
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Masterstudiengang Informatik

Masterarbeit

Explainability of power grid attack strategies
learned by Deep Reinforcement Learning

Agents

vorgelegt von

B.Sc. Torben Logemann

Gutachter:

Dr.-Ing. Eric MSP Veith

Prof. Dr. rer. nat. Sebastian Lehnhoff

Oldenburg, 31. Juli 2023

I

Content

1 Abstract 1

2 Introduction 3

2.1 Motivation . 3

2.2 Challenges . 5

2.3 Research question and hypothesis . 9

2.4 Outline . 9

3 Basics 11

3.1 Power grid . 11

3.2 Machine Learning . 19

3.3 Deep Learning . 20

3.4 Reinforcement Learning . 23

3.5 Deep Reinforcement Learning . 29

3.6 Explainability in Deep Reinforcement Learning 35

3.7 Satisfiability Modulo Theories . 38

4 Related Work 41

4.1 More fine-grained XRL taxonomy . 41

4.2 DNN-DT equivalence description . 45

5 Requirements, Method Analysis and Contributions 49

5.1 Requirements . 49

5.2 Method analysis . 50

5.3 Contributions . 51

6 The NN2EQCDT algorithm 53

6.1 Decision tree construction with the NN2EQCDT algorithm 53

6.2 Derivation of the representation with right-handed linear transformation . . . 54

6.3 Dynamic path checking when adding subtrees 58

6.4 Further tree compression . 59

6.5 ARL framework integration . 60

6.6 Discussion . 62

7 Evaluation Scenario 63

7.1 Power grid setting . 63

7.2 Simple voltage attacking scenario . 64

7.3 Visual inspection of agents behavior . 65

7.4 Scenario adaption . 67

7.5 Conclusion and Discussion . 67

II Content

8 Evaluation 71

8.1 NN2EQCDT evaluation . 71

8.2 Attack scenario . 74

8.3 Conclusion and Discussion . 76

9 Conclusion and Future Work 77

9.1 Conclusion . 77

9.2 Future Work . 78

10 Tool usage 81

Figures 83

Literature 85

1

1 Abstract

Learning systems have achieved remarkable success. Agents trained using Deep RL (DRL)
methods, e.g., promise true resilience. However, no guarantees can yet be given for the
black-box models that have been learned. For operators of Critical National Infrastructures
(CNIs), this is a necessity, as no responsibility for an unknown and unverifiable control system
can be assumed. Intrinsically safe learning algorithms and approximate, post-hoc interpretable
models exist, but they lack either learning power or explainability. To optimize this trade-off,
this thesis presents the NN2EQCDT algorithm, which directly converts a (whole) policy-
based Feed-Forward DNN (FF-DNN) into a compressed Decision Tree (DT). Compression
is achieved by dynamically checking the satisfiability of the paths of the transformed DTs
during construction and disregarding unneeded rules. It can be further increased by using
additional methods and considering invariants. It has been observed that the NN2EQCDT
algorithm can drastically compress a small policy model, making it possible to exactly track
the action regions to their observation regions in a plotted DT and further visualizations. The
NN2EQCDT algorithm was then further evaluated by explaining a learned attacker policy
model to show that one can ensure that a policy-based FF-DNN has not learned unknown
unknown strategies.

2 Abstract

3

2 Introduction

2.1 Motivation

2.1.1 European Climate Goals 2030

The atmosphere contains a certain amount of greenhouse gases, such as carbon dioxide. They
naturally absorb some of the solar radiation reflected from the earth. Some greenhouse
gases, such as carbon dioxide, methane, nitrous oxide, and fluorinated gases, are enhanced by
human activities. They are emitted in widely varying amounts and have different effects on
suppressing reflected radiation.

When the amount of greenhouse gases is increased, e.g., by burning fossil fuels, deforestation,
or livestock production, back radiation to space is suppressed, leading to global warming.
This effect is called the greenhouse effect [Eur23c].

European climate targets aim to reduce gas emissions by 55 % by 2030 to keep the increase in
global average temperature below 1.5 ◦C compared to 1990, in line with the Paris Agreement. If
the global average temperature does not rise, the consequences for the climate are comparatively
small. Otherwise, this would have catastrophic effects on the climate and thus on human life
in general [Eur23a; Eur23e].

Climate change is melting the polar ice sheets, causing sea levels to rise. Extreme weather
events are also occurring more frequently, such as heavy local rainfall in some areas and heat
waves with droughts in other areas or at other times. Nearly all sectors are affected by the
causes of climate change. The European Commission (EC) lists many of them under natural
impacts, social hazards, economic hazards, and territorial hazards [Eur23d].

Thus, there is a need to slow down or even stop climate change by achieving climate targets.
For this reason, the European Commission has developed several strategies [Log22].

2.1.2 European clean energy transition

The EC has developed different action strategies for different areas. The main objectives
for the clean energy transition relevant to this thesis are to build an interconnected energy
system with better integration into the grids to support Renewable Energy Sources (RESs),
to promote innovative technologies and modern infrastructures, to increase energy efficiency
and eco-design of products, to decarbonize the gas sector, and to promote smart integration
between sectors. Even more detailed strategies have been developed for additional targets
[Eur23b; Log22].

2.1.3 Restructing of the power system

The increasing integration of RESs is restructuring the power system from a few large
generation plants to many small ones because RESs, such as Photovoltaic (PV), are small
and decentralized. They can be controlled in a decentralized manner and thus supply the
consumers themselves on-site [Leh22].

4 Introduction

However, conventional power distribution systems have been designed with the assumption
that large generation facilities are the only sources of power. The growth of distributed
generation, therefore, implies atypical grid usage in the planning sense and can introduce
technical issues that must be considered for the efficient and reliable operation of power
distribution systems [EGH16].

2.1.4 Emerging power grid management methods

There are new grid management approaches for this. Local energy markets are possible
through decentralized plants and a redispatch of these small local grids is necessary [Leh22].

Redispatch is a method of ensuring grid stability, especially in transmission grids. It
involves modifying power generation to avoid grid bottlenecks. For example, power plants
that were originally scheduled to generate power are downregulated in regions where they
would contribute to potential congestion so that lines are not overloaded. At the same time,
generators are activated in regions of high consumption to relieve the original congestion.
In the first redispatch before the Netzausbaubeschleunigungsgesetz (NABEG), only large
conventional plants with a capacity of 10 MW or more were derated. In the Redispatch 2.0
procedure of the NABEG, RES, and Combined Heat and Power (CHP) plants as well as
plants with 1100 kW or more that can be remotely controlled by the grid operator are also
included in the [BDE22]. As a result, many small plants have to be controlled to ensure grid
stability. This large amount of additional control parameters must be managed.

The growing complexity of increasing restructuring and decentralization in the power grid
requires increasing digitalization to manage it. This includes the integration of digital moni-
toring and control systems and intelligent services into the Information and Communication
Technology (ICT) infrastructure of the power grid, as well as the use of intelligent meter-
ing systems (smart meters), cloud and meters), cloud/edge infrastructures, Big Data and
artificial intelligence technologies, and the use of flexibility through Internet-of-Things (IoT)
technologies. As a result, Information Technologies(IT) and Operational Technologies (OT)
are converging in a way that they can no longer be physically separated. There is also greater
interdependence of subnetworks as components potentially depend on different distributed
services [Del21].

This leads to new attack vectors through IT bugs and vulnerabilities, e.g., due to a lack of
update culture. In 2015, for example, there was a major targeted cyberattack on the power
grid in Ukraine that caused a blackout in parts of the country [Leh22].

The energy system is part of the CNI because it is very important for the functioning of
society. Therefore, it must meet special security requirements as defined in the BSI [Bun09]
and the [Bun21] for Germany.

At the same time, restructuring and digitization trends are making it potentially more
unstable, vulnerable, and actively attackable, so it must be robustly secured and made more
resilient to successfully avoid blackouts in the future and ensure power security [Del21].

2.2 Challenges 5

2.1.5 Success of learning systems

Learning systems have achieved remarkable success, especially with DRL, starting with the
breakthrough in 2013 with end-to-end learning of the Atari games Mnih et al. [Mni+13]
and Double Q-learning [HGS15]. Other successes have been achieved with AlphaGo (Zero),
[Sil+17], and MuZero [Sch+20]. DRL involves learning agents with sensors and actuators to
achieve specific goals through trial and error. Algorithms such as Twin-Delayed DDPG (TD3)
[FHM18], Proximal Policy Gradient (PPO) [Sch+17], and Soft Actor-Critic (SAC) [Haa+18]
have proven that they can handle complex tasks.

Due to its success, learning systems are applied in various fields, such as the following.

• In healthcare, Reinforcement Learning (RL) is preferred over traditional Deep Neural
Network (DNN) methods to determine the best treatment strategy [NRC20].

• In robotics, RL agents can learn tasks such as pouring water, imitating a human teacher,
grasping, balancing balls, and more [NRC20].

• DRL is used in autonomous driving due to its strong interaction with the environment
[Sal+17].

• In cybersecurity, DRL is used for automatic intrusion detection techniques and defense
strategies [NR21].

• To keep the power grid stable, DRL is used to train defender agents with the Adversarial
Resilience Learning (ARL) framework along with attacker agents to recover deviations
from a healthy state in an autonomous environment [VWU23].

2.2 Challenges

The power grid essentially consists of generators, consumers, cables, transformers, and other
power electronics. It is structured as an amalgamation of several subnetworks and divided
into different voltage levels that serve different purposes.

In the power grid, there is the general challenge of grid operation management. This
describes how the parameters of the components in the network must be controlled to ensure
proper functioning. Specific use cases of grid operation management include frequency and
voltage maintenance. In voltage maintenance, the voltage at each level of the power system
and the frequency throughout the power system must always be maintained within a certain
range to ensure proper operation. If more or less power is fed into the grid, the frequency
will increase or decrease. Frequency maintenance in the transmission network is therefore
achieved by suitable regulation against deviations from the standard frequency. In distribution
networks, voltage maintenance can be achieved by changing the transformer position and by
reactive power control [Tur+11] [Leh22].

The trends in the power grid toward the smart grid with, among other things, higher
decentralization and digitization are increasing the number of different components and
thus controls in the power and coupled ICT network. The complexity of grid operation
management is also increasing sharply, as the control of components can have an impact

6 Introduction

at various points in the power grid. In addition, the complexity is further increased by the
increasing number and interconnectedness of components in the ICT network as well as by
decentralized, flexibility-based, and short-term energy markets [MSP+20].

The energy system as a combination of the power grid, ICT network, and energy market
represents a Cyber-Physical System (CPS). Classically, such systems are analyzed using
monolithic approaches. They are verified, for example, by model checking and extensive
simulations to provide a basis for confidence in the CPS [Fis+18]. With increasing complexity,
the search space for classical verification becomes too large as the number of stochastic input
parameters increases. If the power grid, ICT network, and energy market are considered
individually, dependencies and side effects are ignored. Therefore, new approaches are needed
to analyze the power system holistically [MSP+20].

One concept for coping with complexity is the cellular approach, an organizational model for
energy supply. In addition to digitization, this integrates sector coupling in particular. In this
approach, different forms of energy such as electricity, heat and gas as well as mobility, and
industrial energy sources and processes are linked with each other in terms of energy technology
and economy. By shifting the energy exchange to different forms of energy, the overall energy
consumption is to be optimized. The cellular approach is also intended to increase pre-supply
safety and quality. In this, there are energy cells that provide the infrastructure for different
coupled forms of energy. The energy cells are managed externally by coordinating with their
neighboring cells to balance the total generation or consumption across all energy forms
[VDE19].

Since it will no longer be possible to analyze and thus control the power system manually due
to the increasing complexity, the vision is to achieve fully automatic, autonomous operation
control in addition to mastering the complexity [Vei22].

A new approach for validated resilient network operations is the ARL approach. In this
approach, there are multiple agents, namely an attacker and a defender, but it is not considered
a Multi-Agent System (MAS) because the agents neither share a common goal nor communicate
directly. The attacker agent attempts to destabilize the CPS, and the defender agent attempts
to keep it in a stable state. Both operate on the same simulated power grid, so their actions
affect the grid and therefore each other’s observations. The purpose of the attacker agent is
to train the defender agent’s model specifically for resilient operational strategies. Therefore,
the attacker agent can be viewed as a complex sampling helper for the defender agent that
can learn better by potentially covering a larger portion of the search space in the samples. A
unique feature of the ARL approach is that the agents are not explicitly given each other’s
actions, so the models are trained in a more realistic scenario. The goal is to train as new
attack and defense strategies as possible to evaluate, understand, and thus improve security
in advance [Fis+18].

The ARL approach is based on the autocurriculum hypothesis, according to which agents
generate dynamics in part through competition and cooperation. This hypothesis is modeled
on evolution, where different entities also interact and adapt. According to this hypothesis,
innovation occurs when parts of the system are pushed by others into unknown search space
regions where previously applied solutions no longer work and therefore new ones must be
developed. This process is called autocurriculum because it occurs automatically in cycles, in

2.2 Challenges 7

that new solutions in turn raise new challenges that must be solved. As the challenges become
more complex over time, innovation increases even further [Lei+19; Bak+20].

ARL agents are competitors and learn opposing strategies in a cyclic competition with
opposing goals. In doing so, they implicitly learn each other’s strategies and adaptively develop
their strategies to not only compensate for the behavior of the competing agents, but to push
them back as far as possible to dynamically approach their goal.

The agents can be successfully trained using DRL. In [VWU23; Vei+22], a successful attack
on a power grid with reactive power control from Distributed Energy Resources (DERs) by ARL
agents based on DRL is demonstrated for this purpose. In general, Artificial Neural Networks
(ANNs) can be used alongside other models in DRL because they can learn incrementally and
are powerful. They can be complex, which is why they make potentially incomprehensible
[PV20a] predictions and thus decisions. Moreover, they are used to minimize a cost function
and thus only indirectly learn a model of the problem [Fis+18]. Learned strategies have
therefore been difficult to reproduce with classical supervised learning of ANNs.

However, the technologies to be used for the vision of fully automated operations management
must be trustworthy to be accepted and deployed, since the error bounds for an adaptive
learning system in the CNI environment are much tighter than in standard benchmark
environments. Errors must be avoided much more in this context, as they can have potentially
catastrophic consequences [Vei22].

There are also some more general regulations on components in CNI by the Bundesamt
für Sicherheit in der Informationstechnik (BSI) [Bun09] and the IT Security Act 2.0 [Bun21].
According to“§ 9b Untersagung des Einsatzes kritischer Komponenten“ (3), critical components
may only be used if the manufacturer has issued a declaration of confidence to the operator of
the critical infrastructure. The declaration of confidence must state how the manufacturer
ensures that the critical component does not have any technical features that could reduce
the security, confidentiality, integrity, availability or functionality of the critical infrastructure
and, in particular, could be misused for sabotage, espionage or terrorism.

Although this is aimed more at the threat of adversary use of IT components, the Declaration
of Trust indirectly states that the manufacturer must also ensure that the components do not
harm the CNI.

Agents trained using DRL methods, for example, promise true resilience. However, unlike
intrinsically interpretable DRL models [PV20b], no guarantees can yet be given for the learned
black-box models. For operators of CNIs this is a necessity, since especially in such critical
or very critical areas as CNI no responsibility can be taken for an unknown and unverifiable
control system.

In particular, the risk that the DRL models themselves become unknown unknowns must
be minimized so that their learned behavior can have harmful effects only with sufficient
probability. The unknown behavior of an ARL agent is known, its model parameterization
should be attempted to be accurately analyzed so that the behavior can be understood and
appropriate countermeasures can be taken. However, there may also be an unknown behavior
of an agent that is not known. According to [RB14], an unknown event raises the question
of whether or not it could have been predicted. The question is whether a possible analysis
before the occurrence of an event would have predicted or uncovered a previously unknown

8 Introduction

behavior that could then have been further analyzed to possibly still take countermeasures.
When an unknown event cannot be predicted and has catastrophic consequences, it is also
referred to as a Black Swan. In such a case, one should not be deceived in advance by false
predictions [Inv22], because such events are unknown and can therefore potentially always
occur.

Even a robust system cannot withstand black swans because they are not predictable a
priori. Therefore, a resilience approach is used that can dynamically adapt to the environment
and thus respond to long-term unpredictable events and specifically repair the system after a
failure.

To ensure that a DRL model does not unpredictably lead itself to unknown agent behavior,
it must be analyzed and explained in such a way that the learned behavior is predictable
enough to minimize risk due to such a potential hazard factor.

If agents with learned black-box models are to be used in CNI, it is necessary to provide
guarantees for them, as they have the potential to significantly compromise the security of the
overall system. Without guaranteed behavior of agents, operators cannot take responsibility
for such an unknown and unverifiable control system. In [Vei23],, an architecture is presented
that is intended to provide such guarantees and is suitable for use in CNI such as the power
grid.

2.2.1 Transparency of agents’ learned strategies

Agents operating in complex environments, such as complex networked systems, potentially
face many different situations and learn complex behaviors to cope with them according to
their goals. To understand how agents achieve their goals, the effects of their strategies are
studied in terms of rewards or effects on the environment. One such example can be found in
[VWU23], where ARL agents are deployed to cause voltage band violations in a power grid.
They achieve this goal by exploiting a vulnerability in the deployment of voltage regulators in
the network used. How the actual attack works is analyzed by examining the impact of the
attacker’s actions on the victim buses. This is sufficient for commonly observed behaviors, but
it is not deeply interpreted and there is no guarantee that the extracted strategy explained by
the investigations will be used for all situations, i.e., for all observations from the environment.
This is especially important when dealing with control agents that are expected to achieve a
goal in all possible situations, e.g., defender agents, for which there is the even greater problem
of coping with an infinite horizon in the explanation.

This results in the need to make agents’ learned strategies transparent, i.e., to accurately
describe their behavioral model by a more comprehensible model. This leads to the trade-off
of wanting to construct powerful learning systems, i.e., relying on DRL, on the one hand,
but also being able to explain them afterwards by more comprehensible models such as DTs
[LV23a].

2.3 Research question and hypothesis 9

2.3 Research question and hypothesis

This leads to the following research question:

How to increase the explainability of the models used, and thus of the FF-DNN policies
trained with DRL methods in the ARL approach, to minimize the likelihood of potentially
catastrophic failures occurring, i.e. minimize the risk that ARL agent behavior will lead
to harmful effects in cases where it would otherwise be unknown, to increase confidence
in future DRL-based automatic control systems for the operation of CPS networks and,
in particular, the power grid?

The author hypothesizes that the explainability of an ARL agent model can be increased by
methods that simplify the learned input-output mapping with the parameters of the model
within its architecture to better understand how an ARL agent obtains an action as an output
for observation as an input. In doing so, it is important to use the exact input-output mapping
of the DNN model used to later accurately validate whether the agent has learned strategies
with harmful effects in subsets of input-output mappings that rarely occur and would not
be known without such a method. Approximation methods cannot accurately validate this.
Excluding harmful effects in agents’ learned strategies minimizes the likelihood of potentially
catastrophic errors caused by the agents’ purely internal control mechanism.

2.4 Outline

The thesis is structured as follows: First, relevant basics of the power grid, Machine Learning
(ML), Deep Learning (DL), RL, DRL, eXplainable Reinforcement Learning (XRL), and
Satisfiability Modulo Theories (SMT) are presented. Section 5.1 provides requirements based
on Section 2.2. The XRL methods presented in the overview in Section 3.6 and in detail in
Section 4.1 are analyzed in Section 5.2 to determine whether they meet the requirements, and
the research gap is identified. Based on these and other not-quite-fitting-but-still-supporting
methods from related work in Chapter 4, contributions to fill the research gap are explained in
Section 5.3. In addition, the developed method, the NN2EQCDT algorithm, is conceptually
presented in Chapter 6. In Chapter 7, a power system scenario is described that is used for
the application and thus the evaluation of the NN2EQCDT algorithm in Chapter 8. Finally,
Chapter 9 concludes the thesis and describes possible future work for further improvements.

10 Introduction

11

3 Basics

3.1 Power grid

3.1.1 Criticality of electrical energy

Electrical energy is the highest form of energy. It can be converted into other forms of usable
energy with minimal losses. Since it can be used flexibly to drive motors, it can replace human
actions. Therefore, the high availability of electrical energy is critical to our modern standard
of living. The damage caused when electrical energy is unavailable is very high. In the event
of a power outage, lights go out, the heating stops working, data on computers can be lost,
elevators come to a standstill, traffic lights no longer regulate traffic, stores close because cash
registers stop working, banking services are no longer available, gas stations stop dispensing
gasoline because pumps stop working. In the event of a medium-length outage, food can spoil
in the refrigerator, which is a problem in the long run because bakeries and butchers can
no longer produce new food either. However, even greater economic damage is caused by
interruptions in production, e.g. in automobile or chip manufacturing [Sch12].

3.1.2 Architecture

In steady state, the power grid consists of three main categories of components: Overhead
lines, underground cables, and transformers. This is modeled in the π-equivalent circuit
diagram, as shown in Figure 3.1. Overhead lines are used primarily in transmission networks,
while underground cables are used primarily in distribution networks in Germany.

0 0

Bij BijGij Gij

i
Rij Xij j

Figure 3.1: π-equivalent circuit diagram, from [Leh22] for modeling the operating equipment of
underground cables and overhead lines, cfg. also [GS94]

Ground cables are modeled as conductances Gij and susceptances Bij . They have strong
insulation from the environment to minimize leakage currents, resulting in small conductances.
Since underground cables consist of several closely spaced wires that act like capacitors, their
susceptance values are higher. In overhead lines, the wires are not insulated and have a high
wire diameter, so their resistances Rij are low. The wires are further apart compared to
underground lines, so their reactances Xij are lower.

All major power systems use Alternating Current (AC) instead of Direct Current (DC)
because it has some advantages. Most importantly, with the invention of the AC transformer,

12 Basics

electricity can be transmitted over long distances at high voltages. This is advantageous
because the power dissipation is proportional to the square of the current, i.e., Ploss ≈ RI2,
and the current can be reduced by using high voltages because P = UI. Thus when high
voltages are used, the power dissipation is reduced so that power can be transmitted efficiently
over long distances using AC.

In a power grid, there are different constant voltage levels, ranging from ultra-high voltage,
high voltage, medium voltage to low voltage, each serving a different purpose. They are
interconnected by transformers of different sizes that convert the different voltage levels into
each other. However, the frequency of the power grid is nominally 50 Hz everywhere in the
UTCE, the European power grid [Leh22].

All quantities such as voltage, current, and resistance are expressed as per unit of a base or
reference value. The unit value for all quantities is defined as the ratio of the quantity to its
base as a decimal number. Since both the percentage and unit value methods are simpler
and more meaningful than actual values, they are preferred. The unit value method also has
the advantage over the percentage value method of being closed in multiplication, so it is
preferred [GS94].

3.1.3 Network modeling

AC voltages and currents are described in the time domain by:

u(t) = ûsin(ωt+ ϕu) (3.1)

i(t) = îcos(ωt+ ϕi) . (3.2)

By integration over the power in the time domain, the effective power and the voltage can
be calculated with:

p(t) = û2

R
sin2(ωt) (3.3)

Peff = û2

2R (3.4)

Ueff = û√
2
. (3.5)

By extending into the frequency domain, the measures introduce phasors in the steady
state, which are used in another time-independent consideration:

u(t) = û(cos(ωt+ ϕu) + jsin(ωt+ ϕu)) = ûej(ωt+ϕu) = ûejϕuejωt = Uejωt . (3.6)

The complex power is then given by:

3.1 Power grid 13

S = UI∗ = ûîej(ϕu−ϕi) = ûîejϕ = Sejϕ . (3.7)

On the other hand, the apparent power S is composed of the active power P and the
reactive power Q:

S = |S| cos(ϕ) + j|S| sin(ϕ) = ûîcos(ϕ) + jûîsin(ϕ) = P + jQ . (3.8)

The various measures of resistance R = ρ(T)l
A as a function of temperature ρ, line length

l and cross-section A, reactance X, conductance G, and susceptance B have already been
mentioned above in the description of the π equivalent circuit in Section 3.1.2. They are
defined by the impendence Z and admittance Y of the complex phase conductors already
described:

U = ZI = (R+ jX)I (3.9)

I = Y U = (G+ jB)U . (3.10)

The admittance,

Y = R− jX
R2 +X2 , (3.11)

is used to construct a nodal admittance matrix, since it can be used to calculate the nodal
values:

Iik = Y ik(U i − Uk) . (3.12)

The details are omitted here.

