5.1.4] assure the existence of a neighbourhood Up
of any point p ∈ M and a family of continuous mappings G(t), depending smoothly on t,
and solution operators Gj for Qj such that

PG(t)f = 0 in Up
resΣt(∇∂t)jG(t) = 0 for j ∈ {0, ...,m− 1} , t ∈ R .

This leads to the following result where D(p) denotes a neighbourhood at p ∈M , containing
all points, which can be reached from p with curves γ such that γ̇ is a tangent vector of
the bicharacteristics through p, pointing downwards along a cone in TpM .

Theorem C.1 (cf. Theorem 5.1.6 in [Dui10]). Let M ⊂̊R × Σ and P ∈ Diffm(M) be
strictly hyperbolic with respect to Σt for all t ∈ R and suppose D(p) ∩ Σ0 is compact for
every p ∈M , then (C.4) has a unique solution u for every f ∈ C∞c (M) and gj ∈ C∞(Σ0)
such that

u = Gf +
m∑
j=0

Gjgj

where the solution operators G and Gj are continuous mappings from C∞(M) to C∞(M)
and respectively C∞c (Σ0) to C∞(M) with the properties

(1) supp (G) ⊂ {(p, q) ∈M ×M | q ∈ D(p)},

(2) supp (Gj) ⊂ {(p, x) ∈M × Σ0 |x ∈ D(p) ∩ Σ0} and

(3) Gj ∈ FIO−j−1/4(Σ0,M ; C′) with C as in (C.3).
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supp (Gj) and supp (G) refer to the support of the corresponding kernels. Theorem C.1
can be extended to di�erential operators with scalar-valued principal symbol or to (any sys-
tem of) di�erential operators of real principal type where the principal symbol is real and
homogeneous of order m (= order of the di�erential operator) and no (complete) bicharac-
teristic strip stays over a compact set. If the di�erential operator acts between two vector
bundles on M with the same rank r or is given as r-quadratic system of scalar-valued
di�erential operators, the principal symbol is an r-quadratic matrix and the determinant
de�nes the characteristic symbol.

A special situation arises if M is globally hyperbolic with Lorentzian metric g , E → M a
vector bundle, Σ a Cauchy hypersurface and P ∈ Diff2(M,End(E)) is normally hyperbolic,
i.e. its principal symbol is determined by the metric:

σ2(P )(p, ξ) = ±gp(ξ], ξ])1E . (C.5)

The vanishing of the principal symbol corresponds to the vanishing of gp(ξ], ξ]) at each
point p ∈ M which is ful�lled for ξ], being a lightlike vector at x. The bicharacteris-
tic strips are determined by Hamilton's equations for the Hamilton function 1/2gp(ξ], ξ])
which can be reduced to the geodesic equation on M . Thus, the bicharacteristic curves
(projection of the bicharacteristic strip on M) are given by lightlike geodesics. Since nor-
mally hyperbolic operators have scalar-valued principal symbol times identity, one can try
to apply Theorem C.1: the domain D(p) corresponds to the past causal domain J −(p) at
p. As J −(p) ⊂ J (p), it is spatial compact for any point in M and the intersection with
any Cauchy hypersurface is compact wherefore J −(p) ∩ Σ0 is compact for every p ∈ M .
The global hyperbolicity of M is equivalent to M being causal and strongly causal, see
Theorem 3.1.3. The strong causality impose that, if any causal geodesic is con�ned inside
a compact region of M , it has already its endpoints inside this compact region. Otherwise
the Picard-Lindelöf theorem would imply that the time-domain for the lightlike geodesics
is R and thus the geodesics become complete. Their tangent vectors tend to zero if the
parametrisation tends to ±∞. Since any geodesic parallel transport is determined by its
own tangent vector, it implies that the tangent vectors are already vanishing for all times
wherefore the geodesics must be constant and thus a contradiction to the assumption. The-
orem 3.1.3 also says that the intersection of a future and past light cone of di�erent points
is compact: J +(p)∩J −(q) compact for all p, q ∈M . This holds true for any two compact
subsets ofM as well wherefore one has for K bM also J +(K)∩J −(K) =: K ′ compact. If
a segment of a lightlike geodesic has its endpoints in a compact region K which contains a
compact domain K0 ⊂ Σ, from which it starts, then the curve stays inside K ′. This proves
strict hyperbolicity of normally hyperbolic operators and thus (3a) and pseudo convexity
(3b) are satis�ed; see [Rad96, Prop.4.3/4.4] for these facts. Transversality (1) follows from
the global hyperbolicity of M which implies a Cauchy temporal function whose level sets
are Cauchy hypersurfaces and any inextendable causal curve crosses any Σt once. Thus,
the bicharacteristic curves as lightlike geodesic curves intersect the initial slice Σ0 at most
once. Properness (2) follows from the same causal diamond argument: if we take any
K b M , then also J +(K) ∩ J −(K) is compact. De�ne K0 := (J +(K) ∩ J −(K)) ∩ Σ0

which is compact as J +(K)∩J −(K)) is compact and Σ0 is closed. Any lightlike geodesic
starting in K will hit Σ0 in K0.
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Thus, all conditions from (1) to (3) on the bicharacteristics are proven; we have already
seen that (4) is satis�ed for initial value problems of di�erential operators. The canonical
relation in (C.3) for the solution operators can be rewritten to