The general power flow equation can then be derived as follows:

Si = U i

n∑
k=1

Y ∗ikU
∗
k . (3.13)

With static and equipment-specific admittances, measured nodal powers, information about
the nominal power of consumers or generators as PQ nodes or PU nodes, and estimated nodal
voltages as initial values, the actual nodal voltages and thus currents can be approximated with
mostly iterative algorithms that solve this nonlinear equation. Concrete solution algorithms
such as the Newton-Raphson method or the Gauss-Seidel method are not described further
here [Leh22; GS94].

14 Basics

3.1.4 Power quality

Since electrical energy is critical, as described in Section 3.1.1, various quality measures are
required to maintain its availability. An important condition for safe operation is the (n-1)
criterion in power system design and operation. It essentially conditions the network structure
in such a way that, in the event of a line failure, the load can be distributed immediately to
avoid permanent limit violations of operating voltages, voltage bands, and short circuits, as
well as equipment loads that could endanger the network. Supply interruptions, sequential
tripping by other protective devices that were not directly affected by a fault, loss of stability
of generating units and the possibility of changing or interrupting transmissions must also be
prevented with this criterion [Leh22].

3.1.5 Supply quality

Ideally, each node should have the specified nominal voltage, but this is not possible because
the voltage drops along the lines. This voltage decrease with symmetrical line characteristics
can be calculated with

Z = R+ jX (3.14)

Ii = Ij = I = IW − jIB (3.15)

∆U = ZI = (R+ jX)(IW − jIB) = IWR+ IBX + j(IWX − IBR) , (3.16)

which is described along the π-equivalent circuit diagram in Figure 3.1 [Leh22].

Therefore, a permissible voltage range is defined that still allows functional operation
[Sch12].

According to the description in [Mar04], DIN EN 50160 for Supply Voltage Characteristics
(SVC) for public distribution networks specifies the requirements for voltage parameters and
specifies their permissible deviation ranges at the common coupling points of customers in
public Low Voltage (LV) and Medium Voltage (MV) electrical distribution networks, under
normal operating conditions.

LV networks require that the phase-to-phase nominal RMS voltage does not exceed 1000 V
and MV networks require that it is in the range [1 kV, 35 kV]. However, at the current voltage
level, only small deviations and changes in voltage and frequency are allowed, as shown in
Figure 3.2, otherwise, the power system may become unstable and collapse [Leh22].

In LV and MV networks, the voltage level may deviate only 10 % from the nominal voltage
level for at least 95 % of the week. Thus, on average for 10 min, there may be other instabilities
such as dips in the supply voltage or short interruptions in the supply voltage, which are not
further described here [Mar04]. This general voltage range can also be represented in the unit
system as [0.9 p.u., 1.1 p.u.].

In addition to the voltage quality described, there are other criteria for general supply
quality such as frequency constancy, voltage drops, flicker, voltage symmetry [Sch12], etc.,
but these are not described further.

3.1 Power grid 15

Parameter
Supply voltage characteristics
according to EN 50160

Power frequency

LV, MV: mean value of fundamental
measured over 10 s
±1 % (49.5-50.5 Hz) for 99.5 % of week
−6 %/±4 % (47-52 Hz) for 100 % of week

Voltage magnitude
variations

LV, MV: ±10 % for 95 % of week,
mean 10 min rms value

Figure 3.2: Power frequency and voltage magnitude variations according to EN 50160, from
[Mar04]

3.1.6 System operators

There are two types of network operators: Transmission System Operators (TSOs) and
Distribution System Operators (DSOs). TSOs have the task of ensuring energy balancing in
their network in Europe. DSOs, on the other hand, are responsible for the optimal operation
of smart distribution grids. For example, they have to balance the reactive power in their
grids while respecting the permissible voltage bands. This must be considered together since
the voltage level depends directly on the active and reactive power contributions. The network
operators perform their tasks in this respect with the help of auxiliary services.

For example, TSOs use grid frequency control. It balances demanded and supplied power
by controlling generation or consumption units of different sizes to stabilize the grid frequency
at 50 Hz [Leh22].

DSOs use various Active Network Management (ANM) techniques to meet network con-
straints. Most involve active voltage regulation and active power flow management, but there
are also systems that use reactive power, such as coordinated voltage regulation, which uses
reactive power control from DERs [EGH16].

According to VDE-AR-N 4110:2017-02 [VDE17], SVC in the medium-voltage level, genera-
tors can be permanently connected to the grid if the agreed supply voltage and frequency in
steady state are in the orange range in Figure 3.3. However, if they are in the pink or blue
range, they must still be synchronized with the grid and respond to control commands for at
least the specified time, and only then may they disconnect from the grid for self-preservation.

In addition to static constraints on voltage and frequency values, VDE-AR-N 4110:2017-02
also imposes constraints on frequency and voltage gradients, as shown in Figure 3.4. According
to this, the voltage shall not change by more than 5 % of the agreed supply voltage Uc per
minute, unless the voltage range deviates by only ±10 %Uc. The frequency shall not change
by more than 0.5 % of the standard frequency fn per minute.

3.1.7 Power flow analysis

In the past, the calculation of power networks and lines in steady state was performed with
analog network models on analog computers. Nowadays, since the advent of digital computers,

16 Basics

47.5 48 48.5 49 49.5 50 50.5 51 51.5 52

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

t ≥ 60 s

t ≥ 60 s

t ≥ 30 min
t
≥
30 min

permanently

f [Hz]

Agreed supply voltage Uc[p.u.]

Figure 3.3: Requirements for the operation of generators in steady state according to VDE-AR-N
4110:2017-02, SVC at medium voltage level, by [VDE17]

Range Voltage gradient Frequency gradient

General < 5 % Uc
min < 0.5 % fn

min
[90 %Uc, 110 %Uc] > 5 % Uc

min

Figure 3.4: Frequency and voltage gradient constraints at steady state according to VDE-AR-N
4110:2017-02, SVC at medium voltage level, from [VDE17]

it is calculated with Power Flow Calculation (PFC), or analysis, as described in Section 3.1.3.
It enables optimal design in planning and optimal power flow in operation according to
economic and technical criteria [Sch12]. The solution of PFC can be performed with different
algorithms, as shown in Section 3.1.3 [Leh22].

3.1.8 Voltage control by reactive power control

The voltage can be controlled with reactive power injection. This ANM scheme is used with
PV because their reactive power injection can be controlled by setpoints.

Figure 3.5 shows a schematic representation of a radial network. Here Pj and Qj represent
the active and reactive power flowing downward from node j. P0 and Q0 represent the power
flow from the external network connected to a substation. pj and qj correspond to the power
outflow from bus j, where (c) is the superscript for the consumption and (g) is the superscript
for the generation.

3.1 Power grid 17

Figure 3.5: Diagram and notations for the radial network, from [Tur+11]

The LinDistFlow equations [BW89a] [BW89c] [BW89b] for the radial network, as shown in
Figure 3.5,

Pj+1 = Pj − p(c)
j+1 + p

(g)
j+1 (3.17)

Qj+1 = Qj − q(c)
j+1 + q

(g)
j+1 (3.18)

Vj+1 = Vj −
rjPj + xjQj

V0
, (3.19)

are used to regulate the voltage by controlling the reactive power injection of the inverter
PV.

The generated reactive power is limited by:

∀j :
∣∣∣∣q(g)
j

∣∣∣∣ ≤
√
s2
j − (p(g)

j)2 ≡ qmax
j (3.20)

where sj is the apparent power capability of the inverter, which in turn is limited by max p(g)
j

[Tur+11].

The reactive power capability is based on the active power and the size of a PV inverter.
PV inverters can be overrated by, for example, 10 % as shown in (b) of Figure 3.6.

Their maximum active power that can be injected into the grid is then limited, but they
can still inject reactive power according to their overrating as shown in (a) of Figure 3.6, even
when operating at full power generation [Liu+08; LB08] [KHM14].

According to the LinDistFlow equations, if the apparent power sj is greater than the

generated active power p
(g)
j , then an inverter at bus j can supply or consume reactive power

18 Basics

Figure 3.6: PV inverter capability curve for (maximum) reactive power injection as a function of
active power (a) and inverter size (b), from [KHM14]

q
(g)
j . This provides a mechanism for fast voltage regulation because it follows from the

LinDistFlow equations that the voltage at the next bus j + 1 is different from the voltage

given by q
(g)
j ∼ Qj ∼ −Vj+1 depending on the reactive power generated.

In Figure 3.7 a reactive power control function, also known as Volt/VAR, corresponding to
a simplified version from [Ele10], is presented [ZL16; APE21].

Figure 3.7: The proposed simple q
(g)
j control function from [Ele10] (dark red, piecewise linear

curve) and a very similar control function defined to improve the convergence properties of an AC
solver (not considered further) (blue, smooth curve) from [Tur+11]

Besides this, [ZL16] proposes a local voltage control based on limited reactive power injection
capacity. With α(t) := 1, ∀j : cj(t) := 0, µj(t) := 1 the equation (20),

qj(t+ 1) = [1− α(t)]qj(t) + α(t)Pj [(1− djcj)qj(t)− dj(Vj(t)− µj)] ∀j , (3.21)

3.2 Machine Learning 19

reduces to the simplified and vectorized version

qg(t+ 1) = [qg(t)−D(V (t)− 1)]+ , (3.22)

as used in [JL18] and [VWU23], where Pj [·], resp. [·]+ is a projection (at bus j) of invalid
values onto the interval [qj , qj], respectively [qg, qg], i.e., on the feasible range of setpoints for
q(t+ 1). The diagonal matrix D is composed of step sizes.

3.2 Machine Learning

ML refers to the problem of automatically learning optimal decisions. In this process, optimality
is supposed to increase with time. It can be divided into supervised, unsupervised, and RL. In
supervised learning, the assignment of inputs to outputs is optimized using a set of example
pairs. These problems include text or image classification, regression problems, and sentiment
analysis. Common to all supervised methods is that they learn responses from the ground
truth data provided as training data. In doing so, most methods assume that the data are
independent and identically distributed (iid) to learn their underlying characteristics.

In contrast, in unsupervised learning, there is no ground truth data against which a model
can be optimized. The idea is to learn the hidden structures of a given dataset itself. An
example of this is clustering a dataset by combining elements into separate groups of clusters
with certain relationships that all elements in a cluster have, but that distinguish clusters
from others.

RL differs from these two static learning paradigms because it addresses the problem of
automatic dynamic learning from prior state-action pairs of optimal decisions over time
[Lap20].

3.2.1 No-freee lunch theorem

Learning theory states that ML algorithms can train models to generalize well from finite
training data sets. However, in logic, inductive reasoning, i.e., deriving general rules from only
one part, is not allowed, but only using the entire set.

ML gets around this problem by not returning very specific rules as output, but rules that
are only likely to be correct for most members of sets.

But which algorithm has the least error or is the “most correct”, i.e. the best? Unfortunately,
there is no No-Free Lunch (NFL) in ML. This theorem states that every classification algorithm
has the same error rate when classifying test data, averaged over all possible data generation
distributions. This means that no ML algorithm is universally better than another, i.e., for
every problem [Wol96].

But which algorithm should then be chosen for predicting values? Fortunately, the NFL
theorem only holds when averaging over all possible data-generating distributions. Therefore,
ML algorithms can or must be developed with assumptions about distributions in certain
real-world applications to achieve good results [GBC16].

20 Basics

3.3 Deep Learning

DL uses computational models to learn representations of data. With multiple levels of
processing, they can learn multiple levels of abstraction.

Many ML problems become extremely difficult when the number of dimensions in the
data is high because the number of possible different configurations of variable sets increases
exponentially with the number of variables. This phenomenon is known as the curse of
dimensionality because additional dimensions, and thus usually more data points, do not
necessarily mean that a more accurate model can be trained because the number of possible
configurations is usually much larger than the number of training data [GBC16].

But DL methods can solve this problem better. It has successfully shown that it can discover
complicated structures in large datasets with high dimensions. Therefore, it is applicable in
many fields.

Traditional ML techniques, as described in Section 3.2, are limited in their ability to process
raw natural data. For each problem, engineers must manually adjust the model with significant
expertise. Nowadays, DL is mostly used instead, as it can be fed with raw data. It can
automatically discover representations needed for recognition or classification.

Models in DL consist of nonlinear modules that convert representations between layers into
higher-order representations. They can learn very complex functions. In this process, the
parameters of the layers are not designed manually by human engineers but are learned from
the provided training data using universal learning methods. These use the backpropagation
algorithm to compute gradients that are used to change the internal parameters of the model
layers according to the connections to the previous layers and the optimization algorithm. DL
not only has the advantage of requiring very little manual design but can also take advantage
of the increasing amount of computation and data available to create more accurate models
[LBH15].

3.3.1 Supervised learning

In supervised learning, the training data consists of input-output samples from which a
function is approximated by updating a model. Therefore, the error between the actual and
desired output values is calculated by an objective function. The goal is to reduce the error
for all predictions. For this purpose, the internal adjustable parameters, also called weights,
of the model are changed [LBH15].

3.3.2 Neural Network Models

The simplest form of a DNN is an FF-DNN or MultiLayer Perceptron (MLP). Its goal is to
approximate a function f∗ by learning the value of the parameters θ that best approximates
the function with y = f(x;θ). The network consists of several linear layers through which
the input data is propagated sequentially.

Such linear models are limited to the approximation of linear functions. To extend DNN to
represent nonlinear functions of the input, the input of a layer is generally preprocessed by a

3.3 Deep Learning 21

nonlinear transformation. This nonlinear transformation can be done in a variety of ways, but
in DL it is learned. Most DNNs use an affine transformation whose parameters are learned,
followed by a fixed nonlinear function, an activation function.

In the case of linear transformation z = W>x + b, the controllable parameters are the
weight matrix W and the bias vector b, which are learned. It becomes a hidden unit of DNN
by applying an element-wise nonlinear function to the output of the linear transformation
g(z).

These units are then stacked in layers, something like this:

h(1) = g(1)
(
W (1)>x+ b(1)

)
(3.23)

h(2) = g(2)
(
W (2)>h(1) + b(2)

)
. (3.24)

According to the Universal Approximation Theorem [HSW89], a linear output layer and at
least one hidden layer with an arbitrary activation function, can approximate any measurable
Borel function from a finite-dimensional space into another space. With a sufficient number
of hidden units, an FF-DNN is theoretically capable of approximating a function from data
with an arbitrary nonzero error amount. Any continuous function on a closed and bounded
subset of Rn is Borel-measurable. However, the concept of Borel-measurability is not further
described here, since this explanation is sufficient for a clear understanding.

Although FF-DNNs can represent features of provided data, there is no guarantee that
training algorithms will be able to learn them. To improve this DNNs can also use a variety of
other layers, components, and architectures, such as convolutional layers and residual layers,
skip connections, and dropout, but these are not described further [GBC16].

3.3.3 Activation functions

Activation functions are used to extend linear models to represent nonlinear functions in DNN,
as described in Section 3.3.2. These are fixed nonlinear functions that are usually applied
element-wise to the input matrices.

A popular choice for an activation function is to use Rectified Linear Unit (ReLU) defined
by [GBC16]:

ReLU(x) = max{0, x}

x , x ≥ 0
0 , x < 0

. (3.25)

In particular, their use has been observed to significantly improve the performance of object
recognition systems [Jar+09; NH10]. [GBB11] shows that rectifying neurons are also better
models of biological neurons than tanh and thus sigmoid neurons. The function ReLU has
hard nonlinearity and nondifferentiability at zero, which may initially be seen as a drawback,
though these turn out to produce sparse representations with real zeros that seem remarkably
suitable for approximating naturally sparse data. Other activation functions, such as the tanh
or sigmoid functions, are not described further here.

22 Basics

3.3.4 Optimization

With the extension of linear models by activation functions, as described in Section 3.3.2, the
loss functions of the then nonlinear DNNs become nonconvex. Therefore, DNNs are trained
with iterative gradient-based optimizers or convex optimization algorithms to reduce the error,
rather than direct solvers as used for linear equations. Convex optimization algorithms have
global convergence guarantees but in practice exhibit numerical instabilities [GBC16].

For the weight adjustment described in Section 3.3.1, gradients are calculated for each
weight. These indicate the amount by which the error would change if the weights were
changed by a tiny amount. Thus, the weights are adjusted in the direction opposite to the
gradients to minimize the error. The objective function can be thought of as a hilly landscape
in a high-dimensional space of weighting values. The negative gradient indicates the direction
of the steepest descent, so the update step brings the function closer to the minimum with a
lower average output error [LBH15].

3.3.4.1 Backpropagation

The backpropagation algorithm [RHW86], as mentioned in Section 3.3, is the basis of op-
timization algorithms for DNN. It computes the gradients of the weights according to the
specified loss function and the target labels, i.e., it iteratively computes derivatives to the
target labels [LBH15].

The analytical calculation of gradients is simple, but the numerical evaluations can be
computationally intensive. The backpropagation algorithm is simple and inexpensive for the
numerical evaluation of gradient calculations [GBC16].

As shown in Figure 3.8 on the right, the input must first be propagated forward through
the DNN model to compute the output values yl.

Figure 3.8: Backpropagation of DNN, the left side shows the forward pass and the right side
shows the backpropagation, from [LBH15]

3.4 Reinforcement Learning 23

These are then used to calculate the loss with the difference between the predicted and true
output, seen on the right side of the backpropagation. The difference, however, also represents
the final derivatives of the error from the predicted values. Taking advantage of the chain rule,

dz

dx
= dz

dy

dy

dx
, (3.26)

the gradients are then further computed iteratively for all weights corresponding to the
previous [LBH15; GBC16].

3.3.4.2 Optimization algorithms

For optimization of DNNs, algorithms such as Stochastic Gradient Descent (SGD) or Adam
[LBH15] are used in practice. The SGD optimization algorithm applied to non-convex loss
functions of DNNs as described in Section 3.3.4 has no convergence guarantee and is sensitive
to the initial parameter values [GBC16].

More concretely than in Section 3.3.4.1, the cost function with the sum over the training
examples can be written as a negative conditional log-likelihood:

J(θ) = Ex,y∼p̂dataL(x, y,θ) = 1
m

m∑
i=1
L(x(i), y(i),θ) . (3.27)

The update procedure of SGD is performed on small minibatches B = {x(1) . . .x(m′)}. It
uses the estimation of gradients,

g = 1
m′
∇θ

m′∑
i=1
L(x(i), y(i),θ) . (3.28)

previously computed using the backpropagation algorithm as described in Section 3.3.4.1.

The actual updating of the weights by SGD is then performed as follows, using the
hyperparameter ε as the learning rate:

θ ← θ − εg . (3.29)

Other optimization algorithms, such as Adam, or concepts like regularization are not
described further [GBC16].

3.4 Reinforcement Learning

RL addresses the problem of automatic dynamic learning of optimal decisions from prior
state-action pairs over time, as described in Section 3.2. It is inspired by the [Nob57] trial-
and-error paradigm of [Qin+22], which states that humans can learn without guidance from

24 Basics

others just by interacting with an environment. In doing so, they learn from their accumulated
experiences. This includes the aspects of causes and effects, results of actions, and how to
achieve a goal in an environment [Qin+22].

In RL, agents are formally deployed in an environment and attempt to achieve a goal, also
called an objective. They do this by observing the environment, or usually part of it, and
performing actions, as shown in Figure 3.9. There are two types of actions in an environment,
discrete and continuous, which are used depending on the use case.

Figure 3.9: RL Architecture [PV20b]

Agents assume that an action they perform will move them further from their state toward
their objective. How well an action moves an agent from its state to its objective is measurable
by a scalar-valued reward that the environment assigns to the agent. The environment assigns
such a reward value according to the action taken by an agent in its state and the agent’s
objective.

There are different reward systems. For example, the environment may reward the agent
regularly or often, at each interaction, or once (sparse rewards). A reward is intended to
reinforce an agent’s behavior because it is a measure of how well the current state-action
pair matches the objective. Thus, an agent seeks to achieve the largest cumulative reward,
analogous to the reward process of the brain’s dopamine neurons [Sta+16]. In this process, all
rewards are local, because the same action is potentially not always rewarded in the same way.
After all, the (agent in the) environment may change its state, leading to a different reward
for the same action. Therefore, observations are also necessary to infer the state of an agent
in the environment. The complete state of the agent (in the environment) cannot be specified
because it is usually either not possible to obtain all the information or the measurements
contain noise. Observations, i.e., measured parts of the environment based on the agent’s
previous action, should therefore inform the agent as best as possible about its state in the
environment [Lap20].

3.4 Reinforcement Learning 25

3.4.1 Complications

RL also depends on the iid property of the training data, as in supervised learning as described
in Section 3.2, since agents may otherwise receive incorrect impressions if, for example, there
are many data points in one region of the search space and other areas are not covered.

A second complication for agents is the tradeoff between exploration and exploitation.
Agents should, on the one hand, exploit, i.e., optimize, their already acquired knowledge, and,
on the other hand, actively explore the environment to potentially achieve fundamentally
better results. However, too much exploration can seriously degrade results, and agents may
also forget already acquired knowledge that potentially works well.

A third complication concerns the timing of rewards. When agents receive only highly
delayed rewards, as in the case of sparse rewards mentioned above in Section 3.4, they may
have more difficulty detecting causalities because influences on these rewards are only implicit
and aggregated [Lap20].

3.4.2 Markov family

A Markov Process (MP) requires a finite set of states and the Markov property of an observable
system that changes state only according to certain dynamical laws. The observations of the
system are a sequence of states forming a chain. The Markov property is given if the future
system dynamics of any state depend only on that state, that is, states are distinguishable
and unique to each other. The dynamics of MP are thereby modeled by probability-based
transitions between states.

By adding a scalar number as a reward for each transition and a discount factor γ (gamma),
the MP is extended to a Markov Reward Process (MRP). The rate of return at a time t can
be defined as:

Gt =
∞∑
k=0

γkRt+k+1 . (3.30)

More useful, however, is the value of a state, the expected return for that state. It describes
how the stay in a state or the average transitions to a state is and can be calculated by
averaging a large number of chains so that it is defined as follows:

V (s) = E[G|St = s] . (3.31)

When considering not only a passive agent that only observes a self-running system but an
agent that acts in a system, the MRP must be extended to a Markov Decision Process (MDP)
that contains actions that lie in the agent’s action space. The transitions are then not only
probability-based and the rewards do not only depend on the states, but both additionally
depend on the chosen actions of the agent.

26 Basics

In most cases, an agent observes only a part of its environment, since it is very complicated
or even impossible to obtain the complete state of the environment, as described in Section 3.4.
In such a case, the MDP is extended to a Partially-Observable Markov Decision Process
(POMDP).

The agent must somehow choose actions. This can be done, for example, with a strategy or
with a set of rules that control the agent’s behavior. The main goal of an agent in RL is to
get as much out of it as possible, so it is important to implement a good strategy. Formally, it
is defined as the probability distribution over actions for each state:

π(a|s) = P [At = a|St = s] . (3.32)

However, this definition only tells how the actions of a state are distributed, but not directly
how the actions should be selected. Therefore, different algorithms try to approximate a good
policy to maximize the return [Lap20].

3.4.3 Taxonomy

RL methods can be divided into different aspects:

• Model-free or model-based

• Value-based or policy-based

• On-policy or off-policy

If a method is model-free, it means that it does not explicitly model the environment
or reward, but simply builds a model from observations and actions. On the other hand,
model-based methods try to predict observations or rewards with a model.

Policy-based methods directly approximate a policy, which is a probability distribution over
the available actions. Value-based methods, on the other hand, compute the values of actions
and select the action with the best value at each step.

Off-policy methods can train with historical data because only action values are updated.
For this reason, very large experience buffers can be used for training to bring the data used
for training closer to the iid property. Training data for on-policy methods, on the other hand,
must always be sampled from the current policy because it depends on it and it is (in-)directly
updated.

Off-policy methods tend to converge slower because of training with a large data history.
On-policy methods cannot use historical data, but they tend to converge faster [Lap20].

3.4.4 Cross-Entropy method

The Cross-Entropy (CE) method is a simple policy-based method that has good convergence
for simple environments. Here, a nonlinear function, usually a DNN, generates the policy,

3.4 Reinforcement Learning 27

which is a probability distribution over actions for given observations. The actual action
chosen is determined by a random sample from such a generated probability distribution
returned as input for observations. The basic idea here is to train only on elite episodes whose
total rewards are above a threshold.

The method has the limitation that the episodes must be finite and preferably short, and
good episodes must be separable from bad ones within the samples, i.e., they must have
sufficient variability. In addition, there is no intermediate indication of whether the agent was
successful or not [Lap20].

The CE method can be used for estimation and optimization. In RL, it is used to optimize
the DNN. Here, the optimization problem is first converted into a rare event estimation
problem, and then the CE method is used as an adaptive algorithm to find local minima.

The importance sampling theorem,

Ex∼p(x)[H(x)] =
∫
x
p(x)H(x)dx =

∫
x
q(x)p(x)

q(x)H(x)dx = Ex∼q(x)

[
p(x)
q(x)H(x)

]
, (3.33)

is thereby used to estimate the entropy H(x) for a policy x sampled from the distribution
of all possible policies, i.e., x ∼ p(x). Random or brute-force search for all possible policies to
maximize reward is inefficient and therefore impractical. Instead, a good policy is iteratively
approximated by minimizing the distance between the probability distribution p(x) and the
optimal distribution p∗(x), according to the theorem, i.e., by approximating q(x) to p(x)H(x).

The distance between two probability distributions can be calculated with the Kullback-
Leibler (KL)-divergence:

KL(p1(x) ‖ p2(x)) = Ex∼p1(x) log p1(x)
p2(x) = Ex∼p1(x)

[
log p1(x)

]
− Ex∼p1(x)

[
log p2(x)

]
. (3.34)

Of these, only the second term, the negative log-likelihood (NLL), is relevant to optimization,
since it depends only on p2(x). Any loss function consisting of an NLL is a CE between the
empirical distribution through the training data set and the modeled probability distribution
[GBC16].

Combining the NLL with the theorem leads to an iterative algorithm,

qi+1(x) = argmin
qi+1(x)

−Ex∼qi(x)
p(x)
qi(x)H(x) log qi+1(x) , (3.35)

which starts with q0(x) = p(x) and improves through each step.

In the RL, this can be simplified by replacing the entropy H(x) with the indicator function.
The strategy update then looks like this [Lap20; Kro]:

πi+1(a|s) = argmin
πi+1

−Ez∼πi(a|s)
[
R(z) ≥ ψi

]
log πi+1(a|s) . (3.36)

28 Basics

3.4.5 Bellman equation of optimality

In Section 3.4.2 the value of states was introduced. In the deterministic case, all actions have
fixed rewards. The value of a state, knowing the values of subsequent states, can be calculated
by the maximum of the reward and discounted value of a subsequent state taken by an action:

V0 = max
a∈A

(ra + γVa) . (3.37)

For the stochastic case, where actions perform probability-based state transitions, the
calculation must be extended with the expected value for each action:

V0(a) = Es∼S
[
rs,a + γVs

]
=
∑
s∈S

pa,0→s(rs,a + γVs) . (3.38)

Combining these two relationships, the Bellman equation of optimality for a general case
can be derived as follows:

V0 = max
a∈A

Es∈S
[
rs,a + γVs

]
= max

a∈A

∑
s∈S

pa,0→s(rs,a + γVs) . (3.39)

This definition is recursive since the value of a state is defined over the values of the next
reachable states. The computation of this can be done by iteratively updating the values,
converging to the optima. The values describe not only the best reward but also the optimal
strategy since an agent with the values of the states knows how to obtain all these rewards
[Lap20].

3.4.6 Q-values

Since the agent wants to get the highest rewards, it must get to the states with the highest
values as efficiently as possible. It can do this by considering all the values from the nearest
reachable states in a state at a time and choosing the highest one. However, this computation
can be costly. Therefore, to simplify the agent’s decision of which action to take, state action
values are introduced as an adjunct to the values of the states, as described in Section 3.4.5.
These Q-values are defined by:

Q(s, a) = Es′∈S
[
r(s, a) + γV (s′)

]
=
∑
s′∈S

pa,s→s′(rs,a + γV (s′)) , (3.40)

thus:

V (s) = max
a∈A

Q(s, a) . (3.41)

3.5 Deep Reinforcement Learning 29

They can be iteratively caluclated by:

Q(s, a) = r(s, a) + γmax
a′∈A

Q(s′, a′) . (3.42)

Q-values are more convenient for the agent in decision-making than state values alone since
it can compute them directly and choose actions based on them. In the stochastic case, an
agent must instead estimate probabilities for transitions, since these are rarely known in
advance. The calculation of Q-values can be used algorithmically in the simplest form in
the value iteration method. This method uses tables for rewards, transitions, and values to
perform the update, which is not described further here [Lap20].

3.5 Deep Reinforcement Learning

The value iteration method, as mentioned in Section 3.4.6, needs to know all states in the
environment because it wants to compute values for all states. However, in more complex and
thus usually larger environments, there are too many states that are potentially not observed
in the agent’s exploration. Another problem is that the value iteration approach does not
support continuous action spaces because the value approximations assume that the actions
are mutually exclusive discrete sets. One solution to the problem of iterating over the entire
set of states is to use a blending technique that extends value iteration to Q-learning. The
Q-value updates are then performed as follows:

Q(s, a)← (1− α)Q(s, a) + α(r + γmax
a′∈A

Q(s′, a′)) . (3.43)

The specific algorithm is not further described here, as it is the basis for further methods
[Lap20].

3.5.1 Q-learning

In simple Q-learning, the problem of the unmanageable number of states that need to be
identified and their values approximated in larger environments remains. As a solution to this
problem, non-linear representations such as DNNs, as described in Section 3.3, can be used
that map both the state and the action to a value. The model is then called Deep Q Network
(DQN).

Tuples (s, a, r, s′), which are sampled by interacting with the environment, are used as
training data for this model. They are then fed into the approximating policy model
Q(s, a), which is optimized using SGD, as described in Section 3.3.4. Here, if the episode
is terminated, the loss function L = (Q(s, a) − r)2 is used, otherwise the loss function

L =
(
Q(s, a)−

(
r + γmaxa′∈AQs′,a′

))2
is used. If the tuples are chosen randomly, then the

agent only explores the strategy already learned but never exploits it, as described in the
dilemma or tradeoff between exploration and exploitation in Section 3.5.5. Therefore, the

30 Basics

epsilon-greedy method is used as a solution, which switches between using random and Q-value
strategies for interacting with the environment depending on the probability hyperparameter
ε.

For the SGD optimization algorithm, the data must be iid. However, since the sampled
tuples from the same episode are very close to each other they are not independent. They
are also not uniformly distributed over the optimal strategy, but over the current or random
strategy. To meet this requirement as best as possible, a replay buffer is used that always
stores only the most recent experiences. This increases the independence of the data, as there
are more episodes, but the training data is still recent enough.

Some extensions for DQN improve various things, but they are not covered here [Lap20].

3.5.2 Policy gradients

Q-learning, as described in Section 3.5.1, tries to choose a good action to take by indirectly
approximating the value of states and taking the action to the best state. In RL, the values
of states are not relevant, but the policy maps observations to actions. This can also be
learned directly with policy gradient methods. In contrast to the discrete action spaces of
the original DQN method, they can handle continuous action spaces. They also can map to
action distributions, from which concrete actions are sampled, to incorporate stochasticity
and smooth representations.

In Q-learning, as described in Section 3.5.1, an attempt is made to choose a good action
by indirectly approximating the value of the states and applying the action that leads to the
best next state. In RL, the values of the states are not relevant, but the strategy that maps
observations to actions is. This can also be learned directly with policy gradient methods.
Unlike the discrete action spaces of the original DQN method, they can handle continuous
action spaces. However, they can also be mapped to action distributions from which specific
actions are retrieved to account for stochasticity and smooth representations.

For this method, the political gradient is used, which is defined as follows:

∇J ≈ E
[
Q(s, a)∇ log π(a|s)

]
. (3.44)

It specifies the direction in which to improve the parameters of the network, as described in
Section 3.3.4.2 since the goal in it is to improve the strategy in terms of the cumulative total
reward, as described in Section 3.4.2. Since the scale of the gradient is proportional to Q(s, a),
the probability of actions with high total reward is increased and with low total reward is
decreased. It can be implemented with the loss function,

L = −Q(s, a) log π(a|s) . (3.45)

used for DNN policy optimization as described in Section 3.3.4.2, as in the vanilla policy
gradient, the REINFORCE algorithm.

3.5 Deep Reinforcement Learning 31

The policy gradient method extends the CE method as described in Section 3.4.4 by refining
the separation of episodes with arbitrary values for Q(s, a), since the CE method uses only
Q(s, a) = 1 for good episodes and Q(s, a) = 0 for bad episodes.

Policy gradient methods do not require explicit exploration, unlike Q-learning which uses
the epsilon-greedy method as described in Section 3.5.1. No replay buffer is used either, so
policy gradient methods belong to the class of on-policy methods. They, therefore, converge
faster but also require much more interaction with the environment and are therefore less
sampling efficient. In addition, no target network is needed as in DQN, since the Q-values
used are obtained directly from the interaction and are no longer approximated.

Policy gradient methods can only train on complete episodes. Long episodes thus exacerbate
the sampling efficiency problem. Therefore, the estimation of Q-values is performed as in
Q-learning. Since policy gradient methods do not have explicit state values, they are first
estimated by Actor-Critic-methods, from which the Q-values are then obtained.

Replay buffers cannot be used in policy gradient methods because the policy update is
based on the last interaction samples. However, replay buffers were introduced in Q-learning
to solve the problem of overly correlated samples. This problem is solved in policy gradient
methods by using transitions from multiple, parallel environments.

Replay buffers cannot be used in policy gradient methods because policy updating is based
on the last interaction samples. However, replay buffers were introduced in Q-learning to
solve the problem of overly correlated samples. This problem can be solved in policy gradient
methods by using transitions from multiple parallel environments. But the REINFORCE
algorithm still performs poorly in more complicated environments due to training instabilities
[Lap20].

3.5.3 Actor-critic

The stability of the vanilla policy gradient method can be improved by reducing the variance,

Var[x] = E[(x− E[x])2] , (3.46)

of the gradient. One approach is to subtract the mean total reward, called the baseline,
from the gradient scale, the Q-value.

Another approach to reducing variance is to make the baseline dependent on the state. For
this, the total reward can be represented as the value of a state V (s) plus the benefit of an
action A(s, a): Q(s, a) = V (s) +A(s, a). When V (s) is used as the baseline, the gradient is
simply the better advantage A(s, a). Since V (s) is unknown, it can also be approximated by a
DNN, the critic, in parallel with the policy network, the actor. The critic is only needed and
used in the training phase; for inference, on the other hand, the actor network alone maps
from observations to actions. This method is used in the A2C algorithm but is not described
further here.

For continuous action spaces, the policy network can directly output actions. For better
exploration, parameters can be returned for a probability distribution over the actions, from

32 Basics

which the actual actions can be sampled. In deterministic policy gradient methods, such as the
algorithm Deep Deterministic Policy Gradient (DDPG), the policy network, µ(s), converts
states to actions by directly deterministically mapping observations to actions. The critic
deterministically estimates the value Q(s, a) = Q(s, µ(s)) for states and actions. By applying
the chain rule as described in Section 3.3.4.1, the gradient for updating can then be derived
as follows:

∇aQ(s, a)∇θµµ(s) . (3.47)

The DDPG algorithm has the advantage over the Advantage Actor-Critic (A2C) algorithm
in that it can be optimized from end to end since the entire system is differentiable and can
train from a replay buffer [Lap20].

3.5.4 Taxonomy

DRL algorithms can be classified according to the general taxonomy rules of Section 3.4.3, as
shown in Figure 3.10.

Figure 3.10: Taxonomy of DRL algorithms, from [Ope23]

All algorithms described here are model-free, i.e. they do not predict the next observations.
Within this class, there are the classes of policy-based optimization and value-based Q-learning.
Policy optimization methods, such as the policy gradients and A2C described above, train
directly on the policy. Q-learning algorithms, such as. DQN, train outside the policy with
a replay buffer. DDPG combines these two classes by training on a policy- and value-based
network with a replay buffer [Ope23].

3.5 Deep Reinforcement Learning 33

3.5.5 Autocurriculum learning

In multi-agent intelligence research, there is a hypothesis that MAS can generate momentum
(intrinsic dynamics) through competition and cooperation. But MAS are not limited to this,
nor do they imply it. According to the hypothesis, it promotes innovation and is modeled after
evolution, where different entities also interact and adapt to each other. According to this
hypothesis, innovation occurs when parts of the system are pushed by others into unknown
search space regions where previously applied solutions no longer work, and therefore new
ones must be developed. As in evolution, challenges become more complex over time, forcing
actors to develop more and more innovations [Lei+19].

Challenges could be built in by adapting the environment, but this becomes quite compli-
cated over time as the complexity of the environment also increases. Thus, the underlying
environmental dynamics are dynamically changed by other agents. When an agent exploits
its policy, the environmental dynamics are changed by its actions and thus the observed
states of other agents. These other agents must then further explore this search space of the
environment in which all agents are located. They then learn with Exploration by Exploitation
by following the gradient of their experience, rather than the traditional Exploration vs.
Exploitation as described in Section 3.4.1.

In general, a sequence of such challenges is called a curriculum. If the challenges are generated
by the Exploration by Exploitation paradigm, they are referred to as an autocurriculum
because they arise naturally from the non-stationary dynamics of the agents’ social interaction
processes. There is then no need for manual environmental engineering, as the challenges are
generated by the system itself [Lei+19] [Bak+20].

3.5.6 Exogenous

Challenges can be divided into exogenous and endogenous challenges. An exogenous challenge
originates outside the adaptive unit under consideration. When an agent changes its strategy,
this leads to a change in the best response strategy of another agent. This other agent must
then adjust its best response strategy. All agents improve their strategies, which leads to
other agents having to adapt their strategies as well. This can lead to a long sequence of
novel challenges [DK79], which can challenge the capabilities of all agents in an exogenous
autocurriculum.

Challenges can be divided into exogenous and endogenous challenges. An exogenous
challenge originates outside the adaptive unit under consideration. When an agent changes
its strategy, this leads to a change in the response strategy of another agent. This other
agent must then adapt its best response strategy. As each agent improves its strategy, other
agents must also adjust their strategies accordingly. This can lead to a long sequence of novel
challenges [DK79] that challenge the capabilities of all agents in an exogenous autocurriculum.

This sequence of challenges may contain new challenges each time, but this is not guaranteed.
This is the case, e.g., when the dynamics of the environment are oscillating, resulting in
constantly recurring challenges. One idea to solve this problem is to continuously train an
adaptive entity to defeat previous versions of itself. In such a self-play, an adaptive unit

34 Basics

competes against itself, which leads it to learn to exploit its own mistakes. In this way, it
challenges itself to correct these mistakes the next time it is confronted with them [Lei+19].

While this sequence of challenges may contain new challenges each time, e.g., when the
dynamics of the environment oscillate, resulting in constantly recurring challenges, this is
not guaranteed. One idea to solve this problem is to continuously train an adaptive entity to
defeat previous versions of itself. In such a self-game, an adaptive entity competes against
itself, which leads to learning to exploit its flaws. When an agent is confronted with them
several times, it challenges itself to correct those mistakes.

In the self-play, catastrophic forgetting must also be prevented, as newer generations may
not be able to defeat older generations [Sam+13]. As a solution, an adaptive unit can play
in self-play not only against the newest and thus strongest policy but against a large and as
diverse set of older policies as possible to implement strategies against them as well. However,
there are also cases where a certain kind of forgetting is not always harmful, e.g., when old,
bad strategies are discarded later in training in favor of new, better variants [Lan+17].

3.5.7 Endogenous

At an atomic level of adaptive units, only exogenous challenges are possible. At higher
hierarchical levels, adaptation can also be driven by endogenous challenges that contribute to
the formation of collective integrity. In this case, competition between subunits of adaptive
components is largely suppressed. This creates tension between individual and collective
rationality [Rap74].

The suppression may break down. Then individuals take advantage of a shared resource
[Ost90], reducing the remaining available quantity at least somewhat. When the total amount
exceeds its share of the cost of continued exploitation, the resource is eventually taken. This
is called the tragedy of the commons [Har68] [Ost90]. Individuals cannot act unilaterally to
escape this fate, as their influence would be too small to make a difference. When faced with
challenges associated with a social dilemma, innovation at the individual level is not enough.
Therefore, the solution must be to change the behavior of a critical part of the participants
[Sch73], who act together to achieve a higher goal.

One way to do this is to incorporate the concept of an institution. This represents a system
of rules, norms, or beliefs, structuring adaptation processes at the individual level to ensure
that the group as a whole achieves a socially beneficial outcome in the form of innovation at
the collective level. An example of this is that a group can sanction over-exploitation through
individual strategies so that this strategy is no longer dominant [Hug+18; Lei+17; Per+17].
The maintenance of an institution itself also depends on the interactions among participants.
This can lead to a second-order social dilemma, also known as the second-order free rider
problem, since each individual would prefer that others bear a greater share of this burden
[Axe86; Hec89; Yam88].

Such dilemmas can be resolved by institutions formed at higher levels. These higher-order
institutions in turn create successor dilemmas at even higher levels [Ost00]. One could thereby
speak of such social dilemmas having an NFL property, as described in Section 3.2.1. Once
one social dilemma is solved in one place, another emerges in another place. This dynamic

3.6 Explainability in Deep Reinforcement Learning 35

can produce a series of endogenous challenges that steadily increase in scope and complexity,
forming an endogenous autocurriculum [Lei+19].

3.6 Explainability in Deep Reinforcement Learning

DNNs, as described in Section 3.3.2, represent black boxes because it is difficult to explain
each of their parameters, so the important features and internal handling are not directly
understandable. Therefore, conventional DRL methods also become black boxes [JVW20;
ZBM16] because they contain DNNs, as in Section 3.5, so experts cannot directly understand
how the agent understands the environment or why it chooses a particular action. This
intransparency therefore limits trust in DRL agents [Qin+22].

eXplainable Artificial Intelligence (XAI) aims to explain DNN models by providing details or
reasons to make their operation clear or easy to understand for a particular audience [Arr+20].
For example, they use feature relevance techniques. XRL is a subset of XAI intended for
general public applications. This calls for ethical, responsible, and trustworthy algorithms
for different audiences. Explainability is especially important in critical environments, where
agent behavior must be rigorously justified with precision.

In the literature, there is no officially agreed definition of XRL and thus meaning of
explainability and interpretability in this context, as there are different understandings of
these terms. Interpretability is understood, for example, as a person’s understanding of model
decisions or the degree of consistency in predicting model results. Explainability is seen, for
example, as a post-hoc property or a surface representation of interpretations. From this, one
could summarize that interpretability aims at the overall structure of a model at a higher
level, while explainability aims more concretely at the processing of a model. However, here it
is used synonymously [Qin+22].

3.6.1 Readability vs performance

In general, XAI has a tradeoff between model readability and performance. Tree-based
models are, for example, more readable, i.e., more transparent, than DNNs, as described in
Section 3.3.2, but their performance is worse. Not only performance but also explainability is
crucial for the use of a system. If a system is not trustworthy, especially in critical environments,
it will not be used. In the case of DRL, as described in Section 3.5, there may be concerns
about their correctness, or at least doubts that the black box system in question does not
always behave as it should to achieve a particular goal [PV20b].

3.6.2 Scope and time

There are different types of interpretability in terms of the scope and timing of information
acquisition. On a coarse level, models are either globally or locally interpretable and either
intrinsically or post-hoc interpretable. Here, scope refers to the explained domain of the model
in question and the time of information acquisition [PV20b].

36 Basics

In Figure 3.11, a taxonomy for mapping XAI methods to post-hoc and intrinsic (transparent
algorithms) method classes is shown.

Figure 3.11: Conceptual model of the explanation process in XAI, by [Hof+19]

3.6.2.1 Transparent algorithms

An intrinsic model is directly interpretable on its own, without the need for additional
processing at the time of its creation, as with a DT, linear regression, or rule-based system.
However, conventional DRL algorithms are inherently intransparent because the DNN models
used are black boxes [PV20b; HCD21].

Representation learning involves learning abstract features with low dimensionality. When
learned from states, actions, or policies, this method can be used to explain RL models. State
Representation Learning (SRL) [Les+18] aims, for example, to represent the state space. It
can help to understand which features are relevant to learn to act on. Other representation
learning methods include learning disaggregated representations, combining symbolic AI with
DRL, inductive logic programming with self-attention, and the subdivision of world state
representations into sub-states.

The standard DRL methods can also be optimized to learn policy and explanations si-
multaneously. These methods are recommended when external knowledge can be added to
them. One method is to decompose rewards into a sum of meaningful reward types. It aims
at explaining what kind of reward an agent wanted to maximize by an action. Explaining
reward differences allows for understanding why one action has an advantage, i.e., why it is
preferred over another. Models of action influence, such as structural causal models, learn
causal relationships and thus explain why actions in certain states are or are not preferred to
others.

Explanations can also be obtained by hierarchical goals. In hierarchical RL and sub-task
decomposition, the main goal of high-level agents is decomposed into sub-goals for low-level
agents, which in turn are used to perform high-level tasks. In this process, the representation
of high-level agents is more interpretable by humans [HCD21].

3.6.2.2 Post-hoc explainability

Post-hoc interpretable models are created only after learning, e.g., by transforming or distilling
a black-box DNN model into a reasonably interpretable model [PV20b; HCD21]. Examples
of post-hoc XAI methods for standard ML models include SHapley Additive exPlanations
(SHAP) [LL17] and the universal but only locally applicable LIME [RSG16].

When RL algorithms work with visual input, explanations can be obtained through saliency
maps. They highlight the salient elements, e.g., the regions with the most relevant information.

3.6 Explainability in Deep Reinforcement Learning 37

Agent behavior can be explained in a generic way using interaction data with the environment.
Key information or elements of interest can be extracted from the analysis of this data [HCD21].

3.6.3 Audience

XAI may include different goals, such as trustworthiness, causality, transferability, informa-
tiveness, fairness, confidence, accessibility, interactivity, and privacy awareness. The goals
may differ, and so may the expected nature of the explanation, because it depends on the
goal being pursued. Thus, the explanation depends on the target audience, as they may have
different goals. The comprehensibility of the explanation depends on the transparency of
the model for the explanation used, but also on the human interpretation of the explanation
[HCD21].

There are different classes of audiences, [Arr+20] according to [HCD21], such as experts,
users, developers, managers, and regulators. The experts, for example, have domain knowledge
and are model users. The pursued goal of explainability methods here is to increase the
trustworthiness of the model for the experts [HCD21].

3.6.4 Explanation evaluation

Evaluating the XAI method has proven to be a difficult task, as there is no single accepted
concept and definition, and thus no clear consensus on which metric to use for evaluation
[HCD21; Qin+22]. [DK17] proposes to use the categories of application, human, and function
for XAI evaluation methods.