C :=
{

(x, ξ, y, η) ∈ Ṫ ∗M × Ṫ ∗Σ0

∣∣∣ (x, ξ) ∼ (y, η)
}

(C.6)

where (x, ξ) ∼ (y, η) means that there is a lightlike vector ζ ∈ T ∗yM such that the points
(x0, ξ) and (y, ζ) are on the same lightlike geodesic strip (i.e. are connected by the same
orbit of the null geodesic �ow in M) with res∗Σ0

ζ = η. This lightlike vector ζ is either
future- or past-directed if g(ζ, ∂t) < 0 respectively g(ζ, ∂t) > 0. Its pullback to the initial
hypersurface gives the same covector η. In order to distinguish both directions one considers
ξ to be a future- or past-directed lightlike vector such that (x, ξ) and (y, ζ) are connected
by a null geodesic from past to future or vice versa. This allows to decompose C into two
connected components C±:

C+ = {(x, ξ, y, η) ∈ C | ξ B 0} and C− = {(x, ξ, y, η) ∈ C | ξ C 0} (C.7)

where ξ B 0 means that (+ξ) is a future-directed lightlike covector and ξ C 0 means that ξ
past-directed lightlike covector or equivalently (−ξ) a future-directed. This decomposition
can be used to trivialise the Keller-Maslov line bundle and the half-density bundle over
the canonical relation which is explained in the appendix of [BS19].

After all this details and conclusions we have �nally recovered [BS19, Thm.A.1] with further
needed details.

Theorem C.2. Let M be a globally hyperbolic manifold with Cauchy hypersurface Σ and
E → M a vector bundle; the Cauchy problem for a normally hyperbolic operator P ∈
Diff2(M,End(E)) with initial hypersurface Σ0,

Pu = 0 in M

resΣ0(∇∂t)ju = gj for j ∈ {0, 1} ,

has a unique solution u for every gj ∈ C∞c (Σ0) such that u =
∑m

j=0 Gjgj where the solution
operators Gj are continuous mappings from C∞c (Σ0, E|Σ0) to C∞(M,E) with the properties

(1) supp (Gj) ⊂ {(p, x) ∈M × Σ0 |x ∈ J −(p) ∩ Σ0} and

(2) Gj ∈ FIO−j−1/4(Σ0,M ; C′;Hom(E|Σ0 , E)) with C as in (C.6).
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D. Auxiliary calculation

Let c(E,∇) be any characteristic class of a vector bundle E →M ′ over a manifoldM ′ with
connection ∇ such that it is de�ned by the curvature Ω∇ with respect to ∇. Given another
connection ∇′ on E, the di�erence of c(E,∇) and c(E,∇′) is in the same cohomology class
and thus there exists a form w(∇,∇′) (transgression form) with

c(E,∇′)− c(E,∇) = dw(∇,∇′) .

Let f : M →M ′ be any continuous map between M and M ′. We can de�ne the pullback
bundle f∗E and the pullback connection f∗∇ according to (2.13) and (2.15). The naturality
of characteristic classes, i.e.

f∗c(E,∇) = c(f∗E, f∗∇) ,

implies

f∗
[
c(E,∇′)− c(E,∇)

]
= c(f∗E, f∗∇′)− c(f∗E, f∗∇) = d(f∗w(∇,∇′)) . (D.1)

The curvature Ωf∗∇ with respect to the pullback connection is the pullback of the curvature
with respect to ∇, i.e.

Ωf∗∇(X,Y )f∗u = f∗ [Ω∇(f∗X, f∗Y )u]

where X,Y are vectors on M ′ and u a di�erentiable section of E →M ′. It indicates

f∗
[
c(E,∇′)− c(E,∇)

]
= c(f∗E, f∗∇′)− c(f∗E, f∗∇) = dw(f∗∇, f∗∇′) . (D.2)

The di�erence of (D.1) and (D.2) shows that

d
(
f∗w(∇,∇′)− w(f∗∇, f∗∇′)

)
= 0 ;

hence there exists a form v such that

f∗w(∇,∇′)− w(f∗∇, f∗∇′) = dv . (D.3)
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