The evaluation of XAI methods has proven to be a difficult task, as there is no single
accepted concept and definition, and thus no clear consensus on which metric to use for
evaluation [HCD21; Qin+22]. According to [HCD21; Qin+22], the evaluation methods of XAI
should be categorized as application, human, and function for evaluation methods of XAI.

XAI evaluation is complicated by audience dependence, as described in Section 3.6.3.
Explanations are therefore qualitative and subjective, as well as subject to human variability.
These problems are addressed by attempting to reconstruct the audience’s mental model by
conducting interviews with quantitative metrics such as accuracy and clarity of explanations
to test the recipient’s understanding. In [Hof+19], an evaluation method for such mental
models is thereby proposed. In this context, mental models are interpretations of internal
representations, i.e., mechanisms of the real world based on experience, which can be mentally
simulated. In Figure 3.12, the XAI explanation process is presented for this purpose, focusing
on the audience.

Initially, a user may feel that a model under consideration is not trustworthy. Explanations
are then provided by XAI methods that build a mental model. Further explanations can refine
the user’s mental model, which should lead to better performance, reasonable confidence, and
reliability [HCD21].

In addition to the evaluation of the mental model, there are also evaluations of the user-
oriented properties, both of which belong to the subjective evaluations. Complementary to

38 Basics

Figure 3.12: Conceptual model of the explanation process in XAI, by [Hof+19]

these, there are also objective evaluations, such as model performance, explanatory accuracy,
and sensitivity and robustness, but these are not described further here [Qin+22].

3.7 Satisfiability Modulo Theories

CPSs are found in various application areas, such as software and hardware verification, type
inference, static program analysis, test case generation, scheduling, and planning and graph
problems where logical formulas are used to describe states and transformations between
them.

The decision problem of whether a formula formed with logical connectives over Boolean
variables can be satisfied by choosing true or false values for its variables is called the
propositional SATisfiability (SAT) problem, which is a well-known Constraint-satisfaction
problem (CSP). When these problems involve richer languages, such as arithmetic, supporting
theories are required to capture the meaning of the formulas. Solvers for combining SAT
problems and supporting theories are called SMT solvers, such a solver is, for example, Z3
[DB08].

SMT solvers use the SMT-LIB exchange format for benchmarks. They have been used
in the context of program verification and advanced static verification, where verification
focuses on assertion checking, interactive theorem proving, scheduling, planning, and software
development.

In job scheduling, the decision problem is which of the jobs specified with the start time
(ti,j) should be executed one after another, where two jobs requiring the same machine cannot
be executed simultaneously, but the duration of each job di,j must not be greater than the
specified maximum total time max. In addition, the tasks must not be interrupted and the

3.7 Satisfiability Modulo Theories 39

start time of the first task of each task must be greater than or equal to zero. These conditions
can be encoded using the following SMT formulas, but they are not explained further here:

ti,j+1 ≥ ti,j + di,j (3.48)

(ti,j ≥ ti′,j + di′,j)︸ ︷︷ ︸
atomic formula, also literal

∨ (ti′,j ≥ ti,j + di,j)

︸ ︷︷ ︸
conjunction of literals

(3.49)

ti,1 ≥ 0 (3.50)

ti,m + di,m ≤ max (3.51)

. (3.52)

SMT-solvers decide the satisfiability of conjunctions of literals in the theory solution. A
literal here is an atomic formula or its negation. These solvers handle subformulas as described
in Eq. (3.49) by performing a case analysis with mostly efficient satisfiability methods for
proportional logic, i.e., SAT problem solvers [DB11].

3.7.1 SAT problem solving

SAT problem solvers decide propositional logic, which is a special case of predicate logic. Such
formulas, as shown in Eq. (3.49), are formed from Boolean variables and composed of logical
connectives. Deciding SAT problems is NP-complete [Coo23], i.e., in general theoretically
computationally intractable, but practically efficiently solvable by a systematic search approach.
In this approach, the search space is modeled as a tree containing the variables and the choices.

SAT solvers are usually based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[DLL62] for this purpose. It restricts formulas to Conjunctive Normal Form (CNF), which
may only contain conjunctions of clauses with disjunctions of literals. An example of a formula
in this case is ¬p ∧ (p ∨ q). The algorithm efficiently searches the tree for configurations that
satisfy the formula from which the tree was formed, using various techniques. If it can be
deduced that no such configuration exists, the formula is not satisfiable [DB11].

3.7.2 Difference arithmetic solving

By combining an SAT solver, as described in Section 3.7.1, with a theory solver for difference
arithmetic, the work scheduling decision problem described in Section 3.7 can be solved.
Difference arithmetic is a subset of linear arithmetic in which the predicates are restricted to
the form t−s ≤ c with variables t, s and numerical constants c. Atoms, such as ti,j+1 ≤ ti,j+di,j
with fixed di,j from Eq. (3.48), can be put into this form with ti,j − ti,j+1 ≤ −di,j . For atoms
such as s ≤ c and s ≥ c, a special new variable, the null variable, z is introduced so that they
satisfy the required form by s− z ≤ c and z − s ≤ −c.

The formulas in this required form are used to form a weighted graph with nodes s, t and
edges from s to t with weights c, i.e., s

c−→ t. The satisfiability of the set of difference arithmetic
atoms can then be efficiently checked by searching the graph for cycles with the negative sum

40 Basics

of the weights of its transitions. As an example, consider the difference arithmetic formulas
on the left side of Figure 3.13, which belong to a set of work scheduling formulas. From them,
the graph on the right side of Figure 3.13 was created.

z − t1,1 ≤ 0
z − t2,1 ≤ 0
z − t3,1 ≤ 0
t3,2 − z ≤ 5

t3,1 − t3,2 ≤ −2
t2,1 − t3,1 ≤ −3
t1,1 − t2,1 ≤ −2

t2,1

t1,1

t3,1t3,2

z

−2

−3

−2
5

0

0

0

Figure 3.13: Example formulas and graph for difference arithmetic, from [DB11]

Since the graph contains a cycle (dashed) with a negative sum of weights of−2−3−2+5 = −2,
the formulas are satisfiable. Thus, the following valid schedule can be derived for the example
formulas: t1,1 → t2,1 → t3,1 → t3,2 [DB11].

3.7.3 Combination of SAT and difference arithmetic solving

The SAT and difference arithmetic solvers of Section 3.7.1 and Section 3.7.2 can be combined,
as mentioned earlier in Section 3.7.2. This is done by mapping the atoms of a SMT formula to
free Boolean variables so that the new abstract formula can be processed by a SAT solver. If
the SAT solver determines that the abstract formula is not satisfiable, then the SMT formula
is also not satisfiable.

On the other hand, if it finds a configuration for the variables of the formula such that it is
satisfiable, the difference arithmetic solver checks the set of literals found that are implied
by the configuration of the variables. For example, p1 → false, p2 → true is a model for the
formula ¬p1 ∧ (p1 ∨ p2) that induces the set of literals {¬(a ≥ 3), a ≥ 5}. These two literals
are not satisfiable together in the theory of arithmetic because there is no a for which both
literals hold. This implies that the negation of the abstract formula, p1 ∨ ¬p2, must be true.
The original formula is then checked again in conjunction with this formula by the solver SAT,
finding that the formula as a whole is not satisfiable. This can be repeated in a loop, but the
process always converges since the set of atoms is finite, and thus only a finite number of
theory lemmas are generated [DB11].

41

4 Related Work

4.1 More fine-grained XRL taxonomy

When considering the categories of readability vs. performance, as described in Section 3.6.1,
and in particular scope and time, as described in Section 3.6.2, further categories can be
derived. Qing et al. [Qin+22] therefore present a new proposal for a taxonomy of XRL methods,
as shown in Figure 4.1, based on the categories of model, reward, state, and task explanation,
as shown in Figure 4.2. It is also discussed how human knowledge can be integrated for
improvements.

From the categories of readability vs. performance, as described in Section 3.6.1, and in
particular scope and time, as described in Section 3.6.2, additional categories can be derived.
For example, Qing et al. [Qin+22] present a proposal for a finer taxonomy of XRL methods, as
presented in Figure 4.1, based on the categories of model, reward, state, and task explanation,
as presented in Figure 4.2. It also discusses how human knowledge can be integrated for
improvements.

The categories are described as follows:

• Model explainability here means that models have comprehensible logical operations in
their internal structures that are trained by agents to be explainable.

• Explainability of rewards means that the reward function is reconstructed by an explainable
model, which should improve understanding of how an objective affects an agent.

• State explainability refers to quantifying the influence of state characteristics on decision-
making by adding attention-based submodules to the model.

• Task explainability aims to achieve an architectural level of explainability in complex
environments through multi-level agents.

Methods for explaining models are divided into self-explainable and explanation-generating
methods. The class of self-explainable models is related to inherently interpretable models
as described in Section 3.6.2.1 but also includes methods that represent the policy model
using self-explainable models. Explanation-generating models are not inherently explainable,
but use additional explicit explainability logic to automatically generate explanations during
training. This logic is learned from human understanding of tasks or ways of thinking to
understand new things [Qin+22].

In the following, an overview of the relevant subcategories of model-based methods is given.
The other categories of explainability of rewards, states, and tasks are not further described
here.

4.1.1 Explanation-generating model-based methods

Explanations can be generated by counterfacts, human explanations, instructions, queries,
or verification. Counterfactual explanations can help understand why an action or state was

42 Related Work

Figure 4.1: An overview of the [Qin+22] survey with presentation of the XRL taxonomy regarding
classification by the RL parts: Model, Reward, Condition, and Task. Representative works are

assigned to the categories.

4.1 More fine-grained XRL taxonomy 43

Figure 4.2: Abstract diagrams of the explanatory processes for the different XRL method
categories, from and by [Qin+22]

chosen by explaining why the counterfactual action or state was not chosen in the simulation.
Some methods generate explanations by learning the implicit explainability logic from human
explanations in natural language. In instruction-based behavioral explanation, agents can
learn instructions from human experts fed into an interactive RL, from which they can map the
action goal to understandable expressions. Humans build a mental model of an environment
by querying. This method can also be used in XRL by preprocessing human queries to find
related states. These are then used to build a natural language summary. Formal verification
techniques can also be used to explain agent models indirectly over the entire possible state
space through counterexamples when logical verification fails [Qin+22].

Explanations can be generated by counterfactual explanations, human explanations, instruc-
tions, queries, or verification. Counterfactual explanations can help understand why an action
or state was chosen by explaining why counterfactual actions or states were not chosen in the
simulation. Some methods that generate explanations by learning the implicit explanatory
logic from human explanations in natural language. Furthermore, there is instruction-based
behavior explanation, where agents learn instructions from human experts. In this case,
the instructions are fed into interactive RL that maps the action goal to understandable
expressions. Another method is based on the concept that humans build a mental model
of an environment through queries. In this, human queries are preprocessed to find related
states. These are then used to build a natural language summary. Finally, formal verification
techniques can also be used to indirectly explain agent models over the entire possible state
space using counterexamples when logical verifications fail [Qin+22].

4.1.2 Self-explainable policy-based methods

Self-explainable methods can be further divided into value-based and policy-based methods,
as shown in Figure 4.3, but only policy-based methods are described further.

Programmatic RL (PRL) represents the policy model of an agent using a program in the
form of Domain Specific Languages (DSLs) whose logical rules can provide global explainability.
Thereby, interpretable programmatic policies are generated in it by using program synthesis
[FCD15]. It reconstructs the policy using generalizations of input-output examples from
history, guaranteeing that it fits all patterns provided. Such methods can output source code
that can be verified using traditional symbolic program verification techniques [Kin76]. In
PRL, there are several methods for finding a programmatic policy with maximum reward by
updating an already synthesized programmatic policy or by imitation learning. The formula

44 Related Work

Figure 4.3: Self-explainable XRL methods by their class and model type with representative
methods, from [Qin+22].

expression can directly represent a policy model by a symbolic policy by fitting a dataset to
the symbolic state space.

Fuzzy controllers can represent the policy by fuzzy rules consisting of conditions and actions
learned from DRL models. As another method, logical rules are used to represent the policy
since they are much more understandable to humans. These are also trained with the history
of condition-action interaction data.

DTs are tractable models that allow formal verification of policy behavior [BPS18], so they
can be used to represent policy models. However, in classical RL, they find little application as
approximation functions because they are poorly regularized compared to DNNs [BC14], but
in XRL they are used for value- and policy-based methods. Here, training is used to generate
features that can be explained to humans to understand entire tasks. One possible method to
generate them is learning from a DNN-based policy model by imitation learning or distillation
by resampling. Another approach to extracting a policy as a DT from a DNN-based policy
model is to transform its rules.

The IBMDP method transforms DNN rules into a DT using an extended MDP as described
in Section 3.4.2, the Iterative Bounding MDP described by Topin et al. [Top+21]. This
allows the general CUSTARD procedure, applied as a modification of the standard DRL
techniques, together with the standard DRL training of policy models, to extract equivalent
DTPs of entire policy models. Here, a DTP is a DT that maps states to actions rather than
observations. The DT is extracted in this method from an IBMDP policy by fitting edge
observations from the environment [Qin+22].

4.2 DNN-DT equivalence description 45

4.2 DNN-DT equivalence description

In [NKA21], the EC-DT algorithm is presented that can transform FF-DNNs directly into
DTs. An overview of this algorithm is therefore described in Section 4.2.1. Such a direct
transformation algorithm is extended from Aytekin [Ayt22] to other DNN components, which
is described in more detail in Section 4.2.2.

4.2.1 EC-DT algorithm

The EC-DT algorithm [NKA21] consists of two sequential algorithms, one for tree generation
and one for rule extraction. The tree generation algorithm creates a binary DT from FF-DNN
by annotating nodes from the iteration of linear layer weights and biases, and branching from
and with activations. An example of the XOR function can be found in Figure 4.4.

Figure 4.4: An example of an XOR gate with binary inputs that can be represented by an DNN
and converted to an DT by the EC-DT algorithm, from [NKA21]

After the complete tree is generated, the algorithm can extract rules from the leaf nodes,
which are converted into constraints using the DT components of the weight and bias matrices
and the activations. A rule is a conjunction of activated constraints along a path. The
constraints of a node may need to be changed according to the activation along the path.
The following examples are not explicitly given in the paper, but are interpretations based on
the EC-DT example in Figure 4.4, for potentially better understanding. The node constraint
−X1 + X2 > 0 of the first node in the second row must be negated, i.e. converted to
−X1 +X2 ≤ 0, for the false branch. Thus, for the second path of the EC-DT, the complete
rule is X1 −X2 > 0 ∧ −X1 +X2 ≤ 0.

Rules may contain conflicting conditions, as described in Section 6.3, which invalidate the
rules. For example, the conditions of the first rule X1 −X2 > 0 and −X1 +X2 > 0 cannot
be satisfied together and thus contradict each other, so the rule consisting of them is invalid.
Invalid rules are subsequently eliminated to reduce the size of the rule set. The paper also
does not explicitly state how the rules are verified, but the conjunction of constraints can be

46 Related Work

checked for satisfiability using SMT solvers, as described in Section 3.7. Since this algorithm
itself is not directly used further, it is not described further or in detail.

4.2.2 Equivalence description

Unlike the EC-DT algorithm described in Section 4.2.1, the equivalence description describes
transformation rules from FF-DNNs to DTs [Ayt22]. Rules are given for transforming the
linear layer and ReLU activation function, but also for CNN, RNN, and normalization layers,
as well as for skip connection and continuous activation functions. Two algorithms are used to
generate FF-DNNs, one of which is used as a method in the other. Thus, this is a combined
algorithm instead of including two consecutive algorithms, as in the EC-DT algorithm.

These direct transform algorithms are formally derived from the definition of FF-DNNs. In
Eq. (4.1) they are therefore expressed in closed form.

NN(x0) = W>
n−1σ(W>

n−2σ(. . . W>
1 σ(W>

0 x0)))
xi =σ(W>

n−1σ(. . . W>
1 σ(W>

0 x0)))
(4.1)

Here Wi are the weight matrices of the i-th layer, σ is a piecewise activation function, and
x0 is the input to the FF-DNN. The activation function σ is applied element-wise, so can be
written as by element-wise scalar multiplication with the activation vector a:

W>
i σ(W>

i−1xi−1) = W>
i (ai−1 � (W>

i−1xi−1)) (4.2)

= (Wi � ai−1)>W>
i−1xi−1 . (4.3)

Here, the vector a gives the slopes of the activations in the linear regions where W>
i−1xi−1

falls. In Eq. (4.1), the element-wise multiplication of � is applied column-wise to ai−1. So a
is repeated k times to match the size of Wi, so a := [(a>)×k].

Substituting Eq. (4.3) into Eq. (4.1) yields:

NN(x0) = (Wn−1 � an−2)>(Wn−2 � an−3)> . . . (W1 � a0)>W>
0 x0 . (4.4)

Eq. (4.4) can be iteratively calculated from right to left, so that the output can always be
calculated by left multiplication (Wi � ai−1)> with the previously already calculated effective
weight matrix Ŵ>

i , so that:

ci−1Ŵ
>
i = (Wi � ai−1)> . . . (W1 � a0)>W>

i

ci−1Ŵ
>
i x0 = W>

i xi .
(4.5)

This can also be expressed as an algorithm for the activation function ReLU, as shown in
Algorithm 1.

4.2 DNN-DT equivalence description 47

Algorithm 1
Algorithm for computing effective weight matrices with left-handed linear transformation for
the ReLU activation function, from [Ayt22]

1: Ŵ = W0
2: for i = 0, . . . , n− 2 do
3: a = []
4: for j = 0, . . . ,mi − 1 do
5: if Ŵ>

ij x0 > 0 then
6: a. append(1)
7: else
8: a. append(0)
9: Ŵ = Ŵ (Wi+1 � a

10: return (Ŵ>x0)

In Eq. (4.5), the vector ci−1 is defined by the concatenation of all previous activation vectors,
so that ci−1 := a0 ‖ a1 ‖ . . .ai−1 holds. Since Ŵ>

i depends on the activations based on the
input, a different Ŵ>

i can be calculated for different inputs. Thus, a DT can be formed by
branching based on the input for different activation vectors to calculate the effective weight
matrices.

DTs can then be constructed with Algorithm 2, using the algorithm in Algorithm 1 as a
method therein. Since this is the algorithmic representation of Eq. (4.5), which is simply a
reformulation of the definition of FF-DNNs, a DT constructed using Algorithm 2 directly and
accurately represents an FF-DNN used as the basis for the construction.

Algorithm 2
Algorithm of transformation from FF-DNNs to DTs, from [Ayt22]

1: Initialize Tree: Set root.
2: Branch all leafs to k nodes, decision rule is first effective filter.
3: Branch all nodes to k more nodes, and repeat until all effective filters in a layer is covered.
4: Calculate effective matrix for each leaf via Eq. (4.5) Repeat 2,3.
5: Repeat 4 until all layers are covered.
6: return Tree

In a DT generated by Algorithm 2, an FF-DNN layer i is represented as a kmi-way
categorization, where mi is the number of filters in each layer and k is the total number of
linear regions in an activation. For the ReLU activation function, where a ∈ {0, 1}, it is
a binary tree with k = 2. The DT then has a depth of d =

∑n−2
i=0 mi and a total number

for the categories in the last branch of 2d. Thus, DTs grow exponentially by construction,
which is practically impossible to represent even for small FF-DNNs. However, the paper
notes that violating and redundant rules can occur in such generated FF-DNNs, which allows
lossless pruning. Another observation is that there may be categories (tree leaves) that are
not realized by training with the provided training dataset, so they may also be considered
invalid and thus pruned if data falls into them.

48 Related Work

An example of a DT transected starting from an FF-DNN is shown in (b) of Figure 4.6.
The FF-DNN learned to approximate y = x2 in the process.

Figure 4.5: Transformed DT based on an FF-DNN approximating y = x2, from [Ayt22]

In (a) of Figure 4.6, the cleaned DT based on Figure 4.5 is shown.

Figure 4.6: The cleaned DT for the original transformed DT in Figure 4.5 in (a) and the
representation of the approximated function y = x2 of the FF-DNN, from [Ayt22]

49

5 Requirements, Method Analysis and Contributions

5.1 Requirements

In the following, requirements for an appropriate XRL method are derived that address the
challenges described in the introduction in Section 2.2:

• (R1) The method MUST explain agent behavior in a way that experts can understand to
verify that the model does not contain harmful behavior.

– (R1.1) The method MUST directly explain the agent model, the policy model, as
described in Section 3.5.2, and NOT indirectly through other components of agent
inference, such as state, reward, or task, since such explanations target why or how
the agent works, but may not be appropriate to let the domain expert verify that the
agent does not exhibit harmful behavior.

• (R2) The method MUST explain the entire agent model (see (R1.1)), i.e., it MUST be
global, as described in Section 3.6.2, to remove uncertainty about unknown unknowns in
agent behavior.

– (R2.1) The method MUST explain the agent model exactly, i.e., it MUST NOT rely
on approximations of the agent model (see (R1.1)) since unknown unknowns cannot
be eliminated when using approximations.

• (R3) The method MUST provide explanations for the agent’s behavior at least post-hoc,
but MAY also explain it during training since a model for an agent in a critical environment
must be extensively tested and validated for harmless behavior before it can be used, as
described in Section 2.2.

• (R4) The method MUST explain the agent model in such a way that verification methods
can automatically apply it to verify the model itself, since a better explanation may require
constraints from the pre-analysis of the explanations by domain experts in verification that
they need to understand beforehand. Some explanations may also be too complicated, so
the experts may want to check the properties of these explanations.

• (R5) The method MUST NOT be based on a modification of existing standard DRL
methods OR be limited to a specific method, as it should be as universal as possible, to
be used as a standard XRL method for as many DRL methods as possible in the future,
to increase the knowledge and thus the confidence of domain experts in it. However, the
method MAY be restricted to some classes of DRL methods, e.g., policy-based methods,
otherwise (R1.1) could not be satisfied.

The requirements were created by analyzing the challenges in light of the fundamentals, so no
claim is made to complete accuracy or completeness. Some requirements contain assumptions
in their explanations. Whether these always apply in this form or whether others must be
added must be verified by further requirements analysis based on literature research. If one of
them does not apply, (partial) requirements can possibly be relaxed.

50 Requirements, Method Analysis and Contributions

5.2 Method analysis

In this section, the classes of XRL methods are analyzed against the taxonomies from
Section 3.6 and, in particular, the finer taxonomy from Section 4.1 against the requirements
defined in Section 5.1. No claim of completeness is made for this analysis, nor is a dedicated
literature review conducted.

As already stated in the assumptions of the requirements, only model-explaining methods
come into question for the fulfillment of the requirements, since only they can directly explain
the behavior of the agent. These are in turn divided into explanation-generating and self-
explaining methods, whereby explanation-generating methods, as described in Section 4.1.1,
usually only indirectly explain the agent’s model. Moreover, they are often local or approximate
further models and thus they do not satisfy the requirements (R1.1), (R2), and (R2.1). Only
verification methods can generate explanations over the entire possible state space. Thus, exact
statements can be made about whether assertions are true, e.g. whether certain sequences of
states do not occur. However, these methods can only verify properties such as safety and
liveness, but cannot explain how and why an agent behaves, causing (R1) not to be satisfied.

Since no method from the explanation-generating class satisfies all requirements, only the
policy-based methods of the self-explaining models described in Section 4.1.2 remain to be
analyzed, since the value-based methods do not satisfy (R1.1).

5.2.1 Self-explainable policy-based methods

PRLs methods seem to be promising because they can explain a policy model directly and
globally, are guaranteed by their design to fit all provided samples, and the programs are
understandable and allow verification, so they satisfy (R1), (R1.1), (R2), and (R4). They
can be used during training and post-hoc, so they also satisfy (R3). However, the generated
programs are generalizations and therefore may not represent exactly the same strategy
learned by the agent and therefore do not satisfy the requirement (R2.1). Instead of policy
models, the synthesized programs could be used for inference, but this could limit universality
because there could be specific DRL inferences with extensions that require default DRL
model policies, or at least are incompatible with programmatic policies. Thus, condition (R5)
might be missed, but this needs further investigation. The same is true for symbolic policies.

Both fuzzy controllers and logical rules use training to represent a strategy, which introduces
an approximation. Therefore, the requirement (R2.1) is not fulfilled.

The IBMDP method also appears to be promising, as it can generate understandable DTs
that are verifiable, thus satisfying (R1) and (R4). This method can also represent entire policy
models as DTs, thus satisfying (R2). It can be used during training to construct the DT, but
the final version of the trained policy model also corresponds to an extracted DT, allowing it
to be explained post-hoc as well, thus satisfying (R3).

Unfortunately, it does not explain the agent model directly with observation-action, but
indirectly with state-action relations, so it does not satisfy (R1.1). Also, it uses adaptations,
which allow all inputs and bounds to be explained exactly, but not explicitly uncovered areas,
as other models do, as described previously. Therefore, (R2.1) is not satisfied. Although

5.3 Contributions 51

the required modification of existing DRL methods is not model-specific, it may affect other
potential modifications, so the requirement (R5) is not met.

Since there is no method that meets all the requirements that have been raised, a new
method must be developed. For this purpose, the constraints are analyzed to fulfill all
requirements.

5.2.2 Analysis of representations

Representing models by programs or DTs are both commonly understood self-explanations
and allow formal verification, so they are appropriate choices because they satisfy (R1) and
(R4). They can also both explain the entire policy model post-hoc and thus satisfy (R2) and
(R3).

But neither of them explains the agent’s model directly or accurately and thus do not satisfy
(R1.1) or (R2.1) as described in Section 5.2.1. They also rely on modifications to the standard
methods of DRL, so they do not satisfy (R5).

5.3 Contributions

In Section 5.2, XRL methods are described that could potentially fit but do not because they
do not meet all the requirements of Section 5.1. Therefore, one idea is to use the equivalence
description as described in Section 4.2. The main contribution to this problem of explainability
of efficiently learned policies is that the presented approach of the NN2EQCDT algorithm,
as described in [LV23a], directly represents the entire input-output behavior understandably.
For this purpose, complete FF-DNNs are transformed into compressed DTs, as schematically
shown in Figure 5.1, to improve explainability, interpretability, and verifiability. With the
NN2EQCDT algorithm, all requirements are met as follows:

• The equivalence description of DNNs and DTs uses a left-sided linear transformation, but
it is not compatible with the widely used DL framework PyTorch, which uses a right-sided
linear transformation. Therefore, a conceptual algorithm for using a right-sided linear
transformation and bias for ReLU analogous to that of Aytekin [Ayt22] is derived to
directly use models learned with PyTorch.

• When using the equivalence transformation, the DT grows exponentially with branching.
This problem is solved by lossless compression for smaller but equivalent models, which
improves human interpretability.

• Dynamic compression significantly reduces the computation time and can also potentially
reduce the inference time of the DT.

• There may be constraints inherent in the system that affect the model but are not considered
in the transformation. Therefore, these are included as invariants in the satisfiability check
to further compress the DT.

52 Requirements, Method Analysis and Contributions

equivalent transformation−−−−−−−−−−−−−−−→

X0 −X1 > 0

−X0 +X1 > 0

Y = 0 Y = −X0 +X1

Y = X0 −X1

0

0 1

1

Figure 5.1: Schematic overview of the NN2EQCDT process. The DNN on the left represents the
agent’s actor model, which is learned by a standard DRL policy-based method that can be fully
transformed directly into an equivalent and compressed DT. This transformation can be performed
at any time step of the training or before simple inference. The DT thus provides exact traceability
of input-output relationships, allowing an expert to indirectly extract the exact strategies learned.

• An implementation1 is provided for transforming FF-DNN into equivalent compressed DTs
and generating visualizations from DTs.

• Finally, the NN2EQCDT was shown to be able to accurately and directly explain DRL
policy models by extracting one model from a benchmark problem and one from an ARL
attack agent in a power grid scenario, i.e., in the context of CNIs.

In addition to these contributions, the NN2EQCDT algorithm has innovations over the EC-
DT and the equivalence description algorithm, as described in Section 4.2.2. Rule validation
is explicitly integrated into this one, and a new dynamic rule satisfiability check has been
introduced to keep DTs small during generation and drastically reduce generation time.

The NN2EQCDT algorithm can convert entire policy models directly into DTs. Their
explainability to humans is thereby increased by compression so that (R1), (R1.1), and
(R2) are satisfied. Unlike the other methods, the NN2EQCDT algorithm does not extract
a representation but transforms policy models with their weights directly into DTs, so the
inference process is exactly the same as for the DNN models, so it also satisfies (R2.1). Domain
experts can interpret parts of a DT and formulate invariant constraints for further compression
and perform verifications so that (R4) is satisfied. The transformation of the NN2EQCDT
algorithm can also be applied to the policy model at any time, i.e., during training and post-
hoc, so that (R3) is satisfied. Finally, no changes are required to the standard policy-based
DRL methods, since the interface is directly the DNN policy model, so (R5) is also satisfied.

1 The implementation of the presented NN2EQCDT algorithm can be found at: https://gitlab.com/arl-e
xperiments/nn2eqcdt

https://gitlab.com/arl-experiments/nn2eqcdt
https://gitlab.com/arl-experiments/nn2eqcdt

53

6 The NN2EQCDT algorithm

The presented NN2EQCDT algorithm efficiently transforms learnable FF-DNNs into com-
pressed DTs to be able to explain them. For this purpose, in Section 6.1 it is shown how
a simple FF-DNN with ReLU activation function in the form of a PyTorch model can be
transformed into a DT using the effective weight matrices calculated with the NN2EQCDT
algorithm. As a basis for this, in Section 6.2 the representation with the right-handed linear
transformation is derived.

In the NN2EQCDT algorithm, the generation of a path starting from a node is dynamically
terminated, as described in Section 6.3, if its assertion, along with all assertions along the
path before it, is unsatisfiable. Also, further tree compression is described in Section 6.4.
After the detailed description of the NN2EQCDT algorithm, its integration into the ARL
framework is described in Section 6.5. Finally, the NN2EQCDT algorithm is further discussed
in addition to the contributions in Section 5.3, especially with its limitations.

6.1 Decision tree construction with the NN2EQCDT algorithm

FF-DNNs with the ReLU activation function can be equivalently transformed to compressed
DTs using the NN2EQCDT construction algorithm shown in Algorithm 3. It is strongly based
on the equivalence description of Aytekin [Ayt22], as described in Section 4.2.2. However, it
contains significant innovations, so it has already been published in [LV23a]. The algorithm
generates DTs by iterative computing and joining subtrees with effective layer-wise filters
from weight and bias matrices of FF-DNNs. It shows the access to the final effective filters
and the calculation of the activation vector from the paths of the subtrees, as well as the
conversion of the final rules into expressions and the compression of the whole tree. Here the
algorithm is described in general and how it can be used. The individual components are
explained in more detail in later sections.

The weight and bias matrices Wi and Bi from the FF-DNN are processed from the input to
the output layer. These are used to compute rules that are used to add subtrees to the entire
DT. In this way, a DT can be built dynamically while iterating the associated FF-DNN model.
Starting from the second layer, the multiplication of the weight and bias matrices must take
into account the position of the node to which the generated subtree is to be attached. This
is done by applying the slope vector a to the current weight matrices. It represents the node
position of the connection since it is the vector of decisions according to the ReLU activation
function along the path from the root to the connection node.

When adding a node of a newly created subtree to the whole tree, each path from the
root to the node in question is checked for satisfiability. If there can be no input, so that
their evaluation of the DT takes that path, the node in question and thus further subtrees
are discarded to keep the size of the DT minimal. Finally, the last checks are converted to
expressions, and the DT can be further compressed by removing unnecessary checks since
they are evaluated the same for all possible inputs.

54 The NN2EQCDT algorithm

Algorithm 3
NN2EQCDT algorithm for generating DTs by iterative computation with dynamic compression
and connecting subtrees with effective layer-wise filters from weight and bias matrices of
FF-DNNs. It shows the handling of accessing the final effective filters and computing the
activation vector from the paths of the subtrees, as well as converting the final rules into
expressions.

1: Ŵ = W0
2: B̂ = B>0
3: rules = calc rule terms(Ŵ , B̂)
4: T,new SAT leaves = create initial subtree(rules)
5: set hat on SAT nodes(T,new SAT leaves, Ŵ , B̂)
6: for i = 1, . . . , n− 1 do
7: SAT paths = get SAT paths(T)
8: for SAT path in SAT paths do
9: a = compute a along(SAT path)

10: SAT leave = SAT path[−1]
11: Ŵ , B̂ = get last hat of leave(T,SAT leave)
12: Ŵ = (Wi � [(a>)×k])Ŵ
13: B̂ = (Wi � [(a>)×k])B̂ +B>i
14: rules = calc rule terms(Ŵ , B̂)
15: new SAT leaves =

add subtree(T,SAT leave, rules, invariants)
16: set hat on SAT nodes(T,new SAT leaves,

Ŵ , B̂)
17: convert final rule to expr(T)
18: compress tree(T)

6.2 Derivation of the representation with right-handed linear transformation

DTs can be constructed from the effective weight matrices Ŵ computed by spanning and
joining subtrees through them. The algorithm for this is shown in Algorithm 4. It is first
motivated and then explained by its construction.

Based on the NN2EQCDT algorithm, the linear transformation is performed with a left-hand
multiplication of the weight matrix, as described in Section 4.2.2, but no implementation is
given. From the requirement (R5) described in Section 5.1, it can be inferred that an XRL
method must support standardized and widely used DL frameworks, such as PyTorch, in
which DRL algorithms are also implemented so that they do not have to be modified for the
transformation. Then existing models can also be efficiently reused in a quasi-standard format.
However, PyTorch uses a right-handed rather than left-handed multiplication of the weight
matrices [Fou23b] as follows:

Yl = W>
l X +B Yr = XW>

r +B

6.2 Derivation of the representation with right-handed linear transformation 55

To construct a DT from a Pytorch model consisting of linear layers with bias and applying
the activation function σ = ReLU between them, the layer-wise effective weight matrices
Ŵi must be computed using the right-handed linear transformation with bias, as described
in Eq. (6.1) based on [Ayt22]. Here, the activation function is performed by element-wise
multiplication of the activation slopes by the weight matrices. The activation vector a must
be transposed and repeated k times so that the multiplication is equal to the size of the
matrices to which it is applied. Thus, fully qualified, the expression [(a>)×k] is used, as in
the algorithms. In the following equations, however, it is written simply as a when repeated
analogously to [Ayt22], that is, a := [(a>)×k].

Ŵ>
i = σ(xi−1W

>
i−1 +Bi−1)W>

i +Bi

= σ((Wi−1x
>
i−1 +B>i−1)>)W>

i +Bi

= (ai−1 � (Wi−1x
>
i−1 +B>i−1)>)W>

i +Bi

= ((a>i−1 � (Wi−1x
>
i−1 +B>i−1))>)W>

i +Bi

= (Wi(a>i−1 � (Wi−1x
>
i−1 +B>i−1)))> +Bi

= ((W>
i � a>i−1)>(Wi−1x

>
i−1 +B>i−1))> +Bi

= ((Wi � ai−1)(Wi−1x
>
i−1 +B>i−1))> +Bi

= (((Wi � ai−1)(Wi−1x
>
i−1 +B>i−1)) +B>i)> (6.1)

The recursive form in Eq. (6.1) can be used to formulate a general closed equation as shown
in Eq. (6.2) based on [Ayt22]. It is equivalent to the right-handed linear transformation with
bias and ReLU activation function.

NN(x0) = (. . . ((W1 � a0)(W0x
>
0 +B>0) +B>1) . . .)>

= (. . . ((W1 � a0)W0︸ ︷︷ ︸
Ŵ1,a0

x>0 + (W1 � a0)B>0 +B>1︸ ︷︷ ︸
B̂1,a0

) . . .)> (6.2)

The corresponding algorithm for a simple FF-DNN with linear transformation, bias, and
ReLU activation function is shown in Algorithm 4. The subscript j of Ŵj ∈ R1×fs with
x0 ∈ Rbs×fs and a batch size of bs ≥ 1 and a feature size of fs ≥ 1 refers to the j-th row
of the current Ŵ ∈ Rk×fs, but the index i + 1 of Wi+1 refers to the weight matrix of the
i+ 1-th layer and not to a row. The same is true for the bias matrix. [(a>)×k] means that

the transposed vector a> ∈ Rmi×1 is repeated line by line k times.

Algorithm 4 is an innovation over Algorithm 1 in that it supports bias matrices and explicitly
specifies the dimensions of the matrices and the repetition of the a vector to make them easier
to understand. More importantly, however, the algorithm uses right-handed multiplication
as derived from Eq. (6.2) instead of left-handed multiplication as derived from Eq. (4.5) to
support the direct use of FF-DNN models in PyTorch format, thus satisfying requirement
(R5) described above.

To better understand the application of Algorithm 4, a simple example of converting the
XOR function into a DT is given in Figure 6.1. The XOR function is represented by the

56 The NN2EQCDT algorithm

Algorithm 4
Algorithm for computing effective weight matrices with right-handed linear transformation
and bias using ReLU activation function, based on [Ayt22]

1: Ŵ = W0
2: B̂ = B>0
3: for i = 0, . . . , n− 2 do
4: a = []
5: for j = 0, . . . ,mi − 1 do
6: if (Ŵjx

>
0 +B>j)> > 0 then

7: a. append(1)
8: else
9: a. append(0)

10: Wi+1 ∈ Rmi×k,a ∈ Zmi2
11: Ŵ = (Wi+1 � [(a>)×k])Ŵ
12: B̂ = (Wi+1 � [(a>)×k])B̂ +B>i+1
13: return (Ŵx>0 + B̂)>

following weight matrices of the linear layers without bias, as in the example for the EC-DT
algorithm described in Section 4.2.1. Inner identity weight matrices were added to later show
the linkage of the splitting points of the inner layers in the transformed DT. Therefore, the
forward operations are computed first to show that the input indeed maps the XOR function.

x0 =


0 0
0 1
1 0
1 1

 W0 =

 1 −1
−1 1

 W1 =

1 0
0 1

 W2 =

1 0
0 1

 W3 =
[
1 1

]

x1 = x0W
T
0 =


0 0
−1 1
1 −1
0 0

 x1,a = ReLU(x1) =


0 0
0 1
1 0
0 0

 = x2,a = x3,a = xi∈{1,2,3},a

x4 = xi∈{1,2,3},aW
>
0 =


0
1
1
0

 = x4,a = y

The weights without the identity matrices are used to calculate the following effective weight
matrices. These are then used to calculate the rules for the split points and to span the tree
according to the activation paths.

6.2 Derivation of the representation with right-handed linear transformation 57

X0 −X1 > 0

−X0 +X1 > 0

Y = 0 Y = −X0 +X1

−X0 +X1 > 0

Y = X0 −X1 UNSAT

0

0 1

1

0 1

Ŵ0 =
(

1 −1
−1 1

)X0 X1

a = [0 0]

Ŵ>
1,a =

[0
0
]

a = [0 1]

Ŵ>
1,a =

[
−1
1

]
a = [1 0]

Ŵ>
1,a =

[
1
−1

]
Figure 6.1: Simple example of a DT representing an XOR function constructed with Algorithm 4
without bias based on the XOR example for the EC-DT algorithm as described in Section 4.2.1.

Each coefficient of a row of Ŵi is linearly expanded and used as a split point rule with the
activation function ReLU. After a layer, only the Ŵi+1,a with the respective previous activations

a are used for branching.

Ŵ0 = W0 a0,x0,0 = ReLU(


[
1 −1

]
︸ ︷︷ ︸
Ŵ0,0=W0,0

·

0
0


︸︷︷︸
x0,0

[
−1 1

]
︸ ︷︷ ︸
Ŵ0,0=W0,1

·

0
0


︸︷︷︸
x0,0

) =
[
0 0

]
∈ R2×1

Ŵ3,x0,0 = (W3 � [(a0,x0,0)×1])Ŵ0 =
[
0 0

]
yx0,0 = (Ŵ3,x0,0x

>
0,0)> =

[
0 0

]
·

0
0

 = [0]

a0,x0,1 = ReLU(


[
1 −1

]
︸ ︷︷ ︸
Ŵ0,0=W0,0

·

0
1


︸︷︷︸
x0,1

[
−1 1

]
︸ ︷︷ ︸
Ŵ0,0=W0,1

·

0
1


︸︷︷︸
x0,1

) =
[
0 1

]
∈ R2×1

Ŵ3,x0,1 =
[
0 1

]
·

 1 −1
−1 1

 =
[
−1 1

]
yx0,1 = (Ŵ3x

>
0,1)> =

[
−1 1

]
·

0
1

 = [1]

a0,x0,2 =
[
1 0

]
a0,x0,3 =

[
0 0

]

Ŵ3,x0,2 =
[
1 −1

]
Ŵ3,x0,3 =

[
0 0

]
yx0,2 = [1] yx0,3 = [0]

Each coefficient of a row of Ŵi is linearly expanded and used as a split point rule with
the activation function ReLU. After a layer, only the Ŵi+1,a with the respective previous
activations a are used for branching.

58 The NN2EQCDT algorithm

In Algorithm 4, the next weight matrix is needed to calculate Ŵ . The same applies here
as well as in the following for the bias matrices. The iteration index can be equivalently
transformed from i + 1 to i by using iteration with for i = 1, . . . , n − 1 do. Thus, the last
effective weight matrix is needed to compute the current weight matrix and the next subtree
to be attached. This is used in the NN2EQCDT algorithm in Algorithm 3 to be able to use
the last effective weight matrices instead of the next. To access them in the current iteration,
they are stored in the iteration before by appending them to all SAT nodes of the subtrees
they span. In addition to the last effective and current weight matrix, the activation vector a
is also needed to calculate the new effective weight matrix.

In the concept Algorithm 4, it is computed by using the input to branch to different
activations. When converting the concept to an implementation with a dynamic design, as
conceptualized in Algorithm 3, the activation vector is required for each temporary SAT node
for which the next effective weight and bias matrices are computed and attached as a subtree.
Since the activation vector corresponds to the branches of a path, it is computed along this
path in the DT, as seen in Figure 6.1.

6.3 Dynamic path checking when adding subtrees

The algorithm in Algorithm 4 nevertheless generates potentially large DTs because it grows
exponentially, as described in Section 4.2.2. There may also be paths in the DT that cannot
be taken because an equivalence description need not make any statement about them. It
only cares about the exact same input-output relationship for each input point.

Such paths cannot be taken because split-point rules evaluate only one output for all possible
inputs. The input range of split-point rules of such nodes is reduced to a subrange with only
one branch because in the hierarchy of the DT split-point rules of nodes above such a node
already trap input points that would otherwise lead to a branch of this split-point rule. This
is consistent with the behavior of the inference of the DNN model. If an input region always
allows a parameter of a layer to be evaluated as negative, then it is mapped to zero by the
activation function ReLU, which, when multiplied by a parameter of the next linear layer,
gives the same output, zero, so that this layer can also branch in only one direction, as in the
transformed DT.

In a DT spanned by the algorithm in Algorithm 4, there may be regions that are invalid due
to conflicting categorizations. For example, the split point rule x > 0 and its inverse x ≤ 0
contradict each other, so they are not jointly satisfiable. When such jointly unsatisfiable split
point rules occur along a path in a tree, the path is invalid from that point on.

When a subtree is added to the whole DT, the joint satisfiability of all path rules is checked
to avoid unnecessary calculation of additional paths that cannot be satisfied. If a path is not
satisfiable from a particular node, there is no input where the evaluation of the DT follows
the path from that node. The path is then terminated with a UNSAT node, as exemplified in
Figure 6.1. Since the path cannot be traced further, further checks and associated nodes and
subtrees are not required. Consequently, node concatenation and subtree computation can
be terminated from this node. In this way, the DT is dynamically compressed in the design
phase, but is still equivalent to the input FF-DNN model, since only unreachable checks are
omitted.

6.4 Further tree compression 59

X0 −X1 > 0

−X0 +X1 > 0

Y = 0 Y = −X0 +X1

Y = X0 −X1

0

0 1

1

Figure 6.2: Simple example of a compressed DT using the DT example in Figure 6.1 by removing
the right check −X0 +X1 > 0, which evaluates to false for all inputs, since the root check

X0 −X1 > 0 evaluates to true in this branch.

In addition to path rules, other constraints, such as input ranges or output checks for input
ranges, can be used as invariants by expressing them as assertions. This allows the DT to
be further compressed while maintaining equivalence since further potentially unnecessary
nodes can be omitted due to the invariants. All related assertions, such as path assertions
and general input domain assertions, can be written in SMT format and are checked for
satisfiability together with the SMT solver Z3 as described in Section 3.7.

Since path generation can be dynamically stopped at certain nodes, entire subtrees may
not be calculated. This can compress DTs and increase the overall computation time while
maintaining an equivalent representation.

6.4 Further tree compression

In addition to pruning a DT as it is created, it can be further compressed by removing checks
in it that are evaluated the same for their entire direct input space and are therefore not
needed to distinguish inputs from one another.

When a DT is created while its paths are dynamically checked for satisfiability, it can have
UNSAT nodes as leaves, as seen in Figure 6.1. This example can be compressed, as seen in
Figure 6.2, by removing the right-hand check −X0 +X1 > 0, which evaluates to false for all
inputs, since the root check X0 −X1 > 0 evaluates to true in this branch.

In any case, the rule of a parent node to a UNSAT node is evaluated on the further path of
the non-UNSAT node, since the rules and their evaluations of the nodes preceding it in the
path reduce the input space to this evaluation region. Since there is otherwise no input to
evaluate, the rule checking of a parent node to a UNSAT node can be omitted. Therefore,
the entire parent node of a UNSAT node can be replaced by the non-UNSAT child node and
its associated subtree, as seen in an example in Figure 6.2, without the DT losing accuracy
compared to the FF-DNN. This operation is therefore consistent with the goal of equivalent
transformation of a FF-DNN into a DT. The process of compressing a UNSAT node is shown
in Figure 6.3.

Suppose a check
∑
bixi > 0 in a node always evaluates to false, e.g., to the left branch,

because evaluating to true, e.g., to the right branch, is unsatisfiable because all possible inputs
are already caught away, as described in Section 6.3. Therefore, the rule and hence the node
can be omitted. In this case, the left subtree with the check

∑
cixi > 0 in the root node is

60 The NN2EQCDT algorithm

. . .

∑
aixi > 0

. . .

∑
bixi > 0

∑
cixi > 0

.

UNSAT

d
. . .

∑
aixi > 0

. . .

∑
cixi > 0

.

d

Figure 6.3: Compression method within an SAT-checked DT by replacing a parent of a UNSAT
node with its non-UNSAT child node and a connected subtree.

connected to the node of the original check
∑
bixi > 0. In this case, this is the node connected

to the right path d from the node with the check
∑
aixi > 0.

6.5 ARL framework integration

This work will be part of the ARL framework. Its architecture is proposed in [Vei23], as shown
in Figure 6.4. It is not explained in detail here, but the embedding of this work and why it is
an integral part of the proposed architecture is described.

<<component>>
Rules-Policy Discriminator

<<component>>
Environment

<<component>>
Rules Repo

<<component>>
Adaptive Policy

<<component>>
Neuroevolution

<<component>>
XRL Rules Extractor

<<component>>
Rule Monitor

<<component>>
Rule-based Policy

User Input

Decision

Sensor Actuator

User Rules

Rule

Replay BufferParameters
Rules Query

Figure 6.4: ARL architecture [Vei23]

The concept of equivalent transformation of FF-DNNs to DTs can be used for or at least
in the XRL Rules Extractor. The idea of this component is to extract rules from the actor

6.5 ARL framework integration 61

model of the DRL policy. The policy is adaptive in that it is continuously trained and adjusts
its weights and biases accordingly. For such a scenario, the extraction could be performed
regularly. The extracted rules are stored in the Rules Repo component, as shown in Figure 6.5,
and used together with rules from user input in the Rules-based Policy component. In each
action step, both policies propose a Decision, but only one is selected. When the adaptive
policy proposal is chosen, its models are batch trained and therefore adapted.

The concept of equivalent transformation from FF-DNNs to DTs can be used for or at
least in XRL Rules Extractor. The idea of this component is to extract rules from the actor
model of the DRL policy. The policy is adaptive in the sense that it is continuously trained
and adjusts its weights and biases accordingly. In such a scenario, the extraction could be
performed at regular intervals. The extracted rules are stored in the Rules Repo component,
as shown in Figure 6.5, and used together with rules from user input in the Rules-based Policy
component. In each action step, both policies suggest a decision, but only one is selected.
When the adaptive policy is selected, its models are batch trained and thus adapted.

Figure 6.5: Activity diagram for training and self-explaining of an ARL agent, from [VL23]

The idea is that this loop of action decision, adaptive training, rule extraction, and static
rule selection should on the one hand stabilize the training, but on the other hand, also shield
the actual decision from safety endangering actions. Rule extraction is an integral part of this
loop. Without the extraction, the shielding could also work, but the static rules would not be
able to be updated, which could reduce the long-term performance of the rule set optimization,
since then only the Adaptive Policy is updated and potentially cannot be used in each step.

Shielding is especially important when the agent explores and adaptively updates its
DRL policy, otherwise, it might choose actions from harmful regions. The Rules-Policy
Discriminator component must then select the potentially harmless decision from the rules-
based policy. It decides based on the computed confidence and confidence level of the proposed
decisions. The confidence level is a value that describes how confident the particular policy is
about the proposed reward using an internal world model. The confidence level describes the
extent to which the estimated reward and confidence are consistent with the safety constraints.
This value contains more external information and is history-based.

62 The NN2EQCDT algorithm

In addition to the shielding loop, the extracted rules or directly the transformed DT of
the NN2EQCDT algorithm can be used to explain and validate the learned behavior of the
Adaptive Policy during continuous learning and can be transferred to the rule set only if a
human operator accepts them [VL23].

6.6 Discussion

Although the NN2EQCDT algorithm satisfies all the requirements described in Section 5.3,
this does not mean that other XRL methods are no longer needed. As described in Section 3.6,
they can focus on other things, such as other levels of explainability to other audiences. They
can also explain the agent’s behavior by answering questions such as why strategies were
chosen or why not, which might help people understand the agent’s thought process. Some
methods focus on other DRL components such as rewards, tasks, or states, as described in
Section 4.1.

In particular, the policy-based self-explainable methods and within them, the PRL and to
some extent the other DT methods, allow the extraction of generalizations in the form of
DSLs or DTs that are also verifiable. These can be better explained by people, especially
experts because they focus more on general, causal explanations. However, they may have the
disadvantage of not being exact explanations.

The NN2EQCDT algorithm also has some limitations in its current form. It can only
transform FF-DNNs with linear layers and ReLU-action functions into DTs. However, this
may be sufficient since, as described in Section 3.3.2, they can approximate any measurable
Borel function. They are also commonly used as DRL policy models.

Despite the compression, the resulting DT can still become very large, which reduces its
explainability to humans. While the NN2EQCDT algorithm explains the exact observation-
action relation and thus allows for exact traceability, it does not provide potentially more
human-understandable explanations about the actual strategies and why, or why not, and
how they were learned.

63

7 Evaluation Scenario

In this chapter a scenario is described, which is used for the later evaluation of the NN2EQCDT
algorithm to explain the learned strategy of a DRL policy. To demonstrate, how a behavior of
an agent, learned for an objective in a power grid setting, that is described in Section 7.1, can
be explained with the presented method, an experiment with a simple voltage attack agent in
a small power grid is conducted in Section 7.2. To incorporate the ARL idea of symbiosis
effects, autocurriculum learning was applied by additionally using a simple voltage defender
agent.

This chapter describes a scenario used for later evaluation of the NN2EQCDT algorithm to
explain the learned strategy of a DRL policy. To demonstrate how behavior of an agent can
be explained using the presented method, an experiment is conducted with a simple agent in
a small power grid in Section 7.2. Here, the agent has the one objective to destabilize the
voltage in a power grid environment described in Section 7.1. To incorporate the ARL idea of
symbiotic effects, autocurriculum learning was applied by additionally using a simple voltage
defender agent.

7.1 Power grid setting

The power grid used for the scenario under study is a simple line connected to an external
grid via a transformer. It is specified as a panda power grid, which is shown in Figure 7.1 and
can be found together with the MIDAS scenario [Wol+23], the runfile, and other configuration
files at [LV23b].

Figure 7.1: Simple network used with buses (blue dots) connected by only one (gray) line. The
yellow network structure at the top left represents the external network. The other symbols from
left to right: a transformer and two synthetic generators as well as two loads with different load

profiles.

The blue dots represent the buses connected by (gray) lines. The transformer is located
between the first two buses. It is a grid coupling transformer [Sch12, p.371] because it
connects with 63 MVA the voltage levels 100 kV and 20 kV from the external grid and the
simple, connected grid.

64 Evaluation Scenario

The next two buses further down the line each have a synthetic reactive power injector
connected as a generator. Finally, a hospital and a MediumOffice are connected to the last
two buses of the line as two loads. In Section 3.1.2, it is described how these components work
and are used in a power grid.

The loads are not static but dynamic, have different load profiles, and therefore consume
different amounts of electricity at different times. For the load profiles, real commercial data
from the project Open Energy Data Initiative (OEDI) [US 23] as of 01.05.2017 is used. The
aggregated load is visualized in Figure 7.2 for the profiles used.

Figure 7.2: Visualization of aggregated load profiles for hospitals and medium office buildings
[Bal23], this commercial data comes from the OEDI [US 23] project

The power system is loaded under the MIDAS scenario and the setpoints of the synthetic
reactive power injections are controlled by palaestrAI. The actual bus voltages are calculated
by pandapower using solvers for PFC as described in Section 3.1.3.

7.2 Simple voltage attacking scenario

A scenario for a voltage attack is set up in this power grid. For this purpose, two agents are
deployed. The main agent, the attacker, has the goal to destabilize the voltage level as much
as possible, i.e., to deviate the voltage level as much as possible from 1.0 p.u.. The other agent,
the defender, aims to keep the voltage level as close as possible to 1.0 p.u.. This learning
situation with two agents with such conflicting goals is an autocurriculum, as described in
Section 3.5.5. This scenario will be published in [VL23]. The following is taken from or relates
to that paper.

For the ARL use case, it was adapted to be more realistic. The agents do not receive the
actions directly from the other agents. The idea to fulfill the autocurriculum requirement is
that an agent learns the already learned and integrated strategies of the other agents indirectly
through observations at other measurement points.

A bell-shaped curve is used for both objectives, with a center of 1.0 p.u.: The defender’s
maximum reward was 1.0 p.u., while the attacker used the reverse curve, with maximum
reward at V < 0.8 p.u.) resp. V > 1.1 p.u., as shown in Figure 7.3.

7.3 Visual inspection of agents behavior 65

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
Voltage Magnitude [p.u.]

2

0

2

4

6

8

10
Re

wa
rd

 v
al

ue
 [1

]
Voltage band violation pendulum objective
Voltage band maintenance objective

Figure 7.3: Visualization of the objectives for maintaining the voltage bandand exceeding it in the
form of a pendulum with rewards plotted against voltage magnitudes

Consider the reward function

g(x =
∑|V |
i=1 Vi
|V |

, A, µ, C, σ) = A · exp
(
−(x− µ)2

2σ2 − C
)
, (7.1)

where V are voltages at the observed “victim buses” to which the dynamic loads are connected.
The parameters A, µ, C, and σ shape the curve, so that is defined as:

rewardattacker(x =
∑|V |
i=1 Vi
|V |

) =g(x,A = −12.0, µ = 1.0, C = −10.0, σ = −0.05)

+g(x,A = −12.0, µ = 0.83, C = 0.0, σ = 0.01)
+g(x,A = −12.0, µ = 1.16, C = 0.0, σ = 0.01) (7.2)

rewarddefender(x =
∑|V |
i=1 Vi
|V |

) = g(x,A = 10.0, µ = 1.0, C = 0.0, σ = 0.032) . (7.3)

Agents are trained using the DDPG reinforcement learning algorithm, as described in
Section 3.5.3. The optimization algorithm Adam, as described in Section 3.3.4.2, was used to
optimize the model with a learning rate of α = 1e−4, as described in Section 3.3.4.

7.3 Visual inspection of agents behavior

In Figure 7.4, the setpoints in MVar for the attacker agent are plotted for the time range
given above. It can be seen that the attacker agent trained with the DDPG algorithm first

66 Evaluation Scenario

uses high setpoints, which are capped at 1.5 MVar in the training phase, then explores and
finally tries to use low setpoints capped at −1.5 MVar on May 13. This low setpoint is always
used in the test phase as well.

Figure 7.4: Attacker setpoints in the training and test phases of the simple voltage attack
scenario, learned for a reactive power setpoint box of [−1.5 MVar, 1.5 MVar]. The blue line is for

the training phase, and the red line is for the testing phase (they overlap at the bottom).

In Figure 7.5, the setpoints are plotted in MVar for the attacker agent for the time range
specified above. The defender agent uses high setpoints that are pruned to 2 MVar during the
training and testing phase.

Figure 7.5: Defender setpoints in the train and test phase of the simple voltage attack scenario,
learned for a reactive power setpoint box of [−1.5 MVar, 1.5 MVar]. The blue line is for the train

and the red line is for the test phase (they overlap at the bottom).

The voltage magnitudes of buses 4 and 5 are shown in Figure 7.6 for the training and
test phases. One can visually see that the bus voltages are always in [0.92 p.u., 1.02 p.u.]
and mostly below 1 p.u.. It makes sense, then, that the defender agent has learned to set its
actuator setpoint as high as possible to inject as much reactive power into the network as
possible. The attacker agent, on the other hand, tries to consume as much reactive power as
possible to further lower the voltage level.

The noise and oscillatory behavior of the voltage level may come from the profiles of the
loads connected to buses 4 and 5, which are described in Section 7.1. These load profiles
were chosen because they are relatively contrarian. The intent for such a selection was that
it would help with learning oscillatory behavior from the attacker agent, but no load profile
combination could accomplish this.

7.4 Scenario adaption 67

Figure 7.6: Voltage magnitudes of buses 4 and 5 in p.u. of the example power system used are
colored in blue and red in the training phase and in green and purple in the test phase

The reward levels achieved by the attacker agent according to its voltage band pendulum
objective, as shown in Figure 7.3, are shown in Figure 7.7 for the scenario. Comparing this to
the voltage values of Figure 7.6, it can be seen that the reward changes are inverted voltage
value changes. In this case, the agents have little influence.

Figure 7.7: Objective values for the voltage attacker agent calculated by applying the stored
rewards to the voltage defender objective function. The light red line represents the objective

values and the dark red line represents the objective average over 100 values

7.4 Scenario adaption

The first idea was to use a standard benchmark power grid, like the Cigre MV grid [Tas14;
Fra23] to create a scenario instead of a simple line. Essentially, this involves two feeders
connected via an external network, as shown in Figure 7.8.

This effectively results in a single line of sensors and actuators, so the power network can be
simplified into one. This was done, as described in Section 7.2, to avoid unnecessary complexity
and bugs and because a custom pandapower network had to be used due to implementation
details.

7.5 Conclusion and Discussion

A scenario is described here that will be used for later evaluation of the NN2EQCDT algorithm.
It includes a description of the power system and its components and dynamics. The loads

68 Evaluation Scenario

Figure 7.8: Cigre MV power grid network for benchmarking purposes [Tas14; Fra23]

are dynamic, i.e., they depend on the simulation time. The attacker and defender agents
control the synthetic reactive power injection to manipulate the voltage level. They learn
based on voltage band violation pendulums and maintenance objectives, which are in an
autocurriculum. They have learned a fairly simple but successful strategy for each according
to their objectives.

The learned oscillating strategy, as shown in Figure 7.9 [VWU23; Vei+22], should be
reproduced to show that the presented method is also able to explain a more complex strategy.

However, such a more complex oscillatory strategy could not be replicated by learning
an agent. Why this is so needs further investigation. It is also important to consider the
limitations included, such as the small size of the DNN model, and the limitations described
in Section 6.6, such as the simple DNN architecture with only linear and ReLU layers.

One idea why this might not have worked is that the attacker and the defender always
act at the same time step, which means that they both always observe the applied actions
of the other agent as an influence on their observations. Thus, they cannot each observe

7.5 Conclusion and Discussion 69

Figure 7.9: Setpoints of the oscillating attacker as well as the obtained voltage magnitudes, from
[VWU23]. It should be noted that the diagram contains an intentional time gap between 00:50

and 03:15.

only the influence of their actions. The autocurriculum property could still be preserved if
a taking-turn strategy is used for the agents, i.e., the agents act sequentially rather than in
parallel, so that the influence of the action might be better learnable.

Another idea is that the agents are not faced with new challenges because they have already
learned simple but quite effective strategies. To let them explore more, a kind of self-play
strategy as described in Section 3.5.6 could be evaluated to be implemented in the agents of
the learning phase.

70 Evaluation Scenario

71

8 Evaluation

8.1 NN2EQCDT evaluation

In this section, the NN2EQCDT algorithm is evaluated using a simple benchmark scenario.
This has already been published in [LV23a].

8.1.1 Application of to simple model

A simple controller model was trained using the DDPG algorithm as described in Section 3.5.3,
trained for the objective of reaching the hill with a car in the MountainCarContinuous-v0
environment (MCC) [Moo90; Fou23a].

Originally, an actor model as described in Section 3.5.3 and shown in Listing 8.1 was trained
with a larger hidden size of hid = 64. Since it is not necessary and more difficult to further
analyze a model of this size, a student model with hid = 8 and MSE loss only in the relevant
region of x ∈ [−1.2, 0.6] and y ∈ [−0.7, 0.07] and a step size of 0.1 was distilled from the larger
model. It was visually found to perform about the same as the larger model.

1 nn.Sequential(

2 nn.Linear(2, hid, bias=True), nn.ReLU(),

3 nn.Linear(hid, hid, bias=True), nn.ReLU(),

4 nn.Linear(hid, 1, bias=True)

5)

Listing 8.1: Actor model in PyTorch trained with the DDPG algorithm with variable hidden size
for the MCC

The smaller student model was then transformed into an equivalent compressed DT using
the NN2EQCDT algorithm from Algorithm 3, as shown in Figure 8.1. DTs are represented
by networkx graphs that can be plotted with pyvis, as shown in Figure 8.2.

The different regions of a DT can be easily separated for 2D inputs. If the expressions for
each input are to be visualized, they can be evaluated for the corresponding decision region
and displayed as a third dimension, as shown in Figure 8.2. The points for the 2D regions (x
and y) are obtained by implicitly plotting with sympy. The values for the z dimension are
evaluated for each x and y point by the final expression and then drawn as a scatter plot
using plotly. The gaps between the planes are due to a plotting problem, the input space is
completely covered.

The compressed DT from the example in Figure 8.1 contains 83 nodes. It was computed
with a mean computation time of 9.75s, as seen in Figure 8.3.

The number of nodes of a DT according to the equivalence description as described in
Section 4.2.2, can be calculated without compression for the depth of each layer d =

∑n−2
i=0 mi

with the number of filters in each layer mi as described in Section 4.2.2 as:

72 Evaluation

Figure 8.1: Compressed DT equivalent to the FF-DNN of an MCC controller, represented with
pyvis from a networkx graph. The rules and expressions are node labels that are not visible at this

zoom factor. Both models have the same output (δ = 1e−4) for a sampled grid, clearly
confirming the correctness of the implementation. The corresponding input range was set as an

invariant for further compression.

#nodes =
d−1∑
i=0

2i .

This formula was tested by computing the DT with the equivalence description but without
compression and summing the number of nodes for different linear-ReLU FF-DNN architectures
and hidden sizes.

For an architecture as in Listing 8.1, it can be computed as d = 2 + 2hid. For hid = 8, such
a DT already consists of

∑18−1
i=0 2i = 262143 nodes, which corresponds to a compression ratio

of 99.97 % for the number of nodes. For this size, the calculation of DT was terminated after
a calculation time of 1.5h. However, for other small sizes of hid, it was also observed that
the calculation time without compression starts to become unmanageable compared to the
calculation with compression.

The results are summarized in Table 8.1 [LV23a].

Compression #nodes Computation time

� 262143 > 1.5h
X� 83 9.75s

Table 8.1: Comparison of measurement results and calculations for the construction of a DT from
the simple model without and with compression of the NN2EQCDT algorithm.

8.1.2 Discussion

The principle of equivalence description of Aytekin [Ayt22] could be verified by implementation,
testing, and application to a simple model. The presented compression method seems to be a

8.1 NN2EQCDT evaluation 73

Figure 8.2: 3D visualization with the DT regions for the MCC.

9 9.5 10 10.5 11 time [s]

Figure 8.3: Boxplot (n = 30) for the computation time of constructing a DT with the
NN2EQCDT algorithm for the simple model.

useful tool in the transformation to increase the explainability of FF-DNN-based DRL policies
since the transformed, relatively small DT model and visualization can be used to attribute
actions to observations. But in this form, it is not meaningful enough to intuit a learned
strategy. Probably, for this purpose, the environment with its dynamics must be included to
explain the agent’s reactions and their effects on the next observations.

The transformation was successfully tested on a learned DRL model in a benchmarking
environment. However, the computed compression rate of 99.97% cannot be considered
representative without further evaluation. Also, a general statement about the performance
of this approach for more complex environments and larger models cannot be made yet.

The NN2EQCDT algorithm can in principle transform any linear-ReLU FF-DNN models of
arbitrary size for the input and output dimensions. The number of coefficients and variables in
the transformed DT would then correspond to the size of the input dimension and the number
of output values to the size of the output dimension, but this has not yet been implemented
due to implementation difficulties but is conceptually possible. Also, only three dimensions
can be easily visualized together, more dimensions require more work and probably splitting
or reducing the information [LV23a].

74 Evaluation

8.2 Attack scenario

In this section, the learned agent behavior of the attack scenario from Chapter 7 is fully
explained by applying the NN2EQCDT algorithm. This application will be published in
[VL23].

8.2.1 Motivation

While the scientific corpus agrees that DRL-based agents are a valuable research topic for
cybersecurity in CNI, their effectiveness can only be stated (1) indirectly and (2) on a case-
by-case basis. Indirectly, because there is no direct method that can determine an agent’s
DRL policy. Publications provide analyses of rewards and simulation states, as in Section 7.3;
however, it is well known that optimizing a metric, i.e., maximizing the reward, is not
necessarily the same as solving the problem behind it. Second, many, if not most, publications
lack long-term simulations, considering only specific, well-described, scenarios. Therefore, a
DRL-based agent capability for generalization has been derived, but not fully proven [VL23].

Therefore, in this section, it is shown that the presented NN2EQCDT algorithm is generally
and practically capable of transforming the derived FF-DNN of DRL-based agents to fully
explain the learned behavior of the agent.

8.2.2 NN2EQCDT application

In this section, we evaluate the attack scenario described in Chapter 7. For this purpose,
the learned DDPG actor models, as described in Section 3.5.3, of the attacker and defender
are transformed into equivalent but compressed DTs using the NN2EQCDT algorithm as
described in Chapter 6. Both agents use the same actor model FF-DNN architecture, as
described in Section 8.1.1 and illustrated in Listing 8.1. To explain the decision process for
different input regions, two DTs are generated for these different input regions, specified as
invariants, as shown in Figure 8.4 and Figure 8.5.

Looking at the measured sensor values as shown in Figure 7.6, it can be observed that they
always lie in the box x, y ∈ [0.92 p.u., 1.02 p.u.] for both buses. This can therefore be specified
as an invariant for further compression when transforming the learned agent model into a DT,
since domain experts may be interested in explaining the learned strategy only in this range.

This DT consists of only one node, which provides output values of < −5 for all possible
combinations of input voltage values, respecting the invariants. The direct output values of a
model based on the input values have no units. Only the interpretation of the output values
results in units.

This constraint on the output values also applies to the DT in Figure 8.5. For this purpose,
the invariants of x, y ∈ [0.8 p.u., 1.2 p.u.] were used, since they contain the SVC of possible
voltage fluctuations and an additional buffer for other instabilities, as described in Section 3.1.5.
Since the attacker agent has a reactive power setpoint range of [−1.5 MVar, 1.5 MVar], all
output values are clipped to the actual setpoints of −1.5 MVar. This behavior was also
observed in Section 7.3.

8.2 Attack scenario 75

−0.25949511x
+− 0.84641606y
+− 5.34225273

Figure 8.4: DT of the learned attacker agent. x, y ∈ [0.92 p.u., 1.02 p.u.], i.e., only the observed
bus voltage range, see Figure 7.6

−0.40501711x
+− 0.17930005y

+0.52166462 > 0

0.24058867x
+− 0.26688254y
+− 0.00020122 > 0

−0.03620792x
+− 0.11810229y

+0.15887886 > 0

−0.26088786x
+− 0.85095900y
+− 5.33614111

−0.25949511x
+− 0.84641606y
+− 5.34225273

−0.09338239x
+− 0.05467923y

+0.15892670 > 0

−0.31861222x
+− 0.78692585y
+− 5.33609247

−0.31502017x
+− 0.78482258y
+− 5.34220552

0.24058867x
+− 0.26688254y
+− 0.00020122 > 0

−0.10292895x
+− 0.14763953y

+0.24481598 > 0

−0.44237620x
+− 0.93130344y
+− 5.10238266

−0.43841696x
+− 0.92562437y
+− 5.11179972

−0.49394205x
+− 0.86403090y
+− 5.11175346

0

0

0 1

1

0 1

1

0

0 1

1

Figure 8.5: DT of the learned attacker agent only in the SVC bus voltage range

The DTs in Figure 8.4 and the one in Figure 8.5 were created using the decision-tree
template of the forest package of LATEX. They were generated from the direct output of the
implementation of NN2EQCDT as networkx trees. No tool was available for this generation of
DTs from networkx trees, so NetworkXDT2LaTeXForestDT 1 was developed for such automatic
conversion.

8.2.3 Completeness validation

Die Strategie des Angreiferagenten kann nicht nur durch Inspektion des äquivalenten und
komprimierten DT, der aus dem DNN-Modell des Agentenakteurs mit Hilfe des NN2EQCDT-
Algorithmus transformiert wurde, erklärt werden, wie in Section 8.2.2 beschrieben, sondern es
kann auch validiert werden, dass die visuell extrahierte Strategie vollständig auf der Grundlage
der gemessenen Werte aus Section 7.3 extrahiert wurde.

This means that the model does not contain other substrategies that were not detected
by visual inspection. The DNN model of the learned actor may, in general, contain hidden
behaviors that are not extracted by visual inspection of measurements because there may be
only a limited set of varying observations. For example, the DNN model of the learned actor
might include other actions for observations outside the observed range of [0.92 p.u., 1.02 p.u.],
i.e., in, x, y ∈ [0.8 p.u., 0.92 p.u.) ∪ (1.02 p.u., 1.2 p.u.], but which are still compatible with the
SVC. However, this voltage range does not occur in the measurements, so the actor’s actions
in this range may differ and the model may have implemented different strategies for this

1 The NetworkXDT2LaTeXForestDT tool can be found under: https://gitlab.com/arl-experiments/Net
workXDT2LaTeXForestDT

https://gitlab.com/arl-experiments/NetworkXDT2LaTeXForestDT
https://gitlab.com/arl-experiments/NetworkXDT2LaTeXForestDT

76 Evaluation

range. The equivalence transformation of the actor model used in Section 8.2.2 would identify
and validate such an unknown strategy.

8.3 Conclusion and Discussion

The concept and implementation of the NN2EQCDT algorithm were evaluated to transform
FF-DNN of DRL models of agent actuators directly into equivalent and compressed DTs.
This was done for a model solving a benchmark problem and for a model learned with the
autocurriculum in a power grid environment. In this way, the embedded strategies of the
DNN models can be fully explained by visual inspection of the transformed DTs, and the
extracted strategies can be validated for completeness as described in Section 8.2.3.

Although the developed XRL method worked for these scenarios, it needs to be further
evaluated for more complex learned strategies in more realistic scenarios. This is particularly
relevant for critical applications, as justified in Section 2.2. To learn more complex scenarios,
multiple factors may need to be optimized, as described in Section 7.5. In such adapted
contexts, it is necessary to evaluate the impact on the size and thus the explainability as well
as the generation performance of the transformed DT. Not only does the method presented
seem to help explain the simple strategies learned, but there is no known direct conceptual
constraint that works for larger networks, with higher input and output dimensions, and in
principle with other layers, as described in Section 4.2.2.

No further objective or subjective evaluation of the developed XRL method was performed
either, as described in Section 3.6.4. However, this is necessary to increase confidence in the
method itself and reliability for domain experts.

77

9 Conclusion and Future Work

9.1 Conclusion

9.1.1 NN2EQCDT

In this work, the NN2EQCDT algorithm was presented in Chapter 6, which can directly and
accurately transform FF-DNNs into compressed DTs. The split points of such transformed
DTs can also be visualized in a plot of a two-dimensional input against a one-dimensional
output. Using a simple model, it was shown that a compressed DT can be significantly smaller
than an uncompressed one, as described in Section 8.1. Therefore, such compressed DTs
can be used to accurately trace output regions to input regions, enabling domain experts to
evaluate policies for harmful behavior. In particular, they can identify unknown-unknown
behaviors of the learned policy models to counter them.

This method can transform entire FF-DNNs but also allows the specification of invariants
for later analysis in only certain regions to further compress the transformed DTs and thus
increase its explainability. DTs also enable formal verification to help domain experts verify
certain properties of the model. The transformation can be performed at any time, thus the
NN2EQCDT algorithm can provide post-hoc explanations as well as explanations during
training. The implementation of the algorithm works directly with learned FF-DNN models
in PyTorch format, so there is no need to modify standard policy-based DRL methods to be
as universal as possible.

Moreover, this method can be used to accurately analyze the learned strategies of black-box
FF-DNNs through indirect interpretation by domain experts. Therefore, for use in CNI, this
method has the potential to fundamentally improve explainability, user trust, and also system
safety through better understanding.

9.1.2 Attack scenario

In addition, the NN2EQCDT algorithm was evaluated for its explainability capability in
critical domains through an application in a power grid scenario as described in Chapter 7.
For this purpose, an ARL attacker and a defender agent were used in an autocurriculum. The
idea was that the attacker would learn an oscillatory strategy, but this could not be achieved.
Instead, both agents simply learned opposite setpoints for reactive power injection to their
injection capabilities.

The attacker’s strategy could then be successfully explained using the NN2EQCDT by
inspecting the same and compressed DTs. These were transformed from the FF-DNN of the
agent’s actor model, as shown in Section 8.2. The transformed DT could be used not only to
explain the strategy but also to validate that the visually extracted strategy is complete based
on the measurements of Section 7.3, i.e., that it does not contain any other sub-strategies
that were not detected during the visual inspection. Such validations are necessary for critical
applications since the FF-DNN actor models used must not contain unknown behaviors.

78 Conclusion and Future Work

Therefore, the non-achievement of learning the oscillating strategy in the agent policy is
not a major problem, because the goal was to directly and accurately explain the entire agent
policy to be able to validate it in general, and not to do this specifically for more complex
strategies. That this is possible in general has already been shown with the general evaluation
of the NN2EQCDT algorithm in Section 8.1.

9.1.3 Answer to research question

The research question described in Section 2.3 can thus be answered, that the explainability
of FF-DNN policy models in DRL methods, and in particular in the ARL approach, can
be increased by the NN2EQCDT algorithm. This algorithm can directly and accurately
transform the entire FF-DNN into compressed and thus understandable DT as described in
Section 9.1.1. Transformed DTs can then be analyzed, the observed behavior of the policy
model can be evaluated, they can be verified to check certain properties, and strategies can
be indirectly derived. If done carefully, unknown unknown behaviors of the policy model can
be identified or their existence can be ruled out. This minimizes the risk of agents having
harmful effects through ARL and thus increases the confidence of domain experts as users in
the operation of the system in power grids.

The hypothesis stated can be confirmed in that the NN2EQCDT algorithm simplifies a
learned input-output mapping with its exact parameters of an FF-DNN model within its
architecture by using dynamic and further compression to drastically reduce the size of the
generated DT. It uses lossless compression by pruning only paths of transformed DTs that are
invalid to get the exact input-output mappings of FF-DNNs. This allows accurate validation
of whether the agent has learned strategies with harmful effects in subsets of input-output
mappings by allowing regions to be specified as invariants that rarely occur and would not be
known without such a method.

9.2 Future Work

9.2.1 NN2EQCDT

For future work, it may be interesting to further benchmark the NN2EQCDT algorithm
in terms of computation time and compression ratio for different architectures and sizes
of FF-DNNs learned with different policy-based DRL methods. This could involve using
different targets in different environments. It could also attempt to find evidence of whether
the compression ratio and computation time are representative in general, i.e., whether the
number of nodes and the computation time of the NN2EQCDT do not grow exponentially on
average.

The current implementation is limited in its input and output dimensions, but the NN2EQCDT
concept is not. It can therefore be generalized to arbitrarily large input and output dimensions
by extension. For other use cases, it could also be interesting to use other layers for precise
transformations that need to be implemented and evaluated. In addition, for visualization
of more than three dimensions together, multiple combinations of three dimensions or other
reduction methods such as Principle Component Analysis (PCA) could be evaluated.

9.2 Future Work 79

Furthermore, it could be tried to encode transformed DTs back into parameters of FF-DNNs
to get smaller, possibly minimized FF-DNNs. This could be used for further training since
it is better regularized compared to DTs. If DTs are modified beforehand, for example
by eliminating harmful behavior and encoding expert rules directly, the back-transformed
FF-DNNs could potentially be trained more efficiently.

To further increase the explainability of large DTs, similar adjacent regions can be grouped
so that split points in them are removed for further compression. The similarity threshold
and application regions in DTs can be defined so that these introduced approximations to the
original policy can be accurately calculated and incorporated into risk management.

Furthermore, with the transformed DTs features and extreme values could be analyzed,
because not only the input-output mapping but also other metrics such as which features are
more important and where possible extreme values lie can be of interest for explanations. For
example, large slops of expressions in leaf nodes are indicators of harmful behavior, which is
not obvious because this method cannot be used to make statements about the next input,
i.e., the next observations.

One approach to overcome this limitation could be to combine a DT of an agent’s policy
with a transformed DT of the relevant world model. The resulting graph could then also
be attempted to be further compressed. Since the output of such a combination would also
be the input for the next iteration, the graph would contain loops that could be further
analyzed. Further, an attempt could be made to identify fixed areas that the system would
loop through forever, thus keeping the power system in a healthy state without violating any
constraints that might otherwise lead to a blackout. With such a combination, it would then
be interesting to first identify healthy areas that then successively converge to unhealthy areas
in the action observation loop to identify actions against them.

9.2.2 Power grid scenarios

In addition, in the context of the power grid scenario, an attempt could be made, for example,
to replicate the oscillating strategy as the attacker-agent strategy by having the agents take
turns in performing their actions as described in Section 7.5. An attempt could also be made
to introduce self-play for this purpose. In general, an attempt could also be made to develop
more sophisticated agent strategies, which could then be tested for explainability using the
NN2EQCDT algorithm.

9.2.3 General

The transformed DTs allow domain experts to analyze the exact input-output mappings,
i.e., what agents learned, but not why they learned certain strategies and why they may
have avoided others. Therefore, it may be interesting to combine the NN2EQCDT algorithm
with other exact policy-based self-explainable methods such as IBMDP or PRL as described
in Section 4.1.2 to summarize or generalize policies to better explain potentially learned
strategies.

80 Conclusion and Future Work

Furthermore, Ternary Vector Lists (TVLs) could be tried to use to get an exact, summary
of the rules. The rules, i.e., the checks at split-point nodes of a DT, are Boolean functions
in that they evaluate to either true or false. Therefore, they can be represented by a Binary
Vector List (BVL). To reduce the large number of such vectors, TVLs can be used. It reduces
the exponential expansion of BVLs by reducing the number of ternary vectors, with orthogonal
blocking. Thereby two vectors, which differ only in one position, are compressed into one
[SD00].

Another idea is to use the NN2EQCDT algorithm in combination with general XAI methods
such as SHAP and general-purpose methods such as LIME, as described in Section 3.6.2.2.

81

10 Tool usage

The following external tools were used for this thesis. This does not include the self-written
tools like the NN2EQCDT implementation and the NetworkXDT2LaTeXForestDT conversion
tool.

1. DeepL translator (https://www.deepl.com, not DeepL Write): Used to improve the
quality of self-written texts by translating self-written English texts into German, improving
them, and translating them back into English.

2. Grammarly (https://app.grammarly.com, not writing assistance or GrammarlyGo):
Used to check grammar

3. PyCharm (https://www.jetbrains.com/pycharm/): Used for coding in python.

4. Relevant python frameworks and libraries (described in text)

(a) PyTorch

(b) OpenAI Gym, or rather the new Gymnasium from Farama Foundation (https:
//gymnasium.farama.org)

(c) graphviz

(d) matplotlib

(e) networkx

(f) numpy

(g) sympy

(h) z3-solver

(i) numexpr

(j) plotly

(k) DDPG implementation of spinningup

(l) palaestrAI framework

(m) MIDAS framework

(n) pandapower

(o) jupyter lab

(p) docker

I declare that no generative text AI tools, such as ChatGPT, DeepL Writer, or the
GrammarlyGo or its writing assistance, were used to generate whole passages of text.

https://www.deepl.com
https://app.grammarly.com
https://www.jetbrains.com/pycharm/
https://gymnasium.farama.org
https://gymnasium.farama.org

82 Tool usage

83

Figures

3.1 π-equivalent circuit diagram . 11

3.2 Power frequency and voltage magnitude variations 15

3.3 Requirements for the operation of generators in steady state 16

3.4 Frequency and voltage gradient constraints at steady state 16

3.5 Diagram and notations for the radial network 17

3.6 PV inverter capability curve . 18

3.7 Reactive power control function . 18

3.8 Backpropagation of DNN . 22

3.9 RL Architecture . 24

3.10 Taxonomy of DRL algorithms . 32

3.11 Conceptual model of explanation process in XAI 36

3.12 Conceptual model of explanation process in XAI 38

3.13 Example of difference arithmetic . 40

4.1 An overview of the [Qin+22] survey with presentation of the XRL taxonomy 42

4.2 Abstract diagrams of the explanatory processes for XRL method categories . 43

4.3 Self-explainable XRL methods . 44

4.4 XOR gate converted with EC-DT into a DNN 45

4.5 Transformed DT based on an FF-DNN approximating y = x2 48

4.6 The cleaned DT and the plot of the approximated function y = x2 48

5.1 Schematic overview of the NN2EQCDT process 52

6.1 Simple example of a DT representing an XOR function 57

6.2 Simple example of a tree compression . 59

6.3 Decision tree compression method . 60

6.4 ARL architecture . 60

6.5 Activity diagram for training and self-explaining of an ARL agent 61

7.1 Simple network used for scenario analysis . 63

7.2 Load profile visualization . 64

7.3 Voltage band objectives . 65

7.4 Attacker setpoints of simple voltage attack scenario 66

7.5 Defender setpoints of simple voltage attack scenario 66

7.6 Voltage magnitudes of the buses in the scenario description 67

7.7 Agent objective for simple voltage attacker 67

7.8 Cigre MV network . 68

7.9 Setpoints of the oscillating attacker . 69

8.1 DT of the FF-DNN-based MCC controller . 72

84 Figures

8.2 3D visualization with the DT regions for the MCC 73

8.3 Boxplot for the calculation time of an example DT 73

8.4 DT of learned attacker agent for observed bus voltage range 75

8.5 DT of the learned attacker agent only in the SVC bus voltage range 75

LITERATURE 85

Literature

[APE21] Dilini Almeida, Jagadeesh Pasupuleti, and Janaka Ekanayake. “Comparison of
reactive power control techniques for solar PV inverters to mitigate voltage rise
in low-voltage grids”. In: Electronics 10.13 (2021), p. 1569.

[Arr+20] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI): Con-
cepts, taxonomies, opportunities and challenges toward responsible AI”. In: In-
formation fusion 58 (2020), pp. 82–115.

[Axe86] Robert Axelrod. “An evolutionary approach to norms”. In: American political
science review 80.4 (1986), pp. 1095–1111.

[Ayt22] Caglar Aytekin. Neural Networks are Decision Trees. 2022. arXiv: 2210.05189
[cs.LG].

[Bak+20] Bowen Baker et al. Emergent Tool Use From Multi-Agent Autocurricula. 2020.
arXiv: 1909.07528 [cs.LG].

[Bal23] Stephan Balduin. MIDAS Commercial Data Simulator. [retrieved: 07, 2023]. 2023.
url: https://midas-mosaik.gitlab.io/midas/modules/comdata.html.

[BC14] Jimmy Ba and Rich Caruana. “Do deep nets really need to be deep?” In: Advances
in Neural Information Processing Systems 27 (2014), pp. 2654–2662.

[BDE22] BDEW. Redispatch 2.0. [retrieved: 07.2023]. 2022. url: https://www.bdew.de
/energie/redispatch-20/.

[BPS18] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. “Verifiable reinforcement
learning via policy extraction”. In: Advances in Neural Information Processing
Systems 31 (2018).

[Bun09] Bundesministerium der Justiz. Gesetz über das Bundesamt für Sicherheit in der
Informationstechnik (BSI-Gesetz - BSIG). [retrieved: 07.2023]. Aug. 2009. url:
https://www.gesetze-im-internet.de/bsig_2009/BJNR282110009.html.

[Bun21] Bundesministerium der Justiz. Gesetz über das Bundesamt für Sicherheit in der
Informationstechnik (BSI-Gesetz - BSIG). [retrieved: 07.2023]. June 2021. url:
https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger

_BGBl&jumpTo=bgbl121s1122.pdf#__bgbl__%2F%2F*%5B%40attr_id%3D%27bg

bl121s1122.pdf%27%5D__1689340201934.

[BW89a] Mesut Baran and Felix F Wu. “Optimal sizing of capacitors placed on a ra-
dial distribution system”. In: IEEE Transactions on Power Delivery 4.1 (1989),
pp. 735–743.

[BW89b] Mesut E Baran and Felix F Wu. “Network reconfiguration in distribution systems
for loss reduction and load balancing”. In: IEEE Transactions on Power Delivery
4.2 (1989), pp. 1401–1407.

[BW89c] Mesut E Baran and Felix F Wu. “Optimal capacitor placement on radial distri-
bution systems”. In: IEEE Transactions on Power Delivery 4.1 (1989), pp. 725–
734.

https://arxiv.org/abs/2210.05189
https://arxiv.org/abs/2210.05189
https://arxiv.org/abs/1909.07528
https://midas-mosaik.gitlab.io/midas/modules/comdata.html
https://www.bdew.de/energie/redispatch-20/
https://www.bdew.de/energie/redispatch-20/
https://www.gesetze-im-internet.de/bsig_2009/BJNR282110009.html
https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl121s1122.pdf#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl121s1122.pdf%27%5D__1689340201934
https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl121s1122.pdf#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl121s1122.pdf%27%5D__1689340201934
https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl121s1122.pdf#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl121s1122.pdf%27%5D__1689340201934

86 LITERATURE

[Coo23] Stephen A Cook. “The complexity of theorem-proving procedures”. In: Logic,
Automata, and Computational Complexity: The Works of Stephen A. Cook. 2023,
pp. 143–152.

[DB08] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”. In: Tools
and Algorithms for the Construction and Analysis of Systems: 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings 14. Springer. 2008, pp. 337–340.

[DB11] Leonardo De Moura and Nikolaj Bjørner. “Satisfiability Modulo Theories: In-
troduction and Applications”. In: Communications of the ACM 54.9 (2011),
pp. 69–77.

[Del21] Deloitte. Cyber-Sicherheit und Cyber Resilienz für die Schweizer Stromversorgung.
Tech. rep. [retrieved: 07.2023]. Schweizerische Eidgenossenschaft - Bundesamt für
Energie BFE, June 2021. url: https://pubdb.bfe.admin.ch/de/publication
/download/10524.

[DK17] Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of Interpretable
Machine Learning. 2017. arXiv: 1702.08608 [stat.ML].

[DK79] Richard Dawkins and John Richard Krebs. “Arms races between and within
species”. In: Proc. R. Soc. Lond. B 205.1161 (1979), pp. 489–511.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. “A machine program for
theorem-proving”. In: Communications of the ACM 5.7 (1962), pp. 394–397.

[EGH16] Vasileios A Evangelopoulos, Pavlos S Georgilakis, and Nikos D Hatziargyriou.
“Optimal operation of smart distribution networks: A review of models, methods
and future research”. In: Electric Power Systems Research 140 (2016), pp. 95–106.

[Ele10] Electric Power Research Institute. Standard Language Protocols for Photovoltaics
and Storage Grid Integration - Developing a Common Method for Communicating
with Inverter-Based Systems. [retrieved: 07, 2023]. May 2010. url: http://asse
ts.fiercemarkets.net/public/smartgridnews/1020906LangProtocolsPVSt

orageGridIntegrate.pdf.

[Eur23a] European comission. 2030 Climate Target Plan. [retrieved: 07, 2023]. July 2023.
url: https://climate.ec.europa.eu/eu-action/european-green-deal/20
30-climate-target-plan_en.

[Eur23b] European comission. A clean energy transition. [retrieved: 07, 2023]. July 2023.
url: https://commission.europa.eu/strategy-and-policy/priorities-2
019-2024/european-green-deal/energy-and-green-deal_en.

[Eur23c] European comission. Cause of climate change. [retrieved: 07, 2023]. July 2023.
url: https://climate.ec.europa.eu/climate-change/causes-climate-ch
ange_en.

[Eur23d] European comission. Consequences of climate change. [retrieved: 07, 2023]. July
2023. url: https://ec.europa.eu/clima/climate-change/consequences-cl
imate-change_en.

https://pubdb.bfe.admin.ch/de/publication/download/10524
https://pubdb.bfe.admin.ch/de/publication/download/10524
https://arxiv.org/abs/1702.08608
http://assets.fiercemarkets.net/public/smartgridnews/1020906LangProtocolsPVStorageGridIntegrate.pdf
http://assets.fiercemarkets.net/public/smartgridnews/1020906LangProtocolsPVStorageGridIntegrate.pdf
http://assets.fiercemarkets.net/public/smartgridnews/1020906LangProtocolsPVStorageGridIntegrate.pdf
https://climate.ec.europa.eu/eu-action/european-green-deal/2030-climate-target-plan_en
https://climate.ec.europa.eu/eu-action/european-green-deal/2030-climate-target-plan_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/energy-and-green-deal_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/energy-and-green-deal_en
https://climate.ec.europa.eu/climate-change/causes-climate-change_en
https://climate.ec.europa.eu/climate-change/causes-climate-change_en
https://ec.europa.eu/clima/climate-change/consequences-climate-change_en
https://ec.europa.eu/clima/climate-change/consequences-climate-change_en

LITERATURE 87

[Eur23e] European comission. Paris Agreement. [retrieved: 07, 2023]. July 2023. url:
https://climate.ec.europa.eu/eu-action/international-action-climat

e-change/climate-negotiations/paris-agreement_en.

[FCD15] John K Feser, Swarat Chaudhuri, and Isil Dillig. “Synthesizing data structure
transformations from input-output examples”. In: ACM SIGPLAN Notices 50.6
(2015), pp. 229–239.

[FHM18] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approx-
imation Error in Actor-Critic Methods. 2018. arXiv: 1802.09477 [cs.AI].

[Fis+18] Lars Fischer et al. Adversarial Resilience Learning - Towards Systemic Vul-
nerability Analysis for Large and Complex Systems. 2018. arXiv: 1811.06447
[cs.AI].

[Fou23a] Farama Foundation. Mountain Car Continuous. [retrieved: 07.2023]. 2023. url:
https://gymnasium.farama.org/environments/classic_control/mountain

_car_continuous/.

[Fou23b] PyTorch Foundation. PyTorch Linear. [retrieved: 07.2023]. 2023. url: https://p
ytorch.org/docs/stable/generated/torch.nn.Linear.html.

[Fra23] Fraunhofer IEE and University of Kassel. Pandapower 2.0 Cigre benchmark power
grid implementation. [retrieved: 06, 2023]. 2023. url: https://pandapower.rea
dthedocs.io/en/v2.0.0/networks/cigre.html.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural
networks”. In: Proceedings of the fourteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings. 2011,
pp. 315–323.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. [retrieved:
07.2023]. MIT Press, 2016. url: http://www.deeplearningbook.org.

[GS94] John J Grainger and WUliam D Stevenson Jr. Power system analysis. McGraw-
Hill series in electrical and computer engineering, 1994.

[Haa+18] Tuomas Haarnoja et al. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor. 2018. arXiv: 1801.01290 [cs.LG].

[Har68] Garrett Hardin. “The tragedy of the commons”. In: Science 162.3859 (1968),
pp. 1243–1248.

[HCD21] Alexandre Heuillet, Fabien Couthouis, and Natalia Diaz-Rodriguez. “Explainabil-
ity in deep reinforcement learning”. In: Knowledge-Based Systems 214 (2021),
p. 106685.

[Hec89] Douglas D Heckathorn.“Collective action and the second-order free-rider problem”.
In: Rationality and Society 1.1 (1989), pp. 78–100.

[HGS15] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning
with Double Q-learning. 2015. arXiv: 1509.06461 [cs.LG].

[Hof+19] Robert R. Hoffman et al. Metrics for Explainable AI: Challenges and Prospects.
2019. arXiv: 1812.04608 [cs.AI].

https://climate.ec.europa.eu/eu-action/international-action-climate-change/climate-negotiations/paris-agreement_en
https://climate.ec.europa.eu/eu-action/international-action-climate-change/climate-negotiations/paris-agreement_en
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1811.06447
https://arxiv.org/abs/1811.06447
https://gymnasium.farama.org/environments/classic_control/mountain_car_continuous/
https://gymnasium.farama.org/environments/classic_control/mountain_car_continuous/
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pandapower.readthedocs.io/en/v2.0.0/networks/cigre.html
https://pandapower.readthedocs.io/en/v2.0.0/networks/cigre.html
http://www.deeplearningbook.org
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1812.04608

88 LITERATURE

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural networks 2.5 (1989), pp. 359–
366.

[Hug+18] Edward Hughes et al. “Inequity aversion improves cooperation in intertemporal
social dilemmas”. In: Advances in Neural Information Processing System (2018),
pp. 3330–3340.

[Inv22] Investopedia. Black Swan in the Stock Market: What Is It, With Examples and
History. [retrieved: 07.2023]. June 2022. url: https://www.investopedia.com
/terms/b/blackswan.asp.

[Jar+09] Kevin Jarrett et al. “What is the best multi-stage architecture for object recogni-
tion?” In: 2009 IEEE 12th international conference on computer vision. IEEE.
2009, pp. 2146–2153.

[JL18] Peizhong Ju and Xiaojun Lin. “Adversarial Attacks to Distributed Voltage Con-
trol in Power Distribution Networks with DERs”. In: Proceedings of the Ninth
International Conference on Future Energy Systems. ACM. 2018, pp. 291–302.
isbn: 9781450357678. doi: 10.1145/3208903.3208912.

[JVW20] T. Jaunet, R. Vuillemot, and C. Wolf. “DRLViz: Understanding Decisions and
Memory in Deep Reinforcement Learning”. In: Computer Graphics Forum 39.3
(2020), pp. 49–61. doi: 10.1111/cgf.13962. eprint: https://onlinelibrary.w
iley.com/doi/pdf/10.1111/cgf.13962.

[KHM14] R Kabiri, DG Holmes, and BP McGrath. “The influence of pv inverter reactive
power injection on grid voltage regulation”. In: 2014 IEEE 5th International
Symposium on Power Electronics for Distributed Generation Systems (PEDG).
IEEE. 2014, pp. 1–8.

[Kin76] James C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM
19.7 (July 1976), pp. 385–394. issn: 0001-0782. doi: 10.1145/360248.360252.

[Kro] Dirk P. Kroese. Cross-Entropy Method. [retrieved: 07.2023]. Brisbane 4072, Aus-
tralia. url: https://people.smp.uq.edu.au/DirkKroese/ps/eormsCE.pdf.

[Lan+17] Marc Lanctot et al. “A unified game-theoretic approach to multiagent reinforce-
ment learning”. In: Advances in Neural Information Processing Systems (2017).

[Lap20] Maxim Lapan. Deep Reinforcement Learning Hands-On: Apply modern RL meth-
ods to practical problems of chatbots, robotics, discrete optimization, web automa-
tion, and more. Packt Publishing Ltd, 2020.

[LB08] Ellen Liu and Jovan Bebic. Distribution system voltage performance analysis
for high-penetration photovoltaics. Tech. rep. National Renewable Energy Lab
(NREL), Golden, CO (United States), 2008.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature
521.7553 (2015), pp. 436–444.

[Leh22] Sebastian Lehnhoff. Lecture Smart Grid Management. 2022.

[Lei+17] Joel Z. Leibo et al. “Multi-agent Reinforcement Learning in Sequential Social
Dilemmas”. In: CoRR abs/1702.03037 (2017). arXiv: 1702.03037.

https://www.investopedia.com/terms/b/blackswan.asp
https://www.investopedia.com/terms/b/blackswan.asp
https://doi.org/10.1145/3208903.3208912
https://doi.org/10.1111/cgf.13962
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13962
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13962
https://doi.org/10.1145/360248.360252
https://people.smp.uq.edu.au/DirkKroese/ps/eormsCE.pdf
https://arxiv.org/abs/1702.03037

LITERATURE 89

[Lei+19] Joel Z. Leibo et al. Autocurricula and the Emergence of Innovation from Social
Interaction: A Manifesto for Multi-Agent Intelligence Research. 2019. arXiv:
1903.00742 [cs.AI].

[Les+18] Timothée Lesort et al. “State representation learning for control: An overview”.
In: Neural Networks 108 (2018), pp. 379–392.

[Liu+08] Y. Liu et al. “Distribution System Voltage Performance Analysis for High-
Penetration PV”. In: 2008 IEEE Energy 2030 Conference. 2008, pp. 1–8. doi:
10.1109/ENERGY.2008.4781069.

[LL17] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model
predictions”. In: Advances in neural information processing systems 30 (2017).

[Log22] Torben Logemann. “How Digital Twins, Cybersecurity and Trustworthiness in
Smart Grid contribute to the European Climate Goals 2030”. [unpublished, used
in Smart Grid Research lecture]. Sept. 2022.

[LV23a] Torben Logemann and Eric MSP Veith.“NN2EQCDT: Equivalent Transformation
of Feed-Forward Neural Networks as DRL Policies into Compressed Decision
Trees”. In: vol. 15. [retrieved: 07, 2023]. IARIA. ThinkMind, June 2023, pp. 94–
100. isbn: 978-1-68558-046-9. url: https://www.thinkmind.org/index.php?v
iew=article&articleid=cognitive_2023_1_160_40107.

[LV23b] Torben Logemann and Eric MSP Veith. Simple Voltage Attack Explainability
repository. [retrieved: 07, 2023]. 2023. url: https://gitlab.com/arl-experim
ents/simple-voltage-attack-explainability.

[Mar04] Henryk Markiewicz. Standard EN 50160 – Voltage Characteristics of Public
Distribution Systems. [retrieved: 07.2023]. July 2004. url: https://powerquali
ty.blog/2021/07/22/standard-en-50160-voltage-characteristics-of-p

ublic-distribution-systems/.

[Mni+13] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013.
arXiv: 1312.5602 [cs.LG].

[Moo90] Andrew William Moore. Efficient Memory-based Learning for Robot Control.
Tech. rep. University of Cambridge, 1990.

[MSP+20] Eric MSP Veith et al. “Analyzing Power Grid, ICT, and Market Without Domain
Knowledge Using Distributed Artificial Intelligence”. In: arXiv e-prints (2020),
arXiv–2006.

[NH10] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted
boltzmann machines”. In: Proceedings of the 27th International Conference on
Machine Learning (ICML-10). 2010, pp. 807–814.

[NKA21] Duy T. Nguyen, Kathryn E. Kasmarik, and Hussein A. Abbass. Towards Inter-
pretable ANNs: An Exact Transformation to Multi-Class Multivariate Decision
Trees. 2021. arXiv: 2003.04675 [cs.LG].

[Nob57] Clyde E. Noble. “Human Trial-and-Error Learning”. In: Psychological Reports 3.2
(1957), pp. 377–398. doi: 10.2466/pr0.1957.3.h.377. eprint: https://doi.or
g/10.2466/pr0.1957.3.h.377.

https://arxiv.org/abs/1903.00742
https://doi.org/10.1109/ENERGY.2008.4781069
https://www.thinkmind.org/index.php?view=article&articleid=cognitive_2023_1_160_40107
https://www.thinkmind.org/index.php?view=article&articleid=cognitive_2023_1_160_40107
https://gitlab.com/arl-experiments/simple-voltage-attack-explainability
https://gitlab.com/arl-experiments/simple-voltage-attack-explainability
https://powerquality.blog/2021/07/22/standard-en-50160-voltage-characteristics-of-public-distribution-systems/
https://powerquality.blog/2021/07/22/standard-en-50160-voltage-characteristics-of-public-distribution-systems/
https://powerquality.blog/2021/07/22/standard-en-50160-voltage-characteristics-of-public-distribution-systems/
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2003.04675
https://doi.org/10.2466/pr0.1957.3.h.377
https://doi.org/10.2466/pr0.1957.3.h.377
https://doi.org/10.2466/pr0.1957.3.h.377

90 LITERATURE

[NR21] Thanh Thi Nguyen and Vijay Janapa Reddi. “Deep reinforcement learning for
cyber security”. In: IEEE Transactions on Neural Networks and Learning Systems
(2021).

[NRC20] Muddasar Naeem, Syed Tahir Hussain Rizvi, and Antonio Coronato. “A gentle
introduction to reinforcement learning and its application in different fields”. In:
IEEE access 8 (2020), pp. 209320–209344.

[Ope23] OpenAI Spinning Up. Part 2: Kinds of RL Algorithms. [retrived: 07.2023]. July
2023. url: https://spinningup.openai.com/en/latest/spinningup/rl_int
ro2.html.

[Ost00] Elinor Ostrom. “Collective action and the evolution of social norms”. In: Journal
of economic perspective 14.3 (2000), pp. 137–158.

[Ost90] Elinor Ostrom. “Governing the Commons: The Evolution of Institutions for
Collective Action”. In: Cambridge University Press (1990).

[Per+17] Julien Perolat et al. “A multi-agent reinforcement learning model of common-pool
resource appropriation”. In: Advances in Neural Information Processing Systems
(2017), pp. 3643–3652.

[PV20a] Erika Puiutta and Eric Veith. “Explainable reinforcement learning: A survey”.
In: International cross-domain conference for machine learning and knowledge
extraction. Springer. 2020, pp. 77–95.

[PV20b] Erika Puiutta and Eric M. S. P. Veith. “Explainable Reinforcement Learning:
A Survey”. In: Machine Learning and Knowledge Extraction. CD-MAKE 2020.
Dublin, Ireland: Springer, Cham, 2020, pp. 77–95. doi: 10.1007/978-3-030-57
321-8_5.

[Qin+22] Yunpeng Qing et al. A Survey on Explainable Reinforcement Learning: Concepts,
Algorithms, Challenges. 2022. arXiv: 2211.06665 [cs.LG].

[Rap74] Anatol Rapoport. “Prisoner’s dilemma - recollections and observations”. In: Game
Theory as a Theory of a Conflict Resolution (1974), pp. 17–34.

[RB14] Ranga V Ramasesh and Tyson R Browning. “A conceptual framework for tackling
knowable unknown unknowns in project management”. In: Journal of Operations
Management 32.4 (2014), pp. 190–204.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating errors”. In: Nature 323.6088 (1986), pp. 533–
536.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why should i trust
you?” Explaining the predictions of any classifier”. In: Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
2016, pp. 1135–1144.

[Sal+17] Ahmad EL Sallab et al.“Deep Reinforcement Learning framework for Autonomous
Driving”. In: Electronic Imaging 29.19 (Jan. 2017), pp. 70–76. doi: 10.2352/iss
n.2470-1173.2017.19.avm-023.

[Sam+13] Spyridon Samothrakis et al. “Coevolving gameplaying agents: Measuring perfor-
mance and intransitivities”. In: IEEE Transactions on Evolutionary Computation
17.2 (2013), pp. 213–226.

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://doi.org/10.1007/978-3-030-57321-8_5
https://doi.org/10.1007/978-3-030-57321-8_5
https://arxiv.org/abs/2211.06665
https://doi.org/10.2352/issn.2470-1173.2017.19.avm-023
https://doi.org/10.2352/issn.2470-1173.2017.19.avm-023

LITERATURE 91

[Sch+17] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv:
1707.06347 [cs.LG].

[Sch+20] Julian Schrittwieser et al. “Mastering Atari, Go, chess and shogi by planning with
a learned model”. In: Nature 588.7839 (Dec. 2020), pp. 604–609. doi: 10.1038/s
41586-020-03051-4.

[Sch12] Adolf J Schwab. Elektroenergiesysteme: Erzeugung, Transport, Übertragung und
Verteilung elektrischer Energie. Springer-Verlag, 2012.

[Sch73] Thomas C Schelling. “Hockey helmets, concealed weapons, and daylight saving:
A study of binary choices with externalities”. In: Journal of Conflict resolution
17.3 (1973), pp. 381–428.

[SD00] Bernd Steinbach and Chr Dorotska. “Orthogonal Block Building Using Ordered
Lists of Ternary Vectors”. In: Boolean Problems, Proceedings of the 4th Interna-
tional Workshops on Boolean Problems. Vol. 21. Citeseer. 2000, p. 22.

[Sil+17] David Silver et al. Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. 2017. arXiv: 1712.01815 [cs.AI].

[Sta+16] William R Stauffer et al. “Components and characteristics of the dopamine reward
utility signal”. In: Journal of Comparative Neurology 524.8 (2016), pp. 1699–1711.

[Tas14] Task Force C6.04.02. “Benchmark systems for network integration of renewable
and distributed energy resources”. In: Elektra - CIGRE’s digital magazine 575
(2014).

[Top+21] Nicholay Topin et al. “Iterative bounding mdps: Learning interpretable policies via
non-interpretable methods”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. 11. 2021, pp. 9923–9931.

[Tur+11] Konstantin Turitsyn et al. “Options for control of reactive power by distributed
photovoltaic generators”. In: Proceedings of the IEEE 99.6 (2011), pp. 1063–1073.

[US 23] U.S. Department of Energy. Open Energy Data Initiative. [retrieved: 07, 2023].
2023. url: https://data.openei.org/about.

[VDE17] Forum Netztechnik/Netzbetrieb im VDE (FNN) VDE. Zusammenfassung des
Entwurfs VDE-AR-N 4110:2017-02. Tech. rep. [retrieved: 07.2023]. Feb. 2017.
url: https://ivrenergy.de/wp-content/uploads/2018/11/tar-ms-zusamm
enfassung-de-data-compressed.pdf.

[VDE19] VDE. Zellulares Energiesystem - Ein Beitrag zur Konkretisierung des zellularen
Ansatzes mit Handlungsempfehlungen. [retrieved: 07.2023]. Frankfurt am Main,
May 2019. url: https://www.vde.com/resource/blob/1884494/98f96973fcd
ba70777654d0f40c179e5/studie---zellulares-energiesystem-data.pdf.

[Vei+22] Eric MSP Veith et al. Learning to Attack Powergrids with DERs. 2022. arXiv:
2204.11352 [cs.CR].

[Vei22] Dr.-Ing. Eric MSP Veith. ARL Adversarial Resilience Learning - Förderung von
Ideennachwuchs Forschungsvorhaben von KI-Nachwuchsgruppen. 2022.

[Vei23] Eric MSP Veith. “An Architecture for Reliable Learning Agents in Power Grids”.
In: ENERGY 2023 Editors (2023), p. 19.

https://arxiv.org/abs/1707.06347
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://arxiv.org/abs/1712.01815
https://data.openei.org/about
https://ivrenergy.de/wp-content/uploads/2018/11/tar-ms-zusammenfassung-de-data-compressed.pdf
https://ivrenergy.de/wp-content/uploads/2018/11/tar-ms-zusammenfassung-de-data-compressed.pdf
https://www.vde.com/resource/blob/1884494/98f96973fcdba70777654d0f40c179e5/studie---zellulares-energiesystem-data.pdf
https://www.vde.com/resource/blob/1884494/98f96973fcdba70777654d0f40c179e5/studie---zellulares-energiesystem-data.pdf
https://arxiv.org/abs/2204.11352

92 LITERATURE

[VL23] Eric MSP Veith and Torben Logemann. “Towards Explainable Attacker-Defender
Autocurricula in Critical Infrastructures”. [not published yet]. 2023.

[VWU23] Eric M. S. P. Veith, Arlena Wellßow, and Mathias Uslar. “Learning new attack
vectors from misuse cases with deep reinforcement learning”. In: Frontiers in
Energy Research 11 (2023). issn: 2296-598X. doi: 10.3389/fenrg.2023.113844
6.

[Wol+23] Thomas Wolgast et al. ANALYSE – Learning to Attack Cyber-Physical Energy
Systems With Intelligent Agents. 2023. arXiv: 2305.09476 [cs.CR].

[Wol96] David H Wolpert. “The lack of a priori distinctions between learning algorithms”.
In: Neural computation 8.7 (1996), pp. 1341–1390.

[Yam88] Toshio Yamagishi. “Seriousness of social dilemmas and the provision of a sanc-
tioning system”. In: Social psychology quarterly (1988), pp. 32–42.

[ZBM16] Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. “Graying the black box: Un-
derstanding DQNs”. In: Proceedings of The 33rd International Conference on
Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48.
Proceedings of Machine Learning Research. New York, New York, USA: PMLR,
June 2016, pp. 1899–1908. url: https://proceedings.mlr.press/v48/zahavy
16.html.

[ZL16] H Zhu and H. J. Liu. “Fast local voltage control under limited reactive power: Op-
timality and stability analysis”. In: IEEE Trans. Power Syst. 31 (2016), pp. 3794–
3803.

https://doi.org/10.3389/fenrg.2023.1138446
https://doi.org/10.3389/fenrg.2023.1138446
https://arxiv.org/abs/2305.09476
https://proceedings.mlr.press/v48/zahavy16.html
https://proceedings.mlr.press/v48/zahavy16.html

93

Index

Activation Function, 21, 22, 46, 47, 53, 55, 57,
58

Active Network Management, 15, 16

Actor-Critic-Method, 31

Adam, 23, 65

Advantage Actor-Critic, 32

Adversarial Resilience Learning, 5–9, 52, 53,
60, 64, 77, 78

Alternating Current, 11, 12

Artificial Neural Network, 7

Audience, 35, 37, 62

Autocurriculum, 33

Autocurriculum, 33

Autocurriculum, 7, 29, 33–35, 63, 64, 68, 69,
76, 77

Backpropagation, 20, 22, 23, 32

Bellman Equation Of Optimality, 28

Binary Vector List, 80

Black Swan, 8

Black-Box, 1, 7, 8, 36, 77

Borel Function, 21, 62

Borel-Measurable, 21

Bundesamt für Sicherheit in der Information-
stechnik, 7

Catastrophic Forgetting, 34

Challenge, 5, 7, 9, 33–35, 49, 69, 76

Combined Heat and Power, 4

Competition and Cooperation, 6, 33

Compression, 1, 51–53, 59, 60, 62, 71–74, 78,
79

Conjunctive Normal Form, 39

Constraint, 15, 16, 45, 49, 51, 52, 59, 61, 74,
76, 79

Constraint-satisfaction problem, 38

Control System, 1, 4, 7–9

Critical National Infrastructure, 1, 4, 7, 8, 52,
74, 77

Cross-Entropy, 26, 27, 31

Curse Of Dimensionality, 20

Cyber-Physical System, 6, 9, 38

Davis-Putnam-Logemann-Loveland, 39

Decentralization, 4, 6

Decision Tree, 1, 8, 36, 44–48, 50–62, 71–80

Deep Deterministic Policy Gradient, 32, 65,
71, 74

Deep Learning, 9, 20, 21, 51, 54

Deep Neural Network, 5, 9, 20–23, 26, 27, 29–
31, 35, 36, 44, 45, 51, 52, 58, 68, 75,
76

Deep Q Network, 29–32

Deep RL, 1, 5, 7–9, 32, 35, 36, 44, 49–52, 54,
61–63, 73, 74, 76–78

Deterministic Policy Gradient Method, 32

Difference Arithmetic, 39, 40

Difference Arithmetic, 40

Direct Current, 11

Distributed Energy Resource, 7, 15

Distribution System Operator, 15

Domain Specific Language, 43, 62

EC-DT, 45, 46, 52, 56

Effective Weight Matrix, 46, 58

Epsilon-Greedy Method, 30, 31

Equivalence Description, 45, 46, 51, 53, 58,
71–73

Equivalence Description, 52

European Commission, 3

eXplainable Artificial Intelligence, 35–38, 80

eXplainable Reinforcement Learning, 9, 35,
41–44, 49–51, 54, 62, 76

eXplainable reinforcement learning, 44

Explanation-Generating, 41, 50

Exploration vs. Exploitation, 33

Extreme Value, 79

Feed-Forward DNN, 1, 9, 20, 21, 45–48, 51–55,
58–62, 72–74, 76–79

Formal Verification, 43, 44, 51, 77

Gradient, 5, 15, 20, 22, 23, 30–33, 49, 65, 71,
74

Grid Operation, 5, 6

Harmful Effect, 7, 9, 78

Hypothesis, 6, 7, 9, 33, 78

IBMDP, 44, 50, 79

94 Index

independent and identically distributed, 19,
25, 26, 30

Information and Communication Technology,
4–6

Information Technology, 4, 7

Inherently Interpretable Model, 41

Input-Output Mapping, 9, 78, 79

Institution, 34

Internet-of-Things, 4

Invariant, 1, 51, 52, 54, 59, 74, 77, 78

Kullback-Leibler, 27

Learning System, 1, 5, 7, 8

LIME, 36, 80

Linear Layer, 20, 46, 55, 56, 58, 62

Linear Layer, 45

Low Voltage, 14

Machine Learning, 9, 19, 20, 36

Markov Decision Process, 25, 26, 44

Markov Process, 25

Markov Property, 25

Markov Reward Process, 25

Medium Voltage, 14

Mental Model, 37, 43

Mental Model, 37

Model Checking, 6

Model Explainability, 41

Model-Based, 26, 41

Model-Free, 26, 32

MountainCarContinuous-v0 environment, 71–
73

Multi-Agent System, 6, 33

MultiLayer Perceptron, 20

negative log-likelihood, 27

Netzausbaubeschleunigungsgesetz, 4

No-Free Lunch, 19, 34

Off-Policy, 26

On-Policy, 26, 31

Open Energy Data Initiative, 64

Operational Technology, 4

Optimization, 20, 22, 23, 27, 29, 30, 32, 61, 65

Orthogonal Blocking, 80

Oscillating Strategy, 68, 78, 79

Partially-Observable Markov Decision Process,
26

Photovoltaic, 3, 16–18
Policy Gradient, 5, 30–32, 65, 71, 74
Policy-Based, 1, 26, 27, 32, 43, 44, 49–52, 62,

77–79
Power Flow Calculation, 16, 64
Principle Component Analysis, 78
Programmatic RL, 43, 50, 62, 79
propositional SATisfiability, 38–40
Proximal Policy Gradient, 5

Q-Learning, 5, 29–32

Reactive Power, 7, 13, 15–18, 64, 68, 74, 77
Reactive Power, 5
Reactive Power, 66
Rectified Linear Unit, 21
Regularization, 23
REINFORCE Algorithm, 30, 31
Reinforcement Learning, 5, 9, 19, 23–27, 30,

36, 42–44
Renewable Energy Source, 3, 4
Replay Buffer, 30–32
Resilience, 1, 5–9, 52, 53, 64, 77, 78
Resilient, 4, 6
Responsibility, 1, 7, 8
Risk Management, 79

Sampling Efficient, 31
Sampling Theorem, 27
Satisfiability, 1, 9, 38–40, 46, 51–53, 58, 59
Satisfiability Modulo Theories, 9, 38–40, 46,

59
Second-Order Free Rider Problem, 34
Self-Explainable, 41, 43, 50, 51, 62, 79
Self-play, 33, 34, 69, 79
SHapley Additive exPlanations, 36
Social Dilemma, 34, 35
Social Dilemma, 34
Soft Actor-Critic, 5
Sparse Rewards, 24, 25
Split-Point Rule, 58
State Explainability, 41
State Representation Learning, 36
Stochastic Gradient Descent, 23, 29, 30
Supply Voltage Characteristics, 14–16, 74, 75

95

Task Explainability, 41
Taxonomy, 9, 26, 32, 36, 41, 42, 50, 62
Ternary Vector List, 80
Transmission System Operator, 15
Trust, 7, 35, 37, 77
Twin-Delayed DDPG, 5

Universal Approximation Theorem, 21
Unknown Unknown, 7, 49, 78
Unknown Unknown, 1

Value-Based, 26, 32, 43, 50
Verifiable, 1, 7, 8, 44, 50, 62
Voltage Band, 8, 14, 15, 67, 68
Voltage Level, 5, 12, 14, 15, 63, 64, 66, 68

World Model, 61, 79

96 Index

	Abstract
	Introduction
	Motivation
	Challenges
	Research question and hypothesis
	Outline

	Basics
	Power grid
	Machine Learning
	Deep Learning
	Reinforcement Learning
	Deep Reinforcement Learning
	Explainability in Deep Reinforcement Learning
	Satisfiability Modulo Theories

	Related Work
	More fine-grained XRL taxonomy
	DNN-DT equivalence description

	Requirements, Method Analysis and Contributions
	Requirements
	Method analysis
	Contributions

	The NN2EQCDT algorithm
	Decision tree construction with the NN2EQCDT algorithm
	Derivation of the representation with right-handed linear transformation
	Dynamic path checking when adding subtrees
	Further tree compression
	ARL framework integration
	Discussion

	Evaluation Scenario
	Power grid setting
	Simple voltage attacking scenario
	Visual inspection of agents behavior
	Scenario adaption
	Conclusion and Discussion

	Evaluation
	NN2EQCDT evaluation
	Attack scenario
	Conclusion and Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Tool usage
	Figures
	Literature

